

Komponentenorientierende Methode zur
Simulation von Mehrkörpersystemen

Dissertation
zur Erlangung des akademischen Grades

 Doktoringenieur
(Dr.-Ing.)

von: Vlasenko Dmitry
geb. am 14.09.1977 in Prokopievsk / Russland
genehmigt durch die Fakultät für Maschinenbau
der Otto-von-Guericke-Universität Magdeburg

Gutachter:
Prof. Dr.-Ing. Roland Kasper
Prof. Dr.-Ing. Lutz Sperling
Dr.-Ing. Vladimir Bykov

Tag der Einreichung: 29.09.2005
Promotionskolloquium am: 26.01.2006

Component-Oriented Method for
Simulation of Multibody Dynamics

Accepted dissertation
by the Faculty of Mechanical Engineering at the
Otto von Guericke University Magdeburg in fulfilment of the requirements
for the academic degree of

Doctor of Engineering
(Dr.-Ing.)

by: Vlasenko Dmitry
born in14.09.1977 in Prokopievsk / Russia

Advisor: Prof. Dr.-Ing. Roland Kasper
Co-advisors: Prof. Dr.-Ing. Lutz Sperling, Dr.-Ing. Vladimir Bykov

Submission date: 29.09.2005
Defence date: 26.01.2006

Acknowledgements

Acknowledgements

This doctoral thesis is my performed task as a doctoral student at the Institute of

Mechatronics and Drives (IMAT) at Otto-von-Guericke-University Magdeburg.

Firstly, I would like to give my particular thanks to my first advisor Prof. Dr.-Ing.

Roland Kasper, Managing Director of IMAT for his continual encouragement and

patient guidance throughout the course of this work.

I would like to thank my mother Anna for her patience and unlimited love. My

deepest thanks go to my wife, Marina. Her love and support through all the

emotional ups and downs of the PhD has been unflagging.

I would also like to thank my co-advisors Prof. Dr.-Ing. Lutz Sperling and Dr.-Ing.

Vladimir Bykov. Their helpful comments during the research and writing of this thesis

are greatly appreciated.

Abstract

Abstract

The development of a tool for simulation of constrained multibody dynamics is a

sophisticated problem. There are a lot of conditions that the simulating tool should

satisfy: numerical efficiency, stability, distributivity, flexibility, interaction with other

tools, distributed development, etc.

Trying to answer the requirements, we developed and implemented the method of

distributed simulation of mechanical systems. Unlike a huge number of other

methods, we keep the block-module concept during simulation. The main

advantages of our approach are separate testing of subsystems, encapsulation of

critical effects inside of subsystems and distributed simulation of subsystems.

It is an exact, non-iterative algorithm that is applicable to mechanisms with any joint

type and any topology, including branches and kinematic loops. The technique can

be implemented for various systems of connected bodies with variable number of

degrees of freedom such as systems with coulomb frictions.

Complexity of the simulation of good-partitioned systems requires O(n) floating point

operations, that is comparable with the fastest available algorithms. The combination

of generalized and absolute coordinates significantly increases the method’s

efficiency.

The object-oriented implementation of the algorithm significantly reduces the cost

and development time of modelling. The tests use a car system with a closed-loop

structure as one example and a spatial manipulator as another. Both models are

performed using an object-oriented approach, with several levels of hierarchy.

Numerical simulation shows the stability of the method. Drift is constant and is limited

to the order of the computation accuracy.

For the validation of the simulations results we have built up the same models in

Dymola and Simpack software. The comparison shows that the dynamics of the

models was calculated correctly.

Table of Contents i

Table of Contents

Mathematical Notation v

1 INTRODUCTION 1

1.1 Algorithms of Simulation 1

1.1.1 Recursive Newton-Euler Formulations 2

1.1.2 Non-Recursive Newton-Lagrange Formulations 3

1.1.2.1 Direct Elimination 4

1.1.2.2 Lagrange-Multiplier Approximation-Penalty Formulation 4

1.1.2.3 Lagrange-Multiplier Elimination 5

1.1.2.4 Baumgarte's technique 6

1.1.2.5 Projected invariants methods 7

1.1.2.6 Dynamic Projection onto the Tangent Space 7

1.1.2.7 Post-Stabilizations Method 8

1.1.3 Distributed Forward Dynamic Simulation 9

1.1.3.1 Constraint-force algorithm 10

1.1.3.2 Divide-and-conquer articulated-body algorithm 11

1.1.3.3 Hybrid Direct/Iterative Algorithm 12

1.2 Object-Oriented Implementation 13

1.2.1 Tool requirement 13

1.2.1.1 Flexibility 13

1.2.1.2 Usability 14

1.2.1.3 Interaction with other tools 14

1.2.2 Object-Oriented programming 15

2 THEORETICAL BACKGROUND 18

2.1 Main idea of the hierarchical simulation 18

2.2 Choice of coordinates 22

2.3 Choice of absolute coordinates 23

2.4 Calculation of absolute coordinates and velocities 25

2.5 Equations of motion of a basic subsystem 27

2.6 Building up the hierarchy 31

2.7 Calculation of absolute accelerations 35

Table of Contents ii

2.8 Calculation of generalized accelerations 37

2.9 Post-stabilization of generalized coordinates and velocities 38

3 COMPUTATION COMPLEXITY 42

3.1 Stabilization complexity 42

3.2 Computation complexity of a basic subsystem 43

3.3 Computation complexity of a derived subsystem 44

3.4 Computation complexity of the method 45

4 IMPLEMENTATION BACKGROUND 46

5 BASIC OBJECTS 49

5.1 Timer 49

5.2 Ground 49

5.3 Body 50

5.4 Body output 52

5.5 Generalized force 53

5.6 Constraint 54

5.7 Basic subsystem 57

5.8 Derived subsystem 58

6 COMPONENTS 60

6.1 Joints 60

6.1.1 Revolute joint 60

6.1.2 Prismatic joint 64

6.1.3 Ball joint 67

6.1.4 Stiff connection 70

6.2 Forces 72
6.2.1 Gravity force 72

6.2.2 Spring damper 73

6.2.3 Cosine torque 74

7 CAR EXAMPLE 76

7.1 Wheel Subsystem 76
7.1.1 Spring parameters 77

Table of Contents iii

7.1.2 Ring parameters 78

7.2 Beam Subsystem 78
7.3 Damper Subsystem 79

7.3.1 Spring parameters 80

7.3.2 Cylinder parameters 80

7.3.3 Piston parameters 80

7.3.4 Prismatic joint parameters 80

7.4 Suspensions Subsystem 81
7.4.1 Beam parameters 82

7.4.2 Revolute joint parameters 82

7.5 Car with suspension 82
7.5.1 Car Body parameters 84

7.5.2 Revolute 1 parameters 84

7.5.3 Revolute 2 parameters 84

7.5.4 Revolute 3 parameters 84

7.5.5 Revolute 4 parameters 85

7.5.6 Revolute 5 parameters 85

7.5.7 Revolute 6 parameters 85

7.5.8 Prismatic joint parameters 86

7.5.9 Gravity parameters 86

7.6 Array of independent bodies and sequence of dependencies 86
7.7 Start values 87
7.8 Simulation data 88

8 MANIPULATOR EXAMPLE 94

8.1 Motor subsystem 94
8.1.1 Housing parameters 95

8.1.2 Rotor parameters 96

8.1.3 Revolute Joint parameters 96

8.1.4 Forward Torque parameters 96

8.1.5 Backward Torque parameters 96

8.2 Link Subsystem 97
8.2.1 Beam parameters 98

8.2.2 Stiff Joint parameters 98

Table of Contents iv

8.2.3 Manipulator Subsystem 98

8.2.4 Stiff 1 parameters 99

8.2.5 Stiff 2 parameters 100

8.2.6 Link 1.Motor.Forward Torque parameters 100

8.2.7 Link 2.Motor.Forward Torque parameters 100

8.2.8 Link 3.Motor.Forward Torque parameters 100

8.3 Complete system 100
8.3.1 Stiff Joint parameters 101

8.3.2 Gravity parameters 102

8.4 Array of independent bodies and sequence of dependencies 102
8.5 Start values 103
8.6 Simulation data 103

9 CONCLUSION 110

9.1 Results 110
9.2 Discussion of future work 111

9.2.1 Integration with CAD tools 111

9.2.2 Simulations and analysis of systems with variable structures 112

9.2.3 Distributed simulation 112

APPENDIX A 113

QUATERNIONS ALGEBRA 113

BIBLIOGRAPHY 115

Mathematical Notation v

Mathematical Notation

s – Scalars, italic, Tymes New Roman font

q - Function, underline, italic, Tymes New Roman font

v – Vector, bold lower case, Tymes New Roman font

A – Matrix, bold upper case, Tymes New Roman font

I – Array, bold italic upper case, Tymes New Roman font

Ground – Objects, italic, Tymes New Roman font

1. Introduction 1

1 Introduction

The dynamics of multibody systems, such as motion of robotic manipulators, vehicle

systems and spacecrafts, is becoming increasingly important in engineering,

especially in mechatronics. A computer simulation of such multibody systems

requires a concerted integration involving several computational aspects [HAU 90,

SHL 90, SHL 93]. These include selection of a data structure for the system's

configuration, computerized generation of governing equations of motion,

incorporation of constraint conditions and implementation of suitable solution

algorithms. Basic methods for multibody system simulations are provided by the

disciplines of dynamics (the multibody formulations), numerical mathematics and

computer science [EIC 93].

Let us briefly review the problems of simulation tools. At first we show the most

popular theoretical methods of simulation and then we review some important

implementation's aspects.

In this thesis we discuss only the simulation of holonomic systems, though the

method can be easily generalized for the simulation of nonholonomic systems.

1.1 Algorithms of Simulation

The principal problem associated with the simulation of constrained mechanical

systems is forward dynamics. Given the time-histories of actuated joint torques and

forces, we need to compute their time-histories of the joint coordinates, velocities and

accelerations. In this case, the solution is obtained in a two-stage process. In the first

stage, the equations of motion are solved algebraically to determine the

accelerations. In the second stage, the underlying ordinary differential equations

(ODE) are integrated to obtain all the joint-coordinate time histories.

Methods for formulation of equations of motion fall into two main categories: a) Euler-

Lagrange and b) Newton-Euler formulations. Typically, Euler-Lagrange formulations

use joint-based relative coordinates as configuration-space variables; these

1. Introduction 2

formulations are generally not well suited for a recursive formulation. However, they

are popular within the robotics community, since they use joint-based relative

coordinates, which form a minimal-set for serial manipulators and have a direct

technical meaning in robotics. Newton-Euler approaches typically use Cartesian

variables as configuration-space variables. They admit recursive formulations by first

developing equations of motion for each single body; these equations are then

assembled to obtain the model of the entire system.

In subsequent discussions we will focus on the development of equations of motion

of constrained mechanical systems with loops.

1.1.1 Recursive Newton-Euler Formulations

Dynamics equations based on classic Lagrange approaches are of the order

[FEA 87], which means that the number of floating point operations grow with the

fourth power of the number of bodies n in the system. Many variants of fast and

readily-implementable recursive algorithms have been formulated within the last two

decades, principally within the robotics community.

)(4nO

The earliest O(n) algorithm for forward dynamics was developed by Vereshchagin

[VER 74] who used a recursive formulation to evaluate the Gibbs-Appel form of the

equations of motion and is applicable to unbranched chains with revolute and

prismatic joints. Next, Armstrong [ARM 79] developed an O(n) algorithm for

mechanisms with spherical joints. Later, Walker and Orin [WAL 82] developed an

efficient recursive forward dynamics algorithm. This method is commonly referred to

as the composite-rigid-body algorithm (CRBA). This algorithm needed to solve a

linear system of equations whose dimension grows with the number of rigid bodies.

Since methods to solve a linear system of n equations in the n unknowns are O(n3),

this algorithm is also O(n3). However, for small n, the first-order terms dominate the

computation, so that the algorithm is quite efficient. So far, the CRBA is perhaps the

most efficient general-purpose algorithm for serial manipulators with n < 10, which

includes most practical cases.

Next, Featherstone [FEA 83] developed what he called the articulated-body algorithm

(ABA), which was followed by a more elaborate and faster model [FEA 87]. The

1. Introduction 3

computational complexity of ABA is O(n) and is more efficient than CRBA for n > 9.

Further gains have been made in efficiency over the years [BRA 86, MML 95].

In multi-loop mechanisms the joint variables are no longer independent, since they

are subject to loop-closure constraints, which are usually nonlinear. The existing

literature on recursive algorithms applied to multi-loop mechanisms almost always

uses a non-minimal set of generalized coordinates [BAE 87, CHL 90a, STE 96, BAE

99, FEA 99]. The most common method for dealing with kinematics is to cut the loop,

introduce Lagrange multipliers to substitute for the cut joints and use a recursive

scheme for the open-chain system to obtain a recursive algorithm. However, the

methods have strong problems with stability.

1.1.2 Non-Recursive Newton-Lagrange Formulations

The dynamics of constrained mechanical systems with closed loops using a Newton-

Lagrange approach is traditionally obtained by cutting the closed loops to obtain

various open loops, also known as reduced systems, and then writing a system of

ODEs for the corresponding chains in their corresponding generalized coordinates

[FEA 87]. The solution to these is required to satisfy additional algebraic equations,

which typically are constraint equations required to close the cut-open loops. A

Lagrange multiplier term is introduced to represent the forces in the direction of the

constraint violation. The resulting formulation, often referred to as a descriptor form,

yields an often simpler, even though larger, system of index-3 differential algebraic

equations (DAEs) as follows:

(1.1)

0)(
)(),()(

=
−=

=

pg
λpGwpfwpM

wTp
T

p

&

&

(1.2)

(1.3)

where

p is the vector of generalized coordinates,

w is the vector of generalized velocities,

M(p) is the mass matrix,

1. Introduction 4

f(p,w) is the vector of external forces (other than constrain forces),

g(p) is the vector of holonomic constraints,

pT
p
gpG
∂
∂

=)(is the product of the constraint Jacobian matrix
p
g
∂
∂ and the

transformation matrix , pT

λ is the vector of Lagrange multipliers.

Remark 1.1 For notational simplicity, we assume that the matrix G is the Jacobian

matrix of g(p) and assume the matrix in (1.1) is the identity matrix. Our discussion

on a general form can be made through minor modifications.

pT

The solution of a system of index-3 DAEs by direct finite difference discretization is

not possible using explicit discretization methods [AHR 98]. Instead, the above

system is typically converted to a system of ODEs and expressed in state-space

form, which may be integrated using standard numerical code. Below we discuss the

most popular conversion’s methods.

1.1.2.1 Direct Elimination

The surplus variables are eliminated directly, using the equations of constraints to

explicitly reduce index-3 DAE to an ODE in a minimal set of generalized coordinates

(conversion into Lagrange's equations of the second kind). This is also referred to as

a closed-form solution of the constraint equations. The resulting minimal order ODE

is stable and can then be integrated. However, such a reduction cannot be done in

general, and even when it can, the differential equations obtained, are typically

complicated [KEC 97].

1.1.2.2 Lagrange-Multiplier Approximation-Penalty Formulation

In this approach the loop-closure constraints are relaxed and replaced by virtual

springs and dampers [WAN 00]. It looks like a form of penalty formulation [GAR 94],

which incorporates the constraint equations as a dynamical system penalized by a

large factor. The Lagrange multipliers are estimated using a compliance-based force-

law. The latter is based on the extent of constraint violation and assumed spring

1. Introduction 5

stiffness; the force is then eliminated from the list of n+c unknowns, leaving behind a

system of 2n first-order ODEs, where c is the size of g(p). The choice of parameters

of virtual springs and dampers is a sophisticated problem. It is important to note that

penalty approaches only approximate the true constraint forces and can create

unanticipated problems.

1.1.2.3 Lagrange-Multiplier Elimination

A very popular approach in practice is to differentiate the constraints twice, obtaining

at each time t an algebraic system for the accelerations and the Lagrange multipliers.

Thus, differentiating the position constraints (1.3) once, we obtain the constraint

equations on velocity level

(1.4) G(p)wg0 == &

and a further differentiation with respect to time results in the constraint equations on

acceleration level

(1.5) w)w(p,GwG(p)g0 &&&& +==

Remark 1.2 Throughout the thesis we will refer to (1.3) as the position constraints, to

(1.4) as the velocity constraints and to (1.5) as the acceleration constraints, although

of course these are all just different forms of the original constraints which are given

on the generalized position coordinates.

Combining (1.1), (1.2) with (1.5), we get:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ
f

λ
w

0G
GM &T

 (1.6)

where . ww)(p,G ⋅−= &ϕ

This allows elimination of λ in terms of the accelerations , obtaining an ODE

system for w and p:

w&

(1.7)
w)(p,fwM(p)

wp
~

=

=

&

&

1. Introduction 6

where () (ϕ−−= −−− fGMGGMGfw)(p,f 111)~ TT

This system may be integrated using standard codes.

Remark 1.3 Note that, in principle, the index-reduced system (1.6) or (1.7) needs

more initial conditions than the original system (1.1) to specify a unique solution. We

assume, however, that consistent initial conditions (see, e.g. [BRE 89]) for the

generalized position and velocity coordinates are provided.

However, there is a disadvantage to integrate (1.7) or (1.6) numerically. The position

and velocity constraints (1.3) and (1.4) are no longer satisfied exactly - there is a drift

off the constraints, which results in an error of motion and velocity for longer

simulations. Moreover, though, the drift magnitude as well as the error in generalized

positions and velocities grows with time t - at worst quadratically [BAU 72, ALI 92,

AHR 93]. This is not because of the numerical method used to integrate (1.7) but

because the system (1.7) or (1.6) itself is mildly unstable. Below we review the

stabilization methods that help to solve the problem.

1.1.2.4 Baumgarte's technique

Using Baumgarte's technique [BAU 72], we consider the index-1 DAE (1.6) or the

corresponding ODE (1.7) obtained by eliminating the Lagrange multipliers, but now

ϕ is defined by

g(p)w)(p,gw)w(p,G 01 αα −−−= &&ϕ (1.8)

where the parameters jα are chosen so that the roots of the polynomial

01
2)(αταττσ ++= (1.9)

both have negative real parts. For instance, one may choose

(1.10) 2)()(γττσ +=

for some 0>γ . The effect of this is to replace (1.5) by

gg2g0 2γγ ++= &&& (1.11)

1. Introduction 7

The apparent conceptual simplicity of Baumgarte stabilization technique and the fact

that it essentially replaces the index-3 DAE (1.1) - (1.3) by an ODE formulation must

be considered a major reason for its popularity in engineering applications.

The disadvantage of the method is the practical choice of parameters (e.g. γ in

(1.11)) to make the stabilization robust. The optimal γ depends on both the

discretization step size and the discretization method [BRE 89]. Nowadays there is

no sufficient algorithm for calculation of

h

γ .

1.1.2.5 Projected invariants methods

Another technique is maintaining more constraints by introducing additional

multipliers µ [AHR 93, GEA 81, GEA 85]. By using this technique, DAE (1.1)-(1.4)

can be reformulated as [GEA 85]

g(q)0
G(p)w0

(p)λGw)f(p,wM
(p)µGwp

=
=

−=

+=
T

T

&

&

 (1.12)

The system (1.12) is an index-2 DAE for variables (p, w, λ, µ). The exact solution for

µ is so that (1.12) and (1.7) will share the same solutions for (p, w, λ). As the

numerical solution of (1.12) satisfies both the position constraint (1.3) and the velocity

constraint (1.4) the method has no drift problem. But the computation of (1.12) could

be expensive as implicit schemes have to be used for the even larger dimension

(1.12).

0µ ≡

1.1.2.6 Dynamic Projection onto the Tangent Space

Describing vectors and matrices, we show in square brackets their size. Vectors

(column vectors) are simply matrices with a single column.

These methods seek to take the equations of motion into the selected constraints

manifold. Let S(p) be a [n, n-c] full-rank matrix whose column space lies in the

nullspace of G(p), i.e. . All feasible dependent velocities w belong to the

space, which is spanned by the columns of S(p):

0G(p)S(p)=

1. Introduction 8

w=S(p)u(t)

where u(t) is n-c dimensional vector of independent velocities.

Using the matrix S we could obtain from DAE (1.1) - (1.3) the ODE:

u)w,f(p,u =&

that can be integrated with suitable ODE solvers.

A family of choices exists for the selection of dependent and independent velocities

[SHA 01, GAR 94].

1.1.2.7 Post-Stabilizations Method

The post-stabilisation method [AHR 95] relates to coordinate projection methods.

Nowadays, this is one of the most effective and convenient methods for the

simulation of constrained mechanical systems.

The position and velocity constraints together form an invariant set of ODE (1.7),

given by

Θ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

G(p)w
g(p)

w)h(p,0 (1.13)

While the simulation on each time step we perform the following two-stage

subroutine:

1. Using a favourite ODE integration scheme (e.g. Runge-Kutta or multistep) we

obtain from (1.12) the values of 1
~

+kp , 1
~

+kw on the new time step.

2. Stabilize:

)w,p)h(w,pF(
w
p

w
p

1111
1

1

1

1 ~~~~
~
~

++++
+

+

+

+ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
kkkk

k

k

k

k (1.14)

where

1. Introduction 9

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=

= −

GG
0G

w
h

p
hH

Q(HQ)F

&

1

 (1.15)

with smooth such that HQ is nonsingular.)(wp,Q

Remark 1.4 Here we assume that H has a full row rank. In practice, during the

simulation we use a pseudoinverse formula based on singular value decomposition

[CLI 03].

The post-stabilization guarantees [CHI 95] the asymptotic stability of in the

difference equations even when

Θ

Θ is slightly unstable in the underlying vector field.

Therefore the numerical solutions will stay near Θ for all time integration.

In our software we find it most convenient to choose

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

T

T

G0
0G

Q (1.16)

In the case when does not significantly dominate, we can neglect it and rewrite

(1.15) as

G&

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

I0
0I

GGGw)F(p, 1TT (1.17)

where is the identity matrix. I

In next chapters we consider some simulation examples that show the stability of the

technique.

1.1.3 Distributed Forward Dynamic Simulation

The simulation process involves the time-discretized numerical solution of an initial-

value problem, using a variety of numerical time-stepping schemes. In particular, the

numerical stiffness of the underlying coupled differential-algebraic equations

necessitates a large number of small time-steps in order to ensure a prescribed

accuracy. Hence, while real-time and interactive simulations of complex systems are

desirable from a design view point, they tend to be difficult to achieve for large multi-

1. Introduction 10

body systems with multiple links and many kinematic loops using conventional

processing paradigms. One method to achieve speed-ups in such computations and

to satisfy real-time constraints is to distribute the computational load onto several

processors running in parallel. Henrich and Honiger [HEN 97] gave a brief review and

a preliminary classification of the different levels of distribution that have been

explored in the context of robotic applications and noted that distribution at all levels

may not be possible. Results obtained by distributed algorithms vary depending on

the degree of dependency and coupling among the equations. While image-

processing problems [CHA 90] can be broken down quite well by dividing the image

into smaller independent blocks, the problems of simulation of constrained

mechanical systems is a strongly coupled problem and the task is not trivially

distributable [FUJ 92, ZOY 93].

In what follows, we will discuss some aspects of these levels of distribution as

applicable to the simulation of robotic systems, and specifically to closed-loop

systems.

1.1.3.1 Constraint-force algorithm

Fijani et al. [FUJ 95] are credited for the first distributed forward dynamics algorithm

called the constraint-force algorithm (CFA) for serial/parallel manipulators with

 complexity of computation on processors. An improved form of this,

where all restrictions to type of kinematic chains and classes of joints were removed,

appeared in [FEA 99]. The algorithm is in full-descriptor form and works by dividing

the mechanisms into sub-chains, obtaining a sparse system of linear equations for

the unknown inter-body constraint forces. This system is then solved by various

iterative parallel methods. The constraint forces are then used to determine state-

derivatives that are time-integrated to obtain updated values for the system state.

The main disadvantage to this method is the utilization of iterative methods and the

use of the full descriptor form, which is not stable.

))(log(nO)(nO

1. Introduction 11

1.1.3.2 Divide-and-conquer articulated-body algorithm

The divide-and-conquer articulated-body algorithm (DCA) [FEA 99a] with

time complexity on processors is the fastest available algorithm for a computer

with a large number of processors and low communication cost.

))(log(nO

)(nO

The method uses a recursive binary assembly of a system, as shown in Fig. 1.1.

Each assembly corresponds to the assembly tree, where leaves are bodies and

nodes are constrained subsystems. The central idea of the method is that it is

possible to construct the equations of motion of each node in the assembly tree from

the corresponding equations of its children.

Figure 1.1: Recursive binary assembly of a four-link chain

and the corresponding assembly tree

The complete DCA consists of four passes through the virtual processor tree. The

first two passes serve to calculate the body positions and velocities. Using the

assembly tree we calculate the new values of position and velocity variables of child

from the current value of the joint position and velocity variables.

In the third pass we start from the leaves of the assembly tree and work toward the

root. Subsystems express the acceleration of their external joints as the linear

functions of forces acting in this joints and transform dependency matrices up to tree.

The fourth pass is the back-substitution pass, in which subsystems calculate the

acceleration of internal joint from the known forces in external joints.

The approach has several disadvantages. The first is the high communication cost,

that limits the method’s implementation on general-purpose parallel and

multiprocessing systems such as distributed-memory cluster computing machines.

1. Introduction 12

The second drawback is the use of Baumgarte stabilization for closed-loops systems.

Above we discussed the problems of the practical use of the stabilization. Also the

drift of Baumgarte stabilization is much more than the drift of some other stabilization

techniques.

The next problem is the limit on the structure of simulating systems: only one body

can be connected with the ground. Obviously, there are many popular multibodies

systems (e.g. multilegged robots, vehicles) that do not satisfy this limit.

We note also that the most common way is the construction of a simulating system

from subsystems in a hierarchical approach, i.e. we consider the complete system as

the highest level of hierarchically connected subsystems. But the assembly tree of

the complete model changes after addition of a new subsystem. Thus, we can not

partially test the subsystems, but should test the complete model, that significantly

increases development costs.

All this drawbacks limits the implementation of DCA method in practical use.

Nowadays, DCA method is not implemented in commercial tools. Also, there are no

tests of DCA’s stability in the case of simulation of closed-loops systems.

In our method we perform a hierarchical calculation of accelerations in the way

similar to DCA. But we simulate the model using the same hierarchy disassembly, as

was performed by the user while the model’s construction. Since the assembly tree

of a subsystem does not changes while the changes of the global model’s structure,

it follows that we can distributivly test the subsystem. For the stability of the method

we use the post-stabilization technique that is much more convenient and accurate

than Baumgarte’s method. All this helps us to avoid the drawbacks of DCA method.

1.1.3.3 Hybrid Direct/Iterative Algorithm

The Hybrid Direct/Iterative Algorithm (HDIA) proposed by Anderson and Duan [AND

00] is an iterative algorithm and works by cutting a rigid-body system into just

sufficient separate pieces to allow for full use of all the processors on a given parallel

computer.

1. Introduction 13

The equations of the separate pieces are evaluated in parallel, and the results are

loaded into a single system-wide matrix equation to calculate the constraint forces

acting between the pieces due to the cut joints. This matrix has dimensions that

depend on the number of cut joints, rather than the number of bodies, and is typically

sparse, enabling parallel iterative solution techniques to be used effectively. Apart

from this one matrix equation, the total cost of the rest of the algorithm is .

HDIA expresses its equations of motion in minimal coordinates using coordinate-

partitioning, which is an advantage. However, again the iterative solution techniques

employed are the major draw back.

))(log(nO

1.2 Object-Oriented Implementation

1.2.1 Tool requirement

Modelling and simulation are becoming more important since engineers need to

analyze increasingly complex mechanical and mechatronic systems. And in many

cases the simulation method’s parameters i.e. numerical efficiency, stability and

distributivity are much less important than the implementation parameters. Trying to

choose the appropriate commercial software, we should evaluate the software

efficiency.

1.2.1.1 Flexibility

In earlier years, software components of systems had not been designed for reuse,

and any modification in design required a substantial re-evaluation, which made such

systems almost as expensive as possible, even more expensive than individually

designed ones. But recent years have shown an increasing demand for pre-

fabricated goods with lots of options that the customer can choose from. The markets

for flexible manufacturing depend heavily on the ability of the producer to maximize

flexibility, while keeping the cost down and providing as fast a response time as

possible on customized orders.

This goes hand in hand with a demand for flexible modelling and simulation tools,

whereby hardware components are described by corresponding software modules

1. Introduction 14

that must be combinable in at least the same flexible manner as the hardware

components themselves.

1.2.1.2 Usability

One of the most important characteristics of a tool is its usability. The software

should minimize the time of simulating model’s redesign. Modelling should be much

closer to the way an engineer builds a real system, first trying to find standard

components like motors, pumps and valves from manufacturers' catalogues with

appropriate specifications and interfaces [ELM 01].

The main factors that help reduce both cost and development time of software are:

• Reusability. A software design methodology that ensures optimal reusability

of software components is the most essential factor in keeping the software

development and maintenance cost down.

• Quick Development. Typically, the engineer is facing some particular

problems. In order to get a clear arrangement of the distinct physical elements

the separation of the real structure into the block elements has to be done in a

physical- and design-related manner. Thus one obtains several model-blocks,

each of them representing the corresponding mechanical subsystem.

• Abstraction. Higher abstraction levels at the user interface help to reduce the

time of software development as well as debugging. The conceptual distance

between the user interface and the final production code needs to be

enlarged. Software translators can perform considerably more tasks than they

traditionally did.

1.2.1.3 Interaction with other tools

In last few years the importance of mechatronics significantly grows [KAS 04]. The

huge numbers of modern machines are complex mechatronic structures consisting of

electronic units, electromechanical transformers such as sensors, actors, pure data

processing units as controllers and mechanical structures. The popularity of

1. Introduction 15

mechatronic structures grows enormously: hardware, cars, home electronics like

clothes washers and video equipment, robots, airplanes etc.

That is why nowadays one of the most important requirements for a mechanical

simulation tool is its interaction with electrical and control tools. Today the world’s

largest automotive companies estimate that 80-90% of future innovations are based

on the integration of electronics and information processing in their classical

mechanical products.

But special problems appear when coupling several components from different

disciplines to one new system and the methodical limits of the used tool are reached,

because of the different engineering domains. One possibility is the translation by

analogy consideration [KAS 95]. The other way is to couple different simulation tools,

but then there is no direct view to the real system components [Lefarth 96]. Every

result and modification has to be translated and very often this can only be done by

the model developer. It is clear that this is a major source of errors.

The interaction with other tools is one of the most important parameter of simulation

software.

1.2.2 Object-Oriented programming

Trying to satisfy all these demands, modern simulation tools use the object-oriented

method. One of the principal advantages of object-oriented programming techniques

over procedural programming techniques is that they enable programmers to create

modules that do not need to be changed when a new type of object is added. A

programmer can simply create a new object that inherits many of its features from

existing objects. This makes object-oriented programs easier to modify.

One of the most popular simulation tool Dymola is based on the object-oriented

modelling paradigm that was originally invented in 1978 by Hilding Elmqvist as part of

his Ph.D. dissertation [ELM 78].

The object-oriented modelling paradigm shares many of the properties of object-

oriented programming. Its main characteristics can be summarized as follows [CEL

95]:

1. Introduction 16

• Encapsulation of knowledge. The modeller must be able to encode all

knowledge related to a particular object in a compact fashion in one place with

well-defined interface points to the outside.

• Topological interconnection capability. The modeller should be able to

interconnect objects in a topological fashion, plugging together component

models in the same way as an experimenter would plug together a real

equipment in a laboratory. This requirement involves that equations describing

a subsystem should be independent on equations of a global model.

• Hierarchical modelling. The modeller should be able to declare

interconnected models as new objects, making them indistinguishable from

the outside from the basic equation models. Models can then be built up in a

hierarchical fashion.

• Object instantiation. The modeller should have the possibility to describe

generic object classes, and instantiate actual objects from these class

definitions by a mechanism of model invocation.

• Class inheritance. A useful feature is class inheritance, since it allows the

encapsulation of knowledge even below the level of a physical object. The so

encapsulated knowledge can then be distributed through the model by an

inheritance mechanism, which ensures that the same knowledge will not have

to be encoded several times in different places of the model separately.

• Generalized Networking Capability. A useful feature of a modelling

environment is the capability to interconnect models through nodes. Nodes

are different from regular models (objects) in that they offer a variable number

of connections to them. This feature mandates the availability of across and

through variables, so that power continuity across the nodes can be

guaranteed.

Kasper and W. Koch [KAS 99] introduced a COM based Mechatronic Design

Environment. Their technology allows treating arbitrary models, analysis and design

methods in a uniform and implementation independent way, by concentration on a

set of well-defined interfaces. This allows the reuse of existing software by

1. Introduction 17

connection interfaces on a very efficient level. Actually there exist interfaces to use

models generated by Matlab/Simulink and Dymola. Using their approach, it is

possible to simulate even very complex mechatronic models.

2. Theoretical Background 18

2 Theoretical Background

In Chapter 1 we showed the advantages of the object-oriented approach.

Unfortunately this type of modularization in most cases is given up during the

simulation, especially for mechanical systems, because common modelling

formulations use access to the complete system to calculate all accelerations

needed. But from a practical point of view, there are big advantages of the simulation

on the basis of subsystems:

1. Subsystems can be modelled, tested and compiled. Then they can be used in

a way similar to software components that encapsulate their internal structure

and can be connected via interfaces.

2. Critical effects like coulomb friction, backslash etc. can be encapsulated inside

a subsystem.

3. Subsystems are ideal candidates for the partitioning of large systems on

multiple processors.

2.1 Main idea of the hierarchical simulation

Fig. 2.1 shows the multibody system S that was built up by a design engineer as a

hierarchy of subsystems. The subsystems S1,1, S1,2, S2,1, S2,2 of the first level of the

hierarchy consist of connected bodies. The subsystems S1, S2 of the second level

consist of connected subsystems of the first level. The relation between S1 and S1,1,

S1,2 are called inheritance, S1 is called a child of S1,1, S1,2. Correspondingly, S1,1, S1,2 are

called parents of S1. The system S consists of the connected subsystems S1, S2.

A subsystem is called basic if it does not include other subsystems, i.e. the

subsystem is situated on the first level of the hierarchy (e.g. S1,1, S1,2, S2,1, S2,2). If a

subsystem consists of several connected subsystems, then this subsystem is called

derived (e.g. S1, S2 and S).

2. Theoretical Background 19

S
S1

6 54
S1,2S1,1

32 1

98 7
S2,1

S2

12 1110
S2,2

 Figure 2.1: Multibody system S

Consider a basic subsystem. A body is called bordering to the basic subsystem if it is

connected with subsystem’s external joints (e.g. Body 1 and Body 3 are bordering to

the subsystem S1,1). All other bodies in the subsystem are called internal to the basic

subsystem (e.g. Body 2 is internal to the subsystem S1,1).

Consider a derived subsystem. In our method the subsystem needs only the

information about bordering bodies of its parents and does not need any information

about parents’ internal bodies. This approach significantly reduces the size of

equations and communication cost. That is why we call a body internal to the derived

subsystem if it is bordering to one of subsystem’s parents and is not connected with

subsystem’s external joints (e.g. Body 9 and Body 10 are internal to the subsystem S2,

but Body 8 is not internal to the subsystem S2 because it is internal to S2,1). We call a

body bordering to the derived subsystem if it is bordering to one of subsystem’s

parents and is connected with subsystem’s external joints (e.g. Body 7 and Body 12

are bordering to the subsystem S2). Obviously, S does not have bordering bodies and

has four internal bodies: Body 1, Body 6, Body 7, Body 12.

During the simulation, on each time step we perform the several operations, shown in

Fig. 2.2:

2. Theoretical Background 20

)(),(kk tt vq

)(),(kk tt wp

D(1,1), r(1,1) D(1,2), r(1,2) D(2,1), r(2,1) D(2,2), r(2,2)

D(1), r(1)

τ (1,1)

D(2), r(2)

)(ktv&

)(~),(~
11 ++ kk tt wp

)(),(11 ++ kk tt wp

)(ktw&

τ (2,2) τ (2,1) τ (1,2)

τ (2)τ (1)

1. Calculation of absolu

the generalized coord

the absolute coordinat
Figure 2.2: Simulation steps
te coordinates and velocities. Using current values of

inates and velocities , we consequently calculate

es and velocities of all simulating bodies.

p w

q v

2. Theoretical Background 21

2. Hierarchical generations of equations of motion. A subsystem gets from its

parents their dependency matrices and :)(kD)(kr

where

)(k
ev& is the vector of absolute accelerations of k -th parent’s bordering

bodies,

 is the vector of forces acting in k-th parent’s external links.)(kτ

Using equations of constraints connecting the parents, the subsystem

calculates matrices D and r and transmits them to its child. Here D and r are

the dependency matrices:

where

ev& is the vector of accelerations of subsystem’s bordering bodies,

 is the vector of forces acting in subsystem’s external links. τ

)()()()(kkkk rτDve +=&

rDτve +=&

3. Backward hierarchical calculation of absolute accelerations. A subsystem

gets the current values of τ from its child. Using , the subsystem calculates

. Then for each parent k the subsystem calculates and transmits it to

the parent.

τ

ev&)(kτ

After we reach the lowest level of the hierarchy, the absolute accelerations of

all simulating bodies are calculated.

4. Calculation of generalized accelerations. From the absolute accelerations

 we consequently calculate the current values of the generalized

accelerations .

v&

w&

5. Calculation of generalized coordinates and velocities on the next time
step. Using a favourite ODE integration scheme (e.g. Runge-Kutta or

multistep), we obtain the values of)(~
1+ktp ,)(~

1+ktw on the new time step.

2. Theoretical Background 22

6. Post-stabilization of generalized coordinates and velocities. Using the

post-stabilization described in the previous chapter, we obtain from)(~
1+ktp ,

)(~
1+ktw the stabilized values of the generalized coordinates p(tk+1) and

generalized velocities w(tk+1).

In this chapter we precisely observe the most important theoretical problems of our

method for the distributed simulations of multibodies.

Remark 2.1 We show our method in the case of conservative systems but it can be

also extended for the simulation of non-conservative systems with various degrees of

freedom.

Remark 2.2 For the sake of simplicity we assume that a ground can be included only

on the highest level of the hierarchy. This limit can be easily removed through minor

modifications of the method.

In our implementation a ground object can be included on each hierarchy’s level. In

Chapter 7 we demonstrate the simulation of a multibody system where subsystems

include ground objects.

2.2 Choice of coordinates

There are two main approaches for the generation of equations of motion: perform it

using generalized coordinates or perform it using absolute coordinates. Both

approaches have its advantages and disadvantages.

If we use generalized coordinates in the case of a loops-free model, then for many

types of joints we do not need to stabilize a simulation model. In the case of a model

with closed loops, use of generalized coordinates significantly reduces the post-

stabilization complexity.

Example 2.1. Consider a two-dimensional loop with m revolute joints. The dimension

of expressed using generalized coordinates is [m, 2] vs. [3m, 2m] of G expressed

using absolute coordinates. This property is very important because in the post-

stabilization we need to inverse the matrix .

G

TGG

2. Theoretical Background 23

But if we use generalized coordinates in the calculation of accelerations and internal

forces, then we cannot separate our system into subsystems. It happens because

some of the generalized coordinates are included in the equations of motion of all

bodies. Therefore, we need to perform our calculations of accelerations and internal

forces using absolute coordinates.

Trying to maximise the effectiveness of the method, we use the combination of

generalized and absolute coordinates. The distributive calculation of forces and

accelerations we perform using absolute velocities and coordinates. But we perform

the integration and stabilization steps using generalized accelerations. This

combination leads some extra calculations needed for the transformation from

absolute to generalized acceleration and from generalized to absolute coordinates.

But this additional numerical complexity is much less than the numerical complexity

of the post-stabilization using absolute coordinates. In Chapter 3 we precisely

compare the effectiveness of this two stabilization's types.

2.3 Choice of absolute coordinates

Let us consider an arbitrary simulating body. Let k denote the number of the body.

The vector of absolute coordinates of the body consists of three Cartesian

coordinates indicating the position of centre of mass of the

body with respect to the global frame and a set of coordinates indicating the

orientation of the body fixed frame with respect to the global frame. The orientation

can be described by three angles (Eulerian angles) or by four Euler parameters [NIK

83, SHA 89, JAI 91, LUB 92].

kq

(T
kkkk xxx 3,2,1,=x)

In the case of using of Eulerian angles we obtain the significant computation

difficulties when the mutation angle is equal to null. That is why in our method we use

Euler parameters that do not have critical points. Using of Euler parameters is

concerned with quaternions algebra discussed in Appendix A.

When four Euler parameters ()Tkkkkk eeee 3,2,1,0,=θ are used, a simple

relationship exists between the components of the global angular velocity vector

and time derivatives of Euler parameters

kΩ

()Tkkkkk eeee 3,2,1,0, &&&&& =θ :

2. Theoretical Background 24

k
T

kk ΩEθ
2
1

=&

where Ek is a semi-transformation matrix [NIK 82] that depends linearly on Euler

parameters:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−

−−
=

0,1,2,3,

1,0,3,2,

2,3,0,1,

kkkk

kkkk

kkkk

k

eeee
eeee

eeee
E

The position variables are:

()TT
k

T
kk θxq =

The velocity variables are:

()TT
k

T
kk Ωxv &=

The body position and velocity variables are related:

kT
k

kk
k

k
k v

E
I

vT
θ
x

q ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

2
1

3

0
0

&
&

&

where

 is the [3,3] identity matrix, 3I

 Tk is the [7,6] velocity transformation matrix of the k-th body.

Also exists the backward relation:

k
k

kkk q
2E0

0I
qTv 3 && ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⋅=

where kT is the [6,7] backward velocity transformation matrix of the k-th body

Use of Euler parameters requires the normalization condition:

 1=kθ

2. Theoretical Background 25

2.4 Calculation of absolute coordinates and velocities

From the object-oriented point of view the most convenient is to use generalized

coordinates p and generalized velocities w associated with constraints.

Consider a constraint connecting a set of bodies J={Body j1, Body j2,…, Body js}. If it

exists a dependency of the coordinates ()TT
k

T
k

T
k t

qqqqK L
21

= of some subset

of bodies K={Body k1, Body k2,…, Body kt} on the generalized coordinates p and on the

coordinates of some other subset of bodies B={Body b1,

Body b2,…, Body br}:

(TT
b

T
b

T
b r

qqqqB L
21

=)

),(BK qpq q=

then bodies Body b1,…, Body br are called basic for the constraint, and bodies Body k1,

…, Body kt are called dependent on the constraint.

Example 2.2. Consider a revolute joint connecting two bodies. Let Body 1 be basic

and Body 2 be dependent. The generalized coordinate p associated with the joint is

the angle between Body 1 and Body 2. The generalized velocity w associated with the

joint is the time derivative of p.

The absolute coordinates of Body 2 are expressed as the function of the coordinates

of the basic body and the angle between the connected bodies p:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅⋅−⋅+
==

)s(θ
r)(A)(θAr)(θAx

)q,(q
p

p
pq

o1

21,210,1110,11
12

where

 x1 are the coordinates of the centre of mass of Body 1,

r1 is the state vector expressed in the frame connected with Body 1 from the

centre of mass of the body to the centre of joint,

r2 is the state vector expressed in the frame connected with Body 2 from the

centre of mass of the body to the centre of joint,

2. Theoretical Background 26

1θ is the vector of Euler parameters of Body 1,

)(θA 10,1 is the matrix of rotation of Body 1,

)(A p1,2 is the matrix of relative rotation,

TTTT ppss))2/sin()2/cos(()(10 as == are Euler parameters describing the

relative rotation around the axe a1, where a1 is the axe of relative rotation

expressed in the frame connected with Body 1.

Example 2.3. Consider a ball joint connecting two bodies. Let Body 1 be basic and

Body 2 be dependent. The set of generalized coordinates ()Tpppp 4321=p is

equal to the vector of Euler parameters θ2 of Body 2. The generalized velocity w is

equal to the angular velocity of Body 1. 1Ω

For more details of descriptions of different types of joints, see Chapter 6.

Bodies that do not depend on any constraint are called independent. In Fig. 2.3 is

shown the graph of a multibody system. The system consists of 7 bodies connected

with two grounds. Grounds (i.e. bodies whose motion are predefined) are

represented by red points, independent bodies are represented by blue points, and

other bodies are represented by black points. Directed arcs stand for constraints that

are used in transformations. Other constraints are represented by undirected arcs.

Figure 2.3: Graph of a 7-bodies system

While the translation of a multibody system we generate the array of independent

bodies I={Body i1,…, Body in} and the sequence of constraints C={Constraint c1,..,

Constraint cm} that are used during the transformation. Let us call C the sequence of

dependencies. Obviously, p can be written as:

()TTT
CI pqp =

2. Theoretical Background 27

where

 is the vector of absolute coordinates of bodies in I, Iq

 is the vector of generalized coordinates associated with constraints in C. Cp

On each time step we perform the same routine. At first we obtain the absolute

coordinates of bodies included in I. Then, using the C-order, we consequently

calculate the absolute coordinates of dependent bodies as the result of the q-function

of constraints. After the routine’s completion we calculate the absolute coordinates of

all simulating bodies.

Clearly, we have two limits on the structure of C. The first is the limit on the set of

constraints included in C: a body can not be dependent on two different constraints.

Else way we calculate two times the absolute coordinates of the body.

The second is the limit on the order of constraints inside C. Consider an arbitrary

Body j. Suppose that the body is dependent on Constraint c1 and it is basic for

Constraint c2. If Constraint c1 would be situated after Constraint c2 in the sequence C,

then we calculate the absolute coordinates of bodies that are dependent on

Constraint c2 before we calculate the coordinates of Body j. Therefore, Constraint c1

should be before Constraint c2.

Finally, we obtain that C has a tree-structure without loop-closing constraints.

We perform the calculation of absolute velocities in a similar way as the calculation of

the absolute coordinates. For the calculations of velocities of bodies dependent on a

constraint we use the constraint’s function v equal to the time derivative of q:

 qv &=),,,(BB vwqp

2.5 Equations of motion of a basic subsystem

Consider a basic subsystem S, shown in Fig. 2.4, included in a complete simulating

system. By n denote the number of bodies in S. Let g denote the vector of equations

of internal constraints:

2. Theoretical Background 28

() ()TT
cgg 00)()(1 KK == qqg (2.1)

1
eq

2
eq

1
iq

1τ

2
iq

Figure 2.4: A subsystem of several connected bodies

2τ

Let be the vector of Lagrange forces acting in external constraints. Then the

descriptor form of equations of motion can be written as [CHI 95], [STE 01]:

τ

nkk

T

...11
0)(

)()()(
)(

==

=
+=+

=

θ
qg

τλqGqcvqM
vqTq

&

&

 (2.2)

where

()

T
q
gG

ΩJΩl
f

cccc

J
I

MMMM

E
I

TTTT

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×+−

−
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

kkkk

k
k

TT
n

T

k

k
kn

T
k

kn

m
diag

diag

0
0

),...,(

0
0

),...,(

1

3
1

2
1

3
1

L

Here

kf is the resultant external force acting on the k-th body,

kl is the resultant external torque acting on the k-th body,

mk is the mass of the k-th body,

2. Theoretical Background 29

M is the mass matrix,

Jk is the [3,3] moment of inertia matrix of the k-th body with respect to the body

centre-of-mass frame,

3I is the [3,3] identity matrix.

Here a body centre-of-mass frame is a frame parallel to inertial frame but centred at

body centre of mass.

Remark 2.3 Matrices Jk are not constant and should be calculated on each time step

from formula [WIT 77]:

)(qAJ)(qAJ ,, kkkkkk 00 ⋅⋅=

where

A0,k(qk) is the rotation matrix of the k-th body,

)(qA)(qA k
T

kkk ,00, = is the backward rotation matrix of the k-th body,

kJ is the constant [3,3] moment of inertia matrix of the k-th body expressed in

the body-fixed frame centred at body centre of mass.

Let first m bodies are connected with the complete system by external joints. Let qe

denote the 7m-length vector of absolute coordinates of bordering bodies. Let qi

denote the 7(n-m)-length vector of absolute coordinates of internal bodies. Obviously,

q can be written as:

()TTT
ie qqq = (2.3)

Therefore, we can write (2.2) in the new form:

nkk ...1==

=
=+

+=+

=
=

1θ
0)q,g(q

λGcvM

τλGcvM

vTq
vTq

ie

T
iiii

T
eeee

eee

iii

&

&

&

&

(2.4)
(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

2. Theoretical Background 30

where

i
i

ie
e

e

i

e

i

e

T
q
gGT

q
gG

MMM
MMM
TTT

TTT

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=

=
=

=
=

+

+

),...,(
),...,(

),...,(
),...,(

1

1

1

1

nm

m

nm

m

diag
diag

diag
diag

Thus, differentiating (2.1) once, we obtain the constraint equations on velocity level:

GvTv
q
gq

q
g0 =

∂
∂

=
∂
∂

= & (2.10)

and further differentiation with respect to time results in the constraint equations on

acceleration level:

() uvGvGu
v
v

GGvGvG0 iiee
i

e
ie ++=+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=+= &&

&

&
&& (2.11)

Substituting , from (2.6), (2.7), we obtain: ev& iv&

u)cλ(GMG)cτλ(GMG0 i
T

i
1

iie
T

e
1

ee +−+−+= −−

that can be rewritten as

(2.12) ucGMτMGλGGM0 11
ee

T1 +−+= −−−

yielding the dependency of Lagrange multipliers λ on forces in external links: τ

(2.13) bSτλ +=

where

u)c(GM)G(GMb

MG)G(GMS
11T1

1
ee

1T1

−=

−=
−−−

−−−

 (2.14)

If G does not have dependent rows, then we can invert because M is

positive definite.

)G(GM T1−

Substituting λ in (2.6), we obtain the relation between and : ev& τ

2. Theoretical Background 31

rDτve +=& (2.15)

where

e
1

e
T

e
1

e

1
e

T
e

1
e

cMbGMr

MSGMD
−−

−−

−=

+=
 (2.16)

If we know , then we can also calculate the accelerations of internal bodies: using

equation (2.13), we get the value of Lagrange multipliers λ and then substitute it to

the modification of equation (2.4):

τ

)cλ(GMv i
T

i
1

ii −= −& (2.17)

We use this property after we obtain . τ

Remark 2.4 Consider the case when G has dependent rows. Let G denote the

matrix obtained from by elimination of dependent rows. Obviously, we can

represent

~

G

G~ as:

GRG ~
=

where R is the dependency matrix.

Then (2.6), (2.7) can be rewritten:

µGcvM

τµGcvM
T

iiii

T
eeee

~

~

=+

+=+

&

&
 (2.18)

where µ is the vector of new Lagrange multipliers:

 λRµ T=

Now we can obtain D and r in the same way as it was described above. We need

only to substitute in equation (2.11) - (2.17) G~ instead of G and µ instead of λ .

2.6 Building up the hierarchy

Consider a derived subsystem S consisting of N parent subsystems: S1, S2,…,SN,

shown in Fig. 2.5. Let qE denote the vector of coordinates of bodies bordered to the

2. Theoretical Background 32

parents of S. Since the definition of bordering bodies, it follows that the vector qE is

the union of vectors qe
(k) (k=1..N).

1τ ′

2S1S

3SNS
2τ ′

3τ ′ 1τ

2τ
3τ

S

Figure 2.5: A subsystem consisting of several connected subsystems

Let qExt qE be the vector of coordinates of bodies bordered to S. Let qEin ⊂ qE denote

the vector of coordinates of bodies internal to S. Obviously, qE can be written as:

⊂

TTT)(EinExtE qqq =

Let g denote the vector of equations of internal constraints between S1, S2,…,SN :

(2.19) () ()TT
cgg 00),(),(1 KL == EinExtEinExt qqqqg

By G denote the constraint Jacobian matrix multiplied by the matrix T:

T

q
g

q
g)GG(G

EinExt
EinExt ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∂

∂
==

Let λ denote the vector of Lagrange multipliers associated with the constraints

between subsystems S1, S2,…,SN . Denote the forces acting in links external to S as τ′ .

From the previous hierarchy level we get matrices D(k) and vectors r(k). We can unite

the equations of accelerations

Nkkkkk ...1)()()()(=+= rτDvE& (2.20)

in two matrix equations:

EinEinEinEin

ExtExtExtExt

rτDλGDv

rτDλGDv

ˆˆˆ
ˆˆˆ

+′′+=

+′′+=
T

T

&

&
 (2.21)

2. Theoretical Background 33

or, in the other form:

(2.22) rτDλGDv T
e ˆˆˆ +′′+=&

While obtaining we need to invert the matrix G . In section 2.5 it was

demonstrated that we can eliminate dependent rows from G, but the problem is that

 can be singular. That is why we use the reduction of eigendecomposition of D .

λ TGD̂

D̂ ˆ

Let r denote the size of D . Then we can rewrite D in the form ˆ ˆ

TZDZD ~ˆ = (2.23)

where D~ is a diagonal matrix composed of m nonzero eigenvalues of : D̂

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

mζ

ζ
ζ

L

MOMM

L

L

00

00
00

~ 2

1

D

and Z is a matrix composed of eigenvectors:

()
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

==

mrrr

m

m

m

zzz

zzz
zzz

,2,1,

,22,21,2

,12,11,1

21

L

MOMM

L

L

K zzzZ

All eigenvalues of D are real because is a symmetric matrix. ˆ D̂

Let G~ denote the matrix obtained from the matrix GZ by elimination of dependent

rows. Obviously, we can represent G~ as:

GNGZ

KGZG
~

~

=

= (2.24)

where N and K are dependency matrices.

Now we can rewrite equation (2.22) in the form:

rτDµGDZv T
E ˆˆ~~ +′′+=& (2.25)

2. Theoretical Background 34

or, separately:

EinEin
T

EinEin

ExtExt
T

ExtExt

rτDµGDZv

rτDµGDZv

ˆˆ~~
ˆˆ~~

+′′+=

+′′+=

&

& (2.26)

(2.27)

where µ are new Lagrange multipliers:

 λNµ T=

Differentiating (2.19) once, we obtain the constraint equations on velocity level:

EE
E

E
E

GvTv
q
gq

q
g0 =

∂
∂

=
∂
∂

= &

and further differentiation with respect to time and multiplication by K results in the

constraint equations on acceleration level:

 uvKGvGKvKG0 EEE +=+= &&&

Substituting (2.25), we get:

u)rτDµGDKG(Z0 T ++′′+= ˆˆ~~

Now we obtain the dependency of Lagrange multipliers µ on τ′ :

bτSµ +′= (2.28)

where

u)r(KG)GDG(b

DKG)GDG(S
1T

1T

+−=

′−=
−

−

ˆ~~~
ˆ~~~

 (2.29)

Substituting µ in (2.26), we obtain:

rτDvExt +′=& (2.30)

where

Ext
T

Ext

Ext
T

Ext

rbGDZr

DSGDZD

ˆ~~
ˆ~~

+=

′+=
 (2.31)

2. Theoretical Background 35

If we know , then we can also calculate the accelerations of internal bodies:

using equation (2.28), we get the values of Lagrange multipliers

τ′ Einv&

µ and then

substitute it in equation (2.27). We use this property after we obtain the forces τ′ .

We should iteratively perform this step of the simulation for the next levels of the

hierarchy until the subsystem includes all bodies.

2.7 Calculation of absolute accelerations

Consider a system S of the highest hierarchy level. Suppose that the system consists

of N parent subsystems S1, S2,…,SN and the ground whose absolute coordinates q0 are

predefined: q0=q0(t).

Remark 2.5 The situation when the ground is not included in the complete system

can also be easily described with the minor modifications of the formulas.

Let qEin denote the vector of coordinates of bodies bordered to the parents of S (qEin

is equal to qE because S does not have external constraints). Obviously, the vector qE

is the union of vectors qE
(k) (k=1…N).

Let g denote the vector of equations of internal constraints:

() ()TT
cgg 00),(),(001 KK == EinEin qqqqg (2.32)

By G denote the constraint Jacobian matrix multiplied by the matrix T:

T

q
g

q
g)GG(G

Ein
Ein ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∂
∂

==
0

0

Let λ denote the Lagrange multipliers associated with the constraints. From the

previous hierarchy level we get matrices D(k) and r(k). We can unite the equations of

accelerations

)(
...1

00 t
Nkkkkk

vv
rτDv)()()()(

e

&&

&

=
=+=

 (2.33)

in two matrix equations:

2. Theoretical Background 36

)(
ˆˆ

00 t

T

vv
rλGDv EinEin

&&

&

=
+= (2.34)

While obtaining we need to invert the matrix . If is singular, then we

use the reduction of the eigendecomposition of in the same way as it was

performed while building up the hierarchy:

λ T
EinEin GDG ˆ D̂

D̂

TZDZD ~ˆ =

where D~ is a diagonal matrix composed of nonzero eigenvalues of and Z is a

matrix composed of eigenvectors.

D̂

Let EinG~ denote the matrix obtained from the matrix by elimination of

dependent rows. Obviously, we can represent

ZG Ein

EinG~ as:

EinEin

EinEin

GNZG

ZKGG
~

~

=

=

where N and K are dependency matrices. Obviously,

(2.35) INK =

where I is the identity matrix.

Now we can rewrite equation (2.34) in the form

)(
ˆ~~

00 t

T

vv
rµGDZv EinEin

&&

&

=
+=

 (2.36)

where µ are new Lagrange multipliers:

(2.37) λNµ T=

Differentiating (2.32), we get:

() ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
Ein

Ein
EinEinEinEinEin v

v
GG

vT
vT

q
g

q
g

q
q

q
g

q
g0 0

0
00

0

0

0 &

&

Differentiating this equation and multiplying by matrix K, we obtain:

2. Theoretical Background 37

() () uvKGvKG
v
v

GG
v
v

GGK0 EinEin00
Ein

0
Ein0

Ein

0
Ein0 ++=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= &&

&

&
&&

Substituting from (2.36), we get: Einv&

() urKGµGDGvKGurµGDZKGvKG0 EinEinEin00EinEin00 +++=+++= ˆ~~~ˆ~~ TT &&

Finally, we calculate µ :

() ()urKGvKGGDGµ Ein00EinEin ++−=
− ˆ~~~ 1

&T (2.38)

From (2.35), (2.37) follows that

 µKλ T=

Then we obtain the values of forces acting in system’s constraints: τ

 µKGλGτ TTT ==

and transmit them to the parents S1, S2,… SN.

In the previous step we obtained the relation between the accelerations of internal

bodies and the forces in external links. Iteratively substituting the forces in external

links to the previous levels of the hierarchy we obtain the absolute accelerations of all

bodies.

2.8 Calculation of generalized accelerations

We perform the calculation of generalized accelerations similar to the calculation of

absolute coordinates. For the calculation of generalized accelerations associated

with a constraint we use the constraint’s function ε

w&

:

 w)vv,q, && =(ε

where

q is the vector of absolute coordinates of connected bodies,

v is the vector of absolute velocities of connected bodies,

2. Theoretical Background 38

v& is the vector of absolute accelerations of connected bodies.

On each time step we obtain at first the generalized accelerations of objects included

in I and then, using C-order, we calculate the generalized accelerations associated

with constraints from the constraint’s function ε. After finishing the routine we

calculate all generalized accelerations.

2.9 Post-stabilization of generalized coordinates and velocities

After calculating the generalized accelerations we calculate the values of the

generalized coordinates

w&

)(~
1+ktp and velocities)(~

1+ktw on the next time step using an

ODE integration scheme (e.g. Runge-Kutta or multistep).

If our simulated system does not have closed loops, then usually we do not need to

perform the stabilization because we use the generalized coordinates in the

integration. Otherwise we should stabilize our solution trying to minimise the drift of

the system. In our method we use the post-stabilization described in Chapter 1.

Let A+ denote the pseudoinverse of a matrix A:

 () 1−+ = TT AAAA

The stabilization equations [AHR 95] can be rewritten as:

() wpGpGw

pg
p
pgp

w
p

w
p

w
p

~)~()~(

)~(~
)~(

~
~

+

+

=∆

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=∆

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
∆

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

 (2.39)

where

)~(pg is the drift of non-trivial position constraints,

wpG ~)~(is the drift of non-trivial velocity constraints,

p∆ is the vector stabilizing position constraints,

w∆ is the vector stabilizing velocity constraints 0)(=wpG ,

2. Theoretical Background 39

)~(~
)~()~(pT

p
pgpG p∂

∂
= is the product of the constraint Jacobian matrix

p
g

∂
∂ and the

generalized velocity transformation matrix . pT

Here is a block-diagonal matrix:)~(pTp

k

k
kpkpp diag

w
pTTT

∂
∂

==
&

,,)(

Cline and Pai [CLI 03] showed that the pseudoinverse of G is definded, even when

GGT is singular. They used a pseudoinverse formula based on a singular value

decomposition (SVD) of G. Thus, G+ is obtained by truncating the small (nearly zero)

singular values. In [PRE 02] the code is published solving a pseudoinverse problem

using SVD.

The calculation of is trivial because each can be calculated as the output

parameter of the k-th constraint. But the computation of

pT kp,T

p
g

∂
∂ of the complete system is

a challenge, because it may happen that the equation of a constraint does not only

depend on generalized coordinates associated with this constraint, but also on other

generalized coordinates.

Example 2.4. Consider a 3-bodies closed loop system with revolute joints shown in

Fig. 2.6. Here generalized coordinates are the relative angles p1, p2, p3 associated

with the first three constraints. Obviously, the derivative
1

4

p∂
∂g depends on all pk

(k=1…3)

4

3 2

1

Figure 2.6: A 3-bodies closed loop system with revolute joints

2. Theoretical Background 40

That is why in the general case the derivative ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

m

ii

p
g

p
g

L
1

 can not be the output

parameter of the i-th constraint object.

We can solve this problem if we use the equation:

j

i

j

i i

i
p
q

q
g

p
g B

B ∂
∂

∂
∂

=
∂
∂

where is the vector of coordinates of constraint’s basic bodies. The matrix iBq
i

i

Bq
g

∂
∂

can be set as the output parameters of the i-th constraint object.

Now we need to calculate the matrix
j

i

p
qB

∂

∂
. Consider an arbitrary body from Bi. Let t

denote the number of the body. There are two variants of the calculations of the

deviation
j

t

p
q

∂
∂ . If the t-th body is dependent on the j-th constraint, then the deviation

can be calculated from the output parameter
j

jj j
q

p

)q,(p B

∂

∂
 of the j-th constraint object

(in Example 2.4 we calculated the partial derivative 33 / p∂∂q in this way).

The more sophisticated problem is to calculate the partial derivative
j

t

p
q

∂
∂ when the t-

th body depends on another constraint (e.g. 23 / p∂∂q in Example 2.4). Let the t-th

body depends on the m-th constraint. Then
j

t

p
q

∂
∂ is the part of the derivative

j

mm
q

p
)p,(q

mB

∂

∂
, that can be calculated from the equation:

j

m

j

mm m

m

qq
p
q

qp
)p,(q B

B

Bm

∂

∂

∂

∂
=

∂

∂

2. Theoretical Background 41

where
m

m
q

Bq∂

∂
 is the output parameter of the m-th constraint object. We should

recursively repeat this routine for all bodies with coordinates included in and

dependent on pj. In the recursion’s end we obtain the case that was discussed

before: we need to calculate the partial derivative

mBq

j

t

p
q

∂
∂ , where the t-th body is

dependent on the j-th constraint.

Remark 2.6 Implementing this routine in Example 2.4, we obtain:

1

1

1

2

2

3

1

1

1

2

2

3

1

212

2

3

1

2

2

3

1

323

1

3
),(),(

p
qqq

p
qq

p
pqq

p
q

p
pq

p ∂

∂

∂

∂

∂

∂
=

∂
∂

∂

∂

∂

∂
=

∂

∂

∂

∂
=

∂
∂

∂

∂
=

∂

∂
=

∂
∂

qq
q

qq
q

q
q

q
qq

Finally, we obtain that the calculation of the global Jacobian matrix
p
q

∂
∂ can be

performed only using the partial derivatives
iB

i
q
q∂

∂
 and

i

i
q

p∂

∂
 generated inside of

constraint objects.

3. Computation 42

3 Computation Complexity

We estimate the complexity of the method using four basic estimations [GOL 93,

PRE 02]:

1. The multiplication of two matrices CB where C is a [n,m] matrix and B is a [m,l]

matrix B involves O(n·m·l) floating point operations (multiplications and

additions).

2. The complexity of the inversion of a [n,n] matrix is O(n3).

3. The pseudoinverse of a [m,n] matrix is O(m·n2+n3) procedure.

4. Elimination of dependent rows from a [k,n] matrix has complexity)(knlO ⋅⋅ ,

where .),min(nkl =

5. The complexity of eigendecomposition of a [n,n] matrix is O(n3).

Obviously, the time complexity of the simulation depends on many factors: the

system's structure, the types of constraints, the number of joints and bodies, the

number of processors, the structure of the hierarchy. In this chapter we calculate the

complexities of basic subroutines that we execute during the simulation. Then we

summarize them and obtain the method's complexity.

3.1 Stabilization complexity

Let us compare the complexity of post-stabilizations of absolute and generalized

coordinates.

Consider a multibody system S. Let c denote the total number of constraints and n

denote the total number of bodies in S. From (2.39) follows, that during the post-

stabilization of absolute coordinates we need the pseudoinverse of two [O(c), O(n)]

matrices:
q
g

∂
∂ and G. Therefore, the post-stabilization of absolute coordinates has

complexity O(c·n2+n3).

3. Computation 43

Let us calculate the complexity of stabilization of generalized coordinates. The

transformation from generalized to absolute coordinates and the backward

transformation from generalized to absolute has complexity O(c).

The more sophisticated problem is the calculation of the Jacobian matrix
p
g

∂
∂ of the

complete system. After the transformation to generalized coordinates the number of

nonconfluent equations g reduces. Now g consists only of the equations of loop-

closing constraints that are not included in the sequence of dependencies C. For a

system with t closed loops the number of equations in g is O(t).

Let sj denote the number of bodies in the j-th loop. Then the equation gj=0 of the

loop-closing constraint depends on O(sj) generalized coordinates. The algorithm of

the calculation
p
g

∂
∂ j has complexity O(sj). Obviously, the calculation of the global

Jacobian matrix
p
g

∂
∂ is O(s) procedure, where s=s1+. . .+ st is the total number of

bodies in loops.

Since the size of the Jacobian matrix
p
g

∂
∂ is [O(t),O(s)], it follows that the

pseudoinverse of
p
g

∂
∂ has complexity O(s·t2+t3).

Summing up all complexities, we obtain that the stabilization of generalized

coordinates has complexity O(s·t2+t3), which is much less than the complexity of the

stabilization of absolute coordinates.

3.2 Computation complexity of a basic subsystem

Consider a basic subsystem S consisting of n connected bodies. Let m denote the

number of bodies that are connected by external joints with the complete system. Let

c denote the number of internal constraints in g. The Jacobian matrix G has size

[O(c), O(n)], the mass matrix M has size [O(n),O(n)]. Elimination of dependent rows

from G has complexity O(l·n·c), where l=min(c,n).

3. Computation 44

The matrix Ge has size [O(c),O(m)], Me is a [O(m), O(m)] square matrix. Using equation

(2.14), we obtain a complexity of O(c·n2+c3) for the calculation of O(c)-length vector b

and [O(c),O(m)] matrix S.

From (2.16) we obtain a complexity of O(c·m2+ m3) for the calculation of matrix D and

a complexity of O(c·m+ m3) for the calculation of vector r.

From equation (2.17) we get a complexity of O((n-m)3+n·c) for the calculation of

accelerations of internal bodies . iv&

Summing up all complexities, we obtain that on each time step the basic subsystem

performs O(n3+c3) calculations.

3.3 Computation complexity of a derived subsystem

Consider a derived subsystem S consisting of parents S1, S2,…,SN connected by c

constraints. Let nEin denote the number of internal bodies in S, and nExt denote the

number of bordered bodies in S. The matrix D from (2.22) is a square [O(n), O(n)]

matrix, where n=nExt+nEin. The complexity of eigendecomposition of in (2.23) is

O(n3).

ˆ

D̂

The matrix G has size [O(c), O(n)]. From (2.24) follows, that the calculation G~ has

complexity O(c3+c·n2).

The matrix has size [O(n), O(nExt)], D′ˆ G~ has size [O(c), O(n)], D~ is a [O(n), O(n)]

square matrix, is an O(n) vector. Using equation (2.29), we obtain a complexity

O(c·n2+c3) for the calculation of the [O(c),O(nExt)] matrix S and the O(c)-length vector b.

r̂

From equation (2.31) we obtain a complexity of O(c·n2) for the calculation of matrices

D and r.

If we know the vector , then we can calculate the accelerations of internal bodies

. The complexity of this calculation is O(n·c +n2).

τ′

Einv&

Summing up all complexities, we obtain that on each time step the basic subsystem

performs O(n3+c3) calculations.

3. Computation 45

3.4 Computation complexity of the method

Let us create the hierarchy of subsystems for a mechanical system S. Let all

subsystems on all levels of the hierarchy have internal bodies and the number of

bodies and internal constraints in each subsystem be limited by the global constant

D. Therefore, the computation complexity of each subsystem is limited by O(D3).

Let n denote the total number of bodies in S. Since all subsystems have internal

bodies, it follows that the total number of subsystems is limited by n.

Thus, we obtain that the global complexity of the computation of accelerations is

O(n·D3). Adding the complexity of the stabilization, we obtain that on each time step

we perform O(n·D3+t2·s+t3) operations, where t is the number of closed loops in the

system and s is the total number of bodies in loops.

4. Implementation Background 46

4 Implementation Background

Trying to develop software for the simulation of dynamics of multibodies, we should

remember that in a common way a multibody system is only a part of a sophisticated

mechatronic system. Typically elements of mechatronic structures are electronic

units, electromechanical transformers such as sensors, actors, pure data processing

units as controllers and mechanical structures. These components are assembled

according to their physical interfaces like mechanical connections, data

transmissions, electric connections etc.

Our goal is to develop a tool that could be used for the simulation of mechanical parts

of mechatronic systems. That is why we need that our software could be easily

combined with electronic and control tools.

Our software is based on a strictly capsulated block-module concept [KAS 97]. In this

context it means that the mechanical structure will be represented by separate

objects which interact via predefined interfaces with each other. Using such interface,

the objects could interact also with external software.

This approach has some significant advantages:

1. Top-Down Design. The design of the model structure can be done in a very

physical-related manner. Models are partitioned in its physical units as they

are constituted like a real system. The mechanical structure is kept as a

particular component as it is connected in their real counterpart. The physical

system borders will be kept in the virtual system as well. The model

development can be performed in steps from a high grade of abstraction into

more precise functionality. Changes in the topological structure or in the

schematic (addition of sensors, etc.) will not affect the modelling procedure.

2. Distributed Development. The development of subsystems can be done at

different places by various specialists. The global functionality can be assured

by keeping the defined interfaces. There is no restriction which mathematical

technique is used to describe the capsulated system behaviour as far as the

interfaces will be maintained.

4. Implementation Background 47

3. Flexibility. The model will get a high grade of exchangeability. Later

developed, more complex and time consuming subsystems do not affect the

development of other blocks and can be changed without degrading the

performance of the whole model. The individual blocks can be tested

separately. Once developed and tested modules can be reused in other

applications. This will lead to an accumulation of block-models as a basis for

block-oriented libraries to speed up development time for further modelling

tasks.

4. Quick Development. An important precondition to retain good performance

for this concept is a proper definition of the interfaces of the distinct blocks.

Typically, the engineer is facing some particular problems. In order to get a

clear arrangement of the distinct physical elements the separation of the real

structure into the block elements has to be done in a physical- and design-

related manner. Thus one obtains several model-blocks, each of them

representing the corresponding mechanical subsystem.

Unlike of a huge number of other methods, we keep the block-module concept during

the simulation. From a practical point of view, there are big advantages of a

simulation on the basis of subsystems:

1. Separate Testing. Subsystems can be modelled, tested and compiled. Then

they can be used in a way similar to software components that encapsulate

their internal structure and can be connected via interfaces.

2. Encapsulation of Critical Effects. Critical effects like coulomb friction, non-

permanent contacts etc. can be encapsulated inside a subsystem. While the

changing of the structure of a subsystem we do not need to change the

complete model structure.

3. Distributed Simulation. Subsystems are ideal candidates for the partitioning

of large systems on multiple processors. During the simulation the main

number of calculations proceeds inside of a subsystem. Therefore, we could

easily distribute the simulation on several processors; each of them will work

with its own subsystem.

4. Implementation Background 48

Using this approach, we implemented our software in Visual Basic 6.0, but it can be

easily partitioned in other existing object-oriented programming languages like Visual

C, Delphi etc.

5. Basic Objects 49

5 Basic Objects

In our method we split a simulating mechanical system into functional parts

representing real components. Let us describe eight basic objects that are used in

our algorithm. For the sake of simplicity we do not show the Visual Basic code, but

only review the parameters and properties of objects.

Child objects describing the different types of constraints and forces are considered

in the next chapter.

5.1 Timer

A timer object is used for the identification of the current time inside a simulating

system. It has only two properties:

1. Set the new current time value.

2. Show the current time value.

During the calculations we use only one global time object. When we start a new

integration step we set the new value of current time. All objects that need the current

time value for their calculations (i.e. ground, force) get it from this timer.

5.2 Ground

We treat a ground object as a body whose motion is predefined. There is no

restriction on the number of ground objects inside a simulating system. For example,

inside a car model, described in Chapter 7, we use five ground objects.

While the simulation the object generates the following functions:

1. - Absolute coordinates.]1,7[q

where

()TTT θxq =

5. Basic Objects 50

()Txxx 321=x are Cartesian coordinates indicating the position of

centre of mass of the body with respect to the global frame

(Teeee 3210=θ)

)

 is the vector of Euler parameters

2. v[6,1] - Absolute velocity

where is the global angular velocity vector. (TΩΩΩ 321=Ω

()TTT Ωxv &=

3. [6,1] - Absolute acceleration. v&

4. A[3,3] - Rotation matrix:

 ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−−+−
−−+−+
+−−−+

=
2
3

2
2

2
1

2
010232013

1032
2
3

2
2

2
1

2
03012

20313021
2
3

2
2

2
1

2
0

)(2)(2
)(2)(2
)(2)(2

eeeeeeeeeeee
eeeeeeeeeeee
eeeeeeeeeeee

A

5. T[7,6] - Velocity transformation matrix:

 Tvq =&

6. T [6,7] - Backward velocity transformation matrix:

 qTv &⋅=

The structure of matrices T, T was precisely described in Chapter 2, while the

discussion of types of absolute coordinates.

5.3 Body

The difference between body objects and ground objects is that the motion of body

objects is not predefined.

A body object has the following static parameters that should be set while the

translation:

1. m - Mass.

5. Basic Objects 51

2. J [3,3] - Moment of inertia expressed in the body frame connected to the

centre of mass.

While the simulation we set the dynamical parameters of the object:

1. q[7,1] - Absolute coordinates.

2. v[6,1] - Absolute velocity.

3. [6,1] - Absolute acceleration. v&

4. f[6,1] - Vector of external generalized forces acting on the body.

While the simulation the object generates the following functions:

1. A[3,3] - Rotation matrix:

 ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−−+−
−−+−+
+−−−+

=
2
3

2
2

2
1

2
010232013

1032
2
3

2
2

2
1

2
03012

20313021
2
3

2
2

2
1

2
0

)(2)(2
)(2)(2
)(2)(2

eeeeeeeeeeee
eeeeeeeeeeee
eeeeeeeeeeee

A

2. M[6,6] - Mass matrix:

where

I3 is the [3,3] identity matrix,

TAJAJ = is the [3,3] moment of inertia matrix of the body expressed in

the inertial frame.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

J0
0I

M 3m

3. T[7,6] - Velocity transformation matrix:

 Tvq =&

4. T [6,7] - Backward velocity transformation matrix:

 qTv &⋅=

5. Basic Objects 52

5. g - Drift function of the normalization condition for Euler parameters:

 2
3

2
2

2
1

2
0 eeeeg +++=

6.
q∂
∂g [1,7] - Partial derivative of the drift:

()3210 2222000 eeeeg
=

∂
∂
q

5.4 Body output

Body outputs are interfaces used for connection of bodies with subsystem’s external

constraints.

Example 5.1. Consider a subsystem shown in Fig. 5.1. From the physical point of

view this is a system of two connected bodies. But from the object-oriented point of

view this is a system consisting of two parents S1 and S2 connected by Constraint 1.

S1 S2

Output 1 Constraint 1Body 1 Output 2 Body2

Figure 5.1: Two subsystems connected by the constraint

The typical way in object-oriented programming (e.g. Dymola software) is not to work

with a body object outside of a body’s subsystem but to create the special types of

objects called outputs and to use them as bodies. This is possible because each

output object (called child) inherits parameters (i.e. absolute coordinates, velocity) of

its parent (a body or another output). If output’s parameters change, then the output

object automatically changes corresponding parameters of its parent.

This approach helps us to show explicitly on each level of hierarchy which bodies

could be connected on the next level.

5. Basic Objects 53

An output objects has the following static parameters that should be set while the

translation:

1. Parent – Parent of the output (the body or the other output).

While the simulation the object inherits the same parameters of its parent:

1. q[7,1] - Absolute coordinates,

2. v[6,1] - Absolute velocity,

3. [6,1] - Absolute acceleration, v&

4. A[3,3] - Rotation matrix,

5. T[7,6] - Velocity transformation matrix,

6. T [6,7] - Backward velocity transformation matrix.

If the parent is not a ground object then the object inherits two more parameters from

its parent:

1. M[6,6] - Mass matrix,

2. f[6,1] - Vector of external generalized forces acting on the parent.

The object has also its own parameter:

1. τ[6,1] - Generalized forces acting in links external to the output’s subsystem.

Remark 5.1 While the description of objects we do not make a difference between

bodies and outputs (i.e. saying “The parameter of the constraint is an array of bodies”

we mean that the parameters of the constraint is the array of body objects and output

objects)

5.5 Generalized force

A generalized force object describes an external force or external torque acting on

bodies.

5. Basic Objects 54

The object has the following static parameters that should be set while the

translation:

1. J={Body j1, Body j2,…, Body js} - Array of bodies which are acted by the force,

where s is the number of bodies in J.

2. Timer - Timer object that provides the force object by the current time value.

While the simulation the object runs the subroutine:

1. Applying the force. Using the values of the coordinates

and velocities of bodies in J and the current time t of the

timer object, the force object calculates the vector :

TT
j

T
j s

)(
1

qqqJ K=

(TT
j

T
j s

vvvJ K
1

=)
Jf

where t is the current time value, obtained from Timer.

After this, the subroutine increases the parameter f of each body in J by the

value of the correspondent element of . Jf

()TT
j

T
j s

t ff)vq,(f JJJ K
1

, =

5.6 Constraint

A constraint object describes a holonomical constraint connecting several bodies.

The object has the following static parameters that should be set while the

translation:

1. J - Array of bodies connected by the constraint,

2. B - Array of basic bodies, where , JB ⊂

3. K- Array of dependent bodies, where . JK ⊂

If the constraint is included in the sequence of dependencies C, then while the

simulation we set the dynamical parameters of the object:

1. p - Generalized coordinates associated with the constraint,

5. Basic Objects 55

2. w - Generalized velocities,

3. - Generalized acceleration, w&

4. Tp – Generalized velocity transformation matrix:

 wTp p=&

While the simulation the object runs the subroutines:

1. Set absolute coordinates of dependent bodies. The constraint calculates

the current value of the dependency function q(p, qB) and sets the current

values of coordinates of dependent bodies:

)q(p,:q BK q=

Remark 5.2 The operator “:=” indicates the changing of objects’ parameters, e.g.

expression “ q=:Kq ” means that we set parameters q of all bodies in K equal the

correspondent parts of vector function q.

2. Set the absolute velocities of dependent bodies. The constraint calculates

the time derivative of the dependency function qv &=)(BB vw,,qp, and sets the

current value of the velocities of dependent bodies:

where KT is the backward velocity transformation matrix:

Here iT is the backward velocity transformation matrix of the i-th body in K.

)vw,,q(p,T:v BBKK v⋅=

)Tdiag(TqTv KKKK i=⋅= &

While the simulation the object generates the functions:

1. - Drift of the constraint for the absolute coordinates,)(qg J1

2.
J

1

q
g

∂
∂ - Constraint Jacobian matrix,

3. u - Vector:

5. Basic Objects 56

Here is the velocity transformation matrix of the i-th body in J. iT

)diag(TTvT
q
g

dt
du JJJ

J
i=⋅⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

∂
∂

= 1

4. - Drift of the constraint for the generalized coordinates, (p)g2

5.
p
g2

∂
∂ - Jacobian matrix,

6.
p

)q(p, B

∂
∂q

 - Partial derivative of the dependency function)(Bqp,q , a part of the

Jacobian matrix,

7.
B

B

q
)q(p,

∂
∂q

 - Partial derivative, a part of the Jacobian matrix,

8. ε - Dependency function, describing the relation between the generalized

accelerations and the absolute coordinates , velocities , accelerations

:

w& Jq Jv

Jv&

).v,v,(qw JJJ && ε=

Remark 5.3 For most types of joints (revolute, prismatic etc.) parameters and (p)g2

p
g
∂
∂ 2 are equal to null since the equation of the constraint expressed in the

generalized coordinates are singular. But for some types of constraints (e.g. ball

joint) we do not have the singularity. We note that and can describe

different drifts (e.g. of a ball joint object shows that the places of connection of

both bodies coincide, of a ball joint object describes the normalization condition

for Euler parameters of a dependent body). We precisely discuss this in Chapter 6

while the descriptions of the ball joint object.

(q)g1 (p)g2

(q)g1

(p)g2

5. Basic Objects 57

5.7 Basic subsystem

Basic subsystem object is a subsystem of the lowest level of hierarchy. It can include

body objects, ground objects, force objects and output objects, but it can not include

subsystems.

The object has the following static parameters that should be set while the

translation:

1. J - Array of bodies in the subsystem,

2. R - Array of grounds in the subsystem,

3. F - Array of forces in the subsystem,

4. C - Array of constraints in the subsystem,

5. O - Array of outputs in the subsystem.

While the translation the object generates the static parameters:

1. E - Array of bordering bodies, where (obviously, E is equal to the array

of bodies that have children in O),

JE ⊂

2. I - Array of internal bodies, where (obviously, I is equal to the array of

bodies that do not have children in O).

JI ⊂

If the subsystem has external constraints, then while the simulation it generates the

function:

1. D, r - Dependency matrices that describe the relation between the

accelerations of bordering bodies and the forces τ in external constraints: Ev&

 rDτvE +=&

While the simulation the object runs the subroutine:

1. Null forces. The parameter f of all bodies from J is set equal to null,

2. Apply forces. All forces from F run the subroutine “Applying the force”,

5. Basic Objects 58

3. Set acceleration (when there are no external constraints). The subsystem

solves the equations of motion and calculates the current values of the

accelerations . The parameter of each body in J is set equal to the value

of the correspondent element of ,

Jv& v&

Jv&

4. Set internal acceleration (when there are external constraints). The object

obtains from the outputs in O the values of forces in external constraints.

Using it calculates the new values of accelerations . The parameter of

each body in I is set equal to the value of the correspondent element of .

τ

τ Iv& v&

Iv&

5.8 Derived subsystem

Derived subsystem object is a subsystem of the high level of hierarchy. It can include

other subsystems, ground objects, force objects and output objects. But it can not

include body objects.

The object has the following static parameters that should be set while the

translation:

1. - Array of subsystem’s parents, { NSSS K,, 21=J }

2. R - Array of grounds in the subsystem,

3. F - Array of forces in the subsystem,

4. C - Array of constraints in the subsystem,

5. O - Array of outputs in the subsystem.

While the translation the object generates the static parameters:

1. E – Array of outputs of S1,…,SN: , U
N

i
iS

1

)(
=

= OE

2. Ext – Array of outputs bordering to the subsystem, where (obviously,

Ext is equal to the array of outputs that have children in O),

EExt ⊂

5. Basic Objects 59

3. Ein – Array of outputs internal to the subsystem, where (obviously,

Ein is equal to the array of outputs that do not have children in O).

EEin ⊂

If the subsystem has external constraints, then while the simulation it generates the

function:

1. D, r - Dependency matrices which describe the relation between the

accelerations of bordering bodies and the forces in external

constraints:

Extv& τ′

 rτDvExt +′=&

While the simulation the object runs the subroutines:

1. Null forces. All subsystems from J run the subroutine “Null forces”,

2. Apply forces. All forces from F run the subroutine “Applying the force”. All

subsystems from J run the subroutine “Apply forces”,

3. Set acceleration (when there are no external constraints). Using the matrices

DJ, RJ of parents in J, the subsystem calculates the current values of

accelerations of objects in Ein and forces τEin, where τEin are internal

forces produced by constraints from C. The parameters and τ of each object

in Ein are set equal to the correspondent elements of and τEin

respectively,

Einv&

v&

Einv&

4. Set internal acceleration (when there are external constraints). The object

obtains from the outputs in O the values of forces τ′ in external constraints.

Using it calculates the current values of accelerations and forces τEin,

where τEin are internal forces produced by constraints from C. The parameters

 and τ of each object in Ein are set equal to the correspondent elements of

 and τEin respectively.

τ′ Einv&

v&

Einv&

6. Components 60

6 Components

In this chapter we show derived objects simulating the different types of constraints

and forces. The description of other objects can be performed in a similar way.

6.1 Joints

We describe four most frequent types of joints: Revolute joint, Prismatic joint, Ball

joint and Stiff connection. All of them are based on the constraint class (described in

Chapter 5) and have all its parameters.

6.1.1 Revolute joint

O1

Oc

x1

y1

z1

O2x2

y2

z2

a1
r1

r2

Figure 6.1: Revolute joint

Revolute joint object describes a revolute joint’s connection of two bodies shown in

Fig. 6.1. Let Oi be the centre of mass of Body i (i=1,2). Let be the centre of the

joint. By Oixiyizi denote the frame associated with the body. Let Body 1 be basic and

Body 2 be dependent.

cO

6. Components 61

By denote the vector of position coordinates, where xi = (xi,1 xi,2 xi,3)T is

the Cartesian coordinates of centre of mass of the body with respect to the global

frame and are four Euler parameters indicating the

orientation of the body. Let be the rotation matrix of Body i.

(TT
i

T
i θxqi =)

)(T
iiiii eeee 3,2,1,0,=θ

i,0A

The object has the following static parameters that should be set while the

translation:

1. J={Body 1, Body 2} - Array of bodies connected by the constraint,

2. B={Body 1} - Array of basic bodies,

3. K={Body 2} - Array of dependent bodies,

4. r1[3,1] - Relative vector from to , expressed in , 1O cO 1111 zyxO

5. r2[3,1] - Relative vector from to , expressed in , 2O cO 2222 zyxO

6. a1[3,1] - Normalized axis of rotation expressed in . 1111 zyxO

While the translation the object generates the static parameter:

1. a2[3,1] - Normalized axis of rotation expressed in 2222 zyxO

Since the properties of rotation matrices, it follows that the absolute

coordinates of a equal to A0,1a1. Thus, we can calculate using initial

conditions:

2a

where is the backward rotation matrix of Body 2 T
, 2,002 AA =

10100022 aAAa === t,t,

If the joint is included in the sequence of dependencies C, then while the simulation

we set the dynamical parameters of the object:

1. p[1,1] - Generalized coordinate equal to the angle between the projections of

r1 and r2 on the plane perpendicular to a:

6. Components 62

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

×⋅×

×××
=

22,011,011,011,0

22,011,011,011,0)()(
arcsin

rAaArAaA

rAaArAaA
p

2. w[1,1] - Generalized velocity equal to the time derivative of p:

 pw &=

3. Tp=(1) - Generalized velocity transformation matrix:

 wwTp p ==&

4. [1,1] - Generalized acceleration: w&

where

110 aAw ,⋅= w is the vector of relative angular velocity.

1Ω is the global angular velocity of Body 1

() ()11,0112)(aAwvv ⋅×Ω−−= Tw &&&

5. s[4,1] - Euler parameters describing the relative rotation around the axis a1:

 TTTT ppss))2/sin()2/cos(()(10 as ==

While the simulation the object runs the subroutines:

1. Set absolute coordinates of the dependent body. The constraint calculates

the current value of the dependency function q:

where

A1,2(s) is the matrix of relative rotation,

θ=θ1◦s is the vector of Euler parameters describing the rotation of Body 2.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
=

θ
(s)rAArAx

q ,,1 22,110110
1),(pq

6. Components 63

After calculation of q the object sets the current values of the coordinates of

the dependent body:

 q2Body =:.q

2. Set the absolute velocity of the dependent body. The object calculates the

time derivative qwpv &=),,,(1 vq and sets the current values of the absolute

velocity of the dependent body:

where 2T is the backward velocity transformation matrix of Body 2.

)v,q(Tv 11 ,,:. 2 wpv2Body ⋅=

Now consider the functions generated by the object on each time step:

1. g1[6,1] - Drift of the constraint for the absolute coordinates:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−+
=

220110

22,21101
1 aAaA

)rA(x)rA(x
g

,,

,,

2.
q
g
∂
∂ 1 [6,14] - Constraint Jacobian matrix,

3. u[6,1] - Vector:

where is the velocity transformation matrix of the i-th body, iT

)Tdiag(TTvT
q
g

dt
du JJJ

J
21

1 ,=⋅⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

∂
∂

=

4. - Drift of the constraint for the generalized coordinate, 0)(2 ≡pg

5. 02 ≡
∂
∂

p
g - Derivative of ,)(2 pg

6.
p
pq
∂

∂)q,(1 [7,1] - Partial derivative,

6. Components 64

7.
1

1

q
)q,(

∂
∂ pq

[7,7] - Partial derivative.

6.1.2 Prismatic joint

Prismatic joint object describes a prismatic joint’s connection of two bodies shown in

Fig. 6.2. We implemented the object as the combination of a prismatic joint and a

revolute joint because bodies can slide and rotate and along the axis a1. For the sake

of simplicity we do not mention the joint’s parameters associated with the rotation

because they are absolutely the same as revolute joint’s parameters.

Let Oi be the centre of mass of Body i (i=1,2). Let Mi be the place of connection of the

body. By Oixiyizi denote the frame associated with the body. Let Body 1 be basic and

Body 2 be dependent.

r1

r2

O1
x1

y1

z1

O2
x2

y2

z2

p1a1

M1

M2

Figure 6.2: Prismatic joint

The object has the following static parameters that should be set while the

translation:

6. Components 65

1. J = {Body 1, Body 2} - Array of bodies connected by the constraint,

2. B = {Body 1} - Array of basic bodies,

3. K= {Body 2} - Array of dependent bodies,

4. r1[3,1] - Relative vector from to , expressed in , 1O 1M 1111 zyxO

5. r2[3,1] - Relative vector from to , expressed in , 2O 2M 2222 zyxO

6. a1[3,1] - Normalized axis of sliding expressed in . 1111 zyxO

While the translation the object generates the static parameter:

1. a2[3,1] - Normalized axis of rotation expressed in . It can be

calculated using initial values:

2222 zyxO

 101,00022 aAAa , === tt

If the joint is included in the sequence of dependencies C, then while the simulation

we set the dynamical parameters of the object:

1. p[1,1] - Generalized coordinate equal to the projection of distance between

and on the axis a:

1M

2M

 () ()11,0122,0211,0 rAxrAxaA −−+⋅= Tp

2. w[1,1] - Generalized velocity equal to the time derivative of p:

 pw &=

3. Tp=(1) - Generalized velocity transformation matrix:

 wwTp p ==&

4. [3,1] - Generalized acceleration. w&

While the simulation the object runs the subroutines:

6. Components 66

1. Set the absolute coordinates of the dependent body. The constraint

calculates the current value of the dependency function q:

After calculation of q the object sets the current values of coordinates of

dependent body:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −⋅++
=

1

2101101101
1),(

θ
rAaArAx

q ,,, p
pq

q2Body =:.q

2. Set the absolute velocity of the dependent body. The object calculates the

time derivative qwpv &=),,,(1 vq and sets the current values of the absolute

velocity of the dependent body:

where 2T is the backward velocity transformation matrix of Body 2.

)v,q(Tv 11 ,,:.2 2 wpvBody ⋅=

Now consider the functions generated by the object on each time step:

1. g1[6,1] - Drift of the constraint for the absolute coordinates:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−+×
=

22,011,0

11,0122,0211,0
1

)(
aAaA

rAxrAxaA
g

2.
1q

g1

∂
∂ [6,14] - Constraint Jacobian matrix

3. u[6,1] - Vector:

where is the velocity transformation matrix of the i-th body, iT

)Tdiag(TTvT
q
g

dt
du JJJ

J
21

1 ,=⋅⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

∂
∂

=

4. - Drift of the constraint for the generalized coordinate, 0)(2 ≡pg

6. Components 67

5. 02 ≡
∂
∂

p
g - Derivative of ,)(2 pg

6.
p

pq
∂

∂)q,(1 [7,1] - Partial derivative,

7.
1

1

q
)q,(

∂

∂ pq
[7,7] - Partial derivative.

6.1.3 Ball joint

Ball joint object describes the ball joint’s connection of two bodies shown in Fig. 6.3.

Let be the centre of the joint. Let Oi be the centre of mass of Body i (i=1,2). By

Oixiyizi denote the frame associated with the body. Let Body 1 be basic and Body 2 be

dependent.

cO

r 2

Oc

r1O1x1

y1

z1

O 2 x 2y 2

z 2

Figure 6.3: Ball joint

The object has the following static parameters that should be set while the

translation:

1. J = {Body 1, Body 2} - Array of bodies connected by the constraint,

2. B = {Body 1} - Array of basic bodies,

3. K = {Body 2} - Array of dependent bodies,

6. Components 68

4. r1[3,1] - Relative vector from to , expressed in , 1O 1M 1111 zyxO

5. r2[3,1] - Relative vector from to , expressed in . 2O 2M 2222 zyxO

If the joint is included in the sequence of dependencies C, then while the simulation

we set the dynamical parameters of the object:

1. p=(p1 p2 p3 p4)T - Vector of generalized coordinates equal to the vector of

Euler parameters of the dependent body:

 2θp =

2. w=(w1 w2 w3)T - Vector of generalized velocity equal to the global angular

velocity vector of the dependent body:

 2Ωw =

3. Tp - Generalized velocity transformation matrix:

wwTp

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−

−−
==

T

p

pppp
pppp

pppp

1234

2143

3412

2
1

&

4. - Generalized acceleration. w&

While the simulation the object runs the subroutines:

1. Set absolute coordinates of the dependent body. The constraint calculates

the current value of the dependency function q:

where A1,2(p) is the relative rotation matrix.

After calculation of q the object sets the new values of the absolute

coordinates of the dependent body:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
=

p
(p)rAArAx

)q(p, ,,, 221101101
1q

6. Components 69

 q.Body =:2 q

2. Set the absolute velocity of the dependent body. The object calculates the

time derivative qwpv &=),,,(1 vq and sets the current values of the absolute

velocity of the dependent body:

where 2T is the backward velocity transformation matrix of Body 2.

)vw,q(pTv 112 ,,:.2 vBody ⋅=

Now consider the functions generated by the object on each time step:

1. g1[3,1] - Drift of the constraint for the absolute coordinates:

)rA(x)rA(xg , 11,0122021 +−+=

2.
q
g
∂
∂ 1 [3,14] - Constraint Jacobian matrix,

3. u[3,1] - Vector:

where is the velocity transformation matrix of the i-th body, iT

)Tdiag(TTvT
q
g

dt
du JJJ

J
21

1 ,=⋅⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

∂
∂

=

4. g2(p)[1,1] - Drift of the constraint for the generalized coordinates:

 2
4

2
3

2
2

2
12)(ppppg +++=p

5.
p
p

∂
∂)(2g [4,1] - Derivative of (p)2g

 ()4321
2 2222 ppppg
=

∂
∂

p

6.
p

q
∂

∂)q(p, 1 [7,4] - Partial derivative,

6. Components 70

7. 7.

Figure 6.4: Stiff connection Figure 6.4: Stiff connection

r1

O1
x1

y1

z1

O2 x2

y2

z2

Oc
r2

6. Components 70

r1

O1
x1

y1

z1

O2 x2

y2

z2

Oc
r2

1

1

q
)q(p,

∂
∂q

[7,7] - Partial derivative.

6.1.4 Stiff connection

Stiff connection describes a rigid connection of two bodies shown in Fig. 6.4.

Let be the centre of the joint. Let Oi be the centre of mass of Body i (i=1,2). By

Oixiyizi denote the frame associated with the body. Let Body 1 be basic and Body 2 be

dependent.

cO

The object has the following static parameters that should be set while the

translation:

1. J = {Body 1, Body 2} - Array of bodies connected by the constraint,

2. B = {Body 1} - Array of basic bodies,

3. K= {Body 2} - Array of dependent bodies,

4. r1[3,1] - Relative vector from O to M , expressed in , 1 1 1111 zyxO

5. r2[3,1] - Relative vector r2 from to , expressed in , 2O 2M 2222 zyxO

6. s=(s0 s1 s2 s3)T - Euler parameters describing the relative rotation from O

to O .

1111 zyx

2222 zyx

While the translation the object generates the static parameter:

1. A1,2(s)[3,3] - Matrix of relative rotation:

6. Components 71

 ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−−+−
−−+−+
+−−−+

=
2
3

2
2

2
1

2
010232013

1032
2
3

2
2

2
1

2
03012

20313021
2
3

2
2

2
1

2
0

2,1

)(2)(2
)(2)(2
)(2)(2

)(
ssssssssssss

ssssssssssss
ssssssssssss

sA

Since the properties of rotation matrices, it follows:

 (s)AAA 1,20,10,2 =

Obviously, the joint does not have generalized coordinates. While the simulation the

object runs the subroutines:

1. Set absolute coordinates of the dependent body. The constraint calculates

the current value of the dependency function q:

where θ=θ1◦s is the vector of Euler parameters describing the rotation of Body2.

After calculation of q the object sets the current values of the coordinates of

the dependent body:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
=

θ
(s)rAArAx

)(q 2,11
1

211,01,0q

qBody =:.2 q

2. Set the absolute velocity of the dependent body. The object calculates the

time derivative qwpv &=),,,(1 vq and sets the current values of the absolute

velocity of the dependent body:

where 2T is the backward velocity transformation matrix of Body 2.

)v,(qTv 112:.2 vBody ⋅=

Now consider the functions generated by the object on each time step:

1. g1[7,1] - Drift of the constraint for the absolute coordinates:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−+
=

sθθ
)rA(x)rA(x

g
12

10,1120,22
1

o

6. Components 72

2.
1q

g1

∂
∂ [7,14] - Constraint Jacobian matrix,

3. u[7,1] - Vector:

where is the velocity transformation matrix of the i-th body, iT

)Tdiag(TTvT
q
g

dt
du JJJ

J
21

1 ,=⋅⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

∂
∂

=

4.
1

1

q
)(q

∂
∂q

[7,7] - Partial derivative.

6.2 Forces

We describe three frequent types of generalised forces: Gravity force, Spring

Damper, and Cosine torque. All of them are based on Generalized force class

described in Chapter 5.

6.2.1 Gravity force

A gravity force object simulates the impact of the gravity force on bodies.

The object has the following static parameters that should be set while the

translation:

1. J={Body 1, Body 2,…, Body s} - Array of bodies that includes all bodies in a

simulating system,

2. g=9.8 - Gravity constant,

3. e=(e1 e2 e3)T - Gravity direction.

While the simulation the object runs the subroutine:

1. Applying the force. For each Body i in J the object calculates the current

value of the gravity force acting on the body:

() sieeegm T
ii ,...,1000321 =⋅=f

6. Components 73

where is the mass of Body i. im

Then the object increases the parameter f of the body:

 siBody iBody i i ,...,1.:. =+= fff

6.2.2 Spring damper

Spring damper object simulates a spring with a damper between two bodies shown in

Fig. 6.5. Let Oi be the centre of mass of Body i (i=1,2). Let Mi be the place of

connection of the body. By Oixiyizi denote the frame associated with the body.

 r1

O1
x1

y1

z1 M1

O2 x2

y2

z2r2

l
M2

Figure 6.5: Spring damper

The object has the following static parameters that should be set while the

translation:

1. J = {Body 1, Body 2} - Array of bodies connected by the constraint,

2. r1[3,1] - Relative vector from to , expressed in , 1O 1M 1111 zyxO

3. r2[3,1] - Relative vector from to , expressed in , 2O 2M 2222 zyxO

4. k - Spring constant,

5. l0 - Unstretched length,

6. c - Damping constant,

6. Components 74

7. δ - Accuracy.

While the simulation the object runs the subroutine:

1. Applying the force. The object calculates the current value of the spring

force:

where

l is the length of the spring:

e is the normalized direction of the force:

and the spring torques:

Then the object increases the parameter f of connected bodies:

()⎪
⎩

⎪
⎨

⎧

<

≥⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

=
δ

δ

l

lell
f

when

when
dt
dclk

T000

)(0

)rA(x)rA(xl 10,1120,22 +−+=

l
le =

frAt
frAt
×−=

×=

)(
)(

22,02

11,01

()
()TTT

TTT

2Body 2Body

1Body 1Body

2

1

.:.

.:.

tfff

tfff

−+=

+=

6.2.3 Cosine torque

A cosine torque object simulates the torque acting on a body, where the torque's

value is the cosine waves. The direction of the torque is fixed in body’s frame.

6. Components 75

Let be the centre of mass of the body. By denote the frame associated

with the body.

1O 1111 zyxO

The object has the following static parameters that should be set while the

translation:

1. J = {Body 1} - Array of bodies,

2. a1[3,1] - Direction of the torque expressed in , 1111 zyxO

3. C - Amplitude,

4. k - Frequency,

5. Timer - Timer object.

While the simulation the object runs the subroutine:

1. Applying the force. The object calculates the current value of the torque:

Then the object increases the parameter f of the body:

10,1aAt ⋅⋅⋅⋅=).2cos(tTimerkC π

()TT1Body 1Body tff 000.:. +=

7. Car Example 76

7 Car Example

To validate the method presented in the preceding chapters, we have performed a

number of calculations for the problem of a car system shown in Fig. 7.1.

Figure 7.1: Car system

The complete system consists of several subsystems: Damper, Wheel, Suspension.

This example perfectly illustrates all advantages of our method: the object-oriented

simulation of multibodies, the stabilization of closed-loop system, the numerical

efficiency of the combination of absolute and generalized coordinates.

All values of parameters are expressed in SI units: lengths – in meters, masses – in

kilograms, etc. For notational simplicity we do not mention them while the model’s

description.

In future we will always say “The vector from body” meaning the vector from the

body’s centre of mass.

7.1 Wheel Subsystem

From the physical point of view Wheel Subsystem shown in Fig. 7.2 describes a

wheel connected with a ground by a spring. It is a Basic Subsystem consisting of a

few objects: Ring, Ground, Spring and Wheel Output, where Wheel Output is needful for

the descriptions of constraints, that include the wheel on next steps of hierarchy.

7. Car Example 77

Ring
Body

Ground
Ground

Spring
Spring

Wheel Output
Output

 Figure 7.2: Wheel Subsystem

While the description of the subsystem we use the following parameters:

7.1.1 Spring parameters

1. J={Ground, Wheel} - Array of connected bodies,

2. r1=(0 0 0)T- Distance from the ground to the ground’s place of connection,

3. r2=(0 0 0)T- Distance from the wheel to the wheel’s place of connection,

4. k=4·105 - Spring constant,

5. l0=0.35 - Outstretched length,

6. c=100 - Damping constant,

7. δ=10-13 - Accuracy.

7. Car Example 78

7.1.2 Ring parameters

1. m=15 - Mass,

2. h=0.3 - Height,

3. r=0.3 - Radius,

4. ∆h=0.01 - Width of the wheel.

7.2 Beam Subsystem

Since Derived Subsystem objects cannot include body objects we make the universal

Basic Subsystem object. Beam Subsystem shown in Fig. 7.3 can be included in

derived subsystems of next levels of hierarchy. The subsystem consists of Beam and

the beam's child Beam Output.

Beam
Body

Beam Output
Output

Figure 7.3: Beam Subsystem

While the description of the subsystem we use the following parameters:

1. m - Mass,

2. J [3,3] - Moment of inertia expressed in Beam frame connected with the

centre of mass.

7. Car Example 79

7.3 Damper Subsystem

From the physical point of view the damper shown in Fig. 7.4 is a mechanical

subsystem consisting of a cylinder and a piston connected by a spring and by a

prismatic joint.

Cylinder
Body

Piston
Body

Prismatic Joint
Prismatic Joint

Spring
Spring

Piston Output
Output

Cylinder Output
Output

O
x

z

y

Figure 7.4: Damper Subsystem

From the object-oriented point of view Damper Subsystem is a Basic Subsystem

consisting of two Body objects (Cylinder and Piston), Prismatic Joint, Spring and two

Output objects (Cylinder Output and Piston Output).

While the description of the subsystem we use the following parameters:

7. Car Example 80

7.3.1 Spring parameters

1. J={Piston, Cylinder} - Array of connected bodies,

2. r1=(0 0 -0.3)T- Distance from the piston to the piston’s place of connection,

3. r2=(0 0 -0.3)T- Distance from the cylinder to the cylinder’s place of connection,

4. k=5·104 - Spring constant,

5. l0=0.35 - Unstretched length,

6. c=104 - Damping constant.

7.3.2 Cylinder parameters

1. m=3.4 - Mass,

2. h=0.6 - Height,

3. r=0.03 - Radius,

4. ∆h=0.004 - Width of the wall.

7.3.3 Piston parameters

1. m=13.23 - Mass,

2. h=0.6 - Height,

3. r=0.01 - Radius.

7.3.4 Prismatic joint parameters

1. J={Cylinder, Piston} - Array of connected bodies,

2. B={Piston} - Array of basic bodies,

3. K={Cylinder} - Array of dependent bodies,

4. r1=(0 0 -0.3)T - Distance from the cylinder to the joint,

7. Car Example 81

5. r2=(0 0 -0.3)T - Distance from the piston to the joint,

6. a1=(0 0 1)T - Normalized axis of sliding.

7.4 Suspensions Subsystem

From the physical point of view Suspension Subsystem shown in Fig. 7.5 is a

subsystem consisting of a damper and a beam, where damper’s piston is connected

with the beam by a revolute joint (the axis of the joint is perpendicular to the frontal

plane).

Damper
Damper Subsystem

Beam
Beam Subsystem

Revolute Joint
Revolute Joint

Cylinder Output
Output

Beam Output
Output

O
x

z

y

Figure 7.5: Suspension subsystem

7. Car Example 82

From the object-oriented point of view Suspension Subsystem is a Derived

Subsystem consisting of Damper, Beam, Revolute Joint, and two Outputs (Cylinder

Output and Beam Output).

In our model we use left and right types of suspensions. The left suspension is

obtained from the right by the horizontal rotation. While the description of the left

suspension we use the following parameters:

7.4.1 Beam parameters

1. m=7.02 - Mass,

2. J =diag(0.06, 0.5855265, 0.5855265) - Moment of inertia.

7.4.2 Revolute joint parameters

1. J={Beam.Beam Output, Damper.Piston Output} - Array of connected bodies,

2. B={Beam.Beam Output} - Array of basic bodies,

3. K={Damper.Piston Output} - Array of dependent bodies,

4. r1=(0 0 0.2)T - Distance from the beam to the joint,

5. r2=(-0.3 0 0)T - Distance from the piston to the joint,

6. a1=(0 1 0)T - Axis of rotation.

7.5 Car with suspension

From the physical point of view Car System shown in Fig. 7.6 consists of a car body

connected with two suspensions by revolute joints with y-axis of rotation and two

wheels connected with suspensions by revolute joints with x-axis of rotation. Trying to

prevent the model from moving away, we connected the car body with a ground by

the prismatic joint with z-axis of sliding.

7. Car Example 83

Revolute 1
Revolute Joint

Revolute 2
Revolute Joint

Revolute 3
Revolute Joint

Revolute 4
Revolute Joint

Revolute 5
Revolute Joint

Revolute 6
Revolute Joint

Suspention Right
Right Suspension

Subsystem

Car Body
Beam Subsystem

Suspention Left
Left Suspension

Subsystem

Wheel Left
Wheel Subsystem

Wheel Right
Wheel Subsystem

Prismatic Joint
Prismatic Joint

Ground
Ground

Gravity
Gravity Force

O
x

z

y

63

4

52

1

Figure 7.6: Car System

From the object-oriented point of view Car System is a Derived Subsystem consisting

of Beam Subsystem (Car Body), two Wheel Subsystems (Wheel Left and Wheel Right),

Right Suspension, Left Suspension, six Revolute Joint objects, Ground and Gravity.

7. Car Example 84

While the description of Car System we use the following parameters:

7.5.1 Car Body parameters

1. m=585 - Mass,

2. J = diag(12.675, 450.9375, 439.2375) - Moment of inertia.

7.5.2 Revolute 1 parameters

1. J={Car Body.Beam Output, Suspension Left.Cylinder Output} - Array of connected

bodies,

2. r1 =(-0.1 0 0)T - Distance from the car body to the joint,

3. r2 =(0 0 0.3)T - Distance from the cylinder to the joint,

4. a1=(0 1 0)T - Axis of rotation.

7.5.3 Revolute 2 parameters

1. J={Car Body.Beam Output, Suspension Left.Beam Output} - Array of connected

bodies,

2. B={Car Body.Beam Output} - Array of basic bodies,

3. K={Suspension Left.Beam Output} - Array of dependent bodies,

4. r1=(0 0 -0.6)T - Distance from the car body to the joint,

5. r2=(0.5 0 0)T - Distance from the beam to the joint,

6. a1=(0 1 0)T - Axis of rotation.

7.5.4 Revolute 3 parameters

1. J={Suspension Left.Beam Output, Wheel Left.Wheel Output} - Array of connected

bodies,

7. Car Example 85

2. B={Suspension Left.Beam Output } - Array of basic bodies,

3. K={Wheel Left.Wheel Output } - Array of dependent bodies,

4. r1 =(-0.5 0 0)T - Distance from the beam to the joint,

5. r2=(0 0 0)T - Distance from the wheel to the joint,

6. a1=(1 0 0)T - Axis of rotation.

7.5.5 Revolute 4 parameters

1. J={Car Body.Beam Output, Suspension Right.Cylinder Output} - Array of connected

bodies,

2. r1=(0.1, 0, 0)T - Distance from the car body to the joint,

3. r2=(0, 0, 0.3)T - Distance from the cylinder to the joint,

4. a1=(0, 1, 0)T - Axis of rotation.

7.5.6 Revolute 5 parameters

1. J={Car Body.Beam Output, Suspension Right.Beam Output} - Array of connected

bodies,

2. B={Car Body.Beam Output} - Array of basic bodies,

3. K={Suspension Right.Beam Output} - Array of dependent bodies,

4. r1=(0 0 -0.6)T - Distance from the car body to the joint,

5. r2=(-0.5 0 0)T - Distance from the beam to the joint,

6. a1=(0 1 0)T - Axis of rotation.

7.5.7 Revolute 6 parameters

1. J={Suspension Right.Beam Output, Wheel Right.Wheel Output} - Array of

connected bodies,

7. Car Example 86

2. B={Suspension Right.Beam Output} - Array of basic bodies,

3. K={Wheel Right.Wheel Output} - Array of dependent bodies,

4. r1 =(-0.5 0 0)T - Distance from the beam to the joint,

5. r2=(0 0 0)T - Distance from the wheel to the joint,

6. a1=(1 0 0)T - Axis of rotation.

7.5.8 Prismatic joint parameters

7. J={Ground, Car Body.Beam Output} - Array of connected bodies,

8. B={Ground} - Array of basic bodies,

9. K={Car Body.Beam Output} - Array of dependent bodies,

10. r1 =(0 0 0)T - Distance from the ground to the joint,

11. r2=(0 0 -0.95)T - Distance from the car body to the joint,

12. a1=(0 0 1)T - Axis of sliding.

7.5.9 Gravity parameters

1. g=9.8 - Free fall acceleration,

2. e=(0 0 -1)T - Gravity direction.

7.6 Array of independent bodies and sequence of dependencies

The array of independent bodies I is null. Three ground objects: Car System.Ground,

Wheel Left.Ground, Wheel Right.Ground are marked in Fig. 7.7 by red.

7. Car Example 87

9 5

4

3
2

8

6
7

 1

Figure 7.7: Ground objects and Sequence of dependencies

The constraints numbers in Fig. 7.7 are the order numbers of constraints in the

sequence of dependencies C={Car System. Prismatic Joint, Car System.Revolute 5,

Suspension Right.Revoulte Joint, Suspension Right.Damper.Prismatic Joint, Car

System.Revolute 6, Car System.Revolute 2, Suspension Left.Revolute Joint, Suspension

Left.Damper.Prismatic Joint, Car System.Revolute 3}. The loop-closing constraints Car

System.Revolute 1 and Car System.Revolute 4 are not included in C.

Arrows in the figure show the way of calculation of absolute coordinates of

dependent bodies.

Because of the closed structure of the model, we have the drift problem in the

constraints Car System.Revolute 1 and Car System.Revolute 4.

7.7 Start values

The start value of the 12-th length vector of generalized coordinates is:

1-2. Distance parameter p1=0 and the angle of rotation p2=0 of Prismatic Joint,

3. Angle of rotation p1=0 of Car System.Revolute 5,

7. Car Example 88

4. Angle of rotation p1=-0.7854 of Suspension Right.Revoulte Joint,

5-6. Distance parameter p1=0.2485 and the angle of rotation p2=0 of Suspension

Right.Damper.Prismatic Joint,

7. Angle of rotation p1=0 of Car System.Revolute 6,

8. Angle of rotation p1=0 of Car System.Revolute 2,

9. Angle of rotation p1=0.7854 of Suspension Left.Revoulte Joint,

10-11. Distance parameter p1=0.2485 and the angle of rotation p2=0 of Suspension

Left.Damper.Prismatic Joint,

12. The angle of rotation p2=0 of Car System.Revolute 3.

The start value of 12-th length vector of generalized velocities is equal to null.

7.8 Simulation data

We perform the simulation of the model using the method described in Chapter 2.

The simulation data shows the numerical efficiency and stability of our solution.

We choose the time interval to be [0,1.5]. Simulation was performed with

Runge-Kutta method of the fourth order with the fixed time step equal to 0.001 s.

In Fig. 7.8-7.12 is shown the dynamics of Car Body and Wheel Left together with the

drift of the system. The simulation data shows that the algorithm is stable and the

model's drift is constant and has the order of the computation accuracy

.

7. Car Example 89

Figure 7.8: Z-coordinate of Car Body

Figure 7.9: Z-acceleration of Car Body

7. Car Example 90

Figure 7.10: Z-coordinates of Wheel Left

Figure 7.11: Z-acceleration of Wheel Left

7. Car Example 91

Figure 7.12: Drift of the model

For the validation of our simulations results we have built up the same car model in

Simpack software, shown in Fig. 7.13. The simulation in Simpack was performed

using Simpack's default integrator SODASRT, based on the DAE integrator DASSL.

 Figure 7.13: Simpack model

7. Car Example 92

In the case of the simulation of closed-loop systems usually researchers perform the

comparison of results on coordinate level (see, e.g. [HAI 96], [KUN 97]). In Fig. 7.14

– 7.15 are shown the absolute difference between z-coordinate of the car body and of

the left wheel in our software and in Simpack.

Coordinate difference is limited by 1.4·10-8, and stable. This result is comparable with

other tests of DASSL integrator (e.g. the coordinate error of the simulation of a 2-D

car truck in [KUN 97], coordinate error of the simulation of Andrew’s squeezing

mechanism in [HAI 96].

Therefore, the dynamics of the model was calculated correctly and our calculation

algorithm is stable.

Figure 7.14: Absolute difference between z-coordinate of

the car body in our software and in Simpack

7. Car Example 93

Figure 7.15: Absolute difference between z-coordinate of

the left wheel in our software and in Simpack

8. Manipulator Example 94

8 Manipulator Example

As a second example we have

performed a number of calculations for

the problem of a three-links

manipulator shown in Fig. 8.1.

Each link of the manipulator consists

of a beam and a motor. All links are

rigidly connected: each link’s beam is

fastened to the housing of the motor of

the next link. The motor of the first link

is rigidly connected to the ground.

Figure 8.1: Three-links manipulator

The axis of rotation of the first motor is vertical and the axes of the two other motors

are horizontal, that allows the manipulator to perform spatial movements.

The complete system consists of several subsystems: Motor, Link and Manipulator.

This example illustrates the implementation of our method in a 3-D case. We perform

the object-oriented simulation of the manipulator and compare the results of

calculations using absolute and generalized coordinates with results of the simulation

performed in Dymola software.

8.1 Motor subsystem

The Motor Subsystem shown in Fig. 8.2 describes the motor consisting of a housing

(marked by red) and a rotor (marked by yellow) connected by a revolute joint. The

motor torque T acts on the rotor in the forward direction and on the housing in the

backward direction.

8. Manipulator Example 95

Housing
Body

Rotor
Body

Revolute Joint
Revolute Joint

Rotor Output
Output

Housing Output
Output

Backward Torque
Cosine Torque

Forward Torque
Cosine Torque

O
y

z

x

-T T

 Figure 8.2: Motor

From the object-oriented point of view Motor is a Basic Subsystem consisting of two

body objects (Housing and Rotor), Revolute Joint, two Cosine Torque objects (Forward

Torque acting on the Rotor and Backward Torque acting on the Housing) and two

Output objects (Housing Output and Rotor Output).

While the description of the subsystem we use the following parameters:

8.1.1 Housing parameters

1. m=2 - Mass,

2. h=0.3 - Height,

3. r=0.034 - Radius,

8. Manipulator Example 96

4. ∆r=0.004 - Width of the walls.

8.1.2 Rotor parameters

1. m=7.7 - Mass,

2. h=0.35 - Height,

3. r=0.03 - Radius.

8.1.3 Revolute Joint parameters

1. J={Housing, Rotor} - Array of connected bodies,

2. B={Housing} - Array of basic bodies,

3. K={Rotor} - Array of dependent bodies,

4. r1=(0 -0.15 0)T - Distance from the housing's centre of mass to the joint,

5. r2=(0 -0.175 0)T - Distance from the rotor's centre of mass to the joint,

6. a1=(0 1 0)T - Axis of rotation.

8.1.4 Forward Torque parameters

1. J={Rotor} - Array of bodies,

2. a1=(0 1 0)T - Direction.

8.1.5 Backward Torque parameters

1. J={Housing} - Array of bodies,

2. a1=(0 1 0)T - Direction.

Remark 8.1 There are three different motors in our manipulator model. That is why

we set frequencies and amplitudes of their torques while the definition of Manipulator

subsystem. The frequency of Backward Torque is always equal to the frequency of a

8. Manipulator Example 97

correspondent Forward Torque and the amplitude of Backward Torque is always

opposite to the amplitude of Forward Torque.

8.2 Link Subsystem

Motor
Motor Subsystem

Beam
Beam Subsystem

Stiff Joint
Stiff Joint

Housing Output
Output

Beam Output
Output

O
y

z

x

Figure 8.3: Link Subsystem

From the physical point of view the link shown in Fig. 8.3 is a mechanical subsystem

consisting of a beam and a motor connected by a stiff joint.

From the object-oriented point of view Link Subsystem is a Derived Subsystem

consisting of Beam (described in Chapter 7), Motor, Stiff Joint, and two Output objects

(Housing Output and Beam Output).

While the description of the subsystem we use the following parameters:

8. Manipulator Example 98

8.2.1 Beam parameters

1. m=0.71 - Mass,

2. J = diag(0.06, 0.06, 0.0002) - Moment of inertia.

8.2.2 Stiff Joint parameters

1. J={Motor.Rotor Output, Beam.Beam Output} - Array of connected bodies,

2. B={Motor.Rotor Output} - Array of basic bodies,

3. K={Beam.Beam Output} - Array of dependent bodies,

4. r1=(0 0.175 0)T - Distance from the rotor's centre of mass to the joint,

5. r2=(0 -0.02 -0.483) T - Distance from the beam's centre of mass to the joint,

6. s=(1 0 0 0)T - Euler parameters of the relative rotation.

8.2.3 Manipulator Subsystem

From the physical point of view the manipulator shown in Fig. 8.4 is a mechanical

subsystem consisting of three links. All links are rigidly connected: each link’s beam

is fastened to the housing of the motor of the next link.

From the object-oriented point of view Manipulator Subsystem is a Derived

Subsystem consisting of three Link Subsystems, two Stiff Joints, and the Output

object (Housing Output).

While the description of the Manipulator subsystem we use the following parameters:

8. Manipulator Example 99

Stiff 1
Stiff Joint

Housing Output
Output

Link 1
Link Subsystem

Link 2
Link Subsystem

Link 3
Link Subsystem

Stiff 2
Stiff Joint

O
y

z

x

 Figure 8.4: Manipulator Subsystem

8.2.4 Stiff 1 parameters

1. J={Link 1.Beam Output, Link 2.Housing Output} - Array of connected bodies,

2. B={Link 1.Beam Output } - Array of basic bodies,

3. K={Link 2.Housing Output} - Array of dependent bodies,

4. r1=(0 0 0.5)T - Distance from the beam's centre of mass to the joint,

5. r2=(0 -0.15 0)T - Distance from the housing's centre of mass to the joint,

8. Manipulator Example 100

6. s=(0.5 -0.5 -0.5 -0.5)T - Euler parameters describing the relative rotation around

the x-axis on the π/2 angle.

8.2.5 Stiff 2 parameters

1. J={Link 2.Beam Output, Link 3.Housing Output} - Array of connected bodies,

2. B={Link 2.Beam Output} - Array of basic bodies,

3. K={Link 3.Housing Output} - Array of dependent bodies,

4. r1=(0 0.02 0.483)T - Distance from the beam's centre of mass to the joint,

5. r2=(0 -0.15 0)T - Distance from the housing's centre of mass to the joint,

6. s=(1 0 0 0)T - Euler parameters of relative rotation.

8.2.6 Link 1.Motor.Forward Torque parameters

1. C=-600 - Amplitude,

2. k=2 - Frequency.

8.2.7 Link 2.Motor.Forward Torque parameters

1. C=300 - Amplitude,

2. k=2 - Frequency.

8.2.8 Link 3.Motor.Forward Torque parameters

1. C=-12 - Amplitude,

2. k=2 – Frequency.

8.3 Complete system

From the physical point of view the mechanical system shown in Fig. 8.5 consists of

a manipulator and a ground connected by a stiff joint.

8. Manipulator Example 101

O
y

z

x

Manipulator
Manipulator
Subsystem

Ground
Ground

Stiff Joint
Stiff Joint

Gravity
Gravity Force

Figure 8.5: Complete system

From the object-oriented point of view the system is a Derived Subsystem consisting

of Manipulator, Ground, Stiff Joint and Gravity.

While the description of the system we use the following parameters

8.3.1 Stiff Joint parameters

1. J={Ground, Manipulator.Housing Output} - Array of connected bodies,

2. B={Ground} - Array of basic bodies,

3. K={Manipulator.Housing Output} - Array of dependent bodies,

8. Manipulator Example 102

4. r1=(0 0 0)T - Distance from the ground to the joint,

5. r2=(0 -0.15 0)T - Distance from the housing's centre of mass to the joint,

6.
T

⎟
⎠

⎞
⎜
⎝

⎛
= 00

2
1

2
1s - Euler parameters describing the relative rotation

around the x-axis on the -π/2 angle.

8.3.2 Gravity parameters

1. g=9.8 - Free fall acceleration,

2. e=(0 0 -1)T - Gravity direction.

8.4 Array of independent bodies and sequence of dependencies

1
24

5
6

7

8

9

3

Fig. 8.6: Ground and Sequence of dependencies

The array of independent bodies I is null. The ground is marked in Fig. 8.6 by red.

8. Manipulator Example 103

The sequence of dependencies C consists of nine constraints (marked in Fig. 8.6 by

yellow): C={Stiff Joint, Manipulator.Link 1.Motor.Revoulte Joint, Link 1.Stiff Joint,

Manipulator.Stiff 1, Manipulator.Link 2.Motor.Revoulte Joint, Link 2.Stiff Joint,

Manipulator.Stiff 2, Manipulator.Link 2.Motor.Revoulte Joint, Link 3.Stiff Joint}. Constraint

numbers in Fig. 8.6 are their order numbers in C.

Using generalized coordinates while the simulation, we do not have drift problems

because of the tree-structure of the manipulator.

8.5 Start values

The vector of generalized coordinates p consists of three elements:

1. The angle of rotation of Manipulator.Link 1.Motor.Revoulte Joint,

2. The angle of rotation of Manipulator.Link 2.Motor.Revoulte Joint,

3. The angle of rotation of Manipulator.Link 3.Motor.Revoulte Joint.

The start values of the generalized coordinates and velocities are:

()
()Tt

T
t

000

05.20

0

0

=

=

=

=

w

p

8.6 Simulation data

We perform the simulation of the model using the method described in Chapter 2.

We choose the time interval to be [0, 5]. Simulation was performed with predictor-

corrector method of Adams-Moulton with the fixed time step equal to

10-4s.

In Fig. 8.7-8.9 are shown the changes of generalized coordinates, generalized

velocities and generalized accelerations.

8. Manipulator Example 104

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

2

3

4

Time

p1

p3

p2

Figure 8.7: Generalized coordinates

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-15

-10

-5

0

5

10

15

20

1w

2w

3w

 Figure 8.8: Generalized velocities

8. Manipulator Example 105

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-150

-100

-50

0

50

100

150

200

1w&

2w&

3w&

 Figure 8.9: Generalized accelerations

For the validation of our simulations results we have built up the same manipulator

model in Dymola software, shown in Fig. 8.10.

 Figure 8.10: Dymola manipulator model

8. Manipulator Example 106

Obviously, it is most sensible to compare our simulation results on the accelerations

level because of their high variability. In Fig. 8.11 is shown the maximum absolute

difference between generalized accelerations in our software and in Dymola,

that are calculated using the formula:

)(tw&∆

)()(max)(

3..1
ttt i

D
ii

www &&& −=∆
=

where

)(tD
iw& is the i-th generalized acceleration calculated in Dymola,

 is the)(tiw& i-th generalized acceleration calculated in our software.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10-8

Figure 8.11: Difference between the generalized

accelerations in our software and in Dymola

8. Manipulator Example 107

The comparison of accelerations shows that the dynamics of the manipulator model

was calculated correctly and our calculation algorithm is stable. Peaks in Fig. 8.11

are limited by 1.4·10-8 and correspond to local extremums of accelerations.

If we perform the simulation of the model using absolute coordinates without

stabilization, the error in constraints’ equations grows with time. In Fig. 8.12 is shown

the drift of the unstabilized model.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3
x 10-11

Figure 8.12: Drift of the unstabilized model

Conversely, the drift of the stabilized model shown in Fig. 8.13 is limited for a long

period of time and has the order of floating-point precision.

8. Manipulator Example 108

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

2

3

4

5

6

7
x 10-16

Figure 8.13: Drift of the stabilized model

For the validation of simulations results of the stabilized results we compared them

with Dimola’s results. It is the most sensible to compare accelerations of Link 3

because of their highest variability. In Fig. 8.14 is shown the maximal absolute

difference between accelerations of Link 3 in our stabilized model and in Dymola.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8
x 10-9

Figure 8.14: Difference between the accelerations of

Link 3 in the stabilized model and in the Dymola model

8. Manipulator Example 109

Therefore, the stabilization works correctly though the total number of absolute

coordinates is 64 and the total number of equations of constraints is 75.

We get that the manipulator’s model can be correctly simulated in two ways: the first

is the using of generalized coordinates, the second is the performing post-

stabilization using absolute coordinates. The using of generalized coordinates has

the less computation complexity that is very important in the simulation of

multibodies.

Finally, the simulation results show that our tool does not have limits on the structure

of the simulating model and can be implemented for the simulation of complex 3-D

models.

 9. Conclusion 110

9 Conclusion

9.1 Results

Our goal is to develop a method for component oriented modelling and simulation of

constrained multibody dynamics.

In this thesis we start from the comparison of forward dynamic methods that can be

used as bases of simulation tools. We determine the most important appreciated

characteristics of methods: stability, numerical efficiency and practical usability.

Comparing the different stabilization technique, we show the advantage of the post-

stabilization technique [AHR 95]. In Chapter 1 are observed also a few methods of

distributed forward dynamic simulation. Nowadays, the fastest available method,

divide-and-conquer algorithm, has a large number of drawbacks and limits. That is

why we develop the new distributed object-oriented method that is more stable and

convenient in practical use.

An implementation of a method is not trivial and requires great effort. In Chapter 1 we

determine the main characteristics of simulation tools: flexibility, usability and

interaction with other tools. We precisely describe the object-oriented modelling

paradigm that we use as the basis of our tool.

In Chapter 2 we observe some important theoretical problems of the development of

our method i.e. the choice between generalized and absolute coordinates, choice of

absolute coordinates etc. We show that the method is stable, distributable and does

not have limits on the structure of a simulating system.

In Chapter 3 we appreciate the several computation complexities: stabilization, a

simulation of a basic subsystem and simulation of a derived subsystem.

Summarizing them, we obtain the global O(n·D3+t2·s) complexity of the method,

where n is the total number of bodies, D is the upper limit of constraints in a

subsystem, t is the number of closed loops and s is the total number of bodies in

loops. Thus, the numerical efficiency of our method is comparable with fastest

available algorithms.

 9. Conclusion 111

In Chapter 4 we show the implementation background of the method. The software is

based on a strictly capsulated block-module concept. In this context it means that the

mechanical structure will be represented by separate objects which interact with each

other via predefined interfaces. Then we precisely consider the advantages of such

an approach and its profits of calculation of accelerations using the same hierarchy

disassembly as it was performed while the model’s construction.

In Chapter 5 we start the consideration of the object-oriented implementation of our

method. We show eight basic objects that are used in our algorithm: Timer, Ground,

Body, Body Output, Generalized Force, Constraint, Basic subsystem, Derived

subsystem. In Chapter 6 we show the child objects that describe the different types

of constraints and forces: Revolute Joint, Ball Joint, Gravity Force etc.

Using the Visual-Basic implementation of our method, in Chapter 7 and Chapter 8 we

simulate two models: a car system and a spatial manipulator. Both models are

performed using object-oriented approach, with several levels of hierarchy.

The simulation data shows that the algorithm is stable and the model's drift is

constant and has the order of the computation accuracy in the cases of closed-loop

and tree structure.

For the validation of our simulation results we have built up the same models in

Dymola and Simpack software. The comparison shows that the dynamics of the

models was calculated correctly.

Thus, we obtain the simulation proof that our tool could be implemented for the

simulation of large constrained multibody systems.

9.2 Discussion of future work

9.2.1 Integration with CAD tools

It seems to be inconvenient to create a new graphical model editor like Dymola Editor

or Simulink because of the high cost of the development and the existence of other

editors. Since most of 3D models are created inside CAD tools, the much more

effective way is to integrate our tool with CAD tools. In this case a design engineer

 9. Conclusion 112

specifies geometric and material data of simulation model inside CAD tool and then

translates it into our simulation tool. This approach minimise the model’s

development cost and training of design engineers.

9.2.2 Simulations and analysis of systems with variable structures

Many industrial systems such as robots are subjected to a change in their kinematic

structure during the simulation. Backslash and coulomb friction are possible sources

of these mechanical structure changes. In this case the structure and the number of

equations of constraints changes and discontinuities on acceleration level will occur.

Simulations and dynamical analysis of multibody systems with variable kinematic

structures are needed. The method presented here can be extended straightforward

to deal with this variable structures.

9.2.3 Distributed simulation

Nowadays, we consequently perform the transformation from generalized

coordinates and velocities to absolute coordinates and velocities. The next step is to

develop the method of distribution of this calculation using the existing models

hierarchy.

The sophisticated problem is the implementation of the distribution. Classical

methods of distributed simulation works on computers with many processors and low

communication cost. But the much more common situation is a network consisting of

several computers. In this case we should minimise the communication costs. The

optimal way is to start on each computer an independent procedure that translates

and simulates an individual subsystem. The development of the interaction of

computers during the simulation is a challenge.

Appendix A. 113Quaternions algebra

Appendix A

Quaternions algebra

A quaternion is a collection of four real parameters, of which the first is considered

as a scalar and the other three as a vector in three-dimensional space. In addition,

the following operations are defined. If () ()TTT eeeee 32100 == eθ and

 are two quaternions, their sum is defined as () (TTT ccccc 32100 == cς)

()TTTce ceςθ ++=+ 00 (A. 1)

and their product (non-commutative) as

(A. 2)
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×++

⋅−
=

cee c
ce

ςθ
00

00

ce
ce

o

Thus, differentiating the product, we obtain

(A. 3) ςθςθςθ ′+′=′ ooo)(

The quaternion is identified as the set of Euler parameters for the description

of finite rotation. According to Euler's theorem of finite rotation, a rotation in

space can always be described by a rotation along a certain axis over a

certain angle. With the unit vector a

θ

µ representing the axis and the angle of

rotation µ, right-handed positive, the Euler parameters can be interpreted as θ

(A. 4)
µµµ ae)2/sin()2/cos(0 ==e

Since the definition, it follows that

 12
3

2
2

2
1

2
0 =+++ eeee

Appendix A. 114Quaternions algebra

The rotational matrix A(θ) is equal:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−−+−
−−+−+
+−−−+

=
2
3

2
2

2
1

2
010232013

1032
2
3

2
2

2
1

2
03012

20313021
2
3

2
2

2
1

2
0

)(2)(2
)(2)(2
)(2)(2

)(
eeeeeeeeeeee

eeeeeeeeeeee
eeeeeeeeeeee

θA (A. 5)

The rotation matrix A of two consecutive rotations θ and is equal: ς

(A. 6))()()(ςθAςAθAA o=⋅=

A simple relationship exists between the components of the global angular velocity

vector Ω and time derivatives of Euler parameters ()Teeee 3210 &&&&& =θ :

,

2
1 ΩEθ T=&

where E is a semi-transformation matrix that depends linearly on Euler parameters:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−

−−
=

0123

1032

2301

eeee
eeee

eeee
E (A. 7)

Also exists the backward dependency:

(A. 8) θE&2=Ω

Bibliography 115

Bibliography

[ALI 92] T. Alishenas. Zur numerischen Behandlung, Stabilisierung durch

Projektion und Modellierung mechanischer Systeme mit

Nebenbedinungen und Invarianten, PhD thesis, Königliche

Technische Hochschule Stokholm (1992)

[AHR 93] U. Ascher and L. Petzold, Stability of Computational Methods for

Constrained Dynamic Systems, SIAM J. SISC 14, pp. 95-120 (1993)

[AHR 95] U. Ascher, H. Chin, L. Petzold and S. Reich, Stabilization of

constrained mechanical systems with DAEs and invariant manifolds,

The Journal of Mechanics of Structures and Machines, 23(2), pp.

135-157(1995)

[AHR 98] Ascher, U. and Petzold, L., Computer Methods for Ordinary

Differential Equations and Differential-Algebraic Equations, SIAM,

Philadelphia (1998)

[AND 00] Anderson, K. and Duan, S., Highly parallelizable low-order dynamics

simulation algorithm for multi-rigid-body systems, AIAA Journal on

Guidance, Control and Dynamics 23, no. 2, pp. 355-364 (2000)

[ARM 79] Armstrong, W., Recursive solution to the equations of motions of an

n-link manipulator, Proc. 5th World Congress on Theory of Machines

and Mechanisms, Montreal, pp. 1343-1346 (1979)

[BAE 87] Bae, D. and Haug, E., A recursive formulation for constrained

mechanical system dynamics: part 2. Closed loop systems, Mech.

Struct. Mach. 15, no. 4, pp. 481-506 (1987)

[BAE 99] Bae, D. and Han, J., A generalized recursive formulation for

constrained mechanical system dynamics, Mech. Struct. Mach. 27,

no. 3, pp. 293-315 (1999)

Bibliography 116

[BAU 72] J. Baumgarte, Stabilization of constraints and integrals of motion in

dynamical systems, Comp. Math. Appl. Mech. Eng. 1, pp. 1-16

(1972).

[BIR 87] Birta, L. and Abou-Rabia, A., Parallel block predictor-corrector

methods of ODE's, IEE Trans. Computers C-36, pp. 299-311 (1987)

[BRA 86] Brandl, H., Johanni, R., and Otter, M., A very efficient algorithm for

the simulation of robots and similar multibody systems without

inversion of the mass matrix, Proc. IFAC/IFIP/IMACS International

Symposium on Theory of Robots, Vienna (1986)

[BRE 89] K. Brenan, S. Campbell and L. Petzold, Numerical Solution of Initial-

Value Problems in Differential-Algebraic Equations, North-Holland

(1989)

[CEL 95] Cellier, F.E., H. Elmqvist, and M. Otter, Modeling from Physical

Principles, The Control Handbook (W.S. Levine, ed.), CRC Press,

Boca Raton, FL (1995)

[CLI 03] M. B. Cline and D. K. Pai Post-Stabilization for Rigid Body

Simulation with Contact and Constraints Proc IEEE Intl. Conf. on

Robotics and Autom., 2003 (2003)

[CHA 90] Chaudhry, V. and Aggarwal, J., Parallel Algorithms for Machine

Intelligence and Vision, Chap. Parallelism in Computer Vision: A

Review, Springer-Verlag, New York (1990)

[CHI 95] H. Chin, Stabilization methods for simulation of constrained

multibody dynamics, PhD thesis, Institute of Applied Mathematics,

University of British Columbia (1995)

[EIC 93] Eichberger, A., C. Führer, et al., The Benefits of Parallel Multibody

Simulation and its Application to Vehicle Dynamics. Advanced

Multibody System Dynamics - Simulation and Software Tools, W.

Schiehlen. Dordrecht, Kluwer Academic Publishers, pp. 107-126

(1993)

Bibliography 117

[ELM 78] Elmqvist, H., A Structured Model Language for Large Continuous

Systems, Ph. D. Dissertation, Report CODEN: LUTFD2/(TFRT-

1015), Dept. of Automatic Control, Lund Institute of Technology,

Lund, Sweden (1978)

[ELM 01] Elmqvist, H., Mattsson, S. E., Otter, M., Object-Oriented and Hybrid

Modeling in Modelica, Journal Européen des systèmes automatisés,

35,1, pp. 1 – 10 (2001)

[FEA 83] Featherstone, R., The calculation of robot dynamics using

articulated-body inertias, Int. Journal of Robotics Research 2, no. 1,

pp. 13-30, (1983)

[FEA 87] Featherstone, R., Robot Dynamics Algorithms, Kluwer Academic

Publishers, Boston/Dordrecht/Lancaster (1987)

[FEA 99] Featherstone, R. and Fijani, A., A technique for analyzing

constrained rigid-body systems, and its application of the constraint

force algorithm, IEEE Trans. Robotics and Automation 15, no. 6, pp.

1140-1144 (1999)

[FEA 99a] Featherstone, R., A divide-and-conquer articulated-body algorithm

for parallel O(log(n)) calculation of rigid-body dynamics, part 2: trees,

loops and accuracy, Int. Journal of Robotics Research 18, no. 9, pp.

876-892 (1999)

[FUJ 92] Fijani, A. and Bejczy, A., Parallel Computation Systems for Robotics:

Algorithms and Architectures, World Scientific, River Edge, NJ

(1992)

[FUJ 95] Fijani, A., Sharf, L, and D'Eleuterio, С. М., Parallel O(logN)

algorithms for computation of manipulator forward dynamics, IEEE

Trans. Robotics and Automation 11, no. 3, pp. 389-400 (1995)

[GAR 94] Garcia de Jalon, J. and Bayo, E., Kinematic and Dynamic Simulation

of Multi-body Systems: The Real-Time Challenge, Springer-Verlag,

New York (1994)

Bibliography 118

[GEA 81] C.W. Gear, H. H. Hsu and L. Petzold, Differential-algebraic

equations revisited, Proc. ODE Meeting, Oberwolfach, West

Germany, (1981)

[GEA 85] C.W. Gear, G. Gupta and B. Leimkuhler, Automatic integration of the

Euler-Lagrange equations with constraints, J. Comput. Appl. Math.

12, pp. 77-90 (1985)

[GOL 96] G.H. Golub and C.F. van Loan, Matix computations. Second Edition,

John Hopkins University Press, Baltimore (1996)

[HAI 96] E. Hairer and G. Wanner. Solving Ordinary Differential Equations. II.

Stiff and Differential-Algebraic Problems. Springer–Verlag, Berlin

Heidelberg New York, 2nd edition (1996)

[HAU 90] E.J. Haug, Computer-Aided Kinematics and Dynamics of

Mechanical System Vol.1:Basic Methods, Allyn and Bacon (1989)

[HEN 97] D. Henrich, T. Honiger, Parallel processing approaches in robotics,

Proc. IEEE International Symposium on Industrial Electronics,

Guimaraes, Portugal, pp. 702-707 (1997)

[JAI 91] A. Jain, Unified formulation of dynamics for serial rigid multibody

systems, Journal of Guidance, Control, and Dynamics, 14, pp. 531-

542 (1991)

[KAS 95] Kasper, R. and Koch W. Object-Oriented Behavioural Modelling of

Mechatronic Systems, Proceedings of the Third Conference on

Mechatronics and Robotics, Stuttgart: Teubner (1995)

[KAS 97] Kasper, R.; Koch, W.; Kayser, A.; Wolf, A. Integrated design

environment for mechatronic components and systems of

automotive industry, VDI Bericht 1374, pp. 451-465 (1997)

[KAS 99] Kasper, R.; Koch, W.: An Innovative Mechatronic Design

Environment Based on COM Technology and ActiveX, Proceedings

of 3rd International Heinz Nixdorf Symposium, Paderborn (1999)

Bibliography 119

[KAS 04] Kasper, R., Mechanical structures in mechatronic systems,

Proceedings of NAFEMS Seminar: "Mechatronics in Structural

Analysis", Wiesbaden (2004)

[KEC 97] Kecskemethy, A., Krupp, Т., and Hiller, M., Symbolic processing of

multi-loop mechanism dynamics using closed form kinematic

solutions, Multibody System Dynamics I, no. 1, pp. 23-45 (1997)

[KUN 97]
__3__ (____! __ 2___ _ _ ___"! ((__"< !!4 _ &_(* _ _ __# _______547ø > H

P. Kunkel, V. Mehrmann, W. Rath, J. Weickert, A new software

package for linear differential-algebraic equations, SIAM J. Sci

Comput. 18, pp. 115-138 (1997),

[LUB 92] Ch. Lubich, U. Nowak, U. Pohle and Ch. Engstler, MEXX -

Numerical Software for the Integration of Constrained Mechanical

Multibody Systems, Preprint SC 92-12 (December 1992)

[MML 95] McMillan, S. and Orin, D., Efficient computation of articulated-

body inertias using successive axial screws IEEE Trans. Robotics

and Automation 11, pp. 606-611 (1995)

[NIK 82] P. E. Nikravesh and I. S. Chung, Application of Euler parameters to

the dynamic analysis of three-dimensional constrained mechanical

systems, J. Mechanical Design, Vol. 104, pp. 785-791 (1982)

[PRE 02] W. H. Press, S. A. Teukolsky, et al., Numerical Recipes in C++ –

The Art of Scientific Computing, Cambridge, MA, Cambridge

University Press, (2002)

[ROO 00] Roosta, S. H., 2000, Parallel Processing and Parallel Algorithms:

Theory and Computation, Springer, New York. Sachdev, C.,

"Cooperative robots share the load," Tech. rep., TRN News, URL

http://www. trnmag.

com/Stories/2002/021302/Cooperative_robots_share_the_load_021

302.html (2002)

[SHA 89] A. A. Shabana, Dynamics of Multibody Systems, John Wiley and

Sons, New York (1989)

Bibliography 120

[SHA 01] Shabana, A. A., Computational dynamics, Wiley, New York (2001)

[SHL 90] W. Schiehlen (Editor): Multibody Systems Handbook, Springer

(1990)

[CHL 90a] Schiehlen, W., Multibody systems and robot dynamics, Proc.

SthCISM-IFToMM Symposium on Theory and Practice of Robot

Manipulators (A. Morecki, G. Bianchi, and K. Jaworek, eds.),

Warsaw, Poland, pp. 14-21 (1990)

[SHL 93] W. Schiehlen (Editor): Advanced Multiboudy Systems Dymanics,

Simulation and Software Tools, Kluwer Academic Publishers (1993)

[STE 96] Stejskal, V. and Valasek, M., Kinematics and Dynamics of

Machinery, Marcel Dekker, New York (1996)

[STE 01] Stejskal, V.; Dehombreux, P.; Eiber, A.; Gupta, R.; Okrouhlik, M.,

Mechanics with Matlab. EC Project Leonardo da Vinci "MechMat"

between Universities of Prague, Mons, Stuttgart, Uppsala and the

Czech Academy of Science, Electronic Internet Publication,

http://www.fsid.cvut.cz/cp1250/en/U2052/leo.html

[SWB 02] Schwab, A. L. Dynamics of Flexible Multibody Systems, PhD thesis,

Delft University of Technology. pp. 100-155 (2002)

[VER 74] Vereshchagin, A., Computer simulation of the dynamics of

complicated mechanisms of robot manipulators, Engineering

Cybernetics 6, pp. 65-70 (1974)

[WAL 82] Walker, M. and Orin, D., Efficient dynamic computer simulation of

robotic mechanisms, ASME Journal of Dynamic Systems,

Measurement and Control 104, pp. 205-211 (1982)

[WAN 00] Wang, J., Gosselin, C., and Cheng, L., Dynamic modelling and

simulation of parallel mechanisms using virtual spring approach,

Proc. 2000 ASME Design Engineering Technical Conferences,

Baltimore, Maryland, pp. 1-10 (2000).

Bibliography 121

[WIT 77] Wittenburg, J., Dynamics of systems of rigid bodies, B. G. Teubner,

Stuttgart (1977)

[ZOY 93] Zoyama, A., Modelling and Simulation of Robot Manipulators: A

Parallel Processing Approach, World Scientific, River Edge, NJ

(1993)

	Acknowledgements
	Abstract
	Table of Contents
	Mathematical Notation
	1 Introduction
	1.1 Algorithms of Simulation
	1.1.1 Recursive Newton-Euler Formulations
	1.1.2 Non-Recursive Newton-Lagrange Formulations
	1.1.2.1 Direct Elimination
	1.1.2.2 Lagrange-Multiplier Approximation-Penalty Formulation
	1.1.2.3 Lagrange-Multiplier Elimination
	1.1.2.4 Baumgarte's technique
	1.1.2.5 Projected invariants methods
	1.1.2.6 Dynamic Projection onto the Tangent Space
	1.1.2.7 Post-Stabilizations Method

	1.1.3 Distributed Forward Dynamic Simulation
	1.1.3.1 Constraint-force algorithm
	1.1.3.2 Divide-and-conquer articulated-body algorithm
	1.1.3.3 Hybrid Direct/Iterative Algorithm

	1.2 Object-Oriented Implementation
	1.2.1 Tool requirement
	1.2.1.1 Flexibility
	1.2.1.2 Usability
	1.2.1.3 Interaction with other tools

	1.2.2 Object-Oriented programming

	2 Theoretical Background
	2.1 Main idea of the hierarchical simulation
	2.2 Choice of coordinates
	2.3 Choice of absolute coordinates
	2.4 Calculation of absolute coordinates and velocities
	2.5 Equations of motion of a basic subsystem
	2.6 Building up the hierarchy
	2.7 Calculation of absolute accelerations
	2.8 Calculation of generalized accelerations
	2.9 Post-stabilization of generalized coordinates and velocities

	3 Computation Complexity
	3.1 Stabilization complexity
	3.2 Computation complexity of a basic subsystem
	3.3 Computation complexity of a derived subsystem
	3.4 Computation complexity of the method

	4 Implementation Background
	5 Basic Objects
	5.1 Timer
	5.2 Ground
	5.3 Body
	5.4 Body output
	5.5 Generalized force
	5.6 Constraint
	5.7 Basic subsystem
	5.8 Derived subsystem

	6 Components
	6.1 Joints
	6.1.1 Revolute joint
	6.1.2 Prismatic joint
	6.1.3 Ball joint
	6.1.4 Stiff connection

	6.2 Forces
	6.2.1 Gravity force
	6.2.2 Spring damper
	6.2.3 Cosine torque

	7 Car Example
	7.1 Wheel Subsystem
	7.1.1 Spring parameters
	7.1.2 Ring parameters

	7.2 Beam Subsystem
	7.3 Damper Subsystem
	7.3.1 Spring parameters
	7.3.2 Cylinder parameters
	7.3.3 Piston parameters
	7.3.4 Prismatic joint parameters

	7.4 Suspensions Subsystem
	7.4.1 Beam parameters
	7.4.2 Revolute joint parameters

	7.5 Car with suspension
	7.5.1 Car Body parameters
	7.5.2 Revolute 1 parameters
	7.5.3 Revolute 2 parameters
	7.5.4 Revolute 3 parameters
	7.5.5 Revolute 4 parameters
	7.5.6 Revolute 5 parameters
	7.5.7 Revolute 6 parameters
	7.5.8 Prismatic joint parameters
	7.5.9 Gravity parameters

	7.6 Array of independent bodies and sequence of dependencies
	7.7 Start values
	7.8 Simulation data

	8 Manipulator Example
	8.1 Motor subsystem
	8.1.1 Housing parameters
	8.1.2 Rotor parameters
	8.1.3 Revolute Joint parameters
	8.1.4 Forward Torque parameters
	8.1.5 Backward Torque parameters

	8.2 Link Subsystem
	8.2.1 Beam parameters
	8.2.2 Stiff Joint parameters
	8.2.3 Manipulator Subsystem
	8.2.4 Stiff 1 parameters
	8.2.5 Stiff 2 parameters
	8.2.6 Link 1.Motor.Forward Torque parameters
	8.2.7 Link 2.Motor.Forward Torque parameters
	8.2.8 Link 3.Motor.Forward Torque parameters

	8.3 Complete system
	8.3.1 Stiff Joint parameters
	8.3.2 Gravity parameters

	8.4 Array of independent bodies and sequence of dependencies
	8.5 Start values
	8.6 Simulation data

	9 Conclusion
	9.1 Results
	9.2 Discussion of future work
	9.2.1 Integration with CAD tools
	9.2.2 Simulations and analysis of systems with variable structures
	9.2.3 Distributed simulation

	Appendix A Quaternions algebra
	Bibliography

