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Abstract

Kinetic schemes for the relativistic Euler equations are presented, which describe the flow of
a perfect gas in terms of the particle density n, the spatial part of the four-velocity u and the
pressure p. The physical frame in the whole study will be exclusively special relativity. We
consider both, the ultra-relativistic Euler equations, and a more general form of the relativis-
tic Euler equations. The general form of relativistic Euler equations covers the whole range
from the non-relativistic to the ultra-relativistic limit. We also consider as a special case the
non-relativistic theory. The basic ingredients of the kinetic schemes are the phase density in
equilibrium and the free-flight. The phase density generalizes the non-relativistic Maxwellian
for a gas in local equilibrium. The free-flight is given by solutions of a collision free kinetic
transport equation. The kinetic schemes presented here are discrete in time but continuous in
space. The schemes are explicit and unconditionally stable, i.e., no Courant-Friedrichs-Levy
(CFL) condition is needed. Also the schemes are truly multi-dimensional as they cover all
the directions of wave propagation in the gas evolution stage. These kinetic schemes preserve
the positivity of particle density and pressure for all times and hence are L1−stable. The
schemes satisfy the weak form of conservation laws for mass, momentum, and energy, as well
as an entropy inequality in any arbitrary domain. The schemes also satisfy the total variation
diminishing (TVD) property for the distribution function through a suitable choice of the
interpolation strategy. We also extend the schemes to account for the boundary conditions.
The kinetic schemes described above are first order in time and space. We also extend the
schemes to second order for the one- and two-dimensional ultra-relativistic Euler equations.

In addition, we develop another type of kinetic schemes for the ultra-relativistic Euler equa-
tions which are discrete both in time and space. These are an upwind conservative form of
the kinetic schemes in which the fluxes are the moments of the relativistic free-flight phase
density. We use flux vector splitting in order to calculate the free-flight moment integrals
under a natural CFL condition due to the structure of light cone, since every signal speed
is bounded by the velocity of light. The schemes are then called kinetic flux vector splitting
(KFVS) schemes. Since KFVS schemes are based on the free particle transport at the cells
interface in the gas evolution stage, they give smeared solutions especially at the contact
discontinuity. To overcome this problem “particle” collisions are included in the transport
process. Consequently, the artificial dissipation in the schemes are much reduced in compar-
ison with the usual KFVS schemes. These new upwind schemes are called BGK-type KFVS
schemes. For the ultra-relativistic Euler equations we have to evaluate the free-flight moment
integrals over the compact unit sphere due to the finite domain of dependence in the relativis-
tic kinetic theory. But in the classical kinetic schemes the free-flight moment integrals have
infinite integration limits, therefore they need some error-functions which have to be cutoff
at their tails. Our schemes are extended to the two-dimensional case in a usual dimensionally
split manner. We use a MUSCL-type initial reconstruction for the second order accuracy.

For the comparison of the numerical results, we give the results of exact Riemann solver and
Godunov scheme for the one-dimensional ultra-relativistic Euler equations. We also present
the central schemes and apply them to both non-relativistic and relativistic Euler equations.
The main advantages of the central schemes are compactness and simplicity. We have carried
out several one- and two-dimensional numerical test case computations. It was found that
kinetic schemes have a comparable accuracy with the upwind and central schemes.





Zusammenfassung

Wir stellen kinetische Verfahren für die relativistischen Euler-Gleichungen vor, die die Strö-
mung eines perfekten Gases anhand der Teilchendichte n, des räumlichen Anteils der Vierer-
geschwindigkeit u und des Druckes p beschreiben. Wir betrachten im folgenden ausschließlich
den physikalischen Rahmen der speziellen Relativitätstheorie, mit Ausnahme einiger klas-
sischer Grenzfälle. Wir untersuchen sowohl die ultra-relativistischen Euler-Gleichungen als
auch eine allgemeinere Form der relativistischen Euler-Gleichungen. Die allgemeine Form der
relativistischen Euler-Gleichungen deckt den gesamten Bereich vom nicht-relativistischen bis
zum ultra-relativistischen Grenzfall ab. Die Grundbestandtteile der kinetischen Schemata
sind die Phasendichte im Gleichgewicht und der freie Flug. Die Phasendichte verallgemeinert
die klassische Maxwellsche Phasendichte für ein Gas im lokalen Gleichgewicht. Der freie Flug
ist durch die Lösungen einer kollisionsfreien kinetischen Transportgleichung gegeben. Die hier
dargestellten kinetischen Schemata sind diskret in der Zeit, aber kontinuierlich bezüglich des
Ortes. Die Verfahren sind explizit und unbedingt stabil, d.h. es wird keine Courant-Friedrichs-
Levy- (CFL) Bedingung benötigt. Außerdem sind die Verfahren echt mehrdimensional, da
sie alle Richtungen der Wellen-Bewegung gleichwertig behandeln. Die kinetischen Schemata
erhalten die Positivität von Teilchendichte und Druck für alle Zeiten und sind deshalb L1-
stabil. Die Verfahren erfüllen die schwache Form der Erhaltungsgesetze für Masse, Impuls
und Energie sowie eine Entropie-Ungleichung in einem beliebigen Gebiet. Außerdem haben
die Schemata die Eigenschaft der Reduktion der totalen Variation für die Verteilungsfunktion
bei geeigneter Wahl der Interpolationsstrategie. Wir führen weiterhin Randbedingungen in
die Verfahren ein. Die oben beschriebenen kinetischen Schemata sind erster Ordnung in Zeit
und Raum. Wir erweitern diese Verfahren auf zweite Ordnung für ein- und zweidimensionale
ultra-relativistische Euler-Gleichungen.

Desweiteren entwickeln wir einen anderen Typ kinetischer Schemata für die ultra-relativist-
ischen Euler-Gleichungen. Diese Verfahren sind diskret in Zeit und Raum. Sie stellen eine
Upwind-Form der konservativen kinetischen Schemata dar, bei der die Flüsse die Momente
der relativistischen Phasendichte beim freien Flug sind. Wir benutzen Fluss-Vektor-Splitting,
um die Integrale der Momente beim freien Flug mit einer natürlichen CFL-Bedingung, die sich
aus der Struktur des Lichtkegels ergibt, zu berechnen, denn die Geschwindigkeit eines jeden
Signals ist durch die Lichtgeschwindigkeit begrenzt. Diese Verfahren werden als kinetische
Fluss-Vektor-Splitting (KFVS) Schemata bezeichnet. Da KFVS-Schemata auf dem freien
Teilchentransport basieren, ergeben sich zu dissipative Lösungen insbesondere an einer Kon-
taktunstetigkeit. Um diesem Problem entgegenzuwirken, werden Teilchenkollisionen in den
Transportprozess eingeführt. Das hat zur Folge, dass die numerische Dissipation in diesen
Verfahren, im Vergleich zu gewöhnlichen KFVS-Schemata, stark reduziert wird. Diese neuen
Upwind-Schemata werden KFVS-Schemata vom BGK-Typ genannt. Für die ultra-relativist-
ischen Euler-Gleichungen müssen wir, wegen des endlichen Abhängigkeitsbereichs in der
relativistischen Theorie, die Momenten-Integrale des freien Flugs nur über der kompakten
Einheitssphäre auswerten. Bei den klassischen kinetischen Schemata haben die Momenten-
Integrale des freien Flugs unendliche Integrationsgrenzen. Deshalb brauchen diese Schemata
gewisse Fehlerfunktionen, die an den Enden abgeschnitten werden müssen. Wir erweitern
unsere Schemata in der gewöhnlichen Weise durch Dimensions-Splitting auf den zweidimen-
sionalen Fall. Dabei benutzen wir eine Anfangs-Rekonstruktion vom MUSCL-Typ für die
Genauigkeit zweiter Ordnung.



Zum numerischen Vergleich geben wir die Ergebnisse des exakten Riemann-Lösers und des
Godunov-Verfahrens für die eindimensionalen ultra-relativistischen Euler-Gleichungen an.
Wir präsentieren außerdem das hochauflösende zentrale Schema und wenden es sowohl auf die
nicht-relativistischen als auch auf die relativistischen Euler-Gleichungen an. Die wesentlichen
Vorteile zentraler Schemata sind deren Einfachheit. Wir haben eine Reihe von ein- und zei-
dimensionalen numerischen Beispielrechnungen ausgeführt. Es stellt sich heraus, dass kineti-
sche Schemata eine vergleichbare Genauigkeit gegenüber Upwind- und zentralen Schemata
besitzen.
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I am grateful to Prof. Dr. Mária Lukáčová and Prof. Dr. Thomas Sonar for their valuable
remarks.

I am also very grateful to Prof. Dr. Jürgen Sprekels (director WIAS Berlin) for providing me
a good research environment to complete this thesis project.

I wish to express my deep obligation to my parents for their sacrifices during the pursuance
of my education. It is indeed of the prayers of my parents and well wishers that I have been
able to complete my Ph.D. studies. Their encouragement and inspiration have always been
with me.

I am grateful to my colleagues Wolfram Heineken, Rüdiger Müller, Dr. Nikolai Andrianov,
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Chapter 1

Introduction

1.1 Historical Background

In modeling flow at speeds where relativistic effects become important, space and time be-
come intrinsically coupled and the Euler equations of gas dynamics become more complicated.
However, it is still possible to write the relativistic Euler equations as a first order hyperbolic
system that can be advanced forward in time in some fixed reference frame. We call the
reference frame a laboratory frame since this is typically the frame from which we are observ-
ing. Relativistic gas dynamics plays an important role in areas of astrophysics, high energy
particle beams, high energy nuclear collisions, and free-electron laser technology. We consider
exclusively special relativity including some non-relativistic limits.

Kinetic approaches in order to solve the non-relativistic Euler equations of gas dynamics were
successfully applied to several initial and boundary value problems, see for example Deshpande
and Raul [12], Deshpande [13, 16, 15], Perthame [72, 73], Tang and Xu [83], Xu [91, 92, 93],
as well as Dreyer, Kunik and Herrmann [18, 19, 21]. Some interesting links between the Euler
system and the so called kinetic BGK-model, which was introduced by Bhatnagar, Gross and
Krook [3], are discussed in the textbooks by Cercignani [5], Cercignani, Illner and Pulvirenti
[6] as well as by Godlewski and Raviart [33].

The hyperbolic systems that can be treated by the kinetic method are those which may be
generated from kinetic transport equation and from the Maximum Entropy Principle. Since
these systems lead to a convex entropy function, they enable several rigorous mathematical
results, see for example Friedrichs and Lax [29] as well as Dafermos [11]. In the case of ther-
modynamical equilibrium the Maximum Entropy Principle constitutes a successful method in
order to obtain the Maxwellian phase density for the Boltzmann gas as well as the corres-
ponding phase densities for the Fermi- and Bose gas in equilibrium from the corresponding
kinetic entropy definitions.

A few years after Einstein’s famous paper ”Zur Elektrodynamik bewegter Körper”, Jüttner
[41] extended the kinetic theory of gases which was developed by D. Bernoulli, Clausius,
Maxwell and Boltzmann, to the domain of relativity. He succeeded in deriving the relativistic
generalization of the Maxwellian equilibrium phase density. Later on this phase density and
the whole relativistic kinetic theory was structured in a well organized Lorentz-invariant form,

1



2 CHAPTER 1. INTRODUCTION

see Chernikov [7], [8], Israel [38], Müller [63] and the textbook of deGroot, van Leeuven and
van Weert [32]. Jüttner [42] also established the relativistic form of equilibrium phase densi-
ties and the corresponding equations of state for the systems of bosons and fermions. In the
textbook of Weinberg [87] one can find a short introduction to special relativity and relativis-
tic hydrodynamics with further literature also for the imperfect fluid (gas), see for example
the papers of Eckart [23, 24, 25].

There are two approaches to solve the Euler equations numerically. One is based on the Euler
equations, for example Godunov-type schemes and central schemes. While the other approach
is based on the transport equations, for example kinetic schemes. In the kinetic schemes the
moments of the Maxwellian phase density are used in order to derive the constitutive rela-
tions. Using the conservation laws these constitutive relations lead to the Euler equations.
This distinction in the solution approaches was first made by Harten, Lax and van Leer [36].
No matter how a numerical scheme for the Euler equations is derived we expect it to have
certain properties apart from being consistent with the equations. Due to the presence of
discontinuities and weak solutions convergence is very difficult to prove. Some convergence
results are available for scalar hyperbolic equations and for special 2 × 2 systems, however,
no such result exist for the Euler equations. Other properties are needed to ascertain good
quality of the numerical solution: the numerical scheme should be robust in handling dis-
continuities, and it should show no grid dependencies in multi-dimensions. In addition, it
should retain properties specific to the Euler equations: conservation of mass, momentum,
and energy, positivity of density and pressure, and entropy inequalities. We will show in this
study that kinetic schemes preserve all these properties.

Zimmermann [95] in her Ph.D. thesis showed the connection between the method of transport
(MoT) and kinetic schemes for the classical Euler equations. She first considered the goup
of kinetic scheme for which Perthame [74] has already proved the positivity of density and
pressure. She showed that the standard first order method of transport presented by Fey
[27, 28] can be written as such a scheme: where decomposition and advection are then “ki-
netic”. She however showed that second order extensions do not fit to the framework, let alone
computationally less expensive extensions, for example extensions developed by Maurer[62]
and Noelle [66]. In order to prove the positivity property for more general decompositions and
advection solvers she generalized the concept of kinetic schemes. As a results she obtained
general, physically sensible, conditions on the decomposition and advection solver, which were
also satisfied by the second order extensions. In her numerical calculations she saw that these
conditions were in fact necessary. Recently Noelle, Kröger and Zimmermann [44] have ex-
tended these results to the Evolution Galerkin (EG) schemes showing the connection among
kinetic schemes, MoT and EG schemes.

Several numerical methods for solving relativistic gas dynamics have been reported, see Mart́ı
and Müller [61] and references therein. All these methods are mostly developed out of the
existing reliable methods for solving the Euler equations of non-relativistic or Newtonian gas
dynamics. It is noted that all these methods developed for the relativistic Euler equations are
based on a macroscopic continuum description. The reason is, that they solved a phenomeno-
logical form of the relativistic Euler equations, see Mart́ı et al. [59, 60, 61]. These are the
relativistic Euler equation which can be obtained by using the classical constitutive relation
for the internal energy density and gamma-gas law. Since these equations are in Lorentz
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invariant form, they are still relativistic Euler equations. The disadvantage is, it seems that
there is no consistent kinetic phase density which can recover all the constitutive relations for
these Euler equations.

On the other hand we use kinetic schemes to solve the fully relativistic Euler equations. All
the constitutive relations for these Euler equations can be obtained directly from the moments
of the relativistic kinetic phase density, and hence is fully consistent with the kinetic theory.
Also this is the first time that kinetic theory based methods have been developed for the
solution of the relativistic Euler equations. We will formulate two types of kinetic schemes in
order to solve the initial and boundary value problems of the relativistic Euler equations, i.e.,
unconditionally and conditionally stable kinetic schemes. Both types of kinetic schemes are
explained in the following paragraphs.

Our unconditionally stable kinetic schemes presented in Chapters 4 and 6 are discrete in time
but continuous in space. These schemes are explicit and unconditionally stable. Also the
schemes are truly multi-dimensional as they cover all the directions of wave propagation at
the gas evolution stage. We derive these kinetic schemes for both general form of relativistic
Euler equations as well as its limiting case, i.e., ultra-relativistic Euler equations. There are
three basic ingredients of the kinetic schemes. The first one is the relativistic phase density
developed by Jüttner. The second one is the solution of a collision free kinetic transport
equation, which can be given explicitly in terms of a known initial phase density. For the
formulation of such type of kinetic schemes we prescribe a time step τM > 0 and define the
equidistant times tn = n τM , n = 0, 1, 2, ..., called maximization times. We solve a colli-
sionless kinetic transport equation on each time interval tn < t < tn+1, with a relativistic
Maxwellian as the initial phase density at each maximization time tn. The third component
of our schemes consist of continuity conditions, which guarantee that the conservation laws
are also satisfied across the maximization times. They also determine the new initial data for
the next free-flight period. Finally, it is also possible to incorporate the out-flow and adiabatic
boundary conditions into these kinetic schemes in a quite natural way, which we will explain
after deriving the schemes. By taking moments of the corresponding phase densities one can
obtain every macroscopic quantity like particle density, energy density, pressure and velocity
four-vector. These macroscopic quantities will solve the relativistic Euler equations in the
limit τM → 0. These kinetic schemes preserve the properties like conservations laws, entropy
inequality, positivity, and L1− stability. In order to calculate the relativistic phase density in
free-flight, a suitable interpolation polynomial is needed which should satisfy TVD property,
see [13]. The schemes are first order accurate in space and time with numerical dissipation
of the order of time step. We extend these schemes to second order by using the approach
of Deshpande [13] which he used in order to extend the non-relativistic kinetic schemes to
second order. We will extend our schemes to second order for the one- and two-dimensional
ultra-relativistic Euler equations. Despite of the above several advantages the schemes have a
disadvantage that they are numerically expensive. These schemes are about five to six times
slower than the other schemes like, Godunov, central and KFVS schemes.

The conditionally stable kinetic schemes presented in Chapter 5 are discrete in time and
space. These are an upwind conservative schemes called kinetic flux vector splitting (KFVS)
schemes. The schemes are stable under a CFL condition, that is, the fluid movement is
restricted only to the neighbouring cells. In the classical case the CFL condition for the nu-
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merical schemes of the Euler equations depends on the initial data, whereas in the relativistic
theory there is a natural CFL conditions which is independent of the initial data due to the
light cone structure. In these schemes the flux moment integrals are calculated using the
idea of flux vector splitting under the CFL condition. Since KFVS schemes are based on
the free particle transport at the cell interface in the gas evolution stage, therefore we get
smeared solutions especially at the contact discontinuity. In order to overcome this problem
we include “particle” collisions in the gas evolution stage, see Xu [92, 93]. Consequently, the
artificial numerical dissipation in the new schemes are much reduced in comparison with the
usual kinetic flux vector splitting (KFVS) schemes. These new upwind schemes are named
as BGK-type KFVS schemes. The BGK-type KFVS schemes give robust and reliable solu-
tions as well as good resolution at the contact discontinuity. The schemes are extended to
the two-dimensional case in a usual dimensionally split manner, that is, the formulae for the
fluxes can be used along each coordinate direction. The second order accuracy of the schemes
are achieved by using a MUSCL-type initial reconstruction. For the ultra-relativistic Euler
equations we have to evaluate the free-flight moment integrals over the compact unit sphere
due to the finite domain of dependence in the relativistic kinetic theory. While, in the classical
kinetic schemes the free-flight moment integrals have infinite integration limits, therefore they
need some error-functions which have to be cutoff at their tails. The main difference between
the Godunov schemes and the present schemes are the calculation of fluxes. In the Godunov
schemes fluxes are calculated using the exact or approximate Riemann solvers. While in the
present schemes fluxes are calculated from the moments of the phase density. Since in the
relativistic case the solution lies inside a light-cone, therefore the natural CFL condition is
∆t = 0.5 ∗ min(∆x,∆y), as we solve one Riemann problem in each cell. Here ∆t is the time
step and ∆x and ∆y are the mesh widths in x- and y-directions. We have developed the above
KFVS and BGK-type KFVS schemes for the one- and two-dimensional ultra-relativistic Euler
equations.

For the comparison of the results, we develop an exact Riemann solver as well as first and
second order Godunov upwind schemes for the ultra-relativistic Euler equations, however
it seems impossible to get such schemes for the general form of special relativistic Euler
equations due to the presence of modified Bessel functions of second kind in the relativistic
Maxwellian. Apart from these, we also present one- and two-dimensional high order non-
oscillatory central schemes of Nessyahu and Tadmor [64] as well as Jiang and Tadmor [39]
for both ultra-relativistic Euler equations and general form of relativistic Euler equations.
Furthermore, we also use the central schemes in order to solve the phenomenological form
of the relativistic Euler equations as well as the non-relativistic Euler equations. We use a
MUSCL-type reconstruction to achieve second order accuracy.

Some of the work reported in this thesis has been submitted for publication in Journals. Five
preprints were completed during this work. In these five preprints the first four preprints have
co-authors M. Kunik and G. Warnecke, while the last article has G. Warnecke as co-author.
Our first article [45] has been accepted in the Journal of Computational Physics. This was
on the first order kinetic schemes for the ultra-relativistic Euler equations presented here
in Chapter 4. The work on the second order kinetic schemes for the ultra-relativistic Euler
equations appearing in Chapter 4 will be submitted soon for publication. Our second preprint
[47] on the BGK-type KFVS schemes appearing in Chapter 5, our third article [46] appearing
in Chapter 6 as well as our fourth article [48] have been submitted. The latter article is on
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the solution of Boltzmann-Peierls equation which uses a similar idea as presented in Chapters
4 and 5, however has not been included in this thesis. Our fifth submitted article [75] is on
the application of central schemes to multi-component flows which are not considered in the
thesis.

1.2 A Short Overview of the Work

In Chapter 2, we introduce kinetic schemes for the non-relativistic Euler equations. The Euler
equations are written in differential form as well as in a weak integral form. Also the weak
form of the entropy inequality is given, see [13, 18]. We explain the unconditionally stable
(continuous in space) kinetic schemes in order to solve these equations, see [13, 17, 18]. The
proofs of conservation laws, entropy inequality, positivity and L1 stability are given for these
kinetic schemes, see [18] and [74]. We explain the numerical implementation of the kinetic
schemes for the solution of both one- and two-dimensional Euler equations, see [13] and [17].
We also give the proof of TVD property for the one-dimensional kinetic scheme which was
first proved in [13]. We also give a brief introduction to the KFVS (discrete in space) schemes
for the one- and two-dimensional non-relativistic Euler equations, see [15, 16, 91]. The results
obtained from the kinetic schemes and KFVS schemes are compared with exact solutions, the
Godunov scheme, and central schemes.

In Chapter 3, we present the basic definitions of the relativistic kinetic theory, namely Lorentz-
transformations, vectors and tensors, the light cone, Einstein’s velocity addition, as well as
the relativistic phase density and its macroscopic moments. Moreover the two limiting cases
of the relativistic phase density are introduced, one is the classical Maxwellian for a cool
non-relativistic gas and the other is ultra-relativistic phase density. We also introduce some
limiting inequalities for the modified Bessel functions, see the hand book of Jeffrey [40]. These
relations will be used in Chapter 6 in order to write the general form of relativistic kinetic
theory in a more convenient form.

In Chapter 4, we calculate the macroscopic moments of the relativistic Maxwellian in order to
formulate the ultra-relativistic Euler equations as conservation laws for the particle number,
momentum, and energy. The Euler equations are written in differential form as well as in
a weak integral form. An entropy inequality is given in weak integral form with an entropy
function which satisfies the Gibbs equation. The Rankine-Hugoniot jump conditions and the
entropy inequality were used in order to derive a simple parameter representation for the ad-
missible shocks. Also parametrization for the rarefaction fan has been derived here. We use
these shock and rarefaction parametrizations in order to derive an exact Riemann solver for
the one-dimensional ultra-relativistic Euler equations. We first formulate the kinetic scheme
in order to solve the three-dimensional ultra-relativistic Euler equations. We prove that this
kinetic scheme strictly preserves the positivity of particle density and pressure for all later
times. In contrast to the kinetic scheme for the non-relativistic Euler equations, we show that
the three-fold moment integrals for the particle-density four-vector and energy-momentum
tensor reduces simply to a surface integrals where the integration is performed with respect
to the unit sphere. A similar idea was used by [21] and Kunik, Qamar and Warnecke [48] in
order to solve the Boltzmann-Peierls equation and its moment system for a phonon Bose-gas.
We derive the continuity conditions for the zero components of the macroscopic moments
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which play a crucial role in the proof of conservation laws and entropy inequality. These
continuity conditions are also used in order to initialize the kinetic schemes for the next time
step. The proof of conservation laws and entropy inequality for the kinetic schemes are given
for any arbitrary domain. We also derive the kinetic schemes for the spatially one and two-
dimensional ultra-relativistic Euler equations. Furthermore, using special coordinates in a
spatially one-dimensional case, we have further reduced the surface integrals of the three-
dimensional kinetic scheme to single integrals which ranges from −1 to +1. We explain the
numerical implementation of the kinetic scheme for the one-dimensional case. The procedure
for implementation of the reflected boundary conditions conditions in the scheme is also given
here. In order to compute the free-flight phase density inside the moment integrals we need a
linear interpolation polynomial, because we only know the initial data at the nodal points. We
are using the linear polynomial proposed by Deshpande [13] for which he has proved the TVD
property. Both one and two-dimensional solutions indicate the finite domain of dependence
on the preceding initial data, which is covered by the backward light-cones. This property
does not hold for non-relativistic kinetic schemes. We also discuss the Eulerian limit τM → 0
of the kinetic schemes where weak solutions are obtained from the initial value problems in-
cluding arbitrary shock interactions. The kinetic schemes described above are first order in
space and time. The second order accuracy in time is achieved by adding correction terms
to the moment integrals of the kinetic schemes which were obtained from the comparison
of the exact and numerical solutions. To get second order accuracy in space we use second
order interpolation polynomials in order to calculate the free-flight phase density inside the
moments integrals.

In Chapter 5, we derive conditionally stable kinetic schemes which we call BGK-type KFVS
schemes. This type of kinetic schemes are discrete in time and space. We start with a one-
dimensional ultra-relativistic Euler equations and derive the BGK-tpe KFVS scheme for it.
Since the scheme is first order accurate in time and space, therefore we also extend it to second
order by using a MUSCL-type reconstruction. The second order accuracy is simple in ultra-
relativistic case and the idea is similar to that of second order accuracy of the upwind schemes
using a MUSCL-type reconstruction. We have also derived the similar scheme for the two-
dimensional ultra-relativistic Euler equations in a dimensionally split manner. The scheme is
then extended to second order analogously to the one-dimensional case. Apart from the above
schemes we also derive the one-dimensional Godunov scheme for the ultra-relativistic Euler
equations, see Toro [85]. In order to calculate the fluxes we use the exact Riemann solver
derived in Chapter 4. The results obtained from the BGK-type KFVS schemes are compared
with exact solutions, the KFVS schemes, the Godunov scheme, and the central schemes.

In Chapter 6, we first determine the macroscopic moments of the general form of the relati-
vistic Maxwellian, which gives the so called constitutive relations. The conservation laws and
these constitutive relations then gives the general form special relativistic Euler equations.
The Euler equations are written in differential form as well as in a weak integral form, which
takes care for the evolution of shock waves. There holds an entropy inequality in terms of
a specific entropy function which satisfies the Gibbs equation. We also derive the Rankine
conditions for these Euler equations. The kinetic schemes for these Euler equations is an
extension of the theory presented in Chapter 4. We formulate the schemes in such a way that
the whole range from the classical Eulerian limit to the ultra-relativistic limit is covered. The
schemes derivation procedures are analogous to that in Chapter 4. But are more complicated
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due to the presence of modified Bessel functions of second kind in the relativistic Maxwellian.
The limiting relations for these Bessel functions which are given in Chapter 3 can be used
in order to get the limiting values for the non-relativistic or ultra-relativistic kinetic theory
of gases. Another very interesting theory in this chapter is the proof of the Maximum En-
tropy Principle. Before coming to the proof of the Maximum Entropy Principle, we have first
proved four lemmas which were needed for this purpose. After that we have formulated and
proved the Maximum Entropy Principle. At the end of this chapter we extend the scheme in
order to solve initial and boundary value problems. Apart from these, we also introduce the
three-dimensional phenomenological form of the relativistic Euler equations and then reduce
them to one space dimension. As discussed before in the introduction, these Euler equations
cannot be solved by using kinetic schemes. We solve these phenomenological relativistic Euler
equations using second order central schemes.

In Chapter 7, we formulate the Lax-Friedrichs (LxF) central schemes for one- and two-
dimensional hyperbolic systems. We extend these schemes to the second order non-oscillatory
central schemes of Nessyahu and Tadmor [64] as well as Jiang and Tadmor [39]. The main
advantage of these schemes is that unlike upwind schemes, no Riemann solver is needed for
the calculation of fluxes. Central schemes are important in cases when there is no Riemann
solver or it is difficult to obtain. The central schemes are also very important in the case of
general form of relativistic Euler equations because it is looking impossible to get an exact
Riemann solver for these equations. The central schemes are compact and easy to implement.
In the previous chapters we have used the central schemes in order to solve the non-relativistic
and relativistic Euler equations in one and two space dimensions.



Chapter 2

Kinetic Schemes for the
Non-relativistic Euler Equations

In this chapter we introduce first order conditionally and unconditionally stable kinetic
schemes for the non-relativistic Euler equations. These kinetic schemes were introduced by
Reitz [77], Deshpande and Raul [12], Deshpande [13, 16], Dreyer et al. [18, 17], Tang and Xu
[83], as well as Xu [91, 93]. This chapter is a background study for the better understanding
of the relativistic kinetic theory presented in the coming chapters.

As explained in the introduction the unconditionally stable kinetic schemes are discrete in
time but continuous in space. This type of kinetic schemes are explicit and does not need any
CFL condition. These kinetic schemes are truly multi-dimensional as they cover all directions
of wave propagation. The schemes are very useful and interesting for analysis. Furthermore
they allows the particle movement from a cell to any other cell. This is particularly impor-
tant in high speed flows. We prove the positivity, conservation laws and entropy inequality
for the three-dimensional kinetic scheme, see [18]. We explain the numerical implementation
of both the one- and two-dimensional kinetic schemes, [13, 17]. We generalize the schemes in
order to include the boundary conditions in one space dimension, however the procedure for
multi-dimensions is analogous.

On the other hand the conditionally stable kinetic schemes are an upwind conservative schemes
which are discrete both in time and space. The scheme are stable under a CFL condition,
that is, the fluid movement is restricted only to the neighbouring cells. In order to calculate
fluxes the idea of flux vector splitting technique of Harten, Lax and von Leer [36] is used. This
type of schemes are then called kinetic flux vector splitting (KFVS) schemes, see [15, 91, 93].
Harten et al. [36] drew a distinction between two numerical approaches to the solution of the
Euler equations, namely, the Godunov and KFVS schemes. Broadly speaking, the Godunov
schemes are based on the Riemann solution in the gas evolution stage, and the KFVS schemes
uses the microscopic particle distribution function as the basis to construct the fluxes. While
the construction methodology is different between the Godunov and kinetic schemes, both
first order schemes can be written in the framework of the three-point conservative methods.
As compared to the unconditionally stable kinetic schemes, KFVS schemes are computation-
ally more efficient and easy to implement. Therefore this type of schemes are highly desirable
from the computational point of view. Lui and Xu [57] have proved the entropy inequality

8



2.1. NON-RELATIVISTIC EULER EQUATIONS 9

for the KFVS schemes, while Tang and Xu [83] have proved the positivity of the schemes.

In coming sections the name kinetic schemes will be used for the unconditionally stable
kinetic schemes (continuous in space), while the name KFVS schemes will be used for the
conditionally stable kinetic schemes (discrete in space).

2.1 Non-relativistic Euler Equations

In this section we consider the time-dependent non-relativistic Euler equations. These are a
system of non-linear hyperbolic conservation laws that govern the dynamics of a compressible
material, such as gases or liquids at high pressures, for which the effects of body forces, viscous
stresses and heat flux are neglected.

There is some freedom in choosing a set of variables to describe the flow under consider-
ation. A possible choice is the so called primitive variables or physical variables, namely
ρ(t, x, y, z) = density or mass density, p(t, x, y, z) = pressure, v1(t, x, y, z) = x-component of
velocity, v2(t, x, y, z) = y-component of velocity, v3(t, x, y, z) = z-component of velocity. The
velocity vector is v = (v1, v2, v3). An alternative choice is provided by the so called conserved
variables. These are the mass-density ρ, the x-momentum component ρv1, the y-momentum
component ρv2, the z-momentum component ρv3 and the total energy E. Physically, these
conserved quantities result naturally from the application of the fundamental laws of conser-
vation of mass, Newton’s second law and conservation of energy. Computationally, there are
some advantages in expressing the governing equations in terms of the conserved variables.
This gives rise to a large class of numerical methods called conservative methods.

At regular points where the solution is continuously differentiable in space and time, the
three-dimensional non-relativistic Euler equations for a perfect gas are

∂

∂t
ρ+ ∇ · (ρv) = 0 , (2.1.1)

∂

∂t
(ρ vi) +

3
∑

k=1

∂

∂xk
(p δik + ρ vi vk) = 0 , (2.1.2)

∂E

∂t
+

3
∑

k=1

∂

∂xk
[v (E + p)] = 0 , (2.1.3)

where i = 1, 2, 3. The total energy E is given by

E =
p

(γ − 1)
+
ρv2

2
, 1 ≤ γ ≤ 3 ,

here γ is the ratio of specific heats. The relation between the pressure p and temperature T
for a thermally ideal gas is given by p = ρRT , where R is the gas constant. Also due to the
γ-gas law the specific internal energy e and pressure p are related as p = (γ − 1)ρe.

We consider initial data of bounded variation for ρ , v and p, which may have jumps:

ρ(0,x) = ρ0(x) , v(0,x) = v0(x) , p(0,x) = p0(x) .



10 CHAPTER 2. NON-RELATIVISTIC EULER EQUATIONS

Now we are looking for special solutions of the three-dimensional Euler equations, which will
not depend on x2, x3 but only depend on x = x1. Therefore we restrict to one-dimensional
flow field v = (v(t, x), 0, 0)T

ρt + (ρv)x = 0 ,

(ρv)t + (ρv2 + p)x = 0 , (2.1.4)

Et + (v(E + p))x = 0 .

where E =
p

(γ − 1)
+
ρv2

2
and p = ρRT = (γ − 1)ρe. These differential equations constitute

a strictly hyperbolic system with the characteristic velocities

λ1 = −
√

γ
p

ρ
, λ2 = v , λ3 =

√

γ
p

ρ
. (2.1.5)

The differential equations (2.1.4) are not sufficient if we take into account shock disconti-
nuities. Therefore we choose a weak integral formulation which is given due to Oleinik [68]
by curve integrals in time and space, namely

∫

∂Ω

ρdx− (ρv)dt = 0 ,

∫

∂Ω

(ρv)dx− (ρv2 + p)dt = 0 , (2.1.6)

∫

∂Ω

Edx− v (E + p) dt = 0 .

Here Ω ⊂ R
+
0 × R is a convex set in space-time with piecewise smooth, positive oriented

boundary, where R
+ ∈]0,∞[ and R ∈] −∞,∞[. Note that this weak formulation takes dis-

continuities into account, since there are no derivatives of the field involved. If we apply the
Gaussian divergence theorem to the weak formulation (2.1.6) in space-time regions where the
solution is regular we come back to the differential form of the Euler equations (2.1.4).

Furthermore we require that the weak solution (2.1.6) must also satisfy the entropy-inequality

∫

∂Ω

hdx− Φdt ≥ 0 , (2.1.7)

with positive oriented ∂Ω. Where the entropy density h and the entropy flux Φ are given by

h(ρ, p) =
ρ

γ − 1
ln

(

p

ργ

)

+
ρ

γ − 1
(1 + ln 2π) , Φ(ρ, v, p) = v · h(ρ, p) . (2.1.8)

2.2 Kinetic Scheme in Three Space Dimensions

The kinetic schemes uses the well-known fact that Euler equations (2.1.1) are the first mo-
ments of the Boltzmann equation when the distribution function is Maxwellian [5]. The basic
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unknown in the Boltzmann equation is the velocity distribution function f(t,x, c, I), where t
is time, x is the position vector, c is the molecular velocity vector, and I is the independent
internal-energy variable corresponding to nontranslational degrees of freedom. The Boltz-
mann transport equation in its three-dimensional form, see Cercignani [5, Chapters II and
IV] as well as Cercignani, Illner and Pulvirenti [6, Sections 3.2, 3.3, 11.1], is given by

∂f

∂t
+

3
∑

k=1

ck
∂f

∂xk
= Q(f) . (2.2.1)

The left hand side of the above equation is the free-flight or convective term, while the right
hand side is the collision term. The field variables ρ, v, and E are related to f through
moment equations given by

ρ(t,x) =

∫

R3×R+

f(t,x, c, I) d3c dI ,

ρv(t,x) =

∫

R3×R+

cf(t,x, c, I) d3c dI , (2.2.2)

E(t,x) =

∫

R3×R+

(

I +
c2

2

)

f(t,x, c, I) d3c dI ,

here, R ∈] −∞,+∞[ and R+ ∈]0,∞[. The free-flight term gives the rate of change of f per
unit volume in (x, c, I) space because of movement of molecules, and the collision term gives
the rate of change of f because of intermolecular collisions.

Note that the collision term Q(f) has the property

∫

R3×R+

ψ(c, I)Q(f) d3c dI = 0 , (2.2.3)

where ψ =

(

1, c, I +
c2

2

)T

. This is a direct consequence of the conservation of mass, mo-

mentum, and energy during the collisions, see [6, Sections 3.2, 3.3, 11.1].

In the Euler limit Q(f) = 0 and the distribution function f is then the Maxwellian distri-
bution:

f(x, c, I) = wM (x, c, I) =
ρ

(2πRT )3/2
exp

[

−(c− v)2

2RT

]

exp (−I/I0)
I0

. (2.2.4)

The variable I corresponds to the nontranslational degrees of freedom and

I0 =
(2 +Df ) − γDf

2(γ − 1)
RT , (2.2.5)

where Df is the degree of freedom of molecules, and γ is the ratio of specific heats.

Now we formulate the iterated scheme for the mass density ρ, the velocity v and temperature
T . To initialize the scheme we start with
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• Bounded and integrable initial data for x ∈ R
3 :

ρ(0,x) = ρ0(x) ≥ ǫ > 0, v(0,x) = v0(x), p(0,x) = p0(x) ≥ δ > 0.

• A fixed time τM > 0 of free-flight, so that at equidistant times tn = n·τM , (n = 0, 1, 2, ...),
the maximization of entropy takes place.

By substituting Q(f) = 0 in the Boltzmann equation (2.2.1), we get a collisionless transport
equation

∂f

∂t
+

3
∑

k=1

ck
∂f

∂xk
= 0 . (2.2.6)

The exact solution of this equation with initial distribution function at time level n denoted
by fn(x, c, I) is

f(tn + τ,x, c, I) = fn(x − τc, c, I) , 0 ≤ τ ≤ τM . (2.2.7)

The vanishing of Q(f) is due to large number of collisions because Q(f) = 0 if and only if f
is a Maxwellian distribution (2.2.4).

By substituting (2.2.7) in (2.2.2), we get an iterated scheme for the variables density ρ, velocity
v and temperature T within the time interval 0 < τ < τM :

ρ(tn + τ,x) =

∫

R3×R+

fn(x − τc, c, I) d3c dI ,

ρv(tn + τ,x) =

∫

R3×R+

cfn(x − τc, c, I) d3c dI , (2.2.8)

E(tn + τ,x) =

∫

R3×R+

(

I +
c2

2

)

fn(x − τc, c, I) d3c dI .

Here fn(y, c, I) = wM (ρ(tn,y),v(tn,y), T (tn,y), c, I) is the Maxwellian phase density (2.2.4).

In the following we will consider the dimensionless quantities, therefore we take the gas
constant R = 1. Now the integration with respect to the variable I in (2.2.8) yields

ρ(tn + τ,x) =

∫

R3

fn(x− τc, c) d3c ,

(ρvi)(tn + τ,x) =

∫

R3

cifn(x− τc, c) d3c , (2.2.9)

E(tn + τ,x) =

∫

R3

(

I0 +
c2

2

)

fn(x − τc, c) d3c ,

where fn is the contracted local Maxwellian distribution defined by

fn(y, c) = wM (y, c) =
ρ(tn,y)

(2πT (tn,y))3/2
exp

[

− (c− v)2

2T (tn,y)

]

, (2.2.10)

and (2.2.5) implies I0 =
5 − 3γ

2(γ − 1)
T , for Df = 3.
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This scheme can be brought into compact generic form, if we introduce the abbreviations

cA =











1 , A = 0 ,
ci , A = i = 1, 2, 3 ,

(

I0 + c2

2

)

, A = 4 .
(2.2.11)

Then the variables uA and fluxes FAk read

uA(tn + τ,x) =

∫

R3

cAfn(x − τc, c) d3c ,

(2.2.12)

FAk(tn + τ,x) =

∫

R3

cAckfn(x − τc, c) d3c .

Note that u0 = ρ, ui = ρvi (i = 1, 2, 3) and u4 = E =
p

(γ − 1)
+
ρv2

2
.

The entropy density h and entropy flux Φk are

h(tn + τ,x) = −
∫

R3

(fn ln fn)(x− τc, c) d3c ,

(2.2.13)

Φk(tn + τ,x) = −
∫

R3

ck(fn ln fn)(x− τc, c) d3c .

For τ = 0, fn is the phase density (2.2.10) that can obtained by maximizing the entropy at
time tn for given constraints uA(tn,x). Within the range 0 < τ < τM the phase density solves
the collision free Boltzmann equation. When the time tn+1 = tn + τM is reached fn+1 will be
the phase density (2.2.10) that can obtained by the maximization of entropy under the new
constraints uA(tn+1,x).

In order to initialize the kinetic scheme for the next time step, we require the following
continuity conditions for the conservative variables uA across the maximization time tn, n ≥ 1

uA(t+n ,x) = uA(t−n ,x) . (2.2.14)

These continuity conditions are the direct consequence of (2.2.3). Since we are implementing
the computation in these variables, these conditions are automatically enforced. Here we
have used the following abbreviation for the one-sided limits across the maximization time
tn, n ≥ 1, where for a positive number ε

uA(t±n ,x) = lim
ε→0

uA(tn ± ε,x) .

Later on we see that these conditions are necessary in order to guarantee the conservation
laws for the mass momentum and energy across the maximization time tn.

2.2.1 Proof of Conservation Laws and Entropy Inequality

Now we present the proof of conservation laws and entropy inequality for the kinetic schemes,
see [18].



14 CHAPTER 2. NON-RELATIVISTIC EULER EQUATIONS

Proposition 2.1: Let 0 < τ < τM and n = 0, 1, 2, .... The fields uA(tn + τ,x), FAk(tn + τ,x)
and all of their derivatives in space and time are smooth, i.e. arbitrarily often continuously
diffrentiable, and they satisfy the conservation laws

∂uA

∂τ
(tn + τ,x) +

∂FAk

∂xk
(tn + τ,x) = 0.

Remark: Note that these equations do not constitute a local quasi linear hyperbolic system
for the variables uA, because the fluxes FAk at time tn + τ and position x depend on the
whole field uA(·, tn) at time tn.

Proof: If we substitute c by y = x − τc in (2.2.12) and regard fn(y, c) = wM (uA(tn,y), c)
we obtain

uA(tn + τ,x) =
1

τ3

∫

R3

cAwM

(

uA(tn,y),
x− y

τ

)

d3y ,

FAk(tn + τ,x) =
1

τ3

∫

R3

cA
xk − yk

τ
wM

(

uA(tn,y),
x − y

τ

)

d3y ,

with

cA =

(

1,
xi − yi

τ
, I0 +

(x − y)2

2τ2

)

.

In these integrals the uA’s do not depend on x and τ . We have thus shown the smoothness
of uA, FAk and of all its derivatives with respect to τ and x.

In order to prove the conservation form for these variables and fluxes we rely again on the
expressions (2.2.12). There holds due to the chain rule:

∂τuA(tn + τ,x) =

∫

R3

cA∂τfn(x− τc, c) d3c

= −
∫

R3

cAck∂xk
fn(x − τc, c) d3c

= −∂xk

∫

R3

cAckfn(x − τc, c) d3c

= −∂xk
FAk(tn + τ,x).

Proposition 2.2: Let Ω ⊂ R
+
0 × R

3 be any bounded convex region in space and time. By d~o
we denote a positively oriented boundary element of ∂Ω. The representations (2.2.12) have
the following properties:

(i) In the limit τM → 0 the volume densities uA, fluxes FAk, the entropy density h and
entropy flux Φk become local functions of the variables ρ, vi and T , viz.

uA =





ρ
ρvi

ρv2

2 + 3
2ρT



 , FAk =







ρvk

ρvivk + ρTδik

ρ
(

v2

2 + 5
2T
)

vk






,

h = ρ
γ−1 ln

(

p
ργ

)

+ ρ
γ−1(1 + ln 2π) , Φk = hvk.
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(ii) For τM > 0 as well as in the Eulerian limit τM → 0 we obtain the following weak
formulation, which takes discontinuities into account:

∫

∂Ω

(uA, FAk) d~o = 0. (2.2.15)

(iii) In regular points where the solution is continuously differentiable, the differential form
of the Euler equations is satisfied for τM → 0.

(iv) The following entropy inequality is satisfied for τM > 0 as well as in the Eulerian limit
τM → 0:

∫

∂Ω

(h,Φk)d~o ≥ 0. (2.2.16)

The brackets (uA, FAk) and (h,Φk) denote four-vectors in time (first position) and space (last
three positions).

Remarks:

(1) The limit τM → 0 means that a thermodynamic process is realized by an infinite number
of maximizations within a time interval ∆t.

(2) Each maximization increases the entropy, and for this reason the maximization of ent-
ropy simulates the interaction of the microscopic particles of the gas.

(3) In singular points of a shock curve with velocity vs, which may appear in the limit
τM → 0, the Rankine-Hugoniot equations

−vs[[uA]] + [[FAk]]Nk = 0

hold. In addition, there is a positiv entropy production according to

σs = −vs[[h]] + [[Φk]]Nk ≥ 0.

Proof:
(i): In the limit τM → 0 the fields ρ and T in (2.2.10) an therefore in the integrals (2.2.12) do
not depend on c anymore, i.e. they are constants regarding the c-integrations. Since in this
limit the free-flight phase density reduces to the Maxwellian phase density, we obtain from
(2.2.12), (2.2.13) the representations given in (i). The convergence should be proved in the
L1-norm. This is an open point until now.

Regarding the propositions (ii) + (iii) it is sufficient to prove
∫

∂Ω(uA, FAk)d~o = 0 for τM > 0.
The Eulerian limit τM → 0 can be obtained by means of (i).

Let be τM > 0. The time axis is divided by the maximization times 0 = t0 < t1 < t2 < · · · ,
so that the convex domain Ω can be decomposed into the subdomains







Ω0 =
{

(δ,x) ∈ Ω
∣

∣ 0 ≤ δ ≤ t0+t1
2

}

,

Ωn =
{

(δ,x) ∈ Ω
∣

∣

tn−1+tn
2 ≤ δ ≤ tn+tn+1

2

}

(n = 1, 2, 3, . . . ).
(2.2.17)
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Since
∫

∂Ω(uA, FAk)d~o =
∑

n≥0

∫

∂Ωn
(uA, FAk)d~o, it is sufficient to assume without loss of

generality that the time range

ΘΩ =
{

t ≥ 0
∣

∣ there exists x ∈ R
3 : (t,x) ∈ Ω

}

of Ω contains at most one maximization time t. Then for ε out of the range 0 < ε < 1
2τM we

define a further decomposition of each Ωn, n ≥ 1, into three parts:















Ωε
n,L =

{

(δ,x) ∈ Ωn

∣

∣ δ ≤ tn − ε
}

,

Ωε
n,M =

{

(δ,x) ∈ Ωn

∣

∣ tn − ε ≤ δ ≤ tn + ε
}

,

Ωε
n,R =

{

(δ,x) ∈ Ωn

∣

∣ δ ≥ tn + ε
}

.

(2.2.18)

These decompositions are visualized in the following two graphs:

x

t

t = t0
t0+t1

2
t1 t1+t2

2 t2
t2+t3

2

Ω

Ω1 Ω2Ω0

x

t

Ωn

Ωε
n,L Ωε

n,R
Ωε

n,M

εε

tn−1+tn

2
tn

tn+tn+1

2

Figure 2.1: The decompositions of Ω and Ωn.

We obtain
∫

∂Ωn

(uA, FAk)d~o =

∫

∂Ωε
n,L

(uA, FAk)d~o+

∫

∂Ωε
n,R

(uA, FAk)d~o+

∫

∂Ωε
n,M

(uA, FAk)d~o, (2.2.19)

and proceed to show that the first two integrals on the right-hand side must vanish:

The fields uA(t,x) and FAk(t,x) are smooth in the domains Ωε
n,L, Ωε

n,R. For both domains we
thus can apply the Gaussian Divergence Theorem to the conservation law ∂tuA + ∂xk

FAk = 0
resulting from the Proposition 2.1 in order to get

∫

∂Ωε
n,L

(uA, FAk)d~o =

∫

∂Ωε
n,R

(uA, FAk)d~o = 0.

A similar proof in the one-dimensional case is given in Appendix A for the relativistic case.
However one can use that proof for the non-relativistic case with little modification. This



2.2. KINETIC SCHEME IN THREE SPACE DIMENSIONS 17

implies
∫

∂Ωn

(uA, FAk)d~o =

∫

∂Ωε
n,M

(uA, FAk)d~o = lim
ε→0

∫

∂Ωε
n,M

(uA, FAk)d~o

=

∫

Ω∗
n

{∫

R3

cA [fn(x, c) − fn−1(x − τMc, c)] d3c

}

d3x,

where Ω∗
n = {x ∈ R

3|(tn,x) ∈ Ω}. The time tn−1 is the maximization time that preceeds the
maximization time tn. The Maxwellian fn has to be read off from (2.2.10).

The last integral expression vanishes due to continuity conditions (2.2.14), i.e.,

uA(t−n ,x) = uA(t+n ,x) .

We have thus established that the weak form (2.2.15) for a general convex domain Ω is implied
by the representations (2.2.12). In particular (2.2.15) holds also in the Eulerian limit τM → 0.

In each regular point (t,x) we can now apply the Gaussian Divergence Theorem to (2.2.15)
in the Eulerian limit in order to get the proposition (iii).

Regarding the proposition (iv) which states the existence of the entropy inequality (2.2.16),
we start the again with the decompositions (2.2.17) and (2.2.18) of Ω. Since

∫

∂Ω(h,Φk)d~o =
∑

n≥0

∫

∂Ωn
(h,Φk)d~o, it is sufficient to prove

∫

∂Ωn
(h,Φk)d~o ≥ 0 for each n. We obtain

∫

∂Ωn

(h,Φk)d~o =

∫

∂Ωε
n,L

(h,Φk)d~o+

∫

∂Ωε
n,R

(h,Φk)d~o+

∫

∂Ωε
n,M

(h,Φk)d~o . (2.2.20)

We will now show that the first two integrals on the right hand side vanishes. The entropy-
function h(t,x) and the entropy-flux Φk(t,x) are smooth fields in the domain Ωε

n,R, because
according to (2.2.13) we have for (t,x) ∈ Ωε

n,R

h(t,x) = −
∫

R3

(fn ln fn)(x− (t− tn)c, c) d3c ,

Φk(t,x) = −
∫

R3

ck(fn ln fn)(x− (t− tn)c, c) d3c .

In this domain we obtain due to the chain rule:

∂th(t,x) = −∂xk
Φk(t,x). (2.2.21)

This implies
∫

∂Ωε
n,R

(h,Φk)d~o = 0, and
∫

∂Ωε
n,L

(h,Φk)d~o = 0 can likewise be obtained. For every

sufficiently small ε > 0 there holds
∫

∂Ωn

(h,Φk)d~o = lim
ε→0

∫

∂Ωε
n,M

(h,Φk)d~o (2.2.22)

=

∫

Ω∗
n

{∫

R3

[−(fn ln fn)(x, c) + (fn−1 ln fn−1)(x− τMc, c)] d3c

}

d3x,
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where Ω∗
n = {x ∈ R

3|(tn,x) ∈ Ω}, and tn−1 < tn is the maximization time that preceeds tn.
Next we shall show that the integral (2.2.22) is non-negative. To this we need the following

Lemma 2.3: For u, v > 0 we have

v ln v − u lnu = [lnu+ 1](v − u) + S(u, v) , (2.2.23)

with a function S(u, v) ≥ 0.

Proof of Lemma 2.3: Due to Taylor’s formula there is a ξ > 0 between u, v > 0 such that

v ln v = u lnu+ (lnu+ 1)(v − u) +
1

2ξ
(v − u)2. (2.2.24)

We conclude S(u, v) ≥ 0.

Now we apply Lemma 2.3 to u = fn(x, c) , v = fn−1(x − τMc, c):

∫

R3

[−(fn ln fn)(x, c) + (fn−1 ln fn−1)(x − τMc, c)] d3c (2.2.25)

= −
∫

R3

[1 + ln fn(x, c)] [fn(x, c) − fn−1(x− τMc, c)] d3c

+

∫

R3

S(fn(x, c), fn−1(x− τMc, c))d3c.

The second integral is non-negative and the first one vanishes because [1 + ln fn(x, c)] is

a quadratic polynomial in c, containing only ci and c2, and for cA =
(

1, ci, I0 + c2

2

)

there

follows due to (2.2.14)

0 =

∫

R3

cA [fn(x, c) − fn−1(x− τMc, c)] d3c. (2.2.26)

For τM > 0 we have thus established the entropy inequality (2.2.16). It is due to proposition
2.2 (i) that this inequality is also valid in the Eulerian limit, where shocks may appear.

2.2.2 Positivity and L1−Stability of the Kinetic Scheme

One advantage of kinetic schemes is that it is straightforward to show that they preserve
positivity of the density and pressure. A similar theorem was proved by Perthame [74] in case
of KFVS scheme.

Theorem 2.4: Assume that the initial distribution function fn(y, c) ≥ 0, additionally
fn(y, c) does not vanish almost everywhere for all microscopic velocities c, macroscopic ve-
locities v and positive density and pressure. Then the numerical solution obtained by the
resulting kinetic scheme has the following property: its density, total energy and pressure re-
main positive for all times. This mean that the numerical scheme defined by (2.2.8) is stable
in L1:

ρ(tn + τ,x) > 0 , E(tn + τ,x) > 0 , p(tn + τ,x) > 0 . (2.2.27)
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Proof: Since we have assumed that initial phase-density is positive, therefore (2.2.8) implies

ρ(tn + τ,x) =

∫

R3

fn(x − τc, c) d3c > 0 . (2.2.28)

Simlarly

E(tn + τ,x) =

∫

R3

(

I0 +
c2

2

)

fn(x− τc, c) d3c > 0 . (2.2.29)

According to the Cauchy-Schwarz inequality, if we have two functions f and g then





b
∫

a

f · g dx





2

≤





b
∫

a

f2 dx



 ·





b
∫

a

g2 dx



 , (2.2.30)

where equality holds iff the functions f and g are linearly dependent.

Let us define for abbreviation y = x − τc. Using (2.2.8) and Cauchy-Schwarz inequality, we
get

(ρv1)
2(tn + τ,x) =

(∫

R3

c1 fn(y, c) d3c

)2

=

(∫

R3

((

c1
√

fn

)

·
(

√

fn

))

(y, c) d3c

)2

(2.2.31)

<

(∫

R3

(

c1
√

fn

)2
(y, c) d3c

)

·
(∫

R3

(

√

fn

)2
(y, c) d3c

)

= ρ(tn + τ,x)

(∫

R3

c21fn(y, c) d3c

)

.

In Cauchy-Schwarz inequality we have not taken the equality sign because the functions
c1
√

fn(y, c) and
√

fn(y, c) are linearly independent. Similarly

(ρv2)
2(tn + τ,x) < ρ(tn + τ,x)

(∫

R3

c22fn(y, c) d3c

)

,

(2.2.32)

(ρv3)
2(tn + τ,x) < ρ(tn + τ,x)

(∫

R3

c23fn(y, c) d3c

)

.

Now adding (2.2.31), (2.2.32), and using the fact that v2 = v2
1 + v2

2 + v2
3, c2 = c21 + c22 + c23,

we finally get

1

2
ρv2(tn + τ,x) <

∫

R3

c2

2
fn(y, c) d3c .

≤
∫

R3

(

I0 +
c2

2

)

fn(y, c) d3c .

= E(tn + τ,x) .
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Thus we have proved that E(tn + τ,x) > 1
2ρv

2(tn + τ,x). This implies that

p(tn + τ,x) = (γ − 1)

(

E − 1

2
ρv2

)

(tn + τ,x) > 0 .

Now we prove the L1−stability of the scheme. We have already proved that the kinetic scheme
is conservative and give positive values of particle density ρ and total energy E . Therefore
using (2.2.8)1 we get

||ρ(tn + τ, .)||L1(R) =

∫

R3

|ρ(tn + τ,x)|d3x =

∫

R3

ρ(tn + τ,x)d3x

=

∫

R3

ρ(tn,x)dx =

∫

R3

|ρ(tn,x)|d3x

= ||ρ(tn, .)||L1(R) .

Similarly ||E(tn + τ, .)||L1(R) = ||E(tn, .)||L1(R). Now using (2.2.8) with y = x − τc and
Cauchy-schwarz inequality (2.2.30) we get

||ρvi(tn + τ, .)||L1(R) =

∫

R3

∣

∣

∣

∣

∫

R3

cifn(y, c)d3c

∣

∣

∣

∣

d3x

=

∫

R3

∣

∣

∣

∣

∫

R3

(

√

fn

)(

ci
√

fn

)

(y, c)d3c

∣

∣

∣

∣

d3x

<

[∫

R3

∣

∣

∣

∣

∫

R3

fn(y, c)d3c

∣

∣

∣

∣

d3x · 2
∫

R3

∣

∣

∣

∣

∫

R3

(

I0 +
c2

2

)

fn(y, c)d3c

∣

∣

∣

∣

d3x

]
1

2

=
(

2 ||ρ(tn, .)||L1(R) ||E(tn, .)||L1(R)

) 1

2 .

This proves the L1 stability of the scheme.

2.3 Kinetic Scheme in One Space Dimension

In the following we are looking for spatially one-dimensional solutions, which are nevertheless
solutions to the full three dimensional equations. We only consider solutions which depend
on t and x = x1 and satisfy ρ = ρ(t, x), v = (v(t, x), 0, 0), p = p(t, x).

We choose a fixed τ = τM > 0 and define the equidistant times tn = nτM (n = 0, 1, 2, . . . ).

For given fields ρn(x) = ρ(tn, x), vn(x) = v(tn, x), Tn(x) = T (tn, x) at time tn, starting with
the initial data ρ0, v0, T0 given at time t = 0, these fields are obtained at time tn+1 according
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to the scheme

ρ(tn+1, x) =

+∞
∫

−∞

fn(x− cτ, c) dc ,

(ρv)(tn+1, x) =

+∞
∫

−∞

cfn(x− cτ, c) dc , (2.3.1)

E(tn+1, x) =

+∞
∫

−∞

(I0 +
c2

2
)fn(x− cτ, c) dc.

Here the phase density fn(y, c) is given by

fn(y, c) = wM (y, c) =
ρn(y)

√

2πTn(y)
exp

[

−(c− vn(y))2

2Tn(y)

]

, (2.3.2)

and (2.2.5) implies I0 =
3 − γ

2(γ − 1)
T , for Df = 1. This scheme can be obtained from the

representations (2.2.9) by integrating over c2 and c3.

2.3.1 Numerical Implementation of the Scheme in 1D

Here we explain the numerical implementation of the one-dimensional kinetic scheme. How-
ever the procedure is similar for the two-dimensional case.

• We start with the values of initial data ρ(tn, x), v(tn, x) and T (tn, x) at equidistant grid
points.

• We specify the length L of the spatial domain, the number Nx of elements (intervals)
in the spatial domain 0 ≤ x ≤ L, the final time tf of output and the number Em of
maximization times. For i = 0, ..., Nx, we introduce the nodes xi = i · L

Nx
.

• The time step ∆t is calculated by ∆t =
tf

EM
. The step in the spatial domain is ∆x =

L/Nx.

• Our aim is to calculate the moments (2.3.1). These moments are then used to update
the fields ρ, v and T .

In order to perform the integration with respect to variable c, we need to cut the integration
limits which are ranging from −∞ to ∞. For this purpose we need a sufficiently large domain

R = [cmin, cmax] , (2.3.3)

so that the Maxwellian fn(y, c) is sufficiently small outside of R. In order to construct R, we
use the knowledge of dynamic fields at the preceding time step tn. Thus at the actual time
tn+1, the size of R is determined as follows:
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We choose R and a positive constant η ≥ 3, for example η = 4, so that each c which is outside
of R must satisfy the following inequality for all y ∈ R:

exp

[

−(c− v(tn, y))
2

2T (tn, y)

]

< exp
(

−η2
)

= exp (−16) = 1.125 × 10−7 , (2.3.4)

this implies that the contribution is only coming from

|c− v| ≤ η
√

2T .

We are able to control the following extreme values of the fields v(tn, .) and T (tn, .) at the
previous time step tn:

cmin = vmin − η
√

2Tmax , cmax = vmax + η
√

2Tmax , (2.3.5)

for

vmin = min
y∈R

v(tn, y), vmax = max
y∈R

v(tn, y) ,

Tmin = min
y∈R

T (tn, y), Tmax = max
y∈R

T (tn, y) .

In above all the fields variables ρ(tn, x), v(tn, x) and T (tn, x) are stored at mesh points only,
and therefore fn(xi − cτ, c) has to be determined by linear interpolation. One choice of
interpolation is

fn(xj − cτ, c) = fn(xi, c) + δ [fn(xi+1, c) − fn(xi, c)] , (2.3.6)

where xj − cτ = xi + δ (xi+1 − xi) for 0 ≤ δ ≤ 1. Here fn(xj − τc) and fn(xi, c) = wM (xi, c)
are the one-dimensional free-flight and Maxwellian phase phase densities, respectively. The
relations between xi, xj and δ are shown in Figure 2.2. The linear interpolation of the previ-
ous fields corresponds to the application of the trapezoidal integration rule in (2.3.1).

slope

x

t

xi

xi+1

xj

xj+1y

τ

c

Figure 2.2: Interpolation of y = xj − cτ at the grid points xi and xi+1.



2.3. KINETIC SCHEME IN ONE SPACE DIMENSION 23

2.3.2 Application of Boundary Conditions

Here we generalize the above numerical kinetic scheme in order to include boundaries. We
are restricting ourselves to the one space dimension, however the procedure is analogous for
the two and three space dimensions.

It is possible that a point y = x − cτ is outside the computational domain 0 ≤ x ≤ L, i.e.,
the fluid particle has then crossed the domain boundaries during free-flight. Consequently, a
boundary strategy is required to find fn(y, c) so that physically meaningful desired boundary
conditions are satisfied.

Reflecting boundary conditions:

In Figure 2.3 a single gas particle trajectory is shown. We consider the lower boundary as a
solid wall, therefore the particles having negative velocity will reach the wall. The particle
starts from a position x∗ with negative microscopic velocity and reach the lower boundary in
time τ1. The particle then reflects with positive velocity and reaches the position x in time
τ2. Since the reflection from the lower adiabatic wall is elastic, therefore particle incident and
reflected angles are the same. Now using Figure 2.3 we get the following relations

x = τ2 c , x∗ = −τ1 c , τ1 + τ2 = τ . (2.3.7)

Subtracting (2.3.7)1,2 and using (2.3.7)3 we get x∗ = |x− τc| ≥ 0.

Therefore in case of lower adiabatic boundary we replace fn(x− τc, c) in the kinetic scheme
(2.3.1) by fn(|x− τc|, c∗) for c∗ = −c.

Similarly if we consider the boundary x = L as adiabatic wall then only those particles will
reach to the boundary which have positive microscopic velocity c. Let ∆ = y − L then
the reflecting boundary conditions will be x∗ = L − ∆ and c∗ = −c. Thus we will replace
fn(x− τc, c) in the kinetic scheme (2.3.1) by fn(x∗, c∗).

Absorbing boundary conditions:

When the fluid particle crosses the lower boundary as shown by the dashed line in Figure 2.3,
i.e., y = x−cτ < 0, then we replace fn(x−τc, c) in the kinetic scheme (2.3.1) by fn(|x−τc|, c).
Similarly if y = x − cτ > L, i.e., fluid particles have acrossed the upper boundary then we
take x∗ = L− ∆ where ∆ = y − L and replace fn(x− τc, c) in the kinetic scheme (2.3.1) by
fn(x∗, c).

2.3.3 Total Variation Diminishing (TVD) Property

The validity of the TVD property for the kinetic scheme was proved by Deshpande [13]. Here
we present his proof. Let us define for abbreviation yj = xj − τc, then we can rewrite (2.3.6)
for 0 < τ < τM as

f(tn + τ, xj , c) = fn(yj , c) = (1 − η) fn(xi, c) + η fn(xi+1, c) , (0 ≤ η ≤ 1) . (2.3.8)

Here i is the mesh point such that xj − cτ lies between xi and xi+1. The phase densities
fn(xi, c) and fn(xi+1, c) are the Maxwellian at time tn. The total variation of fn at time tn
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Figure 2.3: Trajectory of a single gas particle.

is defined by

TV (fn(c)) =
∑

j∈Z

|fn(xj+1, c) − fn(xj , c)| . (2.3.9)

Due to the constraints (2.2.14) and (2.2.3), the density, fluid velocity, and temperature does
not change during the maximization time. Hence

TV (ρ(t−n )) = TV (ρ(t+n )) , TV (v(t−n )) = TV (v(t+n )) , TV (T (t−n )) = TV (T (t+n )) .

Therefore, it is sufficient to deal with the change of total variation during free-flight tn <
tn + τ < tn+1, 0 < τ < τM . Using (2.3.8) the total variation is given by

TV (f(tn + τ, c)) =
∑

j∈Z

|fn(yj+1, c) − fn(yj , c)|

≤
∑

i∈Z

(1 − η)|fn(xi+1, c) − fn(xi, c)| +
∑

i∈Z

η|fn(xi+2, c) − fn(xi+1, c)| .

(2.3.10)

Evidently,

∑

i∈Z

η|fn(xi+2, c) − fn(xi+1, c)| =
∑

i∈Z

η|fn(xi+1, c) − fn(xi, c)|,

and hence with the use of (2.3.9), the inequality (2.3.10) becomes

TV (f(tn + τ, c)) ≤
∑

i∈Z

|fn(xi+1, c) − fn(xi, c)| ≤ TV (fn(c)) .

Thus, for every value of η, the total variation of the velocity distribution function is non-
increasing during the free-flight phase. There are some advantages to considering the total
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variation (TV) of the phase density f instead of the TV of the fields ρ, v, T . The conser-
vation laws of the Euler type are moments of a single scalar equation for phase density f .
This equation being linear and hyperbolic admits the exact solution fn(x − τc, c), which is
TV-preserving. It is therefore quite consistent to demand that numerical solution for f be
TV-preserving. The present approach connects the TVD property of the linear, hyperbolic
equation with the vector conservation laws by use of the fact that the laws are moments of
the equation. From the above analysis the TVD property of the kinetic scheme hinges upon
the interpolation strategy adopted in calculating fn(x− cτ, c).

2.4 Kinetic Scheme in Two Space Dimensions

We are looking for the solutions uA(t, x1, x2, x3) which do not depend on x3. In this case
we can carry out the c3-integration in (2.2.9) and obtain the two-dimensional scheme for
ρ, v = (v1, v2) and T :

ρ(tn+1,x) =

∫

R2

fn(x− cτ, c) d2c ,

(ρvi)(tn+1,x) =

∫

R2

cifn(x− cτ, c) d2c , (2.4.1)

E(tn+1,x) =

∫

R2

(

I0 +
c2

2

)

fn(x− cτ, c) d2c .

Here x, c, v ∈ R
2, i = 1, 2, and the phase density fn(y, c) is given by

fn(y, c) =
ρn(y)

√

2πTn(y)
exp

[

−(c − vn(y))2

2Tn(y)

]

, (2.4.2)

and (2.2.5) implies I0 =
2 − γ

(γ − 1)
T , for Df = 2.

We choose a fixed τ = τM > 0 and define the equidistant times tn = nτM (n = 0, 1, 2, . . . ).
For given fields ρn(x) = ρ(tn,x), vn(x) = v(tn,x), Tn(x) = T (tn,x) at time tn, starting with
the initial data ρ0(x), v0(x), T0(x) given at time t = 0, these fields are obtained at time tn+1

by evaluating the integrals (2.4.1).

2.4.1 Numerical Implementation of the Scheme in 2D

This is a two-dimensional extension of the procedure given in Subsection 2.3.1 for the one-
dimensional case, see [17]. We start with the values of initial data ρ(tn,x), v(tn,x) and
T (tn,x) at equidistant grid points.

In order to perform the integration with respect to variable c, we again need to cut the
integration limits which are ranging from −∞ to ∞. For this purpose we need a sufficiently
large rectangular domain

R =
[

cmin
1 , cmax

1

]

×
[

cmin
2 , cmax

2

]

, (2.4.3)
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so that the Maxwellian fn(y, c) in (2.4.2) is sufficiently small outside of R. In order to con-
struct R, we use the knowledge of dynamic fields at the preceding time step tn. Thus at the
actual time tn+1, the size of R is determined as follows:

We choose R and a positive constant η ≥ 3, for example η = 4, so that each c which is outside
of R must satisfy the following inequality for all y ∈ R2:

exp

[

−(c− v(tn,y))2

2T (tn,y)

]

< exp
(

−η2
)

= exp (−16) = 1.125 × 10−7 , (2.4.4)

this implies the contribution is only coming from

|c− v| ≤ η
√

2T ,

which is a circle of radius η
√

2T and center at v. We are able to control the following extreme
values of the fields v(tn, .) and T (tn, .) at the previous time step tn:

vmin
1 = min

y∈R2
v1(tn,y), vmax

1 = max
y∈R2

v1(tn,y), (2.4.5)

vmin
2 = min

y∈R2
v2(tn,y), vmax

2 = max
y∈R2

v2(tn,y), (2.4.6)

Tmin = min
y∈R2

T (tn,y), Tmax = max
y∈R2

T (tn,y) . (2.4.7)

Consequently it is an easy matter to determine that an appropriate choice of integration
domain R is given by the following square with the side length r:

r =
1

2

[

(

vmin
1 − vmax

1

)2
+
(

vmin
2 − vmax

2

)2
]1/2

+ η
√

2Tmax ,

cmin
1 =

1

2
(vmin

1 + vmax
1 ) − r , cmax

1 =
1

2
(vmin

1 + vmax
1 ) + r , (2.4.8)

cmin
2 =

1

2
(vmin

2 + vmax
2 ) − r , cmax

2 =
1

2
(vmin

2 + vmax
2 ) + r .

Finally we have to solve the problem of space-discretization. To this end we choose a rect-
angular computational domain Ω ⊂ R

2. For initial value problems we take the domain Ω
large enough to avoid the boundary effects, while for the boundary value problems we have
to follow the same procedure as given in Subsection 2.3.2 for the one-dimensional case. Next
we cover the resulting domain

Ω =
[

xmin
1 , xmax

1

]

×
[

xmin
2 , xmax

2

]

, (2.4.9)

with a rectangular mesh with mesh points

x
(i)
1 = xmin

1 +
xmax

1 − xmin
1

n1 − 1
, x

(i)
2 = xmin

2 +
xmax

2 − xmin
2

n2 − 1
,

where 0 ≤ i ≤ n1, 0 ≤ j ≤ n2 and n1, n2 ≥ 2 are the numbers of grid points in the x1 and x2

directions, respectively. Then we decompose each rectangle
[

x
(i)
1 , x

(i+1)
1

]

×
[

x
(j)
2 , x

(j+1)
2

]

into

two triangles so that the final decomposition of Ω is as given in Figure 2.4.
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Figure 2.4: Decomposition of Ω

The new fields ρ(tn+1, .), v(tn+1, .), T (tn+1, .) are computed at the grid points x
(i)
1 , x

(j)
1 relying

on the knowledge of the previous fields, which are interpolated linearly to each triangle. The
linear interpolation of the previous fields corresponds to the application of the trapezoidal
integration rule in (2.4.1) to each triangle.

We choose a triangulation in order to use linear interpolation. On quadrilaterals one would
have to use piecewise bilinear functions.

2.5 Kinetic Flux Vector Splitting (KFVS) Schemes

The kinetic schemes described above are discrete in time but continuous in space. Now we
come to another type of kinetic schemes which are discrete both in time and space. These
schemes are called KFVS schemes. The KFVS schemes are stable under CFL condition and
the fluid flow is limited to the neighbouring cells only.

Flux vector splitting is a technique for achieving upwinding bias in numerical flux functions,
which is a natural consequence of regarding a fluid as an ensemble of particles. Since particles
can move forward or backward through an interface, this automatically splits the fluxes of
mass, momentum and energy into forward and backward fluxes through the cell interface, i.e,

Fi+ 1

2

= F+(Wi) + F−(Wi+1) ,

where Wi represents mass, momentum and energy densities inside the cell i. The equivalence
between the above splitting mechanism and the collisionless Boltzmann equation was first
realized by Harten, Lax and van Leer [36]. Numerically it is observed that the explicit flux
formulation of the kinetic flux vector splitting (KFVS) schemes, by solving the collisionless
transport equation, are identical to the flux function of van Leer [58].

Kinetic flux splitting schemes (KFVS) have been widely used in solving multi-dimensional
non-relativistic Euler equations. Mandal and Deshpande [58] have applied KFVS to solve the
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bump in a channel problem with structured meshes. Numerically, it has been observed in
[58] that the explicit flux function of the KFVS scheme, by using the collisionless Boltzmann
equation, is identical to the flux function of van Leer [54] which was first realized by [36].
Weatherill et al. [86] have applied the first order and high order resolution KFVS scheme
to several 2-D problems with structured and unstructured meshes. Deshpande et al. [14]
have developed 3-D time marching Euler code called BHEEMA using KFVS method for
aerodynamic design and analysis of practical configurations. Perthame [74] has derived a
second order KFVS scheme using the Maxwellian phase density which is second order accurate
in time. This second order phase density was first obtained by Deshpande [13] to get second
order kinetic scheme and is based on Chapman Enskog analysis for the solution of Boltzmann
equation. Tang and Xu [83] proved the positivity of the KFVS scheme, while Lui and Xu [57]
proved the entropy inequality for the scheme. Deshpande and Kulkarni [16] also applied the
idea of KFVS scheme on moving grids.

2.5.1 One-Dimensional KFVS Scheme

Here we want to solve the one-dimensional Euler equations (2.1.4) written in abbreviated
form

∂W

∂t
+
∂F (W )

∂x
= 0 , (2.5.1)

where

W =





ρ
ρv
E



 , F (W ) =





ρv
p+ ρv2

v(E + p)



 , (2.5.2)

where E = p
(γ−1) + 1

2ρ
(

v2
)

.

We start with a piecewise constant initial data W
n
i at time tn over the cells [xi− 1

2

, xi+ 1

2

] of a

given mesh size ∆x = xi+ 1

2

− xi− 1

2

. We have to compute W
n+1
i over the same cells at time

tn+1. This is performed easily by assuming the CFL condition

∆t ≤ ∆x

(

1

max |vi| + λi

)

, (2.5.3)

where the speed of sound is λi =
√
γTi. Then we can write the kinetic scheme (2.3.1) in

compact form for τ = ∆t as follows

W (tn+1, x) =

+∞
∫

−∞

ψα fn(x− cτ, c) dc, ψα =

(

1 , c , I0 +
c2

2

)

. (2.5.4)

Again we take Maxwellian distribution (2.3.2) as an initial phase density with I0 =
3 − γ

2(γ − 1)
T .

The one-dimensional weak form of conservation laws
∮

∂Ω

W (t, x) dx− F (W (t, x)) dt = 0 , (2.5.5)
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over the domain [tn, tn+1] × [xi− 1

2

, xi+ 1

2

] gives

x
i+ 1

2
∫

x
i− 1

2

[W (tn+1, x) −W (tn, x)] dx+

tn+1
∫

tn

[

F (τ, xi+ 1

2

) − F (τ, xi− 1

2

)
]

dτ = 0 .

Let us define the integral mean values by

W i(t) =
1

∆x

x
i+ 1

2
∫

x
i− 1

2

W (t, x)dx .

Dividing the above balance equation by ∆x, we get the following conservative formula

W i(tn+1) = W i(tn) − 1

∆x

tn+1
∫

tn

[

F (τ, xi+ 1

2

) − F (τ, xi− 1

2

)
]

dτ , (2.5.6)

where equation (2.2.12) for the one-dimensional case gives

F (τ, x) =

+∞
∫

−∞

cψα fn(x− cτ, c) dc . (2.5.7)

Let use define

Fn

(

Wi+ 1

2

)

=
1

∆t

tn+1
∫

tn

+∞
∫

−∞

cψα fn(xi+ 1

2

− cτ, c) dc dτ , (2.5.8)

then (2.5.6) can be rewritten as

W
n+1
i = W

n
i − ∆t

∆x

[

Fn(Wi+ 1

2

) − Fn(Wi− 1

2

)
]

. (2.5.9)

If the CFL condition (2.5.3) is satisfied then xi± 1

2

− cτ is confined to the direct neighbouring

cells of xi± 1

2

. This implies that the field variables ρ, v, T in the split flux integrals will not

depend on the c−integration. Furthermore, the integrand in (2.5.8) will be also independent
of the τ−integration. Therefore (2.5.8) after flux vector splitting implies

Fn(Wi+ 1

2

) = F−
n (Wi+1) + F+

n (Wi)

=

0
∫

−∞

c ψα fn(Wi+1) dc+

∞
∫

0

c ψα fn(Wi) dc . (2.5.10)

After integration of the fluxes we get the following KFVS scheme from (2.5.9)

W
n+1
i = W

n
i − ∆t

∆x

[

F+
n (Wi) + F−

n (Wi+1) − F+
n (Wi−1) − F−

n (Wi)
]

, (2.5.11)
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where if for abbreviation ξ = v√
2T

, then

F±
n (Wi) = ±

√

Ti

2π
exp(−ξ2)





ρi

ρvi

Ei + 1
2pi



+
1

2
(1 ± erf(ξ))





ρivi

ρiv
2
i + pi

Eivi + pivi



 , (2.5.12)

where the fields ρi, vi and pi are defined at time tn. The complementary error function is
given by

erf(z) =
2√
π

z
∫

o

exp(−ϑ2) dϑ .

In the above derivations we saw that the splitting of flux vector Fn into F+
n and F−

n is based
on the sign of the molecular velocity c.

2.5.2 Two-Dimensional KFVS Scheme

Here we want to solve the two-dimensional Euler equations

∂W

∂t
+
∂F (W )

∂x
+
∂G(W )

∂y
= 0 , (2.5.13)

where

W =









ρ
ρv1
ρv2
E









, F (W ) =









ρv1
p+ ρv2

1

ρv1v2
v1(E + p)









, G(W ) =









ρv2
ρv1v2
p+ ρv2

2

v2(E + p)









, (2.5.14)

where E = p
(γ−1) + 1

2ρ
(

v2
1 + v2

2

)

. Now we can write the kinetic scheme (2.4.1) in compact
form for τ = ∆t and tn+1 = tn + ∆t as follow

W (tn+1,x) =

∫

R2

ψα fn(x− cτ, c) d2c, ψα =

(

1 , c , I0 +
c2

2

)

, (2.5.15)

where I0 =
2 − γ

γ − 1
T , x = (x, y), c = (c1, c2), and fn is initially Maxwellian distribution func-

tion (2.4.2).

We start with a piecewise constant initial data W
n
i,j at time tn. Integrating (2.5.15) over

the control volume [tn, tn+1] × [xi− 1

2

, xi+ 1

2

] × [yj− 1

2

, yj+ 1

2

], we get analogously to the one-

dimensional case

W
n+1
ij =W

n
ij

− 1

∆x

tn+1
∫

tn

∫

R2

cψα

[

fn(xi+ 1

2

− c1τ, yj − c2τ, c) − fn(xi− 1

2

− c1τ, yj − c2τ, c)
]

d2c dt

− 1

∆y

tn+1
∫

tn

∫

R2

cψα

[

fn(xi − c1τ, yj+ 1

2

− c2τ, c) − fn(xi − c1τ, yj− 1

2

− c2τ, c)
]

d2c dt .



2.6. NUMERICAL CASE STUDIES 31

If the CFL condition

∆t ≤ min

(

∆x

max |(v1)i| + λij
,

∆y

max |(v2)j | + λij

)

, λij =
√

γTij , (2.5.16)

is satisfied then (xi± 1

2

−c1τ, yj −c2τ) will remains in the direct neighbouring cells to (xi± 1

2

, yj)

and (xi−c1τ, yj± 1

2

−c2τ) will remains in the neighbouring cells to (xi, yj± 1

2

), therefore we get

W
n+1
i,j = W

n
i,j−

∆t

∆x

[

Fn(Wi+ 1

2
,j) − Fn(Wi− 1

2
,j)
]

−∆t

∆y

[

Gn(Wi,j+ 1

2

) −Gn(Wi,j− 1

2

)
]

, (2.5.17)

with

Fn(Wi+ 1

2
,j) = F+

n (Wi,j) + F−
n (Wi+1,j) ,

(2.5.18)

Gn(Wi,j+ 1

2

) = G+
n (Wi,j) + F−

n (Wi,j+1) ,

where for S1 = v1√
2T

and S2 = v2√
2T

we have

F±
n (Wi,j) = ±

√

Ti

2π
exp(−S2

1)









ρ
ρv1
ρv2

E + 1
2p









i,j

+
1

2
(1 ± erf(S1))









ρv1
p+ ρv2

1

ρv1v2
Ev1 + pv1









i,j

, (2.5.19)

G±
n (Wi,j) = ±

√

Ti

2π
exp(−S2

2)









ρ
ρv1
ρv2

E + 1
2p









i,j

+
1

2
(1 ± erf(S2))









ρv2
ρv1v2
p+ ρv2

2

Ev2 + pv2









i,j

. (2.5.20)

2.6 Numerical Case Studies

In order to validate the theory discussed above we give the results of some numerical case
studies for the solution of the one- and two-dimensional non-relativistic Euler equations. For
the comparison of the results we use Godunov and central schemes which are discussed in
Chapters 5 and 7, respectively.

2.6.1 One-Dimensional Test Problems

Here we present one-dimensional test problems. In all the these problems we take the ratio
of specific heats γ = 5

3 . The results obtained from kinetic scheme are compared with exact
solution, KFVS scheme and Godunov scheme results. We take 500 mesh points in the spatial
domain. Also we take 100 maximization times for the kinetic scheme. In KFVS and Godunov
schemes we take CFL number equal to 0.4.
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Problem 1: From free flight to the Eulerian limit

We consider a density distribution ρ0(x) at zero velocity and uniform temperature:

ρ(0, x) = ρ0(x) =







1 |x| > 1
, v(0, x) = v0 = 0, T (0, x) = T0 = 1.

1.1 |x| ≤ 1

This problem was studied in [18]. We are interested in the solution within the range x ∈ [−5, 5]
at time t = 1.5 for different maximizing entropy times τM . Figure 2.5 depicts the density,
velocity and pressure distributions at t = 1.5. The diffusion like distributions result from
pure free-flight with only one maximization at the beginning. The distributions that show
already the formation of moving fronts are obtained when we choose τM = 0.15, i.e. there
are 10 maximizations within the time interval [0, 1.5]. When we decrease τM further, the
fronts become steeper, and this is exhibited by the the distributions that are obtained for
τM = 0, 015. This is almost the Eulerian limit. The physical content of the Eulerian limit is
the overwhelming importance of collisions against free-flight. A chosen τM > 0 thus deter-
mines which of both mechanisms has more influence on a thermodynamic process. The exact
Euler solution was obtained by using second order central scheme on very fine mesh.

Problem 2: This Riemann problem was proposed by Sod [82]. The initial data are

(ρ, u, p) =

{

(1.0, 0.0, 1.0) if x < 0.5 ,
(0.125, 0.0, 0.1) if x ≥ 0.5 .

Where the spatial domain is 0 ≤ x ≤ 1 and the final time is t = 0.25. The results are shown
in Figure 2.6.

Problem 3: This problem given in [85] is concerned with collision of two shocks. The initial
data are

(ρ, u, p) =

{

(5.99924, 19.5975, 460.94) if x < 0.4 ,
(5.99242,−6.19633, 46.0950) if x ≥ 0.4 .

Where the spatial domain is 0 ≤ x ≤ 1 and the final time is t = 0.035. The results are shown
in Figure 2.7.

Problem 4: A single shock reflection

This problem was studied by Dreyer et al. [19]. We consider a single shock which is reflected
by an adiabatic wall at x = 0. The initial data are

(ρ, u, p) =

{

(2.0/3.0, 0.0, 0.5) if x < 1.5 ,
(1.0,−0.5, 1.0) if x ≥ 1.5 ,

where the spatial domain is 0 ≤ x ≤ 2. This initial data creates a 1-shock that propagates
with the speed −3

2 . The shock reaches the wall at t = 1, which leads to a reflection. After
reflection a 3-shock arises which propagates with the speed 7

6 . We take the total time tf = 13
7 .

We have solved this problem with unconditionally stable kinetic scheme (continuous in space)
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for 1000 mesh point and 200 maximizations times. The results are shown in Figure 2.8.

Problem 5: Blast wave problem

In this example, we test the schemes on the blast wave problem which was carefully studied
by Woodward and Colella [88]. The initial data are taken as

(ρ, u, p) =







(1.0, 0.0, 1000.0) if x < 0.1 ,
(1.0, 0.0, 0.01) if 0.1 ≤ x < 0.9 ,
(1.0, 0.0, 100.0) if 0.9 ≤ x ≤ 1.0 .

The reflective boundary conditions are applied at both x = 0 and x = 1. The results are
shown in Figure 5.13 at time is t = 0.038. The exact solution is a second order Godunov
scheme solution on very fine grid.

2.6.2 Two-Dimensional Test Problems

Here we present two-dimensional test problems for both the kinetic scheme and the KFVS
scheme. We also compare these results with the first order Lax-Friedrichs (LxF) scheme and
exact solution. Here the exact solution is a second order central scheme solution on a very fine
mesh. The results are obtained by using 500 × 500 mesh points. We take 100 maximization
times in the kinetic scheme.

Problem 6: A two-dimensional quadratic pulse

This initial value problem was studied by Dreyer et al. [17]. Here we consider a two-
dimensional initial value problem inside a square box (1 × 1 units). Initially the velocities
are zero. Both particle density and pressure are equal 4 in a square box 0.4 ≤ x ≤ 0.6 ,
0.4 ≤ y ≤ 0.6 and equal 1 elsewhere. We are interested in the solution at time t = 0.1. Fig-
ure 2.10 shows the results obtained from the kinetic scheme, first order Lax-Friedrichs (LxF)
scheme and KFVS scheme at y = 0.5. The exact solution is obtained by using second order
central scheme at fine mesh. We found that kinetic scheme has comparable accuracy to LxF
and KFVS schemes. Figure 2.11 shows the global solution using kinetic scheme. The initial
data has only symmetry at an angle of 90o, the same effect we can see in Figure 2.11.

Problem 7: Interaction of two spherically symmetric fields

This example was also studied by Dreyer et al. [17]. Here we consider the interaction
of two spherically symmetric fields with initial data: ρ0(x1, x2) = 4, p0(x1, x2) = 4 for
(x1 − 0.4)2 + (x2 − 0.4)2 ≤ 0.015 and for (x1 − 0.6)2 + (x2 − 0.6)2 ≤ 0.015. Otherwise
ρ(x1, x2) = 1, p0(x1, x2) = 1. Where velocities are zero everywhere, i.e. u = v = 0. Our
computational domain is (x, y) ∈ [0, 1] × [0, 1]. We are interested in the solution at time
t = 0.15. Figure 2.12 shows the comparison of the kinetic scheme with other methods at
y = 0.5. Figure 2.13 shows the global solution using the kinetic scheme.
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Problem 8: 2-D Riemann problem with four shocks

This problem was studied by Schulz-Rinne et al. [81]. Here we choose the initial data of the
form

(ρ, u, v, p) =















(1.1, 0.0, 0.0, 1.1) if x > 0.5, y > 0.5 ,
(0.5065, 0.8939, 0.0, 0.35) if x < 0.5, y > 0.5 ,
(1.1, 0.8939, 0.8939, 1.1) if x < 0.5, y < 0.5 ,
(0.5065, 0.0, 0.8939, 0.35) if x > 0.5, y < 0.5 ,

which correspond to the case of left forward shock, right backward shock, upper backward
shock, and a lower forward shock. The problem is solved on the square (x, y) ∈ [0, 1] × [0, 1]
and time t = 0.25. We take the ratio of specific heats γ = 1.4. Figure 2.14 shows the results
from kinetic scheme, KFVS scheme and Lax-Friedrichs (LxF) scheme. We can see from the
results that all the three schemes do not produce any noise in the solution.

2.7 Summary

In this chapter we have presented the first order kinetic schemes and KFVS schemes for the
non-relativistic Euler equations. The purpose of this chapter was to give an introduction to the
kinetic schemes and KFVS schemes for the non-relativistic Euler equations. This chapter is a
useful background to understand the relativistic kinetic theory coming in the next chapters.
We have numerically implemented the one- and two-dimensional kinetic schemes and KFVS
schemes. The numerical results from both type of schemes were compared with the first
order Godunov and Lax-Friedrichs (LxF) schemes. The programing codes for the KFVS and
central schemes are compact and simpler compared to the Godunov schemes. The boundary
conditions implementation for the KFVS schemes are analogous to the Godunov schemes.
The programing codes for the kinetic schemes are also simple. As explained in the theory the
boundary condition implementations strategies for the kinetic schemes are different from the
KFVS, Godunov and LxF schemes. It was found that both kinetic and KFVS schemes give
a better resolution of the contact discontinuity as compared to the LxF schemes. However
Godunov scheme has a slightly better resolution than all the other three schemes at the
contact. The computational time for the KFVS schemes are comparable to both central and
Godunov schemes. However kinetic schemes were found to be computationally expensive and
five to six times slower than than other schemes due to the inside loop for the c integration
in each computational cell. However, as discussed in the introduction the kinetic schemes
have other advantages like, they need no CFL condition and are truly multi-dimensional. On
the other hand like Godunov and LxF schemes, KFVS schemes are also stable under CFL
condition, therefore the flow is only restricted to the neighbouring cells only. Secondly they
are not truly multidimensional. Thus we conclude that both KFVS and kinetic schemes have
their own advantages and disadvantages and the selection of one from the two schemes will
depend on the purpose for which they are intended to be used.
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Figure 2.5: Density, velocity and pressure distributions for 1, 10, 100 maximizations.

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

position

particle density
Exact Riemann Solution
First Order Godunov Scheme
First Order KFVS Scheme
First Order Kinetic Scheme

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

position

Exact Riemann Solution
First Order Godunov Scheme
First Order KFVS Scheme
First Order Kinetic Scheme

velocity 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

position

Exact Riemann Solution
First Order Godunov Scheme
First Order KFVS Scheme
First Order Kinetic Scheme

pressure

0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

position

particle density  (zoomed)
Exact Riemann Solution
First Order Godunov Scheme
First Order KFVS Scheme
First Order Kinetic Scheme

0.93 0.94 0.95 0.96 0.97 0.98

0

0.2

0.4

0.6

0.8

1

1.2

1.4

position

Exact Riemann Solution
First Order Godunov Scheme
First Order KFVS Scheme
First Order Kinetic Scheme

velocity  (zoomed)

0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

position

Exact Riemann Solution
First Order Godunov Scheme
First Order KFVS Scheme
First Order Kinetic Scheme

pressure  (zoomed)

Figure 2.6: Sod problem at t = 0.25.
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Figure 2.7: Collision of two shocks at t = 0.035.

Figure 2.8: Reflection of a shock wave on an adiabatic wall.
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Figure 2.10: Quadratic pulse problem at y = 0.5 and time t = 0.1.

Figure 2.11: Quadratic pulse problem at time t = 0.1 by using kinetic scheme.
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Figure 2.12: Two interacting spherical waves at y = 0.5 and time t = 0.15.
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Figure 2.13: Two interacting spherical waves at time t = 0.15 by using kinetic scheme.
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Figure 2.14: Riemann problem with 4 shocks at t = 0.25.



Chapter 3

Relativistic Kinetic Theory

3.1 Lorentz-Transformations

In special relativity the laws of nature are invariant under a particular group of space-time
coordinate transformations, called Lorentz-transformations. In order to formulate our theory
in a Lorentz-invariant form, we make use of the notations for the tensor calculus used in the
textbook of Weinberg [87], with only slight modifications:

A) The space-time coordinates are xµ, µ = 0, 1, 2, 3, with x0 := ct for the time,
x1, x2, x3 for the position.

B) The metric tensor is

gµν = gµν =







+1 , µ = ν = 0 ,
−1 , µ = ν = 1, 2, 3 ,
0 , µ 6= ν .

(3.1.1)

In Matrix-form it can be written as

G = (gµν)µ,ν=0,1,2,3 =









+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









. (3.1.2)

C) The proper Lorentz-transformations are linear transformations Λα
β from one sys-

tem of space-time with coordinates xα to another system x′α. They must satisfy

x′α = Λα
β x

β, gµν = Λα
µ Λβ

ν gαβ, Λ0
0 ≥ 1, det Λ = +1 . (3.1.3)

The conditions Λ0
0 ≥ 1 and det Λ = +1 are necessary in order to exclude inversion

in time and space. Then the following quantity forms a tensor with respect to proper
Lorentz-transformations, the so called Levi-Civita tensor:

ǫαβγδ =







+1, αβγδ even permutation of 0123,
−1, αβγδ odd permutation of 0123 ,

0, otherwise.

Note that in the textbook of Weinberg [87] this tensor as well as the metric tensor both
take the sign opposite to the notation used here.

39
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D) Einstein’s summation convention:
Any Greek index like α, β, that appears twice, once as a subscript and once as a super-
script, is understood to be summed over 0,1,2,3 if not noted otherwise. For spatial
indices, which are denoted by Latin indices like i, j, k, we will not apply this summation
convention.

Proposition 3.1: Given a matric tesor G as in (3.1.2), the following statements are equi-
valent for any matrix Λ = (Λα

β) ∈ R
4×4, α, β = 0, 1, 2, 3.

(i) The Lorentz-matrix Λ leaves the Einstein-Minkowski metric Q(x) = xTGx invariant.

(ii) The matrix Λ is regular and has the inverse matrix Λ−1 = GΛTG .

(iii) We have G = ΛTGΛ, i.e. the Matrix Λ leaves the wave operator � invariant.

Proof: Let I be the unit matrix in R
4. Regarding statement (ii) and (iii) we have:

G =ΛTGΛ ⇔
I =G2 = (GΛTG)Λ ⇔
Λ−1 = GΛT G ⇔
I =ΛΛ−1 = (ΛGΛT )G ⇔

G2 =(ΛGΛT )G ⇔
G =ΛGΛT .

The first relation shows the invariance of the metric G in space-time, while the last relation
shows the invariance of the d’Alembertian wave-operator. We define the d’Alembertian wave-
operator by

� :=
1

c2
∂2

∂t2
− ∆ = gµν

∂2

∂xµ∂xν
.

The invariance of d’Alembertian wave-operator means that

ψ′(x′) := ψ(x) = ψ(Λ−1x′) ⇒ (�′ψ′)(x′) = (�ψ)(x).

Also according to the statement (i) we have:

Q(x) = xTGx = gµνx
µxν .

Q(Λx) = xT (ΛTGΛ)x = xTGx = Q(x).

The invariance of Q(x) and d’Alembertian wave-operator are equivalent.

Remark: The invariance of the d’Alembertian wave-operator is useful in order to write the
Maxwell equations in Lorentz invariant form.

Definition: A constant matrix Λ ∈ R
4×4 which satisfies the equivalent conditions (i), (ii)

and (iii) in above Proposition 3.1 is called a Lorentz-matrix.
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A Lorentz-matrix Λ and a constant four-quantity a ∈ R
4 describe a Lorentz-transformation

x⇒ x′ = Λx+ a , (3.1.4)

of the four space-time coordinates. The Lorentz-transformation is called homogeneous if
a = 0. An important example of the homogeneous Lorentz-transformation is

t′ =
t− vx

c2
√

1 − v2

c2

, x′ =
x− vt
√

1 − v2

c2

, y′ = y , z′ = z , (3.1.5)

with velocity v = vx along the x-axis, which reduces for |v| << c to the classical Gallilean
transformation

t′ = t , x′ = x− vt . (3.1.6)

3.2 Vectors and Tensors

Any quantity that transforms like f ′α = Λα
βf

β is called four-vector.

Contravariant four-vector: is a vector with single upper index having the following
Lorentz-transformation property

V α(x) → V ′α(x′) = Λα
βV

β(x) . (3.2.1)

Covariant four-vector: is a quantity with a single lower index having transformation

Uα(x) → U ′
α(x′) = Λ β

α Uβ(x) , (3.2.2)

where

Λ α
β = gβγg

αδΛγ
δ . (3.2.3)

The matrix gαδ introduced here is numerically the same as gαδ, that is

gαδ = gαδ. (3.2.4)

Also note that

gαδgδβ =

{

+1 , α = β ,
0 , α 6= β .

(3.2.5)

This means that Λ β
α is the inverse of the matrix Λβ

α, that is using (3.2.3) and (3.1.3)

Λ γ
α Λα

β = gαδg
γηΛδ

ηΛ
α
β = gηβg

γη = δγ
β . (3.2.6)

It follows that the scalar product of a contravariant with a covariant four-vector is invariant
with respect to Lorentz-transformation (3.1.3), that is,

U ′
αV

′α = Λ γ
α Λα

βUγV
β = UβV

β . (3.2.7)
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To every contravariant four-vector V α there corresponds a covariant four-vector

Vα = gαβV
β , (3.2.8)

and to every covariant Uα there corresponds a contravariant

Uα = gαβUβ . (3.2.9)

A co- or contravariant vector is a tensor with one index, and scalar (invariant expression) is
a tensor without indices.

Note that raising the index on Vα simply gives back V α, and lowering the index on Uα simply
gives back Uα,

gαβVβ = gαβgβγV
γ = V α , (3.2.10)

gαβU
β = gαβg

βγUγ = Uα . (3.2.11)

Derivatives: Although any vector can be written in a contravariant or a covariant form,
there are some vectors, such as dxα, that appear more naturally contravariant and others
that appear more naturally covariant. An example of the latter is the gradient ∂/∂xα, which
obeys the transformation rule

∂

∂xα
→ ∂

∂x′α
=

∂xβ

∂x′α
∂

∂xβ
. (3.2.12)

We also know the coordinate transformation

xα → x′α = Λα
βx

β . (3.2.13)

Multiplying (3.2.13) by Λ γ
α gives

xγ = Λ γ
α x

′α , (3.2.14)

so

∂xβ

∂x′α
= Λ β

α . (3.2.15)

One consequence is that the divergence of a covariant vector ∂V α

∂xα is invariant. Another is

that the scalar product of ∂
∂xα with itself, the d’Alembertian operator

� :=
1

c2
∂2

∂t2
− ∆ = gαβ

∂2

∂xα∂xβ
,

is also invariant.

Many physical quantities are not scalars or vectors, but more complicated objects called ten-
sors. A tensor has several contravariant and/or covariant indices with corresponding Lorentz-
transformation properties, for example

T γ
αβ(x) → T ′γ

αβ = Λγ
δΛ

ε
α Λ ξ

β T
δ
εξ . (3.2.16)

A contravariant or covariant vector can be regarded as a tensor with one index, and a scalar
is a tensor with no indices.
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3.2.1 Four Rules for Constructing New Tensors From the Old Ones

In the following we are looking for simple rules which enables us to construct new tensors
from the old ones. These rules may be combined with each others under certain constraints
to obtain every possible tensor. These rules will also enable us to tell at a glance that an
equation is Lorentz-invariant.

Rule I: Linear combinations:
A linear combination of tensors with same upper and lower indices is a tensor with these
indices.

Tα
β ≡ aRα

β + bSα
β , (3.2.17)

where Rα
β and Sα

β are tensors, and a and b are scalars. Then Tα
β is also a tensor, that is,

T ′α
β = aR′α

β + b S′α
β

= aΛα
κ Λ µ

β Rκ
µ + bΛα

κ Λ µ
β Sκ

µ

= Λα
κ Λ µ

β T κ
µ .

Rule II: Direct product:
The product of the components of two tensors is a tensor whose upper and lower indices
consist of all upper and lower indices of the two original tensors. For instance, if Aα

β and Bγ

are tensors, and

Tα γ
β = Aα

β B
γ , (3.2.18)

then Tα γ
β is a tensor, that is,

T ′α γ
β = A′α

β B
′γ

= Λα
κ Λ λ

β Λγ
µ T

κ µ
λ .

Rule III: Contractions:
Setting an upper and lower index equal and summing it over its values 0,1,2,3, yields a tensor
with these two indices absent. For example if Tα γδ

β is a tensor and

Tαγ = Tα γβ
β , (3.2.19)

then Tαγ is a tensor, that is,

T ′αγ
= T ′α γβ

β

= Λα
δ Λ ε

β Λγ
ξ Λβ

κ T
δ ξκ

ε

= Λα
δ Λγ

ξ δ
ε
κ T

δ ξκ
ε

= Λα
δ Λγ

ξ T
δξ .

Rul IV: Differentiation:
The derivative ∂/∂xα of any tensor is a tensor with one additional lower index α. For instance,
if T βγ is a tensor and

T βγ
α ≡ ∂

∂xα
T βγ . (3.2.20)
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then T βγ
α is a tensor, that is,

T ′ βγ
α ≡ ∂

∂x′α
T ′βγ

= Λ δ
α

∂

∂xδ
Λβ

ε Λγ
ξT

εξ

= Λ δ
α Λβ

ε Λγ
ξ T

εξ
δ .

Note that the order of indices matters, even as between upper and lower indices. For instance,
T βγ

α may or may not be the same as T β γ
α .

3.2.2 Special Tensors

Aside from the scalars, there are three special tensors whose components are the same in all
coordinates systems:

• The zero tensor, whose components are zero in any reference frame for an arbitrary but
fixed combination of upper and lower indices.

• The metric tensor, which transforms according to (G = ΛGΛT ) as

g′αβ
= gαβ = Λα

µΛβ
νg

νµ . (3.2.21)

• The Kronecker tensor

δ′αβ = δα
β = Λα

µΛ ν
β δ

µ
ν =

{

+1 , µ = ν ,
0 , otherwise.

• The Levi-Civita tensor, is a quantity ǫαβγδ defined by

ǫαβγδ =







+1 , αβγδ even permutation of 0123,
−1 , αβγδ odd permutation of 0123 ,
0 , otherwise.

(3.2.22)

Note that

ǫαβγδ = Λ κ
α Λ λ

β Λ µ
γ Λ ν

δ ǫκλµν .

Since gαβ and gαβ are tensors, we can use them to raise or lower indices on an arbitrary
tensor; rule II and rule III tell us that this gives a new tensor with one more upper or lower
index and one less lower or upper index. For instance Tαβγ is a tensor, then so is

T δ
α γ ≡ gδβTαβγ . (3.2.23)

In particular, we can lower some or all of the indices on the Levi-Civita tensor ǫαβγδ. Lowering
all the indices gives back the same numerical quantity except for a minus sign.

ǫαβγδ = −ǫαβγδ .
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The fundamental theorem for any Lorentz invariant theory is that if two tensors with the same
upper and lower indices are equal in one coordinate frame, then they are equal in any other
coordinate system related to the first by a Lorentz-transformation, for instance, if Tα

β = Sα
β ,

then

T ′α
β = Λα

κΛ µ
β T

κ
µ = Λα

κΛ µ
β S

κ
µ

= S′α
β . (3.2.24)

In particular, the statement that a tensor vanishes is Lorentz-invariant.

3.3 Light Cone

Definitions: Space-time is the set of all (possible) events in a universe; it represents the
history of an entire universe. An event is a “point” in the space-time. Worldlines represent
the histories of objects in space-time. Hence a worldline is a continuous sequence of events.

It has become conventional to use plots such as that shown in the Figure 3.1 to represent
space-time events. They are called Minkowski or space-time diagrams. Since we cannot plot
four dimensions, space-time is reduced to three dimensions with two spatial components and
one time component. It is usual to call the zeroth component the time component, and 1,
2, 3 the spatial components. It is also usual to use superscripts, rather than subscripts, for
the components (this just has to do with conventions which became established in the early
relativity papers, and also with the notation of tensor operations). Remember that real space-
time would have another spatial dimension.

Each event in space-time has a double-cone attached to it. The present is represented by the
point where the two cones meet, i.e., the tip of the cone. By the conventional choice of units
used in relativity, the sides of cone are sloped at 45 degrees. This corresponds to choosing
units where time is measured in seconds and distance in light-seconds. A light-second is the
distance light travels in one seconds.

• The right-cone (called the future light-cone) represents the future history of a light-flash
emitted at that event.

• The left-cone (called the past light-cone) represents all directions from which light-flashes
can be received at that event.

The light cone represents the idea that “the direction of the light-flash does not depend on the
motion of source, but just on the event at which the light-flash is emitted”. In addition, by
the Einstein Principle of Relativity, all observers, regardless of their motions, must (because
of Maxwell’s Laws) measure the speed of light to be the same constant, in all directions.
That is to say, “all observers will universally agree on the light cones at each event”. This
means that each observer drawing a space-time diagram in which he is at rest must have the
worldlines of light-flashes at the same angle of 45 degrees from his worldline (in time axis),
and 45 degrees from his plane of simultaneity (his space axis). Understanding of the light
cone is an important first step towards understanding the theory of relativity.
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present

past future
t = x0

x1

x2

Figure 3.1: Light cone

3.3.1 Einstein Velocity Addition

Einstein abandoned absolute time and fixed space so that the speed of light could be the
same for everybody observing it, as Maxwell’s Laws said it would be. According to Einstein’s
postulates the relative velocity of any two objects never exceeds the velocity of light. Applying
the Lorentz transformation to the velocities, expressions are obtained for the relative velocities
as seen by the different observers. They are called the Einstein velocity addition relationships.
Let us consider an observer “B” that fires a bullet from a gun at velocity u measured in a
rest frame of “B”, while both observer “B” and the gun are moving with velocity w in the
bullet direction with respect to the rest frame of an observer “A”, see Figure 3.2. A stationary
observer “A” standing behind measures the bullet velocity by

v =
u+ w

1 + uw
c2
. (3.3.1)

On the other hand the the velocity measured by observer “B” is

u =
v − w

1 − vw
c2
. (3.3.2)

u

Moving ObserverStationary  Observer 

BA

Bullet fired by B

w

Figure 3.2: Einstein velocity addition
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3.4 Relativistic Phase Density and its Moments

In this section we describe a relativistic gas consisting of many microscopic structureless par-
ticles in terms of the relativistic kinetic phase density. From this fundamental phase density
we calculate the moments in tensor form which give the local macroscopic physical quantities
of the gas like the particle density, the velocity, the pressure, the temperature, and so on.

First we take a microscopic look at the gas and start with the kinematics of a representative gas
atom with particle trajectory x = x(t), where the time coordinate t and the space coordinate
x are related to an arbitrary Lorentz-frame. The invariant mass of all structureless particles
is assumed to be the same and is denoted by m0. The microscopic velocity of the gas atom
is dx(t)

dt , and its microscopic velocity four-vector is given by c qµ, where the dimensionless
microscopic velocity four-vector qµ is defined by

(

q0,q
)T

, q0 = q0 =
√

1 + q2 , q =
1
c

dx
dt

√

1 −
(

1
c

dx
dt

)2
. (3.4.1)

The relativistic phase density f(t,x,q) ≥ 0 is the basic quantity of the kinetic theory. This
function may be interpreted as giving the average number of particles with certain momentum
at each space-time point. A physical interpretation of the phase density will be discussed when
we derive the basic quantities like particle density, velocity four-vector and pressure from its
moments defined below. These basic quantities describes the state of a gas at Macroscopic
level and are functions of space-time coordinates. We make use of the fact that the so called
proper volume element d3q/q0 is invariant with respect to Lorentz-transformations, for the
proof see Appendix B.

3.4.1 Macroscopic Moments and Entropy Four-Vector

(i) Particle-density four-vector :
In relativistic theory the two local quantities, the particle density and the particle flow,
constitute a four-vector field, which is defined as

Nµ = Nµ(t,x) =

∫

R3

qµ f(t,x,q)
d3q

q0
. (3.4.2)

The index µ takes the four values 0,1,2,3, while xµ = (ct,x) denotes a space-time point.

(ii) Energy-momentum tensor :
The energy-momentum tensor is a second moment of the distribution function, and thus
a symmetric quantity. It is defined as

Tµν = Tµν(t,x) = m0c
2

∫

R3

qµqν f(t,x,q)
d3q

q0
, (3.4.3)

with µ, ν = 0, 1, 2, 3, i.e., these are in total sixteen quantities of which ten are distinct.
The energy-momentum tensor only takes the rest energy and the kinetic energy into
account.
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(iii) Entropy four-vector :
The H-function, introduced by Boltzmann, implies that the local entropy density and
entropy flow is combined to give the entropy four-vector of the form

Sµ = Sµ(t,x) = −kB

∫

R3

qµ f(t,x,q) ln

(

f(t,x,q)

χ

)

d3q

q0
. (3.4.4)

Here kB = 1.38062 × 10−23J/K is Boltzmann’s constant and χ = (m0c
~

)3 with Planck’s con-
stant ~ = 1.05459× 10−34Jsec. Note that χ has the same dimension as f , namely 1/volume.
We also state here that the entropy formula (3.4.4) can be generalized easily in such a way,
that the well known case of a Fermi- or Bose gas is also included in this kinetic framework.
Then formula (3.4.4) reads in the general case

Sµ = −kB

∫

R3

qµ

[

f ln
f

χ
− ηχ

(

1 + η
f

χ

)

ln

(

1 + η
f

χ

)]

d3q

q0
. (3.4.5)

Here η = 0 we get (3.4.4), which is valid for the relativistic generalization of Boltzmann’s
statistic, whereas η = +1 is required for the Bose-Einstein statistic and η = −1 for the Fermi
statistic.

Note that the spatial part q ∈ R
3 of the dimensionless microscopic velocity four-vector is used

as an integration variable in the relativistic kinetic theory.

Now we may use the macroscopic moments Nµ, Tµν and Sµ of the relativistic phase density
f in order to calculate the other macroscopic quantities of the gas, which are

Tensor algebraic combinations of these moments:

(i) The proper particle density

n =
√

NµNµ . (3.4.6)

(ii) The dimensionless velocity four-vector

uµ =
1

n
Nµ , (3.4.7)

uµ is also time-like vector with length c in each space-time point i.e. uµuµ = c2.

(iii) The proper energy density

e = uµuν T
µν . (3.4.8)

(iv) The proper pressure and temperature

p =
1

3
(uµuν − gµν)T

µν = kB nT . (3.4.9)

(v) The proper entropy density

σ = Sµuµ . (3.4.10)
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Remarks:

(i) Since f ≥ 0, it can be shown that Nµ is a time-like vector, NµNµ > 0, if f does not
vanish almost everywhere for any fixed t, x, which will be assumed in the following. It
follows that the particle density n is well defined and positive. In order to see that the
energy density is always positive we write it in the form

e = m0c
2

∫

R3

(uµq
µ)2 f(t,x,q)

d3q

q0
. (3.4.11)

(ii) The macroscopic velocity v of the gas can be obtained easily from the spatial part
u = (u1, u2, u3)T of the dimensionless velocity four-vector by

v = c
u√

1 + u2
. (3.4.12)

From this formula we can immediately read off that |v| < c, i.e. the absolute value of
the velocity is bounded by the speed of light. Note also that u0 =

√
1 + u2.

Let be u = (u1, u2, u3)T ∈ R
3 fixed. In order to present a short derivation of the relativistic

Euler equations, we will later use the following relations for the so called Lorentz boost
Λα

β = Λα
β(u),

Λ0
0 =

√

1 + u2 , Λ0
j = Λj

0 = −uj , Λj
k = δj

k +
ujuk

1 +
√

1 + u2
, (3.4.13)

where j, k ∈ {1, 2, 3} are spatial indices. Using the above relations (3.4.13) we can find that

(a) G = Λ(u)GΛ(u)T , Λ0
0(u) ≥ 1 and det(Λ(u)) = 1, i.e. Λ(u) is a proper Lorentz-matrix.

(b) Λ−1(u) = Λ(−u).

The attribute ’proper’ denotes a Lorentz-invariant quantity, which takes its simplest form
with respect to a Lorentz-frame where the gas is locally at rest. Since all quantities under
consideration are written down in Lorentz-invariant form, we may omit the word ’proper’ in
the following.

These definitions are valid for any relativistic phase-density f = f(t,x,q), which has to be
determined from a kinetic equation of the following form

qµ ∂f

∂xµ
= Q(f) , µ = 0, 1, 2, 3 . (3.4.14)

As in the non-relativistic kinetic theory we have a corresponding transport part on the left-
hand side and a collision part Q(f) on the right-hand side. In the simplest case Q(f) is
determined in such a way that the following five conservation laws hold for the particle
number, the energy and the momentum

∂Nµ

∂xµ
= 0 ,

∂Tµν

∂xν
= 0 . (3.4.15)
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This simple case holds if the particles interact only during elastic collisions without other
forces and radiation, but will nevertheless lead to an interesting and self-consistent relativistic
thermodynamics, even if it is physically not realizable. Also note that Q(f) = 0 in Euler limit,
therefore equation (3.4.14) reduces to a free-flight equation

qµ ∂f

∂xµ
= 0 , µ = 0, 1, 2, 3. (3.4.16)

3.5 Relativistic Jüttner Phase Density

Jüttner [41, 42] extended the non-relativistic velocity distribution of Maxwell for a gas in
equilibrium to the relativistic case. The resulting Jüttner distribution fJ(n, T,u,q) depends
on five constant parameters, which describe the state of the gas in equilibrium, namely the
particle density n, the absolute temperature T and the spatial part u ∈ R

3 of the dimensionless
four-velocity. It is given by

fJ(n, T,u,q) =
n

M(β)
exp (−β uµq

µ)

=
n

M(β)
exp

(

−β
(

√

(1 + u2)(1 + q2) − u · q
))

, (3.5.1)

where β = m0c2

kBT and

M(β) =

∫

R3

exp(−β
√

1 + q2)d3q = 4π

∫ ∞

0
ϑ2 exp(−β

√

1 + ϑ2) dϑ . (3.5.2)

The function M(β) is chosen in such a way that

nuµ =

∫

R3

qµ fJ(n, T,u,q)
d3q

q0
, (3.5.3)

holds for the spatial part u = (u1, u2, u3)T of the dimensionless macroscopic velocity four-
vector. This is equation (3.4.7), where u and n are in addition parameters of Jüttner’s
relativistic phase density.

Using the Bessel functions

Km(β) =

∞
∫

0

cosh(ms) exp(−β cosh(s)) ds , (3.5.4)

and applying the integral substitution ϑ = sinh(s) we may also write M(β) in the form

M(β) =
4π

β
K2(β) . (3.5.5)

We have in addition recursion relations for the modified Bessel functions, which can be found
in the hand book of Jeffrey [40],

Km+1(β) =
2m

β
Km(β) +Km−1(β) , (3.5.6)
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where m is the integer order of the modified Bessel functions. Using (3.5.4), (3.5.5) and (3.5.6)
we can write

M ′(β) = −4π

(

K1(β)

β
+

3K2(β)

β2

)

,

(3.5.7)

η(β) = 4π

∞
∫

0

ϑ2

√
1 + ϑ2

exp(−β
√

1 + θ2)dϑ =
4π

β
K1(β) .

Note that

η′(β) = M(β) . (3.5.8)

The equations (3.5.5) and (3.5.7) will be used in Chapter 6 in order to find the constitutive
relations for e, p, σ in more general form.

In order to formulate the Euler equations and other relations coming in Chapter 6 in a friendly
form, we introduce the function

Ψ(β) =
3

β
+
K1(β)

K2(β)
. (3.5.9)

It turns out later in Chapter 6 that Ψ(β) is just the specific energy e
n for the gas in equilibrium.

3.5.1 Limiting Cases of Relativistic Jüttner Phase Density

Here we discuss two important special cases for this phase density, namely the non-relativistic
limit for a cool gas and the ultra-relativistic limit m0 → 0.

Case 1: The non-relativistic limit (small temperatures, small velocities)

For the first case we rewrite (3.5.1) in the form

fJ(n, T,u,q) =
n

M1(β)
exp

(

−β (q− u)2 + u2q2 − (u · q)2

1 +
√

(1 + u2)(1 + q2) + u · q

)

, (3.5.10)

where

M1(β) = M(β) exp(β) . (3.5.11)

If we apply for ϑ > 0 the integral substitution

ξ =

√

2β(
√

1 + ϑ2 − 1) , (3.5.12)

then we can rewrite M1(β) in the form

M1(β) =

(

2π

β

) 3

2

· 2
∫ ∞

0

(

1 +
ξ2

2β

)

√

1 +
ξ2

4β

exp(− ξ2

2 )√
2π

dξ . (3.5.13)
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For β very large compared to 1, i.e. for small temperature, we can conclude from (3.5.13)
that

M1(β) = (
2π

β
)

3

2 +O(β− 5

2 ) =

(

2πKBT

m0c2

) 3

2

+O(T
5

2 ) ,

and the representation (3.5.10) shows that the Jüttner phase density reduces to the non-
relativistic Maxwellian for |u|, |q| very small, namely

fc(n, T,u,q) = n

(

m0c
2

2πKBT

)
3

2

exp

[

−m0c
2(q − u)2

2KBT

]

. (3.5.14)

Furthermore, in order to get the non-relativistic limit (i.e. β ≫ 1) from the formulations
coming in Chapter 6, we will need the following asymptotic relations for β → ∞,

K1(β) =

√

π

2β
exp(−β)

(

1 +
3

8β

)

+O

(

exp(−β)

β
5

2

)

,

K2(β) =

√

π

2β
exp(−β)

(

1 +
15

8β

)

+O

(

exp(−β)

β
5

2

)

, (3.5.15)

Ψ(β) = 1 +
3

2β
+O

(

exp(−β)

β
5

2

)

.

Case 2: The ultra-relativistic limit (zero rest mass of the particles)

For the ultra-relativistic limit m0 → 0 with fixed temperature we apply the substitution
q′ = m0.q in order to write (3.5.1) in the form

fJ(n, T,u,q) = m3
0

n

M2(β̃)
exp

(

−β̃
(

√

(1 + u2)(m2
0 + q′2) − u · q′

))

, (3.5.16)

where

β̃ =
β

m0
=

c2

kBT
, M2(β̃) =

8π

β̃3

∫ ∞

0

ξ2

2
exp

(

−
√

m2
0β̃

2 + ξ2
)

dξ . (3.5.17)

In the following we do not use primes for the new integration variable q.

Now we are able to pass to the ultra-relativistic limit m0 → 0. In order to do this we first
have to replace the four-vector qµ defined in (3.4.1) by the light vector

(

q0,q
)T

, q0 = q0 = |q| . (3.5.18)

Also to get the ultra-relativistic limit (i.e. β ≪ 1) from the formulations coming in Chapter
6, we have the following asymptotic relations for β → 0

K1(β) =
1

β
+O (β lnβ) , K2(β) =

2

β2
+O(1) , Ψ(β) =

3

β
+O(β). (3.5.19)
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3.6 Moments in Dimensionless Form

Next we will introduce dimensionless quantities by setting m0 = c = kB = ~ = 1. Then the
relativistic moments and the entropy four-vector given in (3.4.2), (3.4.3) and (3.4.4) simply
reduces to

Nµ = Nµ(t,x) =

∫

R3

qµ f(t,x,q)
d3q

q0
, (3.6.1)

Tµν = Tµν(t,x) =

∫

R3

qµqν f(t,x,q)
d3q

q0
, (3.6.2)

Sµ = Sµ(t,x) = −
∫

R3

qµ f(t,x,q) ln f(t,x,q)
d3q

q0
, (3.6.3)

where f is first taken as Jüttner phase density as given in (3.5.1) in its dimensionless form.

But the equations (3.6.1), (3.6.2) and (3.6.3) are more general definitions and can be used
for any phase density. For that reason we have used the general symbol f in the moments
definitions instead of fJ . These more general definitions will be important for the formulation
of kinetic schemes in order to solve the fluid dynamic equations in relativistic case.

Also note that all the definitions given for the particle density n, velocity four-vector uµ,
energy density e and for the pressure p, which are tensor invariant algebraic combinations of
the basic moments Nµ and Tµν , are still valid for an arbitrary phase density f .

The ultra-relativistic moments and entropy four-vector take a similar form as given in (3.6.1),
(3.6.2) and (3.6.3) by just replacing q0 by |q|, and are given below

Nµ = Nµ(t,x) =

∫

R3

qµ f(t,x,q)
d3q

|q| , (3.6.4)

Tµν = Tµν(t,x) =

∫

R3

qµqν f(t,x,q)
d3q

|q| , (3.6.5)

and the macroscopic entropy four-vector

Sµ = Sµ(t,x) = −
∫

R3

qµ f(t,x,q) ln f(t,x,q)
d3q

|q| . (3.6.6)

Here f is the ultra-relativistic Jüttner phase density (3.5.16) in dimensionless form

f∗J (n, T,u,q) =
n

8πT 3
exp

(

−uµq
µ

T

)

=
n

8πT 3
exp

(

−|q|
T

(

√

1 + u2 − u · q

|q|

))

. (3.6.7)
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In ultra-relativistic limit the generally valid formula (3.4.9) for the pressure simplifies to

p =
1

3
uµuνT

µν − 1

3
gµνT

µν

=
1

3
uµuνT

µν −
∫

R3

gµνq
µqν f

d3q

q0
. (3.6.8)

Also in ultra-relativistic case gµνq
µqν = qνq

ν = 0 due to (3.5.18), therefore we get

p =
e

3
=

1

3
Tµνuµuν = nT . (3.6.9)



Chapter 4

Ultra-relativistic Euler Equations

In this chapter we discuss the ultra-relativistic Euler equations of gas dynamic. We der-
ive a single shock parametrization by using the Rankine-Hugoniot jump conditions and a
parametrization of rarefaction wave for the one-dimensional ultra-relativistic Euler equations.
We use these parametrizations in order to develop an exact Riemann solver.

We derive the unconditionally stable kinetic schemes in order to solve the ultra-relativistic
Euler equations. As mentioned before these schemes are discrete in time but continuous in
space. We prove the conservation laws, entropy inequality, positivity and L1−stability for
the three-dimensional kinetic scheme. We also explain the numerical implementation of the
kinetic schemes. In order to extend the schemes to second order we follow the approach of
Deshpande [13]. For second order accuracy we have restricted ourselves to one and two space
dimensions. We calculate the L1−error and experimental order of convergence by considering
numerical examples for smooth initial data.

4.1 Derivation of Ultra-relativistic Euler Equations

Using the ultra-relativistic Jüttner distribution (3.6.7) in the moment integrals (3.6.4), (3.6.5)
and (3.6.6) we get

Nµ = nuµ, Tµν = −p gµν + 4puµuν , (4.1.1)

Sµ = −Nµ ln
n4

p3
+ γNµ, σ = −n ln

n4

p3
+ γn , (4.1.2)

where γ is any real constant. The divergence of Sµ give rise to the H-theorem, and will be
formulated later. Also note that due to the mass conservation (3.4.15)1 this divergence of
Sµ will not change when we add some multiple of Nµ to Sµ. The above formulas can be
easily checked for a special Lorentz frame where u0 = 1, u1 = u2 = u3 = 0, i.e. where the
gas is locally at rest. Since the ultra-relativistic moments (4.1.1) and (4.1.2) are valid in a
special Lorentz frame and since these equations are written in tensor invariant form, they are
generally valid in every Lorentz frame.

55



56 CHAPTER 4. ULTRA-RELATIVISTIC EULER EQUATIONS

Lemma 4.1: Let σ, given by (4.1.2) for γ = 0, be the entropy density corresponding to the
Jüttner phase density fJ(n, T,u,q). This is equivalent to the Gibbs equation

dσ̂ =
p

T
d

(

1

n

)

+
1

T
d
( e

n

)

, (4.1.3)

i.e. (4.1.2) and (4.1.3) are equivalent. Here σ̂ is a specific entropy density i.e., σ̂ =
σ

n
.

Proof: For the ultra-relativistic limit we know from (3.6.9) that e = 3p = 3nT . Thus we can

write p
T = n and

e

n
= 3T . Now (4.1.3) can be rewritten as

dσ̂ = nd

(

1

n

)

+
3

T
dT

=
1
(

1
n

)d

(

1

n

)

+
3

T
d(T ). (4.1.4)

From (4.1.4) it is clear that σ̂ = σ̂( 1
n , T ). Using the chain rule we have

dσ̂ =
∂σ̂

∂
(

1
n

)d

(

1

n

)

+
∂σ̂

∂T
dT . (4.1.5)

Comparing (4.1.4) and (4.1.5) we whave

∂σ̂

∂
(

1
n

) =
1
(

1
n

) ,
∂σ̂

∂T
=

3

T
. (4.1.6)

Integrating (4.1.6)1 with respect to 1
n we get

σ̂

(

1

n
, T

)

= ln

(

1

n

)

+ α(T ) . (4.1.7)

Now differentiating (4.1.7) with respect to T and using (4.1.6)2 we get

α′(T ) =
∂σ̂

∂T
=

3

T
. (4.1.8)

Integrating (4.1.8) with respect to T we get

α(T ) = 3 lnT = lnT 3 . (4.1.9)

Using (4.1.9) in (4.1.7) we get

σ̂

(

1

n
, T

)

= ln

(

1

n

)

+ lnT 3

= − ln
n

T 3
. (4.1.10)

Since σ̂ is the specific entropy density i.e. σ = n · σ̂ so we can write

σ = n · σ̂ = −n ln
n

T 3
= −n ln

n4

p3
. (4.1.11)
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Conversely, using (4.1.11) in (4.1.5) one can easily get back the Gibbs equation (4.1.3). Thus
both equations (4.1.11) and (4.1.3) are equivalent.

Using the moments (4.1.1) and the conservation laws (3.4.15), we get at regular points, where
the solution is continuously differentiable, the three-dimensional ultra-relativistic Euler equa-
tions in differential form

∂

∂t
(n
√

1 + u2) + ∇ · (nu) = 0 , (4.1.12)

∂

∂t
(4pui

√

1 + u2) +
3
∑

k=1

∂

∂xk
(p δik + 4puiuk) = 0 , (4.1.13)

∂

∂t
(3p+ 4pu2) +

3
∑

k=1

∂

∂xk
(4puk

√

1 + u2) = 0 , (4.1.14)

where i = 1, 2, 3. Note that the equations (4.1.13), (4.1.14) are a closed 4 × 4 system for p
and u. The relativistic continuity equation (4.1.12) decouples from the system. For given u
it is a scalar equation for n.

Now we are looking for special solutions of the three-dimensional Euler equations, which will
not depend on x2, x3 but only on x = x1. Moreover, we restrict to a one-dimensional flow
fieldu = (u(t, x), 0, 0)T

(n
√

1 + u2)t + (nu)x = 0 ,

(4pu
√

1 + u2)t + (p(1 + 4u2))x = 0 , (4.1.15)

(p(3 + 4u2))t + (4pu
√

1 + u2)x = 0 .

Note that these differential equations constitute a strictly hyperbolic system with the charac-
teristic velocities

λ1 =
2u

√
1 + u2 −

√
3

3 + 2u2
, λ2 =

u√
1 + u2

, λ3 =
2u

√
1 + u2 +

√
3

3 + 2u2
. (4.1.16)

These eigenvalues may first be obtained in the Lorentz rest frame where u = 0. Then using
the Einstein’s velocity addition (3.3.1), we can easily obtain (4.1.16) in the general Lorentz
frame. In the Lorentz rest frame the positive speed of sound is λ = 1√

3
, which is independent

of the spatial direction.

The differential equations (4.1.15) are not sufficient if the shock discontinuities are taken into
account. Therefore we need a weak integral formulation which is given due to Oleinik [68] by
curve integrals in time and space, namely

∮

∂Ω

n
√

1 + u2dx− nudt = 0 ,

∮

∂Ω

4pu
√

1 + u2dx− p(1 + 4u2)dt = 0 , (4.1.17)

∮

∂Ω

p(3 + 4u2)dx− 4pu
√

1 + u2dt = 0 .
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Here Ω ⊂ R
+
0 ×R is a normal region in space-time with a piecewise smooth positively oriented

boundary. Note that this weak formulation takes discontinuities into account, since there are
no derivatives of the fields involved. If we apply the Gaussian divergence theorem to the weak
formulation (4.1.17) in arbitrary space-time regions where the solution is regular we come
back to the differential equation form of the Euler equations (4.1.15).

Furthermore, we require that the weak solution (4.1.17) must also satisfy the entropy-inequality

∮

∂Ω

S0dx− S1dt ≥ 0 , (4.1.18)

where

S0 = −n
√

1 + u2 ln
n4

p3
, S1 = −nu ln

n4

p3
. (4.1.19)

4.1.1 Rankine Hugoniot Jump Conditions

Now we consider bounded and integrable initial data for a positive particle density n, trans-
formed velocity u and absolute temperature T , which may have jumps

n(0, x) = n0(x) > 0, u(0, x) = u0(x), T (0, x) = T0(x) > 0. (4.1.20)

If x = x(t) is a shock-discontinuity of the weak solution (4.1.17) with speed vs = ẋ(t),
W− = (n−, u−, p−) the state left to the shock and W+ = (n+, u+, p+) the state to the right,
then (4.1.17) leads to the Rankine-Hugoniot jump conditions

vs

[

n+

√

1 + u2
+ − n−

√

1 + u2
−

]

= n+u+ − n−u− ,

vs

[

4p+u+

√

1 + u2
+ − 4p−u−

√

1 + u2
−

]

= (p+ + 4p+u
2
+) − (p− + 4p−u

2
−) ,

vs

[

(3p+ + 4p+u
2
+) − (3p− + 4p−u

2
−)
]

= 4p+u+

√

1 + u2
+ − 4p−u−

√

1 + u2
− . (4.1.21)

Also in singular points the local form of (4.1.18) reads

−vs(S
0
+ − S0

−) + (S1
+ − S1

−) ≥ 0, (4.1.22)

which must be satisfied on each shock curve of (4.1.17). A shock that satisfies (4.1.21) and
(4.1.22) is called an entropy shock.

Now we give parameter representations for single entropy shocks. For this purpose we choose
the initial data as follows:

Let be (n∗, u∗, T∗) ∈ R
+×R×R

+ and define p∗ = n∗T∗. We use the pressure p as a parameter
which determines the strength of an entropy shock. Equations (4.1.21) and (4.1.22) are solved
by
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n(p) = n∗

√

p

p∗

(

3p+ p∗
p+ 3p∗

)

, (4.1.23)

u(p) =
u∗

√
p∗ + 3p

√
p+ 3p∗ ±

√
3(p− p∗)

√

1 + u2∗
4
√
pp∗

, (4.1.24)

T (p) =
p

n(p)
, (4.1.25)

us(p) =
u∗
√

3(p+ 3p∗) ±
√
p∗ + 3p

√

1 + u2∗√
8p∗

, (4.1.26)

vs =
us

√

1 + u2
s

, v =
u√

1 + u2
, v∗ =

u∗
√

1 + u2∗
, (4.1.27)

in the following way:

• The “+” sign in (4.1.24), (4.1.26) and p > p∗ gives the so called 3-shocks with the
constant state (n∗, u∗, T∗) on the right

(n−, u−, T−) = (n(p), u(p), T (p)), (n+, u+, T+) = (n∗, u∗, T∗).

These 3-shocks satisfy both the Rankine-Hugoniot conditions (4.1.21) as well as the
entropy condition (4.1.22).

• The “−” sign in (4.1.24), (4.1.26) and p > p∗ gives the so called 1-shocks with the
constant state (n∗, u∗, T∗) on the left:

(n−, u−, T−) = (n∗, u∗, T∗), (n+, u+, T+) = (n(p), u(p), T (p)).

These 1-shocks satisfy both the Rankine-Hugoniot conditions (4.1.21) as well as the
entropy condition (4.1.22).

Now we define the 2-contacts, that are contact-discontinuities without entropy-production.
Only for these we choose n > 0 instead of p as a parameter and set

(n−, u−, T−) = (n∗, u∗, T∗), (n+, u+, T+) =

(

n, u∗,
n∗T∗
n

)

.

These waves satisfy the Rankine-Hugoniot and entropy conditions. Also note that velocity
and pressure are constant across a 2-contact. Here the wave-speed is vs = v∗ = u∗√

1+u2
∗
.

Remark. One can prove that the only discontinuities satisfying (4.1.21) and (4.1.22) are 1-
and 3-shocks as well as 2-contacts, see Courant and Friedrichs [9].

4.1.2 Rarefaction Wave

Rarefaction waves in the ultra-relativistic Euler equations are associated with the eigenvalues
(4.1.16)1 and (4.1.16)3. These waves have a fan-type shape that is enclosed by two bounding
characteristics corresponding to the head and the tail of the wave.
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Let (n∗, u∗, T∗) ∈ R
+ × R × R

+ be the initial data on one side and let p∗ = n∗T∗. Then we
can find the initial state on the other side by the following procedure.

Let s =
x

t
be the characteristic speed, then we can write from (4.1.17)

s
d

ds
[n(s)

√

1 + u2(s)] =
d

ds
[n(s)u(s)] , (4.1.28)

s
d

ds
[4p(s)u(s)

√

1 + u2(s)] =
d

ds
[p(s)(1 + 4u2(s)] , (4.1.29)

s
d

ds
[p(s)(3 + 4u2(s))] =

d

ds
[4p(s)u(s)

√

1 + u2(s)] . (4.1.30)

The last two equations (4.1.29), (4.1.30) are decoupled from the first equation (4.1.28), and
are two equations for the two unknowns u(s) and p(s). We first solve them for u(s) in term
of s. Secondly we solve these equations for p(s) in term of u(s), where we use the right

eigenvalues (4.1.16)1, (4.1.16)3 as values of s, i.e. s = 2u
√

1+u2±
√

3
3+2u2 . At last we solve (4.1.28)

for n(s). These values of u(s), p(s) and n(s) are given as

u(s) =

√

3

2

(

s± 1√
3√

1 − s2

)

, (4.1.31)

p(s) = δ∗
(

√

1 + u2(s) ± u(s)
) 4√

3 , (4.1.32)

n(s) = γ∗(
√

1 + u2(s) ± u(s))
√

3 , (4.1.33)

where δ∗ and γ∗ are integration constants that can be found from the initial data (n∗, u∗, T∗).
δ∗ and γ∗ are used for adjusting the broadness of the rarefaction fan. In the above equations
the “+” sign corresponds to three wave and the “−” sign corresponds to one wave.

One can rewrite the above equations by using the pressure p as a parameter. We get

u(p) = ±

(

p
δ∗

)

√
3

2 − 1

2
(

p
δ∗

)

√
3

4

, (4.1.34)

n(p) =

(

γ∗p
δ∗

) 3

4

, (4.1.35)

s(p) = ±

(

p
δ∗

)

√
3
+ 2

√
3
(

p
δ∗

)

√
3

2 − 1

(

p
δ∗

)

√
3
+ 4

(

p
δ∗

)

√
3

2

+ 1

. (4.1.36)

4.2 Exact Riemann Solution

The Riemann problem for the one-dimensional time-dependent ultra-relativistic Euler Equa-
tions (4.1.15) is the initial value problem (IVP) for the conservation laws

Wt + F (W )x = 0 , (4.2.1)
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W =





n
√

1 + u2

4pu
√

1 + u2

p(3 + 4u2)



 , F =





nu
p(1 + 4u2)

4pu
√

1 + u2



 ,

with initial conditions

W (0, x) = W (0)(x) =

{

WL if x < 0
WR if x > 0

. (4.2.2)

The domain of interest in the t, x plane are points (t, x) with t > 0 and −∞ < x < ∞.
In practice one lets x vary in a finite interval [xL, xR] around the point x = 0. A typical
Riemann problem is shown in Figure 4.1. In this figure we can see that the Riemann solution
lies inside the light cone of slope s = ±1. There is an advantage in the relativistic case with
dimensionless variables c = 1 because it gives a natural CFL condition ∆t = ∆x.

0

Ligh
t c

on
e

Light cone

Star       region

x

t

U∗L

U∗R

UL

UR

Figure 4.1: A typical Riemann problem in the t, x plane.

The main idea behind the solution of a Riemann problem is to solve the initial value prob-
lem (4.2.1) and (4.2.2) for two constant states, which in terms of primitive variables are
UL = (nL, uL, pL) to the left of x = 0 and UR = (nR, uR, pR) to the right of x = 0, separated
by a discontinuity at x = 0. For classical hydrodynamics the solution can be found, e.g., in
Toro [85].

The solution to this problem is self-similar, because it only depends on the two constant
states defining the discontinuity UL and UR, as well as on the ratio x/t. Both in relativistic
and classical hydrodynamics the discontinuity decays into two elementary nonlinear waves
(shocks or rarefactions) which move in opposite directions towards the initial left and right
states. Between these waves two new constant states U∗L and U∗R appear, which are separated
from each other through a contact discontinuity moving with the fluid. Across the contact
discontinuity the density exhibits a jump, whereas pressure and velocity are continuous. As
in the classical case, the self-similar character of the flow through rarefaction waves and
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the Rankine-Hugoniot conditions across shocks provide the relations to link the intermediate
states U∗S (S = L,R) with the corresponding initial states US . They also allow one to express
the fluid flow velocity in the intermediate states u∗S as a function of the pressure p∗S in these
states. Finally, the steadiness of pressure and velocity across the contact discontinuity implies

uL(p∗) = uR(p∗) , (4.2.3)

where p∗ = P∗L = P∗R, which closes the system. The functions u∗S(p) are defined by

u∗S(p) =

{

RS(p) if p ≤ pS

SS(p) if p > pS
, (4.2.4)

where RS(p) /SS(p) denotes the family of all states which can be connected through a rar-
efaction / shock with a given state US ahead of the wave. Here SS(p) is given by (4.1.24) and
RS(p) is given by (4.1.34). We solve the implicit relation (4.2.3) for p∗ using a root finding
method, for example the Newton-Raphson method. Once we get the value of p∗ then the
value of u∗ can be obtained explicitly from either the left or right wave equations. Similarly
n∗L and n∗R can be calculated from the left and right waves across the contact discontinuity
(middle wave), respectively.

4.3 Kinetic Scheme in Three Space Dimensions

We first formulate the scheme for the three-dimensional Euler equations. After that we solve
the one-dimensional Euler equations, using a special integration technique. Recalling the
ultra-relativistic Jüttner phase density (3.6.7), we start with the given initial data nI(x) =
n(0,x), TI(x) = T (0,x), uI(x) = u(0,x). We prescribe a time step τM > 0 and let tn = n τM
for n = 0, 1, 2, 3... be the maximization times. Then we define the moments and the entropy
four-vector in the free-flight for 0 < τ < τM as

Nµ(tn + τ,x) =

∫

R3

qµ fn(x − τ
q

|q| ,q)
d3q

|q| ,

Tµν(tn + τ,x) =

∫

R3

qµqν fn(x − τ
q

|q| ,q)
d3q

|q| , (4.3.1)

Sµ(tn + τ,x) = −
∫

R3

qµ (fn ln fn)(x− τ
q

|q| ,q)
d3q

|q| , (4.3.2)

with the ultra-relativistic initial phase density (3.6.7) at the maximizaton time tn is given as

fn(y,q) = f∗J (n(tn,y), T (tn,y),u(tn,y),q) . (4.3.3)

Moreover n, T, uµ are calculated from Nµ and Tµν for the next time step from the following
generally valid definitions

n =
√

NµNµ, uµ =
1

n
Nµ , T =

1

3n
uµuν T

µν . (4.3.4)
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In order to initialize the kinetic scheme for the next time step, we first require the following
continuity conditions for the zero-components of the moments across the maximization time
tn, n ≥ 1

N0(t+n ,x) = N0(t−n ,x) ,

T 0k(t+n ,x) = T 0k(t−n ,x), k = 1, 2, 3 , (4.3.5)

T 00(t+n ,x) = T 00(t−n ,x) .

Since we are implementing the computation in these variables, these conditions are automati-
cally enforced. Here we have used the following abbreviations for the one-sided limits across
the maximization time tn, n ≥ 1, where ε is a positive real number

Nµ(t±n ,x) = lim
ε→0

Nµ(tn ± ε,x) ,

Tµν(t±n ,x) = lim
ε→0

Tµν(tn ± ε,x) .

Later on we will see in Proposition 4.3 that these conditions are necessary in order to guar-
antee the conservation laws for mass, momentum and energy across the maximization time
tn. Moreover we start again with a ultra-relativistic Jüttner distribution for the next time
step. Then we obtain, using the constitutive relations (4.1.1), for the three-dimensional Euler
equations which are valid for the t+n side of the maximization time

N0(t+n ,x) = n(t+n ,x)

√

1 + u2(t+n ,x) ,

T 0k(t+n ,x) = 4 p(t+n ,x)uk(t+n ,x)

√

1 + u2(t+n ,x) , (4.3.6)

T 00(t+n ,x) = p(t+n ,x)
[

3 + 4u2(t+n ,x)
]

.

Here k = 1, 2, 3 again denote a spatial indices. Since these components of the moments are
continuous across the maximization time tn, we can replace them by the free-flight moments
for t−n and solve the equations (4.3.6) for p,u, n in order to initialize the kinetic scheme for
the next time step by the following relations

p(t+n ,x) =
1

3



−T 00 +

√

√

√

√4(T 00)2 − 3
3
∑

k=1

(T 0k)2



 , (4.3.7)

uk(t+n ,x) =
T 0k

√

4p(t+n ,x)[p(t+n ,x) + T 00]
, (4.3.8)

n(t+n ,x) =
N0

√

1 +
∑3

k=1 [uk(t+n ,x)]2
. (4.3.9)

In these formulas N0, T 00 and T 0k are abbreviations for the free-flight moments N0(t−n ,x),
T 00(t−n ,x) and T 0k(t−n ,x), respectively.

Note that the quantities on the left hand side have to be calculated in the prescribed order
from the free-flight moments N0, T 00 and T 0k. Since they initialize the scheme for the next
time step they conclude the formulation of the kinetic scheme.
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4.3.1 Reduction of the Volume Integrals to Surface Integrals

Here we apply an important simplification to the volume integrals (4.3.1) and (4.3.2) for the
free-flight moments. We can see in (4.3.3) that the fields n(t,y), T (t,y) and u(t,y) are not
depending on |q| but only on the unit vector w = (w1, w2, w3)T = q

|q| . This fact enables
us to reduce the three-fold volume integrals to two-fold surface integrals by applying polar
coordinates. Now integration with respect to |q| can be carried out explicitly, and we obtain
the reduced surface integrals for the moments. For abbreviation we introduce

φ(y,w) =
1

4π

n(y)

(
√

1 + u2(y) − w · u(y))3
, ψ(y,w) =

3

4π

(nT )(y)

(
√

1 + u2(y) − w · u(y))4
,

(4.3.10)

then the reduced surface integrals for the moments can be written as

N0(tn + τ,x) =

∮

∂B(0,1)

φ(x − τw,w) dS(w) ,

Nk(tn + τ,x) =

∮

∂B(0,1)

wkφ(x− τw,w) dS(w) ,

T 00(tn + τ,x) =

∮

∂B(0,1)

ψ(x − τw,w) dS(w) , (4.3.11)

T 0k(tn + τ,x) =

∮

∂B(0,1)

wkψ(x− τw,w) dS(w) ,

T km(tn + τ,x) =

∮

∂B(0,1)

wkwmψ(x− τw,w) dS(w) ,

S0(tn + τ,x) = −
∮

∂B(0,1)

[

ln

(

n(x − τw)

8πT 3(x− τw)

)

− 3n(x− τw)

]

φ(x − τw,w) dS(w) ,

(4.3.12)

Sk(tn + τ,x) = −
∮

∂B(0,1)

wk

[

ln

(

n(x− τw)

8πT 3(x− τw)

)

− 3n(x − τw)

]

φ(x − τw,w) dS(w) .

Here w = q
|q| is the unit vector in direction of q and B(x0, r) is the ball with radius r and

center x0. Its boundary is the sphere ∂B(x0, r). These surface integrals reflect the fact that
in the ultra-relativistic case the particles are moving on the surface of the light cone. Using
the Cauchy-Schwarz inequality one can prove that n, p, e resulting from the moment integrals
(4.3.11) are well defined and positive quantities for all times and positions.

4.3.2 Proof of Conservation Laws and Entropy Inequality

In the following propositions we prove the conservation laws and entropy inequality for the
kinetic scheme.
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Proposition 4.2: Let 0 < τ < τM and n = 0, 1, 2, .... We consider the moments in the
free-flight between the two maximization times tn and tn+1. Within this free-flight zone the
moments Nµ(tn + τ,x), Tµν(tn + τ,x) and the entropy four-vector Sµ(tn + τ,x) satisfy the
following conservation laws in weak integral form

∮

∂Ω

Nν(tn + τ,x)doν = 0,

∮

∂Ω

Tµν(tn + τ,x)doν = 0,

∮

∂Ω

Sν(tn + τ,x)doν = 0 . (4.3.13)

Here Ω ⊂ R
+
0 ×R

3 is a normal region in space-time with a piecewise smooth positively oriented
boundary. The covariant vector doν is a positively oriented surface element to the boundary
∂Ω. It can be written in covariant form as

doκ = εκλµν

3
∑

i,j,m=1

∂xλ

∂ui

∂xµ

∂uj

∂xν

∂um
dui duj dum ,

where xα = xα(u1, u2, u3) is a positively oriented parametrization of the boundary ∂Ω.

Remark. Note that these weak formulations correspond to the differential equations

∂Nν

∂xν
(tn + τ,x) = 0,

∂Tµν

∂xν
(tn + τ,x) = 0,

∂Sν

∂xν
(tn + τ,x) = 0. (4.3.14)

Proof: For 0 < τ < τM let be tn < t = tn + τ < tn+1 = tn + τM . If we start with
the relativistic Maxwellian (4.3.3) as the initial phase density at the time tn we then obtain
within the time-region 0 < tn < t < tn + τM the free-flight density f(t,x,q) = f(x− τ q

|q| ,q).

It satisfies the weak integral form of the free-flight transport equation (3.4.16). Therefore we
get

∮

∂Ω

qν f(t,x,q)doν = qν

∮

∂Ω

f(t,x,q)doν = 0 . (4.3.15)

The proof of (4.3.15) is given in Appendix A for the spatially one-dimensional case. The
equation (4.3.15) and its multiplication with qµ leads after integration with respect to q to
the following equations

∫

R3





∮

∂Ω

qν f(t,x,q)doν





d3q

|q| = 0 ,

(4.3.16)

∫

R3





∮

∂Ω

qµ qν f(t,x,q)doν





d3q

|q| = 0 .
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Since the volume integral with respect to q and the surface integral with respect to t and x
are interchangeable, we can rewrite equations (4.3.16) in order to get the conservation laws

∮

∂Ω





∫

R3

qν f(t,x,q)
d3q

|q|



 doν =

∮

∂Ω

Nν(tn + τx,q)doν = 0 ,

(4.3.17)

∮

∂Ω





∫

R3

qµ qν f(t,x,q)
d3q

|q|



 doν =

∮

∂Ω

Tµν(tn + τx,q)doν = 0 .

Let us use the fact that if f(t,x,q) = f(x − τ q
|q| ,q) is a solution of the free-flight equation

(3.4.16), then ln f(t,x,q) = ln f(x− τ q
|q| ,q) will be the solution of

qµ∂ ln f

∂xµ
= 0 , µ = 0, 1, 2, 3. (4.3.18)

Now we define

ψ(t,x,q) = −(fn ln fn)(x − τ
q

|q| ,q) . (4.3.19)

Using the product rule and equations (3.4.16), (4.3.18) we conclude that ψ also satisfies the
free-flight equation, namely

qµ ∂ψ

∂xµ
= 0 , µ = 0, 1, 2, 3 , (4.3.20)

which in Oleinik’e weak integral form gives
∮

∂Ω

qν ψ(t,x,q)doν = 0 . (4.3.21)

This is coming from the Gauss Divergence Theorem.

Integrating equation (4.3.21) with respect to q and interchanging the volume and surface
integrals, we finally get, using equation (4.3.2)

∮

∂Ω





∫

R3

qν ψ(t,x,q)
d3q

|q|



 doν =

∮

∂Ω

Sν(tn + τx,q)doν = 0 . (4.3.22)

Proposition 4.3: Let Ω ⊂ R
+
0 ×R

3 be any bounded convex region in time and space. By doν

we denote the positively oriented surface element of ∂Ω. Let τM > 0 be a fixed time step. The
moment representations (4.3.1) and (4.3.2) calculated by the iterated scheme defined above
have the following properties:

(i) The conservation laws for the particle number, the momentum and energy hold, i.e.
∮

∂Ω

Nνdoν = 0,

∮

∂Ω

Tµνdoν = 0. (4.3.23)



4.3. KINETIC SCHEME IN THREE SPACE DIMENSIONS 67

(ii) The following entropy inequality is satisfied

∮

∂Ω

Sνdoν ≥ 0. (4.3.24)

Proof: Let be τM > 0. We first prove part (i) of the proposition. The time axis is divi-
ded by the maximization times 0 = t0 < t1 < t2 < · · · , so that the convex domain Ω can be
decomposed into the subdomains







Ω0 =
{

(δ,x) ∈ Ω
∣

∣ 0 ≤ δ ≤ t0+t1
2

}

,

Ωn =
{

(δ,x) ∈ Ω
∣

∣

tn−1+tn
2 ≤ δ ≤ tn+tn+1

2

}

(n = 1, 2, 3, . . . ).
(4.3.25)

Since
∮

∂ΩN
νdoν =

∑

n≥0

∮

∂Ωn
Nνdoν and

∮

∂Ω T
µνdoν =

∑

n≥0

∮

∂Ωn
Tµνdoν , it is sufficient to

assume without loss of generality that the time range

ΘΩ =
{

t ≥ 0
∣

∣ there exists an x ∈ R
3 such that (t,x) ∈ Ω

}

of Ω contains at most one maximization time t.

Then for ε in the range 0 < ε < 1
2τM we define a further decomposition of each Ωn, n ≥ 1,

into three parts














Ωε
n,L =

{

(δ,x) ∈ Ωn

∣

∣ δ ≤ tn − ε
}

,

Ωε
n,M =

{

(δ,x) ∈ Ωn

∣

∣ tn − ε ≤ δ ≤ tn + ε
}

,

Ωε
n,R =

{

(δ,x) ∈ Ωn

∣

∣ δ ≥ tn + ε
}

.

(4.3.26)

The decompositions which are illustrated in the following figure, were also applied in order to
prove the conservation laws and the entropy inequality for the classical Euler equations, see
[18] and Subsection 2.2.1.

x

t

t = t0
t0+t1

2
t1 t1+t2

2 t2
t2+t3

2

Ω

Ω1 Ω2Ω0

x

t

Ωn

Ωε
n,L Ωε

n,R
Ωε

n,M

εε

tn−1+tn

2
tn

tn+tn+1

2

Figure 4.2: The decompositions of Ω and Ωn.
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We obtain
∮

∂Ωn

Nνdoν =

∮

∂Ωε
n,L

Nνdoν +

∮

∂Ωε
n,R

Nνdoν +

∮

∂Ωε
n,M

Nνdoν ,

∮

∂Ωn

Tµνdoν =

∮

∂Ωε
n,L

Tµνdoν +

∮

∂Ωε
n,R

Tµνdoν +

∮

∂Ωε
n,M

Tµνdoν .

Since the first two integrals on the right hand side are in the free-flight zone, so we conclude
from equation (4.3.17) that these integrals vanish, i.e.,

∮

∂Ωε
n,L

Nνdoν =

∮

∂Ωε
n,R

Nνdoν = 0,

∮

∂Ωε
n,L

Tµνdoν =

∮

∂Ωε
n,R

Tµνdoν = 0.

This implies that using the domain Ω∗
n = {x ∈ R

3|(tn,x) ∈ Ω}
∮

∂Ωn

Nνdoν =

∮

∂Ωε
n,M

Nνdoν = lim
ε→0

∮

∂Ωε
n,M

Nνdoν ,

=

∫

Ω∗
n

{∫

q0
[

fn(x,q) − fn−1(x− τM
q

|q|)
]

d3q

|q|

}

d3x ,

and
∮

∂Ωn

Tµνdoν =

∮

∂Ωε
n,M

Tµνdoν = lim
ε→0

∮

∂Ωε
n,M

Tµνdoν ,

=

∫

Ω∗
n

{∫

q0qµ

[

fn(x,q) − fn−1(x− τM
q

|q|)
]

d3q

|q|

}

d3x,

where tn−1 is the maximization time that preceedes the maximization time tn. The phase
density fn has to be taken to be the ultra-relativistic Jüttner phase density (3.6.7).

The last integral expression in these equations vanishes due to the continuity conditions (4.3.5)
across the maximization time tn, i.e.,

N0(t+n ,x) = N0(t−n ,x) ,

T 0µ(t+n ,x) = T 0µ(t−n ,x), µ = 0, 1, 2, 3 , (4.3.27)

which yields

∫

R3

q0fn(x,q)
d3q

|q| =

∫

R3

q0fn−1(x− τM
q

|q| ,q)
d3q

|q| ,
∫

R3

q0qµfn(x,q)
d3q

|q| =

∫

R3

q0qµfn−1(x− τM
q

|q| ,q)
d3q

|q| . (4.3.28)

This expresses the constraints that were used for the maximization procedure. We have thus
established that the weak form (4.3.23) for an arbitrary convex domain Ω is implied by the
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representations (4.3.1).

Regarding the second part (ii) which states the existence of the entropy inequality (4.3.24), we
start the proof again with the decompositions (4.3.25) and (4.3.26) of Ω. Since

∫

∂Ω S
νdoν =

∑

n≥0

∫

∂Ωn
Sνdoν , it is sufficient to prove

∫

∂Ωn
Sνdoν ≥ 0 for each n. We obtain

∮

∂Ωn

Sνdoν =

∮

∂Ωε
n,L

Sνdoν +

∮

∂Ωε
n,R

Sνdoν +

∮

∂Ωε
n,M

Sνdoν . (4.3.29)

Again the first two integrals lie in the free-flight zone. We can see from equation (4.3.22) that
these integrals vanish i.e.,

∮

∂Ωε
n,R

Sνdoν = 0, and
∮

∂Ωε
n,L

Sνdoν = 0.

For every sufficiently small ε > 0 the following holds

∮

∂Ωn

Sνdoν = lim
ε→0

∮

∂Ωε
n,M

Sνdoν (4.3.30)

=

∫

Ω∗
n

{∫

R3

q0
[

−(fn ln fn)(x,q) + (fn−1 ln fn−1)(x− τM
q

|q| ,q)

]

d3q

|q|

}

d3x,

where Ω∗
n = {x ∈ R

3|(tn,x) ∈ Ω}, and tn−1 < tn is the maximization time that preceeds tn.
Next we shall show that the integral (4.3.30) is non-negative. Applying Lemma 2.3 for u =
fn(x,q) and v = fn−1(x − τM

q
|q| ,q) we get

∫

R3

q0
[

−(fn ln fn)(x,q) + (fn−1 ln fn−1)(x− τM
q

|q| ,q)

]

d3q

|q|

= −
∫

R3

q0 [1 + ln fn(x,q)]

[

fn(x,q) − fn−1(x − τM
q

|q| ,q)

]

d3q

|q|

+

∫

R3

R

(

fn(x,q), fn−1(x − τM
q

|q| ,q)

)

d3q

|q| . (4.3.31)

The second integral is non-negative and the first one vanishes due to the following reasons.
Using Jüttner’s phase density for fn(x,q) we have

ln fn(x,q) = ln

[

n(x)

8πT 3(x)
exp

(−uνq
ν

T (x)

)]

= A(x) −B(x)uνq
ν , (4.3.32)

where A(x) = ln n(x)
8πT 3(x)

and B(x) = 1
T (x) . We use the value (4.3.32) of ln fn(x,q) in (4.3.31).

Using the definitions (4.3.1) for Nµ, Tµν and the continuity conditions (4.3.5) for the zero
components N0, T 0ν , we can see that the first integral in (4.3.31) is zero. We have thus
established the entropy inequality (4.3.24).

4.3.3 Positivity and L1−Stability of the Kinetic Scheme

Here we show that our kinetic scheme preserve positivity of the density and pressure. A
similar theorem has been proved in Chapter 2 for the classical kinetic scheme.
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Theorem 4.4: Assume that the initial distribution function satisfies fn(y,q) ≥ 0, addition-
ally fn(y,q) does not vanish almost everywhere for all microscopic velocities q, macroscopic
velocities u, positive densities n and pressures p. Then the numerical solution obtained by
the resulting kinetic scheme has the following property: Its density, pressure and total energy
remain positive for all times:

n(tn + τ,x) > 0 , p(tn + τ,x) =
1

3
e(tn + τ,x) > 0 , E(tn + τ,x) > 0 . (4.3.33)

This also mean that the numerical scheme defined by (4.3.1) and (4.3.2) is stable in L1.

Proof. The particle density is defined as n =
√

NµNµ. Therefore we have to prove that

NµNµ(tn + τ,x) =
(

(N0)2 − (N1)2 − (N2)2 − (N3)2
)

(tn + τ,x) > 0. (4.3.34)

According to the Cauchy-Schwarz inequality, if we have two functions f and g then





b
∫

a

f · g dx





2

≤





b
∫

a

f2 dx



 ·





b
∫

a

g2 dx



 , (4.3.35)

where equality holds iff the functions f and g are linearly dependent.

From the moments (4.3.1)1, we have

N0(tn + τ,x) =

∫

R3

fn(x− τ
q

|q| ,q) d3q > 0 . (4.3.36)

Using again the free-flight moments (4.3.1)1 and the Cauchy Schwarz inequality, we get

(N1)2(tn + τ,x) =

(∫

R3

q1 fn(x− τ
q

|q| ,q)
d3q

|q|

)2

=

(∫

R3

((

q1

|q|
√

fn

)

·
(

√

fn

)

)

(x− τ
q

|q| ,q) d3q

)2

(4.3.37)

<

(

∫

R3

(

q1

|q|
√

fn

)2

(x− τ
q

|q| ,q) d3q

)

·
(∫

R3

(

√

fn

)2
(x − τ

q

|q| ,q) d3q

)

= N0(tn + τ,x)

(

∫

R3

(

q1

|q|

)2

fn(x − τ
q

|q| ,q) d3q

)

.

In Cauchy-Schwarz inequality we have not taken the equality sign, because the functions
q1

|q|
√

fn(y,q) and
√

fn(y,q) are linearly independent. Similarly

(N2)2(tn + τ,x) < N0(tn + τ,x)

(

∫

R3

(

q2

|q|

)2

fn(x− τ
q

|q| ,q) d3q

)

,

(4.3.38)

(N3)2(tn + τ,x) < N0(tn + τ,x)

(

∫

R3

(

q3

|q|

)2

fn(x− τ
q

|q| ,q) d3q

)

.
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Now we use (4.3.37) and (4.3.38) in (4.3.34). Also in ultra-relativistic case

|q| =
√

(q1)2 + (q2)2 + (q3)2 ,

therefore we get

NµNµ(tn + τ,x) =
(

(N0)2 − (N1)2 − (N2)2 − (N3)2
)

(tn + τ,x)

> N0(tn + τ,x)











N0(tn + τ,x) −
∫

R3

3
∑

k=1

(qk)2

|q|2 fn(x − τ
q

|q| ,q) d3q











= N0(tn + τ,x)

[

N0(tn + τ,x) −
∫

R3

fn(x − τ
q

|q| ,q) d3q

]

.

= 0 .

Thus we have proved that n(tn + τ,x) =
√

NµNµ(tn + τ,x) > 0.

Now using the kinetic scheme (4.3.1)2 and relation (3.6.9), we get

p(tn + τ,x) =
1

3
e(tn + τ,x) =

1

3
uµuνT

µν(tn + τ,x)

=
1

3

∫

R3

qµqν fn(x − τ
q

|q| ,q)
d3q

|q| uµuν

=
1

3

∫

R3

(qµuµ)2 fn(x − τ
q

|q| ,q)
d3q

|q|
> 0 .

Thus we conclude that p(tn + τ,x) > 0 . Also we know from (4.3.1) 2 that

T 00(tn + τ,x) =

∫

R3

|q|fn(x− τ
q

|q| ,q) d3q > 0 . (4.3.39)

Now since our scheme is conservative, using (4.3.36), (4.3.39) and |q| =

√

3
∑

k=1

(qk)
2
, we have

||N0(tn + τ, .)||L1(R) =

∫

R3

|N0(tn + τ,x)|d3x =

∫

R3

N0(tn + τ,x)d3x

=

∫

R3

N0(tn,x)d3x =

∫

R3

|N0(tn,x)|d3x

= ||N0(tn, .)||L1(R) .

Similarly ||T 00(tn + τ, .)||L1(R) = ‖T 00(tn, .)‖L1(R). Now using (4.3.1) with y = x − τ q
|q| and
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Cauchy-schwarz inequality (4.3.35) we get

||T 0k(tn + τ, .)||L1(R) =

∫

R3

∣

∣

∣

∣

∫

R3

qkfn(y,q)
d3q

|q|

∣

∣

∣

∣

d3x

=

∫

R3

∣

∣

∣

∣

∫

R3

(

√

fn

)(

qk
√

fn

)

(y,q)
d3q

|q|

∣

∣

∣

∣

d3x

<

[∫

R3

∣

∣

∣

∣

∫

R3

fn(y,q)
d3q

|q|

∣

∣

∣

∣

d3x ·
∫

R3

∣

∣

∣

∣

∫

R3

|q|2fn(y,q)
d3q

|q|

∣

∣

∣

∣

d3x

]
1

2

=
(

||n(tn, .)||L1(R) ||T 00(tn, .)||L1(R)

)
1

2 .

This proves the L1 stability of the scheme.

4.3.4 From the Kinetic Scheme to the Eulerian Limit (τM → 0)

In the previous sections we have shown how to calculate the solution of the kinetic schemes.
This was done for the prescribed initial data of n, u and p for a given free-flight time step
τM > 0. If we calculate these solutions for τM → 0 then we get the Eulerian limit

Nµ → nuµ, Tµν → −p gµν + 4puµuν , Sµ → nuµ ln
n4

p3
. (4.3.40)

First we pass to the Eulerian limit (4.3.40) at the points of smoothness in the following way
using (3.4.16)

lim
τ→0

∂

∂τ
N0(tn + τ,x) = lim

τ→0

∂

∂τ
(n(tn + τ,x)

√

1 + u2(tn + τ,x) )

= lim
τ→0

∂

∂τ

∫

R3

|q|fn(x− τ
q

|q| ,q)
d3q

|q|

= − lim
τ→0

∫

R3

|q|
3
∑

k=1

qk

|q|
∂

∂xk
fn(x− τ

q

|q| ,q)
d3q

|q|

= −
∫

R3

3
∑

k=1

qk ∂

∂xk
fn(x,q)

d3q

|q|

= −
3
∑

k=1

∂

∂xk
(uk(t+n ,x)n(t+n ,x))

= −∇ · (u(t+n ,x)n(t+n ,x)) .

This implies

∂

∂t
(n(t+n ,x)

√

1 + u2(t+n ,x) ) + ∇ · (u(t+n ,x)n(t+n ,x)) = 0 , (4.3.41)

which is the first Euler equation (4.1.12). Similarly we get the other two Euler equations if
we differentiate T 00(tn +τ,x) and T 0k(tn +τ,x) with respect to τ and pass to the limit τ → 0.
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Secondly, on the left hand sides of (4.3.40) there are the moments Nµ, Tµν and Sµ as cal-
culated by the kinetic scheme see (4.3.1) and (4.3.2). Since we have already established the
conservation laws and the entropy inequality for the solution of the kinetic scheme in Propo-
sition 4.3, we conclude from (4.3.40) that this also results for the weak entropy solution in
the Eulerian limit τM → 0. The weak entropy solution in the Eulerian limit in one space
dimension is given by (4.1.17), (4.1.18) and (4.1.19).

4.4 Non-relativistic Versus Relativistic Kinetic Schemes

Here we compare the kinetic scheme for the ultra-relativistic Euler equations with the corre-
sponding kinetic scheme for the non-relativistic Euler equations.

Common properties:

The basic ingredients of the kinetic scheme are the same in both cases, as given below.

a) There are given initial data for the mass-density, denoted by ρ in the classical case, the
velocity v and the pressure p, which can be chosen as the five basic variables in the Euler
equations.

b) There is a phase density fn, usually called the Maxwellian, which describes the velocity
distribution for the atoms of a gas in local equilibrium in terms of the five basic variables.

c) There is a time step τM > 0 and a corresponding sequence of equidistant time steps
tn = n τM with n ≥ 0, also called the maximization times, see Chapter 2.

d) At each maximization time t = tn we take the Maxwellian phase density, starting initially
from the given initial data for n = 0. This Maxwellian is used as an initial phase density in or-
der to solve the collision free kinetic phase density within the time range tn < tn +τ < tn+1,
which will be called a free-flight interval. All thermodynamic quantities are algebraic com-
binations of moment integrals from this free-flight phase density f , and therefore they are
defined everywhere in the free-flight interval under consideration.

It is very important to note here that the free-flight phase density is in general not a
Maxwellian. Therefore in the free-flight intervals of the kinetic scheme the gas is usually
neither in equilibrium nor does it satisfy the isotropic constitutive relations for the Euler
equations !

e) In the free-flight intervals it can be seen very easily that the conservation laws for mass,
momentum, energy and even for the entropy hold. The requirements that the kinetic schemes
must satisfy the conservation laws and the entropy inequality across each maximization time
tn+1 turns out to be equivalent to the five continuity conditions, which state that the
“densities” written under the time-derivatives in the conservation laws must be continuous
across tn+1.

In turn, the continuity conditions must be used in order to initialize the kinetic schemes for
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the next time step tn+1, after the free-flight was performed in the time interval tn < t < tn+1.

Differences in the two schemes:

Now there comes an interesting difference.

A) In the non-relativistic case the densities for mass, momentum and energy are given by
ρ, ρv and 1

2 ρv2 + p
γ−1 , and hence they are algebraic functions of the primitive variables ρ,

v, p. Here it is crucial to note that this is even true in the free-flight phase, where the gas is
not in local equilibrium. Due to the continuity conditions these densities and hence the five
basic variables are continuous across the maximization time.

In contrast, the non-relativistic fluxes of momentum and energy, which are moment integrals
of the classical phase densities, are in general discontinuous across tn+1, since the gas is not
isotropic in the free-flight domain immediately to the left of tn+1.

B) In the relativistic case the densities under the time derivatives in the conservation laws
are given by N0 and T 0µ, and in the free-flight intervals they cannot be written as functions of
the basic variables n, v = u√

1+u2
and p. This is a consequence of the generally valid equations

n =
√

NµNµ, uµ = 1
n N

µ and and p = 1
3 (uµuν − gµν)T

µν , which depend on all components
of the tensors Nµ, Tµν .

Immediately before the maximization time tn+1 we have a non-isotropic tensor Tµν
− in the

free-flight regime, whereas at tn+1 we have the isotropic tensor Tµν
+ which satisfies the con-

stitutive Euler-relations (4.1.1) in local equilibrium. Combining this with the argumentation
above and comparing with the evaluation (4.3.7)-(4.3.9) of the continuity conditions we finally
conclude that the basic fields calculated from the relativistic kinetic scheme may in general
lead to jumps across the maximization times.

Finally we note that this would not be the case if we choose the zero-components N0 and T 0µ

as the basic variables of the relativistic Euler system. These are usually called “conservative
variables” in the upwind and central conservative schemes.

4.5 A Kinetic Scheme for the One-Dimensional Case

In the following we are looking for spatially one-dimensional solutions, which are nevertheless
solutions to the full three dimensional equations. We only consider solutions which depend on
t and x = x1 and satisfy n = n(t, x), u = (u(t, x), 0, 0), p = p(t, x). We will use the generally
valid equation p = nT and go back to the full three-dimensional scheme.

In order to calculate the surface integrals (4.3.11) and (4.3.12) again we introduce instead of
the unit vector w the new variables −1 ≤ ξ ≤ 1 and 0 ≦ ϕ ≦ 2π by

w1 = ξ , w2 =
√

1 − ξ2 sinϕ , w3 =
√

1 − ξ2 cosϕ , (4.5.1)
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with the surface element dS(w) = dξdϕ.

Note that the quantities n, T, u in the integrals (4.3.11) and (4.3.12) do not depend on the
variable ϕ. This fact enables us to carry out the integration with respect to ϕ directly. Thus
the two-fold surface integral reduces to a simple ξ−integral. For abbreviation we introduce

φ(y, ξ) =
1

2

n(y)

(
√

1 + u2(y) − ξu(y))3
, ψ(y, ξ) =

3

2

p(y)

(
√

1 + u2(y) − ξu(y))4
, (4.5.2)

then the reduced integrals for the moments can be written as

N0(tn + τ, x) =

1
∫

−1

φ(x− τξ, ξ) dξ , N1(tn + τ, x) =

1
∫

−1

ξφ(x− τξ, ξ) dξ , (4.5.3)

T 00(tn + τ, x) =

1
∫

−1

ψ(x− τξ, ξ) dξ ,

T 01(tn + τ, x) =

1
∫

−1

ξψ(x− τξ) dξ , (4.5.4)

T 11(tn + τ, x) =

1
∫

−1

ξ2ψ(x− τξ) dξ ,

S0(tn + τ, x) = −
1
∫

−1

[

ln

(

n4(x− τξ)

8πp3(x− τξ)

)

− 3n(x− τξ)

]

φ(x− τξ, ξ) dξ ,

(4.5.5)

S1(tn + τ, x) = −
1
∫

−1

ξ

[

ln

(

n4(x− τξ)

8πp3(x− τξ)

)

− 3n(x− τξ)

]

φ(x− τξ, ξ) dξ .

Again the integrals reflect the fact that in the ultra-relativistic case the particles are moving
on the surface of the light cone, see (4.3.11), (4.3.12). Moreover we obtain

N2(tn + τ, x) = N3(tn + τ, x) = 0 ,

T 10(tn + τ, x) = T 01(tn + τ, x) ,

T 22(tn + τ, x) = T 33(tn + τ, x) =
1

2
[T 00(tn + τ, x) − T 11(tn + τ, x)] ,

where all the other components of Tµν are zero. So in the one-dimensional case n, u and T
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can be found from the generally valid relations given in (4.3.4) as follows

n(tn + τ, x) =
√

(N0(tn + τ, x))2 − (N1(tn + τ, x))2 ,

u(tn + τ, x) =
1

n
N1(tn + τ, x) , (4.5.6)

p(tn + τ, x) =
1

3
[{1 + u2(tn + τ, x)}T 00(tn + τ, x) − 2u

√

1 + u2(tn + τ, x)

· T 01(tn + τ, x) + u2(tn + τ, x)T 11(tn + τ, x)] .

We can now simplify the equations (4.3.7)-(4.3.9), which are used in order to initialize the
general three-dimensional scheme, and obtain for the one-dimensional case

p(t+n ,x) =
1

3

[

−T 00 +
√

4(T 00)2 − 3(T 01)2
]

,

u(t+n ,x) =
T 01

√

4p(t+n ,x)[p(t+n ,x) + T 00]
, (4.5.7)

n(t+n ,x) =
N0

√

1 + u(t+n ,x)2
.

Here again N0 = N0(t−n ,x), T 00 = T 00(t−n ,x) and T 01 = T 01(t−n ,x) are given by the free-flight
moments.

4.5.1 Numerical Implementation of the Scheme in 1D

Here we explain the numerical implementation of the one-dimensional kinetic scheme. How-
ever the procedure is similar for the two-dimensional case.

• We start with the values of initial data n(tn, x), u(tn, x) and T (tn, x) at equidistant
grid points.

• We specify the length L of the spatial cells, the number Nx of elements (intervals) in
the spatial domain 0 ≤ x ≤ L, the final time tf of output and the number Em of
maximization times. For i = 0, ..., Nx, we introduce the nodes xi = i · L

Nx
.

• The time step ∆t is calculated by ∆t =
tf

Em
. The step in the spatial domain is ∆x =

L/Nx.

• Our aim is to calculate the moments (4.5.3) and (4.5.4). These moments are then used
to update the fields n, u and T .

• Since we only know the values of the fields at the nodal points, the free-flight fields in
the integrands of (4.5.3) and (4.5.4) must be calculated from the knowledge of the nodal
values at the points xi. Here we use linear interpolation between two subsequent nodal
points xi and xi+1. We use the following interpolation formula

fn(xj − ξτ, ξ) = (1 − η) fJ(xi, ξ) + η fJ(xi+1, ξ) ,

where xj − ξτ = xi + η (xi+1 − xi) for 0 ≤ η ≤ 1. Here fn and fJ are free-flight and
Jüttner phase densities, respectively. The relation between xi, xj and η is shown in
Figure 4.3.
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Figure 4.3: Interpolation of y = xj − ξτ at the grid points xi and xi+1.

• The ξ− integration is performed with the composite trapezoidal rule.

• When we are in the free-flight the values of the fields n, u and T are calculated by
using the generally valid algebraic relations (4.5.6), while at the maximization time, i.e.
after the end of free-flight loop, the fields are updated by using the continuity relations
(4.5.7) in order to initialize the scheme for next time step.

Remark: The difference in above procedure and one given in Subsection 2.3.1 is that, we
do not need the error function to cutoff the ξ−integration limits in the kinetic scheme for
the ultra-relativistic Euler equations, while it was required in the kinetic scheme for the non-
relativistic Euler equations in order to cutoff the c−integration limits. The rest procedure is
the same for both cases. Similarly the two-dimensional numerical implementation procedure
given in Subsection 2.4.1 can be applied to the kinetic scheme for the two-dimensional ultra-
relativistic Euler equations by just eliminating the portions which calculates the error function
to cutoff the integration limits. The procedure for the application of boundary conditions is
exactly the same as given in Section 2.3.2 by only replacing c by ξ. The TVD property
proved in Section 2.3.3 is still valid because we are using exactly the same polynomial in the
ultra-relativistic kinetic scheme as was used in non-relativistic kinetic scheme of Section 2.3.

4.5.2 Second Order Extension of the One-Dimensional Kinetic Scheme

Here we intend to extend our kinetic scheme to second order. We will use the approach of
Deshpande [13] which he has used in order to obtain second order accuracy in one-dimensional
kinetic scheme for the non-relativistic Euler equations. There are two steps in order to get
second order accuracy. In the first step we will proceed to achieve second order accuracy
in time, while the second step is to achieve second order accuracy in space. There are two
approaches to achieve second order accuracy in time and both approaches lead to the same
result. We will present both approaches in our study.
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The first order kinetic schemes described in the previous sections suffer from the major dis-
advantage that the numerical diffusion is proportional to the time step. From the physical
point of view, such a result is only to be expected because the fluid particles in the above
kinetic schemes are allowed to move over the time step τM = ∆t before they undergo colli-
sions. The distance traveled between collisions is thus proportional to ∆t. From the kinetic
theory it then follows that the mean free path, and hence the viscosity, will be of the order
∆t. This is a very large amount of viscosity, as the results shown later will verify. Therefore,
a modifications in the above kinetic schemes is required that will ensure that the method has
a high order accuracy. The analysis given below will show that how this is possible to achieve
the second order accuracy.

The one-dimensional ultra-relativistic Euler equations (4.1.15) are

(n
√

1 + u2)t + (nu)x = 0 ,

(4pu
√

1 + u2)t + (p(1 + 4u2))x = 0 , (4.5.8)

(p(3 + 4u2))t + (4pu
√

1 + u2)x = 0 .

In one-dimensional case we know from the constitutive relations (4.1.1) that

W =





N0

T 01

T 00



 =





n
√

1 + u2

4pu
√

1 + u2

p(3 + 4u2)



 , F =





N1

T 11

T 01



 =





nu
p(1 + 4u2)

4pu
√

1 + u2



 . (4.5.9)

First approach: Second order accuracy in time

First we aim for second order accuracy in time. For this purpose it will be sufficient to consider
the zero components N0, T 01 and T 00. In the following theory we will use the symbol ∆t for
the time step τM used in the first order kinetic scheme. The second order accurate Taylor
expansions of N0(tn + ∆t, x), T 01(tn + ∆t, x), and T 00(tn + ∆t, x) are

N0(tn + ∆t, x) = N0(tn, x) + ∆t
∂N0

∂t
(tn, x) +

1

2
∆t2

∂2N0

∂t2
(tn, x) +O(∆t3) ,

T 01(tn + ∆t, x) = T 01(tn, x) + ∆t
∂T 01

∂t
(tn, x) +

1

2
∆t2

∂2T 01

∂t2
(tn, x) +O(∆t3) , (4.5.10)

T 00(tn + ∆t, x) = T 00(tn, x) + ∆t
∂T 00

∂t
(tn, x) +

1

2
∆t2

∂2T 00

∂t2
(tn, x) +O(∆t3) .

These expansions contain the first and second-order time derivatives of N0, T 01 and T 00.
The first order time derivatives can be replaced in terms of the first order space derivatives
by using the Euler equations (4.5.8). To replace the second order time derivatives in terms
of space derivatives requires detailed manipulations. Using equations (4.5.8) and (4.5.9) in
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(4.5.10) we get

N0(tn + ∆t, x) = N0(tn, x) − ∆t
∂N1

∂x
(tn, x) −

1

2
∆t2

∂

∂x

(

∂N1

∂t
(tn, x)

)

+O(∆t3) ,

T 01(tn + ∆t, x) = T 01(tn, x) − ∆t
∂T 11

∂x
(tn, x) −

1

2
∆t2

∂

∂x

(

∂T 11

∂t
(tn, x)

)

+O(∆t3) , (4.5.11)

T 00(tn + ∆t, x) = T 00(tn, x) − ∆t
∂T 01

∂x
(tn, x) +

1

2
∆t2

∂

∂x

(

∂T 11

∂x
(tn, x)

)

+O(∆t3) .

Our main goal is to compare the second order accurate Taylor expansion (4.5.11) with the
kinetic scheme (4.5.3) and (4.5.4) after expanding the free-flight phase densities up to O(∆t3).
This comparison will give us the terms which are missing in the first order kinetic schemes,
the so called anti-diffusive terms. The addition of these terms will leed to the second order
accuracy in time of the first order kinetic scheme.

In order to compare the equations (4.5.11) with the kinetic scheme solutions (4.5.3) and
(4.5.4), we take a second order accurate Taylor expansion of the reduced free-flight phase
densities φ(x− ∆tξ, ξ) and ψ(x− ∆tξ, ξ) given in (4.5.2), we get

φ(x− ∆tξ, ξ) = φ(tn, x, ξ) − ξ∆t
∂φ

∂x
(tn, x, ξ) +

ξ2∆t2

2

∂2φ

∂x2
(tn, x, ξ) +O(∆t3) ,

(4.5.12)

ψ(x− ∆tξ, ξ) = ψ(tn, x, ξ) − ξ∆t
∂ψ

∂x
(tn, x, ξ) +

ξ2∆t2

2

∂2ψ

∂x2
(tn, x, ξ) +O(∆t3) .

Introducing the Taylor expansions (4.5.12) in the one-dimensional kinetic scheme formulae
(4.5.3) and (4.5.4), we get for φ = φ(tn, x, ξ) and ψ = ψ(tn, x, ξ)

1
∫

−1

φ(x− ∆tξ, ξ)dξ =

1
∫

−1

φdξ − ∆t
∂

∂x

1
∫

−1

ξφdξ +
1

2
∆t2

∂

∂x





∂

∂x

1
∫

−1

ξ2φdξ



+O(∆t3) ,

1
∫

−1

ξψ(x− ∆tξ, ξ)dξ =

1
∫

−1

ξψdξ − ∆t
∂

∂x

1
∫

−1

ξ2ψdξ +
1

2
∆t2

∂

∂x





∂

∂x

1
∫

−1

ξ3ψdξ



+O(∆t3) ,

(4.5.13)

1
∫

−1

ψ(x− ∆tξ, ξ)dξ =

1
∫

−1

ψdξ − ∆t
∂

∂x

1
∫

−1

ξψdξ +
1

2
∆t2

∂2

∂x2

1
∫

−1

ξ2ψdξ +O(∆t3) .

The reduced equilibrium phase densities (4.5.2) satisfy the following relations

N0(tn, x) =

1
∫

−1

φ(tn, x, ξ)dξ , T 01(tn, x) =

1
∫

−1

ξψ(tn, x, ξ)dξ , T 00(tn, x) =

1
∫

−1

ψ(tn, x, ξ)dξ ,

N1(tn, x) =

1
∫

−1

ξφ(tn, x, ξ)dξ , T 11(tn, x) =

1
∫

−1

ξ2ψ(tn, x, ξ)dξ . (4.5.14)
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Using the relations (4.5.14) in (4.5.13) we finally get

1
∫

−1

φ(x− ∆tξ, ξ)dξ = N0(tn, x) − ∆t
∂N1

∂x
(tn, x) +

1

2
∆t2

∂

∂x





∂

∂x

1
∫

−1

ξ2φdξ



+O(∆t3) ,

1
∫

−1

ξψ(x− ∆tξ, ξ)dξ = T 01(tn, x) − ∆t
∂T 11

∂x
(tn, x) +

1

2
∆t2

∂

∂x





∂

∂x

1
∫

−1

ξ3ψdξ



+O(∆t3) ,

(4.5.15)

1
∫

−1

ψ(x− ∆tξ, ξ)dξ = T 00(tn, x) − ∆t
∂T 01

∂x
(tn, x) +

1

2
∆t2

∂2T 11

∂x2
(tn, x) +O(∆t3) .

The equations (4.5.15) are the solutions coming from the first order kinetic schemes (4.5.3)
and (4.5.4) when we expand the free-flight phase density up to O(∆t3).

Now we can rewrite the second order accurate solutions (4.5.11) in the following form by
adding and subtracting appropriate order ∆t2 terms that appeared in (4.5.15)

N0(tn + ∆t, x) =N0(tn, x) − ∆t
∂N1

∂x
(tn, x) +

1

2
∆t2

∂

∂x





∂

∂x

1
∫

−1

ξ2φdξ





− 1

2
∆t2

∂

∂x





∂N1

∂t
(tn, x) +

∂

∂x

1
∫

−1

ξ2φdξ



+O(∆t3) ,

T 01(tn + ∆t, x) =T 01(tn, x) − ∆t
∂T 11

∂x
(tn, x) +

1

2
∆t2

∂

∂x





∂

∂x

1
∫

−1

ξ3ψdξ





− 1

2
∆t2

∂

∂x





∂T 11

∂t
(tn, x) +

∂

∂x

1
∫

−1

ξ3ψdξ



+O(∆t3) , (4.5.16)

T 00(tn + ∆t, x) =T 00(tn, x) − ∆t
∂T 01

∂x
(tn, x) +

1

2
∆t2

∂2T 11

∂x2
(tn, x) +O(∆t3) .

Now using (4.5.15) in (4.5.16) we finally get

N0(tn + ∆t, x) =

1
∫

−1

φ(x− ∆t, ξ)dξ − 1

2
∆t2

∂

∂x





∂N1

∂t
(tn, x) +

∂

∂x

1
∫

−1

ξ2φdξ



+O(∆t3) ,

T 01(tn + ∆t, x) =

1
∫

−1

ξψ(x− ∆t, ξ)dξ − 1

2
∆t2

∂

∂x





∂T 11

∂t
(tn, x) +

∂

∂x

1
∫

−1

ξ3ψdξ



+O(∆t3) ,

T 00(tn + ∆t, x) =

1
∫

−1

ψ(x− ∆t, ξ)dξ +O(∆t3) . (4.5.17)
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Using Section C.1 of Appendix C we can simplify the terms of order ∆t2 in (4.5.17)1,2 in order
to get

N0(tn + ∆t, x) =

1
∫

−1

φ(x− ∆tξ, ξ)dξ +
1

2
∆t2

∂

∂x
g(n, u, p) +O(∆t3) ,

T 01(tn + ∆t, x) =

1
∫

−1

ξψ(x− ∆tξ, ξ)dξ +
1

2
∆t2

∂

∂x
h(u, p) +O(∆t3) , (4.5.18)

T 00(tn + ∆t, x) =

1
∫

−1

ψ(x− ∆tξ, ξ)dξ +O(∆t3) ,

where

g(n, u, p) =

(

−(1 + u2)−1/2

u2
+

1

u3
arcsinh(u)

)

∂n

∂x
− 3n(1 + u2)−1/2

4p(3 + 2u2)

∂p

∂x

+

(

9n
√

1 + u2

u3(3 + 2u2)
− 3n

u4
arcsinh(u)

)

∂u

∂x
, (4.5.19)

h(u, p) =

(

9
√

1 + u2

u4(3 + 2u2)
+

3 arcsinh(−u)
u5

)

(

u
∂p

∂x
− 4p

∂u

∂x

)

.

On the right hand sides of equations (4.5.18)1,2 the first terms are from the old kinetic scheme,
while the second terms are the antidiffusive terms which must be added to N0 and T 01 for
the second order accuracy. While the energy density T 00 is already second order accurate in
time. In the non-relativistic case Deshpande [13] observed that the particle density coming
from the first order kinetic scheme was already second order accurate in time, but in the first
order relativistic kinetic scheme we found that the energy density is second order accurate
in time. This is due to the fact that in the non-relativistic Euler equations case the flux of
the continuity equation is equal to the conserved momentum variable, while in the relativistic
Euler equations case the flux in the total energy equation is equal to the conserved momentum
variable.

Second approach: Second order accuracy in time

Since the free-flight phase density is very far from equilibrium, the reduced phase densities
φ(t, x, ξ) and ψ(t, x, ξ) given by (4.5.2) do not satisfy the reduced free-flight transport equa-
tion, i.e.,

∂φ

∂t
+ ξ

∂φ

∂x
6= 0 ,

∂ψ

∂t
+ ξ

∂ψ

∂x
6= 0 . (4.5.20)
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In fact from (4.5.2) we have

∂φ

∂t
+ ξ

∂φ

∂x
=

(

∂n

∂t
+ ξ

∂n

∂x

)

∂φ

∂n
+

(

∂u

∂t
+ ξ

∂u

∂x

)

∂φ

∂u
, (4.5.21)

∂ψ

∂t
+ ξ

∂ψ

∂x
=

(

∂p

∂t
+ ξ

∂p

∂x

)

∂ψ

∂p
+

(

∂u

∂t
+ ξ

∂u

∂x

)

∂ψ

∂u
. (4.5.22)

The right hand sides of (4.5.21) and (4.5.22) are very characteristic of the Chapman-Enskog
(CE) non-relativistic theory. Using Section C.1 of Appendix C we can replace the time
derivatives of n, u and p in equations (4.5.22) and (4.5.22) in terms of the space derivatives.
We obtain

∂φ

∂t
+ ξ

∂φ

∂x
= QCEφ (4.5.23)

∂ψ

∂t
+ ξ

∂ψ

∂x
= MCEψ, (4.5.24)

where QCE and MCE are polynomials given by

QCE = Q1
∂n

∂x
+Q2

∂p

∂x
+Q3

∂u

∂x
, (4.5.25)

MCE = M1
∂p

∂x
+M2

∂u

∂x
, (4.5.26)

with

Q1 =
ξ
√

1 + u2 − u

n
√

1 + u2
, Q2 =

3
(

4u
√

1 + u2 − 4u2ξ − 3ξ
)

4p
√

1 + u2(3 + 2u2)(
√

1 + u2 − ξu)
, (4.5.27)

Q3 = 3

(

ξ2
√

1 + u2(3 + 2u2) + 2u2(
√

1 + u2 − ξu) −
√

1 + u2(1 + 2ξu
√

1 + u2) − 2ξu√
1 + u2(3 + 2u2)(

√
1 + u2 − ξu)

)

,

and

M1 =
u(1 − 3ξ2) + 2u2(2

√
1 + u2ξ − ξ2u− u)

p(3 + 2u2)(
√

1 + u2 − ξu)
, M2 =

4

3
Q3 . (4.5.28)

The polynomials QCE and MCE have interesting properties, i.e.,

1
∫

−1

QCE φdξ = 0 ,

1
∫

−1

MCE ψ dξ = 0 ,

1
∫

−1

ξMCE ψ dξ = 0 . (4.5.29)

These properties can be easily checked by a simple ξ−integration in mathematics packages
like, Maple or Mathematica. We will see at the end that these properties are also important for
the conservativity of the second order order kinetic scheme. We are now ready to construct
the second order accurate kinetic scheme which was also obtained in the first approach.
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Starting with

N0(tn + ∆t, x) =

1
∫

−1

φ(tn + ∆t, x, ξ)dξ =

1
∫

−1

(

φ+ ∆t
∂φ

∂t
+

1

2
∆t2

∂2φ

∂t2

)

dξ + (∆t3) ,

T 01(tn + ∆t, x) =

1
∫

−1

ξψ(tn + ∆t, x, ξ)dξ =

1
∫

−1

ξ

(

ψ + ∆t
∂ψ

∂t
+

1

2
∆t2

∂2ψ

∂t2

)

dξ + (∆t3) ,

(4.5.30)

T 00(tn + ∆t, x) =

1
∫

−1

ψ(tn + ∆t, x, ξ)dξ =

1
∫

−1

(

ψ + ∆t
∂ψ

∂t
+

1

2
∆t2

∂2ψ

∂t2

)

dξ + (∆t3) ,

where φ = φ(tn, x, ξ) and ψ = ψ(tn, x, ξ). As stated before the equilibrium phase densities φ
and ψ do not satisfy the free flight equation. But on the other hand they satisfy the moment
equations of the free-flight equation which are infect the Euler equations, for example,

1
∫

−1

∂φ

∂t
dξ +

1
∫

−1

ξ
∂φ

∂x
dξ = 0 , (4.5.31)

is the continuity equation of the Euler equations (4.5.8). Similarly energy and momentum
equations can be obtained from the moment equations of ψ. Therefore, in order to replace
the first order time derivatives of φ and ψ in above expressions we use (4.5.31) and (4.5.14),
we get

N0(tn + ∆t, x) =

1
∫

−1

(

φ− ∆tξ
∂φ

∂x
+

1

2
∆t2

∂2φ

∂t2

)

dξ +O(∆t3) ,

T 01(tn + ∆t, x) =

1
∫

−1

ξ

(

ψ − ∆tξ
∂ψ

∂x
+

1

2
∆t2

∂2ψ

∂t2

)

dξ +O(∆t3) , (4.5.32)

T 00(tn + ∆t, x) =

1
∫

−1

(

ψ − ∆tξ
∂ψ

∂x
+

1

2
∆t2

∂2ψ

∂t2

)

dξ +O(∆t3) .

Using the relations (4.5.23) and (4.5.24), we obtain

∂2φ

∂t2
= −ξ ∂

∂x

(

∂φ

∂t

)

+
∂

∂t
(QCEφ)

= ξ2
∂2φ

∂x2
− ξ

∂

∂x
(QCEφ) +

∂

∂t
(QCEφ) , (4.5.33)

∂2ψ

∂t2
= −ξ ∂

∂x

(

∂ψ

∂t

)

+
∂

∂t
(MCEψ)

= ξ2
∂2ψ

∂x2
− ξ

∂

∂x
(MCEψ) +

∂

∂t
(MCEψ) .
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Substituting the above expression for the second order derivatives of φ and ψ in (4.5.32) we
get after using (4.5.12)

N0(tn + ∆t, x) =

1
∫

−1

φ(x− ∆tξ, ξ)dξ − ∆t2

2





1
∫

−1

ξ
∂

∂x
(QCEφ) dξ − ∂

∂t

1
∫

−1

QCEφdξ



+ (∆t3) ,

T 01(tn + ∆t, x) =

1
∫

−1

ξψ(x− ∆tξ, ξ)dξ − ∆t2

2





1
∫

−1

ξ2
∂

∂x
(MCEψ) dξ − ∂

∂t

1
∫

−1

ξMCEψdξ



+ (∆t3) ,

T 00(tn + ∆t, x) =

1
∫

−1

ψ(x− ∆tξ, ξ)dξ − ∆t2

2





1
∫

−1

ξ
∂

∂x
(MCEψ) dξ − ∂

∂t

1
∫

−1

MCEψdξ



+ (∆t3) .

The last terms in the O(∆t2) part of the above equations are zero due to the properties
(4.5.29) of QCEφ and MCEψ. We get

N0(tn + ∆t, x) =

1
∫

−1

φ(x− ∆tξ, ξ)dξ − 1

2
∆t2

1
∫

−1

ξ
∂

∂x
(QCEφ(tn, x, ξ)) dξ +O(∆t3) (4.5.34)

T 01(tn + ∆t, x) =

1
∫

−1

ξψ(x− ∆tξ, ξ)dξ − 1

2
∆t2

1
∫

−1

ξ2
∂

∂x
(QCEφ(tn, x, ξ)) dξ +O(∆t3) ,

T 00(tn + ∆t, x) =

1
∫

−1

ψ(x− ∆tξ, ξ)dξ +O(∆t3) , (4.5.35)

which shows that in addition to the φ(x − ∆t, ξ) and ψ(x − ∆t, ξ) terms we have one more
term in the first two equations containing the polynomials QCE , MCE . Hence the reduced
Jüttner distributions φ and ψ alone will not yield a second order accurate kinetic scheme
for particle density and momentum, however the total energy T 00 is already second order
accurate in time. Note that if we evaluate the integrals of the second terms in (4.5.34) and
(4.5.35)1, we get the same correction terms g and h as given in (4.5.18). In order to obtain
(4.5.18) one can simply integrate the coefficients of ∆t2 in above equation using Mathematica
or Maple. Let us define

φCE = φ

(

1 +
∆t

2
QCE

)

, ψCE = ψ

(

1 +
∆t

2
MCE

)

. (4.5.36)

We can recast (4.5.34) and (4.5.35) as
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N0(tn + ∆t, x) =

1
∫

−1

φCE(x− ∆tξ, ξ)dξ +O(∆t3) ,

T 01(tn + ∆t, x) =

1
∫

−1

ξψCE(x− ∆tξ, ξ)dξ +O(∆t3) , (4.5.37)

T 00(tn + ∆t, x) =

1
∫

−1

ψCE(x− ∆tξ, ξ)dξ +O(∆t3) .

Due to the properties (4.5.29) of QCEφ and MCEψ we can see that the zero quantities N0,
T 01 and T 00 are identical within the truncation error, i.e.

1
∫

−1

(φCE − φ) dξ = 0 ,

1
∫

−1

ξ (ψCE − ψ) dξ = 0 ,

1
∫

−1

(ψCE − ψ) dξ = 0 .

These conditions also can be regarded as conservation conditions, for more details see Desh-
pande [13] in the non-relativistic case.

Several important features of the above second order accurate in time kinetic scheme are
worth noting. Equations (4.5.37), containing different distribution functions, have been ob-
tained from equations (4.5.18) or (4.5.34). As stated before the right-hand sides of equations
(4.5.18)1,2 and (4.5.34)1,2 contain two terms. The first terms, which are moments of the free
flight phase densities φ(x − ξ∆t, ξ) and φ(x − ξ∆t, ξ), are upwind in character. The second
terms cannot be expressed as moments of φ(x−∆tξ, ξ) and ψ(x−∆tξ, ξ) and are antidiffusive.
The antidiffusive terms may be absorbed in the upwind term only if the distribution function
is not the relativistic Maxwellian, i.e., Jüttner distribution. Equations (4.5.37) are an upwind
version of a second order accurate solution in which the perturbed relativistic Maxwellian
distributions are employed.

Second order accuracy in space: Another important point about equations (4.5.37) is
that, φCE(x−ξ∆t, ξ) and φCE(x−ξ∆t, ξ) need to be evaluated at various values of ξ. Hence,
as noted before, some kind of interpolation scheme is required. This scheme must be second
order accurate in space and should not yield non-negative interpolated values, and should
satisfy the TVD property. A procedure is given below.

Let φCE and ψCE be given at mesh points, see Subsection 4.5.1. Also let the mesh point i
corresponding to point j be such that

xj − ξ∆t = xi + η∆x , 0 ≤ η ≤ 1 .

The relation between xj and xi and η is given in Figure 4.3. The functions φCE(xj−ξ∆t, ξ) =
φCE(xi+η∆x, ξ) and ψCE(xj −ξ∆t, ξ) = ψCE(xi+η∆x, ξ) then depends on the neighbouring
mesh points i± 1. Therefore the second order interpolation for any function f will be

f(xi + η∆x, ξ) = fi +
η

2
(fi+1 − fi−1) +

η2

2
(fi+1 − 2fi + fi−1) , (4.5.38)
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where fi can be φCE(tn, xi, ξ) or ψCE(tn, xi, ξ). In order to suppress oscillations in the numer-
ical results we use the min-mod nonlinear limiters [35, 53, 70] on the numerical derivatives
appearing in the antidiffusive terms QCE and MCE given in (4.5.25) and (4.5.26). These
min-mod limiters are given by (5.2.16) in Chapter 5.

As pointed out by Deshpande [13], the expression (4.5.38) does not automatically ensure
positivity of f(xi + η∆x, ξ) even if fi−1, fi and fi+1 are assumed to be positive. This is
particularly true for calculations near shocks. With the method of Chakravarthy and Osher
[4] limiting the contribution of the second difference, it is possible to devise an interpolation
scheme that satisfies the TVD condition given in Subsection 2.3.3. The second order accurate
Taylor expansion (4.5.38) can be rewritten as

f(xi + η∆x, ξ) =fi +
η

2
(fi+1 − fi + fi − fi−1)

+
η2

2
(fi+1 − fi + fi−1 − fi)

=fi +
η(1 + η)

2
(fi+1 − fi) +

η(1 − η)

2
(fi − fi−1) (4.5.39)

=fi + (fi+1 − fi)

[

η(1 + η)

2
+
η(1 − η)

2
rD

]

,

where

rD =
Backward difference

Forward difference
=
fi − fi−1

fi+1 − fi
.

In smooth regions

fi±1 = fi ± ∆xf ′i +
(∆x)2

2
f ′′i +O(∆x3) , (4.5.40)

then

fi − fi−1

∆xf ′i
= 1 − ∆x

2

f ′′i
f ′i

+O(∆x2) ,

fi+1 − fi

∆xf ′i
= 1 +

∆x

2

f ′′i
f ′i

+O(∆x2) . (4.5.41)

This implies

rD =
fi − fi−1

fi+1 − fi
=

(

1 − ∆x

2

f ′′i
f ′i

+O(∆x2)

)(

1 +
∆x

2

f ′′i
f ′i

+O(∆x2)

)−1

=

(

1 − ∆x

2

f ′′i
f ′i

+O(∆x2)

)(

1 − ∆x

2

f ′′i
f ′i

+O(∆x2)

)

. (4.5.42)

Hence we finally get

rD = 1 − ∆x
f ′′i
f ′i

+O(∆x2) , (4.5.43)

and thus rD remains close to unity. In flow regions near shocks or contact surfaces, rD can
wildly vary and some limiting criterion is required to preserve the TVD condition. The key
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to satisfy the TVD condition lies in requiring

0 ≤ η(1 + η)

2
+
η(1 − η)

2
rD ≤ 1 . (4.5.44)

Two cases arise, namely, rD ≥ 0 and rD ≤ 0. If we consider the case of rD ≥ 0, the condition
in equation (4.5.44) is satisfied if

rD ≤ 1 +
2

η
. (4.5.45)

As 0 ≤ η ≤ 1, the right-hand side of the above inequality has minimum value of 3. One way
of satisfying equation (4.5.45) is to limit the value of rD to 3 when rD ≥ 0. For the case when
rD ≤ 0, the condition in equation (4.5.44) is satisfied if

η(1 + η)

2
+
η(1 − η)

2
rD =

η(1 + η)

2
− η(1 − η)

2
|rD| ≥ 0 , (4.5.46)

or equivalently, if

|rD| ≤ 1 + η

1 − η
. (4.5.47)

Thus, by limiting the relative values of the forward and backward differences and taking
rD = 1 outside these limits, we find the interpolation formula in equation (4.5.39) yields not
only positive values of f(xi + η∆x, ξ) but also satisfies the TVD condition. As mentioned
before the basic input to equation (4.5.39) is the set of positive values of fi at all mesh points.

From the analysis in this section it has become clear that the second-order accurate kinetic
scheme requires the use of distribution functions φCE and ψCE given in equation (4.5.36), as
well as second order accurate interpolation scheme. The extension of this kinetic scheme to
two-dimensional case is considered in the next section.

Remark: Due to the presence of QCE and MCE , the distribution functions φCE and ψCE

given in (4.5.36) not only depend on the local values of the field variables but also depend
on their neighbouring values as well. The support of φCE and ψCE is thus more than that of
local phase densities φ and ψ used in the first order kinetic scheme.

4.6 Kinetic Scheme in Two Space Dimensions

Here we consider solutions which depend on t, x = x1 and y = x2 and satisfy n =
n(t, x, y), u = (u1(t, x, y), u2(t, x, y), 0), p = p(t, x, y). In order to calculate the surface in-
tegrals (4.3.11) and (4.3.12) we introduce instead of the unit vector w the new variables
−1 ≤ ξ ≤ 1 and −π ≦ ϕ ≦ π by

w1 = ξ , w2 =
√

1 − ξ2 sinϕ , w3 =
√

1 − ξ2 cosϕ , (4.6.1)

with the surface element dS(w) = dξdϕ. Therefore the surface integrals for the moments
(4.3.11) and (4.3.12) can be rewritten as given below. In the following we use τ = τM , i.e.,
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the free-flight is of the order of time step, tn + τM = tn+1. For abbreviation we introduce

φ(y, w1, w2) =
1

4π

n(y)

(
√

1 + (u2
1 + u2

2)(y) − u1(y)w1 − u2(y)w2)3
,

(4.6.2)

ψ(y, w1, w2) =
3

4π

(nT )(y)

(
√

1 + (u2
1 + u2

2)(y) − u1(y)w1 − u2(y)w2)4
,

then the two-dimensional kinetic scheme is

Nk(tn + τM , x, y) =

π
∫

−π

1
∫

−1

wkφ(x− τMw
1, y − τMw

2, w1, w2) dξ dϕ ,

T km(tn + τM , x, y) =

π
∫

−π

1
∫

−1

wkwmψ(x− τMw
1, y − τMw

2, w1, w2) dξ dϕ ,

where k, m = 0, 1, 2 and w0 = 1. Moreover the fields n, u1, u2 and T can be found from the
same continuity equations (4.3.7)-(4.3.9) except u3 = 0.

The procedure of numerical implementation of the scheme is exactly the same as given in
Section 2.4.1 of Chapter 2 for the two-dimensional non-relativistic Euler equations. Therefore
we do not explain again the numerical implementation procedure.

4.6.1 Second Order Extension of the Two-Dimensional Kinetic Scheme

Here we aim to extend our two-dimensional kinetic scheme to second order. The procedure
of second order time accuracy is analogous to the second approach in Subsection 4.5.2 for
the one-dimensional case. Therefore we will not go in the details of the derivation.

Since the free-flight phase density is very far from equilibrium, the equilibrium phase densities
φ(t, x, y, ξ) and ψ(t, x, y, ξ) given by (4.6.2) do not satisfy the free-flight transport equation,
i.e.,

∂φ

∂t
+ w1∂φ

∂x
+ w2∂φ

∂y
6= 0 ,

∂ψ

∂t
+ w1∂ψ

∂x
+ w2∂ψ

∂y
6= 0 , (4.6.3)

where w1 = ξ and w2 =
√

1 − ξ2 sinϕ as given in (4.6.1). In fact from (4.6.2) we have

∂φ

∂t
+ w1∂φ

∂x
+ w2∂φ

∂y
=

(

∂n

∂t
+ w1∂n

∂x
+ w2∂n

∂y

)

∂φ

∂n
+

(

∂u1

∂t
+ w1∂u1

∂x
+ w2∂u1

∂y

)

∂φ

∂u1

+

(

∂u2

∂t
+ w1∂u2

∂x
+ w2∂u2

∂y

)

∂φ

∂u2
, (4.6.4)

∂ψ

∂t
+ w1∂ψ

∂x
+ w2∂ψ

∂y
=

(

∂p

∂t
+ w1 ∂p

∂x
+ w2 ∂p

∂y

)

∂ψ

∂p
+

(

∂u1

∂t
+ w1∂u1

∂x
+ w2∂u1

∂y

)

∂ψ

∂u1

+

(

∂u2

∂t
+ w1∂u2

∂x
+ w2∂u2

∂y

)

∂ψ

∂u2
. (4.6.5)
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Using Section C.2 of Appendix C we can replace the time derivatives of n, u1, u2 and p in
the above equations in terms of the space derivatives. Also we calculate the derivatives of the
equilibrium phase densities (4.6.2) with respect to the fields. We finally obtain

∂φ

∂t
+ w1∂φ

∂x
+ w2∂φ

∂y
= QCEφ (4.6.6)

∂ψ

∂t
+ w1∂ψ

∂x
+ w2∂ψ

∂y
= MCEψ, (4.6.7)

where QCE and MCE are polynomials given by

QCE =Qnx
∂n

∂x
+Qny

∂n

∂y
+Qpx

∂p

∂x
+Qpy

∂p

∂y

+Qu1x
∂u1

∂x
+Qu1y

∂u1

∂y
+Qu2x

∂u2

∂x
+Qu2y

∂u2

∂y
, (4.6.8)

MCE =Mpx
∂p

∂x
+Mpy

∂p

∂y
+Mu1x

∂u1

∂x
+Mu1y

∂u1

∂y
+Mu2x

∂u2

∂x
+Mu2y

∂u2

∂y
,

where all the coefficients of the derivatives of n, u1, u2 and p in above equations are given in
the Section C.2 of Appendix C. Now following the same lines of derivation given in Subsection
4.5.2, we finally get the following second order accurate kinetic scheme for the two-dimensional
case.

Nk(tn + ∆t, x, y) =

π
∫

−π

1
∫

−1

wkφCE(x− ∆w1, y − ∆tw2, w1, w2) dξ dϕ+O(∆t3) , (4.6.9)

T km(tn + ∆t, x, y) =

π
∫

−π

1
∫

−1

wkwmψCE(x− ∆w1, y − ∆tw2, w1, w2) dξ dϕ+O(∆t3) , (4.6.10)

where k, m = 0, 1, 2 and w0 = 1. The initial phase densities φCE and ψCE at time tn are

φCE(y, w1, w2) = φ

(

1 +
∆t

2
QCE

)

(y, w1, w2) ,

ψCE(y, w1, w2) = ψ

(

1 +
∆t

2
MCE

)

(y, w1, w2) ,

where φ and ψ are given in (4.6.2). In order to get second order accuracy in space we need
again a second order polynomial to calculate the free flight phase density.

4.7 Numerical Case Studies

In the following we present numerical test cases for the solution of the ultra-relativistic Euler
equations. For the comparison we use exact Riemann solution, upwind and central schemes.
It was found that kinetic scheme has a comparable accuracy with the upwind and central
scheme. The Godunov and central schemes used here are discussed in Chapter 5 and Chapter
7, respectively.
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Problem 1: Shock tube problem I

The initial data are

(n, u, p) =

{

(5.0, 0.0, 10.0) if x < 0.5 ,
(1.0, 0.0, 0.5) if x ≥ 0.5 .

The spatial domain is taken as [0, 1] with 400 mesh elements and the final time is t = 0.5. For
the kinetic scheme we consider 100 maximization times. This problem involves the formation
of an intermediate state bounded by a shock wave propagating to the right and a transonic
rarefaction wave propagating to the left. The fluid in the intermediate state moves at a mildly
relativistic speed (v = 0.58c) to the right. Flow particles accumulate in a dense shell behind
the shock wave compressing the fluid and heating it. The fluid is extremely relativistic from
a thermodynamic point of view, but only mildly relativistic dynamically. Figures (4.4)1,2 and
(4.5)1,2 show the particle density n, fluid velocity v = u√

1+u2
and pressure p. Figures (4.4)3,4

and (4.5)3,4 shows the same results with zooming in order to easily compare the schemes.

Problem 2: Shock tube problem II

The initial data are

(n, u, p) =

{

(1.0, 1.0, 3.0) if x < 0.5 ,
(1.0,−0.5, 2.0) if x ≥ 0.5 .

The spatial domain is taken as [0, 1] with 400 mesh elements and the final time is t = 0.5. For
the kinetic scheme we consider 100 maximization times. The solution consist of left shock,
a contact and a right shock. Figure 4.5 represents a plots for the particle density, velocity v
and pressure.

Problem 3: Perturbed relativistic shock tube flow

The initial conditions are specified as (nL, uL, pL) = (1.0, 0.0, 1.0) for 0 ≤ x ≤ 0.5 and
(nR, uR, pR) = (nR, 0.0, 0.1) for 0.5 ≤ x ≤ 1.0. Here the right state is a perturbed density
field of sinusoidal wave, nR = 0.125 − 0.0875 sin(50(x − 0.5)). We run this test for the 400
mesh points. The computed solutions are plotted at t = 0.5. The results for particle density
n, velocity v = u√

1+u2
and pressure p are shown in Figure 4.6. Since the continuity equation

in the Euler equations decouples from the other two equations for the pressure and velocity,
therefore we do not see the effect of perturbation in the pressure and velocity.

Problem 4: Single shock solution of the Euler equations

This problem was studied by Yang et al. [94]. In this example we test our kinetic scheme
for a single shock problem. We supplied initial data to the program for which we know that
a single shock solution results from the Rankine-Hugoniot jump conditions. We select the
initial data and the space-time range such that the shock exactly reaches the right lower
corner at the time axis. Figure 4.71,2 represent the plots of the particle density in the time
range 0 ≤ t ≤ 1.271 and in the space range 0 ≤ x ≤ L = 2. The figures shows that both
first order and second order kinetic schemes captures this shock in exactly the same way as
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predicted by the Rankine-Hugoniot jump conditions. The Figure 4.73 represents the particle
density at the fixed time t = 0.635 for the same initial data. The Riemann initial data with
a jump at x = L/2 = 1 are chosen as

(n, u, p) =

{

(1.0, 0.0, 1.0) if x < 1.0 ,
(2.725,−0.6495, 4.0) if x ≥ 1.0 ,

where 100 maximization times and 1000 mesh points are considered here. In this example
we found that our kinetic scheme gives a sharp shock resolution. This is a good test for the
kinetic scheme, and its success indicates that the conservation laws for mass, momentum and
energy as well as the entropy inequality are satisfied. We have already proved these properties
for the solutions of the kinetic scheme.

Problem 5: Two interacting relativistic blast waves We consider here the interaction of two
relativistic blast waves. The initial data are

(n, u, p) =







(1.0, 0.0, 100.0) if 0 < x < 0.1 ,
(1.0, 0.0, 0.06) if 0.1 < x < 0.9 ,
(1.0, 0.0, 10.0) if 0.9 < x < 1.0 .

The reflective boundary conditions are applied at both x = 0.0 and x = 1.0. The results are
given in Figure 4.8 for the particle density n, velocity v and pressure p. The number of mesh
points are 1000 and the output time is t = 0.75.

Problem 6: Experimental order of convergence in one space dimension

Here we check the experimental order of convergence (EOC) of the first and second order
kinetic schemes. The initial data are

n = sin(2πx) + 2.0, u = 0.0 , p = 1.0 .

The computational domain is 0 ≤ x ≤ 1, and the final time for the numerical solution is
t = 1.0. In a real gas there is a diffusion due to the difference in initial particle density and
temperature at the initial contact discontinuity. However, this phenomenon is not described
by the Euler equations. In this example the gas is initially at rest therefore the solution is
stationary with same data. If h = ∆x is the cells width then L1-norm is given by

‖W (., t) −Wh(., t)‖L1(R) = chα , (4.7.1)

where α is the order of the L1-error. Here W denotes the exact solution and Wh the numerical

solution. The L1-error is defined as ‖W (., t) −Wh(., t)‖L1 = ∆x
N
∑

i=1

|W (xi, t) − Wh(xi, t)|,

where N is the number of mesh points. Then (4.7.1) gives

EOC := α = ln

(‖W (., t) −Wh
2

(., t)‖L1

‖W (., t) −Wh(., t)‖L1

)

/

ln

(

1

2

)

.

Table 4.1 give the L1-error and experimental order of convergence for the first order and sec-
ond order kinetic schemes. The plots for numerical solution and error difference in the exact
and numerical solutions are given in Figure 4.9.
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Table 4.1: L1-error and EOC in the kinetic scheme

First Order Second Order

N L1-error EOC L1-error EOC

50 0.110296 0.012974

100 0.057260 0.9458 0.003643 1.8324

200 0.029149 0.9741 0.001010 1.8508

400 0.014694 0.9882 0.000272 1.8927

800 0.007369 0.9957 0.000071 1.9377

1600 0.003686 0.9994 0.000018 1.9798

3200 0.001842 1.0008 4.52E-06 1.9936

Problem 7: Experimental order of convergence in two space dimensions

Here we check the experimental order of convergence (EOC) of the two-dimensional kinetic
scheme. The initial data are

n = sin(2π(x+ y)) + 2.0, u1 = 0.0 , u2 = 0.0 , p = 1.0 .

The computational domain is [0, 1]×[0, 1] and the final time is t = 0.5. In the two-dimensional
kinetic scheme (4.6.3) we have to evaluate the double integrals with respect to ξ− and
ϕ−integration in each computational cell by using composit trapezoidal rule. This increase
the computational time if we use large number of discretization points. Here we have used 25
points for ξ and ϕ discretizations. Table 4.2 give the L1-error and EOC.

Table 4.2: L1-error and EOC in the kinetic scheme

First Order Second Order

N L1-error EOC L1-error EOC

30 0.148764 0.02139021

60 0.080797 0.8807 0.00699767 1.6120

120 0.043190 0.9036 0.00209437 1.7404

280 0.022538 0.9383 0.00059263 1.8213

480 0.011604 0.9577 0.00016085 1.8667
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Problem 8: Cylindrical explosion problem

Consider a square domain [0, 1] × [0, 1]. The initial
data are constant in two regions separated by a
circle of radius 0.2 centered at (0.5, 0.5). Inside
the circle density is 5.0 and the pressure is 10.0,
while outside the density is 1.0 and pressure is
equal to 0.5. The velocities are zero everywhere.
The solution consists of a circular shock wave
propagating outwards from the origin, followed by
a circular contact discontinuity propagating in the
same direction, and a circular rarefaction wave
traveling towards the origin. The results at y = 0.5
from the first and second order kinetic schemes,
KFVS schemes and central schemes are compared
in Figure 4.10. While Figures 4.11 and 4.12 show
the contour plots of first and second order kinetic
schemes results. We have used 400 mesh points
and the final time is t = 0.2.

0

1

10.3 0.7

0.7

0.3

n = 5
n = 1

u1 = 0 u1 = 0

u2 = 0 u2 = 0
p = 10p = 0.5

4.8 Summary

In this chapter we have presented the first and second order kinetic schemes for the ultra-
relativistic Euler equations. We have numerically implemented the one- and two-dimensional
kinetic schemes. The numerical results from the kinetic schemes were compared with the
Godunov and central schemes. The programing codes for the kinetic schemes are simple like
Godunov and central schemes. As explained before the boundary condition implementations
strategy for the kinetic schemes are different compared to the Godunov and central schemes.
It was found that kinetic schemes give a better resolution of the contact discontinuity as com-
pared to the Godunov and central schemes, especially in the second order case. We found in
Chapter 2 that first order Godunov scheme has better resolution at the contact discontinuity
than the first order kinetic scheme, but here we do not see such a difference between the
two schemes. The one reason could be that, in the non-relativistic kinetic schemes we have
to cut the c−integration limits by using the error function which can produce error in the
solution. But in the ultra-relativistic case we do not use any error function due to the finite
limits of integration. The kinetic scheme was found to be computationally expensive and is
five to six times slower than the other schemes due to the inside loop for the q−integration
in each computational cell. However, as discussed in introduction the kinetic schemes have
other advantages like, they need no CFL condition and are truly multi-dimensional.
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Figure 4.4: Comparison of the results of problem 1 at time t = 0.5.
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Figure 4.5: Comparison of the results of problem 2 at time t = 0.5.
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Figure 4.6: Perturbed relativistic shock tube flow at time t = 0.5.
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Figure 4.8: Two interacting relativistic blast waves at time t = 0.75.
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Figure 4.9: Comparison of the results of problem 6 at time t = 0.5.
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Figure 4.10: Comparison of the schemes applied to cylindrical explosion at t = 0.2.
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Figure 4.11: First order kinetic scheme at t = 0.2.
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Figure 4.12: Second order kinetic scheme at t = 0.2.



Chapter 5

BGK-type KFVS and Godunov
Schemes

In this chapter we develop a BGK-type kinetic flux vector splitting (KFVS) schemes for the
ultra-relativistic Euler equations. These new scheme are based on the direct splitting of the
flux function of the Euler equations with the inclusion of “particle” collisions in the transport
process. Consequently, the artificial dissipation in the new schemes are much reduced in com-
parison with the usual kinetic flux vector splitting (KFVS) schemes which are based on the
free particle transport at the cell interfaces in the gas evolution stage. Although in a usual
KFVS schemes the free particle transport gives a robust solution, it gives smeared solutions at
the contact discontinuities. The new BGK-type KFVS schemes solves this problem and gives
a robust and reliable solutions as well as good resolution of the contact discontinuity. We
also derive the first order and second order Godunov scheme for the one-dimensional ultra-
relativistic Euler equation. We will compare the numerical results of the Godunov, KFVS
and BGK-types KFVS schemes.

In the past decades, tremendous progress has been made in the development of numerical
methods for compressible flow simulations. Most of them are largely based on upwind con-
cepts, see [34, 36, 65]. There are mainly two kinds of flux functions derived for the inviscid
Euler equations. The first group is the flux vector splitting (FVS) schemes. Flux splitting
is a technique for achieving upwinding bias in numerical flux functions, which is a natural
consequence of regarding fluid motion as a superposition of waves. Since waves can move
forward or backward, this automatically splits the fluxes of mass, momentum and energy into
forward and backward fluxes through the cell interface, i.e.,

Fi+ 1

2

= F+(Wi) + F−(Wi+1) ,

where Wi represents mass, momentum and energy densities inside a computational cell i. The
equivalence between the above splitting mechanism and the collisionless transport equation
was first realized by Harten, Lax and van Leer [36]. Numerically it is observed that the ex-
plicit flux formulation of the KFVS schemes, by solving collisionless transport equation, are
identical to the flux function of van Leer [58]. We will discuss the KFVS schemes for the
solution of the ultra-relativistic Euler equations. For more discussion on the KFVS schemes
the reader is referred to Xu et al. [90] and Xu [91, 92, 93].
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On the other hand, the flux difference splitting (FDS) schemes based on the exact or approxi-
mate Riemann solvers, such as the Godunov, Roe and Osher methods [34, 69, 78], account for
the wave interactions in the gas evolution process. Especially for the Godunov method, the
exact solution of the Euler equations is used. The wave interaction in the FDS schemes can
be clearly observed in the Roe average W i+ 1

2

between the left Wi and the right state Wi+1,

see Roe [78]. In the smooth flow region, there is basically no difference among the Godunov,
Roe and Osher schemes. For example, the above three schemes can precisely keep a shear
layer in the 2D case once the shear layer is aligned with the mesh, see Gressier and Moschetta
[31], as well as Quirk [76]. This fact is consistent with the exact solution of the Euler equa-
tions. Therefore, the FDS schemes can accurately capture the Navier-Stokes solutions in the
resolved dissipative boundary layer, where the numerical dissipation is much smaller than the
physical dissipation, see Xu [90] for details. However, this advantage is also accompanied with
a disadvantage, the Godunov scheme in strong shock regions produces spurious oscillations
such as the carbuncle phenomena and odd-even decoupling in the multi-dimensional case, see
Pandolfi and D’ambrosio [71]. FVS schemes do not generate these spurious solutions, since
they are intrinsically solving “viscous” equations rather than the inviscid Euler equations. An
optimum choice to get a better scheme is to combine both, the FVS and FDS methodology.
This is the main aim of this chapter by considering the ultra-relativistic case of the Euler
equations.

Even with initial equilibrium states, the collisionless Boltzmann transport equation cannot
keep the local equilibrium property dynamically. Physically, the mechanism for bringing
the distribution function close to equilibrium state simulates the collisions suffered by the
molecules of the gas, the so called collision term in the Boltzmann equation. But the colli-
sionless Boltzmann equation in the free-transport evolution stage totally ignores the dynamical
process of particle collisions.

Although the KFVS schemes lacks particle collisions in the free-transport evolution stage,
numerically they still can be used in compressible flow calculations, and the numerical solution
is different from the free particle stream solutions. The basic reason for this is that an artificial
collision term has been implicitly added in the projection stage. For example at the end of
each time step, a Maxwellian distribution function fM inside each cell is re-initiated, which is
equivalent to performing particle collisions instantaneously to make the transition from non-
equilibrium state, i.e. free-flight f , to equilibrium state fM inside each cell. The dynamical
effect from the two numerical stages, i.e. free-flight and projection, in the KFVS scheme
is qualitatively described in the Figure 5.1, where the free transport in the gas evolution
stage evolves the system away from the Euler solution, f becomes more and more different
from a Maxwellian, the projection stage drives the system towards to the Euler solution, the
instantaneous preparation of equilibrium states, see Xu [90]. Kinetic flux splitting schemes
(KFVS) have been widely used in solving multi-dimensional non-relativistic Euler equations,
see Section 2.5 of Chapter 2.
In this chapter we are interested to derive a new BGK-type KFVS schemes in order to
solve one- and two-dimensional ultra-relativistic Euler equations. In these new schemes the
particle collisions are added to the free particle transport mechanism in the following convex
combination form of the fluxes,

Fi+ 1

2

= ηF f

i+ 1

2

+ (1 − η)F e
i+ 1

2

,
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Numerical Solution

KFVS Scheme

Euler Solution

Projection Stage

Gas Evolution Stage

t

∆t

Figure 5.1: KFVS solution vs Euler solution, where ∆t is a CFL time step.

where F f is the flux term from the free-flight phase density and F e is equilibrium flux obtained
from the equilibrium phase density which is relativistic Maxwellian (Jüttner phase density)
in our case. Here η is an adjustable parameter and will be analyzed in the coming sections
when we derive the scheme. These schemes have been successfully applied to the classical
magnetohydrodynamics by Xu [93].

In the BGK-type KFVS schemes we start with a cell averaged initial data of the conservative
variables and get back the cell averaged values of the conservative variables at the next time
step. In two-dimensional case the flux splitting is done in a usual dimensionally split manner,
that is, the formulae for the fluxes can be used along each coordinate direction. In order to get
second order accuracy we use a MUSCL-type reconstruction in both one and two-dimensional
cases.

5.1 The Ultra-Relativistic Euler Equations

The three-dimensional ultra-relativistic Euler equations (4.1.12)-(4.1.14), can be rewritten as

∂W

∂t
+

3
∑

k=1

∂F k(W )

∂xk
= 0 , (5.1.1)

where

W =





N0

T 0i

T 00



 =





n
√

1 + u2

4pui
√

1 + u2

3p+ 4pu2



 , F k(W ) =





Nk

T ik

T 0k



 =





nuk

p δik + 4puiuk

4puk
√

1 + u2



 , (5.1.2)

where i = 1, 2, 3 and the pressure p = nT .
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In order to get the primitive variables n, uk and p from the conserved variables W we use

p(t,x) =
1

3



−T 00 +

√

√

√

√4(T 00)2 − 3
3
∑

k=1

(T 0k)2



 ,

uk(t,x) =
T 0k

√

4p(t+n ,x)[p(t,x) + T 00]
, k = 1, 2, 3, (5.1.3)

n(t,x) =
N0

√

1 +
∑3

k=1 [uk(t+n ,x)]2
.

5.1.1 One-Dimensional Moment Integrals

Here we rewrite the free-flight moment integrals (4.5.3) and (4.5.4) of the one-dimensional
kinetic scheme. As explained there, we only consider the solutions which depend on t and
x = x1 and satisfy n = n(t, x), u = (u(t, x), 0, 0), p = p(t, x). Here we use ∆t as a time step
which is equal to the time step τ = τM used in (4.5.3) and (4.5.4). Therefore we have

W (tn+1, x) =





N0(tn+1, x)
T 01(tn+1, x)
T 00(tn+1, x)



 =

1
∫

−1





Φ(x− ∆tξ, ξ)
ξΨ(x− ∆tξ, ξ)
Ψ(x− ∆tξ, ξ)



 dξ, (5.1.4)

F f (tn+1, x) =





N1(tn+1, x)
T 11(tn+1, x)
T 01(tn+1, x)



 =

1
∫

−1





ξΦ(x− ∆tξ, ξ)
ξ2 Ψ(x− ∆tξ, ξ)
ξΨ(x− ∆tξ, ξ)



 dξ , (5.1.5)

where tn+1 = tn + ∆t and

Φ(y, ξ) =
1

2

n(y)

(
√

1 + u2(y) − ξu(y))3
, Ψ(y, ξ) =

3

2

(nT )(y)

(
√

1 + u2(y) − ξu(y))4
. (5.1.6)

Here we have suppressed for simplicity the fixed time-argument t in the fields, which will not
lead to confusions.

5.1.2 Two-Dimensional Moment Integrals

We also rewrite the two-dimensional moment integrals (4.6.3). In this case we consider
the solutions which depend on t, x = x1 and y = x2 and satisfy n = n(t, x, y), u =
(u1(t, x, y), u2(t, x, y), 0), p = p(t, x, y). Then for

w1 = ξ , w2 =
√

1 − ξ2 sinϕ , w3 =
√

1 − ξ2 cosϕ , (5.1.7)
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W (tn+1, x, y) =









N0(tn+1, x, y)
T 01(tn+1, x, y)
T 02(tn+1, x, y)
T 00(tn+1, x, y)









=

π
∫

−π

1
∫

−1









Φ(y, w1, w2)
w1 Ψ(y, w1, w2)
w2 Ψ(y, w1, w2)

Ψ(y, w1, w2)









dξdϕ ,

F f (tn+1, x, y) =









N1(tn+1, x, y)
T 11(tn+1, x, y)
T 12(tn+1, x, y)
T 01(tn+1, x, y)









=

π
∫

−π

1
∫

−1









w1 Φ(y, w1, w2)
(w1)2 Ψ(y, w1, w2)
w1w2 Ψ(y, w1, w2)
w1 Ψ(y, w1, w2)









dξdϕ ,

(5.1.8)

Gf (tn+1, x, y) =









N2(tn+1, x, y)
T 12(tn+1, x, y)
T 22(tn+1, x, y)
T 02(tn+1, x, y)









=

π
∫

−π

1
∫

−1









w2 Φ(y, w1, w2)
w1w2 Ψ(y, w1, w2)
(w2)2 Ψ(y, w1, w2)
w2 Ψ(y, w1, w2)









dξdϕ ,

where y = (x− ∆t w1, y − ∆t w2), tn+1 = tn + ∆t and

Φ(y, w1, w2) =
1

4π

n(y)

(
√

1 + (u2
1 + u2

2)(y) − u1(y)w1 − u2(y)w2)3
,

Ψ(y, w1, w2) =
3

4π

(nT )(y)

(
√

1 + (u2
1 + u2

2)(y) − u1(y)w1 − u2(y)w2)4
.

The above one- and two-dimensional free-flight moments integrals will be used in order to
derive the BGK-type KFVS scheme for the ultra-relativistic Euler equations.

5.2 One-Dimensional BGK-type KFVS Scheme

The equations (5.1.1) in the one-dimensional case gives

∂W

∂t
+
∂F (W )

∂x
= 0 , (5.2.1)

where

W =





N0

T 01

T 00



 =





n
√

1 + u2

4pu
√

1 + u2

3p+ 4pu2



 , F (W ) =





N1

T 11

T 01



 =





nu
p+ 4pu2

4pu
√

1 + u2



 . (5.2.2)

We start with piecewise constant initial data W i(tn) over the cells [xi− 1

2

, xi+ 1

2

] of a given

mesh size ∆x = xi+ 1

2

−xi− 1

2

, and we have to compute W i(tn+1) over the same cells. We take

the natural CFL condition ∆t = ∆x
2 in order to ensure that neighbouring light-cones will not

interact, see Figure 5.2. Note that in the theory of the classical Euler-equations one has to
assume a bound for the characteristic speeds which depend on the choice of the initial data in
order to obtain a CFL-condition. This is not necessary in our case, since every signal speed
is bounded by the velocity of light.
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Using again Figure 5.2, the one-dimensional weak form of conservation laws (4.3.13)1,2 over
the domain [tn, tn+1] × [xi− 1

2

, xi+ 1

2

] gives

∮

∂Ω

W (t, x) dx− F (W (t, x)) dt = 0 ,

implying

x
i+ 1

2
∫

x
i− 1

2

[W (tn+1, x) −W (tn, x)] dx+

tn+1
∫

tn

[

F (τ, xi+ 1

2

) − F (τ, xi− 1

2

)
]

dτ = 0 .

Let us define the integral mean values by

W i(t) =
1

∆x

x
i+ 1

2
∫

x
i− 1

2

W (t, x)dx .

Dividing the above balance equations by ∆x, we get the following conservative formula

W i(tn+1) = W i(tn) − 1

∆x

tn+1
∫

tn

[

F (τ, xi+ 1

2

) − F (τ, xi− 1

2

)
]

dτ , (5.2.3)

with

F (τ, xi+ 1

2

) = ηF f (τ, xi+ 1

2

) + (1 − η)F e(τ, xi+ 1

2

) .

Here F f (τ, xi+ 1

2

) is given by (5.1.5) while we have to derive F e(τ, xi+ 1

2

). Also we will analyze

the parameter η when we complete the derivation of the scheme for the 1D case.

From (5.1.5) we have

tn+1
∫

tn

F f (τ, xi+ 1

2

) dτ =

tn+1
∫

tn

1
∫

−1

f(xi+ 1

2

− τξ, ξ) dξ dτ , (5.2.4)

where

f(y, ξ) =











1
2

ξ n(y)

(
√

1+u2(y)−ξu(y))3

3
2

ξ2 (nT )(y)

(
√

1+u2(y)−ξu(y))4

3
2

ξ (nT )(y)

(
√

1+u2(y)−ξu(y))4











.

The CFL condition states that ξ-integration is limited to ξ such that |ξ|τ ≤ ∆x. This means
that xi± 1

2

− ξτ remains in a neighbour cell to xi± 1

2

, see Figure 5.2. This implies that the field
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variables n, u, T in the split flux integrals will not depend on the ξ−integration, therefore
equation (5.2.4) gives

F f

i+ 1

2

=
1

∆t

tn+1
∫

tn

F f (τ, xi+ 1

2

) dτ =

1
∫

0

f(xi, ξ) dξ +

0
∫

−1

f(xi+1, ξ) dξ

= F+
i + F−

i+1 , (5.2.5)

where for each cell Ii

F±
i =























± n(xi)

4
√

1+u2(xi)

(

±u(xi) +
√

1 + u2(xi)
)2

p(xi)

2
√

1+u2(xi)

(

±u(xi) +
√

1 + u2(xi)
)3

p(xi)
4

“

−u(xi)±3
√

1+u2(xi)
” “

±u(xi)+
√

1+u2(xi)
”3

1+u2(xi)























, (5.2.6)

where p = nT . This is exactly the kinetic flux vector splitting scheme for the ultra-relativistic
Euler equations.

t1 t2

t

x

Light cone

Light cone

∆t

F
±

(W
ni
,
W

ni+
1 )

F
±

(W
ni
−

1
,
W

ni
)

xi−1

xi− 1

2

xi

xi+1

xi+ 1

2

Figure 5.2: Illustration of the conservative kinetic scheme.

Now we are going to derive the equilibrium part of the flux F e
i+ 1

2

. As discussed in the intro-

duction all FVS schemes based on positive (negative) particle velocities suffer from the same
weakness. The particle free transport across cell interfaces unavoidably introduces a large
numerical dissipation, and the viscosity and heat conduction coefficients are proportional to
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the CFL time step. In order to reduce the over-diffusivity in flux splitting schemes, particle
collisions have to be added in the transport process. Following the idea of Xu [93], the aim
is to obtain an equilibrium state W

e
i+ 1

2
at the cell interface by combining the left and right

moving beams. Using this equilibrium state, we get an equilibrium flux function F e
i+ 1

2

through

the flux function definition (5.2.2)2.

As a simple particle collisional model, we can imagine that the particles from the left- and
right-hand sides of a cell interface collapse totally to form an equilibrium state. In order to
define the equilibrium state at the cell interface, we need first to figure out the corresponding
macroscopic quantities W

e
i+ 1

2
there, which are the combination of the total mass, momentum

and energy of the left and right moving beams. Now using (5.1.4) we have

W
e
i+ 1

2
=







N
0

T
01

T
00







i+ 1

2

=





N0

T 01

T 00





+

i

+





N0

T 01

T 00





−

i+1

, (5.2.7)

where for each cell Ii





N0

T 01

T 00





±

i

=



















n(xi)
“

2
√

1+u2(xi)∓u(xi)
”

4(1+u2(xi))
“

u(xi)∓
√

1+u2(xi)
”2

p(xi)
4

“

−u(xi)±3
√

1+u2(xi)
” “

±u(xi)+
√

1+u2(xi)
”3

1+u2(xi)

p(xi)
“

3+4u2(xi)∓3u(xi)
√

1+u2(xi)
”

2
“

1+u2(xi)∓u(xi)
√

1+u2(xi)
”3



















. (5.2.8)

Now we use the following relation in order to get the averaged values of the primitive variables
from the above averaged conservative variables in (5.2.7),

p =
1

3

[

−T 00
+

√

4(T
00

)2 − 3(T
01

)2
]

, u =
T

01

√

4p[p+ T
00

]

, n =
N

0

√
1 + u2

. (5.2.9)

Then from these “averaged” macroscopic flow quantities in the equation (5.2.9), we can con-
struct the equilibrium flux function

F e
i+ 1

2

=
1

∆t

tn+1
∫

tn

F e(τ, xi+ 1

2

) dτ =





nu
p+ 4pu2

4pu
√

1 + u2





i+ 1

2

. (5.2.10)

Using (5.2.5) and (5.2.10) in (5.2.3) we finally get the following upwind kinetic scheme

W i(tn+1) = W i(tn) − ∆t

∆x

[

Fi+ 1

2

− Fi− 1

2

]

, (5.2.11)

with

Fi+ 1

2

= ηF f

i+ 1

2

+ (1 − η)F e
i+ 1

2

, (5.2.12)
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where η is an adaptive parameter. For a first order scheme η can be fixed, such as 0.7 or
0.5, in the numerical calculations. Theoretically, the parameter η should depend on the real
flow situations: in the equilibrium and smooth flow regions, the use of η ∼ 0 is physically
reasonable, and in discontinuity region, η should be close to 1 in order to have enough numer-
ical dissipation to recover the smooth shock transition. A possible choice for η in high order
scheme is to consider it as a function of the pressure difference, such as the switch function
in the JST scheme [7]. We follow the MUSCL-type approach to extend the current scheme
to high order. For the high-order scheme, the interpolated pressure jump pl and pr around a
cell interface can naturally be used as a switch function for the parameter η, such as

η = 1 − Exp

(

−|pl − pr|
pl + pr

)

, (5.2.13)

where α can be some constant, see Xu [93]. In order to get back the primitive variables
n, u, T in (5.2.11) we use again (5.2.9).

5.2.1 Second Order Extension of the Scheme in 1D

In order to get the second order accuracy we have the following three steps.

(I): Data Reconstruction. Starting with a piecewise-constant solution in time and space,
∑

W i(tn)χi(x), one reconstruct a piecewise linear (MUSCL-type) approximation in
space, namely

W (tn, x) =
∑

[

W i(tn) +W x
i

(x− xi)

∆x

]

χi(x) . (5.2.14)

Here, χi(x) is the characteristic function of the cell, Ii := {ξ | |ξ − xi| ≤ ∆x
2 }, centered

around xi = i∆x, and W x
i abbreviates a first order discrete slopes.

The extreme points x = 0 and x = ∆x, in local coordinates correspond to the intercell
boundaries in general coordinates xi− 1

2

and xi+ 1

2

, respectively, see Figure 5.3. The

values Wi at the extreme points are

WL
i = W i(tn) − 1

2
W x

i , WR
i = W i(tn) +

1

2
W x

i , (5.2.15)

and are usually called boundary extrapolated values.

A possible computation of these slopes, which results in an overall non-oscillatory
schemes (consult [85]), is given by family of discrete derivatives parameterized with
1 ≤ θ ≤ 2, i.e., for any grid function {Wi} we set

W x
i = MMθ{Wi−1,Wi,Wi+1} = MM

(

θ∆Wi+ 1

2

,
θ

2
(∆Wi− 1

2

+ ∆Wi+ 1

2

), θ∆Wi− 1

2

)

.

Here, ∆ denotes the central differencing, ∆Wi+ 1

2

= Wi+1 −Wi, and MM denotes the

min-mod nonlinear limiter

MM{x1, x2, ...} =







mini{xi} if xi > 0 ∀i ,
maxi{xi} if xi < 0 ∀i ,
0 otherwise .

(5.2.16)
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x

t

xi−1

xi− 1
2

xi

xi+ 1
2

xi+1

WL
i

WR
i

WL
i−1

WR
i−1

Wi−1(tn)

Wi(tn)

Wi+1(tn)

1

∆x
W x

i+1

Wi(tn+1)

Figure 5.3: Second order reconstruction

This interpolant, (5.2.14), is then evolved exactly in time and projected on the cell-
averages at the next time step.

(II): Evolution. For each cell Ii, the boundary extrapolated values WL
i , WR

i in (5.2.15) are
evolved for a time 1

2∆t by

ŴL
i = WL

i +
1

2

∆t

∆x

[

F (WL
i ) − F (WR

i )
]

,

(5.2.17)

ŴR
i = WR

i +
1

2

∆t

∆x

[

F (WL
i ) − F (WR

i )
]

,

where F is the flux term from in the Euler equations (5.2.2)2.

Note that this evolution step is entirely contained in each cell Ii, as the intercell fluxes
are evaluated at the boundary extrapolated values of each cell. At each intercell position
i + 1

2 there are two fluxes, namely WR
i and WL

i+1, which are in general distinct. This
does not really affect the conservative character of the overall method, as this step is
only an intermediate step [85].

(III): Finally we use the conservative formula (5.2.11) in order to get the conservative variables
at next time step

W i(tn+1) = W i(tn) − ∆t

∆x

[

Fi+ 1

2

− Fi− 1

2

]

, (5.2.18)
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with

Fi+ 1

2

= ηF f

i+ 1

2

+ (1 − η)F e
i+ 1

2

, (5.2.19)

where F f

i+ 1

2

= F+(ŴR
i ) + F−(ŴL

i+1), and F± is given by (5.2.6). Similarly to calculate

F e
i+ 1

2

, we have

W
e
i+ 1

2
= (Ŵ+)R

i + (Ŵ−)L
i+1 ,

using (5.2.8) Ŵ±
i can be calculated from (5.2.17), then

F e
i+ 1

2

= F e(W
e
i+ 1

2
) .

In order to get back the fields n, u1, u2, T we use the relations (5.2.9).

5.3 Two-Dimensional BGK-type KFVS Scheme

Here we want to solve the two-dimensional Euler equations

∂W

∂t
+
∂F (W )

∂x
+
∂G(W )

∂y
= 0 , (5.3.1)

where

W =









N0

T 01

T 02

T 00









=









n
√

1 + u2

4p u1
√

1 + u2

4p u2
√

1 + u2

3p+ 4pu2









, F (W ) =









N1

T 11

T 12

T 01









=









nu1

p+ 4p u2
1

4p u1 u2

4p u1

√
1 + u2









,

G(W ) =









N2

T 12

T 22

T 02









=









nu2

4p u1 u2

p+ 4p u2
2

4p u2

√
1 + u2









, (5.3.2)

where u =
√

1 + u2
1 + u2

2. We start again with a piecewise constant initial data of the con-
servative variables W i,j(tn). Using the weak conservation laws (4.3.13)1,2 in two-dimensional
case over the volume [tn, tn+1] × [xi− 1

2

, xi+ 1

2

] × [yj− 1

2

, yj+ 1

2

], we get

W i,j(tn+1) = W i,j(tn) − ∆t

∆x

[

Fi+ 1

2
,j − Fi− 1

2
,j

]

− ∆t

∆y

[

Gi,j+ 1

2

−Gi,j− 1

2

]

, (5.3.3)

where

W i,j(t) =
1

∆x∆y

x
i+1

2
∫

x
i− 1

2

y
j+1

2
∫

y
j− 1

2

W (t, x, y) dxdy ,

Fi+ 1

2
,j = ηF f

i+ 1

2
,j

+ (1 − η)F e
i+ 1

2
,j
, Gi,j+ 1

2

= ηGf

i,j+ 1

2

+ (1 − η)Ge
i,j+ 1

2

.
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Here

F f

i+ 1

2
,j

=
1

∆t

tn+1
∫

tn

F f (τ, xi+ 1

2

, yj) dτ , Gf

i,j+ 1

2

=
1

∆t

tn+1
∫

tn

Gf (τ, xi, yj+ 1

2

) dτ ,

where the flux moments F f (τ, xi+ 1

2

, yj) and Gf (τ, xi, yj+ 1

2

) are given in (5.1.8).

If the CFL condition ∆t ≤ 1
2 min(∆x,∆y) is satisfied, then we can utilize the kinetic flux

vector splitting (KFVS). Since after flux splitting the fields n, u1, u2 and T in (5.1.8) are
not depending on the integration variables ξ and ϕ, therefore we can solve analytically these
moments integrals for the fluxes. This gives

F f

i+ 1

2
,j

= F+
i,j + F−

i+1,j , Gf

i,j+ 1

2

= G+
i,j + F−

i,j+1 , (5.3.4)

where from (5.1.8)

F±
i,j =









N1

T 11

T 12

T 01









±

i,j

, G± =









N2

T 12

T 22

T 02









±

i,j

.

Here for the fluxes F±
i,j we split the integrals with respect to variable ξ and take the integration

with respect to variable ϕ as a whole. While for the fluxes G±
i,j , we split the integrals with

respect to variable ϕ and integrate the integrals with respect to ξ as a whole. Thus we get
the following relations for the fluxes F±

i,j and G±
i,j for each cell Ii,j

F±
i,j =





















nu1

2 ± n(1+2u2
1
)

4
√

1+u2
1

p(1+4u2
1
)

2 ± pu1(3+4u2
1
)

2
√

1+u2
1

2pu1u2 ± pu2(3+12u2
1
+8u4

1
)

4(1+u2
1
)
3
2

p
√

1 + u2

(

2u1 ± (3+12u2
1
+8u4

1
)

4(1+u2
1
)
3
2

)





















i,j

,

(5.3.5)

G±
i,j =





















nu2

2 ± n(1+2u2
2
)

4
√

1+u2
2

2pu1u2 ± pu2(3+12u2
1
+8u4

1
)

4(1+u2
1
)
3
2

p(1+4u2
2
)

2 ± pu2(3+4u2
2
)

2
√

1+u2
2

p
√

1 + u2

(

2u2 ± (3+12u2
2
+8u4

2
)

4(1+u2
2
)
3
2

)





















i,j

.

where u =
√

u2
1 + u2

2.

As discussed in the introduction and in the one-dimensional case, all FVS schemes based on
positive (negative) particle velocities suffer from the same weakness. The particle free trans-
port across the cell interfaces unavoidably introduces a large numerical dissipation, and the
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viscosity and heat conduction coefficients are proportional to the CFL time step. In order to
reduce the over-diffusivity in flux splitting schemes, particle collisions have to be added in the
transport process.

As a simple particle collisional model, we can imagine that the particles at the cell interface
moving in positive and negative x− and y− directions collapse totally to form an equilibrium
state. In order to define the equilibrium state at the cell interface, we need first to figure out
the corresponding macroscopic quantities W

e
i+ 1

2
,j and W

e
i,j+ 1

2
there, which are the combina-

tion of the total mass, momentum and energy of the moving beams in negative and positive
direction of x- and y-axis. Now using (5.1.8)1 we have

W
e
i+ 1

2
,j =











N
0

T
01

T
02

T
00











i+ 1

2
,j

=









N0

T 01

T 02

T 00









+

i,j

+









N0

T 01

T 02

T 00









−

i+1,j

,

where for each cell Ii,j









N0

T 01

T 02

T 00








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
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
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








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√
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√
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(
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)

p(3+4u2)
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




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
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
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. (5.3.6)

Similarly

W
e
i,j+ 1

2
=


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01

T
02
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
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

i,j+ 1

2

=









N0

T 01

T 02

T 00


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
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


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T 02

T 00









−
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,

where for each cell Ii,j with u =
√

u2
1 + u2

2 we have








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T 00
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+8u4

2
)

4(1+u2
2
)
3
2

)

p(3+4u2)
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2
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2
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2
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





















i,j

. (5.3.7)

Now we use the following relation in order to get the averaged values of the primitive variables
from the above averaged conservative variables
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p =
1

3

[

−T 00
+

√

4(T
00

)2 − 3
[

(T
01

)2 + (T
02

)2
]

]

,

u1 =
T

01

√

4p[p+ T
00

]

, u2 =
T

02

√

4p[p+ T
00

]

, n =
N

0

√

1 + u2
1 + u2

2

. (5.3.8)

Then from these “averaged” macroscopic flow quantities in the equation (5.3.8), we can con-
struct the equilibrium flux functions

F e
i+ 1

2
,j

=
1

∆t

tn+∆t
∫

tn

F e(τ, xi+ 1

2

, yj) dτ =









nu1

p+ 4p u2
1

4p u1 u2

4p u1

√

1 + u2
1 + u2

2









i+ 1

2
,j

, (5.3.9)

Ge
i,j+ 1

2

=
1

∆t

tn+∆t
∫

tn

F e(τ, xi, yj+ 1

2

) dτ =









nu2

4p u1 u2

p+ 4p u2
2

4p u2

√

1 + u2
1 + u2

2









i,j+ 1

2

. (5.3.10)

Using (5.3.4), (5.3.9) and (5.3.10) in (5.3.3) we finally get the following upwind kinetic scheme

W i,j(tn+1) = W i,j(tn) − ∆t

∆x

[

Fi+ 1

2
,j − Fi− 1

2
,j

]

− ∆t

∆y

[

Gi,j+ 1

2

−Gi,j− 1

2

]

, (5.3.11)

with

Fi+ 1

2
,j = ηF f

i+ 1

2
,j

+ (1 − η)F e
i+ 1

2
,j
, Gi,j+ 1

2

= ηGf

i,j+ 1

2

+ (1 − η)Ge
i,j+ 1

2

, (5.3.12)

again η is an adaptive parameter and can be taken fixed, for example 0.5 or 0.7. It can also
be calculated from the left and right state pressure at the cell interface by using the relation
(5.2.13). In order to get back the fields n, u1, u2, T from the conservative variable at next
time we use the relations (5.3.8).

5.3.1 Second Order Extension of the Scheme in 2D

Here we present the second-order MUSCL-type approach for the two-dimensional case. Keep-
ing in view the MUSCL approach discussed in the previous section for the one-dimensional
case, we have again the following three steps.

(I): Data Reconstruction and Boundary Extrapolated Values. Starting with a
piecewise-constant solution in time and space, W i,j(tn), one reconstruct a piecewise
linear (MUSCL-type) approximation independently in x- and y-directions by selecting
selecting respective slope vectors (differences) W x and W y. Boundary extrapolated
values are

WLX
i,j = W i,j(tn) − 1

2
W x

i,j , WRX
i,j = W i,j(tn) +

1

2
W x

i,j ,

(5.3.13)

WLY
i,j = W i,j(tn) − 1

2
W y

i,j , WRY
i,j = W i,j(tn) +

1

2
W y

i,j .
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A possible computation of these slopes is given by family of discrete derivatives param-
eterized with 1 ≤ θ ≤ 2, for example

W x
i,j = MM

{

θ∆W i+ 1

2
,j ,
θ

2

(

∆W i+ 1

2
,j + ∆W i− 1

2
,j

)

, θ∆W i− 1

2
,j

}

,

W y
i,j = MM

{

θ∆W i,j+ 1

2

,
θ

2

(

∆W i,j+ 1

2

+ ∆W i,j− 1

2

)

, θ∆W i,j− 1

2

}

. (5.3.14)

Here ∆ denotes central differencing,

∆W i+ 1

2
,j = W i+1,j −W i,j , ∆W i,j+ 1

2

= W i,j+1 −W i,j ,

and MM denotes the min-mod nonlinear limiter given in (5.2.16).

(II): Evolution of Boundary Extrapolated Values. The boundary extrapolated values
are evolved at a time ∆t

2 by using

Ŵ l
i,j = W l

i,j +
1

2

∆t

∆x

[

F (WLX
i,j ) − F (WRX

i,j )
]

+
1

2

∆t

∆y

[

G(WLY
i,j ) −G(WRY

i,j )
]

, (5.3.15)

for l = LX,RX,LY,RY . Here the values of F and G are obtained from the Euler
equations (5.3.2)2,3.

(III): Solution at the Next Time Step. At each intercell position one solves

W i,j(tn+1) = W i,j(tn)− ∆t

∆x

[

Fi+ 1

2
,j − Fi+ 1

2
,j

]

− ∆t

∆y

[

Gi,j+ 1

2

−Gi,j+ 1

2

]

,

with

Fi+ 1

2
,j = ηF f
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2
,j

+ (1 − η)F e
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2
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2

= ηGf
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2

+ (1 − η)Ge
i,j+ 1

2

, (5.3.16)

where

F f

i+ 1

2
,j

= F+(ŵRX
i,j ) + F−(ŵLX

i+1,j) , G
f

i,j+ 1

2

= G+(ŵRY
i,j ) +G−(ŵLY

i,j+1) ,

where F± and G± are given by (5.3.5). Similarly to calculate F e
i+ 1

2
,j

and Ge
i,j+ 1

2

, we

have

W
e
i+ 1

2
,j = (Ŵ+)RX

i,j + (Ŵ−)LX
i+1,j , W

e
i,j+ 1

2
= (Ŵ+)RY

i,j + (Ŵ−)LY
i,j+1 ,

using (5.3.15) Ŵ± can be obtained from (5.3.6) for W i+ 1

2
,j and by (5.3.7) for W i,j+ 1

2

,

then we have

F e
i+ 1

2
,j

= F e(W
e
i+ 1

2
,j) , Ge

i,j+ 1

2

= Ge(W
e
i,j+ 1

2
) .

In order to get back the fields n, u1, u2, T we use the relations (5.3.8).
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5.4 Godunov Upwind Scheme

The evolution of an initial discontinuity separating two constant initial states (Riemann prob-
lem) has played a very important role in the development of numerical fluid dynamics codes
in classical (Newtonian) fluid dynamics after the pioneering work of Godunov in 1959. Nowa-
days, most modern high-resolution shock-capturing methods, LeVeque [55], are based on the
exact or approximate solution of Riemann problems between adjacent numerical cells and the
development of efficient Riemann solvers has become a research field in numerical analysis in
its own, Toro [85]. Godunov [34] produced a conservative extension of the first order upwind
scheme of Courant, Isaacson and Rees [10] to non-linear systems of hyperbolic conservation
laws. The essential ingredient of the scheme is the solution of the Riemann problem, which
may be the exact solution or some suitable approximation to it. Here we will present the
scheme in terms of the exact Riemann solution which we have developed in Chapter 4 for the
ultra-relativistic Euler equations. We apply the MUSCL approach to extend the first order
Godunov upwind scheme to second order. Here we present the Godunov scheme by taking
under consideration the ultra-relativistic Euler equations.

Given general initial data in terms of the conserved variables W (tn, x) at time t = tn, the
Godunov method first assumes a piecewise constant distribution of the data which is obtained
by defining the cell averages

W i(tn) =
1

∆x

x
i+ 1

2
∫

x
i− 1

2

W (tn, ξ)dξ , (5.4.1)

which produces the desired piecewise constant distribution in each cell Ii = [xi− 1

2

, xi+ 1

2

]. This

averaging is illustrated in Figure 5.4. Using the following balance law over the control volume
[

xi− 1

2

, xi+ 1

2

]

× [tn, tn+1]

∮

∂Ω

Wdx− F (W )dt = 0 ,

we get

tn+1
∫

tn

F [W (t, xi+ 1

2

)]dt+

x
i+ 1

2
∫

x
i− 1

2

W (tn+1, ξ)dξ −
tn+1
∫

tn

F [W (t, xi− 1

2

)]dt−

x
i+ 1

2
∫

x
i− 1

2

W (tn, ξ)dξ = 0 .

Since in ultra-relativistic case the maximum speed of the waves is smax = ±1, therefore to
avoid the interaction of waves, we take ∆t ≤ ∆x

2 . A consequence of this restriction is that
only two Riemann solutions affect the cell Ii, namely the right traveling waves of Wi− 1

2

(x̄/t̄)

and the left traveling waves of Wi+ 1

2

(x̄/t̄), where (t̄, x̄) are the local coordinates for the local

Riemann problem. Figure 5.4 shows typical wave patterns emerging from intercell boundaries
xi− 1

2

and xi+ 1

2

when solving two Riemann problems RP
(

Wn
i−1,W

n
i

)

and RP
(

Wn
i ,W

n
i+1

)

. For

a time step ∆t one can define a global solution W (t, x) in the strip 0 ≤ x ≤ L, tn ≤ t ≤ tn+1

in terms of the local coordinates as follows

W (t, x) = Wi+ 1

2

(x̄/t̄) , x ∈ [xi, xi+1] , (5.4.2)
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Figure 5.4: Illustration of Godunov scheme for the relativistic Euler equations.

where the correspondence between the global (t, x) and local (t̄, x̄) coordinates is given by

x̄ = x− xi+ 1

2

, t̄ = t− tn ,

x ∈ [xi, xi+1] , t ∈ [tn, tn+1] ,

x̄ ∈ [−∆x

2
,
∆x

2
] , t ∈ [0,∆t] .

Having found a solution W (t, x) in terms of solutions Wi+ 1

2

(x̄/t̄) to local Riemann problems,

the Godunov method advances the solution to a time tn+1 = tn + ∆t by defining a new set of
average values W i(tn+1) as follow

W i(tn+1) =
1

∆x

x
i+ 1

2
∫

x
i− 1

2

W (tn+1, ξ)dξ , (5.4.3)

within each cell Ii = [xi− 1

2

, xi+ 1

2

]. Now dividing the above balance equation by ∆x and using

(5.4.1) and (5.4.3) we get the following Godunov upwind scheme in conservative form

Wi(tn+1) = Wi(tn) +
∆t

∆x

[

Fi− 1

2

− Fi+ 1

2

]

, (5.4.4)

with intercell fluxes is given by

Fi− 1

2

= F
(

Wi− 1

2

(0)
)

, Fi+ 1

2

= F
(

Wi+ 1

2

(0)
)

, (5.4.5)

where Wi− 1

2

(0) is the solution of the Riemann problem RP (Wi−1(tn),Wi(tn)) along the ray

x/t = 0, which is t-axis in local frame. Similarly Wi+ 1

2

(0) is the solution of the Riemann



116 CHAPTER 5. BGK-TYPE KFVS AND GODUNOV SCHEMES

problem RP (Wi(tn),Wi+1(tn)) along the t-axis. We use exact Riemann solver to calculate
the intercell fluxes. Lastly we use the relations (5.2.9) in order to get the solution in term of
the primitive variables n, u, p. For the details about Godunov schemes the reader is referred
to the book of Toro [85].

Remark: The procedure for the second order accuracy in Godunov scheme is exactly the
same as given in Subsection 5.2.1 for KFVS scheme. The only difference is the way to calculate
the fluxes in step (III). In the Godunov scheme we use the exact Riemann solver in order to
calculate fluxes.

5.4.1 Boundary Conditions in Godunov Scheme

For a domain [0, L] discretized into M computational cells of lenght ∆x we need boundary
conditions at the boundaries x=0 and x=L as given in Figure 5.5.

M

Lower

0

fictitious cell
Upper

boundary
Upper

C
om

putational dom
ain

Lower
boundary

fictitious cell

M+1

x=L

x=0

1

Figure 5.5: Boundary conditions. Fictitious cells outside the computational domain are cre-
ated

Reflective boundary conditions: Consider the lower boundary at x = 0 and suppose it
physically consist of a fixed, reflective wall. Then the physical situation is correctly modeled
by creating a fictitious state U0(tn) on the left side of the boundary and defining the boundary
Riemann problem RP (U0(tn),U1(tn)). The fictitious state U0(tn) is defined from the known
state U1(tn) inside the computational domain, namely

n0(tn) = n1(tn) , u0(tn) = −u1(tn) , p0(tn) = p1(tn) . (5.4.6)

The exact solution of this boundary Riemann problem consists of either (i) two shocks if
u1 > 0 or two rarefaction waves if u1 ≤ 0. In both cases u∗ = 0 along the boundary, which is
the desired condition. In a similar way we can define the reflective boundary conditions for
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the upper boundary x = L.

Transmissive boundary conditions: Transmissive or transparent boundary conditions
arise from the need to define finite, or sufficiently small, computational domains. The corre-
sponding boundary conditions are a numerical attempt to produce boundaries that allow the
passage of waves without any effect on them. For this case we have the following boundary
conditions, see Toro [85].

n0(tn) = n1(tn) , u0(tn) = u1(tn) , p0(tn) = p1(tn) . (5.4.7)

Remark: The procedure for the boundary conditions in KFVS schemes is exactly the same
as for the Godunov Schemes.

5.5 Numerical Test Cases

Here we compare the results of the BGK-type KFVS schemes with the exact solution, KFVS,
central and Godunov schemes. We found that KFVS and BGK-type KFVS schemes give com-
parable solutions to the central and Godunov schemes. The central schemes are discussed in
Chapter 7.

Problem 1: In this test problem we consider the time evolution of an initial discontinuous
state of a fluid moving in opposite directions. The initial data are

(n, u, p) =

{

(1.0, 1.0, 3.0) if x < 0.5 ,
(1.0,−0.5, 2.0) if x ≥ 0.5 ,

where 0 ≤ x ≤ 1. This problem consist of a left shock, a contact and a right shock. Figures
5.6 and 5.7 show the particle density n, velocity v = u√

1+u2
and pressure p at time t = 0.5.

Figures (5.6)3,4 and (5.7)3,4 show the zoomed solutions for better comparison of the schemes.
We have used 400 mesh points in the spatial domain.

Problem 2: In this test problem we consider the time evolution of an initial discontinuous
state of a fluid at rest. The initial data are

(n, u, p) =

{

(5.0, 0.0, 10.0) if x < 0.5 ,
(1.0, 0.0, 0.5) if x ≥ 0.5 ,

where 0 ≤ x ≤ 1. Figures (5.8)1,2 and (6.6)1,2 shows the particle density, velocity v and
pressure at time t = 0.5. Figures (5.8)3,4 and (6.6)3,4 shows the same results with zooming in
order to easily compare the schemes. We have used 400 mesh points in the spatial domain.

Problem 3: The initial data are

(n, u, p) =

{

(1.0,−0.5, 2.0) if x < 0.5 ,
(1.0, 0.5, 2.0) if x ≥ 0.5 ,

where 0 ≤ x ≤ 1. This problem has a solution consisting of two strong rarefactions and a
trivial stationary contact discontinuity, Figures 5.10 and 5.11 shows the solution profiles for
the particle density, velocity v and pressure at time t = 0.5. Figures (5.10)3,4 and (5.10)3,4 are
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zoomed solutions. Here we can see a downward peak in the Godunov solution. These types
of instabilities usually happens in the Godunov schemes. We have used 400 mesh points in
the spatial domain.

Problem 4: Perturbed relativistic shock tube flow

The initial conditions are specified as (nL, uL, pL) = (1.0, 0.0, 1.0) for 0 ≤ x ≤ 0.5 and
(nR, uR, pR) = (nR, 0.0, 0.1) for 0.5 ≤ x ≤ 1.0. Here the right state is a perturbed density
field of sinusoidal wave, nR = 0.125−0.0875 sin(50(x−0.5)). We run this test for the 400 mesh
points. The computed solutions are plotted at t = 0.5. The results are shown in Figure 5.12.
Since the continuity equation in the Euler equations decouples from the other two equations
for the pressure and velocity, therefore we do not see the effect of perturbation in the pressure.

Problem 5: Two interacting relativistic blast waves

We consider here the interaction of two relativistic blast waves. The initial data are

(n, u, p) =







(1.0, 0.0, 100.0) if 0 < x < 0.1 ,
(1.0, 0.0, 0.06) if 0.1 < x < 0.9 ,
(1.0, 0.0, 10.0) if 0.9 < x < 1.0 .

The reflective boundary conditions are applied at both x = 0.0 and x = 1.0. The results
are given in Figure 5.13 for the particle density n, velocity v = u√

1+u2
and pressure p. The

number of mesh points are 700 and the output time is t = 0.75.

Problem 6: Experimental order of convergence in the one-dimensional case

Here we check the experimental order of convergence (EOC) of the first and second order
KFVS and BGK-type KFVS schemes. The initial data are

n = sin(2πx) + 2.0, u = 0.0 , p = 1.0 .

The computational domain is 0 ≤ x ≤ 1, and the final time for the numerical solution is
t = 1.0. The solution is stationary with same data. Tables 5.1 and 5.2 give the L1-error and
EOC for the first order and second order KFVS and BGK-type KFVS schemes.

Table 5.1: L1-error and EOC in the first order schemes

KFVS scheme BGK-type KFVS scheme

N L1-error EOC L1-error EOC

50 0.114860 0.117429

100 0.060002 0.9368 0.060046 0.9676

200 0.030687 0.9674 0.030704 0.9837

400 0.015522 0.9833 0.015526 0.9917

800 0.007807 0.9915 0.007808 0.9959

1600 0.003915 0.9958 0.003915 0.9974

3200 0.001961 0.9974 0.000981 0.9993
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Table 5.2: L1-error and EOC in the second order schemes

KFVS scheme BGK-type KFVS scheme

N L1-error EOC L1-error EOC

50 0.015537 0.007861

100 0.004374 1.8287 0.002187 1.8458

200 0.001197 1.8695 0.000594 1.8804

400 0.000325 1.8809 0.000160 1.8924

800 0.000086 1.9180 0.000042 1.9296

1600 0.000022 1.9668 0.000011 1.9329

3200 5.53E-06 1.9922 2.85E-06 1.9485

Problem 7: Experimental order of convergence in the two-dimensional case

The initial data are

n = sin(2πx) + 2.0, u1 = 0.0 , u2 = 0.0 , p = 1.0 .

The computation domain is 0 ≤ x, y ≤ 1, and the final time for the numerical solution is
t = 0.5. Table 5.3 and Table 5.4 give the L1-error and EOC for the first order and second
order KFVS and BGK-type KFVS schemes.

Table 5.3: L1-error and EOC in the first order schemes

KFVS scheme BGK-type KFVS scheme

N L1-error EOC L1-error EOC

30 0.156645 0.088754

60 0.086700 0.8516 0.046886 0.9207

120 0.046256 0.9064 0.024285 0.9491

240 0.024108 0.9401 0.012430 0.9662

480 0.012382 0.9613 0.006314 0.9772

Table 5.4: L1-error and EOC in the second order schemes

KFVS scheme BGK-type KFVS scheme

N L1-error EOC L1-error EOC

30 0.032213 0.017540

60 0.010356 1.6372 0.005378 1.7055

120 0.003003 1.7860 0.001513 1.8297

240 0.000826 1.8622 0.000414 1.8697

480 0.000225 1.8762 0.000111 1.8991

Problem 8: Simulation of ultra-relativistic jets

As a 2D application we have simulated the evolution of a fluid injected supersonically into the
computational domain through a small nozzle. This simple initial setup allows for the study
of morphology and dynamics of relativistic jets encountered in some astrophysical scenarios.
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A similar studies for the phenomenological relativistic Euler equations have been done by
Mart́ı and Müller [61] and references therin.

Test Case 1: Here we use a slab which is 18 units long and 7 units wide. The domain is
covered by a numerical grid consisting of 700 × 400 zones. The beam fluid is injected in to
the grid parallel to the x-axis through a nozzle located at the middle of the left boundary (i.e.
along y-axis) at x = 0, which is one unit wide. Outflow boundary conditions are used at all
boundaries except at the symmetry axis (x=0 boundary) where reflected boundary conditions
are imposed, and at the nozzle, where fixed inflow beam conditions are used. The initial data
are

(nb, vb, pb) = (0.01, 0.999, 10.0) , (nm, vm, pm) = (1.0, 0.0, 10.0) ,

where “b” correspond to the beam and “m” correspond to the medium. The Mach number of
the flow for Γ = 1√

1−v2
is due to Königl [43]

Mb =
vb

cs

Γb

Γs
= 31 .

The results are shown in Figure 5.14 and 5.15 .

Test Case 2: Here we use a slab which is 14 units long and 7 units wide. The domain is
covered by a numerical grid consisting of 500 × 300 zones. The initial data are

(nb, vb, pb) = (0.01, 0.99, 10.0) , (nm, vm, pm) = (1.0, 0.0, 10.0) .

The flow Mach number is 31. The results are shown in Figure 5.16 and 5.17.

Test Case 3: Here we use a slab which is 16 units long and 7 units wide. The domain is
covered by a numerical grid consisting of 700 × 400 zones. The initial data are

(nb, vb, pb) = (1.0, 0.999, 10.0) , (nm, vm, pm) = (0.001, 0.0, 10.0) .

The flow Mach number is 10. The results are shown in Figure 5.18 and 5.19 .

Problem 9: Explosion in a box

In this example we consider a two-dimensional Rie-
mann problem inside a square box of sides length
2, with reflecting walls. Initially the velocities are
zero. The pressure is 10 and density is 4 inside a
small square box of sides length 0.5 in the center of
the large box, while pressure and density are unity
elsewhere. The results are shown at t = 3.0 in
Figures 5.20, 5.21, while at t = 12.0 in Figures 5.22
and 5.23. In all the results we have used 400 × 400
mesh points.
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Problem 10: Cylindrical explosion problem

Consider a square domain [0, 1] × [0, 1]. The initial
data are constant in two regions separated by a
circle of radius 0.2 centered at (0.5, 0.5). Inside
the circle density is 5.0 and the pressure is 10.0,
while outside the density is 1.0 and pressure is
equal to 0.5. The velocities are zero everywhere.
The solution consists of a circular shock wave
propagating outwards from the origin, followed by
a circular contact discontinuity propagating in the
same direction, and a circular rarefaction wave
traveling towards the origin. The results are shown
in Figure 5.24 and Figures 5.25,5.26 for 400 mesh
points at t = 0.2.

0

1

10.3 0.7

0.7

0.3

n = 5
n = 1

u1 = 0 u1 = 0

u2 = 0 u2 = 0
p = 10p = 0.5

5.6 Summary

In this chapter we have presented the first and second order KFVS, BGK-type KFVS and Go-
dunov schemes for the ultra-relativistic Euler equations. We have numerically implemented
the one- and two-dimensional KFVS and BGK-type KFVS schemes. While the Godunov
scheme is implemented only for the one space dimension. The numerical results from both
KFVS and BGK-type KFVS schemes were compared with the Godunov and central schemes.
Like in the non-relativistic case, here again the programing code for the KFVS, BGK-type
KFVS and central schemes are compact and simpler as compared to the Godunov scheme.
The boundary conditions implementation for the KFVS and BGK-type schemes are analogous
to the Godunov scheme. It was found that BGK-type KFVS schemes give a better resolution
of the contact discontinuity as compared to the KFVS and central schemes. However the
Godunov scheme gives slightly better resolution than all the other three schemes. The com-
putational time for the KFVS and BGK-type KFVS scheme is comparable to both central and
Godunov schemes. The main advantage of the KFVS and BGK-type schemes over Godunov
schemes is that we do not need Riemann solvers to calculate the fluxes. This advantage is
especially important in the multi-dimensional case. Although we do not need the Riemann
solvers in KFVS and BGK-type KFVS schemes we are still able to utilize all the properties of
upwinding methods. Furthermore, KFVS and BGK-type KFVS schemes resolve the contact
discontinuity much better than the central schemes. The advantage of KFVS schemes over
the kinetic schemes in Chapter 4 is computational efficiency and compactness. However, the
KFVS schemes need a CFL condition and has more smearing at the contact discontinuity as
compared to kinetic schemes (continuous in space).
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Figure 5.6: Comparison of the first order schemes at t = 0.5.
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Figure 5.7: Comparison of the 2nd order schemes at t = 0.5.
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Figure 5.8: Comparison of the first order schemes at t = 0.5.
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Figure 5.9: Comparison of the 2nd order schemes at t = 0.5.
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Figure 5.10: Comparison of the first order schemes at t = 0.5.
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Figure 5.11: Comparison of the 2nd order schemes at t = 0.5.
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Figure 5.12: Perturbed relativistic shock tube flow at time t = 0.5.
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Figure 5.13: Two interacting relativistic blast waves at time t = 0.75.
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Figure 5.14: Ultra-relativistic jet problem at v = 0.999.

Particle density at time t=10
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Figure 5.15: Contour plots of ultra-relativistic jet at v = 0.999.
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Figure 5.16: Ultra-relativistic jet problem at v = 0.99.
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Particle density at time t=14

Figure 5.17: Contour plots of ultra-relativistic jet at v = 0.99.
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Figure 5.18: Ultra-relativistic jet problem at v = 0.999.
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Figure 5.19: Contour plots of ultra-relativistic jet at v = 0.999.
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Figure 5.20: First and second order schemes for the explosion in a box at t = 3.0.

Figure 5.21: BGK-type KFVS scheme applied to explosion in a box at t = 3.0.
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Figure 5.22: First and second order schemes for the explosion in a box at t = 12.0.

Figure 5.23: BGK-type KFVS scheme for the explosion in a box at t = 12.0.
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Figure 5.24: Comparison of the schemes applied to cylindrical explosion at t = 0.2.
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Figure 5.25: First order BGK-type KFVS scheme at t = 0.2.
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Figure 5.26: Second order BGK-type KFVS scheme at t = 0.2.



Chapter 6

General Form of Special Relativistic
Euler Equations

In this chapter we deal with the general form of relativistic Euler equations which includes the
modified Bessel functions of second kind. These Euler equations cover the whole range from
the non-relativistic to ultra-relativistic limits. The limiting equations for the Bessel functions
are given in Chapter 3. These inequalities give us the non-relativistic and the ultra-relativistic
limits of the special relativistic kinetic theory of gases.

We prove the Maximum Entropy Principle for these Euler equations. Jüttner [41, 42] has also
given such a proof, but we use a different approach and obtain the full entropy inequality. We
utilize the modern Lorentz invariant properties which were not available at that time. At the
end of the proof, we have the same result as obtained by Jüttner. We also give the Rankine-
Hugoniot jump conditions for these Euler equations. Instead of using the pressure as jump
parameter, here we use the inverse of temperature as a jump parameter. This gives us the ex-
plicit Rankine conditions which are not possible if we consider the pressure as jump parameter.

We develop the unconditionally stable kinetic schemes (continuous in space) for these special
relativistic Euler equations. We also prove the positivity and L1-stability of the schemes. The
proofs of conservation laws and entropy inequality are similar to that in ultra-relativistic case.
Therefore we omit these proofs.

Finally we introduce the phenomenological form of the relativistic Euler equations. These
are the relativistic Euler equation which can be obtained by using the classical constitutive
relation for the internal energy density and the gamma−gas law. Since these equations are
in Lorentz invariant form, they are still relativistic Euler equations. The disadvantage is, it
seems that there is no consistent kinetic phase density which can recover all the constitutive
relations for these Euler equations. Several numerical methods for solving these relativistic
Euler equations have been reported, see Mart́ı and Müller [61] and references therein. All
these methods are mostly developed out of the existing reliable methods for solving the Euler
equations of non-relativistic or Newtonian gas dynamics. Here we will use the second order
central scheme to solve these Euler equations in one space dimension. These second order
central schemes are presented in Chapter 7. We will also compare the numerical results of
the central schemes with the exact Riemann solutions obtained in [61].

132
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6.1 Constitutive Relations

Using the relativistic Jüttner distribution (3.5.1), the relations (3.5.5) and (3.5.7), we calculate
the moments (3.6.1), (3.6.2) and (3.6.3). In the global rest frame, where uµ has components
(1, 0, 0, 0)T , we obtain

e = −nM
′(β)

M(β)
= nΨ(β) ,

p = − n

3M(β)
(M ′(β) + η(β)) = nT =

n

β
, (6.1.1)

σ = −n ln

(

nβ

K2(β)

)

+ βnΨ(β) + ηn .

Where Ψ(β) is given by (3.5.9). Here the choice of the entropy constant η is not so important
in general. Since e, p and σ are Lorentz invariant, we see that (6.1.1) is already true in any
other Lorentz-frame, without the restriction that uµ = (1, 0, 0, 0)T .

Starting with the rest frame and then applying the inverse of the Lorentz boost given by
(3.4.13), we get the following relations for the general frame, where u may or may not be
zero,

Nµ = nuµ , Tµν = −p gµν + (e+ p)uµuν , Sµ = σuµ . (6.1.2)

Moreover one can see by similar calculations given in Lemma 4.1 that σ in (6.1.1)3 obeys the
Gibbs equation

Td
(σ

n

)

= p d

(

1

n

)

+ d
( e

n

)

. (6.1.3)

Since the relativistic moments (6.1.2) are valid in a special Lorentz frame and since these
equations are written in tensor invariant form, they are generally valid in every Lorentz
frame. This can also be seen directly without making use of the Lorentz-boosts.

6.2 Maximum Entropy Principle

The Jüttner distribution fJ (3.5.1) has some important properties. First of all it generalizes
the non-relativistic Maxwellian of a gas in equilibrium to the relativistic case, and secondly fJ

satisfies the so called Maximum Entropy Principle in equilibrium, which will be formulated
and proved below. For this purpose we need the following lemmas.

Lemma 6.1: let be u, q ∈ R
3 and uµ = (

√
1 + u2,u)T , qµ = (

√

1 + q2,q)T . Then the scalar
product qµuµ satisfies the inequality qµuµ ≥ 1, where qµuµ = 1 if and only if u = q.
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Proof: We consider

qµuµ − 1 =
√

1 + q2
√

1 + u2 − q · u− 1

=
(
√

1 + q2
√

1 + u2 − q · u − 1) · (
√

1 + q2
√

1 + u2 + q · u + 1)
√

1 + q2
√

1 + u2 + q · u + 1

=
(q − u)2 + q2u2 − (q · u)2
√

1 + q2
√

1 + u2 + q · u + 1
. (6.2.1)

Due to the Cauchy-Schwarz inequality we know that

(q · u)2 ≤ q2u2, i.e. q2u2 − (q · u)2 ≥ 0. (6.2.2)

If q 6= u then from (6.2.1) we have

(q− u)2 + q2u2 − (q · u)2 > 0 , (6.2.3)

and this implies again from (6.2.1) that qµuµ − 1 > 0 or qµuµ > 1.

Lemma 6.2: The derivative Ψ′ : R
+ → R has the representation

Ψ′(β) =
d

dβ

(

3

β
+
K1(β)

K2(β)

)

= − 3

β2
+

3

β
· K1(β)

K2(β)
+

(

K1(β)

K2(β)

)2

− 1 , (6.2.4)

and is negative for any β > 0. Moreover Ψ(β) satisfies the inequality

Ψ(β) > 1 , (6.2.5)

which indicates that the specific energy is larger than the rest mass energy of a single atom.

Proof: We divide the proof of this lemma in two cases as follow.

Case 1 when 0 < β < 1: From the definition of the modified Bessel functions we have
0 < K1(β) < K2(β). So we can write due to (6.2.4)

Ψ′(β) = − 3

β2
+

3

β
· K1(β)

K2(β)
+

(

K1(β)

K2(β)

)2

− 1

< − 3

β2
+

3

β
+ 1 − 1 =

3

β2
(β − 1) < 0. (6.2.6)

Thus we have proved for 0 < β < 1 that Ψ′(β) < 0.

Case 2 when β ≥ 1: Recall the integral definition (3.5.4) for the modified Bessel functions
Km(β). We also know that cosh(s) = 1 + 2 sinh2( s

2) and make the substitution α = sinh( s
2)

with ds = 2dα√
1+α2

in (3.5.4) in order to get

1

4
exp

(

β

4

)

K0

(

β

4

)

=
1

2

∫ ∞

0

exp
(

−βα2

2

)

√
1 + α2

dα , (6.2.7)

1

4
exp

(

β

4

)[

K0

(

β

4

)

+K1

(

β

4

)]

=

∫ ∞

0

√

1 + α2 exp

(−βα2

2

)

dα . (6.2.8)
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Also we have the following estimates

1√
1 + α2

≥ 1 − α2

2
,

√

1 + α2 ≤ 1 +
α2

2
. (6.2.9)

Keeping in view (6.2.7) and (6.2.8), we obtain from (6.2.9)

1

4
exp

(

β

4

)

K0

(

β

4

)

≥ 1

2

√

π

2β

(

1 − 1

2β

)

, (6.2.10)

1

4
exp

(

β

4

)[

K0

(

β

4

)

+K1

(

β

4

)]

≤
√

π

2β

(

1 +
1

2β

)

. (6.2.11)

Note that also the right hand side of (6.2.10) is positive due to β ≥ 1. We take the inverse of
(6.2.10) and multiply with (6.2.11) in order to get

1 +
K1

(

β
4

)

K0

(

β
4

) ≤ 2

(

1 +
1

2β

)

·
(

1 − 1

2β

)−1

. (6.2.12)

Using the recursion relation (3.5.6) for m = 1 and replacing β by β
4 we get

K2

(

β
4

)

K1

(

β
4

) −
K0

(

β
4

)

K1

(

β
4

) =
8

β
. (6.2.13)

Now using (6.2.12) and (6.2.13) we get the following inequality after some manipulations and
replacing β

4 by β

K1(β)

K2(β)
≤

1 + 3
8β

1 + 15
8β + 3

4β2

. (6.2.14)

Substituting (6.2.14) in (6.2.4) for K1(β)
K2(β) , we finally get after simplification

Ψ′(β) ≤ − 9

64β6
· 12 + 60β + 105β2 + 69β3 + 8β4

(

1 + 15
8β + 3

4β2

)2 < 0 . (6.2.15)

It follows that Ψ′(β) < 0 for any β > 0.

Hence we have proved that Ψ(β) is a strictly monotonically decreasing function which satisfies
due to (3.5.15)3 the asymptotic relation

lim
β→∞

Ψ(β) = 1 . (6.2.16)

Thus we conclude that Ψ(β) is strictly bounded below by one.
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Lemma 6.3:

(i) Let be f = f(q) ≥ 0 for q ∈ R
3 any phase density which does not vanish almost

everywhere and for which the moments Nµ, Tµν exist. Let be n and e the corresponding
particle density and energy density, respectively. Then there holds the inequality chain
0 < n < e.

(ii) Let be 0 < n < e and u ∈ R
3 given parameters, corresponding to the particle density,

energy density and the spatial part of the macroscopic four-velocity. Then there exists
exactly one temperature T > 0 such that the Jüttner phase density fJ(n, T,u,q) gives
the prescribed energy density e > n.

Proof: In order to prove (i) we use from Lemma 6.1 that qµuµ > 1 for q 6= u. Therefore we
can write

(qµuµ)(qνuν) > qµuµ . (6.2.17)

This implies that

∫

R3

(qµuµ)(qνuν)f
d3q

q0
>

∫

R3

qµuµf
d3q

q0
. (6.2.18)

Using the definitions (3.6.4), (3.6.5) for Nµ and Tµν , respectively, we can write (6.2.18) in
the following form

uµuνT
µν > uµN

µ . (6.2.19)

Also using the definitions (3.4.7) and (3.4.8) for n and e we finally conclude that e > n.

Now we prove the part (ii). We know from the part (i) of this lemma that the restriction
e > n > 0 is necessary. Moreover we know from Lemma 6.2 that e

n = Ψ(β) > 1 has exactly
one solution for β > 0. Let be T = 1

β > 0 the corresponding temperature. Then we know from
(6.1.1)1 that the Jüttner phase density fJ(n, T,u,q) leads to the prescribed energy density e.

Remark: The restriction e > n is also natural from the physical point of view since it states
that the energy density is always larger then the rest-mass energy.

Now we are able to prove Maximum Entropy Principle using the above lemmas.

Proposition 6.4 (Maximum Entropy Principle):

Let f(q) ≥ 0 be any phase density which does not vanish everywhere and for which the mo-
ments Nµ and Tµν exist. Let n, u, e be the values resulting from f for the particle density,
the spatial part of the velocity four-vector and the energy density, respectively. Then there is
exactly one temperature T > 0 for which the Jüttner phase density fJ(n, T,u,q) leads to the
prescribed energy density e. Let be σ and σJ the entropy densities corresponding to f and fJ ,
respectively. Then there holds the Maximum Entropy Inequality σJ ≥ σ.

Proof: Due to Lemma 6.3 we have exactly one temperature T > 0 for which the Jüttner phase
density fJ(n, T,u,q) gives the prescribed energy density e > n coming from the general phase
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density f(q). In the following proof we will fix this temperature T and the corresponding
phase density fJ(n, T,u,q). Using the definition (3.6.6) and (3.4.10) we have due to the
constraint on u

σJ − σ = Sµ
Juµ − Sµuµ

= −uµ

∫

R3

qµ (fJ(n, T,u,q) ln fJ(n, T,u,q) − f(q) ln f(q))
d3q

q0
. (6.2.20)

In the following we omit the arguments of f and fJ for the sake of simplicity, which will not
lead to confusion here. We use Lemma 2.4 for u = fJ , v = f and get

f ln f − fJ ln fJ = (ln fJ + 1)(f − fJ) +R(fJ , f). (6.2.21)

Using equation (6.2.21) in (6.2.20) we have

σJ − σ =uµ

∫

R3

qµ ln fJ (f − fJ)
d3q

q0
+ uµ

∫

R3

qµ (f − fJ)
d3q

q0

+ uµ

∫

R3

qµR(fJ , f)
d3q

q0
. (6.2.22)

The second integral in (6.2.22) is zero due to the constraints on n and u,

uµN
µ − uµN

µ
J = n− n = 0 , (6.2.23)

so we are left with

σJ − σ = uµ

∫

R3

qµ ln fJ (f − fJ)
d3q

q0
+ uµ

∫

R3

qµR(fJ , f)
d3q

q0
. (6.2.24)

From Jüttner’s phase density (3.5.1) we have

ln fJ = ln

(

n

M(β)
exp

(

− 1

T
uνq

ν

))

= ln

(

n

M(β)

)

− 1

T
uνq

ν . (6.2.25)

Using (6.2.25) in (6.2.24) and the fact that n and T are independent of the integration variable
q we get

σJ − σ = ln

(

n

M(β)

)

uµ

∫

R3

qµ (f − fJ)
d3q

q0
− 1

T
uµuν

∫

R3

qµqν (f − fJ)
d3q

q0

+ uµ

∫

R3

qµR(fJ , f)
d3q

q0
. (6.2.26)

Here the first integral is zero due to (6.2.23). Also we know from (3.4.8) and our constraints
on the velocity and energy density that

e = uµuνT
µν = eJ = uµuνT

µν
J , (6.2.27)



138 CHAPTER 6. SPECIAL RELATIVISTIC EULER EQUATIONS

where Tµν and Tµν
J are the energy momentum tensors for f and fJ , respectively. Thus

equation (6.2.26) finally reduces to

σJ − σ =

∫

R3

uµq
µR(fJ , f)

d3q

q0
≥ 0. (6.2.28)

The integral in (6.2.28) is positive because uµq
µ is the scalar product of time-like vectors which

is positive due to Lemma 6.1 and R(fJ , f) is positive due to Lemma 2.3. Hence we have proved
that Jüttner’s phase density satisfies the Maximum Entropy Principle, i.e. σJ ≥ σ.

6.3 Constitutive Relations in Limiting Cases

In order to get the non-relativistic values of the energy density, pressure and entropy density,
we substitute the asymptotic relations (3.5.15) for K2(β) and Ψ(β) into the constitutive
relations (6.1.1). We get the following expressions for the non-relativistic limit, where β → ∞,

e = n+
3

2
nT , p = nT , σ = n ln

p
3

2

n
5

2

+ ηn . (6.3.1)

Which is the same result as in Chapter 2 for the ratio specific heat γ = 5
3 . In Chapter 2 the

particle density n is represented by the mass density ρ and entropy density σ is denoted by
h. The term n in (6.3.1)1 is the energy density of the rest mass.

In order to get ultra-relativistic limit where β → 0, we substitute the asymptotic relations
(3.5.19) into the constitutive relations (6.1.1) and (6.1.2), we get the relations (4.1.1) and
(4.1.2).

6.4 Relativistic Euler Equations

Now we use the moments (6.1.2) and the conservation laws (3.4.15) in order to get the
three-dimensional Euler equations at regular points in differential form. For this purpose we
introduce the abbreviation

χ(β) = Ψ(β) +
1

β
, (6.4.1)

and obtain

∂

∂t
(n
√

1 + u2) +
3
∑

k=1

∂(nuk)

∂xk
= 0 , (6.4.2)

∂

∂t

(

nχ(β)ui
√

1 + u2
)

+

3
∑

k=1

∂

∂xk

(

n

β
δik + nχ(β)uiuk

)

= 0 , (6.4.3)

∂

∂t

(

−n
β

+ nχ(β)(1 + u2)

)

+
3
∑

k=1

∂

∂xk

(

nχ(β)uk
√

1 + u2
)

= 0 . (6.4.4)
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Remarks:

(i) These equations constitutes a closed system in terms of the unknown fields n, u, and
β. Also note that β = 1

T .

(ii) The classical Euler equations result with (3.5.15) in the following way: From (6.4.2)
we obtain the classical continuity equation by neglecting the second order terms in u,
whereas the classical momentum equations are obtained from (6.4.3) by setting χ(β)
equal to one and neglecting the third order terms in u. Finally, the classical energy
equation results if we subtract (6.4.2) from (6.4.4) and then neglect the fourth order
terms in u and terms which contain pu2 as a factor.

(iii) The ultra-relativistic Euler equations result directly from (3.5.19).

6.4.1 Rankine Hugoniot Jump Conditions

Now we are looking for a spatially one-dimensional solutions of the three-dimensional Euler
equations, which will not depend on x2, x3 but only on x = x1. Moreover we restrict to a
one-dimensional flow fieldu = (u(t, x), 0, 0)T

(n
√

1 + u2)t + (nu)x = 0 ,

(nχ(β)u
√

1 + u2)t + (n
β + nχ(β)u2)x = 0 ,

(−n
β + nχ(β)(1 + u2))t + (nχ(β)u

√
1 + u2)x = 0 .

(6.4.5)

Note that these differential equations constitute a strictly hyperbolic system with the sound
speed

λ∗ =

[

1 − 1/(β2Ψ′(β))

1 + βΨ(β)

]
1

2

, (6.4.6)

and the characteristic velocities

λ1 =
−λ∗

√
1 + u2 + u√

1 + u2 − λ∗u
, λ2 =

u√
1 + u2

, λ3 =
λ∗

√
1 + u2 + u√

1 + u2 + λ∗u
. (6.4.7)

Note that Ψ′(β) < 0 was proved in Lemma 6.2.

These eigenvalues may first be obtained in the Lorentz zero rest frame where u=0. Then
using the additivity law for the velocities (3.3.1) in the general Lorentz frame we can easily
obtain (6.4.7).

Note that by using the asymptotic relations (3.5.15) and (3.5.19) one can easily get from
(6.4.7), the classical eigenvalues (2.1.5) and ultra-relativistic eigenvalues (4.1.16).

The differential equations (6.4.5) are not sufficient if we take shock discontinuities into account.
Therefore we need a weak integral formulation of the one-dimensional hyperbolic system for
the three unknown fields n, u and β, which is given by

∮

∂Ω

n
√

1 + u2dx− nudt = 0 ,
∮

∂Ω

(nχ(β)u
√

1 + u2)dx− (n
β + nχ(β)u2)dt = 0 ,

∮

∂Ω

(−n
β + nχ(β)(1 + u2))dx− (nχ(β)u

√
1 + u2)dt = 0 .

(6.4.8)
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Here Ω ⊂ R × R
+
0 is a normal region in space-time with piecewise smooth, positive oriented

boundary. Note that this weak formulation takes discontinuities into account, since there
are no longer derivatives of the fields. If we apply the Gauss Divergence Theorem in regular
space-time regions to the weak formulation (6.4.8) we come back to the differential form of
Euler’s equation (6.4.5).

Furthermore we require that the weak solution (6.4.8) must also satisfy the one-dimensional
entropy-inequality

∮

∂Ω

S0dx− S1dt ≥ 0 , (6.4.9)

where

S0 = −n
√

1 + u2
(

ln nβ
K2(β) + βΨ(β)

)

,

S1 = −nu
(

ln nβ
K2(β) + βΨ(β)

)

.
(6.4.10)

Now we consider bounded and integrable initial data for a positive particle density n, trans-
formed velocity u and absolute temperature T , which may have jumps

n(0, x) = n0(x) > 0, u(0, x) = u0(x), T (0, x) = T0(x) > 0. (6.4.11)

If x = x(t) is a shock-discontinuity of the weak solution (6.4.8) with speed vs = ẋ(t), W− =
(n−, u−, p−) the state left to the shock and W+ = (n+, u+, p+) the state to the right, then
(6.4.8) leads to the Rankine-Hugoniot jump conditions

vs(N
0
+ − N0

−) = N1
+ − N1

− ,

vs(T
01
+ − T 01

− ) = T 11
+ − T 11

− , (6.4.12)

vs(T
00
+ − T 00

− ) = T 01
+ − T 01

− ,

where

N0
± = n±

√

1 + u2
± , N1

± = n±u± , T 01
± = n±χ(β±)u±

√

1 + u2
± ,

T 11
± = p± + n±χ(β±)u2

± , T 00
± = −p± + n±χ(β±)(1 + u2

±) .

Also in singular points the local form of (6.4.9) reads

−vs(S
0
+ − S0

−) + (S1
+ − S1

−) ≥ 0, (6.4.13)

which must be satisfied at each shock curve of (6.4.8). The shock that satisfies (6.4.12) and
(6.4.13) is called entropy shock.

Now we give parameter representations for the single entropy shocks. For this purpose we
choose the initial data as follows:

Let be (n∗, u∗, β∗) ∈ R
+×R×R

+ and define p∗ = n∗T∗ = n∗
β∗

. We use the inverse temperature
β as a shock-parameter and impose the restriction β < β∗ in order to obtain from (6.4.12)
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and (6.4.13) the following parametrization of the particle density and the pressure

γ(β) = Ψ(β∗)χ(β∗) − Ψ(β)χ(β) ,

n(β) =
n∗β

2χ(β∗)

[
√

γ(β)2 + 4
χ(β∗)χ(β)

β∗β
− γ(β)

]

, (6.4.14)

p(β) =
n(β)

β
.

For the parametrization of the velocities we have

û(β) =

(

(p(β) − p∗) · (n(β) Ψ(β) − n∗Ψ(β∗))
n(β)n∗χ(β)χ(β∗)

) 1

2

,

u(β) = u∗

√

1 + û(β)2 ± û(β)
√

1 + u2∗ ,

ûs(β) =





(p(β) − p∗) (p∗ + n(β)Ψ(β))

n∗ χ(β∗)
[

n(β) (Ψ(β) − 1
β ) − n∗(Ψ(β∗) − 1

β∗
)
]





1

2

, (6.4.15)

us(β) = u∗

√

1 + ûs(β)2 ± ûs(β)
√

1 + u∗2 ,

vs =
us

√

1 + u2
s

, v =
u√

1 + u2
, v∗ =

u∗
√

1 + u2∗
.

Remarks: The restriction β < β∗ guarantees that all the expressions under the square roots
in (6.4.14) and (6.4.15) are positive because

(i) γ(β) is negative since Ψ(β) > 0 and χ(β) > 0 are strictly monotonically decreasing
functions due to Lemma 6.2,

(ii) n(β) is a strictly monotonically decreasing and positive function,

(iii) Ψ(β) − 1
β is also a strictly monotonically decreasing and positive function, the same

with p(β) > p∗.

Now there results the following parametrization for the different kind of shock waves:

• The “+” sign in (6.4.15) and β < β∗ gives the so called 3-shocks with the constant state
(n∗, u∗, β∗) on the right

(n−, u−, β−) = (n(β), u(β), β), (n+, u+, β+) = (n∗, u∗, β∗).

These 3-shocks satisfy both the Rankine-Hugoniot conditions (6.4.12) as well as the
entropy condition (6.4.13).

• The “-” sign in (6.4.15) and β < β∗ gives the so called 1-shocks with the constant state
(n∗, u∗, β∗) on the left:

(n−, u−, β−) = (n∗, u∗, β∗), (n+, u+, β+) = (n(β), u(β), β).

These 1-shocks satisfy both the Rankine-Hugoniot conditions (6.4.12) as well as the
entropy condition (6.4.13).
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Now we define the 2-contacts, that turn out to be contact-discontinuities without entropy-
production. Only for these we choose n > 0 instead of β as a wave parameter and set

(n−, u−, β−) = (n∗, u∗, β∗), (n+, u+, β+) =

(

n, u∗,
nβ∗
n∗

)

.

These waves satisfy the Rankine-Hugoniot and entropy conditions. Note that velocity and
pressure are constant across a 2-contact. Here the wave-speed is vs = v∗ = u∗√

1+u2
∗
.

Remark. One can prove that the only discontinuities satisfying (6.4.12) and (6.4.13) are 1-
and 3-shocks as well as 2-contact, see Courant and Friedrichs [9].

6.5 Formulation of the Kinetic Scheme

We first formulate the scheme for the three-dimensional Euler equations. After that we solve
the one-dimensional Euler equations, using a special integration technique. Recalling the
relativistic Jüttner phase density (3.5.1), we start with the given initial data nI(x) = n(0,x),
TI(x) = T (0,x), uI(x) = u(0,x). We prescribe a time step τM > 0 and let tn = n τM ,
n = 0, 1, 2, 3.... Then we define the moments and the entropy four-vector in the free-flight for
0 < τ < τM as

Nµ(tn + τ,x) =

∫

R3

qµ fn(x − τ
q

q0
,q)

d3q

q0
,

(6.5.1)

Tµν(tn + τ,x) =

∫

R3

qµqν fn(x− τ
q

q0
,q)

d3q

q0
,

Sµ(tn + τ,x) = −
∫

R3

qµ (fn ln fn)(x− τ
q

q0
,q)

d3q

q0
, (6.5.2)

with the relativistic initial phase density (3.5.1) at the maximization time tn

fn(y,q) = fJ(n(tn,y), T (tn,y),u(tn,y),q) . (6.5.3)

Moreover n, T, uµ are calculated from Nµ and Tµν for the next time step from the following
generally valid definitions

n =
√

NµNµ, uµ =
1

n
Nµ , T =

1

3n
(uµuν − gµν)T

µν . (6.5.4)

In order to initialize the kinetic scheme for the next time step, we first require the following
continuity conditions for the zero-components of the moments across the maximization time
tn, n ≥ 1

N0(t+n ,x) = N0(t−n ,x) ,

T 0k(t+n ,x) = T 0k(t−n ,x), k = 1, 2, 3 , (6.5.5)

T 00(t+n ,x) = T 00(t−n ,x) .
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Here we have used the following abbreviations for the one-sided limits across the maximization
time tn, n ≥ 1, where ε is a positive real number

Nµ(t±n ,x) = lim
ε→0

Nµ(tn ± ε,x) ,

Tµν(t±n ,x) = lim
ε→0

Tµν(tn ± ε,x) .

These conditions are necessary in order to guarantee the conservation laws for mass, momen-
tum and energy across the maximization time tn. Moreover we start again with a relativistic
Jüttner distribution for the next time step. Then we obtain, using the constitutive rela-
tions (6.1.2) for the three-dimensional Euler equations which are valid for the t+n side of the
maximization time

N0(t+n ,x) = n(t+n ,x)

√

1 + u2(t+n ,x) ,

T 0k(t+n ,x) = n(t+n ,x)χ(β(t+n ,x))uk(t+n ,x)

√

1 + u2(t+n ,x) , (6.5.6)

T 00(t+n ,x) = −p(t+n ,x) + n(t+n ,x)χ(β(t+n ,x))(1 + u2(t+n ,x)) .

Here k = 1, 2, 3 again denote a spatial index. Since these components of the moments are
continuous across the maximization time tn, we can replace them by the free-flight moments
for t−n and solve the equations (6.5.6) for p,u, n in order to initialize the kinetic scheme for
the next time step. Using for positive γ the definitions

γ2 =

3
∑

k=1

(T 0k)2

(N0)2
, F (β) =

T 00

N0

√

1 +
γ2

χ(β)2
− γ2

χ(β)
− ψ(β) , (6.5.7)

we will find the following relations for the fields at the next time step

F (β(t+n ,x)) = 0 , (6.5.8)

uk(t+n ,x) =
T 0k

N0 χ(β(t+n ,x))
, (6.5.9)

n(t+n ,x) =
N0

√

1 + γ2

χ(β(t+n ,x))2

. (6.5.10)

In the formulae (6.5.7)-(6.5.10), N0, T 00 and T 0k are abbreviations for the free-flight moments
N0(t−n ,x), T 00(t−n ,x) and T 0k(t−n ,x), respectively.

We first solve the implicit equation F (β(t+n ,x)) = 0 by using Newton’s method. We have
checked that for sufficiently small value of β the function F (β) is negative, while F (β) has
a positive limit for β → ∞. So we conclude from the mean-value theorem that F (β) has at
least one real root. Unfortunately it is very difficult to prove that F (β) is a monotonically
increasing function, which could only be checked numerically in several cases. Once we get
the value of β(t+n ,x), the other quantities uk(t+n ,x) and n(t+n ,x) can be easily calculated in
the prescribed order from the free-flight moments N0, T 00 and T 0k. Since the continuity
conditions initialize the scheme for the next time step they conclude the formulation of the
kinetic scheme.
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Proposition 6.5: Let Ω ⊂ R
+
0 × R

3 be any bounded convex region in space and time. By
doν we denote the positive oriented boundary element of ∂Ω. Let τM > 0 be a fixed time step.
The moment representations (6.5.1) and (6.5.2) calculated by the iterated scheme have the
following properties:

(i) There hold the conservation laws for the particle number, the momentum and energy:

∮

∂Ω

Nνdoν = 0,

∮

∂Ω

Tµνdoν = 0. (6.5.11)

(ii) The following entropy inequality is satisfied:

∮

∂Ω

Sνdoν ≥ 0. (6.5.12)

Here the covariant vector doν is a positive oriented surface element to the boundary ∂Ω. It
can be written in covariant form as

doκ = εκλµν

3
∑

i,j,m=1

∂xλ

∂ui

∂xµ

∂uj

∂xν

∂um
dui duj dum ,

where xα = xα(u1, u2, u3) is a positive oriented parametrization of the boundary ∂Ω.

Remark. Note that these weak formulations are the weak representations of the differential
forms

∂Nν

∂xν
(tn + τ,x) = 0,

∂Tµν

∂xν
(tn + τ,x) = 0,

∂Sν

∂xν
(tn + τ,x) = 0. (6.5.13)

The proof of this proposition runs along the same lines as was carried out in Chapter 4 for
the ultra-relativistic Euler equations, and may therefore be omitted.

6.5.1 Positivity and L1−Stability of the Kinetic Scheme

Here we show that our kinetic scheme preserve positivity of the density and pressure. This
also implies that the scheme is L1−stable. A similar theorem has been proved in Chapter 4
for ultra-relativistic kinetic scheme.

Theorem 6.6: Assume that the initial distribution function fn(y,q) ≥ 0, additionally
fn(y,q) does not vanish almost everywhere for all microscopic velocities q, macroscopic ve-
locities u and positive desnsity and pressure. Then the numerical solution obtained by the
resulting kinetic scheme has the following property: Its density, pressure and total energy
remain positive for all times.

n(tn + τ,x) > 0 , p(tn + τ,x) > 0 , T 00(tn + τ,x) > 0 . (6.5.14)

This also mean that the numerical scheme defined by (6.5.1) and (6.5.2) is stable in L1.
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Proof: Since the particle density is defined as n =
√

NµNµ, Therefore we have to prove that

NµNµ(tn + τ,x) =
(

(N0)2 − (N1)2 − (N2)2 − (N3)2
)

(tn + τ,x) > 0. (6.5.15)

From the moments (6.5.1), we have

N0(tn + τ,x) =

∫

R3

fn(x − τ
q

q0
,q) d3q > 0 . (6.5.16)

Using the free-flight moments (6.5.1) and Cauchy Schwarz inequality (4.3.35), we have

(N1)2(tn + τ,x) =

(∫

R3

q1 fn(x− τ
q

q0
,q)

d3q

q0

)2

=

(∫

R3

((

q1

q0

√

fn

)

·
(

√

fn

)

)

(x − τ
q

q0
,q) d3q

)2

(6.5.17)

<

(

∫

R3

(

q1

q0

√

fn

)2

(x − τ
q

q0
,q) d3q

)

·
(∫

R3

(

√

fn

)2
(x− τ

q

q0
,q) d3q

)

= N0(tn + τ,x)

(

∫

R3

(

q1

q0

)2

fn(x− τ
q

q0
,q) d3q

)

.

Where in Cauchy-Schwarz inequality we have not taken the equality sign, because the func-

tions q1

q0

√

fn(y,q) and
√

fn(y,q) are linearly independent. Similarly

(N2)2(tn + τ,x) < N0(tn + τ,x)

(

∫

R3

(

q2

q0

)2

fn(x− τ
q

q0
,q) d3q

)

,

(6.5.18)

(N3)2(tn + τ,x) < N0(tn + τ,x)

(

∫

R3

(

q3

q0

)2

fn(x− τ
q

q0
,q) d3q

)

.

Now we use (6.5.17) and (6.5.18) in (6.5.15). Also, since

q0 =

√

√

√

√1 +
3
∑

k=1

(qk)2 ,

we finally get

NµNµ(tn + τ,x) =
(

(N0)2 − (N1)2 − (N2)2 − (N3)2
)

(tn + τ,x)

> N0(tn + τ,x)











N0(tn + τ,x) −
∫

R3

3
∑

k=1

(qk)2

(q0)2
fn(x− τ

q

q0
,q) d3q











> N0(tn + τ,x)

[

N0(tn + τ,x) −
∫

R3

fn(x− τ
q

q0
,q) d3q

]

.

= 0 .
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Thus we have proved that n(tn + τ,x) =
√

NµNµ(tn + τ,x) > 0.

Also from (3.4.9) the pressure is given by

p(tn + τ,x) =
1

3
(uµuν − gµν)T

µν(tn + τ,x) . (6.5.19)

Using the free-flight moments (6.5.1) in (6.5.19), we get after simplification

p(tn + τ,x) =
1

3

∫

R3

(

(qµuµ)2 − 1
)

fn(x − τ
q

q0
,q)

d3q

q0
. (6.5.20)

We also know from Lemma 6.1 that qµuµ > 1, this implies

(qµuµ)2 > qµuµ > 1 . (6.5.21)

Therefore (6.5.20) and (6.5.21) implies p(tn + τ,x) > 0. Also we know from (6.5.1) that

T 00(tn + τ,x) =

∫

R3

q0fn(x− τ
q

q0
,q) d3q > 0 . (6.5.22)

Now since our scheme is conservative, using (6.5.16), (6.5.22), we have

||N0(tn + τ, .)||L1(R) =

∫

R3

|N0(tn + τ,x)|d3x =

∫

R3

N0(tn + τ,x)d3x

=

∫

R3

N0(tn,x)d3x =

∫

R3

|N0(tn,x)|d3x

= ||N0(tn, .)||L1(R) .

Similarly ||T 00(tn + τ, .)||L1(R) = ‖T 00(tn, .)‖L1(R). Now using (6.5.1) with y = x − τ q

q0 and

Cauchy-schwarz inequality (4.3.35) we get

||T 0k(tn + τ, .)||L1(R) =

∫

R3

∣

∣

∣

∣

∫

R3

qkfn(y,q)
d3q

q0

∣

∣

∣

∣

d3x

=

∫

R3

∣

∣

∣

∣

∫

R3

(

√

fn

)(

qk
√

fn

)

(y,q)
d3q

q0

∣

∣

∣

∣

d3x

<

[∫

R3

∣

∣

∣

∣

∫

R3

fn(y,q)
d3q

q0

∣

∣

∣

∣

d3x ·
∫

R3

∣

∣

∣

∣

∫

R3

(

q0
)2
fn(y,q)

d3q

q0

∣

∣

∣

∣

d3x

]
1

2

=
(

||n(tn, .)||L1(R) ||T 00(tn, .)||L1(R)

)
1

2 .

This proves the L1 stability of the scheme.

6.5.2 A Kinetic Scheme for the One-Dimensional Case

In the following we are looking for the spatially one-dimensional solutions, which are never-
theless solutions to the full three dimensional equations. In order to initialize the scheme, we
consider the initial data

nI(x) = n(0, x1), uI(x) = (u(0, x1), 0, 0)T , pI(x) = p(0, x1). (6.5.23)
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This special form of the initial data will lead to a kinetic solution of the same form for all
later times t > 0 and x = x1, namely

n = n(t, x), u = (u(t, x), 0, 0), p = p(t, x). (6.5.24)

Thus we have got a one-dimensional solution from the three-dimensional kinetic scheme. We
will use the (generally valid) equation p = nT = n

β and start with the full three-dimensional
scheme.

In order to formulate the scheme we first consider the rest frame where u0 = 1 and u = 0.
Then we will apply a Lorentz-transformation in order to come back to a general frame where
u may or may not be zero. In the rest frame the spatial part of the dimensionless microscopic
four-vector is denoted by q′ = (q′1, q′2, q′3) ∈ R

3. For the integration variable q′ we will apply
the substitution

q′1 = ϑξ , q′2 = ϑ
√

1 − ξ2 sinϕ , q′3 = ϑ
√

1 − ξ2 cosϕ , (6.5.25)

with |q′| = ϑ, where the domains of the new variables are given by 0 ≤ ϑ < ∞, −1 ≤ ξ ≤ 1
and 0 ≤ ϕ ≤ 2π. In order to avoid the unnecessary integration over the whole range of ϑ, we
wish to find a finite domain for ϑ which only contributes to the solution, and remove the rest
range which has only a very small contribution to the integral. The Jüttner phase density
(3.5.1) in the rest frame can be written as

fJ(n, T,0,q′) =
n

M(β) exp(β)
exp

(

−β(
√

1 + q′2 − 1)
)

. (6.5.26)

So we want to have exp
(

−β(
√

1 + q′2 − 1)
)

≤ ε for sufficiently small value of ε. This gives

|q′| ≤ R(T, ε) :=

√

(

1 + T ln
1

ε

)2

− 1 . (6.5.27)

From the above equation it is clear that we have a sphere of center zero and radius R(T, ε)
in the rest frame. Also it is important to note that this value of R(T, ε) covers the whole
range from non-relativistic to ultra-relativistic limit. Here ε is a constant value, for example
ε = 10−4. Now we transform to a general frame where the initial speed u may or may not be
zero, using the inverse of the Lorentz boost given in (3.4.13)

qµ = Λµ
ν(−û, 0, 0)q′ν , µ = 0, 1, 2, 3 . (6.5.28)

Here û ∈ R is a fixed one-dimensional velocity parameter, which will be given later for the
formulation of the kinetic scheme. Using the equations (6.5.25) and (6.5.28), we get the values
for qµ, namely

q1 = û
√

1 + ϑ2 + ϑξ
√

1 + û2 , (6.5.29)

q2 = ϑ
√

1 − ξ2 sinϕ , (6.5.30)

q3 = ϑ
√

1 − ξ2 cosϕ , (6.5.31)

q0 =
√

1 + (q1)2 + (q2)2 + (q3)2 . (6.5.32)
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Also the Jacobian of integration is given by

J(û, ξ, ϑ) =
ûϑ3ξ√
1 + ϑ2

+ ϑ2
√

1 + û2 . (6.5.33)

Here the parameter û is not depending on ϑ, ξ and ϕ. Recall that the spatial initial data
(6.5.23) lead to the restrictions (6.5.24) for the fields at all later times. Due to (6.5.24) the
fields n, T and u in the free-flight phase density fn are not depending on the variable ϕ. This
fact enables us to do the integration with respect to ϕ directly. Thus we have the following
reduced integrals in this case

N0(tn + τ,x) = 2π
R
∫

0

1
∫

−1

J f̂n(x− τ q1

q0 ,q)dξ dϑ ,

N1(tn + τ,x) = 2π
R
∫

0

1
∫

−1

J q1

q0 f̂n(x− τ q1

q0 ,q)dξ dϑ ,

(6.5.34)

T 00(tn + τ, x) = 2π
R
∫

0

1
∫

−1

J q0f̂n(x− τ q1

q0 ,q)dξ dϑ ,

T 01(tn + τ, x) = 2π
R
∫

0

1
∫

−1

J q1f̂n(x− τ q1

q0 ,q)dξ dϑ ,

T 11(tn + τ, x) = 2π
R
∫

0

1
∫

−1

J (q1)2

q0 f̂n(x− τ q1

q0 ,q)dξ dϑ ,

T 22(tn + τ, x) = 2π
R
∫

0

1
∫

−1

J (q2)2

q0 f̂n(x− τ q1

q0 ,q)dξ dϑ ,

(6.5.35)

where

f̂n(y,q) := fn(y, 0, 0,q) , y ∈ R , q = (q1, q2, q3)T ∈ R
3 , (6.5.36)

with the function fn(y,q) given by (3.5.1), the Jacobian J := J(u(tn, x), ξ, ϑ) for û = u(tn, x)
and with the radius R := R(T, ε) for the temperature T = max{T (tn, y) |x− τ ≤ y ≤ x+ τ}.
Moreover we obtain

N2(tn + τ, x) = N3(tn + τ, x) = 0 ,

T 10(tn + τ, x) = T 01(tn + τ, x) ,

T 22(tn + τ, x) = T 33(tn + τ, x) ,

where all the other components of Tµν are zero. So in the one-dimensional case n, u and T
can be obtained from the generally valid relations in equation (6.5.4) as follows:

n(t, x) =
√

(N0(t, x))2 − (N1(t, x))2 , (6.5.37)

u(t, x) =
1

n
N1(t, x) , (6.5.38)

p(t, x) =
1

3
[u2(t, x)T 00(t, x) − 2u

√

1 + u2(t, x)T 01(t, x) (6.5.39)

+ (1 + u2(t, x))T 11(t, x) + 2T 22(t, x)] .

Note that we still need the resolved continuity conditions (6.5.7)-(6.5.10) in order to initialize
the scheme for the next time step. Since only the zero-components N0, T 0µ are continuous
across the maximization times tn, we have to distinguish between the left- and right-handed
limits n(t±n , x), u(t

±
n , x) and p(t±n , x) at the maximization times tn in (6.5.37)- (6.5.39).
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6.5.3 From the Kinetic Scheme to the Eulerian Limit (τM → 0)

In the previous sections we have calculated the solution of the kinetic scheme in the three-
and one-dimensional case, respectively. This was done for the prescribed initial data of n, u
and p for a given free-flight time step τM > 0. If we calculate these solutions for τM → 0 then
we get the Eulerian limit

Nµ → nuµ , Tµν → −pgµν + (e+ p)uµuν , Sµ → σ uµ , (6.5.40)

where p, e and σ are given by (6.1.1). First we pass to the Eulerian limit (6.5.40) at the
points of smoothness in the following way using (3.4.16)

lim
τ→0

∂

∂τ
N0(tn + τ,x) = lim

τ→0

∂

∂τ
(n(tn + τ,x)

√

1 + u2(tn + τ,x) )

= lim
τ→0

∂

∂τ

∫

R3

q0fn(x− τ
q

q0
,q)

d3q

q0

= − lim
τ→0

∫

R3

q0
3
∑

k=1

qk

q0
∂

∂xk
fn(x− τ

q

q0
,q)

d3q

q0

= −
∫

R3

3
∑

k=1

qk ∂

∂xk
fn(x,q)

d3q

q0

= −
3
∑

k=1

∂

∂xk
(uk(t+n ,x)n(t+n ,x))

= −∇ · (u(t+n ,x)n(t+n ,x)) ,

⇒ ∂

∂t
(n(t+n ,x)

√

1 + u2(t+n ,x) ) + ∇ · (u(t+n ,x)n(t+n ,x)) = 0 , (6.5.41)

which is a first Euler equation (6.4.2). Similarly we get the other two Euler equations (6.4.3)
and (6.4.4) if we differentiate T 00(tn + τ,x) and T 0k(tn + τ,x) with respect to τ and pass to
the limit τ → 0.

Secondly on the left hand side of (6.5.40) there are the momentsNµ, Tµν and Sµ as calculated
by the kinetic scheme, see (6.5.1) and (6.5.2). Since the solution of the kinetic scheme satisfies
the conservation laws and the entropy inequality as stated in Proposition 6.5, we conclude from
(6.5.40) that these also result for the weak entropy solution in the Eulerian limit τM → 0. The
weak entropy solution in the Eulerian limit in one space dimension is given by (6.4.8), (6.4.9)
and (6.4.10).

6.6 Phenomenological Relativistic Euler Equations

Let us consider the Euler equations which can be obtained from the general form of special
relativistic Euler equations (6.4.2)-(6.4.4) by taking the non-relativistic limit of internal energy
given by (3.5.15), i.e,

e = nΨ(β) = n+
p

γ − 1
, p = (γ − 1)(e− n) , (6.6.1)
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where γ is the ratio of specific heats, 1 ≤ γ ≤ 5
3 . For γ = 5

3 we get the same classical limit
of Ψ(β) as given in (3.5.15)3. Since this constitutive relation for the energy density cannot
be recovered from the relativistic phase density and there is no limiting phase density for
these Euler equations. We call these equations the phenomenological form of the relativistic
Euler equations. On the other hand we have shown in Chapter 3 that the phase densities
for the classical and ultra-relativistic Euler equations can be automatically obtained from
the the general form of the relativistic phase density by using classical and relativistic limits,
respectively. We cannot formulate a kinetic scheme for these phenomenological relativistic
Euler equations which is fully consistent with kinetic theory and can satisfy the conservation
laws. However these Euler equations satisfy the Lorentz transformation rules and hence are
relativistic Euler equations. The Rankine-Hugoniot jump conditions for these Euler equations
can be obtained from those of the general form of the relativistic equations by just using the
relation (6.6.1)1 for Ψ(β). A good introduction about these equations can be found in the
review article of Mart́ı and Müller [61] and references therein. Several numerical methods
for solving these relativistic Euler equations have been reported. All these methods are
mostly developed out of the existing reliable methods for solving the Euler equations of non-
relativistic or Newtonian gas dynamics, see [61]. We will use the central scheme in order to
to solve these equations. We will compare the central schemes results with exact Riemann
solutions which were obtained in [61]. Using (6.6.1)1 equations (6.4.2)-(6.4.4) gives

∂

∂t
(n
√

1 + u2) +
3
∑

k=1

∂(nuk)

∂xk
= 0 , (6.6.2)

∂

∂t

(

(e+ p)ui
√

1 + u2
)

+

3
∑

k=1

∂

∂xk

(

pδik + (e+ p)uiuk
)

= 0 , (6.6.3)

∂

∂t

(

−p+ (e+ p)(1 + u2)
)

+
3
∑

k=1

∂

∂xk

(

(e+ p)uk
√

1 + u2
)

= 0 , (6.6.4)

for i = 1, 2, 3. These are five equations with five unknowns. We can rewrite the above
equations in the following conservative form

∂W

∂t
+

3
∑

k=1

∂F k(W )

∂xk
= 0 , (6.6.5)

with the conserved variables W and fluxes F i

W =





N0

T 0i

T 00



 , F i =





N1

T ik

T 0k



 , (6.6.6)

where

N0 = n
√

1 + u2 Nk = nuk , T 0i = (e+ p)ui
√

1 + u2 ,

T ik = pδik + (e+ p)uiuk , T 00 = −p+ (e+ p)(1 + u2) , i = 1, 2, 3. (6.6.7)
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In order to get primitive variables from the conserved variables, we have the equation for
finding n,

h(n) = (N0)2











1 −

3
∑

k=1

(

T 0k
)2

(T 00 + p(n))2











− n2 = 0 , (6.6.8)

where

p = p(e, n) = p



T 00 −

√

√

√

√

3
∑

k=1

(T 0k)
2
(1 − n2/(N0)2) , n



 . (6.6.9)

A Newton-Raphson procedure can be applied to solve for n. Once the value of n has been
obtained, the energy density, and pressure, and velocity are obtained via

e = T 00 −

√

√

√

√

3
∑

k=1

(T 0k)
2
(1 − n2/(N0)2) ,

p = (γ − 1)(e− n) , uk =
nT 0k

N0 (e+ p)
, vk =

uk

√
1 + u2

. (6.6.10)

6.6.1 One-Dimensional Phenomenological Euler equations

Here we are looking for spatially one-dimensional solutions of the phenomenological relativistic
Euler equations. We only consider the solutions which depend on t and x = x1 and satisfy
ρ = ρ(t, x), v = (v(t, x), 0, 0) and p = p(t, x). The three-dimensional Euler equations (6.6.5)
then reduce to

∂W

∂t
+
∂F (W )

∂x
= 0 , (6.6.11)

with the conserved variables W and fluxes F given as

W =





N0

T 01

T 00



 , F =





N1

T 11

T 01



 , (6.6.12)

where

N0 = n
√

1 + u2 , N1 = nu ,

T 01 = (e+ p)u
√

1 + u2 , T 00 = −p+ (e+ p)(1 + u2) . (6.6.13)

In order to get primitive variables from the conserved variables, we have the equation for
finding n,

h(n) = (N0)2

(

1 −
(

T 01
)2

(T 00 + p(n))2

)

− n2 = 0 , (6.6.14)
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where

p = p(e, n) = p

(

T 00 −
√

(T 01)2 (1 − n2/(N0)2), n

)

. (6.6.15)

Once the value of n have been obtained, the energy density, and pressure, and velocity are
obtained via

e = T 00 −
√

(T 01)2 (1 − n2/(N0)2) ,

p = (γ − 1)(e− n) , u =
nT 01

N0 (e+ p)
, v =

u√
1 + u2

. (6.6.16)

6.7 Numerical Case Studies

Here we present the numerical results for both general form and phenomenological form of
the special relativistic Euler equations.

6.7.1 General Form of Special Relativistic Euler Equations

Here we compare the results of our kinetic scheme with central schemes results.

Problem 1: Relativistic shock tube flow

We consider gas flow in a shock tube at relativistic velocity. In this problem a diaphragm,
which is located at x = 0.5, separates two regions, each in a constant equilibrium state at
t = 0. The initial conditions are specified as (nL, uL, pL) = (1.0, 0.0, 1.0) for 0 ≤ x ≤ 0.5
and (nR, uR, pR) = (0.125, 0.0, 0.1) for 0.5 ≤ x ≤ 1.0. This is a mildly relativistic case and
the wave structures are quite similar to the nonrelativistic case, namely shock wave, contact
surface, and rarefaction fan. We use 500 mesh points in the spatial domain, while we use 100
maximization times in the kinetic scheme. The exact solution is obtained by using the second
order central scheme on very fine mesh. The results are given in Figure 6.2 at t = 0.5.

Problem 2: Relativistic shock tube flow with shock heating

This case includes shock heating of a cold fluid. The initial conditions are (nL, uL, pL) =
(5.0, 0.0, 3.8) for 0 ≤ x ≤ 0.5 and (nR, uR, pR) = (1.0, 0.0, 0.0.027) for 0.5 ≤ x ≤ 1.0. The
fluid flow velocity is about 0.7 and relativistic effects are more pronounced than the previous
case. We use 500 mesh points in the spatial domain. The exact solution is obtained by using
the second order central scheme on very fine mesh. The results are given in Figure 6.3 at
time t = 0.52.

Problem 3: A quadratic pulse

The initial data are

(n, u, p) =







(1.0, 0.0, 1.0) if 0 < x < 0.4 ,
(4.0, 0.0, 4.0) if 0.4 < x < 0.6 ,
(1.0, 0.0, 1.0) if 0.6 < x < 1.0 .
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We use 1000 mesh points in the spatial domain with 100 maximization times in the kinetic
scheme. The exact solution is obtained by using the second order central scheme on very fine
mesh. The results are given in Figure 6.4 at time t = 0.25.

Problem 4: Perturbed relativistic shock tube flow

The initial conditions are specified as (nL, uL, pL) = (1.0, 0.0, 1.0) for 0 ≤ x ≤ 0.5 and
(nR, uR, pR) = (nR, 0.0, 0.1) for 0.5 ≤ x ≤ 1.0. Here the right state is a perturbed density
field of sinusoidal wave, nR = 0.125− 0.0875 sin(50(x− 0.5)). We run this test on 1000 mesh
points. The computed solutions are plotted at t = 0.5. The results of first order central and
kinetic schemes are shown in Figure 6.5. Again the exact solution is obtained by using second
order central scheme on very fine mesh.

Problem 5: A single shock reflection

In this section we test our spatially one-dimensional kinetic scheme for a single shock problem.
We introduce an adiabatic wall at x = 0. This single shock data can be obtained from the
shock parametrizations given in Subsection 6.4.1 for the relativistic Euler equations. We
start with a 1-shock running to the lower adiabatic wall. After the reflection there results an
outcoming 3-shock. Figure 6.1 shows a sketch of this single shock reflection.

3−sh
ock

1−shock

L

x

t0

3
4L

3
4L

n+ > 0 u+ < 0 β+ > 0

n− > 0

β− > 0

u− = 0

n′− > 0

β′
− > 0

u′− = 0

Figure 6.1: Sketch of a single shock reflection.

The initial and boundary value problem for the relativistic Euler equations is defined for t ≥ 0
and x ≥ 0, where x = 0 is the boundary for the lower adiabatic wall. The initial data for n, u
and β are prescribed for x > 0, whereas for t ≥ 0 we prescribe the boundary data u(t, 0) = 0.
Following the idea presented in Chapters 2 and 4, we can use the one-dimensional scheme
presented in Subsection 6.5.2 with the following two modifications:

(i) In (6.5.34) and (6.5.35) we have to replace the phase density f̂n(x− τ q1

q0 ,q) by the new
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one f̂n(|x− τ q1

q0 |,q∗), where q∗ is given by

q∗1 = sgn(x− τ
q1

q0
) (û
√

1 + ϑ2 + ϑξ
√

1 + û2) , (6.7.1)

q∗2 = ϑ
√

1 − ξ2 sinϕ , (6.7.2)

q∗3 = ϑ
√

1 − ξ2 cosϕ , (6.7.3)

q∗0 =
√

1 + (q∗1)2 + (q∗2)2 + (q∗3)2 . (6.7.4)

Recall that the function f̂n(y,q) is defined in (6.5.36).

(ii) In (6.5.34) and (6.5.35) we have to replace the temperature T for the integration radius
R = R(T, ε), see (6.5.27), by the new one

T := max{T (tn, y) | y ≥ 0 & x− τ ≤ y ≤ x+ τ} . (6.7.5)

Figure 6.6, which is computed from the kinetic scheme, represents a plot for the particle
density n, the velocity u and the temperature T in the time range 0 ≤ t ≤ 2.63125 and in
the space range 0 ≤ x ≤ L = 1. We have calculated the final time in such a way that the
outcoming 3-shock finally arrives at the same position x = 3

4L where the original 1-shock
has initially started. The Riemann initial data for the 1-shock with the jump at x = 3

4L are
chosen according to the Rankine-Hugoniot jump conditions given in Subsection 6.4.1. The
initial data are

n− = 1.0 u− = 0.0 β− = 0.5 p− = 2.0 ,
n+ = 1.35396 u+ = −0.175227 β+ = 0.45 p+ = 3.0088 ,

where 200 maximization times are considered here, so that τM = 0.0131563.

Moreover we obtained the constant states left and right to the reflected 3-shock analytically
from the Rankine-Hugoniot shock parametrizations (6.4.14), (6.4.15) as well as numerically
from the kinetic scheme. Both are compared below, where we use the notations from Figure
6.1.

The 3-shock data from the Rankine-Hugoniot jump conditions are
n′− = 1.83235 u′− = 0.0 β′

− = 0.405264 p′− = 4.52136 ,
n+ = 1.35396 u+ = −0.175227 β+ = 0.45 p+ = 3.0088 .

The 3-shock data from the kinetic scheme are
n′− = 1.83200 u′− = 0.0 β′

− = 0.40852 p′− = 4.48448 ,
n+ = 1.35394 u+ = −0.175236 β+ = 0.450024 p+ = 3.0086 .

We see a very good agreement between the analytical and numerical results.

6.7.2 Phenomenological Relativistic Euler Equations

Here we compare the second order central schemes results with the exact Riemann solutions.
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Problem 6: Relativistic shock tube I

The initial data are

Wl = (ρl, ul, pl) = (10.0, 0.0, 13.33) if x < 0.5 ,

Wr = (ρr, ur, pr) = (1.0, 0.0, 0.66× 10−6) if x ≥ 0.5 ,

where we take γ = 5
3 . The computational domain is 0 ≤ x ≤ 1. This test problem has been

considered by several authors, for example, Hawley, Smarr and Wilson [37], Schneider et al.
[80], Mart́ı and Müller [60, 61] etc. It involves the formation of an intermediate state bounded
by a shock wave propagating to the right and transonic rarefaction wave propagating to the
left. The fluid in the intermediate state moves at a mildly relativistic speed (v = 0.72c) to
the right. Flow particles accumulate in a dense shell behind the shock wave compressing the
fluid by a factor of 5 and heating it up to values of internal energy much larger than the
rest-mass energy. Hence the fluid is extremely relativistic in thermodynamical point of view,
but mildly relativistic dynamically. The results are shown in Figure 6.7 for 500 mesh points
at time t = 0.43.

Problem 7: Relativistic shock tube II

The initial data are

Wl = (ρl, uL, pl) = (1.0, 0.0, 1000.0) if x < 0.5 ,

Wr = (ρr, uR, pr) = (1.0, 0.0, 0.01) if x ≥ 0.5 ,

where we take γ = 5
3 . The computational domain is 0 ≤ x ≤ 1. This problem was first

considered by Norman and Winkler [67]. The flow pattern is similar to that of the above
problem, but more extreme. The relativistic effects reduce the post-shock state to a thin
dense shell with a width of only about 1% of the grid length at t=0.4. The fluid in the shell
moves with vshell = 0.96, while the jump in density in the shell reaches a value of 10.6. The
results are shown in Figure 6.8 for 500 mesh points at time t = 0.43.

Problem 8: Collision of two relativistic blast waves

Wl = (ρl, uL, pl) = (1.0, 0.0, 1000.0) if x <= 0.1 ,

Wm = (ρm, um, pm) = (1.0, 0.0, 0.01) if 0.1 < x < 0.9 ,

Wr = (ρr, uR, pr) = (1.0, 0.0, 100.0) if x ≥ 0.9 ,

where the computational domain is 0 ≤ x ≤ 1. The collision of two strong blast waves
was used by Woodward and Colella [88] to compare the performance of several numerical
methods in classical hydrodynamics. In the relativistic case, Yang et al. [94] considered this
problem to test the high-order extensions of their relativistic beam scheme, whereas Mart́ı
and Müller [60] used it to evaluate the performance of their relativistic PPM [88] code. In this
last case, the original boundary conditions were changed from reflecting to out flow to avoid
the reflection and subsequent interaction of rarefaction waves allowing for a comparison with
an analytical solution. We will also consider the out flow boundary conditions in this example.
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The initial data consist of three constant states with large pressure jumps at the interfaces
which are located at x = 0.1 and x = 0.9. The propagation velocity of the two blast waves is
slower than in the Newtonian case, but close to the speed of light, i.e., 0.9567 and -0.8830 for
the shock wave propagating to the right and left, respectively. Hence the shock interaction
occurs much later (at t=0.43) than in the Newtonian problem (at about t=0.028). The colli-
sion give rise to a narrow region of very high density bounded by two shocks. The results are
shown in Figure 6.9 for 500 mesh points at time t = 0.43.
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Figure 6.2: Relativistic shock tube at time t = 0.5.
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Figure 6.3: Relativistic shock tube with shock heating at time t = 0.52.
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Figure 6.4: Quadratic pulse at time t = 0.25.
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Figure 6.5: Perturbed relativistic shock tube problem at time t = 0.5.

Figure 6.6: A single shock reflection.
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Figure 6.7: Relativistic shock tube I at t = 0.43.
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Figure 6.8: Relativistic shock tube II at t = 0.43.
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Figure 6.9: Collision of two relativistic blast waves at t = 0.43.



Chapter 7

Central Schemes

In recent years, central schemes for approximating solutions of hyperbolic conservations laws
received a lot of attention. A family of high-resolution, non-oscillatory, central schemes, was
developed to handle such problems. As compared to the “classical” upwind schemes, these
central schemes have shown to be both simple to implement and stable for many problems
ranging from one-dimensional scalar problems to multi-dimensional systems of conservation
laws. They were successfully implemented for a variety of problems, such as, e.g., the incom-
pressible and compressible Euler equations [56, 39, 64], the magnetohydrodynamics equations
[89], hyperbolic systems with relaxation [2], non-linear optics [79] and multi-component flows
by Qamar and Warnecke [75].

In Chapters 2 − 6, we have used the central schemes in order to solve non-relativistic and
relativistic Euler equations. The schemes are predictor-corrector methods which consist of
two steps: starting with given cell averages, we first predict point values which are based on
non-oscillatory piecewise-linear reconstructions from the cell averages; at the second correc-
tor step, we use staggered averaging, together with the predicted mid-values, to realize the
evolution of these averages. This results in a second-order, non-oscillatory central schemes,
see [39, 64].

These second order schemes are based on a MUSCL-type reconstruction. Like upwind schemes,
the reconstructed piecewise-polynomials used by the central schemes also make use of non-
linear limiters which guarantee the overall non-oscillatory nature of the approximate solu-
tion. But unlike the upwind schemes, central schemes do not require the intricate and time-
consuming (approximate) Riemann solvers which are essential for the high-resolution upwind
schemes. This advantage is especially important in the multi-dimensional case where there is
no exact Riemann solver. Moreover, the central schemes are “genuinely multi-dimensional” in
the sense that they do not need dimensional splitting, see [39, 64] .

The central schemes are also very important in the relativistic case especially for the general
form of the special relativistic Euler equations, see (6.4.2)-(6.4.4). Due to the presence of
Bessel functions it is looking not possible to derive the parametrization of rarefaction waves
for these Euler equations, and hence we cannot develop an exact Riemann solver for these
equations. With the central schemes we can easily solve these equations without any difficulty,
see Chapter 6.

159
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Let us begin by introducing the well-known first order Lax-Friedrichs (LxF) scheme for one-
dimensional conservation laws. This first order scheme is then extended to a second order
central scheme. Next we study the first order LxF scheme for the two dimensional conservation
laws and then extend it to the second order non-oscillatory central scheme, see [39, 64].

7.1 One-Dimensional Central Schemes

Here we want to solve the one-dimensional hyperbolic system of conservation laws

∂W

∂t
+
∂F

∂x
= 0 , (7.1.1)

where W (t, x) is a vector of conserved variables and F (t, x) is the corresponding vector of
fluxes.

7.1.1 One-Dimensional First Order LxF Scheme

Let us denote by W
n
i , the approximate cell-average at time t = tn, associated with the cell

Ii, centered around xi = i∆x, i.e.,

Ii =

{

ξ

∣

∣

∣

∣

|ξ − xi| ≤
∆x

2

}

.

We take χi(x) to be the characteristic function of the cell Ii, χi(x) = 1 for x ∈ Ii, χi(x) = 0
for x ∈ R\Ii. To approximate (7.1.1), we start with a piecewise constant solution of the form
∑

W
n
i χi(x). Integrating (7.1.1) over the rectangle [xi, xi+1] × [tn, tn+1], we get

∮

∂Ω

Wdx− F (W )dt = 0 ⇔

−
tn+1
∫

tn

F (W (t, xi)) dt+

xi+1
∫

xi

W (tn+1, ξ)dξ +

tn+1
∫

tn

F (W (t, xi+1)) dt−
xi+1
∫

xi

W (tn, ξ)dξ = 0 .

Note that our cells Ii are staggered with respect to the interval [xi, xi+1] of integration. This
leads to the LxF scheme as given below

W
n+1
i+ 1

2

=
1

2
(W

n
i +W

n
i+1) + λ

(

f(Wn
i ) − f(Wn

i+1)
)

, Wn
i := W (tn, xi) = W

n
i , (7.1.2)

where λ = ∆t
∆x . The piecewise constant cells in each step are staggered with respect to those

in the previous step.

7.1.2 A Second-Order Extension of the One-Dimensional Scheme

Starting with a piecewise-constant solution in time and space,
∑

W
n
i χi(x), one reconstruct a

piecewise linear (MUSCL-type) approximation in space, namely

W (tn, x) =
∑

(

W
n
i +W x

i

(x− xi)

∆x

)

χi(x) , (7.1.3)
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where the discrete slopes W x
i , see Figure 5.3, are calculated by using the min-mod limiters

(5.2.16). The interpolant (7.1.3) is then evolved exactly in time and projected on to the
staggered cell-averages on the next time step, tn+1. Consider the balance law over the control
volume Ω = [xi, xi+1] × [tn, tn+1]. We have

0 =

∮

∂Ω

Wdx− F (W )dt⇔

= −
tn+1
∫

tn

F (Wi(t))dt+

xi+1
∫

xi

W (tn+1, ξ)dξ +

tn+1
∫

tn

F (Wi+1(t))dt−
xi+1
∫

xi

W (tn, ξ)dξ .

This yields

W
n+1
i+ 1

2

= W
n
i+ 1

2
+ λ





1

∆t

tn+1
∫

tn

F (Wi(t))dt−
1

∆t

tn+1
∫

tn

F (Wi+1(t))dt



 . (7.1.4)

Where λ = ∆t
∆x . The averaging of the linear data (7.1.3) at t = tn, yields

W
n
i+ 1

2
=

1

∆x

xi+1
∫

xi

W (tn, ξ)dξ

=
1

∆x









x
i+ 1

2
∫

xi

Wi(tn, ξ)dξ +

xi+1
∫

x
i+ 1

2

Wi+1(tn, ξ)dξ









,

=
1

2
(Wn

i +Wn
i+1) +

1

8
(W x

i −W x
i+1) . (7.1.5)

So far every thing is exact. Moreover the Courant-Friedrichs-Levy (CFL) condition guarantees
that F (Wi(t)) and F (Wi+1(t)), are smooth functions of t; hence they can be integrated
approximately by the mid point rule at the expense of an O(∆t3) local truncation error.
Thus we can write

1

∆t

tn+1
∫

tn

F (Wi+1(t))dt ∼ F (W
n+ 1

2

i ) +O(∆t3) . (7.1.6)

Putting (7.1.5) and (7.1.6) in (7.1.4) we finally get

W
n+1
i+ 1

2

=
1

2
(Wn

i +Wn
i+1) +

1

8
(W x

i −W x
i+1) + λ

[

F (Wi(tn+ 1

2

)) − F (Wi+1(tn+ 1

2

))
]

. (7.1.7)

By Taylor expansion and the conservation laws (5.2.3), we have

W
n+ 1

2

i = W
n
i +

∆t

2

∂

∂t
W (t, xi) +O(∆t)2 = W

n
i − λ

2
F x(Wi) +O(∆t)2 . (7.1.8)
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This may serve as our approximate midvalues W
n+ 1

2

i within the permissible second-order
accuracy requirement. Here, 1

∆xF
x(Wi) stands for an approximate numerical derivatives of

the flux F (W (t, x = xi)),

1

∆x
F x(Wi) =

∂

∂x
F (W (t, x = xi) +O(∆x)

The fluxes F x(Wi) are computed by applying the min-mod limiter to each of the components
of F , i.e.,

F x(Wi) = MMθ{F (Wi−1), F (Wi), F (Wi+1)}

= MM

(

θ∆F (Wi+ 1

2

),
θ

2

(

∆F (Wi− 1

2

) + ∆F (Wi+ 1

2

)
)

, θ∆F (Wi− 1

2

)

)

.

Here, ∆ denotes the central differencing, ∆F (Wi+ 1

2

) = F (Wi+1) − F (Wi), and MM denotes

the min-mod nonlinear limiter given by (5.2.16) .

This component wise approach is one of the main advantages offered by central schemes over
corresponding characteristic decompositions required by upwind schemes, see [39] and [64].
It is important to emphasize that while using the central type LxF solver, we integrate over
the entire Riemann fan, which consists of both the left and right going waves. On the one
hand, this enables us to ignore the detailed knowledge about the exact (or approximate)
generalized Riemann solver. On the other hand, this enables us to accurately compute the

numerical flux

tn+1
∫

tn

F (w(τ, x))dτ , whose values are extracted from the smooth interface of two

non-interacting Riemann problems.

In summary, this family of central differencing scheme takes the easily implemented predictor-
corrector form,

W
n+ 1

2

i = W
n
i − λ

2
F x(Wi) , (7.1.9)

W
n+1
i+ 1

2

=
1

2
(W

n
i +W

n
i+1) +

1

8
(W x

i −W x
i+1) + λ

[

F (W
n+ 1

2

i ) − F (W
n+ 1

2

i+1 )

]

. (7.1.10)

7.2 Two-Dimensional Central Schemes

Here we want to solve the one-dimensional hyperbolic system of conservation laws

∂W

∂t
+
∂F

∂x
+
∂G

∂y
= 0 , (7.2.1)

where W (t, x, y) is a vector of conserved variables and F (t, x, y) and G(t, x, y) are the corre-
sponding vectors of fluxes.

We again start with a first order Lax-Friedrichs scheme for the two-dimensional conservation
laws. This first order scheme is then extended to second order, see [39]. The procedure is
similar to that of one-dimensional central scheme presented above.
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7.2.1 The First Order LxF Scheme in 2D.

To approximate (7.2.1), we begin with a piecewise constant solution of the form
∑

W
n
i,jχi,j(x, y).

We denote by W
n
i,j , the approximate cell-average at time t = tn, associated with the cell

Ci,j = Ii × Jj, centered around (xi = i∆x, yj = j∆y), and χi,j(x, y) is the characteristic
function of the cell Ci,j .

The arguments applied to the one-dimensional case can be easily extended to the higher

dimensions. In the following we will abbreviate −
∫

B

=
1

|B|

∫

B

to denote the normalized integral,

i.e., normalized over its length, area, etc. Also let λ = ∆t
∆x and µ = ∆t

∆y denote the fixed mesh-
ratio in the x- and y-directions, respectively. Let

W i+ 1

2
,j+ 1

2

(t) = −
∫

C
i+1

2
,j+1

2

W (t, x, y)dxdy ,

denote the staggered averages. Integrating (7.2.1) over the volume [xi, xi+1] × [yj, yj+1] ×
[tn, tn+1], we get,

W
n+1
i+ 1

2
,j+ 1

2

= −
∫

C
i+ 1

2
,j+1

2

W (tn, x, y)dxdy

− λ

{

−
∫ tn+1

tn

−
∫ yj+1

yj

[F (W (t, xi+1, y)) − F (W (t, xi, y))] dydt

}

− µ

{

−
∫ tn+1

tn

−
∫ xi+1

xi

[G(W (t, x, yj+1)) −G(W (t, x, yj))] dxdt

}

.

As given in Figure 7.1, the first integral has contribution from the four cellsCi,j , Ci+1,jCi+1,j+1,
and Ci,j+1. Simplifying the above balance law we finally get the following LxF scheme,

W
n+1
i+ 1

2
,j+ 1

2

=
1

4
(W

n
i,j +W

n
i+1,j +W

n
i,j+1 +W

n
i+1,j+1)

− λ

2

(

F (Wn
i+1,j) − F (Wn

i,j) + F (Wn
i+1,j+1) − F (Wn

i,j+1)
)

− µ

2

(

G(Wn
i,j+1) −G(Wn

i,j) +G(Wn
i+1,j+1) −G(Wn

i+1,j)
)

. (7.2.2)

7.2.2 A Second-Order Extension of the Two-Dimensional Scheme

A two-dimensional extension of the second order central scheme was introduced in [39]. Like
in the one-dimensional case, this staggered scheme can be viewed as an extension to the
first order LxF Scheme. A piecewise-linear interpolant is reconstructed from the calculated
cell-averages at time tn,

W (tn, x, y) =
∑

(

W
n
i,j +W x

i,j

(

x− xi

∆x

)

+W y
i,j

(

y − yj

∆y

))

χi,j(x, y) . (7.2.3)

Here W x
i,j and W y

i,j are discrete slopes in the x− and y−directions, respectively, which are
reconstructed from the given cell averages. To guarantee second-order accuracy, these slopes
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should approximate the corresponding derivatives,

W x
i,j ∼ ∆x

∂

∂x
W (tn, xi, yj) +O(∆x)2 , W y

i,j ∼ ∆y
∂

∂x
W (tn, xi, yj) +O(∆y)2 . (7.2.4)

A possible computation of these slopes, which results in an overall non-oscillatory schemes
is given by (5.2.16) and (5.3.14). This guarantees that the corresponding piecewise-linear
reconstruction of W (tn, x, y) in (7.2.3) is co-monotone with the underlying piecewise-constant
approximation,

∑

W
n
i,jχi,j(x, y).

Similar to one-dimensional case, the construction of the central scheme proceeds with a second
step of an exact evolution. The integration of (7.2.1) over volume [xi, xi+1] × [yj , yj+1] ×
[tn, tn+1] yields

W
n+1
i+ 1

2
,j+ 1

2

= −
∫

C
i+ 1

2
,j+1

2

w(tn, x, y)dxdy

− λ

{

−
∫ tn+1

tn

−
∫ yj+1

yj

[F (W (t, xi+1, y)) − F (W (t, xi, y))]dydt

}

− µ

{

−
∫ tn+1

tn

−
∫ xi+1

xi

[G(W (t, x, yj+1)) −G(W (t, x, yj))]dxdt

}

. (7.2.5)
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Figure 7.1: Floor plane of the staggered grid.

We begin by evaluating the cell average −
∫

C
i+ 1

2
,j+1

2

W (tn, x, y)dxdy. As before it has contri-

bution from the four intersecting cells, Ci,j , Ci+1,j , Ci+1,j+1, and Ci,j+1. Starting with the
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intersecting cell Ci,j at the corner (see Figure 7.1), CSW
i+ 1

2
,j+ 1

2

= Ci+ 1

2
,j+ 1

2

∩ Ci,j , we find the

average of the reconstructed polynomial in (7.2.3),

−
∫

CSW

i+1
2

,j+1
2

W (tn, x, y)dxdy = −
∫ x

i+ 1
2

xi

−
∫ y

j+1
2

yj

(

W
n
i,j +W x

i,j

(

x− xi

∆x

)

+W y
i,j

(

y − yi

∆y

))

dxdy

=
1

4
W

n
i,j +

1

16
(W x

i,j +W y
i,j) . (7.2.6)

Continuing in a counter clockwise direction, we have

−
∫

CSE

i+1
2

,j+1
2

W (tn, x, y)dxdy =
1

4
W

n
i+1,j +

1

16
(−W x

i+1,j +W y
i+1,j) , (7.2.7)

−
∫

CNE

i+1
2

,j+1
2

W (tn, x, y)dxdy =
1

4
W

n
i+1,j+1 −

1

16
(W x

i+1,j+1 +W y
i+1,j+1) , (7.2.8)

−
∫

CNW

i+1
2

,j+1
2

W (tn, x, y)dxdy =
1

4
W

n
i,j+1 +

1

16
(W x

i,j+1 −W y
i,j+1) . (7.2.9)

By adding the last four integrals we find that the exact staggered averages of the reconstructed
solution at t = tn are

W
n
i+ 1

2
,j+ 1

2
= −
∫

C
i+1

2
,j+1

2

W (tn, x, y)dxdy

=
1

4

(

W
n
i,j +W

n
i+1,j +W

n
i,j+1 +W

n
i+1,j+1

)

+
1

16
{(W x

i,j −W x
i+1,j) + (W x

i,j+1 −W x
i+1,j+1)

+ (W y
i,j −W y

i,j+1) + (W y
i+1,j −W y

i+1,j+1)} . (7.2.10)

So far everything is exact. We now turn to approximating the four fluxes on the right hand
side of (7.2.5), starting with the one along the east face (consult Figure 7.2), i.e.

−
∫ tn+1

tn

−
∫

y∈J
j+1

2

F (W (t, xi+1, y))dydt.

We use midpoint quadrature rule for second-order approximation of the temporal integral

−
∫

y∈J
j+1

2

F (W (tn+ 1

2

, xi+1, y))dy ,

and, for the reasons to be clarified below, we use the second-order trapezium rule for the
spatial integration across the y-axis, yielding

−
∫ tn+1

tn

−
∫

y∈J
j+1

2

F (W (t, xi+1, y))dydt ∼
1

2

(

F (W
n+ 1

2

i+1,j) + F (W
n+ 1

2

i+1,j+1)

)

. (7.2.11)

In similar manner we approximate the remaining fluxes,
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−
∫ tn+1

tn

−
∫

x∈I
i+ 1

2

G(W (t, x, yj+1))dxdt ∼
1

2

(

G(W
n+ 1

2

i,j+1) +G(W
n+ 1

2

i+1,j+1)

)

, (7.2.12)

−
∫ tn+1

tn

−
∫

y∈J
j+1

2

F (W (t, xi, y))dydt ∼
1

2

(

F (W
n+ 1

2

i,j ) + F (W
n+ 1

2

i,j+1)

)

, (7.2.13)

−
∫ tn+1

tn

−
∫

x∈I
i+ 1

2

G(W (t, x, yj))dxdt ∼
1

2

(

G(W
n+ 1

2

i,j ) +G(W
n+ 1

2

i+1,j)

)

. (7.2.14)

The fluxes in (7.2.11)-(7.2.14) use the midpoint values, W
n+ 1

2

i,j = W (tn+ 1

2

, xi, yj), and it is

y

x
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2
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2

xi+1

xi+ 1
2

xi
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W i+ 1
2
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−
tn+1
∫

tn

−
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x∈I
i+ 1

2

G(W (t, x, yj))dxdt

−
tn+1
∫
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−
∫

y∈J
j+ 1

2

F (W (t, xi+1, y))dydt

Figure 7.2: The central, staggered stencil.

here that we take advantage of utilizing these midvalues for the spatial integration by the
rectangle rule. Namely, since these midvalues are secured at the smooth center of the cells
Ci,j bounded away from the jump discontinuities along the edges, we may use local Taylor
expansion,

W (tn+ 1

2

, xi, yj) = W
n
i,j +

∆t

2
Wt(tn, xi, yj) +O(∆t)2 .

Finally, we use the differential form of conservation laws (7.2.1) to express the time derivative,
Wt, in terms of the spatial derivatives F (W )x and G(W )y,

W
n+ 1

2

i,j = W
n
i,j −

∆t

2

∂

∂x
F (Wi,j) −

∆t

2

∂

∂y
G(Wi,j) +O(∆t)2

= W
n
i,j −

λ

2
F x(Wi,j) −

µ

2
Gy(Wi,j) +O(∆t)2 . (7.2.15)

Here

F x(Wi,j) ∼ ∆x
∂

∂x
F (W (tn, xi, yj))+O(∆x)2, Gy(Wi,j) ∼ ∆y

∂

∂y
G(W (tn, xi, yj))+O(∆y)2 ,



7.3. APPLICATIONS OF THE CENTRAL SCHEMES 167

are one-dimensional discrete slopes of the fluxes in the x- and y-directions, of the type recon-
structed in (7.2.4). We find these slopes in the same way as done for the conservative field
variables using the min-mod limiter (5.2.16). Inserting these values, together with the stag-
gered averages computed in (7.2.10), into (7.2.5), we conclude with new staggered averages
at t = tn+1, given by

W
n+1
i+ 1

2
,j+ 1

2

=
1

4
(W

n
i,j +W

n
i+1,j +W

n
i,j+1 +W

n
i+1,j+1)

+
1

16
(W x

i,j −W x
i+1,j) −

λ

2

(

F (W
n+ 1

2

i+1,j) − F (W
n+ 1

2

i,j )

)

+
1

16
(W x

i,j+1 −W x
i+1,j+1) −

λ

2

(

F (W
n+ 1

2

i+1,j+1) − F (W
n+ 1

2

i,j+1)

)

+
1

16
(W y

i,j −W y
i,j+1) −

µ

2

(

G(W
n+ 1

2

i,j+1) −G(W
n+ 1

2

i,j )

)

+
1

16
(W y

i+1,j −W y
i+1,j+1) −

µ

2

(

G(W
n+ 1

2

i+1,j+1) −G(W
n+ 1

2

i+1,j)

)

. (7.2.16)

In summary, we end up with a simple two-step predictor-corrector scheme (7.2.15)-(7.2.16).
Starting with the cell averages, W

n
i,j , we use the first order predictor (7.2.15) for the evolution

of the midpoint values, W
n+ 1

2

i,j , which is followed by the second-order corrector (7.2.16) for

computation of the new cell averages, W
n+1
i,j . This results in a second-order accurate non-

oscillatory central schemes. As in the one-dimensional case no exact (approximate) Riemann
solvers are involved. The non-oscillatory behaviour of the scheme hinges on the reconstructed
discrete slopes, W x,W y, F x(W ), and Gy(W ).

7.3 Applications of the Central Schemes

We have applied the central schemes to the relativistic and non-relativistic Euler equations.
In Chapter 2 we have used the central schemes in order compare their results with the first
order Godunov, kinetic and KFVS schemes. In Chapter 4 we have used the central schemes
to compare their results with with the first and second order kinetic and Godunov schemes
for the ultra-relativistic Euler equations. In Chapter 5 we have also compared the central
schemes to the first and second order KFVS and BGK-type KFVS schemes for the ultra-
relativistic Euler equations. In Chapter 6 we have applied the central schemes to the general
and phenomenological form of special relativistic Euler equations.

We found that the computer implementation of the central schemes is very simple and the
computer codes for them are very compact. The schemes are found to be at least two times
faster than the Godunov schemes. The first order central schemes give smeared solutions at the
contact discontinuities as compared to the Godunov, kinetic and KFVS schemes. However the
second order central schemes resolve the contact discontinuity quite well. The main advantage
of the schemes is that they do not need any exact or approximate Riemann solver. In these
schemes the cells in each step are staggered with respect to those in the previous step.



Appendix A

Weak Form of the One-Dimensional
Transport Equation

Here we consider a one-dimensional spatial flow
such that the fields n, u, T are only depending on
the space x and time t. Let Ω ⊂ R

+ × R be a
normal region in space-time with piecewise smooth
positively oriented boundary. The one-dimensional
differential form the transport equation is given by

x

t
t1 t2

Ω

x−(t)

x+(t)

Normal region Ω in space-time

q0
∂f

∂t
+ q1

∂f

∂x
= 0 . (A.0.1)

The differential equation (A.0.1) is not sufficient if we take discontinuities into account. There-
fore we need a weak integral formulation of the above differential form of the transport equa-
tion. If we apply the Gaussian divergence theorem to (A.0.1), we get the following weak
formulation due to Oleinik [68] of the transport equation

∮

∂Ω

q0fdx− q1fdt = 0 . (A.0.2)

In following we prove that this weak form of the transport equation is zero over the closed
domain as shown in the figure above. Let us define for abbreviation

A = A(t, x) = q0f(t, x,q) , B(t, x,q) = q1f(t, x,q) ,

then the weak form (A.0.2) becomes
∮

∂Ω

Adx−Bdt = 0 . (A.0.3)
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Now evaluating the curve integrals we get

∮

∂Ω

Adx−Bdt =

t2
∫

t1

[

A(t, x−(t))ẋ−(t) −B(t, x−(t))
]

dt+

x+(t2)
∫

x−(t2)

A(t2, x)dx

+

t1
∫

t2

[

A(t, x+(t))ẋ+(t) −B(t, x+(t))
]

dt+

x−(t1)
∫

x+(t1)

A(t1, x)dx . (A.0.4)

Let f∗(y,q), y ∈ R, q ∈ R
3, not necessarily differentiable, be the initial phase density. Then

the solution of the linear transport equation (A.0.1) is

f(t, x,q) = f∗(x− t
q1

q0
,q) . (A.0.5)

Let us define

J1 : =

t2
∫

t1

f∗

(

x−(t) − q1

q0

)

(

q0ẋ−(t) − q1
)

dt , (A.0.6)

J2 : = q0
x+(t2)
∫

x−(t2)

f∗

(

x−(t) − q1

q0

)

dx , (A.0.7)

J3 : =

t2
∫

t1

f∗

(

x+(t) − q1

q0

)

(

q0ẋ+(t) − q1
)

dt , (A.0.8)

J4 : = q0
x+(t1)
∫

x−(t1)

f∗

(

x−(t) − q1

q0

)

dx . (A.0.9)

Therefore equation (A.0.4) becomes
∮

∂Ω

Adx−Bdt = J1 + J2 + J3 + J4 . (A.0.10)

Our aim is to show that J1 + J2 + J3 + J4 = 0. Let us define for abbreviation

y−(t) = x−(t) − q1

q0
, y+(t) = x+(t) − q1

q0
, (A.0.11)

then we can calculate J1, J2, J3, J4 as follows

J1 =q0
t2
∫

t1

f∗
(

y−(t),q
)

ẏ−(t)dt

= q0
t2
∫

t1

d

dt







y−(t)
∫

y−(t1)

f∗ (y,q) dy






dt = q0

y−(t2)
∫

y−(t1)

f∗ (y,q) dy . (A.0.12)
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By a similar calculations we can obtain

J3 = q0
y+(t1)
∫

y+(t2)

f∗ (y,q) dy . (A.0.13)

In order to calculate J2 and J4 we use the substitution y := x− q1

q0 . We obtain

J2 = q0
y+(t2)
∫

y−(t2)

f∗ (y,q) dy J4 = q0
y−(t1)
∫

y+(t1)

f∗ (y,q) dy . (A.0.14)

This implies

∮

∂Ω

Adx−Bdt =J1 + J2 + J3 + J4

=q0







y−(t2)
∫

y−(t1)

f∗dy +

y+(t2)
∫

y−(t2)

f∗dy +

y+(t1)
∫

y+(t2)

f∗dy +

y−(t1)
∫

y+(t1)

f∗dy







=q0







y+(t2)
∫

y−(t1)

f∗dy +

y−(t1)
∫

y+(t2)

f∗dy







=0 .



Appendix B

The Lorentz Invariance of d3q

q0

Let ℜ be any arbitrary Lorentz frame, with respect to which we want to study a gas particles.
Let ℜ′ be any other reference frame which moves with velocity v with respect to ℜ. For
the reasons of simplicity we choose v parallel to q, the momentum of the particle within the
volume element d3xd3q on which we are focusing our attention. Furthermore, we choose the
x− axes of ℜ and ℜ′ both parallel to v.

Because changes occur only in the x−direction, the y− and z−components of position x
and momentum q variables remain unchanged under the Lorentz-transformations relating
the reference systems ℜ and ℜ′. If we suppose, for a moment, that q0, on the one hand, and
q1, q2, q3 on the other hand, are independent variables, we have:

q′
0

= γ(v)
(

q0 − c−1vq1
)

,

q′
1

= γ(v)
(

q1 − c−1vq0
)

, (B.0.1)

q′
2

= q2 , q′
3

= q3 ,

where γ(v) = 1√
1−v2/c2

. The inverse transformation of (B.0.1) can be written as

q0 = γ(v)
(

q′
0

+ c−1vq′
1
)

,

q1 = γ(v)
(

q′
1

+ c−1vq′
0
)

, (B.0.2)

q2 = q′
3

, q3 = q′
3

.

However, q0 and q are not independent. From the normalization of the four-momentum
qµqµ = m2c2 we find:

q0 =

√

m2c2 + (q1)2 + (q2)2 + (q3)2 ,

q′
0

=

√

m2c2 +
(

q′1
)2

+
(

q′2
)2

+
(

q′3
)2
. (B.0.3)

Since d3q is a volume element, according to the transformation of coordinates rule

d3q =

∣

∣

∣

∣

∂(q1, q2, q3)

∂(q′1 , q′2 , q′3)

∣

∣

∣

∣

d3q′ , (B.0.4)
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where J =
∣

∣

∣

∂(q1, q2, q3)

∂(q′1 , q′2 , q′3)

∣

∣

∣ is the Jacobian determinant. Now using (B.0.2) we get

∂q1

∂q′1
= γ(v)

(

1 + c−1v
q′

1

q′0

)

=
γ(v)

q′0
(

q′
0

+ c−1vq′
1
)

=
q0

q′0
,

∂q1

∂q′2
= γ(v)

(

c−1v
q′

2

q′0

)

,
∂q1

∂q′3
= γ(v)

(

c−1v
q′

3

q′0

)

,

∂q2

∂q′1
= 0 ,

∂q2

∂q′2
= 1,

∂q2

∂q′3
= 0 ,

∂q3

∂q′1
= 0 ,

∂q3

∂q′2
= 0,

∂q3

∂q′3
= 1 .

Thus

J =

∣

∣

∣

∣

∣

∣

∣

q0

q′0
γ(v)vq′

2

cq′0
γ(v)vq′

3

cq′0

0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

∣

=
q0

q′0
. (B.0.5)

Then (B.0.4) implies the well-known result

d3q′

q′0
=
d3q

q0
. (B.0.6)



Appendix C

Euler Equations and Second Order
Kinetic Schemes

In the following we explain the derivation of some equations used in Sections 4.5.2 and 4.6.1
in order to get second order accuracy in the one- and two-dimensional kinetic schemes for the
ultra-relativistic Euler equations.

C.1 One-Dimensional Case

In order to write the time derivatives of the fields n, u and p in term of the spatial derivatives,
we use the Euler equations (4.5.8). These Euler equations after expanding the time and spatial
derivatives gives

√

1 + u2
∂n

∂t
+

nu√
1 + u2

∂u

∂t
= −u∂n

∂x
− n

∂u

∂x
,

4u
√

1 + u2
∂p

∂t
+ 4p

(1 + 2u2)√
1 + u2

∂u

∂t
= −(1 + 4u2)

∂p

∂x
− 8pu

∂u

∂x
, (C.1.1)

(3 + 4u2)
∂p

∂t
+ 8pu

∂u

∂t
= −4u

√

1 + u2
∂p

∂x
− 4p

(1 + 2u2)√
1 + u2

∂u

∂x
.

These are three equations for three unknowns ∂n
∂t , ∂u

∂t and ∂p
∂t . After solving these equations

we get

∂u

∂t
=

−3
√

1 + u2

4p(3 + 2u2)

∂p

∂x
− −2u

√
1 + u2

3 + 2u2

∂u

∂x
,

∂p

∂t
=

−2u
√

1 + u2

3 + 2u2

∂p

∂x
− 4p

(3 + 2u2)
√

1 + u2

∂u

∂x
, (C.1.2)

∂n

∂t
=

3n

(3 + 2u2)
√

1 + u2

(

u

4p

∂p

∂x
− ∂u

∂x

)

− u√
1 + u2

∂n

∂x
.
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Using the equations (4.5.9) we can write

∂N1

∂t
=

∂

∂t
(nu) = u

∂n

∂t
+ n

∂u

∂t
,

(C.1.3)

∂T 11

∂t
=

∂

∂t

(

p(1 + 4u2)
)

= (1 + 4u2)
∂p

∂t
+ 8pu

∂u

∂t
.

Now using (C.1.2) in (C.1.3) we finally get after simplifications

∂N1

∂t
= − 3n

4p
√

1 + u2(3 + 2u2)

∂p

∂x
− (5nu+ 2nu3)√

1 + u2(3 + 2u2)

∂u

∂x
− u2

√
1 + u2

∂n

∂x
,

(C.1.4)

∂T 11

∂t
= −8u(1 + u2)3/2

3 + 2u2

∂p

∂x
− 4p(1 + 8u2 + 4u4)√

1 + u2(3 + 2u2)

∂u

∂x
.

Next we want to calculate the second terms of order ∆t2 appearing on the right hand sides
of (4.5.17). For this purpose we use the definitions (4.5.14) and reduced equilibrium phase
densities (4.5.2), we get

1
∫

−1

ξ2φ(x, ξ)dξ = n
√

1 + u2
(u2 − 1)

u2
+

n

u3
arcsinh(u) ,

(C.1.5)

1
∫

−1

ξ3ψ(x, ξ)dξ =
p
√

1 + u2

u3

(

4u4 − 2u2 + 3
)

+
3p

u4
arcsinh(−u) ,

which on differentiating with respect to x gives

∂

∂x

1
∫

−1

ξ2φ(x, ξ)dξ =

[

(u2 − 1)

u2

√

1 + u2 +
1

u3
arcsinh(u)

]

∂n

∂x

+ n

[

u4 + u2 + 3

u3
√

1 + u2
− 3

u4
arcsinh(u)

]

∂u

∂x
, (C.1.6)

∂

∂x

1
∫

−1

ξ3ψ(x, ξ)dξ =

[

(4u4 − 2u2 + 3)

u3

√

1 + u2 +
3

u4
arcsinh(−u)

]

∂p

∂x

+ p

[

8u6 + 4u4 − 4u2 − 12

u4
√

1 + u2
− 12

u5
arcsinh(−u)

]

∂u

∂x
. (C.1.7)
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By using the relations (C.1.4), (C.1.6) and (C.1.7), we obtain after simplification

g(n, u, p) =
∂N1

∂t
(tn, x) +

∂

∂x

1
∫

−1

ξ2φdξ

=

(

−(1 + u2)−1/2

u2
+

1

u3
arcsinh(u)

)

∂n

∂x
− 3n(1 + u2)−1/2

4p(3 + 2u2)

∂p

∂x
(C.1.8)

+

(

9n
√

1 + u2

u3(3 + 2u2)
− 3n

u4
arcsinh(u)

)

∂u

∂x
,

h(u, p) =
∂T 11

∂t
(tn, x) +

∂

∂x

1
∫

−1

ξ3ψdξ

=

(

9
√

1 + u2

u4(3 + 2u2)
+

3 arcsinh(−u)
u5

)

(

u
∂p

∂x
− 4p

∂u

∂x

)

. (C.1.9)

The equations (C.1.8) and (C.1.9) are appearing in the order ∆t2 terms of (4.5.17)1,2.

C.2 Two-Dimensional Case

Like in the one-dimensional case, here we also need the time derivatives of the fields n, u1,
u2 and p in terms of the spatial derivatives. For this purpose we use the two-dimensional
ultra-relativistic Euler equations (5.3.1). Let us define for abbreviation u2 = (u2

1 + u2
2). We

obtain

∂u1

∂t
= − 3 + 3u2
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∂y
(C.2.1)

− u2(3 + 3u2
1 + 2u2

2)√
1 + u2(3 + 2u2)
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1u2√
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= − u1u2
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∂x
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1 + 3u2
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4p
√

1 + u2(3 + 2u2)

∂p
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∂u1
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1 + 2u2
2)√

1 + u2(3 + 2u2)

∂u2

∂y
(C.2.2)

− u1u
2
2√

1 + u2(3 + 2u2)

∂u1

∂y
− u1(3 + 2u2

1 + 3u2
2)√

1 + u2(3 + 2u2)

∂u2

∂x
,
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∂p

∂t
= − 2

√
1 + u2

3 + 2u2

(

u1
∂p

∂x
+ u2

∂p

∂y

)

− 4p√
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(1 + u2
2)
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∂x
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1)
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∂y

)

+
4pu1u2√
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∂y
+
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∂x

)

, (C.2.3)

∂n

∂t
= − 1√

1 + u2

(

u1
∂n

∂x
+ u2

∂n

∂y

)

+
3nu1u2√

1 + u2(3 + 2u2)

(

∂u1

∂y
+
∂u2

∂x

)

(C.2.4)

+
3n√

1 + u2(3 + 2u2)

[

1

4p

(

u1
∂p

∂x
+ u2

∂p

∂y

)

−
(

(1 + u2
2)
∂u1

∂x
+ (1 + u2

1)
∂u2

∂y

)]

.

The coefficients on the right hand side of the equations (4.6.8) are

Qnx =
w1

√
1 + u2 − u1

n
√

1 + u2
, Qny =

w2
√

1 + u2 − u2

n
√

1 + u2
, (C.2.5)

Qpx =
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2)(w
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√
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√
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√
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4p
√
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, (C.2.6)

Qpy =
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√
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√
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√
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√
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, (C.2.7)

Qu1x =
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√
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