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ABSTRACT 
 
Die Trocknung poröser Materialien spielt eine wichtige Rolle in vielen verschiedenen 
Bereichen der Industrie, und sie ist zugleich einer der kompliziertesten technischen 
Prozesse. Im Prinzip kann man die Trocknung poröser Stoffe auf zwei Weisen 
beschreiben, mit Kontinuums- oder diskreten Modellen. Der erste Ansatz basiert auf der 
Beschreibung des Systems als fiktives Kontinuum und bedient sich effektiver 
Transportkoeffizienten. Im diskreten Modellansatz wird das poröse Medium als 
Netzwerk aus Poren repräsentiert und die Transportvorgänge werden direkt auf der 
Porenebene beschrieben. 
 
Zur Entwicklung eines kontinuierlichen Trocknungsmodells kann die 
Volumenmittelungsmethode herangezogen werden, um makroskopische 
Transportgleichungen von grundlegenden mikroskopischen Gleichungen für die Gas-, 
Flüssig- und Feststoffphase abzuleiten. Es resultiert ein System aus 
Erhaltungsgleichungen für Masse, Impuls und Enthalpie, in welchen die gemittelten 
Zustandsvariablen (Feuchtegehalt, Temperatur und Gasdruck) sowie ein Satz von 
effektiven Parametern auftreten. Diese effektiven Parameter haben großen Einfluss auf 
das Trocknungsverhalten und müssen experimentell bestimmt werden oder aber mit 
großer Sorgfalt bezüglich der mikroskopischen Materialstruktur berechnet werden. Im 
Allgemeinen handelt es sich bei der Bestimmung dieser Parameter um ein offenes 
Problem, welches weiterer Forschung bedarf. Die Parameter sind im Einzelnen die 
Kapillardruckkurve, die Permeabilitäten, der effektive Diffusionskoeffizient und die 
effektive Wärmeleitfähigkeit. 
 
Als ersten Schritt, um Grundlagenwissen über den Zusammenhang zwischen 
Porenstruktur und Trocknungskinetik zu sammeln, wird das poröse Medium in dieser 
Arbeit durch ein Kapillarenbündel mit einer Radienverteilung repräsentiert, für welches 
die genannten effektiven Größen berechnet werden. In diesem Modell spielt die 
Porengrößenverteilung die Schlüsselrolle, um eine Verbindung zwischen Mikrostruktur 
und makroskopischem Trockungsverhalten herzustellen. Durch Variation des mittleren 
Porenradius und der Verteilungsbreite sowie der Anzahl der Moden (monomodale und 
bimodale Verteilungen) wird der Einfluss der Porengrößenverteilung auf die effektiven 
Parameter und das Trocknungsverhalten analysiert. Die Ergebnisse werden mit der 
Kontrollvolumenmethode berechnet und als zeitliche Entwicklung von lokaler Feuchte, 
Temperatur und Gasdruck sowie als gemittelte Trocknungskurven gezeigt. 
 
Das Kontinuumsmodell für die Geometrie des Kapillarbündels wird mit zwei diskreten 
Modellen verglichen, einem eindimensionalen Kapillarmodell und einem 
Porennetzwerkmodell für äquivalente Geometrien. Eine gute Übereinstimmung 
zwischen kontinuierlichem und diskretem Ansatz kann gezeigt werden. 
 
Zusätzlich wird das kontinuierliche Trocknungsmodell für ein Referenzmaterial 
(Gasbeton) dazu benutzt, den Einfluss der Partikelgröße auf die Trocknungszeit zu 
untersuchen. Die Ergebnisse werden mit einem einfachen Diffusionsmodell und dem 
Modell des wandernden Trocknungsspiegels verglichen. 
 
Neben der Trocknungsmodellierung werden auch verschiedene experimentelle 
Methoden eingesetzt, um die Porenstruktur und Porengrößenverteilung sowie das 
Sorptions- und Trocknungsverhalten von γ-Al2O3 Partikeln von 4.8 mm Durchmesser 
zu charakterisieren. 
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ABSTRACT 
 
 
Being one of the most complex processes encountered in engineering, the drying of 
porous media has a vital role in many different industrial fields. In principle, the 
transport phenomena in the drying of porous media can be modeled using a continuous 
or discrete approach. The continuous approach is based on a description of the system 
as a fictitious continuum by using effective coefficients of heat and mass transfer. In the 
discrete approach the drying of porous media is represented by a network of pores and 
transport phenomena are directly described at the pore level.   
 
In developing a continuous drying model, the volume averaging technique can be used 
to derive a system of macroscopic transport equations from a set of basic transport laws 
at microscopic level for gas, liquid and solid phases. The derived system represents the 
conservation equations of mass, energy and momentum, in which the average state 
variables (moisture content, temperature and gas pressure) and a set of effective 
parameters are employed. These effective parameters have strong effects on the material 
drying characteristics and must be determined experimentally or must be modeled with 
a great care about the material microscopic structure. In general, the problem of 
determining the model effective parameters is yet to be solved and deserves careful 
attention. These parameters are capillary pressure curve, liquid and gas permeabilities, 
effective diffusivity, and effective thermal conductivity. 
 
As a first step in gaining a basic knowledge about how the material microstructure 
affects its drying kinetics, in this work, the porous medium are represented by a bundle 
of capillaries with a radius distribution to compute the mentioned effective parameters. 
In this model, the material pore size distribution is considered as the key to build a link 
between the material microstructure and its macro drying behaviour. By varying the 
mean pore radius and the broadness of the distribution as well as the number of modes 
(mono-modal and bi-modal distributions), the influence of pore size distribution on 
effective parameters and on drying behaviour is analysed. This analysis is realized with 
the help of the control volume method and the numerical results are presented as 
temporal evolution of local moisture content, temperature and gas pressure as well as 
overall drying curves. The continuous model for the bundle of capillaries geometry is 
compared with two discrete models, a one-dimensional capillary model and a pore 
network model using an equivalent geometry. A good agreement between the 
continuous and the discrete approaches is found.  
 
In addition to the study of the influence of pore size distribution on drying behaviour, 
the continuous model is also used to investigate the influence of sample size on drying 
time, where a reference material (light concrete) is considered. The results are compared 
with a simple diffusion model and a receding front model. 
 
Besides the numerical modelling of drying, several experimental techniques were used 
to characterize the pore structure, the pore size distribution, the sorption equilibrium and 
the drying kinetics of γ-Al2O3 particles of diameter 4.8 mm. 
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NOMENCLATURE  
 
 
 
 

A area m2 
a constant factor used in Eqs. (1-28), (1-29)   
b constant factor used in Eqs. (1-28), (1-29)    
Cp mass fraction weighted average heat capacity J.kg-1.K-1 
c constant used in BET and Langmuir models   
cp specific heat capacity J.kg-1.K-1 
D diffusivity tensor  m2.s-1 
D diffusivity  m2.s-1 
d particle diameter  m 
F vector presenting discretized governing equations  
F component of F  
F1 function used in modified capillary pressure curve  
Fk function used in modified relative permeability curves  
f weighting factor  
fa, fb, fc, fd coefficients in function Fk   
f1, f2 coefficients used in modified capillary pressure curve and transition 

region  

f(ψ) function in Philip and De Vries model used in  
Eqs. (1-44), (1-45) 

 

g gravitational acceleration vector m.s-2 
g gravitational acceleration m.s-2 
h1, h2 coefficients used in modified transition region of bi-modal pore size 

distributions  

hi enthalpy per unit mass for species i in the α-phase (α = s, w, g)  J.kg-1 

hα mass average enthalpy of the α-phase (α = s, w, g) J.kg-1 

Δhv evaporation enthalpy J.kg-1 

Δhs sorption enthalpy J.kg-1 
J general flux vector  
 J component of J  
K absolute permeability tensor m2 
K absolute permeability m2 



 ix

Kij kinetic coefficients in Luikov’s model used in  
Eqs. (1-53) to (1-55)  

 

k relative permeability tensor   
k relative permeability  
L macroscopic characterisric length or thickness m 
M mass kg 

M~  molar mass  kg.mol-1 

ΔMw amount of water removed during drying  kg 

ΔMa amount of air taken during drying  kg 

evM&  mass evaporation rate per unit volume in Luikov’s model used in 
Eqs.(1-50) to (1-52) kg.m-3.s-1 

mratio mesh ratio  
m&  mass flux vector kg.m-2.s-1 
m&  single scalar mass flux  kg.m-2.s-1 

vm&  evaporation rate vector kg.m-2.s-1 

vm&  single scalar evaporation rate kg.m-2.s-1 

N number of species, number of grid nodes  

N&  molar flow rate  mol.s-1 

Nu Nusselt number  
n̂  unit normal vector  
ne constant factor used in Eq. (1-28)   
ng molar gas density  mol.m-3 
P pressure  Pa 
Pr Prandtl number  
q heat flux vector W.m2 
q solution vector of state variables  
q̂  guessed value of solution vector q  

q&  heat flux W.m2 

R particle radius  m 

R~  universal gas constant J.mol-1.K-1 

Re Reynolds number  
r capillary radius m 
r0 mean capillary radius m 
S saturation   
Sc Schmidt number  
Sh Sherwood number  
   



 x

T stress tensor N.m-2 
T temperature K 
t time s 
tol  tolerance for convergence   
ui diffusion velocity of species i m.s-1 
V volume m3 

V&  volumetric flow rate m3.s-1 

v mass average velocity   m.s-1 
w velocity of liquid-gas interface m.s-1 
X moisture content kg.kg -1 
x space coordinate m 
y mass fraction  kg.kg-1 
y~  molar fraction mol.mol-1 

z depth m 

Greek symbols 

α heat transfer coefficient W.m-2.K-1 

β mass transfer coefficient m.s-1 

Δ difference  

δ diffusion coefficient  m2.s-1 

δq Newton-Raphson correction vector  
ε volume fraction   
εeq small positive number used in defining drying time   

err
wε  accuracy of water flow  
err
aε  accuracy of water flow  

∈ dimensionless factor in Luikov’s used in Eqs. (1-50), (1-52)  

η dynamic viscosity Pa.s 

θ contact angle rad 
λ thermal conductivity tensor  W.m-1.K-1 
λ thermal conductivity  W.m-1.K-1 
λstep linesearch factor   
ν&  normalized evaporation rate  
ξ normalized moisture content  

ρ density  kg.m-3 

σ surface tension N.m-1 
   
   



 xi

0σ  standard deviation of capillary radius m 

τ viscous stress tensor N.m-2 

τ characteristic time s 
Φ rate of volumetric heat generation J.s-1.m-3 
ϕ relative humidity  

Ψ conserved quantity  

Ψw gravity potential of water m2.s-2 

Ψg gravity potential of gas m2.s-2 

ψ porosity  

Subscripts 

AE , AW east and west faces of a control volume  
a air  
av average  
b bound water   
big large pore  
c capillary  
cr critical   
diff diffusion  
dry dry  
E east node, node E   
eff effective   
eq equilibrium  
F moving evaporation front  
fill maximum capillary radius filled by liquid  
fw free water  
g gas  
i species i  
irr irreducible  
l liquid  
max maximum  
min minimum  
N node N  
P node P  
p particle  
R reference  
   
   



 xii

s solid   
sat saturation  
sorb adsorbed water  
total total  
v vapour  
void void  
W west node, node W   
w water  
∞ bulk property  
0 initial value  
I first drying period  
II second drying period  

Superscripts 

conv convection  
diff diffusion  
err accuracy   
T transpose   
t at time t  
* saturation  
-1 inverse   

Mathematical symbols 

Dt
D  material derivative  

dt
d  time derivative  

x∂
∂

 
partial derivative  

∇ gradient operator  

∇⋅ divergence operator  

q
F
∂
∂

 
Jacobian matrix   

F  norm of vector F  

χ  spatial average of function χ  

sχ  phase average of a function χs, which represents a property of the s 
phase  

   



 xiii

s
sχ  intrinsic phase average of a function χs, which represents a property 

of the s phase  

Ψ  average of quantity Ψ  
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INTRODUCTION 

 
Drying is a separation process in solid-liquid systems. Playing an important role in 
different industries (chemicals, pharmaceuticals, agriculture, etc.), drying is one of the 
most complex phenomena encountered in engineering because of the simultaneous heat 
and mass transfer taking place in the course of the process. In the past decades, drying 
of porous media has attracted the attention of many researchers all around the world. 
Although the investigation of drying processes both experimentally and theoretically 
has been realized for centuries, the coupling of heat and mass transfer and other 
phenomena in drying is still a challenging problem. Beside theoretical developments, 
numerical methods have been applied successfully to simulate the drying process of 
porous media at macroscopic scale as well as at microscopic scale. 
 
In principle, the transport phenomena in porous media can be modelled using 
continuous or discrete approach. The continuous approach is based on a description of 
the system as a fictitious continuum by using effective coefficients for heat and mass 
transfer. In many cases, the drying characteristics of porous media can be simulated 
with very good accuracy by the continuous approach. However, this approach fails to 
describe the drying properties of different drying systems at microscopic level if, for 
example, the length scale separation is not fulfilled or if we have fractal fronts or 
disconnected liquid clusters. The discrete approach is developed in order to overcome 
these problems. In the discrete approach the drying of porous media is modelled by 
using a network of pores and the motion of the liquid-gas interface is modelled at the 
pore level (Laurindo and Prat, 1996 [44], 1998 [45]; Prat, 1998 [80], 2002 [81]; Segura 
and Toledo, 2005 [91]).  
 
In developing a drying model based on the continuous approach, Whitaker (1977 [115]; 
1980 [116]) used the volume averaging technique to derive a system of macroscopic 
transport equations from a set of basic transport laws at microscopic level (pore scale) 
for the three phases (gas, liquid and solid). In Whitaker’s work, a porous medium was 
assumed to be equivalent to a continuum. A set of conservation equations for mass, 
energy and momentum was introduced using average state variables. The continuous 
model developed by Whitaker is considered as rigorous and the most advanced 
continuous model today. Therefore this model will be employed here in this research 
work. 
 
The theory of Whitaker was later applied to several porous media, e.g. by Perré (1987 
[66]), Turner (1991 [103]), Ouelhazi et al. (1991 [61]), Boukadida and Nasrallah (1995 
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[8]), Perré and Turner (1999 [71]). Numerical techniques were developed to simulate 
the drying process using the derived average conservation equations. Among others, 
Perré and Turner (1996 [69], [107], 1999 [71]) employed the control volume method to 
solve the problem. The advantage of this numerical method is that it ensures the 
conservation of mass and enthalpy through the boundaries of elements. The continuous 
model developed by Whitaker and later by Perré and Turner is well suited to describe 
the drying of porous media because the coupled heat and mass transfer is modelled 
using effective parameters, which have physical meaning and are not lumped 
parameters to compare with previous models. However, difficulties exist in applying 
Whitaker’s model due to the mathematical complexity of the governing equations and 
the difficult determination of the effective model parameters (Tsotsas, 1992 [102]). 
These parameters have decisive effects on the simulated drying characteristics and must 
be determined experimentally or must be modelled with great care concerning the 
microscopic material structure. In general, the problem of determining the effective 
model parameters is yet to be solved and deserves careful attention. As a first step 
towards solving this problem, in this work, the influence of pore size distribution on the 
macroscopic material drying behaviour is investigated by employing the continuous 
approach and with the help of the control volume method. 
 
In the continuous model of Whitaker, the capillary pressure, the liquid and gas 
permeabilities, the effective diffusivity and the effective thermal conductivity play 
important roles. These parameters are normally functions of one or all state variables 
(moisture content, temperature and pressure) and depend of course on material type. 
Under some simple conditions (isothermal drying, regular network, for instance), the 
relative permeability of liquid and the effective diffusivity of vapour can be computed 
from a simple pore network model (Nowicki et al., 1992 [59]). In order to form a basic 
knowledge about how the pore size distribution of a material affects its drying kinetics, 
we employ in this work a one-dimensional capillary model, in which liquid flows by 
capillary pumping and friction and vapour is transported by diffusion, to compute the 
mentioned effective parameters. In this model, the material pore size distribution is 
considered as the key to build a link between the material’s microstructure and its 
drying behaviour. The model will offer the possibility to directly compare the modern 
way of discrete and the traditional way of continuous modelling. This can help in the 
future to investigate to what extent they are equivalent and where the limits of 
continuous modelling are (Metzger et al., 2006 [54]). 
 

Objectives of the thesis 
 
Aiming at studying the influence of pore size distribution on drying, the objectives of 
the thesis include: 

 Presenting a solution technique for one-dimensional drying simulation based on a 
comprehensive mathematical model, which describes all relevant transport phenomena 
(heat, mass and momentum) by means of effective parameters, by using the volume 
averaging method and the control volume element method. Adapting this solution 
technique to three-dimensional problems with spherical symmetry in order to model the 
drying of spherical particles with symmetric drying conditions. 
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 Investigating the influence of effective transport parameters of the model on the 
drying processes at macroscopic scale by varying numerically their values. 

 Investigating the influence of sample size on drying time by using the continuous 
model presented here and comparing the results with diffusion and receding front 
models. 

 Developing a micro-macro link between the microstructure of porous materials and 
their macroscopic drying behaviour by using the material’s pore size distribution. 
Investigating the influence of pore size distribution on drying kinetics via effective 
transport parameters, which are computed as functions of pore size distribution for a 
bundle of capillaries.  

 Comparing drying simulations obtained by the continuous and the discrete approach 
for a simple reference pore geometry (bundle of capillaries) with different pore size 
distributions.  

 Performing drying experiments to estimate some drying parameters and investigate 
the structure of a given material (γ-Al2O3 particles). 

 

Structure of the thesis 
 
The thesis is organized in five chapters. In the first part of Chapter 1, a short 
introduction into the basic concepts concerning drying analysis is given. The main part 
of this chapter is a review of drying models in which their historical development, their 
application and the estimation of effective parameters are considered.  
 
Chapter 2 discusses and investigates the mathematical model of drying based on the 
continuous approach. In this chapter, a short introduction of the averaging method and 
the upscaling process used to obtain the macroscopic governing equations of drying 
from the basic laws of transport at pore scale level is given. A set of macroscopic 
equations for heat and mass transfer in porous media is presented. The set consists of 
three coupled partial differential equations in which the main variables are moisture 
content, temperature and pressure. In order to create a micro-macro link between the 
microstructure of porous materials and their macroscopic drying behaviour, the 
effective parameters of the continuous model are computed by using a capillary model, 
which takes into account the information of the microscopic structure of porous media 
via their pore size distribution and the state variables of the drying process. 
 
The set of the partial differential equations presented in Chapter 2 is discretized in 
Chapter 3 by the control volume method. The discretization process transforms the 
partial differential equations into a set of nonlinear equations where the unknowns are 
state variables at a discrete set of points in space. The discretization process is modified 
to account for the drying problems with spherical symmetry. Newton-Raphson method 
is applied to solve the obtained nonlinear system of equations.  
 
The results of the numerical simulation are presented in Chapter 4. In the first part of 
this chapter, a reference material (light concrete) is used to validate the solution method 
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presented in Chapter 2 and Chapter 3. The influence of different parameters, such as the 
shape (plate or sphere) and size of the sample, the drying conditions, material properties 
and effective transport parameters, on the drying kinetics is investigated. The influence 
of sample size is also examined by employing two other models: the diffusion and the 
receding front model. The numerical results are then compared with the results obtained 
by the model used in this work. In the second part of the chapter, the influence of pore 
size distribution on drying is considered by employing the micro-macro link presented 
in Chapter 2. In order to estimate the adequateness of this micro-macro link, the 
simulation results are compared with other discrete models.   
 
Chapter 5 presents the experimental results for a representative material (γ-Al2O3). The 
first experiment uses scanning electron microscopy to investigate the material structure 
at macroscopic and pore level. The second experiment employs mercury porosimetry to 
determine the material pore size distribution. The information about pore size 
distribution from this experiment can be used for calculating effective transport 
parameters. In the third experiment, the sorption isotherm is determined using a 
dynamic vapour sorption device. The minimum moisture content determined in this 
experiment can be used to define the end point of the drying process at given 
conditions. Finally, the drying experiment with a magnetic suspension balance is 
introduced. By this experiment, the mass of a drying γ-Al2O3 particle is measured and 
drying kinetics are obtained. The information obtained in this experiment can be used to 
validate the numerical simulation and can be used in determining effective transport 
parameters. However, due to the lack of material data for the γ-Al2O3 particles, these 
tasks will have to be done in future work. 
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Chapter 1 

BASIC CONCEPTS AND LITERATURE REVIEW 

 
 

1.1. Introduction  
 
In the study of the drying of porous media, the definition of parameters, such as material 
porosity, moisture content, saturation, gas pressure, capillary pressure, temperature and 
drying rate, are necessary to analyze and characterize the behaviour of the process. 
During the course of drying, different phenomena, such as mass and heat transfer, 
happen simultaneously. In drying, mass transfer can be of diffusive or convective 
nature, or the two phenomena can happen at the same time. These concepts appeared 
together with the development of different drying models, all in the effort to have a 
deeper knowledge of what happens inside a drying body with the ultimate objective of 
having better designs in various engineering problems related to drying. In this chapter, 
after the most basic concepts in drying modelling of porous media are introduced, the 
development of some drying models found in literature will be briefly reviewed. For 
more complete details about other terms and definitions we refer to, for example, 
Schluender and Tsotsas (1988 [89]), Dullien (1992 [18]), Krischer and Kast (1992 [40]) 
 

1.2. Basic concepts concerning drying 
 
1.2.1. Main parameters of drying models 
 
In drying models, the three independent variables of moisture content X (or saturation 
S), temperature T and total gas pressure Pg are commonly used. All other dynamic state 
variables can be expressed as functions of these three variables. 
 
Porosity  
 
The porosity of a porous material is the ratio of the total void or pore volume to the total 
volume of the material 

total

void

V
V

=ψ  (1-1)
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The porosity of a given material is measured experimentally. Details of experimental 
methods can be found, for example, in the work of Dullien (1992 [18]). Among the 
methods used to determine the porosity of a given material, Hg-porosimetry is an 
effective one. However, its use is limited to pore radii r > 3 nm. This method will be 
discussed more extensively in Chapter 5.  
 
Saturation and moisture content  
 
Saturation is the volume fraction of void space filled by liquid 

void

w

V
VS =  (1-2)

Saturation is dimensionless and takes values from 0 (when the medium is completely 
dry) to 1 (when the medium is completely saturated). Note that we use water as liquid 
throughout this work. 
 
Besides the concept of saturation another quantity, which is commonly used, is moisture 
content. The moisture content is the ratio between the total mass of water and the mass 
of dry solid 

solid)dry  of (kg
 water)of (kg 

s

w

M
M

X =  (1-3)

The relationship between moisture content and saturation is 

SX
s

w ⋅
−

=
ρψ

ψρ
)1(

 (1-4)

where ρw and ρs are the density of water and the density of solid, respectively. Both 
moisture content X and saturation S are used extensively throughout this work. 
 
Gas pressure  
 
The gas phase, which is denoted by variables with the subscript g in this work, is a 
mixture of air and water vapour. The air and vapour phases are denoted by the subscript 
a and v, respectively. The total gas pressure is the sum of partial air and vapour 
pressures 

avg PPP +=  (1-5)

It is assumed that the gas phase obeys ideal gas laws 

i

i
i M

TR
P ~

~ρ
=  (1-6)

where i stands for a, v, g; ρi for the mass density; R~  for the ideal gas constant and iM~  
for the molar mass. An average molar mass can be obtained to 

g

v
avag P

P
MMMM )~~(~~ −+=  (1-7)
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Relative humidity 

The relative humidity ϕ is the ratio between the actual vapour pressure in the air-vapour 
mixture Pv and the saturation vapour pressure Pv

* at a given temperature 

)(* TP
P

v

v=ϕ  (1-8)

The relative humidity is dimensionless and can take values from 0 to 1. 
 
1.2.2. Capillary pressure and sorption isotherm 
 
Capillary pressure 
 
The capillary pressure is the difference between the gas pressure Pg and the liquid water 
pressure Pw due to the surface tension σ at the gas-liquid interface in the pores. The 
capillary pressure is given by the Washburn equation 

r
Pc

θσ cos2
=  (1-9)

and 

wgc PPP −=  (1-10)

where r is the radius of the capillary tube and  θ is the contact angle between water and 
solid.  
 
Irreducible moisture content 
 
The irreducible moisture content Xirr is a concept used as a simplified classification. 
Below this value water is adsorbed and above this value water is free. We have 

fwirr XXX +=  (1-11)

where Xfw is the moisture content of free water.  
 
Note that the definition of adsorbed water differs from that of bound water, which is 
fixed by chemical bonding. In this work, bound water is neglected. 
 
Sorption isotherm 
 
The two curves depicted in Figure 1.1 are sorption isotherms, which describe the 
relationship between equilibrium moisture content and relative humidity of air. These 
values can be obtained experimentally by allowing sufficiently long contact of a 
material with air under isothermal conditions (Strumillo and Kudra, 1986 [96]). The 
curve in which the moisture is adsorbed is the adsorption isotherm. Contrarily, if the 
moisture is desorbed the curve is called desorption isotherm.  
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Figure 1.1  Sorption isotherms. 
 
Studies about sorption isotherms can be found in many published works, see for 
example Kast (1988 [34]), Krischer and Kast (1992 [40]). The function of sorption 
isotherm can be obtained by fitting curves from experimental data. For example, for 
light concrete the sorption isotherm may be given as follows (Perré and Turner, 1999 
[71]) 

( )
⎪
⎩

⎪
⎨

⎧

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

>

=
irr

irrirr

irr

XX
X
X

X
X

XX
X

 if2

 if1
ϕ  (1-12)

 
The sorption equilibrium is characterized by equilibrium moisture content Xeq for a 
given relative humidity ϕ and temperature T. The equilibrium moisture content is the 
value of moisture content at which a material neither gains nor loses moisture, or in 
other words, it is the minimum moisture content to which a material can theoretically be 
dried in given drying conditions. 
 
Relationship between moisture content and saturation  
 
Figure 1.2 depicts an example of the relationship between moisture content (X and Xfw), 
saturation (S and Sfw) and relative humidity. The relationship between two first 
quantities is 

satX
XS =  (1-13)

and 

irrsat

irr
fw XX

XXS
−
−

=  (1-14)

 
where X and S denote the moisture content and saturation in general, Xsat is the saturated 
moisture content and Sfw is the saturation of free water, which takes the value 0 in the 
region of adsorbed water (where X ≤ Xirr) and varies from 0 to 1 in the region of free 

adsorption 

desorption 

ϕ 

X 

ϕeq

Xeq
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water (where Xirr < X ≤ Xsat). From this figure, one can see that above Xirr the curves are 
closely tangential to the vertical axis of S and the relative humidity is nearly equal to 
unity. In fact, the relative humidity can take the value unity when moisture content is 
above Xirr (see Eq. (1-12), for instance).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2 Relationship between moisture content, saturation and relative humidity. 
 
1.2.3. Transport phenomena 
 
During the course of a drying process, mass and heat transfer can take place in form of 
diffusion, convection and for heat transfer also in form of conduction. These 
phenomena can happen separately or simultaneously.  
 
Diffusion of gas and liquid due to concentration gradient 
 
In many cases of drying, the components of the mixture of air and vapour can be treated 
as obeying ideal gas laws. The molar flow rates of vapour and air are given by Fick’s 
law 

vvagv yAnN ~∇−= δ&     and   avaga yAnN ~∇−= δ&  (1-15)

In the above equation, A is the relevant cross-section perpendicularly to the direction of 
motion; δva is the binary diffusion coefficient of vapour and air; vy~  and ay~  denote the 
molar fraction of vapour and air, respectively; ng is the molar density of the gas mixture. 
The molar density is calculated from the ideal gas law 

g

gg
g MTR

P
n ~~

ρ
==  (1-16)

In diffusion of binary mixtures, due to conservation reasons, the flow of vapour 
molecules is equal to the flow of air molecules but in the opposite direction: va NN && −=  
(“equimolar diffusion”). Besides the concept of molar fraction y~ , the mass fraction y is 

S = 0 

S = Sirr 

ϕ

 

0 

S 

S = 1
region of  free water, Sfw ≠ 0 

region of adsorbed 
water  

hydrophilic hydrophobic

Sfw

Sfw = 1

Sfw = 0

1
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Xsat 
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Xfw 
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also used in drying analysis. The relationship between these two quantities can be 
written in the form 

g

v
vv M

M
yy ~

~
~=    and  

g

a
aa M

M
yy ~

~
~=  (1-17)

In term of mass flux, Eq. (1-15) can be written as follows 

vva
gv

v y
TR
PM

m ~~
~

∇−= δ&    and  ava
ga

a y
TR
PM

m ~~
~

∇−= δ&  (1-18)

An alternative way to express diffusive fluxes is (Bird et al., 2002 [5]) 

vvagv ym ∇−= δρ&    and  avaga ym ∇−= δρ&  (1-19)

By applying for a porous medium (replace the binary diffusion coefficient δva by 
effective diffusivity Deff), the diffusion of vapour and air can be expressed in the term of 
mass fraction as follows 

veffgv yDm ∇−= ρ&       and     aeffga yDm ∇−= ρ&  (1-20)

where the effective diffusivity Deff is a function of binary diffusion coefficient δva, 
saturation and the structure of the specific material.  
 
Convection of gas and liquid due to total pressure gradient 
 
The convective transport of liquid water and gas is described in terms of velocities of 
liquid water and gas. These velocities are given by the generalized Darcy law 

( ) ( )gg
g

g
gww

w

w
w PP ΨandΨ ∇−∇

⋅
−=∇−∇

⋅
−=

ηη
kK

v
kK

v (1-21)

where vw and vg are the mass average velocities, Ψw and Ψg are the gravity potentials. In 
many cases, the gravity effect is small and can be ignored. K is the absolute 
permeability tensor. This is a measure for the permeability, or the ability of a fluid to 
flow through a medium, when a single fluid is present in the medium. The absolute 
permeability is fluid independent and depends only on the structure of the drying 
material. The symbols kw and kg denote the relative permeability tensors of liquid water 
and gas. These tensors describe how permeability is reduced due to the presence of a 
second phase. The relative permeability depends on the saturation of the fluids. 
 
Energy transport 
 
Heat transfer in the drying of porous media takes place by different mechanisms: 
diffusion, convection, conduction and radiation. The first can be described in terms of 
molar gradient and the second in terms of pressure gradient. For convective drying, 
radiation is ignored. Heat transfer by conduction (due to temperature gradient) is 
computed by Fourier’s law (Bird et al., 2002 [5]) 
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Teffconduction ∇−= λq  (1-22)

In this equation, ∇T denotes the temperature gradient and λeff is the effective thermal 
conductivity tensor. This tensor depends on the structure of the material and its 
saturation. More details of energy transport will be given in the next chapter. 
 
1.2.4. Drying curve and drying rate curve 
 

In drying analysis, the characteristics of the process can be depicted by the drying curve 
or drying rate curve. Figure 1.3 shows a typical drying curve for the case of convective 
drying in which the average moisture content X (or saturation S) is plotted against time. 
These average values are calculated by integrating the values of X (or S) over the 
computational domain V at a given time 

∫=
V

av XdV
V

X 1
  and  ∫=

V
av SdV

V
S 1  (1-23)

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1.3 Drying curve: average moisture content versus time.  

 
In Figure 1.3, the first drying period or the constant rate period commences after a short 
warm-up period. During the first drying period, free water is moved continuously to the 
external surface by capillary forces and moisture content is reduced at a constant rate. 
This is due to the fact that during this period the external surface is sufficiently wet, it 
behaves like a liquid surface and the drying rate is equal to the evaporation rate from 
this liquid surface, which depends only on the state of the drying gas and the transfer 
coefficients of the boundary layer. In this period, the temperature of solid remains at 
wet bulb temperature Twb (see Figure 1.4). As drying proceeds and the moisture content 
reaches the critical moisture content Xcr, the first drying period ends and the second 
drying period or falling rate period commences. The critical or transition point, where 
moisture content is Xcr, depends on the drying rate of the first drying period and the 
properties of the sample. In the second drying period (falling rate period), the diffusion 
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forces dominate the capillary forces and the removal of liquid is mainly controlled by 
diffusion. During this period, the moisture content decreases slowly until it reaches the 
equilibrium value Xeq (below which the material can not be dried) for hygroscopic 
materials or goes down to zero for non-hygroscopic materials (in this case Xeq ≈ 0). The 
temperature of the solid asymptotically rises to the temperature of drying air (Figure 
1.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.4 Temperature evolution during drying.    

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.5 Drying rate curve: drying rate versus average moisture content.  
 
The drying rate curve is an alternative way to depict the drying process (Figure 1.5). 
This curve is obtained by plotting the drying rate versus the (average) moisture content. 

warm-up period 

1st drying period
(constant rate) 

2nd drying period 
(falling rate) T 

T∞ 

Twb Twb 
T0 

wet bulb temperature

t

initial temperature

Ivm ,&  

warm-up period 1st drying period
(constant rate) 

2nd drying period
(falling rate) 

hygroscopic

non-hygroscopic

X0 XcrXeq X 

vm&  



Chapter 1                                                                                              Basic concepts and literature review 

 13

In constructing the drying rate curve, the drying rate or rather the vapour mass flux is 
calculated as follows (Krischer and Kast, 1992 [40]) 

dt
dX

A
M

m s
v −=&  (1-24)

where A is the surface of the porous medium being dried. 
 
As mentioned above, in the first drying period, the drying rate is constant and depends 
only on the state of drying gas (temperature T∞ and relative humidity ϕ) and the transfer 
coefficients (mass and heat transfer coefficients β and α). In the second drying period, 
the drying rate is reduced and depends on intraparticle transport phenomena. At the end 
of the drying process, the drying rate goes to zero for hygroscopic materials (as the 
corresponding moisture content reaches the equilibrium value) or a finite value for non- 
hygroscopic materials. 
 
The drying time is calculated by rearranging and integrating Eq. (1-24) 

( )∫=
tX

X v

s
dry Xm

dX
A

M

0
&

τ  (1-25)

where 0X  and tX  are the initial moisture content  and the moisture content at time t, 
respectively. 
 

1.3.  Literature review of drying models 
 
In this section, the historical development of different models of moisture migration 
during the drying of porous media as well as their restrictions and applications will be 
reviewed and discussed. Drying models were developed since the beginning of the 
twentieth century. Different methods and numerical solutions were presented and 
applied successfully for several porous media. A review of these methods until the 
1980s was given by Fortes and Okos (1980 [21]), Keey (1980 [36]), Bories (1989 [7]). 
Reviews of empirical, analytical and numerical methods of drying until the 1990s can 
be found in the work of Tsotsas (1992 [102]).  
 
1.3.1. Diffusion theory 
 
Lewis and Sherwood are known as pioneers in developing mathematical drying models 
by applying the Fourier equation of heat conduction to the drying of solids. In this 
equation, temperature and thermal diffusivity were replaced by moisture and moisture 
diffusivity, respectively. Starting from the idea of Lewis, Sherwood (1929 [92]) 
provided solutions of the diffusion equation. Sherwood showed that the moisture 
transport involves two independent processes: the evaporation of moisture at the solid 
surface and the internal diffusion of liquid to the surface. The following simple 
diffusion model, in which the diffusivity of liquid is constant, was used to calculate the 
moisture distribution in a solid during drying and compared with experimental data of 
some materials (e.g. slabs of wood, clay and soap): 



Chapter 1                                                                                              Basic concepts and literature review 

 14

X
t
X

eff
2∇=

∂
∂ δ  (1-26)

where X is vaguely defined as moisture content, t represents time and δeff can be 
considered as an effective diffusion coefficient  and is determined experimentally. 
 
At the end of the 1930s, Ceaglske and Hougen (1937 [10]) and Hougen et al. (1939 
[29]) pointed out that the moisture distribution cannot be calculated correctly only from 
Eq. (1-26). It was noted that the moisture movement in a solid during drying is due to 
not only diffusion but also due to other mechanisms such as gravity, external pressure, 
capillarity, convection and vaporization-condensation where a temperature gradient is 
applied. Experimental data was collected for some different kinds of porous media 
(clay, paper pulp, sand, lead shot, porous brick and wood) and compared with the 
numerical results obtained by Sherwood’s model to show the limitation of this model 
and prove their criticism. 
 
By using the capillary theory to describe the drying of granular materials (such as 
coarse, medium and fine sand) and based on the collected experiment data, Ceaglske 
and Hougen (1937 [10]) suggested that the effective diffusion coefficient δeff should be 
considered as varying during drying and proposed the following diffusion model 

( )X
t
X

eff ∇∇=
∂
∂ δ.  (1-27)

The effective diffusion coefficient is now known as a function of moisture content, 
temperature, material type and drying history. In solving the diffusion equation, this 
parameter is usually taken as constant or in form of linear, exponential or polynomial 
functions of moisture content. One example of these functions was given by Suzuki and 
Maeda (1978 [97])  

en
eff baXX )()( +=δ  (1-28)

where a, b and ne are constant factors. Suzuki and Maeda also presented an 
approximation method to describe the moisture distribution within drying porous 
materials in which the effective diffusion coefficient is expressed as an exponential 
function of moisture content 

Xb
eff eaX ..)( =δ  (1-29)

where a and b are constant factors as in the Eq. (1-28). This is a common function used 
to describe the effective diffusion coefficient. Suzuki and Maeda then solved the 
nonlinear diffusion problem by using dimensionless variables for diffusion coefficient, 
moisture content, time and space. It was shown that the steady-flux model (pseudo-
steady state) is fairly accurate when it is employed in low moisture content drying. 
However, it was also found that the diffusion model leads to noticeable error when it is 
applied to high moisture content drying. The reason is that in this case capillary 
pumping has strong effect and this mechanism must be taken into account. 
 
To determine the effective diffusion coefficient, in the past decades, a large number of 
works were carried out. For example, the works of Saravacos and Raouzeos (1986 
[88]), Jaros et al. (1992 [32]), Mourad et al., (1996 [57]), Ribeiro et al. (2002 [86]), Li 
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and Kobayashi (2005 [47]), Srikiatden and Roberts (2005 [95]) concentrated on 
materials in food industry and agriculture, Koponen (1987 [38]) dealt with wood, 
Ketelaars et al. (1995 [37]) studied clay, Pel et al. (1996 [63]) considered fired-clay 
brick, sand-lime brick and gypsum.  
 
In developing the diffusion model, heat transfer was included in examining the problem, 
for example, in the work of Thijssen and Coumans (1985 [98]). A short-cut method was 
proposed to calculate drying rates in non-isothermal drying of particles and hollow 
spheres. In their work, heat transfer was taken into account in the calculation of the 
evaporation rate and the sample temperature. Shrinking and non-shrinking materials 
were considered. The method proposed by Thijssen and Coumans is based on the 
numerical solution of the diffusion equation with variable diffusion coefficient (as a 
function of moisture content) and based on the result (isothermal drying rate versus 
average moisture content) of drying experiments with a slab at different temperatures. 
By using this method, the information obtained from the isothermal drying experiments 
is applied to other geometries and non-isothermal conditions. Dimensionless variables 
(moisture content, time, space coordinate, and diffusion coefficient) were used in the 
study. Instead of solving numerically the non-linear diffusion equation, a calculation 
procedure was applied in a step-by-step manner where the conditions for each new step 
were obtained from the experimental drying curves.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1.6 Determination of effective diffusion coefficient for food gel based on 
comparison of MRI data with diffusion model:  effective diffusion coefficient as 

function of drying time and moisture content (Schrader and Litchfield, 1992 [90]). 
 
To measure moisture profiles during drying, some advanced methods such as scanning 
neutron radiography or nuclear magnetic resonance imaging (MRI) were used recently 
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in a number of studies. Among others are the works of Blackband and Mansfield (1986 
[6]) on solid blocks of nylon, Schrader and Litchfield (1992 [90]) on food gel, Pel et al. 
(1993 [64]) on brick and kaolin clay, McDonald et al. (1996 [53]) on sandstone and 
rock, Koptyug et al. (2000 [39]) on alumina pellets. By using these advanced methods, 
the measured moisture profiles can be used directly to determine the effective diffusion 
coefficient. In the work of Schrader and Litchfield, MRI was used to measure moisture 
profiles in a cylinder of food gel during drying at room temperature (1992 [90]). The 
measured profiles were then compared with the numerical results calculated by the 
diffusion model and in this way the effective diffusion coefficient was computed. As an 
example, Figure 1.6 shows the variation of the obtained effective diffusion coefficient at 
t = 30, 45 and 60 minutes of drying. It was pointed out that the diffusion model seems 
not to be a good method to predict the interior moisture profile of food gel. Koptyug et 
al. (2000 [39]) used MRI to study the diffusion of water in alumina pellets and showed 
that MRI can provide good information on the real-time variation of liquid content in 
the course of drying of porous solids. MRI is a good experimental method because it is 
able to measure moisture content at any point within a complex material. Additionally, 
it provides a quick, accurate, non-destructive method and therefore allows the 
evaluation of various drying models. 
 
More recently, Guillard et al. (2002 [25]) used the diffusion model to predict the 
moisture distribution in multi-component heterogeneous food where components of 
high/low water activity are placed adjacent to one another. The calculation of moisture 
distributions compared well to experimental results and it was proposed that in this 
special application the model could be useful. Efremov (2002 [19]) used another 
approach for the description of the drying kinetics of porous materials. The approach is 
based on the analytical solution of the diffusion equation (for one-dimensional isotropic 
diffusion) with a flux-type boundary condition in form of mass flux. In this work, the 
drying kinetics (dimensionless moisture content versus time and drying rate) are 
determined by applying the Laplace transformation to express the mass flux. Porto and 
Lisbôa (2004 [79]) developed a three-dimensional model based on the diffusion model 
with constant diffusion coefficient in order to describe the drying process of a 
parallelepipedic oil shale particle. Lim et al. (2004 [48]) introduced an equation derived 
from diffusion equation in which the diffusion coefficient is a function of space. 
Akpinar and Dincer used the diffusion model to investigate moisture transfer in a slab 
of potato (2005 [1]) and in eggplant slices (2005 [2]). The works dealt with drying 
processes at different air temperatures and flow velocities. The influence of boundary 
conditions on drying process was investigated. The model is limited to the one-
dimensional problem of an infinite slab. In their works, the thermo-physical properties 
of the drying material are taken as constant and the effect of heat transfer on the 
moisture loss is neglected. 
 
The diffusion model can lead to wrong prediction and misinterpretation of the moisture 
distribution or of the drying behaviour due to the fact that only moisture transport is 
considered and that the physical meaning of the diffusion coefficient is either lost (in 
the case of a constant) or it becomes a lumped parameter of all simultaneous effects (in 
the case of a variable). However, this model is still used as simple way to describe 
drying for a certain situation.  



Chapter 1                                                                                              Basic concepts and literature review 

 17

 
1.3.2. Receding front theory 
 

Different versions of the so-called receding front model were developed in order to get 
a better understanding and describe the influence of other mechanisms (capillarity, 
gravity or external forces in gradients of pressure and temperature) on the motion of 
water during drying. According to this model, at the critical point (when the falling rate 
period starts) an evaporation front arises and gradually moves into the interior of the 
body (Tsotsas, 1992 [102]). The moving evaporation front divides the system into two 
zones: the wet and the dry zone as shown in Figure 1.7. For a hygroscopic material, the 
dry zone is called the sorption zone due to the adsorptive nature of moisture retention. 
In the dry zone, the free water content is zero and the main mechanism of moisture 
transfer is vapour flow. However, in this region the movement of adsorbed water may 
also play an important role (Chen and Schmidt, 1990 [12]). During drying, the position 
of the receding evaporation front varies with time. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.7   Receding front model. 
 
The receding front model was first developed in the 1960s. A review of the 
development of the receding front model can be found in the work of Tsotsas (1992 
[102]). The simplest version of the receding front model is a model where saturation S 
is 1 in the wet region and 0 in the dry region. In the following paragraph, the model 
presented by Chen and Schmidt (1990 [12]) is shown as one example. According to 
Chen and Schmidt, the set of one-dimensional equations describing the coupled heat 
and mass transfer can be written as follows (with subscripts 1 and 2 denoting the wet 
and dry zones): 
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where δl is the liquid transfer coefficient and cp,w is the specific heat capacity of water. 
The term Xfw is the moisture content of free water and λeff is the effective thermal 
conductivity, which is calculated by 
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where λl is the thermal conductivity of liquid, Δhv the evaporation enthalpy, )(* TPv  the 
saturation vapour pressure and '

vδ  the vapour transfer coefficient, which covers the 
contribution of both convective and diffusive flows 
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where m is the ratio of air and vapour diffusion coefficient, kg the relative permeability 
of gas phase, η the dynamic viscosity and δv the vapour diffusion coefficient. 
 
In the dry or sorption zone ( Ltzz F << )( ):  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂

∂
z
P

TR
M

zz
X

zt
X vvvsorb

sorb
sorb ~

~'δ
δρρ  (1-34)

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂

z
T

zt
Tc vvp

22
, λρ  (1-35)

where cp,v is the specific heat capacity of vapour, λv the thermal conductivity of vapour, 
Xsorb the adsorbed water content and δsorb the adsorbed water transfer coefficient. For a 
non-hygroscopic material, Xsorb is zero and δsorb is negligible. vM~  denotes the molar 
mass of vapour and Pv is the partial vapour pressure. 
 
In addition to the above equations, the mass and heat transfer at the moving boundary 
must fulfill the following conditions 
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0             ; 21 == fw XTT  (1-38)

Sorption isotherm is applied in the model and the surface boundary conditions are 
needed. For more details, we refer to Chen and Schmidt (1990 [12]).  
 
A drawback of the receding front approach is that the diffusion equation is used instead 
of more fundamental concepts like capillary pressure, liquid pressure gradients, 
permeability, etc. to describe the capillary activity in the wet zone. In addition, heat 
transfer is only described by an effective thermal conductivity. Difficulties appear in 
determining the boundary of the moving evaporation front and the coefficients for heat 
and mass transfer, which are functions of dry and wet zones. 
  
1.3.3. Drying model of Philip and de Vries 
  
Philip and De Vries (1957 [78]) and De Vries (1958 [16]) extended the previous 
treatment of diffusion equations by including effects of capillary flow and vapour 
transport. In their work, the thermal energy equation was also incorporated into the set 
of the governing equations to describe the drying process. This set of equations was 
treated under the combination of moisture and temperature gradients. The obtained 
system consists of diffusion-like equations whose coefficients must be determined by 
experiment. The model is briefly presented below. 
 
Liquid water transfer: 
 
Free liquid water movement is macroscopically described by Darcy’s law 
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where Ψw is the gravity potential. By expressing the term ∇Pw as a function of X and T 
and by substituting this function into Eq. (1-39) the liquid water flux can be written as a 
combination of three components due to moisture gradient, temperature gradient and 
gravity (Van der Kooi, 1971 [109]) 
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where δwX and δwT are the isothermal and thermal diffusivities of water given by 
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Water vapour transfer: 
 
The transport of water vapour by molecular diffusion is described macroscopically by 
Fick’s first law and by using the assumption of a steady diffusion in a closed system 
between an evaporation source and a condensation sink, a commonly used expression 
for the vapour flux in terms of moisture and temperature gradients 

    TX vTvXv ∇−∇−= δδm&  (1-43)

where δvX and δvT are the isothermal and thermal diffusivities of vapour, respectively. 
These terms are expressed as (De Vries (1987 [17]) 
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In these equations, f(ψ) is a function of porosity and moisture content (see De Vries 
(1987 [17]) for more details), δva the diffusion coefficient of vapour in air, g the 
gravitational acceleration, )(* TPv  the saturation vapour pressure, ( )avT∇  the average air 
temperature gradient, ρv and ρw are the densities of vapour and liquid. 
 
In addition to liquid and vapour transfer, Philip and De Vries assumed that the gas 
pressure can be treated as constant and the gas phase momentum equation can be 
ignored. 
 
Mass and heat conservation equations: 
 
The partial differential equations of mass and energy are formulated as follows (Philip 
and De Vries, 1957 [78], Fortes and Okos, 1980 [21]) 

( ) ( )     Ψ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇

⋅
⋅∇+∇⋅∇+∇⋅∇=

∂
∂

w
w

w
XT

kK
XT

t
X

η
δδ (1-46)

( ) ( ) ( )   XhT
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∂
∂ δλρ  (1-47)

where δT = δwT + δvT is the overall thermal mass diffusivity, δX  = δwX + δvX  is the overall 
isothermal mass diffusivity, λ denotes the thermal conductivity and ρCp is the 
volumetric heat capacity of the moist porous medium. Note that convective energy 
terms are assumed negligible.  
 
The theory of Philip and De Vries has become generally known and has been applied to 
porous media other than soil, which was chosen to investigate the heat and mass 
transfers by the authors. The major restrictions of the theory are that it does not include 
the gradient of gas pressure; there is no convection contribution in heat equation, and 
the coefficients of the model are complicated. 
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1.3.4. Luikov’s theory 
 
Independently of Philip and De Vries’s work, Luikov (1966 [50], [51]; 1975 [52]) 
investigated the heat and mass transfer during drying of capillary-porous bodies by 
employing the principles of irreversible thermodynamics. In this theory, the total 
moisture flux is assumed to be made up of three components: the first one is due to a 
gradient in moisture content, the second due to a gradient in temperature and the last 
due to a gradient in the total pressure (Turner, 1991 [103]) 

( )    gPTmsm PTX ∇+∇+∇−= δδδρm&  (1-48)

where mm& is the total moisture flux, δm the moisture diffusion coefficient, δT the thermal 
gradient coefficient and δP the pressure gradient coefficient.  
 
The conservation equations of Luikov’s model are written in the form (Turner, 1991 
[103]) 
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in which T∇−= λq& , with λ the thermal conductivity of the moist body; wm&  is 
calculated from Darcy’s law (see Eq. (1-39), for instance); gpg Pk ∇−=m&  with kp as the 

filtration coefficient; evM& is the mass rate of evaporation per unit volume 
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where ∈ is a dimensionless factor characterizing resistance to vapour diffusion in a 
body (Fortes and Okos, 1980 [21]). 
 
By using the above conservation equations, three interdependent partial differential 
equations involving variables X, T and P can be obtained as 
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where the kinetic coefficients Kij depend not only on temperature and moisture content 
but also on material properties and drying conditions. For example 

1113111211 ;; KkKKkK
c
k

K px
sm

m ⋅=⋅==
ρ

 

where km is the coefficient of moisture conductivity, cm the moisture capacity, ρs the 
density of the dry solid and kx the thermogradient coefficient related to the moisture 
content difference. For more details on the computation of these kinetic coefficients, we 
refer to Luikov (1975 [52]), Irudayaraj and Wu (1996 [31]), Lewis and Ferguson (1990 
[46]). 
 
It is noted that under the assumption of constant gas pressure, Luikov’s equations are 
similar to those proposed by Philip and De Vries. The biggest problem encountered in 
using Luikov’s equations is the definition of the coefficients Kij. In practice, it is often 
not possible to obtain these parameters to solve the full system of equations. However, 
Luikov’s theory provides a well-established model in the treatment of simultaneous heat 
and mass transfer of the drying problem. The solution of Luikov’s partial differential 
equations was studied numerically by Lewis and Ferguson (1990 [46]) and by 
Irudayaraj and Wu (1996 [31]). These equations are still commonly employed today and 
quite often solved by the finite element method.  
 
1.3.5. Krischer’s theory 
 
Krischer is also among the first researchers who have investigated the role of heat and 
mass transfer during drying of porous media. The research work of Krischer was and is 
still used today as a basis for much of the development in drying theory. In his work 
(1992 [40]), which was first published in 1956, Krischer proposed a set of equations to 
describe the moisture transport for several geometries (plate, cylinder and sphere). 
Krischer assumed that moisture transfer is controlled by the combined influence of 
capillary flow of liquid and diffusion of vapour.  
 
In Krischer’s model, the liquid flux is calculated from Darcy law (see Eq. (1-39), for 
example) and the vapour flux is written as (Van der Kooi, 1971 [109]) 
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where μ ( > 1) is called the diffusion resistance factor and describes the decrease of the 
vapour flow in the considered material in comparison with that in stagnant gas. 
 
In using the theory of Krischer, Berger and Pei (1973 [4]) included the sorption 
isotherm (empirically obtained) into the model as a coupling equation among liquid, 
vapour and heat transfer. Based on Krischer’s theory, Berger and Pei introduced two 
balance equations for heat and mass (the gas pressure was taken as constant). In this 
model all phenomenological coefficients (e.g. liquid conductivity, vapour diffusivity, 
thermal conductivity) are taken as constant. Heat transfer is assumed to take place only 
by conduction through the solid skeleton. 
 
The overall mass and heat balance equations proposed by Berger and Pei (1973 [4]) are 
expressed in terms of moisture content and vapour pressure as follows 
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where δv is the vapour diffusivity; K* is the liquid conductivity; εs, εw and εg are the 
volume fraction of solid, water and gas, respectively. 
 
The main difficulties encountered in using Krischer’s model to predict the drying rate 
are the assumption of surface boundary conditions (Krischer postulated that “at the 
surface of the drying material the corresponding equilibrium values of the dependent 
variables were reached instantaneously at the beginning of the drying process”) and the 
application of the sorption isotherm for the whole range of moisture content (Berger and 
Pei, 1973 [4]). Even though sorption isotherm is taken into account, the approach of 
Berger and Pei does not offer much innovation over Luikov’s and Philip and De Vries’ 
models (Turner, 1991 [103]). In addition, as for the previous models, experimental tests 
are needed to ensure its validity. 
 
1.3.6. Whitaker’s model 
   
In the late 1970s and early 1980s, Whitaker (1977 [115]; 1980 [116]) presented a set of 
equations to describe the simultaneous heat, mass and momentum transfer in porous 
media. Based on the traditional conservation laws, the model proposed by Whitaker, an 
important milestone in the development of drying theory, incorporated all mechanisms 
for heat and mass transfer: liquid flow due to capillary forces, vapour and gas flow due 
to convection and diffusion, internal evaporation of moisture and heat transfer by 
convection, diffusion and conduction. By using the volume averaging method, the 
macroscopic differential equations were defined in terms of average field quantities. 
Whitaker’s model is one of the basics of this research work and will be discussed in 
detail in Chapter 2.  
 
The advantage of Whitaker’s model is that it offers a very good representation of the 
physical phenomena occurring in porous media during drying. However, the problem 
encountered in using Whitaker’s model is the difficulty in determining its complicated 
transport coefficients, such as the effective diffusivity and permeabilities, which depend 
strongly on the material properties and structure (problem encountered also in all above 
models). These parameters are either function of moisture content or temperature or 
both moisture content and temperature. In addition, the coupled equations of heat and 
mass transfer, which are strongly nonlinear, require very complicated numerical 
methods to be solved. 
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The theory of Whitaker was further developed and applied in drying analysis of various 
porous media, for example in the drying analysis of sand (Whitaker and Chou, 1983 
[119]; Hadley, 1985 [26]; Oliveira and Fernandes, 1986 [60]; Puiggali et al., 1988 [83]), 
glass beads (Quintard and Puiggali 1986 [84]; Kaviany and Mittal, 1987 [35]), 
sandstone (Wei et al., 1985 [113]; [114]), porous insulators (Tien and Vafai, 1990 
[99]); brick (Nasrallah and Perré, 1988 [58]), cellular materials (Crapiste et al., 1988 
[14], [15]), wood (Spolek and Plumb, 1980 [94]; Michel et al., 1987 [56]; Perré, 1987 
[66]; Lartigue et al., 1990 [42]). In these works, the model is usually quite successfully 
matched against experimental data. The above works highlight the acceptance of the 
complete theory. Some of the important advances made in developing Whitaker’s 
theory are selected for discussion below. 
 
Whitaker and Chou (1983 [119]) simplified the theory to obtain two nonlinear equations 
for the distribution of saturation and temperature. In this work, the gas pressure is 
assumed as constant, the gas momentum equation is ignored and a quasi-steady state is 
applied. It is interesting to note that there is a resemblance of these two equations to the 
equations proposed by Luikov and Philip and DeVries (Turner, 1991 [103]). In this 
simplified case, the comparison between theory and experiment was made by Hougen et 
al. (1939 [29]). The important conclusion is that the gas phase momentum equation 
must be included in solving the comprehensive set of equations. Crapiste et al. (1988 
[14]; [15]) applied Whitaker’s model to investigate the drying of cellular materials. To 
validate the model, a comparison of one-dimensional drying to the experimental drying 
of apple and potato was presented and a good agreement was found. Wei et al. (1985 
[113]) applied Whitaker’s model to the drying of a cylinder of sandstone subjected to 
convective heating. The obtained partial differential equations in one dimension were 
solved by a three-point, two-level implicit finite difference method. The calculated 
results were compared with experimental results and showed a quite good agreement. 
 
Ferguson (1995 [20]) focused on a two-dimensional problem of the high temperature 
drying of spruce. The numerical results highlighted the advantage of the discretization 
technique (control volume finite element method) in solving the problem with 
structured and unstructured meshes. A numerical investigation was conducted by 
Boukadida et al. (2000 [9]) to study the convective drying of a slab of clay-brick. The 
work analyzed the influence of the properties of the surrounding drying agent 
(temperature, gas pressure and vapour concentration) as well as the initial medium 
conditions (temperature and moisture content) on the drying process by considering 
several configurations. However, the full investigation of the effect of the boundary 
layer on the coupled heat and mass transfer still requires further work, as concluded by 
the authors. Silva (2000 [93]), based on Whitaker’s theory, presented a general model to 
describe the momentum, heat and mass transfer in drying problems with moving 
boundary. By using the volume averaging method, a set of equations for multi-phase 
systems was applied to porous media. Numerical results showed a good agreement with 
the experimental data of kaolin drying. 
 
One of the most significant advances in developing Whitaker’s theory as well as in 
modelling the drying of porous media comes from the work of Perré et al. (1986 [65]; 
1987 [66]), Nasrallah and Perré (1988 [58]). In their work, the drying of two quite 
different porous media – clay-brick and softwood – was investigated. The most 
important advance in the work of Perré is the consideration of bound water (Perré et al. 
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1989 [76], Perré and Degiovanni, 1990 [68], Perré et al. 1993 [77]). By considering 
bound water, the driving potential for bound water migration was assumed to be 
proportional to the gradient in the bound moisture content. For the case of wood, Perré 
and his colleagues introduced two equations to calculate the transport of this kind of 
bound water (Perré et al. 1993 [77]): 
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where bm&  is the rate of bound water evaporation, the subscripts b and c denote bound 
water and cellulose matter, respectively. For wood, the diffusion coefficient of bound 
water δb is calculated in m2/s from the following equation (Perré and Degiovanni, 1990 
[68]) 
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where Xb is moisture content of bound water and T is temperature (in Kelvin). 
 
In his work, Perré solved the one-dimensional problem of drying with three state 
variables (temperature, pressure and moisture content). The control volume method was 
applied to solve the nonlinear partial differential equations. The mathematical schemes 
for equidistant and non-equidistant meshes were discussed (Nasrallah and Perré, 1988 
[58]). The authors also investigated the sensitivity upon model parameters by 
numerically varying the effective diffusivity, effective thermal conductivity, intrinsic 
and relative permeabilities as well as external drying conditions (heat and mass transfer 
coefficients). 
 
With the rapid development of computer technology, modern computers allow the 
simulation of drying not only in one dimension but also in two and three dimensions. 
Besides, numerical methods are also more efficient in obtaining accurate results and 
reducing the computational time. Among the advancements during the 1990s in the 
study of drying of porous media is the simulation of drying processes in two dimensions 
with unstructured meshes proposed by Perré (1997 [67]), Perré and Turner (1998 [70]). 
The first comprehensive three-dimensional drying model using structured meshes was 
introduced by Perré and Turner (1999 [71]). In this work, a homogeneous model, which 
employed the full set of conservation equations, was considered. A cube of light 
concrete (isotropic medium) and a board of wood (anisotropic medium) were chosen to 
investigate the influence of the number of exchange faces. Several simulation results for 
low and high temperature drying of softwood were presented and discussed. By 
comparing the different simulation results, the study showed that a three dimensional 
model is required to describe correctly the drying behaviour of porous media. 
 
Concerning the heterogeneity of material properties, Perré (1997 [67]) developed a 
heterogeneous drying model for wood. The variation of the material property 
information such as capillary pressure and absolute permeability was taken into account 
with the help of experiments (Perré and Turner 2001 [73]; [74]). The material 
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information of wood obtained from this work was later applied to a two-dimensional 
heterogeneous drying model (Perré and Turner 2002 [75]). In this work, the effects of 
material heterogeneity and local material direction on the heat and mass transport 
during drying were investigated. Two cases of low and high temperature drying were 
considered. Following this direction, more recently, Truscott (Truscott, 2004 [100]; 
Truscott and Turner, 2005 [101]) developed a three-dimensional heterogeneous drying 
model for wood. The work considered the heterogeneity of the material properties, 
which vary within the transverse plane with respect to the position that defines the 
radial and tangential directions. Two nonlinear partial equations for moisture content 
and temperature (pressure was assumed as constant) were solved. 
 
To summarize, in this chapter, some basic concepts in drying modelling of porous 
media are introduced. A brief review of the development of some drying models, their 
application and their restrictions is presented. Among the others, the model developed 
by Whitaker is the most complete one. Details of Whitaker’s model as well as the 
upscaling of the basic laws of transport from microscopic to macroscopic level to get a 
set of macroscopic equations for drying of porous media will be discussed in the next 
chapter. 
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Chapter 2 

MATHEMATICAL FORMULATION 

 

2.1. Introduction  
 
In the first part of this chapter, the mathematical formulation of the drying processes of 
porous media, which is based on the model developed by Whitaker (1977 [115]; 1980 
[116]) and later by Perré and Turner (1999 [71]), is presented. First, the basic equations 
of mass and energy transport at pore (microscopic) level in the drying of a rigid, 
homogeneous and isotropic medium are briefly recalled. The thermodynamic relations, 
assumptions and boundary conditions are reported. Second, the volume averaging 
method is introduced. This method is then applied to derive a continuous drying model 
for porous media at macroscopic level.  
 
In the second part of this chapter, based on the work of Metzger and Tsotsas (2005 
[55]), Metzger et al. (2006 [54]), a capillary model is used to compute the transport 
parameters, namely capillary pressure, absolute and relative permeabilites for liquid and 
gas, which are used in the continuous model derived in the first part. By representing 
the porous medium by a bundle of capillaries with a radius distribution, these 
parameters are computed as functions of liquid saturation. These functions create a 
micro-macro link between the microstructure of a material and its macroscopic drying 
behaviour and allow us to investigate the influence of pore size distribution on the 
material drying kinetics. 
 

2.2. Pore scale equations  
 
2.2.1. Conservation equations 
 
We consider the motion of liquid and vapour phase through a rigid porous medium as 
shown in Fig. 2.1, which shall illustrate how the macroscopic behaviour of the drying 
process is related to the pore scale phenomena. In this figure, the left-hand side depicts 
the pore scale (microscopic scale), and the right-hand side describes the macroscopic 
scale (a particle). At the pore level, we consider part of the porous structure with three 
phases: solid, liquid and gas. The solid phase is denoted by s, the liquid phase (water) is 
denoted by w and the gas phase, which contains both air (denoted by a) and vapour 
(denoted by v), is denoted by g. In drying analysis, one of the primary objectives is to 
compute the distribution of moisture content, temperature and internal gaseous pressure 
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within the porous medium during the drying process. At pore level, the (local) moisture 
content, the temperature and the gaseous pressure at each point can be determined using 
suitable laws of physics such as conservation of mass, linear momentum and energy of 
each phase: solid, liquid and gas. These conservation laws are discussed in the 
following (Whitaker, 1977 [115]; 1998 [117]). 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

 
 
 
 

 

Figure 2.1 Drying process in porous media: from pore scale to macroscopic scale. 

 
Mass conservation: 
 
By assuming that no chemical reaction happens during drying, the total mass 
conservation equation of each phase can be written as  
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and the mass conservation equation of each species in the phase is 
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In the above equations, the first terms on the left-hand side are the change of mass due 
to accumulation, the second terms express the change of mass due to convection, v is 
the mass average velocity and ρ is the total mass density of the phase under 
consideration  
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where N denotes the total number of species, ρi the density and vi the velocity of the 
species i.  
 
Principle of linear momentum: 
 
For each phase, the principle of linear momentum can be written as 

Tv
⋅∇=

Dt
Dρ  (2-5)

In this work, the contribution of body force such as gravitation force is neglected. In the 
above equation, T is the stress tensor. The angular momentum principle requires this 
tensor to be symmetric 

TTT =  (2-6)

 
Energy conservation: 
 
The thermal energy equation of each phase is 

( ) ( ) Φ+∇++⋅−∇=⋅∇+
∂
∂ v:τqv

Dt
DPhh

t
ρρ  (2-7)

where h is the enthalpy per unit mass, q the conductive heat flux vector, τ  the viscous 

stress tensor. The term v:τ ∇  is the viscous dissipation, P the pressure, 
Dt
DP  the 

compression work and Φ  presents the source or sink of electromagnetic radiation. The 
conductive heat flux vector q is computed by Fourier’ law 

T∇−= λq  (2-8)

in which λ represents the thermal conductivity.  
 
In our analysis, the contribution of Φ is neglected. Furthermore, we assume that for 
liquid and gas phase the viscous dissipation and the compression work can be neglected 

0;0: ==∇
Dt
DPvτ  (2-9)

In this case the energy equation is reduced to 

( ) ( ) qv ⋅−∇=⋅∇+
∂
∂ hh
t

ρρ  (2-10)

We will also assume that the enthalpy is independent of pressure and that all heat 
capacities are constant so that 

( )Rp TTch −=  (2-11)

holds, where cp is specific heat capacity and TR is the reference temperature.  
 
The conservation laws discussed above are now applied to each phase of the three-phase 
system under consideration. 
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2.2.1.1. Solid phase 
 
The solid phase is considered to be rigid and fixed in space with zero velocity 

0=sv  (2-12)

This means that for this phase we need to study only the conservation of energy (2-7), 
which now becomes 

s
s

s t
h

q⋅−∇=
∂
∂

ρ  (2-13)

If we make use of Eq. (2-8) and take into account the assumption (2-11), we have 

ss
s

sps T
t

T
c 2

, ∇=
∂
∂

λρ  (2-14)

 
2.2.1.2. Liquid phase 
 
For the liquid phase, which contains water as the only component, the mass 
conservation equation is 

( ) 0=⋅∇+
∂
∂

ww
w

t
vρ

ρ
 (2-15)

The use of Eqs. (2-8) and (2-11) allows us to write the energy conservation of liquid 
phase as 

wwww
w

wpw TT
t

T
c 2

, ∇=⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂

λρ v  (2-16)

 
2.2.1.3. Gas phase 
 
The gas phase is more complicated than the solid and the liquid phase since it contains 
two components: air and vapour. The total mass conservation of the gas phase is 

( ) 0=⋅∇+
∂

∂
gg

g

t
vρ

ρ
 (2-17)

Writing the species velocity vi in terms of the mass average velocity vg and the diffusion 
velocity ui  

vaiigi ,=+= uvv  (2-18)

allows us to write the mass conservation of air and vapour in the form 

( ) ( ) vai
t iigi

i ,=⋅−∇=⋅∇+
∂
∂

uv ρρ
ρ

(2-19)

Furthermore, by expressing the diffusive flux ρiui as 
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∇−=

g

i
avgii ρ

ρ
δρρ ,u  (2-20)

where δv,a is the binary molecular diffusion coefficient for vapour and air, we have  

( ) vai
t g

i
avggi

i ,, =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∇⋅∇=⋅∇+

∂
∂

ρ
ρ

δρρ
ρ

v (2-21)

For a multi-component phase, the appropriate form of the energy equation (2-10) is 

qv ⋅−∇=⎟
⎠

⎞
⎜
⎝

⎛
⋅∇+⎟

⎠

⎞
⎜
⎝

⎛
∂
∂ ∑∑

==

N

i
iii

N

i
ii hh

t 11
ρρ  (2-22)

where ih  is the enthalpy per unit mass of the component i, and the mass average 
enthalpy h is defined in a similar way to the mass average of velocity as 

∑
=

=
N

i
i

i hh
1 ρ
ρ

 (2-23)

By using Eq. (2-22) for the gas phase we have 

( )vvvaaagggg
g

gpg hhTT
t

T
c uuv ρρλρ +⋅∇−∇=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇⋅+

∂

∂ 2
, (2-24)

where 

( ) gvpvapagp ccc ρρρ ,,, +=  (2-25)

 
In addition to the above conservation equations, ideal gas laws are assumed for partial 
and total gas pressures 

i

i
i M

TR
P ~

~ρ
=  (2-26)

where i stands for a, v or g, R~  is the ideal gas constant and iM~  stands for molar mass 
of air, vapour or gas. The constraint for partial and total gas pressures is 

gva PPP =+  (2-27)

 
2.2.2. Boundary conditions   
 
In order to complete the set of equations listed above, the boundary conditions that 
connect the transport equations for the three separate phases need to be specified. In 
Figure 2.1, Awg represents the interface area between liquid and gas phases, Asw the 
interface area between solid and liquid and Asg the interface area between solid and gas. 
It should also be noted that 

Awg = Agw;   Asw = Aws;   Asg = Ags (2-28)
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The boundary conditions for the solid-liquid interface Aws are quite simple and can be 
written as 

⎪
⎩

⎪
⎨

⎧

=
⋅=⋅

=

)(
)(ˆˆ
)(0

cTT
b
a

ws

wswwss

w

nqnq
v

 (2-29)

where wsn̂ represents the unit normal vector directed from the liquid phase toward the 
solid phase and wssw nn ˆˆ −= . 
 
Similarly, the boundary conditions for the solid-gas interface Asg are written in the form 

⎪
⎩

⎪
⎨

⎧

=

⋅=⋅

=

)(

)(ˆˆ
)(0

cTT

b

a

gs

sggsgs

g

nqnq

v

 (2-30)

The boundary conditions for liquid-gas interface Awg are more complex than those listed 
above. This surface is treated as a moving surface and the boundary conditions are 
defined as 
 

( ) ( )
( )
( ) ( )
( )( ) ( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

⋅−=⋅−−

⋅−=⋅−

=⋅−

⋅−=⋅−

)(

)(ˆˆ
)(ˆˆ
)(0ˆ
)(ˆˆ

eTT

dhh
c

b

a

gw

gwgwgwwwvw

gwwwgwgg

gwaa

gwwwgwvv

nqqnwv
nwvnwv

nwv

nwvnwv

ρ

ρρ

ρ

ρρ

 (2-31)

 
In the above equations w denotes the velocity of the w-g interface. 
 
The pore scale equations for the three phases are now complete. In the next section, our 
attention will focus on the problem of deriving the macroscopic equations by using the 
volume averaging method. 
 

2.3. Volume averaging method   
 
The volume averaging method (Whitaker, 1977 [115]; 1980 [116]; 1999 [118]) is a 
technique that can be used to rigorously derive continuum equations for multiphase 
systems. In the study of drying, we would like to know how water is transported 
through the pores to the external surface where it is removed by drying air. The direct 
analysis of this process using transport equations at pore level is impossible due to the 
complex structure of porous media. By using the volume averaging method, the 
governing equations of drying, which are valid within a particular phase, can be 
spatially smoothed to produce equations that are valid everywhere. The smoothed 
equations obtained in this way can be solved by classical methods. Although the volume 
averaging method has been widely used, the method has its own drawbacks, especially 
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the difficulties encountered in determining the effective parameters (as numerical 
values) that appear in the macroscopic governing equations. 
 
In the volume averaging method we associate an averaging volume V to every point x in 
the porous sample. The chosen volume can be of any shape. In Figure 2.1 the averaging 
volume V is represented by a circle. This representative element volume (REV) will 
serve as a bridge in the upscaling process of the transport equations from pore scale to 
macroscopic scale. It should be noted that the size of the averaging volume, namely its 
diameter d, must be large compared with the pore scale characteristic length l (as 
reference to variations at pore level) but small compared with the macroscopic 
characteristic length L (as reference to variations of macroscopic variables): l<<d<<L. 
At each point x, the total volume V is made up of the volumes of solid, liquid and gas 
phases 

gws VVVV ++=  (2-32)

Evidently, the volumes of the liquid and gas phases are functions of time since during 
the drying process water in liquid phase is transformed into vapour. The representative 
element volume leads to the definition of average values. There are three types of 
average that are used in the study of drying in porous media: spatial average, phase 
average and intrinsic average. The spatial average of a function χ  is represented by χ  
and is defined by 

∫=
V

dV
V

χχ 1
 (2-33)

When we are interested in the average of some quantity associated with a single phase, 
the phase average is employed. The definition of the phase average concerns only the 
volume of the phase that we are interested in. For example, the phase average of the 
temperature in the solid phase is defined by 

∫=
sV

ss dVT
V

T 1
 (2-34)

It should be noted that the drawback of the phase average is that if Ts is constant, the 
phase average is not equal to this value. In this case, the intrinsic average is a more 
appropriate representation. The intrinsic average, for example, of temperature in the 
solid phase is  

∫=
sV

s
s

s
s dVT

V
T 1

 (2-35)

Related to the definition of different volume averages, the volume fractions of the three 
phases are defined by 

V
V

V
V

V
V g

g
w

w
s

s === εεε  (2-36)

Evidently, the sum of these volume fractions is unity. The phase average and intrinsic 
average are related by 
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s
sss TT ε=  (2-37)

The principle tool of the volume averaging method is the so-called averaging theorem, 
which can be expressed as 

∫∫ ++∇=∇
wgws A

wwg
A

wwsww dA
V

dA
V

χχχχ nn ˆ1ˆ1
 (2-38)

When we encounter the average of a divergence, we use the averaging theorem in the 
following form 

∫∫ ⋅+⋅+⋅∇=⋅∇
wgws A

wgw
A

wswww dA
V

dA
V

nvnvvv ˆ1ˆ1
 (2-39)

When we need to compute the volume average of a time derivative, for example 

∫ ∂
∂

=
∂
∂

wV

ww dV
t

T
Vt

T 1
 (2-40)

we use the general transport theorem 

∫∫ ⋅−⋅−
∂

∂
=

∂
∂

wswg A
wsw

A
wgw

ww dAT
V

dAT
Vt

T
t

T
nwnw ˆ1ˆ1

 (2-41)

By using the averaging theorem and the general transport theorem, the process to derive 
the volume-averaged transport equations can be summarized as follows: First, the 
corresponding pore level equation is integrated over the averaging volume. Second, the 
averaging and the general transport theorems are applied together with the analysis of 
magnitude to eliminate negligible terms. Third, the macroscopic equations are obtained 
with definitions of effective parameters based on the results of the obtained volume-
averaged equations.  
 
To illustrate this process, the mass conservation equation of liquid is considered here. 
By integrating Eq. (2-15) over volume Vw and by dividing the result by V we have 

( ) 011
=⋅∇+

∂
∂

∫∫
ww V

ww
V

w dV
V

dV
tV

vρ
ρ

 (2-42)

or in another form 

( ) 0=⋅∇+
∂
∂

ww
w

t
vρ

ρ
 (2-43)

The application of general transport theorem allows us to write the first term of (2-43) 
as 

∫∫ ⋅−⋅−
∂

∂
=

∂
∂

wswg A
wsw

A
wgw

ww dA
V

dA
Vtt

nwnw ˆ1ˆ1 ρρ
ρρ

(2-44)

Because the velocity of the w-s interface is zero, the last term of this equation is zero 
and equation (2-43) becomes 
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( ) 0ˆ1
=⋅∇+⋅−

∂

∂
∫ ww

A
wgw

w

wg

dA
Vt

vnw ρρ
ρ

(2-45)

The integration and differential in the last term of this equation can be interchanged by 
the use of the averaging theorem (2-39) as 

( ) ∫∫ ⋅+⋅+⋅∇=⋅∇
wgws A

wgww
A

wswwwwww dA
V

dA
V

nvnvvv ˆ1ˆ1 ρρρρ (2-46)

By noting that the w-s interface is impermeable, wsw nv ˆ⋅ is zero, the substitution of (2-
46) into (2-45) leads to 

( ) 0ˆ1
=⋅−+⋅∇+

∂

∂
∫
wgA

wgwwww
w dA

Vt
nwvv ρρ

ρ
(2-47)

Since it is quite reasonable to neglect the variation of the density ρw, we have 

ww
w

www ρερερ ==  (2-48)

and we get the final form for the average mass conservation equation of the liquid phase 

0=+⋅∇+
∂
∂

m
t ww
w

w &vρ
ε

ρ  (2-49)

where 

( )∫ ⋅−=
wgA

wgww dA
V

m nwv ˆ1 ρ&  (2-50)

is the evaporation rate. 
 
For more details about the derivation of the other equations (mass conservation equation 
of gas, energy conservation equation) we refer to Whitaker (1977 [115]; 1998 [117]; 
1999 [118]). 
 

2.4. Macroscopic equations of drying processes in porous media 
 
The macroscopic transport equations can be obtained by averaging the pore scale 
transport equations over the averaging volume as introduced in previous section. This 
set of macroscopic equations is summarized as follows (Whitaker, 1977 [115]): 
 
1. The mass conservation equation for the liquid phase 

0=+⋅∇+
∂
∂

m
t ww
w

w &vρ
ε

ρ  (2-51)

2. The mass conservation equation for vapour in the gas phase 
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( ) ( )
⎥
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
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⎝

⎛
∇⋅⋅∇=−⋅∇+

∂
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g

g

g
v

eff

g

gg
g

v
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vg m
t ρ

ρ
ρρρε Dv &  (2-52)

3. The mass conservation equation for air in the gas phase 

( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∇⋅⋅∇=⋅∇+

∂
∂

g

g

g
a

eff

g

gg
g

a
g

agt ρ

ρ
ρρρε Dv  (2-53)

4. The conservation equation of energy 

[ ]
( )T

mhTcc
t
T

C

eff

vg

g

p

g

gwwpwp

∇⋅∇=

Δ+∇⋅++
∂

∂

λ

vv &ρρρ ,  (2-54)

where 

ap
g

agvp
g

vgwpwwspssp ccccC ,,,, ρερερερερ +++=  (2-55)

with 
g

ag
g

vgwwss ρερερερερ +++=  (2-56)

and Δhv is evaporation enthalpy. 
 
It should be noted that in Eq. (2-54) local thermal equilibrium is assumed 

g

g
w

w
s

s TTTT ===:  (2-57)

The effective diffusivity Deff and effective thermal conductivity λeff , which appear in 
Eqs. (2-52) to (2-54), are obtained from the process of upscaling from pore scale 
transport equations to macroscopic equations. These parameters are functions of 
moisture content and material properties (for more details, see Whitaker 1977 [115]). 
 
The capillary pressure is defined as the difference between gas pressure and liquid 
pressure  

w
w

g

gc PPP −=  (2-58)

and the vapour pressure is calculated from sorption isotherm. 
 
Concerning the liquid and gas phase equations of motion, the analysis of the 
conservation of linear momentum (2-5) leads to the following volume-averaged 
equations 

w
w

w

w
w P∇⋅

⋅
−=

η
kK

v  (2-59)



Chapter 2                                                                                                              Mathematical formulation 

 

 37

g

g
g

g
g P∇⋅

⋅
−=

η
kK

v  (2-60)

where K is the absolute permeability tensor, kw and kg denote the relative permeability 
tensors of liquid and gas, respectively. Note that in deriving the above equations, the 
effect of gravity has been neglected. 
 
In order to apply the control volume method, the equations (2-51)÷(2-54) must be 
reformulated and put in the following form 

0=⋅∇−Ψ
∂
∂ J
t

 (2-61)

where Ψ is any scalar quantity and J is the flux of mass or energy. This requirement can 
be satisfied with the use of the set of equations proposed by Perré and Turner (1999 
[71]). A simpler version of those equations will be derived here based on the system (2-
51)÷(2-60). Differently to the model of Perré and Turner, bound water, which is 
neglected in the present work, will not appear in the reformulation based directly on the 
system (2-51)÷(2-60). 
 
To reformulate the system (2-51)÷(2-60), we need to choose a set of main variables that 
will represent the whole drying process. It is evident that the variables appearing in the 
above system of equations are not independent of one another. A possible choice for a 
set of independent variables can be average temperature T , volume fraction of liquid 

water εw and intrinsic phase average of air density in the gas phase g
aρ . The 

consequence of this choice is that only three independent equations, in which those 
variables are involved, are required.  
 
In order to simplify the further development, we will drop the average notation  and 
understand that all variables are used in an average sense, for example, T will be 
understood as T , Pa as g

aP  etc. 
 
By adding equations (2-51) and (2-52) we have the conservation equation for water in 
both liquid and gas phase as 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∇⋅⋅∇=+⋅∇++

∂
∂

g

v
effggvwwvgwwt ρ

ρ
ρρρρεερ Dvv  (2-62)

The important consequence in combining the two equations (2-51) and (2-52) is that in 
the resulting equation, the evaporation rate, which is complicated to compute, 
disappears. Eq. (2-62) will serve as the first of the three required independent equations.  
 
The second equation is taken as the conservation equation for air in the gas phase (2-53) 
rewritten here by dropping the average symbol  
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( ) ( )
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ρρρε Dv  (2-63)

The third equation is more complicated and will be derived from the conservation 
equation of energy (2-54). Firstly, by using the formula for the mass fraction weighted 
average heat capacity Cp (Eq. (2-55)) we get 

( )
( )[ ] ( )TmhTccc

t
Tcccc

effvgapavpvwwpw

apagvpvgwpwwspss
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,,,,

ρρρ

ρερερερε
 (2-64)

Due to the assumption about the linearity of enthalpies (2-11), the first term of (2-64) 
can be rewritten in the form 
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 (2-65)

By using the relationship 

( ) ( )iiiiiiiii t
hh

t
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∂
∂
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 (2-66)

and respecting that 

( ) 0=
∂
∂

sss t
h ρε  (2-67)

we obtain further 
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 (2-68)

Secondly, by using the assumption about the linearity of enthalpies (2-11) and the 
formula 

( ) ( ) ( )vvv ρρρ ⋅∇+∇⋅=⋅∇ hhh  (2-69)

the second term on the left-hand side of Eq. (2-64) is rewritten in the form 

( )[ ]
( )[ ] ( ) ( ) ( )[ ]gaagvvwwwgaavvwww

gapavpvwwpw

hhhhhh

Tccc

vvvvv

vv

ρρρρρρ

ρρρ

⋅∇+⋅∇+⋅∇−++⋅∇=

∇⋅++ ,,,  (2-70)

Thirdly, the latent heat of evaporation at temperature T  can be expressed as 

wvv hhh −=Δ  (2-71)

so that 
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mhmhmh wvv &&& −=Δ  (2-72)

Furthermore, the evaporation rate m&  can be computed in two different ways using the 
conservation equation (2-51) for water in liquid phase and the conservation equation (2-
52) for water in gas phase (vapour) as 

( ) ( )wwww t
m v⋅∇−

∂
∂

−= ρερ&  (2-73)

and 
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By substituting equations (2-68), (2-70), (2-72), (2-73) and (2-74) into the conservation 
equation of energy (2-64), after some manipulations we arrive at 
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Now, if the term ( ) ( )⎥⎦
⎤

⎢⎣
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∂
∂

gaagt
vρρε  is computed using the air conservation 

equation (2-63), we get 
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This conservation equation of energy can be further simplified by assuming that within 
an averaging volume the variation of enthalpy is small compared with its value. Then, 
we obtain the final form 
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This equation will serve as the third equation in the system of three required equations 
needed to find the three independent variables T, εw and ρa.  
 
To summarize, we note that, in order to apply the control volume method, the 
macroscopic conservation equations of liquid water (2-62), air (2-63) and energy (2-77) 
are used together with the motion equations for liquid water and gas, Eqs. (2-59) and (2-
60). This set of equations represents the macroscopic equations governing the drying 
process under consideration. To complete this set of equations, the constraints and 
constitutive relations such as thermodynamic relations (ideal gas behaviour, sorption 
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isotherm), capillary pressure, enthalpy-temperature relations, the physical properties of 
the material being dried as well as initial and boundary conditions are needed. All these 
issues will be discussed in the next chapter together with the volume control method. 
 

2.5. Effective parameters by capillary model 
 
The effective parameters, which are used in the continuous model proposed by 
Whitaker and further developed by Perré and Turner, must be either taken as empirical 
functions or measured experimentally for a given material because the volume 
averaging method does not provide values, it only proves that these parameters are the 
right ones. These parameters are sorption isotherm, capillary pressure, absolute and 
relative permeabilites, effective diffusivity and effective thermal conductivity. The 
determination of these effective parameters is actually a complicated problem and 
remains a challenge today. Among others research works that dealt with this problem, 
Lasseux et al. (1996 [43]), Quintard and Whitaker (1988 [85]) introduced a method to 
determine the permeability tensor for two-phase flow. However the method is difficult 
to apply in practical applications because of its mathematical complexity. Starting from 
experiments, Perré and Turner (2001 [73]; [74]) introduced a function for calculating 
capillary pressure and absolute permeability, but only for softwood. 
 
In this section, based on the work of Metzger and Tsotsas (2005 [55]) for bundle of 
capillary, the capillary pressure, the absolute and relative permeabilites are computed as 
functions of material pore size distribution. The effective diffusivity and effective 
thermal conductivity are considered as dependent on porosity ψ and saturation S. These 
parameters will then be used in the continuous drying model presented in the last 
section, which is capable of modelling the spatial and temporal evolution of moisture 
content, temperature and gaseous pressure. The aim of this approach is to understand, 
on a fundamental basis, how a variation of pore size distribution changes the drying 
behaviour of porous media. However, it should be pointed out that the pore size 
distribution alone is not enough to characterize the drying behaviour of a porous 
medium; it is only the most accessible structural information. 
 
In order to compute the capillary pressure and the permeabilites, we represent the 
porous medium by a bundle of capillaries (Metzger and Tsotsas, 2005 [55]). In this 
model, the capillary tubes are set perpendicular to the exchange surface of the porous 
body and the solid phase is arranged in parallel. The model is strictly one-dimensional 
since it is assumed that there is no lateral resistance to heat or mass transfer between the 
solid and capillaries, hence local thermal equilibrium is fulfilled (as it is one assumption 
of the continuous model). The model is illustrated in Figure 2.2 together with its 
behaviour during drying. We restrict ourselves to large enough pore sizes so that for 
every capillary the boundary between the gas and liquid phases can be described by a 
meniscus having a capillary pressure. Like gas and solid, liquid phase is automatically 
continuous (no clusters), which is required in the continuous model. In this model, 
Kelvin effect is neglected and molecular diffusion is considered without Knudsen effect 
since we assume the diameter of the pores are bigger than 50 nm (the mean free part of 
air molecular) (Krischer, 1992 [40]). During drying, larger capillaries will empty first, 
because they have the lower capillary pressure. However, the capillary pumping is 
subjected to friction leading to a non-trivial moisture profile. For convenience, instead 
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of moisture content X, saturation S will be used (Eq. (1-4)). In the following section, 
formulations will be presented to compute the capillary pressure, permeabilities, 
effective diffusivity and effective thermal conductivity.  
 

 
 

Figure 2.2 Partially saturated bundle of capillaries: relationship between free water 
saturation Sfw and maximum radius filled rfill (for mono-modal pore size distribution 

r0 = 100 nm σ0 = 10 nm). 
 

2.5.1. Pores size distribution and saturation 
 
Two types of pore size distributions (capillary radius distributions) are used here. The 
first one is a mono-modal normally distributed pore volume:  
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where r0 is the mean pore radius, σ0 the standard deviation and C a constant. This 
normal distribution is truncated at r0 ± 2.5σ0. The integral of the pore size distribution 
computed in this truncated range must be equal to the void volume of the sample or, in 
other words, the total volume fraction of liquid for S = 1 must correspond to the porosity 
ψ of the sample. However, in this work, this integral is set to unity for the sake of 
simplicity (see Eq. (2-79) below). 
 
The second type is a bimodal distribution, which consists of two mono-modal models 
(with different mean pore radii and deviations) named here as small pore and large pore 
distributions. In bimodal distributions, the volume fractions of small pores and large 
pores as well as the transition region between two kinds of pores are taken into account. 
The computational treatment of the transition region will be discussed below. Like 
mono-modal distribution, the integral of the pore size distribution in this case is set to 
unity. Evidently, different choices are possible for capillary radius distributions. 
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However the mono- and bimodal distributions are considered to be enough for a 
systematic investigation. 
 
If the porous medium is partially saturated with water, the assumption of ideal lateral 
transfer between the capillaries implies that for a given local free water saturation Sfw 
small capillaries are filled up to a maximum radius rfill (see Figure 2.2) such that 

∫=
fillr

r
fw dr

dr
dVS

min

 (2-79)

where rmin is the smallest capillary radius of the bundle.  
 
The localization of free water Sfw is the key for computing effective parameters as 
function of saturation. Based on Eq. (2-79), the maximum radius rfill can be computed 
for a given Sfw. For any saturation under the irreducible value, the saturation of free 
water Sfw is zero and the maximum radius filled by liquid rfill is set to rmin. 
 
2.5.2. Sorption isotherm  
 
Adsorbed water, which may play an important role in the drying of hygroscopic 
materials, needs to be modelled separately since it depends mainly on material 
properties (the influence of pore size distribution is neglected because the condensation 
due to Kelvin effect only plays an important role at very high level of relative 
humidity). In our simulations, we chose the same type of temperature independent 
sorption isotherm as Perré and Turner (1999 [71]) used for concrete (see Figure 2.3) 
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irrirr S
S

S
S 2ϕ     for S ≤ Sirr (2-80)

where ϕ is the relative humidity, Sirr is the maximum amount of adsorbed water and S = 
Sirr + Sfw; in the presence of free water, ϕ = 1.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3 Sorption isotherm used for bundle of capillaries. 
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2.5.3. Capillary pressure   
 
Besides vapour pressure, the capillary pressure is also linked to saturation by a state 
equation given by the meniscus in the largest filled capillary 

( ) ( )
( )fwfill

fwc Sr
TTSP σ⋅

=
2,  (2-81)

In the above equation, zero contact angle is assumed. The temperature dependency of 
surface tension is given by Eq. (A1-4) (Appendix 1). 
 
In order to illustrate the influence of pore size distribution on the effective parameters, 
four different cases of pore size distribution are considered. The parameters of the 
distributions and the corresponding absolute permeabilities are presented in Table 2.1. 
For the bimodal distributions, the volume is equally distributed to the two modes (48% 
each). The adsorbed water region is for S < 15%, and transition region for bimodal 
distributions is for S ≈ 57.5%. 
 
The capillary pressure curves for these four pore size distributions are illustrated in 
Figure 2.4. Naturally, with decreasing saturation, the capillary pressure increases. The 
overall level of capillary pressure is determined by the mean pore size r0 of the mode 
and its range of variation is determined by the standard deviation σ0. For bimodal 
distributions, a sudden change of capillary pressure is observed when the larger mode is 
emptied, which – for numerical reasons – is extended into a transition region (see 
Appendix 3). In the sorption region, capillary pressure is set constant at the value 
corresponding to only the smallest pores being filled. 
 

Table 2.1. Pore size distributions and absolute permeabilities. 

 r0 ± σ0 (nm) K (⋅10-15 m2)  
Case 1 100 ± 5 1.238 
Case 2 1000 ± 100 124.6 

mono-modal 

Case 3 100 ± 10; 200 ± 20 3.119 
Case 4 100 ± 10; 2000 ± 200 245.1 

bimodal 
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Figure 2.4 Capillary pressure for four cases of capillary radius distribution. 

 
2.5.4. Absolute permeability    
 
Considering one capillary which is fully saturated by water, on the one hand, the 
volumetric flow rate is calculated from the Poiseille’s equation 

4

8
1 r

L
P

V w ⋅⋅
Δ
⋅= π

η
&      (2-82)

where L is the capillary length, r the capillary radius, η the dynamic viscosity 
(temperature dependent) and Pw the water pressure.  
 
One the other hand, the mean velocity v  (volumetric flow rate per total cross section of 
porous medium) of the liquid can be described by the generalized Darcy law (Eq. (2-
59). In this calculation, we assume that gravitational effects are negligible and that 
velocity is small enough to neglect inertial effects. If we apply Darcy law to a fully 
saturated capillary (kw = 1), we obtain 

L
P

v wΔ
= .K
η

     (2-83)

By comparing Eqs. (2-82) and (2-83), the absolute permeability can be found to be 

2

8
1 rK =      (2-84)

An extension to the bundle of capillaries yields  
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∫=
max

min

2

8
1 r

r

dr
dr
dVrK      (2-85)

where the interval [rmin , rmax] is the total range of the pore size distribution.   
 
The absolute permeabilities of the four different pore size distributions given in Table 
2.1 are computed using Eq. (2-85). The absolute permeability K does not depend on 
temperature or pressure. It is mainly determined by the mean radius (of the large pores). 
The broadness of the distribution contributes little to K. For the bimodal cases, there is 
only a small contribution from small pores. 
 
 
2.5.5. Relative permeabilities    
 
The relative permeability of liquid and gas phases are computed in a similar way as the 
absolute permeability 
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Clearly, the total of these two quantities is unity. 
 
Like the absolute permeability, the relative permeabilities do not depend on either 
temperature or pressure. The relative permeabilities for the four considered cases are 
depicted in Figure 2.5 (mono-modal) and Figure 2.6 (bimodal). The relative 
permeabilities are almost directly proportional to the corresponding phase saturation, 
but the curvature of the functions kw,g(S) increases with broader pore size distribution – 
in an unfavourable way for liquid transport and favourable for gas transport. Again, the 
contribution from small pores (in bimodal cases) is small. Below the irreducible 
saturation the relative permeability of liquid kw is zero. 
 
In order to avoid sudden changes of slope or even jumps of the capillary pressure and 
transport parameter functions, which would cause numerical problems when these 
functions are used in the continuous model, the pore size distribution has to be slightly 
modified. These modifications are discussed in Appendix 3. 
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Figure 2.5 Relative permeabilities for two cases of mono-modal distributions. 
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Figure 2.6 Relative permeabilities for two cases of bi-modal distributions. 

 
2.5.6. Effective vapour diffusivity     
 
The effective vapour diffusivity does not depend on the distribution of the pores, but the 
evaporation area. Therefore this transport parameter is assumed as a function of 
saturation, porosity and the binary diffusion coefficient  
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( ) ( ) ( )PTSPTSD vaeff ,1,, δψ ⋅⋅−=  (2-88)

The binary diffusion coefficient δva is considered as temperature and pressure dependent 
(Eq. (A1-13) – Appendix 1). The Knudsen effect is neglected for the investigated pore 
sizes.  
 
2.5.7. Effective thermal conductivity 
 
Like effective vapour diffusivity, this transport parameter is also assumed to be 
independent of pore size distribution. As heat conduction occurs in all phases in 
parallel, the heat flux or thermal conductivity contributions must be weighted according 
to their respective volume fractions of the phases. If the contribution of gas is neglected, 
then the effective thermal conductivity can be computed as  

( ) ( ) ( ) ( )TSTTS wseff λψλψλ ⋅⋅+⋅−= 1,  (2-89)

In this work, the thermal conductivity of solid λs is taken as constant, while the thermal 
conductivity of liquid water λw is temperature dependent (Eq. (A1-5) – Appendix 1). 
 
To summarize, in this chapter, the mathematical model of drying developed by 
Whitaker (1977 [115]; 1980 [116]) is presented. Starting from the basic transport laws 
of mass and heat at pore (microscopic) level, the macroscopic conservation equations 
that govern the drying processes in porous media are derived with the use of the volume 
averaging method. The governing equations obtained by Whitaker are then reformulated 
in a ready-to-use form suitable for the control volume method. The result of the 
reformulation is a system of equations, which is actually a simplified version of that 
proposed by Perré and Turner (1999 [71]). Based on the work of Metzger and Tsotsas 
(2005 [55]), the effective parameters used in the continuous drying model, namely the 
capillary pressure, the absolute and relative permeabilities, are computed as functions of 
pore size distribution. In the next chapter we will study the use of the control volume 
method in solving the drying model presented in this chapter. 
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Chapter 3 

NUMERICAL METHOD 

 
 

3.1. Introduction  
 
In this chapter, the numerical method used to solve the above-described continuous 
drying model is presented. In principle, the finite element method, the finite difference 
method or the control volume method can be employed. Quite a few works were carried 
out trying to find the best technique for the simulation of drying. In the quest for a 
quicker, more accurate and less expensive solution even mixtures of different methods 
appeared, for example the so-called control volume finite element method (Ferguson, 
1995 [20]); Perré and Turner, 1998 [70], 2000 [72]). In many textbooks on numerical 
methods for heat and mass transfer, the control volume method (Patankar, 1980 [62]) is 
praised for its accuracy in solving problems involving conservation of different 
quantities. The method has been applied in drying simulation by, for example, Hadley 
(1985 [26]), Perré (1987 [66]), Nasrallah and Perré (1988 [58]), Perré and Degiovanni 
(1990 [68]), Turner (1991 [103]), Turner and Ferguson (1995 [104], [105]), Turner and 
Perré (1995 [106]; 1996 [107]; 2001 [108]), Boukadida and Nasrallah (1995 [8]), 
Boukadida et al. (2000 [9]), Jayantha and Turner (2003 [33]), Truscott (2004 [100]), 
Truscott and Turner (2005 [101]). The basic idea of the control volume method is 
simple. In this method, the calculation domain is divided into a number on non-
overlapping control volumes, which are each associated with a grid point (node) 
(Patankar, 1980 [62]). The system of differential equations is then integrated over each 
control volume. Piecewise profiles expressing the variation of variables and related 
quantities are used to evaluate the required integrals. For each control volume, the result 
is a discrete version of the differential equations involving the variables related to the 
central node of this control volume and to the nodes connected to it. The discretized 
equations obtained in this way describe the conservation principles for the control 
volume just as differential equations describe those principles for an infinitesimal 
volume. The most important feature of the control volume method that makes it 
different from others is that conservation requirement of the basic physical quantities 
such as mass and energy will be satisfied at any discrete level: across a control volume 
element, over a group of control volume elements or over the whole calculation domain. 
The control volume method will be employed in this work to solve the set of governing 
equations derived in the last chapter. In the next sections, the discretization of those 
equations by the control volume method is presented. 
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3.2. The governing equations and main variables 
 
For convenience, in this section, the set of three governing equations derived in the last 
chapter is repeated together with the equations of motion (generalized Darcy’s law) for 
liquid and gas phases: 
 
The conservation equation for water in both liquid and gas phase 
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The conservation equation for air in gas phase 
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The conservation equation of energy 
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The equation of motion for the liquid phase 
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v  (3-4)

And the equations of motion for the gas phase 
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where the dynamic viscosity of water ηw and of gas ηg are temperature dependent (see 
Appendix 1). 
 
Besides the above governing equations, the conditions for mass and heat transfer at the 
external drying surfaces of the porous medium must be specified. It is assumed that at 
the external drying surfaces the fluxes of mass and heat are described for convective 
drying by the boundary layer theory with Stefan correction 
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in which Jw and Je are the fluxes of water and heat respectively, Pv,∞ and T∞ are vapour 
pressure and temperature of bulk drying air, n̂  is the outward-pointing normal vector at 
the boundary surface, β and α are mass and heat transfer coefficients. Additionally, the 
gas pressure at the external drying surfaces is fixed at the pressure of the bulk drying air 

∞= PPg   (3-8)

Sorption isotherm, capillary pressure, ideal gas laws and enthalpy-temperature relations 
will complete the set of Eqs. (3-1)÷(3-8) by helping to express all variables as functions 
of three state variables. Besides, initial conditions are needed. 
 
In this work, we restrict ourselves to one-dimensional problems and the discretization 
will be presented for this case. As mentioned in the last chapter, the three independent 
variables T, εw and ρa are sufficient to describe the characteristics of the drying process 
in porous media. However, it is more convenient to work with the moisture content 

( ) ( )sswwX ρερε=  and the phase average of the gas density aga ρερ =  than with the 
volume fraction of water εw and the intrinsic gas density ρa. The use of X and aρ  will 
simplify the conservation equations of water and air and, more importantly, X is a 
common quantity to describe drying. Due to this reason, we will pursue our work with 
the set of state variables ( )aTX ρ,,  but in the presentation of numerical results the gas 
pressure Pg will replace aρ . 

3.3. Discretization of the conservation equation of water   
 
In order to discretize the conservation equation of water, we first rewrite this equation in 
term of the main variables ( )aTX ρ,, . By using the equations of motion of liquid water 
and air (3-4) and (3-5), Eq. (3-1) can be expressed as 
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where Jw is the total flux of water 
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in which yv is the mass fraction of vapour: gvvy ρρ= . 
 
Next, we need to express the water pressure Pw, the gas pressure Pg and the mass 
fraction yv in terms of the main variables. The water pressure Pw can be obtained from 
the definition of the capillary pressure Pc, which is a function of temperature T and 
moisture content X 

( )XTPPP cgw ,−=  (3-11)

By use of ideal gas laws and sorption isotherms Pv(X,T), the gas pressure Pg can be 
expressed as 
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where the volume fraction of gas phase is expressed as 
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In order to compute the mass fraction yv, the gas, air and vapour densities are obtained 
from the ideal gas law 

vag
aa

a
vv

v TR
MP

TR
MP

ρρρρρ +=== ~
~

~
~

 (3-14)

leading to 

g

v
ava

v

g

v

g

v
v

P
P

MMM

M
P
P

y
)~~(~

~

−+
==

ρ
ρ

 
(3-15)

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 Control volume mesh (top) and normal control volume element (bottom) for 

one-dimensional drying problems. 
 
The conservation equation of water (3-9) is now ready to be discretized.  To do this, we 
will employ a control volume mesh with N grid nodes along the x-axis of a Cartesian 
coordinate system, as shown in Figure 3.1. The distances between the grid nodes need 
not to be equal. Each node P has its two neighbour nodes: W on the left-hand side and E 
on the right-hand side (W stands for west and E stands for east side). We denote the 
distance between node P and W by ΔxW and between node P and E by ΔxE. The dash 
lines define the two faces of the control volume AW and AE. The exact positions of the 
faces are one of the important characteristics of the control volume mesh, especially 
with non-equidistant grid points. However, for the sake of simplicity, we will assume 
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that the control volume face is positioned at the middle of the two adjacent nodes so that 
the length of the control volume element computed from its west face AW to its east face 
AE is 

( )EWP xxx Δ+Δ=Δ
2
1

 (3-16)

For the one-dimensional problem under consideration we assume unit size of the control 
volume element in both y and z direction implying that both surface areas of AW and AE 
are equal to unity. 
 
For known state variables of the drying process ( )aTX ρ,,  at time t, the task now is to 
find their values at time tt Δ+ . By integrating Eq. (3-9) over the control volume element 
and over the time we have 
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These integrals are difficult to evaluate. For simplicity, we separate the time and space 
integrations and assume that the grid-point values of X and εgρv at node P prevail 
throughout the control volume so that 
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∫ ∫  (3-18)

where superscripts denote time and subscripts the grid node. 

The discretization of the second term of (3-17) is not as easy as the first. We have 
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In order to evaluate the time integration, an assumption about the variation of the flux 
should be made. Here we assume that the flux wJ  varies between the time t and tt Δ+  
in such a way that its integration over time can be expressed as 
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t
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∫ 1  (3-20)

where f is a weighting factor between 0 and 1.  
 
By varying the weighting factor f, different integration schemes are available. For 
example, when f takes the values 0, 0.5 and 1, we have the fully explicit, Crank-
Nicolson and fully implicit schemes, respectively. In this work, we will use the fully 
implicit scheme (f=1). For detailed discussion about advantages and disadvantages of 
each scheme we refer to the work of Patankar (1980 [62]). The use of the fully implicit 
integration scheme leads to 
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∫ ∫  (3-21)

and the  conservation equation of water (3-1) is now discretized in time and space as 
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In order to compute the flux Jw at two faces AW and AE at time ( )tt Δ+ , we use the finite 
difference method so that the gradient terms in Eq. (3-10), e.g. at AW, are evaluated as 
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Special care must be taken for the (space dependent) coefficients in Eq. (3-10), since 
simple linear interpolation between two grid nodes may lead to unrealistic results. Two 
different schemes are used here for the coefficients of diffusion and convection terms. 
For the coefficients of the diffusion terms, the average of the two nodal points is used 
(since the face lies at the middle, this corresponds to linear interpolation); but for the 
coefficients of the convective terms, the upstream weighting is used, since this was 
shown to lead to the physically correct solutions in multiple phase situations (Patankar, 
1980 [62]). The upstream weighting scheme is more complex as it requires knowledge 
about the direction of the gas or liquid flow. For example, PwAw kk

W
)()( =  if the flow is 

away from node P. 
 
The discretization of the conservation of water is now complete and can be written 
explicitly as 
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 (3-24)

 
The discretization procedure outlined above is only valid for a normal control volume 
element with three grid nodes. For elements, which are situated on the boundary of the 
calculation domain, only two grid nodes are involved in the discretized formulation and 
to compensate the boundary conditions of heat and mass transfer must be applied.  
 
Figure 3.2 shows how the two boundary elements can be identified and gives their 
corresponding boundary conditions. For the first element, the discrete version of water 
conservation writes 
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where ( ) tt
Aw E

J Δ+  can be computed as above and ( ) tt
wJ Δ+

1  is set to zero.  
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Figure 3.2 Boundary elements. 
 

 
For the Nth element, we get 
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with an internal surface AW and an external boundary condition given by Eq. (3-6) 

( )
( ) ( )

( ) ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
= Δ+Δ+

∞
Δ+

Δ+

Δ+
Δ+

tt
Nv

tt
Ng

v
tt

Ng

tt
N

v
tt

Ngtt
Nw PP

PP

TR

MP
J ,ln~

~
β  (3-27)

 

3.4. Discretization of the conservation equation of air   
 
The conservation equation of air is somewhat simpler than that of water. By following 
the same discretization procedure as in the last section, we get for internal volume 
elements 
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(3-29)

For the first boundary element (1) we have 
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However, for the boundary element (N), which is in contact with the drying air, the 
conservation of air is no more of use. The reason is that at the external drying surface 
the flux of air is controlled by the pressure of the drying air. Here instead of using the 
conservation equation (3-2), we have to consider the condition (3-8), which can be 
transformed into a more suitable form making use of the main variable aρ  (Perré and 
Turner, 1999 [71]) 
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and we get the discrete form 
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3.5. Discretization of the conservation equation of energy   
 
The conservation equation of energy (3-3) is discretized in a similar way as that of 
water. By following the development in section 3.3, Eq. (3-3) is rewritten as 

0=∇−Ψ
∂
∂

eJ
t

 (3-33)

where Ψ  is defined by 

( )aagvvgwwwsss hhhh ρερερερε +++=Ψ  (3-34)
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Consequently, the discretized conservation equation of energy for a normal control 
volume element becomes 
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For element 1, which is a boundary element impervious to heat transfer, we have 
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and for element N at the boundary open to drying air we get (using Eq. (3-7)) 
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Note that when the heat capacity is given in the form (see Eq. (2-55))  

aagvvgwwwssspp ccccCC ρερερερερρ +++==  (3-40)

the expression (3-34) should be rewritten as 
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where 0vhΔ  is the vaporization enthalpy at TR (see Appendix 1). 
 

3.6. Discretization for problems with spherical symmetry 
 
In drying analysis, the porous medium to be dried may be a particle of spherical shape. 
If, additionally, the drying conditions can be considered as spherically symmetric, the 
above one-dimensional discretization can be adapted to avoid the use of costly three-
dimensional simulations with complicated meshes and large number of unknowns. 
 
Figure 3.3 illustrates the shell-shape volume elements (only part of the shells is shown 
with the spherical interface SW and SE). We only consider the general conservation 
equation 
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 (3-42)
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to show how the discretization is done in this case. 
 
By integrating Eq. (3-42) over a control volume element and over time and by using the 
divergence theorem 
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we get 
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where ΔVP is the volume of the element, SE and SW are the areas of the two faces 
indicated in Figure 3.3. 
 
The gradients needed to evaluate the flux J are still computed in the same way as for the 
one-dimensional geometry presented in the last section. Only the weighting by (shell) 
volumes and (spherical) interfaces now plays an important role. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 3.3 Control volume mesh (bottom) and control volume element (top) for drying 
problems with spherical symmetry. 
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3.7. Numerical procedure for solving the discretized equations 
 
The above discretization of the conservation equations of water, air and energy leads to 
a nonlinear system of equations with unknown tt Δ+q  as follows 
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or in matrix form 
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To solve this system of equations, we use the Newton-Raphson method. The basic idea 
of this method comes from the Taylor expansion of F around the current value of tt Δ+q  
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F  is the Jacobian matrix of F. 

By neglecting the terms of order 2qδ  and higher and by setting ( ) 0qqqF =Δ+Δ+ tttt ,,δ  
we get a set of linear equations for the correction qδ  that move each component of F 
closer to zero 
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The correction qδ  is then added to the solution vector   

qqq δ+= Δ+Δ+ tt
old

tt
new  (3-50)

and the process is iterated until convergence is reached.  
 
For more details about the Newton-Raphson method, we refer to Press (1992 [82]). The 
main steps in our computational procedure are outlined hereafter.  
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Initial step: Set the drying time 0=dryingτ , set the total drying time totalτ , set an initial 
value for Δt, set the tolerance tol  for convergence and set the main variables to their 
initial values: ( ) ( ) ( )[ ]TNaNNaa TXTXTX 0000

2
0

2
0
2

0
1

0
1

0
1

0 ,,,,,,,,, ρρρ K=q  

Begin outer loop: while totaldrying ττ <  do 

 Set: ttt qq =Δ+ˆ  

Begin inner loop: while ( ) toltttt >ΔΔ+ ,,ˆ qqF  do 

Step 1. Compute ( )tttt Δ= Δ+ ,,ˆ qqFF  with the help of the 
discretization formulae presented in section 3.3÷3.6 

Step 2. Compute the correction: F
q

Fq ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
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−=
−

Δ+

1

ˆ ttδ   

Step 3. Solve the line search problem: 

( ) ( )ttsuch thatFind tttt
step

tt
step Δ<Δ+ Δ+Δ+ ,,ˆ,,ˆ:  qqFqqqF δλλ  

where the symbol ⋅  denotes the norm of vector: FFF ⋅= T . 

If no solution is found, reduce tΔ , set ttt qq =Δ+ˆ  and go to Step 1. 

Step 4. Update variables: qqq δλstep
tttt += Δ+Δ+ ˆˆ  

End inner loop 

Set: tdryingdrying Δ+=ττ  and tttt Δ+Δ+ = qq ˆ  

End outer loop 

Print out results 
 
In the above procedure, at each iteration of the outer loop, the value of tq  is known and 
the task is to find tt Δ+q  that satisfies (3-46). This task is fulfilled by the inner loop. The 
inner loop starts with the guessed value ttt qq =Δ+ˆ . During the course of the inner loop, 
the value of tt Δ+q̂  is updated according to the correction qδ  until tt Δ+q̂  satisfies (3-46). 

Note that the derivative 
j

i

q
F
∂
∂

 is computed using the finite difference formula: 
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 (3-51)

in which all the components of the vector qΔ  are set to zero except that the thj  
component is set to jqΔ . Theoretically, jqΔ  needs to be small enough compared with 
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qj. In our calculations, it is observed that 87 1010 −− ÷=Δ jq  always leads to good 
convergence. 
 
To summarize, in this chapter the control volume method is applied to discretize the 
governing equations of drying established in the last chapter. Besides the one-
dimensional discretization, problems with spherical symmetry are also considered. As 
result, a nonlinear system of equations is obtained with unknowns as state variables at 
gird nodes. The Newton-Raphson method is used to solve the resulting equations. In the 
next chapter the numerical method described here will be applied in the analysis of 
different drying problems. 
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Chapter 4 

NUMERICAL RESULTS 

4.1. Introduction 
 
In this chapter, numerical results of the drying simulation of porous media are 
presented. In the first part of the chapter, the drying of a material with well-known 
properties is considered. Evidently, it would be interesting to numerically investigate 
the drying behaviour of γ-Al2O3 particles since experimental works are realized with 
this material. Unfortunately, due to the fact that γ-Al2O3 particles have nano pores and 
due to the lack of material properties, the numerical investigation of γ-Al2O3 will only 
be reported in a future work. Instead, light concrete is chosen as a reference material 
because the material properties are available in literature (Perré and Turner, 1999 [71]). 
This reference material is used to understand the influence of parameters such as the 
geometry and material characteristics on drying kinetics. Firstly, the accuracy of the 
numerical simulations is checked by considering the accuracy of water and air flows. 
The influence of the space discretization on numerical results is also examined. Then, 
two geometrical configurations are studied: in the first, we consider the drying of a 
sphere of similar size as the γ-Al2O3 particles used in our experimental works; in the 
second, we examine the drying behaviour of a plate whose thickness is equal to the 
diameter of the sphere. The effect of geometric shape can then be investigated by 
comparing the drying kinetics of the two configurations.  
 
By numerically varying the material properties, a parametric study is realized to see 
how the three transport parameters (effective diffusivity, absolute permeability and 
effective thermal conductivity) influence the drying processes. Similarly, the influence 
of drying conditions such as the state of the drying air (relative humidity, temperature) 
and transfer coefficients as well as the initial condition of the sample (initial moisture 
content) is investigated. In addition, the effect of sample size is considered by varying 
the thickness (of the plate) or the radius (of the sphere). The results are compared with a 
simple diffusion model and a receding front model for the case of isothermal drying. 
 
In the second part of the chapter, the influence of the pore size distribution on the drying 
behaviour of porous materials is considered by applying the capillary model presented 
in Chapter 2 to calculate the material properties (capillary pressure, absolute and the 
relative permeabilities). The results are obtained for mono- and bimodal pore size 
distributions. A study is realized on the influence of the parameters of these 
distributions. When the capillary model is employed, the influence of other factors such 
as drying conditions and other material properties is also studied. Finally, the numerical 
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results obtained here are compared with the numerical simulations obtained by one-
dimensional capillary model proposed by Metzger and Tsotsas (2005 [55]) and two-
dimensional network model proposed by Irawan et al. (2006 [30]).  
 

4.2. The geometric progression mesh 
 
In drying simulations, both equidistant and non-equidistant meshes can be used. 
However with the same number of grid nodes (the same number of control volume 
elements), a non-equidistant mesh may be a better option. With a non-equidistant mesh, 
the mesh can be refined at places where large changes are expected to happen. In 
general, near the external exchange surface a fine mesh is needed to account for large 
gradients in the state variables.  
 
In our calculations, the meshes are built so that the distance between two consecutive 
grid nodes is gradually decreased from the centre of the sample (first node) to its 
exchange surface (last node) in a geometric progression way. If we define the mesh 
ratio mratio (≤ 1) as the ratio of the distances between the last two nodes and the first two 
ones 
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then the position of node i is given by 
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Note that in our analysis, the size of the sample is the distance from the impermeable 
side to the external exchange surface. 
 

4.3. Definition of total drying time 
 
For the determination of the total drying time dryτ , the average moisture content Xav and 
the equilibrium moisture content Xeq are needed. The average moisture content Xav is 
computed as follows 
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where Vtotal is the total volume of the sample, Xi and Vi are moisture content and volume 
of element i, respectively. The equilibrium moisture content Xeq is unique for a given 
drying condition and can be obtained from sorption isotherm.  
 
The drying process is considered to be completely finished when the moisture content 
everywhere in the sample reaches the value Xeq. This condition can be considered as 
satisfied when the average moisture content Xav reaches the value of Xeq. However, if 
this condition is satisfied, the drying time may become infinite. Therefore, for 
convenience, in our analysis the drying is considered as complete when Xav=Xeq+εeq, 
where εeq is a small positive number. The total drying time of the process is defined by 
taking the corresponding drying time τdry at this average value Xav. 
 

4.4. Drying simulation of a reference material: light concrete 
 
4.4.1. Material properties 
 
The material properties of light concrete used in this part are given by Perré and Turner 
(1999 [71]) with porosity ψ = 0.8, solid density 3kg.m2500 −=sρ  and heat capacity 

( ) 11.KJ.kg  4185840 −−+= XC ssp ρερ . The fully saturated material has its moisture 
content Xsat = 1.6. 
  
The sorption isotherm is   
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where Xirr = 0.07 is the irreducible moisture content. The saturation vapour pressure 
)(* TPv  is given by Antonie’s equation (see Eq.(A1-9) –  Appendix 1).  

The capillary pressure is computed from 
( )fwX

eTPc

3476.0104057.8)(40
−

×⋅⋅= σ  (4-8)

where the surface tension σ is a function of temperature (Eq. (A1-4) – Appendix 1) and 
Xfw is the moisture content of free water: Xfw = X – Xirr. 
 
The absolute permeability is taken as constant: K = 2×10-13 m2.   
 
The relative permeabilites for liquid kw and for gas kg phases are calculated from the 
following relationship 
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The effective diffusivity is calculated from 

gvaeff kD ⋅⋅= δ2.0  (4-11)

where δva is the binary diffusivity of vapour in air (Eq. (A1-13) – Appendix 1) and kg is 
the relative permeability of gas. 
 
The effective thermal conductivity has contributions of both solid and liquid (the 
contribution of gas is neglected). It is computed as 

( ) -1-1 K.  W.m46.0142.0 Xeff +=λ  (4-12)

 
 
4.4.2. Verification of the numerical results (cross check) 
 
The accuracy of the numerical simulations presented below can be checked by 
comparing the total change of moisture content with the integral of the evaporation flow 
rate. A similar check can be done for air.  
 
4.4.2.1 Accuracy of water flow ( err

wε ) 
 
There are two ways to calculate the amount of water, which has been removed after the 
drying process is finished. On the one hand, this amount of water can be calculated by 

( ) ( ) ( )[ ] totalendavstartavw VXXM ⋅⋅−=Δ 01 ρ  (4-13)

where ρ0 is the density of the solid matrix, Vtotal is the total volume of the sample, 
( )startavX  and ( )endavX  are the average moisture contents at the beginning and at the end 
of the drying process. On the other hand, wMΔ can be calculated by integrating the 
vapour flow of out of porous medium at the external boundary ( )NwJ  

( ) ( )∫=Δ
n

Nww JM
τ

0
2  (4-14)

where τn is the drying time at the end of the simulation process. The comparison of 
these two values ( )1wMΔ  and ( )2wMΔ  gives us the accuracy of the computed water 
flow: ( ) ( ) ( )121 www

err
w MMM ΔΔ−Δ=ε , which can be found in Appendix 2 for various 

sample radii and drying conditions. It is observed that the maximum error is 3.8%, and 
the typical error is less than 0.3 %. 
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4.4.2.2 Accuracy of air flow ( err
aε ) 

 
The accuracy of air flow can be estimated by comparing the total mass of air that flows 
into the sample and the difference between the total mass of air inside the sample at the 
end and at the beginning of the drying process. 

The total mass of air that flows into the porous medium during drying can be computed 
by considering the control volume element at the external exchange surface. The inward 
air flux into this element is the air flux into the porous medium. This inward air flux can 
be computed by the difference between the change of air content in this element and the 
outward flux from this element, its integral yields 

( ) ( ) ( )∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−

Δ
Δ⋅

=Δ
n

W
dtAJ

t
V

M WAa
NaN

a

τ ρ

0
1  (4-15)

where ( )NaρΔ  is the change of the average air density of the boundary element during 
time step Δt, VN  the volume of the element at the exchange surface, AW  the surface area 
of the west face of this element and ( )

WAaJ  is the air flux from this element into the next 
one.    
 
The difference between the total mass of air at the end and at the beginning of the 
drying process is  

( ) ( ) ( )
startN

i
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i
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⎦
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⎡
⋅−⎥

⎦

⎤
⎢
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⎡
⋅=Δ ∑∑

== 11
2 ρρ  (4-16)

where ( )iaρ  and Vi are the average air density and the volume of element i, 
respectively.  
 
By comparing the two values ( )1aMΔ  and ( )2aMΔ  given by the equations (4-15) and 
(4-16), the accuracy of air flow can be computed as: ( ) ( ) ( )121 aaa

err
a MMM ΔΔ−Δ=ε . 

The accuracy of air flow is reported in Appendix 2 for various sample radii and drying 
conditions. Similar to the estimation of εw, the maximum error is 5.5 % and the typical 
error is less than 0.3 %.  
 
4.4.3. Influence of space discretization 
 
In this section we examine how the space discretization (the number of gird nodes of the 
mesh and the way these nodes are distributed) influences the simulation results. 
 
4.4.3.1. Influence of number of nodes (elements)  
 
Firstly, the influence of the space discretization is investigated by changing the number 
of grid nodes (or elements) used in the control volume mesh for the same sample size. 
The mesh ratio is set to mratio = 0.2. The results are introduced in Figure 4.1 for a sphere 
sample with radius R = 2.5 mm. All drying conditions are taken as in the reference case 
presented below (see Section 4.4.4). 



Chapter 4                                                                                                                           Numerical Results 

 66

 
Theoretically, the finer the mesh (larger number of grid nodes is used), the more 
accurate the numerical results. It is observed that the number of the grid nodes has 
strong effect on the second drying period. If the used mesh is coarse (for example 5 
elements, the blue solid curve in Figure 4.1), large errors appear. It is evident that to 
account for sudden changes in the state variables (X, T and P), especially near the 
exchange surface where the gradients of these state variables are considerable, fine 
meshes are required. With a coarse mesh those strong gradients cannot be modelled 
correctly and the accumulated error will lead to incorrect drying rate curves. From 
Figure 4.1, it is observed that for our considered case, the mesh with N = 51 grid nodes 
seems to be suitable since larger N increases the computational time without significant 
gain in precision. 
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Figure 4.1 Influence of space discretization: drying rate curves for different number of 

elements (T∞ = 80oC and ϕ = 0). 
 

4.4.3.2. Influence of mesh ratio 
 
In this section, the influence of the mesh ratio mratio is considered. Numerical 
simulations are realized for a mesh of 51 grid nodes with different values of the mesh 
ratio mratio. All drying conditions are applied as in the reference case. The volume 
distributions of the elements are presented in Figure 4.2. The evaporation rates at the 
end of the simulations are plotted in Figure 4.3. In these figures, the dashed blue curve 
stands for the simulation results by using an equidistant mesh (mratio = 1). It can be seen 
that the drying rate curve is smoother with smaller mesh ratios (finer mesh at the 
exchange surface). If the mesh ratio is large, not only the large gradients are modelled 
with lower precision, but the duration of the first drying period is also overestimated. 
This is due to the fact the moisture content of the element at the exchange surface must 
reach the irreducible moisture content Xirr before the second drying period commences. 
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With a large mesh ratio, this element has large volume and it takes more time to reach 
Xirr. 
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Figure 4.2 Distribution of volumes of elements for different mesh ratios.  
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Figure 4.3 Influence of space disretization: drying rate curves for different mesh ratios 

(T∞ = 80oC and ϕ = 0). 
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4.4.4. Drying simulation for a sphere 
 
We examine here the drying of a sphere of light concrete with radius R = 2.5 mm. For 
the comparison purpose, the drying simulation in this section is considered as the 
reference case. The mesh used in our simulation contains 51 nodes. The mesh ratio 
mratio is set to 0.2. We use εeq = 10-17 in determining the total drying time (see Section 
4.3). The initial temperature of the sample is T0 = 20oC, the initial moisture content is X0 
= 1 (investigation of the influence of the initial moisture content will be discussed in 
Section 4.4.9 below) and the initial pressure is P0 = 1 bar for the whole sample. The 
boundary conditions applied to the sample are considered as symmetric. Therefore the 
drying problem of the sphere can be solved by the control volume method in one 
dimension. The heat transfer coefficient is α = 14.25 W.m-2.K-1 and mass transfer 
coefficient is β = 0.015 m.s-1. The drying air has vapour pressure of Pv,∞ = 0 and 
temperature T∞  = 80oC.  
 
The temporal evolution of moisture, temperature and pressure for approximately every 
0.5 mm in distance (corresponding to nodes 1, 6, 13, 21, 33 and 51 from the centre to 
the surface) is shown in Figure 4.4 to Figure 4.6. In Figure 4.4, the dashed curve 
presents the average moisture content. 
  
The profiles of moisture, temperature and pressure of the sample at different drying 
time are presented in Figure 4.7 to Figure 4.9. The moisture profiles are plotted at the 
times when the average moisture content Xav has the values 0.3, 0.2, 0.1, 0.07 and 0.04 
which correspond to the drying time of 15.0, 17.1, 19.5, 20.4 and 21.4 min. Two more 
profiles are shown for each variable (moisture, temperature and pressure) at two 
characteristic times in the drying process. The first profile is at the end of the first 
drying period when the moisture content at the exchange surface drops below the 
irreducible moisture content (and no more free water is left at the surface), which 
corresponds to the critical moisture content Xcr = 0.1774 and the drying time τ = 17.6 
min. The second is at the time when all free water has been removed from the sample, 
which corresponds to τ  = 23.1 min. 
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Figure 4.4 Drying of a sphere of light concrete: temporal evolution of moisture content 

for approximately every 0.5 mm in distance (T∞ = 80oC and ϕ = 0).  
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Figure 4.5 Drying of a sphere of light concrete: temporal evolution of temperature  

for approximately every 0.5 mm in distance (T∞ = 80oC and ϕ = 0).  
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Figure 4.6 Drying of a sphere of light concrete: temporal evolution of pressure 

for approximately every 0.5 mm in distance (T∞ = 80oC and ϕ = 0). 
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Figure 4.7  Drying of a sphere of light concrete: moisture profiles  

(T∞ = 80oC and ϕ = 0).  
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Figure 4.8 Drying of a sphere of light concrete: temperature profiles 

(T∞ = 80oC and ϕ = 0). 
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Figure 4.9 Drying a sphere of light concrete: pressure profiles  

(T∞ = 80oC and ϕ = 0). 
 
From the above figures some important drying characteristics can be observed. Starting 
from a uniform initial moisture content X0 = 1 (corresponding to saturation S0 = 62.5%) 
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over the whole sample, after a short warm-up period, the moisture content is reduced at 
a constant rate (constant slope of the curves in Figure 4.4). This is called the first drying 
period (or constant rate drying period). During the first drying period (approximately 
17.6 minutes), free water is brought to the surface by capillary forces where heat 
supplied by the convectional air is used for the rapid vaporisation of water. Due to this 
reason, the sample remains at the wet bulb temperature of the drying air (Twb = 23.81oC 
Figure 4.5). The moisture gradient increases (relative permeability kw decreases) and the 
moisture profiles as function of radius appear fairly flat (Figure 4.7 drying time 15.0 
and 17.1 min). Within this period, the pressure stays constant at the atmospheric 
pressure (Figure 4.9). As the drying process continues, the moisture content at the 
surface reaches the irreducible value Xirr = 0.07 (the average moisture content of the 
whole sample reaches the critical moisture content Xcr = 0.1774) and the second drying 
period commences. In the second drying period, the dominating forces are viscous 
forces. The front separating the regions of adsorbed water and free water recedes from 
the surface into the sample (Figure 4.7, drying time from 17.6 to 23.1 min). This 
process is finished when the moisture content everywhere in the sample is below the 
irreducible value, i.e. when all free water of the sample has been removed (Figure 4.7, 
drying time 23.1 min). During this period, heat transfer is almost unchanged (resistance 
in the sample is slightly increased), but mass transfer experiences an important 
additional resistance. Heat is used not only to evaporate water but also to increase the 
temperature of the sample. Therefore, the temperature of the sample starts to rise from 
the wet bulb temperature. The centre of the sample stays cooler than the outside (Figure 
4.8, drying time from 19.5 to 23.9 min). This is due to the fact that the evaporation of 
water takes place not at the surface but at a place inside the sample (front). The free 
water region heats up until a new equilibrium is attained (if we assume a stationary 
front). At the front, heat is consumed for evaporation. As we can see from Figure 4.6, in 
the second drying period, an over-pressure appears due to Stefan effect (see Section 
4.4.6 below). The pressure inside the sample increases to its maximum value (Figure 
4.9, drying time 23.1 min) whereas the pressure at the surface always stays at the 
atmospheric pressure (1 bar). When the receding front has passed through the whole 
sample, the sample becomes dry and the entire porous medium is in the hygroscopic 
zone. The moisture content goes down to the equilibrium value. The temperature of 
solid gradually approaches the dry bulb temperature of the drying air (T∞ = 80oC – 
Figure 4.5) and the pressure falls back to the atmospheric pressure (Figure 4.6). It is 
clear that it takes a longer time for the element at the centre to reach equilibrium than 
for the others. The total drying time of this drying process is τdry = 28.4 min. 
 
4.4.5. Drying simulation for a plate and comparison with a sphere  
 
In order to study the effect of geometry on drying behaviour, the drying of a plate is 
considered and its drying behaviour is compared with that of the sphere presented in the 
previous section. The thickness of the plate is assumed to be equal to the diameter of the 
sphere. The same material properties and drying conditions (T∞, α, β, ϕ, etc.) are 
applied. The plate is considered to have infinite width and length so that mass and heat 
transfers take place only on the two surfaces of the plate in a symmetric way. Because 
of the symmetry of the problem, only half of the plate (from the middle plane to one of 
the surfaces) needs to be modelled by the control volume method in one dimension. The 
mesh used in our calculation is the same as that used in the drying simulation of the 
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sphere above (51 grid nodes with mesh ratio mratio equal to 0.2). The average moisture 
content is plotted as function of time for the two geometries in Figure 4.10. The 
evaporation rate and the normalized drying rate curves are given in Figure 4.11. The 
moisture profiles are introduced in Figure 4.12. These profiles are plotted at the times 
when the average moisture content Xav has the values  0.3, 0.2, 0.1 and 0.07, at the end 
of the first drying period and at the time at which Xfw = 0.  
 
The results show that the evaporation rate in the first drying period depends only on the 
state of drying air (Pv,∞, T∞) and the transfer coefficients (α and β). Therefore with the 
same drying conditions the evaporation rates of both samples (sphere and plate) are 
identical in the first drying period (Figure 4.11.a). However, because the surface over 
volume ratio is large for the sphere, the whole drying process of the sphere is shorter 
(28.5 minutes compared to 90.6 minutes of the plate – Figure 4.10). In the first drying 
period, the moisture of the sphere is reduced faster than that of the plate (Figure 4.10) 
and the sphere has lower critical moisture content Xcr (0.1774 compared to 0.2020 - 
Figure 4.11.a). This leads to a different of ξ at the beginning of the process (Figure 
4.11.b). From Figure 4.12 we can see that in the first drying period, there is a little 
difference in moisture profiles for the two cases. But in the second drying period (Xav = 
0.1 and 0.07 – Figure 4.12, for example), due to different weighting of the control 
volume element, we have different profiles. For the plate, the evaporation front has 
reached much further and the drying rate is lower (Figure 4.11.a). Since light concrete is 
a hygroscopic material, the evaporation rate goes down to zero at the end of the process 
in both cases. 
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Figure 4.10 Comparison between sphere and plate: evolution of average moisture 

content (T∞ = 80oC, ϕ = 0). 
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Figure 4.11 Comparison between the drying behaviour at T∞ = 80oC and ϕ = 0 of 
sphere and plate:  

a) drying rate curve and b) normalized drying rate curves  
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Figure 4.12 Moisture profiles for sphere (solid curves) and plate (dashed curves)  

(T∞ = 80oC and ϕ = 0). 
 
4.4.6. Analysis of fluxes of air, vapour and liquid water during drying 
 
In order to analyze liquid water, air and vapour fluxes, we consider the drying of a plate 
of light concrete with drying air at T∞ = 80oC and ϕ = 0. To have a better view of the 
fluxes during the drying process the sample size of the plate is chosen to be of 20 mm 
(from the impermeable plane to the external surface). A mesh with 51 elements and 
mesh ratio mratio = 0.2 is used. All other drying conditions and material properties are 
the same as in the reference case. 
 
The simulation results are presented in Figure 4.13 to Figure 4.16. These figures present 
the outward fluxes computed at the east faces of elements 1, 4, 8, 12, 17, 22, 29, 38 and 
51 (for approximately every 2.5 mm in distance). Note that element 1 is positioned at 
the centre and element 51 at the exchange surface of the plate. Figure 4.13 presents the 
total outward fluxes of water (containing convection term of water, vapour and 
diffusion term of vapour). The vapour flux (evaporation flux) out of the porous medium 
at the external boundary is also given in this figure. The outward liquid fluxes are 
presented in Figure 4.14. The outward diffusion fluxes of vapour are introduced in 
Figure 4.15. From these results we can see that after a short period of heating up (zone 
I, Figure 4.13 and Figure 4.14) the liquid flux curves are nearly flat during the constant 
rate period (zone II). During this period, air is saturated with vapour and water is 
removed by capillary forces from everywhere at almost the same rate. From centre to 
surface these rates add up. As the sample begins to dry out, the falling rate period 
begins (zone III). From this point the vapour diffusion controls the process. At the end 
of the second period there is a final increase of liquid flow. This is due to the existence 
of an over pressure (see Figure 4.16). The final increase of liquid flow increases to a 
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local maximum value when the gas pressure reaches the maximum value. When all 
vapour is removed all fluxes go down to zero. It is found that the diffusive molar air 
flux and the diffusive molar vapour flux are the same but in opposite direction 
( diff

v
diff
a NN && −= ). This is because the (receding) front of evaporation is like a semi-

permeable boundary for air flow, and in the presence of the diffusion process (due to 
concentration gradients) a convective (Stefan) flow occurs. Indeed, we found that net 
flux of air (total of convection and diffusion fluxes of air) is almost to zero. This means 
that air is almost immobile. A comparison between convection flux of air and 
convection flux of vapour shows that they are the same ( conv

v
conv
a NN && = ). This means that 

in terms of convection, air and vapour move together.  
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Figure 4.13 Drying of a plate: total water flux for approximately every  

2.5 mm in distance and vapour flux at the boundary (fat curve) (T∞ = 80oC and ϕ = 0). 
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Figure 4.14 Drying of a plate: liquid water flux for approximately every  

2.5 mm in distance (T∞ = 80oC and ϕ = 0).  
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Figure 4.15 Drying of a plate: diffusion of vapour flux for approximately every 2.5 mm 

in distance (T∞ = 80oC and ϕ = 0).  
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Figure 4.16 Drying of a plate: temporal evolution of pressure for approximately every 

2.5 mm in distance (T∞ = 80oC and ϕ = 0). 
 
4.4.7. Influence of effective transport parameters – Parametric study 
 
The aim of this section is to study the sensitivity of the drying behaviour with respect to 
different model parameters such as effective diffusivity, effective thermal conductivity 
and absolute permeability, which are functions of moisture content (or saturation). The 
investigation is carried out by varying these parameters numerically and comparing the 
simulation results with the reference case analyzed in Section 4.4.4 above. The material, 
drying conditions, sample geometry and mesh are the same as in the analysis of Section 
4.4.4.  
 
4.4.7.1  Influence of effective diffusivity 
 
Five different cases of effective diffusivity (the reference value of Deff is scaled by 
factor 0.1, 0.5, 1, 2, and 3) are considered. The decrease of the effective diffusivity Deff  
can be related to the increase of the tortuosity of the porous medium and on the 
contrary, the increase of Deff  can be linked to the decrease of tortuosity. The numerical 
results (drying rate curves) are plotted in Figure 4.17. The temporal evolutions of 
moisture profiles at the end of the simulation for the two extreme cases and the 
reference case (with effective diffusivity 0.1Deff, 3Deff and Deff) are presented in Figure 
4.18.  
 
The results indicate that the effective diffusivity has no effect during the first drying 
period (the curves coincide for Xav ≥ Xcr = 0.1774) since in this period water migrates as 
liquid by capillary forces. But in the second drying period, the effective diffusivity 
controls directly the migration of water, now as vapour: the higher the value of Deff the 
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higher the drying rate (Figure 4.17). By looking at the temporal evolution of moisture 
profiles (Figure 4.18), we can see that with a smaller Deff, the moisture profiles are 
steeper since there is more resistance to the movement of vapour. 
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Figure 4.17 Influence of effective diffusivity: drying rate curves (T∞ = 80oC and ϕ = 0). 
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Figure 4.18 Influence of effective diffusivity: moisture profiles for 0.1Deff (dotted 

curves), Deff (solid curves) and 3Deff (dashed curves)  
(T∞ = 80oC and ϕ = 0). 
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4.4.7.2 Influence of effective thermal conductivity 
 
The effective thermal conductivity depends on the thermal conductivities of solid and 
water as well as on saturation. In this section, only the thermal conductivity of solid λs 
is varied since we keep the same liquid and we assume parallel heat conduction in both 
phases. In our analysis, for the reference case, the thermal conductivity of solid is λs = 
0.142 W.m-1.K-1 (Eq. (4-12)). The results from Figure 4.19 show that the effective 
thermal conductivity has little effect on the drying rate curve (the difference can only be 
seen when varying λs by a factor of 100; of course, 0.01λs is unrealistically small). In 
fact, λeff  affects the warming-up period (higher values of λeff cause a slight speed up in 
the initial warming up period). This is not clearly visible in Figure 4.19 because of small 
sample size (2.5 mm in radius). In the second drying period, if λeff is decreased, the 
evaporation rate is decreased due to the decreased rate of heat supply to the place of 
evaporation by conduction. 
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Figure 4.19 Influence of effective thermal conductivity: drying rate curves for different 

values of λs (T∞ = 80oC and ϕ = 0). 
 

4.4.7.3 Influence of absolute permeability 
 
The absolute permeability characterizes the ability of a single fluid phase to move 
through the porous medium. This parameter depends only on pore structure and is fluid 
independent. The influence of this parameter is mainly found on the first drying period. 
As it can be seen from Figure 4.20, the duration of the first drying period decreases 
when the absolute permeability decreases since it is more difficult for water to be 
pumped at the initial rate of evaporation over long distances. Therefore the external 
surface dries out at a higher average moisture content (the moisture content at the 
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surface reaches the irreducible value Xirr sooner). Different values of the absolute 
permeability and the corresponding critical moisture contents Xcr are given in Table 4.1  

Table 4.1 Absolute permeability and critical moisture content. 

K (⋅10-13 m2) Xcr  
0.2 0.2418 
0.5 0.2030 
1.0 0.1774 
2.0 0.1575 
5.0 0.1349 

 
The temporal evolution of moisture profiles for the two extreme cases (0.2K and 5K) is 
presented in Figure 4.21. These results are plotted for average moisture content of 1, 
0.8, 0.6, 0.4, 0.2 and 0.05. The fat curves represent the end of the first drying period. As 
we can see from this figure, the moisture profiles are flatter with larger value of the 
absolute permeability.  
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Figure 4.20 Influence of absolute permeability: drying rate curves for different values 

of K (T∞ = 80oC, ϕ = 0). 
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Figure 4.21 Influence of absolute permeability: moisture profiles for 0.2K (solid 

curves) and 5K (dashed curves) (T∞ = 80oC and ϕ = 0). 
 
Our parametric study leads to the conclusion that, among the different model 
parameters, the drying behaviour is sensitive to the effective diffusivity and to the 
absolute permeability. While the effective diffusivity only changes the drying kinetics 
in the second drying period, the absolute permeability mainly influences the critical 
moisture content. When these results are compared (in phenomena and characteristics of 
the curves) with those obtained by the previous work of Nasrallah and Perré (1988 [58]) 
on brick, which is a similar kind of porous medium as light concrete, a good agreement 
can be observed.  
 
4.4.8. Influence of the state of bulk air on drying behaviour 
 
The question arises, how the state of the bulk air (drying air) and the transfer 
coefficients α and β affect the drying behaviour. In order to answer this question, the 
relative humidity, the temperature and the mass transfer coefficient (or velocity) of the 
drying air are varied numerically in the drying simulation of a sphere of light concrete. 
The simulation results are then compared with the results obtained in the reference case 
presented in Section 4.4.4. Except the mentioned parameters, the same material, drying 
conditions, sample geometry and mesh are used. 
 
4.4.8.1.  Influence of relative humidity 

In this section, the influence of the relative humidity of the drying air ϕ is investigated. 
The values of the relative humidity ϕ, the corresponding values of partial vapour 
pressure Pv,∞, the wet bulb temperature Twb, the equilibrium moisture content Xeq, the 
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critical moisture content Xcr and the evaporation rate of the first drying period Ivm ,&  are 
reported in Table 4.2 (drying at T∞ = 80oC). 

Table 4.2 Relative humidity and some corresponding relevant values 

ϕ (%) Pv,∞ (bar) Twb (oC) Xeq  Xcr  Ivm ,& (g.m-2.s-1) 
0 0.0000 23.81 0.0000 0.1774 0.3285 
5 0.0237 32.50 0.0018 0.1674 0.2790 
10 0.0473 38.85 0.0036 0.1604 0.2433 
20 0.0947 47.98 0.0074 0.1506 0.1909 
40 0.1893 60.02 0.0158 0.1374 0.1206 
60 0.2840 68.30 0.0257 0.1267 0.0712 
80 0.3787 74.71 0.0386 0.1149 0.0324 

The drying rate curves are plotted in Figure 4.22. It is observed that when the relative 
humidity is increased the evaporation rate of the first drying period Ivm ,&  is decreased 
(because of the reduced driving force), the critical moisture content Xcr is lower (viscous 
forces that must be overcome by capillary forces are smaller) and the equilibrium 
moisture content Xeq is increased (according to sorption isotherm). The higher the 
relative humidity, the longer the drying process (28.5 min when ϕ = 0 as compared to 
287.0 min when ϕ = 80%). A comparison of the moisture profiles for two extreme cases 
(ϕ = 0 and ϕ = 80%) is given in Figure 4.23. These results are plotted for average 
moisture content of 0.4, 0.2 and 0.1 as well as when the first drying period is finished 
(fat curves) and when all free water has been removed. The results indicate that with 
lower relative humidity (ϕ = 0) the moisture profiles are steeper due to higher drying 
rates.   
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Figure 4.22 Influence of relative humidity of drying air: drying rate curves  

(for T∞ = 80oC). 
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Figure 4.23 Influence of relative humidity of drying air: comparison of moisture 

profiles at ϕ = 0 (solid curves) and ϕ = 80% (dashed curves) (for T∞ = 80oC). 
 
4.4.8.2. Influence of temperature of the drying air  
 
The influence of the temperature of the bulk air is examined by considering five 
different temperature cases with zero relative humidity ϕ. The results are presented as 
drying rate curves in Figure 4.24 and as normalized drying curves in Figure 4.25. It can 
be observed that if the temperature of the bulk air is increased, the wet bulb temperature 
is increased and therefore the saturation vapour pressure at the surface is higher 
resulting in a higher initial drying rate Ivm ,&  as we can see in Table 4.3. For higher 
drying rates, the viscous forces are larger which leads to an increase in the critical 
moisture content. The slowest process is at 20oC (approximately 145.0 min of drying) 
and the fastest is at 120oC (approximately 26.0 min). If the wet bulb temperature Twb of 
the bulk air is smaller than the initial temperature of the sample T0, a cooling process 
will take place before the first drying period starts (T∞ = 20 oC and 60oC in Figure 4.24). 
On the contrary, if the wet bulb temperature is greater than the initial temperature of the 
sample Twb > T0, a heating up period starts at the beginning of the process (T∞ = 80 oC, 
100 oC, and 120oC – Figure 4.24). 
 
It can be seen from the drying curves (especially Figure 4.25) that in the second drying 
period the curves are not linear and become more and more convex when the 
temperature is increased. This phenomenon is due to the heating up of the solid phase, 
which is more important for larger temperature difference between the drying air and 
the sample. A comparison for two extreme cases (T∞ = 20 oC and T∞ = 120oC) is given 
in Figure 4.26 where moisture profiles are plotted for Xav = 0.4, 0.2 and 0.1 together 
with the end of the first drying period (fat curves) and when Xfw = 0 holds everywhere in 
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the sample. These results show that the effect is similar for deceasing of ϕ and 
increasing of T∞. 

Table 4.3 Influence of temperature of drying air on drying behaviour (Pv,∞  = 0). 

T∞(oC) Twb(oC) Xcr  Ivm ,& (g.m-2.s-1) 

20 3.68 0.1535 0.0933 

60 18.56 0.1710 0.2404 

80 23.81 0.1774 0.3285 

100 28.19 0.1830 0.4203 

120 31.94 0.1878 0.5172 
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Figure 4.24  Influence of temperature of drying air: drying rate curves (for ϕ = 0). 
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Figure 4.25 Influence of temperature of drying air: normalized drying curves (ϕ = 0). 
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Figure 4.26 Influence of temperature of drying air: comparison of moisture profiles for 

T∞ = 20oC (solid curves) and T∞ = 120oC (dashed curves) (for ϕ = 0). 
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4.4.8.3. Influence of transfer coefficients 
 
Figure 4.27 and Figure 4.28 present the influence of mass transfer coefficient β on the 
drying kinetics for five different cases of drying of a sphere of light concrete (by 
convectional air of zero relative humidity and temperature T∞ = 80oC). Note that the 
heat transfer coefficient α is changed together with the mass transfer coefficient β (the 
ratio βα  is 950). In our investigation, the assumption of symmetric boundary 
conditions is applied. The results show that if the mass transfer coefficient β (or in other 
words the velocity v of the drying air) is increased, the drying rate of the first drying 
period Ivm ,&  is increased and the critical moisture content Xcr is increased as well. The 
values of β , Ivm ,& , Xcr, v together with the Reynolds number Re are reported in Table 
4.4. The velocity v can be computed by using the following relationship 

[ ]( )
η

ρβα
λ

α ⋅⋅
=⋅=

⋅
=

⋅⋅+=

−−− dvKmWsmd Re;...950;Nuwith

PrRe664.02Nu

121

3/12/1

 (4-17)

where Nu, Re and Pr are respectively the Nusselt, Reynolds and Prandtl number, d is 
the diameter of the particle, β the mass transfer coefficient, α the heat transfer 
coefficient, ρ the density and η the dynamic viscosity of drying air. These quantities are 
computed at the average temperature of drying air and the initial temperature of the 
sample. 
 
Among the investigated cases, the fastest drying process happens when β = 0.05 m.s-1 
(approximately 12.2 min) and the slowest happens when β = 0.015 m.s-1 (approximately 
28.4 min).  

Table 4.4 Influence of mass transfer coefficient on drying behaviour (T∞ = 80oC, ϕ = 0). 

β (m.s-1) Re v (mm.s-1) Xcr  Ivm ,& (g.m-1.s) 

0.015 0.879 3.210 0.1774 0.3275 

0.020 5.640 20.602 0.1826 0.4366 

0.030 27.557 100.665 0.1978 0.6550 

0.040 66.002 241.104 0.2104 0.8734 

0.050 120.974 441.918 0.2212 1.0917 
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Figure 4.27 Influence of transfer coefficients: drying rate curves                                 
(for T∞ = 80oC and ϕ = 0). 
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Figure 4.28 Influence of transfer coefficients: normalized drying curves  

(for T∞ = 80oC and ϕ = 0). 
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4.4.9. Influence of initial moisture content 
 
The influence of the initial moisture content of the sample is now considered. In 
principle, there are three types of initial moisture content corresponding to three 
different states of the porous medium: fully saturated medium (gas phase does not 
exist), unsaturated medium and completely dry medium (liquid phase does not exist). In 
this work, only unsaturated medium is treated directly. In the two other cases, 
difficulties appear in defining a set of rules to distinguish the three different states at 
each node of the mesh (Turner and Perré, 1996 [107]).     
 
The influence of the initial moisture content on the drying behaviour is plotted in Figure 
4.29 for initial moisture content X0 = 1, 1.2, 1.4 and 1.58. Note that the sample is fully 
saturated at Xsat = 1.6. The results show that X0 has effect only on the total drying time 
of the process. The evaporation rate and the critical moisture content are unchanged. 
The drying rate curves are identical in the second drying period. At a higher initial 
moisture content, more moisture has to be evaporated in the first drying period and the 
total drying process is therefore longer. The longest process is at X0 = 1.58 (43.0 min) 
and the shortest at X0 = 1 (28.4 min). 
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Figure 4.29 Influence of initial moisture content: evolution of average moisture content 

(for T∞ = 80oC, ϕ = 0). 
 
4.4.10. Isothermal and non-isothermal drying 
 
The isothermal drying and non-isothermal drying are compared in this section for the 
sphere sample mentioned above (R = 2.5 mm, N = 51 and mratio = 0.2). In this 
investigation, the drying air has temperature T∞ = 20oC and relative humidity ϕ = 50%.  
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In order to model the isothermal case, we enhance heat transfer by setting α = 6000 
W/m2/K and λs = 6000 W/m/K. For T∞ = 20°C in the isothermal case, the imaginary wet 
bulb temperature is 19.95°C while this quantity is 13.17oC in the non-isothermal case. 
In both cases, the variation of the gas pressure is almost identical (13.3 mbar) and the 
equilibrium moisture content is Xeq = 0.0205. 
 
The numerical results are presented in Figure 4.30 to Figure 4.32. The evaporation rate 
in the first period and the critical moisture content for the isothermal case are 

1310.0, =Ivm& g.m-2.s-1 and Xcr = 0.1538. These values are 0.0394 g.m-2.s-1 and 0.1320 
for the non-isothermal case. In the isothermal case, the initial drying rate is higher 
compared to the non-isothermal case (Figure 4.30) since in the first drying period of the 
non-isothermal case, a cooling to the wet bulb temperature takes place (Figure 4.31) and 
the temperature rises back to the initial value (T0 = 20oC) in the second drying period. 
For the isothermal case, the temperature of the sample stays almost constant (changing 
less than 0.06K during the whole drying process, see Figure 4.32). As a consequence, 
the total drying process is significantly longer in the non-isothermal case (290.9 minutes 
compared to 99.2 minutes). Clearly, heat transfer must be modelled to obtain realistic 
results.  
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Figure 4.30 Isothermal and non-isothermal drying: drying rate curves  

(for T∞ =20oC and ϕ = 50 %). 
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Figure 4.31 Non-isothermal drying: temporal evolution of temperature  

(for T∞ =20oC and ϕ = 50 %). 
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Figure 4.32 Isothermal drying: temporal evolution of temperature  

(for T∞ =20oC and ϕ = 50 %). 
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4.4.11. Influence of sample size on total drying time  
 
4.4.11.1.   Influence of sample size using continuous model 

It is of course easy to understand that with the same drying conditions, it takes more 
time to dry a larger sample but the total drying time is not necessarily proportional to 
the size of the sample. An investigation about the influence of sample size on total 
drying time τdry is realized for the drying of a sphere and a plate of light concrete by 
varying the radius R or thickness 2L, respectively. The drying air has temperature T∞ = 
80oC and relative humidity ϕ = 0. The mesh ratio mratio = 0.2 is used. The number of 
nodes on the mesh is chosen corresponding to the sample size so that the numerical 
error is acceptable while the computational time is not too high. The total drying time 
τdry is defined as the time at which the average moisture content reaches the value Xend = 
10-3 or 10-5.  
 
The influence of sample size on drying time is presented in Table 4.5, Figure 4.33 and 
Figure 4.34. The drying rate curves are presented in Figure 4.35 for spheres and in 
Figure 4.36 for plates. It is observed that for a larger value of the sample size, the 
critical moisture content is higher (the constant rate period is shorter) and the drying 
rate in the falling rate period is lower. The drying times versus sample size for Xend = 10-

3 and Xend = 10-5 are plotted in logarithmic scale in Figure 4.37. Obviously, the drying of 
a plate sample is longer than the drying of a sphere (of diameter equal to the thickness 
of the plate). From Figure 4.37, we can see that the slopes of the curves are different for 
Xend = 10-3 and Xend = 10-5 due to the difference of important mechanism (diffusion) at 
the end of drying. The results for both plate and sphere show that the drying time is not 
a linear function of the sample size: τdry increases more than linearly with R and L. 

Table 4.5 Influence of sample size on drying of sphere and plate (T∞ = 80oC, ϕ = 0). 

 R or L 
(mm) N Xcr  dryτ  (min) 

(Xend =10-3) 
dryτ  (min) 

(Xend =10-5) 
1 31 0.1499 9.0 9.3 

1.5 41 0.1613 13.8 14.2 
2.5 51 0.1774 23.7 24.5 
5 101 0.2074 51.0 55.2 

7.5 151 0.2279 82.2 90.1 
10 151 0.2436 116.4 128.0 

12.5 151 0.2577 154.7 181.7 

sphere 

15 151 0.2704 195.5 226.7 
1 31 0.1673 27.5 28.3 

1.5 41 0.1805 42.1 43.5 
2.5 51 0.2020 72.9 75.9 
5 101 0.2424 161.5 173.2 

7.5 151 0.2690 262.3 284.0 
10 151 0.2901 377.8 423.7 

12.5 151 0.3090 505.9 568.4 

plate 

15 151 0.3262 653.7 737.1 
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Figure 4.33 Influence of sample size on the drying of a sphere: evolution of average 
moisture content for different sample radii (T∞ = 80oC and ϕ = 0). 
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Figure 4.34 Influence of sample size on the drying of a plate: evolution of average 

moisture content for different L (T∞ = 80oC and ϕ = 0). 
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Figure 4.35 Influence of sample size on the drying of a sphere: drying rate curves for 

different sample radii (T∞ = 80oC and ϕ = 0). 
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Figure 4.36 Influence of sample size on the drying of a plate: drying rate curves for 

different L (T∞ = 80oC and ϕ = 0). 
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Figure 4.37 Drying time versus sample size for Xend = 10-3 (solid curves)  

and Xend = 10-5 (dotted curves) (T∞ = 80oC and ϕ = 0). 
 
4.4.11.2.  Influence of sample size using three different models for isothermal drying  
 
The influence of sample size on drying time is now considered for isothermal drying of 
a spherical particle of light concrete by using three different models: the diffusion 
model, the continuous model and the receding front model. For all our considered cases 
below, the isothermal drying is set at T∞ = 20oC, drying air has zero moisture content, 
its pressure is set to 1 bar and the mass transfer coefficient is β = 0.015 m.s-1. The initial 
moisture content is X0 = 1 kg.kg-1.  
 
Diffusion model 
 
We are using here a simple diffusion model for a sphere 

⎟
⎠
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∂
∂

∂
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=
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rrt
trX *2
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where r is the radial coordinate and the diffusion coefficient δ* takes the constant value 
of 2.6⋅10-5 m2.s-1. 
 
The boundary conditions for a sphere of radius R are (Krischer, 1992 [40]): 
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 (4-19)

and  
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where ρs is the density of the solid and vm&  is the evaporation rate, which can be 
computed as 
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where the vapour pressure Pv is given by sorption isotherm (see Eq. (4-7)). 
 
The system of equations (4-18)÷(4-21) is solved by using the PDE solver pdepe in 
MATLAB. Numerical results presented in Table 4.6 show the drying time as a function 
of the sample radius (N is the number of grid nodes used in simulation). 
 

Table 4.6  Influence of particle size on drying time by diffusion model  
(isothermal drying at T∞ = 20oC, ϕ = 0). 

 

R (mm) N dryτ  (min) 
(Xend =10-3) 

dryτ  (min) 
(Xend =10-5) 

1.0 31 11.7 13.4 
1.5 41 17.6 20.2 
2.5 51 29.3 33.6 
5.0 101 58.5 67.2 
7.5 151 87.8 100.8 
10.0 151 117.1 134.4 
12.5 151 146.3 168.2 
15.0 151 175.6 201.5 

 
Receding front model 
 
In this part, a simple receding front model is used. In this model, we assume that there is 
only vapour in the dry zone and in the wet zone only liquid exists (fully saturated pores, 
see Section 1.3.2). Adsorbed water is assumed to be negligible. Diffusion takes place in 
dry zone. For a plate, the relationship between the dry-wet front position and the 
momentary drying rate is 
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where β is the mass transfer coefficient at the surface and s is the position of the font. 
The diffusion coefficient δ* is computed as an effective diffusivity (Eq. (4-11)) with 
saturation S = 0. As we can see in this equation, the mass transfer resistance is obtained 
by addition: 1/β is the resistance in the boundary layer and s/δ* is the resistance in the 
dry zone. For a spherical geometry, diffusion is through a shell with inner radius R-s 
and outer radius R, therefore the resistance in the dry zone can be computed as 
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( )][ * sRsR −⋅ δ  and the time needed to evaporate the amount of water contained in a 
shell is 

v

w

mA
V

t
&⋅⋅

Δ⋅
=Δ

ψ
ρ

 (4-23)

where A is the surface area of the sphere, ΔV  the volume of the shell and ψ  the 
porosity. 
 
Based on Eqs. (4-22) and (4-23), for every value of s we have a set of the three 
values ( )vmtX &,,Δ . From these values, the drying curves can be built. Numerical results 
presented in Table 4.7 show the drying time as a function of the sample radius (N is the 
number of grid nodes used in simulation). 
 

Table 4.7  Influence of particle size on drying time by receding front model  
(isothermal drying at T∞ = 20oC, ϕ = 0). 

 

R (mm) N dryτ  (min) 
(Xend =10-3) 

dryτ  (min) 
(Xend =10-5) 

1.0 1000 64.0 65.0 
1.5 1500 124.2 126.5 
2.5 2500 301.0 307.4 
5.0 5000 1072.0 1097.8 
7.5 7500 2313.2 2371.1 
10.0 10000 4024.2 4127.4 
12.5 12500 6205.5 6366.7 
15.0 15000 8857.1 9088.8 

 
Continuous model 

The continuous model is now applied for isothermal drying. Conditions for the 
isothermal drying “version” of the continuous model are given in Section 4.4.10. 
Numerical results presenting the drying time as a function of the sample radius are 
introduced in Table 4.8 (N is the number of grid nodes used in simulation). 

Table 4.8  Influence of particle size on drying time by continuous model  
(isothermal drying at T∞ = 20oC, ϕ = 0). 

R (mm) N dryτ  (min) 
(Xend =10-3) 

dryτ  (min) 
(Xend =10-5) 

1.0 31 13.8 16.7 
1.5 41 22.4 30.6 
2.5 51 43.5 56.1 
5.0 101 121.7 170.0 
7.5 151 232.2 330.5 
10.0 151 387.3 570.7 
12.5 151 562.6 837.6 
15.0 151 781.5 1156.5 
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Comparison 
 
A comparison is presented in Figure 4.38 and Figure 4.39 for the case R = 2.5 mm. As 
we can see from Figure 4.39, all the three models capture the first value of evaporation 
rate =Ivm ,&  -1-2 .sg.m262.0  since for all three models the mass transfer is initially only 
controlled by the boundary layer. The receding front model has no first drying period. 
The first drying period of the diffusion model is longer (Xcr = 0.0722) than in the case of 
continuous model (Xcr = 0.1687).  
 
It is clear that the drying times of three considered models cannot be compared in an 
absolute sense but only in a relative way when sample size is varied. Drying times 
versus sample size are plotted in logarithmic scale in Figure 4.40 (for Xend = 10-3) and 
Figure 4.41 (for Xend = 10-5). The results show that drying time is a linear function of the 
sample size for the case of diffusion model (see also Table 4.6) since in this considered 
case we have only outer resistance (due to small value of mass transfer coefficient, β). If 
outside resistance is negligible (mass transfer coefficient, β goes to infinite) we should 
obtain drying time as a quadratic function of the sample size.  It is found that the drying 
time increases more than linearly with sample size in the case of continuous and 
receding front model. The behaviour of the curves does not change for diffusion and 
receding front models when Xend decreases (only small increase in period of inside 
resistance control, see Table 4.6, for example), but for the continuous model the curve 
and its slope change together with Xend because in this case inside resistance dominates 
(a big change in drying time, see Table 4.8). 
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Figure 4.38 Evolution of average moisture content for isothermal drying of a spherical 

particle (R = 2.5 mm, T∞ = 20oC and ϕ = 0).  
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Figure 4.39 Evaporation rates for isothermal drying of a spherical particle  

(R = 2.5 mm, T∞ = 20oC, ϕ = 0). 
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Figure 4.40 Influence of sample size: drying time versus sample size for Xend = 10-3 

(isothermal drying T∞ = 20oC, ϕ = 0). 
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Figure 4.41 Influence of sample size: drying time versus sample size for Xend = 10-5 

(isothermal drying T∞ = 80oC, ϕ = 0). 
 

4.5. Drying simulation for a bundle of capillaries and influence of pore size 
distribution on drying behaviour 
 
In this section, the influence of pore size distribution on drying behaviour is considered 
by using a bundle of capillaries (with mono-modal and bimodal pore size distributions) 
to calculate the material properties (capillary pressure, absolute and relative 
permeabilities) as presented in Section 2.5. Comparisons between the continuous and 
discrete (using the capillary model of Metzger and Tsotsas [55] and the isothermal 
network model of Irawan et al. [30]) approaches are made for the drying of a plate. 
Instead of moisture content X, saturation S will be used in this section. 
 
4.5.1. Material properties and drying conditions 
 
For all investigated cases, the porosity of the material is ψ = 0.5, the heat capacity is 

( ) 11.KJ.kg  41852000 −−+= XC ssp ρερ . The solid has the density ρs = 1000 kg.m-3 and 
its thermal conductivity is λs = 1 W.m-1.K-1. The effective model parameters are 
computed from the bundle capillary model (see Section 2.5). The maximum amount of 
adsorbed water (linked to the irreducible moisture content Xirr) is chosen as Ssorb = 15% 
so that we can consider the material as hygroscopic. Initial saturation and temperature 
of the sample under consideration are S0 = 0.9 and T0 = 20°C. The pressure of the 
drying air is P∞ = 1 bar, and, if not indicated otherwise, the drying air has zero moisture 
content and temperature T∞ = 80°C. 
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4.5.2. Drying simulation for a sphere 
 
The mono-modal pore size distribution is applied here in the drying simulation of a 
sphere with its radius R = 2.5 mm. The heat and mass transfer coefficients of the 
boundary layer are α = 14.25 W.m-2.K-1 and β = 0.015 m.s-1, respectively. The mean 
capillary radius is r0 = 100 nm and the standard deviation of radius is σ0 = 10 nm. The 
mesh used in calculations is a geometric progression mesh with 51 grid nodes and mesh 
ratio mratio = 0.2. 
 
The temporal evolution of saturation for approximately every 0.5 mm in distance 
(corresponding to nodes 1, 6, 13, 21, 33 and 51 from the centre to the surface) together 
with the evolution of average saturation (dashed fat curve) are shown in Figure 4.42. 
The profiles of saturation, temperature and pressure for different drying times are 
presented in Figure 4.43 to Figure 4.45. The saturation profiles are plotted at the times 
when the average saturation Sav has the values 0.8, 0.6, 0.4, 0.2, 0.1 (corresponding to 
drying time of 2.3, 6.8, 10.7, 15.0 and 17.3 min), at the end of the first drying period 
(where the critical saturation is Scr=0.1553) and at the time when Sfw = 0. We can see 
that the saturation and temperature profiles are quite flat (Figure 4.43 and Figure 4.44) 
and there exists an over-pressure in the second period (Figure 4.45). It is found that the 
influence of pore size distribution on drying behaviour is not clearly visible due to the 
small size of the sample. Therefore in the following sections the drying of a plate with 
considerable thickness is examined. 
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Figure 4.42 Drying of a sphere with bundle of capillaries pore geometry:  

temporal evolution of saturation (for T∞ = 80oC and ϕ = 0). 
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Figure 4.43 Drying of a sphere with bundle of capillaries pore geometry:  

saturation profiles (for T∞ = 80oC and ϕ = 0). 
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Figure 4.44 Drying of a sphere with bundle of capillaries pore geometry:   

temperature profiles (for T∞ = 80oC and ϕ = 0). 
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Figure 4.45 Drying of a sphere with bundle of capillaries pore geometry:  

pressure profiles (for T∞ = 80oC and ϕ = 0).  
 
4.5.3. Drying simulation for a plate  
 
In this section, the drying of a plate with sample size of 100 mm (from the impermeable 
plane to the external surface) is considered. In all investigated cases, the heat and mass 
transfer coefficients are α = 95 W.m-2.K-1 and β = 0.1 m.s-1, respectively. The mesh 
used in our calculations has 41 grid nodes with mesh ratio mratio = 0.2. Six cases with 
two types of pore size distribution (mono-modal and bimodal) with different mean pore 
radius r0 and different standard deviation σ0 are investigated. Information about the pore 
size distributions of these six cases and the corresponding absolute permeabilities is 
reported in Table 4.9. Additionally, some other cases of mono- and bi-modal pore size 
distributions are taken into account to investigate the influence of pore volume fractions 
of two modes and the influence of effective transport parameters. Details of these cases 
will be discussed later on. Two examples of the mono-modal (100 ± 5 nm) and bimodal 
(100 ± 10 nm; 200 ± 20 nm) pore size distributions with modification (see Appendix 3) 
are given in Figure 4.46 and Figure 4.47. 

Table 4.9 Studied pore size distributions and corresponding absolute permeabilities. 

 r0 ± σ0 (nm) K (⋅10-15 m2)  
Case 1 100 ± 5 1.238 
Case 2 100 ± 20 1.280 
Case 3 200 ± 20 4.986 
Case 4 1000 ± 100 124.6 

Mono-modal 

Case 5 100 ± 10; 200 ± 20 3.119 
Case 6 100 ± 10; 2000 ± 200 245.1 Bimodal 
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Figure 4.46 Mono-modal pore size distribution (case 1: 100 ± 5 nm). 
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Figure 4.47 Bi-modal pore size distribution (case 5: 100 ± 10 nm; 200 ± 20 nm). 
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4.5.3.1. Mono-modal  pore size distributions 

 
The temporal evolution of saturation (together with average saturation – dashed fat 
curves), temperature and gas pressure for approximately every 20 mm in distance in the 
porous medium for case 1, 2, 3 and 4 are shown in Figure 4.48.a÷c. The corresponding 
saturation profiles with step equal to 10% of total saturation are presented in Figure 
4.48.d, where z is the depth from the exchange surface. In these figures, the fat solid 
curves represent the end of the first drying period (Scr = 0.670, 0.417, 0.395 and 0.230 
corresponding to drying times of 1.5 h (case 1), 3.1 h (case 2), 3.3 h (case 3) and 4.3 h 
(case 4), respectively), the dashed fat curves represent the situations at which all free 
water has been moved from the sample (Sfw = 0, corresponding to drying times of 37.5 h 
(case 1), 28.5 h (case 2), 25.7 h (case 3) and 21.3 h (case 4), respectively). The drying 
rate curves are given in Figure 4.50. 
 
For small pores with a narrow distribution (case 1), the first drying period is short 
(Figure 4.50), significant gas pressure gradients occur in the second period (Figure 
4.48.c, case 1) and saturation gradients are relatively steep throughout the drying 
process (Figure 4.48.d, case 1). The large pore case with a broad distribution (case 4) 
has a long first drying period (Figure 4.50). Pressure and moisture gradients in this case 
are much smaller (Figure 4.48.c and Figure 4.48.d, case 4). It is observed that the 
standard deviation σ0 has a strong effect on drying. For the same mean capillary radius 
r0, the sample with small standard deviation (narrow mode, case 1) has steeper 
saturation gradients (Figure 4.48.d) and shorter first drying period (Figure 4.50) as 
compared to the sample with large standard deviation (broader mode, case 2). For the 
same value of σ0, the variation of r0 leads to changes in gas over pressure (Figure 
4.48.c, case 2 and case 3), but has only a small effect on moisture profiles; and the first 
drying period is slightly shorter if r0 is smaller (Figure 4.50). Considering the 
temperature evolution, it is found that the variation of the pore size distribution has little 
effect: only the wet bulb temperature prevails longer if the surface stays wet for longer 
(with larger pores) (Figure 4.48.b). 
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Figure 4.48 Drying a plate with bundle of capillaries pore geometry (mono-modal,  

T∞ = 80oC, ϕ = 0): a) temporal evolution of saturation; b) temporal evolution of 
temperature; c) temporal evolution of pressure; d) saturation profiles. 

First column: case 1 (100 ± 5 nm), second column: case 2 (100 ± 20 nm). 
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Figure 4.48 (Continued):  

a) temporal evolution of saturation; b) temporal evolution of temperature;  
c) temporal evolution of pressure; d) saturation profiles 

 First column: case 3 (200 ± 20 nm), second column: case 4 (1000 ± 100 nm). 
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4.5.3.2. Bimodal  pore size distributions 
 
Results for two cases of bimodal pore size distributions (case 5 and case 6) are given in 
Figure 4.49. In Figure 4.49.d the saturation profiles with step equal to 10% of total 
saturation are presented together with the saturation profile at the end of the first drying 
period (fat solid curve) and the saturation profile when all free water in the sample has 
been removed (dashed fat curve). The overall drying curve is shown in Figure 4.50. In 
our considered cases of bimodal pore size distributions, 4% of the total pore volume is 
assigned to the transition zones between the two modes (see Appendix 3). For 
convenience, in this section the concept of micro pore and macro pore will be used to 
present the small and large pores, respectively.  
 
From the numerical results, it can be seen that the macro pores dry out completely at the 
high drying rate of the first period with small or even negligible saturation gradients (for 
case 5 or 6, respectively) because of small resistance. In the transition region, the 
saturation profile is flat in both cases (Figure 4.49.a). During the drying of the micro 
pores (narrow mode), steeper gradients develop and the second drying period starts (see 
Figure 4.49.d below fat curves). With a more important difference in size between the 
two modes and a broader large mode (case 6), the saturation profiles are even flatter 
during the drying of the macro pores (Figure 4.49.d above transition region), but the 
overall drying curve is unchanged (Figure 4.50).  
 
Due to the fact that almost all macro pores are emptied in the first drying period, the 
distribution of macro pore usually plays no role, but the volume fraction of 
macro/micro pores (see Section 4.5.3.3 below) and the distribution of the micro pores 
are important since they define how much liquid can be removed in the first drying 
period. One may say that the macro pores in a bimodal distribution can significantly 
prolong the first drying period and we have better gas convection in larger macro pores. 
Therefore, the critical saturation Scr = 0.410 is identical for both cases and is reached at 
the same time (after 3.2 hours of drying); the sample with smaller macro pore size (case 
5) needs more time to remove all the free water (27.3 hours compared to 25.4 hours of 
case 6).  
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Figure 4.49 Drying of a plate with bundle of capillaries pore geometry (bimodal, T∞ = 
80oC, ϕ = 0): a) temporal evolution of saturation. b) temporal evolution of temperature. 
c) temporal evolution of pressure. d) saturation profiles. First column: case 5 (100 ± 10 

nm; 200 ± 20 nm); second column: case 6 (100 ± 10 nm; 2000 ± 200 nm). 
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Figure 4.50 Drying curves for different pore size distributions (for T∞ = 80oC, ϕ = 0; 

case 6 with 100 ± 10 nm and 2000 ± 20 nm yields same curves as case 5). 
 
4.5.3.3.  Influence of pore volume fractions of two modes 
 
Like in the above section, the concept of micro and macro pores is also used here. In 
order to investigate the influence of the volume fraction of the macro and micro pores, 
we consider a bimodal distribution in which the micro capillaries have a radius of 100 
nm with a standard deviation of either 5 nm or 25 nm; the macro pores have a radius of 
500 nm with a standard deviation of 50 nm. Information about the different volume 
fractions used in our investigation and the corresponding critical saturation Scr together 
with absolute permeability K is given in Table 4.10. 

Table 4.10 Pore volume fraction and corresponding values. 

 r0 ± σ0 
(nm) Vmacro (%) Vmicro (%) Vmacro /Vmicro Scr (%) K (⋅10-15 m2) 

48 48 1.0 46.71 15.97 
81 15 5.4 26.93 26.03 Case 1 100 ± 5; 

500 ± 50 15 81 1.0/5.4 60.92 5.96 
48 48 1.0 33.34 16.11 
81 15 5.4 24.61 26.17 Case 2 100 ± 25; 

500 ± 50 15 81 1.0/5.4 37.34 6.10 
 
Note that in all cases, 4% of the total pore volume is assigned to the transition zones 
between the two modes. The obtained results are presented in Figure 4.51 and Figure 
4.52. In these figures, the fat vertical curves indicate the moment where micro pores 
start to be emptied (macro pores and transition region are “inactive”). Clearly, for these 
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two cases, all macro pores have been dried in the first drying period. The results from 
these figures also give us the fractions of small pores, which are emptied in the first 
drying period. For case 1, they are 22.1%, 6.6%, and 34.2% for the case of Vmacro = 
Vmicro; Vmacro = 5.4⋅Vmicro and 5.4⋅Vmacro = Vmicro, respectively. For case 2, these values 
are 55.3%, 25.1% and 68.5%. 
 
It is found that the length of the first drying period mainly depends on the volume 
fraction of the macro pore: the higher the amount of macro pores, the longer the first 
drying period since big pores are favourable for drying. Besides, the drying rate in the 
second period is higher for larger volume fraction of macro pores. However, the first 
drying period can also be influenced by the pore size distribution of the micro pores. 
For a sample with a broader distribution of the micro pores (case 2), the first drying 
period is longer and the drying rate in the second period is higher (Figure 4.52). Similar 
conclusions were found by Metzger and Tsotsas (2005 [55]).  
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Figure 4.51 Drying of a plate with bundle of capillaries geometry at  

T∞ = 80oC and ϕ = 0 (case 1: 100 ± 5 nm; 500 ± 50nm): drying curves for different 
volume ratio Vmacro /Vmicro. 
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Figure 4.52  Drying of a plate with bundle of capillaries geometry at  

T∞ = 80oC and ϕ = 0 (case 2: 100 ± 25 nm; 500 ± 50nm): drying curves for different 
volume ratio Vmacro /Vmicro. 

 
4.5.3.4.  Influence of effective transport parameters with bundle of capillaries pore 

geometry – Parametric study (continued) 
 
To see how the transport parameters influence the drying behaviour of a plate with 
bundle of capillaries pore geometry, we take the mono-modal pore size distribution 
(normal distribution with r0 = 100 nm and σ0 = 10 nm) as the reference case and vary 
the transport parameters (thermal conductivity of solid λs, absolute permeability K and 
effective diffusivity Deff) one by one. The results are shown in Figure 4.53. It is 
observed that an increase of the solid thermal conductivity slightly slows down the 
initial warming up of the sample’s surface and increases the drying rate in the second 
drying period since heat is better transferred to the place of evaporation. A reduction of 
the absolute permeability (by decrease of pore size) dramatically shortens the first 
drying period whereas a decrease in the effective diffusivity (by introducing tortuosity) 
only reduces the already low drying rates at the end of the second period when adsorbed 
water removal dominates the drying process. These results are very similar to those 
obtained for a sphere of concrete (see 4.4.7). 
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Figure 4.53 Drying of a plate with bundle of capillaries geometry at  

T∞ = 80oC and ϕ = 0 (mono-modal pore size distribution, 100 ± 10 nm): influence of 
effective parameters on drying behaviour.  

 
4.5.3.5.  Influence of drying air conditions (continued) 
 
The influence of the drying conditions is now studied by keeping the above reference 
case (r0 ± σ0 = 100 ± 10 nm) and varying the temperature T∞  and the relative humidity 
ϕ of drying air as well as the mass transfer coefficient β. The results are introduced in 
Figure 4.54. The well-known fact is confirmed that hotter and drier air with higher 
velocity (i.e. higher transfer coefficients) produces higher drying rates in the first 
period, but shortens its duration. It is noted that the results obtained here are very 
similar to those obtained for the drying of a sphere of light concrete (see Section 4.4.8). 
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Figure 4.54 Drying of a plate with bundle of capillaries geometry at  

T∞ = 80oC and ϕ = 0 (mono-modal pore size distribution, 100 ± 10 nm): influence of 
drying conditions.   

 
4.5.4. Comparison between continuous and discrete approaches using a bundle of 
capillaries  
 

rk, Nk

liquid

gas

rk

pore networkbundle of capillaries
 

Figure 4.55 Two types of discrete model (Irawan et al., 2006 [30]). 

 

The continuous approach used in this work is now compared with the discrete approach 
represented here by two discrete models depicted in Figure 4.55. The first discrete 
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model is a one-dimensional (1D) isothermal capillary model presented by Metzger and 
Tsotsas (2005 [55]). In this model, the porous medium is represented by a bundle of 
capillaries with a radius distribution. The second is an isothermal pore network model 
introduced by Irawan et al. (2006 [30]). For the sake of clarity, the continuous model 
using a bundle of capillaries pore geometry (see Chapter 2) is called the continuous 
capillary model and the discrete 1D capillary model of Metzger and Tsotsas (2005 [55]) 
is called the discrete capillary model. In the two discrete models considered here, the 
transport mechanism of liquid is viscous capillary pumping and the transport 
mechanism of gas is vapour diffusion. Lateral resistances between the capillaries and in 
the boundary layer are entirely neglected in the 1D capillary model and made negligible 
in the network model. In the pore network model, the horizontal throats are short and 
have small radii, which assure that their volume can be neglected and that they empty 
last guaranteeing a continuous liquid phase for capillary pumping at all times (see 
Irawan et al., 2006 [30]).  
 
In order to compare with the discrete models, we consider the drying of a plate with 
sample size of 100 mm (from the impermeable plane to the external surface). A 
geometric progression mesh of 101 grid nodes with mesh ratio mratio = 0.2 is used. 
Convective drying by a flow of absolutely dry air at T∞ = 20°C and atmospheric 
pressure is applied. To set the isothermal condition, we enhance heat transfer by setting 
α = 6000 W/m2/K and λs = 6000 W/m/K. For T∞ = 20°C, the imaginary wet bulb 
temperature is 19.3°C (to be used in isothermal model) and gas pressure varied only by 
20 mbar as compared to being constant in the two discrete models. The amount of 
adsorbed water is set to Sirr = 1% to approach the case of no sorption in the discrete 
models.  
 
4.5.4.1. Comparison with discrete capillary model 
 
In this section, one case of mono-modal pore size distribution (r0 ± σ0 = 100 ± 10 nm) is 
used in the continuous capillary model. The numerical results (Figure 4.56 and Figure 
4.57) show that the continuous model yields a slightly longer first drying period and 
flatter moisture profiles than the discrete one. The divergence of the two models may be 
explained by two differences in modelling. The first one concerns the discretization 
process: in the discrete capillary model, the pore size distribution is represented by 
discrete capillary classes with menisci continuously moving in space whereas in the 
continuous model only space is discretized. At the end of the first period, the last 
meniscus moves back from the surface and a small additional distance to vapour 
diffusion can immediately cause a dramatic drop in drying rate. In the discrete capillary 
model, the meniscus can move to any distance whereas in the continuous model the 
whole surface element (0.2 mm in size) must dry below Ssorb before the drying rate 
drops. The second difference is that the no-flux condition of the continuous model for 
the impervious boundary (which leads to locally vanishing moisture gradients) does not 
exist in the capillary model. Instead, menisci disappear one by one at the bottom, rather 
imposing a (capillary) pressure boundary condition (Vu, Metzger and Tsotsas, 2006 
[112]).  



Chapter 4                                                                                                                           Numerical Results 

 116

0  20 40 60 80 1000

0.5

1

1.5

2

S (%)

m
v (g

.m
-2

.s
-1

)

⋅

 
Figure 4.56  Drying of bundle of capillaries with r0 ± σ0 =100 ± 10 nm:  

drying rate curves for continuous (solid line) and discrete (dashed line) capillary model  
(T∞ = 19.3oC, ϕ = 0). 
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Figure 4.57 Drying of bundle of capillaries with r0 ± σ0 =100 ± 10 nm:  

saturation profiles in steps of 10% of total saturation for continuous (solid lines) and 
discrete (dashed lines) capillary model (T∞ = 19.3oC, ϕ = 0). 
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4.5.4.2. Comparison with pore network model 
 
The continuous model is compared with the pore network model for isothermal drying. 
Mono-modal pore size distributions are used. Information about the pore size 
distributions and the critical moisture content is given in Table 4.11. 
 

Table 4.11 Critical moisture content of continuous and pore network model. 
 

Scr (%) r0 ± σ0 (nm) Continuous model Pore network model 
100 ±   5 nm 57.29 61.74 
100 ± 10 nm 42.19 44.56 
100 ± 25 nm 26.26 28.19 

 
The numerical results are presented in Figure 4.58 by plotting the normalized drying 
rate versus saturation. Figure 4.59 depicts saturation profiles at the end of the first 
drying period and Figure 4.60 shows saturation profiles for the drying with 100 ± 10 nm 
pore size distribution. From the numerical results, it is observed that simulation using 
the continuous capillary model gives a slightly longer first drying period and slightly 
flatter moisture profiles than those obtained by the network model. This is similar to the 
observation obtained when comparing the continuous and discrete capillary models. 
However, the simulation results obtained by the continuous capillary model are much 
closer to the results obtained by the network model than to those obtained by the 
discrete capillary model. The non-smooth curves of the pore network model are due to 
assumption that partially filled throats have no resistance to vapour diffusion. 
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Figure 4.58 Drying of bundle of capillaries with r0  = 100 nm and different standard 
deviations of capillary radius σ0: evaporation rates for continuous (solid lines) and 

network (dashed lines) model (for T∞ = 19.3oC, ϕ = 0). 



Chapter 4                                                                                                                           Numerical Results 

 118

0   20 40 60 80 100
0   

15

30

45

60

75

90

z (mm)

S 
(%

) σ0 = 5 nm

r0 = 100 nm

σ0 = 10 nm

σ0 = 25 nm

 
Figure 4.59 Drying of bundle of capillaries with r0  = 100  nm and different standard 

deviations of capillary radius σ0: saturation profiles at the end of first drying period for 
continuous (solid lines) and network (dashed lines) model (T∞ = 19.3oC, ϕ = 0). 
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Figure 4.60   Drying of bundle of capillaries with r0 ± σ0 =100 ± 10 nm:  
saturation profiles in steps of 10% of total saturation for continuous (solid lines) and 

network (dashed lines) model (T∞ = 19.3oC, ϕ = 0). 
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To summarize, in this chapter, numerical results of the drying simulation of porous 
media are presented. The accuracy of the numerical simulations is tested by considering 
the influence of the space discretization and by considering the overall conservation 
behaviour (of water and air). It is found that a good accuracy could be achieved. 
Numerical simulations of a sphere and a plate of light concrete show that the employed 
model is able to capture different drying characteristics of porous media such as the 
constant drying rate period, the falling rate period, the wet bulb temperature, etc. The 
influence of effective transport parameters, drying conditions (state of the drying air and 
transfer coefficients) as well as the initial condition of the sample (initial moisture 
content) on drying behaviour is investigated. Comparison with two other models 
(diffusion and receding front model) is made in analyzing the influence of sample size 
on the drying time. By applying the capillary model presented in Chapter 2, the 
influence of pore size distribution on the drying behaviour of porous materials is 
considered with mono and bimodal pore size distributions. A study is realized on the 
parameters of these distributions. The continuous model is compared with two discrete 
models for the case of isothermal drying. A good agreement is found. In the next 
chapter, the drying experiments of γ-Al2O3 particles will be presented. 
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Chapter 5 

EXPERIMENTS WITH γ-Al2O3 PARTICLES 

 
 

5.1. Introduction  
 
Due to their highly hygroscopic property, γ-Al2O3 particles are used in many different 
industrial processes such as drying, acid removal, steam purification, hydrocarbon 
adsorption, etc. In drying, in order to have a reliable design, for example of industrial 
dryers, knowledge about the characteristics of the material to be dried is necessary. 
Additionally, knowledge about the interrelation between the structure of a product and 
its drying kinetics is helpful in predicting the drying behaviour of the product. In this 
work, drying experiments are carried out to determine the pore structure, the pore size 
distribution, the sorption isotherm, the dry mass and the drying kinetics of γ-Al2O3 
particles. Modern and appropriate experimental methods are applied. Descriptions of 
the experimental methods and equipment are given in the next sections. Firstly, the pore 
structure of the particles is examined using environmental scanning electron microscopy 
(ESEM). Then, the pore size distribution, which is needed to calculate the capillary 
pressure curve, is studied using the Hg-porosimetry method. After that, the sorption 
isotherm measurement, which is used to determine the minimum moisture content of the 
samples for given drying conditions, is realized. The determination of the dry mass of 
the particles is carried out by using a magnetic suspension balance. By using this 
method, the material drying kinetics are also investigated. 
 

5.2. Product data 
 
The typical properties of the sample as given by Almatis AC, Inc. [3] are presented in 
Tables 5.1 and 5.2. Table 5.1 introduces the major components of the sample. Selected 
physical properties for a particle are presented in Table 5.2. Note that in this table, 
based on the original information, properties have been transformed into relevant 
volume specific quantities with an assumption of 40% bed porosity for a packing of 
monodispersed spheres. 
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Table 5.1 Chemical properties of γ-Al2O3 particle F-200 

Components Weight percentage, wt % 
Al2O3 93.10 
SiO2 0.02 
Fe2O3 0.02 
Na2O3 0.03 
Loss on ignition 6.83 

 
Table 5.2  Selected physical properties of γ-Al2O3 particle F-200 

Properties Value 
Diameter, mm 4.80 
Volume specific surface area av, m2.cm-3 436 
Porosity ψ, % 0.64 
Density of particle ρ0, kg.m-3 1282.00 

 

5.3.  Investigation of pore structure by environmental scanning electron 
microscopy (ESEM) 
 
5.3.1. Experimental instrument 
 
Scanning electron microscopy (SEM) is widely used in microanalyses of materials. This 
method creates magnified images by using electrons instead of light waves and shows 
very detailed monochromatic images. The ESEM instrument used in our experiment is 
presented in Figure 5.1. The working principle of an SEM instrument is depicted in 
Figure 5.2. Firstly, the non-metallic samples should be made to conduct electricity (by 
coating with a very thin layer of gold in a so-called sputter coater) before the 
experiment takes place (this is because the SEM instrument illuminates the sample with 
electrons in the microscope's vacuum column and electrical charges must be removed). 
The sample is then glued firmly into a basket and put into the sample chamber. A beam 
of high-energy electrons is produced by an electron gun, which uses filament-heating 
supply, at the top of the microscope. This electron beam flows through the vacuum 
column of the microscope in the vertical direction. The use of vacuum is compulsory to 
avoid burn, ionization or low contrast and obscured details of the image. The electron 
beam is then condensed by a condenser lens and focused onto a very fine spot on the 
sample by the objective lens. A set of scanning coils near the bottom, which is 
energized by varying the voltage produced by the scan generator, creates a magnetic 
field that moves the focused beam back and forth across on the sample. As the electron 
beam hits the sample, secondary electrons (or backscattered electrons) are emitted from 
the sample surface. These electrons are then counted by a detector, converted to signals 
and amplified. The final image corresponding to the topography of the sample is built 
from these signals. More information on SEM can be found, for example, in the work of 
Chescoe and Goodhew (1990 [13]) or in the work of Chapman et al. (1986 [11]). 
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Figure 5.1  ESEM experimental system.  

(1: Column; 2: Sample chamber; 3: Electronics). 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2  The major components of a SEM.  
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Figure 5.3  Sample and detector electrode in an ESEM.  
 
The environmental SEM (ESEM) is a modified version of SEM that allows the 
examination of a sample in a gaseous environment. This means that the ESEM can also 
be used to examine wet samples. When ESEM is used, it is not necessary to coat the 
sample surface with a thin layer of gold. In an ESEM instrument, the secondary 
electrons, which are emitted from the sample surface, are attracted to the positively 
charged detector electrode (Figure 5.3). Because the sample is put in a gaseous 
environment, collisions between electrons and gas molecules occur during the 
movement of the electrons. This causes the emission of more electrons and ionization of 
the gas molecules and leads to an increase in the amount of electrons, which effectively 
amplifies the original secondary electron signal. The positively charged gas ions are 
attracted to the negatively biased specimen and offset charging effects. The variation of 
the amplification effect depends on the number of secondary electrons. The larger the 
number of electrons emitted from a position on the sample the more intense the signal. 
The difference in signal intensity from different locations on the sample allows an 
image to be formed. 
 
5.3.2.  Experimental preparation and results 
 
Two samples (particles) are analysed by ESEM in the Laboratory of Institut für 
Werkstofftechnik und Werkstoffprüfung, University Magdeburg. The ESEM XL 30 by 
FEI and Phillips is used in this work. The first sample is a “raw” or original particle 
that is not subjected to any type of preparation (neither soaked with water nor dried). 
The second sample is a “product” particle, which has been used in determining the dry 
mass. The “product” particle is obtained by firstly saturating an original particle with 
water and then drying it at different temperatures. After being dried, the colour of the 
surface of the “product” particle is different from that of the original one (see Section 
5.4). The two particles are then crushed so that the internal structure can be observed by 
ESEM.  
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Figure 5.4  Microphotographs of a γ-Al2O3 particle surfaces: macroscopic scale.  
 
 
The observation shows that the two particles contain several layers due to the 
production process. The colour inside the “product” particle is the same as the “raw” 
particle. At the macroscopic scale, the investigation of the structure concerns the 
particle surface (surface 1), the surface of inner shell (surface 2), the cross-section 
between two shells (surface 3) and the cross-section of the particle (surface 4). These 
surfaces are depicted in Figure 5.4. At the microscopic scale, some selected ESEM 
microphotographs are shown in Figure 5.5. Figure 5.5.a shows that γ-Al2O3 particles are 
assembled of bound primary granules and there is contribution of some crusts from the 
production process. The main component is the primary granules and these granules are 
connected by solid bridges. The pores between these granules are large pores (Figure 
5.5.b). By looking into smaller details, it can be seen that a primary granule consists of 
crystal aggregates. The surface of a primary granule is introduced in Figure 5.5.c. 
Figure 5.5.d shows a primary granule which contains smaller particles and the internal 
pores inside granule (small pore). It is concluded that the two samples have a bimodal 
pore size distribution with large pores (approximate 1.5 μm) and small pores 
(approximate 15 nm). No difference in pore structure and surfaces could be observed 
between the two particles. 
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Figure 5.5 Microphotograph of surface of a γ-Al2O3 particle  
(corresponding to surface 1 in Figure 5.4): microscopic scale. 

 

5.4. Measurement of pore size distribution by Hg porosimetry method 
 
The experimental method of mercury porosimetry for the determination of the pore size 
distribution of porous material is well known. Mercury (Hg) is used because of its non-
wetting property. For the measurement, it is assumed that when mercury is in contact 
with a porous medium the surface tension σ and contact angle θ of mercury are constant 
at a given condition. When a pressure P is applied to make mercury intrude into the 
pores of the porous medium, the higher the pressure P, the smaller the pores being 
invaded. The relationship between the pressure and the pore radius r is given by the 
Washburn equation 

( ) rP θσ cos2−=  (5-1)

By monitoring the pressure P and the intruded volume V, the pore size distribution of 
the sample can be determined. During one experiment, mercury is first intruded into the 
pores with increasing pressure and then extruded when the pressure is released. More 
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details on the Hg porosimetry method can be found, for example, in the work of Lowell 
and Shields (1991 [49]).  

One experiment was carried out at the Laboratory of Institut für Verfahrenstechnik, 
University Magdeburg, with Pore sizer 9320 by Micromeritics. In this experiment, 57 
“raw” or original particles (not yet subjected to any type of preparation such as soaked 
with water or dried) are packed in a tube and vacuum is applied to assure that the pores 
are empty. Mercury is then applied to fill the volume between particles. This process 
continues until the pressure reaches the value of 5.17 bar corresponding to the mean 
pore radius of 1.360 μm. After that the pressure is increased up to the maximum 
pressure of 1720.32 bar in order to obtain the pore size distribution inside the particles. 
Physical parameters of mercury used in this experiment are shown in Table 5.3. With 
the assumption that all particles used in the experiment have average diameter of 5 mm, 
the experimental results is converted for one particle in Table 5.4.  

Table 5.3  Physical properties of Hg. 

Specifications Value 
Contact angle, degrees 130 
Surface tension, N.m-1 485.103 

Table 5.4 Summary of experimental results by Hg-porosimetry. 

Specifications Value 
Total intrusion volume Vin, cm3 0.0153 
Volume specific pore area av, m2.cm-3 51.19 
Density of particle ρ0, kg.m-3 1288.7 
Porosity ψ, % 23.36 
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Figure 5.6  Pore volume distribution - mercury intrusion curve.  
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Figure 5.6 illustrates on a logarithmical scale the intrusion volume of mercury versus 
pore radius. By integrating this curve, the volume of pores within the particles can be 
obtained. We consider three areas under the curve corresponding to three ranges of pore 
radius. The first area is the area from point A to point B. In this area the mean pore 
radius is in the range of 1.360 to 207.174 μm. It is clear that this area represents the 
volume between particles with some small contribution from large pores of the 
particles. In calculation, this area is ignored because of its small value compared to the 
remaining areas. The second area (point B to point C) is the main area and this area is 
used in the calculation of the pore size distribution of the particles. In this area, the 
mean pore radius varies from 1.360 μm to 3.3 nm which corresponds to the maximum 
intrusion pressure of 1720.32 bar of the experimental device. Due to this limited 
maximum pressure of the device, it is physically impossible to detect pores of smaller 
size (or pores which are separated by “bottle necks” of this size from the outside). The 
missing part is confirmed by comparing the obtained results (Table 5.4) with the 
product data given by Table 4.2. Actually, only around 37% of the pore volume of the 
particles is measured, the other 63% are missing. One way to overcome this problem 
could be to vary the missing part of pore size distribution in order to get the best 
correspondence between experiments, drying data and drying model. Another 
possibility is the use of other techniques such as Helium adsorption. 
 

5.5.  Sorption isotherm measurement 
 
5.5.1. Experimental set-up 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.7  Experimental system for sorption measurement  
(1: Temperature controlled chamber; 2: Microbalance; 3: Sample; 4: Reference; 

5: Moistener; 6: Data acquisition). 
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The measurement of the sorption isotherm is carried out at the Laboratory of Institut für 
Apparate- und Umwelttechnik, University of Magdeburg, using a DVS (dynamic vapour 
sorption) device provided by Surface Measurement Systems Limited. The equipment is 
presented in Figure 5.7. The scheme of the experimental system is shown in Figure 5.8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5.8  Experimental setup for sorption measurement. 
  

In this system, two air flows are used. The sample (powder obtained by crushing γ-
Al2O3 particles) is placed in a chamber of adjustable temperature T (in the range from 5 
to 50oC). This temperature is kept constant with the help of a thermostat. Firstly, gas 
flows are cleaned and dried, by an oil separator and a dehumidifier. After that, one gas 
flow is humidified at the temperature of the measurement by a moistener: the gas flow 
is conducted through water at temperature T, and becomes saturated with vapour (ϕ1=1) 
corresponding to vapour pressure )(* TPv . The second gas flow is kept dry (ϕ2 = 0). The 
two flows are then mixed to get the desired relative humidity. This preconditioned gas 
then flows through the sample. By controlling the ratio of saturated and dry gas, 
different relative humidities ϕ in the range between 0 and 0.98 can be adjusted. The 
weight change of the sample is measured continuously by a microbalance with precision 
of 0.1 μg. The advantage in using this microbalance is that it allows very small samples 
(typically 1 to 30 mg) to be measured. This advantage helps to reduce the time needed 
to reach equilibrium. At the beginning, the experiment starts at ϕ1 ≈ 0 to determine the 
dry mass of the sample. Usually, the time for this period is 6 hours (set by the program). 
In our experiment, 15.493 mg powder is used in measuring one sorption isotherm at 
24.8 ± 0.1oC. Twenty points of adsorption and twenty points of desorption isotherm are 
measured in one run. The time used to measure one sorption isotherm is 234 hours. 
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5.5.2.  Experimental results 
 
The sorption isotherm is shown in Figure 5.9. These curves are plotted by taking the 
lowest sample mass of the whole experiment as mass of dry solid (Ms = 15.15 mg) and 
calculating the moisture contents. This result shows a significant hysteresis (not the 
same values are measured in adsorption and desorption).  
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Figure 5.9  Sorption isotherm measurement: experimental data of γ-Al2O3 at 24.8oC and 
Langmuir / BET model fitting. 

 
To prove equilibrium, the kinetics of the sorption measurement is considered. Three 
states: at the beginning of the process (Figure 5.10.a), at the end of adsorption (Figure 
5.10.b) and at the end of the experiment (end of desorption, Figure 5.10.c), are shown as 
an example. Figure 5.10.a shows that in the short initial period (6 hours) of the 
experiment, equilibrium is not attained; therefore, a small error will occur when 
moisture contents are calculated by taking the lowest sample mass as dry mass. 
 
The experimental result is compared with two theoretical equations. The first one comes 
from Langmuir’s theory (ϕ ≤ 15%) of monomolecular adsorption. The second one 
comes from Brunauer, Emmett and Teller (BET theory, ϕ ≤ 30%) and describes 
multimolecular adsorption. Note that the ranges of relative humidity ϕ used in 
Langmuir’s and  BET theory are usual ranges of validity. 
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Figure 5.10  Kinetics of sorption measurement. 
 
The Langmuir equation is written in the form 

ϕ
ϕ
c

cXX m +
=

1
     (5-2)

and the BET equation is 

( )( )ϕϕϕ
ϕ

c
cXX m +−−

=
11

     (5-3)

In the above equations, Xm represents the moisture content that corresponds to a full 
monolayer, c is a constant and can be approximated by 

⎟⎟
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⎝

⎛
Δ≈ s

v h
TR

Mc ~
~

exp      (5-4)

where Δhs is the sorption enthalpy (needed to remove the molecules from the solid). 
 
For estimation of Xm and c, Eq. (5-2) is rewritten in terms of Xϕ  and Eq. (5-3) in 
terms of ( )[ ]ϕϕ −1X , both of which depend linearly on ϕ  and can be used in fitting the 
two models to the experimental data. For the Langmuir case, Xm = 0.0865 and c = 
19.0769, is obtained. For the BET case, Xm = 0.0733 and c = 19.9480, can be 
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calculated. The results of the fitting are presented in Figure 5.9 together with the 
corresponding experimental data.  
 
From Figure 5.9, it can be seen that for moisture contents under 10% (corresponding to 
relative humidity of 30%) the Langmuir and BET models fit quite well with the 
desorption experimental data. This indicates that for moisture contents under 10% the 
assumption of monomolecular adsorption (Langmuir) and the assumption of 
multimolecular adsorption (BET) provide a good approximation. But, it should be 
recalled that hysteresis occurs along the whole sorption isotherm.  
 
In Figure 5.9, corresponding to 4% of the relative humidity ϕ  the moisture content X is 
3.8%. This value is to be compared with the final moisture content in the drying 
experiments at 25oC in the following section.  

5.6. Determination of dry mass and drying kinetics by magnetic suspension 
balance method 
 
5.6.1.  Introduction 
 
In order to measure the drying kinetics of a single porous particle, different 
experimental methods such as conventional microbalance, drying tunnel (Hirschmann 
and Tsotsas, 1998 [27]; Hirschmann et al., 1998 [28]), acoustic levitator (Groenewold et 
al., 2000 [23]) can be used. However, the major limitation of these methods is that at 
high temperature and realistic velocity, the mass of the sample cannot be accurately 
measured. To overcome this problem, a new technique, which involves the use of a 
magnetic suspension balance, is recommended (Kwapinski and Tsotsas, 2004 [41]).  
 
In a magnetic suspension balance system, the sample can be weighed under nearly all 
kinds of environment. The major advantage of this method is that instead of hanging the 
sample directly at the balance (as in traditional methods), the probe chamber and 
balance are separated; therefore the mass measurement (balance) is not disturbed by 
extreme conditions of temperature and pressure (T > 100oC and vacuum, for instance). 
However, this method is suitable only for limited size and weight of the investigated 
samples. 
 
The drying experiments with a magnetic suspension balance by Rubotherm were carried 
out at the Laboratory of Lehrstuhl für Thermische Verfahrenstechnik, University of 
Magdeburg. This device allows measurements at temperature up to 250oC and pressures 
up to 3 bar. The drying air velocity can be up to 1 m/s. The measuring weight (with 
hanger – a device to hang the sample) is up to 8 g with an accuracy of 1 μm 
(Rubotherm, [87]).   
 
The equipment and its instruments used in our experiments are shown in Figures 5.11 to 
5.13. In this system, the sample is linked to a suspension magnet, which contains a 
permanent magnet; a sensor core and a device for decoupling the measuring load (see 
Figure 5.14). The suspension magnet is linked to a balance via an electromagnet. This 
electromagnet maintains a freely suspended state of the suspension magnet via an 
electronic control unit. Thus, the measuring force is transmitted contactlessly from the 
measuring chamber to the microbalance, which is separated from the chamber. 
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Figure 5.11  Experimental system of magnetic suspension balance. 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

  Figure 5.12  Magnetic suspension balance                Figure 5.13  Sample and hanger. 
                          (Rubotherm, [87]). 
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5.6.2.  Experimental set-up 
 
The set-up of the experimental system is schematically shown in Figure 5.14. Like in 
the sorption isotherm experiment, two air flows are used. The first is humid air, which is 
humidified by a moistener. The second is dry. The desired humidity of drying air can be 
obtained by mixing these two air flows. The relative humidity is measured by a dew 
point mirror hygrometer provided by Michell Instruments. The temperature in the air 
condition cabinet is kept constant at temperature T. The drying air conditions are 
characterized by velocity, humidity and temperature. For the case of vacuum drying, a 
vacuum pump is used and the pressure P is controlled to be less than 1 mbar. In this 
case, only dry air flows through the sample by using a bypass valve. The temperature in 
the probe chamber is controlled by a thermostat at temperature T.  
 
The particle is attached to a hanger in the probe chamber. In our experiments, this 
hanger is individually designed and made of three small metal fibres (0.25 mm in 
diameter - Figure 5.13). This hanger ensures that the evaporation surface of the particles 
will not be disturbed by the hanger. The weight of the hanger is 3.787 g.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 5.14   Setup for drying experiments with magnetic suspension balance. 
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After conditioning, the drying air enters the probe chamber and flows around the 
sample. The mass of the particle is measured and recorded at defined time intervals (in 
our experiments 15 or 30 seconds). The zero point is set every 10 min by decoupling. 
Every 12 zero points (120 min) the calibration of the balance will take place using a 
reference of 5 grams inside the balance. 
 
During drying at room conditions, the temperature of drying air is 25oC at atmospheric 
pressure and the dew point temperature is less than -18oC corresponding to a relative 
humidity ϕ < 4%. In our experiments, the moistener was not used. The volumetric air 
flow rate is set to 0.2 l/min corresponding to a velocity of 7.37 mm/s in the sample 
chamber. This velocity assures that the drying process is slow and that symmetric 
conditions can be assumed. For the drying conditions mentioned here and for the 
particle diameter d = 5.52 mm, the Reynolds number is Re = 2.57. The buoyancy effect 
is neglected. 
 
5.6.3.  Experimental results 
 
5.6.3.1. Determination of dry mass 
 
One long experiment was carried out to determine the dry mass of one particle. The 
particle is first saturated with water by putting it into a water-filler placed in vacumm (P 
≤ 1 mbar) for 24 hours. The particle is then dried in the magnetic suspension balance at 
temperature 25oC and at atmospheric pressure. After that, the particle is set in the probe 
chamber and dried further at vacumm and temperature 110oC, 120oC, and 130oC, 
successively. The results (for drying in vacumm) are presented in Figure 5.15 by 
plotting the mass of the particle against time. Due to the limitations in data storing of 
the used software, the experiment has to be handled in several steps (indicated by the 
different colour of the curves). 
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Figure 5.15 Protocol for determination of the dry mass. 
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Table 5.5 Dry mass of four selected particles 

Sample no. d (mm) Mdry (mg) ΔM (mg) 
22 5.52 117.560 4.657 
24 5.50 116.840 5.160 
25 5.49 114.670 3.598 
26 5.54 117.660 3.526 

 
The initial mass of the particle is 169.16 mg (with d = 5.52 mm). The particle was dried 
at 25oC for 28 hours. After this period, the particle’s weight reduced to 120.737 mg.  
During drying in vacuum, the mass of the particle slowly decreases. In the first step of 
this period, the temperature 110oC was applied. After 120 hours, the mass of the particle 
is 118.121 mg. (point A – Figure 5.15). By continuing the drying process at temperature 
120oC, after 137 hours the particle’s weight achieves the value of 117.874 mg (point B 
– Figure 5.15). In the last step of drying in vacuum, the particle is dried at temperature 
130oC during 464 hours. At the end of the process, the remaining mass is 116.921 mg 
(point C – Figure 5.15). 
 
The results in the Figure 5.15 show that at points A and B, equilibrium seems to be 
reached, but not at point C (for very long times of vacumm drying at 130oC). The 
reason may be that at a high temperature other components than water are still removed. 
One should note that after the experiment was finished the colour of the particle had 
changed from white to light yellow (this could be seen by naked eye). This particle is 
later crushed to investigate the internal structure by the ESEM (see Section 5.3). It is 
found that only the colour of the surface is changed, not the colour inside of the particle.  
 
In practice, the value at point B can be used as dry mass of the sample. Indeed, from 
Figure 5.15 it is seen that the difference between the value at point B (accepted as dry 
mass) and the value at the end of the whole experiment after very long time (end of 
experiment at 130oC) is 0.953 mg. This value is small enough compared to the value of 
the saturated, or even dry particles. Therefore, the drying in vacuum at 120oC is chosen 
in order to determine the dry mass of the sample. By using the value of the density of 
the particle given by the producer (see Appendix 1), the dry mass of above particle is 
calculated as 112.903 mg. The difference between this value and the value at point B 
(117.874 mg) is 4.971 mg. 
 
After the above experiment, the dry mass Mdry of four other particles is determined by 
drying in vacuum with P ≤ 1 mbar at 120oC for 72 hours for each particle. The value of 
Mdry together with particle diameter d and the difference ΔM between Mdry obtained by 
our measurement and the dry mass calculated by using the value of the density of the 
particle given by the producer are given in Table 5.5. These particles were then used in 
the investigation of the drying kinetics at 25oC presented in the next section. 
 
5.6.3.2. Drying experiments at 25oC 
 
Drying experiments of four saturated particles were carried out at 25oC. The drying 
conditions are explained in Section 5.6.3.1. The initial moisture content, the moisture 
content at the end of the experiment together with the moisture content after several 
times of drying for these four selected particles are introduced in Table 5.6. The 
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moisture contents as functions of time are given in Figure 5.16. Figure 5.17 presents the 
evaporation rate for particle no. 25 as an example. By using the drying experiment 
results (of particle no. 25 – see Figure 5.17, for instance) together with the information 
of the sorption isotherm of γ-Al2O3 given in Section 5.5.2, the normalized drying rate 
curve can be obtained (Groenewold, 2004 [24]). The longest experiment is the drying of 
particle no. 22 (23.15 h of drying) and the shortest one is the drying of particle no. 24 
(8.42 h of drying). As we can see from Table 5.6, after 8 h of drying the moisture 
content of the particles reduces only very slowly and tends to the equilibrium moisture 
content as determined in the sorption experiment, namely 3.8 % (see Section 5.5.2). 
Two particles (no. 22 and no. 25) are dried further until 22 h, but the moisture content 
of these particles stays almost constant (the last column of Table 5.6). Therefore, it 
could be concluded that for drying at room temperature with almost dry air, the value of 
moisture content after 8 h of drying can be used as the equilibrium moisture content in 
practical calculations.  
 

Table 5.6  Moisture content after several time of drying at 25oC  
for four selected particles. 

 
Sample no. X0 X after 6h X after 8h X after 11h X after 18h X at the end 

22 0.504 0.045 0.042 0.041 0.041 0.041 
24 0.465 0.043 0.042 - - 0.042 
25 0.505 0.045 0.043 0.042 0.042 0.041 
26 0.507 0.046 0.044 0.043 0.043 0.043 
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Figure 5.16  Moisture content as function of drying time  

                 for four selected particles at 25oC. 
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Figure 5.17  Drying rate curve of particle no. 25 

 
 
To summarize, in this chapter, the drying experiments of γ-Al2O3 particles are 
presented. By using the environmental scanning electron microscopy (ESEM), it is 
observed that the samples have a bimodal pore size distribution with large pores 
(approximately 1.5 μm) and small pores (approximately 15 nm). The pore size 
distribution of the sample is studied using Hg-porosimetry. However, due to the 
limitations of the device not all small pores can be detected. To overcome this problem 
it is suggested to vary the missing part of pore size distribution or to use other 
techniques such as Helium adsorption. Sorption isotherm measurement was carried out 
by using a dynamic vapour sorption device. The results are compared with Langmuir 
and BET theoretical equations. For moisture contents under 10% a good agreement is 
found. By using a magnetic suspension balance, the dry mass of γ-Al2O3 particles is 
determined. In addition, drying experiments at 25oC for four selected particles were 
carried out to determine theirs drying kinetics. Experimental results obtained from this 
chapter could be used in future work.  
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CONCLUSION AND OUTLOOK 

 
 
 
 
 
The drying of porous media is studied in this thesis by means of the continuous 
approach and the control volume method. Both transport phenomena inside the porous 
medium and overall drying kinetics are analyzed. In dealing with the numerical 
simulation of drying, the thesis presents a new method to investigate the influence of 
microscopic properties, namely the pore size distribution, of porous materials on their 
macroscopic drying behaviour. 
 
Based on the drying models developed by Whitaker (1977 [115]; 1980 [116]) and by 
Perré and Turner (1999 [71]) a system of governing equations representing a continuous 
model used in drying simulation is established. The control volume element method is 
used to discretize and solve this governing system. Numerical studies with a reference 
material (light concrete) show that the drying simulations capture very well different 
drying characteristics of porous media such as the constant drying rate of the first 
drying period, the falling rate during the second period, the wet bulb temperature that is 
reached during drying, etc. The accuracy of the numerical simulations is tested by 
considering the influence of the space discretization and by considering the overall 
conservation behaviour of water and air. It is found that a good accuracy could be 
achieved. The influence of different factors such as drying conditions, sample shape and 
size, etc. on the drying kinetics is investigated numerically. Parametric studies are 
realized to examine the sensitivity of the drying behaviour with respect to different 
model parameters such as the effective diffusivity, the effective thermal conductivity 
and the absolute permeability. By comparing the results with those obtained by previous 
works, a good agreement is observed.  
 
Investigations on the influence of sample size on the total drying time in the drying of 
plates and spheres show that the drying time increases more than linearly with the 
sample size. In order to compare the results obtained by the continuous model with 
others, the influence of sample size is also examined by employing the diffusion and the 
receding front models for isothermal drying of spherical particles. The results show that 
the drying time increases more than linearly with the sample size in the case of 
continuous and receding front models. 
 
By using a bundle of capillaries with a radius distribution as a representation of the pore 
space, some of the most important parameters used in the continuous model (capillary 
pressure, absolute and relative permeabilites of liquid and gas phases) are computed as 
functions of material pore size distribution. These functions create a link between the 
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microstructure of porous materials and their macroscopic behaviour in drying. By using 
this micro-macro link, the influence of the material microstructure on the drying 
kinetics can be investigated. Numerical results show that by using the capillary model 
the drying characteristics of porous media can be captured (the constant and the falling 
rate periods, the wet bulb temperature). Investigations are realized to see how different 
pore size distributions affect the drying behaviour by using mono-modal and bimodal 
pore size distributions. The major results of these investigations are: 
 

  For materials having mono-modal pore size distribution, with small pores and a 
narrow distribution, the first drying period is short, significant gas pressure gradients 
occur in the second period and saturation gradients are relatively steep throughout the 
drying process. With large pores and a broad distribution, a long first drying period is 
observed. Pressure and moisture gradients in this case are much smaller. It is observed 
that the standard deviation σ0 also has a strong effect on drying. For the same mean 
capillary radius r0, a sample with small standard deviation has steeper saturation 
gradients and shorter first drying period as compared to a sample with large standard 
deviation. It is found that the variation of the pore size distribution has little effect on 
the temperature evolution during drying: only the wet bulb temperature prevails longer 
with larger pores. 
 

 For materials having bimodal pore size distribution, it is noted that the macro pores 
dry out completely at the high drying rate of the first drying period. Due to this fact, the 
distribution of the macro pores usually plays no role, but the volume fraction of 
macro/micro pores and the distribution of the micro pores are important. It is found that 
the length of the first drying period mainly depends on the volume fraction of the macro 
pores: the higher the amount of macro pores, the longer the first drying period since big 
pores are favourable for drying. Besides, the drying rate in the second period is higher 
for larger volume fraction of the macro pores. However, the first drying period can also 
be influenced by the pore size distribution of the micro pores: a broader distribution of 
the micro pores leads to a longer first drying period and the drying rate in the second 
period is higher. 
 
When pore size distribution is taken into account, the influences of other factors such as 
drying conditions and other material properties are also studied. It is observed that these 
influences have the same characteristics as found in the drying of the reference material.  
 
The numerical results obtained in this work are compared with those obtained by one-
dimensional capillary model proposed by Metzger and Tsotsas (2005 [55]) and two-
dimensional network model proposed by Irawan et al. (2006 [30]) in the case of 
isothermal drying. With the same geometry, the same pore size distribution and the 
same drying conditions, the comparison shows that for the simple geometry of a bundle 
of capillaries the results obtained by the continuous approach (with macroscopic 
governing equations and effective parameters) are very similar to those obtained by the 
discrete approach (drying is modelled at pore scale). 
 
By using γ-Al2O3 particles, experiments are carried out to examine the microstructure 
and the drying behaviour of γ-Al2O3 material. Maximum and minimum sizes of the 
pores are determined by using environmental scanning electron microscopy. By using 
Hg porosimetry, the pore size distribution is studied and by using magnetic suspension 
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gravimetry, the drying kinetics are measured. Ideally, the information obtained from 
these experiments should be used in and compared with numerical simulations. 
However, the model in the present work is valid only for large pores (larger than the 
pore size of γ-Al2O3) and due to the lack of some material data, this task will have to be 
done in a future work. 
 
Based on the current work, the next step in research should be to improve the model for 
smaller pores (by adding Knudsen effect) and extend the use of the control volume 
method in two and three-dimensional problems. Experiments should be carried out to 
determine the exact pore size distribution of a given material and experimental results 
on the drying kinetics should be compared with numerical simulations to see how the 
material properties can be properly modelled using the information about pore size 
distribution. More precisely, the modelling of material properties can be done in two 
steps. First, an advanced method such as the nuclear magnetic resonance imaging 
method should be used to obtain the drying kinetics of the considered material (for 
example moisture content Xexp as function of space and time). Second, the inverse 
problem should be solved by modifying progressively the material dependent transport 
parameters such as diffusivity and permeabilities until the simulated drying kinetics 
(Xsim) match the experimental ones (Xexp). The forward problem (drying simulation) can 
be solved by the control volume method and the inverse solution can be obtained with 
the help of the nonlinear least square method. The difficulty will be how to deal with the 
nonlinear least square method since the inverse problem in most cases belongs to the so 
called global optimization, which remains one of the most challenging problems yet to 
be overcome by engineers and mathematicians. 
 

Besides the use of a bundle of capillaries, future work should also use pore network 
models (in two and three dimension), where not only the pore size distribution of a 
material is varied but really the pore structure, to obtain the effective parameters of the 
continuous model. In this context, it will be of interest to see how the liquid has to be 
distributed in the network for a given saturation: by filling up pores according to the 
rule “starting with the smallest radius” as it was reasonable in our one dimensional 
capillary model or according to phase distributions as obtained from network drying 
simulations. By applying gradients of liquid and gas pressure, vapour pressure and 
temperature, effective parameters may be computed and used in the continuous model. 
This will allow us to see to what extent the discrete and continuous approach are 
equivalent. 
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Appendix 1 

 
MATERIAL CONSTANTS  

 
 
 

A.1.  Liquid water ([22]; [110]; [111]) 
 
Density: 

1000=wρ  kg⋅m-3 (A1-1)
 
Specific heat capacity: 

4185=pwc  J⋅kg-1⋅K-1 (A1-2)
 
Dynamic viscosity: 

[ ]( ) [ ]( )
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wη     (A1-3)

 
Surface tension:  
( ) [ ] [ ] 07606.01058.1103.1 427 +⋅⋅−⋅⋅−= −− CTCTT ooσ  N.m-1  (A1-4)

 
Thermal conductivity: 

( ) [ ] [ ](
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A.2.  Water vapour ([22]; [110]; [111]) 
 
Specific heat capacity: 

1874=pvc  J⋅kg-1⋅K-1 (A1-6)
 
Molecular weight: 

018015.0~ =vM  kg⋅mol-1 (A1-7)
 
Dynamic viscosity: 

61086.8 −⋅=vη  Pas (A1-8)
 
Saturation vapour pressure: 

[ ]⎟⎟⎠
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A.3.  Air ([22]; [110]; [111]) 

Specific heat capacity: 
1011=pac  J⋅kg-1⋅K-1 (A1-10)

Molecular weight: 
02965.0~ =aM  kg⋅mol-1 (A1-11)

Dynamic viscosity: 
61088.21 −⋅=aη  Pas (A1-12)

 
A.4.  Others 

Binary diffusion coefficient of vapour in air:  
The binary diffusion coefficient of vapour in air is calculated from equation given by 
Schirmer (see Krischer, 1992 [40]): 
 

( )
g
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R
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⋅⋅= −δ   m2.s-1 (A1-13)

where TR and PR are reference temperature and pressure, respectively. 
 
Dynamic viscosity of vapour-air mixture (Bird et al., 1960 [5]): 
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Evaporation enthalpy (at 273.15 K): 

6
0 105.2 ⋅=Δ vh  J⋅kg-1⋅K-1 (A1-17)

 
Gas constant: 

314.8~ =R  J⋅kg-1⋅K-1 (A1-18)
 
Reference gas pressure: 

101325=RP  Pa (A1-19)
 
Reference temperature: 

15.273=RT  K (A1-20)
Density of γ-Al2O3 particle (company’s data) 

12820 =ρ  kg.m-3 (A1-21)
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Appendix 2 

ACCURACIES OF WATER AND AIR FLOWS 
 

Accuracy of water flow: 
( ) ( )

( ) %100
1

21 ⋅
Δ

Δ−Δ
=

w

wwerr
w M

MM
ε  (A2-1)

Accuracy of air flow: 
( ) ( )

( ) %100
1

21 ⋅
Δ

Δ−Δ
=

a

aaerr
a M

MM
ε  (A2-2)

The computation of wMΔ and aMΔ is explained in Section 4.4.2. 

R (mm)  N mratio ϕ  (%) β  (m/s) T∞ (oC) X0 (kg.kg-1) err
wε (%) err

aε (%) 
0 0.0189 0.0899 
0* 0.0235 0.5948 
5 0.0170 0.0744 
10 0.0165 0.0645 
20 0.0174 0.0463 
40 0.0226 0.0049 
60 0.0298 0.0493 
80 

80 

0.0382 0.1883 
50 20 0.1739 0.1286 
50 20 isothermal 0.0022 0.2302 

60 0.0107 0.0878 
100 0.0260 0.0708 

0.015 

120 0.0357 0.0314 
0.020 0.0281 0.0297 
0.030 0.0502 0.0173 
0.040 0.0734 0.0064 
0.050 

1 

0.0969 0.0095 
1.2 0.2556 0.5946 
1.4 0.0523 1.0880 

0.2 

1.58* 0.0531 3.8089 
0.05 0.0140 0.9945 
0.1 0.0175 0.0901 

2.5 51 

1 0.0170 0.1082 
1* 31 0.0437 0.2312 

1.5* 41 0.0318 0.1483 
5* 101 1.8350 2.9856 

7.5* 1.1732 1.5261 
10* 0.8962 1.0581 

12.5* 3.8227 5.5309 
15* 

151 

3.2123 4.5675 
2.5*(plate) 51 

0.2 

0 
 

0.015 

80 

1 

0.0014 4.9550 
* tol = 10-8, all other cases tol = 10-11. 
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Appendix 3 

 
MODIFICATION OF PORE SIZE DISTRIBUTION 

 
 
 
A.1.  Capillary pressure curve 
 
 
The first modification aims to get smooth capillary pressure curve near the transition 
point between free and adsorbed water (point A in Figure 2.4, Chapter 2). In the region 
between the first point (corresponds to radius of rmin) and the second point (corresponds 
to radius of r2) of the pore radius grid, an asymptotic function (see Figure A3.1) is 
applied: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

=
min

min2
2

2
1 rr

rr
frF      (A3-1)

where f2 is the value of the norm pore size distribution at r2. 
 
The modified pore size distribution to get smooth capillary curve is applied for both 
mono-modal and bi-modal cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A3.1 Modified pore size distribution to get smooth capillary curve. 
 
 
A.2.  Transition region  
 
For bimodal distributions, the transition region (Figure A3.2) is treated as a trapezium 
responsible for At % of free saturation. The value of At is adjustable (normally less than 
4%). It is assumed that the grid of small pore has n1 elements and the grid of large pore 
has n2 elements. Two sides of this trapezium are computed by the relationship 

rmin rfill r2 r3 r4 
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f2 

f3 

f4 

r4 r 
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( ) ( )22

2

11

1

1
f
h

f
h

n

=
−

     (A3-2)

In this equation, h1 and h2 are two sides of the trapezium, ( ) 11 1−nf  is the function value at 

( ) 11 1−nr of the small pore and ( )22f is the function value at ( )22r of the large pore. Here r1 
and r2 denote the capillary radius of small and large pores. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A3.2 Transition region of bi-modal pore size distributions. 

 
A.3.  Relative permeability curves   
 
In order to get smooth curves of relative permeabilities kw and kg, we use the values of 
modified pore size distribution as starting point and directly smoothen the relative 
permeability curves. These modifications are realized in the sample region as for the 
case of capillary curve. In this region, a cubic function is used 

dcbak fxfxfxfF +⋅+⋅+⋅= 23      (A3-3)

The factors fa, fb, fc, fd are computed by imposing  
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dF

fFfF kk
kk  (A3-4)

where fmin, f2 and  ( )minkF , ( )2kF  are the values of relative permeabilities and function Fk 
at rmin and  r2, respectively. Note that below rmin, we set kw = 0 and kg = 1. Like capillary 
curve, the modification of relative permeability curves is applied for both mono-modal 
and bi-modal cases. 
 
One example of the modification for the bi-modal case with r1 = 100 ± 10 nm; r2 = 200 
± 20 nm is presented in Figure A3.3 and Figure A3.4. 

( )22r ( )32r( )12r
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Figure A3.3 Modified bi-modal pore size distribution (100 ± 10 nm; 200 ± 20 nm). 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                      a)                                                                          b) 

 
Figure A3.4  

a) Effect of modification of bi-modal pore size distribution (100 ± 10 nm; 200 ± 20 nm) 
on capillary curve. 

b) Additional smoothing of relative permeability curve (for liquid) by cubic function.  
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