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Abstract

The use of local spatial frequency provides a powerful analytical tool for image anal-

ysis. This dissertation provides an improved solution to long-standing problems in

stereo vision; foreshortening, ambiguous matches, detecting and handling discontinu-

ities and occlusion, and quantitative evaluation of stereo results.

Challenges arise from the fact that stereo images are acquired from slightly dif-

ferent views. Therefore, the projection of the surface in the image plane is more

compressed and occupied a smaller area in one view than the other. This effect

makes the matching of its two images very difficult and leads to confusing results.

That is because, while corresponding two images N pixels on a scanline in one image

may correspond to a different number of M pixels in the other image.

In this research, a new approach called local-spatial-frequency approach is proposed

to combine the localizability of the spatial approach and the analytical benefits of the

frequency approach. To simplify the matching process the prescribed system consists

of a combination of stereo vision concept and the structured light concept. We also

provide a solution for the long-standing problems in stereovision in two suggested

algorithms:

The first algorithm is based on the output of linear spatial filters tuned to a range

of orientations and scales that make the correspondence analysis more reliable and

robust. The responses of these filters at a given pixel constitute a vector called filter

response vector (FRV). This vector is correlated instead of correlating area in the two

images. The correspondence problem can be solved by seeking points in the other

view where this vector is maximally similar. In addition, an automatic procedure is

used to evaluate and optimize the filters set by using the Steering theorem and the

singular value decomposition (SVD). The projective distortion regions are detected

to improve the quality of the disparity estimation by adapting to the size of filter

kernel.

One of the major contributions of this algorithm appears while detecting and han-

dling the depth discontinuities in order to improve the quality of the initial estimate

disparity map. The algorithm maintains a current best estimate of the viewing pa-

rameters (to constrain vertical disparity to be consistent with epipolar geometry), a

visibility map (to record whether a point is binocularly visible or occluded) and a
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scale map (to record the largest scale of filter not straddling a depth discontinuity).

Starting with an initial computed disparity map, the algorithm iteratively updates

the disparity for each detected region by adapting the size of filter kernel. The 3-D

surface reconstruction can be calculated by the standard triangulation method. The

experimental result shows that remarkable improvement is obtained in the projective

distortion region.

The second suggested algorithm is a phase-difference based algorithm that uses an

adaptive scale selection process. This algorithm demonstrates a theory of modeling

the physical effects of perspective distortion (foreshortening problem) in stereo vision

system. The central part of our model is the development of the dual scale factor

that allow the reasoning of foreshortening in both the geometric domain of the world

model and the frequency domain of the stereo images. The algorithm also provides

a novel solution to the phase-wraparound problem that has limited the applicability

of other phase-based methods.

This algorithm combines the magnitude and phase information for estimating

depth information from two-dimensional stereo image pairs. This method takes into

account not only the instability of phase but also the surface perspective distortion

(the foreshortening in one view). These properties are important to the use of phase

information to avoid the incorrect disparity estimates. Instead of matching intensi-

ties directly, a Gabor scale-space expansion is used. Magnitude information is used to

detect ”weak points” in the frequency domain, and only reliable phase values remain

for a robust estimation disparity. The advantage of this algorithm is that the com-

puted disparity values are obtained with sub-pixel accuracy without requiring explicit

sub-pixel signal reconstruction. This relates the parameters in the image plane to the

surface slope and does not require prior knowledge of the distance to the object. From

the experimental results we conclude the fact that the foreshortening factor has its

greatest impact when objects are sharply slanted and located near the cameras.

The efficiency and performance is confirmed on the basis of analysis of rectified

stereo images. The experimental results show that the performance of the proposed

algorithm in terms of accuracy and density of the disparity estimates has greatly

improved. The random error could be determined by measuring reference (ground

truth), for instance in the experimental results of cylinder object the error amounts

to approximately ±0.2 pixels while in the Area-based algorithm is approximately

±1.2 pixels. Also for a center scanline from the slanted flat surface at the various

rotation angles; 0◦, 20◦ and 45◦ and disparity range (1...6) pixels, the error amounts

are approximately ±2.5 pixels.
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Zusammenfassung

Für einfache Situationen gibt es viele leistungsfähige Verfahren zur 3D-Vermessung im

Orts-/Zeit und Frequenzbereich, die in intensitätsbasierte wie auch merkmalsbasierte

Verfahren unterteilt werden können. Diese versagen häufig unter dem Einfluss von

nicht-kooperativen Messsituationen und erfüllen somit die Forderungen nach Robus-

theit und Flexibilität nur zum Teil. Die Transformation in den Ortsfrequenzbere-

ich liefert ein leistungsfähiges Werkzeug für Bildanalyse, das in der vorgelegten Ar-

beit umfassend genutzt wird. Insbesondere bei komplizierten Objekten ergeben sich

Probleme aus Tatsache, dass die Stereo-Bilder aus etwas unterschiedlichen Ansichten

akquiriert werden. Deshalb ist die Projektion der Objektoberfläche in die Bilder aus

einer Ansicht gestauchter und überdeckt ein kleineres Areal als aus der anderen An-

sicht. Dieser Effekt erschwert das Matching beider Bilder und erfordert oft zusätzliche

Massnahmen. Die Forschungsarbeiten im ahmen dieser Dissertation liefern signifikant

verbesserte Lösungsansätze für schon lange bestehende Korrespondenzprobleme bei

der Stereobildanalyse: ortsabhängige Verzerrung in beiden Bildern, mehrdeutiges

Matching, Behandlung von Unstetigkeiten und Verdeckungen sowie eine eindeutige

Bewertung der Ergebnisse.

In dieser Arbeit wird eine hier als lokaler Ortsfrequenzansatz bezeichnete Her-

ausgehensweise vorgeschlagen, die die Lokalisierbarkeit des räumlichen Ansatzes mit

den analytischen Vorteilen des Frequenzansatzes kombiniert. Bei Objekten mit un-

zureichender Eigentextur und zur Optimierung der Messung wird durch Projektion

strukturierten Lichts eine künstliche Textur generiert. In der vorgelegten Arbeit wird

eine verbesserte Lösung zu oben genannten Problemen der Stereo-Vision durch An-

wendung folgenden Algorithmen vorgeschlagen:

Der erste Algorithmus basiert auf der Anwendung linearer Raumfilter, die auf

einen Bereich von Orientierungen und Skalierungen abgestimmt wurden, um die Ko-

rrespondenzanalyse zuverlässiger und robuster zu machen. Die Ausgangsinforma-

tionen dieser Filter an einem gegebenen Pixel bilden einen Vektor, der als Filter-

antwortvektor (FRV, filter response vector) bezeichnet wird. Dieser Vektor wird an

Stelle einer Flächenkorrelation zwischen zwei Bildauschnitten korreliert. Das Kor-

respondenzproblem kann gelöst werden, indem der Punkt in der anderen Ansicht

gesucht werden, an dem die Ähnlichkeitsfunktion des Vektors einen maximalen Wert
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liefert. Zusätzlich wird eine automatische Prozedur verwendet, den Filtersatz auszuw-

erten und zu optimieren. Dies erfolgt unter Anwendung des Steering-Theorems und

der Singulärwertzerlegung (SVD, singular value decomposition). Die projektiv verze-

ichneten Regionen werden erkannt und durch eine adaptive Grössenanpassung des

Filterkerns kann die Qualität der Disparitätsschätzung verbessert werden. Einer der

Hauptvorteile dieses Algorithmus ist das Finden und Behandeln der Tiefendiskonti-

nuitäten zur qualitativen Verbesserung der initial geschätzten Disparitätskarte. Ange-

fangen mit einer initialen Schätzung der Disparitätskarte aktualisiert der Algorithmus

iterativ die Disparität für jede erkannte Region durch Anpassung der Grösse des Fil-

terkerns. Die experimentellen Ergebnisse zeigen, dass eine signifikante Verbesserung

in der projektiv verzeichneten Region erreicht wird.

Der zweite vorgeschlagene Algorithmus ist ein auf der Phasendifferenz basierender

Algorithmus, der einen adaptiven Skalierungsauswahlprozess verwendet. Der Algo-

rithmus nutzt eine Methode zur Modellierung der physikalischen Effekte perspek-

tivischer Verzeichnungen in Stereovision Systemen. Der zentrale Teil des Algorith-

mus ist die Entwicklung eines dualen Skalierungsfaktors, der es erlaubt, die perspek-

tivischen Verzeichnungen sowohl direkt geometrisch als auch im Frequenzraum der

Stereo-Bilder zu bewerten. Darüber hinaus trägt der Algorithmus zur eindeutigen

Phasenbestimmung beim so genannten Phase-Wraparound bei und verbessert damit

auch die Anwendung anderer auf der Phasenauswertung-basierender Methoden.

Der Algorithmus nutzt weiterhin die Amplituden- und Phaseninformation zur

Schätzung von Tiefeninformation aus zweidimensionalen stereoskopischen Bildpaaren.

Er berücksichtigt sowohl die Instabilitäten der Phase als auch die perspektivischen

Verzeichnungen der Oberfläche (die Verkürzung in einer Ansicht). Diese Eigen-

schaften sind wichtig bei der Verwendung der Phaseninformation, um fehlerhafte Dis-

paritätsschätzungen zu vermeiden. Im Weiteren wird anstelle des direkten Matchings

der Intensitäten eine Gabor-Skalenraum-Erweiterung angewendet. Die Amplitudenin-

formation wird zum Entdecken ”schwacher Punkte” im Frequenzraum verwendet, und

nur verlässliche Phasenwerte bleiben für eine robuste Schätzung der Disparität übrig.

Ein Vorteil dieses Algorithmus besteht darin, dass Disparitätswertschätzungen mit

Subpixelgenauigkeit erhalten werden, ohne eine explizite Subpixelsignalrekonstruk-

tion zu benötigen. Experimentelle Ergebnisse zeigen, dass der Verkürzungsfaktor

seinen deutlichen Einfluss hat, wenn Objekte stark geneigt sind und sich in der Nähe

der Kameras befinden.

Die Effizienz und Leistungsfähigkeit der vorgeschlagenen Algorithmen wurde auf

der Grundlage der Analyse rektifizierter realer Bilder bestätigt. Die experimentellen

Ergebnisse zeigen, dass der vorgeschlagene Algorithmus deutliche Vorteile hinsichtlich

der Genauigkeit und Dichte der Disparitätsschätzungen im Vergleich zu alternativen

Methoden aufweist.
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Chapter 1

Introduction

Stereo matching is a technique used to extract depth from a pair of images that

was taken from a slightly different view points. In stereovision, the most challenging

problem for disparity estimate and surface reconstruction is to find corresponding

image points. This problem is called the corresponding problem in stereo matching

algorithm. Given a pair of corresponding pixels, the distance between the two cameras

(baseline) and their orientation, it is easy to apply triangulation to find the distance

to the point in world coordinates represented by those pixels (i.e. reconstruct the 3-D

information). In order to do that, our task is to focus on finding the vector offset

between corresponding points, which is called the Disparity.

Common computation algorithms have been proposed for disparity measurements.

These algorithms differ from one another in matching primitives, the density of the

results, the accuracy of the estimates and the underlying computation time. In gen-

eral, stereo algorithms can be classified in three classes: area-based, feature-based and

frequency-based stereos. Section 1.3 will explain these algorithms in more details.

The frequency-based, well known as phase-difference-based technique, has become

a widespread method for depth and optical flow estimation, because of its superior

performance and better theoretical grounding.

In frequency-based technique, the original signal is transformed to Fourier space

and some parts of the transformed signal (Magnitude and Phase component) are used

to estimate the disparity [2], [3], [4]. In our thesis we attempt to overcome some of the

long-standing problems in stereovision by using two algorithms [5], [6], [7], [8]. The

first algorithm [5], [6] is based on the outputs of linear spatial filters tuned to a range

of orientations and scales. Convolving the left and right images with a bank of linear

filters tuned to a number of different orientations and scales (2-D oriented derivative

of Gaussian filters). The responses of these filters at a given point constitute a vector

that characterizes the local structure of the image patch. This algorithm allow us to

address scale space selection and half occlusion problems, but their solution require

an initial disparity map that is computed without the benefit of models for these

problems.

1
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Figure 1.1: Experimental setup for the 3-D measurement.

The second algorithm [7], [8] (Phase-difference based algorithm) based on the

convolution of the stereo image pairs with Gabor-scale space expansion and caching

the outputs in a local spatial frequency representation (scalogram). Gabor filter

has two parameters; the width and the tuning frequency. In order to optimize the

performance, these parameters have been chosen in accordance to the characteristics

of the visual signal. In our thesis, we propose an automatic technique to locally adapt

the filter parameters to the input signal. In the first, we analyze the performance

of the phase-difference-based technique for disparity estimation with respect to the

choice of the Gabor filter parameters. Afterwards, a novel technique is introduced

that reduces phase nonlinearity by means of an adaptive mechanism for the tuning

frequency. The performance improvement that is produced by the adaptive filter is

demonstrated using different types of images.

1.1 Experimental Set-up and Calibration

The experimental set-up for 3-D analysis is shown in Fig.1.1. Image sequences or

stereo pair images are acquired by two or more cameras with parallel optical axes.

In our method, the surface coordinates of the measurement object are determined

from the images recorded by two cameras and a projector device situated between

the cameras. The projector emits a structured lighting patterns into the scene where

the projected light pattern illuminates the scene and the object. The reconstruction

of the 3-D surfaces in my research is based on the usage of a one shot taken from the
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(a) PULNix TM-6740 Dual-Tap AccuPIXEL (b) ABW 640 structured light projector

Figure 1.2: Experimental set-up devices.

stereo camera of an object illuminated with a stripe pattern.

1.1.1 Cameras

A pair of PULNix Dual-Tap AccuPiXEL cameras were used for high resolution ac-

quisition. The cameras have about 50 cm measured baseline separation between the

two cameras in our experimental results.

The PULNix TM-6740 Gigabit Ethernet camera is a compact, VGA format monochrome

progressive scan CCD camera in the AccuPiXEL Dual-Tap family, utilizing the GigE

interface. Based on a high-quality Kodak KAI-0340D 1/3” image sensor, this cam-

era’s most outstanding feature is in its ability to capture 200 frames per second at

full resolution and up to 3205 fps in partial scan and binning modes. The cameras

640(H)× 480(V ) resolution, as shown in Fig. 1.2(a) .

1.1.2 Light Projector

Our system consists of also a ABW LCD-640 (Automatisierung BildverArbeitung)

stripe projector with a maximum resolution of 640 × 640 lines that can be used to

generate arbitrary line patterns to project the Structured Light pattern into the scene,

as shown in Fig. 1.2(b).

1.1.3 Calibration

The calibration of the system by the standard method (e.g. bundle adjustment) [9]

is a basic requirement before acquiring the data images. Calibration is implemented

by using a calibration-target with marker points of known geometrical dimensions, as

depicted in Fig. 1.3. The calibration process can be summarized in briefly as follows:

First, we find all ellipses centers pints for all the marker points in the target figure.

These centers are numerics as we can see the image in Fig.1.4. Second, calculate the
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approximate values of the camera parameters. Finally, the approximate values are

improved by bundle block compensation [9]. As a result, the extrinsic parameters;

position of the projection center, the angle with respect to the object coordinate

system as well as the intrinsic parameters; effective focal length, scale factor, principle

points and distortion parameters of the cameras are available [9] [10] [11] .

1.2 Image Rectification and Depth Recovery

A common problem in all stereovision tasks is the correspondence problem. To sim-

plify the search for the corresponds points in the stereo images, or to simplify the

search in image structures representing the same world structure, images are usu-

ally rectified. The result are a pair of images where corresponding points lie on the

same horizontal line. This way limiting the search region [12]. Image rectification

is a transformation process used to project multiple images onto a common image

surface. It is used to correct a distorted image into a standard coordinate system.

If the two camera axes are not parallel, their associated epipolar lines are not

parallel to the scan lines [13], [9]. The process of rectification for a pair of images

transforms the original pair of image planes to another pair in a way that the resulting

epipolar lines are parallel and equal along the new scan lines. Rectification is depicted

in Fig.1.5. Here CL and CR are the camera optical centers, U1 and U2 the original

image planes and V1 and V2 refer to the rectified image planes. The condition of

parallel and equal epipolar lines requires planes V1 and V2 to lie on the same plane. A

point P is projected to image points Ol and Or on the same scan line in the rectified

planes.

Rectifying the images is one of the important processes in the correspondence

analysis. It reduces the problem of the canonical case when the corresponding mu-

tually visible points are in the same row. An example of a rectified wide baseline

stereo pair with sample epipolar lines is shown in Fig. 1.6. In order to do that,

the rectification program reads two camera parameters files which are the output of

camera calibration and the number of unrectified pair images. Caching the outputs

of the rectified images and the rectifying camera parameters i.e. in the normal case

(parallel optical axes).

1.3 Stereo Vision Algorithms

1.3.1 Stereo Camera Geometry: Stereo Matching

The normal case stereo camera geometry has optical axes that are parallel and are

normal to the baseline which lead to the notation of disparity which is often used in

stereo literatures [1] [14]. This geometry is depicted in Fig.1.7, the image of an object

point P (X,Y, Z) is formatted at (xl, y) in the left image and at (xr, y) in the right
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Figure 1.3: A simple planar calibration target in different orientations. The calibra-
tion target have the size 40× 40 cm with known geometrical dimensions of 28 marker
points.

Figure 1.4: Visualization of finding the marker points geometrical determined on the
calibration target.



1.3. Stereo Vision Algorithms 6

V2

P

U1

Or

V1

Ol

Epipolar

Lines

PrPl

CL

U2

CR

Figure 1.5: Image rectification. Retinal planer are coplanar and parallel to the base-
line.

Figure 1.6: Image before and after rectification. (a), (b) Images of 3-D scene parallel
to the baseline obtained by a stereo camera system with converging optical axes. (c),
(d) Rectification of the images so that corresponding epipolar lines fall on the same
scanline in the images.
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Figure 1.7: Normal case of stereo camera geometry with parallel optical axes.

image. The stereo-camera coordinate system is considered to be midway between the

left and right camera coordinate system.

Note that, the baseline B and the focal length f are positive numbers, the parame-

ter Z (the distance between the baseline and the object point) is a positive coordinate

and xl, xr are coordinates that may be positive or negative. The relation between the

3-D world point when measured with respect to the left camera coordinate system

and the stereo-camera coordinate system can be written by the following equation.

From similar triangles in Fig. 1.7, for the left camera, we have

xl

f
=

X + B/2

Z
(1.1)

and similarly for the right camera, we have

xr

f
=

X −B/2

Z
(1.2)

this can be written as

X + B/2 = Z
xl

f
(1.3)

and similarly for the right camera, we have

X −B/2 = Z
xr

f
(1.4)

removing X from Eq.1.3 and Eq.1.4, we can obtain

Z =
B · f

(xl − xr)
(1.5)
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Then, we obtain the canonical expression relating horizontal disparity (xl−xr) to

depth Z (distance between the base line and the object point)

(xl − xr) =
B · f

Z
(1.6)

the disparity is the entity that has be measured for each pair of corresponding points

to infer 3-D coordinates or surface point position of visible scene points from a given

stereo image pair. Eq. 1.6 which is presented also in [14], [15] gives pointwise disparity

only; we will show how to extend this description to surfaces at arbitrary angles.

The disparity can be estimated using various methods which can be organized

into the three categories:

• Area-based: Correlation-based, [16], [17], [18], [19], [20], [21]

• Feature-based, [22], [23], [24]

• Phase-based, [3], [4], [25], [2], [8], [26]

These methods differ from one another in the matching primitives, the density of

the results, the accuracy of the estimation and the underlying computation time. The

most reported signal step methods in the literature are: feature-based, correlation-

based and phase-based methods.

In the following subsections, we will describe the advantages and the disadvantages

for each method and the common problems in stereovision.

1.3.2 Area-based Algorithm: Spatial Correlation

As we mentioned above in section 1.3.1, stereo matching is performed with two images

which satisfy an epipolar line constraint. With the assumption of pin-hole camera,

the relation equation is derived as Eq. 1.5. Common computational approaches

include feature-based, area-based and phase-based methods. All these methods have

their intrinsic problems as they are caused by the assumptions inherent in these

algorithms.

The area-based stereo algorithm has widely used for practical stereo vision sys-

tems. The matching process is applied to the intensity profiles of the two images.

They have a very good matching accuracy in surface areas with continuously smooth

disparities. So, the appropriate size selection of a rectangular window is of impor-

tance. Generally, if the size of matching areas is determined as large as possible,

enough intensity variations are included and then matching accuracy is improved

in continuously smooth areas. However, large deformation of matching areas results

from projective distortion and smoothing occurs in the vicinity of depth discontinuity.

Therefore, existing area-based stereo algorithms tend to generate bad match results

in depth discontinuity.
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An accurate disparity estimation is indispensable to automated reconstruction be-

cause 3-D measurement depends on the disparity. Difficult problems in stereo match-

ing include matching ambiguities. In addition, intensity differences of corresponding

points become larger due to the projective distortion in occlusion boundary. The

intensity value of stereo images is defined as Il and Ir respectively. The relations of

intensity value can be expressed by Eq. 1.7;

Il(x, y) = Ir(x + d, y) (1.7)

where d(x, y) is disparity function at a pixel position.

In area-based methods, normalized cross correlation (NCC ) and sum of squared

difference (SSD) are mainly used as matching criteria [27]. Correlation is widely used

as an effective similarity measure in matching tasks. However, traditional correlation

based matching methods are limited to the short baseline case.

The matching can be used efficient phase correlation [28] or simply the mean

normalized Cross correlation. The algorithm compute similarity error for every pixel

in the image by taking a fixed window in the left image and shifting it along the

epipolar line in the right image, see Fig. 1.8. The correlation coefficient between the

reference window and the search window is calculated as follows:

NCC(x, y) =

N∑
j=1

M∑
i=1

[
l(i, j)− l

] ·
[
r(x + i, y + j)− r(x, y)

]

√√√√
N∑

j=1

M∑
i=1

[
l(i, j)− l

]2 ·
√√√√

N∑
j=1

M∑
i=1

[
r(x + i, y + j)− r(x, y)

]2

(1.8)

In Eq. 1.8 [29] x and y are coordinates of the correlation window in the left image.

The summation are performed over all pixels in the correlation window. l and r are

pixels from the left and right correlation window respectively, l̄ and r(x, y) are their

mean values over the correlation window. NCC is preferable since it is invariant to

linear brightness and contrast variations between the perfect matching windows. The

value of Eq. 1.8) is between -1 and +1 and a larger value indicates more similarity

between windows.

In Table 1.1 the summarized pseudo-code for a simple stereo matching algorithm.

A central problem in area-based method is to find the optimal size of the support

region. If the region is too small, a wrong match might be found due to ambiguities

and noise. If the region is too big, it can no longer be matched as a whole due to

the foreshortening and occlusion with the result of lost detail and blurring of object

boundaries.

The main problem in such correlation based stereo is that the results at depth

discontinuities and occlusion boundaries are generally quite unreliable, Fig. 1.9 shows

the occlusion region in the discontinuities view. Also, make use of the same sized
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Figure 1.8: Principle of spatial correlation windows: The patch window on the right is
shifted pixel by pixel across a larger search window and the maximum cross-correlation
to the reference on the left is found.

Table 1.1: Pseudo code for Stereo Matching Algorithm

Given:A pair of grayscale images, disparity range,
1: Let Il(xl, yl) and Ir(xr, yr) are the left and right images
2: Let EF (xl, yl, xr, cr) be the similarity function
3: for each pixel (xl, yl) in Ll

4: for each possible match (xr, yr) in Lr

5: Compute EF (xl, yl, xr, yr)
6: end for
7: Let ∆(xl, yl) be the choice value which yields the min/max value of EF
8: end for

matching windows in both images which mean that the objects are assumed to be

basically planar and are viewed from the front that will be demonstrated and tried

to over come these outliers in our method.

1.3.3 Feature-based

The feature detect methods that are based on finding distinct features in images such

as lines, angles, corners ... etc. A list of features is stored for each image and then

the lists are compared to determine correspondence.

The matching stage operates only on these extracted image features. This method

uses less calculations than area-based, but does not have unique correspondences

between left and right images due to the projection onto a subspace. Moreover,

since correspondence is only establishing at a small number of pixels, the resulting
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depth map will be very sparse. Thus while feature-based matching may be useful in

applications where the features are known to be visible and only sparse disparities

are required, it is not so useful for extracting dense depth maps.

1.3.4 Phase-based

In the phase-based methods, the local phase frequency of the horizontal 1-D signals

are extracted. In our method, an adaptive Gabor filters convolved with the scanline

form the entire images. Phase and magnitude can be calculated from these filter

responses and then the disparity can be computed.

The local phase has a number of interesting in-variance and equi-variance proper-

ties; local phase estimation are invariant to signal energy [30], local phase estimation

and spatial position are equi-variant and the spatial derivative of local phase esti-

mates is equi-variant with the spatial frequency, (the phase derivative is called local

or instantaneous frequency). More details can be found in chapters four and five.

1.3.5 Problems In Stereovision:
Ambiguity, Occlusion and Foreshortening

The input to any binocular stereo system is a pair of images. The task is to match

primitives of the two images, thereby solving the correspondence problem. The depth

of objects in the scene can then be determined. There are several choice of matching

primitives and the performance of disparity estimation is affected by different sources

of problems [31]. We distinguish between;

1. Error sources that are due to the basic assumptions on which the computational

procedure of stereovision is found.

2. Sources that are due to the approximations introduced in the mathematical

procedure.

Regarding the first issue, note that stereovision is based on the assumption that a

pair of stereo images are locally related by a one dimensional shift. Since the stereo

images are two dimensional scenes taken from slightly different views, we expect;

presence of occlusion, difference in scale and also the probability of the miss matching.

In spite of the strong physical constraints available to stereo methods, many prob-

lems remain in their implementation. While the mapping from disparity to depth is

well understood, the automatic extraction of disparity is still subject to error. A

complete review of most stereo matching problems is beyond the scope of this work.

• Occlusion Region: In the scene that contains more than one level surface,

this situation is depicted in Fig. 1.9 region C located in the near surface and

regions A, B, D and E located in the far surface. There are often regions visible
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Figure 1.9: Occlusion region. Stereo geometry with parallel axes for depth disconti-
nuities.

to one camera but not the other. These regions called occluded regions. In this

region there is no corresponding point in the other view and recovered disparity

estimates appear as error.

• Ambiguous Matching: As we can observe from the image in Fig. 1.10, The

grid pattern in the background is completely repetitive. So, the matching for

a point in that region is difficult. The SSD (sum of squared differences) over

a small window is one of the simplest and most effective measures of image

matching. For a particular point in the base image, a small image window is

cropped around it and as it is slid along the epipolar line of other images, the

SSD values are computed for each disparity value. Such SSD values with respect

to disparity for a single stereo image pair is shown as the right plot of Fig. 1.10.

As expected, it has multiple minimums and matching is ambiguous. Because

the camera separation and object-to-camera distance are restricted, the object’s

perimeter will not differ significantly in the two images. The object boundary

descriptions for each image can be compared prior to the matching procedure

to ensure minimal global correspondence. This check may reveal ambiguous

matching, i.e. situations for which a local point or area in one image may match

equally well with a number of points or areas in the other image [32], [33]. If the

perimeters differ by more than 20 percent, then the object is considered ”failed

to match”.
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is unable to determine a unique correspondent for a particular pixel.
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Figure 1.11: Overhead view of the foreshortening model. The perspective distortion
due to a slanted surface.

• Unequal Projection Lengths (Foreshortening): The object surface is

viewed head-on in both images of a stereo pair. In other situation the object

surfaces are acquired in a slanted view, therefore, they appear more compressed

in one image, due to perspective foreshortening. Fig. 1.11 illustrate this prob-

lem where a projection line segment L1 from left camera and a projection line

segment L2 from right camera have a different number of pixels. When a sur-

face has a textured appearance, this effect makes matching its two images very

difficult, since its appearance differs so much between the two images.

In Chapter 6, we develop a model of perspective foreshortening and provide a

foreshortening factor that allow us to reason foreshortening effects in 3-D world

coordinates and 2-D image coordinates.
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Figure 1.12: Unequal sampling in the stereo image pair due to the slanted surface.

• Unequal Sampling (Unequal intensity): Since a line segment has differ-

ent projection lengths in the two images, therefore it’s intensity functions also

samples different, as we can see in Fig. 1.12.

These topics will be addressed in the forthcoming chapters.

1.4 Related Work

Over the last few years, a large number of techniques have been developed [25], [2],

[34], [7], [35], [36], [26], [37] etc. Scharstein and Szeliski [35] have provided an exhaus-

tive review and comparison of stereo correspondence algorithms. Recently, several

works proposed frequency-based (phase-based) techniques to disparity estimation.

The simplest method is to minimize the matching error within rectangular windows

of fixed size, Kanade T., [16] presented an adaptive window method to reduce the

effect of projective distortion. His method employs a statistical model of the disparity

distribution within a window, by evaluating the local variation of the intensity and

disparity. This method can select an appropriate windows size and estimate disparity

with the lowest uncertainty for each pixel of an image. Better approaches utilize

multiple windows [17], [18], shiftable windows [19], [20], or predicted windows [21],

all of which give performance improvement at discontinuities. Kim [38] presented a
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new stereo matching algorithm based on window warping technique in hierarchical

matching process to balance the perspective distortions. Falkenhagen [39] presented

a hierarchical block-based approach by considering neighborhood constraints and by

estimating hierarchically on a multi-resolution image pyramid of a stereoscopic image

pair.

Y. Ohta [22] used derivatives to find edges on each scanline, and then link edges

between different scanlines to provide global constraints.

In contrast to correlation-based or feature-based approaches which suffer from

high computational load, the approach of the frequency domain is characterized by

the original scan line in the 2-D image which is transformed to a frequency domain.

Afterwards, disparity can be calculated directly from local phase differences. Fur-

thermore, phase-based algorithms provide inherent subpixel accuracy, as they yield

information directly from the phase difference. When estimating disparity in the

frequency-based algorithm, not only phase but also magnitude information is avail-

able to have an accurate disparity estimation. A combined approach, which takes

phase and magnitude into account, should be promising for fast and robust disparity

estimation. The quality of reconstruction is directly dependent on the quality of the

disparity map. One of the first examples of the phase-based algorithms is the Kuglin-

Hines method [40], which utilizes the phase shift theorem of the Fourier transform.

The method proposes a model based on the inverse Fourier transform of the phase dif-

ference between two images. Singer [34] was one of the first researchers who proposed

the use of the phase difference between two local filter responses in order to compute

the disparities of the different object in the two stereo images. Jones and Malik [41]

applied local spatial frequency and use the magnitude of the filter responses at each

pixel as matching features, but used an affine transformation matrix in the spatial

domain without providing a description of its effect in frequency domain.

Fleet et al. [3] have shown that the results can be improved by dividing the local

spatial frequency of the response instead of the tuning filter frequency. The same

authors [30] also provide additional phase measurements constraints to address the

phase wraparound problem. As a matter of fact; surface normal is often very tiled

with respect to the optical axes of camera, the projected stereo images has a projected

distortion which appear more compressed in one image. This effect makes matching

of its two images very difficult, since its appearance differs between the two images.

This leads to confusing results from area-based approaches, because the visible areas

vary between the two images. Weng [4] used the windowed Fourier phase, which is

the multiple-window using the Kuglin-Hines algorithm. The window size is allowed to

vary so that the measurements can be more localized. Ahlvers [25], [2] presented a new

approach for combining magnitude and phase information in Fast Fourier Transform

(FFT)-based algorithms.



Chapter 2

Structured Lighting for Disparity
Accuracy

2.1 Structured Light: Pattern Analysis

Stereovision is an attractive and widely used method, but, it is rather limited to recon-

struct the 3-D surface map, due to the correspondence problem. The correspondence

problem can be reduced using a method based on the structured light concept.

Among all the 3-D reconstruction methods, active stereovision systems are becom-

ing increasingly important. An active stereovision system is composed of one light

source and one or more camera. The light source can be a spatial light modulator or

a video projector. Each camera is fixed in front of the object at different positions.

The projection of light patterns into a scene is called ”Structured lighting”. The

light patterns are projected onto the objects which lie in the field of view of the

camera. The simplest and best recognizable light patterns are light spots and strips.

The distance of an object to the camera can be determined through analyzing the

observed light patterns in the images. The active manipulation of the scene by using

light patterns simplifies the 3-D reconstruction task [15].

To calculate the 3-D coordinates of object surface points, the projector projects

a certain light pattern onto the measured object, and each camera acquires an image

of the highlighted object. The 2-D coordinates of a surface element in the images

are extracted respectively. Fig.2.1, shows the principle of structured lighting and

stereovision system.

The most popular approach in structured lighting is to use a single stripe light.

The advantage of this approach is that it greatly simplifies the matching problem.

But this approach has the drawback that only one single line of 3-D data points can

be obtained with each image shot at one time. The most widely used method of this

approach proposed by [42], he use only one single camera together with a calibrated

light source, which projects a known pattern of light on the measuring scene. It is

required to find the correspondence between the projected pattern and the imaged

16
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Figure 2.1: The principle of structured lighting and stereovision. The system contain
a projector (light source) and two cameras, a light pattern projected into the scene.
The origin of the stereo camera coordinates system are XlYlZl and XrYrZr. The
considered illuminated object point P (X, Y, Z) is formatted to a point Pl(xl, yl) in
the left image plane as well as point Pr(xr, yr) in the right image plane.

one. It is also needed to calibrate both the camera and the light source.

In order to speed up the acquisition of 3-D range data, we adopt to use a multiple-

stripe light pattern projected onto the measurement object. Two cameras are placed

at different view points to capture the left and right images (stereo pair images). Thus

increasing the local discriminability of each pixel and facilitating matching process.

Once the correspondence problem is accurately solved, the 3-D range data can be

computed by using triangulation. Therefore, by using more than one camera, we can

replace the more difficult problem of lighting-to-image correspondence by an easier

problem of image-to-image stereo correspondence. Furthermore, we do not need to

calibrate the position and orientation for each of the projected light in 3-D space, i.e.

cameras are the only devices to be calibrated.

As it is mentioned, most of the proposed structured light techniques are based

on the projection of regular patterns on the measuring scene. If a single light dot

or a slit line is projected on the scene, then there is no correspondence problem to

be solved, but whole the scene has to be scanned to obtain the 3-D map. Shirai

et al., [43] proposed a slit line projection to recognize curvilinear object. Agin [44]

generalized this idea to recognize curvilinear objects. In 1986 Yamamoto [45] proposed

a half plane illumination system instead of a slit line. Recently, there are also some

authors, Sato et al. [46] as well as Kemmotsu [47], who use a method based on the
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projection of two or three slit lines with different orientation and position in the

3-D coordinates system. Asada [48] proposed to use a pattern made by a set of

vertical parallel and equidistant stripe lines. Wang [49] have extend Asada’s idea

with the sequential projection of two orthogonal strips patterns. Chen [50] have

successfully developed and implement a new method for 3-D range data acquisition

by combining color structured lighting and stereovision. Pattern of color stripes is

projected onto the objects while each camera acquires image. Edge segments are

extracted from the acquired stereo images pair, and then used for finding the correct

stereo correspondence. Kang [51] proposed a 4-camera system to recover dense stereo

range data from each set of images, a sinusoidally varying pattern project onto the

scene to enhance local intensity discriminability.

All these method allow us to obtain 3-D information from the geometric constraint

propagation, especially from the epipolar constraint. Recently, structured light tech-

nique has increased important in most of stereo vision methods. This technique is

based on a unique codification of each token of light projected on the scene. This

technique is basically known as coded structured light. In general, by looking at the

light projected, patterns can classified into:

• Binary : Any of the two coordinates (xp, yp) of the projected point can only

have one of two possible values, which are coded with 0 and 1 respectively.

This binary value normally represents opacity and transparency on the object.

• Grey level : Each pattern point can have an associated grey value, which rep-

resents the transparency (or opacity) level of the point against the projected

light. Since the information is coded as a grey light level, normally two steps

are necessary in order to find out 3-D information. First, we have to obtain

an image of the scene illuminated with the same light intensity for each point

(without coding). Second, we must obtain the reference light needed to cancel

the surface reflection effect, which depends on the kind of surfaces where the

light is reflected. This limitation means that the pattern has to be also classified

as a static pattern.

• Color : Each pattern point has to be associated with a hue value. In order to

use the color constancy property, the hue values used have to be quite different

from each other. The main goal is to get an efficient and accurate segmentation.

Since the system projects color on the scene, its use limited to a neutral color

scene, as highly saturated color objects can produce loosing of pattern regions in

the segmentation step and posterior de-codification. Even pale colored objects

may produce a colored frequency shifting as a result of the intrinsic color of the

measuring objects. Obviously, the discrepancy suffered by the color captured by

the camera with respect to the one projected by the pattern, rather complicates

the segmentation step.
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2.1.1 Generation of Structured Pattern:

Structured lighting simplifies the task by increasing the engineering prerequisites,

moreover we can obtain rich and highly specific image features. Various shapes of

light patterns exist, e.g. spot patterns, stripe patterns, checker-board, sinusoidal

or color patterns. The position, orientation and shape of the light patterns can be

changed or remain static during the image acquisition process.

Structured lighting is especially applied in those fields where automated three-

dimensional measurement of an object has to be carried out with high precision, of

course, this class of techniques is restricted to environments allowing the active pro-

jection and detection of light patterns. Even outdoor scenes are recoverable without

introduction artificial illumination. For example, sunlight in conjunction with a thin

pole produces a strip of shadow on the objects which yields equivalent information.

The motivation for using structured lighting is based on the expectation of the

precise detection of the projected light patterns in the acquired images, the correspon-

dence analysis is considerably simplified in both images. This is because patterns are

projected onto the scenes to facilitate image point correspondence.

Random-dot Pattern: This pattern is generated as a Gaussian white noise with

mean = 0.3 and variance = 0.3. The primary advantage of this pattern is that it

is stochastically unique everywhere, and the corresponding pointed can be detected

reliably [52]. In practice, we are interested to analyze the generated patterns, Fig.

2.2 (a) shows a square wave to illustrate the concept of spatial frequency resolution

where spatial frequency refers to how rapidly the brightness signal is changing in

space. Fig.2.2(b) shows the generated random-dot pattern 600×600 pixels. A central

block 16×16 of the original pattern is used to test the correlation performance of the

pattern by using the normalized cross correlation (NCC), recalling Eq. 1.8, where

NCC is invariant to linear brightness and contrast variations between the perfect

matching windows. The middle row in the same figure show the auto-correlation

maps, the normalized cross correlation for the whole pattern is shown in graph (d),

while the correlation of the template window is shown in graph (e) and the 3-D

shaded surface plot of the correlation shown in (f), as a results the template was

embedded at the center coordinate (300, 300) and the NCC found at the same point

(300, 300). In other view, bottom row in Fig. 2.2 give us the behavior of the pattern

in the frequency domain. A central line profile taken from the original pattern is

represented in a discrete Fourier transform (bottom-left), as well as, the scalogram

representation shown in bottom-right. More details on the scalogram representation

will be explained in chapter four. Briefly, to generate the scalogram an adaptive Gabor

filter G(x, ω) convolve with a one dimensional input row from the original pattern,

caching the output in a two dimensional matrix scalogram, magnitude and phase, as

shown in the bottom-middle and the bottom-right respectively. This representation

is very useful for image matching especially with frequency-based algorithms. This is
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because the scalogram-phase provides an actual detection to the localization of the

varying frequency.

Binary Encoded Stripe Pattern: For the binary encoded light stripe projection,

a set of light planes is projected onto the examined objects at the same time, these

light patterns lead to a unique code for each plane, see Fig.2.3. Therefore, 2n light

planes are uniquely encodable by using n patterns, i.e. taking n images. Then a large

number of images has to be generated for the object. The complete analysis of this

pattern illustrated in Fig.2.3, and for an implementation example Fig.2.5 shows a

gray code image sequence. The light planes were vertically projected onto the object.

Sawtooth Pattern: another type on the projected patterns is the sawtooth pattern

with a period length bright illuminated on one side and half brightly on the other.

Obviously, the maximum surface depth discontinuity to be measured is limited to the

chosen period. In each period the illumination intensity is constant along the x-axis

but increasing along the y-axis.

Color Stripes Pattern: For generating a color structured pattern, e.g. color stripes

pattern, Chen [50] generate a sequence of light stripes with brighter colors, called

C1, C2, ..., CN , in order to increase the intensity variation between adjacent light

stripes, a black stripe B is inserted between each Ci and Ci+1, (i = 1, 2, ..., N − 1).

Hence the final generated pattern is C1, B, C2, B, ..., B, CN . Fig.A.7 in appendix A

shows the color stripes pattern , wherever, it can be seen that the pattern has large

variations between adjacent light stripes, and the correlation between any two con-

secutive color sequences is quite small.

Appendix A, ”Structured Lighting”, contains the complete figures for the patterns

analyzed, Sawtooth pattern, Sinusoidal pattern, checker-board pattern, Color stripes

pattern etc, Fig. A.1 - A.7. In each figure, graph (b) show the originally 600 × 600

structured lighting pattern, a central block 16×16 depicted in graph (c), a distribution

map of auto-correlation values calculated by NCC function using a 16×16 pixel region

in the center part of the pattern depicted in graph (d), (e) and (f). The bottom row

in each figure represent the frequency representation of a central scanline from the

origin pattern, the discrete Fourier Transform on the left graph, and the scalogram

representation (its Magnitude and Phase) on the right graph.

2.2 Structured Light Effects

This section, deals with the effect of structured lighting patterns on the accuracy of

disparities estimates, as well as, the 3-D reconstruction surface.

The location (xi, yi) of a pixel pi in the image constrains the 3-D location of the cor-

responding object point Pi(Xi, Yi, Zi) to a certain sub-space in the scene. Therefore,

by using a disparity between each corresponding points and known camera geometry

parameters, the 3-D position (Xi, Yi, Zi) is obtained.
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Figure 2.2: Random-dot pattern 600 × 600 pixels. Gaussian white noise with mean
0.3 and variance 0.3.
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Figure 2.3: Stripes binary pattern 600× 600, stripe either bright or dark has 8 pixels
width.
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Most stereo matching algorithms can not compute correct dense depth maps for

homogenous image regions. This is due to the ambiguity of image values inside these

regions. The ambiguity can be reduced by adding a synthetic texture to the scene.

Of course, the accuracy is depending on the projected pattern and the stereo vision

technique, when two or more parts of an image pair are similar in appearance. This

can happen when a repetitive pattern like checker-board is present. A part of the

pattern in one image might seem to match several parts in the other. It can not

determine a unique corespondent for a particular pixel, as we can observe from the

results of the auto-correlation map in Appendix A, Fig. A.3(e, f), where we see more

than one peak for the particular pixel. Consider two images of a front planer checker-

board where the checker-board occupies the entire fields of view; the alignment of

the squares can not be determined from the images alone. Exactly, these type of

images will cause problems for stereo matches and the effect can be seen in disparity

estimates that are wildly inaccurate.

As it is well known, the use of structured lighting simplifies the difficult matching

problem. But in general we can say that there are different advantages and drawbacks.

For example, the use of stripe pattern introduces a ”phase ambiguity” during stereo

matching causing an inaccurate depth to be calculated. However, this can be over-

come with the appropriate adjustment to the wavelength of each stripe in the sine

grating. This gives each ”stripe” a unique width that improves stereo matching

accuracy, especially in regions of a low texture difference. Fig. 2.4 explores the

relation between periodic spacing (spatial frequency) of the strips and the actual

camera view (image).

In order to understand the concept of spatial frequency resolution, we need to

define exactly what we mean by resolution. Resolution has to do with the ability to

separate two adjacent strips, if we can see two adjacent pixels as being separate, then

we can resolve the two. Generally, If strips in two cycles (a cycle is one complete

change in the signal; in the stripe pattern we need at least two stripes one dark

and one light for a cycle) appear as one or can not exist a light separate between

them, then we can not resolve the two and this cause miss matching when solving

the corresponding problem. That means if we increase the frequency, the stripes get

closer and closer together, until they start blending together. Fig. 2.4(a) shows the

higher frequencies of the original pattern. The camera view (image) of this pattern

is shown in Fig. 2.4(b). However a rotated camera will catch a distorted view of

the stripe pattern, with the amount of deviation or disparity, that is proportional to

the object’s height above the reference plane. We can observe in the marker areas

that the strips are blended together. Fig. 2.4(c) illustrates the space diagram of two

sample line profile from the original pattern and its corresponding image view. Since

correct behavior is the brightness transformation from dark to light and from light to

dark and so on, while in the image view the brightness does not have the symmetric

behavior.
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(a1) Sinusoid object with a stripe
pattern of period length 0.8 Cm

(a2) Sinusoid object with a stripe
pattern of period length 0.4 Cm

(a3) Sinusoid object with a stripe
pattern of period length 0.2 Cm

(b1) The 3-D point cloud (b2) The 3-D point cloud (b3) The 3-D point cloud

(c1) The 3-D surface reconstruction (c3) The 3-D surface reconstruction(c2) The 3-D surface reconstruction

Figure 2.5: Stripe pattern effect of a ”Sinusoid” object. Three structured light of
stripe pattern with varying period length (0.8Cm, 0.4Cm, 0.2Cm) projected onto
the scene in (a1, a2, a3), a 3-D point cloud of the computed disparity map in (b1,
b2, b3) and the 3-D surface reconstruction in (c1, c2, c3).
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Figure 2.6: Data estimation based on a sequence of Gray coded patterns. (b)Example
of the gray code bit planes, (c) greycode images (bottom).

The effect of varying the frequency (period length) of the stripe pattern is depicted

in Fig.2.5. The figure shows a three left images of the stereo pares images taken

from project the three different structured light patten with different period length

(0.8 cm, 0.4 cm, and 0.2 cm) respectively in Fig. 2.5 (a). The 3-D point cloud of the

computed disparity map in each case shown in Fig. 2.5 (b). Also the 3-D surface

reconstruction shown Fig. 2.5 (c). It is clear to see the effect of varying the period

length of the stripe pattern in the results. That is because in the low frequency stripe

pattern (period length = 0.8Cm) the given pixel in one view of the stereo images has

multiple potential corresponds in the other view. Therefore the result has many of

mismatching points (ambiguous problem).

2.3 Reference Data: True Disparity

In stereo vision algorithms, one of the interesting objectives is to quantitatively com-

pare the performance of the existing stereo vision techniques. Unfortunately, the

lack of benchmark datasets (Database images with their ground truth maps) makes

it difficult. Consequently, we apply a fast active 3-D measurement of geometrical

shapes by photogrammetry and structured lighting method that was presented in our
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group [53], [54] to obtain a reference data set. Wherever, at our Lab in the univer-

sity of Magdeburg, it is possible to make measurements based on photogrammetric

method. The surface coordinates of the measurement object are determined from the

images recorded by two cameras which are mounted at different locations. A projec-

tor situated between the cameras projects a texture onto the surface of the body to

create sufficient grey-scale gradients. In this method [53], [54], instead of correlating

area in two images, greyscale values of single pixel obtained from a number of different

images taken in succession are correlated. Thus, it is possible to achieve higher spatial

resolution. The technique uses a striped lighting method to identify projected light

planes. The basic principle of the striped light method is the extraction of the height

coordinates from the deformation of the projected lines caused by the measurement

object.

The sequence of binary gray code images requires n patterns to distinguish among

2n light planes. The light planes are projected onto the measurement object to creta

sufficient grey-scale gradients. (see Fig 2.6). Fig. 2.6 shows several consecutive

patterns projected onto the measurement surface, the entirely illuminated scene is

shown at the bottom, the images show the generated sequence from different projected

light patterns shown in Fig. 2.6 (c).

Eleven images were used for codification. Nine of these are Grey code patterns

which allow for distinguishing 512 light planes in an image. One fully illuminated

image and one which is not are additionally taken. These are used to gather estimates

of the on and off states for thresholding and subsequent binary grey code determina-

tion. Grey codes have the advantage that spatially adjacent profiles have codes which

change by only one bit.

Measurement start with correlating only one pixel by using grey-scale value se-

quences of generating textures on the surface [54]. The principle of measurement

consists in finding two pixels with approximately corresponding sequences of grey-

scale values.

In addition, The algorithm for calculating a 3-D coordinate starts by selecting a

pixel on left camera. The grey-scale values of this pixel from the n images produce a

sequence of grey-scale values, see Fig. 2.7. The objective is to find the point with the

corresponding grey-scale-value sequence on the other view. The desired corresponding

point on right camera can only be located on the epipolar line. Therefore the necessary

starting point for the procedure is also located on the epipolar line. A sequence of

n grey-scale values from the n images is assigned to this point. For the search of

the corresponding point, the correlation coefficient between the two grey-scale-value

sequences of the two considered pixels is calculated (see Fig. 2.7. When the point

is shifted along the epipolar line, the correlation coefficient changes. The gradient

of this coefficient is determined in order to find the point which results in maximum

correlation between the grey-scale-value sequences. This is the desired point, which

corresponds with the point selected on left camera.
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Figure 2.7: Search for the best correlation between the grey-scale values by shifting
the pixel of right camera along the epipolar line.

3-D point cloud as well as the 3-D surface reconstruction are shown in Fig. 2.8. In

Fig. 2.9, some reference data that will be used in the experimental results is shown.

In the left column of Fig. 2.9, the left images from the stereo pairs are shown, Fig. 2.9

(b) illustrates the reference disparity maps that so-called the ground truth disparity

maps. the 3-D point cloud and the 3-D surface reconstruction are shown in Fig. 2.9

(c) and Fig. 2.9 (d) respectively.
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Figure 2.8: Reference data from active stereo vision.

(d)(c)(a) (b)

Figure 2.9: Examples of ground truth data used in the experimental results. (a) left
image from the stereo pair, (b) the reference disparity map, (c) the 3-D points cloud
and (d) the 3-D reconstructed surface.



Chapter 3

Linear Spatial Filters for Disparity
Estimation

The frequency-based stereo use phase component, magnitude component, or a com-

bination of them both as the primary matching feature. In this chapter a technique

based on using the output of linear spatial filters is presented for characterizing the

information present in a vector of filter responses. The left and right images con-

volving with a set of linear filters tuned to a number of different orientations and

scales (using a Gaussian function and its derivatives as a basis functions). To make

the correspondence analysis more reliable and robust, the method provides a rich

description of the image, with little chance of false matching. The responses of these

filters at a given point constitute a vector that characterizes the local structure of

the image patch. In the view of [41], an automatic procedure is used to evaluate and

optimize the filters set by using a steering theorem [55], [56] and the singular value

decomposition (SVD) technique [57]. The correspondence problem can be solved by

searching point in the other view where this vector is maximally similar.

As it is known, to simplify the search for correspondence, the image pair is com-

monly transformed into epipolar geometry; so that the stereo problem is reduced

to a one-dimensional search along corresponding scan lines. The offset between x-

coordinates in the left and right images is then referred to as a disparity [10] [11].

The foremost contributions of this method arise in detecting and handling the depth

discontinuities and the occlusion region to improve the quality of the disparities.

The suggested approach is described by some processing levels (see the concept of

the linear spatial filters (LSF) approach in Fig. 3.1), whereby the first level deals with

Filter design and optimization. This contains the Gaussian derivatives, filter design,

evaluate and optimize filter degree using steering theorem and SVD. The second pro-

cessing level of the approach is specified by correspondences analysis, which describes

the feature extraction, filter response vector (FRV), and estimate the disparity. The

improvement of the disparity takes places by the use of adaptive scale filter. Finally,

30
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Figure 3.1: Concept of the linear spatial filter (LSF) approach.

the 3-D coordinates of the examined object points are obtained using conventional

triangulation.

3.1 Local Analysis of Image Patches

In order to find the correct stereo correspondence, most stereovision algorithms are

centered on matching features in one image to the corresponding features in the other.

Central to the analysis of these algorithms is to answer the following question: what

are the image features to be matched?, How are these features compared to determine

corresponding pairs?, and how to handle the errors?.

The accuracy of the results is dependent on the chosen set of filters, so that the

implementation and the testing of these ideas requires some particular set of filters

to be chosen.

3.1.1 Basis Filter Design: Gaussian Derivatives

Gaussian derivatives provide a basis for series expansion of a local signal [58]. This

means that a local image neighborhood can be reconstructed by a linear combination

of weighted Gaussian derivative filters. The formula for the nth one dimensional

derivative with respect to the dimension ,x, provided in [59] is:

Gn(x) =
dn

dxn
G0(x) for n = 1, 2, · · · (3.1)

where G0(x) donated as the Gaussian basis function

G0(x) =
1

2πσ2
e
−
“

x2

2σ2

”
(3.2)

Gaussian derivatives have an explicit scale parameter, σ, and can be generated at

any scale. With steerable filters Gaussian derivatives can be oriented in any arbitrary
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direction. With automatic scale selection the local scale of a feature can be deter-

mined. The object in an image can be normalized by scale which allows recognition

under scale changes, the determination of dominant orientation of a neighborhood

allows to normalize by orientation.

The filter design carries out by the use of the Gaussian derivative filter bank that is

characterized by narrow bandwidths, sharp cutoffs and low overshoots. A key feature

of Gaussian filters is that the Fourier transform of a Gaussian is also a Gaussian, so

the filter has the same response shape in both the time and frequency domains [59].

The set of filters consisted of rotated copies of filters with impulse responses;

F (x, y) = Gn(x)×G0(y) (3.3)

where, Gn(x) is the nth derivative of a Gaussian and n = 1, 2, 3 in our case. The

set of basis functions Eq. 3.1 with Eq. 3.2 are referred to here with the initials

Gaussian derivative (GD); for example, the GD model for one-dimensional receptive

field representations would be a model using Eq. 3.1 and Eq. 3.2.

First derivative of a Gaussian ; As well as the first derivative is the well

known edge detector, that can be defined as;

G1(x) = K ·
(−1

σ

) (x

σ

)
e

“
− x2

2σ2

”
; K =

(
1

2πσ2

)
(3.4)

Second derivative ; That is the straightforward extension of the Gaussian first

derivative filter described above and can be applied independently in each dimension.

G2(x) = K ·
(

1

σ2

)(
x2

σ2
− 1

)
e

“
− x2

2σ2

”
(3.5)

Third derivative ;

G3(x) = K ·
(−1

σ3

)(
x3

σ3
− 3x

σ

)
e

“
− x2

2σ2

”
(3.6)

Then the general form of a filters set consisting of the nth derivatives of a Gaussian

with standard deviation σ at different orientation θ is formulated by

F θ
n(x, y) = Gn(u)×G0(v) (3.7)

u = x cos θ − y sin θ v = x sin θ + y cos θ

For a given image I(x, y), its linear (Gaussian) scale-space representation is a

family of derived signals L(x, y; σ, θ) defined by the convolution of I(x, y) with the

Gaussian kernel, such that

L(x, y; σ, θ) = F (x, y; σ, θ) ∗ I(x, y) (3.8)
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Scale-space :σ: The standard deviation of the Gaussian function, or, it is the

variance of the Gaussian filter, and for σ = 0 the resulting filter corresponding to the

original image. As σ increases, L is the result of smoothing I with a larger and larger

filter, thereby removing more and more of the details which it contains.

The motivation for generating a scale-space representation of a given data set

originates from the basic observation that real-world objects are composed of different

structures at different scales. This implies that real-world objects, in contrast to

idealized mathematical entities such as points or lines, may appear in different ways

depending on the scale of observation.

For example, the concept of a ”tree” is appropriate at the scale of meters, while

concepts such as leaves and molecules are more appropriate at finer scales. For a

machine vision system analyzing an unknown scene, there is no way to know a priori

what scales are appropriate for describing the interesting structures in the image data.

Hence, the only reasonable approach is to consider descriptions at multiple scales in

order to be able to capture the unknown scale variations that may occur.

Rotation Parameter θ: For arbitrary rotation of any object in three dimensions,

three rotation angles are needed for rotation about the three axes spanning this three-

dimensional space. Such rotation parameters are needed in the Gaussian derivative

model. To produce such alignment, we rotate the x and y axes so they line up with

the intrinsic receptive field axes. These rotation angles are particularly useful for

describing the spatial orientation and preferred direction of motion. In the Gaussian

derivative spatial model, the rotation parameter for spatial orientation in the x; y

plane is given as the angle θ.

The angle θ is the amount of rotation required to make the model receptive filed

line up its (translated) spatial axes with the real-world spatial axes. The angle θ gives

us an estimate of the receptive fields orientation angle in space.

Most frequency-based techniques [4], [41] start processing the image with a family

of linear filters tuned at a wide range of orientations and scales of resolution. One

then needs to know how many filters are required and how to properly interpolate

between the responses. The multiscale - multiorientation image decomposition is then

analyzed to detect features and to evaluate the degree to which the chosen filters are

independent. In other words, it is important to choose filters that are linear inde-

pendent to each other and reduce the others which carry no additional information.

For this purpose, we use an automatic procedure to evaluate and optimize the chosen

filters set, and reduces the overall memory requirement.

3.1.2 Filter Optimization

Oriented filters have found extensive use in many computer vision and image pro-

cessing task. Such as edge detection, texture analysis, image compression, motion

analysis, and 3-D surface reconstruction. In many tasks, it is useful to be able to
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tune the orientation of the filters to arbitrary orientation. It is a tedious of these

filters. One natural question arises: is it possible to design a set of filters of differ-

ent orientations and use them as basis functions to synthesize filters with arbitrary

orientation?

It has been proved possible to do so with the concept of ”steerable filters” intro-

duced in [55]. The term ”steerable filters” is used to describe a class of filters in which

a filter of arbitrary orientation is synthesized as linear combination of a set of ”basis

filters”.

Consider a set of filters F (x, y, σ, θ), where σ is the scale, σ ∈ S, and θ is the

orientation, where θ ∈ T , and x, y are the spatial coordinates. S, T are denoted as

the number of scales and orientation. The optimization of the filters set takes place

by the following two subsections 3.1.3 and 3.1.4.

3.1.3 Steerable Filters

A function F (x, y, σ, θ) is called steerable if it can be expressed as a linear combina-

tion of several rotations of itself. The fundamental idea of steerable filters is to apply

distinct ”basis filters” that correspond to a fixed set of orientations and interpolate

between each discrete response. Thus, one must first decide the number of ”ba-

sis filters” and corresponding interpolation functions (also known as recombination

function).

Let θi be the angle of some ith basis filter and qr(θ) denote an interpolation func-

tions. As defined in [55], a steering constraint is formulated by

F θ(x, y) =
M∑

j=1

F θj(x, y)qj(θ) (3.9)

Where M is the number of basis functions required to steer some function F (x, y).

Hereafter, it will be more convenient to work in polar coordinates, then F can be

expressed as a Fourier series in polar angle

F (r, φ) =
N∑

n=−N

an(r)einφ (3.10)

Where i =
√−1 and N is a discrete length of coefficients. The theorems below were

posed by [55] and are included for clarity and completeness of description.

Theorem 1: [55] Steering condition Eq. 3.9 holds for a function F expanded in

the form of Eq. 3.10 if and only if the interpolation functions qj(θ) are solutions of

Eq. 3.11
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(3.11)

As well as in polar coordinates

F θ(r, φ) =
R∑

r=1

gr(r, φ)qj(θ) (3.12)

where r =
√

x2 + y2 and φ = arg (x, y), gr(r, φ) can be any set of function. For any

value of n, (−N ≤ n ≤ N), if an(r) = 0 in Eq. 3.10, then the corresponding nth row

of the left hand side and of the matrix of the right hand side of Eq. 3.11 should be

removed.

Theorem 2: [55] Let f(x, y) = W (r)PN(x, y) where W (r) is an arbitrary win-

dowing function and PN(x, y) is an N th order polynomial in x and y, whose coefficients

may depend on r. Linear combinations of (2N + 1) basis functions are sufficient to

synthesize f(x, y) rotated to any angle. If PN(x, y) contains only even (or odd) order

terms, then only (N + 1) basis functions are sufficient and Eq. 3.11 can be modified

to contain only the even(odd) numbered rows of the left hand side column vector and

the right hand side matrix.

In order to design a steerable filter, in addition to design of the basis filters, we

also need to know the minimum number of basis filters that are sufficient for steering

and the coefficients for the basis filters. As an example, the second derivative of

Gaussian function Eq. 3.2 is G2(x) =
(

1
2πσ2

) (
1
σ2

) (
x2

σ2 − 1
)

e

“
− x2

2σ2

”
. This equation

is the product of a second order polynomial
(

x2

σ2 − 1
)

contains only even order and

a radially symmetric Gaussian window e

“
− x2

2σ2

”
. Therefore, according to Theorem 2,

three basis functions suffice are suffice to synthesize the filters in different orientations.

Using three different orientations, θ1 = 0◦, θ2 = 60◦ and θ3 = 120◦, yields to a set

of steerable filters as shown in Fig. 3.3(a) where filter size is 31 × 31 pixels and the

Gaussian sigma is 4. The variance for each filter as measures of variability are shown

in Fig. 3.3(b) where each plot is a row-vector containing the variance of each column

in the filter (the variance of data set is calculated by taking the arithmetic mean of

the squared differences between each value and the mean value). Fig. 3.3(c) shows

the output of convolving the filter set shown in Fig. 3.3(a) with the left input image

from the stereo pair ”Doll image” that are shown in Fig. 3.2.

The other problem is the approximated reconstruction for a given kernel. The

basis functions may be predefined or one asks for optimal basis functions for a given

kernel.
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Figure 3.2: Left and right rectified stereo pair images ”Doll images” to verify the
steerable of Gaussian derivatives filters.

Filter size [Pixels]

10 20 30

10

20

30

Filter size [Pixels]

10 20 30

10

20

30

Filter size [Pixels]

10 20 30

10

20

30

1
=0

2
=60

3
=120

(a) Set of steerable filters for 2nd derivative of Gaussian filter at three different
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(b) Filter variance. Each plot is a row vector containing the variance of each 
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(c) The response images. The results of convolving the set of filters shown in 
(a) with the left input image that is shown in Fig. 3.2.

Figure 3.3: Set of steerable filters. The 2nd derivative of Gaussian filters in different
orientations and their responses images.
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Figure 3.4: Concept of mathematical definition of SVD.

As we mentioned, the implementation and testing of that method requires some

particular set of filters to be chosen. Regardless of way a particular set of filters may

be chosen, it is useful to use the singular value decomposition (SVD) as an automatic

procedure to evaluate the degree to which the chosen filter are independent.

3.1.4 Singular Value Decomposition (SVD)

The singular value decomposition algorithm is one of an effective method to the least

squares problems. In the flowing we discourses on the mathematical foundation of

the SVD technique [60].

Let X is an m × n matrix, then it can be alternatively factored as a collection

of three matrices, an m ×m orthogonal matrix U (basis function), an m × n diago-

nal matrix S with nonnegative diagonal elements in decreasing order, and an n × n

orthogonal matrix Q (recombination function), such that X = USQT . This decom-

position is known as the singular value decomposition. Each column uk of U and qk of

Q represent eigenvectors corresponding to each respective element sk in the diagonal

matrix S, as we can observe from Fig. 3.4.

The diagonal entries of the matrix S are called singular values and satisfy s1 ≥
s2 ≥ · · · ≥ sr ≥ 0. The number of non-zero entries in S is the rank of matrix X

(i.e. the number of linear independent column vector in X). If U = [u1u2 · · · um] and

Q = [q1q2 · · · qn], then matrix X can be expressed as; X =
∑R

r=1 ursrqr. Fig. 3.5

shows the orthonormal basis for the filters in Fig. 3.3 and their responses after using

the SVD technique.

In particular, if we are interested in analysis filter banks that represent the rotated

version of a prototype kernel, firstly, we exploit the idea of steerable filters. A filter

is called steerable if the filter at an arbitrary orientation can be expressed as a linear

combination of a set of basis filters, generated from rotations of a single kernel. In our

algorithm, we used three basis functions as steerable filters (1st, 2nd and 3rd Gaussian

derivatives). The set of filters used consists of rotated copies of filters with impulse

responses F (x, y) = Gn(x)×G0(x), where Gn(x) is the nth derivative of a gaussian as

will explain in the next section. Secondly, The x-y separable steerable approximations

of filter kernels were generated by a singular value decomposition. Singular values
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and corresponding singular vectors contain complete information about the filter.

3.1.5 Gaussian Filter Bank

Let a spatial filter with finite impulse response be represented as a one-column vector,

Fi, by writing out its entries row by row. Its dimension is n×1, where n is the number

of pixels in the support of the filter. If an image patch, I, (of the same size and shape

as the support of the filter) is also represented as an n × 1 column vector, then the

result of convolving the image patch by the filter is simply the inner product of these

two vectors, as we can show in Fig.3.6. Taken together, a set of spatial filters forms a

matrix F . This is a convenient representation of the linear transformation that maps

image patches to a vector of filter responses. For an image patch represented as a

vector I, the filter response vector is simply v = F T I.

Applying the singular value decomposition on the set of spatial filters F T yields

F T = USQT . The number of non-zero entries in S, is the rank r, or the dimension of

the vector space spanned by the filters. The first r columns of Q form an orthonormal

basis set for this vector space, ranked in order of the visual patterns to which this

particular set of filters is most sensitive. The corresponding singular values indicate

how sensitive.

Our filter set used in that method consists of rotated copies of filters with impulse

responses F (x, y) = Gn(x) × G0(y) where n = 1, 2, 3. The scale σ was chosen to be

the same in both the x and y directions. Filters at five scales were used, with the

area of the filters increasing by a factor of two at each scale, and the scale σ = w
8

where w×w is the filter size with w ∈ {5, 7, 10, 14, 20}. Nine filters (nine orientation)

at five scales would give 45 filters, a more efficient approach is to apply a few filters

corresponding to a few angles and interpolate between the responses. As an example

of this decomposition, the orthonormal basis for the set of filters (at the scale σ = 4

and filter window size 29× 29) is shown in Fig. 3.8. Table 3.1 shows the pseudo code

for designing the set of filters.

From the Gaussian derivatives which presented in section 3.1.1, one can say that,

the set of filters are steerable, wherever, the first derivative of a Gaussian, Eq. 3.4,

is the product of a first order polynomial (only odd terms) and a radial symmetric

Gaussian window, according to theorem 2, two basis functions suffice to synthesize

Gθ
1. The second derivative of a Gaussian, Eq. 3.5, is also a product of a second order

polynomial (only even order terms) and a radial symmetric Gaussian window. So, by

theorem 2, three basis functions are sufficed. Similarly, the third derivative, Eq. 3.6,

required four basis functions to synthesize Gθ
3. For Gaussian derivatives in particular,

it turns out n + 1 different orientations are required for nth Gaussian derivative [55].

Experimental test: Consider, a set of four steerable filters consisting of the first

derivative of Gaussian at four different orientations 0◦, 30◦, 60◦ and 90◦, G0◦
1 is the
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Figure 3.5: (Top) Orthonormal basis for the filters set shown in Fig. 3.3 as the output
of SVD. (Middle) Plots of row-vector containing the variance of each column in the
filter where x-axis is the filter length and the y-axis is the variance values. (Bottom)
The filter response images of the corresponds filters.
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Figure 3.6: Convolve a one column vector spatial filter,Fi, with a one column image
patch,I.
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Figure 3.7: A linear transformation maps image patches I (where I is image patch
n×1 column vector from the input image ”Doll Image”) to a vector of filter responses,
v = F T I.
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Table 3.1: Pseudo code for design a set of filters used

First Derivative:
1: Filter = GT

0 ·G1

2: Filter = GT
0 ·G1 Rotated 90◦

Second Derivative:
3: Filter = GT

0 ·G2

4: Filter = GT
0 ·G2 Rotated 45◦

5: Filter = GT
0 ·G2 Rotated 120◦

Third Derivative:
6: Filter = GT

0 ·G3

7: Filter = GT
0 ·G3 Rotated 45◦

8: Filter = GT
0 ·G3 Rotated 90◦

9: Filter = GT
0 ·G3 Rotated 120◦
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Figure 3.8: List of suggested linear spatial filters according to the filter set design as
shown in Tab. 3.1, successive derivatives and rotations of Gaussian curves.
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Figure 3.9: Set of filters. Four filters of the 1st Gaussian derivative at four different
orientations 0◦, 30◦, 60◦ and 90◦, σ = 4 and filter size 31× 31 pixels.
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Figure 3.10: The adaptive filter set for the chosen filter set that are shown in Fig.
3.9.
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Figure 3.11: Filter response images. (Top) is the filter response images obtained from
convolving the adaptive set filters that are shown in Fig. 3.10 with the ”Doll image”
that is shown in Fig. 3.2. (Bottom) is a row vector of variances the filter response
images.

first derivative with respect to (horizontal) of Gaussian, G30◦
1 is the second filter which

is G0◦
1 rotated by 30◦, G60◦

1 and G90◦
1 are the third and fourth filter. The filter size

w = 31× 31 pixels and σ = 4 as we can see in Fig. 3.9 (a). The variance as indicator

for the variability in each filter are shown in fig. 3.9 (b). By using the singular

value decomposition as an automatic procedure to evaluate the degree to which the

chosen filter are independent. The vector space spanned by these four filters is only

two-dimensional. That means only two filters are needed, since the other may be the

weighted sum of these, and thus carry no additional information.

Fig.3.10 shows the adaptive filter set for the chosen four filters that are shown

in Fig. 3.9. Fig.3.10(Top row) illustrates the reconstructed filters (Filter 1, Filter 2,

Filter 3 and Filter 4) where we can ignore ”Filter 3” and ”Filter 4” which are carry

no additional information, as we will verify that in the following. The variance of

each filter is computed and plotted in Fig. 3.10(Bottom) Where the curves indicate

that, the latest two filters (Filter 3 and Filter 4) looks like noise (carry no additional

information). The degree of how sensitive the filter is indicated from the correspond-

ing singular values. For these four filter set, the corresponding singular values are

0.00020854; 0.00013189; 8.5014×10−7 and 5.3693×10−7, respectively. One can easily

observe that, the latest two filters have singular values close to zero. Therefore, they

are redundant and so were discarded. By looking at the filter response images, Fig.
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Figure 3.12: The variance of each response image that reflects the amounts of infor-
mation in each response image.

3.11(Top) shows the filter response images obtained from convolving the input image

”Doll image” with the adaptive filter set that are shown in Fig. 3.10. The row vector

containing the variance of each column from the filter response image is shown in Fig.

3.11 (Bottom). Fig. 3.12 shows all the same curves of variances each filter-response-

image (V ar−Resp1, V ar−Resp2, V ar−Resp3, V ar−Resp4) where the area under

the curve characterize the amount of information in the response image, so it can

observe that the ”Response 3” and ”Response 4” carry only redundant information

therefore they can be ignored.

3.2 Matching Filter Responses

The proposed method is based on the output of convolving the left and right image

with a bank of linear spatial filters at different number of orientations and scales.

In this section we will explore how should filter response vectors be compared. Al-

though corresponding filter response vectors in the two views should be very similar,

differences in shading and foreshortening mean that they will rarely be identical. A

variety of similarity measures can be used to compare two vectors, including the angle

between them or some norm of their vector difference. This measures are zero when

the filter response vectors are identical and otherwise their magnitude is proportional

to some aspect of the difference between potentially corresponding image patches. It
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turns out that any number of such measures do indistinguishably well at identifying

corresponding points in a pair of stereo images, except at depth discontinuities. Near

an object boundary, the large spatial filters lie a cross an image patch containing the

projection of more than one surface. Because these surface lie at different depths,

and thus have different horizontal disparities, the filter responses can differ consider-

ably in the two views, even when they are centered on points that correspond. This

difference is much more appropriately treated as an outlier, making least-squares ap-

proaches inapplicable. We used the sum of absolute differences of corresponding filter

responses, which are less sensitive under these conditions.

The sum of absolute differences is calculated by computing the correlation value

using

E(x, y) =
∑

k

|Fk ∗ Il(x, y)−Kk ∗ Ir(x + disp, y)| (3.13)

where disp is the candidate disparity, and disp ∈ d where d is the range of disparity

determined by a priori estimates of the range of horizontal disparities. Fk is the cur-

rent filter at scale k that ranges from the scale interval. Ir and Il are the right and left

image respectively. The symbol ∗ denotes convolution operator. For each candidate

corresponding point, the difference in filter response vectors, E, is computed. the po-

sitional offset to the point that minimizes this difference is recoded as the positional

disparity at pixel P (x, y) in the left view. This procedure is repeated for each pixel

in both images, providing the disparity maps for both the left and right views.

This procedure of using filter outputs for matching is depicted in Fig. 3.13. The

outputs of the convolution are presented in the nth left and right responses images,

as shown in Fig. 3.13(a). The responses for a given pixel P (x, y) is usually formed

by the sequence of response values for that pixel across the outputs of the filters set,

FRV, shown in Fig. 3.13(b).

Because the disparities are offsets in terms of image coordinates,the disparity

values for corresponding points in the left and right images should have equal magni-

tudes, but opposite signs. Whenever the support of the filter set lies almost entirely

on a single surface, the disparity estimates are correct. Even close to depth discon-

tinuities, the recovered disparity is quite accurate, despite the responses from of the

larger filters being contaminated by lying across surfaces at different depths.

The recovered disparity map for stereo pair flat surface is presented in Fig. 3.14,

disparity values at each image location are presented as grey zero horizontal disparity,

and brighter or darker shades for positive or negative disparities. This is shown in

Fig. 3.14(middle), which illustrate the left and right recovered disparity maps also

a reference disparity map from left to right. The recovered disparity values clearly

matches the surface quite well as compared with the reference disparity map. The

3-D point cloud and the 3-D surface reconstruction of the examined object, shown

on bottom, provide quite good results. That is because the support of the filter set
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Figure 3.13: Matching the filter outputs by shifting the pixel of responses left image
along the epipolar line.

lies almost entirely on a single surface. Another example is the stereo pair of ”a

hand” shown in Fig. 3.15, the computed disparity map shown on the top-left of the

figure shows some error pixels in black or white colors. In such region there is no

corresponding point in the other view and the recovered disparity appear as noise or

as an error. These disparity maps can be improved using the adaptive scale filter

selection.

3.3 Depth Discontinuities and Occluded Region

In a stereo pair of images, it is expected that in the output of a set of filters at a

range of orientations and scales, the corresponding image patches should be quite

similar. This expectation is reasonable when all of the spatial filters are applied to

image patches which are the projection of a single surface. But, when larger spatial

filters straddle depth discontinuities possibly including occluded regions, the response

of filters centered on corresponding image points may differ quite significantly.

In the scene that contains more than one level surface, which has a vertically

oriented edge; there are often regions visible to one camera, but not visible to the

other. In this region there is no corresponding point in the other view and recovered

disparity estimates appear as noise (error). This situation is depicted in Fig. 3.16(a),

as shown in the figure, the far surface of the region D which is visible only to the

right camera, Similarly, region B visible only to the left camera.
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(a) Left and right rectified stereo pair images “Flat surface” with a projected stripe pattern

(c) Computed right disparity (d) Reference disparity(b) Computed left disparity

Z

x

y

(e) 3-D point cloud (f) 3-D surface reconstruction

Figure 3.14: Surface reconstruction for a flat surface. (a) Rectified stereo pair images
with stripe pattern projector, (b) left computed disparity maps, (c) right computed
disparity map, (d) the ground truth disparity (Reference disparity), (e) the 3-D point
clouds, (f) the 3-D surface reconstruction.
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(b) Reference disparity map(a) Left and right rectified stereo pair “Hand” images

Z

x

y

(e) 3-D surface reconstruction(d) 3-D point cloud(c) Computed disparity map

Figure 3.15: (a) The left and right images of stereo pair ”Hand”, (b) the reference
disparity map, (c) the computed disparity map, (d) the 3-D point cloud, and (e) the
3-D surface reconstruction.
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Figure 3.16: Stereo geometry and visible projection regions. (Left) Stereo geometry
with parallel axes for depth discontinuities view. (Right) Visibility map. The zeros
mark the regions detected to be visible only from one of the two views.

The identification of the occluded regions is important for several reason. First,

nonsense disparity estimates within occluded regions can be eliminated entirely from

the recovery of viewing parameters. Second, the knowledge of which regions are visible

in the two views and which are not can be used when refining disparity estimates,

especially to prevent nonsense disparity estimates within occluded regions from being

propagated to neighboring visible regions from the two views. Finally, identified

occluded regions make certain aspects of the three dimensional structures of a scene

explicit, including the delineation of the occluding contours.

The main idea for detecting and localizing the occluded regions arise in the fact

that, the occluded regions in one image lie in the disparity map of the other image.

This suggests that the best cure for finding occluded regions in one image lies in

the disparity estimates for the other image. Since the occluded regions in one image

include exactly those points for which there is no corresponding point in the other

image. For detecting and localizing the occluded regions in one view, we define a

binary visibility map, V (x, y) for one view, as 1 at each image position that is visible

in the other view, and 0 otherwise (i.e., occluded region). The disparity values for each

point in the left image are signed offsets that give the coordinates of the corresponding

point in the right image, if the visibility map for the right image is initially all zero,

it can be filled in systematically as follows:

For each position in the left image, its disparity is in the range [dmin, dmax], set

the corresponding position in the right visibility map to 1. The other positions in the

visibility map remain 0 that have no corresponding position in the right image and

are considered occluded.

The description of this manner is shown in Fig. 3.16 and Fig. 3.17, by locking



3.3. Depth Discontinuities and Occluded Region 50

BB

B`B`

?

D

A C E

Occluded right

0

A

C

E

x

Disparity left

1

x

?

D

A C E

Occluded right

0

A

C

E

x

Disparity left

1

x

A C E

Occluded right

0

A

C

E

x

Disparity left

1

x

a) Disparity without occlusion

b) Disparity with occlusion

c) Disparity with ambiguous region

Figure 3.17: Occlusion interpretation. The disparity map of the left image (left
column), detecting occlusion map of the right image (right column).
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for the regions A,C and E in Fig. 3.16(a) and Fig. 3.17(a) it can be observed that

all pixels on both views are visible and their disparity values tend to be unambigu-

ous. Therefore the visibility map signed to 1 at these regions. The other situation

comes into view region D, it is visible only to the left view, therefore, there are no

corresponding points in the right view. So this region is quite likely occluded and

the visibility map signed to 0, see Fig. 3.17(b). In addition, it can be observed that

disparities in occlusion regions are usually ambiguous e.g., the region B, which is not

visible in the right view.

An example of a visibility map computed in this manner is shown in Fig.3.18.

The pair of stereo ”Tsukuba images” is shown the top. The white area in the left

and right visible maps mark the regions that contains no correct disparity value that

can be assigned because there is no corresponding point in the other view.

3.3.1 Adaptive Scale Selection

In this section we discuss a correct treatment for coping with the initial difficulties due

to the depth discontinuity, using adaptive scale selection. Whenever a substantial area

of a filter is applied to a region of significant depth variation, such as inappropriately

large scale filter should be selectively ignored.

From an initial disparity map, it is possible to estimate where such inappropriately

large-scale filters are being used by applying the following procedure.

At each position in the image, the median disparity is determined over a neigh-

borhood equal to the support of the largest spatial filter used for stereo matching.

Over this same neighborhood, the difference between each disparity estimate and this

median disparity is determined. These differences are weighted by a Gaussian at the

same scale as the filter, since the center of the image patch has a greater effect on the

filter response. The sum of these weighted disparity differences provide a measure

of the amount of depth variation across the image patch affecting the response of

this spatial filter. When this sum exceeds an appropriately chosen threshold, it may

be concluded that the filter is too large for its response to be useful in computing

correspondence. Otherwise, continuing to make use of the outputs of large spatial

filters provides stability in the presence of noise.

Taking the difference between the disparity estimate at each location and median

disparity value of the neighborhood makes the implicit assumption that surface are

nearly fronto- parallel. Instead, it will generally be better to use the difference from

the best-fitting plane of disparity over the neighborhood.

To record the results, the notation of a scale map is introduced. At each position

in an image, the scale map, S(x, y), records the scale of the largest filter used in

computing stereo correspondence. For the computation of initial disparity estimates,

all the scales of spatial filters are used. From initial disparity estimates, it is possible

to modify the scale map. For each position in the scale map, if it is determined that
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Left computed disparity Left Visibility map 

Right visibility map Right computed disparity

Figure 3.18: Visibility map. The white area in the left and right visible maps mark
the regions that contain no correct disparity value.
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Figure 3.19: Scale selection in the depth discontinuities scene.

an inappropriately large-scale filter was used, then the scale value at that position

will be decremented. Otherwise, continue to the next position.

Once initial estimate disparity was obtained, an additional information becomes

available which can be used to improve the quality of the disparity estimates. This

additional information includes estimates of viewing parameters (camera parameters),

location of occluded regions and the appropriate scale of filters to be used for match-

ing. Furthermore the 3-D surface reconstruction can also obtained using conventional

triangulation to depict what the scene might look like from a new viewpoint.

3.4 Experimental Results

An implementation of this approach using the outputs of a number of spatial filters

at a variety of orientations and scales as the basis for establishing correspondence

have proven to give quite good results.

The algorithm has been implemented and tested on a variety of stereo images

with structured light pattern (stripe pattern). Fig. 3.20 and Fig. 3.21 show a scene

that contains a ”Cylinder” object. Fig. 3.20 shows a set of filter response images

which are the outputs of convolve a set of linear spatial Gaussian derivative filter

(nine filters) at different orientations (1st derivative at 0◦ and 90◦, 2nd derivative at

0◦, 45◦ and 120◦, and the 3rdderivative at 0◦, 45◦, 90◦, and 120◦) with the left image.

The responses of these filters at a given point constitute a vector that characterize

the local structure of the image patch. The filter response vectors in the two views

are correlated. This correlation is repeated for each pixel in both images providing

the disparity map. Fig. 3.21 shows the initial disparity map which computed by our

suggested algorithm. That initial disparity map will be improved by adapting the

scale filter selection procedure. By comparing the initial disparity map Fig. 3.21(b)

with the ground truth disparity map (reference disparity) Fig. 3.21(a). We can see

some outlier especially in the boundary of the cylinder, Fig. 3.21(c) shows a scan line
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Table 3.2: Pseudo code for our LSF Stereo Matching Algorithm

Given: A pair of gray scale images, disparity range.
Let Il(x, y) and Ir(x, y) are the left and right images.
Let disp be the candidate disparity in the allowable disparity range d.
for each pixel P (x, y) in Il

for each candidate disparity disp
Compute the error measure E(x, y, disp)

=
∑

k |Fk ∗ Il(x, y)−Kk ∗ Ir(x + disp, y)|
Let ∆(xl, yl) be the choice value which yields the min value of E
Compute the visibility map B(x, y) and the scale map S(x, y)
if ∆(xl, yl) > 0

B(i, j) = 1
else

B(i, j) = 1, there is ni disparity value therefore the point is occluded.
end

end
end

profile taken from the computed disparity (blue line) and the true disparity (red line).

The regions that show the error in the computed disparity are marked by ellipsoids

on Fig. 3.21(c).

In practice, from the initial computed disparity map and with a suitable numbers

of iteration as depicted in in Fig. 3.21 we can follow the improvements in the quality

of the computed disparity. For each point in the scale map that is contain all scale

filters, if an inappropriately large-scale filter was used, then the scale value at that

position will be decremented. I.e. whenever a substantial area of a filter is applied

to a region of significant depth variation, such as inappropriately large-scale filter

should be selectively ignored. A final result after ten iterations is shown in Fig. 3.23,

from that graph we can say that the proposed method has a superior performance in

comparison with a traditional stereo algorithms (area-based algorithm).

The outlier of the area-based algorithm arise due to the correlation depending on

the intensity profiles of the two images, they have a very good matching accuracy in

the continuously smooth surface areas. But a large deformation of matching results

from projective distortion and smoothing occurs in vicinity of depth discontinuity.

Also, use of the same-size matching window in both images means that objects are

assumed to be basically planar and viewed from the front.

The final disparity maps for other experimental scenes are shown in Fig. 3.24.

One can compare the computed disparity map in the middle-right with the true map

in the middle-left. The color error maps, in the bottom-left, show the outlier pixels

in (magenta), and the invalid pixels in the computed disparity map appears as (blue)

pixels, where correct regions are excluded and shown in gray level from 32 to 64 color
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(c) Filter response images of the left input image.

(a) Set of nine filters of 
Gaussian derivatives.

(b) Left and right rectified
stereo images “Cylinder”.

1

Figure 3.20: Convolving a left and right images with a set of linear spatial filters.
(a) The set of nine Gaussian filters, at filter size 31 × 31. (b) Stereo pair images of
”Cylinder” object. (c) The response images of the left image.
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Figure 3.21: Initial estimated disparity map for a stereo pair image of a ”Cylinder”
object computed from the suggested linear spatial filter (LSF) approach.
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Figure 3.22: Progress the iteration of our algorithm to follow the results develop. The
scan line from the computed disparity shown in the blue line and the reference scan
line shown the red line in each iteration.

map. Finally, the 3-Dimension points well appear in bottom-right.

Fig. 3.25 shows the final results provided from our linear spatial filter algorithm

after ten iterations for the ”Tsukuba” stereo images from that are shown in Fig. 3.18.

We can compar that final results with that presented in Fig. 3.18 to observe some

improve for the initial computed disparity, therefore the courant results in Fig. 3.25

are quite accurate than the initial computed results.
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Figure 3.23: Comparison of the correspondence lines profiles from the computed
disparity (CompDisp), the disparity from the Area-based method (AreaCorr) and
the reference disparity (RefDisp).
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Rectified stereo pair images “Cylinder object”Rectified stereo pair images “Doll object”
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  (Blue): is the invalid pixel in the computed disparity map. 

  (Magenta): is the bad matching pixels.

  (Gray level from 32 to 64)  is the correct pixels.

Figure 3.24: Two Examples of the final computed results of ”Doll object” in left and
”Cylinder object” in right. The stereo pairs (top), the reference disparity map and
the refined computed disparity map (middle). The color error map and the 3-D point
cloud for surface reconstruction (bottom).
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Figure 3.25: Refined disparity estimate to the same stereo pair shown in Fig. 3.18.
Left and right computed disparity and its ground truth disparity map.



Chapter 4

Local Spatial Frequency
Representation

4.1 Local Spatial Frequency

The space and frequency are the proper analysis domains in the stereovision algo-

rithms. Therefore we would like to have an operator that analyzes signals simultane-

ously in both domains and provides information of localized space-frequency events.

On the use of a joint spatial-frequency representation, the 2-D imagery can be

studied in a two views; a spatial view and the frequency view [61], [62]. In the spatial

view, each individual pixel is paramount; an image is represented by the sequence

of independent pixel values and each pixel is considered unique and important. In

frequency view, the image is broken down mathematically into several frequency

components, information in each component relates to the image as a whole. The

combination between them is called local spatial frequency.

In phase-based methods, the stereo images are transformed to the frequency do-

main. Afterwards, the disparity is resulted as a phase difference between the image

signals (image scanline). Many image phenomena are more succinctly described and

more easily manipulated in the frequency domain than in the spatial domain. But

several problems in traditional stereo arise from its limited image representation. Also

the problem with using Fourier transform directly is that it extracts frequency infor-

mation contained everywhere in the image, but you do not know where in the signal

those frequency occur.

Two common approaches to image interpretation are frequency analysis (e.g.,

using Fourier transforms) and direct pixel-basis analysis (spatially dividing the image

into a grid of pixels). Early only one of these approaches was used at a time; frequency

analysis for global effect, or spatial analysis for local effects. But recently local spatial

frequency representations allow both techniques to be used simultaneously, at the

cost of greatly increasing the amount of data used to represent the image. Some

examples of locale spatial representations are Wavelets, Spectrograms (Short Time

59
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Fourier Transforms (STFT)), Wigner distribution (WD), and Scalograms (which are

comprised of Gabor filters) [63]. All are similar in effect, but slightly different in

structure. Space-frequency image representations characterize images over a space-

frequency plane. They thus combine space-domain and frequency domain analysis

to yield a potentially more revealing image of the temporal localization of a signal’s

spectral components.

Previous work with windowed Fourier transforms in computer vision reveals some

of the potential utility of local spatial frequency analysis. Image spectrograms have

been used for a variety of image analysis works.

All of these approaches use the Fourier transform over either the whole image or a

fairly large region. The Fourier transform, however, hides the spatial coherence of the

image. Thus, although it can identify the component frequencies of an image, their

location in the image is ambiguous (this means that it is not possible to identify the

local spatial structure of the image). Large-support Fourier transforms tend to smear

the frequency peaks of signals whose frequency is changing (e.g. a periodic pattern on

a tilted plane) and confound the analysis of signals with spatially distinct subcompo-

nents (e.g. two adjacent textures). A solution to this problem is the space-frequency

representation which shows the frequency content of only small, local regions of the

signal.

Fig. 4.1 shows the idealized space-frequency representation. A sinusoidal wave

in which the low-frequency wave with wavelength λ = 20 pixel (frequency = 0.05)

occupies the center of the signal having λ = 7 pixel (frequency = 0.14) is shown in

Fig. 4.1 (a). This signal is sampled into 128 pixels from each sinusoid fragment (we

will call them image samples) for a total of 384 data point . The Fourier transform

of this signal is shown in Fig. 4.1 (c). As a result of this transform, a pair of

peaks appears, one peak for each frequency, but we can not determine where the sub-

signals (the samples) occur in the space in the original signal. This is unacceptable

for image matching. A 2-dimensional spectrogram representation is shown in Fig.

4.1 (d); the spectrogram is a two dimensional function of space (horizontal axis)

and frequency (vertical axis). Which was computed directly from the image samples

without preceding knowledge of the original continuous signals. The spectrogram is

based on the short-time-Fourier-transform (STFT ) with a fixed window size at all

image samples. The window function’s shape and width are chosen based on the

task manually. Therefore, this representation has some practical and fundamental

limitations, for instance, the Nyquist sampling theorem tells us that the analysis

window must be at least twice as wide as the longest wavelength being analyzed, but a

wide window will tend to blur the measurements around discontinuities in the original

signal (observe the horizontal blurring around the dark lines in the spectrogram in

Fig. 4.1 (d)). The structure of the signal is made clear in the local space-frequency

scalogram representation (scalogram-phase) which is shown in Fig. 4.1 (b), scalogram

illustrates a relatively higher-frequency component exists at the ends of the signal,
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Figure 4.1: Local Spatial Frequency representation. (a) The one dimensional syn-
thetic signal, a low frequency sin wave embedded in a high frequency wave. (b) The
Local Spatial Frequency plot (Scalogram phase) associates each sample point with
its proper frequency. (c) The Discrete Fourier Transform, which has two peaks, one
for each frequency. (d) The Spectrogram representation, using a fixed kernel window
without explicit knowledge of the original input signal’s analytic form.

while a low-frequency part occurs in the middle. This localization is the power of

scalogram representation, since the sampling is linear in wavelength.

4.1.1 Spectrogram

The spectrogram of a signal is a series of small-support. Fourier transforms of the

signal, each centered around a different point of the signal. For a one-dimensional

signal f(x), the spectrogram is SP (x, ω) where ω is frequency in cycles/unit distance.

The spectrogram is an estimate of the power of frequency ω at the point x. The

continuous spectrogram of the one-dimensional function f(x) is given by [64], [65];

SP (x, ω) =

∣∣∣∣
∫ ∞

−∞
Wl(a− x)f(a)e−j2πωada

∣∣∣∣
2

(4.1)

where Wl(x) is a window function with support length l. To calculate one vertical

slice of the spectrogram for a given value of x, say x0, the signal is first multiplied
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by a window offset by x0. This product is Fourier transformed where the magnitude

is calculated from the complex values of the Fourier transform; and the non-negative

half of the magnitudes serve as SP (x0, ω), which is one column of the spectrogram.

This process is repeated for every x.

The discrete version is computed using the discrete Fourier transform (DFT ),

which is discrete in both space and frequency. The window function controls how

much of the rest of the signal contributes to the spectrogram at the point x. In terms

of Wl(ω) and F (ω), the spectrogram can be written as;

SP (x, ω) =
∣∣(e−j2πωxWl(ω) ∗ F (ω)

)∣∣2 (4.2)

where ∗ is convolution [65]. The spectrogram uses a fixed window size at all scale

and a logarithmic sampling of wavelengths. this can be useful for texture analysis,

but seems less useful for image matching.

4.1.2 Wigner Distribution

One popular space-frequency representation is the Wigner Distribution (WD) [66]

[64], for the use of quantum mechanics. Like the spectrogram, the WD produces

a function of both space and frequency from a function of space alone. Practically

speaking, the WD can effectively deal with signals whose frequency is changing, giv-

ing a clear indication of their instantaneous frequency.

For a one-dimensional function f(x), the Wigner distribution is

WD(x, ω) =

∫ ∞

−∞
f

(
x +

a

2

)
f †

(
x− a

2

)
e−j2πωa da (4.3)

In few words, the way to compute WD(x, ω) is to first calculate the product f(x +
a
2
)f †(x − a

2
), which is the original signal multiplied by a conjugated version of the

original signal flipped around the point x. The † detonate as the conjugate and f † is

the conjugated version of the original signal. The Wigner-distribution has been ap-

plied to texture segmentation and to shape from texture, but it is not good choice for

image matching, that is because the cross terms that are introduced by the WD would

make it complicate automated analysis, since it is even more difficult to distinguish

the true frequency peaks.

Now, it is useful to ask what we want to see in the 2-D local spatial frequency

plot. Of course we need not only the particular frequencies be known, but also the

area in the original signal in which they occur. In contrast to the spectrogram, the

scalogram uses a variable window size that proportional to the frequency at each pixel

and provides to us what we need. The scalogram is a wavelet with a Gabor function

as the transfer function.
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Figure 4.2: Gabor filter composition with tuning frequencies ω = 0.05; (a) sinusoidal
wave of particular frequency, (b) a Gaussian kernel, (c) the corresponding Gabor filter
in a space domain, (d) Gabor filter in a frequency domain.

4.2 Gabor Filter

Gabor filters are the most commonly used tool in joint space-frequency uncertainty

product and for the separability of center frequency and bandwidth [67]. The Gabor

filter is a complex sinusoidal wave of particular frequency modulated by a Gaussian

envelope which defines the space duration. As shown in Fig. 4.2. Gabor filters

allow easy separation of the modulating component (which determines the spatial

frequency) and the envelope (which determines the bandwidth).

Let G(x, ω) be the function defining a Gabor filter centered at the origin. For a

given value of m and σf , we can view Gabor filter as:

G(x, ω) = ρ(x, ω).e−iφ(x,ω) for x ∈
[
−m

2ω
,

m

2ω

]
(4.4)

with Magnitude; ρ(x, ω) = u.e
−0.5

„
ωx

mσf

«2

(4.5)

and Phase; φ(x, ω) = 2πωx (4.6)

where u = ω/(
√

2πmσf ) is a scaling term, ω is the tuning frequency of the filter, m is

the number of wavelengths to fit in the window, σf is a fraction of window size that
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corresponds to one standard deviation of the Gaussian envelop σ, where σ =
mσf

ω
.

An example of the Gabor filter can be seen in Fig. 4.2, the filter is presented

with parameters ω = 1/20 = 0.05, m = 4, and σf = 1/6. The frequency of the filter

(ω = 0.05) is clearly observed in the Gabor filter represented in frequency domain

(see Fig. 4.2(d)). Gabor filters are closely related to the Fourier transform [34]. In

fact, the Fourier transform uses the entire image to compute its results, the Gaussian

window in the Gabor filter limits attention to a small region in the input image. In

addition, unlike the Fourier transform which use a fixed window size at each frequency,

the Gabor filter uses a window size that shrinks and grows as the tuning frequency

changes (that is depending on the ω term in the Gaussian component of Eq. 4.4).

Fig. 4.3 illustrated the shrinks and grows of the window size as the tuning fre-

quency changes. All of the filter in the figure have constant values of both the number

of wavelength (m = 4) and the fraction of the window size (σf = 1/6). As we can

observe, the effect space duration is inversely proportional to the effective bandwidth

via the uncertainty relation. Moreover, the reason behind using the Gabor filter is, in

Gabor filters, impulse response has the same support at low and high frequency. At

high frequencies the effective window width will be quite small, ensuring that only the

nearest pixels will be used to compute filter outputs. At low frequencies the window

will be much wider, and will therefore require more data from the original signal.

Common to all Gabor features is that, they are based on Gabor filter responses for

a given input image. The responses over the image are calculated for a set of filters,

tuned to its parameters. Therefore, not only the tuning frequency is the important

parameter in the Gabor filter but also the two other unexplained parameters (m and

σf ), which must be specified as the following:

The first parameter is the number of samples, which is called, the number of

wavelengths (m) to include in the window. The window size is equal to mλ where

λ is the filter wavelength, therefore, we are interested in looking at the question of

how many samples should be taken so that no information is lost in the sampling

process?.

The Nyquist-Sampling theorem establishes that ”when sampling a signal, the

frequency must be greater than twice the bandwidth of the input signal in order

to able to reconstruct the original perfectly from the sampled version”. So that,

for an input signal whose lowest frequency component is ωl (with corresponding to

wavelength λl = 1/ωl), we must include 2λl samples of the signal to reliably extract

information about that frequency. Consequently, we can choose that the value of m

as long as m ≥ 2. The default parameter value of the wavelengths per window that

is used in this thesis is m = 4.

The second parameter is sigma fraction (σf ). The parameter σf is the fraction

of the window size that corresponds to one standard deviation σ of the Gaussian.

For more explanation, we demonstrate how much of the Gaussian to include in the

window. Theoretically, the Gaussian has infinite extend, but what is the reasonable
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(a) Gabor filter in the space and frequency domains at tuning frequency ω = 0.04
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(b) Gabor filter in the space and frequency domains at tuning frequency ω =
0.0333
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(c) Gabor filter in the space and frequency domains at tuning frequency ω =
0.0286
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(d) Gabor filter in the space and frequency domains at tuning frequency ω = 0.025

Figure 4.3: Gabor filter examples with constant values (m = 4 and σf =1/6) but dif-
ferent values of the tuning frequencies (from top to bottom the ω equals 0.04, 0.0333,
0.0286 and 0.025). First column shows the Gabor filter in the space representation,
and the second column shows their plots of frequency response.
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Figure 4.4: Gaussian distribution with mean µ, and three standard deviations of the
mean (three on each side).

extent of the Gaussian window. In order to answer these query let us first look for

the ”Empirical rule” definition.

In practice, for a normally distributed data set, the Empirical rule states that

68.27% of the data elements (observation) are within one standard deviation of the

mean, 95.45% are within two standard deviations, and about 99.73% lie within three

standard deviations. Graphically, this corresponds to the area under the curve as

shown in Fig. 4.4. Therefore, from this principle we can see approximately 99.73% of

the observations fall within three standard deviations of the mean. The area under

the curve over this range is the relative frequency of observations in the rang. Thus

it is reasonable in practise to limit the extent of the Gaussian window to six standard

deviations (three on each side of the mean).

In view of the fact that, Gabor is complex-valued, Fig. 4.5 illustrates two plots

for a complete view of their components. The figure present Gabor filter as real-

Imaginary pair in Fig. 4.5 (a), and as the Magnitude-Phase representation in Fig.

4.5 (b). The filter has a constant tuning frequency ω = 1/10, and the values of

the extra parameters m and σf are 4 and 1/6 respectively. In Chapter 5, we will

demonstrate the effect of the Gabor parameters on stereo disparity accuracy.

4.3 Gabor Scale-space Expansion: Scalogram

The scalogram is a local spatial frequency representations that make use of the local

frequency content of an image. The scalogram uses a variable window size that shrinks

and grows as the tuning frequency changes. It is actually a special case of the wavelet

with a Gabor function.

For generation of the scalogram, SR(x, ω) an adaptive Gabor filter convolve with

a one dimension input row R(x), caching the outputs in a two dimensional matrix

with complex-valued elements (magnitude ρ and phase φ), that compute as follows:

Let G(x, ω) be the function defining a Gabor filter centered at the origin, as it
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Figure 4.5: Gabor filter example with the tuning frequencies ω = 1/10, number of
wavelength m=4 and σf =1/6. The Real-Imaginary pair, and the Magnitude-Phase
pair are presented from left to right.

presented in Eq. 4.4 and R(x) is the current image row.

Therefore, the scalogram representation i.e. the spatial convolution between

G(x, ω) and the signal R(x) is calculated as;

SR(x, ω) = R(x) ∗G(x, ω)

=

∫ ∞

τ=−∞
R(τ)G(x− τ)dτ (4.7)

Here the symbol ∗ denotes the convolution operation and the Gaussian envelope of

G(x, ω) define the local neighborhood.

For our purposes, the convolution integral form, Eq. 4.7 (i.e. for the continues

signal) has been reformed as a sum of sample response (i.e. for a digital signal), so

that, convolving the two vectors G(x, ω) and R(x) is the same operation as multiplying

the polynomials whose coefficients are elements of G and R. If a is the length of vector

G and b is the length of vector R, then SR is a vector of length (a + b− 1) and whose

xth
0 element is

SR(x0) =

min (x0,a)∑
j=1

G(j)R(x0 + 1− j)

the sum is over all the values of j which lead to legal subscripts for G(j) and

R(x0 + 1− j).

The sampling along the (vertical) frequency axis is one of the principal differ-

ences between the image scalogram representation and other local spatial frequency

representations. This produces a multi-scale phase-based method, which can handle

missing information at any scales. This kind of local spatial representation is very

useful for image matching and dense depth map reconstruction.

An example of the scalogram output for the input image scanline is shown in

Fig. 4.6. A sinusoidal signal with different frequencies is shown in plot (a) as an
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Figure 4.6: Magnitude and Phase Scalogram of a one dimensional sinusoidal input
signal. The horizontal axis of the Scalogram correspond directly with the signal’s
horizontal axis. The vertical axes of the Scalogram correspond to a frequency scale
with low frequency at the bottom.
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input scanline. Since, the image scalogram is the result of applying a collection of

Gabor filters to a 1-D image scanline and cashing the output in a 2-D matrix, each

representation is same like a triangular shape. The reason for this is due to the

interaction between the varying filter window size and the border of the scanline. See

Fig. 4.6 (b), since the filter window size proportional to the frequencies, the high

frequency filter outputs found at the top of the scalogram are computed using only

a few pixels, so their values can be computed over most of the width of the image.

At lower filter frequencies, the number of points that must be sampled increases,

reducing the number of outputs that can be computed. That means the sampling a

long the vertical axis is linear in wavelength, which is reciprocal of frequency.

Fig. 4.6 (c) shows the combined scalogram-phase and scalogram-magnitude, the

horizontal axis is the same as in the original signal (pixel numbers) and the vertical

axis is wavelength (in pixels). The hight of the plot encodes the strength of the signal

at a given location and resolution (magnitude). The 2-D separated scalogram-phase

and scalogram-magnitude for the input signal are shown in the bottom Fig. 4.6 (d)

and Fig. 4.6(e).

Fig. 4.7 illustrates a synthetic input signal (R) and its scalogram representation.

The phase plot of the scalogram is a particular interest because it enables us to

actually detect the localization of the changing frequencies. At locations in the signal

where there are large step changes, we can see a vertical line of constant grey value

in the phase diagram (Fig.4.7 bottom) indicating a constant phase angle over all

frequencies at that point in the signal. The arrows mark these vertical lines at the

step transitions in the signal.

4.3.1 Phase-frequency Measurement

In this section, we discus the response of applying the Gabor filter which is the

sine wave multiplied by Gaussian to discrete signals signals (image scanline). The

challenges arise in how measure the frequency of the sinusoid signal. In addition,

the output of a Gabor filter is a complex number and in phase-based method phase

plays an important rate in the disparity computation, but how accurately can it be

measured.

When filtering a periodic signal there are two common techniques for determining

the frequency of the signal:

• using the frequency of the band-pass filter with the highest magnitude response

• measuring the phase derivative of the filtered signal

Using the filter tuning frequency directly is complicated because any discrete filter

will have a blurred response, see the horizontal blurring around the dark line in the

spectrogram representation in Fig. 4.1 (d). In this way, the frequency determined
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by the convolution of the window with a bank of band pass filters tuned to different

frequencies, find the filter with maximum magnitude response, and treat the tuning

frequency of that filter as an estimate of the signal’s instantaneous frequency.

The phase derivative that is known as the instantaneous frequency provides a more

accurate measure of a sinusoid’s frequency in theory, in practise its accuracy depends

on the amplitude of the input signal. This has led several researchers to develop a

constraint that filters out unreasonable phase-derived frequencies [3]. Similarity we

provide in the next chapter a useful combined constraint which uses the phase and

magnitude notation.

In order to understand how the instantaneous frequency can be computed (i.e.

how the frequency and phase are related), we will demonstrate the same analysis

of two different input sinusoids (as the input scanline) the first sinusoid with fixed

frequency, ω = 1/15, and the second one with varying frequencies from ω = 1/30 to

ω = 1/15 , shown in Fig. 4.8 plot (a), and a band pass filter (a single Gabor filter)

with a tuning frequency ω = 1/20. Plot (b) shows the derivative of the phase of the

input signals, as we can observe in plot (b) the value of this derivative is everywhere

equal to the frequency of the original signal. By looking at the original signal and

considering their known frequencies to analysis what we see along the x-axis in the

two plots (a) and (b) in Fig. 4.8. A sinusoid has a fixed shape, but may be stretched

or compressed along the x-axis by changing it’s frequency (e.g. the second sinusoid

signal in this example). Similarly, the phase of a sinusoid will always change linearly,

and its rate of change will be related to the original’s frequency.

The linear change in phase of a sinusoid can also be measured in an arbitrary signal

using a band pass filter, which can be an original sampled signal with a Gabor filter

whose tuning frequency ω = 1/20. Fig. 4.8(c) shows the phase which is computed

by the Gabor filter (in a solid line) is approximately equal to the analytically known

phase of the original signal (in a dashed line), the phase wrap around at 2π exactly

where one period of the sinusoid repeats.

Finally, the derivative of the Gabor response phase is shown in Fig. 4.8 (d), again

with the analytically known value of the original signal’s frequency (phase derivative).

We can observe that, except around the discontinuities at the ends of the signal, the

empirically-derived Gabor estimates are extremely close to the analytically known

values, in particular when the frequency keeps changing.

The most interesting property to notice here is that this method of computing

instantaneous frequency is reasonably independent of the analysis filter’s tuning fre-

quency, since the same Gabor filter was used to compute the phase in the both

different original signals (in the previous example). But the accuracy depends on the

amplitude of the input signal, therefore section 5.2.2 in chapter 5 develops a constraint

to filter out unreasonable phase-derived frequencies.

Generally, in the phase-based stereo matching method, in order to compute a

precise disparity estimate, it must reflect measurements taken at the same frequency,
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Figure 4.8: Instantaneous frequency analysis for two signals. The signal with fixed
frequency (left) and signal with varying frequency (right).
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but what if the instantaneous frequencies measured by same filter on a pair of cor-

responding image regions differ, as can occur with perspective foreshortening. One

of our contribution provided in chapter 6, manipulate this situation by providing a

foreshortening correction factor based on the physical geometry of the scene.



Chapter 5

Phase-based Disparity Estimation

In this chapter we restrict our attention to a particular class of phase-based method,

the so-called phase-difference-based stereo method [7], [8]. In the previous chapter,

we give an overview of local spatial frequency, develop our method, and contrast it

with existing ones. The method that is developed here will be analyzed and extended

in the next chapter to address issues of foreshortening problem.

The phase-difference-based technique has become a widespread method for depth

and optical flow estimation because of its superior performance and better theoret-

ical grounding. The technique is based on the convolution of the stereo image pair

with Gabor filters. Gabor filter contains two parameters, the width and the tun-

ing frequency. In order to optimize its performance, these parameters have to be

chosen in accordance to the characteristics of the visual signal. In this chapter, we

propose an automatic technique to locally adapt the filter parameters to the input

signal. At the beginning of the experimental analysis, we analyze the performance

of the phase-difference-based technique for disparity estimation with respect to the

choice of the Gabor filter parameters. In particular, we characterize the effects of

phase nonlinearities on the quality of disparity estimates. In the second part, a novel

technique is introduced which reduces phase nonlinearity by means of an adaptive

mechanism for the tuning frequency. The performance improvement that is produced

by the adaptive filter is demonstrated using different types of images. Results show

that the proposed technique allows a significant improvement of disparity estimation.

5.1 Phase-difference Based Method

5.1.1 Phase-difference as Disparity

As an alternative to spatial correlation, phase based methods of disparity measure-

ment have been proposed by a number of researchers [2], [41], [30], [34]. The disparity

is estimated from local phase-difference using the instantaneous frequency, where the

instantaneous frequency is estimated from the derivative of the local phase.

74



5.1. Phase-difference Based Method 75

Phases
φl 0 0 0
φr 0 −π/4 −π/2

Disparity 0.0 2.5 5.0

Table 5.1: Application of Equation 5.2. Estimating disparity as phase difference

At the first, it is useful to start from the principle mathematical foundations

with a simplest possible example. In stereovision, the simplest case is typically the

comparison of two 1-D functions that represent scanlines from the rectified stereo

images. In the following example (Fig. 5.1, we are interested in studying how the

phase of a sine wave relates to stereo disparity.

Let the left and right image F (xl) and F (xr) be sinusoids wave, which are shown

in Fig. 5.1 (right), each of them have a particular phase angle, θ;

F (xl) = sin(2πωxl − φl), F (xr) = sin(2πωxr − φr) (5.1)

where ω is the a frequency, φl and φr denoted as the phases of the left and the

right images. The disparity is the amount of shift required to make the left and the

right images appear equal. Mathematically, we discover the disparity by setting the

formulas in Eq.5.1 equals.

sin(2πωxl − φl) = sin(2πωxr − φr)

2πωxl − φl = 2πωxr − φr

Then the disparity at any point in the signal is a different distance at that position

(xl − xr) given by;

Disparity = xl − xr =
φl − φr

2πω
(5.2)

Graphically, Fig. 5.2 shows the disparity as a horizontal separation between the

two signals. In this example, all pixel disparities will be considered equal, let the

frequency ω = 1/20, the phase of left image φl = 0 and allow the right phase φr to

vary, (e.g. φr = 0,−π/4, and− π/2). Then the disparity is measured as the amount

of shift visible in the graphs. When the right phase equal to 0 the two signals are

matching together and the disparity equal to 0, in case of the right phase equal to

the −π/4, we can observe the amount of horizontal shift is 2.5 units. Similarly, when

φl = 0 and φr = −π
2

in Fig. 5.2 (bottom) we can see the horizontal separation between

the two signal is 5 units.

Furthermore, by plugging the value of φl and φr into Eq. 5.2, we can compute the

disparity values, the obtained result which are found in Tab. 5.1 equal to the amount

of shift, that are indicated by the labeled bar in the Fig. 5.2.

This example also give us an important observation of the ”phase-wraparound

problem” in the phase-difference based method. This problem is caused by the fact
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Figure 5.1: Estimating disparity between two images from phase difference and in-
stantaneous frequency.

that the difference between 359◦ and 1◦ is 2◦, not 358◦ as calculated by a simple

subtraction. On the other wards, in the example of Fig. 5.2 where the frequency

ω = 1/20, disparities of 1, 21, 41, ... all appear equivalent. This means, we can

not compute a unique disparity from a single phase value. Some authors [4], [3], [34]

attempt to address this problem. More details and our suggested solution for the

wrap-around problem will be demonstrated in section 5.2.3.
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Figure 5.2: Disparity as a function of Phase difference. The disparity is a horizontal
separation between the two images.

Now, it will be more convenient to expose the mathematical derivative of that

basic idea of the disparity measurement as a phase-difference. The heart of phase-

based methods is the filters that decompose the image into band-pass signals. Let

us suppose that the arbitrary disparity ∆x is constant over the image as shown in

Fig.5.2, this is a global disparity that will apply to every pixel in the image. Then,

according to the Fourier shift theorem, which states that a translation ∆x in space

corresponds to a phase shift 2πω∆x in the spatial frequency domain:
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f(x−∆x)◦ F // // F (ω).e−j2πω∆x

where F is the Fourier transform of the image f(x).

The fundamental idea of the phase-based algorithm to disparity measurement is

to recover the disparity as a phase difference observed in the frequency domain. Let

the l(x) and r(x) be the left and right images. They are related to each other by shift

r(x) = l(x−∆x). Then the Fourier transform for each one is computed independently

l(x)◦ F // // L(ω)

r(x)◦ F // // R(ω)

Moreover, it is assumed that the two signal/image are related by a shift ∆x, and

according to the Fourier shift theorem

r(x) = l(x−∆x)◦ F // // L(ω).e−j2πω∆x

Then the Fourier transforms of the image pair L(ω) and R(ω) are related to each

other by

R(ω) = L(ω).e−j2πω∆x (5.3)

This equation holds for any value of frequency ω, therefore all of the complex Fourier

coefficients from the right image are exactly the same as those for the left image,

except that their phases are shifted by some amount.

The polar representation of the real and imaginary parts in the complex plane

is denoted as, magnitude ρ and phase φ, where the magnitude ρr = |R(ω)| and the

phase denotes the argument of the complex response φr = arg [R(ω)]. Since the

magnitude of the coefficients does not change, let us now restrict our attention to the

phase components of Eq. 5.3. Using this notation, Eq. 5.3 written as:

arg [R(ω)] = arg
[
L(ω).e−j2πω∆x

]

φr = −2πω∆x + φl

Therefore, the disparity, ∆x, is obtained as a function of phase difference;

∆x =
φl − φr

2πω
=

φl − φr

2π
· λ (5.4)

It is the same results that presented in Eq. 5.2, where ∆x denoted as the disparity

value.

Given a frequency ω0 the disparity ∆x is computed using the difference of phases

φl(ω0) and φr(ω0). This is correct in case of having a fixed frequency over all the signal

(the image scanline), e.g. the continuous sine wave example. But unfortunately, the

recovered disparity is global and can not be assigned to a particular region in the

image. Furthermore Eq. 5.4 is assumption that the left and right phases are measured

at the same frequency and that is not reasonable in the real images.
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Figure 5.3: Concept of phase difference-base suggested algorithm. Besides on the
phase and magnitude information of the rectified input stereo images using the
measured-phase difference ∆φmeas and the ideal-phase difference ∆φideal

.

5.2 Suggested Phase-difference Based Algorithm

Stereovision is a technique used to extract depth from a pair of images taken from

slightly different view points. Depth can be computed from the relative position of

corresponding points in the two images. Therefore, to have a local disparity esti-

mation, it is necessary to define a window inside which the points are picked up to

compute the phase terms. Hence, we propose to use a Gabor scale space expan-

sion (scalogram) with adaptive window size to capture both local orientation and

frequency information from the image.

Fig. 5.3 shows the concept of our suggested phase-difference algorithm. It will be

described in several levels; the primary step is the preprocess image rectification. In

order to simplify the matching process, rectifying the images is one of the important

and first step in our method. By using the camera parameters that are obtained from

the camera calibration process the captured stereo images are transferred to images

as if obtained by camera with parallel optical axis. Therefore corresponding points

must always lie along epipolar lines in images. These lines correspond to the intersec-

tions of an epipolar plane (the plane through a point in scene and nodal points of the

two cameras) with the left and right image plains. exploiting this epipolar constraint

reduces an initially 2-D search to a 1-D one. Thereby the first level deals with the

image representation in the local spatial representation and the component features

extraction (phases and magnitudes). The second processing level of the approach

is specified by exactness the complementary problems (singularity neighborhoods,
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wraparound, and the precision effects of the foreshortening). Finally, the 3-D coor-

dinates of the examined object points are obtained using conventional triangulation

method. In the following subsections we will discuss these complimentary problems

as well as the program and its implementation requirements.

5.2.1 Image Scalogram

Image matching is important for 3-D stereo surface reconstruction. In this task,

matching is found by shifting one image to match the other; the amount of shifting

needed at each point reveals the 3-D structure of the scene. If the portion of the

image is uniform with no features, then matching is impossible. If features are preset,

a match can be obtained. Here, as in other spatial vision tasks, it will be more

convenient to work with the image spatial-frequency representation (image scalogram

representation). Image scalogram is the result of applying a collection of Gabor filter

to a 1-D image scan-line. The matching precision available at any point in the image

is limited by the highest frequency present at the point.

Fig. 5.4 illustrates the brightness of a 1-D image scan-line, Xl, and its correspond-

ing scalogram representation (phase and magnitude). The scalogram plots have a

straightforward interpretation; the horizontal axis is the same as the original signal

(pixel number) and the vertical axis is linear in respect to wavelength (in pixels).

In the scalogram plot we observe that the short wavelength are on top; while the

longer wavelengths are at the bottom. The intensity of the points is the scalogram-

magnitude (see scalogram-magnitude plot) that encodes the strength of the signal at

a given location.

It is easy to see the relative contribution of each frequency to each point in the

image’s line-profile, the frequency information is very well localized. But in some

regions in the scalogram phase, we can observe the phase signal has an unwanted

behavior, as well as the same regions in the scalogram magnitude, which are weak and

have value zero or nearly to zero. These points appears in white spots in the scalogram

magnitude. At these points the disparity estimate is not computed accurately, this

problem known as the singularity points.

5.2.2 Recognizing Singularity Neighborhood

The central and main advantage of phase-difference technique is the expected stability

of phase through scales with respect to contrast differences between the left and

right views, and its linearity through space. In some regions, the phase signal has

an unwanted behavior. This is because, the Scalogram is analytic, and contains a

number of isolated zeros, when SR(x, ω) = 0 and the magnitude is generally weak.

As a result the disparity will not be computed accurately.

From the scalogram-phase and scalogram-magnitude plots in Fig. 5.4, we can

observe that in some regions the phase scalogram has an unwanted behavior (i.e., the
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Figure 5.4: Shape of the signal from a complete scan-line and the scalogram repre-
sentation of this signal (both magnitude and phase).

phase stability is not uniform throughout scale-space) and phase contours are nearly

horizontal and not vertical as desired.

Moreover, by considering the interesting regions in the scalogram representations,

Fig. 5.5 shows zeros appears as white spots that are marked by the arrows in

scalogram-magnitude (Fig. 5.5 top-left). The phase signal is undefined when the

magnitude fades away (these points known as the phase singularities). The expected

density of these singularities are proportional to the peak tuning frequency [3], [30].

Fig. 5.5 (mettle column) illustrates the relationship between low magnitude and non-

linear phase. The top figure shows level magnitude and its correspondence phase

contour shown in the bottom. The scale for λ = 7 is marked by dashed line over the

magnitude and phase contours are plotted in the left column of the figure, that show

the local frequency (peak tuning frequency) and the phase as a function of spatial

position (Note that, the marked dashed line crosses two singularity neighborhoods).

Now, we describe the characteristic behavior of ρ(x, λ) and φ(x, λ) near singular

points. Let P (x0, λ0) denote the location of a singularity where the singularity point

lies near the center at the point which the phase contours intersect, see Fig. 5.6

(B). The neighborhoods just above singular points (i.e., for λ > λ0) are characterized

by local frequencies that are significantly below the corresponding peak frequency

(2π
λ

). Within these neighborhoods regions exist in which local frequency is zero; i.e.
∂φ(x,λ)

∂x
= 0. At this region, the level phase contours are horizontal and not vertical

as expected, consequently the phase matching will be very sensitive to small changes

in scale. Likewise, lower the singular point (i.e., for λ < λ0) the neighborhoods are
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characterized by local frequencies, which are significantly higher than corresponding

peak tuning frequencies. Furthermore, the neighborhoods to left and right of singu-

larity can be characterized in terms of magnitude variation which as ρ(x, λ0) goes to

zero.

Singularity Neighborhood Detection

In order to increase the accuracy of disparity estimate, it is necessary to detect the

singularity neighborhoods and avoid the use of these regions from the calculation.

Fleet et al. [3], [30] have proposed two constraints to remove such areas. As simi-

larly, we describe constraints that used to identify singularity neighborhoods without

requiring the explicit localization of the singular points. The first constraint in Eq.

5.5 detects the neighborhoods above and below the singular points. The constraint

removes all the areas where the local (instantaneous) frequency is deviated from the

tuning frequency. In particular, we constrain the distance between local frequency of

response ∂φ(x,λ)
∂x

and the peak frequency 2π
λ

1

σf (λ)
·
∣∣∣∣
∂φ(x, λ)

∂x
− 2π

λ

∣∣∣∣ < τφ (5.5)

where σf (λ) = 1
σ(λ)

and σ(λ) defines the radius of the filter support.

The neighborhoods to the left and right of the singular points can be detected

with the second constraint on local magnitude variation, Eq. 5.6, i.e. where the

magnitude is very weak.

σ(λ)

∣∣∣∣
∂ρ(x, λ)

∂x

∣∣∣∣ ·
1

ρ(x, λ)
< τρ (5.6)

ρ(x, λ)/∂ρ(x,λ)
∂x

approximates the distance from the singularity to x with a linear mag-

nitude model [3]. For the fact that, near the singularity the magnitude acts like a

parabola (see Fig.5.6 (B)), we can observe that the level magnitude contours near the

singular point drown as a parabola, it follows that the constraint in Eq. 5.6 removes

the boule of the area size.

Now, we suggest combined constrain which uses the phase and magnitude nota-

tion for a Gabor filter with tuning wavelength. Consequently, for finding reasonable

measurements we can express a combined stability constraint as;

σ(λ)

∣∣∣∣
∂ρ(x, λ)

∂x
· 1

ρ(x, λ)
+

∂φ(x, λ)

∂x
− 2π

λ

∣∣∣∣ < τ (5.7)

As τ decreases, this constraint detects larger neighborhoods around the singular

points. This formula was derived from two observations; the first is ”the phase deriva-

tive of Gabor filter should be roughly” and the second is ”the magnitude derivative

should be small”.
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Figure 5.5: Detection of singularity neighborhoods. The scalogram response (mag-
nitude and phase components) of a line-profile from figure 5.4, with 1 ≤ λ ≤ 20.
The two plots in left column are the magnitude ρ(x, µ) and phase φ(x, λ). In the
middle column, the level contours of the magnitude on top and phase in bottom.
Right column is the local frequency and the phases as a function of spatial position
at λ = 7.

Fig. 5.7 shows the application of Eq. 5.7 at τ = 0.06. The detected regions of

the singularity neighborhoods that achieve the constraint comes into view as labeled

regions in the level phase contours Fig. 5.7 (A), as well as in the level magnitude

contours in Fig. 5.7 (B). Therefore, the unreliable phase values which labeled by

these regions will be ignored.

5.2.3 Combined Algorithm for Estimating Disparity

Our algorithm computes the disparity at each pixel using phase-differences. In sec-

tion 5.1.1, we demonstrate the principal of phase-difference technique for disparity

estimates, and how the phase of a sinusoid could be used to compute stereo dis-

parity. Therefore, our technique based on the convolution of the stereo image pair

with several Gabor filters, and caching the outputs in 2-D image scalogram (magni-

tude and phase). In the beginning, we exploit the front-parallel surface assumption

that assumes that the depth is constant over a region under consideration. This de-

scription will be extended in chapter 6 to consider the case in which slanted surface

(foreshortening problem).

Let a pair of images IL and IR be given. Assume that these images have the

same dimensions, and were taken with a pair of cameras with proper calibration, this
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Figure 5.7: Application of stability constraint. Detection of singularity neighborhoods
by the combine constrain 5.7 for τ = 0.06 and 4 ≤ λ ≤ 20. A) level phase contours
and the region which detected shown in the labeled regions. B) The correspondence
Magnitude contours that achieve the constraint.
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constraint reduces the matching problem from two dimension to one, that is because

same-numbered of scan-lines in the two images are guaranteed to correspond to the

same plane in the world. Then for each corresponding rows xl and xr in the pair

images, each contains n pixel intensities. At first, according to the characteristics

of the scan-lines the scalogram is computed as a result of convolving a collection of

Gabor filters with a 1-D image scan-line. The scalogram consists of a 2-D matrix

of complex values represented by; magnitude ρ and phase φ. Where, ρl(c, λ) is the

magnitude of the left row’s scalogram entry at pixel c with wavelength λ, and φl(c, λ)

is the phase of the left row’s scalogram entry at that pixel. Similarly for a right row

with magnitude ρr(c, λ) and phase φl(c, λ).

For a given pixel c, we look at the corresponding columns in the magnitude plots

ρl(c, λ), ρr(c, λ) see Fig. 5.8(c). These columns represent the strength of the signal at

many wavelengths, Fig. 5.8(c) shows the scalogram-magnitude for one scanline from

the Doll image pair that are shown in plot (a). Fig. 5.8 (b) shows the brightness that

correspond to these scanlines from the left and right images. In order to estimate

the disparity for the current pixel c, firstly, phase values with low corresponding

magnitude will be filtered out using the unreliable phase constraint, Eq. 5.7, since

these regions with low magnitude yield unstable phase values. Then use the remaining

left and right phases to fit phase-differences. In order to do that, we will restrict our

attention to those regions in which have visible magnitude values by finding peaks

(singularity points) in the magnitude.

After that, for a given list of candidate disparity, d, (i.e. the disparity rang). Un-

like the direct phase method, which make explicit use of phase difference as disparity,

by comparing the phase values at the same-numbered column. we use columns that

are actually expected to correspond, i.e. incorporate the candidate disparity in the

measured-phase difference ∆φmeas, Eq. 5.11.

For more accuracy, we also should manipulate the complementary problem of

phase-wraparound, wherever we can only measure the phase difference modulo 2π.

I.e. a given filter will only be able to estimate disparity less than the wavelength

specified by its tuning frequency [3] [68]. For more details on how we can address

this problem, we enumerate the given list of the possible disparity range d, then

for each candidate disparity disp, where, disp ∈ [min(d), max(d)] we compute the

”ideal-phase difference curve”, (∆φideal), from the wellknown relation between the

phase-difference and the disparity, (disp =
∆φidead

2π
λ) the ideal-phase difference given

as;

∆φideal = 2π
disp

λ
(5.8)

In the same time, the ”measured-phase difference”, ∆φmeas, defined as;

∆φmeas = φl(c, λ)− φr(c, λ) (5.9)
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Figure 5.8: Sample usable magnitude that correspond to the stable phase values
at pixel number (75,150) from the pair images. only the values inside the dotted
rectangles are used in the computation.
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Figure 5.9: Ideal phase difference as a function of candidate disparity illustrate the
phase wraparound problem. Each graph has 30 sample points spaced linearly a long
the x-axis.

This Equation measured phase-difference but, my be not equal the ideal-phase differ-

ence, recall the example in Fig. 5.2, since a wavelength λ = 20. Therefore, disparities

of 1, 21, 41, ... are appear equivalent, as not expected. i.e. ∆x(1) = ∆x(iλ + 1),

i = 1, 2, ..., etc. Therefore;

∆φmeas = |∆φideal|2π (5.10)

So for correcting the phase angle radian, one must add multiples of ±2π, then

∆φideal = ∆φmeas + k2π, which mean that the measured phase difference is only

part of the results. For computing the exact disparity for each filter the additional

parameter k must be known.

Unfortunately, there is no way to measure the k without knowing the ideal dispar-

ity, many methods either assume k = 0 or arrange the processing so that k is assumed

to be known. Other direct phase methods [30] [4] address the phase wraparound prob-

lem by using a coarse-to-fine approach. Instead of that, we overcome this problem by

add the given candidate disparity in the measured-phase difference computation and

find the smallest correlation between the measured and ideal phase difference. Prac-

tically, we look at how the wraparound issue will arise, Fig. 5.9 shows several plots

of ideal phase difference as a function of disparity range. As a candidate disparity

increases, the number of times that phase value is expected to wraparound increases.

Therefore, Eq. 5.9 can be written as:

∆φmeas(c, λ, disp) = φl(c, λ)− φr(c + disp, λ) (5.11)

Now the task is turned to finding the disparity whose ideal-phase difference best

match with that was measured. By this way we do not need to compute the ap-

propriate value for k at each filter. Finally, an evaluation function, EF , compute a
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quantitative agreement between these two set of phase differences.

EF =
1

|0|
∑

λ∈0

ρl(c, λ)ADM(∆φideal, ∆φmeas) (5.12)

where ADM (the absolute difference module) is the smallest difference between the

ideal-phase and the measured phase, such that;

ADM(a, b) = min
k∈[−1,0,1]

||a|2π − |b|2π + k2π| (5.13)

where the 0 is the set of wavelengths whose output are considered reliable. This eval-

uation function provides the most accurate results, where the smallest value indicates

the best matches and the wraparound problem is addressed by finding the smallest

ADM between (∆φmeas) and (∆φideal). Then we select the estimating disparity that

exhibits minimum error as the result for the pixel.

Fig.5.10 shows the computation results by the proposed phase-difference tech-

nique for the stereo pair image ”Doll images”, with disparity range (0...15), number

of wavelengths m = 4 and number of sigma 1
σf

= 6. Fig.5.10(a) shows the true dis-

parity map in the left and the computed disparity in the middle. Depth is codded in

the disparity map as brightness, with brighter map areas estimated as nearer, darker

areas estimated further away from the viewer. Some outliers areas also appears in

white points. The disparity map converted to a 3-D point cloud then 3-D surface

reconstructed as shown in the right plot, this is based on the known camera param-

eters. Fig. 5.10 (b) is a disparity space computed at row 75. Bottom plot Fig. 5.10

(c) is a representative scanline number 75 from a computed disparity map against

the correspond one from true disparity map. The accuracy and the smoothness of

the computed result are observed from the comparison, that is because the proposed

method optimally captures both local orientation and frequency information from the

input image.

5.3 Evaluation Methodology

In order to evaluate the performance of our proposed algorithm and the effects of

varying some of its parameters, we need a quantitative way to estimate the quality

of the computed results.

First, we evaluate the results based on Scharstein and Szeliski data set [35] to have

a comparison with various well-known stereo matching algorithms which provided at

”cat.middlebury.edu/stereo” [1]. Table 5.2 summarizes the attributes of the four stereo

pairs; dimensions, disparity rang, scaling and borders.

Two different statistics have been defined to measure the quality of results, that

is based on known ground truth disparity maps:



5.3. Evaluation Methodology 88

(a) Ground truth (reference) disparity map (left), Computed disparity map (middle), Visu-
alization of 3-D surface reconstruction (right)
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Figure 5.10: Experimental results of the Doll image pair with disparity range (0...15).
The accuracy and the smoothness of the computed result are observed from the
comparison, that is because the proposed method is optimally captures both local
orientation and frequency information from the input image.
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• Percentage of bad matching pixels, (BadM), between the computed disparity,

Dc, and the ground truth disparity, Dt;

BadM =
1

N

∑

(x,y)

|Dc(x, y)−Dt(x, y)| > δerror (5.14)

where δerror is a disparity error tolerance. For the experiment in this work we

use δerror = 1.0 since this coincides with Scharstein et al. [35], N is the total

number of pixels.

• Root-Mean-Squared error (RMSE),

RMSE =


 1

N

∑

(x,y)

|Dc(x, y)−Dt(x, y)|2



1
2

(5.15)

the mean square error is one of the most commonly used measures of success of

numeric computation. As well as the root mean squared error gives the error

value the same dimensionality as the actual and computed values.

The peak signal-to-noise ratio, often abbreviated PSNR, is an engineering term for

the ratio between the maximum possible power of a signal and the power of corrupting

noise that affects the fidelity of its representation. Because many signals have a very

wide dynamic range, PSNR is usually expressed in terms of the logarithmic decibel

scale.

The PSNR is most commonly used as a measure of quality of reconstruction. It

is most easily defined via the root mean squared error (RMSE) which for two images

Dc and Dt where one of the images is considered a true image and the other is the

computed disparity.

The PSNR is defined as:

PSNR = 10 · log20

(maxpixel

RMSE

)
(5.16)

Here, MAXpixel is the maximum pixel value of the image. When the pixels are

represented using 8 bits per sample, this is 255. More generally, when samples are

represented using B bits per sample, maximum possible value of MAXpixel is (2B−1).

In order to obtain the algorithm ranking, the four different images that are de-

scribed in Table 5.2 with their ground truth are used. The statistic based on the

percentage of bad pixels is computed, furthermore to compute these statistic over

whole image the computation also focus on three different kinds of regions: all pixels

in non-occluded regions (Bõ), all pixels in half-occluded regions (Bho) and all pixels

near-occluded regions i.e. near discontinuities (Bno). The numbers represent the per-

centage of bad pixels whose absolute disparity error greater than a threshold δerror.

The first measure, for example, defined as:

Bõ =
1

|õ|
∑

(x,y)∈õ
(|Dc(x, y)−Dt(x, y)| > δerror) (5.17)
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Table 5.2: Attributes of four stereo pairs

Image pair size Disparity range Scale Border

Tsukuba 384×288 0..15 16 18
Venus 434×383 0..19 8 10
Teddy 450×375 0..59 4 0
Cones 450×375 0..59 4 0

similarly, Bho and Bno are defined for the half-occluded and near-occluded regions.

Fig.5.16, Table 5.3 show the application of there evaluations.

Second, we provide other three kind of error measures to evaluate the performance

of the phase difference based algorithms;

• The absolute disparity error map (ADE):

ADE = |Dc(x, y)−Dt(x, y)| (5.18)

• The mean relative error (MRE) defined as:

MRE =
|Dc(x, y)−Dt(x, y)|

|Dt(x, y)| (5.19)

• The percentage relative error (PRE):

PRE = 100 · |Dc(x, y)−Dt(x, y)|
|Dt(x, y)| (5.20)

In order to further simplify the comparison, it would be useful to express the whole

error in the images by scalars. Therefore, we will refer to the mean value of these

errors on a set of samples:

1. The average error (µ) which defined as the normalized some of absolute value

of the difference between ground truth and computed disparity map at the

nonsingular points. The points marked as unreliable, are simply discarded and

are not taken in account in the computation. 5.2.2),

µ =
1

N

∑

(x,y)

|Dc(x, y)−Dt(x, y)| (5.21)

It is nearly equal to Eq. 5.14 but here x, y run over the nonsingular points.

2. The mean percentage relative error (PRE) defined as;

PRE = 100 · 1

N

∑
x,y

|Dc(x, y)−Dt(x, y)|
|Dt(x, y)| (5.22)
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Figure 5.11: Principle of the quality measurement for disparity map without ground
truth.

3. The deviation of the average error (DevAE);

DevAE =
1

N

∑
x,y

|µ− |Dc(x, y)−Dt(x, y)|| (5.23)

Third, we describe in this part an evaluation method in case of the the ground

truth disparity map is not available. As the disparity map is obtained from a stereo

pair images, it can reconstruct the right image by only using the left image and the

computed disparity map. Considering the fact that the disparity map Dc contain

the spatial shift between corresponding pixels in the stereo images. Therefore, the

reconstruction of the right image defined as;

RIr(x, y −Dc(x, y))) = Il(x, y) (5.24)

where x, y denote to the row and the column indices of the image. The difference

between the original image Ir and the reconstruction RIr yield the error image EIr;

EIr(x, y) = Ir(x, y)−RIr(x, y) (5.25)

In practice, it can also express the whole error image in one scaler, by summation

of all pixels and a consequent normalization of the image size yield the error criterion

ξ;

ξ =

∑
x,y

|EIr(x, y|

N ·N ·Rec
(5.26)

where the parameter Rec represents the resolution of the image (Rec = 28 = 256)

gray scale value.

Finally, percentage of both total really wrong pixels (<) and corrected pixels (η)

are provided by counting the pixels whose values are actually error. The tests have

been performed using a lot of stereo pairs either from real world or constructed.
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5.4 Experimental results

In this section, we present the experimental results that are obtained from several

stereo pairs and the quantitative evaluations as we mentioned in the evaluation

methodology. At the beginning of our experiment, we analyze the performance of

the phase-difference-based technique in relation with the choice of filter’s parameters.

After that the performance improvement is produced by the adaptive filter using dif-

ferent types of stereo images. Then a computed disparity is compared against ground

truth disparity and also compared with the existence algorithms.

5.4.1 Tuning Parameters

The response of scalogram is characterized by the Gabor filters parameters: measures

the width of local envelope (σf , m) and the tuning frequency (ω). The relative

magnitude of these parameters determines how many oscillations of wavelength λ

take place inside a region in which the filter is significantly different from zero.

Firstly, we discuss the properties of using a single filter on disparity estimates. In

order to simplify the analysis, a one dimensional stereo signal composed of 256 points

is created (e.g. the spike signal), wherever the left image is created by shifting the

first spike by 1 pixel, the second by four pixels and the third by 2 pixels. Fig. 5.12

shows the effects of varying frequencies ω = 1
10

, 1
30

, and 1
50

on the performance of the

computed disparity, the other two parameters have a constant values; m = 4 and

σf = 1/6, that means we discuss the properties of a single filter.

The left graph in Fig. 5.12 (a) shows the real and imaginary representation (in

top plot). The scalogram -magnitude and scalogram-phase are shown in the middle

and bottom plots.

The right graph in Fig. 5.12 (a) illustrates the stereo pair images (left and right

spike signals) in dash-dot line and in solid line respectively. Their correspond unwrap

phases (s.phasL and s.phasR) are shown also in dash-dot and solid lines.

The computed disparity by our phase-difference method is shown in a dashed line.

We can see the same plots in each case with a variety frequency where ω = 1
30

in Fig.

5.12 (b), and ω = 1
50

in Fig. 5.12 (c).

As shown in the same figure, by decreasing the frequency values, we can observe

that the range area in scalogram-magnitude and scalogram-phase which differ from

zero are decreased. See middle and bottom plots, S.mag and S.phase, in each case.

As a result, the disparity will be only computed in these regions. That is because

at a hight frequency the filter width will be quite small, thus ensuring that only the

nearest pixels will be used to compute filter outputs. At the low frequency the filter

width will be much wider, and will therefore require more number of pixels that must

be sampled. Therefore, the choice of the frequency should consider the fact that

the wavelength λ = 1/w has to be at least twice as large as the expected maximum

disparity [31], [69].
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Fig. 5.13 illustrates the effect of varying the fraction of standard deviation σf =
1
4
, 1

6
and 1

8
while the frequency keep fixed at ω = 1

10
and the number of periods m = 4.

As we can see in the graphs, the disparity estimates are effecting by extent of the

Gaussian window. In each case of Fig. 5.13 (a), (b) and (c) we can notice that the

magnitude (S.Mag) and the phase (S.Phase) behaviors in the x-axis region (100 ...

150) in each case at varying values of σf and observe their effected in the computed

disparity. Seeing that, the phase is a quasi-piecewise linear function, the transition

between quasi linear regions occur when the magnitude is very small, ρ ' 0, observe

the magnitude and the phase graph in each case. This transition is proportional to

the width of Gaussian envelop.

Similarly, Fig. 5.14 demonstrates the effect of varying number of wavelengths m

on the disparity estimates. All of the filters in the figure have constant frequency

ω = 1/10 and σf = 1/6, but the extra parameter m varies with values; 6, 10 and 14.

From the graphs, we can observe the amount of lost information due to the change

of sampling the signal. Therefore the performance of the disparity is changed.

From these analysis, the performance is decisively improved if wavelength and

the filter width are changed concomitantly, i.e. by keeping fixed relation between

wavelength and width, since the smoothness of the phase function is improved by

increasing the the width of fixed frequency. But large filter can cause a loss of resolu-

tion and a consequent error increase. By experiments, a good compromise is choosing

σ ' 1/2ω, in this article we chose the value of m = 4 and σf = 1/8, that allows lots of

data and many wavelength to be used in the computation. Once the relation between

width and wavelength is chosen the filter’s performance becomes a one parameter

function (the tuning frequency). In the real image, which have unfixed frequency

in its scanlines it will be more convenient to use many filters (i.e. the local spatial

frequency models) that make use of local frequency content of an image.

Now, we analyze the performance of the phase-difference based technique for dis-

parity estimation by using an adaptive kernel window that shrinks and grows as the

tuning frequency changes.

Fig. 5.15 shows in each case; (a), (b) and (c) the intensity representation of a

line profiles from a real stereo pair images ”Tsukuba” (left column, Top), scalogram

representation (phase, magnitude) for the left and right scanlines shown in the middle

and bottom left column in each case. The upper plot in right column is the disparity

values for each pixel with the candidate disparity (disparity rang, 0 ... 16), lower

plot is a graph of representative scanline from a computed disparity map (in solid

line) compared to the ground truth disparity (in dashed line). Fig. 5.15 (c) shows

in a comparison plot the improvement of the result, where the computed disparity

(CompDisp) and ground truth (TrueDisp) are nearly closed to each other.
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(a) Choice of filter Parameters at ω = 1/10, σf = 1/6 and m = 4
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(b) Choice of filter Parameters at ω = 1/30, σf = 1/6 and m = 4

50 100 150 200 250
−1

−0.5

0

0.5

1

S.Real / S.Imag

50 100 150 200 250
0

0.5

1

S.Mag

50 100 150 200 250

−2

0

2

S.Phase

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

15

20

25

30

35

40

ImageL(x)
ImageR(x)
S.PhasL
S.PhasR
CompDisp

(c) Choice of filter Parameters at ω = 1/50, σf = 1/6 and m = 4

Figure 5.12: The choice of frequency. The computed disparity at ω =
1/10, 1/30, 1/50, while two other parameters (m,σf ) are kept fixed at m = 4, σf =
1/6, disparity range [0...15]. the stereo images composed of N=256 points (as pike,
like one dimensional stereo signal). The figures are translated on the Y axis for
visualization.
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(a) Choice of filter Parameters at ω = 1/10, σf = 1/4 and m = 4
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(b) Choice of filter Parameters at ω = 1/10, σf = 1/6 and m = 4

50 100 150 200 250
−2

−1

0

1

2

S.Real / S.Imag

50 100 150 200 250
0

0.5

1

1.5

2

S.Mag

50 100 150 200 250

−2

0

2

S.Phase

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

ImageL(x)
ImageR(x)
S.PhasL
S.PhasR
CompDisp

(c) Choice of filter Parameters at ω = 1/10, σf = 1/8 and m = 4

Figure 5.13: Effect of σf . The transition steepness is marked by the arrows.
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(a) Choice of filter Parameters at ω = 1/10, σf = 1/6 and m = 6
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(b) Choice of filter Parameters at ω = 1/10, σf = 1/6 and m = 10
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(c) Choice of filter Parameters at ω = 1/10, σf = 1/6 and m = 14

Figure 5.14: Effect of a varying number of wavelengths m on the disparity estimates.
All of the filters in the figure have constant frequency ω = 1/10 and σf = 1/6.
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   Left image Right image Ground truth

(a) Left and right ”Tsukuba” stereo image and its ground truth map from data
set [1]
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(b) Computed disparity, σf = 1/10 and m = 4
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(c) Computed disparity, σf = 1/6 and m = 4

Figure 5.15: Line profile of computed disparity from our adaptive filter compared
with the ground truth in different values of σf .
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Table 5.3: Results of evaluation methodology

Tsukuba Venus Teddy Cones

BadM 0.255 0.345 3.14 3.16
RMS 3.26 1.94 8.89 9.17

µ 0.323 0.605 4.49 3.47
PRE 5.50 8.76 11.0 7.71

DevAE 0.533 0.599 4.89 4.91
η 83.4 84.5 82.0 81.8

5.4.2 Ground-truth Evaluation

This section provides experimental results obtained with the proposed ”phase-difference”

algorithm on a standard set of stereo pairs (namely Tsukuba, Venus, Teddy, and

Cones) with available ground truth. The stereo pairs and the ground truth are avail-

able at [1]. We used disparity ranges, scales and border values as mentioned in

Tab.5.2. The data set of the Middlebury stereo web side [1] are shown in Fig. 5.16.

The left images of each pair shows in Fig. 5.16(first row). The ground truth disparity

maps are shown in (second row), the computed disparity in the (third row), Error

maps are shown in the (fourth row), where the outlier pixels are assigned in black

areas and qualify as the most difficult areas for the algorithm. The bottom row is

the left occluded areas that are excluded and shown in the white regions. The to-

tal matching error is calculated as the mean percentage of outliers (disparity error

> 0.75) over all data sets.

As we mentioned in the evaluation methodology section 5.3, the computed dispar-

ity maps are then compared against the ground truth by computing the percentage

of wrong pixels. A pixel is judged to be erroneous, if its absolute deviation from

the ground truth is larger than 0.75 unit. Furthermore, Table 5.3 illustrates the

statistics results for all data sets in a quantitative measures to evaluate the quality

of the computed results. The percentage of bad matching pixels, Root mean square

error, average error for the nonsingular points, the mean percentage relative error,

the deviation of the average error and the percentage number of correct pixels η are

reported.

5.4.3 Comparison With Other Algorithms

Table 5.4 compares the proposed algorithm with 31 other existing algorithms. The

percentage of bad pixels, (the pixels which deviate is more than 0.75 unit from the

true disparity and labeled as ”bad pixels”), in the entire image, in the half-occluded

regions and near occluded regions are used to compare the results of various algorithms

for example; Improve SubPix [70], C-SemiGlo [71], GenModel [36], DoubleBP [74],

AdaptWeig [75], STICA [78], SSD+MF [35]. The table shows the percentage of
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Figure 5.16: Resulting disparity maps from the Middlebury stereo data set. (top row)
Left image; (second row) Ground truth [1]; (third row) Disparity maps generated from
our method; (forth row) Error map contain bad pixels (in black), correct pixels (in
white) and excluded occlusions (in gray);(bottom row) is the occluded region assigned
in the white areas.
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Figure 5.17: Percentage of bad pixels in Bõ, Bho and Bno of various algorithms.

bad pixels, which are generated from our disparity maps Fig. 5.15 to the web side

”http://vision.middlebury.edu/stereo” [1]. The ranks in each column are shown in

brackets, as a subscript of the error percentage. Each algorithm is sorted according to

its overall ranks. Fig. 5.17 shows the behavior of the percentage of bad pixels in: non-

occluded region, half-occluded region and near-occluded (i.e. near-discontinuities)

region of some various algorithms.

Fig. 5.18 shows another example, ”cylinder view”, the figure represents the com-

puted disparity map, the 3-D point clued and the 3-D surface reconstruction. A rep-

resentative comparison of correspondence lines profile from reference disparity map

(TrueDisp in dashed line) and the computed disparity map (CompDisp in solid line)

is shown in Fig. 5.18 ((b)-left), the right plot show the amount of error in each pixel

along the scan line, the maximum error is less than 0.2 pixel. From these results

we can say that the disparity estimates are obtained with subpixel accuracy, without

requiring explicit subpixel signal reconstruction.
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(a) Stereo pair image ”Cylinder” with its ground truth and the computed dis-
parity maps
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Figure 5.18: 3-D surface reconstruction for cylinder stereo pair images.
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a) Left image b) Reference disparity c) Compute disparity

e) 3D surface reconstructiond) Error map
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f) Comparing scan line

Figure 5.19: Multi object scene. (a) left image from the stereo pair, (b) reference
disparity map, (c) computed disparity, (d) is the visualization of Error map where the
correct pixels shown in gray-level from 32 to 64, the invalid pixels in blue and the bad
matching pixels in magenta, (e) shows visualization of 3-D surface reconstruction, (f)
lines profile comparison from the computed (CompDisp) and the reference disparity
(TrueDisp).



Chapter 6

Correspondence with Slanted
Surface: Foreshortening Effects

In this chapter, we describe the effect of perspective foreshortening in terms of local

spatial frequency. We will develop this theory in steps to demonstrate several prop-

erties: the frequency shift between images of an oriented flat surface is constant. It is

independent of the surface texture, and it can be expressed using only disparity rang

and surface angle.

The challenges for a slanted surface in the phase-based method arise in case of

the instantaneous frequencies that measured by the same filter are different in a pair

of corresponding image regions. Some authors; for instance [30] have smoothed over

the effects by using the average of the two instantaneous frequencies, but these are

coarse approximations that are not based on physical reality. In the following, we

demonstrate a theory of modeling the physical effects of perspective distortion in both

the world model and the stereo images.

In order to simplify the analysis, we assume that the only object in the 3-D

world is a textured flat surface that is either parallel to the image plane, or rotated

about the vertical axis by some angle θ, as shown in Fig.6.4. We further assume

that the stereo cameras have parallel optical and vertical axes. Then, we restrict our

attention to the effects of foreshortening in one-dimensional image scanlines, rather

than completing two-dimensional images, since all disparities will be horizontal under

this assumption. Fig. 6.1 shows an overhead view of foreshortening model and the

effect of this foreshortening in the frequency domain. This transformation will be

quantified precisely in the closed-form foreshortening factor developed in this section.

We donate the parameters measuring distances in the world plane be capitalized, XS,

ZL.

Now, we should looking for how the appearance of the object’s surface texture

changes between the perspective image planes, i.e. how the sampling rate varies

between the two images. This can be described and simplified as follows: For each

distance XS along the world surface, we want to compare the projection segments xL

104
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Figure 6.1: Foreshortening model. XS is the distance from the original point, OS,
which exactly in front of the left camera to the point S on the surface. XL and XR are
the left and right segment indices of the image for surface distance XS; the surface is
viewed at a sharp angle θ.
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(a) Left and right images where the corresponding projections upper-half
from left image and lower-half from right image appears in different length
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(b) Unequal correspondence intervals on the left and right
scanlines should be correspond to each other

Figure 6.2: Unequal projection lengths for the object surface acquired in a slanted
view.
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left rightLeft

scanline

Right

scanline

XR

XL

Figure 6.3: Stereo pair images show more compressed in one image due to perspective
foreshortening. The projected segment XL is shorter than XR.

and xR, from the left and the right images respectively, i.e. compare the left sampling

rate (δXS/δxL) to the right sampling rate (δXS/δxR), consequently:

Ψ = sampling ratio =
δXS

δxL

÷ δXS

δxR

=
δxR

δxL

(6.1)

This sampling ratio will be called the foreshortening factor, which is denoted as

Ψ. As a result, this formula Eq.6.1 computes the sampling ratio in the image space,

without having to explicitly model the distance XS along the object. Unfortunately,

this implies that it needs not only the left projected image xL but also the corre-

spondence projected xR, which are the component of the disparity estimation. But

the purpose of the work, as well as all methods that solve the stereo problem, is to

estimate disparities values (i.e. search for each xR in the right view that correspond

to each xL in the left view). So it would be better if the disparity and its derivative

could be avoided in the calculation of the foreshortening factor. In the following two

subsection 6.1 and 6.2, we will express the foreshortening factor without requiring the

disparity value. The two issues of concern that will be considered are: First, relating

disparity to the surface angle. Second, expressing the foreshortening factor uses the

image parameters.

6.1 Relating Disparity to Surface Angle

The disparity is the difference between the left and right pixel indices. So, let us

see how each of the left and right indices (xL and xR) relates to the surface angle θ.
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Based on the foreshortening model which is presented in Fig. 6.1, we will focus our

attention on the distance from the left camera to the surface point immediately in

front of it, expressing other depths in terms of this value ZL. The point varies across

the world surface, which can lead to the changes of its projection on the image plane.

The relation between the projection points in the image plane (pixel index ) and the

surface angle is calculated using similar triangles in Fig.6.1:

pixel index

focal length
=

X world coordinate

Z world coordinate
(6.2)

therefore, we obtain expressions for xL and xR from the similar triangles for the left

and right camera geometry;

xL

f
=

XS cos θ

ZL + XS sin θ
,

xR

f
=

XS cos θ −B

ZL + XS sin θ
(6.3)

Eq. 6.3 give us an expression for xL and xR in terms of the focal length f , baseline

B, distance in front of the left camera ZL, surface angle θ and location on the surface

XS. As a result, the equivalence expression for XS from the left and right camera

geometry is written as:

XS =
xLZL

f cos θ − xL sin θ
, or XS =

xRZL + Bf

f cos θ − xR sin θ

this equation represent projections of the same surface point XS into two image plans.

Therefore,

xLZL

f cos θ − xL sin θ
=

xRZL + Bf

f cos θ − xR sin θ
(6.4)

solving Eq. 6.4 for the right pixel index xR gives:

xR = xL

(
1 +

B

ZL

tan θ

)
− Bf

ZL

(6.5)

Similarly, we can compute the left pixel index xL. subsequently, to create the relation-

ship between the disparity and the surface angle, recalling the equation that computes

the disparity as the difference between the left and right indexes; disparity = xL−xR

and substituting by xR, then the disparity can be written as:

disparity =
B · f
ZL

− xL
B

ZL

tan θ (6.6)

This equation relates disparity to the scene parameters and does not depend on

knowing the actual surface location. But it still requires knowledge of ZL (distance

to the surface point in front of the left camera).
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6.2 Foreshortening-factor using Image Parameters

Eq. 6.6 relates disparity to the scan parameters, focal length f , baseline B. So we

can observe when the surface is frontoplaner (i.e., θ = 0). It is reduced to the familiar

expression that relate disparity to depth; disparity = f ·B
ZL

, and for an arbitrary fixed

angle θ the disparity varies linearly with respect to the image location xL. As we can

see in the experimental results, see the slanted flat surface in Fig.6.5. But Eq. 6.6

require knowledge of ZL, to eliminate this restriction, let us return to the sampling

ratio, Eq. 6.1, and reducing the derivative by substituting by xR, Eq. 6.5, then this

ratio (foreshortening-factor) is written as:

Ψ =
δ
(
xL

(
1 + B

ZL
tan θ

)
− Bf

ZL

)

δxL

= 1 +
B

ZL

tan θ (6.7)

This formula gives the geometric form of the foreshortening factor. It tells us that

for a given flat surface, the sampling ratio is constant over both images of the surface.

In other words, the local spatial frequencies of the left and right images are related

by a simple constant scale factor. We can get a feel for this by visually tracking the

low magnitude phase singularities (white spots) between the two image scalograms

in Fig. 6.4.

The result in Eq. 6.7 is useful for describing the form of foreshortening effect for

a constant scale factor, but it would be useless in a stereo matching since it requires

the knowledge of the depth ZL. To eliminate the distance in front of the left camera

ZL, from Eq. 6.7, we return to Eq. 6.6 and reform it to:

disparity =
B

ZL

(f − xL tan θ) (6.8)

B

ZL

=
disparity

f − xL tan θ
(6.9)

and then replace that in Eq.6.7, giving the final expression for the projected form

(frequency shift) also known as sampling ratio:

Ψ = 1 +
disp tan θ

f − xL tan θ
(6.10)

This form Eq. 6.10 relates the parameters in the image plane to the surface slope θ

and does require use of some known parameters (focal length f, image location xL,

and a candidate disparity disp).
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(a) The effect of foreshortening on scalogram magnitude. Two views
of flat surface with a sinusoidal texture appear on top, the scalogram
magnitudes for their central scanlines appear below. The responses are
similar, but are compressed to higher frequencies in the rotated view
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(b) Left and right central scanlines of a flat surface tilted 45 degree in the top. Their correspond-
ing scalogram shown in the bottom. We can see similar features in both scalograms; those in the
right image are present at higher spatial frequencies because the right image is subjected to greater
foreshortening than the right image

Figure 6.4: Foreshortening effects in the scalogram representation.



6.3. Extending Phase-based Algorithm 110

6.3 Extending Phase-based Algorithm

Phase-based methods such as [3] [34] [79] [2] as well as our method that is presented in

chapter 5 can be benefit from this foreshortening-factor to improve their performance.

The evaluation function Eq. 5.12 uses a global minimization strategy to find the

best disparity from a list of candidates, so it is easy to incorporate a foreshortening

correction term ψ to find the best matching and the disparity value. Moreover to

searching disparity space, we also search over surface angle, which allows us to predict

the corresponding frequency directly.

EF =
1

|0|
∑

λ∈|0|
ρl(c, λ) ·

∣∣∆φideal −
(
φl(c, λ)− φr(c + disp, λ · Ψ)

)∣∣
2π

(6.11)

Pseudocode for the complete algorithm in given in Tab. 6.3, we can notes the

correction term (foreshortening-factor) Ψ on the right image phase measurements.

Table 6.1: Pseudo-code for the corrected Phase-based stereo algorithm

Given:A pair of grayscaling images, list of candidate disparities,
surface angles, and focal length f.

For each row
Compute left and right scalogram SL and SR

For each column c
WL(c)={λ:ρL(c,λ) exist and φL is reliable}
WR(c)={λ:ρR(c,λ) exist and φR is reliable}

For each candidate disparity disp
For each angle θ
W = WL(c) ∩WR(c + disp)

Ψ = 1 + disp tan θ
f−xL tan θ

EF = 1
|W |

∑
λ∈W ρ(c, λ)·

|∆φideal − (φL(c, λ)− φR(c + disp, λ.Ψ))|2π

Return disparity that yield minimum error, where denotes the
foreshortening factor.

6.4 Results

The objective of this work is to demonstrate the effects of slanted surface. Therefore

the correctness of our algorithm immediately becomes evident when dealing with the

stereo pairs which is shown in Fig. 6.5. Left images of stereo pairs images ”Flat
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surface” rotated in 0◦, 20◦ and 45◦ (depth increasing from right to left) are shown

in Fig. 6.5 (a). Fig. 6.5 (b) show the reference disparity maps for each stereo pair

images. These true maps obtained in our labs (at the university of Magdeburg), makes

it possible to do measurements based on photogrammetric method, by applying a fast

active 3-D measurement of geometrical shapes by photogrammetry and structured

lighting method that was provided by [53]. In general a pattern of stripes caring

intensity are projected onto the scenes to facilitate image point correspondence.

The computed disparity maps in Fig. 6.5 (c) shows that the disparities are lin-

early decreasing (i.e. depth are linearly increasing) from right to left (from bright to

dark). Since the disparities are coded with brighter areas assigned as nearer, darker

area assigned further away from the viewer. Therefore, the results showed how the

proposed algorithm overcomes the problem of perspective foreshortening. The dispar-

ity map converts to 3-D surface based on the known camera geometry (focal length

baseline), the visualization view of the 3-D surfaces reconstruction are shown in Fig.

6.5 (d). From the primary result from the visual comparison between the reference

disparity maps and the computed disparity map we can observe the accurate and the

smoothness of the computed results. A representative comparison of correspondence

lines profile from reference disparity map (TrueDisp in dashed line) and the computed

disparity map (CompDisp in solid line) is shown in Fig. 6.6. The right plots showed

the amount of error in each pixel along the scan line.



6.4. Results 112

Z
x

y0°0°

45°

20°

Z

x

y

20°

Z
x

y
45°

(c) Compute disparity(b) Reference disparity(a) Left image (d) 3D surface reconstruction

Figure 6.5: Results for slanted object. (a) are Flat surface rotated by angles 0◦, 20◦

and 45◦. (b) are the ground truth disparity maps (reference disparity). (c) are the
3-D surface reconstruction rotated for a good visualization.
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Chapter 7

Summary and Conclusions

This dissertation has provided a powerful analytical tool for image analysis in stere-

ovision, that has addressed several problems; foreshortening, ambiguous matches,

detecting and handling discontinuities and occlusion, and quantitative evaluation of

stereo results.

Our contribution to the stereo problem has explored the benefits of local spatial

frequency representation. There are two fundamental extremes in the study of 2-D

imagery; the detail oriented spatial view and the wholistic frequency view. In the spa-

tial view, an image is represented by the concatenation of independent pixel values. In

the frequency view, the image is broken down mathematically into several frequency

components, information in each component related to the image as a whole. Each

view has its benefits; the spatial view can represent discontinuous textures and local

segmentations directly, while the frequency view is a mathematically elegant repre-

sentation that enables many useful analysis over large regions. In this research, a

new approach called local-spatial-frequency approach is proposed to combine between

the localizability of the spatial approach and the analytical benefits of the frequency

approach.

While the stereovision is an attractive and a widely used method, it is rather lim-

ited to reconstruct the 3-D surface reconstruction, due to the correspondence problem.

On the other hand, the correspondence problem can be reduced by using a method

based on the structured light concept. Therefore, our experimental set-up consists of

a combination of stereo vision concept and the structured light concept. Therefore

our system contains a light source (projector) placed between two of cameras which

are placed at different view points to capture the left and right images (stereo pair

images) while the projector emits a light strips pattern into the scene. Thus increas-

ing the local discriminatingly of each pixel and facilitating matching process. In order

to simplify the matching process, rectifying the images is one of the important and

initial steps in our method. By using the camera parameters that are obtained from

the camera calibration process the captured stereo images are transferred to images

as if obtained by camera with parallel optical axis. Therefore corresponding points
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must always lie along epipolar lines in images. These lines correspond to the intersec-

tions of an epipolar plane (the plane through a point in scene and nodal points of the

two cameras) with the left and right image plains. Exploiting this epipolar constraint

reduces the initially 2-D search to a 1-D one.

Stereo matching is a technique used to extract depth from a pair of images that

was taken from a slightly different view points. Many computation algorithms have

been proposed [25], [2], [34], [41], [35], [36], [4], [26], [37]. These algorithms differ

from one another in matching primitives, the density of the results, the accuracy

of the estimates and the underlying computation time. In general, single step stereo

algorithms can be classified in three classes: area-based, feature-based and frequency-

based stereos. The difficulties with approaches based on area correlation are well

known. Because of the difference in viewpoints, the effect of shading can give rise to

differences in brightness for surfaces. A more serious difficulty arises from the effect of

differing amount of foreshortening in the two views whenever a surface is not strictly

fronto-parallel. Still another difficulty arises at surface boundaries, where a depth

discontinuity may run through the region of the image being used for correlation. It

is not even guaranteed in this case that the computed disparity will lie within the

range of disparities present within the range.

This research has developed the frequency-base approaches, which has become a

widespread method for depth and optical flow estimation. Because of its superior

performance and better theoretical grounding. Therefore, we have provided some

solutions of the long-standing problems in stereovision in two suggested algorithms:

The first algorithm [5], [6] is based on using the output of linear spatial filters,

which is presented for characterizing the information present in a vector of filter re-

sponses. The left and right images convolving with a set of linear filters tuned to a

number of different orientations and scales (using a Gaussian function and its deriva-

tives as basis functions). The responses of these filters at a given point constitute

a vector that characterizes the local structure of the image patch. The correspon-

dence problem can be solved by seeking points in the other view where this vector is

maximally similar.

Our contribution in this algorithm is to develop this filter-based framework, by

presenting a technique that exploit the constraints arising from viewing geometry. A

general viewing geometry is assumed, with the optical axis converged at a fixation

point, instead of the simpler case of parallel optical axes frequently assumed in ma-

chine vision. This technique is described by some processing levels, whereby the first

level deals with filter design and optimization. This contains the Gaussian deriva-

tives, filter design, evaluate and optimize filter degree using Steering theorem and

singular value decomposition (SVD). The second processing level of the technique is

specified by correspondences analysis, which describes the feature extraction; filter

response vector (FRV) and estimating the disparity map. The improvement of the

disparity takes place by the use of an adaptive scale filter, where a substantial area of
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the filter is applied to a region of significant depth variation, such as inappropriately

large scale filter should selectively ignored.

The method provides a rich description of the image, with little chance of false

matching. The foremost contributions arise in detecting and handling the depth

discontinuities and the occlusion region, where unpaired points lie in regions seen

only in one view. This algorithm maintains a current best estimate of the viewing

parameters (to constrain vertical disparity to be consistent with epipolar geometry),

a visibility map (to record whether a point is binocularly visible or occluded) and a

scale map (to record the largest scale of filter not straddling a depth discontinuity).

The computational complexity of this algorithm has two significant terms. The first

one is the cost of the initial linear spatial filtering at multiple scale and orientations.

Implementations can be made quite effect by using separable kernels and pyramid

strategies. The second term is corresponding to the cost of computing the disparity

map. This cost is proportional to the number of iterations.

The second suggested algorithm [7], [8] is a phase-difference based algorithm that

provide a solution for long-standing problems; perspective foreshortening and ambigu-

ous matches in stereo vision, without needed to do any iteration. We also demonstrate

by example the utility of the local spatial frequency representation in the context of

stereo vision.

The algorithm combined the magnitude and phase information for estimating

depth information from two-dimensional stereoscopic image pairs. This method takes

into account not only the instability of phase but also the surface perspective distor-

tion (the foreshortening in one view). These properties are important to the use

of phase information in order to avoid the incorrect disparity estimates. Instead

of matching intensities directly, a Gabor scale-space expansion is used. Magnitude

information is used to detect ”weak points” in the frequency domain, and only re-

liable phase values remain for a robust estimation disparity. This method provides

a foreshortening correction factor to overcome the perspective distortion region, and

demonstrates a novel solution to a phase-wraparound problem that has limited the

application of other phase-based method. The advantage of this algorithm is that the

disparities values estimates are obtained with sub-pixel accuracy without requiring

explicit sub-pixel signal reconstruction. It also relates the parameters in the image

plane to the surface slope and does not require prior knowledge of the distance to

the object or an estimate of the disparity derivative. The experimental results show

that the performance of the proposed algorithm in terms of accuracy and density

of the disparity estimates has greatly improved. The foreshortening factor has its

greatest impact when objects are sharply slanted and located near the cameras. The

computed results are evaluated with the ground truth.
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Some particular contributions include:

Perspective Foreshortening

We addressed the long-standing problem of perspective foreshortening in stereo vision.

Our method provides an analytical closed-form expression for the effect of perspective

foreshortening on stereo matching in the frequency domain. It also demonstrate that

the model improves the results of a real stereo method. Results relating foreshortening

to the frequency domain have appeared in the shape-from-texture literature [66], but

without a description of the use of disparity, the mapping between the two areas

was left as a general affine matrix. Similarly, [41] uses an affine matrix to relate

two corresponding image patches in the context of stereo, but does not provide the

analytic relationship. We provided a presentation to unify these three terms (stereo,

foreshortening, and frequency domain) in both the world model and the stereo images.

Adaptive Scale Selection

We demonstrated the improvement of our scale-adaptive algorithm over traditional

multiscale (e.g., coarse to fine) algorithms. We also presented a multiscale phase-based

method that is not confused by missing information at intermediate scales. Most of

the prior stereo systems work either at a single scale or using a coarse-to-tine approach

in a fixed order. Our system invoke automatic scale selection (via filter magnitude

weighting) in a nonrestrictive manner and can handle missing information at any

scale. Sanger [34] has used a magnitude weighting, but imposed a restrictive limit

on candidate disparities. Jones and Malik [41] also used some scale-space processing,

but only to eliminate the coarsest scales at depth discontinuities.

Phase Wraparound

We eliminated the restriction of previous phase-based stereo algorithms on the maxi-

mum disparity range, and described a new stereo algorithm that eliminates the prob-

lem of phase wraparound.

Data reference

We provided a fast active 3-D measurement of geometrical shapes by photogram-

metry and structured lighting method. That was presented in our group [53], [54]

which obtain a reference data set. Wherever, at our Lab in the university of Magde-

burg, it is possible to make measurements based on photogrammetric method. In this

method [53], [54], instead of correlating area in two images, greyscale values of single

pixel obtained from a number of different images taken in succession are correlated.

Thus, it is possible to achieve higher spatial resolution.
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The computed disparity results are compared with Scharstein and Szeliski data

set [35] to obtain a comparison with various well-known stereo matching algorithms.

That are provided in the Web-site ”cat.middlebury.edu/stereo” [1].

In order to obtain the algorithm ranking, the four different stereo pair images that

found in [1] with their ground truth are used. The statistic based on the percentage

of bad pixels. Therefore, to compute these statistic over whole image the evaluation

focus on three different kinds of regions: all pixels in non-occluded regions (Bõ), all

pixels in half-occluded regions (Bho) and all pixels near-occluded regions i.e. near

discontinuities (Bno). As the taxonomy and evaluation methodology which presented

in [35]. Our phase-difference based algorithm is compared with 31 others existing

algorithms. The percentage of bad pixels, (the pixels which deviate is more than 0.75

unit from the true disparity are labeled as ”bad pixels”), each algorithm is sorted

according to its overall ranks. For all errors our algorithm stands in the upper half

of the table.

The computed disparity maps also are compared against the ground truth by

computing the percentage of wrong pixels. A pixel is judged to be erroneous, if its

absolute deviation from the ground truth is larger than 0.75 unit. The statistics results

for all data sets in a quantitative measures to evaluate the quality of the computed

results: The percentage of bad matching pixels, Root mean square error, average error

for the nonsingular points, the mean percentage relative error, the deviation of the

average error and the percentage number of correct pixels are reported. In addition,

A representative comparison of correspondence lines profile from reference dispar-

ity map and the computed disparity map show the accurate and the smoothness of

the computed result. The random error could be determined by measuring reference

(ground truth), for instance in the experimental results of cylinder object the error

amounts to approximately ±0.2 pixels. Also for a center scanline from the slanted

flat surface at the various rotation angles; 0◦, 20◦ and 45◦ and disparity range (1...6)

pixels, The error amounts are approximately ±2.5 pixels.

Potential future extensions to this work include:

Experimentation with the shape of the evaluation function (as in Equation 5.12);

a replacement for AbsDiffMod such as a cosine might yield smoother results, or be

faster to implement. The other point related to speed up the processing by incor-

porating the fast wavelet transform with appropriate interpolation in place of the

complete scalogram computation, using a smaller set of filters, and a smaller set of

foreshortening angle candidates.
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Appendix A

Structured Light Pattern

In this appendix, we review the structured light patterns that ware analized in chapter

2; Random-dot pattern, combined Gaussian white noise with light stripes pattern with

default parameters (zero mean, 0.01 variance), Checker-board pattern, Sinusoidal

pattern with a period length 80 pixels, Sawtooth pattern with a period 80 pixels, and

Color stripes pattern generated as a sequence of light stripes. In each figure; graph (a)

shows a square wave to illustrate the concept of spatial frequency resolution where

spatial frequency refers to how rapidly the brightness signal is changing in space,

graph (b) shows the originally 600× 600 structured lighting pattern, a central block

16×16 depicted in graph (c), a distribution map of auto-correlation values calculated

by NCC function using a 16×16 pixel region in the center part of the pattern depicted

in graph (d), (e) and (f). The goal of using such structured light patterns is to increase

the ability of local discriminant at each pixel and the facility of the matching process.
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