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Abstract

In this dissertation we present two kinds of multidimensional schemes for hyperbolic sys-
tems based on triangular meshes. The first kind of schemes are evolution Galerkin schemes
(EG) which are truly multidimensional schemes and the second kind is a new space-time
conservative central-type method which we name a slope propagation (SP) method.

Our first scheme is an extension of the EG schemes for hyperbolic systems from rectan-
gular to triangular meshes. We develop EG schemes for the linear wave equation system,
the nonlinear wave equation system, the linearized Euler equations, the advection wave
equation system and the nonlinear Euler equations for structured/unstructured triangular
meshes. We have also extended these EG schemes on triangular meshes to second order by
using linear reconstruction. The accuracy and experimental order of convergence (EOC)
of the schemes are demonstrated by numerical experiments. The accuracy of second order
scheme is several times greater than the first order however the EOC of 2 has not been
achieved. Several numerical test cases are presented which show that apart from such
convergence difficulties EG schemes work equally well for structured and unstructured tri-
angular meshes.

Our second scheme i.e. the SP-method, which we have newly introduced is a space-time
conservative second-order scheme. The scheme treats space and time in a unified manner.
The flow variables and their slopes are the basic unknowns in the scheme. The scheme uti-
lizes the advantages of the space-time conservation element and solution element (CE/SE)
method of Chang [6] as well as central schemes of Nessyahu and Tadmor [48]. However,
unlike the CE/SE method the present scheme is Jacobian-free and hence like the central
schemes can also be applied to any hyperbolic system. In Chang’s method a finite dif-
ference approach is being used for the slope calculation in case of nonlinear hyperbolic
equations. We propose to propagate the slopes by a scheme even in the case of nonlinear
systems. By introducing a suitable limiter for the slopes of flow variables, we can apply
the same scheme to linear and non-linear problems with discontinuities. The scheme is
simple, efficient and has a good resolution especially at contact discontinuities. We derive
the scheme for one and two space dimensions. In two-space dimensions we use structured
triangular mesh. The second order accuracy of the scheme has been verified by numerical
experiments. Several numerical tests presented in this dissertation validate the accuracy
and robustness of the present scheme.





Zusammenfassung

In dieser Dissertation stellen wir zwei verschiedene mehrdimensionale numerische Lösungs-
schemata auf Dreiecksgittern für hyperbolische Erhaltungsgleichungen vor. Beim ersten
Schema handelt es sich um echt mehrdimensionale Evolution Galerkin (EG) Verfahren,
und beim zweiten um ein neues Zentralschema bzgl. Zeit und Ort, das wir im folgenden
als Slope-Propagation-Verfahren (SP-Verfahren) bezeichnen. Unser erstes Schema ist eine

Erweiterung des EG-Verfahrens für hyperbolische Systeme von Rechtecksgittern auf Dre-
icksgitter. Wir entwickeln dieses EG-Schema sowohl für lineare als auch für nichtlineare
Systeme von Wellengleichungen mit Anwendung auf die Eulergleichungen bzw. Advektions-
Wellengleichungen. Unter Benutzung der linearen Rekonstruktion haben wir diese EG-
Verfahren auf Dreiecksgittern auf die zweite Ordnung übertragen. Die Genauigkeit und
die numerisch ermittelte Konvergenzordung mit der EOC (experimental order of conver-
gence) Methode werden anhand numerischer Testbeispiele überprüft. Das Schema zweiter
Order erweist sich dabei als wesentlich genauer gegenüber dem Schema erster Ordnung,
obwohl die EOC Methode eine Konvergenzordnung kleiner als zwei vermuten lässt. Die
verschiedenen numerischen Testfälle belegen dabei eindeutig, daß trotz der noch nicht gek-
lärten Frage der Konvergenzordung diese EG Verfahren sowohl auf regelmäßigen als auch
auf unstrukturierten Dreicksgittern vergleichbar gute Ergebnisse liefern. Die konservative

Formulierung unseres jüngst eingeführten SP Schemas behandelt die Zeit- bzw. Ortsvari-
able vollkommen gleichwertig, und fuḧrt so bezüglich dieser Variablen in natürlicher Weise
auf ein neues Verfahren zweiter Ordung. Die konservativen Variablen und ihre partiellen
Ortsableitungen sind die Unbekannten des Schemas. Dieses Schema vereinigt in sich die
Vorteile einer konservativen Formulierung mit gleichwertiger Behandlung von Zeit- und
Ortskoordinaten wie in der CE/SE Methode von Chang [6] und die Vorteile eines Zen-
tralschemas von Nessyahu und Tadmor [48]. Im Gegensatz zur CE/SE Methode ist unser
Schema frei von der Jacobi Determinante der konservativen Variablen und kann daher wie
das Zentralschema auf sehr allgemeine hyperbolische Systeme angewendet werden. Durch
die Einfuḧrung geeigneter Limiter für die Steigungen der konservativen Variablen können
wir dasselbe Schema sowohl auf lineare als auch auf nichtlineare hyperbolische Systeme
mit unstetigen Anfangsdaten anwenden. Im Gegensatz dazu verwendet die Chang Meth-
ode einen finiten Differenzenansatz für die Berechnung der Steigungen im Falle nichtlinearer
hyperbolischer Systeme mit unstetigen Anfdangsdaten. Das Schema ist einfach zu imple-
mentieren und benötigt moderate Rechenzeiten bei guter Stoß-Auflösung selbst an Kontak-
tunstetigkeiten. Wir leiten das Schema in ein bzw. zwei Raumdimensionen her, wobei wir
in zwei Raumdimensionen ein reguläres Dreiecksgitter zugrunde legen. Sowohl im räumlich
ein- und zweidimensionalen Fall ergab sich hierbei mit der EOC Methode die Konvergen-
zordnung zwei! Mehrere numerische Testrechnungen belegen eine hohe Genauigkeit und
Stabilität des Verfahrens.
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Chapter 1

Introduction

The fact that certain quantities such as energy, momentum and charge are conserved in
physical processes has led to an increasing number of conservation laws. With the advent of
quantum physics, new conserved quantities such as baryon and lepton numbers have been
found. Certain conservation laws which lead to hyperbolic differential equations are known
as hyperbolic conservation laws which govern a broad spectrum of physical phenomena
in various fields e.g. material science, solid state physics, astrophysics, cosmology, fluid
dynamics, atmospheric physics and multiphase flows. New problems in plasma physics,
lasers and nonlinear optics created interest in the developments of the theory of nonlinear
hyperbolic equations. In recent years major progress has been made in developing the
theoretical and the numerical aspects of this field. Theory of conservation laws can be
found in [19], [28], [34], [59] and [67]. Examples of first order hyperbolic systems are the
wave equation system, the Maxwell equations and the Euler equations.

Solutions to many hyperbolic equations contain localized phenomena, for example sharp
transition layers and discontinuities or complicated patterns in time (turbulence). In such
cases the exact solution is very difficult to obtain, hence a good numerical approximation
is needed to resolve these discontinuities efficiently. Examples of nonlinear waves are solu-
tions to the Euler equations of gas dynamics, electromagnetic waves in crystals, dynamics
of atomic lattices, surface ocean waves, light propagation along optical wave guides and
traffic problems. Many of the numerical schemes use the finite element method (FEM) or
the finite volume method (FVM) as a discretization procedure. The finite element method
is mostly used for boundary value problems in the incompressible fluid flow, mechanical
deformations and electromagnetic fields. The advantage of the finite element method is
that it is very natural for problems that come from a variational formulation.

On the other hand the FVM, based on the integral formulation of the conservation laws
or other balance laws in divergence form, fulfills the discrete conservation property. It also
resolves discontinuities, e.g. shocks, efficiently. The FVM can discretize a domain in space
using triangles, quadrilaterals or other polygons in 2D and tetrahedra or other polyhedra in
3D. This proves the FVM, like the FEM, to be a better discretization technique than the fi-
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2 CHAPTER 1. INTRODUCTION

nite difference method for complex geometries where an unstructured grid is advantageous.
Physical conservation laws are given by integrals over finite volumes and the FVM is based
on the integral formulation of the fluxes over the boundary of the discretization cells which
are called the control volumes. Hence the FVM is locally conservative. This property is
very important especially in problems where fluxes are important such as fluid dynamics
and heat transfer. It gives the approximate value for the derivative of a field at a given
point using the values of the field at a few locations neighboring the point. The method
uses the divergence theorem, constructs a finite volume around the point, discretizes the
surface bounding the volume and applies the conservation law at each finite volume. The
FVM is also a cheap and feasible method for industrial problems and can be more flexible
than finite difference methods.

Many phenomena in nature which lead to multidimensional systems of hyperbolic differ-
ential equations involve infinite directions of wave propagation, hence for any numerical
scheme used to solve multidimensional systems, it is important to take into account the
infinitely many directions of wave propagation, otherwise the solution suffers from large
discrepancies. Some of the numerical schemes exploit dimensional splitting. The splitting
takes into account the mesh orientation which leads to errors in the solution. Flux vec-
tor splitting schemes (FVS) [31] take into account wave interactions in a few directions
which contribute to the numerical dissipation. In 1994 Quirk [56] reported the failures of
one-dimensional Riemann solvers in multidimensional problems like odd-even decoupling,
carbuncle phenomenon and attributed the failure due to the limitations of one dimensional
method and deficiencies of conservative properties. Later LeVeque [33] also used one-
dimensional Riemann solvers to solve multidimensional hyperbolic systems of conservation
laws by taking into account the fluxes normal to the interfaces as well as in the tangential
directions.

There are two main classes of finite volume schemes, Godunov-type upwind schemes and
central schemes. In both types of methods the approximate solution is realized by a piece-
wise polynomial which is reconstructed from evolving cell-averages.

Godunov’s original scheme [21] forms the basis of all upwind schemes. Its high order and
multidimensional generalizations were constructed, analyzed, and implemented with great
success during the 1970s and 1980s, consult [20, 34, 64] and references therein. Upwind
schemes evaluate their cell-averages over the same spatial cells at all time steps. This in
turn requires characteristic information along the discontinuous interfaces between these
spatial cells. It is needed to rudimentarily construct the wave structure even when using
approximate Riemann solvers and dimensional splitting for multidimensional problems.
This greatly complicates the upwind approach, especially for more complex problems, see
the book by Toro [64] for further details.

All the central schemes can be viewed as extensions of the first-order Lax-Friedrichs (LxF)
scheme [18]. Like the Godunov scheme, these are based on piecewise polynomials approx-
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imate solution. However, their Riemann-solver-free recipe is considerably simpler.

The common feature of all NT central schemes is the evolution of cell averages over stag-
gered cells, that is, cells which alternate every other time step. The importance of stag-
gering is due to the fact that fluxes are computed in neighborhoods around the smooth
midcells of the previous time step. The main advantage is simplicity due to the replacement
of costly Riemann characteristic decompositions from the upwind framework with straight-
forward component wise quadratures and in higher dimensions the dimensional splitting
errors are avoided. At the same time, the use of high-order nonoscillatory piecewise poly-
nomials, which are reconstructed from the staggered cell-averages, retain high resolution
that is comparable with upwind results. For further study of these schemes the reader is
referred to [2, 25, 35, 48].

Morton et al. [47] used the classical characteristic theory, see e.g. Courant and Hilbert
[13], for general linear hyperbolic systems in the context of the finite element method and
derived the so called Evolution Galerkin Schemes (EG). These schemes belong to the cat-
egory of upwind schemes and are genuinely multidimensional as they take into account
infinite directions of wave propagation. They shifted the transported quantities along the
bicharacteristics which were straight lines in this case and then projected on to a finite
element space. Ostkamp [52] extended the idea of EG schemes to the wave equation and
to the nonlinear Euler equations in two space dimensions, however her scheme involved the
calculations of three-dimensional integrals which were not practically feasible especially
for shallow water equations and the nonlinear Euler equations. To overcome this prob-
lem Lukáčová, Morton and Warnecke [41] proposed the finite volume evolution Galerkin
schemes (FVEG) namely EG1, EG2, EG3. In these methods the fluxes are evaluated at
the cell interfaces by using the approximate evolution operators applied at the quadrature
points. Since the approximate evolution operator involves integration around the sonic cir-
cle which constitutes the base of the characteristic cone, all the infinitely many directions
of wave propagations are taken into consideration. These schemes are therefore regarded as
truly multidimensional schemes. In [71] another approximate evolution operator has been
derived which is referred to as EG4 scheme for the two-dimensional wave equation system.
This has been derived from the integral equations by neglecting higher order terms. Both
the EG3 and EG4 schemes are of comparable efficiency however the numerical dissipation
for EG4 is slightly greater than for the EG3 scheme. The approximate evolution operator
for the solution of wave equation in three space dimensions has also been derived in [71].
These methods and their finite volume versions were applied to the nonlinear Euler equa-
tions, see [43], [45], as well as to the linearized Euler equations and Maxwell equations, see
[37], using a square mesh grid.

It is important to mention that these schemes are only first order schemes when a space of
piecewise constant functions is used. To obtain a higher order approximation, a recovery
stage must be coupled to the approximate evolution operator. Higher order finite volume
EG methods have been introduced and studied in [38], [43] and [44]. In [43] a conservative
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bilinear recovery is used to get second order approximation for nonlinear Euler equations.
Error estimates of the schemes have also been discussed. Third order EG scheme [38], has
been derived for a two-dimensional wave equation system. In [46], well balanced FVEG
schemes have been developed for shallow water equations with a geometrical source term
modeling the bottom topography. The stationary states and the quasi stationary states are
evaluated using FVEG scheme. In [40], the stability limits of the first and the second or-
der FVEG schemes are estimated using von-Neumann analysis and Fourier transformation.

In this dissertation we have developed the above mentioned upwind EG schemes for struc-
tured/unstructured triangular meshes. We have applied these schemes to the linear and
nonlinear wave equation systems, the linearized Euler equations, the advection wave equa-
tion and the nonlinear Euler equations. Which turned out to be technically challenging.

Apart from the above mentioned schemes there is another family of schemes called space-
time conservation element and solution element (CE/SE) methods of Chang et al. [6, 7, 8,
73]. Like central schemes, these schemes also do not need Riemann solvers. However, unlike
the upwind schemes and central schemes, the flow variable distribution inside the solution
element (SE) is not calculated through a reconstruction procedure using its neighbouring
values at the same time level. Instead they are calculated as a part of local space-time
flux conservation in the linear case. However in the nonlinear case Chang [6] reverted to
reconstruction by finite differences. A similar procedure was used by Xu [70] for an upwind
kinetic scheme. We propose a way to maintain the slope propagation idea even in the
nonlinear case.

In the CE/SE method, the space time domain of interest is first divided into many con-
servative Elements (CEs). These conservation elements are non-overlapping space-time
domains such that the computational domain is the union of these subdomains. The flux
conservation can be enforced over each of these subdomains and can also be applied to their
union. In each solution element (SE), flow variables are assumed continuous. A first order
Taylor series is then used by Chang et al. to discretize the flow variables. Thus the scheme
is second order accurate. Across the boundaries of neighbouring SEs, flow discontinuities
are allowed. Flow variables are calculated through a local space-time flux balance, which is
enforced by integrating over the surfaces of conservation elements (CE). The number of the
CEs employed matches the number of unknowns designated by the scheme. In addition to
the flow variables, the spatial gradients of the flow variables are also treated as unknowns.
This means that the slopes are propagated separately, instead of the commonly used con-
cept of reconstruction. Note that slope propagation has also been used by Ben-Artzi and
Falcovitz [3]. In order to propagate the slope, two CE are used to solve a one-dimensional
conservation equation, because the variable u and its spatial derivative ux are unknowns.
Similarly three CEs are used for two-dimensional equations, because u, ux and uy are the
unknowns, and four CEs are required for three-dimensional conservation equations. As
shown by Chang et al. [7, 8, 73], triangles, tetrahedra, quadrilateral and hexahedral are
the basic mesh stencils to construct the necessary CEs for two- and three-dimensional equa-
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tions. The CE/SE method is a family of schemes, i.e., the a scheme for linear problems,
the a− ǫ scheme, and the a−α scheme. The a scheme determines the space-time geometry
of the numerical mesh employed. The a − ǫ and the a − α schemes are extensions of a
scheme for nonlinear equations and shock capturing.

In this dissertation we also present a new multidimensional second order method for hy-
perbolic conservation laws. We refer to this method as the slope propagation method (SP-
method). The main aim of our scheme is to retain the advantages of the both the CE/SE
method for linear problems, the a scheme, and central schemes. We derive the scheme in a
simple and straightforward way by using the basic concepts of finite volume schemes and
conservation laws. The scheme uses space-time control volumes in order to compute the
conservative flow variables and their slopes. In our scheme, unlike the CE/SE method, we
do not assume the space-time linear variation of fluxes in each element. We assume in-
stead the linear variation of the conservative flow variables only. The fluxes are calculated
from the flow variables at the midpoint of the faces of the space-time control volumes. We
approximate the time integrals of the fluxes by using the midpoint rule. This procedure
eliminates the use of Jacobian matrices in our scheme. In the one-dimensional case our
staggered mesh stencil is similar to that of central schemes [48] and Chang’s method [6].
Note that Breuss [4] showed that a staggered central scheme produces less oscillations at
local extrema in the data. In the 2D triangular mesh case we use the same staggered stencil
which is used in the CE/SE method [7]. For linear equations, our scheme reduces to the a
scheme of Chang [6] and differs from the central schemes since reconstructions are not used.

The main features of the our scheme are as follows:

(i) Space and time are treated in a unified manner.

(ii) The discrete space-time control volumes are the basic conservation regions.

(iii) The derivatives of the dependent variables are also treated as independent variables.

(iv) The mesh is staggered in time.

(v) A multidimensional scheme is reconstructed on triangular meshes.

(vi) The scheme enjoys the advantages of both central schemes and the CE/SE method.

(vii) The second order accuracy of the scheme is verified with numerical experiments.

1.1 A Overview of the Dissertation

In this dissertation, we extend the FVEG schemes from rectangular to triangular meshes.
We start from the general theory of hyperbolic equations, see [41], described in Chapter
2 and recall the integral equations for a two-dimensional wave equation system using the
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theory of bicharacteristics. We present the solution of the wave equation system using the
approximate evolution operators for EG3 and EG4 schemes applied to structured triangular
meshes. Moreover we give results about L2-error for numerical experiments when exact and
periodic boundary conditions are implemented. A second order approximation is made by
using a linear reconstruction stage which uses three immediate neighbors of a triangle under
consideration. Numerical algorithms for the first and second order schemes are also given.
Further we extend the FVEG scheme to an irregular mesh. The contour plots for first and
second order schemes are given for the individual components of the solution for irregular
mesh. The numerical scheme is further extended to the nonlinear wave equation system [5].

The numerical implementation of EG schemes for triangular meshes is quite involved since
these schemes consider infinite directions of wave propagation to compute fluxes. The
fluxes are computed by using approximate evolution operator which involves integration
along the circumference of a circle known as the sonic circle which is the base of the char-
acteristic cone. The center of the circle lies at the quadrature point. The edge fluxes are
approximated by using Simpson’s rule. In this case our quadrature points are vertices and
midpoints of the edges. Trapezoidal rule can also be used for this purpose which requires
the approximate evolution operator to be applied only at the vertices. At a vertex the
sonic circle is intersected by the neighboring triangles sharing that vertex. To consider
the infinite directions of wave propagation lying inside the circle, one has to compute the
angular contribution of these neighboring triangles. Similarly at the midpoint of the edges
the sonic circle is intersected by two triangles sharing that edge. In this case also the
angular contribution of these triangles is necessary to know for the application of approx-
imate evolution operator. This means that a complete knowledge of the geometry of the
mesh is required for EG schemes. This data include total number of vertex neighbors,
their serial numbers, three immediate neighbors of each triangle, the elements sharing an
edge, the normals to each edge, the centroids of all elements, the coordinates of midpoints,
vertices, element areas, element vertex numbering, edge lengths, the angles subtended by
neighboring triangles at the vertices and at the edges also. We have separated all our codes
into two parts. The first part computes all the geometry data and writes it to a file. The
second part reads that geometry file and implements the EG schemes. This reduces the
computation time considerably.

In Chapter 3, FVEG schemes are applied to the linearized Euler equations both for regular
and irregular triangular meshes. The approximate evolution operators for the linearized
Euler equations have been given and the linearization of the Jacobian matrices is also ex-
plained. The numerical algorithms for the first and second order schemes for the linearized
Euler equations are also given. Results for the advection wave equation system with first
and second order approximations are presented for structured and unstructured triangular
grids. Further we present some numerical tests which demonstrate the efficiency of the
scheme.

The implementation of EG schemes for the linearized Euler equations is more complex than
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the wave equation system. The reason is that due to the advection effect the center of the
sonic circle is displaced and does not coincide with the vertex or the midpoint of the cell
edge, therefore the computation of the angles becomes more complicated. The pressure, the
velocities and the density are freezed locally. The local speed of sound is determined using
these values. This means that some constant value is assigned to these variables outside
the time loop and this value is same at all quadrature points. These values remain constant
with time. The effect of this advection is that now the sonic circle is displaced from the
quadrature point. The extent of this displacement depends upon the local velocities. The
values of the local velocities determine whether the physical condition is subsonic or super-
sonic. In subsonic case the displacement of the sonic circle is small and it still intersects
all the neighboring triangles both for vertex and edge midpoint. The angles subtended by
the neighboring elements are required to be recalculated now. These angles are calculated
with respect to a reference axis with its origin at the center of the displaced circle. For
this purpose the points of intersections of the circle and elements edges are computed. In
the sonic case the displacement of the circle center from the quadrature point is equal to
the radius of the circle, hence the circle is tangent at that point. The computation of the
angles is similar to the subsonic case. However there are various possible positions of the
circle in this case and the program has to search for each possibility. Each possible position
involves different vertex neighbors since in this case all neighboring elements of quadrature
point are not intersected. The code has to sort out the right serial numbers of the triangles
sharing the circle which is not easy. The supersonic case is even more complicated than
the subsonic or sonic cases. Here now the displacement of the circle center is larger than
its radius therefore the circle does not cross the quadrature point. Again there are many
possible positions of the circle, each involving different number of neighboring elements of
the point. In order to determine the angular contribution of different elements to the circle
the code has to find the elements intersecting the circle.

In Chapter 4, we apply the FVEG schemes to nonlinear Euler equations. In this case also
some kind of initial linearization is required. Here we compute local variables inside the
time loop at each vertex and edge midpoint. This is carried out by using a weighted average
of the piecewise constant values at the neigbouring elements of that point. We compute the
length of the arc cut form the circle by an element. This length is considered as a weight
for the piecewise constant value of that element. In this manner the values of the local
variables are different at each vertex or midpoint and in each time cycle these values are
computed from the current values. Since the local velocities also vary with time, the time
step which is a function of these velocities is also variable i.e. for each time cycle we have
a different time step. Note that in case of the linearized Euler equations the time step was
constant because the local velocities were also constant. Furthermore the displacement of
the sonic circle is different at each point. This displacement depends upon the values of
the local velocities at that point. Likewise the angular contributions from the neighboring
elements also vary at each point and each time cycle hence the angles and the number of
neighbors intersected are updated with time. The code switches from subsonic to sonic
or supersonic situation depending upon the values of the current local velocities at a par-
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ticular point. The computational time increases considerably because those computations
which were carried out once for the linearized Euler equations, are performed in each time
cycle. A graphical picture of the three physical conditions and computation of the angles
subtended by the neighbors is presented. For the second order scheme we use the same
recovery that has been used for wave equation system and the linearized Euler equations.
Numerical tests demonstrate the accuracy of the schemes.

In Chapter 5, we derive a new second order slope propagation method (SP-method) which
combines the features of CE/SE methods and central schemes. We use space-time control
volumes as the basic conservation regions. The flow variables and their slopes are the basic
unknowns in the scheme. We assume linear variation of the flow variables with respect
to space and time inside the control volumes. The number of control volumes required
is equal to the number of unknowns. Unlike the CE/SE method of Chang [6], we do
not assume linear variation of fluxes with respect to space and time. Therefore the present
scheme is Jacobian-free as well as Riemann solver-free and hence can also be applied to any
hyperbolic system. We derive this scheme from the conservation law for one-dimensional
hyperbolic system as well as for a two-dimensional hyperbolic system based on a regular
triangular mesh. Further this scheme gives a correct experimental order of convergence
(EOC) in 1D and in 2D with triangular mesh. The scheme is efficiently implemented both
for the wave equation system and the Euler equations in one and two space dimensions.
Different numerical examples are presented and the accuracy of the scheme is compared
with central and EG schemes.



Chapter 2

EG Schemes for the Wave Equation
System

In this chapter we will develop schemes for the two-dimensional wave equation system
based on triangular meshes. Evolution Galerkin schemes (EG) are truly multidimensional
schemes developed by Ostkamp [52] and Lukáčová, Morton and Warnecke [41]. They used
the general theory of linear hyperbolic systems to derive the approximate evolution oper-
ators for the two-dimensional first order wave equation system and Euler equations. In
the above papers rectangular grids were used. The importance of the use of triangular
grids arises from complex geometries where the boundaries are irregular and regular mesh
cannot be constructed. In such cases triangles, quadrilaterals or other polygons can be
used in two dimensions while tetrahedra can be used in three dimensions.

In Section 2.1 and 2.2, we will present the general theory of bicharacteristics for linear
hyperbolic systems and recall the integral equations for the two-dimensional wave equation
system, see [41]. In Section 2.3, we will discuss the finite volume evolution Galerkin scheme
(FVEG) for triangular meshes. In Section 2.4 and 2.5 we discuss the first and second
order EG schemes for the wave equation system and explain its numerical algorithm. For
the second order scheme we discuss the recovery procedure. In Section 2.6 we recall the
nonlinear wave equation [5] and explain the linearization of the coefficients as well as the
numerical algorithms for the first and second order numerical schemes. For the nonlinear
wave equation system we use a different method for the computation of slopes than the
linear wave equation system. Finally we present some numerical experiments and their
results for structured as well as unstructured triangular meshes. The results for structured
and unstructured triangular meshes are equivalent to each other. We present our results for
EG3 and EG4 schemes. EG schemes for triangular and rectangular meshes are compared.

9
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2.1 General Theory

In this section we derive the integral equations for a general linear hyperbolic system. The
general form of the linear hyperbolic system is given as

Ut +
d

∑

k=1

AkUxk
= 0, x = (x1, . . . , xd)

T ∈ R
d , (2.1)

where the coefficient matrices Ak, k = 1, ..., d are elements of R
p×p and the dependent

variables are U = (u1, ..., up)
T = U(x, t) ∈ R

p. Let A(n) =
∑d

k=1 nkAk be the pencil ma-
trix where n = (n1, ..., nd)

T is a directional vector in R
d. Since system (2.1) is hyperbolic

then the matrix A(n) has p real eigenvalues λk, k = 1, ..., p and p corresponding linearly
independent right eigenvectors rk = rk(n), k = 1, ..., p and R = [r1|r2|...|rp] is the matrix
composed of the right eigenvectors. To derive the integral equations, we use the concept of
bicharacteristics. This requires to convert our general hyperbolic system (2.1) into a char-
acteristic system. We define the characteristic variable W = W(n) as ∂W(n) = R−1∂U.
Since system (2.1) has constant coefficient matrices Ak we have W = R−1U or U = RW.
Multiplying equation (2.1) by R−1 from the left we get

R−1Ut +
d

∑

k=1

R−1AkRR−1Uxk
= 0. (2.2)

Let Bk = R−1AkR = (bk
ij)

p
i,j=1, where k = 1, 2, ..., d then equation (2.2) can be rewritten

in the following form

Wt +
d

∑

k=1

BkWxk
= 0.

We decompose the matrix Bk into Bk = Dk+B′
k, where Dk contains the diagonal part of

the matrix Bk, then we get

Wt +
d

∑

k=1

DkWxk
= −

d
∑

k=1

B′
kWxk

=: S. (2.3)

The i-th bicharacteristic corresponding to the i-th equation of (2.3) is defined by

dxi

dt̃
= bii(n) = (b1

ii, b
2
ii, ..., b

d
ii)

T ,

where i = 1, ..., p. Here bk
ii are the diagonal entries of the matrix Bk, k = 1, ..., d, i = 1, ..., p.

We consider the bicharacteristics backward in time. Therefore the initial conditions are
xi(t+∆t,n) = x for all n ∈ R

d and i = 1, ..., p, i.e. xi(t̃,n) = x−bii(n)(t+∆t− t̃). We will
integrate the i-th equation of the system (2.3) from the point P down to the point Qi(n),
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P = (x, y, t + ∆t)

Qi(θ)

P ′t
θ

x

y

Figure 2.1: Bicharacteristics along the Mach cone through P and Qi(n), d = 2.

where the bicharacteristics hit the basic plane. Since the system is linear with constant
coefficients, the bicharacteristics are straight lines in this case.

Now the i-th equation reads

∂wi

∂t
+

d
∑

k=1

bk
ii

∂wi

∂xk

= −

(

d
∑

j=1,i6=j

(

b1
ij

∂wj

∂x1

+ b2
ij

∂wj

∂x2

+ ... + bd
ij

∂wj

∂xd

)

)

= Si, (2.4)

where P ≡ (x, t + ∆t) ∈ R
p ×R+ is taken to be a fixed point, while Qi(n) = (xi(n, t), t) =

(x−∆tbii, t). Taking a vector σi = (b1
ii, b

2
ii, ..., b

d
ii, 1), we can define the directional derivative

dwi

dσi

=

(

∂wi

∂x1

,
∂wi

∂x2

, ...,
∂wi

∂xd

,
∂wi

∂t

)

· σi =
∂wi

∂t
+ b1

ii

∂wi

∂x1

+ b2
ii

∂wi

∂x2

+ ... + bd
ii

∂wi

∂xd

.

Hence the i-th equation (2.4) can be rewritten as follows

dwi

dσi

= Si = −
d

∑

j=1,i6=j

(

b1
ij

∂wj

∂x1

+ b2
ij

∂wj

∂x2

+ ... + bd
ij

∂wj

∂xd

)

.

Now the integration from P to Qi(n) gives

wi(P ) − wi(Qi(n)) = S ′
i, (2.5)

where

S ′
i =

∫ t+∆t

t

Si(xi(t̃,n), t̃,n)dt̃ =

∫ ∆t

0

Si(xi(τ,n), t + ∆t − τ,n)dτ .
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Multiplication of equation (2.5) by R from the left and (d − 1)-dimensional integration of
the variable n over the unit sphere O in R

d leads to the integral representation

U(P ) = U(x, t + ∆t) =
1

|O|

∫

O

R(n)















w1(Q1(n),n)
w2(Q2(n),n)
w3(Q3(n),n)

...
wp(Qp(n),n)















dO + S̃, (2.6)

where

S̃ = (S̃1, S̃2, ..., S̃p)
T =

1

|O|

∫

O

R(n)S′dO =
1

|O|

∫

O

∫ ∆t

0

R(n)S(t + ∆t − τ,n)dτdO ,

and |O| is the domain of integration.

2.2 Exact Integral Equations and Approximate Evo-

lution Operators for the Wave Equation System

We will consider the two-dimensional wave equation system given as

φt + c(ux + vy) = 0 ,
ut + c φx = 0 ,
vt + c φy = 0 ,

(2.7)

where c is a given constant. We recall here the exact integral equations derived in [41].
These are used to derive the so-called finite difference schemes EG1, EG2, EG3 and EG4,
see [41] and [71] for more details on these schemes. Let P = (x, y, t + ∆t), P ′ = (x, y, t),
Q = (x + c∆t cos θ, y + c∆t sin θ, t) = (x + c∆tn(θ), t) and the so-called source term be
given as

S = c
[

ux sin2 θ − (uy + vx) sin θ cos θ + vy cos2 θ
]

, (2.8)

then the exact integral equations are given by

Exact Integral Equations:

φP =
1

2π

∫ 2π

0

(φQ − uQ cos θ − vQ sin θ) dθ + S̃1 , (2.9)

uP =
1

2
uP ′ +

1

2π

∫ 2π

0

(−φQ cos θ + uQ cos2 θ + vQ sin θ cos θ) dθ + S̃2 , (2.10)

vP =
1

2
vP ′ +

1

2π

∫ 2π

0

(−φQ sin θ + uQ cos θ sin θ + vQ sin2 θ dθ + S̃3, (2.11)
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where

S̃1 =
−1

2π

∫ 2π

0

∫ △t

0

S(x + cτn(θ), t + ∆t − τ, θ) dτ dθ,

S̃2 =
1

2π

∫ 2π

0

∫ △t

0

cos θS(x + cτn(θ), t + ∆t − τ, θ) dτ dθ

−
1

2π

∫ 2π

0

∫ △t

0

[

cφx(x, t + ∆t − τ) sin2 θ − cφy(x, t + ∆t − τ) sin θ cos θ
]

dτ dθ,

S̃3 =
1

2π

∫ 2π

0

∫ △t

0

sin θS(x + cτn(θ), t + ∆t − τ, θ) dτ dθ

−
1

2π

∫ 2π

0

∫ ∆t

0

[

cφy(x, t + ∆t − τ) cos2 θ − cφx(x, t + ∆t − τ) sin θ cos θ
]

dτ dθ .

To get an explicit formulation of the solution Un+1 at the point P = (x, y, tn+1), we need
to approximate the time integral from 0 to ∆t in the above equations. This can be done
by using suitable numerical quadrature. We use backward rectangle rule which gives us an
O(∆t2) approximation of the time integrals appearing in S̃1, S̃2 and S̃3. Further we use
the following result [41, Lemma 2.1]

∆t

∫ 2π

0

S(t, θ)dθ =

∫ 2π

0

(u cos θ + v sin θ)dθ .

This gives the approximate evolution operator for the first variable φ. Other expressions
for the time integrals of S cos θ and S sin θ can be used to get approximations for u and
v, see [41]. In the above formula as well as similar formulae for S cos θ and S sin θ, the
derivatives of dependent variable in S have been replaced by the variables themselves.
Hence the approximate evolution operators for EG3 and EG4 are given by

Approximate Evolution Operator for EG3:

φP =
1

2π

∫ 2π

0

(φQ − 2uQ cos θ − 2vQ sin θ)dθ + O(∆t2) , (2.12)

uP =
1

2
uP ′ +

1

2π

∫ 2π

0

(−2φQ cos θ + uQ(3 cos2 θ − 1)

+ 3vQ sin θ cos θ)dθ + O(∆t2) , (2.13)

vP =
1

2
vP ′ +

1

2π

∫ 2π

0

(−2φQ sin θ + 3uQ sin θ cos θ

+ vQ(3 sin2 θ − 1))dθ + O(∆t2) . (2.14)
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Approximate Evolution Operator for EG4:

φP =
1

2π

∫ 2π

0

(φQ − 2uQ cos θ − 2vQ sin θ)dθ + O(∆t2) , (2.15)

uP =
1

2π

∫ 2π

0

(−2φQ cos θ + 2uQ cos2 θ + 2vQ sin θ cos θ)dθ + O(∆t2) , (2.16)

vP =
1

2π

∫ 2π

0

(−2φQ sin θ + 2uQ sin θ cos θ + 2vQ sin2 θ)dθ + O(∆t2) . (2.17)

2.3 Evolution Galerkin Schemes

For simplicity we consider two-dimensional case, i.e. d = 2. Let us consider (Ti)i to be a
general unstructured triangular mesh in R

2. We denote by Hκ(R2) the Sobolov space of
distributions with derivatives up to order κ in L2 space, where κ ∈ N. Consider the general
hyperbolic system given by

Ut +
d

∑

k=1

AkUxk
= 0, x = (x1, . . . , xd)

T ∈ R
d , (2.18)

where the coefficient matrices Ak, k = 1, ..., d are elements of R
p×pand the dependent

variables are U = (u1, ..., up)
T = U(x, t) ∈ R

p. Let us denote by E(s) : (Hκ(R2))p →
(Hκ(R2))p the exact evolution operator for the system (2.1), i.e.

U(., t + s) = E(s)U(., t) . (2.19)

We suppose that Sm
h is a finite element space consisting of piecewise polynomials of order

m ≥ 0 with respect to the triangular mesh. Assume constant time step, i.e. tn = n∆t. Let
Un be an approximation in the space Sm

h to the exact solution u(., tn) at time tn ≥ 0. We
consider Eτ : L1

loc(R
2) → (Hκ(R2))p to be a suitable approximate evolution operator for

E(τ). In practice we will use restrictions of Eτ to the subspace Sm
h for m ≥ 0. We denote

by Rh : Sm
h → Sr

h a recovery stage, r > m ≥ 0 and consider our approximate evolution
operator Eτ on Sr

h. Further we will limit our considerations to the case where m = 0. Then
we define finite volume evolution Galerkin scheme as:

Definition 2.1 Starting from some initial data U0 ∈ Sm
h , the finite volume evolution

Galerkin method (FVEG) is recursively defined by means of

Un+1
i = Un

i −
1

|Ti|

∫ ∆t

0

3
∑

j=1

(

nxsij
f
(

Ũ
n+ τ

∆t
sij

)

+ nysij
g

(

Ũ
n+ τ

∆t
sij

))

dτ , (2.20)

where nxsij
f(Ũ

n+ τ
∆t

sij
) and nysij

g(Ũ
n+ τ

∆t
sij

) represent approximations to the edge fluxes and

nsij
= (nxsij

, nysij
)T is the outward normal to the side sij and |Ti| is the area of the
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Ti
Ti1

Ti2

Ti3

nsi2

Figure 2.2: Stencil for the second order reconstruction.

element Ti, see Figure 2.2. The cell boundary value Ũ
n+ τ

∆t
sij

is evolved using the approximate
evolution operator Eτ to tn + τ and integrated along the cell boundary, i.e.

Ũ
n+ τ

∆t
sij

=

∫

sij

EτRhU
ndL . (2.21)

The integral in equation (2.21) is evaluated by means of some numerical quadratures such
as Simpson’s rule

Ũ
n+ τ

∆t
sij

=
|∂Tij |

6
[Eτ Rh Un(A) + 4Eτ RhU

n(M) + Eτ Rh Un(B)] , (2.22)

where A and B are the vertices and M is the middle point of the boundary ∂Tij or the
trapezoidal rule

Ũ
n+ τ

∆t
sij

=
|∂Tij|

2
[Eτ RhU

n(A) + Eτ Rh Un(B)] . (2.23)

Moreover when Rh is the identity mapping, i.e when we carry out no recovery then the
approximate values Un are piecewise constants. Considering these piecewise constants,
the resulting schemes will only be of first order, even when Eτ is approximated to a higher
order. Hence by inserting a recovery stage Rh before the evolution step in equation (2.21)
we obtain higher order schemes. For more details on higher order finite volume evolution
Galerkin schemes see [38], [43] and [45]. For other schemes on triangular meshes see
[1, 17, 23, 24, 32, 62]. We approximate the time integral in Definition 2.1 by using the
midpoint rule.

tn+1
∫

tn

f(t)dt = ∆tf(tn+ 1
2 ) + O(∆t3) .

Hence we obtain

Un+1
i = Un

i −
∆t

|Ti|

3
∑

j=1

(

f(Ũ
n+ 1

2
sij

)nxsij
+ g(Ũ

n+ 1
2

sij
)nysij

)

.
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Let hmin = min
i

hi, where hi = min
j=1,2,3

|hsij
| and |hsij

| is the distance between the center of

gravity of Ti and the midpoint of side sij . The time step is computed using

∆t =
hminCFL

c
.

Where CFL stands for the Courant, Friedrichs and Levy number [12]. The reason for
making this choice of hmin is that the radius of the sonic circle must be smaller enough so
that the circle is confined only to the immediate neighbors at the quadrature point.

2.4 First Order Schemes

In this section we give the first order numerical algorithms for finite volume evolution
Galerkin schemes for the wave equation system. As we mentioned, using piecewise constant
values Un, i.e. when no recovery is applied, the numerical schemes are always first order
schemes. The algorithm for the first order finite evolution Galerkin scheme is given as:

• Input the initial data: φ0
i , u0

i , v0
i .

• Compute the time step ∆t = CFL(hmin

c
).

• Do the time loop

1. Compute the intermediate values: φ̃
n+ 1

2
sij

, ũ
n+ 1

2
sij

, ṽ
n+ 1

2
sij

.

2. Update:

φn+1
i = φn

i −
c∆t

|Ti|

3
∑

j=1

(

nxsij
ũ

n+ 1

2
sij

+ nysij
ṽ

n+ 1

2
sij

)

, (2.24)

un+1
i = un

i −
c∆t

|Ti|

3
∑

j=1

nxsij
φ̃

n+ 1
2

sij
, (2.25)

vn+1
i = vn

i −
c∆t

|Ti|

3
∑

j=1

nysij
φ̃

n+ 1
2

sij
. (2.26)

3. Apply the boundary conditions.

• End the time loop.

The crucial step in this algorithm is to find the intermediate values Ũ
n+ 1

2
sij

. Here we apply

the approximate evolution operator. Let us put Un+ 1
2 = E∆t

2
Un then

Ũ
n+ 1

2
sij

=

∫

sij

Un+ 1

2 dL . (2.27)
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As we stated before, we approximate the integral in equation (2.27) either by using Simp-

son’s rule or by means of the trapezoidal rule. This requires the evaluation of Un+ 1

2 at the
two vertices as well as the midpoint of each side sij , see Figure 2.3. Details on boundary
conditions for structured triangular meshes are given in Appendix A. Consider the first

α
α1α2

α3 α4

α5

β

Ti

Ti1

Ti2

Ti3

Tr

Ts

AB

C

si1

Figure 2.3: Stencil for computation of angles at quadrature points.

side of the element Ti, i.e the side si1, then to evaluate the cone base integral required
to determine Un+ 1

2 at the vertex A, we determine the angles α, α1, α2, α3, α4, α5 where
α + α5 is the contribution from the element Ts, α4 is the contribution from the element Tr

and α1, α2, α3 are the contributions from the elements Ti2 , Ti, Ti1 respectively. Then the
integral from 0 to 2π is evaluated according to the sequence

0 −→ α −→ α1 + α −→
2

∑

l=1

αl + α −→
3

∑

l=1

αl + α −→
4

∑

l=1

αl + α −→ 2π .

The piecewise constant Un is taken to be

Un =































Un
s , 0 < θ < α,

Un
i2

, α < θ < α1 + α,

Un
i , α1 + α < θ <

∑2
l=1 αl + α,

Un
i1

,
∑2

l=1 αl + α < θ <
∑3

l=1 αl + α,

Un
r ,

∑3
l=1 αl + α < θ <

∑4
l=1 αl + α,

Un
s ,

∑4
l=1 αl + α < θ < 2π .
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To determine the intermediate value Un+ 1
2 at the midpoint we determine the angle β, see

Figure 2.3. The cone base integral is evaluated according to the sequence

−β −→ π − β −→ 2π − β.

In this case the piecewise constant Un is taken to be

Un =

{

Un
i , −β < θ < π − β,

Un
i1

, π − β < θ < 2π − β.

2.5 Second Order Schemes

To have second order schemes, a recovery stage is required to be carried out before the
evolution step. A recovery method for triangular meshes is given in the book by Sonar [61]
where two edge neighbors of a triangle are used to compute the slopes. We use the same
linear recovery given as follows

RhU
n
∣

∣

∣

Ti

= Uc + Ux(x − xci
) + Uy(y − yci

), (2.28)

where (xci
, yci

) is the centroid of the element Ti. The coefficients Uc, Ux and Uy are
determined such that

1

|Tij |

∫

Tij

RhU
ndx.dy = Un

ij
, j = 1, 2, 3 .

Where Tij are the three close neighbors to the cell Ti, i.e. the neighbors having one edge in
common with it, see Figure 2.2. To maintain conservativity, we adjust the recovery such
that it preserves cell averages.

2.5.1 Recovery with Three Neighbors

Consider the recovery given by equation (2.28). We use three neighbors to compute the
slopes. In [61] only two neighbors have been used, however we have modified this method
by using three edge neighbors to compute flux slopes. This method gives slightly better
results than the one with two neighbors. Taking averages over the ith cell neighbors gives

Ui1 = Uc + Ux

1

|Ti1 |

∫

Ti1

(x − xci
)dx dy + Uy

1

|Ti1 |

∫

Ti1

(y − yci
)dx dy , (2.29)

Ui2 = Uc + Ux

1

|Ti2 |

∫

Ti2

(x − xci
)dx dy + Uy

1

|Ti2 |

∫

Ti2

(y − yci
)dx dy , (2.30)



2.5. SECOND ORDER SCHEMES 19

Ui3 = Uc + Ux

1

|Ti3 |

∫

Ti3

(x − xci
)dx dy + Uy

1

|Ti3 |

∫

Ti3

(y − yci
)dx dy . (2.31)

This implies that

Ui1 = Uc + Ux(xci1
− xci

) + Uy(yci1
− yci

) (2.32)

Ui2 = Uc + Ux(xci2
− xci

) + Uy(yci2
− yci

) , (2.33)

Ui3 = Uc + Ux(xci3
− xci

) + Uy(yci3
− yci

) . (2.34)

Solving this system of algebraic equations, we get the coefficients Uc, Ux and Uy. Finally to
preserve the conservativity property we take Uc equal to Ui = 1

|Ti|

∫

Ti

RhU
n dxdy. Another

procedure for the second order reconstruction is the least squares method, given in [50] and
[14]. This method gives equivalent results to one we discussed. For other reconstruction
methods see [62].

2.5.2 Numerical Algorithm

Now the Numerical algorithm for the second order finite evolution Galerkin scheme is given
as:

• Input the initial data: φ0
i , u0

i , v0
i .

• Carry out the recovery stage.

• Compute the time step ∆t.

• Do the time loop

1. Compute the intermediate values: φ̃
n+ 1

2
sij

, ũ
n+ 1

2
sij

, ṽ
n+ 1

2
sij

.

2. Update: Equations (2.24)-(2.26).

3. Carry out the recovery stage.

4. Apply the boundary conditions.

• End the time loop.

Note that in this algorithm as well as in the first order one, we have used the boundary
conditions described in Appendix A.
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2.6 Nonlinear Wave Equation System

In the previous algorithms we have numerically solved the linear wave equation system.
There are various phenomena which can be modeled by the nonlinear wave equation sys-
tem [5]. In this case nonlinear effects cannot be ignored. If these effects are taken into
consideration then jumps in solutions (shocks) can occur. In fluid dynamics these nonlinear
effects create two main problems, instabilities and generation of new wave modes through
nonlinear wave interactions. Many physical processes such as phase changes are nonlin-
ear. In the Navier-Stokes equations the most significant nonlinear term is the advection
term. However different nonlinear phenomena are modeled by different equations such as
Euler equations, shallow water equations and Burgers equation. In most of these equations
the nonlinearity is the quadratic nonlinearity. In the linear problem, all the points of the
wave move at a constant speed and the shape of the wave does not change, however for
a nonlinear wave, different parts of the wave advect themselves according to their local
speeds such that the local speed depends upon the wave amplitude and hence the shape
of the wave changes with time. This process soon leads to a shock. In this section we
discuss the nonlinear wave equation system which describes the compressible flow. This
system has been derived in [5] from the inviscid system of compressible Euler equations
of gas dynamics by neglecting the inertial terms. The equation is well posed in space and
time and have a nonlinear acoustic-wave dependence similar to gas dynamic equations. In
addition the equation can be changed to second order quasi linear self similar equation
at the sonic line where it becomes a parabolic equation. It offers a more realistic model
for gas dynamics. Note that the pressure-gradient equations derived by Zhang et al., see
[36] and [72] for details, are similar to nonlinear wave equations. The compressible Euler
equations for isentropic flow in two space dimensions are as follows.

ρt + (ρu)x + (ρv)y = 0 ,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0 ,

(ρv)t + (ρuv)x + (ρv2 + p)y = 0 , (2.35)

where ρ u, v and p(ρ) stand for the density, the components of velocity and the pressure
respectively. The pressure and density are related through the relation p(ρ) = Aργ , where
γ > 1 is the ratio of specific heats. The local speed of sound is c2 = dp

dρ
. If we neglect the

quadratic terms in u and v in system (2.35) and substitute f = ρu and g = ρv, dp

dx
= c2ρx

and dp

dy
= c2ρy then we obtain the following nonlinear wave equation system.

ρt + fx + gy = 0 ,

ft + c2ρx = 0 ,

gt + c2ρy = 0 , (2.36)

where ρ, f and g are conservative variables. We linearize this equation by freezing the
pressure, density and speed of sound locally. The linearized coefficients are denoted by p′,
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ρ′ and c′. Substituting φ = c′ ρ, we obtain the linearized wave equation as follows

φt + c′(fx + gy) = 0 ,

ft + c′φx = 0 ,

gt + c′φy = 0 . (2.37)

The above equation resembles the wave equation system (2.7) and we can use the evolution
operators (2.12)-(2.17) to calculate the fluxes. Linearization can be done in two ways;
linearization of the coefficients at each element and linearization of the coefficients at each
quadrature point which includes the vertices and midpoints of the edges of the triangle. In
the former method the local variables have constant value at every element in a particular
time cycle which is computed by taking simple average of the values from the edge neighbors
of the element. In the later method coefficients are freezed at vertices and midpoints of
the edges. In this case the values of the local variable for a vertex are computed by taking
simple average of the values at the neighbouring elements sharing a vertex while for the
midpoint of the edges, the elements sharing the edge are used. We have used the former
method in the first order scheme and later method in the second order scheme. In the first
order scheme both methods work well. For the second order method however linearization
at each quadrature point is required to compute the intermediate values φ̃

n+ 1
2

sij
, f̃

n+ 1
2

sij
and

g̃
n+ 1

2
sij

.

2.6.1 First Order Schemes

The numerical algorithms for the first order as well as the second order EG schemes for the
nonlinear wave equation system are similar to the algorithms for the linear wave equation
system given in Section 2.4 and 2.5. The solution at each quadrature point has been
approximated by taking the piecewise constant value Un from the close neighbors. The
contribution from each neighbor is taken according to the angular sector cut by the base
of the Mach cone. In the nonlinear wave equation system, our primitive variables are ρ, u,
v and p while the conservative variables are ρ, f and g. The time step is computed using

∆t =
CFLhmin

c′
.

Since the local speed of sound is computed in each time cycle using the current data,
therefore time step is variable. The numerical algorithm for the first order finite volume
evolution Galerkin scheme for the nonlinear wave equation system reads:

• Input the initial data:

– The primitive variables ρ0
i , u0

i , v0
i , p0

i .

– Compute φ0
i and the conservative variables f0

i , g0
i .

• Do the time loop
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1. Compute the local variable c′.

2. Compute the time step ∆t.

3. Compute the intermediate values: φ̃
n+ 1

2
sij

, f̃
n+ 1

2
sij

, g̃
n+ 1

2
sij

.

4. Update:

φn+1
i = φn

i −
c′∆t

|Ti|

3
∑

j=1

(

nxsij
f̃

n+ 1

2
sij

+ nysij
g̃

n+ 1

2
sij

)

, (2.38)

fn+1
i = fn

i −
c′∆t

|Ti|

3
∑

j=1

nxsij
φ̃

n+ 1
2

sij
, (2.39)

gn+1
i = gn

i −
c′∆t

|Ti|

3
∑

j=1

nysij
φ̃

n+ 1
2

sij
. (2.40)

5. Compute the primitive variables ρi, ui, vi, pi.

6. Apply the boundary conditions.

• End the time loop.

Note that the updated values of the primitive variables ρ and p have been used to determine

the local speed of sound c′ =
√

γp′

ρ′
, φ, f and g. Moreover the updated conservative vari-

ables have been used in the approximate evolution operator to determine the intermediate

values φ̃
n+ 1

2
sij , f̃

n+ 1

2
sij and g̃

n+ 1

2
sij .

2.6.2 Second Order Schemes

In this subsection we present the second order scheme for the nonlinear wave equation
system. We will use linear recovery of the form (2.28). The method stated in Section
2.5 for the determination of the slopes gives oscillation in in case of the nonlinear wave
equation system. Therefore we have used a central difference type reconstruction approach
used by Zhang et al. in [73]. This procedure automatically limits the slopes. However this
is not a min-mod limiter. Let (xcij

, ycij
), j = 1, 2, 3 denote the coordinates of the centroids

of the edge neighbors of the element Ti and let (xci
, yci

) be the coordinates of the centroid
of Ti. Set

∆xj = xcij
− xci

, ∆yj = ycij
− yci

, ∆U(j) = Uij − Ui , j = 1, 2, 3.

Then the slopes are given by

Ux
(i) =

1

3

3
∑

j=1

Ux
(j), Uy

(i) =
1

3

3
∑

j=1

Uy
(j) ,
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with

Ux
(j) =

Dx
(j)

D
, Uy

(j) =
Dy

(j)

D
,

where

D :=

∣

∣

∣

∣

∆x1 ∆y1

∆x2 ∆y2

∣

∣

∣

∣

, D
(1)
x :=

∣

∣

∣

∣

∆U(1) ∆y1

∆U(2) ∆y2

∣

∣

∣

∣

, D
(1)
y :=

∣

∣

∣

∣

∆x1 ∆U(1)

∆x2 ∆U(2)

∣

∣

∣

∣

, (2.41)

D
(2)
x :=

∣

∣

∣

∣

∆U(2) ∆y2

∆U(3) ∆y3

∣

∣

∣

∣

, D
(2)
y :=

∣

∣

∣

∣

∆x2 ∆U(2)

∆x3 ∆U(3)

∣

∣

∣

∣

, (2.42)

D
(3)
x :=

∣

∣

∣

∣

∆U(3) ∆y3

∆U(1) ∆y1

∣

∣

∣

∣

, D
(3)
y :=

∣

∣

∣

∣

∆x3 ∆U(3)

∆x1 ∆U(1)

∣

∣

∣

∣

. (2.43)

Moreover to eliminate spurious oscillations further, one can modify by a re-weighting pro-
cedure as

Ux
(i) =

3
∑

j=1

W (j)Ux
(j)

3
∑

j=1

W (j)

, Uy
(i) =

3
∑

j=1

W (j)Uy
(j)

3
∑

j=1

W (j)

,

where

W (j) =
3

∏

l=1,l 6=j

θl , and θl =

√

(Ux
(l)2 + (Uy

(l)2 .

Now the numerical algorithm for the second order finite volume EG scheme for the nonlinear
wave equation resembles the first order algorithm except for the recovery stage which is
carried out before the evolution step.

2.7 Numerical Experiments

Example 2.1

We consider the two-dimensional wave equation system (2.7) together with the initial data

φ(x, 0) = −
1

c
(sin 2πx + sin 2πy), u(x, 0) = 0 = v(x, 0) .

In this case the exact solution is

φ(x, t) = −
1

c
cos(2πct)(sin(2πx) + sin(2πy)) ,

u(x, t) =
1

c
sin(2πct) cos(2πx) ,

v(x, t) =
1

c
sin(2πct) cos(2πy) .
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Where c is a given constant. We take c = 1 and consider a computational domain Ω =
[−1, 1] × [−1, 1]. If Nx and Ny are the number of rectangular cells along x and y-axis
respectively in the regular triangular mesh then 2NxNy will be the number of triangular
cells in the mesh. We denote the total number of triangular cells by N . In this experiment
we used end time T = 0.2 and CFL = 0.4. Table 2.3 shows the L2-error between the
exact and the approximated solutions using the first order EG4 scheme. The first column
indicates the total number of triangular cells in the mesh. The next four columns show the
L2-error with individual components φ, u, v and the combined error respectively. The last
column represents the so-called experimental order of convergence (EOC), which is defined
with respect to the Lp-norm

EOC = ln

[

||u − Un
h||Lp

||u − Un
h
2

||Lp

]

/ ln(2), for (1 < p < ∞).

where h
2

and h are the two consecutive mesh sizes. Moreover L1 and L2-error are given as

||u − Un
h||L1 =

N
∑

i=1

|Ti||u − Un
h| and ||u − Un

h||L2 =

√

√

√

√

N
∑

i=1

|Ti||u − Un
h|

2 .

In Appendix B we show results of first order EG schemes with periodic boundary con-
ditions and with two different types of structured triangular meshes. Further Tables 2.1
and B.2 present the L2-error for EG3 scheme with exact and periodic boundary conditions
respectively.

The plots for second order numerical schemes are shown in Figures 2.5 and 2.7. We also
present some results for an unstructured triangular mesh and compare it with the results
obtained from a structured mesh. Tables 2.7 and 2.8 show the L2-error for an unstructured
mesh and a structured mesh with comparable number of total elements because it is difficult
to get exactly equal number of elements for a structured and an unstructured mesh. Note
that the first column stands for the total number of elements in the mesh. For unstructured
meshes we implement exact boundary conditions.

2.7.1 Discussion of First Order Results

First order results for EG schemes are presented in Tables 2.1 and 2.3. We see from these
tables that the error in the component φ is half of the error in u and v when exact bound-
ary conditions were used while for periodic boundary conditions, see Tables B.2 and B.1,
the error in φ slightly exceeds that of u and v. The reason for this behavior of φ may be
due to the fact that φ is a function of both x and y while u and v are functions of one
coordinate, that is either x or y. Therefore with periodic boundary conditions the accuracy
for φ is less than the other two components. The last column indicates that an EOC of 1
is achieved successfully for both EG3 and EG4 schemes which implies that both schemes
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are of first order when no recovery is carried out. In Figure 2.4 and 2.6 top we plot the
numerical solution of φ along the line y = 0 using the first order EG3 and EG4 schemes.
We considered meshes consisting of 2 × 40 × 40 and 2 × 160 × 160 number of elements.
At the bottom we plot the numerical solution of u. These plots clearly indicate that the
developed schemes predict the smooth waves in a good manner. The accuracy of the EG3
is slightly better than the EG4 scheme. Te results of first order EG schemes with periodic
periodic boundary conditions are given in Tables B.1, B.2, B.5 and B.6. These results
indicate that such boundary conditions work well for triangular meshes.

We have applied the EG schemes to the two types of regular meshes shown in Figure
A.1. It is clear from these results that we obtain more accurate results with mesh 2 as
compared to mesh 1. A possible explanation to these results is that, mesh 2 is more uniform
as compared to mesh 1 since the number of neighboring elements at each vertex remain
same i.e. 6 elements for mesh 2. For mesh 1 there are two types of vertices, namely vertices
with 4 neighboring triangles and vertices with 8 neighbors. For symmetric initial data such
as those in Example 2.7, the uniformity of the mesh also contributes to the accuracy of the
solution to some extent. This behavior is evident in both first and second order EG3 and
EG4 schemes. In Tables 2.5 and 2.6, we compare the results for first order EG4 scheme on
an unstructured mesh as well as on structured mesh 2. We employ, as boundary conditions,
the values of the known exact solution. It is clear that for an irregular mesh the error in
the individual components of the solution and the total error are comparable with that
of a regular mesh. Moreover the EOC in the last column shows that the first order EG
schemes have equally good results for an irregular mesh. However one important thing is
the symmetry of the function u and v which is reflected in the error also, has not been
maintained for irregular meshs. For a regular mesh the error in u and v is symmetric upto
the last digit. This effect is obvious due to the non-uniformity of the mesh. The isolines of
the solution components φ, u and v for the first order EG4 scheme are shown in Figure 2.8
with an unstructured mesh. The isolines of φ consist of small circular waves distributed
regularly in the region. The plot for the component u consists of vertical lines while that
of v contains horizontal lines showing the dependence of u on x coordinate and v on y
coordinate.

We have also compared first order EG4 scheme on rectangular and structured triangu-
lar meshes. The L2-error is shown in Table 2.9. We take Nx number of rectangles along
x-axis and Ny number of rectangles along y-axis. Then the number of triangles in the
triangular mesh are taken as 2NxNy. Here NR represents the total number of rectangles
and N represents the total number of triangles in the mesh. In Figure 2.9, we plot the com-
ponents φ and u on rectangular and triangular meshes for 50× 50 rectangles or 2× 50× 50
triangles after T = 0.2. Both the L2-errors and plots agree with each other for both types
of meshes.
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2.7.2 Second Order Results and Convergence Problems

Tables 2.2 and 2.4 show the L2-error and the EOC results for the second order EG schemes.
If we compare both these tables, then the error for the second order EG4 scheme is 9 times
smaller than that of the first order scheme for the same number of mesh points. Similar
behavior can be seen with the EG3 scheme, see Tables 2.1 and 2.2. Further note that
EOC equal to 2 is not achieved although we couple a recovery step with the evolution
step in the second order scheme. However the plots for the second order EG schemes
demonstrate improved accuracy and resolution over the first order schemes, see Figures
2.5 and 2.7. We have also tested other kinds of recoveries for the second order schemes
including least squares recovery [14] and recovery using two neighbors. However the results
are not included in this thesis. The accuracy of least squares recovery is comparable with
that described in Section 2.5. While the the reconstruction using two edge neighbors of
triangle gives slightly more disspation. However none of then gives the correct EOC. In
Tables B.13-B.15, we present the L1-error for the second order EG4 scheme with CFL =
0.1, 0.2 and 0.4 respectively. We notice that with CFL = 0.1, the EOC is better however
as we increase the CFL number, the EOC values drop. Another aspect of this convergence
behavior is that when the mesh size increases, the EOC decreases gradually both for EG3
and EG4 schemes. This can be seen in Tables 2.2 and 2.4. The reasons for this kind of
convergence behavior of EG schemes for triangular meshes are yet to be explored.

In the above results we have used Simpson’s rule for computing edge flux integrals. We
have also tested the trapezoidal rule. In the later case we need to apply the evolution

operator at the vertices of the triangle to obtain Ũ
n+ 1

2
sij

, while in the case of Simpson’s rule
we need these computations at the midpoints of the edges as well as at the vertices. In
Tables B.9-B.12, we present results for EG schemes with trapezoidal rule. These results
show that for both EG3 and EG4 schemes, the L2-error is considerably greater than the one
we have obtained when Simpson’s rule was used. This means that for EG schemes when
used together with triangular meshes, Simpson’s rule provides a better approximation of
the edge fluxes as compared to the trapezoidal rule. In fact in a single triangle Simpson’s
rule uses information at 6 points, three vertices and 3 midpoints, while the trapezoidal rule
uses information at 3 points only. Figures 2.5 and 2.7 show the one-dimensional profiles for
the components φ and u along the line y = 0 for the second order EG4 and EG3 schemes
respectively. At the top φ is plotted for two meshes consisting of 2×40×40 and 2×160×160
elements. It is evident that with the increase of mesh size the numerical solution approaches
much closer to the exact solution and almost completely overlaps it. At the bottom we
plot u for similar mesh sizes. Here also the exact solution is in good agreement with the
numerical solution. If we compare these plots with the first order schemes, see Figures 2.4
and 2.6, we notice a clear improvement of accuracy in the second order schemes. In Tables
2.7 and 2.8 we compare the second order results for the EG4 scheme for an unstructured
and a structured mesh with approximately the same number of mesh points. The L2-error
for individual solution components and the total error is comparable with that of structured
meshes. The non-symmetry of u and v in L2-error can also be seen for the second order
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scheme. The convergence behavior of the EG schemes for an unstructured mesh therefore
is similar to that of a structured mesh. From Tables 2.5 and 2.7, we can see that the error
for second order EG schemes is 11 times smaller than that of first order for an unstructured
mesh. This suggests that apart from convergence difficulties, the accuracy of the second
order EG schemes increases considerably than the first order and the schemes are suitable
for irregular meshes. Isolines of the solution components for the second order EG4 scheme
with irregular mesh are shown in Figure 2.8 for 80899 number of mesh points. The second
order scheme gives better resolution in the plots and spurious oscillations and noise are
diminished considerably.

Example 2.2

We consider the nonlinear wave equation system (2.37) together with the following initial
data

(ρ, u, v, p) =

{

(1, 0, 0, 1) if (x2 + y2) < 0.16
(0.125, 0, 0, 0.1) otherwise .

The above problem has been given in [64]. We take the computational domain to be
Ω = [−1, 1] × [−1, 1], the CFL = 0.4 and the absolute time T = 0.1. Furthermore we
keep A = 2 and γ = 1.4. We consider a structured triangular mesh labelled as mesh 2 in
Figure A.1 for this test. Note that in the above initial data, the pressure inside a circular
region of radius 0.4 is greater than the outside pressure. Similarly there is a difference of
density inside and outside the circular region initially. The density and pressure gradients
set a circular shock wave which moves outward towards the periphery of the region and a
rarefaction wave starts moving inside into the high density region. Figures 2.10 and 2.11
show the profiles of the density, velocities and pressure for 2 × 200 × 200 mesh elements
for the first and the second order EG4 schemes. We have used extrapolated boundary
conditions, see Appendix A for boundary conditions on structured triangular meshes. The
second order scheme has some oscillations in the solution. The plots show the interaction of
nonlinear waves, the propagation of a shock and its impact on the profiles of flow variables.
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Figure 2.4: First order EG3 scheme with exact boundary conditions.
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Table 2.1: First order EG3 scheme (mesh 2, exact boundary).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2 EOC
2 × 20 × 20 0.1513202875 0.3098260720 0.3098260720 0.4635539011
2 × 40 × 40 0.1016266255 0.1792780749 0.1792780749 0.2731468970 0.76
2 × 80 × 80 0.0584809029 0.0961872890 0.0961872890 0.1480675696 0.88

2 × 160 × 160 0.0312883404 0.0497925600 0.0497925600 0.0770555534 0.94
2 × 320 × 320 0.0162095376 0.0253378738 0.0253378738 0.0393289309 0.97

Table 2.2: Second order EG3 scheme (mesh 2, exact boundary).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2 EOC
2 × 20 × 20 0.0388933622 0.0290612690 0.0290612690 0.0565845239
2 × 40 × 40 0.0188297133 0.0125462456 0.0125462456 0.0258722760 1.13
2 × 80 × 80 0.0094591803 0.0060458639 0.0060458639 0.0127507268 1.02

2 × 160 × 160 0.0043670276 0.0029125732 0.0029125732 0.0060030905 1.10
2 × 320 × 320 0.0020982338 0.0014358420 0.0014358420 0.0029199092 1.04

Table 2.3: First order EG4 scheme (mesh 2, exact boundary).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2 EOC
2 × 20 × 20 0.1556852847 0.3106859459 0.3106859459 0.4661431345
2 × 40 × 40 0.1031277917 0.1795746993 0.1795746993 0.2740975861 0.77
2 × 80 × 80 0.0588980225 0.0962762052 0.0962762052 0.1483482135 0.89

2 × 160 × 160 0.0313897503 0.0498186003 0.0498186003 0.0771304240 0.95
2 × 320 × 320 0.0162095376 0.0253378738 0.0253378738 0.0393289309 0.98

Table 2.4: Second order EG4 scheme (mesh 2, exact boundary).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2 EOC
2 × 20 × 20 0.0298919468 0.0315855121 0.0315855121 0.0537477222
2 × 40 × 40 0.0165818142 0.0130849813 0.0130849813 0.0248473346 1.11
2 × 80 × 80 0.0089848325 0.0062160476 0.0062160476 0.0125700323 0.98

2 × 160 × 160 0.0042790672 0.0029796329 0.0029796329 0.0060055675 1.07
2 × 320 × 320 0.0020943985 0.0014642937 0.0014642937 0.0029453043 1.03
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Table 2.5: First order EG4 scheme with unstructured mesh.

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2

1264 0.1374568482 0.2574950398 0.2541604479 0.3870343834
5056 0.0859348871 0.1449409851 0.1425261079 0.2206952320
20224 0.0477021186 0.0767743899 0.0753626372 0.1176831600
80896 0.0243922168 0.0388246755 0.0380538406 0.0595854886
323584 0.0125515859 0.0197116202 0.0193092005 0.0303139490

Table 2.6: First order EG4 scheme with structured mesh.

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2

1352 0.1373479698 0.2557249796 0.2557249796 0.3868526789
5408 0.0842542833 0.1426600046 0.1426600046 0.2186379155
21632 0.0466051448 0.0752423735 0.0752423735 0.1161674183
81608 0.0251891793 0.0397398351 0.0397398351 0.0615873668
323208 0.0129899128 0.0202397963 0.0202397963 0.0314330487

Table 2.7: Second order EG4 scheme with unstructured mesh.

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2

1264 0.0197490039 0.0202446344 0.0206034017 0.0349909780
5056 0.0081457957 0.0071086259 0.0071999686 0.0129894611
20224 0.0042207817 0.0031803658 0.0032108200 0.0061837764
80896 0.0027861919 0.0020034522 0.0020278136 0.0039860651
323584 0.0014438052 0.0010112703 0.0010188165 0.0020359834

Table 2.8: Second order EG4 scheme with structured mesh.

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2

1352 0.0271745183 0.0226698987 0.0226698987 0.0420274085
5408 0.0123436358 0.0095945948 0.0095945948 0.0183433324
21632 0.0063715796 0.0045995503 0.0045995503 0.0091054243
81608 0.0034771196 0.0024646569 0.0025095746 0.0049459942
323208 0.0017069590 0.0011914380 0.0011899982 0.0023977759
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Figure 2.5: Second order EG3 scheme with exact boundary conditions.
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Figure 2.6: First order EG4 scheme with exact boundary conditions.
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Figure 2.7: Second order EG4 scheme with exact boundary conditions.
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Figure 2.8: EG4 scheme with unstructured mesh.
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Table 2.9: Comparison of L2-error for rectangular and triangular meshes.

NR ‖U(T ) − Un‖L2 N ‖U(T ) − Un‖L2

10 × 10 0.78670057163 2 × 10 × 10 0.69557797306
20 × 20 0.52951479563 2 × 20 × 20 0.46614313451
40 × 40 0.29694241375 2 × 40 × 40 0.27409758620
80 × 80 0.15897466957 2 × 80 × 80 0.14834821358

160 × 160 0.08259065119 2 × 160 × 160 0.07713042402
320 × 320 0.04216591393 2 × 320 × 320 0.03932893099
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Figure 2.9: Comparison of EG4 scheme using rectangular and triangular meshes.



36 CHAPTER 2. EG SCHEMES FOR THE WAVE EQUATION SYSTEM

−1 −0.6 −0.2 0.2 0.6 1
−1

−0.6

−0.2

0.2

0.6

1
rho

x−axis

y−
ax

is

−1 −0.6 −0.2 0.2 0.6 1
−1

−0.6

−0.2

0.2

0.6

1
u

x−axis

y−
ax

is

−1 −0.6 −0.2 0.2 0.6 1
−1

−0.6

−0.2

0.2

0.6

1
v

x−axis

y−
ax

is

−1 −0.6 −0.2 0.2 0.6 1
−1

−0.6

−0.2

0.2

0.6

1
p

x−axis
y−

ax
is

Figure 2.10: First order EG4 scheme for nonlinear wave equation system.
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Figure 2.11: Second order EG4 scheme for nonlinear wave equation system.



Chapter 3

EG Schemes for the Linearized
Euler Equations

The Euler equations are very important in the field of numerical hydrodynamics and de-
scribe the conservation of mass, momentum and energy of a compressible, inviscid fluid.
These are reduced versions of Navier Stokes equations when viscosity and thermal con-
ductivity terms are neglected. These terms are not considered to be significant in some
physical phenomena e.g. in astrophysics. Mathematically the Euler equations are a set of
nonlinear, coupled, hyperbolic partial differential equations. Theory of linear and nonlinear
waves can be found in [59] and [68]. Hyperbolic differential equations have two important
properties. The first property is that they allow discontinuous solutions. Physically this
implies that the flow can contain shocks or contact discontinuities. The other property
is that one can define the so called characteristics or characteristic speeds. These are the
eigenvalues of the problem. The solution can be written in terms of a sum of eigenvectors,
three in the case of a one-dimensional problem. The three eigenvectors are also called
waves and are physically associated with the characteristic speeds v, v − c, v + c i.e. the
velocity of the flow and the velocity of sound added to and subtracted from the velocity
of flow. The physical relevance of this is that in a gas no signal can travel faster than
the local sound speed; v, v − c and v + c are the possible signal speeds within a flow
with velocity v. This also means that the characteristics describe a domain of influence in
space-time. Therefore a close relation exists between the characteristics and the shocks.
If for example an explosion occurs at some point, its effect will spread with the shock speed.

In this chapter we discuss the system of hyperbolic conservation laws in several space
variables. We start with the linear case and describe the linearization of the nonlinear
system. First and second order EG schemes are presented for the linearized Euler equations
and the advection wave equation system. Different physical situations such as subsonic and
supersonic cases are discussed and numerical examples are presented. We also compare the
EG schemes for linearized Euler equations with other numerical schemes such as the Lax-
Friedrichs scheme [18] and the Lax-Wendroff [64] schemes.

37
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3.1 General Hyperbolic System

The general form of a hyperbolic system in d space dimensions is given by

∂u

∂t
+

d
∑

j=1

∂

∂xj

fj(u) = 0, x = (x1, x2, . . . , xd) ∈ R
d, t > 0, (3.1)

Here Ω, a set of states, is an open subset of R
p, and fj, 1 ≤ j ≤ d, are d smooth fluxes

from Ω into R
p. Further

u =







u1
...

up






, fj =







f1j

...
fpj






,

where u is the vector of unknown states which is a mapping from R
d × [0,∞[ into Ω. Let

Aj be the Jacobian matrices of fj(u) for j = 1, . . . , d i.e. Aj(u) =
(

∂fij

∂uk
(u)

)

1≤i,k≤p
. Then

the system (3.1) is hyperbolic iff for any u ∈ Ω and any ω = (ω1, . . . , ωd) ∈ R
d, ω 6= 0,

the pencil matrix

A(u, ω) =
d

∑

j=1

ωjAj(u)

has p real eigenvalues λ1(u, ω) ≤ λ2(u, ω) ≤ · · · ≤ λp(u, ω) and p linearly independent
corresponding eigenvectors r1(u, ω), . . . , rp(u, ω).
Cauchy problem : We define it as: Find a function u : (x, t) ∈ R

d × [0,∞[→ u(x, t) ∈ Ω
that solves system (3.1) and that satisfies the initial condition

u(x, 0) = u0(x), x ∈ R
d,

where u0 : R
d → Ω is a given function.

Riemann problem: For the two-space variables, we define it as: Find u that solves

∂u

∂t
+

∂f(u)

∂x
+

∂g(u)

∂y
= 0

along with the initial condition
u(x, 0) = u0,

where u0 are two states. The solution consists of finite number of constant states, being
discontinuous along rays through the origin, see [41].

3.1.1 The Euler Equations

If we apply the conservation of mass, momentum and total energy to a compressible inviscid
fluid where the thermal conductivity is neglected, we get Euler equations of gas dynamics:
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∂ρ

∂t
+

3
∑

j=1

∂

∂xj

(ρuj) = 0,

∂

∂t
(ρui) +

3
∑

j=1

∂

∂xj

(ρuiuj + pδij) = 0, 1 ≤ i ≤ 3, (3.2)

∂

∂t
(ρe) +

3
∑

j=1

∂

∂xj

((ρe + p)uj) = 0 .

Here ρ is the density of the fluid, u = (u1, u2, u3) is the velocity, p is the pressure, e = E+ |u|2

2

is the specific total energy and E is the specific internal energy. We need an equation of
state to close the above system.

p = p(ρ, E)

which shows the dependence of pressure on density and specific internal energy. One can
see that the pressure is independent of the velocity vector u. For a polytropic ideal gas,
the equation of state has the form

p = (γ − 1)ρE , γ > 1.

where γ = cp

cv
is the ratio of specific heat at constant pressure to the specific heat at constant

volume. We can write the system (3.2) in the general form as follows. We set qi = ρui, 1 ≤

i ≤ 3, E = ρe, the set of states Ω =
{

(ρ,q = (q1, q2, q3), E), ρ > 0, q ∈ R
3, E − |q|2

2ρ
> 0

}

.

Moreover the equation of state has the form

p = p

(

ρ,
E

ρ
−

|q|2

2ρ2

)

,

Then the general form of Euler equations in two-space dimensions reads

∂u

∂t
+

∂f(u)

∂x
+

∂g(u)

∂y
= 0 , (3.3)

where

u =









ρ
q1

q2

E









, f(u) =











q1

p +
q2
1

ρ
q1q2

ρ
(E+p)q1

ρ











, g(u) =











q2
q1q2

ρ

p +
q2
2

ρ
(E+p)q2

ρ











.

Note that for isentropic flow, the equation of state is independent of energy i.e. p = p(ρ),
then the first three equations which describe the conservation of mass, momentum and
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energy are sufficient to solve the system (3.3). Similarly if there is some kind of symmetry
in the problem then the number of space variables are reduced accordingly. For example,
if we consider slab symmetry, the Euler equations reduce to the following form.

∂ρ

∂t
+

∂

∂x
(ρu) = 0,

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) = 0,

∂

∂t
(ρe) +

∂

∂x
((ρe + p)u) = 0.

3.1.2 Linear Systems

An important step to understand the nonlinear hyperbolic systems is the treatment of linear
systems with constant coefficients. In this case the Riemann problem is easily solved. We
consider one-dimensional linear system given by

ut + A ux = 0, (3.4)

together with the initial data

u(x, 0) = u0 =

{

ul , x < 0 ,
ur, x < 0 .

where u : R × R → R
p and A is a constant matrix. Similar to the nonlinear case, system

(3.4) is called hyperbolic if the matrix A has p real eigenvalues λ1, · · · , λp and p linearly
independent right eigenvectors r1, · · · , rp. If these eigenvalues are distinct then this system
is called strictly hyperbolic system. The solution of this Riemann problem reads

u(x, t) = v
(x

t

)

=



























v0 = ul , x
t

< λ1

v1 , λ1 < x
t

< λ2
...
vp−1 , λp−1 < x

t
< λp

vp = ur , x
t

> λp.

See [34] for further details. This shows that the initial discontinuity breaks up into p
discontinuous waves, which propagate with the characteristic speed λk, 1 ≤ k ≤ p, see
Figure 3.1. Note that across the mth characteristic we have

A [u] = λm [u]. (3.5)

Condition (3.5) is called Rankine-Hugoniot condition. Therefore, across the line of discon-
tinuity x = λmt, the Rankine-Hugoniot condition is satisfied.
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Figure 3.1: Solution of Riemann problem for a linear system.

3.1.3 Linearization of Nonlinear Systems

Consider the one-dimensional nonlinear hyperbolic system

ut + f(u)x = 0 , x ∈ R . (3.6)

In the quasi linear form system (3.6) can be written as

ut + A ux = 0,

where A(u) = dfi

duk
(u) is the Jacobian matrix. We can define characteristics by integrating

the eigenvalues of A(u). There are p characteristic curves through each point. The curve
x(t) in the m-th family satisfies

x′(t) = λm(u(x(t), t)),

x(0) = x0,

for some x0. Note that the characteristic speed λm now depends on the solution u. Thus we
cannot proceed by determining the characteristics and then solving a system of ODEs along
the characteristics. It is known that the characteristics yield valuable information about
what happens locally for smooth data. In particular, if we linearize the problem about a
constant state u′, see LeVeque [34] for further details, we obtain a constant coefficient linear
system, with the Jacobian frozen at A(u′). This is relevant if we consider propagation of
small disturbances. Thus assume an expansion of the solution of the form

u(x, t) = u′ + ǫu(1)(x, t) + ǫ2u(2)(x, t) + · · · , (3.7)

where u′ is a constant and ǫ is small. In order to freeze the Jacobian matrices at constant
states u′, we expand it in a Taylor series as follows

A(u) = A(u′) + (u − u′)
∂A

∂u
(u′) + · · · ,

Substituting (u − u′) = ǫu(1) from (3.7), we obtain

A(u) = A(u′) + ǫu(1)∂A

∂u
(u′) . (3.8)
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Using (3.7) and (3.8) in the one-dimensional nonlinear hyperbolic system, we obtain the
following linearized Euler equation system.

u
(1)
t (x, t) + A(u′)u(1)

x = 0. (3.9)

Thus small disturbances propagate approximately along characteristic curves of the form
xm(t) = x0 + λm(u′)t. In this thesis we consider the linearized Euler equations in two-
space dimensions . In this case the Jacobian matrices which are frozen at the constant
state (ρ, u, v, p)T = (ρ′, u′, v′, p′)T are given as

A1 :=









u′ ρ′ 0 0
0 u′ 0 1

ρ′

0 0 u′ 0

0 ρ′c′2 0 u′









, A2 :=









v′ 0 ρ′ 0
0 v′ 0 0
0 0 v′ 1

ρ′

0 0 ρ′c′2 v′









,

where c′ is the local speed of sound, i.e. c′ =
√

γp′

ρ′
.

3.2 Approximate Evolution Operators For Linearized

Euler Equations in 2D

In this section we present the approximate evolution operators for the linearized Euler
equations, namely the EG3-Euler and the EG4-Euler approximate evolution operators.
These operators have been derived in [43] and [71]. The 2D linearized Euler equations read

Ut + A1(U
′)Ux + A2(U

′)Uy = 0, x = (x, y)T ∈ R
2, (3.10)

where

U :=









ρ
u
v
p









, U′ :=









ρ′

u′

v′

p′









, A1 :=









u′ ρ′ 0 0
0 u′ 0 1

ρ′

0 0 u′ 0
0 ρ′(c′)2 0 u′









and A2 :=









v′ 0 ρ′ 0
0 v′ 0 0
0 0 v′ 1

ρ′

0 0 ρ′(c′)2 v′









.

Here ρ indicates the density, u and v are the components of the velocity in x and y directions

and p denotes the pressure. Symbols ρ′, u′, v′ and p′ = c′
2
ρ′

γ
are the local variables at a

point (x′, y′), c′ is the local speed of the sound there and γ is isotropic exponent (γ = 1.4
for dry air).
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P = (x, y, t + ∆t)

P ′

Qi(θ)

x

y

t

Figure 3.2: Bicharacteristics along the Mach cone through P and Qi(θ), supersonic case.

Now the approximate evolution operator for EG3-Euler scheme reads

ρ(P ) = ρ(P ′) −
p(P ′)

c′2
+

1

2π

∫ 2π

0

[

p(Q)

c′2
− 2

ρ′

c′
u(Q) cos θ − 2

ρ′

c′
v(Q) sin θ

]

dθ

+O(∆t2) , (3.11)

u(P ) =
1

2
u(P ′) +

1

2π

∫ 2π

0

[

−2
p(Q)

ρ′c′
cos θ + u(Q)(3 cos2 θ − 1) + 3v(Q) sin θ cos θ

]

dθ

+O(∆t2) , (3.12)

v(P ) =
1

2
v(P ′) +

1

2π

∫ 2π

0

[

−2
p(Q)

ρ′c′
sin θ + 3u(Q) sin θ cos θ + v(Q)(3 sin2 θ − 1)

]

dθ

+O(∆t2) , (3.13)

p(P ) =
1

2π

∫ 2π

0

[p(Q) − 2ρ′c′u(Q) cos θ − 2ρ′c′v(Q) sin θ] dθ + O(∆t2) . (3.14)

while the approximate evolution operator for EG4-Euler scheme is

ρ(P ) = ρ(P ′) −
p(P ′)

c′2
+

1

2π

∫ 2π

0

[

p(Q)

c′2
− 2

ρ′

c′
u(Q) cos θ − 2

ρ′

c′
v(Q) sin θ

]

dθ

+O(∆t2) , (3.15)

u(P ) =
1

2π

∫ 2π

0

[

−2
p(Q)

ρ′c′
cos θ + 2u(Q) cos2 θ + 2v(Q) sin θ cos θ

]

dθ + O(∆t2), (3.16)

v(P ) =
1

2π

∫ 2π

0

[

−2
p(Q)

ρ′c′
sin θ + 2u(Q) sin θ cos θ + 2v(Q) sin2 θ

]

dθ + O(∆t2), (3.17)

p(P ) =
1

2π

∫ 2π

0

[p(Q) − 2ρ′c′u(Q) cos θ − 2ρ′c′v(Q) sin θ] dθ + O(∆t2). (3.18)
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where P = (x, y, t+∆t) and P ′ = (x−(u′−c′ cos θ)∆t, y−(v′−c′ cos θ)∆t), see Figure 3.2.
P ′ is the center of the characteristic cone base which does not correspond to a quadrature
point but is displaced from it due to the advection effect. For more details see [43], [45]
and [71].

3.3 Numerical Algorithms

In case of Euler equations, we note that due to the effect of advection the center of the
sonic circle which constitutes the base of the Mach cone does not coincide with a vertex or
a midpoint in the mesh. This means that any vertex or midpoint will be shifted according
to local speeds. for linearized Euler equations the evolution as well as the finite volume
update steps are carried out using primitive variables. Thus the first order algorithm for
linearized Euler equations reads

• Input the initial data: ρ0
i , u0

i , v0
i , p0

i .

• Determine the center of the sonic circles using the local velocities.

• Determine the time step ∆t.

• Do the time loop

1. Determine the intermediate values: ρ̃
n+ 1

2
sij

, ũ
n+ 1

2
sij

, ṽ
n+ 1

2
sij

, p̃
n+ 1

2
sij

.

2. Update the primitive variables:

ρn+1
i = ρn

i −
∆t

|Ti|

3
∑

j=1

(

nxsij

(

u′ρ̃
n+ 1

2
sij

+ ρ′ũ
n+ 1

2
sij

)

+ nysij

(

v′ρ̃
n+ 1

2
sij

+ ρ′ṽ
n+ 1

2
sij

))

,

(3.19)

un+1
i = un

i −
∆t

|Ti|

3
∑

j=1

nxsij

(

u′ũ
n+ 1

2
sij

+
1

ρ′
p̃

n+ 1
2

sij

)

+ nysij
v′ũ

n+ 1
2

sij
, (3.20)

vn+1
i = vn

i −
∆t

|Ti|

3
∑

j=1

nxsij
u′ṽ

n+ 1

2
sij

+ nysij

(

v′ṽ
n+ 1

2
sij

+
1

ρ′
p̃

n+ 1

2
sij

)

, (3.21)

pn+1
i = pn

i −
∆t

|Ti|

3
∑

j=1

nxsij

(

ρ′(c′)2ũ
n+ 1

2
sij

+ u′p̃
n+ 1

2
sij

)

+ nysij

(

ρ′(c′)2ṽ
n+ 1

2
sij

+ v′p̃
n+ 1

2
sij

)

. (3.22)

3. Apply the boundary conditions.

• End the time loop.
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To have a second order algorithm we have to carry out a recovery stage before applying the
approximate evolution operator. We use the same recovery procedure as given in Section
2.5. The second order algorithm reads

• Input the initial data: ρ0
i , u0

i , v0
i , p0

i .

• Carry out the recovery stage.

• Determine the center of the sonic circles using the local velocities.

• Determine the time step ∆t.

• Do the time loop

1. Determine the intermediate values: ρ̃
n+ 1

2
sij

, ũ
n+ 1

2
sij

, ṽ
n+ 1

2
sij

, p̃
n+ 1

2
sij

.

2. Update using equations (3.19)-(3.22).

3. Apply the boundary conditions.

4. Carry out the recovery stage.

• End the time loop.

It is important to point out that in the case of linearized Euler equations, local variables
are kept constant. This means that all local variables have same value at all vertices and
midpoints and this value once assigned outside the time loop does not change with time.
With these known values of the local variables, it is easy to find the new centers of the
bases of the Mach cones. Since local velocities are constant, the circle position does not
change with time. Determination of the time step also depends upon the local velocities
i.e.

∆t =
hmin CFL

max(|u′| + c′, |v′| + c′)
.

The determination of hmin is carried out in the same manner as mentioned in Chapter 2 in
case of wave equation system. This choice of ∆t prevents the sonic circle from crossing the
close neighbors. Which means that the circle is confined only to the close neighbors. The
approximate evolution operators are applied at the new centers for the sonic circles which
require the angular contribution of the neighbors at that point. The angles are therefore
computed with respect to the new origin at all quadrature points. In case of EG3-Euler
scheme one has to evaluate the values ρ(P ′), u(P ′), v(P ′) and P (P ′) at all vertices and
midpoints of the edges. This is done by taking weighted average of the piecewise constant
values from the neighboring elements at the point. The length of the arc cut from the
sonic circle at that point by a neighboring element is multiplied as a weight to the piece-
wise constant value from that element.

The advection wave equation system: Taking ρ′ = c′ = 1 and neglecting the first
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equation in sytem (3.10) gives the advection wave equation system with propagation speed
equal to 1.

pt + u′ px + v′ py + ux + vy = 0,
ut + u′ ux + v′ uy + px = 0,
vt + u′ vx + v′ vy + py = 0.

(3.23)

3.4 Numerical Experiments

Example 3.1

In this numerical experiment we consider the advection wave equation system (3.23). We
take the following smooth initial data, see [71]

φ(x, y, 0) = −(sin(2πx) + sin(2πy)) ,

u(x, y, 0) = 0 ,

v(x, y, 0) = 0 .

The exact solution is

φ(x, y, t) = − cos(2πt)(sin 2π(x − u′t) + sin 2π(y − v′t)) ,

u(x, y, t) = sin(2πt) cos 2π(x − u′t) ,

v(x, y, t) = sin(2πt) cos 2π(y − v′t) .

Two physical situations are considered here , the subsonic and the supersonic cases. For
the subsonic case we take u′ = v′ = 0.5 and for the supersonic case we set u′ = v′ = 0.8
together with CFL = 0.4 and absolute time T = 0.2. The computational domain is
Ω = [−1, 1] × [−1, 1]. If Nx and Ny are the number of rectangular cells along x and
y-axis respectively in a regular triangular mesh then N = 2NxNy where N is the total
number of triangular cells in the mesh. In Tables 3.1 and 3.2 we present the results for
the first order EG4-Euler scheme for subsonic and supersonic cases respectively. Here we
use exact boundary conditions and the structured mesh 2 as shown in Figure A.1. The
comparison of the exact solution with the numerical solution for the first order scheme
is shown in Figure 3.3 and Figure 3.4 for the subsonic and supersonic cases respectively.
This is a 1D plot along the line y = 0. The plot shows that the numerical solution is in
good agreement with the exact solution. The error analysis of second order EG4-Euler
scheme is given in Tables 3.3 and 3.4 for the subsonic and supersonic cases respectively.
The error in the second order EG scheme is several times smaller than for the first order.
Figures 3.5 and 3.6 give a graphical representation of the second order numerical scheme
and its comparison with the exact solution. With the increase of mesh size the numerical
solution becomes closer to the exact solution and gives a better approximation. In Tables
3.5 and 3.6, we compare the accuracy of EG4-Euler scheme for unstructured and structured
meshes for approximately the same number of points which indicates that the EG schemes
are suitable for the unstructured grids also. Similarly second order results for unstructured
and structured meshes are compared in Tables 3.7 and 3.8.
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Example 3.2

We simulate numerically the propagation of acoustic, vorticity and entropy pulses in a
uniform mean flow. This experiment has been studied by Zahaykah [71] for rectangular
mesh. We assume that the flow of the fluid is along the diagonal of the mesh that is in
the direction making 45o angle with the x-axis. We consider the linearized Euler equation
system (3.10) together with the following initial data that describes the location of acoustic,
entropy and vorticity pulses:

ρ(x, y, 0) = 2.5 exp(−40((x − xa)
2 + (y − ya)

2)) + 0.5 exp(−40((x − xb)
2 + (y − yb)

2)),

u(x, y, 0) = 0.05 exp(−40((x − xb)
2 + (y − yb)

2)),

v(x, y, 0) = −0.05 exp(−40((x − xb)
2 + (y − yb)

2)),

p(x, y, 0) = 2.5 exp(−40((x − xa)
2 + (y − ya)

2)).

Assume u′ = v′ = 0.5 sin(π
4
) which means that the local flow is subsonic. At time T = 0

an acoustic pulse is generated at (xa, ya) = (−0.31,−0.31), and combined entropy and
vorticity pulses originate at (xb, yb) = (0.39, 0.39). The mean flow interacts with these
pulses and stretches the acoustic, entropy and density pulses. The intensity, shape and
profile of the propagating waves are also affected by the mean flow. The vorticity pulse
causes the energy transfer between the propagating disturbances and the mean flow. We
set CFL=0.45, take a mesh consisting of 2 × 200 × 200 cells and employ extrapolated
boundary conditions. We examine the propagation and physical locations of the pulses
after time T = 0.166. Isolines of the computed density ρ, velocities and pressure using
first order EG3-Euler and EG4-Euler schemes are shown in Figures 3.7 and 3.9. Plots for
the second order EG3-Euler and EG4-Euler schemes are shown in Figures 3.8 and 3.10.
The pulses move away from their original positions and get closer to each other as time
passes. The second order plot gives a very refined picture of the physical mechanisms
going on. In Figure 3.12, we plot the density ρ along the line y = x and compare the
first order EG4-Euler scheme with the first order Lax-Friedrichs scheme [18] and second
order Lax-Wendroff scheme [64]. Both the Lax-Friedrichs and Lax-Wendroff schemes are
plotted on a rectangular mesh with 200×200 rectangles while EG4-Euler scheme is plotted
on a triangular mesh with 2 × 200 × 200 triangles in the mesh. It is evident that EG4-
Euler scheme is several times accurate than the Lax-Friedrichs scheme. Compared with
the second order Lax-Wendroff scheme, first order EG4-Euler scheme has relatively more
dissipation, particularly at maxima and minima.
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Table 3.1: First order EG4-Euler scheme (subsonic case).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖u(T ) − Un‖L2

2 × 20 × 20 0.2287231442 0.3032928501 0.3032928501 0.4860940058
2 × 40 × 40 0.1417699108 0.1750108389 0.1750108389 0.2852302493
2 × 80 × 80 0.0797841969 0.0944292656 0.0944292656 0.1555612113

2 × 160 × 160 0.0424906677 0.0491286468 0.0491286468 0.0814414190
2 × 320 × 320 0.021946113 0.0250684675 0.0250684675 0.0416951797

Table 3.2: First order EG4-Euler scheme (supersonic case).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖u(T ) − Un‖L2

2 × 20 × 20 0.3377097939 0.2820635521 0.2820635521 0.5226543788
2 × 40 × 40 0.1648985862 0.1648985862 0.1648985862 0.3099082328
2 × 80 × 80 0.1131940327 0.0900183550 0.0900183550 0.1703511008

2 × 160 × 160 0.0597638213 0.0472191810 0.0472191810 0.0896159386
2 × 320 × 320 0.0307372664 0.0242101758 0.0242101758 0.0460113549

Table 3.3: Second order EG4-Euler scheme (subsonic case).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖u(T ) − Un‖L2

2 × 20 × 20 0.0609746674 0.0423121461 0.0423121461 0.0854315252
2 × 40 × 40 0.0300827178 0.0187751436 0.0187751436 0.0401245804
2 × 80 × 80 0.0151395292 0.0092255711 0.0092255711 0.0199856866

2 × 160 × 160 0.0077054695 0.0046439500 0.0046439500 0.0101245644
2 × 320 × 320 0.0038690553 0.0023307357 0.0023307357 0.0050827401

Table 3.4: Second order EG4-Euler scheme (supersonic case).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖u(T ) − Un‖L2

2 × 20 × 20 0.0839318451 0.0603927266 0.0603927260 0.1197460541
2 × 40 × 40 0.0423139761 0.0290946385 0.0290946385 0.0590209163
2 × 80 × 80 0.0214903760 0.0145847519 0.0145847519 0.0297870146

2 × 160 × 160 0.0107642136 0.0073262480 0.0073262480 0.0149404188
2 × 320 × 320 0.0053985865 0.0036867388 0.0036867388 0.0075052529
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Table 3.5: First order EG4 scheme (unstructured mesh, subsonic case).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖u(T ) − Un‖L2

1264 0.2090766795 0.2534964164 0.2514140449 0.4137420852
5056 0.1245254626 0.1430963486 0.1411816251 0.2364643887
20224 0.0683283498 0.0761475007 0.0748860241 0.1267877039
80896 0.0350018581 0.0386493459 0.0379515678 0.0644920422
323584 0.0179821922 0.0195552012 0.0191868480 0.0327704176

Table 3.6: First order EG4 scheme (structured mesh, subsonic case).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖u(T ) − Un‖L2

1352 0.1932509434 0.2489122966 0.2489122966 0.4015726460
5408 0.1150930994 0.1393751021 0.1393751021 0.2282482415
21632 0.0631700200 0.0739731112 0.0739731112 0.1222067666
81608 0.0341088947 0.0392421733 0.0392421733 0.0651407171
323584 0.0175897118 0.0200398019 0.0200398019 0.0333554386

Table 3.7: Second order EG4 scheme (unstructured mesh, subsonic case).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖u(T ) − Un‖L2

1264 0.0401337546 0.0279533773 0.0280653784 0.0563894939
5056 0.0191832227 0.0120537083 0.0124758214 0.0258637592
20224 0.0096962424 0.0058479148 0.0061719865 0.0128960709
80896 0.0053019776 0.0030817698 0.0032668629 0.0069484290
323584 0.0026916558 0.0015917740 0.0016671514 0.003543747

Table 3.8: Second order EG4 scheme (structured mesh, subsonic case).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖u(T ) − Un‖L2

1352 0.0446340257 0.0301024798 0.0301024798 0.0616807493
5408 0.0234135868 0.0143161142 0.0143161142 0.0309531630
21632 0.0117561746 0.0071168622 0.0071168622 0.0154760168
81608 0.0061080577 0.0036823330 0.0036823330 0.0080266756
326432 0.0030789474 0.0018503797 0.0018503797 0.0040407583
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Figure 3.3: First order EG4-Euler scheme (subsonic case).
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Figure 3.4: First order EG4-Euler scheme (supersonic case).
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Figure 3.5: Second order EG4-Euler scheme (subsonic case).
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Figure 3.6: Second order EG4-Euler scheme (supersonic case).
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Figure 3.7: First order EG3-Euler Scheme at time T = 0.166.

−0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

EG3−Euler Scheme: T = 0.16622

rh
o

−0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

u

−0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

v

−0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

p

Figure 3.8: Second order EG3-Euler scheme at time T = 0.166.
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Figure 3.9: First order EG4-Euler Scheme at time T = 0.166.
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Figure 3.10: Second order EG4-Euler scheme at time T = 0.166.
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Figure 3.11: Plot of density along the line y = x.
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Chapter 4

EG Schemes for the Nonlinear
Euler Equations

The EG schemes that have been established in Chapter 3 for linearized Euler equations are
extended to the solution of nonlinear Euler equations. In Chapter 3 we have linearized the
nonlinear Euler equations by considering small perturbations in density (ρ), velocities (u, v),
sound speed (c) and pressure (p). The numerical example demonstrated the propagation
of acoustic, entropy and vorticity pulses along the diagonal of the mesh. In that case
the local variables stayed constant at all points of the mesh and for all time steps. This
introduces a considerable simplification to the nonlinear phenomenon and hence contributes
to the error in evaluation of the physical quantities like density, velocities and pressure.
Many numerical schemes treating nonlinear Euler equations carry out no linearization
for example kinetic schemes, central type schemes, Godunov type upwind schemes and
many others. However EG schemes do need some kind of linearization at early stage,
see [43]. In this chapter we shall use the same approximate evolution operators as we
used for linearized Euler equations, however the local variables will have different values
at different quadrature points. This means that each vertex and midpoint of an edge will
have a particular value which will be different than the other points. These values will be
calculated by an appropriate averaging procedure at these points. In the next time steps
these variables will have to be re-calculated at all points. In this way the updated values of
the physical quantities are involved in the calculation of local variables at each time step
which brings the nonlinear effects into play.

4.1 Numerical Algorithms

In case of the Euler equations, we note that due to the effect of advection the center of the
sonic circle which constitutes the base of the Mach cone does not coincide with a vertex or
a midpoint in the mesh. This means that any vertex or midpoint will be shifted according
to local speeds. Thus the first order algorithm for Euler equations reads

• Input the initial data: ρ0
i , u0

i , v0
i , p0

i for the whole mesh.
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• Compute the conservative variables.

• Do the time loop

1. Find the local variables: ρ′, u′, v′, p′ at all quadrature points.

2. Find the centers of the sonic circles using the local velocities.

3. Find the global maximum of (|u′| + c′, |v′| + c′).

4. Find the time step ∆t = hmin CFL
max(|u′|+c′,|v′|+c′)

.

5. Compute the intermediate values: ρ̃
n+ 1

2
sij

, ũ
n+ 1

2
sij

, ṽ
n+ 1

2
sij

, p̃
n+ 1

2
sij

.

6. Update the conservative variables:

ρn+1
i = ρn

i −
∆t

|Ti|

3
∑

j=1

(

nxsij

[

ρ̃
n+ 1

2
sij

ũ
n+ 1

2
sij

]

+ nysij

[

ρ̃
n+ 1

2
sij

ṽ
n+ 1

2
sij

]]

,

(4.1)

(q1)
n+1
i = (q1)

n
i −

∆t

|Ti|

3
∑

j=1

nxsij

[

ρ̃
n+ 1

2
sij

(ũ
n+ 1

2
sij

)2 + p̃
n+ 1

2
sij

]

+ nysij
ρ̃

n+ 1

2
sij

ũ
n+ 1

2
sij

ṽ
n+ 1

2
sij

,

(4.2)

(q2)
n+1
i = (q2)

n
i −

∆t

|Ti|

3
∑

j=1

nxsij
ρ̃

n+ 1
2

sij
ũ

n+ 1
2

sij
ṽ

n+ 1
2

sij
+ nysij

[

ρ̃
n+ 1

2
sij

(ṽ
n+ 1

2
sij

)2 + p̃
n+ 1

2
sij

]

,

(4.3)

En+1
i = En

i −
∆t

|Ti|

3
∑

j=1

nxsij



ρ̃
n+ 1

2
sij

(ũ
n+ 1

2
sij

)2 + (ṽ
n+ 1

2
sij

)2

2
+ p̃

n+ 1
2

sij
(

γ

γ − 1
)



 ũ
n+ 1

2
sij

+ nysij



ρ̃
n+ 1

2
sij

(ũ
n+ 1

2
sij

)2 + (ṽ
n+ 1

2
sij

)2

2
+ p̃

n+ 1
2

sij
(

γ

γ − 1
)



 ṽ
n+ 1

2
sij

. (4.4)

7. Compute the primitive variables.

8. Apply the boundary conditions.

• End the time loop.

Note that the local variables are not constant. We compute the local variables inside the
time loop at each vertex and edge midpoint. This is carried out by using a simple average
of the piecewise constant values at the neighbouring elements of that point. In this manner
the values of the local variables are different at each vertex or midpoint and in each time
cycle these values are computed from the current values. Since the local velocities also
vary with time, the time step which is a function of these velocities is also variable i.e. for
each time cycle we have a different time step. In case of the linearized Euler equations
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the time step was constant because the local velocities were also constant. Furthermore
the displacement of the sonic circle is different at each point. This displacement depends
upon the values of the local velocities at that point. Likewise the angular contributions
from the neighboring elements also vary at each point and each time cycle hence the angles
and the number of neighbors intersected are updated with time. The code switches form
subsonic to sonic or supersonic situation depending upon the values of the current local
velocities at a particular point. The computational time increases considerably because
those computations which were carried out once for the linearized Euler equations, are
performed in each time cycle. To have second order algorithm we have to carry a recovery
stage before applying the approximate evolution operator. We use the same recovery
procedure described in 2.5.

• Input the initial data: ρ0
i , u0

i , v0
i , p0

i .

• Compute the conservative variables.

• Carry out the recovery stage.

• Apply the boundary conditions.

• Do the time loop

1. Find the local variables: ρ′, u′, v′, p′ at all vertices and midpoints.

2. Find new centers of the sonic circles at all vertices and midpoints of the edges.

3. Find the global maximum of (|u′| + c′, |v′| + c′) for all quadrature points in the
mesh.

4. Find the time step ∆t.

5. Find the intermediate values: ρ̃
n+ 1

2
sij

, ũ
n+ 1

2
sij

, ṽ
n+ 1

2
sij

, p̃
n+ 1

2
sij

.

6. Update using equations (4.1)-(4.4).

7. Compute the primitive variables.

8. Apply the boundary conditions.

9. Carry out the recovery stage.

• End the time loop.

As mentioned in Chapter 2, we use evolution operator to determine the intermediate value
Un+ 1

2 , see equation (2.27), at the quadrature points. The piecewise constant Un is taken
from the close neighbors at the vertex in the following way

Un =







































Un
i6

, 0 < θ < α1,
Un

i1
, α1 < θ < α2,

Un
i2

, α2 < θ < α3,
Un

i3
, α3 < θ < α4,

Un
i4

, α4 < θ < α5,
Un

i5
, α5 < θ < α6,

Un
i6

, α6 < θ < 2π.
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Figure 4.1: Subsonic case: A possible orientation of the sonic circle at (a) vertex (b)
midpoint.

See Figure 4.1 (a). The cone base integral of 0 −→ 2π splits accordingly

0 −→ α1 −→ α2 −→ α3 −→ α4 −→ α5 −→ α6 −→ 2π

For midpoint, see Figure 4.1 (b), the piecewise constant Un is taken to be

Un =







Un
i , 0 < θ < α1,

Un
j , α1 < θ < α2,

Un
i , α2 < θ < 2π.

Ti1

Ti2
Ti3

Ti4

Ti5 Ti6
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Figure 4.2: Sonic case: Position of the sonic circle at (a) vertex (b) midpoint.
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Figure 4.3: Supersonic case: Position of the sonic circle at (a) vertex (b) midpoint.

For the sonic case the displacement of the sonic circle is equal to the radius of the circle.
Hence the circle is tangent to the quadrature point, see Figure 4.2, where possible positions
of the sonic circle are shown for a vertex and midpoint of the edge. In Figure 4.2 (a), Un

is distributed in the following manner among different neighbours:

Un =















Un
i1

, 0 < θ < α1,
Un

i2
, α1 < θ < α2,

Un
i3

, α2 < θ < α3,
Un

i1
, α3 < θ < 2π .

See Figure 4.2 (b), two positions can be seen. For the first position of the circle where it
is lying completely inside a triangle, the piecewise constant Un is given by

Un =
{

Un
i , 0 < θ < 2π .

For the second position the circle is shared by two edge neighbours, hence angles are to be
computed in this case.

Similarly one can compute Un for the supersonic case. A possible position of the sonic
circle is shown in 4.3 (a) for a vertex and in 4.3 (b) the midpoint of the edge. There can
be many other possible orientations. In this case the advection effect is more pronounced
and hence the center of the sonic circle is more displaced from the quadrature point as
compared to the previous two cases. The computation of Un is more involved because one
has to determine the right position of the circle among many possibilities. After finding
the exact position of the sonic circle, the angular contribution from the neighbors can be
computed.
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Figure 4.4: Domain for the cylindrical explosion problem.

4.2 Numerical Examples

Example 4.1

We consider the nonlinear Euler equations and a cylindrical explosion problem in a square
domain Ω = [−1, 1] × [−1, 1] as shown in Figure 4.4. This problem has also been studied
in [43] for rectangular meshes using EG schmes. We consider the initial data given in
example 2.2. The pressure and density inside the circular region of radius 0.4 is greater
than the outside region. This pressure difference generates a shock wave expanding towards
the boundary of the domain. A contact discontinuity moves along with the shock while
a circular rarefaction wave travels towards the origin at (0,0). We compare the first and
second order solutions of this problem in Figures 4.5 and 4.6 using EG4-Euler scheme for a
mesh containing 2×200×200 triangular cells after T = 0.2. We use extrapolated boundary
conditions in both the first and second order schemes.
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Figure 4.5: First order EG4-Euler scheme.
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Figure 4.6: Second order EG4-Euler scheme.



Chapter 5

A Slope Propagation Method

In this chapter we propose a new second order scheme which uses space-time control vol-
umes as conservation elements. The scheme is Jacobian free and hence can be applied to
any hyperbolic system. We refer to this scheme as the slope propagation method (SP-
method). The scheme uses the basic concepts of both, the CE/SE method of Chang et al.
[6, 7, 8, 9, 10, 65, 66] and the central schemes of Nessyahu and Tadmor [48].

The central schemes [25, 48] use the staggered grid, well-known MUSCL-type initial recon-
struction and the min-mod nonlinear limiter as basic entities to calculate slopes at each
time step. These schemes are very simple, efficient and Jacobian-free.

On the other hand the CE/SE method of Chang uses the space-time control elements (CE)
as conservation elements and treats the conservative flow variables and their slopes in the
same way. The CE/SE method is a family of schemes, i.e., the a scheme, the a− ǫ scheme,
and the a−α scheme. The a scheme derived for linear advection, determines the space-time
geometry of the numerical mesh employed. The a− ǫ and the a−α schemes are extensions
of the a scheme for nonlinear equations and for shock capturing. In the a scheme the
number of control elements are equal to the number of unknowns. These control elements
are used to derive the formulation for the conservative flow variables and their slopes. This
scheme has a better resolution and is as efficient as central schemes. The main disadvantage
of the CE/SE method is that the calculation of the flux derivatives with respect to time
is required and hence the Jacobian matrices are involved in the derivation of the scheme.
The space-time derivatives of the fluxes in the scheme come from the assumption of linear
variation of the fluxes in space-time. Hence the method is no longer Jacobian-free, which
is an important property of the central schemes.

The main aim of our scheme is to retain the advantages of the both the CE/SE method for
linear problems, the a scheme, and central schemes. We derive the scheme in a simple and
straightforward way by using the basic concepts of finite volume schemes and conservation
laws. The scheme uses space-time control volumes in order to compute the conservative
flow variables and their slopes. In our scheme, unlike the CE/SE method, we do not as-
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sume the space-time linear variation of fluxes in each element. We assume instead the
linear variation of the conservative flow variables only. The fluxes are calculated from
the flow variables at the midpoint of the faces of the space-time control volumes. We
approximate the time integrals of the fluxes by using the midpoint rule. This procedure
eliminates the use of Jacobian matrices in our scheme. In the one-dimensional case our
staggered mesh stencil is similar to that of central schemes [48] and Chang’s method [6].
Note that Breuss [4] showed that a staggered central scheme produces less oscillations at
local extrema in the data. In the 2D triangular mesh case we use the same staggered stencil
which is used in the CE/SE method [7]. For linear equations, our scheme reduces to the a
scheme of Chang [6] and differs from the central schemes since reconstructions are not used.

The main features of the our scheme are as follows:

(i) Space and time are treated in a unified manner.

(ii) The discrete space-time control volumes are the basic conservation regions.

(iii) The derivatives of the dependent variables are also treated as independent variables,
even in the case of nonlinear conservation laws.

(iv) The mesh is staggered in time.

(v) A multidimensional scheme is derived on triangular meshes.

(vi) The scheme enjoys the advantages of both central schemes [48] and the CE/SE
method [6].

(vii) The second order accuracy of the scheme is verified inh numerical experiments with
standard test cases..

5.1 The One-Dimensional SP-Method

In this section we derive the SP-method for one-dimensional hyperbolic systems

∂u

∂t
+

∂f

∂x
= 0, x ∈ R , t ∈ R

+ , (5.1)

where u ∈ R
m , 0 ∈ R

m , f : R
m −→ R

m , for m ≥ 1 .
Here u(x, t) represent a vector of conserved variables and f(x, t) is the corresponding vector
of fluxes. Let x1 = x, and x2 = t be the coordinates of two-dimensional Euclidean space
R

2. The integral form of the above equation is given by

∮

S(V )

hk · dS = 0 , k = 1, 2, · · ·m , (5.2)
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where S is the boundary of an arbitrary space-time region V in R
2. The space-time vector

hk
def
= (fk, uk), where fk and uk are the components of vectors f and u, respectively. Here

dS = ndσ, where dσ is area of the face of the control volume and n is an outward unit
normal. Equation (5.2) is enforced over a space-time region, called control volume (CV),
in which discontinuities of the flow variables are allowed. Here we can see that hk · dS is
the space-time flux coming out of the region through the surface element dS.

In the present approach, like the original a scheme of Chang [6], the number of CV’s
associated with each grid point is identical to the number of unknowns. In one dimension
the unknowns are u and ux, therefore we need two control volumes to determine them.
To proceed we divide the entire computational spatial domain into non-overlapping cells,
which are line elements of mesh length ∆x in this case, see Figure 5.1. The dashed lines

x

x

x

x

xi xi+ 1
2

xi+1

CV-I CV-II

t

xtn

tn+1

Figure 5.1: Geometrical representation of the control volumes.

indicate the boundaries of the CVs. We introduce the grid points

xi = i · ∆x for i ∈ Z and xi+ 1
2

= xi +
∆x

2
.

The grid points actually used are denoted by small dots, where the hollow dots represent
the grid points at the previous time step, while the filled dot is the node at the updated
time. The mesh is staggered in time. Consider the case that n ∈ N0 is an even number.
At each grid point, we construct two CV’s as

CV-I = [xi, xi+ 1

2
] × [tn, tn+1] , CV-II = [xi+ 1

2
, xi+1] × [tn, tn+1] .

For n odd everything is shifted by ∆x
2

. Let us denote the exact solutions by vector u ∈ R
m

and the numerical solution by U ∈ R
m, then we approximate the flow variables in each

cell In
i := {ξ | |ξ − xi| ≤

∆x
2
} by

U(x, t) =
∑

[Un
i + (Ux)

n
i (x − xi) + (Ut)

n
i (t − tn)]χi(x) . (5.3)
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Here, χi(x) is the characteristic function of the cell In
i , centered around xi = i ·∆x. Using

(5.1), we can rewrite (5.3) as

U(x, t) =
∑

[Un
i + (Ux)

n
i (x − xi) − (Fx)

n
i (t − tn)]χi(x) . (5.4)

For flows in one spatial dimension using a fixed spatial domain for CV’s, the left hand side
of (5.2) can be converted into line integral. In vector form it can be represented as

∮

S(V )

(Fdt − Udx) = 0 , (5.5)

Here U and F are vectors with components Uk and Fk for k = 1, 2, · · · ,m, respectively.
We apply this equation to the CV-I and compute the flux balance counterclockwise

−

x
i+ 1

2
∫

xi

U(x, tn)dx +

tn+1
∫

tn

F(U(xi+ 1
2
, t))dt +

x
i+ 1

2
∫

xi

U(x, tn+1)dx −

tn+1
∫

tn

F(U(xi, t))dt = 0 .

(5.6)

Here the first integral corresponds to the bottom edge and uses the linear function (5.4) at
(xi, t

n). The second integral gives the flux at the right edge with such a linear function at
node (xi+ 1

2
, tn+1). The third integral corresponds to the top edge using (5.4) at (xi+ 1

2
, tn+1)

and the last one corresponds to the left edge using (5.4) at (xi, t
n) of the CV-I. Using (5.4)

and the midpoint rule for the time integral in (5.6) we get after dividing by ∆x

−

[

Un
i +

∆x

4
(Ux)

n
i

]

+ 2λF(Ũ
n+ 1

2

i+ 1

2

) +

[

Un+1
i+ 1

2

−
∆x

4
(Ux)

n+1
i+ 1

2

]

− 2λF(U
n+ 1

2

i ) = 0 . (5.7)

where λ = ∆t/∆x. The midpoint value U
n+ 1

2

i may be predicted via (5.4) from the known

data, while Ũ
n+ 1

2

i+ 1
2

must still be determined. Similarly the flux balance over CV-II gives

−

[

Un
i+1 −

∆x

2
(Ux)

n
i+1

]

+ λF(U
n+ 1

2

i+1 ) +

[

Un+1
i+ 1

2

+
∆x

2
(Ux)

n+1
i+ 1

2

]

− λF(Ũ
n+ 1

2

i+ 1

2

) = 0 . (5.8)

Now we can find Un+1
i+ 1

2

and (Ux)
n+1
i+ 1

2

from the above two equations. Adding (5.7) and (5.8)

we get

Un+1
i+ 1

2

=
1

2
(Un

i + Un
i+1) +

∆x

8

[

(Ux)
n
i − (Ux)

n
i+1

]

+ λ
[

F(U
n+ 1

2

i ) − F(U
n+ 1

2

i+1 )
]

. (5.9)

Subtracting (5.7) from (5.8), we get

∆x(Ux)
n+1
i+ 1

2

=2(Un
i+1 − Un

i ) −
∆x

2

[

(Ux)
n
i + (Ux)

n
i+1

]

− 4λ
[

F(U
n+ 1

2

i ) − 2F(Ũ
n+ 1

2

i+ 1

2

) + F(U
n+ 1

2

i+1 )
]

. (5.10)
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This will give the update of the slopes. We still need in (5.9) and (5.10) the predicted values

U
n+ 1

2

i and Ũ
n+ 1

2

i+ 1
2

which can be obtained by using Taylor expansion and by approximating

the flux derivative as follows. First we define

U
n+ 1

2

i = Un
i +

∆t

2
(Ut)

n
i = Un

i −
λ

2
∆F(Un

i ) , for any i ∈ Z . (5.11)

The computation of flux differences ∆Fn
i = ∆F(Un

i ) can be done by using the min-mod
nonlinear limiter, see [25, 48]. In this case for any grid function {Fn

i } and parameter
1 ≤ α ≤ 2 we set

∆Fn
i = MM

(

α∆−Fn
i ,

(∆−Fn
i + ∆+Fi)

2
, α∆+Fn

i

)

, ∆±Fn
i = ±

(

Fn
i±1 − Fn

i

)

, (5.12)

and MM denotes the min-mod nonlinear limiter

MM{x1, x2, ...} =







mini{xi} if xi > 0 ∀i ,
maxi{xi} if xi < 0 ∀i ,
0 otherwise .

(5.13)

Note that (5.11) gives the predicted value at the forward half time step with respect to the
data at the initial time step. Next we set

Ũ
n+ 1

2

i+ 1

2

= Un+1
i+ 1

2

−
∆t

2
(Ut)

n+1
i+ 1

2

= Un+1
i+ 1

2

+
λ

2
∆̃F(Un+1

i+ 1

2

) . (5.14)

The updated values of the flow variables Un+1
i+ 1

2

have been calculated in (5.9) and our formula

(5.14) is only needed in (5.10) afterwards. The approximation (5.14) is the predicted value
at the backward half time step with respect to the data at the updated time step. Here

∆̃F(Un+1
i+ 1

2

) = MM



α∆̃−Fn+1
i+ 1

2

,
(∆̃−Fn+1

i+ 1

2

+ ∆̃+Fn+1
i+ 1

2

)

2
, α∆̃+Fn+1

i+ 1
2



 , (5.15)

where

∆̃−Fn+1
i+ 1

2

= F(Un+1
i+ 1

2

) − F((U′)n+1
i ) , ∆̃+Fn+1

i+ 1

2

= F((U′)n+1
i+1 ) − F(Un+1

i+ 1

2

) , (5.16)

and

(U′)n+1
i = Un

i − λ∆F(Un
i ) . (5.17)

The values (U′)n+1
i are predicted at the updated time step in which ∆F(Un

i ) are calculated
from the known initial data through equation (5.12) and MM is the minmod limiter (5.13).
The equations (5.9)-(5.17) form a complete scheme.
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Like any second order scheme in case of problems with discontinuities we need more dissi-
pation for smooth transition of shocks. Hence we have to limit the slopes given by (5.10).
Here we use two different procedures to limit our slopes. In the first procedure we limit
directly the slopes calculated in (5.10), while in the second procedure instead of (5.10) we
use a central finite difference procedure to calculate the derivatives of the flow variables,
[6, 8, 73]. Let us define

(Vk)
n+1
i+ 1

2

=
(

(U ′
k)

n+1
i+1 − (Uk)

n+1
i+ 1

2

)

, (Wk)
n+1
i+ 1

2

=
(

(Uk)
n+1
i+ 1

2

− (U ′
k)

n+1
i

)

, ∀ k = 1, 2, · · ·m ,

(5.18)

where for each cell Ii the variables (U ′
k)

n+1
i are the components of vector (U′)n+1

i in (5.17)
and (Uk)

n+1
i+ 1

2

are the components of vector Un+1
i+ 1

2

at updated time tn+1 which are given by

(5.9). The slope limiters are given as follows

limiter 1: Direct Procedure for Limiting Ux

For the parameter 1 < θ < 2, the discrete slopes at updated time are given by the following
expression

∆x(Ukx)
n+1
i+ 1

2

= ∆x(Ukx)
n+1
i+ 1

2

· ϕ

(

θ (Wk)
n+1
i+ 1

2

∆x(Ukx)
n+1
i+ 1

2

)

· ϕ

(

θ (Vk)
n+1
i+ 1

2

∆x(Ukx)
n+1
i+ 1

2

)

, (5.19)

where for each cell Ii (Ukx)
n+1
i+ 1

2

are the components of vector (Ux)
n+1
i+ 1

2

as given by (5.10)

and ϕ(r) is some limiting function, e.g. the minmod function [26] as given by

ϕ(r) =







0 , for r < 0 ,
r , for 0 < r < 1 ,
1 , for r > 1 .

(5.20)

Note that the smaller θ is, the smaller are the oscillations, but at the same time, only taking
reasonably large θ leads to a uniformly second order accuracy. The optimal θ depends on
the problem at hand. However, our experiments indicate that the value of θ between 1.5
and 1.7 is a good choice. This limiter gives oscillations sometimes which is expected since
our scheme is still non-dissipative and uniformly second order and hence more oscillatory
than the (formally first order) min-mod reconstruction. Therefore for strong shock prob-
lems one may need to take further smaller values of the parameter θ.
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limiter 2: Central Difference Procedure for Ux

This procedure has also been used for the CE/SE methods in [6, 66, 73]. In this case
instead of equation (5.10), we use finite difference procedure to calculate the slopes Ukx.
Using (5.18) we get the following relation for the slopes at updated time

∆x (Ukx)
n+1
i =

|Vk|
θ Wk + |Wk|

θ Vk

|Vk|θ + |Wk|θ
∀ k = 1, 2, · · · ,m. (5.21)

Again θ is adjustable parameter and can be between 1 or 2. However, in our calculation
we take θ = 1.

5.1.1 Numerical Algorithm in 1D

We describe the numerical algorithm for the SP-method to solve the one-dimensional hy-
perbolic equation system

ut + f(u)x = 0 .

• Discretize the computational domain.

• Take the initial data in each cell In
i at time tn: Un

i , (Ux)
n
i ∀ i ∈ Z.

• Apply the boundary conditions.

• Compute F(Un
i ) using the above initial data.

• Compute the time step ∆t.

• Do the time loop

1. Compute the flow variables at half time step i.e. U
n+ 1

2

i .

2. Compute the flux at half time step: F(U
n+ 1

2

i ).

3. Compute the predicted values U′n+1
i required in step 5 and 6.

4. Update: Obtain Un+1
i+ 1

2

by using equation (5.9).

5. Compute: Ũ
n+ 1

2

i+ 1
2

and F(Ũ
n+ 1

2

i+ 1
2

) using (5.14).

6. Compute the slopes (Ux)
n+1
i+ 1

2

using equation (5.10).

7. Shift the grid by ∆x
2

and assign the updated values to the cells centers in order
to use it as initial data for the next time step. This means the mesh is staggered
in time.

• Repeat the above procedure for the next time step by updating the values at tn+2

with initial data at time tn+1.

• End the time loop after the final time is reached.
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5.2 Two-dimensional SP-Method

In this section we derive a two-dimensional SP-method for a regular triangular mesh. A
hyperbolic system of conservation laws in two space dimensions is given by

∂u

∂t
+

∂f

∂x
+

∂g

∂y
= 0, (x, y) ∈ R

2 , t ∈ R
+ , (5.22)

where u ∈ R
m , f : R

m −→ R
m , and g : R

m −→ R
m , m ≥ 1.

Here u(x, y, t) is the vector of conserved variables and f(x, y, t) and g(x, y, t) are the cor-
responding vectors of fluxes in x and y directions respectively. Let x1 = x, x2 = y and
x3 = t be the coordinates of a three-dimensional Euclidean space R

3. Once again we use
the integral form of conservation law (5.2). Here S is the boundary of the space-time region
V in R

3 which we refer to as control volume CV and hk = (fk, gk, uk), dS = dan where da
and n are the area and the outward drawn unit normal respectively of a surface element
in S. In two space dimensions we have three unknowns u, ux and uy. Therefore we need
three control volumes (CV’s) to determine their values. For a triangle Q we construct these
CV’s from the three close neighbours, each of which shares an edge with triangle Q. In
a regular mesh such as that shown in Figure 5.2(a), each lower triangle has all the three
neighbours which are upper triangles and vice versa. Thus ∆AGE, ∆AHC and ∆ECI are
the close neighbours indicated by A1, A2 and A3 respectively as shown in Figure 5.2(a).
The bigger dots indicate the centroids of these triangles while the smaller dots indicate the
midpoints of the lines which join the centroid of a triangle with the vertex. These points are
numbered as Ajk where j = 1, 2, 3 and k = 1, 2, 3. Each control volume is a parallelogram.
Parallelograms AQEA1A, AA2CQA and QCA3EQ constitute the control volumes CV-I,
CV-II and CV-III respectively. The full stencil in space-time is shown in Figure 2(b). Due
to staggered grid, we have two consecutive time marching steps. In the first step given
the initial data at the lower triangles, we calculate the solution on the upper triangles at
updated time step. While in the second marching step we use these newly calculated data
on the upper triangles to get the conserved variables at lower triangles at the next updated
time step. This procedure of alternating the upper and lower triangles is continued until
the final time has arrived. Let us denote the numerical solution vector by U ∈ R

m. We
can discretize the flow variables by a first order Taylor series expansion as follows

Un
Q(x, t) = Un

Q + (Ux)
n
Q(x − xQ) + (Uy)

n
Q(y − yQ) + (Ut)

n
Q(t − tn) . (5.23)

The conservation law states that the flux entering a control volume is equal to the flux
leaving a control volume. Let us define λ = ∆t

∆x
and µ = ∆t

∆y
, where ∆x = xE − xC and

∆y = yH − yE . Considering the control volume CV-I, we get the following equation

Un+1
Q +

∆x

3
(Ux)

n+1
Q +

∆y

6
(Uy)

n+1
Q − λ

[

2F(Ũ
n+ 1

2

Q1
) + F(Ũ

n+ 1
2

Q2
)
]

+ µ
[

G(Ũ
n+ 1

2

Q1
) − G(Ũ

n+ 1
2

Q2
)
]

= Un
A1

−
∆x

3
(Ux)

n
A1

−
∆y

6
(Uy)

n
A1

(5.24)

− λ
[

2F(U
n+ 1

2

A11
) + F(U

n+ 1
2

A12
)
]

+ µ
[

G(U
n+ 1

2

A11
) − G(U

n+ 1
2

A12
)
]

.
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( b )

∆t
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Figure 5.2: Representative triangles and the corresponding control volume.

For the control volume CV-II, the conservation law gives us

Un+1
Q −

∆x

6
(Ux)

n+1
Q +

∆y

6
(Uy)

n+1
Q + λ

[

2F(Ũ
n+ 1

2

Q1
) + F(Ũ

n+ 1

2

Q3
)
]

− µ
[

G(Ũ
n+ 1

2

Q1
) + 2G(Ũ

n+ 1

2

Q3
)
]

= Un
A2

+
∆x

6
(Ux)

n
A2

−
∆y

6
(Uy)

n
A2

(5.25)

+ λ
[

2F(U
n+ 1

2

A21
) + F(U

n+ 1
2

A23
)
]

− µ
[

2G(U
n+ 1

2

A23
) + G(U

n+ 1
2

A21
)
]

.

Applying the flux balance to the control volume CV-III, we obtain

Un+1
Q −

∆x

6
(Ux)

n+1
Q −

∆y

3
(Uy)

n+1
Q + λ

[

F(Ũ
n+ 1

2

Q2
) − F(Ũ

n+ 1
2

Q3
)
]

+ µ
[

G(Ũ
n+ 1

2

Q2
) + 2G(Ũ

n+ 1
2

Q3
)
]

= Un
A3

+
∆x

6
(Ux)

n
A3

+
∆y

3
(Uy)

n
A3

(5.26)

+ λ
[

F(U
n+ 1

2

A32
) − F(U

n+ 1
2

A33
)
]

+ µ
[

G(U
n+ 1

2

A32
) + 2G(U

n+ 1
2

A33
)
]

.

Adding equations (5.24), (5.25) and (5.26), we obtain

Un+1
Q =

1

3
(Un

A1
+ Un

A2
+ Un

A3
)

±
∆x

18

[

(Ux)
n
A2

+ (Ux)
n
A3

− 2(Ux)
n
A1

]

±
∆y

18

[

2(Uy)
n
A3

− (Uy)
n
A1

− (Uy)
n
A2

]

(5.27)

±
λ

3

[

2(F(U
n+ 1

2

A21
) − F(U

n+ 1
2

A11
)) + F(U

n+ 1
2

A23
) + F(U

n+ 1
2

A32
) − F(U

n+ 1
2

A12
) − F(U

n+ 1
2

A33
)
]

±
µ

3

[

2(G(U
n+ 1

2

A33
) − G(U

n+ 1
2

A23
)) + G(U

n+ 1
2

A11
) + G(U

n+ 1
2

A32
) − G(U

n+ 1
2

A12
) − G(U

n+ 1
2

A21
)
]

.
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Here the + sign indicates the expression for the lower triangle and − sign indicates the
expression for the upper triangle. Subtracting (5.25) from (5.24), we get

∆x

2
(Ux)

n+1
Q = ± (Un

A1
− Un

A2
) −

∆x

6

[

2(Ux)
n
A1

+ (Ux)
n
A2

]

−
∆y

6

[

(Uy)
n
A1

− (Uy)
n
A2

)
]

+ λ
[

4F(Ũ
n+ 1

2

Q1
) + F(Ũ

n+ 1
2

Q2
) + F(Ũ

n+ 1
2

Q3
) − 2(F(U

n+ 1
2

A11
) + F(U

n+ 1
2

A21
))

−F(U
n+ 1

2

A12
) − F(U

n+ 1

2

A23
)
]

+ µ
[

G(U
n+ 1

2

A11
) − G(U

n+ 1

2

A12
) + 2G(U

n+ 1

2

A23
)

+G(U
n+ 1

2

A21
) − 2G(Ũ

n+ 1

2

Q1
) + G(Ũ

n+ 1

2

Q2
) − 2G(Ũ

n+ 1

2

Q3
)
]

. (5.28)

Subtracting (5.25) from (5.26), we get

∆y

2
(Uy)

n+1
Q = ± (Un

A2
− Un

A3
) +

∆x

6

[

(Ux)
n
A2

− (Ux)
n
A3

]

−
∆y

6

[

(Uy)
n
A2

+ 2(Uy)
n
A3

]

+ λ
[

2F(U
n+ 1

2

A21
) + F(U

n+ 1
2

A23
) − F(U

n+ 1
2

A32
) + F(U

n+ 1
2

A33
) − 2F(Ũ

n+ 1
2

Q1
)

−2F(Ũ
n+ 1

2

Q3
) + F(Ũ

n+ 1
2

Q2
)
]

− µ
[

2G(U
n+ 1

2

A23
) + G(U

n+ 1
2

A21
) + G(U

n+ 1
2

A32
)

+2G(U
n+ 1

2

A33
) − G(Ũ

n+ 1
2

Q1
) − 4G(Ũ

n+ 1
2

Q3
) − G(Ũ

n+ 1
2

Q2
)
]

. (5.29)

We still need to calculate the predicted values Un+ 1

2 and Ũn+ 1

2 which can be obtained by
using Taylor expansion and by approximating the flux derivative as follows. First we define

U
n+ 1

2

Ajk
= Un

Aj
+ (Ux)

n
Aj

∆xAjk
+ (Uy)

n
Aj

∆yAjk
−

∆t

2

[

Fx(U
n
Aj

) + Gy(U
n
Aj

)
]

, (5.30)

where ∆xAjk
= xAjk

− xAj
and ∆yAjk

= yAjk
− yAj

for j = 1, 2, 3 and k = 1, 2, 3. Here
(xAj

, yAj
) are the coordinates of the centroids of the mesh cells and (xAjk

, yAjk
) are the

coordinates of the midpoints of the edges of the control volumes, see Figure 5.2(a). For
any triangle A2, consult Figure 5.3, the x−component of flux slope Fx(U

n
A2

) is given by

Fx(U
n
A2

) =
(

F(Un
A1

) − F(Un
A2

)
)

/∆x . (5.31)

Similarly for any triangle A3 the y−component of flux slope Gy(U
n
A3

) is given by

Gx(U
n
A3

) =
(

G(Un
A2

) − G(Un
A3

)
)

/∆y . (5.32)

Next we define

Ũ
n+ 1

2

Qk
= Un+1

Q + (Ux)
n+1
Q ∆xQk

+ (Uy)
n+1
Q ∆yQk

+
∆t

2

[

Fx(U
n+1
Q ) + Gy(U

n+1
Q )

]

. (5.33)

where ∆xQk
= xQk

− xQ and ∆yQk
= yQk

− yQ. Here the slopes (Ux)
n+1
Q are not treated

implicitly but can be directly calculated using a finite difference approach and a minmod
limiter. For that purpose one has to use the updated value Un+1

Q of the cell under consid-
eration and the predicted values at updated time of the neighbouring cells, as this solpe
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Figure 5.3: Representative triangles and their neighbours.

is only needed at the same cell which is under consideration. The predicted values on the
neighbouring cells at updated time are given by

U′n+1
Aj

= Un
Aj

− ∆t
[

Fx(U
n
Aj

) + Gy(U
n
Aj

)
]

. (5.34)

The x- and y-components of flux slopes Fx(U
n+1
Q ) and Gy(U

n+1
Q ) can be calculated as

follow. Let (xQ, yQ) be the centroid of the triangle Q under consideration and (xAj
, yAj

)
for j = 1, 2, 3 be the coordinates of the centroid of the neigbouring triangles Aj, see Figure
5.3. Using the points Q,A1, A2, we can write for triangle T1

D :=

∣

∣

∣

∣

∆x1 ∆y1

∆x2 ∆y2

∣

∣

∣

∣

, for ∆xj = xAj
− xQ , ∆yj = yAj

− yQ . (5.35)

Then for each components Fk, Gk of vectors F and G

D(1)
x :=

∣

∣

∣

∣

∣

∆F
(1)
k ∆y1

∆F
(2)
k ∆y2

∣

∣

∣

∣

∣

, D(1)
y :=

∣

∣

∣

∣

∣

∆x1 ∆G
(1)
k

∆x2 ∆G
(2)
k

∣

∣

∣

∣

∣

∀ k = 1, 2, · · ·m , (5.36)

where m ≥ 1 represents number of equations in the system. Similarly we can use Q,A2, A3

for triangle T2 to find D
(2)
x , D

(2)
y and Q,A3, A1 for triangle T3 to find D

(3)
x , D

(3)
y . Here

∆F
(j)
k = Fk(U

′n+1
Aj

) − Fk(U
n+1
Q ), ∆G

(j)
k = Gk(U

′n+1
Aj

) − Gk(U
n+1
Q ) , (5.37)

and

F
(j)
kx =

D
(j)
x

D
, G

(j)
ky =

D
(j)
y

D
, for j = 1, 2, 3. (5.38)
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Then the components Fkx and Gkx of flux slopes vectors Fx and Gx are given by

Fkx(U
n+1
Q ) =

1

3

3
∑

j=1

F
(j)
kx , Gky(U

n+1
Q ) =

1

3

3
∑

j=1

G
(j)
ky . (5.39)

To suppress spurious oscillations further, we can modify by a re-weighting procedure

Fkx(U
n+1
Q ) =

3
∑

j=1

W
(j)
k F

(j)
kx

3
∑

j=1

W
(j)
k

, Gky(U
n+1
Q ) =

3
∑

j=1

W
(j)
k G

(j)
ky

3
∑

j=1

W
(j)
k

, (5.40)

where

W
(j)
k =

3
∏

i6=j, i=1

θki , and θki =

√

(F
(i)
kx )2 + (G

(i)
ky)

2 .

Note that the weighted average technique applied above is identical to the one used in
[7, 8, 73]. We also calculate the components (UkQ)n+1

x and (UkQ)n+1
y of the slopes vectors

(UQ)n+1
x and (UQ)n+1

y in equation (5.33). For that purpose we use the above procedure
in similar manner by just replacing Fk and Gk by Uk. Apart from the above procedure,
there are other procedures as well which can be used for the calculation of flux derivatives
in each cell, namely by a least square procedure [26].

For problems with discontinuities we have to limit our calculated slopes at updated time
in a similar manner as discussed in the one-dimensional case. For that purpose we use
similar relations as given in (5.35)-(5.37) with following modifications. Instead of ∆F

(j)
k

and ∆G
(j)
k in (5.36) we use ∆U

(j)
k , where

∆U
(j)
k = (U ′

k)
n+1
Aj

− Un+1
kQ , k = 1, 2, · · ·m . (5.41)

Here (U ′
k)

n+1
Aj

and Un+1
kQ are the components of the vectors given by (5.34) and (5.27),

respectively. The relations in equation (5.38) are replaced by

U
(j)
kx =

D
(j)
x

D
, U

(j)
ky =

D
(j)
y

D
, for j = 1, 2, 3. (5.42)

Limiter 1: This limiter limits the slopes given by (5.28) and (5.29). Using the relations
(5.41) and (5.42) we get the following limited slopes at updated time

(Ukx)
n+1
Q = (Ukx)

n+1
Q ·

3
∏

j=1

ϕ

(

θ U
(j)
kx

(Ukx)
n+1
Q

)

, for (Ukx)
n+1
Q 6= 0 , (5.43)

(Uky)
n+1
Q = (Uky)

n+1
Q ·

3
∏

j=1

ϕ

(

θ U
(j)
ky

(Uky)
n+1
Q

)

, for (Uky)
n+1
Q 6= 0 . (5.44)
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Here the limiting function ϕ(r) is given by (5.20) and 1 < θ < 2 is an adjustable parameter.
Normally the factors of ϕ(r) obtained from the contribution of all three triangles T1, T2, T3

in (5.43) and (5.44) give a little bit more dissipative solutions. Hence it is recommended
to use only two of them, for example use the triangles T1 and T2 for both lower and upper
triangles Q as shown in Figure 5.3. This is what we have used in all of our two-dimensional
numerical computations.

Limiter 2: Finite Difference Method for Slopes
In this method instead of limiting the original slopes formulas (5.28) and (5.29), a central
difference type reconstruction approach is employed to calculate (Ukx)

n+1
Q and (Uky)

n+1
Q .

By using equations (5.42) we get:

(Ukx)
n+1
Q =

(

3
∑

j=1

U
(j)
kx

)

/3 , (Uky)
n+1
Q =

(

3
∑

j=1

U
(j)
ky

)

/3 , ∀ k = 1, 2, 3, · · · ,m . (5.45)

For flows with steep gradients or discontinuities, equation (5.45) is modified by re-weighting
procedure:

(Ukx)
n+1
Q =

3
∑

j=1

W
(j)
k U

(j)
kx

3
∑

j=1

W
(j)
k

, (Uky)
n+1
Q =

3
∑

j=1

W
(j)
k U

(j)
ky

3
∑

j=1

W
(j)
k

, (5.46)

where

W
(j)
k =

3
∏

i6=j, i=1

θki , and θki =

√

(U
(i)
kx )2 + (U

(i)
ky )2 .

The above modified function is simple and effective to suppress spurious oscillations near
shocks. This concludes the formulation of the SP-method for regular triangular mesh 2
shown in Figure A.1.

5.2.1 Numerical Algorithm

We now present the numerical algorithm for solving the two-dimensional wave equation
system (2.7) using the SP-method for a triangular mesh.

• Take the initial data on upper triangular elements: Un
Ai

, (Ux)
n
Ai

and (Uy)
n
Ai

.

• Do the time loop

1. Apply the boundary conditions.

2. Compute time step ∆t.

3. Compute the fluxes F(Un
Ai

) and G(Un
Ai

) using the available data Un
Ai

.
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4. Compute the flux slopes Fx(U
n
Ai

) and Gy(U
n
Ai

) using F(Un
Ai

) and G(Un
Ai

).

5. Compute the flow variables at half time step: U
n+ 1

2

Ai
at the centers of the faces

of the space time control volumes.

6. Compute the fluxes at half time step: F(U
n+ 1

2

Ai
) and G(U

n+ 1
2

Ai
) at the center of

the faces of the space-time control volumes.

7. Update: Obtain Un+1
Q on the upper triangular elements using equations (5.27).

8. Compute the predicted value U′
Ai

n+1 at the centroids required in step 10-12.

9. Compute F(U′n+1
Ai

) and G(U′n+1
Ai

).

10. Compute the fluxes at half time step: Ũ
n+ 1

2

Q .

11. Compute the fluxes at half time step: F(Ũ
n+ 1

2

Q ) and G(Ũ
n+ 1

2

Q ) at the centers of
the faces of the space time control volumes with respect to the updated values
Un+1

Q .

12. Compute the the slopes (Ux)
n+1
Q , (Uy)

n+1
Q from (5.28) and (5.29).

13. Repeat the procedure by alternating the type of mesh elements. This means
that we are staggering the mesh with respect to the lower and upper triangular
elements.

• End the time loop after the final time is reached.

5.3 Numerical Tests in 1D

5.3.1 1D Wave Equation

In the following example we consider the one-dimensional wave equations in order to test
the convergence behavior of the scheme.

Example 5.1 Smooth initial data

We implement the SP-method for the following one-dimensional wave equation system

ut + f(u)x = 0 .

u :=

(

φ
u

)

, f :=

(

c u
c φ

)

. (5.47)

Where c is a given constant. Let us take the computational domain as Ω = [−1, 1] and
take the following sinusoidal initial data

φ(x, 0)) = −
1

c
sin 2πx, u(x, 0) = 0 .
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The exact solution is given by

φ(x, t) = −
1

c
cos(2πct) sin(2πx) ,

u(x, t) =
1

c
sin(2πct) cos(2πx) .

In Table 5.1 and 5.2, we demonstrate respectively the L1 and L2-errors between the exact
and numerical solutions, the experimental order of convergence (EOC) and the effect of
grid refinement on the accuracy of the numerical solution. The scheme gives us second
order accuracy which is evident from the last column where EOC of 2 is easily obtained.
In Figure 5.4, the plot for components φ and u are shown for 40 mesh points for absolute
time T = 0.2 using exact boundary conditions at the two boundaries. The scheme has
a second order accuracy and a very good agreement with the exact solution even for this
smaller number of points.

5.3.2 1D Euler Equations

Here we want to solve the one-dimensional Euler equations given by

∂u

∂t
+

∂f(u)

∂x
= 0 , (5.48)

where

u =





ρ
ρv
E



 , f(u) =





ρu
p + ρu2

u(E + p)



 , (5.49)

where ρ is the density, u is the velocity, p the pressure and E = p

(γ−1)
+ 1

2
ρ (u2) is the total

energy. The CFL condition is given by

∆t ≤ ∆x

(

1

max |u| + c

)

, (5.50)

where the speed of sound is c =
√

γ p

ρ
. In the following examples for Euler equations we

have tested both kinds of limiters for the slopes. The plots are given for both limiters and
one can see that for all examples, limiter 2 is more dissipative as compared to limiter 1.
Although in some tests the plots with limiter 1 show small oscillations, however limiter 1
has better resolution than limiter 2. In all figures the left hand plots indicate the results
with limiter 1, while the right hand side are with limiter 2.

Example 5.2 Collision of two shocks

This problem [64] describes the collision of two shocks. The initial data are

(ρ, u, p) =

{

(5.99924, 19.5975, 460.94) if x < 0.4 ,
(5.99242,−6.19633, 46.0950) if x ≥ 0.4 .
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Where the spatial domain is 0 ≤ x ≤ 1. Here γ = 1.4, the number of mesh points is
200 and the final time is T = 0.035 with CFL= 0.4. We employ extrapolated boundary
conditions. The results for both limiters of the SP-method are shown in Figure 5.5. Here
we have used the parameter θ = 1.6 for limiter 1 while θ = 1 for limiter 2. The numerical
solution using SP-method has been compared with exact Riemann solution and the central
scheme [48].

Example 5.3 Sod problem

This Riemann problem was proposed by Sod [60]. The initial data are

(ρ, u, p) =

{

(1.0, 0.0, 1.0) if x < 0.5 ,
(0.125, 0.0, 0.1) if x ≥ 0.5 .

Where the spatial domain is 0 ≤ x ≤ 1. We choose γ = 5/3, the number of mesh points
as 200 and the final time is T = 0.25 with CFL= 0.4. At the two boundaries outflow
boundary conditions are used. The results of SP-method are compared in Figure 5.6 with
the central scheme [48] for the same mesh points and other numerical parameters while the
exact solution is a second order central scheme on 4000 mesh points. Here we have used
the parameter θ = 1.5 for limiter 1 while θ = 1 for limiter 2.

Example 5.4

This problem contains a shock wave originated due to a difference of pressure on the left
and right side of a diaphragm separating two regions. We use 200 mesh points and take
γ = 5/3. The initial data are

(ρ, u, p) =

{

(1.0,−19.59745, 1000) if x < 0.8 ,
(1.0,−19.59745, 0.01) if x ≥ 0.8 .

Where the spatial domain is 0 ≤ x ≤ 1 and the final time is T = 0.012 with CFL= 0.3.
The resulting density, velocity and pressure profiles are shown in Figure 5.7. Here we have
used the parameter θ = 1.7 for limiter 1 while θ = 1 for limiter 2. The exact solution is a
second order central scheme [48] on 4000 mesh points.

Example 5.5 Blast wave problem

In this example, we test the scheme for the blast wave problem which was carefully studied
by Woodward and Colella [69]. The initial data are taken as

(ρ, u, p) =







(1.0, 0.0, 1000.0) if x < 0.1 ,
(1.0, 0.0, 0.01) if 0.1 ≤ x < 0.9 ,
(1.0, 0.0, 100.0) if 0.9 ≤ x ≤ 1.0 .
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The reflective boundary conditions are applied at both x = 0 and x = 1. We choose
γ = 1.4, 500 mesh points and CFL= 0.4. The results are shown in Figure 5.8 at time is
T = 0.0385. The exact solution is a second order central scheme on 4000 mesh points.
Again the results of our scheme are better resolved as compared to the central scheme [48].
Here we use reflected boundary conditions. Again we have used the parameter θ = 1.7 for
limiter 1 while θ = 1 for limiter 2.

5.4 Numerical Tests in 2D

In this section we present two-dimensional numerical test cases.In the 2D case we use
regular triangular mesh cells. Hence if Nx × Ny are the total number of rectangles in our
computational domain then 2 × Nx × Ny are the number of triangles in the same domain
of computation. However, due to staggering in time, we are using half of the triangles at
each time step. This means that at each time step the updated solution is either available
on upper or lower triangles. For a regular grid the number grid points at which solution is
available at each time step are the same as the number of rectangles.

5.4.1 2D Wave Equation

In the following example we consider the two-dimensional wave equations in order to test
the experimental order of convergence (EOC) of the scheme.

Example 5.6 Smooth initial data

Let us take the computational domain as Ω = [−1, 1] × [−1, 1] and consider the initial
data of Example 2.7 for two-dimensional wave equation system (2.7). We implement exact
boundary conditions in this example and take end time T = 0.2 and CFL = 0.4. Tables
5.3 and 5.4 show the L1 and L2 errors between the exact and the approximated solutions
using the SP-method for a regular triangular mesh 2 shown in Figure A.1. The first column
of the tables show the number of triangular elements in the mesh. If Nx and Ny are the
number of rectangular cells along x and y-axis respectively, in a regular triangular mesh
then 2NxNy will be the number of triangular cells in the mesh. However, as mentioned
above we are using half of them at each time step. Other columns indicate the error for
individual solution components and the combined error. The last column of both the tables
shows the experimental order of convergence (EOC) for the scheme which is 2 indicating
that the scheme is truly a second order scheme. The components u and v retain their
symmetry in both L1 and L2-errors for this example. If we compare the SP-method with
EG scheme, see tables 5.4, 2.4 and 2.2, we notice that the combined error of SP-method is
considerably lower than EG schemes and that SP-method gives correct EOC. These tables
show the effect of grid refinement on the accuracy of the solution which increases as the
number of mesh points increase.
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In Figure 5.9, the centerline profiles of the solution components φ and u are shown with SP-
method and the finite volume EG4 scheme for 2× 40× 40 triangular cells. The component
v is a function of y coordinate like the component u which is a function of x. Therefore the
plot for v with respect to y has not been shown as it is similar to that of u with respect
to x. The exact solution is also plotted along with the numerical solution for different
mesh sizes. The numerical solution with SP-method is in good agreement with the exact
solution and has better accuracy than the EG4 scheme. However at maxima and minima
of the solution, the scheme gives more dissipation as compared to other regions. The graph
shows that the error in component φ is greater than u. This can also be seen from the
above tables that the error in u is less than half of the error in φ.

5.4.2 2D Euler Equations

In this section we consider few numerical test cases for the Euler equations which are
available in the literature.

Example 5.7 A two-dimensional quadratic pulse

We study two-dimensional test problems for the Euler equations of gas dynamics given by
equation (3.2). We take a mesh consisting of 300× 300 triangles and consider a CFL equal
to 0.3. It is an initial value problem studied by Dreyer et al. [15] and Qamar [53]. The
domain consists of an outer square box (1 × 1) units and a smaller inner box placed at
position 0.4 ≤ x ≤ 0.6, 0.4 ≤ y ≤ 0.6. Initially the velocities are zero. The particle density
and pressure are equal to 4 inside the box and equal to 1 elsewhere. The pressure and
density gradients stimulate the propagation of shock waves which travel from the center to
the boundary of the region. The profiles of the physical quantities can be seen in Figure
5.10 after time T = 0.1.

Example 5.8 Interaction of four shocks

This is a two-dimensional Riemann problem with four shocks. We choose the initial data
of the following form

(ρ, u, v, p) =















(1.1, 0.0, 0.0, 1.1) if x > 0.5, y > 0.5 ,
(0.5065, 0.8939, 0.0, 0.35) if x < 0.5, y > 0.5 ,
(1.1, 0.8939, 0.8939, 1.1) if x < 0.5, y < 0.5 ,
(0.5065, 0.0, 0.8939, 0.35) if x > 0.5, y < 0.5 ,

which shows that a left forward shock, a right backward shock, an upper backward shock
and a lower forward shock move towards the center of the region. We consider a square
region Ω = [0, 1]× [0, 1]. We take the adiabatic constant γ = 1.4, CFL = 0.3 with 300×300
triangles in the mesh. The profiles of particle density, velocities and pressure are shown in
Figure 5.11 after time T = 0.25. Here we employ outflow boundary conditions.



82 CHAPTER 5. A SLOPE PROPAGATION METHOD

Example 5.9 Explosion in a square box

In this example, we consider a 2-D Riemann problem inside a square box (2×2) units with
reflecting walls. Initially the density is unity everywhere and the velocities are zero. The
pressure is equal 1000 inside a square (0.5 × 0.5) units in the center of the box and equal
to 10 elsewhere. The geometrical representation of the initial data is shown in Figure 5.12.
The solution is computed using SP-method with a mesh consisting of 300×300 grid points
with reflected boundary conditions at the four boundaries. The snapshots of temperature,
density, kinetic energy, and pressure are shown in Figures 5.13 and 5.14 for end times
T = 0.03 and T = 0.1 .

Example 5.10

Here we numerically solve 2D-Riemann problem for the Euler equations, subject to the
initial data

(ρ, u, v, p) =















(0.5313, 0.0, 0.0, 0.4) if x > 0.5, y > 0.5 ,
(1.0, 0.7276, 0.0, 1.0) if x < 0.5, y > 0.5 ,
(0.8, 0.0, 0.0, 1.0) if x < 0.5, y < 0.5 ,
(1.0, 0.0, 0.7276, 1.0) if x > 0.5, y < 0.5 ,

which shows right and top forward shock waves and left and lower contact waves. We
consider a square region Ω = [0, 1] × [0, 1] and apply outflow boundary conditions at all
boundaries. We take the adiabatic constant γ = 1.4. The profiles of particle density,
velocities and pressure are shown in Figure 5.11 after time T = 0.25.

Example 5.11 Interaction of two spherically symmetric fields

This example was also studied by Dreyer et al. [15]. Here we consider the interaction
of two spherically symmetric fields with initial data: ρ0(x1, x2) = 4, p0(x1, x2) = 4 for
(x1 − 0.4)2 + (x2 − 0.4)2 ≤ 0.015 and for (x1 − 0.6)2 + (x2 − 0.6)2 ≤ 0.015. Otherwise
ρ(x1, x2) = 1, p0(x1, x2) = 1. Where velocities are zero everywhere, i.e. u = v = 0. Our
computational domain is (x, y) ∈ [0, 1] × [0, 1]. We employ outflow boundary conditions
and plot the solution after time T = 0.15 shown in Figure 5.15.

Example 5.12 Shock bubble interaction

The simulations in this example show the interactions between a planar shock and various
heterogeneities. The inspiration for this examples is taken from the 3-D shock-bubble
interaction example used by Langseth and LeVeque [30] to illustrate the induced vorticity
and mixing when a shock wave runs through an inhomogeneous media. The setup is as
follows. A bubble with radius 0.2 lies at rest at (0.4,0.5) in the domain [0, 1.6] × [0, 1].
The gas is also at rest initially and has unit density and pressure. Inside the bubble the
density is 0.1 while the pressure and velocities have similar values as outside. The incoming
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shock wave starts at x = 0.1 and propagates in the positive x-direction. Behind the shock
the density is 3.81, pressure is 10, x-velocity is 2.85 and y-velocity is 0. The results of
SP-method are shown in Figure 5.16. Here we use limiter 1 for slopes computation. We
have used the reflecting boundary conditions on the top and lower boundary. The right
boundary has outflow boundary conditions while the left has inflow boundary conditions.

Example 5.13

This is a two-dimensional Riemann problem with initial data

(ρ, u, v, p) =















(1.5, 0.0, 0.0, 1.5) if x > 0.8, y > 0.8 ,
(0.53226, 1.206045, 0.0, 0.30) if x < 0.8, y > 0.8 ,
(0.13799, 1.206045, 1.206045, 0.02903) ifx < 0.8, y < 0.8 ,
(0.53226, 0.0, 1.206045, 0.30) if x > 0.8, y < 0.8 ,

which shows four 1D shocks separating the four regions of constant states. The compu-
tational domain is a square region Ω = [0, 1] × [0, 1] with 300 × 300 triangles and outflow
boundary conditions at all the four sides. We take the adiabatic constant γ = 1.4. The
results of SP-method are shown in Figure 5.17 after time T = 0.8. In this case we also
use limiter 1 for the computation of slopes. The results of the SP-method agrees with the
published results given in [58]. Here we can also see oscillations in the results of our scheme
which are little more what one can see in [58]. However our results are still quite good and
shocks are well resolved.

5.5 Conclusions and Remarks

In this chapter we have presented a second order scheme which treats the space and time in
a unified manner for the numerical solution of hyperbolic systems. The flow variables and
their slopes are the basic unknowns in the scheme. Unlike the CE/SE method of Chang [6]
the present scheme is Jacobian-free and hence can also be applied to any hyperbolic system.
By introducing a suitable limiter for the slopes of flow variables, we apply the same scheme
to linear and non-linear hyperbolic systems with discontinuous initial data. However, in
the Chang’s scheme they used a finite difference approach for the slope calculation in the
case of nonlinear equations with discontinuous initial data. This is an important property
of our scheme to maintain the original structure of the scheme for both linear and non-
linear hyperbolic equations. The scheme is simple, efficient and has good resolution. We
have derived the scheme for one and two space dimensions. In two-space dimension we
have used the triangular mesh elements. The second order accuracy of the scheme has
been verified by numerical experiments. Several numerical test computations presented
validate the accuracy and robustness of the present scheme. The accuracy of SP-method is
considerably beeter than EG schemes. EG-schemes do not give EOC of 2 for a triangular
mesh while in case of SP-method we get a correct second order accuracy. In addition
the computational cost of SP-method is much lower than EG schemes. The numerical
implementation of EG schemes is extremely involved as compared to SP-method.
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Table 5.1: Accuracy of SP-Method for the 1D linear wave equations

Nr. L1-error EOC L2-error EOC
50 0.00481096430736 - 0.00273908364264 -
100 0.00120490231058 1.9974 0.00068781448579 1.9936
200 0.00030290652968 1.9920 0.00017262756034 1.9944
400 0.00007576456684 1.9993 0.00004322892390 1.9976
800 0.00001893984315 2.0001 0.0000108140957 1.9991
1600 0.00000473450584 2.0001 0.00000270410810 1.9997
3200 0.00000118321200 2.0005 0.00000067604475 2.0000

Table 5.2: Accuracy of SP-Method for the 2D linear wave equations

Nr. of triangles L1-error EOC L2-error EOC
20 × 20 0.04493444962950 - 0.02579779157879 -
40 × 40 0.01237596902600 1.8603 0.00700051718312 1.8817
80 × 80 0.00338629370250 1.8698 0.00192194244088 1.8649

160 × 160 0.00089572111750 1.9186 0.00051620335388 1.8966
320 × 320 0.00022897924300 1.9678 0.00013422385207 1.9433
640 × 640 0.00005765645550 1.9897 0.00003418771697 1.9731
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Figure 5.4: One-dimensional SP-method at T = 0.2.

Table 5.3: L1-error for two-dimensional SP-method for triangular mesh.

N ‖φ(T ) − φn‖L1 ‖u(T ) − un‖L1 ‖v(T ) − vn‖L1 ‖U(T ) − Un‖L1 EOC
2 × 20 × 20 0.0460775847 0.0218956572 0.0218956572 0.0898688992
2 × 40 × 40 0.0132187756 0.0057665811 0.0057665811 0.0247519380 1.8603
2 × 80 × 80 0.0037436771 0.0015144551 0.0015144551 0.0067725874 1.8698

2 × 160 × 160 0.0010350401 0.0003782010 0.0003782010 0.0017914422 1.9186
2 × 320 × 320 0.0002742441 0.0000918571 0.0000918571 0.0004579584 1.9678
2 × 640 × 640 0.0000705335 0.0000223896 0.0000223896 0.0001153129 1.9897

Table 5.4: L2-error for two-dimensional SP-method for triangular mesh.

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2 EOC
2 × 20 × 20 0.0307315084 0.0139037133 0.0139037133 0.0364835867
2 × 40 × 40 0.0085967008 0.0034721186 0.0034721186 0.0099002263 1.8817
2 × 80 × 80 0.0024079938 0.0008914288 0.0008914288 0.0027180370 1.8649

2 × 160 × 160 0.0006596862 0.0002210722 0.0002210722 0.0007300217 1.8966
2 × 320 × 320 0.0001739763 0.0000536857 0.0000536857 0.0001898211 1.9433
2 × 640 × 640 0.0000446590 0.0000130990 0.0000130990 0.0000483487 1.9731
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Figure 5.5: Comparison of different limiters for Example 5.2 for 200 mesh points.
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Figure 5.6: Comparison of different limiters for Example 5.3 for 200 mesh points.
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Figure 5.7: Comparison of different limiters for Example 5.4 for 200 mesh points.
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Figure 5.8: Comparison of different limiters for Example 5.5 for N = 500 mesh points.
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Figure 5.9: Comparison of EG scheme with SP-method for triangular mesh.
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Figure 5.10: Propagation of quadratic pulse after T = 0.1 with 300 × 300 mesh points.



5.5. CONCLUSIONS AND REMARKS 91

0 0.5 1
0

0.2

0.4

0.6

0.8

1
particle  density

x−axis

y−
ax

is
0 0.5 1

0

0.2

0.4

0.6

0.8

1
pressure

x−axis

y−
ax

is

0 0.5 1
0

0.2

0.4

0.6

0.8

1
x−velocity

x−axis

y−
ax

is

0 0.5 1
0

0.2

0.4

0.6

0.8

1
y−velocity

x−axis
y−

ax
is

Figure 5.11: Interaction of four shocks at T = 0.25 with 300 × 300 mesh points.
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Figure 5.12: Geometrical representation of the initial data for explosion in a box
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Figure 5.13: Explosion in a box T = 0.03 with 300 × 300 mesh points.

Figure 5.14: Explosion in a box T = 0.1 with 300 × 300 mesh points.
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Figure 5.15: Interaction of spherical fields with 300 × 300 mesh points.
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Figure 5.16: Shock bubble interaction
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Figure 5.17: Results of Problem 5.13 at t = 0.8.



Chapter 6

Summary and Conclusions

In this dissertation we present two types of multidimensional finite volume schemes for
hyperbolic systems based on triangular meshes. The first type of schemes are evolution
Galerkin schemes and the second type is a new space-time conservative central type method
which we name as the slope propagation method or SP-method.

Evolution Galerkin (EG) schemes are genuinely multidimensional schemes since these
schemes take into account infinite directions of wave propagation into the calculation of
fluxes. We have extended these schemes from rectangular to triangular meshes. The im-
portance of triangular meshes arises from the fact that in practical problems irregular
domains are encountered which can be filled by triangular or quadrilateral elements. Tri-
angular mesh is a good choice for an irregular domain. We have developed first and second
order EG schemes for triangular meshes and have used them to solve the linear wave equa-
tion system, the nonlinear wave equation system, the advection wave equation system, the
linearized Euler equations and the nonlinear Euler equations. We have employed these
schemes both for structured and unstructured triangular meshes. The accuracy and effi-
ciency of these schemes are equally good for structured and unstructured meshes. For the
first order EG schemes, the experimental order of convergence (EOC) is 1, which indicates
that the schemes are truly first order with piecewise constant functions. The accuracy
of second order EG schemes is considerably improved i.e. the L2-error is approximately 9
times smaller than the first order scheme. However the EOC of 2 has not been achieved. In
the second order schemes a linear recovery has been used that is locally conservative. This
method uses three immediate neighbors of a triangle to calculate slopes of the variables.
Other recovery methods which involve two neighbors of a triangle or other procedures such
as least squares recovery give equivalent results. The recovery stage is carried out before
applying the approximate evolution operator which is used to compute edge fluxes.

The numerical implementation of EG schemes for triangular meshes is quite involved since
these schemes consider infinite directions of wave propagation to compute fluxes. The
fluxes are computed by using approximate evolution operator which involves integration
along the circumference of a circle known as the sonic circle which is the base of the char-
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acteristic cone. The center of the circle lies at the quadrature point. The edge fluxes are
approximated by using Simpson’s rule. In this case our quadrature points are vertices and
midpoints of the edges. Trapezoidal rule can also be used for this purpose which requires
the approximate evolution operator to be applied only at the vertices. At a vertex the
sonic circle is intersected by the neighboring triangles sharing that vertex. To consider
the infinite directions of wave propagation lying inside the circle, one has to compute the
angular contribution of these neighboring triangles. Similarly at the midpoint of the edges
the sonic circle is intersected by two triangles sharing that edge. In this case also the
angular contribution of these triangles is necessary to know for the application of approx-
imate evolution operator. This means that a complete knowledge of the geometry of the
mesh is required for EG schemes. This data include total number of vertex neighbors,
their serial numbers, three immediate neighbors of each triangle, the elements sharing an
edge, the normals to each edge, the centroids of all elements, the coordinates of midpoints,
vertices, element areas, element vertex numbering, edge lengths, the angles subtended by
neighboring triangles at the vertices and at the edges also. We have separated all our codes
into two parts. The first part computes all the geometry data and writes it to a file. The
second part reads that geometry file and implements the EG schemes. This reduces the
computation time considerably.

Another aspect of the EG schemes is its implementation for the nonlinear hyperbolic sys-
tems. This is even more cumbersome than for linear systems such as wave equation system.
In the nonlinear case linearization of coefficients is required which implies that the higher
order perturbation of the flow variables is ignored. For example in case of the Euler equa-
tions, we linearize by freezing the Jacobian matrices locally i.e. at each quadrature point.
a special case of linearized Euler equations is the advection wave equation system. In this
case we completely freeze the pressure, the velocities and the density. The local speed of
sound is determined using these values. This means that some constant value is assigned
to these variables outside the time loop and this value is same at all quadrature points.
These values remain constant with time. Therefore we have a constant advection. The
effect of this advection is that now the sonic circle is displaced from the quadrature point.
The extent of this displacement depends upon the local velocities. The values of the local
velocities determine whether the physical condition is subsonic or supersonic. In subsonic
case the displacement of the sonic circle is small and it still intersects all the neighboring
triangles both for vertex and edge midpoint. The angles subtended by the neighboring
elements are required to be recalculated now. These angles are calculated with respect to
a reference axis with its origin at the center of the displaced circle. For this purpose the
points of intersections of the circle and elements edges are computed. In the sonic case the
displacement of the circle center from the quadrature point is equal to the radius of the
circle, hence the circle is tangent at that point. The computation of the angles is similar
to the subsonic case. However there are various possible positions of the circle in this
case and the program has to search for each possibility. Each possible position involves
different vertex neighbors since in this case all neighboring elements of quadrature point
are not intersected. The code has to sort out the right serial numbers of the triangles
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sharing the circle which is not easy. The supersonic case is even more complicated than
the subsonic or sonic cases. Here now the displacement of the circle center is larger than
its radius therefore the circle does not cross the quadrature point. Again there are many
possible positions of the circle, each involving different number of neighboring elements of
the point. In order to determine the angular contribution of different elements to the circle
the code has to find the elements intersecting the circle.

To take into account the nonlinear effects we have solved nonlinear Euler equations using
EG schemes. In this case also some kind of initial linearization is required. Here we com-
pute local variables inside the time loop at each vertex and edge midpoint. This is carried
out by using a simple average of the piecewise constant values at the neighbouring elements
of that point. In this manner the values of the local variables are different at each vertex or
midpoint and in each time cycle these values are computed from the current values. Since
the local velocities also vary with time, the time step which is a function of these velocities
is also variable i.e. for each time cycle we have a different time step. Note that in case
of the linearized Euler equations the time step was constant because the local velocities
were also constant. Furthermore the displacement of the sonic circle is different at each
point. This displacement depends upon the values of the local velocities at that point.
Likewise the angular contributions from the neighboring elements also vary at each point
and each time cycle hence the angles and the number of neighbors intersected are updated
with time. The code switches from subsonic to sonic or supersonic situation depending
upon the values of the current local velocities at a particular point. The computational
time increases considerably because those computations which were carried out once for
the linearized Euler equations, are performed in each time cycle.

We conclude that EG schemes for triangular meshes are quite difficult to implement. The
first order schemes have good accuracy and EOC but the second order schemes although
having several time higher accuracy than the first order schemes do not give EOC equal
to 2. The accuracy of EG schemes for structured and unstructured meshes is comparable
however EG schemes for unstructured meshes are more expensive computationally than
the structured meshes.

Possibilities for the future work in this area include working on the higher order schemes
for triangular meshes to get correct order of convergence. A bilinear recovery may be
employed. For structured mesh, the integral of the xy term over a triangle, can be ex-
actly computed, however for an unstructured mesh this term is not easy to calculate. For
structured mesh all types of boundary conditions are easy to implement, however for an
unstructured mesh since the serial numbers of the elements are not in the form of a matrix
but randomly distributed, therefore periodic and extrapolated boundary conditions are dif-
ficult to apply. We have used only exact boundary conditions for the unstructured mesh.
One possibility is that the outer boundary elements are reflected outside. This means that
one can have another ghost boundary of elements which are a mirror reflections of the real
boundary elements and the number of elements in the ghost and real boundaries will be
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exactly equal. Therefore extrapolation boundary conditions can be applied. For periodic
boundary conditions this reflection of boundary elements must be carried out twice. One
can realize that this procedure is not so straight forward because the ghost elements and
their vertices are to be assigned serial numbers and will be included in the actual array of
elements in the mesh. Moreover in 3D, in a mesh consisting of tetrahedral elements, EG
schemes are not feasible from computational point of view and from the point of view of
programming complexities.

Another scheme presented in this dissertation is a space-time conservative finite volume
scheme which treats space and time in a unified manner. The scheme is Jacobian free and
can be applied to any hyperbolic system. We refer to this scheme as the slope propagation
method (SP-method). The scheme uses the basic concepts of both, the CE/SE method
originally proposed by Chang [6, 7, 8, 9, 10, 65, 73] and the central schemes of Nessyahu
and Tadmor [48].

The central schemes [25, 48] use the staggered grid, well-known MUSCL-type initial recon-
struction and the min-mod nonlinear limiter as basic entities to calculate slopes at each
time step. These schemes are very simple, efficient and Jacobian-free.

On the other hand the CE/SE method of Chang uses the space-time control elements
(CE) as conservation elements and treats the conservative flow variables and their slopes
in the same way. The CE/SE method is a family of schemes, i.e., the a scheme, the a − ǫ
scheme, and the a − α scheme. The a scheme derived for linear advection, determines the
space-time geometry of the numerical mesh employed. The a − ǫ and the a − α schemes
are extensions of the a scheme for nonlinear equations and for shock capturing. In the
a scheme the number of control elements are equal to the number of unknowns. These
control elements are used to derive the formulation for the conservative flow variables and
their slopes. In our scheme we also use the same basic concept. This scheme has a better
resolution and is as efficient as central schemes. The main disadvantage of the CE/SE
method is that the calculation of the flux derivatives with respect to time is required and
hence the Jacobian matrices are involved in the derivation of the scheme. The space-time
derivatives of the fluxes in the scheme come from the assumption of linear variation of the
fluxes in space-time. Hence the method is no longer Jacobian-free, which is an important
property of the central schemes.

The main aim of our scheme is to retain the advantages of the both the CE/SE method for
linear problems, the a scheme, and central schemes. We derive the scheme in a simple and
straightforward way by using the basic concepts of finite volume schemes and conservation
laws. The scheme uses space-time control volumes in order to compute the conservative
flow variables and their slopes. In our scheme, unlike the CE/SE method, we do not
assume the space-time linear variation of fluxes in each element. We assume instead the
linear variation of the conservative flow variables only. The fluxes are calculated from
the flow variables at the midpoint of the faces of the space-time control volumes. We
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approximate the time integrals of the fluxes by using the midpoint rule. This procedure
eliminates the use of Jacobian matrices in our scheme. In the one-dimensional case our
staggered mesh stencil is similar to that of central schemes [48] and Chang’s method [6]. In
the 2D triangular mesh case we use the same staggered stencil which is used in the CE/SE
method [7]. Note that Breuss [4] showed that a staggered central scheme produces less
oscillations at local extrema in the data. For linear equations, our scheme reduces to the
a scheme of Chang [6] and differs from the central schemes since reconstructions are not
used.
The main features of the our scheme are as follows:

(i) Space and time are treated in a unified manner.

(ii) The discrete space-time control volumes are the basic conservation regions.

(iii) The derivatives of the dependent variables are also treated as independent variables.

(iv) The mesh is staggered in time.

(v) A multidimensional scheme is reconstructed on triangular meshes.

(vi) The scheme enjoys the advantages of both central schemes [48] and the CE/SE
method [6].

(vii) The second order accuracy of the scheme is verified with numerical experiments.

In future we intend the following extensions in our scheme.

• Extension of the scheme to hyperbolic systems with source terms. This is very
interesting area, especially the systems with the stiff source terms. For this purpose
we have to rederive the method.

• Extension to unstructured meshes i.e. triangular and quadrilaterals meshes. Fur-
thermore mixed meshes i.e. to use quadrilaterals inside the domain of computation,
while triangles on the outer irregular boundaries.

• Application to MHD equations and testing the scheme for divergence-free condition.
In case the scheme is not divergence-free then necessary changes can be made in the
method/stencil to bring it to divergence-free form.

• Application to different hyperbolic systems, e.g, shallow water and shallow water
MHD equations with source terms, multicomponent flows etc.

• Extension of the method to further higher orders.

• Stability analysis of the method.



Appendix A

Boundary Conditions

A.1 Structured Triangular Meshes and Boundary Con-

ditions

Throughout this thesis, we will accompany the structured meshes with three types of
boundary conditions, namely periodic, extrapolated and exact boundary conditions. For
unstructured meshes we have used only exact boundary conditions which means that the
values of exact solution is assumed at the boundary elemenets. The structured meshes
that we have considered are based on rectangular meshes. We divide each rectanglular
cell into two triangles as follows. Let the domain Ω be given as Ω = [a, b] × [c, d] and
let Nx, Ny be the number of subintervals along the x- and y-axis respectively. We define
∆x := b−a

Nx
and ∆y := d−a

Ny
. Let us denote the lower and the upper triangular elements

in a rectangular cell by e1 and e2 respectively. Further (xj(e), yj(e)), j = 1, 2, 3, be the
coordinates of the vertices of the triangle e. The points a, b, c and d have the coordinates
(xmin, ymin), (xmax, ymin), (xmax, ymax) and (xmin, ymax) respectively. Where the subscript
min and max denote the minimum and maximum values of the coordinate in the rectangu-
lar region abcda. Then the following algorithms generate the structured triangular meshes
1 and 2 shown in Figure A.1:

Mesh1:

for j = 0 to (Ny − 1)
for i = 0 to (Nx − 1)
e1 = (2j)Nx + i
e2 = (2j + 1)Nx + i
if (i is even and j is even or i is odd and j is odd).

x1(e1) = xmin + i∆x
y1(e1) = ymin + j∆y

,
x2(e1) = xmin + (i + 1)∆x
y2(e1) = ymin + j∆y

,
x3(e1) = xmin + i∆x
y3(e1) = ymin + (j + 1)∆y

.

100
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x1(e2) = xmin + (i + 1)∆x
y1(e2) = ymin + (j + 1)∆y

,
x2(e2) = xmin + i∆x
y2(e2) = ymin + (j + 1)∆y

,
x3(e2) = xmin + (i + 1)∆x
y3(e2) = ymin + j∆y

.

if (i is even and j is odd or i is odd and j is even).

x1(e1) = xmin + i∆x
y1(e1) = ymin + j∆y

,
x2(e1) = xmin + (i + 1)∆x
y2(e1) = ymin + j∆y

,
x3(e1) = xmin + (i + 1)∆x
y3(e1) = ymin + (j + 1)∆y

.

x1(e2) = xmin + (i + 1)∆x
y1(e2) = ymin + (j + 1)∆y

,
x2(e2) = xmin + i∆x
y2(e2) = ymin + (j + 1)∆y

,
x3(e2) = xmin + i∆x
y3(e2) = ymin + j∆y

.

end for (i)
end for (j).

Mesh2:

for j = 0 to (Ny − 1)
for i = 0 to (Nx − 1)
e1 = (2j)Nx + i
e2 = (2j + 1)Nx + i

x1(e1) = xmin + i∆x
y1(e1) = ymin + j∆y

,
x2(e1) = xmin + (i + 1)∆x
y2(e1) = ymin + j∆y

,
x3(e1) = xmin + (i + 1)∆x
y3(e1) = ymin + (j + 1)∆y

.

x1(e2) = xmin + i∆x
y1(e2) = ymin + j∆y

,
x2(e2) = xmin + (i + 1)∆x
y2(e2) = ymin + (j + 1)∆y

,
x3(e2) = xmin + i∆x
y3(e2) = ymin + (j + 1)∆y

.

end for (i)
end for (j).
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Figure A.1: Structured triangular meshes.
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Now the periodic boundary for both types of meshes are:

1.

U
∣

∣

∣

e1=(2j)Nx

= U
∣

∣

∣

e1=(2j+1)Nx−2
, U

∣

∣

∣

e2=(2j+1)Nx

= U
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∣

∣

e2=2(j+1)Nx−2
.
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∣
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∣

∣
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∣
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∣
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at x = b

2. The extrapolation boundary conditions for mesh 1 read
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∣
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U
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∣
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at x = b
Analaogous extrapolation boundary conditions can be defined for mesh 2.

A.2 Unstructured Traingular Meshes

The unstructured triangular meshes have been generated using MATLAB PDETOOL.
Here we select a region and generate the mesh. The mesh data is exported to the matlab
evironment where it is written to a file. The mesh data consists of total number of elements,
vertices, the triangle vertices serial numbers and the coordinates of the vertices. We split
our program into two parts (i) geometry part and (ii) evolution part. The purpose is to
save computational time. The first part of the program reads the mesh data and compute
the following

• Maximum and minimum points of the domain

• All the inner elements

• Boundary elements

• Inner vertices
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• Boundary vertices

• Vertex neighbors

• Edge neighbors of triangles

• Angles at the vertices subtended by the neighbors

• Angles at the midpoint of an edge subtended by the edge neighbor

• Centroids

• Coordinates of the midpoints

• Areas of all elements

• Normals to the edges

• The global minimum hmin

All this data is written to a geometry file which is read by the second part of the program.
Note that the vertex numbering of the three vertices of an element is anticlockwise in
the mesh which is genertaed using PDETOOL. Since the numbering of all elements and
vertices in an unstructured mesh are random, the angles and the neighbor serial numbers
must be sorted according to the reference axis (at the quadrature point). The second part
of the program reads the geometry file and solves the wave equation system using EG
schemes. The numerical algorithm for this part is similar to the algorithm given in Section
2.4. The advantage of this mesh generator is that most of the triangles are of good quality
and very small angles are avoided.



Appendix B

Further Comparison of Errors in
EG Schemes

Table B.1: First order EG4 scheme (mesh 2, periodic boundary).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2 EOC
2 × 20 × 20 0.4592615499 0.4513006456 0.4513006456 0.7862987452
2 × 40 × 40 0.2945924398 0.2156972786 0.2156972786 0.4240699678 0.89
2 × 80 × 80 0.1661131959 0.1094441288 0.1094441288 0.2270454327 0.90

2 × 160 × 160 0.0884016499 0.0560174243 0.0560174243 0.1187044875 0.94
2 × 320 × 320 0.0457802196 0.0286008466 0.0286008466 0.0610888318 0.96

Table B.2: First order EG3 scheme (mesh 2, periodic boundary).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2 EOC
2 × 20 × 20 0.4524809587 0.4496782804 0.4496782804 0.7804871106
2 × 40 × 40 0.2928463940 0.2151711044 0.2151711044 0.4223224111 0.89
2 × 80 × 80 0.1657032214 0.1093533897 0.1093533897 0.2266580801 0.90

2 × 160 × 160 0.0884016499 0.0560174243 0.05601742433 0.1187044875 0.93
2 × 320 × 320 0.0457802196 0.0286008466 0.0286008466 0.0610888318 0.95

Table B.3: First order EG4 scheme (mesh 1, exact boundary).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2 EOC
2 × 20 × 20 0.14460249197 0.31474643442 0.31474643442 0.46801764565
2 × 40 × 40 0.09707353943 0.18205262601 0.18205262601 0.27515375580 0.77
2 × 80 × 80 0.05565717473 0.09767360743 0.09767360743 0.14892275942 0.89

2 × 160 × 160 0.02968916474 0.05057319797 0.05057319797 0.07743864157 0.94
2 × 320 × 320 0.01533564590 0.02573225724 0.02573225724 0.03949025399 0.97
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Table B.4: First order EG3 scheme (mesh 1, exact boundary).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2

2 × 20 × 20 0.1390210717 0.3133178845 0.3133178845 0.4643953617
2 × 40 × 40 0.0944759598 0.1811227560 0.1811227560 0.2730139419
2 × 80 × 80 0.0545441334 0.0971446917 0.0971446917 0.1478149002

2 × 160 × 160 0.0292004100 0.0502927505 0.0502927505 0.0768855347
2 × 320 × 320 0.0151111000 0.0255883308 0.0255883308 0.0392156945

Table B.5: First order EG4 scheme (mesh 1, periodic boundary).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2

2 × 20 × 20 0.4466907543 0.4532015711 0.4532015711 0.7812272128
2 × 40 × 40 0.2877127769 0.2177224337 0.2177224337 0.4214080662
2 × 80 × 80 0.1626773678 0.1104594723 0.1104594723 0.2255360638

2 × 160 × 160 0.0867446753 0.0565071347 0.0565071347 0.1179438478
2 × 320 × 320 0.044979959 0.0288417289 0.0288417289 0.0607197447

Table B.6: First order EG3 scheme (mesh 1, periodic boundary).
N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2

2 × 20 × 20 0.4387431179 0.4509636465 0.4509636465 0.7741007328
2 × 40 × 40 0.2848852861 0.2168041478 0.2168041478 0.4185304090
2 × 80 × 80 0.1616609391 0.1101542050 0.1101542050 0.2245042472

2 × 160 × 160 0.0867446753 0.0565071347 0.0565071347 0.1179438478
2 × 640 × 640 0.0447924645 0.0287808545 0.0287808545 0.0605230538

Table B.7: Second order EG3 scheme (mesh 1, exact boundary).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2

2 × 20 × 20 0.0400239458 0.0585858452 0.0585858452 0.0920136879
2 × 40 × 40 0.0186997972 0.0199527857 0.0199527857 0.0338512885
2 × 80 × 80 0.0093241773 0.0070958112 0.0070958112 0.0136982246

2 × 160 × 160 0.0042992923 0.0030279071 0.0030279071 0.0060679780
2 × 320 × 320 0.0020691813 0.0014442395 0.0014442395 0.0029074330
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Table B.8: Second order EG4 scheme (mesh 1, exact boundary).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2

2 × 20 × 20 0.0330206339 0.0608528601 0.0608528601 0.0921764798
2 × 40 × 40 0.0172869007 0.0202920948 0.0202920948 0.0335018680
2 × 80 × 80 0.0091335037 0.0072391721 0.0072391721 0.0137197710

2 × 160 × 160 0.0043208675 0.0031088064 0.0031088064 0.0061643532
2 × 320 × 320 0.0021101363 0.0014863854 0.0014863854 0.0029784825

Table B.9: First order EG3 scheme with trapezoidal rule (mesh 2, exact boundary).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2

2 × 20 × 20 0.1818298847 0.4014266712 0.4014266712 0.5961114423
2 × 40 × 40 0.1095997266 0.2375092161 0.2375092161 0.3533176412
2 × 80 × 80 0.0610733865 0.1297914112 0.1297914112 0.1934465803

2 × 160 × 160 0.0323710786 0.0679472404 0.0679472404 0.1013979372
2 × 320 × 320 0.0167061651 0.0347770792 0.0347770792 0.0519421451

Table B.10: Second order EG3 scheme with trapezoidal rule (mesh 2, exact boundary).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2

2 × 20 × 20 0.1353951606 0.1385773797 0.1385773797 0.2381999787
2 × 40 × 40 0.0731344958 0.0710134659 0.0710134659 0.1242355794
2 × 80 × 80 0.0382643409 0.0359716066 0.0359716066 0.0636558933

2 × 160 × 160 0.0195192864 0.0180947541 0.0180947541 0.0321845117
2 × 320 × 320 0.0098657841 0.0090770790 0.0090770790 0.0161901336

Table B.11: First order EG4 scheme with trapezoidal rule (mesh 2, exact boundary).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2

2 × 20 × 20 0.1805947700 0.4015049153 0.4015049153 0.5958413085
2 × 40 × 40 0.1093092043 0.2376065281 0.2376065281 0.3533584958
2 × 80 × 80 0.0610270345 0.1298358954 0.1298358954 0.1934916495

2 × 160 × 160 0.0323690482 0.0679634247 0.0679634247 0.1014189799
2 × 320 × 320 0.0167093950 0.0347828126 0.0347828126 0.0519508613
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Table B.12: Second order EG4 scheme with trapezoidal rule (mesh 2, exact boundary).

N ‖φ(T ) − φn‖L2 ‖u(T ) − un‖L2 ‖v(T ) − vn‖L2 ‖U(T ) − Un‖L2

2 × 20 × 20 0.1327500795 0.1395089153 0.1395089153 0.2377983568
2 × 40 × 40 0.0719008736 0.0712070681 0.0712070681 0.1237361253
2 × 80 × 80 0.0378318401 0.0360063861 0.0360063861 0.0634363288

2 × 160 × 160 0.0193695694 0.0180972912 0.0180972912 0.0320967929
2 × 320 × 320 0.0098102667 0.0090744560 0.0090744560 0.0161534157

Table B.13: Second order EG4 scheme (mesh 1, exact boundary, CFL = 0.1).

N ‖φ(T ) − φn‖L1 ‖u(T ) − un‖L1 ‖v(T ) − vn‖L1 ‖U(T ) − Un‖L1 EOC
2 × 10 × 10 0.0764977252 0.1268415325 0.1268415325 0.3301807902
2 × 20 × 20 0.0307572186 0.0323126346 0.0323126346 0.0953824879 1.79
2 × 40 × 40 0.0087873416 0.0067541715 0.0067541715 0.0222956847 2.1
2 × 80 × 80 0.0031224392 0.0019579375 0.0019579375 0.0070383143 1.67

2 × 160 × 160 0.0013980801 0.0008110767 0.0008110767 0.0030202336 1.22

Table B.14: Second order EG4 scheme (mesh 2, exact boundary, CFL = 0.2).

N ‖φ(T ) − φn‖L1 ‖u(T ) − un‖L1 ‖v(T ) − vn‖L1 ‖U(T ) − Un‖L1 EOC
2 × 10 × 10 0.0725908320 0.1259144356 0.1259144356 0.3244197033
2 × 20 × 20 0.0297897995 0.0351575165 0.0351575165 0.10010483 1.70
2 × 40 × 40 0.0140660509 0.0100164950 0.0100164950 0.03409904 1.55
2 × 80 × 80 0.0057622798 0.0034913039 0.0034913039 0.01274488 1.42

2 × 160 × 160 0.0025215824 0.0014810930 0.0014810930 0.00548376 1.22

Table B.15: Second order EG4 scheme (mesh 2, exact boundary, CFL = 0.4).

N ‖φ(T ) − φn‖L1 ‖u(T ) − un‖L1 ‖v(T ) − vn‖L1 ‖U(T ) − Un‖L1 EOC
2 × 10 × 10 0.1478236868 0.1483282518 0.1483282518 0.4444801905
2 × 20 × 20 0.0447720624 0.0427115362 0.0427115362 0.1301951348 1.77
2 × 40 × 40 0.0228091374 0.0153635416 0.0153635416 0.0535362207 1.28
2 × 80 × 80 0.0111776148 0.0065768356 0.0065768356 0.0243312861 1.14

2 × 160 × 160 0.0049980034 0.0029136062 0.0029136062 0.0108252160 1.17
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