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Abstract

Kinetic schemes for the relativistic Euler equations are presented, which describe the flow of
a perfect gas in terms of the particle density n, the spatial part of the four-velocity u and the
pressure p. The physical frame in the whole study will be exclusively special relativity. We
consider both, the ultra-relativistic Euler equations, and a more general form of the relativis-
tic Euler equations. The general form of relativistic Euler equations covers the whole range
from the non-relativistic to the ultra-relativistic limit. We also consider as a special case the
non-relativistic theory. The basic ingredients of the kinetic schemes are the phase density in
equilibrium and the free-flight. The phase density generalizes the non-relativistic Maxwellian
for a gas in local equilibrium. The free-flight is given by solutions of a collision free kinetic
transport equation. The kinetic schemes presented here are discrete in time but continuous in
space. The schemes are explicit and unconditionally stable, i.e., no Courant-Friedrichs-Levy
(CFL) condition is needed. Also the schemes are truly multi-dimensional as they cover all
the directions of wave propagation in the gas evolution stage. These kinetic schemes preserve
the positivity of particle density and pressure for all times and hence are L'—stable. The
schemes satisfy the weak form of conservation laws for mass, momentum, and energy, as well
as an entropy inequality in any arbitrary domain. The schemes also satisfy the total variation
diminishing (TVD) property for the distribution function through a suitable choice of the
interpolation strategy. We also extend the schemes to account for the boundary conditions.
The kinetic schemes described above are first order in time and space. We also extend the
schemes to second order for the one- and two-dimensional ultra-relativistic Euler equations.

In addition, we develop another type of kinetic schemes for the ultra-relativistic Euler equa-
tions which are discrete both in time and space. These are an upwind conservative form of
the kinetic schemes in which the fluxes are the moments of the relativistic free-flight phase
density. We use flux vector splitting in order to calculate the free-flight moment integrals
under a natural CFL condition due to the structure of light cone, since every signal speed
is bounded by the velocity of light. The schemes are then called kinetic flux vector splitting
(KFVS) schemes. Since KFVS schemes are based on the free particle transport at the cells
interface in the gas evolution stage, they give smeared solutions especially at the contact
discontinuity. To overcome this problem “particle” collisions are included in the transport
process. Consequently, the artificial dissipation in the schemes are much reduced in compar-
ison with the usual KFVS schemes. These new upwind schemes are called BGK-type KFVS
schemes. For the ultra-relativistic Euler equations we have to evaluate the free-flight moment
integrals over the compact unit sphere due to the finite domain of dependence in the relativis-
tic kinetic theory. But in the classical kinetic schemes the free-flight moment integrals have
infinite integration limits, therefore they need some error-functions which have to be cutoff
at their tails. Our schemes are extended to the two-dimensional case in a usual dimensionally
split manner. We use a MUSCL-type initial reconstruction for the second order accuracy.

For the comparison of the numerical results, we give the results of exact Riemann solver and
Godunov scheme for the one-dimensional ultra-relativistic Euler equations. We also present
the central schemes and apply them to both non-relativistic and relativistic Euler equations.
The main advantages of the central schemes are compactness and simplicity. We have carried
out several one- and two-dimensional numerical test case computations. It was found that
kinetic schemes have a comparable accuracy with the upwind and central schemes.






Zusammenfassung

Wir stellen kinetische Verfahren fiir die relativistischen Euler-Gleichungen vor, die die Stro-
mung eines perfekten Gases anhand der Teilchendichte n, des rdumlichen Anteils der Vierer-
geschwindigkeit u und des Druckes p beschreiben. Wir betrachten im folgenden ausschliefSlich
den physikalischen Rahmen der speziellen Relativitéitstheorie, mit Ausnahme einiger klas-
sischer Grenzfille. Wir untersuchen sowohl die ultra-relativistischen Euler-Gleichungen als
auch eine allgemeinere Form der relativistischen Euler-Gleichungen. Die allgemeine Form der
relativistischen Euler-Gleichungen deckt den gesamten Bereich vom nicht-relativistischen bis
zum ultra-relativistischen Grenzfall ab. Die Grundbestandtteile der kinetischen Schemata
sind die Phasendichte im Gleichgewicht und der freie Flug. Die Phasendichte verallgemeinert
die klassische Maxwellsche Phasendichte fiir ein Gas im lokalen Gleichgewicht. Der freie Flug
ist durch die Losungen einer kollisionsfreien kinetischen Transportgleichung gegeben. Die hier
dargestellten kinetischen Schemata sind diskret in der Zeit, aber kontinuierlich beziiglich des
Ortes. Die Verfahren sind explizit und unbedingt stabil, d.h. es wird keine Courant-Friedrichs-
Levy- (CFL) Bedingung benétigt. AufBlerdem sind die Verfahren echt mehrdimensional, da
sie alle Richtungen der Wellen-Bewegung gleichwertig behandeln. Die kinetischen Schemata
erhalten die Positivitit von Teilchendichte und Druck fiir alle Zeiten und sind deshalb L!-
stabil. Die Verfahren erfiillen die schwache Form der Erhaltungsgesetze fiir Masse, Impuls
und Energie sowie eine Entropie-Ungleichung in einem beliebigen Gebiet. Auflerdem haben
die Schemata die Eigenschaft der Reduktion der totalen Variation fiir die Verteilungsfunktion
bei geeigneter Wahl der Interpolationsstrategie. Wir fithren weiterhin Randbedingungen in
die Verfahren ein. Die oben beschriebenen kinetischen Schemata sind erster Ordnung in Zeit
und Raum. Wir erweitern diese Verfahren auf zweite Ordnung fiir ein- und zweidimensionale
ultra-relativistische Euler-Gleichungen.

Desweiteren entwickeln wir einen anderen Typ kinetischer Schemata fiir die ultra-relativist-
ischen Euler-Gleichungen. Diese Verfahren sind diskret in Zeit und Raum. Sie stellen eine
Upwind-Form der konservativen kinetischen Schemata dar, bei der die Fliisse die Momente
der relativistischen Phasendichte beim freien Flug sind. Wir benutzen Fluss-Vektor-Splitting,
um die Integrale der Momente beim freien Flug mit einer natiirlichen CFL-Bedingung, die sich
aus der Struktur des Lichtkegels ergibt, zu berechnen, denn die Geschwindigkeit eines jeden
Signals ist durch die Lichtgeschwindigkeit begrenzt. Diese Verfahren werden als kinetische
Fluss-Vektor-Splitting (KFVS) Schemata bezeichnet. Da KFVS-Schemata auf dem freien
Teilchentransport basieren, ergeben sich zu dissipative Losungen insbesondere an einer Kon-
taktunstetigkeit. Um diesem Problem entgegenzuwirken, werden Teilchenkollisionen in den
Transportprozess eingefithrt. Das hat zur Folge, dass die numerische Dissipation in diesen
Verfahren, im Vergleich zu gew6hnlichen KFVS-Schemata, stark reduziert wird. Diese neuen
Upwind-Schemata werden KFVS-Schemata vom BGK-Typ genannt. Fiir die ultra-relativist-
ischen Euler-Gleichungen miissen wir, wegen des endlichen Abhéngigkeitsbereichs in der
relativistischen Theorie, die Momenten-Integrale des freien Flugs nur iiber der kompakten
Einheitssphéire auswerten. Bei den klassischen kinetischen Schemata haben die Momenten-
Integrale des freien Flugs unendliche Integrationsgrenzen. Deshalb brauchen diese Schemata
gewisse Fehlerfunktionen, die an den Enden abgeschnitten werden miissen. Wir erweitern
unsere Schemata in der gewohnlichen Weise durch Dimensions-Splitting auf den zweidimen-
sionalen Fall. Dabei benutzen wir eine Anfangs-Rekonstruktion vom MUSCL-Typ fiir die
Genauigkeit zweiter Ordnung.



Zum numerischen Vergleich geben wir die Ergebnisse des exakten Riemann-Losers und des
Godunov-Verfahrens fiir die eindimensionalen ultra-relativistischen Euler-Gleichungen an.
Wir prisentieren auflerdem das hochauflésende zentrale Schema und wenden es sowohl auf die
nicht-relativistischen als auch auf die relativistischen Euler-Gleichungen an. Die wesentlichen
Vorteile zentraler Schemata sind deren Einfachheit. Wir haben eine Reihe von ein- und zei-
dimensionalen numerischen Beispielrechnungen ausgefiihrt. Es stellt sich heraus, dass kineti-
sche Schemata eine vergleichbare Genauigkeit gegeniiber Upwind- und zentralen Schemata
besitzen.
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Chapter 1

Introduction

1.1 Historical Background

In modeling flow at speeds where relativistic effects become important, space and time be-
come intrinsically coupled and the Euler equations of gas dynamics become more complicated.
However, it is still possible to write the relativistic Euler equations as a first order hyperbolic
system that can be advanced forward in time in some fixed reference frame. We call the
reference frame a laboratory frame since this is typically the frame from which we are observ-
ing. Relativistic gas dynamics plays an important role in areas of astrophysics, high energy
particle beams, high energy nuclear collisions, and free-electron laser technology. We consider
exclusively special relativity including some non-relativistic limits.

Kinetic approaches in order to solve the non-relativistic Euler equations of gas dynamics were
successfully applied to several initial and boundary value problems, see for example Deshpande
and Raul [12], Deshpande [13] [16] [15], Perthame [72] [73], Tang and Xu [83], Xu [91] 92| 93],
as well as Dreyer, Kunik and Herrmann [18,[19] 21]. Some interesting links between the Euler
system and the so called kinetic BGK-model, which was introduced by Bhatnagar, Gross and
Krook [3], are discussed in the textbooks by Cercignani [5], Cercignani, Illner and Pulvirenti
[6] as well as by Godlewski and Raviart [33].

The hyperbolic systems that can be treated by the kinetic method are those which may be
generated from kinetic transport equation and from the Maximum Entropy Principle. Since
these systems lead to a convex entropy function, they enable several rigorous mathematical
results, see for example Friedrichs and Lax [29] as well as Dafermos [L1]. In the case of ther-
modynamical equilibrium the Maximum Entropy Principle constitutes a successful method in
order to obtain the Maxwellian phase density for the Boltzmann gas as well as the corres-
ponding phase densities for the Fermi- and Bose gas in equilibrium from the corresponding
kinetic entropy definitions.

A few years after Einstein’s famous paper "Zur Elektrodynamik bewegter Korper”, Jiittner
[41] extended the kinetic theory of gases which was developed by D. Bernoulli, Clausius,
Maxwell and Boltzmann, to the domain of relativity. He succeeded in deriving the relativistic
generalization of the Maxwellian equilibrium phase density. Later on this phase density and
the whole relativistic kinetic theory was structured in a well organized Lorentz-invariant form,
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see Chernikov [7], [§], Israel [38], Miiller [63] and the textbook of deGroot, van Leeuven and
van Weert [32]. Jiittner [42] also established the relativistic form of equilibrium phase densi-
ties and the corresponding equations of state for the systems of bosons and fermions. In the
textbook of Weinberg [87] one can find a short introduction to special relativity and relativis-
tic hydrodynamics with further literature also for the imperfect fluid (gas), see for example

the papers of Eckart [23] [24] [25].

There are two approaches to solve the Euler equations numerically. One is based on the Euler
equations, for example Godunov-type schemes and central schemes. While the other approach
is based on the transport equations, for example kinetic schemes. In the kinetic schemes the
moments of the Maxwellian phase density are used in order to derive the constitutive rela-
tions. Using the conservation laws these constitutive relations lead to the Euler equations.
This distinction in the solution approaches was first made by Harten, Lax and van Leer [36].
No matter how a numerical scheme for the Euler equations is derived we expect it to have
certain properties apart from being consistent with the equations. Due to the presence of
discontinuities and weak solutions convergence is very difficult to prove. Some convergence
results are available for scalar hyperbolic equations and for special 2 x 2 systems, however,
no such result exist for the Euler equations. Other properties are needed to ascertain good
quality of the numerical solution: the numerical scheme should be robust in handling dis-
continuities, and it should show no grid dependencies in multi-dimensions. In addition, it
should retain properties specific to the Euler equations: conservation of mass, momentum,
and energy, positivity of density and pressure, and entropy inequalities. We will show in this
study that kinetic schemes preserve all these properties.

Zimmermann [95] in her Ph.D. thesis showed the connection between the method of transport
(MoT) and kinetic schemes for the classical Euler equations. She first considered the goup
of kinetic scheme for which Perthame [74] has already proved the positivity of density and
pressure. She showed that the standard first order method of transport presented by Fey
[27, 28] can be written as such a scheme: where decomposition and advection are then “ki-
netic”. She however showed that second order extensions do not fit to the framework, let alone
computationally less expensive extensions, for example extensions developed by Maurer[62]
and Noelle [66]. In order to prove the positivity property for more general decompositions and
advection solvers she generalized the concept of kinetic schemes. As a results she obtained
general, physically sensible, conditions on the decomposition and advection solver, which were
also satisfied by the second order extensions. In her numerical calculations she saw that these
conditions were in fact necessary. Recently Noelle, Kroger and Zimmermann [44] have ex-
tended these results to the Evolution Galerkin (EG) schemes showing the connection among
kinetic schemes, MoT and EG schemes.

Several numerical methods for solving relativistic gas dynamics have been reported, see Marti
and Miiller [61] and references therein. All these methods are mostly developed out of the
existing reliable methods for solving the Euler equations of non-relativistic or Newtonian gas
dynamics. It is noted that all these methods developed for the relativistic Euler equations are
based on a macroscopic continuum description. The reason is, that they solved a phenomeno-
logical form of the relativistic Euler equations, see Marti et al. [59] [60] [61]. These are the
relativistic Euler equation which can be obtained by using the classical constitutive relation
for the internal energy density and gamma-gas law. Since these equations are in Lorentz
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invariant form, they are still relativistic Euler equations. The disadvantage is, it seems that
there is no consistent kinetic phase density which can recover all the constitutive relations for
these Euler equations.

On the other hand we use kinetic schemes to solve the fully relativistic Euler equations. All
the constitutive relations for these Euler equations can be obtained directly from the moments
of the relativistic kinetic phase density, and hence is fully consistent with the kinetic theory.
Also this is the first time that kinetic theory based methods have been developed for the
solution of the relativistic Euler equations. We will formulate two types of kinetic schemes in
order to solve the initial and boundary value problems of the relativistic Euler equations, i.e.,
unconditionally and conditionally stable kinetic schemes. Both types of kinetic schemes are
explained in the following paragraphs.

Our unconditionally stable kinetic schemes presented in Chapters 4 and 6 are discrete in time
but continuous in space. These schemes are explicit and unconditionally stable. Also the
schemes are truly multi-dimensional as they cover all the directions of wave propagation at
the gas evolution stage. We derive these kinetic schemes for both general form of relativistic
Euler equations as well as its limiting case, i.e., ultra-relativistic Euler equations. There are
three basic ingredients of the kinetic schemes. The first one is the relativistic phase density
developed by Jiittner. The second one is the solution of a collision free kinetic transport
equation, which can be given explicitly in terms of a known initial phase density. For the
formulation of such type of kinetic schemes we prescribe a time step 737 > 0 and define the
equidistant times t, = n7y, n = 0,1,2, ..., called maximization times. We solve a colli-
sionless kinetic transport equation on each time interval ¢, < t < t,41, with a relativistic
Maxwellian as the initial phase density at each maximization time ¢,,. The third component
of our schemes consist of continuity conditions, which guarantee that the conservation laws
are also satisfied across the maximization times. They also determine the new initial data for
the next free-flight period. Finally, it is also possible to incorporate the out-flow and adiabatic
boundary conditions into these kinetic schemes in a quite natural way, which we will explain
after deriving the schemes. By taking moments of the corresponding phase densities one can
obtain every macroscopic quantity like particle density, energy density, pressure and velocity
four-vector. These macroscopic quantities will solve the relativistic Euler equations in the
limit 7a; — 0. These kinetic schemes preserve the properties like conservations laws, entropy
inequality, positivity, and L;— stability. In order to calculate the relativistic phase density in
free-flight, a suitable interpolation polynomial is needed which should satisfy TVD property,
see [13]. The schemes are first order accurate in space and time with numerical dissipation
of the order of time step. We extend these schemes to second order by using the approach
of Deshpande [13] which he used in order to extend the non-relativistic kinetic schemes to
second order. We will extend our schemes to second order for the one- and two-dimensional
ultra-relativistic Euler equations. Despite of the above several advantages the schemes have a
disadvantage that they are numerically expensive. These schemes are about five to six times
slower than the other schemes like, Godunov, central and KFVS schemes.

The conditionally stable kinetic schemes presented in Chapter 5 are discrete in time and
space. These are an upwind conservative schemes called kinetic flux vector splitting (KFVS)
schemes. The schemes are stable under a CFL condition, that is, the fluid movement is
restricted only to the neighbouring cells. In the classical case the CFL condition for the nu-
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merical schemes of the Euler equations depends on the initial data, whereas in the relativistic
theory there is a natural CFL conditions which is independent of the initial data due to the
light cone structure. In these schemes the flux moment integrals are calculated using the
idea of flux vector splitting under the CFL condition. Since KFVS schemes are based on
the free particle transport at the cell interface in the gas evolution stage, therefore we get
smeared solutions especially at the contact discontinuity. In order to overcome this problem
we include “particle” collisions in the gas evolution stage, see Xu [92] [93]. Consequently, the
artificial numerical dissipation in the new schemes are much reduced in comparison with the
usual kinetic flux vector splitting (KFVS) schemes. These new upwind schemes are named
as BGK-type KFVS schemes. The BGK-type KFVS schemes give robust and reliable solu-
tions as well as good resolution at the contact discontinuity. The schemes are extended to
the two-dimensional case in a usual dimensionally split manner, that is, the formulae for the
fluxes can be used along each coordinate direction. The second order accuracy of the schemes
are achieved by using a MUSCL-type initial reconstruction. For the ultra-relativistic Euler
equations we have to evaluate the free-flight moment integrals over the compact unit sphere
due to the finite domain of dependence in the relativistic kinetic theory. While, in the classical
kinetic schemes the free-flight moment integrals have infinite integration limits, therefore they
need some error-functions which have to be cutoff at their tails. The main difference between
the Godunov schemes and the present schemes are the calculation of fluxes. In the Godunov
schemes fluxes are calculated using the exact or approximate Riemann solvers. While in the
present schemes fluxes are calculated from the moments of the phase density. Since in the
relativistic case the solution lies inside a light-cone, therefore the natural CFL condition is
At = 0.5 x min(Az, Ay), as we solve one Riemann problem in each cell. Here At is the time
step and Ax and Ay are the mesh widths in x- and y-directions. We have developed the above
KFVS and BGK-type KFVS schemes for the one- and two-dimensional ultra-relativistic Euler
equations.

For the comparison of the results, we develop an exact Riemann solver as well as first and
second order Godunov upwind schemes for the ultra-relativistic Euler equations, however
it seems impossible to get such schemes for the general form of special relativistic Euler
equations due to the presence of modified Bessel functions of second kind in the relativistic
Maxwellian. Apart from these, we also present one- and two-dimensional high order non-
oscillatory central schemes of Nessyahu and Tadmor [64] as well as Jiang and Tadmor [39]
for both ultra-relativistic Fuler equations and general form of relativistic Euler equations.
Furthermore, we also use the central schemes in order to solve the phenomenological form
of the relativistic Euler equations as well as the non-relativistic Euler equations. We use a
MUSCL-type reconstruction to achieve second order accuracy.

Some of the work reported in this thesis has been submitted for publication in Journals. Five
preprints were completed during this work. In these five preprints the first four preprints have
co-authors M. Kunik and G. Warnecke, while the last article has G. Warnecke as co-author.
Our first article [45] has been accepted in the Journal of Computational Physics. This was
on the first order kinetic schemes for the ultra-relativistic Euler equations presented here
in Chapter 4. The work on the second order kinetic schemes for the ultra-relativistic Euler
equations appearing in Chapter 4 will be submitted soon for publication. Our second preprint
[47] on the BGK-type KFVS schemes appearing in Chapter 5, our third article [46] appearing
in Chapter 6 as well as our fourth article [48] have been submitted. The latter article is on
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the solution of Boltzmann-Peierls equation which uses a similar idea as presented in Chapters
4 and 5, however has not been included in this thesis. Our fifth submitted article [75] is on
the application of central schemes to multi-component flows which are not considered in the
thesis.

1.2 A Short Overview of the Work

In Chapter 2, we introduce kinetic schemes for the non-relativistic Euler equations. The Euler
equations are written in differential form as well as in a weak integral form. Also the weak
form of the entropy inequality is given, see [13 [18]. We explain the unconditionally stable
(continuous in space) kinetic schemes in order to solve these equations, see [13] [17, [18]. The
proofs of conservation laws, entropy inequality, positivity and L; stability are given for these
kinetic schemes, see [I8] and [74]. We explain the numerical implementation of the kinetic
schemes for the solution of both one- and two-dimensional Euler equations, see [13] and [17].
We also give the proof of TVD property for the one-dimensional kinetic scheme which was
first proved in [13]. We also give a brief introduction to the KFVS (discrete in space) schemes
for the one- and two-dimensional non-relativistic Euler equations, see [16] [91]. The results
obtained from the kinetic schemes and KFVS schemes are compared with exact solutions, the
Godunov scheme, and central schemes.

In Chapter 3, we present the basic definitions of the relativistic kinetic theory, namely Lorentz-
transformations, vectors and tensors, the light cone, Einstein’s velocity addition, as well as
the relativistic phase density and its macroscopic moments. Moreover the two limiting cases
of the relativistic phase density are introduced, one is the classical Maxwellian for a cool
non-relativistic gas and the other is ultra-relativistic phase density. We also introduce some
limiting inequalities for the modified Bessel functions, see the hand book of Jeffrey [40]. These
relations will be used in Chapter 6 in order to write the general form of relativistic kinetic
theory in a more convenient form.

In Chapter 4, we calculate the macroscopic moments of the relativistic Maxwellian in order to
formulate the ultra-relativistic Euler equations as conservation laws for the particle number,
momentum, and energy. The Euler equations are written in differential form as well as in
a weak integral form. An entropy inequality is given in weak integral form with an entropy
function which satisfies the Gibbs equation. The Rankine-Hugoniot jump conditions and the
entropy inequality were used in order to derive a simple parameter representation for the ad-
missible shocks. Also parametrization for the rarefaction fan has been derived here. We use
these shock and rarefaction parametrizations in order to derive an exact Riemann solver for
the one-dimensional ultra-relativistic Euler equations. We first formulate the kinetic scheme
in order to solve the three-dimensional ultra-relativistic Euler equations. We prove that this
kinetic scheme strictly preserves the positivity of particle density and pressure for all later
times. In contrast to the kinetic scheme for the non-relativistic Euler equations, we show that
the three-fold moment integrals for the particle-density four-vector and energy-momentum
tensor reduces simply to a surface integrals where the integration is performed with respect
to the unit sphere. A similar idea was used by [21] and Kunik, Qamar and Warnecke [48] in
order to solve the Boltzmann-Peierls equation and its moment system for a phonon Bose-gas.
We derive the continuity conditions for the zero components of the macroscopic moments
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which play a crucial role in the proof of conservation laws and entropy inequality. These
continuity conditions are also used in order to initialize the kinetic schemes for the next time
step. The proof of conservation laws and entropy inequality for the kinetic schemes are given
for any arbitrary domain. We also derive the kinetic schemes for the spatially one and two-
dimensional ultra-relativistic Euler equations. Furthermore, using special coordinates in a
spatially one-dimensional case, we have further reduced the surface integrals of the three-
dimensional kinetic scheme to single integrals which ranges from —1 to +1. We explain the
numerical implementation of the kinetic scheme for the one-dimensional case. The procedure
for implementation of the reflected boundary conditions conditions in the scheme is also given
here. In order to compute the free-flight phase density inside the moment integrals we need a
linear interpolation polynomial, because we only know the initial data at the nodal points. We
are using the linear polynomial proposed by Deshpande [13] for which he has proved the TVD
property. Both one and two-dimensional solutions indicate the finite domain of dependence
on the preceding initial data, which is covered by the backward light-cones. This property
does not hold for non-relativistic kinetic schemes. We also discuss the Eulerian limit 75y — 0
of the kinetic schemes where weak solutions are obtained from the initial value problems in-
cluding arbitrary shock interactions. The kinetic schemes described above are first order in
space and time. The second order accuracy in time is achieved by adding correction terms
to the moment integrals of the kinetic schemes which were obtained from the comparison
of the exact and numerical solutions. To get second order accuracy in space we use second
order interpolation polynomials in order to calculate the free-flight phase density inside the
moments integrals.

In Chapter 5, we derive conditionally stable kinetic schemes which we call BGK-type KFVS
schemes. This type of kinetic schemes are discrete in time and space. We start with a one-
dimensional ultra-relativistic Euler equations and derive the BGK-tpe KFVS scheme for it.
Since the scheme is first order accurate in time and space, therefore we also extend it to second
order by using a MUSCL-type reconstruction. The second order accuracy is simple in ultra-
relativistic case and the idea is similar to that of second order accuracy of the upwind schemes
using a MUSCL-type reconstruction. We have also derived the similar scheme for the two-
dimensional ultra-relativistic Euler equations in a dimensionally split manner. The scheme is
then extended to second order analogously to the one-dimensional case. Apart from the above
schemes we also derive the one-dimensional Godunov scheme for the ultra-relativistic Euler
equations, see Toro [85]. In order to calculate the fluxes we use the exact Riemann solver
derived in Chapter 4. The results obtained from the BGK-type KFVS schemes are compared
with exact solutions, the KF'VS schemes, the Godunov scheme, and the central schemes.

In Chapter 6, we first determine the macroscopic moments of the general form of the relati-
vistic Maxwellian, which gives the so called constitutive relations. The conservation laws and
these constitutive relations then gives the general form special relativistic Fuler equations.
The Euler equations are written in differential form as well as in a weak integral form, which
takes care for the evolution of shock waves. There holds an entropy inequality in terms of
a specific entropy function which satisfies the Gibbs equation. We also derive the Rankine
conditions for these Euler equations. The kinetic schemes for these Euler equations is an
extension of the theory presented in Chapter 4. We formulate the schemes in such a way that
the whole range from the classical Eulerian limit to the ultra-relativistic limit is covered. The
schemes derivation procedures are analogous to that in Chapter 4. But are more complicated
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due to the presence of modified Bessel functions of second kind in the relativistic Maxwellian.
The limiting relations for these Bessel functions which are given in Chapter 3 can be used
in order to get the limiting values for the non-relativistic or ultra-relativistic kinetic theory
of gases. Another very interesting theory in this chapter is the proof of the Maximum En-
tropy Principle. Before coming to the proof of the Maximum Entropy Principle, we have first
proved four lemmas which were needed for this purpose. After that we have formulated and
proved the Maximum Entropy Principle. At the end of this chapter we extend the scheme in
order to solve initial and boundary value problems. Apart from these, we also introduce the
three-dimensional phenomenological form of the relativistic Euler equations and then reduce
them to one space dimension. As discussed before in the introduction, these Euler equations
cannot be solved by using kinetic schemes. We solve these phenomenological relativistic Euler
equations using second order central schemes.

In Chapter 7, we formulate the Lax-Friedrichs (LxF) central schemes for one- and two-
dimensional hyperbolic systems. We extend these schemes to the second order non-oscillatory
central schemes of Nessyahu and Tadmor [64] as well as Jiang and Tadmor [39]. The main
advantage of these schemes is that unlike upwind schemes, no Riemann solver is needed for
the calculation of fluxes. Central schemes are important in cases when there is no Riemann
solver or it is difficult to obtain. The central schemes are also very important in the case of
general form of relativistic Euler equations because it is looking impossible to get an exact
Riemann solver for these equations. The central schemes are compact and easy to implement.
In the previous chapters we have used the central schemes in order to solve the non-relativistic
and relativistic Euler equations in one and two space dimensions.



Chapter 2

Kinetic Schemes for the
Non-relativistic Euler Equations

In this chapter we introduce first order conditionally and unconditionally stable kinetic
schemes for the non-relativistic Euler equations. These kinetic schemes were introduced by
Reitz [77], Deshpande and Raul [12], Deshpande [13| [16], Dreyer et al. [18] [17], Tang and Xu
[83], as well as Xu [91] [93]. This chapter is a background study for the better understanding
of the relativistic kinetic theory presented in the coming chapters.

As explained in the introduction the unconditionally stable kinetic schemes are discrete in
time but continuous in space. This type of kinetic schemes are explicit and does not need any
CFL condition. These kinetic schemes are truly multi-dimensional as they cover all directions
of wave propagation. The schemes are very useful and interesting for analysis. Furthermore
they allows the particle movement from a cell to any other cell. This is particularly impor-
tant in high speed flows. We prove the positivity, conservation laws and entropy inequality
for the three-dimensional kinetic scheme, see [18]. We explain the numerical implementation
of both the one- and two-dimensional kinetic schemes, [13] [17]. We generalize the schemes in
order to include the boundary conditions in one space dimension, however the procedure for
multi-dimensions is analogous.

On the other hand the conditionally stable kinetic schemes are an upwind conservative schemes
which are discrete both in time and space. The scheme are stable under a CFL condition,
that is, the fluid movement is restricted only to the neighbouring cells. In order to calculate
fluxes the idea of flux vector splitting technique of Harten, Lax and von Leer [36] is used. This
type of schemes are then called kinetic flux vector splitting (KFVS) schemes, see 911, 93].
Harten et al. [36] drew a distinction between two numerical approaches to the solution of the
Euler equations, namely, the Godunov and KFVS schemes. Broadly speaking, the Godunov
schemes are based on the Riemann solution in the gas evolution stage, and the KFVS schemes
uses the microscopic particle distribution function as the basis to construct the fluxes. While
the construction methodology is different between the Godunov and kinetic schemes, both
first order schemes can be written in the framework of the three-point conservative methods.
As compared to the unconditionally stable kinetic schemes, KFVS schemes are computation-
ally more efficient and easy to implement. Therefore this type of schemes are highly desirable
from the computational point of view. Lui and Xu [57] have proved the entropy inequality

8
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for the KFVS schemes, while Tang and Xu [83] have proved the positivity of the schemes.

In coming sections the name kinetic schemes will be used for the unconditionally stable
kinetic schemes (continuous in space), while the name KFVS schemes will be used for the
conditionally stable kinetic schemes (discrete in space).

2.1 Non-relativistic Euler Equations

In this section we consider the time-dependent non-relativistic Euler equations. These are a
system of non-linear hyperbolic conservation laws that govern the dynamics of a compressible
material, such as gases or liquids at high pressures, for which the effects of body forces, viscous
stresses and heat flux are neglected.

There is some freedom in choosing a set of variables to describe the flow under consider-
ation. A possible choice is the so called primitive variables or physical variables, namely
p(t,z,y, z) = density or mass density, p(t,z,y, z) = pressure, vi(t,z,y, z) = x-component, of
velocity, va(t, z,y, z) = y-component of velocity, vs(t,z,y, z) = z-component of velocity. The
velocity vector is v = (v1, v2,v3). An alternative choice is provided by the so called conserved
variables. These are the mass-density p, the x-momentum component pv;, the y-momentum
component pvg, the z-momentum component pvs and the total energy E. Physically, these
conserved quantities result naturally from the application of the fundamental laws of conser-
vation of mass, Newton’s second law and conservation of energy. Computationally, there are
some advantages in expressing the governing equations in terms of the conserved variables.
This gives rise to a large class of numerical methods called conservative methods.

At regular points where the solution is continuously differentiable in space and time, the
three-dimensional non-relativistic Euler equations for a perfect gas are

)
ap+V~(pv) =0, (2.1.1)
9 9
a(p%)-ﬁ-z W(pdik—i—pvwk) :07 (2.1.2)
k=1
OE <~ 0
5t g V(E+p)] =0, (2.1.3)

+ — ) 1 S Y S 37
here v is the ratio of specific heats. The relation between the pressure p and temperature T’
for a thermally ideal gas is given by p = pRT, where R is the gas constant. Also due to the

~-gas law the specific internal energy e and pressure p are related as p = (v — 1)pe.

We consider initial data of bounded variation for p, v and p, which may have jumps:

p(O,X) = Po(X) ) V(07 X) = UO(X) ) p((), X) = pO(X) :
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Now we are looking for special solutions of the three-dimensional Euler equations, which will
not depend on z2, 23 but only depend on = = x'. Therefore we restrict to one-dimensional
flow field v = (v(t,x),0,0)T

pe+ (pv)e =0,
(pv)i + (pv* + )z = 0, (2.1.4)
Ei+ (v(E +p)), =0.
( ]_) 1 + %)2 and p = pRT = (v — 1)pe. These differential equations constitute
a strictly hypfyerboliC system with the characteristic velocities

)\1:— ’)’1—?, )\2:11, )\3: ’)/]—). (2.1.5)
V' p V p

The differential equations are not sufficient if we take into account shock disconti-
nuities. Therefore we choose a weak integral formulation which is given due to Oleinik [68]
by curve integrals in time and space, namely

where F =

/pd:c — (pv)dt =0,

o
/(pv)dm — (pv* +p)dt =0, (2.1.6)
o0
/de—v(E—l—p)dt:O.
o0

Here Q C Rg x R is a convex set in space-time with piecewise smooth, positive oriented
boundary, where R* €]0, c0[ and R €] — 0o, 0o[. Note that this weak formulation takes dis-
continuities into account, since there are no derivatives of the field involved. If we apply the
Gaussian divergence theorem to the weak formulation in space-time regions where the
solution is regular we come back to the differential form of the Euler equations (2.1.4]).

Furthermore we require that the weak solution (2.1.6]) must also satisfy the entropy-inequality

/hdm —ddt >0, (2.1.7)
o0

with positive oriented 02. Where the entropy density h and the entropy flux ® are given by

P
h(p,p) = % In (p—» + Ll(l +In27),  ®(p,v,p) =v-h(p,p). (2.1.8)

2.2 Kinetic Scheme in Three Space Dimensions

The kinetic schemes uses the well-known fact that Euler equations (2.1.1) are the first mo-
ments of the Boltzmann equation when the distribution function is Maxwellian [5]. The basic
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unknown in the Boltzmann equation is the velocity distribution function f(¢,x,c, ), where ¢
is time, x is the position vector, c is the molecular velocity vector, and I is the independent
internal-energy variable corresponding to nontranslational degrees of freedom. The Boltz-
mann transport equation in its three-dimensional form, see Cercignani [5, Chapters II and
IV] as well as Cercignani, Illner and Pulvirenti [6, Sections 3.2, 3.3, 11.1], is given by

of ~— Of _
o0+ 2 g = AU (22.1)

The left hand side of the above equation is the free-flight or convective term, while the right
hand side is the collision term. The field variables p, v, and E are related to f through
moment equations given by

ot = [ fltxended.
R3 xR+
pv(t,x) = / cf(t,x,c,I)d3cdl, (2.2.2)
R3 xR+
2
E(t,x):/ <I—|——> f(t,x,c,I)d*cdl,
R3 xR+ 2

here, R €] — oo, 400 and R™ €]0, 00[. The free-flight term gives the rate of change of f per
unit volume in (x, ¢, I) space because of movement of molecules, and the collision term gives
the rate of change of f because of intermolecular collisions.

Note that the collision term Q(f) has the property

/ Y(c, NQ(f)d*cdl =0, (2.2.3)
R3xR+

o\ T
C .. . .
where ¢y = (1,¢,1 + 5 ) This is a direct consequence of the conservation of mass, mo-

mentum, and energy during the collisions, see [6, Sections 3.2, 3.3, 11.1].

In the Euler limit Q(f) = 0 and the distribution function f is then the Maxwellian distri-
bution:

c—v)?] exp (-
f(x,c,I) =wp(x,c,1) = mexp {—( 2RT) } p(IOI/IO) . (2.2.4)

The variable I corresponds to the nontranslational degrees of freedom and

(2+Dy) =Dy
2(v—1)

where Dy is the degree of freedom of molecules, and ~ is the ratio of specific heats.

Iy =

RT, (2.2.5)

Now we formulate the iterated scheme for the mass density p, the velocity v and temperature
T. To initialize the scheme we start with
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e Bounded and integrable initial data for x € R? :
p(O,x) = PO(X) >e€>0, V(O7X) = VO(X)7 p(O,X) = po(x) >0>0.

e A fixed time 75y > 0 of free-flight, so that at equidistant times t,, = n-7p7, (n = 0,1, 2, ...),
the maximization of entropy takes place.

By substituting Q(f) = 0 in the Boltzmann equation (Z2.1]), we get a collisionless transport
equation

of ~~ Of
ot ;ckW =0. (2.2.6)

The exact solution of this equation with initial distribution function at time level n denoted
by fn(x,c,I) is
fltn+71,%,¢,1) = fp(x —7c,c,I), 0<71<m1). (2.2.7)

The vanishing of Q(f) is due to large number of collisions because Q(f) = 0 if and only if f
is a Maxwellian distribution (2.2.4]).

By substituting (22.7) in ([2.2.2)), we get an iterated scheme for the variables density p, velocity
v and temperature 1" within the time interval 0 < 7 < 73;:

ptn +7,%) = / fn(x —7c,c,I)d3cdl,

R3 xR+
pv(ty, +7,%) = / cfu(x —71c,c, I)d%cdl, (2.2.8)
R3 xR+
2
E(t, + 7,x) :/ <I+ C—) fu(x —7c,c,I)d?cdl .
R3 xR+ 2

Here f,,(y,c,I) = wpr(p(tn,y), v(tn,y), T(tn,y),c, I) is the Maxwellian phase density (2.2.4]).

In the following we will consider the dimensionless quantities, therefore we take the gas
constant R = 1. Now the integration with respect to the variable [ in yields

pltn +7,%) = fn(x—Tc,c) dic,
R3

(pvi)(tn + 7,%) = / cifa(x —Tc,c) d’c, (2.2.9)
R3
c2
E(t, +71,x) = / (Io + —) fn(x —1c,c) dic,
R3 2
where f, is the contracted local Maxwellian distribution defined by
p<tn7y) (C_V)2
fn(y.¢) =wn(y,c) = ————— S5 exp [—7 , 2.2.10
el e (27T (tn, y))* 2T (tn,y) ( )

and (2:2.5)) implies Iy = T, for Dy = 3.

5 — 3y
2(y—1)
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This scheme can be brought into compact generic form, if we introduce the abbreviations
1 , A=0,
C; ) A=1i= 172737 (2211)

o (Io+§) . A=4.

Then the variables u4 and fluxes Fy; read

’U'A(tn + T, X) = / CAfTL(X — TC, C) d3C 5
3
* (2.2.12)
Fup(ty +17,x) = / cacyfn(x —Tc,c) dic.
R3
Note that u v; (1 =1,2,3) and E P, PV’
ug = i = i\t = 1,4 Uqg = = 5 -
0 P, P 4 (’7 — 1) 9
The entropy density h and entropy flux ®; are
w730 = = [ (falnfy)x = e.c) de.
3
* (2.2.13)
Oi(t, +71,x) = —/ cx(fuln fr)(x — 7c,¢) d°c.
R3

For 7 = 0, f, is the phase density (2.2.10) that can obtained by maximizing the entropy at
time t,, for given constraints u (¢, x). Within the range 0 < 7 < 737 the phase density solves
the collision free Boltzmann equation. When the time t,11 = t,, + 7as is reached f,41 will be
the phase density (2.2.10) that can obtained by the maximization of entropy under the new
constraints u (tp+1,X).

In order to initialize the kinetic scheme for the next time step, we require the following
continuity conditions for the conservative variables u 4 across the maximization time t,,, n > 1
ua(tl,x) =ualt,,x). (2.2.14)

These continuity conditions are the direct consequence of (2.2.3). Since we are implementing
the computation in these variables, these conditions are automatically enforced. Here we
have used the following abbreviation for the one-sided limits across the maximization time
tn, n > 1, where for a positive number &

up(ts,x) = ii_r)r[l)uA(tn +e,x%).

Later on we see that these conditions are necessary in order to guarantee the conservation
laws for the mass momentum and energy across the maximization time %,,.
2.2.1 Proof of Conservation Laws and Entropy Inequality

Now we present the proof of conservation laws and entropy inequality for the kinetic schemes,

see [18].
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Proposition 2.1: Let 0 < 7 < 7py and n=0,1,2,.... The fields us(ty, + 7,%), Fap(tn+ 7,%)
and all of their derivatives in space and time are smooth, i.e. arbitrarily often continuously
diffrentiable, and they satisfy the conservation laws

OF sk,
81‘k

aau—TA(tn—kT,x) +

(tn, + 7,x) = 0.

Remark: Note that these equations do not constitute a local quasi linear hyperbolic system
for the variables u4, because the fluxes F)y at time ¢, + 7 and position x depend on the
whole field u (-, t,) at time ¢,.

Proof: If we substitute ¢ by y = x — 7c¢ in (2212) and regard f,(y,c) = war(ua(tn,y),c)
we obtain

1 X —
UuA (tn + T, X) - 3 CAWM (U'A (tnv y)? —y> d3y 5
T R3 T
1 Tr — Yk X—y
FAk (tn + 7, X) = 3 CA Y wp <UA(tn) y)7 - d3y 5
T R3 T T

with

.oy _ 2
mz(szTy’,IoJr(x y) >

272
In these integrals the u4’s do not depend on x and 7. We have thus shown the smoothness

of uy, Fap and of all its derivatives with respect to 7 and x.

In order to prove the conservation form for these variables and fluxes we rely again on the
expressions (2.2.12). There holds due to the chain rule:

a‘ruA(tn +, X) = / CAann(X —T7C, C) d’c
RS
= —/ CACLOg, fn(x —TC,C) d3c
R3

= —0y, / cackfn(x —7C,C) d3c
R3
= =0y, Far(ty + 7,%).

Proposition 2.2: Let ) C R(J)r x R3 be any bounded convex region in space and time. By do
we denote a positively oriented boundary element of 02. The representations (2.2.12) have
the following properties:

(i) In the limit oy — O the volume densities uya, flures Fyay, the entropy density h and
entropy flux . become local functions of the variables p, v; and T, viz.

p POk
ug = pU; : Fap= | powve+pTo%" |

2
p% + 5pT P(%JF%T) Uk
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(ii) For mpp > 0 as well as in the Eulerian limit 7oy — 0 we obtain the following weak
formulation, which takes discontinuities into account:

/(UA,FAk) do = 0. (2.2.15)
o0

(iii) In regular points where the solution is continuously differentiable, the differential form
of the Fuler equations is satisfied for Tpy — 0.

(iv) The following entropy inequality is satisfied for Tpr > 0 as well as in the Eulerian limit
™ — 0
/ (h, B3)dG > 0. (2.2.16)
o

The brackets (u4, Fag) and (h, ®x) denote four-vectors in time (first position) and space (last
three positions).

Remarks:

(1) The limit 7y — 0 means that a thermodynamic process is realized by an infinite number
of maximizations within a time interval At.

(2) Each maximization increases the entropy, and for this reason the maximization of ent-
ropy simulates the interaction of the microscopic particles of the gas.

(3) In singular points of a shock curve with velocity vs, which may appear in the limit
T — 0, the Rankine-Hugoniot equations

—’US[[UA]] + [[FAk]]Nk =0
hold. In addition, there is a positiv entropy production according to

Og = —'I}S[[h]] + [[‘I)k]]Nk > 0.

Proof:

(i): In the limit 757 — O the fields p and 7" in (2.2.10) an therefore in the integrals (2.2.12) do
not depend on ¢ anymore, i.e. they are constants regarding the c-integrations. Since in this
limit the free-flight phase density reduces to the Maxwellian phase density, we obtain from
2212), 22.13) the representations given in (i). The convergence should be proved in the
Li-norm. This is an open point until now.

Regarding the propositions (ii) + (iii) it is sufficient to prove [, (ua, Fax)do = 0 for 7 > 0.
The Eulerian limit 73y — 0 can be obtained by means of (i).

Let be 73y > 0. The time axis is divided by the maximization times 0 =ty < t] <tg9 < ---,
so that the convex domain 2 can be decomposed into the subdomains

Q ={(0,x)eQo<s< il
2.2.17
Oy ={<5,X)€Q|%§5§%}(n:1,2,3,...). ( )
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Since fag(uA,FAk)dcT = ano fm"(uA,FAk)dé', it is sufficient to assume without loss of
generality that the time range

Oq = {t > 0] there exists x € R3: (t,x) € O}

of ) contains at most one maximization time ¢. Then for £ out of the range 0 < € < %TM we
define a further decomposition of each €2,,,n > 1, into three parts:

QL ={(0,x) € Q|6 <tn—e},
Oy ={(6,x) € Q|tn—e <5 <tn+e}, (2.2.18)
Q= {(6,%) € Q|0 >ty +2}.

These decompositions are visualized in the following two graphs:

i x
A A
¢ Q
\ €| e
o th ) e o, (o | o, [
>
> 1
t=to to% t tlJQrtz t t242rt3 t,,L,12+t,,L t tn+én+1
Figure 2.1: The decompositions of {2 and €2,,.
We obtain

/(UA,FAk)d5: /(uAvFAk)d5+ /(uAvFAk>d5+ /(UA,FAk)d@ (2.2.19)
20m o9, o9 o9,

and proceed to show that the first two integrals on the right-hand side must vanish:

The fields ua(t,x) and Fag(t,x) are smooth in the domains 7, ;. €2 . For both domains we
thus can apply the Gaussian Divergence Theorem to the conservation law dyus + Oy, Farp =0
resulting from the Proposition 2.1 in order to get

(ua, Fag)do = / (ua, Fag)do = 0.

8QfL,R

A similar proof in the one-dimensional case is given in Appendix [A] for the relativistic case.
However one can use that proof for the non-relativistic case with little modification. This
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implies

/(uA,FAk)dé' = / (ug, Fag)do = lin% (ug, Fag)do
Q

0 007 007

_ /QZ {/R3 A LFn(%,€) — fa1(x — TarC, €)] d%} x,

where QF = {x € R3|(t,,x) € Q}. The time t,,_; is the maximization time that preceeds the
maximization time t,. The Maxwellian f,, has to be read off from (2.2.10]).

The last integral expression vanishes due to continuity conditions ([2:2.14)), i.e.,
ua(ty,x) = ua(ty, x).

We have thus established that the weak form (2.2.15]) for a general convex domain {2 is implied
by the representations (2.2.12)). In particular (2.2.15]) holds also in the Eulerian limit 73y — 0.

In each regular point (¢,x) we can now apply the Gaussian Divergence Theorem to (2.2.15)
in the Eulerian limit in order to get the proposition (iii).

Regarding the proposition (iv) which states the existence of the entropy inequality ,
we start the again with the decompositions (2.2.17) and (Z2I8) of Q. Since [, (h, ®4)do =
> on>0 Joa, (hs ®1)do, it is sufficient to prove [y, (h, ®x)dd > 0 for each n. We obtain

/ (h, ®y)do = / (h, ®y)do + / (h, ®x)do + / (h, ®x)do. (2.2.20)
[o197% 8QZ,L aﬂi’R 892,]\4

We will now show that the first two integrals on the right hand side vanishes. The entropy-
function h(t,x) and the entropy-flux ®x(¢,x) are smooth fields in the domain Q;, g, because
according to we have for (t,x) € O p

h(t,x) = — /Rs(fn In f,)(x — (t — t,)c,c) d’c,
Op(t,x) = — /R3 cr(fuln fr)(x — (t — ty)c, c) dic.
In this domain we obtain due to the chain rule:
Oth(t,x) = —0q, Pr(t,x). (2.2.21)
This implies |, o0c R(h, Py)d6 =0, and [, 005, (h, @k )do = 0 can likewise be obtained. For every

sufficiently small £ > 0 there holds

/(h,@k)dﬁ = lim (h, 1,)do (2.2.22)

e—0

0 095, 4,

_ /{/Rg (—(fo I £)(%,€) + (far In fa_1)(x — Tasc, €)] d3c}d3x,

*
n
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where 0 = {x € R?|(t,,x) € Q}, and t,,_1 < t,, is the maximization time that preceeds t,.
Next we shall show that the integral (2.2.22)) is non-negative. To this we need the following

Lemma 2.3: For u,v > 0 we have
vinv —ulnu = [Inu + 1](v — u) + S(u,v), (2.2.23)
with a function S(u,v) > 0.

Proof of Lemma 2.3: Due to Taylor’s formula there is a £ > 0 between u, v > 0 such that

vlnv:ulnu+(lnu+1)(v—u)+2—1§(U—u)2. (2.2.24)

We conclude S(u,v) > 0. .
Now we apply Lemma 2.3 t0 t = fu(%, ) ; v = fa1(X — TarC, ©):
/RS [—(foln fo)(x,€) + (fu_1ln fr1)(x — Tarc, )] d®c (2.2.25)
= = [ B 0] faloe) = fuoa(x = e, 0 e
+ /R3 S(fn(x,¢), fn_1(x — Tarc, €))dc.

The second integral is non-negative and the first one vanishes because [1 + In f,,(x,c)] is
a quadratic polynomial in ¢, containing only ¢; and c2, and for ¢4 = (1, ¢, Iy + %) there

follows due to (2.2.14))
0= / ca [fa(x,¢) = fa1(x — Tarc, c)] dc. (2.2.26)
R3

For 734 > 0 we have thus established the entropy inequality . It is due to proposition
2.2 (i) that this inequality is also valid in the Eulerian limit, where shocks may appear. ®

2.2.2 Positivity and L!'—Stability of the Kinetic Scheme

One advantage of kinetic schemes is that it is straightforward to show that they preserve
positivity of the density and pressure. A similar theorem was proved by Perthame [74] in case
of KFVS scheme.

Theorem 2.4: Assume that the initial distribution function f,(y,c) > 0, additionally
fu(y,c) does not vanish almost everywhere for all microscopic velocities ¢, macroscopic ve-
locities v and positive density and pressure. Then the numerical solution obtained by the
resulting kinetic scheme has the following property: its density, total energy and pressure re-
main positive for all times. This mean that the numerical scheme defined by (2Z2.8) is stable
in L':

p(tn +7,%x) >0, E(t, +71,%x) >0, p(tn +7,%x) > 0. (2.2.27)
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Proof: Since we have assumed that initial phase-density is positive, therefore (2.2.8)) implies

p(ty +7,x) = fa(x —Tc,c) dc > 0. (2.2.28)
R3

Simlarly

E(t,+7,x) = /R3 <IO + ) fu(x —7c,c) dc > 0. (2.2.29)

According to the Cauchy-Schwarz inequality, if we have two functions f and g then

b

b 2 b
/f-gd:c < /f2d:c . /deg; , (2.2.30)

a

where equality holds iff the functions f and g are linearly dependent.

Let us define for abbreviation y = x — 7c. Using (2.2.8) and Cauchy-Schwarz inequality, we
get

(pv1)(ty + 7,%) < c1 faly, c) d’c )2
< Vi) - (VE)) o) e )2 (2.2.31)
([ (VR (,C)d?’C)-(/R3(\/f_n)(,)d3)

p(tn +TX)</ A faly,c)d® >

In Cauchy-Schwarz inequality we have not taken the equality sign because the functions

c1 v/ fn(y,c) and / fn(y,c) are linearly independent. Similarly
(ot + 730 < pltn+ 730 ([ dntrer e ).
R

A

(2.2.32)

(P (tn+ 730 < pltn 70 ([ Ao ).

Now adding (2231), (2:2:32), and using the fact that v? = v? + v + v2, c? = ¢ + 2 + ¢3,
we finally get

1, c? 3
5PV (tn +T7 X) < _fn(yv )d .
2 s 2

C2 3
S/R?’ (IO‘F?) fu(y,c)d’c.

= E(t, + 7,%).
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Thus we have proved that E(t, + 7,x) > 2pv?(t, + 7,x). This implies that

p(tn +7,x) =(y—1) (E— %pv2> (tn +7,x) >0.

Now we prove the L1 —stability of the scheme. We have already proved that the kinetic scheme
is conservative and give positive values of particle density p and total energy E . Therefore

using (2.2.8)); we get

”p(tn—f_T")HLl(R) = / |p(tn+T’X)|d3X: / p(tn‘f‘TaX)ng
R3 R3

:/ p(tn,X)dCE:/ |p(tn, x)|d>x
R3 R3
= lp(tn; ML (r) -

Similarly [[E(tn, + 7, )|loyr) = |[E(tn, )|lz1(r)- Now using (2.2.8) with y = x — 7¢ and
Cauchy-schwarz inequality (2.2.30) we get

d3x

et + 7.l = [ ‘ [, citly.erite
= /RS /RS (V) (/) (v, 0)d%

<UR$ g d3x-2/Rg /]R3(10+C—22)fn(y,c)d3c

= (21lp(tn, M2y 1B (Ens lriry) 2 -

d3x

1
2
faly,c)d’e d3X]

(NI

This proves the L' stability of the scheme. [ |

2.3 Kinetic Scheme in One Space Dimension

In the following we are looking for spatially one-dimensional solutions, which are nevertheless
solutions to the full three dimensional equations. We only consider solutions which depend
on t and x = x; and satisfy p = p(t,z), v = (v(t,2),0,0), p = p(t, x).

We choose a fixed 7 = 7y > 0 and define the equidistant times ¢, = n1y; (n =0,1,2,...).

For given fields p,(z) = p(tn, x), vp(z) = v(tn, z), Tn(x) = T(t,, ) at time ¢, starting with
the initial data pg, v, T given at time t = 0, these fields are obtained at time t¢,,41 according
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to the scheme

(tnt1,x / fnlx —cT,0)

(pv)(tny1,x) = / cfn(x —cr,c)de, (2.3.1)
_iooo
E(tp41,2) = / (1o + 5 )fn( —c1,¢)dc.

Here the phase density f,(y,c) is given by

C— Up 2
fu(y,¢) =wm(y,c) = % exp {—ﬁ] : (2.3.2)

3
and implies Iy = -1 2 )T , for Dy = 1. This scheme can be obtained from the
N —

representations (2.2.9