
SQL Based Frequent Pattern Mining

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieurin (Dr.-Ing.)

vorgelegt der Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von: MSc. Xuequn Shang

geb. am 8. März 1973 in Shaanxi, China

Magdeburg, den 14. Februar 2005

ii

c© Copyright by Xuequn Shang 2005

All Rights Reserved

iii

iv

Declaration

I hereby declare that this submission is my own work and to the best of my knowl-

edge it contains no materials previously published or written by another person, nor

material which to a substantial extent has been accepted for the award of any other

degree or diploma at University of Magdeburg or any other educational institution,

except where due acknowledgement is made in the thesis. Any contribution made

to the research by others, with whom I have worked at University of Magdeburg or

elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own

work, except to the extent that assistance from others in the project’s design and

conception or in style, presentation and linguistic expression is acknowledged.

v

Zusammenfassung

Data Mining in gross relationalen Datenbanken wird zunehmend eingesetzt und seine

Bedeutung ist heute voll anerkannt. Trotzdem fällt die Performanz von SQL-basiertem

Data Mining hinter spezialisierten Implementierungen zurück. Dies liegt an den

unangemessen hohen Kosten der Wissensextraktion und der fehlenden Unterstützung

durch Konstrukte der deklarativen Anfragesprache. Frequent Pattern Mining, d.h.

die Suche nach sich wiederholenden Mustern in Daten, ist die Grundlage für eine

Reihe von essentiellen Mining-Aufgaben. Dies war die Motivation für die Entwicklung

SQL-basierter Ansätze für das Frequent Pattern Mining im Rahmen diese Forschungs-

vorhabens.

In dieser Arbeit werden Ansätze untersucht, um unter Verwendung von SQL Fre-

quent Patterns in einer Transaktionstabelle zu finden. Von diesen basieren die meis-

ten auf dem Apriori-Algorithmus. Diese Methoden weisen jedoch durch die teuren

Operationen zur Kandidatengenerierung und deren -test eine unzureichende Perfor-

manz auf, insbesondere bei der Suche nach besonders aussagekräftigen und/oder lan-

gen Mustern. Hierfür wurde im hier beschriebenen Dissertationsprojekt eine Klasse

von SQL-basierten Methoden zum schrittweisen Finden und Verfeinern von Mustern

entwickelt. Die Gemeinsamkeit dieser Methoden besteht im Teile und Herrsche-

Ansatz zur Zerlegung von Mining-Aufgaben und in der Anwendung einer Muster-

verfeinungsmethode zur Vermeidung des kombinatorischen Effekts, der für die Kan-

didatengenerierung ein typisches Problem darstellt. Apriori-basierte Algorithmen er-

forderen bei der Verwendung von SQL entweder mehrere Scans über die Datenbank

oder aufwändige Verbundoperationen. Demgegenüber vermeiden die hier vorgestell-

ten SQL-basierten Algorithmen mehrere Durchläufe über die Ausgangstabellen als

vi

auch die Berechnung komplexer Verbunde zwischen Tabellen.

Eine umfassende Untersuchung der Performanz wurde unter Verwendung eines

DBMS (IBM DB2 UDB EEE V8) durchgeführt und die Ergebnisse herkömmlicher

Apriori-basierter Ansätze wurden mit denen der in dieser Arbeit vorgestellten Meth-

oden verglichen. Empirische Ergebnisse zeigen, dass die vorgestellten Algorithmen

zu einer effizienten Berechnung führen. Darüber hinaus unterstützen die meisten

Datenbankmanagementsysteme heutzutage die Parallelisierung, deren Eignung zur

Unterstützung des Frequent Pattern Mining im Rahmen dieser Arbeit untersucht

wurde.

vii

Abstract

Data mining on large relational databases has gained popularity and its significance is

well recognized. However, the performance of SQL based data mining is known to fall

behind specialized implementation since the prohibitive nature of the cost associated

with extracting knowledge, as well as the lack of suitable declarative query language

support. Frequent pattern mining is a foundation of several essential data mining

tasks. These facts motivated us to develop original SQL-based approaches for mining

frequent patterns.

In this work, we investigate approaches based on SQL for the problem of find-

ing frequent patterns from a transaction table. Most of them adopt Apriori-like

approaches. However those methods may suffer from the inferior performance since

the costly candidate-generation-and-test operation especially when mining datasets

with prolific patterns and/or long patterns. We develop a class of efficient SQL based

pattern growth methods for mining frequent patterns. The commonality of these

approaches is that they use a divide and conquer method to decompose mining tasks

and then use a pattern growth method to avoid the combinatory problem inherent

to candidate-generation-and-test approach. Apriori algorithms with the help of SQL

either require several scans over the data or require many and complex joins between

the input tables. While our SQL-based algorithms avoid making multiple passes over

the large original input table and complex joins between the tables.

A comprehensive performance study evaluates on DBMS (IBM DB2 UDB EEE

V8) and compares the performance results between SQL based frequent pattern min-

ing approaches based on Apriori and the approaches in this thesis. The empirical

results show that our algorithms can get efficient performance. Moreover, recently

viii

most major database systems have included capabilities to support parallelization,

this thesis examined how efficiently SQL based frequent pattern mining can be par-

allelized and speeded up using parallel database systems.

ix

Dedication

To my family

x

Acknowledgements

There are lots of people I would like to thank for a huge variety of reasons.

Firstly, I would like to express my sincere gratitude to my senior supervisor, Prof.

Gunter Saake, for his continuous help and support throughout my dissertation and my

stay with his group. Prof. Saake always finds time in his busy schedule for attending

the group meeting and his creative thinking and insight make our discussions fruitful

and interesting. Without his guidance, my endeavors would not have been successful.

I am very thankful to my supervisor, Prof. Kai-Uwe Sattler, for his insightful

comments and advice. He always give me continuous encouragement and support,

and share with me his knowledge and experience. The discussion with him is very

helpful to my research. I really appreciate the effort he put in the development of me

and my work and his help to improve the quality of my thesis.

My deepest thanks to Prof. Wolfgang Lehner for serving on my supervisory com-

mittee.

I am thankful to Ingolf Geist for his help and suggestions during my initial work

on data mining. I would like to say a big ’thank-you’ to Dr. Eike Schallehn, Dr.

Ingo Schmitt, Hagen Hoepfner for their great help during my study in Magdeburg

University. I would also like to thank many other people in our department, support

staff and faculty, for helping me in serval ways. In particular I thank Prof. Claus

Rautenstrauch, Dr. Soeren Balko, Anke Schneidewind, Qaizar Ali Bamboat, Jubran

Rajub, Kerstin Giesswein, Kerstin Lange, and all my colleagues in the database

group for their help with everything. Many thanks go to Steffen Thorhauer and Fred

Kreutzmann for a well administered research environment. I would like to especially

thank Marcel Karnstedt from Technical University Ilmenau, who gave me greatly

xi

help in administrating parallel experiment environment.

Last but not least, I am very grateful to my dad Chongxin Shang and mum

Yueping Guan, my sister Xuehong Shang and her husband Dr. Xiangru Xu. It

is through their continuous moral support and encouragement that I have made it

through all the steps to reach this point in life, and I could not have done it without

them. My family has always taken care of me and I love them all very much. Special

thanks from my heart to my husband Mingjun Mu for his love, understanding and

support. He has always been patiently standing beside me during all these years. I

hope I will do them proud of my achievements, as I am proud of them. Their love

accompanies me forever.

xii

Contents

Declaration v

Zusammenfassung vi

Abstract viii

Dedication x

Acknowledgements xi

1 Introduction 1

1.1 Data Mining . 1

1.1.1 Types of data repositories . 3

1.1.2 Types of mining . 3

1.1.2.1 Association rule mining 3

1.1.2.2 Sequential Patterns 5

1.1.2.3 Classification . 6

1.1.2.4 Clustering . 8

1.2 Motivation . 9

1.2.1 Architectural Alternatives . 9

1.2.2 Why Data Mining with SQL 11

1.2.3 Goal . 12

1.3 Contributions . 13

1.4 Outline of the Dissertation . 13

xiii

2 Frequent Pattern Mining 15

2.1 Problem Description . 15

2.2 Complexity of Mining Frequent Patterns 16

2.2.1 Search Strategy . 17

2.2.2 Counting Strategy . 18

2.3 Common Algorithms . 19

2.3.1 The Apriori Algorithm . 20

2.3.2 Improvements over Apriori 23

2.3.3 TreeProjection: Going Beyond Apriori-like Methods 27

2.3.4 The FP -growth Algorithm . 30

2.3.4.1 Construction of FP -tree 31

2.3.4.2 Mining Frequent Patterns using FP -tree 33

2.3.5 Improvements over FP -tree 36

2.3.6 Comparison of the Algorithms 38

2.4 Summary of Algorithms for Mining Frequent Patterns 39

3 Integration of Mining with Database 42

3.1 Language Extensions . 42

3.1.1 MSQL . 43

3.1.2 DMQL . 43

3.1.3 MINE RULE . 44

3.2 Frequent Pattern Mining in SQL . 45

3.2.1 Candidate Generation in SQL 46

3.2.2 Counting Support in SQL . 47

4 SQL Based FP -growth 52

4.1 Input Format . 53

4.2 FP -growth in SQL . 54

4.2.1 Construction of the FP Table 55

4.2.2 Finding Frequent Pattern from FP 58

4.2.3 Optimization . 63

4.3 EFP Approach . 64

xiv

4.3.1 Using SQL with object-relational extension 68

4.3.2 Analysis . 69

4.4 Evaluation . 70

4.4.1 Data Set . 70

4.4.2 Comparison between FP and EFP 71

4.4.3 Comparison of Different Approaches 72

4.5 Conclusion . 77

5 Propad Approach 79

5.1 Algorithm for Propad . 80

5.1.1 Enhanced Query Using Materialized Query Table 90

5.1.2 Analysis . 90

5.2 Hybrid Approach . 91

5.3 Evaluation . 95

5.3.1 Data Set . 95

5.3.2 Comparison of Different Approaches 96

5.3.3 Scale-up Study . 101

5.4 Conclusion . 102

6 Parallelization 104

6.1 Parallel Algorithms . 104

6.1.1 Parallel Apriori-like Algorithms 105

6.1.2 Parallel FP -growth Algorithms 109

6.2 Parallel Database Systems . 111

6.2.1 Parallel Relational Database Systems 113

6.2.2 SQL Queries in Apriori and Propad 118

6.2.2.1 SQL Query Using Apriori Algorithm 119

6.2.2.2 SQL Query Using Propad Algorithm 120

6.2.3 Parallel Ppropad . 121

6.3 Evaluation . 124

6.3.1 Parallel Execution Environment 124

6.3.2 Data Set . 124

xv

6.3.3 Performance Comparison . 124

6.4 Conclusion . 125

7 Conclusions and Future Work 129

7.1 Summary . 129

7.2 Future Research Directions . 131

7.2.1 Final Thoughts . 133

Bibliography 134

xvi

List of Tables

2.1 An example transaction database DB and ξ = 3 21

2.2 An example transaction database DB and ξ = 2 28

2.3 A transaction database DB and ξ = 3 31

2.4 Mining of all-patterns based on FP -tree 34

4.1 Memory usage of FP -growth . 54

4.2 The table FP in Example 4.1 . 58

4.3 An example table PB16 . 61

4.4 An FP table has a single path . 62

4.5 The table EFP in Example 4.1 . 66

4.6 Description of the generated datasets 71

5.1 A transaction database and ξ = 3 . 81

5.2 An example PT table . 83

5.3 An example PT table in breadth first approach 87

5.4 An example F2 built by the Propad algorithm 93

5.5 Description of the generated datasets 96

6.1 Parallel frequent pattern mining algorithms 111

xvii

List of Figures

1.1 Architecture of a typical data mining system 2

1.2 An example of a decision tree . 7

1.3 Architecture Alternatives . 10

2.1 The lattice for I = {1, 2, 3, 4} . 17

2.2 Systematization of the algorithms (The algorithms: EFP , Propad,

and Hybrid are proposed in this thesis) 20

2.3 The Apriori algorithm – example . 22

2.4 The lexicographic tree . 28

2.5 An FP -tree for Table 2.3 . 33

2.6 Projection of a sample database . 37

3.1 Candidate generation phase in SQL-92 47

3.2 Candidate generation for any k . 47

3.3 Support counting by K-Way join . 48

3.4 Support counting using subquery . 49

3.5 Support counting by GatherJoin . 51

3.6 Tid-lists creation by Gather . 51

4.1 Example illustrating the SC and MC data models 53

4.2 SQL query using to generate T ′ . 56

4.3 Example table T , F , and T ′ . 57

4.4 Construction of table PB . 61

4.5 Recursive query for constructing the table EFP 67

4.6 Comparison the construction of FP table between FP and EFP over

data set T5I5D10K . 72

xviii

4.7 Support counting by optimized K-Way join 73

4.8 Comparison for dataset T5I5D10K 74

4.9 Comparison for dataset T25I10D10K. For K-Way join with the sup-

port threshold that are lesser than 0.2%, the running times were so

large that we had to abort the runs in many cases. 75

4.10 Comparison for dataset T10I4D100K. For K-Way join approach with

the support value of less than 0.08%, the running times were so large

that we had to abort the runs in many cases. 75

4.11 Comparison for dataset T25I20D100K. For K-Way join approach with

the support value of 0.25%, the running times were so large that we

had to abort the runs in many cases. 76

4.12 Comparison between EFP and Path over data set T25I20D100K . . 76

4.13 Scalability with the threshold over T10I4D100K 77

5.1 A frequent item set tree . 81

5.2 An example transaction table T , frequent item table F , and transferred

transaction table TF . 84

5.3 Construct frequent items by successively projecting the transaction

table T . 86

5.4 PT generation in SQL . 90

5.5 The frequent itemsets located at different levels 92

5.6 Comparison over dataset T10I4D100K 97

5.7 Comparison over dataset T25I20D100K 98

5.8 K-Way join over dataset T10I4D100K 99

5.9 Comparison between Propad and Hybrid(1) over dataset T10I4D100K 100

5.10 Comparison over dataset Connect4 100

5.11 Scalability with the number of transactions in T10I4 101

5.12 Scalability with the number of transactions in T25I20 102

6.1 Count Distribution algorithm . 105

6.2 Date Distribution algorithm . 106

6.3 Parallel FP -growth algorithm on shared nothing systems 110

6.4 Shared-nothing architecture . 114

xix

6.5 Shared-memory architecture . 114

6.6 Shared-disk architecture . 115

6.7 Hybrid architecture . 116

6.8 Inter-Partition and Intra-Partition parallelism 117

6.9 Simultaneous Inter-Partition and Intra-Partition Parallelism 118

6.10 K-Way join . 119

6.11 PT generation in SQL . 120

6.12 Parallel Propad . 122

6.13 Execution time (top) Speedup ration (bottom) 126

6.14 Execution time (top) Speedup ration (bottom) 127

xx

Chapter 1

Introduction

1.1 Data Mining

The information revolution is generating mountains of data from sources as diverse

as business and science fields. One of the greatest challenges is how to turn these

rapidly expending data into accessible, and actionable knowledge.

Data mining is the automated discovery of non-trivial, implicit, previously un-

known, and potentially useful information or patterns embedded in databases [FPSM91].

Briefly state, it refers to extracting or mining knowledge from large amounts of data.

The motivation for data mining is a suspicion that there might be nuggets of useful

information hiding in the masses of unanalyzed or underanalyzed data, and there-

fore methods for locating interesting information from data would be useful. From

the beginning, data mining research has been driven by its applications. While the

finance and industries have long recognized the benefits of data mining, data mining

techniques can be effectively applied in many areas and can be performed on a va-

riety of data stores, including relational databases, transaction databases and data

warehouses.

Many people take data mining as synonym for another popularly used term,

Knowledge Discovery in Databases (KDD). Alternatively, others view data mining

as simply an essential step in the process of knowledge discovery in databases. The

KDD process is depicted in Figure 1.1 [HK00] and consists of an iterative sequence

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Architecture of a typical data mining system

of the following steps:

1. Preprocessing. The process is executed before data mining techniques are ap-

plied to the right data. It includes data cleaning, integration, selection and

transformation.

2. Data mining process. This is the main process of KDD where intelligent meth-

ods are applied in order to extract data patterns.

3. Postprocessing. The process includes pattern evaluation which identify the

truly interesting patterns representing knowledge based on some interesting-

ness measures and knowledge presentation where visualization and knowledge

representation techniques are used to present the mined knowledge to the user.

1.1. DATA MINING 3

1.1.1 Types of data repositories

In principle, data mining should be applicable to any kind of information reposi-

tory. This includes relational databases, data warehouses, transactional databases,

advanced database systems, flat files, and the World Wide Web. Advanced data-

base systems include object-relational and object-oriented databases, and specific

application-oriented databases, such as spatial databases, temporal databases, text

databases, and multimedia databases. Based on the types of data, the challenges and

techniques of mining may differ for each of the repository systems.

1.1.2 Types of mining

Generally speaking, there are two classes of data mining: descriptive and prescriptive.

Descriptive mining is to summarize or characterize general properties of data in data

repositories, while prescriptive mining is to perform inference on current data, to

make predictions based on the historical data.

The initial efforts on data mining research were to cull together techniques from

machine learning and statistics to define new mining operations and develop algo-

rithms for them [AGI+92, AIS93, AW97, KI91]. In general, there are many kinds

of patterns (knowledge) that can be discovered from data. For example, associa-

tion rules can be found for market basket or transaction data analysis, classification

models can be mined for prediction, clusters can be identified for customer relation

management, and outliers can be found for fraud detection. In the remainder of this

section, we briefly introduce the various data mining problems with examples.

1.1.2.1 Association rule mining

One of the fundamental methods from the prospering field of data mining is the

generation of association rules that describe relationships between items in data sets.

The original motivation for searching association rules came from the need to analyze

so called supermarket transaction data, that is, to explore customer behavior in terms

of purchased products. Association rules describe how often items are purchased

together.

4 CHAPTER 1. INTRODUCTION

Generally speaking, an association rule is an implication

X ⇒ Y

where X and Y are disjunct sets of items. The meaning of such rules is quite

intuitive: Let DB be a transaction database, where each transaction T ∈ D is a

set of items. An association rule X ⇒ Y then expresses ”Whenever a transaction

T contains X than this transaction T also contains Y with probability conf”. The

probability conf is called the rule confidence and is supplemented by further quality

measures like rule support and interest. The support sup is simply the number of

transactions that contain all items in the antecedent and consequent parts of the rule.

(The support is sometimes expressed as a percentage of the total number of records

in the database.) The confidence conf is the ratio of the number of transactions

that contain all items in the consequent as well as the antecedent to the number of

transactions that contain all items in the antecedent.

Example 1.1 (Association rules mining) Suppose, we have large number of items,

e.g., ”bread”, ”milk.” Customers fill their market baskets with some subset of the

items, and we get to know what items people buy together, even if we don’t know who

they are.

Association rule mining searches for interesting relationship among those items

and displays it in a rule form. An association rule ”bread ⇒ milk (sup = 2%, conf =

80%)” states that 2% of all the transactions under analysis show that bread and milk

are purchased together and 80% of the customers who bought bread also bought milk.

Such rules can be useful for decisions concerning product pricing, promotions, sore

layout and many things. Association rules are also widely used in various areas such

as telecommunication networks, market and risk management, inventory control etc.

How are association rule mined from large databases?

Association rule mining consists of two phases:

• Find all frequent itemsets. By definition, each of these itemsets will occur at

least as frequently as a pre-defined minimum support threshold.

1.1. DATA MINING 5

• Generate association rules from frequent itemsets. By definition, these rules

must satisfy the pre-defined minimum support threshold and minimum confi-

dence threshold.

The second phase is straightforward and less expensive. Therefore the first phase-

frequent itemset mining is a crucial step of the two and determines the overall per-

formance of mining association rules.

In addition, frequent itemsets play an essential role in many data mining tasks

that try to find interesting patterns from databases, such as association rules [AS94,

KMR+94], correlations [BMS97], sequential patterns [AS95], multi-dimensional pat-

terns [KHC97, LSW97], max-patterns [Bay98], partial periodicity [HDY99], emerging

patterns [DL99], episodes [MTV97]. Frequent pattern mining techniques also can be

extended to solve many other problems, such as iceberg-cube computation [BR99]

classifiers [BHM98]. Thus, how to efficiently mine frequent patterns is an important

and attracting problem.

1.1.2.2 Sequential Patterns

As we know, data are changing all the time, especially data on the web are highly

dynamic. It is obvious that time stamp is an important attribute of each dataset. Se-

quential pattern mining, which discovers relationships between occurrences of sequen-

tial events to find if there exist any specific order of the occurrences, is an important

process in data mining with broad applications, including the analyses of customer

purchase behavior (Association rule mining does not take time stamp into account,

the rule can be X ⇒ Y . With sequential pattern mining We can get more accurate

and useful rules such as: X ⇒ Y within a week, or X happens every week.) web

access pattern, disease treatments, DNA sequences, and so on.

The sequential pattern mining problem was first introduced in Agrawal and Srikant

[AS95] and further generalized in Srikant and Agrawal [SA96]. Given a database of

sequence, where each sequence is a list of transactions ordered by the transaction

time, the problem of mining sequential pattern is to discover all sequential patterns

with a user-specified minimum support. Each transaction contains a set of items. A

6 CHAPTER 1. INTRODUCTION

sequential pattern is an ordered list (sequence) of itemsets. The itemsets that are

contained in the sequence are termed the elements of the sequence. The support of

a sequential pattern is the percentage of data-sequences that contain the sequence.

Example 1.2 (Sequential pattern mining) An example of a sequential pattern is

that 80% customers typically buy ”computer” and ”modem”, and then ”printer”.

Then, 〈(computer, modem)(printer)〉 is a sequence with two elements. 80% here

represents the percentage of customers who comply this purchasing habit.

For sequential pattern mining, few constraints are added. First of which is, time

constraints that specify a maximum and/or minimum time gaps between adjacent

elements. Second, a sliding time window within which items are considered part

of the same sequence element. They are specified by three parameters, max − gap,

min−gap and window−size. Third, given a user-defined taxonomy (is−a hierarchy)

on items, allow sequential patterns to include items across all levels of the taxonomy.

1.1.2.3 Classification

Classification is a well-studied problem [WK91, MAR96, RS00, SAM96]. It is to

build (automatically) a model (called classifier) that can classify a class of objects so

as to predict the classification or missing attribute value of future objects for which

the class label is unknown. It consists of two steps. In the first step, based on the

collection of training set, a model is generated to describe the characteristics of a

set of data classes or concepts. In the second step, the model is used to predict the

classes of future objects or data.

Each record of the training set consists of serval attributes which could be continuous

(coming from an ordered domain) or categorial (coming from an unordered domain).

A training set is typically used for validating and tuning the model. One of attributes

will be the classifying attribute, which indicates the class to which each record be-

longs. Once a model is built from the given examples, it can be used to determine

the class of future unclassified records.

Several classification models have been proposed, eg. bayesian classification,

1.1. DATA MINING 7

TID Age Salary Married Risk
1 21 30 No High
2 18 28 Y es High
3 30 50 Y es Low
4 35 20 Y es High
5 23 60 No High
6 47 80 Y es Low

(a) Training set

(b) Decision tree

Figure 1.2: An example of a decision tree

neural networks, regression and decision trees. Decision tree classification is prob-

ably the most popular model, because it can be constructed relatively fast compared

to other methods and it is simple and easy to understand.

A decision tree is a flow-chart-like structure consisting of internal nodes, leaf

nodes, and branches. Each internal node represents a decision on a attribute, and

each outgoing branch corresponds to a possible outcome of the decision. Each leaf

node represents a class. Building a decision tree classifier generally includes two

stages, a growing stage and a pruning stage. In tree growing, the decision tree model

is built by recursively splitting the training set based on a locally optimal criterion

8 CHAPTER 1. INTRODUCTION

until each partition consists entirely or dominantly of examples from one class. To

improve generalization of a decision tree, tree pruning is used to prune the leaves and

branches responsible for classification of single or very few data vectors. The Figure

1.2 shows a sample decision tree and the training set from which it is derived, which

indicate whether or not a customer’s credit is likely to be safe. After this model has

been built, we can predict the credit of a new customer based on his attributes such

as age, salary, and marital status.

1.1.2.4 Clustering

The fundamental clustering problem is that of grouping together similar data items,

based on proximity between pairs of objects. The technique is useful to finding inter-

esting distributions and patterns in the underlying data. It is a process of partition

a data points into k cluster such that the data sets within a cluster are similar to

each other, but are very dissimilar to data points in other clusters. Dissimilarities are

assessed based on the attribute values describing the objects.

Clustering algorithms can be classified into two categories: partitioning and hier-

archical. The popular k-means and k-medoids methods determine k cluster represen-

tatives and assign each data points to the cluster with the nearest representative such

that the sum of the distances squared between the data points and their represen-

tatives is minimized. On the contrary, a hierarchical clustering is a nested sequence

of partitions. Two specific hierarchical clustering methods are agglomerative and

divisive. An agglomerative algorithm for hierarchical clustering starts with the dis-

joint clustering, which places each of the n objects in an individual cluster and then

merges two or more these trivial clusters into larger and larger clusters until all objects

are in a single cluster. It is a bottom up approach. A divisive algorithm performs the

task in the reverse order. A comprehensive survey of current clustering techniques

and algorithms is available in [Ber02].

1.2. MOTIVATION 9

1.2 Motivation

Since their introduction in 1993 by Argawal et al. [AIS93], the frequent pattern mining

problems have been studied popularly in data mining research. We can categorize

the ongoing work in frequent pattern mining area as follows:

• Developing new efficient mining algorithms. The most of the previous algo-

rithms used in today typically employ sophisticated in-memory data structures,

where the data is stored into and retrieved from flat files. In cases where the

data are stored in a DBMS, data access is provided through an ODBC or SQL

cursor interface. The potential problem with this approach is the high context

switching cost between the DBMS and the mining process. Therefore, the inte-

gration of data mining with database systems should be naturally considered.

We will discuss it in detail later.

• Scaling mining algorithm over large data sets. Broadly speaking, techniques

for scaling data mining algorithms can be divided into five basic categories

[GG02]: 1) manipulating the data so that it fits into the memory, 2) using

specialized data structures to managed out of memory data, 3) distributing the

computation so that it exploits several processors, 4) precomputing intermediate

quantities of interest, 5) reducing the amount of data mined. One of the genetic

way is to using sampling. Whether sampling is appropriate for data mining, and

when appropriate, how much to sample and how, is still an important question

for data mining. However, use of sampling restrict the scope of data.

1.2.1 Architectural Alternatives

There are a wide range of architectural alternatives for integrating mining process

with the DBMS [STA98]. These alternatives are depicted in Figure1.3 and described

below.

• Stored-Procedure: This architecture is representative of embedding mining logic

as an application on the database server. In this approach, the mining algorithm

10 CHAPTER 1. INTRODUCTION

Figure 1.3: Architecture Alternatives

is encapsulated as a stored procedure that is executed in the same address space

as the DBMS. The main advantage is great programming flexibility and no

extra storage requirement. Also, any previous file system code can be easily

transferred to work on data stored in the DBMS.

• Cache-Mine: In this architecture, the mining kernel reads the entire data once

from the DBMS and temporarily caches the relevant data in a lookaside buffer

on a local disk. The cached data could be transformed to a format that enables

efficient future accesses. The cached data is discarded when the execution com-

pletes. After the mining algorithm is executed, the results will be first stored

in a buffer on local disk, then sent back to the DBMS. This method has all

the advantages of the Store-Procedure approach plus it has better performance.

The disadvantage is that it requires extra disk space for caching. Note that the

permanent data continues to be managed by the DBMS.

• User-defined functions: This approach is another variant of embedding mining

as an application on the database server if the user-defined functions are run

in the unfenced mode. Here, mining algorithm is expressed as a collection of

user-defined functions that are appropriately placed in SQL data scan queries.

Most of processing happens in the UDF and the core DBMS engine is used

primarily to provide tuples to the UDFs. Query processing capability of the

DBMS is little used. The main advantage of this method over Store-Procedure

is the execute time because passing tuples to a store procedure is slower than

passing it to a UDF. The main disadvantage is the development cost since the

1.2. MOTIVATION 11

entire mining algorithm has to be rewritten.

• SQL-based approach: This is the integration architecture explored in this disser-

tation. In this approach, mining algorithm is formulated as SQL queries which

are executed by the DBMS query processor. A mining-aware optimizer may

be used to optimize these complex, long running queries based on the mining

semantics.

• Integrated approach: This is the tightest form of integration of data mining

with database systems. Mining operations are integrated into the DBMS and

become part of the database query engine.

1.2.2 Why Data Mining with SQL

The integration of data mining with database systems is an emergent trend in data-

base research and development area. This is particularly driven by the reasons as

follows.

• Explosion of the data amount stored in databases such as Data Warehouses dur-

ing recent years. Data Warehouses are deploying relational database technology

for storing and maintaining data. Furthermore, data in data warehouse will not

be exclusively used for data mining, but will be shared also by OLAP and other

database utilities. Some of the algorithms have made assumption that ignore

this fact. For example, some of the algorithms discuss how the physical design

of the database may be tuned for a specific data mining task. However, in many

cases the physical design of a data warehouse is unlikely to be guided solely by

the requirement of a single data mining algorithm. Therefore, the data mining

utilities must assume a relational backend.

• Database systems provide powerful mechanisms for accessing, filtering, and in-

dexing data that the mining algorithm can exploit instead of developing all re-

quired functionality from scratch. Rather than devising specialized paralleliza-

tion, one can potentially exploit the underlying SQL parallelization, especially

12 CHAPTER 1. INTRODUCTION

in an SMP environment. In addition, the DBMS support for check-pointing

and space management can be especially valuable for long-running mining al-

gorithms on huge volumes of data. It’s surprising that although scalability of

mining algorithms has been an active area of work, few significant pieces of

work have worked on the issue of data mining algorithms for SQL systems.

A detailed study of a SQL-aware scalable implementation of association rules

appear in [STA98].

• SQL-aware data mining systems have ability to support ad-hoc mining, ie., al-

lowing to mine arbitrary query results from multiple abstract layers of database

systems or Data Warehouses. These techniques need to be re-implemented in

part if the data set in main-memory approaches does not fit into the available

memory.

1.2.3 Goal

However, from the performance perspective, data mining algorithms that are imple-

mented with the help of SQL are usually considered inferior to algorithms that process

data outside the database systems [STA98]. One of the most important reasons is that

main memory algorithms employ sophisticated in-memory data structures and try to

reduce the scan of data as few times as possible while SQL based algorithms either

require several scans over the data or require many and complex joins between the

input tables. Almost all previous frequent itemset mining with SQL adopt an Apriori

approach, which has the bottleneck of the candidate set generation and test. It is

impossible to get a good performance out of pure SQL based Apriori-like approach.

Recently some commercial data mining solutions to the integration of data mining

algorithms and functions directly into the database management system (DBMS)

has been presented. Oracle Data mining (ODM) embeds data mining algorithms in

the Oracle database. Instead of extracting data from database, the data in ODM

never leaves the database. This enables Oracle to provide an infrastructure for data

analysts and application developers to integrate data mining seamlessly with database

applications. ODM provides DBMS-DATA MINING in PL/SQL packages. However,

1.3. CONTRIBUTIONS 13

they don’t really exploit SQL queries.

These facts motivated us to develop new SQL based algorithms which avoid mak-

ing multiple passes over the large original input table and complex joins between

tables. On the other hand recently most major database systems have included ca-

pabilities to support parallelization, this thesis examined how efficiently SQL based

frequent pattern mining can be parallelized and speeded up using parallel database

system.

1.3 Contributions

In this thesis, we investigate the problem of efficient and scalable frequent Pattern

mining in RDBMSs. In particular, we make the following contributions.

• Based on the performance evaluation of previous methods, we develop a SQL

based frequent pattern mining with a novel frequent pattern growth (FP-growth)

method, which is efficient and scalable for mining dense databases without can-

didate generation.

• We further propose Propad (PROjection PAttern Discovery) approach, which

avoid the cost of materializing frequent pattern tree tables. This approach is

efficient and scalable for mining both sparse and dense databases. Furthermore,

to achieve efficient frequent pattern mining in various situation, we design a

hybrid algorithm, which smartly combines the Apriori approach and Propad

approach together.

• We also examine how efficiently SQL based frequent pattern mining can be

parallelized and speeded up using parallel database systems.

1.4 Outline of the Dissertation

The remainder of the thesis is structured as follows:

14 CHAPTER 1. INTRODUCTION

• In Chapter 2, we explain the frequent pattern mining problem. We present an

in depth analysis of the most influential algorithms that were proposed during

the last decade.

• In Chapter 3, we present the overview of related work systematically.

• In Chapter 4, a SQL based frequent pattern mining with FP -tree method is

developed. We also present performance comparison of different approaches

using real-life and synthetic datasets.

• In Chapter 5, we further propose Propad, which retains the advantages of FP -

tree but avoids FP tables materializing. Even though SQL based FP -tree

approach is efficient in mining many kinds of databases, it may have the prob-

lem of building many recursive FP tables and thus may be time consuming.

Our performance study shows that Propad achieves scalability in mining large

databases. Meanwhile, a hybrid method is proposed in mining both dense and

sparse data sets.

• In Chapter 6, We also examine how efficiently SQL based frequent pattern

mining can be parallelized and speeded up using parallel database systems.

• The thesis concludes and directions in future work in Chapter 7.

Chapter 2

Frequent Pattern Mining

In this chapter, we first explain the problem of frequent pattern mining, then we

describe the main techniques used to solve this problem and give a comprehensive

survey of the most influential algorithms that were proposed during the last decade.

2.1 Frequent Pattern Mining Problem Description

The formal definition of frequent pattern and association rule mining problems is

introduced in [AIS93], it can be stated as follows.

Let I = {i1, i2, ..., im} be a set of items. An itemset X ⊆ I is a subset of items.

Particularly, an itemset with k items is called an k-itemset.

A transaction T = (tid,X) is a tuple where tid is the transaction identifier and

X is an itemset. A transaction T = (tid,X) is said to contain itemset Y if Y ⊆ X.

Let transaction database DB be a set of transactions. The support of an itemset

X in transaction database DB, denoted as sup(X), is the number of transactions in

DB containing X:

sup(X) = |{(tid, Y)|((tid, Y) ∈ DB) ∧ (X ⊆ Y)}|

The frequency of an itemset X in DB, denoted as frequency(X), is the probability

of X occurring in a transaction T ∈ DB:

frequency(X) = sup(X)
|DB|

15

16 CHAPTER 2. FREQUENT PATTERN MINING

Given a user-specified support threshold min sup, X is called a frequent itemset

or freuqent pattern if sup(X) ≥ min sup. The problem of mining frequent itemsets

is to find the complete set of frequent itemsets in a transaction database DB with

respect to a given support threshold min sup.

In practical, we are not only interested in the set of frequent itemsets, but also in

the actual supports of these itemsets.

Association rule can be derived from frequent patterns. An association rule is an

expression X ⇒ Y , where X and Y are itemsets and X
⋂

Y = ∅. The support of the

rule X ⇒ Y in a transaction database DB is given as supDB(X ∪Y), the confidence

as sup(X∪Y)
sup(X)

is the conditional probability that a transaction contains Y , given that

it contains X. The rule is called confidence if sup(X∪Y)
sup(X)

exceeds a given minimal

confidence threshold min conf .

Given a transaction database DB, a support threshold min sup and a confidence

threshold min conf , the problem of association rule mining is to find the complete set

of association rules that have support and confidence no less than the user-specified

thresholds, respectively.

Association rule mining problem can be decomposed into two subproblems.

• Find all frequent patterns whose support is greater than support threshold

min sup.

• Use the frequent patterns to generate the desired rules having confidence higher

than min conf .

As shown in many studies(eg., [AS94]), finding all frequent patterns is significantly

more costly in terms of time than generating rules. In the following section, we will

analyze the computational complexity of finding frequent patterns.

2.2 Complexity of Mining Frequent Patterns

The task of discovering all frequent patterns is quite challenging. In the beginning

of the mining run each itemset X ⊆ I is potentially frequent. That is, the initial

search space consists of the power set of I without the empty set. Therefore, even

2.2. COMPLEXITY OF MINING FREQUENT PATTERNS 17

Figure 2.1: The lattice for I = {1, 2, 3, 4}

for a small |I| the search space easily exceeds all limits. If I is large enough, it’s

therefore not practicable to determine the support of each of the subset of I in order

to decide whether it is frequent or not. Also, support counting is a tough problem

when database is massive, containing millions of transactions.

2.2.1 Search Strategy

The search space is exponential with |I|, noted by 2|I|. For a special case I =

{1, 2, 3, 4}, we visualize the search space that forms a lattice in Figure 2.1 [ZPOL97a].

The bold line is an example of actual itemset support and separates the frequent item-

sets in the upper part from the infrequent itemsets in the lower part. The existence

of such a border is guaranteed by the downward closure property of itemset support.

We will describe the property in the following.

To prune the search space, the idea is to traverse the lattice in such a way that all

frequent itemsets are found but as few as infrequent itemsets as possible are visited.

This can be achieved by employing the downward closure property of itemset: if an

itemset is infrequent, all of its supersets must be infrequent. Clearly, the proposed

stepwise traversal of the search space should adopt either bottom-up or top-down

direction. The main advantage of the former strategy is that it can effectively prune

18 CHAPTER 2. FREQUENT PATTERN MINING

the search space by exploiting downward closure property. However, this advantage

fades when most of the maximal frequent itemsets locating near the largest item-

set of the search lattice. In this case, there are very few itemsets to be pruned.

The later strategy is traditionally adopted for discovering maximal frequent patterns

[AAP00, Bay98, TL01]. Although all of the frequent patterns can be derived from

the maximal ones, many infrequent itemsets have to be visited before the maximal

frequent itemsets are identified if there are large numbers of items and/or the support

threshold is very low. This is why most work on frequent pattern mining embraces

the bottom-up strategy instead.

Today’s common approaches employ both breadth-first search (BFS) and depth-

first search (DFS) to traverse the search space. With BFS the support values of all (k−
1)-itemsets are determined before counting the support values of all (k)-itemsets. This

strategy can facilitate the pruning of candidates with monotone property. However,

it requires more memory to keep the frequent subsets of the pruned candidates. In

contrast, DFS [Bay98, PB99, AAP00, KP03] recursively visits the descendants of an

itemset. In [Zak00], this approach is usually combined with the vertical intersection

counting strategy because it suffices to keep the tidlists, corresponding to the itemsets

on the path from the root down to the currently inspected one, in memory.

2.2.2 Counting Strategy

Computing the supports of a collection of itemsets is a time consuming procedure.

The major challenge frequent pattern mining problem faces is how to efficiently count

the support of all candidate itemsets visited during the traversal. Up to date, there

are two main approaches: horizontal counting and vertical intersection. The hori-

zontal counting determines the support value of a candidate itemset by scanning the

transaction one by one, and increasing the counter of the itemset if it is a subset of

the transaction. Efficiently looking up candidates in transactions requires specialized

data structures, e.g. hashtrees or prefix trees. This approach works well for a rarely

occurred candidate, however, is costly for candidates of large size.

The vertical intersection [SON95, DS99, Zak00] is employed when the database is

2.3. COMMON ALGORITHMS 19

represented as a vertical format, in which the database consists of a set of items, each

followed by the identifiers of the transactions containing that item, called tidlist. The

transaction set X.tids of an itemset X is defined as the set of all transactions this

itemset is contained in:

X.tids = {T ∈ DB|X ⊆ T}

For the support follows

sup(X) = |X.tids|
|DB|

For each itemset Z with Z = X∪Y , the support of itemset Z can easily computed

by simply intersecting the tidlists of any two subsets X,Y ⊂ Z. It holds

Z.tids = X.tids ∩ Y .tids

Though the vertical intersection scheme eliminates the I/O cost for database scan,

there occurs a large amount of unnecessary intersection when the support count of a

candidate itemset is quite less than the number of transactions.

Researchers have been seeking for efficient solutions to the problem of frequent

pattern mining since 1993. In the following section we will discuss some most influ-

ential algorithms during the last decades.

2.3 Common Algorithms

In this section, we describe and systemize the common algorithms for mining frequent

patterns. We characterize each of the algorithms by its strategy to traverse the search

space and its strategy to count the support values of the itemsets. Figure 2.2 shows

a classification of prevailing approaches.

The foundation of all frequent pattern mining algorithms is from the properties

of frequent sets. They are described as follows.

• Support for subsets.

X, Y are itemsets. If X ⊆ Y , then Sup(X) ≥ Sup(Y) because all transactions

in DB that support Y necessarily support X also.

20 CHAPTER 2. FREQUENT PATTERN MINING

Figure 2.2: Systematization of the algorithms (The algorithms: EFP , Propad, and
Hybrid are proposed in this thesis)

• Supersets of infrequent sets are infrequent.

If itemset Sup(X) < min sup, then every superset Y of X will not be frequent

because Sup(Y) ≤ Sup(X) < min sup according to the above property.

• Subsets of frequent sets are frequent.

If itemset Y is frequent in DB, ie., Sup(Y) ≥ min sup, every subset X of Y

is frequent in DB because Sup(X) ≥ Sup(Y) ≥ min sup according to the first

property.

2.3.1 The Apriori Algorithm

The first algorithm to generate all frequent patterns was the AIS algorithm proposed

by Agrawal et al. [AIS93], which was given together with the introduction of this

mining problem. To improve the performance, an anti-monotonic property of the

support of itemsets, called the Apriori heuristic, was identified by Agrawal et al. in

[AS94, SA97]. The same technique was independently proposed by Mannila et al.

[MTV94]. Both works were cumulated afterwards in [AMS+96].

Theorem 2.1 (Apriori) Any superset of an infrequent itemset cannot be frequent.

In other word, every subset of a frequent itemset must be frequent.

2.3. COMMON ALGORITHMS 21

TID Items Frequent Items
1 1, 3, 4, 6, 7, 9, 13, 16 1, 3, 6, 13, 16
2 1, 2, 3, 6, 12, 13, 15 1, 2, 3, 6, 13
3 2, 6, 8, 10, 15 2, 6
4 2, 3, 11, 16, 19 2, 3, 16
5 1, 3, 5, 6, 12, 13, 16 1, 3, 6, 13, 16

Table 2.1: An example transaction database DB and ξ = 3

The Apriori heuristic can prune candidates dramatically. Based on this prop-

erty, a fast frequent itemset mining algorithm, called Apriori, was developed. It is

illustration in the following example.

Example 2.1 (Apriori) Let’s give an example with five transactions DB and sup-

port threshold ξ is set to 3 in Table 2.1.

The process of Apriori to find the complete frequent patterns in DB as follows.

Figure 2.3 illustrates this process.

1. Scan DB once to generate length-1 frequent itemsets, labeled as F1. In this

example, they are {1, 2, 3, 6, 13, 16}.

2. Generate the set of length-2 candidates, denoted as C2 from F1.

3. Scan DB once more to count the support of each itemset in C2. All itemsets

that turn out to be frequent in C2 are inserted into F2. In this example, F2

contains {(1, 3), (1, 6), (1, 13), (3, 6), (3, 13), (3, 16), (6, 13)}.

4. Then, we form the set of length-3 candidates from F2 and frequent 3-itemsets

F3 from C3. The similar process goes on until no candidates can be derived or

no candidate is frequent.

The Apriori algorithm is presented as follows.

Apriori performs a BFS by iteratively obtaining candidate itemsets of size (k+1)

from frequent itemsets of size k, and check their corresponding occurrence frequencies

22 CHAPTER 2. FREQUENT PATTERN MINING

Figure 2.3: The Apriori algorithm – example

2.3. COMMON ALGORITHMS 23

Algorithm 1 Apriori

Input: A transaction database DB and minimum support threshold ξ
Output: The complete set of frequent patterns in DB
Method:
1. scan DB once to find the frequent 1-items F1;
2. for (k = 1; Fk 6= ∅; k++) do begin
3. generate Ck+1, the set of length-k candidates, from Fk;
4. for each transaction t in DB do
5. increment the count of all candidates in Ck+1 that are contained in t
6. Fk+1 = candidates in Ck+1 whose supports are no less than ξ
7. end
8. ∪kFk

in the database. Each iteration requires a scan of the original database. Many variants

that improve Apriori have been proposed by reducing the number of candidates

further, the number of transactions to be scanned, or the number of database scans,

the process is still expensive as it is tedious to repeatedly scan the database and

check a large set of candidates by pattern matching, which is particularly true if a

long pattern exists. In short, the bottleneck for Apriori-like methods is the candidate-

generation-and-test operation.

2.3.2 Improvements over Apriori

In the past several years, many variants that improve Apriori have been proposed.

In this section, we review some influential algorithms.

AprioriTid is from Agrawal et al. [AS94]. The AprioriTid algorithm reduces the

time needed for the support counting procedure by replacing the every transaction

in the database by the set of candidates contained in that transaction. This adapted

transaction database is denoted as Ck. The AprioriTid algorithm is much fast in

later iterations, but it performs much slower than Apriori in early iterations. This

is mainly due to the additional overhead that is created when Ck does not fit into

main memory. AprioriHyTid combines the Apriori and AprioriTid into a single

24 CHAPTER 2. FREQUENT PATTERN MINING

hybrid. This hybrid algorithm uses Apriori for the initial iterations and switches to

AprioriTid when it is expected that the set Ck fits into main memory. AprioriHyTid

performs almost always better than Apriori.

Park et al. [PCY95a] proposed an optimization, called DHP (Direct Hashing

and P runing) to reduce the number of candidate itemsets. In the k-th iteration,

DHP counts the supports of length-k candidates. At the same time, potential length-

(k+1) candidates are generated and hashed into buckets. Each bucket in the hash

table consists of a counter to represent how many itemsets have been hashed to

that bucket so far. If the counter of the corresponding bucket is below the support

threshold, the potential length-(k+1) candidates should not be length-k candidates.

DHP results in a significant decrease in the number of candidate itemsets, espe-

cially in the second iteration. Nevertheless, creating the hash tables and writing the

adapted database to disk at every iteration causes a significant overhead.

Partition, proposed by Savasere et al. [SON95], combines the Apriori approach

with set intersections instead of count occurrences. That is, the database is stored

in main memory using the vertical database layout and the support of an itemset is

computed by intersecting the tidlists of two of its subsets. In addition, the Partition

algorithm partitions the database in several chunks according to such a way that each

partition can be held in main memory.

For each partition, the Partition algorithm first mines local frequent patterns

with respect to relative support threshold using the Aprirori approach. Then, the

algorithm merges all local frequent patterns together to consolidate global frequent

patterns.

The Partition algorithm is highly dependent on the heterogeneity of the database.

That is, partitioning the database is non-trivial when the database is biased. On

the other hand, a huge number of local frequent itemsets can be generated when the

global support threshold is low.

DIC, a dynamic itemset counting algorithm, is proposed by Brin et al [BMUT97].

It is an extension of Apriori that aims at minimizing the number of database scans.

The idea is to relax the strict separation between generating and counting candidates.

It divides the database into intervals of specific size. Whenever the support count of

2.3. COMMON ALGORITHMS 25

a candidate itemset passes the support threshold in an interval, that is even this can-

didate has not yet seen all transactions, DIC starts generating additional candidates

based on it and counting the support of them at the next interval. By overlapping

the counting of different length of items, DIC can save some database scans. On

the other hand, DIC employs a prefix-tree structure to store candidate itemsets. In

contrast to the usage of hashtree that means whenever we reach a node we can be

sure that the itemset associated with this node is contained in the transaction.

Experimental results reported in [BMUT97] show that DIC is faster than Apriori

when the support threshold is low. It’s performance, however, is heavily dependent

on the distribution of the data.

A theoretical analysis of sampling(using Chernoff bounds) for association rules

was presented in [MTV94, AMS+96]. In [JL96] the authors compare sample selection

schemes for data mining. A sampling algorithm, proposed by Toivonen [Toi96], first

mine a sample of the database using the Apriori algorithm instead of mining the

database directly. The sample should be small enough to fit into main memory.

Then, the whole database is scanned once to verify frequent itemsets found in the

sample. In some rare cases where the sampling method does not produce all frequent

patterns, the missing patterns can be found by generating all remaining potentially

frequent patterns and verifying their supports during the second pass through the

database.

The performance study in [Toi96] shows that the sampling algorithm is faster

than both Apriori and the partitioning method in [SON95]. To keep the probability

of such a failure small, where the sampling method may not produce all frequent

patterns, the minimal support threshold can be decreased. However, for a reasonably

small probability of failure, the threshold must be drastically decreased, which can

cause a combination explosion of the number of candidate patterns. The sampling

methods are efficient for two main reasons: 1) they only examine a small sample

of the database, frequent patterns can be discovered very efficiently with reasonably

high accuracy, 2) it can often fit entirely into main memory since the sample is small

in size, thus reducing the I/O overhead of repeated database scanning.

Zaki et al. [ZPLO96] complement the approach proposed in [Toi96], and can help

26 CHAPTER 2. FREQUENT PATTERN MINING

in determining a better support or sample size. They note that there is a trade-off

between the performance of the algorithm and the desired accuracy or confidence of

the sample.

In [ZPOL97a, Zak00] the algorithm Eclat is introduced, that combines DFS with

tidlist intersections based approach on vertical data layouts. An efficient implemen-

tation of Eclat is proposed by Borgelt in [Bor03].

The main difference between Apriori and Eclat are how they traverse the search

space and how they determine the support of an itemset. Apriori traverses the search

space in a breadth first oeder, that is, it first check itemsets of size 1, then itemsets

of size 2 and so on. Apriori determines the support of itemsets either by testing

for each candidate itemset which transactions it is contained in, or by traversing

for a transaction all subsets of the currently processed size and incrementing the

corresponding itemset counters. Eclat, on the other hand, traverses the search space

in depth first order. That is, it extends an itemset prefix until it reaches the boundary

between frequent and infrequent itemsets and then backtracks to work on the next

prefix. Eclat determines the support of itemsets by constructing the list of identifiers

of transactions that contain the itemset.

When using DFS it suffices to keep the tidlists on the path from the root down

to the class currently investigated in memory. That is, splitting the database as

done by Partition is no longer necessary. However, Eclat essentially generates can-

didate itemsets using only the join step form Apriori and doesn’t fully exploit the

monotonicity property, the number of candidate itemsets that are generated is much

larger as compared to a BFS approach.

Recently, Zaki proposed a new approach to efficiently compute the support of

an itemset using the vertical database layout [ZG03]. The novel data representation

called diffset, which only keeps track of differences in the tidlists of a candidate

itemset, is presented. Experimental results show that diffsets deliver order of mag-

nitude performance improvement over the best previous methods. Nevertheless, the

algorithm still requires the original database to be stored in main memory.

Apriori is more efficient than Eclat in the early passes when the itemset cardi-

nality is small, but inefficient in later passes when the length of the frequent itemsets

2.3. COMMON ALGORITHMS 27

is high and the number of them decreases. But Eclat on the other hand, has better

performance during these later passes as it uses tidlist intersections, and the tidlists

shrink with increase in the size of itemsets. This motivated a study of an adaptive

hybrid strategy which switches to Eclat in higher passes of the algorithm. Hybrid

strategies were studied in [STA98, HGN00b, RMZ02]. The hybrid method tended to

be uniformly less efficient than Eclat for the databases but often more efficient than

Apriori [RMZ02].

DCI (Direct Count & Intersect) algorithm, is presented in [OPP01, OPPS02]. As

Apriori, at each iteration DCI generates the set of candidates Ck, determines their

supports and builds the set of frequent k-itemsets Fk. However, DCI adopts a hybrid

approach to determine the support of the candidates. During the first iterations,

DCI exploits a novel counting-based technique, accompanied by an efficient pruning

of the dataset. Since the counting-based approach becomes less efficient as k increases

[SON95]. DCI starts its intersection-based phase as soon as possible. Unfortunately,

intersection-based method needs to maintain in memory the vertical representation

of the pruned dataset. So, at iteration k, k ≥ 2, DCI checks whether the pruned data

set may fit into the memory. When the dataset becomes small enough, DCI starts to

employ a intersection-based approach. The distinct heuristic strategy is dynamically

chosen according to the dataset peculiarities. For example, when a data set is dense,

identical sections appearing in several bit-vectors are aggregated and clustered, in

order to reduce the number of intersections actually performed. Conversely, when

a data set is sparse, the runs of zero bits in the bit-vectors to be intersected are

promptly identified and skipped. [OPPS02] shows that DCI performs very well on

both synthetic and real-world datasets characterized by different density features.

2.3.3 TreeProjection: Going Beyond Apriori-like Methods

Agarwal, et al. propose TreeProjection [AAP01], a frequent pattern mining algo-

rithm not in the Apriori framework. TreeProjection represents frequent patterns as

nodes of a lexicographic tree and counts the support of frequent itemsets by project-

ing the transactions into the nodes of this tree. An example of the lexicographic tree

28 CHAPTER 2. FREQUENT PATTERN MINING

TID Frequent Items
1 a, c, d, f
2 a, b, c, d, e, f
3 b, d, e
4 c, d, e, f

Table 2.2: An example transaction database DB and ξ = 2

Figure 2.4: The lexicographic tree

is illustrated in Figure 2.4.

Example 2.2 (TreeProjection) Let the transaction database DB, and the mini-

mum support threshold be 2 in Table 2.2. The second column contains frequent items

in each transaction.

In a hierarchical manner, the algorithm looks only at that subset of transactions

which can possibly contain that itemset. This significantly improves the performance

of counting the number of transactions containing a frequent itemset. The general

idea is shown in the following.

By scanning the transaction database once, all frequent 1-itemsets are identified.

The top level of the lexicographic tree is constructed, i.e. the root labelled ”null”

2.3. COMMON ALGORITHMS 29

and the nodes labelled by length-1 patterns. In order to count all possible extensions

for each node, all transactions in the database are projected to that node. A matrix

at the root node is created as shown below. The matrix is built by adding counts

from transactions in the projected database, so that it computes the frequencies of

length-2 patterns.

a b c d e f

a

b 1

c 2 1

d 2 2 3

e 1 2 2 3

f 2 1 3 3 2

From the matrix, frequent 2-itemsets are founded to be: {ac, ad, af, bd, be, cd,

ce, cf, de, df, ef}. The nodes in the lexicographic tree for these frequent 2-itemsets

are generated. At this stage, the active nodes for 1-itemsets are c, d, and e, because

only these nodes contain enough descendants to potentially generate longer frequent

itemsets. All other nodes are pruned. The lexicographic tree is grown in the same way

until the kth level of the tree equal to null. The number of nodes in a lexicographic

tree is exactly that of the frequent itemsets.

TreeProjection proposes an efficient way to enumerate frequent patterns. The

efficiency of TreeProjection can be explained by two factors:

• The use of projected transaction sets in counting supports is important in the

reduction of CPU time for counting frequent itemsets.

• The lexicographic tree facilities the management and counting of candidates

and provides the flexibility of choosing an efficient strategy during the tree

construction phase as well as transaction projection phase.

[AAP01] reports that their algorithm is up to one order of magnitude faster than

other former techniques in literature.

30 CHAPTER 2. FREQUENT PATTERN MINING

TreeProjection is primarily based on pure BFS. It still suffers from some problems

related to efficiency, scalability, and implementation complexity. We describe them

as follows.

• TreeProjection may generate huge frequent itemset tree in a large database or

when the database has quite long frequent itemsets;

• Since one transaction may contain many frequent itemsets, one transaction

in TreeProjection may be projected many times to many different nodes in

the lexicographic tree. When there are many long transactions containing

numerous frequent items, transaction projection becomes a nontrivial cost of

TreeProjection.

• TreeProjection may encounter difficulties at computing matrices when the

database is huge, when there are a lot of transactions containing may frequent

items.

2.3.4 The FP -growth Algorithm

Lately, an FP -tree based frequent pattern mining method [HPY00], called FP -

growth, developed by Han et al achieves high efficiency, compared with Apriori-like

approach. The FP -growth method adopts the divide-and-conquer strategy, uses only

two full I/O scans of the database, and avoids iterative candidate generation.

In [HPY00], frequent pattern mining consists of two steps:

1. Construct a compact data structure, frequent pattern tree (FP-tree), which can

store more information in less space.

2. Develop an FP -tree based pattern growth (FP-growth) method to uncover all

frequent patterns recursively.

2.3. COMMON ALGORITHMS 31

TID Items Frequent Items
1 1, 3, 4, 6, 7, 9, 13, 16 3, 6, 1, 13, 16
2 1, 2, 3, 6, 12, 13, 15 3, 6, 1, 2, 13
3 2, 6, 8, 10, 15 6, 2
4 2, 3, 11, 16, 19 3, 2, 16
5 1, 3, 5, 6, 12, 13, 16 3, 6, 1, 13, 16

Table 2.3: A transaction database DB and ξ = 3

2.3.4.1 Construction of FP -tree

The construction of FP -tree requires two scans on transaction database. The first

scan accumulates the support of each item and then selects items that satisfy mini-

mum support. In fact, this procedure generates frequent 1-itemsets and then stores

them in frequency descending order. The second scan constructs FP -tree.

An FP -tree is a prefix-tree structure storing frequent patterns for the transaction

database, where the support of each tree node is no less than a predefined minimum

support threshold ξ. It consists of one root labeled as ”null”, a set of item-prefix

subtrees as the children of the root, and a frequent-item-header table. Each node

in the item-prefix subtree consists of three fields: item-name, count, and node-link.

Where node-link links to the next node in the FP -tree carrying the same item-name,

or null if there is none. For any frequent item i, all the possible frequent patterns

that contain i can be obtained by following i’s node-links, starting from i’s head in

the FP -tree header. The frequent items in each path are stored in their frequency

descending order.

The algorithm of construction FP -tree is presented as follows.

Example 2.3 (FP -tree) Let the transaction database DB, be the first two columns

of Table 2.3 (same as the transaction database used in Example 2.1), and the mini-

mum support threshold be 3. Figure 2.5 illustrates an FP -tree for the given example

in Table 2.3. One may construct a FP -tree as follows.

1. Scan the transaction databaset DB once to derive a list of frequent items,

32 CHAPTER 2. FREQUENT PATTERN MINING

Algorithm 2 FP -tree construction

Input: A transaction database DB and minimum support threshold ξ
Output: FP
Method: The FP -tree is constructed in the following steps.

1. Scan the transaction database DB once. Collect the set of frequent items F and
their supports. Sort F in support descending orders as L, the list of frequent
itemsets.

2. Create the root of an FP -tree, T , and label it as ”null”. For each transaction
t in DB select the frequent items in transaction t and sort them according to
the order of F . Let the stored frequent-item list in t be [p|P], where p is the
first element and P is the remaining list. Call insert tree([p|P], T).

insert tree([p|P], T)
1. if T has a child N such that N.item-name = p.item-name
2. then increment N’s count by 1;
3. else do {create a new node N;
4. N’s count = 1;
5. N’s parent link be linked to T;
6. N’s node-link be linked to the nodes with the same item-name

via the node-link structure;}
7. if P is nonempty
8. Call insert tree(P, N)

2.3. COMMON ALGORITHMS 33

Figure 2.5: An FP -tree for Table 2.3

FList, 〈(3 : 4), (6 : 4), (1 : 3), (2 : 3), (13 : 3), (16 : 3)〉, in which items are

ordered in frequency descending order.

2. Create the root of an FP -tree, T , label it as ”null”. For each transaction t in

DB do the following.

Select the frequent items in transaction t and sort them according to the order

of FList, like the last column of Table 2.3. For each item p in t, if T has a

child N such that N.item-name = p.item-name, then increment N ’s count by

1; else create a new node N , with count initialized to 1, parent link linked to T ,

and node-link linked to the nodes with the same item-name via the node-link

structure.

2.3.4.2 Mining Frequent Patterns using FP -tree

Based on FP -tree structure, an efficient frequent pattern mining algorithm, FP -

growth method is proposed, which is a divide-and-conquer methodology: decompose

mining task into smaller ones, and only need sub-database test.

FP -growth performs as follows:

1. For each node in the FP -tree construct its conditional pattern base, which is

a ”subdatabase” constructed with the prefix subpath set co-occurring with the

suffix pattern in the FP -tree. FP -growth traverses nodes in the FP -tree from

34 CHAPTER 2. FREQUENT PATTERN MINING

Item Conditional Conditional Frequent
Pattern Base FP -tree Pattern

16 {(13 : 2, 1 : 2, 6 : 2, 3 : 2), 〈3 : 3〉 3 16 : 3
(2 : 1, 3 : 1)}

13 {(1 : 2, 6 : 2, 3 : 2), 〈3 : 3, 6 : 3, 1 : 3〉 3 13 : 3, 6 13 : 3
{(2 : 1, 1 : 1, 6 : 1, 3 : 1) 1 13 : 3

2 {(1 : 1, 6 : 1, 3 : 1), (6 : 1)} φ φ
1 {(6 : 3, 3 : 3)} 〈3 : 3, 6 : 3〉 3 1 : 3, 6 1 : 3
6 {(3 : 3)} 〈3 : 3〉 3 6 : 3
3 φ φ φ

Table 2.4: Mining of all-patterns based on FP -tree

the least frequent item in L. For instance, in the example 2.3, the frequent

item 16 is first mined. Following its node-links, 16 has two paths in the FP -

tree: < 3:4, 6:3, 1:3, 13:2 > and < 3:4, 2:1 >. The first path indicates that

{3, 6, 1, 13} appears twice together with 16. Similarly, the second path indicates

that {3, 2, 16} appears once in the set of transactions in DB. These two prefix

paths of 16, {(3 6 1 13 16 : 2), (3 2 16 : 1)} is called 16’s conditional pattern

base.

2. Construct conditional FP -tree from each conditional pattern base. For exam-

ple, construction of an FP -tree on the 16’s conditional pattern base leads to

only one branch (3:3). Hence, only one frequent pattern {3 16 : 3} is derived.

3. Execute the frequent pattern mining recursively upon the conditional FP -tree.

If the conditional FP -tree contains a single path, simply enumerate all the

patterns.

The algorithm for mining frequent patterns using FP -tree is presented as follows.

With the FP -tree in Figure 2.5, the mining process and result is listed in Table

2.4.

A performance study has been shown that FP -growth is at least an order of

magnitude faster than Apriori, and such a margin grows even wider when the frequent

patterns grow longer.

2.3. COMMON ALGORITHMS 35

Algorithm 3 FP -growth

Input: A transaction database DB, represented by FP -tree, and minimum support
threshold ξ
Output: The complete set of frequent patterns in DB
Method: call FP -growth (FP -tree, null).

FP -growth (Tree, α)
{
1. if Tree contains a single path P
2. for each combination (denoted as β) of the nodes in the path P do
3. generate pattern β ∪ α with support = minimum support of nodes in β;
4. else for each i in the header of Tree (in verse order) do

{
5. generate pattern β = i ∪ α with support = i.support;
6. construct β’s conditional pattern base and then β’s conditional FP -tree Treeβ;
7. if Treeβ 6= φ
8. then call FP -growth (Treeβ, β)

}
}

36 CHAPTER 2. FREQUENT PATTERN MINING

2.3.5 Improvements over FP -tree

Although FP -growth is more efficient than Apriori in many cases, it may still en-

counter some difficulties in some cases. For instances, huge space is required to serve

the mining if the database is huge and sparse; the number of conditional FP -tree is

the same order of magnitude as number of frequent itemsets. The algorithm is not

scalable to sparse and very large databases.

Pei et al. propose a memory-based hyper structure, H-struct [PHL+01], to store

the sparse databases in main memory, and develops an H-struct based pattern-growth

algorithm, H-mine. In comparison with FP -growth, H-mine does not generate

physic projected databases and conditional FP -tree and thus saves space as well

as time in many cases. However, In dense data sets, the FP -tree-based mining has

advantage over mining on H-struct. H-mine invokes FP -growth to mine dense data-

bases and uses a database partitioning technique to deal with very large databases.

A performance study has been shown that H-mine has high performance, is scal-

able in all kinds of data. However, it still suffers the inefficiency caused by recursive

creations of conditional FP -tree, encounters great difficulties for very large databases

because the number of local frequent patterns in all partitioned databases may be

huge.

AFOPT, proposed in [LLXY03], is based on FP -growth approach. AFOPT

adopts the top-down strategy and proposes a compact dta structure-Ascending Fre-

quency Ordered Prefix-Tree (AFOPT) to represent the conditional database. The

top-down traversal strategy is capable of minimizing the traversal cost of a condi-

tional database. The ascending frequency order method is capable of minimizing the

total number of conditional databases. Intuitively, an itemset with high frequency

will very possibly have more frequent extensions than an itemset with lower frequency.

That means if the most infrequent item are taken in front, the number of its frequent

extension cannot be very large, so smaller and/or less prefix-trees will be build in the

following mining. With mining going on, the items become more and more frequent,

but their candidate extension sets become smaller and smaller, their prefix-trees can-

not be very large. On sparse databases where the compression ratio of the AFOPT

2.3. COMMON ALGORITHMS 37

Figure 2.6: Projection of a sample database

structure is low, [LLXY03] chooses to first construct hyper-structure from the data-

base, then constructs AFOPT structures from the hyper-structure. The experiment

results show that AFOPT is more efficient than FP -growth algorithm.

OpportuneProject is proposed by Liu et al. [LPWH02] for mining complete

set of frequent itemsets by projecting databases to grow a frequent itemset tree,

abbreviated as FIST . Figure 2.6 illustrates the basic idea by of constructing FIST

by projection.

To achieve maximized efficiency and scalability, the algorithm opportunistically

chooses between two different structures, array-based and tree-based, to represent

38 CHAPTER 2. FREQUENT PATTERN MINING

projected transaction subsets, and heuristically decides to build unfiltered pseudo pro-

jection or to make a filtered copy according to features of the subsets. The algorithm

OpportuneProject creates the upper portion of FIST by a recursive BreadthFirst

procedure. Suppose the BreadthFirst procedure stops at level k. Then the lower

portion of the FIST are generated by a GuidedDepthFirst procedure.

The experimental results show that OpportuneProject is not only the most effi-

cient on both sparse and dense databases at all levels of support threshold, but also

highly scalable to very large databases.

2.3.6 Comparison of the Algorithms

There are several efficient algorithms that cope with the popular and computationally

expensive task of frequent pattern mining, as we described above. Actually, these al-

gorithms are more or less described on their own. The performance of each algorithm

is various to both the data sets and the minimum support thresholds. Moreover, dif-

ferent implementations of the same algorithm could still result in significantly different

performance results. At least there is no algorithm that is fundamentally beating out

the other ones. An interesting performance comparison on the real word datasets pre-

sented by Zheng et al. in [ZKM01], in which five well-known association rule mining

algorithms are compared on three new real-world data sets. Hipp et al. [HGN00a]

implemented several algorithms to mine frequent itemsets, namely Apriori, DIC,

Partition, and Eclat, in C++. Goethals, in [Goe02, Goe03], implemented the most

common algorithms such as Apriori, Eclat, Hybrid, and FP -growht in C++.

In this section, we made a comparison of the algorithms based on these imple-

mentation.

For the sparse data set, Eclat performs much worse than other algorithms. This

is because that a huge amount of candidate 2-itemsets is generated. As the support

threshold is high, the frequent items are short and the number of item is not large.

FP -growth is slightly worse than Apriori. This result is due to the overhead created

by the maintenance of the FP -tree structure. As the support threshold goes down,

the advantages of FP -growth over Apriori are becoming more impressive. The reason

2.4. SUMMARY OF ALGORITHMS FOR MINING FREQUENT PATTERNS 39

for the lousy performance of Apriori is because of some very large transactions for

which the procedure for counting the supports of all candidate itemsets consumes

most of the time.

For the dense data set, the hybrid algorithm performed best when the switching

point is after the second iteration. Both Eclat and FP -growth gain good perfor-

mance, and the performance differences of them are negligible. Apriori runs ex-

tremely slow as the minimum support thresholds becoming low.

2.4 Summary of Algorithms for Mining Frequent

Patterns

Extensive efforts has been put on developing efficient algorithms for mining frequent

patterns. In general, two typical approaches are proposed: candidate generate-and-

test approach and pattern growth approach, the latter is shown to superior to the

former significantly, especially on dense datasets or with low minimum support thresh-

old. In this section, we will give a brief summary of these two kind of algorithms.

The performance advantages and bottlenecks of the generate-and-test approach

are as follows.

• Cores:

– Use frequent (k − 1)-itemsets to generate candidate k-itemsets;

– Use database scans and pattern matching to collect counts of the candidate

itemsets

• Advantages:

– Use large itemset property that can prune candidates dramatically;

– Easily parallelized;

– Easy to implement.

• Bottlenecks:

40 CHAPTER 2. FREQUENT PATTERN MINING

– Many database scans are very costly. One needs (n+1) scans of the data-

base, here n is the length of the longest pattern;

– Mining long patterns needs generates lot of candidates. For example,

if there are 104 frequent 1-itemsets, one needs to generate more than

107 frequent 2-candidates. To find a frequent pattern of size 100, eg.,

{i1i2 . . . i100}, 2100 ≈ 1030 candidates are needed to generate. This is in-

herent of candidate generation, no matter what implementation technique

is applied;

– Meet challenges when mining with many tough constrains, like avg() ≥ v.

The performance advantages and bottlenecks of pattern growth approaches are as

follows.

• Cores:

– Adopt a divide-and-conquer approach to decompose both the mining tasks

and the databases;

– Use a compact data structure to compress crucial information about fre-

quent patterns;

– Use a pattern fragment growth method to discover all frequent patterns.

• Advantages:

– Avoid the costly candidate-generation-and-test processing at all;

– Avoid costly repeated database scans;

– Not only efficient but also effective in constraint-based frequent pattern

mining and sequential pattern mining [PH00, PH02].

• Bottlenecks:

– Employ sophisticated data structures. Compare to Apriori-like algorithm,

it is difficult to implement these data structures;

2.4. SUMMARY OF ALGORITHMS FOR MINING FREQUENT PATTERNS 41

– The recursive mining process to mine these structures is too voracious in

memory resources.

All algorithms above employ sophisticated in-memory data structures, that im-

poses a limitation on the size of data that can be processed. However using RDBMSs

provides us the benefits of using their buffer management systems so that the user

/applications can free from the size considerations of the data. RDBMSs also give

us the advantages of mining over very large datasets as they have the capabilities of

managing such large volumes of data. Keeping this in mind, our focus in this thesis is

on the use of SQL and some of the Object Relational constructs provided by RDBMSs

for frequent pattern mining.

Chapter 3

Integration of Mining with

Database

Researchers started to focus on issues to integrate mining with databases [AIS93,

Imi96, IM96]. In [IM96], Imielinski et al. suggested that data mining needed new

concepts and methods specially for processing data mining queries. They foresaw

the need to develop a second generation data mining systems for managing data

mining applications similar to DBMSs that manage business applications. Much

of the subsequence research in this area has focused on developing tightly coupled

systems that make use of DBMS features for data mining.

The research on database integration with mining can be broadly classified into

two categories: one which proposes new mining operator and the other which lever-

ages the query processing capabilities of current relational DBMSs. We review some

proposals in this section.

3.1 Language Extensions

In the first category, there have been language proposals to extend SQL to support

mining operators. A few example are DMQL [HFK+96, HFW+96], MSQL [IVA96,

Vir98, IV99], and the Mine rule operator [MPC96]. We will give a brief description

in the following.

42

3.1. LANGUAGE EXTENSIONS 43

3.1.1 MSQL

Imielinski at al. introduced the MSQL [IVA96] language which extends SQL with a

special unified operator MINE to generate and query a whole set of propositional

rules. The MINE operator as a query language primitive for database mining that

can be embedded in a general programming language in order to provide an Appli-

cation Programming Interface. MSQL comprises four basic statements:

• Create Encoding that encodes continuous valued attributes into discrete values.

• A GetRules query computes rules from the data and materializes them into a

rule database. Its syntax is as follows:

[Project Body, Consequent, confidence, support]

GetRules(c) [asR1] [into 〈rulebase name〉]
[where (RC|PC|MC|SQ]

[sql − group− by − clause] [using − encoding − clause]

• A SelectRules query is used for rule post processing, i.e., querying previously

extracted rules. Its syntax is as follows:

SelectRules(rulebase name) [where 〈conditions〉]

• Satisfies and V iolates, that allows to cross-over data and rules.

By using SelectRules on rulebases and GetRules on data, MSQL is possible to

query rules as well as data. By using Satisfies and V iolates, it is quiet simple to

test rules against a dataset and to make crossing-over between the original data and

query results. MSQL has been designed to be an extension of classical SQL, making

the language easy to understand.

3.1.2 DMQL

DMQL was proposed by Han et al. [HFK+96] as another query language for data

mining on relational database, which extends SQL with a collection of operators for

44 CHAPTER 3. INTEGRATION OF MINING WITH DATABASE

classification rules, characteristics rules, association rules, etc. It consists of four

primitives in data mining: (1) the set of data in relevance to a data mining process,

(2) the kind of knowledge to be discovered, (3) the background knowledge, and (4)

the justification of the interestingness of knowledge (i.e., thresholds). DMQL adopts

an SQL-like syntax to facilitate high level data mining and natural integration with

relational query language SQL. It is defined in an extended BNF grammar, where ”[]”

represents 0 or more occurrence, ”{}” represents 0 or more occurrence, and words in

sans serif font represent keywords, as shown below.

< DMQL > :=

use database 〈database name〉
{use hierarchy 〈hierarchy name〉for〈attribute〉}
〈rule spec〉
relate to 〈attr or agg list〉
from 〈relation(s)〉
[where 〈condition〉]
[order by 〈order list〉]
{with [〈kinds of〉] threshold = 〈threshold value〉[for〈attribute(s)〉]}

Example 3.1 This example shows how to use DMQL to specify the task relevant

data in a hospital database to find association rules.

use database Hospital

mine association rules as Heart Health

related to Salary, Age, Smoker, Heart Disease

from Patient F inancial f , Patient Medical m

where f.ID = m.ID and m.age ≥ 18

with support threshold = .05

with confidence threshold = .7

3.1.3 MINE RULE

Meo et al. described MINE RUlE [MPC96] as an extension to SQL, extracting

several variations to association rule specifications from the database and storing

3.2. FREQUENT PATTERN MINING IN SQL 45

them in the database in a separate relation. The general syntax of MINE RULE

follows:

〈MineRuleOp〉 := MINE RULE 〈TableName〉 as

select distinct 〈BodyDescr〉, 〈HeadDescr〉 [, support] [, confidence]

[where] 〈WhereClause〉
from 〈FormList〉 [where 〈WhereClause〉]
group by 〈AttrList〉 [having 〈HavingClause〉]
[cluster by 〈AttrList〉 [[having 〈HavingClause〉]]
extracting rules with support :〈real〉, confidence :〈real〉

〈BodyDescr〉 := [〈CardSpec〉] 〈AttrList〉 as body

〈BodyDescr〉 := [〈CardSpec〉] 〈AttrList〉 as head

〈CardSpec〉 := 〈Number〉 .. (〈Number〉|n)

〈AttrList〉 := 〈AttrName〉[, 〈AttrList〉]

MINE RULE allows to dynamically partition the source relation into a first and a

second level grouping (the clusters) from which more sophisticated rule constrains can

be applied. Furthermore, it looks as the only language having an algebraic semantics

[BBMM04], an important factor for in-depth study of optimization issues.

These proposals, as extensions of a database query language, however, do not

address the processing techniques for these operators inside a database engine and

the interaction of the standard relational operators and the proposed extension.

3.2 Frequent Pattern Mining in SQL

In the second category, researchers have addressed the issue of exploiting the ca-

pabilities of conventional relational systems and their object-relational extension to

execute mining operations. This entails transforming the mining operations into data-

base queries and in some cases developing newer techniques that are more appropriate

in the database context.

46 CHAPTER 3. INTEGRATION OF MINING WITH DATABASE

The issue of tightly coupling a mining algorithm with a relational database sys-

tem from a system point of view was addressed in Agrawal and Shim [AS96]. This

proposal makes use of user-defined functions (UDFs) in SQL statements to selec-

tively push parts of the computation into the database system. The objective was

to avoid one-at-a-time retrieval from the database to the application address space,

saving both the copying and process context switching costs. The first SQL-based ap-

proach is SETM algorithm [HS95] described in the literature. The subsequent work

[PSTK99, YPK00] suggested improvements of SETM by the utilization of SQL query

customization and database tuning. The results have shown that SETM does not

perform well on large datasets. There are some new approaches proposed to mine

frequent patterns [STA98], for example K-Way Joins, Three-Way Joins, Subquery-

based, and Two group-bys. These new algorithms are on the base of Apriori-like

approach. They use the same statement for generating candidate k-itemsets and dif-

fer only in the statements used for support counting. The authors report that K-Way

Joins approach is the best algorithm overall compared to the other approaches based

on SQL-92. [STA98] also use object-relational extensions in SQL like UDFs, BLOBs,

Table function etc. to improve performance. As a byproduct of this study, [STA98]

identify some primitives for native support in database system for data mining appli-

cations.

3.2.1 Candidate Generation in SQL

Recall that the Apriori for discovering frequent itemsets proceeds in a level-wise

manner. In the kth pass, we need to generate a set of candidate itemsets Ck from

frequent itemsets Fk−1 of the previous pass.

The statement creates a new candidate k-itemsets by exploiting the fact that all

of its k subsets of size k-1 have to be frequent. First, in the join step, a superset of

the candidate itemsets Ck is generated by joining Fk−1 with itself as shown in Figure

3.1 [STA98].

Next, in the pure step, all itemsets c ∈ Ck, where some (k-1)-subset of c is not in

Fk−1, are deleted. [STA98] performed the prune step in the same SQL statement as

3.2. FREQUENT PATTERN MINING IN SQL 47

insert into Ck select I1.item1, . . . , I1.itemk−1, I2.itemk−1

from Fk−1 I1, Fk−1 I2

where I1.item1 = I2.item1 and
...

I1.itemk−2 = I2.itemk−2 and
I1.itemk−1 < I2.itemk−1

Figure 3.1: Candidate generation phase in SQL-92

Figure 3.2: Candidate generation for any k

the join step above by writing it as a k − way join as shown in Figure 3.2.

3.2.2 Counting Support in SQL

This is the most time-consuming part of the frequent itemset mining algorithms. The

candidate itemsets Ck and the data table T are used to count the support of the

items in Ck. In this section, we review K-Way join, Subquery, GatherJoin, and

V ertical approaches [STA98] for support counting. The first two represent the better

ones among the SQL-92 approaches. The last two are based on SQL object-relational

extensions.

48 CHAPTER 3. INTEGRATION OF MINING WITH DATABASE

insert into Fk select item1, . . . , itemk, count(*)
from Ck, T t1, . . . T tk
where t1.item = Ck.item1 and

...
tk.item = Ck.itemk and
t1.tid = t2.tid and

...
tk−1.tid = tk.tid

group by item1, item2 . . . itemk

having count(*) ≥ minsupp

Figure 3.3: Support counting by K-Way join

K-Way join, uses k instances of the transaction table T and joins it k times with

itself and with a single instance of Ck. The statement of K-Way join is illustrated

in Figure 3.3. This approach is simple and easy to use and understand. But it would

involve a lot of multi-ways join.

Subquery makes use of common prefixes between the itemsets in Ck to reduce the

amount of work done during support counting. The subquery approach breaks up

the support counting into a cascade of k subqueries. The l-th subquery Ql finds all

tids that match the distinct itemsets formed by the first l columns of Ck (call it dl).

The output of Ql is joined with transaction table T and dl+1 to get Ql+1. The queries

and the tree diagram for subquery Ql are given in Figure 3.4. The experimental

results presented in [STA98] show that the subquery optimization gave much better

performance than the basic KwayJoin approach.

The overall observation in [STA98] was that mining implementations in pure SQL-

92 are too slow to be practical.

GatherJoin is based on the use of table functions. It generates all possible k-

item combinations of items contained in a transaction, joins them with the candidate

table Ck and counts the support of itemsets by grouping the join result. It uses two

table functions Gather and Combk. The table function Gather collects all the items

of a transaction in memory and outputs a record for each transaction. Each record

3.2. FREQUENT PATTERN MINING IN SQL 49

insert into Fk select item1, . . . , itemk, count(*)
from (Subquery Qk) t
group by item1, item2 . . . iteml

having count(*) ≥ minsupp

Subquery Ql (1 ≤ l ≤ k)
select item1, . . . , itemk, tid
from T tl, (Subquery Ql−1) as rl−1,

(select distinct item1 . . . iteml from Ck) as dl

where rl−1.item1 = dl.item1 and . . . and
rl−1.iteml−1 = dl.iteml−1 and
rl−1.tid = tl.tid and
tl.item = dl.iteml

Subquery Q0: No subquery Q0

Figure 3.4: Support counting using subquery

50 CHAPTER 3. INTEGRATION OF MINING WITH DATABASE

consists of two attributes, the tid and item− list which is a collection of all its items

in a VARCHAR or BLOB. The table function Comb(k) accepts the output of Gather

and combines k-item formed out of the items of a transaction. Figure 3.5 presents

SQL queries for this approach.

V ertical first transforms the transaction table into a vertical format and then

count the support of itemsets by merging together this tid-lists. The table function

Gather is used to create the tid-lists which are represented as BLOBs and stored in

a new TidTable with attributes (item, tid − list). The SQL query which does the

transformation to vertical format is given in Figure 3.6. In the support counting

phase, for each itemset in Ck the tid-lists of all k items is collected and a UDF is used

to count the number of tids in the intersection of these k lists.

The approaches that made use of the object-relational extensions performed much

better than the SQL-92 approaches above [STA98]. As a result, it’s possible to mine

the frequent patterns efficiently in SQL with a good understanding of the performance

of a DBMS engine.

3.2. FREQUENT PATTERN MINING IN SQL 51

insert into Fk select item1, . . . , itemk, count(*)
from Ck, (select t2.T itm1, . . ., t2.T itmk from T,

table (Gather(T.tid, T.item)) as t1,
table (Comb-k(t1.tid, t1.item-list)) as t2)

where t2.T itm1 = Ck.item1 and
...

t2.T itmk = Ck.itemk

group by Ck.item1, ..., Ck.itemk

having count(*) ≥ minsupp

Figure 3.5: Support counting by GatherJoin

insert into TidTable
select item1, tid-list from

(select * from T order by item, tid) as t1,
table(Gather(item, tid, minsupport)) as t2

Figure 3.6: Tid-lists creation by Gather

Chapter 4

SQL Based Frequent Pattern

Mining with FP -growth Approach

We presented the conventional frequent pattern mining method, Apriori, and the

novel frequent pattern mining method, FP -growth, in Chapter 2. As analyzed,

the bottleneck for Apriori-like methods is the candidate-generation-and-test. While,

FP -growth approach avoids such costs in Apriori-like approaches. The performance

study [HPY00, HPYM04] shows that FP -growth algorithm outperforms the current

candidate pattern generation-based algorithms in mining both long and short pat-

terns.

SQL approach, as described in Section 1.2.1, has many advantages such as seam-

less integration with existing system and high portability. Unfortunately, the per-

formance of SQL-based frequent pattern mining is known to fall behind specialized

implementation since the prohibitive nature of the cost associated with extracting

knowledge, as well as the lack of suitable declarative query language support. We

presented some methods based on a relational database standard in Chapter 3. All of

them adopt Apriori-like algorithms, which suffer from the inferior performance since

the candidate-generation-and-test operation.

Can we develop new SQL-based algorithms which avoid the combinatory problem

inherent to candidate-generation-and-test approach. To attack this problem, fist, we

propose a SQL-based FP -tree mining approach in Section 4.2. Then, in Section 4.3,

52

4.1. INPUT FORMAT 53

TID Item
1 a
1 b
1 c
1 d
2 c
2 d
3 a
3 d
3 e

(a) SC model

TID Item1 Item2 Item3 Item4

1 a b c d
2 c d
3 a d e

(b) MC model

Figure 4.1: Example illustrating the SC and MC data models

we propose an improved FP algorithm, which introduce an extended FP table. In

Section 4.4, we implement our SQL based frequent pattern mining approaches on

RDBMSs, and to report experimental results and performance studies.

4.1 Input Format

The physical data model used for association rule mining has a significant impact on

performance. The single−column (SC) data model is a common physical data model

used in association rule mining, where transaction data, as the input, is transformed

into a table T with two column attributes: transaction identifier (tid) and item

identifier (item). In that case, for a given tid, typically there are multiple rows

in the transaction table corresponding to different items in the transaction. The

number of items per transaction is variable and unknown during table creation time.

The alternative, multi − column (MC) data model, was proposed by Rajamani et

al. [RCIC99]. The MC model has the scheme (tid, item1, item2, . . ., itemk). In this

model, the column itemi contains the ith item of that particular transaction. Figure

4.1 provides an example to illustrate the different representation with the SC and

MC.

The MC model, as stated by the authors, is the better physical data model com-

pared to the SC model. However, it’s not practical in most cases because:

54 CHAPTER 4. SQL BASED FP -GROWTH

DataSet Numberofnodes SizeofFP -tree Compression
T40I10D100K 3912459 68650K 89%

Table 4.1: Memory usage of FP -growth

• Often the number of items per transaction can be more than the maximum

number of columns that the database supports.

• There will be lot of space wastage if the number of items per transaction is

skew. For example, the maximum number of items per transaction is 800, and

the corresponding average number of items per transaction is only 9.

Hence, we use SC model for the input data in this thesis.

4.2 FP -growth in SQL

One of the advantages of FP -growth over other approaches is that it constructs

a highly compact FP -tree, which is usually substantially smaller than the original

database and thus saves the costly database scans in the subsequent mining processes.

Although an FP -tree is rather compact, it is unrealistic to construct a main

memory-based FP -tree when the database is large. The FP -tree consists of a trie

data structure in which each node stores an item as well as a counter, also a link

pointing to the next occurrence of the respective item in the FP -tree. Additionally

a header table is stored containing each separate item together with its support and

a link to the first occurrence of the item in the FP -tree. In FP -growth, the cover of

an item is compressed using the linked list starting from its node-link in the header

table, but every node in this linked list needs to store its label, a counter, a pointer

to the next node, a pointer to its branches and a pointer to its parent. Therefore, the

size of such an complex FP -tree should be large. Table 4.1 shows for T40I10D100K

the total number of nodes in FP -growth and the compression rate of the FP -tree.

However using RDBMSs provides us the benefits of using their buffer management

systems specifically developed for freeing the user applications from the size consider-

ations of the data. And moreover, there are several potential advantages of building

4.2. FP -GROWTH IN SQL 55

mining algorithms to work on RDBMSs as described in Section 1.2.1. An interesting

alternative is to store an FP -tree in a relational table and to propose algorithms for

frequent patterns mining based on such a table.

We study two approaches in this category - FP , EFP (Extended Frequent Pat-

tern) [SSG04b, SSG04c, SSG05]. They are different in the process of constructing

frequent pattern tree table, named FP . FP approach checks each frequent item of

each transaction table one by one to decide whether it should be inserted into the

table FP or not to construct FP . EFP approach introduces an extended frequent

pattern table, named EFP , which collects the set of frequent items and their prefix

items of each transaction, thus table FP can generate from EFP by combining the

items which share a common prefix.

4.2.1 Construction of the FP Table

FP -tree is a good compact tree structure. In addition, it has two properties: node-

link property (all the possible frequent patterns can be obtained by following each

frequent’s node-links) and prefix path property (to calculate the frequent patterns for

a node i in a path, only the prefix sub-path of i in the path need to be accumulated).

For storing the tree in a RDBMS a flat table structure is necessary. According to the

properties of FP -tree, we represent an FP -tree by a table FP with three column

attributes:

• Item identifier (item). Since only the frequent items play a role in the frequent

pattern mining, the items in the table FP consists of the set of frequent items

of each transaction.

• The number of transactions that contain this item in a sub-path (count). If

multiple transactions share a set of frequent items, the shared sets can be merged

with the number of occurrences represented as count.

• Item prefix path (path). The prefix path of an item is represented by the set of

frequent items listed earlier than the item of each transaction.

56 CHAPTER 4. SQL BASED FP -GROWTH

insert into T ′ select t.id, t.item
from T t, ((select item, count(*) from T

group by item
having count(*) ≥ minsupp
order by count(*) desc) as F (item, count))

where t.item = F.item

Figure 4.2: SQL query using to generate T ′

The field path is beneficial not only to construct the table FP but also to find

all frequent patterns from FP . In the construction of table FP , the field path is

an important condition to judge whether the frequent item should be inserted into

the table FP or not. If an item does not exist in the table FP or there exist the

same items as this item in the table FP but their corresponding path are different,

insert the item into table FP . Otherwise, update the table FP by incrementing the

item’s count by 1. In the process of mining frequent patterns using FP , we need

to recursively construct conditional frequent pattern table, named ConFP , for each

frequent item. Due to the path column of the table FP storing the set of prefix items

of each frequent item, it’s easy to find the items which co-occurs with this item by

deriving all its path in the table FP .

The process of the table FP construction is as following:

1. Identify the set of frequent items. This can be done by transferring the trans-

action table T into table T ′, in which infrequent items are excluded. The size

of the transaction table is a major factor in the cost of joins involving T . It can

be reduced by pruning the non-frequent items from the transactions after the

first pass. We insert the pruned transactions into table T ′ which has the same

schema as that of T . In the subsequent passes, join with T can be replaces by

join with T ′. This could result in improved performance especially for datasets

which contains lot of non-frequent items. SQL query using to generate T ′ from

T is illustrated in Figure 4.2.

2. Construct the table FP . To describe the process of building FP , let’s first

4.2. FP -GROWTH IN SQL 57

TID Item
1 1
1 3
1 4
1 6
1 7
1 9
1 13
1 16
2 1
2 2
2 3
2 6
2 12
2 13
2 15
.

(a) An example
table T

Item Count
3 4
6 4
1 3
2 3
13 3
16 3

(b) An example ta-
ble F

TID Item
1 3
1 6
1 1
1 13
1 16
2 3
2 6
2 1
2 2
2 13
.

(c) An example
table T ′

Figure 4.3: Example table T , F , and T ′

examine an example as follows.

Example 4.1 Let the transaction database, DB (same as the transaction database

used in Example 2.3), be stored in the table T , and minimum support threshold be 3.

The table T ′ consists of the frequent items of the table T as shown in Figure 4.3.

A table FP can be built as the following procedure.

• Sort the items of T ′ in descending order of their frequency. If the frequent

items are sorted in their frequency descending order, there are better chances

that more prefix items can be shared.

• For the first transaction in the table T ′, we insert all the frequent items of it

into the table FP and set the count of the items be ”1”. The path of each item

can be built in the following. We set the path of the first item 3 be ”null”.

The path of the second item 6 will be null : 3. The third item 1’s path will be

null : 3 : 6, and so on.

58 CHAPTER 4. SQL BASED FP -GROWTH

Item Count Path
3 4 null
6 3 null : 3
1 3 null : 3 : 6
13 2 null : 3 : 6 : 1
16 2 null : 3 : 6 : 1 : 13
2 1 null : 3 : 6 : 1
13 1 null : 3 : 6 : 1 : 2
6 1 null
2 1 null : 6
2 1 null : 3
16 1 null : 3 : 2

Table 4.2: The table FP in Example 4.1

• For the second transaction, we test each of the frequent items to see if it should

be insert into the table FP or update the table FP by incrementing the count

of the item, which has already appeared in FP and has the same item and path

as the tested item, by 1. The checking conditions consist of two factors: item

and path. If there is an item in the table FP has the same name and path as

those of the tested item, then update FP . Otherwise, insert the tested item

into FP . Since 3, 6, and 1 share a common prefix with the existing items in

FP , the count of each item is incremented by 1. 2 and 13 are inserted into FP

with the path of null : 3 : 6 : 1 and null : 3 : 6 : 1 : 2 and the count of 1.

• For the last transactions, we do the same process. After scanning all the trans-

actions, the table FP is shown in Table 4.2.

Based on this description, we have the algorithm for constructing the table FP

as follows.

4.2.2 Finding Frequent Pattern from FP

After the construction of a table FP , we can use this table to efficiently mine the

complete set of frequent patterns. Like FP -growth approach, for each frequent item i

we construct its conditional pattern base table PBi, which has three column attributes

4.2. FP -GROWTH IN SQL 59

Algorithm 4 Table FP construction

Input: A transferred transaction table T ′

Output: A table FP
Method:
1. curcnt := 1;
2. curpath := null;
3. find distinct tid from the table T ′

4. for each item ik of the first tid
5. insert ik with curcnt and curpath into the table FP ;
6. curpath += ik;
7. insertFP (items);

insertFP (items)
if FP has an item f == i1 (the first item in the items) and f. path == null

for each item ik in the items
insert ik with curcnt and curpath into the table FP ;
curpath += ik;

else
for each item ik in the items

if FP has an item f == ik and f. path == ik. path
curcnt = ik. count + 1;
update the table FP ;

else
insert ik into the table FP ;

curpath += ik;

60 CHAPTER 4. SQL BASED FP -GROWTH

(tid, item, count). And then the conditional FP table, named ConFPi, is built based

on PBi. The table ConFP has the same scheme as that of the table FP . The mining

process is successively constructing ConFP .

For each frequent item i, to find other patterns having item i, we need to access

all transactions containing item i in the table FP . Table PBi collects items that co-

occur with i in the table FP . We can obverse that the path attribute in the table FP

represents the information of prefix subpath set of each frequent item in a transaction.

So the process of constructing PBi is implemented by a simple Select query to get

all corresponding counts and paths of i, then split these paths into multiple items.

Then we construct the table ConFPi from each conditional pattern base table PBi

using the same algorithm as the table FP construction, and mine recursively in the

table ConFPi.

Let’s visit the mining process based on the built FP table shown in Table 4.2.

According to the frequent items found in the process of constructing the table

FP , {3 : 4, 6 : 4, 1 : 3, 2 : 3, 13 : 3, 16 : 3}, all frequent patterns in the database can

be divided into 6 subsets without overlap:

1. patterns containing item 3;

2. patterns containing item 6 but no item 3;

3. patterns containing item 1 but no 3 nor 6;

4. patterns containing item 2 but no 3, 6, nor 1;

5. patterns containing item 13 but no 3, 6, 1, nor 2;

6. patterns containing item 16 but no 3, 6, 1, 2, nor 13;

1. We start from the frequent item with the minimum frequency, 16. To construct

16’s conditional pattern base table PB16, we select items whose attribute of

item is 16 from the table FP . We can find that 16 has two different paths:

〈null : 3 : 6 : 1 : 13〉 with the count 2, 〈null : 3 : 2〉 with the count 1. Then

we separately split these two paths as shown in Table 4.3. This process can be

4.2. FP -GROWTH IN SQL 61

TID Item Count
1 3 2
1 6 2
1 1 2
1 13 2
2 3 1
2 2 1

Table 4.3: An example table PB16

select count, path from FP where item = i;
for each count cnr, path p

id := 1;
item[] = split(p);
for each item ai in item[]

insert into PBi values (id, cnr, i);
id += 1;

Figure 4.4: Construction of table PB

achieved as illustrated in Figure 4.4. Construction of a ConFP on this PB16

leads to only one frequent item {3 : 3}. Hence only one frequent pattern (3

16 : 3) is derived. The search for frequent patterns associated with item 16

terminates.

2. Now, we mine the frequent patterns having item 13 but no item 16. We select

items whose attribute of item is 13 from the table FP . Two paths in the

table FP are found: 〈null : 3 : 6 : 1〉 with the count 2, 〈null : 3 : 6 : 1 : 2〉
with the count 1. Then we separately split these two paths to obtain the table

PB13. Constructing a conditional FP table on it, we derived a table ConFP13

as shown in Table 4.4. This conditional FP table is then mined recursively by

calling FindFP(ConFP13).

3. Similarly, we can mine the frequent pattern having other items till the last

subset.

62 CHAPTER 4. SQL BASED FP -GROWTH

Item Count Path
3 3 null
6 3 null : 3
1 3 null : 3 : 6

Table 4.4: An FP table has a single path

Further optimization can be explored on a special kind of FP , which consists of

one single prefix path. In the table FP , we use the path attribute to express the

prefix path of each frequent item in the database. An FP is a single prefix-path if

the path of the item is the path of the previous item combining with the the previous

item. In that case, the set of frequent patterns is generated by enumeration of all the

combinations of the distinct items in FP with prefix. Let us examine an example. In

Table 4.4, the items 1, 6, 3 occur in the same transaction, and the table FP consists

of one single prefix path. Thus, in stead of building three conditional FP tables:

ConFP1, ConFP6, and ConFP3, the following set of frequent patterns is generated,

{(1 : 3), (6 : 3), (3 : 3), ({1} {6} : 3), ({1} {3} : 3), ({6} {3} : 3), ({1} {6} {3} : 3)}.
Based on the above, we have the following algorithm for finding frequent patterns

from table FP as showed.

Algorithm 5 FindFP

Input: A table FP constructed based on Algorithm 4
and a table F collecting all frequent itemsets
Output: A table Pattern, which collects the complete set of frequent patterns
Procedure:
1. if items in the table FP in a single path
2. combine all the items with prefix, insert into Pattern;
3. else
4. for each item i in the table F
5. construct table ConFPi;
6. if ConFPi 6= φ
7. call FindFP(ConFPi);

4.2. FP -GROWTH IN SQL 63

4.2.3 Optimization

In this subsection, we present two optimizations on the process of mining frequent

patterns.

1. Optimize the query for generating frequent 1-itemsets. The SQL query using

to generate T ′, in which infrequent items are excluded and frequent ones are

sorted in descending order by frequency, is a subquery as shown in Figure 4.2.

It could be expensive since a large number of intermediate results may be led

when T is very large and dense. In that case, we materialize the intermediate

results as table F to gain the performance improvement. It is shown as follows.

insert into F select item, count(*)

from T

group by item

having count(*) ≥ minsupp

insert into T ′ select T .id, T .item

from T , F

where T.item = F.item

2. Avoid materialization cost of some temporary tables. Notice that in the case

that a database may generate a large number of frequent 1-itemsets, the total

number of pattern based tables and conditional FP tables is usually large. If

we build one table PB and one table ConFP for each frequent item, then the

cost of creating and dropping these temporary tables is certainly untrivial. In

fact, pattern based table PB is only required to the process of constructing

ConFP of each frequent item. It can be cleared to use for the next frequent

item after the ConFP of the frequent item has been constructed. That is, one

PB is created in the whole procedure. As we know, the ConFP tables of all

64 CHAPTER 4. SQL BASED FP -GROWTH

frequent items are not constructed together. Each ConFP table is built, mined

before the next ConFP table is built. The mining process is done for each

frequent item independently with the purpose of finding all frequent k-itemset

patterns in which the item at the level k-1 participates. In that case, we can

use one ConFP table at each level. So that the number of temporary tables

is dramatically decreased. For example, the maximum length of the frequent

patterns mined is 9. The number of ConFP tables constructed during the

whole procedure is 8. The total number of the tables constructed (including

a pattern table that stores all frequent patterns mined and a name table that

stores all temporary tables) is 15.

4.3 EFP Approach

We studied the SQL-based FP -tree method in the last subsection and found the

construction of table FP (table ConFP) is the most time-consuming procedure in

the whole procedure. The important reason is that in the process to construct FP

table, one must judge every frequent item of each transaction one by one in the

database to decide how to add the frequent item to the FP . That is, if the number of

frequent items of each transaction is µi, the sum of the transactions in the database

is θ, the number of frequent items in the table FP is λ which increases with FP

construction proceeding, and then the cost of inserting all the frequent items into the

FP is O(w × λ), where w is the sum of frequent items in the database:

w =
θ∑

i=1

µi

As we know, the value of w is enormous especially when the database is large,

or when the minimum support threshold is quite low. Furthermore, the process of

constructing table FP is a strict serial computing process, that is, the computing

of latter item must be based on the former result. In that case, the test process is

inefficient.

From the above discussions, we found the mining performance can be improved

4.3. EFP APPROACH 65

if one can avoid computing each frequent item individually. In this subsection, we

introduce the extended FP table, called EFP . The table FP can be achieved based

on the table EFP .

The EFP has the format as (item, path). The difference between the EFP

method and the FP method is the process of the constructing of the two tables.

We can obtain EFP by straightly transforming frequent items in the transaction

table T ′ without testing each of them one by one. We first initialize the path of

the first frequent item i1 of each transaction and set it as {null}. The path of the

second frequent item i2 is {null : i1}, and the path of the third frequent item i3 is

{null : i1 : i2}, and so on. Let us revisit the mining problem in Example 4.1.

Starting at the first frequent item of the first transaction, 3, the path of 3 is set

to {null}. after that, for the second item of the first transaction, 6, the path of 6

can be built to {null : 3}. Similarly, the path of the third item 1 can be built to

{null : 3 : 6}. This process continues for building the rest of frequent items of all

transactions. Then we get a table EFP illustrated in Table 4.5.

The table EFP represents all information of frequent itemsets and their prefix

path of each transaction. Normally, the table EFP is larger than the table FP espe-

cially when items has more chances to share the same prefix path. However, compare

to the FP construction, we do not need to test each frequent item to construct the

table EFP and can make use of the database powerful query processing capability.

We have the following algorithm for building the table EFP as follows.

The construction of the table EFP can be implemented using a recursive query,

which iteratively uses result data to determine further results. Recursion is very

powerful, because it allows certain kinds of questions to be expressed in a single SQL

statement that would otherwise require the use of a host program. The recursion

query for constructing the table EFP is illustrated in Figure 4.5.

To obtain the table FP , we combine the items with identical value of path. The

SQL statement of construct FP from EFP is illustrated as follows.

insert into FP

select item, count(*) as count, path from EFP

group by item, path

66 CHAPTER 4. SQL BASED FP -GROWTH

Item Path
3 null
6 null : 3
1 null : 3 : 6
13 null : 3 : 6 : 1
16 null : 3 : 6 : 1 : 13
3 null
6 null : 3
1 null : 3 : 6
2 null : 3 : 6 : 1
13 null : 3 : 6 : 1 : 2
6 null
2 null : 6
3 null
2 null : 3
16 null : 3 : 2
3 null
6 null : 3
1 null : 3 : 6
13 null : 3 : 6 : 1
16 null : 3 : 6 : 1 : 13

Table 4.5: The table EFP in Example 4.1

Algorithm 6 Table EFP construction

Input: A transferred transaction table T ′

Output: A table EFP
Method:
1. for each transaction in T ′

2. call insertEFP (items);

insertEFP (ik)
curpath := null;
for each item ik of the transaction

insert ik into the table EFP ;
curpath += ik;

4.3. EFP APPROACH 67

for each tid id
select item
from T ′

where id = id
create table temp (id int, iid int, item varchar(20))
iid := 1;
for each item i

insert into temp values(iid, i)
iid += 1;
with fp (item, path, nsegs) as
((select item, cast (’null’ as varchar (200)), 1 from temp

where iid = 1)
union all

(select t.item, cast (f.path ‖′ :′ ‖ f.item as varchar (200)), f.nesgs+1
from fp f, temp t
where t.iid = f.nsegs+1 and
f.nesgs < iid))

insert into EFP select item, path from FP

Figure 4.5: Recursive query for constructing the table EFP

68 CHAPTER 4. SQL BASED FP -GROWTH

Let’s now examine the efficiency of the approach. Basically, the table EFP is

larger than the table FP especially when there are lots of items share the prefix

strings. However, from the performance aspect, the EFP approach is more efficient

than that of the FP method since the former can insert all the frequent items into

the table EFP quickly by avoiding checking each item of each transaction one by

one. To construct the table EFP , the cost is only related to w, where w is the sum

of frequent items in the database. Compare to the cost of building FP , which is

O(w × λ), the EFP approach’s performance is enhanced significantly.

4.3.1 Using SQL with object-relational extension

In the following section, we study approaches that use object-relational extension in

SQL to improve performance. We consider an approach that use a table function.

Table functions are virtual tables associated with a user defined function which gen-

erate tuples on the fly. Like normal physical tables they have pre-defined schemas.

Table functions can be viewed as user defined functions that return a collection of

tuples instead of scalar values.

We use a table function path which collects the prefix path of items of each

transaction. Here the prefix path of the first item i1 in a transaction is set to be

”null”. For other items of the transaction the table function path generates the prefix

path of them. For example, the prefix of the second item i2 is {null : i1}, the third

item i3’s prefix is {null : i1 : i2}, and so on. This function is easy to code.

As a matter of fact, all approaches above have to materialize its temporary table

namely T ′ which contains the frequent items in the table T and PB′ which contains

the frequent items in the table PB. Those temporary tables are only required in the

construction of table FP and table ConFP . They are not needed for generating the

frequent patterns. So we further use subquery instead of temporary tables. The data

table T is scanned in the (tid, item) order and combined with the frequent itemsets

table F to remove all infrequent items and sort in support descending order as F ,

and then passed to the user defined function Path. SQL query to generate FP using

4.3. EFP APPROACH 69

the user defined function Path as follows.

insert into FP select tt2.item, tt2.count (*), tt2.path

from (select T.id, T.item from T, F

where T.item = F.item

order by T.id, F.count desc) as tt1,

table (Path (tt1.id, tt1.item)) as tt2

group by tt2.item, tt2.path

order by tt2.path

4.3.2 Analysis

Almost all previous frequent patten mining algorithms with SQL consist of a sequence

of steps proceeding in a bottom-up manner. The result of the kth step is the set of

frequent itemsets, denoted as Fk. The first step computes frequent 1-itemsets F1.

The candidate generation phase computes a set of potential frequent k-itemsets Ck

from Fk−1. The support counting phase filters out those itemsets from Ck that appear

more frequently in the given set of transactions than the minimum support and stores

them in Fk. The support counting process is the most time-consuming process. Most

of these algorithms need to join with T several times to count the support of frequent

itemsets. The size of transaction table is a major factor in the costs of joins involving

T . FP approach reduces the cost by the following process:

• Pruning the non-frequent items from the transaction table T after the first pass;

• Extracting the concise information and store it into the table FP . The sequent

procedures are based on FP instead of T .

In addition, the FP approach explores the table FP by pattern growth method so

that it avoids the combination problem of candidate generation. So, the performance

of the SQL-based FP approach is better than SQL-based Apriori-like algorithm.

70 CHAPTER 4. SQL BASED FP -GROWTH

4.4 Experimental Evaluation and Performance Study

In this subsection, we present a performance comparison of our approaches with the

classical Apriori algorithm based on SQL, and a loose-coupling approach based on

FP -tree. All of our experiments were performed on Version 8 of IBM DB2 EEE

installed on Linux operation system with Pentium IV 2.0Ghz.

4.4.1 Data Set

We use synthetic transaction data set generated by the program provided by the Quest

research group at IBM Almaden [AS] for experiment. Using this generator, one can

vary the number of transactions, number of frequent itemsets per transaction in the

data sets, distinct itemsets, and the length of frequent patterns, to generate different

kinds of data sets. The nomenclature of these data sets is of the form TxxIyyDzzzK.

Where xx denotes the average number of items present per transaction, yy denotes

the average support of each item in the data set and zzzK denotes the total number

of transactions in K (1000’s).

We report experimental results on four data sets, they are respectively T5I5D10K,

T25I10D10K, T10I4D100K and T25I20D100K. The first two datasets consist of 10

thousand transactions. Each containing an average of 5 items and 25 items. The

average size of the maximal potentially frequent itemsets is 5 and 25 respectively .

The third one has 100 thousand transactions, each containing an average of 10

items and the average size of potentially frequent itemsets is 4. It is a sparse dataset.

The frequent itemsets are short and not numerous.

The last one consists of 100 thousand transactions with an average 25 number

of items per transaction and the average length of potentially frequent patterns is

20. There exist exponentially numerous frequent itemsets in this data set when the

support threshold goes down. There are pretty long frequent itemsets as well as a

large number of short frequent itemsets in it. It is a relatively dense dataset and

contains mixtures of short and long frequent itemsets. Table 4.6 summarizes the

parameters associated with the datasets.

4.4. EVALUATION 71

Datasets #Records #Transaction Avg.#items
in thousands

T5I5D10K 49182 10 5
T25I10D10K 247151 10 25
T10I4D100K 996622 100 10
T25I20D100K 2531427 100 25

Table 4.6: Description of the generated datasets

4.4.2 Comparison between FP and EFP

For these experiment, we built (tid, item), (item, tid) index on the data table T and

(item) index on the frequent itemsets table F and table FP . The goal was to let

the optimizer choose the best plan possible. Considering table EFP s, table ConFP s

and other temporary tables built during the whole procedure are modified frequently,

we didn’t build indexes on those tables, since each modification to a table must be

reflected in all the indexes that are defined on the table, that carries a certain cost.

The run time used here means the total execution time, that is the period between

input and output.

We compare the FP approach and the EFP approach on data set T5I5D10K.

In this data set, with the support threshold of 1%, the number of frequent 1-itemset

is 225 and the total number of frequent 1-items in the transaction is 28316. The

maximum length of the frequent patterns is 2. It is a relative sparse data set.

The experimental results show that EFP approach can get competitive perfor-

mance out of FP implementation. An important reason for superior performance of

EFP over FP is the avoid testing each frequent item one by one in the construction

of table FP .

As seen from the result shown in Figure 4.6, the runtime of constructing table

FP on data set T5I5D10K with the support value of 0.2%, in the FP approach,

almost 97% of execution time belongs to the construction of table FP . However, in

the EFP approach, almost less 49% of execution time belongs to the construction of

table FP . In addition, the run time of constructing FP in EFP approach decreases

dramatically.

In FP approach, the recursive construction of table ConFP use the same method

72 CHAPTER 4. SQL BASED FP -GROWTH

Figure 4.6: Comparison the construction of FP table between FP and EFP over
data set T5I5D10K

as the construction of table FP . In that case, avoid the process of checking substan-

tially reduce the expensive cost.

4.4.3 Comparison of Different Approaches

For comparison, we implement a loose-coupling approach based on FP -tree and a

k-way joins approach based on Apriori algorithm.

• In the loose-coupling approach, access to the data table in DBMS was pro-

vided through a JDBC interface. The construction of the FP -tree and mining

frequent patterns from the FP -tree are completed in memory.

• In k-way joins approach, which was found to be the best as for SQL-92 in

[AS94], the candidate generation phase computes a set of potential frequent

k-itemsets Ck from Fk − 1. Here, we optimize the k-way joins by pruning the

non-frequent items from the transactions after the first pass. We insert the

pruned transactions into table Tf . The support counting phase uses k instances

of table Tf and joins it k times with itself and with a single instance of Ck to

4.4. EVALUATION 73

insert into Fk select item1, . . . , itemk, count(*)
from Ck, Tf t1, . . . Tf tk
where t1.item = Ck.item1 and

...
tk.item = Ck.itemk and
t1.tid = t2.tid and

...
tk−1.tid = tk.tid

group by item1, item2 . . . itemk

having count(*) ≥ minsupp

Figure 4.7: Support counting by optimized K-Way join

filter out those itemsets from Ck that appear more frequently in the given set of

transactions than the minimum support and store them in Fk. The statement

of K-Way join in the experiment is illustrated in Figure 4.7.

Figure 4.8 shows the total time taken by the three approaches: K-way join ap-

proach, loose-coupling approach and SQL-based EFP approach, on data set T5I5D10K.

From the graph we can make the following observation: EFP has the better perfor-

mance than K-way join and loose-coupling approach.

In data set T5I5D10K, as the support threshold is high, the frequent items are

short and the number of item is not large. The advantages of EFP over Apriori

are not so impressive. EFP is even slightly worse than Apriori. For example, the

maximal length of frequent patterns is 2 and the number of frequent itemsets is 444

with support threshold 0.5%, Apriori can finish the computation shorter than the

time for EFP . This is because when the data is sparse, table FP contains tuples not

as compressive as what is does on dense data sets. Moreover, constructing over sparse

data sets recursively has its overload. However, as the support threshold goes down,

the gap is becoming wider. For example, the maximal length of frequent patterns is

12 and the number of frequent patterns is 57742 with the support threshold 0.05%,

EFP is much faster than Apriori. When the support threshold is low, the number of

frequent patterns as well as that of candidates are non-trivial. In contrast, EFP avoid

74 CHAPTER 4. SQL BASED FP -GROWTH

Figure 4.8: Comparison for dataset T5I5D10K

candidates generation and test. That is why EFP can get significant performance

improvement.

From Figure 4.9 to 4.11, we show the performance comparison between K-way

join and EFP on T25I10D10K, T10I4D100K and T25I20D100K.

T25I10D10K is a relatively dense data set. As we can see, most patterns are

of short lengths when the support threshold is high. However, when the support

threshold becomes low, most items are frequent. Then, the advantages of EFP over

Apriori are distinct.

Data set T10I4D100K is a very sparse data set. The performance comparison for

these two approaches on such data set is similar as that of on T5I5D10K. When the

support threshold is 0.1%, the maximal length of frequent patterns is 10.

In data set T25I20D100K, which contains abundant mixture of long and short

frequent patterns, the result is shown in Figure 4.14. It can be seen, the advantage

of EFP is dramatic in such a data set.

We studied the performance of Path, a user defined table functions (Path).

The scalability of Apriori and EFP on synthetic data set T10I4D100K is shown

in Figure 4.13. EFP can mine with support threshold as low as 0.02%, with which

4.4. EVALUATION 75

Figure 4.9: Comparison for dataset T25I10D10K. For K-Way join with the support
threshold that are lesser than 0.2%, the running times were so large that we had to
abort the runs in many cases.

Figure 4.10: Comparison for dataset T10I4D100K. For K-Way join approach with
the support value of less than 0.08%, the running times were so large that we had to
abort the runs in many cases.

76 CHAPTER 4. SQL BASED FP -GROWTH

Figure 4.11: Comparison for dataset T25I20D100K. For K-Way join approach with
the support value of 0.25%, the running times were so large that we had to abort the
runs in many cases.

Figure 4.12: Comparison between EFP and Path over data set T25I20D100K

4.5. CONCLUSION 77

Figure 4.13: Scalability with the threshold over T10I4D100K

Apriori cannot work out within reasonable time.

4.5 Conclusion

In this chapter, we have implemented SQL-based frequent pattern mining using FP -

growth-like approach.

There are several advantages of SQL-based FP -growth over other approaches

based on SQL.

1. It represents FP -tree using a relational table FP and proposed a method to

construct this table. To improve its performance, a table called EFP is intro-

duced, which is in fact stores all information of frequent item sets and their

prefix path of each transaction. And then, table FP can derived from table

EFP . Compare to the construction of FP , the process of the construction of

EFP avoid testing each frequent item one by one. Table FP is usually substan-

tially smaller than the transaction table T and is to be used in the subsequent

mining processes. Thus it saves the costly join with the original transaction

78 CHAPTER 4. SQL BASED FP -GROWTH

table.

2. It applies a pattern growth method which avoids costly candidate generation

and test by successively concatenating frequent 1-itemset found in the (ConFP)

FP . In this context, the major operations of mining are count accumulation

and prefix path count adjustment which is usually much less costly than can-

didate generation and pattern matching operations performed in Apriori-like

algorithms.

We have studied the performance of FP and EFP method in comparison with

SQL-based Apriori approach and loose-coupling FP -growth approach in large data-

bases. The experimental results show that SQL-based frequent pattern mining ap-

proach using FP -growth can get better performance than Apriori on large data sets

or long patterns.

There remain lots of further investigations. We plan to implement our SQL based

frequent pattern mining approach on parallel RDBMS, and to check how efficiently

our approach can be parallelized and speeded up using parallel database system.

Additionally, we will investigate an SQL based algorithm which combine Apriori and

FP -growth to scale both small and large data sets.

Chapter 5

Propad Approach

The main issues in frequent itemsets mining are:

• Reducing the database scanning times, since in many cases the transactional

database is too large and scanning data is very costly;

• Reducing the search space since every subset of I can be frequent and the

number of them is exponential to the size of I;

• Counting the support for itemsets efficiently.

The bottleneck of the Apriori-like method is the candidate set generation and test

[HPY00]. If one can avoid generating a huge set of candidates, the mining performance

can be substantially improved. In addition, the search technique employed in Apriori-

like approach is a bottom-up generation of frequent itemset combinations. The search

cost is high especially for mining long patterns. If one may transform the problems of

finding long pattern to looking for shorter ones can be dramatically reduce the search

cost.

The FP -growth method achieves an efficient performance compared with Apriori-

like approach. But due to its complex representation and expensive and exhaustive

computational process, the algorithm is not scalable to sparse and very large data-

bases.

79

80 CHAPTER 5. PROPAD APPROACH

We proposed a SQL-based FP -tree mining approach in Chapter 4. The exper-

iments show that the approach can obtain better performance and scalability than

SQL-based Apriori approach.

The key factor that influence the performance of the FP -tree mining approach

are the construction of FP , the total number of conditional FP , ConFP , built

during the whole mining process, and the cost of mining a single ConFP . Can

we avoid materializing FP and ConFP? To attack this problem, we develop a

SQL-based algorithm, called PROjection PAttern Discovery, or Propad for short, in

this chapter. In Section 5.1, we propose the Propad algorithm for mining frequent

patterns [SSG04a, SS05]. We discuss combination Propad Algorithm with Apriori

Candidate Generation to mine different data sets in Section 5.2. Experimental results

and performance studies are reported in Section 5.3.

5.1 Algorithm for Propad

Given a transaction database DB and a support threshold min sup. Following the

Apriori property (Theorem 2.1), only frequent items play roles in frequent patterns.

Frequent item sets can be represented as a tree that is not necessarily materialized.

Example 5.1 Let us give an example with five transactions and support threshold is

set to 3 in Table 5.1 (same as the transaction database used in Example 2.3). Each

node of the frequent item sets tree is labeled by a frequent item and associated with its

support. Each frequent items set is represented by one and only one path starting from

the root, and the support of the ending node is the support of the item set. The null

root corresponds to the empty item set. Figure 5.1 represents the frequent item set

tree for the given example. The path (1:3)-(3:3)-(6:3)-(13:3) represents the frequent

pattern {1, 3, 6, 13} with support of 3.

We can observe that:

• X and Y are frequent and X is an ancestor of Y , then all patterns between X

and Y are frequent.

5.1. ALGORITHM FOR PROPAD 81

TID Transaction FrequentItems
1 1, 3, 4, 6, 7, 9, 13, 16 1, 3, 6, 13, 16
2 1, 2, 3, 6, 12, 13, 15 1, 2, 3, 6, 13
3 2, 6, 8, 10, 15 2, 6
4 2, 3, 11, 16, 19 2, 3, 16
5 1, 3, 5, 6, 12, 13, 16 1, 3, 6, 13, 16

Table 5.1: A transaction database and ξ = 3

Figure 5.1: A frequent item set tree

82 CHAPTER 5. PROPAD APPROACH

• To find the child patterns of X, only frequent items that co-occur with X in

the database are needed to be accumulated. It means that only X projected

database is needed.

Let I be a set of items, F be the frequent items in DB. The set of all frequent

itemsets with the same prefix L ⊆ I is denoted as F (L). For each transaction t, the

set of frequent items in t is represented as F (t), F (t) = t
⋂

F . All frequent itemsets

containing item i ∈ I can be found in the so called i-projected transactions. We

present the projected transactions by the table PT with two columns attributes:

1. Transaction identifier (tid). The transactions contain the item i.

2. Item identifier (item). The items co-occur with the item i.

The mining process can be regarded as a process of frequent item set tree con-

struction, which is facilitated by successively projecting the transactions into the

frequent itemset. In order to avoid repetitiousness and to ensure each frequent item

is projected to at most one projected table, we suppose items in alphabetical order.

Before the new algorithm is given, let us define the projected transaction table:

Definition Let L ⊆ I be a frequent itemset in DB. la(L) be the largest item in L.

A L-related projected transaction table, is denoted as PTL, that collects all frequent

items in the transactions containing L, restricted to items J with J > la(L) and the

support of items J satisfies the minimum support threshold.

Take frequent item 1 in T for example. The transactions containing 1 are {1, 2, 5}.
There are four items (larger than 1) {3, 6, 13, 16} contained in the transaction 1.

{2, 3, 6, 13} (larger than 1) are contained in the transaction 2. Transaction 5 in-

cludes {3, 6, 13, 16} that are larger than 1. Only {3, 6, 13} are frequent in the local

transaction table. The projected transaction table PT1 is shown in Table 5.2.

After some careful analysis, we proposed a SQL-based algorithm, called PROjection

PAttern Discovery, or Propad for short. Like the FP -growth method it adopts the

divide-and-conquer strategy: successively transforms the original transaction table

5.1. ALGORITHM FOR PROPAD 83

TID Item
1 3
1 6
1 13
2 3
2 6
2 13
5 3
5 6
5 13

Table 5.2: An example PT table

into a set of frequent item-related projected tables. Then we separately mine each

one of the tables as soon as they are built.

Our general idea of Propad is illustrated in the following example.

• At the first level, by scanning DB once, the complete set of frequent items

{1 : 3, 2 : 3, 3 : 4, 6 : 4, 13 : 3, 16 : 3} can be found and stored in the frequent

item table F , illustrated in Figure 5.2 (b). We simply gather the items that

satisfy the minimum support and insert them into the transformed transaction

table TF that has the same schema as transaction table T . It means that only

frequent 1-items are included in the table TF as shown in Figure 5.2 (c);

• Following the order of frequent items: 1-2-3-6-13-16, the complete set of frequent

patterns can be partitioned into 6 subsets without overlap as follows:

1. Those containing item 1;

2. Those containing item 2 but no item 1;

3. Those containing item 3 but no 1 nor 2;

4. Those containing item 6 but no 1, 2, nor 3;

5. Those containing item 13 but no 1, 2, 3, nor 6;

6. Those containing item 16 but no 1, 2, 3, 6, nor 13;

84 CHAPTER 5. PROPAD APPROACH

Tid Item
1 1
1 3
1 4
1 6
1 7
1 9
1 13
1 16

.
(a) T

Item Count
1 3
2 3
3 4
6 4
13 3
16 3

(b) F

Tid Item
1 1
1 3
1 6
1 13
1 16

.
(c) TF

Figure 5.2: An example transaction table T , frequent item table F , and transferred
transaction table TF

• At the second level, for each frequent item i we construct its respective projected

transaction table PTi. This can be done by two phases. The first step finds all

frequent items that co-occur with i and are larger than i from TF . The second

step finds the local frequent items. Only those local frequent items are collected

into the PTi. Frequent 1-items are regarded as the prefixes, frequent 2-patterns

are gained by simply combining the prefixes and their local frequent itemsets.

We start from item 1. The 1-related projected transaction table is constructed

as follows: we find all frequent patterns with the respect to item 1, which is the

base item of the tested projected table. All items that are locally frequent with

1, {3 : 3, 6 : 3, 13 : 3}, are inserted into the table PT1, as shown in Figure 5.3

(a-c). Then, the frequent 2-itemsets associated with item 1 {{1, 3 : 3}, {1, 6 :

3}, {1, 13 : 3}} can be found.

Now, we construct the projected transaction table associated with item 2, noted

as PT2. Since no local frequent items is found, PT2 is empty. The search for

frequent patterns associated with item 2 terminates.

Similarly, we can build the projected transaction table associated with other

items, PT3, PT6, PT13. Notice, according to the definition about the i-related

projected transaction table, the last subset’s projected transaction table is

empty. Therefore, it is not necessary to be accumulated.

5.1. ALGORITHM FOR PROPAD 85

• At the third level, for each frequent item j in the table PTi, we successively

construct the projected transaction table PTi,j and gain its local frequent items.

One projected transaction table is filtered if each transaction in the table only

maintains items that contribute to the further construction of descendants.

For example, to PT1, three frequent items {3 : 3, 6 : 3, 13 : 3} are found at the

level 2. We first construct PT1,3 and two local frequent items {6 : 3, 13 : 3}
are achieved as illustrated in Figure 5.3 (d-f). Then, the frequent 3-itemsets

associated with item 1 and 3, {{1, 3, 6 : 3}, {1, 3, 13 : 3}} can be mined. Now,

only one local frequent item {13 : 3} is found associated with items 1 and 6,

PT1,6 is filtered as illustrated in Figure 5.3 (g). Then, the frequent 3-itemsets

having items 1 and 6, {1, 6, 13 : 3} is achieved.

• At the fourth level, we can build the projected transaction table, PTi,j,w, asso-

ciated with item set {i, j}. To PT1,3, for example, one frequent item {13 : 3} is

found shown in Figure 5.3 (h). Then, the frequent 4-itemsets having item 1 and

3 and 6, {1, 3, 6, 13 : 3} is achieved. The search for frequent patterns associated

with item 1 terminates.

Basically, the projecting process can be facilitated either by breadth first approach

or by depth first approach. In breadth first approach, we have two alternatives to

represent projected transaction tables. One is: each frequent item has its correspond-

ing projected transaction table and local frequent itemsets table at level k. That is,

n projected tables need to be generated if we have n frequent itemsets at level k. It

is obviously unpracticable because too many temporary tables have to be held espe-

cially for dense database and for low support threshold. The other is: one projected

transaction table is used of each level. Let’s revisit the mining problem in Table 5.1.

Table 5.3 illustrates the projected transactions associated with each frequent item at

level 2. Normally, this projected transaction table is too huge to efficiently join in

subsequent mining procedures, especially at level 2.

Avoiding creating and dropping cost of many temporary tables, depth first ap-

proach is used in our approach. Let {i1, i2, . . . , in} be the frequent 1-itemset. We

can first find the complete set of frequent patterns containing {i1}. Conceptually, we

86 CHAPTER 5. PROPAD APPROACH

Tid Item
1 3
1 6
1 13
1 16
2 2
2 3
2 6
2 13
5 3
5 6
5 13
5 16
(a) TEMP

Item Count
3 3
6 3
13 3

(b) F

Tid Item
1 3
1 6
1 13
2 3
2 6
2 13
5 3
5 6
5 13
(c) PT 1

Tid Item
1 6
1 13
2 6
2 13
5 6
5 13
(d) TEMP

Item Count
6 3
13 3

(e) F

Tid Item
1 6
1 13
2 6
2 13
5 6
5 13
(f) PT 1 3

Tid Item
1 13
2 13
5 13
(g) TEMP

Tid Item
1 13
2 13
5 13
(h) TEMP

Figure 5.3: Construct frequent items by successively projecting the transaction table
T .

5.1. ALGORITHM FOR PROPAD 87

TID Item
1 3
1 6
1 13
2 3
2 6
2 13
5 3
5 6
5 13
1 6
1 13
1 16
2 6
2 13
4 16
5 6
5 13
5 16

.

Table 5.3: An example PT table in breadth first approach

88 CHAPTER 5. PROPAD APPROACH

construct {i1}-projection table and then apply the techniques recursively. After that,

we can find the complete set of frequent patterns containing {i2} but no item {i1}.
Similarly, we can find the complete set of frequent patterns.

To construct projection table associated with item i, we use temporary projection

table, TEMP , to collect all frequent items (larger than i) in the transactions contain-

ing i. Frequent itemset table, F , is used to store local frequent items of each TEMP .

The i-related Projected transaction table PTi is built by joining TEMP and F . In

fact, the TEMP and the F are only required in the constructing projection table PT .

In that case, we create one TEMP and one F during the whole mining procedure.

The table TEMP and F are cleared once a table PT is constructed.

In depth first approach, PT table of each frequent item is not constructed together.

Each PT table is built, then mined before the next PT table is built. The mining

process is done for each frequent item independently with the purpose of finding all

frequent k-itemset patterns in which the item at the level k-1 participates. We use

one PT table at the each level. For example, to mine all frequent patterns associated

with item 1, four PT tables are built. Each of them corresponds to each level. Let

k be the level of mining process, pass be the maximum length of current frequent

patterns. In the subsequent mining procedure, the PTk table is cleared if k ≤ pass.

Else, build a new PTk+1 table for the level k+1. In that case, the number of PT

tables is the same magnitude as the length of maximum frequent pattern. The SQL

queries used to create a i-projected transaction table is illustrated in Figure 5.4. PTk

is generated by self joining PTk−1. A temporary table, TEMP , stores all the items

that are larger than i and co-occur with i in PTk−1. The local frequent items in the

table TEMP are inserted into the table F .

Now we summarize the algorithm PROjection PAttern Discovery, abbreviated

as Propad, as follows. The number of iterations in the for loop is one less than the

number of frequent 1-itemsets.

Further optimization can be explored on a special PT , in which all frequent items

co-occur in the same transaction. In that case, the set of frequent patterns is gener-

ated by enumeration of all the combinations of the distinct items in PT with prefix

instead of constructing the PT for each item. Let us examine an example. Table

5.1. ALGORITHM FOR PROPAD 89

Algorithm 7 Propad

Input: A transaction table T and a minimum support threshold ξ
Output: A frequent pattern table PAT
Procedure:
1. pass num := 0;
2. prefix := null;
3. get the transformed transaction table TF by removing infrequent items from T ;
4. insert the frequent 1-items into PAT ;
5. for each distinct frequent item i in TF
6. prefix := i;
7. call findFP(prefix, 1);

findFP(prefix, k)
if PTk has at least one frequent item

combine prefix with frequent item sets and insert them into PAT ;
if PTk is not be filtered

if k + 1 > pass num
create table PTk+1;
pass num = k + 1;

else clear table PTk+1;
construct PTk+1 by projection;
for each frequent item j in PTk+1

prefix := prefix + j;
findFP (prefix, k + 1);

90 CHAPTER 5. PROPAD APPROACH

insert into TEMP (id, item) select t1.id, t1.item
from PTk−1 t1, PTk−1 t2
where t1.id = t2.tid and

t2.item = i and
t1.item > i

insert into F (item, count) select item,count(*)
from TEMP
group by item
having count(*) ≥ minsupp

insert into PT k select t.id, t.item
from TEMP as t, F
where t.item = F.item

Figure 5.4: PT generation in SQL

5.2 is a PT that consists of three different items {3, 6, 13}, which co-occur in the

same transactions {1, 2, 5}. The prefix of the PT is item 1, then the frequent pat-

terns are {{1, 3}, {1, 3, 6}, {1, 3, 6, 13}, {1, 3, 13}, {1, 6, 13}, {1, 6}, {1, 13}}. Such an

optimization is especially useful at mining long frequent patterns.

5.1.1 Enhanced Query Using Materialized Query Table

Materialized Query Tables are tables that contain information that is derived and

summarized from other tables. They are designed to improve performance of the

database by doing some intensive work in advance of the results of that work being

needed.

5.1.2 Analysis

The mining process can be facilitated by projecting transaction tables in a top-down

fashion. In our method, we are trying to find all frequent patterns with the respect

5.2. HYBRID APPROACH 91

to one frequent item, which is the base item of the tested projected table. All items

that are locally frequent with i will participate in building the i projected table.

In Comparison with Apriori, our approach dramatically prunes the candidate-2

itemsets. In Apriori approach we need to generate 15 candidate-2 itemset which

are {{1, 2}, {1, 3}, {1, 6}, {1, 13}, {1, 16}, {2, 3}, {2, 6}, {2, 13}, {2, 16}, {3, 6}, {3,

13}, {3, 16}, {6, 13}, {6, 16}, {13, 16}}, using our approach we have only 7 patterns

to test which are {{1, 3}, {1, 6}, {1, 13}, {3, 6}, {3, 13}, {3, 16}, {6, 13}}.
Comparing with the approach based on FP -tree, the Propad method will never

need to materialize the FP and ConFP . Since constructing FP and ConFP are

expensive when the database is huge and sparse, the cost is substantially reduced.

Our method of Propad has the following merits:

• Avoids repeatedly scan the transaction table, only need one scan to generate

transformed transaction table.

• Avoids complex joins between candidate itemsets tables and transaction ta-

bles, replacing by simple joins between smaller projected transaction tables and

frequent itemsets tables.

• Avoids the cost of materializing frequent itemsets tree tables.

5.2 Propad with Apriori Candidate Generation

Real databases are skew, which cannot be simply classified as purely dense or purely

sparse. We may distinguish between dense data sets and sparse data sets. A dense

dataset has many frequent pattern of large size and high support. In those datasets,

many transactions are similar to each other. Datasets with mainly short patterns are

called sparse. Longer patterns may exist, but with relatively small support.

As we know, it is hard to select an appropriate and efficient mining method in all

occasions. In this section, we discuss a hybrid approach to deal with both sparse and

dense data sets.

Finding frequent patterns in dense and very large data sets is a challenging task

since it may generate dense and long patterns. If an Apriori-like algorithm is used,

92 CHAPTER 5. PROPAD APPROACH

Figure 5.5: The frequent itemsets located at different levels

the generation of very large number of candidates sets is led. The Propad approach

works well in dense data sets with a large number of long patterns since it avoids

the generation of any candidate k-itemsets for any k by applying a recursive pattern

growth method. In the Propad approach, however, the process of recursively con-

structing the projected transaction tables would be cost-consuming especially when

the data sets is very large. However, for sparse datasets, candidate generation is a

very suitable method for finding frequent patterns.

We can observe that the number of transactions that support length k itemsets

decreases when k increases, and this decrease is sharp when k is greater than 2 or 3.

Figure 5.5 illustrates the frequent itemsets located at different levels. Therefore, We

can first employ Propad to mine the former k-itemsets. As mining progresses, the

projected transaction becomes smaller. Suppose Propad stops at level 2, and then

we use K-Way join to continue mining till the end.

Now we present the hybrid approach from the Propad and the Apriori as follows.

• Find the frequent k-itemsets with the Propad algorithm. This is done by two

phases. First, generate frequent 1-itemset. For each item, we recursively build

its projected transaction table PT till the level k. The items in the table PTk

together with the prefix insert into Fk, which collects the frequent k-itemsets.

The table Fk is built after search of frequent patterns associated with each item

terminates at level k.

5.2. HYBRID APPROACH 93

Item1 Item2 Count
1 3 3
1 6 3
1 13 3
3 6 3
3 13 3
3 16 3
6 13 3

Table 5.4: An example F2 built by the Propad algorithm

Let’s illustrate the method by revisiting Example 5.1.

Suppose the turn level is 2. We create a table F2, which stores all frequent

2-itemset. The table F2 has the scheme with three columns: item1, item2, and

count. By scanning the transaction table, T , the frequent 1-itemset {1 : 3,

2 : 3, 3 : 4, 6 : 4, 13 : 3, 16 : 3} can be found. We start from the item 1 and

project the transactions into 1. Three local frequent items {3 : 3, 6 : 3, 13 : 3}
are found. That is, the frequent 2-itemset {{1, 3 : 3}, {1, 6 : 3}, {1, 13 : 3}}
associated with 1 can be found. Then, we insert 1 as item1 and 3, 6, 13 as item2

into the F2. Similarly, we mine the item 2 till the item 13. After that, the F2

is constructed as illustrated in Table 5.4.

• Find the remaining frequent itemsets with the K-Way join algorithm. In the

Kth pass, we need to generate a set of candidate itemsets Ck from frequent

itemsets Fk−1 of the previous pass. And then generate a set of frequent itemsets

Fk using K-Way join.

Based on the above illustration, we have two algorithms of hybrid as follows.

The two hybrid algorithms are different in line 4-7. The former one works well

when the dataset is sparse since the number of transactions that support length k

itemsets sharply decreases when k increases. For very dense datasets, however, this

decrease is not obvious as k increases. Moreover, it may generate very long patterns.

In this situation, the later one works well.

94 CHAPTER 5. PROPAD APPROACH

Algorithm 8 Hybrid(1)

Input: A transaction table T , a minimum support threshold ξ and stop level k
Output: A frequent pattern table PAT
Procedure:
1. generate frequent 1-itemset table;
2. create frequent k-itemset table Fk;
3. for each frequent item i
4. construct the projection table PT with Propad till the level k;
5. build frequent k-itemset table Fk;
6. generate table Ck+1;
7. build remaining frequent patterns with K-Way join;

Algorithm 9 Hybrid(2)

Input: A transaction table T , a minimum support threshold ξ and stop level k
Output: A frequent pattern table PAT
Procedure:
1. generate frequent 1-itemset table;
2. create frequent k-itemset table Fk;
3. for each frequent item i
4. construct the projection table PT with Propad till the level k;
5. build frequent k-itemset table Fk;
6. generate table Ck+1;
7. build remaining frequent patterns with K-Way join;

5.3. EVALUATION 95

We can see that the hybrid approach is sensitive to level k. Basically, the signifi-

cant portions of the total cost in the whole procedure are the cost of the second pass

and the third pass. This can be seen through Figure 5.8. Therefore, we set the stop

level is level 2 or level 3 according to the character of the data sets. For example, the

stop level can be set to 3 when mining long frequent patterns.

5.3 Experimental Evaluation and Performance Study

To evaluate the efficiency and scalability of Propad and Hybrid, we have performed

an extensive performance study. In this section, we report our experimental results

on the performance of Propad and Hybrid in comparison with K-Way join based on

Apriori-like and EFP based on FP -tree proposed in Chapter 4. It shows that algo-

rithm based on Propad outperforms K-Way join and EFP . The hybrid approach

from Propad and K-Way join can get efficient performance on sparse datasets or

very dense datasets when the value of level k is well selected.

All the experiment were performed on Version 8 of IBM DB2 EEE installed on

Linux operation system with Pentium IV 2.0Ghz.

The performance measure was the execution time of the algorithm on the datasets

with different support threshold.

5.3.1 Data Set

We report experimental results on four synthetic data sets and one real data set.

They are respectively T5I5D10K, T25I10D10K, T25I20D100K, T10I4D100K, and

Connect4.

The first four datasets have described in Chapter 4. T25I20D100K is relatively

dense and contains abundant mixtures of short and long itemsets. T10I4D100K is

very sparse. The frequent itemsets are short and not numerous. Here we have chosen

the dataset T10I4D100K, because for this dataset, the experiment runs for 10 passes

and we want to see how these approaches perform when mining long pattern.

To test the capability of our approach on dense datasets with long patterns, we use

96 CHAPTER 5. PROPAD APPROACH

Datasets Numbers of Numbers of Avg. transaction
transactions items length

T5I5D10K 10, 000 1, 000 5
T25I10D10K 10, 000 1, 000 25
T25I20D100K 100, 000 1, 000 25
T10I4D100K 100, 000 1, 000 10

Connect4 67, 557 130 43

Table 5.5: Description of the generated datasets

the real data set Connect4 from the UC-Irvine Machine Learning Database Reposi-

tory. It is compiled from the Connect4 game state information. The total number of

transaction is 67557, which each transactions is with 43 items. It is a dense dataset

with a lot of long frequent itemsets. Table 5.5 summarizes the parameters associated

with the datasets.

5.3.2 Comparison of Different Approaches

For these experiment, we built (tid, item), (item, tid) index on the data table T and

(item) index on the frequent itemsets table F . The goal was to let the optimizer

choose the best plan possible. We didn’t build indexes on table PT s and other

temporary tables built during the whole mining procedure, since these tables are

modified frequently during the whole procedure. Each modification to a table must

be reflected in all the indexes that are defined on the table, that carries a certain cost.

The run time used here means the total execution time, that is the period between

input and output.

In this subsection, we describe Propad algorithm performance compared with

K-Way join and EFP algorithm proposed in Chapter 4.

Figure 5.6 shows the run time of Propad, Propad O (Optimized Propod), K-

Way join and EFP on T10I4D100K. Clearly, Propad and Propad O win the other

two approaches, and the gaps become larger as the support threshold goes down.

Propad O optimizes Propad through enumerating all combination of frequent item-

sets on a special PT , in which all frequent items associated with item i co-occur in

the same transaction. So that the search for frequent patterns associated with item

5.3. EVALUATION 97

Figure 5.6: Comparison over dataset T10I4D100K

i terminates earlier. However, the Propad O approach does not gain the significant

performance improvement as we expected since it still takes time to test whether one

PT is kind of this special PT or not.

K-Way join works well in such sparse data set since most of the candidates that

Apriori generates turn out to be frequent patterns. However candidates generation

and frequent count are still the major cost of Apriori.

EFP has a similar performance as K-Way join and sometime is even slightly

worse. This is because when the data set is sparse, table FP can not compass data

as effectively as what is does on dense data sets. Constructing table FP s over sparse

data sets recursively has its overhead.

To test the performance of these approaches over dense data sets, we use the

synthetic data set generator described in [AS94] to generate a data set T25I20D100K.

It is a relatively dense data set and contains an abundant mixtures of short and long

frequent patterns.

Figure 5.7 shows the run time of the three approaches on this data set. When the

support threshold is high, most patterns are of short lengths, K-Way join and EFP

have similar performance. When the support threshold becomes low, the number

98 CHAPTER 5. PROPAD APPROACH

Figure 5.7: Comparison over dataset T25I20D100K

of frequent patterns goes up and most items are frequent. Then, the advantages of

Propad over other two approaches becomes obvious.

Propad approach can get competitive performance out of SQL-based FP imple-

mentation. An important reason for superior performance of Propad over SQL-based

FP is that it avoids materializing table FP and CFP (conditional FP), that is the

main time-consuming part of the algorithm.

Figure 5.8 shows the run time of K-Way join approach to generate different level

frequent patterns on data set T10I4D100K. Form the figure, we can see that the time

required for support counting at higher passes is not very significant where the length

of the largest frequent itemset is small. This is because there is a great reduction

in the size of the candidate itemset Ck. However, for datasets with long patterns,

joining k-copies of input table for support counting at higher passes is quite significant

though the cardinality of the Ck decreases with the increase in the number of passes.

However, of all the passes, second pass (for short patterns) or third pass (for long

patterns) is the most time consuming. In general, because of the immense size of

C2 or C3, the cost of support counting for C2 or C3 is very high. In addition, for

candidate sets of length 2, as all the subsets of length 1 are known to be frequent,

5.3. EVALUATION 99

Figure 5.8: K-Way join over dataset T10I4D100K

there is no gain from pruning during the candidate generation.

In sparse data set T10I4D100K with long patterns, constructing projection table of

each frequent item recursively is high overhead. We compared Propad with Hybrid(1)

with cut level being 3 on this data set. Figure 5.9 shows the run time taken by these

two approaches.

The result on mining the real dataset Connect-4, which contains 67,557 transac-

tions with 43 items in each transaction, is shown in Figure 5.10. The figure supports

the idea that Hybrid(2) runs faster than Propad on very long itemsets. From the

figure, however, one can see that EFP is scalable even when there are many long

patterns. In such dataset, neither Propad nor Hybrid(2) are comparable to the per-

formance of EFP . To deal with such a very dense data set, the main costs in both

Propad and Hybrid(2) are recursively projection. In contrast, the compactness of

a table FP is very high since many transactions share the prefix paths of it. The

recursive construction of conditional FP tables is limited by the maximal length of

the transactions.

100 CHAPTER 5. PROPAD APPROACH

Figure 5.9: Comparison between Propad and Hybrid(1) over dataset T10I4D100K

Figure 5.10: Comparison over dataset Connect4

5.3. EVALUATION 101

Figure 5.11: Scalability with the number of transactions in T10I4

5.3.3 Scale-up Study

We experimented with several synthetic datasets to study the scale-up behavior of

Propad against the number of transactions and the transaction size. A set of synthetic

datasets are generated using the same parameters of T10I4 and T25I20. Figure 5.12

and Figure 5.13 show the scalability of Propad and EFP and K-Way join with

respect to the number of transactions increased from 100k to 1M.

For data sets with large transactions, Apriori has to generate tremendous number

of candidates, that is a very costly process. To deal with large datasets, the construc-

tion of an FP table may consume large main memory. The performance of EFP

decreases with the number of transactions goes up. From the figures, one can see

taht the Propad is more efficient and scalable at mining very large databases. It can

be seen that the execution times scale quite linearly and both the datasets exhibit

similar scale up behavior.

102 CHAPTER 5. PROPAD APPROACH

Figure 5.12: Scalability with the number of transactions in T25I20

5.4 Conclusion

In this chapter, we propose an efficient SQL based algorithm to mine frequent itemsets

from databases. Rather than Apriori-like method it adopts the divide-and-conquer

strategy and projects the transaction table into a set of frequent item-related pro-

jected tables. Experimental study shows that our Propad algorithm can get higher

performance than K-Way join based on Apriori-like on all data sets.

A major distinct of Propad from the previous proposed method EFP is that

Propad avoid materializing a good number of table FP s and ConFP s. It is essentially

a frequent pattern growth approach since it partitions its search space according to

both patterns and data based on a divide and conquer methodology. In that case,

Propad has better performance than EFP .

We next implement a hybrid approach from Propad and K-Way join, that can

achieve the efficiency and scalability when the value of level k is well selected.

There remain lots of further investigations. We plan to implement our SQL based

frequent pattern mining approach on parallel RDBMS, and to check how efficiently

our approach can be parallelized and speeded up using parallel database system. We

5.4. CONCLUSION 103

try to find the best cutting level for combination of Propad and Apriori to make

our approach more efficient on both sparse and dense datasets at all levels of support

threshold.

Chapter 6

Parallelization

One typical problem is that real-world databases tend to be very large. The need to

handle large amounts of data implies a lot of computational power, memory and disk

I/O, which can only by provided by parallel computers. In this chapter, we present

an overview of parallelization for frequent pattern mining and our implementation

using parallel database systems.

6.1 Parallel Algorithms

Researchers expect parallelism to relieve current frequent pattern mining methods

from the sequential bottleneck, providing scalability to massive data sets and improv-

ing response time. Achieving good performance on today’s multiprocessor system is

not trivial. The main challenges include synchronization and communication mini-

mization, workload balancing, finding good data layout and data decomposition, and

disk I/O minimization. In this section, we will give a brief introduction of the most

influential parallel algorithms based on both Apriori and FP -growth that were pro-

posed during the last decade. All of those are based on their sequential counterparts

and exploit parallelism through parallel processing.

104

6.1. PARALLEL ALGORITHMS 105

Figure 6.1: Count Distribution algorithm

6.1.1 Parallel Apriori-like Algorithms

Agrawal et al. [AIS93] have proposed three parallel algorithms based on Apriori:

Count Distribution (CD), Date Distribution (DD), and Candidate Distribution.

They are implemented on a 32-node IBM SP2 DMM. The CD algorithm is a simple

parallelization of Apriori and achieves parallelism by partition data as shown in

Figure 6.1. All processors generate the entire candidate hash tree from FK−1. Each

processor can thus independently count partial supports of the candidates from its

local database partition. Next, the algorithm does a sum reduction to obtain global

counts by exchanging local counts with all other processors. Once the global Fk has

been determined, each processor builds the entire candidate Ck+1 in parallel, and

repeat the process until all frequent itemsets are found. This algorithm minimizes

the communication since only the counts are exchanged among the processors. It,

however, doesn’t use the aggregate system memory effectively because the algorithm

replicates the entire hash tree on each processor.

The DD algorithm is designed to minimize computational redundancy and max-

imize use of the total system memory by generating disjoin candidate sets on each

106 CHAPTER 6. PARALLELIZATION

Figure 6.2: Date Distribution algorithm

processor as shown in Figure 6.2. However, each node must scan the entire data-

base to examine its candidates. Thus this algorithm suffers from high communication

overhead and performs poorly when compared to CD.

The Candidate Distribute algorithm partitions the candidates across nodes. The

partitioning use a heuristic based on support so that each processor gets an equal

amount of work. It attempts to minimize communication by selectively replicating

the database so that a processor can generate global counts independently. It is

done after a fixed number of passes of the standard data distribution algorithm. The

choice of the redistribution pass involves a tradeoff between duplication and poor load

balancing. Candidate Distribute performs worse than CD because it pays the cost

of redistributing the database while scanning the local database partition repeatedly.

The PDM algorithm proposed by Park et al. [PCY95a, PCY95b] is based on

DHP. In PDM, candidates are generated in parallel. Each processor generates its

own local set, which is exchange through an all-to-all broadcast to construct the global

candidate sets. Next, PDM obtains the local counts of k-itemsets and approximate

counts of k+1-itemsets with a hash table for all candidates and exchange them among

the processors to determine the globally frequent itemsets. Because the 2-itemset hash

table can be very large, directly exchanging the counts through all-to-all broadcast

6.1. PARALLEL ALGORITHMS 107

can be expensive. The PDM uses an optimized method that exchanges only the cells

that are guaranteed to be frequent. However, this method requires two rounds of

communication. PDM implements the parallelization of hash table generation, but

it is done at the cost of an all-to-all broadcast to construct the entire candidate sets.

The communication costs might render this parallelization ineffective.

Shintani et al. proposed three Apriori-based parallel algorithms [SK96]: Non-

Partition, Simple-Partition, and Hash-Partition. Their target machine was a

64-node Fujutsu AP1000DDV DMM. Non-Partition is essentially the same as CD,

except that the sum reduction occurs on the one master processor. Simple-partition

is the same as DD. Hash-partition is similar to Candidate Distribution. Unlike Can-

didate Distribution, it does not selectively replicate the database for counting. Each

processor generates a k-subset for every local transaction, calculates the destination

processor and communicate that subset to the processor. The home processor is re-

sponsible for incrementing the counts using the local database and any message sent

by other processors.

Shintani et al. also proposed a variant of Hash-Partition called HPA-ELD.

The motivation is that even though we might partition candidates equally across

processors, some candidates are more frequent than others. In that case, their home

processor will consequently be loaded. HPA-ELD addresses this by replicating the

extremely frequent itemsets on all processors and processing them using the NPA

scheme. Thus, no subsets are communicated for these candidates. Local counts are

obtained by a sum reduction for their global support. The experiments confirmed

that HPA-ELD outperforms the other approaches.

Intelligent Data Distribution (IDD) and Hybrid Distribution (HD) proposed

by Han et al. were based on Data Distribution [HKK97]. IDD uses a liner-time,

ring-based, all-to-all broadcast of communication. Compare with DD, the IDD avoid

the competition problem of communication. It switches to Count Distribution once

the candidates fit in memory. Instead of a round-robin candidate partitioning, it

performs a single-item, prefix-based partitioning.

The HD combines Count Distribution and Intelligent Distribution. It parti-

tions the P processors into G equal-size groups, where each group is considered as a

108 CHAPTER 6. PARALLELIZATION

superprocessor. CD is used among the G superprocessors, while the P/G processors

in a group use IDD. HD reduces database communication costs by 1/G and tries to

keep processors busy, especially during later iterations. Han et al. showed that HD

has the same performance as CD, while it can handle much large databases.

Common Candidate Partition Database(CCPD) proposed by Zaki et al. in

[ZOPL96] and Asynchronous Parallel Mining (APM) proposed by Cheung et al.

in [CHX98] were implemented on share memory systems. CCPD uses a data parallel

approach. The database is logically partitioned into equal-size chunks, and all the

processors synchronously process a global or common-candidate hash tree. To build a

hash tree in parallel, CCPD associates a lock with each leaf node. When a processor

wants to insert a candidate into the tree, it starts at the root, and successively hashes

on the items until it reaches a leaf. It then requires the lock and inserts into the can-

didate. With this locking mechanism, each processor can insert itemsets in different

parts of the hash tree in parallel. However, hash tree has the inferior data layout. It

might lead to false counting when sharing the common hash tree. Some optimization

were proposed to address these problems. Such as, a hash-tree balancing and memory

placement optimization.

APM is based on DIC. It uses FDM’s global-pruning technique to decrease the size

of candidate 2-itemsets. This pruning is most effective when there is huge skew among

the partitions. At the first iteration, APM logically divides the database into many

small, equal-sized virtual partitions. Then it gathers the local counts of the items in

each partition and clusters them to generate a small set of candidate 2-itemsets. APM

now prepares to apply DIC in parallel. The database is divided into homogeneous

partitions. Each processor independently applies DIC to its local partition. There

is a shared prefix tree among all processors, which is built asynchronously. These

algorithms based on share memory systems has several limitations such as high I/O

overload, disk competition and inferior data placement.

A hierarchical system has both distributed and share-memory components. Zaki

6.1. PARALLEL ALGORITHMS 109

et al. proposed four algorithms-ParEclat, ParMaxEclat, ParClique, and Par-

MaxClique that implemented on hierarchical systems [ZPOL97b]. All four algo-

rithms have a similar parallelization and differ only in search strategy and equiv-

alence class-decomposition technique. ParEclat and ParMaxEclat use prefix-based

classes, bottom-up and hybrid search respectively. ParClique and ParMacClique use

smaller clique-based classes, with bottom-up and hybrid search respectively. Each of

these algorithms consists of three main phases: initialization phase, which performs

computation and data partitioning; the asynchronous phase, where each processor in-

dependently generates frequent itemsets; the reduction phase, which aggregates final

results.

6.1.2 Parallel FP -growth Algorithms

Zaiane et al. proposed Multiple Local Frequent Pattern Tree (MLFPT) [ZEHL01]

based on FP -growth algorithm. It implemented on a shared memory and shared

hard drive architectures. The MLFPT consists of two main stages. Stage one is

the construction of the parallel frequent pattern trees and stage two is the mining

of these data structures. In order to enumerate the frequent items efficiently, the

datasets are divided among the available processors. Each processor is given an

approximately equal number of transactions and enumerates the local occurrences

of the items appearing in the transaction at hand. Next, a global count is done

in parallel, where each processor is allocated an equal number of items to sum their

local supports into global count. Then, each processor builds its own frequent pattern

tree in parallel as shown in Figure 6.3. The mining process starts with a bottom up

traversal of the nodes on the MLFPT structure, where each processor mines fairly

equal amounts of nodes. The MLFPT algorithm overcomes the major drawbacks of

parallel algorithms derived from Apriori, in particular the need for k I/O passes over

the data. The experiments showed that with I/O adjusted, the MLFPT could achieve

an encouraging many-fold speedup improvement.

Pramudiono et al. reported parallel execution of FP -growth on shared nothing

environment [PK03a, PK03b]. The parallelization of FP -tree is difficult, especially

110 CHAPTER 6. PARALLELIZATION

Figure 6.3: Parallel FP -growth algorithm on shared nothing systems

for shared nothing machines. In [PK03b], the database is distributed evenly among

nodes. After the first scan of transaction database, a process exchanges the support

count of all items to determine globally frequent items. Then each code builds F-list

since it also has global count. At the second database scan, each node builds its local

FP -tree from local transaction database with respect to the global F-list. Instead

of processing conditional pattern base locally, each node accumulates a complete

conditional pattern base and process it independently until the completion before

receiving other conditional pattern base. A novel notion of path depth is introduced

to break down the granularity of parallel processing of conditional pattern base. To

reduce the cost of conditional base exchanging, serval optimizations were made. For

example, ordering of conditional base processing, destination node on each round,

appropriate buffer, and background processor. The experiments showed that the

algorithm can achieve reasonably good speedup ratio.

6.2. PARALLEL DATABASE SYSTEMS 111

Parallel data parallelism data task parallelism task
system Apriori-based FP -growth Apriori-based FP -growth

shared-nothing PDM PFP DD
CD CandDist

NPA SPA
FDM HPA
FPM HPA-ELD

IDD
HD

shared-memory CCPD MLFPT PCCD
APM

hierarchical ParEclat
ParMaxEclat

ParClique
ParMaxClique

Table 6.1: Parallel frequent pattern mining algorithms

Table 6.1 illustrates parallel frequent pattern mining algorithms.

6.2 Frequent Pattern Mining on Parallel Database

Systems

There are a verity of frequent pattern mining algorithms constructed to run in parallel,

taking advantage of parallel architecture using specific programming routines.

Particularly, a parallel database system can be used to provide performance im-

provement, although their engines are not specifically optimized to handle data min-

ing applications. The advantages of the implementation based on parallel database

systems are as follows.

• Simpler implementation.

The declarative, set-oriented nature of relational database query languages

paves the way for the automatic exploitation of data parallelism. There is

no need to use parallel routines such ad MPI libraries. The parallel DBMS is

112 CHAPTER 6. PARALLELIZATION

responsible itself for parallelizing queries that are issued against it. The SQL

implementation can be easily parallelized when written with due care.

• Simplified data management.

A DBMS itself has its own tools to manage data.

• Higher scalability.

It’s possible to mine datasets that are considerably larger than main memory.

If data does not fit in memory, the database itself is responsible for handling

information, paging and swapping when necessary.

• Opportunity for database fragmentation.

Database fragmentation provides many advantages related to reduce number

of page accesses necessary for reading data. Irrelevant data could be just ig-

nored according on the filter specified by SQL statements. Moreover, some

DBMSs can process each partition in parallel, using different execution plans

when applicable.

• Portability across a wide range of parallel computer architectures.

Virtually all commercial-available parallel database systems offer an SQL or

SQL-like interface. This extends the benefit of portability achieved by using

RDBMS to a wide range of parallel computer architectures, including both

share-memory and share-nothing systems.

• Compatibility with parallel data warehouse systems.

Note that current data warehouses are typically stored on a RDBMS, often run-

ning on parallel database systems for efficiency and scalability reasons. Com-

patibility with existing business applications is very important in practice.

However, there are few reports available about how the parallelization affects the

performance of complex queries required by frequent itemset mining. In this section,

we examine how efficiently frequent itemset mining with SQL can be paralleled and

speeded up using parallel database systems.

6.2. PARALLEL DATABASE SYSTEMS 113

6.2.1 Parallel Relational Database Systems

This subsection presents an overview of parallel relational database systems.

There are two major types of parallelism, namely temporal and spatial parallelism

[HB84]. Temporal parallelism or pipelining refers to the execution of a task as a

cascade of sub-tasks. Spatial parallelism refers to the simultaneous execution of tasks

by several processing units.

A parallel database is a database in which multiple actions can take place at the

same time in order to get your job done faster or to accomplish more work per unit

time. By putting multiple physical processors to work on the same SQL statement,

it is possible to scan large amount of data very quickly and to dramatically reduce

the time needed to process the statement.

There are three main approaches to making multiple computers work on the same

problem at the same time. Parallel processing hardware implementations are often

categorized according to the particular resources which are shared. The approaches

are described as follows.

• Shared nothing parallel (massively parallel, MPP) architecture

A shared nothing architecture means each computer has its own CPU, memory,

and disk. The computers are connected together with a high speed interconnect

as shown in Figure 6.4. Each node can independently process its own data, and

then passes the nodes’ partial result back to the coordinator node. The coordi-

nator combines all the results from all the nodes into the final result set. The

nodes do not have to be independent computers. Multiple partitions can live on

a single computer. This architecture takes advantage of high-performance, low-

cost commodity processors and memory, has a very good flexibility and can eas-

ily be scaled to handle very large databases by adding more processors. MPPs

are good for read-only databases and decision support applications. Moreover,

failure is local: if one node fails, the others stay up. The major drawback of

this architecture is that load balancing is difficult. Note that if a data subset is

very frequently accessed, its corresponding node(s) will be a bottleneck. Hence,

data placement is a crucial issue here. In addition, more overhead is required

114 CHAPTER 6. PARALLELIZATION

Figure 6.4: Shared-nothing architecture

Figure 6.5: Shared-memory architecture

for a process working on a disk belonging to another node.

• Shared memory (shared everything) parallel architecture

A shared memory architecture is also known as a symmetric multiprocessor

(SMP) architecture, in which multiple processors share common memory and

disks as shown in Figure 6.5. Load balancing can be automatically done and

parallelization of database operation is easy, since shared memory is an inter-

processor communication model more flexible than distributed memory. A dis-

advantage of shared memory systems for parallel processing is that scalability

is limited by bus bandwidth and latency, and by available memory.

• Shared disk (distributed lock) parallel architecture

6.2. PARALLEL DATABASE SYSTEMS 115

Figure 6.6: Shared-disk architecture

In a shared disk architecture, all the disks containing data are accessible by

all nodes. Each node consists of one or more CPUs and associated memory.

Memory is not shared between nodes as shown in Figure 6.6. Disk sharing

architecture requires suitable lock management techniques to control the up-

date concurrence control. This architecture permit high availability. All data

is accessible even if one node dies. It has better scalability, in comparison with

shared memory architecture. These systems have the concept of ”one database”

and multiple access points. In other words, we can say it is ”multiple instances

and single database”. There is no issue such as data skew as the data is located

and accessed at a common location, which is an advantage over shared nothing

systems. The disadvantage of shared disk systems is that inter-node synchro-

nization is required. If the workload is not partitioned well, there may be high

synchronization overhead. It is fundamentally flawed because as the number of

nodes increases, the cluster drowns in lock requires.

In practice, hybrid architectures may combine advantages of different architectures

[NZT96, BCV93]. An interesting possibility is to have a shared nothing architecture

in which each node is a shared memory multiprocessor system as shown in Figure

6.7. This architecture has the benefit of scalability associated with shared nothing

and the benefit of easy parallelization associated with shared memory.

There are two types of query parallelism that parallel databases can support to

the processing of an SQL statement.

116 CHAPTER 6. PARALLELIZATION

Figure 6.7: Hybrid architecture

• Inter-Query.

This type of parallelism refers to the ability of multiple applications to query

a database at the same time. Each of those queries executes independently of

others, but database can execute all of them at the same time.

• Intra-Query.

This type of parallelism refers to the processing of parts of a single query at the

same time using either intra-partition parallelism or inter-partition parallelism

or both.

– Inter-Partition Parallelism.

Inter-partition refers to the ability to break up a SQL statement into a

number of subset queries across multiple partitions of a partitioned data-

base, on one machine or multiple machines. Each subset query is run in

parallel. Figure 6.8 (a) shows a query that is broken into four pieces that

can be run in parallel, with the results return more quickly than if a query

were run in serial fashion on a single partition.

– Intra-Partition Parallelism.

Intra-partition refers to the ability to break up a single SQL statement into

separate tasks, like scan, join or sort. These separate tasks are performed

6.2. PARALLEL DATABASE SYSTEMS 117

(a) Inter-Partition parallelism

(b) Intra-Partition parallelism

Figure 6.8: Inter-Partition and Intra-Partition parallelism

118 CHAPTER 6. PARALLELIZATION

Figure 6.9: Simultaneous Inter-Partition and Intra-Partition Parallelism

in parallel. Figure 6.8 (b) shows a query that is broken into four pieces that

can be run in parallel. The pieces are copies of each other. To utilize intra-

partition parallelism, you must configure the database appropriately. You

can choose the degree of parallelism or let the system do it for you. The

degree of parallelism represents the number of pieces of a query running

in parallel.

Inter-partition parallelism and intra-partition parallelism can be used at the

same time. This combination provides two dimension of parallelism, resulting

in an even more dramatic increase in the speed at which queries are processed

as shown in Figure 6.9.

6.2.2 SQL Queries in Apriori and Propad

When data resides in a RDBMS, using SQL to work with the data increase the

reliability and portability of an applications. In the case of RDBMS supporting

parallelizable queries, the SQL implementation can be easily parallelized. However,

there are few reports available about how the parallelization affects the performance

of complex queries required by frequent itemset mining. In this section, we examined

how efficiently frequent itemset mining with SQL can be paralleled and speeded up

using parallel database systems.

6.2. PARALLEL DATABASE SYSTEMS 119

insert into Ck select I1.item1, . . . , I1.itemk−1, I2.itemk−1

from Fk−1 I1, Fk−1 I2

where I1.item1 = I2.item1 and
...

I1.itemk−2 = I2.itemk−2 and
I1.itemk−1 < I2.itemk−1

insert into Fk select item1, . . . , itemk, count(*)
from Ck, T t1, . . . T tk
where t1.item = Ck.item1 and

...
tk.item = Ck.itemk and
t1.tid = t2.tid and

...
tk−1.tid = tk.tid

group by item1, item2 . . . itemk

having count(*) ≥ minsupp

Figure 6.10: K-Way join

6.2.2.1 SQL Query Using Apriori Algorithm

K-Way Joins approach is reported the best algorithm overall compared to the other

approaches based on SQL-92 in [STA98]. The SQL queries used to generate candi-

dates and count the support of candidates are illustrated in Figure 6.10.

These statements do not suit well in a partitioned database. Since as the process-

ing of mining goes on, the statements have many large tables and a wide variety of

tables and columns involves in joins. In such situations it can be difficult to choose

the tables’ partitioning key such that all significant queries can be executed without

a heavy inter-partitioned communication.

120 CHAPTER 6. PARALLELIZATION

insert into TEMP (id, item) select t1.id, t1.item
from PTk−1 t1, PTk−1 t2
where t1.id = t2.tid and

t2.item = i and
t1.item > i

insert into F (item, count) select item, count(*)
from TEMP
group by item

insert into PT k select t.id, t.item
from TEMP as t, F
where t.item = F.item
having count(*) ≥ minsupp

Figure 6.11: PT generation in SQL

6.2.2.2 SQL Query Using Propad Algorithm

The transaction table T is partitioned uniformly by hashing algorithm corresponding

to transaction TID among processing nodes. In the first pass we simply gather

the count of each item. Items that satisfy the minimum support are insert into the

frequent itemset table F that takes the form (item, count). Transactions that match

large itemsets are preserved in the transformed transaction table TF that has the

same schema as transaction table T .

In next pass, for each frequent item i we construct its respective projected trans-

action table PTi. Frequent 1-items are regarded as the prefixes, frequent 2-patterns

are gained by simply combining the prefixes and their local frequent itemsets. we suc-

cessively construct the projected transaction table PTi,j and gain its local frequent

items. One projected transaction table is filtered if each transaction in the table only

maintains items that contribute to the further construction of descendants.

The SQL queries used to create the frequent itemsets table and the projected

transaction table are illustrated in Figure 6.11.

6.2. PARALLEL DATABASE SYSTEMS 121

6.2.3 Parallel Ppropad

The Ppropad approach we propose consists of two main stages.

Stage one is the construction of the transformed transaction table TF that in-

cludes all frequent 1-items. In order to enumerate the frequent items efficiently, the

transaction data is partitioned uniformly correspond to transaction TID among the

available processors. In a partitioned database, this can be done automatically. The

statements for generating TF from the transaction table T are showed as follows.

The table F stores all frequent 1-itemsets.

insert into F select item, count(*)

from T

group by item

having count(*) ≥ minsupp

insert into TF select T .id, T .item

from T , F

where T.item = F.item

These two statements are suitable for a partitioned database. The former allows

each partition to count its rows and send the subtotal to the coordination partition

for computing the overall count, and the communication costs is negligible compared

with the work done within each partition. The later involves in a large table joining

with a small table. The large table is partitioned, and the small one is replicated on

all partitions, enabling the joins to be collocated.

Stage two is the actually mining of the table by projecting. In the Ppropad

approach, the projecting process is facilitated by depth first approach. Since the

processing of the projection of one frequent itemset is independent from those of

others, it is natural to consider it as the execution unit for the parallel processing.

Following the order of frequent items found at stage one, the Ppropad divides

complete set of frequent patterns into subsets associated with frequent items without

122 CHAPTER 6. PARALLELIZATION

Figure 6.12: Parallel Propad

overlap. In that case, for each frequent item, the processing of mining can be done

on each node. We divide the frequent items among the available nodes using a

round robin fashion. Each node is given an approximately equal number of items to

read and analyze. As a result, the items is spilt in p equal size, supposed p is the

number of available nodes. Each node locally constructs the projected transaction

tables associated with the items in hand until the the search for frequent patterns

associated with the items terminates. The basic idea of stage two is illustrated in the

following example. Let the number of available nodes be 3, as listed in Figure 6.12.

6.2. PARALLEL DATABASE SYSTEMS 123

The algorithm Parallel PROjection PAttern Discovery, abbreviated as Ppropad,

as follows. The number of iterations in the for loop is one less than the number of

frequent 1-itemsets.

Algorithm 10 Ppropad

Input: A transaction table T and a minimum support threshold ξ
Output: A frequent pattern table PAT
Procedure:
1. pass num := 0;
2. prefix := null;
3. get the transformed transaction table TF by removing infrequent items from T ;
4. insert the frequent 1-items into PAT ;
5. divide frequent 1-items among the available nodes;
6. for each node
7. for each frequent item i
8. prefix := i;
9. call findFP(prefix, 1);

findFP(prefix, k)
if PTk has at least one frequent item

combine prefix with frequent item sets and insert them into PAT ;
if PTk is not be filtered

if k + 1 > pass num
create table PTk+1;
pass num = k + 1;

else clear table PTk+1;
construct PTk+1 by projection;
for each frequent item j in PTk+1

prefix := prefix + j;
findFP (prefix, k + 1);

124 CHAPTER 6. PARALLELIZATION

6.3 Experimental Evaluation and Performance Study

6.3.1 Parallel Execution Environment

In our experiment we built a parallel RDBMS: IBM DB2 UDB EEE version 8.1 on

multiple nodes. DB2 UDB EEE takes advantages of shared-nothing clustering. It

can optimize its dynamic partitioning for either symmetric multiprocessor (SMP)-

style parallelism with a low overhead, single copy of EEE or across a cluster using a

share-nothing architecture with multiple instances of EEE.

We configure DB2 EEE to execute in a shared-nothing architecture that each node

has exclusive access to its own disk and memory. Four nodes were employed in our

experiments. Each node runs the Linux operation system on Intel Xeon 2.80Ghz with

1G of main memory.

DB2 UDB EEE supports parallel queries by using intelligent database partition-

ing. In parallel configuration, DB2 UDB EEE distributes the data and database

functions on multiple nodes using a hashing algorithm. Data scans, joins, sorts, load

balancing, table reorganization, data load, index creation, index access, backup and

restore are all performed simultaneously on all hosts in the DB2 cluster. DB2 has

predictably scalable performance to accommodate more users and more data.

6.3.2 Data Set

We report experimental results on two synthetic data sets. They are respectively

T25I20D100K, T10I4D100K. All the datasets have described in Chapter 4. Transac-

tion data is partitioned uniformly by hashing algorithm corresponds to transaction

TID among processing nodes.

6.3.3 Performance Comparison

In this subsection, we describe our algorithm performance compared with K-Way join.

Figure 6.13 (a) shows the execution time for T10I4D100 with the minimum support

of 0.1% and 0.06% on each degree of parallelization. We can drive that Propad is

6.4. CONCLUSION 125

faster than K-Way join as the minimum support threshold decreases. This is because

for datasets with long patterns, joining k-copies of input table for support counting

at higher passes is quite significant though the cardinality of the Ck decreases with

the increase in the number of passes. The speedup ration is shown in Figure 6.13 (b).

Figure 6.14 shows the execution time and speedup ration for T25I20D100K with

the minimum support of 0.2% and 0.1% on each degree of parallelization. The speedup

ratio shown in Figure 6.14 (b) seems to decrease with 4 processing nodes. It might be

caused by the communication overhead because more coordination and more overhead

are required for a process working on a disk belonging to another node with a shared

nothing system.

From the results we can see that the Ppropad approach has better parallelization

than K-Way join. This is because for K-Way join approach with many large tables

and a wide variety of tables and columns involved in joins, it can be difficult or

impossible to choose the table’s partitioning key such that all significant queries can

be executed without heavy inter-partition communication. While, Ppropad approach

avoids complex joins between tables that poorly suited for partitioning, as well as

explores task parallelism.

6.4 Conclusion

The ability to perform data mining using SQL queries will benefit data warehouses

with the better integration with commercial RDBMS. Particularly, unlike taking ad-

vantage of parallel architecture using specific programming routines, a parallel data-

base system can be used to provide performance improvement easily and flexibly

since parallel execution of SQL comes at no extra costs, although their engines are

not specifically optimized to handle data mining applications. It also allows easier

porting codes among different systems.

In this chapter, we have configured a parallel DB2 database to execute in a shared-

nothing architecture. In such an environment, databases are partitioned across mul-

tiple machines. This partitioning enables the RDBMS to perform complex parallel

data operations.

126 CHAPTER 6. PARALLELIZATION

(a)

(b)

Figure 6.13: Execution time (top) Speedup ration (bottom)

6.4. CONCLUSION 127

(a)

(b)

Figure 6.14: Execution time (top) Speedup ration (bottom)

128 CHAPTER 6. PARALLELIZATION

We implemented the parallelization of SQL based algorithm, Ppropad, to mine

frequent itemsets from databases. Rather than Apriori-like method it adopts the

divide-and-conquer strategy and projects the transaction table into a set of frequent

item-related projected tables. As shown in our performance study, the Ppropad

algorithm can get better speedup ratio than K-Way join based on Apriori-like on all

data sets, that means it is parallelized well.

There remain lots of further investigations. It’s obvious to achieve good paral-

lelization, we have to consider the granularity of the execution unit or parallel task.

In particular, although the trivial approach uses hashing of frequent items partition

among the nodes, the time to process each projection could vary. The load balancing

is a problem when the extreme skew exists in data. We would like to examine how

to absorb such skew.

We also plan to do our parallel SQL based frequent pattern mining approach using

more large transaction data. In addition, we’d like to investigate the effect of intra

parallelism under SMP environment.

Chapter 7

Conclusions and Future Work

Scalable data mining in large databases is one of today’s real challenges to database

research area. The integration of data mining with database systems is an essential

component for any successful large-scale data mining application. A fundamental

component in data mining tasks is finding frequent patterns in a given dataset. In

this thesis, we focus on the problem of efficiently mining frequent patterns with the

help of SQL, and develop a new class of approaches.

This chapter is organized as follows. We first summarize the thesis in Section 7.1.

Section 7.2 discuss some future research directions.

7.1 Summary

Data mining on large relational databases has gained popularity and its significance is

well recognized. However, the performance of SQL based data mining is known to fall

behind specialized implementation since the prohibitive nature of the cost associated

with extracting knowledge, as well as the lack of suitable declarative query language

support.

Most of the previous studies adopt an Apriori-like candidate set generation-and-

test approach. However, candidate set generation is still costly, especially when there

exist prolific patterns and/or long patterns. In this thesis, we investigate and propose

a class of approaches based on SQL for the problem of finding frequent patterns from

129

130 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

a transaction table. The major contributions of my thesis work are summarized as

follows.

• We propose a relational presentation of FP -tree, which is an extended prefix-

tree for storing compressed, complete information about frequent patterns, and

develop two methods, FP and EFP to construct FP -tree table. Based on

the FP -tree table, we develop an efficient pattern growth method for mining

the complete set of frequent patterns. Comparison with SQL-based Apriori

approach, FP and EFP have efficient performance gain with following tech-

niques:

– Table FP is usually substantially smaller than the transaction table T and

is to be used in the subsequent mining processes. Thus it saves the costly

join with the original transaction table.

– Pattern growth method avoids costly candidate generation and test by suc-

cessively concatenating frequent 1-itemset found in the (ConFP) FP . In

this context, the major operations of mining are count accumulation and

prefix path count adjustment which is usually much less costly than candi-

date generation and pattern matching operations performed in Apriori-like

algorithms.

• One major cost of FP and EFP is that it has to materialize a large number

of table FP s and ConFP s. To overcome this disadvantage, we propose an effi-

cient SQL based method, Propad, to mine frequent itemsets. It is essentially a

frequent pattern growth approach since it partitions its search space according

to both patterns and data based on a divide and conquer methodology. Exper-

imental study shows that Propad algorithm can get higher performance than

K-Way join based on Apriori-like on all data sets.

We next implement a hybrid approach from Propad and K-Way join. Our

study shows that Hybrid can achieve the efficiency and scalability when the

value of level k is well selected.

7.2. FUTURE RESEARCH DIRECTIONS 131

• One typical problem is that real-world databases tend to be very large. Par-

allelism can be expected to relieve current frequent pattern mining methods

from the sequential bottleneck, providing scalability to massive data sets and

improving response time. At first glance it seems that parallel processing in-

troduces an additional complexity. However, this drawback may be avoided in

our architectural framework, as follows. A parallel database system is used to

provide performance improvement. The parallel DBMS is responsible itself for

parallelizing queries that are issued against it. The SQL implementation can

be easily parallelized when written with due care.

We report the parallelization of Propad to mine frequent patterns on a parallel

RDBMS (IBM DB2 UDB EEE). As shown in our performance study, good

speedup ratio can be achieved, that means it is parallelized well.

7.2 Future Research Directions

Future work might involve in exploring many related problems, extensions and appli-

cations. Some of them are listed as follows.

• Investigation of the parallelization under more nodes environment and other

architectures such as shared-memory parallel. Based on this, data mining mid-

dleware for parallel frequent pattern mining would be proposed.

• There are some kinds of knowledge to be mined. For example, closed association

rules, sequential pattern mining and multi-dimensional sequential patterns.

In classical frequent pattern mining, the common framework is to use a min sup

threshold to ensure the generation of the correct and complete set of frequent

patterns. However, without specific knowledge, setting min sup is quite subtle.

On the other hand, frequent pattern mining often leads to the generation of a

large number of patterns. Instead of mining the complete set of frequent item-

sets and their associations, association mining only needs to find frequent closed

itemsets and their corresponding rules [PBTL99, PHM00, ZH02]. Since a closed

132 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

pattern covers all of its subpatterns with the same support, one just need to

mine the set of closed patterns without losing information. The important im-

plication is that mining frequent closed itemsets has the same power as mining

the complete set of frequent itemsets, but it substantially reduces the redun-

dant rules generated and increases both effectiveness and efficiency of mining.

Mining top-k frequent closed patterns is another particular interesting problem

[HWLT02], where k is a user-defined number of frequent closed patterns to be

mined, top-k refers to the k most frequent closed patterns.

Sequential pattern mining, which finds the set of frequent subsequences in se-

quence database, is an important data mining task and has broad applications.

Multi-dimensional sequential pattern mining integrates multi-dimensional analy-

sis and sequential data mining [PHJ+01]. Some methods has been proposed

since last few years. There is no study based on SQL available. The extension

and implementation of our approaches for mining frequent closed itemsets and

sequential patterns are very interesting for future research.

Mining frequent patterns when data reside in more than one table. The term

Multi-Relational Data Mining has been introduced by Knobbe et al. in [KBSW99],

to describe the problem of finding interesting patterns about sets of tuples be-

longing to a user selected table, named target table. Several studies based on

Apriori has been proposed. However, running the Apriori algorithm on the

join of tables of a database can fail to produce all existing rules or may pro-

duce rules whose support and confidence do not properly reflect the knowledge

embedded in the data [Cri02]. Actually, the entity-relationship model of a data-

base provides important information concerning the relations between entities,

this information can be used by data mining. How to take advantage of this

information represents an interesting direction for future research.

• Building SQL-aware data mining systems. There is a need to look for generic

scalable implementation over SQL systems for each class of data mining algo-

rithms, rather than for specific scalable algorithm in each class. In addition,

7.2. FUTURE RESEARCH DIRECTIONS 133

flexible and efficient visualization support is necessary to SQL-aware data min-

ing systems.

7.2.1 Final Thoughts

Data mining is that: ”An information extraction activity whose goal is to discover

hidden facts contained in data bases”.

The word ”discover” is related to the fact that the most valuable information is not

previously known. however, the mining techniques may help to confirm any suspected

behavior of the system in a particular context. By mining, we can see the patterns

hidden behind the data more accurately, more systematically, more efficiently.

Bibliography

[AAP00] R. Agarwal, C. Aggarwal, and V.V.V. Prasad. Depth first generation of

long patterns. In Proc. of 6th ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining), pages 108–118, Boston, MA, USA, August

2000. ACM Press.

[AAP01] R. Agarwal, C. Aggarwal, and V.V.V. Prasad. A tree projection algo-

rithm for generation of frequent itemsets. Parallel and Distributed Com-

puting, 61(3):350–371, 2001.

[AGI+92] R. Agarwal, S. Ghosh, T. Imielinskie, , B. Iyer, and A. Swami. An interval

classifier for database mining applications. In Proc. of 18th Int. Conf. on

Very Large Data Bases (VLDB’92), pages 560–573, Vancouver, Canada,

August 1992. Morgan Kaufmann Publishers Inc.

[AIS93] R. Agarwal, T. Imielinski, and A. Swam. Mining association rules be-

tween sets of items in large databases. In Proc. 1993 ACM-SIGMOD Int.

Conf. Management of Data (SIGMOD’93), pages 207–216, Washington,

D.C., USA, May 1993. ACM Press.

[AMS+96] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo.

Fast discovery of association rules. Advances in knowledge discovery and

data mining, pages 307–328, 1996.

[AS] R. Agrawal and R. Srikant. Quest synthetic data generator. In IMB

Almaden Research Center, San Jose, California, USA.

134

BIBLIOGRAPHY 135

[AS94] R. Agarwal and R. Srikant. Fast algorithm for mining association rules

in large databases. In Proc. 1994 Int. Conf. on Very Large Data Bases

(VLDB’94), pages 487–499, Santiago, Chile, September 1994. Morgan

Kaufmann Publishers Inc.

[AS95] R. Agarwal and R. Srikant. Mining sequential patterns. In Proc. 1995 Int.

Conf. Data Engineering (ICDE’95), pages 3–14, Taipei, Taiwan, March

1995. IEEE Computer Society Press.

[AS96] R. Agarwal and R. Shim. Developing tightly-coupled data mining ap-

plication on a relational database system. In Proc.of the 2nd Int. Conf.

on Knowledge Discovery in Database and Data Mining (KDD-96), pages

287–290, Portland, Oregon, August 1996. ACM Press.

[AW97] C. Apte and S. Weiss. Data mining with decision trees and decision rules.

FGCS Joural, Special Issue on Data Mining, 13(2-3):197–210, 1997.

[Bay98] R. J. Bayardo. Efficient mining long patterns from databases. In Proc. of

1998 ACM-SIGMOD Int. Conf. on Management of Data, pages 85–93,

Seattle, Washington, USA, June 1998. ACM Press.

[BBMM04] M. Botta, J. F. Boulicaut, C. Masson, and R. Meo. Query languages

supporting descriptive rule mining: a comparative study. In Database

Support for Data Mining Applications, volume 2682 of Lecture Notes in

Computer Science, pages 27–54. Springer, 2004.

[BCV93] B. Bergsten, M. Couprie, and P. Valduriez. Overview of parallel archi-

tectures for databases. The Computer Journal, 36(8):734–740, 1993.

[Ber02] P. Berkhin. Survey on clustering data mining techniques. Technical

report, Accrue Software, San Jose, CA, 2002.

[BHM98] B.Liu, W. Hsu, and Y. Ma. Integrating classification and association rule

mining. In Knowledge Discovery and Data Mining, pages 80–86, 1998.

136 BIBLIOGRAPHY

[BMS97] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Gener-

alizing association rules to correlations. In SIGMOD 1997: Proceedings

of the 1997 ACM SIGMOD Int. Conf. on Management of Data, pages

265–276, Tucson, Arizona, USA, May 1997. ACM Press.

[BMUT97] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset count-

ing and implication rules for market basket analysis. In SIGMOD 1997:

Proceedings of the 1997 ACM SIGMOD Int. Conf. on Management of

data, pages 255–264, Tucson, Arizona, USA, May 1997. ACM Press.

[Bor03] C. Borgelt. Efficient implementations of apriori and eclat. In 1st Work-

shop of Frequent Item Set Mining Implementations (FIMI 2003), Mel-

bourne, FL, USA, November 2003.

[BR99] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and

Iceberg CUBE. In SIGMOD ’99: Proceedings of the 1999 ACM SIG-

MOD international conference on Management of data, pages 359–370,

Philadelphia, Pennsylvania, United States, 1999. ACM Press.

[CHX98] D. W. Cheung, K. Hu, and S. Xia. Asynchronous parallel algorithm

for mining association rules on a shared-memory multi-processors. In

Proc. of the tenth annual ACM Symposium on Parallel Algorithms and

architectures, pages 279–288, Puerto Vallarta, Mexico, June/July 1998.

ACM Press.

[Cri02] L. Cristofor. Mining Rules in Single-table and Multiple-table Databases.

PhD thesis, University of Massachusetts Boston, Boston, USA, 2002.

[DL99] G. Dong and J. Li. Efficient mining of emerging patterns: Discovering

trends and differences. In Knowledge Discovery and Data Mining, pages

43–52, 1999.

[DS99] B. Dunkel and N. Soparkar. Data organization and access for efficient

data mining. In Proc. of the 25th Int. Conf. on Data Engineering, pages

522–529, Sydney, Australia, 1999. IEEE Computer Society.

BIBLIOGRAPHY 137

[FPSM91] W. J. Frawley, G. Piatetstly-Shapiro, and C. J. Matheus. Knowledge

discovery in databases: An overview. Knowledge Discovery in Databases,

pages 1–30, 1991.

[GG02] R. Grossman and Y. Guo. Data mining tasks and methods: parallel

methods for scaling data mining algorithms to large data sets. Handbook

of data mining and knowledge discovery, pages 433–442, 2002.

[Goe02] B. Goethals. Efficient frequent pattern mining. PhD thesis, University of

Limburg, Belgium, 2002.

[Goe03] B. Goethals. Survey on frequent pattern mining. Manuscript, 2003.

[HB84] K. HWang and F.A. Briggs. Computer Architecture and Parallel Process-

ing. McGraw-Hill, Inc., 1984.

[HDY99] J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns

in time series database. In Fifteenth Int. Conf. on Data Engineering,

pages 106–115, Sydney, Australia, March 1999. IEEE Computer Society.

[HFK+96] J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane. Dmql: A data

mining query language on data mining and knowledge discovery. In Proc.

1996 ACM-SIGMOD workshop on Research Issues on Data Mining and

Knowledge Discovery, Montreal, Canada, May 1996.

[HFW+96] J. Han, Y. Fu, W.Wang, J. Chiang, W. Gong, K. Koperski, D. Li, Y. Lu,

A. Rajan, N. Stefanovic, B. Xia, and O. R. Zaiane. DBMiner: A system

for mining knowledge in large relational databases. In Proc. 1996 Int.

Conf. on Data Mining and Knowledge Discovery (KDD’96), pages 250–

255, Portland, Oregon, August 1996.

[HGN00a] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association

rule mining - a general survey and comparison. SIGKDD Explorations,

2(1):58–64, July 2000.

138 BIBLIOGRAPHY

[HGN00b] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Mining association rules:

Deriving a superior algorithm by analysing today’s approaches. In Proc.

of the The Fourth European Conference on Principles and Practice of

Knowledge Discovery in Databases (PKDD’00), Lyon, France, September

2000. Springer.

[HK00] J. Han and M. Kamber. Data mining concepts and techniques. The

Morgan Kaufmann Series in Data Management Systems, 2000.

[HKK97] E. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for

association rules. In Proc. of 1997 ACM-SIGMOD Int. Conf. on Man-

agement of Data, pages 277–288, Tucson, Arizona, USA, May 1997. ACM

Press.

[HPY00] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate

generation. In Proc. 2000 ACM-SIGMOD Int. Conf. Management of

Data (SIGMOD’00), pages 1–12, Dallas, Texas, USA, May 2000. ACM

Press.

[HPYM04] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without

candidate generation: A freuqnt pattern-tree approach. Data Mining and

Knowledge Discovery, 8(1):53–87, January 2004.

[HS95] M. Houtsma and A. Swami. Set-oriented data mining in relational data-

bases. Data Knowledge Engineering, 17(3):245–262, 1995.

[HWLT02] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed

patterns without minimum support. In Proc. of the 2002 IEEE Int. Conf.

on Data Mining (ICDM’02), page 211, Maebashi TERRSA, Maebashi

City, Japan, December 2002. IEEE Computer Society.

[IM96] T. Imielinski and H. Mannila. A database perspective on knowledge

discovery. Communication of ACM, 39(11):58–64, 1996.

BIBLIOGRAPHY 139

[Imi96] T. Imielinski. From file mining to database mining. In ACM-SIGMOD’96

Data Mining Workshop Advance Program and Registration Information,

pages 35–39, Montreal, Canada, May 1996.

[IV99] T. Imielinski and A. Virmani. Msql: A query language for database

mining. Data Mining and Knowledge Discovery, 3(4):373–408, December

1999.

[IVA96] T. Imielinski, A. Virmani, and A. Abdulghani. Discovery board applica-

tion programming interface and query language for database mining. In

Proc. of the 2nd Int. Conf. on Knowledge Discovery and Data Mining,

pages 20–26, Oregon, Portland, August 1996. AAAAI Press.

[JL96] G. H. John and P. Langley. Static versus dynamic sampling for data min-

ing. In Evangelos Simoudis, Jiawei Han, and Usama M. Fayyad, editors,

Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining KDD’96,

pages 367–370, Portland, Oregon, August 1996. AAAI Press.

[KBSW99] A. J. Knobbe, H. Blockeel, A. Siebes, and D. Wallen. Multi-relational

data mining. Technical Report INS-R9908, March, 1999.

[KHC97] M. Kamber, J. Han, and J. Chiang. Metarule-guided mining of multi-

dimensional association rules using data cubes. In Proc. of the Third

Int. Conf. on Knowledge Discovery and Data Mining (KDD’97), pages

207–210, Newport Beach, California, USA, August 1997. AAAAI Press.

[KI91] R. Krishnamurthy and T. Imielinski. Practitioner problems in need of

database research: Research directions in knowledge discovery. SIGMOD

RECORD, 20(3), September 1991.

[KMR+94] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I.

Verkamo. Finding interesting rules from large sets of discovered asso-

ciation rules. In Nabil R. Adam, Bharat K. Bhargava, and Yelena Yesha,

editors, Third International Conference on Information and Knowledge

140 BIBLIOGRAPHY

Management (CIKM’94), pages 401–407, Gaithersburg, Maryland, USA,

Nov./Dec. 1994. ACM Press.

[KP03] W. A. Kosters and W. Pijls. Apriori: A depth first implementation. In

FIMI’03: the first Workshop on Frequent Itemset Mining Implementa-

tions, Melbourne, Florida, USA, December 2003.

[LLXY03] G. Liu, H. Lu, Y. Xu, and J. X. Yu. Ascending frequency ordered prefix-

tree: Efficient mining of frequent patterns. In Proc. 8th Int. Conf. on

Database Systems for Advanced Applications (DASFAA 2003), pages 65–

72, Kyoto, Japan, March 2003.

[LPWH02] J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent item sets by

opportunistic projection. In Proc. 2002 SIGKDD Int. Conf. Knowledge

Discovery and Data Mining (SIGKDD’02), pages 23–26, Alberta, CA,

July 2002. ACM Press.

[LSW97] B. Lent, A. N. Swami, and J. Widom. Clustering association rules. In

ICDE ’97: Proceedings of the Thirteenth Int. Conf. on Data Engineering,

pages 220–231, Birmingham, U.K, April 1997. IEEE Computer Society.

[MAR96] M. Metha, R. Agrawal, and J. Rissanen. Sliq: A fast scalable classifier

for data mining. In Proc. of the fifth Int. Conf. on Extending Data-

base Technolgy (EDBT’96), pages 18–32, Avignon, France, March 1996.

Springer-Verlag.

[MPC96] R. Meo, G. Psaila, , and S. Ceri. A new sql like operator for mining

association rules. In Proc. Of the 22nd Int. Conf. on Very Large Databases

(VLDB’96), pages 122–133, Bombay, India, September 1996. Morgan

Kaufmann Publishers Inc.

[MTV94] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for

discovering association rules. In Usama M. Fayyad and Ramasamy Uthu-

rusamy, editors, AAAI Workshop on Knowledge Discovery in Databases

(KDD-94), pages 181–192, Seattle, Washington, 1994. AAAI Press.

BIBLIOGRAPHY 141

[MTV97] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent

episodes in event sequences. Data Mining and Knowledge Discovery,

1(3):259–289, 1997.

[NZT96] M.G. Norman, T. Zurek, and P. Thanish. Much ado about shared-

nothing. SIGMOD Records, 25(3):16–21, September 1996.

[OPP01] S. Orlando, P. Palmerini, and R. Perego. Enhancing the apriori algorithm

for frequent set counting. In DaWaK ’01: Proceedings of the Third In-

ternational Conference on Data Warehousing and Knowledge Discovery,

pages 71–82, Munich, Germany, September 2001. Springer-Verlag.

[OPPS02] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and

resource-aware mining of frequent sets. In Proc. 2002 IEEE International

Conference on Data Mining (ICDM’02), page 338, Maebashi City, Japan,

December 2002. IEEE Computer Society.

[PB99] B. Pijls and J. C. Bioch. Mining frequent itemsets in memory-resident

databases. In Proc. of the Eleventh Belgium-Netherlands Conf. on Artif-

ical Intelligence (BNAIC 1999), pages 75–82, Belgium, Netherland, No-

vember 1999.

[PBTL99] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent

closed itemsets for association rules. In ICDT’99: Proceeding of the 7th

International Conference on Database Theory, pages 398–416, Jerusalem,

Israel, January 1999. Springer-Verlag.

[PCY95a] J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm

for mining association rules. In Proc. 1995 ACM-SIGMOD Int. Conf.

Management of Data (SIGMOD’95), pages 175–186, San Jose, CA, May

1995. ACM Press.

[PCY95b] J.S. Park, M.S. Chen, and P.S. Yu. Efficient parallel data mining for

association rules. In Proc. ACM Int. Conf. Information and Knowledge

142 BIBLIOGRAPHY

Management, pages 31–36, Baltimore, Maryland, USA, Nov./Dec. 1995.

ACM Press.

[PH00] J. Pei and J. Han. Can we push more constraints into frequent pat-

tern mining? In KDD’00: Proceedings of the sixth ACM SIGKDD int.

conf. on Knowledge discovery and data mining, pages 350–354, Boston,

Massachusetts, United States, 2000. ACM Press.

[PH02] J. Pei and J. Han. Constrained frequent pattern mining: a pattern-growth

view. ACM SIGKDD Explorations Newsletter, 4(1):31–39, 2002.

[PHJ+01] H. Pinto, J. Han, J.Pei, K. Wang, Q. Chen, and U. Dayal. Multi-

dimensional sequential pattern mining. In CIKM’01: Proceedings of the

tenth international conference on Information and knowledge manage-

ment, pages 81–88, Atlanta, Georgia, USA, November 2001. ACM Press.

[PHL+01] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-mine: Hyper-

structure mining of frequent patterns in large databases. In Proc. 2001

Int. Conf. on Data Mining (ICDM’01), San Jose, CA, November 2001.

IEEE Computer Society.

[PHM00] J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for mining

frequent closed itemsets. In ACM SIGMOD Workshop on Research Is-

sues on Data Mining and Knowledge Discovery (DMKD’00), pages 21–30,

Dallas, Texas, USA, May 2000.

[PK03a] I. Pramudiono and M. Kitsuregawa. Parallel fp-growth on pc cluster. In

Proc. Advances in Knowledge Discovery and Data Mining: 7th Pacific-

Asia Conference, PAKDD 2003, pages 467–473, Seoul, Korea, April 2003.

Springer-Verlag.

[PK03b] I. Pramudiono and M. Kitsuregawa. Shared nothing parallel execution of

fp-growth. In DEWS2003, March 2003.

BIBLIOGRAPHY 143

[PSTK99] I. Pramudiono, T. Shintani, T. Tamura, and M. Kitsuregawa. Parallel

sql based associaton rule mining on large scale pc cluster: performance

comparision with directly coded c implementation. In Proc. Of Third

Pacific-Asia Conf. on Knowledge Discovery and Data Mining, pages 94–

98, Beijing, China, April 1999. Springer-Verlag.

[RCIC99] K. Rajamani, A. Cox, B. Iyer, and A. Chadha. Efficient mining for associ-

ation rules with relational database systems. In Proc. of the Int. Database

Engineering and Applications Symposium (IDEAS’99), Montreal, Canad,

August 1999.

[RMZ02] G. Ramesh, W. Maniatty, and M. J. Zaki. Indexing and data access

methods for database mining. In ACM SIGMOD Workshop on Research

Issues on Data Mining and Knowledge Discovery (DMKD’02), Madison,

Wisconsin, USA, June 2002.

[RS00] R. Rastogi and K. Shim. Public: A decision tree classifier that integrates

building and pruning. Data Mining Knowledge Discovery, 4(4):315–344,

2000.

[SA96] R. Srikant and R. Agrawal. Mining sequential patterns: Generalization

and performance improvements. In Proc. Of Fifth Int. Conf. on Extending

Database Technology (EDBT), pages 3–17, Avigon, France, March 1996.

Springer-Verlag.

[SA97] R. Srikant and R. Agrawal. Mining generalized association rules. Future

Generation Computer Systems, 13(2–3):161–180, 1997.

[SAM96] J. Shafer, R. Agrawal, and M. Mehta. Sprint: A scalable parallel classifier

for data mining. In Proc. Of 22nd Int. Conf. on Very Large Databases,

pages 544–555, Bombay, India, September 1996. Morgan Kaufmann.

144 BIBLIOGRAPHY

[SK96] T. Shintani and M. Kitsuregawa. Hash based parallel algorithms for

mining association rules. In Int. Conf. on Parallel and Distributed In-

formation Systems (PDIS), pages 19–30, Miami Beach, Florida, USA,

December 1996. IEEE Computer Society.

[SON95] A. Savasere, E. Omiecinski, and S. Navathe. An effective algorithm for

mining association rules in large databases. In Proc. 1995 Int. Conf.

Very Large Data Bases (VLDB’95), pages 432–443, Zurich, Switzerland,

September 1995. Morgan Kaufmann.

[SS05] X. Shang and K. Sattler. Depth-first frequent itemset mining in relational

databases. In Proc. ACM Symposium on Applied Computing SAC 2005,

New Mexico, USA, 2005.

[SSG04a] X. Shang, K. Sattler, and I. Geist. Efficient frequent pattern mining in

relational databases. In Workshop on Knowledge Discovery in Databases

(AKKD 2004), Berlin, Germany, 2004.

[SSG04b] X. Shang, K. Sattler, and I. Geist. Sql based frequent pattern mining with

fp-growth. In Proc. 2004 the 15th Int. Conf. on Applications of Declar-

ative Programming and Knowledge Management and 18th Workshop on

Logic Programming, Berlin, Germany, March 2004.

[SSG04c] X. Shang, K. Sattler, and I. Geist. Sql based frequent pattern mining

without candidate generation. In Proc. 2004 ACM Symposium on Applied

Computing (SAC’04), pages 618–619, Nicosia, Cyprus, March 2004. ACM

Press.

[SSG05] X. Shang, K. Sattler, and I. Geist. Sql based frequent pattern mining

with fp-growth. Applications of Declarative Programming and Knowledge

Management - LNAI 3392, 2005.

[STA98] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule

mining with relational database systems: Alternatives and implications.

BIBLIOGRAPHY 145

In Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data (SIG-

MOD’98), pages 345–354, Seattle, WA, June 1998. ACM Press.

[TL01] M. C. Tseng and W. Y. Lin. Mining generalized association rules with

multiple minimum supports. In Proc. of Int. Conf. on Data Warehousing

and Knowledge Discovery, pages 11–20, Munich, Germany, September

2001. ACM Press.

[Toi96] H. Toivonen. Sampling large databases for association rules. In Proc. 1996

Int. Conf. Very Large Data Bases (VLDB’96), pages 134–145, Bombay,

India, September 1996. Morgan Kaufmann Publishers Inc.

[Vir98] A. Virmani. Second generation data mining. PhD thesis, Rutgers Uni-

versity, New Jersey, USA, 1998.

[WK91] S. M. Weiss and C. A. Kulikowski. Computer systems that learn: Clas-

sification and prediction methods from statistics. Neural Nets, Machine

Learning, and Expert Systems, 1991.

[YPK00] T. Yoshizawa, I. Pramudiono, and M. Kitsuregawa. Sql based association

rule mining using commercial rdbms (ibm db2 udb eee). In DaWaK 2000:

Proceedings of the Second International Conference on Data Warehousing

and Knowledge Discovery, pages 301–306, London, UK, 2000. Springer-

Verlag.

[Zak00] M.J. Zaki. Scalable algorithms for association mining. IEEE Transactions

on Knowledge and Data Engineering, pages 372–390, May/June 2000.

[ZEHL01] O.R. Zaiane, M. El-Hajj, and P. Lu. Fast parallel association rule mining

without candidacy generation. In Proc. of the 2001 IEEE International

Conference on Data Mining, pages 665–668, Washington, DC, USA, 2001.

[ZG03] M.J. Zaki and K. Gouda. Fast vertical mining using diffsets. In Proc.

9th Int. Conf. ACM-SIGKDD Int. Conf. Knowledge Discovery and Data

Mining, pages 326–335, Washington, DC, USA, 2003. ACM Press.

146 BIBLIOGRAPHY

[ZH02] M. J. Zaki and C. Hsiao. Charm: An efficient algorithm for closed itemset

mining. In Proceedings of the Second SIAM International Conference on

Data Mining, pages 457–473, Arlington, VA, USA, April 2002.

[ZKM01] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of asso-

ciation rule algorithms. In KDD ’01: Proceedings of the seventh ACM

SIGKDD international conference on Knowledge discovery and data min-

ing, pages 401–406, San Francisco, California, 2001. ACM Press.

[ZOPL96] M.J. Zaki, M. Ogihara, S. Parthasarathy, and W. Li. Parallel data min-

ing for association rules on shared-memory multi-processors. In Conf.

on High Performance Networking and Computing, page 43, Pittsburgh,

Pennsylvania, USA, 1996. ACM Press.

[ZPLO96] M. J. Zaki, S. Parthasarathy, W. Li, and M. Ogihara. Evaluation of

sampling for data mining of association rules. Technical Report TR617,

1996.

[ZPOL97a] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for

fast discovery of association rules. Technical Report TR651, 1997.

[ZPOL97b] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithms

for discovery of association rules. Data Mining and Knowledge Discovery,

1(4):343–373, 1997.

	Declaration
	Zusammenfassung
	Abstract
	Dedication
	Acknowledgements
	1 Introduction
	1.1 Data Mining
	1.1.1 Types of data repositories
	1.1.2 Types of mining
	1.1.2.1 Association rule mining
	1.1.2.2 Sequential Patterns
	1.1.2.3 Classification
	1.1.2.4 Clustering

	1.2 Motivation
	1.2.1 Architectural Alternatives
	1.2.2 Why Data Mining with SQL
	1.2.3 Goal

	1.3 Contributions
	1.4 Outline of the Dissertation

	2 Frequent Pattern Mining
	2.1 Problem Description
	2.2 Complexity of Mining Frequent Patterns
	2.2.1 Search Strategy
	2.2.2 Counting Strategy

	2.3 Common Algorithms
	2.3.1 The Apriori Algorithm
	2.3.2 Improvements over Apriori
	2.3.3 TreeProjection: Going Beyond Apriori-like Methods
	2.3.4 The FP-growth Algorithm
	2.3.4.1 Construction of FP-tree
	2.3.4.2 Mining Frequent Patterns using FP-tree

	2.3.5 Improvements over FP-tree
	2.3.6 Comparison of the Algorithms

	2.4 Summary of Algorithms for Mining Frequent Patterns

	3 Integration of Mining with Database
	3.1 Language Extensions
	3.1.1 MSQL
	3.1.2 DMQL
	3.1.3 MINE RULE

	3.2 Frequent Pattern Mining in SQL
	3.2.1 Candidate Generation in SQL
	3.2.2 Counting Support in SQL

	4 SQL Based FP-growth
	4.1 Input Format
	4.2 FP-growth in SQL
	4.2.1 Construction of the FP Table
	4.2.2 Finding Frequent Pattern from FP
	4.2.3 Optimization

	4.3 EFP Approach
	4.3.1 Using SQL with object-relational extension
	4.3.2 Analysis

	4.4 Evaluation
	4.4.1 Data Set
	4.4.2 Comparison between FP and EFP
	4.4.3 Comparison of Different Approaches

	4.5 Conclusion

	5 Propad Approach
	5.1 Algorithm for Propad
	5.1.1 Enhanced Query Using Materialized Query Table
	5.1.2 Analysis

	5.2 Hybrid Approach
	5.3 Evaluation
	5.3.1 Data Set
	5.3.2 Comparison of Different Approaches
	5.3.3 Scale-up Study

	5.4 Conclusion

	6 Parallelization
	6.1 Parallel Algorithms
	6.1.1 Parallel Apriori-like Algorithms
	6.1.2 Parallel FP-growth Algorithms

	6.2 Parallel Database Systems
	6.2.1 Parallel Relational Database Systems
	6.2.2 SQL Queries in Apriori and Propad
	6.2.2.1 SQL Query Using Apriori Algorithm
	6.2.2.2 SQL Query Using Propad Algorithm

	6.2.3 Parallel Ppropad

	6.3 Evaluation
	6.3.1 Parallel Execution Environment
	6.3.2 Data Set
	6.3.3 Performance Comparison

	6.4 Conclusion

	7 Conclusions and Future Work
	7.1 Summary
	7.2 Future Research Directions
	7.2.1 Final Thoughts

	Bibliography

