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Chapter 1

Introduction

Efficient discretization strategies in obtaining the numerical solution of time dependent stiff
partial as well as ordinary differential equations is important in many practical problems.
Adaptive and local time stepping methods are useful in many cases to minimise the com-
putational cost. The present work is focussed on solving a scalar and coupled quasilinear
partial differential equations of parabolic type which govern the isothermal drying of porous
media [36]. Drying is a complex process of heat and mass transfer playing an important
role in different industries. Although the investigation of drying process experimentally,
theoretically and numerically has been realised since many years [32, 33, 34, 35, 45, 49|, the
coupling of heat and mass transfer, the numerical and other aspects are still a challenging
problem.

The equations governing the drying process are a complex system which is challenging for
the numerical simulation. The numerical difficulties include nonlinearities, strong coupling,
solving many variables defined by a nonlinear set of equations of state. Moreover the def-
initions of equations of state change according to a drying state. Perré and Turner used
a control volume finite element technique in solving the equations governing the drying
process. We draw our attention in using higher order time stepping methods and study
various time stepping strategies in solving the equations governing the drying process at
isothermal conditions. We consider a cell-centered finite volume scheme and as a first step
we use a fixed time step size. The change of drying states cause steep local gradients due
to the rapid increase or decrease in many variables which causes the reduction of time step
sizes. In such cases, in order to increase the efficiency, variable time stepping methods
have been proven sucessful. For this, we have chosen the method of lines approach and
used an implicit fifth order time stepping ODE method, the so called Radau5 method in
one space dimension. In Radaub method, a simplified Newton iterations is used in solving
the nonlinear system of equations with variable time step control, for details see the text
book of Hairer and Wanner [18]. While moving to higher dimensions, we considered the
dimensional splitting approach. To maintain symmetry in the solution and better accu-
racy, Strang [41, 42] proposed two splitting procedures. We have developed algorithms in
the two dimensional case using the dimensional splitting technique which can be extended
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easily to three dimensions. Attaining positivity preservation in the numerical solution of
partial differential equations is another important factor in many practical problems be-
cause many physical variables should become negative. Hence a positivity and stability
analysis has been done for a scalar quasilinear parabolic problem.

An efficient time stepping method and a suitable time stepping strategy play an important
role in the study of attaining efficiency in the computational cost. Among the methods
which are capable of integrating stiff differential equations efficiently, linearly implicit meth-
ods have been proven successful because they completely avoid solving nonlinear systems
of algebraic equations. If the semi-discrete ODE system is stiff, explicit time integration
methods are no longer efficient due to severe time step restrictions that are required for a
stable solution. Many implicit methods have better stability properties and therefore are
more efficient, despite the fact that large algebraic systems have to be solved at every time
step. However, in some cases, the stiffness occurs only in a local domain. The reason for
such a behaviour is only that small part of a domain lies in the area of large diffusion.
The basic idea is to use an explicit scheme in the nonstiff region and an implicit scheme
in the stiff region or in some cases the entire system at a particular time can be switched
from implicit to explicit and vice versa. In literature, this way of switching of explicit and
implicit schemes are called as partitioning methods, see [1, 8, 10, 15, 28, 19, 48]. We apply
a partitioning strategy for a scalar quasilinear parabolic problem. However these schemes
are not efficient in some cases where the problem is highly stiff at all parts of the domain.
In such cases, local time stepping methods are efficient in which the time step is controlled
by a local stability condition. Subunits of many coupled systems typically behave on dif-
ferent time scales. The idea of local time stepping methods is to use small time steps in
highly stiff regions and large time steps in nonstiff and mildly stiff regions. By using local
time stepping with explicit methods, different time steps are chosen at different grid points
usually according to a local CFL condition. By using local time stepping with implicit
methods, different time steps are chosen at different grid points based on a local temporal
error criterion. The numerical results show that these local time stepping schemes are
efficient in saving computational cost, although the schemes are slightly nonconservative
at the grid interfaces. In literature these methods are also known as multirate time step-
ping methods. Multirate timestepping avoids the necessity to take small global timesteps
restricted by the maximum error at a particular grid point. The details on such type of
methods can be seen in [3, 11, 12, 17, 39, 43]. We consider a time stepping strategy of Sav-
cenco et al. [39] in solving the coupled parabolic problem governing the isothermal drying
process in which the time step size is chosen according to the local temporal variation. In
this method, the total time interval is divided adaptively into finite subintervals and uses
local time steps in each subinterval.



Structure of the thesis

In Chapter 2, a short overview of the drying process of porous media and its applications
are presented. The basic concepts behind the modelling of the drying process and the
work done on drying during the past are discussed briefly. Then we present a mathemat-
ical model of Perré [36] for the drying process of porous media at isothermal conditions.
A set of coupled quasilinear parabolic partial differential equations representing water and
air balance of the drying process are presented. Next, we give the equations for the state
variables which are collected from basic definitions, laws and experiments. Further, we ex-
plain the important phenomena in the drying process such as capillary migration, change
of drying states and the sorption equilibrium. At the end of this chapter, we give the list of
dependent variables and the material constants that are used for the numerical simulation.

In Chapter 3, we are concerned with the numerical simulation of the isothermal drying
model in the one dimensional case. First, we introduce a cell centered finite volume method.
Then we explain the finite volume discretization for a nonlinear parabolic problem with
explicit, semi-implicit and fully implicit time discretizations. Further, the approximation of
diffusion coeflicients and the derivative terms that appear in the fluxes are presented. Then
we discuss the stability conditions for an explicit scheme and give the CFL condition for a
parabolic problem. Next, we give Newton’s method to solve the nonlinear system of alge-
braic equations. Also we discuss the construction of the Jacobain matrix numerically and
the corresponding functional evaluations required for a numerical Jacobain are presented.
Then, we introduce direct and iterative linear solvers which are used to solve linear system
of algebraic equations. Next, we pose a quasilinear scalar parabolic problem with initial,
boundary conditions and give the complete set of equations of state. This scalar problem
is resulting by reducing the coupled drying model of Perré [36] under some assumptions.
Next, we give the discretization for the scalar problem. An algorithm for solving the scalar
quasilinear parabolic problem using implicit scheme is presented. Then we present the
numerical results for the scalar problem and compare the efficiency with explicit, implicit
and semi-implicit time discretizations. Next, we pose the coupled problem, which exactly
govern the isothemal drying of porous media. The discretization for the coupled problem
and an algorithm to solve the quasilinear coupled parabolic problem using fully implicit
scheme is presented. The numerical aspects are discussed and the profiles of various vari-
ables are given presenting the physical trend of the drying process. Next, we present the
method of lines (MOL) approach in solving time dependent partial differential equations.
Then we give the semi-discrete DAE system of equations for the coupled problem which
are obtained after the space discretization. Next an implicit time integration method, the
so called Radaub with variable time stepping criterion is briefly presented. Finally the
numerical aspects with MOL approach using the Radaub method are given.

Chapter 4 is devoted to the positivity and stability analysis for a quasilinear scalar parabolic
problem. First, we consider a quasi-linear diffusion equation. Next, we define an M-matrix
and using the properties of M-matrices we prove the positivity and stability for the quasi-
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linear initial and boundary value problems with finite difference semi-implicit time dis-
cretization. Next we carry out the analysis for a particular case of a quasilinear parabolic
problem. Then, we give a simple diffusion equation as a test case for the positivity. Also,
we show that the reduced scalar drying problem is a particular case of the analysis of the
quasilinear parabolic problem. At the end, we pose the coupled drying problem to mention
the difficulty in proving positivity analysis for such complex coupled systems.

Chapter 5 is concerned to the numerical approach in the two dimensional case. At first,
the concept of operator splitting is discussed for a scalar ODE problem. Then, we extend
the concept of operator splitting to the study of vectors and operators. Then we discuss
about the splitting error and the advantages of the splitting approach. Next, we describe
the dimensional splitting approach in solving multi dimensional problems. Then we give
the discretization in two dimensions using dimensional splitting and present the domain
using symmetry. In the next section, two kinds of symmetric splitting procedures of Strang
[41, 42] are presented. Finally we present the numerical results in two space dimensions.
The saturation and air pressure profiles at different drying times are presented.

In Chapter 6, we study time stepping strategies which are useful in finding an efficient
numerical solution of time dependent parabolic partial differential equations. At first, we
discuss about linearly implicit methods and its advantages. Then we give two linearly
implicit time integration methods with variable time step control which are a W-method
and a Rosenbrock method. Next we pose a scalar parabolic problem for test case and
the coupled drying problem. In the next section, a partitioning strategy which partitions
the time discretization into explicit and implicit parts based on local temporal error is
presented. Then, the numerical observations using the partitioning strategy are discussed.
In the final section, a brief introduction to the local time stepping methods is given. Then,
we present a local time stepping strategy of Savcenco et al. [39] for solving stiff time
dependent parabolic partial differential problems. The processing of a time slab, dealing
the interface boundaries, estimation of a proper length for a time slab are discussed. Finally
the numerical aspects in solving the coupled drying problem using local time stepping
strategy are presented.



Chapter 2

Mathematical model:
isothermal drying of porous media

A mathematical model governing the drying process in porous media under isothermal
conditions is presented in this chapter. In the first section, we give a brief introduction
of the drying process and its applications. We consider the drying model developed by
Perré [36] for the specific case of isothermal conditions. In Section 2.2, we give the partial
differential equations that govern the drying process at the macroscopic level. Then, we give
the definitions of all the physical variables that are involved in the macroscopic equations.

2.1 Drying of porous media

Drying involves transfer of heat and mass inside the porous medium. The drying of a
porous material, i.e. removal of water from the pores by evaporation, is a complex process.
The porous medium under consideration consists of three phases, i.e. a solid phase, a liquid
phase consisting of free and sorbed water and a gaseous phase which is a mixture of water
vapour and air. The laws for heat and mass transfer in porous media are formulated on the
basis of conservation of momentum, energy and mass. The most important transport phe-
nomena are capillary flow, gaseous diffusion, and heat conduction. We take into account
the exchanges between them. In the case of isothermal drying, heat transfer is assumed to
be perfect so that the heat required for evaporation can be supplied without any temper-
ature gradient. This approximation is reasonable for slow drying under moderate drying
conditions. In order to model the drying process, it is necessary to analyse the transport
in both the liquid and gas phases through the medium.

The primary objective of understanding the drying process is to predict the distribution of
moisture content and internal total gaseous pressure within the capillary porous body as
they evolve in time. Mathematical modelling and numerical simulation allow us to avoid
expensive and repetitive experiments. Also they can be used to understand the underlying
physics associated with the transport phenomena in the drying process. There are two
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most important phenomena during the drying process. The first is capillary migration
which ensures good moisture transport and high drying rates at the start of the process.
The second is the sorption which plays an important role during the final stages of drying
when equilibrium is approached. The transport phenomena in porous media can be mod-
elled using a continuous or discrete approach. The discrete approach aims to describe the
emptying of individual pores during drying. However, since the geometry of the porous
medium is complex, the equations are usually written at the macroscopic scale. At this
level, the porous medium is treated as a continuous medium.

dry air + water vapour

representative elementary volume

Figure 2.1: Partially saturated porous medium.

Drying has a wide range of applications such as drying of fruits and vegetables, paper
and wood, ceramics, concrete, pharmaceuticals etc. There are several types of drying pro-
cesses, see [16, 35]. We use convective drying. This means that hot dry air flow provides
the necessary energy required for evaporation to remove the moisture content. A drying
model based on the continuous approach was developed by Whitaker who used the volume
averaging technique to derive a system of macroscopic transport equations from a set of
basic transport laws at the microscopic level for gas, liquid and solid, see [49, 50, 51]. The
theory of Whitaker was later applied to several porous media problems in developing the
drying modelling, for instance see [7, 36, 44]. In the present study, we consider a drying
model developed by Perré [36] based on Whitaker’s theory of drying. We consider an
isotropic porous medium at isothermal conditions. The goal of this study is to explore
the possibilities of numerical simulation in representing the physics that occur during the
transport process in the porous medium in an efficient way. For the reader interested in
drying, see [27, 33, 34, 37|.
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2.2 Governing equations

The equations governing the drying process are highly nonlinear and strongly coupled
parabolic partial differential equations. We consider the drying model of Perré [36] at
isothermal conditions, i.e. we take temperature as constant. The porous medium is as-
sumed to be isotropic. Then the water and air balance equations are given by

Water balance equation

1— M K K
OlSp+ o S =V - (pgDesrVys + pl—klvpl + —pukgV Fy). (2.1)
ot H Hg
Air balance equation
OlY(1 — ) p, K
W =V (pgDessVya + M—Pakgvpg)- (2.2)
g

The primary variables are the liquid saturation S and air density p,. The variables py, D¢/,
Y, ki, Pl pu, kg, Py, Yo that appear on the right hand side of equations (2.1) and (2.2) are
nonlinear functions of S and p,. To make the system complete, these dependent variables
are collected from definitions, basic laws and experiments which are explained in the next
subsection. Further, the equations contains the constants 1, p;, K, j, ug. The present
problem is challenging for numerical simulations and the numerical aspects will be discussed
in next chapters.

Initial and boundary conditions

Initially, the porous medium is assumed to be filled with some prescribed saturation and
air pressure. The total gas pressure is at atmospheric pressure

S(to) = So, pa(to) = pag and Py(ty) = 10°Pa. (2.3)

The boundary conditions for the external surfaces of the porous body should be specified.
The driving potential at these surfaces is given by

P, - 1—9
Ju 7= Bt M, In(5 _@gj’). (2.4)
Here J,, represents the flux vector for the water balance equation and 7 is the outer normal
vector. The flux J, is the amount of water going away from the external boundaries. It
was proposed by Bird [5]. Here, we take #,,=0, which is the molar fraction of bulk air.
The mass transfer coefficient 3 depends on the air flow field outside the porous medium.
The gaseous pressure at the boundaries is always fixed at atmospheric gas pressure and
therefore the following algebraic equation serves as the Dirichlet boundary condition for
the air balance equation

100000 — P,)M,
gy = - )M (2.5)
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2.2.1 Other equations

At first, we give the state variables to characterize the gas phase. Vapour pressure, air
pressure and the total gas pressure are defined by ideal gas laws

RT RT RT
_ ol p _ peBT g, = P

P,
M, M, M,

(2.6)

The gas phase is a mixture of air and vapour phases and hence the gas pressure is the total
pressure, i.e. we have

P,=P,+ P, (2.7)
and the molar mass of the gas is given by

P,

My, =M, + (M, + M,)—=. (2.8)
Py

The mass fractions of vapour and air in the gaseous phase are given by

yo =22 and y, = 22, (2.9)
Pyg Py
and the molar fraction of vapour is the following
P,

Uy = —. 2.10
o= (2.10)

These equations help to understand the gradients of y,, y, and P, in equation (2.1) and
equation (2.2).

Capillary migration (VP)

The evaporation starts near or at the surface. In unsaturated porous media, there exist
gas and liquid phases. The pressure of the wetting fluid is less than that of the non-wetting
phase, due to the curvature of the interface between the liquid and gas. The difference
in these pressures is called capillary pressure. The curvature of the meniscus increases as
the saturation of the wetting phase decreases. This is the reason for the transfer of liquid
from wet to drier parts. This phenomenon is known as capillary migration. These capillary
forces are responsible for most of the liquid flow at initial stages of the drying process. The
liquid pressure is given by

P =P, - P. (2.11)

The saturation S is proportional to the moisture content X given by

X
g="

e (2.12)
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There is a certain amount of moisture content which is strongly bound to the porous
medium which is called sorbed water. The sorbed water is localized, i.e. not free flowing
because of the strong interaction with the solid phase. Its value depends on vapour pressure
described by sorption isotherm. It has a maximum of critical mosture content X,.;;. The
moisture content for free water is given by

Xfw =X - Xcrz'ta (213)

and finally the expression for capillary pressure determined by Perre [36] has the following

form
—0.3476X 1,

P, = 4008405710 (2.14)

Change of drying states and sorption equilibrium

The important factor in the process of drying is the change of drying states. The definitions
of all the variables change according to the drying states. We define the states of drying
in the following way throughout the thesis. If the moisture content X is greater than the
critical moisture content X,.;;, this is the first drying state. If X is less than X,,;;, then this
is called the second drying state. And if X < X_.;; in some part of the porous medium and
X > Xt in the rest of the porous medium, we call it an intermediate state of the drying
process. If X > X,.;;, it means that free water exists, transport is by liquid convection and
the gas phase is saturated with vapour. So, there is little space available for gas flow at
the start of the drying process. There is no free water if X < X, ;, the transport is only
in the gas phase by diffusion. In this state, there is no space for the liquid flow. Therefore,
the relative permeabilities of liquid and gas are defined as

S3 it X > X,y
— fw jtl crit
K { 0 @ if X < Xears (2.15)
and (25 52 ¢
_ 1+2fw_3 fw : iXZXcrit
kg = { 1 0 if X <X (2.16)
Here, the free water saturation S, is taken as
X - Xcrit
Y= ’ remt ) 2.1
Sf e (O Xsat - Xcm't) ( 7)

The value X,,; is the saturated moisture content, i.e. the moisture content when all the
void space is full of liquid water. The effective diffusivity and binary diffusion coefficient
are given by
2.26 ( T \"*
Deff = DwO.ng and Dva = Tg (ﬁ) (218)
respectively. The sorption equilibrium plays an important role during the change of a
drying state. This is responsible for most of the liquid flow at the final stages of the drying
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process. It causes a rapid reduction in the vapour pressure at the second stage of the drying
process. The relative humidity is defined by

P,

6=

(2.19)

Figure 2.2 represents the sorption isotherm, for the material concrete. It can be described
by

cod > .
6= { 1 if X > X (2.20)

L2 - ] X < X

0.4

0.35f

2 o
13;1 w
‘ ‘

Moisture content X
o
N

X2X
0.15¢ ot
01F x =007
0.07 crit
0.05r
X<X .
crit
0 ; ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

Relative humidity @

Figure 2.2: Sorption isotherm for light concrete.

It is clear from equations (2.19) and (2.20) that during the first drying state, the vapour
pressure is constant and that the sorption causes a sudden rapid reduction in vapour
pressure during the second drying state.
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2.2.2 Nomenclature
The list of variables

The primary variables are saturation S and density of air p,. The following table gives the
list of the dependent variables and the nomenclature

S.No. | symbol Nomenclature
1 Do density of vapour
2 Py density of gas
3 P, air pressure
4 P, vapour pressure
5 P, liquid pressure
6 P, gas pressure
7 P, capillary pressure
8 Yo mass fraction of vapour
9 Ya mass fraction of air
10 Mg molar mass of gas
11 T molar fraction of vapour

12 (0] relative humidity

13 ky relative permeability of liquid

14 kg relative permeability of gas

15 X moisture content

16 Xfw moisture content of free water

17 St saturation of free water

18 D.s¢ effective diffusivity

19 Dy, binary diffusion coefficient of vapour and air

Table 2.1: List of variables.
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The list of constants

The following table represent the material constants that are used for the numerical simu-
lation of a concrete material.

S.No. | Symbol Nomenclature Value
1 P porosity 0.8
2 ol density of water 998 %
3 Ps density of solid 500%
4 K absolute permeability 2.10"1¥m?
5 Serit critical saturation 0.04383
6 Xerit critical moisture content 0.07
7 Xat saturated moisture content 1.59
8 R gas constant 8314.4Jkmol k=1
9 M, molar mass of air 28.96 %
10 M, molar mass of vapour 18.02%
11 j saturation vapour pressure 2333.9 pascal
12 L viscosity of liquid 1073 Pa — sec
13 g viscosity of gas (17.8)107%Pa — sec
14 T temperature 293K
15 o surface tension 0.0726%
16 I} mass transfer coefficient 0.01.~>

Table 2.2: List of constants.




Chapter 3

Numerical simulation in the one
dimensional case

In this chapter, the numerical approach and the simulation results for the drying problem
in one space dimension are presented. The governing equations are a quasilinear scalar
parabolic partial differential equation as well as a coupled parabolic system of partial
differential equations. There are several numerical methods to solve the continuous time-
dependent partial differential equations such as finite difference methods, finite volume
methods and finite element methods. The present simulation work is done by using a cell
centered finite volume method. In the first section of this chapter, we describe the finite
volume method with explicit, implicit and semi-implicit discretizations. Then, we explain
the Newton method to linearize the nonlinear system of equations which are obtained with
implicit and semi-implicit time discretizations. In the next section, some methods which
we have used to solve the linear system of algebraic equations are presented. In Section 3.3,
we give the algorithm and present the numerical results for the quasilinear scalar problem.
In Section 3.4, we present the algorithm and the numerical results for the coupled drying
problem (isothermal drying). In the final section of this chapter, we describe the method of
lines approach and give the corresponding numerical results using a higher order implicit
time stepping method which is the so called Radaub method, see Hairer and Wanner [18].

3.1 Finite volume method

The finite volume method is a numerical method for solving time dependent as well as
stationary partial differential equations. It calculates the values of the conserved variables
by averaging over a control volume. These methods are of a class of discretization schemes
that are highly successful in calculating the solution of a wide range of systems of conserva-
tion laws. They are widely used in fluid mechanics, biological models, chemical engineering
models, meteorology etc. The primary advantages of this method are intrinsic local con-
servation properties of the resulting schemes and the numerical robustness through the
obtention of discrete maximum principles. Another advantage of the finite volume method

13
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over the finite difference method is that it does not require a structured mesh, although the
computations on a structured mesh are simpler. Furthermore, the finite volume method
is preferable to the other methods as a result of the fact that the boundary conditions
can be applied in accordance to the conservation laws. This is true because the values of
the conserved variables are located within the volume element, and not at the nodes or
surfaces. The details of these methods can be found in many text books, for instance see
Versteeg and Malalasekera [46], LeVeque [24], Patankar [30].

The finite volume method consists of the following key steps

1. Division of the domain under consideration into a finite set of control volumes which
is called the grid generation.

2. Converting the governing partial differential equations into integral form and then
integrating them over all the control volumes of the solution domain.

3. Calculating the fluxes by the approximation of convective, diffusive and source terms
in the governing equations.

4. Finally, the system of algebraic equations obtained in Step 3 has to be solved by
either direct or by iterative methods.

Figure 3.1 represents a typical cell centered control volume mesh in one space dimension.
Let h = Tjpl = Tj 1 be the length of each control volume. The circles denote the location
of the center of the control volume or cell, where j — % and j + % represent the cell faces
or edges. The boundary cells can be handled in several ways. Here we take the length of
the boundary control volume as h/2. For treating the boundary cells in different ways, we

refer to Patankar [30].

h/2 h h/2

Control Volume

j—2 j—1 j j+1 j+2

j—1/2 j+1/2

Figure 3.1: Typical control volume mesh in 1-d.
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3.1.1 Finite volume discretization

Let u = u(z,t); z,t € R, t > 0. Consider the following partial differential equation as a
model problem for which we present the cell-centered finite volume discretization,

0u) 0 | Ofi(u
(9(t) za Lz_; (ai(u) J;i ))] (3.1)

Consider the one-dimensional control volume which is shown in the Figure 3.1. Integrate
the partial differential equation (3.1) over the control volume from z;_ 1 to ;1 and over
a time interval of ¢,, to tn+1, then we have

/ / /% [ﬁ (e 20 >)]dxdt,

=1
Let 7=t,+1 — t,, be the time step size. Then we get,

+1]

7% thaga(:) dt| dx = 7%(; [Zk: (ai(u) 8];:(:))] ! dx + o(7).

=1
T, t T,
i- " i=

[N
Mh—t

Definition 3.1 Let ¢ : [t,,t, + 7] — R be any function with t,>0 and 7>0 . Then
for an explicit scheme we define ¢(t)"*Y := (t,) and for an implicit scheme we define
p(t) = p(t, + 7).

For a semi-implicit scheme, we take the diffusion coefficients a; in the equation (3.1) ex-
plicitly and the derivative terms implicitly. Let h = z; I be the space step size,
then by omiting the error terms we have

L L an\ ][ 2]
- n+l n — Z . i\ — Z ; Ziu
; / [0(w) O(u)"] dz = - lz_; (az(U) o )] h [Z_; (az(u) Oz )]
zj_% 1= zj+% = Eji%
(3:2)
We define
Ti+d Tit3
. 1 n n_ 1 n
(u)t! = - / 0(u)"'dz and O(u)} = Z / 0(u)"dz,
wj_% wj—%

the averaged values accross a control volume. Finally, we obtain

o<u>?“—0(u>?=%[i (atu )a@;))] H]—,:[i (atu )*”;fv))] T e

i=1 i=1
T 1

The two terms in the right hand side of equation (3.3) are called the flux terms at the right
and left faces of a cell.
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Approximating the diffusion coefficients and derivatives in the fluxes

The diffusion coeflicients at the cell faces 7 — % and j + % in Figure 3.1 are approximated
by taking the average of u over the adjacent cells i.e.,
_ (a(u)j + G(U)j+1) . (3.4)

(a(u)j +2a(u)j‘1> and a(u);, 2

It is also possible to approximate the diffusion coefficients with a higher order averaging,
for instance a fourth order averaging is given by equation (3.5), see Kurganov [22]

a(u)j_% =

(M

1= —a(w)jr2 + 9a(u)j1 + 9a(u); — a(u)jfl. (3.5)
. 16

a(u);_

The derivatives appearing in the flux terms in equation (3.3), at the cell faces j — & and

2
J+ % are approximated using the central differences. At the cell faces, we have

21 =Sy [O10] S

ox h o0z h

N

Explicit discretization

The explicit time discretization of the partial differential equations are easy to implement,
since these discretizations do not lead to any nonlinear system of algebraic equations.
Though these methods are accurate, they are poor in efficiency. The stability or instability
of an explicit discretization depends on the mesh ratio. Courant, Friedrich and Lewy
derived a stability condition which is the so called CFL condition for the convergence of
an explicit difference scheme in terms of the concept of a domain of dependence. For more
details on stability and CFL condition, we refer to Morton [26].

Let us consider the equation
ou 0 ou

Now suppose that, we discretize the equation (3.6) by a cell centered finite volume scheme
which is explained for equation (3.1), then the CFL condition for (3.6) becomes
. (3.7)

max(a(u))— <

DN | —

-
h?
As mesh size decreases i.e., as h — 0, the time step sizes 7 are reduced in order to satisfy
the inequality (3.7).

Implicit discretization

Implicit discretization methods are in general unconditionally stable schemes. These meth-
ods are stable with large time steps and therefore more efficient, but less accurate when
compared to explicit discretization. Implicit discretizations of partial differential equations
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lead to a large system of algebraic equations which can be linear or nonlinear. This system
of equations has to be solved by iterative or direct methods which will be presented in the
next section. For solving the nonlinear system of algebraic equations, we first use Newton’s
method to linearize the system and then we apply the direct or iterative methods to solve
the linearized system.

Newton’s method

We want to solve a nonlinear system of algebraic equations given in the form F(u)=0,
where u is the unknown vector. Newton’s method is an iterative method which is used
to solve the nonlinear system of algebraic equations in terms of transition from a current
iterate u, to a new iterate u,,;1. The Newton method is given by

Up+1 = Uy — Z,

z = (3_F) o F(u) (3:8)
Oou '
OF

Here - is the Jacobian matrix. A proper initial guess of the solution u is necessary

for the convergence to the exact root. In order to compute the solution at a new state
from the current iterate, one must evaluate the Jacobian matrix and define an accuracy
criterion to terminate the iterative process (3.8). The iterative process is terminated when
the difference in the two consecutive iterations u, and u,.1, is less than the prescribed
tolerance. The construction of the Jacobian may be exact if it is easy to compute the
derivatives analytically, otherwise the Jacobian can be approximated by using the finite
differences. Evaluation of g—]’; by using finite differences should be expected to cost N times
OF

the cost of an evaluation of F because each column in - requires an evaluation of F to

form the difference approximation. Thus if one uses a direct method to solve the linear

system of algebraic equations (g—i‘) z = F(u) and finite differences for the construction of

Jacobian, then the cost of a Newton’s step can be roughly estimated as N+1 evaluations

of the function F(u) plus the number of floating-point operations that occur in solving the
OF

linear system (4-) z = F(u). For rigourous information about the Newton method and its

properties, we refer to Deuflhard [14] and Kelley [21].

3.2 Methods to solve the linear system of equations

There exist several methods to solve the linear system of algebraic equations, which can be
direct methods or iterative methods. In our computational work, we use four methods to
solve the linear algebraic systems. Let Az = b represent the system of algebraic equations,
where A is an N x N matrix, z is the unknown vector and b is the known right hand side
vector.
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Gauss elimination method

This is a well known method that performs the elementary row operations to put the
augmented matrix into the upper triangular form. Then, one can easily solve the unknown
vector z using back substitution. This method is found in many text books, for details of
the method and algorithms, we refer to William [38]. The innermost loops of Gauss-Jordan
elimination are executed N3 times, the corresponding loops in Gaussian elimination are
executed only N3/3 times.

LU decomposition

Gauss elimination leads to the decomposition of the matrix A as a product of two matrices,
A=L-T,

where L is a lower triangular matrix which has elements only on the diagonal and below
and U is upper triangular which has elements only on the diagonal and above. Then we

have
Az=(L-U)z=L-(U-z)=h.

The solution z is obtained first by solving Ly = b by forward substitution and then by
solving Uz =y by backward substitution. This is also a well-known method and can be
found in many text books of linear algebra and numerics.

Thomas algorithm

In most of the cases, we consider the matrix A is a tri-diagonal matrix. Especially the
discretization of a scalar partial differential equation in one space dimension leads to a
system of algebraic equations Az = b, where the matrix A is a tri-diagonal matrix. This
algorithm is easily and efficiently carried out by a special variant of the well-known Gaussian
elimination algorithm. We use the Thomas algorithm to solve the linear algebraic system
of equations obtained while solving the scalar drying problem in one dimension. This
algorithm can be found in many text books, so it is not presented here, we refer to Morton
[26], Weickert [47]. This method is stable for every strictly diagonally dominant matrix
and efficient in comparison to the Gauss-elimination method. This procedure requires 5N-4
multiplications/divisions and 3N-3 substraction. Hence the CPU effort is linear in N.

BiCGSTAB

In many situations iterative methods are preferred over direct methods because an accurate
approximation to the solution is obtained with less computational effort. The biconjugate
gradient stabilized method is an iterative method developed to solve the algebraic system of
equations where the matrix A need not be positive definite and symmetric whereas in the
conjugate gradient method, the matrix A should be symmetric and positive definite. In our
numerical work, we use BICGSTAB without and also with preconditioning. BiCGSTAB
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requires two matrix-vector products and four inner products, for details of this method see
Van der Vorst [13].

3.3 Numerical results - scalar problem

In this section, we give the numerical approach and the corresponding numerical results
for a quasilinear scalar parabolic problem. The scalar problem results from a simplification
of the drying problem of Perré under some assumptions in order to start with a slightly
simpler case and later we extend it to the complicated coupled problem. In this section,
we carry the numerical results with explicit, implicit and semi-implicit time discretizations
using a cell-centered finite volume method and present the corresponding drying profiles.
The numerical simulations are carried out for the drying of an isotropic porous medium.
We consider the drying of concrete.

3.3.1 One dimensional scalar problem

First we give the governing partial differential equation and the equations of state for the
scalar problem. We consider only the water balance equation from the drying model of
Perré [36] and we assume that the density of air p, and the temperature 7" as constants.
The primary variable is the saturation S. The governing equation is a quasilinear parabolic
partial differential equation. Though this reduced problem might slightly affect the physics
of the problem, we wish to start with a slightly simpler case because the coupled problem
is highly complex. Also we wish to analyze such type of a fully quasilinear problem. The
reduced problem under consideration consists of 18 secondary variables.

Governing equation

The governing partial differential equation is given by

WS +v(1—S)p] 0 0 pK, 0 K 0
ot Oz (pg Deys a:cy“ + 14 & axPl + ,ugpvkgaxpg)' (3.9)

Initial and boundary conditions

Initially the porous medium is saturated, i.e., the porous medium consists of certain amount
of moisture content, which is given by Sy = 0.8 and the pressure of the gas P, is 10° pa.
Let the length of the sample be L. Hence the boundary conditions at the external ends
0 and L of the domain must be specified. They are given by a nonlinear flux which is a
function of the saturation S. The boundary conditions are symmetric. This flux function
has the following form
1

1-— gv
where n is the outward unit normal vector and J,, is the boundary flux.

_ Py
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3.3.2 Equations of state

To make the system complete, the equations of state are collected from basic laws, exper-
iments and definitions. These equations are given as follows,

1.
2.

10.
11.
12.

13.

14.

15.

— P

Yy = g’

ya:Z_Za

C Uy = %7
.My = Ma—i-(M,,—Ma)%,

9

Dejs = Dyo0.2k,

Dw _ (2.26) (l)l.Sl

P, \273 )
— psX
Y’
¢ = by
P
. Xfw:X - Xcrita
_ 8.4057)10 0-3476X fu
P. = 400¢! ) ,

Pl:Pg_Pc:
P, =P, + P,
RT
Pg:ng—g’
p, = &

X—Xcri
= max crit .
Stu a (0’ Xsat_Xc'rit)

Change of drying states

The variables relative humidity ¢, permeability of water k; and permeability of gas k, are
defined with respect to the drying states, see Chapter 2. So, during the intermediate stage
of drying, the nodes which are in the first drying state are governed by some equations of
state and the remaining nodes which are in the second drying state are governed by another
set of equations. Thus the definitions of all the 18 variables change according to a drying
state. The relative humidity and permeabilities are governed by the following equations

1.
2.
3.

¢=[Z=2— £ if X < Xy else ¢ =1,
k=253, if X > X, else k; =0 and

kg=1+ (257, — 3)5%,” if X > X else kg = 1.
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3.3.3 Complexity of the problem

The drying problem under consideration, the scalar as well as the coupled problem is
challenging for numerical simulations as it poses a lot of difficulties. Some of them are
listed here.

1. Fully nonlinearity,
2. many variables which leads to many equations of state,
large real time computations, for instance hours, days or months,

local rapid increase and decrease of variables due to different states of drying,

AN

strongly coupling, the coupled problem will be discussed in the next section.

3.3.4 Discretization

We discretize the partial differential equation (3.9) using a cell centered finite volume
method which is presented in Section 3.1. We consider a one dimensional mesh as shown
in Figure 3.1. The diffusion coefficients which appear in the fluxes are averaged over the cell
faces, and the derivatives appearing in the fluxes are approximated by central differences.

We integrate the equation (3.9) over a control volume [z 1T 1] X [tn, tns1], then we have
tn+1 J+ ) ] tn+1 wj+% a a 8 8
opSp, + 1/) / / PlK K
- (gD = j2 .
/ / dzdt B (pgDeyy ax‘% kla l+ pvk 99, P,)dzdt
tn z th T.

[\Jh—t

Let h = Tjpl—T; 1 be the space step size and N be the number of cells ie. h = N,

where L is the length of the domain. The length of the boundary cells i 1s 2. To explain the
discretization we use a simpler notation for the diffusion coefficients in (3.9). We denote
the diffusion coefficients for the scalar problem (3.9) by

K K
a1(S) = pyDeyy, a2(S) = %kl and as(S) = = puly (3.11)
g

Then, for 1 < 7 < N — 1 we obtain the following nonlinear algebraic equation

[bSpi+p(1 = S) o] — [Sp + (1 = S)p ]y _

0

T 0
7 1a1(S) 5 -yw + ax(S) 5
0

0 n
Tla1(S) i + () - P+ as(S) S P41

J,_

P+ a3(8) 5 P]"+1 (3.12)

at the left boundary j = 0, we get
[WSpitib(1 = S)pJs™ — [Sp +4(1 — S)pJg =

2 0 0 0 n
7 (104(5) g+ aa($) 5P+ aa(S) P = (o)

(3.13)
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and at the right boundary j = N, we obtain

[WSpip(1 = S)p I = [WSp + (1 = S)p ]y =
2T

2r (_(Jw)N ~ [01(8) i+ 02(S) P+ as(S)

o m (3.14)

oz

Implicit and semi-implicit schemes lead to a large system of nonlinear algebraic equations
which can be linear or nonlinear. In the present problem, the system of algebraic equations
(3.12), (3.13) and (3.14) is nonlinear. We therefore use the Newton method to linearise
the nonlinear system of equations and then we apply Thomas algorithm for solving the
linearized system. If we use an explicit scheme, we can avoid solving the large nonlinear
algebraic systems, but these schemes demand very small time step sizes for stability restric-
tions. In the present problem, even an explicit scheme demands the Newton iteration to
find out the solution S, since the time dependent term is a nonlinear function of saturation
S which is given by

(A—=B)S+B : ifS> S

WSPI +¢(1 - S)pv] = { Als3 + B182 +015 . lfS < Scrit- (315)
The constants A, B, A;, B; and C; are given by
¢3p2M P* 2A1Xcritps
A= =0.013811, A ,Bj=—-A ————— C1 = — A — Bj.
Yo, B 1= RTX?m 2 1= 1 o ) Y 1 1

The material constants involved in the above equations can be obtained from the Table 2.2.
The efficiency of the explicit scheme compared with the efficiency of an implicit scheme
can be observed from the Table 3.1.

3.3.5 CFL condition for the explicit scheme

As described for the equation (3.6), a necessary condition is required for the problem (3.9)
to attain the stability which is called the CFL Condition. For the problem (3.9), in order
to obtain the stability of [¢)Sp; + ¥(1 — S)py], we consider the following restriction for the
time step size using an explicit scheme

max [, (S), as(S), as(S )]—gCFL (3.16)

3.3.6 Construction of Jacobian matrix for the implicit scheme

To solve the nonlinear system of algebraic equations, Newton’s method is the best choice
which requires the construction of a Jacobian matrix. Though analytical Jacobian is more
accurate than the finite difference Jacobian, due to many equations of state, highly non-
linearity and due to the switching of the drying states, the construction of the Jacobian
matrix analytically is very complicated. So, we use a finite difference approximation to
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construct the Jacobian matrix numerically. Bringing the right hand side of the equations
(3.12), (3.13) and (3.14) to the left hand side, we denote this system of algebraic equations
by

F}'(S(),Sl,...,SN) :0, fOI‘j :0,1,N (317)

Then for any € > 0, the derivates in the jacobian matrix are estimated by

aF}'(SOa Sla <ty SN) _ F}'(SOa Sla ey S’L +€ .., SN) - F}'(SOa Sla S Sia ey SN)
851 N € ’

(3.18)

for 7 =0,1,....N and for 7 = j — 1, 7,7 + 1. The Jacobian matrix obtained for this scalar
problem (3.9) is a tri-diagonal matrix. Therefore, we use the Thomas algorithm to solve
the linearized system of equations. The convergence of the Newton’s iterations depends
on the suitable choice of €. The choice of large € avoids the roundoff errors and a small €
avoids poor approximation of the derivative. A proper choice of € gives faster convergence.
We have taken e=10"° in our numerical computations.

3.3.7 Algorithm

Here we present the algorithm, which describes the implementation of the fully implicit
scheme to solve the problem (3.9). Let S denote the vector [Sy Si.... Sy], where N is the
number of cells, F(S) = [Fy(S) Fi(S) ...Fn(S)] denotes the vector of algebraic functions
and J. denotes the Jacobian matrix. Then the algorithm reads

1. Initialize the 19 variables.
2. Do the time loop.
3. Start the Newton iterations

e initial guess S"*! = 8™,
e initialize the nonlinear function set F;(S"*')=0 for j =0,1,2,..., N,

e compute the increment ( S;-‘+1 = S7+e, for any small ¢ > 0 and compute the
increments in all the 18 variables for this (S,

e approximate the derivatives in the Jacobian
dF; _ F(CS) = Fy(S)
dSZ €

fori=35—-1,7,7+1,

e assemble the Jacobian matrix J,

e compute (J.) 'F(S) using Thomas algorithm for tridiagonal matrix
e compute S"*! = 8" — J.7'F(S),

e update the remaining 18 variables,

e check if (S}*' — S7) > tolerance for all j =0,1,...,N,
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e stop the Newton iterations if the desired tolerance is reached.
4. Check for the desired average moisture content.

5. End of the time loop when the drying is complete.

3.3.8 Simulation results

In this section, we present the numerical results for the scalar drying problem in one space
dimension. We consider a concrete material of length 0.05m. We take h = % as the fixed
space step size, where N denotes the number of cells. First we start with an explicit time
discretization, since an explicit discretization is easier to implement. But the time step
sizes for the explicit schemes are very small. They are controlled by a CFL condition as
defined in (3.16). The time step sizes with semi-implicit and implicit schemes are larger
and fixed with 7 = 1000 during the first drying state and 7 = 50 during the intermediate
and second drying states. A smaller time step is needed during the intermediate drying
state. This reduction in the time step is due to the change of drying states. Because the
change of a drying state changes the definition of the variables, and there is a rapid reduc-
tion in some variables and a rapid increase in other variables. The change of a drying state
causes steep gradients at the neighbourhood of a node where the change of a drying state
take place. These factors make the Jacobian matrix ill-conditioned with the larger time
steps after the first drying state. Thus for larger time steps, the Newton’s method is not
convergent. The time step selection here is just based on trail and error. Off course in such
cases, a proper time step selection strategy is useful to increase the efficiency of the code
which we will discuss in the last section of this chapter. Figure 3.2 shows the comparison
plot of the solution (saturation S) with explicit, implicit and semi-implicit discretizations
after a real time of 4.62 days. The initial saturation Sy is taken as 0.8 and at the end of
4.62 days, the average saturation reaches to 0.000025. The right hand side figure of Figure
3.2 is the zoom of the left hand side figure. Figure 3.3 represents the average saturation
profiles with different mesh sizes for a drying period of 3.47 days. Figure 3.3 shows the
convergence of the solution as the mesh size decreases. The right hand side figure of Figure
3.3 is the zoom of the left hand side figure.

The following table represents the CPU times using a 200 cell mesh, taken by explicit,
semi-implicit and implicit discretizations.

No. Scheme Total Newton iterations | CPU time (min)
1 explicit — 42.73
2 | semi-implicit 27885 9.83
3 implicit 29044 11.99

Table 3.1: Efficiency table for the scalar problem.
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Figure 3.2: Saturation profile with explicit, semi-implicit and implicit discretizations.
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Figure 3.3: Convergence of the solution as the mesh size decreases.

3.4 Numerical results - coupled problem

This section presents the numerical results for the coupled drying problem. We consider the
drying of an isotropic porous medium at isothermal conditions. We assume the temperature
as constant in the drying model of Perré [36].

3.4.1 Coupled problem in one dimension

The governing equations are two coupled parabolic partial differential equations for the
water and air balance. The primary variables are saturation S and air density p,. In one

dimension, the governing equations for water balance and air balance are given by the
following equations

OyYSp +y(1 —
ot

S)p] 0 o  pK 0

K 0
= %(pgDeff%yv kla P+

kg@

P,), (3.19)
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O (1 - S)pd) _ @ o K 0
ot - o (pgDeff axya + ,ugpakg o1 Pg) (320)

These two equations are highly nonlinear and strongly coupled. The variables p,, py, Desy,
Yv, Yas ki, kg, P, and P, that appear in (3.19) and (3.20) are unknowns and these variables
are nonlinear functions of S and p,. All these variables are defined in equations of state.

Initial and boundary conditions

The porous medium is filled with certain amount of initial concentration at atmospheric
gas conditions. The initial conditions are given by

k

So = 0.8 and p, = 116103 —.
m

The boundary condition for the water balance equation (3.19) is a nonlinear flux which is

given by (3.10). The boundary condition for the air balance equation (3.20) is a Dirichlet

condition. This Dirichlet condition for p, can be obtained by solving the nonlinear algebraic

equation which is given by

_(Pg_Pv)Ma

Pa = BT on 0f). (3.21)

At each time level, the nonlinear equation (3.21) should be evaluated along with the nonlin-
ear algebraic system of equations obtained after the discretization of the partial differential
equations (3.19) and (3.20). Also at the boundary, the gas pressure P, is always kept at
atmospheric gas conditions i.e.,

P, = 10° Pa on 99).

Equations of state

The coupled problem consist of two primary variables saturation S, density of air p, and
19 secondary variables. The 18 equations of state are the same as given in Section 3.3 for
the scalar problem. Additionally, we have the following equation of state
P, = PRI
M,

3.4.2 Discretization and algorithm

We use a cell-centered finite volume scheme which is explained in Section 3.1. As a first
step, we use an explicit discretization in time which is easy to implement. It is well known
that explicit schemes demand a very small time step size for the stability restrictions. In
the coupled case, the explicit scheme is very expensive as it demands a very small time
step size unlike the scalar problem. The time step demanded by an explicit scheme is
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approximately 1000 times smaller than that of an implicit scheme for the coupled problem.
Hence, we do not consider an explicit discretization for the coupled case.

We use the following notation for diffusion coefficients in the coupled problem. The diffu-
sion coefficients in (3.19) are denoted by

K K
a1(S, pa) = pgDess, a2(S) = %kl and a3(95) = ’u—pvkg.
9

and the diffusion coefficents in air balance equation (3.20) are denoted by

K
b1(S, pa) = pgDess and ba(S, pa) = M_Pakg'
)

The discretization of the water balance equation (3.19) is given by (3.12), (3.13) and (3.14)
with a1(S) replaced by a;(S, p.), where we consider only fully implicit discretization in
time. Here we give the discretization of the air balance equation (3.20). For 1 <i < N -1,
after discretizing the equation (3.20), we obtain

_— n T 0 0 _ int1]
Wj(l - S)pa]j+ - [1/1(1 - S)pa]j - E[bl(sa pa)aya + bQ(Sa pa)apg]j-}-%

3.22)
T 0 0 n (
— 51015, pa) 5y + ba(S, pa) 5 Pl
at the boundary nodes 1=0 and : = N, we have
[71+1}RT
[Pa]g'm—l] = %; for j =0, N. (3.23)

a

Thus it is necessary to solve the nonlinear algebraic system of equations (3.12), (3.13),
(3.14), (3.22) and (3.23). To obtain the numerical solution of the coupled system of partial
differential equations, one can adopt two strategies, the coupled and uncoupled strategies.
Let S = [Sp S ... Sn] and pg = [pag Pay --- Pan| denote the unknown vectors. Furthermore,
let F(S, p,) = [Fo(S, pa) Fi(S, p,) -- Fn(S, p,)] represent the nonlinear system of algebraic
equations obtained from the discretization of the water balance equation, i.e., F(S, p,) = 0
represents the set of equations (3.12), (3.13) and (3.14). Let G(S, po) = O represent the
nonlinear system of equations obtained from the discretization of the air balance equation
i.e., (3.22) and (3.23). For instance, if we first solve the water balance equation indepen-
dently to compute the saturation S, that is first to solve F(S™*1 p,") = 0 and then solve
the air balance equation for calculating p, using the already computed S, i.e., next solv-
ing G(S™1, p,"™1) = 0, then this strategy is called the uncoupled strategy. Though this
strategy takes less memory and is also slightly easier to implement than the fully coupled
strategy, here we have noticed that the solution does not converge with larger time steps.
This shows the strongly coupled behavior of the drying problem. Hence we adopt the
fully coupled strategy, where we solve the complete nonlinear system of algebraic equa-
tions (3.12), (3.13), (3.14), (3.22) and (3.23) together, i.e., we solve F(S"*1 p,»t1) =0
and G(S™*1, p,t1) = 0.
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Algorithm

Here we give the algorithm which describes the implementation of the coupled problem
with fully coupled strategy i.e., we solve the nonlinear system F(S™ p,”™!) =0 and
G(S™L, po*1) = 0. The algorithm reads

1. Initialize the 21 variables.

2. Do the time loop.

3. Start the Newton iterations (outer iteration)

initial guess ST = ST and p,;* = p, 7 =0,1,2..., N.

initialize the nonlinear function set F;(S"*!, p."*')=0 and G;(S", p
for j =0,1,2,...N.

an+1):07

Compute the increments (;S; = [So, S1, .., S; + €, .., Sn], for a small € > 0 and
compute all the remaining variables for this (;S; using the equations of state.
Similarly compute Gpa"t" = [pag, Pars -+ Pa; + € -y Pay] and compute all the
remaining variables for this (3pq; for all i=0,1,2,...,N;

Compute F](Clsza pa)7 F](Sa CQpa)a G](Clsza pa)a G](S’ <2pa) for all] = Oa 17 25
and fori =75—1,5,7+1,

approximate the entries in the Jacobian matrix

Fj(CISi; pa) - F'](S, pa)

N

dFy _

5 = - fori=7-1,5,7+1
Cciif; _ Fy(S, C?Pai)e_ F;(S, pa) fori=j—1,5,j+1
Cfgf _ Gj(clsz-,pa)€— GiS:Pa) i j 1441
ZZJZ _ Gj(S,@Pai)e— Gi(S:Pa) ¢ —j—1,4,j+1

assemble the Jacobian matrix [Je] oy 9yy(an2) @nd compute the vector
(b)2n+2)x1=[F (S, pa) G(S, pa)l,

compute Zieni2)x1 = [Je|” ( )eN+2)x1 by an iterative (inner iteration) or a
direct method.

calculate 8" = 8™ — z(y1)x1, the first N+1 entries of zpy42)x1 and
Pt = pa — Z(n+1)x1, the last N+1 entries of zany2)x1

update the remaining 19 variables,
check if (S"*1 —S™) >

(tolerance factor) and (p." "' — pa") > (tolerance factor).
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4. Stop the Newton iterations, if the desired tolerance is reached.
5. Compute the average moisture content.

6. End the time loop if the desired moisture content is reached.

The Jacobian matrix

For instance, if we consider 6 nodes, the vector b is given by
b = [FO;FI;FZa F3a F4’F57G07G17G27G37G47G5]T .

The Jacobian matrix J. is a full matrix. It is assembled in the following way

OFy, O oFy O
(a—gga—gﬁooooﬁﬁoooo\

OF OF OF oF OF OF
9So 051 952 0 0 0 0pag  Opa1  Opas 0 0 0

a5, a8, dS3 Opa1  Opar Opas

9S> 0S3 9S4 Opay  Opaz  Opay

dS3 0S4 aSs Opay Opay Opas

9S4 dSs 0pay  Opas

foo % 0 0 0 0 S Mo o 0 0 0

0G1 0G1 0G1 oG 0G1 0G1
Sy 0S1 dSs 0 0 O 0pag Opa1 Opas 0 0 0

0Gy  0Gy  0Gs Gy  0Gy  9G3
0 651 852 853 0 0 O apal 8pa2 6pa3 O 0

0Gs 0Gs3 0Gs 0G3 9G3 0G3
0 0 dSs dS3 0S4 0 0 0 Opay  Opaz  Opay 0

len 0G4 0G4 0G4 0G4 0G4
0 0 0 dS3 0S4 aSs 0 0 0 Opa3  Opas Opas

8Gs oG 0Gs  8G
\ 0 0 0 0 F& % 0 0o o0 o FE F )

The solution vector z is given by

T
z = [507 Sla 527 S3a S47 557 Pags Pa1s Pa2s Pa3s Paay pa5]
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3.4.3 Simulation results

In this section, we present the numerical results for the coupled drying problem at isother-
mal conditions. We take the length of the concrete material as L = 0.04m. The space
step size h is %, N is the number of cells. We take the time step size 7 = 500 when the
saturation at all the nodes is less than the critical saturation S..;;, which we call the first
drying state. During the intermediate drying state and second drying state, we take the
time step size 7 = 0.5. The rapid reduction in the time step from 500 to 0.5 is due to the
fastly changing variables at some local regions. This is due to the change of definitions
of variables locally because of the change in drying states causes high diffusion at a small
region of the domain at which a change in drying state occur. Also for larger time steps,
the Jacobian matrix becomes ill-conditioned. For instance, at 15.87 hours of drying time
using 50 cells with a small time step size of 7 = 0.5 during the second drying state, the
condition number of the Jacobian matrix is 3127.2. Here, the step size selection is chosen
to be fixed. The rapid reduction in the time step size causes poor efficiency. An adaptive
time step strategy is essential which will be presented in the next section. Figure 3.4 rep-
resents the local average moisture content profile. From the Figure 3.4, we can see that the
average moisture content decreases from an initial average moisture of 1.28 to 0.000001 as
time increases. The drying time to reduce the moisture from 1.28 to 0.000001 is 4.05 days.
Figure 3.5 represents the local moisture content profile from the surface of the domain to
the center. Figure 3.6 represents the local gas pressure profiles. From Figure 3.6, we notice
that the gas pressure goes down at the beginning of the drying process due to cooling
effects, after some time the gas pressure goes up due to excessive reduction in vapour pres-
sure. This is due to the definition of sorption equilibrium. At the end of the drying process,
the gas pressure at all nodes comes to the atmospheric gas pressure conditions. Figure 3.7
and Figure 3.8 present the local vapour and local air pressures respectively. Figure 3.9 and
3.10 give the moisture content and air density profiles at various time levels from initial to
final drying time.

Average moisture content profile

Iy
IS

=
N

b
T

0.8

0.6

Average moisture content X (=)

o 500 1000 1500 2000 2500 3000 3500
Time (Lunit=3min)

Figure 3.4: Average moisture content.
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Local moisture content profile from surface to the center

The moisture content profiles are drawn for different cells from the surface to the center.
The moisture content decreases in each cell as time increases.

Moisture content X (=)

Time (Lunit=3min)

center
20th cell
15th cell
10th cell
5th cell
Surface

2500 3000 3500

Figure 3.5: Local moisture content.

Local gas pressure profile

The gas pressure profiles drawn for different cells.

g

Gas pressure P_ (Pascal)

1.0001

1.0001

1.0001

center
20th cell
15th cell
10th cell
5th cell

2500 3000 3500
Time (Lunit=3min)

Figure 3.6: Local gas pressure.
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Local vapour pressure profile

The vapour pressure profiles are drawn for different cells. The vapour pressure is constant
which is equal to one at the initial stage of drying due to sorption equilibrium. When the
moisture content is less than the critical moisture content level, then the vapour pressure
starts decreasing with increase in time as shown in the following figure.

2500

center
20th cell
15th cell
10th cell
5th cell

2000

\

1500 -

1000

500

Vapour pressure P (Pascal)

o 500 1000 1500 2000 2500 3000 3500
Time (Lunit=3min)

Figure 3.7: Local vapour pressure.

Local air pressure profile

The air pressure profiles are drawn for different cells. At the end of the drying when vapour
is removed completely from the pores, all the cells are filled with air. This we can notice
from the following figure where the air pressure increases as time increases.

4

x 10
101 -
center
20th cell
15th cell
= 997 10th cell
2 5th cell
N
~ 99r
©
o
L
?
$ 9.85F
3]
o
< 9.8r
9.75 . . . . . . ,
(0] 500 1000 1500 2000 2500 3000 3500

Time (Lunit=3min)

Figure 3.8: Local air pressure.
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Moisture content at different time levels

Moisture content profiles at various time levels, drawn at an interval of 2 hours from initial

time to the end of the d

Moisture content X (=)

Air density at differe

rying.

Initial moisture content

)

)

Final moisture content

(0] 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Length L(m)

Figure 3.9: Moisture content profiles.

nt time levels

Air density profiles at various time levels, drawn at an interval of 2 hours from initial time

to the end of the drying

a

Air density p (kg/ma)

1.175

1.17

1.165

1.16

Initial air density

1.155

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Length L (m)

Figure 3.10: Air density profiles.
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Saturation profiles at different drying times

Saturation S (=)

0490 0{;05 0]01 0.615 0.62 0.625 0.63 0.635 0.04 OE) 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.(;4
Length L (m) Length L(m)
(a) at 6.9 hours, first drying state (b) at 22.9 hours, intermediate state
0.09
o0.08f 0.01f
0.009
0.07r
0.008
- o.06f z 0.007 F
g 0.051 (g 0.006 |
T 004 ‘8 0.005¢
% 0.03 E 0.004
0.003
0.02
0.002
0.01 0.001h
00 0.605 O.bl 0.615 0.62 0.625 0.63 0.635 0.64 OO 0.605 0.61 0.615 0.62 0.625 0.63 0.635 0.04
Length L (m) Length L (m)
(c) at 1.69 days, intermediate state (d) at 2.89 days, second drying state

Figure 3.11: Saturation profiles at different drying times.

From Figures 3.11(b) and 3.11(c), a rapid reduction can be seen in the saturation during
the intermediate state of drying process.
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3.5 Method of lines

The numerical solution of initial boundary value problems for time-dependent partial dif-
ferential equations requires a discretization in space and time. Consider the PDE (3.1)
and suppose that the PDE is discretized only in space subjected to initial and boundary
conditions on a certain grid to yield a semi-discrete system of ODEs. This approach is
called the method of lines MOL. The MOL approach, where space and time discretizations
are considered independently, is conceptually simple and flexible. The popularity of this
approach from a practical point of view is due to the fact that nowadays there exist many
well developed ODE methods for instance see Shampine [40]. Let the semi-discrete system
have the following form

ou
5= f(u). (3.24)

Now the semi-discrete system (3.24) is to be integrated with an appropriate ODE method.
In this section we discuss an implicit Runge-Kutta time stepping method of order 5. For
more details on time integration methods, we refer to Hundsdorfer and Verwer [20], Hairer
and Wanner [18].

3.5.1 Semi-discrete system
Governing equations of isothermal drying

We write the governing equations of the coupled problem (3.19) and (3.20) in the following
way

0S 0 0 0 0
1% = |5 (aG g+ a® R+ a®LR)] 65
ps s 9 ) )
V(1= 8) 57— Vpag, = 5 (015, pa) Y + 02(S, pa) 5 Fy)- (3-26)

The function f(S) is given by

#(8) = (A—=B) : if §> Seri
3A152 + 2B15 + Cl . Zf S < Scrz't-

Where A, B, A, B;,C; are constants as given in 3.3.4. For computations we take the
equation (3.26) in the following form

dpa O ) ) as

V(1= 8) 7 = 5-(01(S, pa) 5y +2(S, pa) 5 Fy) + $pag- (3.27)

The semi-discrete DAE system

We first discretize in space i.e., the right hand side of (3.25) and (3.27), using the numerical
scheme given in Section 3.1. After discretization in space, we get a differential algebraic

system. Let h = Tjp1 =T 1 be the space step size. Let N be the number of cells, i.e.
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h = %, where L is the length of the domain. The length of the boundary cells is % Then,
for 1 < j7 < N — 1 we obtain the following ODE system of equations

0S; 1 0 0 0 _ in+1]
8tj - hf(S;)tv+l (5, pa)%yv + GQ(S)£PZ * a3(5)%Pg]j+% (3.28)
1 0 0 0 n )
—W[M(S, Pa)a?/v + az(S)aPl + a3(5)%Pg]£:§a
at the left boundary j = 0, we obtain the following equation
05 2 0 0 0 n
5t = RS ([al(s, pa) 5o+ 02(S) 5P+ as(8) 5Byl ~ (Jw)0> . (3.29)
and at the right boundary 7 = N, we get
oSy 2 0 0 0
_ _ _ il —_Pp — P, . (3.
o = g (U~ (S ) g+ ()5 P+ ()5 P, ) (330

Similarly we discretize the equation (3.27) in space, then for 1 < j < N — 1 we get the
following system of ODEs

apa] ]. a a [TL+1]

= a..Ja s Fa —B)]. 1)

or  hy(l - Sj)"“([(bl(s’ Pa) gp¥e +0a(5,pa) 5o Pl ) (3.31)
1 0 0 [n+1] nt10S; )
hlb(l — Sj)[”‘H] ([(bl(Sa /)a)%ya + bQ(S: pa)%Pg)]j+% ) + ¢pa+ 6—;
At the boundary nodes i=0 and 7 = N, we have the algebraic equations
[n+1] 75
oli RT

[Pa]g-nﬂ} = %, where j =0, N. (3.32)

a

3.5.2 Implicit Runge-Kutta method - Radaub method

Not all type of Runge-Kutta methods are suitable for the solution of stiff ordinary differ-
ential equations. The system of ordinary differential equations obtained after the space
discretization of the coupled drying equations (3.19) and (3.20) is a stiff DAE system. We
have observed that the explicit ODE methods are not suitable for this problem, because
these methods are not stable for stiff problems. Hence we use a 3-stage implicit Runge
Kutta method of order 5 in time, which is called Radaub method. We give very briefly the
details of this method. For more details on solving stiff ODE and DAE systems, we refer
to Hairer and Wanner [18]. Consider the ODE system given by (3.24). For this system, a
g-stage implicit Runge Kutta method is given by

q
gi = up + TZaijf(tO +¢7,95) fori =1,2,...,4q, (3.33a)
j=1
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q
U = U+ 7T Z bjf(t() + C;T, g]-). (333b)

j=1
Here g represents the number of stages of the method and we take ¢g=3. We denote
T = tp41 — t, as the time step size, up=u(tp) and u;=u(t;). The matrix A = (a;;) and the
vectors bj;, c; represent the Runge-Kutta coefficients. These coefficients can be found in
Table 5.6 from the text book of Hairer and Wanner [18]. To reduce the round-off errors,

the method works with smaller values

Vi = g; — Up. (334)

Then the equation (3.33a) becomes

q
V; = Tza,ijf(t() + CjT, Ug + 'Uj) for i = 11 27 < g (335)
j=1

Once we calculate the vector v=[v; vy ... v,] by solving the system (3.35), then the solution
u = u; at the new time step can be explicitly obtained from the equation (3.33b). This
requires ¢ additional function evaluations of the function f. This can be avoided if the
Runge-Kutta (RK) matrix A is non singular. The equation (3.35) can be written as

v=AH(v), (3.36)

where H(v)=[f(to+ c17, ug + v1), ..., f(to + 17, uo + v1)] and A is the RK matrix. Finally,
from (3.33b), we obtain

q
Ul = Ug + Z dl’Uz (337)
i=1

Here d = bA™!, where d = [d; d; ... dj] and b = [b; by... b,]. Thus the solution to the
ODE system (3.24) is obtained by solving the equation (3.37). To obtain the solution of
(3.24), it is necessary to calculate v by solving the nonlinear system of equations (3.35).
When we apply the Newton method to the system (3.35), it is required to evaluate the
solution of a linear system at each iteration. The Jacobian matrix is given by

I—Tall%(t0+ClT,UO+U1) —Talq%(to'f‘CsT,Uo'f‘Us)
: : (3.38)
—Taql%(to + 17T, ug + v1) . I — Taqq%(to + ¢,T, Uo + Vy)

This method uses a simplified Newton iterations by replacing all the Jacobians %(to +
¢;T,ug + v;) by an approximation J. = %(to, up). Then the simplified Newton iterations

applied to (3.35) yield
I-7A®J)vF = —v* +7(A QT)H(vF),

vl = vk 4 5vE, (3:39)
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Here v¥ is the £*® approximation to the solution and dv* are the increments. The stopping
criterion of the Newton iterations is given by

nellovF|| < k(tol). (3.40)
Here ny is given by n, = lf’jp - where ¢ is the convergence rate of the Newton iteration
which is given by
[l
=——, k>1. 3.41
P = fove £ (34

An essential gain of numerical work in solving the linear system (3.39) is obtained by the
method introduced by Butcher [9] and Bickart [4]. The next important factor is the time
step size selection. This method uses an embedded pair of methods to predict the time
step size. Thus we need a lower order method which solves (3.24). Denote this solution by
11. Then the error is estimated by

err = (I — 7yJc) (ug — d4). (3.42)

For details of the lower order method 4, see the text book of Hairer and Wanner [18]. Here
v = v !, where v is the real eigenvalue of the matrix A~!. The time step size can be now
predicted using the formula

tol

Tnew = (fe)Told (—)0'25. (3.43)

lerr|

Here, tol is the prescribed tolerance and f. is called the safety factor which depends on N,
the total number of Newton iterations of the current step and the maximum number of
Newton iterations kyayx, fe is given by %. For the rigourous details of this Radaub
method, we refer to Hairer and Wanner [18)].

3.5.3 Numerical observations with the Radau5 method

In this section we present some numerical aspects of the coupled problem using the Radaub
method. All the material data are taken the same as in the case of Section 3.4. The
simulations are done for a concrete material of length 0.04m. The simulations are carried
out until a real drying time of 4.05 days. In 4.05 days the average saturation reduces from
1.28 to 0.000001.

Instability with large tolerances

The following figure shows the instability when using a large tolerance (tol). The Figure
3.12 represents the saturation profiles drawn at a real drying time of 4.05 days is reached.
We can observe from the Figure 3.12(a), that the solution is non smooth at the peak of
the curve with large tolerances. To avoid these bumps, the prescribed tolerance should
be decreased. Through this the time step sizes are decreased. From the right hand figure
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Figure 3.12: Saturation profiles.

3.12(b), we can observe that these bumps disappear with a tolerance of 107°. In these
figures, the solution using cell-centered finite volume using the implicit Euler method is
compared with that of the Radaub method.

Time step sizes

The following figure represents the accepted time step sizes with Radaub with a mesh of
100 cells.

Time step size 1 (sec)

0.5 1 15 2 25 3 3.5
Time (sec) 5

Figure 3.13: Accepted time step sizes.

It can be noticed from the these figures that there are time step reductions only at a certian
period of drying process. These time step reductions are due to the change of drying states
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which cause sudden increase or decrease in many variables locally. We observe these time
step reductions during the intermediate state of drying, at this state the problem becomes
highly stiff. An adaptive time step size selection using Radaub is efficient compared to
a fixed time step selection. Through our numerical computations in the one dimensional
case, all the physical trends of the drying process are attained properly. A detailed study
about these time step size reductions and suitable time stepping strategies has been studied
in Chapter 6.



Chapter 4

Positivity of a parabolic problem

Positive solutions for ordinary as well as partial differential equations are important in a
wide range of physical, chemical, biological and engineering problems. Many such model
problems are quasilinear time dependent parabolic equations. Most of the physical quan-
tities such as concentrations, densities, saturation etc., cannot become negative. For ex-
ample, in the drying of porous medium, the problem which we study at present, most of
the variables such as saturation, moisture content, densities of air, vapour, gas etc., al-
ways have positive values. This motivates us to investigate positivity preservation of the
numerical solution for time-dependent quasilinear parabolic problems. We first start with
a quasilinear parabolic initial value problem to prove the positivity of the numerical solu-
tion, then we extend the analysis to a boundary value problem. The boundary conditions
are nonlinear mixed Neumann type. Finally, the analysis of positivity is extended to a
particular case of a quasilinear scalar parabolic problem. We reduce the coupled drying
problem of Perré [36] to a scalar quasilinear problem under some assumptions. We apply
our analysis to the reduced problem as an application. Also we prove the stability of the
above cases in the L., norm.

4.1 Initial value problem

Let us consider the following continuous partial differential equation

ou 0 ou
as a model problem. This is a simple quasilinear diffusion equation for which we will only
consider non-negative solutions. To make the problem well-posed we assume a(u)>0 for all
admissible u. For this equation we pose the initial value problem at time ¢, with the initial
data u(z,tg)=uo(x)>0. Let us consider a finite volume or finite difference discretization
for the above one dimensional parabolic problem (4.1). We consider a semi-implicit dis-

cretization by taking the values of the diffusion coefficients a(u) explicitly from the previous
time level and the derivative terms % implicitly. Divide the space interval [0,L] into finite

41
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subintervals 0 = zy<z;...... <zxny = L, of constant space step size h = x; — x;_1. We denote
T = tp+1 — 1, as the time step size. Then the semi-implicit finite difference discretized form
of the equation (4.1) is given by

T

upt =t = o felul )i — o) — o) @l - )] (1.2

We put A\:=7; and obtain the following equation

[1+ Ma(ui) + a(ui)] wi™ = Aa(u)ully — da(ui)uly = uf. (4.3)

The system of equations given by (4.3) can be represented as

Au™t! = u", (4.4)
Where u™*! is the unknown vector [uf ™ uf*! ... 4] and the matrix A is given by A =

(aij)1<ij<n With

LA (ot atu) 1)
o —)\ a(u;ﬁrl ci=75—1
i = Aa(u) =g+ (45)
0 otherwise.

Hence the matrix A is a tridiagonal matrix. The diagonal entries of the matrix A satisfy

ai; =1+ X(a(ufy,) +aw)) > A(a(uf) +a(u,))

this implies

N
A5 > Z | Qij | . (46)
i
The treatment of the boundary nodes will be discussed in the next section.

Definition 4.1 A matriz satisfying the above inequality 4.6 is called a strictly diagonally
dominant matriz.

Hence the matrix A given by (4.5) is a strictly diagonally dominant matrix.

Definition 4.2 M-matriz

A matrix A is said be an M-matrix if A~! >0 and a;; <0 for i#j.

Note that the matrix A given by (4.5) satisfies the M-matrix property. A large num-

ber of properties of M-matrices are known by now, for interested reader on M-matrices, we
refer to Ortega [29] or Windisch [52].
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Definition 4.3 Spectral Radius

Let A be an NxN matrix with complex or real entries. Let K, Ky, K3,....Ky be the
eigenvalues of the matrix A. Then the spectral radius p(A) of the matrix A is given by
p(A) = max |K;|.

1<i<n

Lemma 4.1 Let A be a matriz such that a;; <0 for #j. Then A is an M-matriz if and
only if a; >0, for i=1,2....,N and the matriz B =I-D~ A, where I = diag(1,1,....1) and
D=diag(a11, ase, ...ann), satisfies p(B) <1.

Proof: See Ortega [29]. O

Lemma 4.2 The solution of the initial value problem (4.1) preserves positivity with the
discretization given by (4.2).
Proof: We split the matrix A in the following way,

D!A=I-B

which implies
A=DI-DB

where I is the identity matrix and D=diag(ai1, @22, -...Gny) is the diagonal matrix. It is
given by

A (a(uf) +a(u?)) : i=j

D =d;; = { 0 : otherwise.

The matrix B which consists of the off diagonal entries is given by

—Aa(u?) S
1+)\(a(u?+1)+a(u?)) ' 1
B b — “xalufy) .
1j 1+)\(a(u?+1)+a(u?)) 1=7—1
0 : otherwise.

From the definition of the matrix B, we obtain ||B||s < 1.

Therefore we get p(B) < ||Bl|oo < 1, which implies by Lemma 4.1 that the matrix A is an
M-matrix and thus we obtain A~ >0.

Consider the system of equations given by (4.4), then we have

un+1 — A—lun
since A1 >0, and u > 0 for all 4, it implies that
ul™t > 0 for all 4.

Hence the solution u of the problem (4.1) obtained from the numerical scheme (4.2) is
positivity preserving. O

The following is an exercise in Blum [6]. For the sake of completeness we give the proof.
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Lemma 4.3 Let A=(a;;j)1<ij<n be a strictly diagonally dominant matriz, then the matriz
A satisfies the following condition

-1

n
A oo < | min | [a;| — Z |aij]
j=1

1<i<n
J#i

Proof: Consider a system of equations given by AX = Y where ¥ = (y;)1<i<ny and
X = (%i)1<i<n are vectors of length N and A is an N x N matrix, then we can write

n
Yi = Zaijxj for 1 <i<N.
j=1

Let

|Z]| 00 = nax. |z;| = |zk| for some k. (4.7)

Then we have,
n n
1ylloo = max |y;| = max| > aga;| > | agja;l,
7 7 ]:1 J:l

where £ is defined as in (4.7). Now we obtain

n n
Ylloo > lamsar] = Y larjes| = lankl[we] = lar| ;-
% %

This implies that

n

1ylloo > larrlllzlloo — D larsllllloo,
T2

which follows from 4.7. It gives

n

ylloe = [ larel =D las! | lllloo-

j=1
ik

Note that the term in the parenthesis is positive, since A is a strictly diagonally dominant
matrix. From this, we obtain the following inequality

[l -
= 2> | Jagk| - Z |axj|
||‘/E||OO j=1

J#k
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Consider M, then we get
[1Ylloo
1A yloe _ Jlzlse 1 3 1 s
1Y lloo ylleo n B n ’
akk| — > a| min | |a;| — > |a)
j=1 g j=1
J#k J#i
and therefore we obtain
A1 1
||A71||oo = sup ” y”oo S
y#0 ||y||00 n
min | [a;| — ) |a)
2 j=1
i
O

Lemma 4.4 Consider the initial value problem (4.1). The numerical scheme given by
(4.2) is unconditionally stable under the Lo, norm i.e., ||u™ o0 < ||U"]|oo-

Proof: Consider the algebraic system of equations given by (4.4), then we have
0" H oo < AT |oo 1" [|oo- (4.9)
Since A is strictly diagonally dominant, it follows from Lemma 4.3 that

-1

n

A oo < 12151171 Qi — Z; ;] . (4.10)
i

From the definition 4.5 of the matrix A, we have

-1

n
1151<Iln Qi — Z |az~j| =1. (411)
<i< —
i
From the equations (4.9), (4.10) and (4.11), we now get
[u™ oo < flu"]loo-

Hence the numerical scheme given by (4.2) is L., stable. O

4.2 Extending the study of positivity to a boundary
value problem

In this section we prove the positivity and stability for a quasilinear boundary value
parabolic problem.
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4.2.1 Model problem

We take the following partial differential equation as the model problem

g—if - % (a(u)g—Z) . (4.12)

We consider the initial condition as u(z, ;) = uo(z) >0. Further we assume that

a:R — R{ i.e., we have a(u)>0 for all u.

Let the length of the 1-d domain be L. The boundary conditions are the fluxes at the left
and the right ends of the domain. These fluxes are given by

<a(u)g—z> fi=gi(u) at z=0

and
<a(u)g—z> = go(u) at z=L.

Where we assume that g;(u) > 0 and go(u) > 0 for all u > 0. Here 7 denote the outer
normal vector.

4.2.2 Discretization

Let h be the space step size, 7 be the time step size and N+1 be the number of nodal points
ie., h = % Let zg, 1, ....xx be the nodes in [0,L] and ;11 — x; = h. Let us discretize
the continuous equation (4.12) with semi-implicit finite difference scheme. The discretized
equation of (4.12) is given by

uf ™t =l X [a(uly ) (ul - et —a(ul) (uptt = uft)], for 1<i< N —1(4.13)

where we denote \ = #

At the left and right boundaries, i.e., at = 0 and = = N, we have
ug™ =g + A fa(ul) (it —ug™h) — hgi (uf)] (4.14)
and

uy™ = uly + A [hga(uly) — au) (uytt —uih)] (4.15)

Theorem 4.1 The numerical solution of the problem (4.12) is positive with semi-implicit
finite difference scheme if the solution u satisfies hAgi(uf) < uf and higs(ul) < ul,
where ug and uy are the boundary values and A = 5. Also the scheme is unconditionally

2"
stable under Lo, norm.
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Proof: Consider the problem (4.12). For this problem, we consider the semi-implicit
discretization (4.13), (4.14) and (4.15) introduced above. Then the system of equations
(4.13), (4.14) and (4.15) take the form

Au™t! =u" +b". (4.16)

Where A is an (N 4 1) x(N + 1) matrix and the corresponding matrix is given by

(14X (a(uy) +a(uf)) = i=3(i #0,i #N)
“Aa(ulyy))  i=j—1
0 = 4 —Ala(ul)) : i=j5+1
v 1+ A(a(uf)) = i=7=0
L+ X (a(ufyy) @ i=j=N
L 0 otherwise.
The vector b is given by
—hAg (ug)
0
b" =
0
—Aga(uly)
and the vector u"™ = [ug T 'uft! .. .u%] is the unknown vector.

Since A is strictly diagonally dominant, it follows that A ! exists. Hence from the Lemma,
4.1, it follows that A~ >0, since there exist a matrix B satisfying p(B) < 1, it can be
easily observed in the similar way as in the Lemma 4.2. The positivity of the solution u
depends on the positivity of the right hand side of (4.16) i.e., the solution u™** is positive
if u"+b™ > 0.

Now we claim that u”+b™ > 0, where u”+b" is given by

u" +b" = . . (4.17)

Since u” > 0, we have u"+b" is > 0 if the following conditions are satisfied
uy — hAgi(ug) >0 and uly — hAge(u}y) >0,

which implies
hAgi(ug) < ug and hAge(uR) < vl . (4.18)
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For a chosen A and a suitable time step size 7 , such that the above condition (4.18) holds,
we obtain u"™'>0. Hence u is positivity preserving.

Stability: Consider the system of equations given by (4.16), then we have
[0 oo < AT oollu™ + Bl < JATHloo][0" oo,

where the last inequality follows from the structure of u”+b™ in (4.17). From the Lemmas
4.3 and 4.4, we have ||A ||, < 1. Hence we obtain

0" oo < [[0"]|oo-

Therefore the numerical scheme (4.13) is stable under the Ly, norm. O

4.3 A quasilinear parabolic problem

In this section we would like to study the positivity and L., stability of a quasilinear
parabolic problem with nonlinear boundary conditions.

4.3.1 Model problem

Consider the following quasilinear partial differential equation as the model problem

M) _ 3 |$ 0f;(u)
5 = Bn [Z (a](u)W>] . (4.19)

=1

We consider the initial condition: u(z,0)=ug(z) > 0. We assume that a; : R — R{, i.e

k
aj(u) > 0 for all u. The boundary conditions are given by 231 (a]- (u) 8{;5”) -1 =ri(u) at
]:

k
z=0and ) (aj (u)%i")) -1 = ro(u) at x = L, where we assume that the functions r; (u)
j=1

and ro(u) are nonnegative for any u > 0.
Note that by doing the substitutions v := 0(u), a;(v) := a;(0 1 (v)), f;(v) = f;(0 1 (v)),
the equation (4.19) reduces to the form

at (983: [Z ( ; )20 )>] : (4.20)

in the case that 0 is invertible.
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4.3.2 Discretization

Let h be the space step size, 7 be the time step size and N+1 be the number of nodal
points i.e., h = % Let zg,x1,....xy be the nodes in [0,L] and x;,; — 2; = h. Then, the
corresponding discretized equation of the partial differential equation (4.19) is given by

Oluf™) = 6(ut) _ 5~ [a]( ) (f,< 7:3>h2 AC ))}

y o (f]( e ))] |
forl<i< N -1

At the left and right boundaries i.e., at i=0 and i=N, we have

(4.21)

0(ug™) = 0(ug) (Z a;(ut) n“) fiu RH))] - th(u0)> ) (4.22)
and

O(ut) = 0(u,) + h2( hra(uy) Z a;(u) (f;(ut) — fj(u’]i,ﬂl))}). (4.23)

Theorem 4.2 Consider the quasilinear parabolic problem (4.19) which satisfies the fol-
lowing conditions

(i) The function 0 : [—b,b] = R, b > 0 is strictly increasing, differentiable with 6(0) = 0
(it) The continuous functions f; : [a,b] = R, a > 0,b> 0 for all j, are differentiable,

(iit) a;(u) >0 for all j and for all u.

Then the solution u s positivity preserving, with semi-implicit finite difference scheme if
u satisfies hAry(uf) < 0(uy) and hAry(uly) < 0(uly), where ug and uy are the boundary

values and A = 75. Also the scheme is stable in Lo, norm.

Proof: Consider the problem (4.19). For this problem, consider the semi-implicit dis-
cretization (4.21), (4.22) and (4.23) introduced above.

We put v; := 0(u;). Since 0 is strictly increasing function, we know that #~' exists, so
we get u; = 07'(v;). Substituting 0(u;) = v; and u; = 7'(v;) in the discretized equation
(4.21), we obtain

(05 = )

e :i[aj(e_l(v?+l))<fj(e (?S))hzfg( (:l“)))]

_£ [%‘(9‘1(?)?)) <fj(0 L nH))h?fJ( = ))>] '
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We define the two compositions f; 0 87! := f; and a; 0 07! := @; , and get
g

@ = v | (R = Hp
BN > [aj(vm) ( 2 )]

_ [&M) (fj(v? )~ Jit ))] |

=1

By the mean value theorem, we can write f;(vii1) — fj(vi) = ~]’(77,+1)(v,-+1 — Vi), Mit1 €

Jvi, vip1[. Let A\:=75, then for 1 <4 < N — 1, we obtain

k
= (3 et oo - o))
J

(Z SV AUARICasE v?ff)]) ,

at the boundaries ¢ = 0 and 7 = N, the equations (4.22) and (4.23) reduce to the following
form

o = o+ A (Z [, P e+ = o] hr(uo>> (4.24)
and

k
vt =l + A (—hr(uN) — Z [dj(vﬁ,) 3(7)7\,“)( il UZ”VHI)}) : (4.25)
j=1

For 1 < i < N — 1, the system of algebraic equations are given by,

- [)\ (z a;(e}) 3@?“)) o]

=1

k: k -
1A (Z a; (o) S ) + ) s (oF) ]'-(77?“)) vyt (4.26)

~I n+1 n+1l __
[ (E :a’J z+1 j 7714-1 ))] Vi1 =0

at the boundaries ¢ = 0 and ¢ = N, we get the following equations

k
1+A<Zaj o) f; )] [A (Zwl);Wl))]v?“—vz}—hwuo),

bigons)]

1+A (Z a; (i) f; (UTI))] v = v — hara(uw).

j=1

(4.27)



4.3. A QUASILINEAR PARABOLIC PROBLEM 51

The algebraic system given by (4.26) and (4.27) can be represented as
Av™tt =p". (4.28)

Where the matrix A is defined by A = (a;;)

4
1+)‘(Zlaj(“zn+1) J'(U:fll)—kzl a; (M fiory | i=
j= iz
-~ £ 1 . .
A Satrfe) =i
j:
-~ £ 1 . .
@ij = 4 —A Za]( );(77:“—) ci=7+1
ij — &
1+A Zlaa(vl) ittty ]« i=j=0
J
n ~
1+Xx[ > a ] ]' ?V—H) L= =N
7j=1
k 0 : otherwise.

The vector b is given by

and the vector v is given by [vg v;....ux]. The matrix A is a strictly dominant tridiagonal
matrix, and therefore from Lemma 4.1, it follows that A~ > 0.

We get the positivity of v, if b is positive. The vector b is positive when the following
conditions are satisfied

vy — hAri(ug) > 0 and v} — hAre(uly) >0, (4.29)

which implies
hari(ug) < vf and hAry(uly) < vi. (4.30)
Hence v**+! = [pf Tttt w%t!] is positive by choosing a suitable h and ) so as to satisfy

the condition (4.30), which implies that v?™' > 0 for all 4.

Stability of the vector v: Consider the system of equations given by (4.28), then we get

V" oo < A lsolb™ oo < [IA™ ooV |oo-
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The matrix A satisfies the condition ||[A™!|| < 1, which follows from the Lemma 4.3.
Thus we obtain
V™ oo < V" loo- (4.31)

Hence we have proved that v is stable in L., norm.
Positivity of the vector u:
We now prove that the solution u of the problem (4.19) preserves positivity.

From the initial conditions of the problem (4.19), we have u! > 0 for all 7. It implies that
O(u?) > 0 for all 4, which follows from the condition (i) of the Theorem 4.2. So we have

O(uy) = v > 0 for all 4.
Since we have the positivity v, it implies that
ot = @(uP) > 0 for all i=0,1,...N.
From the condition (i) for #(u) in the Theorem 4.2, we obtain
ul ™' > 0 for all 4.

Hence it proves that the solution u of the problem (4.19) preserves positivity.

L, Stability of the vector u:
We now prove that the solution u of the problem (4.19) is stable in the L, norm.
Since v is Ly, stable, from (4.31), we have ||[v" ™| <||v"|lc. It implies

n+1
3

n

n n n n
v < max (UO, ....... ,vi_l,vi,viﬂ,....,vN) .

Since # is an increasing function, it implies that = is also an increasing function, and thus
—-1(,n+1 -1 n n n o ,mn n : : :
we have 071 (v}™) < 07! (max(vy, ......, v |, v, 0% |, ..., vy)) which implies

0~ (v < max (61 (vF)....... L0 (W), 07 (), 07 (V) < 07 (V).

2 2

Hence we obtain

n+1 —1 n .
u] §015n%>]cv (6='(v})) for all i=0,1,...N.

n+1
i

It implies that u;™" < max (u?) for all 4, and thus we obtain

0<j<N
0" oo < [[0"]]o.

Hence it follows that the solution u is L., stable.

Hence we obtain that the solution u of the problem (4.19) is positive if u satisfies hAr; (uf) <
O(uf) and hAre(u%) < O(u’) and also we have proved that u is stable in the Lo, the norm.
U
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4.4 Applications

4.4.1 Diffusion of vapour

Consider the diffusion of vapour in the porous medium. It has been assumed that there
is no liquid in the porous medium, so the saturation remains constant. Also it is assumed
that air flows slowly and there is no external heat supply. Hence there is no temperature
differences and pressure differences in the gas. Gas in the porous medium is a mixture of
vapour and air. The vapour should be diffused out of the porous medium.

Governing equation:

9y

ot = Defngva
with initial condition 7, = 0.8 and boundary condition 68% =— gf;’f.
Non-dimentionalising the above equation by introducing a reference time 7" = DL—jf, char-

acteristic length L = 0.04m, Desf = 25.10*62”—;, the following equation has been derived

Yy
= Ny, 4.32
with initial condition g, = 0.8 and boundary condition %i;: = —167,.
Here g,, t are nondimentionalised quantities.

Numerical observations:

The numerical observations for the problem (4.32) are plotted in the Figure 4.1.

4.4.2 Isothermal drying at constant air flow

Drying is a heat and mass transfer process involved in the porous media. We reduce
the problem by Perré [36] or see Chapter 2, to a scalar equation with some assumptions
by considering the drying under constant temperature and constant air flow. The scalar
problem consists of 19 variables. The main variable is S and the other 18 variables are
given by the equations of state. For the complete set of equations, see Chapter 2. By
substituting the equations of state into the partial differential equation, we write the PDE
in terms one variable S. Then the partial differential equation take the following form

00(S) s [b(s )%} - 052 B (4.33)
di 2 ()42 4 e(5)22] i § < S '

with initial condition S(x,0)=Sy > 0. The flux at the boundary is a nonlinear function of
S which is denoted by r(S). Here we take the fluxes as symmetric. In general, they may
not be symmetric in many other problems. But the proof of the Theorem 4.2 holds also if
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(c) saturation at different times
satisfying positivity condition, 500 nodes

Figure 4.1: Numerical observations for the problem (4.32).

the fluxes are not symmetric. The boundary condition is given by J -2 = r(S) where J is
the boundary flux. The problem under consideration satisfies the following conditions

(i) 6(S) is a strictly increasing function with 6(0) = 0,

(ii) f,g,h, are differentiable functions,

(iii) a(S),b(S), c(S) > 0 for all S.

Then the solution S is positivity preserving and L, stable which follows from the Theorem
4.2.

Physically f(S) denotes the mass fraction of vapour, ¢g(S) denotes the liquid pressure
which is the difference of total pressure and capillary pressure and h(S) denotes the total
pressure. The functions 6(S), f(5), g(S), h(S) are strictly increasing and continuous which
are plotted in Figures 4.2, 4.3, 4.4 and 4.5 respectively in the next pages. The range of
the solution is [0,1], since the saturation S always lies in between 0 and 1. If S is 1, then
the porous medium is completely filled with water. When S reduces to zero, the drying is
complete.
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The function 0(S) is given by
0(S) = (A—=B)S+B : if S>Suu
Tl ASP+ BiS?+CiS : if S < St
A=798.4, B= 0.013811, A;=7.1867, B;=-7.8168, C;=799.0301.
x 10"
ED -5 0 5 10
S
Figure 4.2: 6(S).
The function f(S) is given by
AS?+ B
£(5) 25+ B35 4 0<8< S (4.34)

T 4,52+ BoS+ Oy
A,=-8.98345, B,=0.78762, C,=1.161031.

0.015

0.0125}

0.01}

@ 0.0075}
L

0.005}

0.0025F

0 . . . . . . . .
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
S

Figure 4.3: f(5).
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1070.3476(1.5968570.07)

g(S) = 100000 — k, (84957)
k1=2.9040.

9950 —

9900

9850

9800

9750

9(S)

9700

9650

9600

9550y,

9500 —

Figure 4.4: ¢(95).

The function A(S) is given by

h(S) = )\4 -+ )\55 + )\652, for 0 < S < Scrz't-

A\=97666.1, A\s=106479.18628, \¢ = —1214471.176150,

4
x 10
10 T

9.95-

9.9r

h(s)

9.85-

9.81

9.75

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
S

Figure 4.5: h(S).

, for S, < S5 <0.8.

(4.35)

(4.36)

Thus the above problem (4.33) satisfies the conditions of the Theorem (4.2), hence accord-
ing to Theorem (4.2) it follows that the solution of the problem (4.33) preserves positivity

and L., stable with a semi-implicit finite difference discretization.
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4.5 Extending to fully implicit scheme

The above analysis of positivity preservation for the quasilinear parabolic problem (4.19)
with a semi-implicit discretization can be easily extended to a fully implicit discretization.

4.5.1 Fully implicit discretization

Let h be the space step size, /At be the time step size and N+1 be the number of nodal

points i.e., h = £. Let g, 21,....xy be the nodes in [0,L] and x;;; — 2;=h. Then, the
N

corresponding fully implicit discretized form of the equation (4.19) is given by

- 0l :Z’“:[aj(um(fj(u?if)mfj( "“))]

oo (B BUEDY]

(4.37)

for 1 <7 < N — 1. Near the boundaries at left and right ends i.e., at i=0 and i=N, we
have

g(ug—l-l) — 9 UO (Z aj u71H—1 n+1) f]( n+1))} . hr(uo)) ’
= . (4.38)
mwwm>h4mW =3 [y (1 “wmwm)

Theorem 4.3 Consider the problem (4.19). Theorem (4.2) holds also with a fully implicit
discretization.

Proof: Consider the fully implicit finite difference scheme as introduced above 4.37, 4.38.
We put u = 6(v) and following the similar steps from the Theorem 4.2, the matrix
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A = (a;5) is given by

(
n ~ n ~
L+ A ( léj(v?ff) }(n?ﬁl)Jeraj(v?“) Y| s i=
Jj= Jj=
S Saerpms) =i
]:
_ M X @Y AmY ) s i=g+1
Aij = j=1
n -
LA Y a(r ™) fim™) ) = i=7=0
7j=1
n ~
L+ A Y @) fiy™) ] = i=j=N
7j=1
L 0 otherwise.

0

Since a;(v) is always non-negative for any v, we have a;(v®*1)>0 and therefore A is a
strictly dominant tridiagonal matrix. Hence from Lemma, 4.1, it follows that A=t > 0, and
following the similar steps as in the Theorem 4.2, it implies the positivity of v, which in
turn implies the positivity of u.

4.6 Coupled problem

In this section we only present the coupled drying problem at isothermal conditions. The
positivity analysis for this problem is very complicated and we leave it for further work.
The complication is due to the fact that the matrix is no longer a strictly tri-diagonal
matrix. The matrix will be a block tri-diagonal matrix or a full matrix which is not a
tri-diagonal matrix. It is not easy to prove that the inverse of such a matrices is positive,
as we did in the scalar case. The coupled system comprises of two primary variables and
19 secondary variables. For the complete set of equations, See Chapter 2.

OwSp + (1 —S)p,] 0 ) ko, K 9,

= —(pgDgrs— K——P + — — 4.
ot or (pg eff 895% + Pl " o1 4 + ugpvkgax g)a ( 39)
8[¢(1 — S)pa] 0 0 K 0
— D, o+ —pakog—P,). 4.4
ot ax(Pg ff@iy + ,ng kgax g) ( 0)

We replace the equations of state in the main equations and here we present the equations
only in terms of primary variables S and p,.

00u(S) _ 0 [ 105 p2015:00) Ly 109(5) | g o\ OHL(S, pu)

ot  ox ox ox o ’ (4.41)
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905(S, pa) _ 2 al(s, pa)anéi’ Pa) Oh1(S, pa)

ot ox ox
Where 6,(S) and 62(S, p,) are change in the water content and the air content respec-
tively. f1(S, p,) is mass fraction of vapour, ¢g(S) is the capillary pressure, h1(S, p,) is the
total pressure or gas pressure, f2(S,p,) is the mass fraction of air which is 1- f1(S, pa).
al,bl, cl, c2 are the diffusive coefficients.
The functions in the equations 4.41 and 4.42 are defined below.

+¢2(S, pa) (4.42)

1. 61(S) is given by

() (A-B)S+B : if S> Sou
L o A153+B152+015 : ’ifS<Scrit

where A, B, A, By, C; are constants.

2. Mass fraction of vapour f1(S, p,) is given by

As . > )
fl(S’ pa) = k452-|i4k‘:55—gpa Zf SS _SSC”t
k4S2+ksS5+pa . Zf < Oerit

where Ajs, ky, ks, are constants.
3. Capillary pressure g1(S) is given by
g(S) _ _k66(8.4057)10*’°05
where kg and ko are constants.
4. Total pressure h1(S, p,) is given by

. A4 + kapa : ’Lf S Z Sc'rit
hl(S’ pa) - { AQS2 + ByS + kopa - if S < Serit

where Ay, k., Ay, By are constants.

5. 65(S, pg) is given by
02(S, pa) = (1 = 5)pa

where 1 is a constant called porosity.

6. Mass fraction of air f2(S, p, is given by

A5p_|‘ipa : Zf S Z Scrit
’Lf S < Scrit

fZ(S: pa) =

Pa
k4S?+ksS+pa

f2(S, pa) =1 — f1(S, pa) where As, k4, ks are constants.
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The diffusion coeflicients are defined as follows

1. al(S, p,) is defined by

A4+kapa

k4S?+k5S+pa . )
Dl—A252+st+kaa : ’Lf S < Scrzt

D1-Astee (14963362 . if §> 8,
al(S, ps) = { ( ) i 52 '

where D1, As, A4, ko, Ao, By are constants.

2. b1(S) is given by
_ k7S3 : Zf S Z Scm't
b1(S) = { 0 : if S<Sit

where k7 is a constant.
3. cl1(S) is given by

Cl(S) . ]C7S3 + k8A5(1 —+ 253 — 352) . Zf S Z Scrit
o kg(k452 + k’5S) : Zf S < Scrz't

where k7, kg, k4, k5 are constants.
4. ¢2(S, pa)is given by

. kgpuAf,(l + 253 - 352) . Zf S Z Scr’it
02(5, pa) N { kSpa : Zf S < Scrz't

where kg, A5 are constants.

One can obtain the expressions for constants by simple algebraic manipulations from the
complete set of equations and material constants which are given in Chapter 2. We have
just stated the problem here to show the difficulty in analysis for such a complicated
problem.



Chapter 5

Numerical simulation in the two
dimensional case

In this chapter, the numerical approach in solving a scalar as well as coupled quasilinear
parabolic partial differential equations and the corresponding numerical results in two space
dimensions are presented. Here we consider the dimensional splitting approach for the
numerical computations. The dimensional splitting technique can be used to break down
the two dimensional problems into easier one dimensional parts. In the first section of this
chapter, we give an introduction to the concept of operator splitting. In Section 5.2, we
describe the dimensional splitting approach for solving multidimensional problems. Then
two kinds of symmetric splitting methods of Strang are presented. In the final section, we
give the numerical results for a scalar and coupled quasilinear parabolic partial differential
equations in two dimensions using dimensional splitting.

5.1 Operator splitting

To motivate the concept of operator splitting, let us consider the following ordinary differ-
ential equation

ou
5 = (a+ b)u, (5.1)

with initial condition u(0) = ug and a,b € R. The exact solution of this problem is given
by
U,(t) — et(a-l—b)uo — plapth 0- (52)

Using operator splitting, the solution of the initial value problem (5.1) can also be obtained
by first solving % = bu with ug as the initial condition which has the solution given by
e'*uy. Then, solve 2 = qu with respect to initial condition e*ug. It can be seen in the

at
following two steps

61
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Step 1 Solve

ou
ot
with initial condition: u(0) = wuy.

bu, (5.3)

b4y which will become the initial

The solution to the problem (5.3) is given by u = e
condition for the next step.

Step 2 Solve

ou
ot
with initial condition: u(0) = e u,.

au,

(5.4)

The solution of (5.4) is given by u = e'®e'uy. The solution u(t) thus obtained from step 2

is the solution of the problem (5.1). This approach of obtaining the solution in two steps
is called operator splitting.

5.1.1 Extention to vectors and operators

The above interpretation of operator splitting, however does not extend to vector systems.
Let u:[0,7] x 2 - R, Q C R™. Now, let us consider the following system of ordinary

differential equations

(Z—? = (A + B)u, (5.5)

with initial condition u(y) = ug, where u € R™ is a vector, A, B € R™*™ are scalar ma-
trices. The exact solution of the problem (5.5) is given by u = e(AtBlty,. Using operator
splitting, by proceeding in two steps as explained for the problem (5.1), the solution of
(5.5) is approximated by u = eAteBtuy. Here we can see e(A+Bltyy =£ eAteBtyg unless the

matrices A and B commute.

Let us extend the study of splitting to the concept of operators and space dimensions.
Consider the following linear partial differential equation

0
a—‘; = Au= (A +Ay)u. (5.6)
Here A = Ay + A, is a spatial differential operator. As a particular case, A; = % and

Ay = g—;. The solution of the linear partial differential equation (5.6) can also be written
in the following exponential form

U(.T, Y, t) = etAu(xv Y, O)a
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where A is independent of t. The exponential of the operator A can be interpreted using
the Taylor’s series expansion of u in terms of t,

t2
u(z,y,t) =u(z,y,0) + tAu(z,y,0) + EAzu(x, ¥,0) + e = etAu(:r, y,0).

Again we can observe, u(xz,y,t) = e(A1+22)u(x, 5, 0) # ' tetA2u(x, y,0), unless the oper-
ators A; and A, commute.

Splitting error

Consider the Taylor’s series expansions of e/21+22)u(z,y,0) and e'*1e*2u(z,y,0), then
we get

t2
elB1ti2)y (g y, 0) = (I+t(A1+A2)+5(A§+A1A2+A2A1+A§)+ ........ Ju(z,y,0), (5.7)
and

t° t°
et ez, y t) = (T+A, + 5A§ + e YA+ tAy + 5A§ + s yu(z,y,0)

(5.8)
t2
= (T+tA +Ay) + 5(A§ +2A1 A0 + AY) + .o yu(z, y,0).
Substracting (5.8) from (5.7), we get
2
A8 ety 0) = [C(A0A) — M) + O(F)ul,y,0). (5.9

The difference between the two expressions is O(#?), unless A;A, = AyA;. Obviously this
splitting is a first order process unless A; and A, commute. The error is often called as
splitting error. It follows that for commuting operators the splitting is exact, it leaves no
error. However the factorization almost works when ¢ is small, hence, we can replace ¢ by
a small time increment &t to obtain the solution
__0t(A1+A) _[OtAL 5tAs ‘5_t2 _ 3
11(33, Y, 5t) =e 11(33, Y, 0) - [6 € + 2 (AZAI A1A2) + O(5t )]U(.Q?, y,O)
To obtain a numerical method, we discretize the spatial operators A; and Ay, neglect the
local error terms and then use the resulting scheme from time step to time step. Thus we
get the numerical scheme
un+1 — 65tA1,5 eJtAg,gun’

where A; 5 and Ay 5 are discrete numerical approximations of A; and Ay. In literature this
technique is often called as method of fractional steps or operator splitting or dimensional
splitting. The primary advantage of this technique is, if each of the operators are stable,
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then the composition is stable. If the operators A;s and A, s satisfy the von Neumann
conditions, then the combined scheme is stable since

|e¥Ris|| <14 ¢6t,  i=1,2

a1 < fle S [[[le* 2= ] lu]| < (1 + eot) lu”].

With operator splitting, the local error is O(d¢?) unless the operators A; and A, commute.
If the operators commute then the local error is O(6¢3).

5.2 Dimensional splitting

The dimensional splitting technique is a numerical method to extend the one dimensional
case to two or higher dimensions. The primary advantage of dimensional splitting is the
efficiency of the numerical scheme. The application of standard implicit schemes to any
time dependent partial differential equations results in solving the linear system of equa-
tions of the form Az = b, where A is any matrix, z is the unknown vector and b is the
right hand side vector. The matrix A is a tridiagonal matrix for a scalar parabolic problem
in one dimension, and it is no longer a tridiagonal matrix in two and higher dimensions.
Thus the size of the matrix A increases with dimension of any scalar or system of partial
differential equations. Hence, it is worthwhile to note that the efficiency of inverting the
matrix A must be increased, when moving to higher dimensions. The inversion of a large
matrix in higher dimensions at each time step of the numerical process is costly and this
can be overcome by using splitting methods. Here dimensional splitting can be used to
break the two dimensional case into easier one dimensional parts. These methods take less
memory and more efficient. These schemes are motivated by ADI scheme of Peaceman and
Rachford [31].

Let 2 = [a,b] X [¢,d], a,b,c,d > 0 be any two dimensional domain and u : [0,7] x Q2 — R.
Consider the following partial differential equation

a(;(:) :(% L; (“j(“)agg(f)ﬂ +a% lz (bj(u)agé%;“))] on [0,7T]xQ,  (5.10)

i=1

with initial condition: u(to, x,y) = uy. Using dimensional splitting, the problem (5.10) can
be solved in two steps. In each step a one-dimensional problem is solved.
Step 1: Solve

0(u) _ 0 [$ of;(u’)
= — (u* 0, 7] x Q 5.11
at al‘ []z:; a](u ) al‘ on [ ) ] X ) ( )
with initial condition u* (¢, z,y) = uo, let the solution to the step 1 at time ¢, is u*(tn, x, y)
step 2: Solve

a%(tu) _ a% [; (bj (“)agég(,m)] on [0,7] x 9. (5.12)
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with initial condition u(ty) = u*(¢,). The solution u(t,) obtained from step 2 is the
approximate solution of the problem (5.10). The same procedure can be applied to any
boundary value problem.

5.2.1 Discretization in two dimensions

In the present work, we use a cell centered finite volume scheme for discretization. For the
two dimensional case, we consider only implicit time discretization. A square of side length
L is considered as the two dimensional domain. Let N be the number of cells or control
volumes in each direction, then the total number of cells in the complete two dimensional

domain is N2. We take h = % as the fixed space step size in each direction. The area

of each control colume or cell is h2. The area of the boundary cells is %2, and the area of
the corner cells is %2. For the treatment of boundary control volumes in different ways,
see Patankar [30]. Applying a cell centered finite volume scheme to (5.10) with implicit
time discretization results in solving a nonlinear system of equations with a large matrix
of size N? x N?, whereas, using dimensional splitting it is enough to deal with a matrix
of size N x N in each direction. Here we do not present the cell centered finite volume
discretization for a two dimensional problem, for details see Patankar [30] or Versteeg and
Malalasekera [46]. Figure 5.1 represents a two dimensional control volume mesh illustrating
the dimensioinal splitting approach. We first solve the solution of a given problem in x-
direction (step 1) which are shown in green lines in Figure 5.1, then we solve in y-direction
(step 2) which are shown in yellow lines. The discretization in the one dimensional case is
given in Section 3.1.

Y-direction

A control
volume

"

X—direction

Figure 5.1: A control volume mesh with dimensional splitting.
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The main advantages of these methods are
1. one dimensional time step restrictions for two dimensional problem,

2. solving matrices of smaller size than those matrices in the case of direct two dimen-
sional discretization.

Off course the dimensional splitting is restricted to structured meshes only. For multi-
dimensional PDEs, the dimensional splitting works in such a way that all computations
become effectively one dimensional. For this reason these methods are also known as locally
one dimensional.

5.2.2 The domain reduction using symmetry

The right hand Figure 5.2 represents the complete two dimensional discretized domain.
For the problems with symmetric solutions, it is enough to solve the domain given by left
hand side in Figure 5.2 by insulating two ends of the boundary i.e., by making the flux
equal to zero at the insulated boundary ends. The reduced domain is one fourth of the
complete domain, and therefore an essential gain is attained in the computational cost.
We considered the domain represented by Figure 5.2(a) in our numerical computations.

Flux=0, insulated side
° b i i Flux=0
insulated side
o .| o |. o ° [ T
7 .
[ ] [ ] [ ] o
(a) a square of side length Z (b) a square of side length L

Figure 5.2: A two dimensional mesh with isolated ends to make use of symmetry and the
right figure is a complete domain.
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5.3 Splitting methods

Here we present two kinds of splitting procedures of Strang for a two dimensional problem.
To explain these procedures, we consider the following linear partial differential equation

ou

T Au. (5.13)
Here A = 38—;2 + 83—;. Split A = A1 4+ Ay where A, = 63—; and Ay = g—;. We use the fol-
lowing notation in order to explain the two kinds of splitting procedures which are used in
the present numerical simulation. The solution to (5.13) is given by w41 = (eT(A1+A2)) Uy, -
We denote u,1 = u(t,.1) and 7 = t,11 — t,,. Using dimensional splitting, the solution is
approximated by u,11 = (eTAleTﬁz) tn. The notation can be understood in the way that
e”®2y,, indicates step 1 which is (5.11). Let u* be the solution to this step 1. Then e”®1u*
is the step 2 given by (5.12) which gives the solution to (5.13). With this notation, the two
kinds of splitting procedures are given below.

Method 1
The following splitting procedure is suggested by Strang,

Upy1 R (eTAleTA2) Uy, (5.14)

The point of attaining symmetric solutions is important in various problems like image
processing, drying technology etc., see Barash and Kimmel [2]. As we mentioned earlier,
if the operators are not commutative, the order of changing the splitting not only effects
the solution, importantly it loses the symmetry of the problem. Though this might not
be a severe problem in solving linear problems, but the loss of symmetry in the solution is
severe in the case of nonlinear problems. So, we alter the order of splitting suggested by
Strang [41] and get

Upi1 = (e77€72) . (5.15)

Thus the solution of (5.13) is approximated by

1
Unt1 = 3 (eTAleTAz + eTmeTAl) U, (5.16)
Method 2
A second order splitting is given by
Upt1 N2 (65A165A2) (e%AzegAl) Uy = (e%AleTAzegAl) Up- (5.17)

Interchanging the order of splitting after each step will lead to symmetry and better accu-
racy. This idea of splitting has been proposed by Strang [42] and Marchuk [25]. To attain
a better symmetry, the solution of (5.13) is given by

(6%A167A26%A1) Uy + (6%A26TA16%A2) Un,
2

Though splitting by the second method gives better accuracy, it is expensive because it
needs to evaluate the solution by one time step more than the first method.

(5.18)

Un1 =
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5.4 Numerical results

In this section, we present the numerical observations in two space dimensions for a scalar
and coupled quasilinear parabolic equations. These problems govern the drying process. At
each time step, we apply Newton’s method in linearizing the nonlinear system of equations
and then the linear system of equations are solved by BICGSTAB with ILU preconditioning.

Scalar problem

The governing partial differential equation is given by equation (2.1). The initial and
boundary conditions are given in Section 3.3.1. The primary variable is S and the complete
equations of state are presented in Section 3.3.2.

Coupled problem

The coupled system of quasilinear parabolic partial differential equations are given by
equations (2.1) and (2.2). The primary variables are S and p,. For the initial, boundary
conditions and the complete set of equations of state, see Section 3.4.

5.4.1 Simulation results: scalar problem

We consider a concrete material of square of length L=0.1m. Figure 5.3(a) represents the
domain used for numerical computations. It is only one fourth of the total square of side
length 0.1m, with two sides being insulated. Figure 5.3(b) represents the solution for the
complete concrete material of length 0.1m. These profiles are drawn at a drying time 5.11
days.
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Figure 5.3: Saturation profiles.

The following table represent the CPU times taken by the two splitting methods given in
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Section 5.3. The programming has been done in languages C and C++. These CPU times
are calculated on a Linux machine of 1GB ram and 1.6GHz Processor at the end of real

drying time of 5.11 days.

Method.

CPU time (min)

1
2

67.84
101.05

Table 5.1: Efficiency table using Strang’s splittings.

Here we observe that the first method is more efficient than the second method and the
accuracy is also as good as the second method. For the scalar problem we stop the sim-
ulation at a real drying time of 5.11 days. With these observations we now proceed to

the coupled problem which govern the exact physics of the drying problem at isothermal
conditions and we use the first method of splitting.

5.4.2 Simulation results: coupled problem

For the coupled problem also, we consider a concrete material of square of length 0.1m.
The number of cells are 80x80. The initial average saturation is 0.8 and the initial air

density is 1.16103 £4.

Saturation profiles at different drying times

The following sequence of figures represent saturation profiles at different drying times.

Saturation S (-)

0.04
Length L (m) 00 Length L (m)

(a) initial saturation

o
o
@©

iyl
b

1 i
U
U i Wi

i

il

gt
ﬂ”///lllll////lllflll///lll/;%ﬂ/;;ﬂjlll};'l

e

gyl

Saturation S (-)

it
i
i
i | ‘\{‘\‘&\\\‘\‘\‘\‘\‘\‘\““&W&“‘“‘\
W \\\@“ i

“\“\‘ \\\\\\\\{{m\ \\\\\\\\\\\\\\\\l
o \
lj :, i
i

0.06

0.04
0.04
0.02 0.02

Length L (m) 0o Length L (m)

(b) at 18 min

Figure 5.4: Saturation profiles at different drying times.
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Figure 5.5: Air Pressure at different drying times.
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With our numerical simulations in two dimensions using dimensional splitting approach,
we attain the physical trends of drying with good drying rates in an efficient way. We
do not present here the profiles of all the other variables, but the trends are similar as
in the one dimensional case. The drying time required to reduce the saturation from an
average initial saturation of 0.8 to 10~* for a concrete material of square side length 0.1m
is 13.02 days. The CPU time consumed is 12.81 hours. The coding has been written in C
programming language and the CPU time is calculated on a Linux machine with 1GB Ram
and 1.6GHz Processor. Through the sequence of figures in Figure 5.4, it can be noticed
that the saturation decreases with increasing time. The air pressure in the porous media
increases with increasing time and it reaches the atmoshpheric gas pressure at the end of
the drying process, which can be observed in the sequence of figures in Figure 5.5. The
coupled problem is highly stiff as we have noticed in the one dimensional case. Also, we
have observed similar time step reductions in the two dimensional case. During the first
drying state, we take the time step size as 180 and in later states we reduce the time step
size to 5. During the intermediate state of drying, the problem becomes highly stiff in local
regions where a change in drying state occur. Figures 5.4 (d), (e), (f), (g), (h), (i), (j), (k)
represent the saturation profiles during the intermediate state of drying. In these figures,
we can see the steep gradients at local regions at which the change in drying state causes
rapid reduction or increase in the variables. Through dimensional splitting, the stability
is maintained with the same time step restrictions as in the one dimensional case and this
approach is efficient than the direct discretization.



Chapter 6

Time stepping strategies

In this chapter, we present some efficient time stepping strategies for solving a time depen-
dent nonlinear parabolic partial as well as ordinary differential equations in one dimensional
case. Given a time dependent partial differential equation, discretization in space leads to
a semi-discrete system of ODEs. To solve these system of ODEs, there exist several time
integration methods which can be explicit and implicit Runge-Kutta methods, linearly im-
plicit methods such as Rosenbrock methods, W-methods etc. In this chapter we study the
drying problem using linearly implicit time stepping methods. And we investigate suit-
able time stepping strategies in order to increase the efficiency of the numerical scheme
in solving the equations governing the drying problem at isothermal conditions. For this
purpose, we take the method of lines approach. In the first section of this chapter, we
discuss about linearly implicit methods with variable time step size control for solving or-
dinary differential equations. In the next section, we describe a partitioning strategy and
the corresponding numerical observations for a scalar quasilinear parabolic problem will be
presented. In the final section of this chapter, a local time stepping method is described
and the numerical observations for a coupled quasilinear parabolic problem are presented.

6.1 Linearly implicit methods

Linearly implicit methods have proven succesful in solving many stiff ODE, DAE and PDE
problems efficiently. The primary advantage of these methods is, only linear system of
algebraic equations have to be solved. In the case of an implicit scheme, the implementation
of an efficient nonlinear solver in solving the system of nonlinear algebraic equations is the
main problem. Rosenbrock put forth an important consideration to derive a stable formulas
by working the Jacobian matrix directly into the integration formula. It means that linearly
implicit methods avoid Newton iterations, which are required in general while solving any
nonlinear PDEs or ODEs. Moreover these methods with embedding provides a cheap
local error estimator which is needed for time step control. In this section we present two
types of linear multistep methods which are W-methods and Rosenbrock methods. More
details on linearly implicit methods can be found in Hairer and Wanner [18], Deuflhard
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and Bornemann [14], Hundsdorfer and Verwer [20].

6.1.1 W-method
Let us consider the following ODE problem

ou

~— =f(t,u 6.1

= f(t,u) (61)
in the time interval [to, tcnq]. We denote 7, = t,,1 — t, as the time step size at n'® discrete
time interval in the sequence 5 < t; < ty < ......... tny = tena and u”™ denotes the numerical
solution at time t,. At the n'" integration step, a g-stage W-method of order p has the
following form

7j—1 7j—1
(I — Tn’)/Jc)kj = f(tn -+ Tnaj, u” -+ Tn Zbljkl) -+ Z Cljkla for ] = 1, 2, ..... q, (62)
=1 =1
q
+1 u” + T Zdlkl- (63)

A W-method with embedding of order p # p has the form

q
0 =" 47, Y dik. (6.4)

=1

The coefficients v, a;, bjx, cjx, d; and cfj are chosen such that the local error of u is of order
7P+1 and the local error of i is of order 7271, These orders are independent of the Jacobian
matrix J.. We use a 3 stage W-method, with orders p=2 and p = 1. The corresponding
coefficients in the method are given by

Y= _ia

a1 =0,a2 =1,a3 =1, b1g =1,b13 =1,be3 =0,

012=—2—\/§C3 —1,0232—14-\/5,

Variable time step control

In many applications, ODE problems are solved by integrating with variable time step
sizes. Users have to specify a prescribed tolerance and specific norm for calculating the
error, and then the code automatically adjusts the time step 7 to the local variation in
the computed solution to meet a certain local error criterion in the specified norm. This
approach leads to smaller time steps in the regions of rapid variation and larger in the slow
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variation regions. This result to an efficient numerical computation.

A W-method with embedding provides a cheap local error estimator which is needed for
the time step control. By comparing the solution with two methods of order p and p, we
get an estimate for the local error. After the n'® integration step the value

err = ||u” — 0"||oo, (6.5)

gives an estimate for the local temporal error. We take the maximum norm because it aims
at errors below the given tolerance at all spatial grid points. After obtaining the solutions
u and 1, there arises two cases. If err <= tolerance, we accept the time step and continue
the integration from ¢, to t,.1. If err > tolerance, we reject the time step and the time
step is repeated with a smaller step size T,¢,. The new time step size 7,¢, is given by

tol \ /7
Tnew = C’rold (—> ’ (66)

err

where tol is the desired tolerance specified by the user and 0 < ¢ <1 is the safety factor to
make the estimate conservative which avoids the repeated time step rejections. This (6.6)
type of time step selection is standard, we refer to Shampine [40].

6.1.2 Rosenbrock method

These methods are linearly implicit which are of Runge-Kutta type methods for solving
stiff ODEs. These methods are named after Rosenbrock, who has introduced the methods
of this kind. For more details of these methods, we refer to Lang [23] and Verwer [20].
There exist many Rosenbrock methods in the literature, a g-stage Rosenbrock method for
solving the ODE system (6.1) is given by

1—1 A
ki = f(u" + Y oyky) + mJe Y Ak, fori=1,2,..q, (6.7)
j=1 j=1
q
u" !l =" =+ T Z dik;. (68)
=1

The coefficients d;, a;; and «y are chosen to attain a desired order of stability and consistency.
In our numerical computation, we use a two stage Rosenbrock method known as ROS2
which has the following form

(I - Tn’YJc)kl = Tnf(un)a
(I - TanJc)kZ = Tnf(un + kl) - 2k1: (69)
u"“ =u" + d1k1 + d2k2.

Here di=3 and dy=%. The method (6.9) is of order 2 for any choice of . The method

is A-stable if v > i and L-stable if v = 1+ ? In our computational work, we take
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y=1-— ? which gives L-stability. At each time step, these methods solve a system of
linear algebraic equations with the matrix (I — 7,,7J.).

Variable time step control

We use the embedded first order Rosenbrock method to estimate the local temporal error.
The first order Rosenbrock method is given by

" = u" + k. (6.10)

The local error at n'® integration step is estimated by err = ||[u™ — ", and the time step
size for (n + 1)™ integration step can be estimated by equation (6.6).

6.2 Governing equations and discretization

We consider two problems which are a scalar and a coupled quasilinear time dependent
parabolic partial differential equations. We consider the method of lines approach where
the space and time discretizations are done seperately. First we discretize in space, which
leads to a semi-discrete DAE system. Then we use linearly implicit methods to integrate
the ODE system in time. In our computational work, we consider an embedded W-method
of order 3 and a 2-stage Rosenbrock method for time integration. The scalar and coupled
problems are given as follows.

6.2.1 Scalar parabolic problem

The governing partial differential equation with the initial and boundary conditions are
given in Section 3.3 and the equations of state can be found in 3.3.2. The semi-discrete
ODE system obtained after space discretization is given by equations (3.28), (3.29) and
(3.30) in Section 3.5.1 with a1 (.S, ps) = a1(S). For the scalar problem, we take the following
expressions for P, k; and k, as a numerical test case, instead of those given in Section 3.3.2.

P, = 400840571070 476% (6.11)
k= S%if X > Xy else k; = 0, (6.12)
ky =1+ (25 —3)S*if X > X, else k, = 1. (6.13)

6.2.2 Coupled parabolic problem

The governing partial differential equations for the coupled problem with the initial and
boundary conditions are given in Section 3.4.1. The equations of state are given in 3.3.2
and by equation (3.21). This governing system represent the isothermal drying of porous
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media. The DAE system of equations obtained after discretization in space are given by
equations (3.28), (3.29), (3.30), (3.31) and (3.32) in Section 3.5.1.

Solution domain

For both the scalar and coupled problems we consider the drying of a concrete material of
length L=0.04m. To make use of symmetry, the right hand side boundary is insulated by
making the flux equal to zero at this boundary. Hence it is sufficient to perform numerical
simulations for length L=0.02m with one end of the boundary being insulated. The space
step size is given by hz%, N being the number of cells. The construction of Jacobian
matrix has to be done in great care, as the drying problem under consideration is highly
nonlinear and also due to many nonlinear equations of state with switching between states
of drying. In such cases, computation of analytical Jacobain is quite difficult. So we
compute the Jacobian matrix numerically using finite differences which is explained in
Section 3.3.6.

6.3 Partitioning method

In some cases, stiffness exist at some specific regions rather than being stiff at the entire
domain, which means only a part of the components of the semi-discrete ODE system is
stiff. Several examples of reaction-diffusion systems, diffusion systems exist which are lo-
cally stiff. For instance in the scalar and coupled drying problems which are mentioned in
Section 6.2, the problem becomes highly stiff at some local regions during the intermediate
state of the drying process. The high stiffness occurs locally at the regions where a node
changes its state from the first drying state to the second drying state. The local temporal
error is high in such regions using large time steps. Due to these high local temporal errors,
the time steps are rejected, and we proceed to the next time level using a reduced time
step size estimated by equation (6.6) for the entire domain.

Construction of the Jacobian matrix and solving large system of linear equations make the
code expensive in CPU time using an implicit scheme. On the other hand, though explicit
schemes do not lead to system of nonlinear algebraic equations but these schemes demand
a small time step size for stability conditions. Partitioning exploit the fact that stiffness is
only affecting a part of the system in such a way that only this part is solved by a stable
implicit scheme while the remaining nonstiff part can be solved by an explicit scheme. For
interested reader on partitioning type methods, we refer to [8, 10, 15, 19, 28, 48].

Explicit-Implicit Switching

W-methods are appropriate choice for partitioning. A W-method (6.3) reduces to an
explicit Runge-Kutta scheme if the Jacobian J.=0 in equation (6.2). Therefore an easy
switching between an explicit and an L-stable implicit method is possible by a change of



78 CHAPTER 6. TIME STEPPING STRATEGIES

the matrix J.. We identify the local regions where the local temporal error is greater than
the prescribed tolerance by using equation (6.5). Then, consider an implicit scheme in the
regions where this error is high and an explicit scheme in the remaining parts. For instance,
consider a one dimensional domain of length L as shown in the following figure.

Explicit Implicit Explicit
0 Ry Ry R3 L

Figure 6.1: A one dimensional domain with partitioning.

Let R, be the region where the local error is more than the given tolerance, then we use
an implicit scheme only in Ry and an explicit scheme in R; and Ry. Thus, this approach
results in solving a small system of linear algebraic equations and therefore an essential
gain is attained in the computational cost.

6.3.1 Numerical observations using partitioning strategy

Scalar parabolic problem

We use a fully implicit scheme during the first and second drying states and partition-
ing (explicit and implicit) during the intermediate state. Here we consider W-method for
time discretization. Figures 6.2(a) and 6.2(b) represent the saturation profile and the cor-
responding local temporal error at a drying time of 24.39 hours during the intermediate
state of drying. Figure 6.2(a) represents the solution of a concrete material of length 0.02m,
with one end of the boundary being insulated. The solution of the complete domain of
length 0.04m can be seen in Figure 6.3. In Figure 6.2(a), a change of drying state occurs
at cell number 60. The local error is high only in a neighbourhood of cell number 60. This
can be seen in Figure 6.2(a). The time step is rejected due to this local maximum error
at cell number 60 and redo the computation with a smaller time size at all spatial grid
points using an implicit scheme. We partition the time discretization in such a way that
we consider an implicit scheme in the neighbourhood of a region where the drying state
changes and an explict scheme in the rest of the domain using the reduced time step sizes.
For instance in Figure 6.2(b), we use an implicit scheme only in a neighbourhood of the
cell number 60. Figure 6.3 presents the comparison of saturation profiles with and without
partitioning at time 3.05 days. We take tol=10"° during the first and intermediate state
of drying and tol=10"° during the second drying state.
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Figure 6.2: Saturation profile at 24.39 hours and the corresponding local temporal error.
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Figure 6.3: Comparison of solution with and without partitioning.

Efficiency

The following table gives the CPU time in minutes using a W-method with partitioning
and without partitioning. These CPU times are calculated at the end of a real drying time
of 3.05 days.

Cells | CPU time (min) CPU time (min)
without partitioning | with partitioning

100 20.85 15.98
150 77.52 47.18
200 203.35 91.15

Table 6.1: Partitioning efficiency.
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Loss of positivity

It is important to notice that the solution loses positivity with larger time step sizes during
the second state of drying process. For this purpose, the tolerance tol should be reduced
during the second drying state in order to reduce the time step sizes. For instance by
using tol=10"°, the solution loses positivity and then diverges at a real time of 4.29 days
as shown in the following figure. This is the reason to take tol=10"% during the second
drying state.

Saturation S (-)

o 0.005 0.01 0.015 0.02
Length L (m)

Figure 6.4: Loss of positivity.

Coupled problem

We have noticed that the partitioning is not efficient for the coupled problem. This is
because there are no local regions where the scheme is stable with explicit schemes. The
problem is highly stiff at first, second and intermediate stages of the drying process. Figure
6.5 presents the instability of the solution with an explicit W-method. The accepted time
step sizes are very small using a tolerance of tol=1073. A further decrease of tolerance
leads to very small time step sizes. Hence an explicit scheme is not efficient in the case of
coupled problem. This motivates us towards a local time stepping strategy for this case.

0.8002

3 0.7998

0.7996 |

Saturation S

0.7994

0.7992

0.799
o 0.005 0.015 0.02

0.01
Length L (m)

Figure 6.5: Instability with an explicit scheme.
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6.4 Local time stepping

Local time stepping schemes are restricted by a local stability condition instead of the
general global stability condition. The idea of local time stepping is to exploit the largely
differing time scales during the numerical integration. In solving the complex systems of
partial as well as ordinary differential equations, during many cases the problem becomes
highly stiff only in a certain local region. An integration scheme for solving ordinary
differential equation is limited by the fastest changing component, whereas, the local time
stepping strategy employ an inherent time step size for each subsystem. In literature
these methods are also known as multirate methods. The main goal of the local time
stepping is to use larger time step sizes in the nonstiff and less stiff regions, and smaller
time step sizes in the highly stiff regions. In our computational work, we use a local time
stepping strategy suggested by Savcenco et al. [39] where the time step size at a particular
grid point is determined by the local temporal variation of the solution. We apply this
strategy for solving the quasilinear time dependent coupled parabolic problem given in
Section 6.2. More information about these local time stepping procedures can be found in
(3, 11, 12, 17, 39, 43].

6.4.1 A single time slab

Let Ro=(2 be the complete spatial domain and [0,7,,4] be a given time interval. Divide
[0,T¢,q] into finite set of subintervals 0 =ty < t; < to.... < t, = Tepq. The length of a single
time slab is given by 7,=t;,1 — t;. Figure 6.6 represents a typical single time slab of length
Tn- Here we explain the processing of this time slab.

tn+1

tn

Ry =0

Figure 6.6: Typical time slab.

The solution of a given problem is known at the current time level ¢,, and we wish to find
the solution at the next time level ¢,.,. At first, we calculate the solution at the time
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level t,,; with a time step size of 7,,=t,, .1 — t,,. Then, we determine the local temporal
error at the time level ¢,,; using the equation (6.5). In the usual process, we reject the
time step if the local temporal error is greater than the prescribed tolerance and redo the
computations with a reduced time step size given by equation (6.6).

By using the local time stepping strategy we do not reject the time step, instead we proceed
in the following way. Identify the local region where the temporal error is greater than
the prescribed tolerance. For instance in Figure 6.6, this region is B C Ry = ). Then,
we go back to the time level ¢, and recalculate the solution only in the region R; with a
time step size of % instead of 7,,. We call the processing of this region R; as the first level
of refinement. Thus in R;, we reach the time level ¢, in two time steps. Now we find
the region in R; where the local error is greater than the given tolerance. This region is
represented by Ry C R; in Figure 6.6. Again we go back to the previous time level ¢, and
we recalculate the solution only in this small region R, with a time step size of 7 i.e., in
Ry we reach the time level ¢, in four time steps. We continue this process until there is
no error at all spatial grid points at the time level ¢,,.1. Thus for m levels of refinement,
we have m local regions R,, C R,,_1 C ..... C Ry = Q2 and the time step size in each R;
is given by 2. By this process, the time steps are rejected only at some local grid points
instead of rejecting the time step at all the spatial grid points.

6.4.2 Interface boundary conditions

In the processing of a time slab using local time steps, it is required to deal with artificial
boundary nodes. These nodes are shown by red circles in the Figure 6.7. As the solution
at time levels ¢,, and ¢, is known, a linear or quadratic interpolation is used to obtain the
values at the internal interface boundary nodes during every successive level of refinement.

L S e
Ry
Ry
o 9090 9o 0o 0o 09 O
tn}EO- P SN . o 6 o o

Figure 6.7: Interface boundaries.
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6.4.3 Length of a time slab

The important factor is chosing an appropriate length of a time slab. A proper estimate for
the length of the time slab is needed to make the local time stepping strategy more efficient.
For this purpose, we make use of the information available from the last completed time
slab to estimate the length of the next time slab. Let the length of the last completed
time slab be 7,=t,,1 — t,. We store the information at the regions of last accepted local
time steps in all the levels of refinement during the last completed time slab. This region
is represented in the shaded part of the Figure 6.8.

tn+l

Figure 6.8: Last accepted local time steps.

Suppose the n'® slab is completed with m levels of refinements i.e., we have m regions
Ry, C Rp1 C ... C Ry = €). The length of the time step size in each R; is given by 2&, for
i=0,1...,m. We store the local error which is estimated by equation (6.5) at last accepted
local time steps in each R; which is the shaded part in Figure 6.8 and denote this error by
err;. Then, we estimate a time step for all points in R;\ R;;; based on the local time steps

s and error err;. This estimate is given by

; o ([ tol \'7?
Tn+1 = Cﬁ <—> : (6.14)

Err;

The equation (6.14) gives an estimate of the time step size for all the grid points in R;\ R; 1.
We estimate these time step sizes for each local region. The minimum of all these time
step sizes is denoted by Tﬁ‘{. This optimal time step size Tﬁ'}f’f serves as the time step size
to keep the local error less than the tolerance at all grid points in order to proceed in time

from ¢, to t, + Tﬁr{ in a single rate. This minimal time step is given by

TR = min(Te g, Th gy eeee)- (6.15)
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Let L,, denote the number of levels of refinement for the last completed time slab and L,
denote the estimated levels of refinement for the next time slab. It can be understood that
the length of the new time slab is then given by

Tng1 = 20700, (6.16)

The next task is to find an estimate for L, ;. A large choice of L, ,; may cause insta-
bilities and a small choice of L, ,; leads to poor efficiency. The estimation of L, ; is
based on the amount of work required to cover a unit of time. Let the n'* time slab of
length 7,=t,.1 — t, is finished with m levels of refinement i.e, we have m local regions
Q =Ry C R CRs.... C R,,. The number of nodes in each R; be N;, for :=0,1,2,...m with
total number of nodes Ny = N and the time step size in each R; is 5;

The amount of work done for one time step at N spatial grid points is proportional to N",
r > 1. Thus the amount of work done in processing the entire time slab per unit time is
approximated by W = %(Ng +2N] + ...+ 2™N] ). Then we go back to the time level %,
and estimate the amount of work done if we have started with a smaller time slab of length
2,1“) Tn, instead of 7,,. In this case, the levels of refinement are estimated to be m — my.
Denote the amount of work done using this smaller time slab by Wi. Naturally if W, is
less than W, the choice of this smaller time slab of length 2m0 ==—Tn Will be efficient with less
levels of refinement than the original slab of length 7,,. The value of such W; attains its
minimum for

L, = max{i : the number of nodes in R; > pN}. (6.17)

The value of p is ( )17 r > 1. For complete details about calculating the amount of work
done W, W, and the derivation of the estimate (6.17), see Savcenco et al. [39]. Now there
exist two cases

1. if L,>0, a smaller time slab might be efficient. Then the estimated levels of refinement
for the new time slab should be reduced by L., i.e. L,.; = L, — L,.

2. if L,=0, a larger time slab might be efficient.

If we are in case 2, we can double the length of the next time slab by increasing the es-
timated levels of refinement by 1, i.e., L,,1=L, + 1. For this purpose, we go back to the
time level ¢, and approximate the amount of work done per unit time if we have started
with a larger time slab of length 27, instead of 7,,. Denote the work done using 27, by
Wy. If Wy < W, then it implies that the larger time slab with length 27,, would be more
efficient than the original time slab of length 7,,. Therefore we need an estimate to decide
whether Wy > W or Wy < W. It is estimated in the following way.

Again we use the information from the last computed time slab with length 7,,=t,, .1 — t,.

Let E = u™"! — 4""! be the difference in the two solutions calculated using Rosenbrock
methods given by (6.9), (6.10) and err be the maximum norm of E. The vector E is of
length N, where N is the total number of grid points. The value of E is approximately
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equal to 72, where p is the order of the method. Hence we would expect an error of 2P E,, if
we would have started with a time step size of 27,,. Therefore, at time level ¢, 1, we would
t

also find the local temporal error with a tolerance of 2% instead of tol. Since we use a 2

stage Rosenbrock method, here we take p=2. Consider the following set

tol
Ey={i:|E|> %,i =1,2,...N}, (6.18)

where E; gives the error at each node ¢ and E,; gives the number of nodes at which the
local error is greater than %"l. Consider the following inequality

E4 < pN. (6.19)

If (6.19) is satisfied, then it implies that Wo<W, which follows from (6.17). And there-
fore, we can conclude that it would be more efficient if the length of the time slab is doubled.

After doing all these approximations, the estimated levels of refinement for the next time
slab L,, ;1 can be given by

L,+1 : if (6.19) is satisfied

Lnsr = { L, — L, : otherwise. (6.20)

The value of L, is given by (6.17). Therefore the length of the next time slab can be
calculated by equation (6.16). All this process should be carried out for time slab to time
slab until the final time is reached. At each region, great care should be taken to evaluate
the interface boundaries and at each local region the Jacobian matrix is constructed using
finite differences.
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6.4.4 Numerical observations

We present the numerical observations for the coupled problem with local time stepping
using ROS2 for time integration. The length of the concrete sample is 0.04m and for
numerical simulations we take a length 0.02m by insulating a boundary end. Figure 6.9
represents the accepted time step sizes using ROS2 without local time stepping. From
this figure, it can be noticed that there are time step reductions in the intermediate state
of the drying process. Figures 6.10(a),(b) and (c) represent the saturation profiles during
the intermediate state of drying at 28.51, 37.46 and 46.60 hours respectively. From these
figures we notice that time step reductions occur, due to a high local temporal error only
in a small region where the change of drying state occurs. For instance at 28.51 hours in
Figure 6.10(a), a change of drying state occur at cell number 30 and the corresponding
error is high only in a region of small neighbourhood of cell 30. Similar trends can be
observed in figures 6.10(b) and (c) at 37.46 hours and 46.60 hours near cell numbers 50
and 70 respectively. In the usual process, the time step size is reduced at all spatial grid
points due to this local high errors. But with local time stepping smaller time steps are
chosen only in the regions of high errors. Figure 6.11 present the comparison of average
saturation with and without local time stepping. Tables 6.2 and 6.3 represent the efficiency
with local time stepping method calculated at the end of the real drying time of 5.2 days.
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Figure 6.9: Accepted time step sizes with ROS2, tol=10"%.
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Figure 6.10: Saturation profiles and the corresponding local errors.
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Figure 6.11: Average saturation profile.

Cells CPU time (min) CPU time (min)
without local time steps | with local time steps

100 19.62 16.51

150 69.96 65.78

200 175.78 163.38

Table 6.2: Efficiency using local time stepping, CPU time in minutes.

Another case

The following table illustrates the CPU times for the coupled problem by taking P,, k; and
kq given by equations (6.11), (6.12) and (6.13).

Cells CPU time (min) CPU time (min)
without local time steps | with local time steps
50 12.38 5.68
100 166.91 32.94

Table 6.3: Efficiency using local time stepping.

From these tables, we can observe the gain in the computational cost using local time steps.
In certain cases, these local time stepping methods are stronger than partitioning methods
because partitioning is more efficient only if there exist a local region where an explicit
scheme is stable. On the other hand local time stepping methods can be applied to highly
stiff problems using implicit local time steps determined according to the local variation in
the solution though these schemes are slightly nonconservative at the grid interfaces.



Chapter 7

Summary

The main aim of the work was to investigate efficient numerical methods for solving the
equations governing the isothermal drying of porous media. Drying is a complex process
of heat and mass transfer which involves the removal of water in pores by evaporation.
We considered a continuous drying model of Perré [36] at isothermal conditions i.e., drying
at constant temperature. An isotropic porous medium (concrete) was considered. The
governing equations are a quasilinear coupled system of stiff parabolic partial differential
equations.

The difficult factors which influence numerical simulations in this field are nonlinearity,
strong coupling, the necessity of large real time computations and many dependent vari-
ables defined by just as many equations of state. Moreover the definitions of all the variables
change according to the drying state. They are solution dependent. This change of drying
states leads to a sudden rapid increase or decrease in variables near a grid point at which
a change in drying state takes place. In a neighbourhood of that grid point, we observed
that the problem becomes highly stiff. Due to the complexity of the problem, we therefore
reduced the model into two problems, a scalar and a coupled quasilinear parabolic prob-
lem. The scalar problem consists of a primary variable saturation S and 18 dependent
variables whereas the coupled problem consists of two primary variables, saturation S and
air density p, with 19 secondary variables.

At first we considered the one dimensional case for the numerical simulation. A cell cen-
tered finite volume scheme has been implemented for the scalar problem with explicit,
semi-implicit and implicit time discretizations and the corresponding efficiencies were com-
pared. The Jacobian matrix was constructed numerically using finite differences. The
linear system of equations with a tridiagonal matrix resulting from the scalar problem was
solved by the Thomas algorithm. An algorithm for solving the scalar quasilinear parabolic
problem has been presented. The convergence of the solution is attained with refinements
of the mesh. For the coupled quasilinear parabolic problem, we found that explicit schemes
are not stable with sufficiently large time steps. Hence an algorithm has been developed
to solve the complex coupled system with fully implicit time discretization. Through our
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numerical simulation, the physical trends of the drying process were depicted properly. The
profiles of average moisture, air density and the local behaviour of saturation, vapour, air
and gas pressures were presented. Here we used fixed time step sizes, a large time step size
was considered in the first drying state and a small time step size after that. We observed
a drastic reduction in time step size after the first drying state even using an implicit time
discretization. With large time step sizes, the Jacobian matrix becomes ill-conditioned and
the Newton method diverges. Further we noticed negative solutions using large time steps
during the final stages of the drying process. As a next step, we considered the method
of lines approach where the space and time discretizations are done seperately. A fifth
order implicit time integration method, the so called Radaub method which uses simplified
Newton iterations with variable time step size control has been used. We found that the
variable time stepping procedure using the Radaub method is more efficient than the fixed
time step size using an implicit Euler method. We also observed that these time step re-
ductions occur during the intermediate state of the drying process at which the definitions
of the variables change according to the drying state.

Also the time step size is to be restricted in order to attain positivity preservation. Positive
solutions are important in a wide range of practical problems. Especially, in the current
problem of drying many variables such as saturation and densities cannot become nega-
tive. Hence a positivity analysis has been done for a scalar parabolic problem in one space
dimension. We first consider a quasilinear parabolic initial value problem. Then by using
the properties of M-matrices, the positivity of the solution was proved using a semi-implicit
finite difference scheme. Next, the analysis has been extended to a quasilinear parabolic
boundary value problem and finally to a particular case of a quasilinear parabolic problem.
We show that the reduced scalar drying problem is an application for the analysis of the
extended quasilinear parabolic case. However, in the present work the analysis could not
be extended to the coupled case.

For the two dimensional case, we considered the dimensional splitting approach, because
the time step restrictions become severe when moving to higher dimensions. Especially we
observed that these time step reductions are severe during the intermediate state of drying.
Also the efficiency decreases by solving a large system of nonlinear algebraic equations with
reduced time step sizes, when moving to higher dimensions. Using dimensional splitting,
we broke the two dimensional problem into one dimensional parts. Two kinds of symmetric
splitting techniques of Strang were implemented and the efficiency was compared. A two
dimensional spatial domain (square) was reduced to one fourth of the original domain by
making use of the symmetry with two sides being insulted. We considered the Newton
method to linearize the nonlinear system of equations. A BiCGSTAB with ILU precondi-
tioner was used to solve the resulting linear system of equations. The dimensional splitting
approach is efficient and the symmetry in the solution is maintained perfectly. The physical
trends of the drying process are attained properly. The saturation and the air pressure
profiles for concrete were presented at different drying times.



91

Final aim of the study was to investigate efficient time stepping strategies to increase
the efficieny in the computational cost in one space dimension. For this we chose the
MOL approach. We considered linearly implicit methods for integrating the semi-discrete
system in time. The linearly implicit methods are efficient in solving many stiff ODEs and
DAEs because these methods avoid nonlinear Newton iterations. We used variable time
step sizes based on a time step selection criterion. In the current work, a three stage W-
method and a two stage Rosenbrock method ROS2 were implemented for time integration.
We first considered a partitioning strategy through which an explicit scheme is used in
nonstiff regions and an implicit scheme in stiff regions. These regions are recognised by a
local temporal error estimator, calculated by the difference between two solutions of two
different orders. The partitioning strategy was first implemented to a quasilinear scalar
parabolic problem. The local temporal error is high only in a small neighbourhood of the
region where the change in drying state takes place. This causes the reduction of the time
step size for the entire domain using an implicit scheme. We partitioned in such a way that
an implicit scheme is used in a small neighbourhood of a region where a change in drying
state occurs and an explicit scheme in the rest of the domain. This approach results in
solving small linear systems and therefore we attained good efficiency in the computational
cost for a scalar problem. Also positivity is maintained by decreasing the tolerance during
the second drying state which in turn decreases the time step size. However for the coupled
drying problem, partitioning is not found to be efficient because the problem is highly stiff
in all parts of the domain and at all stages of the drying process. For the coupled parabolic
case, a local time stepping method has been implemented. We have considered different
time steps in different parts of the domain based on local temporal variation. The total time
interval was divided adaptively into finite subintervals which are called time slabs. In each
time slab, we used local time steps based on a local error criterion. We considered smaller
time steps in highly stiff regions and larger time steps in mildly stiff and nonstiff regions.
A linear interpolation has been used to approximate the internal interface boundaries. The
local time stepping strategy is efficient in the computational cost for the coupled parabolic
drying problem.
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