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Summary

In this thesis topics of optimal experimental design for linear and non-linear mixed models
are considered.  is is motivated by the �eld of application of population pharmacokinetics
in drug development.  us, examples from this area will be used throughout this thesis for
illustration purposes.

First an introduction to the well-known topic of optimal experimental designs for the ordinary
linear model is given.  en the linear and non-linear mixed models that are considered within
this thesis are introduced. Focus is, on one hand, put on the so-called random coe�cient re-
gression model, which is a regression model with random parameters, and, on the other hand,
on a more general mixed model, where additional factors that are not to be controlled by the
investigator are included into the model.

A�er this, a general de�nition of designs in mixed models is given.  e designs are de�ned
in two stages:  e �rst stage are the elementary designs, which specify the settings for single
individuals, while the second stage are population designs, by which the settings for the whole
sample population are de�ned. On both levels we allow approximate designs.

As designs are usually evaluated by using real-valued functions of the respective information
matrices, we derive di�erent representations of the information matrices for the introduced
designs, which allow their calculation also for approximate designs.

Two extreme cases of classes of population designs are considered.  ese are, on one hand, the
single-group designs, where all individuals are observed under the same experimental settings
and, on the other hand, general population designs, where di�erent settings are allowed for
di�erent individuals.

We show that the design optimization can be restricted to the class of single group designs if the
mean number of observations per individual is prespeci�ed and criteria are considered that are
only based on the population parameter vector and not on the variance parameters.  e larger
class of general population designs then does not contain better designs.  is result is extended
to the considered general mixed models. In this case, however, one elementary design for each
distinct value of the uncontrolled factor is necessary.

Besides this, equivalence theorems, similar to the ones known for the ordinary linear model,
are derived for various situations.  ey allow to check the optimality of given designs.

 e thesis closes with a discussion, in which also practical aspects of experimental designs for
population pharmacokinetic studies are addressed.
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Zusammenfassung

DieseArbeit beschä�igt sichmit emender optimalenVersuchsplanung für lineare undnicht-
lineare gemischte Modelle. Motiviert wird dieses ema durch das Anwendungsgebiet der Po-
pulationspharmakokinetik in der Arzneimittelentwicklung. Beispiele aus diesem Feld werden
die ganze Arbeit hindurch zur Illustration immer wieder aufgegri�en.

Zunächst wird in der Arbeit eine Einführung in das bekannte ema der optimalen Versuchs-
planung in gewöhnlichen linearen Modellen gegeben. Anschließend werden die im weiteren
Verlauf der Arbeit verwendeten linearen und nicht-linearen gemischten Modelle eingeführt.
ImVordergrund stehen das sogenannte ”Random-Coe�cient-Regression-Modell“, ein Regres-sionsmodell mit zufälligen Parametern, und ein allgemeineres gemischtesModell, in demweit-
ere nicht-steuerbare, aber bekannte Ein
ussgrößen zusätzlich in das Modell aufgenommen
werden.

Es folgt eine allgemeine De�nition der Versuchspläne (Designs) für gemischte Modelle. Diese
werden in zwei Stufen de�niert: zum einen Elementar-Designs, die die Versuchsbedingungen
für einzelne Individuen vorgeben, und zum anderen Populationsdesigns, durch die die Einstel-
lungen für alle zu untersuchenden Individuen de�niert werden. Auf beiden Ebenen werden
approximative Designs zugelassen.
Da Designs üblicherweise durch reellwertige Funktionen der zugehörigen Informationsma-
trizen beurteilt werden, werden für die betrachteten Designs verschiedene Darstellungsweisen
der Informationsmatrizen hergeleitet, die unter anderem auch deren Berechnung im approxi-
mativen Fall zulassen.

Im weiteren Verlauf der Arbeit werden zwei Extremfälle von Populationsdesign-Klassen be-
trachtet, zum einen Ein-Gruppen-Designs, in denen alle Individuen unter dem gleichen Ver-
suchsplan beobachtet werden, und zum anderen allgemeine Populationsdesigns, in denen ver-
schiedene Elementardesigns für die einzelnen Individuen zugelassen sind.
Wir zeigen, dass die Optimierung auf die Klasse der Ein-Gruppen-Designs eingeschränkt wer-
den kann, wenn die mittlere Anzahl von Beobachtungen pro Individuum fest vorgegeben wird
und Kriterien betrachtet werden, die nur auf den Populationsparametern und nicht auf den
Varianzparametern basieren. Die größere Menge der allgemeinen Populationsdesigns bietet
in diesem Fall keine besseren Designs. Dieses Resultat wird auf die allgemeineren gemischten
Modelle ausgeweitet. Allerdings ist in diesem Fall je ein Elementardesign pro unterschiedlicher
Ausprägung der zusätzlichen nicht zu steuernden Ein
ussgröße nötig.
Desweiteren werden Äquivalenzsätze, analog zu den bekannten aus dem gewöhnlichen lin-
earen Modell, für verschiedene Situationen hergeleitet, die die Überprüfung der Optimalität
von Designs ermöglichen.

Die Arbeit schließt mit einer Diskussion, in der unter anderem auf praktische Belange der Ver-
suchsplanung für Populationspharmakokinetik-Studien eingegangen wird.
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1 Introduction

 e history of the theory of experimental design goes back about one hundred years (see, e. g.,
the review paper “One hundred years of the design of experiments on and o� the pages of
Biometrika” byAtkinson and Bailey (2001)). One remarkable very early work is by Smith (1918).
Most of the theory for optimal experimental design, however, has been developed in the second
half of the 20th century. One importantmilestonewas the development of convex design theory
including a series of equivalence theorems, of which the �rst and most famous one is by Kiefer
and Wolfowitz (1960) showing the equivalence of D- and G-optimality.

Concerning theoretical results for experimental design inmixedmodels, whichwill be the topic
of this thesis, the amount of literature is still relatively sparse (especially for the nonlinear case).
 ere are results by Gladitz and Pilz (1982) for individual predictions in a Bayesian framework,
Fedorov andHackl (1997) touch thesemodels in their book and derive an equivalence theorem,
Liski et al. (2002) and Luoma (2000) give special results for linear and quadratic regression.

In the last years the demand for optimal or at least e�cient designs inmixedmodels has strongly
increased, which was also caused by the introduction and acceptance of population pharma-
cokinetic modeling in drug development. Besides this, there are also other areas, in which
mixed models gained popularity, like agriculture, psychology or market research.

Population pharmacokinetic modeling is a development of the recent thirty years, starting
probably with a row of publications by Sheiner (Sheiner et al. (1972), Sheiner et al. (1977),
Sheiner and Beal (1980), Sheiner and Beal (1981)).  e population approach is an alternative
to the ordinary pharmacokinetic evaluation of a drug, where the concentration pro�les are
individually assessed for each subject and a dense sampling scheme is needed.  ose phar-
macokinetic studies are usually phase I studies and the samples are obtained from few healthy
volunteers. In contrast, in population pharmacokinetic studies, few blood samples from many
subjects are evaluated together in one model assuming that the same regression functions can
be used for all subjects, however, with di�erent parameter sets for the di�erent individuals
modeled by random e�ects. A further di�erence is that population pharmacokinetic investiga-
tions are usually carried out in the target population for the drug to assess the variability of the
pharmacokinetic parameters of the substance.

As in all controlled investigations, planning of the experiment is a very crucial thing. By an
insu�ciently planned clinical study unnecessary many subjects might be included or unnec-
essary many blood samples might be taken, which is both costly and unethical. In the worst
case, the objectives of the study cannot be investigated with the collected data, and the study is
worthless.

 e popularity of population pharmacokinetic modeling has led to an increased number of
publications on optimal design approaches for these studies. A large part of the literature has
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1 Introduction

appeared in pharmaceutical journals treating practical design issues for speci�c concrete stud-
ies (see Mentré et al. (2001),Retout et al. (2002), or Hennig et al. (2006) besides others).

In this thesis the design problem in mixed models is investigated from a more theoretical per-
spective.  eoretical results are given, which are mainly not based on a speci�c kinetic model
or criterion. Nevertheless, examples from the practical context of pharmacokinetics are given
wherever appropriate.  e actual calculation of optimal designs plays aminor role in this thesis,
since similar algorithms as known for ordinary regression models can be used. Other standard
optimization approaches like simulated annealing (see Du�ull et al. (2002)) or a simplex algo-
rithm (see Retout and Mentré (2003)) have also already been discussed for this purpose in the
literature.

 e thesis is organized as follows.

Chapter 2 gives an introduction to the area of pharmacokinetics.  e most relevant models,
namely the compartment models, and the parameters commonly used therein are described.
Furthermore, the idea of the population approach to pharmacokinetics is motivated. In Chap-
ter 3 some of the existing theory of experimental design for ordinary linear models is summa-
rized.  e chapter serves as a starting point for later theoretical investigations in the mixed
model situation. Chapters 4 and 5 give an introduction to the linear and non-linear models
that will be used throughout this thesis. A special emphasis is laid on the random coe�cient
regression model, which is a special case of the mixed model commonly used in population
pharmacokinetics. In Chapter 6 the term “design” is formally de�ned for the mixed model sit-
uation.  e de�nition is based on a similar hierarchical structure as used in the de�nition of
the models. Di�erent representations of the information matrices of designs for mixed models
are given. It is shortly discussed which criteria might be useful for evaluating designs in the
mixed model case. In Chapter 7 special results are given for criteria only based on the popula-
tion mean parameters. It is shown that the set of candidate designs can be drastically restricted
without losing quality. In Chapter 8 the convex design theory described in Chapter 3 for the
ordinary linear model is transfered to the mixedmodel case. Equivalence theorems are derived
for di�erent situations. In Chapter 9 issues are addressed that can arise when theoretically op-
timal designs are implemented in practical studies.  e results of this thesis are discussed in
particular under this perspective.

2



2 Introduction to Pharmacokinetic
Modeling

In this chapter we want to give a brief introduction to the topic of pharmacokinetics. We do
not go into any detail regarding the pharmacological or physiological background, but rather
give a short description from the point of view of modeling. We introduce some of the most
commonmodels and terms, as we will need them in the later chapters for the examples and the
motivation of the discussed problems. In the description of the models we mainly follow the
book of Derendorf et al. (2002). In the last section of this chapter we describe the idea of the
population approach to pharmacokinetic modeling.
We start with a de�nition of the term pharmacokinetics that can be found in the Internet ency-
clopedia Wikipedia (2006).

Pharmacokinetics is a branch of pharmacology dedicated to the study of the time course of
substances and their relationship with an organism or system. In practice, this discipline
is appliedmainly to drug substances, though in principle it concerns itself with allmanner
of compounds residing within an organism or system, such as nutrients, metabolites,
endogenous hormones, toxins, etc. So, in basic terms, while pharmacodynamics explores
what a drug does to the body, pharmacokinetics explores what the body does to the drug.

 e aim of pharmacokinetic studies is, therefore, to collect data, for example from blood sam-
ples, to be able to describe and model the time course of the concentration of a substance
in the body. One wants to gain quantitative information about the absorption, distribution,
metabolism, and elimination of a drug in the body. A usual way to do this is by �nding a
structural model that describes the collected data appropriately and whose parameters are in-
terpretable by the pharmacokineticist.

2.1 Models

 emost commonly used models to describe the time course of a drug concentration are com-
partment models. Here, the body is thought to be subdivided into several compartments. By
this it can be taken into account that the drug is not distributed to all parts of the body in the
sameway andwith the same speed.  e compartments, though, do not necessarily need to have
a physiological interpretation. We concentrate on models with linear kinetics, where the con-
centrations are proportional to the dose and the rate of elimination of the drug is proportional
to the concentration. In general much more complex models can be thought of.
 e most simple one of these models is obviously the one-compartment model.

3



2 Introduction to Pharmacokinetic Modeling

D

ke
X1

Vc

(a)

Time

C
on

c

(b)

Figure 2.1: One-compartment model without absorption. (a): Structural model, (b): typical time
course.

2.1.1 One-compartment models

 e organism is here seen as one system in which all body 
uids are in a balance of 
ow. For
thesemodels one assumes that the distribution of the drug in the body happenswithin a negligi-
ble period of time, that is, the concentration of the drug in the organism is the same anywhere
in the body at any time. Depending on the form of application, for example bolus injection,
tablet, or infusion, the speed of the absorption of the drug in the body, however, can di�er.

One-compartment model without absorption

In the case of an intravenous bolus injectionwe can assume that thewhole amount of the drug is
immediately absorbed into the compartment. So, in this case the absorption phase is negligible
short.  e elimination of the drug out of the body is usually modeled by a so-called �rst-order
kinetics, where the speed of the elimination is proportional to the amount of the drug that is
still le� in the compartment.

 e easiest way to describe this mathematically is by a simple initial value problem of the form

dX1(t)
dt

= −keX1(t),
X1(0) = D,

where X1(t) is the amount of drug in themain (central) compartment, ke is the elimination rate
constant andD is the given dose. Figure 2.1(a) shows a graphical illustration of this process.  e
solution for X1(t) of this initial value problem is

X1(t) = De−ket

and, hence, the concentration C(t) at time t can be modeled by

C(t) = X1(t)
Vc
=
D
Vc

e−ket,
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2.1 Models

where Vc is the volume (or rather the “volume of distribution”, see Section 2.2) of the compart-
ment. Figure 2.1(b) shows a typical time course of the concentration in this model.

 emost common form of application, however, is the oral application in form of tablets. Here,
the whole amount of the drug does not instantly reach the compartment, but it takes some time
until the drug is absorbed. For the moment, however, we will still assume that there are no dif-
ferences of the concentration within the body, that is, we still consider only one compartment.

One-compartment model with first-order absorption

Similar to the elimination process of the drug in the previousmodelwe nowassume that also the
absorption process of the drug follows a �rst-order kinetics.  us, the speed of the absorption
is assumed to be proportional to the amount of drug that has not yet been absorbed. We can
describe this process of the absorption and elimination by an initial value problem of the form

dX1(t)
dt

= kaX2(t) − keX1(t),
dX2(t)
dt

= −kaX2(t)

with initial conditions
X2(0) = D and X1(0) = 0.

Here, X2(t) represents the amount of drug that has not yet been absorbed until time t, ka is
the absorption rate constant, and X1 and ke have the same meaning as before. Figure 2.2 gives
a graphical illustration of the structure of this model.

D

keX1

Vc

kaX2

Figure 2.2: Structure of a one-compartment model with absorption.

 e closed form solution for the concentration as a function of time is the so-called Bateman
function given by

C(t) = X1(t)
Vc
=

Dka
Vc(ka − ke) �e

−ket
− e−kat� .

O�en, depending on the form of application, not the whole amount of drug is absorbed. To
model this a factor F is introduced in front of the dose D that gives the fraction of the amount
of drug that is available to the organism.  is constant F depends on the form of application

5



2 Introduction to Pharmacokinetic Modeling

and is called bioavailability.  at means the concentration is usually modeled by

C(t) = FDka
Vc(ka − ke) �e

−ket
− e−kat� .

For a bolus injection this constant is 1 and could hence be omitted.
Figure 2.4(a) shows a typical time course of the concentration in this model on the semi-
logarithmic scale.

2.1.2 Two-compartment models

Up to now we assumed that the absorbed amount of drug will be instantaneously distributed
within the whole organism.  at is, the process of the distribution of the drug within the body
was not modeled. O�en, however, it can take some time until the concentrations of the sub-
stance in all body liquids are in balance, making it necessary to consider more than just one
compartment.
Exemplarily we consider the two-compartment model with �rst-order absorption.

Two-compartment model with first-order absorption

Compared to the respective one-compartment model, we now introduce an additional so-
called peripheral compartment.  e drug is absorbed and eliminated via the central compart-
ment only. However, there is an exchange between the central and the peripheral compartment
modeled by �rst-order kinetics.  e process is illustrated in Figure 2.3.

ka

D

ke

kpcVc Vp

X2 X1 X3kcp

Figure 2.3: Two-compartment model with �rst-order absorption

Mathematically the model can be described by the following system of di�erential equations

dX1(t)
dt = −(ke + kcp)X1(t) + kaX2(t) + kpcX3(t),

dX3(t)
dt = kcpX1(t) − kpcX3(t),

dX2(t)
dt = − kaX2(t)

6



2.1 Models

with initial conditions

X1(0) = 0, X2(0) = D, and X3(0) = 0.

 eparameters kcp and kpc are the rates of 
ow from the central to the peripheral compartment
and vice versa.  e solution for the concentration in the central compartment is a function of
the form

C(t) = ae−αt + be−βt − (a + b)e−kat,
where the constants a, b, α, and β can be expressed by ke, kcp, kpc, andVc. Note that usually only
the concentrations in the central compartment are of interest, as there is o�en no physiological
counterpart to the modeled peripheral compartment.

In the Figures 2.4(a) and 2.4(b) one can see the di�erence in the shape of the time courses
of a one- and a two-compartment model on the log scale. In the one-compartment model
two phases can be identi�ed, an absorption phase, where the concentration increases very fast,
and an elimination phase, where the concentration decreases exponentially (linear on the log
scale). In the two-compartment model we can additionally see a distribution phase expressed
by a strong decay of the concentration. In this phase the drug is distributed from the central
compartment to the other compartment until the concentrations are balanced while already
being eliminated. A�er a balance of the concentrations is reached, the elimination process
outweighs.
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Figure 2.4: Time course (on the log scale) of the concentration in (a) a one-compartment model with
�rst-order absorption and (b) a two-compartment model with �rst-order absorption.

2.1.3 Multiple-dose experiments

O�en a drug is administered not only once but regularly in certain time intervals. For example,
one could imagine tablets that are taken every day in the morning. When the drug has not
yet been completely eliminated when the next dose is taken, the remaining amounts in the
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2 Introduction to Pharmacokinetic Modeling

compartments have to be taken into account as initial values in the di�erential equations for the
modeling of the concentrations in the next dosing intervals. For the one-compartment model
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Figure 2.5: Concentration in a one-compartment model with �rst-order absorption in a multiple-
dose experiment.

with zero-order absorption the concentration at time t a�er the n-th dose can be calculated by
the following formula (see Derendorf et al. (2002), p. 55)

C(t; τ,n) = FDka
Vc(ka − ke) �

1 − e−nkeτ

1 − e−keτ
e−ket −

1 − e−nkaτ

1 − e−kaτ
e−kat� ,

where τ is the time interval between the administrations, t is the time since the last application,
and n is the number of the repetition. A�er a certain time (approximately �ve times the half-life
of the drug) the concentration curve reaches a steady-state where the concentration 
uctuates
between a constant maximal and a constant minimal level. Figure 2.5 shows an example of
the time course of the concentration of a one-compartment model with �rst-order absorption,
where the drug is taken every twelve hours. By letting n go to in�nity in the previous formula
we get the expression for the concentration curve in the steady-state

C(t; τ) = FDka
Vc(ka − ke) �

e−ket

1 − e−keτ
−

e−kat

1 − e−kaτ
� .
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2.2 Important pharmacokinetic parameters

For the two-compartment model with zero-order absorption we obtain similar formulas for
the concentrations in multiple-dose applications. We get

C(t; τ,n) = a1 − e
−nατ

1 − e−ατ
e−αt + b

1 − e−nβτ

1 − e−βτ
e−βt − (a + b)1 − e

−nkaτ

1 − e−kaτ
e−kat

for the concentration at time t a�er the n-th drug intake and

C(t; τ) = a e−αt

1 − e−ατ
+ b

e−βt

1 − e−βτ
− (a + b) e−kat

1 − e−kaτ

for the steady-state concentrations (see Derendorf et al. (2002), p. 74).

2.2 Important pharmacokinetic parameters

In this sectionwewant to list and explain several o�en used pharmacokinetic parameters. Some
of them have already been used in the formulas in the previous section.

tmax  e time of maximum concentration.

cmax  emaximum of the concentration pro�le, i. e. C(tmax).
AUC  e integral (area) of the concentration curve. (AUC = Area under the Curve)

Vc (and) Vp  e volumes of distribution. For apparent reasons the true volume of the blood
(or another 
uid) in the body can usually not be assessed. A theoretical volume, the so-
called volume of distribution, however, can be easily calculated by dividing the amount
of drug that is in the body by the concentration of the drug in the 
uid

Vc =
X
C
.

 us, the volume of distribution is a factor that relates the concentration to the total
amount of drug present in the compartment. Usually the volume of distribution di�ers
from the true volume of the compartment as o�en a part of the drug is bound in the tissue
or the solution of the drug is not homogeneous.  e volume of distribution corresponds
to the volume of a homogeneous solution with the respective concentration that would
be necessary to contain the total amount of the drug.

F  e bioavailability describes the fraction of the administered dose that reaches the system.
By de�nition, for a bolus injection the bioavailability is 1. For oral application the bioavail-
ability is usually lower than 1, for example due to incomplete absorption.  e absolute
bioavailability of a non-intravenous administration of a drug is the AUC of the non-
intravenous application divided by the AUC of the intravenous application.

Cl  e clearance is de�ned as the amount of plasma that is cleared of the drug within unit
time.  e units of clearance are given in terms of volume~time. For the one-compartment
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2 Introduction to Pharmacokinetic Modeling

model the clearance is keVc. For more-compartment models di�erent types of clearance
can be de�ned. However, we do not want to go into detail here.

With these parameters the models introduced in the previous sections can be described with
di�erent parameterizations. For example, the one-compartment model is o�en expressed with
the parameters ka, Cl, and Vc.

C(t) = FDka
Vcka − Cl

�e− Cl
Vc

t
− e−kat� . (2.1)

Note that themodel in Eq. (2.1) is overparameterized.  e bioavailability parameter F is usually
not estimated, if the model is �tted to data.

 e two-compartment model can be parameterized by ka, Cl, Q, Vc, and Vp. Here, Q is also a
clearance parameter, for which kcp = Q~Vc and kpc = Q~Vp holds.

An extensive list with pharmacokinetic models and di�erent parameterizations can be found
in the documentation to the pharmacokinetics so�ware package ADAPT II (D’Argenio and
Schumitzky (1997)).

2.3 The population approach

 e �rst investigations of the pharmacokinetic parameters of a drug are usually done in a non-
parametric way.  e drug is applied to healthy volunteers in a phase I study and blood samples
are taken in a dense scheme so that parameters like Cmax or tmax can be directly read out of the
data or easily be calculated, like the AUC using the trapezoidal rule.

 e data can then also be used to develop a model for the behavior of the drug in the body to
be able to predict concentrations to be expected if di�erent doses or multiple doses are given.

One aim of pharmacokinetic studies in later phases of the clinical development is to assess
the variability of both the kinetic parameters as well as the concentrations within the target
population of ill subjects the drug is designed for.  is can be donewith the so-called population
approach, which is becoming more and more accepted by the authorities. A de�nition to this
approach can be found in the FDA guidance for industry “Population Pharmacokinetics” (FDA
(1999)):

“Population pharmacokinetics is the study of the sources and correlates of variabil-
ity in drug concentrations among individuals who are the target patient population
receiving clinical relevant doses of a drug of interest.”

To be able to assess the variability, the kinetic parameters and the time course of the concentra-
tions has to be obtained for the whole sample population. In trials within the target population
of ill patients it is usually not possible to get blood samples in a dense sampling scheme due
to logistical, economical, and, most important, ethical reasons. It is hence not possible to �t
independent concentration pro�les for each single individual.
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Figure 2.6: Concentration pro�les for di�erent individuals in a population pharmacokinetic model.
 e dashed line denotes the estimated pro�le of the “mean” individual.  e solid lines denote the pre-
dicted individual pro�les obtained by using empirical-Bayes estimates for the individual parameters.

 e concentration pro�les of the individuals look very similar with respect to the shape but can
substantially di�er one from another. We can, however, assume that the underlyingmechanistic
model that describes the absorption, distribution, and elimination of the drug is the same for all
individuals.  is justi�es to assume that the same regression function(s) for all individuals can
be used, butwith di�erent parameters for each individual.  e standard approach in population
pharmacokinetics is to model the variability of the pro�les between the individuals by the use
of random parameters.  us, each individual has its own vector of individual pharmacokinetic
parameters, which is the realization of a random vector.  e mean parameter vector results in
the pro�le of a typical individual. Froma statistical point of view this approach is based on linear
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2 Introduction to Pharmacokinetic Modeling

or non-linear mixed models that we will describe in the Chapters 4 and 5. Figure 2.6 shows a
typical scenario of a population pharmacokinetic study. Each of the panels in the plot describes
the data for one individual.  e circles denote the actual measurements, the dashed line shows
the population mean curve, that is, the curve of a typical individual of the population.  e
solid line describes the prediction for the individual concentration pro�le, which are obtained
by using the empirical-Bayes estimates for the individual parameters.
One of the pioneers in using and promoting this kind of modeling is L. B. Sheiner (see e. g.
Sheiner and Beal (1980), Sheiner and Beal (1981), Sheiner and Wake�eld (1999)), who is also
one of the authors of the most o�en used so�ware package for the analysis of population phar-
macokinetic data NONMEM (see Beal and Sheiner (1989)).
 e acceptance of this approach also by the regulatory side can be seen in two recent guidelines
of the European authority EMEA.  e dra� “Guideline on reporting the results of population
pharmacokinetic analysis” (EMEA-CHMP (2006a)) gives speci�c guidance what elements of
the population pharmacokinetic analysis are considered important by the authorities and how
they should be published. In the “Guideline on the role of pharmacokinetics in the development
of medicinal products in the paediatric population” (EMEA-CHMP (2006b)) the use of the
population approach is explicitly encouraged to obtain pharmacokinetic data for children of
substances that have already been approved for adults.

“Population pharmacokinetic analysis, using non-linear mixed e�ects models, is
an appropriate methodology for obtaining pharmacokinetic information in paedi-
atric trials both from a practical and ethical point of view. Mean and variances are
estimated and information from all individuals is mergedmaking it possible to use
sparse sampling schemes.” (EMEA-CHMP (2006b))

An example of a population pharmacokinetic study designed for a paediatric population is
given in Mentré et al. (2001).
Although sparse sampling schemes are used in population pharmacokinetic studies it is still
important to keep the number of blood samples and the number of patients as low as possible
as each blood sample not only causes costs but also pain to the patient. It is therefore crucial to
carefully plan the experiment and to select optimal sampling schemes that allow good parame-
ter estimates, as it would be even more unethical if a study ends up with unreliable results.  is
careful planning is also recommended by the authorities:

“ e population approach may replace conventionally designed pharmacokinetic
studies with rich sampling. Simulations or theoretical optimal design approaches,
based on prior knowledge, should be considered as tools for the selection of sam-
pling times and the number of subjects.” (EMEA-CHMP (2006b))

 e amount of literature on optimal design approaches for population pharmacokinetic stud-
ies has steadily increased since the 1990s. Starting with simulation based approaches as in Al-
Banna et al. (1990) or Wang and Endrenyi (1992), it is up to now usually based on an approxi-
mation of the Fisher information matrix as given by Mentré et al. (1997) or Retout et al. (2001).
Examples for studies with optimized designs are given inGreen andDu�ull (2003), Retout et al.
(2002) besides others.
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3 Experimental Design in the
Ordinary LinearModel

 is chapter is thought as a short introduction to the topic of optimal design of experiments.
Important terms and de�nitions from the well-established theory of experimental design for
ordinary linear models are introduced. Later we will use them as a basis to derive results for the
mixedmodel case.  e foundation for this chapter are the books by Silvey (1980), Atkinson and
Donev (1996), and Fedorov and Hackl (1997), as well as the introductory chapter in Schwabe
(1996). A deeper mathematical background to the theory of optimal design can be found in the
books by Pázman (1986) and Pukelsheim (1993).

In Section 3.1 the considered ordinary linear model is described. Section 3.2 introduces all
the important terms that are used in connection with designed (planned) experiments. In the
remaining sections the concept of optimality criteria is introduced, which are used to evaluate
the quality of the experimental designs, and some fundamental background on convex design
theory is given.

3.1 Model

 roughout this chapter we consider a simple ordinary linear model of the form

Yi = f(xi)�β + εi, i = 1, . . . ,m, (3.1)

whereYi denotes the ith observation conducted under the experimental settings xi and f(xi) =
(f1(xi), . . . , fp(xi))� is a vector of known real-valued regression functions evaluated at xi. For
technical reasons we assume that the experimental settings xi are elements of a compact set X
called design region and that the regression functions are continuous on X .  is implies that
the so-called design locus f(X ) = �ySy = f(x), x > X � is also a compact set, which will later
assure the existence of optimal designs.  e p-dimensional parameter vector β is unknown and
is of primary interest to be estimated.  e observational errors εi, i = 1, . . . ,m have zero mean,
a constant variance σ2 and are assumed to be uncorrelated. It is o�en useful to summarize all
observations to Y = (Y1, . . . ,Ym)� and to use matrix/vector notation to express the model for
all observations as

Y = Fβ + ε,

where F = (f(x1), . . . , f(xm))� is called design matrix and ε = (ε1, . . . , εm)� is the vector of
observational errors. With the assumptions on the variances and correlations from above we
get that E(Y) = Fβ and Cov(Y) = Cov(ε) = σ2Im.
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3 Experimental Design in the Ordinary Linear Model

If (F�F) is regular then according to the well-known Gauss-Markov theorem (see e. g. Chris-
tensen (1987), p. 29) the best linear unbiased estimator (BLUE) for the parameter vector β is
the least-squares estimator

β̂ = (F�F)−1F�Y.
 e covariance matrix of the estimator β̂ is

Cov(β̂) = σ2(F�F)−1.

In the case that (F�F) is singular, no linear unbiased estimator for β exists. However, frequently
the interest lies only on a linear aspect φ of the parameter vector β, i. e. on a function φ of the
form φ(β) = Lφβ. For the estimation of φ(β) the assumption of the regularity of F�F can be
relaxed to just the requirement that φ has to be identi�able, that is, we only need that Lφ = QF
for some matrixQ. In this case the best linear unbiased estimator for φ(β) is given by

φ̂ = Lφ(F�F)−F�Y,

where (F�F)− is an arbitrary generalized inverse of F�F.  e covariance matrix of φ̂ is then

Cov(φ̂) = σ2Lφ(F�F)−L�φ.

3.2 Designed experiments

As we just saw in the previous section the covariance matrices of β̂, and φ̂ resp., depend on
the design matrices F and with that on the experimental settings xi. In many cases the settings
xi > X at which the observations are to be taken can be chosen by the investigator.  is makes
it reasonable to try to “design” the experiment in a way that the estimates can be obtained with
the highest precision possible. For this we �rst formally de�ne the term design.

De�nition 3.1 An (exact) design d of size m is a vector (x1, . . . ,xm) of possible experimental
settings xi > X , i = 1, . . . ,m.

For a given design d = (x1, . . . ,xm) the corresponding linear model has the form

Y(d) = F(d)β + ε,

where F(d) = (f(x1), . . . , f(xm))� is the corresponding design matrix.
If the experiment is conducted using design d, then Cov(β̂) = σ2(F�(d)F(d))−1 and Cov(φ̂) =
σ2Lφ(F�(d)F(d))−L�φ respectively. As we can see, all the information provided by the design d is
contained in F�(d)F(d) justifying the term information matrix:

De�nition 3.2 Consider an ordinary linear model as de�ned in Section 3.1 and a design d of size
m as de�ned in De�nition 3.1.  en

M(d) = 1
m
F�(d)F(d)
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3.2 Designed experiments

is called the (normalized) information matrix of the design d.

If replications of the observations at the chosen experimental settings occur, a design d of size
m can alternatively be expressed by its k di�erent settings x1, . . . ,xk and the corresponding
numbers of replicationsm1, . . . ,mk withPmj = m, i. e.

d � � x1 . . . xk
m1 . . . mk

� .

 e information MatrixM(d) can then be calculated by

M(d) =
k

Q
j=1

wjf(xj)f(xj)�

with wj =
mj
m , which is the same as

M(d) = F�(d)WF(d),

whereW = �w1 0
�

0 wk
� and F(d) = (f(x1), . . . , f(xk))�. Note, that although we used the same

symbol F(d) as before, the design matrix now contains each of the di�erent settings xi only
once, i. e. F(d) >Rk�p.

Note, that a linear aspect φ(β) = Lφβ is identi�able using the design d if there exists a matrix
Q̃ for which Lφ = Q̃M(d).
Due to the normalization the information matrix M(d) is independent of the actual number
of observations m but only depends on the proportions wi of observation to be taken at the
di�erent xi.

Every design d can be associated with a design measure ξ(d) de�ned by

ξ(d) =
k

Q
j=1

wjδ�xj�,

where δ�x� denotes the one-point measure in x.  e information matrix of d can then be cal-
culated as an integral with respect to ξ(d):

M(d) = S f(x)f(x)�ξ(d)(dx).

 enatural aim is to �nd designs that allow the estimation of the parameter vector (or an aspect
of the parameters) with the highest possible precision. As the set of exact designs of sizem is a
discrete and, hence, non-convex set, it is too sparse for the usual optimization processes (Kiefer
and Wolfowitz (1959)).  erefore, the assumption that mwj is an integer is o�en dropped and
arbitrary weights wj C 0, j = 1, . . . , k with Pwj = 1 are allowed, which leads to the class of
approximate designs.
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De�nition 3.3 ξ is called approximate design on X if ξ = Pk
j=1wjδ�xj� for some xj > X and

weights wj C 0, j= 1, . . . , k,Pwj = 1 and k >N.

 is set of approximate designs is convex and, hence, easier to handle. If the closure of this set
is taken, the set of all probability measures on X is reached.  is leads to a very general design
de�nition.

De�nition 3.4 ξ is a design (design measure) on X if ξ is a probability measure on X .  e set of
all designs on X will be denoted by Ξ.  e set of designs under which a certain linear aspect φ is
identi�able will be denoted by Ξφ.  e set of designs under which the whole vector β is estimable
will be denoted by Ξβ. Designs, for which not the whole vector β is identi�able will be called
singular or non-regular as then the corresponding information matrix is singular.

 e set of all possible information matrices

M �= �M(ξ); ξ > Ξ�

is convex as αM(ξ1)+ (1− α)M(ξ2) =M(αξ1 + (1− α)ξ2) >M holds due to the linearity of the
integral. Moreover,M is the convex hull of the set of information matrices belonging to the
one-point design measures.

From the point of view of information matrices it can be shown with Caratheodory’s theorem
(see Silvey (1980), p. 72) that it is su�cient to investigate only designs (design measures) with a
�nite number of support points, that is, approximate designs in the sense of De�nition 3.3.

 eorem 3.5
For every design ξ > Ξ there is an approximate design ξ̃ = Pk

j=1wjδ�xj� with k B
1
2p(p+ 1) + 1

which satis�esM(ξ) = M(ξ̃). IfM(ξ) is on the boundary ofM there is a design ξ̃ with at most
1
2p(p+ 1) support points which satis�esM(ξ̃) =M(ξ).

 e proof is based on the fact, thatM can be identi�ed with a convex subset of R 1
2 p(p+1) as

all elements ofM are symmetric p� p-matrices. Furthermore,M is the convex hull of the
information matrices of the one-point design measures. Caratheodory’s theorem states that
every element of the convex hull of a subset S of an n-dimensional Euclidean space can be
expressed as a convex combination of at most n + 1 elements of S and by at most n elements if
it lies on the boundary of the convex hull.

We can therefore restrict our attention to designs with �nite support. From now on for sim-
plicity we will make no di�erence between the terms design and design measure.

3.3 Optimality criteria

In this section we consider the question on how to evaluate and compare the quality of designs.

In the simple case where β is only one-dimensional this question can easily be answered. It is
reasonable to consider a design ξ� to be optimal for the estimation of β if β is identi�able and
if the variance σ2M(ξ)−1 is minimized by ξ�.
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In the case where β has dimension greater than one, the situation is not so clear. A natural
extension would be to call a design optimal if β is identi�able and all one-dimensional linear
aspects can be estimated with the smallest variance, i. e. ξ� would have to minimize c�M(ξ)−1c
for all p-dimensional vectors c.  is is equivalent to the condition that the optimal ξ� would
have to minimizeM(ξ)−1 with respect to the Loewner partial ordering of non-negative de�nite
matrices. Such a uniformly optimal design, however, can only be found in vary rare situations.

 e way out of this situation is to evaluate the designs with respect to real-valued functionalsΦ
of the information matrixM(ξ) or its inverseM(ξ)−1. Φ should be chosen in a way that it �ts
reasonably well to the needs of the experimenter. Designs that minimizeΦ(M(ξ))will then be
calledΦ-optimal. Many di�erent criteria have been proposed in the literature. In the following
we will introduce only some of them.

We start with the popular D-criterion, where the determinant of the information matrix has
to be maximized.  is choice can be motivated by the fact, that under normality assumption
(or asymptotically) a D-optimal design minimizes the volume of a con�dence ellipsoid for the
parameter vector.

De�nition 3.6 A design ξ� is called D-optimal ifM(ξ�)minimizes

ΦD(M) = − log det(M)

onM or equivalently
det(M(ξ�)) C det(M(ξ))

for all ξ > Ξ.

One feature of the D-criterion is that the optimal designs are invariant with respect to a repa-
rameterization of the form β̃ = Aβ, as for a regularmatrixA themaximization ofdet(A�M(ξ)A)
= det(A�)det(M(ξ))det(A) is independent of A.
Tightly connected to the D-criterion – as we will see in the next section – is the G-criterion.
Here, one is interested in minimizing the maximal variance of the point-wise prediction of the
response within the design region X .

De�nition 3.7 A design ξ� is called G-optimal if

ΦG(M) =max
x>X

f(x)�M−1f(x)

is minimized byM(ξ�), that is,

max
x>X

f(x)�M(ξ�)−1f(x) Bmax
x>X

f(x)�M(ξ)−1f(x)

for all ξ > Ξβ.

An interesting class of optimality criteria are the linear criteria, where functionals that are linear
in the inverse of the information matrixM(ξ) are minimized. Examples are the A-, the c-, or
the IMSE-criterion.
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With the A-criterion designs are chosen that minimize the expected mean squared deviation
of the parameter estimates, which is given by the trace of the inverse of the information matrix:

De�nition 3.8 A design ξ� is called A-optimal if

tr(M(ξ�)−1) B tr(M(ξ)−1)

for all ξ > Ξβ, that is, if ΦA(M) = tr(M−1) is minimized by the information matrix of ξ�.

 e c-criterion is used if one wants to estimate a one-dimensional linear function φ(β) = c�β
as good as possible.

De�nition 3.9 A design ξ� > Ξc is c-optimal if

c�M(ξ�)−c B c�M(ξ)−c

for all ξ > Ξc, that is, if Φc(M) = c�M−c is minimized by ξ�.

 e c-criterion can also be used if the interest lies on the estimation of a non-linear function of
β. We will discuss this in Section 6.3.1.

Similar to the G-criterion the IMSE-criterion is also based on the variance function for the
point-wise predictions on the design region. Now, however, we are interested in minimizing
the expected integrated mean squared error of the prediction over the design region X

E�S
X
(f(x)�β − f(x)�β̂)2 µ(dx)��min,

where µ is a measure on the design regionX .  is is equivalent to �nding a design ξ� such that
M(ξ�)minimizes

Φ(M) = S
X
f(x)�M−1f(x) µ(dx) = tr��S

X
f(x)f(x)� µ(dx)�M−1� ,

which is again a criterion that is linear in M−1. Note that all introduced linear criteria can be
brought to the general formΦ(M) = tr(LM−1) with an appropriately chosen matrix L.

3.4 Convex design theory

All the criteria described in Section 3.3 share the following two properties which allow the
derivation of theoretical results and the construction of optimization algorithms:

Monotonicity: M1 CM2 Ô� Φ(M1) B Φ(M2),
that is, a design that is uniformly better than another one will also be judged as a better
design by the optimality criterion, where ’B’ denotes the Loewner partial ordering of
non-negative de�nite matrices.
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Convexity: Φ(αM1 + (1 − α)M2) B αΦ(M1) + (1 − α)Φ(M2) for α > [0, 1]
 is condition assures that no local minima can occur. If Φ is strictly convex the opti-
mal information matrix is unique.  is, however, does not imply the uniqueness of the
optimal design as two designs can share the same information matrix.

Note, however, that we do not give a strict formal de�nition of the term optimality criterion as
in Ga�e and Heiligers (1996) but will use the term for any real-valued function on the set of
non-negative de�nite matrices.

 e requirements that the design regionX should be compact and that the vector of regression
functions f has to be continuous on X ensures that the setM of possible information matrices
is a compact convex set (see Pukelsheim (1993), p. 29).  is ensures the existence of aΦ-optimal
design for the considered criteria.

If Φ is even strictly decreasing, the optimal information matrix has to be on the boundary
ofM and hence an optimal design with at most 1

2p(p+ 1) support points can be found (see
 eorem 3.5).

To give some further results that can be found in Silvey (1980), we de�ne the following direc-
tional derivative (Silvey (1980), p. 18):

De�nition 3.10  e Fréchet derivative of Φ atM1 in direction ofM2 is given by

FΦ(M1,M2) = lim
α�0

1
α
[Φ((1 − α)M1 + αM2) −Φ(M1)] .

 e Fréchet derivative can also be de�ned by

FΦ(M1,M2) = d
dα

Φ((1 − α)M1 + αM2)V
α=0+

.

If Φ is di�erentiable in M1 in the usual sense (see Silvey (1980), Appendix 3, or Rockafellar
(1972), p. 241), then FΦ(M1,P aiM2i) = P aiFΦ(M1,M2i) holds for αi >R withPi αi = 1.

We will now quote several theorems that can be found in Silvey (1980), pp. 19, in a similar form.

 eorem 3.11 (cf. Silvey (1980), eorem 3.6)
Let Φ be convex onM, then ξ� Φ-optimal if and only if

FΦ(M(ξ�),M(ξ)) C 0 for all ξ > Ξ.

Figuratively, this means that a design is optimal if it does not improve if it is slightly changed in
the direction of any other design. Under the condition of di�erentiability it is su�cient to check
if the design is improved if it is changed in the direction of any one-point design measure.

 eorem 3.12 (cf. Silvey (1980), eorem 3.7)
Let Φ be convex onM and di�erentiable atM(ξ�) then ξ� is Φ-optimal if and only if

FΦ (M(ξ�) ,M(δ�x�)) = FΦ (M(ξ�), f(x)f(x)�) C 0 for all x > X .
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3 Experimental Design in the Ordinary Linear Model

 eorem 3.13 (cf. Silvey (1980), eorem 3.9)
Let Φ be convex onM, di�erentiable at all points ofM+

= �M >M � Φ(M) < ª�, and let a
Φ-optimal design exist, then ξ� is Φ-optimal if and only if

min
x>X

FΦ (M(ξ�), f(x)f(x)�) =max
ξ

min
x>X

FΦ (M(ξ), f(x)f(x)�) .

 e famous theorem of the equivalence of D- and G-optimality (Kiefer and Wolfowitz (1960))
is a special case of the  eorems 3.12 and 3.13.

 eorem 3.14 (cf. Kiefer andWolfowitz (1960))
 e following three statements are equivalent

1. ξ� minimizes − log(det(M(ξ))),
2. ξ� minimizesmaxx>X f(x)�M(ξ)−1f(x),
3. maxx>X f(x)�M(ξ�)−1f(x) = p.

 is can be seen from the fact that forΦ(M) = − log(det(M))

FΦ(M1,M2) = tr(M−11 (M1 −M2)) = tr(Ip) − tr(M−11 M2) = p− tr(M−11 M2).

Similar results can be obtained for other optimality criteria.

For linear criteria we get

Corollary 3.15 Let ξ� > Ξβ and Φ(M) = tr(AM−1).  en ξ� is Φ-optimal in Ξβ if and only if

f(x)�M(ξ�)−1AM(ξ�)−1f(x) B tr(AM(ξ�)−1) for all x > X . (3.2)

Note, that this corollary only holds for designs with regular information matrices. Considera-
tions for optimal singular designs can be found, for example, in Silvey (1980), pp. 25.

 ese equivalence theorems can be used to check the optimality of a design at least graphically.
For given ξ� the le�-hand-side of  eorem 3.14 3.) or Eq. (3.2) are functions in x which can
be plotted to check if the maximum lies below the right-hand-side. In Figure 3.1 this is done
for the D-criterion for a simple quadratic regression model, where the number of parameters
p= 3.

 e Fréchet derivatives also help us to construct optimal designs iteratively.  e basic idea is as
follows (see e. g. Silvey (1980), chapter 4). Suppose that we have a design ξn with corresponding
information matrixM(ξn) and that Φ is di�erentiable inM(ξn). If ξn is not Φ-optimal, then
according to eorem 3.12 there exists a point xn+1 > X such that FΦ(M(ξn), f(xn+1)f(xn+1)�) <
0. We can hence get a better design by putting more weight on xn+1 then in ξn, that is, by using

ξn+1 = (1 − αn+1)ξn + αn+1δ�xn+1�

with αn+1 > [0, 1] chosen adequately.
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3.4 Convex design theory
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Figure 3.1: Variance function for the D-optimal design in the quadratic regression model

 ere are di�erent methods for choosing αn+1. One is to chose αn+1 such that Φ decreases
maximally, that is, such that FΦ(M(ξn+1), f(xn+1)f(xn+1)�) = 0.  is is discussed in Fedorov
(1972) for various Φ and referred to as V-algorithm (V for V. V. Fedorov). Another choice is to
�x a sequence αn with αn � 0 andPαn �ª.  is is referred to asW-algorithm (W forWynn)
(see also e. g. Fedorov (1972)). Fedorov (1972) also discusses the convergence of the algorithms
for speci�c criteria.
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4 LinearMixedModels

Although themodels appearing in the �eld of pharmacokinetics are usually of a nonlinear kind,
in this chapter we �rst investigate linear mixed models. As we will see in Chapter 5, where the
nonlinear mixed models are introduced, linear mixed models will also play an important role
in the nonlinear situation. Especially for design problems usually a Taylor approximation of the
nonlinear model function is used resulting in a linear mixed model, that is then used to derive
results.

 e general linear mixed model we use will have more or less the form given by Laird and
Ware (1982).  ese models can be embedded in the more general class of GMANOVAmodels
introduced by Pottho� and Roy (1964).

 ere is a vast amount of literature on the analysis of linearmixedmodels. In this chapterwewill
therefore only give a short summary of the model and its analysis. Most of the topics, especially
the estimation methods, are covered in the books of Verbeke andMolenberghs (2000), Vonesh
and Chinchilli (1997) or Davidian and Giltinan (1995) in much more detail.

In the �rst section we introduce the random coe�cient regression model (RCR model).  is
is a special type of mixed model and it will be the model we mainly deal with in this text.  is
model is extended to a more general form as given by Laird and Ware (1982) in Section 4.2.

In Section 4.3 we give a short review of the estimation techniques for mixed models.

 emost important instrument for design topics, the Fisher information matrix, is introduced
in Section 4.4.

4.1 The random coefficient regression model

In this section we introduce one of themost o�en used type of mixedmodels, the random coef-
�cient regressionmodel (RCRmodel). As all mixedmodels it is a so-called two stagemodel (or
hierarchical model) as it can be built up in two steps. In the �rst stage the variability occurring
within the observations of one individual is modeled, referred to as intra-individual variabil-
ity.  en, in a second step, the variability of the behavior of di�erent individuals is assessed,
referred to as inter-individual variability.

First stage (intra-individual model):

 e jth observation of individual i is modeled by an ordinary linear model of the form

Yi j = f(xi j)�βi + εi j, j= 1, . . . ,mi, (4.1)
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4 Linear Mixed Models

where f(xi j) is a vector of known regression functions evaluated at the experimental setting xi j,
βi is an unknown parameter vector and εi j is a random error term.  e number of observations
mi can be di�erent for the n individuals. In our contextYi j is usually the concentration of a drug
measured in individual i at time xi j a�er the administration.  e experimental settings do not
have to be restricted to be one dimensional, like for example, blood sampling times.  ey can be
elements of a very general design region X like, for example, the Cartesian product of possible
sampling times and possible doses. As in the previous chapter we assume that f is continuous
and that the design region X is compact.
 e p-dimensional vector βi contains the parameters related to the individual.  roughout this
text the observational errors εi j are assumed to be independent identically normally distributed
with zero mean and variance σ2, unless otherwise stated. Some of the results however are not
restricted to the normality of the errors.

 emi observations taken from individual i can be summarized using vector/matrix notation
by

Yi = Fiβi + εi.

Here, Fi �= (f(xi1), . . . , f(ximi))� is the designmatrix associated with the experimental settings
of individual i and εi �= (εi1, . . . εimi)� is the vector of the corresponding observational errors.
 e vectors of observational errors for the di�erent individuals are independently normally
distributed with covariance matrix σ2Imi . Of course more complex forms for this covariance
matrix could be used accounting for heteroscedasticity or dependence of the observational er-
rors within one individual, however this will not be treated in this text.

Second stage (inter-individual model):

Explaining the name “randomcoe�cient regressionmodel”, the vector of individual parameters
(coe�cients) βi is random and modeled as the realization of a random vector described by a
simple multivariate regression model of the form:

βi = β + bi, i = 1, . . . ,n (4.2)

with bi � i. i.d. Np(0,σ2D).  e rationale behind this is the assumption that the observed
individuals are randomly chosen from the whole population. Each individual has then its own
vector of parameters βi which is a realization of of random vector.  e vector β is called vector
of population parameters as it describes the values of a typical individual from the population
and the vector bi is the vector of individual random e�ects and describes the deviation from the
population parameters. Again, for some of the results the assumption of normality of the bi
is not necessary. Of course the model allows that some of the parameters can be �xed for the
whole population if the corresponding rows and columns in the covariance matrixD are set to
zero.

It is assumed that the observational errors and the random e�ects are independent.

We will now have a look at the correlation structure of the observations. Observations from
the same individual are correlated with covariance structureCov(Yi j,Yi j′) = σ2f(xi j)�Df(xi j′),
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4.2 General model

jx j′, while observations coming from di�erent individuals are uncorrelated.  e variance of
a single observation Yi j is Var(Yi j) = σ2[1 + f(xi j)�Df(xi j)].
 en E(Yi) = Fiβ and Cov(Yi) = σ2Vi, with Vi = Imi + FiDF�i .
We now summarize the observations of the whole sample of n individuals to Y = (Y�1 , . . .Y�n)�.
 en

Y = Fβ +Gb + ε,

where F = (F�1 , . . . ,F�n)�, b = (b�1 , . . . ,b�n)�, ε = (ε�1 , . . . , ε�n)�, and

G =
�
�
�

F1 0
�

0 Fn

�
�
�
.

It follows that E(Y) = Fβ and Cov(Y) = σ2V, where

V =
�
�
�

V1 0
�

0 Vn

�
�
�

is block diagonal.

Marginal model:

Under the assumed normality of the random components the RCRmodel induces themarginal
model

Yi � Nmi �Fiβ,σ2(FiDF�i + Imi)� , (4.3)

which is the basis for the estimation in this model.

Example 4.1 One of the most simple examples of an RCR model is the linear regression model
with random intercept. An observation of individual i at xi j is modeled by

Yi j = β0 + bi + xi jβ1 + εi j,

where εi j � N (0,σ2) and bi � N (0,σ2d). In this situation the covariance of two observations Yi j
and Yi j′ does not depend on the chosen settings, but is σ2d (see Schwabe and Schmelter (2006) for
a discussion of design issues for this model).

4.2 General model

 e RCR model ((4.1) + (4.2)) can be extended to a more general mixed model as introduced
by Laird and Ware (1982) and described in Verbeke and Molenberghs (2000) by modeling the
second stage as a multivariate regression model of the form

βi = Kiβ + bi, i = 1, . . . ,n, (4.4)
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4 Linear Mixed Models

where Ki is a known p� qmatrix, β is the (now) q-dimensional population parameter vector,
and bi is de�ned in the same way as for the RCR model. It is assumed that the matrix Ki does
not depend on the experimental settings xi j.
Note, that the RCR model is a special case of the general model where Ki = Ip for all i.
Conditional on bi the expectation of the observations of individual i is then

E(YiSbi) = Fi(Kiβ + bi)

and with that the covariance matrix of Yi is

Cov(Yi) = Cov(E(YiSbi)) + E(Cov(YiSbi)) = σ2(FiDF�i + Imi) = σ2Vi,

which is the same as in the RCR model. As before, observations from di�erent individuals are
uncorrelated.

 e marginal model can then be written as

Yi � Nmi(FiKiβ,σ2(FiDF�i + Imi)). (4.5)

 e model for the vector of all observations Y has the form

Y = GKβ +Gb + ε,

where K = (K�1 , . . . ,K�n)�, and b and G are de�ned as for the RCR model.
For identi�ability reasons we require that K has full column rank; otherwise not the whole
population parameter vector will be estimable.

We close this section with an example to see how this extension of the RCR model might be
useful.

Example 4.2 We consider a very simple study where a drug is administered in two di�erent doses.
One part of the sample population receives a high dose, the other one a low dose. We assume
that the observed response variable is linear in time.  e intercept (baseline measurement) is
supposed to have the same mean in both groups while the slope can be di�erent.  is is modeled
by a 3-dimensional population parameter vector β = (β0,β1,β2)�, where β0 describes the mean
intercept in the population, β1 the mean slope if the high dose is administered and β2 the mean
slope if the low dose is administered.  e model for the jth observation taken from individual i at
the experimental setting xi j can then be formulated by

Yi j = (1 xi j)Ki

�
�
�

β0
β1
β2

�
�
�
+ (1 xi j)� bi1

bi2
� + εi j,

where Ki equals either KH = � 1 0 0
0 1 0 � if individual i was given the high dose or Ki equals

KL = � 1 0 0
0 0 1 � if the individual was given the low dose.  at is, in this example the matrix
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4.3 Estimation

Ki is used to select the parameter set of �xed e�ects depending on which dosage group individual
i belongs to.

4.3 Estimation

In this section we give a short review of the established estimation techniques for linear mixed
models. In Section 4.3.1 we assume that the covariance structure D of the random e�ects is
known. In this case the weighted least squares estimator can be used as best unbiased estimator
for the population parameters. If the covariance structure is unknown, usually a maximum
likelihood approach is used, which is brie
y described in Section 4.3.2.

4.3.1 Estimation of fixed effects for known variance parameters

We will �rst restrict our attention to the RCR model de�ned in Section 4.1.

RCR model

If the matrix D is known, the �xed e�ects (population parameters) can be estimated using the
well known theory for general linear models. Similarly to the discussion of the ordinary linear
model (Chapter 3) we �rst consider the regular case thatFhas full column rank.  en, following
from the Gauss-Markov theorem (see e. g. Christensen (1987), p. 34), the best linear unbiased
estimator for β is the weighted least squares estimator

β̂WLS = �F�V−1F�
−1 F�V−1Y (4.6)

with

Cov(β̂WLS) = σ2 �F�V−1F�
−1
= σ2 �

n

Q
i=1

F�iV−1i Fi�
−1

. (4.7)

Due to the block diagonal structure of the covariance matrix V, the weighted least squares
estimator can be rewritten as

β̂WLS = �
n

Q
i=1

F�iV−1i Fi�
−1 n

Q
i=1

F�iV−1i Yi

= �
n

Q
i=1

F�iV−1i Fi�
−1 n

Q
i=1

F�iV−1i Fiβ̂i,

where β̂i is an arbitrary weighted least squares solution for the individual �rst stage model, that
is,

β̂i = �F�iV−1i Fi�− F�iV−1i Yi.

 is means that the weighted least squares estimator for β is a matrix-weighted average of es-
timates for the individual models.
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4 Linear Mixed Models

SinceViFi = (Imi +FiDF�i )Fi = Fi(Ip+DF�i Fi) = FiUi for some p� p-matrixUi, the individual
weighted least squares solution coincides with an ordinary least squares solution,

β̂i = �F�iV−1i Fi�− F�iV−1i Yi = (F�i Fi)−F�i Yi, (4.8)

according to a result by Zyskind (1967).

If we look at the special case that the numbers of observationsmi and the chosen experimental
settings are the same for all individuals and that Fi = F1, i = 1, . . . ,n has full column rank p,
then the weighted least squares estimator simpli�es to

β̂WLS = (nF�1 V−11 F1)−1
n

Q
i=1

F�1 V−11 Yi =
1
n

n

Q
i=1

β̂i.

Hence, the calculation of the estimator does not require knowledge of the covariance matrix
D, and the weighted least squares estimator coincides with the ordinary least squares estimator
(see e. g. Rao (1967) or Bischo� (1992) for related results, or the discussion in Entholzner et al.
(2005)).

As in the ordinary linear model if F does not have full column rank p, it is still true that

β̂WLS = (F�V−1F)−F�V−1Y (4.9)

is a weighted least squares solution for any choice of the generalized inverse of F�V−1F. More-
over, if the linear aspect φ(β) = Lβ is identi�able, i. e. L = QF for a suitable matrix Q, then
φ̂ = Lβ̂ is the best linear unbiased estimator of φ with covariance matrix

Cov(φ̂) = σ2L�
n

Q
i=1

F�iV−1i Fi�
−

L�. (4.10)

With the arguments from above, if the same experimental settings are chosen for all individuals
and we want to estimate φ(β) = Lβ, then

φ̂ = L �nF�1 V−11 F1�−
n

Q
i=1

F�1 V−11 Yi =
1
n

n

Q
i=1

Lβ̂i

holds and, hence, the estimates again do not depend onD.

General model

In the general model the weighted least squares estimator can be used in the same manner as
in the RCR model. In the formulas one only has to replace F by GK and Fi by FiKi leading to

β̂WLS = �K�G�V−1GK�
−1K�G�V−1Y

= �
n

Q
i=1

K�i F�iV−1i FiKi�
−1 n

Q
i=1

K�i F�iV−1i Yi
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4.3 Estimation

with

Cov(β̂WLS) = σ2 �
n

Q
i=1

K�i F�iV−1i FiKi�
−1

.

Of course, the result that the weighted least squares estimator coincides with the ordinary least
squares estimator in the case that the same settings are chosen for all individuals does not hold
here in general because of the in
uence of the di�erent Ki.

4.3.2 Maximum likelihood estimation

Now, we are looking at the situation that the matrix D is unknown. We assume that D is pa-
rameterized by a v-dimensional vector α, that is,D = D(α). To keep in mind that Vi then also
depends on this vector α we will use the notation Vi = Vi(α). One of the typical cases is that
D is diagonal, where the natural parameterizationD = D(α) = diag(α) can be used.
One possibility to estimate the parameters (see e. g. Davidian and Giltinan (1995) is to perform
the analysis in the same way as the model was constructed: in two steps.  at is, in the �rst step
the parameters βi are estimated separately for each individual i by using the ordinary regres-
sion model (4.1).  en in the second step, the population parameters (and the corresponding
variance parameters) are estimated from the regression model of the second stage (4.2) assum-
ing the estimates for βi were the true values. In practice, however, this can be problematic since
it is o�en not possible to get reliable estimates of the individual parameters. O�en it is not even
possible to estimate the individual parameters at all. Especially in population pharmacokinetic
studies it is very common to use a sparse sampling scheme where the number of measurements
per individual is less than the number of population parameters p.

 erefore, the typical approach for the estimation in suchmodels is to usemaximum likelihood
theory for the marginal model.

If both the observational errors and the random e�ects follow normal distributions, using the
marginal models (4.3) for the RCRmodel or (4.5) for the general model, the likelihood function
is given by

LML(β,α,σ2;Y) =
n

M
i=1
�(2π)−mi~2Sσ2Vi(α)S− 1

2

exp�− 1
2σ2
(Yi − Fiβ)�Vi(α)−1(Yi − Fiβ)�  (4.11)

for the RCR model and by

LML(β,α,σ2;Y) =
n

M
i=1
�(2π)−mi~2Sσ2Vi(α)S− 1

2

exp�− 1
2σ2
(Yi − FiKiβ)�Vi(α)−1(Yi − FiKiβ)�  (4.12)

for the general model.

Conditional onα themaximum likelihood estimator for β, obtained frommaximizingEq. (4.11)
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4 Linear Mixed Models

and Eq. (4.12) resp., is given by

β̂(α) = �
n

Q
i=1

F�iVi(α)−1Fi�
−1 n

Q
i=1

F�iVi(α)−1Yi (4.13)

and

β̂(α) = �
n

Q
i=1

K�i F�iVi(α)−1FiKi�
−1 n

Q
i=1

K�i F�iVi(α)−1Yi (4.14)

(see Laird andWare (1982)) which is identical to the weighted least squares estimator for known
Vi(α) given in Eq. (4.6). If α is not known but an estimate α̂ is available, β can be estimated by
plugging α̂ into Eq. (4.13).

If the expression for β̂ from Eq. (4.13) is inserted into the likelihood function Eq. (4.11) the
maximum likelihood estimation for α can be calculated by maximizing that term.

Sometimes the so-called restricted maximum likelihood estimator (REML) is used to account
for the fact that themaximum likelihood estimator for α is biased. However, we will not discuss
this here, as the asymptotic properties that we will use later are the same as for the maximum
likelihood estimator. Details on the REML can be found in Harville (1974).

For the actual calculation of the estimates several methods are proposed in the literature (see
Verbeke and Molenberghs (2000), Chapter 5, or Vonesh and Chinchilli (1997), Chapter 6, for
an overview). One possibility is to use the EM algorithm proposed by Dempster et al. (1977),
where the individual random e�ects are treated as missing data. As shown by Laird and Ware
(1982) both the maximum likelihood and the restricted maximum likelihood estimates can be
obtained with this procedure but the convergence is o�en slow. Today the ML or REML esti-
mates for all parameters are usually calculated using Newton-Raphson-based procedures (see
Lindstrom and Bates (1988)).

4.4 The Fisher information matrix

In the case that the variance parameters α are known, it is easy to calculate the covariance
matrix of the estimator for the population parameter vector β to assess the quality of the chosen
experimental settings. When the variance parameters, however, are unknown the covariance
matrix for theML (orREML) estimators cannot be easily calculated ormight not even exist.  e
usual way in such situations to assess the quality of the estimates is to use the Fisher information
matrix, which is de�ned as follows:

De�nition 4.3 Given a statistical model �fY(y; θ)� of a random vector Y, the covariance of the
score function

U(y; θ) = ∂ ln fY(y; θ)
∂θ�

= �∂ ln fY(y; θ)
∂θ1

, . . . ,
∂ ln fY(y; θ)

∂θp
�

is called Fisher information matrix, denoted byM(θ) = Cov(U(Y; θ)).
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4.4 The Fisher information matrix

Under certain regularity conditions on the density (twice di�erentiability and interchangeabil-
ity of integration and di�erentiation) it holds that

M(θ) = Cov(U(Y; θ)) = E (U�(Y; θ)U(Y; θ)) = −E�∂U(Y; θ)
∂θ

� .

 e regularity conditions are satis�ed for the density of the normal distribution.

If T is an unbiased estimator for θ, then

Cov(T(Y)) CM(θ)−1 (4.15)

in the sense of the partial ordering (Loewner ordering) of nonnegative de�nite matrices (see
e. g. Cox and Hinkley (2000)).  at means that the inverse of the Fisher information matrix is
a lower bound for the covariance matrix of any unbiased estimator for θ.  e inequality is the
so called Cramér-Rao bound.

Furthermore, it can be shown (see e. g. Cox and Hinkley (2000)) that under certain regular-
ity conditions the maximum likelihood estimator is asymptotically normal and asymptotically
reaches the Cramér-Rao bound.  is motivates to use the inverse of the Fisher information
matrix as an approximation of the covariance matrix of the estimator and use it as tool to eval-
uate the quality of the chosen experimental settings. Note that it can occur that the covariance
matrix of the estimator does not exist.

To investigate the Fisher information matrix for the mixed model introduced in this chapter,
we partition the matrix in the following way:

M =

�
��
�

Mβ Mβα Mβσ2

Mβα� Mα Mασ2

Mβσ2� Mασ2� Mσ2

�
��
�
. (4.16)

Using rules of vector di�erential calculus (see the summary paper byWand (2002) or the book
by Magnus and Neudecker (1988)) it can be shown that for the RCR model

Mβ
=

1
σ2K�F�V−1(α)FK

Mβα
= 0

Mβσ2
= 0

Mα
= � 12 tr �V(α)−1 ∂V(α)∂αk

V(α)−1 ∂V(α)∂αl
��v

k,l=1

Mασ2
= � 12 tr � 1

σ2V(α)−1 ∂V(α)∂αk
��v

k=1
Mσ2

=
m
2σ4

(4.17)

holds, wherem = Pmi is the total number of observations and ν is the dimension of α.
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 e resulting matrix is hence block diagonal,

M =

�
��
�

Mβ 0 0
0 Mα Mασ2

0 Mασ2� Mσ2

�
��
�
, (4.18)

implicating that the ML estimators for the population parameter vector β and the variance
parameters are asymptotically uncorrelated.

Note, thatMβ−1 is identical to the covariance matrix of the weighted least squares estimator
for a known covariance structure of the random e�ectsD(α). So, in this case the Cramér-Rao
bound is exactly met.

It is important to note that due to the block diagonal structure of V all the blocks of the infor-
mationmatrix can be additively split up into the contributions of the di�erent individuals.  at
is, with

M
β
i �=

1
σ2K

�

i F�iV−1i (α)FiKi

Mα
i �= � 12 tr �Vi(α)−1 ∂Vi(α)

∂αk
Vi(α)−1 ∂Vi(α)

∂αl
��v

k,l=1

Mασ2
i �= � 12 tr � 1

σ2Vi(α)−1 ∂Vi(α)
∂αk
��v

k=1
Mσ2

i �=
mi
2σ4

(4.19)

and

Mind,i �=

�
��
�

M
β
i 0 0

0 Mα
i Mασ2

i

0 Mασ2
i
�

Mσ2
i

�
��
�

(4.20)

it holds that
M =

n

Q
i=1

Mind,i. (4.21)

It is also important to mention that the information matrix depends on the unknown parame-
ters α and σ2.  is makes it impossible to judge about the quality of the chosen settings before
the conduction of the experiment without some prior knowledge about these parameters. Af-
ter the experiment has taken place the covariance matrix can be estimated by substituting the
unknown parameters in the expression of the information matrix by their estimates. For the
planning of experiments it is common to use best guesses for the unknown parameters to de-
rive locally optimal settings, i. e. settings that will usually be optimal in a neighborhood of these
best guesses.

One has to be careful if zero is chosen as best guess for the variance of one of the random e�ects.
 e matrixMα will then usually become singular.  is speci�c parameter should better be
assumed to be known and be omitted when planning the experiment. As a variance of zero
would lie on the boundary of the set of possible values for this component, the assumption of
asymptotic normality of the estimates would be violated.
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5 NonlinearMixedModels

In this chapter we give an introduction to nonlinear mixed models.  ey are much more im-
portant for the application in the area of pharmacokinetics than the linear ones, since most of
the relevant kinetic models are derived from di�erential equations resulting in functions that
are non-linear in the parameters (see Chapter 2). As for the linear case, a large amount of lit-
erature on the analysis of these models can be found, like for example, the books of Vonesh
and Chinchilli (1997), Davidian and Giltinan (1995), or Pinheiro and Bates (2000).  erefore,
we will not go further into detail in this chapter as most of the topics are covered in the cited
references.

In Section 5.1 the nonlinear mixed model is introduced similar to the linear one in Chapter 4.
 e second section roughly covers maximum likelihood estimationmethods.  emost impor-
tant part for design purposes is Section 5.3, where an approximation of the Fisher information
matrix is given following Mentré et al. (1997) or Retout et al. (2001).

5.1 The model

Analogously to the linear mixed model introduced in Chapter 4, the nonlinear mixed model
can be written as hierarchical two-stage model, where the �rst stage is used to model the intra-
individual variability, whereas the second stage accounts for the inter-individual variability.

First stage (intra-individual model):

In the �rst stage on individual level the jth observation of individual i ismodeled by a nonlinear
regression model of the form

Yi j = η(xi j,βi) + εi j, j= 1, . . . ,mi, (5.1)

where, as before, xi j is the experimental setting and βi is the vector of individual parameters.
Again the observational errors εi j are assumed to be independent and identically normally dis-
tributed with zero mean and variance σ2. In contrast to before, the regression function η can
now be nonlinear in the parameter vector βi. Note that the linear mixedmodel is a special case,
where η has the form η(xi j,βi) = f(xi j)�βi. To avoid di�culties for later results we assume that
η is continuous in xi j and di�erentiable in βi.

If we de�ne

ηi(βi) =
�
�
�

η(xi1,βi)
�

η(ximi ,βi)

�
�
�
,
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5 Nonlinear Mixed Models

all observations of individual i can be summarized using matrix/vector notation to

Yi = ηi(βi) + εi.

Second stage (inter-individual model):

In the second stage again the inter-individual variability is modeled by a linear multivariate
regression model of the form

βi = Kiβ + bi, i = 1, . . . ,n. (5.2)

As before we assume that the individual random e�ects vectors bi, i = 1, . . . ,n, are independent
and identically normally distributed, that is, bi � Np(0,σ2D) and that the bi are independent
of εi′ j.
An important special case is the nonlinear random coe�cient regression model, where, as for
the linear RCR model, the matrices Ki are assumed to be identity matrices.  is model will
play the dominant role in this text.  e model can be further extended by allowing the second
stage to be also modeled by a nonlinear function.

Marginal model

 edescription of the marginal distribution of the individual observation vectors is not as sim-
ple as in the linear case.  e density of the vector of observations can be expressed by the
integral

fYi(yi; β,D,σ2) = S 1
(2πσ2)mi~2 exp �−

1
2σ2
(yi − ηi(Kiβ + bi))�(yi − ηi(Kiβ + bi))�

1
(2π)p~2Sσ2DS1~2 exp �−

1
2σ2

b�iD−1bi� dbi. (5.3)

Due to the non-linearity of the regression function in the parameters, there is usually no closed-
form solution of the integral. For a linear η Eq. (5.3) can be simpli�ed and an expression of the
form of Eq. (4.12) is obtained. Note that Eq. (5.3) has to be modi�ed for singularD.

5.2 Estimation

For the estimation we again assume that the matrixD can be parameterized by some vector α,
that is,D = D(α).  e parameters that have to be estimated are then β, α, and σ2.

5.2.1 Two-stage procedure

As in the linear model, one possibility to estimate the parameters is to follow the two stages,
in which the model was built up.  at is, in the �rst step, individual estimates for βi and an
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5.2 Estimation

estimate for σ2 are obtained, for example, by using generalized least-squares. In the second step,
estimates for the population parameter vector β and the covariance parameters α are calculated.
In the standard two-stage method (Steimer et al. (1984)) the estimates β̂i are treated as if they
were the true βi which leads to an upwardly biased estimator forD (see Davidian and Giltinan
(1995), Chapter 5). Better estimates can be obtained by incorporating the uncertainty of the
estimation for βi.  is can be done by using the asymptotic covariance matrix for β̂i assuming
that β̂i is approximately normally distributed (Davidian and Giltinan (1995), pp. 136).

5.2.2 Maximum likelihood

In many cases, the two-stage procedure described in the previous section cannot be used, since
o�en reliable individual estimates cannot be obtained for all subjects. Especially in population
pharmacokinetic studies, the number of blood samples per individual is o�en very small, some-
times only equal to or even smaller than the number of population parameters to be estimated.

 erefore, the usual estimation technique in this situation is maximum likelihood estimation
based on the marginal model (5.3). As we saw in Eq. (5.3), the likelihood function of the vector
of all observations y cannot be described in a closed form, but only as an integral of the form

L(β,α,σ2; y) =
n

M
i=1
S

1
(2πσ2)mi~2

exp �− 1
2σ2
(Yi − ηi(Kiβ + bi))�(Yi − ηi(Kiβ + bi))�

1
(2π)p~2Sσ2D(α)S1~2 exp �−

1
2σ2

b�iD(α)−1bi� dbi. (5.4)

To make the numerical optimization of this likelihood function a tractable problem, di�er-
ent approximations to Eq. (5.4) have been proposed in the literature (see, e. g., the reviews in
Pinheiro and Bates (2000), Chapter 7, or in Davidian and Giltinan (1995)), Chapter 5 and 6,.
Many of the procedures use a �rst-order Taylor expansion of the model function η around the
expected value of the individual parameters βi (see, e. g, Sheiner and Beal (1980)).  is idea
is, for example, implemented in the FO-method of NONMEM (Beal and Sheiner (1989)).  e
estimates are obtained in an iterative procedure, where in each step estimates for the popula-
tion and covariance parameters are obtained using an extended least squares method and the
linearization in the next step is calculated around the new estimates of the population param-
eters. An extension of this approach is to obtain empirical Bayes estimates for the individual
parameters in each step of the iteration and to use a Taylor expansion around these individual
parameters (see, e. g., Lindstrom and Bates (1990)).  is is a better approximation to the true
model, but is computationally more expensive.  is type of procedure is implemented in the
FOCE-method of NONMEM (Beal and Sheiner (1998)). A comparison and discussion of the
di�erent approximation methods can be found in Pinheiro and Bates (1995).  ere are also
other approaches, like the SAEM proposed by Kuhn and Lavielle (2005), where instead of an
approximation to the model function a stochastic approximation to the EM algorithm is used,
which avoids the impact of a linearization. A comparison of several implementations of these
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5 Nonlinear Mixed Models

or other approaches with respect to their performance in a given pharmacokinetic model can
be found in Girard and Mentré (2005).

As all the mentioned procedures deliver approximations to the maximum likelihood estimates,
for designing the experiment it is not important, whichmethod is actually used for the analysis.

5.3 Approximation of the Fisher information

 e problem of the missing closed-form solution of the likelihood-function carries forward to
the calculation of the Fisher information matrix, which is necessary for designing the experi-
ment.  e problem here gets even more complex, as the Fisher information is the expectation
of the second derivatives of the log-likelihood function. Similar to some of the mentioned esti-
mation procedures, the nonlinear model function is linearized around a best guess for the in-
dividual parameters βi derived from some prior knowledge about the model (see, e. g., Mentré
et al. (1997) or Retout et al. (2001) and Retout et al. (2002)). At least in the �eld of population
pharmacokinetics this prior knowledge is o�en available from previously conducted ordinary
pharmacokinetic studies.

Linearization in the non-linear RCR model

Again we �rst start with the simple RCR model. We assume that we have some idea about the
values of the population parameter vector β and denote this best guess with β0.  e best we can
guess for bi is its expectation E(bi), which is zero.  erefore, the best guess for the individual
parameter vector βi is also β0.

Similar as described in Section 5.2.2 for some of the estimation approaches, the non-linear
model function η is linearized using a �rst-order Taylor approximation. We de�ne

f(xi j,β0) �=
∂η(xi j,β)

∂β
W
β=β0

, (5.5)

which is the gradient of ηwith respect to the second argument β evaluated at β0.  e regression
function η is then approximated by

η(xi j,βi) � η(xi j,β0) + f(xi j,β0)�(βi − β0). (5.6)

 e �rst stage model (5.1) can then be approximated by

Yi j = η(xi j,βi) + εi j
� η(xi j,β0) + f(xi j,β0)�(βi − β0) + εi j. (5.7)

With Ỹi j �= Yi j−η(xi j,β0) and β̃i = βi−β0 we can for – planning purposes – instead investigate
the linear mixed model

Ỹi j = f(xi j,β0)�β̃i + εi j (5.8)
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as an approximation to the original non-linear model Eq. (5.1). Model (5.8) has the form of a
linear RCR model as de�ned in Eq. (4.1). To calculate the Fisher information matrix we can
hence proceed as in Section 4.4.  e resulting matrix, however, now does not only depend on
the known or assumed variance parameters, but also on the chosen β0.

Note that in the case that η is already linear in the parameter vector, that is, if η has the form
η(xi j,β) = f(xi j)�β, the gradient in Eq. (5.5) does not depend on β0 and the approximation in
Eq. (5.7) is exact.

Linearization in the general model

In the general model the best guess for the individual parameter vector βi is Kiβ0.  erefore,
we approximate the non-linear mixed model by

Yi j � η(xi j,Kiβ0) + f(xi j,Kiβ0)�Ki(β − β0) + f(xi j,Kiβ0)�bi + εi j (5.9)

or equivalently by
Ỹi j � f(xi j,Kiβ0)�Kiβ̃ + f(xi j,Kiβ0)�bi + εi j. (5.10)

 is model now has the form of the general linear mixed model de�ned in Section 4.2 and the
Fisher informationmatrix can be calculated as described there. Note, however, that the vector of
regression functions does not only depend on β0, which is the same for all individuals, but also
on Ki, which can di�er between the individuals.  us, we have di�erent regression functions
for the di�erent individuals depending on the shape of the respective Ki.

 e quality of this linearization approach depends on how close the chosen β0 is to the true β
as well as on the nonlinearity of the model function in the parameter vector.  e in
uence of
the nonlinearity has been investigated byMerlé and Tod (2001) for two speci�c kinetic models.
As a reference, they have numerically calculated the information matrices of several designs
for the nonlinear model, which is computationally very exhaustive, and compared these with
the information matrices derived from the linearized model together with curvature measures
described in the literature for nonlinear regressionmodels (see e. g., Cook and Goldberg (1986)
and Bates et al. (1983)).

5.4 Proportional error models

In pharmacokinetic modeling the concentrations are o�en assumed to be log-normally dis-
tributed.  erefore, the observational errors (intra-individual variability) are o�en modeled as
log-normal multiplicative errors, that is, the models for the individual observations have the
form

Yi j = η(xi j,βi) exp(εi j), j= 1, . . . ,mi. (5.11)

 e design and the analysis can be performed in the same way as before by considering the
log-transformed model

log(Yi j) = log(η(xi j,βi)) + εi j (5.12)
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5 Nonlinear Mixed Models

instead of the original one, which leads to a model with additive normally distributed errors.
Following from the chain rule for di�erentiation, the vector of regression functions in the cor-
responding linear approximation of the model has the form

f(xi j,β0) =
1

η(xi j,β0)
∂η(xi j,β)

∂β
W
β=β0

.

Similarly, also the individual parameters (or someof them) are o�en assumed to be log-normally
distributed within the population, that is,

βi = β X exp(bi)
� log(βi) = log(β) + bi

for the RCRmodel.  e exponential function and the logarithm in the equation aremeant to be
evaluated component-wise resulting in a vector and “X” denotes the component-wise product
(Hadamard product) of two vectors or matrices of the same size.  e model for the individual
observations then has the form

Yi j = η(xi j,β X exp(bi)) + εi j. (5.13)

 is situation can also be led back to the originally introduced model with additive random
e�ects by using a reparameterization. With β̃i = log(βi) and β̃ = log(β) the model can be
written as

Yi j = η(xi j,exp(β̃i)) + εi j = η(xi j,exp(β̃ + bi)) + εi j,
where η is the same as in Eq. (5.13).  e corresponding linear approximation then has the
regression functions

f(xi j,β0) =
∂η(xi j,β)

∂β
W
β=β0

X β0.

We illustrate this with a small example.

Example 5.1 We consider a simple one-compartment model without absorption (see Section 2.1),
where the concentration of a drug observed at time x is modeled by

C(x) = D 1
Vci

e−ke ix.

Additive observational error / additive random effects: We�rst investigate the stan-
dard case, that both the observational errors and the random e�ects are modeled as additive
normal distributed random variables, that is, the concentration measured in individual i
at time xi j is modeled by

Yi j = D
1
Vci

e−ke ixij + εi j
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5.4 Proportional error models

with εi j � i. i.d.N (0,σ2) and
Vci = Vc + bi1,
kei = ke + bi2

with bi = (bi1,bi2)� � N2(0,σ2D). If Vc0 and ke0 are used as best guess for Vc and ke, the
linearized model has the regression functions

f1(xi j,(Vc0, ke0)) = −De−ke0xij
V2
c0

,

f2(xi j,(Vc0, ke0)) = −D
xi je−ke0xij

Vc0
.

Proportional observational error / additive random effects: Nowwe consider the
case that the observational error is modeled as proportional error while the random e�ects
are still additive random variables, that is, the concentration measured in individual i at
time xi j is modeled by

Yi j = D
1
Vci

e−ke ixij exp εi j.

 e linearized log-transformed model has the regression functions

f1(xi j,(Vc0, ke0)) = − 1
Vc0

,

f2(xi j,(Vc0, ke0)) = −xi j.

Additive observational error / proportional random effects: If the observational
errors are assumed to be additive, while the random parameters are modeled by

Vci = Vc exp(bi1),
kei = ke exp(bi2)

the resulting regression functions of the linearized model are

f1(xi j,(Vc0, ke0)) = −De−ke0xij
Vc0

,

f2(xi j,(Vc0, ke0)) = −D
ke0xi je−ke0xij

Vc0
.

However, one has to keep in mind that now not ke and Vd but log(ke) and log(Vc) are the
parameters to be estimated. Note that this is a nonlinear reparameterization of the model.

Proportional observational error / proportional random effects: If both the ob-
servational error and the random e�ect aremodeled asmultiplicative log-normal, we obtain

f1(xi j,(Vc0, ke0)) = −1,
f2(xi j,(Vc0, ke0)) = −ke0xi j
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5 Nonlinear Mixed Models

for the regression functions in the linearized model.

Note that in both cases, in which a proportional observational error was assumed, the resulting
linearized model is a straight line regression.
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6 Designs, InformationMatrices and
Criteria

In the �rst part of this chapter we adjust and extend the design de�nition for the ordinary
linear model given in Section 3.2 to the needs in the mixedmodel setting. In the second section
we derive representations for the blocks of the information matrices that correspond to these
designs. We close this chapter with a short discussion about appropriate optimality criteria for
designs in mixed models.

6.1 Designs

In the mixedmodel setup designing an experiment does not only mean to specify the sampling
times (or more general the experimental settings), but also to determine howmany individuals
(or what proportions of the individuals) are to be observed at which of the speci�ed times.
 erefore, the term design will be used to specify

1. the number n of individuals that should be observed,

2. the numbermi of observations of individual i,

3. the settings xi j (e. g., sampling times), under which the observations are taken.

Similar to the two stages occurring in the de�nition of the mixed models, designs for mixed
models can be speci�ed in two steps: �rst the de�nition of designs on individual level and then,
on top of this, designs for the whole sample population.

6.1.1 Individual (elementary) designs

A design ξi on individual level is naturally de�ned as a set of experimental settings xi1, . . . ,xiki
> X together with the number of observationsmi1, . . . ,miki to be taken at these settings, that is,
with the number of replications (cf. Section 3.2). By this the observations that have to be taken
for a single individual are speci�ed.

Similar to the approximate designs de�ned for the ordinary linear model in Chapter 3 we will
now allow that the replications mi jmay be non-integer, which will then be referred to as ap-
proximate individual design. We formalize this by means of the following de�nition.
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De�nition 6.1 An (approximate) individual design ξi with mi observations is a vector of exper-
imental settings (xi1, . . . ,xiki) > X ki together with the numbers of replications (mi1, . . . ,miki) >
Rki to be taken at these settings, wherePmi j = mi, mi j C 0.
Notation:

ξi = � xi1 . . . xiki
mi1 . . . miki

� .

We will denote the set of all individual designs with m observations by Ξ(m).

 e approximate individual designs can be identi�ed with �nite discrete measures on X . As in
the ordinary linear model, the set of possible approximate individual designs Ξ(m) with �xed
sample sizem is then convex and the optimization problems are easier to handle. Designs that
are practically applicable can be found by rounding if necessary.

Individual designs, where all replicationsmi j are integers, will be referred to as exact individual
designs.

Note that in the mixed model setup it makes sense not to look at normalized design measures,
as the corresponding individual information matrices are not proportional to the number of
observations. We will see this in the following sections.

6.1.2 Population designs

In the second stage we now specify the experimental settings for the whole sample population
with n individuals. We de�ne a population design ζ as a set of individual designs ξ1, . . . , ξl to-
gether with the proportions g1, . . . , gl of individuals of the sample population that should be
observed using these designs.  is means that ngi individuals are to be observed with individ-
ual design ξi.  is is formally summarized in the following de�nition.

De�nition 6.2 A population design ζ is a vector of individual designs (ξ1, . . . , ξl) together with
the vector of the proportions of individuals of the sample population (g1, . . . , gl) > [0, 1]l with
P gν = 1 that should be observed under these designs.
Notation:

ζ = � ξ1 . . . ξl
g1 . . . gl

� . (6.1)

 e set of all population designs will be denoted by ∆.

If both the ξi are exact designs and ngν is integer for ν = 1, . . . , l, then the design ζ will be
referred to as exact population design.

Note that in contrast to the elementary designs the standardization of population designs with
respect to the number of individuals is sensible, as the population information matrices are
proportional to the number of individuals.
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6.2 Information matrices

6.2 Information matrices

In this section we have a closer look at the formulas for the information matrices described in
Section 4.4. In particular, we derive a representation for the informationmatrix for approximate
designs. As we have seen in Section 4.4, the informationmatrix of the whole sample population
is the sum of the information matrices provided by the single individuals. It is hence natural to
write

Mpop(ζ) =
l

Q
i=1

giMind(ξi),

whereMind(ξi) denotes the information provided by the individual design ξi.  usMpop(ζ)
is the information matrix of the population design ζ normalized by the number of individuals.

We will now derive a formula for these individual informationmatrices that can be applied also
to the approximate designs given in the previous section. For this, we treat the block for the
population parameters and the block for the variance parameters one a�er another. We restrict
our attention to the RCRmodel, that is, we assume that all thematricesKi are identitymatrices.
It is, however, straight-forward to extend the result to the general case.

6.2.1 Population parameter block

In Eq. (4.19) in Section 4.4 we saw that the block in the individual information matrix account-
ing for β has the form

1
σ2
F�iV−1i Fi =

1
σ2
F�i (FiDF�i + Imi)−1Fi

with Fi = (f(xi1), . . . , f(ximi))� being the design matrix of the observations for individual i.

In the case of an exact design ξi = � xi1 . . . xiki
mi1 . . . miki

�, that is, in the case of a design with
mi j >N, i = 1, . . . , ki, the individual information matrix can hence be calculated by

M
β
ind(ξi) =

1
σ2
F̃�i �F̃iDF̃�i + Imi�

−1 F̃i,

where
F̃i = (f(xi1), . . . , f(xi1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

mi1 times

, . . . , f(xiki), . . . , f(xiki)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
miki times

)�.

 is, however, does not show us, how the information matrix for an approximate individual
design can be calculated. We use the following lemma to derive a di�erent representation of
the information matrix.  is will then also be applicable for approximate designs.

Lemma 6.3 Let F be a k� p-matrix,D a p� p-matrix, and S be anm� k-matrix, for which S�S
is non-singular.  en

F�S� (SFDF�S� + Im)−1 SF = F� �FDF� + (S�S)−1�−1 F.
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Proof: It is su�cient to show that

S� �SFDF�S� + Im�−1 S �FDF� + (S�S)−1� = Ik.

S� �SFDF�S� + Im�−1 S �FDF� + (S�S)−1�
= S� �SFDF�S� + Im�−1 S �FDF� + (S�S)−1�S�S(S�S)−1

= S� �SFDF�S� + Im�−1 S �FDF�S�S + Ik� (S�S)−1

= S� �SFDF�S� + Im�−1 �SFDF�S�S + S� (S�S)−1

= S� �SFDF�S� + Im�−1 �SFDF�S� + Im�S(S�S)−1 = Ik.

j

Let now Fi �= (f(xi1), . . . , f(xiki))� be the ki � p-dimensional design matrix, where each of the
settings xi j is contained only once, and Si be a block matrix, where all the entries are either one
or zero, de�ned by

Si �= ((e11�mi1
), . . . ,(eki1�miki

))�.
Here, 1mij denotes the mi j-dimensional vector with all entries equal to one and ei is the i-th
unit vector of dimension ki.  en F̃i = SiFi and withWi �= S�i Si = diag(mi1, . . . ,miki) and
Lemma 6.3 it follows that

M
β
ind(ξi) =

1
σ2
F̃�i �F̃iDF̃�i + Imi�

−1 F̃i =
1
σ2
F�i �FiDFi

�
+W−1

i �
−1 Fi. (6.2)

 is representation can also be used for approximate designs.  e part FiDF�i +W−1
i can be

seen as a generalization of the covariance matrix Vi.  e more observations of one individ-
ual are taken at xi j, the better the variance at xi j can be assessed, which is expressed by the
corresponding entry inWi.
With the following lemma we will see that the individual information matrix (6.2) in the RCR
model can be expressed as a function of the informationmatrix of the same design in the corre-
sponding ordinary linearmodel, that is, in themodel without the random e�ects.  is will later
allow us to solve design problems by leading them back to the well known theory of optimal
designs in the ordinary linear model setting.

Lemma 6.4 (cf. Schmelter (2006b)) Let F be an arbitrary k�p-matrix,W a symmetric positive
de�nite k � k-matrix, and D a symmetric non-negative de�nite p� p-matrix.  en with M �=
F�WF the following identity holds:

F� �FDF� +W−1�−1 F = (M+ +M+MDMM+)+ ,

whereM+ denotes the Moore-Penrose inverse (see, e. g., Schott (1997), p. 171) of M. IfM is non-
singular, the right-hand side simpli�es to

�M−1 +D�−1 .
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For singularM it holds that

lim
δ�0
�(M + δIp)−1 +D�−1 = (M+ +M+MDMM+)+ .

Proof: Without loss of generality we can assume W = Ik, since with F̃ �=
º
WF, where

º
W denotes a non-

singular matrix chosen such that
º
W
º
W
�

=W, the le�-hand side can be expressed as

F� �FDF� +W−1�−1 F = F̃� �F̃DF̃� + Ik�−1 F̃.

Using a singular value decomposition (see, e. g., Searle (1982), p. 316, or Schott (1997), p. 131) F can be
expressed as

F = P� �Λ 0
0 0

�Q

with orthogonal matrices P and Q and a non-singular diagonal matrix Λ of size r �= rank(F). Depending
on the rank the 0-blocks in the matrix might vanish.  erefore,

F� �FDF� + Ik�−1 F = F� �P� �Λ 0
0 0

�QQ� �K B
B� C

�QQ� �Λ 0
0 0

�P + Ik�
−1

F,

whereD is expressed asD = Q�D̃Q

with D̃ �= �K B
B� C

� = QDQ�,

and the block K having the same size r as Λ. Applying some matrix algebra leads to

F� �P� �ΛKΛ 0
0 0

�P + Ik�
−1

F = F�P� �ΛKΛ+ Ir 0
0 Ik−r

�
−1

PF

= Q� �Λ 0
0 0

��(ΛKΛ+ Ir)
−1 0

0 Ik−r
��Λ 0

0 0
�Q

= Q� �(K +Λ
−2)−1 0

0 0
�Q

= �Q� ��Λ
−2 0
0 0

� + �K 0
0 0

��Q�
+

.

Since

M = Q� �Λ
2 0
0 0

�Q, M+ = Q� �Λ
−2 0
0 0

�Q and MM+ = Q� �Ir 0
0 0

�Q,

it follows that

F� �FDF� + Ik�−1 F = �M+ +Q� �Ir 0
0 0

��K B
B� C

��Ir 0
0 0

�Q�
+

= (M+ +M+MDMM+)+ .

For non-singularM all the Moore-Penrose inverses coincide with the ordinary matrix inverses.
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To show the last part of the lemma, letM be singular.  en

�(M + δIp)−1 +D�−1 = Q�
�
��
(Λ2
+ δIr)−1 +K B

B� 1
δIp−r +C

�
−1�
�Q

= Q� �T11 T12

T21 T22
�Q.

With formulas for the inverse of partitioned matrices (Schott (1997),  eorem 7.1), the blocks T11, T22, T12,
and T21 of appropriate size can be expressed as

T11 = ��Λ2
+ δIr�−1 +K − B � 1δIp−r +C�

−1B��−1 δ�0
Ð� �Λ−2 +K�−1 ,

T22 = � 1δIk−r +C − B� ��Λ2
+ δIr�−1 +K�

−1
B�
−1 δ�0
Ð� 0,

T12 = T�21 = − �(Λ2
+ δIr)−1 +K�−1BT22

δ�0
Ð� 0

leading to

lim
δ�0

Q� �T11 T12

T21 T22
�Q = Q� ��

�Λ−2 +K�−1 0
0 0

�
�Q = (M

+
+M+MDMM+)+ .

j

In the context considered here the lemma implies that the β-block of the information matrix
of an individual design ξi can be represented by

M
β
ind(ξi) =

1
σ2
F�i �FiDF�i +W−1

i �
−1 Fi =

1
σ2
(M+i +M+i MiDMiM+i )+ ,

where Mi �= Mi(ξi) �= F�iWiFi is the (non-standardized) information matrix of the corre-
sponding �xed e�ect model (i. e., the ordinary linear model without the random e�ects). Note
that di�erent to the de�nition in Chapter 3, from now on M will be used to denote the non-
standardized information matrix.

For regular designs the expression for the β-block simpli�es to 1
σ2 (M−1i +D)−1, which can already

be found in Liski et al. (2002) and Demidenko (2004).

For sake of clarity we will useMβ
ind(Mi) =M

β
ind(M(ξi)) synonymously forMβ

ind(ξi).
 e extension to the general mixed model is straight forward:

M
β
ind(ξi) =

1
σ2
K�i F�i �FiDF�i +W−1

i �
−1 FiKi =

1
σ2
K�i (M+i +M+i MiDMiM+i )+Ki (6.3)

and
M

β
ind(ξi) =

1
σ2
K�i (M−1i +D)−1Ki (6.4)

for the regular case.

With this we get the population parameter block of the information matrix for an elementary
design in the mixed model as a function of the information matrix for the same design in the

46



6.2 Information matrices

corresponding ordinary linear model. As we will later see in Chapter 7, this function is mono-
tone and convex with respect to the Loewner ordering of non-negative de�nite matrices.  is
will allow as to reduce some design problems in the mixed model case to problems already
solved for ordinary linear models.

6.2.2 Variance parameter block (for diagonalD)

For a di�erent representations of the blocks for the variance parameters in the informationma-
trix, we will only consider the case that the covariance structure of the random e�ects D is a
diagonal matrix, as this is the most relevant case in practice. We use the natural parameteriza-
tion of D, that is, D = diag(α). We can give representations forMα

ind andMασ2
ind that express

these blocks as functions ofMβ
ind and with this as functions of the informationmatrixM of the

corresponding ordinary linearmodel.  is then allows us to calculate the complete information
matrix also for approximate designs.

Lemma 6.5 In the RCR model the block in the information matrix representing the parameter
vector α can be written as

Mα
ind =

σ4

2
M

β
ind XM

β
ind,

where X denotes the Hadamard product, that is, the element-by-element product of two matrices.

Proof: As described in Section 4.4 Eq. (4.19), the entry in the kth row and lth column is

(Mα
ind)kl =

1
2
tr �Vi(α)−1 ∂Vi(α)

∂αk
Vi(α)−1 ∂Vi(α)

∂αl
	 .

Since Vi = Imi + FiDF�i andD was assumed to be diagonal with the vector α as entries on the diagonal,

∂Vi(α)
∂αk

= Fi
�
�

0
�

1
�

0

�
�F
�

i = Fidiag(ek)F�i . (6.5)

 erefore,

(Mα
ind)kl =

1
2
tr �Vi(α)−1Fidiag(ek)F�iVi(α)−1Fidiag(el)F�i �

=
1
2
tr �F�iVi(α)−1Fidiag(ek)F�iVi(α)−1Fidiag(el)�

=
1
2
tr �σ2Mβ

inddiag(ek)σ2Mβ
inddiag(el)� =

σ4

2
�(Mβ

ind)kl�
2
.

j

Lemma 6.6 In the RCRmodel the block in the information matrix accounting for the interaction
of the estimation of α and σ2 can be written as

Mασ2
ind =

1
2
�(Mβ

ind)νν�
p

ν=1
.
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Proof:  eMασ2
ind block is just a p� 1-matrix.  e entry of the lth row is calculated as

(Mασ2
ind )l =

1
2
tr � 1

σ2
Vi(α)−1 ∂Vi(α)

∂αl
	

(see Section 4.4 Eq. (4.19)). With Eq. (6.5) this can be expressed as

(Mασ2
ind )l =

1
2
tr � 1

σ2
Vi(α)−1Fidiag(el)F�i �

=
1
2
tr � 1

σ2
F�iVi(α)−1Fidiag(el)�

=
1
2
tr �Mβ

inddiag(el)� =
1
2
(Mβ

ind)ll .

j

For the general mixed model similar formulas for the blocks can be derived. As Vi does not
depend on Ki, we get

Mα
ind(ξi) =

σ4

2
M̃

β
ind(ξi) X M̃β

ind(ξi)
and

Mασ2
ind (ξi) =

1
2
��M̃β

ind(ξi)�νν�
p

ν=1
,

where M̃β
ind denotes the β-block of the information matrix of the corresponding RCR model,

where the Ki are omitted.

Altogether the complete individual information matrix of design ξi (with non-singularM(ξi))
in the general mixed model can be expressed by

Mind(ξi) =
�
�
�

1
σ2K

�

i (M−1i +D)−1Ki 0 0
0 1

2(M−1i +D)−1 X (M−1i +D)−1 1
2σ2diag [(M−1i +D)−1]

0 1
2σ2 [diag((M−1i +D)−1)]� mi

2σ4

�
�
�
,

wheremi is the number of observations in design ξi andMi =M(ξi) = F�iWiFi is the informa-
tion matrix of design ξi in the corresponding ordinary linear model.

As already mentioned, the information matrix of a population design ζ = �ξ1, . . . , ξl
g1, . . . , gl

� is the
weighted sum of the individual information matrices, that is,

Mpop(ζ) =
l

Q
i=1

giMind(ξi).

It is, however, important to note that none of the blocks of the individual information matrix
can be expressed as the sum of the information matrices of the respective one-point designs,
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that is, for ξi = � xi1 . . . xiki
mi1 . . . miki

�

Mind(ξi) x
ki
Q
ν=1

miνMind(δ�xiν�),

where δ�x� denotes the one-point design measure in x.  is is due to the dependence between
the observations within one individual induced byD.

6.3 Criteria

In principle the same criteria as for the ordinary linear model can also be used for the mixed
models. In this section we will brie
y discuss which criteria might be useful for which pur-
pose. In Section 6.3.1 we concentrate on criteria based only on the population parameter block,
whereas in Section 6.3.2 criteria are considered that are based on the complete information
matrix.

6.3.1 Criteria based on the population parameter block

In this section criteria based only on the population parameter block of the informationmatrix
are discussed. Due to the block diagonal structure of the informationmatrix, it makes no di�er-
ence whether the remaining variance parameters are known or unknown, besides the general
dependence of the population parameter block on the assumed or knownmatrixD. In general,
the same criteria as described in Section 3.3 for the ordinary linear model can also be applied
for the assessment of the quality of a design for the estimation of the population parameters of
the mixedmodel. However, one needs to be careful how the criteria have to be interpreted.  e
G-criterion

Φ(Mβ
pop) =max

x>X
f(x)�Mβ

pop
−1
f(x),

for example, is used to minimize the maximal variance of the prediction of the response of a
“typical” individual, that is, an individual with βi = β. A similar interpretation can be found
for the IMSE-criterion.

In Section 3.3 we already mentioned, but did not discuss, criteria for the estimation of real-
valued nonlinear functions h(β) of the parameter vector. Similar as for the estimation of a
linear function, the quality of a design can be assessed by a c-criterion, that is, by a criterion of
the form

Φ(Mβ
pop) = c�Mβ

pop
−1
c,

where c is here chosen as the column vector

c = ∂h(β)
∂β
W
β=β0

.

 is choice can be motivated by a linear approximation using the so-called δ-method (see e. g.,
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6 Designs, Information Matrices and Criteria

Rao (1973), pp. 385), which is described in the following. Let β̂
(n)
denote the ML estimator of

β if n individuals are observed using the population design ζ.  en, under the assumption of
consistency of the estimator, we have

º
n�β̂(n) − β� D

Ð� Np(0,Mβ(ζ)−1),

where D
Ð� denotes convergence in distribution. If the function h is di�erentiable it can be

shown by using a �rst-order Taylor approximation that

º
n�h(β̂(n)) − h(β)� D

Ð� N �0, ∂h(β)
∂β�

Mβ(ζ)−1 ∂h(β)
∂β
� .

 is means that if the variance of h(β̂(n)) exists, it can be approximated by

Var(h(β̂(n))) � 1
n
∂h(β)
∂β�

Mβ(ζ)−1 ∂h(β)
∂β

, (6.6)

which should be minimized to obtain a good design for the estimation of h(β), otherwise the
equation has to be interpreted as asymptotic variance. As the right-hand side of Eq. (6.6) still
depends on the unknown vector β, the usual approach for designing the experiment is to sub-
stitute β by a best guess β0 (as in Section 5.3 for the informationmatrix in the non-linearmodel)
and to use

Φ(Mβ(ζ)) = ∂h(β)
∂β�

W
β=β0

Mβ(ζ)−1 ∂h(β)
∂β
W
β=β0

,

which has the form of a c-criterion.

Example 6.7 A typical example occurring in the �eld of pharmacokinetics is the estimation of
the AUC (see Section 2.2). As the AUC is the integral of the concentration curve, it is a (usually
nonlinear) function of the model parameters. In the case of a simple one-compartment model with
absorption, where the concentration at time x is given by

C(x) = D ka
Vc(ka − Cl

Vc
) �e

−
Cl
Vc

x
− e−kax�

the AUC is
AUC(ka,Cl,Vc;D) = S

ª

0
C(x)dx = D

Cl
.

Hence, the quality of the estimation of the AUC only depends on the quality of the estimation of
the clearance Cl.

One has to keep in mind that the theoretical c-optimal designs may be concentrated on fewer
points than the number of population parameters and can hence be singular. In the case of a
nonlinear model, it can then happen that the function of interest might not be estimable under
the “optimal” design. An example for this can be found in Atkinson et al. (1993), where this
problem is described for a one-compartment model without random e�ects.
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6.3.2 Criteria based on the whole information matrix

Some of the criteria described in Section 3.3 for the ordinary linear model and in Section 6.3.1
for the estimation of the population parameters, like the D-criterion, can be applied analo-
gously to the whole information matrix, although it should be discussed, whether the variance
parameters should be treated in the same way as the population parameters. In the case that
a very general covariance matrix D is used, there are p(p+ 1)~2 + 1 variance parameters to be
estimated. If then the D-criterion is applied to the complete informationmatrix, a much higher
importance is put onto the variance components than on the population parameters due to the
big di�erence in the number of parameters.

For other criteria, like the G-criterion or the IMSE-criterion, there is no directly applicable
extension to the whole information matrix.

In principle, c-criteria based on the complete information matrix are possible. For this, how-
ever, one needs reasonable functions that are based on both, the population and the variance
parameters. In the following we give an idea for the construction of “reasonable” c-criteria
based on the complete information matrix.

One might o�en not only be interested in the estimation of a (linear) function h(β) of the
population parameters, but also want to estimate certain quantiles of this function applied to
the individual parameters h(βi). For example, onemight want to know the 95%-quantile of the
individual AUC to be sure that the individual exposure to the drug is not to high. If h(β) = c�β
and if we de�ne Hi = c�βi, then

Hi � N (c�β,σ2c�D(α)c)

and hence the q-quantile of Hi is

Hq
i = c

�β + zq
»
σ2c�D(α)c,

where zq denotes the q-quantile of the standard normal distribution. If we assume D to be
diagonal with natural parameterizationD(α) = diag(α), we get

Hq
i = c

�β + zq
»
σ2(c X c)�α =� g(β,α,σ2),

which is a nonlinear function of all parameters. To �nd a good design for the estimation of this
quantile, the varianceVar(g(β̂, α̂, σ̂2)) (if it exists) should beminimized.  e non-linearity can
be handled as in the previous section by using the δ-method, that is, by using

Var �g(β̂, α̂, σ̂2)� � 1
n

∂g
∂(β,α,σ2)M

−1
pop

∂g
∂(β,α,σ2)� .
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For the described situation we get

∂g
∂β

= c,

∂g
∂α

= −zq

º
σ2

2
»
(c X c)�α

(c X c),

∂g
∂σ2

= −zq

»
(c X c)�α
2
º
σ2

,

which are the coe�cients for the c-criterion to be used. Non-linear functions of the population
parameter vector can be treated by �rst linearizing the function around a best guess for the
population parameters as described in Section 6.3.1 and then following the same procedure as
just explained.

By the same principle a criterion similar to the IMSE-criterion can be constructed, where the
integrated mean squared error of the prediction of the q-quantile of the individual responses
over the design region X (cf. Section 3.3)

E�S
X
�f(x)�β + zq

»
σ2f(x)�D(α)f(x) − f(x)�β̂ − zq

»
σ̂2f(x)�D(α̂)f(x)�2 µ(dx)�

is to be minimized.

By linearizing this leads to a criterion of the form

Φ(Mpop) = tr(LM−1
pop),

where L has to be chosen as
L = S

X
f̃(x)f̃(x)� µ(dx)

with

f̃1(x) = −zq
º
σ2

2
»
(f(x) X f(x))�α

(f(x) X f(x)),

f̃2(x) = −zq
»
(f(x) X f(x))�α

2
º
σ2

,

f̃(x) = �f(x)�, f̃1(x)�, f̃2(x)�� .

Depending on the purpose of the experiment one can also apply di�erent criteria to the two
di�erent blocks and combine them to a weighted criterion. One should, however, always try to
keep the criterion interpretable.

One example for such a criterion could be a weighted standardized D-criterion like

Φ(Mpop(ζ)) = w1
det �Mβ

pop(ζ)−1�
1
p

minζ′>∆ det �Mβ
pop(ζ′)−1�

1
p
+w2

det �M(α,σ2)
pop (ζ)−1�

1
r

minζ′>∆ det �M(α,σ2)
pop (ζ′)−1�

1
r
,
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whereM(α,σ2)
pop is used to denote the block in the informationmatrix accounting for all variance

parameters, that is, for α and σ2, and r denotes the number of variance parameters.  eweights
w1 and w2 can be chosen depending on how much importance one wants to give each of the
blocks.  e idea of standardized optimality criteria in general is described in Dette (1997).
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7 Single-Group and Group-wise
Identical Approximate Designs for
Population Parameter Estimation

In this chapter we will give special results for designs for the estimation of the population pa-
rameter vector. We will consider criteria that are only based on the β-block of the information
matrix as described in Section 6.3.1.  eoretical results in this context can be found in the book
by Fedorov and Hackl (1997) where an equivalence theorem for the D-optimality in RCRmod-
els can be found, to which we will come back in Chapter 8. In the book by Liski et al. (2002) and
the dissertation of Luoma (2000) special results for polynomial regression models are derived.

As we have seen in Chapter 6, designs for mixed models can be de�ned in a very general way
leading to a very complex set of possible population designs, whichmakes the search for optimal
designs quite di�cult. In this chapter we will show how the set of designs can be restricted
without reducing the quality of the optimal designs. Section 7.1 is concerned with single-group
designs for the RCR model.  e derived result is extended to the general mixed model in the
Sections 7.2 and 7.3.

 roughout the chapter we can without loss of generality assume that σ2 = 1.  is is due to the
fact that 1

σ2 appears only as a constant factor in front of the information matrix and has, hence,
no in
uence on the design optimization if a sensible criterion is used.

7.1 Single-group designs in RCR models

As we have already seen in Section 4.3.1, the estimation of the population parameters in the
linear RCRmodel simpli�es dramatically if all individuals are observed under the same condi-
tions, that is, under the same elementary design, since then the weighted least squares estimator
is identical to the ordinary one. Hence, from the point of view of analyzing the models it is fa-
vorable to use designs, where this is the case. We will call these designs single-group designs, as
the individuals are not split up in di�erent groups having di�erent designs.

Besides the easier analysis, the single-group designs have another advantage. Following from
Lemma 6.4 the population parameter block of the information of a regular single-group design

ζ = �ξ1� can be written as

Mβ
pop(ζ) =M

β
ind(ξ) = (M(ξ)−1 +D)−1.
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If now a linear criterion of the formΦ(M) = tr(LM−1) is used, we get

Φ(Mβ
pop(ζ)) = tr(L(M−1 +D)) = tr(LM−1) + tr(LD).

 e second summand has no in
uence on the design optimization with respect to Φ, as it is
constant (see, e. g., Liski et al. (2002) or Entholzner et al. (2005)).  erefore, the optimal single-
group design is identical to the one, which is obtained in the corresponding ordinary linear
model.  is fact also holds for singular designs if the c-criterion is used. Let h(β) = c�β be a
linear function of the parameter vector. If h(β) is identi�able under the single-group design
ζ = �ξ1�, there exists a matrixQ such that c

�
= QM, whereM �=M(ξ) is the informationmatrix

of the corresponding ordinary linear model. We then get with Lemma 6.4

Φ(Mβ
pop(ζ)) = c�Mβ

pop(ζ)+c = c�((M+ +M+MDMM+)+)+c
= c�M+c + c�M+MDMM+c
= c�M+c +QMM+MDMM+MQ�

= c�M+c +QMDMQ� = c�M+c + c�Dc,

that is, again the second summand is independent of the chosen design.  us the c-optimal
single-group design is the same one as in the ordinary linear model. Note that this is not true
for non-linear criteria like the D-criterion.

Now, the question arises if, despite this welcome properties of single-group designs, it might be
better to leave the single-group designs and to assign the individuals to di�erent designs to get
a lower value of the used criterion, that is, to get a more e�cient design.

To investigate this question, we formally de�ne the following two classes of approximate de-
signs:

(i)  e class of single-group designs of the form ζ = �ξ1�, where all individuals are observed
under the same approximate individual design ξ, and the number of observations per
individual ism. We denote this class with ∆m

A .

(ii)  e class ofmore-group designs of the form ζ = �ξ1 . . . ξl
g1 . . . gl

�, where the individuals can
be observed under di�erent approximate individual designs, and the mean number of
observations per individualP gimi is �xed tom. We denote this class with ∆m

B .

Note that ∆m
A is a subset of ∆m

B .

We make the following minor assumptions for the criterion Φ under consideration. Let in the
following nnd(Rp�p) denote the set of symmetric non-negative de�nite matrices inRp�p.

Assumption 7.1 1. Φ is a real-valued function de�ned on nnd(Rp�p), that is,Φ � nnd(Rp�p)�
(−ª,ª].
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2. Φ is monotone (with respect to the Loewner partial ordering) on nnd(Rp�p) in the sense
thatM1 CM2� Φ(M1) B Φ(M2) forM1,M2 > nnd(Rp�p).

Note that the assumptions are satis�ed for most of the common criteria, including the D-
criterion and all linear criteria.

We will show that for a criterion ful�lling Assumption 7.1 a design that isΦ-optimal in the class
of single-group designs ∆m

A , is also Φ-optimal in the much larger class of more-group designs
∆m

B .

For the proof of this result we need the following lemma.

Lemma 7.2 (cf. Schmelter (2006b)) Let M1, M2 be symmetric non-negative de�nite matrices.
 en

M
β
ind(αM1 + (1 − α)M2) C αM

β
ind(M1) + (1 − α)Mβ

ind(M2)
holds with respect to the Loewner partial ordering of symmetric non-negative de�nite matrices.

Proof:  e following holds for symmetric positive de�nite matricesM1,M2 andD:

�(αM1 + (1 − α)M2)−1 +D�−1 = D−1 −D−1 �αM1 + (1 − α)M2 +D−1�−1D−1
C D−1 −D−1 �α(M1 +D−1)−1 + (1 − α)(M2 +D−1)−1�D−1

= α(M−11 +D)−1 + (1 − α)(M−12 +D)−1,

where the equalities hold according to a general matrix equality (Schott (1997), Corollary 1.7.1) and the
inequality because of (αA + (1 − α)B)−1 B αA−1 + (1 − α)B−1 for positive de�nite matrices A and B (see
Fedorov and Hackl (1997), p. 107).  e other situations (singular matrices) can be shown with the last part
of Lemma 6.4 and a continuity argument. j

Using Lemma 7.2 we can now proof our statement:

 eorem 7.3 (cf. Schmelter (2006b))

Let ζ� = �ξ
�

1 � > ∆
m
A be a design that is Φ-optimal in the class of single-group designs ∆m

A , where

Φ is a criterion function satisfying Assumption 7.1.  en ζ� is also Φ-optimal in the larger class
of more-group designs ∆m

B .

Proof: Let ζ� = �ξ
�

1
� be aΦ-optimal single-group design (withm observations per individual), then

Φ(Mβ
pop(ζ�)) = Φ(Mβ

ind(ξ�)) B Φ(Mβ
ind(ξ))

holds for all individual designs ξ withm observations.

Let ζ̃ = �ξ̃1 . . . ξ̃l
g1 . . . gl

� beΦ-optimal in ∆m
B , then because of Lemma 7.2

Mβ
pop(ζ̃) =

l
Q
i=1

giM
β
ind(ξ̃i) BM

β
ind �

l
Q
i=1

giM(ξ̃i)� =M
β
ind(ξ̄),
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where ξ̄ is the individual design constructed as the convex combination (with weights g1, . . . , gl) of the
individual designs ξ̃1, . . . , ξ̃l and is hence also an individual design withm observations.

 erefore,
Φ(Mβ

pop(ζ̃)) C Φ(Mβ
ind(ξ̄)) C Φ(Mβ

ind(ξ�)) = Φ(Mβ
pop(ζ�).

j

Note, that the result does not hold in general if only exact individual designs are allowed, as
one can see in the following example.

Example 7.4 We consider a simple linear regression model of the form

Yi j �= β0 + bi + β1xi j+ εi j, xi j > X = [0, 1]

where only the intercept is random. We set the mean number of observations per individual to

m = 3. Let d0 denote the variance of bi. It can be shown that then ζ� = �ξ
�

1 � with ξ
�
= � 0 1

1.5 1.5�
is an approximate D-optimal single-group design independent of d0.
If only exact single-group designs are allowed, however, either all individuals should be observed

under the design ξ1 = �0 1
2 1� or under the design ξ2 = �

0 1
1 2�, that is, ζ1 = �

ξ1
1 � and ζ2 = �

ξ2
1 � are

both D-optimal in the set of exact single-group designs.  e more-group design ζ3 = � ξ1 ξ2
0.5 0.5�,

however, has a higher e�ciency.

7.2 Group-wise identical designs in the general
mixed model

 e result of the previous section can be extended to the general mixedmodel from Section 4.2,
where the response of individual i observed at xi j is modeled by

Yi j = f(xi j)�Kiβ + f(xi j)�bi + εi j.

We assume that the factor de�ning the shapes of the matrices Ki is known and not under the
control of the investigator. By this, the individuals under observation can be subdivided into
di�erent groups according to the shape of the respective Ki. We assume that the number or
the proportion of individuals in each group is known and �xed. As the individual information
matrices depend on the matrices Ki, which can di�er from individual to individual, we cannot
show that all individuals should be observed under the same design, although this is o�en true
in the linear mixed model due to symmetry arguments. However, we can show that in each of
the groups de�ned by the di�erent shapes of the Ki only one elementary design is necessary,
that is, in each of the groups a single-group design can be used.

For ease of notation, we assume that we have only two di�erent shapes of Ki, which we will
denote by Ka and Kb.  e individuals in the sample population can hence be split up into
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7.2 Group-wise identical designs in the general mixed model

two di�erent groups.  is could be, for example, two groups of the sample population getting
di�erent doses of a drug as in Example 4.2 or receiving di�erent treatments.

For each of the two groups a and b we can prescribe a population design ζa = �ξ
a
1 . . . ξala
ga1 . . . gala

�

and ζb = �ξ
b
1 . . . ξblb
gb1 . . . gblb

�, under which the individuals of the respective group should be ob-
served.

As in the previous section, we formally de�ne two classes of population designs:

1. ∆̃ma,mb
A , the class of designs, where all individuals of one group are observed under the
same approximate individual design (group-wise identical designs). Both ζa and ζb are
single-group designs withma andmb observations per individual, and

2. ∆̃ma,mb
B , the class of designs, where the experimental settings can be di�erent for each of
the individuals and only the mean number of observations per individual is prescribed
for each group (P gaνma

ν = ma andP gbνmb
ν = mb).

We show that for an optimality criterion Φ that satis�es Assumption 7.1, a design that is Φ-
optimal in class ∆̃ma,mb

A of group-wise identical designs is also Φ-optimal in the larger second
class ∆̃ma,mb

B of general more-group designs.

To be able to use results from the previous section, we express the information matrices of the
underlying model by means of the information matrices of the corresponding random coef-
�cient regression model, that is, of the model where the matrices Ki are omitted. We hence
consider the RCR model

Yi = Fiβ̃ + Fib̃i + εi, (7.1)

where b̃i, the vector of random e�ects of individual i, has the same covariance matrix D as
in the originally considered mixed model. Let M̃β

ind(ξi) = F�i (FiDF�i +W−1
i )−1Fi denote the

individual informationmatrix of design ξi in model (7.1) and letM̃
β
pop(ζa) (M̃β

pop(ζb) resp.) be
the population information matrix of design ζa (ζb resp.) in that model.  en, the information
matrices of the general model can be expressed as (cf. Eq. (6.4))

M
β
ind(ξi) = K�i M̃

β
ind(ξi)Ki,

Mβ
pop(ζ) =

na

na + nb
K�aM̃

β
pop(ζa)Ka +

nb

na + nb
K�bM̃

β
pop(ζb)Kb,

where na and nb are the numbers of individuals in the two groups.

Note that in general the individual information matricesMβ
ind(ξi) are singular.

We now keep the design ζb for group b �xed.  e contribution of group b to the information
matrix is then

C = nb

na + nb
K�bM̃

β
pop(ζb)Kb.

As we can see with the following lemma, for any criterionΦ satisfying Assumption 7.1 and any
symmetric non-negative de�nite matrix C of appropriate dimension, the criterion Ψ, de�ned
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7 Single-Group Designs for Population Parameter Estimation

as
Ψ(M) = Φ� na

na + nb
K�aMKa +C� ,

also satis�es Assumption 7.1, that is, Ψ is also a monotone criterion.

Lemma 7.5 (cf. Schmelter (2006a)) Let Φ � nnd(Rp�p) � R be a monotone decreasing opti-
mality criterion, C a non-negative de�nite Rp�p-matrix, K an arbitrary Rp�q-matrix, and λ A
0 >R.  en

Ψ � nnd(Rq�q)�R, Ψ(M) = Φ(λK�MK +C)
is also a monotone decreasing optimality criterion.

Proof: LetM1 andM2 be non-negative de�nite p� p-matrices.  en

M1 CM2 � K�M1K C K�M2K
� λK�M1K +C C λK�M2K +C
� Φ(λK�M1K +C) B Φ(λK�M2K +C).

j

Hence, if we keep the design ζb for group b �xed, the search for a design ζ�a that minimizes
Φ(Mβ

pop(ζa, ζb)) in the mixed model is equivalent to the search of a design that minimizes
Ψ(M̃β

pop(ζa)) in the randomcoe�cient regressionmodel (6.5) if we setC = nb~(na+nb)Mβ
pop(ζb).

For random coe�cient regression models we have just shown in the previous section that the
optimal approximate balanced design (single-group design) with respect to a criterion that sat-
is�es Assumption 7.1 is also optimal in the larger class of group designs, where di�erent in-
dividual designs are allowed for the di�erent individuals.  erefore, no matter which design
is used in one of the groups, we can always �nd an optimal single-group design for the other
group.  us, for each of the two groups, single-group designs ζ�a = (ξa�; 1) and ζ�b = (ξb�; 1) can
be found such that ζ� = (ζ�a , ζ�b) is optimal in the class of designs, where di�erent individual
designs are allowed for the di�erent individuals.  e generalization to more than two groups
is straight-forward.

We summarize this result to the following theorem.

 eorem 7.6 (cf. Schmelter (2006a))
Consider a linear mixedmodel as described in Section 4.2 and an optimality criterionΦ satisfying
Assumption 7.1.  en a design that isΦ-optimal in class ∆̃ma,mb

A of group-wise identical designs is
alsoΦ-optimal in the larger class ∆̃ma,mb

B , where the individual designs can vary within the groups.

For illustration we now have another look at Example 4.2.

Example 7.7 We consider the same situation as described in Example 4.2 and now additionally
assume that the covariance structure of the random e�ectsD is diagonal, that is,D = diag(d1,d2).
For simplicity we assume that the design regionX of possible experimental settings xi j isX = [0, 1].
Due to a symmetry argument the search for optimal designs can be restricted to designs that co-
incide in both groups.  e same argument provides that the number of individuals should be the
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Figure 7.1: Contour plot showing the weight on the observation at zero in dependence on d1 and
d2 for the D-optimal design in a two-group linear random coe�cient regression model with common
intercept in the two groups.

same in both groups. Furthermore, we can restrict the search on designs that are concentrated on
the end points of the design region 0 and 1 (see, e. g., Liski et al. (2002)). Hence, the optimal individ-

ual design in both groups has the form ξ� = � 0 1
mw m(1 −w)� and the only values to determine

in this case are the weights w and (1 −w) in dependence on d1, d2, and m.
 e contour plot in Figure 7.1 shows a graphical representation of the D-optimal designs for the
case that the number of observations per individual ismi = m = 10.  e curves in the �gure show
the weight w put on the observation at x1 = 0 in dependence on d1 and d2.

Since the response at x1 = 0 is the same in both groups, one should expect a lower weight on this

61



7 Single-Group Designs for Population Parameter Estimation

point.  is is true in the case that d1 = d2 = 0, where we are in the situation of a ordinary linear
regression model without random e�ects. Here, the known result applies that in both groups one
third of the observations should be taken at x1 = 0 and two thirds at x2 = 1 (see Schwabe (1996)).

However, a counter-intuitive phenomenon can be observed if the variance d2 of the slope param-
eters is increased:  e weight w on the observation at xi j = 0 then also increases.  at means
that the D-optimal design suggests to take more observations where it is easy (where the variance
is low) and reduce the observations where the variance is high (see Schmelter et al. (2006) for a
general discussion of such phenomena in random slope models).

7.3 Further extension

 e result can be extended in two ways. First, the covariance structureD for the random e�ects
does not have to be the same in both groups. In the derivation of the result, both groups were
looked at independently, and it was only assumed that the other group provided some �xed
information matrix C.

Secondly, for the same reason, also the regression functionsmay di�er between the groups, that
is, the regression functions may depend on some additional known parameter vector γi. If we
look at such a model

Yi j = f(xi j,γi)�Kiβ + f(xi j,γi)�bi + εi j, (7.2)

it can be easily seen that the dependence on γi has no in
uence on the derivation of the result
in the previous section as long as γi does not vary within the group.

At �rst glance this extension looks rather arti�cial. However, it can be useful for the application
of the result in non-linear mixed models. As we saw in Section 5.3, the linearization in the
general non-linear mixedmodel just leads to this situation. In Eq. (5.10) we saw that we can use
the general linear mixed model

Ỹi j � f(xi j,Kiβ0)�Kiβ̃ + f(xi j,Kiβ0)�bi + εi j

for planning purposes, which has the form of the model in Eq. (7.2).  e following example
gives an idea how this can be applied in praxis.

Example 7.8 As an application of the result, one could imagine a population pharmacokinetic
study with the aim to investigate the food e�ect on the absorption of a drug.  e absorption of a
drug is o�en slower if the drug is taken together with food.  e study population is therefore split
up into two groups, one group is fasting, the other one getting food together with the drug. We
assume that the concentration of the drug in the body can be described by the following non-linear
function:

η(t,D; (Vc,Cl, ka)�) = D ka
Vc(ka − Cl

Vc
) �e

−
Cl
Vc

t
− e−kat� ,

where D is the given (�xed) dose, Vc is the volume of distribution (the volume of the blood in the
body), Cl is the clearance and ka is the absorption rate constant.  e absorption rate constant
is assumed to be greater for the fasting patients. Using the notation of the previous sections the
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7.3 Further extension

concentration of individual i at time ti j is now modeled by

Yi j = η(ti j,D;Kiβ + bi) + εi j,

where β = (Vc,Cl, k
(L)
a , k(H)a )� is the vector of population parameters and

Ki =
�
�
�

1 0 0 0
0 1 0 0
0 0 1 0

�
�
�
or Ki =

�
�
�

1 0 0 0
0 1 0 0
0 0 0 1

�
�
�

depending on the diet of the respective patient i. If one assumes di�erent prior guesses for k(L)a

and k(H)a , which would be natural, since a food e�ect is expected, the regression functions in the
linearized model used for the planning of the experiment are di�erent for the two groups, as they
depend on the respective parameter.  is will then usually lead to di�erent designs in the two
groups as the symmetry argument used in Example 7.7 does not hold. Due to the shown result of
 eorem 7.6, however, it will be su�cient to optimize one elementary design for each group. A
numerical example will be given in Example 8.9.
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8 Equivalence Theorems

In this chapter wewill transfer the theory of convex design theory that we have brie
y described
in Section 3.4 for the ordinary linear model to the mixed model setting. In Section 3.4 we cited
three theorems, which can be found in the book of Silvey (1980), that characterizedΦ-optimal
designs in the approximate setting with the help of directional derivatives of the criterion func-
tion.

In Section 8.1 we will state  eorems 3.11, 3.12, and 3.13 in a more general way than in Silvey
(1980) going away from the context of design optimization.  is makes it easier to formulate
equivalence theorems for various situations in the mixed model setup, which will be done in
Sections 8.2– 8.4.

8.1 General formulation

 eorems 3.11, 3.12, and 3.13 can be stated in a more general way without the direct relation to
the design problem. We consider the following situation.

Assumption 8.1 1. M̄ is a compact subset of an Euclidean spaceRk, k >N.

2. M = conv(M̄) is the convex hull of M̄.
3. Φ �M� (−ª,ª] is a convex function,

In the following sections, the roles of M̄ andMwill be taken over by di�erent sets of informa-
tion matrices.  is general framework allows an easier derivation of equivalence theorems for
di�erent classes of designs.

Again we will denote by

FΦ(M1,M2) = lim
α�0

1
α
[Φ((1 − α)M1 + αM2) −Φ(M1)] = d

dα
Φ((1 − α)M1 + αM2)V

α=0+

the Fréchet directional derivative of Φ at M1 in direction of M2. Note that as Φ is convex,
FΦ(M1,M2) exists for all M2 if Φ is �nite in M1, no matter whether Φ is di�erentiable or not
(see Rockafellar (1972), p. 213). Further note that FΦ(M,M) = 0 by de�nition. As already
mentioned in Section 3.4, ifΦ is di�erentiable inM� in the usual sense (see Rockafellar (1972),
p. 241), FΦ(M�,Pi aiMi) = Pi aiFΦ(M�,Mi) holds for ai >R withPi ai = 1.

We will now restate the theorems of Section 3.4.  e proofs can be directly transferred from
the respective theorems in Silvey (1980).
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 eorem 8.2 (cf. Silvey (1980), eorem 3.6)
Let Assumption 8.1 be satis�ed.  enM� >Mminimizes Φ onM if and only if

FΦ(M�,M) C 0 for allM >M.

 eorem 8.3 (cf. Silvey (1980), eorem 3.7)
Let Assumption 8.1 be satis�ed andΦ be di�erentiable atM�.  enM� >MminimizesΦ onM
if and only if

FΦ(M�,M) C 0 for allM > M̄.

 eorem 8.4 (cf. Silvey (1980), eorem 3.9)
Let Assumption 8.1 be satis�ed,Φ be di�erentiable at all points ofM+

= �M >M � Φ(M) <ª�,
and let the minimum of Φ onM exist.  enM� minimizes Φ onM if and only if

min
M>M̄

FΦ(M�,M) =max
N>M

min
N̄>M̄

FΦ(N, N̄).

 is general formulation of the theorems can now be applied to various situations occurring in
the context of mixed models.
O�en the condition FΦ(M�,M) C 0 can be brought into the form ϕ(M,M�) B C(M�).  e
function ϕ on the le� hand side is usually called sensitivity function, as it tells how sensitively
the quality of a design reacts if it is slightly changed into the direction ofM. O�en, the design
or the design points thatM is derived from are used instead ofM as the �rst argument of ϕ. For
the D-optimality in the ordinary linear model, the sensitivity function is given by the variance
function d(x,M�) = f(x)�M�−1f(x) and C was the number of parameters and therefore also
independent ofM�.
One should note that ifM� = Pi αiMi, withM�,Mi >M andPi αi = 1,αi A 0, minimizesΦ on
M andΦ is di�erentiable inM�, then

FΦ(M�,Mi) = 0 for all i.

 is is due to the fact that

0 = FΦ(M�,M�) = FΦ(M�,QαiMi) =Qαi FΦ(M�,Mi)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C0

,

which can only be true if all summands FΦ(M�,Mi) are equal to zero.

8.2 Equivalence theorems for single-group designs
for the estimation of the population parameters
in the RCR model

In the Chapter 7 we have shown how the set of designs, in which the optimization has to be
carried out, can be restricted.  is, however, does not immediately tell us how optimal designs
can be found or how the optimality of a given design can be checked. Unfortunately, the set of
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8.2 Equivalence theorems for single group designs in the RCR model

information matrices of single-group designs cannot easily shown to be convex.  e welcome
feature in the ordinary linear model that the information matrix of the convex combination of
two designs is the convex combination of the information matrices of the two designs does not
hold any more in the mixed model setting, that is, in general we have

M
β
ind(αξ1 + (1 − α)ξ2) x αM

β
ind(ξ1) + (1 − α)Mβ

ind(ξ2).

However, we can againmake use of the representation of the β-block of the informationmatrix
derived in Section 6.2.1. By de�ning

Ψ(M) �= Φ�Mβ
ind(M)� = Φ�(M+ +M+MDMM+)+� ,

any criterionΦon the set of informationmatrices of single group designs in the RCRmodel can
be transfered to a criterionΨ on the set of information matrices of the corresponding ordinary
linear model.
Furthermore, if Φ is monotone and convex on the set of information matrices of the mixed
model, Ψ is monotone and convex on the set of information matrices of the corresponding
ordinary linear model, as we show in the following lemma.

Lemma 8.5 Let Φ � nnd(Rp�p) � (−ª,ª] be a monotone, convex and continuous opti-
mality criterion.  en Ψ � nnd(Rq�q) � (−ª,ª], Ψ(M) = Φ(Mβ

ind(M)) = Φ((M+ +
M+MDMD+)+) is also monotone and convex.
Proof: For positive de�nite matricesM1 andM2 the following holds:

monotonicity:

M1 CM2 � M−11 BM
−1
2

� (M−11 +D) B (M−12 +D)
� (M−11 +D)−1 C (M−12 +D)−1
� Φ((M−11 +D)−1) B Φ((M−12 +D)−1) � Ψ(M1) B Ψ(M2).

convexity: Lemma 7.2 states:

M
β
ind((1 − α)M1 + αM2) C (1 − α)Mβ

ind(M1) + αM
β
ind(M2)

and hence

Ψ((1 − α)M1 + αM2) = Φ(Mβ
ind((1 − α)M1 + αM2))

B Φ((1 − α)Mβ
ind(M1) + αM

β
ind(M2))

B (1 − α)Φ(Mβ
ind(M1)) + αΦ(Mβ

ind(M2)) = (1 − α)Ψ(M1) + αΨ(M2).

 e results for singularM1 and/orM2 followwith the second part of Lemma 6.4 and a continuity argument.
j

 is allows us to directly apply convex design theory as described for the ordinary linear model
in Section 3.4. We have reduced the problem of �nding aΦ-optimal design for the RCRmodel
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8 Equivalence Theorems

to �nding aΨ-optimal design in the ordinary linear model. We can now formulate equivalence
theorems similar to the one for D-optimality for the ordinary linear model in Section 3.4. In
the following we use the same sets of designs ∆m

A and ∆m
B as in Section 7.1.

We start with an equivalence theorem for the D-criterion for the RCR-model. A similar version
can be found in Fedorov and Hackl (1997).

 eorem 8.6
A single-group design ζ� = �ξ

�

1 � > ∆
m
A for an RCR-model is D-optimal on ∆m

A if and only if

mf(x)�M(ξ�)−1Mβ
ind(ξ�)M(ξ�)−1f(x) B tr[Mβ

ind(ξ�)M(ξ�)−1] for all x > X .

Proof:  ecriterion to investigate isΨ(M) = − log(det((M−1+D)−1)) = log(det(M−1+D)). Wehave to calculate
FΨ(M1,M2) = d

dα log(det(((1 − α)M1 + αM2)−1 + D)). By applying rules for matrix/vector di�erential
calculus (see, e. g., the book by Magnus and Neudecker (1988) or Wand (2002)) we get

FΨ(M1,M2) = tr �Mβ
ind(M1)M−11 (M2 −M1)M−11 � .

With eorem 3.12 (or  eorem 8.3) the assertion of the theorem follows. j

According to eorem 7.3 ζ� will also be optimal in the set ∆m
B .  e sensitivity function for the

D-criterion in this situation has the form

ϕ(x, ξ) = mf(x)�M(ξ)−1Mβ
ind(ξ)M(ξ)−1f(x).

Di�erent to the ordinary linear model the constant C(ξ) = tr[Mβ
ind(ξ)M(ξ)−1] now really

depends on ξ. With this, it can be immediately seen that in the RCR model the D-criterion is
not equivalent to the G-criterion, where

ΦG(Mind(ξ)) =max
x>X

f(x)�Mβ
ind(ξ)−1f(x)

has to be minimized. In fact, D- and G-criterion can lead to designs that substantially di�er.
 is can already be seen in a simple straight line regression with random slope (see Schmelter
et al. (2006)).

Another special property of D-optimal designs in the ordinary linear model does not hold for
the mixed model case. In the ordinary linear model, D-optimal designs with minimal support
(i.e., with the number of support points equal to the number of parameters to be estimated)
have equal weights on each support point.  is is not the case in the mixed model setting,
which can be seen in Example 8.7.

As we already mentioned, if a linear criterion is used, the optimal design does not depend on
the covariance structure of the randome�ects and hence the optimal design is the same as in the
corresponding ordinary linear model.  erefore, of course also the same equivalence theorems
as in the ordinary linear model can be applied, that is, Corollary 3.15 can also be applied in the
RCR model.

We illustrate the results with the following example.
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Figure 8.1: Illustration of the locally D-optimal design for a one-compartmentmodel with absorption,
where both the observational errors and the random e�ects are modeled as multiplicative log-normal
random variables. Top: Response curve of a typical individual. Bottom: Sensitivity function and
optimal sampling times with number of replications.

Example 8.7 We consider a one-compartment model with absorption.  e observational error
and the individual random e�ects are modeled by multiplicative log-normal random variables.
 us, the observed concentration of individual i at time xi j is given by

Yi j = D
kai

Vci(kai − Cl i
Vc i
) �e

−
Cli
Vci

xij
− e−kaixij� exp(εi j)

with
kai = ka exp(b1 i), Cli = Cl exp(b2 i), Vci = Vc exp(b3 i)

and
εi j

iid
� N (0,σ2), (b1 i,b2 i,b3 i)� iid

� N3(0,σ2D).
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Figure 8.2: Illustration of the locally IMSE-optimal design for a one-compartment model with ab-
sorption, where both the observational errors and the random e�ects are modeled as multiplicative
log-normal random variables.. Top: Response curve of a typical individual. Bottom: Sensitivity func-
tion and optimal sampling times with number of replications.

For planning purposes we use the following information from an earlier study:

ka0 = 0.61, Cl0 = 25, Vc0 = 88,

σ2 = 0.01, and D =
�
�
�

89.3 0 0
0 12.5 0
0 0 9.0

�
�
�
.

We consider the D- and the IMSE-criterion and calculate the optimal approximate one-group de-
signs for six observations per individual. We restrict the design regionX to the interval [0.01,24.00].
We furthermore set the number of observations per individual tomi = 6.  e numerical optimiza-
tion results in
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8.3 Equivalence theorems in the general mixed model

locally D-optimal design
Time 0.01 6.27 24.00
Replication 1.18 4.10 0.72

locally IMSE-optimal design
Time 0.01 8.95 24.00
Replication 1.23 2.93 1.84

.

Note that the locally IMSE-optimal design only depends on the assumed value of β and not onD,
as the IMSE-criterion is a linear criterion (see Section 7.1).  e results are illustrated in Figure 8.1
for the D-criterion and in Figure 8.2 for the IMSE-criterion. In the top pictures the concentration
pro�le of a typical individual can be seen.  e dotted vertical lines indicate the positions of the
optimal design points. In the bottom �gures the sensitivity functions of the respective criteria are
plotted for the optimized designs.  e horizontal lines give the constants C derived in the equiv-
alence theorems. As can be seen, the sensitivity functions do not cross these lines.  e vertical
bars indicate the numbers of replication at the optimal design points. Note that we did not give a
theoretical proof of the optimality of the two designs, but only applied the equivalence theorems
graphically.

8.3 Equivalence theorems in the general mixed model

Similar results as in the previous section can also be obtained for the general mixed model.
However, as we will later see, they are not as easily to apply. For simplicity we again assume
without loss of generality that there are only two groups, a and b, such that a population design
ζ can be represented by ζ = (ζa, ζb). Furthermore, we take the number (or proportion) of
subjects in each of the groups as given and �xed. We de�ne

Ψ(Ma,Mb) = Φ� na

na + nb
K�aM̃

β
ind(Ma)Ka +

nb

na + nb
K�bM̃

β
ind(Mb)Kb� ,

where M̃ind is used as before to denote the information matrix of the RCR model without Ka
and Kb. We can now interpret a criterion Φ de�ned on the set of information matrices of the
general mixed model as a criterion de�ned on the Cartesian product of the sets of information
matrices of the two corresponding ordinary linear models, that is, Ψ �Ma �Mb � (−ª,ª],
whereMa andMb are the sets of individual information matrices for the two groups. If Φ is
convex and monotone decreasing, Ψ is also convex and monotone decreasing in both compo-
nents.

AsMa andMb are the convex hulls of the information matrices of the respective one-point
design measures, Ma �Mb is the convex hull of the Cartesian product of the information
matrices of the one-point designs.  ismeans that the eorems 8.2, 8.3, and 8.4 can be applied
usingMa �Mb instead ofM. Note that for di�erentiable criteria we have

FΨ((M�1 ,M�2),(M1,M2)) = FΨ((M�1 ,M�2),(M1,M�2) + (M�1 ,M2) − (M�1 ,M�2))
= FΨ((M�1 ,M�2),(M1,M�2)) + FΨ((M�1 ,M�2),(M�1 ,M2)) − FΨ((M�1 ,M�2),(M�1 ,M�2))

= FΨ((M�1 ,M�2),(M1,M�2)) + FΨ((M�1 ,M�2),(M�1 ,M2)), (8.1)

which follows from the fact that in general FΦ(M�,Pi aiMi) = Pi aiFΦ(M�,Mi) holds for
ai >R withPi ai = 1 forΦ di�erentiable inM� (see Rockafellar (1972), p. 244).
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8 Equivalence Theorems

We now give an equivalence theorem for the D-criterion. We use the same de�nition of ∆̃ma,mb
A

and ∆̃ma,mb
B as in Section 7.2 and restrict our attention to non-singular elementary designs, that

is, to designs, for which the corresponding information matrix in the ordinary linear model is
non-singular.

 eorem 8.8
Let ζ� = (ζ�a , ζ�b) = ��

ξ�a
1 � ,�

ξ�b
1 �� > ∆̃

ma,mb
A be a group-wise identical design for a general mixed

model and ξ�a and ξ�b be non-singular.  e ζ� is D-optimal on ∆̃
ma,mb
A if and only if

maf(x)�M(ξ�a)−1M̃β
ind(ξ�a)KaM

β
pop(ζ�)−1K�aM̃β

ind(ξ�a)M(ξ�a)−1f(x)
B tr �Mpop(ζ�)−1K�aM̃β

ind(ξ�a)M(ξ�a)−1M̃β
ind(ξ�a)Ka� for all x > X

and

mbf(x)�M(ξ�b)−1M̃
β
ind(ξ�b)KbM

β
pop(ζ�)−1K�bM̃

β
ind(ξ�b)M(ξ�b)−1f(x)

B tr �Mpop(ζ�)−1K�bM̃
β
ind(ξ�b)M(ξ�b)−1M̃

β
ind(ξ�b)Kb� for all x > X

Proof: Similar to the proof of  eorem 8.6 we now have to investigate the criterion

Ψ(Ma,Mb) = − log det �K�aM̃
β
ind(Ma)Ka +K�bM̃

β
ind(Mb)Kb� .

For the design (ζ�a , ζ�b) to be optimal it is necessary that both

FΨ((M(ξ�a),M(ξ�b)),(maf(x)f(x)�,M(ξ�b)) C 0 for all x > X

and
FΨ((M(ξ�a),M(ξ�b)),(M(ξ�a),mbf(x)f(x)�) C 0 for all x > X

holds, as this �guratively means that the design cannot be improved by slightly changing the design of one
of the two groups, which are special cases of the general necessary condition. On the other hand the two
conditions are also su�cient for the optimality, as (ζ�a , ζ�b) is Ψ-optimal if

FΨ((M(ξ�a),M(ξ�b)),(maf(x)f(x)�,mbf(y)f(y)�)
= FΨ((M(ξ�a),M(ξ�b)),(maf(x)f(x)�,M(ξ�b)) + FΨ((M(ξ�a),M(ξ�b)),(M(ξ�a),mbf(y)f(y)�) C 0

holds for all x, y > X according to eorem 8.3 and this condition is satis�ed if both of the summands are
greater or equal zero. j

Note that according to eorem 7.6, ζ� is then also optimal in ∆ma,mb
B .

Example 8.9 We consider the situation of Example 7.8, where the sample population is split up
into two groups, in which the absorption rate constant is assumed to be di�erent. As a numerical
example we assume for one of the groups the same prior information as we used in Example 8.7.
For the other group we assume that all parameters except the absorption rate ka are the same.
For ka in this group we assume a value that is twice as high as in the �rst group. Again both
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Figure 8.3: Illustration of the locally D-optimal design for two groups in a one-compartment model
with absorption, where both the observational error and the random e�ects are modeled as multi-
plicative log-normal random variables. Top: Response curves for typical individuals of the two groups.
Middle: Sensitivity function and optimal sampling times for group a. Bottom: Sensitivity function and
optimal sampling times for group b.
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8 Equivalence Theorems

the observational errors as well as the random e�ects are modeled by multiplicative log-normal
randomvariables.  e locally optimized approximate designs for theD-criterion for the two groups
are given in the following tables.

Group a
Time 0.01 6.70 24.00
Replications 1.41 3.85 0.74

Group b
Time 0.01 4.03 24.00
Replications 1.43 4.07 0.50

Figure 8.3 shows in the top picture the concentration pro�les of the typical individuals for each
group (group a = solid line, group b = dashed line). Below this the two sensitivity functions of
the locally D-optimal design for the two groups are shown.  e vertical bars denote the optimal
sampling times, where the height of the bars is proportional to the number of replications. Note
that the designs are not theoretically proven to be optimal but only graphically checked.

In the generalmixedmodel the fact that for linear criteria the same optimal designs are obtained
as for the ordinary linear model cannot be shown.  us, it is reasonable to obtain equivalence
theorems also for this situation.

 eorem 8.10
Let Φ be a linear criterion of the form Φ(M) = tr[LM−1] and ζ� = ��ξ

�

a
1 � ,�

ξ�b
1 �� > ∆̃

ma,mb
A be

a group-wise identical design for a general mixed model such that ξ�a and ξ�b are non-singular
matrices.  en ζ� is Φ-optimal on ∆̃ma,mb

A if and only if

maf(x)�M(ξ�a)−1M̃β
ind(ξ�a)KaM

β
pop(ζ�)−1LMβ

pop(ζ�)−1K�aM̃β
ind(ξ�a)M(ξ�a)−1f(x)

B tr �Mβ
pop(ζ�)−1LMβ

pop(ζ�)−1K�aM̃β
ind(ξ�a)M(ξ�a)−1M̃β

ind(ξ�a)Ka� for all x > X

and

mbf(x)�M(ξ�b)−1M̃
β
ind(ξ�b)KbM

β
pop(ζ�)−1LMβ

pop(ζ�)−1K�bM̃
β
ind(ξ�b)M(ξ�b)−1f(x)

B tr �Mβ
pop(ζ�)−1LMβ

pop(ζ�)−1K�bM̃
β
ind(ξ�b)M(ξ�b)−1M̃

β
ind(ξ�b)Kb� for all x > X .

Proof: Analogous to proof of  eorem 8.8. j

 e extension of  eorem 8.8 and eorem 8.10 to more than two groups is straight-forward.

8.4 Equivalence theorems based on population
designs

 ere are reasons to consider equivalence theorems not only on the level of the elementary
designs (as we have done in the previous sections), but also one level above this on the level of
population designs.
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8.4 Equivalence theorems based on population designs

One reason is that the results described in the previous sections do not help us if we consider
criteria that are based on the complete information matrix also including the variance parame-
ters. Althoughwe gave representations for the di�erent blocks of the informationmatrix, which
expressed them as functions ofM, the resulting criteria Ψ(M) = Φ(Mind(M)) are not convex
inM, which makes it impossible to transfer the results.

Another reason is that the results of the previous section do not help us if we restrict the set of
allowed individual designs to exact elementary designs, as then the set, on which the optimiza-
tion is performed, is not convex anymore.

To derive results anyway we consider the following situation. Let Ξ′ be an arbitrary subset of
the set Ξ of all individual designs.  is could, for example, be the set of all exact elementary
designs with a certain given number of observations. We de�ne

Mind(Ξ′) = �Mind(ξ)Sξ > Ξ′�

and

∆(Ξ′) = �ζ S ζ = �ξ1, . . . , ξl
g1, . . . , gl

� with ξ1, . . . , ξl > Ξ′¡ .

 e set of the information matrices of all population designs based on Ξ′

Mpop(Ξ′) = �Mpop(ζ) S ζ > ∆(Ξ′)� (8.2)

is a convex set, as it is the convex hull of the set of information matrices of the elementary
designs contained in Ξ′, that is,Mpop(Ξ′) = conv(Mind(Ξ′)).
Hence the requirements for the application of the theorems stated in the beginning of this chap-
ter aremet.  e chosen setΞ′ takes over the function that the design spaceX had in the previous
sections.

We can state the following theorem.

 eorem 8.11
Let Ξ′ ⊂ Ξ be a subset of the set of all elementary designs,Mpop(Ξ′) be de�ned as in Eq. (8.2),
and Φ be convex optimality criterion that is di�erentiable inMpop(ζ�), ζ� > ∆(Ξ′).  en ζ� is
Φ-optimal on ∆(Ξ′) if and only if

FΦ(Mpop(ζ�),Mind(ξ)) C 0 for all ξ > Ξ′.

Proof: Follows directly from eorem 8.3. j

For the D-criterion the following equivalence theorem can be shown, which is similar to the
multivariate version of equivalence theorem stated in Fedorov (1972), p. 212.

 eorem 8.12
A population design ζ� > ∆(Ξ′) is D-optimal on ∆(Ξ′) if and only if

tr(Mpop(ζ�)−1Mind(ξ)) B r for all ξ > Ξ′,
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8 Equivalence Theorems

where r is the dimension of the information matrix, that is, the number of parameters to be esti-
mated.

Proof: Φ(M) = − log(det(M)) is convex on the convex setMpop(Ξ′) ⊂ nnd(Rr�r) and di�erentiable on the
subset of positive de�nite matrices.  e assertion then follows with eorem 8.3. j

For linear criteria, the formof the equivalence theorem is also similar to the one for the ordinary
linear model.

 eorem 8.13
Let Φ be a linear criterion of the form Φ(M) = tr(AM−1). A non-singular population design
ζ� > ∆(Ξ′) is Φ-optimal on ∆(Ξ′) if and only if

tr(Mpop(ζ�)−1AMpop(ζ�)−1Mind(ξ)) B tr(Mpop(ζ�)−1A) for all ξ > Ξ′.

 e results can be restricted to subsets of the parameters in the usual way like, for example, to
only the population parameters.

Di�erent to the equivalence theorems in the previous section, the application of this theorem
is only useful for low dimensions, that is, for a low number of observations per individual like
two or three.

It should be also mentioned that the results in this chapter not only allow the checking of the
optimality of given designs but also allow the construction of iterative optimization algorithms.
 e general idea brie
y described at the end of Section 3.4 can be directly applied here.

We close this section with an example for the application of two equivalence theorems just
introduced.

Example 8.14 We consider the same situation as in Example 8.7 and use the same prior infor-
mation as there. However, we now restrict the set of allowed elementary designs to exact designs
with two observations per individual.  e following tables show the optimized designs for the D-
and the IMSE-criterion (based only on the population parameter block).

locally D-optimal design
Elementary design (0.01, 4.35) (0.01, 24.00) (5.71, 24.00)
Weight 0.28 0.29 0.43

locally IMSE-optimal design
Elementary design (0.01, 18.31) (3.85, 17.65) (9.49, 24.00)
Weight 0.28 0.32 0.40

Figure 8.4 and Figure 8.5 show the contour plots of the sensitivity functions of optimal designs for
the D- and the IMSE-criterion.  e grey circles indicate the elementary two-point designs.  e
radius of the circles is proportional to the weight on the respective design.
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Figure 8.4: Contour plot of the sensitivity function of the D-criterion for the D-optimal 2-point pop-
ulation design for a one-compartment model with absorption. Both the observational errors and the
random e�ects are modeled as multiplicative random variables.  e grey circles in the �gure mark the
optimal elementary two-point designs.  e radii of the circles are proportional to the weight.

77



8 Equivalence Theorems

IMSE−optimal 2−point design
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Figure 8.5: Contour plot of the sensitivity function of the IMSE-criterion for the IMSE-optimal 2-
point population design for a one-compartment model with absorption. Both the observational errors
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9 Practical Considerations and
Discussion

 ere are some limitations theoretically optimized designs have when they are applied in prac-
tice. We will use this chapter to discuss some of these issues, like possibly non-integer numbers
of observations or the dependence of the designs on prior information. Against this back-
ground we will also discuss the results of this thesis.

9.1 Non-integer replications

Usually, when single-group designs or group-wise identical designs for the estimation of pop-
ulation parameters are optimized, the numbers of replications for the di�erent sampling times
will not be integer. As for the ordinary linear model (see, e. g., Pukelsheim (1993)) e�cient de-
signs can usually be found by rounding. However, it may occur that the number of support
points of a design is larger than the number of measurements allowed in the design.  en ef-
�cient rounding of the replications is usually not possible and it is necessary to step back from
the single group designs and allowmore than one group or to allowmore observations per indi-
vidual. For this, the number of support points in the optimal approximate single-group design
is a good indicator for how many distinct time points to include into the applicable population
design. In any case, the optimized one-group designs can be used as benchmark designs.  e
theoretical frameworkmakes them easy to calculate and, as the exact designs are a subset of the
approximate designs, no exact design with the same constraints on the number of observations
can have a higher e�ciency, that is, a lower value of the criterion.

Similar consideration have to be made for the weights on the elementary designs in optimized
population designs. It might occur that the number of individuals ngi to be observed with
design ξi is not integer. Again rounding of these numbers usually leads to e�cient designs.

 e importance of the benchmark property should not be underestimated. Optimal approxi-
mate designs can, on the one hand, usually be relatively easily numerically calculated by using,
for example, the �rst-order algorithm and, on the other hand, be shown to be optimal with the
help of one of the equivalence theorems discussed in Chapter 8. If a candidate for an e�cient
applicable design is found, the e�ciency can easily be checked by comparison with the optimal
approximate design. Depending on the e�ciency one can then decide whether it is worth the
e�ort to further optimize the design.
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9 Practical Considerations and Discussion

9.2 Repeated measurements

In the previous section we just discussed the problem that we might have non-integer numbers
of replications. In the practice of pharmacokinetic studies, however, it is usually even impossi-
ble to get more than one blood sample at a given time point.  at is, numbers of replications
that are not equal to one are usually impossible to implement in practice. One might get the
idea to obtain a larger blood sample at a given time and split the amount of blood into several
samples to circumvent this problem. By this, however, the assumed conditional independence
of the blood samples of one individual is usually violated.

 ere are studies, however, where replicated measurements are possible in a certain sense.  is
is the case, for example, in multiple dose studies.  ere, it is possible to optimize an elementary
design for one dosing interval in steady-state.  e replications can than be distributed to the
other dosing intervals. We illustrate this with the following example.

Example 9.1 We consider the same one-compartment model as in Example 8.7. We assume that
we have the same prior information for the planning of the experiment. Both the observational
errors and the random e�ects are again assumed to bemultiplicative log-normal randomvariables.

 is time we assume that the drug is not only administered once, but repeatedly every six hours.
As described in Section 2.1.3, a�er several administrations the concentration pro�le approaches a
steady-state and the pro�les look the same for each subsequent dosing interval. An e�cient design
for such a multiple-dose study can now be found by �rst optimizing the design for the steady-state
model, rounding the replications, and then allocating the replications to di�erent dosing intervals.
By this, the problem with impossible replications of measurements at the same time point within
one subject vanishes. Figure 9.1 illustrates this idea.  e top �gure shows the concentration pro�le
at steady state.  e bars indicate the D-optimal sampling time points.  e height of the bars
gives the number of replications at the respective sampling time.  e bottom picture shows the
concentration pro�le for several repeated administrations. A�er the fourth drug intake the steady-
state is reached.  e D-optimal sampling times are allocated to the fourth, ��h, and sixth dosing
interval. In this example, the D-e�ciency of the rounded design, which is de�ned by

E�D(ζ) = det(M(ζ)) 1
p

det(M(ζ�)) 1
p
,

is still 99%.

Note that for multiple dose experiments o�en additional variance components are introduced to
model the inter-occasional variability, that is, the variability of the kinetic parameters between
the dosing intervals within one subject. For the planning stage, however, this component is o�en
neglected.
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Figure 9.1: D-e�cient design for a multiple-dose experiment. Top �gure: concentration pro�le of
a one-compartment model in steady state with optimal design points. Bottom �gure: concentration
pro�le for multiple doses with D-e�cient sample time points.
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9 Practical Considerations and Discussion

9.3 Dependence of optimal designs on unknown
parameters

 e probably most severe problem with theoretical design optimization in mixed models is
the dependence of the optimal designs on the prior information one has about the unknown
parameters. In the linearmixedmodel these are only the variance parameters, in the non-linear
model these are also the population parameters.  e dependence on the variance parameters is
not as severe as the one on the population parameters. If the focus lies on the estimation of the
population parameters and a linear criterion is used, like the IMSE-criterion, then the optimal
design does not depend on the variance parameters at all (see Section 7.1).

Proposals to reduce the dependence of the optimal designs on the unknown parameters are to
use an Bayesian or pseudo-Bayesian approach or to use minimax criteria.

In the “real” Bayesian approach both the planning and the analysis are performed within a
Bayesian framework, that is, an a-priori distribution for the unknown parameters is used for
the planning and the Bayesian analysis of the experiment. A general description of Bayesian
analysis of population pharmacokinetic models is given in Lunn et al. (2002). Examples for
Bayesian designs for mixed models are given in Han and Chaloner (2004) and Stroud et al.
(2001) besides others. We will not further discuss Bayesian approaches, as all the rest of this
thesis was written from a frequentist’s perspective.

With pseudo-Bayesian, or also called averaged, criteria we mean approaches, where a prior
distribution is used for the experimental design but the analysis is non-Bayesian (see Fedorov
and Hackl (1997), pp. 101).  ere is a statement by Atkinson and Cox (1974) “ e classical
Fisherian approach is that prior information (not usually quantitatively expressed) is highly
relevant in selecting a design but that the analysis should not depend on this information”.

 eusual pseudo-Bayesian approach is outlined in the following. To emphasize the dependence
of the information matrix on a vector of unknown parameters θ, we will in this section denote
the information matrix byMpop(ζ; θ).  e vector θ can contain only the variance parameters
or both the variance and the population parameters depending on the situation. We express
our assumptions on the unknown parameters by a prior distribution µ.  e pseudo-Bayesian
or averaged criterion de�ned on a given set of designs now has the form

Ψ(ζ) = S Φ(Mpop(ζ; θ))µ(dθ)

(see, e. g., Fedorov and Hackl (1997), pp. 101). Depending on the chosen prior distribution, the
calculation of optimal designs is much more complicated due to the integrals that have to be
solved. Note that Ψ cannot be expressed as a function of the information matrix of a design.
However, for many criteria Φ one can also �nd equivalence theorems for the corresponding
averaged criterion.  e results of Chapter 7 still hold for averaged criteria due to the linearity
of the integral.  is means that the optimization can still be restricted to single-group designs
and group-wise identical designs if a criterion based on the population parameters is used.
One should also note that the upper bound for the number of support points for an optimal
design given by Caratheodory’s theorem does not hold in this situation, as the criterion is not a
function of a single information matrix anymore.  e increase of support points can be seen in
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9.4 Further practical implications

Atkinson et al. (1993), where optimal pseudo-Bayesian designs for a one-compartment model
without random e�ects are calculated.
 e optimization of locally optimal designs can be seen as an extreme case of the pseudo-
Bayesian approach, as the used best guess can be seen as a degenerate prior distribution.
Alternatively to the formulation given above, one can also base averaged criteria on the averaged
information matrix or the averaged inverse of the information matrix instead of the averaged
criterion value, that is, using

Ψ(ζ) = Φ�S Mpop(ζ; θ)µ(θ)� or Ψ(ζ) = Φ��S Mpop(ζ; θ)−1µ(θ)�
−1
� .

Tod and Rocchisani (1997) have compared three di�erent variants of averaged criteria for the
D-criterion in pharmacokinetic models.
Dodds et al. (2005) investigate the ED criterion, where the averaged determinant of the infor-
mation matrix is maximized, for a population pharmacokinetic model. Tod et al. (1998) do the
same for the EID criterion, where the averaged determinant of the inverse of the information
matrix is minimized.
A similar approach are so-called minimax criteria. Here, not a speci�c prior distribution is
speci�ed for the unknown parameters, but only a set Θ, in which they are assumed to lie. To
protect oneself against the worst case scenario one now minimizes the maximum value of the
criterion over the set Θ, that is, one minimizes

Φ(ζ) =max
θ>Θ

Φ(Mpop(ζ; θ)).

Again, depending on the chosen set Θ the solution of this problem is not trivial.  e results
of  eorem 7.3 and 7.6 stay valid also for this kind of criterion.  eoretical results for a similar
criterion, where a standardizedminimaxD-criterion is used, for a compartmentmodel without
random e�ects have been obtained by Biedermann et al. (2004).

9.4 Further practical implications

 e result of a theoretical design optimization is usually a set of few exact sampling time points.
If the design is seriously followed, the blood samples have to be taken at exactly these time
points to assure the calculated e�ciency. In practice this is in most cases not feasible. On the
other hand, it is o�en also not acceptable. If the samples are obtained at only very few distinct
time points, there is no robustness againstmodelmisspeci�cation.  emodel used for the plan-
ning is usually developed using data from an ordinary kinetics study conducted in few healthy
volunteers.  e population, for which the study is planned, o�en has a higher variability.  e
sources of variability are o�en not known in advance and are investigated a�er the study has
been conducted by stepwise including or excluding additional covariates, like weight, age, etc.
For sake of both, robustness against deviation from the model and practicability of the study,
o�en not single time points are prescribed for the blood samples but time windows, in which
the samples should be taken.  ese time windows are usually oriented at the optimal sampling
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times. Chenel et al. (2005) describe an approach to obtain e�cient time windows against the
background of a phase II study. Bogacka et al. (2006) present an idea based on the equivalence
theorem to �nd D-e�cient time windows for models without random e�ects.

For practical application also another kind of robustness of the design is needed: robustness
against convergence problems of the �tting algorithm. Even in the case that a theoretical op-
timal design is used, it can happen that �tting of the model with, for example, NONMEM is
not successful due to numerical instabilities. Simulation runs are in any case advised before
implementing a design for a clinical study. By this it can be checked if the optimized design
performs reasonably well if it is applied in a practical situation and numerical problems can be
recognized in advance.

9.5 Conclusion

Despite all the described di�culties that might appear in the practical application of the the-
oretically optimized designs, the results presented in this thesis form a good framework for
design optimization.

By allowing approximate designs on both levels (individual and population level) the problem
becomes theoretically better tractable. We showed that within this setting, under certain con-
ditions, a design that is optimal in the class of single-group designs is also optimal in the class
of general population designs. By this the set in which an optimal design is to be searched for
can be drastically reduced without losing e�ciency.

Furthermore, the derived equivalence theorems not only allow for the checking of optimality
of a given design, but also o�er a starting point for the construction of optimization algorithms.
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Tod, M., Mentré, F., Merlé, Y., and Mallet, A. (1998). Robust optimal design for the estima-
tion of hyperparameters in population pharmacokinetics. Journal of Pharmacokinetics and
Pharmacodynamics, 26(6):689–716.

Tod, M. and Rocchisani, J.-M. (1997). Comparison of ED, EID, and API criterio for the ro-
bust optimization of sampling times in pharmacokinetics. Journal of Pharmacokinetics and
Biopharmaceutics, 25(4):515–537.

Verbeke, G. andMolenberghs, G. (2000). Linear MixedModels for Longitudinal Data. Springer
Series in Statistics. Springer, New York.

Vonesh, E. F. and Chinchilli, V. M. (1997). Linear and Nonlinear Models for the Analysis of
Repeated Measurements. Marcel Dekker, New York.

Wand,M. P. (2002). Vector di�erential calculus in statistics. eAmerican Statistician, 56(1):55–
62.

Wang, J. and Endrenyi, L. (1992). A computationally e�cient approach for the design of popula-
tion pharmacokinetic studies. Journal of Pharmacokinetics and Biopharmaceutics, 20(3):279–
294.

Wikipedia (2006). Pharmacokinetics. Wikipedia, The Free Encyclopedia. [Online; accessed
December 20, 2006].

Zyskind, G. (1967). On canonical forms, non-negative covariance matrices and best and simple
least squares linear estimators in linear models. Annals of Mathematical Statistics, 38(1092–
1109).

94


	Introduction
	Introduction to Pharmacokinetic Modeling
	Models
	One-compartment models
	Two-compartment models
	Multiple-dose experiments

	Important pharmacokinetic parameters
	The population approach

	Experimental Design in the Ordinary Linear Model
	Model
	Designed experiments
	Optimality criteria
	Convex design theory

	Linear Mixed Models
	The random coefficient regression model
	General model
	Estimation
	Estimation of fixed effects for known variance parameters
	Maximum likelihood estimation

	The Fisher information matrix

	Nonlinear Mixed Models
	The model
	Estimation
	Two-stage procedure
	Maximum likelihood

	Approximation of the Fisher information
	Proportional error models

	Designs, Information Matrices and Criteria
	Designs
	Individual (elementary) designs
	Population designs

	Information matrices
	Population parameter block
	Variance parameter block (for diagonal D)

	Criteria
	Criteria based on the population parameter block
	Criteria based on the whole information matrix


	Single-Group Designs for Population Parameter Estimation
	Single-group designs in RCR models
	Group-wise identical designs in the general mixed model
	Further extension

	Equivalence Theorems
	General formulation
	Equivalence theorems for single group designs in the RCR model
	Equivalence theorems in the general mixed model
	Equivalence theorems based on population designs

	Practical Considerations and Discussion
	Non-integer replications
	Repeated measurements
	Dependence of optimal designs on unknown parameters
	Further practical implications
	Conclusion

	Nomenclature
	Bibliography

