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Nomenclature

Latin Symbol

a, b, c Constants —
Ai Area of the particle i m2

Cd Drag coefficient —
dα Diameter of the particle α m
〈d〉 Average diameter m
e Coefficient of restitution —
g Acceleration due to gravity m/sec2

G Growth rate 1/sec
h Height of the bed m
I Unit tensor —
Iα Moment of inertia of particle α Kgm2

J Impulse vector Kgm/sec
k Boltzmann constant 1.380× 10−16erg/K0

K(t, x, y) Aggregation kernel m3/sec
K(x, y) Collision frequency function m3/sec
K0(t) Aggregation efficiency function 1/sec
Ki,j(t) Aggregation kernel among classes i and j m/sec2

Li Length of the particle i m
M Average molecular weight of air Kg/mol
mα Mass of particle α Kg
n Normal unit vector —
n(t, x) Number density at time t of particle property x 1/m3

n0(x) Initial number density of the particle with property x 1/m3

ni Particle concentration of class i 1/m3

nj Particle concentration of class j 1/m3

Ni,j Number of collisions between class i and class j m3/sec
Ni Number of particles of class i —
Ni,sim Number of particles of class i from simulation —
Ni,expt Number of particles of class i from experiment —
Nj Number of particles of class j —
Ncell Number of Eulerian grid cells —
p Pressure of the gas dyne/m2(Pa)
rα Radius of the particle α m
R Gas constant 8.31× 107erg/K0mol
Reα Particle Reynolds number —
〈Re〉 Average Reynolds number —
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s Surface areas of the particle m2

St Stokes number —
S∗

t Critical Stokes number —
t Time sec
t Tangential unit vector —
tsim Simulation time sec
T Temperature K0

Tα Torque Nm
u Velocity of the gas m/sec
U Relative velocity m/sec
vα Velocity of the particle α m/sec
Vα Volume of the particle α m3

Vbed Volume of the bed m3

Vcell Volume of Eulerian grid cell m3

Vfluid Volume of the fluid m3

Vparticles Volume of the particles m3

W Effective volume of the particle m3

W ∗ Critical volume of the particle m3

xα Position of the particle α m
x, y Volume of the particle m3

z Random number —
zα Height of the particle α m

Greek Symbol

β Interphase momentum transfer coefficient Kg/m3sec
β0 Coefficient of tangential restitution —
µ Gas phase shear viscosity Kg/msec
µj The jth moment m3j ·m−3

δ Distance m
δtflow Time step for gas phase sec
δ(x) Dirac-delta distribution —
δi,j Kronecker delta —
ε Void fraction —
λ Gas phase bulk viscosity Kg/msec
λ(t) Specific aggregation rate function 1/sec
Ω Discretized domain —
ω Angular velocity 1/sec
ρ Density of the gas Kg/m3

η Bed parameter (dimensionless)
Γ Laminar shear velocity of gas m/sec
τ Gas phase stress tensor Kg/msec2

σ Standard deviation m
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Subscripts

0 Initial condition
α Particle index
a Particle a
ab Between particle a and b
b Particle b
agg Aggregation
bed Fluidized bed
break Breakage
coll Collision
cell Cell size
expt Experiment
i, j, k Index
n Normal
step Time step
sim Simulation
t Tangential

Superscripts

− Mean or average values
∧ Simulated value
n Value at nth level

Acronyms

CA Cell Average
DPM Discrete Particle Model
DEM Discrete Element Method
EKE Equi-partition Kineitc Energy kernel
IPSD Initial Particle Size Distribution
KTGF Kinetic Theory of Granular Flow
PBE Population Balance Equation
PSD Particle Size Distribution
RE Relative Error
SSE Sum of Square of Errors
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Chapter 1

General Introduction

1.1 Introduction

Mathematical modelling plays a vital role in all discliplines of science and engineering. Its aim
is to describe the real world phenomena through mathematics. Due to enormous improvements
in computational speed and algorithms, simulating many real world phenomena is within reach.
Using these simulation results modelers try to apply them to the realistic problems in different
fields such as industry, environment and weather prediction, life sciences, and sports in order to
make more efficient mathematical models. Further details of such improved models and applica-
tions can be found in (42). The present thesis is concerned with such an application of modelling
and simulations for fluidized bed granulation in process engineering.

Gas-fluidized beds are widely applied in the chemical process industry. Typical applications
cover a wide variety of physical and chemical processes such as fluidized bed combustion, cat-
alytic cracking of oil and fluidized bed granulation (detergents, fertilizers, food industry) to name
a few. They have several advantageous properties like isothermal conditions throughout the bed,
excellent heat and mass transfer properties and possibility of continuous operation. Apart from
the above advantages they have a special application of minimizing the industrial waste, which
results to the reduction of the environmental pollution.

We have different mathematical models to describe the fluidized bed spray granulation. De-
velopment of multiscale analysis techniques and algorithms to describe the exchange between
mechanical, thermal, and chemical processes in heterogeneous spatial scales of the fluidized
beds is still a challenging task to the researchers. A continuous heat and mass tranfer model for
the fluidized bed granulation was developed by Heinrich (50). Further, the model was extended
with the inclusion of a drying mechanism by Peglow (39). An efficient numerical scheme for
these fluidized bed granulation models has been studied in Nagaiah (8). These models give on
the macro level physical insight into the fluidized bed granulation process and the results are
comparable to laboratory experiments.

1
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A main property required for the end product is the particle size. To understand the changes in
the particle size distribution, population balance equations are widely applied for the fluidized
bed. A detailed modelling and numerical aspects of these population balance equations for the
fluidized bed are described in Peglow (39) and Kumar (30).

The final product is not only dependent on these macro properties but also on the micro proper-
ties like particle movement, particle collisions, etc. and on the material properties like viscosity,
density, etc. There exist no proper experimental techniques to understand these micro particle
properties in great detail. To analyse these micro properties, computer simulations based on the
discrete element methods (DEM) are widely used in the research.

In the present thesis we study a model which includes the micro and macro properties. To
study these micro-macro models, multi phase models are widely used in the research. In this
work we used a two phase model which is known as Discrete Particle Model (DPM). In this
model compressible Navier-Stokes equations are used to describe the gas flow (macro model)
and Newtons equations to describe the particle movement (micro model) for a batch system. A
review of the use of the discrete particle models for understading the flow phenomena inside the
fluidized beds is found in (11).

1.2 Fluidized bed spray granulation
Particle size enlargement can be done by using different mechanisms. Granulation is one of
the important techniques which are widely used in industry. Important granulation instruments,
which are widely used in industry are pan, drum, and fluidized beds, etc. Major processes in
the granulation are agglomeration, nucleation, growth and breakage, etc. Some typical products
from granulation process are given in the Figures 1.1 and we can observe that the particle size is
the most important desired property.

Figure 1.1: Typical products of fluidized bed

A model for an industrial fluidized bed is given in the Figure 1.2. Important ingredients of the
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Hot dry fluidization gas
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Figure 1.2: Schematic representation of a spray granulation process

granulation process are the liquid binder and solid particles. The particles are mixed by supplying
continuous hot dry gas flow from the bottom of the bed. The gas is distributed into the main body
of the bed through air distributor. The liquid binder is sprayed from the top of the bed through
the nozzle. The spraying in can occur from the top down, from the bottom up, or sideways.
The liquid binder evaporates in the hot, unsaturated fluidizing gas and the liquid binder sticks to
the particles and grows in layers on the particle surface. This process is called granulation or
layered growth process.

The particles are fed through the feeding tube. The binder droplets are deposited on the particles
and distributed through spreading. After getting enough binder, the particles sticks together and
forms bigger size particles. Once the desired particle size is achived, the particles are removed
from the bed via a discharge tube inserted at the bottom of the bed. Typical particle formation
mechanism are explained in the next section.

1.3 Particle formation mechanisms

Granulation is a complex process involving several physical and chemical phenomena. Combi-
nation of all these phenomena ultimately leads to the formation of particles. We will divide these
phenomena into three groups of rate processes. In the following subsections we will explain
these particle formation mechanisms.
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1.3.1 Agglomeration
This process has different linguistic names in the literature based on the applications. For exam-
ple in the fluidized bed industry agglomeration, in atmospheric sciences coagulation, etc. But
from the mathematical point of view all these processes are treated as same. The process of
agglomeration is represented pictorially in the Figure 1.3. In this picture the granule is denoted
by blue color and the binder is denoted with color green.

+

Figure 1.3: Binary aggregation

In this process particles combine to form a larger particle. In the agglomeration process the
particle surface is wetted with the binder, and particles with sufficient binder layer stick together
and then forms the bigger size particles. If this process is among two particles then we call
it binary aggregation otherwise we call it multiparticle aggregation. In fluidized beds binary
aggregation is more frequent in comparison with multi particle aggregation.

1.3.2 Nucleation
This is the process in which new particles are formed from vapour molecules due to condensation.
In this process we have only birth of particles from the vapour phase. This process is explained
in the Figure 1.4 as the blue colored molecular matter condenses and forms a new particle.
Nucleation has significant effect on the total number of particles but less effect on the total

Figure 1.4: Nucleation

volume of particles. The nuclei are usually treated as the smallest possible particles in the system.

1.3.3 Growth
The particle grows as a result of spreading of the liquid binder on the surface of the particles.
This process is also known as layering or coating. A graphical representation of growth process
is provided in the Figure 1.5.
In a fluidized bed, a liquid is sprayed on to solid particles by an injection nozzle. The liquid
drops are deposited onto the solid particles and are distributed through spreading. The intensive
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+

Figure 1.5: Growth

heat and mass transfer, due to the supply of the hot gas, results in a rapid increase of hardness of
the fluid film through drying. In this growth process the number of particles does not change but
the total volume of particles increases.

1.4 Modelling of the spray granulation processes
Particle size distributions give one of the most important descriptions of the granulation process.
Macroscopic models like Population Balance Models are widely used to evolve the particle size
distribution in granulation processes. The use of population balance modelling was hampered
by the kinetic parameters like kernels have proven more difficult to predict PSD and are very
sensitive to operating conditions and material properties. Therefore to model the effect of these
parameters a microscopic model involving the particle collision mechanism, material properties,
etc. needs to be developed.

1.4.1 Multi scale modelling of fluidized beds

Chemical engineering uses mathematical models to simulate different processes like polymer-
ization, granulation, etc. The development of granulation processes via drum, pan or fluidized
bed granulation is a multiscale operation, where the typical macro analysis of continuum mecha-
nisms must be connected to micro operations. A review of systems modelling and applications in
granulation are explained in (7). Enormous increase in computer power and algorithm develop-
ment, fundamental modelling of granulation process in a fluidized bed has come recently within
reach. In last decade a significant research efforts have been made to develop detailed micro
balance models to study the complex hydrodynamics of gas-fluidized beds. Broadly speaking
two different types of hydrodynamic models can be distinguished, Eulerian (continuum) models
and Lagrangian (discrete element) models.
Hoomans (20, p.14) states that, "In order to model a large (industrial) scale fluidized bed a contin-
uum model, where the gas phase and the solids phase are regarded as interpenetrating continuous
media, is the appropriate choice. This Eulerian-Eulerian type of model have been developed and
successfully applied over the last two decades . . . ." These models require closure relations for
the solids phase stress tensor and the fluid-particle drag relation. Improved empirical closure
relations for the solids phase stress tensor and fluid-particle drag coefficient can be obtained by
using kinetic theory of granular flow and lattice Boltzmann simulations (3) respectively.

"In discrete particle models the Newtonian equations of motion are solved for each individual
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Lattice Boltzmann models

Discrete particle models

Continuum models
Large (industrial) scale

simulations

Particle−particle interactions

Fluid particle interaction

Figure 1.6: Multi scale modelling of the spray granulation process

solid particle in the system. In this Eulerian-Lagrangian type of model a closure relation for the
solids phase rheology is no longer required since the motion of the individual particles is solved
directly. However, the number of particles that can be taken into account in this technique is
limited (< 10−6[sic]< 106). Therefore, it is not yet possible, even with modern day super com-
puters, to simulate a large (industrial) scale system (20, p.14)." Despite this the discrete particle
model is useful in understanding the influence of particle properties on the hydrodynamics of
gas-fluidized beds and particle-particle collisions in a microscopic level.

According to Hoomans (20, p.15), "When the gas flow is resolved on a length scale smaller than
the particle size these closure relations for fluid-particle drag are no longer required. Instead they
can actually be obtained from the simulations. The Lattice Boltzmann technique seems to be best
suited for such simulations because it is very flexible in dealing with complex flow geometries
. . . . It is important to realise that these Lattice Boltzmann simulations are limited to systems con-
sisting of a number of particles that is significantly smaller (< 10−3[sic]< 103) than the number
of particles that can be taken into account using discrete particle models (< 10−6[sic]< 106).

In short the multi-scale concept as presented in [Figure 1.6] consists of three classes of models
where more detail of the two-phase flow is resolved going from continuum models to discrete
particle models to Lattice Boltzmann models. This goes at the cost of increased computational
requirements which necessitates a size reduction of the simulated system. The model capable
of simulating a larger system is fed with a closure relation obtained from a more microscopic
simulation. In return the results of these simulations can be used to pass on information to
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models capable of simulating the flow on a larger scale."

1.4.2 Micro-Macro modelling of the fluidized bed
In the previous section we have seen three different types of models for simulating the fluidized
bed spray granulation. Very few researchers are working in the direction of comparing these
models with the existing macro models. In the Graduate school GKMM-828, a considerable
amount of work was done in the direction of finding the micro-macro transitions in structured
media and particulate systems. The work involves the study of different kinds of micro structures
like

• different phases of solids in polycrystalline materials during the processing

• material reinforcement in composite materials for studying the mechanical properties of
the materials

• solid particles moving in fluids or gases for environmental applications

• mixtures of interacting particles or liquids and gases in porous solid media for drying
technology applications

etc. Different algorithms and simulation softwares are developed to calculate the micro proper-
ties of these structures. The results of the Micro-macro comparisons of the models are given in
the book (5).

Population balance equations describe the rate of change of the particle number density of a sys-
tem on a macroscopic level. These equations are widely applied to calculate the number density
distribution in fluidized bed spray granulations. Kernels are the most important quantity repre-
senting microscopic kinetics of the population balance equations, which dictate the dynamics of
the particle number density distribution. Determination of the kernels requires the microscopic
simulations of the fluidized bed.

The aggregation equation is an important example of macroscopic population balance equation.
This is an integro-partial differential equation and is given as

∂n(t, x)

∂t
=

1

2

∫ x

0

K(t, x− y, y)n(t, x− y)n(t, y)dy − n(t, x)

∫ ∞

0

K(t, x, y)n(t, y)dy, (1.1)

with the initial condition n(0, x) = n0(x) ≥ 0. The Kernel K(t, x− y, y) describes the aggrega-
tion frequency of particles of size x − y with particles of size y. The aggregation kernel can be
decomposed into size dependent and time dependent functions, i.e., K(t, x, y) = K0(t)K(x, y).

The derivation of kernels involves the following two steps:

• Determination of the collision frequency function K(x, y), or reaction rates in chemical
terminology, as given coefficients. For the aggregation process we have a second order
reaction.
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• Make some physical assumptions on the interaction mechanism of the particles to calculate
an explicit expression for the aggregation efficiency function K0(t).

The calculations of the kernels were evolved from two different approaches. 1. Calculation
with realistic experimental results. 2. Computer simulation of the experiements with simple
mathematical models. For the last two decades few advances were made in the direction of de-
termination of the kernels using computer simulations.

Recently Tan et al. (51) have made an attempt to build a population balance model for fluidized
bed melt granulation from the kinetic theory of granular flow (KTGF). They showed that the
distribution of particle velocities obtained from Discrete Particle Modelling (DPM) are same as
those obtained from the kinetic theory of granular flow. With this result he assumed that an Equi
Kinetic Energy (EKE) kernel will be a suitable choice. He compared the particle size distribu-
tions obtained from the experiments and Discretized Population Balance (DPB) modelling with
EKE kernel.
A comparison of the experimental results and the simulated results of Discretized Population
Balance (DPB) equations with EKE kernel are given in (51) for aggregation process.

1.5 Outline of the thesis
This thesis starts with an introduction to the population balance equations in Chapter 2. In Sec-
tion 2.2 we explain the assumptions and properties of the discrete and continuous forms of the
aggregation equation. Section 2.3 involves the dimensional analysis of these equations and their
importance in the modelling of the the aggregation kernels and number density selection for
various applications. Different aggregation kernels exist in the literature based on theoretical
derivation for the physical process, empirical the observations of the experiments and from the
analysis of the experimental data. Properties of the some of these kernels are explained in the
Section 2.4.

Chapter 3 is concerned with the Discrete Particle Model (DPM), which is a two phase flow
model. We give a short introduction to the model in Section 3.1. Section 3.2, 3.3 explain the
governing equations describing solid particle phase and gas phase respectively. The closure laws
coupling these phases are described in Section 3.4 and Section 3.4.1 explains the hard sphere
collision model for the solid particle interactions. We end this chapter with explanations of the
numerical calculations and the modifications made to the existing code for calculating the colli-
sion frequency function.

Modeling of the kernels is explained in Chapter 4. The introductory Section 4.1 explains the
recently existing literature for modeling of kernels. Section 4.2 explains the derivation of the
collision frequency functions. A correction to the aggregation equations and its effect on the
aggregation equation is explained in Section 4.3. The last Section 4.4 is concerned with the
physical description of the flow pattern inside fluidized beds based on particle Reynolds number.
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The particle Reynolds number shows that the shear forces are dominating. This gives an indica-
tion for use of the shear kernel.

Simulation results for modeling collision frequency functions are given in Chapter 5. Section
5.1.1 explains the various initial parameters and assumptions for the computer simulations. Sec-
tion 5.1.2 gives the various particle size distributions. In Section 5.2 we explain the evaluation
of the bed parameter. Simulation results for a pseudo 3D bed are given in Section 5.3 and a
special case of particle size distribution (normal distribution) results are given in Section 5.3.1.
Simulation results for a 3D bed are given in Section 5.4. We end this chapter with the discussion
of the results in Section 5.5.

Chapter 6 involves the crucial part of the thesis involving a micro-macro comparison. In Section
6.1 we explain the assumptions on the simulations for the evaluation of the aggregation efficiency.
In Section 6.2, we calculated the aggregation efficiency function from the discrete particle model
simulations for pseudo 3d and 3d fluidized beds. Section 6.3 explains the numerical methods for
solving the population balance equations, in particular the cell average technique. Computation
of the particle size distributions with the newly derived, simulation based kernels are given in
Section 6.4.

Chapter 7 gives the general conclusions and outlook of the present thesis.

In Appendix A we explain the analytical derivation of the shear kernel based on geometry. Ap-
pendix B explains the major simulation parameters of the Discrete Particle Model (DPM). Ap-
pendix C gives the initial particle size distributions for different number of particles.



Chapter 2

Population Balance Equations

In this chapter we describe population balance equations for particulate systems. We describe
various forms of the aggregation equation and its mathematical properties. This chapter gives a
deep insight into the modelling aspects of the aggregation kernel. We end up this chapter with
the some important properties of theoretical, phenomenalogical and experimental kernels which
are widely used in the applications.

2.1 Introduction
Population balance equations are used to determine the particle number density distribution on
a macroscopic level. A general one particle property, e.g. particle volume, equation for a well
mixed system is given by the following

∂n(t, x)

∂t
+

∂[G(t, x)n(t, x)]

∂x
= F (t, x) (2.1)

where

F = Bnucleation(t, x) + Bagg(t, x) + Bbreak(t, x)−Dagg(t, x)−Dbreak(t, x). (2.2)

The above equation describes the change of particle size distribution n(t, x) with respect to time
t ≥ 0 corresponding to the particle property, volume x ≥ 0. The second term on left hand side
of the Equation (2.1) represents the particle growth due to the addition of liquid binder to the
particles and G(t, x) = dx

dt
. The first three terms on the right hand side of (2.2) represent the

birth of particles due to nucleation, aggregation and breakage. The last two terms on the right
hand side of (2.2) represent the death of particles due to aggregation and breakage. The initial
and boundary conditions required for (2.1) are generally stated as

n(0, x) = n0(x)

and

n(t, 0) = 0,

respectively. The latter condition indicates that there are no particles of zero size, which is
physically well justified.

10
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2.2 Aggregation equation
Disperse systems describe the solid particles or liquid droplets suspended in a medium, usually
in a gas. Applications have covered a wide range of disperse systems, especially solid-gas, solid-
liquid, solid-liquid-gas, liquid-liquid,...etc.

The disperse systems are dynamic in time due to the movement of the particles in the medium.
The particles are set in motion by external fields like gas flow, stirrer, ...etc. As a result of this
movement, the particles collide. The collision and aggregation in this system leads to the change
in the particle size, here we describe the particle volume in terms of a distribution function.

Population balance equations are very frequently used to study the particle size distribution in the
disperse systems. To understand this particle distribution, Smoluchowski (49) derived an infinite
set of nonlinear ordinary differential equations for his theory of rapid coagulation processes with
the following assumptions:

• The number of particles per unit volume of the fluid is sufficiently small, i.e. we describe
a dilute system.

• Binary collisions are assumed to occur simultaneously.

• Incompressible spherical particles are assumed to collide.

• There is no fluid interaction with the particles.

Based on the above assumptions he derived the following system of ordinary differential equa-
tions

dni(t)

dt
=

1

2

i−1∑
j=1

Ki−j,jni−j(t)nj(t)− ni

∞∑
j=1

Ki,jnj(t) (2.3)

for i = 1, 2, 3, ..., with the initial conditions ni(0) = n
(0)
i ≥ 0.

The above equation is known as the discrete coagulation equation. The complexity of the above
system is dependent on the form of the kernel Ki,j . The function Ki,j is known as the coagulation
kernel. It describes the intensity of the particle interactions between particle classes i and j. The
coagulation kernel is non-negative and symmetric, i.e. Ki,j ≥ 0 and Ki,j = Kj,i. Different ker-
nels exist in the literature based on different applications. Detailed discussion of various kernels
can be seen in the next section. The unknown non-negative function ni(t) is the concentration of
particles with size i, i ≥ 1.

The term 1
2

∑i−1
j=1 Ki−j,jni−j(t)nj(t) is known as the birth term and ni

∑∞
j=1 Ki,jnj(t) is known

as the death term.
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2.2.1 Continuous form of the aggregation equation

Müller (36) derived the continuous form for the above equation as an integro partial differential
equation that is given as

∂n(t, x)

∂t
=

1

2

∫ x

0

K(t, x− y, y)n(t, x− y)n(t, y)dy − n(t, x)

∫ ∞

0

K(t, x, y)n(t, y)dy, (2.4)

with the initial condition n(0, x) = n0(x) ≥ 0.
The Kernel K(t, x − y, y) describes the coagulation of particles of size x − y with particles of
size y. The first term on the right hand side of (2.4) describes birth of the particles. The second
term on the right hand side of the equation (2.4) describes the death of the particles.

Mathematical classification

Mathematically the integral operators of (2.4) are classified as follows

• The birth term of the coagulation equation (2.4) is a nonlinear Volterra integral operator,

• The death term of the coagulation equation (2.4) is a quasilinear Fredholm integral opera-
tor.

Remark 2.1 One should note that in the discrete as well as in the continuous case the time t is
always a continuous coordinate. The difference is in the property coordinate x (volume or mass)
only.

Moments of the aggregation equation

The moments of the aggregation equation play a vital role in characterizing the properties of the
particle distribution. The jth moment of the particle size distribution n(t, x) of the aggregation
equation (2.4) is defined as

µj =

∫ ∞

0

xjn(t, x)dx. (2.5)

The moments represent some important properties of the distribution. The zeroth (j = 0) and
first (j = 1) moments are proportional to the total number and the total mass of particles respec-
tively. In addition to the first two moments, the second moment of the distribution will be used
to compare numerical results, see (30). The second moment is proportional to the light scattered
by particles in the Rayleigh limit (18) and is used in atmospheric sciences for study of the rain
drop coagulation process.
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2.3 Scaling of the equations
For analysis of a particle system one needs to evaluate the change in the population of particles
in the dispersed phase. It involves both, a local and a global environment. The local environment
involves the particle properties like diameter, volume, mass, ...etc. These are the state variables.
The global environment consists of the space variables.

Usually for particulate systems one considers the influence of the local properties, and the effect
of the global environment is neglected with the assumption of a homogenized medium. But when
we do modelling one needs to consider the global environment, in order to understand whether
the system is a homogenized or not. To understand the particle interactions, we need to consider
the physical description of the system. For this purpose we need to do dimensional analysis.

Dimensional analysis is applied in order to remove the influence of the arbitrary choice of phys-
ical units for the systems. In the dimensionless form we can determine the influence of large and
small terms in the system in order to simplify it.
To discuss the concepts of dimensional analysis, we need the following definitions:

• We define the mass M of a representative particle by using the unit kg = kilogram.

• We define the volume for two physical quantities:

1. Volume of fluid as Vfluid and has the dimension length L3 for notational purpose we
write it as Lfluid, which is an external parameter corresponding to the space coordi-
nate with unit L = m.

2. Volume of particles as Vparticles and has the dimension length L3 for notational pur-
pose we write it as Lparticles, which is an internal parameter corresponding to the
particle property with unit L = m.

• We define time as T with unit T = s.

Remark 2.2 Here we wish to give a note on particle number density n(t, x). The population
is described with the use of suitable external or internal or both the variables, usually number
of particles, sometimes with other variables such as mass (extensively used in crystalization
process), length (suitable to describe growth process) or volume of particles.

2.3.1 Dimensional analysis for discrete equation
• Particle concentration ni(t) is defined as the number of particles per unit volume of the

fluid and has the dimension L−3
fluid

• The coagulation kernel Ki,j is defined as the number of particle interactions in unit volume
of fluid per unit time and has the dimension L3

fluidT
−1
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2.3.2 Dimensional analysis of the continuous equation
Case 1:

• The particle concentration n(t, x) is defined as the number of particles per unit volume of
fluid per unit particle volume and has the dimension L−3

fluidL
−3
particle

• Dimension of the kernel K(t, x, y) is L3
fluidT

−1

Case 2:

• Suppose that for the continuous equation we have dimension of n(t, x) as number of par-
ticles per unit volume of particles. That is we are considering the number density as a
function of time and material volume with the dimension L−3

particle.

• Dimension of the kernel K(t, x, y) is T−1. This is usually called a collision frequency
kernel in the literature.

2.3.3 Number density selection and dimensional analysis of the kernel in
applications

When we are trying to use this aggregation equation for a particulate process, the above dimen-
sional analysis can be used as follows:

In the study of aerosol sciences the particle volume is not effective compared to the volume of
the air. So in such models the discrete kernel is widely used by considering the number density as
a function of fluid and time. In this case the discrete kernel K(t, x, y) has the dimension L3

airT
−1.

In a fluidized bed the volume of the bed is not constant. Therefore the porosity of the bed changes
with the time. So in such situations it is necessary to consider both, the volume of fluid and vol-
ume of the particles in the calculation of particle concentration. Since the porosity is not constant
in our DPM, we consider the case 1 and the kernel has the dimension L3

fluidT
−1.

As we stated earlier, the number density can be a function of any material coordinate. In certain
applications the mass of the particles is important compared to volume of the particles.

In crystalization processes, particles are formed as a result of change in the thermodynamics of
the material. So in such processes the number density solely depends on the amount of material
present in the vessel. Therefore we can replace the number density as a function of material and
time, and having the dimension M−1L−3. In this case the aggregation kernel has the dimension
of ML3T−1. Here L3 represents the volume of the vessel.

In case of evaluating the numerical solution of the population balance equations with growth,
breakage, aggregation and nucleation terms, the number density plays a vital role. One needs
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to pay considerable attention to descritizing the equation satisfying the number and mass con-
servation properties. A detailed discussion of numerical problems for various number density
representations arising in crystallization modeling can be found in Costa et al. (9).

2.4 Properties of agglomeration kernels
Population balance equations are applied to determine the particle number density distribution in
a macroscopic level. A binary agglomeration equation for a well mixed system is given as

∂n(t, x)

∂t
=

1

2

∫ x

0

K(t, x− y, y)n(t, x− y)n(t, y)dy − n(t, x)

∫ ∞

0

K(t, x, y)n(t, y)dy, (2.6)

and n(0, x) = n0(x) ≥ 0, where K(t, x, y) is the agglomeration kernel. The equation (2.6)
describes the number density distribution as a function of one particle property and time. In
order to understand the agglomeration process, one needs to explore the physical significance
and mathematical nature of the agglomeration kernel. Up to now there is no proper kernel to
describe the particle size distribution for fluidized bed granulation. In the current section we are
exploring the properties of different existing kernels and their usage.
The agglomeration kernel K(t, x, y) represents the rate at which particles of volume x − y and
y aggregating to form particle of volume x. The complexity of solving the equation depends on
the form of the kernel K(t, x, y) and it satisfies the following properties

• The kernel is symmeric i.e., K(t, x, y) = K(t, y, x)

• non-negative K(t, x, y) ≥ 0 for all x, y > 0

• The kernel is a continuous function on (0,∞)× (0,∞)

• Most kernels are homogeneous functions of non-negative degree

• By scaling time, we can eliminate a multiplicative constant from the kernel, e.g. K(x, y) =
xy instead of K(x, y) = cxy for constant c

Sastry (46) proposed that the aggregation kernel is a product of two factors, and it is now common
practice to view the aggregation kernel as the product of agglomeration efficiency K0(t) and
collision frequency K(x, y), i.e.

K(t, x, y) = K0(t)K(x, y). (2.7)

The discrete variant of the agglomeration kernel Ki,j among the classes i and j is defined as
to the product of the collision frequency Ki,j of the particles and the agglomeration efficiency
K0(t) i.e.,

Ki,j(t) = K0(t)Ki,j.
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The first term, K0(t), is the efficiency rate constant, which is dependent on various process
paramters like kinetic energies of particles, their trajectories and collision orientation, particle
characteristics (e.g. mechanical properties and surface structure), viscous dissipation between
approaching particles and inter-particle forces, and binder properties, coalscence mechanism,
...etc. Generally K0(t) is assumed to be remain constant throughout the experiment and is size-
independent.

The collision frequecy K(x, y) or Ki,j is a function of particles size, gas velocity, system tem-
perature,...etc. Most of the models assume that the collision frequency is a function of particle
size. Determination of collision frequency function is a complex task in most of the models and
it is very difficult to determine from the experiments. In the present thesis we try to fix a size
dependent collision frequency function through the simulations.

As we have seen in the previous paragraphs that the agglomeration kernel can be resolved as
product of time dependent and internal variable (length, volume, mass, ... etc) dependent com-
ponents. The time dependent component is a function of the agglomeration process, where as the
internal variable dependent component is a function of transportation process. In the fluidized
bed the the transportant of particles is due to gas flow. Therefore this function is determined by
flow of the gas inside the bed. Based on this flow mechanism of gas we have different kernels.
In the next subsections we are giving a detailed account of various kernels used for fluidized bed
granulation.

We have different collision frequency functions for different kernels in the literature based on
theoritical, empirical and experimental calculations and observations. The Table 2.1 below gives
an account of different collision frequency functions.

2.4.1 Theoretical kernels

We have very few kernels in the literature that are derived theoretically, and these kernels are
determined based on the mechanism producing relative motion of the particles. In the following
sections we gives a brief discussion on the derivation of the theoritical kernels and their physical
significance.

Brownian kernel

Collisions among the particles of size larger than the mean free path of the gas are diffusion
limited. Smoluchowski derived an expression for the collisions of the spherical particles with
volume x

1
3 and y

1
3 suspended in an infinite medium (gas) in 1917 (49). During this derivation he

assumed that the particle motion is random, diffusive. The collision frequency function is given
as

K(x, y) = 4π(Dx + Dy)(x
1
3 + y

1
3 ) (2.8)
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where Dx, Dy are the diffusion constants for the particle classes of volumes x
1
3 and y

1
3 . If the

Stokes-Einstein relation holds for the diffusion coefficient, then this expression becomes

K(x, y) =
2kT

3µ
(x

1
3 + y

1
3 )(x−

1
3 + y−

1
3 ) (2.9)

where k is the Boltzmann constant, T the absolute temperature, µ the viscosity of the medium.
The Stokes-Einstein relation for the classes i and j is given as

DijRij = D1r1

(
1

ri

+
1

rj

)
(ri + rj)

The collision surface among 10 classes of particles for the Brownian kernel is plotted in the
figure below. In this figure we can observe the large number of collisions among the large-small
size classes and the lower number of collisions among large-large classes.
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Remark 2.3 The Brownian kernel corresponds to disperse systems in an open domain, e.g., a
typical aerosol: colloidal sol, liquid droplets, or air bubbles suspended in an agitated liquid.
In a fluidized bed the particle motion is induced by the gas flow rather than random, diffusive
motion. Therefore the Brownian kernel will not be a suitable choice.

Remark 2.4 For monodisperse systems i.e., by setting x = y, the collision frequency is given by

K(x, x) =
8kT

3µ
= c, (2.10)

where c is a constant independent of particle size.
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Shear kernel

Smoluchowski (49) derived the shear kernel while modelling the discrete aggregation equation.
He derived the shear kernel in terms of geometrical property, volume with the following assump-
tions

• Particles are spherical in shape

• Particles move in rectilinear paths

• There is no fluid interaction with the particles

• Particles move due to their shear motion

• Brownian motion does not exists in the system

The collision frequency function for shear motion is given as (49)

K(x, y) =
4

3
Γ(x

1
3 + y

1
3 )3, (2.11)

where Γ is the laminar shear velocity of the gas. The derivation of this kernel is explained in
Appendix A.
The collision surface among 10 classes of particles for the shear kernel is plotted in the figure
below. In this figure we can observe that large number of collisions among the large-large size
classes and less number of collisions among small-small classes.
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Remark 2.5 This kernel is widely used in fluidized beds and granulators to model the population
balance equations. In the fluidized beds the particles move due to the gas flow. In the granulators,
the particle mixing is due to impeller. These two mechanisms cause the laminar shear flow as
opposed to the random fluctuations.
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Remark 2.6 This shear kernel is derived based on geometric approximations of particle paths.
So this kernel is not exact, but it is an upper bound.

Equipartition of kinetic energy kernel

This kernel is based on the assumption that the kinetic theory of granular flow (KTGF) provides
an acceptable description of granular flow in a high shear mixer. Hounslow (22) derived an
agglomeration kernel based on the following assumptions:

• The kinetic theory of granular flow is an extension of the classical kinetic theory of dense
gases.

• The particles are assumed to be spherical, smooth and elastic.

• In a high shear mixer the granules adopt significant rotational velocities they also display
noticeable deviations from the local average velocity.

• Each individual particle velocity v̄ is decomposed into a local mean velocity ū and a ran-
dom fluctuating velocity V̄ described by v̄ = ū + V̄ .

By using the above assumptions, he derived a kernel which is known as Equi-partition of Kinetic
Energy (EKE) kernel given as

K(t, x, y) = K0(t)(x
1
3 + y

1
3 )2

√
1

x2
+

1

y2
, (2.12)

where x, y > 0, and K0(t) is given separately in concrete situations. The collision surface of the
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EKK kernel is plotted in the above figure. We can observe that the collision surface is almost
resembling to the Brownian kernel with almost twice the number of collisions due to the local
mean velocity supplied by the high shear mixer.
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Remark 2.7 Kinetic theory assumes that all collisions are binary and instantaneous. In dense
flows which are commonly found in high shear mixers, this assumption may not be valid.

Remark 2.8 This kernel is widely used in crystallization processes. Here the crystals are formed
as a result of stirrer movement and thermodynamic forces which cause the random deviations to
the local velocity caused by the stirrer rotations.

2.4.2 Empirical kernels
Based on intuitive arguments, some of the requirements to be satisfied by the aggregation kernels
can be specified. Most of the empirical kernels are determined based on these arguments. But
most of the time the validity of the kernels are questioned due to lack of their physical relevance
to the experimental results. Several empirical functional forms of the kernels were fitted to the
experimental data i.e., empirical kernels are not unique. In spite of all these difficulties, they
were widely used in the literature, because explicit solutions are available, and the mathematical
properties of the aggregation equation are easily explored.

Size independent or constant kernel

This most simple kernel available in the literature was proposed by Kapur and Fuerstenau (26).
In this kernel it is assumed that the particle interactions are random with no higher probability
for agglomeration between any two preferred sizes. That means the kernel is constant throughout
the experiment, which is very far from the real fluidized bed granulation. But the simplicity of
the kernel gives the advantage of having an exact solution to the aggregation equation and is used
as a test case in evaluating the efficiency and accuracy of the numerical schemes applied to the
population balance equations.
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The collision frequency surface among the classes i and j can be seen in the above figure for the
constant kernel K(t, x, y) = 2.
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Remark 2.9 The continuous models with this kernel have the following limitations:

• It provides no information on the higher moments of the size distribution.

• The models tends to break down for powders of comparatively large specific surface area.

Kapur kernel

Kapur and Fuerstenau(28) proposed a population balance equation for nonrandom aggregation
of discrete size granules. This equation differs from Smoluchowski’s well known aggregation
equation, where the aggregation rate is proportional to the product of number concentrations of
the two reacting species.

On the other hand, for a given size distribution the concentration of particles in a loosely packed
granulating bed is more or less fixed by the packing contraints. Indeed, to a first approximation
the packing characteristics (bed porosity and coordination number) are not expected to change
appreciably in course of granulation. In this situation, an agglomerate is most likely to encounter
only its nearest neighbours which form a cage around it. Consequently, the aggregation in granu-
lation was stipulated in terms of the product of the number of species of one kind with the number
fraction of the second kind. This kind of aggregation process is also known as pseudo-first-order
rate process.

They proposed the following population balance equation for a batch, restricted-in-space, gran-
ulation system as

dni(t)

dt
= −λ(t)ni(t)

N(t)

∞∑
j=1

nj(t) +
λ(t)

2N(t)

i−1∑
j=1

ni(t)ni−j(t) (2.13)

where ni(t) = Ni(t)
Vbed

is the number of granules of size xi by volume Vbed at time t, N(t) =∑I
i=1 Ni is the total number of granules in the batch, and λ(t) is the specific aggregation rate

function. Here one should remember that λ(t) is not the same as K(t, x, y).

Kapur (27) proposed a phenomenological kernel based on an empirical rate function which, in
continuous sample space, is given by

λ(t) = β0
(x + y)a

(xy)b
(2.14)

where β0 is a function of water content, particle size distribution and surface area of the powder,
nature of the balling device, etc. It does not depend on the granulate size. The other term reflects
the non-random nature of the mechanism governing the process. The adjustable parameters a
and b as well as β0 should provide sufficient flexibility for a realistic equivalent mathematical
representation of the kinetics.
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Remark 2.10 • Although the kernel (2.14) gives satisfactory results when compared with
experimental data, it is only an empirical one.

• This kernel did not give any physical insight into the granulation mechanism except for the
non-random nature.

Remark 2.11 Some of the moments of the similarity function may turn out to be physically
meaningless as reported by Wang, and Kapur (27). This is due to the presence of the singularities
at x = 0 and x = ∞.

Sastry kernel

Sastry (46) proposed an empirical kernel for nonrandom aggregation based on experimental ob-
servations and intutive arguments. He considered that the driving force or potential for aggrega-
tion is determined by the surfaces, and that resistance for further deformation is offered by the
volumes of the participating species. Thus, the larger the surface area of an agglomerate is, the
more potential it has to grow, while at the same time it offers more resistance. Based on these
ideas, the following functional form that satisfies most of the above described criteria is chosen:

K(t, s, s′, x, y) = K0(t)(s + s′)

(
1

x
+

1

y

)
(2.15)

where s, s′ and x, y are the surface area and volume of the particles respectively. Given ρ, the
apparent agglomerate density, the above equation becomes

K(t,m,m′) = K0(t)(36πρ)
1
3 (m2/3 + m′2/3)

(
1

m
+

1

m′

)
. (2.16)

Therefore

K(m, m′) = (m2/3 + m′2/3)

(
1

m
+

1

m′

)
. (2.17)

The above kernel can be written interms of volume as

K(x, y) =
(
x

2
3 + y

2
3

) (
1

x
+

1

y

)
(2.18)

Remark 2.12 The empirical kernel K(x, y) is a homogeneous function and has degree or order
(−1/3). The order of the kernel has a major effect on the shape and evolution of particle size
distribution. In general, the higher the kernel order, the broader the particle size distribution
that results.



24 CHAPTER 2. POPULATION BALANCE EQUATIONS

2.4.3 Experimental kernels
Two approaches are widely used to extract the parameters of the agglomeration kernels from the
experimental data. Those two are the integral and differential approaches. In this section we are
describing these two approaches for evaluating the parameters of the aggregation kernels.

In Chapter 2.4 we have neglected the time dependency of the kernels, but in a more general
approach one can supply an additional time dependent factor K0(t) and write it as

K(t, x, y) = K0(t)K(x, y).

Therefore modeling of the agglomeration kernel involves these two functions. Frequently an
integral approach is used to determine aggregation rates, in which a kinetic model, containing a
number of adjustable parameters, is fitted to an integral form of the rate equations. For a given
values of the parameters the experimental data may be simulated by integrating a combination
of the rate and kinetic equations. The parameters are usually selected to optimize the fit of the
simulated results to those obtained experimentally.

There exists an empirical size-dependent kernel proposed by Kapur (27) for non-random aggre-
gation process of the form

K(x, y) =
(x + y)a

(xy)b
,

where a and b are the empirical parameters to be evaluated. Peglow (39) used this empirical
kernel for modelling the fluidized bed spray agglomeration. He evaluated the values of the pa-
rameters a and b by using a least squares fit to the experimental data. The values of a and b are
0.7105 and 0.062. He calculated the time dependent parameter K0(t) for each experiment and
observed that the agglomeration rate K0(t) is independent of process parameters. For details of
the process parameters and experimental results, we refer to Peglow (39).

Hounslow (23) developed a technique to determine nucleation, growth and aggregation rates
from steady-state experimental data. Having first determined the moments of the experimental
size distribution, he determined the growth, aggregation and nucleation rates from these mo-
ments. For details of the technique we refer (23).
MMMfT-1.2.cgi.html
Bramley et al. (6) developed a differential technique to determine the growth and aggregation
rates from experimental data. For size-independent aggregation in a batch system, he calculated
the rate of change of zeroth and third moments, using length as the internal coordinate. They are
given as

dµ0

dt
= −1

2
K0µ

2
0 (2.19)

dµ3

dt
= 3Gµ2 (2.20)
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where µ0, µ2 and µ3 are the zeroth, second and third moments. So if the rates of change of the
zeroth and third moments are known, values of the aggregation rate K0 and growth rate G can
be calculated directly from the experimental data using the equations (2.19), (2.20).

The differential method outlined above is valid only for size-independent growth and aggrega-
tion. For evaluating the rate constants of size dependent kernels, Bramley et al (6) modified the
above differential technique by including a source function. Details of the modified differential
technique can be see in (6). The differential technique is simple, but its main short coming is that
we cannot estimate the errors of fitting.

He compared the simulated and experimental particle size distributions and their moments by
using sum of square of errors. The Sum of Squares of Errors (SSE) is defined as

SSE =
∑

i

(Ni,sim −Ni,expt)
2 (2.21)

where Ni,sim, Ni,expt are number of particles in the ith size interval from simulation and exper-
iment. By using SSE it was shown that it is possible to distinguish between the kernels and
determine which is appropriate for modeling the aggregation of calcium oxalate monohydrate. It
was found that the size independent kernel is most appropriate.

Recently Adetayo et al. (1) proposed a two-stage sequential size independent kernel for the drum
granulation of the fertilizers. The shifting criteria is based on the critical effective size of the
granule. The kernel is given as

K(t, x, y) =

{
k, if W ≤ W ∗

0, if W > W ∗ (2.22)

where W is known as the effective volume and W ∗ is the critical limit of particle volume having
enough binder for possible agglomeration. This critical volume W ∗ is also referred to as cutoff
size and it varies with both binder and material properties, and can be determined by micro level
studies of the agglomeration process.

The effective volume W is defined as

W =
(xy)b

(x + y)a
,

where a and b are empirical constants. These constants are measurable due to their close phys-
ical relationship to the process of particle collision, deformation, and agglomeration process.
Detailed characteristics of the cutoff kernel (2.22) with respect to the empirical constants a, b
and cutoff size W ∗ are explained in (1). Adetayo (1) used the coalescence mechanism based
on a physical theory developed by Norio et al. (37) to calculate the time dependent part of the
coagulation kernel K0(t).
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Population balance equations are widely applied in nano particle preparation and their characteri-
zation. Hintz et al. (19) applied population balance equations involving aggregation and breakage
in the preparation of titanium dioxide nanoparticles. They evaluated an equilibrium constant as
well as an agglomeration and a breakage constant were calculated for a real polydisperse system
on the basis of particle and aggregate size distributions.



Chapter 3

Discrete Particle Model

Fluidized beds are widely used in many industries, for example fertilizer industries, food in-
dustries, etc. Population balance equations are widely applied to understand the quality of the
final product. The most important parameter in these population balance equations is the kernel.
Modelling of the kernel involves the understanding of the particle flow inside the fluidized bed.

Fluidized beds involve multiphase flows. Understanding the multiphase flow inside bed is very
difficult by using experimental techniques. Sometimes these experimental techniques may dis-
turb the flow field. In recent times computer simulations are widely used to understand the flow
inside the bed.

In the present chapter we explain the model which is used to understand the flow mechanism
inside the fluidized bed. This is a two phase flow model consisting of solid particles in gas flow.
This model is known as the Discrete Particle Model (DPM) and was developed by Anderson et
al. (2). We treat the gas phase as a continuous phase, where as each solid particle is treated as a
single entity. The gas-solid phases are coupled through empirical relations and the solid particle
interactions are calculated through hard sphere collision model.

3.1 Introduction

In this model we considered a rectangular fludized bed within a Lagrangian frame work. Ini-
tially the particles with positions xα ∈ R3

+ are placed inside the bed domain Ω and the gas is
supplied from the bottom of the bed with a minimum fluidization velocity u under isothermal
conditions. The collisions of the particles with the bed walls are considered as elastic reflections.
The schematic representation of the bed can be seen in Figure 3.1.

27
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Depth= 0.05m

Width = 0.1 m

Height = 0.3 m

Gas inlet

Gas outlet

Ω

Figure 3.1: Schematic representation of the fluidized bed

3.2 The discrete particles
The motion of each individual particle α with mass mα and volume Vα is calculated from New-
ton’s second law

mα
dvα

dt
= mα

d2xα

dt2
= mαg +

Vαβ

(1− ε)
(u− vα)− Vα∇p + Fcontact,α, (3.1)

where vα is the velocity and xα is the position vector of the particle α. The first three terms on
the right hand side of the equation are due to external forces acting on the particles, while the
fourth term is due to particle collisions. The first term on the right hand side is due to gravity.
The second term is due to the drag force where β represents an inter-phase momentum exchange
coefficient as it usually appears in two-fluid models. The third term is the pressure gradient and
the fourth term is due to contact forces, i.e. hard sphere collisions.

The angular momentum of the particles is computed with

Iα
dωα

dt
= Tα, (3.2)
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where Tα is the torque and Iα is the moment of inertia. The moment of inertia for the spherical
particles with radius Rα is equal to Iα = 2

5
mαR2

α.

The inter-phase momentum transfer coefficient β is frequently modelled by combining the Ergun
(13) equation for dense regimes (ε < 0.8)

FErgun =
βd2

α

µ
= 150

(1− ε)2

ε
+ 1.75(1− ε)Reα, (3.3)

and the correlation proposed by Wen and Yu (53) for more dilute regimes (ε > 0.8)

FWen,Y u =
βd2

α

µ
=

3

4
CdReα(1− ε)ε−2.65. (3.4)

The drag coefficinet Cd is a function of the particle Reynolds number

Cd =

{
24

Reα
(1 + 0.15(Reα)0.687) if Reα < 1000

0.44 if Reα ≥ 1000
.

The particle Reynolds number in this case is defined as

Reα =
ερ |u− vα| dα

µ
,

where dα is the diameter of the particle α and µ is the viscosity of the gas.

Normally segregation occurs due to the difference in size or density of the particles. This phe-
nomenon occurs due to difference in drag force and/or gravity. As a result of this difference,
defluidization occurs in the fluidized beds. Small/low density particles will move to the top of
the layers and large/high density particles moves to the bottom layers of the bed.

The present CFD models are not able to predict it accurately. The present coeffecients are not
valid for a wide range of particle diameters, densities, etc. Recently a new coefficient was pro-
posed by Beetstra et al. (3), which is obtained based on lattice Boltzmann simulations. This
corrected coefficient gives better results for polydisperse particle systems, which accounts for
the effect of the drag coefficient for polydispersity. The new drag coefficient is given as

Fi(ε, 〈Re〉) =
(
εyi + (1− ε)y2

i + 0.064εy3
i

)
F (ε, 〈Re〉) (3.5)

where yi = di

〈d〉 , 〈Re〉 = ρu〈d〉
µ

, 1
〈d〉 =

∑
i

ξi

di
, with ξi is the mass fraction of the class i. In the

equation (3.5), F (ε, 〈Re〉) is the normalised drag force of a monodisperse system at the same
porosity and at Reynolds number 〈Re〉. This new F (ε, 〈Re〉) is given as

FBeetstra = 10
1− ε

ε2
+ ε2

(
1 + 1.5

√
(1− ε)

)
+

0.413Re

24ε2

(
ε−1 + 3ε(1− ε) + 8.4Re−0.343

1 + 103φRe−0.5−2φ

)
,(3.6)
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where φ = 1− ε, Re = ρU〈d〉
µ

and U is the relative velocity between a particle and the fluid flow.

In the segregation process we have the formation of particle layers. As a result of this we expect
more collisions among the neighbour classes compared to far neighbour classes.

3.3 The gas-phase
The gas-phase hydrodynamics are calculated from the volume-averaged Navier-Stokes equa-
tions.
Continuity equation of gas phase:

∂(ερ)

∂t
+∇ · (ερu) = 0. (3.7)

Momentum equation of gas phase:

∂(ερu)

∂t
+∇ · (ερu⊗ u) = −ε∇p−∇ · (ετ)− S + ερg. (3.8)

In the present work we considered an isothermal system, i.e. constant temperature. The three-
dimensional motion which implies that four basic variables have to be specified. The four basics
variables in this model are the pressure, p and the three velocity components of the gas-phase,
ux, uy and uz. The void fraction ε, and the momentum exchange source term S are obtained from
solid phase and will be explained in the Section 3.4.

The gas-phase density ρ is related to the pressure p and the gas temperature T by the ideal gas
law

ρ =

(
M

RT

)
p, (3.9)

where R is the gas constant and M is the average molecular weight of air.

The viscous stress tensor τ is assumed to depend only on the gas motion. The general form for a
Newtonian fluid has been implemented as

τ = −
[(

λ− 2

3
µ

)
(∇ · u)I + µ

(
(∇u) + (∇u)T

)]
,

where the bulk viscosity λ can be set to zero for gases and µ is the gas phase shear viscosity. The
constant I denotes the unit tensor.

Remark 3.1 Note that no turbulence modelling was taken into account. For bubbling beds this
can be justified since the turbulence is damped out in the bed due to the very high solid fraction.
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outflow boundary
∂Ω3

Wall surface
∂Ω2

Bed particles
Ω

∂Ω2

Wall surface

∂Ω1

inflow boundary

Figure 3.2: Initial and boundary conditions

3.3.1 Initial and boundary conditions

Initial conditions for Newtons equations of motion:

xα(0) ∈ Ω and ẋα(0) ∈ R3.

Boundary conditions for Newtons equations of motion:

Elastic reflections of xα ∈ ∂Ω(= ∪3
i=1∂Ωi).

Initial conditions for Navier-Stokes equations:

u(0, x) = u0(x) and p(0, x) = p0(x) are given functions.

Boundary conditions for Navier-Stokes equations:

u|∂Ω2 = 0, u|∂Ω1 is a given function.
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3.4 Two-way coupling
An important issue in granular dynamics simulations of two-phase flow is the two-way coupling.
The equations for the gas-phase are coupled with those of the particle phase through the calcu-
lation of porosity and the inter-phase momentum exchange. All relevent quantities should be
averaged over a volume, which is large compared to the size of the particles, and in such a way
that they are independent of the Eulerian grid size. In the following paragraph it is explained
how two-way coupling is achieved in the model used in this work.

The two-way coupling between the gas-phase and the particles is enforced via the sink term S in
the momentum equations of the gas-phase, which is computed from

S =
1

Vcell

∫
Vcell

Nα∑
α=0

Vαβ

(1− ε)
(u− vα)D(x− xα)dV, (3.10)

where Vcell is the volume of the Eulerian grid cell. The distribution function D ensures that the
reaction force acts as a point force at the position of the particle in the system. In the numerical
implementation this force per volume term is distributed to the four nearest grid nodes using the
area weighted averaging technique described in Section 3.5.

A straightforward method for the calculation of the porosity was given by Hoomans (20). In his
work, the porosity in an Eulerian cell is calculated as follows

εcell = 1− 1

Vcell

∑
∀i∈cell

f i
cellV

i
α, (3.11)

where f i
cell is the fractional volume of particle i residing in the cell under consideration. This

method works well when the size of the grid cells is much larger than that of the particles, i.e.
Vcell >> Vα.

From a numerical point of view, sometimes it is desirable to obtain a grid-independent solution.
To resolve this, it is required to use small computational cells in order to resolve all relevant de-
tails of the gas flow field. Unfortunately, the method of Hoomans (20) generates problems once
Vcell approaches Vα. That is, computational cells can be fully occupied by a particle, which leads
to numerical problems. The calculation of the porosity and the two-way coupling between the
gas-phase and the particles through the fluid-particle interactions requires the ratio between the
size of the computational grid cells and the size of the particles to be large. To overcome these
contradictory demands regarding the computational grid Link et al. (33) developed an alternative
inter-phase coupling method for the DPM.

In this method the porosity and the force exerted by the gas-phase on the particles are calculated
in a grid-independent manner, thus allowing a sufficiently fine solution of the gas flow field. Link
et al. (33) represent the particles as porous cubes, where this geometry was selected becasue of
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its computational advantages.

The diameter of the cube depends on the particle diameter and a constant factor a. The constant
factor a is defined as the ratio between the cube and particle diameter.

a =
dcube

dα

(3.12)

The volume of the cube should be larger than or equal to the volume of the particle, resulting in

a ≥
(π

6

) 1
3 ≈ 0.8. (3.13)

In practice, a typically takes a value from 3 to 5. In the numerical implementation, we had this
a as a parameter of the window function. The porosity of a porous cube representing a particle
can be easily calculated as

εcube =
Vα

Vcube

=
π

6a3
.

Finally, the porous cube representation can be used to calculate the gas fraction in a computa-
tional cell in a manner analogous to the equation (3.11) as

εcell = 1− εcube

∑
∀i∈cell

f i
cell, (3.14)

where f i
cell is the volume fraction of the cell under consideration that is occupied by the cube i.

The incorporation of the cube representation to the model eliminates some problems, but also
introduces a new problem. Near the wall, the cube can overlap with the wall. The cube is not
allowed to overlap with the wall because the particles do not interact with the wall except for
collisions.

The solution for this problem is to mirror the part of the cube back over the wall. The details
and implementation issues of this mirroring procedure for various possible cases are explained
in (16).

3.4.1 Hard sphere collision model
The collision model described in this simulation is based on the hard-sphere model developed
by Hoomans et al. (20), which considers the binary interactions of the spherical particles. In this
model it is assumed that the interaction forces are impulsive and therefore all other finite forces
are negligible during a collision.
Consider two colliding spherical particles a and b with position vectors xa and xb having radii
Ra and Rb, see 5.3. The particle velocities prior-to-collision are indicated by the subscript 0 and
the relative velocity at the contact point c is defined as follows

vab := va,c − vb,c = (va − vb)− (Raωa + Raωb)× nab. (3.15)
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|ra − rb|

vb

va

c

Rb

ωb

b

tab

a

ωa

nabRa

x

y

z

b
a

rb ra

Figure 3.3: Hard sphere collision model

The normal and tangential unit vectors are respectively defined as

nab =
xa − xb

|xb − xa|
(3.16)

tab =
vab,0 − nab · vab,0

|vab,0 − nab · vab,0|
. (3.17)

As defined in Hoomans (20, p.33) "For a binary collision of these spheres, the following equa-
tions can be derived by applying Newton’s second and third laws

ma(va − va,0) = −mb(vb − vb,0) = J, (3.18)

Ia

Ra

(ωa − ωa,0) = − Ib

Rb

(ωb − ωb,0) = −nab × J. (3.19)

The moment of inertia of a particle of mass m, radius R is given by

I =
2

5
mR2. (3.20)

The equations (3.18) and (3.19) can be rearranged to obtain

vab − vab,0 =
7J− 5nab(J · nab)

2mab

, (3.21)
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where mab is the reduced mass given by

mab =

(
1

ma

+
1

mb

)−1

. (3.22)

In order to calculate the post-collision velocities, a closure model consisting of three parameters
is used to describe the impulse vector J.

The first parameter is the coefficient of (normal) restitution (0 ≤ en ≤ 1),

vab · nab = −en(vab,0 · nab). (3.23)

The second parameter is the coefficient of (dynamic) friction (µ ≥ 0),

|nab × J| = −µ(nab · J). (3.24)

The third parameter is the coefficient of tangential restitution (0 ≤ β0 ≤ 1),

nab × vab = −β0(nab × vab,0). (3.25)

Following (20, p.36), "Combining equations (3.21) and (3.23) yields the following expression
for the normal component of the impulse vector:

Jn = −(1 + en)mab(vab,0 · nab). (3.26)

For the tangential component, two types of collisions can be distinguished that are called sticking
and sliding. If the tangential component of the relative velocity is sufficiently high in comparison
to the coefficients of friction and tangential restitution that gross sliding occurs throughout the
whole duration of the contact, the collision is of the sliding type. The non-sliding collisions are
of the sticking type. When β0 is equal to zero the tangential component of the relative velocity
becomes zero during a sticking collision. When β0 is greater than zero in such a collision, reversal
of the tangential component of the relative velocity will occur. The criterion to determine the type
of collision is as follows:

µJn ≥
2

7
(1 + β0)mab(vab,0 · tab) sticking,

µJn <
2

7
(1 + β0)mab(vab,0 · tab) sliding.

For collisions of the sticking type, the tangential impulse is given by:

Jt = −2

7
(1 + β0)×mab(vab,0 · tab). (3.27)

For collisions of the sliding type, the tangential impulse is given by:

Jt = −µJn. (3.28)
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The total impulse vector is then simply obtained by addition:

J = Jnn + Jtt. (3.29)

The post-collision velocities can now be calculated from the equations (3.18) and (3.19).

In particle-wall collisions the mass of particle b (i.e. the wall) is infinitely large which makes all
terms 1

mb
equal to zero. It is possible to implement a moving/rotating wall through the velocity

vectors vb and ωb but in the simulations performed for this work these velocities are all set equal
to zero."

The particle collision characteristics play an important role in the overall system behaviour, as
was shown by Hoomans et al. (21) and Goldschmidt (17). Hoomans (20) studied the effect of
the particles properties on the hydrodynamics of fluidized beds with homogeneous inflow condi-
tions. Influence of the coefficient of normal restitution en, friction µ and coefficient of tangential
restitution β0 on the fluidized bed for the two extreme cases en = 1.0, µ = 0.0 (ideal) and
en = 0.9, µ = 0.3 (non-ideal) were studied.

Therefore realistic collision properties of the particles are supplied to the model, i.e. the coef-
ficient of the normal and tangential restitution are respectively set to en = 0.97 and β0 = 0.1,
and the coefficient of friction is set to µ = 0.3. The values of the collision parameters for
particle-particle collisions were taken to be equal for particle-wall collisions. The influence of
the particle-wall intercation on the overall bed hydrodynamics was investigated as well. This
influence was found to be negligible. The trends observed in the pseudo 2-D simulations are
clearly confirmed in the 3-D simulations for the above parameters.

3.5 Numerical calculations
The numerical solution strategy applied to this model follows Hoomans (20). The flow diagram
of the numerical strategy is explained in the Figure 3.5. We used two different time steps for two
phases. For solving the continuous phase equations and the coupling terms, we use a constant
time step δtflow. While for particle-particle interaction a different time step is used, which de-
pends on the particle collision model, usually it is smaller than δtflow.

Apart from the existing code, we introduced a new subroutine as shown in the dotted box 3B
of the Figure 3.5. In this new subroutine 3B, we calculated the collisions among the particles
of different and the same size classes. We made proper modifications to the initial input box
1, according to the initial particle size distribution strategies. Different initial particle sizes for
pseudo 2-D and 3-D bed simulations are explained in the Chapter 5. We modified the code in the
fluid-particle interaction box 2, with the new drag coefficient given in Section 3.2.

For integration of Newton’s equations of motion, an explicit first order scheme is used to update
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END

yes

BEGIN: Set up initial condition

Apply particle-particle interaction and

t = t + δt, n =⇒ n + 1

Solve Navier-Stokes equations

Apply fluid-particle interaction

move particles

In:rn, Out: εn (explicit)
Determine porosity

In: vn−1
2un−1pn−1βn−1εn, Out: unpn

Calculate the

the particlesIn: vn+1
2rn, Out: vn+1rn+1 (explicit) collisions among

t < tend

In: vnunpnrn, Out: vn+1
2βn (explicit)

Figure 3.4: Flow diagram of the discrete particle model
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Figure 3.5: Area weighted averaging (20, p.68)

the velocities and the positions

vα = vα,0 +

(
dvα

dt

)
dt (3.30)

xα = xα,0 + (vα)dt. (3.31)

The right hand side of the Newton equations are calculated by using an area weighted averaging
technique. In this technique we obtains the local averaged value Q̄ of a quantity Q(i, j) from the
four surrounding computational nodes as shown in Figure 3.5.
Based on Hoomans (20, p.67) "The local averaged value is calculated as follows

Q̄ =
Ai,jQi,j + Aii,jQii,j + Aii,jjQii,jj + Ai,jjQi,jj

DXDY
(3.32)

where

Ai,j = (DX − δx)(DY − δy)

Aii,j = δx(DY − δy)

Aii,jj = δxδy

Ai,jj = (DX − δx)δy
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Figure 3.6: A typical computational cell in the staggered grid where key variables are evaluated

The distances δx and δy, necessary in this averaging technique, are calculated from the position
of the particle in the staggered grid."

The flow solver is the most complicated function of this model, therefore it needs some more
explanation. To solve the Navier-Stokes equations for the gas phase a standard finite difference
technique, employing a staggered grid to improve numerical stability, is used. The cells are la-
belled by indices i, j, and k located at their centers and a staggered grid configuration is applied.
According to this configuration the scalar variables, pressure p, porosity ε and the density of the
gas ρ are defined at the cell centers whereas the velocity components ux, uy and uz are defined
at the cell faces, as indicated in the Figure 3.5.

The Navier-Stokes equations are solved using the SIMPLE algorithm (38). An ICCG solver is
used to solve the sparse matrices. The main steps of the numerical scheme applied is given below.

We descritize the continuity equation (3.7) with a first-order time differencing and treating the
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convective fluxes implicitly as

(ερ)n+1
i,j,k − (ερ)n

i,j,k +
δt

δx

{
〈ερux〉n+1

i+ 1
2
,j,k

− 〈ερux〉n+1
i− 1

2
,j,k

}
(3.33)

+
δt

δy

{
〈ερuy〉n+1

i,j+ 1
2
,k
− 〈ερuy〉n+1

i,j− 1
2
,k

}
+

δt

δz

{
〈ερuz〉n+1

i,j,k+ 1
2

− 〈ερuz〉n+1
i,j,k− 1

2

}
= 0,

where n and n + 1 represents the old and new time level respectively.

The momentum equation (3.8) for the gas phase is descretized in the direction of x as
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The pressure and velocity terms are calculated implicitly, the stresses, gravity and a part of the
drag is taken into account explicitly,

An
i+ 1

2
,j,k

= (ερux)
n
i+ 1

2
,j,k

+
δt

δx

{
〈ερuxux〉ni,j,k − 〈ερuxux〉ni+1,j,k

}
+

δt

δy

{
〈ερuyux〉ni+ 1

2
,j− 1

2
,k
− 〈ερuyux〉ni+ 1

2
,j+ 1

2
,k

}
+

δt

δz

{
〈ερuzux〉ni+ 1

2
,j,k− 1

2
− 〈ερuzux〉ni+ 1

2
,j,k+ 1

2

}

+
δt

δx


(
ε(λ− 2

3
µ)

)n

i+1,j,k

(
(ux)n

i+3
2 ,j,k

−(ux)n

i+1
2 ,j,k

δx
+

(uy)n

i+1,j+1
2 ,k

−(uy)n

i+1,j− 1
2 ,k

δy
+

(uz)n

i+1,j,k+1
2

−(uz)n

i+1,j,k− 1
2

δz

)
−

(
ε(λ− 2

3
µ)

)n

i,j,k

(
(ux)n

i+1
2 ,j,k

−(ux)n

i− 1
2 ,j,k

δx
+

(uy)n

i,j+1
2 ,k

−(uy)n

i,j− 1
2 ,k

δy
+

(uz)n

i,j,k+1
2

−(uz)n

i,j,k− 1
2

δz

)


+ 2
δt

(δx)2

{
(εµ)n

i+1,j,k

(
(ux)

n
i+ 3

2
,j,k

− (ux)
n
i+ 1

2
,j,k

)
− (εµ)n

i,j,k

(
(ux)

n
i+ 1

2
,j,k

− (ux)
n
i− 1

2
,j,k

)}

+
δt

δy


(εµ)n

i+ 1
2
,j+ 1

2
,k

(
(ux)n

i+1
2 ,j+1,k

−(ux)n

i+1
2 ,j,k

δy
+

(uy)n

i+1,j+1
2 ,k

−(uy)n

i,j+1
2 ,k

δx

)
−(εµ)n

i+ 1
2
,j− 1

2
,k

(
(ux)n

i+1
2 ,j,k

−(ux)n

i+1
2 ,j−1,k

δy
+

(uy)n

i+1,j− 1
2 ,k

−(uy)n

i,j− 1
2 ,k

δx

)


+
δt

δz


(εµ)n

i+ 1
2
,j,k+ 1

2

(
(uz)n

i+1,j,k+1
2

−(uz)n

i,j,k+1
2

δx
+

(ux)n

i+1
2 ,j,k+1

−(ux)n

i+1
2 ,j,k

δz

)
−(εµ)n

i+ 1
2
,j,k− 1

2

(
(uz)n

i+1,j,k− 1
2

−(uz)n

i,j,k− 1
2

δx
+

(ux)n

i+1
2 ,j,k

−(ux)n

i+1
2 ,j,k−1

δz

)


+ δt · (ερ)n
i+ 1

2
,j,k

· gx + δtβn
i+ 1

2
,j,k

(vx)
n+1
i+ 1

2
,j,k

.

The value of εµ at a cell is calculated by averaging neighbour cell values as,
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In a similar manner we can discretize the momentum equation in the y and z directions.

Solution of the finite difference equations

The numerical solution of the discretized equations evolves through a sequence of computational
cycles, or time steps. For each computational cycle the advanced (n + 1)-level values have
to be calculated through the entire computational domain using the old n-level values. Each
computational cycle consists of two distinct phases:

• Calculation of explicit terms An, Bn and Cn in the momentum equation for all interior
cells.

• Implicit computation of the pressure for the entire computational mesh with an iterative
procedure. This implicit procedure consists of several steps.

The first step involves the calculation of mass residual Df from the continuity equation as
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where the superscript (*) refers to the most recently obtained values. If the convergence criterion

(Df )
∗
i,j,k < eps · (ερ)∗i,j,k,

is not satisfied for all interior computational cells, then a whole field pressure correction is cal-
culated as
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new
i,j,k = −(Df )

∗
i,j,k (3.36)

with Jn the Jacobi matrix at the old time level n. The Jacobi matrix contains the derivatives
of Df with respect to the pressure. An explicit expression can be obtained from the continuity
equation in combination with the momentum equation.

Ji,j,k =
∂(Df )

n
i,j,k

∂pn
i,j,k

etc.

Applying (3.36) for all internal computational cells results in a set of linear equations that can be
assembled in the matrix form as

Jn · δpnew = −D∗. (3.37)
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To save computational effort the elements of the Jacobi matrix are evaluated at the old time level.
The banded matrix problem corresponding to the equation (3.37) is solved using a standard ICCG
sparse matrix technique. Once the pressure have been obtained, the corresponding new gas phase
densities are calculated.
Df can be calculated from the continuity equation with these new values of density, pressure as
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Provided that the corresponding estimates of the mass residual (3.35) do not meet the conver-
gence criteria simultaneously for all interior computational cells, the pressure correction equa-
tion (3.36) is again calculated using the updated velocity field to compute the mass residual Df

for all cells. This iterative process is repeated until the convergence criteria is satisfied or the
specified maximum allowable number of iterations reached.

For calculation of the convective mass and momentum fluxes, a second order accurate method is
applied to reduce numerical diffusion.



Chapter 4

Modelling of collision frequency functions
using DPM

In this chapter we present an approach for the modelling of collision frequency functions in
a fluidized bed. The aggregation kernel can be decomposed as the product of size dependent
and size independent functions. The size dependent functions are known as collision frequency
kernel and the size independent functions are known as aggregation efficiency functions. In
this chapter we give a general expression for evaluating the size dependent collision frequency
function from computer simulation results.

4.1 Introduction

In recent times, due to the improvement of the computations, some authors (15; 51) have tried to
extract the kernels from discrete element method (DEM) simulations. Tan et al. (51) investigated
an agglomeration kernel based on the priniciple of kinetic theory of granular flow to the fludized
bed melt granulation. Using the simulation results of the discrete particle model (DPM), the
authors showed that the velocity distribution of the particles inside the fluidized bed are in good
aggreement with those expected according to kinetic theory of granular flow (KTGF). Based on
this kinetic theory of granular flow they assumed that the collision rate function is analogous to
the existing equi-partition kinetic energy (EKE) kernel. This EKE kernel was originally derived
by Hounslow (22) and it was discussed in Chapter 2, Section 2.4.1. Tan et al. (51) tried to fit
the particle size distribution of the experimental results with the discritized population balance
modelling with EKE kernel.

Recently Gantt et al. (15) observed the shear kernel for high-shear granulation using discrete
element method simulations. For the discrete element method simulations, they assumed that
the particles are spherical in shape and applied the soft sphere model as particle collision mech-
anism. In these simulations, the authors used an aggregation kernel for deformable wet granules
derived by Liu et al. (35). A multi-scale shear kernel with four parameters for aggregation
efficiency function is calculated using regression fit to the simulation data. Gantt et al. (15) con-
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sidered pore saturation, porosity, particle velocity and particle diameter as the parameters of the
aggregation efficiency function and calculated these parameters for two different types of particle
binding mechanisms.

In the following sections we present the modelling of the aggregation frequency function using
the Discrete Particle Model (DPM), which is a microscopic model developed by Hoomans et al.
(20).

4.2 Derivation of collision frequency functions
Aggregation processes lead to a reduction in the total number of particles and an increase in the
average size. Therefore agglomeration leads a major change in the system as the time changes.
As a result, the aggregation rate will be effected, which is a function of collision frequency
function and aggregation efficiency. Here we are deriving an expression for collision frequency
function.

Let Ni,j be the number of collsions occuring per unit time per unit volume between the two
classes of particles of volumes vi and vj . All particles are assumed to be spherical in shape, and
collisions are treated as binary hard sphere collisions. The collision frequency function Ki,j can
be written in terms of concentrations of particles of volumes vi and vj as:

Ni,j = Ki,jninj, 1 ≤ i, j ≤ I

where ni, nj are the number concentrations of classes i, j. The number I denotes the total num-
ber of classes. The parameter Ki,j is the frequency function among different classes i and j. The
collision frequency function Ki,j is a function of flow properties, i.e. particle size, gas velocity,
temperature, etc.

The number of collisions occuring during time tsim in the fluidized bed of volume Vbed is given
as

N tot
i,j = Ki,j

Ni

Vbed

Nj

Vbed

tsimVbed, (4.1)

where Ni, Nj are the number of particles of class i, j present in the fluidized bed of volume Vbed,
i.e. ni = Ni

Vbed
, nj =

Nj

Vbed
.

Remark 4.1 In the experimental analysis of bed volume, it consists of the measurement of the
height of the fluidized layer. From the fluid flow point of view, the bed void fraction is important.
The bed contains “bubbles”, called parvoids, that do not contain particles. Since the upper
surface of the bed remains neither perfectly plane nor motionless, due to particular parvoid
motion, the measurement of the mean level is not accurate. In order to overcome this difficulty
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we propose a new measurement technique involving time averaging and the calculation of the
mean height of the bed. The mean height of the particles is considered as the height of the
fluidized bed and it is calcuated as

hi
bed =

∑N0

α=1 zα

N0

, N0 =
I∑

i=1

Ni, tsim = tstep ∗∆t

hmean =
1

tstep

tstep∑
i=1

hi
bed

where zα is the height of the particle α, tstep are the number of time steps and ∆t is the time step.
The volume of the bed is obtained by averaging it over the simulation time tsim

Vbed = length× depth× hmean.

From the Equation (4.1), the collision rate function is obtained as

Ki,j =
N tot

i,j

NiNj

.
Vbed

tsim
. (4.2)

In case of collisions within a size class, i.e. i = j, the collision rate function is obtained as

Ki,i =
N tot

i,i

Ni(Ni−1)
2

.
Vbed

tsim
(4.3)

which differs from the previous one due to the correction for self collisions of the particles, which
was observed by Hu and Mei (24). The authors observed a deviation of about 2 percent in their
simulations. This correction is negligible in the case of continuous spectrum, becasue of the
assumption of large concentrations, in which, we take the approximation Ni(Ni− 1)/2 ≈ N2

i /2.
The details of the derivation of (4.3) by using a combinatorial approach can be found in Sastry
(47).

We obtain N tot
i,j from DPM simulation, by collecting the collisions among different classes i and

j. We plotted the collisions among different classes i and j and we observed a larger number
of collisions among bigger particles and fewer collisions among smaller particles as can be seen
in Figure 4.1. This kind of behaviour is exhibited by a shear flow. Besides this the physical
description of flow inside the bed, see Section 4.4, infers that the flow is a shear flow. Therefore
we assumed that the collision rate function is shear kernel. We fitted the simulated values with
this shear kernel defined as

K(x, y) = η
(
x

1
3 + y

1
3

)3

(4.4)

where η is the bed parameter to be fitted for the volumes of the particles x and y. The bed
parameter η for various simulation conditions is described in the next chapter.
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Figure 4.1: Particle collisions among different classes

4.3 Correction to the aggregation equation
Let us consider the combinatorial approach of the particle collisions among different classes and
within the same class of particles. Here classes are based on the volume of the particle, i.e,
V0, 2V0, 3V0, ... and V0 is the initial particle volume class.

The Figure 4.3 describes the number of possible collisions among two classes A and B which
contain 2 and 3 particles respectively. The number of possible collisions between A and B are 6.
The number of possible collisions among the particles of class B are 3.

We can generalize the above approach as follows. Suppose there are Ni particles of ith class and
Nj particles of jth class at a given instant. Then the number of possible collisions among ith
class and jth class are NiNj . When we have collisions among the particles of class i, then the
number of possible collisions are Ni(Ni − 1)/2.

We can apply the above combinatorial approach to the fluidized bed as follows. Let Ki,j be
the collision frequency function of the fluidized bed. Then the number of collisions among the
classes i and j per unit time and per unit volume are Ni,j = Ki,jNiNj . In case of collisions
among the particles in the ith class are Ni,j = Ki,jNi(Ni − 1)/2. The case of collisions among
the same class are not considered during the derivation of the aggregation equation. So here we
are showing the effect of this in modelling the aggregation kernel in Table 4.1. In this simulation
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A B

Figure 4.2: Combinatorial calculation of the particle collisions

simulation N0 Same size collisions 4.3 Same size collisions 4.2 Difference
1 5000 6.7155e-05 6.7088e-05 6.7155e-08
2 10000 1.6566e-05 1.6557e-05 8.2828e-09
3 15000 1.4514e-05 1.4509e-05 4.8379e-09
4 20000 1.1776e-05 1.1773e-05 2.9440e-09

Table 4.1: Simulations for same size collisions

we considered 10 classes of particles with an equal number of particles in each class. For details
of initial conditions of the simulations see the Appendix B.2. We made simulations with an in-
creasing the number of particles.

From the above simulation Table 4.1, we can observe that when the number of particles is high,
i.e. N0 is large enough, this new correction term has little effect on the aggregation equation.
Therefore in industrial level fluidized beds the new correction is negligible, since the number of
particles is very high.

4.4 Physical description of the flow pattern inside fluidized
beds

The flow inside the bed is the most significant factor effecting the collision frequency of the
particles, which affects the aggregation. So one needs to capture the flow pattern inside the bed.
The physical description of the flow pattern inside the bed can be described by using the dimen-
sionless quantity Reynolds number.
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The particle Reynolds number is given as (54)

Reα =
ερgUαdα

µ
, (4.5)

where Uα = |u − vα| is the relative velocity between a particle and the fluid flow. The particle
Reynolds number is a function of particle diameter, velocity, porosity, density and viscosity.

The particle Reynolds number characterizes the flow regime inside the bed. Frequently used flow
regimes are

• The Stokes Regime: The flow regime is Stokes regime if Reα < 0.2. The Stokes law
regime is also known as creeping flow regime. In this regime, the viscosity of the fluid is
dominating.

• The Intermediate Regime: The flow regime is known as intermediate regime if 0.2 <
Reα < 500. In this regime the drag force is a function of the particle’s Reynolds number.

• The Newton’s Law Regime: If Reα > 500. In this regime inertia of the fluid is larger than
the viscosity of the fluid.

Recently a new methodology for calculating the agglomeration kernels was proposed by Steven
(10) for the Stokes regime. He assumed uncertainity in the Stokes regime and evaluated the
coefficients of uncertainity using a method proposed by Tatang (52). The newly postulated ag-
glomeration kernel is given as

K(t, x, y) = K0

∫ S∗t

−∞
f(t, φ)dφ

where f(t, φ) is the discrete probability density function for the Stokes number, and S∗
t is the

critical stokes number. The constant K0 is determined from the experimental data.

In our DPM simulations the viscosity, density of the particles and gas velocity are constant with
respect to time, the only varying variables are particle velocity and diameter for different sets
of simulations. We studied the particle Reynolds number for a wide range particle diameters in
order to understand the flow pattern inside the fluidized bed. It was observed that the particle
Reynolds number always lies below 500 and above 100. This shows that the flow inside the bed
is dominated by shear forces. From this microscopic/macroscopic observation, we can expect a
shear kernel.



Chapter 5

Simulation results for modelling of
aggregation kernels using DPM

In this chapter we describe the simulation results for modelling of aggregation kernels using the
Discrete Particle Model (DPM) which is explained in Chapter 3. Section 1 explains the essential
initial parameters for the simulations. The second and third sections show the simulation results
for pseudo 3-D and 3-D fluidized beds. In these simulations we are trying to fit the simulation
results with the shear kernel. We calculated the fitting parameter η for each simulation and
named it the bed parameter. The influence of this bed parameter for various initial particle size
distributions is analysed.

5.1 Initial parameters
Initial parameters play a significant role in the simulations of any model. All the major parame-
ters used for our simulations are given in Appendix B.

5.1.1 Initial assumptions

In the present thesis we model the aggregation kernels with some assumptions and some simpli-
fications of the discrete particle model for easy numerical calculations. Here in this section we
explains those assumptions. We have the following assumptions in our simulations:

1. Particle size characterization
The particle size is characterized by one or more linear dimensions. In the present simula-
tions we considered an ideal particle like a sphere characterized by its diameter.

2. Particle collisions
We considered binary hard sphere collisions among the particles. The particles collide
according to the hard sphere collision model as explained in the Chapter 3, Section 4. The
parameters of the collision model are given in the Appendix B.
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3. Basic particle size class: Volume based size class

+

+

6=

=V2

d2d1

V1

d3

V3

Figure 5.1: Schematic example for the choice of the volume based size class

It is necessary that population balance equation must be consistent with mass. This is satis-
fied automatically if we consider volume as the intrinsic particle property as suggested by
Pouw et al. (40). Since volume is additive in a binary aggregation event, where as diameter
is not. Figure 5.1 illustrates the obvious fact that the aggregation of particles of diameter
d1 = 1 and d2 = 2 do not form a particle of diameter d3 = 1 + 2, but particles of volumes
V1 = 1 and V2 = 2 produce an agglomerate particle of volume V3 = 1 + 2.

Therefore in the present simulations we considered volume based size classes with vol-
umes V0, 2V0, 3V0, ..., where V0 is the volume of the smallest particle in the system.

4. No aggregation
In these simulations no aggregation, compaction or breakage takes place. Only particle
collisions due to gas flow are considered.

5.1.2 Initial particle size distributions
In most of the practical cases fluidized beds are consisting of particles of different sizes, known
as polydisperse systems. Initial particle size distribution is very important in granulations pro-
cess, since the final product is dependent on the initial size distribution. In this section we derive
different particle size distributions satisfying certain properties.

Let us consider N0 number of particles with Ni number of particles of classes i = 1, 2, ..., I with
volume V0, 2V0, 3V0, ..., IV0. Now we will determine different possible particle size distributions
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based on different criteria. The following gives the different possible criteria and the particle size
distributions.

1. Equal zeroth moment

We consider the first criterion satisfying equal zeroth moment in each class, i.e. the number
of particles in each class i are equal and the total number of particles of all classes is N0,

N1 = N2 = ... = NI , (5.1)∑
i

Ni = N0.

2. Equal length

Let L1, L2, ..., LI be the length of particles of classes 1, 2, ..., I . Consider the case satisfy-
ing the equal length criterion, i.e. the total length of the particles in each class i is equal
and the total number of particles of all classes is N0,

N1L1 = N2L2 = ... = NILI , (5.2)∑
i

Ni = N0.

3. Equal surface area

Let A1, A2, ..., AI be the length of particles of classes 1, 2, ..., I . Consider the case satis-
fying the equal surface area criterion, i.e. the total length of the particles in each class i is
equal and the total number of particles of all classes is N0,

N1A1 = N2A2 = ... = NIAI , (5.3)∑
i

Ni = N0.

4. Equal first moment (Equal volume)

Let V1, V2, ..., VI be the length of particles of classes 1, 2, ..., I . We consider simulations
satisfying the equal volume criteria, i.e. the total volume of the particles in each class i is
equal and the total number of particles of all classes is N0.,

N1V1 = N2V2 = ... = NIVI , (5.4)∑
i

Ni = N0.

5. Different number of particles

We calculate the particle size distribution satisfying the above four criteria 1-4 with differ-
ent number of particles, i.e. N0 = 5000, 10000, 15000.
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6. Particles with three classes

The number of particles in each class Ni are determined with three number of classes, i.e.
I = 5, 10, 15 for above four criteria 1-4.

7. Increasing volume of particles

We considered a particle size distributions satisfying the one of the above criteria 1-4 and
then we increased the volume V0. That is the first simulation is started with V0, 2V0, 3V0, ..., IV0,
second simulation with 2V0, 3V0, ..., (I + 1)V0, and so on.

Simulation Criteria Number of particles
1 1 2000, 2000, 2000, 2000, 2000
2 2 2701, 2144, 1873, 1702, 1580
3 3 3510, 2211, 1686, 1293, 1200
4 4 4380, 2190, 1460, 1095, 876

Table 5.1: Five classes

Simulation Criteria Number of particles
5 1 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000
6 2 1608, 1276,1115, 1013, 940, 885, 840, 804, 773, 746
7 3 2426, 1528, 1166, 963, 830, 735, 663, 606, 560, 523
8 4 3414, 1707, 1138, 854, 683, 569, 488, 427, 379, 341

Table 5.2: Ten classes

Simulation Criteria Number of particles
9 1 667, 667, 667, 667, 667, 667, 667, 667, 667, 667, 667, 667, 667, 667, 667
10 2 1197, 950, 830, 754, 700, 659, 626, 599, 576, 556, 538, 523, 509, 497, 480
11 3 1987, 1252, 955, 789, 679, 602, 543, 497, 459, 428, 402, 379, 359, 342, 327
12 4 3014, 1507, 1004, 754, 603, 502, 430, 377, 335, 301, 274, 251, 232, 215, 201

Table 5.3: Fifteen classes

The Tables 5.1-5.3 show initial particle number for different sets of simulations. Table 5.1 gives
the number of particles in each class, having I = 5 classes, satisfying the criterias 1, 2, 3 and 4
with N0 = 10000. Table 5.2 gives the number of particles in each class, having I = 10 classes,
satisfying the criterias 1, 2, 3 and 4 with N0 = 10000. Table 5.3 gives the number of particles in
each class, having I = 15 classes, satisfying the criterias 1, 2, 3 and 4 with N0 = 10000.

Corresponding to the above tables, we plotted the figures for the number of particles versus
classes. The bar diagram Figure 5.2 represents the number of particles in each of the five classes
satisfying the criteria 1-4 corresponding to the Table 5.1. The bar diagram Figure 5.3 represents
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Figure 5.2: Initial condition for the simulations

the number of particles in each of ten classes satisfying the criteria 1-4 corresponding to the Ta-
ble 5.2. The bar diagram Figure 5.4 represents the number of particles in each of fifteen classes
satisfying the criteria 1-4 corresponding to the Table 5.3.

In a similar manner we obtained the number of particles in each class satisfying the criterias 1-4
with N0 = 5000 and N0 = 15000 for three classes I = 5, 10, 15. The values and the figures
corresponding to these criteria are given in Appendix B.

5.2 Evaluation of the bed parameter

We calculate the collision rate function using the formula (4.2), which is derived in Chapter 4,
Section 2. From the physical description of flow inside the fluidized bed as shown in Chapter 4,
Section 4, we expect a shear kernel. Therefore we try to fit the simulated data of the collisions to
the shear kernel by using a least squares fit. We introduced a new fitting parameter η. We call it
the bed parameter.

Define the predicted collision frequency as a set of collisions represented by K(vi, vj) and the
observed collisions of the fluidized bed simulations as the set of K ′(vi, vj), then by the least
square method

S =
∑

i

∑
j

(K ′(vi, vj)− ηK(vi, vj))
2 (5.5)
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Figure 5.3: Initial condition for the simulations

where η is bed parameter to be evaluated and K ′(vi, vj) =
Nij

ninj

Vbed

tstep

S =
∑
i,j

(
Nij

ninj

Vbed

tstep
− ηK(vi, vj)

)2

∂S

∂η
= 0 ⇒ −2

∑
i,j

(
Nij

ninj

Vbed

tsim
− ηK(vi, vj)

)
K(vi, vj) = 0

⇒ η =

∑
i,j

Ni,j

ninj

Vbed

tstep
K(vi, vj)∑

i,j

K2(vi, vj)
. (5.6)

Here K(vi, vj) is the shear kernel given in Chapter 2. The bed parameter η is obtained for vari-
ous initial particle size distributions and for different classes of particles. The bed parameter for
different simulation conditions are given in the next section.

Relative error

The relative error is calculated as

R.E. =
‖Xexact −Xsim‖

‖Xexact‖
, (5.7)

where‖·‖ is the L2 norm. The L2 norm of a vector X = (x1, x2, ..., xn) is given as (
∑n

k=0 x2
k)

1/2.
The values ‖Xexact‖ and ‖Xsim‖ are the exact and simulated values of the shear kernel (4.4).
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Figure 5.4: Initial condition for the simulations

5.3 Simulation results for a pseudo 3D bed

We consider the pseudo-3D bed for these simulations. Since gas phase hydrodynamics are re-
solved in two dimensions and the particle movements are three dimensional, we can call it a
pseudo-3D bed. This can be justified since the simulated system is a flat fluidised bed with a
depth of 1cm where the motion of the gas phase in the third dimension can be neglected, if we
disregard the boundary layer.

All the physical parameters like bed dimension, fluidization velocity, etc. are fixed and are the
same for all the pseudo 3D fluidized bed simulations. So the only changing parameter is particle
number N0 and the number of classes I . The parameters of the simulation are shown in the
Appendix B. We observe the collision rate function among different classes using the DPM at
different time intervals.

The Figures 5.5 shows the snapshots of the DPM simulations with bubbles. The colour of the
particles shows the position of the particles with respect to their depth from the front view of the
fluidized bed. The simulation data are considered after t = 5 sec in order to get the spatially
homogeneous fludized bed. We run the simulation for t = 15 sec. We consider three different
sets of particle classes based on their volume, like particles with 5 classes, 10 classes and 15
classes. In each simulation we collected the collisions amoung different classes of particles at
different time intervals.
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Figure 5.5: Snapshots of fluidized bed simulations at various time intervals t =
0, 3, 6, 9, 12, 15sec for a pseudo 3-Dimensional fluidized bed
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Figure 5.6: Simulated and Fitted collsion frequency functions during the time interval 5 to 10
seconds of DPM simulation
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Figure 5.7: Simulated and Fitted collsion frequency functions during the time interval 5 to 15
seconds of DPM simulation
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The Figures 5.6, 5.7 represent the collisions among the ten classes of the particles of volume
V0, 2V0, 3V0, ..., 10V0. The top Figures 5.6 represents the collisions among the particles during
the time interval t = [5.0 10.0] sec and the bottom Figures 5.7 are for the time intervel t =
[5.0 15.0] sec with an initial particle number satisfying first moment for 10000 particles in a
pseudo 3D fluidized bed. The Figures in the left side are the simulated values and the right side
are the figures with the fitting parameter. In all these Figures 5.6, 5.7, we can observe that large-
large particle size collisions are more favourable. This shows that the shape of the surface is near
to the shear kernel surface.

Table 5.4: Simulation results for different particle size distributions for 5000 particles
Class Character Bed parameter η Particle volume Relative error
5 Zeroth moment 96.94 7.86E-6 0.2532
10 Zeroth moment 113.111 1.44E-5 0.1211
15 Zeroth moment 118.80 2.1E-5 0.1149
5 Equal length 100.87 7.15E-6 0.5810
10 Equal length 116.549 1.27E-5 0.1025
15 Equal length 124.71 1.49E-5 0.1217
5 Equal area 125.00 6.43E-6 0.6480
10 Equal area 137.294 1.07E-5 0.2072
15 Equal area 142.42 1.49E-5 0.1119
5 First moment 140.76 5.73E-6 0.7203
10 First moment 149.787 8.94E-6 0.1142
15 First moment 162.55 1.18E-5 0.2385

We calculated the kernel K(x, y) from the simulation data using the formula (4.2) derived in
Chapter 4 Sections 2. We evaluated the bed parameter η for each simulation using the Equation
(5.6). The Table 5.4 gives the bed parameter η for N0 = 5000 particles. We run the simulations
for t = 15 seconds for the initial particle size distribution satisfying the four criteria for three
different classes.

The value of the bed parameter, relative error of fitting, etc. can be seen in the Table 5.4. From
the Table 5.4 we can observe that the value of the bed parameter increases with increase in the
total particle volume. That means the number of collisions increases with increase of the particle
volume. Here for all the simulations the dimensions of the fluidized bed were kept constant.

Figure 5.8 describes behaviour of the bed parameter with respect to the number of classes. Each
line in the figure represents the bed parameter value corresponds to the character satisfied by
the initial PSD for different particle classes. We can observe that the lines are parallel and are
monotonically increasing with increase in number of classes.
The value of the bed parameter, relative error of fitting, etc. can be seen in the Tables 5.5, 5.6
for N0 = 10000 and N0 = 15000 respectively. From Tables 5.5, 5.6 we can observe that the
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Figure 5.8: Bed parameter corresponding to various number of classes for 5000 particles

Table 5.5: Simulation results for different particle size distributions for 10000 particles
Class Character Bed parameter η Particle volume Relative error
5 Zeroth moment 118.13 1.57E-5 0.1021
10 Zeroth moment 155.054 2.88E-5 0.1078
15 Zeroth moment 171.6367 4.19E-5 0.0936
5 Equal length 128.3580 1.43E-5 0.1057
10 Equal length 165.5839 2.53E-5 0.1074
15 Equal length 192.5386 3.62E-5 0.1021
5 Equal area 138.0706 1.28E-5 0.0859
10 Equal area 181.5455 2.15E-5 0.0904
15 Equal area 219.1333 2.98E-5 0.1118
5 First moment 151.6243 1.14E-5 0.0721
10 First moment 207.2792 1.78E-5 0.0966
15 First moment 246.8127 2.37E-5 0.0942
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Table 5.6: Simulation results for different particle size distributions of 15000 particles
Class Character Bed parameter η Particle volume Relative error
5 Zeroth moment 188.6722 2.36E-5 0.1118
10 Zeroth moment 199.7154 4.32E-5 0.0965
15 Zeroth moment 225.3654 6.28E-5 0.0796
5 Equal length 199.8196 2.15E-5 0.0894
10 Equal length 256.2417 3.79E-5 0.0978
15 Equal length 284.7975 5.42E-5 0.0967
5 Equal area 222.9835 1.93E-5 0.0817
10 Equal area 281.4234 3.23E-5 0.1053
15 Equal area 325.0151 4.48E-5 0.1061
5 First moment 235.3659 1.72E-5 0.0565
10 First moment 303.3080 2.68E-5 0.1112
15 First moment 357.4970 3.55E-5 0.1204
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Figure 5.9: Bed parameter corresponding to various number of classes for 10000 particles
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Figure 5.10: Bed parameter corresponding to various number of classes for 15000 particles

value of the bed parameter increases with increase in the total particle volume. That means the
number of collisions increases with increase of the particle volume. Here for all the simulations
the dimensions of the fluidized bed were kept constant.

The value of the bed parameter for 5, 10 and 15 classes is plotted in Figures 5.9, 5.10. The same
kind of behaviour is observed as seen for N0 = 5000.
We consider the another specific case of simulation to observe the particle collisions. In this case
we consider the same initial particle size distribution for all cases, but we increases the particle
diameter so that the total particle volume increases. This kind of specific consideration was

Class Simulation Time Parameter η Volume of particles Relative Error
5 1 5-15 sec 115.5 1.147e-5 0.0751
5 2 5-15 sec 155.74 1.982e-5 0.0864
5 3 5-15 sec 176.19 3.147e-5 0.0921
5 4 5-15 sec 270.20 4.698e-5 0.0811
5 5 5-15 sec 339.15 6.689e-5 0.0833
5 6 5-15 sec 380.57 9.176e-5 0.0512

Table 5.7: Simulation result for increasing volume of the particles
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explained in case 7 above. The value of the bed parameter, relative error of fitting, etc. can be
seen in the Table 5.7. From Table 5.7 we can observe that the value of the bed parameter increases
with increase in the total particle volume. That means the number of collisions increases with
increase of the particle volume. Here for all the simulations the dimension of the fluidized bed
was kept constant.

5.3.1 Log-Normal distribution

Frequently particle sizes are distributed using a log-normal distribution. We consider the initial
particle size distribution as a discretized log-normal distribution with σ = 0.001 and minimum
radius 0.00038 m for a pseudo 3-D fludized bed. The particles are spread across 14 classes. The
initial particle size distribution can be see in Figure 5.11.
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Figure 5.11: Initial particle size distribution

We collected the particle collisions among the fourteen size classes and the collision surface
is plotted in the Figure 5.12. From the Figure 5.12 we can observe that the large number of
collisions among big size class of particles and smaller number of collisions among small size
class of particles. This shows that the collision surface is near to the shear kernel. So we try to fit
the collision surface to the shear kernel and the bed parameter η = 203.87 and the relative error
of fitting is 0.1021. The collision surface with the bed parameter η is given in the Figure 5.12.
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Figure 5.12: Collision surfaces for log-normal distribution of particles from the simulated and
the corresponding fitted surfaces

5.4 Simulation results for 3D beds
We started the simulation with 15000 polydisperse spherical glass particles with smallest diame-
ter of 1 mm in a 3D bed of dimension 10×5×60 cm. The particle size classes are defined based
on volume (i.e. V0, 2V0, 3V0, ...) with 5, 10 and 15 classes. Here the particles are distributed into
various size classes based on certain criteria satisfied by each size class as given in the Section
5.1.2 cases 1-4. We used a hard sphere binary collision model for particle interactions and no
aggregation process involved inside the bed.

For each particle size distribution we counted the collisions among different classes and plotted
the collision surface. Figure 5.13 represents collisions among different class of particles during
the time interval 5 to 15 seconds with particle size distribution satisfying the zeroth moment
criteria i.e. equal number of particles in each size class i. We can observe that there are more
collisions among particles of large size and a smaller number of collisions among the particles of
smaller size which is also observed in case of shear kernel. So we try to fit the simulated result
with the shear kernel and evaluated the bed parameter for each simulation. Figure 5.13 represents
the collision surface with the bed parameter η = 6.6569.
The value of the bed parameter, relative error of fitting, etc. can be seen in the Table 5.8. From
Table 5.8 we can observe that the value of the bed parameter increases with increase in the total
particle volume. That means the number of collisions increases with increase of the particle
volume. Here for all the simulations the dimensions of the fluidized bed kept constant.

Figure 5.14 describes behaviour of the bed parameter with respect to the number of classes. Each
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Figure 5.13: Collision surfaces for the zeroth moment criteria from the simulated (left) and the
corresponding fitted surface (right) with bed parameter η = 6.6569

line in the Figure 5.14 represents the bed parameter value corresponds to the character satisfied
by the initial PSD for different particle classes. We can observe that the lines are parallel and
are monotonically increasing with increase in number of classes, due to the restricted size of the
simulation domain there is a limit to the number of particles that may be taken. Otherwise they
cannot move and just stick together. This kind of same behaviour is also observed in case of
pseudo 3D fluidized bed simulations.

Remark 5.1 From the above simulation results one can observe the difference in the bed param-
eter η for pseudo 3D and 3D fluidized bed simulations. This is due to difference in the number
of collisions. We have a higher number of collisions in a pseudo 3D fluidized bed compared to a
3D fluidized bed.
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Table 5.8: Simulation results for different particle size distributions for 15000 particles
Class Character Bed parameter η Particle volume Relative error
5 Zeroth moment 5.8205 3.68E-4 0.5366
10 Zeroth moment 6.6569 6.75E-4 0.1433
15 Zeroth moment 6.8240 9.82E-4 0.1253
5 Equal length 6.9836 3.33E-4 0.5333
10 Equal length 7.4238 5.93E-4 0.1560
15 Equal length 8.1200 8.47E-4 0.1217
5 Equal area 7.6093 3.02E-4 0.6417
10 Equal area 7.7532 5.05E-4 0.2131
15 Equal area 8.6486 7.00E-4 0.1373
5 First moment 7.6816 2.68E-4 0.7002
10 First moment 8.9191 4.19E-4 0.3683
15 First moment 8.9645 5.55E-4 0.2181
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Figure 5.14: Bed parameter corresponding to various number of classes for 15000 particles



Chapter 6

Evaluation of aggregation efficiency rate

The present chapter contains the evaluation of the aggregation efficiency from the discrete par-
ticle model simulations with aggregation. We evaluated the aggregation efficiency rate for a
random coalescence mechanism with the same initial conditions and parameters as used for the
previous simulations. Out of all simulations, we selected two simulations of a pseudo 3D fludized
bed, two simulations from 3D fluidized bed and one with an initial particle size distribution hav-
ing discrete normal distribution.

We calculated the particle size distribution by solving the aggregation equations with the newly
calculated aggregation efficiency functions. A recently developed cell average technique is used
to solve the aggregation equation. We end up this chapter with the computation of the particle
size distributions from the macro model, population balance equations, for these new kernels.

6.1 Evaluation of the aggregation efficiency rate
In general, the aggregation kernel can be subdivided into two parts:

K(t, x, y) = K0(t)K(x, y). (6.1)

The collision frequency function K(x, y) was evaluated in the Chapter 5 using discrete particle
model simulations for various possible criteria. The aggregation rate function K0(t), determines
the rate at which collisions result in successful aggregation of the particles. Usually it depends
on the operating conditions, such as bed agitation, and material properties such as wettability
and binder viscosity. We have the following assumptions in our simulations:

• The classes are based on volume based size class: V0, 2V0, 3V0, ....

• The particles are spherical.

• The particles aggregate randomly.

• Only binary aggregation is considered.

66
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• A successful aggregation means that the two colliding particles appear in a larger volume
class Vi + Vj = Vi+j .

• The granulation process is a batch process, so the total mass remains constant in time.

• The particle growth is due to aggregation process only. The effects of layering, breakage,
etc. are neglected.

We made proper modifications to the Discrete Particle Model (DPM) code to incorporate the
agglomeration process. When two particles aggregates, other particle has to be removed i.e., a
ghost particle was created. As a result of this aggregation a ghost particle was created and its
mass, volume and impulse are added to the new particle. The new particle is repositioned at the
joint mass centre of the ghost particle and the original particle. This is described by formulae as

• mass conservation: m′ = m1 + m2

• volume conservation: V ′ = V1 + V2

• momentum conservation: v
′
= m1v1+m2v2

m1+m2

• repositioning of the particle: x
′
= m1x1+m2x2

m1+m2

In these equations the subscripts 1 and 2 refer to the two aggregating particles and the prime
refers to the newly formed particle.

The aggregation was done through the generation of a random number. We generate a random
number z corresponding to each particle collision and it lies between 0 and 1. We dictate the
particle aggregation or rebound based on the following criteria

if (z < 0.001)
if we have enough space for a new particle then aggregation
else
rebound

We calculated the number of successful aggregations per second. It is observed that the number
of successful aggregations decreases with an increase of time. We fitted the obtained data f̂(ti)
corresponding to the time ti with a two or three parameter polynomials f(c0, c1t, ..., cnt

n) based
on the nature of the aggregation. By using the least square method we evaluated the aggregation
efficiency function K0(t) for the parameters c0, c1, ..., cn and is given by

I(c0, c1, ..., cn) = min
c0,c1,...,cn

tend∑
i=0

[
f̂(ti)− f(c0, c1t, ..., cnt

n)
]2

. (6.2)

The above process is incorporated into the DPM code by introducing new subroutines as shown
in the dotted box 3B and 3C of the Figure 6.1. In the subroutine 3B we check for the availability
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Figure 6.1: Flow diagram of the discrete particle model with aggregation

of enough space for the newly formed particle prior to the aggregation. If sufficient space is
available for the new particle, then we move to the subroutine 3C. In this new subroutine 3C, we
created the ghost particles and the new particles are formed according to the formulas given in
items. We made proper changes in the other parts of the subroutines 2, 5 and 6 in order to avoid
the interactions of the ghost particles with the gas phase and with the other particles.

Remark 6.1 One should note that during this aggregation process, only the particle number will
change and all other particle properties like mass, volume will remain constant.

6.2 Simulation results for the aggregation efficiency rate
Out of all simulations, we selected five simulations with different initial particle size distribu-
tions. The simulations based on pseudo 3D fluidized bed, 3D fluidized bed and pseudo 3D
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fluidized bed with discrete normal distribution as the initial particle size distribution.

6.2.1 Aggregation in pseudo 3D fluidized bed
Based on the assumptions of the previous Section 6.1, we consider the discrete particle model
simulations with N0 = 15000 with an initial particle size distribution of satisfying the zeroth
moment criteria, i.e. equal number of particles in each size class for pseudo 3D fluidized bed.
All the parameters are same as the previous Section 5.3 for pseudo 3D fluidized bed and are
given in the Appendix A.

We started the aggregation process after 3 seconds of simulation in order to have a well mixed
system and the simulation ran over a period of 30 seconds. We collected the number of success-
ful aggregations in each step (1 second). We try to fit the obtained data with a two parameter
polynomials based on the nature of the aggregation. By using the least square method we evalu-
ated the aggregation efficiency function K0(t) and relative error of fitting for each function. The
aggregation efficiency function K0(t) and its corresponding relative error of fitting are given in
Table 6.1.

Table 6.1: Aggregation efficiency functions, case 1
Aggregation efficiency K0(t) Relative error
443.8462− 10.4335t 0.0541
454.9983− 12.7408t + 0.0824t2 0.0527
474.1814e−0.0361t 0.0551

From the above Table 6.1 we can observe that the relative error corresponding to the quadratic
function is the smallest. Therefore suitable aggregation efficiency function for this simulation
experiment is given by

K0(t) = 454.9983− 12.7408t + 0.0824t2. (6.3)

The Figure 6.2 shows the aggregation efficiency curve with initial particle size satisfying zeroth
moment. The line in the dotted blue color shows the fitted one where as the red color curve
corresponds to the simulated data. We found that the collision frequency function for these
parameters is a shear kernel and the results for these cases are presented in Section 5.3. Therefore
the complete agglomeration kernel is given as

K(t, x, y) = (454.9983− 12.7408t + 0.0824t2)(x
1
3 + y

1
3 )3. (6.4)

We calculated the aggregation efficiency rate K0(t) with an initial particle size distribution sat-
isfying the first moment criterion, i.e. equal total particle volume in each size class. We ran the
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Figure 6.2: Aggregation efficiency K0(t) from simulated(red) and fitting functions

simulation for 30 seconds with the same parameters and assumptions of the previous simulation
and collected the successful aggregations in each time step (1 second). By using the least square
method we evaluated the aggregation efficiency function K0(t) and relative error of fitting for
each function. The aggregation efficiency function K0(t) and its corresponding relative error of
fitting are given in Table 6.2.

Table 6.2: Aggregation efficiency functions, case 2
Aggregation efficiency K0(t) Relative error
489.8376− 12.8297t 0.0511
520.6427− 19.2031t + 0.2276t2 0.0430
532.3746e−0.0425t 0.0423

From the above Table 6.2 we can observe that the relative error corresponding to the exponential
function is smallest. Therefore a suitable aggregation efficiency function for this simulation
experiment is given by

K0(t) = 532.3746e−0.0425t. (6.5)

The Figure 6.3 shows the number of successful aggregations with an initial particle size satisfying
equal first moment in each size class. The line in the dotted blue color shows the fitted one and
the red color curve represents the simulated data. We found that the collision frequency function
for these parameters is a shear kernel and the results for these cases are presented in Section 5.3.
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Figure 6.3: Aggregation efficiency K0(t) from simulated(red) and fitting functions

Therefore the complete agglomeration kernel is given as

K(t, x, y) = (532.3746e−0.0425t)(x
1
3 + y

1
3 )3. (6.6)

6.2.2 Aggregation in 3D fluidized beds
In this section we are presenting the simulation results for a 3D fluidized bed. Based on the
assumptions of the Section 6.1, we consider the discrete particle model simulations with N0 =
15000 with an initial particle size distribution of satisfying the zeroth moment criteria, i.e. equal
number of particles in each size class for 3D fluidized bed. All the parameters are same as the
previous section 5.4 for 3D fluidized bed and are given in the Appendix B.

We started the aggregation process after 3 seconds of simulation in order to have a homogeneous
system and the simulation ran over a period of 30 seconds. We collected the number of successful
aggregations in each step (1 second). We try to fit the obtained data with a two or three parameter
polynomials based on the nature of the aggregation. By using least square method we evaluated
the aggregation efficiency function K0(t) and relative error of fitting for each function. The
aggregation efficiency function K0(t) and its corresponding relative error of fitting are given in
Table 6.3.
From the above Table 6.3 we can observe that the relative error corresponding to the exponential
function is the smallest. Therefore suitable aggregation efficiency function for this simulation
experiment is given by

K0(t) = 377.7213e−0.0333t. (6.7)
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Table 6.3: Aggregation efficiency functions
Aggregation efficiency K0(t) Relative error
357.9373− 8.0220t 0.0550
374.4991− 11.4486t + 0.1224t2 0.0528
377.7213e−0.0333t 0.0526

The Figure 6.4 shows the aggregation efficiency curve with initial particle size satisfying zeroth
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Figure 6.4: Aggregation efficiency K0(t) from simulated(red) and fitting functions

moment. The line in the dotted blue color shows the fitted one where as the red color curve
corresponds to the simulated data. We found that the collision frequency function for these
parameters is a shear kernel and the results for these cases are presented in Section 5.4. Therefore
the complete agglomeration kernel is given as

K(t, x, y) = (377.7213e−0.0333t)(x
1
3 + y

1
3 )3. (6.8)

We calculated the aggregation efficiency rate K0(t) with an initial particle size distribution sat-
isfying the first moment criteria, i.e. equal total particle volume in each size class. We ran the
simulation for 22 seconds with the same parameters and assumptions of the previous simulation
and collected the successful aggregations in each time step (1 second). By using the least square
method we evaluated the aggregation efficiency function K0(t) and relative error of fitting for
each function. The aggregation efficiency function K0(t) and its corresponding relative error of
fitting are given in Table 6.4.
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Table 6.4: Aggregation efficiency functions
Aggregation efficiency K0(t) Relative error
409.3675− 9.7485t 0.0719
440.4410− 16.1775t + 0.2296t2 0.0634
432.7832e−0.0360t 0.0653

From the above Table 6.4 we can observe that the relative error corresponding to the quadratic
function less. Therefore suitable aggregation efficiency function for this simulation experiment
is given by

K0(t) = 440.4410− 16.1775t + 0.2296t2. (6.9)

0 5 10 15 20 25 30
100

150

200

250

300

350

400

450

Time t

N
u

m
b

e
r 

o
f s

u
cc

e
ss

fu
l a

g
g

re
g

a
tio

n
s

Quadratic fit 440 − 16.17t + 0.2296t2

Simulation data from DPM

Exponential fit 433e−0.036t

Straight line fit 409.36 − 9.7485t

Figure 6.5: Aggregation efficiency K0(t) from simulated(red) and fitting functions

The Figure 6.5 shows the number of successful aggregations with an initial particle size satisfying
first moment. The line in the dotted blue color shows the fitted one and the red color curve
represents the simulated data. We found that the collision frequency function for these parameters
is a shear kernel and the results for these cases are presented in Section 5.4. Therefore the
complete agglomeration kernel is given as

K(t, x, y) = (440.4410− 16.1775t + 0.2296t2)(x
1
3 + y

1
3 )3. (6.10)
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6.2.3 Aggregation in pseudo 3D fluidized bed with log-normal distribution
In this section we consider a log-normal distribution as an initial particle size distribution. Based
on the assumptions of the Section 6.1, we consider the discrete particle model simulations with
N0 = 15000 pseudo 3D fluidized bed. All the parameters are considered same as the Section
5.3.1 for pseudo 3D fluidized bed and are given in the Appendix A.

We started the aggregation process after 3 seconds of simulation in order to have a homogeneous
system and the simulation run over a period of 30 seconds. We collected the number of successful
aggregations in each step (1 second). We try to fit the obtained data with a multi parameter
polynomials based on the nature of the aggregation. By using least square method we evaluated
the aggregation efficiency function K0(t) and relative error of fitting for each function. The
aggregation efficiency function K0(t) and its corresponding relative error of fitting are given in
Table 6.5.

Table 6.5: Aggregation efficiency functions
Aggregation efficiency K0(t) Relative error
414.9345− 10.2705t 0.0671
450.6718− 17.6644t + 0.2641t2 0.0499
441.9886e−0.0382t 0.0523

From the above Table 6.5 we can observe that the relative error corresponding to the quadratic
function to be the smallest. Therefore suitable aggregation efficiency function for this simulation
experiment is given by

K0(t) = 450.6718− 17.6644t + 0.2641t2 (6.11)

The Figure 6.6 shows the aggregation efficiency curve with initial particle size having log-
normal distribution. The line in the dotted blue color shows the fitted one where as the red color
curve corresponds to the simulated data. We found that the collision frequency function for these
parameters is a shear kernel and the results for this case are shown in Section 5.3.1. Therefore
the complete agglomeration kernel is given as

K(t, x, y) = (450.6718− 17.6644t + 0.2641t2)(x
1
3 + y

1
3 )3. (6.12)

6.3 Numerical methods for population balance equations
Analytical solutions for the population balance equations exists only for a few cases and for spe-
cific kernels. So most of the times one needs to solve these equations using numerical methods.
We have a number of methods in the literature. Among these methods the fixed pivot method is
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Figure 6.6: Aggregation efficiency K0(t) from simulated(red) and fitting functions

frequently used for the chemical engineering applications. Recently Kumar et al. (31) developed
a new method known as the cell average technique, which gives better accuracy compared to
fixed pivot technique. Here we are presenting some important steps in the formulation of the cell
average technique to the agggation equation.

Consider the binary aggregation equation of the form

∂n(t, x)

∂t
=

1

2

∫ x

0

K(t, x− y, y)n(t, x− y)n(t, y)dy − n(t, x)

∫ ∞

0

K(t, x, y)n(t, y)dy (6.13)

where t > 0. The first term represents the birth of the particles of size x due to the aggregation
of particles of sizes x− y and y. The second term is called the death term. Here we shall refer to
size as the particle volume.

The cell average technique is based on the averaging of particles volume within the cells. The
discretisation of the equation (6.13) is based on the conditions of satisfying the first two moments.
The net birth in ith cell is calculated using the volume average of all new born particles due to
aggregation within three cells, (i − 1)th, ith and (i + 1)th. The particles should be assigned to
the nearby representative sizes depending upon the position of the average value. If the volume
average of (i − 1)th cell lies between xi−1 and xi−1/2, then only a part of birth will appear in
ith cell. The same arguments can be made for the ith and (i + 1)th cells. Similar to Kumar and
Ramakrishna (32), the total birth in a cell is given by

Bagg,i =
1

2

∫ xi+1/2

xi−1/2

∫ x

0

K(t, x, x− y)n(t, x− y)n(t, y)dydx. (6.14)
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Mathematically the number density function n(t, x) can be approximated in terms of Dirac-delta
distributions as

n(t, x) =
I∑

i=1

Niδ(x− xi). (6.15)

We first discretize the birth to compute the total birth rate in each cell and then redistribute the
total birth to the neighboring nodes to get the consistency with moments. Since particles are
assumed to be concentrated at representative sizes xi, the number density n(t, x) can be replaced
by its Dirac-delta representation (6.15). Substituting the Dirac-delta representation of n(t, x) in
equation (6.14), for details of derivation see (30), we obtain

Bagg,i =

j≥k∑
j,k

xi−1/2≤(xj+xk)<xi+1/2

(
1− 1

2
δj,k

)
Kj,kNjNk. (6.16)

Thus, Bi is the net rate of addition of particles to cell i by aggregation of particles in lower cells.
The net flux of volume Vi into cell i as a result of these aggregations is therefore given by

Vagg,i =

j≥k∑
j,k

xi−1/2≤(xj+xk)<xi+1/2

(
1− 1

2
δj,k

)
Kj,kNjNk(xj + xk). (6.17)

Consequently, the average volume of all newborn particles in the ith cell v̄i can be evaluated as

v̄agg,i =
Vagg,i

Bagg,i

. (6.18)

Now we assume that the newborn particles Bi are assigned temporarily at v̄i. These particles
have to be divided depending upon the value of v̄i to neighboring nodes in such a way that the
formulation is consistent with the total number and mass. The birth according to the cell average
technique is given as

BCA
agg,i = Bagg,i−1λ

−
i (v̄i−1)H(v̄i−1 − xi−1) + Bagg,iλ

−
i (v̄i)H(xi − v̄i)

+Bagg,iλ
+
i (v̄i)H(v̄i − xi) + Bagg,i+1λ

+
i (v̄i+1)H(xi+1 − v̄i+1). (6.19)

The function λ is defined as

λ±i (v̄) =
v̄ − v̄i±1

v̄i − v̄i±1

.

The Heaviside step function is a discountinuous function also known as unit step function and is
defined as

H(x) =


1, x > 0
1
2
, x = 0

0, x < 0.
(6.20)
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The death term is the same as it was in Kumar and Ramakrishna (32) and is given as

Dagg,i = Ni

I∑
k=1

Ki,kNk. (6.21)

The final set of discrete equations can be written as

dNi(t)

dt
= Bagg,i−1λ

−
i (v̄i−1)H(v̄i−1 − xi−1) + Bagg,iλ

−
i (v̄i)H(xi − v̄i)

+Bagg,iλ
+
i (v̄i)H(v̄i − xi) + Bagg,i+1λ

+
i (v̄i+1)H(xi+1 − v̄i+1)

−Ni

I∑
k=1

Ki,kNk. (6.22)

The set of ordinary differential equations (6.22) resulting from the discretized technique is solved
using a Runge-Kutta fourth and fifth order method with adaptive step-size control based on the
embedded Runge-Kutta formulas.

Higher order schemes are also developed by Sandu (45) based on Newton-Cotes quadrature
approach. He employed a semi-implicit Gauss-Seidel time integration method to the aggregation
equation. This method gives fourth order accuracy. For the present comparison we uses our
inhouse code of cell average technique, whose accuracy is enough for our present application.

6.4 Computation of the particle size distributions
In this section we calculated the particle size distribution by solving the aggregation equations
with the newly calculated shear kernels obtaind from the previous sections. A recently developed
cell average technique is used to solve the aggregation equation and is explained in the Section
6.3. We computed the particle size distributions for the new kernels obtained from the micro
model. The results of the new particle size distributions are presented in Section 6.4 for different
possible cases.

6.4.1 Computation of the particle size distribution for pseudo 3D fluidized
bed

We considered two specific cases for the computation of the macro aggregation model. In the
first case we considered the initial particle size distribution satisfying zeroth moment criteria,
i.e. equal number of particles in each size class. For both the aggregation equation and discrete
particle simulations we have taken the same initial condition and can be seen in the Figure 6.7 as
blue line.

The final particle size distribution at the end of 30 seconds is plotted in the Figure 6.7 as the red
line. For this specific simulation we calculated the aggregation kernel (6.3) using least square
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fit in the Section 6.2. We substituted the kernel (6.3) into the aggregation and then we solved it
using cell average technique developed by Kumar (30). We calculated the number of particles in
each class from the aggregation equation and the result can be seen in the Figure 6.7. In a similar

10
−10

10
−9

10
−8

10
−7

0

500

1000

1500

2000

2500

3000

cells

N
um

be
r 

in
 e

ac
h 

ce
ll

 

 

Initial distribution
final distribution

Figure 6.7: Aggregation starting with equal number (zero moment) criterion for pseudo 3D bed

manner we calculated the particle size distribution for the aggregation equation with the initial
particle size distribution satisfying first moment criteria. The aggregation kernel calculated from
the discrete particle model simulations was given in (6.4).
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Figure 6.8: Aggregation starting with equal volume (first moment) criterion for pseudo 3D bed
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6.4.2 Computation of the particle size distribution for 3D fluidized bed

We considered two specific cases for the computation of the particle size distribution using the
aggregation equation. In the first case we considered the initial particle size distribution satis-
fying zeroth moment criteria, i.e. equal number of particles in each size class. For both the
aggregation equation and discrete particle simulations we have taken the same initial condition
and can be seen in the Figure 6.9 as blue line.

The final particle size distribution at the end of 30 seconds is plotted in the Figure 6.9 as the red
line. For this specific simulation we calculated the aggregation kernel (6.5) using least square
fit in the Section 6.2. We substituted the kernel (6.5) into the aggregation and then we solved it
using cell average technique developed by Kumar (30). We calculated the number of particles in
each class from the aggregation equation and the result can be seen in the Figure 6.9.
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Figure 6.9: Aggregation starting with equal number (zero moment) criterion for 3D bed

In a similar manner we calculated the particle size distribution for the aggregation equation with
the initial particle size distribution satisfying first moment criteria. We considered the same initial
condition for the simulations in the discrete particle model. The aggregation kernel calculated
from the discrete particle model simulations was given in (6.6).

6.4.3 Computation of the particle size distribution for 3D fluidized bed
with log normal distribution

We considered a specific case for the computation of the particle size distribution from the ag-
gregation equation. In this case we considered the initial condition having a log normal particle
size distribution. For both the aggregation equation and discrete particle simulations we have
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Figure 6.10: Aggregation starting with equal volume (first moment) criterion for 3D bed

taken the same initial condition and can be seen in the Figure 6.11 as blue line.

The final particle size distribution at the end of 30 seconds is ploted in the Figure 6.11 as the red
line. For this specific simulation we calculated the aggregation kernel (6.7) using least square
fit in the Section 6.2. We substituted the kernel (6.7) into the aggregation and then we solved it
using cell average technique developed by Kumar (30). We calculated the number of particles in
each class from the aggregation equation and the result can be seen in the Figure 6.11.
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Figure 6.11: Aggregation starting with log normal particle size distribution



Chapter 7

General conclusions and outlook

The main aim of the present thesis is to have a complete idea of micro-macro transisitions of
granulation processes in the fluidized beds. We have different processes inside the fluidized beds
like aggregation, growth, nucleation, breakage, etc. To understand these processes in a macro-
scopic level population balance equations are widely used in the literature. The present work
involves the simulations for modelling the aggregation kernels of the Smoluchowski (49) equa-
tion. This equation describes the coagulation of particles, when they come in contact with one
another, on a macroscopic scale. As a result of this aggregation process the particle size dis-
tribution will change in a given system due to various physical influences. The most important
quantity in this modeling is the aggregation kernel. In general, this aggregation kernel is a func-
tion of time and particle diameter, volume, mass, etc and the physical and chemical processes
influencing the aggregation. An elaborative discussion of the aggregation equation and various
kernels were presented in Chapter 2.

To model the aggregation kernels we used a micro model known as Discrete Particle Model
(DPM) and it was developed by Prof. J. A. M. Kuipers group, University of Twente, The Nether-
lands (29). The present Discrete Particle Model (DPM) involves both particle and gas phases.
The particle phase is described by using Newton’s equation of motion for each particle as a single
entity. The continuous gas phase is described using volume averaged Navier-Stokes equations
under isothermal conditions. The interaction between particles and gas phase is coupled through
two terms, porosity and momentum exchange source term. The porosity in each cell is calcu-
lated by direct calculation of the volume of the particles present in a cell where as the momentum
exchange source term is derived from lattice Boltzmann simulations. For solving the Newton’s
equations we used a first order integration scheme. The gas phase equations are solved using
SIMPLE (Semi Implicit Method for Pressure Linked Equations) scheme. The particle interac-
tions are resolved through binary hard sphere collision model. We used a smaller time step for
the calculation of the particle interactions compared to the gas phase equations.

A novel technique for calculating the particle collisions from the dynamic discrete particle sim-
ulations of non-homogeneous granular flows of the particles was presented in Chapter 4. It was
observed that the self collisions among the particles of the same size class were neglected in the
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Smoluchowski equation. The effect of this term was analyzed for discrete particle model simu-
lations, we found that the effect of this term may be neglected for a large number of particles.
We calculated the particle Reynolds number and it was observed that the shear forces are more
dominent in the present fluidized bed simulations. Therefore a shear kernel is expected.

To calculate the collisions among the particles, we introduced new subroutines in the existing
Discrete Particle Model code. We introduced a new parameter known as the bed parameter in
order to understand macroscopic characters on the particle collisions. We considered different
initial particle size distributions satisfying equal number of particles (zeroth moment), equal
length, equal surface area, equal volume (first moment) criteria for each size class and a discrete
log-normal particle size distribution. The effect of various initial particle size distributions on
the bed parameter were analyzed for pseudo three dimensional and three dimensional simulated
fluidized beds.

The evolution of the particle size distribution that results from the aggregation are presented in
the Chapter 6. We evaluated the particle aggregation efficiency for different initial particle size
distributions. We incorporated a random aggregation mechanism for the aggregation of two par-
ticles. As a result of this aggregation a new particle of larger size is formed and the other particle
disappeared, we call this particle a ghost particle. This ghost particle has no physical significance
in the simulation and proper modifications were made in order to avoid its presence for the rest of
the simulation time. The number of ghost particles formed is equal to the number of successful
aggregations. We evaluated the aggregation efficiency rate for each simulation by collecting the
number of successful aggregations and the resulting new particle size distribution. Therefore, we
are able to model aggregation kernels from these micro simulations. We calculated the particle
size distribution from the macro model known as aggregation equation with these new kernels.
The aggregation equation with these newly simulated kernels was solved by using the cell aver-
age technique.

It was demonstrated in the thesis that the Discrete Particle Model (micro models) is an excellent
tool to provide detailed information about the basic particle flow characteristics, which are (ex-
tremely) difficult if not impossible to obtain from experiments. The present modelling approach
can be used to various types of fluidized beds like spouted fluidezed beds, circulating fluidized
beds, risers, etc. In the future, we intend to incorporate the physically relevent aggregation mech-
anism for the aggregation process by spraying the liquid binder on to particles. To model such
applications one needs to extend the present model with the inclusion of a liquid droplet phase
and nozzle. A multi particle aggregation can be simulated by considering the particle interactions
with a soft sphere collision model, but the computational time will be expensive.

Comparing the present aggregation kernels with the experiments would be valuable for designing
industrial level fluidized beds.



Appendix A

A.1 Analytical derivation of shear kernel for fluidized bed

Particles collisions in a uniform, laminar shear flow due to the relative motion of the particles.
This relative motion is due to the differences in size and velocity of the particles. Particle colli-
sions due to shear field in an ideal case can be seen in Figure A.1.

Figure A.1: Ideal collisions of particles in a uniform, laminar shear flow. The lower particles,
are moving at a higher velocity, overtakes and collides with slower moving particle

In the ideal case, streamlines are assumed to be straight and the particle motion is rectilinear.
This is an oversimplification for the motion of the particles in the fluidized bed. Since the shear
flow is affected by the nonideal collisions of the particles, walls of the fluidized bed, properper-
ties of the gas and particles, etc. So we can not expect an ideal, uniform, laminar flow field inside
the fluidized bed. Therefore, we try to introduce a paramter to account these effects. We calls
this paramter as bed parameter and it is denoted by η.

To derive an expression for the collision frequency, we refer to Figure A.1, which shows the
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particle interactions due to shear flow. As shown in figure 1 the particle of radius ai collides with
the particle of radius aj due to their relative difference in the velocity, as shown in Figure A.2.

X

ai + aj

θ

dx

Figure A.2: Geometry for coagulation in a laminar shear field

The velocity of the particle normal to the surface of the page, relative to the particle shown is
xdu

dx
. Hence flow of the particles into the shaded portion of the strip dx is given by

F = ηnjx
du

dx
(ai + aj) sin θdx.

Here we introduced the parameter η to account for the distorted shear flow due to non-ideal
particle collisions, effects of the boundary of the bed,...etc. Since x = (ai + aj) cos θ, the total
number of particles entering into the central sphere is given by

F = 2(2)ηnj

π
2∫

0

(ai + aj)
3du

dx
sin2 θcosθdθ

where the first factor 2 takes into the account of particles entering from the upper hemisphere
from this side plus the particles entering from the bottom hemisphere from back side. The second
factor 2 is necessary because the integration from 0 to π

2
must be done twice. Carrying out the
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integration the result is

F =
4

3
η(ai + aj)

3du

dx
nj

⇒ Nij =
4

3
η(ai + aj)

3du

dx
ninj

⇒ Nij = ηβ(ai, aj)ninj

where β(ai, aj) = 4
3
(ai + aj)

3 du
dx

is the collision frequency function for the coagulation of the
particles by laminar shear flow. When we consider the volume of the particles, the collision
frequency function for the laminar shear flow is given by

β(vi, vj) =
4

3
(v

1
3
i + v

1
3
j )3du

dx
.

A.2 Analytical solution for shear kernel for monodisperse ini-
tial conditions

The discrete coagulation equation for the laminar shear kernel is:

dnk

dt
=

1

2

∑
i+j=k

[
4

3
(ai + aj)

3du

dx
ninj]−

∞∑
i=1

4

3
(ai + aj)

3du

dx
nink

If the system is composed of particles that are all of nearly the same size, ai ≈ a, then the above
equation becomes

dnk

dt
=

1

2

∑
i+j=k

[
32

3
a3du

dx
ninj]−

∞∑
i=1

32

3
a3du

dx
nink.

Summing over all k, the result is

dN∞

dt
= −16

3

du

dx
a3N2

∞.

But 4
3
πa3N∞ = V = constant

dN∞

dt
= −4V

π

du

dx
N∞.

Here the decay is proportional to N∞, where as for the Brownian kernel it is proportional to N2
∞

in the continuum range. Let N = N∞(0) be the initial number of particles at t = 0. Then solving
the above equation subject to this initial condition gives:

dN∞

dt
= −4V

π

du

dx
N∞

N = N∞(0)
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N∞(t) = C1e
− 4V

π
du
dx

t

∵ N∞(0) = C1e
0

⇒ C1 = N∞(0)

∴ ln
N∞(t)

N∞(0)
=

4V

π

du

dx
t



Appendix B

B.1 Physical and Numerical parameters of the simulations

Table B.1: The Parameters for the simulation
Parameter Value
Time step of calculation ∆t 1.00e-4 sec
Simulation time 15 sec
Bed properties
Height 0.30 m
Width 0.10 m
Depth 0.01 m (pseudo 3D bed),

0.10 m 3D bed
Particle properties
Material glass particles
Number of primary particles 5000, 10000, 15000
Diameter dα 1.0e-3 m pseudo 3D bed

1.8e-3 m 3D bed
Density ρ 2500 kg/m3

Gas properties
Fluidisation velocity u 2.4 m/sec
Viscosity µ 1.82e-5 kg/ms
Density ρg 1.21 kg/m3

Temperature T 298 K
Gas constant R 8.314 J/(mol K)
Average molecular weight of air Mg 28.8e-3 kg/mol
Particle contact constants
Spring coefficient k 5.0e+5
Restitution coefficient e 0.98
Friction coefficient 0.09
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B.2 Initial particle size distributions

B.2.1 Particle size distribution for 5000 particles

Simulation Criteria Number of particles
1 1 1000, 1000, 1000, 1000, 1000
2 2 1350, 1072, 937, 851, 790
3 3 1755, 1105, 843, 697, 600
4 4 2190, 1095, 730, 547, 438

Table B.2: Five classes

Table B.2 gives the number of particles in each class, having I = 5 classes, satisfying the criterias
1, 2, 3 and 4 with N0 = 5000.

Figure B.1: Initial condition for the simulations: Particle class vs Number of particles

The bar diagram Figure B.1 represents the number of particles in each of the five classes satisfy-
ing the criteria 1-4 corresponding to the Table B.2.

Simulation Criteria Number of particles
5 1 500, 500, 500, 500, 500, 500, 500, 500, 500, 500
6 2 804, 638, 557, 506, 470, 442, 421, 402, 387, 373
7 3 1213, 764, 583, 481, 415, 368, 332, 303, 280, 261
8 4 1707, 853, 569, 426, 341, 285, 244, 214, 190, 171

Table B.3: Ten classes

Table B.3 gives the number of particles in each class, having I = 10 classes, satisfying the
criterias 1, 2, 3 and 4 with N0 = 5000.
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Figure B.2: Initial condition for the simulations: Particle class vs Number of particles

Sim Criteria Number of particles
9 1 333, 333, 333, 333, 333, 333, 333, 333, 333, 333, 334, 334, 334, 334, 334
10 2 599, 475, 415, 377, 350, 329, 313, 299, 288, 278, 269, 262, 255, 248, 243
11 3 994, 626, 478, 395, 340, 301, 271, 248, 229, 214, 201, 189, 180, 171, 163
12 4 1507, 753, 502, 377, 301, 251, 215, 189, 168, 151, 137, 125, 116, 108, 100

Table B.4: Fifteen classes

The bar diagram Figure B.2 represents the number of particles in each of the five classes satisfy-
ing the criteria 1-4 corresponding to the Table B.3.
Table B.4 gives the number of particles in each class, having I = 15 classes, satisfying the
criterias 1, 2, 3 and 4 with N0 = 5000.

Figure B.3: Initial condition for the simulations: Particle class vs Number of particles

The bar diagram Figure B.3 represents the number of particles in each of the five classes satisfy-
ing the criteria 1-4 corresponding to the Table B.4.
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B.2.2 Particle size distribution corresponding to 15000 particles

Simulation Criteria Number of particles
1 1 3000, 3000, 3000, 3000, 3000
2 2 4052, 3216, 2809, 2553, 2370
3 3 5264, 3316, 2531, 2089, 1800
4 4 6569, 3285, 2190, 1642, 1314

Table B.5: Five classes

Table B.5 gives the number of particles in each class, having I = 5 classes, satisfying the criterias
1, 2, 3 and 4 with N0 = 15000.

Figure B.4: Initial condition for the simulations: Particle class vs Number of particles

The bar diagram Figure B.4 represents the number of particles in each of the five classes satis-
fying the criteria 1-4 corresponding to the Table B.5. Table B.6 gives the number of particles in

Simulation Criteria Number of particles
5 1 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500
6 2 2412, 1914, 1672, 1519, 1410, 1327, 1261, 1206, 1160, 1119
7 3 3639, 2292, 1749, 1444, 1245, 1102, 994, 910, 841, 784
8 4 5121, 2561, 1707, 1280, 1024, 854, 732, 640, 569, 512

Table B.6: Ten classes

each class, having I = 10 classes, satisfying the criterias 1, 2, 3 and 4 with N0 = 15000.
The bar diagram Figure B.5 represents the number of particles in each of the five classes satisfy-
ing the criteria 1-4 corresponding to the Table B.6.
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Figure B.5: Initial condition for the simulations: Particle class vs Number of particles

Sim Crit Number of particles
9 1 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000
10 2 1796, 1426, 1245, 1131, 1050, 988, 939, 898, 863, 834, 808, 785, 764, 745, 728
11 3 2981, 1878, 1433, 1183, 1019, 903, 814, 745, 689, 642, 602, 569, 539, 513, 490
12 4 4520, 2260, 1507, 1130, 904, 754, 646, 565, 502, 452, 411, 377, 348, 323, 301

Table B.7: Fifteen classes

Table B.7 gives the number of particles in each class, having I = 15 classes, satisfying the
criterias 1, 2, 3 and 4 with N0 = 15000.

Figure B.6: Initial condition for the simulations: Particle class vs Number of particles

The bar diagram Figure B.6 represents the number of particles in each of the five classes satisfy-
ing the criteria 1-4 corresponding to the Table B.7.
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