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Preface

The classical central limit theorem states the uniform convergence of the dis-
tribution functions of the standardized sums of independent and identically
distributed square integrable real-valued random variables to the standard
normal distribution function. While first versions of the central limit theorem
are already due to Moivre (1730) and Laplace (1812), a systematic study of
this topic started at the beginning of the last century with the fundamental
work of Lyapunov (1900, 1901). Meanwhile, extensions of the central limit
theorem are available for a multitude of settings. This includes, e.g., Ba-
nach space valued random variables as well as substantial relaxations of the
assumptions of independence and identical distributions. Furthermore, ex-
plicit error bounds are established and asymptotic expansions are employed
to obtain better approximations.

(Classical error estimates like the famous bound of Berry and Esseen are
stated in terms of absolute moments of the random summands and therefore
do not reflect a potential closeness of the distributions of the single random
summands to a normal distribution. Non-classical approaches take this issue
into account by providing error estimates based on, e.g., pseudomoments.
The latter field of investigation was initiated by work of Zolotarev in the
1960’s and is still in its infancy compared to the development of the classical
theory. For example, non-classical error bounds for asymptotic expansions
seem not to be available up to now.

In the present work we first establish a new non-classical bound for the

central limit theorem error in the case of multidimensional random sum-



mands, which are not necessarily identically distributed. Up to now the most
fargoing result in this general setting is due Rotar (1977, 1978) and we im-
prove upon his result w.r.t. the exponent of the pseudomoment.

Second, we study short asymptotic Edgeworth expansions in the case
of real valued random summands, which are not necessarily identically dis-
tributed. Here we obtain a non-classical error bound, which to our best knowl-
edge is the first result of this type in the literature.

We briefly describe the content of this thesis. In Chapter 1 we provide
an introduction to the topic of non-classical error bounds and we sketch the
historical development of the essential achievements in this field up to now
including the new result obtained in this thesis. Chapter 2 deals with non-
classical error bounds in the multidimensional central limit theorem. Our new
estimate is stated in Theorem 2.1 in Section 2.1 and a detailed comparison
with the bound of Rotar is carried out in Section 2.2. Section 2.3 contains the
proof of Theorem 2.1. Chapter 3 is devoted to non-classical error bounds for
short asymptotic expansions in the one-dimensional central limit theorem.
The new estimate is presented in Section 3.1 and proven in Section 3.2.
Auxiliary results, which are used as technical tools for the proofs of Theorem

2.1 and Theorem 3.1 are gathered in the Appendix.

I am very grateful to my supervisor, Professor Ulyanov from the Depart-
ment of Computational Mathematics and Cybernetics at the Moscow State
University, for advising me during working on this topic and for providing
me with a lot of scientific support and helpful discussions.

I also want to thank Professor Christoph from the University of Magde-
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Notation

For x,y € R? we use |z| and (x,y) to denote the Euclidean norm of z and
the scalar product of z and y, respectively.

For a square matrix V = (v;;) € R>? we use |V|, trV and ||V|| to denote
the determinant of V', the trace of V and the maximum eigenvalue of V,
respectively. Furthermore, |[V%| is used to abbreviate the algebraic adjunct
to the element v;; of V. The identity matrix in R?*? is denoted by 1.

For A C R? 2 € R? and € > 0 we put

plz, A) = inf |z —y,
A= {r €R': plr,A) < e},
Be(x) = {z}7,
A" ={r e A: B.(x) C A}.

For a k-times continuously differentiable f : R? — R, z € R and h € R”

we put

FE (2)nk = szd:l hm%) kf] ().

For a non-negative definite matrix V € R%? we use Ny, ®y and ny
to denote the centered normal distribution with covariance matrix V', the
corresponding distribution function and the corresponding Lebesgue density,
respectively. In particular, we write N, ® and 7 for N;,, ®;, and 7;,, respec-
tively, if the dimension d is clear from the context.

The convolution of two probability measures p; and py on R? is denoted

by 1 * pa.



For d-dimensional random vectors X and Y we use fx to denote the
characteristic function of X and we write X =V if X and Y have the same
distribution on RY.

Throughout this work we use ¢, ¢(d), ¢(d,n) etc. to denote unspecified
positive constants that only depend on the parameters explicitly stated as
arguments.

For sequences of non-negative numbers a,, and b, we write a, < b, if

a, < c- b, holds for every n € N.



Chapter 1

Introduction

Consider a sequence of centered, independent and identically distributed ran-
dom variables X1,..., X, taking values in R with the common distribution
function F' such that

0 =EX? € (0,00),
and let F™ denote the distribution function of the corresponding standard-

ized sum, i.e.,
Fl@)=P((vn-o) ' - (X1 + ...+ X,) <z).
The central limit theorem then states that

lim sup |F"(z) — ®(z)| = 0. (1.1)

N0 zeR

Already at the beginning of the last century Lyapunov (1900, 1901) ob-
tained a bound of order logn/+/n for the central limit theorem error. Cramér
(1928) proved that the log n-term can be omitted if the characteristic function
f of the random summands satisfies the condition

limsup |f(¢)| < 1, (C)

[t|—o0

which excludes, e.g., discrete distributions F. Berry (1941) and Esseen (1942)

independently of Berry showed that the latter restriction is superfluous and
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established the famous estimate

E| X, |3
sup |F(z) — o(2)] < - . EIX

z€R \/ﬁ 03

, (1.2)

where c is an absolute positive constant. The order of convergence is therefore

—-1/2

at least n and this is the best possible general result, see the following

Example.

Example 1.1. Let n € 2N and consider independent random variables
)(17---7)(n with
PXy=1)=PXy=-1)=1/2

for k=1,...,n. Then EX; =0, ¢ = EX? = 1, and FI"l is a step function
with a jump of height

(S0 (3) 4

at the point x = 0. Applying the Stirling formula we obtain

FO0) - 001> (),) - g ~ o=

orn

For appropriate extensions of the Berry-Esseen bound (1.2) to the case of
independent, multivariate and non-identically distributed random variables
as well as for similar estimates under weaker absolute moment conditions
we refer to, e.g., Esseen (1945), Bergstrom (1945, 1949, 1969), Katz (1963),
Sazonov (1968), Rotar (1970) and Bikyalis (1971). See also Wallace (1958),
Petrov (1972) and Hall (1982) for an overview.

Classical central limit theorem error bounds of the Berry-Esseen type as
in (1.2) are of the form x/n® with 0 < a < 1/2 and k depending only on
absolute moments of X; up to the order 2 + 2«, and thus only the number
n of random summands is used for establishing the closeness of FI" and ®.
However, it was already noted by Paul Lévy (1937) that

sup [F(z) — (x)] < n - sup |F(z) — Bpa(a)].

z€R z€R



Hence F™ can be close to ® even for moderate n if the common distribution
of the single random summands is close to a normal distribution. In the
extreme case of normally distributed X, ..., X, we have F’ M — & and the
left hand side in (1.2) is equal to zero, while the right hand side is bounded
below by ¢/+/n.

The first non-classical approach is due to Zolotarev (1965), who employed

the absolute third pseudomoment
vy — / 2/ P|F — @,2|(dx) (1.3)
R

as a measure of closeness of F' and ®,2 and obtained the error bound

sup |[FI" (z) — ®(z)] < — - v/, (1.4)

z€eR

Note that 3 = 0 in the case of normally distributed random summands.

Furthermore, we always have

E|X,[?
Vs S 3 o3 .

The order n~'/% of convergence provided in (1.4) is far from being optimal
and was improved by Paulauskas (1969a), who established the first non-

classical central limit theorem error bound with the best possible order of

convergence n~Y 2, namely
[n] ¢ 1/4
sup |[F"(z) — ®(z)| < — - max(v3, 13" ). 1.5
xeR| ( ) ( )| \/ﬁ ( 3,73 ) ( )

If 3 < 1 then the bound (1.5) is given by ¢//n - 1/;/4. Since this case is
of main interest it is natural to ask whether, in general, the exponent 1/4
can be increased. The following example from Zolotarev (1968) provides a

negative answer to this question in the case n = 1.



Example 1.2. Let € > 0 and consider a real-valued random variable X with

the symmetric distribution function F' given by

1/2, if 0<uz<ae,
F(z) = { ®(e), if ae <z <eg,
O(x), it x>e¢,

and F(z) =1 — F(—x) for x < 0, where a € (0,1) is the unique solution of

the equation
€ &€

/xzd(I)(a:) = (ag)*- /d(I)(x).
0 0
Note that the latter property implies

o’ = /xQF(dx) = /xzd(I)(dx) =1

R R

For ¢ <1 we therefore have

1 1
sup |F(z) — p2(x)| > -P(X =ac) = = /dq)(x) >c-€
z€R 2 2
0
while . .
v3 = (ag)? - Q/dCIJ(:E) + 2/x3d<l>(a:) <c-ét
0 0

with some absolute constant ¢ > 0.

However, the bound (1.5) can be substantially improved for n > 1. Due
to Ulyanov (1978) we have

sup |FI"l(z) — ®(z)| < - max (v, l/gnin(n/4’1)). (1.6)

z€R \/ﬁ

The following example generalizes Example 1.2 and shows that the expo-
nent min(n/4,1) in the bound (1.6) is optimal for n < 4.
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Example 1.3. Let n € N and consider independent real-valued random
variables X7, ..., X, with the common distribution function F' from Example
1.2. For ¢ < 1 we get

]. n n
su;R) |F(z) — ®(x)] > §(P(X1 =ag)) > (c-e)" > At V3/4.
BAS
Next we omit the assumption that the random summands Xy, ..., X,, are

identically distributed. Let F) denote the distribution function of X, and
assume that
of = EX}? < o0

fork=1,...,n.

Furthermore, we put

5 = (Var((X1 + ...+ Xo)/va) " = (% iai)l/z

k=1

and we assume that @ > 0. As previously, we use FI" to denote the distri-
bution function of the standardized sum (v/n-7)~ ' (X7 + ...+ X,,). Next,
let

= [ lo/atFe ~ o) (L.7)
R

for k =1,...,n and define

1 n
V3 = g Z V3 k, (18)
k=1

to appropriately extend the notion (1.3) of the absolute third pseudomoment

to the present case. Note that oy = ... = 0, = ¢ implies ¢ = ¢. Finally, put
o4 ...+ o3
L=—1 n 1.9
(62 + ...+ 02)3/2 (1.9)
Nagaev and Rotar (1973) obtained
sup |FI"l(z) — &(z)| < . max (v, V§/4 “(vn - L)3/4), (1.10)
zeR \/ﬁ
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which generalizes the result (1.5) of Paulauskas, since L = 1/4/n if the ran-
dom summands are identically distributed. Ulyanov (1978) established the
estimate

sup |[F™(z) — ®(z)| <

z€R

-max(vs, A OV L)Y>H20) F(111)

Sie

where ) )
.= {01+...+anJ' (1.12)

maxj<g<n O']%
Note that ¢ > 1 and therefore the bound (1.11) improves upon (1.10) w.r.t.
to the power of the pseudomoment v3. However, in the case of equal variances

we have ¢ = n and the estimate (1.11) reduces to

n C 1/2-(1—27™)
sup |FI"(z) — ®(z)| < —= - max (v, v ,
sup 1) = B(a)] < = max(1n, 2§20 777")
which does not provide the optimal exponent min(1,n/4) for vs if n > 2, see
(1.6) and Example 1.3. We add that the following improvement of (1.11) is

announced in Ulyanov (1979), namely,

C .
sup |FI" (z) — ®(2)| < —= - max(vs, @40,
sup 1 (0) — B(0)| < -, )

which clearly generalizes the result (1.6).

We now turn to the multidimensional case. To this end we let d € N and
we consider a sequence of centered, independent and identically distributed
R?valued random vectors Xi,..., X, with the common distribution Q on

R? and positive definite covariance matrix Cov(X;) > 0. Put
¥ = (Cov(X))"2.

We generalize the notion of the absolute third pseudomoment by defining

vy = / IS123|Q — Nyo|(de) (1.13)
Rd

and we use Q" to denote the distribution of the standardized sum of the

random vectors, i.e.,
QM(A)=P((Vn-2)™ - (X1 +...+ X,,) € A)

12



for every Borel set A C R,

A first result for the d-dimension case is due to Paulauskas (1969b), who
obtained a non-classical bound for the maximum deviation of Q™ from N
on the class of d-dimensional intervals. In the present work we analyze the
closeness of Q" and N on the class C. Paulauskas (1969c) showed that

ilgg 1QM(A) = N(4)| < i\/dﬁ) - max (v, V§/4), (1.14)

where the constant c¢(d) only depends on the dimension d. Clearly, (1.14)
extends the result (1.5) of the same author. A first improvement of the expo-
nent 1/4 of the pseudomoment in the latter bound is due to Sazonov (1972),
who obtained

sup QI (A) — N(A4)| < i\/‘g - max (v, vy ). (1.15)

Ulyanov (1978) then managed to increase the exponent further. He proved
that

d)
Ml(A) = N(A)| < at -1 r(n.d) 1.1
sup QM(4) ~ N(A)| < V2 (v, 5 (1.16)
with p

k(n,d) = min(l, dn——i—3>’ (1.17)

which generalizes the result (1.6) he obtained for the one-dimensional case.
Note that x(n,d) =1 for n > 4.

The following multidimensional extension of Example 1.3 shows that the
exponent k(n,d) is optimal in the case nd/(d + 3) < 1, see also Sazonov
(1981).

Example 1.4. Let € > 0 and put
B={zeR%: |z|<¢}.

Define a probability measure ) on R? by

d

Q(A) =N(AN B°) + 21_dN(B) . Z(lA(ag -€j) + La(—ace - €5)),

j=1

13



where e1, .. ., eq are the unit vectors in R? and a € (0, 1) is the unique solution

of the equation
/\x|2N(dx) — (as)? - N(B).
Clearly, ) is centered, and employing the latter equality we obtain
PIES /x 2T Q(dx) = I,
Rd

where I; € R™? denotes the identity matrix.
Let n € N and assume ¢ < 1. Then

Q" ({vVn - ae-e}) > (Q{as - e1}))" = (N(B)/(2d))" > ¢(d,n) - e™
and

vs = (ac)® - N(B) + / 2[PN(dz) < &8 - 2N(B) < e(d, n) - 3,

where the constant ¢(d,n) > 0 only depends on d and n. Hence

sup |Q)(4) = N(A)| 2 [QU({V/n - az - e1}) = N({v/n - a= - e1})|

AeC
c(d,n) - (vs/c(d, n))" 2,

Finally we turn to the setting of interest for the present work. We assume

that Xi,..., X, are independent, centered, R%valued random vectors with
E|X;)? < o0

for k =1,...,n. We use Qj to denote the distribution of Xj on R? and we
put
= (COV(Xk))l/Q.

Thus, as in the one-dimensional case we drop the condition of identically
distributed random summands. Furthermore, we assume that

/2

= (Con((s o X)) = () 222) -0,

14



and, as previously, we use Q™ to denote the distribution of the standardized

sum of the random vectors, i.e.,
QM(A)=P((vVn-I)™ - (X1 +...+ X,) € A)

for every Borel set A C R?. In order to extend the definitions (1.8) and (1.13)

of absolute third pseudomoments to the present setting we put

= [ 572G ~ N (d) (118)
Rd

and we define v3 to be the arithmetic mean of v3,,...,v3, as in the one-
dimensional case, see (1.8).

For this general setting, the first non-classical estimate of the deviation
of Q" from the standard normal distribution N on the class of convex sets
C is due to Paulauskas (1969c), who showed

s 1Q1(4) — N(4)| < L9 3 (1.19)
Clearly, this bound is too large if the random vectors are identically dis-
tributed. In this case the pseudomoment v3 does not depend on n and the
bound (1.19) only provides the order of convergence n~/® while the best
possible order is n~!/2, see (1.16). Furthermore, the pseudomoment exponent
1/4 is smaller than the optimal exponent (1.17) for n > 1.

The first result with the best order of convergence 1/4/n is due to Rotar
(1977, 1978) who essentially obtained an estimate of the form
c(d)

ilélng[”](A)—N(Aﬂ W.max(ug,y;f(q)-(\/ﬁ-L)l—%@), (1.20)

where L and ¢ are defined by (1.9) and (1.12), respectively, with o7 re-

IN

placed by s2 = tr Cov(i_le), and the pseudomoment exponent X(q) sat-
isfies 1/4 < X(q) < 1/3 if ¢ is sufficiently large. See Section 2.2 for a more

precise formulation..
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In the present work, we present a substantial improvement of the estimate
of Rotar w.r.t. the power of the pseudomoment, see Theorem 2.1 in Section
2.1 and Yaroslavtseva (2006). We show that (1.20) holds with the pseudo-
moment exponent Y(g) replaced by an exponent x(q) € [1/4,1/3) such that
128(d + 4) - 2La/(2)] 3

e : - x(q))
for sufficiently large q. Hence 1/3—Y(q) is exponentially larger than 1/3—x(q)

1/3 —X(q) >

as ¢ tends to infinity.

The bounds (1.11) and (1.16) obtained by Ulyanov for one-dimensional
summands and for identically distributed multi-dimensional summands, re-
spectively, show that the pseudomoment exponent x(¢q) is not optimal in
general. Note that L = 1/y/n in the latter case. We conjecture that the

bound (1.20) holds with a pseudomoment exponent

X"(q) € [1/4,1]

in place of Xx(q) such that x*(¢) = 1 for sufficiently large g.

As already mentioned at the beginning of this chapter, the order of con-

1/2 is the best possible general result on the asymptotic behavior

vergence n-
of the error in the central limit theorem, see Example 1.1. However, for spe-
cific distributions a higher order of convergence is possible. This suggests to
provide a more detailed analysis of the speed of convergence in the central
limit theorem in general and to obtain better approximations to FI™ hereby
as well. The following classic approach to achieve these goals uses asymptotic
expansions of FI" in terms of ® and its derivatives and was already initi-
ated around the beginning of the last century, see, e.g., Chebyshev (1890),
Charlier (1905) and Edgeworth (1905).

Consider again a sequence of real-valued, centered, independent and iden-
tically distributed random variables Xi,..., X,, with common distribution
function F and finite, positive variance 0? = EX?. Let f denote the charac-

teristic function of X; and define the r-th order cumulant , by

1 d
Tr= = log f(0)

ZT.%
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for r € N, where log denotes the principal value of the complex logarithm.

For example,
7 =0, =0, v=EX} y=EX]-3"

A formal Taylor expansion of the logarithm of the characteristic function of
the normalized sum (yv/n - o) Y(X; + ...+ X,,) leads to a formal expansion

of the corresponding distribution function F[™, which is of the form

= P.(—®
S = a2y
r=1

where P, a polynomial of degree 3r with coefficients depending on the cumu-
lants of order k = 3,...,r+ 2 and powers of ® are interpreted as derivatives.
Hence P,.(—®(x)) can be expressed as the product of the standard normal
density function 1 and a polynomial in x. Moreover, 73 = ... = 7,40 = 0

implies P, = 0. For instance,

30y
Pi(—®(z)) = %()7
LW (g) A2 PO (g

The first result on the validity of the expansion (1.21) is due to Cramér
(1928). Let k > 3 and assume that E| X |* is finite and that the characteristic
function f satisfies the condition (C). Then

k—3
sup|FI"l(z) — ®(z) —

z€R

P(=%())

D < emy i

1

\3
Il

with an unspecified constant c¢(F, k) that depends on F' and k. The most
fargoing general result w.r.t. the speed of convergence of the Edgeworth ex-

pansion (1.21) is due to Esseen (1945), who improved upon (1.22) by showing

that even
k—2
P~
lim n*=2/2 . sup| F"(2) — ®(z) — ( /Q(x)) ‘ =0 (1.23)
n—o0 R —~

17



holds under the above conditions on the distribution of the random sum-
mands.

(Classical results on explicit error bounds are available under the assump-
tion of a finite absolute moment E|X|*"2% with k£ > 3 and 0 < o < 1/2, and
are typically of the form

k—2

P(—®
Slelg Fl(z) — ®(z) — Z % <k -p K2 L (1.24)
v 1

<

Here, k depends only on absolute moments of X; up to the order £+ 2« and
On, depending on F' and k, converges to zero exponentially fast if the Cramér
condition (C) is satisfied. As an example we state a bound of Osipov (1967)
with o = 1/2. If E|X;|*"! < oo then

k—2

sup F["](x) —®(x) — Z

z€R —1

PA=0(a))| _ BJX,

/2 =Tkt D2 45, (1.25)
n’ o

We add that asymptotic expansions were also studied for non-identically
distributed random summands, see, e.g., Cramér (1937), Statulyavichus (1965),
Survila (1965), Pipiras and Statulyavichus (1968) and Pipiras (1970). Multi-
variate Edgeworth expansions and respective truncation error estimates have
been obtained by, e.g., Rao (1960, 1961), von Bahr (1967), Bikyalis (1968)
and Bhattacharya (1968, 1971, 1972). For an overview and further results
on asymptotic expansions we refer to Petrov (1972) and Bhattacharya and
Ranga Rao (1976). Asymptotic expansions in the central limit theorem are
also investigated for random summands with values in function spaces, see,
e.g., Bentkus (1984a, b), Ulyanov (1986), Nagaev and Chebotarev (1993),
Bogatyrev, Gotze and Ulyanov (2006), and also, Bentkus, Gotze, Paulauskas
and Rachkauskas (2000) for an overview.

Consider the case of identically normally distributed random summands
Xq,...,X,. Then all of the respective cumulants ~, of order » > 3 are zero,
and, consequently, the maximum error on the left hand side in (1.25) is zero
as well. However, the corresponding right hand side bound only provides

convergence to zero of order n~(*=1/2_ Thus, similar to the Berry-Esseen

18



inequality (1.2), the closeness of F' to the normal distribution function ®,is

not taken into account by classical error estimates of the type (1.24).
Non-classical bounds for the error of truncated asymptotic expansions

in the central limit theorem seem to be unknown up to now. Define the

pseudomoments v, of order r by

= / 2/0]"|F = @) (dx)
R

for r € N and assume that E|X;|* < oo. In Chapter 3 we provide the first

non-classical error estimate for so-called short asymptotic expansions, namely
|FIM(z) — @(z) — Pi(—®(z))/vn| < k1/n+ Ko/’ + 5, (1.26)

where

1 4
o, 4
kK1 =vs+ V] +vg+ug

depends only on the pseudomoments of order 3 and 4, k, is determined by
o and E|X[|?, and §,, depending on F, tends to zero exponentially fast if
the Cramér condition (C) is satisfied. Even more general, in Theorem 3.1
we present the first non-classical Edgeworth expansion error bound for the
case of independent, centered and real-valued, but not necessarily identically
distributed random variables, which implies (1.26), see Corollary 3.1.

For the proof of both Theorem 2.1 and Theorem 3.1 we employ a new
method of Bentkus (2003a) to represent the difference of expected values
E¢(S) — Ep(Z) of a smooth function ¢ : R? — C applied to the standard-
ized sum S of the d-dimensional random summands X,...,X,, and to a d-
dimensional standard normal vector Z, respectively. In Chapter 2 this repre-
sentation is used for smoothed indicator functions ¢4 of convex sets A C R,
and it is combined with the method of compositions, which was introduced
by Bergstrom (1944) and is further developed in Bergstrom (1945, 1949),
Sazonov (1968, 1972), Paulauskas (1969a, 1969b, 1996¢), Ulyanov (1978) and
Sazonov and Ulyanov (1982). In Chapter 3 we apply characteristic functions
techniques, see, e.g., Esseen (1945), Hsu (1945), Rotar (1977, 1978), Sazonov

19



and Ulyanov (1995) and we use the representation method of Bentkus for the
functions ¢;(x) = € with t € R. We refer to Sazonov (1981) for a detailed
description of the composition method as well as characteristic function tech-

niques and an overview on applications in the literature.

20



Chapter 2

Non-classical Error Bounds in
the CLT in R

Let d,n € N and consider a sequence Xy, ..., X, of d-dimensional, centered

and independent random vectors with
E|X;|* < o0

for k =1,...,n. We use Q; to denote the distribution of X; on R? and we
put
Zk = (COV(Xk))l/Q.

Let Y7, ..., Y, be d-dimensional, centered and independent Gaussian vectors,
such that

COV(Yk) = Zk
and define

S=X,4+..4+X,, Z=Yi+..+Y,

Throughout this chapter we assume that
Cov(S) =Cov(Z) >0

and we put

= (Cov(S/vn))"?.
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For r > 0 we define

Vg = /‘flzka - NE§|(dz),
Rd

and we put
n
1
Vyp = — E Vrk-
n
k=1

Let Q" denote the distribution of the standardized sum of the random vec-
tors X on R, i.e.,

[n] —
Q™ = Py g N
We are interested in the maximum deviation of Q" from the d-dimensional
standard normal distribution N on the class C of all convex subsets of R,
ie.,

A, (C) = sup [QM(A) = N(A)].

AeC

2.1 Main Result

Put

sp = tr Cov(f_le)
and define

I st +sh s+
(st 8232 (nd)S?
as well as
|si+... +s2

I = maxi<g<n 5% '

Furthermore, put
(z) 1 1
x(@) =5 — ———7
3 19.9l:]

for x > 0.

Our main result is the following estimate:

Theorem 2.1. There exists an absolute constant M > 1 such that
3

A, (C) < M - % (v + X (V- L) X)), (2.1)
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2.2 Discussion

We briefly discuss basic properties of the bound (2.1) and then we turn to a
detailed comparison of our estimate with an estimate obtained by Rotar.

Clearly, the ratio L,, satisfies

1/vVn<L,<1

and for the pseudomoment exponent x(g,) we have

1/4 < x(qn) < 1/3.

Moreover, x(g,) tends to 1/3 exponentially fast as ¢, tends to infinity.
If the random summands X7, ..., X, are identically distributed then L,, =
1/y/n and g, = n such that the bound (2.1) reduces to

d’ 3 ]
An€) < M- (Vg v ) (2.2)

A comparison with the results of Ulyanov (1.16) shows that this estimate is

suboptimal w.r.t. the power of pseudomoment.
Let
52(0) = E(67(Cov(9)) 72X,
for € R and k = 1,...,n, and define
S0)+...+5(0)

L,(0) = _ =3 L+
as well as
L, = sup En(e), Gn = 1/Zi
|o|=1
Furthermore, put
- |x-0/64]
Xo(¥) = 35 T6a] T 2d 1 8

for 6 € (0,1) and = > 0. Note that

Vn<L,<1,  Xs(@) <1/3.

The following bound is due to Rotar (1977, 1978).
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Theorem 2.2. For every 6 € (0,1) there exists a positive constant c(0,d)

such that Jis
=S +

"z Ty
mplies

c(d,d)

NZD

In Propostion 1 we compare the bounds (2.1) and (2.3) by comparing the

ALC)] < - max (vg, v ®) - (i - L) %@ (2:3)

respective pseudomoment exponents x(g,) and Ys(¢,) as well as the ratios
L, and Zn for a fixed dimension d. While the latter ratios are shown to be
asymptotically equivalent, it turns out that 1/3 — Xs(g,) is exponentially
larger than 1/3 — x(qg,) for sufficiently large g,.

Proposition 1. The ratios L, and L, satisfy
L, < L,<d”?L,. (2.4)

The pseudomoment exponents x(q,) and Xs(qn) satisfy

13- Ral@) 2 o 213 ) @29
if gn > 128(d +4)/6 and
556(217“) < X(%L) (2'6)

otherwise.

Proof. Put Y; = (Cov(S))~/2X}, and let § € R? with || = 1. By the Holder
inequality,
07 Yl* < 10 - [Yil* = [Vi*.
Hence
52(0) = E|0TY,]* < trCov(Y) = s2/n

and consequently
1

T 3 _ 33/2
Ln< =5 si=d" L.
k=1
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Put

b = (1/Vd,...,1/Vd).

Then |fy| = 1 and we have

1 52
52(0) = 5 tr Cov(Yy) = T -kn’
Hence
I ¥ s34 ...+
Ly, > Ly(0) =55(00) + ... +5(6p) = W — I,

which finishes the proof of (2.4).
Note that the latter inequality implies
~ 1 1

A < (n-d)?

< (g, + 1) 2.7
725 I manaeeel = 0D (2.7)

For the proof of (2.5) we put
a = (2d+8)/(7  6/64]

and we first consider the case that a > 1. Then (2.6) follows from

1
(@) = o—— < 1/4 < x(qn). 9.8
Xs(d) 3+a /4 = x(4n) (2.8)
If a <1, we obtain
ST 1 1 a _1 128(d+4
X5(Qn): S———g__¥.
34+a 3 1273 12,
Thus, by (2.7),
| P 128(d+4)  128(d +4)
- — n) = = Colan/CDI (173 — 3 (g),
3 Xa(th) 2 12(gn + 13 (gn+ 1) (1/3 = x(qn))
which finishes the proof of proposition. 0
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2.3 Proof of Theorem 2.1

We first state some facts, which are easy to check or well known from the
literature and are used throughout in this section.

We will use the following two properties of the class C of convex subsets
of RY,

(P1) For every A € C, every a € R? and every symmetric and invertible

matrix D € R™? we have

DA+ a€eC.

(P2) For every A € C and every ¢ > 0 we have

A AT e C.

Furthermore, we will employ the following version of the Taylor expansion
formula for a sufficiently smooth function f : R? — R. For t,h € R? and
s € Ny,

1

1

: 1 S S S
flt+h)= 3 7 FO)R + A /(1 —w)*fEY(t 4 uh) R du.  (2.9)
- 0

For positive integers ro > r; we have

Uy < 2T < 0y (2.10)

rok
see Christoph and Wolf (1992).
Throughout the proof of Theorem 2.1 we let
e = Qr — Ny

denote the difference of the distributions of X, and Y},. Recall that the latter
random vectors are centered and have the same covariance matrix. For every

linear function G : R — R and every bilinear form H : R? x R? — R,
/,uk(dz) = /G(z),uk(dz) = /H(z, 2) e (dz) = 0. (2.11)
Rd Rd Rd
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Finally, we put

Urg = vpi /0%, B = s /n'/? (2.12)

as well as .
U= Tpp=rv, /0> (2.13)

k=1

Due to Property (P1) of the class C we may assume without loss of
generality that

COV(S) = Id,
which implies
Q" = Ps.
Furthermore, we may assume that the sequences Yi,...,Y, and Xy,..., X,

are independent.

In order to prove Theorem 2.1 we proceed by induction on the number
n of random vectors Xi,..., X, and we distinguish the cases ¢, < 2d and
¢, > 2d. Note that ¢§ = 1. To carry out the induction step in the case
¢n > 2d we show that if (2.1) holds for any subsequence of Xi,..., X, of
length n — 1 with some constant M > 1 then (2.1) also holds for the whole
sequence X, ..., X, with M replaced by ¢ - v/ M, where the constant ¢ > 0

is independent of d, n, M and the random vectors Xj.

Case 1: ¢, < 2d.
Let T > 0. Choosing () = Ps in Lemma A.5 we get

24 . d3 . T(4HL)
AL (C) <2sup |(Ps — N) * Np—2.;,(A)] + )
(€) < 25| (Ps = N) # Nroa () + = oy

(2.14)

[CISHI

For m > 1> 1 put

Ql,m:Ql*QH—l*“-*Qm

and

N, = Ng2*Ns2 *...%Ny2.
lm % i 2,
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In order to estimate the first summand on the right hand side of (2.14) we

use the representation
(PS- *NTQId ZU */J,J,

where
Uj = Q-1 % Njp15 % Np—2 g,

and both @)1 and N,,41, denote the Dirac measure in the point 0 € R4,
Fix A € C, put

W;=Cov(Xjz1+ ...+ X))+ T2 Iy

and define
gj(x) = U;(A+z)

for x € R and j = 1,...,n. Since

UA +2) = [ Qua(A+a =y, )y
~ [Quimaa+ o o -

the function g¢; is smooth. Therefore, applying the Taylor formula (2.9) to g,

and using (2.11) we obtain

|%*MUWZL/ o)y (d)

]' "
2//u—um¢«m@ﬁmmumm

0 Rd
/MHM(U

IN

— sup sup
2 1<imp<d zeRd

0atl &Bm@xp
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Clearly,

g, Pow. (x —t)
_— A t) ————=dt
&vlaxmaxp / Quja(A+t)- 01,0201,
forall 1 <I,m,p <d. For d =1 we have
33gj(x) / (3|.T1 — t’ |l’1 — t|3>
——=—=| < + nw, (1 — t)dt < ———— < 5T°.
ot |7\ WF w3 ' W, \/_

For d > 2 we use Lemma A.6 as well as Lemma A.7 with V; =772 I; and
Vo =W, — T2 I, to derive that

9°g;(z) G [ WP
8xlc‘9xm6xp - |Wj|3

. \/mvl”uvlmmuvlppr

Vi3
=6 -T2

Therefore
5d3/2 _

|Uj x Qi(A)| < T° - v

and consequently,

24d3/? - T(4£1)
VA T-T(g)

due to (2.14). According to the Stirling formula we have I'(£2)/I'(2) < 24'/2.
Choose T = d'/3 - 7; '/* to obtain

A, (C) < 5d** T3 .7y +

A (C) < oy - T,

where ¢; = 5+ 48/y/7. By assumption, ¢, < 2d, and therefore



which implies

d3/2 = 22 - d3/2

Hence
AL(0) <293y - T LI <yt (o 7 LYY,

where ¢, = 2V/2 - ¢;. Moreover, |2 ] = 0, so that x(g,) = 1/4, which yields
(2.1) with M = cs.

Case 2: ¢, > 2d.

For k =1,...,n we define
Se=>Y_Xi,  Zi=)Y,
itk ik
and we put

C? = Cov(Sy) = Cov(Zy).

Note that in the case under consideration, the covariance matrices C} are

invertible with

I <vV2,  k=1,...,n. (2.15)

Indeed, the condition ¢, > 2d is equivalent to max;<g<, tr Cov(Xy) < 1/2,
which implies that all eigenvalues of Cov(X}) are bounded by 1/2. Therefore
all eigenvalues of Cf are not less than 1/2.

Let 0 < e < 1. We apply Lemma A.2 as well as Lemma A.3 to obtain

An(C) <sup|Epe a(5) — Epea(2)]
AeC

+ max{iurc) P(Z € A°\ A)sup P(Z € A\ A—f)}
S S

< sup [Epe A(S) — Epea(2)| + /2/7 - d*? - ¢, (2.16)
Aec

where the functions ¢, 4 : R? — R are chosen according to Lemma A.1.
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Fix A € C. For convenience we write ¢ instead of ¢, 4 in the sequel. To
estimate |[E@(S) — Ep(Z)| we use the following representation, introduced
by Bentkus (2003a). Put

H,=5, -cosa+ Z,-sina

for k =1,...,n, where a is uniformly distributed on [0, 7/2] and independent
of the vector (Xi,...,X,,Y1,...,Y,). Then

Ep(5) — Ep(Z) = —

b | 3

> e (2.17)

with
O, =Ey¢'(H, + X),-cosa+ Y}, -sina) - (—Xj, - sina+ Y}, - cosa).
Below we will show that

|@k| < et (773,k +T5% : gl,k)
% (Md3 . (;3 + ;;x(qn)—l/i% ) Li/3—2x(qn)) + 32 5)
+ Us . (2.18)

Summing (2.18) with respect to k = 1,...,n and using (2.17) we obtain
[Ep(S) — Ep(2)]
1 (- e

% (Md3 . (;3 + ;gx(qn)*l/i% ) Li/3f2x(qn)) + 2. g)
7 (2.19)
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Note that 77, < 83 due to (2.10). Hence

k=1 k=1 ’ k=1
n 1 n 2
. 3 3
{En) (59
k=1 k=1
1 2
— 2. 58 L -d. (2.20)

Combining (2.16), (2.19) and (2.20) we derive

d4

3 3 _1 4
A C0) K . (173 + U3 -LS;) . (;3 _{_D“;X(Qn) 5.3 2X(qn)>

2

1
+d* e+ d - (y+05 - Li). (2.21)

Let

iz _1  _4_
)= \/Md2 . (;3 +§§ . L%) . (173 +Z7§X(qn) 3, L% 2X(‘]n)>.

First, assume 0 > 1. Note that A, (C) < 1. Hence

4 2 2 4_
An(C) = VI 7 +7) - L+ 720 [ | gaten 2

n

Since 1/4 < x(g,) < 1/3 we have
§§L§ < 'ﬁg + ggx(%) i LZ—QX(qn)

and

D;X(Qn)‘i’% .LE*ZX(%) <24 ;gx(qn) ) L721—2x(qn)7

which yields

An(C) <V Md\/’]jg + 532)((‘171) . L%_QX(q")
< VMd- (v + 70 - LLxlan)y
< VMd® - (75 + ggc(qn) . L}L—x(qn))_ (2.92)
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Next, assume 0 < 1. Take ¢ = ¢ in (2.21) and observe

to derive

A C) < d*- \/Md2 (s + ’53% : LE)-(% . ;gx(qn)—é .L§—2x(qn))
+d* (v + ’Jg(q") . Li;x(qn))
VM - (T3 + 7" L) 4 d® - (B L)
< VM - (7 + oY) . LX) (2.23)

since M > 1. We can rewrite (2.22) and (2.23) as
AL(C) < e5- VMd® - (g + 7). [1-xlan)

with some absolute constant c3. Recall the absolute constant ¢, from Case 1.
Choosing M = max(cy, ¢3) ensures

csVM < M
and completes the proof of the theorem.
It remains to obtain the bound (2.18). Fix k € {1,...,n} and define
£ =Y/ cosa+ Ysina, ¢ = (-Y!sina+ Y} cosa)
with a d-dimensional centered Gaussian vector Y such that
Cov(Y}) = Cov(Xy)
and Y/,... )Y Yi,....Y,, Xy,..., X, @ are independent. Put

) n’

R = (Sk, Zk, a).
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Then Hy, is a function of R, and Y}, Y/, Sk, Zk, « are independent. Hence,
conditioned on R, the vector (Hy + &, () is normally distributed and satisfies

Cov(Hy + &, ¢|R) = E(§(" |o)
= —E(Y/(Y))") cosasina + E(YY,]) cos® a
— E(Y(Y)") sin® a + E(Y;Y{") cos asin a
= EY/EY,! cos’a — EY,E(Y])" sin’a
= 0.

We conclude that, conditioned on R, the random variables ¢'(Hy + &) and ¢

are independent, which implies

Ey'(Hy, + €)¢ = EE(¢'(Hi + §)C|R)
= E(E(¢'(Hy + §)|R) - E(C|R))
=E(E(¢(Hy+&)|R) - (—EY]sina + EYj, cos a))
=0.

Consequently,

Or = EY'(Hy), + Xy cosa + Yy sina)(— X sina + Y cos a)
— E¢/'(H, + Y/ cosa + Yy sina) (=Y} sina + Y}, cos a)
=E / ¢'(Hp + zcosa + Yy sina)(—zsina + Yy cos a)u(dz).  (2.24)
R
Define
L =Toyla), o =Ipmm(a),

where v = arcsine. Moreover, put

I, = EL, / ' (Hy, + zcosa + Yy sina)(—zsin a + Yy, cos ) g, (dz),

Rd

I, = El, / ' (Hy, + zcosa + Yy sina)(—zsin a + Yy, cos ) g, (dz),

Rd
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as well as

I; = EI, / O (CrY + zcosa + Yy sina)(—z sina + Yy cos o) g (dz),
Rd
where Y is a d-dimensional standard normal vector such that the sequence

Y, Xq..., X, Y, Y, Y, ..., Y «ais independent. Clearly,

Ok = |1 + Io| < L]+ [12 — T3] + |I3].
We separately estimate the quantities |I1|, |Io — I3| and |I3].

Lemma 2.1. We have
|Ig| <K 1737;?.

Proof. Recall that C}, is invertible and use partial integration to obtain

I; = El, / / ' (Cru + zcosa + Y sina)(—z sina + Yy, cos o) px. (dz)n(u)du
R R

= —EIl, / / ©(Cru + z cos o + Y sin «)

RE R x 1 (u)C, H(—zsina + Yy cos )y (d2)du

= —EIl, / / o(Cr)n' (x — Cp M (2 cosa + Yy sin )

RE R x CpH(—zsina + Yy cos )y (dz)da.

Put
W,=xz— Ck_lYksina
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for z € R% Apply the Taylor formula (2.9) to 7’ to obtain

0 (W, — C, 'z cosa)Cp H (—zsina + Yy cos a)
=1/ (W,)C ' (—2zsina + Y}, cos @)

—1'(W,)CpH(—2zsina + Yy cosa) Oy ' 2 cos a
1
+ =" (W,)C;. Yy cos a(Cy 'z cos ar)?

2
1

— /(1 —w)n”" (W, — uC, 2 cos )Cy tzsin a(C 'z cos a)?du

l\:)ln—

1
/ 20" (W, — uC ' 2 cos ) Cp MYy cos (O 2 cos o) du.
0

Observing (2.11) we have

/n’(Wx)Ck_l(—z sin v 4 Y}, cos ) g (dz) = 0,
Rd
/n’/(Wm)C’kl(—z sina + Y, cosa)Cy 'z cosa = 0,
Rd
/n’"(Wm)Ck_lYk cosa(Cylzcosa)? =0,
Rd

and therefore,

/n’(Wx — O, 'z cos ) Oy (—zsina + Yy, cos ) g (dz)

Rd
1

= —sinacos® o /(1 —u) /n"'(Wx —uCy 'z cosa)
0 R x (C;12) ux(dz)du

1
— —COS a/ (1—u) / 0" (W, —uC; 'z cos a)Ci 1Yy,
° Re x (C)12) ux(dz)du.
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Since 0 < ¢ <1 we conclude that

|13|§E/ (Cyr) //W"  — uC 2 cos @) (O 2)? el (d2) dud
Rd

0

+ E/gp(Ck:L’) // " (W, — uCy 2 cos ) Cp Y (Crt2)?|
0 R

Rd

X | x| (dz)dudx

< / [ [ v = a6 cos ) (€2 el ()

R4 Rd

+E///|n’”' W, —uC, 'z cos @) Oy Yi(Cp t2)? [da| | (dz) du

0 Rd Rd

— [ [ @(c; oPdslu @)

Rd Rd

LB / / " () i (Ot 2)? el (d2).

R4 Rd

It is easy to check that

0" (x)y® = Blyl*z"y — («"y)*)n(x) (2.25)

and
0" (2)gy* = Blyl*y"y—3(="y) "y —3lyl’z" gz y + 2" G2 y)*)n(z) (2.26)

for all z,y,5 € R% Let Y be a d-dimensional standard normal vector inde-
pendent of Y. Then (2.25) and (2.26) imply

/In’” 2)3|de < |C7 2 PEY Otz + E[Y O 2
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/|n//// IYk ) |dZE

< |CTPRI(Co Y TO 2 + BIY T O PB|(C ) T |
G EPEY OO Y O e+ BIY YR Ot

ST 1 : : : _
Clearly, Y C; 'z is a centered normal random variable with variance |C} ' 2|2,

In particular,
E[Y Oz = |C 2% EY C2P < |02, (2.27)

Using the independence of Y and Y;, we obtain

1

E(Y G2 (EY Cflz)¥)s

< (
= (EE(Y" Cr 1Yk Yi))2/ (25 — DU|C; L2
(E
<||C

EY ;YWY Ct2)) <

1C YY) /(25 — 1 etz
sk V(27 — DG 2

for j € N. Additionally,
E|(C;YR) O t2l < |G- |G 2B < (I 1C 2] - Sy

Collecting the bounds, using (2.15) and the fact that 5, < 1/4/2 in the case

under consideration we derive

/In”’ 2)%dr < |z)? (2.28)

as well as
/|77//// IYk; ) |d:L‘<<| |3

It remains to observe that |2> = 2. [£ zJ? to complete the proof of the

lemma. O
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Lemma 2.2. We have

1 ~ ) —L Ao 3
|-[1| < g . (V3,k+%?cyl,k) . (Md3 (V3+ ;X(q )— 3. L% 2x(q )) —I—dgg)
Proof. Clearly, we may assume
1
V2
where Y, Y are d-dimensional standard normal vectors such that the sequence
Y, }7, X1, ..., Xy, Yy, a is independent. Then

Ci'Z=—=(Y +Y),

1 ~
—(CLY sina.

1 _
—C,Y sina +
k 5

V2

H, = S cosa+

Put 1
T = Spcosa+ —CrY sina.

V2

We have

1
I :Eh//go’(T—i——Ckysinoz+zcosa—l—Yksina)(—zsina—i—chosa)

V2
RERS x 1(y) u(dz)dy

1
=E[L / / o' (T + ECW sina)(—zsina + Yy cos )

Rd Rd
x n(u— V2 220y — V20 (dz) du
sma
= —EI, s1na// T+ —C’ku sin )z
R¢ Rd
x n(u— V2 o Citz — V20, p(dz) du
sin «v

1
+ EI Cosa// "T + —=Crusina)Y;
1 90( \/5 k )k
Rde

0t — V2 L0y — V20T Y ) (dz)du. (2.29)

S1n v
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Apply the Taylor formula (2.9) to n and 7’ to obtain the representations
n(u — V2 COSQC 2 —V20,'Y)

Sl (v

= n(u— V20, 'Y3)
+1(u— V20, 1Y) (—V2

1

- /(1 —u)n" (u — V2u, :?SzCk_lz —V20,'Y)

0

COs &

Cy'z)

sin o

COos &

X (—V2 ——C12)%du,
sin «v
and
n(u_\/—COSO{C Z—\/_C 1}/}{;)
sin «v
= n(u— V2 2ty

S &
1

+ /n’(u — V2u, YY) (—V2C7 Y ) duy

0

1
+ //77"(“ —V2uy :?jzck_lz — V2ui G 1Y) (=20, 1Y)

0 0

X (—\/5 C?SO[C’,;lz)duldUQ,

sin a
which are used for the first and the second integral in (2.29), respectively.
Thus, observing (2.11) and EY}, = 0, we derive

I :—2E11COS Oé/ 1 —u) // T+—Ckusma)
sin «v

Rd Rd

x 0" (u — v/2uy C?SO[C'_ 2 — V20 YY) (Cpt2)? i (d2) duduy

1

+2EIlcOS a//// T—i——C’kusma)
sin av

0 Rd Rd

x 0" (u— V2us E:SC’Q z— \/§ule’ Vi) Oy YO 2 e (d2) duduy dus.
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Hence

cos? v 1
| < EI //‘/ (T + —=Cjusina)z
n | ( o )z

Rd Rd

XN (u—\/_ulcosaC’ Ly = V20,.1)(CL 1) du

e oo

0 0 Rd Rd

x 0" (u — V2us :ioszCk_lz — \/iulo,;lyk)(] lYkC Ladu

|| (dz) iy

X |uk|(dz)du1du2> :

By the properties of ¢’ we have

1 1 4+/2si
(T + —=Crusina)r — ¢ (T + —=Crusina)z| < @ Ju—v| - x|

V2 V2

for all u,v,r € R? and
supp(¢') C A%\ A,

see Lemma A.1. Employ Lemma A.4 and use (2.15) to get

|14 | << E11COS a(///IAe\A<T+—C’kusma> (2.30)

R4 Rd

x |if (u—\/_ulcosaCklz—\/_C YO 2|21 ) () duduy

] [ (s ~cusna)

0 0 R Rd

< il (u = V2 == Gt = VR G )G Vil =Y

ey (dz)duduldu2> :
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The random variables Sk, Y, Y, and « are independent. Therefore

P(T—i— %C’kusina € AE\A‘Yk,a>
= P(T—I— LC’kusinoz € Ag\A|a>
V2
<sup P(T+zxz€ A"\ Al|a)
zEeRd
=sup PT e (A—z)°\ (A—2x)|a)

z€R4

S J17

where
1

Ji = sup P(Slygcosﬂ—l—\/§

EeC,
Be[0,m/2]

Thus (2.30) implies

CY sin B € E°\ E)

J
L < 8—; -EI, cos®

(/1

Rd Rd

/1]

Rd Rd

R Oy — V2O YO
S &

' (u— \/§U1

x |22 | (d2) duduy

C

7 (u— V2uy .Osacilz - \/Eul(j,;lyk)cglyk‘
S1n &

1
o
0

X |z||Yk||uk|(dz)dudu1duQ)

_ g.ml cosQ(y(R//n’(u)CklzzQUk(dz)du

d Rd

"‘//|77’(U)01;1Yk||2||Yk||uk|(dz)du>,

Rd Rd
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Use
[ @ sl = [ 1€ dntwdn = B ;12 <162 < VELe
Rd R4

as well as

[ e Yiidu < Vapil
Rd

and

2
El, cos’a < El; cosa = —€,
T

and observe the independence of Y, and « again to conclude that

J
L] < 8—; -EI; cos® « - (R/ | 22| | (d2) + |Yk\2/\z||uk\(d2)>
d Rd

Ji - -
< ?1 - (V3k + Svik)- (2.31)

Let us now estimate J;. We have

J1 < Jp+ Js
with
1 _
Jo = sup P(Sk cos f+ —=CyY sin g € E°\ E)
EeC \/§
Bel0,m/2]
1 _
—P(Z cos f + —=C4Y sin § € E* E)‘
k cos 3 o B \
and

1 _
Js = sup P(chosﬁ+—Cstinﬁ€E5\E).
EeC \/5

pe(0,m/2]
Recall the invariance properties (P1) and (P2) of the class C and use the
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independence of (Sy, Z;) and Y to get

1 _
Jy = su ‘EP S, cosB+ —CYsinge EE\E|Y

Bel0,m/2]

—EP(chosﬁ—i- %C’kVSmﬂ € EE\E’7>‘

1 — _
<E ’PS f—CYsinfe E\E|Y
< i}gg ( . cos 3 7 Y sin 3 \ ! >

Be0,m/2]

1 I
_P(ZkCOSﬂ—I—ECkYSIDﬁ S \E‘Y)‘
< sup |P(Sgcosf € E°\ E)— P(Zicosf3 € E°\ E)|
EeC
Bel0,7/2]

<2 sup |P(Skpcosf € E)— P(Zcosf € E)|
EeC
Be[0,7/2]

— 2sup|P(S; € E) — P(Zy € E)|.
EeC

Recall that 11213}3% < 1/2 in the case under consideration. Hence
SKESn

St s st s =d—>d— <>

N —
[\ oW

for every k € {1,...,n} and consequently,

~3 ~3 ~3 ~3 ~3 ~3
s +...+8 +5 +...+58 s+ ...+5

G Y Y 7 e e
=2V2- L,.
Put
(n) _ 2 2
= = {Zﬁl/l{?g{ﬁ”J
ik
for kK =1,...,n. Use the last inequality together with the induction assump-
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tion to obtain

sup |P(Sy € E) — P(Zy € E)|

EeC
<M Y ( / CL2 Pl (d2) + / G <l (02))
1<m<n

m#k

x(@™)

( S+ 45  +5,,+...+5 >1 —x(a™)
ST+ 48 5+ ... +52)32

x(g(™)
<M Y ( / O Pl (d2) + / G <l (42)

1<m<n

X (2V3 - L)Y >>

(n) (n)
< Md®- (u +5§<(qk )-L}] x(q;" ))'

Let us show that

(n) (n)
)Ll qu )< 3+~3X(Qn) 3L3 Qn) (232>

Clearly, (2.32) holds if L,, < v3. Next assume L,, > 7s..... Observe that

D8
i#k (n)
I = max 52 s
1<i<n
which yields
n 1 1 1 1 2 1
Mg =5 —— 25 25—y~ K@)
12. QL | b 12.91%
Consequently,
~ (n) ~ _1
'I)g((ql(c ))L; x(aj, (n )) _ <Z_3>X(qk )Ln S <£>2X(‘1n) 3Ln _ ,ﬁgx(qn)—gLS 2X(Qn)7
n n

which completes the proof of (2.32). Hence

sup|P(Sy, € E) — P(Zy € E)| < Md® - (7 + 2" 75 . £i @)y (2.33)
EeC
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and
Ty < Md? - (7 + 5,75 L g2y, (2.34)

Next, we estimate J3. Note that

1 — . da 1 = 1 —
Zrcos B+ —=CrYsin = —=C}Y cos  + —=C,Y,
) cos o 5} ok 5} o

where ? is a d-dimensional standard normal vector such that Y and ? are

independent. Hence, by Lemma A.3,

1 = 1 _
Js = su P(—C Ycosf+ —=CLY € E° E)
’ Eeg \/§ ¥ g \/5 g \
BE[0,7/2]
1 _
< su P(—C Y € E* E)
Eelg \/5 ¥ \
<sup P(Y € E* \ E)
EeC
2 3
< 24/ —-d2 €. (2.35)
T

Combining (2.31), (2.34) and (2.35) we finally get
| - _ . 14l
L] <~ (o + 5% D) - (M 7+ Md T ) gt e,
which finishes the proof of the lemma. Il

Lemma 2.3. We have

3
Md ) (fI/vng +gi . ;1,]4) . (fyv3 + ;;X(qn)_% . LE_QX(%)).

|1, — I3] <
£

Proof. Using the independence of Y and o we get
CLY 4 CLY cosa + Ck? sin «,

where Y is a d-dimensional standard normal vector such that }7, Y, Y., «a
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are independent. Therefore

I, —I; = EIQ/gp/(Skcosa—f—stin@+zcosa+Yksina)

Rd
X (—zsina + Yy cos a) g (dz)

— EI, / ' (CLY cosa + C’kf/ sin a 4 z cos a + Y, sin av)
Rd
X (—zsina + Yy cos a)u(dz).

Integration by parts and changing variables gives

I, — I3 = —El(sina)™! / / ©(S cos a + Crusina + z cos o + Yy, sin a)

d Rd
R x 1/ (u)C, H(—zsina + Yy cos )y (dz)du

+ Ely(sina)™! / / ©(CrY cosa + Crusin o + z cos o + Yy sin «v)

d Rd
R x 1 (u)C, H(—zsina + Yy cos a)uy(dz)du

= —El(sina)™! / / ©(Skcosa + Crrsin o)
R R
x 1/ (x — cotaCy 'z — 'Y Ct (—zsina + Yy cos a) g (d2)da
+ El(sina)™! / / ©(CrY cosa + Cix sin )
R R?
x 1/ (x — cotaCy 'z — C YOt (—zsina + Yy cos a) g (dz)da
=EIl, / / E(p(Skcosa + Crrsina) — o(CrY cosa + Crrsina)|a)

d Rd
R 0 (x — cotaCy 'z — O 'Y3)Cy 2 (d2)da

X
— Elycota / / E(p(Sk cosa + Cyrsin a)

R — o(CLY cosa + Crrsina)|a)

x 1 (x — cot aCp tz — C 'Y O Y (dz)da. (2.36)
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Apply the Taylor formula (2.9) to 1 to obtain

n(x —cotaCy 'z — C'Y)CL 2
=1/(z — Gy V)G 'z
+1"(z — C'Y) Ot z(— cot a O 1 2)
1
- /(1 —u)n"(z — cotauCy 'z — C'Y) Otz (= cot a Cf 1 2)2du

0

for the first summand and

7 (r —cotaCylz — CYL)CY,

=1n'(z — cota Cy '2)C 1Y,
1

+ /77”(3: — ulC,gl}/k)(C,;lYk)Qdul

0
1

1
+ //n"'(x —cot auaCy 'z — uy O 'Y (CF 1 Y3)?
0

0 —1
X (—cot a Cp " z)duyduy

for the second summand in (2.36). Observing (2.11) and EY}, = 0 we conclude
that

1
|1y — I3] < EIQCOtQQ///|E(g0(SkCOSCX+Ck$SiDOé)

0 Rd Rd — o(CrY cosa + Crrsina)|a)|

x 7" (x — cot auCy 'z — O i) (CF 1 2)? || (d2) dedu

11
+E1200t2a////|E(90(Skcosa—|—0kxsina)

0 0 RdRd — p(CrY cosa + Crrsina)|a)|
y |?7///(x _ cot OquijlZ _ ulCl;lyk)(Cglyk)zC;;lﬂ
X |#k\(dz)da:du1du2
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Using the second part of Lemma A.1 as well as the independence of S, Y
and «, we have

|E(¢(Sk cos a + Crzsina) — o(CrY cosa + Crrsina)|a)|
< sup [E(y(p(Skcos v+ 2, A) [e) = (p(ChY cosa+ z, A) /) |a).

z€R4

Fix z € R? and 8 € [0,7/2], and let G; and Gy denote the distribution
functions of p(Sy cos 42z, A)/e and p(CLY cos B+z, A) /e, respectively. Then

|E((p(Skcosa+ z, A)/e) — (p(CrY cosa + z, A) /Je)|a = B)|

'/w ()dG (t /w ()dGs(t) ‘

_ ' [ - @(t))dt\
< [W®l6io - Gato)i.

by partial integration. Moreover, using the invariance properties of C we
obtain

|G1(t) — Ga(t)] < sup |P(Skcosf € E) — P(CrY cos 3 € E)|
EeC

< sup |P(Sk € E) — P(CkY c E)’

EeC

Employing (2.33) we thus conclude that

sup |E(¢(p(Sk cosa + z, A) /) — Y(p(CrY cosa + z, A)/e)|a)]

zER

< sup [P(S: € B) — P(GY € B)] - [ [0/t
EeC A

14
< Md®- (V3+~§X(Qn) 33 2X(‘1n)).
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Hence

I, — I3] < Md* - EI, cot2a(//(|77"’(x)(0k_12)3|

Rd Rd

+ |77'"(~”U>(Ck1Yk)20k12\)luk!(dz)dx>

_1 4_
% (’173 +;§X(qn) 3 . L% 2X(qn))'

Since
" (2)y?*y = 2y gy + yTyaTy — 22" y)?) - ()
for every z, 7,y € RY, we get
B [ 1y"(2)(Ci VPG el da
R
’ < E|(CTY)TCT YO Y| + EICT Y PEYT O 2|
+ElYTC (YT O ).
Use (2.15) and (2.27) to derive

E|(C, V) C Y TO Y| < (BI(Cy YY) O 22) 2 (BlY T O Y )2
< |G 2| EIC Y[
<2v2-5 - 2|

as well as

BIYTC (V0 | = [BIYTC YOy Ny (0
Rd
< [EYTC P EY IO N5 )
Rd

~ 3. / 4] C PN ()
Rd

<4V2-5 |z
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Thus

E/ (@) (CY 2O 2| de < 52 - 2], (2.37)
Rq
Furthermore,
/2
1
EI, cot’ a < / C.oszx de < —. (2.38)
sin® €
R

Finally, the bounds (2.28), (2.37) and (2.38) imply

3

Md
1L — I3 < 5

_1 4_
.@w@%%ww%+ﬁmmgigmm)

as claimed O

Clearly, Lemmas 2.1, 2.2 and 2.3 imply (2.18), which completes the proof
to Theorem 2.1.

51



Chapter 3

Non-classical Error Bounds for

Asymptotic Expansions in the
CLT in R

Let n € N. Throughout this chapter we consider a sequence Xi,..., X, of
real-valued, centered and independent random variables with finite absolute

third moment
ﬁ;;,k = E|Xk|3 < 00

and distribution function Fj, : R — [0,1] for k =1,...,n. We put
op = EX}
and we define
1 n
— L 2
#-lya
k=1
As in Chapter 2, we use FI" to denote the distribution function of the
standardized sum of the random variables X, i.e.,
Frl(z)=P((@-vn) " (Xi+...+ X,) <)

for x € R. Furthermore, we put

e 3 EX}+.. . +EX}
Tn—E<(O' \/ﬁ) (X1—|----+Xn)) _(a%+...+0%)3/2’
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and we consider the first summand G of the asymptotic expansion (1.21)
of Fl",

Tn

6V 21

We are interested in the maximum deviation

Gl(z) = &(z) + (1 —a2?) e

D,, = sup |F"(z) — GI"(z)|

z€R

of G from F,

3.1 Main Result

Let fi. denote the characteristic function of (y/n-o)~! - X}, and put

¥, = max sup | fx(t)],
BV e

where
1 n
By = — ; Ba

As previously, we define

oy = / 5 | e — @0 (d2)

R
as well as
1 n
Vp = — Vrk
n
k=1
for r > 0, and we put
I ol ...+
" (ot + ..+ 02)32
and
K — af—i—...—{—afl

(02 +...+02)%

We have the following non-classical bound for the quantity D,,.
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Theorem 3.1. There exists an absolute constant M > 0 such that

DngM.(ﬂJerLV_gJFV;‘(\/ﬁ'Ln)S
n

- - - (3.1)
=3
() (B) et )
In the case of identically distributed random summands we have
/B =03/B31, Ln=1/y/n, K,=1/n
and Theorem 3.1 implies the following estimate.
Corollary 3.1. If X;,..., X, are identically distributed then
i‘ég Flnl (z) — ®(x) — %ﬁjaiﬂ S(1—2?)- o~z /2
s (u4+uf+u§+u§ +%_ <1+ B3 ) , <53,1)4
n n Vn o} o}
1 an o’
+n2 -9 - @>

Note that ¥ in Theorem 3.1 and Corollary 3.1 tends to zero exponentially

fast if the characteristic functions fi, ..., f, satisfy the Cramér condition (C).

3.2 Proof of Theorem 3.1

For convenience we introduce the notation
n

o 3 2 —2 2

B3 =mn-[F3= E E\Xgl]?, si=n-0°-= E T,
k=1

and we put

o2+ ...+o02

I S
max oj,
1<k<n
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as in Chapter 2. Similar to the proof of Theorem 2.1 we distinguish two cases

w.r.t. the size of the quantity ¢,.

Case 1: ¢, < 3.
Clearly,
cp =sup (1+27) e /% < 0,
z€R
and
sup |FI"l(z) — ®(z)| < 1.
z€R
Hence
D, < sup|F["](x) — O(x)| + _a 1T, <14 _a @
z€eR 6\/ 2 oV 2 S;’Z

Apply the Holder inequality and observe that ¢, < 3 implies

2 2
max o, > s-/3
1<k<n k n/

to derive
n 3
S?’L

B > EX2%>maX03>—.
Bs > > (E[Xy[F)?2 > >33

1<k<n
k=1

Hence 3v/3 - B3/s3 > 1 and therefore,
c: ) (m - 53)4

C1 gg C1 3\/5 . 63 (
1+ =< 1+ < |1+
621 s ( 6\/27r> s3 6271 s3

which yields (3.1) for every M > 35(1 4 ¢;/(6v/27)).

Case 2: g, > 3.
Let f and ¢ denote the Fourier-Stieltjes transforms of the functions £

and G, respectively. Note that
) et (3.2)

g(t) = (1 + %" - (it)?

see Petrov (1987, page 186).
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Clearly,

(@) (@) = (14 2 @ = 32)) (),

and therefore,

up |(GM) ()] < 1+ 2.
reR Sn
Put )
,-)/ — S_n
B3
and let , .
I = / W(w

(=v*/36,7y*/36)
Employing Lemma A.8 with b= 1/7 and T' = 7?/36 we derive
sup |F(z) — G (2)| < T + <1 + 1) i4.
z€R Y/
To estimate I we introduce the quantities
R T UET TP

|t]
(—=7/36,7/36)

R ' P

I I
(=*/36,—7/36) (v/36,7%/36)
and
(=7*/36,—7/36) (v/36,7%/36)
Clearly,

I<IL+15L+1s
We first provide a bound for the terms I and I5.

Lemma 3.1. We have
and

1
I3 < —.
,-y4
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Proof. Since v < 1 implies I, = I3 = 0 it suffices to consider the case v > 1.
Note that

f&) =110,
k=1
due to the independence of X1, ..., X,,, and consequently,

2
I <" / S dt =60} -Iny < 60" .

(7/36,7%/36)

2
b0l (1, 2).
|t ARt

due to (3.2), and therefore

Furthermore,

1 ¢ 2
13<< / <—+—> '6_%dt
ty
(v/36,7%/36)

< / l—i— ! dt
t5 ’7'754

(v/36,7%/36)

<<¥,

which completes the proof of the lemma. n

In the sequel we consider a sequence of real-valued centered Gaussian
random variables Yi,....Y,,Y1,...,Y, such that

EY? = EY, = o’

for k = 1,...,n. Moreover, we consider two random variables o and ax,
which are uniformly distributed on [0, /2], and we assume that all variables
X1, 0, Xo, Y1, .., Y0, Y, ..., Y, o, oy are defined on the same probability

space and independent. Put

S=>"Xp, Se=> Xp, Sii= Y X
k=1

k#t ke{t.5}
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for ¢,5 € {1,...,n} and define Z, Z;, Z,; and Z, Z;y, Z,; in an analogue
way replacing X, by Yj, and X}, by Y, respectively. Finally, for a sufficiently

smooth function ¢ : R — C we put

1 —
Aiy(p) = —— E¢' (s, (Zycosan + Zysinayg + Xy cosaq + Yysinay))

Sn

X (=Xysina; + Y, cosaq)
and

1 _ = . .
Aoy ilp) = = EQOI/(Sn1<Sg’j COS (rp COS (v + Zyj sin ag cos g + Zpsin oy
n
+ Xycosag + Yysinag + X cos ag cosag + Y sin g cos al))

X (—Xpsinay + Yycosaq) - (—Xjsinas + Y, cosaz) - cos oy

for £,5 € {1,...,n}.
We start with the analysis of the integral [;.

Lemma 3.2. Let p;(x) = @ fort,z € R. Then

s - A _EXE',?,__tz/Q'_d
1<<Z 1,0(1) EY— (it)” - e t
=1y /36,/36) "

> / ‘AZ,e,j(QOtﬂ'%dt.

=1 78y /36,4/36)

Proof. By definition,

2 EX} 2 1
L= / Pty — e 2 =3 AL e 2] Lt
(—7/36,7/36)

To estimate the latter integrand in the interval (—v/36,7/36) we use the fact
that

n 2 n
— _ (s ™
Eo(sn '+ 8) =Bp(s ™ Z2)+ 5 ) Aulp)+ DD Aseile) (35)
=1 =1 j#
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for a sufficiently smooth ¢ : R — C, see Bentkus (2003a). Since

Egy(s," - S) = f(t)
and

Egot(sgl - Z) = e /2
we obtain

_ T < w2
f(t)=e t2/2+§'ZA1,e(SDt T ZAN] (1)
=1 L

(=1

from (3.5), and, equivalently,

n

3
f(t) = e 2y 7;3 (it)* - e /2 4 . Z <A1,€(90t) _ EX; - (it)? - et2/2>

2 383
=1
7T
FTE Y e
(=1 j#¢L
Therefore
=272 o3 42/2
f(t) —e 6-(Zt) e
. EX}
< _|Aulp) = 5 i) e /2 ZZMW e, (3.6)
=1 n (=1 j£t
which completes the proof of the lemma. n

Next, we provide bounds for the summands in (3.6). Put

n

_ — _ _

Upg =0 *Upp, Up= E Uy - (3.7)
k=1

Lemma 3.3. We have

EX}

. &3
3m- sy

= - - 2
Vg + V3 0y + V910,

. _ 42
-(Zt)S-B t%/2 84

Al,ﬁ(%) -

<

29



Proof. Since Z;, Zy, oy are independent and Z, and Z, both have a centered

normal distribution with variance s2 — o7, we obtain
= : d
Zpcosaq + Zysinay = Zy.

Therefore, observing the independence of (Z;, Z;) and (X,,Y;) as well, we

derive

it i . . '
Al,@(SDt) _ _S_Eeztsn (Zgcosa1+Zgsma1+Xgcosoz1+Ygs1na1)<_X€ sinaq + YkCOS 041)
n
it L1 -1 . .
— __Eeztsn Z[/eztsn (zcosoz1+Ygsma1)<_ZSHla1 —|—)/ZCOSOJ1)ng(Z).
Sn,
R

Using similar arguments as for obtaining (2.24) we conclude that

it o o ‘ )
Al,é((ﬂt) = — Z— . Eeltsane /eitsnl(zcosa1+n51na1)
R
X (—zsinay + Yy cosay)(Fp — ‘I)gg)(dZ).

Apply two times the Taylor formula (2.9) to €' to get

6its;l(z cosai+Ypsinay)

'its,leg sin a1 + z 'its,leg sin aip

it)? )
=e ‘e - zcosay + - (zcosay)

Sn, 2s2

1
\3
1t =1 : .
+ (it) /em" uYesinen (5 cos ay)? - Yy sin oy du
0

w

1
1t s ;
+ (2 ?3 /(1 . U,)2 . eztsnl(uzcosal—i—Ygsmal) . (Z cOoS a1)3du‘
Sh
0
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Thus, using (2.11) we obtain

)3 o
A () = (;—) - Eeitsn Ze i ay cos® o / 23(Fy — @Ug)(dz)

3
Sn
R

1
)4 L - :
_ @) -Ee’ts”lzf//elts"luyé St (2 sinag + Yycosag)
0 R
x (zcosay)? - Yysinay (Fy — D,2)(dz)du
1
it)* . o :
—_ _(2251 . EeztsanZ / /(1 _ U)2 . eztsnl-(Yg sinajtuzcosai)
" 0 R

x (—zsina; + Yycosay) - (zcosap)?(Fy — D,2)(dz)du

= AY)(#) + AP (1) + AD)(@).

In order to complete the proof we show that

EX} 2 Usyp Oy t2
AV @) = Z2L ()3 . o2 < BT o 3.8
1,6( ) 377'8% (Z ) € — S;lz € ) ( )
IR Do s 02 42
A (n)| < LTTIRIOL 1 o (3.9)
Y Sn
as well as B _ ,
1A% (1)] < L’Z”W e, (3.10)
K Sn
Let us start with the estimate (3.8). Since
2
Esinag cos’a; = —
3T
we have (it)?
) it -
AN = ST Ecitsn 7t /ZB(F@ — ,2)(dz).
R

Using EY? = 0 and
Eeitsn Z — o~t°/2
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we derive

EX} ¢ "/ = EX} - Ee'> 7

_ Reitsn (ZetYo)

2 Fy(dz)

Lo—1
— Eeztsn (Ze+Yy) Zg(FE . (I)o.?)(dZ)

D D

and, consequently,

EX} )3
O (it)g-e‘t2/2=—;ﬁrig-Ee”s"lzf 1=t ) / S (Fi=g)(dz).
" R

By the Taylor formula (2.9),
' 1
itsn Ve — 1 4 i Y'E/eitusnlYgdu’

Sn
0
which yields
EX} U /
A(l) £ — L (it 3'e’t2/2 < i«t4~ Eeitsglzg 'Y/eitusnlYgdu
l,f() 377'8% ( ) = S% ¢
0
U3 - BlY| ) t4|E€z‘ts;1Zz|
S—a
n
5375 Oy 4 itSy, lz
5—4 t |E€ Z’

due to the independence of Z; and Y;. Note that s, 'Z, is centered Gaussian

with variance 1 — 07 /s%. Moreover, we have

2
2 Sn
< — .
i =3 (3:11)

in the case under consideration. Hence

2 2
Spn—0p -t2 t2

Ee'tsn 2t — ¢~ 237 ' <e7F, (3.12)
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which implies (3.8).
Next, we verify (3.9) and (3.10). Use the independence of Z; and (Y, )
and observe (3.12) to derive

1
4
|Af2(t)| = —. Eeitsnlzz . E//e”usnlYgSinal . (—Z Sinoq + )/gCOS 051)
0 R

x (zcosay)? - Yysinay (Fy — D,2)(dz)du

Vs E|Yi| + 700 E|Y[* R

4
Sn

IN

- — 2
Vge 0¢+Vay- 0y o4 6—;

IN

4
Sn

as well as

t4
3
AR W) = o -

4
2sy

1
-1 =1 .
Eeztsn Zy E//(1 . U)Z i eztsn (Y sin o1 +uz cos aq)
0 R

X (—zsinag + Yycosay) - (zcosay)?(F) — D,z2)(dz)du

2
3

Usy + sy - E|Y)|
S

Vyy+ Vs 0y =2
_.t4.6 3

< e

<

4 Y
STL

which finishes the proof of the lemma. ]
Lemma 3.4. Ift € (—/36,7v/36) then

(Use+TVay-0y) - (U3 + Vo 0j) _

6
Sn

| Az i ()] <
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Proof. We have

-\ 2 -
A2,Z,j (Sot) (lt) . Eeitsr_zl(sé,j cos g cos a1 +Z g, ; sin ag cos a1 +Zp sin ap +X cos oy

2
S . = .
n +Y; sin a1 +X; cos ag cos a1 +Y'; sin az cos 1)

X (=Xysinag + Yrcosay) - (—X;sinag +Y; - cosaz) cos ag

- \2 -
(Zt> its,fl Sy i cosa cosa1+Zy ; sin ag cos a1+ Zp sin ag
-~ .Ee J ¥

2
S _
n +Y; sina+Y j sin ag cos avp)

-1 .
% //6ztsn (21 cosai+za cosag cosa) | (_Zl sin ay + YkCOS a1>
R R

X (—zgsinay + Y cos ay) - cos aydFy(21)dFj(z)

2\ 2 -
(Zt> itsﬁl Sy ;i cosag cosa1+Zy ;sin ag cos a1+ Zp sin ag
. Ee »J »J

+Y; sin al—o—?j sin a2 cos aq)

L, =1 .
% //eztsn (21 cosai+zz cosaz cosar) | <_Zl sin oy + }/gCOS 061)
R R
X (—

Zysinay + Y cos ag) - cos oy (Fy — D,2)(dz1) (Fy — (IDU]z)(dZQ),

where the last equality is obtained by employing the same arguments as for
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deriving (2.24). Using two times the Taylor formula (2.9) we get
ez’ts;l (21 cos a1 +22 cos az cos a1)

o1 it -1
— eztsn 21 COS (1 + . eztsn zicosaq | 29 COS (Ot COS Oy

L1
gltsn Uz cosazcosa1 (] ). (2, cos ap cos oy ) du

1
0
1
(Zt>3 it571U22 COS (xg COS (V1 2
+— e'on (1 —wu) -z cosaq - (29 cosag cosayg ) du
n
0
1
0

R
/e’btsn (w121 cos g +u2z2 cos az COSOq) X (1 o ul) . (1 o UQ)
0

x (21 cosaq)? - (22 cos g cos oy ) 2duy dus.
Therefore, observing (2.11) we conclude that

A2 ’ (90 ) — (Zt> . Eeitsﬁl(Sg’j COS (g COS a1+Zg,j sin ag cos a1+Zp sin a1 +Yy sin a1 +Y sin ap cos at)
£,7 t 86

1
it
X //// 7 sn u121 cosa1+u222(:osagcosa1) . (1 _ ul) . (1 _ 'UQ)
0 0 R R

X (21 cos g )?(zg cos ag cos ay)? - (—21 sin oy + Yy cos ap)

X (—zgsinag + Y cosay) - cos ag

X (Fy — ©g2)(dz1)(F) — @, )<d22>dU/1dUQ.

Using that the random variables X1, ..., X,,,Y1,..., Y0, Y1,..., Y, a1, oo are
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independent, we obtain

| Az (1)
t6

-1 ] = o
8_6 . ‘E(E(eztsn (Se,j cosaz cosai1+Zy j sinaz cosa1+Zp, ;sinay) | o, @2)
n

1 1
X E(////eltsnl()/] sina+Yy Sina1+?j sin aip cos a1
R R 0 O

—+u121 COS 1 +U222 COS 2 COS al)

X (1 —up) - (1 —uy) - (z1cosayp)? - (2 cosaycosa)?

X (—z1sinag + Yycosaq) - (—zsinag + 7j COS (vg)

o))

-1 ] Z .
86 . E(‘E(eztsn (Sp,j cosag cos a1+Zy j sin az cos a1 +Zp sin ary) ‘Ofl,OéQ)‘

1 1
E(////eitsnl(Y}sinog—i—Ygsinog—i—Yjsinoagcosog
R R 0 O

—+u121 COS 1 +U222 COS (2 COS al)

x cos oy (Fy — @g2)(dz1) (Fy — <I>U]2_)(d22)du1du2

X

x (z1cosap)? - (zpcosagcosay)? - (—zisinag + Yycosay)

o))

., =1 ) T .
86 . E(‘E(eztsn (Sp,j cosag cos a1+Zy ; sin az cos a1 +Zp sin oy ) ‘Ozl,Oéz)‘

xE(//zf-zg-|(—zlsina1—|—chosa1)
R R

X (—zgsinag + Y cos ay)|

@1,0&2)),

X (—zgsinag + Y cosay) - cosay

X (Fg — (I)U?)(d21>(ﬂ — @Ui)(dZQ)duldUQ

X |Fyp = @2 |(dz1) | Fj — Pp2|(dz2)
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and therefore,

| Az j(0r)] <

IN

VAN

- (V30 + Doy - E|Yd|) - (73 + oy - EIY ) (3.13)

-1 - . .
% E‘E(eztsn (Se,j cosaa cosa1+Zy jsinaz cosar+Zp jsinay) |041,CY2)|

(U3 + Ty - E|Yy|) - (V3 + 72y - E|?j|>

go—1 . . YV o . o
E | | E(eztsn (Xs cosag cosa1+Y s sin g cos a1+Ys sin o) | 041,042)‘

(Usp +Vap-00) - (U3 + Vay - 0j)

<« E H |E(eits;1(XS €os g cos a1 +Y s sin g cos a1 +Ys sin arg )
s#l,j

s 00)]

Let wy,wy € [0,7/2] and consider independent random variables U? and U°

such that

d d = . .
USO = Ug = X, coswy coswy + Y sinws coswy + Y, sinw;.

Clearly, the characteristic functions of U%/s, and (U? — U?)/s, satisfy

| fuos, (U)] = \/f(Ug—aQ)/sn(t) = \/Eeits;I(UQ—&O), (3.14)

Using the Taylor expansion (2.9) we get

eits,:l(

UJ-87)

=1+ UO UO ( t>2 UO UO
=1 -0+ S - T
1
+ (;t); 3/eztusn (U2-89) (1 _ u)2du,
S
0
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which implies

2
n S

.t - .t 2 .
oage 0P =1+ B? 00 + U mwr - 002

(it)g 0 770\3 itusy, L(UO—80) 2
+25%-E(US—US) /e (1 —u)*du
0
< 1—i~E(U°—ﬁO)2+E-E|U°—I}°]3. (3.15)
- 252 y # 6s3 y y

Using the independence and the equality of the first and second moments of

the random variables X, Y, and Y, we obtain
EU? = EX, coswy cosw; + EY ,sinw, cosw; + EY, sinw; =0 (3.16)
as well as

o2 . :
E(U?)? = EX? cosw; cosw? + EY, sinw; cosw] + EY?sinw? = o2

s*

Hence
E(U° — U%)? = 2E(U°)? — 2(EU%)? = 202. (3.17)

Since both Y, and Y, are N(0, 02)-distributed we have

. . d . 2 2 . 2
Y sinwscoswy + Y,sinw; = Ys\/sm w3 cos wy + sinwy

and therefore

UYL X, cosws coswy + YS\/sinwg coswi + sinw?,
which implies
E|[U]P < E[X,|" + 3E[X,E[Y;| + 3E|X,|E[Y,]” + E|Y,[.

Observing
ElYy| <os= (E’XSP)%:

E|X5|E|Y;|2 - E|XS|E|XS|2 < E|X5|3
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and
E|Y;|’ <20? < 2E|X,/*,
we derive
E|UP < 9E[X,,
and consequently,
ElUY - U
=E(U; - U)p|U) - U7
<E((U9)* = 20007 + (U)*) (U7 + |U7)
E([U[° + U + (U)2|09] + (U907 = 2002 (U9 + |T7))
= E(U) + |UP + (U207 + (U9)*|U7))
< 4E|UJP
< 36E|X,|*. (3.18)

Use (3.17) and (3.18) to obtain

t? 6t3 t2 o2 6\t| 3
’ng/Sn(t)Pg1_8_2‘U§+|—3|.E|XS|3§ 2420 BIX|
from (3.15). Note that
1 2 o2 1
T2 =—-14+— _] < _Z
S ;M i 5% T2 =73
due to (3.11). Hence
0
<H [Be't Us ) H | fuo/s, (1)
s#L,j s£0,j
12 P o's+6|t| P E|XS‘3

< s s#L,j s s#L,j
=€ ’

3 +6lt\3 P
< e n s#L,j

E|X,[?
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and therefore

=1 - .
| | ’E(eztsn (X s cosagcosai+Y s sinag cosa;+Yssinag) |O‘{1 =W,y = wg)‘
S#va

_ H ‘Eeits,_LlUg
S7é£7j
2 33 P
—t  EIXP
<e sl

(3.19)
Combine (3.19) with (3.13) and observe that [t| < v/36 = s3 /(36035) implies

3“‘3 ElX 3 <
53 Z | 3‘ -
T s#lg

t2
12
to complete the proof. O

Let t € (—7/36,7/36). From (3.6), Lemma 3.3 and Lemma 3.4 it follows
that

n
t4 —t2

=t _ — — 2
o E (Usp + Vs~ 00+ Vay-0p)
(=1

S -
+ 5_6 .e 12 Z Z(V&g + Voy - Ug) : (Vg,j + V2,jaj)' (320)
=1 j#¢

By the Holder inequality and (2.10) we have

n n 4 % n 3 L
sz,e-oes(Zv;g) -(Zoz‘) <7l (sh )
/=1

/=1 /=1

N
w

n 1 n

n 2

— 2 ) 4
E:VM'U@S(E Vz,e) (E Uz) “Sp
=1 /=1 /=1

N|=

A
|
W o=
—~
V2)
S
3
~—
SIS
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as well as

3
3

n
E E 5275'0'4'52,j'0'j§ EQ,E'UE'EQ,J"U]'

=1 j#L =1 j=1

and
n n
DD s Vo 0yt Vsy Tap 00 =23 D Va0
=1 j#L =1 j#L
n n
< (L3
=1
2
< (vg +73 (s
Moreover,

and
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3 1 1 1
Uy + UL (st oK)+ 7k (sh K2 2
7(0) — o(0)] < 21 R P
=2 =3 (3 L =5 (3 2
Vs+ v (8, Ln)s +75 - (s, Ln)s 5 22
t°-e 12
S
Ti4TE - (50 K,)b e P24 (82 L)}
< 4 4 4n n 't4'€ L 3 3 - n n
STL S'fb
Consequently,
1 1
73 _|__2 (et Kn 3 )
I < SR (48” P et a
STL
(—7/36,7/36)
4
72 L3 . (g3 . 2 5

(=7/36,7/36)

_ _1 1 _ _ 4 2
Uy (Ui -(sp-Kn)2 T3 T5-(s)-Ln)s
< i + 1 + — B
s s s6 s

4 ~
v stoK)): 2 wE (s L,)3 s3 4
[< =+ CTRE AL/ S G K
Sn Sn Sn Sn By \s,
1 4
3 > 3 =3
1
— A K BB (n L) o T —
n n n n B3 n

Finally, use (3.3) to obtain

sup [F1")(z) — G (2)]

z€eR
1 1 1o, 4 2
<<E'<V4—|—V42'(TL-K”)2 +v; 4+ v (Vn-Ly,)s

b Tk (e 20 (3))

which completes the proof of Theorem 3.1.
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Appendix A

Auxiliary Results

For the convenience of the reader we compile a number of known facts from
the literature, which are used for the proofs of Theorems 2.1 and 3.1. Lemma
A1 is taken from Bentkus (2003b). Lemma A.2 is a straightforward conse-
quence of Lemma 2.1 in the same paper. The proofs of Lemmas A.3 and A.5
are given in Sazonov (1967). For proofs of Lemmas A.4, A.6, A.7, A.8 we
refer to Bentkus (2005), Bergstrom (1949), Paulauskas (1969b), and Petrov
(1987, page 154), respectively.

Lemma A.1. For alle > 0 and A € C there exists a differentiable function
e : RY— R such that

0<@ea<1l, @ealr)=1forzeA @oalx)=0forzgA (Al

and
2

8|z — y
[l 4(z)] < = e (@) — @l A(y)] <

5 (A.2)

for all z,y € R In particular, one can choose @. a to have the form

pea(r) = ¢(p(x, A)/e),

where ¢ : R — R is a continuously differentiable, non-negative and non-
increasing function with [ |¢/(t)|dt = 1.
R

73



Lemma A.2. Let ¢ > 0 and assume that {p. 4 : A € C} is a family of
functions . 4 : R? — R satisfying (A.1). For all R*-valued random vectors
X and Y we then have

sup |[P(X € A) — P(Y € A)| <sup |Ep. a(X) —Ep. a(Y)|
AeC AeC

+ max {sup P(Y € A\A), supP(Y € A\AE)} :
Aec Aec

Lemma A.3. For all A€ C ande >0,
N(AT\ A) < \/2/m-d*? - ¢

and

N(A\A™®) <V2/m-d*? ¢

Lemma A.4. Let p : R — R be an infinitely differentiable function such
that for all k,m € Ny
lim |p® ()][2]" = 0.

Furthermore, let f : R — R be Lipschitz continuous with Lipschitz constant
a > 0. Then for every h € R?

‘ / fly hdy‘ <a-|h|- / Lisupp(ry (y) - [p(y)|dy, (A.3)

where supp(f) = {x: f(z) # 0}.

Lemma A.5. For every distribution Q on R? and every T > 0,

2. db - T(45))
Vr-T-T(3)
Lemma A.6. Let d > 2. For every non-degenerated covariance matriz 'V &€

R4 and for all l,m,p=1,...,d we have

6|V I|[Vmm|[Ver|
dry...dzg < \/ i .

sup |Q(A) — N(A)| < 2sup |(Q — N) * Np—2.1,(A)| +
Aec Aec

8377‘/<x17"'7 )
0r,0z,,0x,

Rd
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Lemma A.7. Let Vi € R4 and Vy, € R¥™? be a non-negative definite and

a positive definite matrix, respectively. For every 1 =1,...,d we have

Vit Vel W[ [V
VitV v VY

if Vil # 0 and
Vi+Val Vil

Vit + V3 Ve

if Vil =o.

Lemma A.8. (Berry-Esseen inequality)
Let Fy : R — R be non-increasing and bounded, and let Fy, : R — R be

differentiable and of bounded variation, and assume that

lim Fi(z) = lim Fy(x).

r——00 r——00

Let T > 0. For every b > (2r)~! we have

[/1(t) = fo(®)]
i

(b)

.
dt
T

sup | Fy(2) = Fafa)| < b- /

(7T7T)

-sup Fy(x),

where fi1 and fs denote the Fourier-Stieltjes transforms of Fy and F5, respec-

tively, and the positive constant r(b) is only depending on b.
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