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Abstract

This thesis is an investigation of the crosscorrelation function between perfect
sequences of the same period length. The context of the thesis is composed of
three parts.

In the first part (Chapter 3 and 4), the crosscorrelation function between perfect
sequences of period 4m− 1 is considered. The concept of Hadamard equivalence
is generalised to sequences of period 4m − 1. We call this extended Hadamard
equivalence. Based on this new equivalence, we propose an algorithm to construct
perfect sequences of period 4m − 1. Furthermore, we show that the Hall and
Legendre sequences of the same period are extended Hadamard equivalent.

The second part (Chapter 5 and 6) is devoted to the crosscorrelation between
perfect sequences of period 2m−1. Sequences of period 2m−1 can be identify with
Boolean functions over finite fields. The (usual) Hadamard equivalence is used to
express the crosscorrelation between perfect functions of certain families in terms
of the crosscorrelation between m-functions, the classical perfect functions. It is
proved that certain series of perfect functions obtained from the Dillon-Dobbertin
and Gordon-Mills-Welch construction have good crosscorrelation properties.

In the study of the crosscorrelation between m-functions, maximum nonlinear
power functions xd are of interest. The Gold (d = 2k +1) and Kasami (d = 22k −
2k +1) power functions are the most important maximum nonlinear functions. In
the last part (Chapter 7) we prove a new property of the Kasami parameter and
we give a characterisation of the Gold power mappings in terms of their distance
to characteristic functions of subspaces of codimension 1 and 2 in F2m .
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Chapter 1

Introduction

Binary periodic sequences with good autocorrelation and crosscorrelation prop-
erties are widely used in signal processing. If the autocorrelation properties are
optimum and the sequence is balanced, then the sequence is called perfect. In
the last few years, the study of perfect sequences has made significant progress.
Several new classes of perfect sequences of period 2m − 1 have been constructed
[5, 28, 30, 31].

The main part of this thesis is an investigation of the crosscorrelation function
between perfect sequences of the same period length. The thesis is organised as
follows:

In the first chapter, basic definitions are given and the connection between se-
quences, functions and sets is explained: There is a one-to-one correspondence
between binary sequences of period n, sets in a cyclic group G of order n and their
characteristic functions G → {0, 1}, respectively. The autocorrelation and cross-
correlation properties are formulated using all these notions. In Chapter 2, all
known constructions for perfect sequences are listed and the Gordon-Mills-Welch
method for constructing perfect sequences is explained.

In Chapter 3, two slight modified autocorrelation and crosscorrelation functions
are given. The first definition implies some interesting autocorrelation properties
between a sequence a and the sequence obtained from the crosscorrelation coef-
ficients of a with a perfect sequence. Using the second definition, a lower bound
for the maximum crosscorrelation coefficient (in absolute value) is shown. For the
crosscorrelation between perfect sequences, these two definitions are identical.

The concept of extended Hadamard equivalence is introduced in Chapter 4. Ex-
tended Hadamard equivalence can be used to construct sequences with prescribed
autocorrelation properties and it can also be used to prove that a sequence is per-
fect. It is proved that the Hall and Legendre sequences of the same period length

7



8 Chapter 1. Introduction

are extended Hadamard equivalent. Furthermore, it is shown, that the crosscorre-
lation function between Hall sequences and between Hall and Legendre sequences
is reduced to the calculation of cyclotomic numbers. We explicitely calculate the
crosscorrelation spectra between these sequences.

Most series of perfect sequences have period 2m − 1, i.e. they can be identified
with Boolean functions on finite fields of characteristic 2. In Chapter 5, the
(classical) Hadamard equivalence is used to express the crosscorrelation function
between perfect sequences of certain families with period 2m − 1 in terms of the
crosscorrelation between m-sequences (the classical perfect sequences), the cross-
correlation of which is well studied. In Chapter 6, the crosscorrelation spectra
between perfect sequences from the Dillon-Dobbertin and from the Gordon-Mills-
Welch constructions are explicitly calculated, and it is proved that certain series
of these sequences have good crosscorrelation properties.

In the study of the crosscorrelation between m-sequences, the Gold and Kasami
decimations play an important role. We found a new characterisation of the Gold
exponents. Furthermore, an interesting property of the Kasami exponents was
proved. These results are presented in Chapter 7.

Overview

n ≡ 3 mod 4

- Properties of the Crosscorrelation Function⋆3

- Extended Hadamard Equivalence⋆3

Crosscorrelation between Perfect Functions

Crosscorrelation between Perfect Sequences

n = 2m − 1

Crosscorrelation
between
m-Functions

Power Functions

- between Dillon-Dobbertin Functions⋆1

- between Dillon-Dobbertin and GMW-Functions⋆2

- A New Property of the Kasami Parameter⋆4

- A Characterisation of the Gold Parameter⋆4

- Properties of the Crosscorrelation Function⋆1

Crosscorrelation between Binary Sequences of Period n

- Calculation of “good” Crosscorrelation Spectra

- EH-Equivalence of Hall and Legendre Sequences ⋆3
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Some parts of this thesis are published or accepted for publication. Several parts
have been presented at conferences:

• At the international conference “Sequences and their Applications” (SETA
’04) in Seoul/Korea, I presented the topics indicated by ⋆1. The content of
my talk is published in the proceedings of the conference [17].

• The topics indicated by ⋆2 were content of my talk at the international con-
ference “Sequence Design and its Application in Communications” (IWSDA
’05) in Shimonoseki/Japan. The results are published in the proceedings of
the conference [18].

• At the international conference “Sequences and their Applications” (SETA
’06) in Beijing/China I will talk about the topics indicated by ⋆3. The
results will be published in the proceedings of the conference [19].

• At the international conference “Finite Geometries” in Irsee/Germany, Prof.
Pott will present the results based on the Gold and Kasami exponents,
which are indicated by ⋆4. The content will be submitted to the proceed-
ings of that conference.

1.1 Definitions and Notations

A sequence a = (ai)i≥0 is called periodic with period n (or n-periodic for short)
if ai = ai+n for all i. Since a is n-periodic, its indices may be computed modulo
n and a can be identified with its fundamental vector (a0, ..., an−1). The shift

a[t] = (a
[t]
i )i≥0 of a is defined by a

[t]
i := ai+t. The fundamental vector of a[t] is

(at, ..., an−1, a0, ..., at−1), which is a cyclic shift of the fundamental vector of a by
t positions to the left.

For binary sequence a = (ai)i≥0 the autocorrelation is defined by

ct(a) :=

n−1∑

i=0

(−1)ai+ai+t (1.1)

for all t. The autocorrelation coefficients form itself a sequence (ct(a))t≥0, which
is also periodic with period n. The autocorrelation spectrum Sp(a) :=
{ct(a)|t = 0, ..., n − 1} is the set of all autocorrelation coefficients ct(a) of a.

Let v = (v0, ..., vn−1) and w = (w0, ..., wn−1) be two real vectors of length n. The
Hamming weight wH(v) of v is defined by wH(v) := |{ i | vi 6= 0, i = 0, ..., n−1}|
and the Hamming distance dH(v, w) of v and w by dH(v, w) := wH(v −w). If
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we talk about the Hamming weight (resp. distance) of periodic sequences, then
we mean the Hamming weight (resp. distance) of their fundamental vectors.

Let ā = (āi)i≥0 denote the binary complement of a defined by āi := ai + 1.
Since ct(a) = n− 2dH(a, a[t]) = −(n− 2dH(a, ā[t])), formula (1.1) shows: A small
autocorrelation coefficient ct(a) (in absolute value) implies that a, a[t] and a, ā[t]

have large Hamming distance. Thus, the autocorrelation function is a measure
for how much a given sequence differs from all its shift.

In this thesis, sequences with autocorrelation coefficients, which are as small as
possible, are considered. A sequence a with n odd and

ct(a) =

{
−1 for 1 ≤ t ≤ n − 1

n otherwise

is called perfect. Perfect sequences can only exist for n ≡ 3 mod 4, since ct(a) ≡
n mod 4 for all t, which is well known and easy to see (from (1.11) with ct(a, a) =
ct(a)). We say a sequence has constant autocorrelation c if the autocorrelation
spectrum is two-valued with c and n, since it is trivially c0(a) = n.

An n-periodic sequence is called balanced, if its Hamming weight is n
2

if n is
even or n±1

2
if n is odd, i.e. the number of ones and zeros in one period is as

closed as possible.

For a perfect sequence a, we have
∑n−1

i=0 (−1)ai = ±1. In deed,

( n−1∑

i=0

(−1)ai

)2

=
n−1∑

i=0

n−1∑

t=0

(−1)ai+ai+t =
n−1∑

t=0

ct(a) = (−1)(n − 1) + n = 1,

since c0(a) = n. Thus, perfect sequences are always balanced.

Note that the autocorrelation function and the balanced property are invariant
under the operation taking the binary complement. In the following, for a bal-
anced sequence (and thus for all perfect sequences) a we always assume that

n−1∑

t=0

(−1)ai = −1, (1.2)

otherwise its binary complement is considered. A sequence with property (1.2)
has n+1

2
entries 1 and n−1

2
entries 0 in one period.

The decimation a(d) = (a
(d)
i )i≥0 of an n-periodic sequence a is defined by a

(d)
i :=

aid. In this thesis, we only consider decimations d with gcd(d, n) = 1.

Two sequences a and b are called equivalent, if a can be transformed into b by a
shift and/or decimation with gcd(d, n) = 1. Equivalent sequences have the same
autocorrelation spectrum, since the autocorrelation spectrum is invariant under
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the operations shift and decimation with gcd(d, n) = 1. Thus, if we have one
perfect sequence, we actually have a whole class of perfect sequences, which are
equivalent to the given one.

Two sequences a and b are called shift distinct, if no shift of a is equal to b,
otherwise they are called shift equivalent.

An integer d is called a multiplier of a sequence a, if a(d) is shift equivalent to
a. Obviously, equivalent sequences have the same multipliers. Thus, if two per-
fect sequences have different multipliers, they cannot be equivalent. For perfect
sequences it is proven that there exists a shift b of a such that b(d) = b holds for
any multiplier of a. Without loss of generality, we assume for a perfect sequence
that

a(d) = a (1.3)

holds for any multiplier d of a. In [12] it is shown, that any power of 2 is a
multiplier of a perfect sequence with period n = 2m − 1.

The crosscorrelation between two sequences a = (ai)i≥0 and b = (bi)i≥0 of
period n is defined by

ct(a, b) :=
n−1∑

i=0

(−1)ai+bi+t . (1.4)

The set of all crosscorrelation coefficients ct(a, b) is called the crosscorrelation
spectrum Sp(a, b). Since ct(a, b) = n−2dH(a, b[t]), the maximum crosscorrelation
coefficient (in absolute value) is a measure for how much a given sequence a can
be used to approximate another sequence b.

Example 1.1 Let a = (1, 1, 1, 0, 0, 1, 0) and b = (1, 1, 0, 1, 0, 0, 1) be two se-
quences of period 7. The sequences are shift distinct. The autocorrelations are
given by

t 0 1 2 3 4 5 6
ct(a) 7 -1 -1 -1 -1 -1 -1
ct(b) 7 -1 -1 -1 -1 -1 -1 ,

thus, both sequences are perfect. We have

a 1,1,1,0,0,1,0,1,1,1,0,0,1,0... a 1,1,1,0,0,1,0,1,1,1,0,0,1,0,1...
a(2) 1,1,0,0,1,0,1... a(3) 1,0,0,1,1,1,0... ,

therefore, 2 is a multiplier of a, since a(2) = a[1], and the sequences a and b are
equivalent, since a(3) = b[3]. The crosscorrelation is given by



12 Chapter 1. Introduction

t 0 1 2 3 4 5 6
ct(a, b) -1 +3 -1 -1 -5 +3 +3 (= ct−3(a, a(3))).

As mentioned before, the autocorrelation spectrum is invariant under the opera-
tions shift, decimation and taking the binary complement. The crosscorrelation
spectrum is also invariant if any of the sequences is replaced by a shift. Every
crosscorrelation coefficient changes its sign, if one sequence is substituted by its
binary complement.

If we use the operation decimation we must be careful: In general, if only one
sequence is substituted by one of its decimations, then the crosscorrelation spec-
trum changes. More precisely, if we know the crosscorrelation between a and
b, then in general we know nothing about the crosscorrelation between a(d) and
b. Obviously, if both sequences a and b are replaced by a(d) and b(d), where
gcd(d, n) = 1, then the crosscorrelation spectrum does not change.

The notions shift, equivalence, decimation and multiplier we will also use for real
periodic sequences.

Another possibility to define an autocorrelation and crosscorrelation function of
periodic sequences is the following: Let a = (ai)i≥0 and b = (bi)i≥0 be real
sequences of period n, i.e. ai, bi ∈ R. The autocorrelation of a and the crosscor-
relation between a and b are defined by

Ct(a) :=
n−1∑

i=0

aiai+t and Ct(a, b) :=
n−1∑

i=0

aibi+t

for all t, which is the usual inner product of the fundamental vectors of a and
a[t] and of a and b[t], respectively. The connection between Ct(.) and ct(.) for
binary sequences a and b is ct(a, b) = n − 2(wH(a) + wH(b) − 2Ct(a, b)) and
ct(a) = n − 4(wH(a) − Ct(a)).

1.2 Algebraic Tools

Relation between Sequences, Sets and Functions

In this thesis, G is always the multiplicatively written cyclic group of order n, i.e.
G = 〈g〉 for an element g in G. A set D ⊂ G defines a sequence a = (ai)i≥0 by

a := seq(D) with ai := 1 if gi ∈ D and ai := 0 otherwise. (1.5)

Moreover, a binary sequence a of period n defines a set by supp(a) := {gi ∈
G|ai = 1}. The set supp(a) is called support of a in G. The translate of D is
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defined by gtD := { gth | h ∈ D}, the decimation by D(d) := { hd | h ∈ D} and
the complement D by D := { h ∈ G | h 6∈ D}. (If G = (Zn, +) is an additive
group, then we write D + t for a translate and dD for a decimation.)

A sequence a can also be identified with a function f : G → {0, 1}, which is
defined by

f(gi) := ai. (1.6)

The function f is the characteristic function of supp(a) in G. Let y ∈ G, we define
the shift f [y] by f [y](x) := f(yx) and the decimation f (d) by f (d)(x) := f(xd)
for all x ∈ G.

Let a, D and f correspond to each other as defined above (using generator g
of G) and let d be an integer such that gcd(d, n) = 1, then the following table
translates the different notions of decimation and shift:

sequence a function f set D ⊂ (G, ·) (D ⊂ (Zn, +))

decimation a(d) f (d) D(1/d) (d−1D)

shift a[t] f [gt] g−tD (D − gt)

Note that the transformations depend on the choice of the primitive element g:
Changing the primitive element “is” a decimation of the sequence. For G =
(Zn, +) we choose 1 as the primitive element.

The definitions on sequences, which we have given in Section 1.1, are transfered
to functions (resp. to sets): We say a function (resp. a set) has property P , if
its corresponding sequence has property P . We can do this, since P is invariant
under decimation.

To translate the autocorrelation property to sets, we give some definitions about
difference sets. For a thorough investigation of difference sets we refer to [2, 12,
21].

Let n′|n and N be a subgroup of G of order n′. Let D ⊆ G such that every
element in G\N has exactly λ representations as a difference with elements in D.
Elements in N different from the identity have exactly λ′ such representations.
Any set with this property is called an (n/n′, n′, k, λ′, λ)-divisible difference
set in G relative to N .

If λ′ = 0, then we call it a relative difference set. In this case, the exceptional
subgroup N is called the forbidden subgroup. Moreover, if n′ = 1, then an
(n, 1, k, 0, λ)-divisible difference set is called an (n, k, λ)-difference set in G.

Note, that for an (n, k, λ)-difference set D ⊂ G holds that |D| = k and each
element in G\{0} has exactly λ different descriptions as difference of two elements
from D.
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If the group G is cyclic and D is a (divisible) difference set in G, then D is called
a cyclic (divisible) difference set.

Groups and Finite Fields

Given a subset D of G, the same symbol D is also used to denote the correspond-
ing group ring element

D =
∑

x∈D

x ∈ C[G]. (1.7)

The group G is isomorphic to (Zn, +), since G is a cyclic group of oder n. Let
Z∗

n := {x ∈ Zn|x is invertible modulo n}. If n is prime, then Zn is a finite field
with multiplicative group Z∗

n. If n = pm − 1 and p is prime, then (Zn, +) is
isomorphic to F ∗

pm, where Fpm denotes the finite field with pm elements and F ∗
pm

its multiplicative group.

Any binary sequence of period n = 2m − 1 describes a function f : F ∗
2m → F2 by

(1.6). Conversely any function f : F2m → F2 describes a binary sequence, where
the value f(0) is irrelevant. We choose f(0) ∈ {0, 1} such that

∑

x∈F2m
(−1)f(x) =

0, which is always possible if f is balanced. Using (1.2), for balanced and therefore
for perfect functions it is always assumed that f(0) = 0.

Let f, g : F2m → F2 be Boolean functions. The autocorrelation of f and the
crosscorrelation between f and g are defined by

cy(f) :=
∑

x∈F2m

(−1)f(x)+f(yx) and cy(f, g) :=
∑

x∈F2m

(−1)f(x)+g(yx) (1.8)

for all y ∈ F2m , where we identify F2 with {0, 1} ⊂ C. The crosscorrelation spec-
tra is given by Sp(f, g) := {cy(f, g)|y ∈ F ∗

2m} and the autocorrelation spectrum
by Sp(f) := Sp(f, f). Note that c0(f, g) = (−1)g(0)+f(0)c0(f). If a is the sequence
corresponding to f using a primitive element α ∈ F2m , then cαt(f) = ct(a) + 1.
Furthermore, a function f is perfect if and only if

∑

x∈F2m

(−1)f(x)+f(yx) =

{
2m if y = 1
0 otherwise.

(1.9)

For m = rs, we may view F2s as a subfield of F2m . The trace function from F2m

to F2s is the linear mapping trm/s defined by trm/s(x) :=
∑m−1

i=0 x2si
. For s = 1

we simply write tr instead of trm/1, and we say tr is the trace function on F2m .
It is well known that the shifts tr[β], β ∈ F

∗
2m , and tr[0] are linear, again, and all

2m linear mappings F2m → F2 can be represented like this. The linear functions
tr[β], β ∈ F ∗

2m , are the classical perfect functions.
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Let F : F2m → C be a function, the Walsh transform [15] (also called Hadamard
transform) W(F ) of F is the mapping F2m → C defined by

W(F )(y) :=
∑

x∈F2m

F (x)(−1)tr(yx).

If F (x) = (−1)f(x), we simply write W(f) instead of W(F ). If g is the trace
function, then

W(f)(y) = cy(f, g). (1.10)

Thus, the Walsh transform W(f) is equal to the crosscorrelation function between
f and the linear functions.

1.3 Equivalent Descriptions

In this section, some equivalent descriptions for the autocorrelation and crosscor-
relation function of binary sequences are considered.

Proposition 1.2 Let G = 〈g〉 and D, E ⊂ G with |G| = n and |D| = |E| = k.
Then the following statements are equivalent:

(1) We have |D ∩ gtE| = λt for all t = 0, ..., n − 1.

(2) The sequences a := seq(D) and b := seq(E) have crosscorrelation c−t(a, b) =
n − 4(k − λt).

(3) We have DE(−1) =
∑n−1

t=0 λtg
t in the group ring C[G].

Proof.

(1) ⇐⇒ (2)
The crosscorrelation coefficient ct(a, b) is an integer, which we may interpret also
in terms of the intersection between certain sets. We have

c−t(a, b) = n − 4(k − λt), (1.11)

since

D

gtE

G

D ∩ gtE

c−t(a, b) =
n−1∑

i=0

(−1)ai+bi−t

= |{ i | ai = bi−t, 0 ≤ i ≤ n − 1}|
−|{ i | ai 6= bi−t, 0 ≤ i ≤ n − 1}|

= n − 2|{ i | ai 6= bi−t, 0 ≤ i ≤ n − 1}|
= n − 2( |D| + |gtE| − 2|D ∩ gtE| )
= n − 4(k − λt)
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and |D| = |gtE| = k.

(1) ⇐⇒ (3)
Let D =

∑

d∈D d and E =
∑

d′∈E d′ in C[G]. We have

DE(−1) =
∑

d∈D

∑

d′∈E

dd′−1 =
n−1∑

t=0

λtg
t,

where λt is the number of pairs (d, d′) with d ∈ D and d′ ∈ E such that dd′−1 = gt.
It is d = gtd′ for λt pairs (d, d′). Therefore |D ∩ gtE| = λt and vice versa.

The notions above are useful for the analysis of crosscorrelation functions be-
tween perfect sequences. For perfect sequences we have the following equivalent
descriptions.

Corollary 1.3 (Equivalent Description) Let G = 〈g〉 and D ⊂ G with |G| =
n and |D| = k. Then the following statements are equivalent:

(1) The set D is an (n, k, λ)-difference set in G.

(2) We have |D ∩ gtD| = λ for all t = 1, ..., n − 1.

(3) The sequence a := seq(D) has constant autocorrelation c = n − 4(k − λ).

(4) We have DD(−1) = (k − λ) + λG in the group ring C[G].

Proof. The equivalence of (2), (3) and (4) follows from Proposition 1.2 with
D = E and ct(a) = ct(a, a). We still have to show that (1) is equivalent to
another item.

(1) ⇐⇒ (2)
Let h ∈ (D∩ gtD), then gtd = h = d′ for some d, d′ ∈ D, hence gt = d′d−1. Thus,
λt := |D ∩ gtD| is the number of difference pairs (d, d′) with d, d′ ∈ D such that
d′d−1 = gt. The intersection size λt is constant if and only if the number of these
difference pairs is constant.

Perfect sequences of period n = 4t−1 and (1.2) are in one-to-one correspondence
to the notions above with k = 2t and λ = t. A cyclic (4t − 1, 2t, t)-difference set
is called Paley type difference set and if t is a power of 2, then it is called a
Singer type difference set. A cyclic ((2m − 1)/(2s − 1), 2s − 1, 2m−s, 0, 2m−2s)-
relative difference set is called a relative Singer type difference set.

Corollary 1.4 Let G = 〈g〉 and D ⊂ G with |G| = n and |D| = k. Then D is
an (n/n′, n′, k, λ′, λ)-divisible difference set if and only if

DD(−1) = (k − λ′) + λ
∑

g∈G\N

g + λ′
∑

h∈N

h. (1.12)
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There is another interesting connection of perfect sequences to Hadamard matri-
ces:

Let A be an n′ × n′-matrix with entries ±1. If A satisfies AAT = n′I, where I is
the identity matrix, then A is called a Hadamard matrix. For a recent survey
on Hadamard matrices, see [35], for instance.

Let a = (ai)i≥0. Then the matrix B = (bi,j)i,j=0,...,n−1 with bi,j := ((−1)aj+i)
satisfies BBT = (n − c)I + cJ , where J is the matrix with all entries 1, if and
only if a has constant autocorrelation c, since (BBT )i,j = c0(a

[i], a[j]) = cj−i(a).

For perfect binary sequences we have the following proposition:

Proposition 1.5 Let a = (ai)i≥0 be a perfect sequence of period n and n′ = n+1.
Then the n′ × n′-Matrix A defined by

A :=












1 1 1 1 · · · 1
1 (−1)a0 (−1)a1 (−1)a2 · · · (−1)an−1

1 (−1)a1 (−1)a2 (−1)a3 · · · (−1)a0

1 (−1)a2 (−1)a3 (−1)a4 · · · (−1)a1

...
...

. . .
...

1 (−1)an−1 (−1)a0 (−1)a2 · · · (−1)an−2












is a Hadamard matrix.

Note, that A is the matrix, which is obtained by extending B with all-one first
column and row.

Proof. Let v = (1, ..., 1) of length n′ and < ., . > denote the inner product. We
have (AAT )0,0 =< v, v >= n′ and (AAT )i,j = 1 +

∑n−1
t=0 (−1)at = 0 if either i or j

is 0, since a satisfies (1.2). For i, j = 1, ..., n − 1 we get

(AAT )i,j = 1 + c0(a
[i], a[j]) = 1 + cj−i(a) =

{
n′ if i = j
0 otherwise,

since a is perfect. Indeed, AAT = n′I.





Chapter 2

Perfect Sequences

2.1 Known Perfect Sequences

Let G = 〈g〉 be a cyclic group of order n. In Section 1.2, we have shown that
binary sequences of period n correspond to sets D ⊆ G by

aD := seq(D).

We are now going to describe the known constructions for perfect sequences in
terms of their corresponding sets, which are Paley type difference sets. In general,
the constructions produce inequivalent perfect sequences.

Let n = ef + 1 be prime power and let z be a primitive element in F∗
n. The

cyclotomic classes are defined by

C
(e)
i := {zj |j ≡ i mod e}. (2.1)

Let n = 4m − 1. From number theory three constructions are known for perfect
sequences [34]:

(a) Legendre Sequences (Paley [33], 1933): Let n be a prime and G =
(Zn, +). The Legendre sequence aD is formed by the non-zero quadratic
residue

D := G\C(2)
0 .

(b) Hall Sequences (Hall [12], 1957): Let n = 4t2 + 27 be a prime and
G = (Zn, +). The Hall (sextic residue) sequence aD is defined by

D := G\(C(6)
0 ∪ C

(6)
1 ∪ C

(6)
3 ).

19
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(c) Twin Prime Sequence (Sprott and Stanton [39], 1958): Let p and
p+2 be odd primes, n = p(p+2) and G = (Zp ×Zp+2, +). The twin prime
sequence aD is defined by

D := G\{(x, y)|x, y are both non-zero squares or

x, y both are non-squares or y = 0}.

Let n = 2m − 1, then Zn is isomorphic to F ∗
2m . In the following, let G = F ∗

2m ,
then:

(1) m-Sequences (Singer [38], 1938)
Let tr be the trace function on F2m . The sequence aD defined by

D := {x ∈ F
∗
2m |tr(x) = 1}

is called maximal length linear shift register sequence (m-sequence).

(2) GMW-Sequences (Gordon, Mills & Welch [11], 1962)
Let m = rs and let f be a perfect function on F2s. The sequence aD defined
by

D := {x ∈ F
∗
2m |f(trrs/s(x)) = 1}

is called GMW-sequence.

(3) Maschietti Sequences (Maschietti [28], 1998)
Let k < m be integers such that gcd(k, 2m − 1) = 1 and x 7→ x + xk is a
2-to-1 mapping on F2m . The sequence aDk

defined by

Dk := F
∗
2m\{x + xk|x ∈ F

∗
2m}

is called Maschietti sequence.

(4) NCY-Sequences (No, Chung & Yun [30], 1998)
Let m = 3k ± 1 and d := 22k − 2k + 1. The sequence aD with

D := { (x + 1)d + xd | x ∈ F
∗
2m}

is called a No-Chung-Yun sequence (NCY-sequence).

(5) DD-Sequences (Dillon & Dobbertin [5], 1999)
Let k < m be integers such that gcd(k, m) = 1 and let d := 22k − 2k + 1.
The sequence aDk

with

Dk := F
∗
2m\{ (x + 1)d + xd + 1 | x ∈ F

∗
2m}

is called a Dillon-Dobbertin sequence (DD-sequence).
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Note that we get from every construction above a whole class of perfect sequences
by equivalence. In the following, if we talk about the crosscorrelation for example
between Hall and Legendre sequences, then we mean also the crosscorrelation of
their decimations. In particular, if we say that we look at the crosscorrelation
between Hall sequences, then we mean the crosscorrelation between the Hall
sequence with its decimations.

Some comments are in order:

The Singer construction is the classical construction for perfect sequences. In
the literature, m-sequences are also known as pseudorandom sequences or as
pseudonoise sequences. A decimation tr(d) with gcd(d, 2m − 1) = 1 describes an
m-sequence, too, since the decimation d only changes the choice of the primitive
element. We call all functions f with f(x) = tr(βxd) m-functions, if β ∈ F ∗

2m

and gcd(d, 2m − 1) = 1.

If f ≡ tr
(2i)
s/1 for some i, then the GMW-sequence reduces to an m-sequence. For

f = tr(d) with gcd(d, 2s−1) = 1 the resulting sequences are the so called classical
GMW-sequences.

For the Maschietti’s construction, up to equivalence the following k are known,
for which x 7→ x + xk is a 2-to-1 mapping: k = 2 (Singer), k = 6 (Segre [36])

and k = 3 · 2m+1
2 + 4 and k = 2

m+1
2 + 2t with 4t ≡ 1 mod m (Glynn [7]). It is an

open conjecture, whether this list of k’s is already complete. Furthermore note,
that the Singer sequence is identical to an m-sequence and the Segre sequence is
identical to the Dillon-Dobbertin sequence with k = 2, see [5].

The Dillon-Dobbertin construction differs from the No-Chung-Yun construction
just by adding 1. Note that adding 1 is an operation in the additive group of
F2m , but Dk is considered as a subset in the multiplicative group of F2m . This
makes the difference in the number of inequivalent perfect sequences obtained
from these constructions: According to k with gcd(k, m) = 1, there exists φ(m)

2

inequivalent Dillon-Dobbertin sequences, where φ is the Euler-totient function.
If k = 1 the Dillon-Dobbertin sequence is identical to an m-sequence.

Up to equivalence for fixed m, the No-Chung-Yun construction produces one
perfect sequence and the Maschiette produces at most four different sequences.
For the GMW construction, the more prime divisors m has, the more inequiv-
alent perfect sequences are obtained. For the Dillon-Dobbertin construction, it
is just the opposite; the less prime divisors m has, the more inequivalent perfect
sequences are obtained.

Today, there are no sporadic examples of perfect sequences (for m ≤ 11 and
n = 2m − 1 a complete computer search was done), i.e. every known perfect
sequence belongs to a series given by any of the constructions above. It is not
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known if other perfect sequences exist, which are inequivalent to the known ones.

2.2 Gordon-Mills-Welch Method

Relative difference sets are important for constructions of perfect sequences. The
next theorem shows how to get new (relative) difference sets from given (relative)
difference sets.

Theorem 2.1 (Gordon-Mills-Welch Method) Let G be a group of order n
and n′|n and n′′|n′. Let N be a subgroup of G of order n′ and N ′ be a subgroup
of N of order n′′. Moreover, let D be an (n/n′, n′, k, 0, λ)-relative difference in G
with the forbidden subgroup N and let D′ an (n′/n′′, n′′, k′, 0, λ′)-relative difference
set in N with λ′k = λk′2. Then the set E defined by the group ring element
E := DD′ is an (n/n′′, n′′, kk′, 0, λ′k)-relative difference set in G.

Proof. We identify D and D′ with elements in the group ring C[G], see Section
1.2. Note, that DD′ =

∑

g∈D

∑

h∈D′ gh =
∑

g∈G λgg, where λg ∈ {0, 1}. Assume,
that there exists g, g′ ∈ D and h, h′ ∈ D′ such that gh = g′h′. Since D′ ⊂ N we
get g′g−1 = hh′−1 ∈ N . The set N is the forbidden subgroup of the difference set
D, hence g′g−1 is the identity in G, thus g = g′. This implies λg ∈ {0, 1} for all
g ∈ G and |E| = |D| · |D′| = kk′.

Using the notation in Section 1.3, we get

EE(−1) = DD′(DD′)(−1)

= (DD(−1))(D′D′(−1))
(1.12)
=

(

k + λ
∑

g∈G\N

g
)(

k′ + λ′
∑

h∈N\N ′

h
)

= k′k + λ′k
∑

h∈N\N ′

h + k′λ
∑

g∈G\N

g + λλ′
∑

h∈N\N ′

∑

g∈G\N

hg

= kk′ + λ′k
∑

h∈N\N ′

h +
(

k′λ + λλ′(n′ − n′′)
)

∑

g′∈G\N

g′.

The last step follows, since hg ∈ G\N holds for all h ∈ N\N ′ and g ∈ G\N and
for fix elements g′ ∈ G\N and h ∈ N\N ′ exists one element g ∈ G\N such that
hg = g′, hence any element g′ in G\N has |N\N ′| = n′ − n′′ such presentations.

Since D′ is a relative difference set, it follows easily (double counting) that λ′(n′−
n′′) = k′(k′ − 1). Thus, k′λ + λλ′(n′ − n′′) = k′λ + λk′(k′ − 1) = λk′2. Using our
assumption we get

EE(−1) = kk′ + λ′k
∑

h∈N\N ′

h + λ′k
∑

g∈G\N

g = kk′ + λ′k
∑

g∈G\N ′

g.
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Equation (1.12) shows that E is an (n/n′′, n′′, kk′, 0, λ′k)-divisible difference set,
and therefore a relative difference set.

The only known relative Singer type difference sets are equivalent to sets given
by the next proposition and applying iterative the Gordon-Mills-Welch method
to such sets.

Proposition 2.2 (Relative Singer difference sets) Let m = rs and let trm/s

be the trace function from F2m to F2s. The set D defined by

D := { x ∈ F
∗
2m | trm/s(x) = 1}

is an ((2m − 1)/(2s − 1), 2s − 1, 2m−s, 0, 2m−2s)-relative difference set in F ∗
2m with

the forbidden subgroup F ∗
2s.

Proof. We have |D| = 2m−s, since trm/s is linear and the dimension of the kernel
is 2m−s. Let

DD(−1) =
∑

x∈D

∑

y∈D

xy−1 =
∑

z∈F
∗
2m

λzz.

If z = 1, then λ1 = 2m−s, since xy−1 = 1 for |D| = 2m−s times. If z ∈ F ∗
2s\{1},

then λz = 0. Assume xy−1 = z for some x, y ∈ D, then 1 = trm/s(x) =
trm/s(zy) = z · trm/s(y) = z, which is a contradiction. Now, let z ∈ F ∗

2m\F ∗
2s,

then λz = 2m−2s, since trm/s is a linear function and the dimension of its kernel
is 2m−s, i.e.

|{ y ∈ D | trm/s(y) = 1 = trm/s(zy) }| =

= 2−s|{ y ∈ F2m | trm/s(y) = trm/s(zy) }|
= 2−s|{ y ∈ F2m | trm/s((z + 1)y) = 0 }|
= 2m−2s.

Finally we have

DD(−1) = 2m−s + 2m−2s
∑

x∈F
∗
2m\F

∗
2s

x,

thus, D is a relative difference sets with parameters ((2m − 1)/(2s − 1), 2s −
1, 2m−s, 0, 2m−2s).

Example 2.3 Let a = (110100010000000) and b = (110)(= (b0, b1, b2)). Then
a correspond to an (15/3, 3, 4, 0, 2)-relative difference set D and b to an (3, 2, 1)-
difference set D′. We get by the Gordon-Mills-Welch method:
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b0 · a[0] 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
+ b1 · a[5] 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0
+ b2 · a[10] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

c 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0

The sequence c correspond to DD′, which is an (15, 8, 4)-difference set, thus c is
perfect. We see that the Gordon-Mills-Welch method ”increases” the sequence a
using the smaller perfect sequence b such that the resulting sequence is perfect.



Chapter 3

Properties of the
Crosscorrelation Function

In this chapter, we introduce two slightly modified autocorrelation and crosscor-
relation definitions. For the first definition, we get that the modified crosscorrela-
tion coefficient sequence has special autocorrelation properties. Using the second
definition a lower bound for the maximum crosscorrelation coefficient ct(a, b) be-
tween perfect sequences is shown.

In the following it is always assumed that a balanced and therefore a perfect
sequence satisfies (1.2). We denote by

w(a) :=
n−1∑

i=0

(−1)ai

the difference between the numbers of 0’s and 1’s in one period of a. Note, that
equivalent sequences have the same difference. Using (1.2) we get for balanced
and therefore for perfect sequences a that w(a) = −1. In general, we have

n−1∑

t=0

ct(a, b) =
n−1∑

t=0

n−1∑

i=0

(−1)ai+bi+t =
n−1∑

i=0

(−1)ai

n−1∑

t=0

(−1)bi+t = w(a)w(b)

and therefore follows

n−1∑

t=0

ct(a) = w(a)2 and
n−1∑

t=0

ct(a, b) = −w(a) (3.1)

for a balanced (resp. perfect) sequence b. Thus, w(a) is unique defined by the
crosscorrelation coefficients between a and a perfect sequence b.

25
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3.1 Dual Sequence

We define a modified autocorrelation and crosscorrelation function for binary
sequences a and b of period n by

c′t(a) := ct(a) + w(a)2 and c′t(a, b) := ct(a, b) + w(a)w(b)

for all t = 0, ..., n − 1, respectively. Note that

n−1∑

t=0

c′t(a) = (n + 1)w(a)2 and
n−1∑

t=0

c′t(a, b) = −(n + 1)w(a) (3.2)

for a balanced (resp. perfect) sequence b. Thus, two sequences have the same au-
tocorrelation if and only if they have the same modified autocorrelation. Further-
more, w(a) is unique defined by the modified crosscorrelation coefficients c′t(a, b)
between a and a perfect sequence b. Let Sp′(a, b) := {c′t(a, b)|t = 0, ..., n − 1}
and Sp′(a) := Sp′(a, a) denote the modified crosscorrelation and autocorrelation
spectrum. If a and b are balanced, using (1.2) we simply get

c′t(a) = ct(a) + 1 and c′t(a, b) = ct(a, b) + 1. (3.3)

For a perfect sequence a we have

c′t(a) =

{
0 if t 6≡ 0 mod n

n + 1 if t ≡ 0 mod n.
(3.4)

The next proposition gives the inversion formula of the modified crosscorrelation
function. This shows that a sequence a is unique defined by a perfect sequence d
and their crosscorrelation coefficients c′t(a, d). Since (3.2) holds, the next propo-
sition implies that a sequence a is unique defined by a perfect sequence d and
their crosscorrelation coefficients ct(a, d).

Proposition 3.1 Let a = (ai)i≥0 and d = (di)i≥0 be binary sequences of period
n and d be perfect. Then

(−1)at =
1

n + 1

( n−1∑

k=0

c′k(a, d)(−1)dk+t

)

. (3.5)

Proof. Simple transformations of the right hand side of equation (3.5) yield

n−1∑

k=0

c′k(a, d)(−1)dk+t =
n−1∑

k=0

(ck(a, d) + w(a) w(d)
︸︷︷︸

=−1

)(−1)dk+t
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=
n−1∑

k=0

n−1∑

i=0

(−1)ai+di+k+dk+t − w(a)
n−1∑

k=0

(−1)dk+t

︸ ︷︷ ︸

= w(d) = −1

=
n−1∑

i=0

(−1)ai

( n−1∑

k=0

(−1)di+k+dk+t + 1

︸ ︷︷ ︸

(3.3)
= c′t−i(d)

)

− w(a) + w(a)

(3.4)
= (n + 1) · (−1)at ,

since d is perfect.

Let d be a perfect sequence. The real sequence ad = (a
d
i )i≥0 defined by

a
d
i := c′i(a, d)

is called the dual sequence of a with respect to d. The next proposition shows
the connection between the crosscorrelation between two sequences a and b and
the crosscorrelation between their dual sequences with respect to the same perfect
sequence.

Proposition 3.2 (Duality) Let a, b and d be binary sequences of period n and
d be perfect. Then

c′t(a, b) =
1

n + 1

( n−1∑

k=0

c′k(a, d)c′k−t(b, d)
)

(3.6)

holds for all t = 0, ..., n − 1.

Proof. Let a = (ai)i≥0, b = (bi)i≥0 and d = (di)i≥0. We expand

n−1∑

k=0

c′k(a, d)c′k−t(b, d)

=
n−1∑

k=0

( n−1∑

i=0

(−1)ai+di+k + w(a) w(d)
︸︷︷︸

=−1

)

·
( n−1∑

j=0

(−1)bj+dj+k−t + w(b) w(d)
︸︷︷︸

=−1

)

=
n−1∑

i=0

n−1∑

j=0

(−1)ai+bj

n−1∑

k=0

(−1)di+k+dj+k−t

−w(b)
n−1∑

i=0

(−1)ai

︸ ︷︷ ︸

=w(a)

n−1∑

k=0

(−1)di+k

︸ ︷︷ ︸

=w(d)=−1

−w(a)
n−1∑

i=0

(−1)bi

︸ ︷︷ ︸

=w(b)

n−1∑

k=0

(−1)di+k−t

︸ ︷︷ ︸

=w(d)=−1

+
n−1∑

k=0

w(a)w(b)

=
n−1∑

i=0

n−1∑

j=0

(−1)ai+bj

n−1∑

k=0

(−1)di+k+dj+k−t + (n + 2)w(a)w(b)
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=
n−1∑

i=0

n−1∑

j=0

(−1)ai+bj

( n−1∑

k=0

(−1)di+k+dj+k−t + 1

︸ ︷︷ ︸

(3.3)
= c′j−t−i(d)

)

+ (n + 1)w(a)w(b).

Using (3.4) we get

n−1∑

k=0

c′k(a, d)c′k−t(b, d) = (n + 1)
n−1∑

i=0

(−1)ai+bi+t + (n + 1)w(a)w(b)

= (n + 1)c′t(a, b).

Corollary 3.3 Let a and d be binary sequences of period n and d be perfect.
Then

c′t(a) = 1
n+1

Ct(a
d) (3.7)

holds for all t = 0, ..., n − 1. In particular, Sp′(a) is two-valued if and only if
{Ct(a

d)|t = 0, ..., n − 1} is two-valued.

Proof. Proposition 3.2 shows that (n+1)c′t(a, b) = C−t(a
d, bd) holds for all t. Thus,

the autocorrelation of a sequence a and the autocorrelation of its dual sequences
ad is equal up to the factor n + 1, since (n + 1)c′t(a) = C−t(a

d) = Ct(a
d).

Three-valued Crosscorrelation Spectra and Ternary Sequences

It is interesting to search for crosscorrelation spectra, which contain only a few
different values. Crosscorrelation spectra of the form {±c, 0} play an important
role. More precisely, let a and d be binary sequences and d be perfect. Further-
more, let the crosscorrelation spectrum Sp′(a, d) be three-valued with ±c and 0.
Then the ternary sequence b = (bi)i≥0 obtained from the dual sequence ad by

bi :=
c′i(a, d)

c

has also special autocorrelation property

Ct(b) = n+1
c2

c′t(a),

since d is perfect [37]. Thus, b has a two-level autocorrelation spectrum if a has
a two-valued autocorrelation spectrum.
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3.2 Lower Bounds

In this section, we search for a lower bound for the maximum crosscorrelation
coefficient ct(a, b). Motivated by formula (3.3) we define a slight modified auto-
correlation of a and crosscorrelation between a and b by

c∗t (a) := ct(a) + 1 and c∗t (a, b) := ct(a, b) + 1

for all t = 0, ..., n−1, respectively, and w∗(a) := w(a)+1. Note that for perfect se-
quences the definitions of c′t() and c∗t () are identical. Let Sp∗(a, b) := {c∗t (a, b)|t =
0, ..., n − 1} and Sp∗(a) := Sp∗(a, a) denote the modified crosscorrelation and
autocorrelation spectrum. Using (1.2) we get analogically to (3.4) that a perfect
sequence a yields

c∗t (a) =

{
0 if t 6≡ 0 mod n

n + 1 if t ≡ 0 mod n,
(3.8)

since c′t(a) = c∗t (a) holds for a perfect sequence.

The next two propositions are well-known for sequences defined over finite fields
of characteristic 2: Let a and b be sequences of period n = 2m − 1 and f and g
their corresponding functions with f(0) = g(0) = 0 using the primitive element
α, then c∗t (a, b) = cαt(f, g).

At first we see that a sequence a is also unique defined by a perfect sequence
d and their crosscorrelation coefficients c∗t (a, d), since w(a) and therefore w∗(a)
is uniquely defined by the crosscorrelation coefficient with a perfect sequence by
(3.1).

Proposition 3.4 Let a = (ai)i≥0 and d = (di)i≥0 be binary sequences of period
n and d be perfect. Then

(−1)at =
1

n + 1

( n−1∑

k=0

c∗k(a, d)(−1)dk+t + w∗(a)
)

. (3.9)

Proof. We simply transform the right hand side of equation (3.9) and we get

n−1∑

k=0

c∗k(a, d)(−1)dk+t =
n−1∑

k=0

(ck(a, d) + 1)(−1)dk+t

=
n−1∑

k=0

n−1∑

i=0

(−1)ai+di+k+dk+t +
n−1∑

k=0

(−1)dk+t

︸ ︷︷ ︸

=−1
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=
n−1∑

i=0

(−1)ai

( n−1∑

k=0

(−1)di+k+dk+t + 1

︸ ︷︷ ︸

=c∗t−i(d)

)

−
n−1∑

j=0

(−1)aj − 1

(3.8)
= (n + 1) · (−1)at − w∗(a),

since d is perfect.

Proposition 3.5 (Generalised Parseval formula) Let a, b and d be binary
sequences of period n and d be perfect. Then

c∗t (a, b) =
1

n + 1

( n−1∑

k=0

c∗k(a, d)c∗k−t(b, d) + w∗(a)w∗(b)
)

. (3.10)

Proof. Let a = (ai)i≥0, b = (bi)i≥0 and d = (di)i≥0. We expand

n−1∑

k=0

c∗k(a, d)c∗k−t(b, d)

=
n−1∑

k=0

( n−1∑

i=0

(−1)ai+di+k + 1
)

·
( n−1∑

j=0

(−1)bj+dj+k−t + 1
)

=
n−1∑

i=0

n−1∑

j=0

(−1)ai+bj

n−1∑

k=0

(−1)di+k+dj+k−t

+
n−1∑

i=0

(−1)ai

n−1∑

k=0

(−1)di+k

︸ ︷︷ ︸

=−1

+
n−1∑

j=0

(−1)bj

n−1∑

k=0

(−1)dj+k−t

︸ ︷︷ ︸

=−1

+n

=
n−1∑

i=0

n−1∑

j=0

(−1)ai+bj

( n−1∑

k=0

(−1)di+k+dj+k−t + 1

︸ ︷︷ ︸

=c∗j−t−i(d)

)

+ n + 1

−
( n−1∑

i=0

n−1∑

j=0

(−1)ai+bj +
n−1∑

i=0

(−1)ai +
n−1∑

j=0

(−1)bj + 1
)

,

where we insert 0 =
∑n−1

i,j=0(−1)ai+bj +1−(
∑n−1

i,j=0(−1)ai+bj +1). Since d is perfect
we get

n−1∑

k=0

c∗k(a, d)c∗k−t(b, d)

= (n + 1)
( n−1∑

i=0

(−1)ai+bi+t + 1
)

−
( n−1∑

i=0

(−1)ai + 1
)( n−1∑

j=0

(−1)bj + 1
)

= (n + 1)c∗t (a, b) − w∗(a)w∗(b).
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Some basic properties of the crosscorrelation function between binary sequences
are summarised:

Proposition 3.6 Let a and b be binary sequences of period n and let d be an
integer such that gcd(d, n) = 1.

(1) It is c∗t (a
(d), b) = c∗dt(a, b(1/d)) and c∗t (a, b) = c∗−t(b, a).

(2) If d is a multiplier of a, then Sp∗(a(d), b) = Sp∗(a, b).

(3) If b is perfect, then
n−1∑

t=0

c∗t (a, b) = (n + 1) − w∗(a).

(4) If b is perfect, then
n−1∑

t=0

(c∗t (a, b))2 = (n + 1)2 − w∗(a)2.

(5) If a and b are perfect, then
n−1∑

t=0

c∗t (a, b)c∗t+k(a, b) =

{
0 if k 6≡ 0 mod n

(n + 1)2 if k ≡ 0 mod n.

Proof : Let a = (ai)i≥0 and b = (bi)i≥0.

(1) Since gcd(d, n) = 1 the integer d is invertible modulo n. We have

c∗t (a
(d), b) =

n−1∑

i=0

(−1)adi+bi+t + 1 =
n−1∑

i=0

(−1)ai+b(i+dt)/d + 1 = c∗dt(a, b(1/d)).

Trivially we have

c∗t (a, b) =
n−1∑

i=0

(−1)ai+bi+t + 1 =
n−1∑

i=0

(−1)bi+ai−t + 1 = c∗−t(b, a).

(2) Since d is a multiplier, we have adi = ai+k for some k and

c∗t (a
(d), b) =

n−1∑

i=0

(−1)adi+bi+t + 1 =
n−1∑

i=0

(−1)ai+k+bi+t + 1 = c∗t−k(a, b).

(3) Since b is perfect, we get
n−1∑

t=0

c∗t (a, b) =
n−1∑

t=0

( n−1∑

i=0

(−1)ai+bi+t + 1
)

=
n−1∑

i=0

(−1)ai

n−1∑

t=0

(−1)bi+t

︸ ︷︷ ︸

=−1

+n

= n + 1 − w∗(a).
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(4) Since b is perfect, the generalised Parseval formula shows
n−1∑

t=0

(c∗t (a, b))2 (3.10)
= (n + 1)c∗0(a, a) − w∗(a)2 = (n + 1)2 − w∗(a)2.

(5) Since a and b are perfect, using the generalised Parseval formula we have
n−1∑

t=0

c∗t (a, b)c∗t+k(a, b)
(3.10)
= (n + 1)c∗−k(a, a) − w∗(a)2

(3.8)
=

{
0 if k 6≡ 0 mod n

(n + 1)2 if k ≡ 0 mod n.

Lower Bound for the Maximal Crosscorrelation Coefficient

We are interested in perfect sequences a and b, for which the Hamming distance

dH(a, b[t]) and dH(a, b̄
[t]

) are as large as possible for all t = 0, ..., n − 1. It is easy
to see that dH(a, b) = n − dH(a, b̄).

For two binary sequences a and b with period n, it follows that ct(a, b) = n −
2dH(a, b[t]) and ct(a, b̄) = n − 2dH(a, b̄

[t]
) = −(n − 2dH(a, b[t])) holds for all t =

0, ..., n − 1. Hence we try to find sequences a and b such that

M(a, b) := max
t∈{0,...,n−1}

∣
∣
∣ct(a, b) + 1

∣
∣
∣

is as small as possible. In M(., .) we add a one only for a better handling: We can
use the definition c∗t (., .) and the properties listed in Proposition 3.6. The maximal
crosscorrelation coefficient (in absolute value) is a measure for how much a can
be used to approximate b. We are interested in a lower bound for the maximum
crosscorrelation coefficient between two perfect sequences. The next proposition
gives a lower bound for the maximum crosscorrelation coefficient between two
binary sequences, if one sequence is perfect.

Theorem 3.7 Let a and b be binary sequences of period n and b be perfect. Then

M(a, b) ≥
√

(n + 1)2 − w∗(a)2

n
. (3.11)

Proof. We have
∑n−1

t=0 (ct(a, b)+1)2 = (n+1)2−w∗(a)2 by (4) in Proposition 3.6.
The sum on the left hand side contains n non-negative terms.

Example 3.8 Let b = 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1... of period 15, then b is
perfect. We list two sequences, for which the bound (3.11) is tight.
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Let a = 0, 0, 0, 0, 0, 0, 0, 0..., then ct(a, b)+ 1 = w(b)+ 1 = 0 for all t and w∗(a) =
n + 1 and therefore M(a, b) = 0.

Let c = 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, ..., then

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ct(c, b) −5 3 3 3 −5 3 3 3 −5 3 3 −5 3 3 −5

and w(c) = 15 − 2 · 10 = −5. Note, that |ct(c, b) + 1| = |w∗(c)| =
√

n + 1 = 4.
The bound (3.11) is tight with M(c, b) = 4.

The example shows that in general the bound (3.11) is best possible. If we
additional assume that |w∗(a)| is bounded, then we get a larger bound.

Corollary 3.9 Let a and b be binary sequences of period n and let b be perfect.
If |w∗(a)| ≤

√
n + 1, then

M(a, b) ≥
√

n + 1. (3.12)

In particular, if a is balanced or perfect, then M(a, b) >
√

n + 1.





Chapter 4

Extended Hadamard Equivalence

New classes of perfect sequences of period 2m−1 have been found in [5] by Dillon
and Dobbertin. For this remarkable result, a new type of equivalence between
sequences with period 2m − 1 has been defined. The powerful tool employed
in [5] is the Hadamard equivalence. The fundamental issue is that Hadamard
equivalent sequences have the same autocorrelation spectrum. This concept has
been generalised by Gong and Golomb [9]. Based on this equivalence, in [9] a
method is given to construct new perfect sequences of period 2m−1. All recently
discovered perfect sequences of period 2m − 1 are Hadamard equivalent to m-
sequences, when m is odd. Unfortunately, no new perfect sequences have been
found by this method for m ≤ 17.

In Section 4.1, the concept of Hadamard equivalence is outlined and a generalisa-
tion of Hadamard equivalence is introduced to sequences of period n = 4m−1. We
call this extended Hadamard equivalence. It turns out that extended Hadamard
equivalent sequences have the same autocorrelation spectrum. In Section 4.2,
it is proved that the Legendre and the Hall sequences of the same period are
extended Hadamard equivalent. The proof also shows that all crosscorrelation
coefficient between Hall sequences and between Hall and Legendre sequences are
determinate by cyclotomic numbers. We explicitely list all crosscorrelation spec-
tra between these sequences.

4.1 (Extended) Hadamard Equivalence

The crosscorrelation is used to develop a method to construct sequences with
specified autocorrelation properties. This method can also be applied to prove
that certain sequences are perfect. The basic idea is a generalisation of the
Hadamard equivalence introduced in [5]. Hadamard equivalence has been used

35
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for sequences of period 2m − 1. The specific feature of sequences with period
2m − 1 is that they can be identified with functions f : F2m → F2, see Section
1.2.

We outline the concept of Hadamard equivalence: Let f, g, h1, h2 : F2m → F2 be
functions, z ∈ F ∗

2m and d be an integer with gcd(d, 2m − 1) = 1 such that

∑

x∈F2m

(−1)f(x)+h1(ydx) =
∑

x∈F2m

(−1)g(x)+h2(zyx) (4.1)

holds for all y ∈ F2m . Then

• [4, 5]: If h1 = h2 is the trace function, then the functions f and g are called
Hadamard equivalent. In particular, if f is perfect, then g is perfect,
too. Hadamard equivalence is a powerful tool to prove that functions are
perfect. The main idea in the proofs given in [4, 5] is, that certain functions
are Hadamard equivalent to m-functions.

• [9]: If h1 = h2 is an arbitrary perfect function, then the functions f and g
have the same autocorrelation spectra. In particular, if f is perfect, then g
is perfect, too. Using this slight generalisation of Hadamard equivalence, an
algorithm for constructing perfect functions is developed. Unfortunately,
no new perfect functions have been found for m ≤ 17.

We generalise the idea of Hadamard equivalence to sequences of period n = 4m−
1. We call this extended Hadamard equivalence. Based on this new equivalence,
we propose an algorithm to construct perfect sequences of period n = 4m − 1.

Two binary sequences a and b of period n = 4m − 1 are called extended
Hadamard equivalent (EH-equivalent), if there exist two perfect sequences
d and e and integers s, t with gcd(s, n) = 1 such that

ck(a, d) = csk+t(b, e) (resp. c∗k(a, d) = c∗sk+t(b, e)) (4.2)

holds for all k. With (3.1) it follows for EH-equivalent sequences a and b that
w(a) = w(b). Thus, (4.2) is equivalent to

c′k(a, d) = c′sk+t(b, e), (4.3)

since (3.2) holds. In other words, a and b are EH-equivalent if and only if there
exists perfect sequences d and e such that the dual sequences ad and be are
equivalent, i.e.

a
d
k = b

e
sk+t (4.4)

for some integers t and s with gcd(s, n) = 1.
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Note that two arbitrary perfect sequences a and b are EH-equivalent, since (4.2)
holds for d := a and e := b. We call it trivial EH-equivalence, otherwise nontrivial
EH-equivalence. In the following if we talk about EH-equivalence we always mean
nontrivial EH-equivalence.

Proposition 4.1 Let a and b be binary sequences of period n = 4m − 1. If a
and b are EH-equivalent, then the autocorrelation spectra of a and b are equal.

Proof. If a and b are EH-equivalent, then there exists two perfect sequences d and
e and integers s, t with gcd(s, n) = 1 such that (4.3) holds. Since c′i(a) = c′i(a, a),
by Proposition 3.2 we get

(n + 1)c′i(a) =
n−1∑

k=0

c′k(a, d)c′k−i(a, d)

=
n−1∑

k=0

c′sk+t(b, e)c
′
s(k−i)+t(b, e)

=
n−1∑

k=0

c′k(b, e)c
′
k−si(b, e)

= (n + 1)c′si(b),

thus, Sp′(a) = Sp′(b). Since w(a) = w(b) holds for EH-equivalent sequences, we
get Sp(a) = Sp(b).

Let a = (ai)i≥0, d = (di)i≥0 and e = (ei)i≥0 be binary sequences of period n =
4m − 1 and let d and e be perfect. Let z1, z2, z3 be integers with gcd(zi, n) = 1,
i = 1, 2, 3, such that

( n−1∑

k=0

c∗z2k(a
(z1), d)(−1)e

(z3)
k+i + w∗(a)

)

∈ {±(n + 1)}. (4.5)

Then the binary sequence b = (bi)i≥0 defined by

(−1)bi =
1

n + 1

( n−1∑

k=0

c∗z2k(a
(z1), d)(−1)e

(z3)
k+i + w∗(a)

)

(4.6)

is called realisation of a, d, e by the triple (z1, z2, z3).

Theorem 4.2 Let a, d and e be binary sequences of period n = 4m − 1 and let
d and e be perfect. Let z1, z2, z3 be integers with gcd(zi, n) = 1, i = 1, 2, 3, such
that (4.5) holds. Then the sequence b = (bi)i≥0 defined by (4.6) and the sequence
a have the same autocorrelation spectrum.
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Note that the sequence b is uniquely defined by the perfect sequence e(z3) and its
crosscorrelation coefficients c∗k(b, e

(z3)) (:= c∗z2k(a
(z1), d)), see Proposition 3.4.

Proof. We show that the sequences a(z1) and b are EH-equivalent. Then the
sequences a and b have the same autocorrelation spectrum, since a is equivalent
to a(z1). We get

(n + 1)ci(b, e
(z3))

= (n + 1)
n−1∑

j=0

(−1)bj+e
(z3)
j+i

=
n−1∑

j=0

( n−1∑

k=0

c∗z2k(a
(z1), d)(−1)e

(z3)
k+j + w∗(a)

)

(−1)e
(z3)
j+i

=
n−1∑

k=0

c∗z2k(a
(z1), d)

n−1∑

j=0

(−1)e
(z3)
k+j+e

(z3)
j+i + w∗(a)

n−1∑

j=0

(−1)e
(z3)
j+i

︸ ︷︷ ︸

=−1

=
n−1∑

k=0

c∗z2k(a
(z1), d)

( n−1∑

j=0

(−1)e
(z3)
k+j+e

(z3)
j+i + 1

︸ ︷︷ ︸

=c∗i−k(e(z3))

)

−
n−1∑

k=0

c∗z2k(a
(z1), d) − w∗(a)

= (n + 1)c∗z2i(a
(z1), d) −

n−1∑

k=0

c∗z2k(a
(z1), d) − w∗(a),

since e is perfect. Since d is perfect, we get from (3) in Proposition 3.6 that
(n + 1)ci(b, e

(z3)) = (n + 1)c∗z2i(a
(z1), d) − (n + 1) = (n + 1)cz2i(a

(z1), d).

A method to construct sequences with specified autocorrelation properties based
on Theorem 4.2 is the following: Take three shift distinct perfect sequences and
check for all possible integers zi, i = 1, 2, 3, if a realisation of these sequences
exists. The drawback of this algorithm is that three perfect sequences, which are
pairwise shift distinct, are needed. If the given sequences are not pairwise shift
distinct, then the resulting sequence is a shift of one of the given sequences.

Note that if b is a realisation of a, d, e by (z1, z2, z3), then b(1/z3) is a realisation
of a, d, e by (z1, z2/z3, 1), since ct(b, e

(z3)) = cz3t(b
(1/z3), e). Thus, if we search for

a new perfect sequence, which is not equivalent to the known once, without loss
of generality we can choose z3 = 1.

In the case n = 4m − 1 and m is not a power of 2, there exists at least three
(known) shift distinct sequences if n = 4t2 + 27 prime: called Hall and Legendre
sequences. Note that for fix prime n = 4t2 + 27 we have six shift distinct Hall
sequences and two Legendre sequences. Using Hall and Legendre sequences the
algorithm gives no new perfect sequences for n = 4t2+27 and t ≤ 77, but another
interesting result is discovered, which is presented in the next section.

In the following we use the notion of EH-equivalence very generously. If we say
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for example that the Hall and Legendre sequences are EH-equivalent, then we
mean that an equivalent sequence of the Hall sequence is EH-equivalent to an
equivalent sequence of the Legendre sequence.

4.2 EH-Equivalence of Legendre and Hall Se-

quences

Let n = ef + 1 be prime. We fix z as a primitive element in Z∗
n. The cyclotomic

classes C
(e)
i in Zn defined by (2.1) are pairwise disjoint for i = 0, ..., e − 1, and

their union is Z
∗
n. Furthermore, C

(e)
i+ke = C

(e)
i for all integers k, thus we consider

the indices modulo e.

Let n = 4t2 +27 be prime. We recall, the Hall sequence sQR := seq(QR) and the

Legendre sequence sH := seq(H) are given by

QR := C
(2)
0 and H := C

(6)
0 ∪ C

(6)
1 ∪ C

(6)
3 . (4.7)

It is easy to see from the definitions of the sets QR and H , that the sequences
sQR and sH are not equivalent. Therefore note that every square modulo n is a
multiplier of sQR and the only multipliers of sH are the sixth powers modulo n.
Since z2 is a multiplier of sQR and not of sH , the corresponding sequences cannot

be equivalent. The integer z2 is not a multiplier of sH , because c0(s
(z2)
H , sH) =

−n + 2 + 4|z−2H ∩ H| = −(n − 4)/3 6∈ {−1, n} and therefore s
(z2)
H cannot be a

shift of sH .

Theorem 4.3 The Hall and Legendre sequences of the same period length are
EH-equivalent. More precisely, we have

czk(s
(z)
H , sH) = ck(sQR, sH) (4.8)

for all k = 0, ..., n − 1. In other words, the Legendre sequence is a realisation of
the Hall sequence by (z, z, 1).

Proof. Let a and b be perfect sequences of period n corresponding to A, B ⊂ Zn.
Then |A| = |B| = n−1

2
by (1.2). Using the well known correspondence between

sets and binary sequences we get

ct(a, b) = n − 2|{ i | ai 6= bi+t, i = 0, ..., n − 1}|
= n − 2(|A| + |B| − 2|{ i | ai = bi+t = 0, i = 0, ..., n − 1}|)
= n − 2(n−1

2
+ n−1

2
− 2|{ i | ai = bi+t = 0, i = 0, ..., n − 1}|)

= −n + 2 + 4|(B − t) ∩ A|.



40 Chapter 4. Extended Hadamard Equivalence

Thus,

czk(s
(z)
H , sH) = −n + 2 + 4|(H − zk) ∩ z−1H| and

ck(sQR, sH) = −n + 2 + 4|(H − k) ∩ QR| (4.9)

holds for all k = 0, ..., n − 1. We simply write Ci for C
(6)
i . Note, that z is the

primitive element used to define QR and H , thus

ziQR = Ci ∪ Ci+2 ∪ Ci+4 and zjH = Cj ∪ Cj+1 ∪ Cj+3. (4.10)

For k = 0 we get c0(s
(z)
H , sH) = −n + 2 + 4|C0| = c0(sQR, sH). Let k 6= 0, then

k = −z−i for some i, since z is a primitive element in Z∗
n. We get from (4.9),

that (4.8) holds if and only if

|(H + z−i+1) ∩ z−1H| = |(H + z−i) ∩ QR| (4.11)

holds for all i = 0, ..., n− 1. We have (H + z−i+1) ∩ z−1H = z−i+1((zi−1H + 1) ∩
zi−2H) and (H +z−i)∩QR = z−i((ziH +1)∩ziQR). Thus, from (4.10) it follows
that (4.11) holds if and only if hi = qi for all i = 0, ..., 5, where

hi := |(zi−1H + 1) ∩ zi−2H| and qi := |(ziH + 1) ∩ ziQR|. (4.12)

We explicitly calculate hi and qi. In general we have

((Ci1∪̇Ci2∪̇Ci3) + 1) ∩ (Cj1∪̇Cj2∪̇Cj3) =
⋃̇

r = 1, 2, 3
s = 1, 2, 3

((Cir + 1) ∩ Cjs)

since the Cij ’s are pairwise disjoint. For fixed i and j, the cyclotomic number
(i, j) is defined as the number of solutions of the equation zi +1 = zj with zi ∈ Ci

and zj ∈ Cj , i.e.

(i, j) = |(Ci + 1) ∩ Cj |,

see [40] for more information about cyclotomic numbers in particular in connec-
tion with difference sets. We have

|((Ci1 ∪ Ci2 ∪ Ci3) + 1) ∩ (Cj1 ∪ Cj2 ∪ Cj3)| =
∑

r = 1, 2, 3
s = 1, 2, 3

(ir, js) (4.13)

and therefore we get from (4.10) that

hi =
∑

r = 0, 2, 5
s = 1, 4, 5

(i + r, i + s) and qi =
∑

r = 0, 1, 3
s = 0, 2, 4

(i + r, i + s).

For n = 4t2 + 27 prime the cyclotomic numbers are known. If n = 4t2 + 27 is
prime, then gcd(t, 3) = 1. We have n− 1 ≡ 0 mod 6 and n− 1 ≡ 6 mod 12, since
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2 and 3 divides n− 1 and 4 is not a divider of n− 1. Thus, n = 6f + 1 with f is
odd. In this case the 36 cyclotomic numbers (i, j) are given by

j
i

0 1 2 3 4 5

0 A B C D E F
1 G H I E C I
2 H J G F I B
3 A G H A G H
4 G F I B H J
5 H I E C I G

(4.14)

where

9 · A := t2 − 4 · t′ + 4
9 · B := t2 − t′ + 16
9 · C := t2 − t′ + 16 = 9 · B
9 · D := t2 + 8 · t′ + 7
9 · E := t2 − t′ − 2
9 · F := t2 − t′ − 2 = 9 · E
9 · G := t2 + 2 · t′ + 10
9 · H := t2 + 2 · t′ + 1
9 · I := t2 − t′ + 7
9 · J := t2 − t′ + 7 = 9 · J

(4.15)

and t′ = −t if t ≡ 1 mod 3 and t′ = t if t ≡ 2 mod 3. We get

q0 =A+C +E+G+I +C +A+H +G= t2 + 22
3 − 2t′

3 =B +E +F +J +I +B +I +I + G =h0

q1 = H+E + I + J +F+B+F + B +J = t2 + 16
3 −2t′

3 = A+C +F +G+I + I +A+H+H =h1

q2 = H+G+ I +A+H+G+H+ E +I = t2 + 13
3 + t′

3 = G+H+E+H+J+F +G+F+B =h2

q3 = B+D+F +G+A+H+F + B +J = t2 + 19
3 + t′

3 = J +G+ I +G+H+G+I +E+I =h3

q4 = G+ I +C +G+I +H+H+ E +I = t2 + 19
3 + t′

3 = C +D+F +H+A+H+I +B+J =h4

q5 = B+D+F + J +F+B+ I + C +G= t2 + 25
3 + t′

3 = G+E +C +G+B+H+H+C+I =h5

The proof shows that one can explicitly calculate the intersection size and there-
fore the crosscorrelation coefficients between Hall sequences and between Hall
and Legendre sequences by cyclotomic numbers.

Theorem 4.4 Let n = 4t2 + 27 be prime and let sH be the Hall sequence defined
by (4.7) with the primitive element z in Z∗

n. Then

Sp(s
(z)
H , sH) = {−4t2−23

3
, 13−8t′

3
, −11−8t′

3
, −23+4t′

3
, 1+4t′

3
, 25+4t′

3
} and

Sp(s
(z3)
H , sH) = {4t2+29

3
, 5−4t′

3
, −19+8t′

3
, 17−4t′

3
, −19−4t′

3
, 17+8t′

3
, −7−4t′

3
},
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where t′ = −t if t ≡ 1 mod 3 and t′ = t if t ≡ 2 mod 3. Furthermore, any
crosscorrelation spectrum between Hall sequences, where the sequences are shift
distinct, and between Legendre and Hall sequences belongs to one of these spectra.

Proof. We have the notation above. Since s
(z6r+s)
H = s

(zs)
H , we have at most five

different crosscorrelation spectra between shift distinct Hall sequences. Further-

more, Sp(s
(zi)
H , sH) = Sp(sH , s

(z−i)
H ) = Sp(s

(z−i)
H , sH) shows, that we have at most

three different crosscorrelation spectra. The proof of Theorem 4.3 shows, that
the crosscorrelation coefficients are constant on the cyclotomic classes Ci’s. We
have

Sp(s
(zl)
H , sH) = { c0(s

(zl)
H , sH) } ∪ { czk(s

(zl)
H , sH) | k = 0, ..., 5 }

for all l = 1, 2, 3. Since H = C0 ∪ C1 ∪ C3 and |Ci| = n−1
6

for all i we have

c0(s
(zl)
H , sH) = −n + 2 + 4|z−lH ∩ H|

=

{
−n + 2 + 4n−1

6
if l = 1, 2

−n + 2 + 4n−1
3

if l = 3

=

{
−4t2−23

3
if l = 1, 2

4t2+29
3

if l = 3.

We transform

c−z−k(s
(z−l)
H , sH) = −n + 2 + 4|(H + z−k) ∩ zlH|

= −n + 2 + 4|z−k((zkH + 1) ∩ zl+kH)|
= −n + 2 + 4|(zkH + 1) ∩ zl+kH|.

Using (4.13), by the definition of H we get

hl,k := |(zkH + 1) ∩ zl+kH| =
∑

i,j=0,1,3

(i + k, j + l + k).

By (4.14) and (4.15) we can explicitely calculate the crosscorrelation spectra given

in the theorem, since Sp(s
(zl)
H , sH) = { c0(s

(zl)
H , sH) }∪{ −n+2+4hl,k | k = 0, ..., 5 }

for all l = 1, 2, 3. Let Hl := {hl,k|k = 0, .., 5}, then

H1 := {4J + 2E + G + 2B,E + 2J + 2H + 2A + G + B, 2G + 2H + J + 3E + B,

4J + 3G + H + E, 2H + 2J + 2B + A + D + E, 3B + E + 2H + J + 2G}
H2 := {2E + 2B + 2G + J + 2H, 4J + B + 3G + H,E + 2J + 2H + 2A + G + B,

2E + 2B + 2G + J + 2H, 4J + 2E + G + 2B,B + D + 2E + 2J + 2H + A}
H3 := {2B + 4J + 2H + E,B + 4H + 2G + A + E, 3A + 2G + E + 2B + D,

2E + 4J + 2H + B, 3E + 3B + 2G + D,D + 2E + 3A + B + 2G}.

By (4.15), finally we get Sp(s
(z)
H , sH) = Sp(s

(z2)
H , sH) and the crosscorrelation

coefficients listed in Theorem 4.4.
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We have only two Legendre sequences, which are shift distinct, namely sQR

and s
(z)
QR. Note that s

(z)
QR and s̄QR differs just in one position. We already

know from Theorem 4.3 that Sp(sQR, sH) = Sp(s
(z)
H , sH). Furthermore, we have

Sp(s
(z)
QR, sH) = Sp(s

(z3)
H , sH), since

n−1
2

= |(H − zk)| = |(H − zk) ∩ C
(2)
0 | + |(H − zk) ∩ C

(2)
1 | + |(H − zk) ∩ {0}|

and |(H − zk) ∩ {0}| = 1 if zk ∈ H and 0 otherwise. Thus,

czk(s
(z)
QR, sH) = −n + 2 + 4|(H − zk) ∩ C

(2)
1 |

= −n + 2 + 4(n−1
2

− |(H − zk) ∩ C
(2)
0 | − |(H − zk) ∩ {0}|)

= n − 4|(H − zk) ∩ C
(2)
0 | − 4|(H − zk) ∩ {0}|

= 2 − czk(sQR, sH) − 4|(H − zk) ∩ {0}|

=

{
−2 − czk(sQR, sH) if k ≡ 0, 1, 3 mod 6
2 − czk(sQR, sH) if k ≡ 2, 4, 5 mod 6

and c0(s
(z)
QR, sH) = 2−c0(sQR, sH). Finally, we get Sp(s

(z)
QR, sH) = Sp(s

(z3)
H , sH).





Chapter 5

Crosscorrelation between Perfect
Functions

In the following, we restrict our considerations to the description of sequences
with period n = 2m − 1 via functions f : F2m → F2 . With assumption (1.2) for
balanced and therefore for perfect functions, we always have f(0) = 0.

In Section 5.1, basic properties for the crosscorrelation between perfect functions
are listed. The known results for Hadamard equivalent sequences are presented
in Section 5.2 and in Section 5.3 it is shown how to use Hadamard equivalence
to write the crosscorrelation between certain perfect functions in terms of the
crosscorrelation between m-functions.

5.1 Properties of the Crosscorrelation Function

Proposition 3.6 is now translated into the notation for functions. Note, that
if f and g are the corresponding functions of the sequences a and b using the
primitive element α, then ct(a, b) = cαt(f, g)− (−1)f(0)+g(0) for all t = 0, ..., n−1.
Without loss of generality in the following we always assume that f(0) = g(0) = 0,
otherwise we consider their complements. Now, we have cαt(f, g) = c∗t (a, b) for
all t = 0, ..., n − 1.

Additionally it is known that 2 is always a multiplier of a perfect sequence with
period n = 2m−1, and therefore of a perfect function [12]. Using (1.3) for perfect
functions f we assume

f (2i) = f. (5.1)

Proposition 5.1 Let f, g : F2m→F2 be functions, gcd(d, 2m−1) = 1 and y ∈ F ∗
2m.

45
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(1) We have cy(f
(d), g) = cy1/d(f, g(1/d)) and cy(f, g) = cy−1(g, f).

(2) Let g be perfect. Using (5.1), then cy(f, g(2i)) = cy(f, g).

(3) Let f and g be perfect. Using (5.1), then cy2i (f, g) = cy(f, g).

(4) If g is perfect, then
∑

y∈F2m

cy(f, g) = 2m.

(5) If g is perfect, then
∑

y∈F2m

(cy(f, g))2 = 22m.

(6) If f and g are perfect, then
∑

y∈F2m

cy(f, g)cay(f, g) =

{
0 if a ∈ F2m\{1}

22m if a = 1.

We write the generalised Parvesal formula (3.10) in functional representation:
Let f, h, g : F2m → F2 be functions and let g be perfect, then

∑

x∈F2m

(−1)f(x)(−1)h(x) =
1

2m

∑

y∈F2m

cy(f, g) cy(h, g). (5.2)

If g is the trace function, then (5.2) is called the (usual) Parseval formula, i.e.

∑

x∈F2m

(−1)f(x)+h(x) =
1

2m

∑

y∈F2m

W(f)(y) · W(h)(y).

since W(f)(y) = cy(f, tr).

A lower bound for the maximum crosscorrelation coefficient

M(f, g) := max
y∈F2m

|cy(f, g)|

is given by

M(f, g) ≥ 2
m
2 , (5.3)

if g is perfect. Furthermore, if f is balanced or perfect, then M(f, g) > 2m/2. This
follows from Theorem 3.7 and Corollary 3.9, since M(f, g) = max |{c∗t (a, b)|t =
0, ..., n− 1}∪{w∗(a)}| yields for the corresponding sequences a and b of f and g.

If g is linear, then (5.3) states nothing new. The linearity of f is the maximum
Walsh coefficient (in absolute value) of f . Thus, the crosscorrelation of a function
f with the trace function is related to the linearity of the function f . The
maximum Walsh coefficient of a function f : F2m → F2 is maxy∈F2m |W(f)(y)| ≥
2m/2, where equality occurs if and only if f is bent [15].

Since bent functions are not balanced, we have maxy∈F
∗
2m

|W(f)(y)| > 2m/2 for
balanced functions f . In the case, where f and g are both m-functions, it is
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well-known that M(f, g) ≥ 2(m+1)/2. The bound (5.3) seems to be bad if f
and g are both perfect. We have no examples of perfect functions f and g with
M(f, g) < 2(m+1)/2, hence we ask ourself:

Question 5.2 Let f and g be two perfect functions. Is it true, that

M(f, g) ≥ 2
m+1

2 ? (5.4)

Minimal Number of Different Crosscorrelation Values

Proposition 5.3 Let f, g : F2m → F2 be two perfect functions, whose corre-
sponding sequences a and b are shift distinct. Then their crosscorrelation spec-
trum contains at least three different values.

In [13] Helleseth proved this for m-functions, but the proof is also true for arbi-
trary perfect functions.

Proof. Note that c0(f, g) = c0(f) = 0 for a perfect function f . Assume, contrary
to the statement, that a and b are the only crosscorrelation coefficients. Then it
follows by (4) and (5) in Proposition 5.1 that

x + y = 2m − 1
xa + yb = 2m

xa2 + yb2 = 22m,

where x and y are the multiplicities of the crosscorrelation coefficients. We have
a 6= 0 6= b otherwise a = 2m or b = 2m and then the sequences are shift equivalent.
Without loss of generality we get from the first line that x is even and y is odd.
Let i and x′ be integers such that x = 2ix′ and x′ is odd, thus i ≥ 1. Let j, k and
a′, b′ be integers such that a = 2ja′, b = 2kb′ and a′, b′ are odd. We get

2i+jx′a′ + 2kyb′ = 2m

2i+2jx′a′2 + 22kyb′2 = 22m.

It follows, that i+j = k, otherwise the left hand side of the first line is not a power
of 2, but also that i + 2j = 2k, otherwise the left hand side of the second line is
not a power of 2. This gives a contradiction to i ≥ 1. Thus, the crosscorrelation
spectrum contains more than two values.

Proposition 5.4 : Let f, g : F2m → F2 be functions and let g be perfect. Let
the crosscorrelation spectrum between f and g be three-valued with ±c and 0 and
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c0(f) = 0. Then c = 2(m+k)/2 with k ∈ N0 and the multiplicities are:

crosscorrelation value multiplicity
0 2m − 2m−k − 1

+2
m+k

2 2m−1−k + 2
m−k

2
−1

−2
m+k

2 2m−1−k − 2
m−k

2
−1.

(5.5)

Proof. Let x denote the number of crosscorrelation coefficient ±c. From (6) in
Proposition 5.1 we get 22m =

∑

y∈F2m
(cy(f, g))2 = c2x. This shows that c2 has

divide 22m, and therefore c is a power of 2.

By (5.3) we have c ≥ 2m/2. Let c = 2(m+k)/2 for some integer k ≥ 0 and
zi := |{y ∈ F

∗
2m |cy(f, g) = i}|. Obviously we have

z0 + zc + z−c = 2m − 1. (5.6)

Since g is perfect, by (5) in Proposition 5.1 we get 2m =
∑

y∈F2m
cy(f, g) =

(zc − z−c) · 2(m+k)/2, thus

zc − z−c = 2
m−k

2 . (5.7)

By (6) in Proposition 5.1 we get 22m =
∑

z∈F2m
(cz(f, g))2 = (zc + z−c) · 2m+k,

therefore

zc + z−c = 2m−k. (5.8)

The equations (5.6), (5.7) and (5.8) show the multiplicities in (5.5).

5.2 Hadamard Equivalence of Functions

An exhaustive search was performed to compute all functions F2m → F2 that
are (extended) Hadamard equivalent to linear functions for odd m ≤ 17 [9].
For m = 7 see Example 5.5. For 9 ≤ m ≤ 17, those which are (extended)
Hadamard equivalent to the trace functions are the Maschietti, the NCY and
the DD-functions. Let m be odd, then we have the following realisations by
(z1, z2, z3):

DD−function Maschietti functionNCY−function
parameter k

(3, 2k+1
3

, 1
2k+1

) (2k + 1, 2k+1
3

, 1) (k, k−1
k

, 1)

parameter k

trace function

m = 3k ± 1
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where z1, z2 and z3 are defined by

(−1)g(z) =
1

2m

( ∑

x∈F2m

∑

y∈F2m

(−1)f(xz1 )+f(xyz2 )+f(yzz3 )
)

(5.9)

and the arrow begins at the starting function f and ends at the resulting func-
tion g, see [4, 5]. In other words, the usual Hadamard equivalence, which is
introduced in [4, 5], means that the new perfect functions are realisations of the
trace function.

Example 5.5 [9] We start with the trace function and compute all realisations
by formula (5.9). For m = 7 we get by computations the following realisations:

(3,3,1)

(7,7,5)(5,5,43)

(5,5,1)

(3,11,27)

(27,27,23) (5,11,1)

(3,3,15)

Legendre 

Hall 
Dillon &

Dobbertin
Dillon &

DobbertinNo, Chung &
Yunk = 2

trace
function

k = 3

For m = 7 there exist up to equivalence six classes of perfect functions. It is
an interesting phenomenon that we get all these perfect functions by iterations of
(5.9).

5.3 Application of Hadamard Equivalence

In the following, Hadamard equivalence is used to write the crosscorrelation coef-
ficients of arbitrary perfect functions in terms of Walsh coefficients of m-functions.
This is possible for the crosscorrelation function of perfect functions f (s) and g,
if there exist integers d and d′, which are coprime to 2m − 1, such that f (d) and
g(d′) are Hadamard equivalent to m-functions.

Theorem 5.6 Let f, g : F2m → F2 be perfect functions, and let s be an integer
such that gcd(s, 2m − 1) = 1. Let W(f (d))(x) = W(tr(k))(βxl) and W(g(d′))(x) =
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W(tr(k′))(β ′xl′) for all x ∈ F2m and some integers l, l′, d, d′, k, k′, where d, d′, k, k′

are coprime to 2m − 1. Then

ca(f
(s), g) =

=
1

22m

∑

x,z∈F2m

W(tr(k))(βxl) · W(tr(k′))(β ′xl′) · W(tr(t))(a1/d′zx−1/t),

where t := d′s/d.

Theorem 5.6 shows that the problem to determine the crosscorrelation between
certain perfect functions is related to the problem to determine the crosscorre-
lation between the trace function and its decimations tr(d). Even this is a very
difficult problem. It has been investigated for many years and still many questions
are open, see [14] for instance.

Proof of Theorem 5.6. Let a 6= 0. Formula (5.2) with the perfect function tr(s/d)

is applied in the first step and with tr(1/d′) in the second step:

22mca(f
(s), g) =

= 22m ∑

x∈F2m

(−1)f(xs)+g(ax)

(5.2)
= 2m ∑

x∈F2m

(
∑

y∈F2m

(−1)f(ys)+tr(xs/dys/d)
)(

∑

z∈F2m

(−1)g(az)+tr(xs/dzs/d)
)

= 2m ∑

x∈F2m

(
∑

y∈F2m

(−1)f(yd)+tr(xy)
)(

∑

z∈F2m

(−1)g(z)+tr(a−s/dxzs/d)
)

(5.2)
=

∑

x∈F2m

(
∑

y∈F2m

(−1)f(yd)+tr(xy)
)

·
(

∑

z∈F2m

∑

v∈F2m

(−1)g(v)+tr(z1/d′ v1/d′ )
∑

w∈F2m

(−1)tr(a−s/dxws/d)+tr(z1/d′w1/d′)
)

.

We substitute z1/d′ by z and w by ax−d/swd′ and get

22mca(f
(s), g) =

=
∑

x,z∈F2m

(
∑

y∈F2m

(−1)f(yd)+tr(xy)
)(

∑

v∈F2m

(−1)g(d′)(v)+tr(zv)
)

·
(

∑

w∈F2m

(−1)tr(wd′·s/d)+tr(a1/d′zx−d/(d′·s)w)
)

=
∑

x,z∈F2m

W(f (d))(x) · W(g(d′))(y) · W(tr(d′s/d))(a1/d′zx−d/(d′s)).

Using the assumptions, Theorem 5.6 is proved.



Chapter 6

Crosscorrelation between Special
Perfect Functions

An overview over the research on the crosscorrelation between perfect functions:

• The crosscorrelation between m-functions was first examined 1968. Today
they are the most examined and best-known crosscorrelation functions. But
there are still many questions open [15].

• The crosscorrelation between an m-function and a GMW-function was
analysed 1985 by Games [6]. A strong condition was that the two functions
were considered without decimations. This condition was partly removed
1990 in [23] by Chan, Goresky and Klapper.

• Antweiler has shown in 1994 that the calculation of the crosscorrelation
between arbitrary GMW-functions can be reduced to the crosscorrelation
of m-functions [1].

• The crosscorrelation between an m-function and a Maschietti function with-
out decimations is examined in [4], between an m-function and a No-Chung-
Yun function without decimations in [4, 5] and the crosscorrelation between
an m-function and a decimated Dillon-Dobbertin function with one par-
ticular exponent in [5]. These calculations were used to prove that the
Maschietti, No-Chung-Yun and Dillon-Dobbertin construction produce per-
fect functions. Gong and Yu [10] looked at the crosscorrelation between
these functions and get new exponents for decimations, where the crosscor-
relation spectrum is three- or five-valued.

• In this thesis, I consider the crosscorrelation function between Dillon-
Dobbertin functions [17] and between Dillon-Dobbertin and Gordon-Mills-
Welch functions [18].
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m-function Gold [8], Kasami [22], Games [6] Dillon [4] Dillon & Dillon &

Welch [41], Niho [29] Dobbertin [4, 5] Dobbertin [5]

1993
Chan, Goresky & 2006

GMW-function − Klapper [24] ? ? Section 6.3
1994 published in [18]

Antweiler [1]

Mas.-function − − ? ? ?

NCY-function − − − ? ?

2004
DD-function − − − − Section 6.2

published in [17]



Chapter 6. Crosscorrelation between Special Perfect Functions 53

The table gives an overview of important steps in the research of the crosscorre-
lation between the known perfect functions.

In this chapter, new results on the crosscorrelation between Dillon-Dobbertin
functions and between Dillon-Dobbertin functions and GMW-functions are pre-
sented. We have used the fact that the crosscorrelation between these perfect
functions is reduced to the crosscorrelation between m-functions, when m is odd,
because many results are known on the crosscorrelation between m-functions.

In Section 5.1, some known results on the crosscorrelation between m-functions
are listed. These results are used to prove our results on the crosscorrelation
between Dillon-Dobbertin functions in Section 6.2 and on the crosscorrelation
between Dillon-Dobbertin functions and GMW-functions in Section 6.3.

Some assumptions

In the following perfect functions with nice crosscorrelation properties are con-
sidered: With respect to Question 5.2 it is possible that the case M(f, g) = 2

m+1
2

is optimum. Hence we are looking for pairs of functions f and g with M(f, g) =

2
m+1

2 , so we restrict our considerations to the case m odd.

If we explicitly list the crosscorrelation spectrum of two functions, note that:

1. It is always n = 2m − 1 and gcd(d, n) = 1.

2. By (1) in Proposition 3.6 follows Sp(f (d), g(d′)) = Sp(f (d/d′), g) for all d, d′.
Therefore, it is enough to write down only the decimations of one function.

3. With respect to (2) in Proposition 3.6, the smallest decimation d in {2id mod
2m − 1|i = 0, ..., m − 1} is listed.

6.1 Crosscorrelation between m-Functions

The crosscorrelation between m-functions is the most analysed and best known
crosscorrelation function. In this section, an overview over some known results
of the crosscorrelation between m-functions is given [13, 14, 15].

Let ϕ : F2m → F2m be a function and let ϕβ(x) := tr(βϕ(x)) be the so called
coordinate function from F2m to F2 . If ϕ is a power function xd, then ϕβ(x) =
tr[β](xd). Thus, m-functions correspondent to coordinate functions of power func-
tions xd, if gcd(d, 2m − 1) = 1.
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The maximum

N (ϕ) := max
β,γ∈F2m ,β 6=0

∣
∣
∣
∣
∣

∑

x∈F2m

(−1)tr(β·ϕ(x)+γ·x)

∣
∣
∣
∣
∣

(6.1)

is called the linearity of ϕ. In the case of power mappings with gcd(d, 2m−1) = 1,
the computation of the linearity simplifies. We have

N (ϕ) = max
γ,β∈F2m ,β 6=0

| ∑

x∈F2m

(−1)tr(γ·x+β·xd)|

= max
α,η∈F2m ,η 6=0

| ∑

x∈F2m

(−1)tr(α(η·x)+(η·x)d)|

= max
α∈F2m

| ∑

x∈F2m

(−1)tr(αx+xd)|

= M(tr(d), tr), (6.2)

where we put β = ηd and γ = αη and finally we note, that ηx runs through
F2m if x does. This observation implies some connections between the linearity
of power mappings and the crosscorrelation between m-functions. Note that a
lower bound for the linearity of a power function xd is also a lower bound for the
maximum crosscorrelation coefficient between tr(d) and tr.

Proposition 6.1 Let ϕ : F2m → F2m be a function, then

N (ϕ) ≥ 2(m+1)/2. (6.3)

Proof. In generally, we have
∑

v∈M v2 ≤ w
∑

v∈M v, where M is a finite set
with non-negative integers and w := maxv∈Mv. We use this and take v to be
(
∑

x∈F2m
(−1)tr(β·ϕ(x)+γ·x))2 and get

∑

β, γ ∈ F2m

β 6= 0

(
∑

x∈F2m

(−1)tr(β·ϕ(x)+γ·x)
)4

≤ N (ϕ)2 · ∑

β, γ ∈ F2m

β 6= 0

(
∑

x∈F2m

(−1)tr(β·ϕ(x)+γ·x)
)2

. (6.4)

Note that
∑

x∈F2m
(−1)tr(γ·x) = 0 if γ 6= 0 and 2m otherwise, since the trace

function is balanced. We calculate the sum on the right hand side of (6.4). In
the first step we insert 0 =

∑

γ∈F2m
(
∑

x∈F2m
(−1)tr(γx))2 − 22m and get

∑

β, γ ∈ F2m

β 6= 0

(
∑

x∈F2m

(−1)tr(β·ϕ(x)+γ·x)
)2

=
∑

β,γ∈F2m

(
∑

x∈F2m

(−1)tr(β·ϕ(x)+γ·x))2 − 22m

=
∑

β,γ,x,y∈F2m

(−1)tr(β(ϕ(x)+ϕ(y))+γ(x+y)) − 22m
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=
∑

β,x,y∈F2m

(−1)tr(β(ϕ(x)+ϕ(y)))
∑

γ∈F2m

(−1)tr(γ(x+y))

︸ ︷︷ ︸

=

8<: 2m if x = y

0 otherwise

−22m

= 2m
∑

β,x∈F2m

(−1)tr(β(ϕ(x)+ϕ(x))) − 22m

= 23m − 22m.

For the left hand side of (6.4) we calculate a lower bound by

∑

β, γ ∈ F2m

β 6= 0

(
∑

x∈F2m

(−1)tr(β·ϕ(x)+γ·x)
)4

=
∑

β,γ∈F2m

(
∑

x∈F2m

(−1)tr(β·ϕ(x)+γ·x))4 − 24m

=
∑

β,x,y,z,v∈F2m

(−1)tr(β(ϕ(x)+ϕ(y)+ϕ(z)+ϕ(v)))
∑

γ∈F2m

(−1)tr(γ(x+y+z+v)))

︸ ︷︷ ︸

=

8<: 2m if v = x + y + z

0 otherwise

−24m

= 2m ∑

x,y,z∈F2m

(
∑

β∈F2m

(−1)tr(β(ϕ(x)+ϕ(y)+ϕ(z)+ϕ(x+y+z)))
)

− 24m

= 2m
∑

x,y,z∈F2m

(
∑

β∈F2m

(−1)tr(β(ϕ(x)+ϕ(x+y)+ϕ(z)+ϕ(y+z)))
)

− 24m,

where y is replaced by x + y. Since tr is perfect we get

∑

β, γ ∈ F2m

β 6= 0

(
∑

x∈F2m

(−1)tr(β·ϕ(x)+γ·x)
)4

= 22m|{ (x, y, z) ∈ F2m×F2m× F2m | ϕ(x)+ϕ(x+y)=ϕ(z)+ϕ(y+z)}| − 24m

≥ 22m(22m+1 + 22m − 2m+1) − 24m

= 24m+1 − 23m+1,

because (H1∪̇H2∪̇H3) ⊆ { (x, y, z) | ϕ(x) + ϕ(x + y) = ϕ(z) + ϕ(y + z) }, where

H1 := { (x, y, x) | x, y ∈ F2m}
H2 := { (x, y, x + y) | x, y ∈ F2m , y 6= 0}
H3 := { (x, 0, y) | x, y ∈ F2m , x 6= y}.

The sets Hi, i = 1, 2, 3, are pairwise disjoint and the cardinality is |H1| = 22m

and |H2| = |H3| = 2m(2m − 1). Using (6.4) we get N (ϕ)2 ≥ 2m+1.
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Proposition 6.2 Let N (ϕ) = 2(m+1)/2, then

∑

x∈F2m

(−1)tr(β·ϕ(x)+γ·x) ∈ {±2(m+1)/2, 0}

for all β ∈ F ∗
2m and γ ∈ F2m.

Proof: Since (N (ϕ))2 = 2m+1 equality occurs in (6.4). Hence we have for all
β ∈ F ∗

2m and γ ∈ F2m that (
∑

x∈F2m
(−1)tr(β·ϕ(x)+γ·x))2 ∈ {0, 2m+1}.

A function ϕ is called maximum nonlinear or almost bent, if N (ϕ) =
2(m+1)/2. Note, that maximum nonlinear functions only exist for m odd. A func-
tion ϕ is called almost perfect nonlinear (APN) if the function ϕ(x+y)+ϕ(x)
is a 2-to-1 mapping for all y ∈ F ∗

2m .

The proof of Proposition 6.1 shows that maximum nonlinear functions are almost
perfect nonlinear, since |{(x, y, z) ∈ F2m×F2m |ϕ(x)+ϕ(x+z) = ϕ(y)+ϕ(y+z)}| =
22m+1 + 22m − 2m+1 holds for maximum nonlinear functions, hence ϕ is almost
perfect nonlinear.

Corollary 6.3 Let tr be the trace function, then

M(tr(d), tr) ≥ 2(m+1)/2. (6.5)

If M(tr(d), tr) = 2(m+1)/2, then Sp(tr(d), tr) = {±2(m+1)/2, 0} and the multiplici-
ties are given in (5.5).

Proof. The results follow from Proposition 6.1 and 6.2 with (6.2).

Note that for power functions ϕ the sum on the left hand side in (6.4) reduces to

∑

β, γ ∈ F2m

β 6= 0

(
∑

x∈F2m

(−1)tr(βxd+γx)
)4

= (2m − 1)
∑

γ∈F2m

cγ(tr
(d), tr)4

and the sum on the right hand side to

∑

β, γ ∈ F2m

β 6= 0

(
∑

x∈F2m

(−1)tr(βxd+γ·x)
)2

= (2m − 1)
∑

γ∈F2m

cγ(tr
(d), tr)2,

since β1/dx runs through F2m if x does. Thus, the proof of Proposition 6.1 shows
∑

x∈F2m
cx(tr

(d), tr)4 ≥ 23m+1 and
∑

x∈F2m
cx(tr

(d), tr)2 = 22m and

∑

x∈F2m

cx(tr
(d), tr)4 =

= 22m|{ (y, z) ∈ F2m×F2m | yd + (y + 1)d = xd + (x + 1)d }|. (6.6)
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The sum over all squares of the crosscorrelation coefficients between arbitrary per-
fect functions is always 22m, see (5) in Proposition 5.1. But for arbitrary perfect
functions it is not true that the sum over the 4-th powers of the crosscorrelation
coefficients is greater or equal to 23m+1. Thus, this proof cannot be generalised
to attach Question 5.2. Furthermore, the second statement in Corollary 6.3 is
not true for the crosscorrelation between arbitrary perfect functions. The next
example gives a counter-example.

Example 6.4 Let m = 7 and bk be the Dillon-Dobbertin function defined in
Chapter 2 with parameter k. We choose k = 3 and get M(b

(19)
3 , b3) = 2(m+1)/2 =

24, but

∑

x∈F2m

cx(b
(19)
3 , b3)

4 = 21 · 164 + 28 · 84 + 21 · 0 + 28 · 84 + 29 · 164

= 3.506.176 < 4.194304 = 23·7+1 .

Furthermore, the crosscorrelation spectrum is five-valued, i.e. Sp(b
(19)
3 , b3) =

{−24(21),−23(28), 0(21), 23(28), 24(29)}, where the numbers in brackets are the
multiplicities.

In the next proposition, the known maximum nonlinear power functions are listed.

Proposition 6.5 [15] Let m be odd and s be an integer such that gcd(s, m) = 1.
The crosscorrelation spectrum Sp(tr(d), tr) is three-valued with the values stated
in (5.5) with k = 1 if d is

d = 2s + 1 the Gold parameter,
d = 22s − 2s + 1 the Kasami parameter,
d = 2(m−1)/2 + 3 the Welch parameter or
d = 2(m−1)/2 + 2r − 1 with 4r ≡ 1 mod m the Niho parameter .

Note that the three-valued crosscorrelation spectrum {±2(m+1)/2, 0} between m-
functions is best possible with respect to the maximal crosscorrelation coefficient
(see Corollary 6.3) and with respect to the smallest number of values in the
crosscorrelation spectrum (see Proposition 5.3).

There are some more interesting properties of the crosscorrelation function be-
tween m-functions.

Proposition 6.6 [13] The crosscorrelation spectrum Sp(tr(d), tr) has at least
three different values if and only if d 6∈ {1, 2, ..., 2m−1}.
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Proof: Proposition 5.3 implies Sp(tr(d), tr) is at least three-valued if tr(d) and tr
produce shift distinct sequences. Assume tr(d) gives a shift of tr, then there exists
an integer t such that

∑m−1
i=0 (αtx)2i ≡ tr(1)(αtx) ≡ tr(d)(x) ≡ ∑m−1

i=0 x2id mod
(x2m−1 − 1) holds for a primitive element α in F ∗

2m . Comparing to the exponents,
it follows

{ 2i + t mod 2m− 1 | i = 0, ..., m−1} = { 2id mod 2m− 1 | i = 0, ..., m−1}. (6.7)

If (6.7) holds, then 2i + t ≡ d mod (2m − 1) and 2j + t ≡ 2d mod (2m − 1) for
some i 6= j. It follows 2j − d ≡ d − t ≡ 2i mod (2m − 1), which only holds if d is
a power of 2.

Corollary 6.7 The only multipliers of m-functions are the powers of 2.

6.2 Crosscorrelation between Dillon-Dobbertin

Functions

In this section, the crosscorrelation between Dillon-Dobbertin functions f and
g with M(f, g) = 2(m+1)/2 is considered. Let bk denote the DD-function with

parameter k. For m ≤ 17 odd, all functions b
(s)
k and bl with M(b

(s)
k , bl) = 2

m+1
2

are listed, which were found by computer calculations:

m k l 1/s

5 1 2 1
5 1 2 5
5 1 2 7
7 1 2 1
7 1 2 5
7 1 2 43
7 1 3 1
7 1 3 9
7 1 3 15
7 1 3 27
7 1 3 43
7 2 3 1
7 2 3 27
7 3 3 19
9 1 2 5
9 1 4 17

11 1 2 5
11 1 3 1

⋆2

⋆1

⋆3

⋆2

⋆1

⋆2

⋆1

⋆2

◦1

⋆1

⋆1

⋆1

⋆2

m k l 1/s

11 1 3 9
11 1 4 1
11 1 4 17
11 1 5 33
11 2 3 1
11 2 5 1
11 4 5 1
13 1 2 5
13 1 3 1
13 1 3 9
13 1 4 1
13 1 4 17
13 1 5 33
13 1 6 65
13 2 5 1
13 2 6 1
13 3 4 1
13 5 6 1

⋆1

⋆2

⋆1

⋆1

⋆2

⋆2

⋆2

⋆1

⋆2

⋆1

⋆2

⋆1

⋆1

⋆1

⋆2

⋆2

⋆2

⋆2

m k l 1/s

15 1 2 5
15 1 4 17
15 1 7 129
17 1 2 5
17 1 3 1
17 1 3 9
17 1 4 17
17 1 5 33
17 1 6 1
17 1 6 65
17 1 7 129
17 1 8 257
17 2 5 1
17 2 6 1
17 3 8 1
17 4 5 1
17 4 7 1
17 7 8 1

⋆1

⋆1

⋆1

⋆1

⋆2

⋆1

⋆1

⋆1

⋆2

⋆1

⋆1

⋆1

⋆2

⋆2

⋆2

⋆2

⋆2

⋆2
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The case k = l = 1 is not considered, because it describes the crosscorrelation
between m-functions. It is interesting that in all cases listed in the table, except
the case ◦1, the crosscorrelation spectrum is three-valued with the values ±2

m+1
2

and 0 and the multiplicities from Proposition 5.4. In the case ◦1 the crosscorre-
lation spectrum is Sp(b

(1/19)
3 , b3) = {−16(21),−8(28), 0(21), 8(28), 16(29)}, where

the numbers in the brackets are the multiplicities, see also Example 6.4.

Any value in the table represents a whole class of values, which also have the
same crosscorrelation spectrum. In addition to the assumptions already made,
we only list the values k and l such that 1 ≤ k ≤ l ≤ m−1

2
, since bk = bm−k.

The values in the table indicated by a star can be explained. It is not only shown
that the maximal crosscorrelation coefficient is 2(m+1)/2, but it is also proved that
these crosscorrelation spectra contain only the three values ±2(m+1)/2 and 0: For
some special k, l and s the crosscorrelation between b

(s)
k and bl is equivalent to the

Walsh transform of tr(d), where d = 2k +1 or d = 22k−2k +1 with gcd(k, m) = 1.

The Walsh spectrum of such functions tr(d) is three-valued with ±2
m+1

2 and 0,
see Proposition 6.5.

The following highly nontrivial result is the major step in [5] to prove that bk is
a perfect function.

Result 6.8 (Dillon and Dobbertin [5]) Let m be odd and gcd(k, m) = 1,
then

W(b
(2k+1)
k )(y) = W(tr(3))(y(2k+1)/3) for all y ∈ F2m .

Result 6.8 explains all entries in the table indicated by ⋆1, since cy(b
(s)
k , b1) =

W(b
(s)
k )(y). In particular, we have

cy(b
(2k+1)
k , b1) ∈ {±2(m+1)/2, 0}.

The following theorem shows that the crosscorrelation between DD-functions
without decimations is equal to the Walsh transform of certain m-functions.

Theorem 6.9 Let m be odd and gcd(k, m) = gcd(l, m) = 1, then

cy(bk, bl) = W(tr((2k+1)/(2l+1)))(y−1/(2k+1)) for all y ∈ F2m .

Corollary 6.10 Let m be odd and gcd(k, m) = gcd(l, m) = 1. Then M(bk, bl) =
2(m+1)/2 if and only if the function x 7→ x(2k+1)/(2l+1) is maximal nonlinear.

The following corollary explains all entries in the table indicated by ⋆2, since
(23k + 1)/(2k + 1) = 22k − 2k + 1 is the Kasami exponent.
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Corollary 6.11 Let m ≡ ±1 mod 3 and gcd(l, m) = 1, then

cy(b3l, bl) ∈ {±2(m+1)/2, 0} for all y ∈ F2m.

Proof of Theorem 6.9. First, each crosscorrelation coefficient between two DD-
functions is written in terms of crosscorrelation coefficients between m-functions.
From Theorem 5.6 with Result 6.8 follows

ca(b
(s)
k , bl) =

∑

x,z∈F2m

W(tr(3))(x(2k+1)/3)·W(tr(3))(z(2l+1)/3a−1/3)·W(tr(t))(xz−1/t)

where t := (2k +1)/s(2l +1). This shows that the calculation of the crosscorrela-
tion between two DD-functions is related to the calculation of the crosscorrelation
between m-functions, when m is odd.

Let s = 1 and cb := W(tr(t))(b) where t := (2k + 1)/(2l + 1). We transform

22mca(bk, bl) =

=
∑

x,z∈F2m

(
∑

y∈F2m

(−1)tr(y3+x(2k+1)/3y)
)(

∑

w∈F2m

(−1)tr(w3+z(2l+1)/3a−1/3w)
)

·
(

∑

v∈F2m

(−1)tr(v(2k+1)/(2l+1)+xz−(2l+1)/(2k+1)v)

︸ ︷︷ ︸

=cb with x=bz(2l+1)/(2k+1)

)

=
∑

b,z∈F2m

(
∑

y∈F2m

(−1)tr(y3+b(2
k+1)/3z(2l+1)/3y)

)

·
(

∑

w∈F2m

(−1)tr(w3+z(2l+1)/3a−1/3w)
)

cb

=
∑

b,w∈F2m

(
∑

y∈F2m

(−1)tr(y3+w3)
)(

∑

z∈F2m

(−1)tr(z(b(2
k+1)/3y+a−1/3w))

︸ ︷︷ ︸

=

(
2m if w = a1/3yb(2k+1)/3

0 otherwise

)

cb

=
∑

b∈F2m

(
∑

y∈F2m

(−1)tr(y3+ay3b(2
k+1))

)

cb2
m

=
∑

b∈F2m

(
∑

y∈F2m

(−1)tr(y(1+ab(2
k+1)))

︸ ︷︷ ︸

=

(
2m if b = a−1/(2k+1)

0 otherwise

)

cb2
m

= 22mc
a−1/(2k+1).

We obtain ca(bk, bl) = W(tr((2k+1)/(2l+1)))(a−1/(2k+1)).

Also ⋆3 is explained. It is known that b2 describes the quadratic residue sequence
of period 31, and b2 = b

(7)
2 since 7 is a quadratic residue modulo 31. Thus, for
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m = 5 follows Sp(b
(7)
2 , b1) = Sp(b2, b1), which is three-valued with ±2(m+1)/2 and

0 by Corollary 6.11.

We would like to finish this section with some questions related to the table above
and our results.

Question 6.12 Do there exist more examples of Dillon-Dobbertin functions b
(s)
k

and bl with M(b
(s)
k , bl) = 2(m+1)/2 and the crosscorrelation spectrum is not three-

valued, except the case ◦1 in the table?

The ternary sequences (see Section 3.2) corresponding to the crosscorrelation be-
tween DD-functions, which are indicated by a star in the table above, are not
new. These ternary sequences are equivalent to the ternary sequences obtained
from the crosscorrelation between m-functions. For m = 7, there are two more in-
equivalent ternary sequences (the open cases), which are not equivalent to ternary
sequences corresponding to the crosscorrelation between m-functions.

Question 6.13 Do there exists other DD-functions with a three-valued crosscor-
relation spectrum and the corresponding ternary sequence is not equivalent to the
known ones?

Question 6.14 Let bk and b
(s)
l be DD-functions. If cy(b

(s)
k , bl) ∈ {±2(m+1)/2, 0}

for all y ∈ F2m, does this imply that x 7→ xs(2k+1)/(2l+1) is maximum nonlinear?

It is easy to see, that the converse is not true: Let m = 11, k = 2, l = 3 and
s = 9, then xs(2k+1)/(2l+1) = x5 is maximum nonlinear, but the crosscorrelation
spectrum Sp(b2, b

(9)
3 ) contains more than three values.

In the case s = 1 the answer to Question 6.14 is yes and we even have ”if and
only if”, see Corollary 6.10.

6.3 Crosscorrelation between GMW and Dillon-

Dobbertin Functions

In this section, the crosscorrelation between DD-functions and GMW-functions
is considered. We recall the following notations: Let bk : F2m → F2 be the Dillon-
Dobbertin function with parameter k, and let gs,e : F2m → F2 be the GMW-
function defined by gs,e(x) = trs/1(trm/s(x)e), where s|m and gcd(e, 2s − 1) = 1.

Note that the crosscorrelation function between b
(2id)
k and gs,2je is the same for

all i, j = 0, ..., m − 1 by definition.
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In the following let k 6= 1 and e 6= 1, because b1 and gs,1 are m-functions. For

m ≤ 15 odd, we compute all crosscorrelation spectra Sp(b
(d)
k , gs,e), but we get

neither M(b
(d)
k , gs,e) = 2(m+1)/2 nor a three-valued crosscorrelation spectrum. In

the next table we list all crosscorrelation spectra, which contain at most five
values.

m s k d e Sp(b
(d)
k , gs,e)

9 3 2 1 3 {−32, 0, 32, 64}
9 3 2 5 3 {−64,−32, 0, 32} ⋆
9 3 4 1 3 {−32, 0, 32, 64}
9 3 4 17 3 {−64,−32, 0, 32} ⋆
15 3 2 5 3 {−512,−256, 0, 256, 512} ⋆
15 3 4 17 3 {−512,−256, 0, 256, 512} ⋆
15 3 7 129 3 {−512,−256, 0, 256, 512} ⋆
15 5 4 1 3 {−512,−256, 0, 256, 512}
15 5 4 1 11 {−512,−256, 0, 256, 512}
15 5 4 17 3 {−1024,−256, 0, 256} ⋆

For the cases indicated by a star we can control the maximum crosscorrelation
coefficient. Therefore, we write the crosscorrelation between b

(d)
k and gs,e in terms

of Walsh coefficients of m-functions and GMW-functions.

Theorem 6.15 Let m = rs be odd, gcd(k, m) = gcd(d, 2m − 1) = 1. Then

ca(b
(d)
k , gs,e) =

1

2m

∑

x∈F2m

W(tr
(3)
m/1)(x

2k+1
3 ) · W(g

( 2k+1
d

)
s,e )(a

− d

2k+1 x).

for all a ∈ F ∗
2m.

Proof. We use formula (5.2) with the perfect function tr
( d

2k+1
)

m/1 and get

ca(b
(d)
k , gs,e) = 1

2m

∑

x∈F2m

cx(b
(d)
k , tr

( d

2k+1
)

m/1 ) · ca−1x(gs,e, tr
( d

2k+1
)

m/1 )

= 1
2m

∑

x∈F2m

cx(b
(2k+1)
k , trm/1) · c

a
− d

2k+1 x
(g

( 2k+1
d

)
s,e , trm/1)

= 1
2m

∑

x∈F2m

W(b
(2k+1)
k )(x) · W(g

( 2k+1
d

)
s,e )(a

− d

2k+1 x).

Applying Result 6.8 completes the proof of Theorem 6.15.

Thus, the crosscorrelation function between a DD-function with a GMW-function
is related to the crosscorrelation between m-functions and GMW-functions with
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m-functions. It is proved in [1] that the calculation of the crosscorrelation be-
tween GMW-functions with m-functions can be reduced to the crosscorrelation
between m-functions. Thus, the crosscorrelation between DD-functions with
GMW-functions is related to the crosscorrelation between m-functions.

In some cases, we can write the crosscorrelation of GMW-functions with DD-
functions in terms of the crosscorrelation between m-functions. Therefore, the
next proposition is of interest.

Proposition 6.16 (Gordon, Mills and Welch [11]) Let m = rs. Then

W(gs,e)(y) =

{

2m−sW(tr
(e)
s/1)(y) if y ∈ F2s

0 otherwise.

Proof. In general we have: Let f and g be perfect functions with f(0) = g(0) = 0
and let A and B their supports in F ∗

2m , then |A| = |B| = 2m−1. By Proposition
1.2 we have for all crosscorrelation coefficients that cy(f, g)− 1 = n− 4(k−λy−1)
holds for all y ∈ F ∗

2m , where n = 2m − 1 and k = 2m−1. Thus

cy(f, g) = 2m − 4(2m−1 − λy−1),

where λy is defined by AB(−1) =
∑

y∈F
∗
2m

λyy.

Let D := { x ∈ F ∗
2m | trm/s(x) = 1} and E := { y ∈ F ∗

2s | trs/1(y) = 1}. Then D
is the relative Singer difference set in F ∗

2m with the forbidden subgroup F ∗
2s and

E is the Singer difference set in F ∗
2s . Note that the sets DE(d) with gcd(d, 2s −

1) = 1 are Singer type difference sets in F ∗
2m , see Section 2.2. Furthermore, DE

correspondent to trm/1 and DE(1/e) to gs,e.

Let E(1/e)E(−1) =
∑

y∈F ∗
2s

µyy, then

(DE(1/e))(DE)(−1) = DD(−1)E(1/e)E(−1)

(1.12)
= (2m−s + 2m−2s

∑

x∈F
∗
2m\F

∗
2s

x)(
∑

y∈F
∗
2s

µyy)

= 2m−s(
∑

y∈F
∗
2s

µyy) + 2m−2s
∑

x∈F
∗
2m\F

∗
2s

∑

y∈F
∗
2s

xµyy.

If x ∈ F ∗
2m\F ∗

2s and y ∈ F ∗
2s, then xy ∈ F ∗

2m\F ∗
2s. Now, let z ∈ F ∗

2m\F ∗
2s . For any

y ∈ F ∗
2s exists one element x ∈ F ∗

2m\F ∗
2s such that yx = z. Thus

∑

x∈F
∗
2m\F

∗
2s

∑

y∈F
∗
2s

xµyy =
∑

z∈F
∗
2m\F

∗
2s

z
∑

y∈F
∗
2s

µy.
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The sum on the right hand side is the number of difference pairs (y, y′) with
y, y′ ∈ E, i.e.

∑

y∈F
∗
2s

µy = 2s−1 · 2s−1. Finely we get

(DE(1/e))(DE)(−1) = 2m−s(
∑

y∈F
∗
2s

µyy) + 2m−2s · (2s−1)2
∑

z∈F
∗
2m\F

∗
2s

z

= 2m−s(
∑

y∈F
∗
2s

µyy) + 2m−2
∑

z∈F
∗
2m\F

∗
2s

z.

Let (DE(1/e))(DE)(−1) =
∑

x∈F ∗
2m

λxx. For the crosscorrelation coefficients fol-

lows

cy(gs,e, trm/1) = 2m − 4(2m−1 − λy−1)

=

{
2m − 4(2m−1 − 2m−sµy−1) if y ∈ F ∗

2s

2m − 4(2m−1 − 2m−2) otherwise

=

{
2m−s(2s − 4(2s−1 − µy−1)) if y ∈ F ∗

2s

0 otherwise

=

{

2m−scy(tr
(e)
s/1, trs/1) if y ∈ F ∗

2s

0 otherwise

for all y ∈ F ∗
2m . Since W(f)(y) = cy(f, tr) and W(gs,e)(0) = 0 = W(tr

(e)
s/1)(0)

Proposition 6.16 is proved.

In Theorem 6.15, we choose d = 2k + 1. Then, by Proposition 6.16, we obtain

ca(b
(2k+1)
k , gs,e) = 1

2m

∑

x∈F2m

W(tr
(3)
m/1)((ax)

2k+1
3 )W(gs,e)(x)

= 1
2s

∑

x∈F2s

W(tr
(3)
m/1)((ax)

2k+1
3 )W(tr

(e)
s/1)(x). (6.8)

Now Theorem 6.15 is strengthened for the case d = 2k + 1.

Theorem 6.17 Let m = rs be odd and k be an integer with gcd(k, m) = 1 and
2k + 1 ≡ 2i · 3 mod 2s − 1 for some i. Then

ca(b
(2k+1)
k , gs,e) = c

a
2k+1

3
(tr

(3)
m/1, gs,e)

for all a ∈ F2m.

Proof. Note, that x
2k+1

3 = x2i
for all x ∈ F2s, since 2k +1 ≡ 2i · 3 mod 2s − 1. We

transform (6.8) and we obtain
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ca(b
(2k+1)
k , gs,e)

= 1
2s

∑

x∈F2s

(
∑

y∈F2m

(−1)trm/1(y3)+trm/1(a
2k+1

3 x2i
y)

)

·
(

∑

z∈F2s

(−1)trs/1(ze)+trs/1(xz)
)

= 1
2s

∑

y,z∈F2s

(−1)trm/1(y3)+trs/1(ze) · ∑

x∈F2s

(−1)trm/1(a2−i 2k+1
3 xy2−i

)+trs/1(xz)

︸ ︷︷ ︸

=

8><>: 2s if trm/s(a
2k+1

3 y)2−i
= z

0 otherwise.

=
∑

x∈F2m

(−1)trm/1(x3)+trs/1(trm/s(a
2k+1

3 x)2
−ie).

This proves Theorem 6.17, since gs,e ≡ gs,2−ie.

In general, if 2k + 1 ≡ 2i · 3 mod 2s − 1 for some i, then the crosscorrelation
spectrum contains many values. But an upper bound for the maximum crosscor-
relation coefficient (in absolute value) can be calculated:

Theorem 6.18 Let m = rs be odd and k be an integer with gcd(k, m) = 1. Let
d and e be integers such that xd is a maximum nonlinear function on F2m and ye

is maximum nonlinear on F2s. Then

M(tr
(d)
m/1, gs,e) ≤ 2

m+s
2 .

Proof. We use formula (5.2) with g = trm/1 and then apply Proposition 6.16. We
get

ca(tr
(d)
m/1, gs,e) = 2−m

∑

x∈F2m

W(tr
(d)
m/1)(a

−1x) · W(gs,e)(x)

= 2−s
∑

y∈F2s

W(tr
(d)
m/1)(a

−1y) · W(tr
(e)
s/1)(y)

Since ye is maximum nonlinear, we have |{y ∈ F2s | W(tr
(e)
s/1)(y) 6= 0}| = 2s−1. We

have W(tr(d))(y) ∈ {0,±2
m+1

2 } for all y ∈ F2m , since xd is maximum nonlinear on

F2m . We obtain |ca(tr
(d)
m/1, gs,e)| ≤ 2−s · 2m+1

2 · 2 s+1
2 · 2s−1 = 2

m+s
2 for all a ∈ F2m .

The next corollary shows the maximum crosscorrelation coefficient (in absolute
value) for the cases in the table above, which are indicated by a star. If d ≡
2ie mod 2s − 1 for some i and d = 2k + 1 with gcd(k, m) = 1, then the upper
bound is attained:

Corollary 6.19 Let m = rs be odd and gcd(k, m) = 1. Then

M(tr
(2k+1)
m/1 , gs,2k+1) = 2

m+s
2 .
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Proof. For the Gold exponent we have

W(tr
(2k+1)
m/1 )(y) == 2

m−s
2 (−1)

s2+m2−2
8 W(tr

(2k+1)
s/1 )(y)

for all y ∈ F2s , which follows immediately from the fact that

W(tr
(2k+1)
m/1 )(y) =

{

2
m+1

2 (−1)j if y = z2k
+ z2−k

+ 1
0 if trm/1(y) = 0,

where j := m2−1
8

+ trm/1(z
2k+1 + z), see [5]. Thus, for a = 1 we get

|c1(tr
(2k+1)
m/1 , gs,2k+1)| = 2

m−3s
2

∑

y∈F2s

(

W(tr
(2k+1)
s/1 )(y)

)2

= 2
m+s

2 .

Corollary 6.20 Let m = rs be odd, let k be an integer with gcd(k, m) = 1 and
2k + 1 ≡ 2i · 3 mod 2s − 1 for some i and e = 3. Then

M(b
(2k+1)
k , gs,3) = 2

m+s
2 .

Proof. This follows from Theorem 6.17 together with Corollary 6.19.

We would like to finish this section with some questions.

For m ≤ 15 odd, we compute all crosscorrelation spectra Sp(b
(d)
k , gs,e) with k 6=

1 and e 6= 1, but we neither get M(b
(d)
k , gs,e) = 2(m+1)/2 nor a three-valued

crosscorrelation spectrum.

Question 6.21 Does there exist a DD-function bk, k 6= 1, and a GMW-function
gs,e, e 6= 1, such that M(b

(d)
k , gs,e) = 2(m+1)/2?

Question 6.22 Let m odd. If there exists a DD-function bk, k 6= 1, and a GMW-
function gs,e, e 6= 1, such that their crosscorrelation spectrum is three-valued?

In the case of Corollary 6.20, the crosscorrelation spectrum consists of just a few
values, since m is small. For m = 21 many different values are obtained. It is
an interesting question to ask, for which numbers m and s the crosscorrelation
spectrum contains only a few values.



Chapter 7

Two Notes on Power Functions

There are only four classes of maximum nonlinear power functions known, see
Proposition 6.5. The two most important classes are the Gold power mappings
and the Kasami power mappings.

In this chapter, some new properties of the Gold and Kasami power mappings are
considered. In the first section, some similarities between these two parameters
are listed. We prove a new property of the Kasami parameter. In the second
section a characterisation of the Gold power mappings in terms of their distance
to characteristic functions of subspaces of codimension 1 and 2 in F2m is given.

Note that gcd(d, 2m − 1) = 1 for d = 2k + 1 (Gold parameter) or d = 22k −
2k + 1 (Kasami parameter), if gcd(k, m) = s and m/s is odd. It is gcd(2k, m) =
gcd(k, m) for m/s odd. We get

gcd(2k + 1, 2m − 1) = gcd((2k+1)(2k−1),2m−1)
gcd(2k−1,2m−1)

= gcd(22k−1,2m−1)
gcd(2k−1,2m−1)

= 2gcd(2k,m)−1
2gcd(k,m)−1

= 1,

since gcd(2k + 1, 2k − 1) = 1. In the Kasami case, 22k − 2k + 1 = 23k+1
2k+1

and with

the equation above we have gcd(23k+1
2k+1

, 2m − 1) = gcd(23k + 1, 2m − 1) and

gcd(23k + 1, 2m − 1) = gcd(26k−1,2m−1)
gcd(23k−1,2m−1)

= 2gcd(6k,m)−1
2gcd(3k,m)−1

= 1.

7.1 A New Property of the Kasami Power Map-

pings

The work presented in this section is motivated by the observation that the
function F2m to F2m defined by xd + (x + 1)d + a for some a ∈ F2m can be used
to construct difference sets. A necessary condition to do so is that the function

67
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ϕd : F2m → F2m with

ϕd(x) := xd + (x + 1)d

is a 2s-to-1 mapping. If s = 1, then xd must be APN. If gcd(k, m) = 1, then the
Gold and the Kasami power functions are APN.

Lemma 7.1 Let the function ϕd be a c-to-1 mapping. Then the function ϕd′ is
also a c-to-1 mapping for d′ ≡ 2id mod 2m − 1 and if gcd(d, 2m − 1) = 1 for
d′ ≡ 1/d mod 2m − 1.

Proof. The case d′ ≡ 2id mod 2m − 1 is clear, since ϕ2id(x) = ϕd(x
2i

). In the
case d′ ≡ 1/d mod 2m − 1, we have for fix y ∈ F

∗
2m with xd + (x + 1)d = y, that

x′1/d + (x′ + 1)1/d = y−1/d holds for x′ := y−1xd, because

(y−1xd)1/d + ((y−1xd) + 1)1/d = y−1/d / · y1/d

x + (xd + y)1/d = 1 / + x
(xd + y)1/d = x + 1 / d̂

xd + y = (x + 1)d.

So far, up to equivalence there is only one value d known, where the function ϕd

is a 2s-to-1 mapping with s > 1:

Proposition 7.2 Let s = gcd(k, m). The function ϕ2k+1 is a 2s-to-1 mapping.

Proof. This follows from the fact that ϕ2k+1(x) = x2k
+x+1 is an affine function

and the dimension of the kernel of the function x2k
+ x is s, see [32].

For the Kasami exponent d = 22k − 2k + 1, it is only known that 1 has exactly
2s preimages under ϕd, if s = gcd(k, m), see [16]. In this section it is shown
that ϕd is also a 2s-to-1 mapping if d is the Kasami parameter d = 22k − 2k + 1
with gcd(k, m) = s and m/s odd. We hope that this observation can be used to
construct more difference sets.

The function ϕd can be used to construct difference sets: We define the set

Da,d := { ϕd(x) + a | x ∈ F2m , ϕd(x) 6= a}

for a ∈ F2m .

Result 7.3 The set Da,d is an (2m − 1, 2m−1, 2m−2)-difference set in F ∗
2m for
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1. d = 2k + 1 or d = 1/(2k + 1) with gcd(k, m) = 1 and m odd and a = 0. It
is easy to show, that in this cases Da,d is the classical Singer difference set.

2. d = 22k − 2k + 1 with m = 3k ± 1 and a = 0. This was conjectured by No,
Chung and Yun in [30] and proved by Dillon and Dobbertin in [4, 5].

3. d = 22k − 2k + 1 with gcd(k, m) = 1 and a = 1. This was shown by Dillon
and Dobbertin in [5].

This result shows that the Gold and the Kasami exponent may give difference
sets in the case gcd(k, m) = 1. Now let us look at the case gcd(k, m) > 1.

It may possible to construct relative difference sets. Relative difference sets are
interesting because they can be used to construct difference sets using the Gordon-
Mills-Welch method [34], see Chapter 2.

Proposition 7.4 Let gcd(k, m) = s and m/s be odd and a = 0. Then the set
Da,d is an (2m−1

2s−1
, 2s−1, 2m−s, 0, 2m−2s)-relative difference set in F ∗

2m for d = 2k+1

and d = 1/(2k + 1), respectively.

Proof. The set D0,2k+1 is a relative Singer difference set, since x ∈ D0,2k+1 if and

only if trm/s(x) = 1 for m/s odd, because trm/s(x
2k

+ x + 1) = trm/s(1) = 1.

Furthermore, D0,1/d = D
(−1/d)
0,d , because y ∈ D0,d if and only if y−1/d ∈ D0,1/d,

which follows from the proof of Lemma 7.1.

We have tried to construct such relative difference sets in a similar way. A
necessary condition is that we have a 2s-to-1 mapping. The function ϕd with d
is the Kasami parameter has this property.

Theorem 7.5 Let gcd(k, m) = s and m/s be odd. Then the function ϕd : F2m →
F2m with ϕd(x) = xd + (x + 1)d and d = 22k − 2k + 1 is a 2s-to-1 mapping.

To prove Theorem 7.5, the following two propositions are needed. The next
proposition also shows another property that is shared by the Gold and Kasami
exponents.

Proposition 7.6 [15] Let s = gcd(m, k) and m/s be odd. Let d = 2k + 1 or
d = 22k − 2k + 1. Then W(tr(d)) takes on the following three values:

value multiplicity

2(m+s)/2 2m−s−1 + 2(m−s−2)/2

0 2m − 2m−s

−2(m+s)/2 2m−s−1 − 2(m−s−2)/2.
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If |{x ∈ F2m |ϕd(x) = y}| ≥ c for all y ∈ {ϕd(x)|x ∈ F2m}, then ϕd is called at
least a c-to-1 mapping.

Proposition 7.7 Let d be an integer such that the function ϕd is at least a 2s-
to-1 mapping and the Walsh transform of tr(d) takes just the values ±2(m+s)/2

and 0. Then the function ϕd is a 2s-to-1 mapping.

Note that in the case m odd and d = 22k − 2k + 1 is the Kasami parameter with
gcd(k, m) = 1, the function ϕd is a 2-to-1 mapping, which follows immediately
from Proposition 7.7, since any function ϕd is trivially by definition at least a 2-
to-1 mapping, and x22k−2k+1 is maximum nonlinear. For the case gcd(k, m) > 1,
it is unapparent that the function ϕ22k−2k+1 is at least a 2s-to-1 mapping.

Proof. Since W(tr(d))(x) = cx(tr
(d), tr), we have by (6.6) that

∑

x∈F2m

(W(tr(d))(x))4 = 22m|{ (y, z) ∈ F2m×F2m | ϕd(y) = ϕd(z) }|. (7.1)

From Proposition 7.6 we get (W(tr(d))(x))2 = 2m+s exactly 2m−s times and
(W(tr(d))(x))2 = 0 otherwise. Therefore, for the left hand side of (7.1) we calcu-
late

∑

x∈F2m
(W(tr(d))(x))4 = (2m+s)2 · 2m−s = 23m+s. For the right hand side of

(7.1) we have |{(y, z)|ϕd(y) = ϕd(z)}| ≥ 2m · 2s, since ϕd maps at least 2s to 1.
Therefore, ϕd must be a 2s-to-1 mapping.

Proof of Theorem 7.5. We define φd : F2m → F2m by

φd(x) :=
1 + xd

(1 + x)d

for all x ∈ F2m\{1} and φd(1) := 1. If the mapping φd is at least a 2s-to-1
mapping, then the mapping ϕd is also at least a 2s-to-1 mapping, since

ϕd(0) = φd(1) and ϕd(x) = φd(x
−1 + 1) for all x ∈ F

∗
2m , (7.2)

because φd(x
−1 +1) = 1+(x−1+1)d

(1+x−1+1)d = 1+(x−1+1)d

x−d = xd +xd(x−1 +1)d = xd +(1+x)d

and ϕd(0) = 1 = φd(1).

We show that the mapping φ22k−2k+1 is at least a 2s-to-1 mapping. Let α ∈ F2s ,
then φ22k−2k+1(α) = 1, since α2s

= α and therefore α22k−2k+1 = α. Now let
α ∈ F2m\F2s . We have

(

φ22k−2k+1(x
2k+1)

)2k+1

=
(1 + x23k+1)2k+1

(1 + x2k+1)23k+1
. (7.3)

Let l be an integer with s| gcd(l, m). Note that the function ϕ2l+1 is at least a
2s-to-1 mapping, since ϕ2l+1(x) + 1 is linear and the dimension of the kernel of
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ϕ2l+1 is divided by 2s, i.e. F2s is a subset of the kernel of ϕ2l+1. Thus, for x ∈ F2m

all elements x + u, u ∈ F2s , have the same image under ϕ2l+1.

Now, let l = 3k. We define

v := ϕ2k+1(α) = α2k

+ α+ 1 and w := ϕ23k+1(α) = α23k

+ α+ 1.

With our considerations above we get that for fixed α all elements α+u, u ∈ F2s ,
have the same image under ϕ2k+1 and ϕ23k+1. We express v and w by the function
φd. Since (7.2) holds, we get

v = φ2k+1(β) =
1 + β2k+1

(1 + β)2k+1
and w = φ23k+1(β) =

1 + β23k+1

(1 + β)23k+1
(7.4)

for all β := (α + u)−1 + 1, u ∈ F2s. We transform (7.4) and obtain

(1 + β23k+1)2k+1 = (w(1 + β)23k+1)2k+1

= w2k+1((1 + β)2k+1)23k+1

= w2k+1(v−1(1 + β2k+1))23k+1

= w2k+1v−(23k+1)(1 + β2k+1)23k+1.

We rewrite this equation and get

(1 + β23k+1)2k+1

(1 + β2k+1)23k+1
= w2k+1v−(23k+1).

Therefore, by (7.3) we obtain

φ22k−2k+1(γ) = wv−d

for all γ = ((α + u)−1 + 1)1/(2k+1), u ∈ F2s , since m/s is odd and therefore
gcd(d, 2m − 1) = 1. We have shown that the function φ22k−2k+1 is at least a
2s-to-1 mapping.

Therefore, the function ϕ22k−2k+1 is also at least a 2s-to-1 mapping. Proposition
7.6 together with Proposition 7.7 completes this proof.

We have tried to construct relative difference sets of Singer type by using Da,d,
where d is the Kasami parameter. Computer calculations indicate that Da,d is
not a relative difference set in the cases a = 0 and a = 1.

Question 7.8 Let d = 22k − 2k + 1 and gcd(k, m) > 1. Does there exist a ∈ F2m

such that Da,d is a relative difference set in F ∗
2m?
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7.2 A New Characterisation of the Gold Power

Mappings

In this section, a characterisation of the Gold power mappings within the class
of maximum nonlinear power mappings is given. The Walsh coefficients are
interpreted in terms of the intersection between certain sets. Let

Dd := {x ∈ F2m |tr(xd) = 1}
H i(α) := {x ∈ F2m |tr(αx) = i}

for i = 0, 1. If α 6= 0, the sets H0(α) and H1(α) are (affine) subspaces of
codimension 1 in F2m (hyperplanes), i.e. they have size 2m−1. We simply write
Wd for W(tr(d)). For α 6= 0, we have

Wd(α) = 2m − 4|Dd ∩ H0(α)| and −Wd(α) = 2m − 4|Dd ∩ H1(α)|, (7.5)

see Section 1.3. Since |Dd| = 2m−1, we have Wd(0) = 0. The Walsh spectrum of
a maximum nonlinear function is {0,±2(m+1)/2}, see Proposition 6.2. Therefore,
a power mapping xd with gcd(d, 2m − 1) = 1 is maximum nonlinear if and only if

|Dd ∩ H0(α)|, |Dd ∩ H1(α)| ∈ {2m−2, 2m−2 ± 2
m−3

2 }

for all α ∈ F∗
2m . This shows that maximum nonlinear power mappings xd are

characterised by the intersection sizes between hyperplanes and Dd.

In this section, the intersection sizes between Dd and (affine) subspaces of codi-
mension 2 are considered. The subspaces are defined by

H i,j(α, β) := {x ∈ F2m | tr(αx) = i, tr(βx) = j}.

The Gold power mappings can be characterised in terms of these intersection
sizes:

Theorem 7.9 Let m be odd and let xd be a maximum nonlinear power function
on F2m. Then d = 2k + 1 for some integer k with gcd(k, m) = 1 if and only if

|H i,j(α, β) ∩ Dd| ∈ {2m−3, 2m−3 ± 2
m−3

2 } (7.6)

for all α, β ∈ F
∗
2m, α 6= β, and i, j ∈ F2.

The set Dd has some interesting properties: It is the set of 2m−1 points in the
m-dimensional vector space F

m
2 over F2. If d is a Gold exponent, this set is

a non-degenerate quadric, see [8] and [20] for more background on quadrics in
vector spaces over finite fields. If m is odd, there is up to equivalence only one
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non-degenerate quadric in F2m , and the intersection between this quadric and
subspaces of codimension 2 must be the three values described in (7.6).

It is natural to ask whether there are values d such that Dd is not a non-degenerate
quadric but has the same intersection sizes with hyperplanes. These objects
are called by geometers quasi-quadrics. Many examples of quasi-quadrics are
known, see [3]. Note that all maximum nonlinear power mappings yield quasi-
quadrics. We asked the question whether the quasi-quadrics constructed from
maximum nonlinear functions may also behave like quadrics if the intersection
sizes with subspaces of codimension 2 are considered. The answer, given by
Theorem 7.9, is no.

An interesting corollary is the following:

Corollary 7.10 The only maximum nonlinear power mappings xd on F2m such
that Dd is a quadric are the Gold power mappings.

Before we are going to prove Theorem 7.9, let us mention the following Proposi-
tion, which may be of interest in its own:

Proposition 7.11 Let m be odd and xd be a maximum nonlinear power mapping
on F2m with gcd(d, m) = 1. Then

| H i,j(α, β) ∩ Dd | ∈ {2m−3 + h · 2m−5
2 | − 3 ≤ h ≤ 3}, (7.7)

where α, β ∈ F∗
2m, α 6= β.

Proof. We define

Si,j(α, β) = |H i,j(α, β) ∩ Dd| and Si(α) = |H i(α) ∩ Dd|.

Assume α 6= β, α, β ∈ F∗
2m . Walsh transform can be express by the intersection

sizes Si(α) and Si,j(α, β). The picture shows that the Walsh transform (in ab-
solute value) is the difference between the number of elements contained in the
white set and the number of elements in the brindled set. We obtain

|Wd(α + β)| = | ∑

x∈F2m

(−1)tr(αx+βx+xd)|

Dd

H
j

H
i

H
i,j

= | ∑

x∈F2m

(−1)tr(αx+i+βx+j+xd)|

= 2m − 2((2m−1 − Si(α) − Sj(β) + Si,j(α, β))
+(2m−1 − Si(α) − 2m−2 + Si,j(α, β))
+(2m−1 − Sj(β) − 2m−2 + Si,j(α, β))
+Si,j(α, β))

= −2m + 4Si(α) + 4Sj(β) − 8Si,j(α, β).
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Because of (7.5), we have |Wd(α + β)| = 2m ± Wd(α) ± Wd(β) − 8Si,j(α, β)),
hence

Si,j(α, β) = 2m−3 +
1

8
(±Wd(α + β) ±Wd(α) ±Wd(β)). (7.8)

This shows that there are only the seven possible values for Si,j(α, β) stated in
the Proposition.

The proof of Theorem 7.9 reduces to the proof of an interesting property of the
trace function:

Theorem 7.12 Let m be odd and d ∈ {3, ..., 2m − 2} be odd. Then

tr(xd + (x + 1)d + 1) = 0 (7.9)

for all x ∈ F2m, if and only if d = 2k + 1 for some k ∈ N.

At the same time, Theorem 7.12 was also proved in [27] and later a more general
result, which contains Theorem 7.12, was proved in [25].

Let m be odd. If d satisfies (7.9) and xd is APN, then {xd + (x + 1)d|x ∈
F2m} = {x|tr(x) = 1} is an affine hyperplane, since ”⊇” follows from |{xd +
(x + 1)d|x ∈ F2m}| = 2m−1 = |{x|tr(x) = 1}|. A function ϕ : F2m → F2m with
{ϕ(x) + ϕ(x + a)|x ∈ F2m} is an hyperplane or a complement of a hyperplane
for all a ∈ F ∗

2m is called crooked function. Kyureghyan [26] shows that the only
crooked power functions are the Gold power mappings.

The proof of Theorem 7.12 is postponed. First it is shown that it is sufficient to
prove Theorem 7.12 in order to check Theorem 7.9.

Let xd be a maximum nonlinear power function on F2m , hence the Walsh spectrum
{Wd(α) |α ∈ F2m} contains only the three values ±2

m+1
2 and 0. We assume that

(7.6) holds. The function b : F2m → F2 is defined as follows

b(α) =

{
1 if Wd(α) 6= 0
0 otherwise.

If only one value or all values Wd(α), Wd(β) and Wd(α + β) in equation (7.8)

are 6= 0, it is impossible that Si,j(α, β) ∈ {2m−3, 2m−3 ± 2
m−3

2 }. Therefore, b(α) +
b(β) = b(α + β), hence b is linear and then

b(x) = tr(γx) (= tr[γ](x))

for some γ ∈ F
∗
2m . If we think of tr(x) as an element in C, we obtain

W(b)(ω) = W(tr[γ])(ω) =
∑

z∈F2m

tr(γz) · (−1)tr(ωz)
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=
∑

z∈F2m ,tr(γz)=1

(−1)tr(ωz)

=







−2m−1 if ω = γ
2m−1 if ω = 0

0 otherwise.
(7.10)

On the other hand, the function b satisfies

b(x) = 1
2m+1 (Wd(x))2.

We compute the Walsh transform again:

W(b)(ω) =
∑

z∈F2m

1
2m+1 (Wd(z))2 (−1)tr(ωz)

= 1
2m+1

∑

z∈F2m

(
∑

x,y∈F2m

(−1)tr(zx+xd+zy+yd)
)

(−1)tr(zω)

= 1
2m+1

∑

x,y∈F2m

(−1)tr(xd+yd)
∑

z∈F2m

(−1)tr(z(x+y+ω))

︸ ︷︷ ︸

=

(
2m if y = ω + x

0 otherwise

= 1
2

∑

x∈F2m

(−1)tr(xd+(x+ω)d).

We compare this with (7.10) and obtain

∑

x∈F2m

(−1)tr(xd+(x+ω)d) =







−2m if ω = γ
2m if ω = 0
0 otherwise.

(7.11)

The case ω = γ implies

tr(xd + (x + γ)d) = 1 for all x ∈ F2m . (7.12)

We can show that necessarily γ = 1:

tr((x + γ)d)
(7.12)
= tr(xd)+1 = tr(x2ld)+1

(7.12)
= tr((x2l

+ γ)d) = tr((x + γ2m−l
)d)

for all l = 0, ..., m − 1 and x ∈ F2m . Thus, we have
∑

x∈F2m
(−1)tr(xd+(x+γ2l

)d) =
∑

x∈F2m
(−1)tr(xd+(x+γ)d) = −2m for all l. From the uniqueness of γ in (7.11) we

get γ2l
= γ for all l = 0, ..., m − 1, and therefore γ = 1.

Since m is odd we have tr(1) = 1. Therefore

tr(xd + (x + 1)d + 1) = 0 (7.13)
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for all x ∈ F2m . Theorem 7.12 implies that d = 2k + 1 for some k ∈ N. It is
well known that xd is maximum nonlinear only in the case gcd(k, m) = 1, see
Proposition 7.6. Therefore, it is enough to prove Theorem 7.12.

Proof of Theorem 7.12. Let d be an integer. Let d =
∑n

i=0 di2
i be the binary

representation of d, then we denote the vector (dn, . . . , d0) by d and the binary
weight of d by wH(d). In Theorem 7.12, all integers d that occur are less then
2m − 1, i.e. d is a vector of length at most m. By adding 0’s, if necessary, we
assume that d is always a vector of length m. Let d′ ≡ 2id mod (2m − 1), then

d′ = d
[i]

, where the indices are computed modulo m, i.e. we view at d̄ as a “cyclic”
vector, in particular wH(d′) = wH(d).

Two polynomials p, q : F2m → F2m are defined by

p(x) := xd + (x + 1)d + 1 and q(x) := tr(p(x)) =
m−1∑

i=0

(p(x))2i
.

Obviously, q(0) = 0, therefore we have to show that

q(α) = 0 for all α ∈ F
∗
2m . (7.14)

Let T = {t1, . . . , tn} denote the set of exponents which occur in p. The multiset
T (t) is defined by

T (t) = { 0 ≤ s ≤ 2m − 2 | s[i] = t, i = 0, . . . , m − 1}.

We obtain

q(x) =
∑

t∈T

∑

s∈T (t)

xs.

In order to prove (7.14), one must show that every exponent occurs an even
number of times in q(x).

If d satisfies (7.13), then each d′ ∈ { 2id mod (2m − 1) | i = 0, ..., m − 1 } also
satisfies (7.13). We choose the smallest odd d′, which satisfies (7.13), and from
now on, we denote this element by d. Since d ≥ 3 is odd, we have wH(d) 6= 1.
If d = 2k + 1 is a Gold exponent, then wH(d) = 2 and q(x) satisfies (7.14) (note
that p(x) = x2k

+ x in this case). Hence we may assume wH(d) ≥ 3.

If wH(d) = 3, then d = 2k + 2l + 1 and k > l > 0. For the polynomials p and q
we obtain

p(x) = x2k+2l

+ x2k+1 + x2l+1 + x2k

+ x2l

+ x

q(x) =

m−1∑

i=0

(

(x2k+2l

)2i

+ (x2k+1)2i

+ (x2l+1)2i

+ x2i
)

.
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In p(x), the exponents of binary weight 1 (and of binary weight 2) occur three
times, therefore we have an odd number of exponents of weight 1 (and of binary
weight 2) in q(x), and therefore q(x) cannot satisfy (7.14). This argument can be
generalised: If z = wH(d) then there are precisely

(
z
i

)
exponents t in p(x) with

wH(t) = i, 1 ≤ t ≤ d − 1. Note that xd and 1 do not occur in p(x). If z is not
a power of 2, at least one of these binomial coefficients is odd (Lucas Theorem).
Therefore, we only have to consider the case z = 2n, n > 1.

Let v be a binary vector of length m. A subvector w = (wm−1, ..., w0) of v is a
binary vector w 6= 0, v of length m such that vi = 0 implies wi = 0. The set of
all subvectors of d is the set of the binary vectors of the exponents that occur in
p(x), since the polynomials are defined over F2m .

In order to show that (7.14) holds, we have to prove that the cardinality of the
set

S(s) := {s[t] | s[t] subvector of d, t = 0, ..., m − 1}

is even for all s ∈ T . Note, that S(s) is not a multiset. The number |S(s)| is the
number of terms in the polynomial p, which are of the form x2ts.

We define a gap to be a substring v of the form 0...0. The number s of 0’s in this
substring is called the length of the gap, similarly for runs which are substrings
of the form 1...1. If v = (vivi+1 . . . vj) is a substring, we say that the indices
i, . . . , j are contained in v.

By the following algorithm we construct a subvector w of d̄ such that |S(w)| is
odd. Therefore q does not satisfy (7.14).

Algorithm

Input: binary vector d = (dm−1, ..., d0) of weight 2n, n ∈ N, n ≥ 2
Output: subvector w of d̄ such that |S(w)| is odd

(1) z := wH(d);
l := maximum length of a run in d̄;
s := multiplicity of a run of length l in d̄;
v := run of length l;
sold := m + 1; xold := 0;

(2) while (w is not defined) do
(3) y := (ym−1, ..., y0) with

yi =

{
1 if i is contained in a substring v and di is 1
0 otherwise.

(4) if z 6= l · s then w := y; end if;
(5) if z = l · s then

x := minimum length of a gap between two substrings v in y;
L := gap of length x;
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if s = 1 then
(6) if sold = m + 1 then w := d̄ − (0...010); end if;
(7) if sold 6= m + 1 then w := (0...0voldLoldvold); end if;

end if;
(8) if s = 2 then w := (0...01Lv); end if;
(9) if s > 2 then

sold := s; lold := l; xold := x; Lold := L; vold := v;
let v denote a substring of type (voldLvold...Lvold) in d̄

with maximum number of 1’s;
l := number of 1’s in v;
s := multiplicity of v in d̄;

end if;
end if;

end while;

The algorithm terminates if z 6= l · s or s ≤ 2. Note, if the case z 6= l · s does
not occur then there exists such an s, because 0 < s < sold in each step in the
algorithm.

Line (4): If z 6= l ·s, i.e. y 6= d̄ and w = y is a subvector of d̄. We have |S(w)| = 1,
because none of the cyclic shifts w[t] 6= w is a subvector of d̄. Suppose the vector
w[t] with w[t] 6= w is a subvector of d̄. Note, that w and w[t] have the same number
of 1. If w[t] 6= w, then there exists a 1 in d̄ and this 1 is in w[t] and not in w.
Because w[t] is a cyclic shift of w, this 1 is in a string v, therefore this 1 is in w.
This is a contradiction to the definition of w.

Line (5): If z = l · s, then l = 2l′ and s = 2s′. We denote the gaps between the
runs v by Lj , j = 1, ..., s. Then d̄ has the form

d̄ = (LsvLs−1v...L2vL1v).

The number of gaps is even. Since m is odd the number of 0’s are odd, and
therefore, the number of gaps with odd length and the number of gaps with even
length is odd. Thus, the maximum and minimum gap have different length. Note,
that by the choice of d odd, it follows that Ls is one of the maximum gaps and
has length > x, the minimum length of a gap.

Line (6): If z = l · s with s = 1 and sold = m + 1 then l ≥ 4 and d̄ = (0...01...1).
For w = d̄ − (0...010) we have |S(w)| = 1.

Line (7): If z = l · s with s = 1 and sold 6= m + 1, then sold ≥ 4. The vector d̄ has
the form

d̄ = (Lsv) = (Lsold
voldLvold...LvoldLvold),

where L is the gap of length xold. We obtain |S(w)| = sold − 1 is odd.
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Line (8): If s = 2, then d̄ = (L2vL1v). The gap L2 is longer than the gap L1. It
is easy to see |S(w)| = 1, since l ≥ 2.

Line (9): The new initialisation for the next while loop.

Example 7.13 We illustrate the algorithm with an example. Here we have m =
23 and d = 1 + 22 + 24 + 27 + 29 + 211 + 215 + 217.

Input: d̄ = (00000101000101010010101)
(1) z := 8; l := 1; s := 8; v := 1; sold := 24; xold := 0;
(3) y := d̄
(5) x := 1 ; L := 0;
(9) sold := 8; lold := 1; xold := 0; Lold := 0; vold := 1;

y = (00000101000101010010101)

l := 3; v := 10101; s := 2;
(3) y := (00000000000v00v);
(4) w := y;

Output: w := (00000000000101010010101)
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Conclusion

In this thesis, problems on the crosscorrelation between perfect sequences are
solved. A lower bound for the maximum crosscorrelation coefficient (in absolute
value) is given and some interesting properties on the dual sequences are shown.
Crosscorrelation spectra between perfect sequences of period 4m − 1, where m
is not a power of 2, and of period 2m − 1, where m is odd, are calculated, and
it is proven that certain series of perfect sequences have good crosscorrelation
property. For further research we give some questions in the respective sections.

On the crosscorrelation a new equivalence is defined, called extended Hadamard
equivalence. Extended Hadamard equivalence is a generalisation of the Hadamard
equivalence, which was developed to prove that certain sequences of period 2m−1
are perfect. Using extended Hadamard equivalence a method is explained to
construct sequences with prescribed autocorrelation. In this thesis, we only used
this method to search for perfect sequences, but it can also be used to construct
sequences which correspond to relative difference sets. For further work, it would
be interesting to look for such sequences in order to get new perfect sequences
using the Gordon-Mills-Welch method.
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Basic Symbol

N, Z, C natural numbers, integers, complex numbers,
Zn residue class ring modulo n,
gcd(., .) greatest common divisor,
< ., . > inner product,
〈.〉 generate a group,
a, b sequences,
w(.) difference between 0’s and 1’s, 25
wH(.) Hamming weight, 9
dH(., .) Hamming distance, 9
a[t], f [y] shift, 9, 13
a(d), f (d) decimation, 10, 13
ā complement, 10
ad dual sequence, 10
Ct() auto- resp. crosscorrelation, 12
ct(), c

′
t(), c

∗
t (), cx() auto- resp. crosscorrelation, 9, 11, 14, 26, 29

Sp(), Sp′(), Sp∗() auto- resp. crosscorrelation spectrum, 9, 11, 14, 26, 29
Fpm finite field with pm elements,
F ∗

pm multiplicative group of Fpm,
tr, trk·l/k trace function, 14
M(., .) maximal crosscorrelation coefficient, 32, 46
W(.),Wd Walsh transform, 15, 72
N (.) linearity, 54
supp(.) support, 12
seq(.) characteristic sequence, 12
S1, S2 ⊆ S sets, subsets,
S1 complement of S1 in S,
S1 ∪ S2 union of S1 and S2,
S1 ∪̇S2 disjoint union of S1 and S2,
S1 ∩ S1 intersection between S1 and S2,
S1 × S1 direct product of S1 and S2,
|S| cardinality of S,





Index

Sequences,
autocorrelation, 9, 12

modified, 26, 29
spectrum, 9

balanced, 10
binary complement, 10
crosscorrelation, 11, 12

modified, 26, 29
spectrum, 11

decimation, 10
dual sequence, 27
equivalent, 10
extended Hadamard equivalence, 36
fundamental vector, 9
generalised Parseval formula, 30
Hamming weight, 9
inverse formula, 29
multiplier, 11
perfect, 10
period, 9
realisation, 37
(cyclic) shift, 9
shift distinct, 11

Functions,
almost perfect nonlinear (APN), 56
autocorrelation, 14
crosscorrelation, 14
decimation, 13
Hadamard equivalent, 36
maximum nonlinear, 56
m-function, 21
perfect, 14
realisation, 48
shift, 13
trace function, 14

Walsh transform, 15

Sets, Groups and Fields,
complement, 13
cyclotomic class, 19
decimation, 13
difference set, 13

Paley type difference set, 16
Singer type difference set, 16
relative difference set, 13
(relative) Singer difference set, 23

translate, 12
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