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Abstract
The analysis of flow datasets becomes more and more challenging due to the sheer data
size produced by modern simulations and experimental measurements. Feature extrac-
tion is necessary for a significant reduction of data fluid mechanicists are faced with.
Among a variety of interesting flow features, vortex features are the most prominent.

This thesis is devoted to the development of algorithms for vortex feature extraction
in 3D and 3D time dependent flow fields. It contains advances in two categories: vortex
features defined by swirling motion, and vortex features defined by extremal structures
of scalar feature indicators. For the former, we present a novel extraction approach
for swirling stream line motion cores in snapshots of the flow field and show how
those structures can be tracked in time by appropriate feature flow fields. While this
approach is based on stream lines, we extend this work to path lines to extract the
center lines of swirling particle motion for the first time. For the latter, we define
vortex core lines as ridge lines of certain scalar feature indicators. As this approach
requires second derivatives of the scalar, we conclude that a reduction of the required
degree of derivatives is desirable. We achieve this by employing methods from scalar
field topology to define the vortex and strain skeleton of flow fields. With this notion,
the treatment of large, parameter dependent data sets becomes possible. We further
improve the technique by developing the first derivative free feature line extraction
method for surface meshes. We show the effectiveness of our methods by applying
them to a number of data sets.

All work presented in this thesis has been published in peer-reviewed conference
proceedings and journals.



Zusammenfassung
Die Analyse von Strömungsdaten wird aufgrund der ständig zunehmenden Datenmen-
gen aus Simulation und Experiment zu einer immer größeren Herausforderung. Die
Extraktion von Strömungsmerkmalen wird daher immer wichtiger, um die Datenmen-
gen für die Strömungsphysiker auf ein beherrschbares Maß zu reduzieren. Unter den
vielen Strömungsmerkmalen, die es zu betrachten lohnt, bilden Wirbelmerkmale einen
besonders wichtigen Bereich.

In dieser Dissertation stellen wir neue Extraktionsverfahren für Wirbelmerkmale in
zwei Kategorien vor: Die eine Kategorie umfasst Methoden zur Detektion von Zen-
trallinien, um die entweder Stromlinien oder Pfadlinien zirkulieren. Zum Stromlini-
enansatz präsentieren wir neue Feature Flow Fields, mit denen wir die Zentrallinien
sowohl extrahieren als auch zeitlich verfolgen können. Anschließend wird der welt-
weit erste Ansatz zur Extraktion und Zeitverfolgung von Zentrallinien präsentiert, um
die Partikel, also Pfadlinien, zirkulieren. Die andere Kategorie umfasst Methoden zur
Extraktion von Wirbeln als Extremalstrukturen von abgeleiteten skalaren Wirbelgrö-
ßen. Der erste Ansatz extrahiert diese als Kammlinien unter Gebrauch von zweiten
Ableitungen der skalaren Wirbelgröße. Da dies zu Rauschanfällig ist, entwickeln wir
Methoden, die nur die erste Ableitung benötigen und auf Skalarfeldtopologie aufbauen.
Damit können wir große, parameterabhängige Datensätze analysieren. Wir entwickeln
diese Technik weiter und präsentieren die erste ableitungsfreie Methode zur Extraktion
von Merkmalslinien triangulierter Flächen. Die Nützlichkeit unserer Methoden wird
durch eine Vielzahl von Anwendungsbeispielen unterstrichen.

Alle in dieser Dissertation vorgestellten Entwicklungen wurden in begutachteten
internationalen Konferenzbänden und Zeitschriften veröffentlicht.
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Chapter 1

Introduction

Flow fields play a vital role in many areas. Examples are burning chambers, turboma-
chinery and aircraft design in industry as well as blood flow in medicine. As the reso-
lution of numerical simulations and experimental measurements like PIV have evolved
significantly in the last years, the challenge of understanding the intricate flow struc-
tures within massive result data sets has increased. In particular, manual inspection
of the data by means of direct visualization techniques becomes more and more time
consuming and inaccurate, as soon as the whole data set cannot be considered. This
development has made automatic feature extraction necessary.

In this thesis, a feature refers to geometric objects like points, lines and surfaces
satisfying special well defined mathematical properties that characterize the flow. All
methods developed in this thesis aim at automatic feature extraction. Those methods
aid in analyzing data sets in the following way:

• Data Size Reduction
By extracting just a sparse set of geometric features, the massive size of the data
set can be reduced to a small fraction. The geometric objects can be annotated
by several physical quantities to increase the expressiveness of the reduced result
set.

• Batch Processing
Keeping the number of involved parameters low makes it possible to extract the
features as a batch job prior to the visual analysis of a scientist. For example, the
batch processing can be performed online during the simulation on a supercom-
puter, potentially saving vast disk space capacity for the full result data.

• Faster Analysis
The scientist is only faced with a much smaller amount of data that can be ana-
lyzed faster. Due to the reduced data size, the analysis is possible at interactive
rates.

Among the features of interest, vortices are the most prominent: they play a major
role due to their wanted or unwanted effects on the flow. As an example, Figure 1.1a
shows the vortex in the wake of an airplane. Its influence on the flow at the runway
lasts for several minutes and is high enough to cause serious trouble for other airplanes
that follow too closely. Also, the lift of an airplane is affected by its induced vortices.
Scientists aim at a passive or active control of those vortices to gain a higher lift (e.g.
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(a) Wake Vortex Study. (b) Extracted Swirling Particle Core.

Figure 1.1: Wake vortex study from NASA Langley Research Center [NAS90]. The
flow around a starting agricultural plane is made visible using smoke injection. A huge
pattern of swirling particle motion is created by the aircraft’s wake vortex. Chapter 5
aims at extracting the cores of such areas as can be seen in 1.1b. There, the hurricane
Isabel data set at t = 33.5 is shown with the dominating swirling particle core line (red)
and a volume rendering of the cloud moisture mixing ratio.

for reducing the runway length) or reducing the drag of the airplane (e.g. to save fuel).
Understanding vortex structures is therefore very important in order to manipulate and
control them successfully.

During the last decades, several definitions of what constitutes a vortex have been
proposed, but none can be regarded as all-embracing. However, some desirable re-
quirements of such a notion can be formulated from both a physical and a practical
viewpoint:

1. The definition should respect the basic invariants of the underlying physics. As
the Navier-Stokes equations are Galilean invariant, it is desirable to define flow
features that are Galilean invariant as well.

2. The extraction should rely on as few parameters as possible to make batch pro-
cessing feasible.

3. The extraction should be stable, and hence, the definition must be well-conditioned.

The methods in this thesis have been developed with those requirements in mind,
and we have tried to obey them wherever possible. The thesis is divided into four parts.
In the first part, the most relevant theoretical background is summarized, and a few
basic concepts of flow fields and flow topology are presented. Chapter 3 summarizes
the most important vortex extraction schemes that where commonly used prior to this
thesis. The scientific contributions of this thesis are presented in parts II and III.

Part II is devoted to vortex extraction schemes based on the detection of swirling
motion in time dependent 3D flow fields. The method developed in Chapter 4 is based
on streamlines and obeys no invariances. The method of Chapter 5 extracts cores of
swirling particle motion - a novel, Galilean invariant mathematical definition based on
pathlines. This method is capable of automatically extracting core lines as visually
seen in figure 1.1a. A result of this method can be inspected in Figure 1.1b where the
core line of the hurricane Isabel dataset was extracted using our method.

Part III is devoted to vortex extraction by means of the extraction of extremal lines
of scalar quantities that are derived from the flow field, such as λ2, the Okubo-Weiss
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Figure 1.2: Extremal lines of scalar quantities can be regarded as center lines of iso
surfaces.

(a) Galilean invariant vortex core lines. (b) Lines of maximal strain (blue) and maximal
vortex activity (red).

Figure 1.3: Extremal lines extracted with two methods developed in this thesis. Left,
the ridge lines of the Okubo-Weis criterion are shown as extracted in Chapter 6. Right,
the vortex and strain skeleton of the SCCH wing is shown as extracted in Chapter 7.

criterion Q or the MZ-criterion due to Haller. Such extremal lines can be regarded as
the center lines of all isosurfaces (see Fig. 1.2). Those methods therefore extract line
skeletons of the used quantities.

Here, the main emphasis is put on the robustness of the approaches that is mainly
governed by the degree of derivatives being involved. The Galilean Invariant Vortex
Core Lines extracted as height ridge lines in Chapter 6 (using third derivatives) points at
the need of developing extremal extraction techniques using smaller derivative degrees
(see Fig. 1.3a). A first approach is given by the vortex and strain skeletons of Chapter
7, where one- and two-dimensional vortex and strain features are extracted by using
first derivatives only (Fig. 1.3b). This enhancements allowed us to process very large
datasets, see Chapter 8 for a 2-parameter study of the high lift configuration of an
aircraft. The extremal extraction approach is developed further in Chapter 9, where
extremal structures on surfaces are extracted without any gradient computations. Note
that this thesis concentrates on the mere extraction techniques and does not focus on
post processing. From a practical view it is in almost all cases necessary to filter the
extraction results by various quantities such as line length, directional clues or region
of interest. By making the extraction techniques as robust as possible, we implicitly
reduce the necessity of post processing. This is especially convincing in Chapter 8,
where no derivatives are employed in the extraction and no post filtering is necessary
at all. Further research directions are presented along with general conclusions of this
work in part IV.

The work presented in this thesis has been published in international conference
proceedings and journals as follows:
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• Detection methods based on streamlines [TSW+05, WSTH07].

• Detection methods based on extremal structures [SWH05a, SWTH07, SWLP08]
and an application thereof [WSG+08].

1.1 Related Work
In their state-of-the-art reports [PVH+02, PVH+03] Post et al. subdivide flow visual-
ization into the three fields direct visualization, integration-based techniques and fea-
ture extraction. Following this classification, we restrict the discussion of related work
to the area of feature extraction and arrange the contributions into the following five
subfields:

• exploratory vortex detection,

• scalar feature indicators,

• vortex core line extraction methods,

• vector and scalar field topology,

• feature extraction frameworks.

1.1.1 Exploratory Vortex Detection
Exploratory feature detection methods help scientists in finding features during inter-
active flow visualization. Garth et al. propose stream surface integration starting from
closed lines around the expected vortex axis [GTS+04a]. Tricoche et al. reported
[TGK+04] that two dimensional transfer functions for volume rendering with dual-
domain interaction [KKH01] allows highlighting of vortex regions which can not be
captured well by a single feature indicator. Sadlo et al. use interactively seeded stream
tubes for vortex core line validation and complement the vortex exploration by specifi-
cally seeded vorticity lines [SPP04]. Sadlo et al. annotate path lines with scalar feature
indicators for vorticity transport analysis [SPS06]. Wiebel et al. introduce generalized
streak lines for the detection of vortices near the flow boundary [WTS+07]. Doleisch et
al. [Dol07] propose SimVis, an exploratory analysis framework for flow data. Features
of interest can be defined by means of a Feature Definition Language. By marking
relevant portions of histogram plots, relevant areas of the flow volume can be selected
to show where the defined feature is located.

1.1.2 Scalar Feature Indicators
A wide range of literature aims at defining scalar fields that indicate features. Among
them, vortex region quantities are the most prominent. Pressure p is an example, as
within vortices, pressure takes on its minima. The Okubo-Weiss criterion defined by
Hunt et al. [Hun87] trades off vorticity and strain. The λ2 criterion [JH95] is negative
wherever pressure minima occur within some plane, and is probably the most important
scalar feature indicator for fluid mechanicists today. The MZ criterion defined by Haller
[Hal05] defines a vortex as the lack of stretching and folding by determining, how long
a trajectory stays elliptic (non-hyperbolic). The measure ∆ [CPC90, SP03] quantifies
how strong stream lines spiral in a specifically chosen reference frame by measuring
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the imaginary part of the complex eigenvalues of the flow gradient. See section 3.1 for
more details on the aforementioned scalar feature indicators.

Lagrangian coherent structures can be identified by finite-time Lyapunov expo-
nents (FTLE) [Lor65], measuring how fast nearby trajectories diverge. Garth et al.
show how this quantity can be computed with significantly reduced trajectory compu-
tations by an adaptive seeding strategy [GGTH07]: a four-point subdivision scheme
is used to predict the FTLE, and an error metric on the current level is compared to
a predefined threshold to decide whether the FTLE are estimated or computed on the
next level. Sadlo et al. [SP07] exploit the fact that ridges of FTLE are Lagrangian
coherent structures. By using filtered AMR ridge extraction they can reduce the costly
FTLE computation to regions in which ridges are present on a lower mesh refinement
level. By incorporating a look-ahead step, ridges can grow longer than indicated at the
present level.

Correlation measures have been developed by several groups that transfer filter
techniques from image processing to the flow field area: Heiberg et al. [HEWK03]
defines a convolution on vector fields using the scalar product, and Bülow [Bul99] uses
the vector product from Clifford Algebra for this purpose. Ebling et al. provide a
generalization of both approaches called Clifford convolution [ES03, ES05] to apply
filters to vector fields, with a special emphasis on template matching. Their approach
proceeds in two phases. In the first phase, a Clifford convolution is performed with
the pattern kernel to get an estimate of the angle and plane in which the tested pattern
corresponds to the flow field. In the next step, a scalar convolution is performed with
the appropriately rotated filter to obtain the similarity measure. As it is computationally
not feasible to perform this scalar convolution for each grid node of the flow field, a
mask set rotated evenly distributed over the unit sphere is precomputed, and the values
corresponding to the closest mask rotation are used for the simularity measure. The
approach provides a mechanism for vector field segmentation [ES06]. Wiebel et al.
[WS05] use similarity measures on subsequent time steps of a time dependent flow
field to determine locations for eyelet particle tracing. A very general feature indicator
for time dependent fields is derived by Jänicke et al. [JWSK07] by extending the
concept of local statistical complexity (LCS) to multivariate data. LCS was introduced
by Shalizi et al. [SHR+06] for finite state cellular automata. LCS aims at clustering
regions of similar temporal evolution in the space time domain into so called causal
states. By defining a Huffman-Code for the causal states, interesting regions will have
longer Huffman-Codes linked to their causal states, as they occur less often. The LCS
at a given point in the space-time domain is the length of the Huffman-Code of the
corresponding causal state. The clustering algorithm in [JWSK07] is based on the
farthest point method. Jänicke et al. provide a faster and more accurate clustering
algorithm based on a density-driven Voronoi tesselation [JBTS08].

1.1.3 Vortex Core Line Extraction Methods
Several papers are devoted to a mathematically defined notion of the core line of a
vortex. As they build an important foundation for the present work, the methods of
Sujudi and Haimes [SH95], Banks and Singer [BS95], Roth and Peikert [RP98] and
Miura and Kida [MK97] are introduced in some detail in Section 3.2. Stegmaier et
al. confined the corrector-predictor approach of Banks and Singer by still predicting
in direction of vorticity, but correcting towards λ2-minima [JH95] instead of pressure-
minima. Wiebel et al. [WGS05] determine the contribution of a subregion to the global
flow by performing a localized flow analysis. In the subregion, a Neumann-Laplace
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problem is solved. As the solution has vanishing curl and divergence, and no flow
is crossing the boundary of the subregion due to the Neumann boundary condition,
subtracting the solution from the global flow reveals its curl- and divergence-specific
features. In conjunction with the method of Sujudi and Haimes, this approach yields a
Galilean invariant vortex extraction method [WGS07].

1.2 Vector and Scalar Field Topology
Vector field topology aims at a segmentation of the vector field domain into regions
of similar flow behavior. Topological methods for flow visualization have been intro-
duced by Helman and Hesselink for 2D [HH89] and extended to 3D [HH91], based
on a classification of first order critical points by an eigenvalue analysis. Topolog-
ical separatrices are computed from the critical points by a flow field integration in
eigenvector directions. Globus et al. [GLL91] introduce an iconic representation of
flow field topology. Several approaches add further topological elements to the ex-
traction, like closed stream lines [WS01a, TWHS04a], saddle connections and cyclic
fold bifurcations [TWHS04b, TWHS05] and topological structures on the boundary
[dLvL99, SHJK00, WTHS04a].

Tricoche et al. [TGK+04] analyze vortex breakdown by tracking topological struc-
tures in 2D slices of 3D Flow fields.

By introducing the concept of saddle connectors, Theisel et al. [TWHS03] reduce
the visual clutter of 3D topology visualization significantly.

Higher order critical points in 2D flows have been studied by Firby and Gardiner
[FG82], visualized by Scheuermann et al. [SHK+97, SKMR98] and used for flow
topology compression by Tricoche et al. [TSH00]. Theisel [The02] provides a mech-
anism to design 2D vector fields of arbitrary topology, including higher order critical
points. Higher-order topology of 3D vector fields has been introduced to the visualiza-
tion community by Weinkauf et al. and applied to construct [WTHS04b] and simplify
[WTS+05] 3D vector fields.

Tricoche et al. [TWSH02] track critical points in two-dimensional time-dependent
flows and detect Hopf und Fold Bifurcations. This approach connects the computed
critical points in a prism cell structure that is obtained from the input grids of two con-
secutive time steps. Theisel et al. use the feature flow field approach for critical point
tracking over time [TS03] without using the underlying grid. A comparable method
for tracking in scale space is given by Klein et al. [KE07]. A method for tetrahedral
grids is given by Garth et al [GTS04b].

Scalar field topology is the vector field topology of the gradient of the scalar and
therefore a subfield of vector field topology. Edelsbrunner et al. [EHZ03, BEHP04,
Pas07] and Forman [For98, For02, Lew05] have presented extensions of classical Morse
theory to triangulated surfaces. Those approaches have been used in various areas
for as different tasks as function simplification that bundles topology and geometry
[BEHP04], molecular docking applications [CCL03, NWB+06] and quadrangular sur-
face remeshing using natural harmonics [DBG+06]. A closely linked subject is wa-
tershed segmentation, as the watersheds of a function are contained in the Morse-
Smale complex [Soi99]. Mangan et al use [MW99] watershed segmentation on surface
meshes for surface patchification. Recent advances introduce skeletons of a distance
field function that is assembled of parts of the 1-cells of the complex [GMDP+07]. The
approach of Edelsbrunner et al. has been extended to 3D by Gyulassy et al. [GNP+05,
GNPH07] and applied for the study of hydrodynamic instabilities [LBM+06].
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1.3 Feature Extraction Frameworks
Peikert and Roth [PR99] introduced the parallel vectors operator, an approach for find-
ing loci in a domain where two vector valued quantities are parallel. They reformu-
lated various existing methods using their approach. See section 3.2.5 for more details.
Weinkauf et al. [WST+07] has formulated the Unified Feature Extraction Architec-
ture by decomposing topological feature extraction methods into the core algorithms
finding zeros, integration of stream objects and intersection of stream objects. A key
ingredient of this technique is the Feature Flow Field [TS03] approach introduced by
Theisel and Seidel for tracking features in time-dependent vector fields v by introduc-
ing an appropriate vector field f in space-time, such that a feature tracking in v boils
down to a stream line integration of f starting at the initial feature location.
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Part I

Theory





Chapter 2

Flow Field Background

2.1 Notation
We use a bold font for all vector quantities (like flow fields v or locations x), a regular
font for all scalar quantities (pressure p).

The total differential of a quantity (including time derivatives) will be denoted by D.
The spatial derivative without time derivatives will be denoted by ∇. Partial derivatives
of a quantity u with respect to the variable x will be denoted by ux, ∂xu or ∂

∂x
u.

2.2 Vector Fields and Flow Fields
A time dependent vector field is a continuous map

v : D× I → R3 (2.1)
(x, t) 7→ v(x, t), (2.2)

where D⊂ R3 and I ⊂ R.
Flow fields are vector fields that are either measured or modeled physical flows,

or simulated solutions solving the incompressible Navier-Stokes equation, the second
order partial differential equation given by

ρ
∂v
∂ t

+ρ∇v ·v =−∇p+η∆v+(λ +η)∇(∇ ·v)+ f, (2.3)

where f is a volume force like gravitation, λ and η are the Lamé viscosity coefficient,
ρ is the density of the material, and p denotes pressure. Please refer to e.g. [Bat67] for
an introduction to Navier-Stokes theory, and [SPS06] for a link to vortex analysis.

A vector field is called steady if v(x, t) = v(x, t0), i.e., it is constant over time.

2.3 Stream Lines and Path Lines
In a time-dependent vector field v(x, t) there are two important types of characteristic
curves: stream lines and path lines. In a space-time point (x0, t0) we can start a stream
line (staying in time slice t = t0) by integrating

d
dτ

x(τ) = v(x(τ), t0) with x(0) = x0 (2.4)
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v(x,y, t) = (1− t) · + t ·

(a) Stream lines of s correspond to the stream lines
in v. See (2.8).

(b) Stream lines of p correspond to the path lines in
v. See (2.7).

Figure 2.1: Characteristic curves of a simple 2D time-dependent vector field shown
as illuminated field lines. The red/green coordinate axes denote the (x,y)-domain, the
blue axis shows time.

or a path line by integrating

d
dt

x(t) = v(x(t), t) with x(t0) = x0. (2.5)

Path lines describe the trajectories of massless particles in time-dependent vector fields.
The ODE system (2.5) can be rewritten as an autonomous system at the expense of an
increase in dimension by one, if time is included as an explicit state variable:

d
dt

(
x
t

)
=
(

v(x(t), t)
1

)
with

(
x
t

)
(0) =

(
x0
t0

)
. (2.6)

In this formulation space and time are dealt with on equal footing – facilitating the
analysis of spatio-temporal features. Path lines of the original vector field v in ordinary
space now appear as stream lines of the vector field

p(x, t) =
(

v(x, t)
1

)
(2.7)

in space-time. To treat stream lines of v, one may simply use

s(x, t) =
(

v(x, t)
0

)
. (2.8)

Figure 2.1 illustrates s and p for a simple example vector field v. It is obtained by a
linear interpolation over time of two linear vector fields.
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In steady vector fields, stream lines and path lines coincide and are given as the
solution of

d
dτ

x(τ) = v(x(τ)) with x(0) = x0. (2.9)

A number of visualization techniques originally designed for steady vector fields can
be applied to unsteady fields by considering each time step independently. In this case
equations (2.9) and (2.4) coincide – hence, these approaches address the behavior of
stream lines. Examining the behavior of path lines (particles) requires to consider time
explicitly.

2.3.1 Acceleration of path lines
For a path line φ : R→ R3 of a time dependent vector field v : R4→ R3, we have

φ
′(t) = v(φ(t), t)

by (2.5). The particle acceleration, defined by

a(t) := φ
′′(t), (2.10)

is useful for measuring swirling motion. Using the chain rule, this can be expressed as

a(t) = φ
′′(t) = D(v(φ(t), t) (2.11)

= Dv|(φ)t),t) ◦D(φ(t), t) (2.12)

= Dv|(φ)t),t) ◦
(

v
1

)
(2.13)

= vt +∇v · v (2.14)

by means of the flow field alone.

2.4 Invariances
It is a fundamental property of physical laws to be independent of the observer to a
certain extent. The classical laws of Newtonian mechanics hold for observers in the
railway station as well as for those in the train that is passing by at constant speed.
Technically, observer hereby stands for a coordinate transformation, and invariance
means that the described laws are independent of the transformation. The most basic
group of invariance is Galilean invariance describing the above train ride (see 2.4.1). A
general transformation T is given by an invertible map

T (x, t) : R3×R → R3, (2.15)
(x, t) 7→ x̃ (2.16)

A point x at time t may be mapped to an arbitrary point, but time is not being trans-
formed. Of course, only very restricted transformations are relevant in physics, and
we shortly introduce the most relevant groups of transformations, namely Galilean and
Objective transformations.

When changing coordinates, all incorporated quantities have to be transformed to
reflect the coordinate transformation. We exemplify this for the flow field v under
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transformation T changing from coordinates x to x̃. The transformed flow field ṽ can
then be obtained using a trajectory x̃ in new coordinates by

ṽ(x̃, t) =
d
dt

x̃(t) (2.17)

=
d
dt

T (x(t), t) (2.18)

= ∇T (x, t)
( d

dt x(t)
1

)
(2.19)

= ∇T (x, t)
(

v(x, t)
1

)
(2.20)

= ∇T (T−1(x̃), t)
(

v(T−1(x̃), t)
1

)
(2.21)

2.4.1 Galilean Invariance

Galilean transformations are coordinates traveling at constant speed:

x̃ = G(x, t) = x+ tv0. (2.22)

The derivative of this transformation is given by

∇G(x, t) =

1 0 0 v0
1

0 1 0 v0
2

0 0 1 v0
3

 (2.23)

and following (2.21), the flow field transformation reads

ṽ(x̃, t) = v(x, t)+v0 = v(x̃− tv0, t)+v0. (2.24)

Obviously, ∇ṽ = ∇v for all Galilean transformations, and hence, the spatial gradient
of a flow field is Galilean invariant. Hence, all quantities that are derived from the
derivatives of the flow field are Galilean invariant, too.
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2.4.2 Galilean Invariance of Particle Acceleration
As an example we show that particle acceleration (2.14) is Galilean invariant. As the
spatial gradient of the flow field is Galilean invariant, we note

ṽt +∇ṽ · ṽ =
d
dt

(ṽ(x̃, t))+∇ṽ|(x̃,t)ṽ(x̃, t) (2.25)

=
d
dt
(
v(x̃− tv0, t)+ v0) (2.26)

+∇

(
v|(x̃−tv0,t) + v0

)(
v(x̃− tv0, t)+ v0) (2.27)

= Dv|(x̃−tv0,t)

(
−v0

1

)
(2.28)

+∇

(
v|(x̃−tv0,t) + v0

)(
v(x̃− tv0, t)+ v0) (2.29)

= −∇v|(x̃−tv0,t)v0 +
d
dt

v|x̃−tv0 (2.30)

+∇v|(x̃−tv0,t)v(x̃− tv0, t)+∇v|(x̃−tv0,t)v
0 (2.31)

=
d
dt

v|x,t +∇v|(x,t)v(x, t) (2.32)

= vt +∇v · v. (2.33)

We need this property in section 5.4 for the proof of the Galilean invariance of swirling
particle cores.

2.4.3 Objectivity
Objective transformations are rotating coordinates traveling at time-varying, but constant-
in-space speed:

x̃ = O(x, t) = Q(t)x+b(t), (2.34)

where Q(t) ∈ SO(3) is a proper orthogonal matrix. Its derivative is given by

∇O(x, t) =
(
Q(t)

∣∣Q′(t)x+b′(t)
)
, (2.35)

and following the same lines as above, the flow field transformation reads

ṽ(x̃, t) = Q(t)v(x, t)+Q′(t)x+b′(t), (2.36)

and resubstituting x = Q−1(t)(x̃−b(t)), we obtain

ṽ(x̃, t) = Q(t)v(Q−1(t)(x̃−b(t)), t)+Q′(t)
(
Q−1(t)(x̃−b(t))

)
+b′(t). (2.37)

2.5 Flow Topology
One objective of flow topology is to partition the domain into patches of similar stream-
line behaviour. Mathematically, it is described using α- and ω-limit sets, see e.g.
Scheuermann et al. [SHJK00, SS07]. Here α-limit means backward in time, ω-limit
means forward in time. The α-limit set A(s) of a streamline s is the set of all accumu-
lation points of s backward in time. In formulae,

A(s) =
{

p ∈ R3|∃(tn), tn→−∞, lims(tn) = p
}

. (2.38)
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Analogously, Ω(s) is the set of all accumulation points of s forward in time:

Ω(s) =
{

p ∈ R3|∃(tn), tn→ ∞, lims(tn) = p
}

. (2.39)

The catchment basin Bα(A) of A(s) is the union of all streamlines with α-limit set A:

Bα(A) = {a ∈ D|A(sa) = A} , (2.40)

and analogously

Bω(Ω) = {a ∈ D|Ω(sa) = Ω} . (2.41)

The flow field domain D can now be partitioned as follows:

D =
⋃
i, j

Bα(Ai)∩Bω(Ω j). (2.42)

2.5.1 Continuous Extraction of Flow Topology

The partition (2.42) consists of points, lines, surfaces and volumes for 3D domains.
Usually, the volumes are displayed only implicitly by their bounding separation sur-
faces. In the following, we shortly introduce the extraction of critical points, 1D-
separatrices and 2D-separatrices.

Critical Points

Several numerical methods for continuous critical point extraction of the gradient vec-
tor field are at hand. In tetrahedral grids, zeros can be computed explicitly [SH95]. In
regular and curvilinear grids, we use a simple subdivision approach: a cell is checked
whether one of the three components of the gradient is positive/negative at all 8 corners
of the cell. If so, no zero is found inside. Otherwise, we recursively subdivide into 8
subcells until their size is smaller than a certain threshold.

1D-Separatrices

The 1D-separatrices are stream lines of the vector field, being integrated from saddle
points in direction of their eigenvector corresponding to the unique negative or positive
eigenvalue, see Figures 2.3c and 2.3b. Two seeding points are placed stepping away
from the saddle in that eigenvector’s direction. Afterwards, a forward integration from
those two points yields the separation line for a positive eigenvalue, and backward for
a negative eigenvalue.

2D-Separatrices

A continuous method for 2D-separatrix extraction is a stream surface integration from
saddle points. As a seeding structure, a closed curve centered at the critical point can be
used that lies in the plane spanned by the two eigenvectors of matching sign. From this
seeding line a forward or backward stream surface integration is performed, depending
on the sign of the eigenvalues.
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2.5.2 Scalar Topology / Morse Smale Theory

The topology of a scalar function s : D→ R can be regarded as the flow topology of
the gradient vector field ∇s of the scalar. The existence of a potential gives additional
structure to this topology, and it can be described with more ease, as no closed stream-
lines (limit cycles) can occur. It is for this reason that simple, discrete methods could
be developed for the topology extraction in this setting as an application of discrete
Morse Smale theory. We restrict the discussion to surfaces embedded in R3 for use in
chapter 9.

A smooth function f on a smooth manifold surface M without boundary embedded
in R3 is a Morse function if its Hessian has full rank at every critical point of f where
its gradient vanishes [Mil63, Ban70, PM82, EHZ03]. Gradient curves are maximal
lines of f that are everywhere tangent to the gradient. Gradient curves start and end
at critical points c of f . The stable and unstable manifolds S(c) and U(c) are the
collections of all points that are part of a gradient curve ending at c or originating
from c, respectively. The stable and unstable manifolds of maxima and minima can
be regarded as hills and valleys, respectively. Critical points that have both a lower
dimensional stable and unstable manifold are saddles. Both the collection of stable
manifolds and the collection of unstable manifolds partition the surface, see Fig. 2.2.
For Morse functions f , the intersection of both partitions is the Morse-Smale complex
of f . This complex subdivides the domain into quadrangles with alternating maximum,
saddle, minimum, saddle, see Fig. 2.2d. The one dimensional arcs in the decomposition
link maxima, minima and saddles and are called ascending (descending) 1-cells, if they
connect saddles with maxima (minima). Descending (ascending) 1-cells separate hills
(valleys) and constitute their boundary.

Cancellation

Pairwise cancellation of saddle/minimum or saddle/maximum can be performed to
coarsen the initial complex, as long as the alternating quad property is maintained.
A cancellation is called valid in this case. Fig. 2.2e illustrates how a saddle/maximum
cancellation usually erases the descending 1-cell of the canceled saddle. The ascending
1-cell stays in the complex, as it still divides the unstable manifolds of the minima ad-
jacent to the canceled saddle. In the special case of a terminal minimum or maximum,
both the unstable and the stable manifolds of the saddle vanish, see Fig. 2.2f. By pro-
viding a sequence of valid cancellations, the complex can be coarsened, until no valid
cancellation is left. In practice this is done by quantifying each saddle individually by
a cancellation criterion. The cancellations are then performed in increasing order of
the cancellation criterion.

2D-Scalar topology is closely linked to watershed lines in a 2D-terrain (cf. Figure
7.6). At certain line structures, rain water separates in the sense that nearby water
assembles in different valleys. Those maximum lines partition the domain into valleys.
Within valleys all water flows towards the same minimum. Similarly, the domain is
partitioned into hills separated by minimal lines called watercourses. On hills all water
runs down from one maximum.

The generalization to 3D is straight-forward. Here the watersheds are surfaces, and
additional 1D-separatrices come into play. The partitioning of the domain in hills and
valleys as well as the corresponding separatrices are the subject of scalar topology. If
the scalar function is differentiable, its topology can also be obtained as the vector field
topology of its gradient.
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(a) Elevation profile. (b) Hills and their borders.

(c) Valleys and their borders. (d) Morse Smale complex.

(e) Maximum cancellation. (f) Terminal maximum.

Figure 2.2: The elevation profile of a landscape as seen from above. Lines depict the
partition of the landscape into hills, valleys and their intersection, the MS complex.
Blue, red and green dots represent minima, maxima and saddles. Bottom row: simpli-
fications of the MS complex by different types of cancellations and their influence on
vanishing 1-cells.



2.5 Flow Topology 27

(a) Minimum. (b) Attracting saddle. (c) Repelling saddle. (d) Maximum.

Figure 2.3: Classification of critical points in scalar fields.

Figure 2.4: Separatrices origi-
nating from a repelling saddle.
The line is a minimal line of
steepest descent, the surface is a
watershed.

Depending on the eigenvalues of the Hessian matrix of the scalar function, critical
points can be classified into four categories (see Figure 2.3): When all three eigenval-
ues are positive, the critical point is a minimum, and all gradient lines are leading away
from the critical point, so minima are sources (see Figure 2.3a). A point with exactly
one negative eigenvalue is called a repelling saddle (Figure 2.3c). The unstable mani-
fold emanating from this point has the plane spanned by the eigenvectors corresponding
to the positive eigenvalues as its tangent plane. Within this surface, gradient lines lead
away from the point. Those surfaces are maximal features, separating minima from
each other. We refer to those surfaces as 2D-separatrices, maximum surfaces or water-
sheds. The one-dimensional separatrix tangential to the eigenvector corresponding to
the one negative eigenvalue is a minimum line in the scalar field, leading to a minimum
following the steepest descent (Figure 2.4). Those lines are meaningful features, as
they can be regarded as centers of isosurfaces, see Figure 7.3 for an illustrative exam-
ple and Figure 7.1 for a real world application. A point with two negative eigenvalues
is called attracting saddle (Figure 2.3b), and its 2D-separartrix is a watercourse, as
it separates two maxima from each other. We also refer to the watercourses as mini-
mum surfaces 1. Finally, all eigenvalues are negative at maxima (Figure 2.3d) and all
gradient lines lead into the point, so maxima are sinks.

2.5.3 Discrete Extraction
Based on Banchoff’s extension of classical Morse theory to polyhedral surfaces [Ban70],
Edelsbrunner et al [EHZ03] construct the MS complex for piecewise linear functions.
The approach is refined by Bremer et al [BEHP04, Pas07].

1Minimum surfaces should not to be mixed up with Minimal Surfaces, denoting surfaces of zero mean
curvature in mathematics
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(a) Discrete gradient field (b) Smooth gradient field

Figure 2.5: Forman’s discrete gradient vector field of the height function of an elevation
profile is shown with red maxima, green saddles and blue minima in (a). Red lines are
gradient curves ascending to maxima, blue lines are gradient curves descending to
minima. In (b) its smooth analogue is shown, being discontinuous and constant on
triangles.

Forman [For98, For02] generalizes Morse Theory to the more general category of
combinatorial complexes. This generalization is a very strong theoretical foundation
for simple and intuitive algorithms. Therefore we base our algorithms on this theory.

A function f defined on the vertices of a triangular surface can be considered a
Morse function if all vertex values are different. Lewiner et al [LLT03b, LLT03a,
CCL03] show how to construct the discrete gradient vector field (also for non-Morse
functions) as a pair of interlaced primal and dual weighted spanning forests of the
triangular surface that partition the surface into stable and unstable manifolds.

• The weighted primal graph PG is the graph of vertices and edges of the surface
mesh. Edges are assigned the mean value of the incident vertices.

• The vertices and edges of the dual graph DG are the triangles and edges of the
surface mesh, respectively. Triangles are assigned the mean value of the incident
vertices.

The maxima of the dual graph serve as roots for a spanning forest representing stable
manifolds. Edges are added in decreasing order. Similarly, minima of the primal graph
serve as roots for a spanning forest representing unstable manifolds. Edges are added
in increasing order, but only if they are not contained in the dual spanning forest. The
critical elements of f are the roots of the primal (minima) and dual (maxima) graph and
the edges that are not contained in either spanning trees (saddles). Lewiner shows that
the extracted locations of critical points correlate with the locations Banchoff describes
[Ban70]. The spanning forests can be regarded as the union of all gradient curves on
the mesh. Descending gradient curves are traced as concatenated edges in the primal
spanning tree as paths to the root, ascending gradient curves as triangle strips in the
dual spanning tree. See Fig. 2.5 for the discrete gradient vector field of the height
function of an elevation profile.

The computation of the 1-cells can now be performed as in the smooth setting.
For a saddle edge e = (v1,v2) that is incident to the faces f1, f2, the stable manifolds
are computed as decreasing paths in the primal spanning tree starting with v1,v2 re-
spectively until the roots m1,m2 (that are minima) are reached. Analogously, unstable
manifolds are traced as triangle strips in the dual spanning tree starting from f1, f2
respectively, until the maxima M1,M2 are reached.
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(a) Ridge line is in the center of the isosurface
(transparent).

(b) Ridge line scaled and colored according to the
scalar value.

Figure 2.6: Ridge line of a simple scalar field.

2.6 Ridge and Valley Lines
Several notions of extremum lines, ridge and valley lines of a function f : R3→R have
been developed in the literature. We use the height ridge definition detailed in [Ebe96],
which is a one dimensional generalization of the well known zero dimensional notion
of an extremum point. We choose this definition as it requires just second derivatives
of the vector field rather than fourth order derivatives like ridge definitions that are
based on curvature extrema, see [EGM+94] for a thorough introduction and compari-
son of several ridge line extraction schemes and [KvD93] for a historical survey of the
development of extremum lines.

A sufficient condition for a local maximum point x of a function f : R3 → R ∈
C2(R3;R) is a vanishing gradient ∇ f (x) = 0 coupled with a negative definite Hessian
H f (x) implying a set of three negative eigenvalues γ1 ≤ γ2 ≤ γ3 corresponding to or-
thogonal eigenvectors c1, c2, c3 ∈ R3 satisfying Hci = γici. As H is symmetric, such
an orthogonal eigensystem corresponding to real eigenvalues always exists.

Aiming at a one dimensional generalization of a local maximum, we note that neg-
ative eigenvalues γi imply that the graph of f is convex in a small neighbourhood of the
maximum. In direction of c3, the eigenvector corresponding to the largest eigenvalue
γ3, the maximum is least stable, as this is the direction of smallest convexity. The soft-
est relaxation hence is to relax convexity just in direction of c3. As a ridge line (when
looking at a terrain) should intuitively follow the steepest ascent, it is natural to require
c3 = const ·∇ f whenever ∇ f 6= 0, resulting in the requirement H(∇ f ) = γ3(∇ f ).
This makes ridge line extraction applicable to the parallel vectors operator as stated in
[PR99]. From the orthogonality of ci, it directly follows that (∇ f )c1 = 0, (∇ f )c2 = 0.
Vice versa, (∇ f )c1 = (∇ f )c2 = 0,∇ f 6= 0 implies that c3 = const ·∇ f , also from
orthogonality.

This intuition leads to the following definition cited from [Ebe96].

Definition 1 Let f ∈C2(R3;R), ∇ f its gradient and H f its Hessian with eigenvectors
c1, c2, c3 and corresponding eigenvalues γ1 ≤ γ2 ≤ γ3.

1. Then a ridge line consists of all points x where

• A := (∇ f (x))c1 = 0 and B := (∇ f (x))c2 = 0 and

• γ2 < 0.

2. This has a d-dimensional generalization. A d-dimensional ridge consists of all
points x where
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(a) Pi(x) := ∇ f (x)ci = 0 for all i = 1, . . . ,3−d and

(b) γ3−d < 0.

3. d-dimensional valleys of f are defined as d-dimensional ridges of − f .

Note that the structures defined here are d-dimensional manifolds in most cases due to
the regular value theorem justifying the terminology of d-dimensional ridges.

As an example let γ1 ≤ γ2 < 0,γ3 > γ2 and consider the function f (x,y,z) = γ1x2 +
γ2y2 +γ3z2. Then ∇ f (x,y,z) = (γ1x,γ2y,γ3z)t , Hx(x,y,z) = diag (γ1,γ2,γ3) with eigen-
basis ci = ei, ei denoting the Euclidean standard basis. At x = y = 0 we have ∇ f (x)a =
∇ f (x)b = 0 and γ2 < 0. Hence, the z-axis is a ridge line. Figure 2.6 illustrates this for
γ1 =−100,γ2 =−99,γ3 = 1.

See section 7.2.2 for a discussion of connections and differences of ridges com-
pared to separatrices in scalar topology.



Chapter 3

Existing Vortex Detection
Methods

A large variety of vortex detection methods have been derived in the literature. In
this chapter we summarize the main existing methods that were available prior to this
thesis. Good overviews are also in the literature [PVH+02, PR99].

Vortex detection schemes can be classified in two major categories:

• Vortex region detection is based on scalar vortex region quantities that are used
to define a vortex as a spatial region where the quantity exhibits a certain value
range. Examples are regions of high magnitude of vorticity or negative λ2-
criterion. Isosurfaces or volume rendering are common approaches for visu-
alizing these quantities. We give a thourough overview in Section 3.1.

• Vortex core line extraction aims at finding line type features that are regarded as
centers of vortices, where the understanding of center is defined by each method
individually. Examples are the intuitive notion of swirling motion for Sujudi and
Haimes [SH95, PR99], and the more physical notion of integrated vorticity for
banks and Singer [BS95]. We give a thourough overview in Section 3.2.

Many vortex core line extraction methods can be implemented using the parallel vec-
tors (PV) operator, a popular line feature extraction approach for static flows fields
[PR99] which we sketch in Section 3.2.5.

3.1 Vortex Region Techniques
The most widely used vortex region quantities are based on a decomposition of the
flow field gradient

∇v = S+Ω (3.1)

into its symmetric part, the strain tensor

S =
1
2
(∇v+∇vt) (3.2)
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Figure 3.1: Isosurfaces of Q showing Eulerian vortex regions in a flow behind a circular
cylinder. The LIC-plane is indicating corresponding vortical streamline patterns in the
reference frame relative moving with the convection velocity.

and its antisymmetric part, the vorticity tensor

Ω =
1
2
(∇v−∇vt) =

1
2

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 , (3.3)

where ω = (ω1,ω2,ω3) = ∇× v denotes the vorticity. While Ω assesses vortical ac-
tivity, the strain tensor S measures the amount of stretching and folding which drives
mixing to occur. To motivate the latter, some words are necessary on perturbation
advection: in a time dependent flow field consider the path line x(t;x0) started at x0
defined by ẋ(t;x0) = v(x(t;x0), t) and initial condition x(t0,x0) = x0. Comparing x to
x̃(t, x̃0) with x̃0 being an infinitesimal perturbation of x0, the propagated perturbation
ξ (t) = x̃(t, x̃0)−x(t,x0) is governed by the linearized dynamical system

ξ̇ = ∇v(x(t;x0), t)ξ , (3.4)

see e.g. [Hal80]. The strain tensor now gives the answer to the question, how the mag-
nitude of the perturbation |ξ | evolves in time when both initial conditions are advected
by the flow. This evolution is described by the Lyapunov function

V (ξ , t) :=
1
2

d
dt
|ξ |2 = 〈ξ , ξ̇ 〉= 〈ξ ,∇vξ 〉= 〈ξ ,Sξ 〉, (3.5)

where (3.4) was used as well as the fact that the symmetric scalar product 〈·, ·〉 only
sees the symmetric part of ∇v. Where V < 0, initial perturbations decay over time,
while V > 0 indicates their growing. Where perturbations decay or grow drastically
the flow exhibits a saddle like pattern – a pattern that drives mixing of fluid particles.
Now the Euclidean matrix norm ‖S‖, called the rate of strain, supplies a measure for
this initial perturbation evolution due to

|V (ξ , t)|= |〈ξ ,Sξ 〉| ≤ |ξ |2‖S‖. (3.6)

Note that although the initial perturbation analysis uses path lines, the quantity S that
measures the perturbation growth is completely Eulerian – it is built out of quantities
in a specific snapshot of time.

3.1.1 Okubo Weiss
The Okubo-Weiss criterion Q is defined by

Q :=
1
2
(‖Ω‖2−‖S‖2) =

1
4
‖ω‖2− 1

2
‖S‖2. (3.7)
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Figure 3.2: Isosurfaces of MZ showing Lagrangian vortex regions.

Where Q is positive, the vorticity magnitude dominates the rate of strain. Hence it is
natural to define vortex regions as regions where Q > 0. Unlike λ2, Q has a physical
meaning also where Q < 0. Here the rate of strain dominates the vorticity magnitude.
The Q-criterion is an Eulerian quantity. Figure 3.1 shows isosurfaces of Q > 0 behind
a circular cylinder indicating vortex features. The visualization additionally contains
a LIC plane which shows rotational stream line behavior in the frame of reference
corresponding to the convection velocity. The isosurfaces correspond to the circular
pattern shown in the LIC plane. Note however that Q is a Galilean invariant quantity
which is independent of such translational changes of the reference frame.

Q can be computed quickly using the identity Q =−∑i, j(∇v)i j(∇v) ji.
Note that in incompressible fields, the Okubo Weiss criterion coincides with the

criterion of Hunt [Hun87].

3.1.2 Lambda 2
λ2, derived by [JH95], is closely related to Q. Consider the three real eigenvalues
λ1 ≤ λ2 ≤ λ3 of the symmetric matrix S2 + Ω2. In [JH95] it is deduced from the
Navier Stokes equations that for a local pressure minimum two negative eigenvalues of
this matrix are necessary. They define a vortex region where λ2 < 0. In their work they
show that Q = − 1

2 (λ1 + λ2 + λ3). Despite of this strong link they show that the λ2-
criterion detects vortex regions more reliably especially under a strong external strain.
Nevertheless, the λ2-criterion, unlike the Q-criterion, lacks a direct interpretation for
regions where λ2 > 0.

Q and λ2 are related to the Navier Stokes equations and reflect the amount of strain
and vortical motions in the vector field. Due to this fact those quantities are the most
popular among fluid mechanicists.

Despite the convincing physical interpretation of Q and λ2, those quantities are of
limited applicability in some settings. In [RP96] it is shown that for turbomachinery
flow fields λ2 is negative almost everywhere. So for highlighting regions of strong
vortical activity thresholding is necessary, leaving the scientist with the question of
choosing an appropriate isovalue. So vortex region detection has the drawback of being
parameter dependent.

3.1.3 MZ

Haller has recently proposed the MZ-criterion that also discriminates vortex and strain
regions in incompressible flows similar to the Q-criterion, but in contrast to this based
on a Lagrangian analysis [Hal05]. Figure 3.2 gives an example. As both the underlying
theory and the implementation are quite involved, we give a deeper introduction here.

The MZ-criterion is based on a strain analysis along path lines. Loosely spoken,
Haller proves that path lines along which the strain acceleration tensor M (the tensor
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describing the first time derivative of V as defined in equation (3.5)) is positive definite
are of saddle type – so called hyperbolic lines of maximal strain. In contrast he defines
vortices as path lines along which M is indefinite. Such structures are called elliptic.

More precisely, Haller argues that in incompressible flows, the function V takes
both positive and negative values, as S has at least one negative and one positive eigen-
value. Hence, the set

Z = {ξ |〈ξ ,S(x(t), t)ξ 〉= 0} (3.8)

is never empty and usually a two dimensional surface, as it separates the regions V < 0
and V > 0. Physically, within Z, initial bifurcations do not change their magnitude.
Hence within Z, the bifurcation evolution is gouverned by the first time derivative

d
dt

V (ξ (t), t). (3.9)

Haller proves that path lines for which d
dtV is positive for ξ in Z for all times are

of saddle type in the sense that they form stable and unstable manifolds that drive
advective mixing in the fluid.

To be able to decide this positivity, we state that

d
dt

V (ξ (t), t) =
d
dt
〈ξ (t),S(x(t), t)ξ (t)〉

= 〈ξ̇ ,S(x(t), t)ξ 〉+ 〈ξ ,
d
dt

(S(x(t), t)ξ )〉

= 〈∇v(x(t), t)ξ ,S(x(t), t)ξ 〉

+〈ξ ,
d
dt

(S(x(t), t))ξ +S(x(t), t)ξ̇ 〉

= 〈ξ ,(∇vtS+
d
dt

(S(x(t), t))+S∇v)ξ 〉

= 〈ξ ,Mξ 〉 (3.10)

where the strain acceleration tensor M is defined as

M = ∇vtS+
d
dt

(S(x(t), t))+S∇v. (3.11)

The MZ-criterion is now defined as follows:

Definition 2 MZ-criterion - total ellipticity time Let (x0, t0) be an arbitrary point in
the space-time domain of the flow and x(t) the path line with x(t0) = x0.

1. A point on the path line is called hyperbolic, if 〈ξ ,Mξ 〉 is positive for all ξ

in Z at that point. Physically, such a point describes a saddle type or strain
point. Otherwise, the point on the path line is called elliptic and indicates vortex
behavior.

2. MZ(x0, t0) is defined as the sum of the lengths of all time intervals, in which the
path line started at (x0, t0) is elliptic.
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Where MZ = 0, the path lines are hyperbolic for all times, and hence form stable
or unstable manifolds as described above. In contrast, where MZ equals the integra-
tion time of the path lines, maximal vortex activity is present. However, in numerical
implementations the path line seeding is necessarily sparse. Thus it is unlikely to find
a path line that is completely hyperbolic or completely elliptic. But still, a qualitative
property holds for the MZ-criterion computed on a sparse grid:

• The lower MZ, the more strain is present (the majority of points on the path line
are hyperbolic).

• The higher MZ, the more vortical behavior is present (the majority of points on
the path line are elliptic).

While Q and λ2 are Galilean invariant, Haller states that MZ is even objective, see
section 2.4.3.

3.1.4 Pressure

Within vortices, the pressure is lower than in the ambient flow field. Hence, pressure
p is a vortex region quantity that indicates vortices at its minima. p does not relate
to the flow gradient decomposition directly, but of course, p is linked to Ω and S by
the Navier-Stokes equation. Indeed, in the deduction of the λ2 method, Jeong and
Hussain used this link to prove that λ2 < 0 is a necessary condition for the occurence
of a pressure minimum within some plain [JH95].

3.1.5 Rotation Strength

Rotation strength ∆ as used in [SP03], see also [CPC90] is linked to the intuitive un-
derstanding that a vortex exhibits spiraling stream lines with respect to some specific
reference frame. Within this reference frame, the stream line pattern of a flow field is
dominated by its Jacobian Jv. If J has a conjugate pair of complex eigenvalues, the
flow locally spirals in a plane corresponding to those eigenvectors. ∆ is then defined as
the magnitude of the imaginary part of those complex conjugate eigenvalues. So large
values of ∆ indicate strong spiraling patterns within the right reference frame. Where
∆ = 0, no such reference frame can be found. By considering the orientation of the
corresponding eigenbasis, a rotation angle ϕ ∈ (−π,π) can also be extracted. When
ϕ > 0, the flow spirals counter clockwise around the eigenvector corresponding to the
real eigenvalue, clockwise, if ϕ < 0.

3.2 Vortex Core Line Techniques

Several algorithms aim at extracting a line feature called the vortex core line. The
motivation arises from the intuitive observation that a vortex might be regarded as
circular particle movement around a common line.

The advantage of the schemes presented here over the vortex region approach is
that they can be applied without user interaction, for instance as a batch job prior to
visualization or during the simulation.
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Figure 3.3: Flow pattern around
a focus saddle. The blue plane
is spanned by the eigenvectors
corresponding to the complex
eigenvalues. Swirling motion
takes place in this plane around
the real eigenvector denoted by
the red arrows.

3.2.1 Sujudi/Haimes

Centers of swirling motion have first been treated by Sujudi and Haimes [SH95]. Their
inspiration was the flow pattern around a certain type of critical point: a focus saddle
(see Figure 3.3 for an illustration). Here, the Jacobian of the flow field has one real
and two complex eigenvalues. The eigenvectors corresponding to the complex eigen-
values span a plane in which the flow spirals around the critical point. The eigenvector
corresponding to the real eigenvalue denotes the axis of rotation.

Sujudi and Haimes generalized this flow pattern to non-critical points by consider-
ing the so called reduced velocity. At a point x, the reduced velocity w(x) is given as
the projection of the steady flow field v(x) to the plane normal to the real eigenvector
e by

w(x) = v(x)− (v(x) · e(x))e(x). (3.12)

They show that centers of swirling flow are line-type structures where w(x) = 0. Peik-
ert et al. [PR99] formulated this using the Parallel Vectors operator and showed that
w(x) = 0 is equivalent to v(x)||∇vv, i.e., v and ∇vv are parallel, avoiding eigenvalue
computation this way.

3.2.2 Banks/Singer

Banks and Singer suggested specially adjusted vorticity lines [BS95]. Browsing through
the grid vertices of the flow volume, seed points are detected by means of both a low
pressure and a high vorticity threshold. Starting from those seed points, the algorithm
proceeds as follows:

• integrate vorticity for some time

• span a plane perpendicular to vorticity and update the current location to the next
local pressure minimum within the plane

They also give a method for computing the vortex hull by means of further pressure
and vorticity threshold and give a space saving Fourier representation of the result.
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3.2.3 Roth/Peikert
Roth and Peikert suggested a higher order method for vortex core line extraction of
lines with zero torsion [RP98], which also involves the vector field v directly by finding
line structures where v points into the direction of (∇a)v where a = (∇v)v is the steady
acceleration of the vector field. This method is also capable of finding vortex cores that
are bent strongly.

3.2.4 Pressure Minima
It was suggested by Miura and Kida [MK97] to extract valley lines of pressure. This
approach was applied locally only and resulted in disconnected line segments. See
Section 2.6 for an introduction to valley line extraction.

3.2.5 Parallel Vectors Operator
The idea of the PV approach is to derive two vector fields w1, w2 out of a given 3D
vector field v, such that the desired vortex core lines are the locations where w1 and
w2 are parallel. Several ways of extracting these lines exist [PR99], either based on ex-
tracting and intersecting isosurfaces [MR96], Newton iterations on grid faces, analytic
solutions for triangular faces, or curve following schemes [BS94].



38 Existing Vortex Detection Methods



Part II

Detection Methods based on
Swirling Motion





Chapter 4

Extraction of PV Surfaces

Flow dynamicists are interested in tracking vortex core lines over time for several rea-
sons:

• When the impact of a feature on the flow is measured by certain criteria (ro-
tation strength [SP03], pressure [MK97], Okubo-Weiss-criterion [Hun87]), fea-
ture tracking becomes necessary to answer the question, whether the impact of a
feature on the flow increases or decreases, when time evolves, as the correspon-
dence problem of features in different time steps is not a trivial task. With the
full feature surface of our method at hand, the problem can be solved by simply
checking, if two features at different times lie in the same connected component
of the surface.

• Also, the spatial evolution over time is interesting e.g. in burning chambers,
where the location and extent of vortices are the key ingredient for a complete
burning process.

A first approach to tracking PV-based vortex core lines over time was given in [BP02]
which focused on scale-space as the additional dimension. There, a marching-cubes-
like algorithm is performed to extract 4D triangular structures in regular 4D hypercubes
building the cells of the space-time domain.

In this chapter we introduce a new method to extract and track vortex core lines
which are based on a PV formulation. This method is based on the concept of feature
flow fields (FFF) [TS03]: we derive appropriate vector fields such that the searched
vortex core lines are stream lines of them. This way, the extraction/tracking of vortex
core lines is reduced to a simple stream line/surface integration of vector fields. We
choose this approach because of the following reasons:

Figure 4.1: Flow behind a circular cylinder. Shown are vortex core lines in a certain
frame of reference. Their evolution over time is tracked by our algorithm and depicted
using transparent surfaces. Red color encodes the past while gray shows the future.
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• Numerical stream line/surface integration is well-understood in the Visualiza-
tion community. A variety of fast and stable algorithms exist for this purpose.
[Hul92, vW93, Gel01, SBM+01]

• The stream surface integration approach is independent of an underlying grid,
giving a subcell accuracy and relieving us of finding appropriate local connection
strategies.

• Bifurcations (i.e. events of sudden changes of the behavior of vortex core lines
over time) play an important role in the understanding of the dynamical behavior
of vortex core lines. Contrary to pre-existing methods, the FFF approach per-
mits to localize, characterize and classify these bifurcations. To the best of our
knowledge, this has not been done in the Visualization community before.

The rest of the chapter is organized as follows: sections 4.1–4.4 describe our FFF
based approach of extracting and tracking vortex core lines. Since the approach is ex-
clusively based on the PV formulation, we describe the approach independently of the
vortex core background. We call the solutions of the PV operator in the static case PV
lines, while their sweeping over time in time-dependent fields are called PV surfaces.
Section 4.1 explains the FFF approach to extract PV lines in static fields. Based on this,
section 4.2 introduces the feature flow fields to tracking PV lines over time. Section 4.3
gives a complete classification of local bifurcations of PV lines over time. Section 4.4
describes the final algorithms to tracking PV lines. Section 4.5 shows the application
of our technique to a number of test data sets, among them the particular PV realization
for vortex core lines defined by Sujudi and Haimes [SH95] in a Galerkin model of a
flow behind a circular cylinder.

Notation: In this chapter we consider points, vectors and vector fields both in 3D
and 4D. To make a clear distinction between them, we write a 4D structure as p̃, ṽ, ...,
while for 3D structures we simply write p, v.

4.1 Extracting PV Lines in Static Fields

In this section we shortly describe the parallel vectors (PV) operator [PR99] and explain
how to use the concept of feature flow fields (FFF) in order to extract PV lines in a 3D
static field. This will later be the foundation of an FFF-based algorithm for tracking
PV lines in unsteady fields.

Given two continuous 3D vector fields w1 and w2, the PV operator extracts all
points in the domain where the vectors of w1 and w2 point in the same direction, i.e.
w2 = λw1 for some real λ 1, or w1 ‖ w2 in shorthand notation.

Peikert and Roth [PR99] list examples of reasonable choices of w1 and w2 to extract
line type features like vortex core lines in flow fields or extremum lines in scalar fields.
As the theory presented here can be formulated completely in terms of the PV operator,
we keep the derivation as general as possible and just choose particular vector fields
w1 and w2 in section 4.5.

Aiming at extracting PV lines of (w1, w2) in the domain D = [xmin,xmax]×[ymin,ymax]×

1λ =±∞ is also allowed, i.e., w1 ‖ w2 holds if w1 or w2 vanishes.
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[zmin,zmax], we define the vector field s as

s(x,y,z) =

 k(x,y,z)
m(x,y,z)
n(x,y,z)

= w1×w2. (4.1)

Then the PV lines consist of all locations (x,y,z) with s(x,y,z) = (0,0,0)T . If w1 and
w2 are continuous, then the PV lines are indeed continuous line structures, i.e. point
sets of dimensionality 1 [PR99]2. PV structures of dimensionality 0 or dimensionality
2 are structurally unstable in 3D, i.e. they disappear by adding noise to the data. For
this reason we do not consider them here.

The FFF approach [TS03] (originally introduced to track critical points of time-
dependent vector fields) was already used for extracting particular Galilean invariant
vortex core lines without using the PV approach [SWH05a], see chapter 6. To apply
the FFF concept to PV lines, the following steps are necessary:

1. A vector field f is defined which fulfills the FFF property. This means that given
a point x0 = (x0,y0,z0) with s(x0) = (0,0,0)T , each point x on the stream line
of f starting from x0 fulfills s(x) = (0,0,0)T as well. In other words: PV lines of
(w1, w2) are stream lines of f.

2. A set of starting points is defined which guarantees that the stream line integra-
tion of f starting from them covers all PV lines.

Then all PV lines of (w1, w2) can simply be extracted by applying a stream line inte-
gration of f. We treat the two parts of the approach in the following subsections.

4.1.1 Obtaining the Feature Flow Field f

In this section we show that f essentially consists of an appropriate combination of the
first order partials sx, sy, sz of s. We denote the gradients of the components of s in
(4.1) by

∇k =

 kx
ky
kz

 , ∇m =

 mx
my
mz

 , ∇n =

 nx
ny
nz

 .

Then f should point into a direction where the components of s remain constant. This
means that f has to be perpendicular to the gradients of the components of s. We define

f1 = ∇m×∇n =

 det(sy,sz,(1,0,0)T )
det(sz,sx,(1,0,0)T )
det(sx,sy,(1,0,0)T )

 . (4.2)

2Note that this statement gives that these line structures cannot be obtained by replacing s(x,y,z) =
(0,0,0)T by ‖s(x,y,z)‖ = 0 and applying a simple scalar field analysis of ‖s‖, since the zeros of general
scalar fields are structures of dimensionality 2.
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which is perpendicular to ∇m and ∇n. Hence, all points on a stream line of f1 have
constant components m and n. In a similar way we define f2 and f3 as

f2 = ∇n×∇k =

 det(sy,sz,(0,1,0)T )
det(sz,sx,(0,1,0)T )
det(sx,sy,(0,1,0)T )

 (4.3)

f3 = ∇k×∇m =

 det(sy,sz,(0,0,1)T )
det(sz,sx,(0,0,1)T )
det(sx,sy,(0,0,1)T )

 . (4.4)

In general, f1, f2, f3 describe different directions. However, if we are on a PV line,
we can write w2 = λw1 for a certain λ . Inserting this into the computation of the
derivatives of (4.1), we get

sx = (w1x×w2)+(w1×w2x) = w1× (w2x−λw1x)
sy = (w1y×w2)+(w1×w2y) = w1× (w2y−λw1y) (4.5)
sz = (w1z×w2)+(w1×w2z) = w1× (w2z−λw1z)

which shows that sx, sy, sz are coplanar perpendicular to w1 and w2. (4.5) and (4.2)–
(4.4) give that f1, f2, f3 are parallel on a PV line. Thus, almost every linear combination
of f1, f2, f3 can act as feature flow field. Setting f = α f1 +β f2 +γ f3 and a = (α,β ,γ)T ,
we obtain

f =

 e
f
g

=

 det(sy,sz,a)
det(sz,sx,a)
det(sx,sy,a)

 . (4.6)

Choosing the vector field a:
In order to choose a suitable vector field a, we rewrite f as

f =

 b1 ·a
b2 ·a
b3 ·a

 (4.7)

with

b1 = sy× sz , b2 = sz× sx , b3 = sx× sy. (4.8)

On a PV line, the coplanarity of sx, sy, sz together with (4.8) gives w1 ‖ w2 ‖ b1 ‖
b2 ‖ b3. Consequently, the only condition we have to put on a is that it must not
be perpendicular to w1 and w2 respectively on a PV line. If we know that w1 never
vanishes on a PV line, the simple choice a = w1 does the job. A similar statement
holds for w2. In case that both w1 and w2 may vanish on a PV line, we choose

a =
{

w1 if ‖w1‖ ≥ ‖w2‖
w2 otherwise,

which guarantees a to be continuous in direction but not in orientation. Thus, f has to
be integrated as an orientation-free vector field (similar e.g. to an eigenvector field of
a tensor field), i.e., the local orientation has to be obtained from the information where
the integration of the line has come from.

A number of vortex core line extraction concepts based on parallel vectors use
w1 = v and w2 = M v (see for example [SH95] with M = ∇v or [TM98] with M =
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Figure 4.2: (a) two kinds of PV lines: ending in the boundary points x1, x2, or closed:
in this case we extract two starting points x3,x4; (b) PV structures are surfaces in 4D.

(∇v)T ). For these approaches, both w1 and w2 vanish at critical points of v causing both
s(x) = (0,0,0)T and f(x) = (0,0,0)T there. To deal with this problem, we equivalently
reformulate w2 as an appropriate eigenvector of M. This eigenvector does not vanish
along the vortex core line, but since eigenvectors have no orientation, an orientation-
free integration of f is necessary here as well.

4.1.2 Starting Points for integrating f

Given the definitions above, we first analyze whether an integration of f along a PV
line may get stuck in a critical point of f. This happens at a location x ∈ D with
s(x) = (0,0,0)T and f(x) = (0,0,0)T . Both conditions independently build structures
of dimensionality 1 in D, i.e., they are line structures3. If these line structures intersect,
the intersection points are structurally unstable, i.e., they disappear by adding noise to
the data. Because of this we assume that such intersections do not exist in D. However,
we mention that [s(x) = (0,0,0)T , f(x) = (0,0,0)T ] gives stable solutions in a time-
depending setting. We treat this in section 4.3.

If [s(x) = (0,0,0)T , f(x) = (0,0,0)T ] does not have solutions in D, every PV line
ends either on the boundary faces of D (for both forward and backward integration), or
builds a closed stream line in f [PR99]4. To get the starting points for the first case, we
search for the intersections of the PV lines with the boundary of D: for the boundary
face x = xmin, we search for all points (y,z) with s(xmin,y,z) = (0,0,0)T . To do so,
different numerical solvers can be applied. We use a simple subdivision approach in
the (y,z)-domain: a rectangular cell C is checked whether one of the components k,m,n
is positive/negative at all 4 corners of C. If so, no PV line intersection is found inside
C. Otherwise, we recursively subdivide C into 4 subcells until their size is smaller than
a certain threshold. In a similar way we compute the intersections of the PV lines with
the remaining 5 faces.

To find a starting point on a closed PV line, it is sufficient to identify an arbitrary

3This has been shown for s, as it defines PV lines [PR99]. To show that f(x) = (0,0,0)T builds line
structures as well, we have to show that f can also be formulated using the PV operator. (4.2)–(4.4) give that
we can rewrite f as f = (α ∇m−β ∇k)×(∇n− γ

β
∇m). Hence, f = (0,0,0)T corresponds to (α ∇m−β ∇k) ‖

(∇n− γ

β
∇m).

4This statement implies that our approach does not have to incorporate algorithms to detecting closed
stream lines in flow fields [WS01b], since we know in advance that our stream lines of interest in f are
closed.
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point on the line. We have chosen to extract points x with

[ s(x) = (0,0,0)T , e(x) = 0 ] (4.9)

with e from (4.6). To do so, we apply a similar 3D subdivision approach as described
above for the 2D case. Since a closed PV line must consist of points with both positive
and negative e-components, each closed PV line must consist of at least two points
fulfilling (4.9). Figure 4.2a illustrates an example. Clearly, (4.9) may also deliver
solutions on open PV lines, but it guarantees to find at least two solutions for each
closed PV line5. Finally, we do an integration of f starting from all detected points and
remove multiply obtained curves.

4.2 Feature Flow Fields for Tracking
Now we consider PV structures in time-dependent 3D vector fields w1(x,y,z, t),w2(x,y,z, t).
To do so, we first note that all the 3D static vector fields w1, w2, s, ∇k, ∇m, ∇n, f1,
f2, f3, f, a which were introduced in section 4.1 can be defined in a similar way for
the time-dependent case as well. In the following we consider these vector fields to be
time-dependent, i.e. they are maps from the 4D domain D̃ = D× [tmin, tmax] to R3.

PV structures in (w1(x,y,z, t),w2(x,y,z, t)) can be considered as lines in D sweep-
ing over time while smoothly changing their shape and location. In addition, certain
bifurcations may occur. Hence, the PV structures in D̃ have the dimensionality 2, i.e.
they are surfaces in D̃. Figure 4.2b gives an illustration. Here a PV line at time t0 (red)
moves to the blue line at time t1. Each point on the swept surface between the two lines
is actually a 4D point: in addition to the spatial values it is provided with a t-value. In
figure 4.2b (as well as in the following figures) we color code the t-values of points,
lines and surfaces.

In order to extract the PV surfaces in D̃, we need to define two 4D feature flow
fields f̃ and g̃. The first one can easily be defined as

f̃(x,y,z, t) =
(

f(x,y,z, t)
0

)
(4.10)

where f is defined in (4.6). It gives a PV line at a certain time level, i.e. all points on
a stream line of f̃ have the same t-value. The evolution in time of a PV line should be
covered by the 4D feature flow field g̃. Keeping in mind that PV structures in D̃ are
surfaces, a family of different g̃ could be chosen such that each linear combination of f̃
and g̃ is a FFF. Among them, we choose the g̃ with f̃⊥g̃. This gives a unique g̃ (except
for scaling). We obtain

g̃(x,y,z, t) =
(

h× f
‖f‖2

)
=
(

h× f
e2 + f 2 +g2

)
(4.11)

with

h(x,y,z, t) =

 det(sx,st ,a)
det(sy,st ,a)
det(sz,st ,a)

 (4.12)

5If a closed PV line completely lies in the y− z plane by chance, (4.9) gives many solutions. In this case,
e(x) = 0 can simply be replaced by f (x) = 0 in (4.9) to reduce the number of solutions.
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Figure 4.3: local bifurcations of PV lines: (a) inflow boundary bifurcation; (b) outflow
boundary bifurcation; (c) closed collapse bifurcation; (d) saddle bifurcation.

and f defined in (4.6). Figure 4.2b illustrates f̃ and g̃ at a certain point (red) on the PV
surface.

To prove that g̃ is indeed the desired feature flow field, we consider the gradients in
D̃ of the components of s:

∇̃k =


kx
ky
kz
kt

 , ∇̃m =


mx
my
mz
mt

 , ∇̃n =


nx
ny
nz
nt

 .

Then we have to show that from w1 ‖ w2 (i.e. for s = (0,0,0)T ) the following four
properties can be deduced:

∇̃k · g̃ = ∇̃m · g̃ = ∇̃n · g̃ = f̃ · g̃ = 0

where · denotes the 4D dot product. This can be shown by a straightforward exercise
in algebra.

We note that Theisel et al. already proposed a FFF for PV tracking [TS03] which
appears not to work: the FFF proposed there is constantly vanishing on a PV line and
therefore unable to track it.

4.3 Local Bifurcations
Although in general PV lines change smoothly over time, there are certain points D̃
in which the behavior of the PV lines changes abruptly. These bifurcation are a vital
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(a) Shortly before. (b) The event. (c) Shortly after.

Figure 4.4: Saddle bifurcation.

(a) Shortly before
inflow
bifurcation.

(b) The event of
inflow
bifurcation.

(c) Shortly after
inflow
bifurcation.

(d) Shortly before
closed collapse
bifurcation.

(e) The event of
closed collapse
bifurcation.

Figure 4.5: Inflow bifurcation and closed collapse bifurcation.

ingredient for assuring the complete extraction of PV surfaces. Furthermore, knowing
what kind of bifurcations may occur contributes to understanding the parallel vectors
operator. In this section we characterize local bifurcations and show how to extract
them. In general, we can distinguish between two kinds of bifurcations: inner bifurca-
tions and boundary bifurcations. We treat them separately in the following sections.

4.3.1 Inner Bifurcations
An inner bifurcation is characterized by the fact that the integration of f̃ on a PV surface
in D̃ ends in a critical point of f̃. This means that an inner bifurcation occurs at a
location c̃ ∈ D̃ with

[ s(c̃) = (0,0,0)T , f(c̃) = (0,0,0)T ]. (4.13)

Since both s(c̃) = (0,0,0)T and f(c̃) = (0,0,0)T gives surfaces in D̃ as solutions6, their
intersections are stable isolated points in D̃. To get them, we use a subdivision approach
in 4D similar to the one already explained in 2D and 3D.

In order to analyze the behavior of the PV lines around an inner bifurcation, we
analyze the Jacobian matrix of f̃ in c̃ which is a common approach in the field of vec-
tor field topology to classify critical points of 2D [HH89] and 3D [WTHS04a] vector
fields. On c̃ fulfilling (4.13) we know from (4.7) that b1 = b2 = b3 = (0,0,0)T . This

6This is due to the fact that both s(c̃) = (0,0,0)T and f(c̃) = (0,0,0)T can be interpreted as sweeping
lines over time.
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and (4.8) gives that sx ‖ sy ‖ sz, i.e. we can set sy = p sx and sz = q sx for certain p,q.
Inserting this into the derivatives of (4.8), we get

b1x = (syx× sz)+(sy× szx) = sx× (p szx−q syx)
b1y = (syy× sz)+(sy× szy) = sx× (p szy−q syy)
b1z = (syz× sz)+(sy× szz) = sx× (p szz−q syz)
b2x = (szx× sx)+(sz× sxx) = sx× (q sxx− szx)
b2y = (szy× sx)+(sz× sxy) = sx× (q sxy− szy) (4.14)
b2z = (szz× sx)+(sz× sxz) = sx× (q sxz− szz)
b3x = (sxx× sy)+(sx× syx) = sx× (syx− p sxx)
b3y = (sxy× sy)+(sx× syy) = sx× (syy− p sxy)
b3z = (sxz× sy)+(sx× syz) = sx× (syz− p sxz).

This shows that the 9 vectors in (4.14) are coplanar perpendicular to sx, sy, sz. In
addition, the following statements follow directly from (4.14):

b1x + p b2x +q b2x = (0,0,0)T (4.15)
b1y + p b2y +q b2y = (0,0,0)T (4.16)

b1z + p b2z +q b2z = (0,0,0)T (4.17)
b1x +b2y +b3z = (0,0,0)T . (4.18)

Keeping b1 = b2 = b3 = (0,0,0)T in mind, we can write the Jacobian matrix of f(c̃) as

Jf(c̃) =

 b1x ·a b1y ·a b1z ·a
b2x ·a b2y ·a b2z ·a
b3x ·a b3y ·a b3z ·a

 . (4.19)

(4.15)–(4.17) show that the lines of Jf(c̃) are not independent, which gives det(Jf(c̃)) =
0. Hence, one eigenvalue of Jf(c̃) is zero. From (4.18) we infer that the trace of Jf(c̃)
is zero. As the trace of a matrix equals the sum of its eigenvalues, we see that also the
remaining eigenvalues of Jf(c̃) add to zero. So they can be written as

0 , −
√

r ,
√

r

for some real, possibly negative r. Hence we can classify three kinds of inner bifur-
cations. The first, r = 0, is a generally unstable higher order inner bifurcation and not
considered here. For r 6= 0, exactly two stable kinds of inner bifurcations are possible
depending on the sign of r:

A closed collapse bifurcation appears if (4.13) and r < 0 hold. In this case, the two
non-zero eigenvalues of Jf(c̃) are purely imaginary indicating a rotational behavior of f
around c̃. While figure 4.3c illustrates this, figure 4.5 depicts this bifurcation using a
test data set, see section 4.5 for details on the used visualization scheme. Now imagine
a closed PV line p̃0 at the time t0. While moving forward in time (t = t1), the closed PV
line p̃1 becomes smaller until at a certain time t2 it collapses to a point c̃ and disappears.
Note that the inverse case of a closed collapse bifurcation exists as well indicating the
birth of a (small) closed PV line.

A saddle bifurcation appears if (4.13) and r > 0 hold. See figure 4.3d for an illus-
tration and figure 4.4 for an example from a test data set. Two PV lines p̃0, q̃0 at the
time t = t0 move towards each other (t = t1), share a common point c̃ at the time t = t2,
and move away from each other (t = t3). The directions of the PV lines out of c̃ are the
directions of the two eigenvectors of Jf(c̃) corresponding to the non-zero eigenvalues.
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(a) Shortly before. (b) The event. (c) Shortly after.

Figure 4.6: Reversed outflow boundary bifurcation.

4.3.2 Boundary Bifurcations

A boundary bifurcation is characterized by the fact that f̃ on a PV surface is tangential
to the boundary surface of D̃. A boundary bifurcation c̃ = (xc̃,yc̃,zc̃, tc̃) on the boundary
face x = xmax is the solution of

[ s(c̃) = (0,0,0)T , xc̃ = xmax , e(c̃) = 0 ] (4.20)

which gives isolated points in the stable case. To get them, we may apply a 3D subdi-
vision approach (in (x,y, t)-space) similar as described in section 4.1.2. However, there
is a faster approach which will be explained later in section 4.4. In a similar way we
compute the boundary bifurcations for the remaining boundary faces of D.

At a boundary bifurcation c̃, the integration of f̃ starting from c̃ (both in forward
and backward direction) may enter D̃, or it may leave D̃ immediately after starting the
integration. To distinguish these two kinds of behavior, we check whether directional
derivative ∇f · f of f points inside or outside D. In the first case, we have an inflow
boundary bifurcation. See figure 4.3a for an illustrating example. Imagine two PV
lines p̃0 and q̃0 at the time t = t0 which leave D̃ at the points x̃0 and ỹ0 respectively.
While moving forward in time (t = t1), the exit points x̃1, ỹ1 of the current PV lines p̃1,
q̃1 move towards each other until at a certain time t2 they collapse to a point c̃. At c̃ the
current PV lines p̃2, q̃2 get smoothly connected and build a single PV line p̃3 from this
moment on. The point c̃ denotes the inflow boundary collapse bifurcations.

An outflow boundary bifurcation illustrated in figure 4.3b and shown in figure 4.6
within a test data set. Here, the PV line p̃0 at the time t0 enters and leaves D̃ at the
points x̃0 and ỹ0. While moving forward in time (t = t1), the exit points x̃1, ỹ1 move
towards each other, until at a certain time t2 they collapse in the point c̃ making the PV
line disappear.

Also for boundary bifurcations the reverse cases exist. At an inflow boundary bi-
furcation a PV line may split up into two lines, and at an inflow boundary bifurcation a
PV line may appear.

4.3.3 Further Bifurcations
After introducing the local bifurcations above, one may ask whether there are more
bifurcations possible. In particular we check whether fold bifurcations of (open or
closed) PV lines exist. A fold bifurcation occurs when two PV lines move toward each
other, merge at a certain time and immediately disappear after that7. It turns out that

7In the field of time-dependent vector field topology, we have similar fold bifurcations for critical points
[TSH01] and isolated closed stream lines (cyclic fold bifurcation [TWHS04b]).
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Figure 4.7: (a) PV line fold bifurcations do not exist! (b) tracking an open PV line.

such a bifurcation cannot exist for PV lines. To show this, imagine two PV lines p̃0, q̃0
at the time t0 as illustrated in figure 4.7a. While moving forward in time (t = t1), the
current PV lines p̃1, q̃1 move towards each other until they merge in the line p̃2 and
disappear. If we pick a point x̃0 on p̃0 and start a stream line integration of g̃ from x̃0,
we end in a point ỹ0 on q̃0. Since x̃0 and ỹ0 have the same t-value t = t0, the integration
of g̃ must go both forward and backward in time. This is a contradiction to (4.11)
which shows that the last component of g̃ (specifying the evolution in time) is always
non-negative. Therefore, PV fold bifurcations do not exist.

4.4 The Algorithms

Before we formulate the algorithms for PV surface extraction in D̃, we explain the main
ideas on a number of simple examples.

Consider figure 4.7b: suppose there is a PV line p̃0 at the time t = t0 which leaves
D̃ in the points x̃0, ỹ0. While moving forward in time until t = t1, p̃0 sweeps to the line
p̃1 which leaves D̃ in x̃1, ỹ1. Doing this sweeping, the points where the PV lines leave
D̃ form two lines x̃, ỹ on the boundary of D̃: x̃ connects x̃0 and x̃1, while ỹ connects ỹ0
and ỹ1. In order to extract the PV surfaces (i.e. the surface bounded by the curves p̃0,
ỹ, p̃1, x̃), we have the choice between two approaches: One approach is to start with an
extraction of p̃0 and using it as seeding curve for a stream surface integration of g̃ until
we reach p̃1 (or reversely, integrate g̃ backward from p̃1 until we reach p̃0). The second
approach is to extract x̃ and use it as seeding curve of a stream surface integration of
f̃ until it reaches ỹ (or reversely, integrating f̃ from ỹ to x̃). The first approach has two
disadvantages over the second one: first, a stream surface integration of f̃ is cheaper
than a stream surface integration of g̃ because f̃ has a simpler structure (see section
4.2). Second, a stream surface integration of g̃ starting from p̃0 may partially leave
D̃ before reaching p̃1. Hence we prefer the second approach. The extraction of x̃
and ỹ turns out to be simple: in the example, x̃ consists of all points (xmin,y,z, t) with
s(xmin,y,z, t) = (0,0,0)T . Keeping xmin constant, this can be considered as finding PV
lines in a steady 3D flow field in the (y,z, t)-domain. Thus, x̃ can be found by applying
the algorithm of section 4.1 for the (y,z, t)-domain. Similarly we find ỹ.

Another simple example is shown in figure 4.8a. Here we have a closed PV line p̃0
at the time t0 which moves over time to the line p̃1 at t = t1. To extract the PV surface,
we might integrate g̃ starting from p̃0. In order to be consistent with the example before,
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Figure 4.8: seeding lines (black) for simple examples.

we prefer to pick a point x̃0 on p̃0
8 and apply a stream line integration of g̃ starting

from x̃0 until it leaves D̃ in a point x̃1. This stream line is used as seeding structure for
a stream surface integration of f̃.

The last simple example is shown in figure 4.8b. Here a closed PV line appears at
the time t0 in the closed collapse bifurcation point p̃0, grows over time (t = t1) to p̃1
until at t = t2 it touches the boundary of D̃ in the inflow boundary bifurcation point c̃.
From this moment on it is an open PV line p̃3 which creates an intersection curve x̃
with the boundary of D̃. In order to get a seeding structure for this example, we first
extract x̃ similar to the example in figure 4.7b. Then we apply a stream line integration
of g̃ starting from c̃ until it ends in p̃0.

In order to extract PV surfaces in D̃, we provide two algorithms. Algorithm 1 de-
scribes how to get a seeding structure, i.e., a set of lines in D̃ such that a stream surface
integration of f̃ starting from them gives the complete PV surface. Based on this, al-
gorithm 2 describes how to extract and visualize the PV surfaces for a particular time
interval.

Algorithm 1 (getting the seeding lines):

1. Compute the intersection curves of the PV surface with the spatial boundaries of
D̃ (see figure 4.7b for an example).

2. Extract all local bifurcations introduced in section 4.3.

3. Extract closed PV lines at the times t = tmin and t = tmax respectively, pick a point
on each extracted closed line, and apply a stream line integration of g̃ starting
from them until they leave D̃ or end in a closed collapse bifurcation. Figure 4.8a
shows an example.

4. Start a stream line integration of g̃ from all inflow boundary bifurcations until it
ends in a closed collapse bifurcation or leaves D̃ (see figure 4.8b for an example).

Then the set of all lines obtained in steps 1–4 is the searched seeding structure. This
algorithm needs some comments:
To 1: We have to find the PV lines at the faces of D̃. This means to apply six times the
algorithm for extracting PV lines of static vector fields as described in section 4.1.
To 2: All inner bifurcations can be found by applying a recursive subdivision approach
as described earlier. Boundary bifurcations can be found by checking the lines from

8We use one of the points which were necessary to extract p̃0 – see section 4.1
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step 1 of algorithm 1 for local extremal values of the t-component.
To 3: We get the closed stream line by applying the static algorithm of section 4.1 to
find closed PV lines in the first and last time step.

Algorithm 1 can be considered as a preprocess of the actual PV extraction algo-
rithm described in the following

Algorithm 2 (extract and visualize the PV surface for a time interval [t0, t1] with
tmin ≤ t0 ≤ t1 ≤ tmax ):

1. Load the seeding lines obtained from algorithm 1.

2. Identify all parts of the seeding lines with t-values between t0 and t1.

3. Starting from these seeding lines, apply a stream surface integration of f̃ until it
leaves D̃ or returns to its starting point.

4. Visualize the stream surfaces obtained in 3.

Note that although algorithm 2 guarantees that all PV surfaces are found, it does not
guarantee that each surface is found only once. In fact, an open PV surface is extracted
twice, by integrating from both exit curves of D̃. In the current implementation we did
not consider this problem and visualized parts of the PV surfaces twice.

Out-of-core considerations:
3D time-dependent fields tend to be larger than the main memory of high-end worksta-
tions. Thus, an out-of-core data handling is preferable. We show for our algorithm that
only a certain part of the data has to be in memory at once, and that (in worst case) the
whole data set has to be loaded only twice. We assume that certain time intervals of
the data can be loaded into memory separately, e.g. the data may come as a sequence
of static 3D vector fields, one for each time step: by loading the vector fields of two
consecutive time steps ti and ti+1 and applying a linear interpolation, we obtain the
time-dependent vector field in that interval.

Algorithm 1 can be executed by treating time slices consecutively, but not in one
sweep through the data since g̃ needs to be integrated in both directions. Thus, we make
one forward sweep through the data collecting the local bifurcations and integrating g̃ in
forward direction. While doing this, we build up 6 static 3D vector fields representing
the spatial boundaries of the domain over time. They serve as input for step 1 of this
algorithm. In a following backward sweep we integrate g̃ backwards starting from the
already collected seeding points.

Since a stream line of f̃ always stays in the same time level, the stream surface
integration of algorithm 2 can be applied to smaller subintervals independently if the
data of the original time interval [t0, t1] does not fit into main memory.

4.5 Applications
Figures 4.4–4.6 show examples of local bifurcations in constructed quadrilinear vector
fields w1, w2. We show them both to illustrate the bifurcations again and to explain
our visualization technique. As projecting the complete PV surface to space leads to
selfintersections already in quite simple settings, we use the following approach to
visualize the evolution of PV structures: at a given time we draw the PV lines as red
tubes inside the PV surface that is displayed only for a certain time range for future
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Figure 4.9: Saddle bifurcation of vortex
core lines as defined by v ‖ ∇v · v in a
quadrilinear vector field.

and past. At the boundary the corresponding seeding lines from algorithm 1 are given
for a larger time interval. Both the surfaces and the seeding lines fade out away from
the current time. We use color coding to indicate past (red) and future (gray). Figure
4.4 shows the evolution of a saddle bifurcation. Note that the width of the surface in
figures 4.4a and 4.4c confirms the intuition that the most drastic movements of the PV
line over time takes place near the bifurcation points.

Figure 4.6 shows a reversed outflow boundary bifurcation leading to the birth of
a PV line. We omitted to display the PV surface for this and the following example.
Figure 4.5 shows an inflow bifurcation and a subsequent closed collapse bifurcation in
the green point. Note that in figure 4.5a, the location of the future inflow bifurcation is
already shown by the grey semi-transparent point.

Now we proceed to applying our parallel vector based theory to vortex core line
extraction. To do so, we consider the vortex core line concept defined by Sujudi and
Haimes [SH95] searching for all locations with v ‖∇v ·v in regions where ∇v has a pair
of complex eigenvalues. As already mentioned in section 4.1.1, we have equivalently
chosen w1 = v and w2 as the eigenvector corresponding to the only real eigenvalue
of ∇v in the regions of interest. Before we apply the technique to a real data set,
we analyze whether the bifurcations introduced in section 4.3 may appear for vortex
core lines defined by [SH95] for piecewise low-degree vector fields. It turns out that
the inner bifurcations do not exist inside a cell for a piecewise linear vector field in

(a) Critical points and surrounding stream lines. (b) Vortex core line together with its PV surface
showing the evolution of the vortex over time.

Figure 4.10: Stuart Vortex moving over time from left to right.
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Figure 4.11: Flow behind a circular cylinder. The extracted seeding lines elucidate the
alternating evolution of the vortical structures in transverse direction.

space-time9. For piecewise quadrilinear vector fields, all bifurcations can occur inside
a cell. Figure 4.9 shows an example of a quadrilinear vector field containing a saddle
bifurcation.

Consider Figure 4.10 that demonstrates our vortex core line tracking approach for
visualizing a moving Stuart vortex. A Stuart vortex is a well-known vortical structure
in fluid dynamics which can be described by a closed formula. Figure 4.10a shows that
there is a critical point on the moving vortex core line. Figure 4.10b shows the vortex
core line together with the PV surfaces indicating its past and future behavior. It shows
that our FFF integration did not get stuck in the critical point.

Figures 4.1 and 4.11 demonstrate the results of our method applied to vortex core
line tracking in a flow behind a circular cylinder. As above, we chose the vortex core
line definition v ‖ ∇v · v. The data set was derived by Bernd R. Noack (TU Berlin)
from a direct numerical Navier Stokes simulation by Gerd Mutschke (FZ Rossendorf).
It resolves the so called ‘mode B’ of the 3D cylinder wake at a Reynolds number of 300
and a spanwise wavelength of 1 diameter. The data is provided on a 265× 337× 65
curvilinear grid as a low-dimensional Galerkin model [NE94, ZFN+95]. The examined
time range is [0,2π]. The flow exhibits periodic vortex shedding leading to the well
known von Kármán vortex street. This phenomenon plays an important role in many
industrial applications, like mixing in heat exchangers or mass flow measurements with
vortex counters. However, this vortex shedding can lead to undesirable periodic forces
on obstacles, like chimneys, buildings, bridges and submarine towers.

9This is similar to the fact that e.g. fold bifurcations do not exist inside a cell for piecewise linear time-
dependent vector fields.
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Chapter 5

Cores of Swirling Particle
Motion

One way to assess vortices in experiments is to emit particles into the flow and to
examine their behavior: patterns of swirling flow indicate vortices. This has been done
in the experiment shown in Figure 1.1a. By injecting smoke, i.e., a huge amount of
particles, swirling flow caused by the wake vortex becomes visible. For numerical and
measured data sets, Sujudi and Haimes [SH95] proposed a scheme to extract centers
of swirling flow. Peikert et al. formulated the idea of Sujudi/Haimes using the Parallel
Vectors operator and presented a fast and robust extraction technique [PR99]. Bauer
et al. [BP02] and Theisel et al. [TSW+05] (chapter 4) proposed different algorithms to
track these centers over time in unsteady flows. All these approaches have in common
that they assess the behavior of stream lines only.

However, most flow phenomena are unsteady in nature. In unsteady flows (as
shown in Figure 1.1a), particle motion is described by path lines instead of stream
lines (cf. section 2.3). This generally gives different swirling patterns. In this chapter
we aim at extracting the cores of swirling particle motion in unsteady flows based on
the behavior of path lines. To do so, we develop a novel mathematical characteriza-
tion of such cores as a generalization of the original idea of Sujudi/Haimes. We do
this for 2D and 3D flows. In the latter case, the resulting core structures are Galilean
invariant lines sweeping over time, i.e., surfaces in the space-time domain. At a single
time step, particles group around these core lines forming patterns of swirling motion
similar to Figure 1.1a. That is why we refer to those features as swirling particle cores.
Mathematically, they are characterized by the coplanarity of three 4D vectors. In order
to extract them, we show how to re-formulate the problem using the Parallel Vectors
operator [PR99] and apply it accordingly.

The chapter is organized as follows: In section 5.1 we summarize the basic facts
concerning swirling motion of stream lines. In section 5.2 we develop our description
of cores of swirling particle motion. Furthermore, we introduce a unified notation of
swirling motion in 2D and 3D flows. In section 5.3 we re-formulate this description
using the Parallel Vectors operator and show how to extract the cores. In section 5.5
we apply our technique to a number of 2D and 3D flows.
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(a) Cores of swirling motion in 2D steady flow
fields are critical points where the Jacobian has a
pair of conjugate complex eigenvalues.

(b) Cores of spiraling stream lines in 2D unsteady
flows are certain critical points (foci and center)
tracked over time. Example vector field from
Figure 2.1a.

Figure 5.1: Swirling motion of stream lines in 2D steady and unsteady flows.

5.1 Swirling Motion of Stream Lines
Patterns of spiraling stream lines in 2D and 3D flows have already been treated in the
literature. These patterns are assessed by examining eigenvalues and eigenvectors of
the first derivative J (the Jacobian) of the respective flow field v. A necessary condition
for spiraling stream lines in v is that J has a pair of conjugate complex eigenvalues. In
the following we give a short overview of the literature.

2D Flows

A steady 2D flow field is given as

v(x,y) =
(

u(x,y)
v(x,y)

)
. (5.1)

The Jacobian of this field has either two real or one pair of conjugate complex eigen-
values. Swirling motion occurs in the latter case only – stream lines spiraling around a
common point (see Figure 5.1a). The velocity at this point must be zero, i.e., v(x,y) =
0. This means that cores of swirling motion in 2D steady flow fields are certain types
of critical points, namely foci and centers. Thus, they can be treated using steady flow
field topology as described in [HH89].

An unsteady 2D flow field is given as

v(x,y, t) =
(

u(x,y, t)
v(x,y, t)

)
. (5.2)

Following (2.8), the stream lines of this field always stay in the same given time slice t0
(Figure 2.1a). Thus, swirling motion in a single time slice can be captured by applying
the scheme known from the steady case. By changing the given time slice, the critical
points will move over time and form line-type structures in space-time. In order to
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extract all locations of all foci and centers one has to apply algorithms for tracking
critical points as known from [TWSH02, TS03, TWHS05]. Figure 5.1b shows this for
the simple example vector field known from Figure 2.1a.

Throughout this chapter, swirling stream line cores will be colored blue, whereas
swirling particle cores will be colored red.

3D Flows

In steady 3D flow fields

v(x,y,z) =

u(x,y,z)
v(x,y,z)
w(x,y,z)

 (5.3)

centers of swirling motion can be extracted by the method of Sujudi and Haimes
[SH95], see Section 3.2.1 for an introduction.

Figure 5.2a shows the core line of swirling flow for the Stuart vortex, a simple
vortex model given by

v(x,y,z) =

 sinh(y)/(cosh(y)−0.25cos(x))
−0.25sin(x)/(cosh(y)−0.25cos(x))

z

 . (5.4)

As expected, the swirling patterns in the LIC image correlate with the extracted center
of swirling flow.

An unsteady 3D flow field is given as

v(x,y,z, t) =

u(x,y,z, t)
v(x,y,z, t)
w(x,y,z, t)

 . (5.5)

At each time step t0, locations of swirling stream line behavior can be extracted using
the method known from the steady case. This yields lines sweeping over time, resulting
in 4D surfaces in the space-time domain. Two approaches for extracting those surfaces
exist [BP02, TSW+05]. Both address swirling motion of stream lines, not particles.

Figure 5.2b gives an example for sweeping stream line cores, extracted by the
method in [TSW+05]. The flow field is derived from the steady model (5.4) by su-
perimposing a constant flow of velocity (1,0,0)T . This leads to structures moving
constantly from left to right over time. The swirling stream line core at t = 0 is de-
picted as a blue line. Past and future is encoded in the surface, where blue means the
past and grey encodes future. Note that by adding the convection velocity, the swirling
stream line loci moved up relative to the steady case.

5.2 Cores of Swirling Particle Motion
In the last section we reviewed the approaches for extracting swirling motion of stream
lines in steady and unsteady flows. To the best of our knowledge, there exists no
approach for capturing swirling motion of path lines. We believe that studying the
behavior of path lines is important since particle motion in unsteady flows is described
by path lines instead of stream lines. Furthermore, many flow phenomena are unsteady
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(a) Cores of swirling motion in 3D steady flows are lines where v||e. Shown is a simple vortex model: the
Stuart vortex (5.4).

(b) Cores of spiraling stream lines in 3D unsteady flows are lines sweeping over time. Blue denotes the past
of the core, gray shows the future. Shown is a certain time step of the Stuart vortex moving over time
from left to right with a constant velocity. This added convection velocity results in an upward shift of
the stream line core compared to the steady case. The LIC plane shows the stream line pattern at the
chosen time step.

Figure 5.2: Swirling motion of stream lines in 3D steady and unsteady flows.

and examining them solely based on the behavior of stream lines in certain time steps
may not give the complete picture.

In the course of this section we develop a novel mathematical characterization of
swirling particle motion in 2D and 3D unsteady flows – sections 5.2.1 and 5.2.2 re-
spectively. Afterwards, we give a comprehensive summary of all discussed types of
swirling flow leading to a more generalized notation (section 5.2.3).

5.2.1 Swirling Particle Motion in 2D
Following (2.7), the path lines of an unsteady 2D flow field v(x,y, t) are given as the
stream lines of the steady 3D vector field

p(x,y, t) =
(

v(x,y, t)
1

)
=

u(x,y, t)
v(x,y, t)

1

 . (5.6)

This formulation of path lines as stream lines in a higher-dimensional vector field re-
duces the identification of swirling particle motion to a known case: it can be treated
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(a) View similar to Figure 2.1b. (b) View from top. Additionally, the core line of
spiraling stream lines is shown in blue (cf.
Figure 5.1b).

Figure 5.3: Core line (shown in red) of swirling particle motion of a simple 2D unsteady
vector field v (see Figure 2.1). The path lines of v spiral around this core line.

similar to swirling stream line motion of a steady 3D vector field by applying the orig-
inal approach of Sujudi/Haimes [SH95] to p. This yields line structures where the
Jacobian of p has a pair of conjugate complex eigenvalues and the only real eigenvec-
tor is parallel to p. The Jacobian of p is

J(p) =

ux uy ut
vx vy vt
0 0 0

 (5.7)

and has the eigenvalues e1,e2,0 with the respective eigenvectors(
e1
0

)
,

(
e2
0

)
, f, (5.8)

where e1,e2,e1,e2 constitute the eigensystem of the spatial Jacobian
[ux uy

vx vy

]
and

f =

det(vy,vt)
det(vt ,vx)
det(vx,vy)

 . (5.9)

Note, that f is the Feature Flow Field for tracking critical points in time-dependent
2D vector fields known from [TS03]. In order to track critical points of v, this field f
was designed such that the values of v do not change along the stream lines of f. In
other words, the directional derivative of v in direction of f is zero. This means that
J(v) · f = 0 and consequently J(p) · f = 0 · f. Hence, f necessarily is an eigenvector of
J(p) corresponding to the eigenvalue 0.

Figure 5.3 shows the core of swirling particle motion for the simple 2D unsteady
vector field introduced in Figure 2.1. The core line is depicted in red. Additionally,
Figure 5.3b shows the core line of spiraling stream lines in blue. It can clearly be seen
that both structures are different and that the particle core line lies in the center of the
spiraling path lines.
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(a) Swirling particle core as a line at t = 0 shown in red. Particles are grouping around that line in a
spiraling pattern. Additionally, the core of swirling stream line motion is shown in blue. This clearly
shows that stream lines and path lines spiral around different centers (compare with Figure 5.2b).

(b) Swirling particle cores in 3D unsteady flows are lines sweeping over time, i.e., surfaces in the 4D
space-time domain. Red denotes the past of the core line, gray shows its future.

Figure 5.4: As an illustration of our new technique, swirling particle motion is shown
in the example of the Stuart vortex moving over time from left to right with a constant
velocity.

5.2.2 Swirling Particle Motion in 3D
We aim at extracting swirling particle cores of an unsteady 3D flow field v(x,y,z, t),
i.e., locations around which spiraling patterns of path lines occur. Following (2.7),
path lines of v are stream lines of the steady 4D vector field

p(x,y,z, t) =
(

v(x,y,z, t)
1

)
=


u(x,y,z, t)
v(x,y,z, t)
w(x,y,z, t)

1

 . (5.10)

There is no existing tool to identify swirling motion in a steady 4D vector field. In
the following we develop a new approach. The key is, again, the eigensystem of the
Jacobian of p. In the 3D unsteady setting, the Jacobian of p is

J(p) =


ux uy uz ut
vx vy vz vt
wx wy wz wt
0 0 0 0

 (5.11)
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and has the eigenvalues e1,e2,e3,0 with the respective four eigenvectors(
e1
0

)
,

(
e2
0

)
,

(
e3
0

)
=: e, f, (5.12)

where e1,e2,e3 are the eigenvectors of the spatial Jacobian

Js(v) =

ux uy uz
vx vy vz
wx wy wz

 (5.13)

and the fourth eigenvector f can be written as

f(x,y,z, t) =


+det(vy,vz,vt)
−det(vz,vt ,vx)
+det(vt ,vx,vy)
−det(vx,vy,vz)

 . (5.14)

Note, that f is the Feature Flow Field for tracking critical points in 3D unsteady vector
fields [WTHS07] – here, the same explanation as in the 2D case applies (section 5.2.1).
The eigenvalue corresponding to f is always zero. Therefore, J(p) has always one real
eigenvalue and only the following cases can occur:

• All eigenvalues of J(p) are real.

• J(p) has a pair of conjugate complex eigenvalues and two real eigenvalues – let
them be sorted such that e1,e2 are complex and e3 is real.

Since complex eigenvalues are a necessary condition, swirling motion is only possible
in the latter case. At any given point x in the 4D domain, the eigenvectors correspond-
ing to e1,e2 span a plane Pc in which locally the swirling motion occurs. The two
real eigenvectors e and f denote the part of the flow which is independent of swirling
– they span a plane Pr in which no swirling occurs at all. In order to see what the
core of swirling motion in 4D is, consider the following rephrasing of the definitions
of swirling motion cores in other dimensions:

Although a point x on the core structure is surrounded by spiraling integral
curves, the flow vector at x itself is solely governed by the non-swirling
part of the flow.

This is a direct generalization of the “reduced velocity”-idea of Sujudi/Haimes. For
our case this means that x is a point on the swirling particle core if the flow vector p(x)
lies in the plane of non-swirling flow Pr, i.e., the plane spanned by e and f. In other
words, the swirling particle cores are at locations where

λ1p+λ2e+λ3f = 0 with λ
2
1 +λ

2
2 +λ

2
3 > 0. (5.15)

This is a coplanarity problem: swirling particle cores are at locations where the 4D
vectors p, e and f are coplanar. We call the operator solving this equation the Coplanar
Vectors operator, which reads in the general setting

λ1a+λ2b+λ3c = 0 with λ
2
1 +λ

2
2 +λ

2
3 > 0. (5.16)

In order to show that our approach is reasonable, we study what happens if we re-
quire the flow field v to be steady, i.e., v(x,y,z, t) = v(x,y,z, t0). In this setting, path
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steady unsteady
stream lines stream lines path lines

2D

CRITICAL POINTS

λv = 0
CP finder

can be treated
using [HH89]

TRACKED CRITICAL POINTS

λ1s+λ2e = 0
PV operator

can be treated using
[TS03] and, as proven,

using [SH95, PR99]

SWIRLING PARTICLE CORES

λ1p+λ2e = 0
PV operator

treated in this thesis
can be extracted

using [SH95, PR99]

3D

SWIRLING SL CORES

λ1v+λ2e = 0
PV operator
original idea of

Sujudi/Haimes treated
in [SH95, PR99]

TRACKED SL CORES

λ1s+λ2es +λ3f = 0
CV operator

treated in
[BP02, TSW+05]

SWIRLING PARTICLE CORES

λ1p+λ2es +λ3f = 0
CV operator

treated in this thesis

Table 5.1: Summary of swirling motion in 2D and 3D flows. Depending on the di-
mension of the autonomous system the conditions can be written using the notations of
Critical Points (CP), Parallel Vectors (PV), and Coplanar Vectors (CV).

lines coincide with stream lines and our approach needs to reduce to the steady case,
i.e., the method of Sujudi/Haimes. As the temporal derivative vt = 0, the fourth eigen-
vector becomes f = (0,0,0,−det(vx,vy,vz))T following (5.14), and the coplanarity
condition (5.15) reads

λ1

v

1

+λ2

e3

0

+λ3


0
0
0

−det(vx,vy,vz)

= 0. (5.17)

The last component of this equation requires λ1 = λ3 det(vx,vy,vz). Hence, in the
steady setting our approach reduces to v||e3, i.e., the method of Sujudi/Haimes.

In Figure 5.4 the core of swirling particle motion has been extracted and visualized
for the moving Stuart vortex. In Figure 5.4a the core is shown for t = 0 as a red line.
A number of particles have been seeded uniformly and advected over time. They form
a spiraling pattern around the core line. That is why we call the structures fulfilling
(5.15) swirling particle cores. Additionally, Figure 5.4a shows the core of swirling
stream line motion in blue. It can clearly be seen that the structures are different. Note,
that swirling particle cores of 3D unsteady fields are surfaces, i.e., the particle core
lines of a single time step sweep over time. This is shown in Figure 5.4b where the past
of the core line is encoded in red and its future in gray.

In section 5.3 we will show how to extract swirling particle cores. In the next
section we will give a summary on swirling motion in general.

5.2.3 A Unified Notation of Swirling Motion Cores

As we have seen in the previous sections, one may find swirling motion of

• stream lines in steady fields,

• stream lines in unsteady fields,

• path lines in unsteady fields.
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All three cases can be found in 2D as well as 3D fields, summing up to a total of six
cases. In the following we show how all those cases can be written using a unified
notation.

Let V be the autonomous system of the characteristic curves in question, i.e., v for
the steady case (2.9), s for the stream lines of an unsteady flow (2.8), and p for path
lines (2.7). Let ei be the eigenvectors corresponding to the real eigenvalues of J(V).
The point x is part of the respective core of swirling motion, if V(x) lies in the span of
ei(x). In other words, this reads

λ1V(x)+∑λiei(x) = 0 with ∑λ
2
i > 0. (5.18)

We want to illustrate this: depending on the dimension of V, this is equivalent to

• extraction of critical points in 2D,

• solving the Parallel Vectors operator in 3D,

• solving the Coplanar Vectors operator in 4D.

Table 5.1 illustrates this. The first column of this table covers the steady case, i.e.,
critical point extraction in 2D and the method of Sujudi/Haimes in 3D. They have been
discussed in section 5.1. The third column refers to swirling particle cores as developed
above. It remains to explain the second column where swirling motion of stream lines
in unsteady flows is treated. In the 2D unsteady case, the Parallel Vectors operator is
applied to s and its only real eigenvector e. We need to show that this describes critical
points (foci and centers) tracked over time as discussed in section 5.1. Indeed,

λ1s+λ2e = λ1

u
v
0

+λ2

e1
e2
e3

= 0 (5.19)

requires λ2 = 0 and hence v = (u
v ) = 0, as needed. This means that the Parallel Vectors

operator can be used to track critical points in time-dependent 2D vector fields. In fact,
the critical point in Figure 5.1b has been tracked this way. See also Figures 5.6a-b.

A similar statement holds for the 3D unsteady case, where the Coplanar Vectors
operator is used to describe swirling stream line cores swept over time.

5.3 Extraction of Swirling Particle Cores
In the following we show how to extract swirling particle cores of unsteady 3D flows.
In the next section we re-formulate the coplanarity problem (5.15) using the Parallel
Vectors operator [PR99] – a common tool for feature extraction in the visualization
community, which we will briefly explain in section 5.3.2.

5.3.1 Formulation using Parallel Vectors
We identified cores of swirling particle motion in unsteady 3D flows as locations where
the three 4D vector fields p,es, f are coplanar. This is given by (5.15), which reads
component-wise

λ1


u
v
w
1

+λ2


es

1
es

2
es

3
0

+λ3


f1
f2
f3
f4

= 0, (5.20)
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By setting λ1 = −λ3f4 we can eliminate the fourth component, and the reformulation
reads

λ2

es
1

es
2

es
3


︸ ︷︷ ︸

a

+λ3

f1
f2
f3

− f4

u
v
w


︸ ︷︷ ︸

b

= 0. (5.21)

This is a 3D Parallel Vectors problem. The reformulation a||b is equivalent to the
coplanarity of the vector fields p,es, f, and hence a||b is satisfied exactly at the cores
of swirling particle motion in unsteady flow fields. With this reformulation at hand we
can use the powerful extraction techniques available for the Parallel Vectors operator.

Note that although the eigenvectors corresponding to the eigenvalue zero can be
calculated explicitly using formulae (5.9) and (5.14), it is more stable to calculate all
involved eigenvectors using an eigenvector solver, especially in degenerate cases where
det(vx,vy) = 0 in 2D or det(vx,vy,vz) = 0 in 3D.

5.3.2 Extraction using Parallel Vectors
Applying the Parallel Vectors operator to our problem yields lines sweeping over time,
i.e., surfaces in the 4D space-time domain. Different methods of extracting these sur-
faces exist [BP02, TSW+05] – both being extensions of the original approach presented
in [PR99], which can be summarized as follows: to extract the solution lines for a spe-
cific time step, one has to iterate over all faces of the grid and search for points where
a||b. For example, in a triangle (being the face of a tetrahedral mesh) one can find such
points by solving a certain three-by-three eigenvalue problem. The extracted points
have to be connected to lines in a post-processing step by considering the solution
points at the faces belonging to the same volume element (tetrahedron, voxel, etc.). On
volume elements with more than two adjacent solutions, a decision is necessary which
points should be connected. We use a simple angle criterion: the line segments with
the smallest angle to each other are connected.

As Peikert et al. [PR99] already pointed out, one expects swirling stream line cores
to point in direction of the flow field, but the parallelity condition a||b does not ensure
this. Indeed, the solution lines can be orthogonal to the input vectors. Whenever this
is not desired, one can filter the output such that only lines are displayed that do not
exceed a defined threshold angle towards a, or b. For both the swirling stream line and
particle cores we use the angle between the solution lines and e as a criterion.

Note that the extraction of core lines of swirling motion is nonlinear in general,
since eigenvectors do not depend linearly on the input fields. While this makes the
extraction using linear techniques more difficult in general, we found that filtering the
resulting lines by length was sufficient to rule out the nonlinearity.

5.4 Galilean Invariance of Swirling Particle Cores
Peikert has shown that swirling particle cores are Galilean invariant [Pei08]. We give
his proof here in full detail. To this end we show that (5.21) is equivalent to e||vt +∇v ·v,
the particle acceleration (2.14).

To show the equivalence, we show both implications. Let e||( f1, f2, f3)T − f4v
hold. This means, ( f1, f2, f3)T − f4v is the only eigenvector of ∇v corresponding to a
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real eigenvalue.

λ

 f1
f2
f3

− f4v

 = ∇v

 f1
f2
f3

− f4v

 (5.22)

= − f4vt − f4∇v · v (5.23)
= − f4 (vt +∇v · v) (5.24)

because ∇pf = 0 and therefore ∇v( f1, f2, f3)T− f4vt = 0. Hence, vt∇v ·v and ( f1, f2, f3)T−
f4v point in the same direction.

To show that the converse is true, let vt + ∇v · v be the only eigenvector of ∇v
corresponding to a real eigenvalue. By multiplying with f4 we obtain

− f4∇v(vt +∇v · v) = − f4λ (vt +∇v · v) (5.25)
= λ (− f4vt − f4∇v · v) (5.26)

= λ

∇v

 f1
f2
f3

− f4∇v · v

 (5.27)

= λ∇v

 f1
f2
f3

− f4v

 . (5.28)

I.e., ( f1, f2, f3)T − f4v and vt +∇v ·v is mapped to the same one-dimensional subspace.
As the eigenspace of ∇v corresponding to the only real eigenvalue λ is necessarily
one-dimensional, ( f1, f2, f3)T − f4v and vt +∇v · v are parallel, as desired.

As the particle acceleration vt +∇v · v is Galilean invariant (see Section 2.4.2), the
formulation e||vt + ∇v · v is Galilean invariant. Hence, the notion of swirling particle
cores is Galilean invariant.

5.5 Applications
As we use the Parallel Vectors operator for the extraction of swirling particle cores,
we refer the reader to the literature [PR99] for the discussion of timings and memory
consumption. In our implementation, a single time step of dimension 1283 is processed
in a single thread in about 15 seconds on an AMD64 X2 4400+.

In 3D unsteady flows, swirling particle cores are lines sweeping over time, i.e., 4D
surfaces. In the previous sections we used semi-transparent surfaces to encode past and
future (e.g. Figure 5.4b). However, for more complex data sets these surfaces might
contain self intersections. We found that displaying the core lines only – at a certain
time step or in an animation – results in clearer visualizations in most cases.

In Figures 1.1b and 5.5 we applied our method to the Hurricane Isabel data set
from the IEEE Visualization 2004 contest. This is a complex 3D time-dependent data
set produced by the Weather Research and Forecast (WRF) model. Figure 1.1b shows
the unfiltered extraction result at t = 33.5 consisting of 1533 core lines. We have chosen
to filter all lines shorter than 10% of the diagonal of the bounding box. The result is the
single swirling particle core line in the eye of the hurricane – verified by the volume
rendering of the cloud moisture (Figure 5.5).

Figure 5.6 shows an unsteady flow over a 2D cavity. This data set was kindly
provided by Mo Samimy and Edgar Caraballo (both Ohio State University) [CSJ03] as
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Figure 5.5: Hurricane Isabel data set at t = 33.5. Shown are the dominating swirling
particle core line (red) and a volume rendering of the cloud moisture mixing ratio.
Orthographic view from top showing the dominant particle core (red) in the center of
the clouds.

well as Bernd R. Noack and Ivanka Pelivan (both TU Berlin). 1000 time steps have
been simulated using the compressible Navier-Stokes equations. The data is almost
periodic, with a period of about 100 time steps in length, and only the first 100 time
steps are shown.

As shown in section 5.2.3, the Parallel Vectors operator can be used to track certain
critical points (foci and centers) over time. Figures 5.6a-b exemplify this: the blue
lines denote swirling motion of stream lines – once extracted by tracking critical points
using Feature Flow Fields and once by applying the Parallel Vectors operator. Both
results coincide very well. Note that additionally Figure 5.6a shows tracked saddle
points as yellow curves. Figure 5.6c stresses again the difference between swirling
particle and stream line cores: the blue swirling stream line core goes through the
center of spiraling stream lines at a specific time step (shown as LIC plane), but it does
not lie in the center of spiraling path lines (shown as illuminated lines). Since unsteady
motion is described by path lines, existing approaches fail to capture swirling motion
in unsteady flows correctly: they are based on stream lines. Our approach captures this
behavior correctly as shown by the red swirling particle core. Figure 5.6d shows the
181 extracted particle core lines, where the majority (154) is shorter than 3.5% of the
diagonal of the bounding box and has been filtered accordingly. Figure 5.6e shows the
filtered result.

Figure 5.7 demonstrates the results of our method applied to a flow behind a cir-
cular cylinder. The data set was derived by Bernd R. Noack (TU Berlin) from a direct
numerical Navier Stokes simulation by Gerd Mutschke (FZ Rossendorf). It resolves the
so called ‘mode B’ of the 3D cylinder wake at a Reynolds number of 300 and a span-
wise wavelength of 1 diameter. The data is provided on a 265× 337× 65 curvilinear
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(a) Time evolution of
critical points.

(b) Swirling stream line
cores.

(c) Close-up of a swirling particle core (red) in comparison to a swirling
stream line core (blue).

(d) Swirling particle cores as
identified by our new approach.
Short, filtered lines are depicted
in gray.

(e) Illuminated path lines verify that
our cores are centers of swirling
particle motion.

Figure 5.6: Unsteady flow over a 2D cavity. Red and green axes span the spatial
domain, the blue axis denotes time.

grid as a low-dimensional Galerkin model. The flow exhibits periodic vortex shedding
leading to the well known von Kármán vortex street [ZFN+95]. This phenomenon
plays an important role in many industrial applications, like mixing in heat exchangers
or mass flow measurements with vortex counters. However, this vortex shedding can
lead to undesirable periodic forces on obstacles, like chimneys, buildings, bridges and
submarine towers.

Figures 5.7a-b show particles seeded at a vertical line on the left-hand side of the
bounding box. Due to the periodic vortex shedding these particles form patterns of
swirling motion after some integration steps – a clear indication of the von Kármán
vortex street. These patterns perfectly match up with the cores of swirling particle
motion (red) extracted using our method (filtered by angle criterion with |cos(`,e)| <
0.3 and by length with 0.1%). Figure 5.7c shows stream lines at a certain time step
as depicted by the LIC plane: existing approaches based on stream lines have to fail
to detect the von Kármán vortex street here, since the original frame of reference does
not exhibit any spiraling stream lines. However, our method is based on the behavior
of path lines and captures the vortex street correctly. Stream line based approaches
are able to capture the features only if one chooses a reference frame matching their
convection velocity. In this frame of reference, swirling motion of stream lines is
present and its cores can be extracted by the method of Sujudi/Haimes. This has been
done in Figure 5.7d by applying a priori knowledge [ZFN+95]. As a reference, the
swirling particle cores (red) are also displayed. The extracted structures are very close
to each other (Figure 5.7e). However, our method is able to extract these features in the
original frame of reference without a priori knowledge.
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(a) Swirling particle cores (red lines) at a certain time step. The additionally shown particles verify that our
core lines are at the centers of swirling particle motion.

(b) Particles are injected constantly at the
vertical line on the left-hand side of the
bounding box and advected over time. They
form patterns of swirling motion indicating
the von Kármán vortex street.

(c) Stream lines at a certain time step visualized
using a LIC plane. Swirling motion of stream
lines can not be observed in the original
frame of reference.

(d) In an appropriately chosen frame of reference, swirling motion of
stream lines is present (indicated by the LIC plane). The extracted
swirling stream line cores (blue) are displayed together with the
swirling particle cores (red) of the same time step.

(e) Close-up of (d).
Although extracted with
different methods in
different reference
frames, the extracted
lines are very similar.

Figure 5.7: 3D unsteady flow behind a cylinder. Existing stream line based approaches
fail to capture swirling motion cores in the original frame of reference. Our new path
line based method is able to extract such features without a priori knowledge.
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In Chapter 3 we gave an overview of several vortex region and vortex core line
techniques. While the vortex core line techniques are very intuitive, as vortices can
be easily imagined as lines around which particles rotate, the vortex region techniques
are physically more rigorous, both as they are derived from Navier-Stokes (e.g. λ2), as
well as they obey several invariances (Galilean invariance vor λ2 and Q, objectivity for
MZ).

This part of the thesis is devoted to marrying the two approaches by extracting ex-
tremal lines of scalar vortex region quantities serving as vortex core lines. The motiva-
tion of this technique is the usual approach of fluid mechanicists to examine unknown
data. Most often, isosurfaces of λ2 are used at various thresholds ranging from low
to high magnitude. In this way, the extent and location of isosurfaces is most easily
grasped by direct visualization means.

Following this motivation, we extract extremal lines of the scalar quantities au-
tomatically, as extremal lines are lines around which isosurfaces collapse. They are
centers of isosurfaces. Several mathematical definitions for extremal lines exist. The
most common is the height ridge definition, a definition from differential geometry.
The extraction method described in chapter 6 uses third derivatives of the scalar func-
tion and is therefore rather susceptible to noise requiring very small stepsizes even in
moderately noisy datasets. This leads us to the necessity of reducing the involved de-
gree of derivatives. In chapter 7 we define extrema given by the watershed definition
by using just first derivatives. This boosts both robustness, speed and accuracy of the
extraction process considerably, allowing us to process large datasets as the two param-
eter study of a high lift configuration with active flow control in chapter 8. In chapter 9
we extract extremal structures without any use of derivatives. For this challenging task
we step back from 3D to 2.5D and extract extremal lines of scalar fields defined on sur-
faces. Here, a special focus is put on salient surface features related to surface crests.
it is left for future research to generalize this one-parameter-dependent, derivative-free
extremum line extraction scheme to 3D.



74



Chapter 6

Galilean Invariant Extraction of
Vortex Core Lines

In this chapter we present an approach to extracting vortex core lines that is invariant
under Galilean changes of the reference frame (cf. section 2.4.1). I.e., the extracted
features remain unchanged when a constant vector is added to the flow field. Instead
of using swirling stream line behavior as indication of a vortex core line, we consider
ridge or valley lines of Galilean invariant vortex region quantities (Figure 6.1c). Previ-
ous prominent approaches, as those of Sujudi/Haimes [SH95], see Section 3.2.1, and
Roth/Peikert [RP98], see Section 3.2.3 are dependent on the reference frame: Some
specially chosen reference frame may result in a vortex core line, but when the spec-
tator changes the reference frame significantly (for instance by moving faster than the
mean velocity of the field), the feature vanishes. Figure 6.1 shows this dependence on
the reference frame for the method of Sujudi and Haimes.

Furthermore, we show that those line type features have a higher dimensional gen-
eralization, e.g., surfaces.

The chapter is organized as follows: While section 6.1 treats the theory of ridge
and valley lines, section 6.2 deals with implementation issue for their extraction. In
Section 6.3 we present an iconic representation for vortex core lines that encodes the
most relevant information like strength of the coherent structure as well as rotation
direction. We apply our technique to several data sets in section 6.4.

6.1 Ridges and Valleys for Vortex Core Lines

We suggest a combination of the vortex region approaches (cf. section 3.1) and vortex
core line approaches (cf. section 3.2) by extracting vortex core lines of vortex region
quantities like Q and λ2 and identify those lines by certain maximal lines of Q called
ridge lines where Q > 0 and certain minimal lines of λ2 where λ2 < 0 called valley
lines. In [PR99] it is pointed out how to extract such extremum lines using the parallel
vectors operator. We use the Feature Flow Field approach due to [TS03] detailed in
section 6.2.

By extracting vortex core lines in this way, we combine the Galilean invariance of
the vortex region detection with the parameter independence of the vortex core line
extraction.
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(a) Original frame of reference. Vortex core lines
following the approach of [SH95, PR99].

(b) Alternative frame of reference. Vortex core lines
following the approach of [SH95, PR99].

(c) Our Galilean invariant approach. Vortex core lines extracted as valley lines of λ2.

Figure 6.1: Flow behind a circular cylinder. Vortex regions visualized as transparent
isosurfaces of λ2. Vortex core lines displayed as cylindrical lines.

With the Definition 1 (see page 29) of d-dimensional ridges at hand we can define
d-dimensional Galilean invariant vortex cores.

Definition 3 Let s be a Galilean invariant vortex region quantity. In regions where s
identifies a vortex, a d-dimensional Galilean invariant vortex core with respect to s
is defined as d-dimensional

ridge
valley

}
of s if

{
large
small

values of s indicate a vortex.

We concentrate on extracting 1-dimensional vortex cores that we suggest as an
alternative definition of vortex core lines. Nevertheless, 2-dimensional vortex cores are
interesting features for future research.
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vortex region quantity vortex range vortex core type
p [0,∞) valley
‖ω‖ (0,∞) ridge

∆ (0,∞) ridge
Q (0,∞) ridge
λ2 (−∞,0) valley

Table 6.1: Vortex region quantities pressure p (might also be negative, as often relative
pressure is considered), vorticity ω , rotation strength ∆ from [SP03], Q-criterion and λ2
criterion with the value range in which they indicate vortices. Vortex cores according
to definition 3 are either ridges or valleys as shown in column 3.

Several vortex region quantities s and their vortex indicating value ranges are dis-
played in Table 6.1. This table also shows, whether vortex cores with respect to s are
ridges or valleys of s.

6.2 Extraction of Vortex Core Lines
Let s be a vortex region quantity as used in Definition 3. We use the Feature Flow
Field extraction scheme from [TS03] to extract the vortex core lines with respect to s
as defined in the previous subsection.

The Feature Flow Field scheme involves two steps: In the first step certain points
are extracted that lie on the extremum lines of interest. Those points are used as seed
points in the second step by extracing the extremum lines as field lines of a derived
flow field, the so called feature flow field. The following subsection is devoted to these
two issues.

Afterwards we address interpolation issues in Subsection 6.2.2. The applications
we show in Section 6.4 are based on flow fields that are interpolated from uniform grid
data. We found that the widely used trilinear interpolation is not well suited for ridge
extraction.

6.2.1 Feature Flow Field Setup
Again, we concentrate on the extraction of ridge lines. From Definition 1 in the previ-
ous subsection, we know that we have to extract regions where A = B = 0,γ2 < 0.

Assuming a point x ∈R3 fulfills this requirement, the tangent direction of the ridge
x lies on can be computed as follows. As ∇A is orthogonal to the isolines of A and
∇B is orthogonal to the isolines of B, the ridge tangent is T := ∇A×∇B. The ridge
line passing through x is then exactly the field line of T passing through x. So T is
the feature flow field we are looking for. We extracted the ridge lines by Runga-Kutta-
integration of T . Although T involves derivatives of high degree, we still found that
integrating the features was stable.

Now we are left with computing T and finding seed points x.

Finding Seed Points

We are searching for zeros of the mapping x 7→ (A,B) from R3 → R2. As we expect
the zeros to be one dimensional, we can restrict the search to two dimensional subsets
of the domain, e.g., the faces of some underlying structured or unstructured grid. This
reduces the problem to finding roots of a function R2 → R2. For this setting, several
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Newton solvers can be applied, involving further differentiation. As A = (∇ f )c1 and
B = (∇ f )c2 already involve second derivatives of f , we favoured a gradient free mini-
mization of the positive function x 7→ A2 +B2 which turned out to be more stable. We
used the method described in [Ebe96] based on Powell’s search [Pow64] and inverse
parabolic interpolation [PFTV91].

Computing the feature flow field

The computation of the feature flow field T := (∇A)× (∇B) is quite involved. First
of all, it is not trivial to state ∇A and ∇B explicitly in terms of the derivatives of f .
Furthermore, A and B might be discontinuous at places where γ1 = γ2, so called partial
umbilics. At such places the eigensystem γi is not unique, because the 2-dimensional
eigenspace corresponding to γ1 = γ2 allows a range of orthonormal bases. [Ebe96]
provides a remedy for this issue. As those findings are central to our algorithm, we
state the ridge direction computed therein. The ridge tangent T is given by

T = Ã× B̃. (6.1)

Here, Ã, B̃ ∈ R3 are given by

Ãi
B̃i

}
=

{
γ1c1i +

(∇ f )c3
γ1−γ3

∑ j,k c1 jγ3k∂xi∂x j ∂xk f

γ2c2i +
(∇ f )c3
γ2−γ3

∑ j,k c2 jc3k∂xi∂x j ∂xk f
. (6.2)

In [Ebe96] it is shown that T is only defined up to sign, whenever the ridge passes a
partial umbilic γ1 = γ2. So in practice, when following a ridge by integrating T , the
current ridge direction t1 is compared to the previous ridge direction t0 and replaced by
−t1 if the Euclidean scalar product t1 · t0 < 0, i.e., if two subsequent ridge directions
differ by an angle greater than π

2 .

6.2.2 Interpolation issues
For ridge and valley line extraction, gradient and Hessian of vortex region quantities s
have to be computed at arbitrary locations. As s usually involve derivatives of the flow
to be Galilean invariant, the Hessian Hs involves third derivatives of the flow field.
[PR99] states that extracting extremum lines requires careful filtering of the input field.
We suggest here to use an appropriate interpolation scheme to remedy this problem.

Interpolating s trilinearly appeared to be both unstable and ineffective. Although
some features were roughly recognized, most of them were missed completely. This
is not surprising due to the high degree of smoothness required by the setting, and the
fact that extremum lines are typically quadratic features that can not be resolved well
by trilinear interpolation. Due to this, quadratic schemes seem a natural choice. Among
those, approximation by quadratic super splines (see [RZNS04]) provides a good trade-
off between smoothness and speed. As the polynomials involved are of total degree 2,
(6.2) simplifies significantly, as here ∂xi∂x j ∂xk f = 0 for all i, j, k and hence, (6.2) can
be restated as follows:

ÃQSS = γ1c1, B̃QSS = γ2c2, (6.3)

and, if ∇ f 6= 0, the ridge tangent T from (6.1) evaluates to

TQSS = γ1γ2c1× c2 = const ·∇ f , (6.4)

conforming to the intuitive understanding of a ridge direction as stated in subsection
6.1. This makes quadratic super splines a somewhat natural choice.
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(a) Color. (b) Scale. (c) Twist.

(d) Orbit. (e) Composed: Color & Twist. (f) Composed: Color & Scale &
Orbit.

Figure 6.2: Different approaches to encoding a scalar value into the representation of a
line.

6.3 Iconic Representation
To visualize vortex core lines, we use cylindrical meshes and encode different scalar
values into their representation. Figure 6.2 illustrates this. In figures 6.2a-b we color
or scale the cylinder according to the mapped values. Figures 6.2c-d encode sign and
strength of a rotational behavior, either by using colored stripes on the cylinder itself or
by placing a spiral shape around it. Our implementation allows us to combine these four
variations as shown in figures 6.2e-f and 2.6b. Note, that not all possible combinations
produce expressive results. Especially the usage of an orbit (figure 6.2d) tends to yield
cluttered visualizations in more involved settings.

While those kinds of representing a line are quite common, we are still left with
finding appropriate measures to be mapped onto our Galilean invariant vortex core
lines. [JMT02] depicts spiraling stream lines around a Galilean variant vortex core
line. As we aim at Galilean invariant vortex core lines, this approach is not directly
applicable. [SP03] extracts and displays vortex hulls similar to isosurfaces of ∆ (see
section 3.1) around a vortex core line.

We propose the following measures to be used for an iconic representation of
Galilean invariant vortex core lines:
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Figure 6.3: Flow behind a circular cylinder. Iconic representation of Galilean invariant
vortex core lines. λ2 was used for extraction and is encoded into color and scale of the
cylindrical meshes. Red / blue color is used to indicate strong / weak vortex activity. ϕ

is encoded into color and spiral direction of the orbits.

• Strength/Value of vortex region quantity s: Our vortex core lines are linked di-
rectly to a vortex region quantity s and their extremum property with respect to
s ensures that no regions indicating stronger vortex activity exist away from the
extracted features. Furthermore, the value of s varies along a line. To distin-
guish between (parts of) core lines with different vortical activity, the value of
s should be encoded in the line representation. We found coloring and scaling
most suitable for this.

• Sign of rotation angle ϕ: As shown in section 3.1, the rotation angle ϕ is derived
from the Jacobian of the vector field. Its sign gives the direction of rotation of a
vortex. As a visual encoding for this, the usage of color, twist or an orbit seems
to be most appropriate.

• Strength of rotation ∆: This measure indicates the strength of spiraling patterns
in the right reference frame. We found the usage of color, twist or an orbit most
suitable for this.

We apply these visualization strategies in different combinations in the next section.

6.4 Applications
Figures 6.1 and 6.3 visualize a snapshot of a transitional wake behind a circular cylinder
[ZFN+95]. This data set was derived from a direct numerical simulation of the Navier-
Stokes equation by Bernd R. Noack (TU Berlin). It is given on a 88×106×20 uniform
grid. The data resolves the so-called ‘mode A’ of the 3D transition at a Reynolds
number of 200 and at a spanwise wavelength of 4 diameters. This flow exhibits periodic
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(a) Visualized using illuminated field lines [ZSH96]
and a LIC-textured stream surface [BSH96].
Vortex core lines following the approach of
[SH95, PR99] displayed as gray lines.

(b) Isosurfaces of λ2.

(c) Galilean invariant vortex core lines. (d) Comparison between λ2-isosurfaces and our
vortex core lines. View from top.

Figure 6.4: Bubble chamber. Vortex core lines extracted, colored and scaled according
to λ2. Same colormap as in figure 6.3.

vortex shedding leading to the well known von Kármán vortex street. This phenomenon
plays an important role in many industrial applications, like mixing in heat exchangers
or mass flow measurements with vortex counters. However, this vortex shedding can
lead to undesirable periodic forces on obstacles, like chimneys, buildings, bridges and
submarine towers. The chain of vortices with their alternating orientation of rotation
is clearly depicted in figure 6.3 due to the usage of spiraling orbits. This is a major
property of the von Kármán vortex street. Furthermore, it can be seen that downstream
the vortices lose their strength.

Figure 6.4 shows the geometry of a bubble chamber and its interior flow. The flow
has been measured experimentally on a 11× 11× 10 uniform grid by a biplanar x-
ray angiography in a biofluidmechanics laboratory. The bubble chamber is used as a
biochemical reactor. Air injection into the liquid through holes in the floor plate is used
to improve the reaction. The dataset was provided by Axel Seeger, Biofluidmechanics
Lab, Charite Berlin. Figure 6.4a shows a Galilean variant vortex core line according
to [SH95, PR99] around which the flow spirals. Figure 6.4b shows isosurfaces of λ2
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corresponding to different isovalues. In Figure 6.4c, the vortex core lines with respect
to λ2 extracted by our method are shown, sized and colored corresponding to λ2. Figure
6.4d is a combination of Figures 6.4b and 6.4c looking into the bubble chamber from
above. This figure clearly shows that our approach yields vortex core lines in the center
of the considered vortex region quantity.

Figure 6.5 shows the transitional flow around a backward-facing step. The flow
field is obtained from a numerical simulation of Kaltenbach and Janke (both TU Berlin)
at a Reynolds number of ReH=3000 based on oncoming velocity and on step height.
The corresponding boundary conditions are described in [KJ00]. The data set is given
on a 266× 64× 128 rectilinear grid. Figure 6.5a shows stream lines of the velocity
field with respect to the original frame of reference. The vortex region quantity Q
is visualized in figure 6.5b. This already gives an overview of the vortical structures
inherent to this flow, but the visualization strongly depends on the choice of a trans-
fer function. Figures 6.5c-d elucidate the dominant vortical structures by scaling and
coloring the vortex core lines according to Q. This clearly shows that the depiction
of Galilean invariant vortex core lines yields expressive visualizations even for very
complex settings.

6.5 Limitations
A drawback of our method is that it requires second order derivatives. Due to the
ill-conditioning of derivative computation this makes the method rather susceptible to
noise. Hence, step sizes both in the zero search and in the integration must be chosen
quite small for acceptable precision. Furthermore, as can be seen in Fig. 6.5d, this can
result in imprecise starting points even for small step sizes. Here the spanwise Kevin-
Helmholtz vortices in front of the turbulent region are extracted as multiple parallel
vortex core lines, rather than just one vortex as would be desired.

Hence, extremum line extraction method with fewer derivatives is desirable. Such
a method is developed in the next chapter. It is based on scalar field topology using just
first derivatives.
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(a) Visualized using illuminated field lines with
curvature-based seeding [WT02, WHN+03].

(b) Volume rendering of Q.

(c) Galilean invariant vortex core lines.

(d) Close up.

Figure 6.5: Flow around a backward-facing step. Vortex core lines extracted, colored
and scaled according to Q.
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Chapter 7

Vortex and Strain Skeletons

In this chapter, we extend the works of Miura et al. [MK97] and Sahner et al. [SWH05a]
(see chapter 6) by extracting zero-, one- and two-dimensional extremal vortex features
as the vortex skeleton in a Galilean invariant way, see Figure 7.1 for a motivating ex-
ample. Prior to the development of this approach, all vortex core line extraction tech-
niques aimed at the extraction of one dimensional vortex features, see chapter 3 for an
introduction.

While vortex activity has been a research focus for many years, comparatively little
is known about the extraction of features that can be identified with mixing properties
of the flow. Mixing is actively researched in many fields, for instance in burning cham-
bers where fuel and oxygen injection has to be synchronized for optimal combustion.
Vector field topology – introduced to the visualization community by Helman et al.
[HH89] – can be used for mixing detection, as saddle points are indicators for strain
in the flow, as well as boundary switch and saddle connectors extracted by Theisel and
Weinkauf [TWHS03, WTHS04a]. These are the intersection lines of 2D separatrices
showing between which saddles and boundary regions particle transport takes place.
Topological methods based on the flow field itself are not Galilean invariant, a property
that in many cases is considered necessary from the physical point of view.

In this chapter we identify specific, derived scalar quantities of the flow that have
a duality property: they detect vortex and strain regions simultaneously. By extracting
extremal points, lines and surfaces of those properties we achieve Galilean invariant
strain features that together assemble the strain skeleton. With those extracted features
at hand we aim at tracking and comparing those structures in the future. However, this
is beyond the scope of this work. We concentrate on the mere extraction and do not
address possibilities of post processing the extracted structures. The extraction utilizes
just first derivatives of the derived scalar quantities. This results in a considerable boost
of robustness as compared to ridge line based approaches that require second or even
third derivatives.

This chapter is organized as follows: In section 7.1 we clarify the notion of dual
vortex and strain quantities and identify two criteria that meet this requirement. In
section 7.2 we define vortex and strain skeletons as the collection of certain extremal
structures of these quantities. We show how separation properties can be utilized to
quantify the extent of vortex and strain features. Implementation issues of the extremal
extraction are given in section 7.3. Finally, we apply our methods to a number of steady
and unsteady data sets in section 7.4.
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Figure 7.1: A closeup of the cylinder dataset showing vortex regions with transparent
isosurfaces of Q. The approach presented in this chapter aims at extracting 1d and 2d
extrema of duality quantities like Q. The lines shown here are the maximum lines of Q
where Q > 0 extracted by our methods. The lines are scaled by their Q-value and can
be regarded as centers of isosurfaces. The correspondence of the lines in the center of
the swirling motion shown in the LIC plane justifies the notion of vortex core lines.

7.1 Dual Vortex and Strain Quantities
Inherent to the decomposition of the flow field gradient ∇v into S and Ω from (3.1) is
the following duality: vortical activity is high in regions where Ω dominates S, whereas
strain is characterized by S dominating Ω.

In order to identify vortical activity, Jeong et al. used this decomposition in [JH95]
to define the vortex region quantity λ2 as the second largest eigenvalue of the symmetric
tensor S2 +Ω2. Vortex regions are identified by λ2 < 0, whereas λ2 > 0 lacks physical
interpretation. λ2 does not capture stretching and folding of fluid particles and hence
does not capture the vorticity-strain duality detailed above.

In the following subsections we discuss two quantities which utilize the decompo-
sition of ∇v to identify not only vortices but also strain regions. This duality property
of those quantities will later be used in section 7.2 to define 0D, 1D and 2D vortex and
strain features that together assemble the corresponding feature skeletons.

7.1.1 The Okubo-Weiss Criterion
Whenever the Okubo-Weiss criterion Q := 1

2 (‖Ω‖2−‖S‖2) (see Sec. 3.1.1) is positive,
the vorticity magnitude dominates the rate of strain, indicating a vortical region. Like-
wise, negative values indicate the dominance of strain over vorticity. We will use this
duality property of the Okubo-Weiss criterion to extract vortex and mixing features.

See Figure 3.1 on page 32 for an example at the cylinder dataset. In this figure
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Figure 7.2: MZ-criterion of the periodic ABC-flow. Darker colors indicate higher
ellipticity times. Some path lines used for computing MZ are shown: hyperbolic points
are colored blue, elliptic points are red.

and throughout this chapter, we use red colors to denote vortex features. Blue color
will stand for strain features. The data set was derived by Bernd R. Noack (TU Berlin)
from a direct numerical Navier Stokes simulation by Gerd Mutschke (FZ Rossendorf).
It is a 3D time-dependent Galerkin approximation in the time range [0,2π]. It will be
explained in detail in section 7.4. We use this data set throughout the next sections to
illustrate our techniques.

7.1.2 The MZ-Criterion
The qualitative property stated in the end of section 3.1.3 is a duality property of MZ
similar to that of the Okubo-Weiss criterion. Note that the duality of vortex and strain
activity is intrinsic to the MZ-criterion, as MZ is solely based on a strain analysis.
Hence, Haller defines a vortex as lack of strain.

The computation of MZ relies on the computability of the positivity of 〈ξ ,Mξ 〉 on
Z. We address the implementation issues next.

7.1.3 Implementation of MZ

For 3D time-dependent flows, the MZ-criterion defines a 3D time-dependent scalar
field which can be computed as follows:

Figure 7.2 shows a volume rendering of MZ of the analytic ABC-flow as used by
Haller in [Hal05]. Note how the saddle-like behavior of the path lines corresponds to
hyperbolic (blue) points. However, it also shows a drawback of the method, as the path
lines might leave the domain in non-analytic fields before the maximum integration
time is reached. Further challenges can be seen in finding a suitable seeding set for
path line integration and the determination of the maximum integration time TP. Both
aspects are open research issues regarding MZ.

For an implementation of the above algorithm, the computation of the positivity
of 〈ξ ,Mξ 〉 on the zero strain cone Z in step 3a remains to be clarified. Haller argues
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At each time step ti

1. Generate a set of seeding points for path line integration. This may be the original
grid at ti, a subset thereof, or the grid points of a uniform grid defined in a region
of interest.

2. Integrate path lines for TP seconds. We use a 4th-order Runge-Kutta integration
with adaptive step size.

3. For each path line x(t) started at seeding point (x0, ti)

(a) Decide for each point on the path line if it is elliptic or hyperbolic (Figure
7.2).

(b) Add up all times where the path line is elliptic and associate this total time
value to x0 at time ti.

that Z can be described by an elliptic cone using the eigenvectors e1,e2,e3 of the strain
tensor S and its corresponding eigenvalues s1,s2,s3, ordered such that

signs1 = signs2 6= signs3, |s|1 ≥ |s|2. (7.1)

Then writing M in strain basis

M̂ = (e1 e2 e3)
t M (e1 e2 e3) , (7.2)

due to the symmetry of Z, the positivity of 〈ξ ,Mξ 〉 is equivalent to positivity of the
one-parameter function

m(α) = M̂11bcos2
α + M̂22asin2

α + M̂33ab (7.3)

+
√

ab
(

2M̂13
√

bcosα

+2M̂23
√

asinα + M̂12 sin2α

)
for all α ∈ [0,2π], where

a =− s1

s3
, b = 1−a, (7.4)

see [Hal05] for details. The performance of the positivity check of m on the interval
[0,2π] is of crucial importance for the overall performance of the MZ-computation, as
this check has to be performed dT ·nS ·nT times, where dT is the number of time steps,
nS the number of seeds per time step, and nT is the average number of sample points
on a path line. We found that checking for zeros of m using bisection combined with
a first-order derivative estimation speeds up the computation about 3 times compared
to equidistantly spaced sign checks. However, compared to the Eulerian Q-criterion
which can be computed in seconds, the Lagrangian approach of the MZ-criterion is
much more time-consuming. For 1283 seeding points the computation time can be up
to two hours per time step on modern hardware.
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Figure 7.3: Isosurfaces are not well suited for higher dimensional extremum extraction:
Gray isosurface Q = 0 is too far away from strongest vortex activity indicated by the
shown extremum lines (red). Yellow isosurface Q = 2.7 splits up and misses some
regions at all. The maximum lines of Q (red) show location and extent of the vortices
correctly.

7.2 Vortex and Strain Skeletons
We aim at the identification of structures of high strain and vortical activity utilizing
the criterions discussed in section 7.1. Common parameter-dependent visualization
techniques like volume rendering or extraction of isosurfaces are not best suited for
this due to the following reasons:

• These approaches require the choice of isovalues or transfer functions, which
raises the question of how to choose these parameters appropriately.

• Isosurfaces tend to give wrong answers when it comes to examining the extent of
vortices or strain regions since for certain isovalues they split up even inside such
regions. For a visualization of the Q-criterion one may choose an isovalue of
Q = 0 since this separates vortex and strain regions. However, from the resulting
visualizations one can usually not infer the regions of strongest activity since
typically the surfaces are too far away from those centers (Figure 7.3).

• Volume rendering is a purely qualitative technique which lacks the availability
of sharp geometric features that can be used e.g. to measure distances between
vortices.

To avoid these difficulties we choose to extract extremal features of Q and MZ. Due to
their duality we identify the following features:

• The 0D, 1D and 2D minimal features of those quantities are points, lines and
surfaces of maximal strain.

• The 0D, 1D and 2D maximal features of those quantities are points, lines and
surfaces of maximal vortex activity.

One further property must be regarded for Q: only maximal features for which Q > 0
should be regarded as vortical features. On the other hand, only minimal features for
which Q < 0 should be regarded as strain features. It is not clear if such a natural
border exists for the MZ-criterion. The most natural choice might be 1

2 TP, the half path
line integration time, as there the hyperbolic and elliptic times on the path line balance.
However, the actual integration time of each path line may be smaller than TP since
they can leave the domain earlier.
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7.2.1 Extremal Feature Definition using Scalar Topology
We choose to compute these extremal features by means of a continuous extraction of
scalar topology, see Sec. 2.5.1. The utilization of scalar field topology for extremal
feature extraction has various advantages: The computation of separatrices as stream
lines and stream surfaces of the gradient field is well understood, and stable tools exist
for this purpose, see [GTS+04a, KOD+05] and section 7.3. No higher than first deriva-
tives of the scalar field are being used, resulting in more stable algorithms as opposed
to curvature based methods. Also, recent advances in scalar topology allow topolog-
ical simplification of three-dimensional scalar fields using the Morse-Smale-Complex
[GNP+05], answering the question, which topological features are most persistent.

All topological separatrices are of global nature. E.g., it is impossible to decide if
a given point lies on a watershed by a local analysis.

By the separation property of watersheds and watercourses, watercourses of Q still
have a meaning where Q > 0: although they can not be regarded as strain structures
there, they still separate two regions of maximal vortex behavior (and analogously
for maximal structures where Q < 0). By using this separation property of minimum
surfaces and neglecting their meaning as a strain structure, we can separate vortex
regions from each other, and analogously for strain regions, see Figure 7.5. Using the
notion of watersheds we define

Definition 4 (Vortex and Strain Skeletons)

1. The strain skeleton is the collection of minima, minimum lines and minimum sur-
faces of the duality quantities Q (where Q < 0) and MZ. The minimum surfaces
partition the flow into vortex domains.

2. The vortex skeleton is the collection of maxima, maximum lines and maximum
surfaces of the duality quantities Q (where Q > 0) and MZ. Following the notion
of [SWH05a], lines in the vortex skeleton of Q are Galilean invariant vortex
core lines with respect to Q. The maximal surfaces partition the flow into strain
domains.

We argue to call the surfaces in the strain skeleton strain surfaces. Accordingly,
surfaces in the vortex skeleton are called vortex surfaces as direct generalization of
the approach in [SWH05a] where Galilean invariant vortex core lines are extracted
as extremum lines of vortex region quantities. By intuition, a vortex is a line with
spiralling streamlines around it, but this is not necessarily the case for all vortices, see
[JH95].

Figure 7.4 shows how the vortex and strain skeletons of Q can be used for hierar-
chical feature display, considering a subregion of the cylinder dataset as an example.
Throughout this chapter, all strain structures are colored blue. Vortex structures are col-
ored red. In 7.4a, minima and minimum lines scaled according to the scalar value of Q
give a powerful overview of the strain structures, showing the most prominent features
in one view. In 7.4b, the complete strain skeleton is shown. The additionally displayed
surfaces show that the lines of extremal strain lie inside extremal strain surfaces. Anal-
ogously, Figure 7.4c shows the vortex core lines with respect to Q. The complete vortex
skeleton is shown in 7.4d where the vortex core lines are complemented by the maxi-
mum vortex surfaces. Both for the vortex and for the strain skeleton, just those parts of
the separatrices are shown where Q > 0 and Q < 0, respectively.
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(a) Lines of maximal
strain.

(b) Strain skeleton. (c) Maximal lines are
vortex cores.

(d) Vortex skeleton.

Figure 7.4: Strain and vortex skeletons in a subregion of the cylinder dataset. 7.4a
shows lines of maximal strain. 7.4b shows the complete strain skeleton with the ex-
tremal strain surfaces displayed only where Q < 0. 7.4c shows the maximal vortex
lines regarded as vortex core lines. 7.4d shows the complete vortex skeleton, adding
the maximal vortex surfaces that lie between the vortex core lines. Again, vortex sur-
faces are displayed only where Q > 0.

Figure 7.5 gives an example where the minimum surfaces are used to subdivide
a vortex in further regions. Only parts are shown where Q < 0, so an isosurface of
Q = 0 would label all shown features as belonging to the same vortex. By showing the
minimum surfaces (blue) we see how the vortex core line is subdivided into three parts,
corresponding to the three maxima of Q along the line.

The extremal structures give a complete overview of the topology of the scalar
quantities and hence of the vortex and strain activities in the flow. Note that this in-
cludes primary and secondary vortex structures. Primary vortex structures, e.g. Kelvin-
Helmholtz vortices, can be observed in the cylinder flow as spanwise vortex core lines
(Figure 7.1) – in this example they correspond to patterns of swirling stream lines in a
certain frame of reference. Secondary vortex structures, e.g. rib vortices, are stream-
wise vortex core lines in the cylinder flow connecting neighboring Kelvin-Helmholtz
vortices. This pattern is typical of shear flows and can be observed in other data sets as
well (see Section 7.4). Note that secondary vortex structures can not be described as
patterns of swirling motion using an obvious frame of reference, i.e., their extraction
has to be based on measures independent of a certain reference frame. While our tech-
nique is able to extract those features, it does not allow to distinguish between primary
and secondary vortices. This is an open research issue.

Before we give details about our extraction scheme in section 7.3, we motivate our
choice of topological separatrices as features.

7.2.2 Separatrices vs. Height Ridges

While there is just one reasonable definition for a local 0D-extremum of a scalar quan-
tity f , there is no canonical generalization to higher-dimensional features. Topological
separatrices are just one choice, see [Ebe96] and [Soi99]. Another prominent approach
is the height ridge definition (see e.g. Eberly [Ebe96] and Sec. 2.6) that is based on
a convexity-analysis of the graph of f . We give a short introduction here and discuss
advantages and disadvantages of both approaches to motivate our choice for the water-
shed definition. We refer to [Ebe96] for a deeper discussion.

Basically, a height ridge line follows the least-convexity-direction of the graph. A
more formal definition is given in Definition 1 on page 29.
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Figure 7.5: A close-up of the cylinder dataset. Three maxima of Q (red ellipsoids) are
separated from each other by minimum surfaces (blue). This devides the domain into
three different vortex regions. The maxima are connected by a maximum line (red),
i.e., a vortex core line defined by Q.

While implementational details on height ridge extraction can be found in [Ebe96],
we just sketch the procedure here: With the terminology as in Definition 1, dr = ∇P1×
∇P2 is the direction in which a person on a height ridge line can walk along it. Given
one point on each height ridge, it is sufficient to integrate dr from each point to obtain
the complete set of height ridges. Accordingly, a two dimensional height ridge is given
implicitly by the surface normal ∇P1.

With those two different extrema definitions at hand the question arises, how they
are related, and if the features of the one definition are possibly a subset of the other
feature set. To this end, we note that at each saddle point with a Hessian matrix of full
rank 2a) holds for i = 1,2,3 in the definition of height ridges above. It is a consequence
of the inverse function theorem [Str95] that depending on the eigenvalue setting, either
a 2D height ridge and a 1D height valley or a 2D height valley and a 1D height ridge
emanates from the saddle point.

So for every topological separatrix there exists a height ridge or valley counterpart.
Note that although they have the saddle point in common, they do not necessarily have
to coincide.

In contrast, there usually exists a variety of height ridges that are not topological
separatrices. Figure 7.6 gives an example. Here we see a circular watershed on the
crater rib, separating the local minimum inside the crater from the global minimum
outside the crater. Additionally, a small perturbation of the symmetry of the crater rib
creates a height ridge without separation property. This can be regarded as a conse-



7.3 Extremal Feature Extraction 93

Figure 7.6: 2D-terrain exem-
plifying different extrema def-
initions. The closed green line
is a watershed separatrix. Both
the green and the orange line
conform to the height ridge
definition.

quence of the fact that watersheds are of global nature, whereas the definition of height
ridges is local.

This locality is the main advantage of the height ridge definition. By this property
it is possible to track a height ridge point in time using the feature flow field approach
[TS03], but it is impossible to do so with a point on a watershed – simply due to its
global nature. Although the time tracking of extremal features is beyond the scope of
this thesis, we want to sketch how this disadvantage of topological separatrices can
be overcome: A 2D-separatrix of some saddle can be followed in time by tracking the
corresponding saddle point first [TS03, WTHS06] and extracting the separation surface
again afterwards.

We see two disadvantages of the height ridge definition for our purposes: Firstly,
height ridge extraction is per se less stable than watershed extraction, as the height
ridge definition is based on the 2nd derivative of the scalar, and the scalar topology
definition above uses first derivatives only. See Section 7.3 for comments on a dis-
crete, derivative-free approximation. Secondly, topological separatrices can be sorted
by the hierarchichal computation of Morse-Smale complexes, for instance by persis-
tence sorting, see 2.5.2 for details. We do not know of comparable considerations for
height ridges.

7.3 Extremal Feature Extraction
In this section we provide implementational details for the extraction of topological
features required for the vortex and strain skeletons. Here we discuss a discrete ap-
proximation method only. For the continuous extraction, please refer to section 2.5.1.
The provided discrete methods work for arbitrary grids. The continuous versions re-
quire an interpolated gradient of the quantities.

7.3.1 Morse-Smale Approximation by Watershed Segmentation
The watershed segmentation yields an incomplete approximation [Soi99] of the Morse-
Smale Complex (see Sec. 2.5.2) in the following way: Based on discretely extracted
minima, water is shed in the following way: At start, each minimum gets its own label
and is put in a priority queue. Now a region growing is performed. In each step,
the unprocessed grid node with the smallest scalar value is grown by one grid node
in each direction. The priority queue decides which grid node is processed next. As a
result, we obtain a segmentation of the domain by labeled regions with time complexity
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(a) Minimum. (b) Attracting saddle. (c) 1D-separatrix integration.

Figure 7.7: Discrete critical point extraction (exemplified using a regular grid). Red
nodes are larger than the central node, blue nodes are smaller. Saddles can be extracted
by counting the number of connected components of the 26 neighbors (7.7b). 7.7c
shows that for separatrix integration, the continuously extracted critical points must be
used, because the zeros of the gradient do not necessarily lie on grid nodes.

n logn. Their boundary surfaces are topological 2D separatrices, and intersections of
the surfaces are topological 1D separatrices. However, not all topological separatrices
can be extracted this way. An obvious 2D example is the separatrix connecting the
terminal maximum in Fig. 2.2d: this separatrix can not be determined by watershed
segmentation, as it does not separate two different minima. Hence, using watershed
segmentation, some features will be missed, but it allows for simple, robust and fast
algorithms.

7.3.2 Critical points

A discrete method on grids with monotone interpolation works as follows: In this set-
ting, all minima, saddles and maxima necessarily lie on the grid nodes. It clearly can
be decided by looking at the direct neighbors if the point is a minimum or maximum.
A saddle point can be decided by labelling the neighbors as larger and smaller respec-
tively. If more than one connected component exists of any type, the grid node is a
saddle, see Figure 7.7b for a regular grid example.

Note that the discrete extraction results in similar, but not identical sets of critical
points compared to the continuous extraction. This is due to the fact that common
interpolation schemes are not necessarily differentiable, and hence the continuously
extracted critical points not necessarily lie on the grid nodes, see Figure 7.7c.

7.3.3 1D-Separatrices

(Minimum) 1D-separatrices are the lines where the (minimum) 2D-separatrices join in
non-manifold junctions, Figure 7.4. This property can be used for a discrete extraction.

Note that for the seeding of continuous separatrix extraction (Sec. 2.5.1), the con-
tinuously extracted critical points must be used. Using the discretely extracted points
would cause missing parts of the separatrix, because the two seeding points do not
necessarily lie on opposite sides of the critical point(Figure 7.7c).
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Figure 7.8: Strain skeleton of the cylinder data set. It partitions the domain in vortex
regions. Inside the vortex regions, lines of maximal vortical behavior are shown scaled
by Q. Close-ups of the structures can be seen in Figure 7.4.

Figure 7.9: SCCH airfoil visual-
ized using isosurface Q = 0 and
a LIC plane colored by Q.

7.3.4 2D-Separatrices
The watersheds surfaces can now be extracted as the border surfaces between label
regions. We use the generalized marching cubes algorithm due to Hege et al. [HSSZ97]
for this purpose.

In complex settings we use this discrete surface extraction for 2D separatrices as it
is faster and more robust.

7.4 Applications
Figures 3.1, 3.2, 7.3, 7.4, 7.5 and 7.8 show the flow behind a circular cylinder, already
introduced in section 4.5. Figure 7.8 shows the complete strain skeleton of the cylinder
dataset in blue, partitioning the flow into compartments that correspond to a single
vortex each. Inside the compartments, the line structures of the vortex skeleton are
shown.

Figures 7.9 and 7.10 show the flow around a Swept-Constant-Chord-Half-model
(SCCH) of an airfoil that was simulated by Bert Günther (TU Berlin) at a Reynolds
number of 106 on a curvilinear block structured grid with 1.3 million cells. Due to
the constant chord and periodic boundary conditions this is a 2.5D configuration (the
step from 2.5D to a realistic 3D configuration would mean to switch from constant to
varying chord and to non-periodic boundary conditions). The sweep angle of the airfoil
to the flow direction is 30◦ and the angle of attack is 6◦. The turbulence was simulated
by a combined URANS and DES approach. Figure 7.10b shows the line type structures
of the vortex and strain skeletons of Q. Note that by our method, the collection of all
extremal strain and vortex lines provide a good overview over the dataset, while the
isosurfaces in Figure 7.10a miss the smaller features downstream.
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(a) Isosurfaces of Q < 0 denoting strain (blue) and
Q > 0 denoting vortex activity (red).

(b) Lines of maximal strain (blue) and maximal
vortex activity (red) scaled by |Q|.

Figure 7.10: In the flow around an airfoil, isosurfaces of the Okubo-Weiss criterion Q
are shown to the left. To the right, the line structures in the vortex and strain skeletons
extracted by our method are displayed, showing lines of maximal strain (blue) and
lines of maximal vortex activity (red) that are vortex core lines. Our method gives a
complete overview of the location and extent of vortex and strain features in the flow,
whereas the isosurfaces miss the smaller features downstream and give only a rough
location for the larger features upstream.

In Figure 7.11 we applied our methods to a 3D time-dependent turbulent mixing
layer. The velocity field has been computed with a pseudo-spectral direct numeri-
cal simulation by Pierre Comte, employing the computational domain and boundary
conditions of [CSB98]. The Reynolds number is 100 based on the initial shear-layer
thickness and convection velocity. The velocity ratio between the upper and lower
stream is 3 : 1 (Figure 7.11a). The data consists of 500 time steps of a 480× 48× 96
uniform grid. Figure 7.11b shows the minimum lines of MZ which correspond to lines
of maximal strain. It can clearly be seen that those structures lie in the shear layer
which corresponds to intuition. In 7.11c isosurfaces of Q display the spatial evolution
of Kelvin-Helmholtz vortices (primary vortex structures), vortex pairing, and the span-
wise formation of streamwise rib vortices (secondary vortex structures). In 7.11d the
vortex skeleton of Q is shown with lines scaled by the value of Q. The whole vortex
structure of the flow can be seen at one view. In particular, our method is capable
of resolving secondary vortex structures as well as the less vortical structures further
upstream that are hidden by the isosurfaces in 7.11c.
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(a) Flow visualized using LIC. (b) Lines of maximal strain of MZ.

(c) Isosurface of Q. (d) Lines of maximal vortex activity scaled by Q.

Figure 7.11: Turbulent mixing layer. The lines of maximal strain as indicated by MZ
perfectly match up with the shear layer. The vortex skeleton of the Q-criterion eluci-
dates the spatial evolution of Kelvin-Helmholtz vortices, vortex pairing, and the span-
wise formation of streamwise rib vortices.

7.5 Outlook
Having extracted the vortex and strain skeletons using topology tools, topologically
persistent simplification of those skeletons is desirable. Also, having extracted ex-
tremum lines using first derivatives by topological means, a derivative free extraction
method is within reach due to the work on discrete topology by Forman [For98]. In the
next chapter, we introduce such a derivative free approach to feature extraction includ-
ing topological simplification. Due to the intricate nature of this task, we develop this
technique for scalar fields defined on surfaces, focusing on curvature measures.
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Chapter 8

Application: Feature Based
Multiparameter Analysis of a
Wing Model Flow

We apply the vortex skeleton approach developed in chapter 7 to analyze a flow data
set which incorporates two additional parameters. These parameters are introduced
by a periodic excitation of the flow around an airfoil which aims at increasing the
lift. This active flow control technique employs an unsteady wall jet located near the
leading edge of the flap to excite the flow and thus provoke either delay of separation
or reattachment. Important parameters of this excitation are frequency and intensity
of air injection. We study simulated datasets for 23 different parameter combinations.
While finding the one with the highest lift is a simple computational task, we want
to understand the underlying physics and explain why the lift is higher for a certain
parameter set than for another. This can guide in finding new excitation strategies.

Each parameter combination is a 3D time-dependent flow field with 200 time steps.
The grid consists of 1.3 million cells. This totals in over 200 GB of data. In this setting,
an automatic feature extraction scheme is necessary due to the sheer size of the data
set. Using the technique developed in chapter 7, we extract the vortex structures of the
flow since they indicate the success of the induced perturbation.

8.1 Active Flow Control Simulation Data
Engineers aim at controlling flow with active and passive mechanisms. Passive meth-
ods contain effects caused by adequate profiling or by self-triggered processes of the
flow. In contrast, active methods are characterized by excitation mechanisms that insert
external energy into the flow.

Passive methods have been well-investigated in the last decades and have been
integrated in scores of technical applications in the form of vortex generators as well
as Gurney flaps [SGT04]. Today, the majority of research is focused on concepts with
active flow control.

A large number of experimental and numerical studies have shown the general
effectiveness of active flow control for single airfoils. In most investigations, leading
edge suction is applied to delay transition [MCML89]; nonetheless, jet flaps are also
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SCCH

(a) Sketch of the SCCH high-lift-configuration.

suction

blowing

(b) Excitation at the flap.

Figure 8.1: SCCH Wing Model and periodic excitation by blowing and suction.

gridlayer

(a) surface mesh of the computed wing segment (b) 2-dimensional mesh near the configuration

Figure 8.2: Computational mesh

employed for lift increase and manoeuvering. Surface suction/blowing can be used to
rapidly change lift and drag on rotary wing aircraft [HJ97].

Overviews of active flow control are given by Wygnanski and Gad-el-Hak [Wyg04,
GeH01].

8.1.1 Wing Model

The wing used for the simulations is the SCCH (Swept Constant Chord Half model)
high-lift configuration that has already been used for several experimental studies tar-
geting passive flow and noise control concepts [Koo05, KKE05], see Figure 8.1.1. The
problem is modeled as an infinite swept wing (2.5D) in order to reduce the computa-
tional domain to a single spanwise segment of the configuration. The typical three-
component setup consists of a main airfoil equipped with deployed slat and flap, see
(figure 8.1a). All profiles have blunt trailing edges. The flap is situated at a fixed posi-
tion underneath the trailing edge. The angle of attack is fixed at 6 degrees for the whole
configuration, which is situated in the typical range of approach for civil aircraft.

In all numerical investigations the freestream velocity u∞ corresponds to a Reynolds
number of Re = 106, based on the chord of the clean configuration (with retracted high-
lift devices). This high Reynolds number was chosen in the simulation to demonstrate
the relevance to industrial applications.

Figure 8.2 shows the mesh around the slat, the main airfoil and the flap. The di-
mensions of the computational domain are 15 chords forward, above and below the
configuration and 25 chords behind. Figure 8.2b shows the two-dimensional mesh
around the entire configuration. The two-dimensional computational c-type mesh con-
sists of 90,000 cells in total and is expanded in 3D in 16 layers, totalling in 1,300,000
cells (figure 8.2a) for each of the 202 time steps.
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(a) Natural flow: almost 2d characteristic (b) Excited flow (F+ = 0.6,Cµ = 50×10−5) has a
3d characteristic

Figure 8.3: Streamlines showing the character of the flow above the flap.

8.1.2 Unexcited Flow

The flow field of the SCCH-configuration without excitation is characterized by mas-
sive separation above the upper surface of the flap. The mean separation point is located
close behind the flap leading edge, and downstream a large recirculation region occurs.
The unsteady behaviour of separated flow is mainly governed by large vortices shed
from the flap trailing edge that interact with the vortices generated in the shear layer
between the recirculation region and the flow passing through the slot between main
airfoil and flap nose. The unsteady structures are characterized by a two-dimensional
behaviour (figure 8.3a).

8.1.3 Excitation Mechanism

In the simulation the excitation was enforced by a periodic suction/blowing type bound-
ary condition. The perturbation to the flow field is introduced through the inlet velocity
on a small wall section representing the excitation slot:

uexc(t) = ua · sin
[

2π · c
ck
·F+ · τ

]
(8.1)

with ua = u∞

√
c
H

Cµ , F+ = fper ·
ck

u∞

, τ = t · c
u∞

where c is the clean chord length, ck the flap length, ua is the amplitude velocity of
the perturbation oscillation, F+ is the non-dimensional perturbation frequency, τ is the
dimensionless time given in convective units of the whole configuration, H is the slot
width between main airfoil and flap (H = 0.00186 ck) and Cµ is the non-dimensional
steady momentum blowing coefficient. The oscillating jet is emitted perpendicular to
the wall segment of the excitation slot, and is located at 6% chord behind the flap
leading edge (figure 8.1b).

8.1.4 Goal of the Excitation

It is the goal of the excitation to increase the lift by downsizing the recirculation zone
and re-energizing it. To do so, we perturb the shear layer using a periodic excitation
scheme as described in section 8.1.3. This increases the number of instabilities leading
to a faster decay of the shear layer. These instabilities can be observed by means of
vortex structures. A large, two-dimensional vortex binds a high amount of energy and
causes less energy dissipation than smaller vortex structures with a three-dimensional
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Figure 8.4: Numerical results of the excited flow.

characteristic. The smaller vortex structures help distributing the energy to the low-
energy recirculation zone. Due to this the recirculation area becomes smaller.

Hence, the excitation has to influence the flow structures in the shear layer such
that the vortices become smaller and have a three-dimensional characteristic. For this
to happen, the parameters of the excitation have to be chosen carefully. In particular,
the following parameters are of great importance:

• Frequency
We have to influence the flow with a frequency that interacts with the natural
frequencies of the flow. Only this way we can target the natural flow structures.

• Intensity
The intensity of the excitation jet has to be strong enough to actually reach the
shear layer.

In order to find an optimum excitation, simulations with different frequencies at Cµ =
50× 10−5 (which corresponds to the free stream impulse) were performed first. Sim-
ulations where then run at different intensities at the determined optimal frequency
F+ = 0.6. In the following we study the influence of these two parameters on the vor-
tex structures and the lift. While the lift can be computed directly, the main goal for
the vortex analysis is to understand why a certain parameter combination exhibits the
highest lift.

8.2 Vortex Skeleton Parameter Study
In the following we study the influence of the actuation parameters intensity and fre-
quency by comparing the vortex skeletons of the various parameter settings.

8.2.1 Frequency of Air Injection
Figure 8.4a presents results of the excitation in the simulation with different frequen-
cies. The diagram shows the difference of the lift coefficient relating to the unexcited
case depending on excitation frequency. The largest lift can be found at a frequency
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(a) Periodic excitation by
suction and blowing at the
rear flap.

(b) Colormap used to indicate flow
pressure and vortex strength.

(c) A subset of the topological
skeleton of the pressure gradient
denotes minimal pressure, i.e.,
vortex cores. F+ = 2.0.

(d) Vortex structures of the
unexcited flow.

(e) Vortex structures of the
optimally excited flow
(F+ = 0.6).
Gain of lift: 11.2%.

(f) Vortex structures of the
high-frequency excited flow
(F+ = 2.0). Gain of lift: 6.1%.

Figure 8.5: A topology-based vortex analysis of the flow around an airfoil elucidates
the impact of an active flow control technique and explains why a high-frequency ex-
citation leads to a smaller gain of lift.

of F+ = 0.6. In this case the lift coefficient can be enhanced by 11% compared to the
baseline simulation. In the range of strong gain in lift (F+ = 0.2 ...0.5) the infinite wing
achieved the same change in lift at higher frequencies compared to the two-dimensional
flow. At frequencies slightly higher than the optimal excitation frequency (F+ = 0.6)
the gain in lift decreases.

In figure 8.5 we show the results of our topology-based vortex analysis which has
been applied to study the influence of the frequency of air injection. While we know
which frequency yields the best lift, our main goal is to uncover the underlying physics:
we want to know why a certain frequency yields higher lift than others.

Figure 8.5a indicates the setup: we want to achieve performance enhancements by
controlling the flow separation at the rear flap using periodic air injection. The vortex
structures have been extracted as topological separatrices of the pressure gradient and
denote lines of minimal pressure. Figure 8.5c shows parts of the topological skeleton
of the pressure gradient. A quantification of the separation lines based on pressure and
a subsequent filtering of weak vortices has been applied. This allows us to concentrate
on the most important information.

The result is shown in figures 8.5d–f where the impact of the frequency of air in-
jection onto the vortex structures can be studied. Note that this is a five-dimensional
data set consisting of three spatial dimensions, time, and the frequency parameter di-
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(a) trailing edge departure flow
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Figure 8.6: Our vortex analysis of different excitation frequencies could be evaluated
successfully by examination of the trailing edge departure angle of the main airfoil (first
column). The angle between these vectors and the oncoming flow direction is shown at
a snapshot in the second column and spanwise averaged in the third. The dashed, solid
and dotted lines denote the unexcited flow, F+ = 0.6, F+ = 2.0, respectively.

mension – the intensity is fixed. Raising the frequency causes a reduction of the lower
vortex, which is a necessary condition for gaining lift. However, higher frequencies
(F+ > 0.6) are not beneficial to the lift. Using a visual comparison of the vortex struc-
tures at different frequencies, we found that new vortex structures are induced by the air
injection itself. This has a negative effect on the pressure ratio and consequently on the
lift. Especially at higher frequencies, the excitation dominates the natural flow struc-
tures and induces long-living, almost two-dimensional vortices in fast succession at the
top of the rear flap (figure 8.5f). In contrast to this, the induced vortices at F+ = 0.6
dissolve quickly and therefore, they are less influential.

We want to evaluate our analysis technique using a more traditional method. Fig-
ure 8.6 shows the trailing edge departure angle of the main airfoil in the unexcited
case, which we define as the angle between the oncoming flow direction and the flow
direction at the trailing edge. This angle is directly linked to the pressure distribu-
tion above the main airfoil: a larger angle indicates a higher pressure gradient which
is a main trigger of increased lift. The second and third column of figure 8.6 show
the trailing edge departure angle for the unexcited, optimally excited (F+ = 0.6), and
high-frequency excited flow (F+ = 2.0). At F+ = 0.6 (solid red line in 8.6b ) we can
observe a pronounced three-dimensionality in contrast to the other cases. This causes
a higher dissemination of the excitation energy and inhibits the formation of strong
vortex structures – as we already know from our vortex analysis, see figure 8.5e. At
higher frequencies, the excitation dominates the natural flow and the departure angle
is almost two-dimensional in spanwise direction similar to the unexcited case. This
goes hand in hand with the observed vortex structures for these cases which are almost
two-dimensional, too.

Our topology-based vortex analysis technique contributed to the physical under-
standing of the flow structures and was a substantial part of the optimal choice of
parameters.
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Figure 8.7: The intensity variation was performed on 13 different intensity values rang-
ing from C′µ = 10 to C′µ = 500 (shown in increasing order from left to right). See figure
8.8 for a close-up.

(a) C′µ = 10. (b) C′µ = 20. (c) C′µ = 50. (d) C′µ = 500.

Figure 8.8: Topology-based vortex analysis of the intensity variation at four selected
intensities. At intensities of C′µ = 20 and C′µ = 50 the structures are three-dimensional,
whereas at lower and higher intensity, the structures have a two-dimensional character-
istic. At C′µ = 500, a strong excitation-induced vortex is created at the top of the rear
flap.

8.2.2 Intensity of Air Injection
At the optimal excitation frequency of F+ = 0.6 we simulate 13 different excitation
intensities of Cµ ·105 = C′µ = 10,15,20,25,50,75,100,125,212,300,400,500. Figure
8.7 shows the result of our vortex analysis.

Excitation with low intensity (C′µ = 10 . . . 50) leads to a strong increase in lift (max.
11%) (figure 8.4b). However, if C′µ becomes larger than 50, the lift ceases to increase
further. In general, the results for both excitation parameters show that the lift either
cease to increase or begins to decrease slightly if the frequency or intensity exceeds a
certain limit (F+ = 0.6, C′µ = 50).

As in the frequency modulation, our topology-based vortex analysis helps in under-
standing those effects: At a low intensity of C′µ = 10, the excitation jet is too weak to
perturb the shear layer significantly, see figure 8.8a. This changes at higher intensities.
At C′µ = 20 (figure 8.8b) and C′µ = 50 (figure 8.8c) three-dimensional vortex structures
are produced as expected by the perturbation of the shear layer. However, at C′µ = 500,
the excitation is so intense that the excitation jet penetrates through the shear layer and
a significant part of the energy is absorbed by the free stream. This results in a large,
excitation induced vortex with a very short life cycle (figure 8.8d). As only parts of the
energy can be used to destroy the shear layer, the downstream vortices keep much of
their two-dimensional characteristics. Furthermore, C′µ = 500 is 10 times higher than
in the C′µ = 50. Although the effectivity is comparable, the excitation with C′µ = 50 is
much more efficient.
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Chapter 9

Extraction of Feature Lines on
Surface Meshes

In the last chapters we developed a vortex extraction scheme based on the extraction
of extremal lines, first by using third derivatives in chapter 6, then by means of just
first derivatives in chapter 7. In this chapter we will show how extremal lines can be
extracted without any derivative computation. Being interested in vortex extraction of
3D flow fields, we aim at extremal lines of 3D scalar fields. However, in this chap-
ter, due to the complexity of the matter, we tackle this problem for triangular surfaces.
Here, vortex extraction does not make much sense, but there are other extremal struc-
tures that are worth examining, namely salient feature lines that turn out to be extremal
structures of certain curvature measures of the surface. With the work in this chapter
we prove that a gradient free extraction of extremal structures is possible. it is left for
future research to further develop the methods for 3D scalar fields.

However, the extraction of salient surface features is a crucial and interesting task
in its own right. In non-photorealistic rendering, for instance, the goal is to depict a
surface with a sparse set of characteristic features only. Another important example
is the registration and fusion of a number of shapes, e.g. for atlas generation in bio-
medical applications, such that common features are identified correctly.

Most commonly, feature lines are defined as ridges and ravines of the surface,
a notion of differential geometry including third orders of surface derivatives. Sev-
eral highly evolved algorithms exist to extract feature lines based on this definition
[Ebe96, OBS04, YBS05, YBYS07, HPW05, SF04]. As the stability of third derivatives
is difficult to control, those approaches require the adaptation of a number of parame-
ters on a per surface basis. This is especially unsatisfactory in registration applications,
where a large number of surfaces has to be processed to establish an anatomic atlas.

In this chapter we will undertake an alternative approach based on Morse Smale
(MS) theory [Mil63, Ban70, EHZ03, Pas07, For98], which is an algebraic tool for
measuring topological features of a function f : M→ R on a manifold M. A simpli-
fication strategy can be used to obtain a hierarchy of MS complexes giving rise to a
natural discrimination of feature scales. We will present a modification of the original
persistence simplification strategy that is capable of extracting extremal feature lines in
the sense that the value of f is significantly larger or smaller on the feature line than
in its vicinity. This extremality property is satisfied by the 1-cells of the initial MS
complex that contain the watersheds and watercourses [Soi99] as special cases.
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Our main contributions are:

• We identify suitable feature indicator functions for extracting extremal feature
lines (Sect. 9.1.1).

• We show that persistence simplification is not useful for extracting extremal fea-
ture lines (Sect. 9.1.3).

• We introduce a novel simplification strategy that preserves extremal feature lines
(Sect. 9.1.4).

• MS based feature detection necessarily produces connected lines, which is not
generally desired. We propose a method to alleviate this problem by discarding
unwanted lines in a post-processing step (Sect. 9.1.5).

The main benefits of our method are:

• By using discrete Morse Theory, the extraction method does not require any
derivative estimates.

• There is only one user-defined parameter in the method defining the level of
significance of the resulting features.

• The method is insensitive to noise in the input fields (Sect. 9.2.1).

9.0.3 Previous Work

Several approaches for ridge line extraction on surfaces exist. Ohtake et al [OBS04],
Yoshizawa et al [YBS05, YBYS07], Hildebrandt et al [HPW05] and Stylianou et al
[SF04] present different approaches for controlling the involved third derivatives of the
surface. While all those approaches yield impressive results, they suffer from the fact
that a number of parameters has to be adjusted.

The present approach is based on discrete Morse-Smale theory as defined by For-
man [For98, For02, Lew05]. See section 1.1 for related work in this area.

9.1 Discrete Feature Line Extraction Method

9.1.1 Scalar Feature Indicators

On a smooth surface, the two principal curvatures κ1 ≥ κ2 measure the bent of the sur-
face along the corresponding curvature directions. Therefore, the principal curvatures
are indicators for surface specific feature lines. Whereas κ1 is maximal along convex
feature lines, κ2 is minimal along concave feature lines. Curvedness, as introduced

by Koenderink et al [KvD92], is defined by C =
√

1
2 (κ2

1 +κ2
2 ). This measure is large

whenever any principal curvature has a large absolute value, and hence measures con-
vex and concave regions simultaneously. It is maximal along both convex and concave
feature lines.

On a triangulated surface, κ1 and κ2, can be defined discretely for each vertex of
the surface using the method described by Hildebrandt et al [HPW06].
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(a) Initial κ1 MS
complex.

(b) Persistence, step
3,600.

(c) Persistence, step
3,650.

(d) Our method, step
3,550.

Figure 9.1: Ascending 1-cells of the initial MS complex of κ1 on the rocker arm are
a candidate set of convex feature lines in (a). 3,600 persistence cancellations lead to
the line set depicted in (b). Clearly, all feature lines are still contained. After 3,650
cancellations, one of the main features is broken by persistence cancellation in (c).
In contrast, feature line preserving cancellation as proposed here maintains the main
features in (d).

9.1.2 Morse-Smale Complex and Feature Lines

Ascending 1-cells are maximal lines of scalar feature indicators, as they are lines of
steepest ascent separating two valleys if the 1-cell is a watershed, or one valley, if the
1-cell is connected to a terminal maximum, see Fig. 2.2f, and analogously for descend-
ing 1-cells. Depending on the scalar feature indicator, just the ascending (κ1, C), or
descending (κ2) 1-cells are of interest. Not all of these 1-cells are necessarily features.
This is due to the fact that noise adds additional saddles of small difference in function
value, an effect known as oversegmentation in the field of watershed transformation
[Soi99]. We aim at differentiating the 1-cells that are salient features from noise by
applying a cancellation criterion that favors the concentration of scalar indicator value
on 1-cells opposed to their vicinity.

9.1.3 Persistence Cancellation

The persistence [ELZ00] of a saddle s is the least difference in function values com-
pared to the cancellable extrema it is linked to. Cancelling saddles by increasing per-
sistence realizes topological simplification by means of the least geometric change, see
Bremer et al [BEHP04].

Persistence cancellation does not preserve feature lines as seen at the rocker arm
surface in Fig. 9.1 and the ascending 1-cells of the initial MS complex of κ1 containing
the convex feature lines of interest. Persistence cancellation initially keeps this property
in Fig. 9.1b. However, further cancellation destroys one of the most characteristic
convex feature lines, and a line traversing a concave region is preferred, see Fig. 9.1c.
The obvious reason for this is that the persistence measure only considers the difference
in function value between the minimum and the saddle, and hence regards only the
deepest point of the feature line.

9.1.4 Feature Line Preserving Cancellation

A feature line preserving cancellation criterion should quantify the whole feature line
that is deleted by a cancellation. We want to keep just salient 1-cells from the initial
MS complex which means that the quantification of the feature line should be compared
to the vicinity of the line. The MS complex allows us both. An ascending 1-cell lies
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between two valleys which we use as vicinity. In the following, I stands for an arbitrary
scalar feature indicator.

The proposed quantification σr(s,m) of a cancellation of saddle s and minimum m
deleting the ascending 1-cell r is the difference of the average of I on the 1-cell and the
average of I on the valley U(m) containing m:

σmax(r,m) =
1

area(r)

∫
r
I− 1

area(U(m))

∫
U(m)

I (9.1)

and analogously for cancellations with a maximum M on the hill S(M) deleting the
descending 1-cell v,

σmin(v,M) =
1

area(S(M))

∫
S(M)

I− 1
length(v)

∫
v
I. (9.2)

A line can not be regarded as a feature if the accumulated I average does not differ
significantly compared to both incident patches. Hence, the feature line significance
σmax(r) and σmin(v) is defined as the minimum of both values:

σmax(r) = min(σmax(r,m1),σmax(r,m2)), (9.3)
σmin(v) = min(σmin(v,M1),σmin(v,M2)), (9.4)

where r lies between the minima m1,m2, and v between the maxima M1,M2. In words,
a 1-cell is regarded as salient if on the line more average I-value is accumulated than
in the patches that the 1-cell bounds.

Quantifying 1-cell cancellation as in (9.3), (9.4) preserves feature lines, but also,
short offshoots of the feature lines are kept that fork off orthogonally from the requested
lines. To punish such offshoots, σmax,σmin are adjusted at terminal 1-cells only. These
emanate from those saddles, where one of the incident extrema is connected to just
one saddle. For an ascending 1-cell r with r1,r2 being the part of the 1-cell ascending
to the maxima M1,M2, and a minimal 1-cell v with v1,v2 being the part of the 1-cell
descending to the minima m1,m2, respectively, the quantifications

Γmax(ri,Mi) = 1
area(ri)

∫
ri

I− 1
area(S(Mi))

∫
S(Mi) I (9.5)

Γmin(vi,mi) = 1
area(U(mi))

∫
U(mi) I− 1

length(vi)
∫

vi
I (9.6)

are considered additionally by updating σmax(r) and σmin(v)

σmax(r) ←min(σmax(r),Γmax(r1,M1),Γmax(r,M2)), (9.7)
σmin(v) ←min(σmin(v),Γmin(v,m1),Γmin(v,m2)). (9.8)

In words, terminal feature lines that are not salient compared to the patches they lie in,
are discarded as well. See Fig. 9.2 for an example of a 1-cell forking off a feature line.

Only valid cancellations may be performed to keep the alternating quad property
of the MS complex. This means, a saddle/maximum cancellation is allowed only if the
saddle connects two different maxima. Therefore we define the topological adaptations
tmax(r) = σmax(r), if the 1-cell r can be deleted by a valid cancellation, ∞ otherwise,
and tmin(v) = σmin(v), if a valid cancellation exists, ∞ otherwise.

The cancellation criterion t quantifying a saddle s by the least significant can-
cellable 1-cell passing through the saddle is then defined by

t(s) = min(tmax(r), tmin(v)) . (9.9)
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(a) Before cancellation. (b) After cancellation.

Figure 9.2: Cancellation of a terminal 1-cell forking off the outer ring feature of the
rocker arm colored by κ1. The 1-cell emanating from the left saddle ends at the max-
imum on the high curvature area, but only the part up to the branching point is being
deleted by the cancellation.

(a) Initial κ2 MS
complex.

(b) Our method, step
4460.

(c) Concave and convex
lines.

(d) Features plus
silhouettes.

Figure 9.3: a) The initial MS complex of κ2 containing 4476 descending 1-cell is taken
as a starting point. b) 4460 feature preserving cancellations yield the visually best
concave feature lines. c,d) Feature lines plus silhouette represent the geometry.

The reduction of lines in the initial complex now proceeds by canceling saddles in
increasing order of t. This ensures that the lines with strongest feature line significance
are kept. The saddle is canceled with the extremum for which equality is obtained in
(9.9). See the result of using feature line significance as cancellation criterion in Fig.
9.1d. The deviation of the 1-cell as for persistence cancellation does not occur here; it
stays on the feature line.

Two notes are important here:
1. Only one type of 1-cell is a meaningful feature line for most scalar indicators.
We handle both types of 1-cells equally anyway for each quantity as this ensures a
homogeneous cancellation of minima and maxima.
2. The 1-cell r used to evaluate (9.1) is restricted to the path uniquely associated with
the saddle under consideration. Paths from different saddles can merge before reaching
the maximum as depicted in Fig. 9.2a. This is different from the smooth setting where
different 1-cells never meet. In Fig. 9.2b, the left saddle was canceled with the terminal
maximum. Only the unique part of the 1-cell was removed. The remaining path to
the maximum connects to other saddles and is therefore retained. Hence, 1-cells are
quantified up to the first branching point only.
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9.1.5 Discarding Topologically Forced Lines
1-cells r for which no valid cancellation exist might have a smaller feature line signifi-
cance than the last canceled 1-cell. In this case, r is marked invisible and not displayed
afterwards. Examples are the two concentric rings around the hole of the rockerarm in
Fig. 9.1d that are not connected as forced by topology, and the cow’s head in Fig. 9.6f,
where the eye area is detached from all other lines.

9.1.6 Optional Line Smoothing
Our method results in lines that either consist of vertices or triangle centers of the mesh.
While this is topologically correct, it might not be visually appealing. We applied
a simple averaging with fixed filter length. The adapted Laplacian line smoothing
technique introduced by Hildebrandt et al [HP04] gives appropriate guarantees when
needed.

9.1.7 Implementational Issues
For the computation of the MS complex hierarchy we use the approach introduced by
Cazals et al [CCL03]. Instead of using the Union Find structure detailed there, we
work directly on the primal and dual spanning tree. A saddle / minimum cancellation
is performed by adding the saddle as edge into the primal spanning tree and flipping
all edges on the path from the saddle to the cancelled minimum. This results in simple
algorithms but affects the performance as for each cancellation a number of edge flips
have to be performed.

For computing feature line significance t (9.9), the involved quantities are stored
in the primal and dual spanning trees. Each minimum and each maximum is being
initialized with the area of their unstable and stable manifolds respectively, and with
the integral of the scalar indicator over the manifold. Any saddle stores the integral and
area of the stable manifolds (triangle strips), and the integral and length of the unstable
manifolds (edge sequence) emanating from the saddle. Upon cancellation, those values
are propagated from the canceled extrema to its uncanceled analogon, so computation
of feature line significance requires O(1) time.

All saddles are stored in an AVL tree that is used as priority queue. When a saddle
is canceled, the saddles incident to its incident extrema have to be reevaluated, as t
can be reduced by a cancellation. In theory, a single extremum can be incident to a
majority of the saddles in the complex which means O(n logn) for a single update of
the queue in the worst case. In practice, t is designed to cancel minima and maxima on
the same priority, and hence our cancellation criterion is not significantly slower than
persistence cancellation.

9.2 Results
For all results, the used curvature estimates are computed with the discrete method
introduced by Hildebrandt et al [HPW06], without smoothing. All feature lines are
shown as extracted by the method. We use red lines to display convex features (max-
imal lines of κ1), blue lines for concave features (κ2 minimal), black lines for curved-
ness C. Smoothed lines are displayed in the unshaded images only, all others contain
the unsmoothed originals.
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(a) Initial Curvedness MS
complex.

(b) Feature lines of curvedness. (c) Features plus silhouettes.

Figure 9.4: The extraction of maximal features of the Curvedness indicator yields both
convex and concave feature lines in one. It depends on just one parameter, compared
to two for the linked treatment of κ1 and κ2 and is therefore our preferred technique.

(a) The Stanford bunny (b) Initial κ2 MS
complex.

(c) Step 71,440. (d) Features plus
silhouettes.

Figure 9.5: Concave feature lines are extracted on the Stanford bunny with 280K trian-
gles. The initial MS complex of κ2 consists of 71,577 cancellations, and its descending
1-cells are densely spread over the bunny. The kept concave features identify it.

Fig. 9.1 shows the rockerarm surface with 20K triangles. The initial ascending
1-cells are shown together with the result of our method after 3,550 (of total 3,875)
cancellations. The extraction of the concave features is displayed analogously in Figure
9.3. Displaying both sets of feature lines in Figure 9.3d represents the geometry of the
rockerarm well.

Treating concave and convex features separately results in two parameters. Curved-
ness allows us to reduce this to one parameter, as the maximal structures of curvedness
contain both convex and concave features lines, as displayed in Fig. 9.4. The ascend-
ing 1-cells of the MS complex corresponding to the optimal cancellation value 3,388
(out of total 3,777) in Figures 9.4b-c represent the geometry of the surface, dependent
on just one parameter. Due to this, curvedness is particularly suitable for our approach
and we favor it over the linked usage of κ1 and κ2, unless either convex or concave
features are of particular interest for a specific surface, as for the Stanford bunny with
280K triangles in Fig. 9.5, where the concave features alone reflect the geometry well.
In this case, the initial descending 1-cells of κ2 are densely spread over the whole sur-
face. The most significant concave feature lines are displayed in Figure 9.5d. In Fig.
9.6 the feature lines on the cow’s head consisting of 93K triangles are displayed based
on curvedness. Three different feature scales corresponding to increasing cancellation
values are being displayed, ranging from fine scale in Figures 9.6b,f) to low scale in
Figures 9.6d,h). It is interesting to see that the head can be recognized at quite coarse
scale, and how the addition of fine scale features adds expression to the cow’s face.

Fig. 9.6h shows another property of our approach: The terminal 1-cell building the
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(a) The cow’s head. (b) Step 12,451 (c) Step 13,116. (d) Step 13,491.

(e) Initial line set. (f) Fine scale features. (g) Middle scale
features.

(h) Coarse scale
features.

Figure 9.6: Feature lines on the cow at fine, medium and coarse scale. The coarse scale
suffices to reflect the geometry, and fine scale features add more and more expression
to the cow’s face.

surface indicator #cancels tconstruct tcancel

rocker arm κ1 3,678 0.21 0.50
κ2 4,476 0.23 0.55
C 3,777 0.20 0.44

bunny κ2 71,577 3.8 30
cow C 13,676 1.2 7.6
vase-lion C 17,613 2.6 10.4

Table 9.1: Timings of our method for various datasets and scalar feature indicators. In
rows 3–5, the number of cancellations, the time in seconds to construct the initial MS
complex, and for performing all cancellations are shown.

cow’s brow is no watershed (as it does not separate two regions) and could only be
extracted, as the whole MS complex is used for feature extraction.

The computational complexity of our approach is n logn for the extraction of the
initial MS complex (see [CCL03]), where n is the number of vertices of the mesh. The
current implementation requires the 1-cells to be updated directly on the graphs, which
is of order n for a single cancellation in the worst case. Table 9.1 gives timings of our
method measured on a workstation with an Intel Xeon CPU with 3.00GHz and 16 GB
Ram without parallelization. We have not put much emphasis on efficiency, and it can
certainly be improved.

9.2.1 Insensitivity to Noise
Our method is insensitive to noise in the surface mesh. To show this, we add Gaussian
noise to the vertex positions of the rockerarm mesh in direction to the mesh normal.
We used σ = 1

5 , σ = 1
2 , σ = 1 of the mean edge length. Those values correspond to the

significant deformations seen in Fig. 9.7, but the extracted Curvedness feature lines are
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still visually close to the Curvedness feature lines extracted from the undistorted mesh
in Figure 9.4.

9.2.2 User Guided Parameter Traversal
When using Curvedness as feature indicator, our method depends only on one param-
eter. This parameter is easy to control, as it allows for binary search. As the initial
feature set usually contains far too many lines, we proceed by performing two thirds of
the remaining cancellations successively, until visually too few feature lines are con-
tained. In most cases, the previous line set is then very close to the optimum. At most
logn values of the cancellation parameter have to be tried, where n is the number of
cancellations. An example can be seen in Fig. 9.8 for the lion vase dataset consisting
of about 78K triangles allowing for 17,613 cancellations.

9.2.3 Limitations
The proposed method has two limitations. Firstly, it results in long connected lines.
Whereas this is advantageous in some settings, it is too rigid in others, as it is the case
on the rocker arm surface, where our technique fails to resolve the “1-3”-Feature on
the side of the rocker arm both in the κ1 case (Fig. 9.1), and in the C case (Figure
9.4). Secondly, as mentioned in the last paragraph of Sect. 9.1.7, our feature preserv-
ing cancellation criterion t from (9.9) is not monotone, i.e., it can be smaller at later
cancellation stages. This makes it impossible to specify a cancellation threshold rather
than a number of cancellations.
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(a) Surface at σ = 1
5 . (b) Features at σ = 1

5

(c) Surface at σ = 1
2 . (d) Features at σ = 1

2

(e) Surface at σ = 1. (f) Features at σ = 1

Figure 9.7: Adding different Gaussian noise scales to the rockerarm shows that our
method is very stable. The feature lines just appear disconnected due to occlusion by
surface spikes.

Figure 9.8: Feature lines on the lion vase. The one parameter our method depends on
is traversed logarithmically. A user has to decide for less lines until the coarse level
of detail he is interested in is reached. One further step removes a detail regarded as
interesting. This way a good overview of the various level of details contained in the
dataset is acquired in a few steps.
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Chapter 10

Conclusions

In this thesis we developed algorithms for the extraction of vortices from 3D flow
fields, both by the examination of swirling motion, and by the extraction of extremal
structures of derived scalar feature indicators. A large emphasis has been put both on
the invariances the extraction methods should obey, and Galilean invariance could be
achieved in all but one cases.

As the first of two swirling motion based approaches in this thesis, we presented
feature flow fields which are equivalent to the PV operator. Based on the FFF’s, we
achieved a complete classification of stable local bifurcations of tracked PV lines in
saddle bifurcations, closed collapse bifurcations, inflow and outflow boundary bifurca-
tions. A new algorithm to extract and track PV lines as a repeated stream line/surface
integration of the FFF’s. This way, the algorithm is independent of a particular under-
lying grid of the data. In fact, the accuracy of our method does not depend on the grid
resolution but exclusively on the chosen technique and step size for the stream surface
integration. By applying this approach to the method of Sujudi/Haimes, a novel ap-
proach for vortex core line extraction and tracking was given that, by the bifurcation
analysis, gave insight into the creation, merging and collapse of vortex core lines.

While this method is not Galilean invariant, we developed a mathematical charac-
terization of swirling particle cores that is Galilean invariant. By this, we addressed the
identification of cores of swirling motion of path lines in unsteady flows for the first
time. We introduced the Coplanar Vectors operator for deducing the characterization
for 3D unsteady flows. We showed how to re-formulate and extract swirling particle
cores in 3D unsteady fields using the Parallel Vectors operator – a common tool for fea-
ture extraction in the visualization community. This eases the implementation of our
approach in other visualization systems. We presented a unified notation of swirling
motion in 2D and 3D flows.

This method is a generalization of the approach by Sujudi/Haimes and clearly in-
herits its limitations. In particular, the method can result in false positives, i.e., lines
that actually lie off the desired core line. Also when noise is present the method may
extract a variety of short lines. Both issues have been treated in the literature [PR99]
by filtering the output by length and certain angle criteria as discussed in section 5.3.2.
However, cores of swirling motion have an intuitive interpretation, accompany the be-
havior of integral curves and their extraction is comparatively simple and fast. Also,
Roth and Peikert pointed out in [RP98] that the method of Sujudi/Haimes has its lim-
itations in settings where curved boundaries are involved. Our method might have
comparable limitations and it is an interesting point for further studies to see if the
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higher-order methods in [RP98] can be extended to path lines in an analogous way.
As another way of defining Galilean invariant vortex core lines, we introduced ex-

tracting ridge or valley lines of vortex region quantities like the Okubo-Weiss criterion
and λ2 and proposed an iconic representation of such lines.

A drawback of this method is that it requires second order derivatives. Due to the
ill-conditioning of derivative computation this makes the method to be rather suscepti-
ble to noise. In particular, an appropriate approximation scheme has had to be chosen to
make the method feasible. Still, step sizes both in the zero search and in the integration
had to be chosen quite small for acceptable precision.

As a consequence, we developed an extremum line extraction method based on
scalar field topology using just first derivatives. In this course, we discussed and clar-
ified the duality of vortex and strain measurement and introduced the notion of vortex
and strain skeletons. Due to the separation properties of the chosen extraction, we
were able to separate vortices as well as strain regions and quantify their extent. We
extracted Galilean invariant strain features for the first time, resulting in 0D, 1D and
2D features as well as Galilean invariant vortex structures.

This progress made the application to a number of complex data sets feasible. In
particular, we could examine a high-dimensional flow data set around an airfoil which
totals in over 200GB of data. This 3D time-dependent flow depends on two additional
parameters introduced by the periodic blowing and suction: frequency and intensity of
air injection. By the vortex and strain analysis we were able to identify the influence
of parameter variations on the flow field and elucidated the underlying physics.

By utilizing the discrete topology by Forman [For98], we could proceed even fur-
ther and reduced the number of derivatives for extremum line extraction to zero, re-
stricting the research to feature lines on surface meshes. We showed how the Morse-
Smale complex of scalar feature indicators and an appropriately adapted cancellation
criterion can be used to extract meaningful feature lines on surfaces in a stable way,
dependent on just one parameter. In this setting, we identified Curvedness as the most
suitable feature indicator for the extraction of surface features.

We believe that our developments will lead to a parameter and derivative free, fast
and robust vortex extraction technique based on extremal structures of derived feature
indicators in the near future.

10.1 Future Work
Of course, for the vortex structures based on extremum lines of scalar feature indica-
tors, some open research topics remain. In particular, it is very interesting to compare
the feature lines of our topology-based techniques to ridge lines, both on a theoretical
and on a practical level. Furthermore, extending those techniques to 3D scalar fields
is a thriving challenge. Such a tool could be used for the extraction of extremal struc-
tures in scalar feature indicators from 3D flow fields, and hence for the extraction of
vortex features in 3D flow fields that depends only on one parameter. Furthermore,
after having reduced the number of necessary parameters for feature line extraction to
one, parameter free feature line extraction seems within reach, e.g. by examining can-
cellation statistics to provide the user with an initial guess for an optimal cancellation
parameter.

While we showed how the vortex core lines based on swirling motion can be
tracked in time, no such tracking approach is known for the topology-based extremum
line approaches presented in part III of this thesis. As the separatrices of scalar field
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topology are global features, tracking them with a feature flow field is not possible.
A possible solution would be to track the critical points and deduce a correspondence
for the separatrices (and hence for the vortex core lines) from the critical point cor-
respondence. A very challenging alternative would be to compute the Morse-Smale
Complex and its cancellation hierarchy of the time dependent scalar feature indicator
field, which is a 4D function. While the 3D case can be dealt with efficiently by the
method of Gyulassy et al. [GNPH07], the general nD case is NP hard as shown by
Joswig et al. [JP06]. They also provide an integer programming formulation for this
problem, but at the current stage, only data sets of small size can be processed by this
method.
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