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Zusammenfassung

Vektorielle boole’sche Funktionen werden in vielen Bereichen der Kryptographie angewen-

det, insbesondere bei Blockchiffren, siehe [14]. Mächtige Attacken gegen solche Kryptosys-

teme sind lineare sowie differenzielle Attacken, siehe [4, 48]. Die am stärksten gegen diese

Attacken resistenten Funktionen sind die sogenannten fast perfekt nichtlinearen Funktionen

(“almost perfect nonlinear”, APN) sowie die “almost bent” (AB) Funktionen. Genauer:

APN Abbildungen bieten besten Schutz gegen differenzielle Attacken, AB Funktionen

gegen lineare Attacken, siehe [19, 53]. Es gab bislang nur wenige Klassen von APN und

AB Funktionen, und alle diese Abbildungen sind zu Potenzfunktionen affin äquivalent

gewesen [9, 14]. In der vorliegenden Arbeiten werden nun erstmals APN und AB Abbil-

dungen konstruiert, die zu keiner Potenzfunktion affin äquivalent sind. Hierzu habe ich

den erweiterten Äquivalenzbegriff aus [15] benutzt. In der Arbeit wird diese Äquivalenz

als CCZ-Äquivalenz bezeichnet. Im Fall von AB Abbildungen kann ich sogar zeigen, dass

man so unendlich viele verschiedene Klassen finden kann. Eine der konstruierten Klassen

liefert ein Gegenbeispiel zu einer bekannten Vermutung, dass alle AB Abbildungen zu Per-

mutationen affin äquivalent sind [15]. Ferner konstruiere ich AB Abbildungen, die auch

dann nicht zu einer Potenzfunktion transformiert werden können, wenn man außer affinen

Transformationen auch noch “Invertieren” erlaubt. Das zeigt, dass CCZ-Äquivalenz nicht

nur ein allgemeinerer Begriff als affine Äquivalenz ist, sondern auch allgemeiner als “affine

Äquivalenz plus Invertieren” zusammen.

In der Arbeit werden die Begriffe AB und APN verallgemeinert (“2δ-uniform, δ-nonlinear”).

Es werden einige Resultate über diese neuen Klassen gezeigt, die die Zusammenhänge zwis-

chen APN und AB verallgemeinern, aber auch Unterschiede aufzeigen.
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Summary

Vectorial Boolean functions are used in cryptography, in particular in block ciphers [14].

An important condition on these functions is a high resistance to the differential and linear

cryptanalyses [4, 48], which are the main attacks on block ciphers. The functions which

possess the best resistance to the differential attack are called almost perfect nonlinear

(APN). Almost bent (AB) functions are those mappings which oppose an optimum resis-

tance to both linear and differential attacks, see [19, 53]. Up to now only a few classes of

APN and AB functions have been known and all these classes happened to be extended

affine equivalent (EA-equivalent) to power functions (see for instance [9, 14]). In this work

we construct the first classes of APN and AB polynomials EA-inequivalent to power map-

pings by using the equivalence relation (which we call CCZ-equivalence) presented in [15].

Moreover we show that the number of different classes of AB polynomials EA-inequivalent

to power functions is infinite. One of the constructed functions serves as a counterexample

for a conjecture about nonexistence of AB functions EA-inequivalent to permutations [15].

Further we show that applying only EA and inverse transformations on an AB permutation

F it is possible to construct AB polynomials EA-inequivalent to both functions F and F−1.

We also present the notions of differentially 2δ-uniform and s-nonlinear functions which

are natural generalizations of the notions of APN and AB mappings, respectively, and we

give some results related to these notions.
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Chapter 1

Introduction

Vectorial Boolean functions are used in many cryptographic algorithms. Their properties

are responsible for the quality of an algorithm, its resistance to attacks. The linear and

differential attacks are the main attacks on block ciphers, where vectorial Boolean functions

play an important role [14].

The differential cryptanalysis presented by Biham and Shamir [4] is based on the study

of how differences in an input can affect the resultant difference at the output. The

resistance to differential attacks for a function F from Fm
2 to Fm

2 , used as an S-box in the

cipher, is high when the value

δF = max
a,b∈F

m
2 ,a6=0

|{x ∈ F
m
2 : F (x+ a) + F (x) = b}|

is small. The functions with the smallest possible differential uniformity [54], that is, with

smallest δF , oppose an optimum resistance to the differential attack [4]. They are called

almost perfect nonlinear (APN).

The linear cryptanalysis introduced by Matsui [48] is based on finding affine approxi-

mations to the action of a cipher. The linear attack on a function F is successful if

λF = max
a,b∈F

m
2 ,b6=0

|
∑

x∈F
m
2

(−1)b·F (x)+a·x|

is large. The functions achieving the maximal possible nonlinearity [19, 53] NL(F ) =

2m−1 − 1
2
λF possess the best resistance to the linear attack [48] and they are called almost

bent (AB) or maximum nonlinear.

In this work we introduce the transformation of functions presented in the paper [15] of

Carlet, Charpen and Zinoviev as an equivalence relation of functions and we call this equiv-

1



2 CHAPTER 1. INTRODUCTION

alence relation Carlet-Charpen-Zinoviev equivalence (CCZ-equivalence). CCZ-equivalence

corresponds to the affine equivalence of the graphs of functions, i.e. functions F and F ′

are CCZ-equivalent if and only if, for some affine permutation, the image of the graph of

F is the graph of the function F ′. CCZ-equivalent functions have the same linear and

differential properties and the same resistance to the algebraic attack.

It was known that the inverse transformation and the extended affine equivalence (EA-

equivalence) are the particular cases of CCZ-equivalence [15]. Recall that functions F and

F ′ are called EA-equivalent if F ′ = A1 ◦ F ◦ A2 + A for some affine functions A, A1 and

A2, where A1 and A2 are permutations. We completely describe the connection between

the CCZ-equivalence from one side and the inverse and the EA-transformations on the

other side. It could be expected that CCZ-equivalence coincides in practice with both

the inverse and the EA-transformations. We prove that CCZ-equivalence is more general.

At first we give sufficient conditions for functions to be extended affine inequivalent to

power functions. We make some steps to characterize the functions CCZ-equivalent to

the Gold power mappings. Then applying CCZ-equivalence to the Gold APN and AB

functions we construct classes of APN and AB polynomials which are EA-inequivalent to

power functions. This proves that CCZ-equivalence is more general than both the inverse

and EA-transformations together. Moreover, the constructed classes are the first classes

of APN and AB mappings which are EA-inequivalent to power functions.

The structure of the thesis. Chapter 2 contains all the necessary definitions related

to Boolean and vectorial Boolean functions, including EA-equivalence, APN and AB prop-

erties, important results related to APN and AB functions. In particular we present by

Propositions 16 and 17 sufficient conditions for functions to be EA-inequivalent to power

functions. Then we consider vectorial plateaued functions (which we call s-nonlinear)

since they are natural generalizations of AB functions. Besides, we define differentially

2δ-uniform functions which are generalizations of APN mappings. We describe proper-

ties of these functions and we study the connections between differentially 2δ-uniform and

s-nonlinear functions.

In Chapter 3, we give the definition of CCZ-equivalence, we describe its main properties

and we show its connections with EA-equivalence. Then we give some results related to a

classification of functions CCZ-equivalent to the Gold mappings in Section 3.3.

Theorems 6 and 7 in Chapter 4 present two different constructions of APN polynomials



3

which are EA-inequivalent to power functions and Theorem 5, 8 and 9 present different

classes of AB functions EA-inequivalent to power mappings. Besides, by Theorem 9 we

show that the number of different classes of AB polynomials EA-inequivalent to power

mappings is infinite. We also note that some functions from Theorem 5 are EA-inequivalent

to any permutation and that disproves the conjecture of [15].

In Chapter 5, applying only the inverse and EA transformations on the Gold AB func-

tions we construct a class of AB polynomials which is EA-equivalent neither to the Gold

mappings nor to their inverses.

Finally, it should be noted that the following material from this thesis has either been

published, submitted for publication, or is in preparation to be submitted for publication

to international journals:

◦ [Section 2.4] L. Budaghyan and A. Pott. Differentially uniform and nonlinear func-

tions. in preparation.

◦ [Chapters 3 and 4] L. Budaghyan, C. Carlet, A. Pott. New Constructions of Almost

Perfect Nonlinear and Almost Bent Functions. Proceedings of the Workshop on

Coding and Cryptography 2005, P. Charpin and Ø. Ytrehus eds, pp. 306-315, 2005.

◦ [Chapters 3 and 4] L. Budaghyan, C. Carlet, A. Pott. New Classes of Almost Perfect

Nonlinear and Almost Bent Functions. submitted to IEEE Trans. Inform. Theory,

2005.

◦ [Chapter 5] L. Budaghyan and C. Carlet. On the equivalence of maximum nonlinear

functions. in preparation.
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Chapter 2

Differential uniformity and

nonlinearity of functions

Let Fm
2 be the m-dimensional vector space over the field F2. In this work we consider

functions from Fm
2 to itself. Obviously, any such function can be viewed as a vectorial

Boolean function. In the next section we give necessary notions related to Boolean functions

which will be useful for the study of vectorial Boolean functions.

2.1 Boolean functions

A Boolean function F in m variables is an F2-valued function on Fm
2 . The unique repre-

sentation of F as a polynomial over F2 in m variables of the form

F (x1, ..., xm) =
∑

u∈Fm
2

c(u)
( m∏

i=1

xui

i

)

is called the algebraic normal form of F . The degree of the algebraic normal form of F is

denoted by d◦(F ) and is called the algebraic degree of the function F [13].

A Boolean function F is affine if d◦(F ) ≤ 1. F is called linear if it is affine and

F (0) = 0. The functions of the algebraic degree 2 are called quadratic functions.

The Hamming weight wt(F ) of a Boolean function F is the size of its support {x ∈

Fm
2 : F (x) 6= 0}. A Boolean function F is called balanced if wt(F ) = 2m−1. The Hamming

distance d(F,G) between two functions F and G is the size of the set {x ∈ Fm
2 : F (x) 6=

G(x)}. The minimum distance NL(F ) between F and all affine functions is called the

5



6 CHAPTER 2. DIFFERENTIAL UNIFORMITY AND NONLINEARITY

nonlinearity of F . The nonlinearity of a Boolean function quantifies the level of confusion

put in the system by the function and it must be high to prevent the system from linear

attacks [48].

If we consider a Boolean function F as valued in {0, 1} ⊂ Z then the nonlinearity of F

can be described by the discrete Fourier transform. The function F̂ : Fm
2 → Z defined by

F̂ (a) =
∑

x∈F
m
2

F (x)(−1)a·x, a ∈ F
m
2 ,

where ”·” is the usual inner product in Fm
2 , is called the Fourier transform of F . For the

Fourier transform and for any functions F and G the following formulas are true:

F (x) = 2−m
∑

a∈F
m
2

F̂ (a)(−1)a·x,

̂(F +G)(a) = F̂ (a) + Ĝ(a).

Obviously, the Fourier transform can be also applied to the function (−1)F , which is

called the sign function of F . The function λF defined for any a ∈ Fm
2 by

λF (a) = (̂−1)F (a) =
∑

x∈F
m
2

(−1)F (x)(−1)a·x =
∑

x∈F
m
2

(−1)F (x)+a·x

is called the Walsh transform of a Boolean function F .

The equality (−1)F = 1 − 2F provides the following relationship between Fourier and

Walsh transforms of a function:

λF (a) = (̂−1)F (a) = 1̂ − 2F̂ (a) = 2mδ0(a) − 2F̂ (a),

where δ0 is the Dirac symbol defined by δ0(0) = 1 and δ0(a) = 1 if a 6= 0.

One can easily note that for any Boolean function F and any element a we have

λF (a) = 2m − 2wt
(
F (x) + a · x

)
= 2m − 2d

(
F (x), a · x

)
.

Then

d
(
F (x), a · x

)
= 2m−1 −

1

2
λF (a), d

(
F (x), a · x+ 1

)
= 2m−1 +

1

2
λF (a).

This gives the connection between the nonlinearity of F and the values of its Walsh trans-

form

NL(F ) = 2m−1 −
1

2
max
a∈F

m
2

|λF (a)|.
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The Walsh transform of a Boolean function F satisfies Parseval’s relation

∑

a∈F
m
2

λF (a)2 = 22m. (2.1)

Indeed,

∑

a∈F
m
2

λF (a)2 =
∑

a∈F
m
2

( ∑

x∈F
m
2

(−1)F (x)+a·x
)2

=
∑

a∈F
m
2

( ∑

x,y∈F
m
2

(−1)F (x)+F (y)+a·(x+y)
)

=
∑

x,y∈F
m
2

(−1)F (x)+F (y)
∑

a∈F
m
2

(−1)a·(x+y) = 22m.

since
∑

a∈F
m
2
(−1)a·(x+y) equals 0 when x 6= y and equals 2m otherwise.

Parseval’s relation makes clear that the nonlinearity NL(F ) of any Boolean function

F is upper bounded by 2m−1 − 2
m
2
−1. The functions achieving this bound are called bent.

They exist only for m even. Obviously, F is bent if and only if λF (a) = ±2
m
2 for any

a ∈ Fm
2 .

The derivative of a Boolean function F with respect to a ∈ Fm
2 is the function

DaF (x) = F (x+ a) + F (x).

The derivatives of a function determine many cryptographic properties, the most important

of which is the resistance to differential attacks. Other properties defined by the mean

of the derivatives are the strict avalanche criterion (SAC) and the propagation criterion

(PC), which evaluate some kind of diffusion of the function [57]. An element a ∈ Fm
2 is

called a linear structure of a Boolean function F if DaF is a constant. The set of all linear

structures of F is a subspace of Fm
2 . The existence of nonzero linear structures is considered

as a weakness for cryptographic functions (see [31]).

The derivatives can be also used to describe bent functions. Indeed, since for any

a ∈ Fm
2

λF (a)2 =
∑

x,y∈F
m
2

(−1)F (x)+F (y)+a·(x+y) =
∑

x,y∈F
m
2

(−1)F (x+y)+F (y)+a·x

=
∑

x∈F
m
2

( ∑

y∈F
m
2

(−1)DxF (y)
)
(−1)a·x = 2m +

∑

x∈Fm
2 ,x 6=0

( ∑

y∈F
m
2

(−1)DxF (y)
)
(−1)a·x,

then λF (a)2 = 2m for all a if and only if DxF is balanced for all nonzero elements x ∈ Fm
2 .

Thus, we have the following characterization of bent functions.
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Proposition 1 (see [13]) A Boolean function F on Fm
2 is bent if and only if one of the

following conditions holds for any a ∈ Fm
2 :

(i) λF (a) = ±2
m
2 ,

(ii) wt(DaF ) = 2m−1 if a 6= 0.

It is obvious that a function F is balanced if and only if λF (0) = 0. Therefore, none of

the bent functions is balanced and, in spite of their optimum nonlinearity, this makes them

improper for direct cryptographic use. Hence, it is natural to consider functions which can

be balanced and suggest a good nonlinearity.

Let F be a Boolean function on m variables. We denote by

N∆F
= |{a ∈ F

m
2 :

∑

x∈F
m
2

(−1)DaF (x) 6= 0}|

the number of non-balanced derivatives (i.e. the number of nonzero auto-correlation coef-

ficients) of F and by

NλF
= |{a ∈ F

m
2 : λF (a) 6= 0}|

the number of nonzero values of the Walsh transform of F . Then N∆F
and NλF

satisfy the

inequality

N∆F
×NλF

≥ 2m,

which was conjectured in [56] by B. Preneel and proven in [11] by C. Carlet. In case of

equality the function F is called partially bent.

Proposition 2 ([11]) A Boolean function F on Fm
2 is partially bent if and only if one of

the following conditions holds:

(i) DaF is either balanced or constant for every a ∈ Fm
2 ;

(ii) there exist two linear subspaces E (of even dimension) and E ′ of Fm
2 , whose direct

sum equals Fm
2 , and Boolean functions F1, bent on E, and F2, affine on E ′, such that

F (x+ y) = F1(x) + F2(y) for any x ∈ E and y ∈ E ′.

It is obviously follows from Proposition 2 that all affine, quadratic and bent functions are

partially bent.

Partially bent functions, when they are not bent, have nonzero linear structures and,

therefore, they are also cryptographically weak in some sense. The class of plateaued

functions is a natural extension of the class of partially bent functions.



2.2. VECTORIAL BOOLEAN FUNCTIONS 9

A Boolean function F on m variables is called plateaued if its Walsh transform takes

only three values 0 and ±λ, that is, λF (a) ∈ {0,±λ} for any a ∈ Fm
2 . The value λ is called

the amplitude of the plateaued function. Because of (2.1) the amplitude λ cannot be null

and must be a power 2r, m
2

≤ r ≤ m. Bent functions are plateaued and, according to

Parseval’s relation (2.1), a plateaued function is bent if and only if its Walsh transform

never takes the value 0.

A Boolean function F is called n-th order correlation immune if it is balanced when

any n of the inputs are fixed. F is n-th order correlation immune if and only if λF (a) = 0

for every a ∈ Fm
2 such that 1 ≤ wt(a) ≤ n (see [67]). Balanced n-th order correlation

immune functions are called n-resilient. Boolean functions used as combining functions in

stream ciphers must have high order of resiliency to resist correlation attacks [62, 63]. It is

proven in [59, 64, 69] that the resiliency order n and the nonlinearity of a Boolean function

satisfy the relation NL(F ) ≤ 2m−1 − 2n+1. If the nonlinearity of an n-resilient function

achieves this bound then it is plateaued, that is, the class of plateaued functions contains

the functions which achieve the best possible trade-offs between resiliency and nonlinearity

(see [13]); besides, in these cases the algebraic degrees are also optimal [12].

The following proposition gives a characterization of plateaued functions through their

second order derivatives

DaDbF (x) = F (x) + F (x+ a) + F (x+ b) + F (x+ a+ b), a, b ∈ F
m
2 .

Proposition 3 ([17]) A Boolean function F is plateaued on Fm
2 if and only if there exists

σ such that for every x ∈ Fm
2 ,
∑

a,b∈F
m
2
(−1)DaDbF (x) = σ. If this condition is satisfied then

the amplitude λ of the plateaued function F is given by the equality σ = λ2.

Obviously, all linear functions are plateaued and the same is true for quadratic functions,

since the second order derivatives of any quadratic function are constant.

2.2 Vectorial Boolean functions

Any function F from Fn
2 into Fm

2 can be considered as a vectorial Boolean function, i.e. F

can be presented in the form

F (x1, ..., xn) =
(
F 1(x1, ..., xn), ..., Fm(x1, ..., xn)

)
,
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where the Boolean functions F 1, ..., Fm are called the coordinate or component functions

of the function F .

A function F : Fn
2 → Fm

2 has a unique representation as a polynomial on n variables

with coefficients in Fm
2

F (x1, ..., xn) =
∑

u∈F
n
2

c(u)
( n∏

i=1

xui

i

)
.

This representation is called the algebraic normal form of F and its degree d◦(F ) the

algebraic degree of the function F . The algebraic degree of F is equal to the maximum

algebraic degree of the coordinate functions of F (see [14]). The minimum algebraic degree

of all nonzero linear combinations of the coordinate functions of F is called the minimum

degree of the function F and it is denoted by min d◦(F ), i.e.

min d◦(F ) = min
c∈F

m
2 ,c 6=0

d◦(c · F ).

If we identify Fm
2 with the finite field F2m then a function F : F2m → F2m is also uniquely

represented as a univariate polynomial over F2m of degree smaller than 2m

F (x) =
2m−1∑

i=0

cix
i, ci ∈ F2m .

If m is a divisor of n then a function from Fn
2 to Fm

2 can be viewed as a function from Fn
2 to

itself and, therefore, it admits a univariate polynomial representation. More precisely, it

can be represented in the form trn/m(
∑2n−1

i=0 cix
i) , where trn/m is the trace function from

F2n to F2m (i.e. trn/m(x) = x + x2m

+ x22m

+ ... + x2n−m

). Indeed, there exists a function

G from F2n to F2n (for example G(x) = aF (x), where a ∈ F2n and trn/m(a) = 1) such that

F equals trn/m ◦G.

For any integer k, 0 ≤ k ≤ 2m − 1, the number w2(k) of nonzero coefficients ks,

0 ≤ ks ≤ 1, in the binary expansion
∑m−1

s=0 2sks of k is called the 2-weight of k. The

algebraic degree of a function F : Fm
2 → Fm

2 is equal to the maximum 2-weight of the

exponents i of the polynomial F (x) such that ci 6= 0, that is

d◦(F ) = max
0≤i≤2m−1

ci 6=0

w2(i)

(see [15]). In particular, F is linear if and only if F (x) is a linearized polynomial over F2m

m−1∑

i=0

cix
2i

, ci ∈ F2m .
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The sum of a linear function and a constant is called an affine function. Obviously, the

algebraic degree of any affine function is less than or equal to 1. The functions of the

algebraic degree less than or equal to 2 are called quadratic.

Let F be a function from Fm
2 to itself. Then, if F is a permutation the transformation

F 7→ F−1

is called the inverse transformation. If A1, A2 : Fm
2 → Fm

2 are affine permutations and

A : Fm
2 → Fm

2 is affine then the following transformations are called the affine and extended

affine transformations respectively:

F 7→ A1 ◦ F ◦ A2,

F 7→ A1 ◦ F ◦ A2 + A.

In these cases the functions F and A1 ◦F ◦A2 are called affine equivalent and the functions

F and A1 ◦F ◦A2 +A are called extended affine equivalent. If F is not affine then any EA

transformation of the function does not change its algebraic degree. If min d◦(F ) > 1 then

the minimum degree of F is also EA invariant. Obviously, the algebraic and minimum

degrees of a function are not invariant under the inverse transformation. For example, for

a function F (x) = x2i+1 on the field F2m we have d◦(F ) = min d◦(F ) = 2 and d◦(F−1) =

min d◦(F−1) = m+1
2

when gcd(i,m) = 1 (see [54]).

A function F : Fn
2 → Fm

2 is called balanced if it takes every value of Fm
2 the same number

2n−m of times. The balanced functions from Fm
2 to itself are the permutations of Fm

2 . A

function F is balanced if and only if all nonzero linear combinations of the coordinate

functions of F are balanced, that is if and only if the Boolean function c · F is balanced

for every nonzero c ∈ Fm
2 (see [14]).

Let F : Fn
2 → Fm

2 . The function λF : Fn
2 × Fm

2 → Z defined by

λF (a, b) =
∑

x∈F
m
2

(−1)b·F (x)+a·x, a ∈ F
n
2 , b ∈ F

m
2 ,

is called the Walsh transform of the function F . For any elements a ∈ Fn
2 , b ∈ Fm

2 the

value λF (a, b) is called the Walsh coefficient of F and the set

ΛF = {λF (a, b) : a ∈ F
n
2 , b ∈ F

m
2 , b 6= 0}
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is called the Walsh spectrum of F . The Walsh coefficients of F with b 6= 0 form a 2n ×

(2m − 1) matrix

Λ(F ) = (λF (a, b))a∈F
n
2 ,b∈F

m
2 ,b6=0.

We also denote

λF = max
a∈F

n
2 ,b∈F

m
2 ,b6=0

|λF (a, b)|.

The Walsh transform of a function does not depend on a particular choice of the inner

product in Fm
2 . If we identify Fm

2 with F2m then we can take x · y = tr(xy), where

tr(x) = x+ x2 + ...+ x2m−1
is the trace function from F2m into F2.

The nonlinearity of a function F : Fn
2 → Fm

2 is the value

NL(F ) = 2n−1 −
1

2
λF = min

b∈Fm
2 ,b6=0

NL(b · F ),

which equals the minimum Hamming distance between all nonzero linear combinations of

the coordinate functions of F and all affine Boolean functions on n variables. The linear

cryptanalysis, introduced by Matsui [48], is based on finding affine approximations to the

action of a cipher, therefore the linear attack on a function F is successful if NL(F ) is

small.

Obviously, the nonlinearity of any function F : Fn
2 → Fm

2 has the same upper bound

NL(F ) ≤ 2n−1−2
n
2
−1 as Boolean functions. This bound is called the universal bound and

functions achieving it have the optimal nonlinearity and they are called bent.

Proposition 4 (see [14]) A function F : Fn
2 → Fm

2 is bent if and only if one of the following

conditions holds:

(i) for any nonzero c ∈ Fm
2 the Boolean function c · F is bent;

(ii) ΛF = {±2
n
2 };

(iii) for any nonzero a ∈ Fn
2 the function F (x) + F (x+ a) is balanced.

The first statement in this proposition is obvious and the second and third clearly follow

from Proposition 1.

A function F : Fn
2 → Fm

2 is called perfect nonlinear if for any nonzero a ∈ Fn
2 the

derivative DaF is balanced. Clearly, a function F is bent if and only if it is perfect

nonlinear. Bent (perfect nonlinear) functions from Fn
2 to Fm

2 exist if and only if n is even

and m ≤ n
2

(see [14]). When m ≥ n the inequality

NL(F ) ≤ 2n−1 −
1

2

(
3 · 2n − 2(2n − 1)(2n−1 − 1)/(2m − 1) − 2

)1/2
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gives a better upper bound for nonlinearity of functions as it is proven in [19, 61]. This

bound can be achieved only if n = m with n odd. We consider this case in details in the

next section.

2.3 APN and AB functions

As we noted above the universal bound is reachable only for functions from Fn
2 to Fm

2 with

n even and m ≤ n
2
. For the case m = n, a better bound for the nonlinearity exists [19, 61]:

NL(F ) ≤ 2m−1 − 2
m−1

2 .

In case of equality the function F is called almost bent (AB) or maximum nonlinear.

Obviously, AB functions exist only for m odd. When m is even functions with the non-

linearity 2m−1 − 2
m
2 are known and it is conjectured that this value is the highest possible

nonlinearity for the case m even.

For a function F : Fm
2 → Fm

2 and any elements a, b ∈ Fm
2 we denote by δF (a, b) the

number of solutions of the equation F (x+ a) + F (x) = b, that is,

δF (a, b) = |{x ∈ F
m
2 : F (x+ a) + F (x) = b}|,

and we call the set

∆F = {δF (a, b) : a, b ∈ F
m
2 , a 6= 0}

the differential spectrum of the function F . We also consider the (2m − 1) × 2m matrix

∆(F ) =
(
δF (a, b)

)
a,b∈F

m
2 ,a6=0

which is called the table of differences of F .

For any function F : Fm
2 → Fm

2 the value δF = maxa,b∈F
m
2 ,a6=0 δF (a, b) is not less than 2.

Indeed, for any a, b ∈ Fm
2 , the number δF (a, b) is even since if x0 is a solution of the equation

F (x+ a) + F (x) = b then x0 + a is a solution too. If δF = 2 then the function F is called

almost perfect nonlinear (APN).

APN functions possess the best resistance to the differential attack. The differential

cryptanalysis presented by Biham and Shamir [4] is based on the study of how differences

in an input can affect the resultant difference at the output. The resistance of a function

F , used as an S-box in the cipher, to the differential attack is high when the value δF is

small.
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Proposition 5 ([15, 19, 23]) A function F : Fm
2 → Fm

2 is AB if and only if one of the

following conditions is satisfied:

(i) ΛF = {0,±2
m+1

2 };

(ii) for every a, b ∈ Fm
2 the system of equations

{
x+ y + z = a

F (x) + F (y) + F (z) = b

has 3 · 2m − 2 solutions (x, y, z) if b = F (a), and 2m − 2 solutions otherwise;

(iii) the function γF : F2m
2 → F2 defined by the equality

γF (a, b) =

{
1 if a 6= 0 and δF (a, b) 6= 0

0 otherwise

is bent.

The first statement in this proposition is proven in [19], the second in [23] and the proof

of the third statement is given in [15].

Proposition 6 ([15, 39]) A function F : Fm
2 → Fm

2 is APN if and only if one of the

following conditions holds:

(i) ∆F = {0, 2};

(ii) for any a ∈ Fm
2 \{0} the set

Ha = {F (x+ a) + F (x) : x ∈ F
m
2 }

contains 2m−1 elements, that is |Ha| = 2m−1;

(iii) for every (a, b) 6= 0 the system

{
x+ y = a

F (x) + F (y) = b

admits 0 or 2 solutions;

(iv) for any a ∈ Fm
2 \{0} the derivative DaF is a two-to-one mapping;

(v) the Boolean function γF has the weight 22m−1 − 2m−1;

(vi) F is not affine on any 2-dimensional affine subspace of Fm
2 .

The statements (i-iv) in the proposition easily follow from the definition of APN functions

and claims (v) and (vi) are proven in [15] and [39] respectively.
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For any function F : Fm
2 → Fm

2 we have the following inequality

∑

a,b∈F
m
2

λF (a, b)4 ≥ 3 · 24m − 23m+1

and the equality occurs if and only if F is APN ([19], see also [14]). This implies that every

AB function is APN. Indeed, because of Parseval’s relation (2.1) the number of nonzero

values λF (a, b) is 2m−1 for any fixed b ∈ Fm
2 \{0} when F is AB. Then

∑

a,b∈F
m
2

λF (a, b)4 = 24m +
∑

b∈F
m
2 \{0}

∑

a∈F
m
2

λF (a, b)4 = 24m +(2m−1)2m−122m+2 = 3 ·24m−23m+1.

We know that the bentness of a function implies its perfect nonlinearity and vice versa,

that is, λF = {±2
n
2 } for a function F : Fn

2 → Fm
2 if and only if DaF is one-to-one for any

a 6= 0. It is not quite the case with AB and APN functions. Not every APN function is

AB. However, every quadratic APN function is AB (see [15]). For the general case the

following proposition gives sufficient conditions for APN functions to be AB.

Proposition 7 ([8]) An APN function F : Fm
2 → Fm

2 is AB if and only if one of the

following conditions is fulfilled:

(i) all the values in ΛF are divisible by 2
m+1

2 ;

(ii) for any c ∈ Fm
2 the function c · F is plateaued.

For EA equivalent functions F and F ′ we have ∆F = ∆F ′, ΛF = ΛF ′ and if F is a

permutation then ∆F = ∆F−1 , ΛF = ΛF−1 (see [15]). Therefore, if F is APN (resp. AB)

and F ′ is EA equivalent to either F or F−1 (if F is a permutation), then F ′ is also APN

(resp. AB). Moreover, APN and AB functions satisfy the following property of stability,

which is considered carefully in Section 3.

Proposition 8 ([15]) Let F be an APN (resp. AB) function on Fm
2 and L1, L2 be two

linear functions from F2m
2 to Fm

2 . Assume that (L1, L2) is a permutation on F2m
2 and

that the function F1(x) = L1(x, F (x)) is a permutation on Fm
2 . Then, denoting F2(x) =

L2(x, F (x)), the function F2 ◦ F
−1
1 is APN (resp. AB).

There are a few known classes of APN and AB functions (all of them correspond to power

functions), but using Proposition 8 one can construct from power functions a huge number

of highly nonlinear polynomials. It is proven in [15] that the inverse and EA transformations

are particular cases of the transformation of functions given in Proposition 8 and we show

in Section 4 that this transformation is more general.
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2.3.1 APN permutations and some nonexistence results for APN

functions

The existence of APN permutations on F2m is an open problem when m is even. It was

conjectured by Canteaut, Carlet, Charpin, Dobbertin and Zinoviev that the answer is

negative. This conjecture was carefully studied by X.-D. Hou and in the theorem below

we give some nonexistence results proven in [39].

Theorem 1 ([39]) Let m = 2n and a function F be a permutation on F2m. Then F is not

APN if one of the following conditions holds:

(i) n is even and F ∈ F24 [x];

(ii) F is a polynomial with coefficients in F2n.

It obviously follows from this theorem that for m even there exists no APN permutation

F ∈ F2[x].

Let F : Fm
2 → Fm

2 be a function with coefficients in Fn
2 , where n is a proper divisor of

m. Then clearly if F is not APN on Fn
2 then F is not APN on Fm

2 .

The following proof that APN power functions are permutations on F2m\{0} if m is

odd and 3-to-1 if m is even is due to Dobbertin. If x 6= 1 then x = (y + 1)/y for a unique

y ∈ F2m , y 6= 0, 1. The equality xd = 1 implies

(y + 1)d + yd = 0 = (y2 + 1)d + (y2)d.

If xd is APN then y2 + y + 1 = 0, since y2 6= y. Thus, y ∈ F4\{0} and then x ∈ F4\{0}.

Since we assumed that x 6= 1 then F4 must be a subfield of F2m and then m is even. For

m even d must be divisible by 3, otherwise the restriction of xd to F4 is linear and then xd

is not APN.

For m even a more general result can be found in [14].

Proposition 9 (see [14]) If F (x) =
∑2m−1

i=0 cix
i is the polynomial representation of a func-

tion F and
∑(2m−1)/3

j=1 c3j = 0 then F is not APN when m is even. For a power APN

function it means that F is not a permutation.

The following proposition gives a condition when a function is not APN.

Proposition 10 ([15]) Let n be a proper divisor of m, a function F : F2m → F2m have

the univariate polynomial representation F (x) =
∑2m−1

i=0 cix
i and ci 6= 0 implies i ≡ 2j

mod (2n − 1). Then F is not APN.
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Below we give another nonexistence result similar to Proposition 10.

Proposition 11 Let n > 2 be a divisor of m, a function F : Fm
2 → Fm

2 have the univariate

polynomial representation F (x) =
∑2m−1

i=0 cix
i and ci 6= 0 implies either i ≡ 2j mod (2n−1)

or i ≡ 0 mod (2n − 1). Then F is not APN.

Proof. Obviously in conditions of the statement D1F (x) = D1F (y) for all x, y ∈ Fn
2 ,

x, y /∈ {0, 1}, and therefore F is not APN when n > 2. 2

We pay a special attention to power functions with exponents d =
∑k−1

i=1 2in − 1 on the

fields F2m where m = nk, k > 1, n ≥ 1, because in cases when either n = 1 or k = 5 we get

the only known APN power functions which are not AB. In the next proposition we give

some conditions when these functions are not APN. Further we also show (see Corollary

6) that none of these functions is AB, but we leave an open question whether these class

of functions provides other cases of APN mappings.

Proposition 12 Let F : F2m → F2m, F (x) = xd, d =
∑k−1

i=1 2in − 1, and m = nk for some

integers n, k > 1. Then F is not APN if one of the following conditions is fulfilled:

1. k = 2l + 2 for some integer l;

2. k = 2 and n > 2.

Proof. If k = 2l + 2 in conditions of this proposition, then d mod (2n − 1) = 2l. Thus, F

is not APN by Proposition 10. If k = 2 then d mod (2n − 1) = 0 and by Proposition 11

the function F is not APN when n > 2. If k = 2 and n = 2 then we get the APN function

F (x) = x3 on F24 . 2

The proposition below gives a condition when a function is neither a permutation nor

AB. This result is generalized in this work also for s-nonlinear functions.

Proposition 13 ([15]) Let n = 2m−1 and k be a proper divisor of n. If F is a function on

F2m with the univariate polynomial representation F (x) =
∑2m−1

i=0 cix
i and ci 6= 0 implies

i = kr for some r, 0 ≤ r ≤ n/k then F is neither a permutation nor AB.

Further results related to the nonexistence of APN permutations one can find in [55]. In

particular, it is proven there that in m even case there do not exist quadratic APN permu-

tations and, more generally, APN permutations whose coordinate functions are partially

bent, as well as all their linear combinations.
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2.3.2 Connections with coding theory

Here we consider an interpretation of APN and AB functions in terms of coding theory.

Any linear subspace C of Fn
2 of dimension k is called a binary linear code of length n

and dimension k and is denoted by [n, k]. Any linear code C is associated with its dual

[n, n− k] code denoted

C⊥ = {x ∈ F
n
2 : c · x = 0, ∀c ∈ C}.

The (Hamming) weight of any vector x ∈ Fn
2 is denoted by wt(x). The distance between

any two vectors x and y of Fn
2 is denoted d(x, y). The number d = minc∈C,c 6=0wt(c) is called

the minimum distance of the linear code C. A binary code is 2l divisible if the weight of

any of its codewords is divisible by 2l.

Let H be a binary (r × n) matrix. We say that a linear binary code C of length n

is defined by the parity check matrix H if C = {c ∈ Fn
2 : cH t = 0}, where H t is the

transposed matrix of H .

APN and AB properties were expressed in terms of codes in [15].

Theorem 2 ([15]) Let F be a function on F2m with F (0) = 0. Let CF be a linear binary

code of length 2m − 1 defined by the parity-check matrix

HF =

(
1 α α2 . . . α2m−2

F (1) F (α) F (α2) . . . F (α2m−2)

)

where each entry is viewed as a binary vector and α is a primitive element of F2m. Then

(i) the code CF is such that dimCF ≥ 2m − 1 − 2m and 3 ≤ d ≤ 5, where d is the

minimum distance of CF ;

(ii) F is APN if and only if the code CF has the minimum distance 5;

(iii) λF = 2m if and only if dimCF > 2m − 1 − 2m or C⊥
F contains the all-one vector;

(iv) if F is APN then dimCF = 2m − 1 − 2m and C⊥
F does not contain the all-one

vector;

(v) F is AB if and only if the weight of every codeword in C⊥
F lies in {0, 2m−1, 2m−1 ±

2
m−1

2 }.
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The connection between the weights of codewords of C⊥
F and the Walsh spectrum of F is

given by the equality (cf. the proof of Th. 5 in [15])

{λF (a, b) : a, b ∈ F
m
2 } = {2m − 2ωt(c) : c ∈ C⊥

F }. (2.2)

The equality above and Proposition 7 lead to the following result.

Corollary 1 ([8]) Let F : Fm
2 → Fm

2 and m be odd. Then F is AB if and only if it is APN

and the code C⊥
F is 2

m−1
2 -divisible.

The covering radius ρ of a code C ⊆ Fn
2 is the value

ρ = max
a∈F

n
2

min
c∈C

d(a, c).

It is proven in [15] that the covering radius ρ of the code CF for any APN function F is

such that 3 ≤ ρ ≤ 4. Recall that a code C is completely regular if for any of its coset U ,

U = a+ C = {a+ c : c ∈ C},

the weight distribution of U is uniquely defined by its minimum weight. If a function F is

AB then CF is a completely regular code [15].

A linear binary code C of length n is cyclic if for all codewords (c0, ..., cn−1) in C, the

vector (cn−1, c0..., cn−2) is also in C. If we identify a vector (c0, ..., cn−1) of Fn
2 with the

polynomial c(x) = c0 + c1x + ... + cn−1x
n−1 then any linear binary cyclic code is an ideal

of the ring F2[x]/(x
n − 1) of the polynomials over F2 modulo (xn − 1). For any such code

C there exists a unique monic polynomial g(x), called the generator polynomial of C, such

that any element c(x) of C can be uniquely expressed in the form c(x) = a(x)g(x). The

roots of the generator polynomial are called the zeros of the code C. If n = 2m − 1 and α

is a primitive element of Fm
2 then the defining set of C is the set

I(C) = {i : 0 ≤ i ≤ 2m − 2, αi is a zero of C}.

The following theorem due to McEliece reduces the determination of the exact weight

divisibility of binary cyclic codes to a combinatorial problem.

Theorem 3 ([49]) A binary cyclic code is exactly 2l-divisible if and only if l is the smallest

number such that (l + 1) nonzeros of C (with repetitions allowed) have product 1.
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When F (x) = xk, the corresponding code C1,k is a binary cyclic code of length (2m−1)

whose defining set is the union of two cyclotomic classes of 1 and k. McEliece’s theorem

was formulated for the duals of this kind of codes in the following way [9].

Theorem 4 ([9]) The cyclic code C⊥
1,k of length (2m − 1) is exactly 2l-divisible if and only

if for all u such that 0 ≤ u ≤ 2m − 1,

ω2(A(u)) ≤ ω2(u) +m− 1 − l,

where A(u) = uk mod (2m − 1).

This leads to the following characterization of AB power functions.

Corollary 2 ([9]) Let F : Fm
2 → Fm

2 , F (x) = xk, and m be odd. Then F is AB if and only

if it is APN and for any u, 1 ≤ u ≤ 2m − 1, the condition w2(A(u)) ≤ (m− 1)/2 + w2(u),

where A(u) = uk mod (2m − 1), is fulfilled.

The next proposition is helpful to prove that Dobbertin APN functions (see further) are

not AB.

Proposition 14 ([9]) Let m, d be such integers that for some divisor n of m the condition

d ≡ −d0 mod
2m − 1

2n − 1
,

with 0 < d0 < (2m − 1)/(2n − 1) and w2(d0) ≤
1
2
(m

n
− 3), is satisfied. Then F (x) = xd is

not AB on F2m.

2.3.3 The case of power functions

There are natural reasons that the main attention in the study of APN and AB functions

has been payed to power functions. Maximum nonlinear power functions correspond to

binary cyclic codes with two zeros, whose duals are optimal, and to pairs of maximum-

length sequences (called M-sequences) with preferred crosscorrelation, which are used for

spread-spectrum communications.

A binary sequence which satisfies a linear recurrence relation si = a1si−1+...+amsi−m is

called maximum-length or an M-sequence if its period equals 2m−1, which is the maximum

possible value. Let s[1] = (s0, s1, s2, ...si, ...) denote a binary M-sequence of length 2m − 1
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and let s[d] = (s0, sd, s2d, ..., sid, ...) denote its decimation by an integer d with gcd(2m −

1, d) = 1. The function

Cd(t) =

2m−2∑

i=0

(−1)sid+si+t , 0 ≤ t ≤ 2m − 2,

is called the crosscorrelation function between the sequences s[1] and s[d].

The determination of the crosscorrelation spectra for different values of d (with gcd(2m−

1, d) = 1) is an important problem which has been considered in many papers (see for

example [8, 22, 24, 30, 32, 34, 35, 36, 52]). It is proven in [34] that the crosscorrelation

function between two (cyclically distinct) M-sequences takes at least three different values.

The values of d with three valued crosscorrelation functions are the objects of special

interest. A pair of binary M-sequences with three valued crosscorrelation function with

values

−1,−1 ± 2⌊
m+1

2
⌋

is called a preferred pair. When m ≡ 0 mod 4 then no pairs of preferred sequences exist

as it was conjectured by Sarwate and Pursley [60] and proven by McGuire and Calder-

bank [50]. There exist pairs of preferred sequences for all other cases (for instance, see the

Gold case).

It is well known that for any M-sequence p = (p0, ..., pi, ...) there exists a unique c ∈ F∗
2m

such that pi = tr(cαi), 0 ≤ i ≤ 2m − 2, where α is a primitive element of F2m . Since the

crosscorrelation spectrum only depends on d and not on the choice of M-sequence s[1] we

can assume without loss of generality that s[1] is given by si = tr(αi), 0 ≤ i ≤ 2m − 2.

Then sid = αdi, 0 ≤ i ≤ 2m − 2, and

Cd(t) =
2m−2∑

i=0

(−1)tr(αid+αi+t) =
∑

x∈F
∗

2m

(−1)tr(xd+ax) = −1 + λF (a, 1),

where F (x) = xd and a = αt. Since gcd(2m − 1, d) = 1, then the power function F is a

permutation and λF (a, b) = λF (ab−
1
d , 1). Therefore, the crosscorrelation function Cd(t) is

three valued if and only if xd has a three valued Walsh spectrum and if m is odd then the

pair of M-sequences with crosscorrelation function Cd(t) is preferred if and only if xd is AB.

The checking of the APN and AB properties of power functions is easier than in the

case of arbitrary polynomials. If F is a power function, that is F (x) = xd, then F is APN
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if and only if the derivative D1F is a two-to-one mapping. Indeed, since for any a 6= 0

DaF (x) = (x+ a)d + xd = adD1F (x/a)

then DaF is a two-to-one mapping if and only if D1F is two-to-one.

Besides, the function F (x) = xd is AB if and only if λF (a, b) ∈ {0,±2
m+1

2 } for a ∈ F2,

b ∈ Fm
2 \{0}, since λF (a, b) = λF (1, a−db) for a ∈ Fm

2 \{0}.

Proposition 15 describes the minimum degree of a power function and Proposition 16

gives a sufficient condition for a function to be EA-inequivalent to power functions.

Proposition 15 ([10]) Let F : F2m → F2m, F (x) = xd. Then for any c ∈ F∗
2m either

tr(cF ) = 0 or d◦
(
tr(cF )

)
= d◦(F ). If F is a permutation then d◦(F ) = min d◦(F ).

Proposition 16 Let F be a function from F2m to itself. If there exists an element c ∈ F∗
2m

such that d◦
(
tr(cF )

)
6= d◦(F ) and d◦

(
tr(cF )

)
> 1, then F is EA-inequivalent to power

functions.

Proof. By Proposition 15 for any power function xd and for any c ∈ F2m , either the func-

tion tr(cxd) completely vanishes or it has exactly the algebraic degree w2(d). Thus, for

any function F which is affine equivalent to a power function, we have either tr(cF ) = 0

or d◦
(
tr(cF )

)
= d◦(F ), c ∈ F2m . Therefore, if F is EA-equivalent to a power function then

either d◦
(
tr(cF )

)
= d◦(F ) or d◦

(
tr(cF )

)
≤ 1, for every c ∈ F2m . 2

Since APN power functions are permutations on the fields F2m with m odd then the

following statement is true.

Proposition 17 Let F be an APN function on F2m with d◦(F ) 6= min d◦(F ) and m be

odd. Then F is EA-inequivalent to power functions.

Propositions 16 and 17 have important applications in Chapter 4.

The exponent d, 0 ≤ d < 2m − 1, of a power function F (x) = xd on F2m gives an

equivalence class (d) of exponents

(d) =

{
{2id, 2i/d : 0 ≤ i < m} if xd is a permutation

{2id : 0 ≤ i < m} otherwise
,
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i.e. (d) is a union of 2-cyclotomic cosets of d and 1
d

modulo 2m − 1 if xd is a permutation,

otherwise (d) is the 2-cyclotomic coset of d modulo 2m − 1. If d and d′ belong to the

same equivalence class then we call the power functions xd and xd′ cyclotomic equivalent.

Obviously, if power functions F and F ′ are cyclotomic equivalent then ∆F = ∆F ′ and

ΛF = ΛF ′.

Table 1 (resp. Table 2) gives all known values of exponents d (up to cyclotomic equiv-

alence) such that the power function xd is APN (resp. AB) and Table 3 gives all known

values of d that xd has the best known nonlinearity (that is, 2m−1 − 2
m
2 ) on the field F2m

with m even.

Table 1

Known APN power functions xd on F2m .

Exponents d Conditions d◦(xd) Proven in

Gold functions 2i + 1 gcd(i,m) = 1 2 [33, 54]

Kasami functions 22i − 2i + 1 gcd(i,m) = 1 i + 1 [41, 42]

Welch function 2t + 3 m = 2t + 1 3 [27]

Niho function 2t + 2
t
2 − 1 m = 2t + 1, t even (t + 2)/2 [26]

2t + 2
3t+1

2 − 1 m = 2t + 1, t odd t + 1

Inverse function 22t − 1 m = 2t + 1 m − 1 [3, 54]

Dobbertin function 24i + 23i + 22i + 2i − 1 m = 5i i + 3 [28]

Table 2

Known AB power functions xd on F2m , m odd.

Exponents d Conditions Proven in

Gold functions 2i + 1 gcd(i,m) = 1 [33, 54]

Kasami functions 22i − 2i + 1 gcd(i,m) = 1 [42]

Welch function 2t + 3 m = 2t + 1 [8, 9]

Niho function 2t + 2
t
2 − 1 m = 2t + 1, t even [38]

2t + 2
3t+1

2 − 1 m = 2t + 1, t odd
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Table 3

Known power permutations xd with the highest known nonlinearity on F2m , m = 2t.

Exponents d Conditions Proven in

2i + 1 gcd(i,m) = 2, t odd [33]

22i − 2i + 1 gcd(i,m) = 2, t odd [42]

2m−1 − 1 [44]

2t + 2
t+1
2 + 1 t odd [22]

2t + 2t−1 + 1 t odd [22]

2t + 2
t
2 + 1 t ≡ 2 mod 4 [24]

∑t
k=0 2ik gcd(i,m) = 1, t even [24, 52]

The power functions with the exponents d = 2i +1 were first considered by Gold within

the framework of M-sequences. The proof of APN and AB properties of the Gold functions

is easy. If F : F2m → F2m , F (x) = xd, then

D1F (x) = x2i+1 + (x+ 1)2i+1 = x2i

+ x+ 1

and, obviously, D1F is a 2s-to-one mapping if and only if the kernel of the linear function

x2i

+x consists of 2s elements, that is gcd(i,m) = s. If m/s is odd then F is a permutation

and we need to consider only λF (a, 1), a ∈ Fm
2 , to determine the Walsh spectrum of F . We

have

λF (a, 1) =
∑

x∈F2m

(−1)tr(xd)+tr(ax)

and using the Welch’s squaring method we get

λF (a, 1)2 =
∑

x,y∈F2m

(−1)tr(xd)+tr(yd)+tr(a(x+y)) =
∑

y∈F2m

(−1)tr(ay)
∑

x∈F2m

(−1)tr(xd)+tr((x+y)d)

=
∑

y∈F2m

(−1)tr(yd)+tr(ay)
∑

x∈F2m

(−1)tr(x2i
y+xy2i

)

=
∑

y∈F2m

(−1)tr(yd)+tr(ay)
∑

x∈F2m

(−1)tr((y2i
+y2−i

)x) = 2m
∑

y∈F2s

(−1)tr(yd)+tr(ay),

since y2i

+ y2−i

= 0 means y22i−1 = 1 and y2gcd(2i,m)
= 1, then y ∈ F2s .

The function yd is linear on F2s , therefore

tr(yd + ay) = tr(y(1 + a)) = trs(y trm/s(1 + a))
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and since m/s is odd

λF (a, 1)2 =

{
2m+s if trm/s(1 + a) = 0

0 otherwise
=

{
2m+s if trm/s(a) = 1

0 otherwise
.

That completes the proof that if gcd(i,m) = s then ∆F = {0, 2s} and if m/s is odd then

ΛF = {0,±2
m+s

2 }.

The power functions F (x) = xd with the exponents d = 22i − 2i + 1 were first studied

in the context of coding theory. In 1971 Kasami showed that when gcd(i,m) = s and m/s

is odd then the Walsh spectrum of F is {0,±2
m+s

2 } (actually this result is due to Welch

(1969), but it was never published by him). If m is odd and gcd(i,m) = 1 then, obviously,

F is AB and therefore also APN. The APN property of F for m even and gcd(i,m) = 1 was

proven by Janva and Wilson [41] by using methods of algebraic geometry. Dobbertin gives

another proof of AB property of Kasami functions in [25] and he also gives a direct proof of

the APN property of F in [27]. Since d = 22i − 2i + 1 = 23i+1
2i+1

then the AB property of the

Kasami functions (as well as the Gold functions) can be obtained from the fact proven in

[15] that any APN function of the form F1 ◦F
−1
2 , where the mappings F1, F2 are quadratic

and F2 is a permutation, is AB.

It was conjectured by Welch (in terms of M-sequences) that the power function F (x) =

xd with the exponent d = 2(m−1)/2 +3 is AB. This conjecture was mentioned in the paper of

Golomb [32] in 1968 and only in 2000 the conjecture was proven by Canteaut, Charpin and

Dobbertin [8]. The proof is based on the proof of APN property of F given by Dobbertin

[27] and on McEliece’s theorem on divisible codes [49].

In 1972 Niho conjectured in his thesis [52] that the power function F (x) = x22i+2i−1

where 4i + 1 ≡ 0 mod m, is AB. The APN property of this function was proven by

Dobbertin [26] in 1999, and in 2001 the conjecture was proven by Hollman and Xiang [38].

In his proofs of the APN property of Kasami, Welch and Niho functions Dobbertin

presents D1F as a composition of a two-to-one mapping of the type x2r

+ x and a permu-

tation, then the proofs come to showing that certain polynomials are permutations. The

proofs are technical and complicated.

The last case of APN power functions was found in 1999 by Canteaut and Dobbertin,

and proven by Dobbertin in 2000 by multivariate equation method. It is shown in [9] that

this function is not AB.
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Let F be the inverse mapping on F2m , i.e.

F (x) = x2m−2 =

{
1
x

if x 6= 0

0 if x = 0
.

Then the equation x2m−2 +(x+1)2m−2 = b admits 0 and 1 for solutions if and only if b = 1.

The solutions of this equation, which are different from 0 and 1, are also the solutions of

x2 + x+ b−1 = 0, b 6= 0. Therefore, δF (1, b) ∈ {0, 2} for b 6= 1 and

δF (1, 1) =

{
2 if m is odd

4 if m is even
.

Indeed, by squaring the equation x2 + x + 1 = 0 and substituting x2 = x + 1 we get the

equality x4 = x, which is satisfied only for x ∈ F22 . Thus, the inverse function is APN

when m is odd and has the differential spectrum ∆F = {0, 2, 4} when m is even. The

inverse APN function is not AB since it has the algebraic degree m− 1 while the algebraic

degree of any AB function is not greater than (m + 1)/2 (see [15]). The Walsh spectrum

of the inverse function was determined by Lachaud and Wolfmann in [44]. If m is even

then it consists of all integers s = 0 mod 4 in the range −2
m
2

+1, ..., 2
m
2

+1 and, therefore,

the inverse function has the best known nonlinearity for m even.

2.4 Differential uniformity and plateaued mappings

In this section we generalize some results related to APN and AB functions for differentially

δ-uniform and vectorial plateaued functions respectively.

Plateaud mappings. A function F : Fn
2 → Fm

2 is called plateaued if all nonzero linear

combinations of its coordinate functions are plateaued with the same amplitude. Further

we consider the class of vectorial plateaued functions from Fm
2 into Fm

2 which is a natural

extension of the class of AB functions.

A function F : Fn
2 → Fm

2 is called t-th order correlation immune if it is balanced when

any t of the inputs are fixed. F is t-th order correlation immune if and only if λF (a, b) = 0

for every a ∈ Fn
2 such that 1 ≤ wt(a) ≤ r and every nonzero b ∈ Fm

2 . Balanced t-th order

correlation immune functions are called t-resilient. Obviously, F is t-resilient if and only

if for any nonzero b ∈ Fm
2 the Boolean function b · F is t-resilient. The notion of vectorial
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resilient functions is relevant in cryptography to quantum cryptographic key distribution

[2] and pseudo-random sequence generation for stream ciphers.

As we mentioned above the class of plateaued Boolean functions contains the functions

which achieve the best possible trade-offs between resiliency, nonlinearity and algebraic de-

gree, and therefore the same is true for the class of vectorial plateaued functions. However,

there is another notion of nonlinearity relevant to mappings (S-boxes) used in pseudo-

random generators in stream ciphers [68, 18]. The unrestricted nonlinearity UNL(F ) of a

function F from Fn
2 into Fm

2 is the minimum Hamming distance between all non-constant

affine functions and all Boolean functions g ◦ F , where g is any non-costant Boolean func-

tion on m variables. In the case of block ciphers, due to their iterative structure, the

knowledge of a nonlinear combination of the outputs to F with a low nonlinearity did

not lead to a correlation attack, unless its degree was very low. On the contrary, since

the structure of the pseudo-random generators using combining or filtering functions is

not iterative, all of the m binary sequences prodused by a function can be combined by

non-constant m-variable Boolean function g to perform correlation attacks. If UNL(F ) is

small then one of the non-constant (linear or nonlinear) combinations of the output bits

to F has high correlation to a nonconstant affine function of the input, and a correlation

attack is feasible. The unrestricted nonlinearity is unchanged when F is right composed

with an affine invertible mapping. Moreover, if A is a surjective affine function from F
p
2

into Fn
2 then UNL(F ◦ A) = 2p−nUNL(F ). Also for every function G : Fm

2 → F
p
2 we have

UNL(G ◦ F) ≥ UNL(F ) and if G is a permutation on Fm
2 then UNL(G ◦F ) = UNL(F ).

Obviously, if F is a permutation on Fm
2 then UNL(F ) = UNL(F−1 ◦ F ) = 0. More infor-

mation about unrestricted nonlinearity can be found in [14].

Let a function F : Fm
2 → Fm

2 be a vectorial plateaued function with the amplitude λ,

that is ΛF = {0,±λ}. Then λ is equal to 2
m+s

2 for some s, 1 ≤ s ≤ m, and we shall say that

F is s-nonlinear. Obviously, the AB functions correspond to the 1-nonlinear functions.

The proposition below gives a characterization of s-nonlinear functions through their

second order derivatives; the proof obviously follows from Proposition 3.

Proposition 18 A function F : Fm
2 → Fm

2 is s-nonlinear if and only if there exists σ such

that for every x ∈ Fm
2 and every nonzero c ∈ Fm

2 ,
∑

a,b∈F
m
2
(−1)DaDb[c·F (x)] = σ. If this

condition is satisfied then σ = 2m+s.
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All linear functions arem-nonlinear. If F is a quadratic mapping on Fm
2 then for all nonzero

c ∈ Fm
2 the Boolean functions c · F are plateaued. However, in these conditions F is not

necessarily s-nonlinear. For example, the functions x2i+1, with gcd(i,m) = s and m/s

even, are not s-nonlinear.

The algebraic degree of any AB function is upper bounded by m+1
2

([15]). It is easy

to get an upper bound for s-nonlinear functions using the same argumentation like in the

AB case. If all the values of the Walsh transform of a Boolean function are divisible by 2k

then its algebraic degree is at most m− k + 1 ([46]). The algebraic degree of any function

F : Fm
2 → Fm

2 is equal to the maximum algebraic degree of the Boolean functions c · F ,

c ∈ Fm
2 . If F is s-nonlinear then for any nonzero c ∈ Fm

2 the values of the Walsh transform

of the Boolean function c · F are divisible by 2
m+s

2 . Therefore, d◦(c · F ) ≤ m − m+s
2

+ 1,

c ∈ Fm
2 , and d◦(F ) ≤ m−s

2
+ 1.

Proposition 19 Let F be an s-nonlinear function on Fm
2 . Then the algebraic degree of F

is not greater than m−s
2

+ 1.

In particular, if a power function xd is s-nonlinear on F2m then w2(d) ≤
m−s

2
+ 1 ([9]).

Some nonexistence results of AB functions can be generalized for s-nonlinear mappings.

Proposition 20 Let n = 2m − 1 be a composite number and k a proper divisor of n

which is not a divisor of 2s − 1. If F is a function on F2m with the univariate polynomial

representation F (x) =
∑2m−1

i=0 cix
i and ci 6= 0 implies i = kr for some r, 0 ≤ r ≤ n/k then

F is not s-nonlinear.

Proof. By hypothesis, there exists a polynomial P (x) such that F (x) = P (xk). Let

u = n/k and d = αu, where α is a primitive element of F2m . We have d 6= 1 and

F (dx) = P (dkxk) = P (xk) = F (x). Thus F is a constant on each set

{dix : i = 0, ..., k − 1}, x ∈ F
∗
2m .

All these sets have the same cardinality k and define a partition of F∗
2m . Thus the sum

∑

x∈F
∗

2m

(−1)tr(bF (x))

is divisible by k. We deduce that for every b, the integer k is a divisor of λF (0, b) ± 1. If

ΛF = {0,±2
m+s

2 } then k is a divisor of ±1, 2
m+s

2 ± 1 which is impossible since

(2
m+s

2 + 1)(2
m+s

2 − 1) = 2m+s − 1 = 2s(2m − 1) + (2s − 1)
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and k is not a divisor of 2s − 1. 2

Arguments similar to the ones in the proof of Proposition 20 show that if F (x) = xd

is s-nonlinear on F2m then gcd(d, 2m − 1) is a divisor of gcd(d, 2s − 1). In AB case that

means gcd(d, 2m − 1) = 1.

Differentially uniform mappings. APN property of functions is a particular case of

a notion introduced by Nyberg [54]. A function F : Fm
2 → Fm

2 is called differentially δ-

uniform if δF ≤ δ. In this work we call a function F differentially δ-uniform if ∆F = {0, δ}.

Obviously, APN functions are differentially 2-uniform.

A function F : Fm
2 → Fm

2 is differentially δ-uniform if and only if the derivative DaF is

a δ-to-one mapping for all nonzero elements a ∈ Fm
2 . Therefore, δ is a divisor of 2m and

equals 2s for some s, 1 ≤ s ≤ m.

It is obvious that a function F is differentially 2s-uniform if and only if

∑

(a,b)6=(0,0)

δF (a, b) = 2s
∑

(a,b)6=(0,0)

γF (a, b).

On the other hand , ∑

(a,b)6=(0,0)

δF (a, b) = 2m(2m − 1).

Therefore, if F is differentially 2s-uniform then the sum
∑

(a,b)6=(0,0) γF (a, b) is equal to

22m−s − 2m−s. That implies if F is differentially 2s-uniform then the Boolean function γF

has weight 22m−s − 2m−s.

If F is differentially 2s-uniform then for a 6= 0

∑

b∈F
m
2

δF (a, b) = 2s
∑

b∈F
m
2

γF (a, b).

Since the first sum is equal to 2m then the function b → γF (a, b), a 6= 0, takes the value

1 precisely 2m−s times. If F is a permutation then γF−1(a, b) = γF (b, a) and the function

a→ γF (a, b) takes the value 1 precisely 2m−s times for any nonzero b.

We have the following necessary and sufficient conditions for differentially 2s-uniform

functions.

Proposition 21 A function F is differentially 2s-uniform if and only if one of the follow-

ing conditions holds:
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(i) for all a, b ∈ Fm
2 , a 6= 0, the equation F (x+ a) + F (x) = b has either 0 or 2s solutions;

(ii) for any nonzero a ∈ Fm
2 the set Ha contains 2m−s elements, that is |Ha| = 2m−s;

(iii) for every (a, b) 6= 0 the system
{
x+ y = a

F (x) + F (y) = b

admits 0 or 2s solutions.

Let n be a proper divisor of m and F be a function on Fm
2 such that in the univariate

polynomial representation of F the condition ci 6= 0 implies i ≡ 2j mod 2n − 1. Then,

obviously, F is linear on Fn
2 and D1F is constant on Fn

2 . Therefore, if n > s then F cannot

be differentially 2s-uniform. Thus we get the following proposition which is proven for

APN case in [15] by using the coding theory approach.

Proposition 22 Let n be a divisor of m, a function F on F2m have the univariate poly-

nomial representation F (x) =
∑2m−1

i=0 cix
i and ci 6= 0 implies i ≡ 2j mod 2n − 1. Then for

s < n the function F is not differentially 2s-uniform.

2.4.1 Connections between s-nonlinearity and δ-uniformity

The tables below show that s-nonlinearity of a function does not imply that the function

is differentially δ-uniform and vice versa. Table 4 (resp. Table 5) gives all known values of

exponents d (up to cyclotomic equivalence) that xd is s-nonlinear (resp. differentially 2s-

uniform). Further we give conditions when a function is both s-nonlinear and differentially

δ-uniform (in these cases δ must be equal to 2s as we prove further).

Table 4

Known s-nonlinear power permutations xd on F2m .

Exponents d Conditions Linearity Proven in

2i + 1 gcd(i,m) = s, m/s odd s [33, 54]

22i − 2i + 1 gcd(i,m) = s, m/s odd s [41, 42]

2t + 2
t+1
2 + 1 m = 2t, t odd 2 [22]

2t + 2t−1 + 1 m = 2t, t odd 2 [22]

2t + 3 m = 2t + 1 1 [8, 9]

2t + 2
t
2 − 1 t even, m = 2t + 1 1 [38]

2t + 2
3t+1

2 − 1 t odd, m = 2t + 1
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Table 5

Known differentially 2s-uniform power functions xd on F2m .

Exponents d Conditions Uniformity Proven in

2i + 1 gcd(i,m) = s s [33, 54]

22i − 2i + 1 gcd(i,m) = s, m/s odd s [37, 41, 42]

2t + 3 m = 2t + 1 1 [27]

2t + 2
t
2 − 1 m = 2t + 1, t even 1 [26]

2t + 2
3t+1

2 − 1 m = 2t + 1, t odd 1

22t − 1 m = 2t + 1 1 [3, 54]

24i + 23i + 22i + 2i − 1 m = 5i 1 [28]

Proposition 23 Let F be an s-nonlinear function on Fm
2 . If all the values in ∆F are

divisible by 2s then F is differentially 2s-uniform.

Proof. We have δF (0, 0) = 2m and λF (0, 0) = 2m. Using (2.1) and the equality

∑

a,b∈F
m
2

δF (a, b)2 =
1

22m

∑

a,b∈F
m
2

λF (a, b)4 (2.3)

from [19] we get for s-nonlinear function F :

∑

(a,b)6=(0,0)

δF (a, b)2 =
1

22m

∑

(a,b)6=(0,0)

λF (a, b)4 = 2m+s−2m
∑

(a,b)6=(0,0)

λF (a, b)2 = 2m+s(2m − 1),

On the other hand, the equality

∑

(a,b)6=(0,0)

δF (a, b) = 2m(2m − 1).

is true for any function F . Thus

∑

(a,b)6=(0,0)

δF (a, b)

2s
=

∑

(a,b)6=(0,0)

[
δF (a, b)

2s

]2

.

All δF (a,b)
2s are nonnegative integers since we assumed that they are divisible by 2s. There-

fore, ∆F = {0, 2s} and F is differentially 2s-uniform. 2

Note that in Proposition 23 the condition that δF (a, b) is divisible by 2s, for all a, b ∈

Fm
2 , a 6= 0 , is automatically satisfied if s = 1. For s > 1 there exist s-nonlinear functions

which are not differentially 2s-uniform (see Tables 4 and 5).
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Proposition 24 Let F be a differentially 2s-uniform function on Fm
2 and m+ s be even.

If all the values in ΛF are divisible by 2
m+s

2 then F is s-nonlinear.

Proof.

∑

(a,b)6=(0,0)

λF (a, b)4 = 22m
∑

(a,b)6=(0,0)

δF (a, b)2 = 22m22s2m−s(2m − 1) = 22m2m+s(2m − 1).

The first equality follows from (2.3) and the second one from the fact that DaF is a

2s-to-one mapping for all a 6= 0. Then from (2.1) we get

2m+s
∑

(a,b)6=(0,0)

λF (a, b)2 = 22m2m+s(2m − 1) =
∑

(a,b)6=(0,0)

λF (a, b)4.

If all values in ΛF are divisible by 2
m+s

2 then

∑

(a,b)6=(0,0)

λF (a, b)2 =
∑

(a,b)6=(0,0)

[λF (a, b)

2
m+s

2

]2
λF (a, b)2.

Therefore, ΛF = {0,±2
m+s

2 } and F is s-nonlinear. 2

Proposition 25 Let F be a differentially 2s-uniform function on Fm
2 . Then F is s-

nonlinear if and only if the values of the Walsh transform of the function γF are 2m−s+1

and 2m−s+1 − 2m+1, for (a, b) 6= (0, 0).

Proof. Since F is differentially 2s-uniform, then δF (a, b) = 2mδ0 + 2sγF where δ0 is the

Dirac symbol. For Boolean function γF we have

(−1)γF = 1 − 2γF = 1 −
δF

2s−1
+ 2m−s+1δ0.

The Fourier transform of the constant function 1 is 22mδ0 and that of δ0 is the constant

function 1. Therefore,

λγF
= (̂−1)γF = 22mδ0 −

δ̂F
2s−1

+ 2m−s+1,

where δ̂F is the Fourier transform of the function δF . It is well known that δ̂F (a, b) =

λF (a, b)2 (cf. for instance [19]). Thus, the Walsh transform of the function γF is equal to

22mδ0 −
λ2

F

2s−1 + 2m−s+1.

When (a, b) 6= (0, 0) the Walsh transform of the function γF is equal to 2m−s+1 or

2m−s+1 − 2m+1 if and only if λ2
F (a, b) is equal to 0 or 2m+s, that is if F is s-nonlinear. 2
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2.4.2 The coding theory approach

Like in the case of APN and AB functions differentially δ-uniform and s-nonlinear mappings

can be described in terms of coding theory.

The proposition below shows that if all nonzero codewords of a [2m−1, 2m]-linear code

have Hamming weights in the set {2m−1, 2m−1 ± µ} then the weight distribution of this

code is unique as long as its dual has minimum distance at least 3.

Proposition 26 ([9]) Let C be a [2m − 1, 2m]-linear code which does not contain the all-

one vector 1 = (1, ..., 1). Assume that the minimum distance of the dual code C⊥ is at

least 3. Assume that the weight of every codeword in C lies in {0, 2m−1, 2m−1 ± µ}. Then

µ is divisible by 2[ m−1
2

]. Moreover, the weight distribution of C is completely determined:

w Number Aw of words of weight w

0 1

2m−1 − µ 2m−2(2m−1)(2m−1+µ)
µ2

2m−1 (2m−1)((2m+1)µ2−22m−2)
µ2

2m−1 + µ 2m−2(2m−1)(2m−1−µ)
µ2

In particular the number B3 (resp. B4) of codewords of weight 3 (resp. 4) in C⊥ is given

by

B3 =
(2m − 1)(µ2 − 2m−1)

3 · 2m−1
,

B4 =
(2m − 1)(2m−2 − 1)(µ2 − 2m−1)

3 · 2m−1
.

Using this proposition we describe codes corresponding to s-nonlinear and differentially

2s-uniform functions by the following proposition.

Proposition 27 Let F be a function on F2m with F (0) = 0 and s < m. Then

(i) if F is s-nonlinear then dimCF = 2m − 1− 2m and C⊥
F does not contain the all-one

vector;

(ii) F is s-nonlinear if and only if the weight of every codeword in C⊥
F lies in {0, 2m−1, 2m−1±

2
m+s

2
−1};
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(iii) if F is differentially 2s-uniform or s-nonlinear then the number B3 (resp. B4) of

codewords of weight 3 (resp. 4) in CF is given by

B3 =
1

3
(2m − 1)(2s−1 − 1),

B4 =
1

3
(2m − 1)(2m−2 − 1)(2s−1 − 1);

(iv) if F is s-nonlinear then the weight distribution of C⊥
F is completely determined:

w Number Aw of words of weight w

0 1

2m−1 − 2
m+s

2
−1 (2m − 1)(2m−s−1 − 2

m−s
2

−1)

2m−1 (2m − 1)(2m − 2m−s + 1)

2m−1 + 2
m+s

2
−1 (2m − 1)(2m−s−1 + 2

m−s
2

−1)

(v) if F is differentially 2s-uniform or s-nonlinear and s > 1, then the code CF has the

minimum distance 3;

(vi) if F is differentially 2s-uniform then C⊥
F does not contain the all-one vector.

Proof. If F is s-nonlinear with s 6= m then λF 6= 2m. It follows from the statement (iii) of

Theorem 2 that dim CF = 2m − 1 − 2m and C⊥
F does not contain the all-one vector.

Claim (ii) obviously follows from the equality (2.2).

If F is a differentially 2s-uniform function, then by the definition of CF , a codeword

c = (c0, ..., c2m−1) belongs to CF , if and only if it satisfies

2m−1∑

i=0

ciα
i = 0 and

2m−1∑

i=0

ciF (αi) = 0. (2.4)

According to (2.4), the number B3 +B4 of codewords from CF with weight 3 and 4 is equal

to the number of {u, v, u′, v′}, where u, v, u′, v′ are distinct elements of F2m such that

u+ v + u′ + v′ = 0 and F (u) + F (v) + F (u′) + F (v′) = 0. (2.5)

If one of the elements u, v, u′, v′ is 0 then the corresponding codeword has the weight 3,

otherwise the weight is 4.

{u, v, u′, v′} satisfies (2.5) if and only if {u, v} and {u′, v′} are solutions of the equations

x+ y = a and F (x) + F (y) = b (2.6)
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for some a, b ∈ F2m , a 6= 0. Moreover, we have three distinct sets {{u, v}, {u′, v′}},

{{u, v′}, {u′, v}} and {{u, u′}, {v, v′}}, corresponding to {u, v, u′, v′} and satisfying (2.6)

for different a, b. Therefore, B3 + B4 is equal to 1/3 of the number of distinct sets

{{u, v}, {u′, v′}} satisfying (2.6).

Let for certain a, b ∈ F2m , a 6= 0, the equations (2.6) have solutions. Therefore, the number

of solutions {u, v} is exactly 2s−1 because F is differentially 2s-uniform. These solutions

form 2s−1(2s−1−1)
2

distinct sets {{u, v}, {u′, v′}}, u 6= v, u′ 6= v′. For every a 6= 0 there are

2m−s elements b for which (2.6) have solutions. Thus

B3 +B4 =
1

3
(2m − 1)2m−s2s−2(2s−1 − 1) =

1

3
2m−2(2m − 1)(2s−1 − 1).

If one of the distinct elements u, v, u′, v′ satisfying (2.5) is 0 then the pairs {u, v} and {u′, v′}

are solutions for (2.6) when b = F (a). For every a 6= 0 and b = F (a) the equations (2.6)

have 2s−1 solutions which give 2s−1 − 1 pairs of distinct unordered pairs {{0, a}, {u, v}},

u 6= v . Thus,

B3 =
1

3
(2m − 1)(2s−1 − 1),

B4 =
1

3
2m−2(2m − 1)(2s−1 − 1) −

1

3
(2m − 1)(2s−1 − 1) =

1

3
(2m − 1)(2s−1 − 1)(2m−2 − 1).

Hence, for differentially 2s-uniform functions (iii) holds for any s 6= m.

If s 6= m and F is s-nonlinear then according to the statement (i), (ii) of this theorem and

the statement (i) of Theorem 2, F satisfies the conditions of Proposition 26. Replacing µ

by 2
m+s

2
−1 we complete the proof of (iii) and (iv).

The claim (v) directly follows from (iii).

If F is a differentially 2s-uniform function then CF contains some codewords of weight

3 if s > 1 and 5 if s = 1 . Since the vector 1 = (1, ..., 1) cannot be orthogonal to any

codeword of odd weight, 1 is not in C⊥
F . 2

Corollary 3 If a function F is differentially 2δ-uniform and s-nonlinear then s = δ. In

particular, if F is an APN function with three-valued Walsh spectrum {0,±λ} then F is

AB and if m is even then there exists no APN function with three valued Walsh spectrum.

Proposition 26 implies that for any function F with three-valued Walsh spectrum the code

CF has the minimum distance 3 or 5. If m is even then by Corollary 3 the function F is

not APN and therefore the minimum distance of the code CF is precisely 3. Hence, when

m is even there exist no s-nonlinear functions with the corresponding code of minimum
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distance greater than 3. This fact was proven for the case of power functions in [51].

Remark It follows from the proof of statement (iii) of Proposition 27 that a function F ,

F (0) = 0, satisfies the condition δF (a, F (a)) > 2 for some a 6= 0 if and only if the code CF

has minimum distance 3. If F is a power function then it gives a code CF with minimum

distance 3 if and only if δF (1, 1) > 2 (cf. Prop. 2 in [20]). ⋄

Remark The function F : F2m → F2m , F (x) = xd, with Kasami exponent d = 22k −2k +1

has the code CF with minimum distance 3 if and only if gcd(k,m) = s > 1, otherwise it is

equal to 5. Indeed

(c+ 1)22k−2k+1 + c2
2k−2k+1 = (c2

2k

+ 1)(c2
k

+ 1)−1(c+ 1) + c2
2k

(c2
k

)−1c = 1

for any c ∈ F2s. Therefore δF (1, 1) ≥ 2s. It is proven in [20] (see Theorem 5, the case

u = 2v) that the number B3 of the code CF is equal to 1
3
(2m − 1)(2s−1 − 1). Thus

δF (1, 1) = 2s. ⋄

The following proposition provides power functions with corresponding codes of min-

imum distance greater than 3. Moreover it gives a lower bound on the degree of an s-

nonlinear function if s 6= 1 and m is prime since such functions have minimum distance 3.

Proposition 28 ([20]) Let F : F2m → F2m, F (x) = xk, where m is a prime and 1 < k <

m+ 3. Then the code CF has minimum distance d ≥ 4.

The statements bellow follow from Proposition 24 and the second statement of Propo-

sition 27.

Corollary 4 Let F : Fm
2 → Fm

2 and s be a divisor of m such that m+ s is even. Then

• F is s-nonlinear if F is differentially 2s-uniform and the code C⊥
F is 2

m+s
2

−1-divisible;

• the code C⊥
F is 2

m+s
2

−1-divisible if F is s-nonlinear.

Applying McEliece’s theorem like in the AB case we come to the following statements

about s-nonlinear power functions.

Corollary 5 Let F (x) = xk be a function on F2m and for an integer s < m, m + s be

even. Then
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• F is s-nonlinear if F is differentially 2s-uniform and

∀u, 1 ≤ u ≤ 2m − 1, w2(A(u)) ≤
m− s

2
+ w2(u), (2.7)

where A(u) = uk mod (2m − 1);

• the condition (2.7) holds if F is s-nonlinear.

We prove the next proposition by using Corollary 5.

Proposition 29 Let m and s be such integers that m + s is even and s < m. If there

exists a divisor n of m such that d satisfies

d ≡ −d0 mod
2m−1
2n−1

with 0 < d0 <
2m−1
2n−1

and w2(d0) <
1
2
(m

n
+ s

n
− 2)

then F (x) = xd is not s-nonlinear on F2m.

Proof. Let u = 2n − 1. Then we have

A(u) = ud mod (2m − 1) = (2m − 1) − (2n − 1)d0,

w2(A(u)) = w2((2
m − 1) − (2n − 1)d0) = m− w2((2

n − 1)d0).

Since w2((2
n − 1)d0) ≤ w2(d0)n then

w2(A(u)) ≥ m− w2(d0)n = n+m− n(w2(d0) + 1) > w2(u) +
m− s

2
,

when w2(d0) < 1
2
(m

n
+ s

n
− 2). It follows from Corollary 5 that in conditions of this

proposition F cannot be s-nonlinear. 2

In particular Proposition 29 gives:

Proposition 30 Let F : F2m → F2m, F (x) = xd, and m = nk for some integers n and k.

If d =
∑k−1

i=1 2in − 1 then F is not s-nonlinear when k ≥ 4.

Proof. We have d = (2kn − 1)/(2n − 1) − 2. We apply Proposition 29 with d0 = 2. We

get 1 = w2(d0) <
1
2
(m

n
+ s

n
− 2) when s > (4 − k)n. But s ≥ 1 > (4 − k)n when k ≥ 4.

Therefore if k ≥ 4 then F is not s-nonlinear. 2

Proposition 30 leads to the following statement about the class of power functions

mentioned in Section 2.3.

Corollary 6 Let F : F2m → F2m, F (x) = xd, and m = nk for some integers n, k > 1. If

d =
∑k−1

i=1 2in − 1 then F is not AB.

Proof. For k ≥ 4 the claim follows from the previous proposition and for k < 4 see

Proposition 12. 2
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Chapter 3

On CCZ-equivalence of functions

3.1 Carlet-Charpin-Zinoviev equivalence of functions

The transformation of functions presented in Proposition 8 can be introduced as an equiv-

alence relation of functions.

For a function F from Fm
2 to itself, we denote by GF the graph of the function F :

GF = {(x, F (x)) : x ∈ F
m
2 } ⊂ F

2m
2 .

Definition 1 We say that functions F, F ′ : Fm
2 → Fm

2 are Carlet-Charpin-Zinoviev equiv-

alent (CCZ-equivalent) if there exists a linear permutation L : F2m
2 → F2m

2 such that

L(GF ) = GF ′.

Let functions F, F ′ : Fm
2 → Fm

2 be CCZ-equivalent. Then there exists a linear permutation

L : F2m
2 → F2m

2 such that L(GF ) = GF ′. The linear function L can be considered as a pair

(L1, L2) of linear functions L1, L2 : F2m
2 → Fm

2 . Then L(x, F (x)) = (F1(x), F2(x)), where

F1(x) = L1(x, F (x)), (3.1)

F2(x) = L2(x, F (x)). (3.2)

We have

L(GF ) = {(F1(x), F2(x)) : x ∈ F
m
2 }.

For a given linear permutation L, the set L(GF ) is the graph of a function if and only if

the function F1 is a permutation; then, F ′ = F2 ◦ F
−1
1 and L(GF ) = GF ′ .

39
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In the proposition below we give a slightly different approach to the CCZ-equivalence.

Recall that a set G ⊂ F2m
2 is transversal to a subgroup V of F2m

2 if |G ∩ (u + V )| = 1 for

any u ∈ F2m
2 .

Proposition 31 Let F : Fm
2 → Fm

2 and G ⊂ F2m
2 . Then the set G is the graph of a function

CCZ-equivalent to F if and only if there exists a linear permutation L : F2m
2 → F2m

2 such

that G = L(GF ) and GF is transversal to V ′ = L−1(V ), where V = {(0, x) : x ∈ Fm
2 }.

Proof. The condition that there exists a linear permutation L : F2m
2 → F2m

2 such that

G = L(GF ) is clearly necessary. Let us denote U = {(x, 0) : x ∈ Fm
2 }, V = {(0, x) : x ∈

Fm
2 }, L

−1(U) = U ′ and L−1(V ) = V ′. Then G is the graph of a function if and only if

|G ∩ (u + V )| = 1 for any u ∈ U ; that is, if and only if |L−1(G) ∩ (u′ + V ′)| = 1 for any

u′ ∈ U ′. Hence, G is the graph of a function CCZ-equivalent to F if and only if GF is

transversal to V ′. 2

The subgroup and the linear function approaches give different descriptions to CCZ-

equivalence although they are ”equivalent”.

EA-equivalent functions are CCZ-equivalent and if a function F is a permutation then

F is CCZ-equivalent to F−1 [15]. Since any permutation is CCZ-equivalent to its inverse

then obviously the minimum degree and the algebraic degree of a function are not CCZ-

invariant (while they are EA-invariant as noted above). For example, if F : Fm
2 → Fm

2 is a

Gold AB function then

min d◦(F ) = d◦(F ) = 2,

min d◦(F−1) = d◦(F−1) = m+1
2
,

as proven in [54].

The property of stability of APN and AB mappings given in [15] can be easily gener-

alized to all functions (not necessarily APN or AB) as follows:

Proposition 32 Let F, F ′ : Fm
2 → Fm

2 be CCZ-equivalent functions. Then ∆F = ∆F ′ and

ΛF = ΛF ′. In particular, F is an APN (resp. AB) function if and only if F ′ is APN (resp.

AB).

Proof. If F, F ′ : Fm
2 → Fm

2 are CCZ-equivalent, then F ′ = F2 ◦ F
−1
1 for a certain linear

permutation L = (L1, L2), where F1, F2 are defined by (3.1) and (3.2). For any (a, b) ∈ F2m
2
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we have

δF (a, b) = |{x ∈ F
m
2 : F (x+ a) + F (x) = b}|

= |{(x, y) ∈ F
2m
2 : (x, F (x)) + (y, F (y)) = (a, b)}|

= |{(x, y) ∈ F
2m
2 : (F1(x), F2(x)) + (F1(y), F2(y)) = L(a, b)}|

= |{(x, y) ∈ F
2m
2 : (x, F2 ◦ F

−1
1 (x)) + (y, F2 ◦ F

−1
1 (y)) = L(a, b)}|

= δF ′(L(a, b))

and

λF (a, b) =
∑

x∈F
m
2

(−1)b·F (x)+a·x =
∑

x∈F
m
2

(−1)(a,b)·(x,F (x))

=
∑

x∈F
m
2

(−1)(a,b)·L−1(F1(x),F2(x)) =
∑

x∈F
m
2

(−1)L
−1∗(a,b)·(x,F2◦F

−1
1 (x))

= λF ′(L−1∗(a, b)),

where L−1∗ is the adjoint operator of L−1 (i.e. x·L−1(y) = L−1∗(x)·y, for any (x, y) ∈ F2m
2 ;

if “·” is the usual inner product, then L−1∗ is the linear permutation whose matrix is trans-

posed of that of L−1). Hence, ∆F = ∆F ′ and ΛF = ΛF ′. 2

Remark Obviously, CCZ-equivalence can be defined for functions between any two

groups H1 and H2. For a function F : H1 → H2 we can consider the set of the val-

ues δF (a, b) = |{x ∈ H1 : F (x+ a)−F (x) = b}|, a ∈ H1\{0}, b ∈ H2, and if the groups H1

and H2 are Abelian, then the discrete Fourier transform of F can also be defined. In this

more general case CCZ-equivalent functions again have the same differential properties and

in the case of finite fields also the same linear properties. One can find results related to

nonlinear functions on Abelian groups in [16, 58]. 3

Since CCZ-equivalent functions have the same differential uniformity and the same

nonlinearity, then the resistance of a function to linear and differential attacks is CCZ-

invariant. CCZ-equivalent functions have also the same weakness/strength with respect

to algebraic attacks. Indeed, let functions F, F ′ : Fm
2 → Fm

2 be CCZ-equivalent. Then

F ′ = F2 ◦F
−1
1 , where F1, F2 are defined by (3.1) and (3.2) for a certain linear permutation

L = (L1, L2). If there exists a nonzero function ψ : F2m
2 → F2 of low degree such that

ψ(x, F (x)) = 0, ∀x ∈ F
m
2 ,
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then ψ could be used in an algebraic attack [21]. The function ψ ◦L−1 has the same degree

as ψ and

ψ ◦ L−1(F1(x), F2(x)) = 0, ∀x ∈ F
m
2 ,

implies

ψ ◦ L−1(x, F ′(x)) = 0, ∀x ∈ F
m
2 .

Hence, ψ ◦ L−1 could be used in an algebraic attack on F ′, and vice versa. Therefore, the

resistance of a function to algebraic attacks is also CCZ-invariant.

3.2 CCZ-equivalence and EA-equivalence

If we want to classify all functions CCZ-equivalent to a given one F , then we should

characterize all permutations of the form L ◦ F + L′, where L,L′ are linear. Indeed, we

need to know which linear mapping L1 : F2m
2 → Fm

2 is such that the function F1(x) =

L1(x, F (x)) is a permutation. Clearly, L1 can be written uniquely in the form L1(x, y) =

L(y) + L′(x). If F1 is a permutation then there exists a linear function L2(x, y) such

that the linear function (L1, L2)(x, y) is a permutation too. Indeed, L1(x, F (x)) being a

permutation, L1 is onto and the kernel of L1 has then dimension m. We can take for L2

any linear permutation between Ker(L1) and Fm
2 , extended to F2m

2 by L2(x+ y) = L2(x)

for all x ∈ Ker(L1), y ∈ E, where E is an m-dimensional subspace of F 2m
2 such that

E⊕Ker(L1) = F2m
2 . Conversely, any linear function L2 such that (L1, L2) is a permutation

has this form. Indeed, L2 being onto, it has also an m-dimensional kernel, and (L1, L2)

being one to one, the kernels of L1 and L2 have trivial intersection. This proves that

Ker(L1) ⊕Ker(L2) = F2m
2 and that we can take E = Ker(L2).

Proposition 33 Let F, F ′ : Fm
2 → Fm

2 . The function F ′ is EA-equivalent to the function

F or to the inverse of F (if it exists) if and only if there exists a linear permutation

L = (L1, L2) on F2m
2 such that L(GF ) = GF ′ and the function L1 depends only on one

variable, i.e. L1(x, y) = L(x) or L1(x, y) = L(y).

Proof. Let L(GF ) = GF ′ for some linear permutation L = (L1, L2) : F2m
2 → F2m

2 and

L1(x, y) = L(y), L2(x, y) = R1(x) +R2(y), where L, R1, R2 : Fm
2 → Fm

2 are linear. Then

F1(x) = L1(x, F (x)) = L ◦ F (x),
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F2(x) = L2(x, F (x)) = R1(x) +R2 ◦ F (x).

The function F1 is a permutation, since L(GF ) is the graph of a function. Therefore, L

and F have to be permutations. On the other hand, the system
{
L(y) = 0

R1(x) +R2(y) = 0

has only (0, 0) solution, since L = (L1, L2) is a permutation. But L is also a permutation.

Therefore, the linear function R1 has to be a permutation too.

We have

F ′(x) = F2 ◦ F
−1
1 (x) = R1 ◦ F

−1 ◦ L−1(x) +R2 ◦ F ◦ F−1 ◦ L−1(x)

= R1 ◦ F
−1 ◦ L−1(x) +R2 ◦ L

−1(x).

Thus, F ′ is EA-equivalent to F−1.

The proof that F ′ is EA-equivalent to F , when L1(x, y) = L(x), is similar.

Conversely, let F ′ = R1◦F◦R2+R or F ′ = R1◦F−1◦R2+R for some linear permutations

R1, R2 and for some linear function R. Then take L(x, y) = (R−1
2 (x), R1(y)+R◦R−1

2 (x)) in

the first case and in the second case take L(x, y) = (R−1
2 (y), R◦R−1

2 (y)+R1(x)). Obviously,

all conditions are satisfied. 2

Proposition 34 Let L = (L1, L2), L′ = (L1, L
′
2) be such linear permutations on F2m

2 that

for a function F : Fm
2 → Fm

2 the function L1(x, F (x)) is a permutation. Then the functions

defined by the graphs L(GF ) and L′(GF ) are EA-equivalent.

Proof. Let

L1(x, y) = R1(x) +R2(y), L2(x, y) = T1(x) + T2(y), L′
2(x, y) = T ′

1(x) + T ′
2(y),

for some linear functions R1, R2, T1, T2, T
′
1, T

′
2 from Fm

2 to itself. We can consider the

linear functions L, L′ and L−1 as (2m) × (2m) matrices

L =

(
R1 R2

T1 T2

)
, L′ =

(
R1 R2

T ′
1 T ′

2

)
, L−1 =

(
A1 A2

A3 A4

)
.

Then

L◦L−1 =

(
R1 R2

T1 T2

)
×

(
A1 A2

A3 A4

)
=

(
R1A1 +R2A3 R1A2 +R2A4

T1A1 + T2A3 T1A2 + T2A4

)
=

(
I 0

0 I

)
,
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L′ ◦ L−1 =

(
R1 R2

T ′
1 T ′

2

)
×

(
A1 A2

A3 A4

)
=

(
R1A1 +R2A3 R1A2 +R2A4

T ′
1A1 + T ′

2A3 T ′
1A2 + T ′

2A4

)
,

where I is the identity matrix and 0 is the 0-matrix of order m. Thus, R1A2 + R2A4 =

0 and R1A1 + R2A3 = I and we can consider the linear function L′ ◦ L−1 as a pair

(S1(x, y), S2(x, y)) of linear functions, where

S1(x, y) = R1 ◦ A1(x) +R2 ◦ A3(x) +R1 ◦ A2(y) +R2 ◦ A4(y) = x,

S2(x, y) = T ′
1 ◦ A1(x) + T ′

2 ◦A3(x) + T ′
1 ◦ A2(y) + T ′

2 ◦ A4(y).

For the linear permutation L′ ◦ L−1 = (S1, S2) we have (L′ ◦ L−1) ◦ L(GF ) = L′(GF ) and

S1 depends only on x. It follows from Proposition 33 that the functions with the graphs

L(GF ) and L′(GF ) are EA-equivalent. 2

Proposition 33 shows that if we want to construct functions F ′ which are CCZ-equivalent

to a function F and EA-inequivalent to both F and F−1 (if F−1 exists), then we have to

use a linear function L1(x, y) depending on both variables. However, this condition is not

sufficient as the following example shows.

Example Let m = 2n+ 1 and s ≡ n [mod 2]. Then the linear function

L(x, y) = (x+ tr(x) +
n−s∑

j=0

y22j+s

, y + tr(x))

is a permutation on F2
2m since the kernel of L is {(0, 0)} (this can be checked by considering

the cases tr(x) = 0 and tr(x) = 1). For the Gold AB function x3 the function

F1(x) = x+ tr(x) +
n−s∑

j=0

(x3)22j+s

is a permutation on F2m . Indeed, denoting L(y) =
∑n−s

j=0 y
22j+s

we have L(y+y2) = y+tr(y)

and L((y + 1)3) = L(y3) + y+ tr(y) + 1 since L(1) = 1. Thus F1(x) = L((x+ 1)3) + 1 and

F1 is a permutation if L is bijective. The equation z = L(y) implies z + z2 = y + tr(y)

and tr(z) = tr(y). Therefore, L is a permutation and L−1(x) = x + x2 + tr(x), F−1
1 (x) =

[L−1(x+ 1)]
1
3 + 1. Finally, we get

F ′(x) = F2 ◦ F
−1
1 (x) = ([L−1(x+ 1)]

1
3 + 1)3 + tr([L−1(x+ 1)]

1
3 + 1)

= L−1(x+ 1) + [L−1(x+ 1)]
2
3 + [L−1(x+ 1)]

1
3 + tr([L−1(x+ 1)]

1
3 )

= L−1(x+ 1) + L−1([L−1(x+ 1)]
1
3 ).
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Thus, both functions L1 and L2 depend on two variables, but the function F ′ is EA-

equivalent to the inverse of x3.

This example can be generalized for any Gold AB function by replacing L−1(x) = x+x2i

+

tr(x) and x3 by x2i+1. 3

3.3 Gold functions and CCZ-equivalence

In propositions below we give a characterization of permutations L ◦ F + L′ when F is a

Gold function. This characterization is not complete but it is useful for constructions of

new APN and AB polynomials.

Proposition 35 Let F : F2m → F2m, F (x) = L(x2i+1) + L′(x), where L,L′ are linear and

gcd(m, i) = 1. Then F is a permutation if and only if, for every u 6= 0 in F2m and every

v such that tr(v) = tr(1), the condition L(u2i+1v) 6= L′(u) holds.

Proof. For any u ∈ F∗
2m we have

F (x) + F (x+ u) = L(x2i+1) + L′(x) + L((x+ u)2i+1) + L′(x+ u)

= L
(
ux2i

+ u2i

x+ u2i+1
)

+ L′(u) = L
(
u2i+1

(
(x/u)2i

+ x/u+ 1
))

+ L′(u).

When x ranges over F2m then (x/u)2i

+ x/u + 1 ranges over the subset of {v ∈ F2m :

tr(v) = tr(1)}. Hence, F is a permutation if L(u2i+1v) 6= L′(u) for every u 6= 0 and every

v such that tr(v) = tr(1). If gcd(m, i) = 1 then this condition is also necessary for F to

be a permutation. 2

Remark If m is even then without loss of generality we can consider only permutations

F : F2m → F2m of the type F (x) = L(x2i+1) + x. Indeed, if F (x) = L(x2i+1) + L′(x) is a

permutation on F2m and m is even, then it follows from the Proposition 35 that L′ must

be a permutation (take v = 0). 3

Recall that for any divisor n of m we denote trm/n(x) = x+ x2n

+ x22n

+ ...+ x2m−n

the

trace function from F2m to F2n and trn(x) = x+ x2 + ... + x2n−1
.
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Corollary 7 Let n be a divisor of m and F : F2m → F2m, F (x) = x + trm/n(L′(x)) +

trm/n(L(x2i+1)), where L and L′ are linear functions with coefficients in F2n. Then F is a

permutation if and only if for every u, w ∈ F∗
2n, trn(w) = tr(1) the condition L(u2i+1w) 6=

u+trm/n(1)L′(u) is satisfied. In particular, if m is odd or n is even then F is a permutation

if and only if the function x+ trm/n(1)L′(x) + L(x2i+1) is a permutation on F2n.

Proof. If m is divisible by n, and F : F2m → F2m , F (x) = x+trm/n(L′(x))+trm/n(L(x2i+1)),

where L,L′ are linear functions with coefficients in F2n , then by Proposition 35 the function

F is a permutation if and only if for every v ∈ F2m such that tr(v) = tr(1) and every

u ∈ F∗
2m the condition trm/n(L(u2i+1v)) 6= u + trm/n(L′(u)) holds. Obviously, if u /∈ F∗

2n

then u + trm/n(L′(u)) /∈ F∗
2n and trm/n(L(u2i+1v)) 6= u + trm/n(L′(u)). Therefore, F is a

permutation if and only if for every v ∈ F2m such that tr(v) = tr(1) and every u ∈ F∗
2n

the condition L(u2i+1trm/n(v)) 6= u+ trm/n(1)L′(u) holds. Then F is a permutation if and

only if for every u, w ∈ F∗
2n , trn(w) = tr(1) the condition L(u2i+1w) 6= u+ trm/n(1)L′(u) is

satisfied.

If m is odd or n is even then by Proposition 35 the function F is a permutation if and

only if x+ trm/n(1)L′(x) + L(x2i+1) is a permutation on F2n . 2

The examples below are used for constructions in Chapter 4.

Example Let m be even. Then by Corollary 7 the function x+ tr(x2i+1) is a permutation

of F2m if x+ tr2(x
2i+1) is a permutation on F22 . But on F22 the function x+ tr2(x

2i+1) is

equal to either x or x2. Therefore, x+ tr(x2i+1) is a permutation for any i and any m even.

Using Corollary 7 it is easy to confirm by a computer that for m even and not divisible

by 3 and n ≤ 13 this is the only permutation of the type x + trm/n(L(x2i+1)), where L is

a linear function with coefficients in F2 and gcd(i,m) = 1. For m divisible by 3 we could

find two more permutations x+ trm/3(x
2(2i+1) + x4(2i+1)) and x+ trm/3(x

2i+1 + x2i(2i+1)).

If m is odd, then by Corollary 7 the function x+ trm/n(x) + trm/n(x2i+1) is a permutation

if x + x+ x2i+1 = x2i+1 is a permutation on F2n and that is always true since gcd(i, n) =

gcd(2i, n) for m odd. As it was checked by a computer, for m odd and n ≤ 13 these give

the only permutation of the kind x+ c tr(x)+ trm/n(L(x2i+1)), where gcd(i,m) = 1, c ∈ F2

and L is a linear function with coefficients in F2. For m divisible by 3 we get also the

permutations x+ trm/3(x
2i+1 + x22i(2i+1)) and x+ tr(x) + trm/3(x

2i(2i+1)). 3



3.3. GOLD FUNCTIONS AND CCZ-EQUIVALENCE 47

Proposition 36 Let F : F2m → F2m, F (x) = L(x2i+1) + x, where L is linear, m even and

gcd(m, i) = 1. Let L∗ be the adjoint operator of L. Then F is a permutation if and only

if, for every v ∈ F2m such that L∗(v) 6= 0, there exists u ∈ F2m such that L∗(v) = u2i+1 and

trm/2(
v
u
) 6= 0, where trm/2 is the trace function from F2m to F22.

Proof. The function F is a permutation if and only if, for every v 6= 0, the Boolean function

tr(v(L(x2i+1) + x)) is balanced (see e.g. [14]). Let L∗ be the adjoint operator of L, then

we have

tr(v(L(x2i+1) + x)) = tr(L∗(v)x2i+1 + vx).

If L∗(v) = 0, then the function tr(v(L(x2i+1)+x)) is balanced. If L∗(v) 6= 0, the quadratic

function tr(L∗(v)x2i+1 + vx) has associated symplectic form :

ϕ(x, y) = tr(L∗(v)x2i

y + L∗(v)xy2i

) = tr((L∗(v)x2i

+ (L∗(v)x)2m−i

)y) ,

which has kernel :

E = {x ∈ F2m : L∗(v)x2i

+ (L∗(v)x)2m−i

= 0} =

= {x ∈ F2m : L∗(v)2i

x22i

+ L∗(v)x = 0} = {0} ∪ {x ∈ F2m : L∗(v)2i−1x22i−1 = 1}.

A quadratic function is balanced if and only if its restriction to the kernel of its associated

symplectic form is not constant [10, 13]. The restriction of tr(L∗(v)x2i+1) to E is null.

Indeed, L∗(v)2i−1x22i−1 = 1 implies that the order of L∗(v)x2i+1 divides 2i − 1 and since

gcd(i,m) = 1 then L∗(v)x2i+1 ∈ F2 and the trace function is null on F2, since m is even.

Hence, the function L(x2i+1)+x is a permutation if and only if every v such that L∗(v) 6= 0

lies outside the dual of {0} ∪ {x ∈ F2m : L∗(v)2i−1x22i−1 = 1}. Equivalently, the function

L(x2i+1) + x is a permutation if and only if, for every v such that L∗(v) 6= 0 the following

two conditions hold:

1) L∗(v)2i−1 belongs to {x22i−1 : x ∈ F2m} (otherwise, E would be trivial), say L∗(v)2i−1 =

u22i−1, i.e. L∗(v) = u2i+1 (since the mapping y → y2i−1 is a permutation); in this case E =

{0}∪{x ∈ F2m : (ux)22i−1 = 1} = 1
u
{y ∈ F2m : y22i

= y} = 1
u
F2j , where j = gcd(2i,m) = 2,

hence E = 1
u
F4;

2) v lies outside the dual of E , that is, tr(vx) 6= 0 for some x ∈ E .

For every z ∈ F2m and every y ∈ F22 we have

tr(z
1

u
y) = tr2(trm/2(

z

u
y)) = tr2(y trm/2(

z

u
)).
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Hence, the function L(x2i+1)+x is a permutation if and only if every v such that L∗(v) 6= 0

satisfies L∗(v) = u2i+1 for some u and trm/2(
v
u
) 6= 0. 2

The existence of APN permutations on F2m is an open problem when m is even. In

particular it is not known whether there exist permutations EA equivalent to known APN

functions. We show below that the answer is no for the Gold APN functions. More general

result that there exist no quadratic APN permutations one can find in [55].

Corollary 8 For m even, there exist no permutations EA-equivalent to the Gold APN

functions.

Proof. Let F ′ : F2m → F2m be affine equivalent to F (x) = x2i+1, gcd(m, i) = 1. Then,

without loss of generality we can assume that F ′(x) = L1 ◦ F ◦ L2(x) + L3(x), where

L1, L2, L3 are linear and L1, L2 are permutations. Assume that F ′ is a permutation. Then

F ′ ◦ L−1
2 (x) = L1 ◦ F (x) + L3 ◦ L

−1
2 (x) is a permutation too. Using the remark on page

45, we can assume that L3 ◦ L−1
2 = id. Thus L1(x

2i+1) + x is a permutation and by

Proposition 36, for every v ∈ F∗
2m the condition L∗

1(v) = u2i+1 must be satisfied for some

u ∈ F∗
2m , because L1 is a permutation and therefore L∗

1(v) 6= 0 when v 6= 0. On the

other hand, x2i+1 is a 3-to-1 mapping for m even, hence neither L∗
1 nor L1 is a permu-

tation, a contradiction. Therefore, there exists no permutation F ′ affine equivalent to F . 2

However, nonexistence of permutations EA-equivalent to a certain function F does not

mean yet that there are no permutations CCZ-equivalent to F . In the next section we give

such an example of an APN function F : F2m → F2m , m odd, that F is CCZ-equivalent to

a permutation and there exist no permutations EA-equivalent to F .

The existence of a permutation CCZ-equivalent to the Gold function x2i+1 (for m even)

would mean that there exist such linear functions L, L′ :∈ Fm
2 → Fm

2 that the functions

x+L(x2i+1), x+L′(x2i+1) and (x+L(y), x+L′(y)) are permutations. The linear function

(x+ L(y), x+ L′(y)) is a permutation if and only if the system

{
x+ L(y) = 0

x+ L′(y) = 0

has the only solution (0, 0) and, therefore, if and only if the linear function L(y) +L′(y) is

a permutation. Some permutations of the type x+ L(x2i+1) are given in the examples on
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page 46. There are no such pair of functions x+ L(x2i+1), x+ L′(x2i+1) among them that

L(y) + L′(y) is a permutation.
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Chapter 4

New cases of AB and APN mappings

4.1 The first APN and AB polynomials

The next theorems show that CCZ-equivalent functions are not necessarily EA-equivalent

(including the equivalence to the inverse). They lead to infinite classes of almost bent and

almost perfect nonlinear polynomials, which are EA-inequivalent to power functions.

Theorem 5 The function F ′ : F2m → F2m, m > 3 odd,

F ′(x) = x2i+1 + (x2i

+ x)tr(x2i+1 + x), gcd(m, i) = 1,

is an AB function which is EA-inequivalent to any power function.

Proof. The linear function

L(x, y) = (L1(x), L2(x)) = (x+ tr(x) + tr(y), y + tr(y) + tr(x))

is an involution on F2
2m :

L ◦ L(x, y) = L(x+ tr(x) + tr(y), y + tr(y) + tr(x))

= (x+ tr(x) + tr(y) + tr(x+ tr(x) + tr(y)) + tr(y + tr(y) + tr(x)), y + tr(y) + tr(x)

+tr(y + tr(y) + tr(x)) + tr(x+ tr(x) + tr(y))) = (x, y)

The function F1(x) = L1(x, F (x)) = x+ tr(x) + tr(x2i+1) is an involution too:

F1 ◦ F1(x) = x+ tr(x) + tr(x2i+1) + tr(x+ tr(x) + tr(x2i+1))

+ tr((x+ tr(x) + tr(x2i+1))2i+1) = x+ 3tr(x) + 2tr(x2i+1)

+ tr(x2i+1 + (x2i

+ x+ 1)(tr(x) + tr(x2i+1))) = x+ tr(x) + tr(x2i+1)

+ tr(1)(tr(x) + tr(x2i+1)) = x,

51
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since

(x+ tr(x) + tr(x2i+1))2i+1 = (x+ tr(x) + tr(x2i+1))(x2i

+ tr(x) + tr(x2i+1))

= x2i+1 + (x2i

+ x+ 1)(tr(x) + tr(x2i+1)).

We have

F2(x) = L2(x, F (x)) = x2i+1 + tr(x2i+1) + tr(x),

then

F2 ◦ F
−1
1 (x) = (x+ tr(x) + tr(x2i+1))2i+1 + tr((x+ tr(x) + tr(x2i+1))2i+1)

+ tr(x+ tr(x) + tr(x2i+1)) = x2i+1 + (x2i

+ x+ 1)(tr(x) + tr(x2i+1))

+ tr(x2i+1 + (x2i

+ x+ 1)(tr(x) + tr(x2i+1))) + tr(x2i+1)

= x2i+1 + (x2i

+ x)tr(x+ x2i+1).

By Proposition 32 the function F ′ is AB.

For m > 3 the algebraic degree of F ′ is 3. Indeed, let us take i = 1 for simplicity. Then

(x+ x2)tr(x3) = (x+ x2)(x2+1 + x22+2 + ... + x2m−1+2m−2

+ x2m+2m−1

)

= [x22

+ x22+2+1 + x23+22+1 + ...+ x2m−1+2m−2+1 + x2m−1+2]

+[x22+1 + x23

+ x23+22+2 + ...+ x2m−1+2m−2+2 + x2m−1+2+1]

= x22

+ x2m−1+2 +

m−2∑

j=1

x2j+1+2j+1 + x22+1 + x23

+

m−2∑

j=2

x2j+1+2j+2 + x2m−1+2+1.

All exponents in
∑m−2

j=1 x
2j+1+2j+1 and

∑m−2
j=2 x

2j+1+2j+2 are different and smaller than 2m;

moreover they have the weight 3. Obviously all items in this sum vanish (cancel with

x2m−1+2+1) if and only if m ≤ 3. Therefore, d◦(F ′) = 3 for m > 3.

On the other hand tr(F ′(x)) = tr(x2i+1) and d◦(tr(F ′(x))) = 2. It follows from Propo-

sition 16 that F ′ is EA-inequivalent to any power function. 2

Remark It was conjectured in [15] that any AB function is EA-equivalent to a permuta-

tion. The AB function from Theorem 1 serves as a counterexample for this conjecture. It

was checked by the help of a computer, that for no linear function L on F25 the sum F ′ +L

is a permutation for the AB function F ′(x) = x2i+1 + (x2i

+ x)tr(x2i+1 + x), gcd(5, i) = 1.

Thus, F ′ is EA-inequivalent to any permutation but it is CCZ-equivalent to the permuta-

tion x2i+1. 3
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Theorem 6 The function F ′ : F2m → F2m, m ≥ 4 even,

F ′(x) = x2i+1 + (x2i

+ x+ 1)tr(x2i+1), gcd(m, i) = 1,

is an APN function which is EA-inequivalent to any power function.

Proof. The linear mapping

L(x, y) = (L1, L2)(x, y) = (x+ tr(y), y)

is obviously an involution. The function F1 = L1(x, F (x)) = x + tr(x2i+1) is also an

involution:

F1 ◦ F1(x) = x+ tr(x2i+1) + tr((x+ tr(x2i+1))2i+1) = x+ tr(x2i+1)

+ tr(x2i+1 + x2i

tr(x2i+1) + xtr(x2i+1) + tr(x2i+1))

= x+ 2tr(x2i+1) + tr(x2i

+ x+ 1)tr(x2i+1) = x.

For F2(x) = L2(x, F (x)) = x2i+1 we have

F ′(x) = F2 ◦ F
−1
1 (x) = (x+ tr(x2i+1))2i+1 = x2i+1 + x2i

tr(x2i+1)

+ xtr(x2i+1) + tr(x2i+1) = x2i+1 + (x2i

+ x+ 1)tr(x2i+1).

Hence, F ′ is CCZ-equivalent to F and it is APN by Proposition 32. The algebraic degree

of F ′ is 3 and d◦(tr(F ′)) = 2 since tr(F ′(x)) = tr(x2i+1). Therefore, F ′ is EA-inequivalent

to power functions by Proposition 16. 2

Remark Note that the proofs of Theorems 5 and 6 do not depend on the condition

gcd(i,m) = 1. When gcd(i,m) = s then the functions F ′ have the same differential and

linear properties as x2i+1 and, therefore, if m/s is odd they can be considered as the first

polynomials with three valued Walsh spectrum {0,±2
m+s

2 }, which are EA-inequivalent to

power functions.

4.2 The case m divisible by 3

Theorem 7 The function F ′ : F2m → F2m, m divisible by 6,

F ′(x) = [x+ trm/3(x
2(2i+1) + x4(2i+1)) + tr(x)trm/3(x

2i+1 + x22i(2i+1))]2
i+1,

with gcd(m, i) = 1, is an APN function.
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Proof. The linear function L : F2
2m → F2

2m ,

L(x, y) = (L1, L2)(x, y) = (x+ trm/3(y
2 + y4), y)

is obviously a permutation. For m divisible by 6 the function

F1(x) = L1(x, F (x)) = x+ trm/3(x
2(2i+1) + x4(2i+1))

is a permutation (see the example on page 46).

We show below that F−1
1 = F1 ◦ F1 ◦ F1 ◦ F1 ◦ F1.

We denote

T (x) = trm/3(x
2i+1),

then

F1(x) = x+ T (x)2 + T (x)4.

Since every element of F8 is equal to its 8 power and the function trm/3(x) is 0 on F8, then

T ◦ F1(x) = trm/3[(x+ trm/3(x
2(2i+1) + x4(2i+1)))2i+1]

= trm/3[(x+ trm/3(x
2(2i+1) + x4(2i+1)))(x2i

+ trm/3(x
2i+1(2i+1)

+ x2i+2(2i+1)))] = trm/3[x
2i+1 + xtrm/3(x

2i+1(2i+1) + x2i+2(2i+1))

+ x2i

trm/3(x
2(2i+1) + x4(2i+1))] = trm/3(x)trm/3(x

2s+1(2i+1) + x2s+2(2i+1))

+ trm/3(x
2s

)trm/3(x
2(2i+1) + x4(2i+1)) + trm/3(x

2i+1).

Therefore,

F1 ◦ F1(x) = F1(x) + [T ◦ F1(x))]
2 + [T ◦ F1(x))]

4

= x+ 2trm/3(x
2(2i+1) + x4(2i+1)) + trm/3(x

2)trm/3(x
2s+2(2i+1)

+ x2s(2i+1)) + trm/3(x
2s+1

)trm/3(x
4(2i+1) + x2i+1)

+ trm/3(x
4)trm/3(x

2s(2i+1) + x2s+1(2i+1)) + trm/3(x
2s+2

)trm/3(x
2i+1 + x2(2i+1))

Considering separately the cases s = 1 and s = 2 we get

F1 ◦ F1(x) = x+ trm/3(x+ x2 + x4)trm/3(x
2i+1 + x2s(2i+1))

= x+ tr(x)trm/3(x
2i+1 + x2s(2i+1)) = x+ (T (x) + T (x)2s

)tr(x).

Like this we get

F1 ◦ F1 ◦ F1 ◦ F1 ◦ F1(x) = x+ T (x)2 + T (x)4 + tr(x)(T (x) + T (x)22s

),
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F1 ◦ F1 ◦ F1 ◦ F1 ◦ F1 ◦ F1(x) = x.

Thus,

F ′(x) = F2 ◦ F
−1
1 (x) = [x+ T (x)2 + T (x)4 + tr(x)(T (x) + T (x)22s

)]2
i+1 = x2i+1 + T (x)2s+1

+ tr(x2i+1)T (x)22s

+ tr(x)(T (x) + T (x)4) + xtr(x)(T (x) + T (x)2s

)

+ x2i

tr(x)(T (x) + T (x)22s

) + x(T (x) + T (x)22s

) + x2i

(T (x)2 + T (x)4),

where F2(x) = L2(x, F (x)) = x2i+1.

The function F ′ is CCZ-equivalent to the APN function x2i+1, therefore F ′ is APN.

F ′ has the algebraic degree 4. Indeed,

F ′(x) = [x2i+1 + tr(x)(T (x) + T (x)4) + x(T (x) + T (x)22s

) + x2i

(T (x)2 + T (x)4)]

+ [T (x)2s+1 + tr(x2i+1)T (x)22s

+ xtr(x)(T (x) + T (x)2s

) + x2i

tr(x)(T (x) + T (x)22s

)],

and we have to consider only the polynomial in the second bracket since the function in

the first bracket has the algebraic degree smaller than 4. For simplicity we shall consider

the case i = 1. Replacing T (x) = trm/3(x
2i+1) and tr(x3) = trm/3(x

3) + (trm/3(x
3))2 +

(trm/3(x
3))4 we get

[(trm/3(x
3))3 + (trm/3(x

3))5 + (trm/3(x
3))6] + trm/3(x

3)

+[xtr(x)trm/3(x
3 + x6) + x2tr(x)trm/3(x

3 + x12)].

Obviously, all the items in the second bracket have the form x2j+2k+2l+2r

, where r ≤ l ≤

k ≤ j ≤ m − 1, r ≤ 1. Therefore, if we find an item of algebraic degree 4 in the first

bracket of the form x2j+2k+2l+2r

, where 2 ≤ r < l < k < j ≤ m− 1, which does not cancel,

then this item does not vanish in the whole sum.

trm/3(x
3) = x2+1 + x24+23

+ ...+ x2m−5+2m−6

+ x2m−2+2m−3

=

m
3
−1∑

k=0

x23k+1+23k

(trm/3(x
3))2 = x22+2 + x25+24

+ ... + x2m−4+2m−5

+ x2m−1+2m−2

=

m
3
−1∑

k=0

x23k+2+23k+1

(trm/3(x
3))4 = x23+22

+ x26+25

+ ... + x2m−3+2m−4

+ x2m+2m−1

=

m
3
−2∑

k=0

x23k+3+23k+2

+ x2m−1+1
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(trm/3(x
3))3 = (trm/3(x

3))2trm/3(x
3) =

m
3
−1∑

i,k=0

x23k+1+23k+23i+2+23i+1

(4.1)

(trm/3(x
3))5 =

m
3
−2∑

j=0

m
3
−1∑

k=0

x23j+3+23j+2+23k+1+23k

+

m
3
−1∑

k=0

x2m−1+1+23k+1+23k

(4.2)

(trm/3(x
3))6 =

m
3
−2∑

j=0

m
3
−1∑

k=0

x23j+3+23j+2+23k+2+23k+1

+

m
3
−1∑

k=0

x2m−1+1+23k+2+23k+1

(4.3)

Note that all exponents of weight 4 in (4.1), (4.2), (4.3) are smaller than 2m. If m ≥ 12 then

it is obvious that the item x26+25+24+23
does not vanish in (4.2) and it definitely differs from

all items in (4.1) and (4.3). Hence, for m ≥ 12 the function F ′ has the algebraic degree 4

and for m = 6 it can be easily checked by a computer.

Thus, F ′ is EA-inequivalent to other known APN functions since for m divisible by 6

we have no known APN functions of algebraic degree 4. 2

Theorem 8 Let m ≥ 9 be odd and divisible by 3 and T (x) = trm/3(x
2i+1), with gcd(m, i) =

1. Then the function F ′ : F2m → F2m,

F ′(x) = x2i+1 + tr(x2i+1) + T (x)6 + T (x)2tr(x) + xtr(x)trm/3(x)
2i+1

+ tr(x)trm/3(x)
2(2i+1) + xT (x)(trm/3(x)

6 + trm/3(x) + 1) + x2i

tr(x)trm/3(x)
2

+ T (x)2i+1(x+ trm/3(x)) + x2i

T (x)2i+1

(trm/3(x)
4 + trm/3(x)

3 + 1)

+ T (x)(trm/3(x)
4 + trm/3(x)

2i−1

) + x2i

T (x)2i−1

(trm/3(x)
5 + trm/3(x)

2 + 1)

+ T (x)22i+1(x2i

+ trm/3(x)
2i

) + T (x)4(trm/3(x) + trm/3(x)
2i

+ trm/3(x)
4(2i+1))

+ xT (x)2i

(trm/3(x)
2i+1 + trm/3(x)

22i

+ 1),

is an AB function which is EA-inequivalent to any power function.

Proof. Let m be odd and divisible by 3. Then the linear functions

L(x, y) = (L1, L2)(x, y) = (x+ tr(x) + trm/3(y
2s

), y + tr(x)), 1 ≤ s ≤ 2,

are obviously permutations on F2
2m . The function F1(x) = x+ tr(x)+ trm/3(x

2s(2i+1)), s = i

[mod 3], gcd(m, i) = 1, is a permutation on F2m as it is shown in the example on page 46.

We have

F1(x) =
∑

ǫ∈F2,w∈F8

(tr(x) + ǫ+ 1)((trm/3(x
2s(2i+1)) + w)7 + 1)(x+ ǫ+ w).
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Hence,

F−1
1 (x) =

∑

ǫ∈F2,w∈F8

(tr(x+ ǫ+ w) + ǫ+ 1)((trm/3((x+ ǫ+ w)2s(2i+1)) + w)7 + 1)(x+ ǫ+ w)

= trm/3(x
2i+1)22s+1 + trm/3(x

2i+1)2s+2

(trm/3(x)
5 + trm/3(x)

2 + 1)

+ trm/3(x
2i+1)2s+1

(trm/3(x)
3 + trm/3(x)

4 + 1) + tr(x)trm/3(x)
2 + x.

The last equality we get by routine computations with the help of a computer as well as

the following:

F ′(x) = F2 ◦ F
−1
1 (x) = x2i+1 + tr(x2i+1) + T (x)6 + T (x)2tr(x) + xtr(x)trm/3(x)

2s+1

+ tr(x)trm/3(x)
2(2s+1) + xT (x)(trm/3(x)

6 + trm/3(x) + 1) + x2i

tr(x)trm/3(x)
2

+ T (x)2s+1(x+ trm/3(x)) + x2i

T (x)2s+1

(trm/3(x)
4 + trm/3(x)

3 + 1)

+ T (x)(trm/3(x)
4 + trm/3(x)

2s−1

) + x2i

T (x)2s−1

(trm/3(x)
5 + trm/3(x)

2 + 1)

+ T (x)22s+1(x2i

+ trm/3(x)
2s

) + T (x)4(trm/3(x) + trm/3(x)
2s

+ trm/3(x)
4(2s+1))

+ xT (x)2s

(trm/3(x)
2s+1 + trm/3(x)

22s

+ 1),

where F2(x) = L2(x, F (x)) = x2i+1 + tr(x) and T (x) = trm/3(x
2i+1). The function F ′ is

CCZ-equivalent to the AB function x2i+1, then F ′ is AB by Proposition 32. Obviously,

d◦(F ) ≤ 5 and it is possible to show that not all the items of the algebraic degree 5 vanish

in F ′ using the same methods like in Theorem 7. Thus, the algebraic degree of F ′ is 5 but

d◦(tr(F ′(x))) ≤ 4. Indeed, we have F ′(x) = U(x) + V (x), where V (x) has the algebraic

degree smaller than 5 and

U(x) = xT (x)trm/3(x)
6 + T (x)2s+1(x+ trm/3(x)) + x2i

T (x)2s+1

trm/3(x)
3

+ x2i

T (x)2s−1

trm/3(x)
5 + T (x)22s+1(x2i

+ trm/3(x)
2s

) + xT (x)2s

trm/3(x)
2s+1.

We have

tr(U(x)) = tr3(T (x)trm/3(x)
7) + 2tr3(T (x)2s+1trm/3(x)) + tr3(T (x)2s+1

trm/3(x))
2s+3)

+ tr3(T (x)2s−1

trm/3(x)
2s+5) + 2tr3(T (x)22s+1trm/3(x)

2s

) + tr3(T (x)2s

trm/3(x)
2s+2)

= tr3(T (x)trm/3(x)
2s+1) + tr3(T (x)2s+1

trm/3(x)).

Hence, d◦(tr(F ′)) ≤ 4. By Proposition 17 the function F ′ is EA-inequivalent to power

functions. 2
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4.3 m odd case

The next theorem shows that the number of different classes of AB polynomials EA-

inequivalent to power functions is infinite.

Theorem 9 The function F ′ : F2m → F2m, where m is odd and divisible by n, m 6= n and

gcd(m, i) = 1,

F ′(x) = x2i+1 + trm/n(x2i+1) + x2i

trm/n(x) + x trm/n(x)2i

+ [trm/n(x)2i+1 + trm/n(x2i+1) + trm/n(x)]
1

2i+1 (x2i

+ trm/n(x)2i

+ 1)

+ [trm/n(x)2i+1 + trm/n(x2i+1) + trm/n(x)]
2i

2i+1 (x+ trm/n(x)),

is an AB function which is EA-inequivalent to any power function.

Proof. Let m be odd and divisible by n. Obviously, the linear function

L(x, y) = (L1, L2)(x, y) = (x+ trm/n(x) + trm/n(y), y + trm/n(x))

is a permutation on F2
2m . We have

F1(x) = x+ trm/n(x) + trm/n(x2i+1),

F2(x) = x2i+1 + trm/n(x).

The function F1 is one of the permutations from the example on page 46. We need the

inverse of the function F1 to construct F ′ = F2 ◦ F
−1
1 .

For any fixed element x ∈ F2m we have

y = x+ trm/n(x) + trm/n(x2i+1) = x+ u,

for some u ∈ F2n , and, therefore, x = y + u. Then

y = (y + u) + trm/n(y + u) + trm/n((y + u)2i+1)

which yields

u2i+1 + u2i

trm/n(y) + u(trm/n(y))2i

+ trm/n(y2i+1) + trm/n(y) = 0. (4.4)

If trm/n(y) 6= 0 then we denote v = u/trm/n(y) and we get

v2i+1 + v2i

+ v +
trm/n(y2i+1) + trm/n(y)

(trm/n(y))2i+1
= 0.
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Since v2i+1 + v2i

+ v = (v + 1)2i+1 + 1 then

v + 1 =

[
trm/n(y2i+1) + trm/n(y)

(trm/n(y))2i+1
+ 1

] 1
2i+1

.

Replacing v by u/trm/n(y) we have

u = [(trm/n(y))2i+1 + trm/n(y2i+1) + trm/n(y)]
1

2i+1 + trm/n(y).

If trm/n(y) = 0 then from the equality (4.4) we get u = [trm/n(y2i+1)]
1

2i+1 and we observe

that u equals again [(trm/n(y))2i+1 + trm/n(y2i+1) + trm/n(y)]
1

2i+1 + trm/n(y). Thus, in all

cases, we have

F−1
1 (y) = y + u = y + [(trm/n(y))2i+1 + trm/n(y2i+1) + trm/n(y)]

1

2i+1 + trm/n(y)

and

F ′(x) = F2 ◦ F
−1
1 (x) = [x+ [(trm/n(x))2i+1 + trm/n(x2i+1) + trm/n(x)]

1
2i+1 + trm/n(x)]2

i+1

+ trm/n[x+ [(trm/n(x))2i+1 + trm/n(x2i+1) + trm/n(x)]
1

2i+1 + trm/n(x)]

= x2i+1 + trm/n(x2i+1) + trm/n(x) + x2i

trm/n(x) + x(trm/n(x))2i

+ [(trm/n(x))2i+1 + trm/n(x2i+1) + trm/n(x)]
1

2i+1 (x2i

+ (trm/n(x))2i

+ 1)

+ [(trm/n(x))2i+1 + trm/n(x2i+1) + trm/n(x)]
2i

2i+1 (x+ trm/n(x)).

We show below that the function F ′ has the algebraic degree n+ 2. It means that the

number of functions CCZ-equivalent to a Gold AB function and EA-inequivalent to it is

not smaller than the number of divisors of m.

The inverse of x2i+1 on F2n is xd, where

d =

n−1
2∑

k=0

22ik,

and xd has the algebraic degree n+1
2

(see [54]). Obviously, ((trm/n(x))2i+1 + trm/n(x2i+1) +

trm/n(x))d has the algebraic degree n+1 if and only if ((trm/n(x))2i+1 + trm/n(x2i+1))d has

this algebraic degree.

We assume that m 6= n and n 6= 1 since when m = n we get F ′(x) = x
1

2i+1 + x and

Theorem 5 gives the case n = 1.
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We have

trm/n(x) =

m
n
−1∑

k=0

x2kn

and

(trm/n(x))2i+1 + trm/n(x2i+1) =

m
n
−1∑

k=0

x2kn

m
n
−1∑

k=0

x2kn+i

+

m
n
−1∑

k=0

(x2i+1)2kn

=

m
n
−1∑

k,j=0

x2kn+2jn+i

+

m
n
−1∑

k=0

x2kn+2kn+i

=

m
n
−1∑

k,j=0
k 6=j

x2kn+2jn+i

.

Note that we have

[(trm/n(x))2i+1 + trm/n(x2i+1)]2
2i+1 =

m
n
−1∑

k,j=0
k 6=j

x2kn+2jn+i

m
n
−1∑

k,j=0
k 6=j

x2kn+2i+2jn+3i

=

m
n
−1∑

k,j,s,t=0
k 6=j,s 6=t

x2kn+2jn+i+2sn+2i+2tn+3i

.

Similarly, we have

((trm/n(x))2i+1 + trm/n(x2i+1))d =
∑

(k0,...,kn)∈I

x
Pn

s=0 2ksn+si

, (4.5)

where I = {(l0, ..., ln) : 0 ≤ lt ≤
m
n
− 1, l2t 6= l2t+1}.

The equality ksn+ si = ktn+ ti is possible for 0 ≤ s < t ≤ n only for s = 0 and t = n.

Indeed, if ksn+si = ktn+ ti then (ks−kt)n = (t−s)i. Since gcd(n, i) = 1 and 0 ≤ t, s ≤ n

then t = n, s = 0 and ks − kt = i.

For simplicity we consider now the equality (4.5) in the case i = 1. In the sum
∑n

s=0 2ksn+s the largest possible item is 2(m
n
−1)n+n = 2m. Therefore, when kn 6= m

n
− 1

the sum is smaller than 2m − 1. Besides, all items in the sum are different modulo 2m − 1

except the case when k0 = 0 and kn = m
n
−1 and in the cases where k0 = kn +1. Therefore,

when k0 = kn = 1 the number
∑n

s=0 2ksn+s has the weight n+1. On the other hand, when

k0 = kn = 1 and k1 = kn−1 = 0 the term

x
Pn

s=0 2ksn+s
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does not vanish in (4.5). Indeed, if

n∑

s=0

2ksn+s ≡
n∑

p=0

2tpn+p mod (2m − 1)

then we have only two possibilities:

1) for any s there exists p such that ksn+s = tpn+p (and vice versa). Then (ks−tp)n = p−s

and since 0 ≤ s, p ≤ n then k0 = tn +1, t0 = kn +1 and ks = ts for s 6= 0, n. If k0 = kn = 1

then tn = 0, t0 = 2. But in our case k0 = kn = 1, t1 = k1 = 0, tn−1 = kn−1 = 0 and,

therefore, tn 6= 0 since tn−1 6= tn.

2) if tn = m
n
− 1 then k0 must be equal to 0 or kn = m

n
− 1, but k0 = kn = 1.

Thus, when k0 = kn = 1 and k1 = kn−1 = 0 (for permissible ks, 1 < s < n−1) the term

x
Pn

s=0 2ksn+s

has the algebraic degree n + 1 and it does not vanish in (4.5).

If n ≥ 5 we can also take k2 = 1, k3 = k4 = 0 and then we get

n∑

s=0

2ksn+s = 2n + 2 + 2n+2 + 23 + 24 + ...+ 22n. (4.6)

We have

((trm/n(x))3 + trm/n(x3))d(x2 + trm/n(x)2) + ((trm/n(x))3 + trm/n(x3))2d(x+ trm/n(x))

=
∑

(k0,...,kn)∈I

x
Pn

s=0 2ksn+s
∑

1≤k≤m/n−1

x2nk+1

+
∑

(k0,...,kn)∈I

x
Pn

s=0 2ksn+s+1
∑

1≤j≤m/n−1

x2nj

=
∑

(k0,...,kn)∈I
1≤k≤m/n−1

x2nk+1+
Pn

s=0 2ksn+s

+
∑

(k0,...,kn)∈I
1≤j≤m/n−1

x2nj+
Pn

s=0 2ksn+s+1

. (4.7)

We consider the item with the exponent

2n + 2 + 2n+2 + 23 + 24 + ...+ 22n + 2nk+1 (4.8)

from the first sum in (4.7). It is easy to see that 2n+2+2n+2+23+24+...+22n+2nk+1 < 2m

since k ≤ m/n− 1. In this sum nk+ 1 = ksn+ s only if s = 1. But then k = k1 = 0 which

is in contradiction with 1 ≤ k. Thus, the number given by this sum has the weight n+ 2.
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The item with the exponent (4.8) does not vanish. Indeed, if there is another item in the

first sum of (4.7) with this exponent then

2n + 2 + 2n+2 + 23 + 24 + ...+ 22n + 2nk+1 = 2nj+1 +

n∑

s=0

2ksn+s.

If k = j then (4.6) is equal to another sum
∑n

s=0 2ksn+s and we already showed that it is

impossible. If k 6= j then k1 = k and j = 0 while 1 ≤ j.

Assume there exists an item in the second sum of (4.7) with the exponent (4.8) then

2n + 2 + 2n+2 + 23 + 24 + ...+ 22n + 2nk+1 = 2nj +
n∑

s=0

2ksn+s+1

for some j, 1 ≤ j ≤ m/n − 1 and (k0, ..., kn) ∈ I. We have 3 = ksn + s + 1 mod m for

some s, 0 ≤ s ≤ n. Then ksn = 2 − s or ksn = m − (s − 2) and this is possible only if

k2 = 0 or k2 = m/n, but since 0 ≤ ks ≤ m/n − 1, then 3 = ksn + s + 1 mod m only if

k2 = 0. The same arguments show that 4 = ksn+ s+ 1 mod m only if k3 = 0 and that is

in contradiction with the condition k2t 6= k2t+1. Therefore the item with the exponent (4.8)

does not vanish in (4.7) and then it does not vanish in the sum presenting the function F ′.

This completes the proof that F ′ has the algebraic degree n+ 2.

The algebraic degree of the function tr(F ′(x)) is not greater than n+ 1 since

tr(F ′(x)) = tr(x2i+1 + trm/n(x2i+1) + trm/n(x) + x2i

trm/n(x) + x(trm/n(x))2i

)

+ trn([(trm/n(x))2i+1 + trm/n(x2i+1) + trm/n(x)]
1

2i+1 trm/n(x2i

+ (trm/n(x))2i

+ 1))

+ trn([(trm/n(x))2i+1 + trm/n(x2i+1) + trm/n(x)]
2i

2i+1 trm/n(x+ trm/n(x)))

= tr(x) + tr(x2i

trm/n(x)) + tr(x(trm/n(x))2i

)

+ tr([(trm/n(x))2i+1 + trm/n(x2i+1) + trm/n(x)]
1

2i+1 ).

Therefore, the function F ′ is EA-inequivalent to any power function by Proposition 17.2



Chapter 5

On the inverse and EA

transformations

CCZ-equivalence gives rise to some interesting problems. One of them is whether Gold,

Kasami, Welch and Niho functions are CCZ-inequivalent. The aim of this chapter is to

show that it is also a question whether these functions are inequivalent in respect to the

inverse and EA transformations. Applying only the inverse and EA transformations on

the Gold AB functions we construct a class of AB polynomials which are EA equivalent

neither to the Gold mappings nor to their inverses.

We should note that the classes of functions constructed in the previous chapter com-

pletely differ from the one constructed below. Indeed, when m is even then for any

quadratic APN function F on F2m some linear combinations of the coordinate functions

are bent [55]. This implies that all functions EA equivalent to the Gold mapping are not

permutations (see [14, 55]) and it is impossible to apply the inverse transformation. There-

fore, the functions presented in the previous section cannot be constructed from the Gold

functions only by applying the inverse and EA transformations. In case m odd the remark

on page 52 can serve as an evidence that those functions cannot be constructed from the

Gold mappings only by applying the inverse and EA transformations, but we do not have

an exact proof.

The questions about equivalences do not occur in the cases of the inverse and Dobbertin

APN functions because of their unique nonlinearities [9, 44].

If a function F ′ is EA-equivalent to a function F or the inverse of F then either d◦(F ′) =

d◦(F ) or d◦(F ′) = d◦(F−1). It could be used as a tool to show that the classes of AB power

63
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functions are inequivalent in respect to the inverse and EA transformations. But the

theorem below shows that this property does not hold if we apply the inverse and EA

transformations in consecutive order several times.

Theorem 10 Let m ≥ 9 be odd and divisible by 3. Let F (x) = x2i+1 and

F ′(x) = x2i+1 + (trm/3(x
2i+1))6 + (trm/3(x

2i+1))5 + (trm/3(x
2i+1))3 + (trm/3(x

2i+1))4

+x2i

trm(x)trm/3(x
2i+1 + x22s(2i+1)) + x trm(x)trm/3(x

2i+1 + x2s(2i+1)) + x2i

trm/3(x
2(2i+1)

+x22s+1(2i+1)) + x trm/3(x
2(2i+1) + x2s+1(2i+1)) + trm(x)trm/3(x

2i+1 + x4(2i+1))

be functions on F2m with gcd(i,m) = 1. Then F−1 and F ′−1 are EA-equivalent and d◦(F ) 6=

d◦(F ′) 6= d◦(F−1).

Proof. We use CCZ-equivalence to prove this theorem.

If m is odd and divisible by 3 then the linear function L(x, y) = (x+ trm/3(y+ y22s

), y),

1 ≤ s ≤ 2, is a permutation on F2
2m since its kernel is {(0, 0)}. It is shown in the example

on page 46 that the function

F1(x) = x+ trm/3(x
2i+1 + x22s(2i+1)),

with s = i [mod 3] and gcd(i,m) = 1, is a permutation. Therefore, the function F ′(x) =

F2 ◦ F
−1
1 (x) = [F−1

1 (x)]2
i+1, where F2(x) = x2i+1, is an AB permutation CCZ-equivalent

to F and

F ′−1(x) = F1(x
1

2i+1 ) = x
1

2i+1 + trm/3(x+ x22s

).

Thus, the functions F ′−1 and F−1 are EA equivalent.

We have d◦(F ) = 2 and it is proven in [54] that d◦(F−1) = m+1
2

. We show below that

d◦(F ′) = 4 for m ≥ 9.

To get the function F ′ we need the inverse of the function F1. The following computa-

tions are helpful to show that F−1
1 = F1 ◦ F1.

trm/3[(x+ trm/3(x
2i+1 + x22s(2i+1)))2i+1] = trm/3(x

2i+1) + trm/3(x
2s

)trm/3(x
2i+1 + x22s(2i+1))

+trm/3(x)trm/3(x
2i+1 + x2s(2i+1)) + trm/3(x

2i+1 + x22s(2i+1))trm/3(x
2i+1 + x2s(2i+1)),

since

trm/3((x
2i+1 + x22s(2i+1))2i

) = trm/3((x
2i+1 + x22s(2i+1))2s

)

= trm/3(x
2s(2i+1) + x23s(2i+1)) = trm/3(x

2s(2i+1) + x2i+1).
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Then

trm/3[(x+ trm/3(x
2i+1 + x22s(2i+1)))2i+1 + (x+ trm/3(x

2i+1 + x22s(2i+1)))22s(2i+1)]

= trm/3(x
2i+1 + x22s(2i+1)) + trm/3(x

2s

)trm/3(x
2i+1 + x22s(2i+1))

+trm/3(x)trm/3(x
22s(2i+1) + x2s(2i+1)) + trm/3(x)trm/3(x

2i+1 + x2s(2i+1))

+trm/3(x
22s

)trm/3(x
22s(2i+1) + x(2i+1)) + trm/3(x

2i+1 + x22s(2i+1))trm/3(x
2i+1 + x2s(2i+1))

+trm/3(x
22s(2i+1) + x2s(2i+1))trm/3(x

22s(2i+1) + x(2i+1)) = trm/3(x
2i+1 + x22s(2i+1))

+trm/3(x+ x2s

+ x22s

)trm/3(x
2i+1 + x22s(2i+1)) + (trm/3(x

2i+1 + x22s(2i+1)))2

= trm/3(x
2i+1 + x22s(2i+1)) + trm(x)trm/3(x

2i+1 + x22s(2i+1)) + (trm/3(x
2i+1 + x22s(2i+1)))2

and

F1 ◦ F1(x) = x+ trm(x)trm/3(x
2i+1 + x22s(2i+1)) + (trm/3(x

2i+1 + x22s(2i+1)))2

and, since trm(trm/3(x
2i+1 + x22s(2i+1))) = 0,

(F1 ◦ F1) ◦ F1(x) = x+ trm/3(x
2i+1 + x22s(2i+1)) + trm(x)[trm/3(x

2i+1 + x22s(2i+1))

+trm(x)trm/3(x
2i+1 + x22s(2i+1)) + (trm/3(x

2i+1 + x22s(2i+1)))2] + [trm/3(x
2i+1 + x22s(2i+1))

+trm(x)trm/3(x
2i+1 + x22s(2i+1)) + (trm/3(x

2i+1 + x22s(2i+1)))2]2

= x+ trm/3(x
2i+1 + x22s(2i+1)) + (trm/3(x

2i+1 + x22s(2i+1)))2 + (trm/3(x
2i+1 + x22s(2i+1)))4

= x+ tr3(trm/3(x
2i+1 + x22s(2i+1))) = x+ trm(x2i+1 + x22s(2i+1))) = x.

Therefore,

F−1
1 (x) = F1 ◦ F1(x) = x+ trm(x)trm/3(x

2i+1 + x22s(2i+1)) + (trm/3(x
2i+1 + x22s(2i+1)))2.

Thus, we have

F ′(x) = F2 ◦ F
−1
1 (x) = [F−1

1 (x)]2
i+1 = [x+ trm(x)trm/3(x

2i+1 + x22s(2i+1)) + (trm/3(x
2i+1

+x22s(2i+1)))2]2
i+1 = x2i+1 + trm(x)(trm/3(x

2i+1 + x22s(2i+1)))2s+1

+(trm/3(x
2i+1 + x22s(2i+1)))2(2s+1) + x2i

trm(x)trm/3(x
2i+1 + x22s(2i+1))

+x trm(x)(trm/3(x
2i+1 + x22s(2i+1)))2s

+ x2i

trm/3(x
2(2i+1) + x22s+1(2i+1))

+x (trm/3(x
2(2i+1) + x22s+1(2i+1)))2s

+ trm(x)(trm/3(x
2i+1 + x22s(2i+1)))2s+2

+trm(x)(trm/3(x
2i+1 + x22s(2i+1)))2s+1+1 = x2i+1 + (trm/3(x

2i+1 + x22s(2i+1)))2(2s+1)

+x2i

trm(x)(trm/3(x
2i+1 + x22s(2i+1)) + x trm(x)trm/3(x

2i+1 + x2s(2i+1))

+x2i

trm/3(x
2(2i+1) + x22s+1(2i+1)) + x trm/3(x

2(2i+1) + x2s+1(2i+1)) + trm(x)[(trm/3(x
2i+1

+x22s(2i+1)))2s+1 + (trm/3(x
2i+1 + x22s(2i+1)))2s+2 + (trm/3(x

2i+1 + x22s(2i+1)))2s+1+1].



66 CHAPTER 5. ON THE INVERSE AND EA TRANSFORMATIONS

The only item in this sum which can give algebraic degree greater than 4 is the last item.

We have

(trm/3(x
2i+1+x22s(2i+1)))2s+1+(trm/3(x

2i+1+x22s(2i+1)))2s+2+(trm/3(x
2i+1+x22s(2i+1)))2s+1+1

= (trm/3(x
2i+1+x22s(2i+1)))2s+1+(trm/3(x

2i+1+x22s(2i+1)))4(2s+1)+(trm/3(x
2i+1+x22s(2i+1)))22s

,

since

2s + 2 =

{
4 if s = 1

6 if s = 2
, 4(2s + 1) =

{
12 = 5 (mod 23 − 1) if s = 1

20 = 6 (mod 23 − 1) if s = 2
,

2s+1 + 1 =

{
5 if s = 1

9 = 2 (mod 23 − 1) if s = 2
, 22s =

{
4 if s = 1

16 = 2 (mod 23 − 1) if s = 2
.

On the other hand,

(trm/3(x
2i+1 + x22s(2i+1)))2s+1 = trm/3(x

2i+1 + x22s(2i+1))trm/3(x
2i+1 + x2s(2i+1))

= trm/3(x
2i+1)2 + (trm/3(x

2i+1))22s+1 + (trm/3(x
2i+1))2s+1 + (trm/3(x

2i+1))22s+2s

= (trm/3(x
2i+1))6 + (trm/3(x

2i+1))5 + (trm/3(x
2i+1))3 + (trm/3(x

2i+1))2 (5.1)

Using (5.1) we get

(trm/3(x
2i+1+x22s(2i+1)))2s+1+(trm/3(x

2i+1+x22s(2i+1)))4(2s+1)+(trm/3(x
2i+1+x22s(2i+1)))22s

= (trm/3(x
2i+1))6 + (trm/3(x

2i+1))5 + (trm/3(x
2i+1))3 + (trm/3(x

2i+1))2 + [(trm/3(x
2i+1))3

+(trm/3(x
2i+1))6 + (trm/3(x

2i+1))5 + trm/3(x
2i+1)] + (trm/3(x

2i+1))2 + (trm/3(x
2i+1))4

= trm/3(x
2i+1) + (trm/3(x

2i+1))4. (5.2)

Hence, applying (5.1) and (5.2) we get

F ′(x) = x2i+1 + [(trm/3(x
2i+1))6 + (trm/3(x

2i+1))5 + (trm/3(x
2i+1))3 + (trm/3(x

2i+1))2]2

+x2i

trm(x)trm/3(x
2i+1 + x22s(2i+1)) + x trm(x)trm/3(x

2i+1 + x2s(2i+1))

+x2i

trm/3(x
2(2i+1) + x22s+1(2i+1)) + x trm/3(x

2(2i+1) + x2s+1(2i+1))

+trm(x)[trm/3(x
2i+1) + (trm/3(x

2i+1))4] = x2i+1 + (trm/3(x
2i+1))6 + (trm/3(x

2i+1))5

+(trm/3(x
2i+1))3 + (trm/3(x

2i+1))4 + x2i

trm(x)trm/3(x
2i+1 + x22s(2i+1))

+x trm(x)trm/3(x
2i+1 + x2s(2i+1)) + x2i

trm/3(x
2(2i+1) + x22s+1(2i+1))

+x trm/3(x
2(2i+1) + x2s+1(2i+1)) + trm(x)trm/3(x

2i+1 + x4(2i+1)).
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Below we consider all items in the sum presenting the function F ′ which may give the

algebraic degree 4:

[(trm/3(x
2i+1))6 + (trm/3(x

2i+1))5 + (trm/3(x
2i+1))3]

+[x2i

trm(x)(trm/3(x
2i+1 + x22s(2i+1)) + x trm(x)(trm/3(x

2i+1 + x2s(2i+1))].

For simplicity we take i = 1. Obviously, all the items in the second bracket of the algebraic

degree 4 have the form x2j+2k+2l+2r

, where r < l < k < j ≤ m − 1, r ≤ 1. Therefore, if

we find an item of algebraic degree 4 in the first bracket of the form x2j+2k+2l+2r

, where

2 ≤ r < l < k < j ≤ m − 1, which does not cancel, then this item does not vanish in the

whole sum.

We have

trm/3(x
3) = x2+1 + x24+23

+ ... + x2m−5+2m−6

+ x2m−2+2m−3

=

m
3
−1∑

k=0

x23k+1+23k

,

(trm/3(x
3))2 = x22+2 + x25+24

+ ...+ x2m−4+2m−5

+ x2m−1+2m−2

=

m
3
−1∑

k=0

x23k+2+23k+1

,

(trm/3(x
3))4 = x23+22

+ x26+25

+ ...+ x2m−3+2m−4

+ x2m+2m−1

=

m
3
−2∑

k=0

x23k+3+23k+2

+ x2m−1+1,

then

(trm/3(x
3))3 = (trm/3(x

3))2trm/3(x
3) =

m
3
−1∑

i,k=0

x23k+1+23k+23i+2+23i+1

, (5.3)

(trm/3(x
3))5 =

m
3
−2∑

j=0

m
3
−1∑

k=0

x23j+3+23j+2+23k+1+23k

+

m
3
−1∑

k=0

x2m−1+1+23k+1+23k

, (5.4)

(trm/3(x
3))6 =

m
3
−2∑

j=0

m
3
−1∑

k=0

x23j+3+23j+2+23k+2+23k+1

+

m
3
−1∑

k=0

x2m−1+1+23k+2+23k+1

. (5.5)

Note that all exponents of weight 4 in (5.3), (5.4), (5.5) are smaller than 2m. If m ≥ 9

then it is obvious that the item x26+25+24+23
does not vanish in (5.4) and it definitely differs

from all items in (5.3) and (5.5).

Hence, the function F ′ has the algebraic degree 4 when m ≥ 9 and that completes the

proof of Theorem 1. 2
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Chapter 6

Conclusion

In this thesis we consider the questions of the existence of classes of APN and AB functions

which are inequivalent to power mappings. We pay a special attention to CCZ-equivalence

presented in [15]. We carefully study connections between CCZ- and EA-equivalences

and we give a sufficient condition for a function to be EA-inequivalent to power functions.

Applying the CCZ-equivalence to the Gold power functions we construct the first classes of

APN and AB polynomials which are EA-inequivalent to power functions and we show that

in the AB case the number of such classes is infinite while there are only four classes of AB

power functions known, see [8, 27]. By that we show that CCZ-equivalence is more general

than EA-equivalence together with the inverse transformation. However because of time

constraints we have to leave many questions for our future research. In particular our results

lead to a question whether four known classes of AB power functions are CCZ-inequivalent.

It means that we need more invariants for CCZ-equivalence. It is also interesting to find

a criterion for a function to be CCZ-inequivalent to power functions. Besides we have no

examples of functions CCZ-equivalent to power APN mappings different from the Gold

functions which are EA-inequivalent to power mappings.

Further we also prove that applying only the inverse and EA transformations on a

permutation F it is possible to construct a class of functions which is EA-inequivalent to

both F and F−1 while it was expected that all the functions constructed from F by using

the inverse and EA transformations are EA-equivalent to either F or F−1.

69
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