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Abstract 

In this study the kinetics of methanol oxidation was investigated on the state-of-the-art PtRu-
catalysts. The influence of methanol concentration, temperature and flow rate was 
investigated. The influence of the electrode metal loading was also evaluated and the activity 
of supported vs. unsupported catalysts was compared. The activity with respect to methanol 
oxidation is influenced by the catalyst synthesis. Catalysts synthesized by Bönnemann’s 
“precursor method” using pre-prepared PtRu metal colloids were characterized by physical 
and electrochemical methods and their activity towards methanol oxidation was determined. 
An important factor for the catalyst activity is its real surface area. It was determined by CO 
stripping voltammetry. 

In order to study the kinetics of anodic methanol electrooxidation on a membrane 
electrode assembly (MEA) under technically relevant conditions a special type of 
electrochemical cell, the cyclone flow cell (CFC), was used. The experiments (steady-state, 
cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy) were 

performed at temperatures between 22 and 60 °C. MEA’s were prepared by spraying the 

catalyst onto a Nafion® membrane followed by hot pressing to the back diffusion layer. Both 
commercial (Johnson Matthey) and non-commercial (Max-Planck-Institut für 
Kohlenforschung in Mülheim an der Ruhr) supported and unsupported catalysts of nominal 
composition Pt:Ru - 1:1 were used. The electrode metal loading was varied between 1 and 5 
mg cm-2. In the working electrode compartment 1M methanol in water was circulated at 
different flow rates. The supporting electrolyte in the counter electrode compartment was 1 M 
sulphuric acid. 

The formal reaction order with respect to methanol in the activation controlled region 
changes from 0.3 at low methanol concentrations to 0 at higher methanol concentrations, 
while at the beginning of the limiting current region the variation of the reaction order is less 
pronounced and the mean value is about 0.7. Apparent Tafel slope values in the activation 
control region were dependent on methanol concentration and temperature (typically values 
of about 130 mV dec-1 were determined at room temperature, while about 100 mV dec-1 at 
60o C for 1 M methanol solution). The apparent activation energy was determined to be  

56±2 kJ mol-1 in the activation controlled region and 34±2 kJ mol-1 in the limiting current 
region. It was assumed that an electrochemical reaction is the rate-determining step in the 
activation controlled region while in the limiting current region it is the methanol adsorption 
step. A rate expression for the methanol oxidation is derived which, shows a good qualitative 
agreement with the experimental data.  
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Zusammenfassung 

In der vorliegenden Arbeit wurde die Kinetik der Methanoloxidation an PtRu-Katalysatoren 
untersucht. Es wurde der Einfluss der Methanolkonzentration, der Temperatur, der 
Strömungsgeschwindigkeit, sowie der Metallbeladung analysiert. Eine Gegenüberstellung 
von geträgerten und ungeträgerten Katalysatoren wurde ebenfalls unternommen. Es wurde 
festgestellt, dass die Aktivität im Hinblick auf die Methanoloxidation vom Syntheseweg des 
Katalysators abhängig ist. Einige nach dem Bönnemann-Verfahren aus PtRu-Kolloidpartikeln 
hergestellten Katalysatoren wurden mit Hilfe physikalischer und elektrochemischer 
Methoden charakterisiert und als Methanolelektroden untersucht. Ein wichtiger Aspekt der 
Katalysatoraktivität ist die reale Elektrodenoberfläche, die durch voltamperometrische 
Oxidation von adsorbiertem CO bestimmt wurde.  

Um die Kinetik der anodischen Methanolelektrooxidation auf einer Membranelektrode 
unter praxisnahen Bedingungen untersuchen zu können, wurde eine spezielle 
elektrochemische Messzelle (Zyklonzelle) eingesetzt. Die Experimente (stationäre Strom-
Spannungskurven, zyklische Voltammetrie, Chronoamperometrie und elektrochemische 

Impedanzspektroskopie) wurden bei Temperaturen zwischen 22 und 60° C durchgeführt. Die 
Membranelektroden wurden durch Aufsprühen des Katalysators auf die Nafionmembran 
hergestellt, die danach auf die Diffusionsschicht bei hoher Temperatur gepresst wurde. Als 
Katalysatoren (Pt:Ru=1:1) dienten sowohl kommerzielle (Johnson Matthey) als auch nicht 
kommerzielle (Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr) 
Materialien. Die Metallbeladung, der Elektrodenfläche wurde zwischen 1 und 5 mg cm-2 
variiert. Auf die Seite der Arbeitselektrode wurde eine 1M wässrige Methanollösung mit 
verschiedenen Strömungsgeschwindigkeiten zugeführt. Der Leitelektrolyt auf der Seite der 
Gegenelektrode war eine 1M Schwefelsäurelösung. 

Die formale Reaktionsordnung in Bezug auf Methanol ändert sich von 0,3 bei niedrigen 
Konzentrationen bis 0 bei hohen Konzentrationen im Durchtrittsüberspannungsbereich. Im 
Grenzstrombereich ist diese Reaktionsordnungsänderung schwächer ausgeprägt und beträgt 
etwa 0,7. Die scheinbaren Tafel-Steigungen hängen vom Potentialbereich und von der 
Konzentration ab (typische Werte: 130 mV dec-1 bei Zimmertemperatur und 100 mV dec-1 
bei 60o C für 1 M Methanollösung). Die berechneten scheinbaren Aktivierungsenergien 

betragen 56±2 kJ mol-1 im Durchtrittsüberspannungsbereich und 34±2 kJ mol-1 im 
Grenzstrombereich. Es wird ein reaktionskinetisches Modell vorgeschlagen, das in guter 
qualitativer Übereinstimmung mit den experimentellen Daten steht.



1.  Introduction 

A fuel cell converts chemical energy into electrical energy (Figure 1.1). It consists of two 

electrodes sandwiched around an electrolyte layer. Reactants (oxygen/air, hydrogen, 

methanol etc.) are consumed on the electrodes generating electricity, heat and products of the 

reactions. 

 

Figure 1.1 Schematic representation of a fuel cell [1]. 

Among many types of fuel cells, the Direct Methanol Fuel Cell (DMFC) deserves 

special attention due to relatively cheap, abundant, easy for handling and storage feeds (from 

one side methanol and from another oxygen/air). DMFC belongs to a group of low and 

intermediate temperatures (up to 150 oC) fuel cells and as an electrolyte employs a solid 

electrolyte. It has potential application in transport (it works at low temperature, does not 

produce much heat which otherwise has to be eliminated by some cooling device, has a short 

start-up period, it can be easily refilled, has low polluting emission (ideally carbon dioxide 

and water) etc. and as a portable power source (for example in laptops, pocket calculators, 

mobile phones etc). To be competitive at the market, the DMFC has to be able to operate at 

conditions close to ambient conditions and to deliver a high power density at low costs. Still 

there are a few obstacles on the way. They are: a) low catalyst activity and stability in 
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methanol oxidation, b) low catalyst activity in oxygen reduction and low tolerance with 

respect to methanol, c) methanol crossover, d) aspects regarding the fuel cell stack, like 

materials and design of cell housing, bipolar plates, gasketing etc. In this study emphasis was 

on point a) i.e. on slow kinetics of methanol oxidation. 

Electrochemical oxidation of methanol can be presented by the following equation: 

CH3OH + H2O → CO2 + 6H+ + 6e-           Eθ = 0.02 V (1.1) 

Thermodynamically this reaction is favourable (the equilibrium potential of methanol 

oxidation to CO2 is close to the equilibrium potential of hydrogen reaction). In reality the 

overpotential of methanol oxidation is higher than of hydrogen oxidation. The difference in 

kinetics of these two reactions is due to the fact that hydrogen oxidation is the simpler 

reaction involving transfer of only two electrons, while methanol oxidation involves the 

transfer of six electrons and many adsorbed intermediates and side-products. Some of the 

reaction intermediates can irreversibly adsorb on the catalyst surface and hinder further 

reaction. In general, kinetics of a reaction with adsorbed intermediates and many elementary 

steps is greatly influenced by the catalyst (electrocatalyst). Thus, it is very important to 

develop an electrocatalyst which will improve the kinetics of methanol oxidation (decrease 

the overpotential of the reaction) and which will be resistant to poisoning. 

To accomplish this demanding task, i.e. to develop “smart” electrocatalyst, one has to 

understand the main constraints of methanol oxidation. Therefore, apparent kinetic 

parameters (like formal reaction order, Tafel slope, activation energy, etc.) of the reaction 

have to be determined. Then a suitable reaction mechanism is assumed. So the overall 

reaction (equation (1.1)) is divided into elementary steps, where all steps together represent 

the mechanism of the reaction. In the last thirty years many mechanisms of methanol 

oxidation were proposed and an overview will be given in Chapter 4. As it will be seen in 

validating the reaction mechanism, different experimental techniques were used. Classical 

electrochemical techniques were used for the determination of the electrokinetic parameters: 

reaction orders with respect to methanol and H+, Tafel slopes, activation energies etc. For 

identification of reaction intermediates different spectroscopic techniques were used, like 

infrared spectroscopy or mass spectroscopy. The reaction was investigated on different 

electrocatalysts (for example platinum, platinum ruthenium alloys etc.) and in different cell 

configurations (standard three compartment electrochemical cell, fuel cell, half fuel cell). 
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Influence of methanol concentration, temperature, anions, catalyst surface composition and 

crystal orientation were studied.  

It was concluded that, in principle, methanol oxidation can be formulated as follows: 

CH3OH   adsorbed intermediates     COads

  HCHO, HCOOH   CO2

Both of these pathways require a catalyst, which should be able to a) dissociate the C-H bond 

and b) facilitate the reaction of the resulting residue with some O-containing species to form 

CO2 (or HCOOH). The first process involves adsorption of the methanol molecule and 

requires several neighbouring places at the surface. The second process requires dissociation 

of water, which is the oxygen donor for the reaction. Schematic presentation of these 

processes is shown in Figure 1.2 below. 
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Figure 1.2 Schematic presentation of the different reaction steps during methanol oxidation on a 
model catalyst surface. From left to right, methanol adsorption followed by methanol dehydrogenation, 
adsorption of blocking CO intermediate, dissociation of water and formation of OHads, reaction 
between CO and OH adsorbed and CO2 evolution (Adopted from reference [2]). 

So far it was found that platinum is very active in step “a” (methanol dehydrogenation), 

but not very active in step “b” i.e. in oxidation of species formed after the dehydrogenation 

step. A strong interaction of water with the platinum surface is only possible at potentials 

above 0.4 – 0.45 V vs. RHE. Thus, on pure platinum methanol oxidation to CO2 cannot start 

below 0.45 V. In reality, methanol oxidation at high enough rate for practical application can 

occur only at a much higher potential i.e. 0.7 V. So, the catalyst requires further 

improvement. If platinum is alloyed with a less noble metal like Ru, Sn etc. its activity 
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towards methanol oxidation will increase. Although some other combinations were tested, a 

platinum-ruthenium alloy proved to be the best choice up to now. The efficiency of PtRu 

catalyst was explained by the theory of bifunctional catalysis where platinum is responsible 

for methanol dehydrogenation and Ru for OH species donation. Thus, at PtRu catalysts 

methanol oxidation to CO2 can start at 0.22 V vs. RHE. Again, a high enough reaction rate 

for practical operation is achieved at higher overpotentials (say, 0.5 V vs. RHE). 

Today the state of the art catalyst for methanol oxidation is based on PtRu 

combinations. Although there are many studies devoted to the kinetics of methanol oxidation 

on PtRu, a lumped approach describing kinetics of methanol oxidation, under fuel cell 

relevant conditions, including reaction parameters (rate constants, reaction orders, etc.) is still 

missing. So, in this work kinetics of methanol oxidation on commercial unsupported PtRu 

catalyst under technically relevant conditions (60oC, 1 M methanol, membrane electrode 

assembly (MEA)) was studied and discussed in connection with literature results (Chapter 4). 

The reaction order with respect to methanol, Tafel slopes and apparent activation energies 

were determined and the influence of the flow rate of the surrounding fluid was checked. 

Based on experimental data and literature findings a suitable mechanism of methanol 

oxidation is proposed and a rate expression for methanol oxidation is derived. This rate 

expression can be later on implemented into a mathematical model of the whole DMFC. 

The activity of the PtRu catalyst depends on the PtRu composition, the degree of 

alloying, the presence of oxide phase, particle size, support etc. These factors are influenced 

by the chosen catalyst preparation route. In Chapter 5 an overview of preparation routes for 

nanoparticle synthesis is given. Special emphasis is put on the colloidal route for nanoparticle 

synthesis with descriptions of three variations of colloidal salt reduction method. Catalysts 

synthesised in these ways were characterized by physical (energy dispersive X-ray analysis 

(EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM)) and 

electrochemical methods (cyclic voltammetry and CO stripping voltammetry) and their 

activity towards methanol oxidation was tested and commented with respect to the 

mechanism of methanol oxidation proposed in Chapter 4. 

An important parameter in normalizing activities of porous electrocatalysts is real 

surface area of the catalyst. CO stripping voltammetry was applied for determination of the 

real surface area of investigated catalysts (Chapter 3). Some difficulties in applying this 

method were discussed and some solutions were suggested.  
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In this study the following experimental techniques were used: a) electrochemical 

measurements: cyclic voltammetry, steady state, chronoamperometric and electrochemical 

impedance spectroscopy and b) non-electrochemical: EDX, scanning electron microscopy 

(SEM), XRD and TEM. EDX, SEM, XRD and TEM results were obtained in cooperation 

with the Max-Planck Institut für Kohlenforschung in Mülheim an der Ruhr. 

In order to study the kinetics of methanol oxidation at the membrane electrode 

assembly (MEA), under technically relevant conditions, a special type of electrochemical cell 

– a cyclone flow cell (CFC), was used. Compared to classical solutions (rotating disk 

assembly and fuel cell assembly), the CFC has the advantages of both assemblies, i.e. it 

enables reactant supply through the back diffusion layer like in a fuel cell and it allows real 

potentiostatic control like in a rotating disk assembly. CFC allows half-cell measurements 

using a reference electrode with a stable and well defined potential, in contrast to the typical 

fuel cell set-up, where the influence of the cathode cannot be excluded. Also in contrast to 

standard half-cell measurements, the reaction occurs at the contact layer between the catalyst 

particles and the polymer membrane (Nafion®) without the influence of anion adsorption 

from the supporting electrolyte. Since the hydrodynamic conditions are well defined [3] (in a 

rotating disk assembly the electrode is rotating in a stationary fluid, while in CFC the fluid is 

rotated over a stationary electrode, but the thickness of the hydrodynamic boundary layers are 

described in a similar manner) mass transfer limitations can be investigated as well. 
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2. Experimental 

2.1. Electrochemical cell 

All measurements were performed in a cyclone flow cell as depicted in Figure 2.1.  
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Figure 2.1 Schematic representation of cyclone flow cell. 

The cell consists of three compartments: working electrode compartment (1), counter 

electrode compartment (2) and reference electrode compartment (3). The working electrode 

compartment is supplied with reactants (water or methanol/water mixture with different 

methanol concentrations or nitrogen or carbon monoxide in argon), while the counter 

electrode (2) and the reference electrode (3) compartments are supplied with 1 M sulphuric 

acid solution. The reference electrode compartment is connected to the counter electrode 

compartment by a Luggin capillary. Due to the electric current in the liquid layer between the 
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end of the Luggin capillary and the catalyst layer, the measured working electrode potential 

has to be corrected for corresponding Ohmic drop (see later).  

2.2. Reactants 

Electrolyte solutions were prepared from sulphuric acid (Merck, extra pure), methanol 

(Merck, extra pure) and ultrapure water (Millipore, 18 MΏ cm). Both methanol/water and 

sulphuric acid containers were deaerated with nitrogen and the deaerated solutions were 

circulated through the cell. For CO stripping voltammetry 0.1 % CO in Argon (Technische 

Gase, Westfalen AG, Germany) was used.  

2.3. Electrocatalysts 

In this study different electrocatalysts were used. They can be divided into two groups: a) 

commercial catalysts, from Johnson Matthey, UK, and b) non-commercial catalysts prepared 

at the Max-Planck Institut für Kohlenforschung in Mülheim an der Ruhr. Both commercial 

and non-commercial catalysts were used as carbon supported and unsupported catalysts. In 

all cases the nominal PtRu composition was 1:1. Carbon supported catalysts were prepared 

with 30 mass % PtRu on carbon. In the case of non-commercial catalysts carbon support was 

Vulcan XC-72, while in case of the Johnson Matthey the catalyst support was assigned as 

carbon black. 

Unsupported Johnson Matthey catalyst was designated as HiSpec 6000 and according 

to the supplier its Brunauer Emmett Teller (BET) surface area was 62.56 m2 g-1. 

Besides PtRu catalysts, in Chapter 3 an unsupported platinum (Pt) catalyst was used. 

This catalyst was also supplied by Johnson Matthey. The BET surface area according to the 

supplier was 26.8 m2 g-1. 

2.4. Preparation of MEA 

All MEAs were prepared in-house. The catalyst ink was prepared by suspending a proper 

amount of catalyst powder in ultra pure water, with an addition of an aqueous Nafion® 

solution in order to obtain 15 mass % of Nafion in the catalyst layer. The suspension was first 

agitated in an ultrasonic bath for 15 min and then additionally stirred for 3 days. Then the 

catalyst was sprayed on a Nafion® 105 membrane [4]. Details about Nafion® 105 membrane 

pre-treatment are given in reference [4]. The back diffusion layer (BDL) was teflonized 

Torey® paper (type TGP-H-060) or in some experiments teflonized carbon cloth. Carbon 
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cloth was purchased from ElectroChem, Inc., Woburn, MA 01801. A Teflon content in the 

BDL was approximately 22 mass %. Details about Toray® paper pre-treatment are given in 

reference [5]. 

The MEA was prepared by hot pressing of the gas diffusion electrode (Nafion® 

membrane and catalyst layer) at 130oC at a pressure of 10 MPa during 3 minutes onto a 

teflonized BDL. The total geometric area of the MEA covered by the catalyst layer was  

12.56 cm
2
.  

Typical metal loadings used in this study were: 

• 5 mg cm-2 for unsupported catalysts (both PtRu and Pt) 

• 1 mg cm-2 for supported and unsupported catalysts (only PtRu unsupported catalysts). 

2.5. Electrochemical measurements 

All electrochemical measurements were carried out with a Zahner impedance measurement 

unit (IM6e). Experiments were performed in a temperature range from room temperature 

(22 ± 0.5)oC to 62 ± 0.5oC. The cell temperature was controlled by use of a Julabo F12 

thermostat.  

In the following, the standard procedure for electrochemical measurements in this work 

is described. If there are some differences in regard to this procedure, they will be indicated 

in the corresponding chapters.  

Preconditioning of the membrane electrode assembly (MEA) was done by cyclic 

voltammetry in the potential range from - 0.2 to 0.5 V vs. Ag/AgCl at a sweep rate of  

20 mV s-1. Five cycles were enough to obtain a reproducible MEA behaviour. Normally, only 

the first cycle differs from the subsequent cycles. This procedure was applied prior to steady 

state, quasi steady state and chronoamperometric experiments.  

Steady state experiments were performed potentiostatically with a fixed delay of 5 min 

at each potential, in the potential range from 0 to 0.5 V vs. Ag/AgCl. The potential step was 

25 mV.  

Quasi steady state measurements were performed in the same manner as the steady 

state measurements, but at the sweep rate of 1 mV s-1.  
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Chronoamperometry. After the preconditioning procedure described above the 

potential was stopped at the desired set point and the current was recorded over time (30 min 

in methanol containing solution).  

Ohmic drop compensation was done during all these measurements using ohmic 

resistance values estimated from prior impedance measurements.  

Impedance measurements were performed immediately after the chronoamperometric 

measurement at the same DC potential, over a frequency range between 870 kHz and  

10 mHz. The amplitude of the sinusoidal signal was 5 mV (from base to peak).  

All potentials were measured and reported versus a saturated silver/silver chloride 

reference electrode (Ag/AgCl).  

2.6. CO stripping voltammetry 

After MEA preconditioning (as described above except that N2 was in the working electrode 

compartment) CO adsorption was done by flowing 0.1 % CO in Argon (Technische Gase, 

Westfalen AG, Germany) at a flow rate of 140 ml min-1 through the working electrode 

compartment, for different adsorption times, while holding electrode potential at 

0.0 V vs Ag/AgCl. The gas was then switched to N2 for 30 min, with a potential still at 

constant value, to remove CO traces from the gas phase. After 30 min, the potential was 

scanned from the starting potential to 1.0 V vs. Ag/AgCl and then back to  

– 0.18 V vs Ag/AgCl with a sweep rate of 5 mV s-1.  

2.7. Determination of ohmic resistance 

As it was mentioned before, prior to other electrochemical measurements the ohmic 

resistance was determined from impedance spectra. In Figure 2.2 impedance spectra of 

supported PtRu catalysts1 in water (a) and 1 M methanol (b) at 60oC are shown. The high 

frequency region of the impedance spectra (indicated by red arrows in Figure 2.2) is 

independent on the electrocatalyst tested and it has almost the same value in the presence and 

in the absence of methanol. This part of the spectra is also independent of potential as shown 

in Figure 2.2 c. So it was concluded that this resistance is due to the electrolyte resistance, i.e. 

ohmic resistance. As it was mentioned all measurements were corrected for ohmic resistance 

                                                 

1 For catalyst notation see Appendix II. 
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determined prior to every measurement during the measurements. The correction was 90 % 

of the determined value. The difference to 100 % was corrected during data processing. 

a) b) 

c) 

Figure 2.2 Impedance spectra of 30% PtRu 
carbon supported catalysts at 0.3 V vs. Ag/AgCl 
in a) water and b) 1 M methanol; Conditions: 
flow rate 10 l h-1, temperature 60 oC c) 
Impedance spectra of unsupported PtRu 
catalyst at different potentials; Conditions: 
methanol concentration 1 M, flow rate 10 l h-1, 
temperature 60oC. 

 

2.8. Comparison of steady state and quasi-steady state measurements 

In Figure 2.3 comparison between steady state experiments and quasi-steady state experiment 

is shown. In the steady state experiment current was recorded after 5 min at constant 

potential. Quasi steady state measurement was performed at constant sweep rate of 1 mV s-1. 

As can be seen, both approaches give almost the same result. This makes possible to compare 

activity of an electrocatalyst determined either in a steady state or a quasi steady state 

experiment. 
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Figure 2.3 Methanol oxidation on unsupported PtRu MEA. Conditions: methanol concentration 3 M, 
flow rate 10 l h-1, temperature 60oC. 

2.9. Determination of geometric surface area 

In most of the experiments the total MEA geometric surface area covered by the catalyst 

layer was 12.56 cm2. In the cell (Figure 2.1) the surface area directly exposed to the 

electrolyte was 2.0 cm2 (corresponds to surface area of circle with radius r = 0.8 cm, see 

Figure 2.1). Due to edge effects the working geometric surface area was bigger than the 

exposed geometric surface area. Thus, a MEA with a total geometric surface area of 2.0 cm2 

was prepared and compared with the MEA with a total geometric surface area of 12.56 cm2. 

The results are shown in Figure 2.4. Experimentally, the double layer capacitance of MEAs 

with total geometric surface areas of 2.0 and 12.56 cm2 was determined from current vs. 

sweep rate plots using the difference between anodic and cathodic currents at constant 

potential (0.15 V vs. Ag/AgCl) in order to eliminate errors due to any occurring faradaic 

reaction [6]. A value of 0.39 F and 0.59 F for total surface areas of 2.0 and 12.56 cm2, 

respectively were obtained. Since both MEAs are prepared from the same catalyst and with 

the same metal loading (5 mg cm-2), the difference in the double layer capacitance has to be 

attributed to the difference in the working geometric surface area. The ratio between double 

layer capacitances of the MEA with 12.56 cm2 geometric surface area and the MEA with 2.0 

cm2 geometric surface area was found to be 1.62. 
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Steady state curves for methanol oxidation of two MEAs with different total geometric 

surface areas are shown in Figure 2.5.  

 
Figure 2.4 Double layer capacitance determination from ∆I vs. sweep rate dependence for three 
MEAs. Conditions: Water in working electrode compartment; flow rate in working electrode 
compartment 0 l h-1. 

 
Figure 2.5 Steady state curves for methanol oxidation on two MEAs. Conditions: 1 M methanol in 
working electrode compartment; room temperature; flow rate in working electrode compartment  
10 l h-1. 
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Currents for an MEA with a total geometric surface area of 12.56 cm2 are normalized to 

geometric surface area of 2.0 cm2 by dividing them by a factor of 1.62 as determined in 

previous experiments (Figure 2.4). Good agreement between normalized currents for a total 

geometrical surface area of 12.56 cm2 and for the MEA with a total geometric surface area of 

2.0 cm2 is obtained. This normalization factor (1.62) was used throughout the whole study 

wherever the geometric surface area was required. 
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3. Electrochemical methods for the real surface area determination 

In electrochemistry, the term “real surface area” means the electrochemically active surface 

area under working conditions. Determination of the real surface area is important in order to 

normalize activities of different electrocatalysts to the same number of reactive surface sites. 

It is close to the geometric surface area for smooth surfaces with low roughness factors. In 

this case the current is normalized with respect to the geometric surface area and the 

normalized activity is expressed as a current density. Technical electrodes do not satisfy these 

conditions (smooth surface, low roughness factor) due to a necessity to comprise high surface 

area on low geometrical surface area. So they are porous and with high roughness factors. In 

this case, activity expressed per geometrical surface area cannot be used in catalyst evaluation 

because, when comparing two different catalysts, higher current per geometrical surface area 

can merely mean higher surface area and not higher intrinsic catalyst activity.2 Therefore, to 

evaluate different porous catalysts electric currents should be expressed with respect to the 

real (active) surface area. For porous electrodes in fuel cells the active surface area refers to 

the surface area of metal particles, which are at the same time in contact with the electrolyte 

(in this case Nafion®) and the current collector (usually carbon cloth or carbon paper).  

In this chapter an attempt is made to evaluate the real surface area of unsupported PtRu 

catalysts3 in a membrane electrode assembly (MEA) under fuel cell relevant conditions. For 

the surface area determination CO stripping voltammetry i.e. the CO adsorption method, was 

used. This method is based on a several assumptions therefore a system characterization with 

an unsupported Pt catalyst as a test system was carried out. One of the assumptions is that the 

CO saturated coverage on PtRu is the same as on pure Pt catalyst. To calculate the Pt-CO 

saturated coverage at Pt, at first a total number of reactive surface sites on Pt was determined 

by using the hydrogen adsorption method. So here, both the CO and the hydrogen adsorption 

                                                 

2 For porous electrodes, activity can be expressed per catalyst loading as well, i.e. per mass of catalyst. This 
parameter is good in terms of price of the catalyst i.e. higher activity per mass of the catalyst does mean better 
efficiency of catalyst, but does not give an answer in regard to the catalyst intrinsic activity. 
3 In Chapter 5 the same method will be applied to supported PtRu catalysts. 
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method will be described. They are based on adsorption of a probe molecule, followed by 

electrochemical stripping of the adsorbed molecule and determination of the charge 

exchanged during the process. The hydrogen adsorption method uses charge in the potential 

region where molecular hydrogen is adsorbed. Hydrogen adsorption/desorption region is 

usually referred to as “underpotential”4 hydrogen adsorption region due to the fact that a layer 

of adsorbed hydrogen atoms is formed on the surface before the reversible potential for 

hydrogen evolution is reached. Later the carbon monoxide adsorption method will be 

described. 

3.1. Hydrogen adsorption method 

The hydrogen adsorption method cannot be generally applied to the real surface area 

determination, but only for those surfaces where hydrogen is “underpotentially” adsorbed (for 

example platinum and other platinum group metals, like Rh and Ir). At first, assumptions and 

limitations of the method will be discussed.  

In cyclic voltammetry the region of “underpotential” hydrogen adsorption is 

characterized by different peaks, which depend on the type of solution, the surface 

preparation and the exposed crystallographic plane. On polycrystalline platinum in acidic 

solutions usually two adsorption peaks will be observed (depending on the sweep rate and the 

present anions) [6]. Two peaks at different potentials represent different adsorption energies 

of hydrogen adsorption i.e. they reflect the surface inhomogenity and the interaction with 

immediate species (anions and other H species). Unlike polycrystalline surface, single crystal 

surfaces are homogenous and under ideal conditions only one peak for hydrogen adsorption 

should be seen. In Figure 3.1, cyclic voltammograms of three low index single crystal planes 

in acid medium are shown. As can be seen on Pt(110) and Pt(100) single crystal planes, there 

is one dominate peak of hydrogen adsorption, while a Pt(111) single crystal plane is more or 

less featureless. Therefore it can be approximated that two adsorption peaks in the hydrogen 

region on polycrystalline platinum correspond to hydrogen adsorption on Pt(110) and Pt(100) 

single crystal faces. So, polycrystalline platinum can be considered as a mix of single crystal 

planes and defects at the surface. 

                                                 

4 When using the term “underpotential” one should keep in mind that underpotential does not exist from a 
thermodynamical point of view and that in this case hydrogen adsorption is “underpotential”only with regard to 
the potential of hydrogen evolution for reaction 2H+ + 2e-=H2. More accurate would be to use the reversible 
potential for reaction H+ + e- = Hads. 
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Figure 3.1 Cyclic voltammograms of Pt low index single crystal planes in 0.1 M H2SO4. Sweep rate 50 
mV s-1. Adopted from reference [7]. 

Three major assumptions of the method are: 1) the potential at which hydrogen forms a 

monolayer on the surface is at the onset of hydrogen evolution, 2) the ratio between adsorbed 

hydrogen and platinum atoms is one to one, and 3) that polycrystalline surface is a mix of 

single crystal planes with some arbitrary distribution of different single crystal planes in it 

[8].  

From the experimental point of view, it is important to determine the exact potential 

where a hydrogen monolayer is formed. Although this was a topic of many studies, some 

uncertainties are still present [8]. One practical approach is described in Figure 3.2. Here 

instead to look at the exact potential where the hydrogen monolayer is formed, the end-point 

potential was proposed so that any charge required to complete the hydrogen monolayer at a 

potential more negative than the end-point potential (yellow colored area in Figure 3.2) is 

compensated by the contribution from the hydrogen evolution at potentials more positive than 

the end-point potential (blue colored area in Figure 3.2). 

Based on the adsorption isotherms, the hydrogen coverage at the end-point potential is 

determined to be 0.77 of a monolayer. So a suggestion is to use the potential fixed at 0.08 V 

vs. RHE as an end-point potential and to consider hydrogen coverage as being 0.77. 

The assumption that the ratio between adsorbed hydrogen and platinum atoms is one is 

experimentally validated only for Pt(100) single crystal planes [9]. For other planes (Pt (111) 
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[10] and Pt (110) [11]) a contribution of multibonded hydrogen or hydrogen bonded to the 

underlying layers of platinum atoms is probable. This should be taken as a factor of 

uncertainty for polycrystalline surfaces. In the case of Pt nanoparticles the influence of 

hydrogen bonding to underlying Pt layers on Pt nanoparticles can be expected as well. All 

these factors will lead to surface area overestimation and should be kept in mind. 

E / V
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e

n
t

0 0.1 0.2 0.3 0.4

 
Figure 3.2 Schematic cathodic part of the hydrogen adsorption region of polycrystalline platinum 
electrode in diluted sulfuric acid solution. The symbols are: solid line - total current; dashed line - 
double layer charging current; dotted line – total current without influence of hydrogen evolution; dot-
dash line – end-point potential. (Adopted from reference [8]). 

The distribution of different planes in a polycrystalline surface, also influences the 

value of charge exchanged. For polycrystalline platinum surface the charge exchanged for 

one hydrogen atom per platinum atom is assumed to be 210 µC cm-2. This is a mean value 

and lies between typical values for single crystal surfaces (for Pt (111) this value is 241 µC 

cm-2, for Pt (100) is 209 µC cm-2 and Pt (110) 200 µC cm-2)  5 [8]. Polycrystalline surface is 

considered to consist mainly of Pt(110) and Pt(100) single crystal plane contributions, while 

the contribution of Pt(111) crystal plane is less pronounced. Pt nanoparticles have the face 

centered cubic (f.c.c) structure of Pt and a lattice constant of 0.3927 nm, which is identical to 

bulk platinum. The surface of the particles is considered to have icosahedral structure with 

                                                 

5 These are measured values and they differ from calculated values. For example, for Pt(100) surface the 
measured value (209 µC cm-2) is higher than the calculated value for a hydrogen monolayer considering one 
hydrogen atom per platinum atom (147 µC cm-2) which implies the contribution of hydrogen bonded to the 
underlying layer of platinum atoms of the (110) plane.  
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(111) faces exposed [12]. According to these authors icosahedral structure is 

thermodynamically more stable than the cubo-octahedron structure also suggested by some 

authors as in reference [13]. According to the latter authors [13] Pt nanoparticles have a cubo-

octahedral structure with 100 and 111 single crystal planes exposed. Also contributions of 

low-coordinated Pt edges and corner atoms are significant (due to the small particle size 

(between 2-6 nm) the number of surface atoms is large (for example if the particle size is 2 

nm the number of surface atoms per total number of atoms in particle is 50 % (when particle 

size is increasing, the part of surface atoms is decreasing)). A large fraction of surface atoms 

gives lower Pt-Pt coordination number than for bulk platinum (for example if the particle size 

is 2 nm, Pt-Pt coordination number is 9.5 while for bulk platinum it is 12), so the contribution 

of edges and corner atoms is decreasing with increasing particle size. It can be expected that 

the distribution of single crystal planes in Pt nanoparticles is in a similar manner uncertain as 

in the case of polycrystalline platinum.  

The same problems encountered in the determination of the exchanged charge for 

nearly a hydrogen monolayer on polycrystalline platinum are true for platinum nanoparticles 

as well. With the similar level of uncertainty the value of 210 µC cm-2 used for 

polycrystalline platinum as a measure of exchanged charge for nearly a hydrogen monolayer, 

can be accepted for platinum nanoparticles as well and that was done in the following section.  

3.1.1. Experimental approach 

The method is based on the determination of the amount of charge to remove the adsorbed 

full hydrogen monolayer. Experimentally this is done by applying cyclic voltammetry to 

obtain current-potential curves for adsorption and desorption of hydrogen monolayers. The 

integration of current in the anodic scan gives the amount of hydrogen desorbed according to 

the following reaction: 

Hads         H+ + e-  (3.1) 

The experimentally obtained charge contains also a contribution due to the double layer 

charging, which should be subtracted. Subtraction is usually made by assuming that double 

layer charging is the same as in the double layer region.  

dEIIQ )(1
dl

220.0

115.0
H −= ∫

−υ
 (3.2) 
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where QH is the charge, I is the total current, Idl the double layer current, E is the potential (V 

vs. Ag/AgCl) and υ the sweep rate. 

The electrochemical measurements were performed in a cyclone flow cell (Chapter 2). 

The working electrode compartment was supplied with N2, while counter and reference 

electrode compartment were fed with 1 M sulfuric acid solution. The catalyst was a Johnson 

Matthey unsupported platinum catalyst. At first the MEA was conditioned by potential 

cycling in the potential region between hydrogen and oxygen evolution (from -0.15 to 1.25 V 

vs. Ag/AgCl) with a sweep rate of 50 mV s-1 in N2 atmosphere. Then, CO was adsorbed (see 

details later) and swept from the surface. For surface area determination by the hydrogen 

adsorption method a second voltammogram after CO stripping was used.  

Now the method will be demonstrated for surface area determination of an unsupported 

platinum electrode.  

3.1.2. Determination of real surface area of unsupported Pt catalyst 

As it was mentioned before, the total number of reactive surface sites on platinum can be 

determined by the hydrogen adsorption method. The cyclic voltammogram of a Pt-MEA is 

shown in Figure 3.4 
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Figure 3.3 Cyclic voltammogram of unsupported Pt MEA at a sweep rate of 50 mV s-1. Conditions: N2 
in working electrode compartment and 1M H2SO4 in counter electrode compartment, room 
temperature. 
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The Pt MEA cyclic voltammetry behavior is in good agreement with the literature 

results for polycrystalline platinum in acidic medium [6]. It was mentioned before that two 

peaks observed in the CV image of polycrystalline platinum can be assigned to hydrogen 

adsorption on 100 and 110 single crystal planes while hydrogen adsorption on 111 single 

crystal plane is featureless (Figure 3.1). Similar, hydrogen adsorption/desorption region on Pt 

nanoparticles (from -0.13 to 0.24 V vs. Ag/AgCl in Figure 3.3) can be rationalized with 

regard to single crystal plane contributions as shown in reference [13]. If Pt nanoparticles 

have cubo-octahedral structure with 100 and 111 single crystal planes exposed, the hydrogen 

CV image will be mainly governed by the 100 plane, because the 111 single crystal planes is 

featureless [13]. The presence of the 110 single crystal planes can be rationalized by the 

contribution of low-coordinated Pt edges and corner atoms. In our study the particle size is 

about 6 nm (determined from the BET surface area) and such large particles behave almost as 

polycrystalline platinum. According to reference [12] for a particle size of 6 nm the ratio of 

surface atoms to total atoms is 0.2. For comparison in reference [13] particle size was 3.7 nm 

and number of surface atoms was calculated to be 30 %, which corresponds to the Pt-Pt 

coordination number of 11.2 what is close to 12 (the Pt-Pt coordination number for 

polycrystalline platinum). 

Integration limits are chosen in agreement with reference [8] as discussed above. It was 

assumed that the hydrogen coverage at the end-point potential is 0.77 of a monolayer [8]. The 

charge required for hydrogen adsorption is calculated (0.363 C) and the value was used in 

real surface area determination. Correction for double layer charging was done as shown in 

Figure 3.4. The surface area S in was determined as follows: 2cm

2
H

H

cmmC210.0 −⋅
=

θ
QS  (3.3) 

where QH is charge in mC, corresponds to a monolayer of adsorbed hydrogen 

and 

2cmmC210.0 −

Hθ is the hydrogen monolayer coverage at end-point potential (0.77) [8]. 

The calculated Pt-MEA real surface area is 2.2 x 103 cm2. The specific surface area6 

was also calculated and the obtained value is 13.5 m2 g-1. As it was mentioned before, the  

                                                 

6 Under our experimental conditions the total geometric surface area of MEA was 12.56 cm2, while the surface 
area directly exposed to the electrolyte was 2.0 cm2. Some edge effect was encountered and in an independent 
measurement with a total geometric surface area of 2.0 cm2 a factor of 1.62 was obtained (Chapter 2). So in 
specific surface area calculations the value of 3.24 cm2 for geometric surface area was taken. 
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Figure 3.4 Cathodic part of the hydrogen adsorption region of unsupported Pt MEA at a sweep rate of 
50 mV s-1. Conditions: N2 in working electrode compartment, room temperature. Dash-dot line 
represents lower integration limit.  

BET surface area is 26.8 m2 g-1 which means that approximately 40 % of the BET surface 

area is active under these conditions. Lower surface area under operating conditions than the 

BET surface area is not surprising and several reasons can be discussed. First, during the ink 

preparation some particle agglomeration can occur. Second, catalyst particles are wrapped in 

Nafion and as it was shown before on an example of a smooth platinum electrode, the Nafion 

film decreases active surface area [14]. Third, in order to realize electronic conductivity, 

catalyst particles should be connected to each other and to the current collector which will 

also decrease the available surface area. It can be concluded that only particles, which are 

connected to both electrolyte and current collector, will contribute to the real surface area.  

3.2. CO adsorption method 

After the total number of reactive surface sites on Pt MEA was determined by the hydrogen 

adsorption method, the charge required to oxidize the saturated CO layer on a Pt-MEA was 

determined from the CO adsorption method and then the saturated CO coverage, that will be 

later used for surface area determination of supported and unsupported PtRu catalysts, was 

calculated. But, before going further a few words about CO adsorption method will be 

addressed. 

Basically the CO adsorption method is the same as the hydrogen adsorption method i.e. 

a probe molecule is adsorbed at the surface (at potential where CO oxidation does not occur), 



 22

removed from the surface in a potential sweep and then the charge under the oxidation peak 

is calculated. This method should have some advantages over the hydrogen adsorption 

method due to its more general applicability7. However, many limitations of the method are 

encountered and will be shortly discussed.  

The first uncertainty is connected to the kind of CO bonding at the surface. For 

example at polycrystalline platinum at least two bonding types (on-top and bridge bonding 

CO)8 are observed [15]. Information about CO bonding is valuable in determining a number 

of CO atoms per metal atom. For example if CO is on-top bonded, then two electrons will be 

exchanged per surface site in CO oxidation while for bridge bonded CO, only 1 electron per 

surface site. Information about the kind of CO bonding on the electrode surface can be 

obtained from spectroscopy methods (for example Fourier Transform Infra Red (FTIR)) and 

from scanning electron microscopy (STM), but they are mostly limited to smooth, well-

defined surfaces (single crystal electrodes) and high-vacuum studies which are usually not 

relevant for the electrode surface under real experimental conditions. Recent voltammetric 

studies have shown that the number of CO molecules per one platinum atom is one and that 

the CO saturated layer is 90 % of one monolayer [8].9  

The second uncertainty is CO charge correction in respect to other contributions like 

double layer charging and charging due to metal oxide formation. The simplest way for the 

double layer charging correction is, like in the hydrogen adsorption method, to consider that 

double layer charging is identical as in the absence of the adsorbate (for more rigorous 

treatments of this problem see reference [8]). The more significant problem is the 

determination of a charge due to metal oxide formation. This is especially true for less noble 

metal electrodes like Ru and also Ru alloys like PtRu. In the case of the pure platinum 

electrode the problem is not so significant since CO oxidation on platinum does not overlap 

to a great extent with oxide formation on platinum, while in the case of PtRu alloy due to 

early commence of oxide formation10, the overlap is significant (for example, the charge to 

remove a monolayer of adsorbed CO on polycrystalline Ru electrode was determined to be 

                                                 

7 The CO adsorption method can be used in many metals and alloys, since CO can be adsorbed in a stable form 
at practically almost all d-metals. 
8 Other types of CO bonding are also possible and depend on the nature of metallic surface and defect density. 
9 This was obtained by comparing the charge from hydrogen and CO adsorption on the same surface and other 
same conditions. 
10 On PtRu oxide, formation already starts in the “hydrogen region” which is an advantage concerning methanol 
electrocatalysis, but in this case an obvious disadvantage.  
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0.550 mC cm-2 giving a coverage degree higher than 1.0 [16]). A practical approach to 

problem solution is to consider the oxide formation, being the same with and without CO 

adsorbed layer. In this case subtraction for additional charge due to oxide formation is the 

same as subtraction for double layer charging (usually, as a base line is considered line from 

a second cycle after CO stripping in the same experiment). But, as it was mentioned before, 

charge due to oxide layer formation can be underestimated in this way, as it was shown in the 

example with polycrystalline Ru and in a recent study by Jusys et al. [17] (see below). 

Besides by cyclic voltammetry, the CO charge can be determined by some other 

methods like IR (Infra-Red) or DEMS (Differential Electrochemical Mass Spectroscopy). A 

major advantage of these methods over voltametric CO charge determination is their 

independence on all faradaic and non-faradaic contributions, which have to be subtracted in 

voltammetric charge determination. But there are some disadvantages.  

Using IR spectroscopy, CO coverage on single crystal surfaces is easy to determine, 

since the surface atomic density is known. For practical electrodes situation it is not so 

defined due to distribution of surface planes on polycrystalline surface and on dispersed 

electrodes situation is even less clear. The limitation of the method is that the electrode 

should possess the necessary reflectivity, which usually is not the case with technical fuel cell 

electrodes. So far this method was applied to the investigation of dispersed catalysts but only 

when a dispersed catalyst was supported on IR reflective surface (like highly oriented 

pyrolitic graphite or gold as a substrate). 

More promising, concerning application under technical fuel cell conditions is DEMS. 

The method is based on the detection of the product by means of a mass spectroscopic 

technique, which is not affected by the faradaic proportion of the total charge. Calibration is 

usually made by using porous polycrystalline platinum electrode where it is possible to 

determine the total number of atoms for CO adsorption (from hydrogen adsorption method) 

and then to relate it to the total number of sites occupied by CO with the area determined by 

the adsorbed hydrogen. In a recent contribution by Jusys et al. [17] the active surface area of 

different ternary unsupported catalysts was determined by the means of CO stripping 

(oxidation of pre-adsorbed saturated CO layer). First calibration was done by CO monolayer 

oxidation on a smooth polycrystalline platinum electrode. The hydrogen adsorption method11 

                                                 

11 An adsorption charge of 0.210 mC cm-2 for a full hydrogen monolayer and a hydrogen coverage at the onset 
of H2 evolution of 0.77 are assumed.  
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was used in order to determine the total number of Pt atoms being available for CO 

adsorption. By comparing the charge from hydrogen adsorption and from CO stripping, the 

CO surface coverage was determined. In the next step, the CO charge was determined by 

integrating the mass spectrometric current above the ground level of the m/z =44 signal. This 

charge was assumed to correspond to the real surface area of the Pt electrode determined bz 

the hydrogen adsorption method. The method is then applied to the surface area 

determination for unsupported high surface area PtRu catalysts (the assumption was made 

that the coverage of the saturated CO layer on the metallic parts of the PtRu catalysts is the 

same as on the smooth polycrystalline Pt). It was shown that the charge obtained from 

voltammetric CO stripping is about 50 % higher then obtained from the mass spectroscopic 

current. The difference is ascribed to large and poorly defined faradaic and non-faradaic 

contributions in the CO voltammetric charge. This result is in accordance with the result for 

polycrystalline Ru electrodes where the CO surface coverage determined by CV was higher 

than 1 [16]. The CO stripping surface area obtained by using DEMS was compared with the 

BET surface area and found to be much lower (for example for PtRu catalyst obtained from 

E-TEK about 50 % of BET surface area). This ratio was even lower for ternary catalysts. 

Deviation was taken as an indication that a certain part of the catalyst surface consists of 

metal oxides12. 

In a study by de Souza et al. [18], the CO adsorption method was used for the surface 

area evaluation of several PtRu catalysts. The CO stripping charge was determined by cyclic 

voltammetry, DEMS and IR spectroscopy and used to normalize, three reaction rate 

dependent parameters in methanol oxidation (oxidation current in cyclic voltammetry, 

formation of CO2 as measured via on line mass spectrometry and in situ FTIR spectroscopy). 

So, using CO stripping as a normalization tool, all methods yielded reasonable agreement of 

catalysts activity with respect to methanol oxidation. 

Dinh et al. [19] used the voltammetrically obtained CO charge to normalize activity of 

three unsupported PtRu catalysts (Johnson Matthey, as received). They obtained that 50 % of 

the BET surface area was PtRu metal alloy of composition near to 1:1. 

Other authors [20] reported for the same Johnson Matthey unsupported catalyst that 80 

% of the BET surface area was electrochemically active. These results are obtained for CO 

stripping at elevated temperature (60 oC), PtRu loading of 4 mg cm-2 (in former case 5 mg 

                                                 

12 CO adsorption occurs on metallic surface but cannot take place on oxide-covered surface. 
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cm-2) and for a conditioned catalyst13, which can explain the very high catalyst utilization 

rate.14  

To summarize, many uncertainties are connected to the voltammetric CO stripping 

charge determination, first due to unknown CO bonding at the surface and second due to 

undefined non-faradaic and other faradaic charge contributions. Determination of the CO 

charge based only on voltametric determination has a more qualitative character, but still 

enables the comparison of different catalysts’ activities (as it was shown in [18] by 

comparing this method with other methods like DEMS and IR spectroscopy). 

3.2.1. Experimental approach 

As in the hydrogen adsorption method, the CO adsorption method is based on the 

determination of the amount of charge to remove the adsorbed saturated CO monolayer. 

Experimentally this is done by adsorbing CO at an electric potential where no CO oxidation 

will occur (usually in the hydrogen adsorption/desorption region or at the end of this region) 

for a certain time, purging the system with an inert gas and applying cyclic voltammetry to 

obtain the current-potential curve for CO oxidation. Then, the integration of the current in the 

anodic scan gives the amount of CO oxidized: 

COads + H2O       CO2
 + 2H+ + 2e- (3.4) 

The experimentally obtained charge also contains contributions due to the double layer 

charging and simultaneous oxide formation. Difficulties in accurate double layer and oxide 

formation charge subtraction (especially for electrodes with early oxide formation 

commencement) were already discussed. Here two approaches for base line subtraction were 

tested. In a first approach the base line subtraction was done as in hydrogen adsorption 

method, i.e. with an assumption that double layer charging and oxide formation are the same 

with and without CO adsorbate. The first cycle after the CO adsorption was integrated, and 

then the same was done with a second cycle and afterwards subtraction was made. The 

second approach requires a new base line, which is then subtracted from the CO stripping line 

and then the area under subtracted CO stripping line is integrated (for more details see later).  

                                                 

13 Usually, conditioning is done under humidified H2 atmosphere where PtRu serves as a hydrogen oxidation 
reaction catalyst (the aim is to reduce surface of the as-received catalyst [19] and in that way to increase number 
of available seats for methanol adsorption and oxidation). 
14 Progressive reduction of the catalyst surface was observed at the elevated temperatures [19]. 
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The method will be demonstrated on the surface area determination of unsupported Pt 

and PtR catalysts. As it was said before, the unsupported Pt catalyst was used as a kind of test 

system for the determination of CO saturated surface coverage, while a main goal was the 

determination of the surface area of unsupported and supported PtRu catalysts (see also 

Chapter 5). 

Details for MEA’s preparation, and cell details are the same as for other measurements 

in the here used cyclone flow cell configuration. Metal loading was 5 mg cm-2 for both 

unsupported Pt and PtRu catalysts. 

CO adsorption was carried out as described in Chapter 2. In addition in experiments 

performed in this Chapter the potential of CO adsorption was varied (in most of the 

experiments the potential was 0.0 V vs. Ag/AgCl, and in some cases – 0.1 V vs. Ag/AgCl). 

Positive potential limit was also varied (from 0.45 up to 1.05 V vs. AgAgCl) and a sweep rate 

(usually was 5 mV s-1 but in some experiments was 10, 20 or 50 mV s-1).  

3.2.2. Unsupported Pt catalyst 

Figure 3.5 shows a stripping scan for adsorbed CO on unsupported Pt catalyst. CO was 

adsorbed at 0.0 V vs. Ag/AgCl for 30 min. The CO stripping peak potential is at 0.536 V vs. 

Ag/AgCl. The value reported in Gasteiger et al. [16] study, for a smooth, bulk Pt electrode 

equilibrated at 1 atm CO is 0.583 V vs. Ag/AgCl. The value found in the present work is 

about 50 mV more negative. A similar effect was observed during methanol oxidation where 

the onset of methanol oxidation on Pt nanoparticles was 50 mV more negative compared to 

smooth bulk polycrystalline electrode [14]. The effect can be rationalized in terms of a higher 

Pt particle affinity to OH adsorption what in turn increases the rate of CO oxidation. It is 

similar to PtRu catalyst where Ru donates OH species and significantly increases the rate of 

methanol oxidation. Dinh et al. [19] in a similar study obtained for the same Pt catalyst as in 

this study a CO peak potential of 0.583 V vs. Ag/AgCl (the same value as in H. Gasteiger et 

al. [16]). The observed difference in this case can be due to a different experimental set-up 

(in our case real potentiostatic control was achieved using a reference electrode with a stable 

and well-defined potential while in the case of the cited work the counter electrode was used 

at the same time as a reference electrode). 
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Figure 3.5 Cyclic voltammograms of unsupported Pt MEA for CO stripping. Dashed line: after CO 
removal. Conditions: CO adsorption at 0 V vs. Ag/AgCl, adsorption time 30 min, sweep rate  
50 mV s-1. 

The simplest approach for a base line subtraction is to consider double layer charging 

and oxide formation the same as in the absence of CO, i.e. to use the second cycle in the same 

experiment for base line subtraction and to contribute the difference between the first and the 

second cycle only to CO oxidation. So the area under the CO stripping peak in the potential 

region from 0.325 V to 1.2 V vs. Ag/AgCl in a first positive going sweep and from 1.2 to -

0.126 V vs. Ag/AgCl in a first negative going sweep, was calculated and corrected for the 

area obtained after integration under the curve registered during the second cycle in the same 

potential region. The obtained charge was 1.04 C. The CO surface area SCO in cm2 was 

determined as follows: 

2
CO

CO cmmC420.0 −=
Q

S  (3.5) 

where QCO is CO stripping charge (in mC) determined after 30 min of CO adsorption, and 

corresponds to a monolayer of adsorbed CO. The CO surface area calculated 

from equation (3.5) is 2.5 x 10

2cmmC420.0 −

3 cm2. This value is higher than the surface area determined 

from the hydrogen adsorption method and it was assumed that the hydrogen adsorption 

method gives the maximum number of surface reactive sites. Thus, the CO stripping curve 

was re-examined and it was noticed that a large contribution to the final CO stripping charge 

is given by a charge in the potential region from 0.8 to 1.2 V vs. Ag/AgCl, the so called O-
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region. This charge can be attributed to CO oxidation, but also to oxidation of impurities 

being adsorbed during CO adsorption or to the difference in oxide formation on a surface 

preconditioned in a different way (by prolonged reduction at constant potential (correspond to 

first cycle after CO adsorption) or by potential cycling (correspond to second cycle after CO 

adsorption)). In a blind experiment (Figure 3.6), performed under the same conditions as the 

CO stripping experiment, except in absence of CO, the difference between the first and the 

second cycle was also observed. Based on this experiment some adsorption of impurities can 

not be completely excluded (see hydrogen region in Figure 3.6 where a small suppression of 

the hydrogen desorption peak is observed compared to the second cycle), but also some 

changes in oxide formation are possible. The similar effect was observed on polycrystalline 

platinum [21]. Also, de Souza et al. [18], registered some differences in O-region between 

first and second cycle, but no online CO2 mass signal was detected in the same potential 

region. It was concluded that the difference observed in the O-region is more likely due to 

oxidation of impurities or some differences in oxide formation than due to CO oxidation. 
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Figure 3.6 Cyclic voltammograms of Pt MEA in N2. First cycle full line, second cycle dash line. 
Conditions: delay at 0.0 V vs. Ag/AgCl 45 min, sweep rate 50 mV s-1, flow rate in working electrode 
compartment 120 ml min-1, room temperature. 

Now the integration was made within the new integration limits from 0.326 V to 0.674 

V vs. Ag/AgCl (O-region is excluded) and the values of 0.629 C for CO stripping charge and 

1.5 x 103 cm2 for CO surface area were obtained. The CO saturated coverage was calculated 

by the following equation: 
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S
SCOsat

CO =θ  (3.6) 

where SCO is the CO surface area (equation (3.5)) and S is the surface area determined by the 

hydrogen adsorption method (equation (3.3)). The value obtained is =0.680. This value 

is in good agreement with a CO coverage factor determined on polycrystalline platinum 

surface [17] and on single crystal platinum surface (Pt(111)) [22]. 

sat
COθ

CO adsorption was performed at different adsorption times in order to check when the 

saturated CO coverage is achieved (Figure 3.7). 
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Figure 3.7 CO stripping voltammetry of unsupported Pt MEA after CO adsorption at 0 V vs. Ag/AgCl 
for different adsorption times. During CO stripping N2 in working electrode compartment (flow rate  
120 ml min-1). Sweep rate 50 mV s-1. Room temperature. 

Evidence for saturation coverage of the electrode surface with adsorbed CO is the 

complete blocking of the pseudo capacitive currents in the potential region below 0.2 V vs. 

Ag/AgCl (Figure 3.7) [16]. A high CO coverage is obtained even after 1 min of CO 

adsorption and after 15 min saturated CO monolayer is formed. The difference in the charge 

obtained after 30 min of CO adsorption is almost in the region of experimental error. Currents 

observed in the O-region are not due to oxidation of adsorbed CO but are related to other 

processes, as discussed before. 
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The CO stripping charge as a function of adsorption time at constant adsorption 

potential is shown in Figure 3.8. As discussed, the CO saturated monolayer is formed almost 

after 15 min of adsorption.  

 
Figure 3.8 CO stripping charge for unsupported Pt MEA as a function of time of CO adsorption. The 
adsorption potential was 0.0. V vs. Ag/AgCl. Sweep rate 50 mV s-1. Room temperature. 

 

3.2.3. Unsupported PtRu catalyst 

It was already mentioned that the voltammetric determination of CO charge on a PtRu 

catalyst is connected with many uncertainties. The major one is the accurate determination of 

double layer charging and Faradaic charging due to oxide formation. However, although 

voltammetric determination of CO charge does not yield the real surface area, it can be used 

as a good parameter for surface area normalization in comparing activities of different 

catalysts as it was shown in reference [18]. Now results obtained for unsupported PtRu 

catalysts will be discussed.  

CO stripping voltammetry of unsupported Pt and PtRu catalysts are shown in Figure 

3.9. CO stripping conditions were identical (adsorption potential, adsorption time, sweep rate 

etc). As expected PtRu was more active with respect to CO oxidation than Pt (the CO 

oxidation onset potential is more negative as well as peak potential (for PtRu peak potential is 

0.425 V vs. Ag/AgCl and for Pt 0.536 V vs. Ag/AgCl)). While on the Pt catalyst CO 
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electrooxidation occurs in a relatively narrow potential range on PtRu it is spread over a 

broad potential range. Observed phenomena more likely reflect the structure of this particular 

PtRu catalyst than it is PtRu catalyst characteristic in general. A sharp and narrow-shaped CO 

stripping peak was obtained on smooth PtRu catalysts with different Pt:Ru compositions [16], 

on E-TEK unsupported catalyst [17] and on Jonhson Matthey unsupported Pt-Ru catalyst [19] 

(nominally the same catalyst as in this study). In the present study, MEA’s prepared from 

Johnson Matthey catalysts from three different lots were tested. All catalysts were used as 

received. Concerning CO oxidation, they behaved differently. Real catalysts are a mixture of 

PtRu alloy, Pt-oxides and Ru-oxides [27]. The ratio between alloy and oxide phases can vary 

even for the same nominal PtRu composition (Chapter 5). The difference between the present 

and literature results can be assigned to catalyst non-homogeneity. 

 
Figure 3.9 Cyclic voltammograms for CO stripping of unsupported Pt and PtRu MEA’s. Dotted lines: 
after CO removal. Conditions: CO adsorption at 0 V vs. Ag/AgCl, adsorption time 30 min, sweep rate 
50 mV s-1. 

In order to establish conditions for CO stripping on PtRu electrode the influence of 

several parameters was checked (potential region, sweep rate, adsorption potential, time of 
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adsorption). Now, the influence of these parameters on voltammetric CO charge 

determination will be discussed in more detail.  

Potential region. Concerning the potential region for CO stripping, the cathodic 

potential limit is not an issue and usually is set to be the same as a potential for hydrogen 

evolution. The anodic potential limit is more sensitive issue due to the possibility of Ru 

dissolution [23]. In our experiments the positive potential limit was extended towards more 

positive potentials (starting from 0.5 to 1.0 V vs. Ag/AgCl) and no significant Ru dissolution 

was observed, even during prolonged cycling. As it was shown in reference [16] and found as 

well in the present experiments, extended positive potential limit is obligatory in order to 

capture entire CO oxidation wave on the PtRu catalyst. The CO charge as a function of the 

positive potential limit (other conditions are the same) is shown in Figure 3.10. Integration 

limits were chosen and the base line subtraction was done in a similar manner as in the case 

of platinum (see Figure 3.11 where integration limits are indicated by red arrows). 

 
Figure 3.10 CO charge as a function of positive anodic limit. Sweep rate 50 mV s-1. N2 in working 
electrode compartment (flow rate 120 ml min-1). 

Sweep rate. The influence of sweep rate was studied with respect to the CO stripping 

peak potential and charge. With an increase of the sweep rate, the CO stripping peak potential 

is increasing (Figure 3.12). A slope of the peak potential dependence on log of sweep rate is 

120 mV dec-1, which corresponds to a theoretical case of oxidation of irreversibly adsorbed 

species [24].  
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Figure 3.11 Cyclic voltammograms for CO stripping of unsupported PtRu MEA. Dotted line: after CO 
removal. Conditions: CO adsorption at 0 V vs. Ag/AgCl, adsorption time 30 min, sweep rate  
50 mV s-1.  

 
Figure 3.12 CO stripping peak potential vs. log of sweep rate. Conditions: CO adsorption at 0 V vs. 
Ag/AgCl for 30 min, N2 in working electrode compartment, flow rate 120 ml min-1. 

With an increase of the sweep rate the CO stripping charge decreases. The maximum 

charge was determined for the lowest sweep rate of 5 mV s-1 (Figure 3.13, upper line). 

Integration limits were as indicated in Figure 3.11 and for base line subtraction, a second 

cycle after removal of CO was used. CO stripping charge was determined in a similar manner 
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as for platinum i.e. at first, the areas under the first positive going sweep and under the 

second positive going sweep (after CO stripping) in Figure 3.11 were determined. Then, the 

area from the second positive going sweep is subtracted from the area determined in the first 

positive going sweep and divided by sweep rate in order to obtain CO stripping charge. The 

resulting charge is plotted in Figure 3.13 as a function of sweep rate. As can be seen in Figure 

3.13, the charge is decreasing with the sweep rate. Problems with the base line subtraction 

and uncertainties related to the base line subtraction in case of PtRu catalysts were already 

discussed. Briefly, oxide formation on PtRu catalyst overlaps with CO oxidation and 

proceeds in a different way with and without adsorbate and this cannot be ignored. In 

addition, it is assumed that oxide formation on PtRu depends on a sweep rate (Ru forms non 

stoichiometric oxides (RuOxHy), which undergo solid state surface redox transition [25]. This 

reaction involves proton injection/ ejection and is responsible for a large pseudo-capacitance 

of RuOxHy and overlaps with CO stripping as well. It was assumed that the base line 

deviation, caused by oxide formation, is more pronounced at the more positive potentials than 

at the more negative potentials, with respect to 0.3 V vs. Ag/AgCl. The reasons are as 

follows: a) CO and OH adsorption are competitive reactions. CO adsorption is favored at 

lower overpotentials. CO saturated coverage is assumed to be 0.68 (as determined in 

experiment with platinum electrode). As potential increases, OH begins to be adsorbed and 

surface coverage by OH increases. CO removal occurs in surface reaction between CO and 

OH adsorbed [26]. In course of time (or potential) CO surface coverage decreases while OH 

surface coverage increases. OH adsorption takes place at surface sites set free. Nafion® will 

also compete for the same surface sites but its influence was neglected here. Additionally, the 

oxide formed (for example Ru(OH)) can undergo further transformation to higher oxides (for 

example Ru(OH)2 etc).  

Therefore, here a rough approach for base line subtraction is proposed. A new base line 

is constructed as an extension of the CO stripping line (see Figure 3.14 red line). An 

assumption is that total CO charge is proportional to CO charge consumed until a potential 

that corresponds to one half of the height of the peak current (half peak potential in the 

following text) is reached. The approach was at first tested on platinum in order to determine 

which part of the total CO stripping charge is oxidized until the half peak potential.  
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Figure 3.13 CO stripping charge as a function of sweep rate for different integration limits. 

 
Figure 3.14 Schematic representation of base line correction in the case of Pt MEA. Conditions: the 
same as in Figure 3.5. 

The result of integration (hatched area in Figure 3.14) was divided by the sweep rate 

and the value of 0.0604 C was obtained. The total CO stripping charge was determined to be 

0.629 C. It follows that 9.6 % of the total CO adsorbed is oxidized until the half peak 

potential is reached. 
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In the case of PtRu catalyst a new base line is constructed in a similar manner, as 

shown in Figure 3.15 (full red line). Then, the base line is subtracted from the CO stripping 

line (first positive going sweep). As a result a new CO stripping line is formed (blue line in 

Figure 3.15). An area under the new CO stripping line (blue line) is integrated, but only until 

half peak potential (hatched area in Figure 3.15). The assumption was made that the 9.6 % of 

total CO adsorbed is consumed until the half peak potential is reached and this charge is 

multiplied by approximately factor 10 in order to obtain the total CO charge. Obtained results 

are shown in Figure 3.13 and as can be seen, data are scattered around a mean value of 0.87 C 

and no dependence on the sweep rate is observed. This is confirmation that the integration up 

to the half peak potential gives reliable data for the total CO charge. 

Adsorption potential. Most of the experiments were performed at an adsorption 

potential of 0 V vs. Ag/AgCl, while in some of them CO was adsorbed some at more negative 

potential – 0.1 V vs. Ag/AgCl. No significant influence on CO charge, CO stripping peak 

potential and onset of the CO oxidation was obtained, by varying the adsorption potential. 

 
Figure 3.15 Schematic presentation of the proposed method for base line subtraction in voltammetric 
CO charge determination in the case of PtRu MEA. Conditions: same as in Figure 3.11. 

Time of CO adsorption. CO was adsorbed at constant potential, while the adsorption 

time was varied. It was found that CO saturated coverage was achieved in approximately 120 

min (Figure 3.16). The adsorption time for obtaining the CO saturated coverage was 

significantly greater than in the case of platinum. One reason can be that kinetics of CO 

adsorption on pure platinum and on platinum ruthenium alloy are different. Also as a less 
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noble metal than platinum, ruthenium should be more oxidized under the applied conditions. 

CO adsorption was performed at potentials more negative than oxide reduction on PtRu e.g. 

at sweep rate of 10 mV s-1 potential of PtRu oxide reduction is at approximately 0.25 V vs. 

Ag/AgCl - Figure 3.17. Because of that first an oxide present at the surface will be reduced 

and after that CO adsorption will take place. 

The saturated CO coverage corresponds to a CO stripping charge of 0.817 C. The real 

surface area can be obtained from the following equation: 

2sat
CO

CO

cmmC420.0 −⋅
=

θ
Q

S  (3.7) 

where S is the real surface area, QCO is the CO stripping charge in mC,  is the saturated 

CO coverage, and 0.420 mC cm

sat
COθ

-2 is the charge for the oxidation of nearly a CO monolayer. 

The calculated value is 2.86 x 103 cm2. Normalized value with respect to the metal loading it 

is 17.7 m2 g-1. Taking into account that the geometric surface area is 3.24 cm2, the BET 

surface area for this catalyst is much larger (according to supplier: 62.56 m2 g-1). Deviation 

can be due to the same reasons as discussed in the case of platinum. Additionally, a more 

oxidized catalyst will have a lower CO stripping area as found in literature as well [19]. 

 
Figure 3.16 Voltammetric CO stripping charge as a function of adsorption time. Conditions: 
Adsorption potential 0 V vs. Ag/AgCl, sweep rate 5 mV s-1, flow rate 120 ml min-1, room temperature. 
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Figure 3.17 CO stripping voltammetry of unsupported PtRu MEA as a function of adsorption time. 
Conditions: Adsorption potential 0 V vs. Ag/AgCl, sweep rate 10 mV s-1, flow rate 120 ml min-1, room 
temperature. 

3.3. Conclusions 

The real surface area of the unsupported platinum catalyst within the MEA was determined 

by hydrogen and carbon monoxide adsorption methods. It was assumed that the hydrogen 

adsorption method gives the total number of reactive surface sites. The saturated CO 

coverage was calculated by comparing the surface areas determined by the carbon monoxide 

and hydrogen adsorption methods. A value of 0.68 was obtained. Later this value was used 

for the calculation of the surface area of unsupported PtRu catalysts (and carbon supported 

PtRu catalysts, see Chapter 5). The assumption was made that CO saturated coverage is the 

same, for both the platinum and the metallic parts of the various PtRu catalysts being 

investigated. 

The carbon monoxide method was applied to the surface area determination of 

unsupported PtRu catalysts. The influence of the positive potential limit, the sweep rate, the 

CO adsorption potential and the time was investigated. It was shown that the positive 

potential limit has to be extended up to 1.0 V vs. Ag/AgCl in order to capture the whole CO 

stripping wave. The CO charge was decaying with the sweep rate when a base line 

subtraction was performed as in the case of platinum, i.e. with the assumption that oxide 

formation and double layer charging are the same, with and without adsorbate. It was 
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suggested to use a new constructed base line for base line subtraction. When the corrected 

CO stripping line was integrated up to the half peak potential and multiplied with the factor 

determined in a similar experiment with unsupported platinum calculated CO stripping 

charge became independent of the sweep rate. CO adsorption was performed at two different 

potentials and no significant influence was observed. It was established that CO saturated 

coverage was achieved after about 2 h.  

3.4. Outlook 

A method for base line subtraction and CO stripping charge determination was proposed. But 

this method is based on several assumptions and on experimental observations. It should be 

reasonable to calibrate this kind of voltammetric CO stripping charge determination by a 

method which is not sensitive to non-Faradaic and other Faradaic contributions (like DEMS 

or IR as already used in the literature) with an attempt to determine the CO voltammetric 

charge in a more quantitative manner. This would be valuable for a fast screening of the real 

surface area of a porous catalyst under technically relevant conditions, because the traditional 

electrochemical techniques are simpler and available in most fuel cell labs. 

Also a mathematical model for CO stripping under investigated conditions would be of 

interest. 
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4. Kinetics of methanol oxidation 

Literature data about the kinetics of electrochemical methanol oxidation are numerous. The 

reaction was thoroughly investigated on platinum (polycrystalline and single crystal platinum 

electrodes, dispersed supported and unsupported platinum) [28-31] and different types of 

PtRu alloys (bulk alloys [32,33], supported [23,34,35] and unsupported PtRu [36,37] 

catalysts, Ru deposited on platinum [38] etc.) with different techniques. In this chapter an 

overview of literature results concerning methanol oxidation is given, but without the attempt 

to comprehend all published data. The basic idea was to give a cross section of the research 

starting from the seventies, to underline some of the most striking results in this field and to 

show how the understanding and the knowledge about the mechanism of methanol oxidation 

was growing through several decades. At the beginning two important references from the 

seventies should be emphasized. The first one is a famous paper from Bagotzky et al. [28] 

where the first complete reaction scheme of methanol oxidation is given and which in essence 

is still regarded to be valid. The other one is an equally famous paper from Watanabe and 

Motoo [39], where the concept of bi-functional catalysis, already known in the field of 

heterogeneous catalysis, was first introduced in the field of electrocatalysis in order to explain 

the enhancement of methanol oxidation at a PtRu alloy compared to pure Pt. In the following 

years research efforts were aiming to identify some of the proposed intermediates in 

methanol oxidation by spectroscopic techniques, mass spectroscopy, electrochemical 

techniques, isotope labelling studies and others. Another branch of research was orienteted to 

explain the enhancement of the reaction rate by Ru, to determine the optimal PtRu 

composition, to find better synthetic routes for catalyst preparation (see Chapter 5) and to 

investigate structural effects. After giving a literature overview, own experimental data on the 

kinetics of methanol oxidation under fuel cell relevant conditions (temperature 60oC, 

methanol concentration 1 M, unsupported PtRu catalyst in a membrane electrode assembly 

(MEA)) are presented. Based on these data rate expression for methanol oxidation kinetics is 

derived. This rate expression is suitable for implementation in a mathematical model of the 

whole DMFC. Most of the experiments presented in this Chapter were performed at an 

unsupported PtRu catalyst (from Johnson Matthey supplier) with a PtRu loading of the 
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electrode 5 mg cm-2. However this loading is rather high and would increase the production 

costs of the DMFC significantly. But loading can be varied in the fuel cell. Also the catalyst 

dispersion at the same metal loading can be increased if the catalyst is supported on a 

conductive support. Relevance of varying the metal loading and a comparison between 

supported and unsupported catalysts at the same metal loading are given at the end of this 

chapter in order to evaluate the importance of these parameters (metal loading and catalyst 

dispersion) on selected reaction mechanism for methanol oxidation.  

4.1. Mechanism of methanol electrooxidation – Literature overview 

As pointed out above, the first complete reaction scheme for methanol oxidation on platinum 

was formulated by Bagotzky et al. [28] in 1977. According to these authors methanol 

oxidation occurs through the following steps: 

a) Methanol adsorption at the electrode surface followed by methanol dehydrogenation (also 

called dissociative electrosorption [6]): 

−+ ++→ eHOHHCOHCH 2x3  (4.1) 

−+ ++→ eHHOHCOHHC
xx2x

 (4.2) 

e++→ +HOH-CHOHC
xxxxx

 (4.3) 

b) water dissociative adsorption:  

−+ ++→ eHHOOH
x2  (4.4) 

c) surface reaction between species produced in steps a) and b): 

OHOCHHOOHHC 22x2x
+→+  (4.5) 

OHHCOOHHO2HOHC 2
xxx

+→+  (4.6) 

OH2COHO3OHC 22xxxx
+→+  (4.7) 

OHOCHOOH-C 2xxxxxx
+=→+  (4.8) 

OHCOHO2OC 22xxx
+→+=  (4.9) 
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In equations (4.1) to (4.9) the index “x” denotes a valence bond with the platinum 

surface. stands for adsorbed OH species on the electrode surface and  stands for 

the bridge bonded CO species on the surface. 

HO
x

OC
xx

=

The electrochemical steps are the steps (4.1) to (4.4), while the other steps (from (4.5) 

to (4.9)) are heterogeneous chemical steps. In methanol dehydrogenation (step “a”) the 

removal of the first proton is the rate determining step (r.d.s), while the subsequent steps are 

fast. As a consequence,  is the only species resulting from step “a” (at low 

overpotentials where the formed species can not be further oxidized, i.e. upon methanol 

adsorption at open circuit potential). 

OH-C
xxx

According to this mechanism, in the overall reaction 6, 4 and 2 electrons can be 

exchanged and as final products CO2 (equation 10), HCOOH (equation 4.11) and/or CH2O 

(equation 4.12) are formed respectively: 

−+ ++→+ e6H6OCOHOHCH 223  (4.10) 

−+ ++→+ e4H4OOHCHOHOHCH 23  (4.11) 

−+ ++→ e2H2OCHOHCH 23  (4.12) 

The distribution of the reaction products depends on the potential, temperature and 

coverage of the surface with Hads, OHads, other organic adsorbed species ( , 

, ) and foreign particles (e.g. adsorbed metal atoms). For example, depending 

on the OH

,OHHC 2x
HOHC

xx

OH-C
xxx

OC
xx

=

ads surface concentration can be oxidized in two different ways. If the 

OH

HOHC
xx

ads concentration is low, then mainly CO2 will be formed. At high OHads concentrations 

the main products will be HCHO and HCOOH. 

At about the same time (in 1975) Watanabe and Motoo [39] gave the first explanation 

of the enhancement of the methanol oxidation rate at PtRu alloys. They introduced the 

concept of bi-functional catalysis where Pt is responsible for methanol dehydrogenation and 

Ru for the adsorption of OH species: 

−+ ++−→+ e3H3PtHCOPtOHCH3  (4.13) 

−+ ++−→+ eHPt-RuHOPt-RuOH2  (4.14) 
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and finally 

−+ ++++→−+− e2H2COPt-RuPtPt-RuHOPtHCO 2  (4.15) 

where Pt represents the clean platinum substrate, while Pt-Ru represents platinum having 

adsorbed ruthenium. HCO is proposed as an active intermediate. It requires only one 

adsorption site on the surface and is bonded at the platinum substrate via a C atom.  

During the eighties a scientific discussion was focused on the following topics: a) the 

nature of intermediates formed (with hydrogen (HCO or COH) or without hydrogen (CO)), b) 

whether these species are necessary intermediates or “poisons”, c) whether CO is linearly or 

bridge bonded, d) the source of oxygen in the reaction, e) the activity of pure metals vs. alloys 

in methanol oxidation and etc. Results are summarized in a review paper by Parsons and 

VanderNoot [29] and in the following text they will be briefly presented.  

In these years, due to the significant progress in instrumental analytics, the 

experimental identification of the final products and intermediates in methanol oxidation 

became feasible. As final products CO2, H2CO and HCOOH were identified by means of 

mass spectral measurements and gas chromatography absorbance measurements. For 

intermediate identification following techniques were used: a) in-situ spectroscopic 

techniques (like electrochemically modulated infra-red spectroscopy (EMIRS), infra-red 

reflection absorption spectroscopy (IRRAS)), b) differential electrochemical mass 

spectroscopy (DEMS), c) cyclic voltammetry, d) isotope labeling combined with mass 

spectroscopy. In principle two groups of intermediates were identified: a) species containing 

hydrogen (HCO or COH) and species without hydrogen (CO). Intermediates with hydrogen 

were detected by DEMS, while those without hydrogen were detected by EMIRS. 

Discrepancies between two groups of techniques are caused by different experimental 

conditions. DEMS was applied to porous electrodes, while EMIRS was done at mirror 

smooth electrodes. Also the time scale for DEMS is shorter while for EMIRS is longer. Thus, 

it was concluded that DEMS yields the short living intermediates, while EMIRS the long 

living ones. Cyclic voltammetry was used to evaluate the charge being necessary to oxidize 

the intermediates in methanol oxidation. The experiment was typically performed in the 

following way: First methanol was adsorbed for a fixed period of time, the solution was 

replaced by a supporting electrolyte and then the adsorbed species were oxidized in a 

potential sweep. The number of exchanged electrons was varied depending on the methanol 

concentration and adsorption time. Lower methanol concentrations and shorter adsorption 
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times give 3 electrons exchanged in methanol adsorption and oxidation, which is an evidence 

for adsorbed intermediates containing hydrogen. Higher methanol concentrations and longer 

adsorption times give between 1 and 2 exchanged electrons which suggest formation of a 

mixture of CO and species containing C, H and O. In experiments with isotope labeling 

hydrogen containing intermediates were identified but without full agreement between 

different authors whether the intermediate is CHO or COH.  

The next important topic during the eighties was whether CO, CHO and COH are 

reactive intermediates or poisons15. Finally it was concluded that CO is a poison, while CHO 

is an intermediate.  

CO can appear on the electrode surface in two forms: bridge bonded and linearly 

bonded. Bridge bonded CO is the more abandoned species at lower methanol concentrations 

and more negative potentials, while linearly bonded predominates at higher methanol 

concentrations and more positive potentials. 

The role of surface oxides was also discussed. It was concluded that surface oxides 

serve primarily as oxygen source. 

Concerning electrode materials, it was concluded that a PtRu alloy shows a better 

performance in methanol oxidation than pure Pt. Higher activity of the alloy was 

hypothesized to be due to: a) a modified electronic nature of the surface, b) a modified 

physical structure, c) a blocking of the poison formation reactions, d) adsorbing oxygen or 

hydroxyl ions, which can take place in the main oxidation reaction.  

At the beginning of the nineties Gasteiger et al. [32] investigated methanol oxidation on 

PtRu bulk alloys by cyclic voltammetry at room temperature. In their study well defined PtRu 

alloys with different PtRu compositions were investigated. They found that a PtRu alloy with 

10 % Ru gives the highest enhancement at the methanol oxidation activity compared to pure 

Pt at room temperature. The result contrasted results of Watanabe and Motoo [39], where a 

PtRu alloy with a PtRu composition of 50:50 was declared to be the best. The discrepancy 

between new and old results was attributed to the ruthenium depletion at the surface caused 

by electrode preconditioning in extended potential limits, resulting in a lower Ru surface 

composition than nominal. Thus, the importance of surface characterization was emphasized.  

                                                 

15 A poison is defined as a species that is strongly adsorbed on a surface and cannot be easily oxidized. 
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It was postulated [32] that the balance between the rate of methanol adsorption and the 

rate of oxidative removal of dehydrogenated fragments determines the activity of the PtRu 

catalyst. The following mechanism was proposed: 

−+ ++≡→→ e4H4OCOHCHOHCH
xads3sol3   (4.16) 

−+ ++→ eHHOOH
x2  (4.17) 

−+ ++→ eHHOOH
y2  (4.18) 

where “x” denotes the valence bond with the platinum surface and “y” the valence bond with 

the ruthenium surface. 

−+ ++→+≡ eHCOHOOC 2yx
 (4.19) 

The mechanism presented above is based on the Bagotzky mechanism [28], and bi-

functional catalysis proposed by Watanabe and Motoo [39].  

Besides this historical context, the proposed mechanism involves the following 

evidences: a) “poisons” identified by different in situ techniques, and b) UHV (ultra high 

vacuum) studies of methanol adsorption on Pt and Ru. 

The mechanism (4.16 – 4.19) predicts linearly bonded CO as the main product of 

methanol dehydrogenation. This came out as a result of in-situ infrared spectroscopy 

techniques as discussed above [29]. In UHV studies methanol adsorbs on both clean Pt and 

Ru surface and produces adsorbed CO and H species (at Pt adsorbed CO and H are produced 

at temperatures higher than 170 K and at Ru at temperatures higher than 230 K). The driving 

force for low temperature methanol decomposition into adsorbed CO and H is a very large 

heat of adsorption of both species on Pt and Ru surfaces (for platinum surface heat of 

adsorption of CO and H are 125.4 kJ mol-1 and 74.4 kJ mol-1, respectively). The values for 

Ru are within 20 % of the above-mentioned values for Pt. If strongly adsorbed molecules 

precover the electrode surface, then the favorable lowering of the overall free energy upon 

decomposition of methanol will be reduced by the adsorption energy of preadsorbed surface 

species. This explains why methanol does not adsorb on Ru under fuel cell conditions. For 

methanol to be adsorbed, the surface should be free from other adsorbates. For example, 

methanol adsorption on Pt will start after desorption of adsorbed H is finished and on Ru it 

will not take place at all, if OH species are adsorbed on the surface. 
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The catalytic effects of bimetallic systems can be due to: a) blocking of surface sites to 

prevent formation of strongly bound poisons, b) bi-functional catalysis, c) an electronic 

interaction between the catalyst’s components. Here possibility a) was discarded since a 10 % 

PtRu alloy has a very open structure. Possibility c) was also ruled out because UHV study 

showed that the surface diffusivity and adsorption of CO on both Pt and Ru are similar. 

Therefore, the enhancement of methanol oxidation was explained using statistical 

interpretation of the bi-functional action of the alloy surface, as outlined in the following. 

To explain higher activity of PtRu alloy with 10 % of Ru than PtRu alloy with 50 % 

Ru, statistical analysis can be employed. It was assumed that for methanol adsorption on 

platinum 3-fold Pt sites are needed and the probability of their finding on a 10 % Ru alloy is 

higher than on a 50 % Ru alloy. It was concluded that on a Ru-rich alloy the rate determining 

step is methanol dehydrogenation, while on a 10 % Ru alloy the reaction between adsorbed 

intermediates is slow. Consequently, the reaction order with respect to methanol on a Ru-rich 

PtRu alloy should be close to 1 and for PtRu alloys with a low Ru content the reaction order 

should be close to 0.  

The improvement of the catalyst activity of a 10 % Ru alloy over a 50 % Ru alloy can 

be interpreted in terms of the Bagotzki mechanism [28] as well. Namely, a Ru-rich PtRu 

alloy has a high concentration of OH species and the probability of 3-fold platinum sites is 

lower compared to a Pt rich alloy, so the probability of forming side products in methanol 

oxidation is higher (see reaction 4.5 and 4.6). This was later verified in Kabbabi et al. study 

[33]. 

The study by Q. Fan et al. is interesting [40] because it shows how the distribution of 

final products changes depending on the methanol/water vapour ratio and the anode potential. 

These authors investigated the methanol oxidation at Pt and PtRu catalysts in the direct 

methanol fuel cell by in-situ Fourier transform infrared-diffuse reflection spectroscopy 

(FTIR-DRS). Different final products were identified. At low methanol/water - ratio the 

primary product was CO2. At a higher methanol/water - ratio formaldehyde was identified as 

the only product at more negative potentials, while methylformate and formic acid at more 

positive potentials. The following mechanism for methanol oxidation was proposed: 

CH3OH → HCHO + 2 H+ + 2e- (4.20) 

HCHO + H2O → HCOOH + 2H+ + 2e- (4.21)

HCOOH → CO2 + 2H+ + 2e- (4.22)



 47

CH3OH → CO + 4 H+ + 4e- (4.23)

CH3OH → COH + 3 H+ + 3e- (4.24)

HCHO + 2 CH3OH → CH2(O CH3)2 + H2O (4.25) 

HCOOH + CH3OH → HCOOCH3 + H2O (4.26) 

This mechanism predicts homogenous chemical reactions between formed products and 

methanol: formaldehyde and methanol react and form dimethoxymethane; formic acid and 

methanol give an ester.  

In their study Kabbabi et al. [33] conducted combined cyclic voltammetry and FTIR at 

well defined platinum ruthenium alloys with different compositions. Higher current densities 

in methanol oxidation were obtained at PtRu alloys with a low Ru content (10-15 at %), 

which is in accordance with Gasteiger et al. [32]. CO, but also small amounts of HCHO and 

HCOOH were measured by FTIR. It was found that the distribution of reaction products 

varies with the PtRu composition with less complete methanol oxidation on a PtRu alloy with 

50:50 at % Pt:Ru. The following mechanism for methanol oxidation was proposed: 

adsadsads3sol3 COPtCHOPtOHCHPtOHCH −→−→−→  (4.27) 

−+ ++−→+ eHOHPtOHPt ads2  (4.28a) 

−+ ++−→+ eHOHRuOHRu ads2  (4.28b) 

−+ ++→−+− eHCOOHPtCOPt 2adsads  (4.29a) 

−+ ++→−+− e2H2COOHRuCHOPt 2adsads  (4.29b) 

Reaction 4.29b is faster than 4.29a and occurs at lower potentials. Formation of 

adsorbed OH species on the ruthenium surface is postulated as a rate determining step 

(equation 4.28b). This assumption is supported by the low amount of linearly bonded CO at 

the surface which indicates that all CO produced in step 4.27 is consumed in steps 4.29a or 

4.29b. 

Very comprehensive reviews on methanol oxidation on platinum and platinum 

ruthenium alloys were written by Hamnett in 1997 [30] and in 1999 [31].  

The mechanism of methanol oxidation was evaluated using different physical and 

electrochemical techniques on both platinum and on platinum ruthenium alloys. Results of 

electrochemical studies performed on single crystals and polycrystalline platinum electrodes 
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during the nineties and earlier were summarized. Influence of anion adsorption on methanol 

oxidation was examined. A pronounced influence of anion adsorption on methanol oxidation 

on low index single crystal surfaces was observed. The maximum reaction rate was obtained 

in the presence of perchlorate ions, while the minimum rate in the presence of sulphate ions. 

These results were commented as being a consequence of competitive adsorption of methanol 

and anions from the supporting electrolyte, which is similar to the review paper by Parson 

and VanderNoot [29]. Also new studies confirmed findings from previous studies and 

showed that the nature of chemisorbed intermediates changes with time and the coverage of 

the surface but that linearly bonded CO seems to be the final product on almost every surface 

and at longer adsorption times. Spectroscopic studies pointed out that chemisorption of 

methanol gives rise to linearly or bridge bonded CO and that the proportion in which those 

two species are present at the surface is determined by the crystallographic face exposed. At 

lower methanol concentration another adsorbed intermediate is also present and it is 

identified as COH. Also some evidences are found that there is an additional pathway for 

methanol oxidation that goes through soluble or weakly adsorbed intermediates such as 

formic acid, formaldehyde or CO adsorbed at metastable sites like CO adsorbed at edges of 

CO islands.  

Concerning the role of ruthenium in promoting methanol oxidation on a platinum 

ruthenium alloy, it was concluded that the electronic effect and increase of the coverage of 

the PtRu surface by oxy-species are important. From FTIR studies it was seen that the 

coverage by COads on a PtRu alloy is reduced compared to pure platinum and an increase in 

the absorption frequency of the bound CO is also seen. CO is less strongly adsorbed on a 

PtRu surface due to a reduction in the back π-bonding from Pt to the CO π* orbital. The 

reduction in the π-back bonding will lead to a higher positive charge on the carbon atom 

rendering it more liable to a nucleophilic attack by water and permitting CO oxidation at 

lower potentials. The second effect is the increase in the coverage of the PtRu surface by oxy-

species. An increase of the amount of Pt-O species in the presence of Ru was proved by XPS. 

Another review paper on the reaction mechanism at platinum based catalysts was 

published in 2001 by Leger [41]. Besides the reactions proposed by Bagotzki [28], the 

scission of the first hydrogen atom from the OH group in methanol was also introduced into 

the mechanism: 

−+ ++•→ eH)OH(C-PtOH)(CH-Pt ads3ads3  (4.31) 
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Further transformation of formed species is enabled through scission of H atoms bound 

to a C-atom in the following reactions: 

−+ ++•−→• eH)OHC(Pt)OHC(-Pt ads2ads3  (4.32) 

−+ ++•−→•− eH)OHC(Pt)OHC(Pt adsads2  (4.33) 

CHO can be also formed in the following reactions: 

−+ ++•−→ eH)OHHC(PtOH)(CH-Pt ads2ads3  (4.34) 

−+ ++•−→• eH)OHHC(Pt)OHHC(-Pt adsads2  (4.35) 

−+ ++•−→•− eH)OHC(PtOH)HC(Pt adsads  (4.36) 

•CHO is considered to be an active intermediate and can react further giving adsorbed 

CO which is considered to be a poisoning intermediate on platinum  

−+ ++•→• eH)OC(-PtO)HC(-Pt adsads  (4.37) 

or can directly transform into CO2

−+ +++→−+• e2H2COPt2H)O(Pt)OHC(-Pt 2adsads  (4.38) 

or first react in the following manner 

−+ ++•+→−+•− eHOOH)C(-PtPtH)O(Pt)OHC(Pt adsads  (4.39) 

and then undergoes conversion to CO2

−+ +++→• eHCOPtOOH)C(-Pt 2ads  (4.40) 

At more positive potentials adsorbed CO can be oxidized through the reactions: 

adsadsads )OOHC(PtH)O(Pt)CO(Pt •−→−+•−  (4.41) 

−+ +++→•− eHOCPt)COOH(Pt 2ads  (4.42) 
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In case of a PtRu alloy the dissociative adsorption of water (e.g. equation 4.28b) takes 

place on Ru sites at lower potentials and the oxidation of formyl like species occurs through 

reactions described above but OH is adsorbed on Ru sites. 

So in contrast to Bagotzki [28] who postulates the COH intermediate, Leger [41] 

postulated a CHO intermediate as a major reactive intermediate. As can be seen from the 

above equations, CHO is obtained as a product of methanol dehydrogenation no matter if the 

scission of the first hydrogen was from a O-H group or from C-H. 

Summarizing the literature results, methanol oxidation at PtRu alloys occurs through 

the following steps: 

a) methanol dissociative adsorption 

b) water dissociative adsorption 

c) reaction between species formed in steps “a” and “b” 

Below temperature of 60oC step “a” occurs only on platinum [42]. Step “b” can take 

place both on platinum and ruthenium, but on ruthenium this reaction is facilitated at lower 

potentials (water dissociative adsorption takes place at 0.3 V lower overpotentials on Ru than 

on Pt [31]). Methanol dissociative adsorption can give different dehydrogenated 

intermediates as proposed in the reaction mechanisms shown above (COH (according to 

Bagotzki [28]), or CHO (HCO) according to Leger [41], Watanabe and Motoo [39]). In 

Parsons and VanderNoot [29] paper broad discussion about the nature of intermediates was 

given and more authors stated CHO rather than COH as the intermediate. Theoretical 

calculations have shown that the heat of formation of COH species on a PtRu alloy is more 

negative than for CHO species and that the former should be favored on a PtRu surface [43]. 

Irrespective the nature of this intermediate, the final product of methanol dehydrogenation is 

always CO, linearly or bridge bonded to the surface, as detected in several studies. So, 

Kabbabi et al. [33] detected linearly bonded CO on PtRu alloys with different PtRu 

compositions but in lower extent than on pure platinum. Adsorbed CO was also detected in a 

infrared study by Kardash et al. [42] on a PtRu alloy with 10 at % Ru. The coverage by CO 

on PtRu alloy with only 10 at % Ru was high and almost the same as on pure platinum, but 

CO oxidation commences at lower overpotentials than on platinum itself. For the PtRu alloy 

with a Ru content of 50 at %, the CO adsorption band was almost at the level of noise. Also 

in the DEMS study Jusys et al. [36] COads was identified as a stable adsorbed product of 

methanol dehydrogenation based on the electron yield of 1.9 electrons per CO2 at PtRu 
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unsupported catalysts. Methanol conversion to CO2 is higher at lower overpotentials, while at 

higher overpotentials the production of methyformate starts. This is in accordance with the 

Bagotzki mechanism [28] where the CHOH transformation can produce CO2 at low OH 

concentrations and other products at high OH concentrations. The same conclusion was 

drawn by Wang et al. [38], where it was shown that the formation of methylformate16 on 

PtRu starts at the same potential as on platinum, but increases with potential more strongly 

than on platinum (due to the higher amount of OH adsorbed on the surface). CO is oxidized 

on the surface and CO2 was found as the main oxidation product. Besides CO2 a small 

amount of other products is also identified. Kabbabi et al. [33] measured HCHO and 

HCOOH by FTIR and found that the proportion of these products is increasing with 

increasing Ru content in PtRu alloys. CO2 as well as formaldehyde and formic acid were 

found by Wang et al. [38] in their DEMS at Pt-based catalysts. It was concluded that Ru 

promotes methanol oxidation to CO2 via CO adsorbed intermediates leading to a higher 

current efficiency of CO2. The identified by-products of methanol oxidation support a parallel 

mechanism, but a parallel path that does not go through adsorbed CO is less dominant at 

PtRu alloys than at pure Pt [38]. 

The previous discussion was focused on presenting different mechanisms of methanol 

oxidation and evidences for these mechanisms obtained mainly from non-electrochemical 

studies. Besides these non-electrochemical studies, many typical electrochemical studies 

were performed in order to understand the mechanism of methanol oxidation. They were 

concentrated on the determination of the Tafel slope, the reaction order with respect to 

methanol and H+ and the activation energy. However, not many studies were performed on a 

rate expression for the kinetics of methanol oxidation at PtRu catalysts. Moreover, most 

works were not performed under conditions being relevant to real fuel cell operation. Some 

of the literature results are briefly discussed below.  

Tafel slope values were reported to be 115 mV dec-1 in a temperature range from room 

temperature to 40oC [23] and between 155 and 168 mV dec-1 in a temperature range from 

room temperature to 60oC [34] at supported PtRu catalysts, from 130 to 140 mV dec-1 in a 

temperature range from 100 –130oC at unsupported PtRu catalysts [27]. The reaction order 

with respect to methanol was reported to be 0.5 and potentially independent [23]. In another 

study, the reaction order with respect to methanol was found to be in the range from 0.48 to 

                                                 

16 Methylformate is formed in reaction between formic acid and methanol (equation 4.26). 
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0.78, potential - dependent and also dependent on whether water or sulphuric acid anions 

were present in the solution (higher values were obtained when sulphuric acid was replaced 

by water) [34]. Apparent activation energies of 29 kJ mol-1 for unsupported PtRu blacks [37], 

35-40 kJ mol-1 [34] and about 70 kJ mol-1 [23] for carbon supported PtRu were reported. 

Different rate determining steps (r.d.s) were suggested: reaction between adsorbed CO and 

OH species [23,32], formation of adsorbed OH on the ruthenium surface [33], slow methanol 

adsorption [44], dissociative adsorption of methanol [45], mixed control by methanol 

adsorption and activation step [34]. At high overpotentials the reaction is limited by methanol 

adsorption [46] leading to reaction limiting current. This is in accordance with findings from 

Gojkovic et al. [23] who showed, that in this region the current is not mass-transfer 

controlled. Also in the Tafel region the reaction order with respect to H+ was –0.5 suggesting 

OH participation in the r.d.s. At higher overpotentials no influence of the H+ concentration 

was found, indicating no OH participation in the r.d.s. In an own previous study [35] external 

(in the liquid phase) and internal (in the back diffusion layer) the influence of mass transfer 

resistances was estimated from dimensionless parameter groups and it was shown that they 

are five to ten times smaller than the overall reaction resistance. 

In the following, own experimental data on the kinetics of methanol oxidation are 

presented. Catalyst characterisation was performed by in-situ methods: CO stripping 

voltammetry and cyclic voltammetry in the absence of methanol and will be discussed first.  

4.2. Catalyst characterization 

Cyclic voltammograms at an unsupported PtRu catalyst in the absence of methanol are shown 

in Figure 4.1. When the higher anodic limit was 0.5 V vs. Ag/AgCl, cyclic voltammetric 

features in anodic and cathodic scan direction were almost symmetrical. Cyclic 

voltammograms can be used as a “fingerprint” of an electrode surface [16, 37, 47]. According 

to the literature [37], the absence of hydrogen adsorption at potentials being more positive 

than 0.0 V vs. Ag/AgCl resembles Ru like features. Similar features as in our case were 

obtained in reference [37] for unsupported PtRu catalysts with a Ru content of approximately 

52 at % and higher. Also in reference [16] a similar voltammogram was obtained for PtRu 

bulk alloys with a Ru content of 46 at % and higher. However, cyclic voltammetry cannot be 

used as a definite tool for surface composition determination, but just as an indication17. The 

                                                 

17 See also Chapter 5. 
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reason is the uncertainty whether the catalyst is predominately a PtRu alloy with a Pt:Ru 

composition close to the nominal value and with a small fraction of Ru metal, hydrous Ru 

oxide and Pt oxide [19] or a mixture of a Pt-rich phase, Ru-oxides, Pt-oxide and a small 

quantity of Ru metal phase [48]. If the positive potential limit was extended up to 1.0 V vs. 

Ag/AgCl, oxide formation was recorded in a positive going sweep followed by its reduction 

in the negative going sweep. Although reported in some studies [23], electrode cycling in 

these extended potential limits did not cause ruthenium dissolution as was judged from the 

cyclic voltammetry behaviour. According to Long et al. [48], the broad capacitive features in 

Figure 4.1 are characteristic for a RuOxHy phase.  

 
Figure 4.1. Cyclic voltammograms of unsupported PtRu catalyst at 22oC. N2 in working electrode 
compartment. Sweep rate 50 mV s-1. Flow rate in working electrode compartment 120 ml min-1. 

Experimentally, the double layer capacitance was determined from a current vs. sweep 

rate plot using the difference between anodic and cathodic currents at constant potential (0.1 

V vs. Ag/AgCl) in order to eliminate errors due to a faradaic reaction [6] (Figure 4.2). A 

value of 1.1 F was obtained. Typical double layer capacitances for metal surfaces are in a 

range from 16 to 50 µF cm-2 [49]. In our case the double layer capacitance normalized per 

BET surface area would be 108 µF cm-2
BET. The value is probably underestimated since 

under fuel cell conditions usually only a part of the BET surface area is utilized (reported 

values are between 5 – 80 % of BET) [19,50]. 
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a) b) 
Figure 4.2 a)Cyclic voltammograms of unsupported PtRu catalyst at 22oC at different sweep rates. b) 
∆I vs. sweep rate dependence. Conditions: Water in working electrode compartment; flow rate in 
working electrode compartment 0 l h-1. 

The double layer capacitance of hydrous ruthenium oxide depends on annealing 

temperature and preparation procedure, but can be as high as 720 F g-1 [48]. Normalized per 

BET surface area and taking into account that, as a maximum, one half of the total area 

corresponds to the Ru surface area (nominal PtRu composition is 1:1), the maximum pseudo-

capacitance for all ruthenium present as ruthenium hydroxide would be 685 µF cm-2
BET. The 

value found in this work lies between values for bare metal surface and for the capacitance of 

hydrous ruthenium oxide. This estimation suggests that a certain part of Ru in our catalyst is 

present in the form of Ru oxide.  

The CO stripping voltammogram of the unsupported PtRu catalyst is shown in Figure 

4.3. In a first positive going sweep the previously adsorbed CO is swept from the surface. 

The second sweep did not show any traces of CO. CO was adsorbed at 0 V vs. Ag/AgCl. The 

area under the peak in Figure 4.3 was integrated (see Chapter 3) and the CO stripping charge 

was determined. A value of 46 µC cm-2
BET was obtained. Such a low value suggests a high 

level of overall catalyst oxidation [19]. Thus, only about 16 % of the catalyst’s BET  surface 

is active for CO adsorption (taking the value of 420 µC cm-2 for a monolayer of adsorbed CO 

and assuming saturated CO coverage of 0.68 (see Chapter 3)).  
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Figure 4.3 .CO stripping voltammogram of unsupported PtRu catalyst. Conditions: sweep rate  
5 mV s-1, CO adsorption potential 0 V vs. Ag/AgCl, adsorption time 120 min, N2 in the working 
electrode compartment, flow rate in working electrode compartment 120 ml min-1, temperature 22oC. 

4.3. Activity in methanol oxidation – Experimental findings 

4.3.1. Influence of flow rate 

Polarisation curves for methanol oxidation at unsupported PtRu catalyst are shown in Figure 

4.4. The flow rate in the working electrode compartment was varied between 10 and 20 l h-1. 

The methanol concentration in the working electrode compartment was 1.0 M, while in the 

counter electrode compartment was 0 M. The data were collected in steady state experiments. 

Before data sampling the electrode was preconditioned, by potential cycling with a sweep 

rate of 20 mV s-1 until a steady state voltammogram was obtained. A small increase of current 

on flow rate in a potential region more positive than 0.2 V vs. Ag/AgCl was observed. In 

order to quantify this influence the relevance of the mass transfer resistance within the 

catalyst layer (CL) was evaluated by means of the Damköhler number of second kind DaII 

(equation 4.43). Estimation was done for the flow rate of 10 l h-1, since diffusion limitations 

should be more pronounced at lower flow rates. 

reaction micalelectroche of resistance
CLin diffusion  of resistance~)6/(

33
CL

OHCHOHCH

CL

Dc
FjdDaII

⋅
⋅

=  (4.43) 

dCL is thickness of catalyst layer (ca. 35 µm), j - current density applied (1.78 x 103 A m-2 for 

flow rate 10 l h-1), cCH3OH - methanol bulk concentration (1.0 M) and DCL - methanol 
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diffusion coefficient in CL (3.197⋅10-9 m2 s-1 at 60oC [51]). It was assumed that the methanol 

diffusion coefficient is the same as in the bulk phase. Using the data given above, Damköhler 

number of DaII ≈ 0.036 was calculated. This value is significantly below one, which 

indicates that the rate limiting process in the catalyst layer is the electrochemical reaction, 

and not pore diffusion.  

 
Figure 4.4 Steady state polarisation curves for methanol oxidation at unsupported PtRu catalyst. 
Conditions: fixed delay 5 min, 1.0 M methanol in working electrode compartment, 60.9oC, different 
flow rates in working electrode compartment. 

The relevance of the mass transport resistance in the back diffusion layer (BDL) was 

estimated by means of the following Biot number: 

CLin diffusion ofresistance
BDLin diffusion  of resistance~

/
/

BDLBDL

CLCL
BDL/CL

dD
dDBim =  (4.44) 

where DCL is the methanol diffusion coefficient in CL (ca. 10-9 m2 s1), dCL the thickness of 

catalyst layer (ca. 35 µm), DBDL the methanol diffusion coefficient in BDL (ca. 10-9 m2 s-1) 

and dBDL the thickness of back diffusion layer (ca. 100 µm). Assuming that the diffusion 

coefficients in the two layers are of similar magnitude, one can see that the diffusion layer 

resistance is of higher importance due to the fact that the BDL is about 3 times thicker than 

the CL, i.e. Bim
BDL/CL ≈ 3. 
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In a similar manner, the relevance of the external film resistance can be estimated in 

relation to the resistance exerted by the back diffusion layer. For this purpose, the following 

Biot number was applied: 

BDLin diffusion  of resistance
diffusion film external of resistance~/

m

BDLBDL
L/BDL

k
dDBim =  (4.45) 

where km is the external film mass transport coefficient. The mass transfer coefficient can be 

calculated from the following correlation equation, which was determined for the cyclone 

flow cell [3]: 

3/13/20136.0 ScReSh ⋅=  (4.46) 

Equation (4.46) is valid for Re > 103 and Sc ≥ 1. The Reynolds number is defined as [3]: 

µ
ρω 2rRe =  (4.47) 

where ρ is fluid density in kg m-3, µ the viscosity in Pa s-1, r the electrode radius (here r = 8.0 

mm) and ω can be expressed as: 

V
dr

r
⋅= 2

in
2/3

2/1
in4

π
ω  (4.48) 

In equation (4.48), rin is the cyclone radius at the middle of the cyclone inlet tube (here rin = 

29.7 mm), din the diameter of the inlet tube (here din = 4.0 mm) and V the volumetric flow 

rate. For flow rate 10 l h-1, the Reynolds number is Re = 7200. 

The Schmidt number in equation (4.46) is defined as:  

D
Sc

⋅
=

ρ
µ  (4.49) 

where D stands for the diffusion coefficient of methanol in water. Using the value for D 

=3.197 x 10-9 m2 s-1 [51], the mass transfer coefficient at a flow rate of 10 l h-1 is calculated to 

be km=1.1 x 10-5 m s-1. Using the values given above, one gets a Biot value of Bim
L/BDL ≈ 3, 

which indicates that the diffusion resistance in the BDL is three times greater than the 

diffusion resistance in the external film layer even for the lowest flow rate applied (10 l h-1). 

Multiplying DaII with the Biot numbers defined above yields the reaction rate in 

relation to the mass transfer rates: 
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reactionmicalelectrocheofresistance
BDLin diffusion  of resistance~11.0BDL/CL ≈⋅ mBiDaII  (4.50) 

reactionmicalelectrocheofresistance
diffusion  film external of resistance~33.0L/BDLBDL/CL ≈⋅⋅ mm BiBiDaII  (4.51) 

According to the estimated dimensionless parameter groups, all external and internal 

mass transfer resistances are three to ten times smaller than the reaction resistance. Similar 

results were obtained in previous work [35] at room temperature where the increase of the 

current in a more positive potential region (from 0.3 to 0.5 V vs. Ag/AgCl) was obtained in 

experiments at enhanced flow rate, but only in comparison to quiet electrolyte. The current 

increase by stirring was about 20 % which was consistent with the mass transfer resistance 

evaluation by using dimensionless criteria. This showed that external and internal mass 

transfer resistances were about five to ten times smaller compared to the reaction resistance. 

Varying the flow rate (from 10 to 30 l h-1) did not lead to a significant increase of the 

observed current since the resistance of external film diffusion was comparable with the 

resistance of diffusion in back diffusion layer, i.e. Bim
L/BDL ≈ 1. For Bim

L/BDL ≈ 3 the influence 

of the flow rate is even less and the differences observed (Figure 4.4) are in order of 

magnitude of the experimental error (see for example Figure 4.6). In conclusion, according to 

these data, the limiting current being observed in the potential region from 0.3 to 0.5 V vs. 

Ag/AgCl is not governed by mass transfer. 

4.3.2.  Influence of methanol concentration 

The influence of the methanol concentration was investigated in the concentration range from 

0.03 to 3 M methanol in water at 60.9oC (Figure 4.5). The flow rate in the working electrode 

compartment was 10 l h-1. In these experiments, methanol was supplied to both compartments 

(working and counter) with the same concentration in order to avoid a methanol 

concentration gradient at the MEA. When the methanol concentration in the counter electrode 

compartment was 0, the concentration of methanol in the catalyst layer was significantly 

different from the bulk concentration and the observed currents were lower (Figure 4.6). It 

was shown above that every layer (catalyst, back diffusion and external film) imposes some 

diffusion limitations due to its finite thickness. 
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Figure 4.5. Tafel plots for methanol oxidation at unsupported PtRu catalyst. Conditions: fixed delay of 
5 min, methanol concentrations from 0.03 to 3 M both in the working and counter electrode 
compartments, 60.9oC; flow rate in working electrode compartment 10 l h-1. 

 
Figure 4.6 Tafel plots for methanol oxidation at unsupported PtRu catalyst. Conditions: fixed delay of 
5 min, methanol concentrations in working electrode compartment 1M; methanol concentration in 
counter electrode compartment (CC) in one case 0 and in second case 1M, 60.9oC; flow rates in 
working electrode compartment indicated in Figure. 

The influence of methanol concentration was especially pronounced at higher potentials 

(from 0.2 to 0.5 V vs. Ag/AgCl), assigned to as the limiting current region, than at lower 

potentials (from 0 to 0.2 V vs .Ag/AgCl) assigned to as the activation controlled region. In 

the latter region, Tafel slopes were determined to be 113 mV dec-1 for 0.03 M solution and  
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69 mV dec-1 for 3 M methanol solution. In order to obtain a formal reaction order with 

respect to methanol, the methanol oxidation rate at constant potential was plotted as a 

function of the methanol concentration in logarithmic coordinates. As can be seen from 

Figure 4.7, in the activation controlled region (at 0.15 V vs. Ag/AgCl) the reaction order 

changes from about 0.3 at low concentrations to 0 at higher concentrations, while at the 

beginning of the limiting current region (at 0.3 V vs. Ag/AgCl) the variation of the reaction 

order is less pronounced and the mean value is about 0.7. 

 
Figure 4.7. Methanol oxidation currents at constant potentials as a function of methanol concentration 
at 60.9oC. Data taken from Figure 4.5. Conditions: same as in Figure 4.5. 

4.3.3. Electrochemical impedance spectroscopy 

Kinetic parameters of an electrochemical reaction can be extracted from electrochemical 

impedance spectra as well. In order to do that, experimental data should be simulated by 

equivalent circuits and/or mathematical models. In this work an attempt was to simulate 

steady state potentiostatic data, so impedance spectra are presented and used in a qualitative 

way. Here, they are used as another piece of evidence for selection of the mechanism for 

methanol oxidation. Thus, a set of impedance spectra in the activation controlled region and 

in a frequency range from 2 kHz - 10 mHz at 60oC was recorded and the spectra are 

presented in Figure 4.8.  
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Figure 4.8 Experimental impedance plots for an unsupported PtRu catalyst at different potentials. 
Conditions: 1 M methanol in working electrode compartment; flow rate 10 l h-1; 60oC, frequency range 
2 kHz – 10 mHz. 

All impedance spectra and the potentials given in Figure 4.8 are compensated for the 

ohmic drop contribution. Impedance plots (except at lowest potential value i.e. 0.093 V vs. 

Ag/AgCl) consist each of a depressed semicircle and a low frequency inductive loop. 

Depressed semicircles characterise surfaces with a high roughness [52]. Increasing the 

potential, the diameter of the semicircle decreases which indicates that the charge transfer 

resistance for methanol oxidation becomes smaller. Pseudo-inductive behaviour in the low 

frequency region has been reported in literature for methanol oxidation at smooth 

polycrystalline platinum [53], at carbon-supported Pt-nanoparticles [54] and at Pt/Ru fuel cell 

anodes [55]. Such pseudo-inductive patterns are known to be typical feature of systems with 

adsorbed intermediates or with a transition between a passive and an active state [56]. It is 

explained that an initially adsorbed CO layer generated from methanol dehydrogenation 

covers the reaction sites. When some of the weakly adsorbed CO is oxidized, adsorption and 

subsequent methanol oxidation takes place on the adsorption sites which are set free. Thus, 

pseudo-inductive patterns could diagnose the process of CO removal from the surface.  
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4.3.4. Influence of temperature 

The influence of temperature on the kinetics of methanol oxidation was investigated in the 

temperature range from 22.8 oC to 60.05 oC (Figure 4.12). In these experiments the methanol 

concentration was kept constant (1 M) in both compartments (working and counter electrode) 

and the flow rate in working electrode compartment was 10 l h-1. In the activation controlled 

region (from 0.05 to 0.25 V vs. Ag/AgCl) straight lines with slopes from 94 mV dec-1 at room 

to 83 mV dec-1 at 60.05 oC were obtained. In the higher potential region (from 0.25 to 0.5 V 

vs. Ag/AgCl) limiting current behaviour was observed.  

 
Figure 4.9 Tafel plots for methanol oxidation at unsupported PtRu catalyst. Conditions: fixed delay 5 
min, methanol concentration 1 M both in working and counter electrode compartments. 

Corresponding Arrhenius plots for the recorded currents in the activation controlled 

region and in the limiting current region are given in Figure 4.10. The apparent activation 

energies are calculated from the slopes of the lines in Figure 4.10. 

In Table 4.1 the apparent activation energies are given with standard deviations. The 

calculated mean value in the activation controlled region is 56±2 kJ mol-1. Values reported in 

literature are 29 kJ mol-1 at unsupported PtRu with 52 at % Ru [37], 35-40 kJ mol-1 [34] and 

70 kJ mol-1 [23] at carbon supported PtRu with nominally 50 at % Ru, 60 kJ mol-1 at a PtRu 

alloy with 46 at % Ru and 30 kJ mol-1 at a PtRu alloy with 7 at % Ru [45]. Low values of the 

apparent activation energies are ascribed to heterogeneous electrocatalytic processes [37], 

mixed activation-adsorption control [34] or CO surface diffusion [45]. High apparent 
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activation energy values are ascribed to dissociative adsorption of methanol [45] or to the 

reaction between adsorbed CO and OH [23] as rate determining step. 

 
Figure 4.10 Arrhenius plots for methanol oxidation at unsupported PtRu catalyst based on the data in 
Figure 4.9. Conditions: fixed delay 5 min, methanol concentration 1 M both in working and counter 
electrode compartments, temperature range 22.8 - 60.9oC. 

Table 4.1 Calculated values of apparent activation energy at different potentials. 

E / V vs. Ag/AgCl Ea / kJ mol-1

0.10 58±4 

0.15 54±3 

0.20 55±7 
0.40 34±3 

Assigning the apparent activation energy to a single rate determining step in a complex 

reaction mechanism is difficult without taking into account additional kinetic parameters (like 

apparent reaction order, Tafel slope, surface coverage of adsorbed species, etc.). In reference 

[45], the low coverage with COads at a PtRu alloy with 46 at % Ru and an apparent activation 

energy of 60 kJ mol-1 were in favor of the methanol dissociative electrosorption as rate 

determining step ((CH3OH)sol → ……….→ COads + 4H+ + 4e-). A high coverage by COads, 

but a low apparent activation energy value in case of PtRu alloy with 7 at % Ru in the same 

study [45] hypothesized COads surface diffusion from Pt to Ru site where the OHads 

nucleation occurs as rate determining step. In reference [37], an apparent activation energy of 

29 kJ mol-1 is assigned to a heterogeneous electrocatalytic process as r.d.s, which is according 
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to the authors’ reaction scheme the dissociative adsorption of methanol, i.e. the same r.d.s as 

in reference [45] for an alloy with a high Ru content (46 at %). In [34] a low apparent 

activation energy, a Tafel slope of 155-168 mV dec-1 and a formal reaction order with respect 

to methanol of 0.5 determined the mixed activation-adsorption control18 and the activation 

controlled step to the reaction between COads and OHads (like in [23])). Finally in reference 

[23], a transfer coefficient of 0.5, a reaction order with respect to methanol of 0.5, a strong 

correlation between the methanol oxidation rate and the pseudocapacitive current of OH 

adsorption on Ru was found. The apparent activation energy of 70 kJ mol-1 leads to the 

conclusions that the reaction between COads and OHads is the r.d.s. 

4.4. Mechanism and rate expression for methanol oxidation 

Based on the experimental findings in this work: 

• limiting current is not governed by external mass transport, 

•  Tafel slope (~ 70 – 113 mV dec-1),  

• reaction order with respect to methanol in activation controlled region: between 

0.3 at lower methanol concentrations and 0 at higher methanol concentrations and 

in limiting current region: ~ 0.7, 

• pseudo inductive loop in the low frequency region which implies that adsorbed 

intermediates are involved, 

 and literature findings: 

• methanol oxidation occurs through several steps i.e. methanol adsorption, 

transformation of methanol adsorbate by H-atom extraction and intermediate 

formation, 

• CO was detected by FTIR [23], [57] and by Single Potential Alteration Infrared 

Spectroscopy (SPAIRS) [58] as a stable intermediate, 

• OH species formation by water dissociative adsorption, 

• reaction between adsorbed OH and adsorbed CO, CO2 evolution and finally the 

surface is set free for a new methanol adsorption step to take place, 

                                                 

18 In this study the meaning of adsorption control step was not clearly specified; indirectly it can be concluded 
that the adsorption controlled step refers to methanol dissociative adsorption (like in references [37] and [45]. 
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the following mechanism of methanol oxidation is selected (see Gasteiger et al. [32]): 

(1) CH3OH  (CH⎯→⎯ 3OH)ads → ……….→ COads + 4H+ + 4e- 

(2) H2O ⇔ OHads + H+ +1e- 

(3) COads + OHads  CO⎯→⎯ 2 + H++ 1e- 

In order to derive a rate expression for this methanol oxidation mechanism the 

following assumptions are applied: 

a) Langmuir adsorption isotherm is valid for all species. 

b) Steady state conditions are applied, i.e. 0=
dt

dX
 for all dynamic state variables. 

c) Water dissociative adsorption, i.e. step 2 of the mechanism is in electrochemical 

equilibrium. 

d) In the mechanism presented above the first reaction is a consecutive reaction, for which 

the first step (potential independent physical methanol adsorption) is considered to be 

the r.d.s. 

e) According to the bifunctional mechanism, it is assumed that methanol adsorbs only at 

Pt, while OH is formed only on Ru adsorption sites (formation of Pt-OHads occurs at 

potentials higher than 0.5V). Thus, (1-θ CO) is the fraction of the Pt surface being free 

for methanol adsorption and (1-θ OH) is the fraction of Ru adsorption sites being free for 

water decomposition. 

Before proceeding further, it should be mentioned that a similar mechanism of methanol 

oxidation was used in reference [59] to derive a rate expression for methanol oxidation but, 

with different assumptions. The major difference is that in reference [59] at high 

overpotentials methanol diffusion to the surface was proposed to be the r. d. s., while in our 

case it is methanol adsorption. 

Now rate expressions for each step are formulated: 
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For simplicity the charge transfer coefficient α3 in the following text is replaced by α. 

According to assumption b): 
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where Q is charge necessary to oxidize full monolayer of CO adsorbed. It is introduced in 

order to have dimension homogenous expression (r1 and r3 in equations (4.52) and (4.53) are 

expressed as currents). 

According to assumption c): 
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where B is constant, since water and H+ concentrations are constant. 

From these equations the intermediate adsorbed species can be determined as a function 

of potential, concentration and temperature: 
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Equation (4.55) reflects the stationarity of the process. So, the overall reaction rate can 

be expressed by r1 or r3, and the electric current (6 electrons) is given by: 
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Equation (4.59) is used to determine the reaction order with respect to methanol: 
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Equation (4.60) shows that this reaction order depends on both concentration and 

potential and can have values between 0 (high concentrations, negative potentials) and 1 (low 

concentrations, positive potentials), which is in accordance with our experimental results 

(values between aCH3OH = 0 for 3M and 0.3 for 0.03M at 0.15V; about 0.7 at 0.3V). 
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A similar determination of the Tafel slope gives: 
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Equation (4.61) yields values between 2.3RT/(1+α)F = 44 mV (60oC, α = 0.5) at low 

overpotentials ( ;1/ <<⋅ RTFEeB ( )( ) ( ) 1/ /1
OHCH13 3

<<⋅ + RTFEeckkB α ) and infinity at very high 

overpotentials. 

For the intermediate region ( , but 1/ >>⋅ RTFEeB ( )( ) 1/ /
OHCH13 3

<<RTFEeckk α ), a Tafel 

slope of 2.3RT/αF=132 mV (60oC, α = 0.5) should appear. 

4.5. Simulated vs. experimental data 

Simulated and experimental curves at different methanol concentrations are shown in 

Figure 4.7. According to the model and the chosen parameters (B=10 and ) the 

slope of the E – log (I) correlation changes from 44 mV dec

10/
31

=kk

-1 at low overpotentials, to infinity 

at high overpotentials. In the region of the low slope value, the model predicts no 

concentration dependence i.e. the reaction order with respect to methanol is zero. Under 

certain conditions (depends on the ratio of the rate constants k1 and k3 and methanol 

concentration) a slope of 132 mV dec-1 in the intermediate potential region should appear (at 

low methanol concentrations this slope is not obvious Figure 4.11). Finally, the reaction rate 

becomes limited only by the kinetics of methanol adsorption, which is assumed to be 

potential independent. The comparison of the experimental and the simulated curves reveals 

good qualitative agreement.  

From the data in Figure 4.11, values for simulated reaction order can be determined 

(see Figure 4.12). Again a good qualitative agreement is obtained, when comparing the 

experimental with the simulated results (Figure 4.12). 

As discussed above, assigning the apparent activation energy to one single step in a 

reaction mechanism is often difficult. In our case, in assigning the different apparent 

activation energies to different reaction steps in the selected mechanism, analysis of the rate 

equation (4.59) proved helpful. At first, the rate expression (4.59) is simplified in different 

potential regions. The following cases can be distinguished: 
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Figure 4.11. Experimental and simulated (full lines) steady state curves for methanol oxidation. 
Conditions experimental data (same as in Figure 4.5); simulated data: methanol concentrations from 
0.03 to 3 M, 60.9oC, B=10, k1/k3 = 10. 

 
Figure 4.12 Experimental and simulated (full lines) methanol oxidation currents at constant potentials 
as a function of methanol concentration at 60.9oC. Data taken from Figures 4.5 and 4.8. Conditions: 
same as in Figures 4.5 and 4.8. 

a) very low overpotentials ( ;1/ <<⋅ RTFEeB ( )
3OHCH1

/1 /
3

kckeB RTFE <<⋅ +α ). The rate equation 

simplifiers to: 

I = 6Fk3·B·e(1+α)FE/RT (4.62) 
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and the apparent activation energy is the sum of the activation energy of process (3), i.e. 

reaction between COads and OHads, and the enthalpy of adsorption of process (2), i.e. 

formation of OHads. So in this potential region these processes determine the overall reaction 

rate. The reaction order with respect to H+ should be -1. 

b) moderate overpotentials ( ; ) the rate expression 

becomes: 

1/ >>⋅ RTFEeB 3OHCH1
/ /

3
kcke RTFE ⋅<<α

αFE/RTFkI e6 3 ⋅=  (4.63) 

and the apparent activation energy coincides with Ea,3. No influence of the pH value is 

expected. 

c) at very high overpotentials ( ; ) the limiting current 

is deduced: 

1/ >>⋅ RTFEeB 3OHCH1
/ /

3
kcke RTFE ⋅>>α

OHCH1 3
6 cFkI =  (4.64) 

and the apparent activation energy is Ea,1. 

To summarize, according to the here proposed model, at moderate overpotentials (from 

0.05 to 0.25 V vs. Ag/AgCl) the reaction rate is dominated by activation control (step 3 in the 

reaction scheme) and the obtained activation energy value of 56±2 kJ mol-1seems reasonable 

for such a reaction step. At very high overpotentials (from 0.25 to 0.5 V vs. Ag/AgCl) the 

reaction is dominated by the kinetics of methanol adsorption, i.e. the overall reaction is under 

reaction control (step 1 in the reaction scheme) and the obtained apparent activation energy of 

34±3 kJ mol-1is reasonable for such an adsorption process. 

Calculated and experimental curves for methanol oxidation as a function of temperature 

are shown in Figure 4.13. The rate constants for the calculated curves are determined by 

using the experimental values for the activation energies. As pointed out before, the model 

predicts Tafel slope values ranging from (40-44) mV dec-1 to infinity. The low Tafel slope 

value, at low overpotentials is not shown in the calculated plots, since it was not 

experimentally validated. As it was mentioned above at moderate overpotentials the 

appearance of another Tafel slope whose value depends on the ratio of the rate constants k1 / 

k3 and the methanol concentration is possible (Figure 4.13). When comparing experimental 

and simulated curves in Figure 4.13, a good agreement is gained.  
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Finally, concluding from the given temperature and concentration investigations, the 

rate determining step changes in different potential regions and at different concentrations. In 

Table 4.2 a summary of the predicted kinetic parameters according to the reaction scheme is 

given.  
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Figure 4.13 Experimental and simulated (full lines) steady-state curves for methanol oxidation. 
Conditions: experimental data: same as in Figure 4.9; simulated data: methanol concentration 1 M,  
B = 10, k1/k3 = 10 at 60 oC. Activation energies E1 = 34 kJ mol-1; E3 = 56 kJ mol-1; ∆Hads = 0. 

In the preceeding text all experimental data were collected in experiments using 

unsupported PtRu catalyst with a metal loading of 5 mg cm-2. This metal loading is rather 

high and would increase the costs of the DMFC. The metal loading can be varied in a fuel 

cell. In a next section the influence of the metal loading on methanol oxidation will be shown 

by comparing the MEA performance towards methanol oxidation for two metal loadings (1 

and 5 mg cm-2). When the catalyst is supported on a cheap electron conducting support (like 

carbon black) a high catalyst dispersion can be achieved at low metal loading. One aim is to 

create a metal active surface area with a reduced metal loading19 and consequently lower 

costs. Thus, a comparison between supported and unsupported PtRu catalyst with the same 

metal loading (1 mg cm-2) will be also given. The question is whether these two parameters 

influence the cell performance only through a change of the active surface area or whether 

                                                 

19 In general, supported catalysts are characterized by lower particle size, compared to unsupported catalysts, 
even when they are prepared by the same method, as will be shown in Chapter 5. 
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there are some additional effects that should be encountered in the reaction mechanism (for 

example a change of the mechanism in the case of supported catalyst due to catalyst support 

effects).  

Table 4.2: Kinetic parameters to be expected for the reaction scheme in different potential regions 

overpotential region “low” “moderate” “high” 

Tafel slope/ mV dec-1 44 132 infinity 
reaction order 
 of CH3OH 0 0 1 

reaction order of H+ -1 0 0 

app.activation energy 
 Ea, app

Ea,3 + ∆Hads Ea,3 Ea,1

rate determining step (3), (2) (3) (1) 

 

4.6. Influence of PtRu loading 

The influence of the PtRu loading on methanol oxidation was investigated for two different 

metal loadings 1 and 5 mg cm-2. Typical metal loadings applied in the literature are:  

5 mg cm-2 in [19,34], but also lower metal loadings (2 mg cm-2) like in [60]. Thus, the chosen 

metal loadings in this work can be considered as lower and higher limit of typical metal 

loadings used in the literature. 

4.6.1. Catalyst characterisation 

In this case, the catalyst characterisation was performed by means of cyclic 

voltammetry in absence of methanol (only water in the working electrode compartment). In 

Figure 4.14 cyclic voltammograms of an MEA with 1 mg cm-2 metal loading, two MEAs 

with 5 mg cm-2 loading and an average curve for MEAs with 5 mg cm-2, normalized with 

respect to metal loading are shown. As can be seen, in the whole potential region normalized 

currents for 5 mg cm-2 metal loading are lower than for 1 mg cm-2 metal loading. It can be 

concluded that increasing the metal loading increases the active surface area in a fuel cell but 

not in a linear way i.e. five times greater metal loading does not result in a five times greater 

surface area. In other words under the applied conditions the catalyst utilisation is higher at 

lower metal loadings. 
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Figure 4.14 Cyclic voltammograms of MEAs with two different metal loadings at 22oC. Water in 
working electrode compartment. Sweep rate 50 mV s-1. Flow rate in working electrode compartment  
0 l h-1. 

4.6.2. Activity towards methanol oxidation 

The activity towards methanol oxidation for two different loadings was checked at room 

temperature. In Figure 4.15 data for the MEA with 1 mg cm-2 loading are collected under 

quasi steady state conditions (slow sweep of 1 mV s-1), while for 5 mg cm-2 metal loading 

under steady state conditions with a fixed delay of 5 min. Comparison between slow sweep 

and steady state conditions is justified as it was shown in Chapter 2. As in the case of the 

MEA characterisation in the absence of methanol (Figure 4.14) currents in Figure 4.15 are 

normalized with respect to the metal loading. Similar to the CV results in Figure 4.14 the 

normalized currents for 5 mg cm-2 metal loading are lower in the whole potential range where 

methanol oxidation takes place than currents for lower metal loading (1 mg cm-2). Thus, the 

same conclusion as for Figure 4.14 can be drawn, i.e. under these conditions the catalyst 

utilisation is lower for higher metal loading.  

4.7. Influence of support  

The support can increase the catalyst dispersion by preventing particle agglomeration. Also 

some kind of metal/support interaction can exist as well. In this work supported and 

unsupported commercial PtRu catalysts with the same metal loading of 1 mg cm-2 were 

characterised by cyclic voltammetry in the absence of methanol. Their activity towards 

methanol oxidation at room temperature (22oC) was investigated and compared. 
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Figure 4.15 Cyclic voltammograms of MEAs with two different metal loadings at 22oC. 1 M methanol 
in working electrode compartment. Data are collected in a slow sweep (1 mV s-1) for 1 mg cm-2 and 
under steady state conditions with fixed delay of 5 min for 5 mg cm-2 metal loading. Flow rate in 
working electrode compartment: 10 l h-1. 

4.7.1. Cyclic voltammetry in the absence of methanol 

Cyclic voltammogram of supported and unsupported PtRu catalysts with the same PtRu 

loading of 1 mg cm-2 is shown in Figure 4.16. Currents for the supported catalyst are greater 

than for the unsupported sample in the whole investigated potential region. This is due to the 

contribution of a capacitive current that originates from the carbon support. Besides higher 

currents, in the case of the supported catalyst, hydrogen adsorption/desorption region is more 

pronounced. This may indicate a difference of the surface composition of the supported and 

unsupported sample (as also discussed in section 4.2 and discussed later in Chapter 5). Thus, 

in agreement with the previous discussion the supported sample has a surface enriched in 

platinum. This fact has importance for the catalyst  activity towards methanol oxidation. 

4.7.2. Activity towards methanol oxidation 

The activity towards methanol oxidation was compared for supported and unsupported PtRu 

catalysts with the same PtRu loadings of 1 mg cm-2 at room temperature. As can be seen from 

Figure 4.17 the supported sample shows greater currents in the potential region where 

methanol oxidation takes place (starting approximately from 0.25 V vs. Ag/AgCl). This result 

is expected since some catalyst agglomeration can take place in the case of the unsupported 

sample which leads to a lower surface area. 
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Figure 4.16 Cyclic voltammograms of MEAs prepared with supported and unsupported PtRu catalysts 
with the same metal loading at 22oC. Water in working electrode compartment. Sweep rate 50 mV s-1. 
Flow rate in working electrode compartment 0 l h-1. 

 
Figure 4.17 Cyclic voltammograms of MEAs prepared from supported and unsupported PtRu 
catalysts with a same PtRu loading of 1 mg cm-2. Conditions: sweep rate 1 mV s-1, 1 M methanol in 
working electrode compartment, flow rate 10 l h-1, temperature 22 oC. 

4.8. Conclusions 

In this Chapter experimental data on the kinetics of methanol oxidation on unsupported PtRu 

catalyst under fuel cell relevant conditions are presented and discussed. A mechanism for 
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methanol oxidation is selected and a rate expression for methanol oxidation is derived. The 

following conclusions can be drawn: 

• Catalyst characterization by cyclic voltammetry and CO stripping indicates that 

some amount of the catalyst is in the form of Ru-oxide.  

• No influence of the flow rate was observed under the applied experimental 

conditions (methanol concentration 0.03 M, temperature 60.9 oC, flow rates 

between 10 and 20 l h-1). 

• The experimentally obtained reaction order with respect to methanol in the 

activation controlled region changes from 0.3 at low concentrations to 0 at 

higher concentrations, while in the limiting current region the reaction order is 

0.7 in the whole concentration range. 

• The apparent activation energy for methanol oxidation was determined to be 

56±2 kJ mol-1 in the activation controlled region and 34±3 kJ mol-1 in the 

limiting current region. 

• A rate expression for methanol oxidation is derived, and simulated plots at 

different methanol concentrations and temperatures are presented. The model 

showed good qualitative description of the experimental data. 

• An influence of the metal loading and support was found only with respect to 

real surface area. 

4.9. Outlook 

In the model presented above it was assumed that Langmuir adsorption isotherm is valid for 

all species. The model can be improved by using another type of isotherm, which includes 

surface non-homogeneity and interactions between species on the catalyst surface. 

The possibility of mass transfer limitations should be considered more in detail, as well. 

The model could be further validated by comparing simulated and experimental 

impedance spectra. 
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5. Relation between catalyst synthesis and activity in methanol 
electrooxidation 

The state of the art catalyst for methanol oxidation is based on a PtRu system, as discussed in 

detail in Chapters 1 and 4. The enhancement of the PtRu over the Pt catalyst activity can be 

explained by the theory of bifunctional catalysis where both the electronic effect (Ru 

promotes adsorption of methanol at lower potentials by providing a number of kinetically 

more active sites for methanol chemisorption [31]) and the ability of Ru to be oxidized at 

lower overpotentials than platinum itself are arguments to understand the role of Ru as a 

promoter. Under operating conditions of the direct methanol fuel cell (DMFC) both 

supported and unsupported high surface area PtRu catalysts, can be used. In Chapter 4 the 

kinetics of methanol oxidation on a commercial unsupported PtRu catalyst was investigated. 

The activity of unsupported and supported samples was also compared. It was shown that the 

supported catalyst has some advantages compared to the unsupported one.  

In the present section, the activities of the several carbon supported catalysts 

synthesized by three variations of the colloidal salt reduction method towards methanol 

oxidation will be presented and discussed. Metal salt precursors, reducing agents and 

stabilizing agents were varied. In general, they can influence the mean particle size, the 

particle size distribution, the bulk and the surface Pt:Ru composition, the oxidation state of Pt 

and Ru, the extent of PtRu alloying, the distribution of the catalyst crystal surfaces and the 

catalyst morphology etc. These factors in turn can change the catalyst activity for methanol 

oxidation and contribute to different activities of catalysts with nominally the same Pt:Ru 

composition. Although all catalysts in this study were synthesized by the colloidal method, 

for the sake of completeness, a short overview of other methods for nanoparticle preparation 

will be given too. Catalysts are developed at the Max-Planck-Institut für Kohlenforschung in 

Mülheim an der Ruhr. The preparation procedure will be described here only in brief, while 

all details of the synthesis will be given elsewhere [61,62]. The synthesized catalysts were 

characterised by means of energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), 

transmission electron microscopy (TEM), cyclic voltammetry and CO stripping voltammetry. 

http://electrochem.cwru.edu/ed/encycl/art-c03-elchem-cap.htm
http://electrochem.cwru.edu/ed/encycl/art-c03-elchem-cap.htm
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Then, the activity towards methanol oxidation was compared under steady state conditions at 

room temperature (21 ± 0.5oC) and at 60 ± 0.5oC, in “long” term stability tests 

(chronoamperometry) and by using electrochemical impedance spectroscopy. At the end the 

influence of conditioning and leaching on catalyst activity, as well as a comparison between 

supported and unsupported samples is given. 

5.1. Methods for nanoparticle preparation 

In general, the wet chemistry preparation routes can be divided into two major groups: salt-

impregnation methods and colloidal methods.  

The salt – impregnation route is based on the co-reduction of Pt and Ru precursors (for 

example H2PtCl6, RuCl3, Pt(NH3)2(OH)2 etc) by using liquid phase reducing agents (like 

HCOOH, N2H4, NaBH4) or a gas phase reducing agent (H2) [63-66]. The reduction of PtRu 

bimetallic precursors [67] and PtRu molecular cluster precursors [68] by hydrogen is also 

reported in the literature. Alternatively, a precursor of one constituent metal can be first 

impregnated onto a carbon support and then serve as a nucleation centre for the growth of a 

binary phase [69]. Pt-decorated particles can be obtained by reduction of a Pt precursor on 

unsupported Ru particles; which serve as nucleation centres [70]. This method can be used 

for the synthesis of monometallic and up to quaternary electrocatalysts. Disadvantages of this 

method are: a) it allows the synthesis of supported catalysts only; b) it requires a high surface 

area of carbon blacks that can have some disadvantages during fuel cell operation20, and c) it 

does not allow high metal catalyst dispersion on the support in the presence of high noble 

metal loadings.  

The colloidal route is based on the formation of metal colloids. Metal colloids are 

nanoparticles ranging from 1 to 50 nm and being shielded from agglomeration by protecting 

covering. Metal colloids can be obtained by different wet chemical synthesis methods: “top-

down” and “bottom-up” [71]. The “top-down” method is based on “tearing down” bulk 

samples and stabilizing resulting particles (for example: mechanical grinding of bulk metals 

and stabilizing of resulting nanoparticles by colloidal protecting agents etc). The “bottom-up” 

method relies on a chemical reduction of metal salts in the presence of a stabilizing agent, on 

electrochemical synthesis, or on the decomposition of low valent transition metal complexes. 

                                                 

20 High surface area carbon blacks can lead to low catalyst utilisation due to a significant amount of micropores. 
This is a consequence of the electrolyte’s limited access to the interior of the micropores and/or to mass 
transport limitations of the reactants. 
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Details about these methods are given in reference [71]. No matter which of the methods is 

used, metal colloid synthesis always takes place in the presence of a stabilizing agent, which 

serves partly to control the growth of primarily formed nanoclusters and mainly to prevent 

them from agglomeration21. This method can be used for the preparation of monometallic, 

bimetallic and trimetallic nanoparticles. Advantages of this method compared to the salt-

impregnation method are: a) the size and the composition of the nanoparticles can be tailored 

independently of the support, b) due to the stabilizing/protecting shell particle sizes smaller 

than 2 nm can be obtained as well as a uniform particle size distribution, c) both unsupported 

and supported nanoparticles can be synthesized, d) a good catalyst dispersion even for high 

noble metal loadings and consequently high surface areas can be obtained. Disadvantages 

are: a) the protecting/stabilizing shell blocks some part of the metallic surface and 

consequently decreases the available surface area for the electrochemical reaction, b) the 

price and complexity of the overall synthesis is higher. 

In the following, a “bottom-up” method of metal colloid synthesis based on chemical 

reduction of metal salts will be more elaborated. In general, metal salts are reduced in 

presence of a stabilizing agent and zerovalent metal colloids are generated. The approach was 

first published by Faraday in 1857, while the first reproducible standard recipes were 

established by Turkevich in 1951 ([71] and reference therein). The formation of metal 

colloids is explained by a mechanism where nucleation, growth and agglomeration are the 

major steps. This mechanism is first proposed by Turkevich, and in essence is still valid. 

Schematic representation of nanostructured metal colloid formation via the salt-reduction 

method is illustrated in Figure 5.1. 

The first step in metal colloid formation is nucleation. During nucleation, the metal salt 

is reduced to give zerovalent metal atoms, which then can collide with metal ions or another 

metal atom in the solution to form irreversible seeds of stable metal nuclei. The diameter of 

the seed nuclei depends on the strength of the metal-metal bonds, the difference between the 

redox potentials of the metal salts and the reducing agent applied22. The next step is metal 

colloid particle formation. In general, particle formation proceeds via two steps: growth and 

agglomeration. Growth can be rationalized through collision of already formed nuclei with 

                                                 

21 To accomplish this, a large variety of stabilizers are used, like: donor ligands, polymers and surfactants. 
22 For example, for silver it was shown experimentally that stronger reducing agents produce smaller nuclei in 
the seed [71] and references therein). 
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reduced metal atoms. Agglomeration is defined by the collision of already formed seeds. 

Although the processes during nucleation and particle growth are difficult to analyze 

separately, it is accepted that the size of the resulting metal colloids is determined by the 

relative rates of nucleation and particle growth. During the last decades, wet chemical 

reduction procedures were applied to synthesize metal colloids from practically all transition 

metals in combination with different types of stabilizers and the whole range of chemical 

reducing agents23. 

 

Figure 5.1 Formation of nanostructured metal colloids via the salt-reduction method (adopted from 
[71]). 

Bimetallic colloids can be obtained by controlled co-reduction of two different metal 

ions. In general, the process can be presented as follows: 

Me1 (salt) + Me2 (salt) + Red →  Me1Me2(colloid) + Ox (5.1) 

where Me1 is the first metal salt, Me2 is the second metal salt, Red is the reducing agent, 

Me1Me2(colloid) is the bimetallic colloid and Ox stands for a by-product formed after 

oxidation of the reducing agent. 

                                                 

23 Hydrogen, carbon monoxide, formic acid, formaldehyde, hydrazine, BH4
- etc are often mentioned in literature 

as  reducing agents ([71] and reference therein). 
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As it was mentioned before, the colloidal synthesis method yields quite monodisperse 

metal colloid particles with a small average particle size ≤2 nm (if the particle size deviates 

by less than 15 % from the average value than a dispersion is referred as “monodisperse”). 

So, the most important aspect of the synthesis is particle size control. According to the 

literature, the essential factors controlling the particle size are the strength of the metal-metal 

bond, the molar ratio of metal salts, the colloidal stabilizer and the reducing agent, the extent 

of conversion, the temperature and the pressure applied [71]. 

To prevent agglomeration of the nanoparticles, protective agents are required. There are 

two basic modes of stabilization: electrostatic and steric stabilization.  

The electrostatic stabilization (see Figure 5.2 a) is based on the Coulombian repulsion 

between the particles. 

Steric stabilization (see Figure 5.2 b) is based on the steric coordination of organic 

molecules, which act as protective shields on the metallic surface. The nanometallic particles 

are separated from each other preventing coagulation. The main classes of protective groups 

according to the literature are polymers, solvents such as THF, long-chain alcohols, 

surfactants, organometallics etc. Lipophilic protective agents yield metal colloids that are 

soluble in organic media (“organosols”), while hydrophilic agents yield water-soluble 

colloids (“hydrosols”).  

a)
 

b)

Figure 5.2 a) Electrostatic and b) Steric stabilization of metal colloids. Adopted from [71]. 
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5.2. Experimental 

5.2.1. Catalyst synthesis 

As mentioned before, three variations of the salt reduction method were used. They are 

denoted as: EUP, KGE and WNF. All variations should give a nominal Pt:Ru composition of 

1:1. 

In general, the syntheses consist of these steps: 

a) Weighing of salt precursors. For the EUP and KGE variations the salt precursors were the 

same i.e. platinum (II) chloride (PtCl2) and ruthenium (III) chloride (RuCl3). Ruthenium (III) 

chloride is hydrophilic and therefore care should be taken that the weighing step and salt 

transfer into a reaction flask are fast. All syntheses were done under an Argon atmosphere (to 

prevent Ru oxidation by atmospheric oxygen as well as influence of water). Therefore, the 

reaction flask where reactants were transferred to was also under Argon atmosphere. For the 

WNF variation salt precursors were bis (cycloocta-1,5-diene) platinum(II) (Pt(COD)2) and 

tris (acetylacetonate) ruthenium(III) (Ru(acac)3). 

b) Suspending of salt precursors in a solvent. For all syntheses the solvent was 

tetrahydrofurane (THF). THF is kept under Argon atmosphere and is weighed before being 

suspended with the salt precursors, by means of a calibrated dropping funnel, which was 

always deaerated in advance. To achieve good mixing conditions, a magnetic bar is always 

added into the reaction flask. After the solvent is added, the dispersion is mixed to get a 

homogenous solution of reactants. 

c) Addition of reducing agent. In general, the reducing agent can be added gradually during 

several hours (done in the case of EUP and KGE syntheses) or at once (as done in WNF 

synthesis). The mode of addition depends on the metal colloid stabilization mode. The 

temperature of the reaction mixture depends on the strength of the reducing agent. 

d) Solvent evaporation. After the reaction is completed, i.e. metal colloids have been 

formed, the solvent is evaporated (usually by vacuum evaporation).  

e) Depositing. This step is omitted when the goal is to obtain an unsupported catalyst. The 

procedure is as follows: 1) as-synthesized metal colloids are dissolved in tetrahydrofurane 

(THF); 2) carbon support (Vulcan XC-72) is suspended in THF as well; and 3) suspension of 

carbon in THF is mixed with the metal colloid solution in THF and stirred. Carbon is added 

in the amount to get the catalyst with metal loading 30 %. Alternatively, depositing can be 
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done during step “b”, i.e. “salt precursor suspension in a solvent”, as it was done in the KGE 

variation. 

f) Solvent evaporation. Same as for the step “d”. 

g) Leaching. As-synthesised metal colloids are stabilized with a protective shell. As was 

mentioned before, a protective shell prevents particle from agglomeration, i.e. it enables a 

uniform particle size distribution and a small particle size, but on the other hand it decreases 

the active surface area, which can give a lower catalyst performance during fuel cell 

operation. Therefore, the protective shell should be leached out.  

h) Washing. After leaching of the catalyst is washed in order to remove possible organic and 

inorganic impurities. 

i) Conditioning. Conditioning is done as a final step before fuel cell operation is started in 

order to improve the catalyst performance. The effect of conditioning will be discussed in the 

text below where electrochemical performances of conditioned and unconditioned samples of 

the same KGE supported catalyst are compared. Here the procedure is described briefly. A 

schematic presentation of the conditioning apparatus is shown in Figure 5.3. The heart of this 

apparatus is the heating furnace. This furnace consists of a heating jacket of nearly one meter 

length and an inner quartz tube of the same length. The outer surface of the heating jacket is 

insulated to prevent heat transfer and heat loss from its surface. The temperature of the inner 

and the outer surface of the heating jacket are measured by means of a temperature controller, 

as shown in Figure 5.3. Between the outer surface of the quartz tube and the inner surface of 

the heating jacket lies a gas line, marked as a long wavy line in Figure 5.3. In this way, gas is 

heated before it enters the reaction tube (see Figure 5.3). The reaction tube is made of quartz 

and/or glass and lies in the middle of the heating furnace. Samples for conditioning are placed 

in sample porcelain boats of approximately 10 cm length inside the reaction tube. For 

conditioning, usually three different gases are used: Ar, O2/Ar mixture and H2
24. Usually the 

procedure is as follows: a) after the safety conditions are satisfied, e.g. it is ensured that there 

is no leaking of gases at the joints, and that temperature is at the desired level; b) samples are 

inserted in the reaction tube; c) argon flow is applied for 30 min; d) gas is changed to a O2

2

/Ar 

mixture for another 30 min, and then e) a H  stream is applied for another 30 min, and at the 

                                                 

24 Argon serves to remove volatile compounds left after synthesis in the catalyst sample, the O2/Ar mixture 
serves to oxidize organic impurities (O2) and to remove them via the Argon flow. During this step the catalyst 
surface will oxidize, therefore in a final step reduction should be carried out. This is done by applying a H2 flow. 
Since H2 makes an explosive mixture with air, at the end the reaction tube is flashed with argon. 
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end d) gas is changed to argon for additional 5 min. After this procedure is completed, the 

reaction tube is taken off, cooled down to room temperature and samples are taken out.  

 

Figure 5.3 Schematic representation of the conditioning apparatus. 

It should be mentioned that the conditioning procedure could vary depending on the 

type of catalyst. 

Now, a closer insight to the synthetic methods applied is given. 

EUP variation. In short, this variation is described as a preparation of a PtRu 

“organosol”. The metal salt precursors are: platinum (II) chloride (PtCl2) and ruthenium (III) 

chloride (RuCl3). The solvent used is THF. The reducing agent is (C8H17)4NBEt3H, where 

BEt3H- is the reductant and (C8H17)4N+ is the stabilizing agent. The applied method is a 

variation of the salt reduction method, which originally uses BH4
- as a reducing agent. The 

disadvantage of using BH4
- as a reducing agent was the formation of transition metal borides 

along with nanometallic particles [71]. Here, triethylboron is recovered unchanged from the 

reaction and borides do not contaminate the product. As mentioned before, the stabilizing 

agent is (C8H17)4N+. The mode of stabilisation is steric stabilisation. After the reduced metal 

nucleus is formed, the metal core is protected by a monolayer shell of surfactant molecules. 
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PtRu metal colloids prepared by this method are described as “organosol”, since a lipophilic 

protective agent yields a metal colloid being soluble in organic media. The synthesis can be 

represented as follows: 

PtCl2 + RuCl3 + 5 (C8H17)4NBEt3H → PtRu(colloid) + 5 (C8H17)4NCl + BEt3 + 5/2 H2 ↑
 (5.2) 

The temperature at which the synthesis was performed was 40oC. 

As-synthesized (C8H17)4N+ protected metal colloids contain around 10 mass % of 

metal.25 Purified metal colloids can be obtained only as supported metal nanoparticles, 

because once the protective shell is removed, particles can easily undergo agglomeration. 

Leaching is done by washing as-synthesized metal colloids with ethanol. During this step, 

protective groups are removed due to solubility of the (C8H17)4N+in ethanol. Since particles 

are supported on carbon, agglomeration is prevented.  

After leaching, almost pure metal particles supported on carbon are obtained (see 

energy dispersive X-ray analysis below (Figure 5.4)). 

KGE variation. The method is new and up to now not fully standardized. Metal salt 

precursors are platinum(II) chloride (PtCl2) and ruthenium(III) chloride (RuCl3), so the same 

as in the EUP variation. The reducing agent is LiBEt3H and BEt3H- is the reductant as in the 

EUP variation. The solvent used is THF. The reducing agent is added in excess, so that a part 

of it stabilizes the formed metal colloids. The mode of stabilisation is still unclear, but 

preferably can be explained by static stabilisation, i.e. an excess of reducing agent forms an 

electrochemical double layer around neutral metal nuclei. Zerovalent metal nuclei stabilized 

only with THF (solvent) were reported in the literature.26 So a steric stabilisation effect by the 

THF molecules can be expected, too. In general, the synthesis can be represented as follows: 

PtCl2 + RuCl3 + 5 LiBEt3H → PtRucolloid + 5 LiCl + 5 BEt3 +5/2 H2 ↑ (5.3) 

The synthesis was performed at room temperature. In this case, the reducing agent is 

stronger than in case of the EUP variation, thus milder conditions can be applied. 

                                                 

25 Typically in literature metal colloids obtained by this method are reported to contain between 6 - 12 mass % 
of metal [71]. In our case sample was sent on elemental analysis and 10.5 mass % was obtained. 
26 It was shown for Ti in a similar synthesis as performed here (except that reducing agent is taken in 
stehiometric condition) that the resulting product Ti 0.5THF consists of Ti13 clusters in the zerovalent state, 
stabilized by six intact THF molecules [71]. 
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Both supported and unsupported metal colloids can be prepared by this method. When 

the method is used to obtain supported metal colloids, the carbon support (Vulcan XC-72) is 

added to the mixture of salt precursors and the solvent (during step “b”) before the reduction 

step carbon is dispersed first in THF and after homogenous dispersion is obtained, it is added 

into the solution of the salt precursors in THF. After the synthesis is completed, the solvent is 

vacuum evaporated and the obtained catalyst is subjected to several washing steps: First 

ethanol, then benzene, and finally a water/benzene mixture (Water serves to wash out B-

compounds eventually present in the catalyst powder, while benzene removes all possible 

organic compounds). Finally the solvent is freezed and removed by means of vacuum 

sublimation and PtRu supported on carbon or unsupported is obtained.  

WNF variation. Briefly, the method is described as an organoaluminium method.  

The metal salt precursors are: bis(cycloocta-1,5-diene)platinum(II) (Pt(COD)2) and 

tris(acetylacetonate)ruthenium(III) (Ru(acac)3). The reducing agent is tris(methyl)aluminium 

(III) (Al(me)3). The solvent used is THF. The method is a slight modification of mono and bi-

metallic nanoparticle synthesis by using organoaluminium compounds as reducing agents, as 

described in [71]. In general, for monometallic nanoparticles the method can be formulated as 

follows: 

 (5.4) 

where MXn is a metal halogen or metal acetylacetonate salt (n=2-4), and R is an alkyl group 

(C1 – C8). 

A layer of condensed organoaluminium species protects the metal core against 

aggregation as show in equation (5.4). The exact “backbone” of the colloidal 

organoaluminium protecting agent has still not been completely established [71]. Unreacted 

organoaluminium groups (for example Al – CH3) from the starting material are shown to be 

still present in the metal nanoparticles stabilizer. Active Al – C bonds are used for a 

controlled protonolysis by long-chain alcohols or organic acids (these are “modifiers”) to 
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give Al-alkoxide groups in the stabilizer. This modification of the organoaluminium 

protecting shell can be used to tailor the dispersion characteristics of the original organosols. 

In this way, the solubility of the colloidal metal nanoparticles both in hydrophobic and 

hydrophilic media can be achieved. As-synthesized catalyst is subjected to leaching27. For the 

leaching step 5 M NaOH was used, since it can form soluble sodium aluminate (NaAlO2). 

The leaching temperature was 70 oC. After leaching, the catalyst was conditioned (as 

explained above). 

A summary of catalyst names and abbreviations is given in Table A II.1 in Appendix II. 

Prepared catalysts were characterized by EDX, XRD, TEM and SEM (scanning 

electron microscopy) and by electrochemical methods i.e. CO stripping and cyclic 

voltammetry. 

5.2.2. Physical methods 

The atomic ratio of Pt to Ru was determined by EDX. SEM with colour element mapping 

was used to check the presence of each element in a sample and its distribution over the 

support (SEM data are available only for the EUP sample). EDX and SEM analyses were 

performed with the same instrument (Oxford Inca System). 

XRD was used to determine mean particle sizes and lattice parameters. X-ray 

diffraction data of the catalyst were collected on a Stoe STADI P transmission diffractometer 

in Debye-Scherrer geometry with a primary monochromator (curved germanium (111)) and a 

linear position sensitive detector. Cu kα1 radiation was used and a 2θ scan from 10o to 100o 

with a step width of 0.01o. For measurements of air sensitive samples, the samples were filled 

into glass capillaries in a glove box and sealed to prevent contact with air. The measured 

patterns were evaluated qualitatively by comparison with entries from the PDF-2 powder 

pattern database. The analysis is performed with the WinXPow software package. 

The mean particle size and particle size distribution was obtained by TEM 

measurements. HITACHI H7500 microscope (magnification up to 1.25 million) was used. 

For TEM analysis samples were prepared by ultrasonically suspending the catalyst powder in 

THF. A drop of the suspension was applied onto a clean carbon covered nickel grid. 

                                                 

27 Electrochemical performances of non-leached sample were also checked (see below). 
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5.2.3. Electrochemical methods 

Electrochemical measurements (CO stripping voltammetry, cyclic voltammetry in absence of 

methanol, steady state measurements, chronoamperometric measurements and 

electrochemical impedance spectroscopy) were done as explained in the experimental text 

section (Chapter 2). The loading of all MEA assemblies was 1 mg cm-2. 

5.3. Characterisation of catalysts 

5.3.1. Physical methods 

The result of the EDX analysis for the EUP catalyst is shown in Figure 5.4. Only peaks from 

the support (Vulcan XC-72), from platinum and from ruthenium are present. EDX has shown 

that the prepared catalyst consists of 68 mass % carbon (Vulcan XC-72), 10 mass % Ru and 

22 mass % Pt (catalyst is prepared as 30 mass % metal loading on carbon). EDX analyses for 

other catalysts were done, but plots are not shown here. In general, it was shown that all 

prepared catalysts have a Pt:Ru atomic ratio of approximately 1:1. Results are collected in 

Table 5.1. The Pt content is calculated without taking into account the carbon support (for 

supported samples). This means that for both supported and unsupported catalysts the total 

sum of Pt and Ru contents is 100 %. In case of the KGEunsupp catalyst besides Pt and Ru the 

EDX analysis indicates the presence of chlorine in an extent of approximately 6 mass %. 

Chlorine probably remained since it was not fully removed in the washing steps. By EDX 

analysis, only the overall composition of the catalyst can be determined, but not the catalyst 

surface composition. 

The X-ray diffraction patterns for the investigated catalysts are shown in Figures 5.5, 

5.6 and 5.7. The first peak at 2θ ≈ 23o originates from the Vulcan XC-72 carbon support, 

while the other peaks are reflections of the face centred cubic (f.c.c) crystal lattice of Pt 

(vertical lines on the diagram represent the positions of the peaks of pure Pt). In the case of 

the KGEunsupp sample (Figure 5.6) the peak at 2θ ≈ 23o is missing. For EUP and KGE 

catalysts all peaks appear approximately at the same 2θ values as peaks for pure platinum (for 

example, the f.c.c (220) diffraction peak of the EUP sample is at 2θ ≈ 67.8o while of Pt 

f.c.c (220) at 2θ ≈ 67.5o; similar is for KGE catalysts where f.c.c (220) peak reflections for 

KGEuncon, KGEcon and KGEunsupp catalysts are respectively at 2θ values of 67.5, 67.6 and 

67.7). In case of the WNFleach catalyst, all peaks are shifted towards higher angles compared 

to pure Pt (for example the f.c.c (111) diffraction peak of the WNF sample appears at 2θ ≈ 
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40.4o between diffraction peaks for Pt f.c.c (111) at 2θ ≈ 39.8o and diffraction peak for Ru 

h.c.p (101) at 2θ ≈ 42.2o; the f.c.c (220) diffraction peak of the sample appears at 2θ ≈ 68.8o 

between diffraction peaks for Pt f.c.c (220) at 2θ ≈ 67.5o and the diffraction peak for Ru h.c.p 

(110) at 2θ ≈ 69.4o). Higher angles, i.e. lower lattice parameter a, can indicate formation of a 

solid solution of PtRu with the Pt lattice being contracted due to the replacement of some Pt 

atoms in the Pt f.c.c crystal structure by the smaller Ru atoms (rRu=0.133 nm and rPt=0.138 

nm [72]). Another possibility for the observed shift in 2θ values relative to 2θ values of the 

pure phase can be due to the lattice strain, X-ray scattering or disorder as pointed out in [48]. 

 
Figure 5.4 EDX analysis of the EUP sample. 

Lattice parameters for PtRu catalysts were evaluated from the angular position of the 

(220)28 reflection peak maxima, by using equation (5.5):  

maxsin
2

1

θ
λ αKa

⋅
=  (5.5) 

where a is the lattice parameter, 
1αλK is the wavelength of X-rays used (0.154056 nm) and 

maxθ is the Bragg angle at the peak maximum. The results are given in Table 5.1.  

                                                 

28 The angular position of the f.c.c (220) peak reflection is in a region where the diffraction spectrum of the 
carbon support contributes only in terms of a linear background. In the vicinity of other peaks, for example the 
f.c.c (111) diffraction peak of PtRu alloy, the strong background from the two-dimensional reflection of the 
carbon layers in the carbon black can be observed [73].  
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They refer to the lattice parameter values of the crystalline fraction of the catalysts. The 

values are compared to literature lattice parameter values of bulk PtRu alloys of different 

Pt:Ru compositions [74] (see Table 5.2). Lattice parameter values for the EUP and KGE 

catalysts are between the lattice parameter of pure Pt and the lattice parameter of the PtRu 

alloy with 90.3 at % Pt. This indicates a low extent of alloying. In case of the WNFleach 

catalyst, the lattice parameter value corresponds to a Pt content of approximately 48.3 at % 

Pt29. 

Table 5.1 Pt content (EDX, XRD), mean particle sizes (XRD and TEM) and lattice parameters (XRD) 
for prepared PtRu catalysts. 

Catalyst Pt (at %) d / nm a / nm 

 EDX XRD XRD TEM XRD 

EUP  52.8 90.3 3.60 2.2-2.7 0.391 

KGEuncon 50.3 <100 4.0 2.7 0.392 

KGEcon 50.3 90.3 3.9 2.730 0.391 

KGEunsupp 48.9 90.3 4.45 3 0.391 

WNFunleach / / amorphous 0.8 – 1.2 / 

WNFleach 54 ≈48.3 2.9 1.7-3.3 0.3859 

Table 5.2 Pt content in at% in PtRu bulk alloys with different Pt:Ru compositions based on X-ray 
fluorescence measurements, crystal structure and lattice parameters measured by X-ray diffraction. 
Adopted from reference [74]. 

Pt at % Crystal structure a / nm 

100 f.c.c 0.39231 

90.3 f.c.c 0.39166 

70.2 f.c.c 0.38907 

48.3 f.c.c 0.38624 

39.4 f.c.c 0.38486 

9.5 h.c.p 0.27178 

0.0 h.c.p 0.27058 

                                                 

29 Lattice parameter values for all catalysts are lower than for the bulk PtRu alloy (Table 5.1). The contraction of 
lattice constants in metal nanoparticles relative to values expected for bulk samples were already reported in 
[75]. This effect was interpreted as a result of the increase in the surface stress due to the high curvature of the 
particles.  
30 Conditioning under mild conditions i.e at low temperatures like in our case at 120oC, does not produce any 
particle agglomeration. Here TEM after conditioning was not performed and it was assumed that particle size 
remains unchanged compared to the unconditioned sample. 
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For all samples, peak reflections of the h.c.p. crystal structure of Ru were not seen. The 

absence of characteristic Ru peak reflections can be due to several reasons. One is that Ru 

particles are small and not in a crystalline state, i.e. amorphous. Dubau et al. [76] attributed 

similar finding to Pt particles decorated by Ru particles. Another reason is that Ru is present 

as Ru-oxide, as it was reported by Rolison et al. [48] and Jusys et al. [17] who investigated 

several commercial Pt-Ru catalysts and found out that they are predominantly a mixture of a 

Pt metal phase and Ru-oxides. In our study, peak reflections of anhydrous or hydrous Ru 

oxide were not seen as well. In general, hydrous Ru-oxide peak reflections have a low 

intensity and peaks are broad, so the presence of Ru-oxide cannot be excluded. The same is 

true for metallic Ru. 

 

Figure 5.5 X-ray diffraction pattern of the 30 % PtRu / Vulcan-XC-72 EUP catalyst with an atomic ratio 
of Pt:Ru=1:1. 

The average particle size is estimated by using the Scherrer equation [73]: 

max)2( cos
9.0

1

θ
λ

θ

α

B
d K⋅

=   (5.6) 

where d is the mean particle size and B(2θ) the width (in rad) of the peak at the half height 

(peak height is calculated from a baseline). The other symbols have the same meaning as in 

equation (5.4). The values are given in Table 5.1. Since particle sizes are determined from the 
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f.c.c (220) peak reflection, they should correspond to the particle size of the crystalline part of 

the catalysts.  

 

Figure 5.6 X-ray diffraction patterns of 30 % PtRu / Vulcan-XC-72 KGEuncon and KGEcon and KGEunsupp 
catalysts with an atomic ratio of Pt:Ru=1:1. 

 

Figure 5.7 X-ray diffraction pattern of 30 % PtRu / Vulcan-XC-72 WNFleach catalyst with an atomic ratio 
of Pt:Ru 1:1. 

Bright field TEM micrographs of the investigated catalysts are shown in Figure 5.8.  
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e) 

Figure 5.8 Transmission electron micrographs of 
a) KGEuncon, b) KGEunsupp, c) WNFunleach, 
d) WNFleach and e) EUP. 

 

100 nm 50 nm 

No significant particle agglomeration was observed. Particles are uniformly distributed 

over the Vulcan XC-72 support. Particle size varies and depends on the preparation route 

used. The smallest particle size is obtained by the WNF method. The unleached sample 

(WNFunleach) has a particle size of 0.8 – 1.2 nm, very uniform particle size distribution as well 

as particles distribution over the support. After leaching particle agglomeration occurs and 

the particle size for sample WNFleach is from 1.7 – 3.3 nm. In case of the KGE samples the 

particle size of the unsupported sample is greater than of the supported sample. This indicates 

a small influence of particle agglomeration.  

20 nm 50 nm 

50 nm 
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A SEM micrograph of the EUP catalyst with element colour mapping is shown in 

Figure 5.9. Carbon is coloured in red, platinum in green and ruthenium in blue. The element 

mapping is used in order to check the presence of each metal and therefore its distribution in 

the sample selected for observation. A uniform distribution of both metals (Pt and Ru) on 

carbon can be taken as an indication of an alloyed or an intermetallic system. Black spots 

come from an uneven particle distribution. 

 

C t 

600 µm 

Figure 5.9 SEM micrograph of the EUP sample with element colour mapping
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However, TEM should cover the whole range of particle sizes, including average particle size 

determined by XRD, as it is in the case of one of the investigated catalysts - WNFleach (for 

this catalyst XRD particle size was 2.9 nm which is in the range of particle sizes determined 

by TEM (1.7 – 3.3 nm)). For other two catalysts (EUP and KGEcon) XRD particle sizes were 

out of the range of TEM particle sizes, which can indicate that this fraction of particles was 

insignificant or not seen in TEM analysis. 

The above discussed methods deal with ex-situ catalyst characterisation. In-situ 

characterisation was performed by CO-stripping voltammetry and cyclic voltammetry in 

absence of methanol31 and will be discussed in the following text.  

5.3.2. CO stripping 

Carbon monoxide is considered to be a kind of “test molecule” in electrocatalysis. CO 

stripping voltammetry has a threefold function. First, CO stripping charge can be used for 

estimation of real surface area (This use of CO stripping voltammetry was discussed in 

Chapter 3). Second, commencement, peak potential and shape of CO stripping wave are 

surface sensitive [16]. Third, since CO is considered as an intermediate in methanol oxidation 

(see Chapter 4), higher activity in CO oxidation can be correlated to higher activity towards 

methanol oxidation.  

Figure 5.10 summarizes results for the CO stripping voltammetry of a saturated CO 

monolayer on different PtRu supported catalysts. Only anodic parts of voltammograms are 

presented. All CO stripping voltammograms are distorted and baselines (second positive 

going sweep) are not well defined. Problems with voltammetric CO charge determination 

were already discussed in Chapter 3, where the method for baseline subtraction was 

proposed. The method is applied here and corrected CO stripping voltammograms are shown 

in Figure 5.11 and will be discussed in the following. 

Real surface areas32 were calculated from CO stripping charge following the procedure 

as described in Chapter 3. The determination of CO stripping charges and surface areas are 

given in Table 5.3 below.  

                                                 

31 In electrochemistry, cyclic voltammetry of bulk polycrystalline and especially single crystal surfaces is 
considered as a fingerprint of an electrode surface [7]. 
32 In the following text the real surface area is denoted as CO surface area. 
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For comparison with the CO surface area, a rough estimate of the total surface area is 

made by assuming spherical particles with a diameter determined from XRD and by using 

equation (5.7): 

d
S

PtRu
XRD ρ

3106 ⋅
=  (5.7) 

where SXRD is the specific surface area in m2 g-1, ρPtRu is PtRu density in g cm-3and d is 

particle diameter in nm. 
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Figure 5.10 CO stripping voltammograms of carbon supported PtRu catalysts. Dashed line - second 
positive going sweep. Conditions: sweep rate 5 mV s-1, CO adsorption potential 0 V vs. Ag/AgCl, 
adsorption time 30 min, N2 in working electrode compartment, flow rate 120 ml min-1; room 
temperature. 
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Figure 5.11 CO stripping voltammograms of carbon supported PtRu catalysts from Figure 5.10 after 
baseline correction. 

The PtRu mass density was calculated as follows: 

RuRuPtPtPtRu massmass ⋅+⋅= ρρρ  (5.8) 

where ρPtRu is the density of PtRu alloy particles, ρPt is the platinum density (21.4 g cm-3), ρRu 

is the ruthenium density (12.2 g cm-3), massPt and massRu are the Pt and Ru mass fractions 

determined from EDX analyses without taking the oxygen content into account. The results 

of this calculation are summarized in the Table 5.4. 

Table 5.3 CO stripping charge and real surface area for supported PtRu catalysts. Conditions: CO 
adsorption at 0 V vs. Ag/AgCl for 30 min or 60 min. N2 in working electrode compartment, flow rate 
120 ml min-1, room temperature. 

Catalyst Q CO / C S / 103 cm2

EUP 0.51±0.05 1.8±0.2 
KGEuncon 0.31±0.025 1.1±0.1 
KGEcon 0.52±0.05 1.8±0.2 
WNFleached 0.58±0.01 2.03±0.03 
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In the case of the WNFleach, EUP and KGEcon samples, the real surface area33 is more 

than one half of the XRD surface area (56%, 61% and 66 % respectively). Utilisation rate for 

the KGEuncon catalyst is a bit lower (41 %). According to the literature, the catalyst utilisation 

under fuel cell conditions can vary from 5 % [19] to 80 % [20] related to BET surface area. A 

typical value for catalyst utilisation is about 50% compared to XRD [63], TEM [65] or BET 

[19] surface areas. CO surface area of 40 m2 g-1 for carbon supported PtRu catalysts prepared 

by the nitrile method (cell configuration was rotating disc and thin film method was used) 

was obtained in reference [63]. At the same time the XRD surface area was 80 m2 g-1. The 

result was taken as an indication of the validity of PtRu surface area characterisation by CO 

stripping voltammetry. A similar result was obtained in a half-cell study on a gas diffusion 

electrode prepared with PtRu carbon supported catalyst obtained by chemical reduction, [65] 

where the CO stripping area was approximately 50 % of TEM surface area.  

Table 5.4 Atomic and mass % contents, densities, XRD and specific surface areas of PtRu catalysts. 

Catalyst at % Pt mass % Pt ρPtRu /g cm-3 SXRD/m2 g-1 Ssp/m2 g-1

EUP 52.8 68.3 18.5 90 55.0±5.3 

KGEuncon 50.3 66.1 18.3 82 33.9±2.7 

KGEcon 50.3 66.1 18.3 84 55.8 ±5.3 

WNFleach 54 69.4 18.6 111 62.7±1.1 

Catalyst utilisation is influenced by MEA manufacturing, content of metallic oxide 

phase, temperature and catalyst preconditioning [19], and by the procedure which is used to 

get the CO surface area from experimental data, as discussed in Chapter 3. Since particles are 

carbon supported, and part of the particle surface is covered with the Nafion film some 

imperfections in particle contact can be expected (as it was discussed for PtRu unsupported 

catalysts), utilisation will further decrease. High metal oxide content can significantly 

decrease the CO surface area as shown in reference [19]. If CO stripping is performed at 

higher temperatures and on a reduced sample the CO surface area increases [19,20]. In our 

case, CO stripping was performed on an as-received sample at room temperature. No 

additional MEA conditioning was applied (for example MEA conditioning in H2 

atmosphere). The slightly lower catalyst utilisation in case of the KGEuncon sample can be due 

                                                 

33 The CO adsorption method was used for real surface area determination. 
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to the higher Ru-oxide content in this sample compared to the conditioned sample.34 In the 

case of the WNF catalyst, its utilisation can be also influenced by the lower accessibility of 

particles deposited in small pores of the carbon support. Originally, the WNF method 

produces small particles with a particle size in the range from 0.8 to 1.2 nm. As-produced 

catalyst is supported on Vulcan XC-72, and it is possible that some of particles are 

impregnated in pores with small diameters, which are later on inaccessible. According to pore 

size distribution measurements on Vulcan XC-72, pores in the range from 30-50 nm 

dominate the surface area of this carbon black, but there is a small fraction of pores with a 

pore size of about 3 nm [64]. In conclusion, taking into account all factors, which contribute 

to catalyst utilisation under fuel cell conditions, CO surface areas determined in this study 

indicate typical values of catalyst utilisation found in literature. 

The onset of reaction and peak potential values differs for different electrocatalysts. In 

general, the shape of the CO stripping wave for all catalysts reflects the same features. The 

commencement of CO oxidation in case of the EUP catalyst is at lowest potential. The peak 

height decreases according to the ranking: WNFleach > EUP > KGEcon > KGEuncon. The peak 

width at half of the peak current is largest for KGEcon catalyst, while for other catalysts this 

value is approximately the same. 

CO stripping peak potential is sensitive to the PtRu surface composition [16]. The 

lowest value was obtained for a Ru surface composition of 46 at %. A similar result was 

obtained by Cao et al. [47] for CO oxidation on Pt black decorated by Ru. In their study, a 

minimum was obtained when the Ru surface composition was between 38 and 57 at % . In 

addition, concerning the CO stripping peak potential, Dubau et al. [77] found that for the 

same overall PtRu composition the alloyed PtRu catalyst has more positive peak potential 

than a non-alloyed Pt+Ru catalyst obtained by physical mixing of Pt and Ru colloidal 

catalysts. To summarize, two main tendencies were recognized: First, the maximum towards 

CO oxidation (peak potential at most negative potential) appears at a surface with a Ru-

content of approximately 50 at % and second, the alloyed catalyst is less active than the non-

alloyed catalyst. 

Due to the sensitivity of the CO stripping peak potential with respect to the Ru surface 

content and the level of catalyst alloying, CO stripping voltammetry could be used in 

principle for in situ catalyst characterisation. A problem, which arises here, is a suitable 

                                                 

34 CO adsorption takes place only on pure metallic surfaces [17]. 
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standard for method calibration. In a study by Dihn et al. [19] CO stripping voltammetry was 

used for in situ characterisation of unsupported PtRu catalysts and as a standard CO stripping 

data reported for PtRu bulk alloys were used [16]. However, we do not consider this 

approach as fully justified due to the following reasons: a) smooth surfaces do not behave 

like rough surfaces made of nanoparticles; b) the mechanism of CO oxidation [26] includes 

OH species adsorbed at the surface; if the rate determining step is the reaction between 

adsorbed CO and OH, the CO stripping peak potential can be pH-dependent and influenced 

by the H+-concentration in the supporting electrolyte; c) the conditions in a classical three-

compartment electrochemical cell can differ a lot from the conditions in a more technical 

configurations; d) real catalysts are usually a mixture of alloyed phases and of metal oxides. 

Therefore CO stripping can be used for in situ catalyst characterisation after suitable 

calibration. Calibration can be also done by XRD or XPS. In our case, according to XRD 

analysis the WNFleach sample is a PtRu alloy with approximately 50 at % Pt, while other 

catalysts are a mixture of Pt rich phases and metal oxides. So the overlapping of the CO peak 

potentials of these two catalysts is probably due to the mutual influence of the two different 

effects (alloy composition and level of alloying). Concerning their total activities the WNF 

leach and EUP catalysts are comparable. KGE catalysts are less active, although they have 

almost the same lattice constant as the EUP catalyst, so according to XRD they have almost 

the same composition. Obviously, some other effects not mentioned here could be also 

important. 

5.3.3. Cyclic voltammetry in absence of methanol 

Cyclic voltammograms of PtRu MEAs in absence of methanol are shown in Figure 5.12. The 

potential region is chosen in order to prevent dissolution of Ru [23]35. In the description of 

the cyclic voltammetry behaviour (Figure 5.12), the potential region is “divided” into two 

regions: a “hydrogen adsorption/desorption” region due to similarity with the platinum 

behaviour (see Chapter 3)36 and a “double layer region”37. 

                                                 

35 This aspect was already discussed in connection with the potential limits determination in CO stripping 
voltammetry. As it was pointed out, although reported in [23], no significant Ru dissolution is observed in our 
case. However, in these experiments a higher positive potential limit is not applied, first because more positive 
potential region is not interesting for fuel cell application of the catalyst and second due to Ru-oxide formation 
and reduction the whole cyclic voltammogram becomes a bit distorted and covers features that we want to 
discuss here. 
36 In case of Pt-Ru catalysts hydrogen adsorption proceeds only at Pt-adsorption sites and it is influenced by the 
adsorption of oxygen-containing species on Ru (Chapter 3). 
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The "hydrogen adsorption/desorption" region denotes region from - 0.2 to 0.1 V vs. 

Ag/AgCl. Voltammetric features of all catalysts in this region are somewhat different. 

According to literature data, catalyst’s features in this region are influenced by Pt:Ru surface 

composition [16], [37], [47], [78]. In general, alloys containing more than 50 at % of 

platinum resemble more platinum like features, while those containing less than 50 at % 

platinum more ruthenium like features. For example, absence of the H-adsorption peak, 

which correspond to H-adsorption on “Pt(100)” surface, is observed for PtRu alloys with Ru 

content higher than 33 at % Ru [16]. Similar Chu and Gilman [37], showed that cyclic 

voltammograms of PtRu alloys containing less than 50 at % Ru resemble that of pure Pt, with 

H adsorption at potentials more positive than - 0.1 V vs. Ag/AgCl, while those for alloys 

containing more than 50 at % of Ru resemble that of pure Ru, i.e. no hydrogen adsorption at 

potential more positive than - 0.1 V vs. Ag/AgCl is observed. The same was seen in a recent 

paper of Batista et al. [78] for PtRu alloys with two different compositions Pt:Ru 85:15 and 

50:50. Gradual decrease of typical Pt features was obtained on Pt-black catalyst after 

modification with Ru [47]. 

H-adsorption on platinum is completely suppressed on the KGEcon catalyst, which 

indicates a high Ru surface content. This Ru content is difficult to quantify and one can only 

say that it is higher than 50 at %. XRD, in a way, opposites this conclusion since, according 

to XRD the KGEcon catalyst is mixture of a Pt rich phase and Ru rich phase and more 

platinum like features would be expected. However, a high Ru surface composition and a 

lattice constant close to pure platinum do not necessarily oppose each other and both 

conditions are satisfied in the case of Pt particles decorated with Ru. In the literature, similar 

CV features as in that work were obtained in case of Pt(111) electrodes modified by Ru 

deposition [79-80]. So, tentatively it can be concluded that the KGEcon catalyst consists of Pt-

rich particles decorated with Ru particles.  

According to XRD and TEM, the EUP catalyst is mixture of Pt and Ru rich phases. 

Platinum features are seen in Figure 5.12, but they are not as pronounced as one would expect 

in case of 90 at % platinum alloy. An explanation can be the overlapping of Ru features with 

H-adsorption on Pt. 

 

                                                                                                                                                        

37  In this region, the current is not only governed by a capacitive contribution, but also by Faradaic current due 
to OH adsorption. 
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Figure 5.12 Cyclic voltammograms of different 30 % PtRu catalysts supported on Vulcan XC-72 at 22 
oC. Water in the working electrode compartment. Sweep rate 50 mV s-1. Flow rate 0 l h-1 except for 
WNFleach catalyst.  

Very similar CV features as in the case of the WNFleach catalyst were obtained for Ru 

decorated Pt black with a Ru surface coverage between 0.33 and 0.45 [47] as well as with 

unsupported PtRu with 58 at % Pt [37]. According to XRD, the WNFleach catalyst is a PtRu 

alloy with approximately 50 at % Pt, which is in accordance to [37]. 

The double layer region extends approximately from 0.1 V to 0.5 V vs. Ag/AgCl and 

currents in the double layer region are the same for all catalysts. In general, the capacitive 

currents from the carbon support and the PtRu particles predominate, but some pseudo 

capacitive contributions (like OH adsorption/desorption and processes on Ru-oxides [81]) can 

also be present. In our case, the ratio of carbon support to metal catalyst was kept constant 

(30 % of metal catalyst on Vulcan XC-72) and the real surface areas of all catalysts were 

approximately the same, what explains the same current for different electrocatalysts in the 

double layer region. 

Since the catalyst activity towards methanol oxidation was investigated at both room 

temperature and at 60oC, the influence of temperature on cyclic voltammetry behaviour in 

absence of methanol was also checked. It is shown in Figure 5.13 for the KGEcon - MEA. In 

comparison to room temperature, at higher temperatures hydrogen evolution starts at higher 

potentials. In addition, a difference is observed in the double layer region, where the 

beginning of the OH adsorption is shifted towards more negative potentials (see also Inset - 
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Figure 5.13) (due to the shift of the equilibrium potential of this reaction), which can have a 

promoting effect on the rate of methanol oxidation. The same features are observed for all 

other examined catalysts (not shown). 
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Figure 5.13 Cyclic voltammogram of the KGEcon catalyst, supported on Vulcan XC-72 at room 
temperature and 60 oC. Water in the working electrode compartment. Sweep rate 20 mV s-1. Flow rate 
10 l h-1. Inset: Steady state measurements at room temperature and 60 oC. Conditions: fixed delay 5 
min, water in the working electrode compartment, flow rate 10 l h-1. 

5.4. Catalyst activity in methanol oxidation 

Steady-state experiments for methanol oxidation on different PtRu MEAs, at a flow rate 

of 10 l h-1 and at room temperature (22oC) and 60 oC, are shown in Figure 5.14. The currents 

are corrected for the background current, recorded at the same conditions in absence of 

methanol, but the correction was insignificant for all catalysts. 

 In Figure 5.14 two potential regions are observed. The potential region from 0.15 to 

0.3 V vs. Ag/AgCl at room temperature and the region from 0.1 to 0.25 V vs. Ag/AgCl at 

60oC, where the E – log (I) correlation is linear in the Tafel region, i.e. the activation 

controlled region (Chapter 4). In the potential region from 0.3 to 0.5 V vs. Ag/AgCl at room 

temperature and in the region from 0.25 to 0.5 V vs. Ag/AgCl at 60oC system reaches the 

limiting current level (Chapter 4). 

Tafel slope values determined for different electrocatalyst from Figure 5.14 in the Tafel 

region are listed in Table 5.5. 



 103

 

Figure 5.14 Steady state polarisation curves for methanol oxidation on different 30% PtRu/Vulcan XC-
72 catalysts at 22 oC and 60 oC and at a flow rate of 10 l h-1. Methanol concentration in the working 
electrode compartment: 1M. 

At room temperature, Tafel slope values for EUP and KGEcon are almost the same 

(about 120 mV dec-1), while the value for the WNFleach catalyst is higher. At 60oC, Tafel 

slope values are approximately the same for all catalysts. The temperature increase causes a 

decrease of the Tafel slope value from 120 mV dec-1 to approximately 108 mV dec-1 for the 

EUP and KGEcon catalysts and from 139 to 107 mV dec-1 for the WNF WA catalyst. By 

increasing the temperature a commencement 38 of the reaction shifts approximately 100 mV 

to lower values for all of the investigated catalysts. The reaction reaches the region of mixed 

control (potential region between activation controlled region and limiting current region) 

about 100 mV earlier than at room temperature. 

In Chapter 4 a simple model for methanol oxidation was presented. According to this 

model, the Tafel slope value is changing from 40-44 mV dec-1 (at room temperature and 60oC 

respectively) at very negative potentials to infinity at very positive potentials. Low Tafel 

slope value was not experimentally verified (it corresponds to low current values and it is 

influenced by background correction), while a slope close to infinity was recorded in the 

                                                 

38 Commencement of the reaction is a poorly defined term. Here, it was chosen as potential where the observed 
current reaches 1 mA. 
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limiting current region. Experimentally obtained values are approximately 120 mV dec-1 at 

room temperature for KGEcon and EUP catalysts, while 139 mV dec-1 in case of the 

WNFleach catalyst and about 110 mV dec-1 for all catalysts at 60 oC. It was suggested in 

Chapter 4 that the experimental Tafel slope values do not correspond to a single r.d.s. as in a 

case of a simple electrochemical reaction, but belong to a transient region between low and 

high Tafel slope values in the model.  

Table 5.5 Tafel slope values for different 30 % PtRu/Vulcan XC-72 catalysts at 22 and 60 oC. 

Catalyst  Slope / mV dec-1

 t = 22oC t = 60oC 

EUP 118 108 

KGEcon 121 108 

WNFleach 139 107 

The limiting current region is more pronounced in case of EUP and KGEcon catalysts 

than the WNFleach catalyst. In Chapter 4, it was discussed that current in this region can be 

limited by slow transport of methanol (reactant) or CO2 (product) when this current would be 

a diffusion limiting current or by a slow chemical reaction preceding the electrochemical 

reaction. In the latter case this current would be a reaction limiting current. It is also possible 

that the limiting current is dominated by both slow diffusion and slow chemical reaction. In 

the model proposed in Chapter 4 it was assumed that the limiting current is a reaction limiting 

current. This assumption was supported by some experimental findings, but it is still under 

consideration. It should be mentioned that diffusion limiting currents do not depend on the 

catalyst real surface area or catalyst composition. This means that all catalysts should have 

the same limiting currents if those currents are diffusion limited. In our case (Figure 5.14) 

this condition is not satisfied at room temperature, but at 60oC all limiting currents are almost 

the same. So this point remains unclear. 

The catalytic activity for methanol oxidation decreases in the order: EUP > KGEcon > 

WNFleach at room temperature, while at 60 oC the activity of the EUP catalyst is the same as 

for the KGEcon catalyst. The lowest activity is again obtained for the WNFleach catalyst.  

The observed difference in activity can be caused by several reasons: a) different 

mechanism of methanol oxidation, b) different real surface areas, c) different extents of 

alloying, d) particle size effect, e) geometrical effect. These are discussed in the following. 
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In accordance to the model proposed in Chapter 4 the same mechanism for methanol 

oxidation is accepted for all examined catalysts, so the reason “a” as an explanation for 

different catalyst activities is discarded. 

Real surface areas for all catalysts are obtained by means of CO stripping voltammetry. 

The trend is as follows: WNFleach > KGEcon > EUP. Reaction rates for methanol oxidation are 

normalized with respect to the real surface areas (see Table 5.3) and the results are shown in 

Figure 5.15. 

The trend in catalyst activity remained the same.39 Almost no influence of the real 

surface area was observed since real surface areas of the catalysts are similar. 

Catalyst characterisation (both ex-situ and in-situ methods) has shown, that the catalysts 

are different in the extent of Pt:Ru alloying, particle size etc. The highest activity was 

obtained for the EUP catalyst. This catalyst is considered as a mixture of a Pt-rich phase, a 

Ru metal phase and an oxide phase. The KGEcon catalyst has same lattice constant as the EUP 

catalyst, but it was assumed that Pt-rich particles are decorated with Ru particles. So a higher 

Ru surface concentration is expected in case of the KGEcon than in case of the EUP catalyst. 

Optimal Pt:Ru composition for methanol oxidation is changing with temperature [45]. At 

room temperature a Pt-rich catalyst is more active while at 60oC Ru begins to be active too. 

This would explain higher EUP activity at room temperature, while at 60 oC its activity 

becomes the same as for the KGEcon sample.  

According to XRD data, the WNFleach catalyst is a PtRu alloy with a Pt:Ru composition 

close to the nominal value. Tentatively, the same was concluded from electrochemical 

characterisation in absence of methanol. It was already reported that an alloyed catalyst has a 

lower activity than a non-alloyed [77]. From obtained in this work no definite conclusion can 

be drawn, since the WNFleach catalyst differs from the other catalysts not just in the extent of 

PtRu alloying, but also in the Pt:Ru particle composition. 

 

                                                 

39 It should be mentioned that using the area, which was determined by CO stripping at room temperature, for 
surface area normalisation at 60oC, is not completely justified in the case when oxide content in the catalysts is 
different. 
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Figure 5.15 Steady state polarisation curves for methanol oxidation at different 30% PtRu/Vulcan XC-
72 catalysts at 22 and 60 oC and at flow rate of 10 l h-1. Methanol concentration in the working 
electrode compartment was 1M. Currents are normalized per real surface area. 

5.4.1. Current vs. time - stability test 

For fuel cell operation, not only a high catalyst activity towards methanol oxidation, but also 

good stability during the prolonged polarisation at constant potential is required. To test this, 

chronoamperometric experiments at 0.3 V were performed and the results are presented in 

Figure 5.16. For all investigated catalysts, steady state conditions are reached after 

approximately 10 min at 22 oC, while at 60oC steady state conditions were not reached in the 

investigated time span. At room temperature the potential at which the current decay is 

recorded, is in the Tafel region, while at 60oC it is in the region under mixed control (see 

Figure 5.14). It is possible that the system needs more time to reach steady state conditions at 

a higher temperature due to mixed control of the overall reaction. Such decrease of the 

catalytic activity with time was observed for other PtRu catalysts as well [82-83]. In respect 

to the stability at room temperature and 60oC all catalysts behave in the same way. 
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Figure 5.16 Current vs. time curves for different PtRu catalysts supported on Vulcan XC-72 at 0.3 V 
vs. Ag/AgCl and at 60 oC. Potential was 0.3 V vs. Ag/AgCl. Flow rate was 10 l h-1. 1 M methanol 
solution in water was in the working electrode compartment. 

5.4.2. Electrochemical impedance spectroscopy 

Impedance plots for different 30%PtRu/Vulcan XC-72 catalysts in the frequency range from 

2 kHz - 10 mHz at room temperature and 60oC are shown in Figure 5.17. All plots are ohmic 

resistance compensated.40 Impedance plots are nominally recorded at 0.3 V vs. Ag/AgCl, but 

due to the ohmic resistance in the system real potential values were: 

0.290 ± 0.003 V vs. Ag/AgCl at room temperature and 0.260 ± 0.003 V vs. Ag/AgCl at 60 oC.  

Impedance plots at 22oC consist each of a not complete depressed semicircle, while at 

60oC the semicircle is completely formed and in addition it has a low frequency inductive 

loop. The lack of an inductive loop at 22oC is due to the bigger total resistance. Increasing the 

temperature, the diameter of the semicircle decreases which indicates a lowering of the 

charge transfer resistance for methanol oxidation. As in Chapter 4, impedance spectra are 

shown only in a qualitative way and they reveal the same features as the impedance spectra of 

unsupported PtRu catalyst in Chapter 4.  

                                                 

40 Ohmic resistance always appears at the high frequency end of the impedance spectra and is mainly governed 
by the electrolyte resistance (sulphuric acid and Nafion 105 membrane). Typical resistance values under the 
experimental conditions of this work (molar concentration of sulphuric acid was 1M) were: 1.3 ±0.1 Ω at 22oC 
and 0.96 ±0.03 Ω at 60oC.  
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Figure 5.17 Experimental impedance plots for different 30%PtRu/Vulcan XC-72 catalysts at different 
temperatures: � - EUP, ο - KGEcon and ∆ - WNFleach. Conditions: 1 M methanol in working electrode 
compartment; flow rate 10 l h-1, potential (nominal) 0.3 V vs. Ag/AgCl. 

Also, impedance plots are in agreement with steady state data i.e. they support the same 

mechanism for methanol oxidation at all investigated catalysts. 

5.5. Influence of conditioning, support and leaching 

5.5.1. Influence of conditioning 

The influence of conditioning on the KGE catalyst performance is shown in Figure 5.18, 

where cyclic voltammograms of unconditioned (KGEuncon) and conditioned (KGEcon) 

catalysts prepared by KGE method in the absence of methanol are presented. The 

unconditioned sample is featureless, with a poorly pronounced hydrogen 

adsorption/desorption region and with high currents in the double layer region. Conditioning 

produced more Faradaic-like features, i.e. more pronounced hydrogen adsorption/desorption 

region and lower currents in the double layer region. 

The expected effects of conditioning are the removal of organic residues from the 

catalyst surface, which remained after the synthesis, by initial O2 treatment [66] and platinum 

reduction to zerovalent state as well as ruthenium reduction [84], which should occur during 

the subsequent H2 conditioning. Camara et al. [66] showed that catalyst treatment under a H2 

atmosphere can modify the catalyst structure (Ru moves into the f.c.c crystal of Pt and a real 
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alloy is formed). According to XRD data, the lattice constant for the unconditioned sample is 

close to the lattice constant of pure platinum, while the conditioned sample has a value near 

the lattice constant of Pt-rich alloy. 
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Figure 5.18 Cyclic voltammograms of unconditioned and conditioned KGE catalysts supported on 
Vulcan XC-72 at 22 oC. Water in the working electrode compartment. Sweep rate 50 mV s-1. Flow rate 
0 l h-1. 

The lower currents in the double layer region obtained after conditioning can be due to 

reduction of some Ru-oxides (the kind of Ru-oxides and the degree of hydration is synthetic 

sensitive. So, for example, RuOxHy is known to have a huge capacitance [81]). Increase of 

CO stripping area in the case of KGEcon compared to KGEuncon sample was correlated to a 

decrease in quantity of the Ru-oxide phase in the former catalyst.  

The influence of the catalyst conditioning on methanol electrooxidation is illustrated for 

the same KGE catalysts in Figure 5.19. The conditioned sample is more active in the whole 

potential region. The Tafel slope remains unchanged which indicates the same rate-

determining step. Although data for the unconditioned sample are recorded at quasi-steady 

state conditions, a comparison with the conditioned sample where data are collected under 

steady-state conditions can still be made as was shown in the Chapter 2. A normalization per 

real surface area determined from CO stripping was applied, and the results are shown in 

Figure 5.20. After normalization, the activities of conditioned and unconditioned samples are 

almost the same. Hence conditioning only increases the active surface area. 
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Figure 5.19 Tafel plots for methanol oxidation at unconditioned and conditioned 30% PtRu / Vulcan 
XC-72 at 22 oC and 60 oC and at a flow rate of 10 l h-1. For the KGEuncon catalyst data are collected at 
sweep rate of 1 mV s-1, while for the KGEcon catalyst in a steady state experiment. 

 
Figure 5.20 Polarisation curves for methanol oxidation at unconditioned and conditioned 30% PtRu / 
Vulcan XC-72 at 22 oC and 60 oC and at a flow rate of 10 l h-1. Currents are normalized per real 
surface area determined from CO stripping experiments. Conditions are the same as for Figure 5.19. 
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5.5.2. Influence of support 

Cyclic voltammograms of unconditioned supported and unsupported PtRu catalysts prepared 

by the KGE method in absence of methanol are shown in Figure 5.21. The shape of the 

voltammograms is the same. The supported sample shows higher currents due to the carbon 

support (both catalysts have the same metal loading, 1 mg cm-2, while the supported sample 

additionally has a certain amount of carbon). The hydrogen adsorption/desorption region is 

somewhat more pronounced in case of the supported catalyst. Generally, the cyclic 

voltammetry behaviour resembles surfaces being enriched in Ru. (It is characteristic for pure 

Ru catalyst that the cyclic voltammogram is distorted, i.e. it is not very symmetrical to the 

zero current line and is shifted towards negative currents in the hydrogen region, while at 

more positive potential, in the region of oxide formation, it is distorted in the opposite 

direction [77]). Previously it was discussed that the KGE catalyst most probably consists of 

Pt particles decorated with Ru particles. In addition, the presence of a Ru-oxide phase is 

expected, although it is not clearly seen in the XRD patterns. 
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Figure 5.21 Cyclic voltammograms of supported and unsupported KGE catalysts at 22 oC. Water in 
the working electrode compartment. Sweep rate 50 mV s-1. Flow rate 0 l h-1. Both supported and 
unsupported samples were unconditioned. 

The supported catalyst is more active for methanol oxidation (Figure 5.22) than the 

unsupported one. The Tafel slopes are the same for both catalysts, so the mechanism of 

methanol oxidation is unchanged. A difference in activity of the supported vs. the 

unsupported catalyst is observed mainly in the limiting current region.  
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Figure 5.22 Tafel plots for methanol oxidation at supported and unsupported KGE KA catalysts at 
22 oC and 60 oC, at a flow rate of 10 l h-1. Data are collected at a sweep rate of 1 mV s-1. 1 M 
methanol in the working electrode compartment. 

5.5.3. Influence of leaching 

Cyclic voltammograms of an unleached i.e. as-prepared catalyst (WNFunleach) and leached 

(WNFleach) samples are shown in Figure 5.23. The leached catalyst shows higher currents in 

the whole investigated potential region. This could be due to a problem with the unleached 

sample, which shows bad adhesion of the catalyst to the Nafion membrane, and as a result a 

low utilisation of the catalyst. 

Activities of the leached and unleached samples in methanol oxidation at 22 oC and 60 
oC were also investigated. The current values for the unleached sample at both room 

temperature and 60 oC were affected by background currents. This suggests a kind of 

disproportionality between the active surface area for methanol oxidation and processes 

taking place in absence of methanol. 

Tafel slope values for unleached and leached samples are given in Table 5.6. 

In general, the values for the unleached sample are higher than for the leached one. It 

was discussed that experimentally determined Tafel slope values, according to the model 

(Chapter 4), belong to the transient region, i.e. the Tafel slope varies from of 40 - 44 mV 

dec-1 and infinity. The experimentally observed Tafel slope value depends on the ratio of rate 

constants of step 1 and step 3 in the mechanism for methanol oxidation (see Chapter 4).  
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Figure 5.23 Cyclic voltammograms of an unleached (WNFunleach) and leached (WNFleach) catalysts 
prepared by the WNF method. Conditions: Water in working electrode compartment, sweep rate 50 
mV s-1, flow rate 0 l h-1, temperature 22oC. 
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Figure 5.24 Steady state polarisation curves for methanol oxidation on unleached (WNFunleach) and 
leached (WNFleach) catalysts prepared by the WNF method, at 22 and 60 oC, and at flow rate of  
10 l h-1. Methanol concentration in working electrode compartment was 1M. Hollow square stands for 
methanol oxidation currents of WNFunleach, which are not corrected for background currents. 
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Table 5.6 Tafel slope values for unleached and leached samples prepared by WNF method. Data 
taken from Figure 5.24. 

Catalyst slope / mV dec-1

 t = 22oC t = 60oC 

WNFunleach 181 139 

WNFleach 139 107 

If step 1 in the mechanism, i.e. methanol adsorption, is slow at a certain surface, then the 

apparent Tafel slope value will be higher. 

There are at least two reasons for slow methanol adsorption in the case of the unleached 

sample. At first, an unleached sample has a very small particle size (according to TEM, from 

0.8 – 1.2 nm) and second its surface is partially covered by the Al-protecting shell. 

A so-called "particle-size" effect is reported in the literature with respect to methanol 

oxidation on platinum nanoparticles [85-87]. It was shown that for particle sizes in the range 

from 4.5 to 10 nm the activity is constant, while for particles in the range from 4.5 to 1.2 nm 

it decreases. Two possible explanations are offered. The first is that a decrease in particle size 

decreases the number of possible sites for methanol adsorption. This is due to geometrical 

reasons, i.e. smaller particles have greater edges and kicks to plain surface ratio, compared to 

larger particles [12]. In addition, as in this work, particles can be partly covered by Al-shell. 

According to the model developed by Gasteiger et al. [32], methanol adsorption requires 

three adjacent platinum sites at room temperature, while at 60oC methanol adsorption at Ru 

sites is also possible. Also, they appear to have less strongly bonded hydrogen sites at the 

surface and it is claimed that these sites are preferable for methanol adsorption [31]. The 

second explanation is that smaller Pt particles have greater affinity for OH adsorption, which 

in turn decreases the possibility of methanol adsorption since methanol and water adsorption 

are competitive processes. The last observation was confirmed in a XPS study where it was 

shown that smaller particles have greater affinity for oxide formation [87]. Also, cyclic 

voltammetry studies on the formation and reduction of Pt-oxide at Pt particles of different 

size have shown stronger adsorption of oxygenated species at Pt particles of smaller size [27], 

[85]. 

The lower overall activity of the unleached sample is due to a low total catalyst 

utilisation because of the problems in MEA preparation.  
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For both catalysts the limiting current is not reached at room temperature as well as for 

the unleached sample at 60 oC. The reason can be the low rate of the overall reaction. 

5.6. Conclusions 

Carbon supported and unsupported PtRu catalysts prepared by three varieties of the salt-

reduction colloid method were investigated with regard to differences in morphology and in 

electrochemical behaviour. 

EDX analysis showed that all catalysts, after leaching and conditioning, contain only 

platinum, ruthenium and carbon. 

In XRD analysis, only peak reflections of the platinum f.c.c. structure were seen. 

Lattice constants of the EUP and KGE samples are close to lattice constant of pure Pt. They 

were assigned to a Pt rich PtRu alloy. In case of the WNFleach catalyst, the lattice constant was 

close to the lattice constant of a PtRu alloy of approximately 50 at % Pt. No peak reflections 

of Ru h.c.p structure or of anhydrous or hydrous RuO2 were observed. The particle size 

obtained by the XRD method decreases in the order KGEcon>EUP>WNFleach. 

TEM analysis revealed a uniform particle size distribution and dispersion over the 

carbon support. The average particle sizes obtained by TEM were lower than values obtained 

by XRD. In the case of the EUP catalyst, TEM with colour element mapping has shown 

metal phase segregation. Pt particles were observed next to Ru particles. 

According to CO stripping voltammetry, the activities of EUP and WNFleach catalysts 

are comparable, while the least active was KGEcon. The CO stripping surface areas follow the 

order WNFleach > KGE ≈ EUP.  

Cyclic voltammetry in absence of methanol showed some differences in the hydrogen 

adsorption/desorption region. The absence of H-adsorption at potentials higher than – 0.1 V 

vs. Ag/AgCl was ascribed to a Pt surface composition with less than 50 at % Pt.  

The EUP catalyst has the highest activity in methanol oxidation at room temperature, 

while at 60oC activities of the EUP and the KGEcon catalysts were the same. Regarding the 

catalyst structures the following conclusions can be made: The EUP catalyst was found to 

consist of Pt rich particles and Ru particles nearby. The KGEcon consists of Pt particles 

decorated with Ru particles and finally the WNFleach catalyst is a true PtRu alloy catalyst. For 

all catalysts, the same mechanism of methanol oxidation seems to be valid. After the currents 

were normalized per CO stripping area, the trend in catalyst activity remained the same. The 
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higher EUP than KGEcon catalyst activity at room temperature can be explained by a higher 

exposed Pt surface area in the former case. At 60oC it was assumed that Ru becomes active in 

methanol adsorption as well. 

Catalyst conditioning, as shown at the KGE catalyst, results probably in some Ru-oxide 

reduction. A conditioned sample is more active than an unconditioned for methanol oxidation 

and the surface area (determined by CO stripping) was doubled with conditioning. The rate 

determining step remained the same after conditioning. After the currents are normalized 

with regard to the CO stripping surface area, the activities of the unconditioned and the 

conditioned samples were almost equal. 

Comparison between a supported and unsupported sample showed a somewhat better 

performance towards methanol oxidation for the supported sample. Higher surface area in 

case of the supported sample is expected since some degree of particle agglomeration is 

mandatory for the unsupported samples. Tafel slope values for both supported and 

unsupported samples are the same, indicating the same mechanism of methanol oxidation.  

The influence of leaching was demonstrated for two WNF supported catalysts. The 

unleached sample has a smaller particle size than the leached sample, but its performance in 

methanol oxidation was worse. The reason was the low utilisation of the unleached sample, 

which might be the result of the Al-shell and possible particle size effects.  

5.7. Outlook 

This Chapter showed that the characterisation of fuel cell catalysts is not simple at all. There 

are many unknowns and no single method for catalyst characterisation can give a definite 

answer. A combination of two or more methods is required. Here the use of CO stripping and 

cyclic voltammetry in absence of methanol in combination with XRD for catalyst 

characterisation was demonstrated. 

XPS may give information on amorphous Ru-oxide species and DEMS can give 

information on distribution of reaction products, so these two methods are suggested in 

further catalysts characterisation. 

Supported catalysts showed a higher activity with respect to methanol oxidation than 

the unsupported ones. In the future, it would be interesting to analyse the effect of different 

types of support on the activity using the same type of catalyst. 
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6. Concluding Remarks 

The concluding remarks for this study can be summarized as follows: 

In this study the cyclone flow cell was used for the first time for a systematical 

investigation of the kinetics of methanol electrooxidation. It proved to be suitable for such a 

study. Due to its unique feature, which allows investigation of electrochemical reactions in a 

membrane electrode assembly and at the same time a three electrode set-up, the experimental 

data are collected with a higher reliability than in a fuel cell set-up. Furthermore, well-defined 

hydrodynamic conditions enable a better determination of the role of diffusion in the overall 

anodic process. 

The CO adsorption method can be used for the determination of real surface area of 

fuel cell catalyst under fuel cell relevant conditions (Chapter 3). It was shown that the 

experimentally obtained charge is greatly influenced by non-faradaic and other faradaic 

contributions, which underlines the importance of the base line substraction and the choice of 

proper integration limits in comparing data of different catalysts. A method for the base line 

substraction is proposed in order to eliminate the contributions due to oxide formation and 

double layer charging. The CO stripping line integration up to the half peak potential gave 

reliable results for the total CO charge, independent of the sweep rate used.  

In Chapter 4 experimental data on the kinetics of methanol oxidation on a commercial 

catalyst are presented. The influence of the flow rate, the methanol concentration and the 

temperature was investigated. Based on these experimental and literature data, a model of 

methanol electrooxidation is selected and a rate expression is formulated. A good agreement 

between experimental data and simulated results was obtained after fitting of the kinetic 

parameters. 

In Chapter 5 carbon supported and unsupported PtRu catalysts prepared by three 

variations of the salt-reduction colloid method were investigated with respect to their 

differences in morphology and in electrochemical behaviour. All catalysts were nominally 

with the same PtRu composition. Based on physical methods (EDX, XRD, TEM) and 

electrochemical methods (CV, CO stripping) it was concluded that only one catalyst 
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(WNFleach) is a PtRu alloy with a Pt:Ru composition close to the nominal one. The best 

activity in methanol oxidation was obtained for the EUP catalyst, which was found to be a 

mixture of PtRu alloy with high Pt content, and metallic and oxide Ru phases. The model 

proposed in Chapter 4 is consistent with the experimental data obtained using these new 

catalysts. 
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Appendix I 

List of symbols 

Bi  Biot number (dimensionless) 

OHCH3
c  bulk methanol concentration (mol dm-3) 

+H
c  H+ concentration in Nafion membrane (1.2 mol dm-3)  

OHCH3
a  reaction order with respect to methanol (dimensionless) 

OH2
c  water concentration (55.5 mol dm-3) 

∆Hads enthalpy of adsorption of step (2) (J mol-1) 

a lattice parameter (nm) 

B(2θ) width of the peak at the half height (in rad) 

Cdl double layer charging (F) 

D methanol diffusion coefficient in water (m2 s-1) 

d particle diameter (nm) 

DaII Damköhler number of second kind (dimensionless) 

DBDL methanol diffusion coefficient in back diffusion layer (m2 s-1) 

dBDL thickness of back diffusion layer (µm) 

DCL methanol diffusion coefficient in catalyst layer (m2 s-1) 

dCL thickness of catalyst layer (µm) 

din diameter of the inlet tube (here 0.40 cm) 

E potential (V) 

Eθ equilibrium potential (V) 

Ea,app apparent activation energy (J mol-1) 

Ea,i activation energy for the i-th step in a reaction mechanism (J mol-1) 

Ep potential energy (J) 
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F Faraday’s constant (96485 C mol-1) 

I total current (A) 

Idl double layer current (A) 

Imass current normalized with respect to metal loading (A gPtRu
-1) 

j current density (per geometric surface area) (A m-2) 

ki rate constant for the i-th step in the reaction mechanism 

km external film mass transport coefficient (m s-1) 

massPt mass content of Pt determined from EDX (%) 

massRu mass content of Ru determined from EDX (%) 

Q charge to oxidize full monolayer of CO adsorbed (C) 

QCO CO stripping charge (C) 

QH hydrogen desorption charge (C) 

r electrode radius (here, 0.80 cm) 

R universal gas constant (8.314 J mol-1 K-1) 

Re Reynolds number (dimensionless) 

ra distance between metal colloids (nm) 

ri reaction rate for the i-th step in the reaction mechanism (A) 

rin cyclone radius at the middle of the inlet tube (here 2.97 cm) 

S real surface area (cm2) 

Sc Schmidt number (dimensionless) 

SCO CO surface area (cm2) 

Sh Sherwood number (dimensionless) 

Ssp specific surface area (m2 g-1) 

SXRD specific surface area determined from XRD particle size diameter (m2 g-1) 

T temperature (oC) 

t time (s) 
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V volumetric flow rate (dm3 min-1) 

ZIm impedance imaginary part (Ω) 

ZRe impedance real part (Ω) 

 

Greek letters 

αi charge transfer coefficient for the i-th step of reaction mechanism (dimensionless) 

λKα1 wavelength of X-rays used (here 0.154056 nm) 

µ dynamic viscosity of fluid (Pa s) 

θ CO  CO coverage on the platinum sites (dimensionless)  

sat
COθ  CO saturated surface coverage (dimensionless) 

θOH  OH coverage on the ruthenium sites (dimensionless) 

θ H  hydrogen coverage at end-point potential (dimensionless)  

2θ diffraction angle (o) 

θmax Bragg angle (o) 

ρ fluid density (kg m-3) 

ρPtRu PtRu alloy density (kg m-3) 

ρPt Pt density (kg m-3) 

ρRu Ru density (kg m-3) 

ω angular velocity (s-1) 

υ sweep rate (mV s-1) 

 

Abbreviations 

BDL back diffusion layer 

BET Brunauer Emmett Teller surface area measured with N2

CFC Cyclone Flow Cell 
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CL Catalyst Layer 

CV Cyclic Voltammetry 

DEMS Differential Electrochemical Mass Spectroscopy 

DMFC Direct Methanol Fuel Cell 

EDX Energy Dispersive X-ray Analysis 

EIS Electrochemical Impedance Spectroscopy 

EMIRS Electrochemically Modulated Infra Red Spectroscopy 

FTIR Fourier Transform Infra Red Spectroscopy 

FTIR-DRS  Fourier Transform Infrared-Diffuse Reflection Spectroscopy 

H-region hydrogen adsorption / desorption region (here from -0.2 to 0.1 V vs. Ag/AgCl). 

IR Infra-Red Spectroscopy 

IRRAS  Infra-Red Reflection Absorption Spectroscopy 

MEA Membrane Electrode Assembly 

O-region in platinum potential region between 0.8 and 1.2 V vs. Ag/AgCl 

r.d.s rate determining step 

RHE Reversible Hydrogen Electrode 

SEM Scanning Electron Microscopy 

SPAIRS  Single Potential Alteration Infrared Spectroscopy 

STM Scanning Electron Microscopy 

TEM Transmission Electron Microscopy 

XPS X-ray Photoelectron Spectroscopy 

XRD X-ray Diffraction 
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Appendix II 

MEA notation 

In this study the following MEA notation was used. For example: 

13 CC C N105 APtRu5 003 

13 denotes total geometrical surface area. In this case 12.56 cm2. 

CC denotes cyclone cell 

C denotes the type of the back diffusion layer, here carbon cloth (alternatively for 

Toray paper would be T22 where the number denotes Teflon content in mass %). 

N105 type of Nafion membrane used for the MEA 

A denotes anode side in the investigated cell 

PtRu stands for the type of catalyst, here unsupported PtRu catalyst; alternatively for 

supported catalyst would be PtRuC. Non-commercial catalysts were denoted with 

corresponding names (Table A II.1) 

5 stands for metal loading (here 5 mg cm-2) 

003 denotes the number of MEA 

Table A II.1 Non-commercial catalyst notation and abbreviations 

Method Catalyst description Full name Abbreviation 

EUP Supported, conditioned EUP AA 105 03 EUP 

KGE Supported, unconditioned 

Supported, conditioned 

Unsupported, unconditioned 

KGE KA 083 01 

KGE KA 083 02 

KGE KA 084 01 

KGEuncon 

KGEcon 

KGEunsupp

WNF Supported, unleached 

Supported, leached 

WNF WA 083 01 

WNF WA 152 04 

WNFunleach 

WNFleach
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