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meines Mannes Marco Temme zu verdanken, ohne dessen Geduld und Rück-
sicht auf die privaten Einschränkungen, unsere fachlichen Diskussionen und
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Kurzfassung

Ein wichtiger Teil der Datenanalyse ist die Unterteilung von vorgegebenen
Daten in Gruppen. Den sogenannten Clusterverfahren liegen mathemati-
sche Modelle zu Grunde, die einen Ähnlichkeitsbegriff für die Einteilung der
Daten definieren. Fuzzy-Clustering Verfahren ermöglichen nicht nur die Unter-
teilung der Daten in eine bestimmte Anzahl von Gruppen, sondern bestimmen
für jedes einzelne Datum zu jeder Gruppe einen Zugehörigkeitsgrad. Dieser
Zugehörigkeitsgrad spiegelt die Repräsentativität des einzelnen Datums zur
ganzen Datengruppe wieder. Spricht man von ”Objective Function based
Fuzzy Clustering”, so lässt sich das zu Grunde liegende mathematische Mo-
dell in Form einer Bewertungsfunktion beschreiben. Diese Bewertungsfunktion
beurteilt die Einteilung der Daten in Teilgruppen unter Berücksichtigung der
Zugehörigkeitsgrade und des verwendeten Distanz- bzw. Ähnlichkeitsmaßes.
Die Nebenbedingungen, die bei der Berechnung der Zugehörigkeitsgrade be-
rücksichtigt werden, führen zu verschiedenen Clusteringkonzepten. Wenn die
Bewertungsfunktion differenzierbar ist, lassen sich über die partiellen Ableitun-
gen notwendige Bedingungen für die Zugehörigkeitsgrade und die anderen
Parameter des Clusterverfahrens ermitteln, die für das Distanz- bzw. Ähn-
lichkeitsmaß verwendet werden. Diese notwendigen Bedingungen werden als
Berechnungsvorschriften benutzt, um die Bewertungsfunktion zu optimieren.
Die Berechnungsvorschriften liefern einen Algorithmus zur Berechnung der
Dateneinteilung, in dem die Gleichungen für die einzelnen Parameter iterativ
bestimmt werden.

In dieser Arbeit werden das probabilistische, possibilistische und noise
Fuzzy-Clustering Konzept vorgestellt. Dabei handelt es sich um bekannte
Bewertungsfunktionen, die mit einer Reihe von Distanz- oder Ähnlichkeits-
maßen kombiniert werden können. Die Grenzen und Probleme dieser Ver-
fahren haben zu der Entwicklung eines neuen Fuzzy-Clusteringkonzeptes ge-
führt, das ebenfalls mit unterschiedlichsten Distanzmaßen kombiniert werden
kann. Mit diesem neuen Verfahren lässt sich mit einem der auftretenden
Probleme – die Handhabung von Meßfehlern oder Ausreißern innerhalb der
Daten – besser umgehen. Dazu wird der Einfluss einzelner Daten auf die
Gesamteinteilung während der Clusterberechnung angepasst. Am Beispiel der
Analyse von Umsteigern am Flughafen Frankfurt wird gezeigt, wie diese Tech-
nik genutzt werden kann, um Ausreißer zu identifizieren und ihren Einfluss auf
die Gruppierung zu reduzieren.

Bisher werden in Kombination mit den Bewertungsfunktionen im wesent-
lichen die euklidische und die mit Hilfe von Matrizen transformierte eukli-
dische Distanz verwendet. Hier werden neue Techniken vorgestellt, mit denen
die bekannten Verfahren erweitert und ihnen mehr Flexibilität verliehen wer-
den kann. Die Basisfunktionen werden so modifiziert, dass sich die Cluster-
verfahren besser an die Struktur der einzelnen Teilgruppen anpassen können.
Die einzelnen Cluster können sich dann z.B. an die Form, die Größe, den Ein-
fluss einzelner Attribute oder den Einfluss einer ganzen im Kontext zusammen-
gefassten Gruppe von Attributen anpassen. Am Beispiel der Analyse von
Flugradardaten wird deutlich, wie wichtig eine Anpassung der Clustergröße



und -form sein kann. In diesem Beispiel werden die Anflugrouten im Luftraum
des Flughafens Zürich analysiert, um Unterschiede zwischen den vorgegebenen
und tatsächlich praktizierten Anflugrouten aufzuzeigen. Die Gruppierung von
Daten anhand des Vergleichs von Attributgruppen ist besonders für die Bild-
verarbeitung von Bedeutung. Dabei geht es häufig darum, ähnliche Regionen
zu erkennen, wie anhand eines Bildes des Forschungsflugzeuges ”ATTAS” des
Deutschen Zentrums für Luft- und Raumfahrt e.V. demonstriert wird.

Ein Anwendungsgebiet der Fuzzy-Clustering Verfahren ist die Beschrei-
bung eines Systemverhaltens in Form von Fuzzy-Regeln. Möglichkeiten, aus
Clustereinteilungen und den dabei berechneten Zugehörigkeitsgraden Fuzzy-
Regeln abzuleiten, werden in dieser Arbeit erläutert. Bei der Analyse der um-
steigenden Passagiere wird die Regelgenerierung genutzt, um das Passagierver-
halten zu beschreiben.

Auch wenn diese nachträgliche Beschreibung der berechneten Cluster in
Form von Fuzzy-Regeln durchaus anwendbar ist, kann damit immer nur eine
Näherungslösung für die Einteilung der Daten in Gruppen bestimmt wer-
den. Deshalb wird in dieser Arbeit eine Bewertungsfunktion eingeführt, die
eine Einteilung der Daten in Teilgruppen ermöglicht, die äquivalent zu der
Beschreibung von Bereichen des Analyseraumes mit Fuzzy-Regeln ist. Da die
partiellen Ableitungen dieser Bewertungsfunktion nicht überall existieren, wer-
den ein heuristischer Ansatz und ein auf Evolutionären Algorithmen basieren-
des Clusterverfahren eingeführt. Mit diesen Verfahren lässt sich eine Cluster-
einteilung finden, die diese Bewertungsfunktion optimiert und von vornherein
darauf ausgelegt ist, eine Beschreibung in Form von Fuzzy-Regeln für den
Untersuchungsraum zu finden.



Abstract

Determining a partition of given sample data is an important part in data
analysis tasks. Clustering methods use a mathematical model based on a
similarity measure to determine a suitable partition of the data set. In fuzzy
clustering the data is not only partitioned in a number of subgroups, but
each datum is assigned a degree of membership for each subgroup. In this
way a representativeness of each datum for the single subgroups is determined
during the analysis. In objective function based clustering the mathematical
model is stated in form of an objective function that evaluates the partition of
data with respect to the membership degrees and the underlying similarity or
distance measure. Different assumptions and constraints lead to a variety of
basic clustering concepts. If the objective function is differentiable, necessary
conditions for the membership degrees and other cluster parameters used in
the distance or similarity measure can be derived in order to optimise the
objective function. The resulting equations are then alternatingly applied in
an algorithm to determine the data partition.

In this work, the basic fuzzy clustering concepts of probabilistic, possi-
bilistic, and noise clustering are explained. These well-known concepts can
be applied to a variety of distance or similarity measures. The restrictions
and disadvantages of these techniques led to the development of a new basic
clustering concept. This approach can be applied to the presented distance or
similarity measures and is well suited to handle the problem of outliers within
the data set. Therefore, the influence of single data vectors on the partition is
estimated and adapted during the clustering procedure. How this technique
is used to identify outliers and reduce their influence on a partition is shown
for the example of transfer passengers at Frankfurt airport.

Usually the Euclidean or a transformed Euclidean distance is applied as
distance measures to the basic clustering concepts. Here, alternative fuzzy
clustering algorithms are introduced that expand well-known techniques and
give them a greater flexibility. Therefore, modifications of the similarity mea-
sures are introduced that enhance the adaptation possibilities of the clustering
procedure to the subgroups’ structures, e.g. to a structure’s volume, the sin-
gle attribute’s influence, or the influence of a whole group of data attributes
combined in some context. The importance of volume and shape adaptation
becomes obvious for the example of the analysis of flight radar data. In this
example, arrival routes of Zurich airport are analysed to point out differences
between pre-determined and practiced routes. Using the comparison of at-
tribute groups for clustering is esp. significant for pattern recognition. Often
similar regions have to be identified as is shown for an image of the research
aircraft ”ATTAS” of the German Aerospace Center.

One application field of fuzzy clustering techniques is the derivation of
fuzzy rules, e.g. to describe system behaviour. In this work, the possibilities
to derive rules from fuzzy clustering results are illustrated. Rule generation is
used for the analysis of transfer passenger to describe passenger behaviour.

Although the derivation of fuzzy rules based on clustering results is quite
applicable, this form of rule derivation is only an approximation of the clus-



tering partition. Therefore, an objective function that is based on the idea
to estimate the data partition in a form of groups related to fuzzy rules is
introduced in this work. Since this objective function does not have partial
derivatives a heuristic solution and an evolutionary algorithm based fuzzy clus-
tering technique are introduced to cope with this objective function. These
techniques are able to find a cluster partition optimising the objective function
and are specifically designed for describing a domain of interest in the form of
fuzzy rules.
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Chapter 1

Introduction

The idea to use the empirical knowledge of a control engineer to construct a
controller lead in the early 70’s to the development of fuzzy control [115]. To
use the data by itself to derive control rules is an alternative approach, which
became more popular in the last years as expert knowledge is not required
[73]. Other techniques like evolutionary or neural computation are approaches
applied to learning fuzzy rules from data often with the intention to optimise
certain parameters of a fuzzy controller.

Fuzzy clustering techniques aim at finding a suitable fuzzy partition for a
given data set. For a fuzzy partition a datum is not necessarily assigned to a
unique class or cluster, but has membership degrees between zero and one to
each cluster. Fuzzy clustering algorithms are applied for various reasons:

• The membership degrees give information about the ambiguity of the
classification.

• Fuzzy clustering can adapt to noisy data and classes that are not well
separated.

• Since most fuzzy clustering approaches are based on optimising an ob-
jective function, membership degrees represent continuous parameters
so that a continuous optimisation problem has to be solved.

• Fuzzy clustering can be applied to learning fuzzy rules from data.

The set of cluster parameters, that determine the size and the shape of
a cluster, depends on the specific application field. We mainly distinguish
between fuzzy clustering as an explorative data analysis method, especially for
unsupervised classification tasks, techniques for rule extraction (for instance
for fuzzy controllers), and shell clustering algorithms, that are designed for
boundary detection in image recognition.

In this work we review objective function-based fuzzy clustering approaches
in section 3 in general and demonstrate their applicability to the field of air
traffic management. First, we introduce basic concepts including a new clus-
tering approach, especially tailored for noisy data, in section 3.1. These basic
approaches rely all on the choice of suitable dissimilarity or distance measures.
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Various modifications of the Euclidean distance function have been proposed
in order to model different cluster forms.

Standard fuzzy clustering methods like the fuzzy c-means algorithm are
based on the idea of optimising an objective function. This objective function
depends on the distances of the data to the cluster centres weighted by the
membership degrees. By taking the first derivative of the objective function
with respect to the cluster parameters, one obtains necessary conditions for
the objective function to receive an optimum. These conditions are then ap-
plied in an iteration procedure and define a clustering algorithm. Numerous
approaches have been developed to detect different forms of cluster shapes in
data sets. The more flexible the clustering algorithms are in general, the more
they depend on a suitable cluster initialisation. Also with the flexibility of
cluster structures the complexity of the proposed algorithms highly increases.

In section 3.2 we review a number of well-known and frequently used dis-
tance measures. They can all be combined with the basic clustering approaches
presented in section 3.1.

Before presenting several new dissimilarity measures tailored for special
clustering tasks, so-called validity measures are reviewed in section 4. All
described basic clustering approaches need the number of clusters or subgroups
to be predefined for the calculation of a partition. The presented validity
measures enable us to evaluate a whole partition of data into subgroups in a
way (nearly) independent of the number of clusters. Optimising the validity of
a partition for varying number of clusters enables us to determine a (in some
way) optimal number.

In the following sections new modifications for the distance measures and
their applicability to the basic concepts of section 3.1 on the one hand and
for real applications on the other hand are introduced. Again, the validity
measures described in section 4 are applied to determine the number of groups.

In section 5.1 we present a new angle-based distance measure that is suit-
able for data sets with a smaller number of extreme values and a large number
of ‘normal’ values. Section 5.2 modifies this approach and we obtain a clus-
tering algorithm to detect lines and (hyper-)planes that can be applied to line
recognition as well as to constructing Takagi-Sugeno fuzzy rule systems that
describe a function in terms of local linear models.

In section 6 we present an extension that can be applied to well-known
simple and fast clustering techniques enabling these to adapt to the cluster
sizes without highly increasing the computational effort. One approach no
longer considering points as cluster centres but using circles with adapted
radii as cluster representatives is illustrated in this section.

Another important question is the influence of certain attributes. In the
worst case, some attributes even depend on each other or are just ’randomly’
distributed. In chapter 7 we present a modification of the basic clustering
techniques that enables us to determine the importance of certain attributes
or variables.

Fuzzy clustering has been shown to be a valuable technique not only for
data analysis but also for image recognition, see e.g. [20], [17], [15], [16], or
[24]. The methods presented in chapter 3 have been successfully applied to
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image recognition. In chapter 8 we introduce a new clustering technique espe-
cially tailored to identify similar regions in a data set, being essential in image
recognition. Our approach does not only compare the regions pixel-wise but
can handle predefined sets of attributes within the (dis-)similarity measure.
Therefore, the similarity of whole sets rather than single attributes is used for
a classification.

Because of the close connection between fuzzy clusters and fuzzy rules,
fuzzy clustering seems to be a very promising method for generating rules
from data. Intuitively, each if-then rule of a Mamdani-type fuzzy controller or
in case of a classification task the rule’s premise specifies a vague point of the
graph of the control function in the sense that it can be identified with the
Cartesian product of the membership functions modelling the linguistic terms
appearing in a rule. If, for example, triangular membership functions are
used, the coordinates of the tips of the triangles define a vector or point that
can be interpreted as a ’typical’ point of the control function. Points in the
neighbourhood with increasing distance are less ’typical’ and therefore have a
decreasing membership degree defined by the Cartesian product of the fuzzy
sets appearing in the rule. The similarity to many fuzzy clustering strategies is
evident: A typical element - usually the cluster centre or prototype - represents
the cluster and the membership degree of a datum to the cluster is decreasing
with increasing distance, which could even be a transformed distance. In
section 9 we review how rules can be extracted from fuzzy clusters and show
how the fuzzy clustering techniques presented in this work can be used for rule
extraction.

Some drawbacks in rule generation from solid clusters in general lead us to
the heuristic clustering approach of grid clustering, introduced in section 9.2.
This approach seems to be well-suited for the task of rule learning.

In principal any kind of prototype parameter set and distance function can
be chosen in order to have flexible cluster shapes. However, the alternating
optimisation scheme can only be applied, when the corresponding distance
function is differentiable. But even for differentiable distance functions we
usually obtain equations for the prototypes that have no analytical solution
(for instance [33]). This means that we have to cope with numerical problems
and need in each iteration step a numerical solution of a coupled system of
non-linear equations. Other approaches try to optimise the objective function
directly by evolutionary algorithms as reviewed in chapter 11. For our grid
clustering it is impossible to design a differentiable objective function leading
to simple update equations. Therefore, we review some approaches to apply
evolutionary strategies to fuzzy cluster analysis in section 11.3 and introduce
a clustering algorithm with a non-differential objective function that leads to
similar results as the heuristic grid clustering algorithm.

1.1 Data analysis and fuzzy clustering

Fuzzy Clustering is only a small part of data analysis as a whole. It can
be categorised as a part of pattern recognition, where data is partitioned or
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grouped without implying a mathematical model. Knowledge extraction e.g.
in form of fuzzy rule generation is usually based on previously determined
subgroups of the data. Figure 1.1 illustrates the data analysis task using
fuzzy clustering to perform the data partition. In this scheme the data analysis
process is divided into three phases: preparation, calculation, and evaluation.
The preparation phase can be considered as pre-processing for the clustering
task. Knowledge about the data set under consideration or statistical pre-
processing is used to simplify the fuzzy clustering task.

Some of the described clustering techniques are not robust against outliers
and most use distance measures that highly depend on the scaling of the data
variables or attributes. The influence of attribute scaling is illustrated in figure
1.2. If we have to partition the example data into two groups, we are not sure
how to partition the data in the first figure (1.2(a)). The other two examples in
figure 1.2(b) and 1.2(c) would lead to contrary partitions. We have to handle
or at least keep in mind these problems if we prepare a data set for clustering
tasks.

Once we have finished the data pre-processing, we have to select the fuzzy
clustering parameters. A suitable clustering technique as e.g. detection of
solid clusters, outliers, or contours has to be chosen. In general, these basic
clustering techniques aim at optimising the single clusters, depending on the
(gradually) assigned data. Therefore, the number of clusters either has to be
predefined or a so-called validity measure has to be specified. On the contrary
to the basic clustering scheme, the validity measure is tailored to evaluate
the partition of the data as a whole. Carrying out the clustering task for a
varying number of clusters and evaluate the resulting partitions with a suitable
validity measure helps to identify the ’optimal’ number of clusters. Most basic



1.1 Data analysis and fuzzy clustering 5

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

x

y

(a) x – normal scale, y – normal scale

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

x

y

(b) x – small scale, y – normal scale

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

x

y

(c) x – normal scale, y – small scale

Figure 1.2: Influence of attribute scaling



6 Introduction

clustering techniques can be combined with varying similarity/dissimilarity
measures. The dissimilarity measure often has the form of a distance measure
between the cluster representative and a data vector.

The last step of the preparation phase is the initialisation of the fuzzy clus-
tering procedure. We have to determine either an initial gradual partition of
the data – so-called membership degrees – or an initial solution for the cluster
representatives, often in form of cluster centres. In general it is easier to select
single data vectors as cluster centres by chance than to determine suitable
membership degrees for the data set without given cluster representatives.

After the initialisation we enter the calculation phase of the selected clus-
tering algorithm. In general we determine alternately the membership degrees
of all data to all clusters and the cluster representatives. The alternating op-
timisation is carried out until we are satisfied with the resulting partition, e.g.
when the iterative calculation no longer leads to significant changes in the par-
tition. In the most simple algorithms, the cluster representatives (also called
prototypes) consist only of centre vectors. Other parameters that influence
the partition may belong to the cluster representative, e.g. attribute, cluster,
or data weights, matrices or scaling factors used for the distance measure.

Once the calculation phase has been finished, we can evaluate the parti-
tion. It depends on the goal of the clustering task, if further studies based on
the clustering parameters are carried out. If we are interested in functional
dependencies in our sample data, fuzzy rules might be the form of result we
are looking for. Considering the task of image recognition, the combination of
data vectors in form of clusters might be the result. Also certain parameters
determined during the alternating optimisation could be of interest for further
studies or by themselves. Indifferently to the results we are looking for, we
have to check and sometimes validate our conclusions.

This process is not only suitable for fuzzy clustering tasks but also for other
clustering techniques, see e.g. [90], or even data analysis methods in general.
See e.g. [84] where a method to deal with missing values in classification tasks is
described. In the following we restrict ourselves to fuzzy clustering, considering
crisp data only. For an introduction in fuzzy data analysis see e.g. [10, 9].

1.2 Fuzzy clustering notation and basics

The mathematical problem to divide collected data into meaningful and inter-
pretable subgroups is considered since the beginnings of statistical research.
We generally try to build data parts in a way that similar samples are joint
together in one group and dissimilar samples are divided into different groups.
In a mathematical notation the sample data can be written as X ∈ Rp×n,
where n is the number of collected data and p denotes the number of feature
attributes, variables or measured quantities. One feature vector or datum is
denoted as the vector xk ∈ Rp with k ∈ {1, . . . , n}. With this definition, we
can write the data as set of feature vectors: X = {x1, . . . , xn}. The goal is to
partition the sample data into subgroups, so-called clusters. They are denoted
by C = {v1, . . . , vc}, with c denoting the number of subgroups. Each cluster
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representative or prototype vi, i ∈ {1, . . . , c} consists of the cluster parame-
ters, generally the centre vector vi ∈ Rp and other parameters, describing the
clusters size, form, or influence of attributes. Some parameters as e.g. the
covariance matrix influence the dissimilarity or distance measure d2(vi, xk).
Each data vector xk ∈ X is gradually assigned to each prototype vi ∈ C. The
grade assigning a datum xk to a cluster vi is called membership degree and
denoted by uik. The matrix of all membership degrees

U =

u11 . . . u1c
...

. . .
...

un1 . . . unc


determines the partition of the data X into groups C. Classical techniques
admit only crisp membership degrees – uik either 0 or 1, uik ∈ {0, 1} – whereas
in fuzzy clustering all degrees between 0 and 1 are possible, leading to fuzzy
membership degrees – uik ∈ [0, 1].

In case of fuzzy clustering, often a parameter to influence the fuzziness of
the calculated partition is used. This parameter is called fuzzifier or fuzziness
index and denoted by m ∈ R>1. During the calculation m is used as exponent
for the membership degrees uik.

The task of clustering is to determine a partition where similar data is
grouped in one cluster – uik → 1 for small dissimilarity d2(vi, xk) – and dissim-
ilar data is partitioned in different subgroups – uik → 0 for large dissimilarity.
In summing up the dissimilarity weighted by the membership degrees we are
able to define a general objective function that has to be minimised:

J(X, U, v) =
c∑

i=1

n∑
k=1

(uik)md2(vi, xk)

In order to avoid the trivial solution uik = 0, additional assumptions have
to be made leading to probabilistic (section 3.1.1, [15]), possibilistic (section
3.1.2, [79]), noise (section 3.1.3, [34]), or outlier (section 3.1.4) clustering. Par-
tial derivatives with respect to the prototype parameters and the membership
degrees lead to necessary conditions for the objective function to have a mini-
mum. For m → 1, the membership degrees are either 0 or 1, i.e. uik → 0/1, so
the classification tends to be crisp. If m →∞, then uik → 1

c . In this case each
datum is totally split among the clusters and assigned with the same degree
to each cluster.

Before we take a closer look at objective function based fuzzy clustering in
general, the applications in air traffic management are described in the next
chapter.





Chapter 2

Fuzzy Clustering in Air
Traffic Management

Several approaches to apply fuzzy clustering and softcomputing techniques to
traffic problems and aerospace applications in general have been described in
the literature, see e.g. [27, 30, 32, 11].

Increasing mobility of the individual leads to growing flight rates at the
main airports around the world. Most airports are located in urban areas
where no (or at least not suitable) areas are left to expand the airport. In
addition, the ecological risks and the strain on humans of expanding the airport
are not tenable in a number of cases. The search for alternative solutions is
a very complex task and for each airport individual. Usually the airport
is analysed under current conditions to identify critical parts and develop
schemes for improvement. The main task is to increase the airport capacity
without raising delay times. Thereby security and social as well as ecological
problems have to be taken into account.

Increasing traffic at airports without adapting the airports infrastructure
leads to more delay. Problems arise not only from security regulations but
also from the higher amount of work load for the airport staff in general. The
demand for increasing airport capacity leads to the necessity of assistance sys-
tems to reduce the human workload. To determine critical components where
assistance systems can be effectively introduced, the particular airport has
to be analysed and simulated. Therefore, data e.g. flight information data or
radar data combined with aircraft type and size, time, weather, and airline de-
pendent information are studied. The results lead to a better understanding of
the airport as a whole system and indicate problematic influence factors. The
aim of applying clustering techniques is to assist the analyst with mathema-
tical methods not only to focus on the obvious problem factors but indicate
additional items to include in airport simulations. In general, the available
data is graphically or statistically evaluated and interpreted. The aim is to
identify critical technical or operational configurations and introduce new pro-
cedures or assistance systems reducing the work load as well as the ecological
or social burden.

Two main air traffic management examples have been selected for this
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work to demonstrate how fuzzy clustering is suited for analysis problems in
air traffic management. In the first example we look for rules describing the
transfer passenger behaviour. Detecting current flight routes from radar data
is the second task described in this work. A third air traffic example illustrates
the possibilities of fuzzy clustering techniques for image recognition.

2.1 Analysis of Transfer Passenger Information

One analysis task is based on the airports landside. The airside restricts an
airports capacity, but we can only take advantage of the airside capacity limit if
landside components are suited to handle the corresponding volume of traffic.
Therefore, the passengers have to reach their flight in time and the airport
staff has to be able to load, unload, maintain, etc. the aircraft in time, too.

To simulate the airport as a complete airside and landside system the
amount of data needed is too huge to build a complete microscopic airport
model where each single passenger and staff member would be represented
in the simulation. The idea for a total airport simulation system is to use
microscopic models in areas of specific interest and complete other regions by
macroscopic models. For a new large aircraft it is e.g. of interest, in which way
the passengers can be loaded and unloaded in the fastest way, but for the way
to and from the gate statistic mean values might be sufficient. The macro-
scopic models are based e.g. not on single movements of one passenger but of
the passenger flow from one terminal area to another. The aim in this case is
to generate rules describing the passenger flow in the terminal area. To verify
the extracted rules, an interpretable set of rules has to be identified. Using
fuzzy clustering methods enables us to extract in a first step a rule system
based solely on available data. This way it is possible to identify influence fac-
tors that might be underestimated or overlooked by experts. At the moment
only standard rules such as ”at a hub airport a large number of passengers
are transfer passengers” and ”long-haul flights carry a significant number of
transfer passengers arriving from other airports” are known. The amount of
transfer passengers continuing on a short-haul flight depends e.g. on the de-
parture time. Airports usually have detailed statistics about the number of
transfer passengers for departing and arriving flights, flight destinations, gates,
terminals, and apron positions. For a macroscopic simulation model developed
in our department it is useful to have a kind of rule set describing the passenger
flow (amount of departing and arriving transfer passengers) in dependence on
the flight time, type (long-haul, medium-haul, short-haul), passenger amount,
etc. Such a rule set enables us to simulate the effect of changes in the airports
landside or airside architecture or in the landside connection of the airport.
The amount of transfer passengers implicitly describes the number of passen-
gers arriving from the landside. Such a rule system helps also to identify the
interface between land- and airside if additional information e.g. total num-
ber of passengers in relation to transfer passengers is available. Flight specific
passenger data is usually highly sensitive data in the best case provided by the
airlines with restricted access. In addition to the advantages for macroscopic
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simulation, a more or less general airport dependent rule system is extremely
helpful for further airport studies to avoid the use of sensitive data material.

For the rule system under development, it is not suitable to generate strict
rules. Vagueness resulting from the influence factors has to be handled. Rules
identified by experts are usually not strict. Terms as ”large aircraft”, ”sig-
nificant amount of passengers”, and others are frequently used and sufficient
for our macroscopic model. The circumstances under which passengers choose
a connecting flight are at least not recorded in the available data material,
because they are usually unknown. Also occurrences in the business world
– e.g. a strike of an airline carrier – have effects on the amount of transfer
passengers but are unpredictable.

Under this considerations we look for a rule system that gives us rules in
the form ”under certain conditions usually an amount of about x% passengers
are transfer passengers”. Some expert knowledge is also available that can be
used to develop a corresponding fuzzy rule system. However the aim is to see
whether additional parameters – at the moment not considered by experts –
influence the transfer passenger behaviour. Therefore, we have chosen to use
fuzzy clustering techniques to identify such a rule system, see chapter 10. The
chosen clustering techniques have to be suited for the task of rule learning.
Having expert knowledge available enables us to determine to what extend the
rule system reflects this knowledge.

In this work, the generation of a rule system explaining the transfer pas-
senger rate in dependence on the flight time, destination, and aircraft size is
presented. The rule system is developed for departures and arrivals at Frank-
furt airport. In future studies these two rule sets are incorporated in an expert
system together with available expert knowledge.

2.2 Analysis of Radar Data

Another important task is the analysis of radar data. The radar plots are
collected for each aircraft arriving, departing, and flying through. The position
– above ground coordinates and height – are stored for each single aircraft.
Generally, the two-dimensional data – leaving out height – is visualised for
a certain area around the airport to determine frequently used flight paths.
These plots are e.g. used to estimate the noise pollution of surrounding urban
areas and introduce new routes for noise abatement procedures. However, the
flight level of aircraft is important for the separation and highly influences the
noise level, so that flight routes including flight height are more informative
than only the ground path determined by visual analysis.

For most airports departure and approach procedures define flight routes
that have to be used by aircraft in the surrounding airspace. In low traffic as
well as high traffic situations the air traffic controller advises the pilot to use
a deviating flight pass. Written approach procedures are regularly but seldom
updated, see e.g. [29].

In practice also other than the official procedures are used. For airport
analysis and capacity studies it is important to know the ”state-of-the-art”
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Arrivals and departures Zurich 10/01-12/31/1996
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Figure 2.1: Arrivals and departures at Zurich airport

airport procedures to validate the simulations and derive improved procedures.
Commonly the flight paths of approaching and departing aircraft are evalu-
ated. Therefore, radar data giving the position of an aircraft is recorded every
four seconds. Often the data is analysed visually. The ground area around
an airport is divided into small segments and the number of aircraft recorded
in each segment is counted for a fixed time period. Then the segments are
coloured to show the frequency of aircraft in each segment for the analysed
time period. An example of such an analysis is shown in figure 2.2 for the
Zurich airport with data from 1996. A problem for capacity analysis of this
method is the neglect of flight height. The airspace is divided in height-levels
where aircraft are allowed to act independently of each other. The visual
analysis and description of 3-dimensional flight routes is often impossible.

For this application, the aim of this work is to use a method that is able to
detect line segments in the 3-dimensional elliptical data clouds with different
sizes that are described in form of radar data. Therefore, the size-adaptable
centre-based clustering technique combined with the algorithm introduced by
Gustafson and Kessel [48] – introduced in section 6.1 as GK-sized – is used
to extract flight route segments, see section 6.5. This technique is suited
to detect elliptical structures of different sizes. The advantage of a fuzzy
clustering technique in this case is the possibility of recorded data points to
belong to more than one of the identified ellipsoidal structures. Since the
aim is to detect route segments these segments usually overlap for continuous
flight procedures. For two overlapping parts it is necessary to incorporate
the radar points in the two elliptical structures describing the route segments.
Once we have obtained a description of flight routes, it can be used for further
studies to identify main flight paths and improve the determination of noise
polluted areas as well as further airport simulations. This work is restricted
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to the demonstration how flight routes can be identified with fuzzy clustering
techniques. Further studies at the German Aerospace Center in cooperation
with airport industry are carrying out pre-processing and deeper analysis of
the results described in this work.





Chapter 3

Objective Function Based
Fuzzy Clustering

In this chapter the principle ideas of objective function based fuzzy clustering
and some well known and often applied techniques are described. For a more
thorough overview on fuzzy clustering see for example [51, 15]. Most objective
function based fuzzy clustering algorithms aim at minimising an objective
function that evaluates the partition of data into a given number of clusters.

Other clustering approaches based on this general objective function clus-
tering concept have been developed by different authors for special tasks. One
problem that often has to be handled in business management is the intercon-
nection between the data groups. In [31] an objective function based clustering
technique has been developed that extends the general objective function by
a binary relation representing cluster interconnections. The problem of in-
complete data and solutions to handle missing values are e.g. described in
[50].

3.1 Basic Objective Functions

Before discussing several special clustering techniques, general forms of ob-
jective functions for fuzzy clustering are introduced that still depend on the
choice of a suitable distance measure. Two very common basic clustering tech-
niques are probabilistic and possibilistic clustering . Both depend on a distance
or dissimilarity measure weighted by the membership degrees. Probabilistic
clustering [15] uses a constraint ensuring that all data points totally belong to
the partition, whereas possibilistic clustering [79] considers outliers with small
membership degrees to all groups of data. A third approach related to pos-
sibilistic clustering is called noise clustering [34]. The idea of this approach
is to assign outliers to a special group of data called noise cluster and reduce
the influence of this group on the whole partition. Selim and Ismail [101] in-
troduced other approaches to avoid the drawback of probabilistic clustering.
They suggest to let a datum belong to a maximum number of clusters, to set
the membership degrees to zero if a predefined maximal distance is exceeded,
or to define a minimum threshold for the membership degrees. At last, a new
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approach related to noise clustering is presented. In this approach weights
for each datum are adapted during the clustering that indicates if single data
points can be seen as outliers. This approach is called fuzzy clustering with
outliers.

3.1.1 Probabilistic Clustering

In case of probabilistic fuzzy clustering the objective function is of the form

Jprob (X, U, v) =
n∑

k=1

c∑
i=1

um
ik · d2 (vi, xk) , (3.1)

where X = {x1, . . . , xn} ∈ Rn×p is the data set, n the number of data points,
c denotes the number of fuzzy clusters, uik ∈ [0, 1] is the membership degree
of datum xk to cluster i, vi is the prototype or the vector of parameters for
cluster i, and d(vi, xk) is the distance between prototype vi and datum xk. The
parameter m ∈ R>1 is called fuzziness index . For m → 1 the clusters tend to
be crisp, i.e. either uik → 1 or uik → 0, for m → ∞ we have uik → 1/c, i.e.
the same membership degree for all data to all clusters. Often a value about
2 is chosen for m.

To avoid the trivial solution in minimising the objective function 3.1 that
all membership degrees uik are 0, constraints have to be taken into account.
In this case the constraints are

n∑
k=1

uik > 0 for all i ∈ {1, . . . , c} (3.2)

and
c∑

i=1

uik = 1 for all k ∈ {1, . . . , n}. (3.3)

Constraint (3.2) guarantees that only non-empty clusters are admitted in the
partition. Constraint (3.3) ensures that the sum of all membership degrees for
one datum equals 1. This can be interpreted as ”each datum is fully divided
among the clusters and belongs totally to the partition of the data set”.

Theorem 3.1 (Probabilistic membership degrees)

Differentiating (3.1) and taking the constraints into account by a Lagrange
function leads to the necessary condition

uik =
1∑c

j=1

(
d2(vi,xk)
d2(vj ,xk)

) 1
m−1

(3.4)

for (3.1) to have a (local) minimum if the distance between datum xk and
prototype vi is not 0, i.e. d2(vi, xk) 6= 0. Otherwise the datum xk has to be



3.1 Basic Objective Functions 17

shared equally among the cluster centres whose prototypes have distance 0 to
xk:

if d2(vi, xk) = 0 then

{
uik = 1

|Ix| for vi ∈ Ix,

uik = 0 else
(3.5)

where Ix = {vj | d2(vj , xk) = 0 and j ∈ {1, . . . , c}}. Normally the distance
of a datum is only 0 to one cluster. Otherwise the prototypes of at least two
clusters and therefore the clusters itself would be identical. Identical clusters
or groups of data are meaningless in case of data partitions. The proof for non-
zero distances d2(vi, xk) is shown in Proof 3.1. The constraint 3.2 is fulfilled
by equation 3.4 as long as not all data points have distance 0 to the prototype
of one cluster.

Proof 3.1 (Probabilistic membership degrees)

Considering constraint 3.3 leads to the Lagrange function

Jprob
λ (X, U, v) =

n∑
k=1

c∑
i=1

um
ik · d2 (vi, xk)−

n∑
k=1

λk ·

(
c∑

i=1

uik − 1

)
.

Calculating the partial derivative w.r.t. uik leads to

∂Jprob
λ (X, U, v)

∂uik
= m · um−1

ik · d2(vi, xk)− λk
!= 0

and therefore

uik =
(

λk

m · d2(vi, xk)

) 1
m−1

. (1)

Using constraint 3.3 gives us

1 =
c∑

j=1

ujk

=
c∑

j=1

(
λk

m · d2(vj , xk)

) 1
m−1

=
(

λk

m

) 1
m−1

·
c∑

j=1

(
1

d2(vj , xk)

) 1
m−1

and therefore (
λk

m

) 1
m−1

=
1∑c

j=1

(
1

d2(vj ,xk)

) 1
m−1

.
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with (1) we receive

uik =
1∑c

j=1

(
1

d2(vj ,xk)

) 1
m−1

·
(

1
d2(vi, xk)

) 1
m−1

=
1∑c

j=1

(
d2(vi,xk)
d2(vj ,xk)

) 1
m−1

�

Therefore, equation (3.4) is used in an iteration procedure for updating the
membership degrees uik. If a suitable distance function and parameter form
is chosen, equations for the prototypes can be derived analogously, assuming
the membership degrees are fixed. The alternating optimisation scheme starts
with a random initialisation and applies the equations for the uik and the
prototypes until the norm of the membership matrices

(
Uold

)
and (Unew) in

two succeeding iterations is smaller than a given bound ε. The basic algorithm
scheme is shown in Algorithm 3.1.
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Algorithm 3.1 (Basic Probabilistic Case)

Choose()
{

m ∈ R>1;
c ∈ {2, . . . , n− 1};
ε > 0;

}

Initialise()
{

vi for all i ∈ {1, . . . , c};
for all i ∈ {1, . . . , c} ∧ k ∈ {1, . . . , n}

CalculateMembership (u(new)
ik );

}

CalculateMembership(uik)
{

Ix := {vj | d2(vj , xk) = 0 ∧ j ∈ {1, . . . , c}};

uik :=



1
|Ix| if vi ∈ Ix ∧ Ix 6= ∅;

0 if vi 6∈ Ix ∧ Ix 6= ∅;
1∑c

j=1

(
d2(vi,xk)
d2(vj ,xk)

) 1
m−1

if Ix = ∅;

}

CalculatePartition()
{

do
{

for all i ∈ {1, . . . , c}
Calculate(vi);

for all i ∈ {1, . . . , c} ∧ k ∈ {1, . . . , n}

u
(old)
ik := u

(new)
ik ;

for all i ∈ {1, . . . , c} ∧ k ∈ {1, . . . , n}

CalculateMembership(u(new)
ik );

}while

((
c∑

i=1

n∑
k=1

| u(new)
ik − u

(old)
ik |

)
< ε

)
;

}
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3.1.2 Possibilistic Clustering

In probabilistic clustering the strong constraint (3.3) possibly leads to un-
desirable membership degrees of some data. Assume a data point in great
distance to all clusters exists in the data set. This outlier would be assigned
approximately the same membership degree 1

c to all c clusters and therefore
would have a greater influence on the partition than desired. This effect is
illustrated in Figure 3.1. The two groups of data points denote two clusters
with the red dots as cluster centre and the points between and above the data
groups as outliers. In probabilistic clustering, all outliers would be assigned a
membership degree of about 0.5 to both clusters. In case of the points between
both circles such a membership degree can be interpreted in the way that it
is not possible to assign the point clearly to one cluster, but it belongs as an
outlier to the partition. For the points above and beneath the circles a small
membership degree to both clusters would help to identify this point as noise.

Figure 3.1: Two circular groups with outliers

To avoid such a drawback the approach of possibilistic clustering [79] was
introduced with remaining constraint (3.2) but released constraint (3.3):

c∑
i=1

uik > 0 for all k ∈ {1, . . . , n}. (3.6)

With these constraints the membership degree uik could be interpreted as a
degree of representativeness of datum xk for cluster i. To avoid the trivial
solution all uik → 0 by minimising equation (3.1) considering constraint (3.6)
the objective function has to be modified as well (3.7).

Jposs (X, U, v) =
n∑

k=1

c∑
i=1

um
ik · d2 (vi, xk) +

c∑
i=1

ηi

n∑
k=1

(1− uik)
m (3.7)

The additional parameter ηi > 0 determines the permissible extension of clus-
ter i.
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Theorem 3.2 (Possibilistic membership degrees)

Differentiating (3.7) considering the constraints (3.6) and (3.2) leads to

uik =
1

1 +
(

d2(vi,xk)
ηi

) 1
m−1

. (3.8)

Proof 3.2 (Possibilistic membership degrees)

Differentiating the possibilistic objective function

Jposs (X, U, v) =
n∑

k=1

c∑
i=1

um
ik · d2 (vi, xk) +

c∑
i=1

ηi ·
n∑

k=1

(1− uik)
m

with respect to uik leads to

∂Jposs (X, U, v)
∂uik

= m · um−1
ik · d2(vi, xk)− ηi ·m · (1− uik)

m−1 != 0

and therefore

um−1
ik · d2(vi, xk) = ηi · (1− uik)

m−1 .

This gives us

d2(vi, xk)
ηi

=
(

1− uik

uik

)m−1

=
(

1
uik

− 1
)m−1

leading to

1
uik

=
(

d2(vj , xk)
ηi

) 1
m−1

+ 1.

So we finally obtain

uik =
1(

d2(vj ,xk)
ηi

) 1
m−1 + 1

�

Constraint (3.6) is fulfilled, since uik → 0 only if d2(vi, xk) → ∞ or ηi →
0. To illustrate the influence of ηi, assume ηi = d2(vi, xk). The resulting

membership degrees are uik =
(
1 + 1

1
m−1

)−1
= 0.5. Defining a membership

degree of 0.5 as lower bound for assigning a data point xk to cluster i gives
parameter ηi the mentioned meaning. The permissible extension of cluster i is
in some way defined by ηi. If the cluster shapes are known in advance, ηi could
be estimated for all i = 1, . . . , c easily. Otherwise additional assumptions have
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to be made. One possible approach is to assume clusters containing about the
same number of data points and estimate

ηi =
∑n

k=1 um
ik · d2(vi, xk)∑n
k=1 um

ik

. (3.9)

Together with this approach, Krishnapuram and Keller [79] have also proposed
other methods to estimate the parameters ηi.

One has to be careful with the possibilistic clustering algorithm in choos-
ing a suitable parameter m. In general, for a relatively large value for m –
m → ∞ – the membership degrees of each datum tend towards 0.5 to each
cluster in calculating the membership degrees. This effect can be observed
in probabilistic as well as possibilistic clustering, but probabilistic clustering
seems to be more robust regarding the fuzziness index. In the worst case, no
realistic partition of the data is carried out any more in possibilistic clustering.
In most cases a value for the fuzzifier between 1.0 and 2.0 will work.

As first described by Davé [34], the clusters are independent of each other in
possibilistic clustering since the membership degrees only depend on the single
clusters distances. Here the predefined number of clusters c is more comparable
to an upper bound of groups than the exact number. In probabilistic clustering
the groups ’compete’ with each other for the data. Therefore, we first carry
out an initialisation with the probabilistic clustering algorithm before starting
the possibilistic clustering. The basic algorithm scheme is shown in Algorithm
3.2.
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Algorithm 3.2 (Basic Possibilistic Case)

Choose()
{

m ∈ R>1;
c ∈ {2, . . . , n− 1};
ε > 0;
count := 1;

}
Initialise()
{

for all i ∈ {1, . . . , c} ∧ k ∈ {1, . . . , n}

u
(new)
ik := uik result from Algorithm 3.1;

}

CalculatePartition()
{

for (count ≤ 2)
{

for all i ∈ {1, . . . , c}

ηi :=

∑n
k=1

(
u

(new)
ik

)m

· d2(vi, xk)∑n
k=1

(
u

(new)
ik

)m ;

do
{

for all i ∈ {1, . . . , c}
Calculate(vi);

for all i ∈ {1, . . . , c} ∧ k ∈ {1, . . . , n}

u
(old)
ik := u

(new)
ik ;

for all i ∈ {1, . . . , c} ∧ k ∈ {1, . . . , n}

u
(new)
ik :=

1(
d2(vi,xk)

ηi

) 1
m−1

+ 1
;

}while

((
c∑

i=1

n∑
k=1

| u(new)
ik − u

(old)
ik |

)
< ε

)
;

count := count + 1;
}

}
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3.1.3 Noise Clustering

Possibilistic clustering is one approach to deal with noisy data. Another re-
lated technique is called noise clustering, see e.g. [34, 36, 35, 102] and the
references therein. The principle idea is to add one noise cluster to the set of
clusters. Since the objective function considers only the distance function and
the membership degrees, the noise cluster can be represented by the weighted
membership degrees of the data to this cluster. The second term in equation
(3.10) expresses the noise cluster.

Jnoise (X, U, v) =
n∑

k=1

c∑
i=1

um
ik d2 (vi, xk) +

n∑
k=1

δ2

(
1−

c∑
i=1

uik

)m

(3.10)

Parameter δ >> 0 has to be chosen in advance and is supposed to be the
(large) constant distance of each datum to the noise cluster.

Theorem 3.3 (Noise clustering membership degrees)

As in possibilistic clustering the constraint (3.2) respectively (3.6) has to be
considered in order to derive equations for the membership degrees

uik =
1∑c

j=1

(
d2(vi,xk)
d2(vj ,xk)

) 1
m−1 +

(
d2(vi,xk)

δ2

) 1
m−1

(3.11)

as necessary conditions for (3.10) to have a minimum. How the membership
degrees are derived is explained in proof 3.3.

Proof 3.3 (Noise clustering membership degrees)

Jnoise (X, U, v) =
n∑

k=1

c∑
i=1

um
ik · d2 (vi, xk) +

n∑
k=1

δ2 ·

(
1−

c∑
i=1

uik

)m

where δ2 is the constant distance of each datum xk to the noise cluster c+1 with
cluster centre v(c+1). Defining this distance and corresponding membership
degrees gives us

d2(v(c+1), xk) = δ2 and um
(c+1)k =

(
1−

c∑
i=1

uik

)m

,

leading to

Jnoise (X, U, v) =
n∑

k=1

c+1∑
i=1

um
ik · d2 (vi, xk) .
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Equivalent to proof 3.1 the membership equations can be derived

uik =
1∑c+1

j=1

(
d2(vi,xk)
d2(vj ,xk)

) 1
m−1

=
1∑c

j=1

(
d2(vi,xk)
d2(vj ,xk)

) 1
m−1 +

(
d2(vi,xk)

δ2

) 1
m−1

�

An interesting result is that

c∑
i=1

uik < 1 for all k ∈ {1, . . . , n} (3.12)

in general, unless xk = vi for some i. This illustrates that each datum be-
longs at least with a small membership degree to the noise cluster. In 1984
Ohashi [95] already made an attempt to consider noise in data. Davé and Kr-
ishnapuram [35] showed that the minimisation of Ohashi’s objective function
is equivalent to the presented approach introduced by Davé [34].

Parameter δ is often estimated as follows

δ2 =
2

c · n
·

(
n∑

k=1

c∑
i=1

d2(vi, xk)

)
.

This estimation is used in all presented examples.

In the section 3.2, the difference between noise, possibilistic, and outlier
clustering becomes clear in the examples. Figure 3.3 in section 3.2.1 shows the
membership degrees for a data set with two spherical clusters and normal dis-
tributed data. We can see the problems that arise with probabilistic clustering
(the sum of the membership degrees of one datum to all clusters equals one)
and the tendency of the other clustering techniques to classify data points at
the outer border of the two data groups as outliers. If we assume data points
with a membership degree greater than 0.5 to a cluster v to belong to that
cluster, we see that in possibilistic clustering a non-negligible number of data
does not belong to the partition at all. In noise clustering the membership
degrees tend to be smaller as in probabilistic clustering but larger as in pos-
sibilistic clustering, reducing both drawbacks. Fuzzy clustering with outliers
is comparable to noise clustering, if we see the overall membership degrees as
the original membership degrees weighted by the adapted weighting factors.
The weights can also be directly used to determine potential outliers. Nev-
ertheless, it depends on a particular data set to choose an appropriate basic
fuzzy clustering technique.

The basic algorithm for noise clustering is shown in Algorithm 3.3.
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Algorithm 3.3 (Basic Noise Clustering Case)

Choose()
{

m ∈ R>1;
c ∈ {2, . . . , n− 1};
ε > 0;
δ � 0;

}

Initialise()
{

vi for all i ∈ {1, . . . , c};
for all i ∈ {1, . . . , c} ∧ k ∈ {1, . . . , n}

CalculateMembership (u(new)
ik );

}

CalculateMembership(uik)
{

Ix := {vj | d2(vj , xk) = 0 ∧ j ∈ {1, . . . , c}};

uik :=



1
|Ix| if vi ∈ Ix ∧ Ix 6= ∅;

0 if vi 6∈ Ix ∧ Ix 6= ∅;
1∑c

j=1

(
d2(vi,xk)
d2(vj ,xk)

) 1
m−1 (

d2(vi,xk)
δ2

) 1
m−1

if Ix = ∅;

}

CalculatePartition()
{

do
{

for all i ∈ {1, . . . , c}
Calculate(vi) ;

for all i ∈ {1, . . . , c} ∧ k ∈ {1, . . . , n}

u
(old)
ik := u

(new)
ik ;

for all i ∈ {1, . . . , c} ∧ k ∈ {1, . . . , n}

CalculateMembership(u(new)
ik );

}while

((
c∑

i=1

n∑
k=1

| u(new)
ik − u

(old)
ik |

)
< ε

)
;

}
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3.1.4 Fuzzy Clustering with Outliers

In this section a modified objective function with an additional weighting
factor for each datum is introduced. This approach is related to the former
described basic objective functions for probabilistic, possibilistic, and noise
clustering. The aim of our approach is not only to assign fuzzy membership
degrees to the data points, but also to determine a kind of representativeness
of each datum for the whole data distribution. This technique is especially
suited to detect data or regions in the sample data that are not well covered by
the actual classification. Relatively rare extreme situations are often critical
in case of control tasks. The approach presented here enables the expert to
determine and separate the critical data from the whole sample data to further
study each part separately from each other. In the following we refer to this
approach as outlier clustering. We have presented this approach in [54]. Other
approaches to deal with outliers in case of fuzzy models have been presented
in [13, 35, 36, 63]. Clustering algorithms to deal with data belonging to some
but not necessarily all clusters are introduced in [101].

Also, outliers could have a disrupting effect on a cluster calculation. If
we are able to reduce the influence of outliers in the classification task the
resulting methods would be more robust.

Some approaches to add weighting factors to the single data points in order
to take the number of data points per cluster into account have been studied
in [106]. Here, the aim is not to weight the number of data points per cluster
but to assign a kind of influence factor to the single data points. In that sense
this approach is related to noise clustering, presented in the previous section.
In adapting the weight during the clustering procedure, we are able to detect
outliers in the data set.

Since no special distance measure is used here, this approach can be seen
as a general basic clustering algorithm. This concept is a modification of
the probabilistic fuzzy clustering scheme, described in section 3.1.1. Only an
additional weighting factor is added to the probabilistic objective function, as
can be seen in

Joutlier(X, U, v) =
c∑

i=1

n∑
k=1

um
ik ·

1
ωq

k

· d2(vi, xk) (3.13)

where the factor ωk represents the weight for the k’th datum. With con-
stant real-valued parameter q the influence of the weighting factor can be
controlled.

Theorem 3.4 (Fuzzy Clustering with Outliers – Weighting Parameters)

Considering the constraint

n∑
k=1

ωk = ω, (3.14)
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where ω is a constant real valued parameter and assuming that the mem-
bership degrees are fixed, leads to the following update equation for the weight-
ing parameters

ωk =

(∑c
i=1 um

ik d2(vi, xk)
) 1

q+1∑n
l=1

(∑c
i=1 um

il d2(vi, xl)
) 1

q+1

· ω, (3.15)

see proof 3.4. It should be mentioned, that as long as not all clusters collapse,
we obtain non-zero values for the weighting parameters ωk.

Proof 3.4 (Fuzzy Clustering with Outliers – Weighting Parameters)

Joutlier (X, U, v) =
n∑

k=1

c∑
i=1

um
ik ·

1
ωq

k

· d2 (vi, xk)

Considering constraint (3.14) leads to the Lagrange function

Joutlier
λ (X, U, v) =

n∑
k=1

c∑
i=1

um
ik ·

1
ωq

k

· d2 (vi, xk) + λ ·

(
n∑

k=1

ωk − ω

)
(1)

Differentiating (1) with respect to ωk leads to

∂Joutlier
λ (X, U, v)

∂ωk
= −q · 1

wq+1
k

·
c∑

i=1

um
ik · d2 (vi, xk) + λ

!= 0

and therefore to

λ = q · 1

wq+1
k

·
c∑

i=1

um
ik · d2 (vi, xk) .

Resolving for ωk gives us

ωk =
(

q ·
∑c

i=1 um
ik · d2 (vi, xk)
λ

) 1
q+1

. (2)

With constraint (3.14) we obtain

ω =
n∑

k=1

(
q ·
∑c

i=1 um
ik · d2 (vi, xk)
λ

) 1
q+1

leading to

λ
1

q+1 =
n∑

k=1

(
q ·

c∑
i=1

um
ik · d2 (vi, xk)

) 1
q+1

· 1
ω
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and therefore

λ =

 n∑
k=1

(
q ·

c∑
i=1

um
ik · d2 (vi, xk)

) 1
q+1

· 1
ω

q+1

. (3)

Inserting (3) in (2) leads to

ωk =

(
q ·
∑c

i=1 um
ik · d2 (vi, xk)

) 1
q+1∑n

l=1

(
q ·
∑c

i=1 um
il · d2 (vi, xl)

) 1
q+1

· ω

=

(∑c
i=1 um

ik · d2 (vi, xk)
) 1

q+1∑n
l=1

(∑c
i=1 um

il · d2 (vi, xl)
) 1

q+1

· ω �

Again, additional assumptions have to be made to derive update equations
for the membership degrees. In the probabilistic case

n∑
k=1

uik > 0 ∀ i ∈ {1, . . . , c}

and
c∑

i=1

uik = 1 ∀ k ∈ {1, . . . , n}

have to be taken into account. Assuming the weighting factors as constant,
the distance measure could be combined with ωk and so defined as

d2(vi, xk, ωk) =
1
ωq

k

· d2(vi, xk).

Using this distance measure, leads to the probabilistic equation for the
membership degrees.

uik =
1∑c

j=1

(
d2(vi, xk, ωk)
d2(vj , xk, ωk)

) 1
m−1

=
1

∑c
j=1

(
1

ω
q
k

·d2(vi, xk)

1

ω
q
k

·d2(vj , xk)

) 1
m−1

=
1∑c

j=1

(
d2(vi, xk)
d2(vj , xk)

) 1
m−1

To derive update equations for the prototypes we can combine the weight-
ing factor with the membership degrees, since both are assumed to be fixed
for the prototype parameter estimation. Thus,

ũm
ik =

um
ik

ωq
k

(3.16)
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is defined. Now all of the following proofs for the prototypes in case of proba-
bilistic clustering remain valid for the fuzzy clustering with outliers. Only the
membership degrees um

ik have to be replaced by ũm
ik.

Based on this approach an alternating optimisation scheme for fuzzy clus-
tering is derived, using the weighting factor in combination with a chosen dis-
tance measure, see algorithm 3.4. As distance measure the Euclidean distance
used for the fuzzy c-means as well as the distance of the Gustafson-Kessel al-
gorithm or its axes parallel version can be used. Also the new defined distance
measures of sections 5, 6.1, 7, or 8 are well suited for this approach.

The aim of this fuzzy clustering with outliers is to add small weighting
factors ωk (large values for 1

ωq
k
) to data points fitting well to at least one of

the clusters. Outliers often have a relatively large distance to all of the data
groups and are equally shared among the groups. In this approach they are
assigned a large weight ωk, so 1

ωq
k

is small in this case. In equation (3.15) the
influence of parameter q becomes obvious. For q →∞, all parameter ωk → ω

n
and therefore gain the same influence on the partition, whereas for q → 0 the
weighting influence reaches its maximum.

Algorithm 3.4 (Basic Clustering with Outliers)

Choose()
{

m ∈ R>1;
c ∈ {2, . . . , n− 1};
ε > 0;
q ∈ R>0;
ω ∈ R>0;

}

Initialise()
{

vi for all i ∈ {1, . . . , c};

CalculateMembership(u(new)
ik );

}
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Algorithm 3.4 (Basic Clustering with Outliers – continued)

CalculateMembership(uik)
{

Ix := {vj | d2(vj , xk) = 0 ∧ j ∈ {1, . . . , c}};

uik :=



1
|Ix| if vi ∈ Ix ∧ Ix 6= ∅;

0 if vi 3 Ix ∧ Ix 6= ∅;
1∑c

j=1

(
d2(vi,xk)
d2(vj ,xk)

) 1
m−1

if Ix = ∅;

}

CalculateWeightingParameter(ωk)
{

ωk :=

(∑c
i=1 um

ik · d2 (vi, xk)
) 1

q+1∑n
l=1 (

∑c
i=1 um

il · d2 (vi, xl))
1

q+1
· ω;

}

CalculatePartition()
{

do
{

for all k ∈ {1, . . . , n}
CalculateWeightingParameter(ωk);

for all i ∈ {1, . . . , c}

Calculate(vi) using ũm
ik =

(
u

(new)
ik

)m

ωq
k

;

for all i ∈ {1, . . . , c} ∧ k ∈ {1, . . . , n}

u
(old)
ik := u

(new)
ik ;

for all i ∈ {1, . . . , c} ∧ k ∈ {1, . . . , n}

CalculateMembership(u(new)
ik );

}while

((
c∑

i=1

n∑
k=1

| u(new)
ik − u

(old)
ik |

)
< ε

)
;

}
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3.2 Distance measures and algorithms

In the previous section some general clustering concepts have been described.
All techniques rely on the definition of suitable distance measures. Choosing
a certain dissimilarity measure defines the structure which is searched for in
the sample data. Different distance measures are able to describe varying
forms or shapes of clusters. In general we can say that the more flexible
one algorithm is in detecting different cluster forms, the more susceptible is
this algorithm towards local optima. In the following we start with a simple
form – the Euclidean distance – and change gradually to more complex forms.
One possibility to overcome local optimal solutions is to use the clustering
result of a simpler and therefore less susceptible fuzzy clustering algorithm
as initialisation for a more adaptable algorithm. Another possibility is to use
statistic clustering methods to calculate initial prototypes, see for instance
[90, 10], instead of random points.

3.2.1 The Fuzzy c-Means Algorithm

One simple fuzzy clustering technique is the fuzzy c-means algorithm (FCM),
see e.g. [15, 39, 40], where the distance d2(vi, xk) is chosen as the squared
Euclidean distance

d2(vi, xk) = DFCM = ‖ xk − vi ‖2 =
p∑

ν=1

(
x

(ν)
k − v

(ν)
i

)2
(3.17)

where the prototypes are vectors vi ∈ Rp, with p the dimensionality or number
of attributes of the data. x

(ν)
k

(
v

(ν)
i

)
denotes the ν’th coordinate of the data

vector (cluster centre representative). In [62] an approach using the median
(l1 − norm) instead of the mean is introduced.

Due to the Euclidean distance measure, this technique searches for spher-
ical clusters of approximately the same size. See figure 3.2 for an illustration
of the Euclidean distance to the cluster centre v> = (0, 0) and varying data
x> = (x0, x1). The distance is indicated by colour and contour lines.

Theorem 3.5 (Fuzzy c-Means Prototypes)

By differentiating (3.1), (3.7) or (3.10) we obtain the necessary condition

vi =
∑n

k=1 um
ik · xk∑n

k=1 um
ik

(3.18)

as prototype calculation instruction for the objective functions to have a (local)

minimum using DFCM , see Proof 3.5. In the following, v
(ν)
i , x

(ν)
k denote the

ν’th component of vi and xk, respectively.
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Figure 3.2: Euclidean distance to v> = (0, 0)

Proof 3.5 (Fuzzy c-Means Prototypes)

Jprob (X, U, v) =
n∑

k=1

c∑
i=1

um
ik · d2 (vi, xk)

=
n∑

k=1

c∑
i=1

um
ik· ‖ xk − vi ‖2

∂Jprob (X, U, v)

∂v
(ν)
i

= −2 ·
n∑

k=1

um
ik ·
(
x

(ν)
k − v

(ν)
i

)
!= 0

⇒
n∑

k=1

um
ik · v

(ν)
i =

n∑
k=1

um
ik · x

(ν)
k

⇒ v
(ν)
i =

∑n
k=1 um

ik · x
(ν)
k∑n

k=1 um
ik

⇒ vi =
∑n

k=1 um
ik · xk∑n

k=1 um
ik

�

Since the first summand is identical in the three objective functions from
Section 3.1 and the second term in equations (3.7) and (3.10) does not depend
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on a certain distance measure, the derived prototype equation holds in all three
cases. These prototypes could be used alternating with (3.4), (3.8), or (3.11)
in the algorithms 3.1, 3.2, 3.3, and 3.4 as step Calculate(vi), see Algorithm
3.5. The update equation for the membership degrees depends on the chosen
basic objective function as described in the previous section.

Algorithm 3.5 (Prototype Calculation for FCM)

Calculate(vi)
{

vi =
∑n

k=1 um
ik · xk∑n

k=1 um
ik

;

}

In figure 3.3 an example for a data set with two circular groups is shown.
The clustering was calculated for the four described basic objective functions
from the previous section, probabilistic (see figure 3.3(a)), possibilistic (see
figure 3.3(b)), noise (see figure 3.3(c)), and outlier clustering (see figure 3.3(d)).
The parameters for the basic clustering algorithms were set as follows: fuzzifier
m = 2, number of clusters c = 2, the lower bound to end the calculation
ε = 0.0001, and additionally for noise clustering parameter δ2 as weighted
medium distance

δ2 =
2

c · n
·

(
n∑

k=1

c∑
i=1

d2(vi, xk)

)
.

For fuzzy clustering with outliers the weighted membership degrees are illus-
trated for q = 0.5 and ω = 200, i.e.

ũik =
(

um
ik

ωq
k

) 1
m

.

These figures show the differences of the objective functions introduced in
section 3.1. In case of probabilistic clustering (fig. 3.3(a)), data points with
the same distance to both clusters are assigned a membership degree of about
0.5 to both clusters. This leads to the effect, that data points in the middle
of the illustration in between both clusters are assigned a smaller membership
degree than data points with the same distance to one cluster’s centre but
on the opposite side of that centre, e.g. in the upper right corner of this
figure. In possibilistic clustering (fig. 3.3(b)), the membership degrees decrease
rapidly with increasing distance of the data points to the cluster centres in
all directions. This way, data points in between both cluster centres as well
as those in the upper right and lower left corners of fig. 3.3(b) are assigned a
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Figure 3.3: Clustering Results for FCM (m = 2, c = 2, ε = 0.0001) – mem-
bership degrees
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Figure 3.4: Clustering Results for FCM (m = 2, c = 2, ε = 0.0001) – weights
for outlier clustering
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small membership degree of about 0.2 to both clusters. Noise clustering and
outlier clustering to not lead to so rapidly decreasing membership degrees as
possibilistic clustering but are able to assign smaller membership degrees to
data points in the upper right and lower left corners (see fig. 3.3(c) and 3.3(d)).
In noise clustering the ”medium” distance δ2 is used to reduce the membership
degrees for data points at the edge of the cluster’s range. Individual weights
that are adapted during the cluster calculation are used in outlier clustering to
identify outliers. In figure 3.4 the calculated weights ωk are shown for q = 0.5,
q = 1, and q = 2. Here we see the effect of parameter q. The smaller q, the
greater is the emphasis on the weight adaptation. For q = 2 the single data
points are assigned similar weights, fig. 3.4(c), whereas q = 0.5 (3.4(a)) leads
to weights between about 0 and 4.0. The wider distribution allows a more
precise distinction whether data points do belong to a certain partition.

In [14] and [23] Bezdek and others have shown that the alternating optimi-
sation for probabilistic FCM converges to a saddle point or a (local) minimum.
A general convergence analysis for the algorithms based on the probabilistic
basic algorithm scheme (Algorithm 3.1) does not exist. Only some clustering
algorithms have been analysed concerning convergence, see e.g. [21]. Never-
theless, the great success of these techniques suggests their use in practical
operations.

3.2.2 The Algorithm by Gustafson and Kessel

Gustafson and Kessel [48] designed a fuzzy clustering method that is able to
adapt to hyper-ellipsoidal forms. Therefore, a transformed Euclidean distance
of the form (xk − vi)>C−1

i (xk − vi) is used, where Ci is a symmetric positive
definite matrix. This distance measure is illustrated in Figure 3.5. Colour and
contour lines denote the distance of a point x> = (x0, x1) to the cluster centre
v> = (0, 0). In Figure 3.5(a) the diagonal matrix

Ci =
(

1 0
0 5

)
⇒ C−1

i =
(

1 0
0 0.2

)
and detCi = 5

has been used to transform the Euclidean distance. The diagonal elements
of matrix Ci determine the axis-parallel expansion of the region having the
same distance to the structures centre vi. Figure 3.5(b) illustrates the effect
of non-axes-parallel matrix elements

Ci =
(

0.595 0.476
0.476 2.381

)
⇒ C−1

i =
(

2 −0.4
−0.4 0.5

)
and detCi = 1.091.

The region with the same distance to the structure’s centre is expanded as in
the case of diagonal matrices Ci and additionally rotated around the centre
vi. Both matrices are positive definite since all eigenvalues are positive (>
0). The corresponding clustering algorithm uses the cluster centres and the
transforming matrices as cluster parameters. Both are alternately updated
using the updated membership degrees for the calculation. So the prototypes
consist of the cluster centres vi as in FCM and (positive definite) covariance



38 Objective Function Based Fuzzy Clustering

(a) axes-parallel ellipsoid

(b) rotated ellipsoid

Figure 3.5: Transformed Euclidean distances to v> = (0, 0)
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matrices Ci. The Gustafson-Kessel algorithm (GK) replaces the Euclidean
distance by the transformed Euclidean distance

d2(vi, xk) = DGK = (ρi det Ci)1/p · (xk − vi)>C−1
i (xk − vi). (3.19)

The factor (ρi det Ci)1/p in DGK guarantees the volume for all clusters to be
constant. Factor ρi can be used to determine the size of cluster i and is not
changed during the alternating optimisation. If the sizes cannot be estimated
in advance, the parameters ρi might be set to one.

Theorem 3.6 (Gustafson-Kessel Covariance Matrices)

The covariance matrices Ci are computed using equation (3.20), see Proof 3.6.

Ci =
n∑

k=1

um
ik · (xk − vi)(xk − vi)>. (3.20)

Proof 3.6 (Gustafson-Kessel Covariance Matrices)

Inserting the distance measure 3.19 into the general objective function leads
to

Jprob (X, U, v) =
n∑

k=1

c∑
i=1

um
ik · d2 (vi, xk)

=
n∑

k=1

c∑
i=1

um
ik · (ρi det Ci)1/p · (xk − vi)>C−1

i (xk − vi).

Setting ρi = 1 for all i ∈ {1, . . . , c} without loss of generality and

Gi = p
√

det(Ci) · C−1
i

leads to

Jprob (X, U, v) =
n∑

k=1

c∑
i=1

um
ik · (xk − vi)> ·Gi · (xk − vi).

Under constraints

det(Gi) = 1 for all i ∈ {1, . . . , c}. (1)

In this way the Lagrange function is as follows

Jprob
λ (X, U, v) =

n∑
k=1

c∑
i=1

um
ik · (xk − vi)> ·Gi · (xk − vi)−

c∑
i=1

λi · det(Gi).
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Consider Gi as regular matrices ∈ Rp×p

∂Jprob
λ (X, U, v)

∂Gi
=

n∑
k=1

um
ik · (xk − vi)>(xk − vi)− λi · det(Gi) ·G−1

i
!= 0

⇒
n∑

k=1

um
ik · (xk − vi)>(xk − vi) = λi · det(Gi) ·G−1

i .

Let I ∈ Rp×p denote the identity matrix and take into account that Gi is
invertible. With (1) we then receive

Gi ·

(
n∑

k=1

um
ik · (xk − vi)>(xk − vi)

)
= λi · I. (2)

Leading to

λp
i = det

(
Gi ·

n∑
k=1

um
ik · (xk − vi)>(xk − vi)

)
and therefore

⇒ λi = p

√√√√det Gi · det

(
n∑

k=1

um
ik · (xk − vi)>(xk − vi)

)

= p

√√√√det

(
n∑

k=1

um
ik · (xk − vi)>(xk − vi)

)
.

Inserting in (2) gives us

Gi = p

√√√√det

(
n∑

k=1

um
ik · (xk − vi)>(xk − vi)

)
·

(
n∑

k=1

um
ik · (xk − vi)>(xk − vi)

)−1

,

so that we finally obtain

Ci =
n∑

k=1

um
ik · (xk − vi)>(xk − vi) �

The prototype calculation instruction can be derived analogously to equa-
tion (3.18), so again we obtain

vi =
∑n

k=1 um
ik · xk∑n

k=1 um
ik

as a necessary condition for the objective functions (3.1), (3.7), or (3.10) to
have a (local) minimum. With these equations the alternating iteration pro-
cedure for the Gustafson-Kessel algorithm is defined. In the corresponding
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update equation for the membership degrees, (3.4), (3.8), or (3.11), respec-
tively, the distance measure DGK , see equation (3.19), has to be used for
d2(vi, xk). The step Calculate(vi) of the general algorithms from Section 3.1
is shown in Algorithm 3.6.

Algorithm 3.6 (Prototype Calculation for GK)

Calculate(vi)
{

vi =
∑n

k=1 um
ik · xk∑n

k=1 um
ik

;

Ci =
n∑

k=1

um
ik · (xk − vi)(xk − vi)>;

}

This general form of the Gustafson-Kessel algorithm searches for hyper-
ellipsoidal forms in the domain of interest.

In figure 3.6 the results for the basic probabilistic objective function with
distance DFCM (figure 3.6(a)) and DGK (figure 3.6(b)) are shown. For all
classifications, the parameters have been set as follows: c = 4, ε = 0.001 and
m as denoted in the figures. The limitations of the distance DFCM can be
seen on the membership degrees of fig. 3.6(a) and 3.6(b). In case of the FCM,
the algorithm is not able to adapt to the ellipsoidal structures whereas the
transformed distance of the GK adapts well to the cluster structure. Figures
3.6(b), 3.6(c), and 3.6(d) show the clustering result for distance measure DGK

in combination with the probabilistic, possibilistic, and noise clustering algo-
rithm, respectively. Since one has to be careful with the possibilistic clustering
algorithm in choosing a suitable parameter m, see section 3.10, here a slightly
smaller value m = 1.5 has been selected. The capabilities of the different
basic objective functions in combination with DGK are equivalent to the com-
binations with DFCM . Whereas in probabilistic clustering, fig. 3.6(b), data
points with similar distances to all clusters are assigned a membership degree
of about 1

c to each cluster, the emphasis in assigning membership degrees in
case of possibilistic clustering, fig. 3.6(c), lies on the distance to a single clus-
ter’s centre. In noise clustering, fig. 3.6(d), again an overall medium distance
is used to identify outliers. The results for clustering with outliers – member-
ship degrees ũm

ik and weighting parameters ωk – are illustrated in figure 3.7
for different values of q. As constraint parameter ω = 200 was chosen. The
membership degrees illustrate the influence of the weighting parameter on the
extension of the clusters. The lager the weighting parameter q the greater the
cluster’s range with high membership degrees, see fig. 3.7(b) and 3.7(a). The
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(a) probabilistic FCM (m = 2)
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(b) probabilistic GK (m = 2)
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(c) possibilistic GK (m = 1.5)
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(d) noise GK clustering (m = 2)

Figure 3.6: Clustering results for an elliptical test data set (c = 4, ε = 0.001)
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(a) membership degrees (m = 2, q =
0.5)
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(c) weights (m = 2, q = 0.5)
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(d) weights (m = 2, q = 1)

Figure 3.7: Results for outlier clustering (c = 4, ε = 0.001, ω = 200)
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single weights of the data points are inversely proportional to the membership
degrees. In figures 3.7(c) and 3.7(d) we see again the influence of the weighting
parameter q on the separation.

Other clustering techniques dealing with cluster-specific scatter matrices
that enable the clustering methods to describe elliptical clusters with different
orientations are presented in [97, 98].

The axes parallel Gustafson-Kessel algorithm

Considering e.g. the task of rule learning, where fuzzy clusters are projected
to single dimensions (see section 9.1 for an illustration) non-axes parallel el-
lipsoids would lead in general to a serious loss of information caused by the
construction of the fuzzy sets for the single domains. One approach to reduce
this drawback is to restrict the covariance matrices Ci to diagonal matrices
resulting in axes-parallel hyper-ellipsoids [70, 73]. The resulting clustering al-
gorithm is less flexible than the original GK. Instead of scaling the axes and
rotating the resulting ellipsoid, only the axes are scaled. This way the axes par-
allel Gustafson-Kessel algorithm avoids inverting of matrices and calculating
of determinants. In comparison to the fuzzy-c-means algorithm the axes par-
allel Gustafson-Kessel algorithm has still a better performance. It transforms
the cluster structure from uniform (hyper-) balls into axes parallel (hyper-) el-
lipsoids. The corresponding algorithm is called axes-parallel Gustafson-Kessel
algorithm (AGK). The distance measure in this case can be rewritten as

d2(vi, xk) = DAGK =

(
ρi

p∏
ν=1

c
(ν)
i

)1/p

·

(
p∑

ν=1

(x(ν)
k − v

(ν)
i )2 · 1

c
(ν)
i

)
. (3.21)

Here, p is the dimensionality of the data vectors and x
(ν)
k , v

(ν)
i denote the ν’th

component of the k’th data point, i’th cluster centre, respectively. For the
alternating optimisation the calculation instruction for the covariance matrices
can be simplified in the following way

c
(ν)
i =

n∑
k=1

um
ik · (x

(ν)
k − v

(ν)
i )2, (3.22)

where c
(ν)
i denotes the ν’th diagonal element of the covariance matrix. DAGK

can be used as distance measure in the membership update equations from
section 3.1. The resulting prototype calculation instruction is outlined in Al-
gorithm 3.7.

This technique avoids not only loss of information in case of rule learning
tasks but needs computationally less effort than the original Gustafson-Kessel
algorithm since no reverse covariance matrix has to be calculated. If an appli-
cation does not depend on the rotation of the ellipsoidal clusters as performed
by the Gustafson-Kessel algorithm, the axes parallel Gustafson-Kessel algo-
rithm should be preferred. The better performance is significant, because the
reverse covariance matrices would have to be calculated for each cluster in
each iteration of the clustering algorithm.
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Algorithm 3.7 (Prototype Calculation for AGK)

Calculate(vi)
{

vi =
∑n

k=1 um
ik · xk∑n

k=1 um
ik

;

for all γ ∈ {1, . . . , p}

c
(γ)
i =

n∑
k=1

um
ik · (x

(γ)
k − v

(γ)
i )2;

}

Figure 3.8 shows the results for the basic probabilistic (figure 3.8(a)), pos-
sibilistic (figure 3.8(b)), and noise clustering (figure 3.8(c)) objective function
with distance DAGK . For all classifications, the parameters have been set as
follows: c = 4, ε = 0.001 and m as denoted in the figures. For possibilistic
clustering, a smaller value for m as for the other objective functions has been
chosen. The membership degrees and the corresponding weights for the basic
outlier clustering objective function with ω = n in combination with DAGK

are illustrated in figure 3.9. Here again we see the differences of the basic
objective functions. The constraint that the sum of all membership degrees
for one data point has to be one in case of probabilistic clustering, fig. 3.8(a),
leads to more widespread clusters than in case of possibilistic clustering, fig.
3.8(b). The difference between probabilistic and noise clustering, fig. 3.8(c),
is not so obvious in this example, but the lower empty area is more separated
in case of noise clustering, i.e. smaller membership degrees are assigned in
this area. In case of outlier clustering for q = 0.5 all data points are assigned
about the same weights, fig. 3.9(c), leading to membership degrees, fig. 3.9(a),
similar to the probabilistic clustering results. In case of q = 1.5 the weights,
fig. 3.9(d), are more differentiated and the membership degrees decrease faster
with increasing distance, fig. 3.9(b).

3.2.3 The Algorithm by Gath and Geva

Another clustering technique, the Gath-Geva algorithm (GG), was designed
by Gath and Geva [42]. This extension of the Gustafson-Kessel algorithm is
in some way able to adapt the cluster size and like the GK adapts to hyper-
ellipsoidal forms. Actually this approach is not based on an objective function
optimiser. Instead the GG is a heuristic method derived from the fuzzification
of a maximum likelihood estimator. The principle idea is to assume that
the data points are part of a p-dimensional normal distribution. Assuming
a crisp partition of the n data points xk, k ∈ {1, . . . , n} on the c normal
distributions Ni, i ∈ {1, . . . , c} we have to consider hard membership degrees
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(b) possibilistic AGK (m = 1.5)
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(c) noise AGK clustering (m = 2)

Figure 3.8: Clustering results for an axes-parallel elliptical test data set (c = 4,
ε = 0.001)
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(a) AGK (m = 2, q = 0.5)
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(c) AGK (m = 2, q = 0.5)
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(d) AGK (m = 2, q = 1.5)

Figure 3.9: Membership degrees ũm
ik and weights ωk for outlier clustering (c =

4, ε = 0.001, ω = n)
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uik ∈ {0, 1}. In this case, known from statistics, the mean value of the i’th
normal distribution is

vi =
∑n

k=1 uik · xk∑n
k=1 uik

and the corresponding covariance matrix is

Ai =
∑n

k=1 uik(xk − vi)(xk − vi)>∑n
k=1 uik

.

These equations are similar to those obtained from Gustafson and Kessel.
Therefore, a generalisation of the results from probability theory for fuzzy
membership degrees seems obvious. If the a-priori probability to choose the
i’th normal distribution for calculation of a datum is denoted by Pi, the (non-
normalised) a-posteriori probability can be calculated as follows (Likelihood)

Pi

(2π)
p
2

√
det(Ai)

· e−
1
2
(xk−vi)

> A−1
i (xk−vi).

For the Gath and Geva algorithm, the distance measure is chosen inversely
proportional to the a-posteriori probability. So the distance measure is of the
following form

d2(vi, xk) = DGG =
1
πi

·
√

det(Ai) · exp( 1
2
·(xk−vi)

>A−1
i (xk−vi)) . (3.23)

The parameter πi denotes the a-priori probability for a datum to belong to
the i’th normal distribution. πi is estimated as described by equation (3.24),
i.e. ”number of data belonging to cluster i in relation to total number of data”.

πi =
∑n

k=1 um
ik∑c

j=1

∑n
k=1 um

jk

(3.24)

The covariance matrix of the i’th normal distribution is denoted by Ai, where
(3.25) is the calculation instruction for estimating matrix Ai equivalent to
the statistic covariance matrix, except that we here handle fuzzy membership
degrees uik ∈ [0; 1] instead of crisp partitions uik ∈ {0, 1}. Additionally the
fuzziness index m is assigned to uik.

Ai =
∑n

k=1 um
ik · (xk − vi)(xk − vi)>∑n

k=1 um
ik

(3.25)

An illustration of the distance measure DGG is given in Figure 3.10. Colour
and contour lines denote the distance of a point x> = (x0, x1) to the cluster
centre v> = (0, 0). Again the restriction to diagonal matrices Ai leads to
axes-parallel ellipsoidal structures, see Figure 3.10(a). The difference to DGK

becomes obvious, if more than one data group with varying sizes have to be
detected.

In Figure 3.10(a) the diagonal matrix

Ai =
(

1 0
0 5

)
⇒ A−1

i =
(

1 0
0 0.2

)
and

√
det Ai =

√
5.
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(a) axes-parallel ellipsoid

(b) rotated ellipsoid

Figure 3.10: Distance of the Gath-Geva algorithm to v> = (0, 0)
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has been used to calculate the distance. Figure 3.5(b) illustrates the effect of
non-axes-parallel matrix elements

Ai =
(

0.595 0.476
0.476 2.381

)
⇒ A−1

i =
(

2 −0.4
−0.4 0.5

)
and detAi = 1.091.

In both cases πi = 1 has been chosen. The matrices are positive definite since
all eigenvalues are positive (< 0).

The prototype coordinates are the estimated expected values of the as-
sumed normal distribution for cluster i, using fuzzy membership degrees and
the fuzziness index m. Again the calculation of the prototypes can be done
using equation (3.18) as in the FCM or GK, respectively

vi =
∑n

k=1 um
ik · xk∑n

k=1 um
ik

.

Now the equations for the alternating iteration procedure of the Gath-Geva
algorithm are complete. The alternating optimisation schemes from Section
3.1 can be adapted in replacing the distance measure d2(vi, xk) by DGG and
using Algorithm 3.8 as calculation step for the prototypes.

Algorithm 3.8 (Prototype Calculation for GG)

Calculate(vi)
{

vi =
∑n

k=1 um
ik · xk∑n

k=1 um
ik

;

πi =
∑n

k=1 um
ik∑c

j=1

∑n
k=1 um

jk

;

Ai =
∑n

k=1 um
ik · (xk − vi)(xk − vi)>∑n

k=1 um
ik

;

}

To obtain equations for the prototypes as a necessary condition for the op-
timisation function having a local minimum, the objective functions described
in section 3.1 would have to be differentiated. Using DGG as distance measure
would lead to equations for which no analytical solution exists. Therefore, the
estimation analogous to probability theory provides a good heuristic method.

In figure 3.11 the results for the basic probabilistic objective function with
distance DGK (figure 3.11(a)) and DGG (figure 3.11(b)) are shown. For all
classifications, the parameters have been set as follows: c = 2, ε = 0.001
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(d) outlier GG (ω = n, q = 1)

Figure 3.11: Clustering results for an elliptical test data set (c = 2, ε = 0.001,
m = 2)
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and m = 2. The limitations of the distance DGK can be seen on the mem-
bership degrees. In case of the GK, the algorithm is not able to adapt to
the ellipsoidal structures of different sizes whereas the GG adapts well to the
cluster structure. Figures 3.11(b) and 3.11(c) show the clustering result for
distance measure DGG in combination with the probabilistic and noise clus-
tering algorithm, respectively. The GG separates the two clusters within a
very small range, i.e. the range from membership degree 1 to one cluster over
a small membership degree to both clusters too a membership degree of 1 to
the second cluster is very small and can be interpreted as a separating line. In
chapter 6 a clustering algorithm related to the GK but able to adapt to clus-
ters of different extends is introduced. This new algorithm leads to smoother
transitions as the GK membership degrees between clusters. In figure 3.11(d)
the weighted membership degrees, i.e. ũm

ik are illustrated for q = 1. The con-
straint parameter ω was in all cases chosen as the number of data. It can
be seen, that outlier clustering is a possibility to overcome the strict cluster
separation performed by GG in combination with the probabilistic or noise
objective function.

The axes parallel Gath-Geva algorithm

Since GG is able to adapt to hyper-ellipsoidal forms as well as to different
cluster sizes, the same problems as with the Gustafson-Kessel algorithm arise
in the task of rule learning. As with GK it is possible to restrict this approach
to detect axes-parallel hyper-ellipsoids [70, 73]. The corresponding algorithm
is called axes-parallel Gath-Geva algorithm (AGG). Nevertheless, the axes-
parallel version of the algorithm based on the technique introduced by Gath
and Geva is able to adapt to different cluster sizes. In this case the distance
measure, illustrated in Figure 3.10(a) can be rewritten as

d2(vi, xk) = DAGG =
1
πi

√√√√ p∏
ν=1

a
(ν)
i · exp

1
2
·
(∑p

ν=1(x
(ν)
k −v

(ν)
i )2· 1

a
(ν)
i

)
. (3.26)

Equivalent to the AGK, a
(ν)
i denotes the ν’th diagonal element of Ai and all

other elements of Ai are 0 in case of axes-parallel (hyper-)ellipsoids. Again,
p denotes the dimensionality of the data, x

(ν)
k and v

(ν)
i designate the ν’th

component of the k’th data point, i’th cluster centre, respectively. In the
alternating optimisation the covariance matrices parameter calculation can be
simplified in the following way

a
(γ)
i =

∑n
k=1 um

ik · (x
(γ)
k − v

(γ)
i )2∑n

k=1 um
ik

, (3.27)

where a
(γ)
i denotes the γ’th diagonal element of the covariance matrix. Param-

eter πi is estimated again as denoted in (3.24). DAGG could be used as distance
measure in the membership update equations from section 3.1. The resulting
prototype calculation instruction can be outlined as in Algorithm 3.9. For
the technique introduced by Gustafson and Kessel the covariance matrices of



3.2 Distance measures and algorithms 53

the single clusters have to be reversed in each iteration of the algorithm. The
same applies to GG. Again the axes parallel Gath-Geva algorithm is not only
better suited to cope with the task of rule learning than the original GG but
also drastically reduces the computationally effort. In case of rule learning the
membership degrees are projected to the single domains in order to determine
fuzzy sets for the single domains. A reverse projection of fuzzy sets for single
attributes into the multidimensional domain usually leads to angular cluster
structures. Axes parallel (hyper-) ellipsoids coincide better with this angular
structure than rotated ellipsoids usually received by GG.

Algorithm 3.9 (Prototype Calculation for AGG)

Calculate(vi)
{

vi =
∑n

k=1 um
ik · xk∑n

k=1 um
ik

;

πi =
∑n

k=1 um
ik∑c

j=1

∑n
k=1 um

jk

;

for all γ ∈ {1, . . . , p}

a
(γ)
i =

∑n
k=1 um

ik · (x
(γ)
k − v

(γ)
i )2∑n

k=1 um
ik

;

}

The results for the basic probabilistic objective function with distance
DAGK (figure 3.12(a)) and with distance DAGG (figure 3.13(a)) are shown. For
all classifications, the parameters have been set as follows: c = 2, ε = 0.001
and m = 2. The limitations of the distance DAGK can be seen on the mem-
bership degrees. In case of the probabilistic AGK, the algorithm is not able
to adapt to the ellipsoidal structures of different sizes whereas the possibilistic
AGK classifies a great number of data as outliers – see the outer membership
degree line for each ellipsis in figure 3.12(b). The AGG adapts well to the
cluster structure. Figures 3.13(a), 3.13(b) and 3.13(c) show the clustering re-
sult for distance measure DAGG in combination with the probabilistic, noise
and outlier clustering algorithm, respectively. As we have seen for the GG, the
AGG separates the two clusters within a very small range, i.e. the range from
membership degree 1 to one cluster over a small membership degree to both
clusters to a membership degree of 1 to the second cluster is very small and
can be interpreted as a separating line or curve. In figure 3.13(c) the weighted
membership degrees ũm

ik calculated by outlier clustering are illustrated. Pa-
rameter ω was chosen as the number of clusters. Again the combination of
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Figure 3.12: Clustering results for an elliptical test data set with GK (c = 2,
ε = 0.001, m = 2)

DAGK with the basic outlier clustering technique is a possibility to cope with
clusters of different sizes and overcome the strict separation of clusters in case
of combining DAGK with the probabilistic or noise objective function.

In [110] other clustering methods based on the maximum likelihood prin-
ciple are described.
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Figure 3.13: Clustering results for an elliptical test data set with GG (c = 2,
ε = 0.001, m = 2)
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3.3 Other Clustering approaches

In this section some fuzzy clustering techniques related to the methods de-
scribed in Section 3.1 are briefly described. The scope of these methods differs
from this work, but they have been the basis for some of the further on de-
scribed new clustering techniques.

Fuzzy c-varieties

Besides the spherical or ellipsoidal cluster shapes described in this chapter
also other forms can be detected by choosing a suitable distance function.
For instance, the prototypes of the fuzzy c-varieties algorithm (FCV) describe
linear subspaces, i.e. lines, planes and hyperplanes [15, 19, 28]. The equations
for the prototypes of this algorithm require the computation of eigenvalues
and eigenvectors of (weighted) covariance matrices. FCV can be applied to
image recognition (line detection) and to construct local linear (fuzzy) models.

Alternating Cluster Estimation

In order to increase the influence of the user in extracting functional models
from data, Runkler and Bezdek, see e.g. [99] and the references therein, have
developed alternative approaches based on the presented basic ideas. They call
the general clustering form with interchanging update equations for prototypes
and membership degrees as presented above alternating optimisation. In one
approach the expert has to specify the input space components in form of
prototype parameters. In case of the fuzzy c-means algorithm (see section
3.2.1) the expert has to state prototype coordinates for each input domain.
For other clustering algorithms also a suitable distance measure has to be
chosen. The components for the output space are alternatingly updated during
the optimisation phase of that algorithm. Runkler and Bezdek call this form
of alternating optimisation regular alternating optimisation, rAO. Since some
parameters are defined by the user and do not have to be updated during the
alternating optimisation the computational effort is reduced.

By alternating cluster estimation, ACE, Runkler and Bezdek denote a
clustering method where the expert has to select suitable membership function
shapes and thereby defines the update equations for the cluster parameters.

The combination of both approaches where the expert has to specify suit-
able prototype parameters for the input domain as well as to choose suitable
membership function shapes is called regular alternating cluster estimation,
rACE. The algorithm generates a partition of the data and then evaluates the
projections of the cluster centres into the output space.

Although the resulting functional models are easy to understand and reflect
the experts interpretation of the modelled system, they are not necessarily
based on objective functions. Problems may arise if the expert associates
a system behaviour with the data and assigns suitable parameters for the
clustering algorithm but the so defined model has a different basis. The greater
the influence of the expert the greater are the restrictions of the associated
functional model. Knowledge about unknown dependencies in the data is
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difficult to extract with these models, but under assumptions about the system
behaviour these are computationally fast methods resulting in interpretable
and easily understandable functional models.

Shell-Clustering

In contrast to the methods that are designed for solid clusters, the so-called
shell-clustering algorithms are tailored for clusters in the form of boundaries
of circles, ellipses, parabolas etc. (For an overview on shell clustering see
[51, 78].) Davé [33] developed one of the first shell clustering algorithms for
the detection of circles. Each prototype consists of the cluster centre vi and
the radius ri. The distance function for the fuzzy c-shells algorithm (FCS) is

d2((vi, ri), xk) = DFCS = (‖ xk − vi ‖ −ri)2

so that exactly those data have zero distance to the cluster that are located on
the circle with radius ri and centre vi. Unfortunately, this distance function
leads to a set of coupled non-linear equations for the vi and ri that cannot be
solved in an analytical way. Thus an additional numerical iteration procedure
to solve non-linear equations is necessary in each iteration step of the clustering
algorithm which causes a high computational effort. Although this specific
problem is solved for circles by the fuzzy c-spherical shells algorithm (FCCS)
[81] using the distance function

d2((vi, ri), xk) = DFCCS = (‖ xk − vi ‖2 −r2
i )

2,

the general problem for other shell shapes remains.





Chapter 4

Unsupervised Fuzzy
Clustering

For all fuzzy clustering approaches described in section 3 the number of clus-
ters has to be specified in advance. If the optimal number is not known, a
classification has to be calculated for each possible number of groups. How
can we decide which classification represents the best partition? In the case of
classified sample data it is possible to count the data that were assigned to the
wrong cluster and choose that classification with the smallest error rate as op-
timal solution. Even in this case it has to be specified how the corresponding
class of a particular cluster is determined. If we have to handle unclassified
data, we have to search for other measures that say something about the clas-
sification’s quality. Measures that try to value the whole classification are
so-called global validity measures.

4.1 Global Validity measures

In this section some global validity measures that are especially suited for solid
fuzzy clustering algorithms are presented. The basic idea of unsupervised
fuzzy clustering is to define an upper bound for the number of clusters cmax

and carry out the clustering for each number of clusters c ∈ {2, . . . , cmax}.
The global validity measures indicates the optimal number of clusters. Algo-
rithm 4.1 indicates the alternating optimisation scheme that can be used in of
unsupervised fuzzy clustering. The optimal number of clusters is indicated by
cbest. It is useful to save not only the best number of clusters but to examine
the curve of the validity measure over the number of clusters. Local extrema
indicate good results. Reliable results are often found at local extrema with
a great gradient to the neighbouring cluster numbers. Whether minima or
maxima have to be considered depends on the chosen validity measure. In the
following, A∗ symbolises any of the basic clustering algorithms from section
3.1 that has to be combined with a suitable distance measure D∗, whereas V∗
denotes one of the following validity measures.
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Algorithm 4.1 (Basic Unsupervised clustering algorithm)

Choose()
{

cmax ∈ {2, . . . , n− 1};
validity measure V∗;
basic clustering algorithm A∗;
A∗ :: Choose();
distance measure D∗;

}

Initialise()
{

c ∈ {2, . . . , cmax};
cbest := c;

}

Calculate()
{

do
{
A∗ :: CalculatePartition();
V∗(c);
if V∗(c) better than V∗(cbest)

cbest := c;
c = c + 1;

}while (c ≤ cmax) ;
}

In this section validity measures V∗ that could be used to find the optimal
number of clusters with the basic clustering algorithms from section 3.1 are
described. For an overview on validity measures see also [25]. Some of the here
presented validity measures rely on characteristics of special clustering algo-
rithms, others can be used for solid classifications in general. In the following,
J∗(X, U, v) denotes any of the previously and further on described objective
functions.

4.1.1 Error Rate

The error rate can be used in case of classified sample data to determine
the percentage of wrong classified data. To determine the optimal number of
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clusters, the error rate is calculated using the sample data. To validate the
clustering results, cross-validation with varying test data has to be carried out.
In this case, the whole data set is split in two parts, the sample data and the
test data. The clustering is then carried out for the sample data alone. After
the calculation is finished and a suitable number of clusters has been found,
the test data is used to determine resulting classification validity.

It has to be specified, how the class of each cluster C(vi) and the class
determining cluster for each datum can be calculated. One possibility to obtain
the class of a datum xk – C(xk) – in a partition is, to choose that cluster vi with
the highest membership degree umax

k = {uik | ∀i, j ∈ {1, . . . , k} : ujk < uik}
and assign the class of vi to xk. In case of outliers it would not always make
sense to assign a partition class C(xk) to each datum. Therefore, a minimum
membership degree umin

k can be defined, where each datum with a smaller
maximal membership degree than the given bound umax

k < umin
k is assigned

to a outlier class. There are other possibilities to determine C(xk), e.g. the
single cluster’s classes – C(vi) – can be weighted with the membership degrees
uik and that class with the greatest sum of weights can be used as C(xk).

The remaining problem is to determine the class of a single cluster. There-
fore, the classes given in the sample data – SC(xk) – have to be considered.
Again these classes can be weighted with the membership degrees uik for each
cluster i and the class with the highest over all membership degree can be
used as the cluster’s class C(vi). Let us assume, that the sample data consists
of s classes. For each cluster, the class can be defined in the following way Let
U(s, i) be the sum of membership degrees of the sample data with SC(xk) = s
to cluster i, i.e.

U(l, i) =
∑

k∈{1,...,n}; SC(xk)=l

uik.

Using this definition, the class of a cluster is defined as follows

C(vi) = f where U(f, i) = max
l∈{1,...,s}

{U(l, i)}.

It is not guaranteed that this definition is definite. If U(l, i) is equal for
different classes l we choose the first of the ordered classes s ∈ {1, . . . , l}. A
random choice between the equally suited classes is also possible. Since we
determine the wrong classified data, we have to look for minimal values for the
error rate. A method with less computational effort is to assign the class of
the datum xk with the greatest membership degree uik – i.e. umax

i – to cluster
i. In this way C(vi) = umax

i .
With these definitions, the error rate is defined as follows

VER =
∑n

k=1 C(xk)
n

(4.1)

with
C(xk) = C(vi) where uik = umax

k .

Figure 4.1 shows the error rate for the iris data [26] and the fuzzy c-means
clustering algorithm. The iris data was split in two parts: 90% has been
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Figure 4.1: Error rate for the Iris Data and FCM

used as sample data and 10% was left as test data. The wrong classified data
points have been determined separately for the test data and the sample data
after the clustering algorithm terminated for a particular number of clusters.
Since the iris data set is classified in three sub-species, we started the fuzzy
c-means clustering with c = 3 clusters. Only the sample data was used for
the clustering task. In figure 4.1 the results for the sample and test data are
illustrated. We carried out FCM 10 times for each number of clusters. The
best, the worst, and the average error rates are shown for c = 3, . . . , 11 clusters
in the figures.

4.1.2 Partition Coefficient

This validity measure rates the crispness of a classification. The more crisp the
membership degrees the better the classification [15]. The partition coefficient
has to be maximised.

VPC =
∑n

k=1

∑c
i=1 u2

ik

n
(4.2)

An example for the partition coefficient is illustrated in figure 4.2. For the
figure the fuzzy c-means algorithm has been used to partition the data set
from section 3.2.1 for a varying number of clusters.

4.1.3 Partition Entropy

The partition entropy is similar to the partition coefficient. The idea for this
measure was derived from Shannon’s information theory [15]. An optimal
classification provides a minimal value for the partition entropy.

VPE = −
∑n

k=1

∑c
i=1 uik · ln (uik)

n
(4.3)
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Figure 4.2: Validity measures for FCM and the sample dataset with two clus-
ters

The partition entropy is illustrated in figure 4.2 for the data set from
section 3.2.1.

4.1.4 Separation Measure

This validity measure was introduced in [113]. This measure depends not only
on the membership degrees but also on the distance measure corresponding to
the chosen clustering algorithm. The separation measure has to be minimised.

VS =
∑n

k=1

∑c
i=1 u2

ik · D∗(vi, xk)
n · min{D∗(vi, vj) | i, j ∈ {1, . . . , c}}

(4.4)

The separation measure is illustrated in figure 4.2.

4.1.5 Separation Index

The separation index evaluates the relation between the smallest distance be-
tween two clusters and the maximal diameter of all clusters [40]. Originally
this measure was designed for hard partitions. The distance is weighted with
the membership degrees to use this measure for fuzzy partitions. The separa-
tion index has to be maximised.

VSI = min
k∈{1,...,c}

{ min
l∈{1,...,c}∧l 6=k

{
min

k,l∈{1,...,k}
{D∗(xk,xl)

uik·ujl
}

max
h∈{1,...,c}

{ max
k,l∈{1,...,k}

{uhk · uhl · D∗(xk, xl)}}
}}

(4.5)
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An example for the separation index is shown in figure 4.2.

4.1.6 Fuzzy Hypervolume

Together with their clustering algorithm, Gath and Geva have proposed three
validity measures that make use of the algorithms covariance matrix, see sec-
tion 3.2.3 or [42].

A minimum of the first measure called fuzzy hypervolume denotes small
compact clusters. In probabilistic clustering it is guaranteed that the whole
data set is covered by clusters, so a small sum of all cluster sizes is desirable.

VFHV =
c∑

i=1

√
det(Ai). (4.6)

An example for the fuzzy hypervolume is illustrated in figure 4.3. For the
figure the Gustafson-Kessel algorithm has been applied to partition the data
set from section 3.2.2 for a varying number of clusters.

To calculate the covariance matrix only the data vectors, cluster centres
and membership degrees are used. These parameters are used in all described
clustering techniques so that the validity measures using the covariance matrix
can be applied to all presented algorithms.
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Figure 4.3: Validity measures for GK

4.1.7 Average Partition Density

The second measure defined by Gath and Geva determines the average physical
density of the clusters. It can be described as the average number of data in
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the cluster’s centre weighted by the cluster’s volume.

VAPD =
1
c
·

c∑
i=1

∑
k∈Ri

uik√
det(Ai)

, (4.7)

where Ri = {k ∈ N≤n | (xk − vi)>A−1
i (xk − vi) < 1}.

The average partition density is illustrated in figure 4.3 for the data set
from section 3.2.2 and a varying number of clusters.

4.1.8 Partition Density

The third measure is equivalent to the average partition density with the
exception that the densities are simply summed up and the average is not
evaluated.

VPD =

∑c
i=1

∑
k∈Ri

uik∑c
i=1

√
det(Ai)

, (4.8)

where Ri = {k ∈ N≤n | (xk − vi)>A−1
i (xk − vi) < 1}.

In figure 4.3 the partition density is illustrated for the data set from section
3.2.2.

4.2 Local Validity measures

In contrast to global validity measures, where the whole partition of data into
groups is evaluated, local validity measures rate single clusters. The idea is
to reduce the computational effort necessary in unsupervised clustering with
global validity measures.

Especially shell-clustering techniques tend to result in local optimal solu-
tions. Here, local validity measures help to separate satisfying clusters from
not well covered data. The poor classified data can be identified for further
analysis.

The idea of local validity measures is to start with a relatively large number
of clusters cmax. Here, this upper bound is chosen much larger than the number
of clusters in the resulting partition. The clustering algorithm is carried out
for cmax clusters leading to a small number of data per cluster. The aim is
to avoid that large amounts of data coming from different groups are covered
by one (e.g. very large) cluster. To estimate the in some way optimal number
of clusters, the single groups are compared to identify similar ones. One way
to reduce the number of clusters is to merge similar clusters where possible.
Additionally, good clusters can be removed from the data before the remaining
data set is further analysed.

Compatible cluster merging (CCM) was introduced by Krishnapuram and
Freg [76] to detect an unknown number of lines. The Gustafson-Kessel algo-
rithm as well as the Gath-Geva algorithm or other line detecting algorithms
are well suited for CCM.

The basic concept of CCM is to first carry out the chosen clustering algo-
rithm for the predefined maximal number of clusters. In a following iteration
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procedure the clusters are grouped regarding a defined compatibility relation.
The clusters grouped together are replaced by one resulting cluster and equiva-
lently the total number of clusters is reduced. Then the clustering algorithm is
carried out for the resulting number of clusters and using the merged clusters
as initialisation. If no more compatible clusters are detected, the calculation
is finished. In case of GK or GG, compatible clusters should belong to the
same hyperplane, i.e. be part of the same line in the 2-dimensional case, and
correspondingly to their expansion be close to each other. A compatibility
relation can be defined using the eigenvalues and -vectors of the covariance
matrix and additionally the cluster centres, see e.g. [51, 76]. The approach
of robust competitive cluster merging (RCM) is based on CCM and can be
applied to the FCM family of algorithms, see [41].

Other local validity measures for line or circle detection especially used
in image recognition are described in [81, 78]. A comparison of these ap-
proaches can be found in [51]. For some techniques further improvements can
be achieved thinning the resulting lines or line segments as shown in [77].



Chapter 5

Scalar Product-Based
Distance Measures

The distance measures described in section 3.2 assume that all data points are
equally meaningful. If we think e.g. about a technical system where especially
abnormal behaviour is of interest, most of the sample data could be classified
as normal and only that small data part, indicating difficulties in the system
state, should be divided in meaningful groups. Often these unusual states can
be identified as outliers in the data set. In this chapter a modified distance
measure is introduced, that is applied to the basic objective functions from
section 3.1. The aim is to locate the usual data points in one group, therefore
distances in the centre of gravity of the whole data set should be small, whereas
other data points should obtain a greater distance from the centre as well as
from one another. A suitable distance measure is derived from the scalar
product [68].

5.1 Clustering with Angle-Based Distances for Nor-
malised Data

The idea of this approach is very similar to the original neural network com-
petitive learning approach as it is for instance described in [93]. Instead of
the Euclidean distance between a class representative and a given datum used
by Kohonen’s self organising feature maps, the simple competitive learning
approach computes the scalar product of these vectors.

In the following this approach is referred to as normalised angle-based clus-
tering (NAB). For normalised vectors the scalar product is simply the cosine of
the angle between the two vectors, i.e. the scalar product is one if and only if
the (normalised) vectors are identical, otherwise we obtain values between −1
and 1. Therefore, we define as the (modified) distance between a normalised
prototype vector v and a normalised data vector x

d2(vi, xk) = DNAB = 1− v>i xk. (5.1)

Thus we have 0 ≤ DNAB ≤ 2 and, in case of normalised vectors, DNAB = 0 ⇔
xk = vi.
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Let us for the moment assume that the data vectors are already normalised.
How we actually carry out the normalisation will be discussed later on. With
the distance function (5.1) the objective function (3.1) becomes

Jprob(X, U, v) =
c∑

i=1

n∑
k=1

um
ik(1− v>i xk) (5.2)

=
c∑

i=1

n∑
k=1

(
um

ik − um
ik

p∑
ν=1

v
(ν)
i x

(ν)
k

)
(5.3)

where v
(ν)
i and x

(ν)
k is the ν’th coordinate/component of vector vi and xk,

respectively.

Theorem 5.1 (Normalised Angle-Based Prototypes)

By taking into account the constraint that the prototype vectors vi have to be
normalised, i.e.

‖ vi ‖2 =
p∑

ν=1

(
v

(ν)
i

)2
= 1, (5.4)

in differentiating the objective function (5.2) we can derive prototype update
equations, see 5.1.

v
(ν)
i =

∑n
k=1 um

ikx
(ν)
k√∑p

γ=1

(∑n
k=1 um

ikx
(γ)
k

)2
. (5.5)

Proof 5.1 (Normalised Angle-Based Prototypes)

Considering constraint (5.4), we obtain the Lagrange function

Jprob
λ (X, U, v) =

c∑
i=1

n∑
k=1

(
um

ik − um
ik

p∑
ν=1

v
(ν)
i x

(ν)
k

)
+

c∑
j=1

λj

(
p∑

ν=1

(
v

(ν)
j

)2
− 1

)
.

The partial derivative of Jprob
λ w.r.t. v

(ν)
i yields

∂Jλ

∂v
(ν)
i

= −
n∑

k=1

um
ikx

(ν)
k + 2λiv

(ν)
i .

Since the first derivative has to be zero in a minimum, we obtain

v
(ν)
i =

1
2λi

n∑
k=1

um
ikx

(ν)
k .
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Figure 5.1: Normalisation of a datum

Making use of the constraint (5.4), we have

1 =
1

4λ2
i

p∑
ν=1

(
n∑

k=1

um
ikx

(ν)
k

)2

,

which gives us

2λi =

√√√√ p∑
`=1

(
n∑

k=1

um
ikx

(ν)
k

)2

so that we finally obtain

v
(ν)
i =

∑n
k=1 um

ikx
(ν)
k√∑p

γ=1

(∑n
k=1 um

ikx
(γ)
k

)2
. �

For this formula we have assumed that the data vectors are normalised.
When we simply normalise the data vectors, we loose information, since collinear
vectors are mapped to the same normalised vector. In order to avoid this effect
we extend the data vectors by one component which is set to 1 for all data
vectors and normalise these (p + 1)-dimensional data vectors. In this way, the
data vectors in Rp are mapped to the upper half of the unit sphere in Rp+1.
Figure 5.1 illustrates the normalisation for one-dimensional data. Algorithm
5.1 shows the procedure Calculate(vi) where in a first step the mapping of the
data vectors xk ∈ Rp to the (p+1)-dimensional space is carried out. After the
calculation of the normalised cluster centres vi, these prototypes are mapped
to the p-dimensional space in a last step, e.g. for illustration purposes. To
calculate the membership degrees, the (p + 1)-dimensional normalised data
vectors x̃k and cluster centres ṽi have to be used in the distance measure.
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Algorithm 5.1 (Prototype Calculation for NAB)

Calculate(vi)
{

for all k ∈ {1, . . . , n}
{

for all ν ∈ {1, . . . , p}

x̃
(ν)
k =

x
(ν)
k√

1 +
∑p

γ=1(x
(γ)
k )2

;

x̃
(p+1)
k =

1√
1 +

∑p
γ=1(x

(γ)
k )2

;

}
for all ν ∈ {1, . . . , p + 1}

ṽ
(ν)
i =

∑n
k=1 um

ik · x̃
(ν)
k√∑p+1

γ=1

(∑n
k=1 um

ik · x̃
(γ)
k

)2
;

for all ν ∈ {1, . . . , p}

v
(ν)
i =

ṽ
(ν)
i

ṽ
(p+1)
i

;

}

Figure 5.2 shows a clustering result for a two-dimensional data set (i.e. the
clustering is actually carried out on the normalised three-dimensional data).
The membership degrees are illustrated together with the sample data. In this
case, the fuzzifier m has been set to 1.5.

It has to be noted that the distance function is not affine invariant. We
can already see in figure 5.1 that vectors near zero keep almost their Euclidean
distance when we normalise them, whereas very long vectors are all mapped
to the very lower part of the semi-circle.

Figure 5.3 shows distance values of two one-dimensional vectors. (The
distance is computed for the normalised two-dimensional vectors.) Of course,
the distance is zero at the diagonal and increases when we go away from the
diagonal. But the distance is increasing very quickly with the distance to the
diagonal near zero, whereas it increases slowly, when we are far away from the
origin.

Figures 5.4 and 5.5 also illustrate this effect. In Figure 5.4 the distance to
the (non-normalised) two-dimensional vector (cluster centre) (0, 0)> is shown.
It is a symmetrical distance function. However, when we replace the cluster
centre (0, 0)> by the vector (1, 0)>, we obtain the function in figure 5.5.

Here we can see that the distance is asymmetrical in the sense that it
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Figure 5.2: A two-dimensional data set and the partition in two clusters

Figure 5.3: The one-dimensional distance from x0 to x1
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Figure 5.4: Distance to the point v> = (0, 0)

Figure 5.5: Distance to the point (1, 0)>
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increases faster when we look in the direction of (0, 0)>. This can be an
undesired effect for certain data sets. But there are also data sets for which this
effect has a positive influence on the clustering result. Consider for instance
data vectors with the annual salary of a person as one component. When we
simply normalise each component, the effect is that a few outliers (persons
with a very high income) force that almost all data are normalised to values
very near to zero. This means that the great majority simply collapses to
one cluster (near zero) and few outliers build single clusters. Instead of a
standard normalisation, we can also choose a logarithmic scale in order to avoid
this effect. But the above mentioned clustering approach offers an interesting
alternative.

5.2 Clustering with Angle-Based Distances for Non-
normalised Data

In the previous section we have assumed that the data vectors are normalised
or that we normalise them for the clustering. In this section we discuss what
happens, when we refrain from normalising the data vectors and the clus-
ter centres. Using non-normalised data vectors and cluster centres leads to
a clustering technique with completely different capabilities. The resulting
technique is able to detect clusters in form of lines in a 2-dimensional domain
respectively hyperplanes in multi-dimensional domains. Thereby the needed
computational effort is less than for other comparable techniques. This ap-
proach is called angle-based clustering (AB) in the following. In order to avoid
negative distances, we have to modify the distance function to

d2(vi, xk) = DAB = (1− v>i xk)2. (5.6)

The geometrical meaning of this distance function is the following. A
datum xk has distance zero to the cluster vi, if and only if v>i xk = 1 holds.
This equation describes a hyperplane, i.e. the hyperplane of all xk ∈ Rp of the
form

vi

‖ vi ‖2
+

p−1∑
ν=1

λνwν

where the vectors w1, . . . , wp−1 ∈ Rp span the hyperplane perpendicular to vi

and λ1, . . . , λp−1 ∈ R.
This means that we can find clusters in the form of linear varieties like

the FCV algorithm [15, 28]. We will return to a comparison of FCV and
this approach later on. Figure 5.6 shows the distance to the prototype v>i =
(0.5, 0). This prototype describes the line(

2
0

)
+ λ

(
0
1

)
.
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Figure 5.6: Distance between v> = (0.5, 0) and x> = (x0, x1)

In order to derive equations for the prototypes we insert the distance func-
tion (5.6) into the objective function (3.1). This leads to

Jprob(X, U, v) =
c∑

i=1

n∑
k=1

um
ik(1− v>i xk)2.

Theorem 5.2 (Angle-Based Prototypes)

Prototype update equations for the alternating optimisation scheme are de-
rived due to proof 5.2

vi =
n∑

k=1

um
ikxk ·

(
n∑

k=1

um
ikxkx

>
k

)−1

. (5.7)

Proof 5.2 (Angle-Based Prototypes)

The first derivative w.r.t. v
(ν)
i is taken

∂Jprob(X, U, v)

∂v
(ν)
i

= −2
n∑

k=1

um
ik(1− v>i xk)x

(ν)
k

!= 0.
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These derivatives have to be zero at a minimum and we obtain the system of
linear equations

n∑
k=1

um
ik(1− v>i xk)xk = 0.

Note that the matrix
∑n

k=1 um
ikxkx

>
k is the (weighted) covariance matrix and

can therefore be inverted unless the data are degenerated. Making use of the
fact that (v>i xk)xk = (xkx

>
k )vi holds, we obtain for the prototypes

vi =
n∑

k=1

um
ikxk ·

(
n∑

k=1

um
ikxkx

>
k

)−1

. �

The advantage of this approach in comparison to the FCV algorithm is in
the computing scheme that requires inverting a matrix whereas for the FCV
algorithm all eigenvalues and eigenvectors have to be computed. Another
difference is caused by the non-Euclidean distance function used here that is
again not affine invariant. Problems can arise when lines are near to (0, 0)>,
since then the corresponding prototype vector v is very large, and even small
deviations from the linear cluster lead to large distances. These problems are
well known for other fuzzy clustering algorithms with non-Euclidean distance
functions [78] and have to be treated in a similar way.

Algorithm 5.2 shows the step Calculate(vi) that can be used with the basic
probabilistic objective function from section 3.1.

Algorithm 5.2 (Prototype Calculation for AB)

Calculate(vi)
{

vi =
n∑

k=1

um
ikxk ·

(
n∑

k=1

um
ikxkx>k

)−1

;

}

An example of the detection of two linear clusters is shown in figure 5.7
for the probabilistic algorithm. For a comparison with the possibilistic, noise,
and outlier clustering algorithms see A.1. As fuzzifier m = 1.5 has been
chosen for all angle-based clustering tasks. The first figure (5.7(a)) shows
the distance of the data to the cluster centres, whereas the corresponding
membership degrees are illustrated in figure 5.7(b). The line that is defined
by the prototype coordinates is illustrated in figure 5.8 for both clusters.
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Figure 5.7: Results for an elliptical test data set and angle-based clustering
(m = 1.5, ε = 0.001)
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Chapter 6

Adaptation of Cluster
Volumes

The objective function based fuzzy clustering algorithms from section 3.2 as-
sume that all groups in one partition have at least nearly the same size. The
algorithm by Gath and Geva, see 3.2.3 (GG), is in someway able to adapt
to the cluster sizes, but is heuristically derived from statistics and no longer
objective function based.

This chapter discusses new approaches in objective function based fuzzy
clustering extending some of the clustering techniques described in 3 by a
supplementary component, see also [61]. The resulting new clustering tech-
niques are able to adapt single clusters to the expansion of the corresponding
group of data in an iterative optimisation procedure. A new approach based
on volume centres as cluster representatives with varying radii for individual
groups is described in section 6.2. The corresponding objective functions are
presented and alternating optimisation schemes are derived. Experimental
results demonstrate the significance of the presented techniques.

In the first section of this chapter a general approach to adapt to clusters
with different expansions or (hyper-)volumes of the corresponding data groups
is presented. This approach was presented in [57] to reduce the loss of informa-
tion in rule learning. Therefore, only small modifications of some algorithms
discussed in section 3 have to be made. The principle of objective function
based fuzzy clustering with cluster representatives in form of real-valued vector
prototypes remains unchanged. The second presented method does no longer
use multidimensional centre-points as representatives but centre-volumes. As
we will see, this approach has a non-negligible drawback. A combination of
the presented methods seems to eliminate this lack and is presented in section
6.3. Another approach using volume prototypes to enable the fuzzy c-means
to detect clusters with different densities was presented by M. Setnes and U.
Kaymak [104]. Some remarks regarding GK have been made in [80].

Our approach seems to be well suited to adapt to different sizes of clus-
ters. One remaining problem concerning the original versions of the algorithms
presented in section 3 is that all these approaches presuppose uniformly dis-
tributed data over all clusters, i.e. the number of data points per cluster are
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assumed to be equal for all clusters. To cluster data with varying sizes and
differences regarding the number of data points per structure correctly, adap-
tation to the density has to be taken into account. Some heuristics attempts
to handle this problem have been developed in [106].

The higher flexibility of the algorithms requires a better initialisation of
the cluster centres. Often the standard versions of the size-adaptable algo-
rithms, see 3, are a good choice for the initialisation. Otherwise the presented
approaches tend towards local optima.

6.1 Centre-Based Clustering

In this section one approach that is able to adapt to different expansions of the
corresponding clusters using cluster centres as cluster representatives is intro-
duced. This approach is called size-adaptable centre-based clustering (SACB).
For each cluster an additional parameter τi is introduced to the objective

function in order to enable the clustering algorithm to adapt the cluster vol-
umes. τi can be considered as the (relative) radius of the corresponding cluster.
The resulting probabilistic objective function is shown in (6.1), with constant
real-valued parameter l ∈ R>0.

Jprob (X, U, v) =
c∑

i=1

n∑
k=1

um
ik ·

1
τ l
i

· d2 (vi, xk) (6.1)

To avoid the trivial solution that all τi →∞, the constraint
c∑

i=1

τi = τ (6.2)

has to be taken into account, where τ ∈ R>0 is a predefined constant param-
eter, e.g. τ = c or τ = 1.

This approach is related to the basic clustering technique described in
section 3.1.4. Here an additional parameter for each cluster is introduced
whereas in section 3.1.4 the influence of a single datum on the partition is
measured with parameter ωk. In both cases an additional constraint has to be
taken into account. Here the sum over all clusters and in section 3.1.4 the sum
over all data for the additional parameter is restricted to be constant during
the clustering.

Since the objective function (6.1) does not require special properties of the
distance measure d2 (vi, xk), most of the described distance measures need only
small modifications to use the advantages of the proposed objective function.
Let us define

d2
τ (xk, vi) = DSACB,∗ =

1
τ l
i

· d2 (vi, xk) (6.3)

as a new group of distance measures. Then the objective function (6.1) can
be rewritten as

Jprob (X, U, v) =
c∑

i=1

n∑
k=1

um
ik · d2

τ (vi, xk) .
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Considering constraints (3.2) and (3.3) from section 3.1 we obtain the same
equations for the membership degrees as in (3.1), except that we have to
replace the old distance d2 (vi, xk) by d2

τ (vi, xk), i.e. in the probabilistic case
the membership degrees can be derived analogously to proof 3.1 and evaluate
to

uik =
1∑c

j=1

(
d2

τ (vi,xk)
d2

τ (vj ,xk)

) 1
m−1

.

For the possibilistic and noise clustering approach the membership update
equations are derived again as in proof 3.2 and 3.3, respectively. Only the
distance measure has to be replaced. The modified distance measure for FCM
is shown in equation (6.4) and figure 6.1 for different l-values.

DSACB,FCM =
1
τ l
i

· (xk − vi)
T (xk − vi) (6.4)

For small values for l – l = 0.25 in figure 6.1(a) – the overall distance increases
more rapid with increasing Euclidean distance, whereas the overall distance
increases slowly for larger l-values, see figure 6.1(b), in comparison to l = 1 in
figure 6.1(c). The same effect occurs with the transformed Euclidean distances
used in section 3.2.2 for GK.

Let us define
ũik =

uik

τ
l

m

.

Equivalent to the objective function from section 3.2 minimising (6.1) leads
to the necessary condition (3.18)

vi =
∑n

k=1 ũm
ik · xk∑n

k=1 ũm
ik

=
∑n

k=1 um
ik · xk∑n

k=1 um
ik

for the evaluation of the prototype coordinates in FCM, GK, and AGK and

Ci =
n∑

k=1

um
ik · (xk − vi)(xk − vi)>

for the covariance matrices (GK)

c
(ν)
i =

n∑
k=1

um
ik · (x

(ν)
k − v

(ν)
i )2,

respectively for AGK.

Theorem 6.1 (Centre-Based Size Parameter)

Considering constraint 6.2 leads to equation 6.5 as necessary condition for the
objective function to have a minimum, see proof 6.1.

τi =

(∑n
k=1 um

ik · d2 (vi, xk)
) 1

l+1∑c
j=1

(∑n
k=1 um

jk · d2 (vj , xk)
) 1

l+1

· τ. (6.5)
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(a) FCM-sized (τi = 0.5, l = 0.25) (b) FCM-sized (τi = 0.5, l = 1.5)

(c) FCM-sized (τi = 0.5, l = 1)

Figure 6.1: Distance for size-adaptable FCM to v> = (0, 0)
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Proof 6.1 (Centre-Based Size Parameter)

Assuming that the parameters l > 0 and τ > 0 are fixed, we have to take
constraint (6.2) into account, to determine the values τi with predefined pa-
rameters l > 0 and τ > 0 that are fixed during the iteration procedure. So we
obtain the Lagrange function

Jprob
λ (X, U, v) =

c∑
i=1

n∑
k=1

um
ik ·

1
τ l
i

· d2 (vi, xk) + λ

(
c∑

i=1

τi − τ

)
. (1)

Note that the last term of (1) does neither depend on uik nor on vi so that
the formulae for the optimal choices of the uik and the vi remain valid. Since
the distance measure is independent of τi, differentiating (1) yields

∂Jprob
λ (X, U, v)

∂τi
= − l

τ l+1
i

·
n∑

k=1

um
ik · d2 (vi, xk) + λ

!= 0

and therefore

τi =
(

l ·
∑n

k=1 um
ik · d2 (vi, xk)
λ

) 1
l+1

. (2)

With (6.2) λ evaluates to

λ =

(∑c
j=1

(
l ·
∑n

k=1 um
jk · d2 (vj , xk)

) 1
l+1

)l+1

τ l+1
. (3)

After inserting (3) in (2), we obtain the resulting calculation instruction for
the τi

τi =

(∑n
k=1 um

ik · d2 (vi, xk)
) 1

l+1∑c
j=1

(∑n
k=1 um

jk · d2 (vj , xk)
) 1

l+1

· τ �

Equation 6.5 is used in an alternating iteration procedure, see algorithm
6.1.

The parameter l > 0 plays a similar role as the fuzzifier m. When we
choose a small value for l, a strong emphasis is put on adapting to the cluster
size. Too small values for l can have a negative effect on algorithms as the
GK, since the priority is put on the cluster expansion instead of the cluster
shape. For l → ∞, no adaptation of cluster volume is carried out any more,
and we obtain the original algorithms.

For an illustration of the influence of parameter l and the results of this
approach, see in addition to this section also section 6.4.

Equation (6.5) can be used alternatingly with one of the basic clustering
algorithms from section 3.1 and a suitable distance measure for fuzzy clustering
algorithms, see section 3.2. We call this group of clustering techniques Size-
Adaptable Centre-Based clustering algorithms (SACB). Applying our results
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to the described FCM or GK algorithms enables these algorithms to detect
clusters of different expansions.

In case of FCM, rule generation only results in a small loss of information.
Adapting the sizes of the detected spherical structures has no influence on the
precision of the resulting fuzzy rules. Also the axes-parallel version of GK, i.e.
AGK, does not lead to a significant loss of information in rule-learning. Not
only considering the task of rule learning this approach can in combination
with GK as well as AGK be an objective function based alternative to GG or
AGG, respectively.

In comparison to GG and AGG the presented approach has shown to
be more robust and reliable regarding the clustering results. For not well-
separated data GG or AGG tend towards a few large clusters covering the
whole domain and the rest of the clusters have a negligible size. This behaviour
depends on the choice of the fuzzifier m, but it is impossible to give a value for
m that prevents the building of extremely sized clusters. In our approach the
emphasis that is put upon size adaptation can be controlled with parameter
l as described above. However, even for relative small values of l, where the
emphasis on size adaptation is high, usually no deformed clusters occur. In
addition the clustering result depends not so severely on small changes of l as
GG can depend on changes of m.

It is possible to combine this approach with the objective function ap-
proaches of possibilistic (section 3.1.2) or noise clustering (section 3.1.3). The
difference of these methods compared to the probabilistic objective function of
section 3.1.1 does not depend on a special distance measure. In case of possi-
bilistic clustering, equations (3.8) for the membership degrees uik, (6.5) for the
size parameters τi, and the necessary conditions derived from the chosen dis-
tance measure (DFCM , DGK or DAGK), e.g. the equations for cluster centres
or covariance matrices can be used in an alternating optimisation procedure.
Applying noise clustering to the size-adapting clustering approach, equation
(3.11) has to be used to calculate the corresponding noise membership degrees.
The other parameters are equivalent to probabilistic and possibilistic cluster-
ing, see algorithm 6.1. It has to be considered that the choice of τ is related
to an appropriate choice of δ in noise clustering. Both determine in some
way the ’overall size’ of the clusters. Whereas δ is the same for all clusters in
noise clustering, here τ is only an upper bound for the ’sum of sizes’

∑c
i=1 τi.

Nevertheless, the distances d2
τ (vi, xk) with initialised parameters τi have to be

used to estimate δ in case of noise clustering.

In the alternating optimisation, A∗ takes the place for one of the algorithms
FCM, GK, or AGK, respectively and A itself stands for one of the basic
objective function algorithms from section 3.1. The procedure Calculate(vi)
has to be extended as denoted in the algorithm scheme. Additionally the
procedure Choose() of the chosen basic algorithm has to be extended by l ∈
R>0 and τ ∈ R>1, as shown in the algorithm scheme.
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(a) FCM distance (m = 1.5)
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(b) FCM-sized distance (τ =
1, l = 1.3, m = 1.5)
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(d) FCM-sized membership de-
grees (τ = 1, l = 1.3, m = 1.5)

Figure 6.2: Comparison of probabilistic FCM and FCM-sized clustering
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Algorithm 6.1 (Prototype Calculation for SACB)

Choose()
{
A :: Choose();
τ ∈ R>0;
l ∈ R>0;

}

Calculate(vi)
{

τi =

(∑n
k=1 um

ik · d2 (vi, xk)
) 1

l+1∑c
j=1

(∑n
k=1 um

jk · d2 (vj , xk)
) 1

l+1
· τ ;

A∗ :: Calculate(vi);
}

We call the corresponding alternating optimisation incorporating cluster
size adaptation the sized algorithm (FCM-sized, GK-sized etc.).

In figure 6.2 clustering results for probabilistic FCM and FCM-sized are
shown. Fo FCM-sized, parameter τ was set to 1 and l = 1.3 was chosen. The
fuzzifier m has been set to 1.5 in both cases. The membership degrees as
well as the distance of the data points to the cluster centres are illustrated.
It can be seen that the FCM-sized is able to adapt the cluster size of the
smaller cluster in the upper right corner. In figure 6.2(b), the circles denoting
a distance of 0.5 to the cluster centres are more apart than in figure 6.2(a).
The membership degrees have only a small range with degrees less than 1 in
case of FCM (fig. 6.2(c)) whereas this range is increased in case of FCM-sized
(fig. 6.2(d)). To adapt the cluster size even more, a smaller value for l has to
be chosen.

Figures A.4 to A.13 in section A.2 illustrate the differences between the
original Gustafson-Kessel algorithm and the size-adaptable centre-based clus-
tering algorithm using the same transformed Euclidean distance as GK. The
GK-sized partitions are shown for two different values of the influence param-
eter l, l = 0.5 and l = 5 and the basic objective functions introduced in section
3.1.

6.2 Volume-Based Clustering

In the previously described fuzzy clustering techniques the clusters are char-
acterised by a vector, consisting of real-valued attributes, and a distance mea-
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Figure 6.3: Volume-Based Distance for τi = 0.5 to v> = (0, 0)

sure. Only the data points that coincide with a prototype may be assigned
to the corresponding cluster with a membership degree of 1.0. Let us imagine
dense spherical clusters. Instead of having just one ideal prototype for each
cluster to which we calculate the distances of the data points, we now assume
that we have a complete circle or (hyper-)ball as the cluster centre. This means
that data within this area have distance zero to the cluster. This idea was
proposed in [104]. However, there it was not based on an objective function,
but on pure heuristic considerations. Here we want to derive an alternating
optimisation scheme for this approach as well, called volume-based clustering
(SAVB).

Taking these considerations into account, we obtain a probabilistic objec-
tive function (6.6) reflecting the idea of volume prototypes using (6.7) as the
distance function. The distance DSAV B is illustrated in figure 6.3 for τi = 0.5.

Jprob(X, U, v) =
c∑

i=1

n∑
k=1

um
ik · max{0, (xk − vi)

> (xk − vi)− τi} (6.6)

d2 (vi, xk) = DSAV B = max{0, (xk − vi)
> (xk − vi)− τi} (6.7)

If the clusters’ radii τi are known in advance, these values should be used
directly. Otherwise the τi have to be adapted during the alternating optimisa-
tion taking constraint (6.8) into account, to avoid the trivial solution τi →∞
for all i ∈ {1, · · · , c} in minimising the objective function (6.6).

c∑
i=1

τ2
i = τ (6.8)
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Here τ is a predefined constant parameter. Assigning 0 to τ (all τi are 0)
leads to the previously described fuzzy c-means (FCM) clustering technique,
see section 3.2.1.

Theorem 6.2 (Volume-Based Cluster Parameters)

Differentiating the objective function 6.6 leads to necessary conditions for the
cluster centres vi, the centre radii τi and – depending on the basic algorithm
chosen from section 3.1 – the membership degrees. The resulting update
equations that can be used in an alternating optimisation approach are 6.9
and 6.10, see proof 6.2.

vi =

∑
k:(xk−vi)

>(xk−vi)>τi
um

ik · xk∑
k:(xk−vi)

>(xk−vi)>τi
um

ik

(6.9)

τi =

∑
k:(xk−vi)

>(xk−vi)>τi
um

ik√∑c
i=1

(∑
k:(xk−vi)

>(xk−vi)>τi
um

ik

)2
·
√

τ (6.10)

The membership update equations have to be chosen from section 3.1, de-
pending on the choice of probabilistic, possibilistic, noise, or outlier clustering.
There the distance measure has to be replaced by DSAV B.

Proof 6.2 (Volume-Based Cluster Parameters)

To derive equations for prototype coordinates and radii values respectively,
the partial derivatives of the objective function (6.6) considering constraint
6.8 have to be computed.

Jprob
λ (X, U, v) =

c∑
i=1

n∑
k=1

um
ik · DSAV B + λ ·

(
c∑

i=1

τ2
i − τ

)
.

∂Jprob
λ (X, U, v)

∂vi
= 2 ·

∑
k:(xk−vi)

>(xk−vi)>τi

um
ik · (vi − xk)

!= 0

leading to

vi =

∑
k:(xk−vi)

>(xk−vi)>τi
um

ik · xk∑
k:(xk−vi)

>(xk−vi)>τi
um

ik

∂Jprob
λ (X, U, v)

∂τi
= −

∑
k:(xk−vi)

>(xk−vi)>τi

um
ik + 2 · λ · τi

!= 0

leads to the update equation for parameters τi

τi =

∑
k:(xk−vi)

>(xk−vi)>τi
um

ik√∑c
i=1

(∑
k:(xk−vi)

>(xk−vi)>τi
um

ik

)2
·
√

τ �
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In the basic alternating optimisation scheme the distance measure has to
be replaced by (6.7). Depending on the chosen clustering technique (proba-
bilistic, possibilistic, noise, or outlier) the corresponding update equations of
the membership degrees uik (3.4, 3.8, 3.11, or again 3.4) have to be used.

Note that the objective function is not differentiable in some points. The
necessary conditions (6.9) and (6.10) lead to a local minimum, if no data
points leave a volume centre or wander into a volume centre. This is why in
equations (6.9) and (6.10) only data points with Euclidean distance greater
τi to the cluster centres vi have influence on the next alternating parameters
τnew
i and vnew

i for cluster i. Imagine two well separated spherical clusters are
given. In the first alternating optimisation steps the structures are identified
correctly. The τi are assigned the correct radius values of the circles containing
the data points. In the next step each prototype and each radius is only
calculated on the basis of the data points assigned to the opposite cluster.
So the cluster parameters are alternatingly interchanged. Even if the τi are
smaller than the correct radius values, convergence is neither guaranteed nor
plausible. Nevertheless, the algorithm scheme is denoted in algorithm 6.2. A
denotes the chosen basic objective function, probabilistic, possibilistic, noise,
or outlier clustering, respectively.

Algorithm 6.2 (Prototype Calculation for SAVB)

Choose()
{
A :: Choose();
τ ∈ R>0;

}

Calculate(vi)
{

τi =

∑
k:(xk−vi)

>(xk−vi)>τi
um

ik√∑c
i=1

(∑
k:(xk−vi)

>(xk−vi)>τi
um

ik

)2
·
√

τ ;

vi =

∑
k:(xk−vi)

>(xk−vi)>τi
um

ik · xk∑
k:(xk−vi)

>(xk−vi)>τi
um

ik

;

}
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(a) SAVCB (τi = 0.5, γ = 0.1) (b) SAVCB (τi = 0.5, γ = 0.5)

(c) SAVCB (τi = 0.5, γ = 0.9)

Figure 6.4: Distance for the SAVCB to v> = (0, 0)

6.3 Volume-Centre-Based Clustering

To avoid drawbacks as in case of the volume-based clustering technique (SAVB)
from section 6.2 objective function (6.6) has been modified so as to combine
distance measure DSAV B, equation (6.7), with the Euclidean distance used for
the fuzzy c-means algorithm. The resulting objective function for the volume-
centre-based clustering (SAVCB) is shown in (6.11). Parameter 0 < γ < 1
determines the influence of each summand in the distance function (6.12).
The distance function is illustrated in figure 6.4 for τi = 0.5 and varying
values for γ.
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Jprob(X, U, v) =
c∑

i=1

n∑
k=1

um
ik ·
(

γ · max{0, (xk − vi)
> (xk − vi)− τi}

+ (1− γ) · (xk − vi)
> (xk − vi)

) (6.11)

d2 (vi, xk) = DSAV CB = γ · max{0, (xk − vi)
> (xk − vi)− τi}

+ (1− γ) · (xk − vi)
> (xk − vi)

(6.12)

Theorem 6.3 (Volume-Centre-Based Cluster Parameters)

To adapt the cluster radii during the alternating optimisation, again constraint
(6.8) has to be considered, leading to equation (6.13) as update equation for
the cluster centres vi and 6.14 for the ’radii’ τi, see proof 6.3.

vi =

∑n
k=1 um

ik · xk − γ ·
∑

k:(xk−vi)>·(xk−vi)≤τi
um

ik · xk∑n
k=1 um

ik − γ ·
∑

k:(xk−vi)>·(xk−vi)≤τi
um

ik

(6.13)

τi =

∑
k:(xk−vi)

>(xk−vi)>τi
um

ik√∑c
i=1

(∑
k:(xk−vi)

>(xk−vi)>τi
um

ik

)2
·
√

τ · γ (6.14)

The greater the influence of the Euclidean distance (γ → 0), the smaller
are the calculated center radii τi.

Proof 6.3 (Volume-Centre-Based Cluster Parameters)

Considering constraint 6.8 leads to the Lagrange function

Jprob
λ (X, U, v) =

c∑
i=1

n∑
k=1

um
ik ·
(

γ · max{0, (xk − vi)
> (xk − vi)− τi}

+ (1− γ) · (xk − vi)
> (xk − vi)

)
+ λ ·

(
c∑

i=1

τ2
i − τ

)
.

The partial derivative for vi is as follows

∂Jprob
λ (X, U, v)

∂vi
= 2 · (1− γ) ·

n∑
k=1

um
ik · (vi − xk)

+ 2 · γ ·
∑

k:(xk−vi)
>(xk−vi)>τi

um
ik · (vi − xk)

!= 0,



90 Adaptation of Cluster Volumes

so that we obtain

vi =

∑n
k=1 um

ik · xk − γ ·
∑

k:(xk−vi)>·(xk−vi)≤τi
um

ik · xk∑n
k=1 um

ik − γ ·
∑

k:(xk−vi)>·(xk−vi)≤τi
um

ik

.

To obtain the update equation for parameter τi we have to determine the
partial derivative with respect to τi

∂Jprob
λ (X, U, v)

∂τi
= − γ ·

∑
k:(xk−vi)

>(xk−vi)>τi

um
ik + 2 · λ · τi

!= 0,

so that we finally obtain

τi =

∑
k:(xk−vi)

>(xk−vi)>τi
um

ik√∑c
i=1

(∑
k:(xk−vi)

>(xk−vi)>τi
um

ik

)2
·
√

τ · γ �

Depending on the chosen basic clustering technique (probabilistic, possi-
bilistic, noise, or outlier) the adequate calculation instruction for the mem-
bership degrees uik has to be chosen. There the distance measure has to be
replaced by DSAV CB (6.12). Even if the influence of the Euclidean distance is
rather small (γ ≈ 0.99), the alternating optimisation converges reliably in the
experiments.

To the corresponding alternating optimisation scheme is referred as the
FCM-volume algorithm. The procedure Calculate(vi) is denoted in algorithm
6.3 together with the extension of procedure Choose(). Again, A symbol-
ises one of the basic algorithms, probabilistic, possibilistic, noise, or outlier
clustering.

Figure 6.5 illustrates the clustering results for the FCM-volume clustering
algorithm in combination with the probabilistic basic objective function from
section 3.1. Figures A.14 to A.18 in the appendix illustrate the clustering
results for the FCM-volume clustering algorithm in combination with the pos-
sibilistic, noise, and outlier objective functions from section 3.1. The same
data set used here was also used for the FCM-sized example in figure 6.2.

The influence of parameter γ on the clusters centre radii is visible in the
illustration of the distance to the cluster centres (fig. 6.5(a) and 6.5(b)). The
larger γ the smaller are the parameters τi.
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Figure 6.5: Comparison of probabilistic FCM-volume clustering for different
values of γ, m = 1.5, and τ = 1
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Algorithm 6.3 (Prototype Calculation for SAVCB)

Choose()
{
A :: Choose();
τ ∈ R>0;

}

Calculate(vi)
{

τi =

∑
k:(xk−vi)

>(xk−vi)>τi
um

ik√∑c
i=1

(∑
k:(xk−vi)

>(xk−vi)>τi
um

ik

)2
·
√

τ · γ;

vi =

∑n
k=1 um

ik · xk − γ ·
∑

k:(xk−vi)>·(xk−vi)≤τi
um

ik · xk∑n
k=1 um

ik − γ ·
∑

k:(xk−vi)>·(xk−vi)≤τi
um

ik

;

}

6.4 Illustrative Examples

To demonstrate the properties of the approaches of this chapter two additional
artificial test data sets have been designed. They are shown in figure 6.6. Part
(a) of figure 6.6 shows two spherical clusters with uniformly distributed data
points for both clusters but different radii. Here the number of data points for
each cluster is the same. In part (b) of figure 6.6 two elliptical clusters with
uniformly distributed data points but different extents are displayed. The
larger cluster has about twice as many data points as the smaller one.

In figure 6.7 the results for the data set from figure 6.6(a) with the al-
gorithms using the Euclidean distance measure are compared. The fuzzifier
m was in all cases set to 2.0. The constraint parameter τ was set to 1.0 in
both cases, FCM-sized and FCM-volume. For the size adaptable version of
the fuzzy c-means algorithm the exponent l was set to 0.5. For the influence of
the radii part in case of the FCM-volume approach, γ = 0.99 was chosen. The
original fuzzy c-means algorithm has difficulties in assigning the data to the
correct clusters (see figure 6.7 (a)). A datum is assigned to the cluster with
the highest membership degree. The approach using the Euclidean distance
combined with volume centres is in a position to adapt the volume centres
and therefore yields slightly better results than the original FCM (see part (c)
of figure 6.7). Only the size adaptable approach (part (b)) has the ability to
assign most data points correctly.
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Figure 6.6: Artificial test data sets
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Figure 6.7: Classification results for the circular test data set
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(a) GK-parallel (b) GK-parallel-sized

Figure 6.8: Classification results for the elliptical test data set

In figure 6.8 the results for the ellipsoidal test data set from figure 6.6(b) are
shown. As clustering algorithms the axes-parallel versions of the Gustafson-
Kessel algorithm and the new size-adaptable version of that algorithm have
been chosen. The fuzzifier m was assigned the value 2.0 in both cases. For
the size-adaptable approach constraint parameter τ has been set to 1 and the
exponent l was assigned 0.4. This new approach is able to adapt to the ellipses’
content (figure 6.8 part (b)) whereas the result in part (a) of figure 6.8 shows
that the Gustafson-Kessel algorithm searches for groups of about the same
size. Our approach can be further improved if a smaller value for parameter
l, e.g. l = 0.3, is chosen.

As another example, we used the Wisconsin Breast Cancer Database [112,
26] to test our new approaches with the probabilistic objective function. This
classified data set originally contains 699 data points with 9 attributes and a
classification attribute. 16 data points with missing values have been deleted
from the data set for our tests [109]. From the remaining 683 data points
444 were classified as benign and 239 as malignant. In Figure 6.9 the results
for the original fuzzy c-means algorithm (FCM) are compared to our size
adaptable version of this algorithm (FCM-sized) and the combination of the
FCM with the volume-center-based approach (FCM-volume). In figure 6.9 the
percentage of wrong classified data for two to ten clusters is displayed. The
fuzzifier m was in all cases set to 2.0. The values for the other parameters
are τ = 1.0 for FCM-sized as well as for FCM-volume, l = 0.8 for FCM-sized
and γ = 0.9 for FCM-volume. In this case the priority of FCM-volume lies
upon the volume-based component. The best results are obtained with our new
algorithms. The FCM-sized algorithm yields the best classification where 2.6%
of the data entries are misclassified with four clusters. A similar good result
(2.8% misclassified data points) is reached in case of FCM-volume at 5 clusters.
The best result for the FCM (3.1% wrong classified data) is obtained with 4
clusters. Our approaches seem both to improve the results for the Wisconsin
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Figure 6.9: Classification results for Wisconsin Breast Cancer

breast cancer database. For further analysis, cross validation would have to be
carried out for the Wisconsin breast cancer data set. Therefore, a small part of
the data set (e.g. 10% has to be selected randomly as test data for validation
and neglected from the sample data. The classification has to be calculated for
the sample data and afterwards the membership degrees and the classification
for the test data has to be evaluated on the basis of the sample data clustering
result. Carrying out this analysis for several times with different test data
sets leads to reliable results whether a clustering technique is suited for a
special classification task. Such tests are important if the classification of
additional data should be determined using classification results for data with
known classification attributes. For the illustration purposes of this section,
we restrict to the classification of the whole sample data set.

In table 6.1 clustering results in case of the size-adaptable fuzzy c-means for
different values of parameter l are shown. The values denote the percentage of
misclassified data. To calculate this value first for all clusters c the class which
is represented by one particular cluster is determined. Then the data points
corresponding to that cluster but originally belonging to a different class than
the cluster’s are counted. The sum of misclassified data over all clusters in
ratio to the total number of data gives the percentage of misclassified data,
also called error rate. It can be seen, that the result depends on the choice of
the exponent l. For figure 6.9 the value for l = 0.8 obtaining best results has
been chosen.

For table 6.2 we have chosen those c-partitions for each l-value from table
6.1, where the least error values occurred, and calculated the maximal mem-
bership degree for each datum separately. In table 6.2 the average of these
maximal membership degrees is shown for each partition. It is obvious that
this value in probabilistic clustering depends on the total number of clusters



96 Adaptation of Cluster Volumes

Table 6.1: Percentage of misclassified data for varying number of clusters and
different l-values with FCM-sized

c l = 0.2 l = 0.5 l = 0.8 l = 1.0 l = 3.0 l = 5.0
2 25.5 2.8 3.2 3.1 4.0 4.2
3 30.9 2.8 2.8 2.9 3.2 3.2
4 36.6 2.9 2.6 2.6 2.9 3.1
5 47.4 4.4 3.8 3.8 3.7 3.5
6 34.8 2.9 3.4 3.2 3.5 3.5
7 13.6 2.9 3.2 3.4 3.2 3.2
8 17.4 2.8 3.1 3.2 3.8 3.8
9 22.3 4.2 3.7 3.5 3.5 3.5

10 34.6 3.4 3.2 3.2 3.2 3.4
11 12.2 2.9 3.8 3.8 3.8 3.8
12 13.3 3.1 3.5 3.5 3.5 3.5

Table 6.2: Maximal membership degrees for the best results found in table 6.1
for specific l-values and FCM-sized

l umax
ik

0.2 0.5964
0.5 0.9078
0.8 0.7045
1.0 0.7105
3.0 0.7112
5.0 0.7119

for the partition, e.g. the value for l = 0.2 and c = 11 clusters is less than
the result for l = 0.5 and c = 2 clusters. The last four entries illustrate the
influence of parameter l on the membership degrees, see section 6.1. Here, for
the l-values 0.8, 1.0, 3.0 and 5.0 the number of clusters was in all cases c = 4.
The calculated values are slightly increasing for increasing l-values.
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Figure 6.10: Air traffic data for two high traffic hours at Zurich airport

6.5 Flight Route Detection

In this section we demonstrate how the adaptation of cluster volumes in fuzzy
clustering can be applied to the flight route detection problem described in
section 2.2. The idea of this example is to develop a technique that enables
us to describe practiced routes in a way comparable to pre-defined routes.
Therefore, the widespread radar plots of a number of aircrafts have to be
replaced by a description in form of route segments for ”average” routes.

An example of a two-dimensional radar plot is illustrated in figure 2.2 in
section 2.2. In this figure, the arrivals and departures at Zurich airport in 1996
are shown. An invisible grid was laid over the airport surrounding area and
the number of aircraft passing one field of this grid were counted. This way
the colours separate the differently frequented areas around Zurich airport.

Here we show how GK-sized can be used to identify and describe flight
paths in the airport surrounding airspace. Since the data set is too large to
analyse and handle as a whole, we have to restrict ourselves to a subpart of
the data. The data set for all arriving and departing aircraft at Zurich airport
in three month has a size of about 175MB in ASCII form. Even if we restrict
ourselves to arriving aircraft the ASCII file with the data for all three month
has a size of about 110MB. Data for one week and arriving aircraft leads to
a ASCII file-size of about 9MB. Selecting only two high traffic hours, e.g. 4
to 6 p.m., leads to a size of about 1.6MB or 77.000 data vectors per week.
The number of data vectors is not equivalent to the number of aircraft, each
aircraft’s position is recorded every four seconds. Not only the data set is too
large to analyse as a whole, but also differing results for certain subparts are
of great interest, e.g. if the time of day or aircraft type influences the flight
routes. To reduce the computational effort or split the data in meaningful
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(a) Aircraft data for medium aircraft

(b) Aircraft data for heavy aircraft

Figure 6.11: Parts of air traffic data for two high traffic hours at Zurich airport
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Figure 6.12: Validity (partition coefficient) for air traffic data

subparts we

• choose the analysis time or part, e.g. one day, certain aircraft type, time
of day,

• extract coordinate data, and

• generate a data set with aircraft coordinates.

In figure 6.10 the radar data for arriving aircraft at Zurich airport is shown
for two high-traffic hours, i.e. 210KB ASCII data or about 10.500 data vectors.
This data is further split in one part containing the radar points of heavy-
sized aircraft (10KB ASCII data or about 470 data vectors), see 6.11(b), and
another part consisting of the radar points of medium-sized aircraft (120KB
ASCII data or about 5.900 data vectors), see 6.11(a).

For the selected data part we have to determine a suitable number of
clusters. Therefore global validity measures as described in chapter 4 can be
chosen. Figures 6.12(a), 6.12(b), and 6.12(c) illustrate the validity for our
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three test data parts. Here the measure partition coefficient – see section 4.1.2
– was chosen, for the coordinate data from Zurich airport clustered with GK-
sized. The parameters have been set as follows: fuzzifier m = 2, termination
bound ε = 0.001, constraint parameter τ = 1, and parameter l = 0.5 to
determine the emphasis that is put upon size adaptation.

To illustrate the results we analysed the partition for each of our three
sample data sets for a small number of clusters, i.e. 2 clusters for the complete
and the medium data part and 4 for the heavy data part, and a larger local
optimum, i.e. 16 for the complete data set, 13 for the heavy aircraft part and
14 for the part with medium aircraft. One covariance matrix for each cluster
is used in GK-sized to estimate the cluster form. Each matrix describes an
ellipsis whose main axis represents one line segment. In this way the parti-
tion of the flight data in ellipsoidal clusters can be used to estimate parts of
common flight paths. We have to determine the smallest eigenvalue of the
cluster’s covariance matrix and the corresponding eigenvector. This eigenvec-
tor gives us the direction of the line corresponding to the analysed cluster in
our p-dimensional analysis space. Equivalently we could use the greatest p−1
eigenvalues to describe lines in the p-dimensional space. In this case the cor-
responding eigenvectors are all orthogonal to the resulting line. To determine
the line segments corresponding to one cluster, we have to

• determine the covariance matrix’ eigenvalues,

• sort the eigenvalues eval
is in increasing order, where i is the number of

the corresponding cluster and s the number of the ordered eigenvalue,

• calculate the eigenvector evec
is corresponding to the smallest (the first in

our order) eigenvalue

• determine the line’s equation using the eigenvector for the line’s direction
and the cluster centre as a line point, i.e. the resulting line equation is
of the form g := vi + ρ · evec

is where vi is the cluster centre, and

• determine the line’s extent.

The line equation gives us the direction of a part of a flight path. To esti-
mate the extent of a single part, the membership degree of the data points to a
particular cluster are used. We determine the partition of the data – each da-
tum is assigned to that cluster to which it has the highest membership degree.
To avoid that outliers determine the length of a line segment, we exclude data
with a small membership degree to its assigned cluster from further analysis,
e.g. in probabilistic clustering we choose uik < 1+β

c , where β < 1 is a small
real number that determines ”the percentage that the membership degree of
a datum has to be greater than that of a datum equally shared among the
clusters”. For data assigned to the cluster under consideration, we calculate
the minimal and maximal coordinates in each domain. The minimal and max-
imal coordinates whose corresponding – not identical – data vectors have the
greatest membership degrees to the cluster under consideration are used to
estimate the lines start- and endpoint. The eigenvector of the covariance ma-
trix together with the cluster centre determine an equation that defines a line
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(a) Air traffic data and line segments

(b) Line segments

Figure 6.13: Air traffic data and line segments for 2 clusters and the complete
data set
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(a) Air traffic data and line segments

(b) Line segments

Figure 6.14: Air traffic data and line segments for 16 clusters and the complete
data set
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(a) Air traffic data and line segments

(b) Line segments

Figure 6.15: Air traffic data and line segments for 4 clusters and the heavy
data part
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(a) Air traffic data and line segments

(b) Line segments

Figure 6.16: Air traffic data and line segments for 13 clusters and the heavy
data part
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(a) Air traffic data and line segments

(b) Line segments

Figure 6.17: Air traffic data and line segments for 2 clusters and the medium
data part
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(a) Air traffic data and line segments

(b) Line segments

Figure 6.18: Air traffic data and line segments for 14 clusters and the medium
data part
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in the multidimensional space – in our case part of the flight route. With the
estimated coordinates, we can solve this equation and obtain multidimensional
points that are part of the straight line described by the covariance matrix.
Density based clustering techniques are used in large databases to identify
related geographical structures, see e.g. [5] and the references therein. How-
ever, the distance measure used for GK based on a cluster’s covariance matrix
enables us to identify line-segments corresponding to the (hyper-) ellipsoidal
structures described by the clusters.

In this way, one line segment is described for each cluster, see figures 6.13
to 6.18. Part (a) of each figure shows the data with underlying line segments,
whereas part (b) illustrates the estimated line segments. The smaller the
data part the better are the results. A significant larger number of clusters
could improve the results for the two larger data sets, but we have to take
into account that we are interested in an ”average” flight route for a certain
situation. If the cluster number is to large, we would try to rebuild nearly
each single route. Thereby, it is not guaranteed, that the direction of our line
segments corresponds to the flight direction. If we use only the radar points
for cluster analysis, not all clusters led to meaningful line segments, see e.g.
the red line in figure 6.18(a) and 6.18(b). Although the cluster was correct
from the mathematical and data analysis point of view (”group data with
small distances together”), it does not lead to the correct flight direction. To
assure that our line segments have the orientation of the flight routes, we can
generate an additional artificial data attribute that contains this direction, e.g.
the positive angle to the airport if the aircraft flies towards the airport or the
negative angle for the opposite direction.

Let us briefly describe how the clustering results are further processed.
First we have to carry out a kind of plausibility check and neglect clusters
that do not fulfil this test. The part of data corresponding to the neglected
clusters has eventually to be analysed separately. For other clusters back-
ground knowledge tells us to neglect the results, e.g. from a certain height,
routes for arriving aircraft lead usually directly to the airport. This way, the
red segment of figure 6.18 would be neglected. Additionally, similar segments
can be combined to a single segment. To determine whether two line segments
are similar enough to combine, the segments begin and end points as well as
the segments direction have to be compared. For approach procedures usually
the segments starting point will have a greater height value whereas for de-
parting flights the end point will have a greater height value. One possibility
to determine the similarity of two segments is to calculate the area determined
by the segments and their combined starting (resp. end) points. If the en-
closed area is small, it has to be checked whether we cope with sequencing (or
overlapping) segments. A comparison of one segments endpoint and length
with the second segments starting point determines if both segments can be
brought together. To identify flight routes the single line segments have to be
connected to a full flight path. If we restrict ourselves to arriving or departing
aircraft, either the start or the endpoint has to be near to the airport’s coordi-
nate. Therefore overlapping line segments have to be identified and combined.
Where gaps in the flight route occur, we have to estimate the full path, e.g.
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Figure 6.19: Noise reducing routes

enlarge the detected line segments or add additional segments. Thereby spe-
cial demands of aircraft have to be taken into account. The crossing points
have to meet suitable angles between lines in all directions.

This method can be applied to compare flight routes, e.g. under different
flight, weather, or traffic conditions or with existing procedure paths. Finding
routes that minimise air traffic delay and the pollution of the airport sur-
rounding area, see e.g. figure 6.19, are an important task in data analysis for
air traffic management. In figure 6.19 an artificial airport and surrounding
cities are shown. The direct approach route final and two alternatives are
shown with the corresponding noise pollution. In some cases the social de-
mands have let to improved noise reducing flight routes that have not been
described in official arrival or departure procedures. It is important to anal-
yse the actual flight situation e.g. before further building land is declared or
airport improvements are realised. The methods developed in this work are
new approaches to meet these demands. One actual routing problem is the
definition of a new airspace structure. Data analysis is a possibility to identify
the real situation and in this way indicate workable solutions.



Chapter 7

Attribute Weighting Fuzzy
Clustering

This chapter describes a new fuzzy clustering method developed to determine
the influence of particular features on particular clusters and detect structures
or groups in unevenly over the structure’s single domains distributed data [60,
59]. In sample data single clusters are often defined by only a few attributes
of the full attribute set. The aim of this weighing fuzzy clustering approach is
to determine these attributes. Therefore influence parameters for each single
data feature for each cluster are introduced. These parameters are added to
the Euclidean distance used by FCM, see section 3.2.1. In this way attribute
weighting fuzzy clustering generalises the FCM approach.

The presented clustering technique gives information about the influence
of particular variables or attributes of the data set on special clusters. This
knowledge can be used e.g. in classification tasks to determine or detect class
defining attributes. Without ignoring one data attribute for the whole clas-
sification it is possible to reduce the influence of that attribute on only some
clusters. In that way, attribute weights could help to partition the whole data
set into smaller data parts depending on the same attributes. Analysing the
smaller parts with a reduced number of attributes would reduce the computa-
tional effort. Real data sets soon get immense large. If we would e.g. consider
all flight specific attributes for flight data analysis together, we would have
to cope with about 255, 000 data vectors with 15 attributes for arrivals and
departures, 5 additional weather attributes, and other derived variables. At-
tribute weighting could not only be helpful in reducing computation time but
also to reduce the future expense of measuring.

7.1 Formal Definition

Especially in data where few variables determine particular clusters other vari-
ables may disguise the structure and should therefore not be considered to find
these clusters. This can be done by weighting single attributes for each clus-
ter as is expressed in the new distance measure (7.1). The resulting attribute
weighting fuzzy clustering technique is denoted by AWFCM.
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The distance between a datum xk and a cluster (vector) vi is defined by

d2(vi, xk) = DAWFCM =
p∑

s=1

αt
is ·
(
x

(s)
k − v

(s)
i

)2
. (7.1)

x
(s)
k and v

(s)
i indicate the s’th coordinates of the vectors xk and vi, respectively.

The number of variables or attributes is denoted by p. αis is a parameter
determining the influence of attribute (coordinate) s for cluster i. t ∈ R>1 is a
real-valued parameter that enables us to define the strongness of the emphasis
that is put on the attribute weighting task. The distance function is illustrated
in figure 7.1 for t = 1.05 (figure 7.1(a)) and t = 5 (figure 7.1(b)).

The parameters αis can be considered as fixed or adapted individually
for each cluster during clustering. If pre-knowledge about the attributes’ sig-
nificance is available, the weighting parameters can be specified by the user.
Otherwise the αis can be estimated during the clustering due to the constraint

p∑
s=1

αis = 1 ∀i ∈ {1, · · · , c}. (7.2)

More generally, a constant a ∈ R can be introduced instead of 1 in the con-
straint, e.g. a = 1 or a = c. If we would neglect this constraint, we would
obtain the trivial solution αis = 0 for all i and s.

The exponent t ∈ R>1 in equation (7.1) has a similar influence on the
parameters αis as the fuzzifier m on the membership degrees uik. For t → 1
the αis tend to be 1 or 0 – either one attribute has unrestricted influence or
no influence at all. On the other hand, if t → ∞, all attributes get the same
influence on the cluster structure, i.e. αis → 1

p for all i and s.
Based on this approach we can derive an alternating optimisation scheme

for fuzzy clustering using distance measure (7.1). The basic probabilistic ob-
jective function using DAWFCM as distance measure is shown in equation 7.3.

Jprob(X, U, v) =
c∑

i=1

n∑
k=1

um
ik ·

p∑
s=1
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(
x

(s)
k − v

(s)
i

)2
(7.3)

To adapt the influence parameters αis we have to determine a necessary
condition for the values αis so that the objective function achieves an optimum
value.

Theorem 7.1 (Attribute Weights)

Differentiating (7.3) leads to equation (7.4) for the parameter αis as a neces-
sary condition for the objective function to have a minimum, see proof 7.1.
The resulting equation can be used for updating αis during the alternating
clustering procedure.

αis =
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) 1
t−1

. (7.4)



7.1 Formal Definition 111

(a) t = 1.05, α0 = 0.4, and α1 = 0.6

(b) t = 5, α0 = 0.4 and α1 = 0.6

Figure 7.1: Attribute weighting distance of (x0, x1)> to v>(0, 0)
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Figure 7.2: Ellipsoidal clusters
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Proof 7.1 (Attribute Weights)

With condition (7.2) we obtain the Lagrange function
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leading to the partial derivation
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With constraint 7.2 this leads to
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Together with (2) we obtain the equation for parameter αis
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Theorem 7.2 (Cluster Centres for Attribute Weighting Clustering)

In a similar way we obtain a necessary condition for the cluster centres, see
proof 7.2.

v
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ik · x
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k=1 um
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⇒ vi =
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ik · xk∑n
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,

as in FCM, see section 3.2.1.

Proof 7.2 (Cluster Centres for Attribute Weighting Clustering)
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The membership update equations are derived analogously to section 3.1,
depending on the chosen basic clustering technique, probabilistic, possibilistic,
or noise clustering, respectively. To calculate the membership degrees, distance
measure DAWFCM has to be used for d2(vi, xk) in the corresponding basic
clustering algorithm.

It should be noted that this approach is also related to the axes parallel
version of the Gustafson-Kessel algorithm (AGK) described in section 3.2.2
and [73]. AGK uses a diagonal matrix for each cluster that determines the
axes-parallel extensions of that cluster. The diagonal elements can be seen as
weights for the attributes in the same way as we use them here, except for
our exponent t. However, the constraint for AGK is that the determinant is
constant, i.e. the sum in equation (7.2) is replaced by a product. In case of
AGK the constant determinant for each cluster guarantees that the volume of
a cluster is constant during the iterative clustering procedure. The sum for
AWFCM allows a modification of the cluster volume during the alternating
cluster estimation but prevents the trivial solution where all weights are 0.
Another advantage of our approach is that the strongness of the influence of
single variables can be controlled by the parameter t as described above.

The algorithm scheme 7.1 can be used as procedure Calculate(vi) in the
chosen basic clustering Algorithm A, see section 3.1.
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Algorithm 7.1 (Prototype Calculation for AWFCM)

Calculate(prototypei)
{

vi =
∑n

k=1 um
ik · xk∑n

k=1 um
ik

;

for all s ∈ {1, . . . , p}
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) 1
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;

}

7.2 Illustrative Examples

In Figure 7.2 an artificial test data set consisting of four ellipsoidal groups
is shown. Part (a) presents the original data set and part (b) represents
the clustering result obtained by the attribute weighting clustering technique
(AWFCM) where a datum is assigned to the cluster to which it has the highest
membership degree (maximum defuzzification). In this case we have set both,
the fuzzifier m and the exponent t, to 2.0. However, the clustering result
depends more on a suitable initialisation of cluster centres than the choice of
parameters m and t. Table 7.1 lists the minimum and maximum attribute
values for all clusters.

Table 7.1: Minimum/maximum feature values for each cluster

attributes
x y

cluster no. min max min max
1 2.28 2.71 −1.93 1.85
2 −0.96 0.90 2.07 3.88
3 −1.42 1.40 0.54 1.40
4 −1.97 1.93 −0.21 0.21

In table 7.2 cluster 1 represents the ellipsoidal group with greatest x-values
in the right part of figure 7.2. From top to bottom in the left part of figure
7.2 are the clusters 2, 3, and 4. The scale values αis were adapted during the
clustering procedure. It is obvious, that for each cluster the more the data
coordinates are scattered around the corresponding prototype’s coordinate,
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Figure 7.3: Results for ellipsoidal clusters with FCM

the less is the influence of the corresponding attribute for that cluster. In our
example in figure 7.2 the two attribute influence parameters αis for cluster 2
have nearly the same value. The data coordinates are approximately uniformly
distributed for the two domains of this cluster. For clusters 3 and 4, the data
values for attribute x are scattered widely whereas the values for attribute y
have a small range – so the influence parameters αix are small in comparison
to αiy for clusters 3 and 4. In case of cluster 1 the data values for attribute y
are scattered widely, resulting in a high value for influence parameter α1x.

Table 7.2: Attribute weights for ellipsoidal data set

attributes
cluster no. αix αiy

1 0.99 0.01
2 0.49 0.51
3 0.08 0.92
4 0.01 0.99

Figure 7.3 presents the clustering result for the example data set gener-
ated by FCM clustering technique with fuzzifier m = 2 as above. Using the
Euclidean distance measure, FCM is not well suited to detect ellipsoidal struc-
tures in data. One indication for the suitability of a clustering result is the
following value. Of the c membership degrees associated with each datum, we
only consider the highest membership degree (i.e. the membership degree to
the cluster to which we would assign the datum by maximum defuzzification)
and the mean value of these membership degrees is computed. Here, the mean
value for FCM is 0.81 in comparison to 0.96 for the AWFCM clustering tech-
nique. Nevertheless the methods by Gustafson and Kessel [48] or Gath and
Geva [42] are also well suited to detect the structures of our example data,
but GK and GG lead to a higher computational effort since the covariance
matrices have to be estimated and inverted for each cluster in each iteration



7.3 Attribute Weighting for transfer passenger data 117

step.
The AWFCM fuzzy clustering approach is also well suited for deriving

rules from the clusters. Since the weighting of the attributes for each cluster
provides information about the importance of the variables, we can neglect
variables with very small weighting factors in the rules. For the presented
artificial test data set we can e.g. consider to derive a fuzzy rule from cluster
2 invoking only the variable y.

Note that this approach differs from the idea to carry out a cluster analysis
first and then apply something like a principal component analysis to each
cluster. This would mean that the clustering has to take all attributes into
account, whereas here the selection of relevant variables is already carried out
during the clustering.

7.3 Attribute Weighting for transfer passenger data

We show the main clustering results and rule learning for the transfer passenger
problem (described in section 2.1) in chapter 10. In that chapter the FCM-
sized algorithm 6.1 based on the outlier objective function 3.1.4 as well as the
original FCM based on outlier clustering are used as clustering techniques.
The rule base is deduced for arrival and departure data for both clustering
techniques in section 10.3. For the departure data and FCM-sized based on
outlier clustering a rule-base is derived from a clustering result with 18 clusters.
Therefore, attribute weighting clustering was carried out for the departure
transfer passenger data and 18 clusters. The resulting weights are shown
in table 7.3 for all 18 clusters and each attribute, i.e. maximal number of
passengers that can be carried by a certain aircraft type, range of a flights
destination (short-, medium-, or long-haul), time of departure, and percentage
of passengers that previously arrived with another flight. Comparable results
can be obtained for the arrival data set. The weighting exponent t was set
to 2.5 and the constraint parameter a = 1 was chosen. Note that the cluster
numbers are not correlated to the fuzzy set numbers in figure 10.3.

The weights indicate that the first attribute ”maximal number of passen-
gers in a specific aircraft” has – except for cluster 13 and 16 – only a small
influence on the cluster partition. The destination range either defines a clus-
ters structure, e.g. cluster 3, 5, 6, 7, 9, and 10, or has a relative small influence
on a particular cluster. Such information can be used to analyse data in sep-
arate parts. Data belonging to clusters with a large weight for one attribute
can be analysed whether the output domain (amount of transfer passengers) is
also defined by that attribute (and in that sense one attribute is sufficient) or if
additional attributes are needed. Evenly weighted attributes indicate that the
corresponding cluster is well defined with the attributes under consideration.
The relatively high influence of the destination attribute indicates a problem
that might arise with categorical variables. Categorical attributes have no real
variation. The distances of similar attributes are zero – the attribute values
are identical – whereas the distances of differing attributes are relatively large
in comparison to average distances of other attributes.
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Table 7.3: Attribute weights for departure transfer passenger data set

weights attributes
cluster Pax Max Destination Time Transfer Pax

0 0.051 0.507 0.293 0.149
1 0.023 0.148 0.745 0.084
2 0.002 0.073 0.916 0.009
3 0.001 0.939 0.048 0.012
4 0.039 0.063 0.870 0.028
5 0.000 1.000 0.000 0.000
6 0.000 1.000 0.000 0.000
7 0.022 0.946 0.016 0.015
8 0.104 0.259 0.423 0.215
9 0.000 0.994 0.003 0.003
10 0.000 1.000 0.000 0.000
11 0.038 0.660 0.132 0.170
12 0.003 0.759 0.172 0.065
13 0.247 0.306 0.229 0.217
14 0.014 0.685 0.288 0.013
15 0.004 0.008 0.986 0.002
16 0.216 0.290 0.286 0.208
17 0.085 0.152 0.144 0.619

This clustering technique is able to indicate for clustering tasks not based
on classification problems whether the selected attributes are suited to de-
scribe the selected output attribute. For classification problems the error
rate can be used to validate a classification. For other approximations with
non-discrete output values, validity measures evaluate the whole classification
independently whether an attribute is an output or input domain. If attribute
weighting clustering is used and the weighting factors are very small for the
output attribute(s) in all clusters, the chosen input attributes might be not
sufficient to describe the output behaviour.



Chapter 8

Context Sensitive Fuzzy
Clustering

In this chapter an objective function-based fuzzy clustering technique that
incorporates linear combinations of attributes in the distance function is in-
troduced [58]. The scope of this method is to develop a clustering technique
that is able to classify a data set comparing not single attribute vectors of the
sample data but some kind of regions. Thus this method can be applied in
image segmentation or texture classification. Consider e.g. a grey-scale image
as in figure 8.5. Pixel-wise comparison of these parts would lead to a countless
number of groups in the best case. Adding up the grey-values of the whole
region and comparing this value in-between the groups would be more effec-
tive. The main application field of this method is image processing where a
comparison pixel by pixel is usually not adequate, but the environment of a
pixel or groups of pixels characterise important properties of an image or parts
of it. This clustering method is referred to as context sensitive clustering (CS).

Therefore, a new distance measure is defined. Formally the resulting algo-
rithm is a generalisation of the FCM, see section 3.2.1, as well as the Gustafson-
Kessel algorithm restricted to diagonal fuzzy covariance matrices, see the axes
parallel Gustafson-Kessel algorithm in section 3.2.2.

This clustering technique seems to be well suited to determine groups of
similar images. Problems may arise if no diverging areas for the groups or
classes of images (describing a special class) can be found.

8.1 Formal Definition

Let us define the distance between a datum xk and a cluster (vector) vi by

d2(vi, xk) = DCS =
∑
I∈I

αI

(∑
s∈I

x
(s)
k −

∑
s∈I

v
(s)
i

)2

. (8.1)

x
(s)
k and v

(s)
i indicate the s’th coordinates of the vectors xk and vi, respectively.

I is a set of sets of indices (coordinates), i.e. I ⊆ 2{1,...,p} when we have to
deal with p-dimensional data vectors. The parameters αI can be considered
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as fixed or adapted during clustering individually for each cluster subject to
the constraint ∏

I∈I
αI = 1. (8.2)

The distance measure is illustrated in figure 8.1. For figure 8.1(a) the
subsets I ∈ I containing 1 variable each have been chosen for αI , with α{0} =
0.5 and α{1} = 2, whereas the subsets {0}, {0} and {0, 1} with α{0} = 0.5,
α{1} = 1 and α{0,1} = 2 have been used for figure 8.1(b).

The idea of this context sensitive clustering is that certain subsets of the
variables of data vectors yield similar values when we sum them up instead of
comparing them one by one. A typical application of this approach is image
recognition, where two similar images or regions might not correspond to each
other pixel by pixel, but for instance the sum of the grey values in smaller
parts I might almost coincide.

Based on this approach we can derive an alternating optimisation scheme
for fuzzy clustering using this distance measure. The objective function that
has to be minimised is of the following form.
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Using DCS as distance measure, the objective function 8.3 can be written
as

J(X, U, v) =
c∑

i=1

n∑
k=1

um
ik ·DCS .

Therefore, choosing one of the basic objective functions described in section
3.1 gives us the update equations for the membership degrees. DCS has to be
inserted as distance measure in any of the basic clustering algorithms 3.1, 3.2,
3.3, or 3.4, respectively.

Theorem 8.1 (Context Sensitive Cl., Coordinate Set Parameter)

If the parameter αI should be adapted during the iteration procedure, differ-
entiating (8.3) leads to a calculation instruction (8.4) for the parameter αI

as a necessary condition for the objective function to adopt a minimal value.
With card(I) the cardinality (number of elements) of the set I we obtain
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see proof 8.1.
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(a) CS (α{0} = 0.5, α{1} = 2)

(b) CS (α{0} = 0.5, α{1} = 1, α{0,1} = 2)

Figure 8.1: Distance for the CS to v> = (0, 0)
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Proof 8.1 (Context Sensitive Cl., Coordinate Set Parameter)

With condition (8.2) we obtain the Lagrange function
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Inserting λ in (1) gives us the update equation for αI
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Theorem 8.2 (Context Sensitive Clustering, Cluster Centres)

In a similar way we obtain a necessary condition for the cluster centres (8.5),
see proof 8.2.
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Equation (8.5) is a system of linear equations, but variable and highly
dependent on the choice of the sets in I. So the following heuristics (8.6) is
chosen to estimate the parameters v

(s)
i in (8.5).

v
(r)
i =

∑n
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(
um

ik ·
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k=1 um
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)
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)
·
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I∈I|r∈I αI

) (8.6)

In (8.6) we have to make sure that none of the parameters v
(r)
i is allowed

to be placed outside the domain of the corresponding data set’s attribute. If
values outside the domain would be allowed, the error of the former placed
cluster centres would be neglected in placing the next coordinate v

(r)
i in great

distance of all observed data coordinates. In calculating v
(r′)
i the former cal-

culated parameters v
(r)
i (r < r′) are used in equation (8.6). Otherwise each

prototype coordinate would adapt the whole error between the sum of cor-
responding data coordinates and the coordinates of the former prototype. A
similar heuristic approach to determine the prototypes is also used for the
fuzzy c-ellipses [43] and fuzzy c-rings [88] clustering techniques.

Proof 8.2 (Context Sensitive Clustering, Cluster Centres)

J(X, U, v) =
c∑

i=1

n∑
k=1

um
ik ·
∑
I∈I

αI ·

(∑
s∈I

x
(s)
k −

∑
s∈I

v
(s)
i

)2

=
c∑

i=1

n∑
k=1

um
ik ·
∑
I∈I

αI

(∑
s∈I

(
x

(s)
k

)2
+ 2 ·

∑
s∈I

∑
r∈I|r>s

x
(s)
k · x(r)

k

−2 ·
∑
s∈I

∑
r∈I

x
(s)
k · v(r)

i +
∑
s∈I

(
v

(s)
i

)2
+ 2 ·

∑
s∈I

∑
r∈I|r>s

v
(s)
i · v(r)

i

)

Computing the partial derivative of J(X, U, v) with respect to v
(l)
i leads to
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and therefore
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The parameter αI determines the influence of one particular subset of at-
tributes. If e.g. the class determining areas of an image are known in advance,
it is not necessary to adapt the αI (assuming that each I contains the variables
of one significant area) during the clustering procedure. In the case that no
supplementary information about the data set is given, it is possible to de-
fine more subsets I than are expected to be necessary for the task of pattern
recognition and adapt the αI in order to adapt the influence of certain subsets.

This approach can be seen as a generalisation of the axes-parallel version of
the Gustafson-Kessel algorithm, see section 3.2.2 and [73]. The AGK is based
on the distance function DAGK = (x − v)>C(x − v) where C is a diagonal
matrix with determinant 1. Therefore, if c1, . . . , cp are the diagonal elements
of C, the distance function can be written as

DAGK =
p∑

s=1

cs(xs − vs)2 (8.7)

with the constraint
p∏

s=1

cs = 1. (8.8)

When we choose I = {{1}, . . . , {p}}, then our initial equations (8.1) and (8.2)
correspond to equations (8.7) and (8.8), respectively. In this case, we define
the comparable regions as the single attributes. However, context sensitive
clustering allows to define whatever combination of attributes.

8.2 Illustrative Example

Figure 8.2 shows an artificial example with three different kinds of grey-scale
images. In figure 8.2(a) the data set is shown. The grey scales are equivalent to
real numbers as denoted in figure 8.2(b). During the clustering procedure we
adapted the values for the αI and set the number of clusters to three. The set
of sets I is constructed of all sets containing one element – one particular point
of the picture’s area – and four sets with six points each (the top-left, top-right,
bottom-left and bottom-right regions of the images). The resulting prototypes
for the three clusters are shown in figure 8.3(a). The highest membership
degrees of the data points to the clusters are presented together with the
corresponding clusters in table 8.1. Table 8.3 contains the adapted values for
the parameters αI . The set notation is illustrated in figure 8.4.

In figure 8.3 results for the data set from figure 8.2 are shown. In the
second example the set of sets I contains only the subsets with six elements
each – as described above. Figure 8.3(b) shows the resulting prototypes and
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(a) Box data set (b) Box grey values

Figure 8.2: Box Images
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Table 8.1: Class determining membership degrees for Box Images

maximal membership degrees
datum 4 and 1-elemental subsets 4-elemental subsets cluster

1 0.979 0.976 3
2 0.971 0.994 3
3 0.967 0.978 3
4 0.963 0.987 3
5 0.975 0.998 3
6 0.975 0.995 3
7 0.948 0.983 3
8 0.984 0.982 1
9 0.975 0.983 1

10 0.976 0.987 1
11 0.962 0.995 1
12 0.951 0.997 1
13 0.973 0.997 1
14 0.942 0.974 1
15 0.980 0.992 2
16 0.967 0.995 2
17 0.936 0.987 2
18 0.964 0.995 2
19 0.974 0.996 2
20 0.975 0.996 2
21 0.952 0.985 2

Table 8.2: Influence values αI for the result in figure 8.3(b)

set I αI

{a1, a2, b1, b2, c1, c2} 0.82
{a3, a4, b3, b4, c3, c4} 1.19
{d1, d2, e1, e2, f1, f2} 0.93
{d3, d4, e3, e4, f3, f4} 1.11
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(a) Prototypes
(all subsets I
with 4 and 1
elements each)

(b) Prototypes
(subsets I with 4
elements each)

Figure 8.3: Box Image clustering results

a

b

c

d

e

f

1 2 3 4

Figure 8.4: Attribute notation for the Box Image data set
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Table 8.3: Influence values αI for the result in figure 8.3(a)

set I αI

{a1, a2, b1, b2, c1, c2} 0.19
{a3, a4, b3, b4, c3, c4} 0.26
{d1, d2, e1, e2, f1, f2} 0.22
{d3, d4, e3, e4, f3, f4} 0.25

{a1} 0.81
{a2} 0.86
{a3} 1.08
{a4} 1.08
{b1} 1.49
{b2} 0.91
{b3} 1.09
{b4} 2.03
{c1} 1.17
{c2} 1.95
{c3} 0.85
{c4} 3.88
{d1} 2.71
{d2} 0.92
{d3} 1.29
{d4} 1.65
{e1} 0.85
{e2} 1.68
{e3} 1.20
{e4} 1.08
{f1} 0.75
{f2} 1.34
{f3} 1.32
{f4} 1.52
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Figure 8.5: ATTAS image with 256 grey values and 276 x 147 pixel

1

2

3

a b c

Figure 8.6: Block notation for the ATTAS image

table 8.1 presents the highest membership degrees of the data points to the
clusters together with the corresponding clusters. The adapted values for the
parameters αI are denoted in table 8.2. The corresponding clusters of the
data points are determined correctly, also the prototypes for cluster one and
three. Since all grey values are present in each particular subset I of I for
the third group of data points (figure 8.2(a)), the corresponding prototype for
cluster two in figure 8.3(b) is not able to reproduce the data images correctly
– nevertheless the data points are correctly assigned.

8.3 Context Sensitive Analysis of ”ATTAS” image

Let us now illustrate the properties of the presented approach with a second
more realistic example. In figure 8.5 the aircraft ”ATTAS” of the German
Aerospace Centre is shown. The colours where reduced to 256 grey values and
the size was set to 276 x 147 pixel. To generate a data set for the context
sensitive fuzzy clustering approach, the picture was divided into blocks of 3 x
3 pixels leading to 4,508 data vectors with 9 attributes each. The attributes
are the grey values of pixels included in the 3 x 3 block. Figure 8.6 illustrates
the notation in one 3 x 3 block that is used for the sets αI .

Three cases have been analysed for a varying number of clusters:

• I = {{a1}, {a2}, . . . , {c2}, {c3}}
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Figure 8.7: PE for ATTAS image and different I
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• I = {{a1, a2, a3}, . . . , {c1, c2, c3}}

• I = {{a1}, {a2}, . . . , {c2}, {c3}, {a1, a2, a3}, . . . , {c1, c2, c3}}

To determine the best number of clusters the partition entropy, see section
4.1.3, has been chosen as validity measure. The development of the validity
functions are shown in figure 8.7.

The results for the local minimal PE-values are illustrated in figure 8.8.
Here a local minimum was obtained at 5 clusters for each I. To generate the
figures, each data vector has been assigned to that cluster to which it had the
highest membership degree. Afterwards, the original figure’s grey values have
been exchanged for the corresponding clusters prototype values. The real-
valued prototype coordinates have been rounded to integer values in order to
represent grey values.
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(a) I1 = {{a1}, {a2}, . . . , {c2}, {c3}}, c = 5

(b) I2 = {{a1, a2, a3}, . . . , {c1, c2, c3}}, c = 5

(c) I = I1 ∪ I2, c = 5

Figure 8.8: Resulting ATTAS image for different I



Chapter 9

Fuzzy Clustering for Rule
Learning

Fuzzy rules are usually obtained from fuzzy clusters by projecting the clusters
to the coordinate spaces. Especially in applying fuzzy clustering techniques to
the task of rule learning it is not necessary to implement highly form-adaptable
algorithms since more flexible clustering algorithms admitting complex cluster
shapes generally result in a higher loss of information by rule generation.
As long as we stay with such simple clustering algorithms as FCM or the
parallel version of GK, loss of information in case of rule learning can be
mostly avoided, see fig. 9.5. This is also valid for the size adaptable versions
of these algorithms, see section 6 since the form describing distance measure
is not changed. In case of rule learning the proposed modified versions of the
described algorithms are a good alternative to more complex algorithms like
the method introduced by Gath and Geva, see section 3.2.3. However, a loss
of information by the process of rule generation is unavoidable and most of the
algorithms presented in the preceding chapters can be applied to learn fuzzy
rules from data for classification problems [44, 72, 70, 114, 37] or function
approximation [71, 73, 107, 83]. The loss of information could be minimised
if the clusters had the shapes of rectangles or hyperboxes. Unfortunately,
such shapes lead to non-differentiable objective functions. One method to
avoid a major part of this information loss is described in section 9.2 and [64].
There we start with partitions of the single domains and try to find a suitable
partition for the data under consideration. Especially suited for the task of
rule learning are the algorithms presented in section 6.1 where the algorithms
are made more flexible with respect to the cluster shape without increasing the
existing loss of information in case of rule learning. Namely the size-adaptable
FCM or AGK version are appropriate.

Another possibility is to simplify the rule base after the rules have been
extracted from the clustering results. Some methods to reduce the number of
fuzzy sets in a rule base and use a similarity measure to simplify the rule base
are described in [103, 105]. A method for classification tasks to tune and split
the rule base has been described in [1, 2].

Fuzzy clusters are often described in form of a cluster representative and
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Figure 9.1: Vague areas induced by fuzzy rules

the membership degrees of the sample data points to the clusters. For one
cluster the membership degrees are decreasing with increasing distance. If we
think about solid clusters, a vague area with the cluster’s prototype as centre
is described. Now assume that we have a fuzzy rule consisting of triangular
fuzzy sets for the single attributes. If we represent these fuzzy sets in the
multidimensional input-output space of the fuzzy rule, a vague area similar to
a cluster is described. This representation and the described vague area are
illustrated in figure 9.1.

9.1 Rule Generation from Solid Clusters

The principle idea to apply fuzzy clustering in order to derive if-then rules
from data is that each cluster induces a rule by projecting the cluster to the
corresponding coordinate spaces [71, 107, 56]. The projection of a cluster to
the s’th domain is obtained by taking the s’th coordinate of each data point
and assigning to it the membership degree of the original data point to the
cluster, see figure 9.2(a).

In this way a discrete fuzzy set is defined on the s’th coordinate space. To
extend this fuzzy set to the whole s’th domain, a piecewise linear fuzzy set
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(b) Generating a parameterised fuzzy set

Figure 9.2: Generating a parameterised fuzzy set from a solid cluster

can be defined on the basis of these discrete points, an enveloping fuzzy set
or a suitable approximation by a parameterised fuzzy set like a triangular or
trapezoidal membership function can be chosen to simplify the handling of the
resulting rule system [107]. The way to generate a parameterised fuzzy set is
illustrated in figure 9.2(b) for triangular fuzzy sets.

One possibility to generate a trapezoidal fuzzy set is described in [107].
First the convex hull of the discrete fuzzy set is determined before a trapezoidal
fuzzy set estimating the convex set is calculated. The formal calculation is
done as denoted in algorithm 9.1. To calculate the convex hull and thereof
the trapezoidal fuzzy set, the data vectors have to be ordered with respect to
attribute s, the attribute whose fuzzy set corresponding to cluster i has to be
determined. The membership degrees have to be sorted corresponding to the
data vectors.

To obtain a fuzzy rule system of a fuzzy clustering/classification result, one
has to carry out algorithm 9.1 for each cluster i and each domain s separately.
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Algorithm 9.1 (Parameterisation (domain s, cluster i))

Choose()
{

umin ∈ [0, 1[;

κ ∈ R>0 and κ < max
k∈{1,...,n}

{x(s)
k } − min

k∈{1,...,n}
{x(s)

k };

}

Initialise()
{

sort Xw.r.t. attribute s;
sort Uw.r.t. new order of X;

}

MakeConvex()
{

Y := ∅
uactual := umin;
for all k ∈ {1, . . . , n}

if(uik ≥ umin) ∧ (uik ≥ uactual)
{

Y := Y ∪ {xk};
uactual := uik;

}
uactual := umin;
for all k ∈ {n, . . . , 1}

if(uik ≥ umin) ∧ (uik ≥ uactual)
{

Y := Y ∪ {xk};
uactual := uik;

}
}
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Algorithm 9.1 (Parameterisation – continued)

ParameteriseConvexSet()
{

p1 := x
(s)
k where xk ∈ Y and uik = min

l∈{1,...,n}∧xl∈Y
{uil};

p4 := x
(s)
k where xk ∈ Y and uik = max

l∈{1,...,n}∧xl∈Y
{uil};

p2 := p1 +
p4 − p1

3
;

p3 := p1 +
2 · (p4 − p1)

3
;

do
{

for j ∈ {1, . . . , 4}
if ((j > 1) ∧ ((pj − δ) < pj−1))

p
(1)
j := pj−1;

else

p
(1)
j := pj − κ;

if ((j < 4) ∧ ((pj + κ) > pj+1))

p
(2)
j := pj+1;

else

p
(2)
j := pj + κ;

pj := q ∈ {p(1)
j , pj , p

(2)
j }

where the smallest squared error between the convex hull
– described by Y and uik– and the trapezoidal fuzzy set
– described by {p1, p2, p3, p4} – is obtained.

}while(trapezoidal set not satisfying)
}

Sugeno and Yasukawa evaluated for a fixed number of 20 iteration steps
the iteration in procedure ParamteriseConvexSet() of algorithm 9.1. They
selected κ as 5% of the attribute (domain) corresponding to the projected
cluster. The parameters of the trapezoidal fuzzy sets are illustrated in figure
9.3.

Similar to the derivation of trapezoidal fuzzy sets, other parameterised
fuzzy sets e.g. triangular can be estimated. The aim is to let the squared
error between the convex hull of the discrete membership degrees and the
parameterised fuzzy set as small as possible.

Considering the projection of each cluster for each single domain a cluster
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Figure 9.3: Trapezoidal fuzzy set defined by four parameters

induces the rule

if ξ1 is µ1 and . . . and ξri−1 is µri−1 then ξri is µri and . . . and ξro is µro . (9.1)

Here, µl denotes the (extension of the) l’th projection of the considered
cluster. The symbols ξ1, . . . , ξri−1 are input variables and ξri , . . . , ξro are out-
put variables. The attributes {1, . . . , p} of the fuzzy clustering task are ordered
in such a way that po ≥ pi, pi ∈ {1, . . . , p} and po = p. In this way a Mamdani-
type fuzzy controller is defined [71, 107]. For restrictions on max-min rules in
multidimensional classification problems see [69] and [94] for the influence of
different t-norms on the cluster shapes. A number of variants of this principle
were proposed by different authors to solve control, function approximation
and classification problems with fuzzy rules (for a brief overview see [64]).

To derive classification rules where discrete classes appear in the conclu-
sions of the rules only the input variables have to be taken into account to build
the fuzzy sets. Instead of the fuzzy set belonging to the output variable the
discrete class of the data having the highest membership degree to the cluster
under consideration is used as output [72]. Other assignments for the fuzzy
rules output as e.g. the weighted class attribute of the data assigned to the
corresponding cluster are possible. In that way, Mamdani-type classification
rules, see e.g. [87], can be derived similar to the task of function approxi-
mation. Instead of the output variables ξri , . . . , ξro and the corresponding
parameterised fuzzy sets, the class of the rule representing cluster – ci – has
to be determined, see section 4.1.1. This parameter is used as output value
for the fuzzy rule, see equation (9.2).

if ξ1 is µ1 and . . . and ξri−1 is µri−1 then class is ci. (9.2)

For function approximation also the fuzzy rule system first stated by Takagi
and Sugeno [108] is commonly used. They build the fuzzy rules premise in the
same way as for the Mamdani-type fuzzy controller but evaluate the single
rule’s output values with (usually linear) functions depending on the input
variables, see equation (9.3).
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if ξ1 is µ1 and . . . and ξri−1 is µri−1 then (9.3)
ξri = fri(ξ1, . . . , ξri−1) and . . . and ξro = fro(ξ1, . . . , ξri−1).

The function fRq(ξ1, . . . , ξri−1) is often of the following form for each out-
put domain and each fuzzy rule Rq

fRq(ξ1, . . . , ξri−1) = β0 +
ri−1∑
l=1

βl · ξl.

Up to now we have seen how single fuzzy rules can be generated from solid
clustering algorithms and which kind of rules are suited for the results of fuzzy
clustering tasks. To further illustrate the difficulties in stating complete fuzzy
rule systems using fuzzy clustering results, we have first to show how fuzzy
rule systems are evaluated.

If we denote the fuzzy rules by Rq, the overall output value (for one domain)
is evaluated in case of Takagi-Sugeno-type fuzzy controllers due to equation
(9.4).

ξout =

∑
Rq

µRq · fRq(ξ1, . . . , ξri−1)∑
Rq

µRq

(9.4)

Here, µRq is the firing degree of the rule Rq. The firing degree is used to
determine the representativeness of a particular rule for certain input values.
It is calculating considering the membership degrees that single attributes
receive for the corresponding rule’s input fuzzy set. The firing degree is de-
termined using a t-norm over the single membership degrees for all input
attributes/domains, often the minimum is used as t-norm.

In case of Mamdani-type rule systems, the evaluation of a rule system
is illustrated in figure 9.4. As for Takagi-Sugeno-type fuzzy controllers, the
firing degree of a fuzzy rule has to be determined first. Then the fuzzy sets
corresponding to the output values are cut off at the firing degree level. In
this way reduced fuzzy sets are evaluated for each single rule. To combine the
output fuzzy sets, the t-conorm – corresponding to the t-norm used to calculate
the firing degree – has to be evaluated. In case of the minimum as t-norm, the
corresponding t-conorm is the maximum. In this way a new complex output
fuzzy set is build as denoted in figure 9.4. With a defuzzification strategy –
e.g. the centre of gravity or the mean of maxima – the crisp output value is
determined.

The approaches of deriving fuzzy rule systems from clustering results have
to face the problem that the fuzzy clustering algorithm yields a fuzzy partition
of the product space of all data whereas fuzzy if-then rules are usually defined
on the basis of fuzzy partitions of the single domains. This means that in ad-
dition to the loss of information caused by the approximation of the discrete
fuzzy sets the projection of the fuzzy cluster can lead to unusual fuzzy parti-
tions on the single domains and enforces again a loss of information, since the
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Figure 9.4: Mamdani fuzzy rule evaluation

Figure 9.5: Overlaying and overlapping fuzzy sets

original fuzzy cluster cannot be reconstructed from the fuzzy sets appearing
in the if-then rule derived from the cluster, see figure 9.5.

The aim of a fuzzy rule system is easy interpretation but if too many
fuzzy sets are in one partition overlapping and overlaying one another even
the expert has difficulties reading such a description of system behaviour.
Since most cluster algorithms detecting solid clusters where created without
the intention of finding rules, problems in rule generation occur. Often, each
vague area described by a fuzzy cluster leads to one fuzzy rule. In this approach
the fuzzy partitions of the single domains contain one fuzzy set for each of the
clusters. It is not possible to reuse one fuzzy set in other rules than the
rule depending on this cluster. To avoid these drawbacks, the grid clustering
algorithm was designed as a top down approach.

There are other approaches to reduce this loss of information: [70] recom-
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Figure 9.6: Initial fuzzy sets for grid clustering

mends to restrict to diagonal matrices Ci when using the GK, see section 3.2.2,
or GG, see section 3.2.3, for rule induction. In this way, the fuzzy clusters are
forced to be in the form of axis-parallel hyperellipsoids. Since from the projec-
tions of the clusters only the smallest hyperbox containing the corresponding
hyperellipsoid can be reconstructed, the loss of information is kept smaller in
comparison to arbitrary hyperellipsoids. One approach in [107] clusters only
the output data and induces the rules by computing the projections to the in-
put domains of the cylindrical extensions of the fuzzy clusters. Nevertheless,
the fuzzy partitions of the single domains cannot be guaranteed to be in the
form of usual fuzzy partitions defined by experts. For a short overview on the
ability of fuzzy rule-based classifiers to match classification boundaries see e.g.
[82].

9.2 Grid Clustering

In the previous section we have seen that although fuzzy clustering is an im-
portant contribution to data analysis in general, it is not fully accurate for
inducing if-then rules. On the one hand, the shapes of the membership func-
tions tend to be unusual, and on the other hand, fuzzy clustering is designed
for partitions of product spaces and not of single domains that are usually con-
sidered for fuzzy rules. These considerations lead to the following approach
which is also described in [64, 55, 67, 66]. We call this approach grid clus-
tering or shortly Grid. In [100] a technique called Grid-Based data analysis
is presented. The aim of this BANG-Clustering is to cluster large data sets
hierarchically and is not intended for rule generation. Assume a data set
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Figure 9.7: Membership degree evaluation for grid clustering

X = {x1, . . . , xn} ⊂ Rp is given. We are looking for fuzzy partitions on the
single domains consisting of triangular membership functions with the restric-
tion that for each domain at most two supports of different fuzzy sets have a
non-empty intersection and the sum of the membership degrees is one at any
point of the domain, see figure 9.6.

In this case we have to determine a suitable grid in the multidimensional
space as is already illustrated in figure 9.6.

The membership degree of a data point to a cluster represented by a grid
point is defined as the product of the membership degrees of the triangular
membership functions whose tips are the projections of the grid point, see
figure 9.7. It is possible to choose any other t-norm than the product to de-
termine the overall membership degree of one datum to one particular cluster.

Assuming the number cs of triangular membership functions as predefined
for each domain s ∈ {1, . . . , p} we start the fuzzy clustering procedure with
equidistant triangular membership functions on the domains. In order to
rearrange the grid, we compute the projections of the data and the membership
degrees of these projections to the triangular membership functions. Then the
triangular membership functions are updated by computing new tips as the
cluster centres, i.e. as

v
(s)
i =

∑n
k=1 um

iks · x
(s)
k∑n

k=1 um
iks

(9.5)

where v
(s)
i symbolises the actualised tip and x

(s)
k denotes the s’th projection

of datum xk. uiks is the membership degree of datum xk to the triangular fuzzy
set with its tip at v̂

(s)
i , the tip of the last iteration step.

To handle the fuzzy sets at the left and right boundary in each dimension
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we extend the triangular membership function in the direction of the corre-
sponding boundary in such a way that the data points at the very boundary
obtain a membership degree of 0.5, see figure 9.6.

The algorithm scheme for the grid clustering algorithm is shown in algo-
rithm 9.2. Note that the initialisation procedure guarantees the prototype
coordinates for one dimension to be ordered. In the following, cs denotes the
number of grid coordinates in domain s.

Algorithm 9.2 (Grid Clustering)

Choose()
{

m ∈ R>1;
for all s ∈ {1, . . . , p}

cs ∈ N≥2;
ε > 0;

}

Initialise()
{

for all s ∈ {1, . . . , p}
{

x
(s)
min := min

xk∈X
{x(s)

k };

x(s)
max := max

xk∈X
{x(s)

k };

v
(s)
1 := x

(s)
min +

x
(s)
max − x

(s)
min

2 · cs
;

for all i ∈ {2, . . . , cs}

v
(s)
i := v

(s)
i−1 +

x
(s)
max − x

(s)
min

cs
;

v
(s)
0 := x

(s)
min −

x
(s)
max − x

(s)
min

2 · cs
;

v
(s)
i+1 := x(s)

max +
x

(s)
max − x

(s)
min

2 · cs
;

}
CalculateMembershipDegrees();

}
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Algorithm 9.2 (Grid Clustering – continued)

Neighbour(v(s)
i )

{

result := {x(s)
k |(v(s)

i > x
(s)
k > v

(s)
i−1) ∨ (v(s)

i < x
(s)
k < v

(s)
i+1)};

}

CalculateMembershipDegrees()
{

for all k ∈ {1, . . . , n}, s ∈ {1, . . . , p}, i ∈ {1, . . . , cs}
{

if x
(s)
k ∈ Neighbour(v(s)

i )
{

if x
(s)
k ∈ Neighbour(v(s)

i−1)

u
(new)
iks := 1−

|v(s)
i − x

(s)
k |

|v(s)
i − vi−1k(s)|

;

else

u
(new)
iks := 1−

|v(s)
i − x

(s)
k |

|v(s)
i+1 − vik(s)|

;

}
else

u
(new)
iks := 0;

}
}

CaculatePartition()
{

do
{

for all k ∈ {1, . . . , n}, s ∈ {1, . . . , p}, i ∈ {1, . . . , cs}

u
(old)
iks := u

(new)
iks ;

CalculateMembershipDegrees();
for all s ∈ {1, . . . , p}, i ∈ {1, . . . , cs}

v
(s)
i :=

∑n
k=1(u

(new)
iks )m · x(s)

k∑n
k=1(u

(new)
iks )m

;

}while

((
n∑

k=1

p∑
s=1

cs∑
i=1

|u(new)
iks − u

(old)
iks |

)
< ε

)
;

}
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Figure 9.8: An example of grid clustering

Figure 9.8 shows a result obtained by this grid clustering technique. Each
data point is connected to the prototype (grid point) whose associated cluster
assigns the greatest membership degree to the data point. (In this case, the
membership degree of a 3-dimensional data point has been computed by taking
the product of the membership degrees of its coordinates to the corresponding
fuzzy sets. Of course, another t-norm than the product is also possible.)

This grid clustering method is of course not an objective function based
algorithm, but provides clusters with cluster centres on the grid that are very
well suited for rule induction for classification tasks as well as for function
approximation. It should be noted that empty clusters, i.e. a cluster corre-
sponding to a grid point whose entourage does not contain any data points,
should be neglected when the rules are stated. Only non-empty clusters are
allowed to induce a fuzzy rule. In opposition to the usual probabilistic, pos-
sibilistic, or noise clustering algorithm, clusters do not have an infinite range,
thus data points that are covered by other clusters far away from one clus-
ter do not have any influence on this cluster - another advantage of this grid
clustering algorithm. Although the number of grid points was fixed for the
example, it is possible to determine the number automatically on the basis of
suitable validity measures as they are described in section 4 or [15, 42, 51, 107].

The number of grid points is determined applying the chosen validity mea-
sure to the whole classification and optimising the number of grid points
dimension-wise. The unsupervised clustering algorithm used for the grid clus-
tering algorithm is denoted in algorithm 9.3. In the shown way, the optimal
number of coordinates for each domain is heuristically estimated. For exact
calculation of the optimal number of clusters, the grid clustering algorithm
would have to be evaluated for all possible combinations of grid coordinates.
This would lead to

∏p
s=1(c

max
s − cmin

s ) times of starting the grid clustering al-
gorithm and validity evaluation. Here, cmax

s (cmin
s ) is the chosen upper (lower)

bound for the number of grid coordinates in domain s. The shown heuristic
method lead to satisfying results in several experiments.
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Algorithm 9.3 (Unsupervised Grid Clustering)

Choose()
{
AGrid :: Choose();

for all s ∈ {1, . . . , p} : cmax
s ∈ N≥2 where

p∏
s=1

cmax
s < n

validity measure V∗;
}

Initialise()
{

c := 1;
for all s ∈ {1, . . . , p}
{

cs ∈ {2, . . . , cmax
s − 1};

c := c · cs; cbest
s := cs;

}
cbest := c;
AGrid :: Initialise();

}

Calculate()
{

for 2 times, for all s ∈ {1, . . . , p}
do
{
AGrid :: CalculatePartition();
V∗(c);
if V∗(c) better than V∗(cbest)
{

cbest := c; cbest
s := cs;

c :=
c

cs
· (cs + 1); cs := cs + 1;

}
}while((cs ≤ cmax

s ) ∧ (c ≤ cmax));

c :=
c

cs
· cbest

s ;

cs := cbest
s ;

}
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In case of classification tasks a possible validity measure is the error rate,
the percentage of wrong classified data. Otherwise the further described mea-
sures from section 4 can be used.

As described in section 4.1.1, an assignment of the data set to predefined
classes is given and only the input variables have to be taken into account for
the clustering algorithm in case of classification tasks. Each cluster is assigned
to the class of the datum with the highest membership degree to this cluster.
It is possible that more than one cluster belongs to the same class.

In most cases the projections of the clusters lead to a lot of similar over-
lapping fuzzy sets for each input variable. For each cluster p fuzzy sets are
constructed, if p is the number of dimensions of the data. The grid cluster-
ing algorithm avoids this problem that often leads to non-interpretable fuzzy
rules. During the classification this algorithm assumes a fuzzy partition of the
variables and constructs clusters depending on the fuzzy partitions. So only
a few fuzzy sets are needed for the variables and are used in more than one
fuzzy rule. Although FCM, GK, or GG usually need less clusters to satisfy the
validity criterion, the problem with a high number of fuzzy sets for each single
partition still remains. This will lead to difficulties in interpreting the result-
ing fuzzy rules. The grid clustering algorithm helps to generate rule systems
that are easier to understand and interpret by experts, although this method
relies not on an objective function.





Chapter 10

Transfer Passenger Analysis

To know the amount of transfer passengers in an aircraft in time would enable
the air traffic controller to adapt the sequence of arriving aircraft accordingly.
This way, a belated flight with a high amount of passengers that have to reach
a connecting flight can be preferred for landing. Real-time assistant systems
take a long time to be developed and introduced at airports. Additionally,
personal passenger data is confidential available for the airline but usually not
for air traffic controllers. Therefore, developing a generalised rule system to
describe and identify transfer passenger amounts under certain conditions can
be used in combination with simulation models to show the effects of changes
in the airports landside on the one hand and enable airside simulations to
evaluate the performance of passenger adapted sequencing techniques on the
other.

The aim of this work is to illustrate how a rule set can be developed
that describes the passenger flow (amount of departing or arriving transfer
passengers) in dependence on the flight time, flight range (long-haul, medium-
haul, short-haul), and passenger amount. Such a rule set will be used in further
studies to simulate the effect of changes in the airports landside or airside
architecture or in the landside traffic connections of the airport. The system
helps also to identify the interface between land- and airside if additional
information – e.g. total number of passengers in relation to transfer passengers
– is available. The aim is to combine a rule system with a passenger flow
model developed in [91]. The analysis described in this chapter is based on
data recorded at Frankfurt airport in 1999. In this work, the applicability
of fuzzy clustering techniques is shown. For confidentially reasons we restrict
ourselves for analysis purposes to a small amount of data and do not include
the original data material in this work.

10.1 Analysis of Flight Information

The transfer passenger amount is especially interesting for a combination of
long- and short-haul flights at one airport. Long-distance flights usually start
from so-called hub airports. Airlines use a few airports for their long-haul
flights that are operated by large aircraft carrying a high amount of passengers,
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e.g. Airbus 340 or Boeing 747. Complementing spoke airports are usually used
to take passengers to their connecting flights. For additional information on
hub and spoke systems see e.g. [6] or [38].

Frankfurt airport is one of two hub airports used by Lufthansa. Addi-
tionally, Lufthansa is the only carrier using Frankfurt as a main hub airport.
For the analysis we restrict ourselves to Lufthansa passenger flights depart-
ing (resp. arriving) on weekends in July at Frankfurt airport. For analysis
purposes we use the maximal amount of passengers that can be carried by
a certain aircraft type. The actual amount of passengers is confidential air-
line data. For booked up flights both amounts are the same. Usually, flights
are nearly booked up during summer. After a plausibility check of the avail-
able data and deleting implausible data sets, e.g. flights where the number of
transfer passengers is higher than the total number of passengers, an amount
of about 900 for each, departures and arrivals, remains for analysis purposes.
Errors in the available data are common because part of the data is recorded
manually. Typing errors are unavoidable.

For all flights the aircraft type is available. From the literature, e.g. [74],
[96], or [86], we derive the maximum number of passengers that can be seated
in a certain type of aircraft. The values used here are based on the seating
configuration usually used by Lufthansa.

In a pre-processing step the categorical data has to be transformed into
real-valued data. To meet the mathematical needs of fuzzy clustering tech-
niques, the distance of the resulting attribute values should reflect the simi-
larity between the categorical values.

A categorical attribute used here is the distance information for flights.
Usually the destination or origin airport is known. At Frankfurt airport all
destinations and origins are separated in three categories: short-haul, medium-
haul, and long-haul. The definition of this categories as described in [85] is
used to transfer the corresponding data into real values, see table 10.1.

Table 10.1: Distance Classification
Code Category Distance [NM]

1 short-haul < 1000
2 medium-haul < 3000
3 long-haul ≥ 3000

To simplify the transformation from resulting real values after a fuzzy clas-
sification has been calculated, the departure (arrival) time given in hh : mm
is transformed to real values in the following way: deptime = hh + mm

60 .
The result is the percentage of transfer passengers. This attribute is cal-

culated from the actual amount of passengers in an aircraft and the number
of transfer passengers, given in the sample data. This way the direct use of
confidential passenger information is avoided.

To use a fuzzy clustering algorithm based on a Euclidean distance measure,
the attribute ranges have to be comparable. In the test data we have four
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attributes with the following ranges: maximal amount of passengers – 36 to 410
(103 to 410 for arrivals), range of destination or origin – 1 to 3, departure time
– 6:45 a.m. to 10:40 p.m., i.e. 6.75 to 22.67, (arrival time 5:20 a.m. to 11:30
p.m., i.e. 5.33 to 23.5), and % transfer passengers – 0 to 100. The attributes
are transformed into more comparable ranges in the sense of the Euclidean
distance. The maximal amount of passengers is divided by 10 leading to values
between 3.6 and 41 (resp. 10.3 to 41). The departure time is transformed
into real values as described above, the destination (resp. origin) range is
transformed to the values 10, 20, and 30. The percentage of transfer passengers
is divided by 3 leading to values in the range 0.0 to 33.33. Examples of the
resulting departure dataset are shown in table 10.2.

Table 10.2: Transfer Passenger Dataset for Departures

Max Amount of Pax Range of Dest. Dep. Time % Transfer Pax
18.2 30 13.67 21.10
12.3 20 17.67 30.11
. . . . . . . . . . . .

39.5 30 13.42 28.63
22.2 10 13.42 9.80
3.6 10 16.17 22.99

10.2 Fuzzy Clustering Results

FCM with probabilistic as well as outlier basic objective functions, see chapter
3, and the size adaptive FCM, see section 6.1, have been chosen as cluster-
ing techniques for this example. A short test with the axes-parallel GK, see
section 3.2.2, has shown, that the resulting clusters predominantly separate
the categorical data of the destination or origin range. The resulting cluster
shapes have the form of long ellipsoidal structures. Categorical attributes are
a problem for form-adaptable clustering techniques because the distance of
non-identical neighbouring data points is relatively large compared to other
attributes. In case of FCM, the Euclidean distance is used. Here the distance
is not adapted for each attribute as in case of the axes-parallel GK. Non-
axes-parallel form adaptable techniques have not been tested because the goal
of this task is to generate a fuzzy rule system. Generating fuzzy rules from
solid fuzzy clusters leads to a loss of information that increases dramatically
if non-axes-parallel techniques are chosen, see section 9.1.

The outlier basic function has been chosen in order to enable the algorithm
to cope with rare combinations of attributes. The combination of very large
aircraft and very few transfer passengers might occur but will happen only
for special occasions. The outlier constraint parameter ω was set to 1 and as
outlier exponent t = 0.5 was chosen. The size adaptation of single clusters can
help to reduce the number of necessary rules. Each cluster leads to one fuzzy
rule. More specialised small clusters might be necessary for reliable results.
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In case of the FCM as described in section 3.2.1, all clusters have the same
diameter or size. We use the size-adaptable FCM as developed in 6.1 in order
to be able to handle specialised small clusters together with larger clusters that
would else be split into different clusters. The parameters additionally needed
for FCM-sized have been set as follows: size exponent parameter l = 0.5 and
size constraint τ = 1. As fuzzifier m = 1.8 was selected in all cases.

Figure 10.1: Validity for departure clustering results with FCM

A measure related to the separation measure described in section 4.1.4 has
been chosen as validity criterion:

∑n
k=1

∑c
i=1 um

ik · (D∗(vi, xk) − D∗(vi, x�)).
Here, x� is a vector consisting of the average data values for each attribute.
This criterion takes the membership degrees as well as the distance measure
into account. This way the size influence factor used for the size-adaptable
FCM is taken into account. The separation measure values distances inside
the clusters – weighted with the membership degrees – in dependence on the
minimal distance between two cluster centres and the number of clusters. Va-
lidity criterions based on the form-describing covariance matrix have been
especially developed for algorithms as the GK and GG using this matrix for
cluster calculations. To use these measures for FCM, the covariance matrix
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Figure 10.2: Validity for arrival clustering results with FCM

would have to be evaluated for validity purposes only. The resulting sepa-
ration for departures is shown in figure 10.1 for FCM and FCM-sized based
on probabilistic as well as outlier basic clustering. The validity for arrivals
is illustrated in figure 10.2. Each cluster partition has been calculated five
times for the four combinations FCM probabilistic, FCM outlier, FCM-sized
probabilistic, and FCM-sized outlier. In figures 10.1 and 10.2 the maximum,
mean, and minimum values of the separation are shown for 5 to 30 clusters.

In general the deviation between the maximum, mean, and minimum sep-
aration values is smaller in case of the probabilistic FCM than for the outlier
FCM. In the beginning, from 2 to about 9 clusters, the separation measures
decreases very strong. The tendency is the same for more clusters but local
minima of the validity function can be identified. Most validity measures tend
to depend on the number of clusters, although the cluster number is considered
in the calculation instruction of the criterion. In the separation measure the
number of clusters is taken into account as divisor in the corresponding equa-
tion. Therefore, the separation decreases with increasing number of clusters.
Local optima of the validity function indicate good results. We look especially
for cluster numbers with a relatively high deviation of the validity criterion
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Table 10.3: Transfer passenger scale values for departure data

cluster no. scale value
0 0.0016
1 0.0036
2 0.0069
3 0.0104
4 0.0143
5 0.0200
6 0.0247
7 0.0302
8 0.0385
9 0.0459
10 0.0536
11 0.0636
12 0.0767
13 0.0894
14 0.1048
15 0.1224
16 0.1386
17 0.1549

from criterion results of neighbouring cluster numbers. Here we choose the
results for FCM-sized in combination with the outlier basic objective function
and 18 clusters for departures and 13 clusters for arrivals. In table 10.3 (resp.
10.4) the scale values for FCM-sized based on outlier clustering for departure
(resp. arrival) data and 18 (resp. 13) clusters are shown. We can see that
the scales for the single clusters are in a range between 0.0016 and 0.1549 for
departures and 0.0033 to 0.1998 for arrivals. The first clusters have a smaller
extension than the last ones, since a cluster’s extension corresponds to that
cluster’s scale value. The resulting fuzzy sets reflect the extensions of the
clusters in the single domains.

Tables 10.5 and 10.6 show the average maximal membership degrees for a
partition of the passenger transfer data into 18 (resp. 13) clusters for both,
FCM-sized based on probabilistic and outlier clustering. Considering the mem-
bership degrees of one data vector to all clusters the maximal membership
degree defines to which cluster a data vector is associated. As we see in tables
10.5 and 10.6 the average maximal degree for all data vectors is about the
same for probabilistic as well as possibilistic clustering. For outlier clustering
we have a higher amount of data that has a maximal membership degree of
less than 0.15 for departures, resp. 0.2 for arrivals. Data vectors with very
small maximal membership degrees can be considered as outliers.

The weights for FCM sized based on outlier clustering are in a range be-
tween 0.000005 as minimal weight and 0.0045 as maximal weight for departures
and 0.000014 as minimal and 0.0034 as maximal weight for arrivals. Because
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Table 10.4: Transfer passenger scale values for arrival data

cluster no. scale value
0 0.0033
1 0.0074
2 0.0156
3 0.0241
4 0.0350
5 0.0499
6 0.0644
7 0.0776
8 0.0951
9 0.1204
10 0.1389
11 0.1686
12 0.1998

Table 10.5: Average maximal membership degree and amount of data for
different maximal membership degrees – departure data and 18 clusters

FCM-sized probabilistic FCM-sized outlier
Avg. max. memb. degree 0.55 0.53

data with max degree > 0.75 249 219
data with max degree > 0.5 485 439
data with max degree > 0.25 752 745
data with max degree < 0.15 8 13

1 was chosen for τ – the outlier constraint parameter – the sum of all data
weights gives 1 as result. Therefore, the single weights for each of the 888
data vectors (resp. 909 for arrivals) is a small real value. The difference be-
tween the minimal and maximal weight indicate that weighting occurred for
our data set. If all data vectors are assigned the same weight, they would
receive a weight value of about 0.001. Here, about 550 data vectors of both
data sets – arrivals and departures – have a weight smaller than 0.001 and
about 15 data vectors are assigned a weight smaller than 0.0001. Again, data
vectors with such small weights can be considered as outliers.

10.3 Fuzzy Rule Generation

Fuzzy sets for the single partitions are derived from the clustering result with
FCM-sized based on the outlier objective function for 18 (departures) resp. 13
(arrivals) clusters. Additionally, the resulting fuzzy rules for FCM based on
outlier clustering for 22 (departures) resp. 15 (arrivals) clusters are developed.
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Table 10.6: Average maximal membership degree and amount of data for
different maximal membership degrees – arrival data and 13 clusters

FCM-sized probabilistic FCM-sized outlier
Avg. max. memb. degree 0.61 0.63

data with max degree > 0.75 321 349
data with max degree > 0.5 583 575
data with max degree > 0.25 855 843
data with max degree < 0.2 4 20

First the membership degrees for one cluster are projected onto the single
domains. Then the convex hull over the membership degrees is build for each
domain. In the last step, a trapezoidal fuzzy set approximating the convex hull
is calculated as described in section 9.1. The resulting fuzzy sets are illustrated
in figure 10.3 for FCM sized based on outlier clustering and the departure data
set. In figure 10.4 the resulting fuzzy sets for the same clustering technique
applied to arrival data and 13 clusters is shown. Since each fuzzy cluster leads
to one fuzzy rule, we obtain 18 fuzzy sets for each attribute for departures,
resp. 13 sets for arrivals – one for each rule.

This form of rule generation leads to a rule base with overlapping and
overlaying fuzzy sets for the single attributes. Such a rule base is extremely
difficult to interpret. Therefore we use the attempt proposed in [103] to sim-
plify the extracted rule base. In an iterative procedure, similar fuzzy sets for
each attribute are identified, combined, and the rule base is updated. After-
wards, fuzzy sets similar to the universal fuzzy set are neglected from the rule
base. If all data points of the universe of discourse have the membership de-
gree one to a fuzzy set this is called universal fuzzy set. In the last step of rule
reduction rules with the same input sets are combined. Contradictory rules
might occur in this step. If contradictory rules occur, the corresponding data
has to be analysed in more detail. One reason might be additional influence
factors that have not been taken into account. However, in our transfer pas-
senger example we did not have to cope with contradictory rules. As similarity
measure for fuzzy sets we used a measure based on the set-theoretic operations
of intersection and union, see equation (10.1).

Sim(µA, µB) =
∑

x Min(µA(x), µB(x))∑
x Max(µA(x), µB(x))

(10.1)

Here, µA and µB are the fuzzy sets for which the similarity has to be
determined. x denotes the corresponding attribute values of the sample data.
Two fuzzy sets are combined if Sim(µA, µB) ≥ 0.5. A fuzzy set is identified
as universal fuzzy set µuniversal if Sim(µA, µuniversal) ≥ 0.8.

The resulting fuzzy sets for the single attributes are illustrated in figures
10.5 for departures and 10.6 for arrivals. Tables 10.7 and 10.8 show the re-
sulting fuzzy rule bases. Especially for the attributes departure resp. arrival
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time and % transfer passenger the number of fuzzy sets has been reduced to
about a third of the original fuzzy sets. Also for the other two attributes in
our example only about half the number of fuzzy sets remains. The separation
of the input and output domains into fuzzy sets after simplification allows an
interpretation of the rule base that can be discussed with experts.

Table 10.7: Fuzzy rules for departure data and FCM sized outlier – combined
fuzzy sets – for corresponding fuzzy sets see fig. 10.5

Rule Max. no. of Pax Destination Departure Time % Transfer Pax
1 Pax Max 1 Range 1 Time 1 Transfer Pax 1
2 Pax Max 2 Range 1 Time 2 Transfer Pax 2
3 Pax Max 3 Range 1 Time 3 Transfer Pax 3
4 Pax Max 4 Range 1 Time 4 Transfer Pax 4
5 Pax Max 5 Range 5 Time 1 Transfer Pax 5
6 Pax Max 6 Range 1 Time 3 Transfer Pax 4
7 Pax Max 7 Range 7 Time 5 Transfer Pax 4
8 Pax Max 8 Range 8 Time 5 Transfer Pax 6
9 Pax Max 5 Range 9 Time 6 Transfer Pax 5
10 Pax Max 5 Range 5 Time 6 Transfer Pax 7
11 Pax Max 9 Range 7 Time 6 Transfer Pax 4
12 Pa Max 10 Range 7 Time 5 Transfer Pax 4
13 Pax Max 5 Range 11 Time 6 Transfer Pax 4
14 Pax Max 5 Range 11 Time 5 Transfer Pax 4
15 Pax Max 5 Range 8 Time 5 Transfer Pax 4
16 Pax Max 5 Range 11 Time 5 Transfer Pax 6
17 Pax Max 5 Range 8 Time 6 Transfer Pax 4
18 Pax Max 5 Range 11 Time 6 Transfer Pax 5

Let us give an explanation how the rule base for departures generated
from FCM-sized clustering based on the outlier objective function can be in-
terpreted:

• Rules 1 and 5 can be interpreted as follows: Aircraft with a relatively
small number of maximal passengers (80 to 200), a short- to medium-
haul destination, and departing late at night (about 9.00 p.m.) usually
have a high amount (about 80 to 90%) of transfer passengers.

• Rules 2 tells us, that medium-haul flights with relatively small aircraft
(about 150) starting about noon carry a large number of passengers who
arrived by plane in Frankfurt (about 70%).

• About 50 to 80% transfer passengers are in smaller aircraft (about 120
passengers) used for medium-haul flights starting about noon as we can
see in rules 3 and 6.

• Small to medium size aircraft with a destination in short to medium
and large aircraft with medium- or long-haul distance departing in the
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Table 10.8: Fuzzy rules for arrival data and FCM sized outlier – combined
fuzzy sets – for corresponding fuzzy sets see fig. 10.6

Rule Max. no. of Pax Origin Arrival Time % Transfer Pax
1 Pax Max 1 Range 1 Time 1 Transfer Pax 1
2 Pax Max 2 Range 2 Time 2 Transfer Pax 2
3 Pax Max 3 Range 3 Time 2 Transfer Pax 3
4 Pax Max 4 Range 4 Time 3 Transfer Pax 4
5 Pax Max 5 Range 3 Time 2 Transfer Pax 3
6 Pax Max 5 Range 3 Time 2 Transfer Pax 4
7 Pax Max 4 Range 5 Time 4 Transfer Pax 4
8 Pax Max 6 Range 6 Time 4 Transfer Pax 4
9 Pax Max 5 Range 3 Time 2 Transfer Pax 5
10 Pax Max 5 Range 3 Time 2 Transfer Pax 4
11 Pax Max 5 Range 3 Time 2 Transfer Pax 6
12 Pax Max 5 Range 7 Time 4 Transfer Pax 4
13 Pax Max 5 Range 8 Time 4 Transfer Pax 4

afternoon carry about 50 to 80% transfer passengers, see rules 9, 10, 11,
13, 17, and 18.

• An amount of 50 to 80% transfer passengers is carried in aircraft with
150 to 200 passengers departing in the morning hours to a medium-haul
destination, see rule 4.

In general we see that all rules with result Transfer Pax 4 are relatively
indifferent. In this case additional attributes might be of interest as e.g. a more
detailed separation of the destinations. The last 6 rules with Pax Max 5 in
the premise result from the clusters with larger scale values. The less specified
fuzzy sets corresponding to these rules reflect the greater cluster extension
indicated by the scale values.

Similar to the departure rule base the arrival rule base can be interpreted
as follows:

• Rule 1 denotes that relatively large aircraft (about 250 passengers) ar-
riving from a long-haul origin in the morning carry a relatively high
amount of transfer passengers (about 70%).

• Few transfer passengers arrive by small aircraft from short- to medium-
haul origins in the afternoon, see rule 2.

• Large to very large aircraft arriving in the afternoon bring a relatively
large amount of transfer passengers to the airport independent of the
origin’s distance, see rules 3 and 4.

• Aircraft arriving in the early morning hours carry a large number of
transfer passengers. From rules 7, 8, 12, and 13 we see that this is
independent of the aircraft size and the origins distance.
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Rules 5, 6, and 9 to 11 have the same fuzzy sets in their premises. The
resulting fuzzy sets altogether show the indifference of these rules. To separate
the amount of transfer passengers in these cases, additional attributes are
necessary. Again, the more indifferent rules 9 to 11 have a relatively large
extension, see table 10.4.

To estimate the influence of size adaptation in fuzzy clustering, FCM based
on outlier clustering without size adaptation has been carried out for 22 (de-
partures) and 15 (arrivals) clusters. These cluster numbers reflect local minima
in the validity curves in figures 10.1 and 10.2 for FCM based on the outlier ob-
jective function. The single clusters in one partition have the same extension.
Therefore, a cluster previously representing a huge multi-dimensional range
of sample data might now – without size adaptation – be split into separate
clusters. This explains that local optima occur for FCM for a larger cluster
number than for FCM-sized based on outlier clustering as well as probabilistic
clustering.

Figures 10.7 and 10.8 show the resulting fuzzy sets for FCM outlier and the
departure resp. arrival dataset. Again, rule generation leads to overlapping
fuzzy sets that are extremely difficult to interpret. The approach described
above has been used to reduce the rule bases. Resulting fuzzy sets for the single
attributes are illustrated in figures 10.9 for departures and 10.10 for arrivals.
Tables 10.9 and 10.10 show the resulting fuzzy rule bases. For the attribute
departure resp. arrival time the number of fuzzy sets has been reduced to
about a fourth of the original fuzzy sets. Also for the other three attributes in
the departure example only about a third of the number of fuzzy sets remains.
The amount of fuzzy sets for the arrival example is reduced to about half of the
fuzzy sets. Again, the simplified separation of the input and output domains
into fuzzy sets gives us an interpretable rule base that can be discussed with
experts.

Let us give a few examples for departure rule base generated from fuzzy
clustering based on the Euclidean distance and the outlier objective function
(table 10.9):

• Rules 2, 7, 18, and 19 tell us, that relatively small aircraft with short- to
medium-haul destination departing in the late afternoon or night carry
a relatively high amount of transfer passengers.

• Small aircraft departing around noon to a medium-haul destination have
about 40 to 80% transfer passengers, see rules 1 and 22.

• In contrast, small aircraft departing around noon to a short-haul desti-
nation carry only about 0 to 60% transfer passengers, see rules 15 and
16.

Equivalently, the arrival rule base can be interpreted as follows:

• Rules 2, 3, 4, 6, 8, and 9 denote that aircraft arriving the early morning
carry a relatively high amount of transfer passengers (about 60 to 90%).
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Table 10.9: Fuzzy rules for departure data and FCM outlier – combined fuzzy
sets – for corresponding fuzzy sets see fig. 10.9

Rule Max. no. of Pax Destination Departure Time % Transfer Pax
1 Max Pax 1 Range 1 Time 1 Transfer Pax 1
2 Max Pax 1 Range 1 Time 2 Transfer Pax 2
3 Max Pax 2 Range 2 Time 1 Transfer Pax 1
4 Max Pax 1 Range 1 Time 3 Transfer Pax 3
5 Max Pax 1 Range 3 Time 3 Transfer Pax 4
6 Max Pax 3 Range 3 Time 1 Transfer Pax 1
7 Max Pax 1 Range 4 Time 4 Transfer Pax 1
8 Max Pax 4 Range 3 Time 3 Transfer Pax 1
9 Max Pax 1 Range 5 Time 3 Transfer Pax 1
10 Max Pax 5 Range 6 Time 1 Transfer Pax 1
11 Max Pax 6 Range 2 Time 4 Transfer Pax 1
12 Max Pax 1 Range 4 Time 3 Transfer Pax 1
13 Max Pax 7 Range 5 Time 4 Transfer Pax 1
14 Max Pax 2 Range 2 Time 5 Transfer Pax 1
15 Max Pax 1 Range 7 Time 1 Transfer Pax 5
16 Max Pax 1 Range 4 Time 1 Transfer Pax 3
17 Max Pax 1 Range 5 Time 4 Transfer Pax 3
18 Max Pax 1 Range 7 Time 2 Transfer Pax 2
19 Max Pax 1 Range 4 Time 2 Transfer Pax 1
20 Max Pax 8 Range 5 Time 4 Transfer Pax 3
21 Max Pax 1 Range 1 Time 4 Transfer Pax 1
22 Max Pax 1 Range 5 Time 1 Transfer Pax 3

• Very large aircraft arriving in the afternoon from a medium- to long-
haul origin bring a relatively large amount of transfer passengers to the
airport, see rule 13.

The interpretation of the more precise rules coincides in both examples
(departure and arrival data) for both clustering techniques (FCM based on
outlier clustering with and without size adaptation) and reflects our expert
knowledge. Some of the identified rules reflect the description in air traf-
fic management literature, see e.g. [6] or [7]. They are typical for the way
Lufthansa and other carriers use slots, i.e. time intervals assigned to airlines
for departures and arrivals to perform certain flights.

A crosscheck of the resulting rules with data not used for rule generation,
e.g. flight data for August, shows the performance of the extracted rules. The
derived rules – and first of all the more precise rules – are a proper description
of August flight data not only for weekends. Additionally, the rule base meets
our needs for the macroscopic passenger movement model in general, see [4]
and [12]. We will extend our analysis for additional attributes, e.g. terminal
information and more precise destination resp. origin information, and study
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Table 10.10: Fuzzy rules for arrival data and FCM outlier – combined fuzzy
sets – for corresponding fuzzy sets see fig. 10.10

Rule Max. no. of Pax Origin Arrival Time % Transfer Pax
1 Pax Max 1 Range 1 Time 1 Transfer Pax 1
2 Pax Max 2 Range 2 Time 2 Transfer Pax 1
3 Pax Max 3 Range 3 Time 2 Transfer Pax 1
4 Pax Max 1 Range 1 Time 2 Transfer Pax 2
5 Pax Max 3 Range 2 Time 3 Transfer Pax 3
6 Pax Max 4 Range 4 Time 2 Transfer Pax 1
7 Pax Max 3 Range 1 Time 3 Transfer Pax 1
8 Pax Max 5 Range 5 Time 2 Transfer Pax 1
9 Pax Max 3 Range 1 Time 2 Transfer Pax 2
10 Pax Max 2 Range 1 Time 3 Transfer Pax 4
11 Pax Max 3 Range 6 Time 3 Transfer Pax 5
12 Pax Max 3 Range 1 Time 3 Transfer Pax 3
13 Pax Max 4 Range 5 Time 1 Transfer Pax 1
14 Pax Max 3 Range 1 Time 3 Transfer Pax 6
15 Pax Max 3 Range 1 Time 3 Transfer Pax 1

the less specific clusters in more detail in future analysis. This way a more
precise rule base can be developed.

The grid clustering algorithm described in section 9.2 and [53] might be
seen as an alternative to FCM used in this example. This algorithm is designed
in order to derive a rule base where all intersections of fuzzy sets are at a
membership degree of 0.5. The numerical complexity of the grid clustering
algorithm increases exponentially with an increasing number of fuzzy sets for
the single domains. A partition in fuzzy sets similar to the results obtained
for arrival data and FCM-sized based on the outlier objective function would
result in a partition into 1152 clusters – 6 · 8 · 4 · 6 attributes for the single
domains. During rule generation, the ”clusters” describing areas in the multi-
dimensional universe of discourse without any sample data can be neglected
but this does not reduce the computational effort during clustering. If only
a few attributes are considered and only a few fuzzy sets are needed for each
domain, grid clustering is a promising technique.
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Figure 10.3: Generated fuzzy rules for departure data and FCM sized outlier
with 18 clusters
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Figure 10.4: Generated fuzzy rules for arrival data and FCM sized outlier with
13 clusters
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Figure 10.5: Combined and simplified fuzzy rule sets for departure data and
FCM sized outlier with 18 clusters
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Figure 10.6: Combined and simplified fuzzy rule sets for arrival data and FCM
sized outlier with 13 clusters
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Figure 10.7: Generated fuzzy rules for departure data and FCM outlier with
22 clusters
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Figure 10.8: Generated fuzzy rules for arrival data and FCM outlier with 15
clusters
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Figure 10.9: Combined and simplified fuzzy rule sets for departure data and
FCM outlier with 22 clusters
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Figure 10.10: Combined and simplified fuzzy rule sets for arrival data and
FCM outlier with 15 clusters





Chapter 11

Evolutionary
Algorithm-Based Fuzzy
Clustering

In the former chapters we have seen that objective function based fuzzy clus-
tering aims at finding a fuzzy partition by optimising a function evaluating a
(fuzzy) assignment of a given data set to clusters, that are characterised by a
set of parameters, the prototypes. The iterative optimisation technique usually
requires the objective function not only to be differentiable, but prefers also an
analytical solution for the equations of necessary conditions for local optima.
Evolutionary algorithms are known to be an alternative robust optimisation
technique which are applicable to quite general forms of objective functions.
In this chapter the possibility of making use of evolutionary algorithms in
fuzzy clustering is investigated. Experiments and theoretical investigations
show that the application of evolutionary algorithms to shell clustering, where
the clusters are in the form of geometric contours, is not very promising due
to the shape of the objective function, whereas they can be helpful in finding
solid clusters that are not smooth, for example rectangles or cubes. These
types of clusters play an important role for fuzzy rule extraction from data,
as we have seen in chapter 9.

In section 3.1 basic concepts for objective function based fuzzy clustering
have been introduced. To derive an alternating optimisation scheme, the first
derivative of the objective function with respect to the cluster parameters
has to be computed. The resulting necessary conditions for the objective
function to have a minimum are then used in an iteration procedure and
define a clustering algorithm. On the one hand, this requires the objective
function to be differentiable and on the other hand, the iteration procedure
can be computationally efficient only if the derived conditions lead to explicit
equations for the cluster parameters.

Unfortunately, in many cases the restrictions that are enforced on the
cluster parameters to be able to derive the iteration procedure are too narrow
and exclude a lot of interesting possibilities. Thus it is desirable to have an
alternative optimisation technique that allows for more freedom in the choice
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of the cluster parameters.
In this chapter evolutionary algorithms are shown to be a possible solution

to this problem. After a short introduction on evolutionary strategies, we dis-
cuss the principal approach to use evolutionary algorithms for fuzzy clustering
(for an overview see [49, 65, 75]).

We will see that shell clustering with evolutionary algorithms seems to be
quite problematic, since there exist a lot of local optima and the correct solu-
tion often looks like a very narrow optimum. The situation is better for solid
clusters. It should however be noted that evolutionary algorithms require a
much longer computation time to solve the problem compared to the stan-
dard iteration procedure so that the application of evolutionary algorithms
seems to be suited only if the standard iteration procedure cannot be applied
according to a non-differentiable distance function or when an analytical solu-
tion for the single iteration steps cannot be found. Even in that case a good
heuristic algorithm can lead to results almost as good as the ones obtained by
evolutionary algorithms in a much shorter time, as the comparison with grid
clustering shows.

We restrict our investigations to probabilistic clustering, requiring that the
membership degrees of a datum to the clusters add up to one. In principal, we
can as well use the possibilistic version of the objective function, see section
3.1.2, dropping the probabilistic constraint. Even the noise clustering (section
3.1.3) or clustering with outliers (section 3.1.4) approaches can be used in
principle.

Another important question is a strategy for determining the number of
clusters. This can be done in the usual way on the basis of suitable validity
measures. However, it requires to carry out the clustering for a varying number
of clusters and increases the computation time even more.

We obtain the most promising results for clusters suitable for constructing
fuzzy rules. Of course, there are other techniques of learning rules, like neuro-
fuzzy approaches (for an overview see [93]). However, it turns out that most
of these approaches are well suited for tuning the fuzzy sets, but not so for
detecting rules.

11.1 Evolutionary Algorithms and Fuzzy Cluster-
ing

Evolutionary algorithms are a class of optimisation methods that are inspired
by the process of biological evolution. The principal idea is to have a collec-
tion or population of possible problem solutions encoded as parameter vectors
– the chromosomes – that define a solution. From this population a new pop-
ulation – the next generation – is generated by first producing offspring from
the old chromosomes by changing some components of the chromosomes, the
genes, randomly and sometimes also by a mixing of genes of different chromo-
somes (crossover), and then by selecting the best chromosomes for the next
generation. For details we refer to books like [8, 89, 45].

As a quite general optimisation strategy, evolutionary algorithms might be
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Figure 11.1: A test data set for the FCM

applicable to objective function based fuzzy clustering. Thus it is necessary
to find a suitable coding of the parameters to be determined in fuzzy cluster-
ing. Obviously, the parameters to be optimised are the prototypes vi and the
membership degrees uik. In [18] it was proposed to perform hard clustering
(i.e. uik ∈ {0, 1}), with genetic algorithms by taking the uik as the parame-
ters for the evolutionary algorithm. For fuzzy clustering this does not seem
to be suitable, since this means that besides the prototypes c · n real-valued
parameters have to be optimised, where c is the number of clusters and n the
number of data vectors. Since the probabilistic equation for calculation of the
uik from section 3.1 is generally valid independent of the structure of the pro-
totype, it is not necessary to optimise the parameters uik by an evolutionary
algorithm. In addition, the problems for the standard iterative optimisation
procedure are not caused by the membership degrees, but by the choice of
the prototype parameters. Thus we restrict ourselves here to optimise only
the prototypes by an evolutionary algorithm. The corresponding membership
degrees are computed as in the usual algorithm on the basis of equation (3.4)
from section 3.1.1.

The aim of fuzzy clustering depends on the application domain. In the
case of data analysis and classification tasks as well as for rule extraction
it is important to find an appropriate (gradual) assignment of the data to
suitable prototypes. In this case, the emphasis is on the assignment and not
on the exact prototype parameters. On the other hand, the exact prototype
parameters might be the terms to extract from a classification as e.g. in shell
clustering algorithms. With this group of algorithms, geometrical objects in
images are detected. Therefore, it is not sufficient just to assign the data
points to the correct circle represented by one cluster, but that we have to
determine the centre and the radius of the circle.
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Figure 11.2: Comparison of selection strategies

11.2 Experimental and Theoretical Results

Before we apply evolutionary algorithms to fuzzy clustering with non-standard
prototypes, we first test their performance by two standard fuzzy clustering
techniques, namely FCM as an example for the search after solid clusters and
the shell clustering algorithm FCS. Similar experiments were also carried out
in [92] for FCM. As in our approach, only the prototypes, i.e. for FCM the
cluster centres, are determined by the evolutionary algorithm in [92]. [92]
also reports good results when the probabilistic objective function (3.1) from
section 3.1.1 is replaced by the partition coefficient, a validity measure that
is sometimes used for FCM to determine the number of clusters, see section
4.1.2.

Figure 11.1 shows a test data set for FCM with four clusters. Evolutionary
algorithms with different parameters were all able to solve the problem of
finding suitable prototypes. A comparison of different selection strategies (left
to right: roulette wheel, remainder stochastic sampling, tournament) in Figure
11.2 shows that tournament selection has the best performance. In the figure
the dashed line indicates the average fitness and the other line the best fitness
in each generation, averaged over 18 runs of the evolutionary algorithm.

Looking at these good results for FCM we were quite optimistic also for
shell clustering. However, the results were more or less disappointing. Figure
11.3 shows a test data set with five circles for FCS and two results of the evo-
lutionary algorithm. In one case no circle was detected correctly, in the other
only one of the five. These results could not be improved, neither by exper-
imenting with the mutation or crossover rate nor by introducing techniques
like controlling the mutation rate on the basis of a span measure [89].

The typical results of the optimisation of the objective function of FCS by
an evolutionary algorithm tend to yield larger circles – an observation which
was also made in [22] where rectangular shells were considered. Thus we tested
the evolutionary algorithm with a data set representing only one circle with
centre (0, 0)> and radius 2. In one case we limited the search space for the
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(a) Test data (b) FCS Result (c) FCS Result

Figure 11.3: FCS: Test data and results

radius and the coordinates to the interval [−2.2, 2.2], in the other case to the
interval [−22, 22]. In the first case the evolutionary algorithm computed the
correct radius and centre in all test runs after about 30 generations. For the
second case the circle was detected correctly only in about 60% of the cases
after approximately 125 generations.

This motivated us to take a closer look at the fitness function. We consider
again a circle with centre (0, 0)> and radius 2 as the data set. In Figure 11.4
the evaluation of a chromosome is shown whose y-coordinate for the circle is
the correct value 0, whereas the x-value is shifted to the right between 0 and
22. The different curves were drawn for radius values between 1 and 10. The
middle and lower diagram are just magnified scalings of the upper diagram.

From this figure it is obvious that the correct radius 2 gets the best evalu-
ation only as long as the shifted circle centre is not shifted too far away from
the original circle centre. The smaller radius 1 does never yield better values
than a larger radius. And with increasing distance of the shifted centre to the
original centre, a larger radius gets a better evaluation. This implies that in
early generations where the random circle centres are still far away from the
correct circle centres, chromosomes with smaller radius values are not selected.
But when these values are missing in the population, a random mutation to
the correct radius without mutating also the centre to the correct value leads
to a very bad evaluation. Thus these genes are so strongly dependent on each
other that only a simultaneous random jump of all genes to the correct values
can lead to good results. Obviously this is rarely possible.

When we applied the evolutionary algorithm again to the data set of Figure
11.1 and limited the search range for radius genes to the interval [0, 2.2], the
results were satisfactory. In all test runs the circles were detected correctly
after about 80 generations in average.

Our theoretical considerations and experiments show that the applicability
of evolutionary algorithms to shell clustering is not very promising except when
the parameter range can be restricted to quite limited bounds.

As mentioned in section 11.1, the standard iteration procedure is difficult
or impossible not only for certain types of shell clusters, but also for instance
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Figure 11.4: Evaluation of chromosomes with shifted circle centres

for solid rectangular clusters. Such clusters would be ideal for fuzzy rule
extraction, especially when they are restricted to axes parallel rectangles or
cubes.

In order to obtain clusters of this type we define as prototypes for p-
dimensional data cluster centres vi ∈ Rp and diagonal matrices Ai. As distance
function we choose

d2(xk, vi) = ‖ Ai(vi − xk) ‖2
∞

=
(

max
1≤s≤p

{a(s)
i · |v(s)

i − x
(s)
k |}

)2

.

In opposition to [22] we use the supremum norm ‖ . ‖∞ instead of the 1-
norm. In order to avoid the undesired solution a

(s)
i = 0 for all i, s, we have

to enforce a restriction on the matrices Ai. Analogously to the Gustafson
and Kessel algorithm we require the matrix Ai to have a fixed value %i for
the determinant, which determines the size or the volume of the cluster i. If
nothing is known about the data, we simply choose %i = 1 for all i = 1, . . . , c.

All results were quite satisfactory. In 90-100 percent of the test runs the
evolutionary algorithm was able to assign the data to the correct clusters and
the cluster centres were detected approximately correct. Figures 11.5 and 11.6
show two 2-dimensional examples. In both cases we used two data sets – one
in which data points were only placed on the edges of the rectangles and one
where the rectangles were filled with data points.

It is worth noticing that the best chromosome in Figure 11.6 for the data
set with points only on the edges had the vectors (0,−0.1)> and (0,−5.1)> for
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Figure 11.5: Two separated rectangular clusters (not filled and filled)

Figure 11.6: Two contiguous rectangular clusters (not filled and filled)

the cluster centres and the values 0.6 and 1.6 for the entree in the upper left
corner of the diagonal matrices. The other non-zero value of the 2-dimensional
diagonal matrix can then be calculated, since the determinants are fixed. This
chromosome was assigned the error value 626.5 whereas the ’desired’ solution
with centres (0, 0)> and (0,−4.5)> and matrix values 0.5 and 2.0 gets a larger
error value of 740.8. Thus this method is not suited for computing the correct
parameters of rectangular shells. Nevertheless, the assignment of the data to
the clusters was satisfactory even if data points were only present on the edges.
Also the 3-dimensional case in Figure 11.7(a) and 11.7(b) caused no problems.

The good results on rectangular clusters described in the previous section
can be applied to deriving fuzzy rules from data.

11.3 EA-Based Clustering for Rule Learning

In this section we take a closer look at evolutionary algorithm based fuzzy
clustering (EA-based fuzzy clustering) and learning fuzzy rules. The principal
idea to apply fuzzy clustering in order to derive if-then rules from data is
that each cluster induces a rule by projecting the cluster to the corresponding
coordinate spaces as described in chapter 9.

Fuzzy clusters are usually not bounded in the sense, that even data very far
away from one cluster centre have non-zero membership degree to that cluster.
Normally these degrees tend to be small as long as the number of clusters is not
too small. In [52] an evolutionary algorithm based fuzzy clustering algorithm
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(a) x/y-projections (b) x/z-projections

Figure 11.7: Projections of three 3-dimensional clusters

was proposed that constructs membership functions in the form of hyper-cones
for the clusters. In this way the membership degree to a cluster becomes
zero if the data point is located outside a hyper-ellipsoidal region defined
by the hypercones. Nevertheless, the more serious problem appearing when
extracting rules from fuzzy clusters is not solved by this approach, namely
the problem of a certain loss of information enforced by the projection of a
multidimensional cluster.

The approach described in [111] constructs for each cluster a collection of
triangular fuzzy sets – one for each dimension – with an evolutionary algo-
rithm and avoids the projection of the clusters in this way. However, there
are no further restrictions for the fuzzy sets than the triangular membership
functions. It is possible that one set might be contained in another or that
two fuzzy sets strongly overlap.

A method for constructing rules by fuzzy clustering that are restricted to
well-behaved triangular membership functions (in the sense that the mem-
bership degrees at each point add up to 1) is the grid clustering, described in
section 9.2 and [64]. It is a fuzzy clustering algorithm that aims at finding fuzzy
partitions for the single domains on the basis of multidimensional data. For the
grid clustering we assume that we are given a data set X = {x1, . . . , xn} ⊂ Rp.
We are looking for fuzzy partitions on the single domains consisting of triangu-
lar membership functions with the restrictions that for each domain at most
two supports of different fuzzy sets have a non-empty intersection and the
sum of the membership degrees is one at any point of the domain. In that
sense we have to determine a suitable grid in the multidimensional space. We
assume that for each domain the number of triangular membership functions
is predefined. We define the membership degree of a data point to a cluster
represented by a grid point as the minimum of the membership degrees of the
triangular membership functions whose tips are the projections of the grid
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point.
The grid clustering algorithm introduced in section 9.2 has the same con-

cept. It is not based on an objective function, but relies on a heuristic strategy
for constructing the clusters. In order to improve this grid clustering algo-
rithm, a suitable objective function that can be optimised by an evolutionary
algorithm was designed.

The aim of this strategy is to place the prototypes on a suitable grid in the
multidimensional space in order to get fuzzy partitions on the single domains
consisting of triangular membership functions. Therefore our objective func-
tion should not depend on the order in which we analyse the single dimensions.
The coordinates of the prototypes should only be influenced by those coordi-
nates of the data that are relatively near (i.e. have a small Euclidean distance)
to the prototype’s coordinate. A simple way in single dimensions is to let the
data between two prototypes only influence these two. On a grid there are
a couple of prototypes with the same coordinates in a single dimension, see
figure 9.6 in section 9.2. In the objective function each coordinate has only
once to be taken into account. These considerations led us to the following
objective function

Jgrid(X, U, v) =
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( ∑
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(11.1)

x
(s)
k and x

(s)
` are the s’th coordinate of the data vectors xk and x`, respec-

tively (k, ` ∈ {1, . . . , n}). We assume that we have cs triangular fuzzy sets
(s ∈ {1, . . . , p}) in the s’th dimension. Each triple v

(s)
j−1, v

(s)
j , v

(s)
j+1 induces a

triangular membership function with the interval (v(s)
j−1, v

(s)
j+1) as the support

and v
(s)
j as the point with the membership degree one. Thus the fractions in

the sums (without the power m) provide the value one minus the membership
degree to the triangular membership function with the tip at v

(s)
j of the data

(or better: their s’th projection) that lie on the support of the membership
function. Since we add up the values for all triangular fuzzy sets (and the
sum of the membership degrees of a datum to neighbouring fuzzy sets yields
one), we obtain the smallest considerable value of Jgrid(X, U, v), when all the
membership degrees are 0.5 (as long as m > 1 is chosen) and the largest con-
siderable value, when the membership degrees are either zero or one. The
scope is to locate the v

(s)
j in the centre of the data clusters, i.e. the member-

ship degree is near one for data in the cluster and near zero for data in other
clusters. Thus we aim at maximising Jgrid(X, U, v). Note that Jgrid(X, U, v)
is a measure very similar to the partition coefficient, see section 4.1.2 and [15].
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(a) Example 1 (b) Example 2

Figure 11.8: EA-based grid clustering results

A special treatment is needed for the data on the left/right of the left-
most/rightmost prototype (the values v

(s)
1 and v

(s)
cs ). In the beginning, we

assume that the v
(s)
j are uniformly distributed, i.e. equidistant. We add in

each dimension two additional prototypes v
(s)
0 and v

(s)
cs+1, again equidistant

to the left and right of v
(s)
1 and v

(s)
cs , see figure 9.6 in section 9.2. The val-

ues v
(s)
0 and v

(s)
cs+1 are assumed to be fixed and must not be changed by the

evolutionary algorithm. Nevertheless, we have to take these additional proto-
types into account in the objective function so that the data at the edge of
the domain have the same influence as the data in the centre. This means
that the second sum in Jgrid(X, U, v) actually goes from j = 0 to j = cs + 1.
For the construction of the prototypes we only need the grid coordinates in
each dimension. In the evolutionary algorithm every single dimension has a
population and descendants that contain the coordinates of this domain. The
size of the population and the descendants can differ for each dimension. The
objective function is simply the sum over all dimensions, so the best pop-
ulations are derived independently of the other domains. To determine the
best prototypes, the best coordinate sets for the single domains are evaluated.
Therefore, the descendants are calculated. Depending on the chosen evolution
strategy all possible combinations of coordinates, either of the descendants
or the descendants and the population, are evaluated. An ordinary evolution
strategy (i.e. with normally distributed mutation and no crossover) is applied.
Both, the +-strategy (survival of the fittest of the parents and the children)
and the ,-strategy (parents are extinguished, survival of the fittest for the
children) have been tested.

In most cases the initialisation with equidistant v
(s)
j is good enough that

the +-strategy does not fall into local optima and leads to satisfying results.
In case of the ,-strategy the population of descendants has to be much larger
than the population so that the evaluation time increases drastically. All
combinations of coordinates have to be computed in each dimension. If P is the
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Figure 11.9: Objective function values for the evolutionary algorithm
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Figure 11.10: Objective function values for the heuristic grid clustering algo-
rithm
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possible combinations have to be evaluated. Heuristics like tabu search, see
[46, 47] or [3], could help to reduce the evaluation time. The chosen strategy for
the examples is the +-strategy with variance 0.9 and 100 Iterations. Figures
11.8(a) and 11.8(b) illustrate the results for two examples (showing only the
grid points).

To compare the evolutionary algorithm with the original heuristic grid
clustering algorithm described in section 9.2, the results of the latter one were
evaluated with the objective function (11.1). The best result of the evolution
strategy (Figure 11.8(a): 310.5, Figure 11.8(b): 159.5) is in both examples
better than the results of the original grid clustering algorithms (for the data
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set in Figure 11.8(a): 301.3, in Figure 11.8(b): 159.4). Using the +-strategy,
the evolutionary algorithm has the advantage of monotonously increasing ob-
jective function values. The development of the objective function in case
of the evolutionary algorithm based on the +-strategy is illustrated in figure
11.9. 11.9(a) shows the objective function values for the data set from figure
11.8(a), whereas the objective function values for the second example (see fig-
ure 11.8(b)) are illustrated in figure 11.9(b). For the heuristic grid clustering
algorithm, the objective function values are denoted in figure 11.10(a) and
11.10(b), respectively.

In case of the heuristic clustering algorithm the best result for the first
example is obtained after the first iteration, see figure 11.10(a). Faster eval-
uation is an advantage of the grid clustering algorithm. The values of the
objective function for the heuristic grid clustering are rather worse than the
results obtained from the evolution strategy. It has to be taken into account
that the grid clustering algorithm is not objective function based and therefore
not tailored for the particular objective function of the evolutionary algorithm.
Nevertheless, the results show that it is a successful heuristic method being
much faster than the evolution strategy.



Chapter 12

Conclusions and Future
Perspectives

In this work we have shown how objective function based fuzzy clustering
techniques are used for analysis problems in air traffic management tasks.
Therefore, well-known algorithms have been presented and suitable extensions
have been developed.

We have introduced extensions that allow the clustering techniques to
adapt to special structures in data, e.g. the size of single clusters, separat-
ing unusual data from the usual case, reducing the influence of outliers on the
whole partition, or comparing a kind of context sensitive regions.

However, the more flexible a clustering technique is designed the more
tends the resulting partition towards local optima. In the transfer passenger
example this behaviour is reflected in the validity functions. For the more
flexible size-adaptive and outlier based fuzzy c-means algorithm the deviation
between minimal and maximal validity values for the same number of clusters
is higher than for the FCM based on probabilistic clustering. A suitable ini-
tialisation, e.g. with the result of a less flexible clustering technique, helps to
overcome this drawback. In addition a technique’s parameters can be chosen
in a way to receive more strict results. A somewhat smaller value for the fuzzi-
fier m in case of more flexible clustering techniques is a well-known possibility
– e.g. for possibilistic clustering – to obtain reliable results.

The possibilities of context sensitive clustering have been illustrated for
the task of image recognition with an image of the DLR research aircraft
”ATTAS”. We have seen, that this technique is suited to detect similar re-
gions in an image and can e.g. be used to reduce image size. However, the
scope of this approach is not to reduce the size of an image without optical
deterioration. This problem is handled by numerous other approaches based
e.g. on Fourier transformation. The presented approach was developed to cope
with data where groups of attributes instead of single attributes have to be
compared. This enables us to distinguish e.g. background parts from regions
of specific interest in an image.

The flight route example has shown that a size-adaptable extension of
clustering techniques based on a cluster’s covariance matrix to transform the
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Euclidean distance is suited to detect ellipsoidal structures of different ex-
tensions in data. We have shown how line segments can be extracted from
(hyper-) ellipsoidal structures. Techniques based on fuzzy clustering are able
to handle a certain amount of scattering in data due to the assigned gradual
membership degrees. A radar data set for a number of weeks at a large airport
is too huge to handle as a whole. Additionally, scattering of a complete data
set is too high to identify any structures. Especially in low traffic situations or
under extreme conditions (e.g. heavy rain or snow storms) other flight routes
than the usual are used. Our results can be improved if expert knowledge for a
better pre-processing of data is available. Also additional attributes than the
used geographical coordinates, e.g. a flights direction in relation to its actual
position, lead to a more realistic result. Density based clustering techniques
are an alternative to the presented approach.

We have shown the process of rule learning for the example of transfer pas-
senger analysis. Here, we have developed a rule-system describing the changes
of the amount of transfer passengers during a day in dependence on time,
aircraft size, and a destinations or origins distance. Our size-adaptable and
outlier based clustering techniques are well-suited for rule learning. As long
as we stay with basic clustering techniques suited for rule learning, it is pos-
sible to apply the developed extensions. We have seen that the capabilities
of some clustering techniques to adapt to special cluster forms, esp. (hyper-)
ellipsoidal structures, lead to a significant loss of information in rule learning.
The capabilities of our extensions for size-adaptation, attribute weighting, and
handling outliers do not change a (hyper-) ellipsoidal cluster’s position in the
multi-dimensional space. Therefore, these techniques have no influence on a
techniques general suitability for rule learning. However, in our transfer pas-
senger example we have seen, that size-adaptation can lead to some clusters
with very large extensions. The resulting fuzzy sets cover a wide range of the
single attributes. This way it is possible that a fuzzy rule resulting from a
very large cluster is meaningless. This result can be an indication that the
attributes under analysis are not sufficient to describe a certain behaviour.
Without size-adaptation a group of rules seen together in our transfer pas-
senger example leads to results comparable to a rule resulting from a larger
cluster with size-adaptation. In general the resulting rule base is quite capable
to describe transfer passenger behaviour.

The idea of rule learning led to the development of the grid clustering
technique. The aim is to partition data in a way that meets the demand of
an ideal rule system. However, the resulting objective function is not suited
to derive necessary conditions by differentiation suited for a clustering algo-
rithm. Therefore, an evolutionary algorithm-based fuzzy clustering techniques
has been developed that optimises the corresponding objective function. Our
experiments have shown that the heuristic grid clustering approach needs less
computational effort than the technique based on an evolutionary algorithm
and leads to comparable results. Where heuristic techniques are not suitable
and it is not possible to use a differentiable objective function, techniques
based on evolutionary algorithms can be a good alternative.

To cope with discrete variables is in general difficult to solve with fuzzy
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clustering techniques. Special care has to be taken to select a suitable dis-
tance measure or to find a suitable scaling of a data sets attributes in a pre-
processing step. Especially clustering algorithms based on distance measures
that adapt to attribute depending extensions of the clusters tend to partition
a data set into the categories corresponding with the discrete variables values.
Comparable scaling of the single attributes and using the Euclidean distance
measure help to overcome these problems. For our transfer passenger exam-
ple we transformed the attributes values into comparable ranges and used the
fuzzy c-means as basic clustering technique.

Data recorded on airports usually is not restricted to radar plots and flight
specific information but contains further information. In addition weather,
waypoints, and several derived variables – e.g. weight class, necessary separa-
tion of aircraft, and runway length – are used for delay analysis. The overall
goal of tasks in air-traffic management is to increase airport capacity and
reduce delay times, if possible in combination with reducing noise and envi-
ronmental pollution. Capacity studies are performed using simulation tools
and varying parameters that are known to influence the airport capacity. De-
spite generating rules to describe under which weather conditions significant
delays agglomerate in air traffic, it is useful to know which weather attributes
have the most influence on dispatching flights. It is obvious that staggering
of aircraft has to be increased in bad weather conditions. For arrival or flight
time prognosis purposes the delay time has to be predicted. The less attributes
have to be taken into account in a reliable simulation or decision support tool
the less computational as well as technical effort is needed. Some parameters
as e.g. the aircraft separation are fixed and known to define the maximum air-
craft capacity. Analysing the dependencies of the recorded or derived variables
and their influence on aircraft delay can help to improve airport procedures
and reduce delay times. Data analysis in general and especially the devel-
oped attribute weighting fuzzy clustering technique is a possibility to identify
additional attributes influencing the real situation and in this way indicate
improvements for further assistance systems or airport extensions. Analysis
of delay data and available weather information with the developed attribute
weighting clustering technique have shown that the available weather informa-
tion without further knowledge is not suited to predict delay times. Similar
results have been obtained with classified data where the delay times have
been replaced by delay classes. In this case extremely high error rates indi-
cated that additional information has to be considered for analysis purposes.
One problem is the calculation of delay times. Available for analysis purposes
have been the actual and planned times of arrivals at Frankfurt airport. How-
ever, no information if the delay occurred already at the destination airport
or on the flight route has been available. This task is intended to be further
studied in cooperation with Frankfurt airport to develop a delay prediction
system.





Appendix A

Illustrations

In this appendix additional illustrations are included to demonstrate the effects
of certain parameters and the use of specific basic objective functions described
in chapter 3 on the clustering results.

A.1 Scalar Product-Based Distance Measures

For an explanation of the scalar product-based clustering technique and the
algorithm of scalar product-based clustering see section 5.2.

As fuzzifier m = 1.5 has been chosen for all angle-based clustering tasks.
Additionally the constraint parameter ω for clustering with outliers has been
chosen as the number of data, i.e. ω = n, and the weighting exponent q has
been set to 0.5. The four figures (A.2(a), A.2(b), A.2(c)), and A.2(d) show the
distance of the data to the cluster centres, whereas the corresponding mem-
bership degrees are illustrated in figures A.3(a), A.3(b), A.3(c), and A.3(d).
The weights ωk are displayed in figure A.1.

A.2 Centre-Based Clustering

For an explanation of the centre-based clustering technique and the algorithm
of centre-based clustering see section 5.2.

Figures A.4 to A.13 illustrate the differences between the original Gustafson-
Kessel algorithm and the size-adaptable centre-based clustering algorithm us-
ing the same transformed Euclidean distance as GK. For all GK-sized cluster-
ing results, parameter τ was set to 1.

The GK-sized partitions are shown for two different values of the influence
parameter l, l = 0.5 and l = 5. In figure A.4 and A.5 the probabilistic
basic objective function from section 3.1 has been used, whereas the results
in figure A.6 and A.7 were obtained with the possibilistic objective function.
We see, that the choice of GK-sized has not such a significant influence on the
membership degrees for possibilistic clustering as for the probabilistic case.
Noise clustering results are shown in figure A.8 and A.9. Here δ has been
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Figure A.1: Results for angle-based clustering – weights for fuzzy clustering
with outliers (m = 1.5, ε = 0.001, ω = n, q = 0.5)

estimated as described in section 3.1.3

δ2 =
2

c · n
·

(
n∑

k=1

c∑
i=1

d2(vi, xk)

)
.

In this case the results are similar to those obtained with probabilistic clus-
tering.

Figures A.10 to A.13 show the membership degrees, distances, and weights
for GK combined with clustering for outliers. The constraint parameter ω = n
was chosen for all clustering with outliers results. The membership degrees,
distances, and weights are compared for different values of the weighting ex-
ponent and the size parameters exponent. In figure A.11 the weighted mem-
bership degrees ũm

ik for l = 0.5 and l = 5 are illustrated for q = 0.5 and q = 2.
The distances shown in figure A.12 depend more on the choice of l, whereas
q has a greater influence on the weights displayed in figure A.13. Although
only two contour lines are shown for the weights in case of q = 0.5, the weight
values have a larger range of values than for q = 2. So the smaller q the more
emphasis is put upon weight adaptation as explained in section 3.1.4. The
adapted scale values for GK-sized combined with the basic objective functions
are shown in table A.1. We see that the scale adaptation depends on influence
parameter l – the exponent parameter for centre-based size adaptation. The
resulting scale values are similar for all basic clustering techniques.

A.3 Volume-Centre-Based Clustering

For an explanation of the volume-centre-based clustering technique and the
algorithm of volume-centre-based clustering see section 5.2.
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(d) outlier clustering (ω = n, q =
0.5)

Figure A.2: Results for an elliptical test data set and angle-based clustering –
distance (m = 1.5, ε = 0.001)
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Figure A.3: Results for an elliptical test data set and angle-based clustering –
membership degrees (m = 1.5, ε = 0.001)
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5, m = 1.5)

Figure A.4: Comparison of probabilistic GK and GK-sized clustering – dis-
tance
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Figure A.5: Comparison of probabilistic GK and GK-sized clustering – mem-
bership degrees
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Figure A.6: Comparison of possibilistic GK and GK-sized clustering – distance
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Figure A.7: Comparison of possibilistic GK and GK-sized clustering – mem-
bership degrees
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Figure A.8: Comparison of GK and GK-sized noise clustering – distance
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Figure A.9: Comparison of GK and GK-sized noise clustering – membership
degrees
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(b) GK distance (m = 2, q = 0.5)
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(c) GK weights (m = 2, q = 0.5)

Figure A.10: Comparison of GK and GK-sized outlier clustering – GK clus-
tering results
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(d) GK-sized (l = 5, q = 2)

Figure A.11: Comparison of GK and GK-sized outlier clustering – GK-sized
membership degrees for m = 1.5, ω = n, and τ = 1
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(c) GK-sized (l = 5, q = 0.5)
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Figure A.12: Comparison of GK and GK-sized outlier clustering – GK-sized
distances for m = 1.5, ω = n, and τ = 1
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2

4

6

8

10

4 6 8 10 12 14 16

y

x

weights

data
prototypes

10.00
5.00
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(d) GK-sized (l = 5, q = 2)

Figure A.13: Comparison of GK and GK-sized outlier clustering – GK-sized
weights for m = 1.5, ω = n, and τ = 1
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Table A.1: Scale values for GK-sized
basic obj. function l cluster 1 cluster 2

probabilistic 0.5 0.310 0.690
probabilistic 5 0.461 0.539
possibilistic 0.5 0.318 0.682
possibilistic 5 0.446 0.554

noise 0.5 0.312 0.688
noise 5 0.458 0.542

outlier – q = 0.5 0.5 0.393 0.607
outlier – q = 0.5 5 0.436 0.564
outlier – q = 2 0.5 0.369 0.631
outlier – q = 2 5 0.435 0.565

Figures A.14 to A.18 illustrate the clustering results for the FCM-volume
clustering algorithm in combination with the possibilistic, noise, and outlier
objective functions from section 3.1. The same data set used here was also
used for the FCM-sized example in figure 6.2.

Figures A.16 to A.18 show the distances, membership degrees, and weights
for FCM-volume combined with clustering for outliers. The constraint param-
eter ω = n was chosen for all clustering with outliers results. The member-
ship degrees, distances, and weights are compared for different values of the
weighting exponent q and the influence parameter γ. In figures A.17 to A.17
the weighted membership degrees ũm

ik for γ = 0.1 and γ = 0.9 are illustrated
for q = 0.5 and q = 2.

The influence of parameter γ on the clusters centre radii is visible in the
illustration of the distance to the cluster centres. The larger γ the smaller
are the parameters τi. The crispier transition from one cluster to another in
possibilistic (resp. noise) clustering in comparison to probabilistic clustering
becomes obvious in the illustration of the membership degrees for the basic
objective functions.
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Figure A.14: Comparison of possibilistic FCM-volume clustering for different
values of γ, m = 1.5, and τ = 1
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Figure A.15: Comparison of FCM-volume noise clustering for different values
of γ, m = 1.1, and τ = 1
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(a) FCM-volume outlier cluster-
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(c) FCM-volume outlier cluster-
ing distance (q = 2, γ = 0.1)
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(d) FCM-volume outlier cluster-
ing distance (q = 2, γ = 0.9)

Figure A.16: Comparison of FCM-volume outlier clustering for different values
of γ, q, m = 1.5, and τ = 1 – distances
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(a) FCM-volume outlier cluster-
ing membership degrees (q =
0.5, γ = 0.1)
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Figure A.17: Comparison of FCM-volume outlier clustering for different values
of γ, q, m = 1.5, and τ = 1 – membership degrees
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(a) FCM-volume outlier cluster-
ing weights (q = 0.5, γ = 0.1)
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(b) FCM-volume outlier cluster-
ing weights (q = 0.5, γ = 0.9)
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(c) FCM-volume outlier cluster-
ing weights (q = 2, γ = 0.1)
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(d) FCM-volume outlier cluster-
ing weights (q = 2, γ = 0.9)

Figure A.18: Comparison of FCM-volume outlier clustering for different values
of γ, q, m = 1.5, and τ = 1 – weights
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[34] R. Davé. Characterization and detection of noise in clustering. Pattern
Recognition Letters, 12:657–664, 1991.
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