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5.3.1 Jutten-Hérault Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.2 Algorithms for Maximum Likelihood Estimation . . . . . . . . . . . . 46

5.3.3 ICA by Minimization of Information . . . . . . . . . . . . . . . . . . 48

5.3.4 The Infomax Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.5 The FastICA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.6 Molgedey and Schuster Approach . . . . . . . . . . . . . . . . . . . . 53

5.3.7 Nonparametric ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.8 Further ICA Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Performance of ICA Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 ICA Applied to fMRI Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Simulation Studies 63

6.1 Modelling the Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1.1 Modelling the Hemodynamic Response Function . . . . . . . . . . . . 64

6.1.2 Variations in the Hemodynamic Response Function . . . . . . . . . . 66

6.1.3 Further Contributing Signals . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Performing the Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Illustrative Results of ICA Decomposition . . . . . . . . . . . . . . . . . . . 73

6.4 Simulation Studies with Variations in the HRF . . . . . . . . . . . . . . . . . 76

6.5 Over- and Underestimation of the Number of Independent Components . . . 85

6.6 Comparing the results of GLM analysis of mixed signals with and without

included ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.7 Illustrative Results of Time Series Decomposition . . . . . . . . . . . . . . . 91

ii



Contents

7 An Auditory Working Memory fMRI Study and ICA-Results 96

7.1 Material and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3.1 Behavioral Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3.2 ICA-Results and Time Series Analysis . . . . . . . . . . . . . . . . . 103

7.4 Comparing ICA Time Courses to HRF Time Courses in Correlation Analysis 109

7.5 Discussing the Shape of BOLD Responses . . . . . . . . . . . . . . . . . . . 111

8 Conclusions 113

Bibliography 114

A Properties of Information-Theoretic Functions I

A.1 Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

A.2 Differential Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

A.3 Negentropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV

A.4 Approximation of Information-Theoretic Functions . . . . . . . . . . . . . . VI

iii



List of Figures

2.1 Independent versus uncorrelated random variables . . . . . . . . . . . . . . . 10

3.1 Time course of hemodynamic response function . . . . . . . . . . . . . . . . 22

6.1 Hemodynamic response model . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Time course of the hypothetical hemodynamic response function. . . . . . . 66

6.3 Variation of hemodynamic response function (two alternating signal ampli-

tudes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4 Variation of hemodynamic response function (signal increase over the session) 68

6.5 Variation of hemodynamic response function (signal decrease) . . . . . . . . 68

6.6 Variation of hemodynamic response function (dynamic signal decrease) . . . 69

6.7 Variation of hemodynamic response function (signal with increasing noise) . 69

6.8 Variation of hemodynamic response function (temporal shift) . . . . . . . . . 70

6.9 MATLAB graphical user interface for simulation studies . . . . . . . . . . . 72

6.10 Time courses of four source signals and four mixed signals. . . . . . . . . . . 73

6.11 Estimated signals by Bell and Sejnowski Infomax algorithm . . . . . . . . 75

6.12 Estimated signals by Hyvärinen FastICA algorithm . . . . . . . . . . . . . 75

6.13 Estimated signals by Maximum Likelihood estimation . . . . . . . . . . . . . 75

6.14 Estimated signals by nonparametric ICA estimation . . . . . . . . . . . . . . 75

6.15 Estimated signals by Molgedey and Schuster algorithm . . . . . . . . . 75

6.16 Estimated signals by principal component analysis . . . . . . . . . . . . . . . 75

6.17 Error indices for 1000 simulations . . . . . . . . . . . . . . . . . . . . . . . . 76

6.18 Error Indices of 500 simulations (variation of κa and σ) . . . . . . . . . . . . 78

6.19 Error Indices of 500 simulations (variation of κa2 and σ) . . . . . . . . . . . 79

6.20 Error Indices of 500 simulations (variation of κm and σ) . . . . . . . . . . . . 79

6.21 Time courses of mixed signals and estimated independent signals . . . . . . . 80

iv



List of Figures

6.22 Error Indices of 500 simulations (variation of dynamic signal decrease within

blocks and noise σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.23 Error Indices of 500 simulations for HRF with increasing noise and variation

of additional noise σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.24 Error Indices of 500 simulations (variation of κc) . . . . . . . . . . . . . . . . 83

6.25 Error Indices of 500 simulations (variation of number of observations N and

noise σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.26 Error Indices of 500 simulations (variation of number of phases κp and noise

σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.27 Underestimating the number of independent components . . . . . . . . . . . 86

6.28 Overestimating the number of independent components . . . . . . . . . . . . 88

6.29 Time series decomposition of observed signals . . . . . . . . . . . . . . . . . 92

6.30 Autocorrelation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.31 Fast Fourier Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.32 Estimated probability density functions . . . . . . . . . . . . . . . . . . . . . 95

7.1 Plot of a frequency modulated tone . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Experimental paradigm of fMRI experiment. . . . . . . . . . . . . . . . . . . 97

7.3 Targets in experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4 Brodmann areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.5 Hits and false responses of subjects . . . . . . . . . . . . . . . . . . . . . . . 104

7.6 Sensitivity indices and response times of subjects . . . . . . . . . . . . . . . 105

7.7 30 independent component time courses of subj. 3 (1. session) . . . . . . . . 106

7.8 Time courses and event-related averages (subj. 6) . . . . . . . . . . . . . . . 107

7.9 Time courses and event-related averages (subj. 1) . . . . . . . . . . . . . . . 107

7.10 Time courses and event-related averages (subj. 5) . . . . . . . . . . . . . . . 108

7.11 Comparing results of correlation analysis with HRF and independent com-

ponent time course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

v



List of Tables

3.1 Hypothesis-based and data-based methods for analyzing fMRI data . . . . . 25

6.1 Error indices for ICA estimates . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Underestimating the number of independent components . . . . . . . . . . . 87

6.3 Percentage of simulation runs with significant test results for the parameter

γ1 for two source signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Percentage of simulation runs with significant test results for the parameter

γ1 for four source signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Brodmann areas: Their location and involvement . . . . . . . . . . . . . . . 102

7.2 Testing temporal signal changes . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Comparing correlation analysis to ICA by the number of voxels . . . . . . . 111

vi



Index of Symbols

X random variable

x realization of random variable

X = (X1, . . . , XN) vector of random variables

x = (x1, . . . , xN) vectors of realizations of random variables

Xt stochastic process Xt = {X(t), t ∈ T ⊆ R}
(R, B, F ) probability space

R sample space, basic set of elements, usually the set of real numbers

N space of natural numbers

B σ-algebra of subsets of R

F probability measure

(RN , BN , Fi) N-dimensional probability space

RN N-dimensional sample space, basic set of elements

BN σ-algebra of subsets of RN

Fi probability measures, i = 1, 2

H0 null hypothesis

H1 alternative hypothesis

F (x) = P (X ≤ x) cumulative distribution function of a random variable X

f(x) = F ′(x) probability density function of a random variable X

φ(x) probability density function of standard gaussian distributed ran-

dom variable

Φ(x) probability distribution function of standard gaussian distributed

random variable

vii



Index of Symbols

E{X} = µx expectation of a random variable X

V ar(X) = σ2
x variance of a random variable X

CX = Cov(X) covariance matrix of a random vector X

ρxy correlation coefficient between two random variables X and Y

I(f1(x) : f2(x)) information of two density functions f1(x) and f2(x)

H(f(x)) differential entropy of a random variable X

J(f(x)) negentropy of a random variable X

|a| absolute value of a

||X|| Euclidian length of a vector X

det(A) determinant of a matrix A

rg(A) rank of a matrix A

tr(A) trace of a matrix A

AT transpose of a matrix A

I Identity matrix

J Jacobian matrix, matrix of partial derivatives

K(x) Kernel function

L(x) Likelihood function

X = [xi,t]i=1,...,N,t=1,...,T data matrix of observations

S = [sj,t]j=1,...,M,t=1,...,T matrix of independent source signals

A = [ai,j]i=1,...,N,j=1,...,M mixing matrix

W = [wj,i]j=1,...,M,i=1,...,N unmixing matrix

Y = [yj,t]j=1,...,M,t=1,...,T estimated source signals

U = [ui,j]i=1,...,N,j=1,...,M eigenvector matrix of XXT

V = [vt,j]t=1,...,T,j=1,...,M eigenvector matrix of XTX

Λ = [λj,j]j=1,...,M diagonal matrix of eigenvalues

N number of mixtures

M number of estimates

T number of time points

viii



Index of Symbols

τ lag in autocorrelation function

c(τ) autocovariance function

ρ(τ) autocorrelation function

ω frequency

IF (ω) intensity function of ω

FT (ω) Fourier transform

κs length of stimulation block (in seconds) (κs > 0, κs ∈ N)

κr length of resting block (in seconds) (κr > 0, κr ∈ N)

κp number of phases (κp > 0, κp ∈ N)

κb number of fMRI images recorded during one block (κb > 0, κb ∈ N)

κB total length the experiment (in images) (κB > 0, κB ∈ N)

κTR length of one image (κTR > 0, κTR ∈ R)

κT total length of the experiment (in seconds) (κT > 0, κT ∈ R)

κa signal amplitude (κa ∈ R)

κm variation of signal amplitude between stimulation blocks (κm ∈ R)

κn variation of signal amplitude within stimulation blocks (κn ∈ R)

κc temporal shift between two HRFs (κc ∈ N)

ix



Index of Abbreviations

AC auditory cortex

ACF autocorrelation function

ANOVA analysis of variance

BA Brodmann area

BOLD effect blood oxygen level dependent effect

BSS blind source separation

CDF cumulative distribution function

EEG electroencephalography

EPI echo planar imaging

FM frequency modulation

fMRI functional magnetic resonance imaging

GLM general linear model

GUI graphical user interface

HRF hemodynamic response function

ICA independent component anaylsis

iff if and only if

MEG magnetoencephalography

PCA principal component anaylsis

PDF probability density function

RMSE root mean squared error

ROI region of interest

sICA spatial ICA

SVD singular value decomposition

tICA temporal ICA

VOI volume of interest

x



Abstract

Functional magnetic resonance imaging (fMRI) gained a lot of interest in medical and

human research in the last years. FMRI is a noninvasive method used to study human

brain functions by localizing activated brain areas. There are a lot of interesting questions

in neurobiology, one of these is the processing of learning-related processes in the human

brain and how these processes can be described and analyzed. To analyze fMRI data differ-

ent hypothesis-based and data-based methods can be used. The Independent Component

Analysis (ICA) is an information-theoretic statistical and computational technique used to

identify hidden factors of observed multivariate data. The mathematical background of

ICA is investigated in this thesis and relations to other methods like Principal Component

Analysis (PCA) are elaborated. The advantages of ICA in comparison to classical methods

for analyzing fMRI data under the aspect of learning-related processes are investigated in

real fMRI data as well as in simulations studies. Thereby dynamic changes in the fMRI

time series are systematically analyzed and described.

Zusammenfassung

Die funktionelle Kernspintomographie (fMRT) hat in den letzten Jahren sehr an Bedeu-

tung in der Medizin wie auch in der Forschung gewonnen. Mit dieser Methode können

unter anderem Hirnaktivitäten des menschlichen Gehirns untersucht und lokalisiert wer-

den. In der Neurobiologie ergeben sich hieraus viele interessante Fragestellungen z. B.

wie im Gehirn bestimmte Lern- und Gedächtnisprozesse verarbeitet werden. Für die

Analyse von fMRT-Daten können verschiedene hypothesenbasierende und hypothesengene-

riende Verfahren angewendet werden. Die Independent Component Analysis (ICA) ist

ein informationstheoretisches statistisches Verfahren, um zugrunde liegende Faktoren in

beobachteten multivariaten Daten zu identifizieren. Der mathematische Aspekt der ICA

wird in dieser Arbeit beleuchtet sowie Zusammenhänge zu anderen Verfahren wie der Prin-

cipal Component Analysis (PCA) hergestellt. Die Vorteile der ICA gegenüber klassischen

Analyseverfahren von fMRT-Daten unter dem Aspekt von Lernprozessen werden an realen

Datensätzen sowie in Simulationsstudien erarbeitet. Hierbei werden systematisch die dy-

namischen Veränderungen in den fMRT-Zeitreihen untersucht und analysiert.



1 Introduction

Independent component analysis (ICA) is a statistical and computational technique for

revealing hidden factors that are sets of random variables, measurements, or signals. ICA

defines a generative model for the observed multivariate data, which is given as a large

database of samples. In the model, the data variables are assumed to be linear mixtures of

unknown latent variables, whereas the mixing system is also unknown. The latent variables

are assumed to be mutually independent, and they are called the independent components

of the observed data [Comon, 1994, Hyvärinen et al., 2001b].

In general, the method of ICA can be applied to blind source separation (BSS) problems,

where the measurements are given as a set of parallel signals. Examples for BSS prob-

lems can be found everywhere, for instance mixtures of simultaneous speech signals that

have been picked up by several microphones, brain waves recorded by multiple sensors,

interfering radio signals arriving at a mobile phone, or parallel time series obtained from

some industrial process. These examples are taken from Samarov and Tsybakov, 2004.

The concept of ICA was described in different publications like Jutten and Hérault,

1991, Comon, 1994, or Hyvärinen et al., 2001b.

ICA can be applied to a variety of problems like finding hidden factors in financial time

series or reducing noise in natural images. ICA was also already successfully applied to

neurobiological studies to obtain sources of neuronal activation. Thereby this method was

applied to electroencephalography (EEG) data and magnetoencephalography (MEG) data

[Makeig et al., 1997, Vigario et al., 2000], furthermore, to data obtained from func-

tional magnetic resonance imaging (fMRI) studies [McKeown et al., 1998b]. FMRI is

a method for noninvasively studying human brain functions by localizing activated brain

regions as a consequence of responding to a stimuli. The signal, an fMRI time series, is

recorded for anatomical coordinates in the brain which are called voxels. The use of ICA

for fMRI time series was motivated for several reasons. A mathematical reason is that the

time series obtained by fMRI studies are supposed to be linear mixtures of realizations of

different stochastic processes and the voxel values are considered as random variables. The

1



1 Introduction

stochastic processes might be the neuronal responses to presented stimuli, processes related

to heart beat or breathing of the subjects, motion artifacts, and noise caused by the tomo-

graph. Since the exact temporal behavior of such signals is not always predictable, the ICA,

a method without any hypothesis about the expected time courses, is used to extract these

different signals [McKeown et al., 1998b]. This method was already used to reduce head

motion-induced variations from the fMRI signal [Liao et al., 2006] or to reduce the noise

of neuronal fMRI responses [Thomas et al., 2002]. Moreover, some studies demonstrated

the use of ICA for clinical fMRI processing by comparing ICA to conventional hypothesis

driven analysis [Quigley et al., 2002].

The work was cooperated with the Leibniz-Institute for Neurobiology in Magdeburg, a

center for learning and memory research. The special-laboratory for noninvasive brain

imaging of this institute investigates the role and functional organization of the auditory

cortex (AC) in humans. Their aim is to study the AC by examining the processing of funda-

mental stimulus properties in combination with specific tasks with neuroimaging methods

like EEG, MEG, and fMRI. The special-lab is particularly interested in the processing of

cognitive tasks and working memory (WM) processes in the human AC. The basic concept

of WM refers to ”a brain system that provides temporary storage and manipulation of the

information necessary for cognitive tasks” [Baddeley, 1992]. This means that some infor-

mation must be shortly maintained, recalled, and compared with test items to previously

instructed rules. In the special-lab some fMRI studies involving WM tasks were performed

as described in Brechmann et al., 2007. In this study frequency modulated (FM) tones

were presented as stimuli in a sequence. For each stimulus tone, the subjects had to decide

by key pressing whether it matched a tone two back in the tone sequence according to FM

direction and frequency. Interesting findings of these studies were that the activation of the

subjects strongly depends on the task and the activation is success-dependent as discussed

in Gaschler-Markefski et al., 2003 and Sohr et al., 2003. This was shown be corre-

lating the amount of fMRI activation to the task performance of the subjects. Thereby, we

interestingly found a positive correlation between amount of activated voxels and task per-

formance of the subjects proposing that the positive direction of the correlation of activity

in left AC with the performance of subjects is a correlate of memory maintenance.

This was in contrast to previous found correlations in the special-laboratory, namely nega-

tive correlations. For instance in a directional categorization of similar FM stimuli as used

in the present study a negative correlation with performance was found on the right side

[Brechmann and Scheich, 2005]. This negative correlation was interpreted as a sign

of variable proficiency in solving this classification task, namely that a high performance

2



1 Introduction

in processing depends on a restriction to specialized neurons that clearly distinguish the

direction of FM at the expense of less specific neurons which may be involved in an initial,

less proficient stage of the experiment.

These findings are particularly relevant because correlations of performance with BOLD

activation are considered signs of specific involvement of brain structures in a task [Ohl

and Scheich, 2005]. Moreover, positive or negative correlations of BOLD activity are

found in different tasks which may allow different interpretations of the underlying process

[Jonides, 2004].

It was previously shown in a study by Barch et al., 1997, that the fMRI activation

is success-dependent, and the dependence of activation and the task was already shown

by Braver et al., 1997, to name just a few publications. But it should be pointed out

that these studies investigated only the parietal and the frontal cortex in humans. An

involvement of the AC in WM studies was so far not demonstrated by fMRI studies. This

lead us to a further motivation for utilizing ICA for fMRI time series, namely, the fMRI

activation is success-dependent and may therefore differ from subject to subject. Therefore,

the time series of fMRI activation themselves, and not the amount of activation, should

be investigated and analyzed in detail. Based on the previous studies of the special-lab it

is aimed to describe dynamic, spatio-temporal changes in neuronal response of subjects in

fMRI studies involving cognitive learning processes in repeated sessions. ICA should help

to detect possibly dynamic changes in fMRI times series which cannot be detected with

classical methods for analyzing fMRI time series like general linear models (GLM).

In the literature there are some publications discussing the shape of the neuronal response

of time series, see for instance Seifritz et al., 2003 or Harms and Melcher, 2003. They

described the waveshape of the signals to be composed of transient and sustained activa-

tions. But how the fMRI signal would behave under the aspect of learning related processes

of the subjects was so far not investigated.

Aim of this work is to describe the mathematical coherence to the information-theoretic

method of ICA. Thereby the relation of ICA and principal component analysis (PCA)

for nongaussian and gaussian random variables, respectively, is pointed out. Furthermore,

information-theoretic relations to statistics are elaborated. The ICA is used to detect learn-

ing related dynamic changes in fMRI time series. On the one hand this is supported by

simulation studies, where different models for learning related changes are introduced. On

the other hand the detection of dynamic changes in the fMRI signal is verified by an fMRI

3



1 Introduction

study investigating an auditory WM study with repeated sessions of the subjects.

The content of the thesis is organized as follows:

Chapter 2 introduces fundamental terms and statistical definitions. Probability spaces

and random variables for the univariate and multivariate case and stochastic processes are

defined. Statistical independence is described and the relation between independent and

uncorrelated random variables is demonstrated. Moreover, measures of nongaussianity and

independence are introduced, namely kurtosis as well as information-theoretic functions

like information, differential entropy, and negentropy. These measures are used in ICA

algorithms.

Chapter 3 describes the principles of MRI and fMRI. FMRI is a method for noninvasively

measuring signal changes in the brain that are due to changes of neural activity. This chap-

ter attends to fMRI time series which are considered as realizations of stochastic processes.

Hypothesis-based and data-based methods for analyzing fMRI data are summarized.

Chapter 4 describes classical methods for analyzing fMRI data in more detail. These meth-

ods include general linear models (GLM) and principal component analysis (PCA). Since

the observed fMRI data are time series, some methods for analyzing time series are sum-

marized in this chapter as well.

Chapter 5 introduces the method of ICA. This chapter addresses the definition of ICA,

its identifications and restrictions as well as ambiguities of ICA estimates are given. The

relationship between PCA and ICA is pointed out. Classical ICA algorithms from the

literature like the Jutten-Hérault algorithm, maximum likelihood estimations, information

maximization algorithms, FastICA algorithm, decorrelation approaches, and nonparamet-

ric ICA algorithm are described. In a following section, performance testing methods of

the estimates of ICA algorithms are pointed out. Finally, a literature overview depicts the

application of ICA to fMRI data at the end of that chapter.

Chapter 6 describes performing and results of simulation studies. The aim of simulation

studies is to test whether source signals can be estimated from linearly mixed signals using

different ICA algorithms from Chapter 5. The signal of the hypothetical neuronal response

is modelled and since it is assumed that the task performance of subjects is reflected in the

neuronal response, this signal is varied in different parameters like the signal amplitude, an

amplitude increase or decrease within or between stimulation blocks. Additionally, further

signals that might contribute to an fMRI measurement are modelled and mixed linearly

4
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with each other. Different ICA algorithm are used to perform a decomposition of the mixed

signals into the independent source signals. The performance of the estimation is validated

by error indices to draw conclusions about the performance of the estimated independent

components for different parameters. Among all the tested ICA algorithms, the FastICA

algorithm outperformed the other algorithms. This algorithm showed good estimates even

if dynamic changes within the time series are modelled.

Chapter 7 describes an auditory fMRI study with repeated sessions investigating a WM

task. The data is analyzed with ICA. Furthermore, temporal changes in the signals within

or between repeated sessions are investigated. These results of ICA are compared with

classical correlation analysis results. The results revealed that almost the same areas are

involved for all subjects but showing different dynamic time courses. We also showed that

a hypothesis-based method like GLM is not always the best approach to investigate task-

related activations. In this special case the ICA results outperformed the results of GLM

analysis.

Appendices A.1 - A.3 compile relevant properties and characteristics of the information-

theoretic functions of Section 2.3. Additionally, Appendix A.4 describes the approximation

of information-theoretic functions through higher-order cumulates since the information-

theoretic functions are more theoretical functions than practically used functions.
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In this chapter fundamental terms and definitions are described. First, probability spaces

and random variables for the univariate and multivariate case are defined and stochastic pro-

cesses are introduced. Second, the term statistical independence is defined and the relation

between independent and uncorrelated random variables is demonstrated. In one subsection

measures of independence and nongaussianity are introduced, namely information-theoretic

functions like information, differential entropy, and negentropy, and kurtosis as measure of

nongaussianity. Additionally, the information and differential entropy for some distributions

like the uniform distribution as well as the univariate and multivariate gaussian distribution

are given in examples.

2.1 Probability Spaces, Random Variables, and

Stochastic Processes

The following notation is used: X is used for a univariate random variable and x is used

for a specific value of X. Just as well, X is used for a random vector X = (X1, . . . , XN) and

x = (x1, . . . , xN) is used for a realization of X.

Definition 2.1 Considering the Euclidian space R, a σ-algebra B of Borelian subsets of

R and a probability measure P , this triple (R, B, P ) is called probability space.

RN is the sample space and in case of realizations it describes the real-valued space of

variables.

Definition 2.2 Let X be a univariate random variable then F (x) = P (X ≤ x) is the

cumulative distribution function. If F (x) is absolutely continuous, the random variable X

is said to be continuous. If F (x) is differentiable and f(x) = F ′(x) is the derivative of the

distribution function, then f(x) is the probability density function for X (
∫∞
−∞ f(x)dx = 1).

Definition 2.3 Let us consider a set of random variables Xt. The variables depend on a

time parameter t ∈ T ⊆ R. We call Xt = {X(t), t ∈ T ⊆ R} a stochastic process [Fisz,

6
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1980]. For a specific t, X(t) is a random variable with distribution

F (x, t) = P (X(t) ≤ x). (2.1)

According to Papoulis, 1991, the function F (x, t) will be called the first-order distribution

of the process Xt. Its derivative with respect to x:

f(x, t) =
∂F (x, t)

∂x
, (2.2)

is the first-order density of Xt.

Definition 2.4 Let X be a multivariate random vector (X1, . . . , XN) with distribution func-

tion F (x) = P (X1 ≤ x1, . . . , XN ≤ xN). The multivariate random vector X is called con-

tinuous if a real-valued function f(x) = f(x1, . . . , xN) exists and let f(x) = F ′(x) be the

derivative of the distribution function, that

F (x) =

∫
RN

f(x1, . . . , xN) dx1 . . . dxN . (2.3)

The function f(x) = f(x1, . . . , xN) is called the multivariate density function of (X1, . . . , XN)

with the following properties

f(x) ≥ 0 ∀ x1, . . . , xN ∈ RN (2.4)

and ∫
RN

f(x) dx = 1. (2.5)

For references of multivariate distribution and density functions see Hartung and Elpelt,

1995. Let us now consider the multivariate vector X = (X1, . . . , XN) and we further define

two complementary hypothesis H1 and H2.

Theorem 2.1 If Hi, i = 1, 2, are two complementary hypotheses that X is from the sta-

tistical population with the probability measure Fi, and x ∈ RN is an observation, then it

follows from Bayes’ theorem [Kullback, 1959] that

P (Hi|x) =
P (Hi)fi(x)

P (H1)f1(x) + P (H2)f2(x)
, i = 1, 2. (2.6)

where fi(x) 6= 0, i = 1, 2, are the probability densities and P (Hi), i = 1, 2, are the prior

probabilities of H1 and H2 respectively. From this it follows that

P (H1)f1(x)

P (H1|x)
=

P (H2)f2(x)

P (H2|x)
, (2.7)

7
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and hence

f1(x)

f2(x)
=

P (H2)/P (H1)

P (H2|x)/P (H1|x)
, (2.8)

where P (Hi|x) is the posterior probability of Hi, or the conditional probability of Hi given

X = x. From that equation it is obtained

log
f1(x)

f2(x)
= log

P (H1|x)

P (H2|x)
− log

P (H1)

P (H2)
(2.9)

This equation is needed later for the definition of information I (see Equation 2.22).

2.2 Independence and Correlation

In the following the independence of random variables should be considered. Consider two

random variables X1 and X2. The joint probability density of X1 and X2 is denoted by

f(x1, x2). Basically, if the variables are independent then the information of the value of

X1 does not give any information on the value of X2, and vice versa.

Let us further denote by f (1)(x1) the marginal probability density function of X1, i.e. the

probability density function of X1 when it is considered alone:

f (1)(x1) =

∞∫
−∞

f(x1, x2) dx2 (2.10)

and analogously for x2, with

f (2)(x2) =

∞∫
−∞

f(x1, x2) dx1 (2.11)

the marginal probability density function of X2.

Definition 2.5 The random variables X1 and X2 are independent if and only if (iff) the

joint density function is the product of the marginal distributions

f(x1, x2) = f (1)(x1)f
(2)(x2). (2.12)

The Definition 2.5 can be extended to N multivariate random variables X = (X1, . . . , XN)

with multivariate density function f(x) and marginal densities f (i)(xi), i = 1, . . . , N :

8
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Definition 2.6 The random variables X1, . . . , XN of a random vector X ∈ RN are inde-

pendent iff the joint density function is the product of the marginal independent distributions

f(x) =
N∏

i=1

f (i)(xi). (2.13)

A weaker form of independence is uncorrelatedness. Independent variables are different

from uncorrelated variables because uncorrelated variables are only partly independent.

Definition 2.7 Suppose we have a two dimensional random vector (N = 2) with elements

X1 and X2, then the random variables X1 and X2 are said to be uncorrelated, if their

covariance cx1,x2 is zero:

cx1,x2 = E{X1X2} − E{X1}E{X2} = 0, (2.14)

where E{X} is the expectation of a random variable X, calculated for continuous random

variables as

E{X} =

∞∫
−∞

xf(x) dx. (2.15)

In the more general setting with arbitrary N we have a similar construct.

Definition 2.8 The covariance matrix CX with elements cij, i, j = 1, . . . , N of an N-

dimensional random variable X = (X1, . . . , XN) is defined by

cij = Cov(Xi, Xj) = E{(Xi − µi)(Xj − µj)
T}, (2.16)

where µi, i = 1, . . . , N is the expectation of the random variable Xi. The elements cii =

σ2
i , i = 1, . . . , N are the variances of the random variables Xi. X1, . . . , XN are called

uncorrelated if all cij are zero, for reference see Hartung and Elpelt, 1995.

If the variables are independent, they are uncorrelated, but uncorrelatedness does not imply

independence, see Hyvärinen et al., 2001b. In this context the correlation coefficient ρ

will be defined.

Definition 2.9 Given N random variables Xi, i = 1, . . . , N , the correlation coefficient

ρij, i, j = 1, . . . , N is defined by

ρij =
Cov(Xi, Xj)√

V ar(Xi)V ar(Xj)
=

cij

σiσj

, (2.17)
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where V ar(Xi) and V ar(Xj) are the variances of Xi and Xj. The variance V ar(X) of a

continuous random variable X is defined as

V ar(X) =

∞∫
−∞

(x− E{X})2f(x) dx = E{(X − E{X})2}. (2.18)

To show the relation of independent and uncorrelated random variables, consider the fol-

lowing 2-dimensional example. Let S1 and S2 be two random variables. S1 and S2 are

independent variables with a uniform distribution, i.e. knowing the value of S1 gives no

information about what the corresponding value of S2 might be. The sample distribution of

Figure 2.1: Independent versus uncorrelated random variables

the two variables is shown in the left plot of Figure 2.1. Suppose then two random variables

X1 and X2 which are linear mixtures of the variables S1 and S2. In this case X1 = S1 − S2

and X2 = S1 + S2. The distribution of X1 and X2 is shown in the right plot of Figure 2.1.

These mixtures X1 and X2 are uncorrelated, since Cov(X1, X2) = Cov(S1 − S2, S1 + S2)

= E{S2
1 + S1S2 − S2S1 − S2

2} − E{S1 − S2}E{S1 + S2} = E{S2
1} − E{S2

2} = 0. However,

they are not independent. Consider therefore a point at X1 = 0.8. Knowing the location

X1 = 0.8 gives information about X2 since it is constrained to be within a limited range.

Thus X1 and X2 are uncorrelated but not independent.

Estimates of the marginal densities are shown as histograms. The histograms of X1 and X2

go closer to a gaussian distribution than the histograms of S1 and S2 which are uniformly

10
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distributed. This property comes from the central limit theorem, which states that any

linear mixture of two independent random variables is more approximately gaussian than

the original variables.

Theorem 2.2 (Fisz, 1980, (Lindeberg-Feller)) Given a sequence {Xi}(i = 1, . . . , N)

of independent random variables with Fi(x), µi, and σi 6= 0 the distribution function, mean

and standard deviation of the random variable Xi, further we have σN =

√
N∑

i=1

σ2
i . Under

this condition it holds that lim
N→∞

max
1≤i≤N

σi

σN
= 0, and the sequence of distribution functions

FN(z) of the standardized random variables ZN with ZN =

NP
i=1

(Xi−µi)

σN
fulfills the condition

lim
N→∞

FN(z) =
1√
2π

z∫
−∞

e−
z2

2 dz (2.19)

if for each ε > 0

lim
N→∞

1

σ2
N

N∑
i=1

∫
|x−µi|>εσN

(x− µi)
2dFi(x) = 0. (2.20)

2.3 Measures of Independence and Nongaussianity

ICA uses statistical independence of the source signals as criterion for the estimation of

independent components (see Chapter 5). Therefore, general quantitative measures of

statistical independence of random variables Xi are needed. Furthermore, it is assumed

that the source signals should be nongaussian distributed, therefore, the kurtosis as measure

of nongaussianity will be introduced as well.

2.3.1 Measuring Independence by Information-Theoretic

Functions

In this section information-theoretic measures of independence as information, differential

entropy and negentropy will be described [Cover and Thomas, 1991]. The information

theory is a part of the mathematics describing random variables by exceeding the classical

measures of expectation and variance.

Definition 2.10 The expected logarithm under the hypothesis H1 of the likelihood ratio,

E{log[f1(x)/f2(x)]}, is defined as the information I(1 : 2) for discrimination in favor of

11
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hypothesis H1 stating that f1(x) is the joint density function (f(x)) against hypothesis H2

that f2(x) is the product of marginal densities (
N∏

i=1

fi(xi)). This means that, under H1 the

variables in X ∈ RN are dependent but under H2 the variables are independent. Deriving

from Equation (2.9),

I(1 : 2) = I(f1(x) : f2(x)) =

∫
R2

f1(x) log
f1(x)

f2(x)
dx. (2.21)

=

∫
R2

f1(x) log
P (H1|x)

P (H2|x)
dx− log

P (H1)

P (H2)
. (2.22)

This definition of information is according to the Kullback-Leibler-divergence [Kull-

back, 1959]. In the literature, there occur different terms for information like mutual

information of mean information, as well. Moreover, there are different notations, where

I(1 : 2) = I(f1(x) : f2(x)).

The information I(1 : 2) is a natural measure of dependence between random variables.

The information will always be positive and will equal zero only when the components are

independent (see Appendix A.1). Using the information as measure, it takes into account

the whole dependence structure of the variables. In ICA it is aimed to recover source signals

that are as independent of each other as possible, not just uncorrelated as used in principal

component analysis (PCA) (see Chapter 5.2).

Example 2.1 Information of a two-dimensional random variable [Kullback, 1959, p. 8]:

Suppose that the sample space RN is the Euclidean space R2 with elements X1 and X2.

Under H1 the variables X1 and X2 are dependent with probability density f(x1, x2), but

under H2, X1 and X2 are independent, with respective probability densities f (1)(x1) and

f (2)(x2). Regarding the hypotheses H1 and H2, the information I(1 : 2) can be written as:

I(1 : 2) =

∫
R2

f(x1, x2) log
f(x1, x2)

f (1)(x1)f (2)(x2)
dx. (2.23)

�

Example 2.2 Information of the central bivariate gaussian density [Kullback, 1959, p.

8]: Assume a central bivariate gaussian density, i.e. with means µX1 = µX2 = 0, furthermore

with variances σ2
X1

and σ2
X2

and a correlation coefficient ρ (|ρ| ≤ 1). The hypothesis H1

implies the bivariate gaussian density

φ(x1, x2) =
1

2πσX1σX2

√
1− ρ2

exp

{
− 1

2(1− ρ2)

(
x2

1

σ2
X1

− 2ρ
x1x2

σX1σX2

+
x2

2

σ2
X2

)}
, (2.24)

12
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and the hypothesis H2 implies that the joint density is the product of the marginal gaussian

densities φ(1)(x1) and φ(2)(x2) given by

φ(i)(xi) =
1

σXi

√
2π

exp

(
− x2

i

2σ2
Xi

)
i = 1, 2. (2.25)

The information of the bivariate gaussian density is given by

I(1 : 2) =

∫
R2

φ(x1, x2) log

(
1√

1− ρ2
·

exp

{
− 1

2(1− ρ2)

(
x2

1

σ2
X1

− 2ρ
x1x2

σx1σX2

+
x2

2

σ2
X2

)
+

x2
1

2σ2
X1

+
x2

2

2σ2
X2

})
dx

=

∫
R2

φ(x1, x2) log

(
1√

1− ρ2

)
dx +

∫
R2

φ(x1, x2)

{
− 1

2(1− ρ2)

·
(

x2
1

σ2
X1

− 2ρ
x1x2

σX1σX2

+
x2

2

σ2
X2

− (1− ρ2)
x2

1

σ2
X1

− (1− ρ2)
x2

2

σ2
X2

)}
dx

= −1

2
log(1− ρ2) +

∫
R2

φ(x1, x2)

{
− 1

2(1− ρ2)

(
ρ2 x2

1

σ2
X1

− 2ρ
x1x2

σX1σX2

+ ρ2 x2
2

σ2
X2

)}
dx,

where
∫
R2

φ(x1, x2)
x2
1

σ2
X1

dx = 1, as well as
∫
R2

φ(x1, x2)
x2
2

σ2
X2

dx = 1,and
∫
R2

φ(x1, x2)
x1x2

σX1
σX2

dx =

ρ.

Therefore,

I(1 : 2) = −1

2
log(1− ρ2)− 1

2(1− ρ2)

(
ρ2 − 2ρ2 + ρ2

)
= −1

2
log(1− ρ2). (2.26)

In this case, the information is a function of the correlation coefficient ρ only, and the

information ranges from 0 to ∞ as |ρ| ranges from 0 to 1. �

Further properties of information I(1 : 2) like additivity can be found in Appendix A.1. The

use of information can also be motivated using the concept of entropies. The entropy of a

random variable is a measure of the average uncertainty in the random variable [Cover and

Thomas, 1991]. In the context of information coding it describes roughly the minimum

necessary code length to transmit a large number of observations of a random variable most

efficiently [Cover and Thomas, 1991]. In general, for continuous random variables the

entropy is called differential entropy, see again Cover and Thomas, 1991.
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Definition 2.11 The differential entropy H(f(x)) of a continuous random variable X with

a density function f(x) is defined as

H(f(x)) = −
∞∫

−∞

f(x) log f(x) dx. (2.27)

Cover and Thomas, 1991, write that the entropy of a random variable is a measure of the

uncertainty of the random variable; it is a measure of the amount of information required

on the average to describe the random variable. Therefore, they showed that the entropy

is related to the expectation value of the random variable. Based on Definition 2.11 it can

be seen that the differential entropy is the expectation of − log f(x)

H(f(x)) = E{− log f(x)}. (2.28)

Cover and Thomas, 1991, further showed that a low differential entropy implies that

the random variable has a small variance, and a high differential entropy indicates that

the random variable is widely dispersed. The differential entropy of a random variable is

related to the information that the observation of the variable gives. The more ’random’,

i.e. unpredictable and unstructured the variable is, the larger its differential entropy

[Hyvärinen et al., 2001b, p. 182].

Example 2.3 Differential entropy of a uniform distributed random variable [Cover and

Thomas, 1991, p. 225]: Consider a random variable X uniformly distributed in [0, a] with

0 < a < ∞, that is, its density is given by

f(x) =

{
1
a

0 ≤ x ≤ a

0 elsewhere
. (2.29)

Then its differential entropy is

H(f(x)) = −
∫ a

0

1

a
log

1

a
dx = log a for 0 ≤ x ≤ a. (2.30)

Note that for a < 1, log a < 0 and the differential entropy is negative. �

Example 2.4 Differential entropy of a gaussian distributed random variable [Cover and

Thomas, 1991, p. 225]: Let the random variable X be gaussian distributed with gaussian

density function φ(x) = (1/
√

2πσ2) · e−x2/2σ2
, the entropy is given by

H(φ(x)) = −
∞∫

−∞

φ(x) log φ(x)dx

14
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= −
∞∫

−∞

φ(x)

[
− x2

2σ2
− log

√
2πσ2

]
dx

=
E(X2)

2σ2
+

1

2
log(2πσ2)

=
1

2
+

1

2
log(2πσ2). (2.31)

�

As it can be seen from these two examples: The larger the variance of the random variable

is, indicated by a large a in case of uniform distributed random variables and by a large σ

in case of gaussian distributed random variables, the larger the differential entropy of the

random variable.

The definition of differential entropy of a single random variable X can be extended to

several random variables X1, . . . , XN .

Definition 2.12 The entropy of a set X1, . . . , XN of random variables with joint density

f(x1, . . . , xN) is defined as

H(f(x1, . . . , xN)) = −
∫

RN

f(x1, . . . , xN) log f(x1, . . . , xN) dx1 . . . dxN . (2.32)

Example 2.5 Differential entropy of a multivariate gaussian distribution [Cover and

Thomas, 1991, p. 230]: Let X1, . . . , XN have a multivariate gaussian distribution with

mean µ = (µ1, . . . , µN) and covariance matrix C and a joint density function φ(x) with

x = (x1, . . . , xN),

φ(x) =
1

(
√

2π)N | detC|1/2
e−

1
2
(x−µ)T C−1(x−µ), (2.33)

where | detC| denotes the determinant of the covariance matrix C. The elements of C

are given by cij, i, j = 1, . . . , N and cij, i, j = 1, . . . , N are the elements of C−1. Then the

differential entropy is given by

H(φ(x)) = −
∫

RN

φ(x)

[
−1

2
(x− µ)TC−1(x− µ)− log

(
(
√

2π)N | detC|1/2
)]

dx

=
1

2
E

{
N∑

i=1

N∑
j=1

(xi − µi)c
ij(xj − µj)

}
+

1

2
log
(
(2π)N | detC|

)
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=
1

2

N∑
i=1

N∑
j=1

E
[
(xj − µj)(xi − µi)c

ij
]
+

1

2
log
(
(2π)N | detC|

)
=

1

2

N∑
i=1

N∑
j=1

cjic
ij +

1

2
log(2π)N | detC|,

since it holds that
N∑

i=1

cjic
ij =

{
1 for i = j

0 for i 6= j
, CC−1 = I, where I is the identity matrix,

then the differential entropy of a multivariate gaussian distribution is given by

H(φ(x)) =
N

2
+

1

2
(log(2π)N | detC|). (2.34)

�

Theorem 2.3 Besides defining information using Kullback-Leibler-divergence (see Equa-

tion 2.21), the information can also be defined using differential entropies:

I(1 : 2) =
N∑

i=1

H(f(xi))−H(f(x)), (2.35)

Proof: Using Equations (2.21) and (2.27) one can write

I(1 : 2) =

∫
RN

f(x) log
f(x)

N∏
i=1

fi(xi)

dx

=

∫
RN

f(x)

(
log f(x)−

N∑
i=1

log fi(xi)

)
dx

=

∫
RN

f(x) log f(x)dx−
N∑

i=1

∫
. . .

∫
log fi(xi)f(x1, . . . , xN)dx1 . . . dxN

= −H(f(x)) +
N∑

i=1

H(f(xi))

Cover and Thomas, 1991 interpreted the information by using the interpretation of dif-

ferential entropy as code length. The terms H(f(xi)) give the lengths of codes for the xi

when these are coded separately, and H(f(x)) gives the code length when x is coded as a

random vector, i.e. all the components are coded in the same code. Information thus shows

what code length reduction is obtained by coding the whole vector instead of the separate

components.
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Theorem 2.4 The differential entropy H(f(x)) of a random vector X ∈ RN for fixed

covariance matrix C is maximized with respect to f(x) when f(x) is a multivariate gaussian

density (f(x) = φ(x)). For any other distribution with the same covariance matrix C, the

differential entropy is strictly smaller [Hyvärinen, 1999c].

Proof: [Cover and Thomas, 1991, p. 234] Let the random vector X ∈ RN have a multi-

variate gaussian distribution with zero mean (see Appendix A.2, translation of differential

entropy) and covariance matrix C = E{XXT}, then H(f(x)) = N
2

+ 1
2
(log(2π)N | detC|),

according to Equation (2.34).

Let g(x) be any density satisfying
∫

RN

g(x)xixj dx = cij, for all i, j. Let φC(x) be the density

of a multivariate gaussian random vector X as given in (2.33), where µ is set to zero. Note

that log φC(x) is a quadratic form and
∫

RN

xixjφC(x)dx = cij.

Since the information can be defined using differential entropies, see Theorem 2.3, and

the information is greater equal zero, see the proof of ’Information is greater equal zero’

(Theorem A.1), it follows that,

0 ≤
∫

RN

g(x) log
g(x)

φC(x)
dx.

Because
∫

RN

g(x) log g(x) dx = −H(g(x)), we can write

= −H(g(x))−
∫

RN

g(x) log φC(x)dx.

Since g(x) and φC(x) yield the same moments of the quadratic form log φC(x), since∫
RN

g(x)xixj dx = cij and
∫

RN

xixjφC(x)dx = cij, we can substitute
∫

RN

g(x) log φC(x)dx

by
∫

RN

φC(x) log φC(x)dx and write

0 ≤ −H(g(x))−
∫

RN

φC(x) log φC(x)dx

0 ≤ −H(g(x)) + H(φC(x)).

(2.36)

As a result, we get

H(g(x)) ≤ H(φC(x)), (2.37)
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2 Fundamentals

Of all distributions with the same variance, the gaussian distribution maximizes the differ-

ential entropy. Consequently, the differential entropy of the gaussian distribution gives a

good bound on the entropy in terms of the variance of the random variable [Cover and

Thomas, 1991, p. 234].

Further properties of differential entropy like differential entropy of a transformed random

variable can be found in Appendix A.2.

Another important information-theoretic function is the negentropy (negative entropy)

J(f(x)) measuring the nongaussianity of a random variable X [Comon, 1994]. The negen-

tropy can be regarded as a normalized version of the differential entropy.

Definition 2.13 Regard a random variable X with assumed density f(x). Further regard

the gaussian density φ(x) assuming to have the same expectation and variance as f(x), then

the negentropy J((f(x)) is defined as

J(f(x)) = H(φ(x))−H(f(x)). (2.38)

The negentropy is always nonnegative, and zero only for gaussian random vectors. The

proof that the negentropy will always be nonnegative can be found in Appendix A.3. Ne-

gentropy has the additional interesting property that it is invariant for linear transfor-

mations. This proof can also be found in Appendix A.3. Moreover, since information-

theoretic functions are more theoretically that practically used functions, approximations

of information-theoretic functions by kurtosis through Taylor expansions can be found in

Appendix A.4.

2.3.2 Measuring Nongaussianity by Kurtosis

Since it is assumed that the source signals in ICA should have nongaussian distributions, a

classical measure of nongaussianity will be introduced, namely the kurtosis. The kurtosis

of a random variable X is defined by

kurt(X) = E{X4} − 3(E{X2})2. (2.39)

If it is assumed that X has zero-mean and variance equal to one the kurtosis simplifies

to E{X4} − 3, which shows that the kurtosis is a normalized version of the fourth mo-

ment E{X4}. If X is gaussian distributed, the fourth moment equals 3(E{X2})2. Thus
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2 Fundamentals

kurtosis is zero for a gaussian random variable, and consequently kurtosis can be used as

a measure of gaussianity. The kurtosis can be either positive or negative for nongaussian

variables. Random variables that have negative kurtosis are called subgaussian, and those

with positive kurtosis are called super-gaussian.
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3 Functional Magnetic Resonance

Imaging

3.1 Functional Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a method used to visualize the inside of living organ-

isms. It is primarily used to demonstrate pathological or physiological alterations of living

tissues and is a commonly used form of medical imaging.

Magnetic resonance tomography (MRT) is based on the principle of magnetic spin reso-

nance. Atomic nuclei with odd spin numbers (essentially, an unpaired proton and neutron)

have a spin and therefore a magnetic dipole moment. Since the hydrogen nuclei has a rela-

tively large magnetic moment and often appears in biological systems, this hydrogen nuclei

is used for imaging in humans. In a magnetic field the spins within the tissue all arrange in

one of two opposite directions, namely parallel or antiparallel to the magnetic field. Since

the parallel arrangement is energetically more efficient the dipoles most frequently arrange

in parallel direction. The magnetic dipole moments of the nuclei then precess around the

axial field. Precessing is the slow movement of the nuclei around their axes. The frequency

with which the dipole moments precess is called the Lamor frequency. This frequency in-

creases proportional to the strength of the magnetic field. Common used field strength for

human research ranges from 0.5 to 3 Tesla. For comparison, the average earth’s magnetic

field is only around 50 µTesla.

MRI measures the signals arising in tissue by relaxation processes after radiofrequency

pulses (RF pulse) are applied. Therefore, the tissue in the magnetic field is briefly exposed

to RF pulses in a plane perpendicular to the magnetic field, causing some of the magneti-

cally aligned hydrogen nuclei to assume a temporary non-aligned high-energy state. Images

can then be created from the acquired data using discrete fourier transforms resulting in

gray values. To understand MRI contrasts in the tissue the time constants involved in the

relaxation processes after the RF pulse must be considered. As the high-energy nuclei relax
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3 Functional Magnetic Resonance Imaging

and realign, they emit energy at rates which are recorded to provide information about

their environment in the tissue. The realignment of spins with the magnetic field is termed

longitudinal relaxation and the time required for a certain percentage of the tissue nuclei

to realign is termed T1. This time is about 1 sec. T2-weighted imaging relies upon local

dephasing of spins following the application of the transverse energy pulse. This is the

transverse relaxation time typically <100 msec for tissue. An important variant of the

T2 technique is called T2∗ imaging. T2∗ imaging employs a spin echo technique, in which

spins are refocused to compensate for local magnetic field inhomogeneities. Applications

of T2∗ imaging include functional MRI (fMRI). In the brain, T1-weighting causes fiber

tracts like nerve connections to appear white, accumulations of neurons to appear gray,

and cerebrospinal fluid to appear dark. The contrast of ”white matter,” ”gray matter” and

”cerebrospinal fluid” is reversed using T2 or T2∗ imaging.

MRI can be used to investigate mainly the anatomy of brain structures, but besides looking

at structural scans of the brain only, MRI can additionally be used to look at functional

activities of the brain, which is referred to as fMRI.

FMRI measures signal changes in the brain that are due to changes of neural activity. In

fMRI scans the brain is scanned at low resolution but at a rapid rate, typically once every

2-3 seconds. Increases in neural activity cause changes in the magnetic resonance signal

via a mechanism called the BOLD (blood oxygen level-dependent) effect. Activated brain

regions need more energy and thus consume more oxygen and glucose. The neuronal sys-

tem overcompensates for this by increasing the amount of oxygenated hemoglobin (blood

with a high level of oxygen) relative to deoxygenated hemoglobin (blood with a low level

of oxygen) in that regions. Because deoxygenated hemoglobin attenuates the magnetic

resonance signal, the response leads to a signal increase that is related to the neural activ-

ity, see Ogawa et al., 1990, Friston, 1996, and Lange, 1996, for summaries. Thus, by

recording slight changes in capillary blood oxygenation, fMRI intends to measure neuronal

activity indirectly in response to designed stimuli [Lange, 1996].

Consequently, fMRI reveals which parts of the brain are active in solving certain tasks. The

type of scanning technique most commonly used is echo planar imaging (EPI), which allows

for fast measurement of the signal. The spatial resolution of the activation is about 1-5

millimeters. The temporal resolution, meaning the time distance between two data points,

is only about 2-3 seconds or even more seconds. This means, that fMRI has a good spatial

resolution but poor temporal resolution, compared with methods that measure neuronal

activity more directly such as electroencephalography (EEG) or magnetoencephalography
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3 Functional Magnetic Resonance Imaging

(MEG).

One of the major advantages of fMRI over other brain mapping techniques is the possibil-

ity to look at the relationship between brain anatomy and function of areas in the brain

noninvasively. However, the BOLD fMRI signal is an indirect measure of the underlying

neuronal activity and it reflects the sum of the activities of a large group of neurons only.

3.2 FMRI Time Series

Most fMRI experiments are designed as blocked-designed experiments in alternating stim-

ulus blocks and resting blocks. In stimulus blocks the sensory impulses, i.e. visual or

auditory stimuli, are presented. The stimulus block may last about 20 to 40 seconds fol-

lowed by a resting block of at least 20 seconds. The stimulation causes neural activity in

some regions of the brain, which leads to different gray values at a given spatial location of

the fMRI image measured at corresponding time points of stimulation. During the resting

block the BOLD-signal returns to baseline, whereby the increase and decrease of the signal

is time-delayed to the stimulation protocol.

This time course of the fMRI signal is known as the hemodynamic response function (HRF),

which is the response to a temporary increase in neuronal activity. The HRF goes through

different stages. In general, the fMRI signal is characterized by a delayed increase after the

onset of stimulation, reaching a plateau level after about 6 seconds, and decreases slowly

to baseline after the offset of stimulation in about 10 - 15 seconds. Sometimes an under-

shoot below baseline is found, see Heeger and Ress, 2002 and Jezzard, 2001 for further

explanations. Figure 3.1 shows an exemplary HRF normalized in [0, 1], where gray blocks

indicate stimulation and white blocks indicate resting.

Figure 3.1: Time course of hemodynamic response function
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3 Functional Magnetic Resonance Imaging

Using a block design has one major advantage over event-related designs, where only single

events are measured: The increase in fMRI signals in response to a stimulus is additive.

Meaning that the amplitude of the HRF increases when multiple stimuli are presented in

rapid succession.

During the fMRI measurement multiple slices of the brain are recorded, thereby each slice

consists of a number of pixels. Consequently, the fMRI images are composed of three-

dimensional data points (voxels). For each voxel vi, i = 1, . . . , N , where N is the total

number of voxels, at the anatomical coordinate (vi
x, v

i
y, v

i
z) in the human brain, we observe

the gray value xi(t) for each time point t (t = 1, . . . , T ) . It is assumed that the images are

recorded at equidistant time points. The gray value can be represented as a function of the

induced brain signal.

These signals can be seen as realizations of stochastic processes. The measured fMRI sig-

nal has a temporal and spatial structure at several time and length scales, which can be

analyzed by different signal processing strategies that emphasize either the spatial or the

temporal aspects [Lange et al., 1999].

3.3 FMRI Time Series Regarded as Stochastic

Processes

The voxel values may be treated as continuous random variables and the fMRI time series

can be considered as a single observation of a stochastic process. Since time series may

have some structure, inferences about properties of the underlying processes are made from

a single realization, i.e. a single observation at each time. The gray value xi for every

voxel is a random variable at every time point t. The process Xt is a discrete-time and

continuous-state process. Friston et al., 1991 suppose that voxel intensities are generated

by a continuous, stationary and isotropic stochastic process. ’Continuous’ means that the

process involves continuous random variables, ’stationary’ means that the properties of the

process do not depend on its location in either time or space [Beyer et al., 1988], and

’isotropic’ means that the process does not prefer a particular directional orientation in

space. But Turner and Donald, 2005 point out that fMRI time series are not stationary

over time and exhibit spatial correlations. They claim that fMRI time series are structured

and often affected by trends and variations. They studied the temporal stationarity and

spatial consistency of fMRI noise using ICA and revealed nonstationary processes.
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3.4 Analyzing fMRI Data

Statistical methods are used to get activation clusters in the cortex caused by one or dif-

ferent experimental conditions. In fMRI, hypothesis-based and data-based methods are

used to investigate different BOLD signals from the acquired time series. Hypothesis-based

methods enable detection and signal characterization through an estimation procedure that

is repeated identically at each individual voxel [Bandettini et al., 1993, Friston, 1996].

The general linear model (GLM) [Worsley and Friston, 1995, Friston, 1996] belongs

to the hypothesis-based methods. It works by cross correlating the time course of each

voxel with a reference function modelling the hypothetical HRF of the signal [Bandettini

et al., 1993]. This method tests if a voxel is affected by the cognitive task or not. Finally

a t-test verifies whether there exist significant differences between stimulation and resting

condition. Further details of this method can be found in the next chapter. The GLM

has a lot of restrictions concerning accuracy and discrimination power [Baumgartner

et al., 2000]. Moreover, hypothesis-based approaches are often univariate, i.e. they test

each single brain voxel independently. They neither exploit at all nor fully characterize the

co-activation of different voxels. This lack of consideration of spatial interactions inspired

the utilization of data-based methods for detection and estimation of spatial activation and

temporal dynamics of the brain.

Data-based techniques have been verified and adopted for functional connectivity pattern

analysis of distributed regions in the brain during cognitive tasks, such as human mem-

ory [Fletcher et al., 1996] and resting state [van de Ven et al., 2004]. This task

is accomplished by estimating suitable second- or higher-order statistics and considering

relationships among subsets of brain voxels or time points. These data-based methods

comprise: principal component analysis (PCA) [Bullmore et al., 1996], independent com-

ponent analysis (ICA) [McKeown et al., 1998a], and cluster algorithms [Filzmoser et al.,

1999, Goutte et al., 1999].

These methods are often multivariate and try to aggregate the voxels in spatio-temporal

patterns of activity based on a common time course and a common spatial distribution of

a given effect. In general, the relationships between voxel time courses are estimated in

the spatial covariance of the measured signals. In other words, data-based methods try

to find common hidden characteristics in the data often assuming that neighboring voxels

are not really independent samples. These methods are useful when the expected neuronal

activation cannot be determined in advance, e.g. by presentation of complex stimuli or by

temporal displacements, which cannot be found with simple cross correlations. The char-
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acteristics of hypothesis-based and data-based methods are summarized in Table 3.1. The

GLM, PCA, as well as classical time series analyzing methods will be described in the next

chapter.

Table 3.1: Hypothesis-based and data-based methods for analyzing fMRI data

Hypothesis-based methods Data-based methods

• require a priori knowledge of the time

course of the hemodynamic response

• require minimal space and time assump-

tions

• assume homogeneity of variance of the

signals across different brain regions

• explore time courses and spatial distri-

butions of the data

• allow tests of statistical significance

within an assumed data and noise model

• provide no noise model for statistical

testing

• reveal unforseen activation (time-

varying, site-dependent)
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4 Classical Methods for Analyzing

fMRI Time Series

As mentioned in the previous chapter the fMRI data can be analyzed by hypothesis-driven

methods, like the general linear model (GLM) or data-driven methods, like the principal

component analysis (PCA). These two methods are considered in more detail in this chapter.

Moreover, classical time series analyzing methods are introduced in the last section of this

chapter.

4.1 General Linear Model

The general linear model (GLM) is a hypothesis-driven analytical method for detecting

activations in fMRI time series. The method can be seen as an extension of linear to multiple

regressions. The usage of GLM for fMRI data was motivated by Friston et al., 1995

and Worsley and Friston, 1995. The GLM for a time series of a voxel vi (i = 1, . . . , N)

can be written as

xi =

 xi1

...

xiT

 =

 a11 · · · a1k

... · · · ...

aT1 · · · aTk


 γi1

...

γik

+

 εi1

...

εiT

 = Aγi + εi, (4.1)

where xi is a column vector of the observed response, i.e. the time series of voxel vi.

In general the time series is mean corrected. The matrix A is a design matrix whose

columns are the covariates, i.e. predictors of different experimental conditions. The vector

γi is a column vector of parameters defining the contribution of each column of the design

matrix to the model. The errors εi are assumed to be independent and identically gaussian

distributed with unit variances.

The multivariate model for N voxels can be written as

X = (x1 · · ·xN) = A(γ1 · · ·γN) + (ε1 · · · εN) = AΓ + E. (4.2)
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For each voxel vi the same matrix A is assumed. The parameters γ for one voxel can be

estimated by minimizing the sum of squares of the observed errors (residuals) e (the index

i was omitted)

eT e = (x−Aγ)T (x−Aγ)

= xTx + γTATAγ − 2γTATx → min .

With

∂(eT e)

∂γ
= 2ATAγ − 2ATx = 0 (4.3)

the following equation is obtained

ATAγ = ATx. (4.4)

This equation provides the estimates of the parameters γ by least squares estimation:

γ̂ = (ATA)−1ATx, (4.5)

if (ATA)−1 exists. Now statistical inferences about the effects of interest are addressed, e.g.

the significance of the regression coefficients for the predefined reference waveforms in A.

The null hypothesis can be formulated that the effects embodied in A are not present. This

can be tested with the t statistic using linear compounds or contrasts of the parameters

estimates γ̂. The contrasts are given in a row vector c = [c1 · · · ck]. This is a set of

weights that sum to zero. In some special cases it might be interested to analyze only the

influence of one predictor then there is only one ’1’ in the contrast vector. The t statistic

is formulated as

t =
cT γ̂√

σ̂2cT (ATA)−1c
, (4.6)

where σ̂2 = (x−Aγ̂)T (x−Aγ̂)/(T − r), with r is the rank of matrix A (r = rg(A)). The

rank of a matrix A is the maximum number of columns or rows of A which are linearly

independent. The statistic t is t-distributed with T − r degrees of freedom.

Having detected voxels significantly activated by one or more effects, these voxels are then

color coded in the anatomical brain map.

4.2 Principal Component Analysis

In many situations where there is a large number of variables in the database it is very likely

that subsets of variables are highly correlated with each other. Applied to fMRI data there
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is a large number of voxels N suggesting that neighboring voxels and voxels from func-

tionally connected regions in the brain are correlated to each other. Principal component

analysis (PCA) was introduced by Hotelling, 1936, as a mathematical procedure that

transforms a number of possible correlated variables into a smaller number of uncorrelated

variables called principal components, assuming gaussian distribution of the variables. The

objective of PCA is to reduce the dimensionality (number of variables) of a dataset but

retain most of the original variability in the data.

The mathematical background for PCA is the following. PCA is a method for data reduc-

tion based on second-order statistics, i.e. variances and covariances of the random variables

under the assumption of gaussian distributed random variables. Consider a N × T data

matrix X, where N is the number of possibly correlated characteristics, i.e. possibly corre-

lated voxels. X0 is the standardized data matrix having empirical mean zero and variances

equal to one for each row. The empirical correlation matrix R of N observed characteristics

is given by

R =
1

N − 1
X0X

T
0 =


1 ρ12 · · · ρ1N

ρ12 1
...

...
. . .

...

ρ1N · · · · · · 1

 . (4.7)

Having a standardized data matrix X0, the correlation matrix R equals to the covariance

matric C. PCA transforms the correlation matrix in that way that N observed correlated

variables are represented by N latent uncorrelated components of which M (M ≤ N)

essential components are chosen. These uncorrelated components are called principal com-

ponents (PC) and are linear combinations of the original data which are defined by the

following formula:

PC1 = wT
1 X0 = w11X1 + w12X2 + · · ·+ w1NXN

PC2 = wT
2 X0 = w21X1 + w22X2 + · · ·+ w2NXN

...

PCM = wT
MX0 = wM1X1 + wM2X2 + · · ·+ wMNXN , (4.8)

where X1, . . . , XN are row vectors of the standardized data matrix X0 and wji are weight-

ing coefficients. The weighting coefficient vectors w1, . . . ,wM are chosen such that they

satisfy the following conditions: The first principal component PC1 is a linear combina-

tion wT
1 X0 that maximizes V ar(wT

1 X0) with ||w1|| = 1. The second principal compo-

nent PC2 is a linear combination wT
2 X0 that maximizes V ar(wT

2 X0) with ||w2|| = 1 and
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Cov(wT
1 X0,w

T
2 X0) = 0 which means that PC2 is orthogonal to PC1. The j-th principal

component PCj (j = 1, . . . ,M) is a linear combination wT
j X0 that maximizes V ar(wT

j X0)

with ||wj|| = 1 and Cov(wT
k X0,w

T
j X0) = 0 ∀ k < j. Thereby Cov and V ar are the empir-

ical covariance and variance derived from the T repeated observations.

This says that the principal components are those linear combinations of the original vari-

ables which maximize the variance of the linear combination and which have zero covariance

(and hence zero correlation) with the previous principal components.

In other words, the extraction of principal components amounts to a variance maximizing

rotation of the original variables. It can be shown that PCA corresponds to an eigen-

value problem where the coefficient vector wj of component PCj corresponds to the stan-

dardized eigenvector to the j largest eigenvalues of the empirical correlation matrix R

(PCj = wj/
√

λj), where λj (j = 1, . . . ,M) are the eigenvalues, sorted in decreasing or-

der. The proportion of variance of the standardized characteristics explaining by the j-th

component PCj is given by

γj =
λj

M∑
j=1

λj

. (4.9)

An interesting question remains, namely, how many components to retain? Or, how to

choose M? A criterion proposed by Kaiser, 1960, states to retain only components with

eigenvalues greater than 1. This methods is the one most widely used. A graphical method

is the scree plot first proposed by Cattell, 1966. The eigenvalues are drawn in a line

plot. Cattell suggest to find the place where the smooth decrease of eigenvalues appears

to level of to the right of the plot, i.e. there is an obviously deviation in the course of the

eigenvalues.

PCA is a method that finds the representation using only the information contained in the

covariance matrix of the data. The use of second-order techniques is to be understood in the

context of the classical assumption that the random variables are of a gaussian distribution.

If a random variable has gaussian distribution, its distribution is completely determined

by its first- and second-order moments, where the expectation is already eliminated by

the standardization here. Thus it is useless to include any other information for gaussian

random variables.

PCA is directly related to another common used technique, the singular value decomposition

(SVD). In PCA the principal components are usually calculated from the correlation matrix
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which is equal to the covariance matrix for standardized data. In SVD the data matrix

X itself and not the correlation matrix R is decomposed. The SVD for j (j = 1, . . . ,M)

uncorrelated sources of the data matrix X (X = [xi,t]i=1,...N,t=1,...,T ) is decomposed as

X = UΛVT , (4.10)

where U = [ui,j]i=1,...N,j=1,...,M and V = [vt,j]t=1,...T,j=1,...,M are orthogonal matrices. The

columns of U contain the eigenvectors of the inner product matrix (XXT ), which inves-

tigates the inter-relationships between voxels. The matrix Λ = [λj,j]j=1,...M is a diagonal

matrix with nonnegative elements λj in decreasing order, the eigenvalues or singular values.

The matrix V is then computed by

V = XTUΛ−1. (4.11)

The columns of the matrix V contain the eigenvectors of XTX which investigates inter-

relationships between the measurements at different time points t.

Detailed introductions to PCA can be found in Hartung and Elpelt, 1995, Jackson,

1991 and Rao, 1964. Applications of PCA to fMRI data and BSS are found in Andersen

et al., 1999, Friston et al., 1993, and Mutihac and van Hulle, 2004.

4.3 Time Series Analyzing Methods

The fMRI observations can be regarded as realizations of stochastic processes Xt = {X(t), t ∈
T ⊆ R}. Stochastic processes are described in Fisz, 1980, Beyer et al., 1988, and Pa-

poulis, 1991. At every time point t corresponding to a record of a magnetic resonance im-

age a gray value xi for every voxel vi = (vi
x, v

i
y, v

i
z) (i = 1, . . . , N) is observed. Therefore, the

fMRI observations can be considered as time series xi = (xi(1), . . . , xi(T ))T , i = 1, . . . , N .

To begin with time series one can think about the behavior of an observed time series x(t)

as being made up of various components. These components might be a trend compo-

nent xtrend(t), a seasonality component xseason(t), and some irregular component u(t). In

a time series any or all of these components might be present. To explain these compo-

nents in more detail, many time series exhibit a tendency to increase or to decrease over

quite long periods of time which can be identified as trend. Many business or economic

time series consists of quarterly or monthly observations which can be described as seasons,

i.e. patterns repeated from year to year. Seasonal patterns in time series occur in general

regularly and oscillatory. In addition, many business and economic time series appear to
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exhibit oscillatory, or cyclic, patterns unconnected to the seasonal behavior which are not

necessarily regular. This behavior can be described by a cyclical component but we will

omit this component in our case. The final component is the irregular component which

is induced by the multitude of factors influencing the behavior of a time series and whose

pattern looks rather unpredictable on the basis of past experience. Further descriptions of

these components can be found in Schlittgen and Streitberg, 1995 and Newbold,

1995. It is now assumed that the observed time series x(t) is represented as a sum of its

components by an additive model:

x(t) = xtrend(t) + xseason(t) + u(t). (4.12)

In some circumstances the series might be viewed as the product of its components. But

we are assuming the additive model for our observed time series.

Now, temporal statistics can be used to characterize the observed time series which will be

described in this chapter.

4.3.1 Stationary Process

The characteristic of stationary of a process is very important, since the stationarity of a

process or time series is a prerequisite condition for time series characteristics like autocor-

relation and autocovariance function, or frequency analysis.

In most cases, stationarity of a time series can be achieved by removing the trend, seasonal,

and other cyclic components from the time series. Then the remaining part of the time

series should be stationary. A white noise process is said to be stationary.

Since the underlying fMRI time series are considered as realizations of stochastic processes

(see Section 3.3), it should be investigated if the time series are stationary. Therefore, the

stationarity is defined here.

Definition 4.1 A stochastic process Xt is called strict-sense stationary if its statistical

properties are invariant to a shift of the origin. This means ∀ n and ∀ t1, . . . , tn, P (X(t1) ≤
x1, . . . , X(tn) ≤ xn) = P (X(t1 + τ) ≤ x1, . . . , X(tn + τ) ≤ xn) for any constant τ . A

stochastic process is called weakly stationary if its mean is constant: E{Xt} = µ and its

autocorrelation function ρ(t, t + τ) depends only on τ . [Schlittgen and Streitberg,

1995]

Regard that, because the autocorrelation function only depends on τ , this implies also

constant variance.
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With stationarity many properties of time series are invariant of time, i.e. they are not

only valid for some part of the time series. The time series has the same expectation and

variance at all time points. To make a non-stationary time series to a stationary time series

is one of the first tasks in time series analysis. Methods for this are creation of differences

or transforming the time series through logarithms (see Schlittgen and Streitberg,

1995).

4.3.2 Autocovariance and Autocorrelation Function

A way of characterizing time series is given by their autocovariance and autocorrelation

function (see Schlittgen and Streitberg, 1995, and Diggle, 1995). The empirical

autocovariance function c(t, t + τ) of a time series x(t) is

c(t, t + τ) =
1

T

T∑
t=1

{(x(t)− x̄)(x(t + τ)− x̄)} for τ ≥ 0, (4.13)

where x̄ is the empirical mean of the time series x(t). The autocovariance function is

symmetric. For a stationary process the statistical values like expectation and variance

are not time-dependent anymore. The autocovariance function is not dependent on the

location of the time points but dependent on the time difference τ .

The autocorrelation function ρ(t, t + τ) is defined as

ρ(t, t + τ) =
c(t, t + τ)

c(t, t)
, (4.14)

where c(t, t) is the variance of x(t). The graph of the autocorrelation c(t, t + τ) versus τ is

known as the correlogram.

4.3.3 Test for White-Noise Process

After all the trend and seasonal components have been removed from the time series

(see Schlittgen and Streitberg, 1995 for methods to remove trend and seasonal com-

ponents), it is tested if the remaining part is a white noise process. Since white noise

processes are stationary, see Schlittgen and Streitberg, 1995. The runs test was in-

troduced by Wald and Wolfowitz (described in Bradley, 1968). A description of the

test can be found in Bortz et al., 2000 and Sachs, 1999. The null hypothesis tests if

the adjusted time series u(t) has sufficient runs. For the test, the mean or the median

can be used as statistics. The empirical mean (or median) m is subtracted from the data:
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xt,m = x(t) − m, t = 1, . . . , T . The variables xt,m can have two states, either positive or

negative. The positive and negative xt,m are counted. T1 is the number of positive xt,m and

T2 is the number of negative xt,m, T1 + T2 = T . The test statistic r is the number of runs

r, that is the number of consecutive sequences of identical states. The statistic W follows

asymptotically a gaussian distribution

W =
r − µr

σr

∼ Φ(0, 1), (4.15)

where

µr = 1 +
2T1T2

T
(4.16)

and

σ2
r =

2T1T2(2T1T2 − T )

T 2(T − 1)
. (4.17)

The runs test can be used to see if observations occur randomly, i.e. unstructured in time.

The null hypothesis is rejected if W exceeds the α/2-quantile or the 1−α/2-quantile of the

standard gaussian distribution. This means that there are to many or to less runs.

4.3.4 Test for Gaussian Distribution

To compare the empirical cumulative distribution function of a random variable X with a

theoretical distribution of the population, the Kolmogorov-Smirnov test is provided,

see Chakravarti et al., 1967 and Bortz et al., 2000 for explanations. Here it shall be

tested if the time series are of a gaussian distribution as it is used in the analysis of ICA

(see later in Chapter 5), i.e. the hypothesis is tested if the cumulative distribution function

F (x) of the random variable X comes from a gaussian distribution Φ(x)

H0 : F (x) = Φ(x). (4.18)

The absolute maximum distance between the empirical distribution function FN(x) and

Φ(x) is used as test statistic G

G = max
x
|FN(x)− Φ(x)|. (4.19)

If the null hypothesis is valid, G is of a Kolmogorov-Smirnov distribution. If the test statistic

G is greater than the predefined critical value, the null hypothesis H0 will be rejected. The

critical value is obtained from corresponding statistical tables.
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It should be mentioned that there are other test of testing of gaussian distribution like the

Shapiro-Wilks test, conducted by regressing the quantiles of the observed data against

that of the best-fitting normal distribution [Shapiro and Wilks, 1983]. The Shapiro-

Wilks test is more powerful compared with the Kolmogorov-Smirnov test, i.e. the

Shapiro-Wilks test discards the null hypothesis more often.

4.3.5 Frequency Analysis

Another way of characterizing time series is in terms of the frequency analysis, which

includes the periodogram and the Fourier transformation. The periodogram is a summary

description based on a representation of an observed time series as a superposition of sinus

waves of various frequencies [Diggle, 1995]. The periodogram or spectrum is a function

IF (ω) of the frequency ω. For a frequency ω the intensity is given of how strong harmonic

waves of this frequency occur in the time series [Schlittgen and Streitberg, 1995].

The intensity function IF (ω) is given by

IF (ω) = T · |C(ω) + iS(ω)|2 (4.20)

with

C(ω) =
1

T

T∑
t=1

(x(t)− x̄) cos(2πωt) (4.21)

and

S(ω) =
1

T

T∑
t=1

(x(t)− x̄) sin(2πωt). (4.22)

The function C(ω), S(ω), and IF (ω) can be derived from a Fourier transform FT (ω) of

the mean-reduced measured time series x(t) − x̄, (t = 1, . . . , T ). The empirical Fourier

transform is given by [Schlittgen and Streitberg, 1995]:

FT (ω) =
T∑

t=1

(x(t)− x̄)ei2πωt

=
T∑

t=1

(x(t)− x̄) cos(2πωt) + i

T∑
t=1

(x(t)− x̄) sin(2πωt). (4.23)

C(ω) and S(ω) are then the real and imaginary part of FT (ω), whereas IF (ω) is its

absolute value, see Schlittgen and Streitberg, 1995. In case of discrete observations

frequencies between 0 and 0.5. At that frequencies ω, where the function FT (ω) shows

spikes, underlying periods P of the time series can be detected by P = 1/ω.
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4.3.6 Histograms and Probability Density Estimation

Finally the histograms and the probability density estimations are considered, even if they

are not related to time series analysis because they assume independency of the time points.

It is assumed that the random sample X(1), . . . , X(T ) of a continuous distribution X is

given, whereas the unknown density f(x) should be estimated. It is aimed to evaluate

the structure of the data like modality, symmetry or skewness. Histograms of the source

signals and the observed signals may draw conclusions about the distribution of the ran-

dom sample. Alternatively, kernel probability density estimations are used to describe the

distribution of the signals. In ICA decomposition (see later Chapter 5), in general, the

nongaussian distributions are assumed.

Histograms are a graphical representation based on a decomposition of the data x =

(x(1), . . . , x(T )) in P disjunct number for each interval of constant length h (see Sil-

verman, 1986). The density estimation f̂(x) of the histogram can be written as

f̂(x) =
1

Th

T∑
t=1

Qp(x, x(t)), (4.24)

where h is the classwidth, and Qp(x, x(t)) is an indicator function with

Qp(x, x(t)) =

{
1 if x belongs to the same class as x(t)

0 elsewhere
. (4.25)

In other words, the indicator function counts the observations in each interval and the

relative frequencies are computed.

The kernel density estimator can be written as

f̂(x) =
1

Th

T∑
t=1

K

(
x− x(t)

h

)
, (4.26)

where K(x) is the kernel function dependent on the bandwidth h. The kernel function

fulfills the characteristics of a density function∫ +∞

−∞
K(x)dx = 1 and K(x) ≥ 0. (4.27)

If, for example, the kernel function K(x) is defined as

K(x) =
1

2
Q(|x| ≤ 1), (4.28)
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where Q(|x| ≤ 1) is the indicator function for the event |x| ≤ 1, then the density estimation

is given as

f̂(x) =
1

Th

T∑
t=1

1

2
Q

(∣∣∣∣x− x(t)

h

∣∣∣∣ ≤ 1

)
, (4.29)

see Silverman, 1986, for further descriptions. The kernel density function is symmetric

about zero and unimodal like the gaussian kernel with a standard gaussian density

φ(x) =
1√
2π

e−
1
2
x2

. (4.30)

Further estimates might be based on the Epanechnikov-kernel or the triangular density,

see Silverman, 1986. As for histograms, the bandwidth h plays an important role for

kernel density estimators. For small bandwidths the density estimations show a rough

structure and the density might be undersmoothed. On the other side, for large bandwidths

the density estimation is very smooth and important structures in the data might get lost.

The methods described in this chapter are used later for comparing the ICA method to

these time series methods for fMRI data and simulated data.
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5 Independent Component Analysis

Independent component analysis is a method for blind signal separation formed on the basis

of assumed statistical independence of the source signals. The problem of blind source sep-

aration or blind signal separation (BSS) appears in many contexts. Blind source separation

is a class of explorative tools originally developed for the analysis of images and sound.

BSS has received wide attention in various fields such as speech enhancement, geophysical

data processing, data mining, wireless communications, image processing, and biomedical

signal analysis and processing (EEG, MEG, fMRI). The method is called ’blind’ because it

aims to recover source signals from mixtures with unknown coefficients. The most simple

situation occurs for two speakers speaking simultaneously. Imagine that the mixture of

their voices reaches two microphones, and one wants to separate both sources such that

each detector registers only one voice. The problem is called the cocktail party problem

which can also be extended to N people standing around and chatting with each other.

This mixture of signals is recorded by N microphones. Again, the aim is to extract the

voices of the speaker (the sources) from the mixture of speech signals without knowing the

sources and the mixture process assuming that the voices are independent of each other.

In this project the problem of BSS is applied to the field of functional magnetic resonance

imaging (fMRI), especially to fMRI time series, For the fMRI time series it is assumed that

the measured signal of neuronal activity are mixed linearly with multiple other signals like

noise or movement artifacts, contributing to the measurement. The aim of blind signal sep-

aration in fMRI is to detect the intrinsic signals, i.e. the neuronal activity, from the mixed

signals measured during the fMRI study. ICA is a statistical approach of transforming

multidimensional data into components that are as independent of each other as possible.

5.1 Definition of ICA

The observed signals are assumed to be a linear mixture of realizations of stochastic pro-

cesses. The signals x(t) = (x1(t), x2(t), . . . , xN(t))T , t = 1, . . . , T have to be decomposed

into a set of independent signals, the independent components. In the blind source separa-
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tion problem, the underlying mixture model generates the observed vector of signals x(t)

from a vector of sources s(t) = (s1(t), s2(t), . . . , sM(t))T , t = 1, . . . , T (M ≤ N) by

x(t) = f(s(t)), (5.1)

where the function f can be any linear or nonlinear function. But in the following we will

only consider the linear case which means that the observed signals are generated by

x(t) = As(t), (5.2)

where A = [aij]i=1,...,N ;j=1,...,M is the unknown constant mixing matrix. In matrix notation,

the equation is given by

X = AS, (5.3)

where X = [xit]i=1,...,N ;t=1,...,T is the matrix of observed signals and S = [sjt]j=1,...,M ;t=1,...,T

is the matrix of the source signals. As mentioned in Section 2.3, statistical dependence

within a fixed number of components can be quantified by means of their information. The

information takes into account the whole dependence structure of the variables. Finding a

transformation that minimizes the information between the components is a natural way of

estimating the independent components [Comon, 1994]. In other words, the independence

of signals can be found by minimization of the information of the signals.

Without knowing the source signals s(t) and the mixing matrix A, ICA aims to recover

the original sources from the observations x(t) by a linear transformation. This is roughly

equivalent to estimating the mixing matrix A. Thus, ICA decomposition can be defined as

a transformation

ŝ(t) = Wx(t), (5.4)

where ŝ(t) are the estimates of the source signals s(t) and W = [wj,i]j=1,...,M ;i,...,N is the

estimated ’unmixing’ matrix. For the matrix W, which is supposed to be orthogonal, it

holds that WTW = I, where I is an N ×N identity matrix. The matrix W is determined

such that the information of the independent components ŝ(t) is minimized. Moreover, the

matrix W should be determined such that AW ≈ I, which means that W ≈ A−1. In the

case that the mixing matrix A is not square, we use the Moore-Penrose pseudo-inverse

as inverse matrix. Often only the quadratic case is investigated, where the number of

sources M equals the number of observations N . For more signals than sources (N > M),

the quadratic case can be obtained by performing a principal component analysis in advance
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that A is quadratic (M = N), whereas it has to be regarded that the number of independent

components M is mostly unknown and has to be estimated.

It is impossible to obtain the original sources s(t) in a unique way because 5.4 contains

some redundancies. The estimates ŝ(t) can be determined up to a permutation of indices,

a multiplicative constant and the sign [Oja, 1998,Amari et al., 1996]. The reason is that

both the signals s(t) and the matrix A are unknown. Any scalar multiplier in one of the

sources sj(t) could always be cancelled by dividing the corresponding column aj in A by

the same scalar. The order of the independent components ŝ(t) cannot be determined, too.

The reason is that again both the source signals s(t) and the matrix A are unknown, and

the order of the terms in the sum in (5.2) can freely be changed, and one can call any of

the independent components the first one [Oja, 1998]. Thus,

ŝ(t) = Wx(t) (5.5)

= WAs(t) (5.6)

= RPs(t), (5.7)

where R = [rj,j]j=1,...,M is the scaling matrix with coefficients only in the diagonal (rjj 6=
0, −∞ < r < ∞) and P = [pj,j]j=1,...,M is the permutation matrix. It should be mentioned

that there still is an error term, if the estimation of independent components was not perfect.

In fMRI data, for instance, the independent components might be ordered according to

correlating the signal to a reference time course.

Before we introduce different ICA algorithms we want to consider the aspect of densities

of the signals. The densities of the signals are needed for the computations in some ICA

algorithms. It must be pointed out, that the densities of the signals can only be regarded as

pseudo-densities because they are not densities in the intrinsic sense. Authors introducing

ICA algorithms with the densities of the signals like Bell and Sejnowski or Hyvärinen

hypothesize that the density of a signal is the intensity in the state space. Thereby the

state of the signal at time t depends on t− 1.

5.1.1 Identification and Restriction of ICA Algorithms

The identification of the ICA model is widely discussed in Comon, 1994. The basic assump-

tion is the independence of the source signals, this should be explained with a little example.

Consider two random variables S1 and S2, the source signals, which are supposed to be inde-

pendent of each other, with E{S1} = E{S2} = 0 and V ar{S1} = V ar{S2} = 1. These two
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random variables are mixed by a mixing matrix A, which could look like A =

(
1 0

ρ 1

)
.

Consequently, the random variables X1 and X2 are given by X1 = S1 and X2 = ρS1 + S2

(E{X1} = E{X2} = 0, V ar{X1} = 1 and V ar{X2} = 1 + ρ2). The covariance of X1 and

X2 is Cov(X1, X2) = E{S1(ρS1 + S2)} = ρ, so that the covariance matrix CX is given by

CX =

(
1 ρ

ρ 1 + ρ2

)
. The unknown source signals should be estimated of the observed

signals, i.e. X1 and X2. This means that an unmixing matrix W =

(
w11 w12

w21 w22

)
must

be determined. The estimates are then given by Ŝ = W ·

(
X1

X2

)
. In the ideal case

W = A−1 =

(
1 0

−ρ 1

)
. The covariance matrix of the estimated source signals CŜ is

given by

CŜ = WCXWT =

(
w11 w12

w21 w22

)(
1 ρ

ρ 1 + ρ2

)(
w11 w21

w12 w22

)
,

cŜ(11) = w2
11 + 2ρw11w12 + (1 + ρ2)w2

12

cŜ(12) = w11w21 + ρ(w12w21 + w11w22) + (1 + ρ2)w12w22

cŜ(21) = w11w21 + ρ(w12w21 + w11w22) + (1 + ρ2)w12w22

cŜ(22) = w2
21 + 2ρw21w22 + (1 + ρ2)w2

22.

To obtain independency of the source signals, the coefficients w11, w12, w21, and w22 must

be estimated that way that

(w11w21 + ρ(w12w21 + w11w22) + (1 + ρ2)w12w22)
2 → min . (5.8)

For this, the partial derivatives are set to zero

∂

∂w11

= 2[w11w21 + ρ(w12w21 + w11w22) + (1 + ρ2)w12w22](w21 + ρw22) = 0

∂

∂w12

= 2[w11w21 + ρ(w12w21 + w11w22) + (1 + ρ2)w12w22](ρw21 + (1 + ρ2)w22) = 0

∂

∂w21

= 2[w11w21 + ρ(w12w21 + w11w22) + (1 + ρ2)w12w22](w11 + ρw12) = 0

∂

∂w22

= 2[w11w21 + ρ(w12w21 + w11w22) + (1 + ρ2)w12w22](ρw11 + (1 + ρ2)w12) = 0.
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This is only possible, if w11w21 + ρ(w12w21 + w11w22) + (1 + ρ2)w12w22 = 0. If w12 = 0, e.g.

S1 = X1, then w11w21 + ρw11w22 = 0. Here, w11 can be chosen arbitrarily, like w11 = 1,

then we have w21 + ρw22 = 0 which is given with w22 = 1 and w21 = −ρ. Consequently W

can be determined as W =

(
1 0

−ρ 1

)
.

Since some elements of the matrix W are arbitrary chosen, this demonstrates that the

independent components are estimated up to the sign, some factors, and the components

are estimated without ordering.

Some further fundamental restrictions for the identifiability of the ICA algorithm (in ad-

dition to the basic assumption of stochastically independence of the source signals) has

to be imposed, see Hyvärinen, 1999c. The source signals s(t) should have nongaussian

distributions, since higher-order cumulates like kurtosis as they are used in many ICA al-

gorithms are zero for gaussian variables, and consequently the algorithms are not able to

optimize the solution. For gaussian distributed source signals the problem can be reduced

to a PCA estimation. The number of observed linear mixtures N must be at least as large

as the number of independent components M , i.e., N ≥ M .

5.1.2 Preprocessing the Data

Solving the ICA problem is simplified if the observed mixture vectors x(t) are first pre-

processed without loss of generality of the ICA estimation. The variables are centered by

subtracting the mean of the data over time or space, see therefore later Section 5.5. This

results in zero-mean vectors x0(t). Furthermore, the variables are made uncorrelated and

have unit variances this can be done by a singular value decomposition (SVD), see Section

4.2. The standardization results in vectors z(t) = Zx0(t), which all have mean zero and

equal unit variances. The matrix Z is given by Z = Λ− 1
2VT , where Λ = [λi,i]i=1,...,N is a di-

agonal matrix with the eigenvalues of the data matrix (XXT ), and V = [vt,i]t=1,...,T,i=1,...,N is

a matrix with the corresponding eigenvectors of XTX at the columns (see Equation (4.11)).

At this step the dimension reduction can be performed by selecting only the M (M ≤ N)

most interesting eigenvectors.

Consequently the estimated independent components ŝ(t) are zero-mean and uncorrelated

as well.

In the following sections, especially in Section 5.3 (Algorithms for ICA) it is assumed that

the observed signals x(t) are preprocessed, without denoting them as z(t).
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5.2 Relation between PCA and ICA

In this section we will look closer to the relation between independent component analysis

(ICA) and principal component analysis (PCA). ICA can be regarded as an extension to

PCA for nongaussian random variables. This means that ICA generalizes the characteristics

of a PCA and can be applied to the data even if they are not gaussian distributed. In the

other way around ICA algorithm would not work with gaussian distributed random variables

since skewness and kurtosis are zero for gaussian variables and the optimization of the ICA

algorithms would not work anymore.

Theorem 5.1 In the case of gaussian random variables the problem of solving ICA is

reduced to a PCA.

Proof: The different ICA algorithms (see Section 5.3) are based on information-theoretic

measures and higher-order moments, like skewness or kurtosis which would be zero for

gaussian variables. If the sources s(t) = (s1(t), . . . , sM(t))T are gaussian distributed, their

probability density function φ(s) according to (2.33) is given by

φ(s) =
1

(
√

2π)M | detC|1/2
e−

1
2
(s−µ)T C−1(s−µ), (5.9)

where C is the covariance matrix of the signals. Among all densities having a given covari-

ance matrix C, the gaussian density is the one which has the largest differential entropy,

see Theorem 2.4:

H(φ(s)) ≥ H(f(s)). (5.10)

The entropy obtained for a multivariate gaussian density according to (2.34) is

H(φ(s)) = −
∫

RM

φ(s) log φ(s) ds

=
1

2
(M + M log(2π) + log | detC|) . (5.11)

Regarding the entropy for gaussian densities and the assumed density for the sources, the

negentropy J is defined as (see (2.38))

J(f(s)) = H(φ(s))−H(f(s)). (5.12)

As we will see from Equations (2.21) and (5.12), the information can be written as:

I(f(s)) = J(f(s))−
M∑

j=1

J(f(sj)) +
1

2
log

M∏
j=1

cj,j

| detC|
, (5.13)
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where cj,j are the diagonal elements of the covariance matrix C. The relation between

negentropy and information can be seen in the following proof:

J(f(s))−
M∑

j=1

J(f(sj)) = H(φ(s))−H(f(s))−

(
M∑

j=1

H(φ(sj))−
M∑

j=1

H(f(sj))

)

= I(f(s)) + H(φ(s))−
M∑

j=1

H(φ(sj)). (5.14)

Equation (5.13) is then obtained by replacing the gaussian entropies by their values given

in (5.11) and

H(φ(sj)) =
1

2

(
M + M log(2π) +

M∑
j=1

log cj,j

)
(5.15)

and finally, the information is expressed as in (5.13).

In case of gaussian distributed signals f(s) = φ(s) and f(sj) = φ(sj) the term J(f(s)) −
M∑

j=1

J(f(sj)) vanishes in equation (5.14), and Equation (5.13) is reduced to

I(f(s)) =
1

2
log

M∏
j=1

cj,j

| detC|
. (5.16)

The information of the signals is solely described by their second-order statistics contained

in the covariance matrix C which is equivalent to the problem of PCA.

Because negentropy is invariant for linear transformations (see Theorem A.6 in Appendix

A.3), finding an invertible transformation W that minimizes the information is roughly

equivalent to finding directions in which the negentropy is maximized.

From Equation 5.16 it is also obviously that for a diagonal covariance matrix C or for

C = I, this equation becomes I(f(s)) = 0. Consequently an optimum is reached, since

variables that have an information of zero are independent of each other as required by

ICA.

The similarity between the independent components in ICA and the latent variables in

PCA or SVD can also be seen regarding Equations (5.2) and (4.10). This generates the

following analogy between PCA and ICA variables, see Lin et al., 2003:

U.j =
A.j

|A.j|
(5.17)
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VT
.j =

Sj.

||Sj.||
(5.18)

Λjj =

√
||A.jSj.||
||U.jVT

.j ||
. (5.19)

One restriction for the identification of the ICA model is that the source signals are not

gaussian distributed (see Chapter 5), else the problem of solving ICA decomposition is

reduced to solving PCA decomposition.

To summarize, PCA is an effective method for reduction of dimensionality, while ICA is

an effective method for extraction of independent features in the data. PCA can be used

as a method to determine the number of independent components in advance, given by the

eigenvalues and eigenvectors.

5.3 Algorithms for ICA

In the following some important algorithms are presented for the estimation of independent

components. To completely identify the mixing matrix and the nongaussian source signals

it is needed to go beyond mere covariance measurements, see Section 5.2 for comparison.

The ICA algorithms use the information contained in the observed signals x(t).

Principles for estimating the independent components ŝ(t) from the observations x(t) can

be based on different conditions like estimating by maximization of nongaussianity, by

maximum likelihood estimation or by minimization of information. These principles will

be described in the following subsections. Thereby two requirements of the source signals

are made, namely the source signals are nongaussian distributed and independent of each

other. These two requirements are the leading principles of the independent component

estimation.

For the optimization of the estimation two general classes of algorithms can be used. The

algorithms can be divided into algorithms using higher order statistics or decorrelations,

respectively. The most widespread higher order algorithms are the Infomax algorithm

by Bell and Sejnowski and the FastICA algorithm by Hyvärinen, whereas the most

widespread decorrelation method is that of Molgedey and Schuster, which will be

described later.

In general, all the algorithms are aimed to estimate the unmixing matrix W and compute
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the independent components according to (5.4). For describing the algorithms the number

of observed signals is restricted to equal the number of estimated signals (N = M) and

consequently the matrix W is an N × N matrix, this might be achieved by performing a

PCA in advance to reduce dimensionality. Note that in a typical fMRI data set the number

of voxels N is much larger than the number of time points T (N >> T ). Therefore, the

number of possible estimated independent components M is restricted by the number of

time points T , because they limit the size of the matrix X.

In practical use of ICA, firstly, initial values for the elements of the unmixing matrix W are

constituted, mostly they are randomly chosen or the identity matrix I is chosen. The initial

values are improved iteratively in the different ICA algorithms. After having estimated the

unmixing matrix W, e.g. by Newton iteration, the independent components are computed

by (5.4).

5.3.1 Jutten-Hérault Algorithm

The pioneering work of blind separation of sources by Jutten and Hérault, 1991 was

inspired by neural networks. The algorithm was based on cancelling the nonlinear cross-

correlations to obtain independent components. Using a recursive fully interconnected

neural network with learning abilities, they propose a blind identification procedure, based

on the use of higher order moments. The algorithm is based on the restriction that if the

random variables are independent, the cross-correlations are zero, under the assumption

that the random variables have symmetric densities. The nondiagonal terms of the matrix

W are updated according to

∆wj,i ∝ g1(sj)g2(si), for i 6= j, (5.20)

where g1(.) and g2(.) are some odd nonlinear functions. For instance the odd nonlinear

functions g1(x) = x3 and g2(x) = tanh−1(x) are proposed. These functions g are used

as estimates for the unknown source densities. The components are computed at every

iteration as ŝ(t) = (I + W)−1x(t). The diagonal terms ŵj,j are set to zero. The signals

ŝj(t) then give, after convergence, estimates of the independent components. This algorithm

converges only under rather severe restrictions [Delfosse and Loubaton, 1995], therefore

this algorithm has not much relevance in practical use. Later much more efficient algorithms

were introduced. Further details can be found in Jutten and Hérault, 1991. Moreover,

the general framework for ICA introduced by Jutten and Hérault is most clearly stated

in Comon, 1994. Furthermore, Comon, 1994 introduced the concept of ICA and proposed

cost functions related to the minimization of information between the sensors.
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5.3.2 Algorithms for Maximum Likelihood Estimation

Maximum likelihood estimation is a fundamental method in statistical approximation and

can also be applied to ICA estimation. The interpretation of the maximum likelihood

estimation is to take those parameter values as estimates that give the highest probability

for the observations.

For the random mixture vector x (x = As) the density f(x) can be formulated as

f(x) = f(s)| detA−1|, (5.21)

see Papoulis, 1991 or Hyvärinen et al., 2001b for the density of a transformation. Since

the estimate of s is denoted as ŝ, and ŝ = A−1x = Wx, Equation (5.21) can be written as

f(x) = f(Wx)| detW|. (5.22)

This equation can be rewritten with the densities fi(ŝi) of the independent components and

wi the column vectors of the unmixing matrix as

f(x) =

(
N∏

i=1

fi(w
T
i x)

)
| detW|. (5.23)

Assuming T observations (x(1), . . . ,x(T ))T , the likelihood function L for the random vector

ŝ as a function of W is obtained as the product of this density evaluated at the T points

L(W) =
T∏

t=1

(
N∏

i=1

fi(w
T
i x(t))

)
| detW|. (5.24)

The log-likelihood takes the form [Pham et al., 1992]:

log L(W) =
T∑

t=1

N∑
i=1

log fi(w
T
i x(t)) + T log | detW|. (5.25)

To simplify the notation, the sum over the sample index t is denoted by Ẽ after dividing

the likelihood by T to obtain

1

T
log L(W) = Ẽ

{
N∑

i=1

log fi(w
T
i x)

}
+ log | detW|. (5.26)

A problem of the maximum likelihood estimation, as well as other ICA algorithms, is that
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the densities fi of the independent components are not known. Since the likelihood is a func-

tion of these densities, the estimation is in general a nonparametric problem which is dealt

in one of the following sections. But some restrictions can be made, to make little assump-

tions about the densities of the independent components to avoid nonparametric density

estimation and estimate the independent components. By Hyvärinen et al., 2001b, it was

shown that in maximum likelihood estimation, it is enough to use just two approximations

of the density of an independent component. For each component, one just needs to de-

termine which one of the two approximations is better. For the unknown densities fi the

following log densities gi, where gi = (log fi)
′, may be proposed

log g+
i (s) = α1 − 2 log cosh(s) (5.27)

log g−i (s) = α2 − [s2/2− log cosh(s)], (5.28)

where α1, α2 are positive parameters that are fixed so as to make these two functions log-

arithms of probabilities. The motivation for these functions is that g+
1 is a super-gaussian

density, because the log cosh is close to the absolute value that would give the Laplacian

density. The density given by g−i is subgaussian, because it is like a gaussian log-density,

−s2/2 plus a constant, that has been flattened to the log cosh function [Hyvärinen et al.,

2001b].

An algorithm to obtain the maximum likelihood estimation is then given by gradient meth-

ods (Bell and Sejnowski). The matrix gradient of the determinant of a matrix is given

by

∂ log | detW|
∂W

=
1

| detW|
∂| detW|

∂W
= (WT )−1, (5.29)

see Hyvärinen et al., 2001b. g(̂s) = (gi(ŝi), . . . , gN(ŝN)) is a component-wise vector

function with components gi,

gi = (log fi)
′ =

f ′i
fi

. (5.30)

The gradient of the log-likelihood in (5.25) is

1

T

∂ log L

∂W
= (WT )−1 + Ẽ{g(Wx)xT}, (5.31)

where the derivative with respect to a matrix is given by the deriving the function L for

each element wj,i of W

∂L

∂W
=


∂L

∂w11
· · · ∂L

∂w1N
...

. . .
...

∂L
∂wM1

· · · ∂L
∂wMN

 . (5.32)
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This gives the following iteration for the maximum likelihood estimation:

∆W ∝ (WT )−1 + Ẽ{g(Wx)xT}, (5.33)

where ∆W = 1
T

∂ log L
∂W

is the gradient.

For simplicity we will consider the 2-dimensional case for N = 2. The matrix W is a 2× 2

matrix

W =

[
w11 w12

w21 w22

]
.

Let l = 1
T

log L(W), then Equation (5.26) results in

l=
1

T

T∑
t=1

{log f1(w11x1 + w21x2)+log f2(w12x1 + w22x2)}+log |w11w22 − w12w21|. (5.34)

The partial derivatives are given by

∂l

∂w11

=
1

T

T∑
t=1

f ′1(w11x1 + w21x2)x1

f1(w11x1 + w21x2)
± w22

|w11w22 − w12w21|

∂l

∂w12

=
1

T

T∑
t=1

f ′2(w12x1 + w22x2)x1

f2(w12x1 + w22x2)
∓ w21

|w11w22 − w12w21|

∂l

∂w21

=
1

T

T∑
t=1

f ′1(w11x1 + w21x2)x2

f1(w11x2 + w21x2)
∓ w12

|w11w22 − w12w21|

∂l

∂w22

=
1

T

T∑
t=1

f ′2(w12x1 + w22x2)x2

f2(w12x1 + w22x2)
± w11

|w11w22 − w12w21|
.

Composing these four partial derivatives to one equation results in Equation (5.31).

After convergence of the algorithm (5.33) and selecting an appropriate function for gi in

advance, the independent components can be determined by Equation (5.4). This algorithm

converges very slow due to the inversion of the matrix W which is needed in every step of

the iteration [Bell and Sejnowski, 1995].

5.3.3 ICA by Minimization of Information

As we know already, the information is a natural measure of the dependence between

random variables. This measure takes into account the whole dependence structure of the
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variables. Therefore, the information is a criterion for finding an ICA representation.

The information is closely related to the likelihood function. Using Equations (2.35) and

(A.11), the information for an invertible linear transformation ŝ = Wx is

I(f(ŝ1, . . . , ŝN)) =
N∑

i=1

H(f(ŝi))−H(f (̂s))− log | detW|. (5.35)

To see the connection between these two functions, the log-likelihood (5.25) is considered.

If the densities fi were equal to the density functions of (wT
i x), the first term would be

equal to −
∑N

i=1 H(f(wT
i x)). Thus the likelihood would be equal, up to an additive con-

stant, to the negative of information as given in (5.35). Consequently the algorithms for

minimizing information are the same as for the maximum likelihood estimation. Moreover,

the minimization of information is equivalent to maximization of differential entropy, since

information can be expressed in terms of differential entropy, see Equation (2.35) .

The iteration steps will not be further described in this section, since this algorithm is

related to Infomax algorithm, see next section.

5.3.4 The Infomax Principle

An important class of algorithms consists of those based on maximization of network en-

tropy, the Infomax (information maximization) algorithm as proposed by Bell and Se-

jnowski, 1995. They were first explaining the BSS problem from an information-theoretic

viewpoint and applying them to separation and deconvolution of sources. This algorithm

takes into account that the source signals should be independent of each other. If ran-

dom variables are independent of each other then their information is minimized, i.e. the

information will equal to zero, see Section 2.3.1. The Infomax principle is related to the

maximum likelihood estimation in Section 5.3.3 since the information and differential en-

tropy are related to each other in the way, that a minimization of information corresponds

to a maximization of differential entropy, see also Section 2.3.1.

Assuming that x is the input, and the output of the neural network is

ŝi = gi(w
T
i x), (5.36)

where the gi are some nonlinear scalar functions then the output entropies have to be

maximized

H(g(̂s)) = H(g1(w
T
1 x, . . . , gN(wT

Nx)). (5.37)
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The Infomax algorithm performs minimization of the information between the densities of

the inputs x and the outputs ŝ which is equivalent to maximization of the output entropies.

The information of two multivariate vectors is given in Appendix A.1. Using Equation

(A.12) of transforming an entropy results in

H(g1(w
T
1 x), . . . , gN(wT

Nx)) = H(x) + E{log

∣∣∣∣ ∂G

∂W
(x)

∣∣∣∣}, (5.38)

where G(x) = (g1(w
T
1 x), . . . , gN(wT

Nx)) denotes the function defined by the neural network.

The derivative is then given by

E{log

∣∣∣∣ ∂G

∂W
(x)

∣∣∣∣} =
N∑

i=1

E{log g′i(w
T
i x) + log | detW|}. (5.39)

This output entropy is of the same form as the expectation of the likelihood in Equa-

tion (5.25). Under some conditions, the Infomax algorithm is equivalent to the maximum

likelihood approach, see MacKay, 1996, Pham et al., 1992 and Lee et al., 1999b. This

equivalence requires that the nonlinearities gi used in the neuronal network (see Equation

(5.36)) are chosen as the cumulative distribution functions corresponding to the densities

fi, i.e. g′i(.) = fi(.). The density functions fi of the independent components are replaced

by the functions g′i, thus the output entropy is actually equal to the likelihood, meaning

that the Infomax principle is equivalent to maximum likelihood estimation.

The connection between the likelihood function and information can further be explained

by considering the expectation of the log-likelihood:

1

T
E{log L} =

N∑
i=1

E{log fi(w
T
i x)}+ log | detW|. (5.40)

Actually, if the fi were equal to the actual distributions of wT
i x, the first term would

be equal to −
N∑

i=1

H(f(wT
i x)). Consequently, the log likelihood would be equal, up to an

additive constant, to the negative of the information. On the other hand since H(f(s)) =

log | detW| −H(f(x)) [Papoulis, 1991], the likelihood is related to the information by

I(f(s)) = H(f(x))− log L, (5.41)

thus the information is a constant, H(f(x)), minus the log-likelihood. Regarding that

large values in the log-likelihood correspond to small values in the information, because the

information I(f(x)) is equal to the negative of the entropy H(f (̂s)).
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The Infomax algorithm is based on gradient ascent of the objective function. In Bell and

Sejnowski, 1995 it was derived the following way:

∆W ∝ [W]−1 − 2 tanh(Wx)xT (5.42)

where the tanh function is applied separately on every component of the vector Wx. The

tanh-function is used here because it is the derivative of the log-density of the ’logistic’

distribution Bell and Sejnowski, 1995. This function works for estimation of most

super-gaussian (kurtosis ≥ 0) independent components.

The convergence of the Infomax ICA is very slow. Moreover, the original Infomax ICA

with sigmoidal nonlinearities was only suitable for super-gaussian sources. Lee and col-

leagues realized that a key to generalizing the Infomax algorithm to arbitrary nongaussian

sources was to estimate moments of the source signals and to switch the algorithm appro-

priately. He developed an efficient extended version of the Infomax ICA [Lee et al., 1999a]

that is suitable for general nongaussian signal. Moreover, this algorithm shows superior

convergence speed.

5.3.5 The FastICA Algorithm

The Fixed-Point algorithm or FastICA algorithm [Hyvärinen, 1999c] pursues the same

goal as the Infomax algorithm [Bell and Sejnowski, 1995] using the concept of normal-

ized differential entropy or negentropy, see Section 2.3.1. By expressing the information in

terms of negentropy it is aimed to find an invertible transformation W, which minimizes

the information among the signals to obtain independent signals. This is equivalent to

finding directions along maximal negentropy of the projected data.

The FastICA algorithm iteration finds a direction, i.e. a unit vector w such that the projec-

tion wTx maximizes nongaussianity. Nongaussianity is measured by the approximation of

negentropy, see Appendix A.4. Note that, the variance of wTx is constrained to unity, for

preprocessed data this is equivalent to constraining the norm of w to unity [Hyvärinen,

1999b].

The FastICA is based on a fixed-point iteration scheme for finding a maximum of the non-

gaussianity of wTx. And it can be derived as an Newton iteration. In Newton iteration

the new value wl is computed from the old value wl−1 by iteration according to

wl = wl−1 −
F (wl−1)

F ′(wl−1)
. (5.43)
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Denote by g the derivative of some function, for example the derivatives

g1(u) = tanh(u),

g2(u) = u exp(−u2/2).

With Newton iteration it is aimed to find a local maximum, that E{xg(wTx)} = 0. After

choosing an initial (e.g. random) weight vector w, the l-th iteration (l = 1, 2, . . .) of the

algorithm is defined as

wl = wl−1 =
E{xg(wT

l−1x)}
E{g′(wT

l−1x)}
E{g′(wT

l−1x)}wl = E{g′(wT
l−1x)}wl−1 − E{xg(wT

l−1x)}
w∗

l = E{xg(wT
l−1x)} − E{g′(wT

l−1x)}wl−1

wl = w∗
l /||w∗

l ||. (5.44)

The algorithm converged when the product of the old and new values of w is (almost) equal

to 1. If the iteration l did not converges the l + 1 iteration is performed.

This algorithm estimates just one of the independent components. In order to estimate

more than one solution, and up to a maximum of M solutions, the algorithm must be run

repeatedly. To prevent different vectors from converging to the same maxima, the outputs

wT
1 x, . . . ,wT

Mx are removed from the matrix after every iteration. A way of achieving

decorrelation is a deflation scheme based on a Gram-Schmidt-like decorrelation. This

means to estimate the components one by one. Having estimated l − 1 (l − 1 < M)

independent components, or l − 1 vectors w1, . . . ,wl−1 we run the algorithm for wl, and

after every iteration step subtract from wl the projections (wT
l wl−1)wl−1, of the previously

estimated l − 1 vectors, and then renormalize wl:

w∗
l = wl −

l−1∑
j=1

(wT
l wl−1)wl−1 (5.45)

wl = w∗
l /
√

w∗T
l w∗

l . (5.46)

The FastICA algorithms has many advantages comparing to other methods for ICA. One

important property is that the convergence is cubic (or at least quadratic), see Hyvärinen,

1999a. This is in contrast to ICA algorithm based on gradient descent methods, where the

convergence is only linear.
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5.3.6 Molgedey and Schuster Approach

The Molgedey and Schuster approach [Molgedey and Schuster, 1994] is based

on the decorrelation of the variables utilizing that the independent sources have different

autocorrelation functions. This approach does not directly fit to the other algorithms,

but this algorithm should shortly be mentioned because of completeness. The problem of

separating N linear superimposed uncorrelated sources or signals and determining their

mixing coefficients is reduced to an eigenvalue problem which requires the simultaneous

diagonalization of two symmetric matrices whose elements are measurable time delayed

correlation functions.

Since the authors showed that the mixing matrix A is not necessarily symmetric, it is

not sufficient to measure the symmetric correlation matrix C with cij = E{Xi(t) ·Xj(t)},
i, j = 1, . . . , N . It is suggested that one should measure the time delayed correlation matrix

C̄ with c̄ij = E{Xi(t) ·Xj(t+ τ)}, for τ = 1, . . . , T −1 additionally. This leads to N(N +1)

equations for a predefined τ :

cij =
N∑

k=1

aikajkλk, c̄ij =
N∑

k=1

aikajkλ̄k (5.47)

for the N(N + 1) unknowns ai6=j, λj, and λ̄j. Equation (5.47) shows that by construction

the matrix A this diagonalizes C and C̄ simultaneously, i.e.

Λ = A−1C(AT )−1 and Λ̄ = A−1C̄(AT )−1. (5.48)

But the elements of Λij = λiδij and Λ̄ij = λ̄iδij are not simple the eigenvalues of the matrices

C and C̄ because generally A is not an orthogonal matrix. Instead Equation (5.47) leads,

after some steps, to the eigenvalue problem

C = AΛAT and C̄ = AΛ̄A
T
,

CC̄
−1

= AΛAT (AT )−1Λ̄−1A−1

(CC̄
−1

)A = A(ΛΛ̄−1). (5.49)

Since CC̄
−1

is usually not symmetric and the diagonal elements of A are normalized to

unity, Equation (5.49) can be solved with standard techniques of numerical linear algebra,

for further details see Molgedey and Schuster, 1994.

Using this method, the time-dependency information alone is sufficient to estimate inde-

pendent components.
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5.3.7 Nonparametric ICA

The algorithms for ICA described above are based on some weak assumptions on the source

statistics, especially about the density functions of the signals which are completely un-

known. But these algorithms may fail when the statistical model is inaccurate. Therefore,

a nonparametric ICA algorithm is truly blind to the underlying distribution of the mixed

signals [Boscolo et al., 2004, Samarov and Tsybakov, 2004]. As with other ICA

algorithm, this algorithm performs a preprocessing and PCA in advance to restrict the

computation to the case where the number of observations equals the number of source

signals (M = N).

Using a nonparametric kernel density estimation the unknown probability density function

of source signals s(t) and the unmixing matrix W are estimated.

The aim of ICA algorithm is the estimation of W and thus reconstructing the source signals

s(t) as ŝ(t), see (5.4). The basic principle therefore is the minimization of the information

I between the reconstructed signals, for N = M :

Wopt = min
W

I(ŝ1, . . . , ŝN) (5.50)

To compute the information, the probability density functions (pdf) of the sources must be

known, but the information is difficult to approximate and optimize on the basis of a finite

sample. Equivalent to minimizing the information is the maximum likelihood principle

when the source distributions are known, see Sections 5.3.2 and 5.3.3.

In nonparametric kernel density estimation the probability density function is directly es-

timated from the data using a kernel density estimation technique, this means direct eval-

uation of the function and its derivatives of the elements wji, j, i = 1, . . . , N . If a sample

data of size T is given, the marginal distributions of an arbitrary reconstructed signal are

approximated with gaussian kernels as

f(ŝj) =
1

T h

T∑
t=1

φ

(
ŝj − Ŝjt

h

)
, (5.51)

where h is the kernel bandwidth controlling the smoothness of the functional (h = 1.06 T−1/5

is supposed Silverman, 1986), φ is the density of standard gaussian distribution: φ(u) =

1√
2π

e−u2/2, and Ŝjt are the Kernel centroids Ŝjt = wjx(t) =
N∑

j=1

wjiXit i = 1, . . . , N ,

t = 1, . . . , T , where wj is the j-th row of the matrix W and x(t) is t-th column of X.
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The gradient ∇ (the vector of first derivatives of the elements wj) is given by:

∇f(ŝj) =
1

T h2

T∑
t=1

x(t)(ŝj −wjx(t))φ

(
ŝj −wjx(t)

h

)
. (5.52)

Using the maximum likelihood approach and a sample data x(k), k = 1, . . . , T , the expec-

tation in Equation (5.25) can be approximated by

1

T
log L(W) =

1

T

N∑
j=1

T∑
k=1

log f(wjx(k)) + log | detW| (5.53)

≈ 1

T
log L0(W) + log | detW|, (5.54)

where L0(W) is a likelihood function obtained by replacing the marginal probability density

functions f with their kernel density estimates

log L0(W) =
N∑

j=1

T∑
k=1

log

[
1

T h

T∑
t=1

φ

(
ŝj − Ŝjt

h

)]
(5.55)

≈
N∑

j=1

T∑
k=1

log

[
1

T h

T∑
t=1

φ

(
wj(x(k)− x(t))

h

)]
, (5.56)

where ŝj = wjx(k), k = 1, . . . , T and Ŝjt = wjx(t). The optimization problem with the

likelihood function L(W) can be posed as

log L(W) = min
W

N∑
j=1

T∑
k=1

log

[
1

T h

T∑
t=1

φ

(
wj(x(k)− x(t))

h

)]
+ log | detW| (5.57)

with ||wj|| = 1, j = 1, . . . , N. (5.58)

The matrix W can be initialized with random elements wji for i, j = 1, . . . , N . The

optimization algorithm can be performed using a Newton algorithm with an objective

function L(W) and the objective function’s derivative ∇L(W) based on a fast fourier

transformation. Further details can be taken from Boscolo et al., 2004.

Having estimated the elements of the matrix W, the estimates ŝ(t) can be computed by

5.4.

5.3.8 Further ICA Algorithms

Besides these classical algorithms there exists a variety of modified algorithms. The prob-

lem of the classical algorithms is that the densities fi(.) of the source signals are unknown.
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Therefore, the density functions are either nonparametrically estimated or assumed to have

a certain density function gi(.). Amari et al., 1996, improved the Infomax ICA algorithm

by using the natural gradient, which was also discovered by Cardoso, 1997. The original

Infomax ICA algorithm with sigmodial nonlinearities was only suitable for super-gaussian

sources. As mentioned already, Lee et al., 1999a, propose an efficient extended Infomax

algorithm that is able to blindly separate mixed signals with super- and subgaussian source

distributions (see description of kurtosis in Section 2.3.2). In addition this group developed

an algorithm for more sources than mixtures using overcomplete representations [Lee et al.,

1999b]. Cichocki, 2003, developed a blind source separation (BSS) algorithm with ma-

trix constraints, i.e. with prior information about the mixing matrices. They hypothesize

that the mixing or separating matrices have some special structure or some constraints are

imposed for the matrices such as symmetries, orthogonality, nonnegativity, sparseness and

specified invariant norm of the separating matrix. Furthermore, Calhoun et al., 2005,

propose a semi-blind ICA of fMRI data by incorporating the experimental paradigm infor-

mation into the spatial ICA.

The algorithms described above showed that some algorithms require selecting functions

gi(.) according to the hypothetical (but unknown) probability density function of the sources

to be estimated. Some methods are based on fourth order cross-cumulates in order to mea-

sure independency which leads to approximations of the information minimization. Other

methods use parametric density estimation that alternates with a cost function optimization

step in an iterative approximation framework. And some algorithms are based on a non-

parametric density estimation of the signals. The performances of the different algorithms

are tested in simulation studies in Chapter 6.

5.4 Performance of ICA Algorithms

The finite sample size induces statistical errors in the estimation of parameters. Moreover,

as with any statistical method, it is necessary to analyze the performance of the estimated

components. To evaluate the performance of the estimates of the different algorithms, an

error index (EI) [Amari et al., 1996] can be used. The error index is computed using the

matrix D = [dj1,j2 ]j1,j2=1,...,M (M ≤ N), where D = WA. It should be mentioned again,

that A is the unknown mixing matrix and only known in case of simulations and W is the
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estimated unmixing matrix. The error index EI is defined by

EI =
M∑

j1=1

 M∑
j2=1

|dj1j2|
max

k
|dj1k|

− 1

+
M∑

j2=1

 M∑
j1=1

|dj1j2|
max

k
|dkj2|

− 1

 . (5.59)

In the ideal case D ≈ I, this also includes permutations of the matrix D, see (5.7). And

consequently EI ≈ 0. In words, the smaller the error index, the better the estimation of

independent components.

If the matrix A is not known, as in many applications like fMRI studies, other methods for

testing the performance of the estimates are introduced. One of these methods might be

bootstrapping.

Meinecke et al., 2002 propose classical analysis of statistical reliability as the boot-

strapping to assess quality of the estimates. Consider a random variable X and regard

x as a realization of it, x = (x(1), . . . , x(T )). It is aimed to estimate a set of parame-

ters θ = (θ1, . . . , θM) from the observed data. The estimated parameters are denoted by

θ̂ = θ̂(x) = (θ̂1(x), . . . , θ̂M(x)) (i.e. the estimates of the unmixing matrix W), where the

estimator is a function of the given data set. An important quantity to assess stability of

an estimate is the root-mean-squared error (RMSE) of the estimates θj, j = 1, . . . ,M is

defined by:

RMSEj =

√
E{(θj − θ̂j(X))2}. (5.60)

Bootstrapping is a resampling method where the data sample x is randomly changed by

simulating the sampling process. The algorithm (i.e. ICA algorithm) is run B times

with the bootstrapped samples, where M < N signals are chosen randomly [Efron and

Tibshirani, 1993]. A scalar parameter θj is estimated with an estimator θ̂j(x). It is aimed

to evaluate the RMSE of the estimator. Then, B new surrogate data sets, i.e. bootstrap

samples, x∗b = (x∗b1 , . . . , x∗bT ) are generated with b = 1, . . . , B, by taking T iid random

variables x∗b1 , . . . , x∗bT . Note that, some data points might occur several times, while others

might not occur at all in a particular bootstrap sample. On each surrogate x∗b, the estimator

θ̂∗bj = θ̂i(x
∗b) is calculated, having B estimators θ̂∗bj , . . . , θ̂∗Bj . The bootstrap estimator of

the RMSE is calculated as

ˆRMSEj(B) =

√√√√ 1

B

B∑
b=1

(θ̂j − θ̂∗bj )2, (5.61)

where θ̂j is the estimate of a scalar parameter θj of a sample vector x = (x(1), . . . , x(T )) of

B runs, B is the number of resampled data sets. The reliability can then be analyzed by
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looking at the spread of the obtained estimates. It was shown that the bootstrap estimators

are consistent Efron and Tibshirani, 1993, i.e. σ̂j(B) →P σj (converges in probability) as

B →∞.

In another way, Himberg et al., 2004, propose a method for validating the independent

components of neuroimaging time series via clustering and visualization. Many ICA algo-

rithms have stochastic elements, e.g. the gradient descent Infomax algorithm of the fixed-

point iterative FastICA algorithm (see 5.3.5). Consequently, the algorithms give somewhat

different results depending on the point where the algorithm started the calculation. Their

method is based on estimating a large number of candidate independent components by

running an ICA algorithm many times. Reliable components are then corresponding to

clusters that are small and well separated from the rest of the estimates, contrary to unre-

liable components which correspond to points which do not belong to any cluster.

For the simulation studies in Chapter 6, we used the error index to analyze the performance

of the estimated components.

5.5 ICA Applied to fMRI Data

ICA was originally developed to solve BSS problems like the cocktail-party problem. In

cocktail-party problem it is aimed to isolate voices of mixtures of voices and other noises.

The problem of isolating the electrical activity of single neurons in population recordings

shares a number of similarities with the challenge of isolating voices at a cocktail party,

which is therefore called the ’neural cocktail-party problem’ [Brown et al., 2001]. ICA

has been widely applied to further neuroscience data like EEG, MEG, or fMRI. In fMRI

ICA shows good applicability to cognitive paradigms for which detailed a priori models of

brain activity are not available. The relatively low image signal-to-noise ratio of the BOLD

effect, head movements, and undesired physiological sources of variability of the subjects

make detection of the small activation-related signal changes difficult. Therefore, ICA is a

powerful method for recovering underlying signals, or independent components from linear

mixtures in fMRI recordings. Overviews of ICA applied to fMRI data are McKeown et al.,

2003, Calhoun et al., 2003. An introduction to ICA is given in Hyvärinen and Oja,

2000 or in Stone, 1999b discussing ICA for EEG, fMRI and optical imaging.

Nevertheless, with this work it is aimed to apply ICA to fMRI data as well, but it was of

special interest if it is possible to detect learning related dynamic changes in fMRI time

series especially over repeated sessions.
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The first application of ICA to fMRI data was done by McKeown and Sejnowski, 1998.

They used the Infomax principle to investigate task-related human brain activity in fMRI

data. By determining the brain regions that contained significant amounts of specific tem-

porally independent components, they were able to specify the spatial distribution of task-

related, transiently task-related, and motion-related brain activations.

ICA can be applied to fMRI data in two different ways, i.e. as spatial ICA (sICA) or

temporal ICA (tICA). This means that it is possible to either spatially localize [McK-

eown et al., 1998b] or temporally characterize [Biswal and Ulmer, 1999] the sources

of BOLD activation. The algorithms introduced in Section 5.3 are referring to sICA. In

sICA, statistical independence is assumed for the distribution in space of the extracted

sources of signal change. This means the signal sources are independent in their spatial

locations rather than in their time profile, which can exhibit high mutual correlations. In

other words, sICA finds systematically nonoverlapping, temporally coherent brain regions

without constraining the temporal design [Calhoun et al., 2003]. In tICA the sources

are assumed to be independent as far as time is concerned. In general sICA and tICA

are based on the same algorithms. In sICA it is assumed that the columns of the matrix

S= [sj,t]j=1,...,M, t=1,...,T (see Equation (5.2)) are independent processes, whereas in tICA the

rows of S= [sj,t]j=1,...,M, t=1,...,T are assumed to be independent. Whether sICA or tICA

should be applied to the data is discussed in Calhoun et al., 2001, Stone, 1999a, Stone

et al., 2002. So far the sICA dominated in the application of ICA to fMRI data sets. TICA

was rather applied to EEG or MEG data, which have a high temporal resolution (in the

milliseconds domain) [Makeig et al., 1997]. The electrical signals originating from the

brain are quire weak at the scalp, in the microvolt range, and there are larger artificial

components arising from eye movements and muscles. Makeig et al., 1997 applied the

Infomax algorithm to EEG data showing that the algorithm can extract EEG activations

and isolate artifacts. Jung et al., 2000 show that the extended Infomax algorithm is able

to linearly decompose EEG artifacts such as line noise, eye blinks, and cardiac noise into

independent components with sub- and supergaussian distributions. In Seifritz et al.,

2002, they used an initial sICA to reduce the spatial dimensionality of the data by locating

a region of interest in which they performed a tICA to study the structure of the nontrivial

temporal response in the human auditory cortex in more detail.

For the ICA decomposition of out data in Chapter 7 we used a sICA to get activation clus-

ters in the brain with associated time courses. The time courses were analyzed afterwards

regarding dynamic changes in the signals.
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Considering a typical 3D fMRI dataset where the number of time points T is much smaller

than the number of voxels N , the spatial and temporal dimensions of the statistical sam-

ples suggest the use of the sICA for 3D-pattern generation, whereas tICA can reveal the

presence of multiple dynamics in an anatomically or functionally selected region of interest

(ROI) [Calhoun et al., 2001, Seifritz et al., 2002]. From the perspective of statistical

power, sICA has the best potential for a robust representation of whole-brain fMRI data

sets because of the sample size achievable. The statistical power of sICA can be as high

as to enable useful sICA decomposition even using few points of a single slice fMRI time

series [Esposito et al., 2003].

In most fMRI studies the cerebral cortex is the main target of analysis. Since only about

20 % of the voxels of a typical fMRI data set lie within the cortex, Formi sano et al., 2004

propose cortex-based ICA of fMRI time series. Through segmentation and reconstruction

of the cortical surface of the brain a mask of the brain is created. Therefore, the spatial

ICA decomposition is restricted to this subset of voxels in the mask, which results in noise

reduction as well as a large dimension reduction in advance without loss of information.

This cortex-based approach improves the separation of the independent components repre-

senting cortical activation because ”uninformative” signals from, for example, the ventricles

or near the eyes are excluded. Their inclusion in the data matrix leads to an increase of

the complexity of the mixtures in terms of number of sources but does not improve the

estimation of the cortical sources. Moreover, this reduction does not affect the maximal

number of spatial components, since the maximal number of components is not affected by

the number of voxels, but the number of components equals the number of time points, i.e

functional images or scans.

After estimation of the independent components they should be projected back onto the

original data set to illustrate the component maps. The projection of the j-th indepen-

dent component onto the original data set is given by multiplying the j-th row of the

estimated independent component matrix Ŝ with the j-th column of the inverse unmixing

matrix W−1. Consequently, brain activities of interest accounted by single or by multiple

components can be obtained by projecting selected independent components back onto the

activation map X0 = W−1Ŝ0, where Ŝ0 is the matrix of Ŝ of activations with rows of irrel-

evant activation set to zero [Jung et al., 2001].

Thereby, each independent component map is described by a distribution of values for each

voxel. These values represent the relative amount that a given voxel is modulated by the

activation of that component [McKeown et al., 1998b]. There is one such a value for all
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time points, because that value represent the average signal change between stimulation

and resting condition for instance.

To find irrelevant component maps, the voxels (i.e. map values) are often scaled to z-scores.

The z-scores are obtained by merely scaling the components to have zero mean and unit

variance. So the z-scores are the number of standard deviations from the map mean, this is

computed from the row of the estimated independent component matrix Ŝ. This is proba-

bly not strictly valid, as (by definition for the ICA) the components will not have a gaussian

distribution. But once again, the z-score computed for each individual component merely

represents how far the voxel intensities differ from the mean voxel intensity. To minimize

the probability of false positives, only voxels with an absolute z-score ≥ 2 were considered

as active voxels for that component [McKeown et al., 1998b]. In this case, the z-scores

are used for descriptive purposes and have no definite statistical interpretation. Negative

z-scores indicate voxels whose fMRI signals are modulated ’opposite’ to the time course of

activation for that component.

Estimating independent components reveals time courses and activation maps. One activa-

tion map may consist of several clusters which are temporally connected. For the evaluation

of the connectivity, the mean inter-voxel correlation coefficient (MCC) can be calculated

on a voxel by voxel basis,

MCC =
2

Nmap(Nmap − 1)

Nmap−1∑
k=1

Nmap∑
l=k+1

cckl, (5.62)

where cckl is the correlation coefficient between the k-th and the l-th time course of the

detected component map voxels, Nmap (Nmap ≤ N) refers to the number of detected voxels

in the component map [Kiviniemi et al., 2003].

In many cases especially in fMRI data, the number of independent components might be

very large, in spatial ICA this can be up to the number of time samples. The problem is

that the estimated source signals are determined without any ordering. There are different

proposals to select a ”meaningful” subset from a large set of components. McKeown

et al., 1998b, propose to order the independent components according to the contribution

each component makes to the magnitude of the original data. The contribution δj (j =

1, . . . ,M), each component makes to the magnitude of the original data can be estimated

by the RMSE of the data set reconstructed solely from this component,

δj =
1

TM

(
T∑

t=1

M∑
j=1

dj

) 1
2

, (5.63)
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where dj is the j-th column of an N by M matrix D computed from the outer product

of the two vectors: The j-th estimated component map and the j-th column of W−1,

i.e. djt = w−1
ji ŝjt. The outer product of two vectors is a vector again. Nevertheless, this

contribution might be sometimes quite uninformative, another way might be to select the

components on the basis of their time courses correlation with the stimulation protocol,

if known [McKeown, 2000]. But, in this case components which are not necessarily cor-

related to the stimulation protocol are ignored. This may result that possibly interesting

components, e.g. components reflecting learning related-process, not correlating to the

stimulation protocol, are ignored.

In a work of Formisano et al., 2002 three measures are proposed to select the meaningful

components. These are the kurtosis of the components’ distribution of voxel values, the

degree of spatial clustering of the voxels and the one-lag serial autocorrelation of its time

course. Another way of ordering the components is proposed as topographical [Hyvärinen

et al., 2001a] and frequency-based ordering [Moritz et al., 2003] of the components.

In Chapter 6 we used the proposed ICA algorithms from Section 5.3 for simulation stud-

ies. The quality of the ICA estimated was validated by error indices (Equation 5.59). In

Chapter 7 we present an fMRI study. For decomposing different signals of fMRI data sets

a cortex-based FastICA algorithm implemented in BrainVoyager was used. This FastICA

algorithm dominated in the literature and additionally dominated in our simulation studies.

Meaningful components were selected by crosscorrelating the time courses of independent

components to the stimulation protocol and selecting meaningful regions in the brain.
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This chapter describes the results of performed simulation studies. For this purpose the

signal of the hypothetical hemodynamic response function (HRF) (see Figure 3.1) was

modelled. Additionally, other signals that might contribute to an fMRI measurement are

modelled like random noise, linear or exponential trend functions and sinus functions. These

source signals are mixed linearly. The aim of these simulation studies was to test whether

the source signals can be estimated on the data basis of the mixed signals using different

ICA algorithms which were introduced in Section 5.3. The estimates of the different algo-

rithms are presented. Moreover, time series analyses for the source signals as well as the

mixed signals are performed to describe the signals according to their time series character-

istics, i.e. stationarity and gaussianity characteristics, their autocorrelation and frequency

domain.

In many fMRI studies, the task performance of the subjects is of special interest. It is

assumed that the task performance is reflected in the neuronal response, i.e. the signal

of HRF changes. Therefore, the HRF was varied in different parameters like the signal

amplitude, an amplitude increase or decrease within or between stimulation blocks as well

as temporal shifts between two HRFs. These varied HRF signals were once again mixed

linearly with other contributing signals. The decomposition into the source signals was per-

formed to draw conclusions at which parameters the mixed signals can still be separated

into the source signals.

Another important point is the fact, that ICA is a dimension reduction method but the

determination of the number of independent components is mostly subjective. Therefore,

simulation studies are performed to determine the number of independent components

objectively. The estimates of ICA were also investigated under the aspect of over- or un-

derestimating the number of independent components.

Finally the results of ICA decomposition are compared with the classical method for ana-

lyzing fMRI data, the general linear model (GLM) (see Section 3.3).
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Figure 6.1: Hemodynamic response model

6.1 Modelling the Signals

6.1.1 Modelling the Hemodynamic Response Function

Using a block-design experiment, the time course of the HRF was modelled according

to Gössl et al., 2001. The signal increase and decrease are described by two independent

functions to achieve a greater flexibility. Truncated gaussian functions are used to describe

the signals’ increase and decrease, parameterized by β1 and β2. They further introduced

a lag parameter β3 determining the start of the signal increase. The time during which

the signal remains elevated is modelled by a parameter β4 (fixed according to the stimulus

time course). A final parameter β5 is introduced to account for the poststimulus under-

shoot modelling the amplitude of the signal drop below the baseline. The slow decay to the

baseline of this undershoot is achieved by a third gaussian function with fixed parameters.

Parameters for the time delays can be taken from Jezzard, 2001. The response function

for one stimulation block can consequently be divided into five intervals which are displayed

in Figure 6.1:

I. Baseline for τ < τ1

II. Signal increase for τ ∈ [τ1, τ2[

III. Plateau for τ ∈ [τ2, τ3[

IV. Signal decrease for τ ∈ [τ3, τ4[

V. Maximum undershoot until return to baseline for τ ≥ τ4.
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One phase in the fMRI experiment is composed of a period of stimulation followed by a

period of rest. Thus, the function xi(τ), where τ ∈ T is the time parameter for one phase,

models the hemodynamic response for a voxel vi, i = 1, . . . , N , for one phase as follows

[Gössl et al., 2001]:

xi(τ) =



0 τ < τ1 (I)

exp

(
−
(

τ−τ2
β1

)2
)

τ ∈ [τ1, τ2[ (II)

1 τ ∈ [τ2, τ3[ (III)

(1 + β5) exp

(
−
(

τ−τ3
β2

)2
)
− β5 τ ∈ [τ3, τ4[ (IV )

−β5 exp
(
−
(

τ−τ4
4

)2)
τ ≥ τ4 (V ).

(6.1)

The time points are related to the model parameters β as follows:

τ1 = β3

τ2 = β1 + β3

τ3 = β1 + β3 + β4 (6.2)

τ4 = β1 + β2 + β3 + β4,

such that the β’s depend on τ as follows: β1 = τ2−τ1, β2 = τ4−τ3, β3 = τ1, and β4 = τ3−τ2,

and β5 can be freely chosen. Figure 6.1 displays the hemodynamic response model for a

stimulation block with 30 seconds and a resting block with 30 seconds too. Consequently

the following parameters were chosen: τ1 = 2, τ2 = 8, τ3 = 30, τ4 = 40 given in seconds,

and β5 = 0.25. Whereby the transition of phase (I) → (II) and phase (IV) → (V) are

adapted to give a smooth curve. These time parameters τ ’s and the parameters β’s were

so far chosen for all the following simulations. Further parameters, that were varied are

introduced in the following.

A block-design experiment consists of phases that are repeated several times. The total

length of an fMRI experiment can be defined by different parameters. First of all the

duration of the stimulation block given in seconds is defined by κs (κs > 0, κs ∈ N). A

second parameter κr (κr > 0, κr ∈ N) is the duration of the resting block where the signal

returns to baseline. In the following it is assumed that the duration of stimulation equals

the duration of resting (κs = κr). Another parameter is the number of phases given by κp

(κp > 0, κp ∈ N). And finally the number of fMRI images recorded in a phase is defined

by κb (κb > 0, κb ∈ N). Based on these given parameters, the total length of the fMRI
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experiment given in images κB (κB > 0, κB ∈ N) is determined by

κB = κp · κb. (6.3)

The length of one image κTR, i.e. the repetition time (TR), is computed by

κTR = (κs + κr)/κb, (6.4)

κTR = (2 · κs)/κb for κs = κr. (6.5)

The total length given in seconds κT (κT > 0, κT ∈ N) is determined by

κT = κB · κTR. (6.6)

Figure 6.2 shows the hypothetical HRF with the following parameters: β’s and τ ’s are

chosen as in Figure 6.1, κs = κr = 30s, κp = 15, and κb = 20. These parameters where

chosen because they correspond to the parameters used in the auditory fMRI experiment

(see Chapter 7).

Figure 6.2: Time course of the hypothetical hemodynamic response function.

6.1.2 Variations in the Hemodynamic Response Function

Since it is assumed that the task performance of the subjects affects the neuronal response,

i.e. the HRF, different models of changes in the HRF are introduced.

A first parameter is the signal amplitude κa (κa ∈ R). This parameter describes the per-

centage change between stimulation and resting condition. Note that it is assumed that

the resting condition itself contains some basic noise, even when the subject is asked to do

and think nothing, some noise is measurable. This noise is set to 100%, and the percentage

change between stimulation and resting condition ist computed in relation to this 100%.
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The value for κa can be found in Equation (6.1) for τ ∈ [τ2, τ3[. One the one side, the signal

amplitude depends on the magnetic field strength of the MR tomograph (usually 2-3 % at

1,5 Tesla, 4-6 % at 3 Tesla and 8-12 % at 7 Tesla). One the other side, the signal amplitude

also depends on the presented stimuli and the task. Moreover, the signal amplitude may

depend on the region in the human cortex so that two different regions A and B in the

cortex may show different signal changes, 2 % in region A and 4% in region B for instance.

It is also possible that an fMRI experiment consists of several stimulation conditions that

might show different signal amplitudes. Figure 6.3 shows an fMRI design with two alter-

nating stimulation conditions assuming that condition I has a signal amplitude of κa1 = 1

and condition II has a signal amplitude of κa2 = 0.3.

Figure 6.3: Time course of the hypothetical hemodynamic response function with two al-

ternating signal amplitudes.

It might also be possible that the signal amplitude varies between different stimulation

blocks, i.e. the signal amplitude increases or decreases by time. This signal increase or

decrease may be described by a parameter κm (κm ∈ R). Therefore, the time series x(τ)

of Equation (6.1) was multiplied with a increasing linear function defined by an beginning

and ending amplitude. Figure 6.4 shows the HRF with signal increase from 2% to 4% at

the end.

The signal amplitude increase or decrease might also be possible within on stimulation block

which is demonstrated in Figure 6.5 where the signal is not sustained over the stimulation

block anymore. The signal increase or decrease might be described by the parameter κn

(κn ∈ R). Therefore, Equation (6.1) is modified for τ = [τ2, τ4[ as x(τ) = 1− nτ , where n

is a parameter for signal increase or decrease. In Figure 6.5 κn is chosen to be 1/25.

Considering that the changes in the HRF my be dynamic with the time it might be imag-
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Figure 6.4: Time course of the hypothetical hemodynamic response function with signal

amplitude increase over the session.

Figure 6.5: Time course of the hypothetical hemodynamic response function with signal

amplitude decrease within one stimulation block.

inable that the parameter κn is not static over the duration of the experiment but rather

dynamic over the time as displayed in Figure 6.6. The parameter κn for the last stimulation

block was chosen to be 1/50.

Regarding the dynamic of changes in the HRF, a further case should be considered, namely

that the HRF signal is affected by an additional increasing noise as displayed in Figure 6.7.

Thereby the HRF signal was superimposed by an additional noise, increasing over time.

Such signal were observed in real fMRI measurements. This might be interpreted, that the

attention of the subjects changes from beginning to the end of the session.

A final parameter modifying the HRF might be introduced as κc (κc ∈ N) given in number

of images, which defines the temporal shift between two HRFs as illustrated in Figure 6.8,

where the second HRF (dashed line) is shifted by 3 images compared with the first HRF

(solid line). Such appearances might happen at functionally connected regions where the

information is transmitted time-delayed to another region, e.g. from auditory regions to
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Figure 6.6: Time course of the hypothetical hemodynamic response function with a dynamic

signal amplitude decrease.

Figure 6.7: Time course of the hypothetical hemodynamic response function with increasing

noise.

frontal regions.

6.1.3 Further Contributing Signals

It is supposed that the measured time series of each voxel consisted of a linear mixture

of different signals. Besides the HRF signals there are linear or exponential trends maybe

representing motion artifacts. Moreover, sinus functions are modelled mimicking the neu-

ronal processing of cardiac or respiratory pulsations, and background noise is modelled,

which can be modelled as a gaussian white noise process. These contributing signals are

computed in the following way. The noise is modelled as

snoise(t) = NV (0, σ), (6.7)

where NV (0, σ) is a realization of a gaussian distributed random variable with mean zero

and variance σ with independent realizations for different t. The parameter σ (σ ∈ R) is
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Figure 6.8: Time courses of two shifted hypothetical hemodynamic response functions.

the noise parameter that might be varied.

The linear trend is given by

slinear(t) = m · t. (6.8)

In this case m (m ∈ R) is the parameter of signal increase or decrease during the experiment.

An exponential trend might be given by

sexp(t) = 1− e−a·t, (6.9)

where a ∈ R.

A sinus function is modelled as

ssin(t) = sin(P · t), (6.10)

where P (P ∈ R) models the period of the sinus function.

In simulation studies variations of these function were used to be mixed with each other

500 times with different mixing matrices A. Thereby also for every simulation the noise

signal was modelled randomly. Consequently, for every simulation a new mixing matrix

A with the contribution of the several signals and a noise signal were modelled randomly.

Then after estimating the independent components, these estimates were validated by error

indices.

6.2 Performing the Programming

For comparing ICA algorithms by simulation studies program codes were written and a

graphical user interface (GUI) in MATLAB (The MathWorks Inc., Massachusetts, USA)
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was designed (see Figure 6.9). The user can first create the hypothetical HRF by defining

the length of the stimulation block κs and the length of the resting block κr, both given

in seconds. Additionally, the user can constitute the number of phases κp, where one

phase is composed of a stimulation block and a following resting block, and the number

of images κb recorded in a phase is also given. Consequently, the total length of the fMRI

signal κB follows from the number of phases multiplied by the number of images in a

phase. In a second step the contributing signals can be chosen. Some of these signals

might be white noise with a noise parameter σ mimicking the neuronal processing of the

scanner noise or artifacts, a linear trend with a signal increase or decrease parameter, or an

exponential trend. Additionally, different sinus signals can be chosen mimicking the cardiac

or respiratory rates of the subjects.

These source signals are then linearly mixed by a mixing matrix A chosen to have either

uniformly distributed or gaussian distributed elements, where the number of mixed signals,

i.e. the number of observed signals, is given.

Many ICA algorithms are offered as MATLAB-files for downloading from the corresponding

web pages. The following ICA algorithms from Section 5.3 were applied to the simulated

data

• Bell and Sejnowski Infomax,

http://hendrix.imm.dtu.dk/software/lyngby

• the Hyvärinen FastICA,

http://www.cis.hut.fi/projects/ica/fastica

• Maximum Likelihood ICA,

http://mole.imm.dtu.dk/toolbox/ica/index.html

• and a nonparametric ICA by Boscolo,

http://www.ee.ucla.edu/∼riccardo/ICA/npica.html

• the Molgedey and Schuster approach

http://hendrix.imm.dtu.dk/software/lyngby.

Additionally a PCA is created to be compared with the ICA algorithms. The Jutten-

Hérault algorithm, which has not much practical relevance in fMRI data, was omitted,

because it was only applied to speech signals and a MATLAB code was not available.

After estimating the independent components, these signals were resorted by maximum
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Figure 6.9: MATLAB graphical user interface for simulation studies

correlation according to the source signals. The mapping of estimated components to source

signals was unique. Of course the better the estimation was, the better was the correlation

to the source signals. Algorithms that could not estimate the independent components that

good showed difficulties in correlating the independent components to the source signals

and the correlation coefficient were much smaller. If it was necessary, the sign of the signals

was changed.
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6.3 Illustrative Results of ICA Decomposition

In this section an ICA decomposition of exemplary mixed signals is presented. Therefore

all time parameters of the HRF signal and parameters of the contributing signals like σ,

m, and P are fixed. Variations of these parameters of the signals will be performed later.

The source signals are the HRF (see figure 6.2), a realization of a white noise process with

σ = 0.5 for every simulation, a linear trend with m = −2, and a sinus function with P = 7.

The source signals are displayed in Figure 6.10 (left side). Theses signals are mixed linearly

by a mixing matrix A. The exemplary matrix A is given by

A =


0.7036 0.3654 0.6739 0.3603

0.4850 0.1400 0.9994 0.5485

0.1146 0.5668 0.9616 0.2618

0.6649 0.8230 0.0589 0.5973

 . (6.11)

Figure 6.10 (right side) shows the realization of these exemplary mixed observed signals.

The ICA decomposition was performed with the algorithms mentioned above. The Bell &

Figure 6.10: Time courses of four source signals and four mixed signals.

Sejnowski Infomax algorithm was not able to detect the source signals from the mixed sig-

nals (Figure 6.11). The estimated signals are still mixed with each other. The Hyvärinen

FastICA algorithm did a good performance in decomposing the mixed signal into the source

signals (Figure 6.12). The Maximum Likelihood estimation was also not able to perform

the decomposition (Figure 6.13). The nonparametric ICA decomposition estimated the
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source signals quite well (Figure 6.14). The Molgedey and Schuster algorithm did also

a good decomposition of the source signals (Figure 6.15). And finally PCA cannot estimate

the source signals (Figure 6.16).

As could be seen in Figures 6.11 - 6.15 some algorithms are able to detect the source sig-

nals, and others not. But how good are these estimates? In the illustrative result the error

indices EI (see Equation 5.59) are displayed in Table 6.1.

Table 6.1: Error indices for ICA estimates (see Figures 6.11 - 6.15)

ICA algorithm error index EI

Bell and Sejnowski 7.7921

FastICA 0.1943

Maximum Likelihood ICA 5.9076

Nonparametric ICA 0.0882

Molgedey and Schuster 0.5297

As seen from the indices, the algorithms, which, by the optical impression of Figures 6.11

- 6.15 were able to detect the source signals, had small error indices. Algorithms, which

could not detect the source signals had large error indices. This illustrative example shows

that the ICA decomposition worked well for some algorithms. This should be further in-

vestigated for several simulation runs.

Figure 6.17 shows the median, 0.25-quantile and 0.75-quantile of error indices for 1000 sim-

ulations. For each simulation run the source signals from the example above were taken,

whereas a new noise signals was modelled for every simulation run, and the elements of

the mixing matrix A were randomly created as [0, 1]-distributed random variables for every

simulation run as well . The FastICA algorithm showed very good results the same like the

nonparametric ICA. The Infomax ICA and maximum likelihood ICA showed worse results

compared with the other algorithms.

In the literature, Esposito et al., 2002, compared the results of Infomax and FastICA

algorithm. They performed ICA of fMRI time series and simulated signals. As result,

the FastICA algorithm outperformed the Infomax in terms of spatial and temporal accu-

racy. Spatial accuracy was assessed by receiver operating characteristics (ROC), where it

was possible to separate with infinite precision false and true activation areas in simulated
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Figure 6.11: Bell and Sejnowski In-

fomax algorithm

Figure 6.12: Hyvärinen FastICA al-

gorithm

Figure 6.13: Maximum Likelihood esti-

mation

Figure 6.14: Nonparametric ICA esti-

mation

Figure 6.15: Molgedey and Schus-

ter algorithm

Figure 6.16: Principal component anal-

ysis
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Figure 6.17: Error indices for 1000 simulations (ICA algorithms 1: Infomax ICA, 2: Fas-

tICA, 3: Maximum Likelihood ICA, 4: nonparametric ICA, 5: Molgedey and

Schuster ICA)

data. Thereby for ICA estimates, an ROC curve has been fitted after the determination of

the corresponding false positive fraction and the false negative fraction at varying thresh-

olds for the selected ICA z-map. Temporal accuracy was assessed by correlation analysis.

Conversely, the Infomax sICA was superior in terms of reducing the noise in the compo-

nents. Additionally, the Infomax generated more structured components in terms of degree

of clustering, i.e. more connecting voxels.

In the following the parameters of the signals are systematically varied to test the quality

of the ICA algorithm.

6.4 Simulation Studies with Variations in the HRF

In this section, simulation studies with varied HRFs (see Section 6.1.2) will be presented.

Therefore, different parameters like signal amplitude κa, trends between stimulation blocks

κm, or the noise parameter σ of the white noise process are varied. For each parameter

dimension the ICA algorithms run 500 times, by varying the mixing matrix A and the

noise signal for every simulation run. The error index EI (Equation 5.59) was computed

for every simulation.
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It should be considered that this are only examples with a small number of observed signals

and independent components, ranging from 2 to 8 signals, that would not represent a whole

fMRI dataset. Nevertheless, with these examples, the performance of the ICA algorithms

by varying different parameters of the source signals will be tested. Thereby, it is also

investigated what changes of the estimates if the independence of the source signals is

violated.

The presentation of results is restricted to the FastICA algorithm (see Section 5.3.5), since it

was seen that this algorithm outperforms the other algorithms, see Figure 6.17. Although,

the nonparametric ICA showed good results, the FastICA has the additional advantage

that it can estimate less independent signals than given mixtures, which is not possible

with nonparametric ICA, see Section 5.3.7. Moreover the FastICA algorithm is an algorithm

dominating in literature and practical use for different kinds of data, and especially for fMRI

data. This algorithm was also used for the analysis of fMRI data sets in Chapter 7. These

following simulation studies had also been performed with the other ICA algorithm (see

Section 5.3) as presented in Figure 6.17, but the FastICA algorithm once again outperformed

the other algorithms, so the presentation of results and figures is restricted to this algorithm,

even sometimes it is compared to other algorithm, like in Section 6.5 where the results are

compared to Molgedey and Schuster algorithm.

Varying the Signal Amplitude and the Noise

First of all consider the simplest case where two signals are given: an HRF signal an a noise

signal. The amplitude κa of the HRF signal and the noise parameter σ of the noise signal

were varied in the set: κa = [0.5, 1, 3, 5] and σ = [0.5, 1, 3, 5] (κs = 30, κp = 15, κb = 20).

The two signals were mixed linearly and decomposed into two signals and the error index

EI of the estimates was determined. Figure 6.18 displays the median, 0.25-quantile and

0.75-quantile of error indices of 500 simulations for the FastICA algorithm. In each sub-

plot the results for κa = [0.5, 1, 3, 5] are displayed and each subplot shows the results for

a defined σ. It is obviously from Figure 6.18 that for small signal amplitudes and large

noise parameters the estimation of independent components is declined. A smaller noise

parameter does not influence the estimation. Consequently, the goodness of estimation

strongly depends on the ratio of κa to σ. It should be mentioned at this point that in the

simulation studies all signals, in this particular case the HRF signal and noise signal, are

equivalent signals having the same chance to contribute to the mixture and consequently

to the error index.
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Figure 6.18: Error Indices of 500 simulations by varying the signal amplitude κa and the

noise σ, displaying median, 0.25-quantile and 0.75-quantile. Each subplot dis-

plays for a specified value of σ the results for κa = [0.5, 1, 3, 5] (results of

FastICA algorithm).

In a further simulation four source signals were mixed linearly. An HRF signal with

two different alternating signal amplitudes, mimicking different stimulation conditions (see

Figure 6.3) were created. The parameters κa1 = 1 was chosen and κa2 was varied as

κa2 = [0.3, 0.7, 2, 3, 5] (κs = 30, κp = 15, κb = 20). Furthermore, a noise signal was mod-

elled with varied noise parameter σ = [0.5, 1, 3, 5], a sinus function with period P = 7

and a trend function with m = −2. Figure 6.19 displays the median, 0.25-quantile and

0.75-quantile of error indices of 500 simulations for the Fast ICA algorithm. Each subplot

displays the results for κa1 = 1 and κa2 = [0.3, 0.7, 2, 3, 5] for a given noise parameter σ. It

can be seen that the results are not affected by the variation of signal amplitude κa2. The

performance is only affected by increasing noise.

Varying the Trend between Stimulation Blocks and the Noise

To investigate if a trend may affect the goodness of the estimates two source signals were

modelled and mixed with each other. An HRF signal with increase κm (κm = [0.5, 1, 3, 5])

(κs = 30, κp = 15, κb = 20) and a noise signal with σ = [1, 5]. Figure 6.20 displays the

median, 0.25-quantile and 0.75-quantile of error indices of 500 simulations for the Fast ICA

algorithm. Each subplot displays the results for κm = [0.5, 1, 3, 5]. As it can be seen from

Figure 6.20, a linear trend between phases does not essentially influence the estimation,

only the noise parameter σ influences the quality of estimation.
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Figure 6.19: Error Indices of 500 simulations by varying the signal amplitude κa2 and the

noise σ, displaying median, 0.25-quantile and 0.75-quantile. Each subplot dis-

plays for a specified value of σ the results for κa1 = 1 and κa2 = [0.3, 0.7, 2, 3, 5]

(results of FastICA algorithm).

Figure 6.20: Error Indices of 500 simulations by varying the trend between phases κm and

the noise σ, displaying median, 0.25-quantile and 0.75-quantile. Each subplot

displays for a specified value of σ the results for κm = [0.5, 1, 3, 5] (results of

FastICA algorithm).

Varying the Trend within Stimulation Blocks and the Noise

The trend within one stimulations block κn = [0.5, 1, 3, 5] and σ = [1, 5] was varied. (κs =

30, κp = 15, κb = 20, κa = 1). The results were the same, the estimation was not corrupted

by a trend or signal amplitude, it was only corrupted by the noise parameter. Therefore, a

figure is not displayed for this example.

A further simulation was performed with five source signals. Four source signals were taken
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from Figure 6.10 (left side), where the noise was varied as σ = [0.5, 1, 3, 5]. The fifth source

signal is shown in Figure 6.5 (trend within one stimulation block). This signals were mixed

by a 5×5 mixing matrix and five independent components were estimated. And exemplary

results is shown in Figure 6.21. The left side displays the mixed signals and the right side

displays the estimated independent signals. As it could be seen the algorithm lacks in

estimating the two hemodynamic response signals exactly. The median of 500 error indices

are the following: 10.0700 (for σ = 0.5), 8.6045 (for σ = 1), 6.0321 (for σ = 3), and 7.1631

(for σ = 5). These medians are much larger compared with other estimation with only one

HRF. This might be explained that the two HRF signals have the same frequency of their

stimulation and resting blocks, (see exemplary signals in Figure 6.21). Therefore, these

two signals are not independent from each other. The independence assumption of source

signals is violated resulting in worse estimation of source signals.

Figure 6.21: Time courses of mixed signals (left side) and estimated independent signals

(right side).

In a final simulation of this subsection, four source signal were mixed linearly. An HRF

signal with dynamic signal amplitude decrease as modelled in Figure 6.6 is the first signal.

The noise signal is the second one. It varied with a noise parameter σ = [0.5, 1, 3, 5].

Furthermore, a sinus function (P = 7) and a trend function (m = 2) contributed to the

mixture. The error indices for 500 simulations are displayed in Figure 6.22 (left side). On

the right side of Figure 6.22 an exemplary ICA decomposition is shown. The error index

of this example was EI = 1.3668. The estimation of the independent components was not

optimal as indicated by the larger error indices. It can be seen that the trend function is

still affected by the HRF signal.
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Figure 6.22: Error Indices of 500 simulations by varying dynamically the signal decrease

within blocks and the noise σ, displaying median, 0.25-quantile and 0.75-

quantile (results of FastICA algorithm)(left side) and exemplary decomposition

(right side)

Varying the Noise within the HRF Signal

In this subsection it should be investigated if an HRF Signal with increasing noise (see

Figure 6.7) and an additional noise with varying intensity σ can be detected of a mixture

of four signal. Additional source signals are the sinus function and the trend function. The

error indices for 500 simulations are shown in Figure 6.23 (left side). The right side of

Figure 6.23 shows an exemplary ICA decomposition. The additional increasing noise in

the HRF signal does not affect the goodness of the estimated that much comparing to the

previous results.

Varying the Shift Parameter

In the following five source signals are mixed: an HRF, a temporal shifted HRF (κc = [1 :

10]), random noise with σ = 1, a linear trend and a sinus function (κs = 30, κp = 15, κb =

20). Figure 6.24 displays the median, 0.25-quantile and 0.75-quantile of error indices of 500

simulations for the Fast ICA algorithm. The error index was the smallest at κc = 5 and

very high for κc = 1 or κc = 2. In these cases the shift of the two signals was to small and

two identical HRFs were estimated instead of two shifted HRFs. The same thing happened

for large κc, e.g. κc = 10 which would mean that the stimulation is shifted in the resting

condition. There is the additional problem of ICA that the method is not able to estimate

the signs and consequently for large κc identical HRFs are estimated. And explanation
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Figure 6.23: Error Indices of 500 simulations for HRF signal with increasing noise and by

varying additional the noise σ of the noise signal, displaying median, 0.25-

quantile and 0.75-quantile (results of FastICA algorithm)(left side) and exem-

plary decomposition (right side)

therefore is again that the assumption of independent source signals is violated. For a

small temporal shift, the two HRF signals are thought to be very similar and therefore

not independent from each other. For large temporal shifts, the second HRF signal is the

reciprocal of the first HRF signal. And therefore they are also not independent from each

other explaining the large error indices.

Varying the Number of Mixtures

In the following four source signals (see Figure 6.10 (left side)) are mixed linearly. The

number of mixtures was varied as N = [4, 10, 20, 50] and the noise was varied as σ =

[0.5, 1, 3, 5]. Always four independent components were estimated. Figure 6.25 displays the

median, 0.25-quantile and 0.75-quantile of error indices of 500 simulations for the Fast ICA

algorithm. Each subplot displays the results for N = [4, 10, 20, 50]. The error index does

not depend essentially on the number of mixtures N , it only depends on the σ.

Varying the Number of Stimulation Blocks

In the following four source signals (see Figure 6.10 (left side)) are mixed linearly by a 4 by

4 matrix A resulting in four observed signals. Thereby the number of stimulation phases

was varied as κp = [3, 5, 10, 15, 20, 50] to obtain different lengths of experiments, i.e. time

series, and the noise was varied as σ = [0.5, 1, 3, 5]. Always four independent components
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Figure 6.24: Error Indices of 500 simulations by varying the temporal shift κc, displaying

median, 0.25-quantile and 0.75-quantile (results of FastICA algorithm).

Figure 6.25: Error Indices of 500 simulations by varying the number of observations N

and noise σ, displaying median, 0.25-quantile and 0.75-quantile. Each subplot

displays for a specified value of σ the results for N = [4, 10, 20, 50] (results of

FastICA algorithm).

were estimated. Figure 6.26 displays the median, 0.25-quantile and 0.75-quantile of error

indices of 500 simulations for the Fast ICA algorithm. Each subplot displays the results
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for κp = [3, 5, 10, 15, 20, 50]. The error index depends on the number of phases κp, in

the way that the longer the time series is, the smaller is the error index. This indicates

that a sufficiently number of time points t is necessary for the estimation of independent

components. The index also depends on the σ as was found out in previous simulations.

Figure 6.26: Error Indices of 500 simulations by varying the number of phases κp and noise

σ, displaying median, 0.25-quantile and 0.75-quantile. Each subplot displays

the results for κp = [3, 5, 10, 15, 20, 50] (results of FastICA algorithm).

So far the results of simulation studies can be summarized that the FastICA algorithm

outperformed the other ICA algorithms, see Figure 6.17. This was also observed by other

simulation studies, but the results were not presented. This algorithm shows good results

with varied HRF (amplitude, signal increase or decrease, number of mixtures). But it

lacks at estimating two different HRFs from mixtures (temporal shift, and mixture of HRF

and HRF with signal decrease) which is explained that the assumption of independent

source signals is violated. Considering real fMRI data this would mean that it is difficult

to estimate two HRF functions maybe originating from different regions that are time

delayed by only some seconds (see Figure 6.24). For smaller delays the ICA algorithm

would estimate them as two identical signals and consequently the two signals would be

summarized in one independent component. Furthermore, it would be difficult to estimate

two or more HRF signals that look similar but one signal is affected by a trend within the

stimulation blocks, the other not, see Figure 6.21. Dynamic changes over the time in the

signal are a smaller problem (see Figures 6.22 and 6.23). These changes within a signal can
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be well estimated with ICA. This result motivated for the fMRI study in Chapter 7 assuming

that there are dynamic changes in the fMRI signals due to learning related processes within

and between repeated fMRI sessions of the subjects which should be detected with ICA.

6.5 Over- and Underestimation of the Number of

Independent Components

A problem in ICA application is that it is not clear how many source signals are hidden in a

mixture of signals. Underestimation of the dimensionality will discard valuable information

and result in suboptimal signal extraction. Overestimation, however, results in a large

number of spurious components due to underconstrained estimation and a factorization

that will overfit the data, harming later inference and dramatically increasing computational

costs [Beckmann and Smith, 2004]. Referring to fMRI data this possibly might mean

that setting the number of independent components too high may result in functionally

connected regions split into separate components. One way of determining the number

of components may be done by singular value decomposition (SVD) of the matrix XXT .

The dimensionality is then chosen by selecting those eigenvalues exceeding some predefined

threshold (e.g. Kaiser-Guttman criteria) or by scree plots. Another way of determining

the number is done by the Bayesian information criterion (BIC) as proposed in [Hu et al.,

2005]. They compute the BIC as

BIC = 2 ln(f(x|θ0)) + k ln(T ), (6.12)

where x denotes the observed data, θ are the model parameters, which might be the number

of unknown independent components. The parameters θ0 are the parameters that maxi-

mize the posterior probability density function f(x|θ0), k is the number of parameters and

T is the sample size. The model with k parameters, that minimizes the criterion is chosen,

k corresponds to the number of independent components, constrained by PCA dimension

reduction.

Some simulation studies concerning the under- and overestimation of the number of source

signals are performed. Therefore four source signals s(t) (see Figure 6.10 (left side)) are

multiplied by an 8 × 4 mixing matrix to obtain eight mixed signals x(t). In a first step

just two independent components are estimated from the mixture of the eight signals. The

FastICA algorithm estimated the HRF signal and the sinus signal as two components of

the mixture (see Figure 6.27, left side), whereas the Molgedey and Schuster algorithm,

85



6 Simulation Studies

Figure 6.27: Underestimating the number of independent components. Estimating

two independent components from a mixture of eight signals from four

source signals. (FastICA algorithm - left side, Molgedey and Schus-

ter algorithm - right side)

for instance, estimated two signals which are still mixed (see Figure 6.27, right side). The

result of Molgedey and Schuster algorithm was also observed by the other ICA algo-

rithms. These results showed clearly that the performance of ICA algorithms is degraded

with a decreasing number of estimated components, since the estimated signal is disrupted

by some noise (except FastICA algorithm were a selection of some source signals is made).

A very interesting finding for the FastICA algorithm occurred by underestimating the num-

ber of independent components. In the exemplary result in Figure 6.27 (left side), the HRF

signal and the sinus signal were estimated as independent components. It should now be

investigated, which signals are estimated by estimating only one, two or three independent

components from a mixture of four signals (four source signals). The results of simulation

studies are summarized in Table 6.2. The ICA decomposition for each predefined number

of independent components (1, 2, and 3) run 500 times and the number of estimated source

signals was counted. The noise signal is detected least of all source signals as it could be

seen in Table 6.2, possible because the noise signal was the at least structured signal. The

signal detected mostly was the sinus signal, then the HRF signal and trend signal, but

the differences are not large. Moreover, the simulation run for different noise parameters

σ = [0.5, 1, 3, 5]. As a result, an increasing σ does not influence the estimation of source

signals, possible because the noise signal is estimated least.

On the other hand an overestimation of the number of independent components is a smaller

problem. After the FastICA algorithm estimated the four hidden signals correctly the al-

gorithm was truncated (see Figure 6.28, left side). Instead of estimating the dependencies

between the components, the FastICA algorithm is based on computing the deviations be-

tween the single components and a gaussian distribution using the kurtosis. This approach

allows a component-wise estimation, so that in case of overestimation not all components
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Table 6.2: Underestimating the number of independent components (H = hypothetical HRF

signal, N = noise signal, S = sinus signal, T = trend signal) Each cell contains

the counts of that signal in 500 simulations

Estimating 1 independent component

σ H N S T

0.5 168 7 173 152

1 154 7 195 144

3 172 2 179 147

5 163 2 178 157

Estimating 2 independent components

σ H N S T

0.5 320 19 351 310

1 326 13 340 321

3 335 17 339 309

5 322 11 364 303

Estimating 3 independent components

σ H N S T

0.5 486 47 489 478

1 485 56 487 472

3 474 61 485 480

5 479 52 484 485

must be estimated. The Molgedey and Schuster algorithm estimated six independent

components from eight mixed signals. This algorithm estimated the three ’real’ signals

(HRF signal, trend signal, sinus signal) and probably decomposes the noise signal in further

components, whereas two estimated components represent not much signal contribution,

see Figure 6.28 (right side).
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Figure 6.28: Overestimating the number of independent components. Estimating

six independent components from a mixture of eight signals from four

source signals. (FastICA algorithm - left side, Molgedey and Schus-

ter algorithm - right side)

6.6 Comparing the results of GLM analysis of mixed

signals with and without included ICA

The general linear model (GLM) is a multivariate linear regression method (see Section

4.1). In fMRI data the GLM tests the time series xi(t) of a voxel vi, i = 1, . . . , N against

the hypothetical reference function r(t) (hypothetical HRF or boxcar-function - a vector

coded with zeros and ones, zeros for resting blocks and ones for stimulation blocks).

In this section, the results of GLM analysis will be compared for two cases in a simulation

study: In the first case the GLM is directly applied to the observed mixed signals xi(t).

In the second case an ICA decomposition was first applied to the observed mixed signals.

After determining the signal representing the HRF signal (by cross correlating that signal

to r(t)), the GLM was applied to that estimated HRF signal. This will be explained in

detail later.

The GLM of a time series xi(t) is defined as

xi(t) = γ0 + γ1 · r(t) + ε, (6.13)

where γ0 and γ1 (γ0, γ1 ∈ R) are the estimated coefficients and ε ∼ Φ(0, σ2) is residual

noise. Only the parameter γ1 is of further interest, since this parameter describes the rela-

tion of the observed time series xi(t) and the hypothetical reference function r(t).
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In a simulation study, source signals are mixed with a random mixing matrix A to obtain

the observed signals xi(t) which are then used in the GLM with or without included ICA.

The procedure is repeated 500 times with new random mixing matrices and new generated

noise signals for each simulation run. It is the aim of the study to assess the percentage of

simulation runs in which a significant effect in the test of the null hypothesis H0 : γ1 = 0

can be detected (i.e. a p-value smaller than α = 0.05 is obtained).

As already mentioned, the analysis is performed for two cases:

• In the first case, the GLM analysis is directly performed on the observed mixed signals

xi(t). In the first subcase two signals x1(t) and x2(t) are observed, mixed from two source

signals, an HRF signal and a noise signal with the parameter σ varying in the set [0.5, 1, 3, 5].

In a second subcase four signals are observed, mixed from four source signals (HRF signal,

noise signal with the parameter σ varying in the set [0.5, 1, 3, 5], trend function, and sinus

function, as in Figure 6.10 (left side)). For each subcase and each observed signal xi(t), the

GLM analysis was performed with two reference functions r(t): a boxcar-function (BOX),

and the hypothetical hemodynamic response function (HRF) (see Equation (6.1)).

The percentage of simulation runs where the null hypothesis H0 : γ1 = 0 has been rejected

is given in Tables 6.3 (for two source signals) and 6.4 (for four source signals).

The percentage of significant results (empirical power) behaves as expected: The results

for the two or four observed signal are equal expect from random fluctuations, the power

decreases with increasing noise and the power is larger when the observed signals are com-

pared to the HRF and not to the raw boxcar-function. Furthermore, the power is larger

when only the HRF is mixed with noise and no additional signals which are not included

in the GLM.

Table 6.3: Percentage of simulation runs with significant test results for the parameter γ1

for two source signals (HRF signal and noise), separately for the two observed

variables, for two different reference functions and for different values of σ

r(t) observed σ

signal 0.5 1 3 5

BOX x1 86.8 75.0 47.8 31.8

BOX x2 87.8 71.0 43.2 34.4

HRF x1 92.2 84.0 65.2 44.6

HRF x2 93.8 84.6 63.4 48.6
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Table 6.4: Percentage of simulation runs with significant test results for the parameter γ1

for four source signals (HRF signal, noise, trend signal, and sinus signal), sepa-

rately for the four observed variables, for two different reference functions and

for different values of σ

r(t) observed σ

signal 0.5 1 3 5

BOX x1 63.8 59.0 39.0 25.2

BOX x2 65.4 57.2 38.2 36.6

BOX x3 64.0 59.4 36.6 25.2

BOX x4 60.8 59.8 35.4 29.8

HRF x1 79.4 77.4 59.2 46.0

HRF x2 83.2 74.8 60.4 45.6

HRF x3 82.6 78.6 58.0 46.6

HRF x4 79.4 80.0 56.0 44.0

• In the second case, a FastICA algorithm decomposed the two or four observed signals into

independent source signals. Then the signal reflecting the neuronal response was chosen

by cross correlating that signal to r(t). The GLM analysis was finally performed with the

selected signal instead of the observed signals. Again, both reference functions (BOX and

HRF) were used in parallel. With this procedure, all simulation runs gave significant results

(100% empirical power, not displayed in a table). Thus the inclusion of the ICA drastically

improved the results of the GLM by combining the two observed variables and selecting the

best adapted source signal. Of course, in a strong sense, the rules of the inference statistic

are harmed here by choosing the signal with the best fit to the hypothetical HRF.

Note that only one reference signal r(t) was given representing either the hypothetical

response function (HRF) or the experimental design (BOX). If explicit information of con-

tributing signals beyond the hypothetical response function is available, this can also be

included in GLM as a vector of response functions (without the inclusion of an ICA), pos-

sibly improving the results of the GLM test. But in applications the form of the possibly

disturbing signals (like noise, trend and sinus signals) is often not known. The ICA works

without that knowledge and thus can improve the GLM also in that such cases.
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6.7 Illustrative Results of Time Series Decomposition

The chapter of simulation studies should be closed with the time series decomposition as

described in Section 4.3 of the of the observed signals from Figure 6.10 (right side). From

the literature it is known that, every time series can be decomposed into a trend com-

ponent, a seasonal component, and an irregular remaining component [Schlittgen and

Streitberg, 1995]. After removing the trend and the seasonal component from the time

series, the remaining part should be stationary to apply time series characteristics such as

autocorrelation functions and frequency analysis to the time series. The time series decom-

position was performed with the software package R (http://www.cran.r-project.org). For

the decomposition a period for the seasonal component must be given. As we know that

the length of a phase is given with 20 images (time points), the period is given by P = 20.

Note that, if there are any information of periods of further seasonal components, like the

sinus function mimicking the heart beat in our example (P=7), also such a period might

be chosen. But only the period of one seasonal component can be given at a time with this

software package.

The results of the time series decomposition of the four mixed signals are shown in Figure

6.29. As it could be seen from this figure, the HRF signal was estimated as a seasonal

component and the trend component could also be estimated. These estimated compo-

nents give information about the weights of the mixing matrix. See therefore the HRF

signal of the third decomposition. The contribution of the HRF signal to the mixture was

only a3,1 = 0.1146 (see mixing matrix A in Equation (6.11)) which is reflected in the small

amplitude for the seasonal component. This is an advantage of time series decomposition

compared with ICA, since in ICA it is not possible to estimate the scaling factors (see Sec-

tion 5.1). A second advantage of time series decomposition compared with ICA is directly

obvious from the estimates. The estimated components not just inform about the weights

of the components, they also give information about the sign of the hidden components

which is in general also not possible with ICA (see Section 5.1 again).

Regarding the residual components some drawbacks of time series decomposition are ap-

parently. The residual component is not only white noise, this component is affected by a

sinus function. This is obviously since the sinus functions was modelled as a source signal

but so far this signal was not estimated by the seasonal or trend component. Consequently,

a drawback of time series decomposition is that only a limited number of components can

be detected. If there are several seasonal components as in this case an HRF signal with

period of P = 20 and a sinus signal with a period of P = 7, the time series decomposition
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Figure 6.29: Time series decomposition of observed signals

cannot estimate both seasonal components in one decomposition. If this residual signal

would be once again decomposed into a trend, further residual and seasonal component

with P = 7, than also the sinus function is detected. A frequency analysis should help to

determine the hidden frequencies.

Nevertheless, it might be possible to combine both algorithms, namely ICA and time series

decomposition. It is conceivably to use the ICA in a first step to get independent com-

ponents like the HRF signal, i.e. the periodic signal, the trend signal and noise signal.

The time series decomposition is then performed as a postprocessing step to determine the

sign and amplitude of the HRF signal for instance. Although not all signals, particulary

unexpected ones, can be detected by time series decomposition, the amplitude and sign of

some relevant independent components can be estimated.

Concluding this section some time series statistics of chosen source signals should be consid-

ered, namely the HRF signal and the noise signal. These two signals were chosen because

of the complementarity of a structured HRF signal and an unstructured noise signal. The
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time series analyses are performed with SPSS (http://www.spss.com) for test for station-

arity and autocorrelation function and with MATLAB for test for gaussian distribution,

frequency analysis, and empirical probability density function.

Test for White-Noise Process

The Wald-Wolfowitz runs test was used to investigate if the signals are stationary or if

the observations occur with some structure. The test revealed that the HRF signals is

structured (median = 2.5096, number of sequences = 31, z-statistic = -13.880, p-value <

10−3) but the noise signal is unstructured (median = 0.0036, number of sequences = 167,

z-statistic = 1.851, p-value = 0.064). That means the HRF function is not a stationary

signal and preprocessing steps like removing a seasonal or trend component are necessary.

Autocorrelation Function

Figure (6.30) displays the autocorrelation functions (ACF) for different lags τ = 1, . . . , 30

of the HRF signal (left side) and noise signal (right side). What can be clearly seen from

that figure is that the HRF signal is a structured signal (left side), where the value of the

actual time point depends on the value of the previous ones. Whereas the noise signal is

an unstructured signal indicating by low values of autocorrelation functions.

Figure 6.30: Autocorrelation functions of HRF signal (left side) and noise signal (right side)

93



6 Simulation Studies

Test for Gaussian Distribution

Since it is assumed, that the ”real” source signals (except the noise signal) have nongaussian

densities, the normality of the signals was analyzed with Kolmogorov-Smirnov test. The

test revealed that the HRF signal is nongaussian distributed (KS-statistic = 0.5829, p-value

< 10−3) but the noise signal is gaussian distributed as expected (KS-statistic = 0.0491, p-

value = 0.4561). The critical value for the hypothesis of the Kolmogorov-Smirnov test is

0.077.

Frequency Analysis

Figure (6.31) displays the frequency spectra of the HRF signal (left side) and noise signal

(right side). The frequency spectra of the HRF signal is characterized by a peak at f = 0.05

Hz corresponding to a period of P = 20 time points of the experimental design. In the

frequency spectra of the noise signal no periods can be detected.

In the frequency spectra of the observed mixed signals of Figure 6.10 (right side) (the

frequency spectra are not displayed), two peaks are clearly found. On peak at f = 0.05

Hz, the HRF signal, and a second peak at about f = 0.15 Hz, representing the frequency

of the sinus signal with P = 7.

Figure 6.31: Fast Fourier Transformation of HRF signal and noise signal

Empirical Probability Density Function

Figure 6.32 displays the empirical probability density function of the HRF signal (left side)

and noise signal (right side). These empirical probability densities are performed through
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kernel probability density estimations. The estimated pdf of the noise signal is quite similar

to a gaussian pdf, whereas the pdf of the HRF signal is not. Note that, the densities of

the signals, e.g. HRF signal can only be regarded as pseudo-densities because they are not

densities in the intrinsic sense, see therefore Section 5.1, where these estimates are more

deterministic than probalistic measures.

Figure 6.32: Graph of estimated probability density functions of HRF signal and noise signal
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7 An Auditory Working Memory

fMRI Study and ICA-Results

In this section an auditory fMRI study investigating a working memory (WM) task should

be introduced and the results of ICA will be presented. The basic concept of WM refers to

”a brain system that provides temporary storage and manipulation of the information nec-

essary for cognitive tasks” [Baddeley, 1992]. In a WM task the arriving information must

be maintained, recalled and, compared with test items according to previously instructed

rules. In this study, a so called one-back task served a WM task. In this task the WM

content had to be continuously reorganized and updated.

7.1 Material and Method

Acoustic Stimulation

For the experiment frequency modulated (FM) tones were used as acoustic stimuli. In

principle, FM tones are sinus functions with the following parameters: the sampling fre-

quency (Fs), given as Fs = 44100 Hz, a start frequency f1 and an end frequency f2, each

given in Hz. For these FM tones f2 = 2 · f1 for rising tons and f1 = 2 · f2 for falling tons .

Additionally a duration T in sec is needed. All FM tones were computed using the software

MATLAB, where the time scale vector t = 1, . . . , T in steps of 1/Fs and Fs is the sampling

frequency (1 sec corresponds to 44100 sampling points). The FM tone is then defined as

FM(t) = sin(2 · π(a/2 · t + f1) · t), (7.1)

where a = (f2 − f1)/T . Additionally a ramp of 10 msec was added to the beginning and

the end of the tone. To demonstrate this, Figure 7.1 shows an 100 msec FM tone with

increasing frequency from 0.5 kHz to 1 kHz, but in the fMRI study longer FM tones

(300 msec - 600 msec) are used. The FM tones were arranged in stimulation blocks of 30

seconds. Each block consisted of 30 randomized FM tones, 15 rising tones and 15 falling
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Figure 7.1: Plot of a frequency modulated tone of 100 msec with increasing frequency from

0.5 kHz to 1 kHz.

tones. The frequency range of the FM tones varied between 0.5 - 2 kHz in steps of 0.1 kHz.

Six different durations were used; 300 msec, 350 msec, 400 msec, 550 msec, 600 msec, and

650 msec. Each duration was created five times in a block by randomly order. A gap of

525 msec between two tones was created. The FM tones were presented at five different

sound levels covering a range of 24 dB in steps of 6 dB all at a comfortable loudness. Each

sound level was presented five times in a block in randomly order. One experimental session

consisted of 15 alternating stimulus and resting blocks (see the experimental paradigm in

Figure 7.2, gray indicates stimulus blocks and white indicates resting blocks).

Figure 7.2: Experimental paradigm of fMRI experiment.

Task procedure

The task of the subjects during the session was a one-back working memory task. The

subjects continuously had to compare the actual tone with the tone presented one back

in the sequence and had to indicate whether the two tones matched in direction (rising or

falling) by button pressing. Figure 7.3 displays the FM tones of one exemplary stimulations
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block. Each block consisted of 30 FM tones with 12 targets in randomized order. Targets

are indicated as stars in Figure 7.3.

Figure 7.3: Targets in experiment for one exemplary stimulation block

Subjects

In the study 3 females and 3 males (22-27 years old, mean age 24) were scanned. Each

subject repeated the measurement five times over a period of five weeks, resulting in 30

overall sessions. All subjects were naive according to FM tones, i.e. they never performed

a discrimination task before this study but they were familiar to the fMRI procedure. All

subjects were right-handers with normal hearing and gave written consent to the study,

which was approved by the ethical committee of the University of Magdeburg.

Scanning procedure

The fMRI study was carried out on a 3 Tesla scanner (Siemens Trio, Erlangen, Germany)

equipped with an eight channel head coil. For every subject a 3D anatomical data set

of the subjects brain was obtained (192 slices of 1 mm each) with very high resolution.

Functional images were acquired by echo planar imaging (EPI) sequence. The whole fMRI

data set consisted of 310 volumes, i.e time points. Thereby, an fMRI image was recorded

every 3 seconds. This is called the repetition time (TR) = 3000 msec. Further scanning

parameters are the echo time (TE) = 30 msec; flip angle = 80◦; field of view (FOV) =

192 mm; voxel size 64 × 64). 40 slices of 3 mm each (0.3 mm gap) covering the whole

brain were recorded. Before the functional measurement an inversion-recovery EPI (IR-

EPI) was recorded. This are images with the same geometry as the functional images. The

functional data is projected on the IR-EPI images and afterwards this data is mapped to

the 3D anatomical data set.
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Behavioral Data

During the fMRI measurement the individual responses of the subjects are recorded ad-

ditionally. In detail, this means the correct (H) and false (F) responses, missing (M) and

correct rejections (R) according to the stimuli are recorded. With these data, the sensitiv-

ity index d′ (signal detection theory [Green and Swets, 1966]) can be computed to draw

conclusions about the subjects’ task performances. The sensitivity index is defined by

d′ = Φ−1(h)− Φ−1(f), (7.2)

where h is the percentage rate of correct responses (h = H/(H+M)) and f is the percentage

rate of false responses (f = F/(F +R)), respectively, and Φ−1 is the inverse of the standard

gaussian distribution. This measure is mostly used for describing subjects performances

in biological trials because it also considers the false responses. The sensitivity index is a

measure that displays the percentage rate of correct and false responses to the gaussian

distribution. The range of the sensitivity index is given about 5 for good task performances

and -5 for bad task performances (considering that Φ−1(1) and Φ−1(0) are ∞ and −∞,

respectively). Furthermore, the response times in seconds to correct responses were recorded

to obtain an average response time.

7.2 Data Analysis

In a first step, the data analysis was performed using the brain imaging analyzing and

visualization tool BrainVoyager (University of Maastricht, Netherlands). In a second step,

the relevant time courses were exported to MATLAB (MathWorks, Inc., Massachusetts,

USA) for further computations and analysis.

Preprocessing

Before analyzing the fMRI data some preprocessing and normalization steps are necessary.

In a first step a 3D motion correction is performed. Even though subjects are told to move

as little as possible inside the scanner, some head movements are unavoidable, with the

result that the same voxels do not represent the same location in the brain throughout

the time. Therefore, one brain volume is taken as the reference volume and all the other

volumes are repositioned for translation and rotation in all three dimensions until all vol-

umes are the same position as the reference volume. Another important step is the spatial

normalization. During an fMRI study, data are usually collected from several subjects.
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But each individual brain differs in orientation, size and shape relatively to other brains.

To compare activations of different subjects the individual brains should be matched to

a standard brain. One method for spatial normalization is the Talairach transformation

[Talairach and Tournoux, 1988], matching all brains according to eight points of the

cerebral cortex: These eight points are the Anterior Commissure, Posterior Commissure,

the most anterior and posterior point of the cortex, the most superior and inferior point

and the most left and right point of the cortex. With these point the brain is subdivided

into cuboids. All brains are then zoomed or rotated to match these cuboids.

ICA analysis

The ICA implemented in the software package BrainVoyager is a cortex-based ICA [Formi

sano et al., 2004] with FastICA algorithm proposed by Hyvärinen. For each subjects and

each session an ICA with 30 independent components was performed. The number of 30

components was chosen because still most of the variance is explained with 30 components.

An PCA for each subject and each session was performed in advance revealing that 10 - 30

components are needed to decompose the data set. In order to assume the same number

of independent components for each subject and each session, 30 independent components

were chosen as a fixed number to cover all important and relevant components. ICA was

also performed with more or less than 30 components to demonstrate these results. On the

one side, estimating only a few components (< 5 components) results in noisy components,

where none of the time courses was correlated to the stimulation protocol, i.e. the box-

car function. In general, the FastICA algorithm finds successive relevant components, see

Section 6.5, but for this real data sets the FastICA algorithm can not judge if noise is an es-

sential component. On the other side, estimating too much components (> 50 components)

results in overlapping components where the activation clusters are not disjunct anymore.

For the independent components activation map and associated averaged time courses are

produced. The time series were normalized in [0, 1]. To select meaningful components, in

a first step, the time courses of the components were sorted according to their correlation

coefficients with the time course of the experimental paradigm. So far, the experimental

paradigm was not part of the ICA estimation. The activation clusters were considered of

those components which had the highest correlation (|ρ| ≥ 0.7). Only voxels of an acti-

vation map with a |z|-score ≥ 2 (see McKeown et al., 1998b) of the time and at least

50 connected voxels were considered as activated voxels. Consider that an independent

component might consists of several connected activation clusters. The most interesting

component was the one with activation clusters in the auditory cortex (AC). Since it is an
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auditory fMRI study, activation in auditory areas was expected. Therewith, the selected

component was clearly defined by the time course (i.e. correlation to stimulation protocol)

and activation clusters (i.e. activation in AC).

Definition of Volumes of Interest

The neuronal responses were analyzed within defined volumes of interest (VOI). The defini-

tion of VOIs was based on Brodmann areas (BAs) [Brodmann, 1909]. Figure 7.4 shows

the BAs of the lateral view of the brain and Table 7.1 summarizes the names, locations and

assumed involvement of BAs which were mostly relevant for our fMRI study, i.e. BAs in

AC and frontal cortex, even there exists much more BAs. These information are taken from

http://www.fmri-easy.de/start1.htm and http:medical-dictionary.thefreedictionary.com. The

BAs were defined for each subject, each hemisphere, and each session based on the anatomy

of each individual brain. But only the activated voxels within a BA were considered.

Figure 7.4: Brodmann areas

Time course analysis

In a following step, the changes in the time course of these VOIs over the five repeated

sessions were investigated. First, the signal at each time point t was converted to a percent

change in signal relative to baseline. The baseline was defined as the average signal from

tb = −3 to −1 (tb ∈ T ) of every stimulation block with tb = 0 corresponding to the onset

of stimulation. In a second step the time course signal was averaged over all 15 stimulation
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Table 7.1: Brodmann areas: Their location and involvement

BA Name (Location) Involvement

BA06 agranular frontal area (frontal

cortex)

planning of complex, coordinated move-

ments; involved in memory (recognition)

tasks with BA 32 and BA 46

BA09 (frontal cortex) involved in working memory tasks (with BA

46)

BA10 frontopolar region (frontal cor-

tex)

play a role in strategic processes; involved in

memory retrieval and executive function

BA21 middle temporal area (temporal

cortex)

play a part in auditory processing and lan-

guage

BA22 superior temporal area (tempo-

ral cortex)

language processing; left: helps with genera-

tion and understanding of individual words;

right: helps to tell the difference between

melody, pitch, and sound intensity

BA40 supramarginal area (parietal

cortex)

sequential processing

BA41 anterior transverse temporal

area (temporal cortex)

processing of auditory (sound) information

BA42 posterior transverse temporal

area (temporal cortex)

processing of auditory (sound) information

BA44 opercular area (frontal cortex) involved in speech production; involved in

processing of sequential auditory stimuli;

keeps information in working memory

BA45 triangular area (frontal cortex) Broca’s area, speech production

BA46 middle frontal area (frontal cor-

tex)

involved in working memory tasks (with

BA09)

BA47 orbital area (frontal cortex) Broca’s area, speech production
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blocks. A block was defined to include 5 images prior to stimulation, the stimulation phase

(10 images) and 5 images posterior to stimulation. These 15 response blocks were averaged

to give an average signal versus time for each subject, hemisphere, VOI, and session.

The response magnitude in each subject, each VOI and each session was quantified using

measures computed from the percent signal change time course [Harms and Melcher,

2002]. The ”time-average” percent change measures the overall response strength during

the stimulation block. It was computed as the mean percent change from tb = 3 to 10. This

range beginning from tb = 3 was chosen because it takes some time until the signal reaches

its activation plateau. Changes in the signal amplitude over the sessions were tested by

ANOVA with repeated measures.

7.3 Results

7.3.1 Behavioral Results

Since all subjects were naive according to FM tones, i.e. they had never performed a

discrimination task before this study, the task was quite difficult for the subjects at the

beginning. But all subjects showed strong improvements indicated by their rates which are

displayed in Figure 7.5 for all subjects and all sessions. It was tested if these differences

were significant using an analysis of variance (ANOVA) for repeated measurements, where

the session is a factor with five levels. Before performing the ANOVA it was verified that

the sensitivity indices (see Equation 7.2) are gaussian distributed (Kolmogorov-Smirnov

test) and have equal variances (Mauchly sphericity test). The ANOVA revealed significant

differences of the sensitivity indices between the repeated sessions (F(1,4) = 46.560, p <

0.001). Additionally regarding the response times of the subjects, they also improved over

time. Testing the response times with an ANOVA for repeated measurements revealed

significant differences for the response time as well (F(1,4) = 33.828, p < 0.001). The

sensitivity indices and response time for all subjects and all sessions are shown in Figure

7.6.

7.3.2 ICA-Results and Time Series Analysis

An ICA with 30 components for each subject and each session was performed. The indepen-

dent components consisted of activation maps and associated time courses. According to

the time courses, the components can be classified as oscillatory functions, trend functions,
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Figure 7.5: Hits and false responses of subjects

noise functions, and some time courses possibly indicating neuronal processes. Figure 7.7

displays the 30 independent time courses of subject 3 for the first session. After selecting

the meaningful component by cross-correlating the 30 independent component time courses

to the experimental paradigm, the components with correlation coefficient ρ ≥ 0.7 were fur-

ther considered. In this example, component 20 had a correlation coefficient of ρ = 0.7527

to the stimulation protocol. This component was the only one with a correlation coefficient

ρ ≥ 0.7 and activation clusters in auditory cortex. Even though in the example of subject

3, component 8 seems to be highly correlated to the stimulation protocol, its correlation

coefficient was ρ = 0.4498 because of time delays to the stimulation protocol that might
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Figure 7.6: Sensitivity indices and response times of subjects

be a sign for later processing of the stimuli or the task, but this component showed no

activation in the AC or frontal cortex that would confirm the assumption. In general for all

subjects there was at least one component with a correlation coefficient ρ ≥ 0.7. In cases

were more components had a ρ ≥ 0.7 only one of these components showed activations in

AC. Consequently, the selection of one component with correlation coefficient ρ ≥ 0.7 and

location in AC was unique for each subject and each session. After selecting the component

with activation clusters in the AC, clusters in other cerebral regions of that component were

inspected. Besides activation in auditory cortex we found additional clusters in areas which

are supposed to be involved in maintenance and attention processes and in areas which are

involved in somato-sensory processes, or motor processes caused by pressing a button to

indicate targets. These clusters were defined as VOIs according to Brodmann areas (see
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Figure 7.7: 30 independent component time courses of subj. 3 (1. session)

Table 7.1). The AC includes BA 41, BA 42, BA21, and BA 22, which is the Wernicke’s

area involved in speech comprehension and cognition. The somato-sensory area include BA

40. Motor-related areas include BA 06. Moreover, cognition-related areas include BA 09,

BA 10, and BA 46. BA 44, BA 45, and BA 47 are about the Broca’s area which is the

motor speech centre and keeps information of working memory. All BAs were defined for

the left and right hemisphere for all subjects and each session. Additionally, two clusters

for the whole left and right AC were defined for each subject and each session.

In a following step the changes in the time course of these VOIs over the five repeated ses-

sions were investigated. In general, there are changes of the signals over the five sessions,

i.e. the signals are dynamic. These changes may depend on the subjects and on the areas

and are described through different parameters. Figures 7.8 - 7.10 show exemplarily the

time courses of three subjects of different VOIs/ACs of all five sessions. The time courses
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Figure 7.8: Time courses and event-related averages of left BA40 (subj. 6)

Figure 7.9: Time courses and event-related averages of the right auditory cortex (subj. 1)

are averaged across all voxels of the VOI (left side, sessions displayed from top to bottom).

The event-related average (right side, sessions displayed from left to right) displays the per-

centage signal change averaged over all measured response blocks (the rectangle indicates

the stimulation period). Each subplot display the time course for one of the five repeated

sessions.

The time courses of the five sessions of subject 6 in the left BA 40 as well as in other areas

were characterized by trend increases within the stimulation blocks, see Figure 7.8. More-

over, the time courses are characterized by different signal amplitudes, namely a decrease

in signal amplitudes over the repeated sessions. A very interesting finding of subject 1
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Figure 7.10: Time courses and event-related averages of left auditory cortex (subj. 5)

(Figure 7.9) was that the time courses of the clusters of the first session showed almost the

typical/expected hemodynamic response function, i.e. the signal increased after stimulus

onset, reached a plateau, and decreased slowly after stimulus offset. But the time courses of

the last sessions showed a different behavior. The signal also increased after stimulus onset,

mostly on a higher level than the signals in the first session, but the signal did not stay on

the plateau, it decreased immediately, so that at the end of the stimulation the signal was

already at the baseline. This was often found for the auditory regions and areas involved in

maintenance and attention processing and might be explained by adaptation, habituation

or learning effects. The time courses of subject 5 (Figure 7.10) do not differ a lot between

the repeated sessions, but it was interesting that the time courses do not represent the

typical course of the HRF. These time courses are characterized by a decrease within the

stimulation block but compared to subject 1 the signal once again increases at the end of

stimulation. These examples indicate very individual responses for the WM study.

These temporal changes of signal intensities in the left right AC between the sessions should

be tested for all subjects with an ANOVA for repeated measurements, with session as rep-

etition factor. Thereby for each session, a time average of all stimulation blocks for images

3-10 (considering the delayed onset of the signal) was computed for each subject for left

and right AC. The results of ANOVA revealed no significant changes of the average signal

intensity between repeated sessions over all subjects (F1,4 = 2.183, p = 0.108 for the left AC

and F1,4 = 1.218, p = 0.334 for the right AC). This might be explained that the subjects

show very different signals, see therefore Figures 7.8 - 7.10. But it is much more interesting

if there are significant differences for every single subject between repeated sessions. There-
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fore, in a second step an ANOVA was performed for each subject and the stimulation blocks

served as repetition factor. The time average for each stimulation block for images 3-10 for

each subject was computed. Table 7.2 summarizes the results of an ANOVA with repeated

sessions for each subject for left and right AC. In contrary to the first ANOVA result, for

Table 7.2: Testing temporal signal changes between sessions for each subject.

subject left auditory cortex right auditory cortex

1 F1,4 = 22.116, p < 0.001 F1,4 = 23.553, p < 0.001

2 F1,4 = 24.596, p < 0.001 F1,4 = 23.831, p < 0.001

3 F1,4 = 22.152, p < 0.001 F1,4 = 8.892, p < 0.001

4 F1,4 = 4.581, p = 0.023 F1,4 = 8.573, p < 0.001

5 F1,4 = 46.869, p < 0.001 F1,4 = 8.689, p < 0.001

6 F1,4 = 1.448, p = 0.252 F1,4 = 5.089, p = 0.001

almost every subject for the left AC and the right AC there were significant difference of

the average signal change between repeated sessions (except subject 6, left AC), indicating

signal changes over repeated sessions.

7.4 Comparing ICA Time Courses to HRF Time

Courses in Correlation Analysis

Since we found out that the fMRI signal was very dynamic over the five repeated sessions,

the results of the classical correlation analysis should be compared to ICA. The correlation

analysis always assumes the same hypothetical time course of neuronal response (i.e. stim-

ulation protocol) and neglects dynamics of the signals. When we used the time courses of

the fifth session of all subjects for the left AC and the right AC, which is often very different

from the signal of the stimulation protocol, it should be controlled whether the assumption

of the HRF was still valid in the fifth session. Two correlation analysis were performed for

the fifth session of each subject: 1. correlating the data set to the hypothetical HRF signal

and 2. correlating the data set to the time course obtained of AC obtained by ICA. The

method of correlation analysis was used in order to have the same p-value for the activa-

tion maps, i.e. that it is possible to compare ICA to classical correlation analysis. Figure

7.11 shows activation of the left AC and the right AC of subject 1 of correlation analysis

with HRF (light gray) and independent component time course (dark gray). The statistical
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maps were drawn at same p-values for both analyses (p ≤ 8 ∗ 10−6). As could be seen, with

the ICA approach much more activation can be detected compared with correlation with

HRF. This analysis was performed for each subject with its time course of the indepen-

dent component of the fifth session. The number of activated voxels for both analyses was

counted for each subject and each hemisphere. This result is summarized for all subjects

in Table 7.3.

Figure 7.11: Comparing results of correlation analysis with HRF (light gray) and indepen-

dent component time course (dark gray) (subj.1)

Table 7.3 shows great variability between the subjects. But it is obvious that more voxels

are detected with ICA results than with HRF results (see especially subject 1 and subject

5). Since the ICA signal was already adapted to the data set, the correlation analysis with

ICA signal is quantitatively better than correlation with HRF signal. The difference be-

tween the number of voxels detected by ICA and the number of voxels detected by HRF was

further tested by t-test for mean=0. In the left AC the t-test revealed p = 0.0248 and in the

right AC the t-test revealed p = 0.0206. Consequently, there where significant differences

between the number of voxels detected by ICA and the number of voxels detected by HRF.
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Table 7.3: Comparing the number of voxels of correlation analysis with hemodynamic re-

sponse function and independent component time course of fifth session

subj. left AC right AC

% HRF Difference % HRF Difference

HRF ICA of ICA ICA-HRF HRF ICA of ICA ICA-HRF

1 2638 14157 18.6 11519 3915 13987 28.0 10072

2 19494 21772 89.5 2278 17375 19338 89.8 1963

3 19943 21218 94.0 1275 17558 19418 90.4 1860

4 14512 20314 71.4 5802 13595 20156 67.4 6561

5 5167 15092 34.2 9925 3283 11595 28.3 8312

6 18908 21506 87.9 2598 20138 21800 92.4 1662

7.5 Discussing the Shape of BOLD Responses

In this last section the shape of the BOLD responses should be discussed to support the

findings in our fMRI study. There are several publications discussing the shape of BOLD

responses. Seifritz et al., 2002 found out that neuronal responses in the AC can be

decomposed temporally into independent transient and sustained activity with ICA in

different parts of AC. Transient activity is characterized by a peak in the signal, whereas,

sustained activity remains on a constant level during the stimulation period. Transient

responses typically occur at the onset of a stimulus whereas sustained responses follow the

stimulus. Seifritz et al., 2003 discussed that the blood oxygen level-dependent (BOLD)

signal time course in AC is characterized by two components, an initial transient peak

and a subsequent sustained plateau with smaller amplitude. (It is unclear whether the

reduction of amplitude during the sustained period represents underlying neuronal activity-

related changes in oxygenation or results from other hemodynamic mechanisms. In studies

of Harms and Melcher, 2002, Harms and Melcher, 2003, Harms et al., 2005 they

found out that in human auditory cortex, prolonged sound stimuli ( 30 sec) can evoke

responses ranging from sustained to highly phasic (i.e. characterized by prominent peaks

just after sound onset and offset.) Prolonged (30 sec) low-rate (2/sec; each stimuli is

perceptually distinct) noise elicit sustained responses whereas high-rate (35/sec; individual

stimuli are not distinguishable) elicit phasic responses with peaks just after train onset and

offset. They used the general linear model using a set of basis functions chosen to reflect

temporal features of cortical fMRI responses. (Five basis functions were chosen: onset,
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sustained ramp, offset, and undershoot for the two response waveshapes, sustained and

phasic.) And finally d’Avossa et al., 2003 classified regional BOLD responses with PCA

in sustained, transient, and negative time courses.

There are temporal changes in the shape of BOLD responses but in all the studies mentioned

above there was no learning task as in our study. In our study we found dynamic changes

between and within repeated sessions that might be due to learning related processes.

Theses dynamic changes are indicated through signal amplitude changes or trends within

stimulation blocks. The study showed that almost the same areas are involved in solving the

auditory task for all subjects, namely auditory areas, motion-related areas and cognition-

related areas. But these areas show differences in their time courses.

In our study we investigated as small group of subjects, namely 6 subjects with five repeated

sessions, these subjects showed very different behaviors in their time courses which could

not be predicted in advance. Therefore, a correlation analysis or GLM approach with a

static HRF function is not always the best approach to get task-related activations since

the GLM needs previous information of contributing signals. In learning-related studies

theses information is in general not known in advance. The ICA is a method that do not

need previous information of contributing signals to find activation cluster related to the

task.
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8 Conclusions

Blind source separation by independent component analysis has received attention because

of its potential applications in signal processing such as is speech recognition systems,

telecommunications and medical signal processing.

In fMRI the signal or signals of interest, in our case the neuronal response of the subjects is

seldom recorded in isolation, and is generally mixed with other ongoing background activity

and sensor noise, and is almost certainly contaminated by artifacts of either physiological

or environmental origins. Furthermore, the signal-to-noise ratio of the desired signal is

generally quite poor.

ICA is a technique to estimate statistically independent components from their linear mix-

tures. Most ICA algorithms are derived by forming a linear demixing model, defining a

measure of statistical independence and performing numerical optimization of the inde-

pendence measure based on the given observations. In this framework, each component is

treated as a random variable and the independence measure used by ICA algorithm is a

statistical measure such as the higher order statistics, negentropy and information.

As the focus is in particular on fMRI time series additional temporal statistics can be used

to identify the unknown sources. One can exploit classical time series decompositions, non-

stationarity, temporal correlations and frequency analysis of the time series.

In simulation studies the performance of different ICA algorithms was tested by modelling,

mixing, and demixing different signals. ICA was applied to an auditory fMRI study with

repeated sessions to investigate if there are dynamic changes in the measured fMRI signals.

The analysis revealed that the subjects activated almost the same brain regions but showing

different time courses and with different dynamic changes over the five repeated sessions.

The advantage of ICA is that no assumptions of contributing signals have to be made in

advance. ICA can separate different signals into independent components and can detect

dynamic changes in the signals that might be due to learning performances of the subjects.
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A Properties of

Information-Theoretic Functions

This Appendix summarizes some properties of information-theoretic functions like infor-

mation, differential entropy, and negentropy as introduced in Section 2.3.1.

Remark, the notation
∫

f(x)dx is the integral over the sample space R, and
∫

f(x)dx is

the integral over RN for the multivariate case.

A.1 Information

Theorem A.1 The information (see Equation 2.21) is nonnegative,

I(1 : 2) = I(f1(x) : f2(x)) ≥ 0, (A.1)

with equality if and only if f1(x) ≡ f2(x), where f1(x) is the joint probability density and

f2(x) is the product of the marginal densities (i.e. the joint density under the assumption

of independence).

Proof: [Kullback, 1959 (p. 14-15)] Let g(x) = f1(x)/f2(x). Then

I(1 : 2) =

∫
f2(x)g(x) log g(x)dx

=

∫
g(x) log g(x)df2x,

with df2(x) = f2(x)dx. Substituting t = g(x) and setting q(t) = t log t, t > 0; since

0 < g(x) < ∞, one may write the Taylor expansion

q(g(x)) = q(1) + [g(x)− 1]q′(1) +
1

2
[g(x)− 1]2q′′(h(x)), (A.2)

where h(x) lies between g(x) and 1, so that 0 < h(x) < ∞, see Kullback, 1959. Since

q(1) = 0, q′(1) = 1. and ∫
g(x)df2x =

∫
f1(x)dx = 1. (A.3)
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We find ∫
q(g(x))df2x =

1

2

∫
[g(x)− 1]2q′′(h(x))df2x, (A.4)

where q′′(t) = 1/t > 0 for t > 0. We see from (A.4) that∫
g(x) log g(x)df2x =

∫
f1(x) log

f1(x)

f2(x)
dx ≥ 0, (A.5)

with equality if and only if g(x) ≡ f1(x)/f2(x) = 1.

Theorem A.2 The information I(1 : 2) is additive for independent random vectors X and

Y; that is, for the case that X and Y are independent from each other both under H1 and

H2. The information I(1 : 2) of two combined vectors X and Y is denoted by I(1 : 2,X,Y).

I(1 : 2,X,Y) = I(1 : 2,X) + I(1 : 2,Y). (A.6)

Proof: [Kullback, 1959 p. 12-13]

I(1 : 2,X,Y) =

∫ ∫
f1(x,y) log

f1(x,y)

f2(x,y)
d(x,y)

(because of the independence,

fi(x,y) = gi(x)hi(y), and d(x,y) = d(x) d(y))

=

∫ ∫
g1(x)h1(y) log

g1(x)h1(y)

g2(x)h2(y)
dxdy

=

∫ (
g1(x) log

g1(x)

g2(x)

∫
h1(y)dy

)
dx +

∫ (
h1(y) log

h1(y)

h2(y)

∫
g1(x)dx

)
dy,

where

∫
g1(x)dx = 1, and

∫
h1(y)dy = 1

=

∫
g1(x) log

g1(x)

g2(x)
dx +

∫
h1(y) log

h1(y)

h2(y)
dy

= I(1 : 2,X) + I(1 : 2,Y). (A.7)

Additivity is the basis for the logarithmic form of information. A sample of N indepen-

dent observations from the same population provides N times the information in a single

observation.
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A.2 Differential Entropy

Theorem A.3 Translation does not change the differential entropy (Equation 2.27) of a

random variable X with density function f(x) [Cover and Thomas, 1991, p. 233.]

H(f(x + c)) = H(f(x)). (A.8)

Proof: The proof follows directly from the definition of differential entropy.

Theorem A.4 Multiplying the random variable X (with density function f(x)) with a

constant factor a (a ∈ R) gives the following differential entropy:

H(f(ax)) = H(f(x)) + log |a|, (A.9)

where |a| is the absolute value of a.

Proof: [Cover and Thomas, 1991, p. 233] Let Y = aX. Then fY (y) = 1
|a|fX(y

a
), and

H(f(ax)) = −
∫

fY (y) log fY (y) dy

= −
∫

1

|a|
fX

(y

a

)
log

(
1

|a|
fX

(y

a

))
dy

= −
∫

fX(x)(log fX(x) + log |a|) dx

= H(f(x)) + log |a|. (A.10)

Two further transformations of differential entropy will only be mentioned. The proof can

be found in literature, Hyvärinen et al., 2001b.

For the multivariate case y = Ax, the differential entropy H(f(y)) is given by

H(f(y)) = H(f(x)) + log | detA|. (A.11)

Refer to Hyvärinen et al., 2001b, for the proof.

Furthermore, according to Hyvärinen et al., 2001b, the differential entropy of the trans-

formation y = g(x), where g(x) is a monotone increasing function for which the inverse

mapping x = g−1(y) exists and is unique, is given by

H(f(g(x))) = H(f(x)) + E{log |Jg(x)|}, (A.12)
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where Jg(x) = Jg(g−1(y)) is the Jacobian matrix given by

Jg(x) =


∂g1(x)

∂x1

∂g2(x)
∂x1

· · · ∂gN (x)
∂x1

∂g1(x)
∂x2

∂g2(x)
∂x2

· · · ∂gN (x)
∂x2

...
...

. . .
...

∂g1(x)
∂xN

∂g2(x)
∂xN

· · · ∂gN (x)
∂xN

 . (A.13)

A.3 Negentropy

Theorem A.5 The negentropy J(f(x)) of the random variable X with the density function

f(x) is always positive

J(f(x)) ≥ 0. (A.14)

Proof: [Comon, 1994]

The negentropy is defined by

J(f(x)) = H(φ(x))−H(f(x)), (A.15)

using the entropy defined as H(f(x)) = −
∫

f(x) log f(x) dx, the negentropy can be written

as

J(f(x)) = −
∫

φ(x) log φ(x)dx +

∫
f(x) log f(x)dx. (A.16)

Adding and subtracting a term in the definition of negentropy gives

J(f(x)) =

∫
f(x) log f(x)dx−

∫
f(x) log φ(x)dx

+

∫
f(x) log φ(x)dx−

∫
φ(x) log φ(x)dx, (A.17)

which can be written as

J(f(x)) =

∫
f(x) log

f(x)

φ(x)
dx +

∫
(f(x)− φ(x)) log φ(x)dx. (A.18)

Now, by assuming that φ(x) and f(x) have the same first- and second-order moments and

since

log(φ(x)) = −1

2
log(2πσ2)− 1

2

(x− µ)2

σ2
,

and ∫
f(x) log φ(x)dx =

∫
−1

2
log(2πσ2)f(x)dx−

∫
1

2

(x− µ)2

σ2
f(x)dx

= −1

2
log(2πσ2)− 1

2
∀ f or φ,
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it follows that ∫
φ(x) log φ(x)dx =

∫
f(x) log φ(x)dx, (A.19)

and the negentropy of (A.18) may be written as an information-function:

J(f(x)) =

∫
f(x) log

f(x)

φ(x)
dx. (A.20)

This proves, referring to (A.1), that the negentropy as well the information is positive

J(f(x)) ≥ 0, (A.21)

with equality if and only if φ(x) ≡ f(x).

Additionally, the negentropy is invariant for invertible linear transformations.

Theorem A.6 The negentropy J(f(x)) of a multivariate random vector x = (x1, . . . , xN)

is invariant for linear transformations.

Proof: Consider the invertible linear transformation

y = Ax, (A.22)

where y is an N -dimensional random vector. The covariance of y is given by

E{yyT} = ACAT , (A.23)

where C is the covariance matrix of x. Using the result of Example 2.5, where the differential

entropy of a multivariate gaussian distribution can also be written as

H(φ(x)) =
1

2
log | detC|+ N

2
[1 + log(2π)], (A.24)

and using the result of Equation A.11, where the differential entropy of a transformation is

given as H(f(y)) = H(f(x)) + log | detA|, the negentropy of the invertible linear transfor-

mation can be computed as

J(f(Ax)) =
1

2
log | det(ACAT )|+ N

2
[1 + log(2π)]− (H(f(x)) + log | detA|)

=
1

2
log | detC|+ 2

1

2
log | detA|+ N

2
[1 + log(2π)]−H(f(x))− log | detA|

=
1

2
log | detC|+ N

2
[1 + log(2π)]−H(f(x))

= H(φ(x))−H(f(x)). (A.25)

In particular negentropy is scale-invariant, i.e. multiplication of a random variable by

a constant does not change its negentropy. This was not true for differential entropy

[Hyvärinen et al., 2001b, p. 113], as shown in Theorem A.4.
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A.4 Approximation of Information-Theoretic

Functions

Using the entropy or negentropy in practice would be computationally difficult, because

the integral of these functions involves the probability density function, which is often not

known. Therefore the entropy or negentropy are more theoretical functions. In practice

some estimates are used. One classical method of approximating these functions is based

on higher-order cumulates such as kurtosis. This idea is based on using an expansion like a

Taylor expansion [Hyvärinen, 2001]. This expansion is taken for the probability density

function of a continuous random variable assuming that the density function fX(ξ) is near

the standard gaussian density where X has zero-mean and unit variance

ϕ(ξ) = exp(−ξ2/2)
√

2π. (A.26)

Usually the Gram-Charlier expansion is used which is a special series expansion where the

target function is approximately composed from Hermite polynomials H0, H1, ... as basis

functions. The polynomials are defined by the derivatives of the standardized gaussian

density as

∂iϕ(ξ)

∂ξi
= (−1)iHi(ξ)ϕ(ξ). (A.27)

Hi is a polynomial of order i, to become more familiar with the Hermite polynomials, they

are computed as,

Hi(ξ) = ξi − i[2]

2 · 1!
ξi−2 +

i[4]

22 · 2!
ξi−4 − i[6]

23 · 3!
ξi−6 + . . . , (A.28)

where

i[a] = i(i− 1)(i− 2) · · · (i− (a− 1)) =
i!

(i− a)!
. (A.29)

Following this, the first Hermite polynomials are given by [Stuart and Ord, 1994]:

H0(ξ) = 1

H1(ξ) = ξ

H2(ξ) = ξ2 − 1

H3(ξ) = ξ3 − 3

H4(ξ) = ξ4 − 6ξ2 + 3.

VI



A Properties of Information-Theoretic Functions

These polynomials have the characteristic, that they form an orthogonal system∫
ϕ(ξ)Hi(ξ)Hj(ξ)dξ =

{
1 if i = j

0 if i 6= j
. (A.30)

The Gram-Charlier expansion of the density of X including the two first nonconstant terms,

is given by [Stuart and Ord, 1994]

fX(ξ) ≈ f̂X(ξ) = ϕ(ξ)
(
1 +

κ3

3!
H3(ξ) +

κ4

4!
H4(ξ)

)
. (A.31)

As said, the expansion is based on the idea that the density function of X is close to a

gaussian one, which allows a Taylor-like approximation and the nongaussian part is directly

given by the higher-order cumulates (the third- and fourth-order cumulant, κ3 and κ4 named

skewness and kurtosis). Using this density approximation the differential entropy can be

approximated as

H(f(x)) ≈ −
∫

f̂X(ξ) log f̂X(ξ)dξ. (A.32)

Using again the idea that the density is close to a gaussian one, the cumulants in (A.31)

are very small and their logarithms can be approximated through

log(1 + ε) ≈ ε− ε2/2, (A.33)

which gives then

H(f(x)) ≈ −
∫

ϕ(ξ)
(
1 +

κ3

3!
H3(ξ) +

κ4

4!
H4(ξ)

)
˙ (A.34)[

log ϕ(ξ) +
κ3

3!
H3(ξ) +

κ4

4!
H4(ξ)−

(κ3

3!
H3(ξ) +

κ4

4!
H4(ξ)

)2

/2

]
dξ.

This expression can be simplified to

H(f(x)) ≈ −
∫

ϕ(ξ) log ϕ(ξ)dξ − κ2
3

2 · 3!
− κ2

4

2 · 4!
. (A.35)

Consequently, the approximated negentropy of a standardized random variable is given by

J(f(x)) ≈ − 1

12
E{X3}2 − 1

48
kurt(X)2, (A.36)

a computationally simple approximation of the measure of nongaussianity of a random

variable.
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Ich erkläre hiermit, dass ich die vorliegende Arbeit mit dem Thema:

”Analysis of Functional Magnetic Resonance Imaging

Time Series by Independent Component Analysis”
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