
Dynamic Potential Fields for Guided

Exploration in Virtual Environments

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieurin (Dr.-Ing.)

angenommen von der Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von Dipl.-Phys.Ing. Steffi Beckhaus, MSc

geb. am 14.12.1967 in Essen

Gutachter: Prof. Dr. Thomas Strothotte

Prof. Dr. Heinrich Müller

Dr. Vali Lalioti

Ort und Datum des Promotionskolloquiums:
Magdeburg, 13. September 2002

Acknowledgements

This work would not have been possible without the support of other people.
Prof. Dr. Thomas Strothotte had a lot of confidence in me and encouraged me
throughout the past three and a half years to work on this topic. Prof. Dr. Hein-
rich Müller always was a source of support and ideas with a focus on essentials and
detail. Dr. Vali Lalioti greatly helped me with advise on virtual environment ques-
tions. Andreas Simon spent numerous hours on reading and discussing this thesis
and helped a lot in structuring this work. Jürgen Wind was an endless source of
information and support when it got to implementation issues. Felix Ritter and
Dr. Gerhard Eckel supplied their applications, and Jeremy Eccles built the model
of the Bonn Marktplatz application. Aeldrik Pander helped in making the videos,
and Melinda Cerney and Kris Blom did the tedious job of proof-reading. I would
also like to mention Jürgen Landers and all my family for giving their support and
being patient with me during the time that was needed to finish this work. There
are many more people, from the Virtual Environment (VE) group at Fraunhofer
IMK, from outside the group, and many friends who contributed with information,
inspiration, and encouragement. I truly wish to thank all of these people for their
invaluable support.

Zusammenfassung

Exploration in räumlichen Umgebungen ist ein dynamischer, interaktiver Prozess,
der aus einer kognitiven Komponente, u.a. zur Identifikation von möglichen Zielen,
und einer Bewegungskomponente, nämlich der Bewegung von der aktuellen Position
zu einem identifizierten Ziel, besteht. Wir schlagen ein System vor, das diese beiden
Komponenten von Exploration in virtuellen (VR) Umgebungen unterstützt. Zur
Auswahl der räumlichen Ziele werden die Ergebnisse von Abfragen an ein Informa-
tionssystem in unsere Methode integriert. In dem resultierenden Zielfeld, bestehend
aus einem oder mehreren Zielen, die eine unterschiedliche Relevanz zur Abfrage
haben können, bewegt sich die Kamera automatisch zu den einzelnen Zielen und
präsentiert sie somit.

Unsere Methode benutzt dynamische Potentialfelder, eine lokale Methode, die von
der Physik einer Ladung in einem elektrischen Feld abgeleitet und weiterentwick-
elt worden ist. Zur Generierung der von dieser Methode benötigten diskreten
Repräsentation der geometrischen Umgebung, stellen wir zwei echtzeitfähige Vox-
elisierungsmethoden vor. Das hier präsentierte System, das CubicalPath System,
kann interaktive Eingaben und Veränderungen von Parametern durch Applika-
tion und Benutzer verarbeiten. Diese können sein: bewegliche, nicht vorhersag-
bare, autonome Objekte, bewegliche und neu definierte Ziele, veränderte Kamera-
daten der Anwendung und Eingaben durch ein Interaktionsgerät. Das System ist
plattform-unabhängig und konzipiert als optionales Unterstützungssystem, das wie
ein zusätzliches Interaktionswerkzeug in die Applikation eingebunden werden kann.
Die Datenbank und die Anwendung kommunizieren mit dem Serversystem über
schlanke, einfache Schnittstellen, welche die allgemein benutzten Datenstrukturen
widerspiegeln.

Wir haben drei existierende Anwendungen erfolgreich um unseren Ansatz zur un-
terstützten Exploration erweitert. Mit einem informellen Benutzertest wurden ver-
schiedene Aspekte des Ansatzes und seiner Benutzbarkeit validiert. Mit dem Cubi-
calPath System lassen sich einfach externe Anwendungen um ein ziel-orientierte
Abfragen ermöglichendes Informationssystem erweitern und der Benutzer wird
davon befreit, direkt, manuell in einer virtuellen Umgebung steuern zu müssen.
Dadurch wird es ihm ermöglicht, sich besser auf die dargestellten Inhalte konzentri-
eren zu können und die räumlichen Inhalte besser aufnehmen zu können.

Abstract

Exploration is a highly interactive, goal-driven process which involves decision mak-
ing and travelling for the purpose of discovery. We propose a system for guided
exploration in a virtual environment, a system which supports the user while ex-
ploring the environment. We support target selection by integrating the output of
queriable information spaces into our system. We support travelling to these tar-
gets by automatically moving the user inside the resulting goal field, presenting the
targets one-by-one.

Our approach is based on the concept of dynamic potential fields, a local method
derived from the physics of the motion of a charged particle – here a camera – in an
electric potential field. It uses a discretized representation of the environment in a
uniform rectangular grid. For the geometric setup, we present two, real-time capable
voxelization methods. We present the CubicalPath system which is able to deal with
interactive, real-time input by both the client application and the user, which can
consist of dynamic, unpredictable object locations, dynamic or re-adjusted targets, a
modified application view, and a force input generated by an interaction tool. The
system is designed to be a platform and machine independent auxiliary support
system and can be used by the application as an additional interaction tool. The
application and the information space are connected to the server system through a
lean interface which mirrors their common data structures.

We applied our system successfully to three existing applications and validated it
with an informal usability test. The results show that the system is easily integrated
into existing virtual environment applications and was generally found to be a useful
support for exploration. With the CubicalPath system, existing applications can
easily be enriched with a additional information layer, queriable by the users, and it
relieves users from the task of directly, manually navigating in a virtual environment.
This enables them to concentrate on the spatial information and to learn more about
the presented environment.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Guided Exploration . 2
1.1.2 Information Space . 2
1.1.3 Virtual Environment Applications 3

1.2 Goal . 4
1.3 Results . 4
1.4 Overview . 6

2 Foundations 9
2.1 Virtual Environments . 9

2.1.1 Historic Overview and Applications 10
2.1.2 Presence and Immersion . 10
2.1.3 Virtual Environment Systems 11
2.1.4 Interaction . 12

2.2 Navigation . 13
2.2.1 Maneuvering . 14
2.2.2 Travel . 14
2.2.3 Target-Based/Automated Travel 15

2.3 Exploration . 17
2.3.1 Exploration in Virtual Environments 17
2.3.2 Supported Exploration . 18

2.4 Motion Generation Techniques . 20
2.4.1 Motion in Virtual Environments 21
2.4.2 Computer-Generated Motion 22
2.4.3 Interactive Computer-Generated Motion 23

2.5 Summary . 24

3 Automated Travel using Potential Fields 25
3.1 Potential Fields . 26

3.1.1 Electrostatics . 27
3.1.2 Robotics . 31
3.1.3 CG Applications . 32

3.2 Camera Motion Utilizing Potential Fields 33
3.2.1 Geometric Setup . 33

ix

Contents

3.2.2 Target Setup . 36
3.2.3 Step Generation - Camera Position 37
3.2.4 Step Generation - Camera Orientation 39

3.3 Summary . 40

4 Guided Exploration using Dynamic Potential Fields 43
4.1 The Dynamic Potential Field Method 44
4.2 Dynamic Attraction Fields . 45

4.2.1 View Analysis . 46
4.2.2 Goal Field Adjustment . 47

4.3 Interactive Input . 48
4.3.1 Dynamic Camera and Interaction Tool Input 48
4.3.2 Dynamic Objects . 49
4.3.3 Dynamic Targets . 50

4.4 Extensions . 50
4.4.1 Camera Orientation . 50
4.4.2 Predefined Paths . 52
4.4.3 Predefined Views . 54
4.4.4 Extended Object Attributes 54
4.4.5 Navigation objects at work . 55

4.5 Summary . 57

5 Real-time Voxelization 59
5.1 Volume data . 59

5.1.1 Definition . 59
5.1.2 Example Applications . 60
5.1.3 Voxelization Requirements . 63

5.2 Voxelization . 63
5.3 Software-based Triangle Voxelization 65

5.3.1 Triangle Voxelization Mechanism 65
5.3.2 Scene-graph Setup for Triangle Collection 66

5.4 Hardware-based Voxelization . 68
5.4.1 Rendering Pipeline . 69
5.4.2 Hardware-based Voxelization and Analysis Mechanism 74
5.4.3 Color Coding of Object IDs 76
5.4.4 Identification of Multiple Objects per Voxel 76
5.4.5 Scene-Graph Setup . 78

5.5 Implementation Issues . 80
5.6 Voxelization Time Experiments . 81
5.7 Discussion . 87
5.8 Summary . 88

6 Software Architecture 89
6.1 CORBA . 89
6.2 Interface to CubicalPath system . 91

x

Contents

6.3 Client Application Setup . 92
6.4 System Design . 93

6.4.1 UML . 94
6.4.2 Class Design . 94

6.5 Programmer’s view . 95
6.5.1 AVANGO client application 96
6.5.2 Fine Tuning . 98

6.6 End-user’s view . 98
6.7 Summary . 99

7 Applications for Guided Exploration 101
7.1 3D Puzzle . 103
7.2 Virtual Art Museum . 107
7.3 Bonn Marktplatz . 109
7.4 Discussion and Summary . 112

8 Usability Study 115
8.1 Goal . 116
8.2 Hypothesis . 117
8.3 Test Design . 118

8.3.1 Task Design . 118
8.3.2 Questionnaire . 119
8.3.3 Participants . 121

8.4 Results . 122
8.5 Discussion and Summary . 123

9 Concluding Remarks 125
9.1 Discussion . 125
9.2 Future Work . 128

A Mathematical Derivations 131

B Implementation Details 133
B.1 Extended 3D Line Voxelization . 133
B.2 IDL File: Interface Description . 135

B.2.1 Definitions . 135
B.2.2 Application Interface . 136
B.2.3 CPServer Interface . 136
B.2.4 CPAnalysisServer Interface . 138

C Imaging Systems 139
C.1 Camera Attributes . 140
C.2 Camera Placement . 142
C.3 Image Attributes . 142

D View specification 143

xi

Contents

D.1 General View Specification . 143
D.2 View Specification and View Motion in Virtual Environments 146

E Virtual Environment Systems 149
E.1 Responsive Workbench . 149
E.2 CyberStage . 150
E.3 i-Cone . 151
E.4 AVANGO . 152

F Usability Study 155
F.1 Questionnaire . 156
F.2 Results . 161

G Glossary 163

Curriculum Vitae 165

Bibliography 167

xii

1 Introduction

1.1 Motivation

Exploration of unknown territory is a highly interactive task in which the person
who wishes to explore a scene browses through the environment while discovering
and gathering information. In this process, users frequently adjust their current
personal focus – the goal that drives the movement and the interaction – because
of the discoveries made and the knowledge gained. This is the cognitive part of
exploration. The initiation and control of the actual movement to the identified
spatial target is the motion or travel part of exploration. Both parts are tightly
connected [Con01].

In virtual environments (VE), exploration is an even more complex process than in
the real world [Bow02]. Easy and intuitive real world tasks, like walking and looking
at things or touching objects and picking them up, are much more demanding in
virtual worlds. All behavior has to be simulated and controlled through an interface.
Effective, intuitive control is rarely achieved in virtual environments. In virtual
environments, natural and trained behavior for motion and interaction, which is
normally done unconsciously, cannot be used one-to-one. An interaction tool has
to be utilized to provide this interface between the user and the system. With the
current technical possibilities, tactile feedback can, if at all, only be given by means
of a substitute. This makes interacting with the virtual world much more tedious
than interacting in the real world. The process of interaction takes away some of
the user’s attention, which normally would be fully focused on the exploration task.

We think that there is a possibility to support explorative tasks in virtual environ-
ment in two ways. First, there can be support on the cognitive level. It is common
practice to people to query the internet via search engines in order to explore a ques-
tion. Why not provide for the possibility to query application information spaces
in order to identify targets that meet the goal? Second, there can be support for
the navigation task in the environment. If the navigation task requires too much
focus, a process of discovery hardly takes place. Coupling information spaces with
navigation support would result in a system which supports exploration in an ex-

1

1 Introduction

tensive way. We could enrich dull geometric 3D scenes in a virtual environment
with contextual information without modifying the environment or requiring good
navigation skills. Or we could simply provide for a navigation aid to targets.

1.1.1 Guided Exploration

There are several reasons for exploration in virtual environments. An exploration
task might be needed to gain knowledge about the (spatial) composition of a complex
system, or it can be required during a simulation task, such as the assembly of parts
of a composite object [RPDS00]. These concepts of problem solving and doing
simulation play an important role in teaching and learning theories. As stated by
the cognitive psychologist Bruner [Bru76], for effective learning, the independent
acquisition of knowledge and the solving of problems is most important. Learners
should solve given tasks by themselves. By doing so, they inquire into the subject
and also practise the necessary techniques. Different from other learning strategies
which rely on confronting the students with pre-structured, abstract knowledge, here
the students abstract knowledge themselves. They learn by exploring the subject on
their own, which also teaches them independence and self-learning abilities. Should
problems arise, they may be guided by a teacher. This leads to the definition of the
term guided exploration:

Guided Exploration is the independent acquisition of knowledge by exploring the
available information. Guidance is provided as a reaction to user-initiated
questions in the form of hints or results of the queries. These results are then
presented in an appropriate way.

In virtual environments, the available information consists of geometric and, possi-
bly, of contextual information. The answers to user initiated questions are spatially
distributed objects which can be presented by moving the user to these objects.

1.1.2 Information Space

Guided Exploration requires a system which provides for contextual information. We
rely on the existence of an underlying information space which holds information
about the objects in the scene. Strothotte [Str98] defines information space as the
combined information about the geometric and the symbolic model. The geometric
model defines the physical appearance of objects, while the symbolic model defines
all other data available for the object.

The user may query the information space in order to explore the symbolic informa-
tion. A query results in a list of objects that match the query criteria, and may be
a simple search for objects that match a specified attribute. The smallest possible
version for the information space would be a list of objects which is made avail-
able to the user for selection. If the information space also incorporates semantic

2

1.1 Motivation

context and complex information dependencies [Har01], then the query can be ar-
bitrarily complex. The result of such a query will be a list of objects which may
be qualified with a value that denotes each object’s relevancy to the query. This
value ranks objects as more or less important in the context of the query. Because
the objects are distributed in the geometric model, the result of a query forms a
three-dimensional field of spatially distributed relevancy values. This field is called
the goal field, as the query was driven by a user-defined goal. This relationship is
illustrated in Figure 1.1.

goal for
exploration

query symbolic

Information Space

geometric

objects
and relevancy

to goal

spatial targets
and relevancy

to goal
= goal field

Figure 1.1: From Goal to Goal Field.

1.1.3 Virtual Environment Applications

We aim at developing techniques for applications which use immersive projection-
based display systems for presenting stereoscopic images to the user. Nevertheless,
the approach can also be used in desktop applications. In virtual environments, it is
difficult to incorporate contextual information into the 3D world. Additional win-
dows with textual or other information, common in desktop computer applications,
are not appropriate, as they would largely disturb the immersive feeling and would
occlude objects in the 3D scene. Text information is not suitable because of its 2D
nature. A one-by-one view of the results without spatial transition (slide show) or a
concurrent view of the results taken out of their context (image overview) is not de-
sirable in large-scale virtual environments, as these methods would again detach the
user from the immersive experience and could cause spatial disorientation. Thus,
for large-scale virtual environments, other methods for incorporating information
into the scene are necessary.

Guided exploration provides for a method of transferring information (specified by
the user through a question or a query) by presenting the results (which are objects
in a spatial context) to the user. The presentation of the objects is done by moving
the eye-point of the user through the environment and bringing all objects of interest
one after the other into the view. In this way, undesirable jumps or cuts are avoided.

3

1 Introduction

1.2 Goal

In this thesis, the goal is to develop a method which can support the user in the
highly interactive task of exploring a 3D virtual environment, thus a method to
provide guided exploration. We want to integrate the results of queries to existing
application information spaces into the virtual environment. The presentation of
these results should not change the environment by adding or modifying the objects,
or by separating objects from their spatial context. Therefore, we want to visualize
the results by moving the user to the identified spatial targets. In this way, we
support both the cognitive element of exploration and the core travel task.

A major emphasis is on interactivity. The supportive system should leave a great
deal of freedom to the user in order to prevent suppressing the user’s spontaneity.
The user should be able to determine at each moment if they directly control inter-
action with the system or if the system supports them in their task. The system
should be designed in such a way that it is easily integrated into existing applica-
tions. Ideally, it produces output which can replace the output generated by an
interaction tool, such that the two can easily be interchanged1. In addition, the sys-
tem should be able to immediately react to new targets and dynamic environments.
This requires a real-time method which completely avoids planning of a path, as
planned routes may be discarded due to user changes to the current goal and pos-
sible modifications in the spatial arrangement of objects. Planning long routes also
does not allow for real-time reaction to user queries and other user interaction.

1.3 Results

The major results of this thesis are the following:

• Automated Travel
In this thesis, we develop a method to automatically move the user of a dy-
namic, virtual environment application to a specified target location. The
method is based on potential fields, but uses force functions to speed up com-
putation. It separates the geometric and the target setup. Both layers can be
modified at any time during execution to depict the current state of a dynamic
application like moving obstacles or targets. We introduce the first system-
independent method for virtual environments which automatically moves the
camera to a static or dynamic target in dynamic, unpredictable environments
and provides for collision prevention with objects. It is controlled through a
lean interface, mirroring common application data structures.

1The interaction tool is normally connected to the viewer matrix of the virtual environment system
by a transformation matrix, thus directly manipulating the view. By using this transformation
matrix, external calculated motion through the virtual environment can easily be integrated.

4

1.3 Results

• Guided Exploration
We look into a method which provides guided exploration in virtual environ-
ments. Guidance is introduced by moving the users to targets of interest,
which are selected by queries to existing application information spaces. The
resulting goal field, a distribution of targets with a weighted relevancy, their at-
tractivity to the camera, is then travelled by the supportive system to present
the targets, one-by-one to the user.

We develop the method of dynamic potential fields, which deals with multiple
targets by continuously decreasing the attractivity of visible targets. Basic
support for specific views on objects is incorporated by means of separating
positional and orientational targets and by including navigation objects– ad-
ditional, often invisible, targets or repulsive objects. During run-time, the
system allows for interactive input of all parameters to the system: dynamic
object locations, dynamic or re-adjusted targets, a change of the application
camera, or the additional influence of a force input generated by a client in-
teraction tool. With navigation objects, we also can prevent the camera from
moving into unwanted areas or dead ends. The implementation of this method
results in the first system which supports exploration in a dynamic, unpre-
dictable virtual environment by incorporating results of queries to an applica-
tion information space into a motion generation system which then travels to
all specified targets.

• Real-time Voxelization
To provide for methods for fast discretization of dynamic environments, re-
quired by potential field-based methods, we develop two methods for real-time
voxelization. The software-based method is a 3D scan conversion based tri-
angle voxelizer, which transforms each object’s polygons into the voxel space.
The hardware-based method renders and analyzes the complete voxel space
to retrieve the objects inside each voxel. A special approach to color-coding
allows the identification of multiple objects per voxel, to make the results com-
parable to the results of the software-based method. Both methods show their
strength for different types of object complexity and environment setup.

• Autonomous, Auxiliary Support System
Our method for automated travel and exploration support is implemented
in the system-independent client/server based CubicalPath system. This is
controlled through a lean interface and communicates with the application via
CORBA. It makes use of common data structures available in typical virtual
environments, like the scene-graph and transformation matrices, connecting
the viewer and an interaction tool. The CubicalPath system can easily be
integrated into existing virtual environment applications in exchange or in
addition to any other typically available interaction tool like, for example, a
joystick.

• System Evaluation and Usability Testing
We successfully prove our concept and system with three applications. One

5

1 Introduction

is a desktop application, and the other two make use of immersive virtual en-
vironments. We evaluate the system in an informal user study. The results
support our judgement that users welcome guided exploration, and that au-
tomated travel is not felt to be distracting or disturbing. Furthermore, our
study shows that current interfaces to system control in virtual environments,
required for querying databases, are tedious to handle. As they are important
as an interface to complex information spaces, they strongly deserve further
research.

1.4 Overview

Chapter 2 explains about virtual environments and their applications in general. It
then describes interaction in virtual environments with a specific focus on one of the
major tasks in virtual environments and the core task for exploration: travel, the
navigation from a current position to a target location. Known travel metaphors are
listed. After that, the more general task of exploration and supportive approaches
to exploration are investigated. The term goal field is coined, denoting a field
of multiple targets generated from the results from a goal-directed query to an
application information space.

It was found that common travel metaphors always rely on direct user control.
Simple support for motion to a target relies on the selection of visible targets or
selection from a list, and results in straight motion without collision control. There
is no system available which provides automated travel in virtual environments in
an application-independent way. The only system which supports exploration, does
this by constraining the motion of a user to a predefined constraint field. It cannot
cope with dynamic environments, does not include automated motion, and has no
notion of travelling a goal field.

Chapter 3 introduces a new automated travel method to relieve users from the
tedious task of travelling to a known or spatially unknown target. The method is
based on the behavior of a charged particle in an electric potential field, where the
target attracts the camera, while obstacles repulse it. It is a local, real-time capable
method which uses a discretized environment, the cube space, as a uniform data
structure.

We introduce the first system-independent method for virtual environments, which
automatically moves the camera to a static or dynamic target in dynamic, un-
predictable environments and provides for collision prevention with objects. Our
implementation provides for a system-independent, automated travel system which
is controlled through a lean interface by common, virtual environment system data
structures, like the scene-graph or transformation matrices, connected to the appli-
cation viewer. One of the drawbacks of the local method, the stop of the camera
in an unwanted local minimum, can arise in cluttered and maze-like environments,
but is rare in sparse environments. Exploration requires the presentation of multiple

6

1.4 Overview

targets, positions in space, which is not possible with this method as the camera
will stop moving once it has arrived at the first target.

Chapter 4 extends the automated travel system to be able to move in a goal field, a
field of multiple targets qualified with a level of relevancy to the user in the context
of the goal. This field is mapped to the attractivity field of the potential field, thus
mapping relevancy to attractivity of targets. We introduce dynamic potential fields,
which deal with multiple targets by continuously decreasing the attractivity of visible
targets. This, in effect, releases the camera from visited targets after a period of time.
Basic support for specific views on objects is incorporated by means of separating
positional and orientational targets, and by including navigation objects– additional,
often invisible targets or repulsive objects.

The implementation of this method results in a system which provides guided explo-
ration in a dynamic, unpredictable virtual environment by incorporating results of
queries to an application information space into a motion generation system which
then travels to all specified targets. The targets are presented one-by-one, the order
based upon their level of attraction to and their distance from the current camera
position. During run-time, the system allows for interactive input of all parameters
to the system: dynamic object locations, dynamic or re-adjusted targets, a change
of the application side camera, or the additional influence of a force input generated
by a client side interaction tool, which is added to the results of the motion genera-
tion function. With the use of navigation objects, we are able to view targets from
a specific side or angle, and we can prevent the camera from moving into unwanted
areas like a dead end.

Chapter 5 introduces two real-time capable voxelization methods, which are used
for the discretization of the environment. This is required for the geometric setup of
the potential field methods, especially if the environment is dynamic and frequent
re-voxelization is necessary. Both methods generate object-coded volume data (each
volume element is assigned a list of occupying objects) from geometric surface data
by utilizing the PerformerTMscene-graph. As the inside of objects is not visible, it
makes no sense to include these data into the calculation. Thus, surface data is
used. In the software-based method, a 3D scan conversion based triangle voxelizer,
each object’s polygons are transformed into the voxel space. The hardware-based
method renders and analyzes the complete voxel space to retrieve the objects inside
each voxel. A special approach to color-coding allows the identification of multiple
objects per voxel, making the results comparable to those of the software-based
method.

The performance measurements show that the software-based method is preferred
for its simplicity and its real-time behavior if only a small number of objects are
dynamic, while the hardware-based approach shows its strength if the z resolution –
the height of the space – is small compared to the x and y resolution – the large area
that can be navigated. Both methods in their specific range are sufficiently fast to
support the applications we use later. For very large resolutions, the discretization
part of the algorithm will be the bottleneck of the potential field method in dynamic
environments.

7

1 Introduction

Chapter 6 describes the implementation of the CubicalPath system to give an
overview of the interfaces to the system and the requirements and amount of work
involved to utilize it both from a programmer’s and a user’s view. The interface
implementation is described in an example client application which is based on
AVANGO, the Fraunhofer Institute for Media Communication’s (IMK) framework
to virtual environment application development.

Using CORBA, the CubicalPath system is a system-independent client/server sys-
tem, which works as an auxiliary support system. The virtual environment appli-
cation and the application information space are connected to the server system
through a lean interface, which mirrors their common data structures. These data
structures are the scene-graph, the transformation matrix connected to the appli-
cation viewer, and a list of object data resulting from a query to an information
space. Continuously generated camera data is output from the system to the client
application and then connected to the transformation matrix of the client applica-
tion viewer. The lean interface makes the CubicalPath system easily integrated into
existing virtual environment applications.

Chapter 7 presents three existing applications which are extended by connecting
them and a database to the CubicalPath system to use the system’s features for
providing guided exploration. The applications are a medical training system run
on a desktop computer, a virtual art museum run in a CAVETM-based system, and
the Bonn Marktplatz application run in the i-ConeTM, developed by Fraunhofer
IMK.

The integration of the system into the applications proved to be straightforward even
though different systems and scene-graph types were used. The short setup time
showed the usability of our interface concept. Nevertheless, it was found that even
though an initial motion of the camera to targets could quickly be triggered, some
time has to be devoted to adjusting motion-specific and system control parameters
to achieve a pleasant task and application-specific motion.

Chapter 8 presents an informal user study carried out with ten users to obtain an
initial evaluation of our approach to guided exploration both on a technical and a
cognitive level. We designed a questionnaire to collect information about personal
feeling, assessment of features, and content learnt.

The result of our study showed that the supportive system was well received by
the users without depriving them of the feeling of presence and self-control. This
indicates that it is possible to use self-navigation, automated travel, and guided
exploration in a virtual environment side-by-side without confusing the users. The
concept of guided exploration within the system was rated as very helpful by most
users and helped in structuring information for classification and ease of recall. It
was also found that the users could concentrate much more on the task itself if they
were relieved of the travel task. The study showed that considerable research is
necessary to improve interfaces to system control in virtual environments.

Chapter 9 summarizes and concludes the content and results of this thesis and gives
some ideas for future work.

8

2 Foundations

The aim of this thesis is to develop a system which is able to provide support
for exploration, termed guided exploration, in virtual environments. In this chap-
ter, we look into virtual environments, travel, exploration, and motion generation
techniques. We start by explaining virtual environments in general and their ap-
plications, systems, and interaction techniques and metaphors. Because navigation,
travel and exploration are closely related and often confused terms, we will explain
these and define their meaning in our context. For travel and exploration, we will
look into supportive metaphors or systems. As we want to support exploration by
automatically moving through the environment, we will then look into computer-
generated motion techniques which are suitable for transfer to virtual environments.
Here, we will consider both pure path planning approaches as well as motion gener-
ated for the purpose of presentation.

2.1 Virtual Environments

Virtual environments (VE) can be defined as real-time, 3D, computer-generated en-
vironments which create some feeling of presence of the user in the environment, the
”sense of being there”. Virtual environments can be composed of visual, auditory,
tactile, olfactory and vestibular information that is rendered and displayed with ap-
propriate systems and is controlled with various tools that depend on the system
and the application.

For stereo viewing, the visual part of a virtual environment (e.g. the geometry)
is rendered independently for each eye’s perspective so that the user gets a 3D
impression of the scene (stereo visualization). With the help of a tracking system, the
user’s position and viewing direction is followed by the computer and the perspective
is updated correspondingly. In most cases, the user can interactively move through
the virtual environment and examine the data or model.

9

2 Foundations

2.1.1 Historic Overview and Applications

The pioneers of virtual environments were Heilig in 1956, who showed 3D movies
with his multisensory Sensorama, and Sutherland in 1963 who provided for the
first, interactive computer graphics with his Sketchpad [Rhe91, Sut63]. Sutherland
also developed the first head-mounted display (HMD). Since the sixties, major ad-
vances in the visual rendering have been made, and in 1992, the first immersive
surround-screen projection-based system, the CAVETM, was developed by Cruz-
Neira [CNSD93]. Advancements in projection-based systems include the Respon-
sive WorkbenchTMin 1993 [KF94] and the i-ConeTMin 2001, both developments of
the Institute for Media Communication at Forschungszentrum Informationstechnik
(GMD) in Sankt Augustin, which is now the Fraunhofer IMK.

Today, a large number of application domains can benefit from virtual environments,
namely architecture, education, manufacturing, medicine, simulation & training, en-
tertainment, design & prototyping, information & scientific visualization, and col-
laboration & communication. These applications may draw from the fact that users
feel present in the environment and can act naturally. Such application domains
utilize the virtual environments to present and interact with 3D spatial information,
models and scenes in 3D, to create a true spatial experience.

2.1.2 Presence and Immersion

One of the main features of virtual environments is that they can produce a sense
of presence in the user, a true feeling of ”I am part of the virtual world”. One
example of an evaluated system which produces this feeling is Disney’s Aladdin,
where guests fly a magic carpet through a virtual world based on the animated
film ”Aladdin” [PST+96]. Witmer and Singer define presence as the ”subjective
experience of being in one place or environment, even if one is physically situated
in another” [WS94]. They list factors, grouped as control, sensory, distraction and
realism, which influence the sense of presence. They define immersion as the person’s
response to the virtual environment system. We prefer the definition of Slater and
Wilbur [SW97] or Regenbrecht and Schubert [RS97], who define immersion as the
hardware- and software components – like appropriate resolutions, field-of-view,
and invisibility of borders – that are needed to bring the actor inside a virtual
world. To create immersion, distractive influences like the boundaries or shape of
the display system, unsuitable interaction tools or metaphors, or obstacles occluding
the view have to be minimized. For example, a large field-of-view and stereo viewing
may enhance the sense of immersion in the virtual world. Intuitive, near-reality
interaction methods are an important factor for the level of immersion in a virtual
environment. These are some of the factors for immersion which are, in effect,
the pre-requisites to generating a sense of presence. Presence, then, defines the
cognitive process of constructing an environment which, as a result, leads to the
user’s perception of being part of it.

10

2.1 Virtual Environments

Two important areas of virtual environment research, Virtual Environment Systems
and (Human Computer) Interaction, are concerned with improving the virtual en-
vironment experience. We will give an overview of relevant research in these areas
in the following.

2.1.3 Virtual Environment Systems

Systems which generate virtual environments differ in their display setup, viewing
techniques (mono or stereo, active or passive stereo), usable interaction metaphors
and techniques, and the possible level of immersion achieved. While mono systems
are mostly non-immersive – they show a virtual environment in 2D on a screen
– stereo systems and large field-of-view systems can be semi-immersive or fully-
immersive. Examples for semi-immersive stereo systems are the Responsive Work-
bench and the i-Cone, while the six-sided CAVE and the head-mounted displays
(HMD) are considered to be fully-immersive. A stereoscopic HMD has two displays,
one for the left and one for the right eye. The HMD is fixed to the user’s head,
and each eye can only see the associated display. The users can see themselves and
tools only with the help of avatars and virtual objects. The Responsive Workbench,
the CAVE, and the i-Cone system are projection-based systems. These all run in
active-stereo mode, which means that the images for each eye are rendered alter-
natively onto the same screen and are separated for the eyes with shutter glasses
(e.g. Crystal EyesTM). Users are detached from the display, thus can see themselves,
other users and the interaction tools used. The projection-based systems Responsive
Workbench, CAVE, and i-Cone are described in Appendix E.

A distinctive feature of stereoscopic systems is head-tracking. A 3D object is ex-
perienced by humans through subtle movements of the head, thus building a 3D
representation of this object in the brain. This natural method of object explo-
ration can be integrated into the virtual environments by using head-tracking. By
tracking the position of the head, the exact position of the eye is known, and can
then be used to generate the precise view of the user. This allows for an intuitive
perception of the 3D world1.

Large field-of-view systems like the i-Cone still give a strong immersive and 3D
feeling even though they do not employ head-tracking. This is because the user
is surrounded by the display, therefore inside the world and the screen, thus the
objects are so distant that small head movements would not lead to a noticeable
change in the stereo image.

1Head-tracking is, in most cases, only enabled for one person per display, as otherwise user ∗ 2
(one for the right eye, one for the left eye) views have to be rendered and displayed in the same
time. In multi-user environments, this means that non-head-tracked users have to keep close
to the tracked person to have the correct, undistorted stereo view.

11

2 Foundations

2.1.4 Interaction

In addition to allowing for a true spatial experience (for example a large field of view
and stereoscopic rendering), a virtual environment system must have some means of
interacting with the virtual environment. Virtual environments require completely
different interaction techniques than do desktop computers. For example, there is no
desk on which to move a mouse, and there is a strong need for 3D spatial interaction.
Usually, the user has some interaction tools so that he or she can accomplish tasks
such as controlling the system, navigating, selecting and modifying objects. These
tools consist of hardware components – the input device – and software components,
like the mapping of hardware sensor values to virtual world behavior. The choice
of tools depends on the available input devices and on the task that should be
accomplished by the user. Interaction can strongly influence the user’s sense of
immersion. If the interaction tool is badly designed, such that the user’s focus is
more on the interaction tool than on the task itself, then this distraction may prevent
immersion of the user in the application. In such a case, the reality distracts from
the virtual reality experience. An intuitive and supportive interface can enhance
the experience of the environment. Intuitive to people is everything they know
by heart from real world experience. Breathing, walking, and, after a training
period, driving a car are tasks which are performed without thought because these
skills are stored in long term memory [Swe88, Swe94]. The cognitive load of these
tasks is low, thus leaving space for people to simultaneously accomplish other tasks
like thinking, learning, and solving problems, which require our consciousness, our
working memory. Direct navigation in virtual environments with an interaction tool,
for example, is a task which takes some time to learn, and thus may distract users
from the actual application content. In contrast to this, head-tracked movement in
space is highly intuitive.

Interaction Tasks

Interaction in virtual environments is, typically, direct interaction. The user initiates
an action, controls motion or grabs objects, and the environment reacts immediately
to this interaction. Mine [Min95] differentiates virtual environment interaction tasks
as movement (motion through the world), selection, manipulation (translation of
objects in space), and scaling (manipulating the size of objects). According to
Bowman and Hodges [BH99], the main interaction tasks are

• navigation

• selection/picking

• manipulation2

• system control.

2This work will adopt the classification made by Bowman and Hodges, defining manipulation to
be an arbitrary manipulation of an object.

12

2.2 Navigation

Besides the general system control, navigation/motion can be seen as one of the
most important interaction tasks. Before being able to properly pick or manipulate
an object, the user needs to position himself appropriately to the object. For spatial
exploration, the ability to move is a very important pre-requisite. Without being
able to move around, the user cannot explore the space. In the next section we
will discuss the different aspects of navigation we will later need in order to support
exploration in virtual environments.

2.2 Navigation

Bowman et al. [BDHB98] define navigation in virtual environments as the com-
plete process of moving through an environment. This process is divided into two
parts: wayfinding (the cognitive decision-making process by which a movement
is planned), and travel (the actual motion from the current location to the new
location). Both parts are often interrelated. This definition is commonly used in
the virtual environment research community (for example by Darken and Peter-
son [DP02]). Outside this community, wayfinding is defined to be the aggregate
task of cognition and motion [Con01]. We will use the first definition, made by
Bowman, though we think that both definitions are correct and useful in their re-
spect, and that they both emphasize that navigation, especially for the purpose of
exploration, is a complex task which has a strong cognitive element.

In [BH99], Bowman and Hodges define the three main navigation tasks as:

• exploration

– without a specific target3

– the target3 is to build knowledge of environment

• search

– naive search: position of target unknown

– primed search: position of target known

• maneuvering

– small movements to adjust viewpoint.

Exploration and search require large-scale travel through the environment. Travel
addresses motion to a distant target, while maneuvering is a local process. Differ-
ent interaction techniques are suitable for these tasks, which are discussed in the
following sections.

Prior to travel for the purpose of exploration or naive search, some kind of ”wayfind-
ing” decision must be made as to where to move next. We will pick up on this as

3We prefer the use of goal instead of target. In our definition, a goal is the reason why a person
explores an environment, while a target has a location in space.

13

2 Foundations

we think that there potentially could be more to wayfinding for exploration than
finding a way to a target.

2.2.1 Maneuvering

Maneuvering requires small local adjustments of the user’s position. In immersive
virtual environments, the most intuitive metaphors for local movement are walking
and stretching or ducking under an object, actions which people would also do in
real environments. These movements are enabled by head-tracking. By tracking the
position and orientation of the head, the system knows the position of the user’s
eyes and can adjust the view accordingly. When the user moves, the eye-point of
the view is also moved. As small movements of our head enhance our 3D perception
in the real world, positional tracking creates an additional level of immersion in the
virtual world. Depending on the virtual environment system, head-tracking can be
used to view an object from both sides, or even walk around it, without actually
modifying the position of the scene relative to the viewing system (the view platform,
see Appendix D.2) itself. This interaction matches with peoples’ real world behavior
for this kind of task, thus is easy to do and does not distract the user. Therefore,
head-tracking provides for the first and most intuitive interface in immersive virtual
environments.

2.2.2 Travel

Once the user reaches the borders of the physical space of the virtual environment
system, the scene itself relative to the physical space has to be moved. Travel is the
process of moving from the current position to a target and, in general, is understood
to be manually controlled motion. This means that the user controls the direction
and the speed of motion. There are several travel metaphors and interfaces which
help with this motion task.

Motion interfaces are categorized into active and passive interfaces [DM94]. Active
interfaces, also called locomotion interfaces, require self-propulsion by the user. Ex-
amples of locomotion interfaces are ”walking in place” or pedaling devices, foot
platforms, and treadmills [DC97, Hol02]. Passive interfaces transport the user
through the virtual environment without significant user exertion. A nice overview
of passive travel techniques – here called viewpoint4 manipulation – is given by
Hand [Han97]. Some examples are the Helicopter metaphor (using a joystick)
described by Brooks [Bro88], the Scene in Hand metaphor, the Eyeball in Hand
metaphor (mapping of a 3D input device directly onto position and orientation of
the viewpoint), and the Flying Vehicle Control metaphor, all described by Ware
and Osborne [WO90]. Turner et al. [TBGT91] in their application and some recent

4The viewpoint describes the position and orientation of a user or camera in the virtual environ-
ment.

14

2.2 Navigation

modelling packages let the user control the camera with a virtual camera object
inserted in the scene. Stoakley et al. [SCP95] utilize the World-in-Miniature (WIM)
technique. The last technique is an exocentric technique – the control is exercized
from outside the virtual environment– while the others are done in an egocentric
point of view inside the virtual environment.

2.2.3 Target-Based/Automated Travel

Most of the travel metaphors in literature are direct interaction methods in which
the user directly controls the motion. This is interesting, as directly controlled
motion requires considerable skill in controlling the interface and interaction tool.
Already in 1995, Baker and Wickens [BW95] list the put-me-there travel as one of
the main travel metaphors. It is also referred to as automated travel. In [Bow02],
Bowman established the first guideline for designing travel techniques as:

”Make simple tasks simple by using target-based techniques.” Bowman [Bow02]

Surprisingly, there is very limited literature about the implementation of target-
based travel techniques. Target-based travel requires the selection of a visible target
by point-and-click or by selection from a list. Mackinlay et al. [MCR90] present a
technique to move the user on a straight line with a speed logarithmically related
to the distance to a target. VRML browsers provide for motion in a straight line to
a clicked object or to a viewpoint selected from a list. Both systems do not enable
collision prevention with objects on the way. This is not a major issue if visible
targets were selected, as the straight line there provides for a collision-free path.

Until now, even this simple support for travel was not integrated into typical virtual
environment systems and there is no application-independent approach to auto-
mated travel in the literature. Automated travel is one of the pre-requisites to
guided exploration. Therefore, we will investigate into a method for automated
travel, which is travel from the current position to a single target. We will define a
list of requirements for a method which is capable of providing automated travel in
current virtual environment applications.

Guidelines for Automated Travel

As stated before, interaction in virtual environments is normally direct interaction.
User input is directly mapped to the behavior of the environment. Unexpected
behavior like non-existent, too slow, or not anticipated response to interaction will
disturb the user. Pausch et al. [PST+96] found that users felt their illusion of
presence in Disney’s Aladdin ride was destroyed when characters did not react to
them. Unexpected response is experienced when things happen which are normally
not experienced by people. For example, flying too close or even through objects
is unexpected as well as visually disturbing and disorienting. This calls for some

15

2 Foundations

means of collision prevention in virtual environments. Another example of unex-
pected behavior is the concept of ”beaming”, which is not existent in our real-world
experience. Therefore, instantaneous transitions to distant points in the scene (e.g.
jumps, cuts, and teleportation) are not desirable in immersive virtual environments
as they would largely disorient the user. This is supported by a user study by Bow-
man et al. [BKH97], who suggest that jumping disturbs the users, reduces the sense
of presence, and diminishes spatial awareness. In [Bow02], Bowman emphasizes this
again and asks for smooth transitions even if targets were selected on a map or with
a World-in-Miniature, thus in an exocentric manner.

For travelling, this suggests that the motion should result in a continuous move-
ment of the user (the view) through the virtual environment. If a distant target is
specified by one of the above-mentioned methods, the application should be able to
generate a path and move the user to this target. The same holds for non-immersive
applications on a desktop PC, for example, if the goal is to keep awareness of the
spatial context. Even in films, long established cinematographic rules have to be
obeyed for utilizing cuts, in order to avoid confusing the viewer.

Therefore, if the system allows the abstract specification of travel targets through
maps, lists, or queries (target-based interaction), it should also provide for a con-
tinuous, motion generation system and immediate response. Current virtual envi-
ronment applications include dynamic applications, in which not only the viewpoint
but also the scene itself changes frequently. Examples are simulations, applications
which include autonomous avatars, and storytelling applications. Therefore, the sys-
tem should be able to deal with dynamic, unpredictable environments. To ensure a
general purpose system, the method should be independent of the application itself.

Requirements for Automated Travel

To conclude, the requirements for a system providing automated travel in virtual
environments are:

1. immediate response to target definition

2. collision avoidance

3. continuous, smooth transition

4. dynamic scene capability

5. system independence

16

2.3 Exploration

2.3 Exploration

To explore, according to the Merriam-Webster Collegiate Dictionary [Mer], has three
meanings:

to explore
1 a: to investigate, study, or analyze : look into <explore the rela-
tionship between social class and learning ability> – sometimes used
with indirect questions <to explore where ethical issues arise – R. T.
Blackburn> b: to become familiar with by testing or experimenting
<explore new cuisines>
2: to travel over (new territory) for adventure or discovery
3: to examine minutely especially for diagnostic purposes <explore the
wound> intransitive senses : to make or conduct a systematic search
<explore for oil>.

While the first definition describes exploring in general, the latter two are concerned
with exploring a spatial environment. The Virtual Voyage application by Hong et al.
is an example of definition 3, as it assists in the exploration of computer tomography
(CT) data of the human colon by an automated ride through the middle of the
colon [HMK+97]. Exploration in immersive virtual environments is best met by
definition 2, as typically the environment must be travelled in order to discover the
content of the world.

2.3.1 Exploration in Virtual Environments

While travel itself is motion along a path to a well-defined target, exploration either
does not specify a target at all, or it considers, driven by the goal for exploration,
multiple, possibly interesting targets.

Exploration in virtual environments, as defined by Bowman and Hodges [BH99], is
one of the three navigation tasks, and is either a) travel without a specific target,
or b) the target is to build knowledge of the environment (recall Section 2.2). We
feel that this definition needs to be modified in two ways. First, the meaning of
the term target in this definition is unclear. Throughout most of Bowman’s work,
travel denotes the motion from a current position to a distant location. But in the
definition above, the target location is unclear. We think that the term goal is more
appropriate to use here. The goal is the reason a user explores an environment, or
why targets are selected. It can be the wish to answer a question with the help of the
environment, or to learn about a task. The goal is the pre-requisite of identifying one
or multiple targets. Second, Bowman includes travel without a specific goal in his
definition of exploration. In our opinion, there always exists a goal for exploration,
even if it is as unspecific as ”let me find out what is in here.” Therefore, we define
exploration as the goal-based motion through the environment for the purpose of
discovery or learning.

17

2 Foundations

To clarify this, we point out a major difference in travel and exploration:

Travel is a target-oriented motion. The focus is on arriving at the target as quickly
as possible. The goal of motion is the target.

Exploration is goal-driven motion. In the context of the user’s goal, there may
exist one or multiple possibly interesting targets, which may be more or less
interesting. When moving through this interest landscape, the goal field, the
motion though the environment to the target is the goal itself. The focus is
on browsing the space and viewing possible targets in their spatial context, or
even identifying new targets by refining the goal.

Exploration is a highly interactive process, which we know from browsing the inter-
net with search engines. An initial, broadly phrased query based on our goal may
result in multiple links with high or low relevancy to the phrased question. Then,
iteratively, the results are browsed and the query is refined, or the overall goal is
changed (sometimes resulting from distractions). Each query results in an interest
landscape of links (targets). For 3D spatial environments, the interest landscape is
a field of spatially distributed targets with a degree of relevancy to the goal. We
call this the goal field (see Section 1.1.2).

The question remains, how does the user identify the targets which match the goal.
In virtual environments, this is normally done by directly controlling motion through
the environment using one of the provided travel metaphors, and searching the space
for targets. This may not lead to acceptable results, thus it makes sense to look into
support for exploration.

2.3.2 Supported Exploration

Billinghurst and Savage [BS96] use a rule-based expert system to add intelligence to
the user interface. They couple multimodal input (voice, gesture, body position),
context, and the expert system to create an interface which is more powerful than
the single components. It is used to find out what is meant by the user when he or
she interacts in a specific way. They support interaction in general with the help of
an expert system but do not contribute to navigation support.

Rickel and Johnson [RJ97] built a system for intelligent tutoring in virtual environ-
ments by providing an animated, pedagogical agent for virtual reality. This agent
helps students learn to perform a physical, procedural task by demonstrating how
to do it. In this approach, the focus is on teaching a ”craft”, but not on exploring
a subject.

The first support in 3D navigation was proposed by Hanson and Wernert [HW97].
They state that there is a poor match between the goal of a navigation activity, the
control device, and the skill of the user. They propose a unified mathematical frame-
work for incorporating context-dependent constraints into the viewpoint generation
problem. They rely on a system designer, who specifies his or her idea of directing

18

2.3 Exploration

a naive user’s attention to those aspects of a scene which are needed to meet a
chosen goal. They constrain the user-initiated control of an interaction device, in
their example a mouse, to a useful motion in 3D space. The user travels the ”guide
manifold”. At each position on this manifold, a ”guide field” specifies all relevant
scene-viewing parameters for this position. This was extended by Wernert and Han-
son [WH99] to provide for a framework for assisted exploration with collaboration.
They add avatars to the scene, which work as a guide or to represent other users.
The guide avatar points out places of interest. The user’s motion is constrained, as
in their previous work, to simplify the motion task. This is the only approach which
tries to incorporate assistance to exploration in virtual environments. It leaves some
freedom to explore the space while providing assistance in where to look. As the
constraint space is designer-specified, it is, in a sense, an interactive, self-exploitable
presentation of the goal with its multiple targets. This approach does not allow a
modification of the goal.

Supported Exploration Utilizing Existing Information Spaces

Our idea is to utilize existing information spaces (like the internet search engines or
application knowledge bases) to provide support in the identification of targets and
then move to these targets one-by one. Technically, this is defining the goal field
and the moving in this goal field for the purpose of exploring it.

Providing for an interface to non-visual, complex information (symbolic information
as opposed to geometric information [Str98]) adds the possibility of introducing
higher-level knowledge into the environment, knowledge that is not visualized in the
virtual environment application. For example, in a medical training system like the
3D puzzle by Ritter et al. [RPDS00] in which pieces of a foot have to be assembled
in the correct way (see Section 7.1), a query like ”show me all objects that need to
be connected to the selected one” provides for information which otherwise would
not exist in the environment itself.

We want to provide this information without modifying the environment for two rea-
sons. First, the design guidelines for virtual environments listed by Stanney [Sta02]
and partly discussed above indicated that for a true spatial experience, the environ-
ment should ”behave” like reality does, thus not change in an artificial way. Second,
we want to have a supportive system which can be utilized by arbitrary applications,
as we want to extend existing applications with this possibility.

Requirements for supported exploration

We will now list the requirements for a supportive system for exploration which
can provide guided exploration. When using a supportive system, the user should
always feel that she is in control. At any time, the user should be able to

• re-query the information space

19

2 Foundations

• take over complete navigation control by means of the standard interaction
tool

• overlay the system motion with output of the interaction tool to change the
resulting position or orientation

• stand back and let the system do the motion inside the goal field

Considering these demands, the requirements for guided exploration extend the
requirements for an automated travel system considerably. Here, the automated
motion is in a goal field and acts as a supportive system to the user, thus many
interactive influences have to be considered:

1. immediate response to goal (re-)definition

2. collision avoidance

3. continuous, smooth transitions

4. dynamic scene capability

5. system independence

6. goal field: multiple targets with different degrees of relevancy

7. consideration of distance and relevancy

8. consideration of the history of visited targets

9. orientation in direction of targets

10. incorporation of interactive user input

2.4 Motion Generation Techniques

The previous sections listed requirements for automated travel and supported explo-
ration, both of which rely on motion through a virtual environment. This section
will inquire into known motion generation techniques, including a description of
what is technically meant by motion in a virtual environment and a description of
the different pre-calculated and interactively generated motion methods.

Motion of a camera is always motion along a path. This path may be pre-computed,
or it may result retrospectively from the actual movement along the path. For the
first case, path planning methods are utilized which generate the path and then
execute the motion along the path. In the second case, the path only exists in the
past, as it creates itself from the stepwise movement of the camera through the
space. The motion is generated on-the-fly. This either requires rapid planning of
one or multiple steps into the future or a method being reactive to current local and
global influences.

20

2.4 Motion Generation Techniques

Whether motion can be planned or has to be generated on-the-fly depends on the
level of interactivity and the required response time of the application. Planning
allows for the incorporation of cinematographic rules. In dynamic environments,
without knowledge of the position of objects, planning is impossible, because the
path only considers the positioning of obstacles at the time of path generation.
Each movement of objects involves recalculation of the path. Reactive systems do
not have much foresight, but nevertheless may show sufficient results for generating
camera motion in real-time. The different approaches are discussed in this section.
As the purpose of this work is to provide a system to support exploration which
results in the presentation of objects in the context of a 3D world, applications
for generating presentation animations are also mentioned. We first explain about
motion in virtual environments and then introduce both pre-calculated and real-time
motion generation techniques and their applications.

2.4.1 Motion in Virtual Environments

In a virtual environment, the user is represented by his or her eye-point. Moving
the user through the virtual world, or moving the world such that specific objects
come close to the user, is technically equivalent to moving the eye-point. The eye-
point is part of the view, thus the camera (see Appendix D). Therefore, providing
a support system for exploration requires a close look into view motion in virtual
environments.

The virtual camera is an abstraction of a real camera (see Appendix C and D).
It describes a pin-hole camera model. The projection function defines which parts
of the 3D world are mapped to points in the projected 2D image. The projection
function used in typical virtual environments is a perspective pinhole camera due to
real-time rendering requirements. It requires a view position – the user’s eye position
– and a view frustum, represented by a truncated pyramid. The perspective frustum
describes the 3D space that is rendered into the 2D image. It defines which objects
are visible and in which order from front to back they are sorted. It emphasizes the
importance of close objects by drawing them larger than distant objects.

In a virtual environment, motion can include motion of the view frustum, motion of
the eye position of the user, or a combination of both. Rotating the view frustum
moves objects inside the view. This concept also holds for 360◦ fully immersive
projection systems if a main viewing direction is established. This is done by the
design of the system or the user herself. Moving the view frustum through the 3D
world brings objects closer to the user. By moving close to an object, the likelihood
of unobstructed view on this object is largely increased.

A camera motion system which supports exploration should therefore consider the
orientation of the camera, for moving objects inside the view frustum, and transla-
tion, for moving close to objects for unobstructed and prominent visibility.

21

2 Foundations

2.4.2 Computer-Generated Motion

Two areas of research with a different focus are concerned with computer-generated
motion. The first is concerned with finding a free path between two points in a
environment with obstacles, thus a path from one point to a target. The focus of
the second one is on rules for presentation of one or multiple targets, resulting in
specific views onto the target. Both are presented in the following sections.

Travel between two points

Methods for travel between two points draw a lot from robotics. Latombe[Lat91]
presents three general concepts for robot motion planning in which a start config-
uration and a goal are given, and a path to the goal is calculated while avoiding
obstacles. The presented methods are called roadmap, cell decomposition, and po-
tential fields.

Roadmap methods capture the connectivity of the free space in a network of one-
dimensional curves called roadmap R. For path planning the initial and goal con-
figurations are connected to R, and R is searched for a path between these points.
The visibility graph [Nil69], Voronoi diagrams [ÓSY83], freeway nets [Bro83], and
silhouettes [Can88] are examples of roadmaps.

Exact [Lat91, SSH87] and approximate [BLP83, LP81] cell decomposition methods
decompose the free space into cells in such a way that a path between any two
configurations can be easily generated. A connectivity graph is generated, and with
this a continuous free path is computed.

Potential field methods, first introduced by Khatib [Kat86], discretize the free space
into a fine rectangular grid. A particle moves through the grid under the influence
of an attractive force introduced by the target and repulsive forces introduced by
obstacles. It is these forces which generate a path. Compared with roadmap and cell
decomposition, potential fields are more efficient and produce instantaneous motion,
but may not always find a solution and may get stuck in local minima. Potential
fields and their origin are discussed in detail in Chapter 3.

Considerable work has been carried out on methods for finding a free path be-
tween points x and y in a virtual 3D world. For example, Lavalle [Lav95] uses a
game-theoretic framework for path planning. Bandi and Thalmann [BT98] divide
the space into a 3D grid of uniform cells and, with the A* algorithm (a roadmap
approach), compute the shortest path from x to y.

Presentation of targets

Another area of computer-generated motion research deals with the presentation of
predefined targets under consideration of rules for good camera views and constraints
stating which object has to be viewed in which manner.

22

2.4 Motion Generation Techniques

Karp and Feiner [KF90, KF93] implemented ESPLANADE, a knowledge-based sys-
tem for the automated generation of animated presentations. They have a separate
action planner to pre-compute a script which is then used, together with a set of
presentation goals, to generate the complete description of the animation for each
frame.

Drucker and Zeltzer [DZ94] model the methods used by a film director: logic-based
constraints are defined which govern good views on the scene. With this information,
optimal camera positions for individual shots are calculated by solving small, con-
strained optimization problems. Then, with the A* algorithm, a path is generated
which connects these positions.

All this research deals with previously specified targets and does not allow for in-
teractivity. The calculation of the complete path is done in advance before the
presentation can be started.

2.4.3 Interactive Computer-Generated Motion

He et al. [HCS96] extended the approach of Drucker and Zeltzer by providing ad-
ditional idioms to camera modules. With this, a number of domain-dependent
director’s instructions are defined which are solved with a hierarchical, finite-state
machine. He et al. select shots from a small set of possible camera specifications.
They also have low-level camera modules which deal efficiently with geometric de-
tails. To meet the specifications of the constraints, small changes to the positions
and actions of the virtual actors are introduced, thus changing the application. Ac-
tors may also be deliberately removed to clear the view. The application is required
to behave in such a way that it is possible to predict the future actions of an ”ac-
tor”. In their example of a ”party” application, a user can control actions of a guest
through a high-level interface, providing actions like talk, react, goto, drink, and
lookat by clicking an appropriate button. Though they generate the application in
real-time, He at al. allow no direct interaction with the actors and no interactivity
on camera level.

A different problem is addressed by Hong et al. in [HMK+97]. In their Virtual
Voyage, the exploration of computer tomography (CT) data of the human colon is
assisted by an automated ride through the middle of the colon. The wall of the colon
is extracted and skeletonized from the CT data. From this skeleton, the middle of the
colon is calculated. The start and end of the automatic ride is predefined through the
start and end of the colon. The movement is computed through a potential field, with
the middle of the colon encoded as a path into the field. The user can manipulate
the path with a mouse by clicking on a region of interest. A temporary target is then
set at this point, and the camera is attracted to this region. In this application, the
possible path through the colon is clearly defined after a preparation step, and the
deviation introduced by the user is minimal. This application produces just-in-time

23

2 Foundations

camera data, but because of its very long initialization step and fixed overall start
and goal, it is not suitable for supporting exploration under our requirements.

2.5 Summary

This chapter gave an introduction into virtual environments, their application, and
systems. One of the major features of a virtual environment aside from the capabil-
ity of providing for a spatial experience, is the ”feeling of being part of the virtual
environment”. This is influenced by the system and the interaction facilities. The
main interaction task is navigation because without motion, the space cannot be ex-
plored. Navigation is divided into a cognitive element (often called wayfinding) and
travel. The three navigation tasks defined are exploration, search, and maneuver-
ing. Exploration requires the identification of targets and the travel to these targets.
Travel is the process of moving from a current location to a target. Several travel
metaphors exist which mostly directly control the viewpoint. This is surprising, as
one of the basic guidelines for designing travel techniques suggests using automated
(target-based) travel techniques where possible. Automated travel is not integrated
into typical virtual environments. We listed requirements in Section 2.2.3 which
should be met by an system for automated travel in virtual environments. These
include immediate response, collision avoidance, continuous and smooth transition,
dynamic scene capability, and system independence.

Systems to support exploration are rare. We identified only one which assists the
user in the motion, but does this by restricting the user motion through pre-defined
constraints. We postulated a system to support exploration by integrating results
of a query to an external information space. The resulting goal field, a list of targets
and their relevancy to the goal introduced in Section 1.1.2, is then presented by
moving the user to these targets. The requirements for a supportive system, defined
in Section 2.3.2, extend the ones defined for the automated travel in Section 2.2.3.
Additionally, full interactive influence of the results, motion in a goal field, the
consideration of distance and relevancy, plus the history of presented targets are
required.

Motion generation techniques were evaluated as to their capability to serve as motion
generation systems for supporting exploration. The potential fields method is a real-
time capable, local method for generating motion through an environment while
avoiding obstacles in the scene. We need more than this, but will take this method
as a starting point for our system. In addition to this method’s real-time capability,
our notion of a goal field fits nicely into the definition of a potential field.

In the following chapter, we will first develop a system for automated travel based
on the potential field method. Collapsing the goal field to one target will result in
automated travel. We then will extend this to develop a system which supports
exploration.

24

3 Automated Travel using Potential
Fields

Automatic, interactive camera motion for exploration support in virtual environ-
ments (i.e. guided exploration) requires a motion generation function which is ca-
pable of generating camera data in real-time. We start by developing a method and
system which is capable of providing automated travel, a pre-requisite to support
exploration. Automated travel is the automatic motion from a current position to a
target location while avoiding collision with obstacles. The attributes of the motion
generation function are the geometry of the scene’s objects, the camera data (posi-
tion and orientation) of the application, and the target. In interactive and dynamic
applications, these attributes can change at any time, thus the the real-time require-
ment. Changes of the attributes may result from a transformation of the objects in
the scene, a user initiated re-definition of the target, or a change of the camera data
by the user or the application independent from the system’s activity.

geometric setup (obstacles)

target setup

step generation (new view)

scene geometry

target

camera data (in)

camera data (out)

Figure 3.1: Overview of Process of the CubicalPath Method.

25

3 Automated Travel using Potential Fields

Our method for automated travel, which is implemented in the CubicalPath sys-
tem1, extends the real-time capable potential field method to a motion generation
method which generates new camera data step by step. The process of generating
one step involves three stages, illustrated in Figure 3.1 and further explained in this
and the following chapters.

1. Geometric setup of the potential field: The system discretizes/voxelizes
the geometric data into a 3D rectangular grid of cubes, the cube space. Objects
are represented by the set of cubes which span the space of the object. This
reduces complex geometric objects to a small subset of uniform cubes.

2. Target setup of the potential field: The target object receives a large
attractivity value, while obstacles receive no attractivity. The system maps
the attractivity of the objects to the attractivity of the corresponding cubes.

3. Camera step: The final encoded potential field stored in the cube space is
evaluated at the position of the current camera. Attractive cubes generate an
attractive force, while obstacles generate a repulsive force. According to these
forces, the camera is moved to its new position, and the new camera data is
distributed to the application.

After step 3, the process repeats.

The reminder of this section will introduce the basics of the potential field method
and its utilization for automated travel. It will explain the required data structures
and give the function for a basic view motion in a potential field with one target.
It will introduce the three steps in the process diagram of Figure 3.1. This chapter
assumes that a real-time capable voxelization method exists which is required for
the geometric setup of the potential field.

Chapter 4 will extend the method introduced in this chapter to a fully interactive,
motion generation system for supporting exploration which allows for multiple tar-
gets forming a goal field. It also allows for specific views. User input can change
the camera position and the targets at any time.

In Chapter 5, two voxelization methods are introduced. A software-based voxeliza-
tion method generates voxelized geometric data for every single object. A graphics
hardware-based method provides for real-time voxelization of large dynamic envi-
ronments.

3.1 Potential Fields

Potential field theory has its origin in theoretical physics [AF00]. It describes the
behavior of particles in electrostatic fields and the Newtonian attraction between

1The name CubicalPath is derived from the main data structure used, a three dimensional set of
cubes, which represents the discretized version of the environment, and the fact that a path is
generated. Different to other methods, this path only becomes visible retrospectively.

26

3.1 Potential Fields

masses. The scalar potential fields and their derivatives which are vector fields
have some mathematical and practical features that will be illustrated utilizing the
physics and mathematics of electrostatics. Then, their usage for target finding and
obstacle avoidance in robotics is briefly described. The range of applications for
potential fields is then extended to real-time camera motion.

3.1.1 Electrostatics

The electric potential V (measured in Volt) is a scalar field indicating the ”height”
– the potential – for every point in the field (see Figure 3.2). If a charged particle q
is inserted at point −→p into this potential field, it has the potential energy

E(−→p) = qV (−→p). (3.1)

If the particle is moved from point −→p1 to point −→p2 with ∆−→p = −→p2 − −→p1 , then the
work

W (∆−→p) = E(−→p2) − E(−→p1) = q(V (−→p2) − V (−→p1)) (3.2)

is done. The particle gains or looses potential energy, thus move up or down in the
potential field. If the potential at the target position is equal to that of the start
position, then the work done is zero, even though the particle may have moved up
and down the field along the way.

-1
-0.5

0

0.5

1-1

-0.5

0

0.5

1

0
2
4
6
8

10

-1
-0.5

0

0.5

1

Figure 3.2: Electrostatic Potential Field of a Point Source. This figure shows the potential
values depending on their distance to the center of the charge.

The electric field is the first derivative of the potential field:

−→ε (−→p) = grad V (−→p) =
−→∇−→p V (−→p). (3.3)

−→∇−→p is the gradient with respect to −→p . The electric field is a vector field, indicating

the gradient of the potential field for each point in the field. A charged particle
q inserted into this field will experience a directed force that depends on its own
charge and the electric field at the position

−→
F (−→p) = q−→ε (−→p). (3.4)

27

3 Automated Travel using Potential Fields

Figure 3.3: Electrostatic Field of a Point Source. This figure shows equipotential lines
(dashed) and lines of force (solid).

An electrical field is generated by a potential difference between two positions in
space. For example, a point charge at position −→q (as shown in Figure 3.3), generates
a spherical potential field with electrical field vectors pointing away from the charge.
This potential field is illustrated in 3D in Figure 3.2. The point source builds a
potential wall around itself which decreases with the distance. Near the charge, the
equipotential lines are closer together, as the potential field decreases with 1

|
−→r |

=
1

|
−→p −

−→q |
:

Vpoint charge(−→p) =
q

4πε0|−→p −−→q | = k
q

|−→p −−→q | = k
q

|−→r | . (3.5)

The term 1
4πε0

is constant and can be replaced by the constant k. The electrical field
of a point charge, the derivative of Vpoint charge, is

−→ε point charge(−→r) =
−→∇V (−→r) =

∂
∂x

∂
∂y

∂
∂z

V (−→r) =

∂V (
−→r)

∂x

∂V (
−→r)

∂y

∂V (
−→r)

∂z

(3.6)

= −k
q

|−→r |3

x
y
z

 (see Appendix A for derivation) (3.7)

= −k
q−→r
|−→r |3

= −k
q

|−→r |2
−→r
|−→r | . (3.8)

28

3.1 Potential Fields

po
te

nt
ia

ly

b)a)
xx

Figure 3.4: Electrostatic Field between Two Different Charged Plates. Figure a) shows equipo-
tential lines (dashed) and lines of force (solid). Figure b) shows the decreasing potential energy
(dashed) between the positive and the negative charged plate.

A linear field, as in Figure 3.4, can be generated by charging two metal plates,
one negative and one positive. A field appears between the two plates, with forces
perpendicular to the plates pointing from the positive charged plate to the negative.
The equipotential lines are orthogonal to the force lines, thus parallel to the plates.
Any positive charged particle inserted into this field will move in the direction of
the negative plate. The larger the potential difference, the larger the force acting
on the charge.

A particle q at position −→p in an electrical field will experience the force
−→
F (−→p) and

the acceleration −→a (−→p):

−→
F (−→p) = q−→ε (−→p) (3.9)

−→a (−→p) =
q

m
−→ε (−→p). (3.10)

Two particles, one charged negative and one charged positive, (see Figure 3.5 b) will
produce a force between them, in which the lines of force point from the positive
charged particle to the negative charged one. In general, if two charges interact with
each other, the force between them depends on the distance vector −→r between the
two and is

−→
F (−→r) = q−→ε (−→r)

= −qk
q′

|−→r 2|
−→r
|−→r | . (3.11)

This force depends on the charges and their inverse quadratic distance. An example
is illustrated in Figure 3.5 a) and b).

29

3 Automated Travel using Potential Fields

b)
F

c)

a)

Figure 3.5: Force Generated by Multiple Point Charges. This figure shows a free-floating,
positive charged particle (grey) under the influence of other charged particles. In case a) the
particle is repulsed by the equally charged, fixed particle. In case b) the particle is attracted by
the differently charged particle. Case c) shows the compound influence of multiple particles,
two positive and two negative charged ones. The resulting force vector points between the
two negative charged, attracting, particles. In this example, the forces of the repulsing positive
charged particles cancel each other out.

Multiple charges

For multiple point charges, all potential fields are added to form the final potential
field (see Figure 3.6):

V (−→p) = k
q1

|−→r 1|
+ ... + k

qn

|−→r n|
= k

n
∑

i=1

qi

|−→r i|
(3.12)

with −→r i = −→p −−→pi ;−→pi = position of charge qi

By using Equations 3.8 and 3.11, the electrical field at position −→p and the force on
a particle q at position −→p for multiple point charges are:

−→ε (−→p) =
−→∇V (−→p) =

−→∇k
n
∑

i=1

qi

|−→r i|
= k

n
∑

i=1

−→∇ qi

|−→r i|
= −k

n
∑

i=1

qi

|−→r i|2
−→r i

|−→r i|
. (3.13)

−→
F (−→p) = q−→ε (−→p) = −qk

n
∑

i=1

qi

|−→r i|2
−→r i

|−→r i|
(3.14)

If a free-floating, positive charged particle is inserted into the compound potential
field, it will move in the direction of the steepest negative gradient at that point,
thus ”downhill” into the next minimum of the potential field. This is because the
force onto this particle points in the direction of the lower potential, as a result of
Equation 3.11. Figure 3.5 c) shows the resulting forces calculated for a specific point
in the force field.

This behavior of potential fields can be used to describe a landscape of attractive and
forbidden positions in space. The first applications that made use of this principle
were in the field of robotics.

30

3.1 Potential Fields

-2
-1

0

1

2-2

-1

0

1

2

-5

0

5

-2
-1

0

1

2

Figure 3.6: Potential Field Generated by Multiple Point Charges. This figure shows the
potential field generated by two positive (forming peaks) and two negative charged particles
(forming wells). A particle inserted into this field will ”roll downhill” into the next well.

3.1.2 Robotics

One of the tasks in robotics is to find a free path to a target through an environ-
ment. As discussed in Section 2.4.2, there are three fundamental methods which
can be used. The first two methods, roadmap and cell decomposition, generate a
complete path to a target before the robot starts to move. Complete knowledge of
the environment is needed, and a change in the environment requires recalculation
of the path. The potential fields method is a much faster, real-time capable, local
method which step-by-step generates the next position of a robot for the current
environmental situation. The path evolves, as the robot moves to its target. By
evaluating the current field, an instant answer to where to move is generated. This
method was first introduced by Khatib [Kat86]. A thorough discussion to the usage
of potential fields in robotics can be found in Latombe [Lat91]. This section gives a
brief introduction.

In the potential field method, a robot A moves in its configuration space C as a
point under the influence of an artificial potential field U . The configuration space
is introduced to map the motion planning for a multi-dimensioned object into the
problem of motion planning for a point. It is also used to map obstacles into this
space. Each configuration q in C states, if the robot is allowed to move into this
configuration considering all restrictions to its spatial and behavioral attributes.

The field function U can be defined over the free space as the sum of an attractive
potential pulling the particle to the target, and a repulsive potential pushing the
particle away from obstacles. At each iteration, the artificial force at position −→p

−→
F (−→p) = −−→∇U(−→p) (3.15)

is the direction of movement.

The artificial functions for attractive and repulsive configurations are chosen, such
that they generate the best motion behavior. In the presence of one target, the
attractive potential field Uatt(−→p) can, for example, be defined as a parabolic well

Uatt(−→p) = ξρtarget(−→p)2 (3.16)

31

3 Automated Travel using Potential Fields

where ξ is a scaling factor and ρtarget(−→p) denotes the Euclidean distance to the
target. This function has a minimum at the target position. The robot will be
”attracted” by this minimum and move towards it until it comes to a rest at the
deepest point of the well, the position of the target.

The repulsive force of an obstacle should effect the particle only if this particle is
getting close to some threshold. The repulsive potential function can be defined as

Urep(−→p) =

{

η(1

ρobst(
−→p)

− 1
ρ0

)2 ρobst(−→p) 6 ρ0

0 ρobst(−→p) > ρ0

(3.17)

with η being a positive scaling factor, ρobst(−→p) the distance to the obstacle, and ρ0

the distance of influence.

In robotics application, there usually exists one global target but multiple obstacles.
In the presence of multiple obstacles and targets, each of their artificial fields are
summed. Overlaying attractive and repulsive potential functions as described above
can result in local minima at positions other than targets. This is the major draw-
back of the potential field approach for motion generation. A situation, in which
the robot or the camera gets stuck in a local minimum must be detected and dealt
with. Methods for escaping local minima use Brownian movement for catapulting
the robot out of the minimum or temporarily employing one of the path planning
methods to search for a suitable path.

To generate the configuration space for a simple point robot, the geometric environ-
ment is discretized into a fine, regular grid. Any configuration q in the configuration
space holds the information, if an obstacle and/or a target is inside this sub-space.

A may be a robot or, as in real-time camera motion, a camera.

3.1.3 CG Applications

Potential fields can be used to encode a path, a tunnel into a 3D data. This was
done by Hong et al. in [HMK+97]. In their Virtual Voyage, the exploration of CT
data of the human colon is assisted by an automated ride through the middle of
the colon. The movement is computed through a potential field algorithm with the
middle of the colon encoded as a path into the field. This application was explained
in Section 2.4.3.

For his intelligent camera control, Drucker [Dru94] implemented a path planning
method based on the A* search algorithm and pre-computed global navigation func-
tions. In case of dynamic environments in a closed space, their method generates a
repulsive gradient field using a distance map of the space. They overlay this with an
attractive field in which the encoded target destination is in the minimum. Then,
a breadth-first search explores the entire grid space. The results are then used to
generate the final path by fitting a spline through the resulting points. Though this
method is faster than running their complete algorithm, it still has to generate a

32

3.2 Camera Motion Utilizing Potential Fields

complete path inside the space and involves several stages of path calculation. Also,
this method does not take the direction of view into account, an important issue
which we will explain later.

3.2 Camera Motion Utilizing Potential Fields

The approach to motion generation used by the CubicalPath system generates cam-
era data – position and orientation – in real-time by combining an abstract descrip-
tion of the environment and the local, working, real-time capable potential field
method. The first two stages of the process (see Figure 3.7) initialize the potential
field which is then used in the third step for calculating new camera data.

This section introduces all three steps of the CubicalPath process required to build
a working server system for camera motion. The control parameters in this figure –
like objects, targets and the current camera – are set by the client application.

convert geometry to cubes

assign target

generate step (new camera data)

cube space

camera
internal
camera

uses
modifies

1 2

3

objects

target (ID)

1 2

3

object space

Figure 3.7: Process Diagram Including Data Structures.

3.2.1 Geometric Setup

Before the CubicalPath system can set up the potential field, the geometric ob-
jects need to be collected from the client application and stored independently.
This space, which consists of the geometric objects, forms the object space (see
Figures 3.7 and 3.8). Technically, this means that each object in the scene is ad-
ministered as a separate entity with a unique ID. The object space represents the
current visualized scene of the client application.

33

3 Automated Travel using Potential Fields

For building the potential field, the geometric scene is transformed into a regular
three-dimensional grid – an array of cubes. This array of uniform cubes forms the
cube space2. The resolution of the cube space is defined by the client application
and depends on the required granularity of the scene. A coarse resolution requires
less computation, while a fine resolution may resolve small passages between objects.
Examples of the setup parameters are given in Section 7. The cube space defines
the space in which obstacles and targets can be specified. Its extension is normally
set to the bounding box of the scene.

The CubicalPath system stores information to establish a bilateral connection be-
tween the cube space and the object space. The attributes, stored with each object,
control the behavior of the cube space by mapping control input of the client appli-
cation (e.g. the object’s attractivity) to the according cubes. For this, each object
stores the identifying ID from the client application and the list of all cubes occupied
by this object. Each cube can access all information about the original geometric
scene inside the space it occupies via its list of objects. The parameters of the
objects, cubes, and their bilateral connection are illustrated in Figure 3.8.

object cube
object ID
application ID
polygons
transformationMatrix
attractivity alpha
list of cubes lq

x,y,z
attractivity alpha
list of objects lo

o q

object space cube spaceOS CS

Figure 3.8: Object Space and Cube Space.

The geometric setup of the cube space requires the discretization/voxelization of
the objects’ geometry to retrieve the occupied cubes. Section 5 introduces methods
to generate voxelized – discretized – representations of the geometric space while
also retrieving object information for each of the resulting voxels. Both methods are
able to identify multiple objects in one voxel. This is required when multiple small
objects occupy the same cube, as shown by objects 2 and 3 in Figure 3.9.

With this setup of the cube space, the original contents of each cube at each posi-
tion in space are known. Complex geometry can be discarded while the necessary
information is preserved in the cubes.

2Technically, the cube space is the result of voxelization and is composed of voxels. We chose
the word cubes and cube space to make clear that each cube has an extension, holds additional
data structures, and that its prime purpose is not visualization.

34

3.2 Camera Motion Utilizing Potential Fields

1 1

2,3

1

object space cube spaceOS CS

2
3 voxelization

Figure 3.9: Voxelization of Objects in Object Space Forms Cube Space.

Repulsive Field Functions

Each element (cube) in the cube space which contains geometry is considered to
be an obstacle to the camera. To avoid the camera getting close to obstacles or
penetrating them, each cube which is an obstacle generates a repulsive field if the
camera gets nearby. The CubicalPath system uses the following function, based
on [Kat86], where −→q denotes the position of the obstacle and

−→
d =−→p -−→q :

Urep(−→p) =

ηrep

(

1

|
−→
d |

− 1
d0

)2

|−→d | 6 d0

0 |−→d | > d0

(3.18)

This function is zero outside the distance of influence d0, as the term 1
d0

adjusts the
function in such a way that it is zero at a distance equal or lager than d0. The term

1

|
−→
d |

creates a function which grows towards the cube for a distance smaller than d0.

This definition of a field for obstacles results in a local field. It is designed such that
it influences the calculation only in the case that the camera is close to the obstacle.
This requires fewer calculations and results in less noise in the compound field.

The resulting fields of every cube forming an obstacle could now be assigned to each
position of the cube space to encode the complete potential field as in Equation 3.12,
and as used by Hong et al. [HMK+97] and Drucker [Dru94]. Then, the field is
evaluated at the desired camera position, and the direction of the steepest negative
gradient, its first derivative, is calculated. For this, any change of geometry would
require a recalculation of the potential field for every position in the cube space.

Cost of using potential functions
Setup: proportional to size of cube space (x*y*z) and the num-

ber of cubes forming an obstacle (no.of.obstacleCubes)
Step calculation: constant (time required for calculating the derivative of

the field at current camera position)

An equivalent result is achieved by first calculating the derivatives of the potential
functions and then adding the resulting force vectors for the camera position similar

35

3 Automated Travel using Potential Fields

to Equation 3.14. With the derivative of the potential field function for |−→d | 6 d0 in
Equation 3.19, the vector field in Equation 3.20 is calculated (for the derivative see
Equation 3.8).

∇−→
d

ηrep

(

1

|−→d |
− 1

d0

)2

= 2ηrep(
1

|−→d |
− 1

d0

)(−1)
1

|−→d |2
−→
d

|−→d |
. (3.19)

−→ε rep(−→p) =

γrep(
1

|
−→
d |

− 1
d0

) 1

|
−→
d |2

−→
d

|
−→
d |

|−→d | 6 d0

0 |−→d | > d0

(3.20)

with γrep = −2ηrep

The resulting force function on a particle with charge q is presented in Equation 3.21.
This is used in Equation 3.22 for calculating the force of multiple charges qi at
position −→qi on a particle q at position −→p .

−→
F rep(−→p) = q−→ε rep(−→p)

= q

γrep(
1

|
−→
d |

− 1
d0

) 1

|
−→
d |2

−→
d

|
−→
d |

|−→d | 6 d0

−→
0 |−→d | > d0

(3.21)

−→
F multipleRepCharges(−→p) = q

n
∑

i=1

−→ε (−→q i) =
n
∑

i=1

−→
F rep(−→q i) (3.22)

These derivatives can be made known to the system as the artificial potential func-
tions are fixed and thus, their according force functions are fixed. This approach is
used by the CubicalPath system. At the stage of the geometric setup, the field is
analytically defined by the repulsive functions and the position of the fields’ sources.
These are parameter to the repulsive force functions. This approach largely reduces
the setup time which is crucial in dynamic environments as a new setup may be
required in each step:

Cost of using force functions
Setup: proportional to no.of.obstacleCubes
Step calculation: proportional to no.of.obstacleCubes

3.2.2 Target Setup

The second step is the setup of the target in the field. The target is supplied by the
client application, for example, through a user selection.

36

3.2 Camera Motion Utilizing Potential Fields

Attractive Field Functions

The behavior of the camera is controlled by the attraction function, which is gen-
erated by the target. It is desirable that this function effects the whole field, and
has a stronger influence close to the target to differentiate between near and distant
targets. This becomes interesting in the context of multiple targets which are later
used to support exploration. We define the potential function for an attractive cube
at position −→q as

Uattr(−→p) = γattrα(ln(|−→d |) + |−→d |) (3.23)

where α is the attractivity of the cube and |−→d | = |−→p − −→q | is the distance to the
cube. The attractivity α is set to 1 for the purpose of automated travel. The
attractivity value will later be used to differentiate between more or less interesting
objects in the context of exploration. The factor γattr controls the overall influence
of attractive potentials to the compound potential function.

The according force on a particle q is:
−→
F attr(−→p) = q∇−→

d
Uattr(−→p)

= q∇−→
d

γattrα(ln(|−→d |) + |−→d |) (3.24)

= qγattr

(

α
1

|−→d |

−→
d

|−→d |
+ α

−→
d

|−→d |

)

= qγattr

(

α

|−→d |
+ α

) −→
d

|−→d |
. (3.25)

The function α

|
−→
d |

affects the entire field. The smaller the value of |−→d |, the larger

the results of this function. The value α adjusts this function to generate smaller
values for smaller α. For α = 0, the result of the function becomes 0. The term α

|
−→
d |

converges to 0 at infinity. With the addition of α, this function is raised to converge
at α, resulting in an influence proportional to the attractivity of the cube. The
overall influence of the attractive forces to the compound force vector is controlled
by γattr. For multiple charges q, thus multiple cubes, the resulting force at position
−→p is

−→
F multipleAttrCharges(−→p) =

n
∑

i=1

−→
F attr(−→q i) (3.26)

3.2.3 Step Generation - Camera Position

In each iteration, the new position of the camera is based on the compound attractive
and repulsive fields. The field – the sum of all attractive and repulsive fields – is

37

3 Automated Travel using Potential Fields

evaluated at the current position of the camera. In the potential field, the camera
moves from the current position in the direction of the steepest negative gradient.
Visually, this means that the camera rolls down-hill into the next minimum.

Instead of working directly with the potential function, the CubicalPath system uses
the force functions, as defined in Section 3.2.1, which lead to the same results. We
set q – the charge of the particle, in this the camera moving in the field – to 1.

Algorithm

The camera is a particle under the influence of the compound field of attractive and
repulsive functions. The CubicalPath system uses the force functions to calculate
the direction of movement as in Algorithm 3.1, using the Equations 3.22 and 3.26.
These functions use the position and the attractivity information of each cube q in
the cube space.

Algorithm 3.1: Calculation of the Direction of Motion of the Camera

for all repulsive cubes q

repulsive_force_vec += calculate_vector(repulsive_force_func, camera_pos, q);

noOfRepulsiveCubes ++;

repulsive_force_vec = repulsive_force_vec*rep_factor/noOfRepulsiveCubes

for all attractive cubes q

attractive_force_vec += calculate_vector(attractive_force_func, camera_pos, q);

noOfAttarctiveCubes ++;

attractive_force_vec = attractive_force_vec*attr_factor/noOfAttractiveCubes;

directionOfCamera = repulsive_force_vec + attractive_force_vec;

Motion Speed

The length of the resulting force vector and the time required for one iteration
determine the velocity, v = a ∗ t (a is the length of the force vector), of the camera
motion. Normally, the force causes a change in the current velocity and direction of
motion. This requires the implementation of a physical motion model which would
need the definition of gravitational and friction forces. We use this resulting velocity
by multiplying it with the time required for the calculation and adding it to the old
position.

The velocity of the camera is a crucial parameter for the perception of the motion.
If the camera jumps, moves too fast or too slow, the user may feel uncomfortable.
Thus, the speed of the camera should be controlled such that the camera moves at
a pleasant speed which is adjusted to the requirements of the user and the applica-
tion. For this, the maximum speed is controlled by the parameter vmax which cuts
the length of the computed directionOfCamera vector in Algorithm 3.1 if it gets
larger than vmax/t. If the camera moves into a local minimum, it will automatically

38

3.2 Camera Motion Utilizing Potential Fields

decrease its speed until it stops, as the resulting force on the camera gets smaller.
By this, the potential field approach smoothly adjusts the speed if it is less the
vmax. The overall speed in this range [0..vmax] can be adjusted by manipulating the
attractivity factor γattr in Equation 3.24.

Minima/Reliability/Robustness

If the speed of the camera becomes zero there may be several reasons. First, no
attractive cube is in the cube space CS, thus there is no target. Second, the camera
moved into the minimum formed by a target, and has reached its destination. Third,
the camera moved into an unwanted local minimum of the compound potential
field. This situation is detected by evaluating the distance to the target location.
If there is a target defined and it is not yet reached, then the motion generation
function has run into an unwanted local minimum. This is a rare situation in
sparse environments with convex objects, but is more likely to occur in cluttered
or complex environments like architectural models and mazes [Kat86]. To move
out of an undesired local minimum, local methods like Brownian motion, random
walks [Pap65] or randomized path planning [BL89] can be utilized. These will fail for
complex tasks, however, because of their local perspective. In complex environments,
a global path planning is necessary. Because the environment is already discretized,
a straight-forward solution would be the use of the A* algorithm [Lat91] to search
the environment for the shortest path to the target.

We chose the potential field method for its real-time performance in dynamic scenes
and its ability to handle interactive input of target and camera data. These require-
ments do not allow for expensive path planning and search methods. Our method
does not address complex environments. In the rare case of an unwanted stop of the
camera in cluttered environments with convex objects, we rely on the user, who at
all times holds a navigation tool in his or her hand, to move out of this minimum.

3.2.4 Step Generation - Camera Orientation

For real-time camera motion, especially if employed to support the presentation of
an environment, the visual task is the major goal for the supporting system. It is
vital for presentation to show meaningful content in the field of view. The motion
itself is only a means of transporting the user to the requested objects or information.
For this, we orient the camera such that the target is in the middle of the view. This
is typically done with a ”lookat” function [WNDO99]. This function generates the
view depending on the camera position and the target to be looked at. The resulting
direction of view will not be the direction of movement, if the direction of motion is
not on a straight line to the target.

39

3 Automated Travel using Potential Fields

Rotation Speed

Just as we enforce a speed limit for the motion, it is necessary to enforce a max-
imum angular velocity for the rotation. Changes in the view have a much larger
impact on the perception of motion than changes in the position of the camera.
To avoid confusing the user, to keep spatial awareness and to reduce motion sick-
ness, abrupt changes of direction have to be avoided. When a new target is to be
moved in the view, the camera should slowly turn to the new target. Therefore, the
angular velocity is restricted. For the virtual environment applications described
in Section 7, we found that the angular velocity should not exceed 20◦ per s. To
enforce the maximum angular velocity ωangular, the camera rotation is adjusted such
that it rotates not more than θmax in the direction of the calculated rotation. θmax

depends on the time for the current iteration and maximal angular velocity: θmax =
ωangular∗titeration. The algorithm uses the direction vector for the camera viewing di-
rection. The calculation uses quaternions [Sho85] and is illustrated in Algorithm 3.2.

Algorithm 3.2: Enforcement of Angular Velocity

//angle between the two in radians

dotValue = oldDir.dot(newDir);

angle = fabs(cos(oldDir.dot(newDir)));

if (angle > enforcedAngularVelocity*timePerInteration){

float tslerp = enforcedAngularVelocity/angle *timePerInteration;

oldMatrix.makeVecRotVec(fpVec3(0,1,0), oldDir); //Rotation Matrix for oldDir

newMatrix.makeVecRotVec(fpVec3(0,1,0), newDir); //Rotation Matrix for newDir

//change into Quaternion

oldMatrix.getOrthoQuat(oldQuat);

newMatrix.getOrthoQuat(newQuat);

//create the interpolated quaternion at time t between 0..1

slerpedQuat.slerp(tslerp, oldQuat, newQuat);

slerpedMatrix.makeQuat(slerpedQuat);

newDir = pfVec4(0,1,0,1) * slerpedMatrix;

}

3.3 Summary

Travel, the process of moving through the environment from the current position
to a single target, is the main interactive task for exploration and one of the major
activities in virtual environments. In virtual environments, this is typically done
by direct user control of the view, which often requires considerable skill to control
the interaction. Also, it is necessary that the position of the target in the virtual
environment be known to the user. This may not apply to visually hidden targets
or non-visual targets like sound and olfactory sources.

In this section, we introduced a new, real-time capable approach to automated travel
in dynamic, unpredictable virtual environments that is based on the potential field

40

3.3 Summary

method. It is derived from the physics of the motion of a charged particle in an
electric potential field. Originally, this local method was used in robotics for obstacle
avoidance and fast path planning. The method uses a discretized representation of
the environment in a uniform rectangular grid, the cube space.

Automated travel in virtual environments is technically equivalent to automated
view or camera motion. In our method, the target attracts the camera, while obsta-
cles repel it. We show that for the generation of the motion vector it is not necessary
to generate and add all attractive and repulsive potential fields and then derive the
result at the position of the camera. The same result is achieved by pre-deriving the
potential field functions and adding the final vectors of the resulting force functions
at the position of the camera. This reduces the computation to an addition of forces.

The potential field method is a local method, which does not require planning. By
applying this method to dynamic virtual environments by means of the CubicalPath
system, we can provide for a real-time system for automated travel which moves
the view to a single target while avoiding obstacles. In a dynamic environment,
the target and the obstacles may move themselves. For the rare case that the
method moves into an unwanted local minimum in cluttered environments, we rely
on the informed user to move out of this situation by using the generally available
interaction tool for navigation.

The system uses a bi-directional data structure which connects the discretized en-
vironment, the cube space, with the objects provided by the virtual environment
application. Each element (cube) of the cube space generates an attractive, repul-
sive, or neutral field. The potential field itself is analytically defined by the values
in each of the cubes, which are attributes to the pre-defined force field functions.

The motion through the environment is generated in three stages which are cycled
continuously and executed if appropriate. In step one, the visible geometry is dis-
cretized and assigned to the cube space (geometric setup). In static environments,
this step is skipped after the initial setup. In dynamic environments, this step de-
mands a fast discretization method which will be introduced in Chapter 5. Step two
once sets the target (target setup). In step three, a new view is generated depending
on the characteristic of the potential field defined in steps one and two. In addition
to the core potential field motion, we take care of the orientation of the camera and
ensure the quality of motion by controlling the velocity of translation and rotation.
The three steps are repeated until the camera (the view) arrives at the target.

41

4 Guided Exploration using Dynamic
Potential Fields

Exploration is the goal-driven activity of moving in an unknown spatial environment
for the purpose of discovery. It involves the core motion task and the cognitive task
of deciding where to move. Exploration is one of the typical motivations of using
virtual environment, as these are designed to present spatial information.

While travel is motion along a path to a well-defined target, exploration either does
not specify a target at all or it considers, driven by the goal for exploration, multiple
possibly interesting targets. The process of exploration is divided into a cognitive
task (wayfinding) and a travel task[BKH97]. The cognitive task is to identify the
targets to be visited or at least the immediate direction of motion. A decision has to
be made before the travelling may start. People commonly use external information
for decision making not only in the spatial domain. A good example is internet
search engines. A query, in the form of a question or a list of attributes, results in
a list of targets in decreasing order of relevancy. If a queriable information space
exists for the virtual environment application, supporting the user in the cognitive
task of selecting possible targets, then a connected travel support system must deal
with the resulting field of more or less interesting targets in the context of the goal.
This field is called the goal field (see Section 1.1.2).

The aim of this chapter is to integrate output of existing queriable information
spaces into our system and to move the user to the resulting targets for the purpose
of providing guided exploration. The input to the system now consists of a field of
interesting spatial targets with a value indicating their relevancy in the context of
the goal, the goal field.

The potential field algorithm introduced in the last chapter is a real-time capable
algorithm for generating the motion of a camera. It moves the camera into a lo-
cal minimum, which forms the position of a target. This method will fail in the
presence of multiple targets, as the camera will stop moving when it arrives in the
first minimum. Additionally, as this method works locally, a complicated path, for
example like in a maze, cannot be generated.

43

4 Guided Exploration using Dynamic Potential Fields

This chapter introduces the dynamic features of the potential field approach used
by the CubicalPath system. It describes the adjustment of the attractive potentials
after each motion step to enable the visitation of multiple targets. It discusses the
processing of interactive input (objects, targets, camera, interaction tool) from the
client application. Finally, it introduces some extensions to enable the specification
of a predefined path or an explicit view even though a local method like potential
fields is utilized.

4.1 The Dynamic Potential Field Method

The process of generating camera motion with dynamic potential fields extends
the method in the last chapter by an additional step which is described below.
The process now includes the four steps illustrated in Figure 4.1, which are cycled
continuously. The steps are the following:

1. Geometric Setup:
The geometric setup, step one, is equivalent to the setup described in Sec-
tion 3.2.1.

2. Goal Field Setup:
The second step of the method is the setup of the goal field, the list of targets
in the field. Targets are supplied by the client application. A user query in
the application is processed utilizing its information space and results in a list
of objects which match more or less the query. The values for the targets are
received in form of a table which states for each object its level of relevancy to
the goal, which is set to be its attractivity. The attractivity value is a floating
point number, which allows the specification of different degrees of attractivity
(more or less interesting objects).

The behavior of the camera is controlled by the attraction functions (see Sec-
tion 3.2.2), as in the automated travel method. The only difference here is
that α, the attractivity, can vary. It was fixed to 1 for automated travel.

3. Step Generation:
In step three, the orientation of the camera now has to consider multiple
targets. An approach will be discussed in Section 4.4.1. The generation of the
next camera position, is equivalent to the motion generation for the automated
travel method described in Section 3.2.3.

4. View Analysis:
Step four is required for decreasing the attractivity of visible targets. The
reason and the approach is explained in the following section.

44

4.2 Dynamic Attraction Fields

convert geometry to cubes

assign goal field

generate step (new camera data)

analyse view

cube space

camera
internal
camera

uses
modifies

1 2

3

ID Attr.
1
2
3

0
1
0

objects

targets/ goal field

1 2

3

object space

Figure 4.1: Dynamic Potential Field Method. Process diagram.

4.2 Dynamic Attraction Fields

The CubicalPath algorithm works with global and local minima to move a camera.
Each target generates a function with a global minimum at the position of the target
and contributes at least a local minimum to the compound field, if not a global one.
Wherever the camera is inserted into the field, it will move into the next minimum.
Even if this minimum was not a target, and there are more targets to visit, the
camera will stop moving and by this stop presenting targets.

To overcome this problem, the compound field of the attractive cubes is adjusted in
each step. This adjustment is based on the assumption that if a cube, thus an object,
is viewed for a while, it loses attractivity to the user. In real environments, users
would decide for themselves when they lose interest in an object in front of them,
and then walk away. In terms of guided exploration this means that the user should
be able to view each target for a certain amount of time in order to understand
its impact to the exploration task. After a while, the user will lose interest in this
object, and the next target needs to be presented.

The CubicalPath system achieves this by decreasing the level of attractivity of ob-
jects in view and thereby adjusting the attraction fields. For this, the adjustment
process needs to know which objects are in the view of the user. It can then decrease
the attractivity of these objects. Thus, after a while, the local minima of viewed
objects flatten out until they do not contribute any more to the compound field.
The camera is then ”released” from these targets.

45

4 Guided Exploration using Dynamic Potential Fields

Figure 4.2: CPAnalysisServer. Analysis of cube visibility for a ”room” scene. See Figure 6.6
for the original geometric scene viewed from a slightly different angle.

4.2.1 View Analysis

For guided exploration we need a method which decides for the user when they
viewed an object long enough. Our method is based on the assumption that the
larger a target is in the view, the more likely it is that the user’s attention is on this
target. We use a method which retrieves the ”amount of visibility” for each target.
It analyzes how much of each cube is visible in the current view. Distant cubes or
partly hidden cubes will be less visible than close, non-occluded cubes.

This is done by a separate server, the CPAnalysisServer. This server is implemented
independently, because it needs a graphics context. It receives a list of all obstacles
(their cubes), the current camera position, and a list of targets. This server is used
for

• finding a target which is visible from the current camera position (later used
for orienting the camera to a visible goal),

• analyzing how much of each target is seen in the resulting view. This is used
for adjusting the appropriate values in the dynamic potential field described
in the following section.

This method generates, with the assistance of graphics hardware, a list of visible,
attractive cubes by perspectively rendering all attractive and obstacle cubes color-
coded in the viewing frustum of the viewer, as in Figure 4.2 for a ”room” scenario.
The rendering parameters are set to match the rendering of the application view.
The color of the cubes identifies the original position of the cube in 3D space by
mapping the x, y, z position in the cube space CS on a RGB color (e.g. R = x/255;
G = y/255; B = z/255; for x, y, z ∈ D) or an index color (e.g. IndexColor =
x + y ∗ 255 + z ∗ 255 ∗ 255; for x, y, z ∈ D). The resulting image is analyzed, and
a histogram of each color is built. Cubes closer to the view position will overlay a

46

4.2 Dynamic Attraction Fields

larger area of the image than distant cubes. Occluded cubes are only partly visible
or not visible at all. Therefore, distance and occlusion will map to the number of
pixels of one color that is found in the image. In this method, it is possible to value
areas of the view differently. For desktop based systems it can be assumed that the
user’s attention is more focused on the middle of the screen than on its sides. Thus,
when analyzing the image, regions in the middle of the view could be valued larger
in terms of user attention than border regions.

Finally, the color is mapped back to the corresponding cube, its position in the cube
space, and a list of cubes sorted by its visibility – the number of pixels of this color –
is sent back to the CPServer, the server module which implements the CubicalPath
system.

4.2.2 Goal Field Adjustment

The CubicalPath system uses the list of visible cubes generated by the CPAnaly-
sisServer for the reduction of attractivity values of a cube. There are two possible
modes for adjusting the attractivity. These largely influences the behavior of the
camera. First, in the cube mode, the values can be adjusted for each cube separately.
For an object consisting of multiple cubes this results in the camera moving around
the object, until every single cube has lost all of its attraction. A cube loses its
attractivity α by the function in Equation 4.1.

αcube = α − (ξdecrease

pixels

winSizeX ∗ winSizeY
) (4.1)

The term pixels

winSizeX∗winSizeY
scales the number of the pixels (pixels) in the image

belonging to this cube relative to the image size. The image size is defined by its
width winSizeX and its height winSizeY , both measured in pixels. This term has
a maximum value of one1.

The second mode, the object mode, adjusts the complete object, once one of the
cubes is viewed. This mode makes the behavior of the camera independent of the
size of the objects. In this method, the camera views the object for a period of time,
which is independent of the number of cubes, before moving on. Also, the object is
only viewed from the direction it is approached, because here, even if multiple cubes
represent an object, the camera does not need to move around the object to decrease
the attractivity of each cube individually, before the camera is fully released from
the object.

Equation 4.2 adjusts the attractivity per object.

αobject = α − (ξdecrease

∑n

i=1 pixelsi

winSizeX ∗ winSizeY
) (4.2)

1This is the case, if the real pixel count values in the image are used. If the pixels are valued
relative to their position in the view, then this value may be larger

47

4 Guided Exploration using Dynamic Potential Fields

∑n

i=1 pixelsi is the sum of all pixels collected for the n cubes comprising this object.
The resulting object attraction αobject is then assigned to all cubes that represent
this object in cube space. The distribution of αobject to the cubes is done via the list
of cubes lq, defined in Section 3.2.1.

With these dynamic attraction values it is ensured that multiple targets are visited
sequentially. Furthermore, the attraction value correlates with the duration an ob-
ject is visited. The larger the value of α, the longer the duration of stay relative
to objects with smaller values of α. For example, if the α value of an object which
consists of one cube is set to 8 and this object is covering the complete view, then
it would take 8 steps to decrease its attractivity to zero. ξdecrease is a global scaling
factor which controls the overall duration of stay influencing all targets equally.

4.3 Interactive Input

To allow for a high degree of user control, any decisions of the system can be overrid-
den by the user. The control parameter to the CubicalPath system were illustrated
in Figure 4.1. They were the objects’ geometry, the targets with their attractivity
and the current camera position. All three parameters can be changed at any time
during the continuous motion generated by the CubicalPath system. The first two
change the potential field immediately, while the third is used in the calculation of
the next step. This provides for a fully interactive presentation, which is necessary
for the highly interactive task of exploration in virtual environments. For example,
objects may be moved during presentation in simulations or collaborative virtual
environments. The targets may change because the user re-queries the information
space. The users may wish to further explore a specific object by stopping the pre-
sentation. They can resume or re-query the CubicalPath system whenever desired.
They can navigate themselves or overlay their navigation to the motion generated
by the system.

The impact of changing these three parameter during run-time is explained in the
following sections.

4.3.1 Dynamic Camera and Interaction Tool Input

The advantage of the potential field approach is that it stores all the geometric
and attractivity information independent of the camera data. This allows the client
application to change the camera position used for the step calculation at any time
without needing to reconfigure or update the system’s data.

The camera data independent specification of the setup data can be used to reflect
user input or application changes of the camera data into the CubicalPath system
during runtime. For example, it is possible to merge the output of the CubicalPath
system camera with the input of an interaction tool in the client application. This

48

4.3 Interactive Input

A B

Cubical
Path

System

Interaction Tool

Client Application

Camera

Cubical
Path

System

Interaction Tool

Client Application

Camera

camera data

camera
data

camera data

force
force

Figure 4.3: Two Ways of Interactively Influencing the Camera Motion. In A, the client ap-
plication merges the force input of the interaction tool with the new camera data from the
CubicalPath system to generate new application camera data. In B, the force input is sent to
the CubicalPath system where it is included into the calculation of the new camera data.

enables the user to influence the motion of the view by steering in the desired
direction.

There are two ways to integrate the input of an interaction tool into the application.
The first, illustrated in Figure 4.3A, is to calculate the overlay in the client appli-
cation. The CubicalPath system sends its results, the camera data, to the client
application and the client then accumulates the output of the interaction tool with
the output of the CubicalPath system. The resulting camera data are then sent
back to the system to make the modified camera available for the next calculation
step. This results in a dynamic camera input by the client application to the
CubicalPath system.

The second way of interactively influencing the generated motion, illustrated in
Figure 4.3B, is that the client application sends the output of the interaction tool
to the CubicalPath system. This output is typically a force vector. This results in
transmitting an interaction tool force input to the CubicalPath system. This
force generates a third local field function, which is added to the existing attractive
and repulsive fields. This function drags the camera in the direction of the force.
If this force is strong, then it may override the results of the CubicalPath system.
If it is comparable to the internal forces then subtle changes to the movement of
the generated camera are possible. The results of the calculation are sent to the
client application and directly manipulate the view. An example is presented in
Chapter 7.3.

4.3.2 Dynamic Objects

If objects in the client application are transformed in any way, this transformation
has to be communicated to the CubicalPath system and applied to the cube space
CS. This requires re-voxelizing the object, removing old object information stored

49

4 Guided Exploration using Dynamic Potential Fields

in the corresponding cubes from the CS and adding new information to the new
occupied cubes. If this is done, while a user query is mapped into the CS, then
the current information for this specific object – its current attractivity – needs to
be preserved. This cannot be done per cube, as there is no knowledge of the new
position of a specific cube. It may not exist any more. Therefore, the attractivity
information is applied on object level.

If the mode of adjustment is in object mode, then the attraction value for all cubes
is equal and already stored in the according object. If the mode is the cube mode,
then each cubes attractivity αqi

has to be collected, normalized, and assigned to the
object. The function used is

αobject =

∑n

i=1 αqi

n
(4.3)

where n the number of cubes forming the object. The value αobject is then assigned
to the new set of cubes occupied by the object.

This procedure preserves the field information. It allows, for example, to follow
moving targets. The field is continuously modified by moving the area of attractivity,
defined by the attractive cubes, through the field.

Dynamic scenes require real-time voxelzation of the dynamic objects. Methods for
this are described in Section 5.4 of the following chapter.

4.3.3 Dynamic Targets

If, during the continuous calculation of camera data, new attraction values are set
by the client application (for example on basis of a new user query), then these are
assigned dynamically to the cube space and change the compound field. The camera
will immediately react to these changes and start presenting the new targets from
the current camera position. This, in effect, dynamically adjusts the goal field.

4.4 Extensions

4.4.1 Camera Orientation

For automated travel presented in the previous chapter, the camera was oriented in
the direction of one exclusive target. In the presence of multiple targets, a decision
has to be made, as to which target should be inside the view. If the camera is
oriented in the direction of motion of the camera, it can not be guaranteed that the
camera views a target. Multiple targets may concurrently attract the camera and
the influence of repulsive forces makes the camera avoid obstacles, which usually

50

4.4 Extensions

results in the camera moving to positions in between the targets and not directly to
a target.

A

TargetCamera

B

Figure 4.4: Examples for Camera Orientation.

Figure 4.4A shows an example where the camera is attracted by two target at the
same time. The camera will eventually stop in between them both but still view in
the direction of former motion. In this case, none of the targets is in view. In the
case that the camera moves in a direction with no target in close view, a camera view
in direction of motion results in images without meaningful content. If, for example,
a minorly interesting target is situated in a 90◦ angle to the direction of motion, it
makes sense to present this interesting object. For this, the camera rotation has to
turn 90◦ to move this target in the view, while the forward motion of the position
remains unchanged (see Figure 4.4B). Visually, this results in panning of the camera
as it passes the interesting target. After passing this target, the camera may turn
back to straight ahead viewing.

These examples illustrate that the orientation of the camera has to be considered,
in order to generate a presentation. A straight view in the direction of motion is not
sufficient for the camera view. When calculating the orientation of the camera, the
system decides which cube – thus, which target – should be viewed. It also ensures
that the chosen cube is not occluded by other cubes holding geometry.

Algorithm

Algorithm 4.1 first generates a list of all cubes that have an attractivity α larger
than zero. The list is sorted by α

d
where d is the distance of the camera to the cube.

Therefore, the first element in the list is the cube with the highest attractivity
scaled by its distance. The cube in this element can be checked for visibility (see
Section 4.2.1) and discarded if not visible. The camera will point in the direction
of the first visible cube in the list. This results in cubes, thus targets in the view
which have a large attractivity or which have a small attractivity but are close to
the camera.

51

4 Guided Exploration using Dynamic Potential Fields

Algorithm 4.1: Calculation of the Rotation of the Camera

//generate list of attractive cubes valued by their distance

list = generateAttractiveCubesList()

while (check_visibility(list.top(), cameraPosition) is FALSE)

//discard top element from list

list.pop()

//point camera to top element

cameraLookAt(list.top())

4.4.2 Predefined Paths

As explained before, the CubicalPath algorithm is a local method. The attractive
force of one target on the camera is always in the direction of the target. This
method has no sense of the environment in between the camera and the target. If
there are concave obstacles in the way, like in Figure 4.5A and B, the camera might
move into this obstacle, drawn by the target behind it. There will be no way out,
unless the target releases the camera from the obstacle. With convex objects this
will not happen as the camera normally slides along the borders of the obstacle.
One solution is to allow only scenes with convex objects or to fill the object space
of concave objects to make them convex like in Figure 4.5C.

A

TargetCamera Obstacle

B C

Figure 4.5: Deadlock Situation for Camera.

This does not overcome the issue of large planar obstacles like walls. One example
is illustrated in Figure 4.6. In illustration A the camera is attracted directly by the
target. The camera moves to the wall, which will repulse it. A local approach usually
will fail, unless by chance it lines up with a passage way. This limits the area of
application for the potential field method to applications consisting of convex, filled
objects with enough space for movement in between them.

To overcome this problem, global knowledge can be assigned to the CubicalPath
system, such as information about at specific path to an objects. To assign global
knowledge to the CubicalPath system, which may exist in the client application,
navigation objects are introduced. A navigation object is a new, invisible type of
object, which can be used as an obstacle to the camera or as an invisible target.

52

4.4 Extensions

CBA

TargetCamera Navigation ObjectObject

Figure 4.6: Navigation Objects for Specific Path.

They force the camera to use a certain path or to move to a specific location.
Navigation objects are activated and have to be reached before the visible target
itself is activated. They can be used if specific sub-targets are to be reached along
a path where there is no trivial way to the targets or where the pathway is small.
In Figure 4.6B, the target’s attraction is preliminarily turned off while the camera
is drawn to the pathway by a navigation object. Once this is reached (see C) the
navigation object is discarded and the target is set attractive again.

This enables the use of predefined paths. They can be implemented by

a) defining a sequence of active targets forming the path

b) passing on of values. Once a cube was visited, it loses its attraction, and at the
same time another cube is set attractive. One cube passes its value onto the next
one in the list.

Separation of Objects and Targets

A navigation object has different attributes concerning the CubicalPath system than
a traditional geometric object. So far, a target always was expected to be a visible
object, thus an obstacle. These objects were defined by their geometry and the
according cubes in the cube space. A navigation object normally is situated in the
free space of the scene. It does not have visual geometry and generates no repulsive
force for the camera. It is not connected to any object in the scene of the client
application.

This kind of bare positional information also needs to be administered in the system.
The CubicalPath system has a notion of geometric objects – controlled by the client
application – and discrete cubes – controlled by the CubicalPath system. Both
parts are required for vice-versa communication. Thus, this new kind of positional
information also has to generate an object. Therefore, the notion of an object has
to be extended to include attributes like visibility, obstacle, and target type. This
then allows for the definition of targets which are independent of geometric objects
of the client scene.

53

4 Guided Exploration using Dynamic Potential Fields

With this extension of the object definition, it is now possible to define navigation
objects for the camera independently of the client scene’s objects and activate them
as needed. An overview of this definition is given Section 4.4.4. Before this, the
definition of objects is further extended to allow the specification of a predefined
view on an objects.

4.4.3 Predefined Views

The camera will move in a straight line to a target, if not distracted by an obstacle.
The final view on the target object – the side which is viewed – is determined by the
direction from which the object is approached, as the view is defined by looking from
the camera position to the target. For camera control, this might not be sufficient,
for instance, if the object has a front and a back, a ”nice” and a ”boring” side.
This calls for a method to define views on an object. These allow for director’s
instructions or provide a certain view onto an object.

Separation of Targets for Position and View

For the definition of a view, a position and orientation of the view is required. The
orientation can be represented by the definition of a direction of view vector and the
up-vector. In the CubicalPath system, there is no notion of a vector which can be
stored in the cube space CS. However, the direction can be derived by the position
and a ”look at” position, the end point of the direction vector:

−→
dir =

−−−→
lookat −−→pos (4.4)

This requires splitting the target information into the specification of a positional
target and a ”look at” target in the CS. The ”look at” target is normally the visible
object itself. The positional target is at the desired position of the camera which is
in some distance to the target. From this position, it will view in the direction of
the ”look at” target, the target view. An example is illustrated in Figure 4.8.

With this definition, it is possible to define position/orientation pairs for the camera
and activate them as needed. This specification is independent of the client scene’s
objects.

4.4.4 Extended Object Attributes

Section 4.4.2 redefined an object to be a more abstract definition of positional infor-
mation in the geometric space. An object can be the geometric object in the client
application or it can define any position or area, independent of the visible objects
of the scene. Section 4.4.3 redefined a target to be a target for the camera position

54

4.4 Extensions

and/or a target for the ”look at” location for the view. Both definitions are required
to control the potential field algorithm to a maximum extent.

Because of this, there are three attributes added for each object:

• obstacle [bool],

• target position [objectID], and

• target view [objectID].

Every object has at least one of these attributes but may in fact have all of them.
These are important attributes for camera instructions and navigation objects. This
extends the description of an object in Section 3.2.1 to

• αpos, αview instead of α: the attractivity for the position and the view

• targetPosObject, targetV iewObject: pointers to objects which are set attrac-
tive, if this object is set attractive by the client. This may be a pointer to
itself, if the target is the object itself. Or it is a pointer to any other object in
object space.

• isSolid: makes this object an obstacle when generating the position

• isV isible: makes this object an obstacle when generating the view

These object attributes are also distributed to the cube space CS. Depending on
the pointers in targetPosObject and targetV iewObject, either the α values of the
object itself or the values of the objects pointed to are distributed to the CS.

When calculating the new position of the camera, the positional αpos value is used
as an attraction value for the camera. All cubes that are set to be obstacles will
produce a repulsive force, when the camera gets close.

In the same way, the target view value is applied when the new view of the camera
is calculated. Here, obstacle cubes are used to check for visibility. They do not
generate a force.

4.4.5 Navigation objects at work

This extended definition of objects will now be demonstrated, with some examples
in Figures 4.8 and 4.9. At the same time this section will discuss ways of controlling
the CubicalPath method:

All geometric objects are treated as obstacles – like object A in Figure 4.7 – i.e.
the camera may not move through objects. The distance the camera is keeping with
respect to the object is defined through the repulsive function (Equation 3.21) and
its values of γrep and d0.

If an object is set to be attractive by the application, an attraction value is assigned
to this object and both target attributes are set to a value > 0, as illustrated in

55

4 Guided Exploration using Dynamic Potential Fields

CB1A

Target View

Obstacle Target Position

Target (Position and View)

B2 D

Figure 4.7: Object Attributes.

objects B1 and B2. The camera will be attracted by the object and will stop in the
vicinity of the object, where the repulsive force and the attractive force of the object
become equal. B1 uses the joint notation, where target is both target position and
target direction, while B2 shows both targets separately. The behavior of both is
the same.

CBA

Target ViewCamera Object Target Position

Figure 4.8: Navigation Objects for Specific View.

If a special view of an object C is requested, then a second object D can be intro-
duced. D forms the target for the camera position, while the target for the camera
view is still the object C itself. This is illustrated in Figure 4.8. Here, the camera
is on the left side of the object. Normally, it would approach the object from the
left side, thus view the left side. If the side of the object which should be presented
is on top of the object in the 2D illustration, then, with the help of a navigation
objects, it would be possible to make the camera view the object from this side.

To summarize the influences of the different object attributes in Figure 4.7, in the
case of A the camera avoids the object when it gets close. In the case of B, the
camera position can be at any point around the object in the distance defined by
the repulsion function. In combined cases of C and D, the camera moves to D and
then will view C. As D is not an obstacle, the camera can move into the space
occupied by D.

Figure 4.9 shows the different end positions, viewing direction and paths of a camera
for the same geometric situation without (case A) and with (case B) the usage of a
navigation object for defining a view.

56

4.5 Summary

BA

Target View

Obstacle Target Position

Target (Position and View)

Figure 4.9: Examples of Navigation Objects.

4.5 Summary

In this chapter, we extend the potential field based method for automated travel to
an interactive exploration support system. Exploration can be supported both on
the cognitive level of decision making as well as on the level of travelling to identified
targets. We support the cognitive level by integrating the output of common queri-
able information spaces into our system. This output consists of a field of targets,
which are identified by their name, together with a value indicating their importance
in the context of the query. This results in a landscape of more or less interesting
targets, called the goal field. We support travelling by automatically moving the
user inside the resulting goal field, presenting the identified targets one-by-one. At
the same time, we give, if requested, full interactive control over the motion, or we
overlay user input with the system output. By this, we achieve the feeling of being
in full control of the system though we integrate the possibility of letting the system
do the travelling, thus relieving the user from this task and allowing to focus on the
exploration goal.

For automatically travelling along multiple targets inside the goal field, we introduce
the dynamic potential fields method. This method deals with multiple targets by
adjusting the attractivity of targets. The targets are presented one-by-one, ordered
according to the attractivity and the distance of the targets from the current view
position. The view is constantly evaluated to gradually decrease the attractivity of
visible targets. This, in effect, releases the view from visited targets after a while.
The target’s importance influences the duration of stay in front of the target. By
adjusting the attractivity, the history of visited targets is stored in the goal field
and the targets will no longer attract the view. The view is oriented in a way that
meaningful content – a target – is in the view, if possible.

We extended the CubicalPath system to be able to deal with interactive real-time
input by the client application or the user. The input can be dynamic, unpredictable
object locations, influence on the geometric setup, dynamic or re-adjusted targets,

57

4 Guided Exploration using Dynamic Potential Fields

influence on the attractivity setup, or a dynamic camera, assigning a new current
camera view to the motion generation function. It is also possible to influence the
results of the motion generation function with an additional force input generated
by an interaction tool.

By separating the targets for the position of the view and the orientation of the
view, we extended the possibilities of presentation in 3D, as the camera orientation
is not fixed to the direction of movement. We also introduced the concept of navi-
gation objects, additional, often invisible, objects. They allow us to introduce global
knowledge into the environment, by enabling the algorithm to follow a complicated
path or by making director-specified views possible. Examples are viewing objects
from a certain perspective for dramaturgical reasons, or preventing the view from
moving into known dead ends. Navigation objects represent spatial, high-level infor-
mation about the scene and can also be used to specify non-visible targets in virtual
environments like auditory, olfactory, or tactile targets.

The final CubicalPath algorithm comprises of four steps, illustrated in Figure 4.1.
It extends the automatic travel system in Chapter 3, by including the analysis of
the view as step four. Step two is extended, in that now a goal field is provided as
input, not a single target, and that in each step, this goal field is adjusted according
to the history of visited targets.

58

5 Real-time Voxelization

This chapter introduces volume data and then describes voxelization methods for
converting geometric data interactively into volume data. Volume data will be used
by the CubicalPath system as a uniform representation of a spatial environment.
Two voxelization algorithms to generate the volume data and their implementa-
tions are presented. These are namely a fast software-based triangle voxelizer and
a hardware-based voxelization method using standard graphics hardware. The be-
havior of both methods at different resolutions of the voxel space, different scene
sizes and on different platforms are evaluated and discussed.

5.1 Volume data

5.1.1 Definition

Volumetric data or volume data is a set S of samples (x, y, z, v) that store a value v
for a coordinate (x, y, z) in 3D space or volume space. The value v can be a single
value or a complex data structure like graphical information. If the value v is 0 or 1,
then the data is referred to as binary data.

A volume data set can consist of data sampled at random locations or it can be
structured in some sort of grid. In many cases, the sample locations lie in a regular
grid and samples are taken at regular constant intervals along the three orthogonal
axis. A set is called isotropic, if the intervals in all three dimensions are equal, or
anisotropic, if the constant interval size differs for each of the three axis. Data in
regular grids is normally stored in a 3D array which is sometimes called volume
buffer, cubic frame buffer, or 3D raster.

59

5 Real-time Voxelization

5.1.2 Example Applications

Examples of anisotropic regular volume datasets are data that is generated by com-
puter tomography (CT) or magnetic resonance imaging (MRI). In these methods, a
scanner collects density values for each 3D point in the grid.

Computer Tomography yields series of X-ray-based cross-sectional images of solid
objects. CT scanning is used, for example, in medical diagnostics and for non-
destructive analysis of the interior of composite material. Magnetic resonance imag-
ing is based on the principles of nuclear magnetic resonance, a spectroscopic tech-
nique used by scientists to obtain microscopic chemical and physical information
about molecules. Both methods generate volume data by combining series of con-
secutive cross-sectional images.

An example of a mixed dataset with fixed x and y resolution and unstructured z
resolution is geoseismic data. They are generated by igniting small explosions on
the ground and measuring acoustic reflective properties of the ground. The sound
is reflected by layers in the ground, where the density of the matter changes. The
resulting data of this method consists of the amplitude values for a computed depth
– using the time – at fixed x and y positions.

Visualization

Figure 5.1: MRI Dataset.

Information in volume data can be visualized with different volume rendering algo-
rithms which are thoroughly discussed in Chen et al. [CKY00]. Figure 5.1 shows an
example visualization of a MRI dataset where the shading is based on density values
of the tissue. Figure 5.2 shows a seismic dataset in a geoscientific application. Here
the information is visualized by color coding intensity values in the data.

60

5.1 Volume data

Figure 5.2: Geoseismic Data.

Simplification

Volume data representations can simplify complex geometric data. Rendering the
polygonal version of complex models like the model of the Happy Buddha (Stanford
University Computer Graphics Laboratory) can be time consuming. The Happy
Buddha model, which is visualized in Figure 5.3A, consists of 543.652 vertices and
1.087.716 triangles. In tests on an SGI Onyx 2 the rendering time was 0.5s. For non-
static scenes this results in a visually disturbingly slow image refresh rate. Especially
interactions at a framerate of 2 fps are annoying.

A B
Figure 5.3: Happy Buddha: Polygonal Representation and Volume Data Representation.

The Happy Buddha model in a 2553 volume data resolution as in Figure 5.3B can
be visualized on the same machine with a framerate of 50 fps. This results in
smooth visualization and interaction. Here, volume data can provide for a simplified

61

5 Real-time Voxelization

representation of geometric data while preserving the visual attributes and the shape
which is needed for interacting with a model.

Spatial Analysis

The above mentioned two examples use volume data to produce visual output. The
second example, one possible solution to rendering the Happy Buddha at interactive
speed, uses voxelization, the mapping of the geometric data into the volume space.
This simplifies the rendering of the complex geometric data to a small subset, the
rendering of 2563 voxels. Volume data representation of geometric models can also
be used for simplifying computations on the data, that otherwise would be complex
due to their size or due to the spatially opaque way polygons are stored in a scene.

Figure 5.4: 3D Spatial Cursor.

For example, voxelization can be used to analyze the subspace of a 3D Cursor, for
the purpose of identifying objects that are completely or partially inside the cursors
volume. Figure 5.4 shows a scene consisting of spheres with a rectangular box as
the cursor. One common solution to find the intersection of the cursor volume
with the objects is to test all the objects geometry against the cursor’s geometry.
Another approach is to voxelize the scene in the subspace of the cursor’s geometry
in a suitable resolution and to analyze the resulting volume. Instead of shading of
the volume data – like in the Happy Buddha example – the color of a voxel identifies
an object by its ID. The advantage of this method is that, additionally to a binary
inside/not inside information, it is also known, which specific object is at at which
position in the cursor’s volume.

62

5.2 Voxelization

Real-Time Camera Motion

Another example of applications requiring 3D spatial analysis is our method to real-
time camera motion. Camera motion – we need it for automated travel and guided
exploration in the CubicalPath system– is concerned with bringing specific objects
into the view, by moving the camera in the scene. For camera motion abstract
information like ”these are obstacles” and ”these are targets” are connected to the
objects of the scene. This requires spatial analysis of the complete scene. Map-
ping the analysis data into the volumetric domain results in a simplified, uniform,
and more abstract description of the scene. This can then simplify and speed-up
subsequent calculations.

Camera motion has to be generated real-time and can not be pre-computed when
there are dynamic objects, autonomous agents or interactively modified objects in
the scene. The voxelization methods described in this chapter will be utilized to do
real-time camera motion. The requirements concerning the volume data generation
and representation for real-time camera motion are listed in the following section.

5.1.3 Voxelization Requirements

The CubicalPath system requires a volume data representation of the geometric
scene for the geometric setup of the cube space. For this task, the voxelization
process should meet the following requirements:

• generation of object ↔ voxel information: information about which ob-
jects occupy which voxel. This is required to address the corresponding voxels
when information in the objects change and vice versa.

• fast (re-)voxelization: up-to-date representation of dynamic objects, objects
that are transformed during the application.

The next section discusses some common voxelization methods. In this chapter, the
term voxel is used to denote a volume element in the volume data set. The Cubical-
Path system later assigns the voxel information to the according cube information
in the cube space. The size and the elements of the volume data set, containing
voxels, and the cube space, containing cubes, are equal.

5.2 Voxelization

The first voxelization algorithms were binary techniques [Kau87a, Kau87b]. They
are an extension of the 2D scan conversion methods – which, for a given 3D model
and viewport, identify the final pixels in the frame buffer – into the third dimension.
Point sampling evaluates a continuous object at the voxel center and the resolution
of the 3D grid determines the precision of the discrete model.

63

5 Real-time Voxelization

Binary voxelization techniques generate topological and geometrically consistent ob-
ject representations but they suffer from object aliasing, when they are rendered.
Two techniques were developed to overcome this problem, namely filtering and dis-
tance field techniques.

Filtering techniques low-pass filter the objects [SK99, WK93]. They smoothly blend
the inside and outside of the voxel. Filtered voxelization couples voxelization and
visualisation. Compatible filters are used in both steps.

Distance field techniques [Gib98] [Jon96] compute the linear or unbounded distance
to planes, edges and vertices and set the density according to the minimal distance
to the geometry.

For real-time camera motion, here especially for spatial analysis, the volume ren-
dering stage does not apply and therefore the visual drawbacks of aliasing are not a
concern. Also, object presentations do not require a precise outline of the objects as
a camera or user viewpoint usually tends to keep distance to the objects. Therefore,
it is sufficient for real-time camera motion to use binary voxelization techniques.
One solution to this is presented in the following Section 5.3.

For complex models the voxelization time for these techniques is still far from being
interactive. These techniques are sufficient for any application where the voxelization
can be done in advance. When the application contains dynamic models like in
dynamic and interactive environments the model has to be re-voxelized whenever
modified. This requires a fast solution to voxelization.

Graphics hardware is utilized by Fang and Chen[FC00] to voxelize CSG trees after
they have been converted to triangle meshes. This hardware-based approach to vox-
elization uses standard graphics hardware to accelerate the rasterization of objects
[CKY00]. It preserves the visual attributes of the objects. Fang and Chen use the
results for visualization. Their algorithm generates slices of the object model using
a surface graphics processor to form the final volume representation. Depending on
the graphics processor and resolution of the voxel space this allows fast interactive
voxelization. Their approach generates a volume representation of the model which
can then be rendered by 3D texture mapping.

Section 5.4 introduces an approach to voxelization for spatial analysis, a non-
graphical application to voxelization, which also utilizes graphics hardware.

Voxelization process

The process of voxelization for the CubicalPath system is divided into three steps:

• collection of geometry

• voxelization – mapping geometric data into the volume domain

64

5.3 Software-based Triangle Voxelization

• assignment of voxelization results and additional information like objects ref-
erences to the volume representation, the cube space, used by the CubicalPath
system.

The following two voxelization methods first present the algorithm and then the
implementation of the process using the application database.

5.3 Software-based Triangle Voxelization

Voxelization or rasterization means mapping the polygonal representation of geom-
etry into the 3D grid domain by preserving the spatial information. A polygon is
an infinitesimal thin face in 3D space bound by the polygons edges. Voxelization
is required to identify positions in the 3D grid which are sliced by the face. Addi-
tional attributes of the polygons, for example IDs or visual properties, also require
mapping to the 3D grid. For IDs this means assigning the polygon’s ID to each of
the sliced locations in the 3D grid.

Triangles are the most simple and basic 3D object representation and all other
polygonal representations can easily be decomposed into a set of triangles. Thus,
with a triangle voxelization method, all other polygonal representations also can be
mapped into the volume domain.

For the purpose of triangle voxelization a 3D scan conversion based triangle voxelizer
was developed. It extends the 3D Line Voxelization Algorithm by Cohen [Coh94],
which guarantees to visit exactly all the voxels along a 3D continuous line. Section
5.3.1 describes how the triangles are voxelized using the Triangle Voxelizer. The fol-
lowing section describes the setup of the application scene-graph to identify specific
objects in an arbitrary geometry file, to collect the triangles from the scene-graph
and to initialize their voxelization.

5.3.1 Triangle Voxelization Mechanism

3

D

D

0 CC

B

1

2

D

D

A

Figure 5.5: Triangle Voxelizer. Voxelization of a triangle with the Triangle Voxelizer.

The voxelization algorithm proposed by Cohen [Coh94] generates a sequence of all
voxels visited by a 3D Line with endpoints on an regular integer grid, a grid with
intervals of size one. Each voxel along the 3D line is face-adjacent to its predecessors.
By determining the face from which the continuous line departs one voxel, the next
pierced voxel can be identified.

65

5 Real-time Voxelization

Now consider a triangle with edges A, B and C, illustrated in Figure 5.5. From the
centers Di of all the cubes that were found on the line between A and B, a line is
constructed to C and analyzed in the same way. By this the triangle is filled with
a set of lines. At their start point these lines

−−→
DC are only one cube apart and they

converge to each other in direction of C. Therefore, it is guaranteed that with the
above algorithm, all cubes crossing the area of the triangle are pierced by a line,
thus found. With n + 1 cubes visited along

−→
AB, D0 and Dn are set to be the exact

points A and B. The C++ implementation code of this voxelization method is given
in Appendix B.1.

The next section describes, how the triangles are collected out of a scene-graph and
how the scene-graph automatically triggers voxelization.

5.3.2 Scene-graph Setup for Triangle Collection

cpDCS ID:2

cpRoot

sceneroot

object name:�
unspecified

objectgroup name:2

cpDCS ID:1

subobject 2.1 subobject 2.2

object name:1

Figure 5.6: Collection of Triangles. Scene graph with nodes supporting the collection of the
geometry of objects named 1 and 2.

The database that holds visual and control information in real-time rendering APIs
like Performer or Inventor is normally arranged in a scene-graph, a hierarchical
arranged set of nodes like in Figure 5.6. Nodes can hold transformation matrices,
geometry information, visual information and rendering attributes. They can also
be assigned unique names and any further information. Relations between nodes
are introduced by the structure of the graph. For example, if objects are moved, the
corresponding transformation matrix in the node will change. This will affect the
position of all geometry that is arranged in the scene-graph below the modified node.
The collection of the data in the database is done by a traverser. In each frame, the
traverser traverses the scene-graph to collect the current transformations of objects,

66

5.3 Software-based Triangle Voxelization

the geometry and additional attributes for the rendering of the next image. It sets
the states of the graphics system depending on the collected information.

The application database, containing the scene to be voxelized, uses the Per-
former [RH94] scene-graph, because AVANGO is based on Performer (see Sec-
tion E.4). Geometry in Performer can have different representations like polygons,
triangles, triangle strips and quads. To utilize the Triangle Voxelizer first all this
geometry has to be collected and transformed into triangles. Secondly, all single
objects need to be identified. Therefore, an ID is assigned to each object of interest
and sent to the Triangle Voxelizer together with its geometry. Third, during run-
time, any changes in geometry have to trigger the re-voxelization process for this
specific object.

For applications using Performer these mechanisms are implemented by inserting
custom nodes into the scene-graph at the root of each object.

Tasks of Object Nodes

The object nodes – the cpDCS nodes –, inserted at the root of each object

• keep communication information to the CubicalPath system.1

• store the assigned object IDs,

• collect all geometry in all nodes below this object node,

If the voxelization is performed by the CubicalPath system they

• send all geometry as triangles to the CubicalPath system with identifying
object ID

• send the current transformation matrix, when the object is moved.2

The voxelization can also be performed locally by the application. Then the cpDCS
nodes

• revoxelizes all geometry using the local Triangle Voxelizer implementation

• send the resulting voxel with identifying ID to the CubicalPath system

• re-voxelize and resend resulting voxels to the CubicalPath system, when the
object is transformed, thus the matrix in the node changes.

1Communication between the nodes and the CubicalPath system is done in CORBA. CORBA
is a protocol and infrastructure which enables communication between different applications
on different platforms. A more detailed description can be found in Section 6. For now it is
sufficient to know that there is a communication protocol that can link the nodes in the scene-
graph with other applications. This provides for the possibility that the CubicalPath system is
a stand-alone server executed on a different system.

2This can be utilized to transform the complete set of triangles already residing on the real-time
camera motion system side to the new position, orientation and scaling

67

5 Real-time Voxelization

The root node – the cpRoot – employs a similar behavior as the cpDCS node. It has
a fixed default ID. When it traverses the scene-graph, it ignores geometry below a
cpDCS node, thus collecting all geometry, that does not reside under a cpDCS. This
node ensures that all geometry of a scene is voxelized, even though not all objects
are explicitely identified by a cpDCS node.

Inserting Object Nodes in Scene-Graph

A specific object is identified by its name in the database. This name is normally
already assigned when the object is modelled. A list of object names together with
the root node of the scene-graph (scene-root) is sent to a function which traverses
the scene graph, searching for the names in the list and inserts above the root node
of each object a new cpDCS node. This is illustrated in Figure 5.6.3

Triangle Collection

The collection of triangles is started by triggering an update function in all cpDCS
nodes. Each node traverses all its sub-nodes to collect their geometry. If the geom-
etry is not already represented as triangles, it has to be transformed into triangles.
After this stage each node sends the set of triangles and its ID either to the Cubi-
calPath system or directly to the Triangle Voxelizer, as described in Section 5.3.2.

If the matrix of a node changes then this node automatically triggers the update
process, thus the re-voxelization of the object.

Section 5.6 shows and discusses voxelization timing results of the Triangle Voxelizer.
They are compared to a hardware-based approach to voxelization which is discussed
in the following section.

5.4 Hardware-based Voxelization

In static environments the voxelization process is performed once and can usually
be done in a pre-computation step. Dynamic interactive environments require im-
mediate mapping to the volume space when modified. If complex models have to be
voxelized/rasterized, software-based voxelization techniques may become too slow to
provide interactive response as they have to rasterize each polygon on the CPU. This
operation – rasterization of polygons – is one of the basic operations of graphics en-
gines when generating an image from the object and view specifications. Therefore,
it is efficiently supported by modern graphics hardware.

3This function is implemented in a special scheme node, the cpDCSReplacer node, which is
dedicated uniquely to this replacement task. Applications in AVANGO implement all their
behavior in scene-graph structures coded in scheme.

68

5.4 Hardware-based Voxelization

The following sections describe an approach to voxelization that utilizes the graphics
hardware. The method identifies unique, single objects by color coding and slice-
by-slice rendering of the volume space. The basic approach is extended to identify
multiple objects per voxel and to render only dynamic objects.

Section 5.4.1 introduces the rendering pipeline, to show which kind of operations are
supported by the graphics hardware. A specific attention is set to the rasterization
subsystem. In Section 5.4.2 an algorithm is introduced which utilizes the graphics
hardware to accelerate voxelization. The required object identification method is
presented in Section 5.4.3. Section 5.4.4 extends the approach to deal with multiple
object identification in a single voxel. The construction of the scene-graph to in-
tegrate the voxelization process into the normal rendering database is described in
Section 5.4.5. In Section 5.5 implementation issues for the used graphics hardware
are discussed.

5.4.1 Rendering Pipeline

The process of rendering a polygonal object involves several steps – transformations,
clipping, texturing, shading and rasterization – before a pixel is drawn to the screen.
They form the rendering pipeline that is executed on the CPU and the graphics
hardware. OpenGL, the Open Graphics Library, is a widely used software interface
to the graphics platform used which consists of the CPU and the graphics hardware.
It is a description of a state machine for efficient rendering. Depending on the
graphics hardware, OpenGL divides the execution of commands between the CPU
and the existing hardware components. If, for example, hardware exists only for
the frame buffer, all but the per-fragment operations must be implemented on the
CPU. Current high-end graphics hardware like the SGI InifiteRealityTMand recent
PC graphics cards implement most operations of the rendering pipeline in hardware.
The hardware units are namely fast transformation units, rasterization units and the
frame buffer. Usually, the hardware is designed to directly implement the OpenGL
state machine.

The rendering pipeline

Before polygons are sent to the rendering pipeline they have to be extracted from
the application database. This pre-step, the database traversal, is the traversal of
the scene-graph to collect all geometry, attributes and state information that will
be rendered or used in the next frame. The results, a set of polygons, lines, points,
attributes, and states, will then be sent to the rendering pipeline. The database
traversal is dependent on the scene-graph API like Inventor or Performer, and it is
always executed on the CPU.

The rendering pipeline (see Figure 5.7) is divided into two major parts:

• the geometry subsystem which deals with geometric transformations

• the raster subsystem which rasterizes the geometry and does pixel operations

69

5 Real-time Voxelization

Primitives Fragments

Vertices

Feedback
&

Selection

Input
Conversion

&
Current
Values

Texture Coordinate
Generation

Evaluators
&

Vertex Arrays

Lighting

Matrix
Control

Clipping, Perspective,
and

Viewport Application Rasteriz-
ation Texturing,

Fog,
and

Antialiasing

Per-Fragment Operations

Frame Buffer
&

Frame Buffer ControlPixels

Figure 5.7: OpenGL Operations. From the OpenGL 1.1 State Machine Diagram [WNDO99].

The geometry subsystem operates on the collected polygons, lines and points.
OpenGL provides for a flag which specifies, if a polygon is rendered filled, as lines,
or if only the vertices are rendered as points. The operations on the primitives are
[FvDFH90]: modelling transformation of the vertices and normals from object-space
to world space, trivial accept or reject of polygons by testing against viewing volume
(culling), per-vertex lighting calculations, viewing projection, clipping of polygons
or parts of polygons outside the viewing frustum, and mapping to screen coordi-
nates. These operations are done per vertex and the graphics system implements
the required floating point matrix calculations in hardware, usually in parallel.

The transformed primitives then are rasterized and further processed to generate
the final pixels of the image. This is done in the raster subsystem.

The raster subsystem executes three steps

• the rasterization step which rasterizes polygons into sub-pixels that are smaller
than the final pixels. In this step also interpolation coefficients are stored.

• a step that applies fog and does texturing and antialiasing. These operations
work on the sub-pixels and use the interpolation coefficients. The result of
this step are pixel sized fragments. A fragment holds color and additional
information like depth, stencil and accumulation fragments.

70

5.4 Hardware-based Voxelization

• the per-fragment operations which, if enabled, decide, if and how a fragment
is applied to the frame buffer. The result is the final color of the pixels on the
screen.

The last step, the per-fragment operations, consist of a set of tests and operations
that work on different parts of the frame buffer. The frame buffer is a set of pixels
arranged as a two-dimensional array. The frame buffer can consist of four types
of buffers: color buffers (front, back, auxiliary), stencil buffer, depth buffer and
accumulation buffer. The front color buffer eventually holds the final pixel color
which is displayed on the screen. All buffers have the same pixel resolution but may
have different bit sizes per pixel or may not exist at all. Depending on the frame
buffer implementation, a system can divide available memory to the buffers. This
is done by requesting a suitable visual that handles the required buffers and buffer
depths.

The tests and operations that are executed on each fragment as it moves through
the pipeline are controlled by the OpenGL states. This is illustrated in Figure 5.7.
The result of these tests and operations depend on the incoming fragment and the
pixel information already in the frame buffer. The results then are applied to the
frame buffer itself. For example, a stencil test executes a test on the stencil buffer
part of the frame buffer. Depending on the result it may or may not discard the
fragment from further processing. The same test can write results into the stencil
buffer thus changing the state of the pipeline for following fragments.

The steps in this last part of the rendering pipeline – operations that occur as indi-
vidual fragments are sent to the frame buffer – are described below and illustrated
in Figure 5.8. All tests can be enabled or disabled and some stages allow specific
functions to be set by OpenGL.

Fragment
+

Associated
Data

Pixel
Ownership

Test

Scissor
Test

Stencil
Test

Framebuffer

Alpha
Test

Depth buffer
Test

Blending
(RGBA Only)

Dithering

Framebuffer

Framebuffer

Logicop To
Framebuffer

Framebuffer

(RGBA Only)

Figure 5.8: OpenGL Per-Fragment Operations. From the OpenGL Specifications 1.2.1 [SA].

71

5 Real-time Voxelization

Scissor test The scissor test checks, if the fragment lies in a specified rectangular
region

Alpha test The alpha test discards a fragment conditional on the outcome of a
comparison between the incoming fragment’s alpha value and a constant value.
The alpha function AlphaFunc(enum func,clampf ref) (clampf: floating-
point value clamped to [0; 1]) specifies one function out of a set of possible
comparison functions.

Stencil test The stencil test conditionally discards a fragment based on the out-
come of a comparison between the value in the stencil buffer and a reference
value. The stencil function StencilFunc(enum func,int ref,uint mask)

specifies one function out of a set of possible comparison functions.

The stencil operation StencilOp(enum sfail,enum dpfail,enum dppass)

specifies what happens to the stencil buffer, depending on the outcome of the
test and the subsequent depth test. The operations can be keeping the current
value, setting it to zero, replacing it with a reference value, incrementing it,
decrementing it, or bitwise inverting it. This test can be useful for multiple-
pass algorithms and to restrict drawing to certain portions of the screen.

Depth Buffer Test The depth buffer test discards the incoming fragment if a depth
comparison fails. The depth function DepthFunc(enum func) specifies one
comparison function out of a set of possible functions.

Blending Blending combines the incoming fragment’s R, G, B, and A values with
the R, G, B, and A values stored in the frame buffer at the incoming fragment’s
location. It is dependent on the incoming fragment’s alpha value, that of
the corresponding currently stored pixel and the blending color, equation and
factors specified.

The blending equation BlendEquation(enum mode) is used to specify one
blending mode out of a set of modes. For example, the default mode, FUNC ADD,
defines the blending equation as C = CsS + CdD where Cs and Cd are the
source and destination colors, and S and D are quadruplets of weighting factors
as specified by the blending function. The blending function BlendFunc(enum

src,enum dst) indicates how to compute the source blending factor S and
the destination factor D. For example, the blending factor ONE assigned to
src leaves the incoming value as it is and a blending factor DST COLOR as-
signed to dst multiplies the destination color with the blending color Cc.
The blending color Cc can be specified with BlendColor(clampf red,clampf

green,clampf blue,clampf alpha). Blending computations are treated as
if carried out as floating point computations.

Dithering Dithering maps a high-precision pixel color to a color that can be dis-
played with the current color depth.

Logic Operations A logical operation is applied between the incoming fragment’s
color or index values and the color or index values stored at the corresponding

72

5.4 Hardware-based Voxelization

location in the frame buffer. The function LogicOp(enum op) specifies one
comparison function out of a set of possible functions.

There are also operations that control or affect the whole frame buffer. They are
used, to clear specific buffers, to set the default values for the clear, to set masks
which specify which bits are written into the buffer, and to specify the color buffer
into which color values are written.

The color, stencil and depth buffer were discussed above. The fourth buffer, the
accumulation buffer, is a color buffer with pixel arithmetic. It holds RGBA color
data like the color buffers. The rendering pipeline cannot directly write fragments
into this buffer. The accumulation buffer can be used to add the image in the current
color buffer to the one in the accumulation buffer. Or it can multiply or add each
pixel in the buffer to a value. This buffer is typically used for accumulating a series
of images into a final, composite image. With this method, it is possible to perform
operations like scene antialiasing by supersampling an image and then averaging the
samples to produce the values that are finally painted into the pixels of the color
buffers.

Applications of hardware accelerated numerical calculations

The following examples briefly illustrate possible usage of the graphics card to ac-
celerate numerical calculation – calculations that are not primarily used to produce
graphical output.

The generation of form factor for the hemicube radiosity algorithm can be accel-
erated by graphics hardware [BW90, CW93]. A view for each of the faces of the
hemicube is specified and the elements are rendered using the rasterization capa-
bilities of the graphics hardware and the depth-buffer for visibility determination.
Instead of a color, an item ID encoded into the color information is stored at each
pixel, which identifies the visible element.

Ritter et al.[RBD+99] use the accumulation buffer for generating interference be-
tween complex wave patterns for computer-generated holograms.

Westermann and Ertl [WE98] use graphics hardware in volume rendering applica-
tions. They take advantage of the rasterization functionality, such as color inter-
polation, texture mapping, color manipulations in the pixel transfer path, fragment
and stencil tests and blending operations.

Lengyel et al.[LRDG90] used standard graphics hardware to rasterize configuration
space obstacles into a series of bitmap slices. They used the polygon-filled mode to
differentiate between obstacles and free space.

Fang and Chen[FC00] utilize graphics hardware to voxelize CSG trees after they have
been converted to triangle meshes. Their algorithm generates slices of the object
model using a surface graphics processor to form the final volume representation.
Depending on the graphics processor and resolution of the voxel space this allows fast

73

5 Real-time Voxelization

interactive voxelization. They additionally rendered polygons in wireframe mode to
prevent holes in the model that occur, if polygons are viewed from the side. Their
approach generates a volume representation of the model which can be rendered by
3D texture mapping.

The following section will present a voxelization method that can be used for spa-
tial analysis. It will extend the basic voxelization method presented by Fang and
Chen[FC00] and will make use of the rasterization hardware, the stencil test and
blending and will modify the rendering attributes in the scene’s database on-the-fly.

5.4.2 Hardware-based Voxelization and Analysis Mechanism

For the hardware-based voxelization the clipping capabilities of the graphics engine
are utilized [FC00]. To voxelize the scene in a given volume data resolution of x, y, z,
the scene is rendered orthographically slice by slice, thereby producing z slices of
resolution x ∗ y. The near and far clipping planes of the viewport are set to bound
each slice to be as wide as the current z voxel. Object IDs are encoded into the
scene’s color attributes, which is explained in Section 5.4.3.

Algorithm 5.1: Hardware-Based Voxelization: resolution x, y, z

CreateViewport(x, y)

memory = AllocateMemory(x * y * z)

DisableTexturing()

DisableAntiAliasing()

DisableTransparency()

boundingBox = ComputeBoundingBox(Scene)

// unit cube : (0, 0, 0) to (1, 1, 1)

scaledScene = ScaleToUnitCubeSize(Scene, boundingBox)

zplane1 = 0 step = 1 / z;

for i = 0 to z - 1

zplane2 = zplane1 + step

DefineOrthogonalViewingFrustum(zplane1, zplane2)

ClearFramebuffer()

DisplayFilled(scaledScene)

RenderObjectColor(RGB=ConvertIDToRGB(ID))

DisplayWireframe(scaledScene)

RenderObjectColor(RGB=ConvertIDToRGB(ID))

WriteFramebufferToMem(memory + x * y * i)

zplane1 = zplane2

SendVoxelsToAnalyzer(memory)

The hardware clips the geometry outside the current slice – the red slice in Figure 5.9
– and an image (see Figures 5.10) of the geometry in the resulting slice is rendered.
The result is written into memory. If the scene is rendered with the visual attributes
of objects, like materials, textures and colors, then the results form the volume
data representation of the geometric model. This can be used in volume rendering
applications or it can be directly rendered as a texture.

74

5.4 Hardware-based Voxelization

Figure 5.9: Volume Data Generation. One slice of size x × y is rendered for each z in a
volume data resolution of x, y, z

Figure 5.10: Image/Slice in Volume Data. Slice in Figure 5.9 rendered with color-coded
objects in a resolution of 20 × 20 × 20. The slice’s thickness is 1.

75

5 Real-time Voxelization

For the purpose of voxelization the colors in memory, which hold the ID information,
are analyzed, obtaining for each position of the voxel space the information which
object occupies which voxel.

The complete voxelization algorithm is illustrated in Algorithm 5.1.

5.4.3 Color Coding of Object IDs

For the process of identification which objects reside in which voxels, the visual
properties of a model are exchanged against information about the objects them-
selves, namely their ID. The ID is mapped to an RGB color, which is then applied as
an emissive material to the object’s geometry. All other materials and textures for
this object are disabled to ensure that the object is rendered only in the color of the
ID. A typical framebuffer has 8 bits per color and thus allows the coding of 224 IDs
in the RGB color. The color assignment procedure is illustrated in Color-Coding
Algorithm 5.1.

Color-Coding Algorithm 5.1: Identification of 224 Objects in the Volume Space

RGB = ConvertIDToRGB(ID); ID ={1,2,..,2^24}

//e.g ID=5 -> R:0 G:0 B:0000 0000 0101

emissive = RGB

ambient = diffuse = specular = (0, 0, 0)

The algorithm described in Section 5.4.2, combined with the color-coding approach
described in this section, resolves one object per voxel. This is because the pixel
color of each rendered polygon overwrites any color information that was stored in
this specific pixel before. Therefore, the last polygon’s color which is rendered into
a pixel will be the one which defines the resulting object ID. If the depth test is
enabled, this will be the object whose fragment in the slice is next to the viewer.

5.4.4 Identification of Multiple Objects per Voxel

The above used method for color coding can encode and identify 224 object in the
scene but resolves only one object in each voxel.

In a different approach to color-coding and rendering, the maximum number of
objects identifiable in a scene is decreased to 24, but all 24 objects can be resolved
in a single voxel simultaneously. This approach maps each object ID to one specific
bit in the 24 bit RGB space as in Color-Coding Algorithm 5.2 and uses blending
and the stencil buffer to compute the composite ID information for each voxel. In
the resulting color bit pattern, each set bit denotes the occurrence of the specific
object in this voxel.

76

5.4 Hardware-based Voxelization

Color-Coding Algorithm 5.2: Identification of 24 Objects per Voxel

RGB = SetBitIn24BitColor(ID); ID = {1,2,..,24}

//e.g ID=5 -> R:0 G:0 B: 0000 0001 0000

emissive = RGB

ambient = diffuse = specular = (0, 0, 0)

//Example result: R:0 G:0 B:1000 1000 1000

// indicates IDs 4, 8, 12

The composite bit pattern in the final pixel color can be received by using an OR
operation when blending. This would result in the following bit patterns in a four bit
example with IDs encoded in brackets: 1000 (4) OR 0001 (1) = 1001 (1,4); 0001

(1) OR 0001 (1) = 0001 (1). Unfortunately, OpenGL only implements arithmetic
ADD operations. When adding two fragments with the same ID/color – a common
situation because one object is likely to render more than one fragment into a specific
pixel – the resulting bit pattern would indicate a wrong ID: 0001 (1) + 0001 (1)

= 0010 (2). Therefore, the behavior of the OR operation has to be constructed of
available operations. This can be done by utilizing the stencil buffer additionally to
the blend function. The procedure is as follows:

The global draw algorithm is modified to enable blending. The according blend func-
tion is set to glBlendFunc(GL ONE, GL ONE) which arithmetically adds the incoming
fragment to the fragment that is already in the frame buffer.

To prevent objects from writing their color bit pattern more than once into the
frame buffer, the eight bit stencil buffer is utilized to store the ID of the previously
written object. The stencil test function glStencilFunc(GL NOTEQUAL, ID, mask)

tests, if the incoming ID is equal to the ID in the stencil buffer. The third argument
of this function sets a bit mask to specify which bits are included in the comparison.
The stencil operation glStencilOp(GL KEEP, GL REPLACE, GL REPLACE) changes the
state of the rendering pipeline to write the ID into the stencil buffer, provided that
the stencil test succeeds. Thus the not equal test will fail for following fragments
with this ID. If the test fails, the fragment is discarded. This procedure requires
that all geometry belonging to a specific object is rendered coherently. Otherwise,
a different object may write its ID into the stencil buffer, by this overwriting the
still required information about the formerly rendered object IDs. The scene-graph
setup described in the following section provides for coherent object rendering.

Distributed Objects

In an eight bit stencil buffer only five bits are required to encode the 24 IDs. The
unused three bits can be utilized for distributed objects, objects that can not be
arranged to group all geometry together in the scene-graph to render coherently.
Recalling the scene-graph in Section 5.4.5, this is the case for all objects that did not
receive a unique ID, thus the ones directly under the root node. These objects can be
anywhere in the scene-graph and all receive the same default ID. These distributed
objects now directly test and write on one specific bit of the stencil buffer, set by

77

5 Real-time Voxelization

the third parameter, mask. For example, to test and write uniquely on bit eight the
stencil function is set to glStencilFunc(GL NOTEQUAL, 128, 128 = 1000 0000). All
other objects with correct identification will use glStencilFunc(GL NOTEQUAL, ID,

127 = 0111 1111) and test the ID against the lower seven bits of the stencil buffer.

Rendering Algorithm

The scene-graph setup described in the following section provides for the correct
assignemt of parameters to the nodes. For the stencil test, the global draw algorithm
has to be extended to enable the stencil test and to clear the stencil buffer for each
rendered slice. The enhanced rendering algorithm is described in Algorithm 5.2.

Algorithm 5.2: Voxelization with Multiple Object Identification

...

Enable(Blending, Stencil Test)

SetBlendFunction()

for i = 0 to z - 1

zplane2 = zplane1 + step

DefineOrthogonalViewingFrustum(zplane1, zplane2)

ClearFramebuffer()

ClearStencilBuffer()

DisplayFilled(scaledScene)

RenderObjectColor(RGB=SetBitIn24BitColor(ID))

StencilBufferTest(ID, mask)

WriteFramebufferToMem(memory + x * y * i)

zplane1 = zplane2

SendVoxelsToAnalyzer(memory)

5.4.5 Scene-Graph Setup

The voxelization process utilizes the scene-graph in a similar way as described for the
Triangle Voxelizer in Section 5.3.2. Here, the two types of custom nodes (cpDCS,
cpRoot) handle the switching between the normal rendering mode and the vox-
elization mode. This allows to use the application scene-graph for both the normal
visualization and the spatial analysis of the scene simultaneously.

The cpDCS nodes are inserted above the top node of each object that should be
identifiable in the volume data space (see Figure 5.11). Unique IDs are assigned to
these custom nodes. In the voxelization mode this ID is mapped to an RGB color,
which is then applied to the object’s geometry with Color-Coding Algorithm 5.1
or 5.2. At the top of the scene-graph the cpRoot node is inserted. It ensures that
the rendering parameters are set for all geometry and that objects which are not
assigned a cpDCS node are nevertheless rendered in a single color, the defaultID
color. The following pseudocode in Algorithm 5.3 shows the task of the cpDCS and
cpRoot nodes.

78

5.4 Hardware-based Voxelization

cpDCS ID:2

cpRoot

color: 1

color: 2

color: default (white)

sceneroot

object name:unspecified

objectgroup name:2

cpDCS ID:1

subobject 2.1 subobject 2.2

object name:1

Figure 5.11: Scene-graph for Hardware-Based Voxelization. Nodes support the switching
between voxelization mode and drawing mode. In this illustration the rendering flag is set to
voxelization mode. The geometry is rendered in the color of the ID.

Algorithm 5.3: cpDCS and cpRoot

if cpRoot

RGB = RenderObjectColor(DefaultID)

if (MultipleObjectIdentification)

RGB = SetBitIn24BitColor(DefaultID)

glStencilFunc(GL_NOTEQUAL, 128, 128 = 1000 0000)

else

RGB=ConvertIDToRGB(DefaultID))

else if cpDCS

if (MultipleObjectIdentification)

RGB = SetBitIn24BitColor(ObjectID)

glStencilFunc(GL_NOTEQUAL, ObjectID, 127 = 0111 1111)

else

RGB = ConvertIDToRGB(ObjectID)

To make Color-Coding Algorithm 5.2 work if multiple ”unspecified” objects are
distributed over the scene-graph – thus polygons with the defaultID are not rendered
coherently –, the parameter ID and mask are set different for cpDCS and cpRoot.
This is further explained in the last item of the following Section 5.5.

If the matrix of a node changes, then this node automatically triggers the re-
voxelization of the object. With the current algorithm this would result in re-
voxelization and thus rendering of the complete scene. The voxelization time is
dependent on the number of polygons that have to be rendered. Therefore, it makes
sense to render only objects that need re-voxelization. This can be done by discard-
ing the static objects from rendering with implementing a switch. This switch stops
the traversal if the nodes geometry did not change. This process is in effect like
culling static objects from the scene.

79

5 Real-time Voxelization

5.5 Implementation Issues

This section lists several issues that had to be dealt with while implementing the
hardware-based voxelization for the SGI Onyx InfiniteReality 2 multipipe environ-
ment. Though some of the problems are very hardware specific, we nevertheless
think them to be generally important for everyone considering the implementation
of the described voxelization methods. The last two points listed are hardware
independent.

Invisible voxelization rendering The hardware voxelization method needs a graph-
ics context, a window, to render in. This can be a unique voxelization window
or any available application window. The advantage of a uniquely dedicated
voxelization window is that, if the system supports this, it can render in par-
allel to the application and it can request any framebuffer setting required for
voxelization. The disadvantage is that it occupies some of the visible space
of the screen. Thus, full screen applications require the voxelization process
to happen in the available application window. This can be implemented by
sequentially executing the application and the voxelization process. The vox-
elization process renders into the back buffer without swapping the buffer to
the screen. Therefore, this is done invisible and independent of the framer-
ate of the system. After all slices are rendered, the normal rendering – the
rendering of the scene – takes place again. Only the result of this last ren-
dering will be swapped into the front buffer, thus displayed. This results in
the voxelization process being invisible although it uses the already available
window. Another possibility is, if available, to use an off screen buffer for vox-
elization. Depending on its implementation, the off screen buffer may render
in parallel to the normal rendering process, thus making the voxelization again
independent of the application without opening a separate window.

Depth buffer Despite disabling antialiasing by pfAntialias(PF OFF) in the vox-
elization process, the Onyx IR produces antialiasing-like artefacts, when two
different colored polygons were close together, therefore having the same z
value. This led to the assumption that these effects occurred when the Onyx
dealt with z-fighting. The Onyx seems to implement some sort of blending for
fragments with the same depth value, which produces antialiasing like arte-
facts. The solution was to disable the depth buffer for the voxelization draw.

The depth information can be discarded for voxelization because the exact
position of polygons in each voxel is not required.

Multipipe considerations Section 5.4.5 describes the implementation of voxeliza-
tion information into the application scene-graph. Depending on a flag defined
in the scene-graph the scene-graph traverser sets the states in the rendering
pipeline to generate images for the application visualization or for the vox-
elization process.

80

5.6 Voxelization Time Experiments

Multipipe environments fork multiple draw processes that simultaneously use
the scene-graph. Thus it is possible that one draw process does voxelization
while the other draw processes render the scene. Therefore, in multipipe or
multi-process environments, it is not possible to use global flags in the scene-
graph to switch rendering parameters for specific pipes or processes. Instead
or additionally, the viewport or process information has to be considered, to
decide on a scene-graph level, which rendering parameters need to be assigned.

Polygons small compared to pixels For very small resolutions of the voxel space
– large voxels compared to the geometry –, complete polygons are likely to lie
completely inside the screen space of a voxel, a pixel. They are then discarded
by the graphics system and will not contribute to the final image. If polygons
are explicitly rendered as lines or points they receive a defined minimum pixel
thickness and are therefore always visible. The Algorithm 5.1 renders once in
filled and once in wireframe mode to overcome the described problem. The
result is that the scene-graph is traversed twice.

The extended voxelization method in Algorithm 5.2 requires that all geometry
belonging to a specific object is rendered coherently. A second rendering pass
would render the same object a second time, after the first pass is finished for
all objects. If the stencil buffer for a specific bit was intermediately set to a
different ID by a close object, then the object’s ID is added a second time.
This will result in a wrong ID in the final analysis (see Section 5.4.4). Thus,
the color-coding method would fail.

A solution to this is to change the scene-graph for each object in a way that its
sub-graph is rendered twice, once in filled and once in wireframe mode. This
can be done by the cpDCS and cpRoot nodes.

5.6 Voxelization Time Experiments

To evaluate the hardware-based voxelization method, this section lists five exper-
iments. They measure the voxelization time for varying resolutions of the volume
data and for varying number of polygons. One experiment compares the hardware-
based method to the software-based method. For all experimental data five values
were collected and visualized.

The first experiment, Experiment 5.1 in Figure 5.12, evaluates the influence of the
three axis of the volume data on the voxelization time. The analysis of the resulting
volume is disabled to evaluate only the influence of time needed for creating the
volume data. A difference is to be expected, because the x and y resolution – the
image size – is handled in a different way than the z resolution – the number of
slices to be rendered.

81

5 Real-time Voxelization

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100

vo
xe

liz
at

io
n

tim
e

[s
];

30
.7

20
 p

ol
yg

on
s)

r [resolution]

 r = x; y = z = 100
 r = y; x = z = 100
 r = z; x = y = 100

Figure 5.12: Experiment: Hardware-based Voxelization without Analysis of the Volume Data.
Varied resolution, fixed no. of polygons (30,720). Measured is the voxelization time. Two
axes of the voxel space are fixed, the third axis is varied.

Experiment 5.1:

Technique: Hardware-based voxelization without analysis of the resulting volume data.

Input: Scene with 30,720 triangles distributed over 10 objects.

Parameter: The resolution in x, y, and z direction. Two axes of the voxel space are fixed at
a resolution of 100x100, the third axis is varied.

Platform: SGI Onyx MIPS R12000 Processor 8 CPUs InfiniteReality2E DIVO Video boards.

Measures value(s): Voxelization time in seconds.

Observation: see Figure 5.12. The voxelization time increases linearly with the resolution.
The influence of the number of slices to be rendered - the z resolution - is on the SGI
Onyx R12000 4 to 5 times larger than the influence of enlarging the image size by x
or y.

The results of Experiment 5.1 show that the influence of the x and y resolution (their
gradients are 0.0002) is negligible compared to the influence of the z resolution (its
gradient is 0.0085). From this experiment it is learnt that, for efficient voxelization,
the scene has to be transformed in a way that the smallest resolution of the voxel
space maps to the z direction.

The next experiment, Experiment 5.2 shown in Figure 5.13, extends Experiment 5.1
to also include the analysis of the volume data, which is necessary to complete the
voxelization process.

82

5.6 Voxelization Time Experiments

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100

vo
xe

liz
at

io
n

tim
e

[s
];

30
.7

20
 p

ol
yg

on
s)

r [resolution]

 r = x; y = z = 100
 r = y; x = z = 100
 r = z; x = y = 100

Figure 5.13: Experiment: Hardware-based Voxelization with Analysis of the Volume Data.
Varied resolution, fixed no. of polygons (30,720). Measured is the voxelization time. Two
axes of the voxel space are fixed, the third axis is varied.

Experiment 5.2:

Technique: Hardware-based voxelization with analysis of the resulting volume data.

Input: Scene with 30,720 triangles distributed over 10 objects.

Parameter: The resolution in x, y, and z direction. Two axes of the voxel space are fixed at
a resolution of 100x100, the third axis is varied.

Platform: SGI Onyx MIPS R12000 Processor 8 CPUs InfiniteReality2E DIVO Video boards.

Measures value(s): Voxelization time in seconds.

Observation: see Figure 5.13. The voxelization time increases linearly with the resolution.
The influence of the number of slices to be rendered - the z resolution - is on the SGI
Onyx R12000 4 to 5 times larger than the influence of enlarging the image size by x
or y.

The results of Experiment 5.2 show that the linear influence of increasing the volume
data – each resulting voxel is analyzed – is equal for all three dimension. This offset
is added to the figures of Experiment 5.1. A scene with 30,720 polygons can be
voxelized in a resolution of 100×100×100 in 1.05s. For a resolution of 100×100×1
the voxelization time is only 0.02s.

To compare these results to the software-based method in Section 5.3, Experiment
5.3 varies the z resolution from 1 to 100 for both hardware- and software-based
voxelization. The x and y resolution is fixed, because these axis do not have a
significant influence on the voxelization time. Thus it is sufficient, to analyze the z
resolution.

83

5 Real-time Voxelization

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100

vo
xe

liz
at

io
n

tim
e

[s
]

z [resolution]; (x = y = 100)

 Hardware-Based Voxelization Technique
Software-Based Voxelization Technique

Figure 5.14: Experiment: Comparison of Hardware- and Software-Based Voxelization. Varied
z resolution, fixed x and y resolution (100 x 100), fixed no. of polygons (30,720). Measured
is the voxelization time.

Experiment 5.3:

Technique: Software-based voxelization and hardware-based voxelization with analysis of the
resulting volume data.

Input: Scene with 30,720 triangles distributed over 10 objects.

Parameter: The resolution in z direction. The x and y resolution is fixed to 100x100.

Platform: SGI Onyx MIPS R12000 Processor 8 CPUs InfiniteReality2E DIVO Video boards.

Measures value(s): Voxelization time in seconds.

Observation: see Figure 5.14. The software-based curve has a large constant offset and a
small gradient of the curve. The hardware-based curve has a minimal offset and a
gradient of approximately one with increasing z. Both curves meet at z ' 100.

The results of Experiment 5.3 in Figure 5.14 show that, on the used hardware,
the hardware-based method is faster than the software-based method, if the z res-
olution is smaller than 100. It is observed that the software-based curve shows a
large constant offset but has a small gradient of the curve for increasing volume
data resolutions. The hardware-based curve has a minimal offset but a gradient of
approximately one with increasing z.

The experiments before were done using the color-coding algorithm which identifies
one object per voxel. To evaluate the influence of the multiple object identification
algorithm on the timing figures, both methods are compared in the next experiment.

84

5.6 Voxelization Time Experiments

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100

vo
xe

liz
at

io
n

tim
e

[s
]

z [resolution]; (x = y = 100)

Single Object Identification
Multiple Object Identification

Figure 5.15: Experiment: Comparison of Single- and Multiple Objects Identification Algo-
rithms for Hardware-Based Voxelization. Varied z resolution, fixed x and y resolution (100 x
100), fixed no. of polygons (30,720). Measured is the voxelization time.

Experiment 5.4:

Technique: Hardware-based voxelization using single and multiple object identification per
voxel.

Input: Scene with 30,720 triangles distributed over 10 objects.

Parameter: The resolution in z direction. The x and y resolution is fixed to 100x100.

Platform: SGI Onyx MIPS R12000 Processor 8 CPUs InfiniteReality2E DIVO Video boards.

Measures value(s): Voxelization time in seconds.

Observation: see Figure 5.15. The curve representing the multiple object identification is
only slightly steeper then the single object identification curve.

The results of Experiment 5.4 in Figure 5.15 show that the method to identify mul-
tiple objects per voxel is only slightly slower than the method which only identifies
one object per voxel.

The following experiment evaluates the influence of the number of polygons on the
voxelization time. It also compares the figures for the SGI Onyx R12000 with a PC
configuration.

85

5 Real-time Voxelization

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40 45 50

vo
xe

liz
at

io
n

tim
e

[s
]

no. of spheres (5000 polygons/sphere)

Onyx
PC

Figure 5.16: Experiment: Hardware-Based Voxelization for Onyx and PC. Varied no. of
polygons, fixed resolution of 20× 20× 20. Measured is the voxelization time. The amount of
geometry is varied by increasing the number of spheres in the scene.

Experiment 5.5:

Technique: Hardware-based voxelization.

Input: Scene with n objects consisting of 5000 polygons each.

Parameter: The resolution x, y, and z is fixed to 20x20x20. The number of polygons to be
rendered is varied by increasing the number of spheres in the scene. Each sphere consists
of 5000 polygons.

Platform: SGI Onyx MIPS R12000 Processor 8 CPUs InfiniteReality2E DIVO Video boards.
PC 800 MHz Pentium III PC with a GeForce 2 GTS graphics board and a 2xAGP bus

Measures value(s): Voxelization time in seconds.

Observation: see Figure 5.16. The voxelization time increases linearly with the number of
polygons. The increase in voxelization time is steeper for the PC.

The results of Experiment 5.5 in Figure 5.16 show that the voxelization time in-
creases linearly when increasing the number of polygons. Furthermore, it can be
seen that the SGI Onyx is about 1.8 times faster than the PC configuration.

86

5.7 Discussion

5.7 Discussion

Using the specialized graphics hardware for voxelization raises a number of issues.
For example, antialiasing artifacts occurred because of z-fighting and polygons were
not rendered, because they were smaller than the pixel size. Implementation tech-
niques to solve the problems were presented.

The experiments showed that there is only a minimal decrease of the voxelization
speed when the x or y resolution is increased. If the rendering of the scene is not
fill-limited – not limited by how fast the graphics hardware can rasterize polygons
for the required pixel resolution –, the voxelization time depends only on the number
of slices to be rendered, thus the z resolution. Therefore, for efficient voxelization,
the scene should be transformed such that the smallest resolution of the voxel space
maps to the z direction.

Currently, the SGI Onyx IR still shows a better performance than the PC system
in the experiments. But as the difference is so small it can be expected that with
the next generation of graphics cards, possibly already with a 4xAGP bus, the
performance of the Onyx can be realized with a low cost PC system.

The comparison between hardware and software-based techniques show that for large
resolutions of z the hardware-based technique may become slower than the software-
based technique. The choice of method depends on the type and requirements of
the application: the degree of interactivity, a static or dynamic application, and the
shape of the resulting volume data space. For static, non-interactive environments
that do not require re-voxelization, the software-based technique provides an easy
to implement voxelization method. The hardware-based technique is more complex
to implement and needs a graphics window, but enables fast voxelization, which is
required in interactive, dynamic environments.

87

5 Real-time Voxelization

5.8 Summary

Voxelization is a technique to generate volume data from geometric data. The
volume data representation is a general data structure suitable for varies kinds of
applications in the field of visualization, simplification and spatial analysis. We
require it for the geometric setup of the potential field methods, introduced in the
previous chapters. It is used for its uniform structure and for simplification of the
geometric data.

This chapter presented two real-time capable voxelization methods for spatial anal-
ysis, a software-based and a hardware-based method. Real-time performance is im-
portant in dynamic environments, when frequent re-voxelization is necessary. Both
methods generate object-coded volume data from geometric surface data utilizing
the Performer scene-graph. Surface data is used, as the inside of objects is not
visible, thus it makes no sense to include it into the calculation.

In the software-based method, each object’s polygons are transformed into the voxel
space which makes it an ”object to voxel” approach: for each object the occupying
voxels are identified. The hardware-based method is a ”voxel to object” method,
because the complete voxel space is rendered and then analyzed to retrieve the
objects inside each voxel. A special approach to color-coding allows the identification
of multiple objects per voxel, to make the results comparable to the results of the
software-based polygon voxelization method.

For both methods performance measurements and a comparative analysis are pre-
sented. Performance data for varying resolution of the voxel space and for differ-
ent complexities of the models are collected. They show that the hardware-based
method is much faster for small resolutions of the voxel space in z direction, but may
become slower than the software-based method for very large resolutions of z. The x
and y resolution does not contribute to the voxelization time of the hardware-based
method. The influence of the model complexity is linear in both cases.

Applications in the field of animation are often tasks, where the z resolution – the
height of the space – is small compared to the x and y resolution – the large area that
can be navigated. This utilizes the features of the hardware-based method in the
best possible way. If only a small number of objects is dynamic, then the software-
based method is preferred because of its simplicity and its real-time behavior for a
small number of polygons.

88

6 Software Architecture

The aim of this work was to build a system which provides guided exploration
for arbitrary applications which let users explore 3D scenes and incorporate simple
object information. It is designed to be general and reactive to application and
user input. The CubicalPath method can be used like a function call, with the
attributes (camera data, geometry change, target change, interaction tool input)
provided as parameters to the function. This calls for a software architecture which is
independent of the specific application. A client/server architecture [Ede94] provides
for this, as it separates the client and the server application. They communicate
with each other through a well-defined and simple interface. This communication
may also be done via a network, thus allowing the applications to be distributed.

Based on the methods described in the previous chapters, we developed a neutral
software system which is designed to work as a server for any client application
requesting guided exploration. The server itself is called CPServer. It communi-
cates with the client application using CORBA [OMG, HV99], described below. A
CORBA interface provides the necessary controlling functions for the client. This
has the advantage that application and server can talk via a network and that dif-
ferent implementation languages and operating systems can be used. CORBA is
also used for the communication between the CPAnalysisServer and the CPServer.
The CPAnalysisServer is a server, which is used by the CPServer for analyzing the
current view (see Section 4.2.1). The communication between the individual servers
and the client application is illustrated in Figure 6.1.

6.1 CORBA

The Common Object Request Broker Architecture (CORBA), a three tier (layer)
client/server architecture with an ORB (Object Request Broker) architecture that
supports distributed objects, is an open standard for distributed programming with
objects. It is a proposal by the Object Management Group (OMG), a group of
over 500 members, including all major IT companies. It provides for object interac-

89

6 Software Architecture

tion between distributed object-oriented programs and different parts of the same
program. It provides for unified communication between

• different hardware

• different operating systems

• different programming languages

The Object Management Architecture (OMA) consists of the Common Object Ser-
vices (COS) and the Object Request Broker (ORB). The Common Object Services
are standardized global services. The most important service is the naming service,
which administers the objects and their location. This allows dynamic movement of
objects. Each object registers itself with the naming service by providing its identi-
fication – a name – and its location. An application that wants to contact a specific
object contacts the naming service via the Object Request Broker (ORB). It asks
for a specific object by using the identifying name. It then receives a handle to the
object location.

The interface to a CORBA object is defined in a language independent description
the Interface Definition Language (IDL). It supports object-oriented concepts and
is very similar to C++. Language elements are, for example,

• primitive data types (e.g. boolean, long, double, string)

• structs, unions, arays, lists

• sequences

• interfaces to objects

– methods: return type, name, parameter list, exceptions

– parameter handling: in, out, inout

– global attributes: get, set

• and more which are described in [HV99]

CPAnalysisServer
receive visible
objects

and instructions
send geometry

camera data
receives

Client Application

send request
CPServer

Figure 6.1: CubicalPath Program Structure. Communication of clients and servers via
CORBA.

90

6.2 Interface to CubicalPath system

The interface to the server object is defined in the IDL. The CORBA implementation
for the used language builds a skeleton class in the specific language. The server
object then implements this skeleton class. At runtime, it registers itself with the
CORBA system.

The client side object, the client application, contacts the server object via the name
service. Or it can directly contact the object, once it has received and stored the
server object reference, a string. With the server object reference it can call any
function defined in the server’s interface, as if it is part of the local program. This
makes the communication completely transparent.

6.2 Interface to CubicalPath system

The client application controls the CPServer through a set of functions. It sends ge-
ometry data, attraction values for objects, sets repulsion and attraction functions,
and modifies controlling parameters. Because default values are set for all func-
tions and parameters, the application is only required to provide geometry data and
attraction values, and control the start and stop of the camera data generation.

The rest of this section lists and describes the important control function of the Cu-
bicalPath system. The complete IDL file including the interfaces to the application
and the CPAnalysisServer can be found in Appendix B.2. The below listed functions
are the implementation of the interface to the CPServer which is called iCPServer.
All functions are preceded by a oneway. This creates non-blocking functions call
which means that the calling application does not need to wait for a reply.

initialization of a new CPServer session :
To initialize a new CPServer session, the client application sends its CORBA
object reference as a string to the CPServer:
newSession(string objRef)

This enables the server to directly send back results to the client handle with-
out contacting the naming service and without knowledge of the client identi-
fication.

resolution of the cube space :
The function set_CPsize(long sizeX, long sizeY, long sizeZ) sets
the absolute resolution of the cube space, thus the number of cubes in each
dimension. Together with the bounding box of the scene
set_BBScene(CPVector min, CPVector max)

this determines the physical size of one cube. The bounding box is automat-
ically set by the CPServer, if not specified. Setting a specific bounding box
can define the calculation space as any physical space of the scene. This can,
for example, be a large predefined space, in which some objects move around.

transfer object geometry/cubes/matrix :
The function set_Geo_Tris(unsigned long ID, CPTris Tris)

91

6 Software Architecture

transfers the complete set of triangles for one object with its identifying ID.
If the voxelization process takes place on the client side, then this func-
tion transfers the cubes coordinates encoded in the triangles. The function
set_Transformation(unsigned long ID, CPMatrix m)

sets a transformation matrix for a stored set of triangles belonging to a spe-
cific object. This reduces the amount of data to be transfered when a dynamic
object is modified in the client application.

set attraction to objects :
The attraction value of each object is set with
set_I(unsigned long ID, double attractionValue) The CubicalPath
system transfers this value to each of the objects’s cubes.

set camera data :
The initial camera and any changes to the camera not introduced by the Cu-
bicalPath system needs to be communicated to the CPServer by the function
set_Camera(CPCameraData cam)

start/stop iteration :
The function
runIteration(long n)

starts n iterations of the CPServer, thus the calculation of n steps of the
camera. The value (−1) initializes unlimited iterations. The function stop();

stops calculating further iterations.

general control commands :
There are two control functions which set predefined functions or change spe-
cific values:
send_command(string command);

send_command_withValue(string command, double Value)

For example, the call send_command_withValue(”attractionFactor”, 0.5)

sets the attraction factor γattr in Equation 3.25 to 0.5.

6.3 Client Application Setup

There are two ways for the client application to receive new camera data. The first
way, a pull procedure, is that the client calls the CPServer system with a function
cam=get_camera() to collect the current data. This means that the client asks for
new data whenever it is required. The drawback is that the client has to wait, until
the call returns with the results. This can take a while if the CubicalPath system
has to generate new data or if the connection between the client and server is slow.
If a continuous stream of camera data is required, this means continuously calling
the CubicalPath system, thus blocking the execution of the client application.

The second way is to implement a push mechanism from the CubicalPath
system to the client. The client initializes the CPServer with the function

92

6.4 System Design

runIteration(long n). The CPServer then calculates continuously, n times, new
camera data and sends them back to the client immediately when ready. Mean-
while, the client – and by that the user – has full control over the application. This
mechanism requires the client application to register itself as a receiving server for
the camera data. Therefore, it has to implement the application interface, called
iCPApplication in the IDL, thus implementing a server object itself. The server
then calls the function set_Camera(CPCameraData cam) on the client. This is again
a oneway, void function, thus a function that can be sent into the network without
waiting for a result or the client to receive the data.

In the interface definition, the camera data is defined as a struct (see Figure 6.2)
and is comprised of camera position, direction, and up-vector. It also has a center
value – a look at position – and an ID. If any object is currently in the view, then
the member ID holds the ID of this object. If there are more than one objects in
view, then the object in the center is stored in the member ID. This value might be
used by the client to initiate the display of further information about this object or
for any other use in the application.

struct CPCameraData{

CPVector pos;

CPVector dir;

CPVector up;

CPVector center;

long ID;

};

Figure 6.2: Struct Camera Data

6.4 System Design

The design decision for implementing the CubicalPath system as a server system
and for using CORBA as a communication protocol was chosen based on several
factors. An important point is that the CubicalPath system can run independently
and on any machine. If included in the application program, it would significantly
disturb the execution of the application unless implemented in a separate thread.
The additional advantage in this context is that the server can run on a different
machine, not disturbing the client application. It can even run on a machine that
is connected over the internet. Another reason is that, with the IDL file, a simple
software independent interface to the CubicalPath system system is defined and
communicated. The client application can be implemented on any operating system
in any language that supports CORBA. This makes the CubicalPath system an
independent tool, which is controlled by a simple parameterization through the
interface functions.

93

6 Software Architecture

6.4.1 UML

The class design of the CubicalPath system was done using the Unified Modelling
language (UML). The UML, together with supportive tools like OEW [OEW] or
Rational Rose [Rat], help with the design of object-oriented programs. The tools
provide a visual user interface to a program in the process of planning, implementing,
and modifying, while the UML itself provides a convention for the different diagrams
illustrating these stages. It is possible to design a class structure visually, and let the
support tool automatically generate the source code for the class. Another feature
of the tools is the ability to reverse engineer existing source code, to generate UML
diagrams for the source code. With this, direct changes to the classes or their
structure can be imported and visualized.

6.4.2 Class Design

Figure 6.3 shows the class structure for the CPServer. It consists of several classes,
which are used by the CPServer class. Any geometric object with a unique identifi-
cation provided by the application is stored in a CPGeoObj. All these objects are
collected in the CPGeoList. The cube space is administered by the CPGC class.
Each cube q in the cube space is an instance of class CPConfguration. The CPServer
creates an instance of the CPGeoList (geoList) and of the CPGC (gc). It also stores
the CPCamera object (camera) and a CPControl object (control). The CPControl
is fully illustrated in Figure 6.4. It functions as the control center for the Cubical-
Path system behavior. All variables, states and instructions which can be set or
modified by the client application are stored in this control class. This makes the
interfacing between the CPServer, which uses theses information, and the iCPServer
transparent. The class iCPServer implements the IDL interface. It calls appropriate
functions in the CPServer or directly in the CPControl class, when requests arrive
via CORBA.

gc

geoList

control

camera

q

geoObj

app

CPCamera

CPControl

CPGC

CPGeoList

CPConfiguration

CPGeoObj

CPServerCPServerMain

iCPServer
{abstract }

Figure 6.3: CubicalPath system Class Structure.

94

6.5 Programmer’s view

CPControl

- CPServer : friend class
+ attraction_func : CPControlFunctionTypes
+ repulsion_func : CPControlFunctionTypes
+ analysis_func : CPControlFunctionTypes
+ move_generation_func : CPControlFunctionTypes
+ view_generation_func : CPControlFunctionTypes
+ noInterestingViews_func : CPControlFunctionTypes
+ applyNewIToGeoObj_func : CPControlFunctionTypes
+ adjustmentOfIValues_func : CPControlFunctionTypes
+ move_restriction_func : CPControlFunctionTypes
+ voxelisation_func : CPControlFunctionTypes
+ cubeSpaceVisualization : CPControlFunctionTypes
+ repulsionFactor : double
+ attractionFactor : double
+ distanceOfInfluence : double
+ decreaseFactor : double
+ minPercetageForDecrease : double
+ addToRepulsiveDistance : double
+ moveHeight : double
+ maxVelocity : double
+ maxAcceleration : double
+ maxAngularVelocity : double
+ maxAngularAcceleration : double
+ viewMaxDecreaseDistance : double
+ viewAngle : double
+ minLocalMinimumControlVelocity : double
+ timePerIteration : double
+ noOfUpdatedCubes : integer
+ useCPAnalysisServer : bool
+ sendCubes : bool
+ saveCubes : bool
+ considerExternalForce : bool
+ resultsFilename : string

+ Konstruktor()
+ v. Destruktor
+ set_function(string functionName) : void
+ set_value(string variablename, ...) : void
+ print() : void

Figure 6.4: CPControl Class.

6.5 Programmer’s view

This section lists the calls to the CubicalPath system which have to be made by any
application in order to use the CubicalPath system. It supposes that the Cubical-
Path system runs on a computer connected via a network or on the same computer
and that the system is registered with the global CORBA naming service.

To connect a client application to the CubicalPath system the programmer has to

• implement the short iCPApplication interface, as listed in Appendix B.2.2.

• connect the client to the ORB.

For the initialization of the CubicalPath system the application is required to

• set the resolution of the CubicalPath system and the bounding box of the
area, which should be observed by the CubicalPath system. This is the area
in which geometry may reside during execution. This area can be larger than
the scene space of the original scene file, if objects are dynamic like in the 3D
Puzzle application in Section 7.1.

• collect and send the geometry, the polygons, belonging to each object that
should be identifiable by the system.

• set the current camera data.

95

6 Software Architecture

Then, by setting one object attractive and starting the calculation of camera data,
the camera starts moving. No further input to the CubicalPath system is necessary.
Section 6.5.2 explains possible ways to fine tune the behavior of the CubicalPath
system by adjusting the attraction and repulsion functions to the needs of the ap-
plication.

In dynamic application with dynamic objects or interactive user input, the client
provides the CubicalPath system during runtime with

• the attractivity of specific objects, if it is changed by the client side due to
changes in the interest of the user

• start and stop of the continuous calculation of new data

• any changes in geometry by sending new transformation matrices or a new set
of polygons

• any changes to the application viewpoint/camera introduced by the user or
the application itself

• any input vector generated by an interaction tool, if this feature is enabled for
use with the CubicalPath system.

6.5.1 AVANGO client application

Applications at Fraunhofer IMK are typically written in AVANGO, IMK’s virtual
environment development framework described in E.4. In this system, geometry
and functionality is stored in nodes of a scene-graph. We have implemented a node
called cpConnector, which contains the above listed functions for connecting to the
CubicalPath system, and can be inserted into the scene-graph. With this node,
the CubicalPath system can be controlled in scheme, the scripting language used to
write AVANGO applications. This makes interfacing to the CubicalPath system as
simple as calling some predefined scheme functions. Modifications can be initiated
on the command-line, if required. The commands are listed in Figure 6.5. The fields
can directly be set. A change in a field is distributed to the CubicalPath system, if
applicable.

The cpConnector node also receives the returning camera data and writes them into
the field cameraMatrix. This field can be connected to the viewer matrix, such that
the viewpoint of the viewer is driven by the CubicalPath system. The returning
data is pushed into a message queue. This ensures that the application can collect
this data whenever it returns from drawing a frame, and that it may take only the
last one, if more than one value is in the queue.

One of the tasks of the client application is to transmit the objects’ geometry as
triangles to the CubicalPath system. AVANGO, which is based on PerformerTM, is
able to read geometry data from a large number of file formats. This is done by the
Performer File Loader. The most common formats are the Inventor (iv) and the

96

6.5 Programmer’s view

commands:

set-BB(xmin, ymin, zmin, xmax, ymax, zmax)

set-Size(cubesX, cubesY, cubesZ)

set-Iteration(n)

set-Attraction(objectsID, attractivity)

set-Camera(posX, posY, posZ, dirX, dirY, dirZ)

set-CameraCenter(posX, posY, posZ, centerX, centerY, centerZ)

set-CommandWithValue

set-Command

send-Voxelization-Results

do-software-Voxelization

trigger-Scene-Update

set-startTime

fields:

cameraData, runIteration, clientSideVoxelizationFlag,

softwareBasedVoxelizationFlag, TriangleUpdate

Figure 6.5: Scheme commands. Commands and fields to control the CubicalPath system with
the cpConnector node

Flight (flt) formats. Performer internally builds a scene-graph from this file. The
CubicalPath system requires a separate transmission of each of the objects with
their corresponding identification. This is straight forward if each objects’ geometry
is in separate geometry files. If they are in one file and each object is assigned a
unique name in the scene-graph – as described in Section 5.3.2 – then it is possible
to identify each object by this name. This task is also automated by a special
node, the cpDCSReplacer node. This node has the task of connecting each specific
object in the scene-graph to the CubicalPath system, to initializing the system and
to informing it of any changes. The connection and communication itself is done
by the cpDCS node, described in detail in Section 5.3.2. It is assumed that the
complete sub-graph, the graph under the named node, belongs to the geometry of
this object.

A complete scheme call to the cpDCSReplacer node would look like

(-> cpReplacer ’replace-dcs object-list cpConnection Scene-group)

where cpReplacer and cpConnection are the instances of the cpDCSReplacer and
the cpConnector node, ’replace-dcs is the function name in the cpDCSReplacer
node, Scene-group is the root node of the scene-graph that should be searched, and
object-list is a list of object names which should be found and separated in the scene-
graph. For example for the ”room” setup in Figure 6.6, object-list could be (”table”,
”lamp”, ”chair”, ”UFO”, ”chestOfDrawers”) if these strings are the names of each
object in the scene-graph. The nodes and initializations described in this section
comprise what is needed to connect the AVANGO application to the CubicalPath
system and to trigger the initial and subsequent updates of the cpDCS nodes, thus
the objects’ geometry.

97

6 Software Architecture

Figure 6.6: Example Scene: Room. This is the geometric version of the voxelized scene
in Figure 4.2.

6.5.2 Fine Tuning

The behavior of the potential field algorithm largely depends on the attributes for
attractivity α, the distance of influence for repulsion d0, the scaling factors γrep and
γattr, and more important the structure of a scene. A very crowded environment will
behave differently to a wide open room. In a crowded environment it is important
that the repulsion is adjusted such that the camera also can pass through a narrow
passage. If the repulsion of objects or d0 is too large, or the attraction value of
targets behind narrow pathes are too small, then an visually open pathway may not
be open to the camera. This requires adjustment of the potential field functions to
each environment.

The following attributes can be changed for fine tuning:

• The distance of influence of obstacles d0, the overall influence of attractive
forces γrep, and repulsive forces γattr.

• The range of values α, α ∈ [0, αmax], both for αpos and αview. The larger the
value, the larger the resulting force.

• The maximum camera velocity vmax. This limits the maximum velocity, thus
decouples speed from force.

• The maximum angular velocity ωangular. This limits the speed of rotation.

6.6 End-user’s view

A user of a client application sees the CubicalPath system system through the
interface provided by the application. This can, for example, be an interface to
a knowledge base, controlled by text or speech input. The user would query the
knowledge base which returns, depending on the results, a list of objects which are

98

6.7 Summary

of interest in the current context. The application then sends theses results (object
IDs and relevancy/attractivity, which form the goal field) to the CubicalPath system,
which in turn generates camera motion that presents these objects. Thus, the users
see themselves moving after they posed a query to the knowledge base. A condensed
version of a query would be the direct selection of a single target from a list. This
reduces the supportive exploration method to do automated travel. The camera
then would move to the target object, or follow it, if it itself is moving.

6.7 Summary

The CubicalPath system is designed as an auxiliary supportive system. It uses a
platform and machine independent client-server architecture based on CORBA. The
virtual environment application and the application information space are connected
to the server system through a lean interface, which mirrors their common data
structures. In virtual environment applications, these data structures are the scene-
graph for storing the geometry according to their objects and the transformation
matrix connecting the viewer to the interaction tool (recall from Chapter 2 that a
virtual environment makes not a lot of sense without being able to navigate/travel
and this is normally done by connecting an interaction tool to the viewer of the
application). For databases as the common representation of information spaces,
the common output of a query is a list of results, based on the query. In our case,
these are object IDs with an additional attractivity value, stating their relevancy to
the query.

Through this interface, the CubicalPath system is provided with geometry, target
and attractivity values, control parameters, and interaction tool vectors, if appro-
priate. Outputs of the system to the client application are continuously generated
camera data which are connected to the transformation matrix of the client appli-
cation viewer. This results in the CubicalPath system being easily integrated into
existing virtual environment applications.

In this chapter, we have presented a programmer’s view and an end user’s view on the
system. The programmer needs to connect the systems and their input and output
parameters and may have to adjust control parameters to ensure a desired motion
behavior. She has to modify the client application to be able to send and receive
the required data. This was implemented for our virtual environment applications
using AVANGO and described as an example in this chapter. The end user controls
the exploration support solely through the interaction metaphors provided by the
application and through querying the application information space.

99

7 Applications for Guided Exploration

Applications which require exploration of 3D data can be categorized in a) appli-
cations in which the structure and meaning of the 3D data is unknown, and b)
applications, in which 3D data is arranged on purpose. In the first case, data is
collected by a scanner, a simulation process, or other methods. Exploration helps
to extract the relevant information hidden in the data. Examples of this type of
application are MRI data (see Figure 5.1) and geoseismic data (see Figure 5.2), both
described in Section 5.1.2.

We focus on the second type of applications, where the 3D data (for example, objects
in a scene) is created, collected, or arranged to visualize information in 3D. The user
then explores the resulting 3D data to learn something about the presented data.
These applications can be extended by an expert in the field who collects and edits
relevant information and connects this to the 3D visual representation. By this,
these extended applications are especially designed to transfer edited information
and to encourage learning.

The arrangement of objects for visualization can be sub-categorized into

• compound, dense objects like an engine (see Figure 7.1)

• a collection of disjunct objects in a specific context, like a museum or an
architectural model.

Compound, dense objects, for teaching purposes, are often visualized in an exploded
view as in Figure 7.1, to make normally hidden parts more easily visible. For this,
the connections between these parts are released and the sub-objects are moved
apart.1

1To transfer additional information into this view, 2D visualizations, like the one in Figure 7.1, can
label the sub-parts with reference numbers or text. This is difficult in 3D stereo visualizations
because 2D text does not fit well into 3D environments and is difficult to position it to ensure the
correct allocation to the according object. Non-stereoscopic desktop applications can overcome
this because they render 2D images of the 3D model, and thus can place text in an appropriate
way [Pre98]. If information is not included within the visualization but is externally provided
(speech, extra text windows, or indirectly through queries), then the according objects in the
visual representation need to be presented. Ways to present specific parts in dense models

101

7 Applications for Guided Exploration

Figure 7.1: Explosion View. Rover V8 Engine.

A collection of disjunct objects for exploration is normally included in a context like
a museum. Museums, for example, are explicitly designed to help the exploration
into a subject.2 Another context for a collection of disjunct objects is the use of large
scale models of a town which can be used in travel guides to help tourist acquire
a mental map of the town’s spatial composition. In this context, the churches,
museums, shops, etc. form a collection of possible attractions to a tourist.

This chapter presents three applications which make use of the CubicalPath system.
Because the system is designed as a support system for arbitrary applications pre-
senting 3D data, we took three existing applications and attached the CubicalPath
system to them.

The first application, the 3D puzzle described in Section 7.1, is of the ”compound,
dense object” type of application which presents a model in an exploded and mixed
up way. It is an interactive desktop application in which the parts of the model
can be moved freely by the user. The second application, the virtual art museum
in Section 7.2, presents artwork in the context of a museum, and is designed for
an immersive virtual environment, the CAVE. The third application, described in
Section 7.3, is the large-scale marketplace model of the city of Bonn, and is presented
within the i-Cone. This application incorporates dynamic objects and lets the user
influence the calculated way of the camera with an interaction tool. The latter
two applications are of the ”disjunct object” type. They restrict the movement

are to use a fisheye-technique [Fur86, Str98], to mark objects for presentation with a different
color, or to make all other ones transparent. All these methods make changes to the scene
itself, which may not be desirable in immersive virtual environments. This can be overcome
by moving the sub-objects which are to be presented into the view without changing the scene
itself. This is the approach we take to guided exploration.

2A museum brings together objects to give an overview of a certain field (e.g. physics, expres-
sionist artwork, etc.) or to allow the objects to spatially and visually interact with each other.
One example are architectural models, which consist of a collection of interior design objects,
rooms, doors and windows. They are built to let users explore into their interaction and effect
on each other. If these objects are presented out of their context, this interaction can not take
place.

102

7.1 3D Puzzle

to movement parallel to the floor to prevent disorientation of the visitors in the
immersive environments.

7.1 3D Puzzle

The virtual 3D puzzle (see Figure 7.2) has been developed at the Otto-von-Guericke
University of Magdeburg by Ritter et al. to improve the understanding of spatial
phenomena within a complex 3D model [RPDS00]. By enabling the users to assemble
a geometric model themselves, the application motivates users to explore the spatial
relationships. This gives users a goal to achieve while learning takes place. For this
purpose, the 3D model of the subject at hand is enriched with docking positions
which allow objects to be connected. Since complex 3D interactions are required to
assemble 3D objects, sophisticated 3D visualization and interaction techniques are
included. This application can display textual information for a selected item and is
able to place a chosen object at the right position onto the partly-composed model.

Figure 7.2: 3D Puzzle. 3D Puzzle application showing a scenario in anatomic education.

Guided exploration in the 3D Puzzle

While the main goal of the 3D puzzle is to provide direct interaction with the objects
– the puzzle pieces – of the 3D model, there is also a need to provide help if the user
gets lost. This may occur because of the large number of objects in the puzzle, the
visual similarity of the objects, and because of user difficulties in navigating the 3D
space. Navigation is especially important in order to explore the space, to have a
close view on distant objects, to find objects which are occluded by others, and to
find a suitable position for selection and transformation of objects. The navigation
device used in this application is the Magellan Space MouseTM.

103

7 Applications for Guided Exploration

By extending the application with the CubicalPath system, these navigation tasks
can be supported. The system is able to guide the user to a specific object or object
group he or she is looking for, and it can show related objects.

Additionally, the CubicalPath system shows its strength by not only considering the
spatial context but also by providing a means to incorporate the semantic context
of the users’ interaction. Each object in the puzzle maintains a value indicating its
current importance (degree of interest – DOI) to the user. Based on the observation
that most of the objects are related to each other in some way, the objects can
pass or propagate some of their DOI to related entities. This semantic network is
realized as a separate knowledge server tightly coupled with the 3D puzzle and the
CubicalPath system (see Figure 7.3).

3D puzzle

CubicalPath system Knowledge server

Figure 7.3: Cooperation 3D Puzzle and CubicalPath System.

User interaction in the puzzle causes a shift in this interest structure, which in turn
is transferred to the CubicalPath system according to the goal to be accomplished.
If, for example, the user requests help in the form of guidance to an object that
has been selected from a list, this object gets a high DOI. Other objects in the
current task context may also receive some of this interest. If the task is to place
missing bones on a partly composed skeleton, this could mean assigning some DOI
to other bones that are scattered in the immediate vicinity and which have to be
docked on the skeleton nearby the originally selected bone. The CubicalPath system
also presents these objects while guiding the camera – and thus, the user – to the
requested object (see Figure 7.4).

The ability of the CubicalPath system to control the DOI itself leads to another
useful feature. Since objects that have been shown to the user for some time lose
some of their attractivity (the DOI decreases), the camera automatically pans to
the next interesting objects if the user does not interact with the 3D puzzle. Hence,
the system generates a dynamic animation reflecting the user’s learning context.

Technical Details and Results

The 3D puzzle was modified to provide for the information required by the Cubical-
Path system and to be able to receive and use the resulting camera data. For the
latter task, CORBA was incorporated into the 3D puzzle.

104

7.1 3D Puzzle

Figure 7.4: 3D Puzzle Animation. Presentation of two objects in the 3D Puzzle using the
CubicalPath system. In (a) the user selects an object (fibula – the calfbone). The system then
guides the user to this object in (i) and on the way also presents one contextually connected
object (tibia – the shin)(f).

To setup the CubicalPath system, the 3D puzzle application transmits each object’s
geometry with an accompanying ID to the server. Additionally, it sets the resolution
of the cube space and the bounding box of the space in which objects can be moved.
After this, it transmits the results of a user query in form of a list of object IDs and
their attractivity to the server. It also starts and stops the motion generation of the
server. If objects are interactively moved by the user, the difference matrix to the
original position of these objects is communicated to the server.

The movement in the 3D puzzle uses the complete 3D space. In a museum, the
user normally moves through the space at fixed height, and therefore, the camera
movement is typically reduced to 2D. Because we move in 3D space here, we occa-
sionally had situations in which the camera approached an object from the top and
remained in this position. This can be disorienting if normally the scene is viewed
from a specific side. With the use of a navigation object which explicitly sets the
desired position and direction for the camera, this situation was prevented. Now the
camera moves until it stops at its specified final position at the side of the object.

In a first trial, we found the 3D puzzle and the CubicalPath system to work together
well. The presentation of objects of interest succeeded well in the complex scene

105

7 Applications for Guided Exploration

of the foot (recall Figure 7.2). The application also generated navigation objects
(view/position pairs) for targets to enforce a special view on objects or sets of
objects. This trial showed that, with the CubicalPath system, the objects could be
presented in the desired way.

We tested the CPServer on an SGI Octane EMXI with 2xR12000 and 300MHz. The
models of the foot consisted of 11,244 polygons for model A and 45,952 polygons
for model B in the form of triangle strips.

The resolution of the cube space is defined by the number of cubes x, y, and z in
these axes. The time v needed for the conversion of the triangles into the cube space
– we used the software method described in Section 5.3 – depends on the size of
the cube space. This is the time required to convert the complete model before the
camera data can be calculated by the CubicalPath system. As shown in Table 7.1,
the voxelization is time consuming in the presence of a large cube space. However,
in the progress of guided exploration in dynamic models, it can be expected that
relatively few objects will be modified at a time. This will dramatically reduce the
conversion time when objects are modified or added, even in large resolutions of the
cube space.

model resolution/cubes v/s i/s

A 103 0.32 0.005

253 0.39 0.03

503 0.50 0.27

1003 0.88 2.13

B 103 1.18 0.005

253 1.22 0.03

503 1.42 0.27

1003 2.62 2.12

Table 7.1: Time measurements 3D puzzle. Speed of voxelization v and iteration i, time
measurements in seconds. Model A consists of 11,244 polygons, model B consists of 45,952
polygons.

The calculation of one iteration i of the CPServer was finished within milliseconds
in all but the last of these cases. This is sufficiently fast and results in a smooth
camera path. In our example, the model was properly resolved by a resolution of
503 cubes.

106

7.2 Virtual Art Museum

7.2 Virtual Art Museum

The second application was originally created by Eckel at IMK as a virtual exhibi-
tion design environment in co-operation with the Kunstmuseum Bonn, the Museum
of Contemporary Art of the city of Bonn [EB01]. The tool allows curators to in-
teractively design art exhibitions in a virtual, real-size model of the museum space.
Scanned pieces of artwork are mounted virtually on the museum walls, and the
curators gain an authentic spatial impression of the exhibition in the CyberStage,
IMK’s four-sided CAVE. The CyberStage is a surround-screen, projection-based
display system. Stereoscopic images are displayed from the rear onto the walls and
directly onto the floor, and they can be viewed with shutter glasses. More about
the CyberStage is explained in Appendix E.2. The exhibition design tool itself was
implemented with AVANGO, IMK’s framework for virtual environment develop-
ment [Tra99].

Virtual exhibition design has proven to greatly simplify the exhibition production
process. Curators can experience how pieces of artwork interact with each other
long before they have been packed, insured, shipped, and physically mounted in the
museum. Exhibitions can be previewed, and different designs and museum spaces
can be compared easily, without the need of physically moving expensive and fragile
artworks.

Guided exploration in the virtual art museum

The original virtual art museum application has proved to be a visually appealing
and useful application to expert users. The objective was to make the final virtual
exhibition accessible to non-expert visitors of the museum and to include additional
help which would normally not be available in a real museum. For this, we extended
the application with a knowledge base of information including attributes and fea-
tures of the artworks. One part of the interface to this knowledge base displays all
information of a certain selected artwork. Figure 7.5 shows a subject using this part
of the interface in the virtual art museum. A second part of the interface allows
the selection and cross-combination of attributes, for example the period in which
the artworks were generated. Querying the knowledge base results in a list of se-
lected pieces of artwork matching the criteria. When one or a collection of artwork
is selected the user can switch to the automatic motion mode. In this mode, these
pieces of artwork are displayed by moving the users to the matching pieces. At any
time, the users can easily stop the automatic motion and resume free navigation.
Restarting the automatic motion mode will resume presenting the formerly selected
artwork, if some remained unvisited.

With a tracked, joystick-like device, the users can navigate through the museum.
Selection of a specific artwork is done by pointing to the artwork with the stylus, a
pen-like tracked wand with one button. This can also be done by selecting a name

107

7 Applications for Guided Exploration

Figure 7.5: Virtual Art Museum.

from the list of all pieces of artwork. The users can request to be automatically
moved to the selected artwork.

Technical Details and Results

In the initialization step, the geometry of both the museum and of the pieces of
artwork is transmitted to the CubicalPath system and the desired resolution of the
cube space is assigned. The bounding box of the space is automatically calculated
from the space covered by the museum walls. After the initialization, information
about the attractivity of a certain artwork and start/stop information is transmit-
ted. If pieces are moved, their new transformation matrix is required. The current
viewing matrix is transmitted in case a user or the application itself has modified
the view. All the user requests are sent to the CPServer, the camera data gener-
ating server. In the automatic motion mode, the CPServer continuously sends new
camera data to the virtual museum as long as there are interesting pieces of artwork
to be visited. When all pieces are shown, the camera will stop.

For this application, AVANGO nodes which work as an interface to the CubicalPath
system were designed and written. They are described in Chapter 6. Once these
were available, it took a few hours to see the first movement of the camera in the
museum, controlled by the CubicalPath system.

Because movement in the virtual art museum application is restricted to the
floorspace, the z-component of the resolution of the cubes space can be set to 1.

108

7.3 Bonn Marktplatz

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7.6: Virtual Art Museum Animation. Consecutive presentation of two pieces of artwork.

With the current application and a resolution of 40*40*1 cubes, we are able to pro-
duce new data at about 12 fps. The CPServer does not employ any interpolation of
the camera data.

To ensure that a piece of artwork is viewed from a suitable position, this application
employs navigation objects (see Section 4.4). The position of the target is set to be
in front of the artwork at a distance of about one meter. The target for the direction
is positioned in the middle of the artwork itself.

Figure 7.6 shows images of a generated presentation sequence3, presenting the two
pieces of artwork shown in (e) and (j). They are both attached to the same wall,
situated left of the piece that is shown in (a). The animation remains shortly at the
position (e) and then proceeds to (j).

7.3 Bonn Marktplatz

The third application shows the large-scale model of the Bonn Marktplatz in the
i-Cone (see Figure 7.7). The Bonn Marktplatz is a large place in the town center
of Bonn. The 3MB model of the marketplace covers an area of about 4,000 square
meters. It has 974 objects, using only 32,000 polygons in total. Photographs were
used as a source for the models texture maps. The i-Cone is a 230◦ surround display
system with a diameter of 6.3 m. Up to 30 people can concurrently participate in
a virtual environment presentation in this display. (The i-Cone is further explained

3Two videos present the movement through the museum. The first video presents the appli-
cation in the CyberStage. The second shows the behavior of the CubicalPath system in the
museum recorded directly from the output of the rendering pipe. The videos can be accessed
at http://viswiz.imk.fraunhofer.de/∼steffi/videos

109

7 Applications for Guided Exploration

in Appendix E.3). This application can be explored by moving through the model
at a fixed height using a flying joystick.

Guided Exploration on the Bonn Marktplatz

The large-scale geometric model does not incorporate any additional information
about the buildings and shops in view. We collected and stored such information in
a simple database. This information was of the type: name of object, feature (e.g.
”Mc Donalds”, ”Food”). The CubicalPath system was attached to the marketplace
to present this information by moving the user to the results of his or her query.

Figure 7.7: Bonn Marktplatz Application.

Technical Details and Results

In this application, the motion is parallel to the ground, as in the previous appli-
cation. It differs from the virtual art museum application in that many objects
(stands, lampposts, etc.) are in the way and moving objects (dynamic objects like
cars) require the dynamic re-calculation of the cube space.

The resolution of the cube space was set to 283x189x1. This results in a square
bounding box with a cube size of 33 cm in x and y and 150 cm in height for each
cube. With this resolution, it is possible to resolve small objects like a lamppost, or
to make movement through small pathways for a human-sized camera possible. For
this application, the hardware-based voxelization method (see Section 5.4) was used
to provide a suitable voxelization response for the dynamic objects. One resulting

110

7.3 Bonn Marktplatz

image of the voxelization process, which is used for analysis of the distribution of
objects in the area, is shown in Figure 7.8.

Taxi

Figure 7.8: Bonn Marktplatz Hardware-Based Voxelization. This image shows the voxelization
results of the state illustrated in Figure 7.9B. The shape of the moving taxi is indicated by
the circle. The resolution of the voxelized data is 283x189x1. Objects which are selected for
identification are rendered in different colors.

The CubicalPath system generated new camera data at 25 fps. For the dynamic
case, this slowed down to 10 fps because of the voxelization and update time of the
cube space. A video4 presents the movement through Bonn Marktplatz. The video
is divided into five parts. Part one introduces the i-Cone and its features. Part
two shows two users moving manually through the model using the flying joystick.
Part three shows the automatic motion generated by the CubicalPath system after
the users selected ”ice cream” as a query to the system. After this selection, they
are moved to the nearest ice café. In this part, a second window appears on the
video showing the same scene overlaid with a visualization of the current cube space.
Red cubes indicate obstacles and yellow cubes indicate attractive targets. This is
also illustrated in Figure 7.9A. The motion ends in front of the ice café, where
the yellow cubes gradually loose attractivity (visually they become more and more
transparent) until they become simple obstacles. Here the movement stops. In part
four, the ”Rathaus” is selected as a target. While moving to the target, a dynamic
object, a taxi, moves into the way and the direct motion is disturbed to prevent
colliding with the car. The cubes forming the moving car are a little behind the

4the video is accessible at http://viswiz.imk.fraunhofer.de/∼steffi/videos.

111

7 Applications for Guided Exploration

actual shape of the car (see Figure 7.9B), because the visualization of the cube space
is delayed by a few frames. The calculation of the cube space data itself is accurate.
Part five shows the following of a dynamic target. Again, the users selected ”ice
cream” as a query, and the view starts following a moving ice cream truck until it
comes to a standstill. Then the camera moves towards the window side of the car
and views into it. This happens because the ice cream truck target was set with a
navigation object. The final position is at the side of the car and the view direction
target is inside the car.

With the CubicalPath system, it is possible to overlay the output of the system with
user input. With a flying joystick or any other interaction tool, the user can ma-
nipulate the viewpoint. This can be overlayed with the output of the CubicalPath
system as described in Chapter 4.3.1. We used this in the Bonn Marktplatz applica-
tion for moving out of local minima and for influencing the motion generated by the
CubicalPath system in a user defined way. Small forces generated by the interaction
tool resulted in a combined output of the CubicalPath system and the user defined
direction of motion. Large forces overrode the output of the CubicalPath system
which resulted in direct manipulation of the view by the user. The manipulation by
the interaction tool faded smoothly in and out the generated motion which led to
an intuitive use of co-existing interaction tool and CubicalPath system.

7.4 Discussion and Summary

This chapter introduced three applications which made use of the CubicalPath sys-
tem. These applications required several features of the system, listed in Table 7.2.
In these applications, all features of the CubicalPath system presented in former
chapters were utilized and tested. The first application uses an Inventor scene-graph
while the other two use AVANGO, which is based on the Performer scene-graph.

3D Puzzle Virtual Art Museum Bonn Marktplatz
2D motion X X
3D motion X

multiple targets X X X
dynamic objects X X
dynamic targets X X
dynamic camera X X X
interaction tool X
sparse 3D space X
dense 3D space X X

Table 7.2: Application Features.

Motion in 2D, dense environments introduces more difficulties for the algorithm
then does motion in 3D. If the camera has to pass an obstacle on the way, it is
more likely that the camera finds a way around if it has three dimensions in which

112

7.4 Discussion and Summary

to choose a way5. Unless the obstacle in the way is equally dimensioned in all
directions, the probability that the forces will pull the camera around the obstacles
is higher in 3D. This problem occurred in the Bonn Marktplatz application. In some
cases, for example, with a large group of chairs forming a convex solid shape, the
camera moved into a local minimum between the chairs. Enabling the 3D motion
resulted in the camera flying over the chairs, instead of stopping. We used manual
movement to get out of these cases, because the users already had a navigation
device, the joystick, in their hand. With the co-existing use of an interaction tool
and the CubicalPath system, users were influencing the path in a way that moving
into dead ends was avoided.

In desktop applications, there is a clear sense of front and center of display. In
immersive display systems, like the CAVE and i-Cone, there is no clearly defined
front direction, thus no clear direction of view for the user. In these displays, the
user can look in any direction. A sense of front is important for the CubicalPath
system, however, as the view motion direction is calculated for the midpoint of
the screen. It is in this area that the current target is presented. We found that
normally the users in the four-sided CAVE take the front screen (the one opposite
to the entrance) as the direction of view. In the i-Cone, the mid 100◦ of the display
is taken as front. People tend to focus on the vanishing point of fast motion –
the direction of motion – in real and virtual worlds. If the motion is in a different
direction than the closest, interesting object (i.e. if the direction of view is not the
direction of motion), users tend to view in the direction of motion and not at the
object intended to be presented. In the i-Cone this happens because they do not
have a clear sense of front. This holds only for fast motion to distant objects. If the
motion is slow, people focus more on what is to be seen, than where they are being
moved. Also, if the object to be presented is close, thus covering a large part of the
screen, this attracts the users’ complete attention.

In immersive environments, the user is moved inside the object space. Being inside
an exploded view, for example, may cause a loss of general overview of the complete
object space. If this is important, a function ”overview” may be used which moves
the user out of the object to a ”bird-eyes-view” of the complete object space. This
could be done by specifying the camera position in some distance to the objects and
pointing the camera in the direction of the center of all objects.

The CubicalPath system proves to be good for detail presentation of the objects,
because it moves close to objects which are to be presented. In the museum, for
example, the pieces of artwork are closely viewed. This makes users focus on de-
tails in this piece. Additionally, because they are presented in a large immersive
environment, the neighboring pieces are visible to provide for the context.

5Technically, the algorithm does not choose a direction, but is pulled around the object by the
forces behind the obstacle.

113

7 Applications for Guided Exploration

A1

A2

B1

B2

Figure 7.9: Bonn Marktplatz Application Overlaid with its Cube Space Representation. The
cube space is visualized with red cubes indicating obstacles and yellow cubes indicating targets.
A1 and B1 show the results in the i-Cone, A2 and B2 show the scene merged with the cube
space. In A1,2, the users asked for ”ice cream”. The target, an ice café, is visible in the upper
mid of the image. B1,2 show an dynamic object – the taxi – which moved in the way of the
direct path to the distant building – the Rathaus.

114

8 Usability Study

The previous chapter described several applications that made use of the Cubical-
Path system. These examples showed that the system’s approach to a camera data
generation method is capable of moving the camera in the desired way. The method
presents one or multiple targets one-by-one, deals with dynamic obstacles, targets
and user input, generates the camera results in real-time, and provides an easy
interface for the application programmer.

Though these application examples showed the usability of the CubicalPath system
to us, it was not verified that this approach to guided exploration can enhance an
untrained user’s performance in exploring a scene and that its behavior is perceived
well by users in an immersive virtual environment. To inquire into this, an informal
user study was done in the context of the virtual art museum application, comparing
the user’s behavior, observations, and impressions with and without utilizing the
CubicalPath system.

Measuring usability for evaluating the design of tools and devices for computer
is a major part of Human Computer Interaction (HCI) research. The tools for
formal tests were collected by Bortz and Döring in [BD95]. The authors explain
how to perform classical, empirical studies and present all statistical methods for
evaluation. Nielson [Nie93] focuses on all part of the usability engineering lifecycle
and gives usable, everyday methods for testing and evaluation.

Usability testing is not commonly used in virtual environment research. This may
have to do with the much smaller commercial community for virtual reality devices
compared to that available for desktop or handheld computers, for example. Re-
cent approaches to measure interaction techniques for travel [BDHB98] or for object
selection and manipulation [BH99] were conducted by Bowman et al. In [BH99],
Bowman and Hodges describe their eight parts of the design, evaluation and appli-
cation methodology for evaluating interaction tools. They do an initial evaluation
based on their experience and on informal user studies where they observe users or
ask them what they think about a technique. Based on these observations, they
build a taxonomy which splits each task into sub-tasks and their techniques. They
then use their testbed evaluation, which joins the results of the taxonomy, outside

115

8 Usability Study

factors, and performance metrices. A testbed defines a specific set of evaluations
that theoretically test each important aspect of a technique for a given interaction
task. The test results are then statistically evaluated.

In [HH93], Hix et al. evaluate navigation in a battlefield visualization virtual envi-
ronment on a Responsive Workbench [KF94]. They list expert heuristic, summative,
and formative evaluation as evaluation methods. Expert heuristic evaluation is con-
ducted by an expert in the field who did not program the tested tool. Summative
evaluation is an empirical comparison of different interaction tools by users. Forma-
tive evaluation collects qualitative data (e.g. narrative, in form of critical incidents
while performing scenarios) and quantitative data (e.g. time needed). Hix et al. use
these evaluations iteratively during the design cycle.

Our approach is an informal user study similar to Bowman’s informal evaluation and
Hixs’s formative evaluation. Our method extends Bowman’s informal evaluation
in that it also considers outside factors (like user and system characteristics) and
formally collects results through post-test questionaires [Rub94]. In addition to
this, the tests are observed by test monitors (observers). Our goal is not to compare
several interaction approaches to a certain task, but to gain insight into the usability
and the deficiencies of the CubicalPath system in the context of a CAVE application.

The application we use, the virtual art museum application which is described in
detail in Section 7.2, shows multiple pieces of artwork in the context of a museum. A
database holds information about the artwork. This information can be visualized
for a specific piece by selecting it. Or it can be queried to trigger the presentation
of all pieces that match the query. The camera in this application moves in 2D as
it follows the ground. This is the natural way of movement to people. And it is an
easy to control flying model for untrained users. We chose this application for the
user study as it can be supposed that every user is familiar with the exploration of
real museums. In addition, the museum application covers a space which can be
explored in a reasonable time but still holds several different layers of information
(names, colors, attributes, groupings, etc.) which are not instantly visible. Also,
users are not burdened by complex navigation tasks when they travel through the
environment.

8.1 Goal

The user study is intended to gain insight into several aspects of the advantages and
the usability of the CubicalPath system connected to the virtual art museum in the
CyberStage.

One of the goals of the user study is to find out if guided exploration helps with un-
derstanding an exhibition better in a restricted time, while the CubicalPath system
is seen as a supportive system which does not make the users feel deprived of their
freedom. This is important as the process of free exploration and of self-learning

116

8.2 Hypothesis

should be supported. If users have the feeling of loosing control they may less feel
being part of the virtual world and may also give up active involvement.

Another goal is to identify possible usability problems with the system and the
interface. Problems here are suspected to largely influence the performance of a
user in the exploration task.

Goal three is to find out whether the users’ sense of presence in the environment
decreases when they are automatically moved through the environment. The CAVE
is an immersive display system, and therefore no parts of the application should
detach the user from the immersive experience. Immersive in this context means
the feeling of presence in the museum application. This feeling can be disturbed
if unexpected or unpleasant behavior of the system is experienced, or if the user
is left disoriented. Disorientation would be very undesirable because the spatial
exploration and the creation of a cognitive map of the environment is the most
important task in guided exploration.

The fourth goal is to inquire into the suitability of the method for producing pleasant
presentations. Especially in immersive virtual environments, motion sickness can be
a problem if motion is not initiated by the users themselves. This is an important
question, as the approach does not allow smoothing of the results because of its
stepwise, instant data generation.

8.2 Hypothesis

For the goals defined above, there are five hypothesises which should be verified by
the test:

Hypothesis H1: Guided exploration improves the understanding of an art exhibi-
tion in the CAVE when time is restricted compared to when the user explores
the exhibition himself. Guided exploration makes exploration faster and more
effective.

Hypothesis H2: The CubicalPath system is experienced as a useful and supportive
system which does not make the users feel deprived of their freedom to explore
the environment themselves.

Hypothesis H3: The users do not feel disturbed or disoriented when they are au-
tomatically moved through the environment. Their sense of presence is not
decreased.

Hypothesis H4: The CubicalPath system generates pleasant camera motion which
does not cause motion sickness and which presents the targets in a useful and
desirable way (as defined by the user).

In addition to checking these hypothesises which evaluate the CubicalPath system,
also the usability of the user interface to the museum application needs to be verified:

117

8 Usability Study

Hypothesis H5: The application’s user interface is designed in such a way that it
is easily usable, supports the task, and reflects the user’s expectations.

8.3 Test Design

The method we chose was an informal user study with 10 people. This method gives
sufficient results to be able to verify the prior listed hypothesises without needing
the time and financial resources of a formal user study.

8.3.1 Task Design

The task was designed to compare the user’s performance in the museum application
both with and without the support of the CubicalPath system. For this, two exhi-
bitions, each with 16 different pieces of artwork in one room of the museum, were
installed to provide for a comparable task setting with different content. A similar
application setting is required for the comparison of the user performance (here the
collection of content information) in both cases. Users should have to focus only on
the content of the application rather than the application itself.

In the first stage, users had to explore one of the exhibitions for five minutes com-
pletely by themselves. They could navigate through the environment with a joystick
and select an artwork with the stylus. With a button on the joystick, they could
open a menu containing information such as name, date, and technique of the se-
lected artwork. After about five minutes, the users were asked to write down any
features, names, colors or other information they collected during this first stage.
They were also asked to complete a number of general questions on a questionnaire.

In the second stage, users entered a different exhibition setting. Now, they were
introduced to the supportive system. For a better overview of the possible com-
bination of attributes that could be selected, a sheet with all this information was
handed to the users. This sheet also described additional functions of the joystick
and stylus. Again, the users had five minutes to explore the exhibition before they
were asked what information they collected. They were also asked a number of
questions concerning their experience with the system.

At both stages, users were introduced to the task and the tools and had two minutes
to get used to them.

The order of the tasks – use the system first without the CubicalPath system then
with it – was chosen for two reasons. First, the CubicalPath system supports the
user in the learning task by structuring information with the help of the query
interface and the presentation of the results. Once this structure is established,
once the users are aware of specific features in the artists work which were selected
by the curator or a teacher, this will influence their perception of the artwork and

118

8.3 Test Design

thus their performance in the self-exploration task. By letting them first self-explore
the museum, users will come up with their own structure in this stage, which can
then be kept or extended in the second stage. The second reason for this order of
tasks is the overhead required to learn to control the system. The first task, the
self-exploration task, requires the user to learn about the general menu control and
the navigation control. The second task relies on the ability of the user to either
self-explore or to use the CubicalPath system. The user needs to learn about the
interface to the CubicalPath system in addition to the general menu control and the
navigation tool. The proposed order distributes the learning overhead equally to
both tasks – in the second part the general menu control and the interaction tools
are already known – and therefore also distributes possible interface problems to
both parts.

8.3.2 Questionnaire

The design of questionnaires for the evaluation of presence in virtual environments
is discussed by Witmer and Singer [WS94] and Slater[Sla99]. Questions in ques-
tionnaires can have several forms [Rub94]: likert scales (LS: select agreement or
disagreement with a statement), semantic differentials (SD: usually a seven point
scale between a pair of adjectives), fill-in questions (T: free text answers), checkbox
question (CB: select one of the preselected answers), and branching questions (B: if
question A was answered YES, please answer question A1). We used all elements
in our questionnaire.

The questionnaire (see Figure 8.1 for an abridged version and Appendix F.1 for the
full questionnaire) is divided into five groups. These groups contain questions which

• collect general user information (1-12,29)

• collect task results (13,14)

• evaluate the motion behavior of the system (15-18)

• gather information about the usability of the system and application control
and the usefulness of their features (19-26)

• gather information about the user’s impression of the usefulness of guided
exploration (27,28)

Questions 1-13 were posed after the first part of the task, 14-29 after the second
part of the task.

Questions and Dependencies

The questions in the general user information part of the questionnaire were used to
gather information about prior experience of virtual reality systems and interaction

119

8 Usability Study

tools. A left-handed user (5) may have problems with using the joystick (right-
handed). The learning type (6) may influence the type of answers in question 13
and 14. People with a difficulty to perceive colors (7) may only be able to use
structural and time attributes to classify the artist’s work, which uses color heavily.
The evaluation of question 17 (dizziness) and 15, 16 (motion perception) depends
on questions 8 and 9 (general tendency to motion sickness). The results of all
questions that have to do with direct system control (interaction with the interface
or menu), depend on the familiarity of the user with the interaction tool. It can not
be expected that somebody who has never had any experience with a joystick or a
stylus (or even a computer) instantly shows a good performance in controlling the
system (19, 25) or finding features useful (23,24) which he or she may not be able
to select.

Questions 13 and 14 are open questions to collect the knowledge gained about the
pieces of artwork. A more classifying way of collecting this information would be to
ask multiple choice questions about the features in the work, the names, the dates
of creation. The disadvantage of this type of format, however, is that these question
structure the answers of the users in a way they may not have thought of themselves,
and, by this, trigger a post-learning process and a distorted answer. Multiple choice
questions will also pre-structure the way the user looks at the second task and will
also give different results there. Therefore, the question is formulated as an open text
question. This is more difficult to evaluate but gives more accurate and interesting
results. Question 29, concerning prior knowledge of the artists work, was asked to
be able to classify unusually good performance in the open text questions in the
right way. The rest of the questions do not depend on each other, and their content
is self-explanatory.

Observer’s Questionnaire

An observer was asked to observe the behavior, performance, and problems a user
had while performing the task. The guiding but open text questions on the observers
questionnaire were:

• How often does the user switch between self-navigation and use of the support
system?

• How long is the user in each of these modes?

• How well does the user perform with the interaction tools and menu. Where
are problems?

• Other observations not fitting in above categories.

120

8.3 Test Design

Question Type

1 name / ID T
2 age T
4 sex CB
5 which hand CB
6 learning type CB
7 difficulties to perceive colors? CB
8 general tendency to motion sickness LS
9 tendency to motion sickness in VE LS
10 which computer input devices known CB/T
11 virtual environments experience CB/T/B
12 which display systems known CB

13 what is remembered: names, colors and features of
pictures

T

14 what is remembered: names, colors and features of
pictures

T

1 4 7
15a movement of camera: a. cameraposition SD To fast just right to slow

SD calm just right hectic

15b movement of camera: b. rotation of camera SD To fast just right to slow

16 what if camera was interpolated (expert question: same
movement but continuous)

SD
To fast just right to slow

 SD calm just right hectic

17 feel dizzy when the supportive system SD Never sometimes always

18 time spent at each picture SD To short just right to long

19 judge the usage of the menu SD/T Easy hard

20 did not have the control of the system SD Never sometimes always

21 system doing something you didn’t intend it to SD/T Never sometimes always

22 system doing something you didn’t expect it to SD/T Never sometimes always

23 is directly selecting and moving to a picture useful SD Never useful sometimes always useful

24 is filtering possibility (selecting attributes and period)
useful

SD
Never useful sometimes always useful

25 start and stop the animation in an easy way SD Easy hard

26 disoriented after using the supportive system SD Never sometimes always

27a supportive system was useful
a. in contrast to only navigating yourself

SD
Very useful not useful at all

27b b. in giving to you some ideas of what to look at SD Very useful not useful at all

28 the supportive system made you gather more
information and gave you a better understanding of the
artists work

SD

Yes at some points no

29 What did you know about the Philip Gustons work
before using the virtual museum

SD
Nothing a little

a lot

Figure 8.1: Questionnaire. The two part usability questionnaire (part 1: 1-13, part 2: 14-29).
The questions are shortened.

8.3.3 Participants

Ten participants, partly from the Virtual Environment group at Fraunhofer IMK,
partly visitors, were asked to complete the user study. The users were all male,
and their ages were between 21 and 38. Three of them had no or very little prior
experience with virtual environment systems.

121

8 Usability Study

8.4 Results

As the conducted user study was meant to be informal and the number of partici-
pants was small, no statistic evaluation was done. The results are derived from the
data (see Appendix F.2) and presented here in order of the corresponding hypothesis.

Hypothesis H1: All participants felt that the supportive system helped in gathering
more information in a specific time frame. The fact that the users did not have to
navigate themselves allowed them to observe the paintings while approaching them.
This made them more relaxed and let them concentrate on the actual task. In com-
paring the real knowledge gained in the first and the second part of the study, we
found that more specific features were recognized as more structural ideas are given
through the interface. Groupings of pictures according to attributes and the period
were also recognized. Some users, who had difficulties in using the interface, objec-
tively did not learn much about the pictures themselves. These users still claimed,
however, that the supportive system was useful to them. A special, additional train-
ing phase would have improved the performance of this group, as the overall time
of five minutes appeared to be too short for learning to deal with the interface and
doing the task itself. Overall, the results show support for hypothesis H1.

Hypothesis H2: Most users found it easy to start, stop, and restart the animation,
which was done using a button on the joystick. This is a very crucial point in
guided exploration as the users should be able to (re)gain control of the system at
any time. Directly moving to a picture was mostly seen as useful by people who
could well remember the names of pictures. One user actually used this feature to
move automatically to distant but visible pieces of artwork. After selecting such
a piece of artwork from the menu, some said that the actual movement was not
necessary for them any more, as thumbnails are displayed in the menu. From these
responses, we conclude that hypothesis H2 is verified.

Hypothesis H3: An important finding is that nobody felt disoriented after using the
supportive system. This means that it is possible to use coexisting navigation and
automatic motion in a virtual environment without confusing the users. Dizziness
was only felt by one person who claimed to be easily motion sick. As disorientation
and dizziness are suspected to reduce the sense of presence, the response to these
questions indicate an approval of hypothesis H3.

Hypothesis H4: The movement of the camera was generally regarded as being too
hectic. As explained before, we did not interpolate the results, therefore a new
camera position was only adopted every 0.08 ms. This proves to be too slow for a
smooth impression of movement. Nevertheless, most users did not feel dizzy when
moved by the supportive system. The user’s responses concerning the motion speed
were on the complete spectrum from ”too fast” to ”too slow”, which indicates that
this strongly depends on user preferences. The system rarely did something that
was not expected or intended.

122

8.5 Discussion and Summary

When more than one piece of artwork was presented, some users claimed that the
time spent at an individual picture was too short. Here, the users did not stop the
system in order to view the artwork for the desired time, as was suggested before.
The reason seems to be that the users felt comfortable being relieved of navigating
themselves, wanting the system to take over completely. This may be because they
adopt the passive behavior they are used to from linear forms of media like film and
TV. These results indicate that hypothesis H4 is weakly verified, and the motion
results should be smoothed.

Hypothesis H5: There were suggestions for improvements of the interface. Some
users complained that the interface window was too big and in the way, even though
it was transparent. Here again, the users did not dispose of the interface, which can
be done with a single joystick button click. Another comment was that no feedback
was given if no results were produced by querying the knowledge base or if all goals
had been visited (stop of animation). Here, at least an audio feedback was requested.
One complaint was that it is too hard to select an item in the interface and that there
is no overview of all the selectable attributes. A last suggestion for improvement
was to make information instantly available which is normally displayed on the
label beside the piece of artwork. At some points, users had to change the menu
to view the information after they used the supportive system. This meant clicking
an additional time. The overall response to the interface (verbal and observed) was
that it is difficult to handle. Therefore, hypothesis H5 does not hold.

8.5 Discussion and Summary

The CubicalPath system was applied to a virtual art museum in order to provide
guided exploration to the users. Through user testing it was found that the aid
can improve the performance of users in applications where they have to explore a
virtual environment in order to gain knowledge. The supportive system also helped
in giving guidelines on how to structure information in order to classify and to better
remember this information. This is especially important to non-experts in the field
of arts. Most users performed better when using the supportive system or at least
welcomed this additional help. The concept of guided exploration with the system
was rated as very helpful by most users.

It was found that the users could concentrate much more on the task itself if they
were relieved of the navigation. This applied especially to users who were inexpe-
rienced in navigating with a joystick. The act of moving in the real world is done
subconsciously and automatically. In a virtual environment, movement has to be
initiated in an unusual way, and it is only an automatic process to experienced users.
It was found that even experienced users could concentrate much better on the pieces
of artwork themselves. In addition, some experienced users made use of the possi-
bility of displaying the information of a certain artwork in view by employing the
interface.

123

8 Usability Study

A framerate of 12 fps proved to be too slow for smooth animation. It did not confuse
users, but interpolation of the data would probably improve the overall impression
of the animation.

The crucial point when interacting with virtual environments is the interface. A
system can be well designed, but if the interaction proves to be difficult, the system
itself can not play its full strength. Interaction in immersive environments with
a menu is not very intuitive. Therefore, these interfaces have to be enhanced, if
systems introducing knowledge in the way the CubicalPath system does, should be
controlled. A speech interface, for example, would let the users concentrate more
on the tasks themselves.

It seemed that the users’ feeling of presence in the environment did not decrease
when they made selections with the interface and, more importantly, when the
supportive system had control. This indicates that it is possible to use coexisting
navigation and automatic motion in a virtual environment without confusing the
users. Also, it was found that users do not lose their spatial context when using the
CubicalPath system or the interaction tool.

This study does not use control groups, which would be important in more formal
studies. It does not verify whether the knowledge gain in the second task is a result
of the extended time spent in the exhibition or whether the supportive system was
responsible for this. The resulting answers in question 14 indicate the latter, but
these results may also be achieved by simply showing the user the list of attributes
and then letting them again self-explore the museum.

No user seemed to have problems with understanding the task or the application.
We think that with this test, the focus was on the method rather than on the
application.

124

9 Concluding Remarks

Exploration in a virtual environment is a highly interactive process which involves
constant decision making and travelling for the purpose of discovery. Travel, the
process of moving through the environment from the current position to a single
target, is one of the major activities in virtual environments and the main interactive
task for exploration. Travel in virtual environments is typically done by direct user
control of the view, which requires considerable skill to control the interaction. For
this, it is necessary that the position of the target in the virtual environment be
known to the user, which may not apply to visually hidden targets or non-visual
targets like sound and olfactory sources. Targets in the context of exploration may
only be recognized as such, once they are already in full view.

9.1 Discussion

The purpose of this thesis was to find a method to support exploration in virtual
environments. This can be done both on the cognitive level of target decision making
as well as on the level of travelling to identified targets. We support decision making
by integrating the output of common queriable information spaces into our system.
We support travelling by automatically moving the user inside the resulting goal
field, presenting the identified targets one-by-one. At the same time, we give, if
requested, full interactive control over the motion, or we overlay user input with the
system output. By doing this, we give the user the feeling of being in full control of
the system. The user has also the possibility of letting the system do the travelling,
thus relieve the user from this task and instead let her focus on exploration.

We developed our system in two steps. First, we introduced a new, real-time capa-
ble approach to automated travel in dynamic, unpredictable virtual environments
based on the potential field method. It is derived from the physics of the motion
of a charged particle in an electric potential field. This method uses a discretized
representation of the environment in a uniform rectangular grid. Automated travel
in virtual environments is technically equivalent to automated view or camera mo-
tion. In our method, the target attracts the camera while obstacles repulse it. The

125

9 Concluding Remarks

potential field method is a local method that does not require planning. Avoiding
expensive planning is necessary because, in a dynamic environment, the target and
the obstacles may continuously be repositioned. Nevertheless, in cluttered, maze-like
environments, this local method may result in the camera moving into an unwanted
local minimum of the potential field. In this case, we rely on the user to move out
of this situation by using the generally in virtual environments available interac-
tion tools for navigation. This situation rarely occurs in sparse environments. We
developed and implemented a system-independent, auxiliary supportive system to
automate travel.

In the second step, we extended the automated travel system to be able to move in
a goal field, a field of multiple targets generated from the results of a goal-directed
query to an application information space. Each target can be qualified with a
different level of relevancy, the attractivity to the user in the context of the goal.

For this, we introduced the dynamic potential field method. This method deals
with multiple targets by adjusting the attractivity of visible targets. The targets
are presented one-by-one, ordered with respect to the attractivity and the distance of
the targets from the current camera position. The view of the camera is constantly
evaluated to gradually decrease the attractivity of visible targets. This, in effect,
releases the camera from visited targets after a while. The target’s importance
influences the duration of stay in front of the target. By adjusting the attractivity,
the history of visited targets is stored in the goal field and these targets will not
attract the camera any more. The camera is oriented in a way that meaningful
content – a target – is always in the view, if possible. This decouples the orientation
of the camera from the direction of motion.

The dynamic potential field method results in a system which is able to deal with
interactive, real-time input by the client application or the user. The input can
be dynamic, unpredictable object locations, which influence the geometric setup;
dynamic or re-adjusted targets, which influence the attractivity setup; or a dynamic
view, which assigns a new current camera view to the motion generation function.
It is also possible to influence the results of the motion generation function with an
additional force input generated by an interaction tool.

The core motion generation method was extended to include some possibilities for
a specific presentation or incorporation of global knowledge. We introduced the
concept of navigation objects, additional, often invisible targets or repulsive objects.
Navigation objects allow to introduce global knowledge into the environment by en-
abling the algorithm to follow a complicated path or by preventing the camera from
moving into known dead ends. They also make director-specified views possible: for
example, viewing objects from a certain perspective for dramaturgical reasons. In
order to make this possible, the targets for the position and orientation of the cam-
era of the camera, were separated. Navigation objects represent spatial, high-level
information about the scene, and can also be used to include non-visible targets,
like auditory, olfactory or tactile targets, in virtual environments.

126

9.1 Discussion

The geometric setup of our system requires a real-time capable voxelization method.
We presented two suitable voxelization methods for spatial analysis, a software-based
and a hardware-based method. Both methods generate object-coded volume data
(each volume element is assigned a list of occupying objects) from geometric surface
data by utilizing the Performer scene-graph. Surface data is used as interior of
geometry objects is not visible, and thus it makes no sense to include them into
the calculation. In the software-based method, a 3D scan conversion based triangle
voxelizer, each object’s polygons are transformed into the voxel space. This makes
the transformation an ”object to voxel” approach, as for each object the occupying
voxels are identified. The hardware-based method is a ”voxel to object” method,
which renders and analyzes the complete voxel space to retrieve the objects inside
each voxel. A special approach to color-coding allows the identification of multiple
objects per voxel, which then gives the same results as ”object to voxel” approaches.
The performance measurements show that the software-based method is preferred
for its simplicity and its real-time behavior if only a small number of objects are
dynamic, while the hardware-based approach shows its strength if the z resolution
– the height of the space – is small compared to the x and y resolution – the large
area that can be navigated.

The CubicalPath system is designed as an auxiliary supportive system. It uses
a platform and machine independent client-server architecture based on CORBA.
The virtual environment application and the application information space are con-
nected to the server system through a lean interface which mirrors their common
data structures: the scene-graph, the transformation matrix connected to the ap-
plication viewer, and a list of object data resulting from a query to an information
space. Camera data is continuously generated by the system and transmitted to the
client application, where it is connected to the transformation matrix of the client
application viewer. This results in the CubicalPath system being easily integrated
into existing virtual environment applications in the same way as an additional
interaction tool would be integrated.

We successfully proved our concept and system with three applications. The first is
a medical training system, run on a desktop computer, in which the camera browses
through an object-cluttered space with 5DOF (up-direction fixed) and the objects
can be repositioned any time. The second application is the virtual art museum,
run in a CAVE-based system, in which the camera moves at a fixed height above
the museum floor with 4DOF. This application shows pieces of artwork on the wall
from a director specified viewpoint. The third application is the Bonn Marktplatz
application, run in the i-Cone, in which dynamic objects move through a space with
many obstacles. The camera moves in the same way as in the previous application.

In an informal usability study with ten users carried out on the virtual art museum
application, we evaluated different aspects of our approach to support exploration.
The usability study showed that guided exploration can improve the performance of
users in applications in which they have to explore a virtual environment in order to
gain knowledge. The supportive system also helped in giving guidelines on how to

127

9 Concluding Remarks

structure information in order to classify and to better remember this information.
Most users felt they performed better, or at least welcomed the additional support.
The concept of guided exploration with the aid of the system was rated as very
helpful by most users. It was also found that the users could concentrate much
more on the exploration task itself if they were relieved of the travel task. This
applied especially to users who were unexperienced in navigating with a joystick.
Even experienced users found that they could concentrate more on the pieces of
artwork, when the support system was used.

The study showed that considerable research is necessary to improve interfaces to
system control. It was found that the desktop-like window interface (see Figure 7.5)
which we use as the access point to the application information space is tedious to
use in virtual environments. We found that the users’ feeling of presence in the
environment did not decrease when the supportive system was in control. This
indicates that it is possible to use coexisting navigation and automated travel in a
virtual environment without confusing the users.

9.2 Future Work

This system can be seen as a start in work on presenting content in virtual environ-
ments. There exist some real-time or on-the-fly methods for presentation on desk-
top applications which incorporate cinematographic rules for presentation [TBN00].
These rules have to be reconsidered, adapted, applied, and evaluated for immersive
virtual environments before systems which support the new ”VE-tographic” rules,
can be built.

Up to now, the parameters controlling the motion behavior of the CubicalPath
system have been modified by hand if they did not match the application in the
desired way. It would be sensible to develop an automatic tuning system which
analyzes the geometric environment (for example its density) and adjusts the field
functions and control parameters to match to a specified behavior description.

The issue of unwanted local minima, the main drawback of the potential field ap-
proach, should be investigated. We and others have proposed methods like automat-
ically filling concave objects, introducing global knowledge by navigation objects,
using Brownian motion, or using a search to move out of the minimum. These are
methods which are applied when the camera already stopped in a minimum. More
desirable would be a method, which prevents the movement into these minima in
the first place or which prepares the field in a way, such that it has only minima at
positions where a target is defined.

The CubicalPath system, as it is now, works best in sparse environments with convex
objects; Because of unwanted local minima, it will fail in complex environments
like mazes. A combination of the CubicalPath system with a set of pre-calculated
pathes may provide for an efficient solution to real-time supported exploration even

128

9.2 Future Work

in dynamic complex environments, so long as the complex part of the environment
itself is static.

For generating the goal field, improved information spaces or knowledge bases need
to be considered or developed which focus on supplying context-relevant information.
A starting point was the knowledge base integrated in the 3D puzzle which generates
semantic context.

Generally, a lot of work still needs to be done in the area of user interfaces to access
data in virtual environments. As long as interfaces to textural and numeric system
control are difficult to use, interactive applications which rely on these interfaces may
not evolve. New solutions have to be found for the intuitive and easy representation
and manipulation of such data in virtual environments.

For large resolutions of the cube space, the camera data have to be interpolated
as then, the response time of the system may not provide for a smooth motion of
the camera. This interpolation should be C2 continuous and should not require too
many steps in advance for the calculation. The more steps in advance needed, the
longer is the response time of the system. This may result in a failure of the collision
avoidance, as dynamic objects may have moved into the path which was calculated
for some previous time step based on the geometric data at that time.

129

A Mathematical Derivations

The electrical field of a point charge is the derivative of Vpoint charge. If U is only

dependent on r = |−→r | then grad U(r) = U ′(r)
−→r
r

(derivation for a central symmetric
field [BS91]). Here, the full derivation of Equation A.1 with Cartesian coordinates is
given. Exemplarily, in Equation A.2 the partial derivative for x is developed. This
is then used in A.3 to calculate −→ε point charge(see A.4 and A.5).

−→r =

x
y
z

Vpoint charge(−→p) = k
q

|−→p −−→q | = k
q
−→r

−→ε point charge(−→p) =
−→∇V (−→p) =

∂
∂x

∂
∂y

∂
∂z

V (−→p) =

∂V (
−→p)

∂x

∂V (
−→p)

∂y

∂V (
−→p)

∂z

(A.1)

∂V (−→p)

∂x
=

∂k q

|
−→r |

∂x

=
∂k q√

x2+y2+z2

∂x

= kq
∂

∂x
(x2 + y2 + z2)−

1
2

= kq2x(−1

2
)(x2 + y2 + z2)−

3
2

= −kqx(
1

√

x2 + y2 + z2
)3

= −kx
q

|−→r |3 (A.2)

131

A Mathematical Derivations

−→ε point charge(−→p) = −

kx q

|
−→r |3

ky q

|
−→r |3

kz q

|
−→r |3

(A.3)

= −k
q

|−→r |3

x
y
z

= −k
q−→r
|−→r |3 (A.4)

= −k
q

|−→r |2
−→r
|−→r | (A.5)

132

B Implementation Details

B.1 Extended 3D Line Voxelization

The function cpDCS::voxelizeLine on the following page voxelizes one polygon
described by the points p1, p2 and p3 and returns the number of found voxels. The
flag checkP3 indicates, if the line from the current voxel to p3 has to be computed.
First the line between p1 and p2 is computed. Each found voxel is set to be the
new point p1 and point p2 is set to be p3. By this the line between the current
voxel and p3 is also computed. The algorithm is adapted from Graphics Gems IV
- Voxel traversal along a 3D line [Coh94]. It assumes that the line endpoints lie on
an integer grid.

133

B Implementation Details

int cpDCS::voxelizeLine (pfVec3 p1, pfVec3 p2, pfVec3 p3,

bool checkP3){

int n, sx, sy, sz, exy, exz, ezy,

int ax, ay, az, bx, by, bz;

int dx, dy, dz, x, y, z;

int noOfHits = 0;

dx = p2[0] - p1[0];

dy = p2[1] - p1[1];

dz = p2[2] - p1[2];

x = p1[0]; y=p1[1]; z=p1[2];

sx = sgn(dx); sy = sgn(dy); sz=sgn(dz);

ax = abs(dx); ay=abs(dy); az=abs(dz);

bx=2*ax; by=2*ay; bz=2*az;

exy = ay-ax; exz=az-ax; ezy=ay-az;

n=ax+ay+az;

if (n== 0)

noOfHits += VisitVoxel(x,y,z);

else {

while (n--){

voxelizeLineUsed = true;

//Visit the Voxel

noOfHits += VisitVoxel(x,y,z);

if (checkP3)

noOfHits += voxelizeLine(pfVec3(x,y,z), p3, p3, false);

if(exy<0){

if (exz < 0){

x+= sx;

exy += by; exz+=bz;

}

else {

z+=sz;

exz -= bx; ezy += by;

}

}

else {

if (ezy <0) {

z+= sz;

exz -= bx; ezy +=by;

}

else{

y += sy;

exy -= bx; ezy -= bz;

} } } }

return noOfHits;

}

134

B.2 IDL File: Interface Description

B.2 IDL File: Interface Description

The IDL file is the basis for the CORBA environment to build a skeleton class which then
has to be implemented by the server applications. It contains the definition of data struc-
tures (B.2.1) used by the interfaces and the description of the interfaces themselves. The
application interface iCPApplication (B.2.2) has to be implemented by the client applica-
tion and is used by the CPServer. The CPServer interface description, iCPServer (B.2.3),
illustrates the commands which are used by the client application to control the Cubi-
calPath system. The CPAnalysisServer interface (B.2.4) is used for the communication
between CPServer and CPAnalysisServer.

B.2.1 Definitions

//=== Structs and Definitions

struct CPVector{

double x;

double y;

double z;

};

struct CPTriangle{

CPVector Tri[2];

};

struct CPCameraData{

CPVector pos;

CPVector dir;

CPVector up;

CPVector center;

long ID;

};

struct PosStruct{

unsigned long x;

unsigned long y;

unsigned long z;

float count;

};

typedef sequence<PosStruct> CPViewedPositions; typedef

sequence<CPVector> CPTris; typedef double CPMatrix[16];

135

B Implementation Details

B.2.2 Application Interface

// ==================== iCPApplication ===================

//the Interface between the Applikation and the CPServer

interface iCPApplication {

//receive a connection ok. Server is ready and listening to this Application

void serverListens();

//===== data receiving functions for client sent by agent

//receiving Cameradata

oneway void set_Camera(in CPCameraData cam);

//receiving CubeSpace data for visualization or reference

oneway void set_CubesData(in CPViewedPositions newCubes);

}; //end of iCPApplication

B.2.3 CPServer Interface

//======================= iCPServer =======================

interface iCPServer {

//===== controlling functions from App to agent

//start iteration (no of iterations)

oneway void runIteration(in long anzIterations);

//stop iterations

oneway void stop();

//===== maintenance of ID values

//delete ID

oneway void deleteID();

//delete everything and reset agent

oneway void reset();

//setting controlling function to influence behaviour of Server

oneway void set_controlFunction(in string controlFunction);

//===== data sending functions from app to agent

//*** Initialisation

//initialisation of CPServer with Corbahandle and Size

oneway void newSession(in string objRef);

//delete the current session. reset of CPServer

void deleteSession(in string objRef);

//sending cubesspace resolution (no of cubes x, y, z)

void set_CPsize(in long sizeX,in long sizeY, in long sizeZ);

136

B.2 IDL File: Interface Description

//sending Bounding Box of Szene

// (the space in which the camera will move in Szene coordinates)

void set_BBScene(in CPVector min, in CPVector max);

//==== geometry

//sending ID and TransformationMatrix

oneway void set_Transformation(in unsigned long ID, in CPMatrix m);

//sending complete Voxelrepresentations stored in file

oneway void set_DataFilename(in string filename);

//sending ID and filename

void set_Geo_File(in unsigned long ID, in string filename,

in CPVector center, in CPVector size);

//sending ID and List of Triangles (3 vertices * no of Tri)

void set_Geo_Tris(in unsigned long ID, in CPTris Tris);

//sending ID and List of Triangles (3 vertices * no of Tri)

//and OBJECT, GOALVIEW, GOALPOSITION

void set_Geo_Tris_Goal(in unsigned long ID, in CPTris Tris,

in string kindOfObj);

//sending ID and List of Cubes. Values are encoded as Integers in CPTris

//the prior two functions will be used. The mode (hardwarebased for

//VoxelizationMethod) is set by send_command_withValue(...

//connection between Objects and goals - views and/or position

void connect_Obj_Goals(in unsigned long IDObj, in unsigned long IDPosition,

in unsigned long IDView);

//deletion of Geometry belonging to ID

void delete_Geo(in unsigned long ID);

//clearing of all geometry (reset)

void reset_Geo();

//*** I values (attraction values)

//sending ID and I value

oneway void set_I(in unsigned long ID, in double attractionValue);

//*** Cameraposition and values

//sending cameraposition and direction

oneway void set_Camera(in CPCameraData cam);

//sending cameraposition and center

oneway void set_CameraCenter(in CPCameraData cam);

137

B Implementation Details

//requesting actual Cameraposition

CPCameraData get_Camera();

//==== General controlling function

//a string is sent to trigger an attribute in the control unit

oneway void send_command(in string command);

//a function name and attribute is sent to the control unit

oneway void send_command_withValue(in string command, in double Value);

};

B.2.4 CPAnalysisServer Interface

//======= Interface between CPServer and CPAnalysisServer ======

interface iCPAnalysis {

//initialization of CPAnalysisServer

oneway void initCPVA();

//sending of camera data

oneway void set_Camera(in CPCameraData cam);

//collecting camera data

CPCameraData get_Camera();

//triggering of analysis of camera data. receive results

CPViewedPositions analyseViewedData(in CPCameraData cam);

//sending cubes

oneway void set_CubesData(in CPViewedPositions newCubes);

};

138

C Imaging Systems

Cameras for photo and film are imaging systems. They map the real world, the
scene, into the image plane (see Figure C.2). The process of imaging can result in
one image, a photo (more precisely its negative), or a sequence of images, a video
or a film.

Intention

Scene Composition

Image Composition

Imaging system Image
emotion,
targets

camera photo, film

dramaturgy, cinematography

Figure C.1: The Process of Imaging.

There are several steps involved in the process of imaging, illustrated in Figure C.1.
First, the intention is defined. The intention may for example be to visualize a
scene, to tell a story, or to create emotions with the piece, image, or film. Second,
based on the intention, the scene composition and the image composition is fixed.
The scene composition describes the position and orientation of actors and objects
in the scene. The image composition describes where on the image the actors and
objects should appear. Third, the image is created by adjusting the attributes of
the camera – the imaging system – and taking the picture or recording the film. The
scene is mapped into the image space, showing the desired image composition. All
steps depend on each other and often results of a latter stage iteratively re-influence
a former stage.

A film adds the dimension time to the images. In a film, the scene’s composition,
the image composition, and the parameters of the imaging system can change over
time. The camera may stand still or move in different ways to create a particular
atmosphere or to visualize a certain situation or action. It may change its height
relative to objects or jitter. This allows for a large set of dramaturgical elements

139

C Imaging Systems

described in the art of cinematography [Ari76, Kat91], which are established for film
making. These can also be important for computer-generated animations as cine-
matographic rules in real films established expectations of spectators of computer
generated animations.

Figure C.2 illustrates the task of an imaging system, here a camera. Generally,
an imaging system projects an n-dimensional space – the object space – into an
m-dimensional space – the image space – by using a projection function. n can be
larger, equal or smaller than m. In the case of a real or virtual camera in a 3D
environment, n is 3, m is 2 and the parameters of the imaging system, the camera
and the camera placement, form the projection function. This projection function
is set up to produce the image of the world with the desired composition.

A virtual camera takes an image of the virtual object space as the real camera takes
an image of the real world. This work is about virtual camera motion. Nevertheless,
the setup of virtual cameras borrows largely from real cameras and can easily be
defined in terms which are defined and established for real cameras. The following
sections discuss the imaging process of real cameras which can be seen as foundations
for describing virtual camera representations in Appendix D. This is done for a
static photo camera, because it has similar technical features as a film camera. The
difference is that a film camera continuously generates new images, instead of taking
only one.

imaging system

camera
attributes

camera
placement

(camera)

y

x

z

pan

roll

tilt

object space
(3D world)

position orientation

field of
view

image space
(2D image)

film
attributes

Figure C.2: Imaging System. A photo or film camera – an imaging system – maps the 3D
world into a 2D image. A camera has internal mapping attributes like the field of view, the
aperture value, the shutter speed. The parameter for the camera placement describe the
camera’s position and orientation in the world. Together they form the parameter of the
imaging system and define the 2D image for a given 3D world. The film attributes define
which of the information mapped in the image space will be stored on film and therefore
displayed in the final image.

C.1 Camera Attributes

A real camera consists of a lens, an aperture, and a shutter. They control several
parameters – the camera attributes listed in Figure C.3 A – which influence how the
real world is projected into the image space, thus on the film plane.

140

C.1 Camera Attributes

A lens is defined by its focal length. The focal length of a camera lens is the distance
from the film plane of the camera to the center of the lens when the lens is focused
on infinity. It defines the zoom factor : the longer the focal length, the narrower the
angle of view and the more magnified the image of an object at fixed distance is. By
this, it also defines the field of view, how much of the world appears on the image.

The aperture controls the size of a hole, usually located at the base of the lens.
The aperture value is the ratio of the focal length of the lens to the diameter of
the hole. The aperture also controls the depth of field. The depth of field can be
thought of as the amount of the image which has acceptable sharpness. The smaller
the aperture value, the larger the depth of field. A point size aperture (a pin-hole
camera) displays all objects, near and far, sharp.

The shutter protects the film from exposure. The shutter speed is a measure of how
long the shutter remains open when the picture is taken, thus how long the film is
exposed to light.

By adjusting the aperture and shutter settings, the way light and film interact is
changed. The wider the aperture and the longer the exposure, the more light falls
on the film plane. The image size on the film plane, the area on which the object
space is mapped, is fixed for the camera. All other components are adjusted to
reproduce an images of this size and aspect ratio.

image size 	 defines the height and width of the image
granularity 		 defines the resolution of the image
sensitivity 		 defines how sensitive it reacts to light
color space 		 b/w or color image

depth of field 	 depth of sharp area
field of view		 wide or narrow angle
focal length		 zoom factor
shutter speed	 exposure time
image size		 the area on the film plane exposed by light

position		 x, y, z of the position
pan			 the rotation angle around the vertical axis (y-axis)
roll			 the rotation around the axis which forms the viewing direction
tilt			 the rotation angle around the axis perpendicular to the viewing
			 direction (x-axis). The camera may look upwards or downwards
			 instead of horizontal and parallel to the floor.

B: Placement Attributes

A: Camera Attributes

C: Image Attributes

Figure C.3: Camera, Placement, and Image Attributes.

141

C Imaging Systems

C.2 Camera Placement

Setting up a camera in a physical place allows for six degrees of freedom (6 DOF),
three for position and three for orientation. A camera is fixed at a 3D location
and it can be rotated around three axes like in Figure C.2. The terms for camera
orientation are pan, roll and tilt as in Figure C.3 B. When panning a camera, the
horizon stays parallel to the image1. Rolling tilts the horizon relative to the image’s
bottom line. Tilting changes the perspective to frog or birds-eye perspective.

C.3 Image Attributes

The receiving medium – the film – has its own set of attributes listed in Figure C.3 C.
The film attributes define which of the information mapped in the image space will
be stored on film and therefore displayed in the final image. A film has an image
size, a granularity, a sensitivity and a color space. The size of the image is adjusted
to the camera’s image size. The granularity defines the resolution of the image. The
larger the number of grains in the film, thus, the smaller a grain itself, the more
details can be resolved on it. A high sensitivity allows short shutter times for high-
speed photography. And a film’s color space is either designed for b/w photography
or for color images.

Photography is associated with the final reproduction of the image on paper. This
reproduction is a post-production step which is independent of the imaging process
discussed before, but relies completely on the image on the film. This step has its
own set of attributes and possibilities but it can not backwards influence the image
on the film. The same holds for movies. Showing a movie is simply enlarging the
image on the film. Therefore, the image on the film is regarded the final image of
the imaging process.

1In a single image with a visible horizon panning is not noticeable. It is the same, if the tripod
is rotated by 90◦ or the camera on the tripod is panned by 90◦.

142

D View specification

D.1 General View Specification

A virtual camera maps points of the 3D virtual world into the 2D image space. It
is an abstraction of a real camera. It is also an imaging system which maps the
virtual object space in the image space – here the view plane – and eventually on
the screen. Imaging systems, as in Figure C.2, and real camera attributes were
discussed in Appendix C.

In computer graphics, the term viewer or view is used synonymously to the imaging
system parameter, thus the camera. The view can be specified by the view position,
view direction, and the view plane as in Figure D.1. They form the projection
function from 3D to 2D. The final image additionally depends on the the view
frustum and the viewport specifications which are the image/window size, resolution,
and position relative to the view plane. The view frustum for a perspective view is
a truncated pyramid which is centered at the direction of view and is bordered by
the near and far clipping planes.

VP

direction of view

VPc

VPn

Vpos = eye

				 VP	 : view plane
Vpos	 : view/camera 		 VPc	 : view plane center
CP	 : clipping plane		 VPn	 : view plane normal

(Vdir=VPc-Vpos=VPn)

Figure D.1: View Plane and View Plane Normal. The view plane can be independent of the
near clipping plane.

143

D View specification

far CP
near clipping plane

near CP = VP

Vpos=eye

Vup

Vdir

V	 : view
VP	 : view plane
CP	 : clipping plane

view frustum
(Vpos, Vdir, Vup,

VaspectRatio, VFoV,
Vnear, Vfar)

VFoV

VaspectRatio =
Vwidth/Vheight

direction of view

Vnear

Vfar

Vwidth

V
height

Figure D.2: OpenGL Perspective View. The view is defined by the view point, the view
frustum and the view plane size and resolution. For OpenGL the view plane is equal to the
near clipping plane.

A virtual camera can completely simulate a real camera. With ray-tracing any
kind of lens system in combination with aperture and shutter speed settings can be
simulated to create photo-realistic images with depth of field, motion blur, lens flare,
shadows and such [KMH95]. Because ray-tracing is a time consuming process, real-
time rendering systems like OpenGLTMand PerformerTMuse the pin-hole camera
as a model. This camera has an infinitesimal small aperture, thus, the complete
object space in the viewing frustum is rendered in focus1. For virtual environments,
typically, the pin-hole camera model is used, as the purpose is to visualize the 3D
space in stereo and in real-time, not to render photorealistic images2.

There are multiple ways to specify a perspective view. The first way, illustrated in
Figure D.1, specifies the view plane (VP) independently from the view position. The
view plane normal (VPn) is equal to the direction of view (Vdir). In OpenGL this
is the negative z-direction. The direction of view is either directly specified by Vdir.
Then the center of the view plane (VPc) is calculated. Or, like in this illustration,
Vdir is derived from VPc (Vdir = VPc - Vpos).

The second way to specify a perspective view, illustrated in Figure D.2, is based
on the OpenGL camera. A view coordinate system is established with the camera
positioned in the origin and pointing in the direction of view (Vdir). An up-vector
(Vup) establishes the up direction of the camera and the view plane (VP). The view

1Also with a pin-hole camera model, the sharpness as a function of the depth of field can be
simulated by rendering and blending multiple images from different view positions. This again
adds a large overhead (multiple renderings) for one image.

2Unless the users current real eye convergence is measured, the complete scene has to be rendered
in focus, as it is not known, if the user focuses on near or far parts of the scene.

144

D.1 General View Specification

far CP
near clipping plane

near CP
VP

view frustum
(VPn, VPc, Vup,

VaspectRatio, VFoV,
Vnear, Vfar)

direction of view

Vnear

Vfar

VPc

VPn

Vpos=eye

Vdir 				 VP	 : view plane
V	 : view			 VPc	 : view plane center
CP	 : clipping plane		 VPn	 : view plane normal

Vup

VFoV

VaspectRatio =
Vwidth/Vheight

Vwidth

V
height

Figure D.3: View Plane and Clipping Planes.

far CP

near CP
VP

view frustum

direction of view

VPc

VPn

Vpos=eye

Vup

				 VP	 : view plane
V	 : view			 VPC	 : view plane center
CP	 : clipping plane		 VPN	 : view plane normal

Figure D.4: View Plane Normal Unequal Direction of View. VCdir is defined as VCpos - VPC.
It is not depended on the users view direction.

frustum is defined by the field of view (Vfov), the aspect ratio, and the near and
far clipping planes. In OpenGL, the view plane is set to be the near clipping plane.
The size of the view plane depends on the field of view and the aspect ratio. The
aspect ratio specifies the width relative to the height of the clipping planes, and by
this also the view plane.

Generally, the view frustum specifies which objects of the 3D scene are rendered.
It selects the field of view, but also clips objects in a distance larger than the far dis-
tance value (Vfar)3. The definition of the view frustum also influences the visibility
of objects, thus which ones may be occluded and which ones are likely to be visible.
The latter case holds for close objects. Also, because of the perspective view, close
objects appear larger relative to distant ones.

Figure D.3 shows the same setup as in Figure D.1 but also specifies the view frustum.
By this, it defines the borders of the view plane, the near and the far clipping plane.

3Different to real cameras, rendering systems need to utilize a depth buffer for correct ordering
of object’s pixels in the image depending on their distance to the viewer. This buffer can not
be arbitrarily large and highly resolving. Therefore, the depth of the rendered space is bound
to useful values, normally to the scenes borders.

145

D View specification

They are defined by the near and far distance from the view position (Vpos). Their
size again depends on Vfov and VaspectRatio. The specifications in this illustration
form the same view as in Figure D.2 using different and more general parameter.
This can be seen in the Figure D.4, where the VPn is different to the direction of
view. This is an important case in stereo systems and in static head-tracked virtual
environment installations as will be described shortly.

D.2 View Specification and View Motion in Virtual

Environments

Head-tracked virtual environment system rely on the user selecting his or her own
position and direction of view in the available physical space. The available space
for this is called the view platform. The view platform forms all possible physical
positions the user can adopt in the virtual environment system. This physical space
is often bound by walls, if used indoor, or by the display system itself. The view
platform is illustrated in Figure D.5 – here it is a view box – for a CAVE 4.

					 VP	 : view plane
h-t CS	 : head-tracker CS		 VPc	 : view plane center
eye CS	: right/left eye CS		 VPn	 : view plane normal

VPc

VPn

viewbox CS

world CS

VP
VBc

VP

eye

VPc

VPn

Vdir

Top View

di
re

ct
io

n
of

 v
ie

w

y

x

z

y

x

z
y

x

z

y

x

z
h-t CS

eye CSs

Figure D.5: View Platform. The view platform for the CAVE is a box, here called viewbox.

4The CAVE setup is illustrated in Figure E.2

146

D.2 View Specification and View Motion in Virtual Environments

View Setup/Parameter

A view is rendered depending on the view position and the view planes. The position
and orientation of the view plane(s) in projection-based virtual environment system
is fixed as the display’s screen is equal to the view plane. Head-mounted displays
(HMD), for example, have fixed screens relative to the eye. Thus, the view plane is
perpendicular to the direction of view and the view setup is as in Figures D.2 and
D.3. The user selects a part of the 3D world by orienting his or her head and only
the view in this direction is rendered.

In fully immersive large scale installations, like the 6-sided CAVE, the complete
360◦ space is rendered. Different to a HMD, in a CAVE the screens are fixed in
the real world. This fixes also the view plane coordinate system relative to the real
world. Now, when moving the user’s eye position inside the view platform, the view
frustum gets distorted as illustrated in Figure D.4. Only when the user’s head is
in the middle of the view platform– the VBc –, the undistorted perspective view
is rendered. The further the user moves into one corner of the system, the more
distorted the view gets, as the 3D world is projected on the 2D screen which itself
is viewed from the side, not the front(see Figure D.5 (Top View)). This feature
requires tracking the user’s head and it is called off-axis projection.

View Motion and Coordinate Systems

In a system like a CAVE, it is not possible to explore a larger world than the display
system solely by walking. Even if it is possible, the speed of walking may be slow,
if large distances are to be overcome. For this, interaction tools are utilized, which
move the view platform relative to the 3D world [PST+96].

This results in two possible types of motion in a virtual environment system: the
first is the motion of the view platform through the environment. The second is
the motion of the user inside this view platform. Both types of motion can occur
simultaneously. The combined result forms the view position V pos of the view to
be rendered.

In the case of the CyberStage, Fraunhofer IMK’s four sided CAVE, motion of the
view platform is equal to moving the CyberStage through the virtual 3D world.
Independently from the user position, the virtual CyberStage coordinate system,
the view platform, is moved relative to the 3D world.

The user’s eye position inside the view platform is derived from the head-tracker
output. The head-tracker itself provides coordinates relative to the physical Cyber-
Stage, because it observes the physical system space. The user’s eyes additionally
have a fixed offset to the head-tracker. Figure D.6 shows the dependencies of these
coordinate systems (CS). For generating a view – a specific eye/screen combina-
tion –, the eye position and the view plane (the screen) have to be transformed into
the common view coordinate system, for example the 3D world CS.

147

D View specification

world CS

head-tracker CS

left-eye CS right-eye CS viewbox CS

screen/view plane CS

view
for right-eye

3D world CS

Figure D.6: Coordinate System Dependencies for Head-Tracked Stereo Views.

Changes in the head position and orientation will modify the eyes’ position in the
world CS. Nevertheless, the resulting eye direction does not influence the render-
ing of the view. Only the eye’s position is a parameter to the projection function.
Therefore, the user is still free to view in any direction without modifying the scene
relative to the screens (except small jitter movements introduced by the head move-
ment).

Fully immersive systems like HMDs provide no preferential direction of view. When
moving the view platform with some interaction tool this is usually done relative to
the current users direction of view. In the CAVE, users tend to position themselves
in front of one of the screens. For IMKs four sided CyberStage this is normally
the front screen, opposite to the entrance. With this knowledge, it is possible to
derive a common direction of view, which is required for automatic view motion for
presentation.

Adding user or application controlled motion to the scene means moving the view
platform. The output matrix of an interaction tool is attached to the position and
orientation of the center of e.g. the CAVE, the view platform. Independent of
this movement the user can additionally move on this platform and change the eye
position as explained before.

Figure D.7: Eye Position in View Platform Influences View Frustum. The eye position in-
fluences the direction and opening angle of the view frustum. There is one box-shaped area
(grey) directly behind the screen which is always visible, independent from the eye position of
the user.

148

E Virtual Environment Systems

E.1 Responsive Workbench

The Responsive Workbench (RWB) [KF94], developed at GMD (now Fraunhofer
IMK) in 1993, provides a human-machine interface modelled after people working
on desks, workbenches, and tables. The objects, displayed as computer generated
stereo images, are back-projected onto one or two screens. By wearing shutter
glasses, users see the virtual objects in 3D, normally resting on or above the table
surface. The user’s head position is tracked and the computer-generated stereo image
recomputed from that vantage point, so that the virtual objects appear stationary
with respect to the physical table, if the user moves their head.

At Fraunhofer IMK, two back projections, one on the table in front of the user and

Figure E.1: Responsive Workbench. This image shows two user exploring a model at the
Responsive Workbench using the CubicMouseTM.

149

E Virtual Environment Systems

one on the wall behind it, are used. The interaction space (the space which the
user can reach directly, i.e. without moving the model) is between these displays.
The workbench was designed for applications which in normal work environments
involve work on a desk or on a real workbench, like medical applications, automotive
engineering and discussion about architectural models.

The large display surface allows a group of users to interact in this shared workspace
face-to-face, which makes local collaboration natural and easy. The visible parts of
the virtual objects are mostly within arms length reach of the user, which enables
direct manipulation employing both hands. Figure E.1 shows two users exploring a
geoseismic model at the Responsive Workbench using the CubicMouseTM, a 6DOF
input device.

The RWB is for many applications an appropriate working environment, but it is
only semi-immersive, as the user stands on one side of the projection. The Cyber-
Stage, described in the next section, is an example of a fully immersive system.

E.2 CyberStage

The CyberStage is Fraunhofer IMK’s surround-screen projection-based vir-
tual reality system based on Cruz-Neira’s first CAVE installation presented in
1992 [CNSD93]. Stereoscopic images are displayed from the rear onto the three
walls and directly onto the floor by Electrohome 8500 projectors. The display
resolution is 4x1024x768 pixel. The images are viewed with shutter glasses. The
tracking system uses Polhemus Fasttrak sensors.

Figure E.2: CyberStage Setup. This image shows the setup of the Fraunhofer IMK Cyber-
Stage. Mirrors project the generated stereoscopic images onto the walls.

150

E.3 i-Cone

The tracked user can freely move around and feels immersed in an unbound world.
The whole 3m x 3m room represents the interaction space with the virtual world of
the application.

The CyberStage allows direct and body centered human interaction as well as team
work. Applications are art installations as well as museums, architectural walk-
throughs, digital storytelling, and scientific visualization, to name a few. Common
interaction tools are the Stylus, a wand like device, and a joystick.

Figure E.2 shows the setup of the CyberStage at IMK with its 4 projectors and
mirrors, and Figure E.3 shows a user exploring a museum in the CyberStage.

Figure E.3: CyberStage. This image shows a user exploring a museum in the CyberStage. The
visible image deformations (discontinuities at the screen boundaries) are due to the physical
camera position, as the displayed images are calculated with respect to the position of the
user’s head (which is motion-tracked). The user navigates the virtual space using a joystick-
like control wand.

E.3 i-Cone

The i-Cone (see Figure E.4) is a large cylindric display with a viewing angle of 230
degrees. Four BARCO projectors are used to project the stereo images onto the
front of the screen with a resolution of 5500x1320 pixels. The width resolution is
less than four times the resolution of the projectors, because the images of the four
projectors overlap for blending. Users wear shutter glasses for stereo vision, which
are synchronized with infrared emitters. The cone has 9 loudspeakers for sound
reproduction. This display allows many users to experience the virtual environment
in a wide cinema like environment.

151

E Virtual Environment Systems

Figure E.4: i-Cone.

The i-Cone is a semi-immersive display. But unlike the RWB and the CyberStage,
users are not tracked. The interaction space and the tools used are the same as for
the CyberStage.

E.4 AVANGO

AVANGO is Fraunhofer IMK’s framework for virtual environment development[Tra99,
Tra01]. It is a software which allows fast development of distributed, interactive
virtual environment applications for immersive displays like the Responsive Work-
bench, CAVE, CyberStage and i-Cone.

AVANGO is based on SGI Performer [RH94]. Performer handles advanced rendering
tasks like culling, level-of-detail switching, communication with the graphics hard-
ware, and, if available, multi-processing and multi-graphics pipelines. The AVANGO
Nodes form the object-oriented scene-graph as in Performer. Sensors form the inter-
face to devices. Both are programmed in C++. AVANGO also features a complete
language binding to the interpreted language Scheme. With Scheme, all AVANGO
objects can be created and manipulated on the command line at run-time.

AVANGO includes the following concepts:

Viewer A viewer is the interface between user and virtual environment. It comprises
all input and output devices like visual, auditory and tactile displays and
spatial trackers.

152

E.4 AVANGO

Scripting Scheme, an interpretive scripting language, is used to change scenes con-
tent, viewer features and object behavior at runtime.

Interaction The viewer provides event-based input/output services which can be
mapped to objects in the scene.

Extensions With sub-classing the existing C++ system classes, theAVANGO sys-
tem can easily be extended with new features. This technique will be used
later to interface the CubicalPath system with the AVANGO scene-graph.

Streaming All objects can write and read their system to and from a stream. This
is the basic facility needed to implement object persistence and distribution

Distribution All objects are distributable and their state is shared by an number
of viewers. This allows for collaborative multi-system environments.

153

F Usability Study

The questionnaire for the usability study in Chapter 8 is presented in F.1. The
results of this study are listed in F.2 in the way and language given.

155

F Usability Study

F.1 Questionnaire

 1

Questionnaire I
Virtual Museum – Guided Exploration

General Information:

1. Name:

2. Age:

3. in which professional area do you work (e.g. short job description):

4. Sex:

O female O male

5. Are you:

O right-handed

O left-handed

O ambidextrous (no hand-preference)

6. What kind of learning type are you?

O visual O auditory O verbal O kinestatic O haptic O not known

7. Do you have difficulties to perceive colors?

O no O yes

8. Do you generally get easily motion sick

O Never O sometimes O often

9. If you have ever used Virtual Reality, did you ever get motion sick?

O Never O sometimes O often

156

F.1 Questionnaire

 2

10. With which, if any, input devices are you familiar?

O none

O mouse

O joystick

O stylus (Handheld like PalmPilot)

O 3D input devices (like trackers, 3D mice), namely ________________________

O Other: ___

11. Did you ever use Virtual Reality/ experience a Virtual Environment?

O never

O a couple of times

O often

Please describe the kind(s) of Virtual Environment(s) you experienced, if any:

12. If you ever used Virtual Reality, which kind of system did you use?

O Desktop system (with a mouse or joystick and standard monitor)

O Desktop system with a stereoscopic viewing, possibly with 3D input device

O Stereoscopic projection screen (standard or curved)

O Responsive Workbench or similar table-based stereoscopic display system

O CAVE™ or similar room-like stereoscopic multi-wall display system

O Head-Mounted Display

O Augmented Reality (see-through glasses)

Question after self-exploration of the virtual museum

13. Please describe what you remember about the pictures seen
Can you give names, colors and features of pictures?

157

F Usability Study

 3

Questionnaire II
Questions after usage of the supportive system

Name:

14. Please describe what you remember about the pictures seen
Can you give names, colors and features of pictures?

15. What do you think about the movement of the camera

a. changes of cameraposition

 To fast just right to slow

 | | | | | | |

 calm just right hectic

 | | | | | | |

b. rotation of camera

 To fast just right to slow

 | | | | | | |

16. What would be your answer, if the camera was interpolated?

 To fast just right to slow

 | | | | | | |

 calm just right hectic

 | | | | | | |

17. Did you ever feel dizzy when the supportive system was moving you
through the environment

 Never sometimes always

 | | | | | | |

158

F.1 Questionnaire

 4

18. What do you think about the time spent at each picture?

 To short just right to long

 | | | | | | |

19. How do you judge the usage of the menu

 Easy hard

 | | | | | | |

What is good,

What could be improved

20. Did you ever feel that you did not have the control of the system

 Never sometimes always

 | | | | | | |

21. Did you experience the system doing something you didn’t intend it to do

 Never sometimes always

 | | | | | | |

 if so: what was it?

22. Did you experience the system doing something you didn’t expect it to do

 Never sometimes always

 | | | | | | |

 if so: what was it?

23. Did you find the possibility to directly select and move to a picture useful
(e.g for a revisit)

 Never useful sometimes always useful

 | | | | | | |

159

F Usability Study

 5

24. Did you find the filtering possibility (selecting attributes and period) useful

 Never useful sometimes always useful

 | | | | | | |

25. Did you feel that you could start and stop the animation in an easy way

 Easy hard

 | | | | | | |

26. Did you ever feel disoriented after using the supportive system

 Never sometimes always

 | | | | | | |

27. Did you have the feeling the supportive system was useful to you

a. in contrast to only navigating yourself

 Very useful not useful at all

 | | | | | | |

b. in giving to you some ideas of what to look at

 Very useful not useful at all

 | | | | | | |

28. Did you have the feeling the supportive system made you gather more
information and gave you a better understanding of the artists work

 Yes at some points no

 | | | | | | |

29. What did you know about the Philip Gustons work before using the virtual
museum?

 Nothing a little a lot

 | | | | | | |

160

F.2 Results

F.2 Results

User 2 3 4 5 6 7 8 9 10
Question
5 r r r l r r r r r r
6 verbal visual visual ? ? visual visual ? visual visual
7 no no no no no no no no no no
8 no some some no no some often some no no
9 no no some no no some often some no some
10 all all all mouse/joystickmouse/stylus/joystickall all all mouse/joystickmouse/joys
11 often often often some never often often often some some
12 all all all desktop nothing all all all -HMD Cave/RWB all

15a1 To fast fast/right just right right/slow right/slow right/slow fast/right just right fast/right fast/right
15a2 hectic just right right/hectic calm/right just right right/hectic hectic hectic right/hectic right/hectic
15b fast/right fast/right just right right/slow right/slow just right fast/right right/slow just right just right
16a1 fast/right fast/right just right just right right/slow right/slow To fast To fast fast/right fast/right
16a2 calm/right just right just right just right just right just right calm calm right/hectic right/hectic
17 seldom Never often seldom Never seldom often often Never Never
18 To short short/right To short right/long just right just right To short short/right To short short/right
19 ok/hard Easy ok/hard ok/hard easy/ok ok/hard hard easy/ok easy/ok ok/hard
20 sometimes Never sometimes sometimes Never Never never/some Never never/some some/always
21 never/some never/some Never sometimes Never Never Never Never never/some never/some
22 Never Never sometimes never/some Never Never sometimes Never Never never/some
23 never/some always usefulNever useful never/some sometimes some/always never/some always usefulalways usefulnever/some
24 some/always Never useful some/always never/some some/always some/always always usefulalways usefulsometimes Never useful
25 Easy Easy easy/ok ok Easy Easy ok easy/ok Easy easy/ok
26 Never Never Never sometimes Never Never some/always sometimes Never Never
27a useful Very useful useful useful useful Very useful useful Very useful useful indifferent
27b Very useful Very useful useful useful Very useful Very useful useful Very useful useful not useful at all
28 Yes Yes at some pointsat some pointsmostly yes mostly yes mostly no Yes mostly yes mostly no
29 Nothing a little Nothing Nothing Nothing Nothing Nothing Nothing Nothing Nothing

13 all guston;
1949-1972
(in order);
1949-59
(abstract,
rote Farbe
vornehmlich
, Knäuel ais
Stricken);
1960s
(gegenständ
licher);
1970s
(wieder
abstraktere
Darstellunge
n,

Phillip
Guston,
some
colourful,
some more
monochrom,
abstract,
oil?

the curtain -
it looked like
a cup, dark
colors;
spleen - it
looked like a
head, reds
oranges;
one pictures
had red
colours and
orange

all images of
paintings of
artists,
sometimes
bright
colors,
sometimes
dark,
remember a
cup
distinctively,
splee, clock,
paw

shoe, paw,
curtain,
flame,
untitled
period 1948-
1979 (he
has a nearly
photographi
cal
memory...)

spleen -
orange-
dominat, a
face from
one side;
paw - a
hand hold a
pen, yellow;
white
painting;
some
figures
painted on
white
backbound

all pictures
are of same
artist.
Chronologic
al order
(clockwise),
nice to see,
how the pint
techniques
evolve
during the
time; the
colors are
mostly dark
(Phillip
Guston)

some kind of
impressionis
m; colourful;
frensh artist

14 The images
I've seen
where
mostly from
the 1970s
Mostly red
and black,
abstract,
with some
contenet
(shoes,
cigars, hats)

grouped by
colour or
thematic,
one picture
with cigar,
two with
shoes,
abstract
group

Rückkehr,
Zone,
abstract rot;
Gruppe2
abstract rot

the shoe,
Phillip
Guston,
dark round
object,
1962; there
was a
picture of a
building,
orange/red
(PG) ; there
was a white
picture

lots of dark
pictures and
a few light
ones, very
detailed but
still easily
visible

different
categories:
massed
paint, grid
strucures,
shoes,
egalitaerian
structure…

see some
abstract
pictures and
other
figurative
pictures;
sleeping,
cigar

read, black,
blue,
figuraized
pictures,
(intensions)

hooded men
; arm with
cigar; red
and dark
(abstract?) ;
pile of stones
and
everything
(what the
system said)

19 (text) g: looks nice
and fancy,
the
transparenc
y is nice!
Even that it
allows …
through the
menü I: no
… of the
fonts in
order ro
change
selection. It
gave no
feedback
wether the
selection
worked or
an image is
not there

g: its there
I: too big, in
the way,
sound

I: audio
feedback,
too hard to
actually hit
an item,
overview of
possible
choices

g: it is
interesting I:
the selection
tool and the
movement
(not just
forward and
backward
but side to
side

because
lack of
interpolation

I: menu in
front of the
images

attribute-
classified I:
provide a
fast way for
displaying
the label of
a picture
when
stopping the
exploration
(his problem
was that the
cppath
menu was
open but he
needed
artwork)

filter setting
(subjective)
I: the
interface,
much time is
spent
adjusting
values

I: menu
structure,
option
visibility,
execute
button

1

161

F Usability Study

21(text) sometimes I
expected it
to move
somewhere

one jump
when
stopping
and then

selecting the
wrong
object with
the stylus

strange
movement
in corner

it did
nothing

I pushed the
wrong button

23(text) not really as
on can see
the pictures
in a
miniturized
form already
on the menü

g: many
choices and
features;
easy to read
I: difficult to
know where
to look and
click. It
needs a
better layout
design with

better:
directly point
to a picture
and being
moved to it
by the
system
automatically

24(text) because
exhibition
experience
for me is
more general
than to view
a special
attribute

observers
comments

extensive
use of menu
in first
pafrgt, guter
navigator -
benutzt
hauptsächlic
h das
supportsyste
m -
neugierde
wie es
funktioniert

wie gernot navigation
nicht ganz
so einfach
wie bei
frank und
gernot -
wünscht
sich
erläuterunge
n zum Menü

Problems
with menu:
hitting
names and
boxes,
coordination
of buttons
on joystick
difficult,
uses
navgation
(easier than
menu)

good in
navigation,
well hitting
the menu, is
always in
animation
mode, more
testing the
interface
and if
knowledgeb
ase gives
right results -
uses only 1
attribute at a
time, goes
in navigation
mode to be
faster,
changes
often

very good in
navigation,
looks at
pictures one
after the
other with
artworks
menu,
finished
after 3 min -
I did not
look in gthe
second
round…
bad)

fährt im
Kreis herum
an den
Bildern
vorbei -
benutzt
auch andere
Walls (menu
vorne,
Bildern
links) erste
durchgänge
nur
schauen, 3.
DG mit
Menu -
visuelle
Qualität zu
schlecht für
Bilder,
Features
nicht
erkennbar

kommt mir
start/stop
nicht klar.
Navigation
schwierig,
bräuchte
längere
Trainingsph
ase - hatte
nichts von
dern Bildern
selber weil
er Probleme
mit
Steuerung
und Menu
hatte

stoppt und
navigiert
selber,
restarts -
wählt gerne
attribute -
Probleme
mit dem
Menu,
auswahl
schwierig,
klickt das
menu nicht
weg

Steuerung
seltsam, läuft
selber, sehr
gewöhnungs
bedürftig,
stellt sich
selten
gerade vor
die Bilder -
geht in
Navigation
mode für die
Geschwindig
keit. Stopt
vor Bildern
aber nicht
immer - geht
dann aber
wieder
zurück zu
den Bildern

other comments

comments 2

Gernot: verweildauer an Objekten müßte größer sein; zu 27a the fact that don’t have to navigate myself makes it possible to observer
the pictures already while I am approaching there.
This makes myself more relaxed and free- zu 27b you get more ideas about hidden features one wouldnt recognize without support ;
zu 28 because I am not an expert in this field

User 2 3 4 5 6 7 8 9 101

162

G Glossary

This glossary lists some of the terms that were used throughout this thesis for
clarification and overview.

automated travel Automated travel is automatic motion from the current position
to a single target.

camera The camera has a position and an orientation in the scene and specifies the
view of the scene. For the CubicalPath system the camera is the representation
of the user in the scene.

cube A cube is a volume element of the cube space which holds information as to
which objects are situated within this cube.

cube space The cube space is a regular three-dimensional grid of cubes. It repre-
sents the geometric scene in a volume data structure.

exploration Exploration is the goal-based motion through the environment for the
purpose of discovery, or learning

goal field A goal field is a field consisting of spatial targets with a qualification of
their relevancy to a specified goal. In the dynamic potential field method this
field maps to the characteristic of the compound attractive potential field.

guided exploration Guided exploration is the independent acquisition of knowledge
by exploring the available information. Guidance is provided as a reaction to
a user initiated question in form of hints or results of the queries. In virtual
environments, these results are presented by moving the user to the spatially
distributed geometric representation of the results, one-by-one.

information space The information space is typically a database with a query in-
terface which holds geometric and symbolic information about the objects in
the environment. It may also include a semantic network to be able to pro-
vide contextual information to each object, thus other objects relevant in the
context of this object.

163

G Glossary

interaction device The hardware part on an interaction tool is the interaction de-
vice.

interaction mapping The software part of an interaction tool, which does the trans-
lation of hardware sensor values to virtual world behavior.

interaction tasks The purpose for an interaction

interaction tools The combination of an interaction device and mapping.

motion Motion in virtual environments is the act of continuously moving through
the environment.

navigation Navigation is the process of moving through an environment.

presentation Automatic motion of the camera through the environment to targets
which, by this, are presented to the user.

potential fields Potential field theory has its origin in theoretical physics and de-
scribes the behavior of particles in electrostatic fields and the Newtonian at-
traction between masses. The potential field is a scalar field.

supported exploration The term supported exploration is used synonymously to
guided exploration.

travel Travel is the process of moving from a current position to a target location.

user A user in the CubicalPath system is represented by a camera.

view The view specifies, what is seen by the user, thus, what appears in the final
image (see Appendix D).

volume data A volume data set consists of S samples x, y, z, v) and is typically
arranged in a regular grid.

164

Curriculum Vitae

Name Steffi Beckhaus
Address Vöcklinghauserstr. 16-18

45130 Essen

E-Mail steffi.beckhaus@imk.fraunhofer.de

Date of Birth 14th of December 1967 in Essen
Nationality german

Education
1974 - 1978 Albert - Schweitzer Grundschule, Essen
1978 - 1987 Helmholtz - Gymnasium, Essen
1987 - 1991 Universität - GH Essen, Physik DI
1991 - 1992 Gerhard-Mercator-Universität - GH Duisburg, Zusatzstudien-

gang ”Technisches Englisch und Französisch”
1992 - 1993 University of Newcastle upon Tyne, England, Master of Sci-

ence (M.Sc) in Computing Science
1999 - 2002 Otto-von-Guericke Universität, Magdeburg, registered as

p.h.d. student

Qualifications
Jun. 1987 Abitur
Sep. 1991 Diplom Physikingenieurin
Sep. 1993 M.Sc. Computing Science

Work Experience
Oct. 89 - Sep. 92 S. A. S. Systems, Essen, during the studies as an intern, and

after graduation as physics engineer
Nov. 93 - Dec. 93 Management Information Services, University of Newcastle,

as programmer.
Mar. 94 - Jun. 97 Ing. Büro Messing, Essen, as IT engineer
Mar. 97 - Dec. 98 GMD-Forschungszentrum Informationstechnik, IMK.Delta,

as p.h.d student
Jan. 99 - Dec. 01 GMD-Forschungszentrum Informationstechnik, IMK.VE, as

p.h.d. student
since Jan. 02 Fraunhofer IMK.VE (GMD-FhG fusion), as a research scien-

tist

165

Publications

S. Beckhaus, J. Wind, and T. Strothotte
Hardware-Based Voxelization for 3D Spatial Analysis.
In Proceedings of CGIM ’02. (to appear), Kauai, Hawai, August 2002.

S. Beckhaus, F. Ritter, and T. Strothotte
Guided exploration with dynamic potential fields: The CubicalPath System.
In Computer Graphics Forum, volume 20(4), pages 201–210. The Eurographics
Association 2001, Blackwell Publishers, December 2001.

S. Beckhaus, G. Eckel, and T. Strothotte
Guided exploration in virtual environments.
In Woods, A. J., Bolas, M. T., Merrit, J. O., and Benton, S. A., editors, Stereoscopic
Displays and Virtual Reality Systems VIII, Proceedings of Electronic Imaging ’01,
volume 4297, pages 426–435. San José, CA, SPIE Press, Bellingham, WA, July
2001.

G. Eckel, and S. Beckhaus
Exviz: A virtual exhibition design environment.
In Proceeding of the International Symposium on Virtual and Augmented Architec-
ture (VAA ’01), pages 171–182, Dublin, Ireland, Springer Verlag, June 2001.

S. Beckhaus, F. Ritter, and T. Strothotte
Cubicalpath – dynamic potential fields for guided exploration in virtual environments.
In Proceedings of Pacific Graphics ’00, Hong Kong, China, pages 387–395, IEEE
Society Press, Los Alamitos, California, November 2000.

Presentations

S. Beckhaus, J. Wind
Non-Graphical Application of Hardware-Accelerated Voxelization.
In Sketches & Applications of SIGGRAPH ’01, page 237 , Los Angeles, California,
August 2001.

166

Bibliography

[AF00] Alonso, M. and Finn, E. J. Physik. Oldenbourg, München, 3rd. edition,
2000.

[Ari76] Arijon, D. Grammar of the Film Language. Silman-James Press, 1976.

[BD95] Bortz, J. and Döring, N. Forschungsmethoden und Evaluation. Springer-
Verlag, 1995.

[BDHB98] Bowman, D. A., Davis, E. T., Hodges, L. F., and Badre, A. N. Mantain-
ing spatial orientation during travel in an immersive virtual environment.
Presence, 7(3):225–240, 1998.

[BH99] Bowman, D. A. and Hodges, L. Formalizing the design, evaluation, and
application of interaction techniques for immersive virtual environments. In
Journal of Visual Languages and Computing, pages 37–53. Academic Press,
October 1999.

[BKH97] Bowman, D. A., Koller, D., and Hodges, L. F. Travel in immersive
virtual environments: An evaluation of viewpoint motion control tech-
niques. In Proceedings of the Virtual Reality Annual International Sym-
posium (VRAIS), pages 45–52, 1997.

[BL89] Barraquand, J. and Latombe, J. C. Robot motion planning: A distributed
representation approach. Technical report, Department of Computer Sci-
ence, Stanford University, 1989.

[BLP83] Brooks, R. A. and Lozano-Peréz, T. A subdivision algorithm in configura-
tion space for findpath with rotation. In Proceedings of the 8th International
Conference on Artificial Intelligence, pages 799–806, Karlsruhe, 1983.

[Bow02] Bowman, D. A. Handbook of Virtual Environments : design, implemen-
tation, and applications, chapter 13, pages 239–254. Lawrence Erlbaum
Associates, Inc., Mahwah, New Jersey 07430, 2002.

[Bro83] Brooks, R. A. Solving the find-path problem by good representation of free
space. IEEE Transactions on Systems, Man and Cybernetics, 13(3):190–197,
1983.

[Bro88] Brooks, F. P. Grasping reality through illusion – interactive graphics serving
science. In Proceedings of CHI’88, pages 1–11, New York, May 1988.

167

Bibliography

[BRS01] Beckhaus, S., Ritter, F., and Strothotte, T. Guided exploration with dy-
namic potential fields: The CubicalPath System. In Computer Graphics
Forum, volume 20(4), pages 201–210. The Eurographics Association 2001,
Blackwell Publishers, December 2001.

[Bru76] Bruner, J. S. The Process of Education. Harvard University Press, 1976.

[BS91] Bronstein, I. N. and Semendjajew, K. A. Taschenbuch der Mathematik.
Ed. G. Grosche and V. Ziegler and D. Ziegler, B. G. Teubner Verlagsge-
sellschaft, Stuttgart, Leipzig, 1991.

[BS96] Billinghurst, M. and Savage, J. Adding intelligence to the interface. In
Proceedings of the 1996 Virtual Reality Annual International Symposium
(VRAIS ’96). IEEE, 1996.

[BT98] Bandi, S. and Thalmann, D. Space discretization for efficient human nav-
igation. In Proceedings of Eurographics, volume 17, pages 195–206, March
1998.

[BW90] Baum, D. R. and Winget, J. M. Real time radiosity through parallel pro-
cessing and hardware acceleration. Computer Graphics (Symposium on In-
teractive 3D Techniques), 24(2):67 – 75, March 1990.

[BW95] Baker, M. P. and Wickens, C. D. Human factors in virtual environments
for the visual analysis of scientific data. Technical report, NCSA-TR032,
Institute of Aviation, August 1995.

[BWS02] Beckhaus, S., Wind, J., and Strothotte, T. Hardware-Based Voxelization
for 3D Spatial Analysis. In Proceedings of CGIM ’02. (to appear), August
2002.

[Can88] Canny, J. F. The Complexity of Robot Motion Planning. MIT Press, Cam-
bridge, MA., 1988.

[CKY00] Chen, M., Kaufmann, A. E., and Yagel, R. Volume Graphics. Springer
Verlag, 2000.

[CNSD93] Cruz-Neira, C., Sandin, D. J., and DeFanti, T. A. Surround-screen
projection-based virtual reality: The design and implementation of the cave.
Proceedings of SIGGRAPH 93, pages 135–142, August 1993.

[Coh94] Cohen, D. Voxel traversal along a 3D line. In Heckbert, P. S., editor,
Graphics Gems IV, pages 366–369. Academic Press, Inc., 1994.

[Con01] Conroy, R. Virtual Navigation in Immersive Virtual Environments. PhD
thesis, London University College, 2001.

[CW93] Cohen, M. F. and Wallace, J. R. Radiosity and Realistic Image Synthesis.
Academic Press Professional, Boston, MA, 1993.

168

Bibliography

[DC97] Darken, R. P. and Cockayne, W. R. The omni-directional treadmill: a
locomotion device for virtual worlds. In Proceedings of UIST, pages 213–
221, 1997.

[DM94] Durlach, N. I. and Mavor, A. S. Virtual Reality: scientific and technological
challenges. National Academy press, 1994.

[DP02] Darken, R. P. and Peterson, B. Handbook of Virtual Environments: design,
implementation, and applications;, chapter 24, pages 239–254. Lawrence
Erlbaum Associates, Inc., Mahwah, New Jersey 07430, 2002.

[Dru94] Drucker, S. M. Intelligent Camera Control for Graphical Environments.
PhD thesis, Massachussetts Institute of Technology, July 1994.

[DZ94] Drucker, S. M. and Zeltzer, D. Intelligent camera control in a virtual en-
vironment. In Proceedings of Graphics Interface, pages 190–199, Banff, Al-
berta, Canada, 1994. Canadian Information Processing Society.

[EB01] Eckel, G. and Beckhaus, S. Exviz: A virtual exhibition design environment.
In Proceeding of the International Symposium on Virtual and Augmented
Architecture (VAA ’01), pages 171–182, Dublin, Springer Verlag, June 2001.

[Ede94] Edelstein, H. Unraveling client/server architectures. DBMS, 7(5):34, May
1994.

[FC00] Fang, S. and Chen, H. Hardware accelerated voxelization. Computers and
Graphics, 24(3):433–442, June 2000.

[Fur86] Furnas, G. W. Generalized fisheye views. In Proceedings of CHI ’86, Human
Factors in Computing Systems, pages 16–23. ACM SIGCHI, 1986.

[FvDFH90] Foley, J. D., van Dam, A., Feiner, S. F., and Hughes, J. F. Computer
Graphics: Principles and Practise. Addison-Wesley Systems Programming
Series. Addison-Wesley Publishing Company, 2nd edition, 1990.

[Gib98] Gibson, S. F. F. Using distance maps for accurate surface representation
in sampled volumes. In IEEE Symposium on Volume Visualization, pages
23–30, 1998.

[Han97] Hand, C. A survey of 3D interaction techniqies. Computer Graphics Forum,
16(3):269–281, 1997.

[Har01] Hartmann, K. Text-Bild-Beziehungen in multimedialen Dokumenten:
Eine Analyse aus Sicht von Wissensrepräsentation, Textstruktur und Vi-
sulasierung. PhD thesis, Fakultät für Informatik, Otto-von-Guericke-
Universität Magdeburg, December 2001.

[HCS96] He, L., Cohen, M. F., and Salesin, D. H. The virtual cinematographer: A
paradigm for automatic real-time camera control and directing. Proceedings
of SIGGRAPH 96, pages 217–224, August 1996.

169

Bibliography

[HH93] Hix, D. and Hartson, H. R. User Interface Development: Ensuring Usability
through Product and Process. New York: John Wiley and Sons, 1993.

[HMK+97] Hong, L., Muraki, S., Kaufman, A. E., Bartz, D., and He, T. Virtual
voyage: Interactive navigation in the human colon. Proceedings of SIG-
GRAPH ’97, pages 27–34, August 1997.

[Hol02] Hollerbach, J. M. Handbook of Virtual Environments : design, implemen-
tation, and applications, chapter 11, pages 239–254. Lawrence Erlbaum
Associates, Inc., Mahwah, New Jersey 07430, 2002.

[HV99] Henning, M. and Vinoski, S. Advance CORBA Programming with C++.
Addison-Wesley professional computing series. Addison Wesley Longman,
Inc., Reading, Massachusetts, 1999.

[HW97] Hanson, A. J. and Wernert, E. A. Constrained 3D navigation with 2d con-
trollers. In Proceedings of Visualization ’97, pages 175–182. IEEE Computer
Society Press, 1997.

[Jon96] Jones, M. W. The production of volume data from triangular meshes using
voxelisation. Computer Graphics Forum, 15(5):311–318, 1996.

[Kat86] Kathib, O. Real-time obstacle avoidance for manipulators and mobile
robots. In International Journal of Robotics Research, volume 5(1), pages
90–99, 1986.

[Kat91] Katz, S. D. Film directing shot by shot: visualizing from concept to screen.
Michael Wiese Productions, 1991.

[Kau87a] Kaufman, A. An algorithm for 3D scan-conversion of polygons. In Pro-
ceedings of Eurographics, pages 197–208, August 1987.

[Kau87b] Kaufman, A. Efficient algorithms for 3D scan-conversion of parametric
curves, surfaces, and volumes. Computer Graphics (Proceedings of SIG-
GRAPH ’87), 21(4):171–179, July 1987.

[KF90] Karp, P. and Feiner, S. Issues in the automated generation of animated
presentations. Proceedings of Graphics Interface, pages 39–48, 1990.

[KF93] Karp, P. and Feiner, S. Automated presentation planning of animation
using task decomposition with heuristic reasoning. Proceedings of Graphics
Interface, pages 118–127, 1993.

[KF94] Krüger, W. and Fröhlich, B. The responsive workbench. IEEE Computer
Graphics & Applications, 14(3):12–15, May 1994.

[KMH95] Kolb, C., Mitchell, D., and Hanrahan, P. A realistic camera model for
computer graphics. Proccedings of Siggraph ’95, pages 317–324, 1995.

[Lat91] Latombe, J. C. Robot Motion Planning. Kluwer Academic Publishers, 1991.

170

Bibliography

[Lav95] Lavalle, S. M. A Game-Theoretic Framework for Robot Motion Planning.
PhD thesis, University of Illinois at Urbana-Champaign, Illinois, 1995.

[LP81] Lozano-Peréz, T. Automatic planning of manipulator transfer movements.
IEEE Transactions on Systems, Man and Cybernetics, 11(10):681–698,
1981.

[LRDG90] Lengyel, J., Reichert, M., Donald, B. R., and Greenberg, D. P. Real-
time robot motion planning using rasterizing computer graphics hardware.
Computer Graphics, 24(4):327–335, 1990.

[MCR90] Mackinlay, J. D., Card, S. K., and Robertson, G. G. Rapid controlled
movement through a virtual 3D workspace. Computer Graphics (Proceedings
of SIGGRAPH ’90), 24(4):171–176, August 1990.

[Mer] Merriam-Webster. Merriam-Webster Collegiate Dictionary. http://www.m-
w.com/.

[Min95] Mine, M. R. Virtual environment interaction techniques. Technical Report
95-018, Department of Computing Science, University of North Carolina,
Chapel Hill, NC 27599-3175, 1995.

[Nie93] Nielson, J. Usability Engineering. Academic Press, 1993.

[Nil69] Nilsson, N. J. A Mobile Automation: An Application of Artificial Intelli-
gence Techniques. In Proceedings of the 1st International Joint Conference
on Artificial Intelligence, pages 509–520, Washington D.C., 1969.

[OEW] OEW. Innovative software GmbH. http://www.isg.de.

[OMG] OMG. CORBA specification. http://www.omg.org.

[ÓSY83] Ó’Dúnlaing, C., Sharir, M., and Yap, C. K. Retraction: A new approach
to motion planning. In Proceedings of the 15th ACM Symposium on the
Theory of Computing, pages 207–220, Boston, 1983.

[Pap65] Papouls, A. Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, 1965.

[Pre98] Preim, B. Interaktive Illustration und Animation zur Erklärung komplexer
räumlicher Zusammenhänge. PhD thesis, Otto-von-Guericke Universität,
Magdeburg, 1998.

[PST+96] Pausch, R., Snoddy, J., Taylor, R., Watson, S., and Haseltine, E. Disney’s
aladdin: First steps towards storytelling in virtual reality. Proceedings of
Siggraph ’96, pages 193–203, 1996.

[Rat] Rational Rose. http://www.rational.de.

[RBD+99] Ritter, A., Böttger, J., Deussen, O., König, M., and Strothotte, T.
Hardware-based rendering of full-parallax synthetic holograms. Applied Op-
tics, pages 1364–1369, 1999.

171

Bibliography

[RH94] Rohlf, J. and Helmann, J. Iris Performer: A high performance multipro-
cessing toolkit for real-time 3D graphics. In Proceedings of SIGGRAPH ’94,
pages 381 – 394. ACM Press New York, NY, USA, 1994.

[Rhe91] Rheingold, H. Virtual Reality. Secker & Warburg, 1991.

[RJ97] Rickel, J. and Johnson, W. L. Intelligent tutoring in virtual reality: A
preliminary report. In Proceedings of the 8th World Conference on AI in
Education, August 1997.

[RPDS00] Ritter, F., Preim, B., Deussen, O., and Strothotte, T. Using a 3d puzzle
as a metaphor for learning spatial relations. In Proceedings of Graphics
Interface, pages 171–178, Montréal, Que., Canada, 2000.

[RS97] Regenbrecht, H. T. and Schubert, T. W. Measuring presence in virtual
environments. In HCI International, July 1997.

[Rub94] Rubin, J. Handbook on usability testing: how to plan, design, and conduct
effective tests. Wiley technical communication library, 1994.

[SA] Segal, M. and Akeley, K. OpenGL Specifications and State Machine Dia-
gram. http://www.opengl.org/developers/documentation/specs.html.

[SCP95] Stoakley, R., Conway, M. J., and Pausch, P. Virtual reality on a WIM:
Interactive worlds in miniature. In Proceedings of CHI’95, pages 265–272.
ACM SIGCHI, March 1995.

[Sho85] Shoemaker, K. Animating rotation with quaternion curves. In Proccedings
of SIGGRAPH ’85, volume 19(3), July 1985.

[SK99] Sramek, M. and Kaufman, A. E. Alias-free voxelization of geometric objects.
IEEE Transactions on Visualization and Computer Graphics, 5(3):251–267,
July 1999.

[Sla99] Slater, M. Measuring presence: A response to the Witmer and Singer pres-
ence questionnaire. Presence, 8(5):560–565, 1999.

[SSH87] Schwartz, J. T., Sharir, M., and Hopcroft, J. Planning, Geometry, and
Complexity of Robot Motion. Ablex, Norwood, NJ., 1987.

[Sta02] Stanney, K. M. Handbook of Virtual Environments : design, implementa-
tion, and applications. Lawrence Erlbaum Associates, Inc., Mahwah, New
Jersey 07430, 2002.

[Str98] Strothotte, T. Computational Visualization: Graphics, Abstraction, and
Interactivity. Springer-Verlag Heidelberg, Berlin, Heidelberg, 1998.

[Sut63] Sutherland, I. E. Sketchpad - a man-machine graphical communication
system. Technical report, No. 296, MIT Lincoln Laboratory, 1963.

172

Bibliography

[SW97] Slater, M. and Wilbur, S. A framework for immersive virtual environments
(five): Speculations on the role of presence in virtual environments. Pres-
ence: Teleoperators and Virtual Environments, 6(6):603–616, 1997.

[Swe88] Sweller, J. Cognitive load during problem solving : Effects on learning.
Cognitive Science, 12:257–285, 1988.

[Swe94] Sweller, J. Cognitive load theory, learning difficulty and instructional de-
sign. Learning and Instruction, 4:295–312, 1994.

[TBGT91] Turner, R., Balaguer, F., Gobeletti, E., and Thalmann, D. Physically-
based interactive camera motion control using 3D input devices. In Pro-
ceedings of Computer Graphics International ’91, pages 135–145, 1991.

[TBN00] Tomlinson, B., Blumberg, B., and Nain, D. Expressive autonomous cin-
ematography for interactive virtual environments. In Proceedings of the
Fourth International Conference on Autonomous Agents, pages 317–324,
Barcelona, Catalonia, Spain, 2000.

[Tra99] Tramberend, H. Avocado: A distributed virtual reality framework. In
Rosenblum, L., Astheimer, P., and Teichmann, D., editors, Proceedings of
IEEE Virtual Reality, pages 14–21, Los Alamitos, California, 1999.

[Tra01] Tramberend, H. A display device abstraction for virtual reality applications.
In Chalmers, A. and Lalioti, V., editors, Proceedings of AFRIGRAPH ’01,
Capetown, South Africa, November 2001.

[WE98] Westermann, R. and Ertl, T. Efficiently using graphics hardware in volume
rendering applications. Proceedings of SIGGRAPH ’98, pages 169–178, July
1998.

[WH99] Wernert, E. A. and Hanson, A. J. A framework for assisted exploration
with collaboration. In Ebert, D., Gross, M., and Hamann, B., editors,
IEEE Visualization ’99, pages 241–248, 1999.

[WK93] Wang, S. and Kaufman, A. Volume sampled voxelization of geometric
primitives. In Proceedings of Visualization’93, pages 78–84. IEEE, 1993.

[WNDO99] Woo, M., Neider, J., Davis, T., and Open Architecture Review Board.
OpenGL Programming Guide. Addison-Wesley Publishing Company, 3rd.
edition, 1999.

[WO90] Ware, C. and Osborne, S. Exploration and virtual camera control in vir-
tual three dimensional environments. In Proceedings of 1990 Symposium of
Interactive 3D Graphics, pages 175–183. ACM Siggraph, 1990.

[WS94] Witmer., B. and Singer, M. Measuring immersion in virtual environments.
Technical Report 1014, U.S. Army Research Institute for the Behavioral and
Social Sciences, Alexandria, VA, 1994.

173

List of Figures

1.1 From Goal to Goal Field . 3

3.1 Overview of Process of the CubicalPath Method 25
3.2 Electrostatic Potential Field of a Point Source 27
3.3 Electrostatic Field of a Point Source 28
3.4 Electrostatic Field between Two Different Charged Plates 29
3.5 Force Generated by Multiple Point Charges 30
3.6 Potential Field Generated by Multiple Point Charges 31
3.7 Process Diagram Including Data Structures 33
3.8 Object Space and Cube Space . 34
3.9 Voxelization of Objects in Object Space Forms Cube Space 35

4.1 Dynamic Potential Field Method . 45
4.2 CPAnalysisServer . 46
4.3 Two Ways of Interactively Influencing the Camera Motion 49
4.4 Examples for Camera Orientation . 51
4.5 Deadlock Situation for Camera . 52
4.6 Navigation Objects for Specific Path 53
4.7 Object Attributes . 56
4.8 Navigation Objects for Specific View 56
4.9 Examples of Navigation Objects . 57

5.1 MRI Dataset . 60
5.2 Geoseismic Data . 61
5.3 Happy Buddha: Polygonal Representation and Volume Data Repre-

sentation . 61
5.4 3D Spatial Cursor . 62
5.5 Triangle Voxelizer . 65
5.6 Collection of Triangles . 66
5.7 OpenGL Operations . 70
5.8 OpenGL Per-Fragment Operations 71
5.9 Volume Data Generation . 75
5.10 Image/Slice in Volume Data . 75
5.11 Scene-graph for Hardware-Based Voxelization 79
5.12 Experiment: Hardware-based Voxelization without Analysis of the

Volume Data . 82

175

List of Figures

5.13 Experiment: Hardware-based Voxelization with Analysis of the Vol-
ume Data . 83

5.14 Experiment: Comparison of Hardware- and Software-Based Voxeliza-
tion . 84

5.15 Experiment: Comparison of Single- and Multiple Objects Identifica-
tion Algorithms for Hardware-Based Voxelization 85

5.16 Experiment: Hardware-Based Voxelization for Onyx and PC 86

6.1 CubicalPath Program Structure . 90
6.2 Struct Camera Data . 93
6.3 CubicalPath system Class Structure 94
6.4 CPControl Class . 95
6.5 Scheme Commands . 97
6.6 Example Scene: Room . 98

7.1 Explosion View . 102
7.2 3D Puzzle . 103
7.3 Cooperation 3D Puzzle and CubicalPath System 104
7.4 3D Puzzle Animation . 105
7.5 Virtual Art Museum . 108
7.6 Virtual Art Museum Animation . 109
7.7 Bonn Marktplatz Application . 110
7.8 Bonn Marktplatz Hardware-Based Voxelization 111
7.9 Bonn Marktplatz Application Overlaid with its Cube Space Repre-

sentation . 114

8.1 Questionnaire . 121

C.1 The Process of Imaging . 139
C.2 Imaging System . 140
C.3 Camera, Placement, and Image Attributes 141

D.1 View Plane and View Plane Normal 143
D.2 OpenGL Perspective View . 144
D.3 View Plane and Clipping Planes . 145
D.4 View Plane Normal Unequal Direction of View 145
D.5 View Platform . 146
D.6 Coordinate System Dependencies for Head-Tracked Stereo Views . . . 148
D.7 Eye Position in View Platform Influences View Frustum 148

E.1 Responsive Workbench . 149
E.2 CyberStage Setup . 150
E.3 CyberStage . 151
E.4 i-Cone . 152

176

List of Tables

7.1 Time Measurements 3D Puzzle . 106
7.2 Application Features. 112

177

	Title
	Content
	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Result
	1.4 Overview

	2 Foundations
	2.1 Virtual Environments
	2.1.1 Historic Overview and Applications
	2.1.2 Presence and Immersion
	2.1.3 Virtual Environment Systems
	2.1.4 Interaction

	2.2 Navigation
	2.2.1 Maneuvering
	2.2.2 Travel
	2.2.3 Target-Based/Automated Travel

	2.3 Exploration
	2.3.1 Exploration in Virtual Environments
	2.3.2 Supported Exploration

	2.4 Motion Generation Techniques
	2.4.1 Motion in Virtual Environments
	2.4.2 Computer-Generated Motion
	2.4.3 Interactive Computer-Generated Motion

	2.5 Summary

	3 Automated Travel using Potential Fields
	3.1 Potential Fields
	3.1.1 Electrostatics
	3.1.2 Robotics
	3.1.3 CG Applications

	3.2 Camera Motion Utilizing Potential Fields
	3.2.1 Geometric Setup
	3.2.2 Target Setup
	3.2.3 Step Generation - Camera Position

	3.3 Summary

	4 Guided Exploration using Dynamic Potential Fields
	4.1 The Dynamic Potential Field Method
	4.2 Dynamic Attraction Fields
	4.2.1 View Analysis
	4.2.2 Goal Field Adjustment

	4.3 Interactive Input
	4.3.1 Dynamic Camera and Interaction Tool Input
	4.3.2 Dynamic Objects
	4.3.3 Dynamic Targets

	4.4 Extensions
	4.4.1 Camera Orientation
	4.4.2 Predefined Paths
	4.4.3 Predefined Views
	4.4.4 Extended Object Attributes
	4.4.5 Navigation objects at work

	4.5 Summary

	5 Real-time Voxelization
	5.1 Volume data
	5.1.1 De nition
	5.1.2 Example Applications
	5.1.3 Voxelization Requirements

	5.2 Voxelization
	5.3 Software-based Triangle Voxelization
	5.3.1 Triangle Voxelization Mechanism
	5.3.2 Scene-graph Setup for Triangle Collection

	5.4 Hardware-based Voxelization
	5.4.1 Rendering Pipeline
	5.4.2 Hardware-based Voxelization and Analysis Mechanism
	5.4.3 Color Coding of Object IDs
	5.4.4 Identi.cation of Multiple Objects per Voxel
	5.4.5 Scene-Graph Setup

	5.5 Implementation Issues
	5.6 Voxelization Time Experiments
	5.7 Discussion
	5.8 Summary

	6 Software Architecture
	6.1 CORBA
	6.2 Interface to CubicalPath system
	6.3 Client Application Setup
	6.4 System Design
	6.4.1 UML
	6.4.2 Class Design

	6.5 Programmer's view
	6.5.1 AVANGO client application
	6.5.2 Fine Tuning

	6.6 End-user's view
	6.7 Summary

	7 Applications for Guided Exploration
	7.1 3D Puzzle
	7.2 Virtual Art Museum
	7.3 Bonn Marktplatz
	7.4 Discussion and Summary

	8 Usability Study
	8.1 Goal
	8.2 Hypothesis
	8.3 Test Design
	8.3.1 Task Design
	8.3.2 Questionnaire
	8.3.3 Participants

	8.4 Results
	8.5 Discussion and Summary

	9 Concluding Remarks
	9.1 Discussion
	9.2 Future Work

	Appendix
	A Mathematical Derivations
	B Implementation Details
	C Imaging Systems
	D View speci cation
	E Virtual Environment Systems
	F Usability Study
	G Glossary

	Curriculum Vitae
	Bibliography
	List of Figures
	List of Tables

