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Abstract

The aim of this work is to find efficient and reliable numerical solutions of two complex

problems under consideration. In the first application problem, an improved continuum

model has been derived to describe the temperature and concentration distributions in

gas-solid-fluidized beds with spray injection. The model equations for the nozzle spray

are also reformulated to achieve reliable numerical solutions. The model equations are

strongly coupled and semilinear partial differential equations with boundary conditions.

The model equations are more flexible to compute the numerical solution on unstructured

meshes than previous models. Solutions to these equations are approximated using a finite

element method for the spatial discretization and an implicit Euler method in time. A study

has been conducted to see the behavior of process parameters for heat and mass transfer

in fluidized beds. The numerical results demonstrate that the method has a convergence

order that agrees with theoretical considerations. The numerical results are validated with

experimental results for two cases in three space dimensions. From parallelized numerical

results, using domain decomposition methods, we show that good parallel efficiency is

achieved with different numbers of processors.

The second application problem concerns the adaptive numerical simulation of intra-

cellular calcium dynamics. The modeling of diffusion, binding and membrane transport of

calcium ions in cells leads to a system of reaction-diffusion equations. The strongly local-

ized temporal behavior of calcium concentration due to opening and closing of channels

as well as their spatial localization are effectively treated by an adaptive finite element

method. The discrete approximation of deterministic equations produces a system of stiff

ordinary differential equations with multiple time scales. The time scales are handled using

linearly implicit time stepping methods with an adaptive step size control. The opening

and closing of channels is typically a stochastic process. A hybrid method is adopted to

couple the deterministic and stochastic equations. The adaptive numerical convergence of

solutions is studied with different cluster arrangements. The deterministic equations are

solved with parallel numerical methods to reduce the computational time using domain

decomposition methods. A good parallel efficiency is achieved with different numbers of

processors.
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Zusammenfassung

Gegenstand der vorliegenden Arbeit ist es, effiziente und zuverlässige numerische Lösun-

gen für zwei betrachtete komplexe Probleme zu finden. Für das erste Anwendungsproblem

wurde zur Beschreibung der Temperatur und der Konzentrationsverteilung in Gas/Feststoff-

Wirbelschichten mit Einspritzdüse ein verbessertes Kontinuumsmodell hergeleitet. Um zu-

verlässige numerische Lösungen zu erzielen, wurden die Modellgleichungen fuer die Spritz-

düse neu dargelegt. Sie sind gekoppelte, nichtlineare partielle Differentialgleichungen mit

Randbedingungen. Diese Modellgleichungen sind flexibler bei der Berechnung numerischer

Lösungen auf unstrukturierten Gittern. Sie wurden mittels einer Finiten Element-Methode

für die Ortsdiskretisierung und des impliziten Eulerverfahrens für die Zeitdiskretisierung

approximiert. Ferner wurde eine Studie zur Untersuchung des Verhaltens der Prozesspa-

rameter des Massen- und Wärmeaustausches in Wirbelschichten durchgeführt. Die nu-

merischen Resultate zeigen, dass die Konvergenzordnung der verwendeten Methode mit

theoretischen Betrachtungen übereinstimmt. Durch experimentelle Daten für zwei Fälle in

drei Raumdimensionen wurden die numerischen Ergebnisse bestätigt. Unter Verwendung

von Gebietszerlegungsmethoden konnte fuer parallele Rechnungen mit unterschiedlicher

Anzahl von Prozessoren eine gute Effizienz erzielt werden.

Das zweite Anwendungsproblem beschäftigt sich mit der adaptiven numerischen Si-

mulation der intrazellularen Dynamik von Kalzium. Die Modellierung der Diffusion, der

Bindung sowie des Membrantransports der Kalziumionen in den Zellen führt auf ein Sys-

tem von Reaktions-Diffusionsgleichungen. Das streng lokalisierte temporäre Verhalten der

Kalziumkonzentration aufgrund des Öffnes und Schließens von Kanälen einerseits sowie

ihre räumliche Lokalisierung andererseits sind effektiv mit einer adaptiven Finiten Element-

Methode behandelt worden. Die diskrete Approximierung der deterministischen Gleichun-

gen ergibt ein System gewöhnlicher Differentialgleichungen mit mehreren Zeitskalen. Unter

Verwendung linear impliziter Zeitschrittverfahren mit adaptiver Schrittweitensteuerung

wurden diese Zeitskalen behandelt. Das Öffnen und Schließen der Kanäle ist typischer-

weise ein stochastischer Prozess. Zur Kopplung der deterministischen und stochastischen

Gleichungen wurde eine gemischte Methode eingesetzt. Die numerische Konvergenz der

x



Lösungen ist ausführlich mit verschiedenen Klustereinteilungen untersucht worden. Die de-

terministischen Gleichungen wurden mit parallelen numerischen Methoden unter Verwen-

dung von Gebietszerlegungstechniken gelöst, um die benötigte Rechenzeit zu reduzieren.

Eine hohe Effizienz konnte mit unterschiedlicher Anzahl von Prozessoren erreicht werden.

xi
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Chapter 1

Introduction

This work is devoted to the reliable solution of specific complex problems described by

partial differential equations of advection, diffusion and reaction type. They are explained

in Chapter 2 and Chapter 3. The problems under consideration originate from various

processes of nature from biology and of chemical engineering. In this work, our focus is

on both fields. The two specific problems, which are considered in the present work, have

similar type of mathematical model equations. Due to the high complexity of such systems,

finding exact solutions is currently unknown. Therefore, numerical methods are essential

to obtain the approximate solution of such problems. Furthermore, the computational

capabilities allow the incorporation of more and more detailed physics into the models.

The problems considered in this work are highly coupled and it is challenging to get the

numerical solution with moderate computational time.

In this work, the attention is focused on two specific problems. The first problem

is described by the heat and mass transfer in fluidized beds with liquid injection. This

process is very complex in reality and the modeling of such a process is described by the

mass and the energy balances of the particles, the sprayed liquid, as well as air. The

basic modeling of this problem can be found in the theses of Heinrich [47] and also Hen-

neberg [51]. The focus of the current study is on the derivation of a continuum model and

the numerical treatment of such a system of coupled semilinear parabolic and hyperbolic

equations, especially for fluidized bed spray granulation (FBSG), to determine the thermal

conditions in the fluidized bed. This work contains an improvement of the modeling and

a more sophisticated numerical method is presented in comparison to the model presented

in Heinrich [49]. The model equations form a complicated system of coupled semilinear

partial differential equations. The model equations for the nozzle spray in two and three

dimensions are reformulated using the available previous models. The model equations are

1



2 CHAPTER 1. INTRODUCTION

made mesh independent in order to be more flexible with different meshes. The previously

used structured finite difference method is replaced by a finite element method allowing

unstructured grids. This flexibility allows the computation of a fluidized bed apparatus

with non rectangular geometry as well as local mesh adaption in the solution process. If

we include more than one spray nozzle in three space dimensions then the numerical com-

putations with a single processor are very difficult. This simulation may take several days

or months. Due to the high computational cost, parallel programming methods are used

to reduce the computational time for such type of complex applications. Specifically, the

domain decomposition methods are used to obtain accurate and efficient results.

The second application problem is concerned with the efficient and reliable numerical

solutions of intracellular calcium dynamics. In the calcium dynamics, one of the important

task of the cellular information processes is the calcium signalling task. Specific signals

can trigger a sudden increase in the cytoplasmic calcium level by opening channels in the

endoplasmic reticulum. The calcium released by one channel diffuses into the cytosol.

This diffusivity increases the opening probability of neighboring channels. This way of

coupling of channels by calcium diffusion causes the spatial spread of release. The opening

and closing of channels occurs in microseconds. This process leads to complicated spatio-

temporal signals in the cell. Due to fluctuations in binding and unbinding of IP3 and

Ca2+, the opening and closing of channels is stochastic. Here, the most important task is

to understand this complicated signalling task and to develop accurate models as well as

models for the stochastic channel transitions. This type of models can be found in Gillespie

[37], DeYoung-Keizer [29], Dixon et al. [30], Falcke [34], Thul and Falcke [90], and Thul [89].

The current work addresses the numerical treatment of such processes. The simulation of

a single event and several events leads to many challenging numerical problems.

Here we will outline some of the problems which are encountered in the numerical

simulations. At first, due to the multiple length scales of channels and clusters in the

membrane, suitable numerical methods are mandatory. Especially, finite element methods

or finite volume methods seem to be suitable. In this work we have chosen the finite

element method for solving this problem. To capture the original structure of the cell,

adaptive grid refinement is necessary to provide efficient and fast numerical solutions. The

adaptive grid refinement uses a posteriori error estimators, which will be mentioned in next

paragraph. The high and fast concentration changes upon opening and closing of channels

have a strong impact on the stochastic dynamics of channel binding and unbinding. The

stochastic solver is based on the Gillespie method, but the usual Gillespie method solves
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stochastic processes where the propensities are constant during the subsequent transitions.

However, the concentration and propensities are changes based on the channel opening

and closing. For this purpose we have adopted a new hybrid algorithm which couples the

deterministic and stochastic equations, see Alfonsi et al. [2]. Two different time stepping

methods are considered for solving the deterministic and stochastic processes. The release

of calcium through channel opening or closing occurs on the order of microseconds. These

small time scales cannot be ignored, therefore an efficient time stepping method to capture

these fast changes are needed. For this purpose the linearly implicit Runge-Kutta methods,

which are very suitable for solving stiff ordinary differential equations, are used. The

opening of channels occurs in order of microseconds and when all channels are closed then

the time step size is nearly in order of milliseconds. For handling such fast changing step

sizes an automatic time step procedure is suitable.

For solving the problems with complicated geometries, as explained above, the finite

element methods are more suitable than finite difference methods. The current work

uses the standard Galerkin method for the spatial discretization. A system of ordinary

differential equations is obtained after space discretization. We have mainly concentrated

on implicit methods for solving these equations. In the first problem, we considered the

implicit Euler method for solving the system of ordinary differential equations. After time

discretization we get a system of nonlinear equations which can be solved using nonlinear

solvers. In the second problem we used linearly implicit methods of Rosenbrock type [79]

which are constructed by calculating the exact Jacobian. These methods offer several

advantages. They completely avoid the solution of nonlinear equations, which means that

no Newton iteration has to be controlled. More detailed expositions of these methods

can be found in Hairer and Wanner [45], Lang [57], as well as Schmitt and Weiner [82].

Also these methods are more suitable to use adaptive time steps. An automatic step size

selection procedure ensures that the step size is as large as possible while guaranteeing the

desired precision.

A posteriori error estimates can be used to judge the quality of a numerical approxi-

mation and to determine an adaptive strategy to improve the accuracy where it is needed,

see Babus̆ka and Rheinboldt [3], Verfürth [93], as well as Zienkiewicz and Zhu [98]. The

main advantage of the adaptive methods is that they lead to substantial saving in compu-

tational work for a given tolerance. Here we have used the error estimators based on the

averaging of the solution. The large class of problems in three space dimensions include

million of unknowns in computational domain. On sequential machines these computations
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are tedious and may take several months to get a numerical solution. Specifically, solving

the algebraic system consumes much CPU time in computations. For this purpose parallel

computing is mandatory. Even with the use of modern parallel computers, the sheer size of

the resulting system puts too much demand on the available capacity in terms of memory

usage and computational time in three dimensional problems.

The remaining chapters are organized as follows.

Chapter 2 gives a brief explanation of the mathematical modeling of heat and mass

transfer in fluidized beds. The convection-diffusion-reaction equations are obtained with

the help of the mass and the energy balances of the air, particles and liquid. These

equations are coupled and form a semilinear system with boundary conditions. Next, the

nozzle spray model is derived using some assumptions which are explained in Section 2.3

for two and three dimensions. This is an improved model and more sophisticated numerical

methods are applied in comparison to Heinrich et al. [48], Heinrich and Mörl [49]. The

modeling is made mesh independent in order to be more flexible with different meshes. This

flexibility allows the computation of an apparatus with nonrectangular geometry as well

as local mesh adaption in the solution process. Finally, necessary conditions are derived

for the balance equations to check the solution bounds using invariant regions.

A brief introduction of the process of intracellular calcium dynamics is given in Chap-

ter 3. The model equations in two and three dimensions are shown in Section 3.2, which

have been taken from Falcke [34], Thul and Falcke [90], and Thul [89]. These model equa-

tions in the cytosolic and the endoplasmic regions represent a reaction-diffusion system.

These equations form a highly coupled and semilinear system. A stochastic model has been

adopted for the gating of subunits which is explained in Section 3.3. This model is based

on the DeYoung-Keizer model for the subunit dynamics, see [29]. A brief explanation of

this model is also given in this chapter. Furthermore, an efficient method, the so-called

Gillespie algorithm is explained, which determines the time of each transition by using

random numbers. Finally, a hybrid method is presented which couples the deterministic

and the stochastic equations.

In Chapter 4 we focus on the discretization of the partial differential equations in

space and time. First, a brief introduction of the basic finite element methods and the

space discretization using the standard Galerkin method is given. In the next section,

the time discretizations based on the single step ϑ-method and linearly implicit methods

are explained. In general, implicit methods are more suitable for solving stiff ordinary

diferential equations. Specifically, linearly implicit methods are very suitable for adaptive
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time step size control. For the space adaptivity a posteriori error estimators are essential

which are explained in Section 4.5. In particular, the error estimator of Zienkiewicz and

Zhu [98] is recalled which is based on the average of the local gradients of the solution.

In the next section, an overview of the solution of algebraic equations is given. Finally,

the basic concepts of domain decomposition methods are explained. They are employed in

parallel numerical simulations using the programming package UG [12].

The numerical solutions of heat and mass transfer in fluidized beds with liquid injection

are presented in Chapter 5. The simulation results of complex correlations of mass and liq-

uid flow rates, mass and heat transfer, drying, transient two-dimensional air humidity, air

temperature, particle wetting, liquid film temperature and particle temperature are shown

in the first section. Comparisons of simulation results with different linear solvers and ex-

perimental order of convergence are given. In Section 5.2, the three dimensional numerical

solutions of air humidity, air temperature, degree of wetting, liquid film temperature and

particle temperature are depicted with different degree of net depositions. The simulation

results have been validated with transient measurement result of the air temperature which

are shown in the work of Heinrich [47] and Henneberg [51]. The numerical solutions using

domain decomposition methods are discussed in the final section.

The adaptive numerical solutions of intracellular calcium dynamics with different num-

bers of cluster arrangements are presented in Chapter 6. Here we focus on the convergence

results of numerical solutions using different grid structures and results based on grid

adaptivity for deterministic channel opening. The simulation results obtained with lin-

early implicit methods are discussed. The next section depicts the numerical results based

on stochastic channel transitions with different numbers of cluster arrangements. In the

next section the three dimensional simulation results are presented. In the final section,

the parallel numerical results using the domain decomposition methods are presented with

the opening of channels in the clusters in a prescribed deterministic way. Furthermore, the

parallel efficiency of different processors for this particular problem is also discussed.

Finally, a brief summary and future tasks are presented in Chapter 7.





Chapter 2

Mathematical Modeling of Heat and
Mass Transfer in Fluidized Beds

The traditional importance of heat and mass transfer in chemistry, physics, and engineer-

ing, and the recent development of various reaction-diffusion processes in biology, ecology,

and biochemistry have led to many physical interesting and mathematically challenging

problems using semilinear parabolic and hyperbolic equations. From the process engineer-

ing point of view, the fabrication and subsequent treatment of disperse products are very

important. This is due to the fact that 60 % of all products of the chemical industry are

particles, see [96].

Fluidized bed spray granulation is a process used for the production of granular high-

quality, free-flowing, low-dust and low-attrition solids originating from liquid products, like

solutions, suspensions, melts and emulsions. This is achieved

• by converting the suspended solids contained in the liquids into granulates,

• by transforming the powder like accumulating solids into granulates,

• by coating or by fixing the solid granulates in a matrix,

• or by agglomerating the solid particles.

Definition: A fluidizing gas passes upward through a porous plate into the fluidized bed

as shown in Figure. 2.1. At a low flow rate, fluid merely percolates through the void spaces

between stationary particles. With an increase in flow rate, particles move apart and a

few are seen to vibrate. At a still higher velocity, a point is reached when the particles are

all just suspended in the upward flowing gas. And the liquid to be granulated is usually

sprayed with a jet into the fluidized bed of solid particles, whereby some amount of liquid

7



8 CHAPTER 2. MATHEMATICAL MODELING OF HEAT AND MASS TRANSFER IN FLUIDIZED BEDS

forms a layer on the particles. The spraying in can occur from the top down, from the

bottom up, or sideways with a jet submerged in a chosen position. The solvent evaporates

in the hot, unsaturated fluidizing gas and the solid grows in layers on the particle surface.

This process is called granulation or layered growth process.

Figure 2.1: Fluidized bed apparatus

The modeling of heat and mass transfer in gas-solid-fluidized beds with spray injection

which are widely used for the formation of particles from liquid solutions or suspensions

as well as for the coating of particles with solid layers for the production of functional

surfaces to enhance their handling properties, e.g. solvability properties, controlled release

or protection for chemical reactions. Such a fluidized bed spray granulation (FBSG) system

involves high heat and mass transfer and mixing properties, as well as the coupling of

wetting, drying, particle enlargement, homogenization and separation processes. In FBSG,

the liquid is sprayed with a nozzle as droplets on solid particles. The droplets are deposited

on the particles and distributed through spreading. The solvent evaporates in the hot,

unsaturated fluidization gas, thereby the solid grows in layers on the particle surface. The

process conditions in the injection zone have a strong influence on the local particle volume

concentrations, particle velocities, deposition of the liquid droplets and solidification of the

solid content of the liquid and subsequent product quality.

So, understanding the mechanism occurring in the injection zone is essential in order to

achieve and control desired product qualities. In spite of the common use of fluidized beds

for agglomeration, granulation and coating tasks only a few investigations on the injection

into fluidized beds are available in the literature. Contributions to this research have been

reported by [13, 52, 61, 66, 67, 73, 97].
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The FBSG is usually upscale by calculating the dependency of the water evaporation

from the air inlet temperature. But this coarse balancing is not sufficient to estimate tem-

perature and moisture gradients of the particles as well as necessary heat and mass transfer

surfaces. More details on the experimental and theoretical work on temperature and con-

centration distributions in liquid sprayed fluidized beds can be found in the literature, see

e.g. [48, 49].

Another important application of liquid injection into fluidized beds is the heteroge-

neous gas-phase catalysis, e.g. Fluid Catalytic Cracking / FCC of hydrocarbons, where

reactants are injected in the liquid state and thus released vapor will perform the respec-

tive chemical reactions, see Bruhns and Werther [25]. For fluidized bed reactors, a detailed

knowledge of the mechanisms of liquid injection is required, not only for engineering design

but also for safe and economic operation in an industrial scale.

In comparison to Heinrich et al. [48], Heinrich and Mörl [49] and Henneberg [51] we use

an improved model as well as a much more sophisticated numerical methods. The model-

ing was made mesh independent in order to be more flexible with meshes. The previously

structured finite difference method was replaced by a finite element method allowing un-

structured grids in 2D and 3D. This flexibility allows the computation of an apparatus with

non rectangular geometry as well as local mesh adaption in the solution process. Further,

we allow parallelization to speed up computations for complex applications.

In the remaining part of this chapter we derive our model equations in the most general

form, the integral conservation law form, and then recast them into divergence form, which

is natural for finite volume schemes and finite element methods. The main focus is on

solving the model equations, in particular, the convection-reaction-diffusion equations with

appropriate boundary conditions. The concepts of convection-reaction-diffusion equations

are prevalent in our construction of numerical methods and the recurring use of these

model equations allows us to develop a consistent frame work for analysis of consistency,

accuracy, stability and convergence. The model equations we study have coupled and

semilinear behavior. We will show the total balances, which will be used later in order to

check the numerical accuracy of computed steady states. In the next subsection we will

give the model equations for the sprayed liquid in two and three space dimensions. In the

final subsection we will explain the invariant regions used to check the necessary conditions

for the balance equations.
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2.1 Introduction of basic variables and assumptions

In the following we will use some constants and notations that are introduced in Ap-

pendix A.

Wetted particles: The liquid is sprayed onto the fluidized bed particles in the form

of little droplets. It is assumed that the drops spread on the particles as a film with

constant thickness F . Assuming that the particles are 100% wetted, the maximum liquid

concentration is

κL,max = A∗ǫ∗FρL.

The wetting efficiency

φ =
Awetted

Awetted + Aunwetted
=

κL

κL,max
.

marks the rate of wetted particle surface to overall particle surface.

Partial pressures: The separation of the gas phase into its components, air and vapor,

is described through partial pressures. The constant system pressure is given as a sum of

the partial pressures according to Dalton’s law. Each component of the gas phase satisfied

pi =
κi

ǫ
RiT,

where Ri = R
Mi

is the specific gas constant, and for 2 components i, j

κi

κj

=
Rjpj

Ripi

.

Average gas constants: Let’s assume an ideal gas mixture with a mass of mi of partial

pressure of pi a gas constant Ri, that occupies a volume V at a temperature T . Then for

each component holds

piV = miRiT.

The overall mass m and pressure p are given as the sums of the corresponding values of

each component:

m =
∑

i

mi, p =
∑

i

pi.
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If the equation pV = mRT holds also for the gas mixture, then the average gas constant

R̄ for the gas mixture is given by

R̄ =

∑

i miRi
∑

i mi
=

∑

i pi
∑

i pi/Ri
.

Air humidity: The humid air is a mixture of air and vapor. the air humidity YA is defined

as

YA =
κV

κA
,

and for ideal gas holds

YA =
MV

MA

pV

p− pV

.

Air density: The density of air at a pressure p and a temperature T with the specific

(average) gas constant of air at RA = 287.22J/(kgK) is

ρA =
p

RAT
.

While the concentration is given by

κA =
ǫpA

RAT
= ǫ

pA

p
ρA.

The density of air with a humidity YA is

ρY =
p

RY T
.

whereas the gas constant for humid air would be

RY =
RA + YARV

1 + YA
.

Enthalpy of humid air: The volume-based enthalpy of humid air hA is

hA = κAcpAθA + κV cpV θA + κV ∆hV 0.

Evaporation flow: An adiabatic saturation of air with vapor in the fluidized bed may be

assumed. The water mass flow ṁev that evaporates at the interface A between humid air

and water, or condensates for ṁev < 0, depends on the present vapor pressure pV and on

the saturated vapor pressure pV,∞ in the following manner

ṁev = βA
pMV

RT
ln

p− pV

p− pV,∞
. (2.1)
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The saturated vapor pressure pV,∞ of the water is a function of the temperature may be

approximated through an ”Antoine equation”, see Schlünder and Tsotsas [81],

pV,∞(θL) = exp

(

23.462− 3978.205

233.349 + θL

)

.

The mass transfer coefficient β describes the influence of the particle flow on the vapor

transport. An approximation of the Sherwood number is used for its calculation, see

Appendix A. For small partial vapor pressures pV < p, in other words temperatures well

under water’s boiling point, Eq. (2.1) may be simplified by the approximation ln(1+x) ≈ x,

ṁev = βA
pMV

RT
ln

pV,∞ − pV

p− pV,∞
. (2.2)

The adiabatic saturation humidity

Ysat =
MV

MA

pV,∞

p− pV,∞
,

where MV /MA = 0.622, with MV = 0.01802 kg/mol, MA = 0.02896 kg/mol, is the hu-

midity for which liquid film and humid air are in equilibrium, and depends through the

saturated vapor pressure pV,∞ on the liquid film temperature θL. With the approximation
p−pV

p−pV,∞
≈ 1, Eq. (2.2) can be written as follows

ṁev ≈ βA
pMA

RT
(Ysat − YA) = βρAA(Ysat − YA).

The wetted surface, related to the volume element, is A∗ǫ∗φ, and so consequently

κ̇ev = βρAA∗ǫ∗φ(Ysat − YA),

which holds for the evaporation flow (evaporated mass flow) per volume unit.

Enthalpy flow of the evaporated water: It is assumed that the required heat for the

evaporation is taken from the liquid film, while the required heat for the temperature rise

from θL to θA comes from the air. Under this condition, the evaporated water flow, κ̇ev

takes with it also the volume based enthalpy flow by the evaporation of the liquid film

q̇ev = κ̇ev(∆hV 0 + cpV θL).

Heat transfer at the interfaces: Figure 2.2 illustrates, alongside with the enthalpy flow

of evaporated water, the enthalpy flows between unwetted particles and air, between liquid

film and air, as well as particles and liquid film. Heat is transported on the interfaces of
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each phase, particle-air (PA), liquid film-air (LA), particle-liquid film (PL), particle-wall

(PW), air-wall (AW), and wall-environment (WE), through convection, conduction and

radiation. The surface-based heat flow q̇A
ij over an interface Aij (from i to j) is described

by a heat transfer coefficient αij

q̇A
ij =

dq̇ij

dA
= αij(θi − θj).

2.2 Balance equations

Our model equations can be written in the following general form,

d

dt

∫

V

udV +

∫

S

s(u) · nds =

∫

V

vdV. (2.3)

In this equation, u : Ω × [0, T ] → R
m is a vector valued function containing the set of

variables which are conserved, i.e. concentration and temperature per unit volume. The

equation is a statement of the conservation of these quantities in a finite region of space

with volume V and surface area S over a finite interval of time [0, T ]. The vector n is a

unit vector normal to the surface pointing outward, s(u) is a set of vectors, or tensors,

containing the flux of u per unit area per unit time, and v is the rate of production of u

per unit volume per unit time. The flux vector s(u) may have a variety of forms describing

different mechanisms.

Advection: s(u) = wu, where w is velocity vector.

Heat convection (Fourier’s law): s(u) = −λ∇u, where λ is heat conduction coeffi-

cient.

Dispersion: s(u) = −D∇u, where D is the dispersion matrix.

Applying the Gauss’s theorem to the flux integral in Eq. (2.3), the equation can be rewrit-

ten as,

∫

V

∂u

∂t
dV = −

∫

V

∇ · s(u)dV +

∫

V

vdV. (2.4)

General conceptions about the pneumatics of gas-solid fluidized beds must take into ac-

count a gas phase and a suspension phase with particles and gas, which affect one another.

Here the gas is viewed as an ideal plug flow and the particles are viewed as an intermixed

flow.
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Simplifying assumptions:

• The air possesses the character of a plug flow (PFTR).

• Perfect back mixing of the particles (CSTR) for the one-dimensional model with

uniform liquid distribution.

• Only the first drying period is observed.

• Consideration of axial and radial dispersion coefficients and thus of non-ideal particle

mixing for the two-dimensional model with non-uniform liquid distribution.

• The entire injected liquid is deposited onto the particles as film with constant thick-

ness F .

• Only liquid reaches the fluidized bed through the jet employed.

• Intra particular heat transfer resistance can be neglected.

The modeling of the problem is obtained by the balance of the mass and energy of the

air, of the solid as well as of the liquid contained in the fluidized bed. A similar type of

modeling can be found in Heinrich et al. [48], Heinrich and Mörl [49] and Henneberg [51].

Their model includes mesh size and is not flexible with different unstructured grids. The

new model does not depend on the mesh size and it is flexible with unstructured grids.

Therefore, we were able to add mesh adaption as a new feature of the numerical method.

We have tested this extensively in 2 and 3 space dimensions. The advantage of the present

source term is flexible for higher dimensions. The balance inside the fluidized bed zone

delivers a partial differential equation for each balance variable. The balance variables are

understood as functions of space and time. The following model equations are in Cartesian

coordinates.

Mass balance of air

A differential volume element is depicted in Figure (2.2). The water loading of the entering

humid air increases during the flow, because of the evaporation flow given off from the

liquid film on the particles. The vapor will be transformed into the air as a function of the

conditions of mass transfer. For the mass balance of air, the following factors have to be

considered,
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air

particle

liquid film

inflow

outflow

q̇
P L

= α
PL

AP φ(θP − θL)

θL

ḣ
ev

= ṁ
ev

(∆hV + c
pV

θL)

q̇
P A

= α
P A

AP (1− φ)(θP − θA)

q̇
LA

= α
LA

AP φ(θL − θA)

θA

θP

Figure 2.2: Heat and mass transfer on a wetted particle

Source term: Evaporation flow ṁev.

Transport term: Convection in the plug flow s(u) = ṁWA.

Balance equation:

∫

V

∂mWA

∂t
dV = −

∫

V

∂ṁWA

∂z
HfbdV +

∫

V

ṁevdV.

∫

V

∂(YAmA)

∂t
dV = −

∫

V

∂(YAṁA)

∂z
HfbdV +

∫

V

βρAAP φ(Ysat − YA)dV.

The divergence of this equation is,

mA
∂YA

∂t
= −ṁAHfb∇ · YA + βρAAPφ(Ysat − YA),

∂YA

∂t
= −W (θA)∇ · YA + R1(θA)φ(Ysat(θL)− YA), (2.5)
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where

W (θA) = − ṁA

mA(θA)
Hfb(θA),

mA(θA) = ρA(θA)ǫVfb,

R1(θA) =
AP β(θA)ρA(θA)

mA(θA)
.

Energy balance of air

Figure 2.2 shows the heat and mass transfers, which cause a change of the air enthalpy.

In the balance area, a heat flow occurs between the unwetted portion of the solid particles

and air as well as between the liquid film of the wetted part of the particles and air. In

addition the enthalpy of the water evaporated from the liquid film increases the air energy.

This enthalpy flow consists of the mass flow of the evaporated water, the enthalpy of the

liquid, the evaporation enthalpy and the enthalpy of the vapor in the air. Heat transfer

coefficients between liquid film and air αLA, as well as particles and air αPA are calculated

according to Gnielinski [40]. Both heat transfer coefficients are assumed to be equal due

to the same flow conditions, i.e. αPA = αLA = α.

Source term: Enthalpy of the evaporation flow ḣev.

Sink: Heat transfer between air and liquid film q̇LA as well as between air and particle

q̇PA.

Transport term: Convection in the plug flow s(u) = ḣWA.

The balance of the enthalpy results in an equation for the temporal derivative of the

air temperature.

Balance equation:

∫

V

∂hWA

∂t
dV = −

∫

V

∂ḣWA

∂z
HfbdV −

∫

V

q̇LAdV −
∫

V

q̇PAdV +

∫

V

ḣevdV. (2.6)

where

hWA = hA + hV ,

= mAcpAθA + mV ∆hV + mV cpV θA,

= mAcpAθA + mAYA∆hV + mAYAcpV θA.



2.2. BALANCE EQUATIONS 17

∂hWA

∂t
= mAcpA

∂θA

∂t
+ mA∆hV

∂YA

∂t
+ mAcpV {YA

∂θA

∂t
+ θA

∂YA

∂t
},

= mA(cpA + cpV YA)
∂θA

∂t
+ mA(∆hV + cpV θA)

∂YA

∂t
.

∂ḣWA

∂z
= ṁA(cA + cstYA)

∂θA

∂z
+ ṁA(∆hV + cstθA)

∂YA

∂z
.

Substitute ∂hWA

∂t
, ∂ḣWA

∂z
in the balance equation (2.6)

∫

V

mA(cpA + cpV YA)
∂θA

∂t
dV +

∫

V

mA(∆hV + cpV θA)
∂YA

∂t
dV

= −
∫

V

HfbṁA(cpA + cpV YA)
∂θA

∂z
dV −

∫

V

HfbṁA(∆hV + cpV θA)
∂YA

∂z
dV

−
∫

V

αALAP φ(θA − θL)dV −
∫

V

αPAAP (1− φ)(θA − θP )dV

+

∫

V

ṁev(∆hV + cpV θA)dV .

If we substitute the expression ∂YA

∂t
from Eq. (2.5), then the evaporation term will get can-

celed. Finally, the divergence form of the energy balance of the air, in terms of temperature

of air is

∂θA

∂t
= −W (θA)

∂θA

∂z
−Q1(YA, θA){(1− φ)(θA − θP ) + φ(θA − θL)}, (2.7)

where Q1 = α(θA)AP

mA(θA)(cpA(θA)+cpV (θA)YA)
.

Mass balance of water

The maximum liquid mass per volume element is defined using the effective particle surface,

the thickness of the liquid film and the density of the liquid.

ρL,max = φ
mL,max

Vfb
= A∗ǫ∗Fρwater. (2.8)

The liquid mass flow sprayed into the fluidized bed per volume element, the evaporation

flow and the mixing of the bed material affect the liquid content of the volume element.

Source term: Mass flow of the drop deposition from the nozzle ṁLV .

Sink: Evaporation flow ṁev.

Transport term: This term is determined by the particle dispersion, with liquid on the

particle surface s(u) = −D∇mWP .
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Balance equation:

∫

V

∂mWP

∂t
dV =

∫

V

∇ · (D∇mWP ) dV −
∫

V

ṁev dV +

∫

V

ṁLV dV,

where mWP = AP φFρL. Substitute this term in the above equation

∫

V

∂(AP φFρL)

∂t
dV =

∫

V

∇ · (D∇(AP φFρL))dV −
∫

V

βρAAP φ(Ysat − YA)dV +

∫

V

ṁLV dV.

The divergence of this equation is,

ApFρL
∂φ

∂t
= APFρL∇ · (D∇φ)− βρAAPφ(Ysat − YA) + ṁLV ,

∂φ

∂t
= ∇ · (D∇φ)− βρA

ρLF
φ(Ysat − YA) +

ṁLV

AP FρL

,

∂φ

∂t
= ∇ · (D∇φ)− R2(θA, θL)φ(Ysat(θL)− YA) + S1(θL)ṁLV , (2.9)

where

R2(θA, θL) =
β(θA)ρA(θA)

ρL(θL)F
,

S1(θL) =
1

AP FρL(θL)
.

Energy balance of water

A corrective factor is introduced, which specifies the ratio of the heat transport coefficient

between the particle and the liquid film to the heat transfer coefficient in the fluidized bed,

assuming that the heat transfer coefficient between air and particles is equal to the heat

transfer coefficient between air and liquid film:

f =
αPL

α
.

The average liquid film temperature is influenced by the axial and radial dispersion, the

heat flow between the air and the liquid film as well as between the particle and liquid

film, by the enthalpy loss as a result of evaporation, and the enthalpy flow brought in by

the liquid sprayed into the fluidized bed.

Source term: Enthalpy of the drop deposition from the nozzle ḣs, heat transfer between

liquid film and air q̇LA as well as between particle and liquid film q̇PL.

Sink: Evaporation flow ḣev.
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Transport term: Dispersion s(u) = −D∇hL.

Balance equation:
∫

V

∂hL

∂t
dV =

∫

V

∇ · (D∇hL) dV +

∫

V

q̇LA dV +

∫

V

q̇PL dV +

∫

V

ḣs dV −
∫

V

ḣev dV,

(2.10)

where

hL = mLcLθL = VLρLcLθL = ALFρLcLθL = AP φFρLcLθL and ḣs = ṁLV cLθL,in.

Substitute these terms in the balance equation (2.10), then the divergence of this equation

is,

APFρLcL
∂(φθL)

∂t
= AP FρLcL∇ · (D∇(φθL)) + αAP{φ(θA − θL) + fφ(θP − θL)}

+ ṁLV cLθL,in − βρAAP φ(Ysat − YA)(∆hV + cpV θA) .

(2.11)

Divide the term AP FρLcL both sides, finally we obtain the following differential equation

for liquid film temperature

∂(φθL)

∂t
= ∇ · (D∇(φθL)) + Q2(θA, θL){φ(θA − θL) + f(θA)φ(θP − θL)}

−R3(θA, θL)φ(Ysat(θL)− YA)(∆hV + cpV (θA)θA) + S2(θL)ṁLV , (2.12)

where Q2(θA, θL) = α(θA)
FρLcL

, R3(θA, θL) = β(θA)ρA(θA)
FρLcL

, and S2(θL) =
θL,in

AP FρL
.

Energy balance of the particles

The temporal change of the enthalpy of the solid is determined by the heat exchange

between particles and air, between particles and liquid as well as by the intensity of the

dispersion.

Source term: Heat transfer between particle and air q̇PA.

Sink: Heat transfer between particle and liquid film q̇PL.

Transport term: Particle dispersion s(u) = −D∇hP .

Balance equation:
∫

V

∂hP

∂t
dV =

∫

V

∇ · (D∇hP )dV +

∫

V

q̇PAdV −
∫

V

q̇PLdV,
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where hP = mP cpPθP . The divergence of this equation is,

mP cpP
∂θP

∂t
= mP cpP∇ · (D∇θP ) + αPAAP (1− φ)(θA − θP )− αPLAPφ(θP − θL) .

(2.13)

Divide the term mP cpP both sides, we obtain a differential equation for particle temperature

∂θP

∂t
= ∇ · (D∇θP ) + Q3(θA){(1− φ)(θA − θP )− f(θA)φ(θP − θL)}. (2.14)

where Q3(θA) = α(θA)AP

mpcpP
.

Total balances

The following balances will be used later in order to check the numerical accuracy of

computed steady states.

Air humidity: The outlet air humidity can be calculated using the total mass balance

around the fluidized bed, see Heinrich [47]. The outlet air humidity depends on inlet air

humidity, mass flow rate of the inlet air and mass flow rate of the liquid

YA,out = YA,in +
ṁL

ṁA

. (2.15)

Air temperature: The air temperature at the outlet is determined using an enthalpy

balance in the fluidized bed. The balance is

θA,out =
ṁA (cpAθA,in + YA,in(cpV θA,in + ∆hV,0)) + ṁLcpLθL,in − ṁAYA,out∆hV,0

ṁA(cpA + YA,outcpV )
. (2.16)

2.2.1 Boundary conditions

The boundary of the fluidized bed zone is divided into 3 partial surfaces. The balance

at each boundary surface delivers the corresponding boundary conditions of the partial

differential equation system. The flow defined inside a fluidized bed region Ω, should be a

continuous vector field in Ω̄. The set Ω̄ denotes the closure of Ω, that is the union of the

domain Ω with its boundary Γ: Ω̄ = Ω∪Γ and Γ = ΓD ∪ΓN . Here Γi× [0, τ ] indicates the

boundary surface from initial time 0 seconds to final time τ seconds where i = D, N ; D

indicates Dirichlet and N indicates Neumann boundary conditions. The vector n denotes

the outward normal unit vector at the boundary Γ, λ characterizes the heat conduction

coefficient on the apparatus surface and D is the dispersion matrix.
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Figure 2.3: Coordinate system of the nozzle

The bottom surface:

Vapor in the gas flow is transported from the air distributor to the top boundary of

the fluidized bed zone. The humidity of air YA and the air temperature θA are determined

at the boundary by the inflow of air humidity YA and inflow of air temperature θA

YA|bot = YA,in on ΓD × [0, τ ],

θA|bot = θA,in on ΓD × [0, τ ].

The boundary of the bed zone is not influenced by the particles and liquid flow. So that

the flow over the bottom boundary for degree of wetting φ, liquid film temperature θL and

particle temperature θP is zero

n ·D∇φ = 0 on ΓN × [0, τ ],

n ·D∇θL = 0 on ΓN × [0, τ ],

n ·D∇θP = 0 on ΓN × [0, τ ],

where YA,in, θA,in ∈ R are given constant data.
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The apparatus wall surface:

The apparatus wall has an effect on the temperature and concentration progressions

in the fluidized bed. In direct contact, it can absorb or radiate heat. The heat flow

is determined by the heat transfer coefficient α. The temperature gradient at the wall

is approximated by the temperature from the interior to temperature at the wall. For

the numerical solution we make the simplifying assumption that the wall temperature is

constant, so that the temperature gradient at the wall is zero

n ·D∇θL = 0 on ΓN × [0, τ ],

n ·D∇θP = 0 on ΓN × [0, τ ].

Further there is no flux of degree of wetting,

n ·D∇φ = 0 on ΓN × [0, τ ].

The top surface:

This boundary is an outflow boundary, so Eq. (2.5) and Eq. (2.7) do not have a boundary

condition. The diffusive equations need a boundary condition. Here we also assume that

no particles and liquid leave the apparatus. Therefore, it makes sense to assume that there

is no flux of degree of wetting φ, liquid film temperature θL and particle temperature θP .

n ·D∇φ = 0 on ΓN × [0, τ ],

n ·D∇θL = 0 on ΓN × [0, τ ],

n ·D∇θP = 0 on ΓN × [0, τ ].

2.3 Two dimensional model for the liquid injection

into the fluidized bed

The temperature and concentration distributions inside the fluidized bed are determined by

the spatial distribution of the sprayed liquid and by liquid evaporation. The spraying area

depends on the spraying angle and the penetration depth of the liquid droplets atomized

by the nozzle, whereby the spraying angle is influenced by the nozzle characteristics. The

penetration depth is determined by the intensity of the liquid drop deposition on the

particles. The intensity of the drop deposition can be described by the deposition efficiency

φdep. As an initial step, we assume that the drop deposition is constant for the calculation.

The spray jet is considered to be a homogeneous conical drop flow. In the following, the
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polar coordinate system with coordinates (r, θ) based on the nozzle axis was used, see

Figure 2.4.

Drop penetration depth: The drop concentration κLV,dr in the spray jet is related to

the initial concentration κLV,dr,0 and depends on the distance to the nozzle exit sdr. For a

one-dimensional consideration, under the assumption of a parallel velocity field according

to Löffler [62] one obtains

− κLV,dr

κLV,dr,0

=
3

2

1− ǫ

ǫ

ϕdep

dp

sdr. (2.17)

The penetration depth rises with the increase of the fluidized bed porosity as well as

with the increase of the particle diameter. The deposition efficiency can be calculated as

ϕdep = ηh, where η is the impingement efficiency and h is the adhesion efficiency. The

interested reader is referred to Heinrich and Mörl [49] for more details about impingement

efficiency, adhesion efficiency and deposition efficiency.

Linear drop path: It is assumed that the liquid drops entering the fluidized bed move

with a constant velocity, until they adhere onto a particle. In this way, the drop velocity

field wdr is radially symmetric to the nozzle center: wdr = wdrer where er is the unit vector

in radial direction.

R

π
2 − θnozz

2

π
2 + θnozz

2

θnozz

Figure 2.4: Coordinate system of the nozzle

Radially symmetric drop distribution: The following is assumed to calculate the

spatial distribution of the drop concentration κLV,dr(r, ϑ):
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• The entering liquid within a cone with an angle θnozz around the nozzle axis is evenly

distributed. The drop concentration outside the cone is considered to be zero.

• The variables influencing the drop deposition are locally independent.

The drop concentration within the jet region only depends on the distance from the nozzle,

see Figure 2.4. Thus it follows that

κ̇LV,dr(x) =

{

κ̃(r, ϑ) if π
2
− θnozz

2
≤ ϑ ≤ π

2
+ θnozz

2
,

0 otherwise .
(2.18)

Drop balance: Here we use the following notations:

wdr = (wr, 0), the average drop path length sdr ∈ R
+ is constant,

κ̃(r, ϑ) = {κ̃(r, ϑ) | 0 < r ≤ R ,
π

2
− θnozz

2
≤ ϑ ≤ π

2
+

θnozz

2
} ∈ R

+.

The liquid flow transported through the spray jet is equal to the product of the drop

concentration κLV,dr and the drop path velocity field wdr. Here we assume that the drop

path velocity field depends only on the height of the fluidized bed. The balance equation

of the drop concentration is in polar coordinates

∂κLV,dr

∂t
= −∇ · (κLV,drwdr)− κ̃,

where κ̃ is the flux of drop concentration lost due to deposition on particles. Here we

assumed that the drop concentration is independent of time. So the balance equation is

∇ · (κLV,drwdr) + κ̃ = 0. (2.19)

For κLV,drwdr=κLV,drwdrer one obtains

∇ · (κLV,drwdr) = ∇ · (κLV,drwdrer) ,

= wdr(er · ∇κLV,dr + κLV,dr · ∇er) ,

= wdr(
∂κLV,dr

∂r
+

κLV,dr

r
) .

Drop path length: Assume that

• the liquid drops and the bed particles are evenly formed spheres, and

• the deposition efficiency ϕdep is constant and locus independent for all liquid drops.
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Then an average drop path length is obtained approaching the problem geometrically as

in Eq. (2.17)

sdr =
2

3

ǫ

1− ǫ

dp

ϕdep
. (2.20)

Using this condition, the following holds

κ̃ =
wdr

sdr
κLV,dr . (2.21)

Using the above equations, the following differential equation is obtained

dκLV,dr

dr
+

(

1

r
+

1

sdr

)

κLV,dr = 0 .

Solving the above differential equation, we obtain the drop concentration with parameter-

ized group of solutions via C(ϑ) ∈ R,

κLV,dr(r, ϑ) = C(ϑ)
exp(−r

sdr
)

r
.

2.3.1 Spraying mass balance equation

The function C(ϑ) is determined by the sprayed liquid mass per unit time ṁL. The liquid

flow enters the region

Ωn = {(r, ϑ) | 0 < r ≤ R ,
π

2
− θnozz

2
≤ ϑ ≤ π

2
+

θnozz

2
}

with a radius R around the nozzle center
∫

Ωn

κ̃dA = −
∫

Ωn

∇ · (κLV,drwdr) dA .

Integrating both sides

ṁdr(R) = −
∫ π/2+θnozz/2

π/2−θnozz/2

∫ R

0

wdr(
∂κLV,dr

∂r
+

κLV,dr

r
)r dr dϑ,

= −
∫ π/2+θnozz/2

π/2−θnozz/2

wdrC

(

exp(
−R

sdr
)− 1

)

dϑ,

= Cwdrθnozz

(

1− exp(
−R

sdr
)

)

.

For the boundary value we get R→∞, the liquid flow must be equal to the sprayed liquid

mass ṁL

ṁL = lim
R→∞

ṁdr(R) = Cwdrθnozz lim
R→∞

(

1− exp(
−R

sdr
)

)

,

= Cwdrθnozz. (2.22)



26 CHAPTER 2. MATHEMATICAL MODELING OF HEAT AND MASS TRANSFER IN FLUIDIZED BEDS

r

φ

nozzle center

nozzle axis

nozzle center

θ

ṁLV

wdr
ṁLV = 0

θnozz

Figure 2.5: Spherical coordinate system of the nozzle and nozzle jet

As a result, we get

C =
ṁL

θnozzwdr
.

With the help of Eq. (2.21), the spatial distribution of the drop deposition is obtained

κ̃(r, ϑ) =
wdr

sdr

C
exp(−r

sdr
)

r
,

=
ṁL

θnozz

exp(−r
sdr

)

rsdr

. (2.23)

2.4 Three dimensional model for the liquid injection

into the fluidized bed

In the following, the spherical coordinate system with coordinates (r, θ, ϕ) based on the

nozzle axis was used, see Figure 2.5.

Radially symmetric drop distribution: The following is assumed to calculate the

spatial distribution of the drop concentration κLV,r(r, θ, ϕ):

• The entering liquid within a cone with an angle θnozz around the nozzle axis is evenly

distributed. The drop concentration outside the cone is considered to be zero.

• The variables influencing the drop deposition are locally independent.

The drop concentration within the jet sphere is only dependent on the distance from the

nozzle, see Figure 2.5. Thus it follows that

κ̇LV,dr(x) =

{

κ̃(r, ϑ, ϕ) if π
2
− θnozz

2
≤ ϑ ≤ π

2
+ θnozz

2
,

0 otherwise .
(2.24)
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Drop balance: Here we use the following notations:

wdr = (wr, 0, 0), average drop path length sdr ∈ R
+ is constant,

κ̃(r, ϑ, ϕ) = {κ̃(r, ϑ, ϕ) | 0 < r ≤ R,
π

2
− θnozz

2
≤ ϑ ≤ π

2
+

θnozz

2
, 0 ≤ ϕ ≤ 2π} ∈ R

+.

The liquid flow transported through the spray jet is equal to the product of the drop

concentration κLV,dr and the drop path velocity field wdr. Here we assumed that drop path

velocity field depends only on the height of the fluidized bed. The balance equation of the

drop concentration is in sphere coordinates

∂κLV,dr

∂t
= −∇ · (κLV,drwdr)− κ̃.

Where κ̃ is the flux of drop concentration lost due to deposition on particles. Here we

assumed that the drop concentration is independent of time. So the balance equation is

∇ · (κLV,drwdr) + κ̃ = 0. (2.25)

For κLV,drwdr=κLV,drwdrer holds.

∇ · (κLV,drwdr) = ∇ · (κLV,drwdrer),

= wdr(er · ∇κLV,dr + κLV,dr · ∇er),

= wdr(
∂κLV,dr

∂r
+

2κLV,dr

r
).

Drop path length: Assuming that,

• the liquid drops and the bed particles are evenly formed spheres, and

• the deposition efficiency ϕdep is constant and locus independent for all liquid drops.

An average drop path length is obtained approaching the problem geometrically as in

Eq. (2.17),

sdr =
2

3

ǫ

1− ǫ

dp

ϕdep

. (2.26)

Using this condition, the following holds

κ̃ =
wdr

sdr
κLV,dr. (2.27)

Using the above equations, the following differential equation is obtained

dκLV,dr

dr
+

(

2

r
+

1

s

)

κLV,dr = 0,
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Solving the above differential equation we obtain the drop concentration with parameter-

ized group of solutions via C(ϑ) ∈ R

κLV,dr(r, ϑ) = C(ϑ)
exp(−r

sdr
)

r2
.

2.4.1 Spraying mass balance equation

The function C(ϑ, ϕ) is determined by the sprayed liquid mass per unit time ṁL. The

liquid flow enters in the conical region

Ωn = {(r, ϑ, ϕ) | 0 < r ≤ R,
π

2
− θnozz

2
≤ ϑ ≤ π

2
+

θnozz

2
, 0 ≤ ϕ ≤ 2π}

with a radius R around the nozzle center:
∫

Ωn

κ̃dA = −
∫

Ωn

∇ · (κLV,drwdr) dA .

Integrating both sides

ṁdr(R) = −
∫ 2π

0

∫ π/2+θnozz/2

π/2−θnozz/2

∫ R

0

wdr(
∂κLV,dr

∂r
+

κLV,dr

r
)r2 sin ϑ dr dϑ dϕ ,

= −
∫ 2π

0

∫ π/2+θnozz/2

π/2−θnozz/2

wdrC

(

exp(
−R

sdr

)− 1

)

sin ϑ dϑ dϕ ,

=

∫ 2π

0

Cwdr

(

1− exp(
−R

sdr
)

)

2 sin

(

θnozz

2

)

dϕ ,

= 4Cπwdr

(

1− exp(
−R

sdr

)

)

sin

(

θnozz

2

)

.

For the boundary value we take R → ∞, the liquid flow must be equal to the sprayed

liquid mass ṁL

ṁL = lim
R→∞

ṁdr(R) = 4Cπwdr sin

(

θnozz

2

)

lim
R→∞

(

1− exp(
−R

sdr

)

)

,

= 4Cπwdr sin

(

θnozz

2

)

. (2.28)

As a result, we get

C =
ṁL

4πwdr sin
(

θnozz

2

) .

With the help of Eq. (2.27), the spatial distribution of the drop deposition is obtained as

κ̃(r, ϑ, ϕ) =
wdr

sdr

C
exp(−r

sdr
)

r2
,

=
ṁL

4π sin
(

θnozz

2

)

exp(−r
sdr

)

r2sdr
. (2.29)
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2.5 Invariant regions

In this section we give condition for an invariant region for the balance equations (2.5),

(2.7), (2.9), (2.12) and (2.14). It provides a suitable theoretical foundation and frame work

for studying the large time behavior of solutions. First we introduce a short hand notation

for the system.

If we set

u = (YA, θA, φ, θL, θP ) ,

M = diag(−W,−W, 0, 0, 0) ,

D = diag(0, 0, D, D, D) ,

F(u) =
(

R1φ(Ysat − YA) ,−Q1{(1− φ)(θA − θP ) + φ(θA − θL)} ,

− R2φ(Ysat − YA) + S1ṁLV ,

Q2{φ(θA − θL) + fαφ(θP − θL)} −R3φ(Ysat − YA)(∆hV + cpV θA) + S2ṁLV ,

Q3{(1− φ)(θA − θP )− fαφ(θP − θL)}
)

.

Then we can write the set of Eqs. (2.5), (2.7), (2.9), (2.12) and (2.14), as

ut = Duxx + Mux + F(u) (2.30)

with the initial data

u(x, 0) = u0(x), x ∈ Ω. (2.31)

Here R1, R2, R3, Q1, Q2, Q3, S1, S2, ṁLV , fα, ∆hv, cst > 0, and 0 ≤ YA ≤ Ysat,

0 ≤ θA ≤ χ, 0 ≤ φ ≤ 1, 0 ≤ θL ≤ χ, and 0 ≤ θP ≤ χ, where χ > 0 is inlet

temperature of air.















(2.32)

Definition 2.1. A closed subset I ⊂ R is called a (positively) invariant region for the local
solution defined by system (2.30), (2.31), if any solution u(x, t) having all of its boundary
and initial values in I, satisfies u(x, t) ∈ I for all x ∈ Ω and for all t ∈ [0, T ), see Smoller
[85], page 199.

The invariant regions I we consider will be made up of the intersection of ”half spaces”,

i.e. we consider regions I of the form

I = ∩m
i=1{u ∈ S : Gi(u) ≤ 0}, (2.33)
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where Gi are smooth real-valued functions defined on open subsets of S, and for each i,

the gradient ∇Gi never vanishes.

Definition 2.2. The smooth function G : R
n → R is called quasi-convex at u if whenever

the gradient vanishes, i.e. ∇Gu(η) = 0, then the Hessian is non-negligible, i.e. HGu(η, η) ≥
0.

Theorem 2.5.1. Let I be defined by (2.33), and suppose that for all t ∈ R
+ and for every

u0 ∈ ∂I, so Gi(u) = 0 for some i, the following conditions hold:

1. ∇Gi at u0 is a left eigenvector of D(u0, x), and M(u0, x), for all x ∈ ω.

2. if ∇GiD(u0, x) = µ∇Gi, with µ 6= 0, then Gi is quasi-convex at u0.

3. ∇Gi · F ≤ 0 at u0, for all t ∈ R
+.

Then I is invariant for (2.30).

Proof. See Smoller [85], page 200.

Theorem 2.5.2. Let I be defined by (2.33), and suppose that I is an invariant region
for (2.30), where F = F(u, t) and D is a positive definite matrix. Then the following
conditions hold at each point u0 on ∂I, say, Gi(u0) = 0:

1. ∇Gi at u0 is a left eigenvector of D(u0, x), for all x ∈ ω.

2. Gi is quasi-convex at u0.

3. ∇Gi · F ≤ 0 for all t ≥ 0.

Proof. See Smoller [85], page 204.

Our observation is that under some additional restrictions to be determined below

there exists a bounded invariant region of type (2.33) for this initial value problem (2.30),

(2.31). It consists of points between the curves G1(u) = −YA, G2(u) = −θA, G3(u) = −φ,

G4(u) = −θL, G5(u) = −θP , G6(u) = YA − Ysat, G7(u) = θA − χ, G8(u) = φ − 1,

G9(u) = θL − χ and G10(u) = θP − χ. In particular

I = {YA, θA, φ, θL, θP : 0 ≤ YA ≤ Ysat, 0 ≤ θA , θL , θP ≤ χ, 0 ≤ φ ≤ 1} .

Here we want to show that I is an invariant region for the full system. The gradients are

∇G1 =





















−1

0

0

0

0





















, ∇G2 =





















0

−1

0

0

0





















, ∇G3





















0

0

−1

0

0





















, ∇G4 =





















0

0

0

−1

0





















, ∇G5 =





















0

0

0

0

−1





















,
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∇G6 =





















1

0

0

0

0





















, ∇G7 =





















0

1

0

0

0





















, ∇G8 =





















0

0

1

0

0





















, ∇G9 =





















0

0

0

1

0





















, ∇G10 =





















0

0

0

0

1





















.

To see that I is an invariant region, we first note that all ∇Gi are left eigenvectors of

D(u0, x). Thus if we set G1(u) = −YA, then this implies that

∇G1 · F1 |YA=0= −R1φ(Ysat − YA) |YA=0= −R1φYsat ≤ 0 .

Similarly we can check for other curves Gi(u). If we set G2(u) = −θA , then this implies

that

∇G2 · F2 |θA=0 = (−1){−Q1{(1− φ)(θA − θP ) + φ(θA − θL)}} |θA=0 ,

= Q1{(1− φ)(−θP ) + φ(−θL)} ≤ 0, in I .

If we set G3(u) = −φ , then this implies that

∇G3 · F3 |φ=0 = (−1){−R2φ(Ysat − YA) + S1ṁLV } |φ=0 ,

= −S1ṁLV ≤ 0 in I .

If we set G4(u) = −θL , then this implies that

∇G4 · F4 |θL=0

= (−1)
{

Q2{φ(θA − θL) + fαφ(θP − θL)} − R3φ(Ysat − YA)(∆hV + cpV θA)

+ S2ṁLV

}

|θL=0 ,

= (−1)
{

Q2{φ(θA) + fαφ(θP )} − R3φ(Ysat − YA)(∆hV + cpV θA) + S2ṁLV

}

.

a necessary condition that I is an invariant region is

R3φ(Ysat − YA)(∆hV + cpV θA) ≤ Q2{φθA + fαφθP}+ S2ṁLV ,

which is equavalent to

Ysat − YA ≤
1

R3φ(∆hV + cpV θA)

{

Q2{φθA + fαφθP}+ S2ṁLV

}

,
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or

YA ≥ Ysat −
1

R3φ(∆hV + cpV θA)

{

Q2{φθA + fαφθP}+ S2ṁLV

}

at θL = 0. (2.34)

This is an extra condition on the solution. If we set G5(u) = −θP , then this implies that

∇G5 · F5 |θP =0 = (−1)
{

Q3{(1− φ)(θA − θP )− fαφ(θP − θL)}
}

|θP =0 ,

= (−1)Q3{(1− φ)θA − fαφ(−θL)} ≤ 0 in I .

Next, we set G6(u) = YA − Ysat, and calculate ∇G6 · F1 |YA=Ysat
. Then this implies that

∇G6 · F1 |YA=Ysat
= R1φ(Ysat − YA) |YA=Ysat

= 0 in I .

If we set G7(u) = θA − χ , then this implies that

∇G7 · F2 |θA=χ = −Q2{(1− φ)(θA − θP ) + φ(θA − θL)} |θA=χ ,

= −Q2{(1− φ)(χ− θP ) + φ(χ− θL)} ≤ 0 in I .

If we set G8(u) = φ− 1 , then this implies that

∇G8 · F3 |φ=1 = {−R2φ(Ysat − YA) + S1ṁLV } |φ=1 ,

= −R2(Ysat − YA) + S1ṁLV .

A necessary condition that I is an invariant region is

−R2(Ysat − YA) + S1ṁLV ≤ 0 ,

YA ≤ Ysat −
S1

R2

ṁLV at φ = 1. (2.35)

This is an extra condition on the solution. If we set G9 = θL − χ , then this implies

∇G9 · F4 |θL=χ

=
{

Q2{φ(θA − θL) + fαφ(θP − θL)} − R3φ(Ysat − YA)(∆hV + cpV θA) + S2ṁLV

}

|θL=χ ,

=
{

Q2{φ(θA − χ) + fαφ(θP − χ)} − R3φ(Ysat − YA)(∆hV + cpV θA) + S2ṁLV

}

.

A necessary condition that I is an invariant region is

∇G9 · F4

=
{

Q2{φ(θA − χ) + fαφ(θP − χ)} − R3φ(Ysat − YA)(∆hV + cpV θA) + S2ṁLV

}

≤ 0 ,
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R3φ(Ysat − YA)(∆hV + cpV θA) ≥ Q2{φ(θA − χ) + fαφ(θP − χ)}+ S2ṁLV ,

Ysat − YA ≥
1

R3φ(∆hV + cpV θA)

{

Q2{φ(θA − χ) + fαφ(θP − χ)}+ S2ṁLV

}

,

YA ≤ Ysat −
1

R3φ(∆hV + cpV θA)

{

Q2{φ(θA − χ) + fαφ(θP − χ)}+ S2ṁLV

}

at θL = χ.

(2.36)

This is an extra condition on the solution. If we set G10 = θP − χ , then this implies

∇G10 · F5 |θP =χ = Q3{(1− φ)(θA − θP )− fαφ(θP − θL)} |θP =χ ,

= Q3{(1− φ)(θA − χ)− fαφ(χ− θL)}.

A necessary condition that I is an invariant region is

Q3{(1− φ)(θA − χ)− fαφ(χ− θL)} ≤ 0 ,

fαφ(χ− θL) ≥ (1− φ)(θA − χ) ,

χ− θL ≥
1

fαφ
(1− φ)(θA − χ) ,

θL ≤ χ− 1

fαφ
(1− φ)(θA − χ) at θP = χ . (2.37)

This is an extra condition on the solution. We derived some necessary conditions which

must hold if I is an invariant region. In order to obtain invariant region for the full system

(2.30) above conditions should satisfy. Accordingly, we can make following lemma.

Lemma 2.5.3. Let I is defined as in (2.33) and

YA ≥ Ysat −
1

R3φ(∆hV + cpV θA)

{

Q2{φθA + fαφθP}+ S2ṁLV

}

at θL = 0 ,

YA ≤ Ysat −
S1

R2
ṁLV at φ = 1 ,

YA ≤ Ysat −
1

R3φ(∆hV + cpV θA)

{

Q2{φ(θA − χ) + fαφ(θP − χ)}+ S2ṁLV

}

at θL = χ ,

θL ≤ χ− 1

fαφ
(1− φ)(θA − χ) at θP = χ .

Under these conditions, the system (2.30) has an invariant region.

Proof. Proof of this lemma is given by the above derivations.

In our computation we checked these conditions.





Chapter 3

Model Equations in Intracellular
Calcium Dynamics

”Almost everything that we do is controlled by Ca2+ - how we move, how our hearts beat

and how our brains process information and store memories”, see Berridge et al. [17].

The above statement illustrates the universal significance of Ca2+ in cell signalling. To

do all of this, Ca2+ acts as an intracellular messenger, relaying information within cells

to regulate their activity. Calcium signalling is an important part of cellular information

processes. It regulates multiple cellular functions such as gene expression, secretion, muscle

contraction or synaptic plasticity. The Ca2+ signal employed by a variety of processes is a

transient increase of the concentration in the cytosol [16, 18, 74]. Increase of [Ca2+] is due

to entry through the cell membrane or to Ca2+ release from internal storage compartments,

specifically the endoplasmic reticulum (ER) and the sarcoplasmatic reticulum. It leads to

the formation of spatio-temporal signals in the form of waves of high Ca2+ concentration

traveling across the cell [76, 65, 35] and the global oscillations [15, 78]. In general, the

information transmitted by these signals arrives as a stimulus at the plasma membrane

and is translated into intracellular Ca2+ oscillations by well known pathways.

Ca2+ performs its signaling tasks by a transient rise in the cytosol Ca2+ concentration.

It increases for a short time and drops again. This may be a single event or may result

in the type of periodic patterns which are shown in Figure 3.1. It depicts oscillations of

the Ca2+ concentrations in hepatocytes, i.e. liver cells. The first train of oscillations are

caused by treating the cells with adenosine trisphosphate (ATP). As soon as the cells are

exposed to PPADS (pyridoxalphosphate-6-azophenyl-2’,4’-disulphonic acid) the pattern of

the oscillations changes. The amplitude decreases, whereas the frequency increases. This

is a typical example for a cellular response. The opening and closing of a single channel

35
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is essentially a stochastic process. Therefore, it is important for understand of calcium

signalling, to develop accurate models for the stochastic transitions of single channel states.

Recordings of channel currents are then evaluated for open probabilities, mean open and

mean closed times. These data then lead to models of Ca2+ and IP3 binding such as

the DeYoung-Keizer (DYK) model. Here we will adopt a model which is similar to the

DYK model, but contains a further conformational change associated to the opening of the

channel. One can use a standard method to compile a list of all transitions of the channel

(such as those of the DYK-type model) and to determine a sufficiently small time step width

δt. One can then determine the occurrence of each of the transitions during a specific time

step by comparing a computer random number with the product of the corresponding rate

and δt. Here we used more efficient method, called the Gillespie algorithm [37]. This

method determines the time of each transition by using a random number. Thus it needs

a number of random numbers which are equivalent to the number of transitions, which are

far less than for the standard method.

Figure 3.1: ATP-induced Ca2+ oscillations in rat hepatocyte. Figure from Dixon et al. [30]

We organized this chapter as follows: In first section we give brief introduction regarding

intracellular Ca2+ dynamics. In second section we present the mathematical modeling

equations in two and three dimensions. This we explain the choice of parameter values. The

subsequent section will give the introduction to different stochastic models and the hybrid

stochastic-deterministic algorithm used for our simulation results. Further we explain

the DeYoung-Keizer (DYK) model for channel dynamics and the Gillespie method which

determine when the next event will occur and what kind of event it is. Simulation results

are shown in Chapter 6.
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3.1 Introduction to intracellular Ca
2+ dynamics

Intracellular Ca2+ dynamics is the dynamics of Ca2+ transport through the plasma mem-

brane, release from and uptake by intracellular stores and binding to buffer proteins. Re-

lease is determined by the conduction properties of the release channels and the diffusion

characteristics of the storage compartments and the receiving compartments. Opening and

closing of Ca2+ channels control the release. These channels are packed into clusters on the

membrane of intracellular storage compartments like the endoplasmic reticulum (ER) or

the sarcoplasmic reticulum (SR) containing 10-50 channels, see Figure 3.2. The maximal

number of channels in a cluster is not very well known but it is estimated to be in the range

of 20-30, see [26, 32]. These clusters in turn are randomly scattered across the ER mem-

brane. The average distance of clusters is typically larger than the Ca2+ diffusion length,

see [65, 88]. Stochastic behavior, i.e. random opening and closing of channels, manifests

itself as spontaneous release events through single channels or several channels in a cluster,

see [21, 65].

Figure 3.2: The structure of clusters and channels.

A channel type, which control the release of Ca2+, present in the ER membrane of many

cells is the inositol 1,4,5-trisphosphate (IP3 ) receptor channel (IP3R ). The opening prob-

ability of the IP3R depends on the Ca2+ on the cytosolic side of the channel and the IP3

concentration, see [87, 74] for reviews. It increases nonlinearly with the IP3 concentration

and the Ca2+ concentration. Thus, Ca2+ released by one channel diffuses in the cytosol
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and thus increases the opening probability of neighboring channels. This provides a self-

amplifying release mechanism and the coupling of channels by Ca2+ diffusion causes the

spatial spread of release, which is called Calcium Induced Calcium Release (CICR). The

IP3R channel releases Ca2+ from the endoplasmic reticulum (ER) upon an increase of IP3

concentration in the cytosol, see Figure 3.3. Further, remarkable feature of the conductive

channel property is the strong nonlinearity of the Ca2+ feedback. For large Ca2+ concen-

trations, which occur in the vicinity of an open channel, Ca2+ inhibits its own release.

Another element of intracellular Ca2+ handling are buffers. Buffers are proteins binding

most of the Ca2+ in a cell (up to 99%). They present in the cytosol as well as in ER and

other storage compartments. Buffers are considered as mobile or immobile depending on

their diffusion characteristics. The rate constants of Ca2+ binding and dissociation allow

for a distinction between slow and fast buffers. Buffering of most of the free Ca2+ is one

of the basic phenomena in intracellular Ca2+ dynamics. It influences the time scales and

sets the diffusion length scales.

Figure 3.3: The structure of clusters and channels.

The dependence of the opening probability of the release channels on cytosolic Ca2+

creates communication between channels and allows for the formation of spatio-temporal

patterns of intracellular Ca2+ release. These patterns show a hierarchy of the phenomena.

The elementary event of cytosolic Ca2+ dynamics is the opening of a single channel with

the ensuing Ca2+ release is called blip. The next larger event is a puff and a puff is the

opening of several closely packed channels. Puffs are generic elements of Ca2+ signalling,

see [14, 91]. They can cooperate to set off a wave traveling through the cell.
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3.2 Governing equations

3.2.1 Deterministic equations in 2D

In a cell, the Ca2+ is transported through channels and by pumps, diffuses in the cytosol

as well as in the endoplasmic reticulum and reacts with buffers. A stationary profile can

be reached by assuming the removal of Ca2+ from the cytosol by pumps or imposing

boundary conditions, which guarantee that the current entering through the channel is

equal to the current leaving through the volume surface. The release process is described

by the reaction-diffusion equations for the cytosolic Ca2+ concentration c and the Ca2+

concentration E in the ER as well as the buffer concentrations bi and bE,j, in the cytosol

and ER respectively. We have i = s, d, m and j = s, m, where s denotes a stationary,

d a dye and m a mobile buffers. These equations are in cartesian coordinates. As a

simplification we do not consider the full three-dimensional cytosolic and ER space in

this subsection but instead consider thin sheets below and above an idealized planar ER

membrane of finite extension. All concentrations are therefore two-dimensional in space.

More details regarding 2D modeling can be found in Falcke [34].

The equations include diffusion of free Ca2+ described by D∆c, diffusion of dye buffers

bd denoted by Dd∆bd, diffusion of mobile buffers bm described Dm∆bm and the reactions

of stationary buffer bs, dye buffer bd and mobile buffer bm with free Ca2+ given by k+
i (Bi−

bi)c− k−
i bi where i = s, d, m. The total concentration of stationary, dye and mobile buffer

Bi, i = s, d, m is usually homogeneous before the experiments begin. Therefore, the

concentration of free buffer, i.e. buffer with no Ca2+ bound, can be expressed as (Bi − bi)

at any point in space. The reaction diffusion equations in 2 space dimensions are

∂c

∂t
= Dc∆c + (Pl + Pc(r))(E − c)− Pp

c2

K2
d + c2

−
∑

i

Hi(c, bi), (3.1)

∂E

∂t
= DE∆E + γ

[

(Pl + Pc(r))(E − c)− Pp
c2

K2
d + c2

]

−
∑

j

Kj(c, bE,j), (3.2)

∂bi

∂t
= Db,i∆bi + Hi(c, bi) i = s, m, d , (3.3)

∂bE,j

∂t
= DE,j∆bE,j + Kj(E, bE,j) j = s, m . (3.4)

The transport through the ER membrane comprises three contributions. Calcium is moved

from the ER into the cytosol through a leak current Pl(E−c), and the channels Pc(r)(E−c).

The latter term will be discussed in more detail below. Calcium is resequestered into the
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ER by pumps modeled by term proportional to Pp. The action of pumps was found to be

cooperative in calcium. The parameter Kd is the dissociation constant of the pumps.

The term proportional to Pc in Eqs. (3.1) and (3.2) models the current through an

open channel. This current was found to depend on the cross-membrane difference. For

differences found in cell-physiological conditions, the current can be approximated by a

linear dependence on (E − c). The current is modeled as a source with constant density

in a specified channel cluster region. A model to calculate the cluster radius is proposed

by Thul and Falcke [90]. The radius Rn of the cluster n with Nopen,n open channels is then

determined by

Rn = RS

√

Nopen,n.

The position of the cluster is given by a fixed position xn. Then the flux term is given by

Pc(rn) =

{

Pch if ‖rn − xn‖ < Rn for a cluster i ,

0 otherwise .

Note that in a model including the dynamics of channel gating the number of open channels

is time-dependent. Here, however the number of open channels Nopen,n is determined by

stochastic channel dynamics during a simulation. The corresponding value of Pch can be

found in Table B.1.

The amount of buffer in the cytosol and the ER that is bound to calcium is given by

bi or bE,j , respectively. All buffers are assumed to be distributed homogeneously in the

initial state. Immobile buffers are modeled by setting their diffusion coefficient to zero.

Total buffer concentrations in the cytosol and the ER are denoted by Bi or Gj, respectively.

Experimentally, the total amount in some buffers is known quite well. However, the amount

of some other buffers such as the stationary buffer, comprising contributions from different

calcium stores such as mitochondria, is not well known. The buffer binding and unbinding

of calcium is modeled by the usual mass-action kinetic terms

Hi = k+
b,i(Bi − bi)c− k−

b,ibi , (3.5)

Kj = k+
E,j(Gj − bE,j)E − k−

E,jbE,j . (3.6)

3.2.2 Deterministic equations in 3D

We want to simulate the release of Ca2+ in a cube volume divided by the lumenal membrane

perpendicular to the cylinder axis. The smaller part represents the ER and the larger
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part, the cytosol. The channel is a pore in the center of the ER membrane with radius

Rs, see Figure 3.4. The initial condition is the stationary Ca2+ - distribution resulting

from the pumps and the leak flux Pl. No flux boundary conditions were applied at the

outer surface of the cylinder. We chose cartesian coordinates for our simulations with the

positive z-direction pointing from top to bottom in Figure 3.4. For more details regarding

3D modeling can be found in Thul and Falcke [90], Thul [89].

channel

ER membrane

cytosol

endoplasmic reticulum

Figure 3.4: Volume within which release was simulated.

The reaction-diffusion equations in the 3 dimensions are

∂c

∂t
= Dc∆c−

∑

i

Hi(c, bi), (3.7)

∂E

∂t
= DE∆E −

∑

j

Kj(c, bE,j), (3.8)

∂bi

∂t
= Db,i∆bi + Hi(c, bi), i = s, m, d (3.9)

∂bE,j

∂t
= DE,j∆bE,j + Kj(E, bE,j). j = s, m (3.10)

The major difference lies in the flux in these equations as compared to two dimensional

equations, which was a source in 2D and now becomes a boundary condition. The flux J
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through the membrane separating ER and cytosol is given by

J = (Pl + Pc(r))(E − c)− Pp
c2

K2
d + c2

, r ≤ R. (3.11)

Here, the values of E and c have to be taken at the membrane. The cluster radius is

denoted by R, Pl is the coefficient of the leak flux density and Pp the maximal pump

strength. The constants in Eq. (3.11) will be determined in the next section. The currents

are incorporated into the volume dynamics by setting the boundary condition at the ER

membrane to

D
∂c

∂z
= −1

γ
DE

∂E

∂z
= J. (3.12)

3.3 Stochastic behavior of intracellular Ca
2+ dynamics

The process causing random behavior in intracellular Ca2+ dynamics is the transition

between the different states of the channel subunits and the channel. Channels open and

close randomly. The opening and closing probability depends on the state of the channel

subunits. The opening probability is the highest, if a minimum number of subunits are

activated and very low otherwise. The findings of Mak et al. [63, 64] suggest that the

change of opening probability is due to a change of the average opening rate whereas the

closing rate is more or less constant. In the following, an event resulting in an opening

or closing of the channel will be called channel transition. In the following subsections we

study the fascinating behavior of the intracellular Ca2+ dynamics and stochastic models.

Figure 3.5: Cryo-electron microscopic images of purified type I IP3 receptor from a mouse
cerebellum. Figure from Jiang et al. [54].



3.3. STOCHASTIC BEHAVIOR OF INTRACELLULAR CA2+ DYNAMICS 43

3.3.1 Stochastic channel model

In this subsection, the brief introduction of stochastic model for the gating of subunits

is explained. This model is based on the DeYoung-Keizer (DYK) model for the subunit

dynamics, see [29], we will briefly discuss this model here. It is known that a subunit

consists of binding sites for Ca2+ and IP3 . However, the exact number of binding sites is

still under investigation. Based on the results of Bezprozvanny et al. [19], DeYoung and

Keizer [29] proposed a model for a single subunit. The model by DeYoung and Keizer

was set up as a deterministic model and used later on as a stochastic scheme by Falcke et

al. [34, 36]. The subunit consists of three binding sites: an activating and an inhibitory

Ca2+ as well as an activating IP3 binding sites. Therefore the state of a subunit can be

specified by a binary triplet ijk. The indices are represented by the IP3 binding site, the

Ca2+ activating and the Ca2+ inhibiting binding site respectively. An index is equal to 1

if an ion is bound and 0 if not. Hence, for example, the state 110 refers to IP3 and Ca2+

bound to the activating sites, respectively, and no Ca2+ attached to the inhibiting binding

site. We assume that the channel is open, if at least three of the subunits are activated,

i.e. they have bound Ca2+ and IP3 at the activating site. The resulting nine states of a

subunit are shown in Figure 3.6. In 2D numerical simulations, the standard DYK model

is considered for a subunit dynamics which consists of 8 different states, i.e. see Figure

3.6 with excluding the ”open” state. An additional state, called ”open”, is introduced to

DYK model which is considered for subunit dynamics in our 3D numerical simulations. In

Figure 3.6, the binding rate constants for IP3 activation are given by a1p and a3p, whereas

a2c and a4c refer to Ca2+ inhibition. The activation of Ca2+ is controlled by a5c. The

dissociation rates for the above processes are denoted by b1 through b5. The reactions that

occur at a subunit are binding and unbinding of Ca2+ and IP3. They determine the state of

one subunit. In an ensemble of subunits these processes lead to a fraction Xijk of subunits

in a state ijk. If the ensemble is large enough and homogeneous, these fractions can be

described by rate equations. For instance, the time evolution of X110 is governed by

Ẋ110 = − [b5 + a2c + b1] X110 + a5cX100 + b2X111 + a1pX010 , (3.13)

with p being the IP3 concentration and c the Ca2+ concentration. The negative term

represents the processes that reduce the value of X110. This can result from unbinding of

IP3 with rate b1, unbinding from the activating Ca2+ site with rate b5 and binding to the

inhibiting Ca2+ binding site with rate a2c. The remaining three terms control the increase

of X110. This happens for example through binding with rate a5c to the activating Ca2+
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Figure 3.6: Transition scheme of the DeYoung-Keizer model

site of a subunit that is in the state 100. Together with the remaining rate equations, the

state of the ensemble is fully characterized. We may discard one of these equations and

use instead the conservation law

∑

{ijk}∈[0,1]3

Xijk = 1 . (3.14)

It states that each subunit belongs to one of the fractions Xijk and that the number of

subunits is conserved. In general, the Ca2+ concentration is not constant in time, so that

a closed solution for the fractions Xijk is not accessible.

The binding and dissociation of Ca2+ and IP3 as well as the conformational change are

stochastic events rendering the opening and closing of the channel a stochastic process.

That stochastic process is coupled to the concentration of cytosolic Ca2+ since the binding

probabilities per unit time depend on it and vice versa the number of open channels

determines the concentration fields.

The state of active elements can be described as either activated or deactivated. As their
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number per cluster is rather small and as they are tightly packed, each element occupies

a non negligible spatial fraction. Therefore the state of a cluster is well characterized by

the area occupied by activated units. We refer to it as the active area of a cluster. Usually

this is not a connected patch. Its size equals the sum of the areas of all activated units.

In this work the stochastic solver is based on the Gillespie method [38]. The brief

explanation of this method is presented here. We start by establishing out notation and

briefly reviewing the details of stochastic chemical kinetics relevant to our work. According

to the Gillespie method, suppose the volume V contains a spatially homogeneous mixture

of Xj molecules of chemical species Sj, j = 1, . . . , N , that can interact through M specified

reaction events Ri, i = 1, . . . , M . The state of the system, (X1, . . . , XN), consists of the

numbers of molecules of the chemical species. Then we may assert the existence of M

constants ri, i = 1, . . . , M , which depend only on the physical properties of the molecules,

such that

ri dt = average probability that a particular combination of Ri events

will react accordingly in the next infinitesimal time interval dt. (3.15)

By ”average” here mean that, if we multiply ri dt by the total number of distinct combina-

tions of Ri reaction events in V at time t, we will obtain the probability that an Ri event

will occur somewhere inside V in the next infinitesimal time interval (t, t + dt).

The reaction probability density function: If we are given that the system is

in the state (X1, . . . , XN) at time t, then essentially all we need to know ”when will be

the next event take place and what kind of event will it be?”. These are two important

questions that arise due to the stochastic nature of the reactions. One can expect that these

two questions will be answered in some ”probabilistic” sense. According to the Gillespie

method [38], the probabilistic function defined by

P (τ, i) dt = probability that, given the state (X1, . . . , XN) at time t, the

next event in V will occur in the infinitesimal time interval

(t + τ, t + τ + dt), and will be an Ri event. (3.16)

We call P (τ, i) the reaction probability density function on the space of the continuous

variable τ (0 ≤ τ < ∞) and the discrete variable i, i = 1, . . . , M . The probability that

the event Ri occurs in the next infinitesimal time interval [t, t + τ ] is given in terms of the

propensity function and equals ai(t, c)dt. The reaction propensities, ai, are the probabilistic
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rates of the reactions. In our model the propensities are proportional to the occupation

number hi of the corresponding subunit state, defined as

hi = number of distinct Ri event combinations in

the state (X1, . . . , XN).

Hence we set ai = hiri, where ri is defined as above Eq. (3.15). Given the actual time

t, the probability that the next stochastic event occurs in the infinitesimal time interval

[t + τ, t + τ + dt] and is an Ri event is given by

P (τ, i)dt =

{

ai exp(−a0τ)dt if 0 ≤ τ <∞ and i = 1, . . . , M ,

0 otherwise .
(3.17)

where ai = hiri, where i = 1, . . . , M and a0 =
∑M

j aj is the sum of all propensities. One

can find a more detailed derivation of this function in [37].

In the above we observed that essentially what is needed to simulate the time evolution

of a chemically reacting system is some way of specifying when the next reaction event will

occur and what kind of event it will be. To give a more precise mathematical meaning,

what is needed is a method for generating a pair (τ, i) from the set of random pairs whose

probability density function is P (τ, i) like the one given in Eq. (3.17). To generate the

pair (τ, i) based on the Gillespie method [37], called ”direct” method. It is based on the

fact that any two-variable probability density function can be written as the product of

two one-variable probability density functions, a procedure known as ”conditioning”, in

the following form

P (τ, i) = P1(τ) · P2(i|τ) . (3.18)

Here, P1(τ) is the probability that the next event will occur between times t + τ and

t + τ + dt, and P2(i|τ) is the probability that the next event will be an Ri event, given

that the next event occurs at time t+ τ . These two equations express the two one-variable

density functions

P1(τ) = a0 exp(−a0τ) if 0 ≤ τ <∞ (3.19)

P2(i|τ) =
ai

a0
if i = 1, . . . , M . (3.20)

Note that both of these one-variable density functions are properly normalized i.e.
∫∞

0
P1(τ)dτ =

1 and
∑M

i=1 P2(i|τ) = 1.
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However, our objective in the stochastic simulation algorithm to generate a random pair

(τ, i) according to the probability density function in Eq. (3.17). From this method first

generate a random value τ according to Eq. (3.19) by simply drawing a random number

r1 from the uniform distribution in the unit interval and taking

a0 · τ = ln(1/r1) . (3.21)

Then we generate a random integer i according to Eq. (3.20) by drawing a random number

r2 from the uniform distribution in the unit interval and taking

i
∑

j=1

aj ≤ a0 · r2 <
i+1
∑

j=1

aj . (3.22)

In this way we can find the next event Ri and it will occur after time τ .

3.4 Hybrid stochastic and deterministic model

The Gillespie method based on the assumption that during successive stochastic events the

propensities ai do not change. Indeed, over those successive stochastic events, there must

be a significant activity in all reaction channels. However, when linking the stochastic

channel dynamics to the calcium dynamics, we expect the propensity ai to change in time

due to its dependence on the local calcium concentration c. This effect will be particularly

strong for openings and closings of channels, since after such events the local calcium

concentration c changes dramatically by orders of magnitude. So the propensities can

change too rapidly over small time intervals. Moreover, purely stochastic simulations are

computationally very expensive when there are many reactions involved in chemical system.

There are some efficient methods are available in literature. Still this area is very active in

the current research.

To overcome those problems, we adopted a hybrid method which is recently introduced

by Alfonsi et al. [2]. In their hybrid algorithm, the stochastic reaction equations are

partitioned into deterministic and stochastic equation, to reduce the computational time

and increase the efficiency. To adapt this hybrid algorithm to current problem, we used

the spatial-temporal equations are deterministic and the opening/closing of channels are

considered as stochastic part. Here we will give the brief explanation of the hybrid method.

The reaction probability for each event Ri is specified in terms of the propensity function

ai = ai(t, c(t)). Based on physical laws and the idea that chemical reactions are essentially
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random processes, the stochastic formulation of chemical reactions is given in terms of a

Markov jump process c(t) ∈ N
N , see [39]. Its characterization is based on the probability

ai(t, c)dt of event Ri occurring in the next infinitesimal time interval [t, t + dt]. Denoting

by Ti(t) the time at which event Ri first occurs after t, this can be written as

P[Tj(t) ∈ [t, t + dt]|c(t)] = ai(c(t), t)dt .

More details can be found in Alfonsi et al. [2]. Within their setting the time τ to the next

stochastic event is determined by solving

gi(t + τ |t) =

∫ t+τ

t

ai(c(t), s) ds = ξ , (3.23)

with ξ = ln(1/r1), where the sum of propensities a0 may explicitly depend both on time and

the local calcium concentration. The function gi(t+τ |t) is non-decreasing for t+τ > t, since

the propensities ai are non-negative by definition. Note that the above equation simplifies

to the equation determining τ in Eq. (3.21) in the case of constant a0. To determine the

time of next reaction τ , condition Eq. (3.23) is conveniently rewritten in differential form

by introducing a variable g(t) and solving

ġ(s) = a0(c, s) . (3.24)

with initial condition g(0) = 0, along with the deterministic equations for c and buffers.

This is the stochastic equation considered in our numerical simulations. To calculate the

propensities we follow the dynamics of DYK model. A reaction then occurs whenever g(s)

reaches the value ξ. As before, the specific event Ri is determined based on a second

random number r2 solving Eq. (3.22) with propensities evaluated at the event time t + τ .

This way one can determine the next reaction event and when it occurs.

we would like to give the brief outline of the algorithm here. A special feature of the

calcium system is that not all stochastic events change the open/close state of a channel.

A channel transition has a major impact on the local calcium concentration c, while non-

channel transitions do not change the local calcium concentration. During the computation

of the deterministic part of the calcium dynamics the stochastic events are traced via

Eq. (3.23) respectively Eq. (3.24). During the simulation the stochastic system is updated

for every stochastic time step dt. The time step dt is determined using the first random

number generation, see Eq. (3.21), and by fulfilling the requirement a0dt ≤ 1, where a0

is the sum of the propensities. Using the second random number the reaction event Ri
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is determined, see Eq. (3.22). In this way we can determine the next reaction event Ri

and it will occur after the time τ . If a non-channel transition occurs, the stochastic event

is performed. The stochastic channel dynamics is updated correspondingly, while there

is no influence on the calcium concentration. On the other hand, if a channel transition

takes place, both the channel and the calcium dynamics do change. This typically requires

a readjustment of the deterministic time step. The algorithmic realization of our hybrid

approach is given in Appendix B, see Algorithm 3.

Note that ∆tchannel should be smaller than or similar to the time scale of stochastic

transitions after a channel opening/closing. This is needed since we linearly interpolate

the deterministic solution to determine stochastic transitions between succeeding deter-

ministic time steps. Therefore, fast changes of the deterministic variables after a channel

opening/closing need to be approximated numerically at time scales comparable to the

stochastic transitions. Here we typically use two time steps in the hybrid simulation. One

time step is for updating the deterministic solution, which is determined by the adaptive

time step criteria of ODE solver and second time step is used for updating stochastic

solver, which is calculated by the Gillespie algorithm. The step by step process of the

hybrid algorithm can be found in Algorithm 3.





Chapter 4

Discretization of Reaction-Diffusion
Systems

In this chapter we explain the discretization and solution of partial differential equations of

the type which are given in Chapter 2 and Chapter 3. This chapter is organized as follows,

in the first section we give the basic definition of some function spaces and associated

norms which are essential in the formulation of the finite element method. In the second

section we explain the basic aspects of the finite element method. One of the advantages of

the finite element method is that it can be used with relative ease to find approximations

to solutions of differential equations in divergence form on general domains. We will first

consider a so-called semi-discrete analogue of the full system where we have discretized

in space using continuous piecewise linear finite elements, explained in third section. We

shall see that the semi-discrete problem is an initial value problem for a system of ordinary

differential equations. To obtain a fully discrete problem we will then discretize in time,

explained in fourth section. In the fifth section we give an introduction to solving the

resulting algebraic equations. In the sixth section we explain the adaptive grid refinement

and the Z2 error estimator. Finally, the basic idea of domain decomposition methods is

explained.

4.1 Mathematical notations and function spaces

The process of spatial discretization by the finite element method is based on the discrete

representation of a weak integral form of the partial differential equations to be solved. The

formulation and subsequent discretization of such an integral form requires the definition

of some function spaces and associated norms. Standard books on mathematical concepts,

51
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such as, for instance, Adams [1], Nair [72], provide a detailed exposition of the mathematical

concepts, which are the basis of the finite element method.

Consider a spatial domain Ω ⊂ R
d with piecewise smooth boundary Γ. Here, d = 1, 2

or 3 denotes the number of space dimensions. We shall use the notation

f : Ω̄ −→ R

to state that for each spatial point x ∈ Ω̄, f(x) ∈ R. The set Ω̄ denotes the closure of Ω,

that is the union of the domain Ω with its boundary Γ : Ω̄ = Ω ∪ Γ.

Definition 4.1. A function f : Ω −→ R is said to be of class Cm(Ω) if all of its derivatives
on Ω up to order m exist and are continuous functions. For instance, the notation f(x) ∈
Cm(a, b) indicates that f(x) possesses m continuous derivatives for x ∈ (a, b).

In finite element analysis we work with functional equations in integral and, thus, we

are interested in functions belonging to larger spaces than Cm. As we will see, instead of

requiring the m-th derivative to be continuous, we will require that first derivatives are

square integrable. In fact, finite element functions should possess generalized derivatives,

i.e., derivatives in the sense of distributions, and some integrability properties. Such classes

of functions are particular examples of Sobolev function spaces.

Definition 4.2. Let Ω ⊂ R
d the class of all measurable functions u

Lp(Ω) =

{

u : Ω −→ R
∣

∣

∫

Ω

|u|p dx <∞
}

, 1 ≤ p <∞ ,

and

L∞(Ω) =
{

u : Ω −→ R
∣

∣ess supx∈Ω |u(x))| <∞
}

.

This space is equipped with norm

‖u‖Lp(Ω) :=

(
∫

Ω

|u|p dx

)1/p

, 1 ≤ p <∞ ,

and

‖u‖L∞(Ω) := ess supx∈Ω |u(x)| .

Definition 4.3. If α = (α1, . . . , αd) ∈ N
d
0 is a d-tuple of nonnegative integers αj , we call

α a multi-index and denote by xα the monomial xα1

1 . . . xαd

d . A multi-index has the degree

|α| =∑d
j=1 αj. We define the derivative

Dαu = ∂α1

x1
. . . ∂αd

xd
:=

∂|α|u

∂α1x1 . . . ∂αdxd
.
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Next we give a particular class of Sobolev spaces, those of square integrable functions

and derivatives.

Definition 4.4. For any nonnegative integer k, we define the Sobolev space Hk(Ω) using
multi-index notation

Hk(Ω) =
{

u ∈ L2(Ω)
∣

∣Dαu ∈ L2(Ω) ∀ |α| ≤ k
}

.

Therefore, Hk(Ω) consists of square integrable functions all of whose derivatives of order
up to k are also square integrable. Hk(Ω) is equipped with norm

‖u‖k =





∫

Ω

∑

|α|≤k

|Dαu|2 dx





1/2

.

Note that L2(Ω) is, in fact, a Sobolev space, H0(Ω) = L2(Ω), while the Sobolev space

for k = 1 is defined by

H1(Ω) =

{

u ∈ L2(Ω)
∣

∣

∂u

∂xi
∈ L2(Ω), i = 1, . . . , d

}

.

This space is equipped with the inner product

〈u, v〉1 =

∫

Ω

(

uv +

d
∑

i=1

∂u

∂xi

∂v

∂xi

)

dΩ ,

and its induced norm is

‖u‖1 =
√

〈u, u〉1.

We shall also frequently use the subspace

H1
0 (Ω) =

{

v ∈ H1(Ω)
∣

∣ v = 0 on Γ
}

,

the elements of which posses a square integrable first derivative over the domain Ω and

whose trace vanishes on its boundary Γ. Moreover, its inner product and norm coincide

with those of H1(Ω).

Remark 4.1. H1
0 is usually defined as the closure of C∞

0 (Ω), the set of all continuous
functions with continuous derivatives whose support is a bounded subset of Ω, with respect
to the norm of ‖·‖1. This is, H1

0 (Ω) is the set of all functions u in H1(Ω) such that u is
the limit in H1(Ω) of a sequence {us}∞s=1 where all us are in C∞

0 (Ω), see Adams [1].
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4.2 The basic aspects of the finite element method

In this section we present the properties of the classical finite element approximation.

In order to apply the standard Galerkin method, we face, by definition, the problem of

constructing finite-dimensional subspaces Vh of spaces V such as H1(Ω), H1
0 (Ω), . . .. The

finite element method in its simplest form is a specific process of constructing subspaces

Vh, which are then called finite element spaces. This construction is characterized by three

basic aspects: the existence of a triangulation of the polygonal set Ω, the construction of

a finite dimensional subspace consisting of piecewise-polynomials, and the existence of a

basis of functions having small support. Here we are giving the definition like Ciarlet [28].

Let us consider d = 2. The first basic aspect is that a triangulation Th is established

over the set Ω̄, i.e., the set Ω̄ is subdivided into a finite number of subsets T , in such a way

that the following properties are satisfied:

(T1) Ω̄ =
⋃

T∈Th
T .

(T2) For each T ∈ Th, the set is closed and its interior int(T ) is nonempty and connected.

(T3) For each distinct T1, T2 ∈ Th, one has int(T )1 ∩ int(T )2 = ∅.

(T4) If F = T1 ∩ T2 6= ∅, T1 and T2 distinct elements of Th, then F is a common edge, or

vertex of T1 and T2.

(T5) diam(T ) ≤ h for each T ∈ Th.

Then Th is called a triangulation of Ω̄, see Quarteroni and Valli [75], Ciarlet [27].

A second basic aspect of the finite element method consists of determining a finite

dimensional space Vh which should result in a suitable approximation of the infinite di-

mensional space V .

Here the point is that the function vh ∈ Vh are piecewise-polynomials, i.e., for each

T ∈ Th the space

PT :=
{

vh|T |vh ∈ Vh

}

consists of algebraic polynomials. Analogously for d = 1 we would be considering subin-

tervals, for d = 3 tetrahedra instead of triangles.

To be more precise, let us denote by Pk, k ≤ 0, the space of polynomials of degree less

than or equal to k in the variables x1, . . . , xd. The dimension of P is given by, see Braess
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[23], Quarteroni and Valli [75]

dim Pk =

(

d + k

k

)

. (4.1)

The first collection of functions, denoted by V , is composed of test or weighing func-

tions. It consists of all functions which are square integrable, have square integrable first

derivatives over the computational domain Ω, and vanish on the Dirichlet portion, ΓD, of

the boundary. It is defined as follows

S = {v ∈ H1(Ω)| v = 0 on ΓD} ≡ Hk
ΓD

(Ω). (4.2)

The second collection of functions is called the trial or admissible solutions. This collection

is similar to the test functions except that these trial functions are required to satisfy the

Dirichlet conditions on ΓD. This space is denoted by S and defined as follows

V = {u ∈ H1(Ω)| u = uD on ΓD} ≡ S + {ūD}, (4.3)

where ūD is any function in H1(Ω) such that ūD = uD on ΓD. However, for homogeneous

boundary conditions, uD = 0, trial and test spaces coincide, V = S = H1
0 (Ω).

Now we will define the finite dimensional subspaces Vh ⊂ V and Sh ⊂ S. The weighting

functions vh ∈ Sh vanish on ΓD. The approximation uh lies in Vh and satisfies, with the

precision given by the mesh size h, the boundary condition uD on ΓD, for more details see

Donea and Huerta [31], Ciarlet [28]. The subspaces are defined as

Sh := {vh ∈ H1(Ω)| vh|T ∈ Pk ∀ T ∈ Th and vh = 0 on ΓD} , (4.4)

Vh := {uh ∈ H1(Ω)| uh|T ∈ Pk ∀ T ∈ Th and uh = uD on ΓD} . (4.5)

The third basic aspect of the finite element method is to construct a efficient basis for

the space Sh. The basis should have a support as small as possible with little overlap of

neighboring basis functions. This leads to sparse linear systems. By denoting, ai, i =

1, . . . , N , the global set of nodes in Ω̄, is sufficient to choose ϕj ∈ Sh, j = 1, . . . , N , such

that

ϕj(ai) = δij ≡
{

1 if i = j ,

0 if i 6= j .
(4.6)

We see that the support of ϕj , the set of points a for which ϕj(a) 6= 0, consists of the

triangles with the common node aj , the shaded area in Figure 4.1. These functions are

called shape functions. We refer the interested reader to Ciarlet [28]. Finally, we give the

definition of a finite element.
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ϕj

ϕk

aj

ak

Figure 4.1: The support of basis function

Definition 4.5. A finite element in R
d is a triple (T, PT , Σ) where

• T is a closed subset of R
d with a non empty interior and a Lipschitz-continuous

boundary, for example a triangle in 2D,

• PT is a finite-dimensional linear space of functions defined on T ,

• Σ is a set of degrees of freedom,

such that a function v ∈ PT is determined by the degrees of freedom Σ.

Definition 4.6. Let hT be the longest side of a triangle T and ρT the diameter of the
circle inscribed in T . A family of triangulations Th, h > 0 is called regular if there exists
a constant σ ≥ 1 such that

max
T∈Th

hT

ρT
≤ σ ∀h > 0 .

This condition means that the triangles T ∈ Th are not allowed to be arbitrarily thin, or
equivalently, the angles of the triangles T are not allowed to be arbitrarily small. The
constant σ is a measure of the smallest angle in any T ∈ Th.

Let ai, i = 1, . . . , N , be the nodes of Th . Given u ∈ C0(Ω̄) the linear interpolant

I(u) ∈ Vh is defined as the unique piecewise linear function agreeing with u at the nodes

of Th, i.e.

I (u(ai)) = u(ai) i = 1, . . . , N .

The domain Ω̄ is polygonal and T ∈ Th. Then to evaluate the integrals one would use

a suitably chosen a numerical quadrature formula of the form

Q(f) :=

∫

T

f(x) =

q
∑

j=1

f(xj,T )wj,T for f ∈ C(Ω̄) ,
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where wj,T , j = 1, . . . , q, are quadrature weights and xj,T are quadrature points in the

element T . We take the quadrature formula has given by

Q(f) :=

∫

Ω

I(f)dx for f ∈ C(Ω̄) . (4.7)

This corresponds to the trapezoidal rule on each element.

Let T be a d-simplex, and let λi(x), 1 ≤ i ≤ d + 1, denote the barycentric coordinates

of a point x with respect to the vertices of the d-simplex. Then for any integer αi ≥ 0 one

has, see Ciarlet [28]

∫

T

λα1

1 . . . λ
αd+1

d+1 dx =
α1! . . . αd+1!d!

(α1 + . . . + αd+1 + d)!
|T | . (4.8)

4.2.1 Mass lumping

The first way to introduce the lumping process is to substitute the mass matrix M by the

matrix M̃ given by

M̃ij :=

(

Nh
∑

k=1

Mik

)

δij =

[

Nh
∑

k=1

〈ϕi, ϕk〉
]

δij , (4.9)

i.e., M̃ is the diagonal matrix having the elements M̃ii equal to the sum of the elements of

M on the i-th row. Notice at first that trivially 〈ϕi, ϕj〉h = 0 if i 6= j, and ai, aj are not

nodes of a common triangle. In that case ϕiϕj vanishes at each node of Th. Moreover, one

can easily check that 〈ϕi, ϕk〉 is non-zero only if the nodes ai and ak belong to the same

triangle T . Using Eq. (4.8) we can calculate

∫

T

ϕ2
i dx =

2! 2!

(2 + 2)!
|T | = 1

6
|T | ,

and analogously we can calculate

∫

T

ϕiϕkdx =
1! 1! 2!

(1 + 1 + 2)!
|T | = 1

12
|T | .

The above simple calculation shows that for ai, ak ∈ T we have

∫

T

ϕiϕkdx =

{

1
12
|T | , i 6= k ,

1
6
|T | , i = k .

(4.10)
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For each pair ai, ak, i 6= k there are either exactly two triangles containing ai and ak or no

common triangles. Thus, denoting by Di the union of the triangles having ai as a vertex,

it follows that for a given i
∑

k 6=i

〈ϕi, ϕk〉 =
∑

k 6=i

∑

T∈Th

∫

T

ϕiϕkdx =
1

6
|Di| .

Hence

M̃ii :=

Nh
∑

k=1

〈ϕi, ϕk〉 =
1

3
|Di| . (4.11)

Analogously, in case of tetrahedra we can show that

M̃ii :=

Nh
∑

k=1

〈ϕi, ϕk〉 =
1

4
|Di| . (4.12)

4.3 Spatial discretization

The systems of coupled non linear partial differential equations from Chapters 2 and 3

are valid in the domain Ω. The domain Ω ⊆ R
d is a convex polygonal subset. The

unknowns are functions of space and time with values in Ω × [0, T ]. In this section we

give the spatial discretization by the finite element method for solving the coupled partial

differential equation system. We will first consider a so-called semi-discrete analogue of

the full system where we have discretized in space using continuous piecewise linear finite

elements. We shall see that the semi-discrete problem is an initial value problem for a

system of ordinary differential equations.

Standard finite element texts, such as, for instance, Braess [23], Johnson [55], Shaidurov

[83], Quarteroni and Valli [75] provide a detailed exposition of the mathematical concepts,

which are the basis of the finite element method.

4.3.1 Semi discretization in space

The system of partial differential equations, which is from Chapters 2 and 3, can be written

in the following general form.

∂u(x,t)
∂t
−∇ · (A(x)∇u(x, t)) + b(x) · ∇(u(x, t)) + r(u(x, t)) = f(x) in Ω× (0, τ ],

u(x, t) = u0(x) on Ω× t = 0,

u(x, t) = uD on ΓD × [0, τ ],

n ·A(x)∇u = g on ΓN × [0, τ ],

(4.13)
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where u is the unknown vector of functions, A(x) > 0 is the diffusion matrix, b(x) is the

convection velocity, r(u) is the reaction term and f(x) is the source function. The function

uD denotes the prescribed values of u on the Dirichlet portion ΓD of the boundary, while

the diffusive flux on the Neumann portion ΓN is g.

The discretization process using the finite element method is based on a reformulation

of the given differential equation in the more general variational formulation. Multiplying

the above equation for a given time t by v ∈ SD, integrating over Ω and using Green’s

formula, we get the following variational formulation:

Find u ∈ VD s.t: for each t ∈ I = [0, T ]

〈∂u
∂t

,v〉+ 〈A(x)∇u,∇v〉+ 〈b(x) · u,v〉+ 〈r(u),v〉 = 〈f ,v〉+ 〈g,v〉ΓN
for all v ∈ SD ,

u(x, t) = u0(x) on Ω× t = 0 ,

u(x, t) = uD on ΓD × [0, T ] .

(4.14)

Let Vh ⊂ V and VDh
⊂ VD be finite dimensional subspaces. Replacing the space V by

the finite dimensional subspace VDh
we get the following semi discretization in space, find

uh ∈ Vh s.t:

〈∂uh

∂t
,vh〉+ 〈A(x)∇uh,∇vh〉+ 〈b(x) · uh,vh〉+ 〈r(uh),vh〉 = 〈f ,vh〉+ 〈g,vh〉ΓN

for all vh ∈ SDh
,

uh(x, t) = u0,h(x) on Ω× t = 0 ,

uh(x, t) = uD on ΓD × [0, T ] .

(4.15)

Due to the presence of Dirichlet boundary conditions, a distinction must be made between

the number of nodal points N of the discretized domain and the number of nodal unknowns,

that is the number of equations Ne of the system. We have in the presence of a Dirichlet

condition Ne < N . Furthermore, we denote by ND ⊂ N the subset of nodes on which

the Dirichlet condition is given. The weighting functions vh ∈ SDh
vanish on ΓD. And

the subspace Sh is spanned by the basis functions {ϕi|i ∈ N \ ND}. Specifically we take

continuous functions that are piecewise linear on a quasi-uniform triangulation. As basis

functions ϕi, we take the shape functions also known as hat functions. We approximate

the solution uh using the basis functions

uh(t, x) =
∑

i∈N\ND

ui(t)ϕi(x) +
∑

i∈ND

uDϕi(x) , (4.16)
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i.e, each uh ∈ Vh can be written in a unique way as a linear combination of the basis

functions ϕi and time dependent coefficients. Moreover, the test functions vh are defined

such that

vh ∈ Sh := span{ϕi} where i ∈ N \ND. (4.17)

Thus, after substitution of Eq. (4.16) into the semi discretization, and testing with each of

the basis functions, we get a system of ordinary differential equations in matrix form

Mu̇h + Auh + Buh + s(uh) = f , (4.18)

where M is the mass matrix, A is the stiffness matrix, B is the matrix depending on the

convection velocity and s is the vector due to the reaction term. The matrices are defined

as follows,

M := 〈ϕi, ϕj〉, A := 〈A(x)∇ϕi,∇ϕj〉 ,
B := 〈b(x) · ∇ϕi, ϕj〉, s(uh) := 〈r(∑N

i=1 ui(t)ϕi(x)), ϕj〉.
The nonlinear term

s(uh) =

∫

Ω

r

(

N
∑

i=1

ui(t)ϕi(x)

)

ϕj dx

can be approximated using the quadrature formula. This approximation can be found in

Knabner and Angermann [56], also see Heineken [46]

∫

ω

r

(

N
∑

i=1

ui(t)ϕi(x)

)

ϕj dx ≈ QTh

Ω

(

r

(

N
∑

i=1

ui(t)ϕi(x)

)

ϕj

)

,

=

∫

Ω

Ih

(

r

(

N
∑

i=1

ui(t)ϕi(x)

)

ϕj dx

)

,

=

∫

Ω

ϕiϕjdx r(ui) = Mr(ui) . (4.19)

Then the system (4.18) can be written as follows

Mu̇h + Auh + Buh + Mr(uh) = f .

Apply mass lumping, we get the lumped mass matrix, which is a diagonal matrix. It

can be invertible easily, then we obtain the system of ordinary differential equation in the

following form

u̇h = M̃
−1

F− M̃
−1(Auh − Buh)− r(uh) , (4.20)

where M̃ is the lumped mass matrix as explained in Subsection 4.2.1.
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4.4 Time discretization

The discretization in time of Eq. (4.18) can be accomplished in several possible ways. To

start with, we partition the time interval [0, T ] into discrete steps

0 = t0, t1, . . . , tn = T ,

that are not necessarily equidistant. The notation for time step is τ i = ti+1 − ti and uh
i

to be the numerical solution at time ti. Then we look for an approximation to uh(t) at

each time level ti. A classical and widespread practice to achieve a full discretization of

Eq. (4.18) is to resort to a discretization of the time derivative by a finite difference scheme.

We considered the ODE problem

M
∂uh

∂t
= F(uh(t)) , u(t0) = u0 , (4.21)

where F(uh(t)) is a continuous function from [0, T ]× R into R which is further Lipschitz

continuous with respect to uh, uniformly in t ∈ [0, T ].

Stiff initial value problems put special demands on the methods to be used for time

discretization. First, for stability reasons one has, in order to avoid excessively small time

steps, to use so called implicit methods, i.e. methods requiring the solution of a system of

equations at each time step. Secondly, one would like to use methods which automatically

adapt the size of the time steps according to the smoothness of uh and thus automatically

take smaller time steps in a transient and larger steps when uh becomes smoother. In this

section we explain the two classical methods for time discretization, first we start with

simple θ scheme and next linearly implicit Runge-Kutta methods.

4.4.1 One step ϑ schemes

The one step θ-scheme, see Hairer and Wanner [45], Quarteroni and Valli [75], applied to

the semi-discrete system (4.21) yields

M
uh

n+1 − uh
n

τn
= θF(uh

n+1) + (1− θ)F(uh
n) . (4.22)

The θ scheme includes the following methods: If we take θ = 0, this is just explicit Euler

method or forward Euler method. Other choices that are often considered are θ = 1/2 and

θ = 1. The method with θ = 1/2 is called the Crank Nicolson method, which is second

order in time, and with θ = 1 is called the implicit Euler method or backward Euler method

which is first order accurate in time.
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Due to the implicitness, the Crank Nicolson method and backward Euler method are

more expensive to use than the forward Euler method. Moreover, for stability reasons

one has, in order to avoid excessively small time steps, to use so called implicit methods,

implicit methods can be unconditionally stable. Explicit methods are conditionally stable.

4.4.2 Linearly implicit Runge-Kutta methods

Here we consider the system (4.21) are to be solved numerically with the help of linearly

implicit one-step methods of Rosenbrock type, see Rosenbrock [79]. If the system is stiff,

explicit methods are not efficient due to severe time step restrictions for stability reasons.

Implicit Runge-Kutta methods, on the other hand, suffer from a serious practical disad-

vantage in that the solution of the nonlinear implicit equations occurring at each time

step. In this case linearly implicit one step methods are suitable while still maintaining

computational efficiency and avoiding the necessity to use a nonlinear solver. If one uses

linearly implicit methods only linear systems have to be solved.

For computation an s-stage Rosenbrock method of order p with embedding of order

p̂ 6= p has the form, see Hairer and Wanner [45]

(
1

τ iγ
M− J)kj = F

(

ti + τ iαj ,uh
i + τ i

j−1
∑

l=1

ajlkl

)

−M

j−1
∑

l=1

clj

τ i
kl ,

where j = 1, . . . , s , (4.23)

uh
i+1 = uh

i +
s
∑

l=1

mlkl , (4.24)

ûh
i+1 = uh

i +
s
∑

l=1

m̂lkl . (4.25)

The method coefficients γ, αj, ajl, cjl, ml, and m̂l are chosen in such a way that some order

conditions are fulfilled to obtain a sufficient consistency order where αj =
∑j−1

i=1 αji. The

Jacobian is given as J = ∂F(uh(ti))
∂uh

. A derivation of these conditions with Butcher series

can be found in Hairer and Wanner [45]. We assume p > p̂ which is reasonable since one

would prefer to continue the integration with the higher order solution uh.

Particularly, in our computations we used the ROS3P method which was proposed

by Lang and Verwer [58]. This method is A-stable with R(∞) ≈ 0.73 and third order

accurate, very suitable for nonlinear parabolic problems, see for more details Lang [57]. A

second order embedding is used for error estimation which is needed for time step control,

see Table 4.1 for the set of coefficients.
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We also used in one numerical simulations a certain other class of linearly implicit

Runge-Kutta methods, namely the W-methods of Steihaug and Wolfbrandt [86]. They are

used as a Krylov-W-method, which is especially well suitable for partitioning methods, see

for a systematic study in the thesis of Heineken [46]. This method has order p = 2, the

embedded method is of order p̂ = 1, see Table 4.2 for set of coefficients. In this case we

considered the autonomous problem (4.20) in the simulation.

γ = 7.886751345948129e− 01
a21 = 1.267949192431123e + 00 c21 = 1.607695154586736e + 00
a31 = 1.267949192431123e + 00 c31 = 3.464101615137755e + 00
a32 = 0.000000000000000e + 00 c32 = 1.732050807568877e + 00
α1 = 0.000000000000000e + 00 γ1 = 7.886751345948129e− 01
α2 = 1.000000000000000e + 00 γ2 = −2.11324865405187e− 01
α3 = 1.000000000000000e + 00 γ3 = −1.077350269189626e + 00
m1 = 2.000000000000000e + 00 m̂1 = 2.113248654051871e + 00
m2 = 5.773502691896258e− 01 m̂2 = 1.000000000000000e + 00
m3 = 4.226497308103742e− 01 m̂3 = 4.226497308103742e− 01

Table 4.1: Set of coefficients for ROS3P method

γ = 1.0− 1
2

√
2

a21 = 1.0 c21 = 2.0 +
√

2
a31 = 1.0 c31 = 1.0

a32 = 0.0 c32 = 1.0−
√

2
α1 = 0.0
α2 = 1.0
α3 = 1.0

m1 = 1.0 m̂1 = 9
10
− 1

20

√
2

m2 = 1
2
− 1

2

√
2 m̂2 = 9

20
− 11

20

√
2

m3 = 1
2

m̂3 = 11
20

+ 1
20

√
2

Table 4.2: Set of coefficients for W-method

In the numerical integration of ordinary differential equations, automatic stepsize con-

trol is the most important means to make an integration method efficient. A standard rule
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for selecting the stepsize is, e.g., see Hairer et al. [44], Shampine [84]

τ̄ :== β

(

TOLt

ǫi+1

)1/p

τ i , τnew =















βmaxτ
i, τ̄ > βmaxτ

i,

βminτ
i, τ̄ < βminτ

i,

τ̄ , otherwise.

where TOLt is the tolerance to set for time step control, β is a safety factor chosen ≤ 1

and p is related to the order of the integration method. The factors βmin and βmax restrict

time step jumps. The time step is rejected if ǫi+1 > ζ · TOLt, and new attempt is made

with a smaller stepsize. A typical value of ζ is 1.2. The stepsize oscillates violently

and much computation time is spent by recalculating the rejected steps and changing the

stepsize. This is especially true in the case of stiff differential equations, see for more details

Gustafsson et el. [42], Hairer and Wanner [45]. We observed this also in our computations.

A more sophisticated stepsize control proposed by Gustaffson et al. [42], is suitable for

stiff differential equations. A new time step τnew, see Gustafsson et al. [42], Gustafsson [41]

is computed by

τ̄ := β
τ i

τ i−1

(

TOLt

ǫi+1

)

p2
p
(

ǫi

ǫi+1

)

p1
p

τ i, τnew =















βmaxτ
i, τ̄ > βmaxτ

i,

βminτ
i, τ̄ < βminτ

i,

τ̄ , otherwise.

(4.26)

The parameter β ∈]0, 1] is safety factor. In computations we have chosen the parameters

p1 = 1 and p2 = 1. The value for TOLt varied in the numerical computation, see Chapter 6.

It is well suited for our numerical calculations. More details can be found in Chapter 6.

4.5 Grid adaptivity and error estimators

In the numerical solution of reaction-diffusion problems of science or engineering, one

often encounters the difficulty that the overall accuracy of the numerical approximation

is deteriorated by local singularities such as, e.g., singularities arising from re-entrant

corners, interior or boundary layers, or sharp shock-like fronts. An obvious remedy is to

refine the mesh near the critical regions, i.e., to place more grid-points where the solution

is less regular. Now the question arises, how to identify those regions and how to obtain

a good balance between the refined and un-refined regions such that the overall accuracy

is optimal. Adaptive procedures try to automatically refine, coarsen, or relocate a mesh

and/or adjust the basis to achieve a solution having a specified accuracy in an optimal
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fashion. The computation typically begins with a trial solution generated on a coarse

mesh with a low order basis. The error of this solution is estimated, if it fails to satisfy the

specified accuracy, adjustments are made with the goal of obtaining the desired solution

with minimal effort. Common procedures studied for adaptive finite element methods are

• local refinement and/or coarsening of a mesh (h-refinement),

• relocating or moving a mesh (r-refinement),

• locally varying the polynomial degree of the basis (p-refinement).

A posteriori error estimates provide accuracy appraisals that are necessary to terminate

an adaptive procedure. For stationary problems the estimators can roughly be classified

as follows:

• Residual estimates: Estimate the error of the computed numerical solution by a suit-

able norm of its residual with respect to the strong form of the differential equation.

These estimators are due to Babus̆ka and Rheinboldt [3] in one dimension and also

see for higher dimensions Eriksson and Johnson [33], Verfürth [93] for more details.

• Solution of local problems: Solve locally discrete problems similar to, but simpler

than, the original problem and the use of appropriate norms of the solutions for the

error estimation, see Bank and Weiser [6], Verfürth [93] for more details.

• Hierarchial basis error estimates: Evaluate the residual of the computed finite element

solution with respect to another finite element space corresponding to higher order

elements or to a refined grid, see Bank and Smith [5], Bornemann et al. [22].

• Averaging methods: Use some local averaging or post processing technique for error

estimation, see Zienkiewicz-Zhu [98], Rodriguez [77].

In our simulations we considered mesh refinement and coarsening based on the Z2

error indicator of Zienkiewicz and Zhu [98]. The computation typically begins with a trial

solution generated on a coarse mesh and successively refine the mesh up to some levels

based on the Z2 error indicator. The full spatial and temporal discretization leads to an

approximate solution uh with uh(·, ti) ∈ Vh at the discrete time points ti, i = 0, . . . , M

where the time integration scheme is evaluated. Here we will recall the Z2 error indicator.
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4.5.1 The Z2 error indicator

We denote by Wh the space of all piecewise linear vector-fields on a triangulation Th and

set Vh := Wh ∩ C(Ω, R2). Define a mesh-dependent scalar product (., .) : Wh ×Wh −→ R

by

〈v, w〉h :=
∑

T∈T

|T |
3

{

3
∑

i=1

v|T (ai)w|T (ai)

}

. (4.27)

Here, |T | denotes the area of T . The quadrature formula

∫

T

v dx ∼ |T |
3

3
∑

i=1

v(ai)

is exact for all linear functions. We have

〈v, w〉h =

∫

Ω

v · w dx , (4.28)

if both arguments are elements of Wh and at least one of them is piecewise constant.

Denote by u and uh the unique solution of problems (4.13) and (4.15). Suppose that we

dispose of an easily computable approximation Guh of ∇uh such that

‖∇u−Guh‖L2(T ) ≤ α ‖∇u−∇uh‖L2(T ) , (4.29)

holds with a constant 0 ≤ α ≤ 1. We then have

1

1 + α
‖Guh −∇uh‖L2(T ) ≤ ‖∇u−∇uh‖L2(T )

≤ 1

1− α
‖Guh −∇uh‖L2(T ) , (4.30)

and we may therefore choose ‖Guh −∇uh‖L2(T ) as an error estimator. Since ∇uh is a

piecewise constant vector-field we may hope that the L2-projection onto the continuous,

piecewise linear vector-fields satisfies inequality (4.29). The computation of this projection,

however, is as expensive as the solution of problem Eq. (4.13). We therefore replace the

L2-scalar product by an approximation which leads to a more tractable auxiliary problem.

Let Guh ∈ Vh be the 〈., .〉h-projection of ∇uh onto Vh, i.e.

〈Guh,vh〉h = 〈∇uh,vh〉h ∀vh ∈ Vh. (4.31)

Eqs. (4.27) and (4.28) imply that, see Verfürth [93]

Guh(ai) =
∑

T⊂Da

|T |
|Da|
∇uh|T (ai) . (4.32)



4.5. GRID ADAPTIVITY AND ERROR ESTIMATORS 67

Thus, Guh may be computed by a local averaging of ∇uh. We finally set

ηZ,T := ‖Guh −∇uh‖L2(T ) , (4.33)

and

ηZ :=

{

∑

T∈Th

η2
Z,T

}1/2

. (4.34)

The Z2 indicator ηZ,T is an estimate for
∥

∥∇ut
h(·, ti)−∇ut

i−1(·, ti)
∥

∥

L2(T )
, see Verfürth [93].

Let λ(T ) ∈ N0 be the refinement level of triangle T ∈ Th, λmax ∈ N0 be a given maximum

refinement level, and φ1, . . . , φλmax
be given real numbers satisfying 0 ≤ φ1 . . . ≤ φλmax

.

With the choice of φ1, . . . , φλmax
one controls the structure of the grid. If we set φ1 = . . . =

φλmax
= 0 this leads to a uniform triangulation of level λmax. Here we used the scaled

indicator for any triangle T ∈ Th

φT := ηZ,T /
√

T . (4.35)

Red

Green

Copy

Figure 4.2: Red-Green-Copy refinement in 2D.

Then these quantities are used to judge the quality of the underlying discretization in

the element T . In a next step a set Tl of elements which have to be refined are selected.

Then a refinement rule can be applied to each element resulting in the generation of new

elements on the next finer level. Each refinement rule is either of type regular or red, irreg-

ular and copy, see Figure 4.2. Here the refinement algorithm is responsible for generating

an admissible mesh on each level, i.e. the intersection of two different elements is either

empty, a node or an edge. In our simulations we used only regular and copy refinement

rules. After choosing a Tl elements we are led to a robust and stable refinement strategy.
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For the initial grid and successive refinements we used the programm package UG [12].

The refinement rules have been extended to 3D by Stefan Lang in the context of UG, see

[59].

We start with a uniform initial triangulation of refinement level 0. Here the triangle T

is marked for

1. refinement if φT > φλ(T ) and λ(T ) < i for i = 0, . . . , λmax,

2. coarsening if φT < φλ(T ) and λ(T ) > i for i = 0, . . . , λmax,

where φT is calculated according to Eq. (4.35).

If we consider the system (3.1)-(3.4) of four reaction-diffusion equations with approxi-

mate solutions uh, we compute φT according to Eq. (4.35) for each component separately,

resulting in φT,1, φT,2, φT,3 and φT,4 for the four components respectively. Then we set

φT := (φT,1 + φT,2 + φT,3 + φT,4)/4 ,

and we mark the elements as indicated above. We refine the mesh locally until a minimum

of 4 grid points lie in the area of each channel in a cluster. This level we considered as the

coarse level for our simulation. Here we have considered different cases according to the

number of clusters. During the time step, the grid adaption process will be explained in

Chapter 6.

Test Case 1: In this case we considered one cluster with 20 channels and the do-

main size is [0,33000 nm] × [0,33000 nm]. For the initial triangulation a diameter of

700 nm for the triangle is considered. The adaption parameters are λmax = 6 and

φ1 = 1 · 10−5, φ2 = 2 · 10−5, φ3 = 4 · 10−5, φ4 = 8 · 10−5, φ5 = 16 · 10−5, φ6 = 32 · 10−5.

Using these adaption parameters, we apply Z2-indicator and refine the mesh. In first level

we identify the location of clusters. Then successively refine the mesh until each channel

gets the minimum 4 grid points to lie in the area of each channel in a cluster. Then we

stop the refine process and we fix the mesh for simulation. Initial mesh, first level mesh

and the final mesh for this test case can be seen in Figure 4.3.

Test Case 2: In this case we considered 16 clusters with distance of 10 µm and each

cluster consists of 20 channels. The domain size is [0,24000 nm] × [0,24000 nm]. For the
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Figure 4.3: Grid refinement at initial level, level 1 and level 8 for Test Case 1.

initial triangulation a diameter of 700 nm for the triangle is considered. The adaption

parameters are λmax = 6 and φ1 = 1 ·10−5, φ2 = 2 ·10−5, φ3 = 4 ·10−5, φ4 = 8 ·10−5, φ5 =

16 · 10−5, φ6 = 32 · 10−5. Here also we refine the mesh as explained in Test case 1. Initial

mesh, first level mesh and the final mesh for this test case can be seen in Figure 4.4.

Figure 4.4: Grid refinement at initial level, level 1 and level 6 for Test Case 2.

Test Case 3: In this case we considered 100 clusters with a distance of 4 µm and

each cluster consists of 20 channels. The domain size is [0,48000 nm] × [0,48000 nm]. For

the initial triangulation a diameter of 700 nm for the triangle is considered. The adaption

parameters are λmax = 6 and φ1 = 1 ·10−5, φ2 = 2 ·10−5, φ3 = 4 ·10−5, φ4 = 8 ·10−5, φ5 =

16 · 10−5, φ6 = 32 · 10−5. In this case also we proceed like in Test Case 1. Initial mesh,

first level mesh, the final mesh for this test case can be seen in Figure 4.5.

Test Case 4: In this case we considered 1 cluster consists of 1 open channel. The
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Figure 4.5: Grid refinement at initial level, level 1 and level 6 for Test Case 3.

Figure 4.6: Grid refinement at initial grid and level 1 for 3D case.

domain size is [0,8000 nm] × [0,8000 nm] × [0,5000 nm]. The adaption parameters are

λmax = 12 and φi = 9 · 10−6, i = 1, . . . , 12. In this case also we proceed like in Test Case

1. Initial mesh, first level mesh,can be seen in Figure 4.6 and the level 9 mesh and level 12

mesh can be seen in Figure 4.7.

4.6 Solution of algebraic equations

In this section we concentrate on the solution of the algebraic equations arising within each

time step of the fully implicit/fully coupled solution procedure. The nonlinear and linear

solvers to be described in this section utilize a multigrid mesh structure to accelerate the

solution process. This multigrid mesh structure is denoted by E0, . . . , EJ . It is constructed
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Figure 4.7: Grid refinement at level 9 and level 12 for 3D case.

from an initial mesh, which is generated by hand or an initial grid generator, by regular

subdivision of each element. Initial mesh and finer meshes are generated in our calculations

using the programming package UG (Unstructured Grid) [12]. For refinement rules in

sequential and parallel cases we refer to Bank et al. [4], Bastian [8] and Lang [59].

4.6.1 Inexact Newton method

Each time step of the fully implicit scheme leads to a large set of nonlinear algebraic

equations

G(uh)= 0 ,

to be solved. The vector uh contains the unknowns. Actually, those coefficients in uh corre-

sponding to Dirichlet boundary conditions are not unknown and the number of nonlinear

equations are reduced correspondingly, see for implementation issues in the programm

package UG [12]. The linearization of the Jacobian J of G at the linearization point uh,

an iteration point of the method, is the matrix with entries that can be computed either

analytically or by numerical differentiation

J(uh)ij :=
∂Gi

∂uhj

(uh) .

In algorithm superscript κ denotes the iteration number and let ‖.‖2 be the Euclidean

vector norm. Here is the inexact Newton algorithm, see Bastian [11], Braess [23].
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1: input ← G,uh, TOLnl

2: κ := 0;u0
h := uh;

3: while (‖G(uκ
h)‖2 ≥ TOLnl

∥

∥G(u0
h)
∥

∥

2
) do

4: choose TOLκ
lin ∈]0, 1];

5: find sκ such that

6: ‖G(uκ
h) + J(uκ

h)s
κ‖

2
≤ TOLκ

lin ‖G(uκ
h)‖2;

7: choose λκ ∈]0, 1];

8: uκ+1
h := uκ

h + λκsκ;

9: κ := κ + 1;

10: end while
Algorithm 1: The above algorithm solves the nonlinear system G(uh) = 0 to accuracy
TOLnl starting from the initial guess uh.

Since the Newton method converges only in a sufficiently close neighborhood of the

solution, a damping strategy is needed to achieve global convergence. Step (7) in Algo-

rithm 1 implements a simple line search strategy where the damping factor λκ is chosen as

the largest value in the set {1, 1
2
, 1

4
, . . .} such that

‖G(uκ
h + λκsκ)‖2 ≤

(

1− 1

4
λκ
)

‖G(uκ
h)‖2 . (4.36)

More details of this strategy one can find in to Braess [23].

4.6.2 Solution of linear equations

Next we treat the resolution of large and sparse systems of linear equations

Auh = b . (4.37)

This linear system arises from the linearization of the non linear system using Newton’s

method or in each stage of a linearly implicit time stepping method. For large number of

unknowns iterative methods are appropriate choice. Starting with an initial guess u0
h, iter-

ative methods for the resolution of system (4.37) produce a sequence of iterates u1
h,u

2
h, . . .

that converges to the exact solution uh. We used Krylov subspace methods in our numeri-

cal simulations. A good description of these algorithms is given in Barrett et al. [7]. The

methods can be accelerated substantially by using a preconditioner, which is a basic itera-

tive method or the multigrid method. For unsymmetric matrices A the minimization over
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the Krylov subspace cannot be done as cheaply as in the symmetric case. Several methods

are known, each sacrificing another property, see for more details Barrett et al. [7].

Here we give a short description about the standard multigrid algorithm. The multigrid

mesh structure denoted by

E0, E1, . . . , EL , (4.38)

is constructed from an intentionally coarse mesh E0 by regular subdivision of each element,

where L is the maximal level. The set of vertices belonging to mesh El is written as Vl.

The number of elements on level l is denoted by Kl and the number of vertices by Nl. The

discretized equations on each mesh level are then given by

Aluhl = bl , l = 0, . . . , L . (4.39)

The dimension of these systems is Nl. Furthermore we need grid transfer operators Rl,Pl

which are linear mappings of appropriate dimensions

Rl : R
Nl → R

Nl−1 , (Restriction operator)

Pl : R
Nl−1 → R

Nl . (Prolongation operator)

Here we give a basic multigrid algorithm, for the ideas behind this method see Hack-

busch [43], Bastian [9].

if (l = 0) then

uh0 = A−1
0 b0;

else

Apply ν1 iterations of S to Aluhl = bl;

dl = bl − Aluhl;

dl−1 = Rldl;

sl−1 = 0;

for (g = 1, . . . , γ) do

mgc(l − 1, sl−1,dl−1);

end for

sl = Plsl−1;

uhl = uhl + sl;

Apply ν2 iterations of S to Aluhl = bl;

end if
Algorithm 2: Standard multigrid method with finest level l applied to the current
iterate uhl.
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The parameters ν1, ν2 are the number of pre and post smoothing steps. Typically they

are in the range 1, 2, 3. The parameter γ controls the cycle form. In our simulations we

used only γ = 1, called a V-cycle.

The canonical way to define the prolongation operator (matrix) Pl is via finite element

interpolation

(Plsl−1)i =

Nl−1
∑

j=1

sl−1,jϕl−1,j(xi) , (4.40)

where ϕl−1,j is the finite element basis function corresponding to vertex j on level l − 1.

Since the support of the basis functions is local the matrix Pl is a very sparse rectangular

matrix. The standard choice for the restriction operator Rl is

Rl = PT
l ,

in the case of a finite element discretization. Good description can be found in Hackbusch

[43], Wesseling [94], Shaidurov [83], Briggs [24], Bastian [11].

4.7 Domain decomposition methods

Domain decomposition methods allow for the effective implementation of numerical tech-

niques for partial differential equations on parallel architectures. Any such method is

based on the assumption that the given computational domain, say Ω, is partitioned into

subdomains Ωi, i = 1, . . . ,p, that may or may not overlap. Next, the original problem

can be reformulated upon each subdomain Ωi yielding a family of subproblems of reduced

size which are to coupled each others through the values of the unknown solution at sub-

domain interfaces. The interface coupling can be relaxed at the expense of introducing

an iterative process among subdomains, yielding at each step independent sub problems

upon subdomains. This domain decomposition may enter at the continuous level, where

different physical models may be used in different regions. Or it may be introduced at the

discretization level, where it may be convenient to employ different approximation methods

in different regions. Or it may be introduced in the solution of the algebraic systems aris-

ing from the approximation of the partial differential equation. The parallel programming

model in UG [12] is based on the third aspect of the domain decomposition approach.

The parallelization of all components of the adaptive multigrid method is based on a

distribution of the data onto the set of processors. Here the multigrid covering the domain

is split up into non overlapping regions. Overlapping storage of objects on processor
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boundaries is used for an efficient implementation, see for more details Bastian [10, 9] and

Bastian et al. [12]. Here the appropriate data partitioning is determined, this is called load

balancing, by the help of the CHACO package [50]. The load migration, which is able to

move the multigrid objects to the processors, is realized based on the parallel programming

mode DDD (Dynamic Distributed Data), see for more details Birken and Bastian [20].

In our numerical simulations we used Recursive Coordinate Bisection (RCB) and Re-

cursive Inertial Bisection (RIB) algorithms for domain decomposition. The RCB is a divide

and conquer scheme. In each step of RCB the dual graph vertices are sorted according to

their coordinate values. Then the vertices are bisected into two equal sets using the mean

value. The sets are then further divided by the recursive application of the same splitting

algorithm until the number of sets equals the number of processors. RIB is similar to RCB

in that it divides the domain based on the location of the objects being partitioned by use

of cutting planes. In RIB, the dual graph is first divided into two equal sets by a cutting

plane orthogonal to the longest direction of the domain so that half the work load is in

each of the sets. Again the sets are then further divided by recursive application of the

same splitting algorithm until the number of sets equals the number of processors. This

algorithm was first devised to cut into a number of sets which is a power of two, see for

more details in CHACO users guide [50].

The most important part is the parallel grid manager. In the framework of UG [12] this

is complemented by parallel linear algebra which allows to represent numerical algorithms

easily on the distributed data with arbitrary load balancing of the grid on every level. A

load balancing corresponds to a non overlapping domain decomposition

Ω̄ = Ω̄1
l ∪ . . . ∪ Ω̄p

l ,

which may be independent on every grid level l. The overlapping decomposition

Pl = P1
l ∪ · · · ∪ Pp

l ⊂ R
d ,

of the interpolation points on every grid level l such that P i
l ⊂ Pl ∩ Ω̄i

l.

For a vector we distinguish between two different represented modes on the overlapping

set of nodal points:
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consistent The solution vector ul ∈ R
Nl and the cor-

rection cl ∈ R
Nl are represented consistently,

i.e. ul[P ] = ui
l[P ] for P ∈ Pl.

Inconsistent the vector yl ∈ R
Nl represents inconsistently,

i.e. yi
l =

∑

P∈Pl
yi

l [P ].

A matrix will be denoted consistent, if it transforms every consistent vector into a

consistent vector. Every operation has to be checked for consistency. For more detail ex-

planation on the parallel linear algebra one can refer to Wieners [95], Bastian [11]. Here we

will give short overview of parallel iteration step, here we denote the matrix Al ∈ R
Nl×Nl,

the right hand side vector bl ∈ R
Nl and the defect dl ∈ R

Nl.

compute the defect di
l = bi

l −Ai
lu

i
l (without communication)

compute the local correction si
l = Si

ld
i
l (without communication)

make the correction consistent ci
l[P ] =

∑

P∈Pl
si
l[P ] (with communication)

add the correction ui
l := ui

l + ci
l (without communication)

For the formulation and efficient implementation of multigrid methods on locally refined

grids refer to Bastian [9, 10, 8], Bastian et al. [12] and Lang et al. [60].



Chapter 5

Numerical Results of Heat and Mass
Transfer in Fluidized Beds

In this chapter we present the simulation results for heat and mass transfer in fluidized beds

which is explained in Chapter 2. In the first section we give the simulation results with a

uniform liquid distribution. Here we study the numerical behavior of heat and mass transfer

with different liquid film thicknesses, influence of the ratio of heat transfer coefficient,

influence of the air inlet temperature, influence of the air mass flow rate, influence of the

liquid mass flow rate and influence of the diameter of particles. In next subsection we

present the two dimensional numerical results with a number of nozzle net depositions.

At the end we present the numerically convergent results with semi implicit and implicit

method as well as using different linear solvers. In the second section we present the

numerical results in three space dimensions and comparison to experimental results. In

the final section we give the numerical results based on domain decomposition methods.

5.1 Numerical results in 1D and 2D

5.1.1 One-dimensional simulation results with uniform liquid dis-

tribution

For the unsteady one-dimensional problem, computational results of the balance quantities

air humidity, air temperature, degree of wetting, liquid film temperature and particle

temperature, assuming uniform liquid distribution, are presented. The sprayed liquid is

distributed over the domain, with a spraying rate ṁL = 5.9 kg/h. Here we consider that

the sprayed liquid to be water. For simulations, we assume that the wall temperature

is constant. All parameters used for the simulation are listed in Table A.1. We can

77
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observe from Figure 5.1 that the air humidity increases almost linearly in the axial direction

with the distance from the gas distributor. Thereby the steady-state is reached after 200

seconds. When the liquid distribution starts over the domain, the air humidity increases

suddenly at the outlet, and then increases slowly until it reaches the stationary solution.

Air temperature decreases from the gas distributor plate to the top of the fluidized bed,

see Figure 5.1.
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Figure 5.1: Simulations of air humidity and air temperature for different time levels de-
pending on the bed height.

The air temperature is at its maximum at the bottom surface because of the inflow of the

air. After reaching the stationary solution, the simulated outlet air temperature coincides

with the outlet air temperature determined from the total balance, see Eq. (2.16). The

average values are determined using the L1 norm, which is defined as follows,

aavg = (|a1|+ . . . + |an|)/length(a).

The particle temperature decreases slower than the air temperature, because of the particle

heat capacity, and during stationary operation it lies somewhat under the air temperature.

The particle temperature is locus dependent, due to the high air-particle and air-liquid film

heat transfers. The difference between the maximum and minimum values of the particle

temperature is very small, see Figure 5.4. At the initial time t = 0, the average degree

of wetting is 10−8. When the simulation starts, it increases sharply at the outlet and

thereafter increases steadily towards the final value, which we can observe in Figure 5.3.

The instantaneous mass transfer conditions during the start-up causes also an increase

of the degree of wetting. Despite the constant evaporation flow, this temporal change

is triggered by the change of the liquid film temperature, which at first jumps from the
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Figure 5.2: Simulations of outlet and average values of air humidity and air temperature.
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Figure 5.3: Simulations of outlet and average values of degree of wetting and liquid film
temperature.
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Figure 5.4: Simulations of outlet and average values of particle temperature.
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temperature of the sprayed liquid (20 ◦C) up to 35 ◦C and then moves toward the steady

state final value. Note that the liquid film temperature is non-monotone due to the fact

that an equilibrium is reached between heat supplied by the gas and heat loss due to

evaporation which sets in later. Initially the heat flow from the gas and the particles

dominates the liquid film enthalpy. Thus the liquid film temperature increases rapidly.

Thereby the evaporation becomes more pronounced. But initially it is not strong enough

to prevent overshooting of the equilibrium temperature of the liquid film.

Influence of the liquid film thickness

The surface of the solid particles, the mass transfer surface between the liquid on the

particles and the air as well as the density of the liquid are time-independent. Thus,

according to Eq. (2.8) only the liquid film thickness F onto the particles has an influence

on the maximal liquid mass per volume element. In Figures 5.5, 5.6, and 5.7 the temporal

progressions of the balance equations are shown for the first 200 seconds under variation

of the liquid film thickness. We can observe from the figures that for different liquid film

thicknesses all the balance quantities reach the same steady-state, but differ in transition

time. This transition time for the water evaporation is shorter at smaller liquid film

thicknesses, because the mass of water is lower. From the physical point of view, the

actual liquid film thickness depends on the surface tension between the solid and the

injected liquid.

Influence of the ratio of heat transfer coefficient

The stationary solution of the balance equations is computed under the assumption that

the gas to air mass-transfer coefficient is depending only on the saturation loading and/or

the saturation vapor pressure at the gas-liquid phase boundary. To compute this quantity,

the temperature at the phase boundary is required. This corresponds to a uniform liquid

film temperature according to our model. This temperature is the result of a liquid energy

balance. If the particle temperature and film temperature are uniform, a jump in temper-

ature will occur at the contact area between particle and film, though this is physically

impossible. Nevertheless, in order to utilize this model the thermal conduction between

particle and film is approximated by the heat transfer coefficient between particle and film.

The ratio of the heat transfer coefficient f between air and the particles as well as

the liquid film is defined in Eq. (2.2). For different liquid film thicknesses F and different

heat transfer coefficients, the outlet values of air humidity, air temperature, degree of
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Figure 5.5: Simulation of air humidity and air temperature for different liquid film thick-
nesses at the outlet.
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Figure 5.6: Simulation of degree of wetting and liquid film temperature for different liquid
film thicknesses at the outlet.

0 20 40 60 80 100 120 140 160 180 200
72

73

74

75

76

77

78

79

80

81

time [s]

pa
rti

cl
e 

te
m

pe
ra

tu
re

 [°
C

]

F = 1 µm
F = 10 µm
F = 100 µm

Figure 5.7: Simulation of particle temperature for different liquid film thicknesses at the
outlet.
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wetting, liquid film temperature and particle temperature are shown in Figures 5.8, 5.9,

and 5.10. We can observe from the results that at liquid film thickness F = 1 µm the

outlet air humidity is nearly identical for different heat transfer coefficients, because f has

no effect on the evaporation flow. Analogously at the outlet, air temperature and particle

temperature are also identical for different heat transfer coefficients. In the case of increase

of f at the liquid film thickness F = 100 µm, a faster decrease of the outlet air temperature

occurred towards the final value, and the particle temperature also decreases faster, which

is shown in Figures 5.11, and 5.13. If we observe the degree of wetting at liquid film

thickness F = 1 µm and F = 100 µm, increase in the heat transfer coefficient results

in a decreases of the degree of wetting at the outlet values, see in Figures 5.9 and 5.12.

In the case of a better heat transfer between the particles and the liquid film, a higher

liquid film temperature occurs with a smaller degree of wetting when the evaporation flow

is constant independently of the thickness of the liquid film. In other words, if the liquid

film temperature increases the saturation humidity of the gas and thus the driving force

for the liquid evaporation increases.

The calculated size of the wetted surface depends on the calculation of the liquid film

temperature and thus on the size of the heat transfer between particle and liquid film de-

scribed by the factor f . The process can be described with the help of the Mollier diagram.

An increase in f leads to a higher liquid film temperature. A slight increase of this tem-

perature is due to the small upward gradient of the saturation line with a significant larger

saturation loading of the gas in direct proximity of the phase boundary. This increment

of the saturation loading entails an increased driving force for the liquid evaporation. As

more liquid is evaporated the mass transfer surface will be smaller. Since the effects of the

driving force and the mass transfer surface are moving in opposite directions, the evapo-

rated liquid mass flow remains almost constant. Thus, an incorrect balance of the liquid

enthalpy and the liquid mass in the bed will have no measurable effect on temperature and

humidity. Evaluation of the quality of the calculated mass transfer surface can be made

only by evaluating the conversion of a gas component deviating from the water vapor.

The kinetics for the description of this conversion should be limited only by the particle

surface and the gas mass transfer. Sulfur dioxide absorption in the liquid-sprayed fluidized

bed may possibly be estimated by the size of the wetted surface controls, see [53]. An

investigation of the model on the basis of experimental data shows that for a certain bed

material, e.g. glass spheres of a certain particle diameter, an f value exists which describes

all experiments. The experiments with small values for f are easily reproducible - a fact
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Figure 5.8: Simulations of the outlet values of air humidity and air temperature for different
heat transfer ratios at liquid film thickness F = 1 µm.
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Figure 5.9: Simulations of the outlet values of degree of wetting and liquid film temperature
for different heat transfer ratios at liquid film thickness F = 1 µm.
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Figure 5.10: Simulations of the outlet values of particle temperature for different heat
transfer ratios at liquid film thickness F = 1 µm.
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Figure 5.11: Simulation of the outlet values of air humidity and air temperature for different
heat transfer ratios at liquid film thickness F = 100 µm.
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Figure 5.12: Simulation of the outlet values of degree of wetting and liquid film temperature
for different heat transfer ratios at liquid film thickness F = 100 µm.
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Figure 5.13: Simulation of the outlet values of particle temperature for different heat
transfer ratios at liquid film thickness F = 100 µm.
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which can be proven with the help of a high contact resistance.

Influence of the air inlet temperature

For different air inlet temperatures, all balance quantities are depicted in Figures 5.14,

5.15, and 5.16. We can observe from the results that a higher air inlet temperature results

in a higher air temperature at the outlet. This leads to a more intense heating up of the

liquid film. With the increase of the liquid film temperature, the saturation humidity of

the air on the boundary surface increases and consequently increases the term (Ysat−YA).

Influence of the air mass flow rate

The effect of different air mass flow rates on the time-dependent balance quantities are

shown in Figures 5.17, 5.18, and 5.19. We can observe from Figure 5.17 that the air

temperature is different for different air mass flow rates at the outlet, according to the

total balance equation, which is shown in Eq. (2.16). In the case of a smaller dry air

mass flow, the water balance of the air around the fluidized bed yields a higher outlet air

humidity, and thus there is a big difference between the air inlet and outlet temperatures.

The steady final values of the liquid film temperature deviate slightly from one another.

The saturation humidity Ysat occurring as a function of the liquid film temperature is the

same in all calculations.

Influence of the liquid mass flow rate

An increase in the liquid injection rate results in a larger degree of wetting. If the effective

wetted surface becomes larger, the air temperature at the outlet, the particle temperature

as well as the liquid film temperature decrease as a result of the enhanced evaporation

flow. This is shown in Figures 5.20, 5.21, and 5.22. The evaporation flow increases, which

leads to a larger steady final value of air humidity at the outlet of the fluidized bed, see

Figure 5.20.

Influence of the diameter of particles

An increase in the diameter of the bed particles results in a larger Re-number at constant

gas mass flow and bed mass. The larger Re-number leads to an increased Sh-number and

a decreased mass transfer coefficient gas-particle β = DAL(θA)Sh(θA)
dp

. Reduced Re-, Ar-

and Sh-numbers do not provide a large gas mass transfer coefficient, as this will decrease
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Figure 5.14: Simulation of air humidity and air temperature for different inlet air temper-
atures at the outlet.
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Figure 5.15: Simulation of degree of wetting and liquid film thickness for different inlet air
temperatures at the outlet.
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Figure 5.16: Simulation of particle temperature for different inlet air temperatures at the
outlet.
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ṁA = 0.204kg/s
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Figure 5.17: Simulations of air humidity and air temperature for different air mass flow
rates at the outlet.
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Figure 5.18: Simulations of degree of wetting and liquid film temperature for different air
mass flow rates at the outlet.
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Figure 5.19: Simulations of particle temperature for different air mass flow rates at the
outlet.
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Figure 5.20: Simulations of air humidity and air temperature for different liquid mass flow
rates at the outlet.
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Figure 5.21: Simulations of degree of wetting and liquid film temperature for different
liquid mass flow rates at the outlet.
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Figure 5.22: Simulations of particle temperature for different liquid mass flow rates at the
outlet.
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due to diameter growth and thus lead to larger Sh-numbers. On the other hand a small

particle diameter corresponds to an increase of the mass transfer surface, which leads to a

higher degree of wetting. The simulated balance quantities at different particle diameters

are illustrated in Figures 5.23, 5.24, and 5.25. We can observe from the results, that the air

humidity reaches the steady final value faster for smaller particles. The final temperatures

of air, particles and liquid film are higher.

5.1.2 Two-dimensional simulation results with non-uniform liq-

uid distribution

In this section we present the time dependent numerical solution of the air humidity, air

temperature, degree of wetting, liquid film temperature and particle temperature, taking

into account a liquid spray nozzle injection which was described in Chapter 2.3. And

we give the numerical solution at the particular time t = 200 s. We describe non-ideal

particle mixing and thus non-uniform liquid distribution by assuming axial and radial

particle dispersion coefficients, see Chapter 2.

We considered computational domain Ω = [0, 0] × [0.4, 0.2], i.e. the diameter of the

apparatus is 0.4 m and the height of the fluidized bed is 0.2 m, as shown in Figure 5.28.

We assume that the spraying has occurred at the top surface of the apparatus and the

position of the nozzle is fixed at (0.2, 0.2) and with a spraying angle of 60◦. For simulations

we used the initial parameters as listed in Table A.1, whereby a constant wall temperature

is assumed. For the simulations the deposition efficiency is kept constant with φdep = 20

%. According to Eq. (2.23), the representation of the mass flow of the liquid in Figure 5.28

shows a complete deposition of the liquid droplets onto the particles after some centimeters

near the nozzle region. This means that the evaporation also takes place primarily in the

nozzle region.

We observed from the simulation results that the air humidity increases almost linearly

in the axial direction with the distance from the distributed plate. When spraying of

the liquid starts, the air humidity increases suddenly, later it increases slowly until it

reaches the stationary solution. After an initial time we can see high air humidity near

the nozzle. As time goes on it distributes uniformly at the top surface, see left hand side

Figure 5.26. Air temperature decreases from the distributor plate to the top. After reaching

the stationary solution, it coincides with outlet air temperature determined from the total

balance, see right hand side Figure 5.26. The particle temperature decreases slower than

the air temperature because of the particle heat capacity. During stationary operation it
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Figure 5.23: Simulations of air humidity and air temperature for different particle diameters
at the outlet.
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particle diameters at the outlet.
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Figure 5.26: Simulation of air humidity and air temperature at time t = 200s.
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Figure 5.27: Simulation of degree of wetting and liquid film temperature at time t = 200s.
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Figure 5.28: Simulation of particle temperature at time t = 200s and mass flow of the
liquid from spray nozzle with spraying rate ṁL = 6kg/h.
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Figure 5.29: Simulation of air humidity at time t = 0.01s and t = 0.1s.
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Figure 5.30: Simulation of air humidity at time t = 1s and t = 10s.

lies somewhat under the air temperature. The particle temperature is practically locus

dependent due to the high air-particle and air-liquid film heat transfers, see left hand side

Figure 5.28. The wetting efficiency is high near the nozzle and it decreases from the top

to bottom. At initial time t = 0 the average of degree of wetting is 10−8. When the

simulation starts it increases sharply to 0.30% near the nozzle and thereafter increases

steadily towards the final value 0.35%. This is due to the fact that the temperature of the

liquid is 20 ◦C and so the liquid film temperature sinks where energy is absorbed from the

particles and increases where the energy is emitted, see left hand side Figure 5.27. Here

we did not show the patterns of the parameters locally in 2D computations because their

behavior is similar to the 1D pattern. Here we cannot show the time dependent behavior

of all the parameters, we show only the behavior of air humidity at different time levels,

see Figures 5.29, 5.30.
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Influence of the position of liquid injection

To predict the influence of the local position of the liquid injection, we carried out simula-

tions with two nozzles and four nozzles from top to bottom.

The liquid spraying was evenly distributed through two nozzles, with ṁL = 6 kg/h in

both cases and other parameters are listed in Table A.1. Two nozzles were arranged, each

with a spraying angle 60◦ and the nozzle positions are:

* nozzle 1 is fixed at (x, y) = (0.15, 0.2), spraying direction from top to bottom,

* nozzle 2 is fixed at (x, y) = (0.25, 0.2), spraying direction from top to bottom.

Figures 5.31, 5.32, and 5.33 represent the simulation results of the balance variable

distributions YA, θA, φ, θL, θP and Ysat at time t = 200 s. The mass flow of the liquid

distribution per volume element is defined in Eq. (2.23). Due to the higher total liquid

injection rate in comparison to the previous case with only one nozzle, the air humidity

in the fluidized bed as well as the saturation humidity is higher and all temperatures are

lower. We can observe from the Eq. (2.9) that when the liquid spraying is started from the

nozzles the degree of wetting in increased suddenly. We can observe from the surface plots

that in case of the degree of wetting, more liquid is deposited near the nozzles and the

distribution is decreases with further distance from the nozzles. When the degree of wet-

ting increases, the evaporation flow term, βρAAP φ(Ysat− YA) increases, so from Eq. (2.5),

the air humidity distribution increases near the nozzle. Air temperature and particle tem-

perature decrease near the nozzle. Again, we can see a constant air temperature in axial

direction in the fluidized bed and the air temperature decreases strongly with the distance

from the gas distributor plate.

Next, the liquid spraying was evenly distributed through four nozzles, with ṁL = 6kg/h

in all cases and other parameters as listed in Table A.1. Four nozzles were arranged, each

with a spraying angle of 60◦. The nozzle positions are:

* nozzle 1 is fixed at (x, y) = (0.08, 0.2), spraying direction from top to bottom,

* nozzle 2 is fixed at (x, y) = (0.16, 0.2), spraying direction from top to bottom.

* nozzle 3 is fixed at (x, y) = (0.24, 0.2), spraying direction from top to bottom,

* nozzle 4 is fixed at (x, y) = (0.32, 60.2), spraying direction from top to bottom.
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Figure 5.31: Simulation of air humidity and air temperature at time t = 200s with two
sprayed nozzles.
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Figure 5.32: Simulation of degree of wetting and liquid film temperature at time t = 200s
with two sprayed nozzles.
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Figure 5.33: Simulation of particle temperature and saturation air humidity at time t =
200s with two sprayed nozzles.
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Figures 5.34, 5.35, and 5.36 represent the simulation results of the balance variable dis-

tributions YA, θA, φ, θL, θP and Ysat at time t = 400s. We can observe that the in-

creased injection rate results in higher humidities close to the nozzles and the air humidity

distribution versus the bed height is more digressive than linear. The particle tempera-

ture distribution reaches almost the point of saturation, characterized by low differences

between liquid film temperature, which are related to the point of saturation, and the

particle temperature. The increase of the degree of wetting is more intensive compared

to the injection with two nozzles, which may lead in practice to agglomeration effects, see

Nagaiah et al. [71] for some more results.

Numerical tests

The left hand side of Figure 5.37 shows the comparison between the implicit and semi-

implicit schemes. In the implicit case we used a Newton solver describer in Subsection 4.6.1

for linearizing the algebraic nonlinear equations arising from the time discretization. For

solving the linear system we used the BiCGSTAB method [92] with preconditioner. Here

we used the multigrid solver [43] as preconditioner. In the multigrid solver, the BiCGSTAB

method is used as a base solver and the ILU method is used for the pre and post smoothing

steps. In the case of the semi implicit method instead of taking the Newton solver for

linearizing the nonlinear system, we just use the old solution in the Jacobian matrix, then

we get a linear system. For solving the linear system we used the BiCGSTAB method

with the multigrid solver as preconditioner, as explained above. Here we obtained faster

convergence with the implicit Euler scheme compared to the semi implicit scheme, see

Figure 5.37. Here the L2-norm of the air humidity is plotted up to a simulation time

of 20 seconds only for a better view of the transition period. It is observed that both

solutions converge almost after 100 seconds of simulation time. The main difference is that

the implicit method converges very fast but takes more CPU time compared to the semi

implicit method. This is because for linearizing the nonlinear system the Newton method

takes some extra CPU time. The right hand side of Figure 5.37 shows the L2-norm of the

air humidity for the BiCGSTAB solver, the BiCGSTAB solver with ILU preconditioner

and the BiCGSTAB solver with multigrid solver as preconditioner as explained as above.

These three curves are the same in terms of the convergence but only differ in computational

time. For this problem the CPU times are 3h 05m 56s, 1h 45m 43s, 1h 56m 53s respectively

needed to obtain them, also see Nagaiah et al. [70] for some numerical results.

In Table 5.1 we explain the experimental order of convergence of the air humidity. The
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Figure 5.34: Simulation of air humidity and air temperature at air temperature at time
t = 200s with four sprayed nozzles.
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Figure 5.35: Simulation of degree of wetting and liquid film temperature at time t = 200s
with four sprayed nozzles.
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Figure 5.36: Simulation of particle temperature and saturation of air humidity at time
t = 200s with four sprayed nozzles.
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Figure 5.37: Simulation of air humidity and air temperature at air temperature at time
t = 200s with four sprayed nozzles

mesh size
∥

∥uh/2 − uh

∥

∥

L2
EOC

∥

∥uh/2 − uh

∥

∥

L∞
EOC

17× 17 - - - -
33× 33 0.0276871146 0.8854188211 0.02468235 0.9521690121
65× 65 0.0511464296 0.9764371353 0.04775490 0.9781248865

129× 129 0.1006357271 - 0.09407254 -

Table 5.1: Experimental order of convergence of the air humidity at the stationary solution.

first column indicates the mesh size and the second column shows the L2 error of the sizes h

and h/2. The last column represents the experimental order of convergence (EOC), which

is defined with respect to the Lp-norm as

EOC = ln

[
∥

∥uh/2 − uh

∥

∥

Lp
∥

∥uh/4 − uh/2

∥

∥

Lp

]

/ln(2), for (1 ≤ p ≤ ∞). (5.1)

We can observe that the EOC is achieved successfully almost 1 in the case of bilinear finite

elements. This result demonstrate that the method has convergence order that agree with

theoretical considerations.

5.2 Numerical results in 3D

The three space dimensional transient numerical simulations of balance equations are pre-

sented in this section. The fluidized bed zone is represented by a cylinder in the numerical

simulation. The initial mesh and successive uniform mesh refinements are done using the

programm package UG (Unstructured Grid), see [12]. The hexahedron element, which has
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Figure 5.38: Initial mesh and uniform refinement mesh at level 4

8 nodes and 6 surfaces, is used in the mesh generation. The initial mesh (level 0) consists

of 8 hexahedron elements, and the fine mesh (level 4) consists of 32,768 elements, that are

obtained by using uniform mesh refinement, see Figures 5.38.

The standard Galerkin method is used for space discretization and implicit Euler

method is considered for time discretization for this problem. Here, the semi implicit

approach is considered in solving the nonlinear algebraic equations, which is explained in

Section 4.6. The multigrid method is used for solving the algebraic equations, which are

arising after time discretization. The BiCGSTAB method is considered as base solver and

ILU method is used as pre- and post- conditioner in multigrid solver.

The simulation results of the balance quantities air humidity, air temperature, degree

of wetting, liquid film temperature, particle temperature and saturated air humidity are

presented. In the numerical simulations, the sprayed liquid is considered as water. To

compare our numerical results with experiments, we have considered 2 sets of experimental

data for the numerical simulations. The first set of data taken from the Ph. D thesis of

Heinrich [47] and second set of data taken from the Ph. D thesis of Henneberg [51]

5.2.1 Experiment-1

The simulation parameters are shown in Table A.2 for the first test case. In this case one

spray nozzle is considered in the simulation, which is fixed at (0.2, 0.2, 0.2) on a cylindrical

domain with spray angle θ = 45◦. The model equations and our programm allow the
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Figure 5.39: Simulation of the air humidity and air temperature for different time steps
depending on the distance from the distributor plate to the nozzle center at the top of the
fluidized bed.

flexibility to arrange more than one nozzle positions arbitrarily. In the numerical simulation

the Eq. (2.29) is used to calculate the spatial profile of the spray nozzle. Here, the bed

mass mP = 20 kg and mass flow of the nozzle ṁL = 13.79 kg/h are considered. Initial and

boundary values, which are used in simulations, are shown in Table A.2.

In left hand side of Figure 5.39, observe that the air humidity increases almost linearly

in the axial direction with the distance from the distributor plate to the nozzle mouth.

When liquid is sprayed onto solid particles, the degree of wetting starts increase. Then,

the evaporation term βAφ(Ysat − YA) also increases. So the distribution of air humidity

increases in axial direction due to the increase of evaporation term. And also observe that

the air humidity distribution increases rapidly near the nozzle region in the initial period,

for example until time 57 s. The reason is that, in this area the liquid on the particle

surface evaporates through its contact with air. Therefore, the air humidity is larger in

this region. This region can be identified as the mass transfer region. Then the air humidity

increases slowly until it reaches the stationary solution. At initial time the air humidity

is 0.008 kg/kg and it reaches to 0.0276 kg/kg at the steady state solution, seen clearly in

the spatial profile of the air humidity in the top Figure 5.40. Here, the solution is plotted

for the stationary solution, at time t = 600 s.

The air temperature decreases strongly in the vicinity of the nozzle region, seen clearly

in the right hand side of Figure 5.39. This is mainly due to the absorbed energy by

colder particles in this region. It is observed that it takes around 600 s to reach the

stationary solution. The time dependent spatial profile of the air temperature is depicted
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Figure 5.40: Steady state spatial profile of the simulation results of water sprayed fluidized
bed at time t = 600 s with parameters as shown in Table A.2, top: air humidity, middle:
air temperature, bottom: degree of wetting.
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Figure 5.41: Steady state spatial profile of the simulation results of water sprayed fluidized
bed at time t = 600 s with parameters as shown in Table A.2, top: liquid film temperature,
bottom: particle temperature.

in Figure 5.42 at different time steps. The spatial profile of the air temperature at steady

state is shown in the middle of Figure 5.40. These results are compared with experimental

results of Heinrich [47]. The coming paragraphs demonstrate the comparison between

numerical and experimental results. Here, we have observed that the numerical results are

in a good qualitatively agreement with the experimental results.

The particle temperature decreases slower than the air temperature due to the particle

heat capacity. At the stationary state, the particle temperature lies slightly under the air

temperature. It is practically locus independent due to the high air-particle and air-liquid
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film heat transfers. The degree of wetting is high near the nozzle and it decreases from the

top to bottom. At initial time t = 0 s the value of degree of wetting is set to 10−8 in our

numerical simulations. When the simulation starts it increases sharply near the nozzle and

thereafter increases steadily towards the steady state solution, see clearly the steady state

solution at t = 600 s in bottom of Figure 5.40. This is due to the fact that the temperature

of the liquid is 20 ◦C and so the liquid film temperature sinks where energy is absorbed

from the particles and increases where the energy is emitted. The difference between the

maximum and minimum values of particle temperature is small. The steady state solution

of the liquid film temperature and particle temperature are depicted in Figure 5.41. Here

we do not present the pattern of the parameters locally in the 3D computations because

their behavior is similar to the 1D pattern.

Comparison with experimental results

The numerical results are validated with the experimental results. The experimental re-

sults are measured in a water sprayed fluidized bed plant. For more details regarding

experimental set up, we refer to Heinrich [47]. For the comparison, the experimental result

of a three dimensional distribution of air temperature over the bed height is depicted in

Figure 5.43. Here, the experiments were carried out with considering the direct evapo-

ration in the spray liquid. The direct evaporation means that some liquid evaporates in

the sprayed liquid, which is sprayed through the nozzle, due to hot air. One can clearly

see the temperature is lower in the spray nozzle zone as compared to other regions. In

experimental results, the initial temperature is 80◦C and at the steady state the minimum

value reaches 25◦C. The corresponding numerical results can be seen in the middle Fig-

ure 5.40. In numerical results, the initial temperature is 80◦C and at the steady state the

minimum value reaches 25.1◦C. The numerical results are simulated without considering

direct evaporation. Despite this it can be observed that the numerical results are in good

agreement with the experimental results qualitatively as described.

5.2.2 Experiment-2

In this subsection, the numerical results are presented using the second set of parameters,

which are shown in Table A.3. Here, the domain (1.5m, 1.5m, 0.6m) is considered in

numerical simulations. This cross section area is 14 times bigger than the previous plant

considered in our first simulation. In this case also one spray nozzle is considered, which is

fixed at (0.75, 0.75, 0.6) on the cylindrical domain with spray angle θ = 40◦. Here, the bed
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Figure 5.42: Steady state spatial profile of the simulation results of air temperature dis-
tribution of water sprayed fluidized bed with parameters as shown in Table A.2 at time
t = 1 s, t = 10 s t = 100 s.
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Figure 5.43: Experimental result of air temperature distribution of water sprayed fluidized
bed with parameters as shown in Table A.2 (from Heinrich [47]).

mass mp = 370 kg and mass flow of the nozzle ṁL = 90 kg/h are considered. The initial

and boundary values are shown in Table A.3. This set of data is taken from the Ph. D

thesis of Henneberg [51].

In this case we also observed the same behavior of balance variables in the simulation

as explained for previous case. At the initial time the air humidity is 0.005 kg/kg. At

the steady state solution it reaches 0.0225 kg/kg. In this simulation the air temperature

decreases from 60◦C to 26.4◦C at the steady state solution, which can be seen in Figure 5.44.

Also observed that, the same behavior for the degree of wetting, liquid film thickness and

particle temperature as explained in the previous simulation result, see Figure 5.45.

Comparison with experimental results

The numerical results mentioned above are validated with experimental results. The ex-

perimental results are measured in a water sprayed fluidized bed plant. For more details

regarding the experimental set up, we refer to Henneberg [51]. For the comparison, the ex-

perimental result of three dimensional distribution of air temperature over the bed height

is depicted in Figure 5.46. Here, the experiments were carried out with consideration of the

direct evaporation in the spray liquid. One can clearly see that, the temperature is lower
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Figure 5.44: Simulation result of water sprayed fluidized bed at time t = 600 s with
parameters as shown in Table A.3, top: air humidity, middle: air temperature, bottom:
degree of wetting.
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Figure 5.45: Steady state spatial profile of the simulation results of water sprayed fluidized
bed at time t = 600 s with parameters as shown in Table A.3, top:liquid film temperature,
bottom particle temperature.
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Figure 5.46: Experimental result of air temperature distribution of water sprayed fluidized
bed with parameters as shown in Table A.3(from Henneberg [51]).

in the spray nozzle zone as compared to other regions. In the experimental results, the

initial temperature is 60◦C and at the steady state the minimum value reaches to 20◦C.

In numerical results, the initial temperature is 60◦C and at the steady state the mini-

mum value reaches to 26.4◦C. The numerical results are simulated without considering

direct evaporation. Despite this it can be observed that the numerical results are in good

agreement with the experimental results qualitatively as described. The corresponding

numerical results can be seen in the middle of Figure 5.40.

5.3 Parallel numerical results

In this section we presents the numerical results based on the domain decomposition meth-

ods, which are explained in Section 4.7. If we want to consider many nozzle net depositions

then this computation involve thousands of unknowns in 3 dimensions. If we include many

unknowns in 3D, in sequential computations it takes several days to obtain the results. To

reduce this overload on sequential machines we prefer to use parallel architectures to obtain

the faster results. In this section in all simulations we considered the spatial discretization

based on the standard Galerkin method and time discretization by the backward Euler
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method. For solving the system we used the semi implicit method. In this case we used

the BiCGSTAB method as linear solver with the multigrid method as preconditioner. For

the pre and post smoothing steps the ILU method with a damping factor ω = 0.95 is

used and the BiCGSTAB method is used as the base solver in the multigrid solver. These

calculations were carried out on a HP-UX B.11.11 U 9000/800 machine with 2GB RAM

for each processor that is connected to a 64 node cluster with 3GFOLPS processor speed

at the Institute for Analysis and Numerics, Magdeburg.

In the parallel numerical simulation the most important part is the parallel grid manager

and parallel implementation of the linear solver. For the domain decomposition we used

the graph partitioning package CHACO [50]. Load balancing has been achieved as follows:

the meshes of level-0 and level-1 have been kept on one processor and the mesh on level-

2 as well as higher mesh levels have been distributed to all processors. For the domain

decomposition we used the RCB (Recursive Coordinate Bisection) and RIB (Recursive

Inertial Bisection) methods, as explained in Section 4.7.

Figure 5.47: Domain decomposition of RCB and RIB algorithms using 48 processors

The Figure 5.47 shows the difference between the domain decomposition of RCB and

RIB algorithms using 48 processors at mesh level 4. In the following tables the first

column shows the number of processors used, the second column denotes the number of

unknowns, the third column represents the number of time steps used in the simulation.

Here we fixed the number of time steps and the time step size for all computations to

show the efficiency between different processors. The fourth column shows the number

of multigrid cycles performed in each time step, the sixth column shows the CPU time

for one multigrid cycle, the seventh column shows the total CPU time for computation to

require the number of time steps. The last column gives the efficiency of the computation
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no. of procs unknowns time steps mgs 1 mgs[s] cpu time efficiency
1 71,874 101 2 3.80 34m 58s -

16 71,874 101 2.5 0.268 2m 47s 0.7852
32 71,874 101 2.49 0.143 1m 31s 0.7205
48 71,874 101 2.47 0.124 1m 14s 0.5907
58 71,874 101 2.45 0.1085 1m 5.5s 0.5525

Table 5.2: Efficiency test at mesh level 4 using RCB algorithm

no. of procs unknowns time steps mgs 1 mgs[s] cpu time efficiency
1 71,874 101 2 3.80 34m 58s -
16 71,874 101 3 0.2333 2m 45s 0.7947
32 71,874 101 3 0.1167 1m 30s 0.7285
48 71,874 101 3 0.08333 1m 5s 0.6724
58 71,874 101 3 0.0719 57s 0.6346

Table 5.3: Efficiency test at mesh level 4 using RIB algorithm

using several processors. This efficiency can be calculated using the formula 1
p

T (1)
T (p)

, where

T (1) and T (p) are total CPU time for 1 processor and p processors respectively. If we

look at the Table 5.2, the efficiency reduces with increasing number of processors. Here we

obtained poor performance using the RCB algorithm. We observed poor performance also

using RIB algorithm. But we observed that using the RIB algorithm we obtained a better

load balancing compared to the RCB algorithm, see Table 5.3 and Table 5.2. In the RCB

algorithm the number of multigrid cycles are less as compared to the RIB algorithm but

it takes more CPU time compared to the RIB algorithm.

The Figure 5.48 show the domain decomposition of the cylinder at mesh level 4, 5 and

6 using RIB algorithm with 58 processors. Mesh level 4 consists of 32,786 elements and

mesh level 5 consists of 262,144 elements while mesh level 6 consists of 2,097,152 elements.

no. of procs unknowns time steps mgs 1 mgs[s] cpu time [s] efficiency
1 549,250 11 3 31.80 2400 -

16 549,250 11 3.09 2.0930 173 0.8671
32 549,250 11 3.09 1.1300 91.43 0.8203
48 549,250 11 3.09 0.8451 62.38 0.8015
58 549,250 11 3.09 0.7310 52.44 0.7891

Table 5.4: Efficiency test at level 5 using RIB algorithm
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no. of procs unknowns time steps mgs 1 mgs[s] cpu time
32 4,293,378 11 4 9.40 15m
48 4,293,378 11 3.363 7.196 9m 52s
58 4,293,378 11 3.181 6.263 8m 12s

Table 5.5: Efficiency test at level 6 using RIB algorithm

Figure 5.48: Domain decomposition of mesh with RIB algorithm using 48 processors at
level 4, 5 and 6

The efficiency test for these mesh levels 4, 5 and 6 is shown in Table 5.3, Table 5.4 and

Table 5.5 respectively. If we observe at mesh level 5 using 16 processors the efficiency is

0.8671 and with 58 processors 0.7891, while at mesh level 4 using 16 processors 0.7947 and

with 58 processors is 0.6346. Here the efficiency is increased with increasing of unknowns.



Chapter 6

Numerical Results for the
Intracellular Ca2+ Dynamics

This chapter is devoted to the numerical solution of intracellular Ca2+ dynamics, which

was already explained in Chapter 3. This chapter is organized as follows: The first section

describes the numerical results in two space dimensions and also explains different test

cases based on the behavior of a channel opening and closing in clusters. In the first test

case, we consider the opening of one channel in one cluster for a while deterministically

and presents the convergence results using different mesh levels. Comparison of numerical

results with the ROS3P method and the W-method are discussed. In the second test

case, stochastic behavior for the channel transition in one cluster is considered and the

numerical results of Ca2+ concentrations are presented with stochastic channel transition.

In the third test case, the numerical results for opening of channels deterministically and

stochastically in several clusters are presented. In the following section, numerical results

in three space dimensions are presented and the convergence of solutions with opening

of one channel in one cluster at different mesh levels are discussed. Finally, we present

parallel numerical results using domain decomposition methods.

6.1 Numerical results in 2D

In the numerical simulations, different length scales of domain size for different numbers

of cluster arrangements are considered. These length scales were explained Section 4.5

on the grid adaptivity. In these numerical simulations, free calcium in the cytosol, dye,

mobile and stationary buffers in the cytosol are considered. In the simulations the ER

calcium concentration is set to a constant value, say 700 µM . In this section all numerical

111
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simulations are performed on a rectangular geometry as computational domain and the

refinement is considered by using triangular elements. The parameters used in the 2D nu-

merical simulations are listed in Table B.1. In the numerical simulations, we use piecewise

linear finite elements for the space discretization and linearly implicit Runge-Kutta meth-

ods for the time discretization. These were explained in Sections 4.3 and 4.4. For solving

the resulting linear systems, the BiCGSTAB method [92] with SSOR preconditioner is

used. All numerical computations were performed by using an Opteron Linux machine

with 2GB RAM, 2GHz processor, gcc-3.3.5 compiler and the programm package UG [12].

6.1.1 Opening of one channel deterministically in one cluster

In this subsection, one cluster with 20 channels and a domain size of [0,18000 nm] ×
[0,18000 nm] are considered for numerical computations. For the initial triangulation a

diameter of approximately 700 nm is considered for the triangles.

Tests of convergence with refinements

Here, the convergence results of one cluster which opens one channel deterministically for

a while are presented. In this case the coarse mesh (level 0) consists of 4566 triangular

elements and the fine mesh (level 8) consists of 10,602 elements, as was shown in Figure 4.3.

An overview of the number of nodes and elements for the adaptive grid at different mesh

levels at time t = 0 s is depicted in Table 6.1.

levels nodes elements min area of elements (nm2) nodes in cluster area
0 2,378 4,566 89810.0 -
8 5,396 10,602 3.78471 135
9 5,817 11,444 0.946177 534

10 6,235 12,280 0.236544 952
11 6,664 13,138 0.0591361 1,381

Table 6.1: The number of nodes and elements at different adaptive mesh levels.

First let us consider the numerical simulation of one channel is opened for a while.

The numerical results are tested with different mesh levels. The average value of cytosol

calcium concentration at different grid levels is shown in Figure 6.1. The average value of

the solution is calculated by using the following formula

f̄ =
1

|Ω|

∫

Ω

f(x) dx , (6.1)
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Figure 6.1: The average cytosolic Ca2+ concentration at different mesh levels.

where f(x) is the numerical solution over the domain. From Figure 6.1 it is observed that

the numerical results are converging with finer meshes. It is also observed that the number

of elements are not enough to converge to the solution at level 8. Therefore, level 9 is

considered as the minimum level for convergence of the solutions of this problem.

The maximum cytosolic Ca2+ concentration for reaching the stationary solution versus

time at mesh level 9 is shown on left hand side Figure 6.2. Here it is observed that the

maximum concentration reaches the stationary solution in the order of milliseconds. The

right hand side Figure 6.2 shows the average cytosolic Ca2+ concentration at mesh level 9

and one can observe that the average value reaches the stationary solution in the order of

seconds.

In left hand side of Figure 6.3, the maximum cytosolic Ca2+ concentration, which occurs

at the point (16504.4, 16498.4), over the simulation time for different levels is presented. It

can be observed that the solution converges for finer meshes. One can also see in right hand

side of Figure 6.3 the convergence of the maximum Ca2+ concentration at the stationary

solution for different nodal points.

The left hand side Figure 6.4 shows for a channel opening the spatial profile of free

cytosolic Ca2+ at different mesh levels over the distance of length 1 µm from both sides

of the cluster origin in the steady state solution. Here the numerical convergence of the

solutions is tested at different mesh levels, i.e. increasing the number of mesh points in the

area of the channel. We observe that they are in good agreement between all levels. At

the peak point it is observed that the curve at mesh level 8 is lower than the curves of

other mesh levels. The zoom of the peak point is depicted in right hand side Figure 6.4 to
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Figure 6.2: The solution of cytosolic Ca2+ concentration versus time at mesh level 9; left:
maximum, right: average cytosolic Ca2+ concentration.
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Figure 6.3: left: Solution of cytosolic Ca2+ concentration at point (16504.4, 16498.4) (close
to the point where [Ca2+] reaches a maximum value) versus time at different levels; right:
maximum concentration for the stationary state at different numbers of nodal points.
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Figure 6.4: left: Spatial profile of free cytosolic Ca2+ at different mesh levels of channel
opening over the distance of length 1 µm from the channel center at stationary solution,
right: zoom at the peak point.

see the difference clearly. As explained in the previous case, the number of mesh points is

not enough when the channel stays opened for a while. The obvious remedy is spatial grid

adaption during the intermediate time steps.

Study of time step control at opening and closing events

Here we explain the necessity of adaptive time step control at channel transitions. The

surface plots of the cytosol Ca2+ concentration are depicted in Figure 6.5 for one open

channel at different times. A very high transient solution at the middle of the cluster and

a smooth solution outside of cluster have been observed. This high concentration restricts

us to take small time steps in the numerical computations. Next, the spatial profiles of free

cytosolic Ca2+ with a distance of 1 µM from both sides of the channel center at different

time levels are depicted in left hand side of Figure 6.6.

It can be observed that, the calcium concentration in the vicinity of a few nano meters

from the channel center rises within microseconds upon opening of a channel. Here, the

channel is opened until time 0.001 s and then closes afterwards. In this case one needs

a efficient time stepping method and a good adaptive time step control to follow these

rapid changings in time. For this purpose linearly implicit Runge-Kutta methods for

time integration are a suitable choice. Adaptive time step control theory has been well

established for these methods, see Hairer and Wanner [45], Lang and Verwer [58] and

Schmitt and Weiner [82]. The right hand side of Figure 6.6 shows the spatial profile of the

closing channel over time levels where the opened channel is closed at certain time.
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Figure 6.5: The surface plot of the cytosolic calcium concentration for a opening of channel
at times 1.0 · 10−06, 1.1 · 10−05 and 9.970 · 10−04.
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Figure 6.6: Spatial profile of the free cytosolic Ca2+ at different time levels (sec) of channel
opening at the left and closing at the right.
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Figure 6.7: Maximum cytosolic Ca2+ concentration versus time until t = 0.1s at different
tolerances; left: with ROS3P method, right: with W-method

Comparison of ROS3P and W-methods

Here we show the numerical results based on ROS3P and W-methods. The left hand

side Figure 6.7 represents the comparison of the solutions by using the ROS3P method

and the W-method. For this simulation the initial time step 10−9 and different tolerances

are considered. Furthermore, the ER Ca2+ concentration is considered instead of the dye

buffer for these computations. In the simulations, a tolerance for the linear solver based on

the time step tolerance is considered, say TOL = TOLt/τ where TOL is the tolerance for

linear solver, TOLt is the tolerance for time step control and τ is the time step size. The

final simulation time is t = 0.1 s and all the computations are performed at mesh level 9.

The convergence is presented of solutions at different tolerances with the ROS3P method,

in left hand side of Figure 6.7 and with the W-method in right hand side of Figure 6.7. One

can observe that 4 ·10−4 and 10−4 are the maximum tolerances for the ROS3P method and

the W-method respectively to give numerically convergent solutions. At these tolerances

it is observed that the solutions of both methods converge efficiently. The W-method uses

large time steps as compared to the ROS3P method. One can see the number of rejected

time steps versus time in the left hand side of Figure 6.8 and the number of accepted time

steps versus time in right hand side of Figure 6.8 for both methods. We give in Table 6.2

the number of accepted and rejected time steps as well as the CPU time.
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Figure 6.8: Comparison between the ROS3P method and W-method; left: rejected step
size, right: error between two solutions when step accepted.

ROS3P method W-method
unknowns 21,368 21,368
no. of steps accepted 5883 898
no. of steps rejected 343 592
CPU time 2h 27m 32s 1h 27m 49s

Table 6.2: Comparison between the ROS3P method and W-method where the simulation
time is t = 0.1 s and one channel opened.

Coupling of step size control and mesh adaption

Generally, the channel opening occurs in the order of microseconds. It stays open for

some order of milliseconds while calcium diffuses slowly to neighboring channels. When

it diffuses to the neighboring channels that region also needs a finer mesh. In this case

spatial grid refinement is necessary during the intermediate time steps to reduce the overall

computational cost. In this study we considered two types of adaptive grid refinement

procedures. In the first type of procedure, the spatial error estimator is called whenever a

time step is rejected. In the second type of procedure, this error estimator is called for all

time steps.

Let us consider the first type of procedure. Here, one important point to notice is that

during the simulations the original structure of the grid is fixed. It is created before the

simulation starts. Moreover, we allow only refinement when the time-step error estimator

is called for the first time during the intermediate time steps. Then coarsening is allowed

only on refined elements which were created after the simulation started. We consider an

initial level 9 grid for our simulation and keep it fixed. In this computation the simulation
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Figure 6.9: Local zoom of the spatial grids of the adaptive mesh at time t = 0.002 s; left:
where the refinement is done with rejected time steps, right where the refinement is done
with every time step.

time is set to 0.002 s. Initially, the number of nodes and elements of this mesh at level

9 are 5,817 and 11,444. However, at the end of the simulation, the number of nodes and

elements of the final mesh at level 15 have reached to 25,077 and 49,964 respectively. Here

the level 9 grid is always a subgrid of the level 15 grid. The local zoom of the level 15 grid

structure at time t = 0.002 s is shown in the left hand side of Figure 6.9.

Next, we considered the second type of adaptive grid refinement procedure. In this case,

initially the level 9 grid again has 5817 nodes and 11,444 elements and at the end of the

simulation, the number of nodes and elements reached to 23,612 and 47,034 respectively.

The zoom of final adaptive mesh at level 15 at time t = 0.002 s is shown in the right hand

side of Figure 6.9. The results with both refinement processes are presented in Figure 6.10.

For this calculation, the tolerance for step size control was 5 · 10−5 while the tolerance for

the spatial error was 3·10−3. The initial time step started with 1·10−8. From the results, in

the top two plots it is observed that good convergence of the solutions is achieved by using

adaptive grid refinement during the intermediate time steps with both procedures for this

problem. In the middle two plots of Figure 6.10 we observe that initially many elements

are refined with the second type of refinement procedure as compared to the first type of

procedure. We can see clearly the difference between spatial error estimator in the bottom

plots of Figure 6.10. It is also observed that the spatial refinement process restricted to
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Figure 6.10: Comparison between two refinement processes; left: results where the refine-
ment is considered whenever time step rejected, right: where the refinement is considered
at each time step.
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Figure 6.11: The average solution of cytosolic calcium concentration at left and ER calcium
concentration at right for opening of channels stochastically in a one cluster over a time.

rejected time steps takes less CPU time as compared to the refinement at every time step.

The CPU times are 34m 58s and 54m 38s, respectively to compute the solution until the

simulation time t = 0.002 s, also see Nagaiah et al. [68] for some more results.

6.1.2 Numerical results of the stochastic channel transition in

one cluster

In this subsection, the numerical solutions of calcium concentrations with stochastic chan-

nel transition in one cluster are presented. In the simulations free Ca2+ in the cytosol, free

Ca2+ in the ER, the mobile and the stationary buffers are considered. In our numerical

simulations deterministic and stochastic equations are coupled and require two different

time steps. For solving the deterministic equations the linearly implicit methods have been

used, which are suitable to use adaptive time step control. The stochastic solver is based

on the Gillespie method, which is explained in Section 3.3. The Gillespie method also uses

adaptive time steps, in the sense that its time step follows the evolution of transition prob-

ability. As explained in Section 3.3, the usual Gillespie method has one drawback, since

this method solves stochastic processes where the propensities are constant during the

subsequent transitions. However, the propensities of the problem considered in this work

depend on the calcium concentrations which may change rapidly due to channel opening

and closing. For this purpose we adopted the hybrid algorithm which was proposed by

Alfonsi et al. [2]. This hybrid algorithm solves the coupled deterministic and stochastic

equations where the propensities depend on the channel opening and closing. The step by

step process of the hybrid algorithm can be found as Algorithm 3 in Appendix B.
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Figure 6.12: The average solution of cytosolic mobile buffer concentration at left and
stationary buffer concentration at right for opening of channels stochastically in a one
cluster over a time.
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Figure 6.13: The number of open channels stochastically in one cluster versus the time.

First, let us consider the simulation of one cluster which consists of 20 channels. The

concentration changes occur rapidly when a channel opens and closes. It stays constant

when all channels are closed, as is shown in Figures 6.11 and 6.12. The left hand side

Figure 6.11 shows that the Ca2+ concentration is constant until time t = 8.4 s because no

channel is opened during this time and after this time the Ca2+ concentration changes due

to channels opening and closings.

In Figure 6.13, where the number of open channels versus time is plotted. Typically,

the time step reduces to 10−8 s during the channel opening and it returns to 10−3 s when

all channels are closed. During this fast changing the adaptive time step control plays an

important role to maintain the accuracy of the solution.
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Figure 6.14: The spatial profile of the cytosolic calcium concentration at time t =
6.504 s, 6.68 s, 8.92 s in one cluster arrangement at mesh level 7.

Next, grid adaptivity is incorporated during the intermediate time steps at different

mesh levels. Here the finest adaptive mesh is fixed which is created at the initial time.

The basic idea for keeping initial adaptive grid fixed is to maintain the original structure

of the clusters or to maintain the minimum 4 grid points lie in the area of each channel

during the intermediate time steps. Then we apply the spatial grid adaptivity during the

time steps. The refined and coarsened mesh grids are always subgrid of initial mesh grid.

Due to our previous studies, the grid adaptivity is based on the time step rejections. When

the time step step is rejected the Z2 error estimator is called for possible refinement and

coarsening of the spatial grid.

Lets say we have incorporated grid adaptivity during the intermediate time steps at

mesh level 7. Here we intended to have less mesh points as compared to the previous

test cases. It will refine the elements during the simulation where the solution is less

regular. Here the channel opening is considered in the stochastic case. Initially mesh level

7 contains 2737 nodes and 5284 elements. At time t = 6.504 s it contains 3216 nodes and

6242 elements when one channel is opened and at time t = 8.92 s it reaches to 18493 nodes

and 36796 elements when all channels are closed, see Figure 6.14. From the above results

one can see the importance of the grid adaptivity in the stochastic regime.

6.1.3 Numerical results with many clusters

Results with deterministic opening of channels

In this subsection we considered the arrangement of 16 and 100 clusters for numerical

simulation. In these numerical simulations free calcium in the cytosol, free calcium in the

ER, the mobile and the stationary buffers in the cytosol are computed. To generate the

grid, initially we took a uniform grid refinement and then applied the Z2 error indicator



124 CHAPTER 6. NUMERICAL RESULTS FOR THE INTRACELLULAR CA2+ DYNAMICS

Figure 6.15: Surface plot of the cytosolic calcium concentration for opening of one channel
in each cluster of a 16 cluster arrangement at times 9.0 · 10−05 s, 0.1 s and 2 s.

Figure 6.16: Surface plot of the cytosolic calcium concentration for opening of one channel
in each cluster of a 16 cluster arrangement using temporal adaptive grid refinement at
times 9.0 · 10−05 s, 0.1 s and 2 s.

using the strongly localized initial function to get a fine mesh in the area of channels and

clusters, see Figure 4.4 and Figure 4.5 for 16 and 100 cluster arrangements respectively.

The simulations start with constant initial values for calcium concentrations and buffers

over the domain.

First, in the numerical simulation let us consider the opening of channels in a determin-

istic way i.e. one channel is opened in each cluster for a while. The plots of the cytosolic

Ca2+ concentration for 16 clusters at times 9.0 · 10−05 s, 0.1 s and 2 s are shown in Fig-

ure 6.15. The cytosolic Ca2+ concentration for 16 clusters with grid adaption during the

intermediate time steps is shown in Figure 6.16. In both cases the simulations start with

55,982 elements and 28,060 nodes. In the case of grid adaptivity during the intermediate

time steps, at stationary solution, lets say time t = 2 s, the mesh consists of 41,425 nodes

and 82,712 elements. Here the maximum cytosolic Ca2+ concentrations are 12.04 µM and

12.19 µM with fixed adaptive grid and temporal adaptive grid during the intermediate
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Figure 6.17: The surface plot of the cytosolic calcium concentration for opening of one
channel in each cluster of 100 cluster arrangement at times 9.4 · 10−05 s and 0.4 s.

time steps respectively.

Likewise, the surface plots of the cytosolic Ca2+ concentration for opening of one channel

in 100 cluster arrangement at different time steps are depicted in Figure 6.17. Here the

most important issue is that to get an accurate and efficient solution at higher numbers of

cluster arrangements. In these cases one has to consider many mesh points to get accurate

solution. Therefore, the computational cost increases rapidly with the increase of cluster

arrangements.

Results with stochastic opening of channels

In fact, the opening and closing of channels follows a random process, as explained in the

previous subsection. This stochastic process leads to many challenging mathematical and

computational problems with higher numbers of cluster arrangements.

First let us consider the arrangement of 16 clusters with stochastic channel transitions.

In this arrangement the initial adaptive grid is fixed during the intermediate time steps. It

is created before the simulation starts. The number of open clusters and channels versus the

simulation time until 15.3 s are depicted in Figure 6.19. The corresponding average value

of the cytosolic calcium concentration and the ER calcium concentration are presented

in the Figure 6.18. In this simulation the time steps typically vary between 10−3 s and

10−8 s. We observe is that when opening of one channel occurs in any cluster then the

scheme rejects some steps and the step size goes down to 10−8 s. When all channels are

closed in all clusters then the time step returns to the order of micro seconds.
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Figure 6.18: The average value of cytosolic Ca2+ concentration and ER Ca2+ concentration
plotted over the time.
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Figure 6.19: The number of open clusters at the left: and channels at the right: are
depicted in the arrangement of 16 clusters over the time.
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Figure 6.20: Solution of cytosolic concentration of 16 clusters with stochastic channel
transition of channels at different time steps t = 5.509870 s, 6.239932 s, 6.999976 s and
9.809869 s.
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Figure 6.21: The average cytosol free calcium at left: and ER free calcium at right: over
the time in 100 cluster arrangement.
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Figure 6.22: The average solution of mobile and stationary concentrations in cytosol over
the time in 100 cluster arrangement.

The surface plot of the cytosolic calcium concentration is depicted at different times in

Figure 6.20. Here one can see clearly the opening and closing of channels stochastically in

many clusters.

Now let us consider the 100 cluster arrangement for numerical simulations. The average

solution of the cytosol free calcium and the ER free calcium concentrations over the time

is plotted in Figure 6.21. Also can see the mobile and the stationary buffer concentrations

in the Figure 6.22. Here we can observe that around the time t = 6.5 s many clusters are

open and these open clusters form a wave.

The corresponding number of open channels and open clusters can be seen clearly

in Figure 6.23. The first opening of the channel event occurs approximately after time
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Figure 6.23: The number of open clusters and open channels in 100 cluster arrangement;
left: open clusters, right: open channels.

t = 5.3 s. This leads to the increased binding probability at the activating sites. Thus many

channels are open in many clusters during the time approximately 6.5 s. Activation is a

fast process provided that the Ca2+ concentration is high. The average Ca2+ concentration

is very high at this time, see clearly in Figure 6.21.

The time dependent behavior of the cytosolic Ca2+ concentration is depicted in Fig-

ures 6.24 and 6.25. Here, one can clearly see the spatial profile of the Ca2+ concentration

at different time steps.

6.2 Numerical results in 3D

This section is concerned with the 3D numerical results of deterministic and the hybrid

solutions. For the numerical simulation, the Ca2+ concentration, the dye, the mobile

and the stationary buffers in the cytosol are considered as variables and the ER Ca2+

concentration is set to be constant during the simulation. The system of reaction-diffusion

equations (3.7–3.10) has been solved in cube with Robin type boundary condition (3.11)

over the time interval [0, T ]. In the simulations, the geometry as shown in Figure 3.4 is

used. The implementation of the IP3R channels in the domain requires multiple length

scales, i.e. very fine mesh in the vicinity of the channel area and a very coarse mesh in

other parts. This has been achieved using a posteriori error estimators, as explained in

Section 4.5. For the mesh generation a special function is used which has a spatially

localized active source term in the vicinity of channel subdomain at the ER membrane.

The initial mesh and adaptive refined meshes are created by using the programm package
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Figure 6.24: Solution of cytosolic concentration of 100 clusters with stochastic chan-
nel transition of channels at different time steps t = 5.139571 s, 5.439938 s,
5.689859 s, 6.089905 s, 6.339917 s and 6.489918 s.
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Figure 6.25: Solution of cytosolic concentration of 100 clusters with stochastic chan-
nel transition of channels at different time steps t = 6.889927 s, 7.189863 s,
7.589875 s, 8.589918 s, 10.589987 s and 14.089910 s.



132 CHAPTER 6. NUMERICAL RESULTS FOR THE INTRACELLULAR CA2+ DYNAMICS

Figure 6.26: The zoom of the spatial grid near the channels of level 9 and level 12.

UG [12], see Figure 4.7. A close up view of the local resolution at the ER membrane of

the unstructured finite element mesh of level 9 and 12 are shown in Figure 6.26.

The number of nodes, elements and the minimum volume of the element in the domain

at different levels is presented in Table 6.3. It can be observed that the minimum volume of

elements is very small with finer meshes where we want to put a fine mesh at the membrane.

levels nodes elements min volume of element
0 729 3,072 1.04167 ·1008

8 26,403 146,627 3.10441
9 28,683 159,463 0.388051

10 30,963 172,299 0.0485064
11 33,243 186,135 0.0060633
12 35,523 197,971 0.000757912

Table 6.3: The number of nodes, elements and minimum volume of element in the domain,
i.e. the element present at the membrane, at different mesh levels in cube.

In our numerical simulations we considered only one cluster arrangement. The numeri-

cal results of different grid structures with deterministic opening of one channel are tested.

The left hand side of Figure 6.27 shows the average cytosolic Ca2+ against the time until

t = 0.1 s and the maximum cytosolic Ca2+ over the number of nodes is presented in the

right hand side of Figure 6.27. From these results, one can observe that mesh level 9 is
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Figure 6.27: The average solution of cytosolic Ca2+ at different levels versus time for an
one open channel at left and at right the maximum cytosolic Ca2+ versus levels at the
stationary solution.
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Figure 6.28: The stationary Ca2+ concentration for an open channel with a distance of
200nm from the channel center directly at the ER membrane (solid) and perpendicular to
the membrane (dashed).

sufficient to consider for achieving the numerically convergent solutions. Therefore, the

level 9 is considered in all other simulations.

In Figure 6.28, the steady state Ca2+ concentration for an open channel with distance

of 4000nm from channel center directly at the ER membrane and perpendicular to the

membrane. From this result, one can observe that the spatial profile of the Ca2+ concen-

tration is similar at the vertical and the horizontal directions. The solution is plotted using

log-log scale. The maximum Ca2+ concentration at the channel center is 114.400 µM .
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Figure 6.29: The spatial profile of the Ca2+ concentration at left and the zoom around
the channel mouth at the ER membrane at right at time t = 0.1 s.

The spatial profile of the Ca2+ concentration is plotted in the left hand side of Fig-

ure 6.29 at time t = 0.1 s and the zoom around the channel mouth at the ER membrane

is depicted in the right hand side of Figure 6.29. Here, we can see a strong profile of the

Ca2+ concentration from the channel center to some hundreds of nano meters. Usually

this strong localization restricts the time steps in numerical simulations.

Next, the numerical results with the hybrid simulation are presented, which solves

the deterministic and stochastic equations simultaneously. The algorithm is based on a

recently introduced approach for simulating hybrid models of chemical reaction kinetics in

spatially homogenous systems [2], as explained in Section 3.3. Here, the numerical results

are presented based on the hybrid method for a single channel system. Analogously we

can generalize to multi channel systems.

A stochastic model is adopted for the gating of subunits. This stochastic model is

based on the DeYoung-Keizer-model for the subunit dynamics [29]. An IP3R consists of

four identical subunits. There are three binding sites on each subunit in the framework

of that model: An activating site for Ca2+ , an inhibiting Ca2+ site and an IP3 binding

site. The three binding sites allow 8 different states Xijk of each subunit. The index i

indicates the state of the IP3 site, j the one of the activating Ca2+ site and k the state of

the inhibiting Ca2+ site. An index is 1, if an ion is bound and 0 if not. In 3D simulations,

one extra state XACT is considered where it is assumed that the channel is open, if at least

three of the subunits are in XACT , i.e. they have bound to Ca2+ and IP3 at the activating

site. This additional state enables us to fit short mean open and mean close times. These

could not be fitted using standard DeYoung-Keizer-model. For more results regarding open
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probability, mean and close times can be found in paper by Rüdiger et al. [80]. Then we

associate stochastic variables X000, X001, . . . , XACT to each channel. These variables count

the number of subunits which are in the respective states.
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Figure 6.30: The opening and closing of the channel in one cluster versus time.
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Figure 6.31: The cytosolic Ca2+ concentration over time; left: average value, right: max-
imum value at the channel mouth.

In Figure 6.30, the opening and closing of single channel against the time until t = 5 s

are depicted. Here we can observe the rapid changings of the channel opening and closings.

The corresponding average and the maximum cytosolic Ca2+ concentrations at the channel

mouth are depicted in Figure 6.31.
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6.3 Numerical results using domain decomposition

methods

In sequential computation the domain and the multigrid hierarchy are stored in one pro-

cessor’s memory. This single processor performs all the computational operations on the

multigrid mesh hierarchy to solve a numerical problem. In our transient numerical simula-

tions to compute the solution till time 100 s in two space dimensions, the CPU time required

is around 60 days on Opteron Linux machine with 2GB RAM and 2GHz of processor. To

reduce the computational time and to increase the number of mesh elements to millions the

use of parallel computer architectures is mandatory. In the parallel numerical simulations

the most important parts are the parallel grid manager and the parallel implementation of

linear solvers. For the domain decomposition we have used the graph partitioning package

CHACO [50]. In our problem data partitioning is the most important factor. The load

balancing scheme Recursive Inertial Bisection (RIB) serves well for this problem. In the

context of UG, load migration is realized based on the parallel programming model DDD

(Dynamic Distributed Data), see Birken [20]. Load balancing has been achieved as follows:

the meshes of level-0 to level-5 have been kept on one processor and the level-6 mesh has

been distributed to all processors. We use a linear solver with preconditioning at the finest

level. For solving the linear system at each stage of the Rosenbrock method we have used

the BiCGSTAB method [92] with point-block ILU preconditioning that has been damped

with ω = 0.9. The mesh decomposition to different processors is shown in Figure 6.32.

Computations for this problem have been carried out on HP-UX B.11.11 U 9000/800 ma-

chines with 2GB RAM for each processor and these are connected to a 64 node cluster

with 3GFOLPS processor speed at Institute for Analysis and Numerics, Magdeburg.

The domain decomposition of 100 clusters mesh is shown in Figure 6.32 for 16, 32 and

56 processors. In this figure we can clearly observe the domain decomposition of clusters

when the number of processors increases, see Nagaiah et al. [69] for some more discussion.

In the numerical simulations the opening of channel is considered in a prescribed way.

The Test Case 3 is consider for the numerical simulations. Here we tested the efficiency

for 1, 4, 16, 32 and 56 processors. In this case 5 channels are opened in all clusters up to

time t = 1 · 10−3 s and all channels are closed after t = 1 · 10−3 s. The average solution of

cytosolic calcium concentration is shown up to time t = 2 · 10−3 s. Here we can see good

agreement between all processors. But solution deviates when the number of processors

increase, see Figure 6.33. Because this is mainly depends on the decomposition of mesh.
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Figure 6.32: Domain decomposition of 100 clusters adaptive mesh using 16, 32 and 56
processors
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Figure 6.33: Efficiency test for 1, 4, 16, 32 and 56 processors.

no. of procs unknowns time steps cpu time efficiency
1 133,296 10 26m 46s 1.0

16 133,296 10 2m 16s 0.7381
32 133,296 10 1m 2s 0.8095
48 133,296 10 38s 0.8805
56 133,296 10 32s 0.8962

Table 6.4: Comparison of CPU times on different number of different processors.

What we have observed is that, when domain decomposition of the clusters is divided to

many processers then loss in accuracy starts.

Performance data of the simulations are presented in Table 6.4. For comparison, the

time step size is kept constant in all simulations. The first column shows the number of
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processors used and the last column shows the efficiency of the processors. This efficiency

can be calculated by using the relation 1
P

T (1)
T (P )

, where T (1) and T (P ) are total CPU time for

1 processor and P processors. Because of the data structure of the programming package

the efficiency increases if we increase the number of processors. The increase in efficiency

for 56 processors is 89.62%.



Chapter 7

Summary

In this work the numerical behavior of two specific problems has been studied effectively.

They are the heat and mass transfer in fluidized beds as well as a calcium signalling task

in cell biology. The semilinear partial differential equations that arise from the modeling

of the above problems have been solved very efficiently using a finite element method.

In the first application problem, the numerical solutions of heat and mass transfer

in fluidized beds with liquid spray injection were computed proficiently. The governing

equations were derived in Chapter 2 using mass and energy balances of air, particles, and

liquid. This model is an improved model in comparison to the model presented in Heinrich

[47]. Also a sophisticated numerical method was applied to solve the model equations.

The mathematical model equations of liquid nozzle spray were presented for two and three

dimensions in Sections 2.3 and 2.3 respectively. Here more than one nozzle can be arranged

arbitrarily in the fluidized bed. These model equations are more flexible to compute the

numerical solution of balance equations on unstructured meshes and also more suitable

to compute parallel numerical solutions. In numerical simulations the balance equations

are considered in Cartesian coordinates. In the present work, the mathematical solution

of the continuum model was approximated by using a finite element method for the space

discretization and the implicit Euler method for the time discretization in order to improve

the numerical efficiency as presented in Chapter 4.

A parametric study has been conducted to see the influence of liquid film thickness,

ratio of heat transfer coefficient, air inlet temperature, air mass flow rate, liquid mass flow

rate and diameter of particles on heat and mass transfer in fluidized beds. Furthermore,

the time-dependent two-dimensional distributions of air humidity, air temperature, particle

wetting, liquid film temperature and particle temperature were simulated, which showed
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almost isothermal behavior and good mixing conditions in the fluidized beds. The numer-

ical convergence of approximate solutions to the balance equations was presented using a

semi implicit method, an implicit method and different linear solvers. These tests demon-

strate that the numerical method gives convergent solutions. The experimental order of

convergence (EOC) of almost 1 is obtained for the first order implicit Euler method with

finer meshes, see Chapter 5. This result reveals that the method has a convergence order

that agrees with theoretical considerations.

The three dimensional numerical results were presented in Section 5.2. Two test cases

were considered for numerical simulations, the required process parameters were taken

from the doctoral theses of Heinrich [47] and Henneberg [51] respectively. The steady

state solutions of air humidity, air temperature, degree of wetting, liquid film temperature,

particle temperature and saturation of air humidity were presented for both test cases.

Numerical results with four spray nozzles were also given. In the heat transfer zone, which

is above the distributor plate, the air temperature decreases due to energy absorbed by the

wetted surface of the particles. The liquid on the particles evaporates through its direct

contact with the hot air. Due to this the air humidity rises. In the numerical simulations

this area is identified as a stiff region which controls the time step. The transient air tem-

perature simulation results are qualitatively in good agreement with experimental results.

The increase of the number of spray nozzles requires the use of more mesh points, which

ultimately requires more computational power. For this reason, parallel methods were

used to get faster and efficient results using domain decomposition methods. The parallel

numerical results with domain decomposition methods showed good load balancing with

the recursive inertial bisection (RIB) algorithm when compared to the recursive coordi-

nate bisection (RCB) algorithm. The parallel efficiency showed a good load balancing for

different numbers of processors.

The second application problem was concerned with efficient and accurate numerical

solutions of deterministic equations including stochastic channel transition. The numerical

convergence of solutions of the deterministic equations was tested extensively by consider-

ation of one open channel in one cluster, see Section 6.1. These convergence results showed

evidence of correctness of the numerical method along with the code implementation. A

comparison of the W-method and the ROS3P method was presented at different toler-

ances. According to these results we conclude that both methods give convergent solutions

but the W-method takes less CPU time as compared to the ROS3P method. It was also

observed that the grid adaption plays an important role when a channel is opened for a
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while. Moreover, in this case a fixed mesh may not be capable to maintain accurate and

convergent solutions unless a very fine mesh is used in the vicinity of the channel area.

The grid adaptivity was applied for one cluster and 16 cluster arrangements successfully.

In the present work a recent hybrid method was adopted which solve the deterministic

and stochastic equations simultaneously, see Alfonsi et al. [2]. The hybrid algorithm uses

two time scales, one is for solving the deterministic equations and second is for solving

the stochastic equations. The numerical results were presented using hybrid method for

different cluster arrangements in subsections 6.1.2 and 6.1.3.

In 3D calculations, the model uses an additional active state compared to the standard

DYK model. This additional state enables us to fit short mean opening and mean closing

times. These could not be fitted using the DYK model. We refer to recent a paper of

Rüdiger et al. [80] for more results on the opening probability, mean opening and mean

closing times as well as bursts of rapid opening and closing of channels. The numerical

results presented in Section 6.2 demonstrate that the numerical method is able to compute

convergent solutions for this problem.

Longer computations, e.g. a simulation time until 100 s for larger cluster arrangements,

on one machine take around 50 days. To reduce this computational time and to get faster

results, parallel computations were applied to this problem. The domain decomposition

and mapping of the finite element domain onto the parallel machine was accomplished by

a graph partitioning tool CHACO [50]. The parallel numerical solutions were presented

using the recursive inertial bisection (RIB) algorithm. For these numerical simulations the

opening of channel was considered in a prescribed way. As a test case, one channel was

opened in a each cluster of 100 cluster arrangements. It was observed in the numerical

simulations that the efficiency of the algorithm increased with increasing numbers of pro-

cessors. The most important task is the assignment of the domain decomposition of the

discretized ER membrane on to several processors. This is very challenging. From the

results, we observed that the numerical solutions are deviating with increasing number of

processors. This mostly occurs when the distribution of the one cluster is assigned to more

than one processors. Study of this problem is in progress.

In the future, we intend to do numerical simulations for larger cluster arrangements

efficiently, e.g. by introducing sparse structures in the code implementation to solve these

reaction-diffusion systems. Then the computational time will reduce drastically. The work

on extension of the grid adaptivity for larger cluster arrangements is in progress. And also

the work on extension of the parallelization of the hybrid method has began. Considering
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all these tasks, these methods are to be applied to three dimensions extensively. Extension

of the 3D simulations to get accurate and efficient solutions using the domain decomposition

methods are a very challenging problem.

Regarding the first application problem, in the simulations, one can include the effect

of direct evaporation in the spray liquid area and also include porosity terms in the balance

equations. In the future, it is possible to couple the nozzle spray equation, in more than

one space dimension, to the balance equations. Also solving the 3D balance equations

including more than one spray nozzle is very interesting using parallel architectures.



Appendix A

Simulation Parameters for Heat and
Mass Transfer in Fluidized Beds

All these parameters taken from Ph. D thesis of Henneberg [51].

Dimensionless numbers

Archimedes number Ar =
gd3

P (ρP −ρA)

ν2
A

ρA

Nusselt number Nu = αL
λA

Prandtl number Pr = cP νAρA

λA

Reynolds number Re = wAdP

νA

Schmidt number Sc = νA

DV

Sherwood number Sh = βdP

DV

Calculation of the parameters

Cross section surface of the apparatus

AApp =
π

4
d2

App

Reynolds number at the fluidization point

Remf =
Ar

1400 + 5.22
√

Ar

Minimal fluidization velocity

wmf =
RemfνA

dP

Porosity of the fluidized bed

ǫ =

[

18Re + 0.36Re2

Ar

]0.21

=
Vvoid

Vfb
=

Vvoid

Vvoid + VP
where VP =

mP

ρP

143



144 APPENDIX A. SIMULATION PARAMETERS FOR HEAT AND MASS TRANSFER IN FLUIDIZED BEDS

Fluidized bed height

Hfb =
Vfb

AApp
=

mP

AAppρP (1− ǫ)

Overall surface of the solid particles

AP =
6AAppHfb(1− ǫ)

dP

Mass transfer coefficient

β =
DV Sh

dP

Sherwood number

Sh = 2 + 0.72
√

Re
3
√

Sc

Heat transfer coefficient

αAP =
NuAPλ

dP

Nusselt number

NuAP = (2 +
√

Nu2
lam + Nu2

tur)[1 + 1.5(1− ǫ)]

Nulam = 0.664Pr1/2Re1/2
ǫ

Nutur = 0.037
PrRe0.8

ǫ

1 + 2.443Re−0.1(Pr2/3 − 1)

Parameter values

Dry air

Specific gas constant

RA = 287.22

Density

ρA =
P

RA(θA + 273.15)

Specific heat capacity of the air

cA = 1006.256 + 2.120536 · 10−2θA + 4.180195 · 10−4θ2
A − 1.521916 · 10−7θ3

A

Thermal conductivity of air

λA = 24.5211 · 10−3 + 7.501414 · 10−5θA − 2.593344 · 10−8θ2
A + 5.292884 · 10−11θ3

A
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Dynamic viscosity

ηA = 1.705568 · 10−5 + 4.511012 · 10−8θA − 8.766234 · 10−12θ2
A − 3.382035 · 10−15θ3

A

Kinematic viscosity

νA =
ηA

ρA

Prandtl number

PrA =
ηAcA

λA

Water

Density of liquid

ρL = 1006.0− 0.26θL − 0.0022θ2
L

Specific heat capacity of the liquid

cL = 4174.785 + 1.785308 · 10−2θL − 5.097403 · 10−4θ2
L + 4.216721 · 10−5θ3

A

Specific heat evaporation of the water at 0◦C

∆hV = 2500000.0

Saturation pressure

psat = exp

(

23.462− 3978.205

233.349 + θL

)
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Nomenclature and Simulation Parameters

Notations
A surface area, (m2)

A∗ volume based surface, (m2/m3)

cp specific heat capacity at constant pressure, (J/(kgK))

d diameter, (m)

D dispersion matrix, (m2/s)

F liquid film thickness, (m)

f heat transfer ratio, (dimensionless)

h enthalpy, (J)

∆hV specific heat of evaporation of the water, (J/kg)

∆hV,0 specific heat of evaporation of the water at 0◦C, (J/kg)

H bed height, (m)

L length, (m)

m mass, (kg)

ṁ mass flow, (kg/s)

M̃ molar mass, (kg/mol)

p pressure, (Pa)

q area based heat, J/m2

q̇ area based heat flow, J/(m2 s)

r radius, (m)

R distance, (m)

R̃ universal gas constant, (J/(molK))

s length, (m)

t time, (s)

V volume, (m3)

w velocity, (m/s)

Y humidity, (kg/kg)
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Greek symbols

α heat transfer coefficient, (W/(m2K))

β mass transfer coefficient, (m/s)

ǫ porosity of the fluidized bed, (m3/m3)

ǫ∗ solid particle volume fraction, (m3/m3)

θ temperature, (◦C)

κ concentration, (kg/m3)

κ̃ concentration flow, kg/(m3s)

λ thermal conductivity, (W/(mK))

ν kinematic viscosity, (m2/s)

τ final time, (s)

ρ density, (kg/m3)

φ wetting efficiency, dimensionless

Subscripts

A air

App apparatus

dr drop

in inflow

fb fluidized bed

L liquid

nozz nozzle

P particle

sat saturation

V vapor

W wall

0 state at time t = 0

∞ saturation value
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Fluidized bed parameters
width L 0.4 m
height Hfb 0.2 m
Bed material (glass spheres)
total mass mP 18 kg
diameter dP 1.16 mm
density ρP 2471 kg/m3

specific heat capacity cP 750 J/(kg K)
thermal conductivity λP 0.8 W/(m K)
Fluidization air
mass flow rate ṁA 0.304 kg/s
inlet humidity YA,in 0.008 kg/kg
inlet temperature θA,in 80 ◦ C
Liquid spraying
spraying rate (source flow) ṁL 5.9 kg/h
liquid inlet temperature θL,in 20 ◦C
Other parameters
apparatus wall temperature θW 75 ◦C
liquid film thickness F 100 µm
heat transfer ratio f 1 -
Initial parameters for the simulation
air humidity YA,0 0.008 kg/kg
air temperature θA,0 80 ◦C
degree of wetting φ0 1e-8 -
liquid film temperature θL,0 20 ◦C
particle temperature θP,0 80 ◦C

Table A.1: Parameters values used for simulations in 2D
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Fluidized bed parameters
diameter dfb 0.4 m
height Hfb 0.2 m
Bed material (glass spheres)
total mass mP 20 kg
diameter dP 0.00116 m
density ρP 2471 kg/m3

specific heat capacity cP 750 J/(kg K)
thermal conductivity λP 0.8 W/(m K)
Fluidization air
mass flow rate ṁA 0.378 kg/s
inlet humidity YA,in 0.008 kg/kg
inlet temperature θA,in 80 ◦ C
Liquid spraying
spraying rate (source flow) ṁL 13.79 kg/h
liquid inlet temperature θL,in 20 ◦C
Other parameters
liquid film thickness F 100 µm
heat transfer ratio f 1 -
Initial parameters for the simulation
air humidity YA,0 0.008 kg/kg
air temperature θA,0 80 ◦C
degree of wetting φ0 1e-8 -
liquid film temperature θL,0 20 ◦C
particle temperature θP,0 80 ◦C

Table A.2: Parameters values used for simulation of experiment 1 in 3D
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Fluidized bed parameters
diameter dfb 1.5 m
height Hfb 0.6 m
Bed material (glass spheres)
total mass mP 370 kg
diameter dP 0.0033 m
density ρP 1377 kg/m3

specific heat capacity cP 980 J/(kg K)
thermal conductivity λP 0.17 W/(m K)
Fluidization air
mass flow rate ṁA 7.0 kg/s
inlet humidity YA,in 0.005 kg/kg
inlet temperature θA,in 60 ◦ C
Liquid spraying
spraying rate (source flow) ṁL 90 kg/h
liquid inlet temperature θL,in 20 ◦C
Other parameters
apparatus wall temperature θW 75 ◦C
liquid film thickness F 100 µm
heat transfer ratio f 1 -
Initial parameters for the simulation
air humidity YA,0 0.008 kg/kg
air temperature θA,0 80 ◦C
degree of wetting φ0 1e-8 -
liquid film temperature θL,0 20 ◦C
particle temperature θP,0 80 ◦C

Table A.3: Parameters values used for simulation of experiment 2 in 3D



Appendix B

Hybrid Algorithm and Simulation
Parameters used for Ca2+ Dynamics

The algorithmic realization of our hybrid approach is given below.

1. Initialization

• Set told = 0, ∆t > 0, cold = c0, X = X0, gold = 0 and draw a uniform random

number r1 in [0,1] defining ξ = ln(1/r1).

2. Deterministic step

• Compute cnew and gnew based on cold, gold and ∆t.

• If the local error criterion is not met, reduce the step size ∆t and go to 2.,

otherwise define tnew = told + ∆t and set the new step size ∆t according to the

time stepping code prediction.

3. If gnew < ξ (no stochastic event)

• Set cold = cnew, gold = gnew, told = tnew, and go to 2.

4. If gnew ≥ ξ (some stochastic event in the time interval [told, tnew])

• Determine the event time ts ∈ [told, tnew] by (linear) interpolation, and compute

the corresponding calcium concentration cs at the event time ts by (linear)

interpolation.

• Draw a uniform random number r2 in [0, 1] and determine the stochastic event

Ri according to Eq. (3.21) based on cs.
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5. If the next event Ri is non-channel transition

• Perform the stochastic event Ri to determine the new channel state X.

• Set gold = 0 and recompute gnew based on cs, gold and the remaining time

(tnew − ts).

• Draw a new uniform random number r1 in [0, 1] defining ξ = ln(1/r1), and go

to 3.

6. If the next event Ri is a channel transition

• Perform the channel transition Ri to determine the new state X.

• Set gnew = 0, and draw a new uniform random number r1 in [0, 1] defining

ξ = ln(1/r1).

• Set tnew = ts, and define new step size ∆t = ∆tchannel (a sufficiently small

number).

• Set cold = cs, and go to 2.

Algorithm 3: Hybrid algorithm
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Parameter Value Unit

leak flux coefficient Pl 0.025 nm s−1

channel flux coefficient Pch 3.0× 103 nm s−1

single channel radius Rs 0.018 µM

pump flux coefficient Pp 200 µM s−1

pump dissociation coefficient Kd 0.04 µM

diffusion coefficient D of free cytosolic Ca2+ 200 µm2 s−1

diffusion coefficient D of free ER Ca2+ 200 µm2 s−1

diffusion coefficient Ddye of dye buffer 70 µm2 s−1

diffusion coefficient Dm of mobile buffer 40 µm2 s−1

diffusion coefficient Ds of dye buffer 0.01 µm2 s−1

on-rates of fast buffers:
k+

s 200 (µM s)−1

k+
m 400 (µM s)−1

k+
dye 100 (µM s)−1

dissociation constants of buffers Ki =
k−

i

k+

i

:

Ks 2 µM
Km 0.25 µM
Kdye 0.16 µM

total concentrations of buffers:
Bs 80 µM
Bm 1 µM
Bdye 46 µM

subunit kinetics (model A), note bi=aidi, i=1,. . .,5
IP3 binding
a1, a3 20 (µM s)−1

d1 0.13 µM
d3 0.13 µM
inhibiting, with IP3
a2 0.030373 (µM s)−1

d2 3.776 µM
inhibiting, without IP3
a4 0.303073 (µM s)−1

d4 0.5202 µM
activating
a5 2.222 (µM s)−1

d5 0.3 µM

Table B.1: Parameters used in 2D numerical simulation
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Parameter Value Unit

leak flux coefficient Pl 3.3613 nm s−1

channel flux coefficient P 6.32 × 106 nm s−1

single channel radius Rs 6 nm

pump flux coefficient Pp 40000 µM s−1

pump dissociation coefficient Kd 0.2 µM

Ca concentration in ER 700 µM

diffusion coefficient D of free cytosolic Ca2+ 200 µm2 s−1

diffusion coefficient Dm of mobile buffer 200.0 µm2 s−1

diffusion coefficient Ddye of dye buffer 15.0 µm2 s−1

on-rates of fast buffers:
k+

s 50 (µM s)−1

k+
m 5 (µM s)−1

k+
dye 150 (µM s)−1

dissociation constants of buffers Ki =
k−

i

k+

i

:

Ks 2 µM
Km 0.15 µM
Kdye 2 µM

total concentrations of buffers:
Bs 80 µM
Bm 300 µM
Bdye 40 µM

subunit kinetics (model A), note bi=aidi, i=1,. . .,5
IP3 binding
a1, a3 80 (µM s)−1

d1 0.008 µM
d3 0.5 µM
inhibiting, with IP3
a2 0.04 (µM s)−1

d2 12 µM
inhibiting, without IP3
a4 0.4 (µM s)−1

d4 0.192 µM
activating
a5 15 (µM s)−1

d5 0.8 µM
open conformational transition
a0 550 µM
b0 80 µM

Table B.2: Parameters used in 3D numerical simulation
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de Recherche, Thèmes NUM et BIO, 5435, 2004.

[3] I. Babus̆ka and W. C. Rheinboldt. Error estimates for adaptive finite element com-

putations. SIAM Journal on Numerical Analysis, 15(4):736–754, 1978.

[4] R. E. Bank, A. Sherman, and A. Weiser. Refinement algorithms and data structures

for regular local mesh refinement. Scientific Computing, 1983.

[5] R. E. Bank and R. K. Smith. A posteriori error estimates based on hierarchical bases.

SIAM Journal on Numerical Analysis, 30(4):921–935, 1993.

[6] R. E. Bank and A. Weiser. Some a posteriori error estimators for elliptic partial

differential equations. Math. Comput., 44:283–301, 1985.

[7] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear

Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia,

PA, 1994.

[8] P. Bastian. Parallel adaptive multigrid methods. Technical Report 93–60, Interdiszi-
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[42] K. Gustafsson, M. Lundh, and G. Söderlind. A pi stepsize control for the numerical

solution of ordinary differential equations. BIT, 28(2):270–287, 1988.

[43] W. Hackbusch. Multi–Grid Methods and Applications. Springer–Verlag, 1985.

[44] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I.

Nonstiff problems. Springer Series in Computational Mathematics, 1987.

[45] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Springer Series

in Computational Mathematics, 1991.

[46] W. Heineken. Adaptive Verfahren zur numerischen Berechnung von Reaktions-

Diffusions-Systemen. PhD thesis, Otto-von-Guericke-University Magdeburg, 2005.
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