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Abstract

The proxel-based method is an intuitive approach to analysing discrete stochastic mod-
els, such as are described by stochastic Petri nets or queuing systems for example. The
approach analyses models in a deterministic manner, avoiding the typical problems
of discrete-event simulation (e.g. finding good-quality pseudo-random-number genera-
tor) and partial differential equations (difficult to set up and solve). The underlying
stochastic process is a discrete-time Markov chain which is constructed on-the-fly by
inspecting all possible behaviours of the model. The proxel-based simulation is shown
to be very useful in analysing some classes of reliability models and fault-trees. In
particular it is more efficient than the discrete-event approach applied to the same
models, because the proxel-based method is less sensitive to the stiffness of the mod-
els. The goal of the thesis is to formally define this new method, study its behaviour
under different circumstances, as well as show that it can be more suitable than some
existing methods for certain classes of problems. Further, the thesis examines some of
the application areas of the proxel-based method.





Zusammenfassung

Die proxel-basierte Methode ist ein intuitives Verfahren zur Analyse diskreter
stochastischer Modelle, wie sie zum Beispiel durch stochastische Petrinetze oder
Warteschlangensysteme beschrieben werden. Das Verfahren analysiert Modelle deter-
ministisch und vermeidet daher die typischen Probleme diskreter ereignisorientierter
Simulationen (z.B., hochwertige Pseudo-Zufallszahlengeneratoren zu finden) oder par-
tieller Differentialgleichungen (schwierig aufzustellen und zu lösen). Der zugrunde
liegende stochastische Prozess ist eine zeitdiskrete Markovkette, die ”on-the-fly” kon-
struiert wird, indem man jedes mögliche Verhalten des Modells betrachtet. Es hat sich
gezeigt, dass proxel-basierte Simulation sehr gut anwendbar ist, um beispielsweise sto-
chastische Modelle für die Zuverlässigkeit oder Fehlerbäume zu analysieren. Insbeson-
dere war sie bei diesen Modellen leistungsfähiger als die diskrete ereignisorientierte Sim-
ulation, da die proxel-basierte Methode auf die Steifheit der Modelle weniger empfind-
lich reagiert. Das Ziel der Dissertation ist, diese neue Methode formal zu definieren,
ihr Verhalten unter unterschiedlichen Bedingungen zu studieren, sowie aufzuzeigen, für
welche Kategorien von Problemen sie geeigneter ist als einige der vorhandenen Meth-
oden. Weiterhin werden einige der Anwendungsgebiete der proxel-basierten Methode
betrachtet und diskutiert.
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1 Introduction

1.1 Introduction

It has always been the dream of mankind to possess the ability of predicting the future
for different reasons, but mainly for making our lives easier. The need to foresee things
has been the main motivator for many research projects. That is also the case with
simulation. One of the main goals of this research area is predicting how systems will
behave in the future, based on the dependencies and features that have been discovered
in them.

”What is the probability that it will rain tomorrow?” is just one of the many questions
that simulation tries to answer. Computer systems with enormous computing power
and huge memory capacities exist only for the purpose of computing the weather
forecast. And it is an important question. To name one of the simplest examples:
our holiday, for which we have been saving during the whole last year depends on
the weather conditions. For the huge corporations it can be the issue that creates
differences in terms of enormous sums of money, where the ability to foresee weather
conditions means avoiding disasters by performing precaution-measures.

There is hardly any serious system today which is put into function without building
a model first and studying its behaviour through simulation. In some systems the
experiments performed on the real systems can be very expensive and potentially
disastrous (e.g. nuclear plants or train systems) and simulation is the safe way to
analyse their behaviour. The meaning of simulation itself justifies the need for more
accurate, more efficient, and more reliable simulation approaches.

In this thesis we formalise the proxel-based method, which is designed for analysing
systems which are characterised as stochastic, thereby supporting the decision-making
processes regarding the their behaviour. In this chapter we provide the motivation for
our research, the historical background of the area of simulation, as well as the goals
of the thesis.
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1.1.1 Is It Stochastic or Too Complicated to Understand?

The systems that we observe in the thesis and at which the proxel-based method is
aimed are described as stochastic. The word ”stochastic” is a synonym of ”random”, and
an opposite of ”deterministic”. Therefore, stochastic system is a system, whose future
behaviour can never be fully determined based on its current configuration. This
definition captures already a great number of systems that we meet in our everyday
lives.

One can argue about how random the randomness is, or whether we refer to as random
for a process for which we have too little information. For instance, a classical example
random process is the arrival of customers in a bank, as illustrated in Figure 1.1.
Observed from aside it is random. Yet, if we knew everyone in the city and could read
their minds, we can clearly predict when they want to go to the bank. If we knew
what kind of cars they drove, their driving habits and the roads they took, as well
as all remaining information, the sequence of arrival points in time could be precisely
predicted. This is, however, a too idealistic assumption, and the information that we
refer to is currently impossible to possess. Therefore, the way to go is to refer to those
processes as random and search for some regularities and a way to describe them.

Figure 1.1: Illustration of a queuing system in a bank

Accordingly, it has been discovered that the randomness of different stochastic
processes can differ, as well as characterise them. The amounts of time that cars
need to get from the centre of the city to the main railway station differ. Yet, they
all are within a limited time interval, and most of them are concentrated around one
average length of time. Thus, to the lost driver that asks how much time it would take
him/her to get from the centre of the city to the railway station, we answer ”Drive
straight, and in about 5 minutes you are there.”. Therefore, the randomness of the
travelling times from one point to another has some structure. So is the case with the
inter-arrival times of visits to a restaurant, customers’ inter-arrival times in a bank, or
the inter-arrival times of cars passing by. The characterisation of the randomness is
expressed by distribution functions, which are functions that describe how the proba-
bility is distributed among the set of possible values. In order to reveal the structure
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of the randomness of one random process i.e. its distribution function, a large set of
sample data needs to be collected and examined.

After a careful inspection of the collected set of data of interest (e.g. inter-arrival times
of visits to a restaurant), the distribution functions can be guessed, and ”approved”
through many statistical tests (e.g. Chi-square tests), which is a process known as
input data modelling. The distribution functions obtained through that process are
then the prerequisite for designing of the model of the system whose behaviour we
want to analyse.

1.1.2 Modelling and Simulation

In order to analyse a system, first its model needs to be built. ”Model”is a very common
word with various meanings, depending on the context. Throughout the thesis we refer
to it as a description of a system, which can be used for studying the behaviour of the
system by computers.

Usually, when one talks about simulation, he/she means ”discrete-event simulation”
(DES), which is the most straightforward way of simulating models. DES works by
imitating a system’s behaviour in a fast-forward fashion. For this purpose DES uses
the distribution functions chosen in the input data modelling process and employs
them for reproducing the random activities in the system being simulated. During the
simulation runs, variables that track the relevant parameters are active, and based on
their values, conclusions can be made about the behaviour of the system that is being
simulated.

Let us again observe the classical example of a queue in front of a bank counter. Once
the randomness of the inter-arrival times and the length of the service times have
been described in form of distribution functions, that information is used for computer
generation of ”random” numbers which comply with the functions. The queue length
one hour after the counter has opened is the requested parameter. For obtaining an
estimate of the requested parameter, many simulation runs are carried out (e.g. 1000),
where each simulates one possible system’s behaviour during the first hour. At the end
of each of those runs the queue-length is captured and stored in the tracking variable.
At the end of all runs the average queue length is calculated. The more simulation
runs are carried out, the more accurate the estimate for the real average is. The results
are then delivered in a form of an interval, referred to as a confidence interval, which
states the range of values that has a high probability of containing the parameter
being estimated. Confidence intervals get narrower with the increase of the number of
simulation runs. More on the topic of discrete-event simulation is presented in Section
2.2.1.

Discrete-event simulation is, however, just one of the many simulation approaches,
which at the same time is the most straightforward one because it works in the most
intuitive way by copying the behaviour of the system of interest, thereby using the
advantage of computers to perform the imitation faster than the real execution times.
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The speed results from the fact that the DES reproduces behaviour of models by only
observing the points in time when the configuration of the system changes. With
respect to intuitiveness, the proxel-based method can be compared to discrete-event
simulation, except that it follows all possible behaviours of one system within one run,
weighting each of the sample paths by distributing the probability accordingly to the
distribution functions of the random processes that cause the state changes.

1.2 The Proxel-Based Method in the Big Picture

The area of simulation has a long history, and the methods that exist for simulation and
analysis of stochastic systems can be generally divided into two classes: experimental
and numerical methods.

In the case of experimental methods, the analysis is performed implicitly by observ-
ing the results obtained from many experiment runs. The most popular experimental
simulation method is discrete-event simulation, which as already explained works by
reproducing the behaviour of the systems. The reproducing of systems’ behaviours
is the reason why DES has to rely on random number generators which sample the
random activities that are part of the system that is being analysed. The generation
of random numbers and its use in analysing stochastic models is a reason why we refer
to this method as stochastic. Once the model is built (i.e. programmed), the com-
puter performs as many sample runs from the model as necessary to make conclusions
about the model’s behaviour. Therefore, the analysis in the case of DES is indirectly
conducted, based on the observation of the sample runs. The biggest advantages of
discrete-event simulation are its intuitiveness and its ability of simulating large-scale
models for which deterministic solutions are intractable.

Numerical methods on the other hand, are designed for analysing stochastic models
without incorporating any random behaviour. As a consequence, the simulation re-
sults that they deliver are always identical for the same model parameters and with a
more controllable accuracy than DES. Numerical methods work by describing the flow
of probability within one system, by mathematical models, usually using differential
equations, which are then solved using different numerical methods. The differential
equations are usually very complicated to set up and solve, and therefore not recom-
mendable for large-scale models. One of the most popular numerical methods are
Markov chains, which are briefly described in Section 2.2.2.

The proxel-based method contains features from both classes of methods for analysing
stochastic models, and therefore can be seen as a sort of a hybrid of both classes.
On one hand it does not employ random numbers, compared to the discrete-event
simulation. However, compared to the existing numerical methods, the proxel-based
method does not set up a system of differential equations, but dynamically describes
and follows the flow of probability among the states of the model, in a very intuitive
manner. This allows the method to be arbitrarily and to provide more accurate analysis
of classes of models that until now were complicated and expensive to be analysed in a

4



1.3 Motivation

deterministic manner. The only feasible choice for some of those models was discrete-
event simulation, which can also become very expensive when high accuracy is needed.
The proxel-based method represents now another option.

The method, as is the problem with other deterministic approaches, suffers from the
problem of state-space explosion, and is therefore not recommended for solving large-
scale models. We believe that in spite of this disadvantage, the method will be very
useful for some classes of models, as presented further in the thesis.

1.3 Motivation

If a general stochastic model is to be analysed without imposing any restrictions, the
choice of an analysis method narrows down to discrete-event simulation, as the only
method that can handle any complex situation. However, DES has a stochastic nature
and a few known drawbacks, and it can become very expensive for certain types of
models. One such case are the rare-event models, as explained in Section 6.6. The
proxel-based method is a deterministic alternative with comparable applicability as
DES, that can be very promising, especially for the classes of models that are known
as problematic for DES.

The proxel-based method was initially introduced by Graham Horton in (Horton 2002),
as an alternative way of simulating discrete stochastic models. The method itself
represents a progress in the direction of finding a widely applicable simulation method,
which means a method that would be able to simulate a wide class of systems that
exist in the real world. Because the approach is based on the description of the model
and builds the solution algorithm directly from it, the proxel-based method is very
promising and a number of applications was easily foreseeable. The method, just like
discrete-event simulation, is able to simulate anything that can be brought in a certain
form (i.e. model, program) to the computer.

The determinateness gives another dimension of the proxel-based method, i.e. unlike
discrete-event simulation, the results do not depend on a quality of a random-number
generator, and they are not in a form of a confidence interval. Instead, the results are
in a form of a discretised function which approximates the transient probability. In the
bank-queue example this would mean obtaining a series of n functions which would
describe probabilities for having 0... n-1 customers in the queue, for every time step,
up to the maximum simulation time.

The method also offers solutions to classes of problems which are not trivial and hard
to solve using the existing approaches, as pointed in Section 4.1. For instance, the
fact that the method builds the state-space of a model dynamically or ”on-the-fly”
while simulating it, indicates that it can be applied for analysing unbounded models.
Unbounded models are hard to imagine being analysed by using any of the existing
deterministic approaches, as most of them require an a priori generation of the state-
space. The method can also be easily applied to models which have state-dependent
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distribution functions, i.e. functions which change depending on the discrete state and
the time spent in it.

All of these speculations needed to be studied, experimented and tested for our specula-
tions to be confirmed. Because of the novelty of the method, it required an exhaustive
research to study its behaviour, as well as formalise it, in order to make it complete
and self-contained so that the method can be offered to simulation practitioners as
another alternative for analysing stochastic systems.

All of the above said represents a basic motivation for the thesis, and the basis for
setting our goals as explained in the next section.

1.4 Goals of the Thesis

The motivation behind the thesis indirectly formed the goals of it. The main goal of
the thesis is to develop and bring the proxel-based method to a level of an established
simulation approach that can be offered to and be applied by simulation practitioners.
This means a method for which it will be easy to spot when it would be efficient to be
applied and when it would deliver acceptably accurate results, as well as when other
alternative approaches would be the better choice.

The main goal resulted into the following sub-goals or tasks of the thesis:

• formalising the proxel-based method,

• analysing and studying its behaviour, and

• examining application areas.

Therefore, the more elaborate goal of this thesis is to formalise the proxel-based method,
study its behaviour, thereby distinguish the classes of models for which it performs well
and would be the natural choice for their analysis for accuracy or efficiency reasons,
and finally discuss and examine its application areas.

Formalising the proxel-based method means providing definitions for all elements in-
volved in the method, as well as provide an algorithm which defines the way the proxel-
based method works. Additionally, we design a modelling framework which responds
to the input requirements of the proxel-based method, and therefore contributes to the
method’s completeness.

Studying the behaviour of the proxel-based method involves many issues, among which
the most important are analysing the accuracy of the method, which can be used to
estimate the error that it makes, and analysing the computational complexity as a
function of the size of the time step and the characteristics of the model being analysed.
It is also essential to distinguish the classes of models for which the proxel-based method
is especially recommended for different reasons.
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Finally, the application areas demonstrate the usefulness of the newly introduced
method in some already established and popular problem-domains in the area of sim-
ulation and modelling, and build foundations for further research regarding each of
these areas.

In conclusion, there are two supplementary goals of the thesis. The first one is to
communicate a clear message that the proxel-based method is an approach that can
be successfully applied to certain classes of problems. The second supplementary goal
of the thesis is a more subtle one, and that is to provide a useful textbook which will
aid the further development of the proxel-based method and will serve as a generator
for ideas with that respect.

1.5 Organisation of the Thesis

Figure 1.2: Structure of the thesis

The thesis is organised as follows. Chapter 2 introduces the preliminaries, which
should provide the necessary background required for understanding the remaining
chapters. Further in the same chapter, a brief overview of the existing approaches
aimed towards simulation of discrete stochastic models is presented, which discusses
both the traditional and the modern ones.

Chapter 3 proceeds with the introduction of the proxel-based method, as well as its
formalisation and definitions. It also discusses one of the most important aspects, the
method’s accuracy and ways to improve it.

Once the proxel-based method is described and defined, Chapter 4 discusses the varia-
tions of the method that we have implemented and experimented with while searching
for improvements to the basic approach. In the same chapter, the special classes of
problems for which the proxel-based method is recommended are discussed.
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In order to bring the proxel-based method one step further and turn it into a self-
consistent method, we designed a modelling framework, whose goal is to provide such
a description of the models that it would exploit all or most of the beneficial and unique
properties of the proxel-based method. The specification of this modelling framework
is the main topic of Chapter 5.

The following Chapter 6 discusses the numerous applications of the proxel-based
method, some of which were initiated as a result of our cooperation with Daimler-
Chrysler for their reliability models.

Chapter 7 presents and discusses some experiments regarding the accuracy and the
computational complexity of the proxel-based method, which could not be placed else-
where because they contain elements presented in more different chapters.

Finally, in Chapter 8 we conclude the thesis by discussing and summarising our con-
tributions, as well as providing directions for future work.

Throughout the thesis, along with each chapter and problem area that we discuss, we
present examples and results from experiments that illustrate the subjects that are
discussed.
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2 Preliminaries and Overview of Simulation
Methods

In this chapter we introduce the reader to the basic terms and paradigms used through-
out the thesis. Furthermore, we present the preliminaries necessary for understanding
the issues treated in the thesis, and especially for understanding the basic principles of
the proxel-based method. Also an overview of existing simulation methods is provided,
which considers both the traditional, as well as the more significant modern approaches,
discussing their advantages and drawbacks.

2.1 Preliminaries

This section addresses the issues, which we classified as preliminary or necessary for
understanding the basic principles of the proxel-based method. Throughout the thesis
we use the term model to refer to a description of a system in such a way that it
can be used for making conclusions about its behaviour. The process of studying the
behaviour of a system via its model we denote as simulation. We begin by describing
what a discrete stochastic model is, a class of models on which the proxel-based method
focuses.

2.1.1 What is a Discrete Stochastic Model?

Many real-life processes can be described by means of stochastic models, which ba-
sically signifies that the events that cause the state changes occur randomly. The
randomness, however, conforms to some rules and possesses a structure, which makes
it possible to describe and distinguish different types of randomness. The random
processes that exist in the stochastic models are described by random variables, which
are characterised by distribution functions. These distribution functions define the
structure of the randomness for each of the random variables.

A stochastic model is therefore described by means of a stochastic process (Kulkarni
1995; Cox and Miller 1965), which again is defined as a family of random variables
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{X(t) : t ∈ T} that can take on values from the state space S, indexed by a parameter
t ∈ T . The state space S is the set of configurations reachable by a model. The
index can represent any physical quantity, although most often it is viewed as a time
parameter. Depending on the character of the state and the parameter space, there
are four classes of stochastic processes, derived from the following four combinations
(Siegle 2002):

• discrete state space / discrete parameter space,

• discrete state space / continuous parameter space,

• continuous state space / discrete parameter space, and

• continuous state space / continuous parameter space.

A classical and one of the simplest examples of stochastic models is a queuing system.
For instance, a bank counter with one server and one queue, where customers arrive at
random, and so are the lengths of service times. This stochastic model has a discrete
state space, enumerated by the number of people in the queue and the occupancy of
the server, and discrete parameter space (i.e. time), because of the fact that state
changes happen at discrete points in time. This is the class of models that proxel-
based simulation focuses at, i.e. discrete state space/discrete time, which we refer to
as discrete stochastic models.

There are two types of random variables, according to the number of values they can
take on: discrete (countable number of values) and continuous (uncountably infinite
number of possible values). We are interested in the latter one because the processes
that we observe are defined on the time domain, which is continuous and infinite.
Each continuous random variable is defined by a distribution function, which is the
function that characterises the structure of the variable’s randomness. It can be either
a cumulative distribution function (CDF) or a probability density function (PDF). The
CDF FX() is defined as follows

FX(x) = Pr {X ≤ x} (2.1)

and expresses the probability (denoted by Pr) of receiving a draw less than or equal to
x. The PDF fX(), on the other hand, is the derivative of the cumulative distribution
function, formally expressed as

fX(x) =
d

dx
FX(x). (2.2)

Another function that characterises a random variable is the instantaneous rate func-
tion (IRF), sometimes referred to as hazard rate function or failure rate function in the
literature. The easiest way to describe it leads to one of its other names i.e. ”failure
rate function”. If X is a random variable that describes the failure times of one ma-
chine, then the IRF of X at time τ (µX(τ)) provides the rate with which a failure might

10



2.1 Preliminaries

happen within a time interval (τ, τ +∆τ), where ∆τ → 0, given that there has not been
a failure for a time period of τ (Trivedi 2002). In general, the IRF expresses the rate
with which an event might happen in a time interval (τ, τ +∆τ), where ∆τ → 0, given
that it has been pending for a time of τ . An event is pending if all of the preconditions
for its happening are fulfilled and it has not happened yet. The IRF µ() is calculated
as follows:

µ(τ) =
f(τ)

1− F (τ)
. (2.3)

The function S(τ) = 1−F (τ) is usually referred to as a survival function and expresses
the probability that an event has not happened up to time t = τ i.e. SX(x) = Pr(X >
x). The IRF is the function that we observe and use in the proxel-based approach, as
explained further in Chapter 3.

We distinguish two classes of probability distributions: finite support and infinite sup-
port distributions, depending on the support of the IRF of the corresponding random
variable. This classification is very important with respect to the efficiency of the
proxel-based simulation, as described further in the thesis. Examples for finite support
distributions are the Deterministic and the Uniform distributions and the Exponential
one is an example for an infinite support distribution.

One interesting and characteristic class of stochastic processes is the class of Markov
processes, which is discussed more in detail in Section 2.2.2. For that class there
are already established and verified analytic solution methods because of its unique
property, the ”memorylessness”, which means that the future behaviour of a model
depends only on its current state, independently of the model’s history. From a solution
point of view, the ”memorylessness” is viewed as an advantage. It, however, in many
cases is viewed as a limitation for the reason that there are many processes that cannot
be characterised as memoryless (e.g. wear-outs or processes with known deterministic
duration).

When one speaks of the analysis of discrete stochastic models, there are two types
of solutions that are meant by it: transient and steady-state solution. While the
transient solution describes the behaviour of a model as a function of time, usually
in form of state probabilities, the steady-state solution defines the model’s long run
behaviour, i.e. when in equilibrium. The definition of a solution, in general, depends on
the model being analysed and the points of interest, which determine the parameters
whose estimates are sought for.

Throughout the thesis most of the discrete stochastic models are described by means
of state-transition diagrams that allow for generally distributed state changes. ”Gener-
ally” means that there is no limitation on the type of distribution functions associated
with the state changes.
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2.1.2 The Method of Supplementary Variables

The method of supplementary variables was initially introduced by Cox in (Cox 1955a)
for the purpose of analysing queuing systems, in which area it has a long history
(Stidham 2002; Takagi 1991). The basic idea of the method is analysing the behaviour
of non-Markovian models by contributing additional continuous variables to the states
of the model which track the elapsed times of non-exponentially distributed events
that have not happened yet (i.e. pending) (Cox and Miller 1965). The information
that these variables carry is sufficient for calculating the probabilities for the possible
future behaviours of the model, turning the model into a Markovian one. This is the
main thought that exists also behind the proxel-based method.

Based on this hybrid description of the stochastic process, state partial differential
equations are derived, which describe the dynamics of the process. The PDEs are
further usually solved by application of Laplace transforms and z-transforms (German
2000b), which is a typical approach used in queuing theory. Numerical solution in
time domain is only possible in case of finite state spaces, as stated in (German et al.
1995b), in which case there are two main restrictions:

• no generally distributed state changes are active in the beginning (caused by
Dirac impulse in the initial conditions), and

• all general distributions have finite support.

In the case of a M/G/11 queuing system, German in (German 2000b) defines the
underlying stochastic process as

{(N(t), X(t)), t ≥ 0} , (2.4)

where N(t) is the number of customers in the system at time t, and X(t) is a continuous
supplementary variable, which tracks the elapsed service time at time t, and is referred
to as age variable. The state transition diagram of the model is shown in Figure 2.1,
where λ is the arrival rate of customers, and µ(x) is the instantaneous rate function of
the non-exponentially distributed random variable that describes the service times.

Figure 2.1: State transition diagram of an M/G/1 system

The following quantities are then needed in order to describe the dynamics of the
underlying stochastic process:

1M/G/1 denotes a queuing system which consists of one queue and one server, where the arrivals are
exponentially distributed, and the service times follow a general distribution function.
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• state probability πn(t), denotes the probability of having n customers in the
system at time t

πn(t) = Pr {N(t) = n} , (2.5)

• age distribution function Πn(t, x), denotes the joint probability of having n cus-
tomers in the systems at time t and an elapsed service time of less than or equal
to x

Πn(t, x) = Pr {N(t) = n, X(t) ≤ x} . (2.6)

• age density function πn(t, x), which is derived from the probability that n cus-
tomers are in the system and the elapsed service time is (x, x + ∆x), such that
πn(t, x)∆x can be interpreted as the probability that there are n customers in
the system and the elapsed service time is in a neighbourhood of x, i.e.

πn(t, x) = lim
∆x→0

Pr {N(t) = n, x < X(t) ≤ x + ∆x}
∆x

=
δ

δx
Πn(t, x), and (2.7)

• state frequency ϕn(t), which is defined as the rate of service completions in state
n at time t, and expressed as

ϕn(t) =
∫ xmax

0
πn(t, x)µ(x)dx. (2.8)

After the definitions of the set of necessary quantities, the system of transient state
equations is derived, which for this case consists of one ODE, two PDEs, one initial
condition, two boundary conditions, and two integrals. The steady-state equations
can be derived based on that. The analysis of the equations results in complicated
z-transforms and Laplace transforms, which in this case can be manually solved. The
analysis, however, results in a non-trivial problem when increasing the complexity of
the models (German 1998).

The proxel-based method can be seen as an algorithmic implementation of the method
of supplementary variables, avoiding completely the process of setting up and solving
differential equations.

2.1.3 Stochastic Petri Nets

Stochastic Petri nets (SPNs) are a powerful high-level formalism, used mainly for
describing and analysing discrete stochastic models, first proposed in their basic form
by Carl Adam Petri in 1962 (Petri 1962; Reisig 1985; Haas 2002). They are a visual
tool which provides a natural and intuitive representation of the user’s conceptual
model. In many cases it is a discrete-event system, meaning that the changes in the
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system occur at certain points in time as a consequence of the completion of certain
activities in the system. Activities in SPNs are associated with transitions, which can
either fire instantly, as soon as certain conditions become true, as is the case with
immediate transitions, or can be associated with probability distribution functions
which determine the firing delays, as with timed transitions. Besides by the transitions,
an SPN is defined by a finite number of places, a finite number of arcs and an initial
state referred to as the initial marking of the Petri net.

Stochastic Petri nets are a formalism that has gone through many changes and has
many variations (Puliafito et al. 1997), each of them introduced to overcome the limita-
tions of its predecessor with respect to the classes of models they can describe. In this
section we describe the class of Petri nets that is most relevant to the thesis and the
models to be analysed, which is a non-Markovian class of SPNs, i.e. allows for generally
(non-exponentially) distributed activities. The proxel-based method is, however, not
limited to models described by means of stochastic Petri nets. Models described using
this class of SPNs are used in Chapter 5 for describing our proxel-adapted modelling
framework.

Formally, the class of SPNs that is treated employed in this thesis can be described in
the following way:

SPN = (P, T,A, G, m0), (2.9)

where:

• P = {P1, P2, . . . , Pn} is the set of places, drawn as circles,

• T = {T1, T2, . . . , Tm} is the set of timed transitions along with their distribution
functions, drawn as bars

• A = AI ∪ AO ∪ AH is the set of arcs, where AO is the set of output arcs, AI is
the set of input arcs and AH is the set of inhibitor arcs and each of the arcs has
a multiplicity assigned to it,

• G = {g1, g2, . . . , gr} is the set of guard functions along with the transitions they
are associated to, and

• m0 is the initial marking of the Petri net.

Each transition is represented as Ti = (F,mp), where

mp ∈ {enabling, age, immediate}

is the type of memory policy if it is a timed transition or ”immediate” if the corre-
sponding transition is an immediate one. F is the cumulative distribution function
associated with the transition if the transition is a timed one. Immediate transitions
have a constant value instead of a distribution function assigned to them, which is
used for computing the probability of firing of an immediate transition if more than
one are enabled at once. The memory policy of a transition determines the behaviour
of the transition’s enabling time when it becomes disabled. It can either have age or
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2.1 Preliminaries

enabling memory policy , which specifies whether the time one timed transition was
enabled until another fired will be remembered, which is the case with age memory
policy, or reset, which is the case with enabling memory policy.

The sets of arcs are defined as

AO = {ao
1, a

o
2, . . . , a

o
k} , AI =

{
ai

1, a
i
2, . . . , a

i
j

}
, and AH =

{
ah

1 , ah
2 , . . . , ah

i

}
,

where AH , AO ⊆ P × T ×N,AI ⊆ T × P ×N.

Input arc is an arc that unidirectionally connects a place to a transition. Output arc,
on the other hand, connects a transition to a place. Inhibitor arcs connect places to
transitions and block the transitions when the number of tokens in the place is equal to
or greater than the multiplicity of the arc. We denote by the term incoming/outgoing
place places that are connected to the input/output arcs correspondingly.

We denote by M = {m0,m1,m2, . . .} the set of all reachable markings of the Petri net
and is referred to as a reachability set. Each marking is a vector made up of the number
of tokens in each place in the Petri net, mi = (|P1|, |P2|, . . . , |Pn|). We distinguish two
different kinds of markings, vanishing, if at least one immediate transition is enabled,
and tangible, if no immediate transitions are enabled. The set of all reachable markings
is the discrete state space of the Petri net. The changes from one marking to another are
consequences of the firing of enabled transitions which move (i.e. destroy and create)
tokens, creating the dynamics in the Petri net. This makes the firing of a transition
analogous to an event in a discrete-event system. The markings of a Petri net, viewed
as nodes, and the possibilities of movement from one to another, viewed as arcs, form
the reachability graph of the Petri net. We denote the subset of the reachability graph
that contains only the tangible markings by the term reduced reachability graph, which
is basically equivalent to the state-transition diagram that we use throughout the thesis
as a formalism for describing stochastic models, besides Petri nets.

A transition Ti is said to be enabled in a marking m if all of the following three
conditions hold:

1. the number of tokens in each of the incoming places of Ti is greater than or equal
to the multiplicity of the corresponding input arc,

2. the number of tokens in each of the places connected via inhibitor arcs to Ti is
less than the multiplicity of the corresponding inhibitor arc, and

3. each of the guard functions associated with Ti evaluates to false.

In Figure 2.2 an example of a firing of a transition is shown. Based on the conditions
for enabling a transition, T1 is enabled, which means it is allowed to fire. That basically
means that in each incoming place that many tokens are destroyed as the multiplicity
of the corresponding input arc is, and in the outgoing places that many tokens are
created as the multiplicities of the corresponding output arcs. After the firing, the
transition T1 is not enabled any more, as the first condition does not hold. In that
case, we refer to the transition as disabled.
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2 Preliminaries and Overview of Simulation Methods

Figure 2.2: Firing of a transition

The effects of firing of all transitions in a Petri net are described by a so-called incidence
matrix. The incidence matrix P×T → Z is the matrix whose rows correspond to places
and whose columns correspond to transitions. Column i denotes how the firing of Ti

affects the marking of the net, i.e. how many tokens are removed and created into each
place.

Following there is an example Petri net for demonstrating the described concepts.

Example Petri Net

Figure 2.3 illustrates one example Petri net for the purpose of demonstrating how the
Petri net formalism is used for modelling stochastic systems.

Figure 2.3: Example SPN of a repairable machine

The example is a model which is used further in the thesis for experimenting purposes
and it illustrates a system of a repairable machine which processes jobs that queue
in a stack with a capacity of two jobs. The meanings of each of the places and the
transitions in shown in Figure 2.3 on the right-hand side. The firing of the transition
T1 represents an arrival of a job on the stack, which is represented by the place P1.
The inhibitor arc from P1 to T1 with a multiplicity of two shows the capacity of the
stack. Transition T2 fires only when the machine is free, i.e. does not process a job,
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implemented by the inhibitor arc from P2 to T2. Places P3 and P4 model the two states
of the machine, operating and failed, correspondingly. When the machine is failed, it
cannot process jobs, therefore the transition T3 is inhibited in that case. It might be
expected, depending on the nature of the machine, that the transition T3 has an age
memory policy. This means that in case of a failure, the processing of a job does not
restart, but resumes from the interruption point.

The initial marking of the Petri net is m0 = (0, 0, 1, 0), meaning the system is empty
and the machine is in an operating state. The reachability set is the following:

M ={(0, 0, 1, 0), (1, 0, 1, 0), (0, 0, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1),
(1, 1, 1, 0), (0, 1, 0, 1), (2, 0, 1, 0), (2, 1, 1, 0), (1, 1, 0, 1), (2, 1, 0, 1)}.

The reachability graph is shown in Figure 2.4. Because of the enabled immediate
transition (T2, drawn with thicker lines) in markings (1,0,1,0), (1,0,0,1), and (2,0,1,0),
they are the vanishing ones in this Petri net and thereby encircled in dash-lined grey-
coloured boxes. They need to be removed in order to construct the reduced reachability
graph, which consists exclusively of tangible markings.

Figure 2.4: Reachability graph of the example SPN shown in Figure 2.3

The incidence matrix for the Petri net is:


T1 T2 T3 T4 T5

P1 1 −1 0 0 0
P2 0 1 −1 0 0
P3 0 0 0 −1 1
P4 1 −1 0 1 −1

.

Further, in Section 2.2 we review the existing methods, which can be employed for
analysing discrete stochastic models such as the one presented here in this section.
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2.2 Existing methods for Analysis of Discrete Stochastic
Models

In this section we provide a brief overview of the existing methods which are used for
simulation and analysis of generally distributed (non-Markovian) discrete stochastic
models. First we present the traditional methods: Discrete-Event Simulation and
Markov Chains, after which we look into the more recent approaches to that problem
area.

2.2.1 Discrete-Event Simulation

Discrete-event simulation (Law and Kelton 1999) is the most common way of simulating
discrete models. It is at the same time the most straight forward and intuitive approach.
The approach is based on a direct mimicking of the system’s behaviour (simulating it),
accomplished by describing every stochastic event by a random variable, and sampling
values from it for every corresponding activity. Once the behaviour of the system is
modelled in satisfactory way i.e. validated, it is then executed (i.e. replicated) many
times, each time using independent random numbers (L’Ecuyer 1990). Finally the
results of the relevant parameters (e.g. length of a queue) are delivered in form of
confidence intervals, which provide the ranges in which the values of the parameters
are with certain probabilities.

Discrete-event simulation works by storing a list of primary events, which is referred
to as future event list (FEL) (Banks et al. 1998). Primary events are those that are
triggered by time. The events that depend on some other conditions being fulfilled are
referred to as secondary or conditional events. Algorithm 2.1 illustrates how discrete-
event simulation works. The approach works by traversing the FEL and removing
primary events from it as soon as they are processed (line 2). Processing a primary
event means updating the state variables, which are the minimal and complete set
of variables that describes the system at every point in time (line 4), checking if any
new events are scheduled and inserting them in the FEL (line 5), and checking if any
secondary events are triggered by the change of the state variables (line 6). If there
are any secondary events that become enabled, they are processed immediately in the
same way as the primary ones (lines 7 and 8).

As already stated, results from performing discrete-event simulation are delivered in
form of confidence intervals for the wanted parameters, that is, the simulation run is
carried out many times, after which it is possible to state that with a certain prob-
ability p (usually p = 0.9 to p = 0.99) the mean value of the parameter is within
the stated confidence interval. The value α = 1 − p is referred to as the level of sig-
nificance, whereas p is denoted as a level of confidence. The width of the interval
becomes narrower with the increase of the number of independent simulation runs (i.e.
replications).

The biggest advantage of discrete-event simulation is that it is the only approach that
is able to simulate almost every model as long as there is a way to describe it. The
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Algorithm 2.1: Discrete-Event Simulation
while FEL not empty do1

Remove the first primary event E from FEL;2

begin3

Update state variables according to E;4

Insert new events in FEL according to E;5

if E enables a secondary event SE then6

Update state variables according to SE;7

Insert new events in FEL according to SE;8

end9

end10

end11

simulation itself is very straightforward and, as shown in Algorithm 2.1, very easy to
be programmed.

The problem with discrete-event simulation is that for certain types of models, such
as are models with big differences in rates of the events, a large number of replications
is required in order to achieve narrow confidence intervals i.e. a higher accuracy. The
second problem is the quality of the random-number generators, and it is definitely
not a trivial task to find or design one that is acceptable (Niederreiter 1992; Marsaglia
and Zaman 1990; Park and Miller 1988).

Compared to the other approaches, discrete-event simulation is developed for imitating
the system. Therefore the analysis is implicit and derived by monitoring the modelled
behaviour of the imitated system. That is unlike Markov chain analysis methods for
example, where the analysis is direct.

Further, in Section 6.6 we show a typical case where the discrete-event simulation can
become very expensive in computation time, and for which the proxel-based simulation
is significantly more efficient (rare-event models). There are, however, many cases for
which the discrete-event simulation succeeds and for which the memory requirements
of the proxel-based method are so high that they are not realistically feasible. Such an
example is shown in Section 7.3.

2.2.2 Markov Chains

Markov chains can be used for describing and analysing models which contain exclu-
sively exponentially distributed state changes (Kulkarni 1995; Çinlar 1975; Kolmogorov
1950; Stewart 1995). There are many processes for which this condition does not rep-
resent a limit, and that is where Markov chains find their application. They are one of
the most popular tools for modelling and analysing stochastic systems, which possesses
both simplicity and the ability to model various classes of stochastic systems.
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Depending on the character of the time (i.e. parameter) domain, there are two types
of Markov chains: discrete-time Markov chains (DTMCs) and continuous-time Markov
chains (CTMCs). They both characterise stochastic processes where transitions to the
next state depend only on the current state, completely irrelevant of the history of
the processes. This property is known as the Markov property, and is named after the
Russian mathematician A.A. Markov who in the early 1900’s systematically studied
discrete-time stochastic processes satisfying this property. The Markov property is also
known as ”memorylessness”, and is formally described as follows:

Pr {X(s + t) = j|X(s) = i,X(p) = k, 0 ≤ p < s} = (2.10)
Pr {X(s + t) = j|X(s) = i}

where {X(t) : t ≥ 0} is a stochastic process, i, j, k ∈ S (S is the state space), and
s, t ≥ 0. The class of stochastic models that satisfy the Markov property is referred to
as Markovian models.

For processes that do not satisfy the Markov property (non-Markovian), there are
fitting algorithms which convert the non-exponential distribution functions into Markov
chains, resulting into the so-called phase-type distribution functions, which can be both
discrete and continuous, as described further in Section 2.2.3. The biggest disadvantage
of both approaches is the expensiveness to accurately fit finite support distributions,
such as Uniform or Deterministic, as stated in (Isensee and Horton 2005a).

In the following we describe the two types of Markov chains, DTMCs and CTMCs in
detail.

Discrete-Time Markov Chains

A DTMC is defined by its transition probability matrix P = [pij ], i, j ∈ S, i.e.

P =


p00 p01 · · · p0j · · ·
p10 p11 · · · p1j · · ·
...

... · · ·
... · · ·

pi0 pi1 · · · pij · · ·
...

... · · ·
... · · ·

 , (2.11)

where

pij = Pr {Xk+1 = j|Xk = i} , k ≥ 0 (2.12)

define the conditional probabilities for the one-step state changes, and its initial state
probability vector π0. Very often, the time that the model spends in each of the states in
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a DTMC has no importance, and therefore the sequence of states from one observation
might not have the notion of time at all. Instead, each of the state occupancies in the
sequence can be referred to as a step, and not necessarily a time step. Each of the
steps can, however, have a certain length of time associated with it (∆t), referred to
as time step of the DTMC.

A DTMC is said to be time homogeneous if

Pr{Xk+1 = j | Xk = i} = Pr{Xm+k+1 = j | Xm+k = i}, (2.13)
n = 0, 1, 2, ..., m ≥ 0, i, j ∈ S.

Throughout the thesis whenever we talk about DTMCs we consider time-homogeneous
DTMCs.

The basic approach to solving DTMCs is the so-called power method, which works in
an iterative manner, computing the following equation

πk = πk−1P, (2.14)

where πk is the state occupancy probability row-vector at the k-th time step. This
method computes the transient solution, but also the steady-state one, implicitly by
iterating longer. The latter one can be computed only under the condition that it
exists, depending on the model. If that is the case, then it is said that the model has
a limiting behaviour and the steady-state solution is

π = lim
k→∞

πk.

All row-vectors x = [xi] that satisfy the equations

xP = x and
∑

i∈S xi = 1

are said to be stationary solutions of the DTMC. One DTMC can have infinitely
many stationary solutions, and at the same time no steady-state one. In addition, the
underlying stochastic process of the proxel-based method is a discrete-time Markov
chain, as described in Section 3.1.4.

Continuous-Time Markov Chains

CTMCs, opposed to DTMCs, are characterised by a transition rate (or generator)
matrix Q, which instead of probabilities, stores rates of the possible state changes qij ≥
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0, i, j ∈ S, S is the state space, under the assumption that they are all exponentially
distributed, in fulfilment of the memorylessness requirement, i.e.

Q =


q00 q01 · · · q0j · · ·
q10 q11 · · · q1j · · ·
...

... · · ·
... · · ·

qi0 qi1 · · · qij · · ·
...

... · · ·
... · · ·

 . (2.15)

The diagonal elements are chosen to ensure that the sum of the elements in every row
is zero, i.e.

qii = −
∑

i,j∈S,j 6=i

qij .

The mean time that the model spends in each state within one visit is known as sojourn
time. It is exponentially distributed and can be computed as

E [sojourn time in state i] = −q−1
ii . (2.16)

The steady-state probability vector π for a CTMC is obtained as a solution to the
following equations:

π ×Q = 0 and
∑
i∈S

πi = 1,

where the second equation is the normalisation condition, and πi are the steady-state
probabilities for the different states of the CTMC and which system of equations
provides a unique solution when existing. These equations come as a result of the
so-called balance equations which basically state that the probability of entering a
state is the same as the probability of leaving it.

The transient solution of a CTMC is obtained by solving the following Kolmogorov
system of differential equations:

dπ(t)
dt

= π(t)×Q,

whose solution has the following closed form:

π(t) = π(0)× eQt.

Every CTMC can be embedded into a DTMC by defining small enough time step ∆t
that would be able to capture the rates of the state changes, which basically means
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that 0 < ∆t ≤ mini

{
|q−1

ii |
}
. The probability matrix P of the embedded DTMC is

then constructed as

P = I + ∆t×Q. (2.17)

This conversion is known as uniformisation or Jensen’s method (Jensen 1953; Grassman
1990) and yields a numerical method for obtaining the transient probabilities. Also,
a set of iterative methods is developed for obtaining the steady-state solution, such
as Gauss-Seidel or SOR (Successive Overrelaxation), as presented and elaborated in
(Stewart 1995). The iterative methods take advantage of the common property of
generator matrices i.e. sparseness.

2.2.3 Modern Approaches and Tools

The class of Petri nets that contains only exponentially distributed and immediate
transitions is referred to as generalised SPNs (Kartson et al. 1994; Marsan et al. 1984,
1998), and is one of the early forms of Petri nets. It is easily convertible to Markov
chains2, and thereby analysable by the numerical methods for solving Markov chains
(Stewart 1995).

However, over the years there have been many extensions to the initial idea of gen-
eralised SPNs, all trying to overcome the limitations of having only exponentially
distributed transitions. There are, namely, many processes in the real world that can
not be classified as ”memoryless”, some of them even having activities with determin-
istic duration, or at least with small variances. Accordingly, there has been a series
of approaches that aimed at analysing the class of so-called non-Markovian stochastic
Petri nets (Trivedi et al. 1995; German 2002). We refer to the SPNs that allow other
distributions in the models besides exponential as non-Markovian SPNs.

The analytical analysis methods for non-Markovian models can be classified as based
on one of the following three approaches (Puliafito et al. 1997):

• Markov renewal theory (Choi et al. 1994),

• method of supplementary variables (Cox 1955a; German 2000b), and

• phase-type approximations (Neuts 1981; Bobbio et al. 2002; O’Cinneide 1999;
Bobbio et al. 2000).

The method of supplementary variables is discussed in Section 2.1.2, therefore, in the
following we briefly review the other two paradigms, and discuss some of the tools that
implement them. The common property, however, for all three approaches is that they
all ultimately construct a Markov process from a non-Markovian one.

2The reduced reachability graph of a GSPN is the state-space of the underlying CTMC.
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Markov Renewal Theory

After in (Choi et al. 1994) it was shown that the class of SPNs where at most one
non-exponential transition with enabling memory policy was enabled in each marking,
belonged to the class of Markov Regenerative Processes (MRGPs), the Markov renewal
theory became applicable for the analytical solutions of that class of SPNs, named as
Markov regenerative SPNs. That lead to an active research for different approaches,
as presented in (Telek et al. 1995; German et al. 1995a; German and Mitzlaff 1995;
Horvath et al. 2000; Telek and Horvath 2001; Fricks et al. 1998) and implemented in
tools, such as TimeNET(German et al. 1995a) and WebSPN (Bobbio et al. 1997).

According to the Markov renewal theory the stochastic process is considered at discrete
points in time, referred to as regeneration points. At these points, the Markov property
is valid for the stochastic process, i.e. the process probabilistically resets and goes into
a state where the history is irrelevant. Formally, Markov regenerative processes are
defined as follows:

Definition 2.1 – Markov regenerative process (MRGP). Z(t) is a Markov re-
generative process (MRGP) if there exists a Markov renewal sequence {Xn, Tn;n ≥ 0}
that

Pr{Z(Tn + t1) = x1, . . . ,Z(Tn + tm) = xm|Z(Tn), Z(u), 0 ≤ u ≤ Tn} =
Pr{Z(Tn + t1) = x1, . . . , Z(Tn + tm) = xm|Z(Tn)}

for all m ≥ 1, 0 < t1 < . . . < tm and x1, . . . , xm ∈ S.

In other words, Z(t) is a MRGP if there exists a Markov renewal sequence
{Xn, Tn;n ≥ 0} of random variables such that all the finite dimensional distribu-
tions of {Z(Tn + t); t ≥ 0} given {Z(u); 0 ≤ u < Tn, Xn = i} are the same as those
of {Z(t); t ≥ 0} given X0 = i.

An example of a Markov regenerative process is a queuing system with one server,
where the arrivals are exponentially distributed and the service times follow a general
distribution function. The regeneration points for that stochastic process are the points
in time that stand for service completion. At those points the probabilities for the pos-
sible events happening, i.e. customer arrival and service completion, are independent
of the history. Therefore the sequence of the points in time that indicate service com-
pletion forms a Markov renewal sequence. Consequently the stochastic process is a
Markov regenerative process.

It is interesting that both Markov renewal processes and the method of supplementary
variables ultimately develop into same system of state equations, which yields the same
analysis algorithm when solving for the steady-state behaviour, as pointed at (German
2000b). Hence both approaches, when solved analytically, have a limitation on the
number of concurrently active non-exponential activities, which if neglected can result
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in multi-dimensional differential equations which are hard to solve. There is, however,
a difference in the way the algorithm is formulated, which when based on the Markov
renewal theory, can also be solved in an iterative fashion, as shown in (German 2000a).
Therefore the MRGP approach is more suitable for more complex models.

The biggest limitation of the application of the Markov renewal theory is that it can
only be applied to processes classified as MRGPs, which means processes that contain
points in time at which they restart probabilistically. The proxel-based method does
not impose this requirement on models, and regarding the applicability, it is more
general than the approaches based on Markov renewal theory.

Phase-Type Approximations

Phase-type distributions were initially described by Neuts in (Neuts 1981), and appear
in general in two forms: discrete (Ciardo 1995; Isensee and Horton 2005a) and contin-
uous (Bobbio et al. 2002). For both of them it is characteristic that they substitute
generally distributed activities described by continuous distributions by finite and ab-
sorbing Markov chains, where the number of phases is the number of transient states
of the associated Markov chain, and denotes the order of the phase-type approxima-
tion. The approximated phase-type distribution then describes random variables that
are measured by the time that the Markov chain spends in its transient portion till
absorption. The approximation is performed in different ways, some of the approaches
work by solving a system of equations, as shown in (Osogami and Harchol-Balter 2003),
and others by fittings using different optimisation algorithms, as shown in (Isensee and
Horton 2005a; Bobbio et al. 2002).

Although not limited in their structure, there are a couple of phase-type distribution
functions which are most common and popular. Some of the continuous ones are Erlang
(Erlang 1917) and Coxian (Cox 1955b), as shown in Figure 2.5 in their three-phase
form for the case of approximating a general distribution which describes the state
change from state A to state B. The initial probabilities for the CTMC are denoted by
pi, whereas λ and λi refer to the transition rates.

Figure 2.5: Examples of continuous phase-type distributions
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In Figure 2.6 a minimal structure of discrete phase-type distributions is shown, referred
to as a canonical form. The initial probabilities for the DTMC are denoted by pi,
whereas qi and 1 − qi refer to the transition probabilities. In (Bobbio et al. 2000) it
has been proven that the canonical form is a minimal one and all other acyclic forms3

can be reduced to a canonical of the same order.

Figure 2.6: Canonical form of discrete phase-type distributions

The term state in the case of phase-type approximation refers to the combination of the
discrete state and the phase, i.e. (DS, φ). The state space of the model is thus extended,
and depending on the type of distribution functions that are being approximated, it
can become quite complex, as is the case with uniform and deterministic distributions.
The reason for this is that those distributions require a large number of phases for
computing an acceptably accurate approximation.

In conclusion, phase-type approximation, being another approach for generating
Markovian models from non-Markovian, can be seen as an attractive choice for perform-
ing numerical analysis of discrete stochastic models, thereby using the standard Markov
chain solution methods. However, because of the enlargement of the state space due
to the addition of phases, the method suffers from the well-known state-space explo-
sion problem and distributions with finite support (such as uniform or deterministic)
are badly approximated by the phase-type distributions. One solution to that prob-
lem is the combination of discrete phases-type approximation and proxels, which is
explained in Section 4.2.2. Namely, the proxel-based method approximates very well
distribution functions which are problematic for the phases, and discrete phase-type
approximations approximate well distributions which are problematic for the proxels
regarding the computational complexity.

Tools: TimeNET, Möbius

There are not many tools that provide numerical analysis of non-Markovian models.
We choose to look at two of them, which we think deserved our attention: TimeNET
and Möbius.

TimeNET (German et al. 1995a) is a tool developed for modelling and analysis of
stochastic Petri nets with non-exponentially distributed firing times, mainly developed

3Definition - A discrete phase-type approximation is called acyclic discrete phase-type approximation
if its states can be ordered in such a way that the stochastic matrix of the underlying DTMC is an
upper triangular matrix. (Horváth 2003)
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for performability modelling. It is developed and maintained by the performance eval-
uation group of the Computer Science Department at Technische Universität Berlin.

The type of analysis that TimeNET provides depends basically on the class of Petri net
being analysed, i.e. its complexity. It computes numerical solutions, performs discrete-
event simulation and phase-type approximations of general distribution functions, as
well as structural analysis of the Petri net.

The disadvantage of the numerical analysis that TimeNET provides is that the analysis
algorithms require that all transitions with non-exponentially distributed firing delays
are mutually exclusive. If that is not the case, then the tool chooses discrete-event
simulation as an analysis method, which can require long running times for sufficient
accuracy (Zimmermann et al. 2000).

Some of the latest extensions allow the tool to model coloured stochastic Petri nets
and carry out performability evaluation of stochastic Petri net models with non-
exponentially distributed firing times, with a special emphasis on of manufacturing
systems. Another novelty is the possibility of analysing models with a discrete time
scale, which means that their underlying stochastic processes are Markovian if geomet-
rically distributed firing delays are used. The geometric distribution is analogous to
the exponential in the continuous-time case, and the tool allows switching between the
two modes.

Möbius (Deavours et al. 2002) represents a multi-formalism software tool which resulted
as a work of a complex project in which people from different universities took part.
The tool tries to incorporate many of the established modelling and analysis methods
to provide flexibility for the users, in order to avoid the case where everyone needs to
spend a reasonable amount of time learning a new modelling formalism in order to
analyse models. The modelling formalisms that it unifies are: stochastic extensions
to Petri nets, Markov chains and extensions, and stochastic process algebras, and as
analysis methods it offers discrete-event simulation and numerical solution techniques.
The reason for providing this multi-formalism tool is the belief that one modelling or
analysis method is not sufficient for studying the behaviour of the different types of
complex systems that exist today which are mixture of many domains (Sanders et al.
2003).

Besides these two more advanced tools, there are only a few that implement determin-
istic or numerical approaches towards solving and analysing discrete stochastic models,
mostly because of the limitations that the numerical approaches have with respect to
the classes of analysable models. Discrete-event simulation is still the method of choice
when it comes to analysing more complex models as it simply reproduces their behav-
iour and has no difficulties with that respect. The problem is then the accuracy of the
solutions that it provides and the computationally expensive replications. Therefore,
there is a need for deterministic and widely applicable method, for which we believe
that the proxel based method is a good candidate, as will be explained in the next
sections.
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2.3 Summary

This chapter presents an overview of the basic concepts, terminology, and related
work regarding the problems that we address in this dissertation. It defines what a
discrete-stochastic model is and describes the main idea of the method of supplemen-
tary variables as a basis for the design of the proxel-based method. Finally, it provides
a review of the most relevant and frequently-used methods for simulation and analysis
of discrete stochastic models.
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3 The Proxel-Based Method

This chapter provides an introduction to the proxel-based method along with defi-
nitions of the basic elements used for its description, and together with Chapter 2
defines the terminology used throughout the thesis. In Section 3.1, the foundations
of the proxel-based method are established, after which in Section 3.2 its accuracy
is discussed. Furthermore, in Section 3.3, additional algorithms are presented which
describe two preprocessing steps which aid the implementation and the ease of use of
the proxel-based method. Finally, in Section 3.4, the programming aspects and the
complexity of the approach are discussed.

3.1 Foundations of the Proxel-Based Method

The goal of this section is to introduce the proxel-based method and establish its
formal foundations. The proxel-based method is a new approach to analysing discrete
stochastic models in a deterministic way. We believe that it is intuitive and easy to
understand because it traces all of the possible developments in one model in a natural
way. Thereby the probability is correspondingly distributed, weighting all possible
paths that the model can take.

In general every simulation consists of three steps even though for some approaches
some of the steps are merged: creating the user model, developing the computational
model based on it, and finally solving the computational model using a certain solution
algorithm. This process is illustrated in Figure 3.1. The PDE-based approaches contain
all three steps, e.g. if the user model is described using a Petri net, the computational
model is developed from the Petri net and results in a system of PDEs, which are
then solved using a numerical method for solving PDEs. In the case of discrete-event
simulation all three steps are merged and based on the description of the user model
because DES solves one model by reproducing and observing its behaviour.

In the case of the proxel-based method, the user model yields directly the solution
algorithm, without constructing a computational model, so the last two phases are
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merged. This is a very advantageous feature of the method, which makes it very
flexible in analysing different classes of discrete stochastic models.

Figure 3.1: Comparison of simulation approaches

One advantage of the fact that the proxel-based method operates directly on the model
is that it builds the state space on-the-fly (Deavours and Sanders 1998), ensuring that
non-zero probabilities are assigned only to the truly reachable states, which are the
only ones that are being stored. This yields a more rational memory use.

The proxel-based method belongs also to the class of methods that convert non-
Markovian stochastic processes into Markovian ones, which the method achieves in
a very intuitive manner deriving the solution algorithm directly from the description
of the model. The proxel-based method does not involve setting up and solving partial
differential equations (unlike the original implementation of the method of supplemen-
tary variables does (Cox 1955a; German 1998)) or approximating distribution functions
by fitting (unlike phase-type approximations (Bobbio et al. 2002; Isensee and Horton
2005a)).

Because of the above described nature and features, the proxel-based method is very
flexible and able to analyse a wide class of stochastic models. The approach, however,
suffers from the well-known problem of state-space explosion, and that is its only real
limitation until now.

In this section we provide a description of the method, along with an example, as well
as definitions and algorithms that specify the proxel-based method.

3.1.1 Description

Proxel-based method is a numerical approach for analysing discrete stochastic models
which implements the method of supplementary variables in a way that the partial
differential equations are completely avoided, by tracking the flow of probability corre-
spondingly to the behaviour of the model. This is achieved by employing the instanta-
neous rate function (defined in Section 2.1.1) which determines the rate with which one
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event can happen based on the time that the event was scheduled and able to happen,
where the meaning of “able” is all preconditions for its happening are satisfied.

An initial step to every proxel-based simulation is the determination of the size of
the time discretisation step ∆t. This should be arranged in coordination with the
specifications of the distribution functions involved in the model, in a way that the
size of the time step is small enough to capture the rates of all possible state changes.
It is also a factor that determines the accuracy of each simulation. More on this subject
is discussed in Section 3.3.1, which provides more insight into the way of determining
an acceptable size of the time step and generalises a heuristics that we use for that
purpose.

Proxel, which as a term is constructed as an analogy of the well-known pixel is an
abbreviation of the phrase ”probability element”. It is the central computation unit of
the proxel-based method and it describes every probabilistic configuration of the model
in a minimal and complete way. This means that each proxel carries adequate amount
of information for generating its successor proxels, or in other words for determining
probabilistically how the model could behave from there on. This is the fact that turns
a non-Markovian model into a Markovian one. The information that is found to be
necessary and each proxel contains, is the following:

• discrete state that the model is in, which corresponds to the notion of ”tangible
marking” in Petri net terminology,

• age intensities of the possible (i.e. active) state changes in the current discrete
state, which track the time that each of the possible state changes has been
pending; they are necessary for determining the probabilities for each of the
state changes happening,

• global simulation time, which describes the absolute time coordinate from the
beginning of the simulation,

• route(s), which describes the sequence(s) of states via which the model has
reached the current state contained in the proxel, and

• probability that the system is in the current discrete state having the actual age
intensities and having been reached via the sequence of states declared in the
route.

The formal definitions of the elements of the proxel are provided in Section 3.1.2.

We define the term state as a vector composed of a discrete state of the model and the
age intensities of the possible (i.e. active) state changes.

Represented in a formal way, each proxels has the following format:

Proxel = (State, T ime, Route, Probability), where
State = (Discrete State,Age Intensity V ector),
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and the Age Intensity Vector stores the age intensities of all relevant state changes.

As proxels store the necessary information for describing any probabilistic configuration
of the model, the initial proxel that describes the initial configuration of the model at
time t = 0 has the following form:

Initial Proxel = (Initial State, 0,�, 1.0), where
Initial State = (Initial Discrete State,~0).

The symbol � denotes an empty route, which means that the model has no history
yet. Once the initial proxel is generated, the simulator generates its successors based
on the possible state changes and accordingly updates the age intensity vector and
calculates its probabilities. In the proxels which represent different discrete state from
the initial one, the appropriate age intensity (i.e. the one of the corresponding state
change) is reset to zero, or becomes irrelevant. The latter situation corresponds to the
state change being not represented in the age intensity vector. The age intensities of
the possible (active) state changes in the proxel that represents the model staying in
the initial discrete state in the next time step, are incremented by the size of the time
step ∆t, meaning that those state changes have now been pending for a time period
of ∆t. In this case the possible state changes are aging which usually increases the
probability with which they might happen.

Once the second generation of proxels has been computed, the first one can be thrown
away. The completeness of the information in the proxels supports this step. The next
(i.e. third) generation is computed in the same way as the second one, except that
the process of generating successors is now performed for more than one proxel. This
procedure is carried out repeatedly until the predetermined end of the simulation time
is reached. The structure that represents the generations of proxels as well as their
relations in terms of successors and predecessors is referred to as a proxel tree.

During the computation of each generation of proxels, many proxels may occur that
represent the same state. In the case where such proxel is generated, however not
for the first time, it is not stored as new proxel, but instead the definition of the
existing one is extended and updated. Its route parameter is now extended to the
union of all routes, generated until the current point in time, that lead to that state;
correspondingly its probability element is set to the sum of the state-matching proxels’
probabilities. The proxels that have null or negligible probabilities are not stored. This
leads to the conclusion that usually at some stage the width of the proxel tree reaches
its maximum. This is so because most of the distribution functions have limited range
of non-negligible values, i.e. if a state change is distributed according to a function
other than exponential, usually it has a limited time within which it can happen
with a non-negligible probability. The limit in the proxel-based method is determined
dynamically which we believe is an essential advantage of the approach compared to
the Markov chains-based approaches.
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Example

We use a very simple example, as shown in Figure 3.2, to demonstrate how the proxel-
based method works. The model is described using a simple state-transition diagram
which allows generally distributed state changes. It is a two-state model which has two
possible state changes that switch between the two discrete states, A and B.

Figure 3.2: Example state diagram

Let A be the initial discrete state of this simple model and ∆t the size of the time step.
There is at most one age intensity that needs to be tracked in each discrete state, and
correspondingly in each proxel. In A it is the age intensity of the state change from A
to B, distributed according to the distribution function FAB, and in B it is the one of
the state change from B to A distributed according to FBA. The initial proxel for this
model is the following:

((A, 0), 0,�, 1.0)

meaning that the model is in state A with age intensity of the state change from A to
B equal to zero, at time t = 0 with a probability of 1.0, having no historical route of
previously visited states (�).

In the next time step, at t = ∆t, the model can either be still residing in the discrete
state A or have changed to the discrete state B, in which case the age intensity variable
is reset and now it tracks the age intensity of the state change from B to A. The proxels
that are thereby generated are the following:

((A,∆t),∆t, ((A, 0)), 1.0− probability) and ((B, 0),∆t, ((A, 0)), probability).

The first proxel denotes staying in discrete state A, whereas the second one a change
to the discrete state B. The probability is approximated by the instantaneous rate
function µ(τ), integrated along the time step, where τ is the age intensity of the active
state change i.e.

probability =
∫ ∆t

0
µ(x)dx,

which we approximate for our example by:

probability = µ(0)×∆t, (3.1)
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which in this case we interpret as the probability that the state change has happened
within the interval [0,∆t). The instantaneous rate function is computed from the
distribution functions (CDF and PDF) using Equation (2.3) provided in Section 2.1.1.
We also use more advanced approaches for integrating the IRF, which provide better
approximation of the probabilities, as described in Section 3.2.

Now, let us observe the two generated proxels and compute their successors at time
t = 2∆t. From the first one, ((A,∆t),∆t, ((A, 0)), 1.0− probability), the following two
can be computed:

((A, 2∆t), 2∆t, ((A, 0), (A,∆t)), ∗) and ((B, 0), 2∆t, ((A, 0), (A,∆t)), ∗),

which again means that the model can stay in the discrete state A or have changed to
B.

The second proxel from the second generation, ((B, 0),∆t, ((A, 0)), probability), anal-
ogously determines its successors as follows:

((A, 0), 2∆t, ((A, 0), (B, 0)), ∗) and ((B,∆t), 2∆t, ((A, 0), (B, 0)), ∗).

The probabilities are omitted for reasons of simplicity. They can, however, be com-
puted in the same manner as previously, using the IRF, relying only on the age inten-
sities included in the proxels. The only difference is that this time they have to be
multiplied by the parent-proxels’ probability values because those are the amounts of
probabilities that are available and being distributed.

The tree that describes the proxel generation process is referred to as a proxel tree, and
for this simple example up to time t = 2∆t is shown in Figure 3.3.

Figure 3.3: The proxel tree of the first three time steps for the example model from Figure 3.2

In the whole proxel-generation process we make one very important assumption in our
approach. That is, we suppose that the model does at most one state change within a
time period of ∆t. The assumption is ultimately justified when ∆t → 0, which means
that the smaller the time step, the higher accuracy can be achieved. The assumption,
however, needs to be acknowledged, and is commented and elaborated in Section 3.2,
which discusses the accuracy of the proxel-based method.
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3.1.2 Definitions

In this section we provide definitions for all key concepts and elements that are relevant
for the proxel-based simulation. We begin by describing the most basic terms, some of
which have been already informally described and used in the previous Section 3.1.1.

Definition 3.1 – Discretisation time step. Discretisation time step is the time
step at which the proxel-based simulation advances, under the assumption that the
probability of more than one state changes happening within one time step is negligible.

Definition 3.2 – Discrete state. A discrete state of a model is a configuration of
the model in which the elapsed amounts of time of the active state changes are ignored.
It is analogous to the concept of ”tangible marking” in Petri nets.

Definition 3.3 – State change. A state change in a model is a change of the con-
figuration of the model, defined by the discrete state. A state change happens when an
event occurs. Analogously to the Petri net formalism (elaborated in Section 2.1.3), we
allow two types of state changes according to their memory policy: age and enabling.

Definition 3.4 – Active state change in a discrete state. An active state change
in a discrete state of a model is a state change which can (i.e. is able to) take place in
the actual discrete state. (Example: In a queuing system, a customer cannot leave the
service if the server is not occupied, which means that in a discrete state in which the
server is empty, the state change ”service completion” is not active)

Definition 3.5 – Age intensity. Age intensity of a state change is the amount of
time that the state change has been active without it actually happening.

There are, however, sometimes more than one active state changes (or ones with age
memory policy) whose age intensities need to be separately tracked in the proxels.
Therefore the age intensity definition extends to an age intensity vector. The age
intensity vector has a corresponding mapping vector, which shows which state changes
are associated with which components in the vector.

Definition 3.6 – Age intensity vector. Age intensity vector of a discrete state is
the vector of the age intensities of all active and age-memory state changes in one
discrete state.

Definition 3.7 – Mapping of an age intensity vector. Mapping of an age intensity
vector is a vector characteristic for each discrete state, which shows the association of
the active and age-memory state changes to the components of the age intensity vector,
when the model resides in that discrete state.

Definition 3.8 – State. A state is a combination of a discrete state and its age
intensity vector.

Definition 3.9 – Route. A route is a sequence of states through which a model has
passed before arriving in the state described by the proxel.
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Definition 3.10 – Proxel (1). A proxel is a probability computation unit, made up
of the following elements: a state, a global simulation time, a route(s) of states, and a
probability for being in the given state at the stated point in time referred to as a global
simulation time, given that the model has arrived there via the sequence(s) of states
given by the route(s).

The proxel-based method advances by distributing the initial probability of 1.0 for
being in the initial state among all of the subsequent states of the model. Proxels
are the computational units that store, keep track of, and characterise the flow of
probability from one state to another. This means that the proxel-based simulation
repeatedly generates from each proxel the set of successive proxels, until the end of
the simulation time is reached. In this manner, a tree structure of proxels is created,
which is referred to as the ”proxel tree”. The proxel tree is actually the state space of
the model in terms of proxels, which enjoys the Markov property1 if the arcs are to
labelled by the probabilities for the state changes computed from the IRFs.

Definition 3.11 – Proxel tree. Proxel tree is a tree-like data structure that represents
the hierarchical state space of the model, having proxels as its nodes.

As explained in the previous Section 3.1.1, during the process of generating the proxel
tree, at any time step, one same state S may be generated many times, each time
via a different sequence of predecessor states, i.e. a different route R. In order to
obtain the total probability for that state and to optimise the storage of the proxels,
the probabilities of all of that state’s instances are summed up and a new proxel Px
that represents the state is generated. This proxel is stored as a representative of the
corresponding state S and its route parameter is extended to the union of all routes
Ri that lead to that state at the current discrete time step. This can be formally
represented in the following way:

Px = (S, t,
⋃

i:Ri
t/∆t→ S

Ri, P r(model in state S at time t)), (3.2)

where

Pr(model in state S at time t)

=
∑

i:Ri
t/∆t→ S

Pr(model in state S at time t|S reached via Ri), (3.3)

and R
n→ S means ”route R leads to state S in n steps”.

1memorylessness
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The formal representation of the transient probabilities of the discrete states at different
points in time, as well as the calculation of proxels’ probabilities in the next discrete
time step based on the current one are the following:

Pr(model in discrete state DS at time t)

=
∑

~τ :Sk=(DS,~τ)

Pr(model in state Sk at time t), (3.4)

where

Pr(model in state Sk at time t)

=
∑

i,j:Rj
t/∆t−1→ Si

Pr(model in Si at time t−∆t)× µik(τik)×∆t, t ≥ ∆t (3.5)

where τik is the age intensity of the state change that caused the transition from Si to
Sk, and µik() - the corresponding IRF. ∆t is the size of the discretisation time step.

3.1.3 Basic Algorithm

Once we have defined all terms involved in the definition of the proxel-based method,
in this section we present the basic algorithm of the proxel-based method. It op-
erates on a standard state-transition diagram, which consists exclusively of discrete
states, i.e. tangible markings, and allows generally distributed state changes. Every
bounded SPN model can be reduced to this discrete state-space representation. It
is an analogy of a reduced reachability graph. The proxel-based method itself is not
limited to analysing models that have finite state-spaces because the method builds
the state space dynamically2. The Algorithm 3.1 that we present here is the basic
algorithm, and it is extensible for analysis of different and more complicated classes of
models. It has several variations for analysing, for example, models described using our
proxel-adapted modelling framework, which allows modelling of a more general class
of discrete stochastic models (Chapter 5), or performability models (Section 6.1). The
proxel structure with which this algorithm operates is simplified to contain only the
discrete state, the age intensity vector and the proxel’s probability. The route and the
global simulation time parameters are implicitly considered, and therefore not stored
in the proxels.

The meanings of the functions and symbols used in the Algorithm 3.1 are the follow-
ing:

2Analysing unbounded models and a wider class of stochastic models is made possible using the proxel-
adapted modelling framework which is presented in Chapter 5. There we present an extended proxel
algorithm which can analyse a wider class of models.
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Algorithm 3.1: Basic Proxel Algorithm (1)
Input: ∆t, tmax

Initialize proxel set PS(0) by inserting the initial proxel;1

switch = 0;2

for i=1 to [tmax/∆t] do3

foreach proxel p = ((DS,~τ), prob) in the proxel set PS(switch) do4

foreach active state change Ci in DS do5

Get x as the mapping index of Ci in ~τ ;6

Compute succ(~τ) = ~τ × Ix;7

Compute succ(DS) as a successor discrete state of DS, resulting8

from the state change Ci;
Generate new state S = (succ(DS), succ(~τ));9

Compute probability probcalculated = IRF (Ci, τx)×∆t for the state10

change Ci;
Search for the state S in the states of the set of generated proxels;11

if proxelfound is the found proxel then12

proxelfound = (S, (prob(proxelfound) + probcalculated));13

else14

Generate new proxel pnew = (S, probcalculated);15

Store pnew in PS(1− switch);16

end17

probrest = prob− probcalculated;18

end19

Generate new proxel pnew = ((DS, succstay(~τ)), probrest);20

Remove the processed proxel p from PS(switch);21

end22

switch = 1− switch23

end24

• ∆t - size of the discretisation time step,

• tmax - maximum simulation time,

• DS - discrete state,

• ~τ - age intensity vector,

• prob - probability value of the proxel being processed,

• IRF (C, a) - the value of the instantaneous rate function for the random variable
that describes the state change C and its age intensity a,

• τx - x-th component of the age intensity vector ~τ ,

• succ(~τ) - the updated age intensity vector, and

• Ix - an identity matrix which has a zero on the place of the (x, x)-th element.
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The proxel-based method operates by switching between two data structures which
store proxels from two consequent time steps. In the algorithm, this is realised by
switching between the two proxel sets, PS(0) and PS(1), through the variable switch
(line 23), where one set is the source from which proxels are removed and processed
and the other one (of the successive time step) is the storage for the successors of the
processed proxels. In the beginning, the initial proxel set (PS(0)) contains only one
proxel, which corresponds to the initial discrete state of the model (line 1). The algo-
rithm shows how every proxel from the current tree (PS(switch)) is being processed
and removed (lines 4 and 21). The processing means computing its successor proxels
(lines 5-20), thereby checking for each of them whether a proxel which represents the
same state already exists (line 11). If the answer is positive, then no new proxel is
created, but the computed probability is added to the one of the existing proxel (lines
12 and 13). If that is not the case, then a new proxel is generated and stored into
the proxel tree of the next time step (PS(1 − switch)), as shown in lines 15 and 16.
The computation of the proxel that represents the model staying in the same discrete
state and its probability (which is the leftover of the parent-proxel’s probability, after
the probabilities for the state changes have been subtracted) are shown in lines 18 and
20.

The mapping of the age intensity vector shows how the active state changes, as well as
those that have age memory policy are mapped to the age intensity vector ~τ . Therefore,
its updating means preserving the values of the age intensities of the age memory state-
changes and of the ones that did not cause the state transition, and setting the age
intensity of the state change that has actually happened to zero. This is realised by
the multiplication of ~τ by Ix in line 7.

The algorithm presented in this section represents just the basic proxel-based approach.
Further, in Section 3.3, supplementary algorithms are shown, which aid and support
the proxel-based algorithm and the process of choosing parameters.

3.1.4 Characterisation of the Underlying Markov Chain

The proxel-based method belongs to the class of approaches that reduce non-Markovian
models to Markovian ones because it extends the state definition to the point that it
completely determines the probabilities for the possible state changes. In this subsec-
tion we show the details of the reduction process that the proxel-based method per-
forms, by constructing and discussing the characterisation of the underlying discrete-
time Markov chain. In order to do that, we define a time step of size ∆t and we
assume that it is so small that the probability that more than one state change within
∆t occurs is negligible. Recall that the state S = (DS,~τ) is defined by a discrete state
DS and a vector of age intensities ~τ . For two states Si and Sj , where Si is defined
at discrete time step k and Sj is defined at discrete time step k + 1, we compute the
probability pij for the state change from Si to Sj is approximated as follows:

pij = µij(τ)∆t (3.6)
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where µij(τ) denotes the value of the instantaneous rate function of the age of the
state change that leads from the discrete state of the state Si to the one of Sj . The
probability that the model does not change the discrete state within the next time step
(i.e. no state change happens in the interval (τ, τ + ∆t)) is then 1.0 minus the sum of
the probabilities of all possible (active) state changes.

For a given model we can thus define a discrete time Markov chain in which the
unknowns correspond to the discretised states of the model and the coefficients of the
probability matrix P are given by the Equation (3.6). For simplicity, we describe the
case where the dimension of the age intensity vector is one; this is not a limitation of
the proxel-based method.

We consider as an example a simple system which consists of a cashier who can be
either free (DS0) or busy (DS1). The state diagram of the model is shown in Figure
3.4.

Figure 3.4: State diagram of the cashier model

We assume for simplicity reasons, that state changes SC1 and SC2 are exponentially
distributed with rates λ and µ, respectively. This means that the instantaneous rate
functions for both state changes have constant values λ and µ. We also assume, for
brevity, that the maximum length of time that each transition can be enabled is τmax =
3×∆t. The transition probability matrix P for this example is as follows:



π00 π01 π02 π03 π10 π11 π12 π13

π00 0 1− λ∆t 0 0 λ∆t 0 0 0
π01 0 0 1− λ∆t 0 λ∆t 0 0 0
π02 0 0 0 1− λ∆t λ∆t 0 0 0
π03 0 0 0 0 1 0 0 0
π10 µ∆t 0 0 0 0 1− µ∆t 0 0
π11 µ∆t 0 0 0 0 0 1− µ∆t 0
π12 µ∆t 0 0 0 0 0 0 1− µ∆t
π13 µ∆t 0 0 0 0 0 0 0


We denote by πij the state of the DTMC which corresponds to the model being in
discrete state DSi and the age intensity of the transition being j × ∆t. Then, πk is
given by

πk = [π00, π01, π02, π03, π10, π11, π12, π13]
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If the state changes are not exponentially distributed and their IRFs are correspond-
ingly the functions of the age intensities: λ() and µ(), then the probability matrix P
has the following form:

0
BBBBBBBBB@

π00 π01 π02 π03 π10 π11 π12 π13

π00 0 1− λ(0)∆t 0 0 λ(0)∆t 0 0 0
π01 0 0 1− λ(∆t)∆t 0 λ(∆t)∆t 0 0 0
π02 0 0 0 1− λ(2∆t)∆t λ(2∆t)∆t 0 0 0
π03 0 0 0 0 1 0 0 0
π10 µ(0)∆t 0 0 0 0 1− µ(0)∆t 0 0
π11 µ(∆t)∆t 0 0 0 0 0 1− µ(∆t)∆t 0
π12 µ(2∆t)∆t 0 0 0 0 0 0 1− µ(2∆t)∆t
π13 1 0 0 0 0 0 0 0

1
CCCCCCCCCA

.

If the DTMC is explicitly created and intended to be solved using one of the Markov
chains’ solution methods, then a decision on the maximum age intensity τmax must be
made in advance, and the whole Markov chain needs to be stored. The Markov chain
approach would also force the state changes bounded by τmax to happen when this
point is reached, which is an unrealistic assumption. The proxel-based method avoids
this condition by adapting the length of τmax as needed; when probabilities for states
at a new discrete time step are generated whose values fall below a certain threshold,
then these are simply ignored. If that is not the case, the proxel simulator continues
to prolong the enabling times of transitions which are still producing non-negligible
probabilities.

The DTMCs for more complex models can be generated analogously. The number
of states of the chain can grow exponentially in the number of concurrently enabled
transitions - a well-known drawback of the supplementary variable approach. Another
drawback when using pure homogeneous Markov chain approach instead of proxels,
is that many of the features which make the proxel-based method flexible (such as
allowing models to exhibit time-dependent behaviour, as shown in Section 4.1), are
lost. If those are to be converted into Markov chains, then it would result into non-
homogeneous Markov chains3, which require precomputed values of all coefficients of
the matrices and can require a large amount of memory for storing them (van Moorsel
and Wolter 1998). The proxel based method, on the opposite, computes the coefficients
dynamically, as needed, from the description of the model.

3.2 On the Accuracy of the Method

There are two major factors that affect the accuracy of the proxel-based simulation, as
well as some minor ones too. Briefly described, the two sources of error are:

• the assumption that at most one state change within one time step happens,
further referred to as the basic assumption of the proxel-based method, and

3A finite non-homogeneous Markov chain is defined by an infinite sequence P1, P2, P3, . . . of n × n
stochastic matrices, which define the transition probabilities that can be different at different time
steps. The matrix Pi is the probability transition matrix for the i-th step. A homogeneous Markov
chain with probability transition matrix P is the special case: P, P, P, . . ., and that is the case that
we observe throughout the thesis.
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• the numerical integration of the instantaneous rate function, used for computing
probabilities of state changes.

That is the subject that is treated in this section, or in other words: the accuracy of
the proxel-based method and how it can be improved.

The first major factor follows from the fact that the proxel-based method is based on
the assumption that the probability of more than one state change happening within
one time step is negligible. As the size of the time step approaches zero, this becomes
true, so theoretically the assumption is an acceptable one. This, however, means that
the greater the size of the time step, the lower is the accuracy of the simulation. The
relation of both is elaborated in this section.

In order to estimate the error that is produced by the assumption of allowing at most
one state change within time of ∆t, we compare the numerical solution obtained using
the proxel-based method to the one obtained analytically, by solving a continuous-time
Markov chain. In order to isolate this source of error we make it independent of the
type of distribution functions, and we choose a model with exponential distributions
for the comparison because of the simplicity of obtaining the analytical solution. The
constant rates ensure that the second source of error, i.e. the IRF integration method,
is neutralised.

Let us observe the continuous-time Markov chain shown in Figure 3.5. The model
consists of two states, A and B, connected via two state changes, which have equal
rates of λ.

Figure 3.5: Example Markov chain with two states

We solve the balance equations to get the analytical solution of the model, and then
compare it with the solutions obtained using the proxel-based method with different
sizes of the time step.

We denote by πA(t) and πB(t) the transient solutions at time t of states A and B,
correspondingly. The system of balance equations that characterises this model is the
following:

dπA

dt
= −λπA + λπB = −dπB

dt
.

The analytical solution to this system of ODEs is then the following:

πA(t) = 0.5 + 0.5e−2λt
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πB(t) = 0.5− 0.5e−2λt,

which given the assumed initial conditions

πA(0) = 1.0

πB(0) = 0.0,

expanded as a Taylor series has the following form:

πA(t) = 1− λt + λ2t2 − 2
3
λ3t3 +

1
3
λ4t4 − 2

15
λ5t5 + . . .

πB(t) = λt− λ2t2 +
2
3
λ3t3 − 1

3
λ4t4 +

2
15

λ5t5 + . . . .

The approximation that the proxel based method is making when using the starting
point for integration, as shown in Equation (3.1), produces an error term for each step
of order ∆t2. This in turn makes the proxel-based method a first-order method for
a sufficiently small ∆t. The solutions which the proxel-based method produces for
t = ∆t, knowing that the IRF is constantly λ are the following:

πA(∆t) = 1− λ∆t

πB(∆t) = λ∆t,

which are exactly the first-order terms of the Taylor expansion.

Let us observe the proxel tree of the Markov chain shown in Figure 3.6, using two
different values for the size of the discretisation time step, the second one twice as
small as the first one. Note that because of the Markov property of memoryless, there
is no need for an age variable. Therefore, the form of the proxel in the proxel-tree
shown in Figure 3.6 is the following: (discrete state, probability). The value of the
instantaneous rate function for the exponential distribution is constant and in this
case it is λ. Therefore, the size of the time step has to be smaller then 1

λ . For our
example, we choose the following sizes of the time step: ∆t1 = 1

2λ and ∆t2 = 1
4λ .

The solutions obtained using the proxel-based method and the analytical ones are
illustrated in Figure 3.7, whereby the analytical solution is mapped to the time step
∆t = 0.0. In the figure, the proxel-generated solutions converge towards the analytical
one as ∆t → 0. This feature (the convergence of the solution values) of the proxel-
based method makes it possible to extrapolate solutions obtained with larger time
steps (correspondingly having shorter computation times), in order to get solutions of
higher accuracy.

Our experience has shown that the use of Richardson’s extrapolation method (Richard-
son 1927) for performing the extrapolation yields satisfiably accurate results, which
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Figure 3.6: Proxel-trees produced using two different discretisation time steps

are very close to the analytical ones. The Richardson’s extrapolation method is known
as a method that by combining lower-order results yields new results of a higher or-
der (Lambert 1973). In the case shown in Figure 3.7, the value obtained using the
extrapolation of the four shown values is πA(0.25) = 0.68396123809524, whereas the
analytical solution is πA(0.25) = 0.6839.

Figure 3.7: Solution values obtained using different time steps and the analytical solution for

πA( 1
2λ ) for λ = 2

To extrapolate the conclusions about the accuracy of the proxel-based method re-
garding solely the basic assumption and excluding the properties of the distribution
functions, we can state that the proxel-based method is a first-order method because
its local truncation error is O(∆t2), where ∆t is the size of the time step. The reason
for that is the assumption of having at most one state change within one time step,
which means that the local truncation error that accumulates is of the order of the ne-
glected probabilities. This is further concretised for the cases of Uniform and Weibull
distributions.
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The process of truncating probabilities when increasing the size of the time step, is
illustrated in Figure 3.8. The dashed lines show the paths that are neglected as a
consequence of the assumption; the corresponding discrete states are coloured grey. In
the first case, when ∆t is halved, there is only one situation that is ignored by the
proxel-based method when using a time step of ∆t, and that is the route (A,B, A).
When ∆t becomes even smaller, the number of those situations increases, but the order
of the ignored probabilities is always at least O(∆t2), as already shown by the solutions
of our example model from Figure 3.5.

Figure 3.8: Illustration of the error produced by the basic assumption of the proxel-based method

Now let us observe explicitly the approximations that the proxel based method creates
for the IRF of some of the other distributions when calculating the probabilities (the
second major accuracy factor) and the error that it thereby makes. We inspect in more
detail the cases when the simplest integration method is used, i.e.

∫ τ+∆t

τ
µ(x)dx ≈ µ (τ)×∆t,

which is known to be a first order integration method. In that case the extracted
approximations for the Uniform and the Weibull distributions are the following:

Uniform(a, b) The integration of the IRF of a Uniform distribution defined on the
interval [t, t + ∆t], expanded as a Taylor series is the following:

∫ t+∆t

t
µ(x)dx =

∆t

b− t
− 1/2

∆t2

(−b + t) (b− t)
+ 1/3

∆t3

(−b + t)2 (b− t)
− . . .

on the interval (a,b). Outside of that interval, the value of the IRF is zero.

The proxel-based method approximates it by the first term of the Taylor series,
thereby making an error for each time step of order ∆t2.

If the state changes in the model shown in Figure 3.5 are uniformly distributed
on (a, b), then the Taylor series of the state equations are the following:

πA(t) = 1− t

b
+ 1/2

t2

b2
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πB(t) =
t

b
+ 1/2

t2

b2
.

The solutions obtained using the proxel-based method for t = ∆t are again the
first order terms, meaning

πA(∆t) = 1− ∆t

b

πB(∆t) =
∆t

b
,

that is if the points in time we have observed belong to the interval (a, b).

Weibull(a, b) The integration of the IRF of a Weibull distribution on the interval [t, t+
∆t], expanded as a Taylor series is the following:

∫ t+∆t

t
µ(x)dx =

(
t

a

)b

b∆tt−1

+ 1/2
(

t

a

)b

b (b− 1) ∆t2t−2

+ 1/6
(

t

a

)b

b (b− 1) (b− 2) ∆t3t−3 + . . .

which the proxel-based method approximates to the first term of the Taylor series,
making an error for each time step of order ∆t2.

If the state changes in the model shown in Figure 3.5 are distributed according
to a Weibull distribution function with b > 1, then the Taylor series of the
state equations contain only higher than first-order non-constant terms, and the
constant terms are exactly the approximations that the proxel-based method
makes, thereby producing an error that is of order higher than ∆t2.

The described approximations use the simplest integration method for the approxima-
tion of the IRF, which is usually not the case in our implementations. There, we often
use, as further described, the midpoint, trapezoid, Simpson’s rule or Gauss quadrature
(Hoffman 1992), which yield smaller error and a better approximation of the integration
of the instantaneous rate function.

The numerical approach used for integration of the instantaneous rate function is the
second major factor that affects the accuracy of the results. As mentioned, there
are four major integration approaches that are being used, which in the following are
presented along with their local errors:

• Mid-point rule, which approximates the function using the middle point and has
local error of O(∆t3), i.e.∫ τ+∆t

τ
µ(x)dx ≈ µ

(
τ +

∆t

2

)
×∆t,
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• Trapezoid rule, which approximates the function using the two end points and
has local error of O(∆t3), which is same as the Mid-point, i.e.∫ τ+∆t

τ
µ(x)dx ≈ (µ(τ) + µ(τ + ∆t))× ∆t

2
,

• Simpson’s rule, which works by increasing the accuracy of the functions used to
approximate the integrand, uses three points, and has local error of O(∆t5) i.e.

∫ τ+∆t

τ
µ(x)dx ≈

(
µ (τ) + 4µ

(
τ +

∆t

2

)
+ µ (τ + ∆t)

)
× ∆t

6
, and

• Gauss quadrature, which uses a careful selection of the points at which the func-
tion is evaluated, uses two points, and has local error of O(∆t5), which is the
same as the one of the Simpson’s rule i.e.

∫ τ+∆t

τ
µ(x)dx ≈

(
µ

(
τ +

(
1
2
−
√

3
6

)
∆t

)
+ µ

(
τ +

(
1
2

+
√

3
6

)
∆t

))
× ∆t

2
.

The graphical representations of the four approaches are shown in Figure 3.9. The
original function is f(x), and f∗(x) is its approximation. The shaded area is the
approximated integral.

Figure 3.9: Illustration of the four different integration approaches

The results of one comparison of the first three integration approaches are shown
in Figure 3.10. The Gauss quadrature has a comparable accuracy to the Simpson’s
rule and therefore is not presented in the figure. The difference is in some cases
not meaningful, but when high accuracy is required then it is not neglectful. The
model that is analysed consists of two states which are connected via two uniformly
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distributed state changes on a range (1, 2). The size of the time step is ∆t = 0.5 and
it was chosen to be large for easier spotting of the differences. It is to be observed that
not all integration approaches handle the sharp edges of the Uniform distribution in
the same way. It depends a lot on the points which are being used for approximating
the integral, and as explained further in Section 4.1.4, require a special treatment.

Figure 3.10: Illustration of the three different integration approaches when using a large time step

When deciding which integration method to choose, firstly it depends on the accuracy
that we want to achieve, and secondly on the functions that we are trying to approxi-
mate. The advantage of Gauss quadrature over Simpson’s rule and of mid-point over
trapezoid is that they need fewer function evaluations for achieving the same accuracy,
which makes them usually the methods of choice.

One minor factor which affects the accuracy of the simulation is the neglecting of
proxels with probabilities less than a predefined threshold i.e. the value of the threshold.
The method operates by throwing away proxels with probabilities which are less than
the predefined threshold (typically between 10−12 and 10−15). This, however, leads
to probability leaking out, which means that at later points in simulation the sum of
all probabilities of the proxels from one level is not equal to 1.0 any more. The error
can be decreased by decreasing the value of the threshold, taking into account the
distribution functions and rareness of the events.

Experiments regarding the minimum probability threshold as an error factor are pre-
sented in the experiments’ Chapter 7. Its influence, however, is meaningful only when
states with very small probabilities get involved, such as occur in rare-event models.

In conclusion, the proxel-based method can be considered as a first-order method in
the worst case, i.e. its accuracy gets improved by using more accurate integration
methods and depends also on the distribution functions involved in the models.
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3.3 Supplementary Algorithms

In this section we discuss two supplementary steps, which aid the proxel-based simu-
lation. The first one shows how to automate the determination of the size of the time
step, whereas the second one shows an algorithm for computation of the lifetimes of
the discrete states, which makes the computational complexity predictable and assists
the storage strategy.

3.3.1 Heuristics for Determination of the Size of ∆t

One important issue when performing proxel-based analysis of discrete stochastic mod-
els is the size of the discretisation time step ∆t. Although for small models it is uncom-
plicated and straightforward to do it manually, the task can become very cumbersome
when dealing with more complex models. Therefore, here we generalise the approach
that we have been using for determining the size of ∆t and provide its formalisation.

We are interested in calculating the largest acceptable size that the time step can
have in order for the method to deliver reasonable solutions, even though with a lower
accuracy. A reasonable solution is a solution, which together with the solution obtained
for the halved step size, converges towards the exact one. To provide such a solution
the time step should be able capture all of the state changes in the model, which means
not skipping any of the points where they are most likely to happen. Such points are
the ones where the value of the instantaneous rate function is the highest or mean
values of the distributions. If a size of the time step satisfies this condition, then it is
referred to as an acceptable size of the time step.

An example for an unacceptable step-size is ∆t > b if the state change is distributed
according to a Uniform distribution function on (a, b), or ∆t > 1/λ if the state change
is distributed according to an Exponential distribution function with a rate of λ. For
illustration, in Figure 3.11, the sizes of the time step that are greater than 1.0 are un-
acceptable step-sizes because the solution values do not get closer to the “true solution”
with the decrease of the size of the time step. The clear idea of what an unacceptable
time step is, provided the key to what an acceptable size of a time step is and the
approach that we present here.

As expected, the size of ∆t depends directly on the distribution functions involved
in the model and their parameters. We define a measure called ”relatively acceptable
time step” (RATS) for every state change, and define it for every type of distribution
function F () as the half of its mean value. For most of the distributions, it is sufficient
that the time step is less than the mean value, the half of the mean only ensures
that the size of the time step is an acceptable one. Its values for some of the more
characteristic probability distributions are the following:

• if a state change SC is distributed according to F () ∼ Uniform(a, b), then
RATS(SC) = b+a

4 ,

49



3 The Proxel-Based Method

Figure 3.11: Illustration of non-convergent solution values

• if a state change SC is distributed according to F () ∼ Exponential(λ), then
RATS(SC) = 1

2λ ,

• if a state change SC is distributed according to F () ∼ Normal(µ, σ), then
RATS(SC) = µ

2 ,

• if a state change SC is distributed according to F () ∼ Weibull(α, β), then
RATS(SC) = α

2 × Γ( 1
β + 1), where Γ() is the Gamma function4.

In other words, we chose them to be half of the mean values of the corresponding
random variables. The decision is experience-based, constructed as a conclusion from
the many experiments that we have carried out.

Once the RATSs for all state changes are computed, the minimum of all of them
is calculated and that provides the ”globally acceptable time step” (GATS ) for the
proxel-based simulation of the model. Formally expressed, if M represents a discrete
stochastic model, then the global acceptable time step for M is defined as:

GATS(M) = min
∀SC∈M

RATS(SC). (3.7)

The smaller the size of the time step is, the higher the accuracy of the solutions is.
Therefore, the acceptable size of the time step is just an acceptable one. Further,
depending on whether the accuracy or the speed is important (or both), the user can
choose to use either extrapolation or a very small step size for improving the accuracy.

4The Gamma function was first introduced by the Swiss mathematician Leonhard Euler (1707-1783)
in his goal to generalize the factorial to non integer values. It belongs to the category of the special
transcendental functions and is defined by the following integral: Γ(x) =

R∞
0

tx−1e−tdt. There
are many numerical approaches for its approximation, some of the more popular being Lanczos
Approximation and Stirling’s Formula.
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3.3.2 Computation of Lifetimes of Discrete States

Prior to the proxel-based analysis, if the analysis is to be carried out on a bounded
state space (i.e. the model has a limited number of discrete states), then a preprocess-
ing step can be carried out for computing the lifetimes of the discrete states. The
computed lifetimes provide a preview of the computational complexity and the mem-
ory requirements of the concrete proxel-based analysis, and are used for computing
the keys of the proxels in the binary tree. A unique key is assigned to every proxel,
which is computed based on the state that the proxel represents, i.e. the combination
of the discrete state and the age intensity vector. Therefore, it is necessary to be able
to predict the largest value that each age intensity can have.

When finite support distributions are associated with the state changes in a model,
then it is predictable that the model can spend a limited amount of time in each
discrete state. When the state changes are distributed according to infinite support
distributions, then theoretically the model can spend an infinite amount of time in each
discrete state. The probabilities for staying in the discrete states, however, decrease as
time increases. At a certain point in time, they become so small that we can treat them
as negligible. We decide that the probabilities for staying in the discrete states are small
enough when they become smaller than the predefined minimum probability threshold
ε, which is usually around 10−15. This makes it possible to determine simulation
characteristic lifetimes of the discrete states.

A lifetime of a discrete state determines the longest time that the model can spend in
that discrete state regarding the concrete simulation parameters ε, and is calculated
based on the distribution functions that are associated with the active state changes in
the actual discrete state. The procedure for the calculating the lifetimes is described in
the Algorithm 3.2. Recall that the IRF could be better approximated using any of the
four integration approaches, as described in Section 3.2. In the algorithm presented
here, for simplicity reasons we use the most simple approximation, which is based on
the starting point of each interval.

The symbols used in the algorithm have the following meanings:

• tmax is the maximum simulation time,

• ∆t is the size of the time step,

• probexit(DS) is the total probability for exiting the discrete state DS,

• probexit(DS,SC) is the probability for exiting the discrete state DS through the
state change SC,

• probstay(DS) is the probability for not leaving the discrete state DS,

• lifetime(DS) is the lifetime of the discrete state DS, and

• µSC(t) is the value of the instantaneous rate function of the random variable that
describes the state change SC, having an age intensity equal to t.
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Algorithm 3.2: Computing Lifetimes of Discrete States
Input: ∆t, tmax

foreach discrete state DS in the model M do1

t = 0;2

lifetime(DS) = 0;3

probexit(DS) = 0;4

probstay(DS) = 1.0;5

for t = 0 to tmax in steps of ∆t do6

foreach active state change SC in DS do7

probexit(DS,SC) = µSC(t)×∆t;8

probexit(DS) = probexit(DS) + probexit(DS,SC);9

end10

probstay(DS) = probstay(DS)× (1.0− probexit(DS));11

if probstay(DS) < ε then12

lifetime(DS) = t;13

end14

end15

if lifetime(DS) = 0 then16

lifetime(DS) = tmax;17

end18

end19

The algorithm works by calculating the probabilities for leaving the states through
any of the state changes at every discrete time step (lines 8 and 9) and thereby the
probability for not leaving the discrete state (line 11), until the end of simulation
time tmax is reached (line 6). If the probability for not leaving the discrete state is
less than ε (line 12), that means that at that point in time there is a probability of
zero or negligible probability to stay in the same discrete state. Therefore the point
in time at which that happens is assigned as the lifetime of the actual discrete state
(line 13). If that point in time, where the probability for staying in the same discrete
state is negligible, is not reached within the maximum simulation time tmax, then the
maximum simulation time tmax is assigned as the lifetime of the actual state for the
actual proxel-based simulation (lines 16 and 17).

The lifetimes of the discrete states in a model directly influence and determine the
complexity of the simulation. The reason for that is that they are a factor that deter-
mines the real state space of the model in terms of proxels, thereby considering only
the truly reachable states. If the model has no more than one concurrently active
state changes with different activation times, then we propose considering the sum of
the lifetimes of all states in a model as a measure for the complexity of that model’s
proxel-based analysis. In cases where this condition does not hold, the number of sup-
plementary variables in each state has to be considered too, as it increases the number
of their possible combinations when generating states i.e. proxels. The presence of age
memory state changes is a typical case for having more than one active state changes
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with different activation times. In that case we define a maximum number of states
generated from a discrete state as follows.

Definition 3.12 – Maximum number of states generated from a discrete state
(MNSDS). Maximum number of states generated from a discrete state (MNSDS) is
the maximum number of combinations of the state vector, considering the lifetimes of
the discrete states.

MNSDS is equal to the ratio of the lifetime of the discrete state and ∆t when there
are no more than one active state changes with different activation times. If that is
not the case (i.e. when there are age memory state changes), MNSDS is calculated as
a product of the lifetime of the actual discrete state and the lifetime(s) of the state(s)
in which the age memory state change(s) is (are) active. MNSDS is directly used for
calculating the key of each proxel.

The effect that lifetimes have on the computational complexity of the proxel-based
simulation is supported and illustrated with concrete examples in the experiments’
Section 7.2.

3.4 Programming Aspects and Complexity

The basic implementation of the proxel-based algorithm is based on two interchange-
able data structures, which store proxels from two sequential time steps. After many
experiments (Balaprakash 2004), binary tree was the data structure of choice. We
needed an easily searchable data structure because of the multiple generation of the
same states within one generation of proxels, which as time advances, happens more of-
ten. For speeding up the searches, a balanced binary tree (AVL tree) was implemented
(Foster 1965; Lazarova-Molnar and Horton 2003a), which showed as more time con-
suming than the non-balanced version because the balancing required a large portion
of the computation time. Results from an experiment regarding the comparison are
shown in Figure 3.12, from which it could be observe that the AVL tree implementation
requires more than twice the time that the non-balanced tree implementation needs.
Therefore, our decision was to continue using the non-balanced binary tree as a data
structure for storing proxels.

A unique key for each state is computed based on the information contained in the state,
i.e. discrete state and age intensity vector. In order to optimise the key, lifetimes of the
discrete states are computed as a preprocessing step, which are basically the longest
times that the model can reside in each of the discrete states before a state change
happens. When the model contains no age memory state changes, the lifetimes directly
generate the upper bounds of the age intensities in each discrete state. When that is
not the case, the upper bounds are computed by multiplying the lifetime of each state
that tracks the age memory state change with the lifetime of the discrete state in which
the age memory state change is active, that is the MNSDS for every discrete state. The
presence of age memory state changes can significantly increase the complexity of the
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Figure 3.12: Dependence of the computation time on the number of time steps for the two storage
cases

simulation, as it yields a greater number of truly reachable states, because the states
are result of the combinations of the age intensities. This is illustrated by an example in
Section 7.2, which demonstrates the effect that the lifetimes have on the computational
complexity of the proxel-based simulation.

Although the first impression is that the method has a polynomial complexity in the
order of the branching factor of the proxel tree, that is not true. Usually, depending
on the type of the distribution functions and their parameters, there is a point in time,
from where on, the number of proxels generated at each level does not change. It stays
constant because of the limited lifetimes of the discrete states, and at that point in
time all truly reachable states are generated. This shows, that although it seems that
the proxel tree grows exponentially, it actually does so only up to some point in time
(dependent on the distribution functions) and from there on grows linearly.

In order to practically illustrate the computational complexity of the proxel-based
simulation as a function of the size of the time step, we choose again the model from
Figure 3.5, thus setting both state changes to be distributed uniformly on (0.0,5.0),
and we simulate initially up to time t = 5.0. The lifetimes of both discrete states are
equal to the maximum simulation time, which is on purpose so that we can observe the
complexity before the proxel-tree stops growing in width. In Figure 3.13 is illustrated
the dependence of the total number of proxels generated and computation time on
the size of the time step ∆t. The figure confirms the quadratic growth, which is the
case until the maximum number of reachable states is reached. From there on, the
dependence is linear, as illustrated in Figure 3.14, in which case the simulation is run
beyond time t = 5.0.

An advantageous feature of the proxel-based method is the dynamic building of the
state-space, thereby rationally using the memory. Even if the underlying stochastic
process is a Markov chain, it is not completely in the memory from the beginning of
the simulation, but instead it is dynamically built and stored.
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Figure 3.13: Dependence of the total number of proxels generated and computation time on the
size of the time step ∆t

3.5 Summary

In this chapter we establish and present the formal background of the proxel-based
method, focusing on its basic algorithm. We show what are the supplementary pre-
processing steps, which can aid the proxel-based simulation, such as computing the
lifetimes of the discrete states and the heuristics for determining an acceptable size of
the time step. Further we discuss the method’s accuracy, after which, in conclusion,
the programming and implementation aspects are addressed. In the upcoming chap-
ters we discuss some special issues of the method, describe the modelling framework
which was designed to exploit its advantageous properties, as well present some of the
applications of the proxel-based method.
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Figure 3.14: Dependence of the total number of proxels generated on the number of the time
steps in the general case, i.e. before and after the point in time when the maximum number of
states has been generated
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In this chapter we address two main topics which we consider to be of especial im-
portance when considering using the proxel-based method. The first section reviews
different specific or characteristic classes of stochastic models which were found to
be exceptional in different manners for the method and discusses them. The second
section introduces two basic ideas for variations of the proxel-based method which
were discovered while searching for improvements of the basic algorithm, along with a
discussion of their advantages and drawbacks.

4.1 Special Classes of Problems

In this section we discuss and analyse the features and classes of stochastic models
which were found to be from different aspects, characteristic for the proxel-based
method, both in positive and negative sense. In other words, this section should also
serve as an answer to the question whether it is a good idea to analyse a given model
using the proxel-based method, and which are the issues that one should be careful
about and require to be handled in a special way.

4.1.1 Unbounded Models

Unbounded stochastic models have always been a burden when their analysis was to
be performed by any of the existing numerical approaches (Markov chain-based). In
order to solve this class of models numerically, the state-space has to be bounded, which
basically means modifying the original model, additionally affecting the accuracy of
the analysis. The reason for the bounding is because all existing numerical approaches,
as shown in Figure 3.1 are based on a mathematical computational model, which is
then solved using numerical solution algorithms. The numerical solution algorithms
need to be operate on the computer, therefore all of their unbounded quantities need
to be bounded because the computer can only deal with finite elements and data
structures as computation time and memory have are limited. On the other hand we
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know nothing about the solution of the models we are analysing, so the decision on
how bound the unbounded quantities is not a trivial one.

Real-life processes do not always have the feature of having a limited discrete state-
space, so unbounded models are quite common. The formalism of stochastic Petri nets
is capable of successfully describing unbounded models, which is the reason why we
use them for illustration of this important feature of the proxel-based simulation. The
proxel-based method possesses the ability to operate on the Petri net directly, without
having to create the reachability graph prior to the simulation. This means that there
is no requirement for bounding the state-space for analysing one model.

We illustrate by an example what the above described feature means. The most com-
mon and at the same time simplest example for the above described situation is a
queuing system which consists of an unbounded queue and one server. The Petri net
for this model is shown in Figure 4.1. Place P1 corresponds to the queue, whereas P2

represents the server. Transitions T1 and T3 accordingly represent the arrivals of the
customers and the completions of service. Transition T2 represents the secondary event
of a customer moving to service when the server is free (i.e. |P2| = 0), a condition
which is implemented by an inhibitor arc from P2 to T2.

Figure 4.1: Petri net model of an unlimited queue with one server

Instead of building the reachability graph, the proxel-based method can operate di-
rectly on the Petri net, i.e. creating for each marking the set of reachable markings
on-the-fly, based on the Petri net specifications. More specifically, reachable markings
can be computed directly from the incidence matrix of the Petri net.

Figure 4.2: Proxel-based illustration of the initial part of the state space
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In Figure 4.2, the initial levels of the corresponding proxel tree are shown, the age
intensity variable is omitted for simplicity of the figure. The grey-coloured proxels
represent vanishing markings, whereas the white ones stand for the tangible markings.
The structure of the proxels in the figure contains only the marking i.e. the discrete
state and the probability i.e. (m, p). Symbols a,b and c stand for the probabilities of
the state changes, which can be calculated using any of the IRF integration formulas
shown in Section 3.2.

The reachability graph is dynamically created as the proxel-based simulation advances
in time, which is feasible because the proxel-based method operates directly on the user
model, generating the state space on-the-fly and not requiring in advance generated
reachability graph. This means that the proxel tree is generated solely based on the
description of the Petri net. The on-the-fly creation of the state-space makes one
important and problematic class of models analysable in a deterministic manner, i.e.
the class of unbounded discrete stochastic models.

Further, in Chapter 5, we present a modelling framework which describes unbounded
models in a way that the models thereby created can be used as a direct input to a
proxel-based simulator. In Section 6.4 the application of the proxel-based method for
analysing SPNs is presented.

4.1.2 Additional Supplementary Variables

As already defined in Chapter 3, the term state in the proxel-based terminology refers
to the vector composed of the discrete state of the model (in Petri nets terminology -
marking) and the age intensities of the active state changes in that discrete state. The
additional components to the discrete state of the model, i.e. the age intensities, are
known as supplementary variables.

One feature of the proxel-based method is that the supplementary variables can also be
of discrete type and can be employed for tracking any quantity relevant for the analysis
of the model. The additional variables can be also parameters of the instantaneous rate
function that determines the probability for a state change happening. By contrast, if
those types of models were to be analysed using DTMCs or PDEs, every such additional
variable would add to the complexity of the system and the model could result in a
very complicated system of equations which can be very expensive to solve.

An example for the described situation is a model of a machine failure where the failure
is a function of the number of times that the machine has failed previously, a case which
is also described in (Sule and Castro 2002). The number of failures does not need to be
limited, as it was already explained in the previous subsection. The Petri net for this
model is shown in Figure 4.3. It consists of two places OK (i.e. machine is operating)
and F (i.e. machine has failed), and two transitions TF (i.e. machine fails) and TR

(i.e. machine gets repaired). The number of failures is presented as a supplementary
variable in the proxel.
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Figure 4.3: Petri net representation of the machine failure model

The Petri net for this model contains a place that tracks the number of failures. A
typical deterministic approach, which operates on the reachability graph, would imply
bounds on both, the number of failures and the age intensities. The proxel-based
method is free of those limitations and the bounds are computed dynamically, based
on the probabilities for the state changes happening. When the probability for a state
change becomes negligible, i.e. falls bellow a certain threshold (in the ideal case equal
to zero), that means that the ”real” boundary of that parameter has been reached. A
proxel Px for this example would have the following format:

Px = ((Marking, AgeIntensity), |Failures|, T ime,Route, Probability).

By this feature of the proxel-based method of using the supplementary variables for
tracking other quantities besides age intensities, we can use the method for a more
efficient analysis of discrete stochastic models that contain unbounded elements which
have impact on the distribution functions.

4.1.3 Rare-Event Models

Rare-event models are known to be very expensive when performing standard discrete-
event simulation (sometimes in orders of months and years, as stated in (Görg et al.
2001)). As their name reveals, rare-event models contain events which happen very
rarely with respect to other events in the model, i.e. there is a big difference in the
rates at which the events in the model occur. As discrete-event simulation works by
reproducing the behaviour of the models, it usually takes a large number of simulation
runs for such rare events to happen, making it very difficult to obtain a reasonable
estimate for the searched parameters, usually in form of narrow confidence intervals.

In Figure 4.4 the CDFs of two exponential distributions are illustrated which have
different rates. From the figure it is evident that the probability of the event with the
higher rate happening is, at any point in time, higher than the one of the event with
a lower rate. In this case the difference ratio of the rates is 10. This means that on
average on every 10 events described by the faster rate, one slower event happens.
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Figure 4.4: CDFs of two exponential distributions with different rates

The problem that discrete-event simulation has, is an issue that the proxel-based
method is less sensitive to. By design the proxel-based method explores all possi-
ble behaviours of one model and reaches every possible state, which shows that the
it gives equal importance to all events in the model. Therefore, even a state that is
to be reached by the most rare event in the model, as early as in the first time step,
obtains its very small probability contained in the proxel that describes it. DES, on
the contrary, relies on values of random numbers to explore the behaviour of the model,
which are not a guarantee that all states will be visited.

However, rare-event models bring some disadvantages for the proxel-based method
too. The presence of rare-events in a model means big differences in the rates of the
events. When using our heuristics for deciding on the size of ∆t presented in Section
3.3.1, we choose a globally acceptable time step. This means that the proxel-based
simulation is currently forced to move at equally sized time steps, which are minimum
of the relatively acceptable ones for all state changes. Consequently, the state changes
associated with rare events are tracked by using such small time steps, even though it is
not necessary. This observation led to the idea of having adaptive time steps, which is
a research in progress and is treated in (Wickborn 2004; Horton and Lazarova-Molnar
2003).

The main thought behind the adaptive time steps is to allow the simulation to advance
at different pace for all state changes depending on their distribution functions. In an
example model from Figure 4.5, in which the state change from A to C is associated
with a rare event relatively to the other state changes, the structure of the proxel
tree which uses adaptive time step would look similarly to the one in Figure 4.6. The
main goal of the idea of having adaptive time steps is improving the efficiency of the
proxel-based simulation by reducing the number of processed proxels.

The ability to accurately analyse rare-event models, we consider to be a great advantage
of the proxel-based method, because the problem of the rare-event simulation has been
around for a long time, and there has been a number of methods that try to overcome
it (Heidelberger 1995; Glynn and Iglehart 1989; Hsieh 2002; Kelling 1996). Proxel-
based method makes an important contribution with that respect. Example regarding
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Figure 4.5: Example rare-event model

Figure 4.6: Illustration of the idea of having adaptive time steps

analysis of rare-event models is presented in Section 6.6, where it is discussed and
treated as one of the application areas of the proxel-based method.

4.1.4 Instantaneous Rate Functions with Poles

Poles are points in which the value of a function goes to infinity. An example for a
function that has a pole is the IRF of the Uniform distribution. The poles in the
instantaneous rate functions are problematic for the proxel-based method and require
a special treatment because the IRF needs to be integrated in steps of ∆t and one of
these steps contains the pole, as shown in Figure 4.7 where ∆t = 0.4.

In Figure 4.7, the IRF of the Uniform distribution defined on (0.5, 1.5) is illustrated
as an example. It is very important to properly handle those situations because that
signifies that the state change that is associated with a such distribution has to happen
by the pole point at latest, and if there are other competing state changes at the same
time interval, then the probabilities for their happening have to be set to zeros, and
the whole parent probability to be transferred to the state change associated with the
IRF with a pole.
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Figure 4.7: IRF of a Uniform distribution function on (0.5, 1.5)

A problem that occurs at the computation of probabilities at such points is that because
of the infinity, the points approaching the pole have very high values, which means that
there is a possibility that probability values greater than 1.0 are computed. This is a
fact which helps in spotting those points and handling them properly. Therefore the im-
plementations of the functions that we use in our programs are redefined to make sure
that such points are captured. The most problematic distributions with that respect
are Uniform and Deterministic, in which cases when evaluating the whole ∆t neigh-
bourhood needs to be examined and if the pole point is contained, an extremely high
value based on ∆t is yielded, which would immediately push the probability of staying
in the discrete state bellow the minimum probability threshold (e.g. 1

threshold×∆t) and
cancel it out.

The case is clear when only one state change of that type (with an IRF with a pole)
is active. The situation is, however, more delicate when there are two or more con-
currently active state change distributed according to finite support functions whose
domains’ upper boundaries are equal. An example for that is a state, in which there
are two active state changes that have equal deterministic durations. When the simula-
tion time reaches that point, there is a danger that the algorithm computes probability
values for both state changes that are greater than 1.0 (because the rate goes to infin-
ity, meaning they have to happen). Therefore, it is important to capture that point
in time and properly handle it, which in the proxel-based simulation is achieved by
distributing the parent-proxel’s probability proportionally to their rates, amongst the
active pending state changes. In the described case, our approach is to sum up the
probabilities and calculate each probability by dividing the probability with the sum,
ensuring that the probabilities of all state changes sums up to one. This means is that
in the above described case both probabilities are equal, i.e. 0.5.

Even though poles require a specific treatment, they do not add to the complexity of
the proxel-based method. Therefore, the goal of this section is their acknowledgement
as a special case in the proxel-based simulation and provide an idea of how they are
to be handled.
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4.1.5 Finite Support Functions

Finite support distributions are distributions whose IRFs have finite support. Exam-
ples for such functions are again Uniform and Deterministic. The benefit from having
state changes which follow finite support distribution functions comes from the proxel-
based algorithm, which does not store proxels which carry zero probability values.
Therefore the number of the proxels generated as a consequence of such a state change
happening (i.e. one whose IRF has a finite support) is limited because the time range
when such a state change can happen is limited too. In other words, the lifetimes of
the corresponding discrete states are bounded. The finiteness ensures that the proxel-
tree stops growing in width after some time, or once all possible states are generated.
This is illustrated in Figure 4.8, which shows the structure of the proxel tree for a two
state model with discrete states A and B where the lifetime of B is 2×∆t because the
distribution function associated with the state change from B to A is Uniform defined
on the interval (0, 2.5×∆t). Once a path in the proxel tree reaches a point at which
a discrete state must change, the branching in that direction stops, thereby reducing
the growth of the tree.

Figure 4.8: Structure of the proxel tree for a model with two states, A and B, where B has a
lifetime of 2.5×∆t

The presence of finite support functions simplifies the process of computing lifetimes
of the discrete states in one model, described in Section 3.3.2, because its time range
during which they can occur limits the lifetimes of the corresponding states. It is
sufficient to have only one state change with a finite support IRF to limit the lifetime of
the corresponding discrete state because that indicates the longest time that the model
can reside in the actual discrete state. For distributions with finite support IRFs, no
truncation is needed for determining the lifetime and a more accurate prediction of the
complexity of the computation is possible. Therefore, we observe them as a favourable
property of the models analysed by the proxel-based method.
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4.1.6 Number of Concurrently Active State Changes

The lifetime of a discrete state depends solely on the rate at which the probability for
leaving the state flows. This rate is depended on the concurrently active state changes
associated with the discrete state. With every addition of a new state change to the
model the rate at which the model leaves the corresponding discrete state increases.
Therefore, the lifetime of the affected discrete state decreases which means reduction
in the number of proxels that are stored and the computational complexity of the
simulation because proxels which carry zero probability are not stored.

Hence, the increased number of concurrently active state changes is in general an indi-
cator for a more efficient proxel-based simulation and therefore such models belong to
the favoured classes of stochastic models. The statement, however, cannot be gener-
alised to being more than just an indicator, as it depends on the points in time when
those state changes become active.

The more concurrently active state changes there are that have different activation
times (i.e. different age intensities at same points in time), the more combinations
of the age intensities are possible, resulting into a larger state space. This issue is
explained more in detail in Section 3.3.2. From that point of view, the problem is not
trivial, and the presence of age memory state changes makes it only more complicated
and increases significantly the computational complexity. The change of the complexity
with respect to the memory policies of the state changes is shown in Section 7.2, where
experiments regarding the lifetimes of the discrete states are performed.

4.2 Variants of the Proxel-Based Method

In this section we discuss two variants of proxel-based method which are currently
being developed as attempts to improve its efficiency. The first one is the variant of
stochastic proxels, which is a research in progress and still at a level of speculation.
The second one is a promising variant, which combines phase-type approximations
with proxels and has been able to improve the efficiency of the proxel-based method
for certain classes of models.

4.2.1 Stochastic Proxels

The proxel-based method works by exploring and generating all possible paths that a
model can take, when advancing in steps of ∆t. What if there was a knowledgeable
way of generating a subset of all paths which would be representative such that it
would yield an approximation of the solution of the model?

This is the basic idea of the stochastic proxels, except that the “knowledgeable” is
implemented by “stochastic”, i.e. the subset of paths is generated on a random basis.
Each path has an equal probability to be generated, which ensures a “fair” treatment
to all events.
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The idea for the variation of the proxel-based method under the name of stochastic
proxels was derived by comparing the standard proxel-based method and discrete-event
simulation, as well as by observing the problems that the latter has with respect to
rare events, and the state-space explosion of the former one. In this section we present
the basic idea for this variant because it is still one of the speculative research areas
that are yet to be studied.

Rare events are problematic because their probability of happening is so low that by
reproducing the system, which is what discrete-event simulation does, they almost
never happen, so it takes a high number of replications for them to occur. The proxel-
based method on the other hand treats all events with equal importance, so the problem
of neglecting an event is irrelevant.

The stochastic variant of the proxel-based method is an experimental approach, which
works similarly to discrete-event simulation in that that it carries out many experi-
ments which are then used for obtaining the necessary measures. It works by following
one proxel route in each experiment, which route is chosen on a random basis. The
difference to DES is that the routes are advancing in equally sized time steps (just like
the standard proxels), which is compensated by the probability values. Each probabil-
ity is calculated as shown in Chapter 3 for the standard proxel-based method. By this
variant of the method we avoid the calculation of all paths, which is what the standard
algorithm does, and only a random selection of all sample paths is generated.

The method of stochastic proxels uses a uniformly distributed random variable for
deciding which state change to happen, which preserves the fairness towards the events,
and avoids the state-space explosion problem because the memory that it requires is
same as for discrete-event simulation, which is very low compared to the standard
proxel-based method. The difference from the basic proxel-based method, as explained
in Chapter 3 is that the stochastic variant computes only a subset of the paths that the
model can take, selected on a uniformly random basis. This means that the random
factor is present, as well as that results are again confidence intervals.

One problem that we faced whilst researching the stochastic variant develops from the
fact that the further the point in time for which a solution is sought, the smaller the
probabilities for each separate path are, resulting into a non-negligible error produced
by the computer when registering them. This can however be avoided by scaling the
probabilities at certain points in time and needs to be handled in advance.

In Figure 4.9, the proxel tree of the model shown in Figure 3.2, is shown. The route
(A,A, B,B) is one possible path for the first four equidistant points in time, followed
in one of the experiments of the stochastic proxels variant. The procedure for the
generation of any random path is as follows:

1. The initial state of the model is A.

2. Using a uniformly distributed random variable, one of the two paths (1 or 2) is
chosen; The probability is calculated in the same way as it is for the standard
proxel-based method. If the models chooses to stay in A, then the age variable
is increased by ∆t, else it is set to zero.
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Figure 4.9: One path in the stochastic proxel variant

3. Step 2 is repeated until the end of simulation time tmax, at each step for the choice
of possible state changes including the option of staying in the same discrete state.

Depending on the predefined number of replications, the above described procedure is
repeated that many times. Next the transient probabilities for all discrete states at
time t = tmax are summed up. Each separate probability is calculated as the ratio of
the sum of probabilities for that discrete state and the overall probability sum, i.e.

Pr(model in discrete state DSi at time tmax) =

∑
∀replications Pr {DSi at time tmax}∑
∀replications,∀i Pr {DSi at time tmax}

.

The stochastic variation suffers from the same problem of long computation times when
high accuracy is needed because of it stochastic nature, as is the case with discrete-
event simulation. It, however, also benefits from the same advantage as discrete-event
simulation of having very low memory requirements, and additionally from the fair
treatment of all events i.e. not neglecting the rare ones. We believe that the stochastic
variant can be an efficient alternative for models that are too complex for the proxel-
based method and contain rare events. The method, however, still needs to be further
researched in order get more meaningful conclusions about its applicability.

4.2.2 Inclusion of Discrete Phases

As described in Section 2.2.3 phase-type distribution functions can be very efficient and
accurate when approximating for distribution functions such as Weibull and Normal.
On the other hand, they are very expensive to fit when approximating finite support
distributions like Uniform and Deterministic which require large number of phases to
be approximated more accurately.

Above described features of the discrete phase-type approximations yielded another
variation of the proxel-based method, which is achieved by its combination with dis-
crete phases, as described in (Isensee et al. 2005). The basis for the combination is
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the fact that the underlying model of the proxel-based simulation can be described as
a DTMC which is also what the discrete phases are. Therefore, the implementation
of the discrete phases for substituting some of the distributions fitted well into the
existing framework. An illustrative example is a model which consists of two state
changes distributed according to a Weibull and a Uniform distributions correspond-
ingly. The uniformly distributed state change is very expensive to approximate using
discrete phase-type distribution functions and is therefore simulated with proxels. By
contrast, in most cases, depending on the parameters a Weibull can be sufficiently well
approximated by using only a few phases.

When combining proxels and phases, a new element is added to the proxel i.e. the
phase (or phases) in which the model is, thus extending the definition of a proxel. The
extended proxel structure is the following:

Proxel = (State, T ime, Route, Probability), where
State = (Discrete State,Age Intensity V ector, Phase V ector).

The Phase Vector contains information about the current phases of the model, in
the same way as the Age Intensity Vector carries information about the relevant age
intensities. The other elements have the same meanings as explained in Section 3.1.1.

Figure 4.10: Inclusion of phases in a simple two state model

In Figure 4.10 an example model is shown for the purpose of illustrating the basic idea
of the approach of combining discrete phases with proxels. The model consists of two
discrete states, and two state changes, one of which is Weibully distributed and can
be accurately fitted using discrete phases. In the same figure, the model development
is shown after the inclusion of phases. The state change from B to A is approximated
using three phases, whereas the state change from A to B is left unchanged because of
the fact that proxels are more suitable for approximating Uniform distribution. When
the model is in state A, the supplementary variable is the age intensity, and whenever
the model is in state B, the supplementary variable denotes the phase of the discrete
state B. The probabilities λi can be computed using one of the fitting algorithms
described in (Isensee and Horton 2005a) and they do not require age variables because
of the property of memorylessness. The state development for the first five time steps is
shown in Figure 4.11, in which the variable supplementing the discrete state A denotes
an age intensity, and the one supplementing the discrete state B denotes a phase.
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Figure 4.11: Proxel-phases state tree

The concept of phases fits well in the existing framework because the underlying
processes of both approaches are DTMCs. This results in a straightforward imple-
mentation of the combined approach, for which recently a tool has been introduced
(Isensee and Horton 2005b). The basic algorithm of this approach of combining phases
and proxels is presented in (Isensee et al. 2005). There, we also present results from
experiments, which show that by including phases in the proxel-based simulation, an
improvement of factor ca. 2.5 is achieved regarding the simulation time. The compu-
tation of the approximation, however, can take a significant amount of time too. In
the experiments we present in (Isensee et al. 2005) the combined phase-proxel simula-
tion which yielded most acceptable accurate results took 22.390s (with ∆t = 0.05), for
which the distribution fitting took 28.719s, summing up to 51.109s. In the experiment
two distributions are approximated by discrete phases, each of order 16, and two are
simulated by proxels. The pure proxel-based simulation for this case took longer i.e.
56.421s. This shows that if a very high accuracy is needed, then the fitting can be
computationally very expensive too. If, however, a less accurate fitting is satisfiable,
then the computation time can be reduced significantly as explained further.

The total simulation and fitting times for the three cases, when using 4, 8 and 16 phases,
are shown in Figure 4.12. The computation times grow rapidly as the number of phases
increases, which is mostly due to the fitting times that can be computationally very
expensive when the number of phases is large. The problem is that sometimes when
a distribution which requires a large number of phases is approximated, it can require
correspondingly a longer computation fitting time, meaning phases are not always
the more efficient solution. Concerning that problem there is an ongoing research
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for deciding when to use phases and when not, based on the characteristics of the
distributions associated with the state changes and the lifetimes of the discrete states
in the model. To conclude, the combination of phases and proxels creates and open
door for the stochastic models that are too complex for the standard proxel-based
method and represents an extension which would broaden the class of models that can
be analysed using the proxels-based method.

Figure 4.12: Dependence on the total simulation and fitting time on the number of phases (Isensee
et al. 2005)

4.3 Summary

In this chapter we treat issues that we think are important for the proxel-based sim-
ulation, especially when deciding whether to apply it or not and what to be careful
about. For some classes of models, other approaches might be more suitable or also
out of consideration because of the specific description of the model. With that respect
Section 4.1 can be used as an indicator or help when making the decision and point
out the characteristic features of the method.

Additionally, we review two ideas for variations of the proxel-based method for which
there is an ongoing research in our research group. The variants can also be considered
as starting points and directions for future research on the proxel-based method and
its improvement.
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This section describes the framework that we developed for describing models, which is
customized to the features and properties of the proxel-based method (Lazarova-Molnar
and Horton 2005a). We start by elaborating the motivation for the development of
the framework, after which a detailed description and definitions of the basic elements
follow. Some of the terms are redefined terms from Chapter 3. Additionally, we present
two examples to demonstrate the complete procedure of describing and analysing dis-
crete stochastic models and show computational results from their analysis. Finally,
in Section 5.7 we discuss and critically assess our approach.

5.1 Motivation

The direct motivation for developing this modelling framework is a practical application
of the proxel-based method to a reliability modelling problem for DaimlerChrysler,
elaborated in Section 6.2. There, we were able to adapt a Petri net model so that it
could be analysed effectively using proxels, at the same time exploiting all the benefits
of the method. This resulted in a substantial simplification of the initial model. As a
result of this project, we realised that there was a necessity of having a ”better” way of
describing the models, so that their analysis can benefit the most from the properties
of the proxel-based method.

Previously, the input to our proxel-based simulation tool was the reachability graph
of a stochastic Petri net (Haas 2002), which has the disadvantage that the models
have to be bounded. Here we introduce our new description approach, in which this
problem does not exist any more and which exploits the other beneficial properties of
the method, some of which are explained in Section 4.1. The direct input of the Petri
net is also an option, but it requires optimising and adaptations before sending it to
the proxel-based simulator.

In the next section we start by defining the elements needed to uniquely describe a
model and compare them with a popular formalism: the one of stochastic Petri nets.
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5.2 Basic Elements

The modelling framework that we introduce in this chapter represents a compact way
of modelling, which distinguishes between the finite and the infinite parts of one model,
using this knowledge to handle them efficiently for their further analysis, more specif-
ically for the proxel-based analysis. The goal of the framework is to contribute to
the development of a modelling and analysis tool that would be able to represent and
deterministically analyse a wide class of discrete models. This means having a way to
describe models such that they could be immediately analysable by the proxel-based
simulator without making any changes or adaptations to the model itself and at the
same time exploiting the positive features of the proxel analysis method. Having these
properties in mind, our framework consists of the elements defined in the following.

Definition 5.1 – Discrete state. A discrete state (DS) of the model is one config-
uration of it, independent of time. It is represented as a combination of the partial
discrete state (PDS) and the vector of all countable quantities ( ~Q) in the model.

DS = (PDS, ~Q)

Definition 5.2 – Countable quantity. A countable quantity (Q) is a discrete quan-
tity in the model whose value changes according to a specific rule and which does not
have to be bounded. Usually it is used when the values it can take on are infinite
and it is a part of the discrete state of the model. It can be observed as a discrete
supplementary variable.

Definition 5.3 – Partial discrete state. A partial discrete state (PDS) of the model
is a part of the description of the discrete state the model is in, excluding the time
dependent countable quantities.

Definition 5.4 – Event. An event (E) is any action which takes the model into a
different discrete state (analogous to a state change). With respect to time, there are
two kinds of events, timed and conditional, depending on whether the event is scheduled
at a certain point in time or depends only on certain conditions being fulfilled. With
respect to the memory policy of the time that one event has been waiting to happen,
there are again two kinds of timed events, age and restart. The first one remembers the
time that the event has been active i.e. ages, whereas the second one has no memory.

Definition 5.5 – Age intensity. An age intensity of an event is the pending time
during which the event could have happened, but it has not.

Definition 5.6 – Active event. An active event in a discrete state is an event which
fulfils all preconditions for it to happen, as defined by the rules.

Definition 5.7 – Relevant event. A relevant event in a discrete state is an event
whose age intensity has an impact on the possible future state changes. These are
the active events and the age memory events in the model. Only timed events can be
marked as relevant because only they can age.
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Definition 5.8 – State. A state (S) in one model is the combination of a discrete
state and the age intensities of the relevant events in the actual discrete state. It
completely describes a configuration in which the model can be.

S = (DS,AgeIntensities(RelevantEvents(DS)))

Definition 5.9 – Rule. A rule (R) is a description of the dynamics in the model, as
a consequence of an event happening, and the preconditions for that event to happen.
It describes the changes in the model that an event provokes, in terms of discrete state
changes. Every event has a corresponding set of rules.

Definition 5.10 – Lifetime of a discrete state. A lifetime of a discrete state is
the longest amount of time that one model can spend in a particular discrete state
without making any state changes. It is dependent on the functions that describe the
dynamics of the model and the minimum probability threshold. It can be calculated
using Algorithm 3.2.

Definition 5.11 – Proxel. A proxel is a tuple, representing a dynamic computation
unit which completely describes any state of the model with respect to the global simula-
tion time and the sequence of states that leads to it, in terms of the probability for being
there. It is composed of the following elements: state of the model (S), vector of the
age intensities of the relevant events (~τ), global simulation time (t), the sequence of
states that lead to it (Route) and the probability (Pr) for all of the previous elements.

Proxel = (S, ~τ , t, Route, Pr)

Age intensities of the relevant events are stored in an age intensity vector - ~τ . In order
to reduce the complexity of the proxel structure, there are discrete state-dependent
mappings of the age intensities. This means that each component of the vector has a
different meaning (i.e. represents the age of a different event) in every discrete state.
Based on these definitions, every model can be represented as a tuple

(PDS,E, Q, R, (PDS0, Q0)),

where each of the elements has a meaning, described as follows:

• PDS is the set of partial discrete states:

PDS = {PDS1, PDS2, . . . , PDSn} ,

• E is the set of events:
E = {E1, E2, . . . , Em} ,
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• Q is the set of countable quantities:

Q = {Q1, Q2, . . . , Ql} ,

• R is the set of rules which describe the effect of, and the conditions under which,
each event happens in terms of discrete state changes:

R = {R1, R2, . . . , Rj} ,

• DS0 is the initial discrete state, represented as a vector of the initial partial
discrete state and the initial values of the countable quantities:

DS0 = (PDS0, Q0).

Rules can as well be time dependent, just as the parameters of the distribution functions
that describe the activation times of the events. This means that different complex
situations can be modelled, such as, for example, a queuing system in which customers
in the afternoon arrive usually in couples and with a lower frequency than at other
times during the day.

In the proposed formalism, some of the defined terms have corresponding Petri net
elements, as shown in Table 5.1.

Table 5.1: Our modelling framework and SPNs: A parallel

our approach SPNs

discrete state marking
event transition

age intensity activation time of a timed transition
relevant event marking-enabled or age memory timed transition
set of rules incidence matrix

In general, when compared to the Petri net formalism, our proposed framework can
be interpreted as a proxel-adapted compromise between the Petri net itself and its
reachability graph, where the finite part of the Petri net is the basis for the partial dis-
crete state space and the infinite part for the countable quantities. This framework for
describing discrete stochastic models makes their proxel-based simulation and analysis
straightforward as will be shown with concrete examples.

5.3 Graphical Description

To support the comprehension and enhance the intuitiveness of our modelling frame-
work, we designed a corresponding graphical representation. This also contributes to
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a more understandable illustration of the models and their dynamics. Each of the
elements has its corresponding graphical symbol, as follows:

• Partial discrete state (labelled circle):

• Countable quantity (labelled square):

• Event (labelled arrow):

or

The descriptions of the effects (e.g. changes of the quantities) that the events cause
and the properties of the events (e.g. age; restart is the default) are labelled on the
graphical symbols. The arrows (i.e. events) can also connect two corresponding partial
discrete states to show the switch between the two. If an event causes a change of a
countable quantity then the arrow, its graphical representation, is attached to the
square that represents that particular countable quantity, as shown in Figure 5.2.

5.4 Adapted Algorithm

In this section we present the algorithm for the proxel-based analysis of general models.
It is based on Algorithm 3.1 presented and explained in Section 3.1.3, and adapted
accordingly to use our modelling framework as a starting point.

In Algorithm 5.1 the new adapted algorithm is shown. For simplicity reasons the route
and the simulation time components are excluded. There is no need to explicitly store
them as they are implicitly considered.

The meanings of the variables used in the algorithm are the following:

• PDS is a partial discrete state,

• Q is a vector of the countable quantities,
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Algorithm 5.1: Extended Proxel Algorithm (2)
Input: ∆t, tmax

Initialize proxel set PS(0) by inserting the initial proxel;1

switch = 0;2

for i=1 to [tmax/∆t] do3

foreach proxel p = ((PDS,Q), ~τ , prob) in the proxel set PS(switch) do4

foreach active event Ei in PDS do5

Calculate probability probcalculated for the event Ei;6

Generate new state S = (succ(PDS), succ(Q)) according to rules7

(Ei);
if pds(S) enables set of conditional events cE = {cEi} then8

Generate set of new states nS = {nSi} according to cEi9

foreach nSi in nS do
Calculate probability probcalculated for the event cEi;10

if search(nSi in PS(1− switch)) = proxelfound then11

proxelfound = (nSi, (prob(proxelfound) + probcalculated))12

end13

Generate new proxel pnew = (nSi, probcalculated);14

Store pnew in PS(1− switch);15

end16

end17

else if search(S in PS(1− switch)) = proxelfound then18

proxelfound = (S, (prob(proxelfound) + probcalculated))19

end20

else21

Generate new proxel pnew = (S, probcalculated)22

end23

probrest = prob− probcalculated;24

end25

Generate new proxel pnew = ((PDS,Q), succstay(~τ), probrest);26

Store pnew in PS(1− switch);27

Remove the processed proxel p from PS(switch);28

end29

switch = 1− switch30

end31
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• pds(S) is a function which extracts the partial discrete state from a state S,

• ~τ is the age intensity vector which contains the age intensities of the relevant
events,

• prob is the probability of the proxel that is being processed,

• search(S in PS) is a function that searches for a state S in a set of proxels PS
and returns the corresponding proxel if successful,

• rules(Ei) is the set of rules associated with an event Ei, and

• succ(~τ) and succstay(~τ) are the newly calculated successors of the age intensity
vectors for leaving a discrete state (according to the set of rules rules(Ei)) and
staying there, correspondingly.

The probability of a proxel (probcalculated in lines 6 and 10) is approximated by inte-
grating the instantaneous rate function (IRF) along the interval (t, t + ∆t), using any
of the numerical approaches presented in Section 3.2.

Algorithm 5.1 differs from Algorithm 3.1 in that that it checks at every event if any
conditional events have become enabled (line 8). If the answer is positive, it implements
the corresponding state changes without updating the simulation time, i.e. within the
same time step.

The proposed modelling formalism provides an appropriate input format for the proxel
simulator because the proxel-based method operates on the description of the model
and the framework allows a high degree of flexibility in the model description. The
rules that are part of the framework are easily adaptable to describe any situation that
we have examined until now. At the same time the framework provides a compact
input of the state, which makes the proxel-based simulation more efficient.

5.5 Examples

In this section we use two concrete examples to illustrate the terms defined in the pre-
vious section and show some of the advantages of our proposed modelling framework.
The first example is a model of a queuing system and the other one of a fault-tolerant
machine. The examples are classical, yet they contain features which make them diffi-
cult to be analysed using standard approaches (discussed in Section 4.1), as described
in detail along with the model descriptions.

5.5.1 Queuing System

The first example model is a queuing system that consists of two queues and one
server, which can be interpreted as a system that operates with two types of customers
which arrive according to two different distribution functions and are served by one
employee. The queues are unbounded. This would already present a problem when
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using a standard deterministic approach when the arrivals are generally distributed. In
that case, the first pre-processing step that would have to be carried out would be to
bound the lengths of the queues, i.e. impose a restriction on the model, which means
having to change the model for every alteration of the distribution functions or their
parameters. Proxels, however, can analyse the model without making any adaptations
to it as they create the state space on-the-fly while simulating the behaviour of the
model. The new modelling framework aids this process by providing a description
of the models making them directly analysable by the proxel-based method without
making any modifications.

The Petri net of the queuing model is shown in Figure 5.1. It consists of two places
for the queues and one place for the server. The inhibitor arc illustrates the limitation
of the server of serving one customer at a time.

Figure 5.1: Petri net description of the queuing system model

In this model we recognise two candidates for countable quantities, i.e. the numbers of
people in the both queues, and two partial discrete states, i.e. server-free and server-
busy, which in this case are sufficient to describe the discrete state space. We label
the countable quantities by Q1 and Q2 correspondingly, and the two partial discrete
states by B (as busy) and F (as free).

Five events can be distinguished in this model:

• E1 - customer enters the first queue,

• E2 - customer enters the second queue,

• E3 - customer from the first queue moves to the server,

• E4 - customer from the second queue moves to the server, and

• E5 - customer completes service.

which operate according to the following rules:

• E1 → Q1 + 1,

• E2 → Q2 + 1,

• E3 → Q1 − 1, (if F then B),
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• E4 → Q2 − 1, (if F then B),

• E5 (if B then F ).

Three of the rules include if-conditions, where the if part describes the precondition(s)
for each of the events to happen. For example, the server needs to be free (F ) so that
a customer from either of the queues can occupy it (events E3 and E4).

In Figure 5.2 a graphical representation of the model, using the proxel-adapted descrip-
tion framework, is shown.

Figure 5.2: Graphical representation of the model using our proposed approach

As already stated, there are two types of events: timed and conditional. In our model,
E3 and E4 represent conditional events, whereas all of the others are timed. This
concept corresponds to the Petri net concepts of timed and immediate transitions.

The initial partial discrete state of the model is F and the initial values of the countable
quantities are both zeros (i.e. the queues are empty in the beginning), meaning that
the initial discrete state is (F, 0, 0).

The relevant events, which can only be timed, are the following:

• In F - E1 and E2

• In B - E1, E2 and E5.

Because at any partial discrete state there are at most three relevant events, the age
intensity vector consists of three components and has the following mappings: in F ∼
(E1, E2, /) and in B ∼ (E1, E2, E5), where the ”/” symbol means that there is no
mapping for that component, i.e. that component in the vector is inactive.

The general discrete state vector for this model, which describes the structure of the
discrete states of the model is the following:

(PDS,Q1, Q2),where PDS ∈ {F,B}, and Q1, Q2 ∈ Z+
0 .

Correspondingly, the initial state vector is the following:
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((F, 0, 0), (0, 0, /)).

According to the event rules, the following states could be reached in the next time
step:

1. ((F, 1, 0), (0,∆t, /)), via E1 i.e. customer arrival in the first queue,

2. ((F, 0, 1), (∆t, 0, /)), via E2 i.e. customer arrival in the second queue, and

3. ((F, 0, 0), (∆t, ∆t, /)), no event has happened.

In the first two cases there are conditional events activated, i.e. the arrived customer
moves to service because the server is free. Therefore, the model behaviour takes the
corresponding directions immediately, in the same simulation time step. The corrected
possible states to be reached at time step t = ∆t are:

1. ((B, 0, 0), (0,∆t, 0)), via E1 and E3,

2. ((B, 0, 0), (∆t, 0, 0)), via E2 and E4, and

3. ((F, 0, 0), (∆t, ∆t, /)), no event has happened.

The probabilities for the developed successive states are omitted in the descriptions
above. However, they can be computed using the instantaneous rate function, using
the Equation (2.3).

Once the probability for a state has been computed, it is attached to the state vector
to form the proxel. The probability for staying in the same discrete state in the next
time step is calculated as a subtraction of the probabilities for leaving the discrete
state from the probability for being there.

If the model is to be analysed by the proxel-based method, using Petri net representa-
tion, one of the following two approaches must be used. The first one is to construct
the reachability graph, which again means bounding the state space of the model a
priori. The second approach is to build the state space on-the-fly, which avoids the
disadvantage of the former method, but it leads to complications when storing the
proxels, because that is the worst complexity that the format of one proxel can have
i.e. the number of tokens at all places in the Petri net.

The proposed approach is a combination of the two. It uses an array for enumerating
the partial discrete states, and additional components where necessary: the infinite
places (i.e. the countable quantities).

The goal of this example is to show how the modelling framework works when used
as an input formalism to the proxel-based simulation. Particularly in this example,
there is no reduction of the computational complexity compared to the direct Petri net
simulation because the dimension of the discrete state vector is equal to the number of
places in the Petri net. The saving is meaningful when the finite part of the Petri net
is represented by more than one place, as is the case in the next example, where three
places are represented by one component in the discrete state i.e. the partial discrete
state.
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5.5.2 Machine Model

The second example illustrates some additional features of the method including the
possibility of modelling rewards. The model represents a fault-tolerant machine which
has scheduled almost regular maintenance and fails according to a given distribution
function, which is a function of the age of the machine and the number of failures that
have happened until that point in time. The Petri net that describes the model is
shown in Figure 5.3.

Figure 5.3: Petri net of the machine model

The state space of this model is unbounded because the number of failures is not
limited. As is the case with the previous example, this would mean limiting it in order
to analyse the model numerically.

According to our proxel-adapted description framework, the model has the following
partial discrete states:

• OK - machine operates normally,

• F - machine is failed,

• M - machine is being maintained,

and one countable quantity ]F, which tracks the number of failures.

The model contains four events, each distributed according to the assigned distribution
function:

• E1 - machine goes to maintenance mode ∼ F1(),

• E2 - maintenance completed ∼ F2(),

• E3 - machine fails ∼ F3(),

• E4 - repair completed ∼ F4(]F, t) (repair time is a function of the number of
failures ]F and the age of the machine i.e. simulation time t),
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which obey the following rules:

• E1 → (if OK then M), age memory,

• E2 → (if M then OK),

• E3 → (if OK then F ), ]F + 1,

• E4 → (if F then OK).

The specific functions and parameters are provided in Section 5.6 i.e. the experiments
section. The graphical representation of the machine model is illustrated in Figure
5.4.

Figure 5.4: Graphical representation of the proxel-adapted machine model

The age intensity vector is two-dimensional, with the following mappings of the events’
age intensities to the discrete states: OK ∼ (E1, E3), M ∼ (E2, /), and F ∼ (E1, E4).
The age intensity of the event E1 is present in both partial discrete states OK and F,
because it has an age memory policy and its elapsed time needs to be remembered,
whereas in M it is the event that got the model into that state and it is not active
any more, which is why it is not included into the mapping vector. The discrete state
vector has the form (PDS, ]F), where PDS ∈ {OK,M,F} and ]F∈ Z+

0 . Therefore the
initial state is

((OK, 0), (0, 0)),

resulting in the following subsequent states:

1. ((F, 1), (∆t, 0)), via E4 i.e. machine has failed; the number of failures is also
increased,

2. ((M, 0), (0, 0)), via E1 i.e. machine goes to maintenance, and

3. ((OK, 0), (∆t, ∆t)), no event has happened.

From the two example models it can be seen that the proxel-based method operates
by exploring all of the possible behaviours of the model in an intuitive way, only by
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following the rules attached to the events in the model. Therefore the properties of
the models, which are usually considered as undesired, fit very well into the existing
framework.

5.6 Experiments with the Example Models

In this section we present results of some of the experiments performed using the two
examples described in Section 5.5. The goal of this section is to provide a general im-
pression about the performance of the proxel-based method and the kinds of questions
it can answer, given that the models are described using the proposed formalism. In
the first subsection we present results concerning the queuing model and in the second
one results concerning the machine model.

5.6.1 Experiments with the Queuing Model

The queuing model is interesting because its state space is unbounded. Therefore, the
reachability graph of the model would be unbounded as well, as represented symboli-
cally in Figure 5.5. The rounded boxes represent tangible markings and the rectangles
vanishing markings. The two big ovals represent the partial discrete states, as defined
by our proxel-adapted modelling framework.

Figure 5.5: The reachability graph of the queue model and its connection with the proxel-adapted
model description

For the experiments we use the following distribution functions:

• E1 ∼ Uniform (0.8, 1.6),

• E2 ∼ Uniform (1.0, 1.8), and

• E5 ∼ Exponential (2.0),
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for describing the corresponding timed events.

The solutions that the analysis provides are the transient probabilities for the following
discrete states:

(1) Server is busy and there are no customers in the queues,
(2) Server is busy and there are no customers in the first queue and the second queue
is not empty,
(3) Server is busy and there are no customers in the second queue and the first queue
is not empty,
(4) Server is busy and both queues have at least one customer, and
(5) Server is free and there are no customers in the queues.

The results are shown in Figure 5.6 in the corresponding order. Even though the model
contains unbounded elements, still a smooth transient solution is feasible. The only
other option that can analyse unbounded models without imposing restrictions, the
DES, would need a large number of replication to achieve such a smooth result.

Figure 5.6: Transient probabilities of the discrete states (cases) described above

The computation time for this experiment was 500 seconds, using a time step ∆t = 0.2,
simulating up to time t = 15. Observing the results shown in Figure 5.6 we can come to
a conclusion that this model, given the distribution functions, has a limiting behaviour
i.e. the transient probabilities approach the steady state ones as time goes to infinity.
The highest probability have the states described in case (1) and (5) i.e. where both of
the queues are empty and the server is either busy or free. This is also to be expected,
given that the rate of service is quite fast compared to the arrival rates.
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5.6.2 Experiments with the Machine Model

The machine model is more interesting because it exploits the feature of having the
distribution functions of the events depend on the values of the countable quantities
and the global simulation time.

The distribution functions that we use for describing the events for the purpose of
experimenting with this model are the following:

• E1 ∼ Deterministic(20.0),

• E2 ∼ Exponential(3.0),

• E3 ∼ Uniform(10.0, 20.0), and

• E4 ∼ Uniform(1.0 + 0.1 ∗ (]F + t), 15.0 + 0.05 ∗ ]F ), depending on both the
number of failures that have happened ]F and the global simulation time t.

The probabilities that we are interested in are the ones for the following discrete
states:

(1) The machine has not had any failures,
(2) The machine has had one failure,
(3) The machine has had two or more failures, and
(4) The system is being repaired.

The results from the corresponding proxel-based analysis are shown in Figure 5.7,
where it can be observed how the probability of the machine having more than two
failures, i.e. case (3), slowly approaches the value 1.0, as expected. The probability of
the discrete state in which the machine is failed, i.e. case (4), has not stabilised during
the predefined simulation time.

The second thing that might be of interest in this model is the number of failures and
its transient development. The result of the analysis of that parameter is shown in
Figure 5.8.

The computation time for this experiment was 0.06 seconds, using a time step ∆t = 1.0,
running the simulation up to time t = 80.

Based on the experiments, it is apparent that the proxel-based analysis provides com-
plete solutions to the model questions i.e. transient solutions. The obtained solutions
support the process of drawing conclusions about the behaviour of the model, and
make it possible to predict it for points in time for which it has not yet been simulated.
Another goal of this model is to show that the proxel-based method can be seen as a
promising tool in reward and performability modelling (Haverkort et al. 2001), which
is described in detail in Section 6.1.

Both series of experiments in this section analyse models which have properties that are
usually found as unwanted and problematic. However, this is not an obstacle for the
proxel-based simulation. Just for a comparison, the models could have been analysed
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Figure 5.7: Transient probabilities of the discrete states described above

Figure 5.8: The mean number of failures as a function of the global simulation time

using discrete-event simulation, but then the results would have been in a form of
confidence intervals requiring a large number of independent replications to achieve or
get closer to the accuracy that the proxel-based method provides. This is shown in
Section 6.2, where for the model that is analysed the discrete-event simulation needs
20 to 30 hours, whereas the proxel-based simulation for achieving the corresponding
accuracy, a couple of seconds to a couple of minutes.
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5.7 Discussion and Conclusions

The motivation for developing this modelling framework is a practical application of the
proxel-based method to a reliability modelling problem for DaimlerChrysler (Lazarova-
Molnar and Horton 2004). This experience made us realise the need for a description
method which would be able to handle unbounded models with as few variables as
possible, which lead to observing the complete state space on two levels, as illustrated
in Figure 5.5. We recognised that some of the elements of the model can be observed as
discrete supplementary variables of the so-called partial discrete states and that their
behaviour, because of regularities, can be described by rules. This observation lead to
the idea of having countable quantities and rules.

We also allow models described by our description framework to have additional fea-
tures that are supported by the proxel-based method. One of these is having distri-
bution functions that depend on the discrete states or the simulation time, which is
a very realistic assumption and very complicated to analyse using partial differential
equations. On the other hand, it is definitely doable by discrete-event simulation, nev-
ertheless there we may encounter the problem of having extremely long simulation
times if we try to achieve the quality of solutions that the proxels provide. Another
problem one might come across when using discrete-event simulation are rare events, to
which the proxel-based method is undoubtedly less sensitive because all of the events
there are equally important, as shown in (Lazarova-Molnar and Horton 2003a).

One disadvantage is that probably the proposed framework is less intuitive than the
formalism of stochastic Petri nets, but that is still hard to say because it is new. One of
our future goals is to provide a tool which would convert SPNs into our proxel-adapted
descriptions.

Finally, given the mentioned properties of the proxel-based method, we believe that
our proposed framework contributes to making the method a generally applicable tool
for analysing stochastic models.

5.8 Summary

In this chapter we introduce a modelling framework which responds to the input re-
quirements and analysis capabilities of the proxel-based method. For that purpose, we
revise the definitions of some elements and introduce new ones, as well as update the
basic algorithm for proxel-based simulation. We illustrate our modelling framework by
two examples which demonstrate different features of the method.
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The proxel-based method is theoretically not limited in the classes of problems that it
can address. The main reason for that is that the method works by creating the solution
algorithm directly from the description of the model, skipping the step of developing
a computational model, which enables the method to deal with any situation that can
arise. In this section we report on applications of the proxel-based method, for which
we believe that it can be useful. Each of the application areas is supported by concrete
examples.

6.1 Proxels in Reward Modelling and Performability Analysis

Performability modelling and analysis is used as a measure of both performance and
dependability of, mainly, fault-tolerant systems. Because of the flexible definition of
the proxels, they can easily be extended to provide a widely-applicable approach to
performability modelling.

In (Lazarova-Molnar and Horton 2005b) we establish the framework for proxel-based
performability modelling and analysis, and implicitly for general reward modelling.
Two types of rewards are considered: impulse and rate rewards. Impulse rewards occur
with state changes and are associated with them, whereas rate rewards are associated
with discrete states. The advantage of the proxel-based simulation is that both types
of rewards can be modelled as functions of any other time-dependent quantity of the
model.

The motivation for this application field of the proxel-based method is a practical
experience with the method for analysing a warranty model, a project which we carried
out for DaimlerChrysler, as described in Section 6.2. The model that needed to be
analysed involved manipulating only impulse rewards in order to analyse the costs. It
required a slight adaptation of the existing framework of the basic proxel-based method
for tracking the rewards, without imposing any additional significant difficulties with
respect to the computational and memory complexity of the implementation. Based
on that experience we recognized that the method can be useful for carrying out a
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more general performability analysis which also includes rate rewards, which approach
is described in the following.

To start with, we provide a short overview of performability theory and discuss some
of the more popular existing approaches. Further we describe and explain why the
proxels are a good option for carrying out performability analysis of discrete stochastic
models and describe how it is to be achieved. To aid comprehension and show how it
works in practice, in the experiments section we introduce an example model which we
then use to test two different cases of performability modelling.

6.1.1 Performability Modelling

Performability modelling (Haverkort et al. 2001) is a modelling approach for simultane-
ously evaluating both the performance of a stochastic system and its reliability. This
measure is of exceptional importance when analysing fault-tolerant systems whose per-
formance depends on many components which fail and get repaired, i.e. behave, in a
stochastic manner.

Performance alone is a measure of how efficient a system is provided the system is
correct. It can be measured as throughput, response time, etc. Reliability, on the
other hand, is a measure of the system’s ability to function correctly over a specific
period of time i.e. describes how reliable it is. Reliability of a discrete and stochastic
system Sys can be expressed mathematically in the following form:

R(t) = Pr(Sys operates correctly in [0, t)). (6.1)

If we now denote the lifetime of a system by L, and F is the distribution function of
L, then the reliability of the system at time t can be computed as

R(t) = Pr(L > t) = 1− F (t) (6.2)

which is nothing but the survival function, as defined in Section 2.1.1.

Using common words, performability modelling evaluates and answers the following
question:

How much work will be done (or lost) in a given interval by a given system including
the effects of its failures and repairs?

and computes the function that describes it. The completed amount of work is then
the accumulated performance over a given time interval, taking into account the oper-
ativeness of the separate components of the system, referred to as performability.

The performance of one system is measured using a reward function rr(DS, τ) which
evaluates its efficiency in each of its discrete states and can also be dependent on the
time spent in it or the global simulation time.
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One of the most common tools for modelling and performability analysis are Markov
reward models, which operate by first constructing the continuous-time Markov chain
that represents the model and assigning reward rates or functions to each of its states.
The reward rates estimate the performance of the system in each state. The estimates
can be obtained using performance analysis of the system, which means running the
system in every possible configuration and evaluating the measure that characterises
its performance, which is then denoted as a reward rate of that state in the Markov
chain.

The goal of performability modelling usually is to obtain the following measures, de-
pending on their relevancy:

• expected performance of a system at a certain point in time,

• time-averaged performance of a system over a time interval (0, t), and

• amount of work accomplished over a time interval (0, t),

all of them taking into account the effects of failures, repairs, as well as the other
possible conditions of the system.

The last measure, the amount of work accomplished, is calculated as the accumulated
reward over the time interval [0, t) and denoted as Y (t). The time-averaged perfor-
mance W (t) is then calculated as

W (t) = Y (t)/t. (6.3)

Y (t), which denotes the amount of work accomplished at time t, is generally more useful
for Markov reward models that contain absorbing states, and W (t) for the others. The
biggest drawback of the Markov reward model is that it is not directly applicable to
models that contain generally distributed events i.e. it can only analyse models which
contain exclusively exponentially distributed activities.

Another common tool for performing performability modelling are stochastic reward
nets (SRNs) (Muppala et al. 1994), which are based on generalised stochastic Petri
nets (GSPNs) (Kartson et al. 1994). Because of the equivalence between GSPNs
and Markov chains, SRNs can be mapped onto Markov-reward models by associating
rewards to all tangible markings of the reachability graph.

TimeNET (Zimmermann et al. 2000) which was reviewed in Section 2.2.3, carries out
performability analysis of a wide class of stochastic Petri nets with generally distributed
firing delays, including coloured SPNs. The tool, however, has restrictions on the
number of non-exponentially distributed times with respect to the quality and type of
analysis that it can provide. Its numerical approach works on the basis of a reachability
graph, which limits the tool to bounded models. None of this limitations exist for the
proxel-based method, which on the contrary, creates the state space on-the-fly and
does not have any restrictions with respect to the number and type of distribution
functions.
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6.1.2 Performability and Proxels

In this section we describe how performability modelling can be carried out using the
proxel-based method, as well as formalise the approach by developing an algorithm.
Performability analysis in general works by accumulating and manipulating rewards.
There are two types of rewards that are treated by the proxel approach: rate and
impulse rewards. Rate rewards are associated with discrete states and impulse rewards
are associated with state changes. When measuring performability of one system, rate
rewards are the evaluations of the performance of the system in different discrete states.
Both can either be constant values, or functions of different parameters.

In the proxel-based approach the model is represented as a stochastic process X =
{X(t), t ≥ 0} which is defined on a set of discrete states DS = {DS0, DS1, . . .}, whose
state changes are distributed according to certain distribution functions. We use stan-
dard state-transition diagrams for describing the models. We define performance rr in
form of a reward rate as a function on the discrete state space DS of the model:

rr : DS → <, or (6.4)
rr : DS ×<n → <, n ∈ N, (6.5)

where < is the set of real numbers and N the set of natural numbers. A higher reward
rate means a higher performance of the system.

The second Expression (6.5) shows that the performance can also be a function of
another parameter besides the discrete state (such as the simulation time, age intensity,
or the number of times that a state change has happened, calculated as an impulse
reward), and that is supported by the proxel-based method.

Impulse rewards ir are defined in a similar way, except that they are functions of the
state changes. Analogously we have:

ir : DS ×DS → <, or (6.6)
ir : DS ×DS ×<n → <, n ∈ N. (6.7)

If the performance of the system is dependent on anything else besides the elements
which are by definition part of the proxel, then that element has to be included in the
state of the system as an additional variable. For example, in a situation where the
performance of the system decreases following a given function, which is proportional to
the number of times that a certain component has failed, then the number of failures has
to be included in the state description. The situation described is also a very realistic
assumption (also treated in (Sule and Castro 2002)), which gives an additional credit
to the proxel-based simulation for being able to handle such complex configurations.

Based on Expressions (6.4) to (6.7), if DS is the discrete state-space of the model, we
specify the relevant measures in performability analysis that can be evaluated by the
proxel-based method as follows (Haverkort et al. 2001):
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• Steady state performability (SSP), defined as

SSP =
∑

i∈DS

πirr(i) (6.8)

where πi is the steady state probability of the i -th state,

• Transient performability (TP), defined as

TP (t) =
∑

i∈DS

pi(t)rr(i) (6.9)

where pi(t) is the transient probability of the discrete state DSi at time t

• Expected work accomplished (EW), defined as

EW (t) =
∫ t

0
TP (s)ds (6.10)

and presents the integrated transient performability up to time t.

In the proxel-based method performability measures are computed by tracking the
behaviour of the model and accordingly updating them. Therefore, the transient per-
formability TP () and the expected work EW () for every time step are computed ac-
cording to the Equations (6.11) and (6.12) correspondingly.

TP (k×∆t)

=
∑

∀proxel Px at k∆t

[Pr(Px)× (rr(ds(Px)) + ir(ds(pre(Px)), ds(Px)))] (6.11)

EW (k ×∆t) =
k∑

i=0

TP (i×∆t)∆t, where k = dt/∆te (6.12)

Pr(Px) is the probability that the proxel Px carries, whereas ds(Px) is a function that
extracts the discrete state from the proxel Px. pre(Px) is the predecessor (i.e. parent)
proxel of Px. The steady state performability can be implicitly calculated from these
two measures.

An illustration of the proxel-based method, along with the computation of the per-
formability measures is shown in Figure 6.1 in the table below the proxel-tree. The
figure is, however, simplified to aid the comprehension. The proxels in this figure con-
sist of only three components: discrete state, one age intensity and a probability value.
Succi(DS) denotes one of the successor discrete states (i -th) of the discrete state DS,
and Init DS is the initial discrete state of the model, i.e. the one that the model
occupies at time t = 0. The model in this case has three discrete states: the initial
one and two successors of it. Their performances are denoted by their reward rates:
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rr1, rr2, and rr3. We assume that there are also two impulse rewards for the two state
changes from the initial discrete state to the two successors, denoted by ir1 and ir2.

Figure 6.1: Simplified illustration of the initial steps in the proxel-based performability analysis

The proxel-based performability analysis is described by Algorithm 6.1. There, in
lines 20, 21, 25, and 26 the calculations of transient performability and expected work
are shown, the latter one being of a cumulative nature with respect to the former
one. It can be noticed that the impulse rewards only appear in lines 20 and 21, i.e.
when the state changes happen, whereas in the case that the model stays in the same
discrete state, they are omitted. Algorithm 6.1 is an extension of the basic algorithm
for proxel-based analysis, which again operates based on two parallel data structures,
one of which stores the proxels from the previous step and the other for the proxels
that are currently being calculated. This is sufficient because every proxel contains all
of the necessary information in order to compute its successors.

The algorithm shows that performability modelling does not introduce any additional
complications to the existing algorithm and fits straightforwardly into the existing
framework. In order to show this practically in the next section we show how proxel-
based performability analysis on a simple example model works.

6.1.3 Experiments

Here we present a specific model which we found to be appropriate for demonstrating
how the proxel-based performability analysis works. The model represents a computer
system which consists of two different processors that operate at different speeds and
have different properties. The performance of the separate processors are functions of
the numbers of failures of the processors.
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Algorithm 6.1: Proxel Performability Algorithm
Input: ∆t, tmax

Initialize proxel set PS(0) by inserting the initial proxel;1

switch = 0;2

EW (0) = 0;3

for i=1 to [tmax/∆t] do4

TP (0) = 0;5

foreach proxel p = ((DS,−→τ ), prob) in the proxel set PS(switch) do6

foreach active state change Ci in DS do7

Get x as the mapping index of Ci in −→τ ;8

Compute succ(−→τ ) = −→τ × Ix;9

Compute succ(DS) as a successor discrete state of DS, resulting10

from the state change Ci;
Generate new state S = (succ(DS), succ(−→τ ));11

Compute probability probcalculated = IRF (Ci, τx)×∆t for the state12

change Ci;
Search for the state S in the states of the set of generated proxels;13

if proxelfound is the found proxel then14

proxelfound = (S, (prob(proxelfound) + probcalculated))15

else16

Generate new proxel pnew = (S, probcalculated);17

Store pnew in PS(1− switch);18

end19

TP (i) = TP (i)+rr(succ(DS))×probcalculated+ir(Ci)×probcalculated;20

EW (i) =21

EW (i) + rr(succ(DS))× probcalculated ×∆t + ir(Ci)× probcalculated;
probrest = prob− probcalculated;22

end23

Generate new proxel pnew = ((DS, succstay(−→τ ))probrest);24

TP (i) = TP (i) + rr(DS)× probrest;25

EW (i) = EW (i) + rr(DS)× probrest ×∆t;26

Remove the processed proxel p from TS(switch);27

end28

switch = 1− switch29

end30
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Description of the Example Model

The state diagram of the model that we elaborate and experiment with is illustrated
in Figure 6.2.

Figure 6.2: State diagram of the example model

The model has four discrete states:

• UU i.e. both processors up,

• UD i.e. faster processor up and slower down,

• DU i.e. slower processor up and faster down, and

• DD i.e. both processors down,

and each of them has a performance value in form of a reward rate associated with it.
The assumption is that one of the processors is initially 10 times as fast as the other
one, but the performance also depends on the number of failures that have happened
to each of them. This means that the performance of the system decreases with each
failure that has happened, which is a realistic behaviour situation. The functions which
describe the reward rates of the four discrete states are the following:

• rr(UU, f1, f2) = 11− (f1 + f2)2 × 0.005

• rr(UD, f1, f2) = 10− f2
1 × 0.005

• rr(DU, f1, f2) = 1− f2
2 × 0.005

• rr(DD, f1, f2) = 0

where f1 and f2 denote the number of times each of the processors has failed. In Figure
6.3 the dependence of the performance on the total number of failures for the discrete
state UU is shown. The amount of work that the slower computer can accomplish in a
time step ∆t without any failures is the unit for measuring the amount of work done.
The failure distribution functions that we use for the experiments are the following:

• F1 ∼ Weibull(15.0, 1.5),

• F2 ∼ Uniform(3.0, 6.0),
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• F3 ∼ Deterministic(3.0), and

• F4 ∼ Uniform(1.0, 5.0).

Figure 6.3: Dependence of the performance with respect to the number of failures for case B

In the same manner as in Figure 6.1, the illustration of the proxel-based performability
analysis of this model is presented in Figure 6.4. The age intensity vector in this case
has two components because that is the maximal number of concurrently active state
changes. The first component maps the age intensity of the first processor and the
second one of the second processor, their elapsed operating and repair times. There
are two additional discrete variables to the state of the model which trace the numbers
of failures for both processors correspondingly. The first additional variable next to
the discrete state counts the failures of the faster processor, and the second one of the
slower one. The consequence of this change in the model is a larger state space, and
therefore a higher number of proxels generated, than in a case in which the performance
is constant.

Figure 6.4: Illustration of the initial steps of the proxel-based performability analysis process for
the example model including the discrete supplementary variables

The results of the experiments with this model follow in the next subsection.
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Results of the Performability Evaluation of the Example Model

In the experiments we analysed the model presented in Figure 6.2 with a time step
∆t = 0.2 up to simulation time t = 60.

The simulation results for the transient solution of the model are shown in Figure 6.5,
based on which it can be pointed out that the model goes ultimately into a steady-
state, in which the discrete state in which both processors are up (i.e. UU) has the
highest probability, followed by the discrete state in which the faster processor is up
and the slower is down (i.e. UD). The transient performability evaluation for the same
model, which is shown in Figure 6.6, depicts the behaviour of the model in that, that
the transient performability stays relatively high, and decreases slowly because the
transient probabilities of the discrete states DD and DU slowly increase and become
constant correspondingly.

Figure 6.5: Transient probabilities of the four different states

The transient solution of the expected work accomplished is shown in Figure 6.7, which
is the integral of the transient performability solution, as shown in Figure 6.6. In the
figure it is visible how the expected work increases almost linearly, which is because of
the fact that the transient performability decreases very slowly.

It is obvious how the solutions that are obtained are complete and free from noise, and
support the process of making decisions about the systems we analyse, which is a great
advantage of the proxel-based method.

The number of proxels that are generated and the computation time for the experiment
are as follows:

Number of Proxels 10 160 034
Computation Time ca. 49s
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Figure 6.6: Transient performability of the model

Figure 6.7: Expected work accomplished of the model

which is an acceptable computation time regarding the smoothness and clearness of
the obtained solutions.

The model that we analysed is an interesting case because it involves discrete parame-
ters for controlling the performance of the system. If the model was to be analysed
using a PDE approach, the complexity of the computational model would have been
increased significantly with the introduction of every additional dependence. The DES
approach would have also needed a large number of replications to deliver such a
smooth transient solution as the one shown in Figure 6.6. This model is also not
bounded, which demonstrates another advantage of the method i.e. the ability to
build the state space on-the-fly.
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6.1.4 Conclusions

Performability modelling represents one application of the proxel-based method, which
is introduced and formalised in this section. Because of the flexibility of the proxel-
based method and the proxel definition, the method is easily extended to include
additional variables for tracking different relevant quantities. Therefore, the treatment
of both impulse and rate rewards did not represent an additional load, but instead
fitted straightforward in the existing framework.

6.2 Proxel-Based Simulation of a Warranty Model

The analysis of stochastic models is a common task in reliability modelling. The
problem of long and expensive simulations is always present and thus also the need
for faster and cheaper approaches. Models which are stiff, or whose measures have a
large variance, require a large number of replications when Monte Carlo simulations are
used; the model considered in this paper required 20 to 30 hours of computation time.
Since the proxel-based method is effectively a discretisation of a system of differential
equations, it provides a much more controlled convergence towards the solution as the
computation progresses. This fact was exploited in the warranty analysis model to
achieve results of comparable accuracy in a time range from a few seconds up to a few
minutes (Lazarova-Molnar and Horton 2004).

In this section the warranty model that was studied is described and results of an exper-
iment are provided, which illustrate the behaviour of the method and the application
of a corresponding software tool which was designed to automate the analysis.

6.2.1 Description of the Warranty Model

The model that was analysed was used to predict the warranty costs for automobiles
using different warranty strategies. These strategies contained a race condition between
a time-based and a mileage-based expiration threshold, whereby the simulation time
unit t is measured in miles, and physical time is converted into an equivalent number
of miles. Figure 6.8 shows a stochastic Petri net of this model.

The goal of the analysis of this model is to predict the manufacturer’s costs for different
types of vehicles and analyse different warranty strategies. During the warranty period,
the manufacturer incurs costs whenever the vehicle fails and must be repaired. As
shown in Figure 6.8, the warranty runs out whenever one of the two conditions is
satisfied: either the warranty period has run out or the warranty mileage is reached.
The costs are a decision factor in constructing the warranty strategy.

The discrete-event simulation of this model resulted in long computation times, owing
partly to the rarity of the failures, but mostly to the large impulse reward i.e. the cost
of a failure. The large reward combined with the rarity of failures creates a big variation
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Figure 6.8: Petri net of the warranty analysis model

in the results. The proxel-based method, as previously mentioned, is less sensitive to
the stiffness of models and results in much shorter computation times. Because of its
deterministic nature, the solutions obtained with the proxel-based method can clearly
show trends in the behaviour of one model.

The model is analysed using the following parameters:

• Y - the number of years under warranty,

• X - the mileage under warranty, and

• C - average costs per failure,

and the following distribution functions:

• f () - failure distribution function, and

• g() - time to mileage distribution function.

In the proxel-based simulation, the number of years is included in the state vector in
the same manner as the age intensities are; therefore the model results in only two
discrete states, ”under warranty” i.e. U and ”out of warranty” i.e. O. The state vector
in the general case has the following form:

(discrete state, age intensity of the failure transition, number of years passed),

with the initial state being:
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(U, 0, 0).

The things that could happen in the next time step are:

(1) one year could have passed, which probability can be computed from the instanta-
neous rate function of g, or

(2) failure could have happened, which probability can be computed from the instan-
taneous rate function of f, and the costs are correspondingly incremented, or

(3) the global simulation time, which is the mileage of the car, could be reached X,
which would end the simulation, or

(4) nothing, for which the probability is 1.0 minus the probabilities of everything else
happening, whereby the age intensities are incremented correspondingly.

The corresponding states are the following:

(1) (U/O,∆t, 1),

(2) (U, 0, 0),

(3) (O,∆t, 0), and

(4) (U,∆t, 0).

The discrete state in case (1) can either be U or O, depending on the parameter Y
which states the number of years that the vehicle is under warranty. If the discrete
state is O, then the simulation ends just like in the case (3).

The proxel-based simulation traces the flow of probability and the accumulation of
costs. The goal is to provide an approximation for the expected costs. The approxima-
tions differ in their accuracy based on the size of the time step being used. The solution
values, however, converge monotonically towards the true solution as the size of the
time step decreases. This makes it possible to perform an extrapolation of solution
values obtained with larger time steps and thus obtain a better approximation. The
fact that the simulation can be run using larger time steps means an enormous saving
of computation time.

6.2.2 Experiments

In the following we provide an example computation for the warranty analysis model.
For this purpose we use the following (fictitious) values for the required parameters:

• C = 1000 $

• f ∼ Exponential(0.00001 per mile)

• g ∼ Weibull(4500 miles, 1.5)
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Table 6.1: Values for the warranty model strategy

X (miles) 5000 10000 15000 20000
Y (years) 1 2 3 4

Figure 6.9: GUI of the proxel-based special-purpose solver

The corresponding values for X and Y are given in Table 6.1.

The user interface of the special-purpose proxel-based tool for the simulation using the
first values of X and Y is shown in Figure 6.9. It allowed an automated and faster
analysis of the warranty strategies.

Using an initial value of 100 for ∆t, the approximations for the costs are given in
Figure 6.10. In the same figure, the converging values of the costs for ∆t = 100,
50, 25 are obtained using proxel-based simulation, whereas the value for ∆t = 0 is
obtained using extrapolation. The overall computation time for this simulation was
0.24 seconds. In Figure 6.11 the results of the same simulation are shown, using an
initial time step of 300. The computation time was 1.02 seconds. This illustrates
how the initial size of the time step influences the solution. Even though the directly
computed solutions are quite different, the extrapolated solutions are very similar.
Thereby, the computation time differs with a factor greater than four. When running
more complex models, simulating a longer mileage or a period of time, the difference
can be much more significant. This shows that the extrapolation can increase the
accuracy of the solutions at a much lower cost.
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Figure 6.10: Costs approximations using different time steps and extrapolation

Figure 6.11: Costs approximations using different time steps and extrapolation

From Tables 6.2 and 6.3, it can be seen that the saving in computation time when
using larger time step is large and the accuracy affected only a little. This also proves
that the proxel-based method is very flexible and especially suitable when a rough
approximation is needed quickly.

From the cost analysis of the model, it could be discovered how the costs vary for
the four different cases (values of X and Y ). In the example presented, the change of
the costs is linear, as shown in Figure 6.12, which is to be expected, since the failure
distribution is exponential, i.e. it has a constant instantaneous rate function.

Table 6.2: Estimate for the cost using initial ∆t = 500 miles

X (miles) 5000 10000 15000 20000
Y (years) 1 2 3 4
Costs ($) 33.1675 72.5313 112.7430 153.3080

Comp. Time (s) 0.020 1.462 11.456 46.967
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Table 6.3: Estimate for the cost using initial ∆t = 1000 miles

X (miles) 5000 10000 15000 20000
Y (years) 1 2 3 4
Costs ($) 33.1442 72.4817 112.6660 153.2040

Comp. Time (s) 0.010 0.160 1.212 4.757

Figure 6.12: Solution values for the costs regarding the different warranty strategies

6.2.3 Conclusions

This positive experience with the proxel-based method opened the doors to our further
cooperation with DaimlerChrysler with respect to analysing their models with the
proxel-based method. The short computation times are significant from the point
of view of providing finer analysis of the costs within reasonable amounts of time,
which was almost impossible using the discrete-event simulation approach. The latter
approach was only able to do rough prediction of the costs for predetermined coarse
points, where each simulation was very expensive, with duration of about 20-30 hours.
In a time significantly less than that, the proxel-based simulation could provide a
more accurate smooth prediction and therefore provide a better decision concerning
the warranty strategy.

This is, however, only one way in which the proxel-based simulation is more efficient
than the discrete-event simulation approach. Another one would be getting rough
approximations of the costs within even smaller amounts of time. The flexibility of
the method makes it possible to compromise the accuracy with the computation time
when only an approximate idea of the solutions is needed. However, the sacrifice in
terms of accuracy is not too big as it was also shown by the experiments.

The success of the approach has also led us to construct a proxel-based simulation
tool for analysing the times to failure for non-trivial basic events in fault trees, which
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approach is discussed in the next Section 6.3. These models are small, but a high
degree of accuracy is required; these are ideal conditions for the proxel method.

6.3 Quantitative Evaluation of Fault Trees Using Proxels

Fault trees are a very popular tool for describing the failure behaviour of complex tech-
nical products and systems (Vesely et al. 1981). One of its common uses is estimating
computer systems reliability, as treated in (Apthorpe 2001; Manian et al. 1998a; Kaiser
and Gramlich 2004). The basic elements of fault trees are usually failures of different
components of one system, which combination of failures determines the failure of the
system as a whole. Therefore, these basic elements are usually described by one single
event which most often is a failure of a component, and therefore referred to as basic
events.

We are interested in the case where the basic events can themselves be small simula-
tion models with non-trivial time-dependent behaviour (Lazarova-Molnar and Horton
2003b). These models can be very stiff and at the same time require a high degree of
solution accuracy. We propose proxel-based simulation as an alternative to the usual
discrete-event simulation approach (Dutuit et al. 1997) and give some arguments in its
favour. Computational experiments are presented to evaluate the method’s usefulness
and demonstrate how it addresses the problem.

6.3.1 What is a Fault Tree?

In complicated systems failures result as combinations of different factors, such as
components failing, human errors etc. The manner in which each of these factors affects
the failure of the system, referred to as a top event, as a whole can be represented in
a logical function. Every factor that is not further decomposed is referred to as ”basic
event”. The graphical representation of this behaviour of one system as a logical
function of the basic events is referred to as a ”fault tree”. The logical interconnections
of the basic events that lead to the top event are known as gates, which define the
types of the relationships.

Fault tree analysis is a deductive analysis which provides a method in which the causes
for a certain undesired event, i.e. the top event, are determined. The fault tree in itself
is a qualitative model, which can be evaluated quantitatively, which is the objective of
the proxel-based fault tree analysis. This means obtaining the probability for failure
of the system as a function of time.

Fault trees can also be qualitatively analysed, which in practice means determining the
minimal cutsets for the top event (Lazarova-Molnar and Horton 2003b). Cutsets define
the sets of events, which if all occur, can lead to system failure. A cutset can be one
basic event, or a combination of more of them. A minimal cutset is the smallest set of
events that causes the top event to occur. Cutsets with the smallest number of events
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have the highest probability of happening, which is the reason why their computation
is important. The knowledge obtained via qualitative analysis is further used for
computing the availability and reliability measures of the system during quantitative
analysis.

Basic events can typically be modelled using small Petri nets that have only one token
and no more than five to six places. This means that only one age variable is needed
which makes the proxel-based simulation a good choice for analysing the basic events.

As an example we present a failure of a system which is modelled as a fault tree that
consists of four basic events i.e. four components that fail: A, B, C and D, as shown
in Figure 6.13. The system fails if one of the components C and D fail, and both of
A and B. A and B are repairable components, whereby A has an intermediate state
before it fails, which has a random duration described by a known random variable.
C and D are two copies of a non-repairable component. The probability distributions
of the activities are shown on the arcs in each model. The top event in this case is
represented with the following logical function of the basic events:

(A and B) and (C or D),

and its probability is computed using simple probability algebra functions on the prob-
abilities of the basic events (Helstrom 1984).

Figure 6.13: Example fault tree with the state-transition diagrams of the basic events

6.3.2 Quantitative Evaluation of Fault Trees and Proxels

When each basic event is a simple failure, as in cases C and D in Figure 6.13, then the
fault tree can be analysed by performing simple probability algebra. For non-trivial ba-
sic events, discrete-event simulation is usually used. Here, we explain how proxel-based
simulation can be used to solve that problem. An alternative supplementary-variable
based approach for models with only one active age intensity variable is implemented
for example in the tool TimeNET (Zimmermann et al. 2000). Another very popu-
lar and advanced tool for fault-tree analysis is Galileo (Sullivan et al. 1999), which
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analyses fault trees using combinatorial methods based on binary decision diagrams
(BDDs) (Akers 1978; Bryant 1986) and Markov methods. Examples for other more
popular fault-tree tools are SHARPE which uses a combination of methods (Sahner
and Trivedi 1996), MCI-HARP which uses discrete-event simulation for analysing non-
Markovian processes (Boyd and Bavuso 1993), and DIFtree, which extends both the
BDD and Markov analytical approaches and incorporates discrete-event simulation as
well (Manian et al. 1998b).

The basic events of the fault trees can usually be modelled by very simple SPNs which
contain only one token. The proxel-based simulation works very well for this type of
models because it usually requires only one age variable. The proxel-based analysis
also releases the typical fault tree analysis limitation of having only non-repairable
systems.

The way it works is that primarily all of the basic events are separately simulated,
which can be done sequentially or in parallel. This makes it possible to check the
models for errors for each of the basic events. After that the logical function that
describes the top event is applied to these results from the proxel-based simulation
which provides the probability of the top event as a function of time. The results of
the proxel-based fault tree analysis are deterministic and their accuracy can be easily
controlled by the choice of the discrete time step.

Example

The fault tree that we use in order to explain how the proxel-based analysis work is
the one presented in Figure 6.13. In Figure 6.14, the proxel-based simulation results
of the basic events are shown. The simulation was carried out using a time step ∆t =
0.01, up to time t = 50.

In Figure 6.15, which illustrates the transient solution of the top event, it is evident
that the proxel-based fault tree analysis provides the probability of the top event as a
function of time, and is able to trace the change of probability on a very detailed level.
The probability distribution of the top event is calculated from the ones of the basic
event using the following expression:

(Pr(A)Pr(B))(1− (1− Pr(C))(1− Pr(D))),

which is constructed using basic probability algebra (Helstrom 1984; Trivedi 2002). In
Figure 6.15 it is noticeable how the probability of the top event increases and decreases,
the reason for which is the fact that there are repairable components in the system
which fail and get repaired.

6.3.3 Conclusions

The proxel-based analysis of fault-trees provides deterministic and accurate results.
The biggest advantage of the method is that it does not deliver just one probability
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Figure 6.14: Results from the proxel-based simulation of the basic events

value stating how reliable one system is, but it delivers results in form of a function,
which allows a higher level of detail and more insight into the behaviour of the top event
in a relatively short computation time than what a DES would provide, as shown in
Figure 6.15. This allows a closer and more detailed observation of the behaviour of the
whole system, as a function of its components. The proxel-based simulation can be very
efficient in some cases compared to the standard approaches. Two of those cases are
models that contain rare events and models that contain activities’ times distributed
according to functions with finite support (Lazarova-Molnar and Horton 2003a,c). In
the other cases it performs quite well too because the models which describe the basic
events are simple models which contain only a few states. Along with the experiments,
a general fault-tree analysis tool was developed, which provided more general models
to be analysed.
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Figure 6.15: Results from proxel-based simulation of the top event

6.4 Analysing Stochastic Petri Nets Using Proxels

In this section we describe the proxel-based algorithm when the underlying stochastic
process is described by means of SPNs. Special attention must be given to the age
memory policy transitions, as well as the immediate ones, which are basically the
elements that make the difference when comparing SPNs to standard state-transition
diagrams, which elements are, however, an advantage when it comes to modelling
because they simplify the process significantly. The formal description of SPNs that
we use in this section is the one provided in Section 2.1.3.

A proxel Px is then defined as follows:

Px = (S, t, R, Pr).

S = (m,~τ) is the state of the model, where m is the marking and ~τ is the age intensity
vector which contains the elapsed enabling times of a set of timed transitions. t is the
global simulation time and Pr denotes the probability that the model is in state S at
time t, given that it has been reached through the sequence of states that represent
tangible markings, R = (S1, S2, . . . , Ss). The null sequence is denoted by � = ().
The age intensity vector ~τ is needed for a complete definition of the state of the Petri
net, because the firing rate of each timed transition is dependent on how long it has
been enabled. As expected, the instantaneous rate function is used for calculating
it. It takes as a parameter τ , which is the enabling time of the timed transition that
caused the change from the previous to the current marking, and is computed from
the distribution function that is associated with the transition.

For each timed transition Ti = (Fi, typei) with distribution function Fi and typei 6=
”immediate”, the IRF µi(τ) is calculated as shown in Section 2.1.1. The instantaneous
rate function is used for calculating the probability with which a timed transition
might fire within the time interval (τ, τ + ∆t) if it has been enabled for time τ . We
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approximate this probability by µi(τ)×∆t, which can also be exchanged for different
numerical integration approaches, as shown in Section 3.2.

Immediate transitions are associated with vanishing markings, therefore the proxels
that represent vanishing markings are referred to as vanishing proxels. This also applies
to the states that represent vanishing markings, they are referred to as vanishing states.
The model spends zero time in those markings and therefore the vanishing proxel is
instantly replaced by its successor proxels without advancing their simulation time
component in the proxels. The probability values of the successor proxels of a vanishing
proxel are computed as a product of the probability value of the vanishing proxel and
the probability that the corresponding immediate transition would fire. The latter is
computed using the following formula:

Pr(Ti fires) =
pi∑

Tj is enabled pj
,

where Ti/j = (pi/j , immediate).

As already stated in Section 4.1.1, the proxel-based method can operate on the Petri
net itself, without having to construct the reachability graph, building the state-space
on-thy-fly.

The formal representation for the case of SPNs of the calculation of the probabilities of
the different markings at different time steps as well as the calculation of the proxels’
probabilities in the next discrete time step based on the previous one is the following:

P (model in marking m at time t) =
∑

~τ :Sk=(m,~τ)

P (model in state Sk at time t),

where

P (model in Sk at time t + ∆t)

=
∑

i,j:Rj
t/∆t→ Si

P (model in Si at time t)× µil(τil)×∆t× plk,

where τil is the age intensity of the timed transition that caused the state change
from Si to Sl, having µil as the IRF of the corresponding timed transition, and Sl is
an intermediate vanishing state, in which case plk is the probability with which the
relevant immediate transition that is enabled in the vanishing marking fires. If there
is not an intermediate vanishing marking, then Sl = Sk and plk = 1. µil(τil) and plk

are zero if the corresponding state changes are not possible.

One important aspect when constructing the proxel tree is dealing with the different
memory policies of the timed transitions in the Petri net. Age policy transitions ”re-
member” their activation times when they become disabled owing to another transition
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firing. When re-enabled, the clock that measures the time until the transition fires re-
sumes from where it left off. For this reason, every age policy transition may require
an additional component in the age intensity vector, which adds to the complexity of
the simulation. If M is the set of reachable markings, then the dimension D of the age
intensity vector is bounded by:

D = max
m∈M

{|enabled enabling memory transitions in m|+ |age policy transitions|}

The first components of the age intensity vector are the age intensities of all timed
transitions that have enabling policy and have been enabled at different points in time.
The second component contains the age intensities of the age memory transitions. The
values of the variables corresponding to enabled transitions increase with time during
which the timed transitions they represent remain enabled. Each of them is set to zero
when the corresponding timed transition fires. The age intensities of the currently
disabled age memory transitions remain constant until the transitions are once again
enabled. There is an algorithm which creates a nearly optimal mapping as presented
in (Balaprakash 2004), so that at every point in time only the relevant age policy
transitions are represented in the age intensity vector, and at the same time it has the
lowest possible dimension.

6.4.1 Example

In this section an example is presented, which shows how the proxel-based method
functions when the Petri net contains both types of transitions, i.e. timed and imme-
diate. For this purpose, the Petri net model shown in Figure 6.16 is used. This SPN
represents a limited queuing system with two servers, where people choose one when
both of them are free, based on a probability value. For simplicity reasons the maximal
number of people in the queue was chosen to be two.

Figure 6.16: Petri net of a queuing system with one limited queue and two servers

The initial marking is m0 = (0, 0, 0). The five transitions modelled in the Petri net are
defined as follows:
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• Ti = (Fi, enabling), i = 1, 4, 5, and

• Ti = (pi, immediate), i = 2, 3.

Two of the transitions are immediate, and three of them are timed ones. Because of
the possibility that all three of the timed transitions are enabled at the same time
with different elapsed times, the dimension of the age intensity vector is three. The
reachability graph of the Petri net is shown in Figure 6.17. Vanishing markings are
shaded, and the arcs representing immediate transitions represented by thicker lines.
In Figure 6.18 the tree illustrates all possible developments of the Petri net within two
discrete time steps, in terms of markings.

Figure 6.17: Reachability graph of the Petri net from Figure 6.16

Figure 6.18: The first three levels of the markings tree based on the SPN in Figure 6.16

The age intensity vector complies with the following mapping (T1, T4, T5), i.e. the three
timed transitions that have enabling memory policy are consequently mapped to the
three components of the age intensity vector. The beginning part of the proxel-tree for
this model is presented in Figure 6.19. The proxel analysis operates on the complete
reachability graph, without advancing the time in the case of vanishing markings. This

113



6 Applications

means that whenever the model is in a vanishing marking, the probabilities of the sub-
sequent proxels are instantly calculated by multiplying the probability of the vanishing
proxel with the probabilities associated with the relevant immediate transitions. The
simulation time during this operation does not advance, as shown in Figure 6.19.

Figure 6.19: The first three levels of the proxel tree based on the SPN in Figure 6.16

The values of the probabilities are not stated explicitly in Figure 6.19, instead they
are replaced by asterisks. In Figure 6.20, a result from the proxel-based simulation of
this Petri net is presented. The value that is used for ∆t is 0.05, and the simulation
is run up to time t = 10, i.e. there are 200 discrete time steps. The computation took
1198 seconds on a 1.2 GHz Pentium III notebook. The distribution functions and the
probability values associated with the transitions that are used in the simulation are
the following:

• F1 ∼ Uniform(0.1, 2.1), F4 ∼ Uniform(2.0, 3.0), F5 ∼ Exponential(0.5)

• p1 = 0.3, p2 = 0.7

From Figure 6.20 one can spot that the model goes into a steady state, as well as the
sharp edges of the solution functions, which occur because of the presence of uniformly
distributed state changes.

Further follows an output of the implementation of this example which shows the
order in which the proxels are processed can be seen, as well as the exact probability
values, given the specific parameters for the distribution functions and the probability
values. AddProxel shows the proxels that are generated and stored into the proxel tree,
Processing shows a proxel that is currently being processed i.e. taken from the proxel
tree and its successor proxels are being generated. Vanishing shows the vanishing
proxels that are being processed i.e. their successor proxels being stored. Only the
proxels with nonzero probability values are actually stored. That explains why the
size of the tree in the first three steps is one. Because of the uniformly distributed
transition T1 on (0.1, 2.1), which is the only one enabled in the initial marking m0, the
state change can happen only after t = 0.1 = 2∆t, as confirmed by the output of our
program. It can also be spotted that always when a vanishing proxel is generated (in
this case marking m1), it instantly triggers its successor-proxels (representing markings
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Figure 6.20: Solution of the example SPN, obtained by proxel-based simulation

m2 and m3) and distributes its probability to them, which in STEP 3 is most noticeable
because of the non-zero probability.

AddProxel ((m0, ( 0dt, 0dt, 0dt)), 0dt, Route, 1.000000)

STEP 1
Size of tree 1

Processing ((m0, ( 0dt, 0dt, 0dt)), 1dt, Route, 1.000000)

Vanishing ((m1, ( 0dt, 0dt, 0dt)), 1dt, Route, 0.000000)
AddProxel ((m2, ( 0dt, 0dt, 0dt)), 1dt, Route, 0.000000)
AddProxel ((m3, ( 0dt, 0dt, 0dt)), 1dt, Route, 0.000000)
AddProxel ((m0, ( 1dt, 0dt, 0dt)), 1dt, Route, 1.000000)

STEP 2
Size of tree 1

Processing ((m0, ( 1dt, 0dt, 0dt)), 2dt, Route, 1.000000)

Vanishing ((m1, ( 0dt, 0dt, 0dt)), 2dt, Route, 0.000000)
AddProxel ((m2, ( 0dt, 0dt, 0dt)), 2dt, Route, 0.000000)
AddProxel ((m3, ( 0dt, 0dt, 0dt)), 2dt, Route, 0.000000)
AddProxel ((m0, ( 2dt, 0dt, 0dt)), 2dt, Route, 1.000000)

STEP 3
Size of tree 1

Processing ((m0, ( 2dt, 0dt, 0dt)), 3dt, Route, 1.000000)
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Vanishing ((m1, ( 0dt, 0dt, 0dt)), 3dt, Route, 0.025000)
AddProxel ((m2, ( 0dt, 0dt, 0dt)), 3dt, Route, 0.007500)
AddProxel ((m3, ( 0dt, 0dt, 0dt)), 3dt, Route, 0.017500)
AddProxel ((m0, ( 3dt, 0dt, 0dt)), 3dt, Route, 0.975000)

6.4.2 Conclusions

Proxel-based method can be successfully applied for analysis of stochastic Petri nets
which contain generally distributed transitions. The fact that the proxel-based method
builds the state-space on-the-fly, makes it directly applicable on a Petri net itself, with-
out having to build the reachability graph beforehand. This makes the method very
suitable for analysing Petri nets with unbounded state-space. In order to optimise a
Petri net for input to the proxel-based simulator, our proxel-adapted modelling frame-
work that is described in Chapter 5 can be used as an intermediate step and measure
of how to adjust the Petri net for more efficient proxel-based analysis.

6.5 Hybrid Models and Proxels

As stated in (Ciardo et al. 1999), hybrid models have gained increasing attention be-
cause of the employment of digital controllers and elements in environments that are
typically analog, such as power generators, chemical plants, or water distribution sys-
tems. Hybrid stochastic Petri nets (HSPNs) and Fluid stochastic Petri nets (FSPNs),
as extensions of the SPN formalism allow a more exact modelling of this type of systems
because of the addition of fluid (i.e. continuous) elements, i.e. places. For the first time
the fluid extension of SPNs is presented in (Trivedi and Kulkarni 1993) for representing
continuous state variables along with the discrete ones. It started a series of research
on the topic of FSPNs and their analysis, as well as increasing the complexity of the
models being analysed by introducing dependencies between the continuous and the
discrete part, as treated in (Horton et al. 1996) and (Ciardo et al. 1999). The latter one
deals with more complex models which can only be solved by means of discrete-event
simulation. In the meantime, a parallel research of an extension of SPNs by continuous
places under the name of hybrid SPNs (HSPNs) is described and defined in (Alla and
David 1998). In this section we will briefly describe the main properties of the hybrid
models and show how they can be analysed using the proxel-based method.

6.5.1 What is a Hybrid Model?

Hybrid models are structures which at the same time incorporate discrete, as well
as continuous quantities. When simulated by computers, they are all ultimately dis-
cretised. Therefore, the advantage in using hybrid models essentially consists in the
modelling comfort, i.e. representing the real systems as intuitively as possible.

HSPNs are an extension to the formalism of SPNs that allows modelling of continuous
quantities along with the discrete ones. It contains the so-called fluid type of a place,
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which models the continuous quantities. Correspondingly, a new type of arc is defined
which allows flowing from and to the fluid places according to the rates associated with
it.

For our proxel-based hybrid models’ analysis we use the typical place transition dia-
gram in which we allow for continuous states, which act similarly as the fluid places
in the HSPNs. More insight is given in the next Section 6.5.2 which elaborates one
example hybrid model, and at the same time explains how our hybrid state-transition
diagram functions.

6.5.2 Proxel-Based Analysis of Hybrid Models

Because the numerical solution of hybrid models turns into an unpleasant and very
complicated task, besides discrete-event simulation which is described in (Ciardo et al.
1999)), we propose the proxel-based method as an alternative for at least some classes
of hybrid models, i.e. the less complex ones.

In order to carry out proxel-based simulation of hybrid stochastic models, a discretisa-
tion of the continuous (i.e. fluid) elements should be performed prior to the simulation
for efficiency reasons. It results into having two discretisation steps: ∆t for the simu-
lation time, and ∆f for the continuous part of the state, or the fluid elements.

As an example for demonstrating how proxels can be employed in analysing hybrid
models, we use the model shown in Figure 6.21. The model is described using a simple
state-transition diagram and can be interpreted as a water tap with a sink. The tap
has two discrete states: ON and OFF . When the tap is in the discrete state ON then
the water flows into the sink which represents the continuous state, from where it flows
out in the both discrete states: ON and OFF . The rates with which the water flows
in and out are denoted by ϕi, and the state changes by SCi.

Figure 6.21: Example hybrid model of a water tap

The proxel structure for the model shown in Figure 6.21 is the following:

Proxel = (State, T ime, Route, Probability), where State = (DS,Qsink, τ)

where
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• DS ∈ {ON,OFF} is the discrete part of the state,

• Qsink is the water quantity in the sink, and

• τ is the age intensity of SC1 when in discrete state ON , and age intensity of SC2

when in OFF .

The other elements, i.e. Time, Route, and Probability have the standard meanings as
described in Chapter 3. Accordingly, the initial proxel is then ((OFF, 0, 0), 0,�, 1.0)

This model can be analysed by the proxel-based method using the Algorithm 6.2,
where the proxel structure is simplified to contain only the state and its probability,
which for the initial proxel means ((OFF, 0, 0), 1.0). The algorithm is an extension of
the basic Algorithm 3.1, presented in Section 3.1.3. The water quantity is treated as
another supplementary variable which requires a discretisation step too, denoted by
∆f , in order to avoid having an infinite number of possible values, i.e. states. The
rates with which it flows can be defined as functions of the age intensity too. The
algorithm works in the same way as the basic one, except that now the water quantity
according to the flowing rates is updated too, as shown in Functions ProcessDS-OFF
and ProcessDS-ON in line 2 correspondingly.

Algorithm 6.2: Proxel-Based Hybrid Model Analysis
Input: ∆t, ∆f, tmax

Initialize proxel set PS(0) by inserting the initial proxel;1

switch = 0;2

for i=1 to [tmax/∆t] do3

foreach proxel p = ((DS,Qsink, τ), prob) in the proxel set PS(switch) do4

switch the value of DS do5

case OFF6

ProcessDS(OFF);7

end8

case ON9

ProcessDS(ON);10

end11

end12

end13

switch = 1− switch14

end15

Example results from the proxel-based analysis up to time t = 5.0, using ∆t = 0.1
and ∆f = 0.1 are shown in Figure 6.22. There we observe separately the solutions
for the state ON and for the state OFF. First there are two three-dimensional plots
which show the probabilities for each time step and each water quantity discretisation
step for both states. Bellow there are the solutions for having an empty sink in each
of the states, and the water quantity probabilities at time t = 5.0. Each of the results
obtained for every water discretisation step represent probabilities for a range of water
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Function ProcessDS-OFF

Compute probability probcalculated = IRF (SC2, τ)×∆t;1

Compute water quantity Qnew
sink = max{Qsink − ϕ3(τ)×∆t, 0};2

Discretise Qnew
sink = bQnew

sink/∆fc ×∆f ;3

Generate new state S = (ON, 0, Qnew
sink);4

Search for the state S in the states of the set of generated proxels;5

if proxelfound is the found proxel then6

proxelfound = (S, (prob(proxelfound) + probcalculated))7

end8

Generate new proxel pnew = (S, probcalculated);9

Store pnew in PS(1− switch);10

Generate new state S = (OFF, τ + ∆t, Qnew
sink);11

Generate new proxel pnew = (S, prob− probcalculated);12

Store pnew in PS(1− switch);13

Function ProcessDS-ON

Compute probability probcalculated = IRF (SC1, τ)×∆t;1

Compute water quantity Qnew
sink = max{Qsink − ϕ3(τ)×∆t, 0};2

Discretise Qnew
sink = max{Qsink − (ϕ1(τ)− ϕ2(τ))×∆t, 0};3

Generate new state S = (OFF, 0, Qnew
sink);4

Search for the state S in the states of the set of generated proxels;5

if proxelfound is the found proxel then6

proxelfound = (S, (prob(proxelfound) + probcalculated))7

end8

Generate new proxel pnew = (S, probcalculated);9

Store pnew in PS(1− switch);10

Generate new state S = (ON, τ + ∆t, Qnew
sink);11

Generate new proxel pnew = (S, prob− probcalculated);12

Store pnew in PS(1− switch);13

quantity, i.e. the probability for every k×∆f is in fact a probability for water quantity
range ((k − 0.5)×∆f, (k + 0.5)×∆f). The smaller ∆f , the smoother and better the
approximation of the solutions will be.

6.5.3 Conclusions

The algorithm presented here demonstrates an idea of how hybrid models can be
analysed using proxels. The problem, however, is very complex and computationally
very expensive. This is a subject which is treated in a Master thesis carried out at our
department, completed by Lakshmi Devi Baskar (Baskar 2005) and the main conclusion
from that work is that the proxel-based method is appropriate only for relatively small
hybrid models.
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Figure 6.22: Results from the proxel-based solution of the hybrid model shown in Figure 6.21

6.6 Proxel-Based Rare-Event Simulation

As already discussed in Section 4.1.3, rare-event models are an interesting class of
models because the proxel-based method is less sensitive to the difference in rates
within one model, and provides fair treatment to all events. On the other hand, rare-
event models require long computation times when using discrete-event simulation
for their analysis (Görg et al. 2001). In a models that contains a rare event it can
take a large number of replications in the discrete-event simulation for that event to
occur. From that point of view, the proxel-based method is seen as an especially
suitable for analysing rare-event models. The proxel-based simulation computes the
rare events along with all the others, yielding equal importance to all events. In order
to demonstrate this feature of the proxel-based method we use an example model
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which contains two rare events and analyse it using both DES and the proxel-based
method.

There are many methods which aim at overcoming the problem known as “rare-event
simulation”. Two of the more popular ones are RESTART (Kahn and Marshall 1953;
Kelling 1996) and importance sampling (Glynn and Iglehart 1989). They are both
based on discrete-event simulation. The basic idea of RESTART is by partitioning the
state space into a series of nested subsets to observe the rare-event as an intersection
of a nested sequence of events. Importance sampling technique is also known as one
of the variance-reduction techniques in Monte Carlo methods, and is based on the
idea of scaling the occurrence of the rare-events such that they occur more frequently,
thereby speeding up the simulation. The comparison of both approaches is presented
in (Garvels 2000).

In general, it is very difficult to talk about comparison of solutions obtained using
discrete-event simulation and ones obtained using proxel-based simulation because the
quality of the results is different. Discrete-event simulation relies on random numbers
and because of that the results will always be stochastic in nature and depend on
the quality of the random number generator. On the other hand, the proxel-based
simulation is completely free of random behaviour. Therefore, the quality of the results
depends only on the size of the time step, making it more analogous to the discretised
PDE approach.

6.6.1 Example

In Figure 6.23, a model with two rare events is presented. There are four exponentially
distributed state changes with rate parameters equal to 1, and two with rate parameters
equal to 0.0001. The model is in state DSS1 or DSS2 most of the time, and very rarely
changes to the discrete state DSS3, from where it also most often transits back to
DSS2, and only very rarely to DSS4.

Figure 6.23: Example model for rare events

The model in Figure 6.23 was analysed using the discrete-event simulation package
SIMPLEX3 (Schmidt 2000). After 5000 independent replications, each up to time
t = 10000, which took about 25 minutes computation time, the simulator did not once
visit the discrete state DSS4.

The same model was analysed using proxel-based simulation, using a time step of
∆t = 0.05. The transient solution for DSS4 is presented in Figure 6.24. It can be
noticed that somewhere around t = 7.8 the probability converges to a value around
4.5e − 9. The total running time of the program, up to maximum simulation time
t = 50, was 4.2 seconds.
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Figure 6.24: Results from proxel-based simulation for discrete state DSS4

These experiments illustrated that the proxel-based simulation can be particularly
useful for analysing small, stiff models for which a high level of accuracy is required,
such as occur in safety and reliability modelling, and thereby significantly reducing the
computation times.

6.6.2 Conclusions

Rare-event simulation is one of the problematic domains in simulation. As stated in
Section 4.1.3, there are many methods that approach the problem, and the proxel-
based method can be seen as an alternative for approaching this class of models which
provides transient solutions for relatively small models - within relatively short com-
putation times.

6.7 Proxels in Tuning Systems

In this section we present a rather speculative idea of another application of the proxel-
based method, which still needs to be further researched. That is the use of the
proxel-based method for tuning parameters in different systems.

Because of the fast and flexible analysis of some classes of models, the proxel-based
simulation can be especially useful in tuning systems. Proxels are especially suitable for
rough and fast evaluation of stochastic models. The extrapolation as an instrument for
achieving higher accuracy of the results can also be employed for increasing the quality
of the optimisation solutions. This makes the proxel-based method a very suitable tool
for performing fast evaluation of systems, thereby ensuring that all events are taken
into account. The convergence of the solutions can be used for spotting trends in the
results obtained using different time steps.
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6.7.1 Example

We use a basic example for illustrating our idea. The model that we analyse describes
a system which consists of a storage area (i.e. stock) with a limited capacity which has
to be regularly refilled, and from which items are being removed according to a certain
distribution function. The parameter that defines the expense of running the system
is a threshold of items in the storage. When the threshold is reached, a refill order is
issued, which takes a random amount of time to arrive. The model of the system, built
using our proxel-adapted modelling framework, is shown in Figure 6.25.

Figure 6.25: Example model for application of the proxel-based method in tuning systems

The model consists of two partial discrete states: I as idle and O as order, for the
configuration when the order is issued and it has not yet arrived. Additionally, there is
one countable quantity S which tracks the number of items in the stock. Its capacity
is denoted by C. The model has four events, as follows:

• Ein - order has arrived ∼ F1(τ),

• Eout - one item is removed from the stock when the stock has at least one item
∼ F2(τ),

• Eout0 - one item is requested from the stock when it is empty ∼ F2(τ), and

• Eorder - order is issued,

which obey the following rules:

• Ein → (if O then I), +C − |S|

• Eout → (if S > 0 then S − 1),

• Eout0 → (if S = 0 then S),
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• Eorder → (if (I & (S ≤ Threshold)) then O).

Events Ein, Eout, and Eout0 are timed, whereas the event Eorder is a conditional one
because it happens as soon as the threshold is reached. The timed events are distributed
according to the following distribution functions:

• Ein ∼ Uniform (3.0, 4.0), and

• Eout and Eout0 ∼ Exponential (1.0).

The rewards in the model are the following:

• rr(O/I) = 10 ∗ |S| per day, the cost of storing the items, and

• ir(Eout0) = 1000, the cost of not being able to provide an item when there is a
request.

Our goal is to tune the Threshold parameter such that the costs of managing the stock
are minimal. We base our decision on observations for a simulation time of 50 days,
using an initial size of the time step ∆t = 0.4 days. Further we observe the computation
times and the accuracy of the results as the size of the time step decreases.

The discrete state structure of the model is (PDS, S), where PDS ∈ {I,O}. The age
intensity vector mapping is: in I ∼ (Eout, /) and in O ∼ (Eout, Ein), and correspond-
ingly the initial state is

((I, C), (0, /)).

The results obtained using different step sizes are presented in Figure 6.26. The thresh-
old range is from 2 to 9, and the stock capacity is 10. The dependency of the compu-
tation time on the size of the time step is shown in Figure 6.27, where once again the
high increase in computation time when decreasing the time step is shown.

Figure 6.26: Cost as a function of the threshold parameter, using different values for ∆t

If one observes Figure 6.26, the trend of the cost regarding the thresholds can be
noticed:
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Figure 6.27: Computation time for all of the tuning simulations as a function of the size of the
time step

• for ∆t = 0.4 the minimum cost is for a threshold equal to 5,

• for ∆t = 0.2 the minimum cost is for a threshold equal to 6,

• for ∆t = 0.1 the minimum cost is for a threshold equal to 7,

and what is interesting is that the extrapolated solutions yields minimum cost for a
threshold equal to 8.

This example demonstrates how the proxel-based method can be applied for tuning
parameters of systems for optimising some of its measures (e.g. cost, throughput,
performance). Thereby, one can rely that all events are taken into account and every
solution is meaningful. For instance, two solutions obtained using different time steps
can be used for spotting in which direction the solutions converge i.e. the trends
in the solutions. By contrast, because of the stochastic nature of DES, the results
that it would produce would vary a lot when the impulse rewards are very large.
Correspondingly it would take a large number of replications for the obtained solutions
to start converging and provide an idea of the trendline of solutions.

6.7.2 Conclusions

Based on this example we believe that the proxel-based method can be efficiently used
for tuning parameters of more complex systems because the extrapolation yields shorter
computation times than when simulating using very small time steps, and thereby
achieves comparable accuracy. If speed is even more important, one can make the
compromise of running proxel-based simulation with a large time step for obtaining a
rough approximation for observing the trends in the behaviour of the system, using this
information for making quick decisions. This, we observe as a very positive feature of
the proxel-based method, especially in cases where models contain rare events that have
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significant impulse rewards (e.g. costs), for which discrete-event simulation can become
very expensive in terms of computation times for obtaining a reasonable estimate. The
proxel-based method can, in such cases, be used for spotting the trend in the models
because it provides fair treatment for all events in the model.

6.8 Proxels in Teaching Simulation

Discrete-event simulation, as a concept, is not a difficult one to teach. The reason
for that is that the simulation is simply an imitation of system’s behaviour, which is
accomplished by mimicking its stochastic activities by using pseudo-random numbers.
Therefore, we refer to DES as method that possesses a stochastic nature.

As soon as one states that stochastic systems can be analysed by using methods which
advance deterministically, the whole simulation issue becomes very confusing. The
partial differential equations only add to the confusion, and suddenly turn away stu-
dents and their interest. Proxel-based method offers an alternative way of explaining
simulation of stochastic models by using deterministic approaches.

The proxel-based method follows the natural and expected behaviour of a model and
on-the-fly, consequently calculates the probabilities for the model taking each of the
development paths. Therefore, we believe that the method can be especially useful in
teaching simulation and analysis of discrete stochastic models and studying their be-
haviour. The usefulness is more applicable for understanding the numerical approaches,
as the proxel-based method illustrates the flow of probability in a much more natural
and intuitive way than it is approached by partial differential equations or any of the
other methods which are based on mathematical models.

Figure 6.28: Simple model used for teaching proxel-based simulation

In our lectures we use the proxel-based approach to present the concept of behaviour
and probability flow in stochastic models. One illustrative and intuitive example which
we use, is also known as a classic in the area of simulation, that is the simplified weather
prediction model, as shown in Figure 6.28. The model consists of three discrete states:
sunny, rainy and snowy, and 6 possible state changes among all three discrete states.
For a more intuitive explanation we use a time step ∆t of one day. Using an appropriate
illustration of the proxel-based approach, the responses from the students with respect
to the comprehension of the paradigm of a ”stochastic model” and the proxel-based
method are very positive. It is a very pleasant experience to teach the analysis of
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stochastic models without showing a single differential equation. The proxel-tree that
we develop for this weather model is the one shown in Figure 6.29. The little balloons
in the figure represent the age intensities of the relevant state changes in each discrete
state, which are supposed to be memorised, and p1 and p2 are the corresponding
probabilities.

Figure 6.29: Teaching proxel-based simulation

We teach the proxel-based method regularly for the fourth year within our advanced
course “Advanced Discrete Modelling”. The responses from the students can be sum-
marised as positive, especially based on the exams, where most of the students had
no problems answering questions which were connected to the proxel-based method.
The method allows a high level of interaction in the classes too, which we believe is
because of the fact that the students are able to understand and follow the way the
proxel-based method advances. We plan to continue this practice in the future too,
and believe that the method will become a recognised tool for teaching deterministic
simulation methods.

6.9 Summary

In this chapter we present mostly confirmed, but also some speculated applications of
proxel-based method. The method is, however, not restricted to the here presented
applications, as we believe that theoretically the method has a wide applicability. We
believe that this can serve as good starting point, and that many alternative applica-
tions of the method will arise, mostly owing to the algorithmic and flexible definition
of the proxel-based method. Some of these applications can be treated as directions
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for future work, because even though the basic formalisation for each of them is laid,
there is still a lot of work to be done with respect to experimenting and testing them
on real-life situations and models.
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7 Additional Experiments

In this chapter we present and discuss results of experiments performed regarding the
accuracy and computational complexity of the proxel-based method, observed under
different circumstances and for different types of models. The experiments presented
in this chapter are additional in that, that they require a combined knowledge from
different previous chapters, and it was hard to fit them within any of them. As a
measure for the computational complexity of the experiments we use the number of
stored proxels and the computation time. Sometimes, however, the size of the proxel
can also make a difference and should be considered if the number of age variables
significantly differs.

All experiments are performed on a Pentium III/1200MHz computer running Windows
XP, with 512MB of main memory. For most of them the tool presented in the Appendix
B was used, which was designed to automate the proxel-based simulation and make
the experimenting process easier.

7.1 Experiments Concerning the Accuracy

As already explained in Section 3.2, the accuracy of the proxel-based method is a
function mainly of the size of the time step - ∆t, but also of other parameters. Two
of them are the threshold for the minimum probability allowed ε and the choice of
numerical approach for the integration of the IRF. The experiments in this section
demonstrate how the accuracy depends on those parameters and show what they mean
in practice.

Accuracy and Extrapolation

For the first set of experiments we use the model shown in Figure 7.1, which has
different distribution functions for its state changes. We use different sizes of the time
step for observing the development of the error and the trend of the solution values.
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The goal of this set of experiments is to provide an idea of how the accuracy of the
proxel-based method changes when changing the size of the time step and the other
control parameters of the proxel-based method. Further we show the impact that the
extrapolation has on improving the accuracy.

Figure 7.1: Example model

The distribution functions that describe the six state changes in the model, shown in
Figure 7.1, are the following:

• SC0 ∼ Uniform(1.5, 2.0),

• SC1 ∼ Uniform(1.5, 2.5),

• SC2 ∼ Exponential(2.0),

• SC3 ∼ Normal(2.0, 1.0),

• SC4 ∼ Exponential(2.0), and

• SC5 ∼ Uniform(2.0, 3.0).

We treat all distribution functions as non-memoryless i.e. we employ supplementary
variables even for the Exponentially distributed state changes. The purpose of this is
to provide results which are meaningful for the general case.

In Figure 7.2 the transient solution values for the four different discrete states for time
t = 10 are shown. The solutions are calculated using four different sizes of the time
step, 0.025, 0.05, 0.1, and 0.2. It is evident that the method is at least a first-order one
and that as ∆t → 0, all four solution values converge towards the ”accurate” solution.
The truncation error, which is produced by cutting off proxels with a probability values
that are less than the threshold ε is 8.68915e-011. The value is computed as the sum
of all probability values that are cut off. The value of ε in this case is 10−15 and
∆t = 0.025.

The lifetimes of the discrete states, computed using the Algorithm 3.2 for ∆t = 0.025,
as a preprocessing step, are as follows:

• lifetime(DS0) = 80×∆t = 2.0
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Figure 7.2: Solution values for the example model from Figure 7.2

• lifetime(DS1) = 100×∆t = 2.5

• lifetime(DS2) = 400×∆t = 10.0

• lifetime(DS3) = 353×∆t ≈ 9.0

where tmax = 10 = 400 × ∆t. Therefore, the sum of the lifetimes of the discrete
states in the model is 23.5. The worst case complexity for this number of discrete
states appears when the sum of lifetimes is 40 because all state changes have enabling
(restart) memory policy.

We now compare the solutions obtained using the proxel-based method with the so-
lutions obtained using discrete-event simulation in order to get a better idea about
the accuracy of the proxel-based method. For that purpose we randomly choose the
probability of the discrete state DS3 as our point of interest. In order to get a narrow
confidence interval for its transient solution at time t = 10, the discrete-event simula-
tion needed computation time of 50 to 60 minutes. The size of the thereby obtained
confidence interval is ca. 0.002 and the mean value is 0.655406. The level of confidence
is 0.99 and the number of replications - 106. The graphical illustration of this compari-
son is shown in Figure 7.3, where one part of the solutions is zoomed to enable a closer
observation of the results obtained using DES in form of confidence intervals (marked
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by a dashed line) and the ones obtained using proxel-based simulation (marked by a
full line).

Figure 7.3: Comparison of solution values obtained using DES and proxel-based simulation

In Table 7.1 the Richardson extrapolation of the proxel-based solutions is provided,
which takes into account solution values obtained using four different time steps, and
extrapolates them to obtain a more accurate solution (i.e. 0.65549395238095). The
total computation time, which is the sum of the separate ones, is 3.56 seconds.

In a comparable computation time as of the proxel-based method of ca. 3 seconds,
using discrete-event simulation and performing different numbers of independent repli-
cations, we obtained the results shown in Figure 7.4. There one can see that the
solutions obtained using DES do not converge (especially the mean values of the con-
fidence intervals) with the increase of the number of independent replications. The
described behaviour is because of the stochastic nature of the discrete-event simula-
tion as an approach. The solutions obtained using DES start converging only when
the number of replication increases significantly, a number which is dependent on the
model description. However, even in that case the results do not converge monotoni-
cally.

Table 7.1: Richardson extrapolation for the solutions for DS3 using time steps of 0.2, 0.1, 0.05,
and 0.025

∆t\O() O(∆t) O(∆t2) O(∆t3) O(∆t4) com. time
0.2 0.667327 0.06 s
0.1 0.66271 0.658093 0.2 s
0.05 0.659217 0.655724 0.6549343(3) 0.8 s
0.025 0.657358 0.655499 0.655424 0.65549395238095 2.5 s
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Figure 7.4: Solution values obtained using DES for DS3 at time t = 10.0 of the example model
from Figure 7.1

Accuracy and Minimum Probability Threshold

The second set of experiments concerning the accuracy is performed to observe the
effects of the minimum probability threshold ε. It produces a truncation error as a
result of cutting off nodes from the proxel tree, which have very small probability values
(the value of the threshold is usually between 10−12 and 10−15). For the experiments
we use again the model from Figure 7.1, this time however with a rare event which
contributes to generating small probabilities, with which we want to emphasise the
effect of their truncation. For that purpose we set the distribution function of SC0 to
Exponential(10−12), thereby reducing significantly the probability of the state DS1.

Table 7.2: Development of the truncation error when using different thresholds for minimum
probability

minprob 10−12 10−13 10−14 10−15 10−20 10−25

t. error 8.12E-11 8.76E-12 2.40E-12 1.37E-12 1.53E-19 0
solution 0 0 1.63E-15 7.03E-14 3.27E-13 3.27E-13

In Table 7.2 the truncation errors and solution values for the transient solution of DS1

at t = 10 for different values of ε are shown. The solution values for the threshold equal
up to 10−12 and 10−13 are both zero, and it stabilises once the threshold becomes 10−20,
in which case the error is very small and the solution does not differ much with the one
for threshold equal to 10−25 where the error is zero. Therefore, we can state that the
solution value for the probability of the discrete state DS1 at time t = 10 is 3.27E-13,
which when high accuracy is needed, and rare events are present, can not be neglected.
This means that the value of the threshold for the minimum probability needs to be
adapted to the model, and its distribution functions and parameters.
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Accuracy and Integration Approaches

Further we observe the effect that the numerical approach for integration of the IRF
has on the accuracy of the solutions and computation times. For that purpose we
use again the model from Figure 7.1 and choose one discrete state (in this case the
one marked as DS3) and we observe its transient solution values for time t = 5.0,
using different sizes of the time step ∆t and different integration approaches for the
IRF (mid-point, trapezoid, Simpson’s rule, and Gaussian quadrature). The results of
those experiments are illustrated in Figure 7.5. It can be observed that the Gaussian
quadrature integration provides a little faster convergence than the other methods, and
they all converge towards the same value.

Figure 7.5: Solution values for DS3 at time t = 5.0 of the example model from Figure 7.1

In Figure 7.6 the computation times are shown for the four integration methods for
the case of ∆t = 0.01 and tmax = 10. The differences are because of the different
number of points at which the functions are evaluated, which makes the Simpson’s
rule the most expensive one. The figure illustrates that the computation times for the
trapezoid approach and Gauss quadrature are very similar, which is because both of
the integration approaches use two-point function evaluations. Although at first view,
all computation times seem comparable, when performing more exhaustive simulation
it can make big difference.

7.2 The Effect of Lifetimes of Discrete States on the
Computational Complexity

The increment in the size of the discrete state space of one model can significantly
increase the computational and memory complexity of the proxel-based simulation of
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Figure 7.6: Computation times using different integration approaches for the IRF for the example
model from Figure 7.1

one model. That, however, is not a function of only the size of the discrete state
space, but also of the lifetimes of the discrete states in the model, which is determined
by the number of concurrently active state changes and their distribution functions.
The notion of lifetimes and their computation is elaborated in Section 3.3.2, and it
determines the complexity of the proxel-based simulation of one model. It is important
to notice that the discrete state space or the reachability graph, in the terminology of
the Petri net formalism, is not a measure at all about the computational complexity
of its proxel-based simulation. Experiments that treat the issue of the effect of the
lifetimes on the computational complexity are demonstrated in this section.

As it was pointed out in Section 4.1.6, the number of concurrently active state changes
affects the computational complexity of the proxel-based simulation. That number,
together with the characteristics and the parameters of the random variables that
are used to describe the state changes, determine the lifetimes of the discrete states.
The effect of having more concurrently active state changes can be observed from two
aspects. The first one is the number of age variables, which increases when having
more state changes to track, making the proxel structure more complex, whereas the
second aspect is beneficial, which is the lifetimes of the discrete states, which usually
reduce with the increase of the number of concurrently active state changes. This in
turn reduces the memory requirements of the simulation.

Conclusion can be made that the number of concurrently active state changes is not a
constraining factor of the proxel-based simulation, it can be seen more as a beneficial
or neutral one, unless they are activated at different points in time.

Lifetimes of the discrete states in one model are the factor that determines the com-
plexity of its proxel-based simulation. Therefore, the experiments presented in this
section demonstrate the relation of the computational complexity of the proxel-based
simulation of one model and the sum of the lifetimes of its discrete states. The model
that we choose for the first set of experiments excludes age memory state changes,
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which are present in the models from the second set of experiments and in that case
the complexity is higher, as is illustrated.

Figure 7.7: Two models with equal proxel complexities

Let us observe the models shown in Figure 7.7, excluding the state changes illustrated
by dashed lines. The model with two discrete states seems on the first view as less
complex than the four-state one. However, when analysed using the proxel-based
method, both of the models have equal complexities because the sums of the lifetimes
are equal. We chose this example, because the uniform distribution function has the
nice property of having a finite support, making it simpler to determine the lifetimes
of the discrete states.

When chosen ∆t = 0.05, then the lifetimes of both discrete states in the two-state
model are 20 × ∆t, resulting into a maximal number of 40 proxels. In the four-state
model, the lifetimes of the discrete states are 10 ×∆t resulting again into a maximal
number of 20 proxels.

If we now add the state changes represented by the dashed lines to the four-state model,
then the lifetimes of the discrete states A and C shorten insignificantly (because of the
increased probability of leaving the discrete state). This results again into almost the
same computational complexity i.e. number of proxels, which is 36. The computation
times of the both simulations are the same too. Transient solution of the four-state
model excluding the dashed state changes is shown in Figure 7.8. The model has a
steady-state solution Pr(A) = Pr(B) = Pr(C) = Pr(D) = 0.25.

If we now exchange the state change from D to A in the original four-state model
from Figure 7.7 for a Normally distributed one with parameters: µ = 1.0 and σ = 0.3
then the lifetime of state D extends to 38×∆t. Accordingly, the maximum number of
proxels generated at each level of the proxel tree is 68, which is the sum of the lifetimes
of all four states.

In Figure 7.9 the comparison of the number of proxels generated at each discrete time
step for the 2-state and 4-state models is shown. It is evident that the 4-state model
reaches the maximum number of proxels sooner than the 2-state one, which is because
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Figure 7.8: Solution values for the four-state model from Figure 7.7 excluding the dash-lined state
changes

of the greater number of state changes which generate accordingly more proxels at each
time step.

Figure 7.9: Comparison of the numbers of proxels generated at each time step for the two models
from Figure 7.7, excluding the dash-lined state changes

Special Case - Age Memory State Changes

As mentioned in Section 3.3.2, the relation between the stored state-space (i.e. the
memory complexity) of the proxel-based simulation of one model involves the number
of concurrently active state changes which have different activation times, resulting
into different age intensities at same points in time. A typical case that illustrates the
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described situation is when a model contains state changes that are characterised by
an age memory policy. For that purpose we carry out two sets of experiments based on
one model in which the memory policy of one transition varies. The model is the same
as the one presented in Section 5.5.2, in Figure 5.4, except that this time we do not
observe the number of failures, thereby reducing it into the state-transition diagram
shown in Figure 7.10. The state change, whose memory policy is varied is SC0, which
means that when the machine fails, the tracking of time until the next maintenance
does not restart, but continues from where it stopped as soon as the machine goes back
to being functional, i.e. discrete state OK.

Figure 7.10: State-transition diagram of the fault-tolerant machine

The distributions that describe the stochastics of the state changes in the model are
the following:

• SC0 ∼ Uniform(15.0, 17.0),

• SC1 ∼ Uniform(1.5, 2.5),

• SC2 ∼ Exponential(0.05), and

• SC3 ∼ Normal(2.0, 1.0).

∆t = 0.2 and it is simulated up to time t = 50. In the first set of experiments all of
the state changes have enabling (i.e. restart) memory policy and the lifetimes of the
discrete states are the following:

• lifetime(OK) = 85×∆t = 17.0

• lifetime(F ) = 34×∆t = 6.8

• lifetime(M) = 12×∆t = 2.4

resulting into a total of 131×∆, meaning that 131 is exactly the maximum number of
proxels generated at each level.

In the second set of experiments we let the state change SC0 have an age memory
policy. In the case when there are state changes with age memory policy involved, the
number of truly reachable states increases greatly, as the number of combinations of
the values for the age intensities increases1. In that case predicting an upper bound of
the number of proxels being generated at each step has to include this factor, which

1The latter is known as MNSDS, and is explained and defined in Section 3.3.2
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implies that the lifetimes of all states which keep track of the age intensity of the age
memory state change(s) has to be multiplied by the lifetime of the state in which the
age memory state change is active. The sum gives the upper bound of the proxels
generated at one level. The operation is to be carried out on the multiples of ∆t, and
in this particular case it is:

lifetime(OK)× lifetime(OK)+ lifetime(F )× lifetime(OK)+ lifetime(M) = 10127, (7.1)

which shows that in this case the proxel-based simulation is significantly less efficient
than in the case when models do not have concurrently active state changes, activated
at different points in time. In Figure 7.11 the number of proxels generated at each level
is shown when simulated up to time t = 50 for the described case. The computation
time was 53.867 seconds and the maximum number of proxels at one level 6370, which
is a lot less than the number obtained using the Equation (7.1). The formula, however,
defines an upper bound which is based on all possible combinations. One of the future
work areas would be to improve the estimate and generalise it.

Figure 7.11: The number of proxels generated at one level for the model described in Figure 5.4
in the case when the transition SC0 has an age memory policy

Summary

The experiments presented in this section show the direct dependence of the computa-
tional and memory complexity on the lifetimes of the discrete states in the model. This
is an important issue regarding the proxel based-method and its improvements, partic-
ularly with respect to the employment of discrete phases. The “a priori” computation
of the lifetimes supports the process of making decision whether to substitute one gen-
eral distribution by a phase-type one in the proxel-based simulation. The combination
of discrete phase-type distributions and proxels is discussed in Section 4.2.2.
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7.3 Models for Which Proxels Are a Bad Idea

In Section 7.1 we show an example for which the proxel-based simulation is more
efficient than discrete-event simulation. In Chapter 4 we discuss the special cases for
which proxel-based simulation would be a good choice for reasons of efficiency and
accuracy. Based on those conclusions, here we create a model for which the proxel-
based simulation fails i.e. the computational complexity and the memory requirements
are so high that discrete-event simulation would be the method of choice.

If we observe the favourable features of the models regarding proxel-based simulation,
we can easily come to a list of features which would lead to very low-efficient proxel-
based simulation, to name few of them:

• long lifetimes,

• presence of age memory state changes,

• state changes which requires small size of ∆t,

which already provide an idea for constructing a model for which discrete-event sim-
ulation would be more suitable. These are also factors which would not influence
discrete-event simulation in a significant way. DES is more affected from the relatively
big variances of the distributions, as well as from the big differences in the rates, such
as are to be found in rare-event models. Therefore, the nature of the factors that influ-
ence the efficiency of the simulation of the both approaches (DES and proxel-based) is
different, thus meaning that the classification of models analysable by the one or the
other method is not unambiguous.

In order to satisfy the criteria for inefficient proxel-based simulation we decided to
use again the model from Figure 7.1, thereby changing the memory policies of the
transitions, i.e. SC0, SC4 and SC5 have now age memory policy. This increased the
number of supplementary variables, which for this model is now four (we ignore the
fact that one of them is exponentially distributed and treat as if it was not), and
also increased significantly the number of truly reachable states, as the age memory
transitions created a big number of combinations of the age intensities of the relevant
state changes (MNSDS, Section 3.3.2). For illustration we use the Table 7.3, which
illustrates the computational complexities of the proxel-based simulations for both
cases. In the case where ∆t = 0.025 we cancelled the simulation because it was
becoming already very expensive and took long time, already significantly more than
the discrete-event simulation.

This experiment illustrates an example model for which DES would be the better
choice for simulation and provides an idea for the types of models for which proxel-
based simulation would not be the analysis method of choice. The main reason for that
is the state-space explosion, which is especially aggressive when state changes with age
memory policy are part of the model, as is the case with the model analysed in this
section.
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Table 7.3: Computational complexity of the proxel-based simulation up to time t = 10 for two
cases: A-including age memory state changes, and B-without age memory state changes (* The
simulation was run only up to t = 4.5 because of the long running times)

∆t\O() A-proxels B-proxels A-com. time B-com. time
0.2 55053 3306 0.83 s 0.06 s
0.1 877721 13572 15 s 0.2 s
0.05 12692092 54145 287 s 0.8 s
0.025 29842678* 215926 5390 s* 2.5 s

7.4 Summary

In this chapter we show the results of a series of experiments which were performed
mostly for providing an idea about the accuracy and computational complexity of the
proxel-based method, but also for comparing it with the most popular simulation ap-
proach, the discrete-event simulation. We chose discrete-event simulation as a method
for comparison because of the same level of applicability, i.e. both methods can analyse
any type of model as long as it is described in a form that the computer can handle. The
largest part of the experiments are, however, provided throughout the thesis, along in
the corresponding sections. Therefore, the experiments presented in this chapter are
experiments that needed knowledge from more different chapters, and this was the
most adequate place for them.
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8.1 Summary

To conclude the thesis, we begin by summarising our main contributions.

In Chapter 3 we established the formal foundations of the proxel-based method and de-
fined the elements and terms involved in the method. In the same chapter we presented
the basic proxel-based algorithm which operates on state-transition diagrams, as well
as two supplementary algorithms, which provide a more efficient and straightforward
proxel-based simulation. The first one shows an algorithm for calculating lifetimes of
the discrete states in a model for predicting the computational complexity of its simu-
lation and calculating the keys of the proxels (for accessing them in the data structure
where they are stored). The second supplementary algorithm is a heuristics which
generalises our approach for determining an acceptable size of the time step for the
proxel-based simulation. In Chapter 3 we also examine thoroughly the accuracy of
the proxel-based method, as well as the programming aspects and the computational
complexity.

Further, in Chapter 4 we pay attention to the special issues regarding some character-
istic classes of models that are specific or favoured by the proxel-based method i.e. for
which it performs well compared to the other simulation and analysis approaches, or
cases which need to be handled in a special way. There we also show the basic ideas
behind the two variants of the proxel-based method that we have been working on and
for which we believe could improve the performance of the method for some classes of
models.

In order to bring the proxel-based method one step further, we designed a modelling
framework which describes models in a way that they could be directly analysed using
the proxel-based method. The complete description of it, along with some concrete
examples is presented in Chapter 5.

The numerous applications of the proxel-based method which we have developed, as
well as some speculative ideas for some promising future application areas are shown
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in Chapter 6. This demonstrates the wide applicability of the proxel-based method
and provides basic ideas for its further utilization.

In order to carry out most of the experiments throughout the work on the thesis
we designed a proxel-based simulation tool, which is briefly described in Appendix B,
which in the experiments’ Chapter 7 is used to support many of the claims made in the
thesis, especially with respect to the accuracy and the computational complexity.

Finally, this section provides a critical assessment of the thesis and conclusions based
on the work on the thesis, as provided in the sections that follow. Furthermore, we
also discuss the implications for future research.

8.2 Critical Assessment of the Thesis

The main goal of the thesis is to bring the proxel-based method from an idea to the level
of an established method which can be offered to and used by simulation practitioners.
This main goal resulted into the following three subgoals (or tasks) of the thesis:

• formalising the proxel-based method,

• analysing and studying its behaviour, and

• examining possibilities for its application.

Altogether, the three subgoals support one more subtle goal of the thesis, which is to
provide a textbook that will aid the further development of the proxel-based method. In
the following we discuss what each of the three tasks means and how their requirements
are met.

Formalising the Proxel-Based Method

Formalising the proxel-based method meant defining all elements involved in the de-
scription of the method, thereby creating a basis for further research, development
and improvement of the method. The first and basic part of the formalisation process
is presented in Section 3.1.2, which defines the elements when models are described
by means of state-transition diagrams, and further uses them for designing the basic
proxel algorithm in Section 3.1.3. The provided definitions aid in avoiding ambiguities
in the further development of the proxel-based method. The term “state” is a typical
example for a confusion, unless defined. What is referred to as a “state” in Markov
chains, in our case is referred to as a “discrete state”.

The second part of the formalisation process which extended the definition process is
presented in Section 5.2, and in general in Chapter 5. This is the chapter where we
present the design of our proxel-adapted modelling framework, which complements the
method by providing a way for describing the models such that it directly prepares
them for their proxel-based simulation. The modelling framework allows modelling of
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all classes of models that the proxel-based method can simulate, thereby optimising
them for a more efficient simulation and providing a clear idea of what types of models
the proxel-based method can analyse. Among others, this includes unbounded models,
as well as models that have state changes distributed according to state-dependent
distribution functions. The framework can either be used for direct modelling, or as
an intermediate step for preparing the models for the proxel-based simulation. The
main advantage of the proxel-adapted description framework is that it provides a clear
idea of what types of models the proxel-based method can analyse and what is the
most efficient form for them to be input to the simulator.

The paradigm of lifetimes of discrete states was introduced, which provides a way for
predicting the computational complexity of the proxel-based simulation of one model.
In the case when the model contains no age memory state changes, the sum of the
lifetimes provides directly the maximum number of proxels generated at one level.
The ability to predict the complexity can in turn be used for developing more effective
storage strategies, as well as for making decisions whether to include discrete phase-
type approximations.

The formalisation provided in the thesis is concluded regarding the current level of
development of the proxel-based method. However, with every extension of the method,
the formalisation will need to be updated and extended too. The experience with the
inclusion of phases treated in (Isensee et al. 2005) shows that the formalisation is easily
upgradable and provides a basis for communicating ideas regarding the proxel-based
method.

Analysing and Studying the Method’s Behaviour

Analysing and studying the behaviour of the proxel based method included studying
the accuracy of the method, as well exploring classes of problems for which it performs
well. The method was demonstrated to be at of least first-order accuracy, depending
on the distribution functions involved in the model that is being analysed. The basic
assumption that “the probability of more than one state changes happening within a
time step is negligible” creates a first-order error, as well as the numerical integration
methods used for approximating the probabilities for the state changes, in the worst
case. The fact that the solutions converge is further utilised for performing extrapola-
tion in order to achieve solutions of higher accuracy. The extrapolation yields shorter
computation times when higher accuracy is needed, as the computation time and mem-
ory complexity increases significantly when decreasing the size of the time step, which
is the other option for improving the accuracy.

In Chapter 4 we discuss the specific issues that affect the proxel-based method. These
issues are very important to be acknowledged, as they are considered to be very sig-
nificant aspects of the behaviour of the proxel-based method, both as strengths and
drawbacks. Chapter 4 together with the experiments throughout the thesis demon-
strate the level of detail of study and analysis of the proxel-based method. This aids
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the main goal of the proxel-based method being a studied and examined tool with
known advantages and weaknesses.

We believe that we captured the most specific and common aspects of the behaviour of
the proxel-based method. As with the formalisation process, studying the behaviour
of a relatively new method is a dynamic issue which will advance and develop with
every new situation that may arise in future.

Examining Possibilities for Application of the Proxel-Based Method

Our third subgoal was to examine possibilities for applications of the newly introduced
proxel-based method. That was not a difficult task, having in mind the advantages of
the proxel-based method and its flexibility, especially regarding the classes of models
it is able to analyse. The method was easily extended and adjusted to be applied to
each of the following areas:

• Performability and Reward Modelling, the definition of the additional variables
which keep track of rewards fit well into the existing framework,

• Warranty Analysis, which is our most practical application that solved a real-life
problem by cutting down computation times of order of 20-30 hours to computa-
tion times of order of a couple of minutes,

• Fault Tree Analysis, the proxel-based method allows high flexibility in the def-
inition of the basic events, letting them be defined as small stochastic models,
providing transient solutions for the top event,

• Stochastic Petri Nets, by the ability to build the reachability graph on the fly,
the proxel-based method can analyse SPNs without imposing limitations on the
models,

• Hybrid Models, by discretising the continuous places, they are nothing but a
supplementary variable in the definition of the proxel,

• Rare Event Simulation, the fact that the proxel-based method gives equal impor-
tance to all events in the model makes it very appropriate for analysing rare-event
models, and

• Tuning Systems, which is a rather speculative and not fully researched area, for
the reason that all events have equal importance and the applicability to reward
modelling, the proxel-based method can be used for obtaining quick estimates
of the trends in one system, and use that information for making decision about
modifying some of its parameters.

We believe that the list can easily grow with the future research on the method and
its improvement. At the moment the real obstacle to the proxel-based method is
the problem of state-space explosion, and thus the memory complexity. Therefore, it
is very hard to imagine analysing large-scale models using the proxel-based method,
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which means that all of its current applications are limited to small models, for which
it can offer high accuracy transient solutions.

The ongoing research on the combination of the proxel-based method with discrete
phases, as described in Section 4.2.2, seems to offer an improvement with respect to
the state-space explosion (Isensee et al. 2005). However, it is still not clear by what
factor which is a subject of future research.

8.3 Discussion of the Proxel-Based Method

As already stated, the proxel-based method represents a new way of analysing dis-
crete stochastic models. The approach is completely deterministic and because of
its property of developing the solution algorithm directly from the model description,
very flexible. Its flexibility means a wide applicability of the method, and an easily
extendible framework for analysing many classes of models. To name some of them:
performability models, fault trees, as well as the others presented in Chapter 6.

The proxel-based method, however, suffers from the well-known problem of state-space
explosion, which is its real limitation currently. That is the reason why the method in
its current form can only be applied to relatively small models. The lifetime factor can
be used for a more precise definition of what a small model is. Thereby, the models
are not limited by anything else, and their stiffness is also not seen as a problem.

There are many plans for improvement and lessening the problem of state-space ex-
plosion, one of them being the inclusion of phase-type distributions, but they are all
ultimately just small steps. Ideally, the problem could only be solved by having an
unlimited source of memory.

The proxel-based method can be also seen as a special case of a partial differential
equation solver which forgets about the equations and is derived solely based on the
model description. That is also the interesting thing, that when people solve problems
they forget about the problems they are solving (in this case: analysing stochastic
models), and instead spend long time blocked in the intermediate state (i.e. PDEs).
With that respect, the proxel-based method is special because it goes back to the source
i.e. the model and derives the solution approach directly from there.

Another way one can look at the proxel-based method, as already shown in Section
3.1.4, is as solving a special dimension-changing discrete-time Markov chain. The
proxel-based method works actually as a DTMC solver, whereby the dimension of the
probability matrix dynamically changes to include the newly generated states.

When compared to discrete-event simulation, the proxel-based method can be seen as
its duality. They both operate directly on the model, whereby DES has variable time
steps that are generated based on ”random” numbers and a probability of one for each
path within each run. By contrast, the proxel-based method has constant time step
and a different probability for all paths that the model can go through.
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These different interpretations of the proxel-based method show once again that even
though the simulation methods seem as very different, they are all in fact related and
can transform into one another.

8.4 Implications for Further Research

With respect to the future research possibilities, we see them as a wide spectrum of
applications of the proxel-based method and its improvements. The combination with
phases (presented in Section 4.2.2) is a very promising perspective and we believe it
might yield a very significant improvement in the computational complexity of the
method. The future research regarding the phase-type approximations is generalising
the approach presented in 4.2.2, deciding for which classes of problems and when it is
suitable, as well as developing an estimate of the improvement factor.

As mentioned in Section 4.1.3, the proxel-based method can suffer significantly when
advancing at a constant pace, i.e. when moving with an equal sized time step for all
state changes in a model. The next future improvement of the method is to design
an approach, which will modify this behaviour of the proxel-based method and use an
adaptive size of the discretisation time step.

Another promising direction for future research is the stochastic variant of the proxel-
based method (as described in Section 4.2.1), which would extend the applicability
of the method to larger models. It is still not very clear what the weaknesses of the
approach are, as well as its strengths, and that is yet to be analysed.

The notion of lifetime and its effect on the computational complexity can be used
for investigating and optimising the data structures being used, as well as deciding
whether to use phases for some of the state changes.

Also, some of the applications need real-life examples to be tested at and applied
to. Therefore, one of the future tasks is to search possibilities for applications of the
proxel-based method in the industry, which would reconfirm its usefulness.

8.5 Conclusions or Back into the Big Picture

The area of simulation of discrete stochastic models is enriched by another alterna-
tive approach, the proxel-based method. In the thesis we present the formalisation
of the new method, show its strengths and weaknesses, and discuss its application
possibilities. By doing that, we show that some “difficult” classes of stochastic models
become deterministically analysable with the proxel-based method. That is our major
contribution regarding the simulation community.

The proxel-based method is a widely applicable analysis method for discrete stochas-
tic models. Its advantage consists in the feature of developing the solution algorithm
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directly from the model description, which makes the method flexible and easily ex-
tendible. The second advantage is that it is a deterministic approach, as opposed to
discrete-event simulation, meaning the proxel-based method does not have to rely on
random numbers and does not reproduce the behaviour of models in order to implic-
itly analyse them. Therefore, the proxel-based method is designed to analyse discrete
stochastic models, as opposed to reproduce.

The method itself has a big potential for further improvement as described in the
“future work” Section 8.4. With that respect, the formalisation presented in the the-
sis contributes to its further development by providing a convention for describing the
method which will support the further research and ease the communicating of ideas re-
garding the proxel-based method. The presented study and analysis of the method pay
special attention to discovering its weaknesses and strengths, and provide implications
for the classes of models for which it is suitable.

It is a fact that the power and the capacities of computers constantly grow with every
new generation, which is a factor that influences the applicability of the proxel-based
method in that that it allows more and more complex models to be analysable. The
real strength of the method is, however, that besides on the size of the models, it
has no limitations with respect to the types of discrete stochastic models that it can
analyse.

This thesis can be seen as a contribution to the further development of the proxel-
based method. Many ideas for improvement of the method in different ways, have
been presented, and most of them have the potential to result in constructive realisa-
tions. They are, mostly, aimed at improving the efficiency and therefore increasing the
applicability of the method to more complex models.

Finally, we believe that this work is one of the initial steps towards the establishment
of a significant method, which one day will be implemented in every useful simulation
tool and will have a chapter in every book on simulation.
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A Frequently Used Probability Distributions

Here we describe some properties of the probability distribution used in the examples
throughout the thesis. We focus particularly on the instantaneous rate functions.

A.1 Exponential Distribution

The exponential distribution with a parameter λ i.e. Exponential(λ) is characterised
by the following density f() and cumulative distribution functions F ():

f(x) = λe−λx and F (x) = 1− e−λx.

The exponential is the only memoryless function, which very well illustrated by its
instantaneous rate function µ():

µ(x) = λ,

which is always constant independent of the age intensity.

A.2 Uniform Distribution

The uniform distribution defined on an interval (a, b) i.e. Uniform(a, b) is charac-
terised by the following density f() and cumulative distribution functions F ():

f(x) =


0 x < a

1
b−a a < x < b

0 x > b

, and F (x) =


0 x < a
x−a
b−a a < x < b

1 x > b

.

The instantaneous rate function µ() goes to infinity as the age gets closer to b:

µ(x) =
1

b− x
,
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and is defined on (a, b).

A.3 Deterministic Distribution

The deterministic distribution defined in the value a i.e. Deterministic(a) is charac-
terised by the following density f() and cumulative distribution functions F ():

f(x) =
{

0 x 6= a
∞ x = a

and F (x) =
{

0 x < a
1 x ≥ a

.

The instantaneous rate function µ() goes to infinity when the age intensity is equal to
a:

µ(x) =
{

0 x 6= a
∞ x = a

A.4 Normal Distribution

The Normal distribution defined with parameters µ and σ i.e. Nor(µ, σ) is charac-
terised by the following probability density function f():

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

The expression for the cumulative distribution function of the normal distribution does
not exist in a simple closed formula. It is computed numerically. This is also valid for
its IRF.

A.5 Weibull Distribution

The Weibull distribution defined with parameters α and β i.e. Weibull(α, β) is char-
acterised by the following density f() and cumulative distribution functions F ():

f(x) = βα−βxβ−1e−( x
α)β

and F (x) = 1− e−( x
α)β

.

The instantaneous rate function µ() is defined as follows:

µ(x) =
β

α

(x

α

)β−1
.
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For testing and experimenting purposes we built a tool that implements the proxel-
based method. In this chapter we introduce this tool, which we also used for most of
the experiments in the thesis. First the input format to the proxel-based simulator is
explained, after which its options are and the way it works are described. The whole
process is demonstrated by a concrete example.

B.1 Description and Specifications

The proxel-based simulator has a graphical user interface (GUI), which makes it very
easy for use and experimenting. The simulator was created in the early stages of the
work on this thesis and therefore its requirement for the input is a reachability graph of
a Petri net (or a state-transition diagram), with some extra information as explained
further in detail.

In Figure B.1 the graphical user interface of the simulator is shown. The model input
is through a file, which has to comply with a format that is described in the next
section. Once the model is loaded, it is shown in the left edit-box. In order to analyse
the models, first a preprocessing step is performed which calculates the lifetimes of
each of the states, which is necessary for an efficient computation of the keys of the
proxels. After that, the model is solved using the proxel-based method and the results
are displayed in the right-hand edit-box. Additionally, the results can either be saved
in a file or plotted directly by the tool.

B.2 Input Model Specification and Example

The specification of the input file that describes the model contains the following
elements:

• maximum simulation time tmax,
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Figure B.1: The GUI of the proxel-based simulator

• size of the discretisation time step ∆t,

• number of discrete states,

• number of state changes,

• maximum number of supplementary variables,

• all state changes in the following form: incoming state, outgoing state, distribu-
tion, parameters, memory policy, identity, and

• all discrete states in the following form: discrete state, age intensity mapping
vector.

The identity parameter ensures that the simulator recognises if the same transition is
further enabled in the next marking because in a reachability graph different arcs may
represent same transitions from a Petri net.

In order to illustrate how they are represented in the input file, we use the example
model represented in Figure B.2. The input file for that model is the following:

2.5
0.1
2
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Figure B.2: Example model

2
1

0 1 U 1.0 2.0 E 0
1 0 U 1.0 2.0 E 1

0 0
1 1

meaning the model is simulated up to time tmax = 2.5, using a time step of ∆t = 0.1.
The model has two discrete states (0 and 1) and two transitions (0 and 1) which are
both distributed according to Uniform(1,2) (described by: U 1.0 2.0), have enabling
memory policy (E), and one supplementary variable at most in each of the two discrete
states. If a state change has age memory policy, then it is specified by the letter ”A”.
Other distribution functions that are implemented are:

• Exponential (E),

• Bathtub (B),

• Weibull (W),

• Normal (N), and

• Deterministic (D).

In the discrete state 0, the age of the 0-th transition needs to be tracked (described
by: 0 0), whereas in the discrete state 1, the one of the 1-st transition (described by:
1 1).

Once this model is input to the proxel-based simulator, it appears in the left-hand
text-box in the following form:

TMax is 2.500000
Initial dt is 0.100000
#States is 2
#Transitions is 2
#Supp. vars is 1
THE MODEL:
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State#0 to State#1 via Uniform with parameters: 1.00 2.00
State#1 to State#0 via Uniform with parameters: 1.00 2.00

meaning that the model is loaded. The four radio buttons under the left-hand text
box allow the user to choose one of the four integration methods for approximating
the instantaneous rate function, as described in Section 3.2. Once the model has been
analysed (solved), the solution can be graphically presented, which in this case results
into the plot shown in Figure B.3.

Figure B.3: Plot of the solution of the example model

The plot provides an instant insight into the model’s behaviour and eases the model
verification process.

B.3 Summary

The proxel simulator is a tool which was created for the purpose of studying the
behaviour of the proxel-based method, and it surely satisfied its purpose. The tool,
however, can be extended to capture the class of unbounded models, for which purpose
the proxel-adapted modelling framework can be used for specifying the models. This
is one of the implications for future work.

Another implementation of the proxel-based method exists as a part of a simulation
tool, which is being developed and used by DaimlerChrysler and was a topic of a
Diploma thesis completed at our Simulation and Modelling Group in cooperation with
DaimlerChrysler, by Fabian Wickborn (Wickborn 2004).
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