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Zusammenfassung 
                                                      
Diese Arbeit ist ein Beitrag zum Verständnis der mechanischen Eigenschaften 
nichtkohäsiver granularer Materialien im statischen Grenzfall. Wir simulieren die 
Dynamik von Schüttgütern wie etwa Sand. Am mechanisch relaxierten Zustand der 
simulierten Sandhaufen messen wir numerisch Eigenschaften auf der Mikroskala. Dann 
führen wir Mittelungen durch, um die Werte von Feldgrößen zu erhalten, die in einer zu 
findenden makroskopischen Kontinuumsbeschreibung relevant sein mögen. Dabei 
wenden wir eine effiziente Modellierungstechnik an, die sogenannte Diskrete-Elemente-
Methode (DEM). Insbesondere zeigen wir, dass es nicht nur möglich ist, elastische 
Spannungen im Sandhaufen zu bestimmen, sondern auch Verschiebungsfelder.  Letzteres 
gelingt durch überlegten Einsatz eines adiabatischen Relaxationsprozesses, in dem die 
Gravitation, über die man in der Numerik ja frei verfügen kann, langsam variiert wird. 
Auf diese Weise steht nach der Simulation der vollständige Satz von Feldvariablen der 
Elastizitätstheorie zur Verfügung. Es ist zu betonen, dass Verschiebungs- und 
Deformationsfelder für Sandhaufen vorher in der Literatur nicht betrachtet wurden.  
 
Konvergierte Werte makroskopischer Felder werden durch Mittelung über ein 
repräsentatives Volumenelement (RVE) berechnet, dessen Größe zu bestimmen war. Wir 
finden, dass für alle Felder ein RVE ausreichend ist, das 100-200 Teilchen enthält. 
Spannungstensoren werden sowohl für symmetrische als auch für asymmetrische 
Sandhaufen in zweidimensionalen Systemen untersucht. Dabei lassen wir die Teilchen 
entweder aus einer punktförmigen Quelle fallen oder aus einer Linienquelle, deren Länge 
sich im Lauf der Zeit verkürzt. Die aus den Simulationen erhaltenen gemittelten 
Spannungsverteilungen reproduzieren das experimentell beobachtete Druckminimum für 
aus einer Punktquelle aufgeschüttete Sandhaufen, während wir (ebenfalls in 
Übereinstimmung mit dem Experiment) kein vergleichbares Minimum für mit einer 
Linienquelle erzeugte Sandhaufen beobachten.  Wir bestimmen die Massendichte in 
Sandhaufen, die entweder aus einer Punkt- oder Linienquelle geschüttet wurden und 
finden, dass die Dichte unter einem Haufen, der aus einer Punktquelle stammt, nicht 
homogen ist. Überraschenderweise nimmt die Dichte zu, wo der Druck minimal wird. 
Andererseits ist die Dichte unter einem aus einer Linienquelle stammenden Haufen 
homogen verteilt. 
 
Im Weiteren werden effektive Materialeigenschaften von Sandhaufen aus konvexen 
polygonalen Teilchen durch numerische Simulation untersucht, wobei generell die zwei 
obengenannten Typen von Sandhaufen mit unterschiedlicher Konstruktionsgeschichte 
betrachtet werden. Die gemittelten Spannungs- und Deformationsfelder werden ebenso 
bestimmt (letztere durch Variation der Gravitation um 10%) wie der Fabric-Tensor 
(Strukturtensor) und das lokale Trägheitstensorfeld.  Ziel dieser Simulationen war die 
Gewinnung detaillierter Informationen zur Gesamtheit der makroskopischen 
Materialeigenschaften granularer Medien, was unser Verständnis von Transport- und 
Prozessproblemen zu verbessern hilft, die in korpuskularen Materialien auftreten. Wir 
zeigen, wie die Konstruktionsgeschichte von Sandhaufen ihre Spannungs- und 
Deformationsverteilung sowie die Verteilung der lokalen Volumenanteile beeinflusst; wir 
zeigen auch, wie die Spannungsverteilung von der Formverteilung der Partikel abhängt. 
Die Absenkung in der Druckverteilung wird deutlich ausgeprägter, wenn der Sandhaufen 



 
 

aus einer Mischung elliptischer Teilchen besteht als wenn er sich aus fast kreisrunden 
Partikeln zusammensetzt.  Wir bestimmen den Deformationstensor auf mehrere 
verschiedene Weisen und vergleichen drei Best-Fit-Methoden aus der Literatur mit 
direkter numerischer Differentiation. Im Zentrum eines Sandhaufens liefern drei der vier 
Verfahren übereinstimmende Ergebnisse, an seinem Rand sind die Best-Fit-Methoden 
wie erwartet numerisch genauer als die numerische Differentiation. 
 
Der Strukturtensor wird für Sandschüttungen aus einer Punktquelle bestimmt. Wir finden, 
dass die Kontaktdichte der Teilchen in Richtung auf die Mitte und die unteren Bereiche 
des Sandhaufens hin zunimmt, wohingegen sie in der Nähe seiner Oberfläche gering ist. 
Die Spur des Strukturtensors ist für einen Sandhaufen aus monodispersen Teilchen gleich 
dem Produkt aus der mittleren Koordinationszahl und dem Volumenanteil, während eine 
solche einfache Faktorisierung für polydisperse Teilchenmischungen nicht gegeben ist. 
 
Wir bestimmen die elastischen Konstanten im Innern eines Sandhaufens numerisch, 
wobei wir die Gültigkeit des Hooke’schen Gesetzes für die Beziehung zwischen 
inkrementellen Spannungs- und Deformationsänderungen annehmen. Wir etablieren dann 
eine Korrelation zwischen den elastischen Materialkonstanten und dem Strukturtensor. 
Der makroskopische Elastizitätsmodul des Sandhaufens ist eine Größenordnung kleiner 
als der für die Kräftebestimmung verwendete der individuellen Teilchen, was nahelegt, 
dass das Konzept elastischer Eigenschaften des Aggregats auch im theoretischen 
Grenzfall starrer Teilchen seine Gültigkeit nicht verliert. Wir finden, dass der 
Kompressionsmodul zum Zentrum des Haufens hin anwächst und in Richtung auf seine 
freie Oberfläche hin abnimmt, dass also sein innerer Bereich härter ist als das Gebiet 
nahe der Oberfläche. Wir stellen fest, dass der Kompressionsmodul des Sandhaufens eine 
lineare Funktion der Spur des Strukturtensors ist. Wir bestimmen die Beziehung 
zwischen Invarianten des inkrementellen Spannungstensors und des inkrementellen 
Deformationstensors und beobachten, dass das Verhalten nichtlinear ist, was bedeutet, 
dass linearem elastischem Verhalten in der Nähe des Zentrums des Haufens nichtlineares 
in der Nähe seiner Oberfläche gegenübersteht.  Letzteres kündigt den Übergang zu 
plastischem Verhalten in den Außenregionen des Sandhaufens an, eine schon in der 
Literatur von Cantelaube und Mitarbeitern postulierte Situation. 
 
Ein Vergleich der Simulationsdaten mit einfachen analytischen Theorien, unter anderem 
dem Modell der orientierten Spannungs-Linearität (OSL) und einem elastoplastischen 
Kontinuumsmodell zeigt, dass diese Theorien bestimmte Mängel aufweisen. Die beim 
OSL-Modell von Cates et al. zur Schließung des elastomechanischen Gleichungssystems 
vorgeschlagenen Beziehungen führen entweder nicht zu einer guten Anpassung an die 
numerischen Daten oder sind unmotiviert. Vergleichbare und bessere Anpassung erreicht 
man mit dem elastoplastischen Modell von Cantelaube et al., allerdings sollte hier eine 
Anpassung gar nicht nötig sein, denn die Theorie enthält keine freien Parameter mehr. 
 
Die zweite Klasse von Systemen, die in dieser Arbeit (neben Sandhaufen) betrachtet 
wird, sind statische rechteckige Schichten granularer Schüttungen. Wir bestimmen ihre 
mechanische Antwort auf eine kleine externe Last, die auf die Oberfläche des Systems 
einwirkt.  Dies erlaubt Rückschlüsse auf den Typ der makroskopischen Gleichungen, die 
das mechanische Verhalten des Systems regeln. Gemittelte Spannungs- und 
Deformations-Antwort-Funktionen auf eine lokale Störkraft werden für eine Anzahl von 



 
 

Bedingungen bestimmt, darunter verschiedene Packungsanordnungen und statische 
Reibungskoeffizienten. Die Abhängigkeit der Form der vertikalen 
Normalspannungsantwort von der Ordnung der granularen Packung wird sichtbar 
gemacht. Monodisperse Packungen runder Teilchen weisen einen Doppel-Peak unter 
dem Angriffspunkt der externen Kraft auf; ein solches Verhalten folgt aus hyperbolischen 
Kontinuumsgleichungen mit Spannungsfortpflanzung entlang bevorzugter Bahnen. Für 
bidisperse Packungen treten auch Doppelspitzen auf, diese sind allerdings deutlich 
weniger ausgeprägt, während es nur einen einzelnen Peak für Packungen aus irregulären 
pentagonalen Teilchen mit ihrer höheren Unordnung gibt. Ein qualitativer Vergleich 
dieses Antwortverhaltens mit experimentellen Resultaten von Junfei Geng et al. an 
photoelastischem Material belegt die gute Übereinstimmung der Simulationen mit diesen 
Experimenten. Ferner vergleichen wir die analytische Lösung für die vertikale 
Spannungskomponente eines isotropen elastischen halbunendlichen Mediums in zwei 
Dimensionen (dessen Kontinuumsgleichungen natürlich elliptisch sind) mit unseren 
numerischen Spannungsantworten für die Fälle einer glatten und einer rauen Unterlage. 
Wir finden vergleichbares Antwortverhalten für alle drei Fälle, hinreichend ungeordnete 
Systeme scheinen also elliptischen Gleichungen zu gehorchen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                  



 
 

                                Abstract  
 
This work is a contribution to the understanding of mechanical properties of non-
cohesive granular materials in the static limit. We simulate properties of the mechanically 
relaxed state of sand piles and perform numerical averages to obtain the values of field 
quantities pertinent to a continuum description adopting an efficient modelling technique 
the so-called discrete element method (DEM). In particular, we show that it is possible to 
obtain not only stresses but also displacements in the heap, by judicious use of an 
adiabatic relaxation procedure, in which gravity is slowly changed. Hence the full set of 
variables of the theory of elasticity is available. We emphasize that the displacement 
(strain) fields inside sand piles have not been previously considered in the literature. 
Averaging is made reproducible by introducing a representative volume element (RVE), 
the size of which we determine by careful measurements. Stress tensors are studied for 
both symmetric and asymmetric sand piles in two-dimensional systems, where the 
particles are dropped from a point source. The averaged stress distributions obtained from 
simulations reproduces the experimentally observed pressure minimum for sand piles 
poured from a point source, whereas, we do not observe a similar minimum for sand piles 
poured from a line source. We have also obtained densities in a sand pile constructed 
either from a point source or a line source. We find that the density distribution is not 
homogeneous under a pile that is constructed from a point source. A surprising finding is 
the behaviour of the material density in this kind of heap, which increases where the 
pressure is at a minimum. On the other hand, the density is distributed uniformly under a 
pile constructed from a line source. 
 

Furthermore, the effective material properties of sand piles of soft convex polygonal 
particles are investigated by numerical simulation. Two types of sand piles are construct- 
ed by two different procedures. The averaged stress and strain, the latter via imposing a 
10% reduction of gravity, as well as the fabric and inertia tensor have been obtained 
throughout the sand pile, in order to gain more detailed knowledge on overall 
macroscopic material properties of granular materials, which will help improve our 
understanding of transport and processing problems appearing in particulate materials. 
We show how the construction history of the piles affects their strain distributions, 
volume fractions, and the stress distributions; we also show how the latter is affected by 
the shape distribution of the grains. The ‘‘dip’’ in the pressure distribution becomes 
significantly more pronounced for a pile consisting of mixture of elliptic particles than a 
pile consisting of mixture of round particles. Strain tensor is determined by adopting 
three different versions of best-fit methods and a simple differentiation method by 
numerical investigation for both types of sand piles. The results of four different versions 
of strains obtained from DEM simulations are compared to each other.   
 
The fabric tensor is determined for a pile poured from a point source. We find that the 
contact density increases towards the centre and towards the bottom and decreases 
towards the surface of the pile. The fabric is linearly proportional to the product of the 
volume fraction and the mean coordination number for a pile consisting of mono-disperse 
mixture of particles. We determine the elastic constants throughout a sand pile 
numerically assuming Hooke’s law to be valid in relating incremental stress and strain 



 
 

tensors to each other. We then establish a correlation between the elastic material 
coefficients and the fabric tensor. We find that the simulated sand pile is softer around 
one order of magnitude than the individual particles indicating that the sand pile can be 
elastic even in the limit of rigid particles. We see that the bulk modulus increases towards 
the centre and decreases towards the free surface of piles, indicating that the inner region 
of the pile is much harder than the region closer to the surface.  We observe that the bulk 
modulus of the sand pile is a linear function of the trace of the fabric tensor. We 
determine the relationship between invariants of the incremental stress and the 
incremental strain tensor, observing that the behaviour is nonlinear which means that we 
have linear elastic behaviour near the centre of the pile and nonlinear behaviour 
announcing the transition to plastic behaviour near the surface of the pile, the same 
behaviour was assumed by Cantelaube et al. 
 
Comparison of simulation data with simple analytical theories including orientated stress 
linearity (OSL) model and an elasto-plastic continuum model for the macroscopic 
mechanical behaviour of a sand pile shows that these theories have certain deficiencies. 
The OSL closure relations proposed by Cates et al. seem unable to make a good fit with 
the numerical stress distributions under a pile. However, we obtain comparable or better 
quality from fits to the elasto-plastic model by Cantelaube et al. 
 
The second class of systems considered here are static rectangular layers of granular 
assemblies. We determine their response to an applied external overload at the top 
surface of the system in order to gain information on the type of macroscopic equations 
governing the mechanical behaviour. Averaged stress and strain response functions to a 
local force perturbation have been evaluated under a variety of conditions including 
various packing orders and different static friction. The dependence of the shape of the 
vertical normal stress response function on the packing order of the granular aggregate is 
exhibited. Mono-disperse packings of round particles show double peak shapes 
underneath the point where the external force is applied, a behaviour predicted for 
hyperbolic continuum equations. For bi-disperse packings, double peaks are also present, 
but much less pronounced, whereas there is only single peak present packings of irregular 
pentagonal particles. Stress responses are compared qualitatively with experimental 
results by Junfei Geng et al. of photo elastic material. Our simulation results show good 
agreement with these experiments. We compared the analytic vertical normal stress 
solution of an isotropic linearly elastic semi-infinite medium in 2D with our numerical 
stress responses for both smooth and rough bottoms. We observe that the vertical stress 
response is qualitatively similar for the three different systems, sufficiently disordered 
systems hence seem to satisfy elliptic equations.   
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          Introduction 

 
 
 
 
 
 
Granular materials are of fundamental importance and high interest to various branches 
of science and technology such as physics, applied mathematics and mechanics. In the 
last few years, extensive research has been devoted to the study of granular materials due 
to their importance for applications in various industries and because they pose 
fundamental analytical challenges [1-2]. Moreover, the understanding how granular 
materials response to an applied overload is an interesting and difficult scientific problem 
in recent years. Granular materials are commercially very important for application in 
pharmaceutical industry, agricultural, geotechnical industry, and energy production 
industry. 
 
Currently, a large amount of money is spent on the transportation and processing 
associated with the storage and containment of granular materials. However, about 50% 
of the money is unnecessarily spent because of problems related to the transport of the 
material from one part of the factory to another part of the factory.  
 
Now, to have a look from another angle, it is often assumed that the side wall of a 
material container receives a constant force from the granular material inside. The 
common example of this issue is a model of a silo which is of great concern to various 
industries such as agricultural, pharmaceutical and mining industries, and all 
construction-based industries. However, this assumption is wrong, and in the general 
case, forces are non-uniformly propagated within the material, so they are also non-
uniformly distributed at the wall of the silo. In some cases, if the force is much larger in 
some parts of the container than in other parts, the silo might collapse. For in order to 
avoid problems such as the collapse or breach of a silo, one can simply increase the 
thickness of the walls by a generously chosen safety margin, which would be unnecessary  
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if we had the knowledge how to design the silo in a proper way, especially taking into 
account the expected distribution of forces inside the silo. Therefore, the understanding of 
the basic physical principles behind the stress distribution in static granular materials is 
clearly important.   
 
A simple example out of a collection of granular arrangements is the static sand pile. The 
formation of a sand pile is related to the fundamental behaviour of granular materials, 
including particle packing, segregation and pressure distribution. The practice of storing 
granular materials in the form of sand piles occurs in many industrial situations dealing 
with particulate materials. Examples include the pharmaceutical industry relying on the 
processing of powders and tablets, the agricultural industry, coal industry and the food 
processing industries where seeds, coal (grain) and foods are transported and 
manipulated. Moreover, the storing of the material in a pile may be useful in fertilizer and 
mining industries. Thus, the flow of granular materials through a funnel (to form a pile) is 
an important problem for many industrial processes.  
 
In order to handle the processing of granular materials in a pile properly, it is important to 
understand its mechanical properties and effective material behavior. On the other hand, 
the study of deformation of granular materials either under external loading or unloading 
is also of practical importance for many industries. Although some progress has been 
made in this field during last ten years, these properties are still far from being 
exhaustively understood. Moreover, continuum models proposing constitutive relations to 
describe the flow and the deformation of granular materials have remained important, 
these constitutive relations are not able to completely describe the behaviour of granular 
materials. 
 
In spite of their importance in applications, it is fair to say that there is as yet no 
fundamental understanding of granular materials. Such an understanding might manifest 
itself in a general continuum theory, applicable to the majority of granular assemblies, 
without the need of ad hoc assumptions for each new system considered. Even though 
continuum descriptions have been applied extensively to model granular materials, 
especially in the engineering community [3-4], neither are these based on a microscopic 
theory nor is their predictive power for new experiments on granulates impressive. In the 
physics community, continuum descriptions are based either on balance equations [5] or 
on symmetry considerations [6], i.e., on general principles that are not specific to the 
granular state, so these ideas may yield important constraints for a microscopic theory but 
cannot stand in its place. For static assemblies, phenomenological closure relations [1] as 
well as elasto-plastic models [2] have been used in macro scale calculations of the stress 
tensor, leading to different stress distributions in a sand pile.  
 
The goal of this work is to numerically investigate the mechanical, physical properties 
and effective material behaviour of static two dimensional sand piles consisting of poly-
disperse mixture of soft convex polygonal particles, using an efficient numerical method 
the so-called ‘‘discrete element method (DEM)’’. In this work, we construct two types of 
sand piles by two different procedures. In order to compute the trajectory and rotational 
motion of each individual particles inside the sand pile we solve Newton’s and Euler’s 
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equations of motion involving the forces and the torques acting on each particles, using a 
fifth-order Gear predictor-corrector method. Magnitude, direction, and point of applicati- 
on of the microscopic forces are determined from the area and contact length of the 
overlap and from the relative velocities of two colliding particles. The calculation involv- 
es phenomenological elastic constants as well as model parameters for friction and 
viscous damping. 
  
We determine primarily the microscopic tensorial quantities throughout the sand pile. 
Since microscopic tensorial quantities are not convenient to describe macroscopic 
properties of a sand pile we determine averages over many particles to obtain 
macroscopic field quantities to overcome this issue. Averages are performed over 
representative volume elements (RVE) that are then used to define macroscopic fields. 
The size of the RVE is determined from the requirement to obtain convergent results. The 
averaged volume fractions (densities) and stresses are determined numerically for piles 
with varying construction history of the piles; we also determine the latter for a pile 
constructed from a point source with different shapes of the grain. The results of stress 
tensor and densities obtained from simulations are compared with the existing 
experimental results [10, 11]. We note that, up to now, stresses have been measured 
experimentally, numerically and theoretically for symmetric sand piles. However, a 
review of literature shows that there has not been measured the stresses for an 
asymmetric sand pile. We focus on determining the stresses by numerical investigation 
for an asymmetric sand pile that constructed either from a point source or a line source. 
There are two macroscopic approaches [1, 2] in the literature based on analytical descri-
ptions for describing the stress tensor under a sand pile the quality of which we check 
with our simulations. 
 
The strain fields for a sand pile have not been considered in the literature. It is, therefore, 
the objective of this work to determine the strains, which will allow us for predicting the 
elastic material properties and elasto-plastic behaviour of a sand pile. In addition, we 
show how the vertical normal strain is influenced by the construction history of the piles. 
We use four different types of approaches including Cambou et al. [115], Liao et al. 
[116], Cundall et al. [76] and simple differentiation method to determine strains for both 
types of sand piles. Furthermore, we determine the relationship between invariants of the 
incremental stress and the incremental strain tensors for a small change in gravity. 
 
Moreover, in order to study the internal structure of an assembly of grains, we determine 
numerically the fabric tensor inside the pile consisting of either mono-disperse mixture of 
particles or poly-disperse mixture of particles. We establish correlations between the 
fabric tensor and product of the volume fraction and mean coordination number, and 
between the fabric tensor and the measured elastic constants of the piles. A local inertia 
tensor of particles in the sand pile is introduced in order to determine an orientation field 
of the particles. The knowledge gained in studying the results of numerical simulations 
for sand piles is of major importance in understanding these handing and transporting 
issues.  
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The second class of granular systems considered in this work is concerned with the 
numerical investigation of stress and strain response to an applied external overload to a 
single grain (point force) at the top surface of the static rectangular layers of granular 
materials under a variety of packing orders, different static friction as well as different 
magnitude of the external overloads. The aim of this study is to decide the nature of the 
continuum equations for describing the macroscopic behaviour. The vertical normal 
stress responses to a point force of rectangular layers of granular materials with varying 
degrees of packing order obtained from our simulation are compared qualitatively with 
the existing experimental results of ref. [131]. Moreover, we perform a quantitative 
comparison between simulation data on the stress response at the bottom of the 
rectangular system and analytical results on stress response for a semi-infinite medium in 
the frame work of isotropic elasticity. 
 
The thesis is organized in the following way: 
 
After the introduction we start with Chapter 1 by presenting the fundamental characteri-
stics of the granular materials. Then, we present a literature survey on the major mecha-
nical properties of granular materials including pressure, packing density, and force 
distribution inside the sand pile, results obtained either by experimentally or numerically 
or theoretically from the literature. Then we discuss the motivation of the thesis work. 
 
In Chapter 2, we are concerned with modelling and description of the behaviour of 
granular materials. Various numerical simulation methods and continuum mechanical 
methods are discussed for the simulation of granular materials. In our work, we used a 
discrete element method (DEM) simulation which essentially is a molecular dynamic 
(MD) simulation method modified to take into account the specificity of granular matter. 
Then we discuss in detail why this simulation method was chosen and how this method 
works in comparison to other simulation techniques. The basic structure and the 
algorithms of the DEM simulation are explained. Next, we discuss various numerical 
integration schemes in order to solve the equation of motion of the particles.  In addition, 
we give a detailed description of the microscopic approach (force law), discussing in 
particular how the forces including both normal component and tangential components 
are calculated from the geometry of the overlap between two particles. Then we derive a 
formula for the macroscopic stress tensor as well as for the strain tensor, later using 
various best-fit approaches and general differentiation methods. How we deform the sand 
pile by reducing gravity focus on displacing the particle centre slightly, and why we use 
the incremental stress and strain tensors for the calculation of elastic material constants 
throughout the sand pile is then explained in detail. Next, we introduce a formula for the 
fabric tensor of polygonal particles and average over many particles, which will enable us 
to determine the internal texture of the sand pile. We then derive a formula for the inertia 
tensor of polygonal particles in the sand pile. How to derive various averaged 
macroscopic quantities from the microscopic quantities of the individual grains over a 
representative volume element (RVE) will be explained in detail. 
 
In Chapter 3, results obtained from discrete element simulations for two-dimensional 
sand piles of soft convex polygonal particles are discussed.  To begin with we show 
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results on the force distribution for different types of sand piles. Then we present DEM 
simulation results for averaged vertical normal stresses and averaged vertical normal 
strains at different heights inside a sand pile poured from a point source and from a line 
source. Furthermore, we compare the results of vertical normal stress tensor from sand 
piles consisting of roundish particles with those from sand piles consisting of elliptic 
particles. The averaged density was measured throughout the sand pile for both types of 
sand piles. Then the simulation results for the stress tensor and density distribution inside 
the sand piles are compared to the existing experimental results. In the next subsection of 
this chapter, strains are obtained by adopting various best fit methods and a 
differentiation method, to quantitatively compare the results between the different 
approaches. We then discuss the various properties of the fabric tensor of polygonal 
particles including the correlation between the trace of the averaged fabric tensor and the 
product of the volume fraction and mean coordination number for sand piles consisting of 
either mono-disperse or poly-disperse mixtures of the particles. Once we have the stress 
and strain tensors, we determine the elastic constants assuming Hooke’s law. The 
simulation results for elastic constants of the sand piles that are poured from a point 
source are illustrated and we then establish a correlation between elastic constants and 
fabric tensor. In the next step, the simulation results for the orientation of particles inside 
a sand pile are presented. We also determine the correlations between the invariants of 
incremental stress tensors and incremental strain tensors. The chapter closes with a very 
interesting and exciting work done by evaluating numerically the stress tensor for 
asymmetric sand piles constructed with the two methods and comparing the numerical 
data with the existing analytical predictions.     
 
Chapter 4 is devoted to analytical approaches for a stress distribution under a wedge- 
shaped pile. We first discuss two major continuum models including an elasto-plastic 
model proposed by Cantelaube et al. [2] and the orientated stress linearity (OSL) model 
by Wittmer et al. [1]. Then, in order to check the predictions of those theories, we 
compare our numerical simulation results of the stress tensor with their results.  
 
In Chapter 5, we focus on the sensitivity of the stress response and the strain response to 
an applied external force at the top surface of rectangular systems of particles. The main 
aim of this study was to investigate numerically, how the granular materials respond to a 
point force. We first describe the simulation procedure, simulation parameters, and how 
the rectangular layer in two dimensional systems is constructed. Four different types of 
samples (rectangular systems) are constructed using mono-disperse particles, bi-disperse 
mixtures, pentagonal particles and poly-disperse mixtures of the particles.  Then, we 
determine the angular distribution of all contact force for the different packings.  In the 
next step, we present simulation results for stress response of the resulting rectangular 
system for various packing orders, including a qualitatative comparison with 
experimental results. The stress response for the packing with different values of static 
friction and different values of applied external overload is discussed. Next, the 
simulation results on the stress response of a poly disperse system with either a smooth 
bottom or a rough bottom are presented and we then compare the numerical results with 
the existing experimental results. Then, we compare our numerical data on the stress 
response at the bottom of the system with analytical results on stress response for a semi-
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infinite medium. Finally, the calculation of macroscopically averaged strain responses 
functions inside the granular aggregates consisting of mono-disperse particles is 
presented.  
 
Chapter 6 presents the conclusions of the thesis and an outlook on future the work.   
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1.1  Fundamental characteristics of granular materials 

 
Granular materials are ubiquitous in nature. They are systems consisting of a collection of 
a large number of macroscopic particles of variable size, shape and material. One 
classification scheme is based on the size of the particles, see Table 1.The lower size 
limit for granular particles in typical granular materials is about one micrometer. Below, 
the character of the force laws between the particle changes, adhesion may become much 
more important. The large-size limit goes well beyond the centimeter range on earth. In 
outer space, granular assemblies with much large particles exist. The ring of Saturn 
consists of dust, ice chunks, and lumps of rock with particle sizes ranging from the 
submillimeter to the meter scale.  
 
Most of the time we handle granular materials in our every day life. Examples of such 
granular materials would include nuts, corn flakes, sugar, coffee powder, rice, small seed, 
powder grain and pills. Another examples are sand grains which are ubiquitous in our 
daily lives and play an important role in various industries such as mining, agriculture 
and civil engineering.  Clearly they are also important for geological processes.  
  
Granular material may exhibit different behaviour, sometimes resembling solids, in other 
cases liquids or gases. These behaviours depend on the average energy of the individual 
grains and the nature of the contact between the particles. If the average energy of the 
individual grains is very low and the grains are stationary relative to each other, then the 
material behaves like a solid. When energy is fed into the system such that the particles 
are not in constant contact to each other, the granular materials is said to be fluidized. If 

1 
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the contacts between the grains become highly infrequent, then the assembly behaves like 
a gaseous state. The elementary units of granular materials are solid ‘‘mesoscopic’’ 
grains. Typical particle interactions in granular media include collisions and adhesive 
forces; occasionally, dusts get charged electrically, so there are electrostatic situations 
between particles in this case. This particle of long-range interactions has not been 
studied in much detail so far, here, we will restrict ourselves to short-range interactions as 
well. The only long-range force present in this study is gravitation, which is not an 
interaction between particles.   
 
 
 

Size range Individual grain 

  1.0 µm -10 µm  Super fine particle 

  10µm -100 µm  Powder 

   100µm -4.0 mm Sand grain (Granule) 

   4 mm-60 mm Gravel 

   60 mm-150 mm Stone 

    
 
   Table 1: Types of granular material with different particle size range  
 
 
 

 
 
Figure 1.1: Examples of non-spherical shapes of granular materials.  
 
In granular media, we can define an intimate connection between the mechanical or 
physical properties on all three length scales such as microscopic, mesoscopic, and 
macroscopic scale. On the microscopic scale, the properties that characterize each 
individual grain of the material are their mass, velocity, shape, etc. On the mesoscopic 
scale, we consider the properties that characterize the multi-body nature of granulate, at 
least two particles. At this scale, we have to introduce the particle-particle interaction 
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forces and conservation laws. On the next scale, the macroscopic one, we consider the 
properties that characterize a bulk of particles of the material, examples include the 
stresses, strains, fabric, Young’s modulus of elasticity, and bulk density of the material. 

 

1.2 Major mechanical properties of granular materials 
 
In this section, a short overview over the wide variety of observable phenomena for 
granular materials in the presence of friction is given. We handle different shapes of grain 
in our daily lives (spherical, non-spherical shape, elongated non-spherical), but in most 
practical situations, particles are mainly elongated non-spherical. Examples of such 
elongated non spherical shape of granulate would include rice, wheat, fertilizer and sand 
grain, etc. shown in Fig. 1.1. Following are the major properties of the granular materials 
which will be discussed briefly in the subsections 

  
� Density distribution, 
 
� Pressure distribution, 

 
� Force distribution. 

 

The properties of granular materials are strongly affected by the construction history of 
the aggregate and the characteristics of granulate, especially the size distribution and 
shape of the particles, which will be described in the following. 

 

1.2.1 Density distribution 
 

One of the major properties of granular material is the density distribution (packing 
density) which is defined as the local volume fraction of the granular material. The 
packing density is also very important in chemical industry, science, soil mechanics, 
concrete production etc.  Moreover, measuring the volume fraction for a sand pile is 
important for us to compare our numerical simulation results of stress distribution with 
those of analytical stress distribution under a sand pile [1-2]. 
 
The bulk density of a granular material depends on the way the particles are packed. In 
some cases, the bulk density exhibits a homogeneous distribution under the heap, in 
others, it is inhomogeneous. Moreover, if the material is submitted to soft vibrations, the 
volume fraction, defined as the ratio of the volume of the particles to the total packing 
volume, increases.  
 
The packing density is influenced by the shape, size distribution of the particles and 
construction history of granular materials. If a granular heap is constructed from the rainy 
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Figure 1.2: Filling methods of a packing of catalyst bed: a) point source; b) ‘‘rainy’’ 
filling with distributor in low position; c) ‘‘rainy ’’ filling with distributor in high position 
[7]. 
 

 
 
 
Figure 1.3: Density distribution in a packed bed for different pouring methods [7]. 
 
 

 
 

Figure 1.4: Histogram of density distribution of packed catalyst bed [7]. 
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(uniform) filling method, there is a homogeneous density distribution at every location of 
the heap, if it is constructed from a point source then there is an in- homogeneous density 
distribution.  The effect of the construction method on the bulk density distribution under 
a granular heap in two dimensions was verified experimentally in ref. [7]. In this 
experimental work, the bulk density of a catalyst bed was measured by radio gauging 
method, where the catalyst particles were poured into the system in three different ways 
as shown in Fig. 1.2. In the first method of the pouring processes, particles were poured 
from a certain height that formed a conical heap with a characteristic angle of repose. In 
the other two methods, so-called ‘‘raining filling’’ was realized with horizontal layers 
which were implemented with a spatial distributing grid, located either close to the bed 
surface or higher up. The density distribution results in two dimensions of catalyst bed 
are illustrated in Fig. 1.3 for the different construction histories of the granular aggregates 
and the histogram of the relative counts of these bulk densities are presented in Fig. 1.4. 
It can be observed from Fig. 1.4.a that there occur inhomogeneous density distribution 
with about 4.8% deviation in the point source method and it is about of 1.3% deviation as 
in Fig. 1.4.b for the rainy method with the distributor in a closer position, whereas the 
rainy method with a distributor in a higher position produces a relatively homogeneous 
distribution with only about 0.8% deviation as in Fig. 1.4.c.  
 
In addition, packing density of poly-disperse granular material has been measured both 
experimentally and analytically using the solid suspension model proposed by De 
Garrard in Ref. [8] in order to verify  the influence of shape and size distribution of the 
particles on the density distribution of the granular materials. 
 
The first step of this study was to determine analytically the packing density of industrial 
material made of organic poly-disperse mixtures of particles using the solid suspension 
model. The size of the particles is uniformly distributed from 0.05 to 500 mµ . The 

packing density for the industrial material was found 0.855. How the packing density is 
determined for the poly-disperse mixtures of granular materials using the analytical 
expression proposed by De Garrard has been explained in detail in ref. [8]. 
 
Moreover, experiments have been made on quasi mono-disperse materials. The aim of 
the experiments was to determine the experimental standard deviation of the packing 
density of the industrial material. Three simple quasi mono-disperse materials with 
different shapes and size of particles were used in these experiments as follows 
   

A. A packing containing glass spheres with a mean diameter of 500 mµ . 

B. A packing containing glass spheres with a mean diameter of 50 mµ . 

C. A packing containing acrylic spheres with a mean diameter of 500 mµ . 

 
In the experiment, the materials were deposited into the system with soft vertical 
vibration of the container. The size distribution of the particles of each material split into 
8 to 12 classes for packing A to C.  
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From the analytical determination, it is noted that, the packing densities of 0.661, 0.674 
and 0.670 were found, respectively for the packings A, B and C, 

whereas, ( ) 266.1 1.9 10−± × , ( ) 267.4 2.0 10−± ×  ( ) 267.0 1.9 10−± ×  and ( ) 285.5 3 10−± ×  

were found A,B,C and industrial material, respectively, from the experimental 
measurement of standard deviation of packing density. 

 

 

1.2.2 Pressure distribution under a sand pile 

 
 
One of the most interesting features of assemblies of grains in the static limit is the 
vertical normal stress distribution (pressure) under it. From the Janssen’s analytical 
model in ref. [9], one could realize that, the pressure distribution in a silo filled with 
grains does not increase linearly with height, but saturates at a certain height, that means 
the pressure does not change anymore, once a certain distance from the surface of the 
filling is exceeded. A heuristic explanation of the physical mechanism producing such a 
phenomenon in a silo is that due to the internal friction of the aggregate of the granular 
material which leads to the arching phenomenon and due to the friction with the side 
walls, the latter support some part of the weight of the material. This will lead to a 
constant pressure below a certain depth in the silo. Related phenomena influence the 
pressure distribution in a sand pile, although we have no side walls of the system in this 
case. 
 
When sand is piled up to build a heap, the pressure distribution under the final sand cone 
does not normally correspond to what one would expect from simple ideas about 
elasticity of a continuum. In some cases, pressure exhibits a large dip (local minimum) 
near the centre of the sand pile, in others, it either has a small minimum or no minimum 
at all, as  a schematic diagram of some of the possible pressure distributions below the 
apex of a sand pile shows in Fig.1.5. The results depend strongly on the characteristics of 
the granulates, especially the size and shape distribution of the particles.  
 
Moreover, with the same material, the construction history of the sand pile plays a crucial 
role in determining the distribution of stress under the sand pile. If the material is dropped 
from above a single position of the plane on which the pile is built (point source), there is 
a pressure minimum, if it is dropped layer-wise (line source), then there is no minimum. 
These results have first been found experimentally (see for example ref. [10]). The right 
top corner of Fig.1.6 shows a sand pile that has been constructed from a point source, 
whereas, the bottom sand pile was constructed from a line source. The pressure 
distribution of the corresponding sand pile measured from the centre to the right hand 
side of the pile is displayed in the left hand side of the same figure. The figure 
demonstrates the existence of a dip (local minimum) in the pressure profile at the centre 
for the case of a sand pile that was created from a point source, whereas there is no such  
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Figure 1.5: Schematic diagram of pressure distributions under a sand pile. Distributions 
of this type are expected when the inner and outer regions of the sand pile have different 
elastic behaviours. 
 
 

              
 
Figure 1.6: Experiments on sand pile, L.Vanel.et.al. [10].  
 
minimum for the case of a sand pile that created from a line source. So we observe that 
two piles consisting of the same material may have different pressure distributions.  
 
On the other hand, in some cases, the stress displays a large minimum below the apex of 
the sand pile and in others it has a small minimum, observed experimentally by I. 
Zuriguel and coworkers, in ref. [11]. The result depends upon the shape of the particles. 
If the sand piles contain a mixture of ellipsoidal particles, there is a large stress dip below 
the apex of the pile for a certain construction history of the pile, whereas when it contains 
a mixture of roundish particles, there is a much smaller dip, as is illustrated in Fig. 1.7. 
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Figure 1.7: Experimental measurement of pressure distribution under a sand pile [11]. 
Left: shows the pressure distribution for a sand pile consisting of a mixture of disks, 
Right: shows the same for a sand pile consisting of mixture of elliptic particles.  
 

                    
 

Figure 1.8: Experimental pressure distributions under a sand pile consisting of a mixture 
of large frosted smooth glass beads [12]. 
            

                  
 
Figure 1.9 Experimental pressure distribution under a sand pile consisting of a mixture of 
large smooth glass beads [12].  
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Another mechanism is the roughness of the particles, that influences the pressure 
distribution under the sand pile. This has been observed in experimental measurements 
involving frosted (rough) glass beads in ref. [12] with size of 0.56 mm. A dip can be seen 
in the pressure profile as shown in Fig.1.8 obtained from the experiments with frosted 
glass beads, whereas, no dip occurs for a sand pile that contains a mixture of smooth 
glass beads with same particle size as one can see in Fig.1.9. The flow ability of the 
particles is supposed to be responsible for the existence of the dip, because reordering for 
frosted glass beads is more difficult than for the smooth glass beads. 
 
Several years ago, the phenomenon indicated above produced a lot of excitement in the 
physics community involved in granular research and incited people to propose more or 
less fundamental theories. 
 
A dip in pressure profile is not only seen in the experiments on sand piles, but also has 
been predicted in the continuum models tailored for that purpose. There exist many 
constitutive relations in the literature proposed by different researchers which may lead to 
a pressure dip in the centre of the heap. One of the interesting continuum approaches is 
the FPA (fixed principal axis) model obtained by Wittmer et al. [13], assuming a 
constitutive relation assuming that the major principal  axis of the stress tensor of the 
granular heap is  fixed at the time of the burial of a grain under the next layer of material 
and not affected by subsequent loading. This theoretical model provides an analytical str-
ess tensor which is in decent agreement with the experimental data of three-dimensional 
sand piles, see ref. [14] and shows a pronounced pressure dip under the apex of the sand 
heap. Another theoretical model was obtained by F. Cantelaube et al. in ref. [15], who 
introduced an elasto-plastic continuum model that seems fully capable of exhibiting a 
pressure dip.  
 
The phenomenon of the ‘‘dip under the heap’’ has fascinated physicists. On the other 
hand, among engineers there was a tendency to discard it as an isolated phenomenon 
without particular significance, for which many different explanations may be found, and 
which is probably due to different reasons in different experimental situations. One trivial 
explanation would be that the plate onto which the sand is poured bends downward 
during the process, which would immediately reduce the pressure in the centre, providing 
only that the sand does not follow this movement without resistance. While this 
explanation may hold for some experiments, there have been careful studies in the 
meantime with very thick ground plates in refs. [10, 12, 14, 16-17], for which such an 
effect can essentially be excluded and which still lead to a pressure minimum. 
 
Also the pressure minimum can be seen in numerical simulations [18-26] of two 
dimensional sand wedges and three dimensional sand cones, including sand piles 
consisting of polygonal or spherical particles. There it can hardly be argued that it is due 
to a bending ground plate, as the numerical particles as well as the ground on which they 
fall do not change shape.   

 
 

 



      
 16                                                                                                             Granular materials                                                                                                                                          

 

1.2.3 Force distribution in granular media 
 

In granular media, the transmissions of forces occur from one particle to another only via 
contacts of the particles. Hence, the distribution of contacts will have an important 
influence on the distribution of forces within the assemblies of grains. The force 
transmission in granular media is important in many situations including silo design, 
foundation building as well as for the constructions of roads and dams. Therefore, the 
understanding of the basic physical principles behind the distribution of forces in 
stationary granular materials is very important. 
 
Various models have been proposed by many researchers [27-36] to determine the 
structure of the force network and the probability distribution of forces inside of granular 
media. As it is stated in the literature [27-36], the behaviour of the probability distribution 
of normal forces inside a granular medium is not similar for all cases. There have been 
predictions of different types of normal force distribution inside the granular medium 
including an exponential, power law, Gaussian, and uniform distribution. For example, a 
theoretical scalar model called ‘q model’ was proposed by Liu et al. [27] and 
Coppersmith et al. [28], and Nguyen et al. [29],  for determining the probability distri-
bution of the contact normal force in granular materials. Coppersmith and coworkers [28] 
used the q model to determine the force inhomogeneities in stationary bead peaks and 
predicted the probability distribution of forces decay at large forces for all most all 
contact distributions. They observed that the fluctuations in the distribution of force arise 
due to the variations in the contact angles and the constraints imposed by the force 
balance on each bead of the pile. Socolar [30] proposed a scalar model, the so-called α  
model, which is an improved version of q model, and found that for a two dimensional 
system of non-cohesive granular materials with periodic boundary condition, the force 
distribution is similar to the one obtained in the q model.  However, Sexon et al. [31] 
proposed another scalar model studying intergrain forces in static and non-cohesive 
granular materials, and predicted the probability distribution for forces on individual 
grains to appear as Gaussian at all stages of compression and to show no evidence of an 
exponential tail, present in the q model.  
 
Better understanding of the distribution of forces inside a granular material has been 
obtained not only using the theoretical scalar model, but also by using computer 
simulations [20, 32-34]. Radjai at el. [32] have studied the statistical distribution of 
contact forces inside a two dimensional packing of circular rigid disks with solid friction 
using contact dynamics simulations, and obtained the interesting result that the 
probability distribution of normal contact forces lower than their respective mean value 
decays as a power law and that of normal contact forces higher than their respective mean 
value decays exponentially. Additional simulation work has been done by Thornton and 
Antony in ref. [34] using discrete element method simulation on three-dimensional poly-
disperse systems of elastic spheres with periodic boundary conditions. They found a 
similar behaviour of power law variation for forces less than half the value of mean value 
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A.                             

    
 

B.   

                
 
Figure 1.10: Force network for sand piles [11]. (A) Mixture of disks. (B) Mixture of 
elliptic cylinders. 
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and an exponential decay for forces greater than the mean value. Luding in ref. [20] has 
carried out a molecular dynamic simulation on a two dimensional sand pile, determined 
the probability distribution for the vertical normal stress network at the bottom layer of 
the pile, he obtained a power law distribution for small stresses and exponential decay for 
large stresses.    
 
Mueth at al. [35] performed experiments on three-dimensional random packings of 
mono-disperse glass beads under uni-axial compression. For this case, they found that the 
probability distribution of normal force is nearly uniform for forces below the mean value 
and decays exponentially for forces grater than the mean value of forces.     
 
On the other hand, the structural properties of force chains and angular distribution of the 
force chain orientation in two dimensional sand piles was determined experimentally by 
I. Zuriguel et al. in ref. [11] and it was found that, the shape of the particles has a major 
influence on the packing of granular materials that leads to show different force chain 
structures in the sand piles. So two sand piles consisting of same materials may have 
different force distributions.  They reported that the chain structure for piles consisting of 
disks are open and complex patterns evident for piles consisting of elliptic cylinders, as 
shown in Fig.1.10. It may be gathered from the figure, that more force chains appear for 
the case of elliptic cylinders than in the case of the disks.   
 

 

 

1.3 Motivation 

 

 
To motivate the study of this problem, we have discussed in this section, why the most 
simple-minded description of a granulate pile of non-cohesive particles as an elastic 
continuum may fail. The stress distribution under a sand pile may behave counterintuitiv- 
ely.  
 
This counterintuitive behaviour may be traced back to the fact that the aggregate consists 
of particles that can be considered rigid to a good approximation and that do not stick 
together, i.e., the material is non-cohesive. The pile as a whole will nevertheless to be 
able to show elastic or plastic response to external loads as the particles can rearrange 
under pressure to fill voids more completely, so there will be a finite macroscopic 
deformation resulting from a finite load. In fact, in our simulations, which will be 
explained in the next chapter, we give the particles a finite elastic modulus for reason of 
convenience, and we find when measuring the macroscopic modulus of the bulk 
quantities, that it is usually about a factor 10 smaller. Hence the assumption of rigid 
particles is not a bad one to begin with. 
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Figure 1.11:  Schematic diagram of the contact network of the particle. 
 
 
 
                   A                                               B                                                 C 
 

 
 
 
Figure 1.12:  Contact network between particles that are connected with different 
numbers of bars. A. shows a (hypostatic) network that contains four bars with four nodes. 
B. shows for an (isostatic) network having five bars and four nodes. C. a (hyperstatic) 
network consisting six bars and four nodes. 
 

Since the only effects that hold the pile together near its surface are friction and 
geometric constraints, the free surface of the heap has a tendency to flow, which means 
that in its vicinity plastic behaviour should be anticipated.   
 
On the other hand, deep inside the pile, elastic behaviour is not necessarily to be 
expected, if mechanical aspects suggested by analogies from the field of structural 
rigidity are considered [37]. Once the pile has been constructed, one can connect particles 
that touch each other by straight lines establishing a so-called contact network. Forces 
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between the particles are mostly aligned with the links of this network as one can see in 
Fig.1.11. Of course, there are forces due to friction and geometrical constraints also 
perpendicular to a link but if the elastic modulus of the particle is large; these lateral 
forces tend to be smaller than the forces due to the compression of one particle by 
another. 
 
The field of structural rigidity studies the behaviour of networks of rotatable bars 
connected with each other, and one idea applied to granular media was that the contact 
network can be considered as a network of such bars which can only sustain compressive 
loads. A network of rotatable bars is flexible (= hypostatic), isostatic or overconstrained 
(= hyperstatic), depending on whether the number of bars connecting vertices is smaller 
than, equal to, or larger than, the number needed to maintain stable equilibrium.  Now if 
the network contains too few bars for a given number of nodes, it will be flexible and 
collapse under tiny loads. This is exemplified in Fig. 1.12.A, showing a network 
consisting of four nodes and four bars. If it is pushed from the top or the side, it will 
collapse. To stabilize it, a fifth bar has to included, as shown in Fig. 1.12.B. A network 
having exactly the number of bars that is necessary for stability, i.e., for which removal 
one bar makes part of it flexible, is called isostatic. If there are more bars than necessary 
for structural rigidity, the network is overconstrained as shown in Fig. 1.12.C. If the 
links between touching grains in a sand pile are considered as the ‘‘bars’’ of a network, 
then the non-cohesive nature of the granular constituents allows only bars under 
compression, which rules out the possibility of an overconstrained network. It is easy to 
understand that in overconstrained networks there must be positive self-stresses, that is 
stresses that pull on the bar. Such a situation is forbidden in a non-cohesive granular 
medium, leaving the sand pile to be either hypostatic or isostatic.   
 
In the  limit of infinite elastic constants of the particles, the self stresses can be shown to 
become more important than stresses due to external load (the self-stresses scale with the 
elastic constants, the external loads do not), so any stable sand pile having no cohesive 
forces must be isostatic.This means that a sand pile consisting of rigid particles should be 
very susceptible to external perturbations, since the application of a small perturbation, 
for example  the removal of a few particle contacts should destroy its stability or the 
stability of a big part of it. The ability of the sand pile to react strongly to external 
perturbation has been linked with the idea that the equations describing a static sand pile 
might be hyperbolic instead of elliptic. Which is an issue that should be clarified. 
 
If the elastic constants are large but finite, the sand pile may show some elastic properties 
but the effects of isostaticity should still make themselves felt. Hence the description of 
its mechanical behaviour may be nontrivial. 
 
Arguments based on the different scaling behaviour of self stresses and imposed stresses 
[37] seemed to imply isostaticity for granular matter loaded only by its own weight. Then 
the average coordination number z of grains would have to correspond exactly to a 

critical value critz (6 in two dimensions for frictionless non-circular particles and 3 with 
friction). The mechanical equilibrium conditions of isostatic structures lead to hyperbolic 
field equations, whereas static elasticity is described by elliptic equations. 
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However, it has been pointed out that load and geometry are not independent [38] in sand 
piles, and the distinction should be between isostatic and non-isostatic problems rather 
than structures [38-39]. Solutions of isostatic problems with prescribed load may lead to 
hypostatic structures, describable by elliptic equations; hence the introduction of effective 
elastic coefficients may be meaningful [38].  
 
In fact, while there are a number of continuum models producing the pressure minimum, 
there is no agreement yet on what is the correct macroscopic description. Numerical 
simulations may help to produce a data basis allowing to separate out those models that 
can not work; they may even provide hints on how to obtain a physically correct model.  
 
Moreover, in order to investigate the matter, i.e. the shape distribution influence on the 
pressure distribution, the objective of our study is to investigate numerically the features 
of the basic phenomenon, taking into account that many granular materials such as rice, 
crops and sand consists of non-spherical particles. Our study is exclusively based on 
numerical experiments on assemblies of granular materials by implementing an efficient 
numerical technique, which will help us to investigate the mechanical properties, the 
effective material properties of granular materials with or without applying external 
overloads, and to make qualitative and quantitative comparison to the experimental data 
and those of analytical predictions of stress distributions.   
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              The simulation method                                                                         

    
 
 

 

 

 

 

2.1 Why computer simulations are needed for granular 

materials 

                           
Computer simulations have now been used for over fifteen years to study the behaviour 
of granular materials, due to the increase in computing power. The advantage of  
computer simulations is that they can provide the details of what is actually going on 
inside the granular system, this means, at every instant of time, the displacement, 
position, the point of contact and the contact forces of the individual particles are known, 
which allows us to analyze and visualize the behaviour inside the granular media.  
 
In addition, it might be impossible or difficult to determine some quantities in 
experiments on granular systems while it is possible to determine such quantities in the 
computer simulation. One of the common examples is the evaluation of the strain tensor 
in experiments on granular heaps. In some cases, much money is spent for doing 
experiments on granular systems. Moreover, simulations allow repeatability of the 
granular system as exactly the same specimen can be retested any number of times under 
different boundary condition.  
 
The main problem of the simulation is to develop techniques that are giving sufficiently 
accurate results, which may also be compared with those of real experiments and those of 
analytical theories, Simulation allows to determine both microscopic and macroscopic 

2 
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quantities in granular systems which are of experimental and theoretical interest. 
Moreover, one can develop a continuum description after obtaining the macroscopic data 
from the computer simulation. 
 

 

2.2    Different methods to simulate granular media 
 
 
Granular materials exhibit a wide variety of behaviours, they may be deformed like a 
solid, are able to flow like a liquid, or may even be compressible as a gas. They are very 
interesting both as dynamical and statistical systems. There are various methods which 
may be used to model the behaviour of granular material. The methods to simulate the 
behaviour of granular material may be classified mainly by two approaches which are as 
follows: 
 
               

• Continuum  mechanic methods  
• Particle based approaches  

 
Continuum mechanics methods have been used extensively over the past few years to 
model the flow of granular materials. Using this method, one can formulate the governing 
equations for the stress and strain (velocity) fields by coupling the equations of 
conservation of mass and linear momentum with appropriate constitutive laws. There is 
general agreement that stress fields within the granular media can be described by 
coupling the equations of linear momentum with Coulomb-Mohr yield conditions. Within 
this approach, constitutive models (laws) are needed for modelling the behaviour of 
granular. In this method, the equations of motion are derived for a volume element 
(macroscopic level) and governing equations describing the constitutive behaviour of 
granular materials. Continuum mechanics can be applied successfully for modelling rapid 
granular flow problems. For the principles and reviews of continuum mechanics 
approaches see refs. [40-51].   
 
However, continuum mechanics methods do not give any information about the 
positions, velocities and forces at the microscopic level of particles, which makes it 
difficult to determine the force network and velocity distribution inside the granular 
materials.  
 
On the other hand, within this approach, it is recognized that the equations of continuum 
mechanics are used (as a basis for the creation of mathematical model) to investigate the 
behaviour of granular materials. However, suitable mathematical models are still lacking 
to describe the complex systems of various granular materials, because of the different 
shapes of the particles, the structure of the granular material, and energy dissipation due 
to the inelastic nature of collision between two particles and between wall and particle. In 
addition, this approach is very limited in its application to granular systems, only 
applicable for some particular materials and particular processes, see in ref. [51]. In some 
cases, it may be very difficult to solve the mathematical equations (the so-called 
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continuum equations) that appear in the model of the continuum mechanical method or 
these equations are subject to strong instabilities when linearized [52-53]. Continuum 
mechanics are most appropriate for simplest geometries (to solve continuum equations 
easily) and also for simpler shapes of particles (smooth), which not contain additional 
degrees of freedom, unlike, for example, rough or non-spherical particles. 
 
Furthermore, sometimes, the results obtained by using this approach are not in very good 
agreement with the experimental results. For example, this has been shown by Savage in 
ref. [50]. He used the continuum mechanics approach to study the streaming motions in a 
bed of vibrationally fluidized dry granular materials and obtained results from his study,  
which differ by approximately one order of magnitude from the experimental results. 
 
On the other hand, there exist various numerical simulation methods (based on a 
microscopic approach) such as the contact dynamics (CD) method, cellular automata 
(CA), and the discrete element method (DEM) to analyze the behaviour of individual 
particles within granular materials. With these approaches, one can determine the 
trajectory of each particle by calculating the interaction between colliding particles and 
solving Newton’s equations of motion for individual particles.  
 
Contact dynamics (CD) is a very efficient numerical method to simulate a granular 
system consisting of perfectly rigid particles, originally suggested in Ref [54]. It is based 
on the idea that the particle interaction occurs via the contact points of particles. This 
means, the colliding particles are touching but not overlapping because they are infinitely 
rigid. Consequently, the repulsive normal force is zero for two particles not in contact 
with each other, whereas, when two particles are in contact, it can take any value 
necessary to prevent an overlap of the interacting particles. This method was used by 
many researchers and its detailed description is presented in refs. [55-58]. This method is 
mostly useful for static or almost static situations, i.e. for slow dynamics, especially for 
rigid particles, not for soft particles. It has problems with the granular or inelastic 
collapse. This method is unrealistic for our work, because it is difficult to realize for 
polygonal particles. 
 
One of the simplest methods to describe and simulate the behaviour of complex granular 
systems is the cellular automaton (CA) method. It is a lattice-based model and the system 
is composed of adjacent cells which are either empty or occupied by the particles of the 
material, usually cells are organized as a regular hexagonal, triangular or rectangular 
lattice. All cells update their states at the same time, using a transition rule which takes 
into account the current state of a fixed set of neighbours and usually also of the cell 
itself. In this scheme, the rule may be deterministic or probabilistic, as the interactions 
that can occur between particles moving around a lattice connecting adjacent cell centres. 
The rules themselves may include mass and momentum conservation (albeit) in a simple, 
discrete manner.   
 
This method has been used not only in research fields dealing with flow of fluid and gas 
problems [59-61], but also to simulate the behaviour of granular materials during piling, 
vibration, and segregation in refs. [59] [62-75]. Moreover, it also has been used to 



      
 26                                                                                                            Simulation method                                                                               

simulate rapid flow in silos [69-72] and to determine flow patterns of non-cohesive 
granular materials in a model of silo [73]. The advantage of the cellular automaton 
method is the small amount of computational time needed to describe the behaviour of 
granular system consisting of large number of particles. However, the disadvantage of the 
approach is that the models are purely kinematics wherein flow dynamics is not taken 
into account.  
 
Apart from this, the particles interact in very restricted ways that are described by using 
very simple rules. Cellular automata are not a suitable approach for determining realistic 
forces, and we are really interested in the force field that cannot be calculated by using 
this scheme. Therefore, the cellular automaton method is not a good choice to be used for 
our work.  
 
In this work, we used the most realistic numerical simulation method amongst these 
techniques, the discrete element method (DEM) to study the behaviour of granular 
materials. In the following section, the principles of this method for a granular system 
consisting of a (possibly) poly-disperse mixture of soft convex polygonal particles are 
explained.   
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2.2.1 Discrete element method  
 
The discrete element method (DEM) is a modeling technique for analyzing complex 
systems of individual particles and is used to simulate efficiently both quasi-static and 
dynamical behaviour of a large granular assembly. It has become a powerful numerical 
approach for analyzing non-homogeneous and discontinuous materials. It was originally 
proposed by Cundall and Strack [76] for rock mechanics and later widely applied to 
granular materials, especially in particle flow simulation. Amongst various modeling 
techniques, DEM is the most realistic one for dynamical situations, because it explicitly 
takes into account the forces involved in the formation of assemblies of grains and in our 
case, also a realistic geometry of the particles. The method can be used to determine 
quantities that are difficult to obtain experimentally. 
 
In this work, we used a two-dimensional discrete element method to compute the 
trajectory and rotational motion of each particle. It involves a molecular dynamics 
simulation with complex particles and force laws, including dissipation. The main 
difference between the discrete element method and preceding molecular dynamics 
methods lies in the particle interaction laws. Molecular dynamics simulations of atoms 
and molecules involve  interactions with force laws that may be long range on the atomic 
scale, discrete element simulations involves inelastic interactions between particles and 
short range force laws, unless electrostatic forces are taken into accounts. In DEM 
approaches, the equations of motion (differential equations) describing the trajectories of 
particles are integrated numerically using a step by step integration procedure, often with 
a fixed time step. Essentially, one solves Newton’s and Euler’s equations of motion 
involving the forces and the torques acting on each particle. The basic structure of the 
DEM algorithm consists of a loop that contains the three steps: 
 

� collision detection (at time t ), 
 
� force computation (at time t ), 
 
� solution of the equations of motion (integration process) (integrat- 

ing up to time t t+ ∆ ).  
 
 
Since the retained kinematics includes translation and rotation, the acting fields are forces 
and torques. In assemblies of grains, the forces applied on the individual particle i  are 
classified into two types namely, interaction forces (particle-particle interaction force) 
and external forces. In the case of a dry non-cohesive granular system, the particle-
particle interaction force can be described by the vectorial sum of a repulsive force due to 
impenetrability of particles (normal force), friction force (static and dynamic solid 
friction), and damping force (dissipative normal force). The external force is created by 
gravity.   
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Hence, the interaction force and external force can be written as   
 

i im g=F                                                                                                                        (2.1) 

, , ,diss n cont n cont t
ij ij ij ij= + +F F F F                                                                                     (2.2) 

 

where ,diss n
ij =F dissipative force, 

,cont n
ij =F  normal component of contact force, and  

,cont t
ij =F  tangential component of contact force.  

 
 
The normal forces are calculated from the overlap area of the particles, whereas, the 
tangential force is calculated using a Coulomb type friction coefficient between particles. 
The dissipative normal force is calculated from the velocity during the time of overlap of 
particles using a phenomenological damping constant. How these forces are calculated in 
detail, will be explained in the following section. 
 
In principle, there exists another type of forces, namely cohesive forces which we don’t 
consider in our force calculation since we simulate only dry granulates, which are 
typically non-cohesive. 
 
In general, particle motion is composed of a translational and rotational component. In 
two dimensions, the momentum balance provides two equations per particle, the angular 
momentum balance one, because there is only one angle of rotation. Then we have 
Newton’s and Euler’s equation of motion, given by 
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                                                                     (2.3)   

 
 

Here, the subscript i  runs over all the particles, ( )n i  is the number of contact points of 

the particle i , and the subscript j  runs over all the contacts of the particle i  with other 

particles. That, is forces and torques are exchanged between two particles only, if they 
touch, hence we have short range forces, namely contact forces. iF  is the force acting on 

each particle i  due to external fields, in our case this is only gravitation. 
ij

F  is the sum of 

the normal contact force and tangential contact force as well as the dissipative force 
produced by the particle touching particle i in contact j .   
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It is evident that  
 

.
ij ji

= −F F                                                                                                                         (2.4) 

 
Three or multi-particle contact forces are ignored, the event of three particles having a 
common overlap area practically does not occur in our simulations.   
 
Since the direction of the force will not point to the centre of mass of a particle in 
general, the force will produce a torque ijL  on particle i about that centre. This will lead 

to an angular acceleration iφɺɺ ;  iI  is the moment of inertia of particle i about its centre of 

mass. So particle rotations are fully taken into account in our simulation.  
 
The torques ijL  are determined as the vector product of the force ijF and the vector ir  fr- 

om the centre of mass of the particle i to the contact point of the two overlapping 
particles  
 

.ij j ij= ×L r F                                                                                                                 (2.5) 

 
Since we work in two dimensions, all torques point in the same direction orthonormal to 
the considered place. In the second part of equation (2.3), the term iL  is the external 

torque acting on the particle i . However, in our work there are no external torques that 
acts on the particle, because gravity is the only interaction force, and we consider torques 
about the centres of mass of the particles. By definition of the centre of mass, gravity 
does not exert a torque about it. 
 
Therefore, we have 0.iL =                                                                                     

                                                     
Now, the equation of motion (2.3) can be rewritten as 
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                                                                                                       (2.6) 

 
 
These two equations are driving the motion of the granular medium. How this force is 
calculated, will be explained in Section 2.4. The shown equations (2.6) are solved with an 
explicit-implicit algorithm, usually with a fixed time step by the fifth-order Gear 
predictor-corrector method. In the following section, we give a short description of the 
Gear predictor-corrector scheme. 
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DEM can be classified into two groups: 
       

� Event driven method (ED), 
 

� Time driven method (TD). 
        
 

2.2.1.1 Event-driven method 

 

 
An event-driven (ED) simulation is based on the idea that each individual particle of a 
granular medium exhibits ballistic motion as long as it is not in contact with other 
particles. Ballistic motion is easily computed analytically, so the state of the particles 
needs to be updated numerically only at the times of collisions. The method was 
developed by D. Lubachevsky in 1991 [77]. In this approach, all collisions between 
particles are supposed to be binary i.e. multiparticle collisions cannot occur, perfectly 
rigid spherical particles are used, and the time for the collision (contact) between two 
particles is implicitly zero (infinitely small).  Since the time of contact is very short, this 
method is sometimes referred to as hard sphere model. In a real system each contact takes 
a finite time so that multiparticle contacts are possible (but rare). ED was used in refs. 
[77-83]. Dissipation occurs only on collision and energy dissipation during a collision is 
defined via the coefficient of restitution. The positions and velocities of the particles are 
determined after every binary collision.  
 
The algorithm of the ED method is very simple. In order to get the new status, we start at 
the time t: In the first step, one must determine the time of next collision ct  for each 

particle, to find the minimum, the second step is compute the positions and velocities of 
all particles for the time interval ct t t∆ = − , which can be calculated analytically with: 

 

( ) ( ) ( )21
,

2i c i it t t t t= − ∆ + ∆ +r g v r                                                                                (2.7) 

( ) ( ) ,i c it t t= − ∆ +v g v                                                                                                    (2.8) 

 
 

where ( )i tr  and ( )i tv are the coordinates and velocities of particle i  at time ,t  and then 

in the third step one has to determine the collision ij′v  of the particles i  and j  from the 

velocity and the position with a relation of the form 
 

( ) ( ) ( ) ( ) ( )( ), ,ij c i c j c i c j ct t t t t′ =v F r ,r v v .                                                                    (2.9)                            

 
The expression (2.9) will now allow for obtaining the collision at time ct t=  and the 

cycle begins again from the first step until the simulation is accomplished.  
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The collision is described by a collision operator, which is determined from the positions 
and velocities of the colliding particles after the collision. The detailed derivation of the 
collision operator is discussed in refs. [84-85].  
 
However, the ED method runs into difficulties when the time between collisions becomes 
too small, typically in systems with strong dissipation, and the so-called ‘‘inelastic 
collapse’’ occurs [86, 87, 126] i.e., the collision rate diverges for a few particles in the 
system, it means the energy goes to zero in finite time.  
  
The ED method is particularly suitable for the simulation of granular ‘shear flow’ 
problems in which the duration of contact between two particles is short. Camball et al. 
[88-93] have extensively used the ED method to simulate two-dimensional shear flow 
problems. In addition, it is also suitable to simulate granular gases [86-87]. The event 
driven method is successfully applied in vibrated granular systems with rigid spherical 
particles [94-95]. 

 

 

2.2.1.2 Time-driven method 

 

 
In this numerical simulation work, the time-driven (TD) method was used to simulate 
granular materials, and it is also called time-driven discrete element method, time step 
method. When the duration of contact between real particles is larger than the time of the 
free path of particles, then a time driven method is a better option to be used. This 
method is very efficient in order to examine successfully both static and dynamical dense 
granular systems. 
 
One can obtain the state of the particle at each time step by time integration of Newton’s 
and Euler’s equation of motion (2.6) for translation and rotation of each grain in the 
assembly of grains. This necessitates to keep track of all the forces and moments acting 
on each grain. The equation of motion of particles in equation (2.6) is solved with a 
predictor-corrector method with a fixed time step t∆ . During the simulation, the current 
state of all grains at the time t  is updated after a fixed time step t∆ , which is smaller than 
the smallest time of impact.  
 
In an event-driven (ED) simulation as discussed in the previous section, the duration of 
contact of two particles is ideally zero,  which may lead to a diverging energy dissipation 
rate in the system, whereas the duration of the contact of two particles is finite in a time 
driven discrete element simulation. Energy dissipation rates remain finite. Another 
advantage of the time-driven DEM is that polygonal particles can be used for the 
simulation, whereas the event-driven method is efficient only for circular or spherical 
particles.  
 
While particles have to be rigid in event-driven methods to exploit their advantage which 
consists in avoiding lengthy force calculation, they must be soft in time-driven 
simulations to enable the use of sufficiently long time steps. 
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The choice of a time step is necessary for a realistic simulation. The time step for the time 
integration of the particle position, velocity, orientation and angular velocity depends on 
the contact time of two colliding particles. In order to increase the program efficiency, the 
time step must be large enough, because if one chooses a very small time step, this 
unnecessarily increases time consumption for the simulation to be accomplished. On the 
other hand, the time step must be small enough, otherwise the numerical error becomes 
too large. 
 
In this work, the predictor corrector scheme needs about 10 time steps in order to 
describe a collision correctly. The typical time step chosen in this work to have a good 
resolution of collisions was 
 
  

 
1

. .
10

m
t

Y
π∆ =                                                                                                             (2.10) 

 
Here, m  is the mass of the lightest particle and Y is the Young’s modulus of simulated 
particle.  

 

 

2.3 Integration scheme 
 
 
During the integration process, the most time consuming part is the calculation of forces 
between two interacting particles. Different types of integration schemes like Euler 
scheme, Verlet scheme, velocity-Verlet scheme, third-order Predictor-Corrector scheme, 
and fifth-order Predictor-Corrector scheme can be used to solve the equations of motion 
of the particles (2.6). 
 
Amongst all schemes presented above, the simplest algorithm which may be used to 
solve the equations of motion is the Euler scheme and the method is called an explicit 
method. This method was used by Taguchi [96]. In this scheme, at time t , the accelerati- 

on for particle i  at position ix  is calculated from the following relation 

 

( )( )
( ) ,i i

i

i

x t
t

m
=

F
a                                                                                                      (2.11) 

 

where iF  is the force acting on the particle i  with mass im . 

 

The particle position and velocity are then calculated at the next time step ( )t t+ ∆  using 

the first order Taylor expansion of ( )i t t+ ∆x  and ( ),i t t+ ∆v  which are given by  
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( ) ( ) ( ) ,i i it t t t t+ ∆ = + ∆x x v                                                                                  (2.12) 

 

( ) ( ) ( ) ,i i it t t t t+ ∆ = + ∆v v a                                                                                  (2.13) 

 
 

where ( )i tv   and ( )i ta , respectively, denote the velocity and acceleration of the particle 

i  at time t . 
 
However, the Euler scheme is usually a quite inefficient method to solve the equation of 
motion because one needs to assume a very small time step of the integration in order to 
achieve accuracy and (mostly) stability; this will lead a decrease of the speed of the 

simulation. This scheme has an error of order ( )tΟ ∆ . 

 
A better method than the Euler method is the Verlet method [97]. This method uses a 

Taylor series expansion up to second order of the position ( )i t t+ ∆x   of the particle, in 

order to obtain the positions and velocities, given by 
 

( ) ( ) ( ) ( )21
,

2i i i it t t t t t t+ ∆ = + ∆ + ∆x x v a                                                          (2.14) 

( ) ( ) ( ) ( )21
.

2i i i it t t t t t t− ∆ = − ∆ + ∆x x v a                                                           (2.15) 

 
 
Then, subsequent addition of these two equations (2.14) and (2.15) which allows provid- 

ing the new position ( )i t t+ ∆x  at time ( )t t+ ∆  in terms of the current and preceding 

times t  and t t− ∆  
 

( ) ( ) ( ) ( ) 22 .i i i it t t t t t t+ ∆ = − − ∆ + ∆x x x a                                                        (2.16)        

 
 
The velocity is obtained by subtraction of equations (2.14) and (2.15), which gives the 
following expression  
 
                             

( )
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i i
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t t t t
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+ ∆ − − ∆
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∆

x x
v                                                                              (2.17) 

 
In this integration scheme, one can easily calculate the error from equation (2.16) for the 

position as it is of the order ( )4
tΟ ∆ , whereas, the error for the calculation of velocities 

can be obtained from the equation (2.17). It is of order ( )2 ,tΟ ∆  which is less accurate.  
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The global error is ( )2 ,tΟ ∆  the Verlet scheme is a second-order scheme. Because of the 

less accurate estimate of velocity this scheme is not very efficient to solve the equation of 
motion.  
 
There is another improved version called as velocity-Verlet scheme to overcome this 
problem of the original version of the Verlet scheme. The method is based on the idea to 
store positions, velocities, and accelerations at the same time t , and this will lead to 
minimize the round-off error. It has been proposed by Swope et al. [98]. The velocity-
Verlet algorithm was used by Aoki et al. [99] (in their simulation study of vibrated beds 
of granules) for integrating the equation of motion. The position and velocity are 
determined in the velocity-Verlet scheme via 
 

( ) ( ) ( ) ( )21
,

2i i i it t t t t t t+ ∆ = + ∆ + ∆x x v a                                                          (2.18) 

( ) ( ) ( ) ( )
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 

v v a a                                                 (2.19) 

In this scheme, the error is only of the order ( )5
tΟ ∆ . The scheme is described in detail 

by Allen and Tildesley [30]. 
 
Among other integration schemes which we described above, the fifth order Gear 
predictor-corrector is one of the most popular schemes. In this study, we use a fifth-order 
Gear-predictor corrector to solve the equation of motion (2.6), which is described briefly 
in the following section. 

 

 

2.3.1 Gear Predictor-Corrector method  

 
 
The Gear predictor-corrector method is a multistep numerical method which allows to 
obtain the numerical solutions of ordinary differential equations with a given initial 
condition. According to Gear [100], there are actually three separate steps occurring in a 
predictor-corrector method which we call prediction, evaluation (approximation) and 
correction. In our work, we use in the first step of this method, a predictor method to 
predict the position and velocity of the particles at a given time step. Then, in the second 
step, we calculate the particle forces as an approximation value using the information 
obtained in the first step, and finally in the third step, we use a corrector method for 
correcting the position and velocity of the particles. 
 
The fifth order Gear predictor-corrector scheme was used by H. G. Matuttis [101], Jysoo 
Lee [102], and A. Schinner [103].  
 
We first use the predictor step for predicting the position, velocities, acceleration, and 
higher order of time derivatives up to fifth order of accuracy. The predicted position 
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( )p
t t+ ∆x , velocity ( )pd t t dt+ ∆x  and higher order time derivatives of position 

( )n p nd t t dt+ ∆x  which were derived by using Taylor Expansion Series up to fifth 

order, and expressed by the following expression,  
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where ( )tx  is the position of the particle at the time step t, 
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t

dt
=

x
v  is the velocity of the particle at the time step t, and 

 
2

2

( )
( )

d t
t

dt
=

x
a  is the acceleration of the particle at the time step t. 

 
We abbreviate the derivative term in the set of equations (2.20) as follows 
 

( )
( ) ,

!

n n

n n

t d t
x t

n dt

∆
=

x
 with 0( ) ( ),x t x t= n=0, 1, 2, 3, 4, 5.                                      (2.21)                                       

 
Substituting into the set of equations (2.22), yields 
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0 0 1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( ) ( )p
t t t t t t t t+ ∆ = + + + + +x x x x x x x  

 

1 1 2 3 4 5( ) ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( )p
t t t t t t t+ ∆ = + + + +x x x x x x  

 

 2 2 3 4 5( ) ( ) 3 ( ) 6 ( ) 10 ( )p
t t t t t t+ ∆ = + + +x x x x x  

                                                                                                                                      (2.22) 

3 3 4 5( ) ( ) 4 ( ) 10 ( )p
t t t t t+ ∆ = + +x x x x  

 

4 4 5( ) ( ) 5 ( )p
t t t t+ ∆ = +x x x  

 

5 5( ) ( )p
t t t+ ∆ =x x  

 
The above set of equation can be rewritten in the matrix form given by 
 
 

( )

( )

( )

( )

( )

( )

0
0

1 1

2 2

33

4
4

5
5

( )1 1 1 1 1 1

( )0 1 2 3 4 5

( )0 0 1 3 6 10

( )0 0 0 1 4 10

0 0 0 0 1 5 ( )

0 0 0 0 0 1 ( )

p

p

p

p

p

p

t t
t

t t t

t t t

tt t

tt t

t
t t

 + ∆
   
  + ∆ 
   
 + ∆   

=    
+ ∆    

   + ∆      
   + ∆ 

x
x

x x

x x

xx

xx
x

x

                                                 (2.23) 

 
 
Once the position, velocity, acceleration and higher order time derivatives are predicted, 
then in the second step, we evaluate the particle forces at time step t t+ ∆  according to 
the latest value of positions and velocities of particles and hence, now we have the 
accelerations, given by  
 

( )( ), ( )
( ) ,

p p p

c
t t t t

t t
m

+ ∆ + ∆
+ ∆ =

F x v
a                                                              (2.24) 

  
where m  is the mass of the particle. 
 
Then in the third step, the positions, velocities, accelerations and higher-order time 
derivatives are corrected using the new accelerations. These corrected expressions can be 
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compared with the predicted expression from expression (2.22), to estimate the size of 
the error in the prediction step 
  

( ) ( ) ( ).c p
t t t t t t∆ + ∆ = + ∆ − + ∆a a a                                                                      (2.25) 

 
It is to be noted that the correction step is dependent on the order of the differential 
equation which has to be solved. 
 
The error in the equation (2.25) and the results of the predictor step, are fed into the 
corrector step, given by   
                                                                 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

0 0
0

1 1 1

2 2 2

33 3

4
4 4

5
5 5

( ).

c p

c p

c p

c p

c p

c p

t t t t
c

t t t t c

t t t t c
t t

ct t t t

ct t t t

c
t t t t

   + ∆ + ∆
    
 + ∆ + ∆   
    
 + ∆ + ∆   

= + ∆ + ∆    
+ ∆ + ∆     

    + ∆ + ∆       
    + ∆ + ∆   

x x

x x

x x
a

x x

x x

x x

                                                 (2.26) 

 
 
The corrected terms on the left hand side of the equation (2.26), are now better 
approximations to the true positions, velocities, acceleration and higher order time 

derivatives.  The values of the Gear Predictor-Corrector coefficients ic  depend upon the 

order of differential equation which has to be solved and desired accuracy of the 
trajectories of the particles.  
 
For a second order differential equation of the form 
 

2

2
, ,

d d
f

dtdt

 
=  

 

x x
x                                                                                                      (2.27) 

  
 

the values of the Gear corrector coefficients ic  are   

 

0
3 ,16c =  1

251 ,360c =  2 1,c =  3
11 ,18c =  4

1 ,6c =  5
1 .60c =                    (2.28)                               
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2.4 Force calculation  
 
In this study, we use soft but shape-invariant particles: two particles in contact with each 
other are allowed to interpenetrate partially. Using rigid particles rigorously would 
require different methods such as contact dynamics or event-driven dynamics, which 
however would necessitate the consideration of simpler particle shapes such as circles. In 
principle, if using soft particles, one should allow them to deform on contact. The reason 
this is not done is that it would be inefficient to solve the elastic equations for each 
collision between pairs of soft particles meaning an impractically large computational 
effort for the solution of elastic equations, and a partial differential equation would have 
to be solved for each pair of particles in contact. Instead, the size, direction and point of 
application of the force are calculated from the geometric characteristics overlap area and 
contact length using the relative velocity of the two particles. The repulsive force 
between two particles is increased when the area of overlap becomes larger. Therefore, in 
a real simulation, the overlap always remains small in comparison with the particle 
extension.  
 
The dynamics of the granular system can be obtained by numerically integrating the 
equations of motion for all particles simultaneously with appropriate initial conditions. 
The detailed formulation of the normal and tangential forces depends on the grain model 
[104].  In the following section, these forces are described in more detail. We start with 
the most important force which is the repulsive normal force, and advance to the more 
difficult tangential force in Subsection 2.4.2. 
 
 
2.4.1 Normal force 
 

 
Normal forces are supposed to act in the normal direction of the particle contacts. Fig.2.1 
displays a pair of overlapping particles namely i  and j . Each force acts at a contact point 

between two particles. In general, the direction of the force will not point towards the 
centre of mass of the particle.  
 

The normal force F⊥  can be decomposed into two parts, namely the repulsive normal for- 

ce R⊥  (i.e., elastic part) and the dissipative normal force *D⊥ , i.e. it can be written as 

 

.F R D∗
⊥ ⊥ ⊥= +                                                                                                                (2.29) 

 
The point of contact denoted as 

ij
s  in which the contact forces are applied, is determined 

as the centre of the line of contact, joining the two intersection points 1p  and 2p of the  

polygons. Here ir  and jr  are the vectors from the centre of mass of the respective 

particles to the centre of the contact line. 
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In a way, the most important force is the repulsive normal force which is taken 
proportional to an effective interpenetration depth ,effd  defined as the area A  of the 

overlap between the two particles divided by the contact length l . This force is also prop- 
ortional to the Young’s modulus of elasticity E .  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1:  Illustration of the geometry used in the calculation of the forces acting on 
particle i  in contact with particle j . 

 
 
Therefore, the repulsive normal force R⊥  can be written as 

 

R .
eff

A
Ed E

l
⊥ = =                                                                                                         (2.30) 

 
The contact length l  is defined using on the distances between the centres of mass and 
the force points ir  and 

j
r  as 

 

= .i j

i j

rr
l

r r+
                                                                                                                      (2.31) 
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Young’s modulus in 2D has the units N/m. We use a fixed value of Young’s modulus 
710 /E N m=   for each particle. 

 
In the case of circular particles, this law for the normal forces reduces to the Hertz [105] 
contact law (valid for spheres) 
 

3/ 2R Ed⊥ ∝ , where d is the overlap distance. 

 
Besides this most key feature of assemblies of granular particles, the repulsive normal 
force, another important feature is the dissipation of energy which occurs due to the inter-
particle collisions i.e., the kinetic energy is transferred into internal degrees of freedom of 
a particle and finally into heat The formulation of the dissipative part of the force 
depends on the mechanism of damping. The simplest mechanism is visco-elastic 
damping, which we will focus on. Since we are interested to simulate static arrangements 
of particles, it is useful to use viscous damping in order to reach the steady state quickly. 
 

The dissipative normal force D∗
⊥  is proportional to the effective interpenetration velocity, 

with a damping constant γ  which gives the strength of the damping. The damping 
constant can be treated as a material property directly linked to the normal coefficient of 
restitution. 
 
 
So the dissipative normal force can be written as 
 

* .effD d Emγ⊥ ⊥= ɺ                                                                                                          (2.32) 

 
In the case of a purely elastic collision, the damping constant would be γ = 0.  

 
The effective mass m⊥ of the two particles is calculated from   

 

i= ,j

i j

m m
m

m m
⊥

+
                                                                                                               (2.33) 

 
and the effective interpenetration velocity is given by  
 
 

= ,eff

A
d l

t

∆

∆
ɺ                                                                                                                   (2.34) 

 
 

where 
A

t

∆

∆
 is the change of contact area per time. 
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Actually, the dissipative normal force D∗
⊥  is taken as the damping force D⊥ only as long 

as its combination with R⊥  does not lead to an attraction of the particles (which could 

happen during the time when the distance between the particle increases after a collision 

and effdɺ  becomes negative). If that would happen D∗
⊥  is cut off at the value -R⊥ , that 

means one has to make sure that the damping can not become larger than the repulsive 
normal force in the case of separating  particles, otherwise we might have unphysical 
oscillations of the separating particles. Therefore, the damping force in the normal 

direction D⊥  is given by 

 
 

max( ; )

D
D

D R

∗
⊥

⊥ ∗

⊥ ⊥


= 

−

for

for

approach

  separation.
                                                                         (2.35)                                                                                                   

 
 
 

2.4.2 Tangential force 

 

 
We need to model friction which leads to a tangential force along the contact line. This is 
done following the ideas of Cundall and Strack. However, it is more difficult to write a 
model for the tangential force, as here the phenomena of the tangential deformation and 
both static and dynamic friction have to be modelled. This frictional force prevents a sand 
pile from deliquescing to a puddle, even though this would be a more favorable state of 
potential energy.  
 
 The relative tangential velocity V

�
 of two particles is obtained according to 

 

( )( ) ,i j i i j jr r= − + × − × ⋅V v v ω ω n n� � �
                                                                      (2.36) 

 
where  iv  and jv  are the velocities of the particles  i  and j  and iω  and jω denote their 

angular velocities.  
In general, as per Coulomb [106], the tangential friction force F

�
 (Coulomb friction 

force) should be as follows: 
 

static

s

dynamic

d

F F

F F

µ

µ

⊥

⊥

≤

=

�

�

   
if

if
  

0,

0,

v

v

=

≠

�

�

                                                                                       
(2.37)

(2.38)
                                      

 
where sµ  and dµ  are the coefficients of static and dynamic friction, respectively. The 

coefficient of static friction and sliding (dynamic) friction are assumed to be 
equal, s dµ µ µ= = , for simplicity. 
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Coulomb friction forces have a definite relationship with the normal force only for 
sliding contacts. As long as the relative tangential velocity of the particles is zero during 
contact of two particles, the coulomb friction force takes a value between zero and its 
maximal value ( )F tµ ⊥ .  

 
A behaviour similar to this desired one is mimicked in the simulation by assigning a 
spring to each newly established contact. This spring is stretched during the subsequent 
relative motion of the two particles and exerts an increasing force, until the Coulomb 
friction is fully activated. Afterwards, the spring does not extend further, it is just moved 
along with the particles, and the friction coefficient takes its value for sliding friction  
 
 
We determine the tangential force in the following way, using 
 

1. the relative tangential velocity .V
�

  

2. the square root of a reduced mass m
�
, mass which includes the moments of inertia 

of the particles (because the tangential force tends to rotate particles), given by   
 

        
22

1

1 1 ji

i j i j

m
rr

m m I I

=

+ + +

�
 , 

   
  where  im  and iI  are respectively, the mass and moment of inertia of the particle .i  

 

3. and the square root of the ‘‘tangential’’ Young’s modulus = 
2

.
7

E  

So at the beginning of the collision, the tangential force is zero, and it then is adapted 
after each time step according to 
 
 

2 2
( ) min ( ) ; ( ) .

7 7
F t t F t v t E v Em F tµ ⊥

 
+ ∆ = ± + ∆ + 

  
� � � � �

                                         (2.39) 

 
 
Herein, a viscous term (the square root term) has been added to inhibit unphysical 
tangential oscillations. The sign ±  is determined by the sign of the first term inside 
absolute value bars.  
 
It should be noted that these methods of force calculation are very similar to those used in 
other groups doing discrete element simulations. There may be differences in details of 
the implementations, but it is generally believed in the physics community that these 
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details should not be important, because the dynamic and static behaviour falls into only 
a few different universality classes, largely independent of the microscopic implementati- 
on of interactions.   
 
In the case of granular media, this idea of universality leads to the paradigm that for 
dynamical simulations even the shape of the particles does not play any role, if one 
makes sure by poly-disperse granulates that there is sufficient disorder. For statics, it may 
be important that the shape is noncircular, but all else that matters is that there are enough 
geometric constraints to render the simulation comparable with reality, the detailed 
realization of shape diversity of the particles should not matter. Moreover, it is important 
to have some realization of friction, otherwise one will not obtain the correct angle of 
repose, but whether this is implemented via Cundall-Strack springs or some other clever 
device (which microscopically does not  precisely reproduce Coulomb’s law), should be 
unimportant. Of course, these guiding ideas of universality have to be checked again and 
again, because it is not impossible to hit a hitherto unknown universality class by 
accident.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



      
 44                                                                                                            Simulation method                                                                               

2.5   Collision detection 

 
Many particles in real life like the constituents of sand, gravel etc. are not spherical in 
shape. In two dimensions, they can be approximated by polygons. In general, the 
computational time depends on the shape and number of the particles to be simulated.  
Polygonal simulations can take up to ten times more computer time than their circular 
particles counterparts. Since we calculate the force between two particles from the 
overlap, we have to determine all collisions in our simulation. On the other hand, 
simulating with a large number of polygonal particles one has to wait a long time for the 
simulation to be accomplished.  

 
Discrete element simulations are often time consuming, so a lot of computational power 
is needed for the calculation of the forces between the colliding particles during the 
simulation. Of course, advantage is taken of the short-range nature of the force by 
calculating only non-vanishing forces, i.e., forces between particles that are really in 
contact with each other. This necessitates a fast way to determine the contacts. The fast 
determination of all contacts in a polygonal system is a difficult matter. In order to 
achieve the fast contact determination in a time that is proportional to the number of 
particles (not to its square) independent of the complexity, i.e., number of corners of the 
particles, one has to adopt an efficient algorithm.   

 
There exist a number of algorithms in the literature to simulate granular materials. 
Potapov and Campbell [107] described a method for the discrete element simulation of a 
certain class of non-round particles. In this model, the boundaries of particles are 
composed from segments of circles. These particles can approximate regular polygons 
well; however, it may be difficult to simulate irregular shapes of particles. Moreover, 
while this model is fully capable of efficiently simulating nearly mono-disperse 
polygonal particles with an equal number of corners, it may be difficult to expand this 
algorithm to poly-disperse mixtures of particles. 
 
An attractive and flexible approach was proposed by Alexander Schinner [108] to speed 
up discrete element simulations of arbitrary mixtures of particles of any shape and 
number of corners almost without restriction, which allows one to determine 
neighborhood relations in poly-disperse mixtures of particles of arbitrary shape, either 
discs, ellipses or polygons. Algorithms from virtual reality and computational geometry 
were adopted to reduce computing time. These use bounding boxes and Voronoi regions 
to determine the overlaps of particles. In this model, particles and walls are represented 
by convex polygons.  
 
A. Schinner used a combination of two algorithms for collision detection. The first 
algorithm is called bounding-box algorithm (using an incremental sort and update 
algorithm) and the second is called closest-feature algorithm. The complexity of these 
two algorithms is independent of the particle size, shape, and degree of poly-dispersity.  
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It is to be recognized that, if a simulation contains N particles then a straight forward 

implementation would require 2N  tests to check all possible pairs of collisions, which 
will take a much longer time than necessary.  Since the discrete element methods 
typically have short range interactions, most of the pairs of particles will not interact, so 
they will not contribute to the force calculation. In order to reduce the number of pairs of 
particles which have to be checked for collision, we used a bounding-box algorithm; this 
will decrease the computing time. It is based on the fact that if the bounding boxes of two 
particles do not overlap then the particles itself do not overlap. In a two dimensional 
system, the bounding box for a particle means the smallest rectangle whose sides are 
parallel to the coordinate axes, and which completely contains the particle. 
 
The closest-feature algorithm is a fast method for determining the smallest distance of 
two convex polygons in constant time, independent of the number of the edges. In this 
algorithm, neighborhood relationships of a polygon are represented by a combination of 
so-called features i.e. the edges and vertices of the polygon and the associated Voronoi 
regions. If the distance between the features of two convex polygonal particles is zero, 
then it is clear that the corresponding particles either touch or overlap; then we have to 
determine the overlap area between them to be able to calculate the normal repulsive 
force. Let us consider two polygonal particles, namely A  and B . One can compute the 
distance ABd  between them which is the shortest Euclidean distance with this relation 

 

 
,

.inf
A B

AB A B
P A P B

d P P
∈ ∈

= −                                                                                            (2.40) 

 
Here, AP  and BP  are an arbitrary pair of points between two features of the polygons A  

and B . The pair of nearest points  AP  and BP  can be calculated using Voronoi regions. 

 
The detailed description of Voronoi region, bounding boxes algorithm, closest feature 
algorithm, and parallelization technique are given in ref. [108].   
 

 

2.6 Determining macroscopic quantities 
 
In this section, we derive the mathematical formulas for various macroscopic tensorial 
field quantities including stress, strain, fabric, and inertia tensor for sand piles consisting 
of polygonal particles. First we determine the formula of those tensorial quantities for a 
single particle and we then average over many particles by introducing a representative 
volume element (RVE). The averaging procedure and the necessary size of the volume 
element we use in the calculation of macroscopic quantities will be explained in Section 
2.6.5. 
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2.6.1 Calculation of stress fields    
 
In order to describe the behaviour of granular materials under external loading one has to 
determine macroscopic state variables like the stress through a proper averaging of 
microscopic variables. For the stress tensor, the microscopic variables are the forces 
acting between the particles and the lines connecting the centres of particles with their 
contact points. The determination of stress tensors in granular materials has been 
discussed by many researchers in refs. [109-113]. 
 
Once we have the forces and their points of contact, it is easy to derive a formula for the 
average stress obtained in a homogeneous polygonal particle assuming that the forces 
given in the contact points act on the corresponding edge of the polygon.  
 
We derive the stress tensor in the following way: 
 
For a body in static equilibrium, the stress components at every point should satisfy the 
differential equation 
 

0,

0,

xyxx
x

xy yy

y

F
x y

F
x y

σσ

σ σ

∂∂
+ + =

∂ ∂

∂ ∂
+ + =

∂ ∂

                                                                                                  (2.41) 

 
where xF  and yF  are the x  and y  components of the body forces per unit volume appli- 

ed to the body. 
 
In the case of xF =0 and y iF g= , the stress equilibrium equations (2.41) become 

 

0,

.

xyxx

xy yy

i

x y

g
x y

σσ

σ σ

∂∂
+ =

∂ ∂

∂ ∂
+ = −

∂ ∂

                                                                                                      (2.42) 

 
The above expression (2.42) can be written in the form of 
 

,il
i

l

g
x

σ∂
=

∂
    ,i x y=   0,x yg g g = = −                                                                       (2.43)                                                              

 
with an implied summation over subscript l (Einstein summation convention). 
 
 



      
 47                                                                                                            Simulation method                                                                               

For the computation of the average stress tensor of an individual particle, we multiply 
both sides of the equation (2.43) by the coordinate jx  and integrate over the ‘‘volume’’ 

pV of the particle .p  
 
 

,p pil
j j i

p plV V

x dV x g dV
x

σ∂
=

∂∫ ∫                                                                                         (2.44)                                          

 
The left hand side of equation (2.44) can be recast as follows: 
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The right hand side of equation (2.44) is 
 

p p

j i jx gdV g x dV=∫ ∫  

                 0= , since 0p

jx dV =∫ , as jx  is measured from the centre of mass.       (2.46)                                                                     

 
Inserting equations (2.45) and (2.46) in (2.44) yields 
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By applying the divergence theorem to equation (2.47), the volume integral can be 
transformed into a surface integral.  
 
   



      
 48                                                                                                            Simulation method                                                                               

                             
    
                                                                    
 

    

Figure 2.2: Schematic plot of a particle p with branch vector c
x  and the position vector 

.pr  The branch vector c
x  points from the centre of mass of the particle p to contact point 

.c  
 
 
This gives 
 

1
.p p

ij j il lp

pS

x n dS
V

σ σ= ∫                                                                                               (2.48)                                                      

                         

il l in Fσ =  is the traction along the surface element ,pdS  a force per area, in 2D per 

length. 
            
If the surface force on edge C  is considered constant along the edge, we have  
 

C c

il l in S Fσ ∆ =  for that edge. 
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Hence the right hand side of the equation (2.48) can be written as the sum over all contact 
forces.  
 

1

1
.

pc
p c c

ij j ip
c

x F
V

σ
=

= ∑                                                                                                       (2.49)                                                                                      

 
 
Since in the void space of the averaging volume element there is no stress, we just need 
to determine the average stress tensor over all particles whose centre of mass lies inside 
the averaging volume element V :  
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n
p p

ij ij
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σ σ
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It turns out that numerically ij jiσ σ=  to a good approximation. 

 
Inserting (2.49) in (2.50) we obtain a double sum given by the expression: 
  
 

1 1

1
.

pn c
c c

ij j i

p c

x F
V

σ
= =

= ∑∑                                                                                                    (2.51) 

 
 
Equation (2.51) allows us to determine the averaged stress tensor over many polygonal 
particles in an averaging volume element V . We can now define the stress tensor (from 

(2.51)) as the dyadic product of the contact force c
F acting at the point c  with the 

corresponding branch vector.  
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2.6.2 Determining strains 

 
To a certain extent, even more interesting than to study the stress tensor is to determine 
the strain distribution under a sand pile. Since our study is concerned with the sand pile 
model, first we have to deform (relax) the sand pile in the proper way in order to obtain 
realistic results for the strain tensor within the sand pile. One might regard it as one of the 
essential questions in the field of granular heaps, how deformation under stress can be 
defined, aiming at the identification of a strain tensor and establishing a correlation 
between the stress and strain tensors in order to determine effective material properties 
 
While the calculation of stresses is rather straightforward, this is not true for strains. In 
fact, even the definition of strain is problematic after assuming particles to be essentially 
rigid. For this reason, most macroscopic descriptions proposed in the last few years try to 
get by without using strain at all. Whether this approach can be successful in the long run 
remains to be seen. In any case, even if it may be difficult or impossible to determine 
strains in experiments on sand piles, this is not so in a simulation. As of now, no strains 
have been measured in experiments on sand piles, and continuum models assume that for 
sand piles displacement fields are not available.  Therefore, several closure relations 
proposed for the equations describing sand piles [1-2] have been obtained without 
making use of the strain tensor.   
 
Our original idea was to define strains with respect to a hypothetical reference state of 
zero gravity of a sand pile essential identical to the one at ambient gravity, except of 
course for slightly displaced particle centres. In this reference state, no particle 
rearrangements that modify neighbourhood relationships should be present in comparison 
with the actual state. The reference state would then be obtained from the ambient one by 
slowly reducing gravity. In principle, it is not necessary to go down to zero gravity, as 
long as the strains increase linearly with the gravity level. Instead, one may then 
extrapolate to zero from the knowledge of the positions of the particle centres of mass at 
two arbitrary different gravity levels. But it is necessary to let the sand pile approach a 
rest state after a reduction of gravity. Moreover, linearity has to be checked by looking at 
different gravity levels.  
 
This method does not work as expected, since a reduction of gravity leads to a linear 
reduction only of normal stresses corresponding to the direction of gravity, i.e. σyy, but 
not xxσ . The reason behind this is that xxσ  is essentially determined by horizontal static    

friction. Since the frictional contacts need not be fully mobilized, there is no strict 
proportionality between lateral forces and gravity, when we change gravity slowly, a fact 
leading to the destruction of the desired linearity property. In order to verify this 
phenomenon, first we created separately three different types of sand piles with different 

gravity levels (in 2m s ) of 9.81g = , 5g =  and 20g =  where the particles are poured 

from a point source, which means three sand piles constructed using the same simulation 
parameters except the value of gravity acceleration. We then measured numerically the  
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Figure: 2.3 Vertical ( yyσ ) and horizontal ( xxσ ) components of stress tensor at three 

different gravity levels of sand piles that were constructed separately by pouring particles 
from a point source with 9.81,g = 5,g =  and 20g = . In panel (A) we give yyσ  at 

9.81,g =  in (B) yyσ  at 5,g =  in (C) yyσ at 20,g =  in (D) xxσ  at 9.81,g =  in (E) xxσ  at 

5,g =  in (F) xxσ at 20.g =  

 
 
vertical normal stress yyσ and the horizontal normal stress xxσ  inside the resulting sand 

piles. They are illustrated in figure 2.3. On the left side of the figure, panels (A), (B) and 
(C), respectively, show the vertical normal stresses for the sand piles at 9.81,g = 5,g =  

and 20,g =  and on the right side, panels (D), (E) and (F) show the corresponding 

horizontal normal stresses. It can be seen that in this case the vertical and horizontal 
normal stresses are proportional to the gravity level as expected. On the other hand, when  
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Figure: 2.4 Vertical ( yyσ ) and horizontal ( xxσ ) components of stress tensor at two 

gravity levels, first one obtained by reducing gravity from the actual state (ambient 
gravity level) to a state at 5,g =  second one obtained by increasing gravity to 20.g =  (a) 

yyσ at 5,g =  (b) yyσ at 20,g =  (c) xxσ at 5,g =  (d) yyσ at 20.g =  Theses are to be 

compared with panels (A) and (D) of Fig. 2.3. 
 
 
we measure the stresses for a sand pile created at 9.81g =  after slowly changing gravity 

levels to 5g =  and 20,g =  respectively, the vertical normal stress yyσ remains proportio- 

nal to gravity, but the horizontal normal stress xxσ  does not as the simulation result shown 

in figure 2.4 demonstrates. Note that the maximum of xxσ  changes by a factor of 2 only, 

that of yyσ  by a factor of 4, corresponding to the factor in .g  

 
For sand piles created at different gravity levels, all three stress components 

( ), ,yy xx xyσ σ σ scale with gravity, indicating that the distribution of effective friction 

coefficients ( )0 effµ µ≤ ≤  and hence the degree of mobilization of contacts is the same. 

However, if we reduce gravity for a pile created at ambient gravity contacts not fully 
mobilized need not reduce their friction force and may become mobilized instead. So the  
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distribution of µ  will shift towards higher values, xxσ  will be reduced by a smaller amo- 

unt than proportionality would dictate. An increase of the gravity level will lead to a 
reduction in the degree of mobilization, shifting effective friction coefficient to smaller 
values.  
 
Nevertheless, it is of course still possible to determine incremental strains, which are 
defined as the strain changes between the actual state and a state at a different gravity 
level.  Using incremental stresses as well, we are then in a position to determine elastic 
coefficients. 
 
We are aware of two ways given in the literature for determining an averaged strain in an 
assembly of grains, First the equivalent continua theories (Bagi [111], Satake [114]) and 
second the least-square fit theories (Cundall et al. [76], Cambou et al. [115], Liao et al. 
[116]). In the following section, the different versions of least-square fit strains are 
explained and used to determine the average strain tensor for assemblies of grains, in 
particular sand piles. Then the results have to be checked for consistency, i.e., we 
examine whether the different versions of least-square fit strains are in a good agreement 
with each other.    

 
The best-fit strains are based on the idea that a translation gradient is obtained which 
gives the smallest deviation from the characteristic displacements of the assemblies of 
grains. The term characteristic displacement means the translation of the particle centre 
and the relative translation at the contacts. We determine the translation of the individual 
particle centre and relative translation of two particles at the contact by considering two 
different gravity levels of sand piles. One is the actual state of the sand pile at a gravity 
level of 9.81g =  and the second one is obtained by reducing gravity slowly by about 

10% from the ambient gravity level of 9.81g = . We discuss in the following section three 

different kinds of least-square fit strains known as:   
 

 
� The best-fit strains of Cambou et al., 
 
� Cundall’s best-fit strain, 

 
� The best-fit strains of Liao et al.. 

 

 
2.6.2.1 Cambou’s best-fit strain 

 
In our study, especially for the calculation of elastic material properties of sand piles, we 
used one of the simplest techniques, namely the best-fit strain of Cambou et al. [115] who 
consider the relative translation instead of the contact deformations and exclude the 
particle rotations from the analysis. The particle displacements are characterized in terms 
of the translations of the particle centers.  
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Figure 2.5: Schematic diagram of Cambou’s branch vector cl  assigned to the contact c  
of two particles. Note that according to our preceding nomenclature pc

r and qc
r  are the 

branch vectors. 
 
 

Let us assume that two grains p and q  have a contact c  and p

jdu  denote the translation 

of the centre of particle p .The relative translation of the pairs of grains p and q forming 

contact c  is 
  

.c q p

j j j
d u du du∆ = −                                                                                                         (2.52) 

 

The vectors pc

i
r  and qc

i
r  connect the corresponding particle centres to the contact point c  

and are what we called branch vectors so far. According to Cambou et al. the branch 
vector assigned to a contact is defined as 
 

c pc qc

i i i
l r r= − , as illustrated in figure 2.5, i.e., it is simply the difference of the centre-of-

mass vectors of the two particles sharing the contact c .    
 
If every particle of the assembly of grains moves according to a (locally) uniform 
translation gradient tensor jiε , then the relative translation of the two particles would be 

 

.c c

i ji j
d u lε∆ =                                                                                                                  (2.53)                                                                   

 
However, usually this is not the case, and in a general case, we would have 
  

c

jji

c

i lud ε≠∆                                                                                                                  (2.54)         
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for any possible uniform field jiε . 

Therefore, we determine the tensor jiε  for which the square sum of the deviations from 

(2.53) is smallest i.e, we minimize the following equation  
  

 Z= 2

1

( )
n

c c

j ji j

c

d u lε
=

∆ −∑                                                                                                   (2.55) 

with respect to
ji

ε , i.e., we set  0=
∂

∂

kl

Z

ε
 for every combination of subscripts ,k l . 

It should be noted that the sum in equation 2.55 is over all contacting pairs of particles in 
an averaging element. Equation (2.55) gives four equations in 2D which can be written in 
matrix form as follows 
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∑

∑
                                                                  (2.56) 

 
( i  is 1 or 2). 
 
Let ijz denote the inverse of the coefficient matrix. In order to determine the 11ε  and 21ε  

we substitute 1=i , for the calculation of 12ε  and 22 ,ε  2=i . 

 
The solution of (2.56) can be written in the general form   
 

 ijε = ∑ ∆
c

c

k

c

jik ludz                                                                                                        (2.57) 

 2,1,, =kji .  (summation over k  implied).                                                         

 
The tensor ijε  in equation (2.57) is the best-fit translation gradient of Cambou et al. 

The components of the strain tensor in two dimensions are as follows 
 

 ( )11 12( , ) c c c

xx x x y

c

x y d u z l z lε = ∆ +∑  

 ( )21 22( , ) c c c

yy y x y

c

x y d u z l z lε = ∆ +∑  

( )∑ +∆=
c

c

y

c

x

c

yxy lzlzudyx 1211),(ε  

( )∑ +∆=
c

c
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c

x

c

xyx lzlzudyx 2221),(ε  
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2.6.2.2 Cundall’s best-fit strain 

 
In this method, the strain tensor is also calculated by considering the translations of the 
particle centres, while particle rotations are not taken into consideration.  
 

Let ),( pp yx  be the coordinate of the initial position of the centre of mass of particle p  
in the actual state of a sand pile in a two dimensional system. The translation of the centre 
of particle p  is denoted as ),( p

y

p

x dudu  and N  is the total number of particles within the 

averaging volume element. A particle is considered inside the volume element, if its 
centre of mass lies inside it.  
 
The average of the component i  of the position vectors of particle centres inside the 
averaging element is 
 

0 1
,

N
p

i i

p

x x
N

= ∑                                                                                                               (2.58) 

 
and the average of the particle translations inside the averaging element  is 
 

0 1
.

N
p

i i

p

du du
N

= ∑                                                                                                           (2.59) 

 
The deviations of the individual particle positions can be calculated with: 
 

  0,p p
i i ix x x= −ɶ                                                                                                            (2.60) 

 
whereas, the relative translations of the individual particles with respect to the average 
translation are determined from: 
 

0( ).p p

i i idu du du= −ɶ                                                                                                        (2.61) 

 
If each particle inside the averaging volume element moved exactly according to a 
uniform translation gradient tensor ijε , the relative translation of individual particle would 

be 
 

 .p p

i ji jdu xε=ɶ ɶ                                                                                                                  (2.62)                                                                                      

 
However, usually this is not the case, hence, we would not find any ijε  satisfying (2.62), 

in short 
 

0p p

i ji jdu xε− ≠ɶ ɶ                                                                                                              (2.63) 
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for all uniform jiε . 

 
Instead, we determine the tensor ijε for which the square sum of the deviations in (2.63) 

is smallest i.e, we minimize the following expression  
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with respect to
ji

ε , i.e. we set 0
kl

Z

ε

∂
=

∂
 for every ,k l .   

Equation (2.64) provides four equations in 2D which can be expressed in a matrix form 
as follows  
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( i is 1 or 2). 
 
 
Let 

ij
w  denote the inverse of the coefficient matrix. In order to determine the components 

of strain tensor 11ε  and 21ε  we substitute 1=i , whereas 2=i  is substituted for the 

calculation of 12ε  and 22ε . 
 
The solution of (2.65) can be written in the general form 
 

ij
ε = p p

ik j k

p

w du x∑ ɶ ɶ                                                                                                          (2.66) 

, , 1,2.i j k =   (summation over k  implied).                                                         

 
The tensor ijε  in equation (2.66) is the best-fit translation gradient of Cundall et. al.The 

components of the strain tensor in two dimensions are as follows 
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( )11 12( , ) p p p

xx x

p

x y du w x w yε = +∑ ɶ ɶ ɶ  

( )21 22( , ) p p p

yy y

p

x y du w x w yε = +∑ ɶ ɶ ɶ  

( )11 12( , ) p p p

xy y
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x y du w x w yε = +∑ ɶ ɶ ɶ  

( )21 22( , ) p p p

yx x

p
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2.6.2.3 The best-fit strain of Liao et al. 

 

 
This approach has been proposed by Liao et al. [116] and the definition is based on 
similar ideas to those of Cundall’s best-fit strain and Cambou’s best-fit strain, but instead 
of considering the particle translation, Liao et al. include both particle translation and 
rotation in the calculation of contact deformation. 
 
Let us consider two particles p  and q  touching each other at the contact point c . The 

vectors pc

ir  and qc

ir  are the branch vectors joining from the particle centre to the contact 

point. Now, we can define the translation of pc  and qc , given by  

 

,pc p pc p

i i ijk j kdu du r dβ ω= +                                                                                               (2.67) 

,qc q qc q

i i ijk j kdu du r dβ ω= +                                                                                                (2.68) 

 

where p

idu  denotes the translation of the particle centre p, while p

idω  signifies rotation 

of the particle p about its centre. ijkβ  is the permutation symbol. 

 

The contact deformation c

idv  at the contact c  would be 

 

.c qc pc
i i idv du du= −                                                                                                     (2.69) 

 
In general, every particle does not move exactly according to a uniform translation 
gradient tensor, hence we have  
 

0c c

i ji jdv lε− ≠                                                                                                                (2.70) 

 

for any uniform tensor field .ijε c

jl  is a vector joining two centres of the particle p  and ,q  

as shown in Fig. 2.5. 
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Similar to the case of the definition of Cundall and Cambou strain, we determine the 
tensor ijε  for which the sum of the deviations square in (2.70) is the smallest. 

 
Therefore, we minimize the following quantity with respect to jiε ,  

 
2( )c c

i ji j

c

Z dv lε= −∑                                                                                                      (2.71) 

 

i.e. we set 0
kl

Z

ε

∂
=

∂
 for every ,k l . 

 
Again we obtain four equations in 2D which can be written in a matrix form as follows 
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1, 2.i =  

 
The solution of (2.72) can be written in the general form 
 

ijε = c c

ik j k

c

z dv l∑                                                                                                             (2.73) 

 
, , 1, 2.i j k =   (summation over k  implied).                                                         

 
where ijz denotes the inverse of the coefficient matrix on the left-hand side of (2.73). 

 
The components of the strain tensor in two dimensions are as follows  
   

( )11 12( , ) c c c

xx x x y

c

x y dv z l z lε = +∑  
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2.6.2.4 Derivative method 

 

In this section, we derive a formula for the strain tensor by using the derivative of the 
particle displacement, which means the particle rotations are not included for the 
calculation of the strain tensor. Given the particle displacements we can calculate the 
strain tensor. The displacement vector of a single particle reads  
 
                                                                                                                                      (2.74) 
  
where ix is the initial position of the centre of mass of particle i  and ix′  is the final 

position of the centre of mass of the particle after applying an overload to the sample. 
Then, we take an average over individual displacements of the particles inside the volume 
element to determine a continuous displacement field as a function of the point 
position (x,y) .  

 
 
                                                                                                                                      (2.75) 
 
 
The sum is over the particles in a averaging volume element centered at (x,y) . This 

procedure allows us to determine the components strain tensor at the point considered. 
The simplest approximation for the three components of the strain tensor in two 
dimensions (which are linear combinations of derivatives of the displacements) is as 
follows 
 
 
 
   
 
                                                                                                                                      (2.76) 
                                 
 
 
 
 
 
 
 
where xh and yh are the distances between the centres of the neighbouring averaging 

volume element along the x  and y  directions and the current one, respectively. 

 

 

 

 

i i iu x x ,′= −

n

i i
i 1

1
u (x,y) u .

n =

= ∑

( ) y y y
yy

y

u (x,y h ) u (x,y)
u x,y

h

+ −
=

( ) x x x
xx

x

u (x h ,y) u (x,y)
u x,y

h

+ −
=

( ) x y x y x y
xy

y x

0.5(u (x,y h ) u (x,y)) 0.5(u (x+h ,y) u (x,y))
u x,y

h h

+ − −
= +



      
 61                                                                                                            Simulation method                                                                               

 

2.6.3. Inertia tensor field for assemblies of polygonal particles 

 
 
In this section, we derive a formula for the inertia tensor field of a granular system 
consisting of polygonal particles. We already have discussed in chapter one the shapes of 
the particles that affect the pressure distribution under a sand pile, therefore, one has to 
clarify the question of the orientation distribution of the particles inside sand piles with 
different degrees of poly-dispersity. Moreover, we have to check how the orientation 
distribution of the particles influences the decrease of the pressure in the centre of the 
heap. By defining a local inertia tensor field, we obtain a measure for the orientation of 
non circular particles. 
 
 
2.6.3.1 Inertia tensor for a single particle 

 

 
For a rigid body, one can define three independent components of the inertia tensor for 
two-dimensional systems with the following relation: 
 
 

 

2

2

xx

yy

xy

y da

x da

xyda

θ

θ

θ

=

=

= −

∫

∫

∫

                                                                                                               (2.77) 

  
where the integration is over the area of the particle and homogeneity of the mass 
distribution of the particle has been assumed.       
 
From the Stokes theorem, we know 
 

( ). .
A A

u d u d
∂

∇ × =∫ ∫a s� .                                                                                                    (2.78) 

 
In two dimensions, ( , ) ( , )x x y yu u x y e u x y e= +  

                                ( ) .x y y x zu u u e⇒∇ × = ∂ − ∂                                                            (2.79) 

 

Substitute 2( , )yu x y xy=  and ( , ) 0xu x y =  in equation (2.79), which yields 
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Figure 2.6: Schematic diagram of polygon with 7 corners. 
 
 

2 .zu y e∇× =                                                                                                                  (2.80)  

Then, we can obtain xxθ  for 
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Alternatively, we may write  
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Similarly, we can derive the other two components of inertia tensor. 
 

Setting 
3

( , )
3y

x
u x y =  and ( , ) 0xu x y =  in equation (2.79), we obtain 
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Then, the second equation of the set of expression (2.77) becomes 
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Rewriting equation (2.86) a little, we obtain the analog of (2.82) 
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In order to determine xyθ , we substitute 
2

( , )
2y

x y
u x y = −    and ( , ) 0xu x y =   in equation 

(2.79), which gives       
 

.zu xye∇ × = −                                                                                                                (2.88) 
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Then, the third equation of the set of expression (2.77) becomes 
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2.6.3.2 Averaged inertia tensor field 

 

Equations (2.83), (2.87) and (2.91) allow us to determine the components of the inertia 
tensor of a particle p . Then it is easy to determine the formula for the average of this 

inertia tensor over many particles in a representative volume element. Let us denote by 
p

ijθ  the inertia tensor of the single particle p , we then determine the inertia tensor average 

ijθ  in an averaging element with size of volume V via: 

1
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θ θ
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= ∑                                                                                                         (2.92)                                                                                                                                                  
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2.6.4 Fabric tensor 
        
 
The density distribution is not homogeneous under a sand pile poured from a point 
source. Therefore, it may be assumed that the internal texture of the pile is important. 
Furthermore, forces are propagated from one particle to the neighbour particles in an 
assembly of grains only via the contacts point of the particle. Thus, for the quasi-static 
mechanics of granular aggregates, it is useful necessary to have a description of the 
associated contact network of the inter-particle contacts.  
 
A particular quantity besides the local inertia tensor field that describes the internal 
texture of the granular assembly is the so-called fabric tensor. Various definitions of the 
fabric tensor exist in the literature [117-124] including definitions for elliptical, spherical 
or polygonal particles. In our study, we consider non-spherical particles so we employ 
here a mathematical formulation for the fabric tensor, in which the branch vector itself is 
used to define a unit vector in the direction towards the contact, because here the simplest 
way of characterizing the packing network is via the branch vectors connecting the 
particle centres of mass with their contacts.  
 
Once we have the contact points of the individual particles, we can calculate a fabric 
tensor for each particle, which yields an additive contribution to the overall fabric tensor. 
The latter then is a volume average over many particles. After defining the fabric tensor 
for one particle and for an aggregate of grains, we will demonstrate how it may be used to 
examine for isotropy of the granular structure of a material. The fabric tensor measures 
the contact number density in a given direction in the assembly. Therefore, it may be 
used to examine whether the grains of the material are placed in an isotropic way or 
whether there exists any directional ordering. 
           
 
2.6.4.1 The fabric tensor for  one particle 

 
 
We derive here the mathematical formulation for the fabric tensor of a polygonal particle.  
The formula for the fabric tensor is given [117-118] by 
 

,p c c

ij i j

c

F n n=∑                                                                                                                (2.93) 

 
where c

in  is the i th component of the unit vector to contact point c of the considered par- 

ticle p , as shown in Fig.2.7. 
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Figure 2.7: Schematic plot of a polygonal particle p with five contact points. The branch 

vector  pc
r  and the unit vector cn are shown at contact point 2c = . 
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where ),( cc yx  and ),( pp yx  are the contact point and the centre of mass, respectively, 

and the sum in (2.93) is over all the contacts of the particles. 
 
The trace of the fabric tensor then determines the number of contacts of particle p  
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2.6.4.2 The fabric tensor for  many particles 

 

We take an average over many particles in a representative volume element (RVE) in 
order to determine the average fabric tensor that describes the contact network in a given 
volume V. 
 
The averaged fabric tensor over many particles is given by  
 
                                                                                                                                      (2.96) 
 
 
where V  is the volume of the RVE that contains the particles whose centre of mass lies i- 

nside it and  pV  and p

ijF  respectively denote the volume and the fabric tensor of particle   

p .  

 

2.7 Averaging procedure 
 

 
One can obtain detailed information about measurable quantities such as forces, stresses, 
and displacements of an individual particle from the discrete element simulation. 
However, the behaviour of an individual particle is not significant for the behaviour of 
the whole system, as most of the measurable microscopic quantities in granular material 
vary strongly as a function of position. 
 
In this regard, one common example is the stress tensor, which is not constant across 
grains (microscopic level), but usually it shows its largest values for particles with a large 
number of contacts. Moreover, the microscopic stress tensor would not be a convenient 
means to describe the macroscopic sand pile, as it fluctuates widely within a volume 
containing a few sand grains. In fact, it is zero in the voids between grains. Hence for a 
continuum description, we need to average microscopic stresses over suitable domains, 
which will reduce the relative fluctuations. In order to suppress the fluctuations, we need 
to perform averages over sufficiently many particles in an averaging volume element. 
But, the question is how many particles are actually required to determine the average 
macroscopic tensorial quantities, which means, one has to determine the number of 
particles (or appropriate size of the volume element) providing realistic results for the 
macroscopic stress tensor and also for other macroscopic tensorial quantities including 
fabric, strain, and volume fraction of the sand pile. 
 
In our work, averages are performed by introducing a representative volume element 
(RVE) via the requirement that the average becomes size independent, if the volume is 
taken equal to this value or larger. The RVE averaging strategy is used by many 
engineers to obtain scalar and tensorial quantities, especially in problems that deal with 
particulate materials. 
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Averaging over different volumes gives different results, as long as the volume element is 
too small. As we increase the size of the volume element in the computation of the 
average, the latter converges to a certain value. A size of the volume element near but 
above the minimum needed for convergence gives the representative volume element to 
be used in evaluations of stress and other fields.  
 
We have taken into account those particles whose centres of mass lie inside the averaging 
volume element to determine the macroscopic stress tensor. Sometimes, this method is 
referred to as the particle centre averaging technique. It is noted that the results of the 
macroscopic stress tensor were obtained by taking averages over many particles that 
correspond to the middle region of the sand pile. The simulation results for the individual 
components of the stress tensor against the number of particles are displayed in Fig. 2.8.  
 
The number of particles shown in the graph corresponds to the size of the volume 
element. The blue curve connecting square symbols represents the vertical normal stress 
tensor, whereas the red and black curves represent the horizontal and shear stresses, 
respectively.  It can be seen in the figure that all the components of the stress tensor are 
converged approximately at the same number of particles. We find that a size of the 
volume element containing 100-200 particles is sufficient to serve as RVE.  
 
On the other hand, we determine the size of the RVE for the strain tensor as well as for 
the fabric tensor. Fig. 2.9 displays the RVE for the strain tensor and the one for the fabric 
tensor is illustrated in Fig. 2.10. We find from the figure that the size of the volume 
element is the same as for the stress tensor. We have not determined individually the size 
of RVE for the inertia tensor fields. It should be noted that the size of the volume element 
that we consider for the calculation of the stress, fabric and strains is same as for the 
inertia, elastic constants and volume fraction of the sand pile.  
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Figure 2.8: Representative volume element (RVE) for stress tensor. The volume element 
was located in the centre and near the bottom of the sand pile. 
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Figure 2.9: Representative volume element (RVE) for strain tensor. 
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Figure 2.10: Representative volume element (RVE) for fabric tensor. 
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           Simulation results 
 
 

 

   

           
In this chapter, we present the numerical results on effective material properties of two 
dimensional sand piles of soft convex polygonal particles using the discrete element 
method (DEM). We focus primarily on discussing the simulation results of the micro- 
scopic force distribution, and then show how the shape of the particles and construction 
history of the piles affects the pressure distribution under a sand pile. In addition, other 
measurable macroscopic tensorial quantities including strain, fabric distributions, and 
orientation of the particles inside a sand heap obtained from simulations are discussed.  
 
We first give in the following a short description how the sand pile is constructed from 
two different types of procedures. We then measure averaged stress and strain, the latter 
via imposing a 10% reduction of gravity, as well as the fabric tensor. Then, we compare 
the vertical normal strain tensor between sand piles qualitatively and show how the 
construction history of the piles affects their strain distribution. The simulation results of 
volume fraction of sand piles are compared qualitatively with the existing experimental 
results in the literature. In the next step, the elastic constants are measured assuming 
Hooke’s law to be valid in relating incremental stress and strain tensors to each other. We 
then determine correlation between the measured elastic material constants and the trace 
of the fabric tensor, and between invariants of the incremental stress and strain tensors for 
a small change in gravity.  

 

3.1 Method of preparation of the sand pile  
 
One can construct a sand pile in many different ways. Here, we restrict ourselves to two 
different approaches. The first consists in pouring the material from a funnel with a small 
outlet, known as ‘‘point source’’; and the second, pouring the material in a uniformly dis- 
 

3 
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                    A. 

                 
                    
                  B. 

                
Figure 3.1.A-B: Schematic diagrams for possible construction procedures of the sand 
pile. A. Particles are dropped onto the apex of the pile, B. Particles are dropped in a 
uniform distribution on each layer of the pile. 
  
tributed way, from a so-called ‘‘line source’’. Note that the line source is reduced in 
length during the procedure so as to have a length equal to or slightly smaller than that of 
the top plateau of the pile at any instant of time. When a pile is constructed from a point 
source, the particles are dropped always onto the apex of the sand pile and roll down the 
slopes of the pile, as shown in Fig. 3.1.A. On the other hand, when a sand pile is constru- 
cted  from a line source procedure, the particles are dropped in a layer wise manner, and 
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slowly from a height of slightly greater than one particle diameter onto the already 
present layer, as shown in Fig. 3.1.B.  
 
In order to investigate the microscopic force structure and macroscopic distributions of 
quantities such as stress, strain, inertia and fabric under a sand pile, and to check how the 
construction history of the granular aggregates influences their pressure, and strains 
distribution, we perform numerical simulations in which sand piles are constructed from 
either a point source or a line source. In the followings we explain in detail how we 
construct two different types of sand piles from two different qualitative procedures.   
 

 

3.1.1 Sand piles from a point source  
 
We constructed a sand pile from several thousands of convex polygonal particles with 
varying shapes, sizes and edge numbers where the particles were dropped from a point 
source. The particles were dropped on to the system from 50 cm height with initial 
velocity of 0.2 m s and the time for the generation of the new particle is 0.1s  at the same 

position. We have constructed 14 sand piles using a point source. The individual simu- 
lations differ only by the initialization of the random number generator for the generation 
of particles. The number of polygon edges varies from six to eight for each simulation. 
The particle corners are placed randomly on an ellipse (RAND1), see in ref. [103]. The 
radius of the particles is 2.75 mm and degree of poly-dispersity of the particles is about 
30%. 
 

The average angle of repose for 14 sand piles was approximately 28� by taking the ave- 
rage over the left and right base angles. A snapshot of one of the simulated sand piles 
constructed from a point source is illustrated in Fig. 3.2. Different colour corresponds to 
particles dropped at different times. We used a flat bottom ground plate. The walls and 
the funnel are made of immobile specially shaped particles and the bottom ground plate is 
fixed in shape as well, hence effects that may spoil real-world experiments such as 
ground plate bending [125] or compression [20], when the grains are deposited are 
excluded. The characteristic properties of the ground plate, side walls and funnel are 
equal to the particles properties, which mean the Young’s modulus of elasticity of the 
bottom ground wall is the same as for the particles, and the static friction coefficient 
between the bottom ground wall and the particles is the same as between the particles.  

 

 

3.1.2 Sand piles from a line source  
 
Next, we constructed sand piles from a line source that consisted of around 6500 
particles. The dropping height of each new layer from the already present layer of the 
system is 8 mm and particles are dropped uniformly onto the already present layer. The 
size, shape of the particles and the time for the generation of the new particle we used for  
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constructing a sand pile from a line source are the same as that for the point source case. 
The corner number of each particle is 7, and the degree of poly-dispersity of the particle 
is 10%. The positions of corner are placed randomly on an ellipse (RAND1). The 

measured average angle of repose of 11 sand piles is about 27 .�  Fig. 3.3 displays one of 
the simulated sand piles that was constructed from a line source. The simulation 
parameters and their values used for the construction of sand piles are given in the 
following table. 

 
Name of variable          Value 

Static friction           0.54 

Dynamic friction           0.54 

Particle density         5000 2kg m  

Young’s modulus          710 N m  

Damping coefficient          0.75 

Time step          62 10 s−×  

Size of poly-dispersity (point source)          30% 

Size of poly-dispersity (line source)          10% 

Initial velocity of the particles        0.2 /m s  

Particle radius       2.75 mm 
 

Cohesion coefficient        0 

Acceleration        9.81 2m s  

Position of particle corner      RAND1 

Number of corners(point source)      (6,8) 

Number of corners(line source)        7 

 

Table 2: Parameters used for the DEM simulation of the sand pile. 
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Figure 3.2: Snapshot for a simulated sand pile constructed from a point source with 30% 
poly-disperse mixture of particles.  
 
 

 
 
 
Figure 3.3: Snapshot for a simulated sand pile constructed from a line source with 10% 
poly-disperse mixture of particles. 
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3.2 Microscopic force distribution  
 
 
We determine the force network inside a sand pile constructed from a line source. Fig. 
3.4 displays the simulation results of the force network for a line source sand pile that 
contains a mixture of roundish particles. The line thickness represents the magnitude 
(strength) of the force. The darker and wider a line the stronger the force it represents. As 
can be seen in the figure, the force network varies as a function of the position in the pile. 
We observe that in the heap of granular assemblies, the stronger force chains appear at 
the middle region and weaker force chains near the free surface of the pile.  
 
We then determine the force network of sand piles constructed from a point source 
consisting of a mixture of roundish particles. The result obtained from the simulation is 
illustrated in Fig. 3.5. It can be seen from the figure that there are no extremely strong 
force chains appearing in the central region, indicated as a red line, for a sand pile 
constructed from a point source.  
 
Moreover, we compare the force network between sand piles that contain a mixture of 
round particles with sand piles consisting of a mixture of elliptic particles. Since our 
simulations are two-dimensional, we cannot simulate realistic particle shapes, but we try 
to mimic the difference between roughly spherical particles and ellipsoidal particles by 
working with almost circular particles on the one hand and nearly elliptic ones on the 
other hand.  We have determined the force distribution for a pile of a mixture of elliptic 
particles with the simulation result represented in Fig. 3.6. Clearly, many more strong 
force chains can be seen for piles of elliptic particles than for round particles. The force 
chain structure appears open for piles of round particles and more complex for piles of 
elliptic particles.   
 
The force networks obtained in our simulations are compared with the recent experimen- 
tal results obtained by I. Zuriguel et al. [11]. The experiments were conceived for an 
essentially two-dimensional situation and the particles were made from photo elastic 
polymer material. The particles were cut from sheets of the polymer material using a high 
precision computer controlled water jet which enabled them to choose distinct shapes for 
the particles. Two shapes of particles, namely disks and elliptic cylinders were used for 
the construction of the sand pile. Qualitatively similar results were obtained for the force 
distribution under the piles from the experimental investigation, as shown in Fig. 1.10.    
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Figure 3.4: Simulation result giving the force network for a sand pile constructed from a 
line source with round particles.  
 

 
 
 
Figure 3.5: Simulation result giving the force network for a sand pile constructed from a 
point source with round particles.  
 

 
 

Figure 3.6: Simulation result giving the force network for a sand pile constructed from a 
point source with elliptic particles.  
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Figure 3.7: Numerical results of the probability distribution of the normalized vertical 
force at the bottom layer of the sand pile. 
 
 
In order to see the behaviour of the forces inside the pile, we calculate the probability 
distribution P  for vertical forces N  for the particles at the lowermost layer of the sand 
pile built by pouring them from a point source. Vertical force is normalized by its mean 

value ,N  which is denoted as .n N N=  We represent in figure 3.7 the simulation results 

of the logarithm (base 10) of the probability distribution ( )P n of the normalized vertical 

force against the normalized force n  itself. The figure shows that, for forces greater than 

the mean ( )1 ,n >  the probability distribution of vertical force decays exponentially (a 

similar behaviour was obtained for the ‘q model’  in the case of  large forces) and that the 

distribution flattening out near the mean force ( )1n ≈  whereas there is a slight increase in 

( )P n  as n  decreases towards zero. 

 
Qualitatively similar results were obtained for the probability distribution of the vertical 
normal stress near the bottom of sand piles in the absence of friction by Luding in ref. 
[20].  
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3.3 Pressure distribution under a sand pile 

 
In this section, first, the simulation results of the averaged stress tensor for the sand piles 
constructed by two qualitatively different procedures are discussed. Then in the next step, 
we compare our numerical simulation results of stress distributions with the available 
experimental results. 
 
The simulation results of the normalized vertical normal stress tensor of a single sand pile 
consisting of a mixture of round particles is illustrated in Fig. 3.8. The figure demonstr- 
ates that there are large fluctuations in the stress tensor for single sand pile. The stress 
tensor is normalized by the hydrostatic static pressure, ,ghρ  where the quantities ρ  and 

h denote the density and the height of the sand pile, respectively, and g  is the accelera- 

tion due to gravity.  
 
The averaged stress tensor was evaluated throughout the sand pile; typically, we represe- 
nt it via a plot of stress tensor components as a function of the lateral coordinate x of the 
pile for layers of given heights y1, y2, ... yn. The averaged vertical normal stress tensor 
obtained from DEM simulations is displayed in Fig. 3.9 for sand piles that were constru- 
cted from a point source. The figure demonstrates that the vertical normal stress distri- 
bution changes with the vertical position in the sand pile. We find a pressure dip below 
the  apex of the sand pile which appears not only at the bottom layer of the sand piles but 
also exists up to a certain height inside sand piles (but not above).  
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Figure 3.8: Simulation result for the normalized vertical (negative) normal stress tensor 
of a single sand pile at different heights inside the pile constructed from a point source 
(height of the sand pile is 33.5 cm). 
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On the other hand, the simulation results for the averaged negative vertical normal stress 
tensor of the sand pile constructed from a line source is shown in Fig. 3.10, which 
demonstrates that there is no stress dip below the apex of the sand pile and it has plateau 
like behaviour at the centre. We notice that, even if simulating the sand pile from a line 
source with large poly-dispersity mixture of the particles (around of 30%) no dip exists in 
the pressure profile. 
 
Then, we compare numerical simulation results of stress distributions with the results 
obtained by experimental measurement [10] both for point source and line source sand 
piles. These comparisons exhibit that our numerical simulation results are qualitatively 
similar, but do not agree quantitatively, because the experiments have been done for three 
dimensional systems, and different materials were used for the construction of the sand 
piles. 
 
In the next step, we determine the vertical normal stress for the sand pile constructed 
from a point source consisting of a mixture of elliptic particles, and it then has to be 
compared with the result of the stress tensor for a sand pile that contains a mixture of rou- 
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Figure 3.9: Normalized vertical (negative) normal stress tensor at different heights inside 
the sand pile constructed from a point source. Average over 14 sand piles and height of 
the pile is 33.5 cm. 
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Figure 3.10: Normalized vertical (negative) normal stress tensor at different heights of 
the sand pile constructed from a line source. Average over 11 sand piles (height of the 
pile is 31.5cm). 
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Figure 3.11: Distribution of the vertical normal stress tensor on horizontal cuts at 
different heights of the point source sand pile constructed from elliptic particles. Average 
of ten sand piles (height of the pile is 33.5cm). 
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nd particles.  Here, roughly elliptic particles with a ratio of major and minor axis of 2 
were used for the simulation. The number of particles and the degree of poly-dispersity 
we used for the piles of elliptic particles were the same as for the piles of round particles.  
In order to suppress the fluctuations of the result of stress tensor for single sand pile, we 
have taken average over 10 sand piles. The average angle of repose obtained for 10 piles 

was 31�  for the mixture of elliptic particles. 
 
Simulation results of the average negative vertical normal stress tensor for piles consi- 
sting of a mixture of elliptic particles are illustrated in Fig. 3.11, which shows that the 
stress dip is clearly much larger below the apex of the pile than for the mixture of round 
particles. On the other hand, a small dip can be seen below the apex of the pile that 
contains a mixture of round particles as represented in Fig. 3.9. Moreover, if we compare 
quantitatively the magnitude of the stress dip between the two sand piles at the bottom 
layer, the amplitude of the stress dip is around two times larger for elliptic particles. The 
reason for the existence of the large dip in the centre for a sand pile consisting of elliptic 
particles may be that the anisotropy of the contact network is larger in the central region 
for the mixture of elliptic particles than for the mixture of round particles. Next, we 
compare our simulation results with the existing experimental results done by I. Zuriguel 
et al. [11] using two shapes of the particles disks and elliptic cylinders. The numerical 
results are in good qualitative agreement with the experimental results. 
 
 

 

3.4 Volume fractions  

 

 
Here we determine the averaged density (volume fraction) throughout the sand pile and 
make quantitative comparisons between differently constructed sand piles. The volume 
fraction is defined as the ratio of the volume of particles and the total volume of the 
averaging element that contains the particles whose centres of mass lie inside it. 
 
  

 p

p V

1
υ= V ,

V ∈

∑  

 

where pV the volume of the particle p and V  is the volume of the averaging element that 

contains the particles. For the sake of simplicity, we used the simplest averaging techni- 
que, the so-called the particle centre averaging, i.e. a particle is taken into account if the 
corresponding particle centre lies within the averaging volume element. 
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Figure 3.12: Simulation results of the volume fraction for a sand pile constructed from a 
point source. Average of nine sand piles (height of the pile is 33.5 cm). 
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Figure 3.13: Simulation results of the volume fraction for a sand pile constructed from a 
line source. Average of nine sand piles (height of the pile is 31.5 cm). 
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The simulation results of averaged density at different heights inside a sand pile 
constructed from a point source are displaced in Fig. 3.12, whereas the same is represent- 
ted in Fig. 3.13 for a line source sand pile. For the case of a point source, the density 
changes with relative heights inside a sand pile and the middle region of the sand pile 
shows a higher density than the rest of the sand pile. The middle region has a density that 
is approximately 8-10% higher than the density in the vicinity of the free surface of the 
sand pile. In contrast, the density is almost constant, close to 0.79 in the line source case, 
especially in the central region of the sand pile. There is a slightly inhomogeneous 
distribution in the vicinity of the surface of the sand pile. 
 
We conclude from our numerical investigation of the average density for the sand pile  
that the construction history of the granular aggregates affects their density distribution, 
which agrees with the existing experimental conclusion [7] as discussed in details in 
chapter one. 
 
It is a somewhat surprising result that for a sand pile constructed from a point source the 
density is maximum at the centre where the pressure is actually minimum.  An increase of 
density with decreasing pressure is a signature of instability. A qualitative explanation of 
the pressure minimum would be a local collapse of the grain arrangement in the interior, 
leading to increased density and an ‘arch’ of particles above the collapsed part supporting 
the weight of the column of grains below the pile tip.  
 
 
 

3.5 Orientation of the particles in sand piles 

 
 
In order to obtain the orientation of the particles inside the sand pile, we determine the 
orientation of the principal axis of the averaged inertia tensor using equation 2.92. Some 
simulation results are illustrated in Fig. 3.14 for a sand pile constructed from a point 
source with a mixture of round particles whereas the same is represented in Fig. 3.15 for 
a sand pile that contains a mixture of elliptic particles. We have taken an average over six 
sand piles for the case of interia tensor in order to suppress the fluctuations of single 
realization. 
 
We note that, the orientations of main axis of the inertia tensor are not qualitatively 
similar for the two cases. For a sand pile consisting of elliptic particles, the orientation of 
the major principal axis is perfectly horizontal, which means that the elliptic particles are 
mainly orientated horizontally (preferred alignment is with long axis horizontal). 
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Figure 3.14:  Main axis of the inertia tensor inside a sand pile that contains a mixture of 
roundish particles. 
 
 
 
 
 

 
 

 

 

 

Figure 3.15:  Main axis of the inertia tensor inside a sand pile that contains a mixture of 
elliptic particles. 
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Figure 3.16: Movement of the individual particles of the sand pile constructed from a 
point source under gravity reduction. Sand pile was relaxed by reducing gravity slowly 
by about 50%. 
 
 

3.6 Strain distribution under sand piles 
 

 
In this section, we focus on the sensitivity of the strain distribution (total strain) to the 
preparation of sand piles. Before interpreting the results for the strain tensor, first, we 
present simulation results for the movement of each individual grain inside the sand pile 
under gravity reduction. The result obtained from the simulation is represented in Fig. 
3.16. Each arrow shown in the figure corresponds to the movement of an individual 

particle. The arrow is drawn from the initial position of the centre of mass ( ),i ix y  of the 

particle i  at the ambient gravity level of a sand pile at 29.81 /g m s=  towards the final 

point of the centre of mass ( ),i ix y′ ′  at the new state of the sand pile obtained by reducing 

gravity slowly by about 50%. 
 
As expected, the range of movement of a particle decreases towards the bottom layers of 
the sand pile, and increases towards the surface and the tip of the sand pile.  
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Figure.3.17: Vertical normal strain distribution at different heights of simulated sand 
pile. Left: sand piles constructed from a point source (Average of 11 sand piles and 
height of the pile is 33.5 cm), Right: sand piles poured from a line source (Average of 11 
sand piles and height of the pile is 31.5 cm). 
 
The vertical normal strain tensor component obtained from DEM simulations is displayed 
in Fig. 3.17 for two types of sand piles that were constructed using the two different 
pouring protocols. The averaged strain tensor was evaluated throughout the sand pile; we 
represent it via a plot of tensor components as a function of the lateral coordinate x of the 
pile for layers of given heights y1, y2, ... yn.  
 
We give this component of the strain tensor to obtain a qualitative picture, although the 
foregoing discussion in Section 2.6.2 shows that it is not a rigorously determined 
quantity. While it has the correct scaling with gravity level, vertical and horizontal strains 
are of course coupled, so the errors produced by the method in the horizontal direction 
will also affect the vertical direction. The topmost curve in the graph shows the strain 
tensor result at the bottom layer of the corresponding sand pile, whereas the bottom curve 
corresponds to the top layer. Heights are given as function of the total height of the pile to 
its apex. An interesting feature of the vertical normal strain tensor for various heights is 
that the vertical normal strain changes with the layer position in the sand piles like the 
stress tensor. The vertical normal strain shows a dip (Fig. 3.17.A) near the centre of the 
piles that are poured from a point source. It can be seen that the strain dip appears not 
only at the bottom layer but also exists up to the certain height inside the sand pile. On 
the other hand, the vertical normal strain increases towards the centre and towards the 
bottom layer of sand piles poured from a line source, i.e., a strain dip does not occur in 
sand piles constructed from a line source, see in figure 3.17.B.  
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Figure 3.18: Vertical normal strain tensor at the bottom layer of the sand pile constructed 
from a line source obtained using four different approaches. 
 
 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

1

2

3

4

5

6

x 10
-3

-u
y
y

x(m)

Cambou

Cundall

Liao

diff

 
 
 
Figure 3.19: Vertical normal strain tensor at the bottom layer of the sand pile constructed 
from a point source obtained using four different approaches. 
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3.6.1 Comparison of strain tensor 
 
Here, we are interested in determining the strains (total strain) using four different 
versions of strain tensors (three best-fit strains and derivative strain) using the equations 
(2.57), (2.66), (2.73), and (2.76) by numerical investigation, and to compare the results 
for the vertical normal strain tensor both qualitatively and quantitatively with each other. 
The numerical simulations results were obtained using our code. The results of the 
average (negative) vertical normal strain at the bottom layer of the sand pile constructed 
from a line source are illustrated in Fig. 3.18.  All the strain tensors were measured via 
imposing 10% of reduction of gravity from the actual state of the gravity level.  
 
For the case of a line source, we have averaged results over seven sand piles in order to 
reduce fluctuations. We observe from Fig. 3.18 that the best-fit strains of Cambou et al. 
and Cundall et al. are close to each other with a deviation of few percent, while the best 
fit strain of Liao et al significantly differs from the Cambou strain and Cundall strain, the 
deviation went up to 30-40%. The reason for this large deviation may be the inclusion of 
particle rotations in the calculation of the Liao strain, instead of consideration of only the 
translation of the particle centre. Presumably, the Liao strain might be useful in theories 
employing micro-polar continua and involving couple stresses in addition to force 
stresses. Then micro rotation effects may partially compensate for the excess strains of 
Liao et al. As long as we assume a symmetric stress tensor, the other strain definitions are 
more useful.   
  
On the other hand, the vertical normal (negative) strain obtained using the differentiation 
method shows a different behaviour than the other strains especially in the vicinity of the 
surface of the sand pile, but, shows a similar behaviour towards the centre of the sand 
pile. It is in good agreement quantitatively with the best-fit strains of Cambou et al. and 
Cundall et al. Clearly, numerical differentiation should be avoided whenever possible and 
the deviations near the extremities of the sand pile are artifacts of the procedure. 
 
Furthermore, we compared the results of the four types of strains quantitatively for sand 
piles constructed from a point source. Fig. 3.19 gives the simulation results of average 
negative vertical normal strains at the bottom layer of the point source sand pile. For the 
point source case, we averaged the strains over seven sand piles each. All four methods 
produce a strain dip under piles constructed from a point source, as expected. Again, 
quantitative comparison indicates strong deviations for the Liao strain, which should not 
be used in our context, and exhibits the deficiencies of the differentiation method. 
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3.7 Properties of the fabric tensor 
 
In this section, we determine various properties of the fabric tensor inside a sand pile 
created from a point source. The fabric tensor is symmetric by definition and therefore 
normally consists of three independent components in two dimensions. These may be 
expressed in a largely coordinate independent way using tensor invariants and geome- 
trical quantities. 
 

As the first of these quantities, we choose the trace of the fabric tensor defining the ave- 
rage contact density of the sand pile. It is also known as the volumetric part of the fabric 
and given by max min( ) ,tr F F F= +  where maxF  and  minF  are the major and minor eigen- 

values of the fabric tensor, respectively. In Fig. 3.20.A, the trace of the averaged fabric 
tensor is plotted at different heights inside the sand pile. It can be seen from the figure 
that the mean number of contacts decreases near the surface of the sand pile and increases 
with increasing distance from the surface to the centre of the sand pile. Since we have 
measured the density to increase towards the centre of the pile in the case of a pile poured 
from a point source, this means that the number of contacts is higher where the density is 
maximum.  
 

As a second independent quantity determining the fabric tensor we may choose the fabric 
deviator. It is defined as  max minDF F F= −  and is a measure of the degree of anisotropy in 

the contact network of the granular assembly. The deviatoric fraction of the fabric tensor 
/ ( )DF tr F  is plotted in Fig. 3.20.B for different heights inside the sand pile. From the 

figure, it is observed that the deviatoric fraction behaves differently from the trace of the 
fabric tensor, as it decreases towards the centre and increases towards the free surface of 
the pile. This means that the fabric is more isotropic near the centre of the sand pile and 
more anisotropic in the outer part. The fabric anisotropy is between 0.05 and 0.15.    
 
The angle of the orientation of the major eigenvector of fabric tensor may serve as the 
third independent quantity defining the fabric tensor. The orientation of the major 
eigenvector with respect to the horizontal axis is given in Fig. 3.20.C at different heights 

inside the sand pile. It changes from 40− �  (left) to 40+ �  (right). 
 

The orientation of three macroscopic tensors stress, strain and fabric are plotted in Fig. 
3.20.D only for the first two bottom layers of the pile. No meaning should be attributed to 
the deviation of the strain tensor from the behaviour of the stress tensor, since the xx and 
xy components of the former cannot be determined reliably. It can be seen, however, that 
the orientations are different also for the fabric and stress tensors, which means that these 
macroscopic tensors are not collinear. Most likely this limits the utility of a description of 
granular piles in terms of isotropic elasticity. Nevertheless, we shall consider such a 
description in the following to explore these limitations in some detail. 
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Figure 3.20.A-D: Simulation results of the different properties of the averaged fabric 
tensor for the sand pile created by the point source. (A) Trace of the fabric tensor, (B) 
deviatoric fraction, (C) orientation of fabric versus lateral position in the sand pile, and 
(D) orientation of fabric, stress and strain plotted only for the first two bottom layers of 
the sand pile. Average over eleven sand piles (height of the pile is 31.5 cm). 
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Figure 3.21: Product of the volume fraction and mean coordination number plotted as a 
function of the trace of the averaged fabric tensor. A: for piles consisting of mono-
disperse mixture of particles, B: for piles consisting of poly-disperse mixture of particles. 
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In the next step, we determine the correlation between trace of the fabric tensor and 
product of the volume fraction υ  and the mean coordination number c .  
                                                                                                                  
We plot the product of the volume fraction and mean coordination number of a sand pile 
constructed from a point source as a function of the trace of the fabric tensor in Fig. 3.21. 
The top panel of the figure shows the result for a mono-disperse arrangement of particles, 
whereas the bottom panel shows the same for a poly-disperse mixture of the particles. In 
the first case, all the data points collapse on a single straight line, which means that the 
averaged fabric tensor is linearly proportional to the product of the volume fraction and 
mean coordination number. Moreover, the proportionality constant is one, i.e., 
 
 
                                                                                                                                        (3.1) 
 
This is to be expected from the definition of the fabric tensor. Remember that for a single  

particle ( ) p
tr F c=  (equation 2.103). 

 
On the other hand, for a poly-disperse systems the trace of the averaged fabric tensor is 
not linearly proportional to the product of the volume fraction and mean coordination 
number: i.e. 
 
                                                                                                                                       (3.2) 
  
This is not unexpected either, because for poly-disperse particles the local volume fracti- 

on differ and we have pc cυ υ≠ , meaning that volume fraction and contact number are 

not statistically independent. 
 
For poly-disperse granular materials, Luding et al. [127] introduced a dimensionless 
(scalar) factor, the so-called  ‘correction factor’ which is only dependent on the particle 
size probability distribution function in order to predict a macroscopic material property 
based on a microscopic property of the granular materials. According to Luding et al, the 
trace of the fabric tensor can be factorised into three contributions: (1) the volume 
fraction of the granular assemblies (2) the mean coordination number (3) a correction 
factor 2g . We can write the trace of the averaged fabric tensor for a poly-disperse 

granular system as in a mathematical expression: 
 
                                                                                                                    (3.3) 
 
 
 
        
               
 

( )F .tr cυ≅

( )F .tr cυ≠

( ) 2F g .tr cυ≅
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Figure 3.22:  Trace of the fabric tensor plotted as a function of the volume fraction for a 
sand pile constructed from a point source.  
 
 
The detailed analytical derivation of the correction factor is described in ref. [127]. We 
have determined the correction factor 2g  simply from our DEM numerical simulation 

results by taking the ratio between ( )tr F  and cυ , i.e. 

 
 
                                                                                                                                        (3.4)          
 
 
From the above equation (3.4), we find the correction factor is 2 1.045g =  for a sand pile 

consisting of poly-dispersity mixture of the particles with a degree of poly-dispersity of 
30%. We have not verified the theoretical prediction for 2g  with our numerical 

measurement. 
 
We plot in Fig. 3.22, the trace of the fabric tensor against the volume fraction of a sand 
pile constructed from a point source. The behaviour is roughly linear, meaning that the 
contact number density is proportional to the volume fraction of the sand pile. In 
conclusion, we have a lower pressure in the central region of the sand pile constructed 
from a point source than in the region around, the density is locally maximum and the 
contact-number-density shows same behaviour.   

 

( )
2

F
.

tr
g

cυ
=
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3.8 Distribution of stress and strain invariants 
 
In this section, we are interested in determining the relationship between the invariants of 
the incremental stress tensor and the incremental strain tensor for a pile that would allow 
us to obtain elasto-plastic behaviour of a sand pile. The incremental stress was obtained 
by simply evaluating the stress tensor at two different gravity levels and taking the 
difference. The incremental strain was obtained by determining the position changes at 
the particle centres when gravity was changed from one level to the other and by using 
these as displacement vectors for the calculation of a best-fit strain (see Section 2.6.2).  
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Figure.3.23:  Correlation between trace of the incremental stress tensor and trace of the 
incremental strain tensor. 
 
 
Cantelaube, and Goddard [2], in fact, one of the probably too simple assumptions of the 
elasto-plastic model [2] is that the compatibility relation of linear elasticity holds right up 
to the yield loci. Because we have measured stresses and strains everywhere in the sand 
pile, we can check this more or less directly. 
 
We plot in Fig. 3.23 the trace of the (negative) incremental stress tensor as a function of 
the trace of the (negative) incremental strain tensor. The graph shows that the behaviour 
is nonlinear. The flat part of the graph corresponds to the points that are close to the 
surface of the sand pile. The slope of this graph is the differential bulk modulus; we 
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observe that it decreases smoothly near the surface which means that there is a smooth 
transition from elastic to plastic behaviour (if any) rather than a discontinuous one. What 
is interesting about this graph is that we have very (roughly) linear elastic behaviour for 
large strains and stresses and nonlinear behaviour announcing the transition to plastic 
behaviour for smaller strains, contrary to what one sees in solid state mechanics, where 
the plastic behaviour is a consequence of large loads. Of course, this is due to the non-
cohesive nature of the granular medium. Under compressive external load the pile 
behaves mostly elastic, but when this load becomes small or negligible, the lack of 
attractive interaction between the particles makes itself felt, the sand starts act like an 
isostatic network, which is almost flexible, and hence plastic. 
 

Similar behaviour was observed in the analytical approach [2] for sand piles obtained by 
Didwania, Cantelaube, and Goddard as they assumed linear elastic behaviour near the 
centre and plastic behaviour closer to the surface of the sand pile. 

 

 

3.9 Coordination number for different changes in gravitation 

 
 
The average coordination numbers of the sand pile are determined for different values of 
loading by either increasing or decreasing gravity from the ambient gravity level. The 
average coordination number ,c  in our definition, corresponds to the mean number of 

contacts per particle within a volume element .V  
 

1
,p

p V

c n
N ∈

= ∑                                                                                                                  (3.5) 

 

where p
n denote the number of contacts of the particle p  and N  is number of particles 

that lie within the averaging volume element V whose centres of mass lie inside it.  
 
Fig. 3.24 displays the simulation results for the probability distribution of the average 
coordination number for a sand pile with different changes of gravitational acceleration. 
From the figure we find that the mean coordination number changes with a change in 
gravity, albeit slightly. For 90% reduction of gravity, the coordination number is about 
8% smaller than the coordination number at ambient gravity, whereas it is higher by 
about 4%, if we increase the gravity by the same amount of 90% from the ambient 
gravity level. Not surprisingly, the average contact number of the particles decreases for 
reduction of gravity and increases for enhancement of gravity. 
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Figure 3.24: Probability distribution of the average coordination number for a sand pile 
poured from a point source with different changes in gravity. The blue curve represents 
the probability distribution of the average coordination number for a sand pile at the 
gravity level of 9.81,g = whereas red and black curves corresponds to 1,g =  and to 

18.62,g =  respectively. 

 

 

 

3.10 Determination of elastic constants 

 

 
In this section, we present simulation results of the effective material properties of sand 
piles constructed from a point source. By performing discrete element method simula- 
tions we obtain macroscopic strain tensors from microscopic displacements of the indi- 
vidual grains in a two-dimensional sand pile. Computing stresses in addition, we can esti- 
mate local elastic constants assuming Hooke’s law. Generally speaking, if we find almost 
constant values of elastic constants throughout the sand piles, linear elasticity may be 
considered a good approximation. If we get, on the other hand, strongly varying elastic 
constants, then we can say that linear elasticity is not going to work for the pile as a 
whole. Moreover, this computation serves as a consistency check for theoretical assump- 
tions such as the rigid-particle hypothesis. If our calculation produced elastic constants of 
the same order of magnitude as the Young’s modulus that we assign to the particles to 
allow an overlap for force calculation, then the idea that the sand pile has a macroscopic 
elastic behavior different from that of its microscopic constituents would not be valid be- 
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 cause the elastic constants of the pile would go to infinity with those of the grains. This 
idea can work only, if the sand pile admits a finite elastic response in spite of the rigidity 
of the grains, which means that the measured elastic coefficients of the sand pile should 
be significantly smaller in the simulation than those assigned to the particles. 
 
Under the assumption that the material is locally isotropic, we can characterize its elastic 
constants using only two coefficients, for example Young’s modulus and Poisson’s ratio. 
The relation between stress tensor and strain tensor reads  
 
 
                                                                                                                                        (3.6) 
 
 
Written out in components for the two dimensional case this becomes 
 

((1 ) ),
(1 )(1 2 )

xx xx yy

E
u uσ ν ν

ν ν
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                                                                           (3.7)                                                                          
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.
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E
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ν
=

+
                                                                                                                (3.9) 

 
In our case, the unknown quantities are E and ν .  
 
 
Equations (3.7) and (3.8) allow us to obtain simple expressions for the trace and the first 
normal stress difference 
 

( ),
(1 )(1 2 )

xx yy xx yy

E
u u

v
σ σ

ν
+ = +

+ −
                                                                            (3.10) 

( ).
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E
u uσ σ

ν
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+
                                                                                          (3.11)  

 
The next step is to determine the best approximation for E and ν  satisfying all three 
equations (3.9) (3.10) & (3.11) as closely as possible. This is a minimization problem for 
given fields ijσ and iju , which may be cast as follows. Set 
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and minimize this expression with respect to E andν . That is, we set 
 
 

0,
f

E

∂
=

∂
      0,

f

ν

∂
=

∂
                                                                                                                       

 
and these two equations should be solved for E and ν in principle. It is found that they 
constitute a nonlinear system that cannot be solved analytically (though a numerical 
solution should not be too difficult). A simpler approach is to use two different elastic 
constants, also well-known, namely the bulk modulus K and the shear modulus G, which 
are related to Young’s modulus and the Poisson number via the following equations: 
 

,
2(1 )(1 2 )

E
K

ν ν
=

+ −
                                                                                                    (3.13) 

,
2(1 )

E
G

ν
=

+
                                                                                                                (3.14) 

 
which allows to rewrite the above three equation in terms of G and K, to obtain 
  

2 ( ),xx yy xx yyK u uσ σ+ = +  

2 ( ),xx yy xx yyG u uσ σ− = −  

2 .xy xyGuσ =  

 
Then we minimize the expression 
 

2 2 2( , ) [( ) 2 ( )] [( ) 2 ( )] 4[ 2 ]xx yy xx yy xx yy xx yy xy xyg G K K u u G u u Guσ σ σ σ σ= + − + + − − − + −       (3.15)         

                                                                                                                                      
with respect to G and K, i.e., we set 
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Solving the simplified equations for K and G we obtain 
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Note that this calculation works the same way with incremental stresses and strains, so 
we can determine elastic constants even though we cannot obtain the absolute strain 
tensor. Once K and G have been determined, we can calculate E and ν as follows, 
 
  

0.5 1 ,
G

K
ν

 
= − 

 
                                                                                                           (3.18) 

2

3 .
G

E G
K

= −                                                                                                                (3.19) 

 
 

The effective material properties as obtained in simulations of sand piles that were 
constructed from a point source are shown in Fig. 3.25.A-D. We measured the elastic 
constants at different heights inside the sand pile. The topmost curve in panels A, B, and 
C corresponds to the results for the bottom layer, whereas the bottom curve was 
measured the top layer of the sand piles. For Fig. 3.25.D, the layer to which a curve 
corresponds may be gathered from the domain of definition of the curve: this is largest 
for the bottom layer and smallest for the top layer (so the curve with the smallest 
variation corresponds to the bottom layer). We find that the elastic constants vary with 
position inside the sand pile. In addition, we see that the elastic constants Young’s 
modulus of elasticity, shear modulus, and bulk modulus increase towards the centre and 
towards the bottom, and decrease towards the surface with very little fluctuation.  
 

We use a Young’s modulus of 710 /E N m=  for each particle and the scale of the mea- 

sured elastic modulus of the sand pile is approximately 610 / ,E N m=  i.e. one order of 

magnitude smaller for small load as we reduced gravitation by only 10%. That means, the 
simulated sand pile is softer around one order of magnitude than its individual particles. 
The bulk modulus is observed to increase towards the centre, indicating the central core 
region of the heap is much harder than the region closer to the surface. It can be seen in 
Fig. 3.25.D that Poisson’s ratio behaves differently as it increases towards the surface of 
the sand pile and decreases towards centre and tip of the sand pile, especially, it 
fluctuates more near the tip of the sand pile. 
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Figure 3.25: Effective material properties from simulation of sand pile poured from a 
point source. (A) Bulk modulus of elasticity (B) Young’s modulus of elasticity, (C) Shear 
modulus, and(D) Poisson’s ratio. Average over eleven sand piles (height of the pile is 
33.5 cm). 
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Figure 3.26: Correlation between elastic constants with the trace of the fabric tensor. (A) 
Bulk modulus of elasticity (B) Young’s modulus of elasticity, (C) Shear modulus, and(D) 
Poisson’s ratio,  plotted against  the trace of the fabric tensor throughout the sand pile.    
 
In Fig. 3.26, we establish a correlation between elastic constants and the trace of the 
fabric tensor. In Fig. 3.26.A, we plot the bulk modulus of the macroscopic sand piles 
against the trace of fabric tensor. Obviously, the behaviour is linear to a decent approxi- 
mation, i.e. the stiffness of the particles is a linear function of the trace of the fabric 
tensor, i.e. the number of contacts of a particle. Furthermore, Young’s modulus and the 
shear modulus are plotted, respectively, as a function of this coordination number in the 
Fig. 3.26.B and 3.26.C.The behaviour also is roughly linear for both cases.  A similar plot 
for Poisson’s ratio as a function of the fabric is plotted in Fig. 3.26.D. In this case, the 
behaviour is nonlinear, but a simple linear relationship is not expected.                                        
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3.11 Stress distribution for asymmetric sand pile 

 
In Section 3.3, we have represented and discussed numerical results concerning the stress 
distribution under symmetric sand piles. Up to now, no stresses have been measured for 
asymmetric sand piles either experimentally or numerically. However, there exists in the 
literature an elasto-plastic continuum model set up by Didwania, Cantelaube, and 
Goddard, see in ref. [2] predicting an analytical solution for the stress distribution inside 
an asymmetric sand pile. In order to determine stresses under an asymmetric sand pile we 
have performed discrete element method simulation of two-dimensional asymmetric sand 
piles, and then calculated numerical data to be compared quantitatively with the analyti- 
cal prediction for the stress tensor. 
 
 
 
 

 
 
Figure 3.27: Simulated asymmetric sand pile constructed from a line source.   
 
 
We simulate asymmetric sand piles by constructing them from about of 3800 polygonal 
particles that are poured from a line source. An example is shown in Fig. 3.27. Particles 
used were soft round shaped with a fixed number of corners (seven) for individual 
simulations and the degree of poly-dispersity was 10%. The procedure for constructing 
an asymmetric sand pile from a line source is based on a similar line of thought as the 
construction of the symmetric sand pile, but instead of depositing a new layer onto an 
already present one symmetrically we deposit it in an asymmetric way, shifting the centre 
of the line source in each deposition step by a constant amount. The average angle of 

repose obtained for seven sand piles was 31� for the left-hand side of the pile and 22� for 
the right-hand side of the pile. 
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Figure 3.28: Simulation result for the vertical normal stress distribution (normalized) at 
various heights inside a two-dimensional asymmetric sand heap constructed from a line 
source. Height of the pile is 24.5 cm. 
 
 

      
 
Figure 3.29: Theoretical prediction of the vertical normal stress distribution at the 
bottom of a two dimensional asymmetric sand heap, exhibiting a plateau behaviour below 
the apex of the heap.    
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Figure 3.30: Simulated asymmetric sand pile constructed from a point source.   
 
 
Fig. 3.28 reveals the simulation results for the averaged normalized (negative) vertical 
normal stress tensor along horizontal cuts at different heights of an asymmetric sand pile 
constructed from a line source. In the figure, the blue curve represents the results at the 
bottom layer of the corresponding sand pile, where as the black curve corresponds to the 
top layer. From the figure, we find an asymmetric pressure distribution under an 
asymmetric sand pile, as expected and a plateau distribution below the apex of the pile 
(peaked shape behaviour). No experimental results exist in the literature to compare our 
numerical simulation results,  
 
Next, we compare our simulation results with the available analytical prediction of the 
stress solution for an asymmetric sand pile obtained by Didwania, Cantelaube, and 
Goddard [2]. It is given in Fig. 3.29. Comparing the numerical simulation result for the 
stress distribution at the bottom layer of the pile (blue curve) with that of the analytical 
solution shows that the behavior is qualitatively similar.    
 
Furthermore, we were able to construct an asymmetric sand pile from the point source. 
One of the simulated sand piles is shown in Fig. 3.30. It consists of 3864 polygonal 
particles with each particle having seven corners. We used a poly-disperse mixture of 
round of particles with a degree of poly-dispersity of about 25%. The procedure for 
constructing an asymmetric sand pile from a point source is essentially the same as that 
of the construction of a symmetric sand pile, but instead of using a fixed height point 
source (the funnel), we move the funnel slowly horizontally towards the right hand side. 
In order to suppress the fluctuations of the result of stress tensor for single sand pile, we 
have taken average over six sand piles. The average angle of repose for the left-hand side  
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Figure 3.31: Numerical results for the vertical normal stress distribution (normalized) at 
various heights inside a two-dimensional asymmetric sand heap constructed from a point 
source. Height of the pile is 38 cm. 

 

 
 
Figure 3.32: Theoretical prediction of vertical normal stress distribution at the bottom of 
a two-dimensional asymmetric sand heap. There is a dip below or slightly to the right of 
the apex of the heap.    
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of the sand pile obtained for seven sand piles was 28� and it was 21� for the right-hand 
side of the sand pile. 
 
We present in Fig. 3.31 the numerical simulation results of the averaged normalized 
(negative) vertical normal stress tensor on horizontal cuts at different heights of an 
asymmetric sand pile constructed from a point source. We observe that there is an 
asymmetric pressure distribution below the apex of the pile, and a dip exists in the stress 
profile. In Fig. 3.32 we have an analytical solution [2] for the stress distribution at the 
bottom of the asymmetric sand pile, which demonstrates that the numerical simulation 
results for the stress distribution at the bottom of pile are in good agreement with those of 
the analytical prediction of the normal stress. 
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           simulation and analytic theory    
 
 
 
 
 
 
 
 

 

4.1 Analytical approaches for sand piles 

 
 
The next natural step is to compare our simulation results with analytic descriptions 
purporting to predict the macroscopic behaviour of a sand pile, in order to either validate 
these descriptions or to show where they fail. There are many macroscopic approaches 
(continuum models) in the literature including incipient failure everywhere (IFE) [128], 
Bouchaud-Cates-Claudin (BCC) [129], fixed principal axes (FPA) [13], the family of 
orientated stress-linearity (OSL) [1] and finally an elasto-plastic model [2] based on an 
analytic description for describing the stress distribution under a sand pile. However, we 
have to check amongst those models [128, 129, 13, 1-2], that can predict a stress dip in 
the centre of a sand pile, in order to compare with our simulation results. 
 
The IFE model suggested that, the sand pile is everywhere at the point of Coulomb 
failure (point of slip failure). However, while incipient failure is certainly true at the 
surface of the sand pile, it is not likely to hold in the central region of the sand pile. This 
model provides either a stress maximum or plateau at the centre. On the other hand, the 
closure relation proposed by BCC suggested that the horizontal and vertical normal 
components of stresses are proportional to each other; that means, the ratio of horizontal 
to vertical normal stress is constant everywhere in the sand pile, this will leads to predict 
a stress plateau, rather than a dip at the centre of the sand pile. This analytical conclusion 
turns out to be incorrect since the experimental investigation on the sand pile [14, 15, 

  4 
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130, 12] show that a dip in the stress profile can be found under the tip of the pile. Since 
the IFE and BCC models fail to account for the stress dip below the tip of the sand pile, 
we therefore do not compare our simulation results with these two analytical models. 
 
In contrast to BCC and IFE models, models like FPA, OSL, and elasto-plastic continuum 
models can predict a stress dip in the centre of the sand piles. The closure relation of the 
FPA model can be derived more intuitively by assuming that the principal axes of the 
stress tensor take the fixed directions ±ψ on both sides of the central axis of the sand pile, 

where ( )2 4ψ π φ= − , hence the name of the model is FPA. φ  is the angle of repose of 

the sand pile. The orientation of the principal axis of the stress tensor is displayed in 
figure 4.1.  The fixed principal axes model is a special case of the OSL model, to be 
described in Section 4.4. Moreover, the FPA model leads to a pronounced dip in the 
pressure distribution under the tip of the sand pile. However, the conclusion of FPA 
model does not correspond well to the simulations- the orientation of the stress tensor is 
not constant throughout the sand pile, as was verified by Alexander Schinner in [103].  
But the FPA model provides analytical results for the stress tensor that seem to be in very 
good agreement with the experimental results in three dimensional sandpiles, see ref. 
[13]. 
 
There are two competing macroscopic approaches, whose closure relation might be 
useful in practice and which we will therefore investigate more closely. One of these is 
the OSL model which has been constituted by Wittmer, Cates, and Claudin [1] and which 
leads to globally hyperbolic equations for stresses in a sand pile. The second model is the 
so-called elasto-plastic continuum model proposed by F. Cantelaube and G. Goddard. 
The model describes the sand pile as an elasto-plastic continuum, predicting plastic 
behaviour near the surface of the sand pile and linear elastic behaviour near its centre. In 
its most stringent form, it has no adjustable parameters. 
 
In this chapter, we focus on comparing our numerical results with those of the analytical 
theories as OSL model and elasto-plastic continuum model. 
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Figure 4.1: Schematic plot of the orientation of the principal axis of the stress tensor in a 
sand pile, for FPA model [1]. 

 

 

4.2 Basic law of mechanical equilibrium 

 
 
All analytic approaches for sand pile physics have to respect the basic law of mechanical 
equilibrium, which in two dimensions reads 
                  
 
             

               
0

,

x xx y xy

x xy y yy g

σ σ

σ σ ρ

∂ + ∂ =

∂ + ∂ = −
                                                                

(4.1)  
 
 
 
where ρ is the density of the sand pile, taken constant in these theories. In our simulation, 

we have to evaluate this density as the product of the particle density, which is fixed, and 
the local volume fraction of the sand pile. g is the gravity acceleration. 

 
Moreover, it is generally agreed that the surface of a sand pile is in a state of incipient 
failure, i.e., it corresponds to a slip plane. Using this assumption, one can show that the 
normal-component free-interface condition σnn = 0 leads to the vanishing of all stress 
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components (i.e. σnt = 0 and σtt = 0).  This follows directly from the Mohr-Coulomb yield 
criterion 
 

    2 2 2 2
xx yy xy xx yy(σ σ ) 4σ (σ σ ) sin 0,φ− + − + =                                           (4.2) 

 
 
applied in a coordinate system with x parallel to the surface (i.e., replace x→t, y→n in 
equation 4.2). Herein, φ  is the internal friction angle (related to the friction coefficient µ 

via tanφ = µ). The assumption of incipient failure provides stress boundary conditions at 

the surface of the sand pile. 
 
Because the two field equations are insufficient to determine the three independent stress 
components σxx, σxy, and σyy, a third equation, a so-called closure relation, is needed in 
order to close the system. In ordinary elasticity, this is provided by constitutive relation 
connecting stresses and strains.  
 
Usually, the literature states that for sand piles displacement fields are not available, 
which is true experimentally and also for the macroscopic analysis, as it does not have 
access to the microscopic particle displacements. Moreover, it is argued that for rigid 
particles these displacements are not meaningful. Both rigidity and Coulomb friction 
contribute to static indeterminacy of the pile. 
 
A closure relation between the stress components is then sought for and postulated, to 
remove this static indeterminacy. Different approaches differ in their postulates 
concerning this “constitutive” relation. A common assumption of several theories is 
radial stress field scaling (RSF), which seems to be verified in experiments and is 
essentially based on the idea, that the stress fields of geometrically similar piles should be 
the same up to a scale factor. Mathematically, this reads 
 
 

  .
cotij ij

x
gy s

y
σ ρ

φ

 
=  

 
                           (4.3) 

 
One can then reduce the mechanical equilibrium equations (4.1) to ordinary differential 
equations, once a closure relation has been found. In three dimensions, several closure 
relations are needed – the expression for the divergence of the stress tensor yields only 
three equations, whereas the stress tensor has six independent components. 
 
We first give a short description in the following section for the elasto-plastic continuum 
model, and show a comparison of results between simulation and theory. Then in the 
subsequent section, the OSL model is analyzed briefly.  
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4.3 Elasto-plastic continuum model  
 
In this approach [2], the authors assumed two types of behaviour in the sand pile, 
depending on the location of the point considered. Near the surface of the sand pile, 
plastic behaviour is to be expected, and the closure relation is simply given by Mohr’s 
yield criterion, Eq. (4.2). On the other hand, near the center of the pile, they assume that 
there is linearly elastic behaviour. The absence of measurable displacements is not a 
problem, as one can derive within linear elasticity stress compatibility relations, from 
which the elastic moduli scale out, so the limit E → ∞ can be easily taken. In two 
dimensions, there is just one such relationship. It takes the form 
 

           , , ,2 0,xx yy yy xx xy xyσ σ σ+ − =                             (4.4) 

 
and if it is imposed, rigid-body indeterminacy is removed.  
 
Moreover, it is assumed for simplicity that one of the two types of behaviour is realized 
at any point of the pile, i.e. that there is no transition region in which, for example, non 
linear elastic behaviour would apply. Whenever a plastic region touches an elastic one, 
there are boundary conditions, requiring continuity of stresses but allowing discontinuous 
derivatives. When two elastic regions touch each other with nonmatching stress 
derivative, an infinitely thin layer of a yield region is assumed between them, along 
which equation (4.2) holds.  
 
Cantelaube et al. assume RSF scaling as well. They obtain solutions which in the outer 
plastic domain obey the field equations (4.1) and (4.2), which FPA does near the sand 
pile surface, too, but strongly differ from FPA behaviour in the elastic core. For 
symmetric sand wedges, the shape of the inner domain is that of an isosceles triangle with 

a steeper base angle ( β
∧

) or a smaller tip angle. They find three discrete solutions, of 

which one has a pressure minimum, as shown in figure 4.2. Once the angle of repose φ  

of the pile is fixed, the theory contains no free parameters. 
 
One can derive the stress solutions separately for the elastic domain and for the plastic 
domain by assuming a general linear ansatz, which is as follows 
 

 
xx

yy

xy

σ ,

σ ,

σ .

Ax By

Cx Dy

Ex Fy

= +

= +

= +

                                                                                                               (4.5) 
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Figure 4.2: Schematic drawing of the pressure profile in a symmetric sand pile. One of 
the solutions shows a pressure minimum in the centre. 
 
 

 
Figure 4.3:  Schematic plot of the elasto-plastic model of a symmetric sand pile, where 
the region AOB represents an elastic domain and the region ABC is a plastic domain.   
 
 
 



      
 115                                                     Comparison between simulation and analytic theory                                                                          

and by matching the solutions at the domain boundaries. In the elastic domain, the ansatz 
is seen to automatically satisfy the compatibility relations (4.4).   
   

The orientation of the Cartesian coordinates ( ),x y  is depicted in figure 4.3, and , , ,A B C  

 
, ,D E and F are six coefficients to be determined. 

 
 

Solution for the plastic domain: 

 

 
Inserting the stress components from equation (4.5) into the mechanical equilibrium 
equation (4.1), now the linear expression (4.5) becomes  
 

xx

yy

xy

σ ,

σ ,

σ (1 ) .

Ax By

Cx Dy

Dx A y

= +

= +

= − − +

                                                                                                      (4.6)             

 
It is noted that the stress components are required to vanish at the free surface tan ,y xβ=   

 
i.e.,  0xx xy yyσ σ σ= = =  for tan .y xβ=                                                                         (4.7) 

 
In the next step, using the values of the components of the stress tensor at the free surface 
as given in equation (4.7) and subsequently, applying the Mohr-Coulomb yield criterion 

closure equation (4.3), one can derive the solution for the plastic domain ( )2β π φ= − : 

which is given by the following expressions    

xx 11 ,
tan

x
σ a y

β

 
= − 

 
   

yy 22 ,
tan

x
σ a y

β

 
= − 

 

                                                                                                         (4.8) 

xy 12 ,
tan

x
σ a y

β

 
= ± − 

 

 

 
where the parameters 11 12,a a and 22a  are given by 

  
2
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2
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1 cos ,
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1
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2
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a
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β

β

β

= +

=

=

                                                                                                                  (4.9) 
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Solution for the elastic domain: 

 

According to this model, one can assume that the stress components , ,xx xy yyσ σ σ are 

continuous along the line ˆtan ,y xβ=  which means that the plastic solution, Eq. (4.8), 

must match with the elastic one given by equation (4.6). This yields boundary conditions: 
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22
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Ax By a x
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Dx A y a x
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β
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 
+ = −  

 

 
+ = −  

 

 
− − + = −  

 

                                                                                (4.10) 

 
Equation (4.10) gives us three equations for the four parameters , , ,A B C D . So we can 

reduce the solutions to a single free parameter. This parameter is then fixed by continuity 
at the line 0x = with or without a yield line imposed there. 
 

xx 2σ ( 1) ,a y= −  

 

yy 1 1σ ( 1) ,a y b x= − +                                                                                                    (4.11) 

 

xy 1σ ,a x= −                         

 
 
where the elastic parameters 1 1,a b and 2a  are as follows 
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                                                            (4.12)                                                                                           

 

Here β̂  is still a free parameter.   
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Imposing either continuity of the components of the stress tensor and their derivatives or 
only continuity of the components and validity of (4.2) along 0x = , one can determine 

the angle β̂   that separates the elastic and plastic boundary from one of the following 

relations:   
 
 

( )
( )

2

2

sinˆtan 1 1 cos 1
1 cos

β
β β

β

 = + − −
  −

                ( )β̂−  

( )
( )

2

2

sinˆtan 1 1 cos 1
1 cos

β
β β

β

 = + + +
  +

                ( )β̂+                                                   (4.13)                                                 

( )2

sinˆtan
1 cos

β
β

β
=

+

                                           ( )β̂�                      

 
which provides us with the three possible solutions, sketched in Fig.4.2. 
 
In order to check the validity of  prediction of the theory, we determine a best fit of the 
parameters of the analytical stress expressions (4.8) and (4.11) to the numerical 
simulation data of sand piles constructed from a point source using a least-square fit. We 
obtain the fitted solution for the elastic domain for an average over nine sand piles. 
 

1

2

1

0 34,

0 49,

0 2.
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a .

b .

=

=

= −

                                                                                                                     (4.14) 

 
where as the solution for the plastic domain is given by 
 

11

22

12

1 23,

0 78,

0 38.

a .

a .

a .

=

=

=

                                                                                                                 (4.15) 

 

 
The theory predicts that the sum of the parameters 11a  and 22a  from Eq. (4.9) must be 

equal to 2, a relationship that may serve as a consistency check. This is well satisfied as 
one can see in (4.15). If we consider the elasto-plastic approach as a theory with a fit 
parameter, the agreement with the simulations is quite satisfactory, as we shall see now. 

  
The figure 4.4 compares the stress distributions from the numerics with those of the 
theory for the sand pile constructed from a point source. On the same plot, we present 
horizontal, vertical normal stress and shear stress at the bottom layer of the sand pile. The 
solid lines represent theoretical results and data points with lines numerical results. The 
comparison shows very good agreement with our numerical data. 
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However, for symmetric sand piles the theory does not contain any free parameters. In 

particular, it predicts the angle 
∧

β , which for 28 ,φ = �  the angle of repose in our simulati- 

ons from a point source, should be 22° for the solution producing a dip, but the fits shows 
good agreement only if the tip angle of the triangle delimiting the elastic domain is equal 

to (twice)35� . Indeed, a pressure minimum can be produced this way, but the angle 
separating the plastic and the elastic domains does not agree well with the angle 
calculated from the theory. So as a theory with a free parameter the Cantelaube approach 
appears to work well, but its calculation of the relative sizes of the elastic and plastic 
domains does not agree well. This means that some of its assumptions must be incorrect. 
 
Similarly, we determine a best fit of the parameters of the analytical stress expressions 
(4.8) and (4.11) to the numerical data for the sand pile constructed from a line source and 
we obtain the fitted solution for the elastic domain for an average over six sand piles. 
 

1

2

1

0 15,

0 64,

0 27.

a .

a .

b .

=

=

=

                                                                                                                     (4.16) 

 
where as the solution for the plastic domain reads 
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1 20,
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0 39.

a .

a .

a .

=

=

=

                                                                                                                (4.17) 
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Figure 4.4: Comparison of simulation data with the analytic theory for sand piles that are 
constructed from a point source.  
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Figure 4.5: Comparison of simulation data with the analytic theory for sand piles that are 
constructed from a line source. 
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In this case, the sum of two parameters 11a  and 22a is approximately equal to 2 as well, as 

one can see in (4.17). The comparison of results between the simulation and those of the 
analytical theory for sand piles constructed from a line source is represented in figure 4.5. 
On the same plot we present horizontal, vertical normal stress and shear stress at the 
bottom layer of the sand pile. Solid lines represent theoretical results and data points with 
lines numerical results. As can be seen in the figure, our simulation results are in very 
good agreement with the theory.   
 
In this case, the solution produces a plateau at the centre, appropriately describing sand 
piles constructed from a line source. The best fit shows good agreement for the 

angle ˆ 49 ,β = �  and the angle calculated from the theory, from equation (4.13), is also 

49 ,�  for the angle of repose of the simulated sand pile 26 ,φ = �  which is very good 

agreement. So the Cantelaube approach appears to work well for the symmetric sand pile 
constructed from a line source, even without free parameters. 

 
In conclusion, the elasto-plastic continuum model seems capable of both predicting the 
stress minimum at the centre of the sand pile constructed from a point source and 
predicting a stress plateau for a line source sand pile. However, the angle which separates 
the elasto-plastic boundary does not agree well with the angle calculated from the theory 
for a point source sand pile, displaying a pressure dip.    
 
A reason why the theory does not work as well for the solution that is discontinuous at 
the centre of the pile is that its assumption of a yield line along the axis of the pile is not 
really satisfied.  This can be seen from Fig. 4.6, where we evaluated the expression on the 
left-hand side of Eq. (4.2) as a function of the lateral sand pile coordinate for several 
heights in the sand pile, which should become zero in the plastic regions. Clearly, it 
approaches zero far from the center of the pile (x = 0), so the existence of plastic regions 
near the surface of the pile can be confirmed (though not their triangular shape), but there 
is little indication of singular behaviour of the expression near the center of the pile. For 
the plateau solution, there is no such singular behaviour even in the theory, which may 
explain why it works so well. 
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Figure 4.6: The Coulomb-Mohr expression (4.2) evaluated for different heights in the 
sand pile, averaged over five sand piles constructed from a point source. On the plot, the 
blue curve shows the results at the bottom layer, whereas the black curve corresponds to 
the highest layer of the sand pile.  

 

 

4.4 Orientated stress linearity model  
 

 
In this section, we study another continuum model for the stress tensor, the oriented stress 
linearity (OSL) model, proposed by Wittmer at el. [1] that created a lot of stir in the 90s. 
Unlike the elasto-plastic continuum model, the OSL model contains an adjustable 
parameter, leading to a continuous family of closure relations of the form 

  

,nn mmKσ σ=                                                                                                                                         (4.18) 

 

where K  is a constant, nnσ  and mmσ  are the principal stress components along two orth- 

ogonal directions n  and ,m  oriented at a prescribed fixed angle, the parameter of the 

family, with respect to the basic xy coordinate system. The OSL model has a linear rel- 
ation between the normal components of the stress tensor like the BCC model. The most 
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interesting of these OSL models as it seemed to be justifiable more easily as a natural 
form incorporating the construction history of the sand pile, was the so-called fixed-

principal axis model (FPA). It is given by K = 1 and the angle of the coordinate axis, 

along which nnσ  is to be measured, being equal to ( ) 2.τ π φ= −   

In a tilted coordinates system ( ), ,m n with inclined angle τ  to the vertical, the stress com- 

ponents are: 
 

( ) ( ) ( ) ( )2 2cos sin 2sin cosnn xx yy xyσ τ σ τ σ τ τ σ= + −  sign ( )x                          

( ) ( ) ( ) ( )2 2sin cos 2sin cosmm xx yy xyσ τ σ τ σ τ τ σ= + +  sign ( )x                                     (4.19)                    

( ) ( )( ) ( ) ( )( )2 2sin cos cos sinmn yy xx xyσ τ τ σ σ τ τ σ= − − + −  sign ( )x ,                         

 
with nnσ and mmσ  denote the horizontal and normal component of the stress tensor, resp- 

ectively. 
 
Part of the debate about the model came from the fact, that with a closure relation such as 
(4.18), the field equations for the stress tensor became hyperbolic throughout the volume 
of the whole sand pile, corresponding to isostaticity. 
 
The constitutive equations proposed by Wittmer et al. depend on quantities including the 
scaling variable, components of the stress tensor on the free surface, that means, the 
individual components of the stress tensor have to vanish at the free surface, and the 
limiting value of ratio between horizontal stress and vertical stress, which is fixed when 
the free surface is approached and also limiting value of ratio between shear stress and 
vertical stress that becomes fixed when the free surface is approached.  
 

The scaling variable 
tanx x

S
cy y

φ
= =  is unity on the free surface and becomes zero at the 

centre of the sand pile, where φ  is the internal friction angle (angle of repose) of the sand 

pile, as shown in figure 4.7. 
 
According to the IFS (incipient failure at the surface) boundary condition, the componen- 
ts of the stress tensor at the free surface must be equal to zero: 
 

( 1) ( 1) ( 1) 0,xx yy xyS S Sσ σ σ= = = = = =                                                                                (4.20) 
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Figure 4.7: OSL Coordinates systems of the two-dimensional sand pile [1]. 
 
 
and in addition, since the surface of the sand pile is a slip plane, the components of the 
stress tensor not only vanish at the surface, but also their ratio is fixed when the surface is 
approached. One has the conditions: 
 

1 0
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( )
lim ,

( )

( )
lim tan( ),

( )

xx
S

yy

xy

S
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S

S

S
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η
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σ
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σ

→
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=

                                                                                                     (4.21)  

with  
2

1
.

1 2 tan
η

φ
=

+
�  

 
The basic constitutive equation for the OSL model is a connection between the individual 
components of the stress tensor. 
 

xx

yy

σ
η µ

σ
= + sign ( ) .xy

yy

x
σ

σ
                                                                                              (4.22)                                                                                        

 
Moreover, the parameters η  and µ  satisfy:  
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                                                                      (4.23)                                                                       
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Note that consistency of the OSL model requires the following relationship between in 
two parameters: 
 

0 2

1
(1 tan ) (1 tan ),

1 2 tan
η η µ φ µ φ

φ
= − = −

+
                                                               (4.24)             

 
where φ  is the angle of repose of the sand pile. Whether the OSL model may describe 

numerical data consistently, can be decided immediately after the evaluation of η  and µ . 

Because the parameters η  and µ  in the OSL model are not independent, the model is a 

one-parameter family, not a two-parameter one.  
 
There are two special cases for the orientated stress linearity (OSL) model. Parameters 

0 2

1

1 2 tan
η η

φ
= =

+
 and 0µ =  corresponds to the BCC model, whereas 1η =  and 

2 tanµ φ= −  correspond to the FPA model.  

 
 
 

 
   

 

 
Figure 4.8: Schematic plot of the symmetrical sand pile, the scaling variable S is unity at 
the free surface, inner and outer region meet at the boundary S=S0 and H  is the height of 
the sand pile. 
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One can derive the stress solutions for the OSL model by inserting the OSL constitutive 
relation (4.22) into the stress mechanical equilibrium equation (4.1), which yields 
 

(x yyησ µ∂ + sign ( ) ) 0xy y xyx σ σ+ ∂ =  

.x xy y yy gσ σ∂ + ∂ =                                                                                                         (4.25) 

 
 
Equation (4.25) can be rewritten (in each of the domains 0x >  and 0x < ) as a wave 
equation of the form 
 

( ) ( )1 2 0,y x y x ijc c σ∂ − ∂ ∂ − ∂ =                                                                                       (4.26)                                                            

 
 
where 

1c  and 
2c , respectively, denote the positive and negative roots,  

 

( )2
1

1
4

2
c µ µ η= + +  and ( )2

2

1
4 .

2
c µ µ η= − +                                                                (4.27) 

 
 
In the next step, by assuming radial stress field scaling and applying IFS boundary 
conditions, equations (4.20) and (4.21), one can simplify equation (4.25), which yields 

the stress expression in the outer region, meeting the inner region at 1
0( )

c
S S

c
= = , see 

figure 4.8. 
 
The stress solution in the outer region is 
 

yy ( )(1 ),

(1 ),xx

s s c S

s s c S

µ

η

∗

∗

= − −

= −
                                                                                                   (4.28) 

xys = sign ( ) ( )1 ,x s Sµ∗ −   

 

where s∗  is a constant, 
2

c
s

c cµ η
∗ =

− −
. 

 

On the other hand, the stress solution in the inner region 1(0 )
c

S
c

≤ ≤  is: 
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                                                                                              (4.29) 

xys = sign ( ) 1

1

.
c c

x s S
c

η∗
 −
 
 

  

 
In the next step, in order to complement the analytical results of the OSL model, we find 
a best fit parameter of the OSL closure relation (4.22) with our simulation data for sand 
piles constructed from a point source and we obtain the fitted solution of the parameters 
η  and µ for an average over nine sand piles. 
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                                                                                                                    (4.30)      
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Figure 4.9: Fit of the components of the (negative) stress tensor predicted by the OSL 
model to the point source simulations, the components of the stress tensor are plotted for 
the bottom layer of the sand pile.  
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For a given angle of repose 28φ = � one can now check the consistency condition (4.24) 
using the fitted solution (4.30). We have checked and confirmed that the fitted solution 
satisfy the consistency equation of the OSL model.  
 

Once we have the solution for the parameters η  and ,µ then it is easy to determine the pr- 

oportionality coefficient K  using the following expression: 
 
 
 

( ) ( )
22 2

2 2

1 1
1 2 1 2 1.

4 4
K

η η

µ η µ η

   − −
   = + ± + −
   + +   

                                                               (4.31) 

 
 
Inserting the fitted solution 0 31.µ = −  and 0 74.η =  in (4.31), we find 1.345K = .  

 
For a given angle of repose, there is a relationship between the two parameters K and ,τ  

given in the following expression, so this is essentially a one-parameter fit. 
 
 

1tan .
1

K

K

η
τ

η
− −

=
−

                                                                                                      (4.32) 

 
We find the angle 85 .τ = �  
 
Comparison results between simulation and the theory are presented in figure 4.9. It can 
be seen that, the simulation results are in very good agreement with the analytical theory 
for the fitted parameters 0 31.µ = −  and 0 74.η = . 
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We studied and analyzed the stress distribution under a sand pile in chapter three. To a 
certain extent, even more interesting than studying the stress tenor under a granular heap 
is to determine the stress response to a force perturbation for a rectangular layer of 
granular materials. In a real system, the packings of granular materials usually do not 
exist in an ordered state. Therefore, determining the vertical normal stress response 
function to an applied overloads acting on a single grain at the top surface of the granular 
assembly has been one of the problematic phenomena of granular materials in physics 
community. In the last few years, many researchers have been involved in studying this 
phenomenon both experimentally in refs. [131-135] and theoretically [136-138]. 
 
The stress response to a point force under assemblies of grains displays some puzzling 
properties. In some cases, it shows wave-like propagation underneath the point where the 
force is applied and in others the response is elastic (isotropic elasticity). What is 
observed depends strongly on the packing structure of the granular assembly. For 
packings with strong spatial order, the stress response has a double-peak shape 
underneath the point where the force is applied, which corresponds to wave-like 
behaviour describable by hyperbolic continuum equations [1, 13,137,139], whereas when 
the amount of disorder increases, meaning that the packing has large contact disorder, 
then there is a single peak, hinting at an elastic-like response, describable by elliptic 
continuum equations. In the theory of elasticity [140], the shape of the stress response 
reveals a single central peak. The width of the response increases with the height of the 
system below the point of application of the external overload.  

5 
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Both cases have been observed in experimental models set up by Junfei Geng et al. [131] 
using photo-elastic polymer material. Hence two rectangular systems consisting of the 
same material may have different stress responses to a point force, depending on the way 
they were arranged. 
 
Moreover, the coefficient of static friction plays an important role in the stress response 
of a rectangular system. When the static friction coefficient is very small, the stress 
response to an external overload may have a double-peaked shape. On the other hand, if 
it is very large, the double peak shape may be present but much less pronounced, as has 
been observed experimentally in ref. [133] for rectangular packings with different friction 
coefficients.  
 

We focus on investigating numerically the mechanical properties of a static granular 
assembly, especially, to check how the granular material responds to an applied overloads 
acting on a single grain at the top surface of the granular assembly. We determine the 
stress response for a rectangular system of granular material with different amounts of 
disorder, particle packed in a regular rectangular lattice with different frictional 
properties, and different values of the applied vertical force. This study has been done by 
use of a DEM numerical simulation generating granular packings with different packing 
order consisting of soft convex polygonal particles. The simulation was performed in 
two-dimensional systems.  
 

This chapter is organised as follows. In the first Section 5.1, we first describe some 
details of the simulation geometry constructed from round particles. In Section 5.2, we 
show the angular distribution of the contact forces for different packings. We then present 
simulation results for the stress response of two dimension rectangular layers of particles 
for various packing orders in Section 5.3, including a qualitatative comparison with 
experimental results. The stress response for different values of static friction and 
different values of the applied external overload is discussed in Section 5.4. Next, Section 
5.5 is devoted to the calculation of the stress response for poly-disperse system with 
smooth bottom as well as rough bottom. Comparison is made with existing experimental 
results. Then we perform a quantitative comparison between simulation data for the stress 
response and isotropic elasticity prediction of stress response in Section 5.6. In the last 
Section 5.7 of this chapter, the calculation of the macroscopically averaged strain 
response function inside granular aggregate will be presented.  
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5.1 Simulation geometry 
 
In order to complement the experimental data, we have performed extensive numerical 
simulations of various grain packings by layer wise deposition of particles. To construct 
packings of varying degrees of spatial order, we simulated four different types of samples 
by constructing them from mono-disperse, bi-disperse, irregular pentagons as well as 
poly-disperse mixtures of roundish particles. We used soft particles with convex shape 
for our simulation system. For the mono-disperse distribution, we used mixtures of round 
particles with a diameter of 0.9 cm.  In a bi-disperse system, we used mixtures of two 
round particle types with diameters of 0.9 cm and 0.7 cm, respectively. The pentagons 
had the same side length of 0.9 cm and for the poly-disperse distribution, the radius of the 
particles was distributed uniformly between 0.36 cm and 0.54 cm.  
 
Particles were deposited into a rectangular system in a layer-wise manner under gravity 
either on a rough bottom or a smooth bottom. The simulated rectangular system consists 
of several thousand round particles. A snapshot of the simulated rectangular layers that 
consists of a mono-disperse mixture of round particles is shown in Fig. 5.1, where the 
particles have been deposited on a smooth bottom, arranged on a triangular lattice, each 
particle has six nearest neighbours.  
 
The aspect ratio of the rectangular layers of the granular material is about approximately 
1:4 (64 particles wide and 16 deep) for the mono-disperse packing, we also consider the 
same aspect ratio for the remaining packings. This size of the aspect ratio is usually 
needed in order to study the response function appropriately. It is to be noted that the 
number of particles (number of layers) of each packing is not necessarily same, but we 
choose the aspect ratio of each packing to be the same in this work.  
 
Once the assembly is ready, we apply an overload (using a piston) to a single grain at the 
top surface of the system. This force is vertically downward. The arrangement is 
displayed in Fig. 5.2 for a smooth bottom, and in Fig. 5.3 for a rough bottom. The 
external overload (point force) is very small enough so as to not cause any rearrangement 
of the layer structure, which means that no contacts are either created or broken during 
overloading. We have checked that the overloading does not lead to any rearrangements 
of the packing. While applying an overload with piston, one should pay attention 
considering the velocity of the piston. If one chooses a too large velocity, the piston 
might enter inside the granulate, which will destroy the contact network locally. 
Therefore, the velocity of the piston must be small in order to avoid such a situation. We 
have taken a piston velocity of 0.01 m s , which turned out to be small enough. The 
parameters which we have used for the simulation of rectangular systems are represented 
in Table 5.1. Note that the friction coefficient is the same for all the packings as we 
choose a static friction 0.5sµ =  for the packing of mono-disperse, bi-disperse and 

pentagonal system. We note that the thickness of the rectangular layers is 15 cm. 
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However, the friction coefficient is changed later when we calculate the stress response 
of mono-disperse packings for different values of friction coefficient, as will be discussed 
in Section 5.4.    
 
The detailed description of the DEM method and numerical integration scheme has been 
represented in Chapter two. 

 
Table 5.1. The material properties and the values of parameters used in our simulation ar- 
e given in the following table. 
 
 
Name of variable  Symbol Value 

Static friction  sµ  0.5 

Dynamic friction  dµ  0.5 

Material density   ρ  35 10×  2
kg

m
 

Young’s modulus   E 710 N
m

 

Damping coefficient   γ  0.75 

Time step  t∆  62 10−× s 

Degree of poly-dispersity  r∆  0.3 

Size of particle (mono-
disperse)  

 R  0.9 cm  

Size of particle  
(bi-disperse) 

( ),small bigR R  (0.7 cm ,0.9cm ) 

Size of particle  
(pentagons) 

R  0.7 cm  

Size of particle (poly-
disperse) 

( )1 2,R R  

 

(0.36 cm ,0.54 cm ) 
 

Velocity of the piston  V 0.01 m
s

 

Applied external overload  F 300 N  

Angle of the application of 
an overload  

 θ  90�  
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Figure 5.1: Snapshot of a simulated rectangular system that consists of mono-disperse 
mixture of particles, where the particles placed on a smooth bottom. 
 

 
Figure 5.2: Simulated rectangular layer of mono-disperse mixture of particles with 
smooth bottom with an applied load to a single grain at the top surface of the system. 
 

 
 Figure 5.3: Simulated rectangular layer of soft particles with rough bottom. 
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5.2 Contact force angle distribution 

 
We then carried out a microscopic characterization of the rectangular layers computing 
the contact force angle distribution. The polar diagrams of the angular distribution of all 
contact forces for different packings obtained from the simulation are displayed in Fig. 
5.4. All angles are measured with respect to the horizontal axis. Ostensibly, the 
orientations of the contact forces are different for the different packings. The mono-
disperse packing is highly ordered, because the forces are mostly oriented along a few 
fixed directions given by multiples of 60 degree.  The contact disorder of the remaining 
packings is increasing from the bi-disperse packing via the pentagonal to the poly-
disperse packing. For poly-disperse packing, the sample is highly disordered, since the 
angles of the contact force are much closer to an isotropic orientation distribution. 
 

                             A                                                                            B    

 

                                                               
                               

                                C                                                                            D                                           

                     
 
Figure: 5.4 Contact force angle distribution of the particles for the different packings. A, 

for mono-disperse packing. B, for bi-disperse packing. C, for pentagonal packing. D, for 
poly-disperse packing. 
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5.3 Simulation results of stress responses for different packings        
     
Once we have the forces and their points of contact, we can determine a formal stress 
tensor of a single particle, and then it is easy to determine the averaged stress tensor over 
many particles in a representative volume element. How this stress tensor for single 
particle and its averaged quantity are determined is explained in detail in Chapter 2. The 
stress response function is obtained by taking the difference of the stress distribution 
measured on the rectangular layers with additional external overload and the stress 
distribution of the same rectangular layers without overload.  
 
 
                                                                                                                                      (5.1) 
                                                                                                                                    
 
Here, ( ),ij x yσ ′ and ( ),ij x yσ ′′  are respectively the averaged stress tensor at the point posi- 

tion ( ),x y of the layer without external load and with external load. The averages results 

we have taken over many realizations in order to suppress the fluctuation of the single 
realization. 
 
On the left-hand side of the Fig. 5.5, we present our simulation results for the average 
vertical normal stress response at different heights of the sample that contains a mixture 
of mono-disperse particles. It can be seen that at large distance from the perturbing force, 
the vertical normal stress response has a double peak underneath the point where it is 
applied, a behaviour which is predicted by hyperbolic continuum equations such as those 
from the model of oriented stress linearity (OSL) [1]. For small depths, these two peaks 
merge into a single broad peak. We compare our simulation results with the available 2D 
experimental results by Junfei Geng et al. [131] given on the right-hand side of the figure. 
Experiments were carried out on 2D rectangular systems consisting of mono-disperse, bi-
disperse and pentagonal mixtures of particles, particles were cut a photo elastic materials. 
This comparison shows that the responses are qualitatively similar, but do not agree 
quantitatively.  
 
In the next figure, Fig. 5.6, we plot the vertical normal stress response for the bi-disperse 
packing at the same heights of the sample as for the mono-disperse packing. The double 
peaks are also present for this case, but much less pronounced than for the mono-disperse 
packing. The Fig. 5.7 shows the simulation results of vertical normal stress response for 
the sample of pentagonal packing at different heights of the sample. The vertical normal 
stress response shows no evidence for wave-like stress propagation. It has the form of a 
bell-shaped curve with a single peak at each layer of the sample and the width of the 
response increases very slowly with the distance from the perturbation point. Comparison 
with the experimental results presented on the right hand side of the simulation figure 
shows that the responses are qualitatively similar.                                                                                    

( ) ( ) ( )ij ij ijσ , σ , σ , .x y x y x y′ ′′= −
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Figure 5.5: Vertical normal stress response at different depths of the system consisting of 
a mono-disperse assembly of particles.    
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Figure 5.6: Vertical normal stress response at different depths of the system consisting of 
a bi-disperse mixture of particles.    
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Figure 5.7: Vertical normal stress response at different depths of the system consisting of 
a mixture of pentagonal particles.    
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5.4 Stress response for different values of the friction coefficient 
 
In this section, we are interested to determine the averaged vertical normal stress 
response of a rectangular system packed with mono-disperse particles for different values 
of coefficient of static friction. We prepare the sample by arranging soft particles of 
round shape in a layer wise manner, with particles sitting on a rectangular lattice, so that 
the particles in the same layer are not in contact, see figure 5.8. In this rectangular 
packing, each particle should have a fixed number of four contacts. Three different rect- 
angular samples are created using the same material and the same simulation parameters 
except changing only the friction coefficients. Values used are 0.3,µ =  0.6,µ =  and 

0.9.µ =  
 
 
 

 
 
 
Figure 5.8: Snapshot of simulated rectangular packing from the mono-disperse set of soft 
particles, where particles are placed on a smooth support. 
 
 
 
We then determine the polar diagram of the angular distribution of all contact forces for 
the rectangular layers packed with particles placed in a rectangular lattice. The results 
obtained from the simulation are displayed in Fig. 5.9. All angles are measured with 
respect to the horizontal axis.  Form the figure, it can be seen that the contact forces are 

mostly oriented along a few fixed directions given by the angles of 30 ,�  150 ,�  210 ,�  and 

330 ,�  which is a trivial consequence of the high degree of order systems packed on a 
rectangular lattice.  
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Figure: 5.9 Polar diagram of contact force angle distribution of a rectangular packing 
with the layer wise deposition of mono-disperse mixture of round particles. 
 

The simulation results for the stress response of a rectangular packing consisting of a 
mono-disperse arrangement of particles for different coefficients of friction µ  is dis- 

played in Fig. 5.10. For small values of friction coefficient, such as 0.3,µ =  the response 
consists of two peaks along the lattice direction as in Fig. 5.10. A, this double peaked 
shape appears not only at the greatest depth, but also exists up to the certain depth of the 
sample. Another interesting thing about this graph is that the stress response dip is very 
large in this case. However, for 0.6,µ =  the response consists of double peaked shape up-
to certain height of the sample, as shown in Figure 5.10.B, but the response dip is very 
small compared to the earlier one and merges into a single peak below a given depth from 
the point of the application of the external overload. For 0.9,µ =  the response consists 

exclusively of a single central peak at each height of the sample as shown in Figure 5.10. 
C, whose width broadens linearly with depth.  
 
In conclusion, the depth of the crossover between double and single peaked response 
decreases with increasing .µ  That means when µ  is very large, the response consists of 

an exclusively single peaked stress distribution but when µ  is very small, there is sliding 

induced in the system, which increases the anisotropy of the system, this will lead to a 
transition to a double peaked stress response. 
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Figure 5.10: Simulation results of vertical normal stress response for different values of 
friction coefficients. A, for 0.3µ = . B, for 0.6.µ =  C, for 0.9.µ =  
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Figure 5.11: Vertical normal stress response for different values of applied overloads at 
bottom layer of the rectangular layers with static friction coefficient 0.3µ = . 

 

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

1

2

3

4

5

6

7

x(m) µµµµ=0.8

σσ σσ
y
y /

 F
  
 [
1
/m

]

F=100N

F=150N

F=300N

 
 
Figure 5.12: Vertical normal stress response for different values of applied overloads at 
bottom layer of the rectangular layers with static friction coefficient 0.8µ = . 

 
Furthermore, we determine vertical normal stress response for different values of a 
vertical applied force for the mono-disperse system, with the particle arranged on a 
hexagonal lattice with different coefficient of static friction. The simulation result is 
displayed in Fig. 5.11 for the system with static friction co-efficient 0.3µ =  at the bottom 
layer for different amount of external overload. It can be seen in the figure, there is a 
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transition from a single peaked to a double peaked structure as the applied overload is 
increased. On the other hand, when µ  is sufficiently large at 0.8µ = , the stress response 

consists of a single peaked shape for the same amount of external overloading as is 
shown in figure 5.12. The results may indicate that, for small µ , elastic like stress 
response occurs for the small applied overload, whereas double peaked response 
functions are obtained for large applied overload. On the other hand, the response is 
absolutely proportional to the external force for large µ . One realises that the elasticity is 

enhanced by static friction coefficient. 

 

 

5.5 Stress responses for poly-disperse packing 

 
In this section, we focus on determining the stress response for a system containing a 
poly-disperse mixture of particles, then on simulation results of stress response to be 
compared with the existing experimental results [134]. For poly-disperse packing, we 
prepare samples with rough as well as smooth bottoms. In order to prepare a sample with 
smooth bottom, we used a flat bottom plate with friction on which the particles are 
dropped, whereas for a rough bottom the ‘‘plate’’ consists of a set of spatially fixed 
particles. The characteristics (surface asperities) of the ground plate with fixed particles is 
the same as for the simulated particle. 
 
We find from Fig. 5.4 that the polygonal system shows a higher contact disorder than 
other packings of granular materials. Results on the vertical normal stress response at 
different heights of the system containing a poly-disperse mixture of particles with 
smooth bottom are shown in Fig. 5.13. As can be seen in the figure, the stress response 
consists of single peak at all height levels investigated. We did not observe two separated 
bumps as predicted by hyperbolic models in refs. [135-136]. So, it is to be recognised 
that, for large contact disorder of the packing the vertical normal stress consists of a 
single peak only, which means the stress response shows a behaviour like elastic like 
response, a behaviour typically describable with elliptic equations. Moreover, the width 
of the response increases linearly with the distance from the perturbing force. 
 

We compare our simulation results qualitatively with existing experimental results shown 
in the right hand side of  Fig. 5.13, obtained by G. Reydellet using ‘‘aquarium sand ’’ and 
‘‘Fontainebleau sand’’ and a poly-dispersity around 50%. Comparison shows that 
simulation results are in very good agreement with the experimental results. 
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Figure 5.13: Vertical normal stress responses to a point source for a rectangular layer of 
granular material that contains a poly-disperse mixture of particles. The left side of the 
figure shows simulation results, where as the right side shows experimental results. 
 
 
In the next step, we compare the vertical normal stress between the rough and the smooth 
bottom cases with the same materials. The stress response for the system containing a 
poly-disperse mixture of particles with rough bottom obtained from the simulation is 
represented in Fig. 5.14. In this case, the stress response consists of single peak 
behaviour. We notice that the behaviour of vertical normal stress response does not show 
much difference between the two systems. The magnitude of the vertical normal stress 
response is around 7% smaller than the stress response for smooth bottom. 
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Figure 5.14: Vertical normal stress responses to a point source for a rectangular layer of 
granular materials with rough bottom that contains poly-disperse mixture of particles. 
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5.6 Comparison between numerical stress responses and an 

analytic solution 
 

 
In the next step, we compare the stress responses from the numeric with an analytic 
solution in the framework of linear elasticity for a semi-infinite 2D medium (a half 
plane, 0y > ). According to Boussinesq and Cerruti [141], an analytic expression for the 

stress tensor components with a force F applied at a point (x=0) on the edge (y=0) of the 
half plane reads: 
 
 
                                                                                                                                        (5.2) 
                                           
 
 
                                                                                                                                        (5.3) 
 
                           
                                                                                                                                        (5.4) 
 
 
 
We represents a comparison of the results of the vertical normal stress response of a 
semi-infinite system at a distance corresponding to that of the bottom layer of our finite 
system with the responses from the numerics for the rectangular system of a poly-
disperse mixture of particles with either a rough or a smooth bottom in Fig. 5.15. The 
height of the rectangular system is 15 cm. We have taken the averages over twelve 
realizations. 
 
In figure 5.15, the solid black curve shows the analytic result, whereas the red and blue 
curves represent the simulation results for a rough bottom and a smooth bottom, 
respectively. The figure demonstrates that the vertical normal stress responses for the 
three cases are qualitatively similar. In addition, there is no double peak shape appears 
underneath the point where the external force is applied. The experimental results of ref. 
[132] obtained using poly-disperse mixture of ‘Fontainebleau’ sand grains are 
represented in Fig. 5.16. It can be seen that our numerical results agree well with the 
experiments. 
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Figure 5.15: Simulation results of horizontal normal stress response of rectangular layer 
at the bottom layer for two different systems, compared with an analytic solutions.  
 
 

               
 
 
Figure 5.16: Experimental results of vertical normal stress response of rectangular layer 
at the bottom layer for three different systems.  
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5.7   Strain response for mono-disperse packing 
 

We used a differentiation method, as explained in Chapter two, to determine the vertical 
normal strain tensor for the rectangular layers consisting of a mono-disperse arrangement 
of particles, where the particles have been placed on a hexagonal lattice on a rough 
bottom. The vertical strain tensor is averaged over many systems in order to avoid the 
fluctuations of the single system. 
 
In Fig. 5.17, we plot the vertical normal strain responses at different depths of the 
packing that contains a mono-disperse mixture of particles. The strain response has the 
form of a bell-shaped curve with a single peak and the width of the response increases 
with the distance from the perturbation point.  
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Figure 5.17: Vertical normal strain response for the packing that contains mono-disperse 
mixture of particles. 
 

 

5. 8 Conclusions 
                        
 
To conclude, we have determined the stress response of 2D granular packings to local 
force perturbations. We observe that for packings with strong spatial order, the average 
stress response shows a behaviour corresponding to that of hyperbolic continuum 
equations like those of the OSL model. As the amount of contact disorder increases, there 
is no wave-like stress propagation any more, and behaviour emerges that would rather be 
predicted by elliptic equations. Comparison with the experiments performed in ref. [131] 
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shows that the vertical normal stress responses for different packings are qualitatively 
similar to experimental ones.  
 
We observe that both the static friction coefficient and the external overload affect the 
stress response of rectangular layers of granular materials. In addition, the vertical normal 
stress response definitively reveals elastic like stress response for system packed with 
poly-disperse mixture of particles with a rough and a smooth bottom, and agree well 
qualitatively between two systems. 
  
We compared the analytic vertical and horizontal normal stress solution of an isotropic 
linearly elastic semi-infinite medium in 2D with our numerical stress responses for both 
smooth and rough bottoms. We observe that the vertical stress response is qualitatively 
similar for the three different systems. Comparison with the available experimental 
results from ref. [132] shows good agreement. We have determined the vertical normal 
strain response for the mono-disperse packing and find it to display a peak structure 
different from that of the stress response.  
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The main aim of this study was to try and contribute to the understanding of mechanical 
properties of non-cohesive granular materials, especially in the static limit. To achieve 
this goal we used a discrete element method (DEM), which is essentially a molecular 
dynamics (MD) approach, to simulate the dynamics of granulates made up from 
differently shaped particles. Numerical simulations were performed on two-dimensional 
systems, in which a sand pile was constructed from several thousands of convex 
polygonal particles with varying shapes, sizes and edge numbers. The particles were 
poured either from a point source or a line source. Static and dynamic frictions are 
accounted for in our force law, which enables us to simulate the relaxation of sand piles 
to their final static state.   
 
As a first step of this work, several microscopic quantities including forces, contact 
points, contact displacement, and displacement of the particle centres of sand pile were 
evaluated, with the aim to determine from them averaged macroscopic variables, viz. 
stress, strain, inertia, density and fabric. To obtain macroscopic quantities from 
microscopic ones averaging was performed on ‘representative volume elements’ (RVE) 
in computing the macroscopic variables for a continuum description. A sufficient size for 
an RVE to yield converged results was determined to contain 100-200 particles,  
 
From our DEM numerical experiment for the model of heaps of granular assemblies we 
point out here in the following some important conclusions: 
  
 

  6 
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We find that force networks exist and strongly fluctuate within the sand pile and that the 
shape distribution of the particles influences the structure of the force chains. We confirm 
that the probability distribution of normalized vertical forces exhibits exponential 
behaviour for (normalized force) 1n > . Our numerical results indicate that the probability 
distribution decays exponentially as has been found previously in the q-model.  
 
Then in the next step, the pressure distribution was evaluated throughout the symmetric 
sand pile created by pouring materials from a point source or a line source, respectively. 
For a sand pile constructed from a point source, we find, not unexpectedly, that the 
pressure is not only minimum at the bottom layer, but also in higher layers of the pile. 
However, it disappears in layers near the tip of the sand pile. 
 
A similar pressure minimum was not obtained in piles poured from a line source, which 
demonstrates that the simulation reproduces pressure distributions corresponding to 
different experimental protocols. Dynamically, the two cases differ by the appearance of 
avalanches during the build-up of a pile from a point source, and their absence for layer-
by-layer deposition. We observed that two sand piles consisting of the same material may 
have different stress distributions, hence the construction method of an assembly of 
grains may affect the pressure distribution under it. Comparisons made with the available 
experimental results obtained by L. Vanel et al. [10], show that our numerical simulation 
results are qualitatively similar. 
 
The density profile of sand piles was also measured for both types of sand piles. We 
observe that the middle region of the sand piles constructed from a point source displays 
higher density than the rest. On the other hand, we did not find much deviation in the 
density profile for the line source sand pile, density is approximately homogeneously 
distributed in the central region of the pile.   
 
Moreover, the averaged stress tensors were compared numerically for sand piles 
consisting of a mixture of roundish particles with sand piles consisting of elliptical 
particles. We obtained a small dip below the apex of piles that contain a mixture of 
roundish particles when the pile was constructed by dropping particles from a point 
source, whereas the stress dip is clearly much larger for the case of elliptic particles. 
Comparing the magnitude of the stress dip at the bottom layer of the piles, we note that 
the amplitude of the stress dip is two times larger for the elliptic particles. Therefore, not 
only the construction history of the sand pile affects the pressure distribution under a sand 
pile, but also the shape of the particles. Our simulation results are in very good agreement 
with the recent available experimental sand pile results obtained by I. Zuriguel, T. Mullin 
& J. M. Rotter [11] both with spherical and non-spherical particles.  
 
A numerical calculation of the strain distribution inside a sand pile interesting, because it 
is difficult or impossible to determine this quantity in experiments. Knowing this 
distribution will lead to a better understanding of the processes happening inside a 
granular assembly. In particular, we showed that it is possible to obtain not only stresses 
but also incremental displacements in the heap, by judicious use of an adiabatic 
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relaxation experiment, in which gravity is slowly changed. Hence the full set of variables 
of the linearized theory of elastiticity is available. 
 
To obtain a measure for strain, the sand pile was allowed to relax under reduction of 
gravity. We define strain with respect to a hypothetical reference state of a pile at zero 
gravity. This reference state may be approximated using a static pile obtained in a 
simulation, by slowly changing gravity and following the particle trajectories during the 
ensuing load change and then extrapolating to zero gravity, as has been discussed in 
Section 2.6.2. This procedure gives a decent approximation for the vertical strain yyu , but 

is only qualitative for xxu  and .xyu  Incremental strains can be measured precisely, becau- 

se they do not require the definition of a particular reference state. Then it is easy to 
compute the macroscopic strain tensor by averaging over an RVE. It turns out that the 
size of the RVE we need for converged strain tensors is the same as for stress tensors. 
 
The averaged strain tensor was evaluated throughout the sand pile, for two types of sand 
piles that were constructed using two different pouring protocols. We find that the 
vertical normal strain yyu  is not only minimum at the bottom layer, but also in higher 

layers of the sand piles constructed from a point source. However, the minimum disapp- 
ears in layers near the tip of the pile. A similar vertical normal strain minimum was not 
obtained in piles poured from a line source, which demonstrates that the construction 
history affects the strain distribution under a sand pile.   
 
Additionally, we determined numerically the fabric tensor in order to describe the int- 
ernal texture of granular assemblies. This will lead to a measure of the degree of the 
internal anisotropy of the assemblies of grains and provides as with the number density of 
the particle contacts within the granular system. The fabric tensor was obtained using   
normalized branch vectors at the contact points of the particle. The trace of the averaged 
fabric tensor was measured throughout the sand pile, with the result that the number of 
contacts of the particles increases towards the centre and decreases towards the free 
surface of the sand pile. Since the density is maximum in the centre for the sand pile 
constructed from a point source, this means that the number of contacts is higher where 
the density is maximum, as expected. We observe that the deviatoric fraction of the fabric 
tensor decreases towards the centre, which means the fabric is more isotropic near the 
centre of the sand pile and more anisotropic in the outer part.  
 
As an interesting quantity not usually considered in the literature, we determined the 
elastic constants assuming Hooke’s law throughout a sand pile. We then established the 
correlation between the elastic material constants and the fabric tensor. Elastic constants 
were determined by using incremental stresses and incremental strains. We found that the 
elastic constants changed with the relative heights inside the sand pile. In particular, 
Young’s modulus of elasticity, the shear modulus and the bulk modulus increases 
towards the centre and towards the bottom layer of the sand pile and decreases towards 
the surface of the pile. The simulated sand pile is softer by about around one order of 
magnitude than its individual particles indicating that it is meaningful to assign elastic 
properties to the macroscopic assembly. The bulk modulus is observed to increase 
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towards the centre, meaning that the central core region of the heap is harder than its 
surroundings. In addition, we observed that the bulk modulus of the sand pile, i.e. the 
stiffness of granulate is a linear function of the trace of the fabric.   
 
The stress distribution was measured numerically inside asymmetric sand piles as well 
that were constructed either from a line source or from a point source procedure. We 
compared the simulation results with those of available analytical predictions for the 
stress solution at the bottom of the pile. This comparison shows that the behaviour of 
stress distributions are qualitatively very similar, giving credence to that analytical work 
[obtained by Cantelaube et al. [2]].  
 
Another correlation that we measured was the relationship between invariants of the 
incremental stress tensor and the incremental strain tensor, the observed stress and strain 
relation behaviour was globally nonlinear due to the position dependence of elastic 
moduli. While we have linear elastic behavior near the centre of the pile, there is 
nonlinear behavior announcing the transition to plastic behavior near the surface of the 
sand piles. 
 
An essential observation is that the macroscopic tensors stress, strain and fabric are not 
collinear in the granular heap, i.e. their orientations are different. The orientation of the 
fabric is tilted most, that of the strain tensor is tilted least and thus, simply speaking the 
material can not be described by a simple elastic model involving only two elastic 
constants. However, in the case where there is a strong deviation between the local 
orientation of the fabric and stress tensors, the fabric tensor has almost equal eigen 
values, rendering a precise determination of its principal axes difficult. Hence, more work 
needs to be done to determine whether this deviation is significant. In the case of elliptic 
particles, all three tensors seem to be well aligned with each other.      
 
To optimize our strain calculations, the strain tensor was evaluated by adopting three 
different types of best- fit methods including Cambou et al. [115], Liao et al. [116], and 
Cundall et al. [76], and also by simple differentiation of the displacement particle centres. 
Simulations showed that the strains obtained by Cambou et al., Cundall et al. and the 
differentiation method give similar results, whereas the strain obtained using Liao et al. 
exhibits different behaviour. The closeness of the results from three out of the four 
methods in the centre of a pile suggests consistency of these strain calculations. As 
discussed in the main text one of the two best-fit methods gives best results, and we 
decided to employ the Cambou approach in our strain calculations. 
 
Comparison with simple analytic theories [1-2] for the macroscopic mechanical 
behaviour of a sand pile shows that these theories have certain deficiencies. Radical 
departures from conventional approaches such as the introduction of almost ad hoc 
closure relations [1] seem unnecessary, as an equally good or better fit of the data is 
obtained by a simple elasto-plastic model [2]. Nevertheless, reality is not as simple as 
these models. One ingredient missing in all the models that use stresses only are density 
variations in the sand pile, another that might be important as well the fabric tensor. Note 
however that the Cantalaube model [2] is spectacularly good for sand piles constructed 
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layer-wise. In these, density variations are absent and the fabric does not seem to play a 
major role. 
 
Our final investigation concerns the mechanical properties of rectangular layers of 
assemblies of grains in the static limit. The averaged stress and strain response functions 
to a point force, determined in this part of the work allow inferences to be drawn on the 
nature of the continuum equations governing macroscopic behaviour. So they give 
indirect support to one of the simple models discussed above or the others. This study has 
been done by use of a DEM numerical simulation generating granular packings with 
different packing order. To construct packings of varying degrees of spatial order, we 
simulated three different types of samples by employing mono-disperse and bi-disperse 
mixtures of particles as well as mixture of pentagonal particles. An external overload was 
applied to a single grain at the top surface of the rectangular system with a small vertical 
force.  
 
We then measured the orientation of the contact forces for the different packings. It is 
observed that, the mono-disperse packing is highly ordered, whereas the contact disorder 
of the remaining packings is increasing from the bi-disperse packing to the pentagonal 
packing. Measuring the average vertical normal stress response at different heights of the 
sample we find that the shape of the vertical normal stress response function depends 
upon the packing order of the granular aggregate. For packings with strong spatial order, 
the average stress response shows a behaviour corresponding to that of hyperbolic 
continuum equations like those of the OSL model. As the amount of contact disorder 
increases, there is no wave like stress propagation any more and a behaviour emerges that 
would rather be predicted by elliptic equations. Comparison with the experiments 
performed in ref. [131] using photo elastic material shows that the vertical normal stress 
responses for different packings are qualitatively similar to experimental ones, which is 
another confirmation of consistency of our approach. 
 
Moreover, we compared the analytic vertical normal stress solution of an isotropic 
linearly elastic semi-infinite medium in 2D with our numerical stress responses for both 
smooth and rough bottoms. We observe that the vertical stress response is qualitatively 
similar for two different systems and the analytic solution.  
 
The coefficient of static friction and the external overload play an important role on the 
stress response of rectangular layers of granular assemblies. When the external overload 
is increased, the vertical normal stress response becomes flatter and progressively two 
peaks appear. For small overloads, the response exclusively consists of a single peak, and 
its shape is essentially independent of the overload. When static friction is sufficiently 
large, the response is always single peaked. This turns out to be yet another consequence 
of friction as when static friction is small, sliding occurs in the system and leads to a 
crossover to a two peaked response.   
 
In addition, we evaluated the averaged strain response of rectangular layers that consisted 
of mono-disperse mixtures of round particles to a local force perturbation, with particles 
placed on a hexagonal lattice. The vertical normal strain was determined at different 
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heights of the system. We find the strain response to consist of exclusively single peaked 
underneath the point where the external force is applied. The vertical normal strain 
response has the form of a bell-shaped curve with a single peak and the width of the 
response increases with the distance from the perturbation point for mono-disperse 
packing displays a peak structure different from that of the stress response. This result 
demonstrates failure of isotropic elasticity in that rather singular, because ordered system.  
 

 

Outlook 

 
 

Despite the fact that we have determined individual microscopic and averaged macro- 
scopic quantities inside a sand pile and made comparison with existing experimental 
results and analytical theories, there are still many open questions. 
 
Simulation results of stress and strain tensor may serve for a determination of nonlinear 
stress-strain relationships for sand piles. Moreover, the constitutive relations proposed for 
the sand pile model so far are in terms of the stress tensor only and it would be interesting 
to develop better constitutive relations using not only the stress strain tensor, but also the 
density and or the fabric tensor to get a set of fully working continuum equations. 
 
Furthermore, comparison has been made between simulation and analytical theories for 
the stress distributions under a symmetric sand pile. We hope that our simulation results 
for the stress distribution of an asymmetric sand pile will stimulate both creation of 
theories and comparison with the few existing analytical predictions for asymmetric sand 
piles. 
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