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Kapitel 1

Einfiihrung

Im Jahre 1928 erkannte Heisenberg [1] in der Austauschkopplung eine mégliche
quantenmechanische Ursache fiir das Auftreten von Ferromagnetismus in isolierenden
Festkt')rpernﬁ. In Isolatoren spielen magnetische Bahnmomente nur eine untergeord-
nete Rolle, weil die Elektronen an den Atomriimpfen mehr oder weniger lokalisiert
sind; bekanntlich ist aber mit dem Elektronenspin ein zusétzliches magnetisches Mo-
ment verbunden. In dem Bestreben, sich energetisch giinstig auszurichten, kommt es
zur Ausbildung magnetischer Strukturen. Ein an sich einfacher Modelloperator fiir ein
Spinsystem, der von Dirac vorgeschlagen wurde und der diesem Bild Rechnung tréigt,
hat die Gestalt

1
H= 5;Jm,nsmsn. (1.1)

Dabei erstreckt sich die Summation iiber alle Spins m (n), die iiber ein Austauschinte-
gral Jp, , miteinander wechselwirken?. Der Faktor 1 /2 ist fiir die Physik unwesentlich.
Er soll nur verhindern, dafl bei der Summation iiber alle Spins Bindungen doppelt
gezihlt werden?. Weiterhin werden die Spins durch vektorartige Operatoren S, re-
préisentiert, deren Komponenten der bekannten Drehimpulsalgebra der Quantenme-
chanik geniigen. Neben der Austauschkopplung geht die Spinquantenzahl s als ein
weiterer Parameter in das Modell ein. Sie legt die Linge des betrachteten Spins iiber
(S2) = s(s+1) fest’. Im Limes s — oo vollzieht sich wegen lim,_ . (S2,) /s* = 1
formal der Ubergang zu einem klassischen Spin, weil dann die Richtungsquantelung
praktisch aufgehoben wird und die Spinoperatoren schlielich den Charakter einfacher
Vektoren annehmen. Trotzdem ist im allgemeinen genau dann von einem klassischen

!Das Bohr-van-Leeuwen-Theorem [2] schlieBt magnetische Ordnung basierend auf rein klassischen
Mechanismen bei endlichen Temperaturen aus.

’Die Austauschintegrale Jy, ,, gehen als Modellparameter ein. Ihre Grofie kann experimentell ab-
geschiitzt werden. Fiir die Analyse magnetischer Ordnung ist jedoch ihre genaue zahlenmiBige Kennt-
nis unerheblich. Wichtig sind das Vorzeichen und gegebenenfalls das Verhiltnis verschiedener Kopp-
lungen zueinander.

3Wenn {iber alle Spins summiert wird, dann ist in dieser Arbeit der Hamilton-Operator wie (1.1) mit
dem Vorfaktor 1/2 versehen. Erfolgt die Summation bezogen auf eine Elementarzelle jedoch nur {iber
nichtiiquivalente Kopplungen, so eriibrigt sich die Notwendigkeit, diesen Vorfaktor zu beriicksichtigen.

“Es wird in dieser Arbeit h = h/2m = 1 vereinbart. Fiir einzelne Elektronen gilt s = 1/2. Wenn
im Rahmen der Spinwellentheorie die Spinlinge diskutiert wird, dann ist nicht /s (s + 1) gemeint,
sondern s.



Spinsystem die Rede, wenn s endlich bleibt und die Spinoperatoren als Spinvektoren
der Léinge s aufgefalt werden. Klassische Spins konnen sich frei im Raum orientie-
ren und unterliegen diesbeziiglich keiner Einschrénkung. Das Vorzeichen von J,, ,, ent-
scheidet dariiber, welche gegenseitige Orientierung energetisch begiinstigt wird. Gilt
Jmn < 0, so handelt es sich um eine ferromagnetische Bindung, die parallele Ausrich-
tung bevorzugt. Entsprechend priiferieren koppelnde Spins antiparallele Ausrichtung,
wenn Jy, , > 0 erfiillt ist. Eine solche Bindung wird als antiferromagnetisch bezeichnet.
Obwohl (1.1) - im folgenden wird vom Heisenberg-Modell die Rede sein - eine sehr
iibersichtliche Gestalt hat, ist eine exakte Behandlung nur in Ausnahmefillen moglich.
Dennoch gibt es eine Reihe von exakten Aussagen zum Heisenberg-Modell, auf die bei
Bedarf in dieser Arbeit ndher eingegangen wird. Von prinzipieller Bedeutung fiir die
Losung eines quantenmechanischen Problems und die Klassifizierung der Eigenzusténde
ist der Satz vertauschbarer Observabler. Es sind dies der Hamilton-Operator H, wegen
dessen offensichtlicher Rotationssymmetrie im Spinraum das Quadrat des Gesamtspins
2=, Sm)’ sowie irgendeine Komponente des Gesamtspins; iiblicherweise benutzt
man hierbei dessen z-Komponente: S* =) SZ.

Seit seiner Formulierung hat das Heisenberg-Modell wesentlich zum theoretischen
Verstindnis des Festkérpermagnetismus beigetragenﬂ Vielen Festkorpern ist eigen, dafl
sie eine Gitterstruktur besitzen, welche sich auf das durch (1.1) zu beschreibende Spin-
system iibertrigt. Die Gitterstruktur hat entscheidenden Einflufl auf die magnetische
Ordnung in den betreffenden Festkérpern. So ist es z.B. wichtig, wie grofl die Koor-
dinationszahl ist, d.h. zu welchen Nachbarspins das Austauschintegral wesentlich von
Null verschieden ist. Ebenfalls von Bedeutung ist die Frage, ob die koppelnden Spins
eine ein-, zwei- oder dreidimensionale Struktur bilden. Bestimmend sind auerdem die
Vorzeichen der Austauschintegrale sowie die Gréfle von s und die damit verbundene
Stirke der Quantenﬂuktuationen@ Daf} auch die Halb- oder Ganzzahligkeit von s zu-
mindest in eindimensionalen Spinsystemen ausschlaggebend sein kann, konnte Haldane
zeigen [4]. Ein weiterer, fiir die magnetische Ordnung relevanter Mechanismus ist die
Frustration. Frustration liegt genau dann vor, wenn bei gegebenem Hamilton-Operator
(1.1) nicht alle Bindungen gleichzeitig ihrem Vorzeichen entsprechend befriedigt wer-
den konnen. Ursache dafiir kann die Gittergeometrie sein. Denkbar sind aber auch
Kopplungsverhéltnisse mit konkurrierenden Bindungen. Tendenziell bewirken Frustra-
tion und Quantenfluktuationen eine Destabilisierung magnetischer Ordnung bis hin
zu deren Verschwinden. Dies gilt im allgemeinen genauso fiir thermische Fluktuatio-
nen. Aber auch hier trifft der Grundsatz zu, wonach es keine Regel ohne Ausnahme
gibt. So kénnen unter bestimmten Voraussetzungen gerade Fluktuationen - seien sie
quantenmechanischen oder thermischen Ursprungs - dafiir sorgen, dafl sich der Grad
magnetischer Ordnung im Spinsystem erhoht. Derartige Phinomene fait man unter
dem Begrift order-from-disorder zusammen [5, [6]. Ein sehr illustratives Beispiel, das

5Es sei nochmals betont, daf sich die Anwendbarkeit des Heisenberg-Modells vor allem auf Iso-
latoren erstreckt; auf jene Festkérper also, deren Elektronen an den Atomriimpfen lokalisiert sind.
Lokalisierte Elektronen bilden entsprechend ihrer Verteilung auf den atomaren Energieniveaus ein ef-
fektives s, welches als solches in das Heisenberg-Modell eingeht und natiirlich von s = 1/2 abweichen
kann. Ein allgemeineres Modell, welches mit einem kinetischen Term das ”Hiipfen” der Elektronen von
Platz zu Platz beriicksichtigt und das Heisenberg-Modell als Grenzfall beinhaltet, geht auf Hubbard
[3] zuriick.

5Der Begriff der Quantenfluktuationen erfafit pauschal den Grad der Unbestimmtheit, dem quan-
tenmechanische Gréfien unterworfen sind.



verdeutlicht, wie Fernordnung erst durch die Existenz von Quantenfluktuationen zu-
stande kommt, ist das des Ji-Jo-Modells auf dem Quadratgitter im Limes eines ge-
geniiber J; vergleichsweise starken J;. Wie sich in diesem Fall zeigen 148t, bevorzugen
Quantenfluktuationen energetisch diejenigen Zusténde, die einer kolinearen Spinorien-
tierung entsprechen; klassisch entkoppelte Spins korrelieren im extremen Quantenfall
miteinander, Fernordnung entsteht [7]. Andererseits unterdriicken erhéhte Dimension
und Koordinationszahl den an sich ordnungsmindernden Einflu von Fluktuationen
jeglicher Art, weshalb hochkoordinierte und héherdimensionale Spinsysteme ohne Fru-
stration eher zu magnetischer Ordnung neigen. Letztendlich ist jedoch die Existenz
magnetischer Ordnung als kollektives Phinomen ein Ergebnis des Zusammenspiels ver-
schiedenster, miteinander konkurrierender Faktoren. Das Heisenberg-Modell ist somit
reich an interessanter Physik.

In den achtziger Jahren des letzten Jahrhunderts hat die Beschiftigung mit dem
Heisenberg-Modell im Zusammenhang mit der Entdeckung der Hochtemperatursu-
praleitung [8] in den zur Familie der Kuprate gehérenden Materialien, wie dotiertem
Lay_,Sr,CuOy, eine Renaissance erfahren. Nach Anderson [9] kénnte dieses neuar-
tige Phinomen, das sich mit seinen ungewothnlich hohen Sprungtemperaturen einer
BCS-artigen [10] Erkldrung zu entziehen scheint, durch starke Elektronenkorrelatio-
nen in den charakteristischen CuO-Ebenen hervorgerufen sein. Diese Frage konnte
bis heute noch nicht eindeutig entschieden werden. Als gesichert gilt jedoch, daf} sich
undotiertes LasCuO4 hinsichtlich seiner magnetischen Eigenschaften ausgesprochen
gut durch einen Spin-1/2-Heisenberg-Antiferromagneten auf einem Quadratgitter mit
Nichster-Nachbar-Wechselwirkung beschreiben 148t7. Motiviert durch diesen experi-
mentellen Befund und angeregt durch die Synthese weiterer Substanzen, stieg in den
Jahren danach das Interesse an Quantenspinsystemen sprunghaft, was sich in der Zahl
der Publikationen zu diesem Thema niederschligt [11, 12, 13, [14]. Dabei sind das
Heisenberg-Modell und seine Modifikationen nicht allein wegen ihrer méglichen Rele-
vanz fiir eine ausgezeichnete Stoffgruppe Gegenstand intensiver Forschungen, sondern -
und das in zunehmendem Mafe - auch deswegen, weil Quantenspinsysteme Modellcha-
rakter fiir wechselwirkende Quantenvielteilchensysteme besitzen, deren Untersuchung
eine nicht unerhebliche theoretische Herausforderung darstellt. Es ist bereits weiter
oben erwdhnt worden, dafl eine exakte Behandlung des Heisenberg-Modells nahezu
ausgeschlossen ist. Realistische Problemstellungen sind also nur approximativ zuging-
lich. Umso mehr ist der Tatsache Bedeutung beizumessen, dafl eine ganze Fiille geeig-
neter Naherungsmethoden existiert, deren Resultate miteinander zu vergleichen sind.
Erst dadurch gelangt man zu giiltigen Aussagen; ein Niherungsverfahren allein kann
schwerlich alle relevanten physikalischen Aspekte abdecken. Umgekehrt lassen sich erst
durch den Vergleich ihrer Resultate Giite und Aussagekraft der einzelnen Methoden
beurteilen, wovon viele iiber die Theorie des Magnetismus hinaus in der Physik Ver-
wendung finden.

Im Mittelpunkt dieser Arbeit stehen zwei analytische Verfahren, die teilweise verglei-
chend auf verschiedene, durch das Heisenberg-Modell beschriebene Quantenspinsyste-
me angewendet werden. Es sind dies die lineare Spinwellentheorie (LSWT) sowie die
rotationsinvariante Greenfunktionsmethode (RGM). Jede dieser Methoden besitzt ihre
spezifischen Vor- und Nachteile. Wihrend die Spinwellentheorie auf Quantenspinsy-

"Aufgrund der Elektronenkonfiguration besitzt jedes Cu-Atom effektiv den Spin 1/2.



steme zugeschnitten ist, in denen tatsichlich quasiklassische Ordnung vorliegt, erweist
sich die Greenfunktionsmethode besonders dann als geeignet, wenn das Spinsystem
kurzreichweitig geordnet ist. Gegeniiber der LSWT besitzt die RGM den Vorzug, daf
innerhalb desselben mathematischen Apparates Ordnung und Unordnung gleicherma-
en beschrieben werden koénnen; bekanntlich funktioniert die LSWT - dann allerdings
sehr gut und besser als die RGM - vor allem in Quantenpinsystemen mit quasiklassi-
scher Ordnung fern jener Parameterregionen, wo das Auftreten von Phaseniibergéingen
hin zu ungeordneten Strukturen méglich wird®. Ein weiterer Vorzug der RGM besteht
darin, daB sich ihre Resultate mittels freier Parameter, die beim Aufstellen der Glei-
chungen zusiitzlich auftreten, anpassen lassen. Fernordnung wird in beiden Theorien
unterschiedlich definiert. Im Rahmen der LSW'T ist ein Spinssystem genau dann fernge-
ordnet, wenn der Erwartungswert der lokalen z-Komponente eines Spins existiert und
positiv ist®. Die z-Komponente eines Spins spielt in der LSWT aufgrund der Transfor-
mationsregeln und der damit verbundenen Symmetriebrechung eine gesonderte Rolle,
obwohl das Heisenberg-Modell rotationssymmetrisch ist. Der Rotationssymmetrie des
Modells wird die RGM eher gerecht, wobei zusétzlich das Verschwinden von (S%) an
jedem Platz R explizit gefordert wird. Man spricht hier von Fernordnung, wenn Korre-
lationsfunktionen mit zunehmendem Abstand nicht auf Null abklingen, sondern gegen
einen endlichen Grenzwert streben. Zwischen beiden Theorien besteht trotzdem ein
enger Zusammenhang; auch in der RGM sind z.B. die Anregungen spinwellenartig. Es
ist ein Anliegen des Autors, diesen Zusammenhang im Rahmen dieser Arbeit, zu de-
ren Schwerpunkten die ausfiihrliche und moéglichst detaillierte Darstellung der formal
mathematischen Aspekte beider Theorien zéhlt, zu betonen. Sowohl die RGM als auch
die LSWT werden, was die technische Seite betrifft, auf Gitter mit Basis erweitert, um
konkrete Quantenspinsysteme auf verschiedenen und zum Teil komplizierten Gitterty-
pen untersuchen zu kénnen. Studiert wird das weiter oben schon erwihnte Wechsel-
spiel von Frustration, Gittergeometrie und Gitterdimension mit seinen Konsequenzen
fiir die magnetische Ordnung in Anwesenheit von starken Quantenfluktuationen. So
beschiéftigt sich diese Arbeit mit dem Heisenberg-Antiferromagneten (HAFM) auf dem
A-B-Gitter. Die geometrische Struktur dieses Gitters ist in der Natur tatséchlich reali-
siert'0. Zwischen einem einfachen Modell, welches die Existenz zweier Untersysteme A
und B beriicksichtigt und eine frustrierende Kopplung J4p einschliet, und dem J;-Jo-
Modell auf dem Quadratgitter besteht eine enge Beziehung. Klassisch dhnelt der Fall
schwacher Frustration im A-B-Modell der Situation im J;-Jo-Modell fiir J, > J;. Es
ist also durchaus denkbar, dafl auch im A-B-Modell order-from-disorder-Effekte nach-
gewiesen werden kénnen, die durch Quantenfluktuationen vermittelt werden. Auskunft
dariiber soll eine LSWT geben. Eher theoretischer Natur ist der HAFM auf dem Maple-
Leaf-Gitter. Anhand seines Beispiels wird vergleichend demonstriert, wie sich die syste-
matische Verringerung der Koordinationszahl auf die magnetische Ordnung in einem
geometrisch frustrierten Quantenspinsystem auswirkt. Das Maple-Leaf-Gitter [16] ist
deshalb so interessant, weil seine Koordinationszahl (z = 5) genau zwischen der des
Dreiecksgitters (z = 6) und der des Kagomé-Gitters (z = 4) liegt. Alle drei Spinsyste-

8Deutliche Probleme mit der LSWT treten z.B. dann auf, wenn man den Ubergang von einem ein-
zu einem zweldimensionalen Spinsystem studieren will [15]. Es sei dazu auf den Anhang B verwiesen.
9Wenn er existiert, dann ist er auf jeden Fall kleiner oder gleich s.
10Die Kuprate BasCus04Cls und SraCuz04Cls enthalten CuO-Ebenen, deren Cu-Atome sich zwei
unterschiedlichen Untersystemen zuordnen lassen.



me sind aufgrund der geometrischen Verhéltnisse frustriert. Vom HAFM auf dem Drei-
ecksgitter ist bekannt [17, 18, 19, [20], da§ sein Grundzustand quasiklassisch geordnet
ist, wohingegen der HAFM auf dem Kagomé-Gitter als Kandidat fiir ein ungeordnetes
Quantenspinsystem gilt [21,122,[23, 24,125, 26, 27,28, 29]. Die berechtigte Frage, ob der
HAFM auf dem Maple-Leaf-Gitter im Grundzustand noch Fernordnung besitzt oder
schon ungeordnet ist, soll im Rahmen der LSWT entschieden werden. Auf die Bedeu-
tung der Dimensionalitéit eines Spinsystems fiir die Existenz magnetischer Ordnung ist
bereits hingewiesen worden. Als Faustregel gilt in diesem Zusammenhang: Je héher die
Dimension ist, desto mehr wird der Einflul ordnungsreduzierender Fluktuationen in
den Hintergrund gedringt. Mit dem Ubergang von einer zu zwei Dimensionen oder von
zwei zu drei Dimensionen kénnen sich physikalische Eigenschaften grundlegend &ndern.
So ist beispielsweise der Grundzustand des HAFM auf der linearen Kette nicht fernge-
ordnet, weil Quantenfluktuationen die klassische Néel-Ordnung vollkommen zerstéren;
Frustration spielt in diesem Fall keine Rolle. Ein weiteres nicht frustriertes Quanten-
spinsystem ist der HAFM auf dem Quadratgitter. Hierbei handelt es sich jedoch um
ein zweidimensionales System, dessen Grundzustand sich durch quasiklassische Néel-
Ordnung auszeichnet. Lediglich der Ordnungsparameter wird durch Quantenfluktua-
tionen nach unten korrigiert. Noch illustrativer mit derselben Beschrinkung auf den
Grundzustand ist das Beispiel des .J;-Jo-Modells in ein, zwei und drei Dimensionen. In
einer Dimension kann es vermdége des frustrierenden J; erst recht keine Fernordnung
geben, wenn bereits die unfrustrierte Kette ungeordnet ist. Betrachtet man dasselbe
Modell in zwei Dimensionen, so existiert nur noch ein Bereich!! in der Umgebung
von Jy/J; = 1/2, innerhalb dessen eine paramagnetische Grundzustandsphase vorliegt
[30, 31,32, 33]. Geht man zu drei Dimensionen iiber und untersucht das J;-Jo-Modell
auf dem kubisch raumzentrierten Gitter, so ergibt sich folgendes Bild: Unabhéngig
davon, wie stark Quantenfluktuationen und Frustration auch sind, ist dieses frustrier-
te Spinsystem stets ferngeordnet [34]. Welch prinzipieller Bedeutung der Dimension
dabei zukommt, unterstreicht das Mermin-Wagner-Theorem [35], wonach in ein- und
zweidimensionalen Spinsystemen thermische Fluktuationen fiir das Verschwinden lang-
reichweitiger Ordnung sorgen. Fernordnung ist also bei endlichen Temperaturen fiir
entsprechend dimensionierte Spinsysteme kategorisch ausgeschlossen@. Anders ausge-
driickt, ist die Zwischenebenenkopplung in quasizweidimensionalen Spinsystemen eine
notwendige Bedingung fiir die Moglichkeit magnetischer Fernordnung iiber den Grund-
zustand hinaus. Eine von Null verschiedene Zwischenebenenkopplung ist natiirlich auch
fiir den Grundzustand vor allem dann relevant, wenn z.B. die Spins in den ungekoppel-
ten Ebenen wegen starker Frustration nur kurzreichweitig korrelieren. Das geschichtete
Kagomé-Gitter, das in dieser Arbeit studiert wird, ist ein solches dreidimensionales
Spinsystem. Obwohl in der Literatur der HAFM auf dem Kagomé-Gitter seit Jah-
ren eingehend diskutiert wird, ist bisher noch nicht untersucht worden, ob sich beim
Ubergang in die dritte Dimension ein magnetisch geordneter Grundzustand einstellt.
Mit der RGM, die Ordnung und Unordnung gleichermaflen beschreiben kann, besitzt
man eine universelle Methode, die dieses Problem zu behandeln gestattet, zumal diese
Theorie [28, 29| bereits erfolgreich auf den HAFM auf dem Kagomé-Gitter angewendet
wurde.

U1 Es ist dies der Bereich maximaler Frustration, wenn man maximale Frustration {iber ein Maximum
in der Grundzustandsenergie definiert.
12Das Mermin-Wagner-Theorem ist fiir das isotrope Heisenberg-Modell (1.1) giiltig.



Folgende Gliederung liegt der vorliegenden Arbeit zugrunde: Kapitel 2 befafit sich
ausschliefllich mit der LSWT. Einfiihrend erfolgt die Ableitung der Transformations-
vorschriften fiir Spinoperatoren nach Holstein-Primakoff. Weil die anschlielend zu un-
tersuchenden Gitter bis zu sechs Spins pro Zelle enthalten und die Diagonalisierung
derartiger Hamilton-Operatoren mittels Bogoljubov-Transformation nicht mehr trivial
ist, widmet sich der ganze nachfolgende Abschnitt diesem Problem. Es werden vier
alternative Diagonalisierungsverfahren am Beispiel des HAFM auf dem Quadratgitter
vorgestellt. In den Abschnitten 2.2 und 2.3 werden das A-B- sowie das Maple-Leaf-
Gitter behandelt. Die Betrachtungen werden jeweils durch die Analyse des klassischen
Grundzustandes eingeleitet, worauf die entsprechende Spinwellentheorie aufbaut. Das
Kapitel 3 beschiftigt sich mit der RGM. Die Herleitung der grundlegenden mathemati-
schen Beziehungen nimmt dabei in Abschnitt 3.2 einen gesonderten Platz ein. Ergénzt
wird dieser Abschnitt durch ein praktisches Beispiel, das die Anwendung der Gleichun-
gen verdeutlichen soll. Alsdann konzentriert sich das Interesse auf das geschichtete
Kagomé-Gitter und die Frage, inwieweit magnetische Ordnung in diesem Quanten-
spinsystem zustande kommt oder nicht. Dabei gibt es hinsichtlich der Vorzeichen der
Kopplungen vier Fille zu unterscheiden. Spinwellenrechnungenﬂ komplettieren dabei
das sich abzeichnende Bild eines auch in drei Dimensionen weitgehend ungeordneten
Spinsystems. Den Schlufl bildet Kapitel 4, worin die wesentlichen Resultate zusam-
menfassend kommentiert werden. Ergédnzt und untermauert werden die Ausfithrungen
durch einfache Beispiele, die die Stirken der jeweiligen Theorie hervorheben, die aber
auch etwaige Schwichen aufzeigen. Nebenbei bemerkt, haben genau solche, einfach er-
scheinenden Beispiele im Laufe der Zeit auch einen wichtigen Zweck erfiillt, indem sie
dem Autor halfen, sinnvolle Verallgemeinerungen zu formulieren, die die unproblema-
tische Anwendung insbesondere der RGM auf Gitter mit Basis erlauben'?.

13Solange die Spinwellenanregungen wi,q nicht komplex werden, lassen sich immer Energien aus-
rechnen. Insbesondere auch dann, wenn die zur Berechnung von Ordnungsparametern oder Korrelati-
onsfunktionen benétigten Integrale divergieren. Solche Divergenzen sind zumeist ein Hinweis darauf,
daB die Annahme eines quasiklassisch geordneten Grundzustandes falsch ist; dafl also das Spinsystem
ungeordnet ist.

Dag simple Grundprinzip bestand darin, sich das Einfache klar zu machen, um sich danach an
das Schwierige zu wagen. So wird die RGM fiir das Heisenberg-Modell auf dem Quadrat-Gitter in der
Literatur ausfiihrlich behandelt. Dort basiert die Theorie auf einem Gitter, in dessen Zellen sich nur ein
Spin befindet, was aus Griinden, die in dieser Arbeit dargelegt werden, legitim ist. Die Fragestellung,
die sich dann fiir den Autor ergab und die es zu beantworten galt, war die folgende: Wie lassen
sich die entsprechenden Resultate aus der Literatur reproduzieren, wenn man Zellen benutzt, die statt
einem zwei Spins enthalten? Die Antwort auf diese Frage liel dann gewisse, verallgemeinerungswiirdige
Schliisse zu.



Kapitel 2

Die lineare Spinwellentheorie

2.1 Allgemeine Betrachtungen

Die Spinwellentheorie basiert auf dem klassischen Grundzustand eines Spinsystems
und ist nur fiir tiefste Temperaturen giiltig. Sie geht davon aus, daf} trotz vorhande-
ner Quantenfluktuationen die klassische Ordnung im Spinsystem weitgehend erhalten
bleibt. Zur Spinwellentheorie gelangt man durch eine Transformation des Hamilton-
Operators. Die Transformation beruht auf dem Formalismus der zweiten Quantisierung,
indem Spinoperatoren bosonisiert werden und die Spinalgebra durch die einfachere Al-
gebra der Bose-Operatoren ersetzt wird. Mathematisch ist diese Transformation als
eine Entwicklung um den klassischen Grundzustand nach dem Parameter 1/s - der
inversen Spinquantenzahl - aufzufassen. Mit verlédfilichen Aussagen ist genau dann zu
rechnen, wenn der tatsichliche Quantenzustand magnetische Ordnung besitzt. An-
dernfalls liefert die Spinwellentheorie zumindest qualitative Anhaltspunkte dafiir, daf§
Quantenfluktuationen bereits jegliche klassische Ordnung zerstért haben. Den Uber-
gang zu einem bosonischen Hamilton-Operator leistet auf der einen Seite die Dyson-
Maleev-Transformation [36], auf die aber nicht nidher eingegangen werden soll. Alter-
nativ bietet sich ein weiteres Verfahren der Bosonisierung an - und zwar die Holstein-
Primakoff-Transformation [37]. Letztere findet in ihrer linearisierten Form im Rah-
men dieser Arbeit Verwendunéﬂ. Nach der linearen Holstein-Primakoff-Transformation
erhilt man einen Hamilton-Operator, der quadratisch in Bose-Operatoren ist. Ein sol-
cher Hamilton-Operator, der natiirlich nur eine Ndherung darstellt, ist exakt behandel-
bar. Ziel ist es jetzt, diesen neuen Hamilton-Operator zu diagonalisieren. Dies geschieht
durch eine Bogoljubov-Transformation. Obwohl die Bogoljubov-Transformation zu den
Standardprozeduren in der Spinwellentheorie z&hlt [38], kann sich die konkrete Rech-
nung bei komplizierten Gittern mit Basis als schwierig erweisen. In dieser Arbeit wer-
den Gitter mit bis zu sechs Spins pro Elementarzelle behandelt. Es ist daher sinnvoll,
dieser Problematik einen eigenen Abschnitt zu widmen. In ihm sollen vier alternative

'In einer linearen Theorie wird das Spinsystem auf ein System wechselwirkungsfreier harmonischer
Oszillatoren abgebildet, wobei die Elementaranregungen als Magnonen bezeichnet werden. Mit zu-
nehmender Temperatur verliert jedoch das Bild eines idealen "Magnonengases” seine Giiltigkeit, weil
Wechselwirkungen zwischen den Magnonen nicht mehr vernachléssigt werden kénnen. Dagegen wach-
sen innerhalb der linearen Theorie die Zahl der angeregten Magnonen - der Bose-Statistik gehorchend
- und damit verbunden die Quantenkorrekturen iiber alle Maflen.



Diagonalisierungsverfahren vorgestellt werden.

2.1.1 Die Holstein-Primakoff-Transformation

Um sich die Herleitung der Transformationsvorschriften klarzumachen, sei zur Illustra-
tion ein Spin der Linge s betrachtet. Ublicherweise wird entlang der z-Achse quanti-
siert. Der Operator 5% kann die Eigenwerte m = —s, —s + 1,..., s annehmen. Greift
man sich nun einen dieser Eigenzustinde |m) heraus, so ld8t sich die Eigenwertglei-
chung S% |m) = m |m) umformulieren in

§%|m) = (s —n)|m), (2.1)

wobei m = s—n gilt und n die Abweichung vom maximal méglichen Eigenwert s angibt.
Mit n = 0,1,...,2s werden alle Eigenwerte von 5% erreicht. Diese Betrachtungsweise
legt den SchluBl nahe, den Operator 5% wie folgt zu transformieren:

S*=s—a*a mit [a,a"]_ =1. (2.2)

Dabei sind at sowie a Erzeugungs- bzw. Vernichtungsoperatoren von Teilchen, die
der Bose-Einstein-Statistik gehorchen und als Magnonen bezeichnet werden, so daf
n = s —m als Zahl der angeregten Magnonen zu interpretieren ist. Eine Problematik
dieser Transformation offenbart sich in der Tatsache, daBl n als Eigenwert des Ma-
gnonenzahloperators a*a mit Null beginnend beliebig grofi werden kann, aber wegen
|m| < s beschrénkt bleiben soll. Aus diesem Grunde kann sich der Anwendungsbe-
reich der Theorie nur auf den Grundzustand oder vergleichsweise tiefe Temperaturen
erstrecken.

Wie werden nun die iibrigen Komponenten des Spinoperators in die bosonische Form
tiberfithrt? Dazu wird die Wirkung des Operators St auf |m) nidher untersucht. Es gilt

Stm)y=+/(s+1+m)(s—m)|m+1). (2.3)

Unter Verwendung von n kann obige Beziehung umformuliert werden. Man findet

Stls—n) = /(2s—(n—1)n|s—(n—1)) bzw.
Stiny = V/@2s—(n—-1)njn—1). (2.4)

Ersetzen von St durch den neuen Operator 1/(2s — ata)a liefert wegen

aln) =+nln—1) sowie ataln)=nln) (2.5)
das identische Resultat. Damit ist die Holstein-Primakoff-Transformation gefunden. Es

gilt
S*=s—a%a, ST=+/(2s—ata)a, ST =a"/(2s—ata). (2.6)

In dieser Arbeit soll die linearisierte Variante der soeben begriindeten Holstein-
Primakoff-Transformation Verwendung finden. Danach werden die transformierten
Spinoperatoren als operatorwertige Funktionen beziiglich des Parameters 1/s ent-
wickelt. In linearer Ndherung wird die Wurzel entsprechend

+
V2s —ata=V2s 1—a2—az\/2s (2.7)
s
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ersetzt. Legitim im streng mathematischen Sinn ist dieses Vorgehen eigentlich nur fiir
grofe s, also im klassischen Grenzfall s — co. Diese Linearisierung ist aber auch dann
gerechtfertigt, wenn die Zahl der angeregten Magnonen, die durch den Operator a*a
ausgedriickt wird, gering bleibt, was insbesondere dann der Fall ist, wenn es sich um
tiefste Temperaturen einschliefilich des Grundzustandes handelt und sich das Spinsy-
stem trotz seiner Quantennatur nahezu wie sein klassisches Pendant verhélt. Wie rech-
net man konkret? Praktisch bestimmt man zunfchst den klassischen Grundzustand
des Spinsystems. Der Einfachheit halber entspreche dieser einer planaren Spinkonfi-
guration. Alle Spinvektoren liegen somit in einer Ebene. Es sei dies die z-z-Ebene im

VAl
A% , Z

-

Abbildung 2.1: Zur Ilustration von (2.8). Zu unterscheiden ist das globale Koordina-
tensystem (ungestrichen) vom lokalen Koordinatensystem (gestrichen).

Spinraum. In dieser Ebene wird ein globales Koordinatensystem festgelegt, beziiglich
dessen ein Spin S,, am Ort r,, die Komponenten (S%,,0,SZ) besitzt. In einem lokalen
Koordinatensystem zeige derselbe Spin in die lokale z’-Richtung. Die lokalen Kompo-
nenten lauten deshalb (0,0, s). In Abb.2.1 ist diese Situation dargestellt. Zwischen den
Komponenten in beiden Koordinatensystemen besteht der Zusammenhang

SE cos ¢, 0 —sing, 0
0 = 0 1 0 0
Sz, sing,, 0 cosoy, S

bzw.

cos ¢y, 0 —sin gy,

Sim = 0 1 0 S .. (2.8)

sing, 0 cosopy
Die zuvor abgeleitete Holstein-Primakoft-Transformation ist nunmehr sofort anwend-
bar. Zur Quantisierung dienen die lokalen z’-Achsen der einzelnen Spins, wozu die ge-
strichenen Komponenten gemé8 (2.6) bzw. (2.7) in die Operatorform gebracht werden.
Doch zunéchst hat das Skalarprodukt S,,S,, die Gestalt

cos¢p, 0 sing,, cos¢, 0 —sing, Spe
(S Sp SE) 0 1 0 0 1 0 Sy,
—sing,, 0 cosdy, sing, 0 cos¢, Sy

woraus

Cos (¢m - ¢n) 0 sin (¢m - ¢n) Srlzw
(S sy si) o L0 %
—sin (¢m - ¢n) 0 cos (¢m - ¢n) STILz

11



folgt. Ausmultiplizieren der letzten Beziehung liefert

SnSa = 08 (b — §u) (SIS + SIESL) + SIS
— sin (¢m - ¢n) (STI:I:,STIL:B - STI'T:?,STILZ) -
Die eigentliche Transformation erfolgt nun. Es gilt S = s—a*a, S = v2s (a + a™) /2

sowie S = /2s(a — a™) /2i. Versehen mit den entsprechenden Indizes ergibt sich
daraus

SmSn = €08 (¢ — &n) 8 — €08 (b — n) s (0 am + a;f ay)
COS(¢m_¢n)_1S( + 4t

9 O, O + aman)

€08 ($m — ¢n) + 1
2

— g sin (¢m - ¢n) ((3 — ay—;am) (an + a:) — (am + a;;) (3 — a:an))

+ o8 (A — On) O A G-

s (a:,rlan + ama:{)

In linearer Spinwellennéherung erfolgt die Darstellung des Skalarproduktes durch qua-
dratische Terme in Bose-Operatoren. Beim Multiplizieren entstehen Terme dritter und
vierter Ordnung. Sie représentieren jedoch Wechselwirkungen zwischen Magnonen, die
im Rahmen einer linearen Theorie per definitionem vernachléssigt werden sollen, da
sie dem Bild wechselwirkungsfreier Magnonen widersprechen. Die lineare Anteile heben
sich beim Aufstellen des bosonisierten Hamilton-Operators durch das Aufsummieren
aller Skalarprodukte heraus. Dies gilt zumindest in allen bisher untersuchten Féllen
auch dann, wenn verkantete Strukturen vorliegen und sin (¢, — ¢,) nicht verschwin-
det. Letztendlich wiirden die linearen Terme im thermodynamischen Limes auch nur
mit v/ N skalieren [40] und kénnten allein deshalb schon unberiicksichtigt bleiben?. Liift
sich ein Problem - wie das des Dreiecksgitters [19] - unter Verwendung von nur einer
Magnonensorte formulieren, so kompensieren sich diese Beitrige nicht erst in der Sum-
me, sondern bereits in S,,S,,. Endgiiltig lautet die Operatorform des Skalarproduktes

SmSn = €0 (b — Pn) 8 — €08 (b — ¢n) s (af,am + a;fay)
COS(¢m_¢n)_1S( +,+

9 Oy Op + aman)

COS (¢m - ¢n) + 1
2

+

+

s (a}han + amal) . (2.9)

Der Term cos (¢, — ¢r,) s* liefert den klassischen Anteil zur Energie. Er ist im Ge-
gensatz zu den iibrigen Beitrigen von der Ordnung s, so daB er den Ubergang zum
klassischen Spinsystem ”iiberlebt”. Kennzeichnet den klassischen Grundzustand eine
nonplanare Spinstruktur, so gilt (2.9) ebenfalls, nur daf cos (¢, — ¢») als Richtungs-
kosinus des betreffenden Spinpaares zu interpretieren ist3. Ein derartig vereinfachter

2N ist die Zahl der Gitterzellen/Spins. Die in der LSWT relevanten Terme sind zu N proportional.

3Die Herleitung, die auf (2.9) fiihrt, ist dann auch giiltig, weil zwei Spins - es geht ja nur um die
Transformation eines Skalarproduktes zweier Spins - immer eine Ebene definieren, innerhalb der die
Transformation vollzogen wird. Andernfalls bliebe unklar, wie sich der klassische Anteil zur Energie
reproduzieren liele.
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Hamilton-Operator ist im Prinzip leicht mit Standardmethoden diagonalisierbar, denn
als quadratische Form in Bose-Operatoren existiert unter bestimmten Voraussetzun-
genf(r eine Bogoljubov-Transformation, die ihn in eine Summe entkoppelter, harmoni-
scher Oszillatoren umzuwandeln vermag. Doch zuvor ist der Hamilton-Operator mittels
einer Fourier-Transformation in den g-Raum zu iiberfithren. Was bleibt, ist die Fra-
ge, welches Gitter dieser Transformation zugrunde gelegt werden mufl. Um begriffliche
Unklarheiten zu vermeiden, sollen zuniichst zwei in Frage kommende Gittertypen unter-
schieden werden. Da ist zum einen das Gitter, das durch den Hamilton-Operator dem
Kristallgitter aufgeprégt wird’. In ihm spielen nur diejenigen Atome eine Rolle, die
einen Spin besitzen und die mit anderen Atomen iiber ihre Spins wechselwirken. Dieses
Gitter sei als Spingitter bzw. geometrisches Gitter bezeichnet. Seine Elementarzelle
ist so bemessen, dafl durch einfaches Aneinanderfiigen der Zellen das gesamte Spingit-
ter einschlielich aller Kopplungen erzeugt werden kann. Entsprechend soll unter dem
magnetischen Gitter dasjenige verstanden werden, welches man findet, wenn man den
klassischen Grundzustand des betrachteten Spinsystems bestimmt. Die Elementarzelle
des letzteren ist im allgemeinen grofler als die geometrische Elementarzelle und reprodu-
ziert durch Translation sowohl das geometrische Gitter als auch die klassische Spinkon-
figuration. Auf diese Weise ist die Frage, welches Gitter einer Fourier-Transformation
zu unterziehen ist, beantwortet. Da die gesamte Theorie vom klassischen Grundzu-
stand ausgeht und der bosonische Hamilton-Operator dessen Eigenschaften enthalten
soll, fillt die Wahl auf das magnetische Gitter. Spins innerhalb einer Elementarzel-
le sind als einander nicht fquivalent zu betrachten, selbst dann nicht, wenn sie zum
gleichen magnetischen Untergitter gehdren, also klassisch dieselbe Orientierung auf-
weisen. Mathematisch trigt man dem dadurch Rechnung, da jedem Spin innerhalb
der Elementarzelle eine eigene Magnonensorte zugeordnet wird. Zur Unterscheidung
dienen zuséitzliche Indizes. In einigen Fillen geniigt es aber, statt der magnetischen die
geometrische Elementarzelle zum Ausgangspunkt der Rechnungen zu machen. Dies ist
dann der Fall, wenn es, vom geometrischen Gitter ausgehend, einen reziproken Gitter-
vektor Q gibt, der die magnetische Ordnung beschreibt. Anhand eines kleinen Beispiels
soll kurz erldutert werden, was damit gemeint ist. Gegeben sei der einfache HAFM auf
dem Quadratgitter mit Wechselwirkungen ausschliefilich zwischen néichstbenachbarten
Spins der Linge s. Sein klassischer Grundzustand ist der Néel-Zustand mit paarweise
antiparallel ausgerichteten Nachbarspins. Die magnetische Elementarzelle ist doppelt
so grofl wie die geometrische und enthélt zwei Spins. Hier 148t sich ein magnetischer
Ordnungsvektor finden. Unter Beriicksichtigung von zwei unabhéngigen Translations-
richtungen ist er durch Q = (m,7) gegeben, denn betrachtet man zwei geometrische
Elementarzellen, die durch den Gittervektor R miteinander verbunden sind, so stellt
man fest, daBl die jeweiligen Spins um den Winkel QR gegeneinander verdreht sind®.
Mit der moglichen Beschrédnkung auf die geometrische Elementarzelle bietet sich der

“Es sind bosonische Hamilton-Operatoren denkbar, bei denen die weiter unten erliuterten Diago-
nalisierungsprozeduren z.B. auf komplexe Anregungen fiihren.

Das Kristallgitter beinhaltet nichtmagnetische Atome. Der Hamilton-Operator (1.1) selektiert die
magnetisch wechselwirkenden Atome mit ihren Spins.

5Bei einem nonplanaren Grundzustand ist die Definition eines Ordnungsvektors Q nicht trivial.
Doch auch dann ist eine Reduktion auf das geometrische Gitter moglich, wenn die Winkelverhiltnisse
den Richtungskosinus betreffend von Zelle zu Zelle gleich bleiben. Ein konkretes Beispiel hierzu wiire
die Phase II des A-B-Modells aus Abschnitt 2.2.1. Hier wiirde eine Drei-Magnonen-Theorie gentigen,
obwohl die magnetische Elementarzelle zwolf Spins besitzt.
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Vorteil einer dquivalenten Behandlung des Problems mit geringerem Aufwand, was
besonders bei Gittern mit Basis ins Gewicht féllt. Hintergrund dieser Betrachtungen
ist die Uberlegung, daB die magnetische Elementarzelle in den Fillen, wo sie nicht
mit der geometrischen Elementarzelle zusammenfillt, mehr Spins als die geometrische
Elementarzelle enthélt. Zwischen den Spinwellendispersionen im geometrischen Gitter
und denjenigen im magnetischen Gitter besteht ein einfacher Zusammenhang. Beim
Ubergang vom geometrischen zum magnetischen Gitter verkleinert sich die dazugehori-
ge Brillouin-Zone, wobei die magnetische Brillouin-Zone innerhalb der geometrischen
Brillouin-Zone liegt. Dann gehen die Spinwellendispersionen im magnetischen Gitter
aus den Spinwellendispersionen im geometrischen Gitter hervor, indem man letztere
an den neuen Zonengrenzen reflektiert.

2.1.2 Die Bogoljubov-Transformation

Auf die Fourier-Transformation folgt die Diagonalisierung des Hamilton-Operators.
Welche praktischen Moglichkeiten diesbeziiglich bestehen, soll in diesem Abschnitt am
Beispiel des bereits eingefithrten HAFM auf dem Quadratgitter mit Néchster-Nachbar-
Wechselwirkung illustriert werden.

Wie bereits erwéihnt wurde, ist der klassische Grundzustand des HAFM auf dem Qua-
dratgitter mit Nichster-Nachbar-Wechselwirkung bei beliebigem s der Néel-Zustand.
Wegen der Existenz des magnetischen Ordnungsvektors Q = (m,7), der diesen Zu-
stand beschreibt, kann das geometrische Gitter mit den Basisvektoren r; = (1,0) und
ro = (0,1) als Ausgangspunkt der Rechnung dienen. Die geometrische Elementarzel-
le enthélt einen Spin, so dafl nur eine Magnonensorte eingefiihrt zu werden braucht.
Es handelt sich somit um eine Ein-Magnonen-Theorie. Weiterhin sei die Zahl der
Spins durch N gegeben, welche dann mit der Zahl der Gitterplétze identisch ist. Der
Hamilton-Operator ist in diesem Fall

J
H=7 2; SinSmats, (2.10)
wobei die Summe iiber alle Gitterplitze R,, mit m = 1,..., N und alle néchsten

Nachbarn 6 = 1,...,4 lduft. Die Zahl der Bindungen ist 2/V, womit fiir die klassische
Grundzustandsenergie —2N.J s? folgt. Unter Verwendung der Transformationsvorschrift
(2.9) mit cos (¢m — dm+s) = —1 gelangt man zu

J

H= ) Z —s2+s (aimal,m + atm+5a1,m+5) -8 (af’maimw + alymaI,mJﬂ;) . (2.11)
m,0

Den Bose-Operatoren sind zwei Indizes zugeordnet. Der erste Index charakterisiert die

Magnonensorte, und der zweite Index kennzeichnet den Gitterplatz. Nach der Fourier-

Transformation

1
Um = —= Z a1q€xp (—iqRy,) (2.12)
VN %
ergibt sich der zu diagonalisierende Hamilton-Operator
H=—-2NJs*+ Z 4Jsaf a1q — 2J 574 (af0i_q + a1q01-q) (2.13)
q
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mit 7, = (cosg, + cosgy) /2. Die Aufgabe besteht nun darin, einen Operator diesen
Typs vermittels einer Bogoljubov-Transformation zu diagonalisieren. In ihrer allge-
meinsten Form lautet die Bogoljubov-Transformation

Ung = Z UnmqQmq + v;m_qa:,;_q. (2.14)
m

Die Indizes m,n in der letzten Gleichung erstrecken sich iiber alle Magnonensorten.
Unter der Nebenbedingung, daf§ die neuen Operatoren oy,q ebenfalls vom Bose-Typ
sind, soll die Transformation einen Hamilton-Operator der Form (2.13) in

H=FE)+ Z Zwmqa;qamq (2.15)
q m

tiberfithren. Gesucht sind also die Anregungen wpq sowie insbesondere die Trans-

formationskoeflizienten upmq und v, ., die abzusichern haben, daB die Bose-

Vertauschungen ebenfalls fiir die neuen Operatoren ay,q erfiillt sind. Der Ansatz fiir
die Bogoljubov-Transformation im konkret vorliegenden Fall ist dann

O1q = U11q0q F Vi1 _q@_q- (2.16)
Es zeigt sich spéter, daB fiir die Koeffizienten die Relationen

Ul _q = Ullq SOWie v 4 = Viiq (2.17)
gelten, womit sich (2.16) zu

— +
U1q = U11q%1q + ’Uuqal_q (218)

vereinfacht. Die Giiltigkeit der Bose-Vertauschungen ist genau dann erhalten, wenn, in
kompakter Matrixschreibweise formuliert, die Beziehung

( Ullq Vi11q ) ( uqu _Uflq ) — ( 10 ) (219)
’U11q ullq —’Uflq Uqu 0 1

gilt. Bleibt man weiterhin der Matrixform treu, so 148t sich die Bogoljubov-
Transformation auch wie folgt aufschreiben:

U1q _ U1lq Vi1q U1q 2.90
( aii_—q ) ( Uliq Ullq ) ( af——q ) ( . )
bzw. wegen (2.19) die inverse Transformation
Qiq — ’U,qu _/Uflq ) ( Q1q ) 291
( aii_—q ) ( _Uflq uqu aii_—q ( )
Im Anschluf} erfolgt die Darstellung verschiedener Lisungsstrategien.

Explizite Methode: Diese Vorgehensweise liegt auf der Hand. Einfaches Ein-
setzen von (2.18) in (2.13) unter Beriicksichtigung von (2.19) zusammen mit der
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Forderung, daB Nichtdiagonalterme zu verschwinden haben, liefert ein nichtlineares
Gleichungssystem, dessen L&sung das allseits bekannte Resultat

UliqUllq = 1/24+2Js/wiq ViiqVl1q = —1/2 + 2Js/wiq

mit wiq = 4Jsy/1 -2 =wi_4 (2.22)

ist. Im Grundzustand ist der fiir die Bestimmung der Magnetisierung relevante Erwar-
tungswert (a a1q) gegeben durch —1/2+41/2,/1 — 2. So naheliegend diese Methode
auch ist, sie erweist sich als nicht praktikabel, sobald kompliziertere Hamilton-
Operatoren mit mehreren Magnonensorten fiir nicht rein Néel-artige Spinstrukturen
untersucht werden sollen.

Eigenwertproblem: FEiner weiteren Methode gelingt es, das Problem des Auf-
findens der Bogoljubov-Transformation als Eigenwertgleichung zu formulieren. Die
Eigenwerte einer Matrix, die sich aus der Vertauschung der untransformierten
Bose-Operatoren mit dem untransformierten Hamilton-Operator ergibt, stellen die
Anregungen dar. Die Komponenten der dazugehérigen Eigenvektoren entsprechen
den gesuchten Transformationskoeffizienten. Konkret berechnet man zunichst die
Vertauschungen der Operatoren a,q und ai”_, mit dem Hamilton-Operator (2.13). Das
Ergebnis hat in kompakter Matrixform die Gestalt

g, H_ \ _ [ 4Js —4Jsvg tiq (2.23)
el H]_ )~ \ 4Jsyq —4Js a4 '
bzw. durch (2.20)
( [a1q, H]_ ) _ ( 4Js  —4Jsvq ) ( Ullq Vilq ) ( Qg (2.24)
[af_q, H] _ 4JS’)’q —4Js U11q Ullq Clil—_q ' '

Andererseits gilt weiterhin

14, H] ) ( Ullq Vilq ) ( [0nq, H] )
T = T . 2.25
( [ai_—ov H] _ Uiiq Ul1q [O‘i—ou H]_ ( )
Unter der Voraussetzung, dafl eine Diagonalform von (2.13) existiert, konnen die Ver-

tauschungen auf der rechten Seite von (2.25) leicht bestimmt werden. Man findet wegen
der Symmetrie der Eigenwerte beziiglich der Inversion im gq-Raum, d.h. wiq = wi_q,

long, H. = Zwlq, [, af’q,]_ Qg = Wiql1q SOWie
a S——
Saqar
o, H] = Zwlq,afq, [ g] _ C1q = —wi1q0i - (2.26)
~—_————
v —bqtar

Damit wird (2.25)
[a1q, H]_ Wiql —WiqV o
( +q I_} — 1q%llq B 1qVl1q -|}q ] (227)
[al—op ] Wiqlilq —WiqUllq Q_q
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Nach Gleichsetzen von (2.24) mit (2.27) ergibt sich die erwiinschte Eigenwertgleichung:
4Js —4JS’}’q U1lq V11q _ WiqUilq —Wiqliiq
( 4Js —4Js ) ( v u ) o ( WiqV —Wiql ) ' (2.28)
Ya 11q U11q 1q¥11q 1qU11q
Wenn eine Diagonalform von (2.13) existiert, dann sollte die Matrix, deren Eigenwert-
problem zu lésen ist”, zwei Eigenwerte besitzen, die sich nur durch das Vorzeichen
unterscheiden. Dies korrespondiert mit dem Auftreten von zwei Polen in den Green-
schen Funktionen, die in diesem Abschnitt weiter hinten zur Diagonalisierung heran-
gezogen werden. Andererseits sind die Eigenvektoren nicht eindeutig bestimmt, d.h.
nicht jeder Eigenvektor liefert automatisch die richtigen Transformationskoeffizienten.
Erst die korrekte Normierung gewéhrleistet, dafl die Bose-Vertauschungen nicht ver-
letzt werden.

Als Eigenwerte +wq ergeben sich erwartungsgemaf§ +4Js,/1 — 2 mit den dazugehdori-
gen Eigenvektoren zunichst in allgemeiner Form:

1
twig = 1 AJLsimq y TWiqg ig | Wstu | (2.29)
a 4Jsvq 4Jsvq
woraus fiir die Transformationsmatrix der Ansatz
tt 1
U v
( lq lq ) = t+4J?—w1q t_4Jg+w1q (230)
U1iq Ui1q a4 4Jsvq a4 4Jsvq

folgt. Da jeweils Diagonal- sowie Nebendiagonalelemente gleich sein sollen, mufl das
homogene Gleichungssystem

1 _4Js—|—wlq t+ 0
( _ AJs—wiq 4{ A ) ( t‘i ) = ( 0 ) (2.31)
4J57q a

nichttriviale Losungen besitzen. Tatsédchlich verschwindet die Determinante, so dafl der
Ansatz nunmehr lauten kann

u v 1 4Js—w1q
11q 11q 4J 57,

=1 _ a . 2.32
( Ullq Ullq ) 1 ( As—1q 1 ) ( )

4.J 57q

Als einzig noch offener Parameter ist ¢4 so zu wéhlen, daf§ die Bose-Vertauschungen
gelten, die sich in Gleichung (2.19) manifestieren. Daher ist

4J5—wq -1
* * L |
U11q —V11q _ l 1 4Js57vq (2 33)
—’U* u* — ¢ 4Js—w1q 1 -
11q 11q q

4.J 57q

zu fordern. Das Ergebnis der Invertierung

4J5 4+ wiq 1 — 4jj;;’lq
— 4Js—w1 : (2.34)
__¥° ¥laq 1
2wiqtq o

"Man beachte, daB der Hamilton-Operator zwar hermitesch ist, aber dies fiir die Matrix selbst
nicht gelten muf.
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ist nun (2.32) gegeniiberzustellen. Simultan wird dieses Gleichungssystem durch

. 1 2Js
taly =5 +

(2.35)

wlq

befriedigt. In Ubereinstimmung mit den zuvor abgeleiteten Beziehungen wird (2.13)
bis auf eine unbedeutende Phase durch

(& )ox(VEEDon VI 2ilan ) (0a ) o

T V1/2 = 2Js/wiq \/1/2+2Js]wiq T

al_q al_q
in Diagonalform gebracht. Daran anschlieBend, erfolgen nun einige allgemeine Bemer-
kungen zur Symmetrie der Eigenlosungen beziiglich der Inversion q — —q. Es geht
um den Nachweis der Giiltigkeit von (2.17). Zunéchst kann wiederum aufgrund der In-
versionssymmetrie des Gitters im g-Raum davon ausgegangen werden, dafl wq = w_q
gﬂﬂ Die entsprechenden Eigenwertgleichungen seien als geldst zu betrachten:

Qq |wq> = UWq |wq> , Qg |w—q> = Wq |w_q) )

Qq |_wq> = —Wq |_wq> , Qg |_w—q> = —lWq |_w—q>-

Dabei ist {2q diejenige Matrix, die man durch Kommutieren des Hamilton-Operators
mit den untransformierten Bose-Operatoren erhélt und deren Eigenwerte den Spin-
wellendispersionen wq entsprechen. Unter den |wq) sind die dazugehérigen Eigenvekto-
ren zu verstehen, deren Komponenten die Bogoljubov-Koeffizienten darstellen. Wegen
iq = (—iq)" ist leicht einzusehen, daf Qg = Q* , immer erfiillt ist. Konjugieren liefert

Qqlwg) = wqlwg) , L4 |w—q>* = Wq |w—q>* )
Qql—wq) = —wql|-wq) , 4 |_w—q>* = —lq |_w—q>* )
WOoraus |wq) = |w_q)" sowie |—wq) = |—w_q)" folgt.

Greensche Funktionen: Auf einem eleganteren Wege koénnen die Bogoljubov-
Koeffizienten auch unter Zuhilfenahme geeignet zu wéhlender Greenscher Funktionen
berechnet werden. Greensche Funktionen spielen im weiteren Verlauf dieser Arbeit
noch eine bedeutende Rolle. Deshalb soll die Darstellung dieser Methode mit beson-
derer Sorgfalt erfolgen. Grundlage ist die allgemeine Bewegungsgleichung Greenscher

Funktionen:

w (4 B)), = (IA,Bl,_.) + (([4, H]_; B)), . (2.37)
A und B sind beliebige Operatoren, [4, B], = AB—nBA ist fiir n = +1 der Kommuta-
tor und fiir = —1 der Antikommutator beider Operatoren. Mit welchem 7 gerechnet

wird, ist ohne Bedeutung und kann dem Problem angepafit gewéhlt werden. Hier er-
weist es sich als giinstig, wegen der bosonischen Natur der beteiligten Operatoren die
Kommutatorvariante zu verwenden.

Durch das Linearisieren enthélt der Hamilton-Operator bekanntlich nur quadratische

8Selbstverstindlich sollen die Eigenwerte twq zudem reell sein. Da aber 2 selbst im allgemeinen
nicht notwendigerweise eine hermitesche Matrix zu sein braucht, ist dies nicht gesichert. Solange aber
der klagsische Grundzustand, um den entwickelt wird, tatsiichlich ein solcher ist, sind die Eigenwerte
auch reell.
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Terme in Bose-Operatoren, wodurch beim Aufstellen der Bewegungsgleichungen keine
hoheren Greenschen Funktionen entstehen. Die Greenschen Funktionen selbst kénnen
exakt bestimmt werden, denn die Ndherung steckt bereits im linearisierten Hamilton-

O}:]eFrator. Nunmehr formuliert man die Bewegungsgleichungen fiir folgende Funktio-
9.

ne
G’ (qw) = (agaly)), » G (aw) = (0l qay)), (238)
Daraus entsteht ein lineares Gleichungssystem in geschlossener Form
4]s —w —4Jsvq G (q,w) _[ -1 (2.39)
4Tsvq —4Js—w Gt (q,w) 0o )’ '

dessen Losung Polstellen bei w = f£wiq mit wiq = 4Js,/1 — 'ya besitzt. Diese Polstellen
stellen Einteilchenanregungen dar und sind mit den Spinwellendispersionen identisch
[39]. In expliziter Form ergibt die Kramersche Regel fiir die gesuchten Funktionen

(2.40)

Unter Verwendung von (2.18) kann G7;' (q,w) auch durch transformierte Greensche
Funktionen dargestellt werden:

G (q,w) = {{u11901q + V11qQi g Ul 1qQq T Uf1q041—q>>w (2.41)
oder ausgefiihrt
Gh (@w) = unqUig (g aily)), + viqviig ((0i_g; 21-a)),,
+ “llqvflq (o1 al—q»w + Ullq“ﬁq <<ai|——q; aii—q>>w . (2.42)

Beziiglich der neuen Operatoren ist bereits gefordert worden, dafl (2.13) dann diago-
nalisiert ist, also die Form

— E +
H = E() -+ wlqalqalq
q

annimmt. Damit verschwinden nichtmagnonenzahlartige Funktionen in ¢ 4. Eine kurze
Rechnung ergibt beispielsweise

w {{eug; @1-q)),, = << [O‘Iqa Zwlqlaf—q/alqll §041—q>> = wiq ((01q; 21-q)),

woraus ((onq; 1—q)), = 0 folgt. Gleichsam erhilt man wegen [ongq, oy =1 fiir die
verbleibenden, magnonenzahlartigen Funktionen

<<a1q;ai|'q>>w = m sowie <<C¥1 q X1- q>> W+ Wi q.

9Fiir LSWT-typische Hamilton-Operatoren existieren immer geschlossene S#tze Greenscher Funk-
tionen. Die entsprechenden Greenschen Funktionen sind durch ihre Bewegungsgleichungen miteinander
verkniipft. Welche Funktionen zu einem Satz dazugehoren, wenn man z.B. an der Magnetisierung im
Untergitter m interessiert ist, ergibt die Auswertung der Bewegungsgleichung fiir <<amq; a;q»w.

19



Die transformierten Greenschen Funktionen sind somit bekannt und kénnen in (2.42)
eingesetzt werden. Man gewinnt daraus mit wi_q = wiq

% %
4Js +w _ UnqlUilq  Y11qV11q
2 _ 92 — .
w Wig Ww—wWyq W+wig

(2.43)

Erweitern des soeben gefundenen Ausdrucks mit w?® — w?, liefert
% %
4Js 4+ w = Up1qUl1q (W + Wiq) — V11qV1q (W — Wiq) ,

so daf} die gesuchten Koeflizienten durch Einsetzen von w = fwq bestimmt werden
kénnen. Das Ergebnis ist bekannt und lautet ebenfalls

UliqUi g = 1/2+2Js/wiq Vi1qUl1q = —1/2 4 2Js/wiq.

Offenbar bewirken die Bewegungsgleichungen, dafl die Bogoljubov-Koeffizienten ohne
weitere Annahmen korrekt herauskommen und (2.19) geniigen.

Eine andere Moglichkeit, den Formalismus Greenscher Funktionen zu nutzen, bietet
das Spektraltheorem. Dieser Weg fiihrt ohne Bogoljubov-Transformation direkt zum
Ziel. Spéter wird das Spektraltheorem in aller Ausfiihrlichkeit verwendet, um Erwar-

tungswerte zu berechnen. Fiir den Erwartungswert (af a1q) ist das Spektraltheorem
10 durch

+o0
(ata1q) = - lim Gy (q,w +1ie) — Gy’ (q,w — ie)
a1/ ™ or o exp (w/kT) — 1

—Co0

dw (2.44)

gegeben. Die entsprechende Greensche Funktion (2.40) ist bereits abgeleitet worden.
Giinstig ist jetzt ihre Darstellung als Partialbruch, welcher

4Js+wiq 4Js5—w1q

G+ = a4 2.45
0 (q,w) W—wig W+ wig ( )

lautet. Daran kann die Dirac-Formel

+oo +y

. [ (z) [ f(2) :

1 = -

Jim / T dx ylgﬁlo . dz Firf(0) (2.46)
oo 2y

ankniipfen, die derartige Integrale zu behandeln gestattet. Dazu wird der Partial-

bruch in (2.44) eingesetzt, um anschlieend durch Substitution der Integrationsva-
riablen w = w/ £ wiq dem Integral selbst eine Gestalt zu verleihen, die es erlaubt, die

10Tn allgemeiner Form [39] lautet das Spektraltheorem zur Bestimmung des Erwartungswertes (BA)

too ((AaB»w i€ ((A’ B))w—ie n+1
/ exp+(w JET) —n dw + 47

T,
(BA> a % 61—1>I-Ii-10

C.

Aus dem Vergleich der bosonischen Erwartungswerte - einerseits mit der Kommutatorvariante und
andererseits mit der Antikommutatorvariante berechnet - folgt, dafl C' im vorliegenden Fall verschwin-
det.
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Dirac-Formel anzuwenden. Im Ergebnis erhélt man daraus einen temperaturabhéngi-
gen Erwartungswert geméif

4Js+wiq 4Js—w1q
) = 2o1q - 21a 9.47
{alatia) exp (wiq/kT) —1 exp(—wiq/kT)—1 (2.47)

Somit wiire fiir den Grundzustand das bekannte Ergebnis (af a1q) = —1/2+2Js/wiq
reproduziert. Es soll jetzt gezeigt werden, wie man im Rahmen der LSWT unter Ver-
wendung Greenscher Funktionen Spinkorrelationen und Energien berechnet. Bei der
Bestimmung der Korrelationsfunktionen geht iiber (2.9) die klassische Orientierung
der Spins ein. Auflerdem ist zu beachten, durch welche Magnonensorte die jeweiligen
Spins reprisentiert werden. Im vorliegenden Fall gibt es zwei Arten von denkbaren Kor-
relationen und nur eine Magnonensorte. Korrelierende Spins kénnen zum einen parallel
und zum anderen antiparallel sein. Handelt es sich um parallele Spins, die durch den
Vektor ry verbunden sind, so folgt aus (2.9)

_ 2 + + + +
(SmSmiry) =" —s (<a1,ma1,m T Ol meprgy Wmetryy — Gl Olmetryy — al:ma17m+rTT>)

bzw. fiir antiparallele Spins mit rq;

_ 2 + + + .+ _
<Smsm+ru> =—8+s (<a1,ma1,m + Q1 mry, Wmatryy, = C1m O meary, a1,ma1,m+ru>) .

Beide Relationen werden nun durch (2.12) Fourier-transformiert. Neben der Giiltigkeit
von (af a1q) = (aiqafy) — 1 14Bt sich leicht verifizieren, daB (af,ai_,) = (a1q01-q)
gilt'!, womit man

2
(SmSmiry,) = 8 — ﬁs Z (1 — cos (qrey)) {afya1q)
a

2
(SmSmiry,) = —8+ ﬁs Z (afqa1q) — cos (arey) (afyai_y) (2.48)
q

erhilt. Der Erwartungswert (af,a1q) ist bereits (2.47) zu entnehmen. Aus (2.40) ge-
winnt man nach Anwendung des Spektraltheorems

2J s, 1 1
Tai_,) = 1 - . 2.49
{lq0iq) Wiq (exp (wiq/kT) —1  exp (—wiq/kT) — 1) (2.49)
Die Energie E als Erwartungswert von H 148t sich nun ebenfalls bestimmen:
E =-2NJs* + Z 4Js <afqa1q> —4Js7q <afqaf_q> .
q
Dann ergibt sich die bekannte Formel

E=—2NJs(s+1)+ 3 wiq (% Yo (wlqjkT) - 1) (2.50)

Dazu betrachte man die entsprechenden Greenschen Funktionen bzw. deren Bewegungsgleichun-
gen.
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mit der Grundzustandsenergie

Ey=—-2NJs(s+1)+ Zwlq/l

q

Gleichung (2.50) 148t eine einfache Interpretation zu. Der temperaturabhéingige Anteil
ist nichts weiter als die mittlere Besetzungszahl der Magnonen in den einzelnen durch
q charakterisierten Zustidnden multipliziert mit der entsprechenden Energie. Damit
herrscht Konsistenz mit (2.15). Im tiibrigen 148t sich die Energiebeziehung zumindest
in den Fillen, die der Autor untersucht hat und bei denen kein Magnetfeld zu beriick-
sichtigen ist, generalisierenﬁ. Betrachtet man ein Spinsystem im Rahmen der LSWT,
dessen klassische Grundzustandsenergie durch As? gegeben ist, wobei n verschiedene
Magnonensorten zu unterscheiden sind, dann lautet die Verallgemeinerung von (2.50)
wie folgt:

& 1 1
E=As(s+1)+ W (——i— ) 2.51

( ) ;mzzl T\2  exp (Wmq/kT) — 1 (251)
Zur Berechnung der Spinwellenenergie geniigt demzufolge allein die Kenntnis der Di-
spersionen wpq, die sich immer als Eigenwerte einer Matrix darstellen lassen, die man
erhdlt, wenn man einen geschlossenen Satz von Bose-Operatoren mit dem bosonischen
Hamilton-Operator geméf (2.23) vertauscht. Formel (2.51) erlaubt die Bestimmung
der Energie auch dann, wenn das Spinsystem ungeordnet ist und sich Korrelations-
funktionen aus der Spinwellentheorie nicht ableiten lassen. Man denke in diesem Zu-
sammenhang an die HAFM auf der linearen Kette und auf dem Kagomé-Gitter.

2.2 Das A-B-Gitter

Zu den Kupraten, die in den letzten Jahren eingehend theoretisch und experimentell
untersucht wurden, zihlen BayCusO4Cly sowie StoCuszO4Cly [41, (42, 43, 44, 45]. Im
Gegensatz zu La;CuQy besitzen diese Substanzen nicht die iiblichen, einfach struk-
turierten Cu-O-Ebenen. Der wesentliche Unterschied besteht in der Existenz zusétz-
licher C'u (B)-Atome, die im Zentrum jeder zweiten C'u (A)-Plakette zu finden sind.
Beide Subsysteme formieren fiir sich Quadratgitter, die einander durchdringen. Dieses
Gitter, welches in Abb. 2.2 dargestellt ist, wird als A-B-Gitter bezeichnet. Sowohl den
Cu (A)- als auch den Cu (B)-Atomen ist der Spin s = 1/2 zuzuordnen. Dies wiederum
bedeutet, dal Quantenfluktuationen im Grundzustand einen wichtigen Einfluf auf die
magnetische Ordnung ausiiben. Da zum einen die Kopplungen J44 zwischen A-A-Spins
und Jpp zwischen B-B-Spins antiferromagnetisch sind und zum anderen die Kopplung
Jap zwischen A-B-Spins frustrierend wirkt, handelt es sich hierbei um zwei konkurrie-
rende Spinsubsysteme.

Beispiele fiir zwei einander durchdringende Antiferromagnete in drei Dimensionen

12 Allgemein gelangt man von As? zu As (s + 1) durch das ”Symmetrisieren” der q-abhiingigen Ter-
me im Hamilton-Operator entsprechend 2ad aq = alaq + aqad — 1 unter der Mafigabe, daff im bosoni-
schen Hamilton-Operator zu jedem Operatorprodukt auch das adjungierte Operatorprodukt aufzut-
auchen hat. Dies betrifft ausschlieBlich die Terme, die durch die Multiplikation der z-Komponenten
in (2.9) zustande kommen. Koppelt das Spinsystem mit einem magnetischen Feld, so ist mit dem
resultierenden Term in gleicher Weise zu verfahren.
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sind die Granate Mn3CryGesOyo oder (Fe,Ga,_;), CasGesO2, die von verschiedenen
Autoren diskutiert wurden [46, 5, 47]. In den quasizweidimensionalen Kupraten wie
(Ba, St), Cuz04Cly spielen Quantenfluktuationen im Zusammenwirken mit konkur-
rierenden Wechselwirkungen eine entscheidendere Rolle als in den dreidimensionalen
Granaten, so dafl interessante physikalische Phinomene die Folge sind. So fanden No-
ro und Mitarbeiter [41] zwei magnetische Phaseniibergéinge bei T4 = 320K und bei
Tp = 40K, die mit der magnetischen Ordnung im stark koppelnden A-Subsystem und
im vergleichsweise schwach koppelnden B-Subsystem in Verbindung zu bringen sind.
Beide Temperaturen differieren um eine Gréflenordnung, die als grobe Abschitzung
das Verhéltnis J44/Jpp = 10 nahelegt, was durch Bandstrukturrechnungen belegt
wird [48]. Experimentell gefunden wurde auBerdem ein schwaches ferromagnetisches
Moment [42], welches als Konsequenz pseudodipolarer Kopplungen verstanden werden
kann [43].

Als Minimalmodell zur Beschreibung zweier Antiferromagnete mit konkurrierenden
Wechselwirkungen auf dem A-B-Gitter wird im folgenden ein Hamilton-Operator vom
Heisenberg-Typ mit drei Austauschkopplungen Ja4, Jpp und Jap herangezogen. Ein
solches A-B-Modell liefert zwar keine Erkldrung fiir das schwache ferromagnetische
Moment, da dafiir anisotrope Kopplungen verantwortlich zu sein scheinen [43, [44, 45],
trotzdem ist es geeignet, den EinfluB von starken Quantenfluktuationen zusammen
mit Frustration auf die magnetische Ordnung vor allem auch unter dem methodischen
Aspekt zu studieren.

Im klassischen Limes findet man ein ganzes Spektrum magnetischer Grundzustands-
phasen. Von experimenteller Relevanz ist der Fall eines kleinen J,p. Dann ist jedes
Subsystem fiir sich Néel-geordnet. Diese Phase ist iiber J4p = 0 hinaus energetisch
stabil. Dadurch, daf} sich das klassische Molekularfeld im Mittel heraushebt, sind beide
Subsysteme magnetisch entkoppelt, und die Energie hingt selbst nicht von Jsp ab,
solange dieser Parameter einen bestimmten Wert nicht i{iberschreitet. Die Folge ist ei-
ne kontinuierliche Entartung der Energie beziiglich der relativen Orientierung beider
Néel-Zusténde. Ob es zur Authebung dieser Entartung im Quantenfall kommt, soll im
Rahmen der LSWT geklirt werden. Kéme es dazu, so wiirde es sich um ein Phéno-
men handeln, das man als order-from-disorder-Effekt bezeichnet. Gemeint ist damit
die Ausbildung geordneter Strukturen trotz bzw. durch Fluktuationen. In Frage kom-
men neben thermischen Fluktuationen [6] auch Quantenfluktuationen. Schon in [44, [45]
wird auf die Moglichkeit solcher Effekte in (Ba, Sr), CusO4Cly hingewiesen. Shender
[5] machte als erster darauf aufmerksam, dafl es eine ganze Reihe von Spinsystemen
gibt, in denen Quantenfluktuationen kolineare Ordnung energetisch favorisieren. Ein
Beispiel dafiir ist das Ji-Jo-Modell mit Jo > J;. Dort kommt es durch Quantenfluk-
tuationen zur Entstehung sogenannter stripe states [7].

2.2.1 Das A-B-Modell und sein klassischer Grundzustand

Der Hamilton-Operator des A-B-Modells lautet
H=Jss >, SwSu+Jss D, SmSn+Jap D SwmSn,  (2.52)

(meA,ncA) (meB,neB) (meAneB)

wobei nur die Kopplungen zwischen néichsten Nachbarn innerhalb und zwischen den
Subsystemen von Null verschieden sind. Sowohl J4 4 als auch Jpp seien antiferromagne-
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Abbildung 2.2: Die geometrische Einheitszelle des A-B-Modells, die durch ihre Basis-
vektoren a; = (a,0) und a; = (0, a) aufgespannt wird (links), mit den Austauschkopp-
lungen entsprechend (2.52) (rechts).
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/Q

Abbildung 2.3: Der klassische Grundzustand fiir Jap < 2v/JaaJpp (Tab. 2.1, Phase I).
Beide Subsysteme sind Néel-geordnet. Weil das klassische Molekularfeld verschwindet,
kénnen beide Ordnungen um beliebige Winkel ¢ gegeneinander ausgerichtet sein. Die
magnetische Einheitszelle mit den Basisvektoren by = a; &= ay enthélt sechs Spins.
Ein laufender Index m = 1,...,6 unterscheidet die Spins innerhalb der Zelle und
korrespondiert mit den sechs spéter einzufithrenden Magnonensorten.
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Phase Stabilitdtsbereich 31{,352 257"5 i—Bs %
I 0 < Jap < 2v/JaaJpp —2Jpp — 3Ja4 0 0 0
I | 2v/Jaadee < Jap < 2v/2Jaa —éﬁ—i — 3Jaa 0 0 0
111 2v2J44 < Jap < () ~ 753748 0 0 0
v ) <Jap <() 2.96 (2.54) | (2.54) | (2.54)
\4 () < Jas —3Jap + 2Jpp + 5Jaa 1 1 1/3

Tabelle 2.1: Die fiinf klassischen Grundzustandsphasen fiir Jsp,Jgg > 0 und Jgg <
Jaa mit Samy = | ,ca(p) Sm| als Gesamtspin der einzelnen Subsysteme sowie S =
| >, S| als Gesamtspin beider Subsysteme.

tisch, d.h. J44, Jpp > 0. Die frustrierende Kopplung zwischen den Subsystemen Jap
tritt als freier Parameter in Erscheinung. Sie sei ebenfalls antiferromagnetisch. Insge-
samt befinden sich 3/V Spins der Linge s im Gitter, dessen geometrische Elementarzelle
nach Abb. 2.2 drei von ihnen enthélt. Weiterhin ist die Zahl der Kopplungen bezogen
auf eine geometrische Elementarzelle zehn.

Die Diskussion des klassischen Grundzustandes!'3 entstammt [49, 50]. Bemerkenswert
ist das duflerst reichhaltige Phasendiagramm. Legt man das Verhéltnis Ja4/Jpp = 10
der Untersuchung zugrunde, so existieren insgesamt fiinf magnetische Grundzustands-
phasen, deren Charakter man Tab. 2.1 entnehmen kann.

Es soll nun detailliert auf die einzelnen Phasen eingegangen werden. Die Phasen I und
ITI besitzen eine planare Spinkonfiguration im Gegensatz zu den Phasen II und IV,
die eine nonplanare Spinkonfiguration aufweisen. In Phase V sind die Spins kolinear
ausgerichtet.

Ohne Beschrankung der Allgemeinheit definiere die planare Spinorientierung der Pha-
sen I und III eine gedachte Ebene, beziiglich der die Lage der Spinvektoren im Raum
beschrieben werden soll. Ausgangspunkt ist der Fall J4p = 0. Trivialerweise sind dann
beide Spinsubsysteme mit ihren Néel-Ordnungen magnetisch entkoppelt und beliebig
zueinander orientiert. Dies ist auch dann noch der Fall, wenn J4p vergleichsweise klein,
trotzdem aber endlich ist. Ein solcher Zustand ist - wie eingangs bereits erwéhnt - hoch-
gradig entartet. Seine Energie ist von J,4p unabhingig. Mit ¢ besitzt man einen Para-
meter, der diesen kontinuierlichen Freiheitsgrad hinsichtlich der relativen Ausrichtung
beider Spinsubsysteme parametrisiert. Auf Phase I wird im néchsten Abschnitt mittels
LSWT néher eingegangen. Zu beantworten sein wird die Frage, ob Quantenfluktua-
tionen die Entartung aufheben und kolineare Ordnung wie im Fall des J;-J>-Modells

13Die Spins S,, werden als Vektoren der Linge s betrachtet. Beziiglich der méglichen Orientierungen
gibt es keine Einschrinkungen. Gesucht ist die Konfiguration der niedrigsten Energie.
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energetisch stabilisieren. An dieser Stelle sei bereits darauf verwiesen, dal kein rezi-
proker Gittervektor Q existiert, der es erlauben wiirde, statt der magnetischen die
geometrische Elementarzelle im Rahmen der LSWT zu verwenden. Es wird sich dem-
zufolge um eine Sechs-Magnonen-Theorie handeln.

Bei Jap = 2v/J44Jpp kommt es zu einem Phaseniibergang erster Ordnung von der
planaren Phase I zur nonplanaren Phase II. In Abb. 2.4 ist diese Phase dargestellt. Die
entsprechende magnetische Einheitszelle enthilt zwolf Spins'4 mit acht verschiedenen
Spinorientierungen.

St = s|—--rcos (a),—T cos (@) , sin (+a)

V2 V2
2 7

V2 V2

S = s —cos(a),—cos(a),sin(:l:a)),

2 2
2 2
sii = s —gcos(a),gcosm),—sjn(ia))7
2 2
S = s gcos(a),—gcosm),—Sin(ia)>7
s = s(-1,0,0), SE =s5(0,-1,0),
SéIg, = 8(17070)7 Séﬂ:s(o,l,()) (253)

Minimieren der Energie liefert cos (o) = Jap/ v/8J44. Benachbarte B-Spins stehen
senkrecht aufeinander. Dasselbe gilt fiir die Komponenten der A-Spins in der z-y-
Ebene. Mit wachsendem .J,p nimmt jedoch ihre z-Komponente ab und wird Null bei
Jap = V8J44. An dieser Stelle erfolgt ein Phaseniibergang zweiter Ordnung hin zur
planaren Phase III. Hier findet man sowohl A- als auch B-Spins senkrecht aufeinander
stehend vor. Folglich geht nur J4p in die Energie ein. Bis hierher ist der Gesamtspin
des Systems immer Null. Weiteres Anwachsen von J4p erzwingt wiederum einen Pha-
seniibergang zweiter Ordnung in die nonplanare Phase IV. Wihrend eine antiparallele
Ausrichtung der A-Spins relativ zu den B-Spins energetisch bevorzugt wird, sind die
z-y-Komponenten letzterer nach wie vor wie in den Phasen IT und III orientiert. Trotz-
dem besitzen die Spins beider Subbsysteme endliche z-Komponenten unterschiedlichen
Vorzeichens, welche durch S%_, = scosf sowie S% 5 = —s/1 — A2sin’ 6 gegeben
sind. Eine solche Phase kann als verkannteter Ferrimagnet bezeichnet werden [51] mit
einem endlichen magnetischen Moment in beiden Subsystemen:

IV ING
5%3 = V1-sin0, “ZiN =V1-A%sin’9, SV =[S -5}, (2.54)

14Begziiglich einer darauf aufbauenden Spinwellentheorie sei folgendes angemerkt: Auf die magneti-
sche Elementarzelle mit ihren zw6lf Spins entfallen insgesamt vierzig Bindungen; davon sind sechzehn
A-A-, acht B-B- und sechzehn A-B-Kopplungen. Obwohl es sich um eine nonplanare Spinkonfigurati-
on handelt, gilt fiir alle iiber J44 koppelnden Spins S,,S, = —s?sin” (a). Alle iiber Jpp koppelnden
Spins stehen senkrecht aufeinander: S,,S,, = 0. Entsprechend findet man fiir alle tiber J4p koppeln-
den Spins S,,S, = —v/2cos (a) /2. Das bedeutet wiederum, daB jeder Beitrag zur klassischen Energie
in der Vielfachheit der entsprechenden Kopplung auftritt. Weiterhin verhilt sich die geometrische zur
magnetischen Elementarzelle bezogen auf die Spin- und Bindungszahlen wie eins zu vier. Vier ist aber
auch ein gemeinsamer Teiler von sechzehn und acht, was die Reduktion auf das geometrische Gitter
zuldft. Deshalb geniigt bei der Spinwellenrechnung ein Drei-Magnonen-Ansatz.
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Abbildung 2.4: Die Spinorientierungen in den Phasen II, III. In der nonplanaren Phase
IT besitzen die A-Spins eine z-Komponente in entgegengesetzen Richtungen gemif
(2.53). Diese z-Komponente ist in der planaren Phase III Null. Beiden Phasen ist
gemein, daf ihre magnetischen Elementarzellen zwolf Spins beinhalten.

Dabei sind
1 Jaa Jap _ 1 [ _9pJaa =+ 16J124A Tip 2
0 ~ \Tus T iss 4 Tes T 0T, T T,
Sin =
J 75 73 3J J J 2 2.’
—3gan e+ g+ (3 - ) /2 e +
J J J J2 J2
= A \prAA [ 3tAA  otAA | AR (2.55)
2v/2J5g Jap JBB Jip  8JEp

Der Gesamtspin des Systems wéchst mit zunehmenden J4p. In Phase IV verhélt sich
die Energie entsprechend

E 4 . 2 .
ﬁ = gJAA (1—S1n20) +§JBB (1—A231n20)
—%JAB (% + \/(1 —sin” ) (1 — A?sin’ 0)) : (2.56)

Als Phasengrenze zwischen III und IV gewinnt man

J 1
JIT-TV — V2T 44+ % + 5\/8JiA +24J 4405 + 2J3p. (2.57)

Dariiber hinaus findet man einen weiteren Phaseniibergang zweiter Ordnung von Phase
IV nach Phase V, dem vollstindig polarisierten Ferrimagneten, bei

Jie ™V =2Jua+ Jpp + 4T3 4+ Thp. (2.58)

2.2.2 Lineare Spinwellentheorie fiir J g < 2v/J44JBB

Im vorigen Abschnitt wurde der klassische Grundzustand des A-B-Modells diskutiert.
Es konnte konstatiert werden, daB, falls Jap < 2v/Ja4Jpp gilt, beide Subsysteme ent-
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koppeln. Auf diesen Fall soll sich im folgenden konzentriert werden, um die Frage zu be-
antworten, ob, getrieben durch Quantenfluktuationen, die Entkopplung und gleichsam
die damit verbundene Energieentartung beziiglich ¢ aufgehoben wird. Die entsprechen-
den Quantenkorrekturen im Grundzustand sollen unter Benutzung der LSWT erfafit
werden. Zur Diagonalisierung des bosonischen Hamilton-Operators werden Greensche
Funktionen und das Spektraltheorem verwendet. Wie bereits erwidhnt wurde, befinden
sich 3N Spins der Linge s im Gitter. Die magnetische Elementarzelle beinhaltet sechs
Spins, so dafl das magnetische Gitter aus N/2 Zellen mit je zwanzig Bindungen besteht.
Eine Reduktion auf das geometrische Gitter ist nicht moglich. Die Numerierung der
einzelnen Spins und im Anschlufl daran die der verschiedenen Magnonensorten erfolgt
gemif Abb. 2.3. Einsetzen des bosonisierten Skalarproduktes (2.9) in den Hamilton-
Operator (2.52) unter Beriicksichtigung der relativen Spinorientierungen in Phase I
zusammen mit der Fourier-Transformation'?

2 .
GnR = 4/ N ; ng €xp (—igqR) (2.59)

und yi(2)q = exp (iqal(g) / 2) liefert den zu diagonalisierenden Hamilton-Operator

H = —2N(2J4a+Jpp)s*+ Y Hy mit
q
Hy = 4Jaas (afqalq + aé’qagq + a;,’qa;»,q + a;fqa4q) +4Jpps (a;qag,q + agqagq)

20\ (oF ot +
— Jaas (7101'7201 + 71017201) (alqa4—q T Ogq03_q T Q1qGs—q T a2qa3—q)

* x + o+ + o+
—  Jaas (MqVsq + 'qu'ygq) (a1403_q + 03401 + G1q03—q + G2q0s—q)

— Jggs (’Y%q + ’YQq + ’Y1q + ’Y2q) (a5qa‘6 q T 5906 q)

+ Japs (9 + 1) (’qu (ai—q%q + a2qa‘6q) + 'qu (alq%q + a;qafiq)) /2
+ Japs (9 — 1) (11q (ai408_q + 02q06-q) + 11 (01q86-q + a3qad_,)) /2
+ Japs (9+1) (voq (aiqasq + azqady) + 73q (aaqady + adyasq)) /2
+ Jups(g—1) (v2q (a 5_q + G3q05— a) + Yaq (asqas—q + 3y q)) /2
— Japs(g—1) (’qu ( Uoq5q + alq%q) + Maq (a‘2qa5q + a‘lqa5Q)) /2
— Japs(g+1) (1q (a‘2qa‘5 q T G1q05- a) T Viq (a2q05-q + o5 q)) /2
— Japs (g — 1) (7oq (ad, af6q T a4qa6q) + Yaq (a3qa6q + a4qa6q)) /2
— Japs(g+1) (’Y2q (a‘3qa’6 q T Gaql6— q) + 72q (a3qa6 qt a4qa;— q)) /2.

(2.60)

Dabei sind aj () die Basisvektoren des geometrischen Gitters mit der Gitterkonstanten
a=1a = (1 0) und ay = (0,1). AuBerdem ist g als cos¢ definiert. Zur Veran-
schaulichung dessen dient Wiederum Abb. [2.3. Angesichts dieses Hamilton-Operators
kann die eigentliche Frage, ob Quantenfluktuationen irgendwelche klassisch denkbaren
Spinzustinde energetisch bevorzugen, ohne weitere Rechnungen schon jetzt beantwor-
tet werden. Die Quantenfluktuationen heben die klassische Energieentartung auf und
stabilisieren kolineare Ordnung. Wie 148t sich das einsehen? In (2.60) taucht ¢ nur in

15R ist der Spinplatz.
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Gestalt von cos ¢-Termen auf. Zur Erinnerung sei nochmals hervorgehoben, daf ¢ die
relative Orientierung beider Spinsubsysteme parametrisiert. Dann sind auch die Eigen-
werte von H Funktionen von cos . Will man weiterhin die Grundzustandsenergie be-
rechnen, so ist diese zunéchst ebenfalls eine Funktion von cos . Minimiert man letztere,
um die beziiglich ¢ tiefste Energie zu finden, so entstehen beim Ableiten Ausdriicke, die
proportional sin ¢ sind, so dal die Grundzustandsenergie fiir ¢ = 0, 7 minimal wird'S.
Diese Aussage folgt genauso aus dem allgemeinen Hellman-Feynman-Theorem [52]. Es
besagt, dafl OF/0A = (0H/O\) gilt, wobei H ein von einem Parameter A\ abhéingiger
Hamilton-Operator und E einer seiner Eigenwerte ist. Die weitere Rechnung zeigt, daf3
beide Zusténde energetisch gleichwertig sind. Insofern sind alle physikalischen Gréfien,
die man im Rahmen der LSWT berechnen kann, von nun an als Mittelwerte iiber die
Zustdnde ¢ = 0 und ¢ = 7 zu verstehen. Allerdings geniigt die Beschrinkung auf
¢ = 0. Neben der Grundzustandsenergie sowie den Untergittermagnetisierungen blei-
ben auch die Korrelationen innerhalb der Subsysteme von der Wahl des ¢ unberiihrt.
Einzig die Korrelationen zwischen den Subsystemen sind gesondert zu betrachten. Man
kann sich dennoch leicht davon iiberzeugen, dafl bei gegebenem n € B, R immer ein
entsprechendes n' € B, R’ existiert, so daf

(Smea (0)Snep (R))y—y = (Smea (0) Swen (R)) g (2.61)
gilt. Mit ¢ = 0 vereinfacht sich (2.60) zu

H = —2N(2Jaa+Jpp)s’+ Y Hy mit
q
Hy = 4Jaas (afqalq + 63 ,02q + a3, a3q + ajqa4q) +4Jgpps (a;qag,q + agqa(;q)

x ok + .+ + .+
— Jaas (’qu’Y2q + ’Y1q’Y2q) (alqa4—q T Ugq03_q + Q1qU4—q + a2qa3—q)

x x + + + o+
— Jaas (71q72q + 71017201) (alqa3—q T Uq)_q + A1q43-q + a2qa4—q)

— Jpps ’Y%q + ’qu + 7;«21 + 7;«21) (a;—qag——q + a5qa6—Q)

(
('qu (afqa(;q + a2qa2—q) + ’qu (alqag_q + a;qGGQ))
JaBs (V2q (iq05q + 03q0dq) + Vaq (Gaqaiq + 34as5q))
— Japs (’qu (a‘2qa‘5 q T Q1qa5- q) + ’Y1q (a2qa5 qt a1qa; q))
(724 (a3

Yoq a3qa6 q T GaqQs— q) + Vaq (a3qa6 q+ a4qa§ q))
(2.62)

Exemplarisch erfolgt nun die Berechnung der Untergittermagnetisierung (S7%) mithilfe
Greenscher Funktionen. Auf eine Bogoljubov-Transformation kann verzmhtet werden,
da das Spektraltheorem benutzt wird. Zunéichst einmal ist (S7%) der Erwartungswert der
z-Komponente des Spins 1 in Zelle ¢ nach Abb. 2.3. Gemessen wird diese z-Komponente
in einem lokalen Koordinatensystem, das zuvor im Zusammenhang mit der Holstein-
Primakoft-Transformation eingefiihrt wurde. Im iibrigen héngt dieser Erwartungswert
nicht von 7 ab, so da8 der Index Weggelassen werden kann:

(SP)y=s—— Z (afq01q) - (2.63)

16Im mathematisch strengen Sinne hat man lediglich potentielle Kandidaten fiir ein Extremum
gefunden. Es 138t sich aber zeigen, daB es sich um Minima handelt.
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Wegen des Spektraltheorems benétigt man die Greensche Funktion

q,w) = ({a1q; 01g)),, » (2.64)
deren Bewegungsgleichung (2.37)

WGt (qw) = 14+ 4J448G (o, w) — Jaas (Viq¥eq T Vigr2a) Gai (q,w)
- JAAS (’qu’}/?q + ’qu’)’;q) Gjl_l—i_ (q7 w) - JABS’YTqG;_I—i_ (q7 w)
+ JapsmiaGer' (s w) (2.65)

lautet. Beim Aufstellen der Bewegungsgleichung tauchen weitere Greensche Funktionen
der Form

0,w) = ((amai Gng)),, 5 Crn (@w) = ((am—qi na)),

auf, deren Bewegungsgleichungen

wGa (qw) = 4J4a5G5 (q,w) — Jaas (TiqY2q + ’qu’Y;q) G3' (q,w)
—  Ja48 (MaPoq + Vigr2q) Gii (A, w) — Japs71qGa" (q,w)
+ JapsMaGer' (q,w),
WG (qw) = Jaas (’qu’YQq + ’Y1q’Y2q) G (q,w)
+ Jaas (’qu’Y2q + ’qu’qu) Gar (q,w) — 4J445G3 (q,w)
- JABS’YQqu (a,w) + Japs72qGei" (q,w),
wGi (@w) = Jaas (Na¥2q T VigYsq) Gii' (@, w)
+ 445 (YiqVoq + ViqY2q) Gai™ (q,w) — 4J445G i (q,w)
Japs12qGaT (q,w) + JABS’Y2qG61 (q,w),
WG;1+ (qw) = JABS’quGu (q,w) + JABS’quGm (q,w)
- JABS’Y2qG31 (q,w) — JABS’Y;qCTYjﬁ+ (q,w)
4TppsGH (a,w) + IpBs (Viq + Yaq + Vg + %q) Goi* (a4, w)
wGe" (q,w) = JapsviqGri (@ w) + Japs71qGar' (a,w)
- JABS’Y2qG31 (a,w) = Japs12qGi" (q,w)
— JpBs (Vg + Yoq + Via T %q) G5 (a,w) +4JprsGe" (q,w)
(2.66)

zusammen mit (2.65) ein geschlossenes, lineares Gleichungssystem liefern, welches nach
G1i" (q,w) aufzuldsen ist. Unter Verwendung der Kramerschen Regel erhéilt man

G (qw) =g (@) / ] @+ (=1)™ Wma) - (2.67)

m=1

Die gesuchte Greensche Funktion besitzt demnach sechs Pole!” bei

W = +w1q7 —Waq; +w3q7 —W4q, +w5q7 —Weq-

17Im Nenner von (2.67) steht die Determinante der Koeffizientenmatrix des linearen Gleichungssy-
stems. Sie ist ein Polynom sechsten Grades in w und kann daher entsprechend faktorisiert werden.
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Zu identifizieren sind diese Losungen mit den Spinwellendispersionen, fiir die keine ana-
lytische Darstellung durch elementare mathematische Funktionen existiert. Es sei daher
nur der Limes J4p = 0 angegeben, was dem Fall zweier HAFM auf dem Quadratgitter
entspricht:

Wiq = Waq = 4JAA3\/1 — cos? q; c0s2q2y

W3q = Wiq = 4JAA3\/1 — sin? %wsin2%y,

Wsq = Weq = 4JBBS\/(sin2 %w + sinQ%y) (cos2 %w + c0s2q5y). (2.68)

Ein leicht modifiziertes Gleichungssystem existiert auch fiir die verbleibenden Green-
schen Funktionen

Gl (aw), G (q,w), Gy (a,w), G (q,w), G5 (a,w) , Ggi (q,w) -
Lost man dieses, so findet man die {ibrigen Pole:
W = _w1q7 +w2q7 _w3q7 +w4q7 _w5q7 +w6q'

Normalerweise, d.h. hier ¢ beliebig, treten alle diese Greenschen Funktionen zusammen
in einem Gleichungssystem auf, dessen Ldsung der allgemeinen Philosophie entspre-
chend Pole bei w = £wp,q,m = 1,...,6 hat. Doch durch die spezielle Wahl ¢ = 0,7
zerfillt die Koeffizientenmatrix in zwei Blocke, so dafl zwei eigenstindige Gleichungs-
systeme fiir die dazugehorigen Sétze Greenscher Funktionen entstehen. Um das Spek-
traltheorem und mit ihm die Dirac-Formel anwenden zu kénnen, wird (2.67) als Parti-
albruch aufgeschrieben:

gt (@w)/ ] @+ () i) = 3 A (@) (2.60)

woraus

Ap (q) = 91_1+ (q7 (— )m+1 wmq / H m+1 Wmq t (_1)nwn<I) (2.70)

n=1,n#m

folgt. Einsetzen von (2.69) in (2.44) und Ausfiithren von (2.46) ergibt zunéchst

Ap (q)
2.71
<a1qa‘1Q> Z eXp m+1 mq/kT) 1 ( )
Fiir den hier interessierenden Grundzustand erhilt man daraus
(afquq) = — (A2 (q) + A4 (q) + 46 (q)) - (2.72)

Summation'8 bzw. Integration iiber die Brillouin-Zone liefert die gesuchte Untergitter-
magnetisierung (S7). Zum Test von (2.72) wird nochmals der Fall J4p = 0 iiberpriift,

18Die Summation erfolgt unter Ausschluf} jener Punkte, die (2.72) divergieren lassen. So divergiert
z.B. der Beitrag fiir g = 0 logarithmisch. Er wird durch das zweidimensionale Volumenelement beim
Integrieren kompensiert.
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welcher dann einer Vier-Magnonen-Theorie fiir den HAFM auf dem Quadratgitter mit
einer Elementarzelle, die doppelt so grofl wie die magnetische ist, entspricht. Man findet
im Grundzustand

1 1

(af,01q) = —1-1— +
o .
2 4\/1 — cos? & cos 2% 4\/1 — sin® % sin 2%

(2.73)

Mit (S7%) = s—0.196 wire damit das bekannte Resultat von Anderson [53] reproduziert.
Genausogut kann man nach den verbleibenden Untergittermagnetisierungen (S/2) ,m =
2,...,6 fragen. Deren Berechnung erfolgt im Prinzip auf dieselbe Art und Weise, nur
daB entsprechend andere Greensche Funktionen abgeleitet werden miissen. Letztendlich
ergibt sich allerdings folgende Eigenschaft:

(574 = (87) = (55) = (55") = (51),
($7)p = (S5)=(S) , (S #(Sh)- (2.74)

Dieses Resultat ist verniinftig, da innerhalb der Subsysteme die Spins dquivalent sind.
In Abb. 2.5 sind die Untergittermagnetisierungen iiber J,p fiir J44 = 1.00, Jgp = 0.10
und s = 1/2 aufgetragen. Obwohl sich (S?) , mit wachsendem J4p verringert, bleibt die
langreichweitige Néel-Ordnung innerhalb der Phasengrenzen von I im A-Subsystem ge-
geniiber Quantenfluktuationen stabil. Im Gegensatz dazu bricht die Néel-Ordnung im
B-Subsystem bei J4p & 0.58 zusammen. Mit J4p5 &~ 0.63 ist der klassische Ubergangs-
punkt deutlich gréBer. Der Einflufl der Quantenfluktuationen ist im schwécher gebunde-
nen B-Subsystem offenbar stirker. Eine Analyse mittels Exakter Diagonalisierung (ED)
fiir ein System aus 24 Spins (16 A-Spins und 8 B-Spins) s = 1/2 stiitzt dieses Bild [49].
Man findet, daB bei den gegebenen Parameterverhéltnissen mit zunehmendem J,p die
B-B-Korrelationen stéirker unterdriickt werden als die A-A-Korrelationen. Es kann da-
her argumentiert werden, daf starke Quantenfluktuationen im Falle s = 1/2 begiinstigt
durch Frustration zu einer neuen Grundzustandsphase fiihren, in der das A-Subsystem
Néel-geordnet bleibt, wihrend im B-Subsytem zunehmend Quantenunordnung auftritt.
Ein #hnliches Verhalten weist ein frustrierter J;-J;-Spin-1-Spin-1/2-Ferrimagnet auf ei-
nem Quadratgitter auf. Bei starker Frustration bleibt das Spin-1-Subsystem geordnet,
wihrend das Spin-1/2-Subsystem ungeordnet ist [51]. Eine weitere interessante Grofie
ist die Grundzustandsenergie Fy. Im klassischen Limes ist sie bekanntlich von J4p un-
abhéingig und hochgradig entartet. Durch Quantenfluktuationen wird diese Entartung
aufgehoben und Ej eine Funktion von Jup. Fiir die Grundzustandsenergie liefert die
LSWT mit (2.51) folgenden Ausdruck:

Eo=—2N (2Jaa+JpB)s(s+1)+ > > wnq/2. (2.75)

q m=1

Ey ist in Abb. 2.6 dargestellt. Zu beobachten ist eine leichte Abnahme der Grundzu-
standsenergie mit J4p im Gegensatz zum klassischen Limes, wo sie beziiglich J4p un-
veréndert bleibt. Im Anschluf§ daran soll nun das Spektrum der Spinwellendispersionen
eingehender untersucht werden. Es gibt also sechs nichtentartete Moden, wovon zwei
optisch sind. Die iibrigen sind akustischer Natur, wobei jeweils zwei auf jedes Subsy-
stem entfallen. Weiterhin werden die akustischen Moden ausschlieflich fiir g = 0 Null.
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Abbildung 2.5: Untergittermagnetisierungen (S?) , sowie (S%) 5 als Funktionen von Jy4p
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Abbildung 2.6: Grundzustandsenergie pro Spin Fy/3N als Funktion von Jup fiir s =

1/2.
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Aus der Entwicklung derselben um das Zentrum der Brillouin-Zone folgen die Spinwel-
lengeschwindigkeiten. Es ist jedoch bereits weiter oben darauf hingewiesen worden, daf
zumindest keine kompakte analytische Form fiir die Dispersionsrelationen existiert, weil
sie Losungen eines Polynoms sechsten Grades in w sind. Im folgenden wird daher kurz
umrissen, wie man dennoch zu analytischen Ausdriicken fiir die Spinwellengeschwin-
digkeiten gelangt. Ausgangspunkt ist die Determinante der Koeffizientenmatrix des
Gleichungssystems (2.67). Um die Dispersionsrelationen zu gewinnen, ist im Prinzip
die Determinante gem#fl

(W — wiq) (W + waq) (W — Wsq) (W + Waq) (W — wsq) (W + wWeq) =0 (2.76)

zu faktorisieren, was im allgemeinen nicht méglich ist. Von Interesse sind aber nur die
Lésungen in einer Umgebung von q = 0. Dann ist bekannt:

- In der Umgebung des Zentrums der Brillouin-Zone sind die Dispersionsrelationen
isotrop, d.-h. wpq = wr, (¢) mit ¢ = /¢2 + ¢2.

- Dariiber hinaus gilt fiir die vier akustischen Moden wegen der antiferromagneti-
schen Kopplungen wy, (¢) = ¢q.

Deshalb ist die Determinante dergestalt zu entwickeln, dafl nur Terme der Gestalt
apw™q*™™,m = 0,...,4 beriicksichtigt zu werden brauchen, da die iibrigen im Limes
q — 0 schneller als die anderen verschwinden. Tut man dies, so findet man

4 2 2 JBBJI%B 2, .2 2
w* —2(2J44 +4Jgp — ——— | s"Wq
Jaa
+ (3203 4J3p — 12JaadppJap + Jip) s'¢" = 0. (2.77)

Im Ergebnis besitzt (2.77) als Losungen diejenigen Pole, die den akustischen Moden in
der Umgebung von q = 0 zuzuordnen sind!®:

w1 (Q) = W2 (Q) =CAq , Ws (Q) = Ws (Q) = CBY,

JppJ3
ca = 3\/ 202, + 4% — “PPTAB

+ z,
Jaa

IppJap
Jaa
8.J% Jin

o= \/ (20 = 4T30)" + 2 (TuTon = JaaTha) — T2 (T3 — Tha).
AA AA

cp = 3\/2J31A+4J1233 —

(2.78)

Fiir geniigend kleine ¢ entarten sowohl die akustischen Moden im A-Subsystem
(w1q, waq) als auch im B-Subsystem (wsq, weq). Interessant ist die Tatsache, dal ¢ am
klassischen Phaseniibergangspunkt Jap = 2v/Js4Jpp Null Wirdﬂ. Von da ab versagt

19Wegen (2.68) handelt es sich bei w3q und wsq um optische Moden. Beim Aufstellen von (2.77)
wurden sie bereits abgespalten.
20Gleiches findet man in den zwei- und dreidimensionalen Versionen des J;-Jo-Modells [7,(34].
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die Theorie, da komplexe wyq auftreten wiirden. Offenbar ist die LSWT sensitiv fiir
das Verhalten des klassischen Systemﬂ.

Fazit: Phase I, in der klassisch zwei Néel-geordnete Subsysteme koexistieren,
die trotz einer frustrierenden Kopplung effektiv nicht miteinander wechselwirken,
wurde mit den Methoden der LSWT n#her untersucht. Dabei konnten zweierlei Effekte
herausgearbeitet werden, die ihre Ursache im Zusammenspiel von Quantenfluktuatio-
nen und Frustration haben. Ausgehend von der Erkenntnis, dafl Quantenfluktuationen
die Entkopplung an sich aufheben, ist gezeigt worden, dafl einerseits tatséchlich order-
from-disorder auftritt, indem kolineare Spinordnung durch Quantenfluktuationen
energetisch bevorzugt wird. Andererseits zerstéren dieselben Quantenfluktuationen
mit zunehmender Frustration diese Ordnung zumindest im schwicher gekoppel-
ten B-Subsystem. Quantenfluktuationen fithren zu einer J4p-Abhéngigkeit der
Grundzustandsenergie.

21K lassische Spinwellen haben dieselben Dispersionsrelationen wie in der LSWT.
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Abbildung 2.7: Das Dreiecksgitter (links) sowie das Kagomé-Gitter (rechts).

2.3 Das Maple-Leaf-Gitter

Im vorigen Abschnitt wurde das A-B-Modell hinsichtlich seiner magnetischen Ord-
nung im Grundzustand studiert. Letztendlich besteht das A-B-Modell aus zwei einan-
der durchdringenden Quadratgittern. Ein Quadratgitter mit antiferrogmagnetischer
Néchster-Nachbar-Wechselwirkung ist nicht frustriert und besitzt einen geordneten
Grundzustand [55]. Erst das Einschalten einer zusétzlichen, frustrierenden Kopplung
zwischen beiden Gittern sorgt fiir die Zerstérung der langreichweitigen Ordnung. Wei-
tere Kandidaten fiir Systeme mit einem magnetisch geordneten Grundzustand selbst
im Fall s = 1/2 sind der HAFM auf dem Honigwabengitter [56, 57] sowie entgegen
fritheren Arbeiten [58,(59] der HAFM auf dem Dreiecksgitter [60, 61, 62]. Das Honig-
wabengitter genauso wie das Quadratgitter sind geometrisch nicht frustriert. Quan-
tenfluktuationen mindern in diesen Systemen sehr wohl die magnetische Fernordnung,
doch nicht in dem Mafle, da} diese Ordnung ganz verschwindet. Dagegen gehort der
HAFM auf dem Dreiecksgitter zu einer eigenen Klasse von Spinsystemen. In ihnen
tritt Frustration allein aus geometrischen Griinden auf. Der Parameter, der in diesen
Systemen neben der Frustration den Einflufl der Quantenfluktuationen steuert, ist die
Koordinationszahl z. In diesem Abschnitt soll z auf systematische Weise variiert und
Heisenberg-Antiferromagnete auf drei verschiedenen, geometrisch frustrierten Gittern
miteinander verglichen werden. Zum einen ist da das bereits erwdhnte Dreiecksgitter
entsprechend Abb. 2.7. Jeder Spin hat sechs nichste Nachbarn. Demzufolge besitzt das
Dreiecksgitter die Koordinationszahl z = 6. Weiterhin kann man sich das Dreiecksgitter
geméB [16] um den Faktor 1/4 verdiinnt vorstellen. Auf diese Weise gelangt man zum
Kagomé-Gitter nach Abb. 2.7 mit vier néchsten Nachbarn, d.h. z = 4. Von diesem
Gitter weifl man, da8 sein Grundzustand zumindest fiir s = 1/2 héchstwahrschein-
lich durch eine Spinfliissigkeitsphase mit kurzreichweitiger Ordnung charakterisiert ist
[63, 64]. Mit diesen beiden Gittertypen hat sich bereits eine ganze Reihe von Autoren
beschiftigt. Insbesondere existieren auch Arbeiten, die die LSWT in mehr oder we-
niger modifizierter Form anwenden (Dreiecksgitter [20, [17], Kagomé-Gitter [66, 67]).
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Abbildung 2.8: Die beiden Versionen des Maple-Leaf-Gitters.

Von Betts [16] stammt dariiber hinaus der Vorschlag, im Dreiecksgitter jeden siebten
Platz zu entfernen. Dies fithrt zu einem weiteren translationsinvarianten Gitter, des-
sen Koordinationszahl mit z = 5 genau zwischen jener des Dreiecksgitters (z = 6)
und jener des Kagomé-Gitters (z = 4) liegt. Betts bezeichnet dieses Gitter aufgrund
gewisser Symmetrieeigenschaften als Maple-Leaf-Gitter. Von diesem Gitter existieren
zwel verschiedene Varianten, die durch Spiegelung auseinander hervorgehen, wie man
Abb. 2.8 entnehmen kann. Da im allgemeinen magnetische Ordnung durch Frustration
und/oder niedrige Koordinationszahl geschwiicht wird, erhebt sich sofort die Frage,
ob es im Maple-Leaf-Gitter langreichweitige Ordnung gibt (Dreiecksgitter) oder nicht
(Kagomé-Gitter). Im Rahmen der LSWT wird diese Frage nun niher untersucht. Um
jedoch die zu gewinnenden Ergebnisse im richtigen Zusammenhang darstellen und deu-
ten zu konnen, werden in der Folge die wesentlichen Spinwellenresultate in Bezug auf
das Dreiecks- sowie das Kagomé-Gitter grob umrissen.

2.3.1 HAFM auf dem Dreiecksgitter

Wie {iblich lautet der Hamilton-Operator

H=17) SnS,, (2.79)
(m,n)

wobei J positiv ist und sich die Summation iiber nichste Nachbarn erstreckt®. Die geo-
metrische Elementarzelle, deren Basisvektoren durch a; = (v/3/2,1/2) und a, = (0,1)
gegeben sind, enthiilt einen Spin der Linge s. Es gebe N solcher Zellen, so dafi die
Zahl der Spins ebenfalls NV ist. Distanzen sind im Gitter so skaliert, daf§ der Abstand
zwischen benachbarten Spins eins ist. Zur Bestimmung des klassischen Grundzustan-
des wird von der geometrischen Elementarzelle ausgegangen und unterstellt, dal ein

22Auf jede geometrische Elementarzelle entfallen drei nichtiquvivalente Bindungen zu néichsten
Nachbarn.
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Abbildung 2.9: Die durch die magnetischen Ordnungsvektoren Q charakterisierten klas-
sischen Grundzusténde des Dreiecksgitters: Q; (links), Qo (rechts). Die Drehung der
Spins erfolgt im mathematisch positiven Sinn. Eingezeichnet sind auch die Basisvekto-
ren des geometrischen Gitters.

-
-

-

reziproker Gittervektor Q existier@, der die magnetische Ordnung im Grundzustand
beschreibt. Dadurch geht (2.79) in

E = JNs*[cos (Qa,;) + cos (Qaz) + cos (Q (a1 — az))] (2.80)

iiber. Der klassische Grundzustand ist zweifach entartet. Es existieren zwei nichtéqui-
valente Q mit

2 2m
Sie entsprechen den in Abb. 2.9 dargestellten Strukturen. Der Kosinus des eingeschlos-
senen Winkels benachbarter Spins ist —1/2. Demzufolge ist die klassische Grundzu-
standsenergie £ = —3JNs?/2.
Da die geometrische Elementarzelle zur Beschreibung des klassischen Grundzustandes
ausreicht, geniigt eine Ein-Magnonen-Theorie. In linearer Spinwellenniherung?* trans-
formiert sich (2.79) in

H = -3JNs’/2+) H,,
q
Hy = 3Jsaf a1q — 3Js7501401_q/4 — 3T 57q01q01-q/4
+  Jsviai 01q/4 + J$7q01q01,/4 (2.82)

mit 7, = exp (iqa;) + exp (iqay) + exp (iq (as — a;)). Daraus folgt die Spinwellendi-
spersion

wig = T51/ (3= (7 +7a) /2) (3 + % + 1) (2.83)
und daraus die Grundzustandsenergie E, sowie die Untergittermagnetisierung (S7?):
Ey = —3JNs(s+1)/2+ ) wie/2,
q

23Numerische Simulationen legen diesen Ansatz nahe.
24Lineare Terme heben sich heraus.
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(S7) = 5= 3 (afgma) = (7). (2.84)

In Ubereinstimmung mit [17, (18] erhilt man im thermodynamischen Limes Ey/JN =
—1.55% — 0.327s sowie (S?) = s — 0.261. Damit besitzt die Untergittermagnetisierung
einen endlichen Wert. Insofern bleibt die magnetische Fernordnung auch in Anwesenheit
von Quantenfluktuationen erhalten. Trotzdem ist die Quantenkorrektur im geometrisch
frustrierten Dreiecksgitter grofier (0.261) als im unfrustrierten Quadratgitter (0.196).
Man kann leicht einsehen, da8 (2.83) einer akustischen Mode entspricht, die auler im
Ursprung der Brillouin-Zone auch in den Punkten q = Qi(2) Null wird. Demzufolge
lassen sich zwei Spinwellengeschindigkeiten definieren, die gemif$ [20] im Falle cq—0
Oszillationen aus der Ebene heraus und im Falle c4=q,,, Oszillationen in der Ebene
beschreiben, wobei die genannte Ebene diejenige ist, die durch die klassische Ordnung
festgelegt wird. Folgt man weiterhin der Notation von [20], so gilt

V271Js vd4Js
Cq=0 = (|| = 9 y Cq=Qu = CL = 4 (2.85)

Mithilfe der hydrodynamischen Beziehung 148t sich die Spinsteifigkeit p berechnen
[65, 20]. Sie ist ein zusétzlicher Parameter, der den Widerstand des Spinsystems ge-
geniiber ordnungsmindernden Quantenfluktuationen charakterisiert. Unter der hydro-
dynamischen Beziehung versteht man die Formel p = ¢?y. Dabei ist ¢ die Spinwel-
lengeschindigkeit und y die Suszeptibilitdt. Im Sinne einer Entwicklung von p nach
Potenzen von s ist der fithrende Term proportional zu s?, der hier allein von Interesse
sein soll. Dies wiederum bedeutet, dafl die klassische Suszeptibilitéit zu bestimmen ist,
die selbst nicht von s abhangﬂ%.

Ohne auf Details einzugehen, findet man fiir die klassische Grundzustandsenergie
in Anwesenheit eines schwachen Magnetfeldes H = (hy, hy, h,) folgende Relation:
E = —-3JNs?/2 — N (h% + h2 + h?%) /18J. Bezogen auf das Volumen V = N+/3/2
ergibt sich daraus die Suszeptibilitit:

1 0°E 1 0°E 1 0°E 2
X=TVeR T VoR T Vol yams (286)
z y z 243J
Entsprechend (2.85) lassen sich nunmehr zwei Spinsteifigkeiten ableiten:
V3Js? V/3Js?
PI=—g o PL=T (2.87)

Es gilt demnach p;/p; = 2. Zum spiteren Vergleich seien noch die Arbeiten [53, [54]
zitiert, die das Quadratgitter betreffen. In ihnen findet man

1
¢y =cL=+V8Js sowie x= Vi (2.88)
woraus
p|=pL=Js (2.89)

mit p/p. =1 folgt.
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Abbildung 2.10: Das Kagomé-Gitter mit seiner geometrischen Elementarzelle, die durch
a; = (\/3, 1) sowie az = (0,2) begrenzt wird. Die Numerierung der Spins innerhalb
der Zelle dient der Unterscheidung der einzufiihrenden Magnonen.

V3 x /3 =0

| |

Abbildung 2.11: Zwei ausgewihlte klassische Grundzustinde des Kagomé-Gitters: v/3 x
V/3-Zustand (links), q = 0-Zustand (rechts). Die gestrichelten Ellipsen deuten den
hohen Entartungsgrad an, dem allein diese Zustdnde unterworfen sind.
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2.3.2 HAFM auf dem Kagomé-Gitter

Die Verhiltnisse beim Kagomé-Gitter sind wesentlich komplizierter. Wiederum wird
ein Hamilton-Operator der Form (2.79) mit den entsprechenden Konventionen betrach-
tet. Die geometrische Elementarzelle, die durch die Basisvektoren a; = (\/3, 1) sowie
ay = (0,2) aufgespannt wird, enthélt drei Spins der Linge s. Bei N Spins im Gitter
gibt es also N/3 geometrische Zellen, auf die jeweils sechs Bindungen entfallen. Der
klassische Grundzustand des HAFM auf dem Kagomé-Gitter ist in der Literatur be-
reits eingehend diskutiert worden [66, 67, 71, 72, 73]. Im klassischen Grundzustand ist
der Kosinus des eingeschlossenen Winkels benachbarter Spins wie beim Dreiecksgitter
stets —1/2, so daB die klassische Grundzustandsenergie durch £ = —JNs? gegeben ist.
Im Unterschied zum Dreiecksgitter gibt es jedoch unendlich viele nichttriviale Reali-
sierungen eines klassischen Zustandes dieser Energie, d.h. der klassische Grundzustand
ist hochgradig entartet [68]. In Abb. 2.11 sind zwei ausgewihlte Varianten (v/3 x /3-
Zustand und g = 0-Zustand) dargestellt. Dieses Bild entstammt [69], worin im ein-
zelnen diese Zusténde beschrieben werden. Wesentlich ist, daB im /3 x v/3-Zustand
die magnetische Elementarzelle dreimal und im q = 0-Zustand die magnetische Ele-
mentarzelle genauso grofl wie die geometrische Elementarzelle ist. Trotzdem geniigt
in beiden Fillen eine Drei-Magnonen-Theorie?®. Der Ansatz fiir eine LSWT um den
V'3 x v/3-Zustand unterscheidet sich durch nichts von dem Ansatz fiir eine LSWT um
den q = 0-Zustand [67]. Dariiber hinaus gilt wegen (2.9) dieser Ansatz auch dann,
wenn man irgend einen anderen klassischen Grundzustand herausgreift und ihn zum
Ausgangspunkt einer linearen Spinwellenanalyse macht, weil auch dann der Kosinus
des eingeschlossenen Winkels koppelnder Spins stets —1/2 ist; zumindest auf der Ebe-
ne einer linearen Niherung ist kein klassischer Grundzustand gegeniiber einem anderen
ausgezeichnet. Der zu diagonalisierende Hamilton-Operator lautet in jedem Fall

H = —JNs"+> H,
q

Hq = 2Js(aiq01q + 034029 + a3a3q)
— 3Jscos(qa1/2) (af,ad_q + a1q02-q) /2
— 3Jscos (qaz/2) (adyai_q + G2qas—q) /2
— 3Jscos(q (a1 — as) /2) (adqaf_q + asqai—q) /2
+ Jscos (qa1/2) (af,a2q + a1q03,) /2
+ Jscos (qag/2) (agdyasq + a2qady) /2
+ Jscos(q(ar — as) /2) (a3,014 + asqaiy) /2. (2.90)

Chubukov [70] argumentiert, daf auch im Kagomé-Gitter Quantenfluktuationen die
klassische Entartung aufheben und auf diese Weise langreichweitige Ordnung im
Grundzustand ermoglichen. Damit wéire der HAFM auf dem Kagomé-Gitter ein wei-
terer Kandidat fiir ein Quantenspinsystem, in dem order-from-disorder auftritt. Aller-
dings kénnen die LSWT wie auch andere Methoden [21, 22, 23, 24, 25, 26, 27, 28, [29]

25In linearer Niherung, d.h. auch im klassischen Fall, sind die Spinwellengeschindigkeiten propor-
tional zu s. Daher wird eigentlich die klassische Spinsteifigkeit berechnet, die proportional zu s? ist.

267 war existiert kein eindeutig definierbarer klassischer Ordnungsvektor. Dennoch geht in den je-
weiligen bosonischen Hamilton-Operator neben der Kopplungskonstante J nur der Kosinus des einge-
schlossenen Winkels koppelnder Spins ein - und der ist in jedem Fall —1/2.
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diesen Effekt nicht reproduzieren. Beziiglich des linearen Spinwellenansatzes geniigt
ein Blick auf die Dispersionsrelationen, die sich aus (2.90) ergeben, um zu dem Schluf}
zu gelangen, dafl in diesem System keine magnetische Ordnung auftritt. Neben zwei
entarteten akustischen Moden existiert eine flache Nullmode:

Wiq = 0,

3
Woq = wsq = 2Js,|2cos? q2_y + (cos2 % + cos? %) (1 — 2cos? %)

(2.91)

Wollte man z.B. die Untergittermagnetisierung berechnen, so wiirde der Sum-
mand/Integrand bei der Summation/Integration iiber die Brillouin-Zone in jedem
Punkt wegen der flachen Nullmode divergieren [67], so daB man fiir die Untergitter-
magnetisierung selbst keinen endlichen Wert erhalten kann. Nichtsdestotrotz 148t sich
iiber

Ey=-JNs(s+1)+ > Y Wmq/2 (2.92)

q m=1

die Grundzustandsenergie im thermodynamischen Limes gemi8 Ey/JN = —s*—0.441s
bestimmen?”.

2.3.3 Der klassische Grundzustand des HAFM auf dem
Maple-Leaf-Gitter

Als Hamilton-Operator dient (2.79) mit antiferromagnetischer Kopplung J ausschlief-
lich zwischen néchsten Nachbarn. Das Gitter enthalte N Spins der Linge s. Sei-
ne geometrische Elementarzelle wird durch die Vektoren a; = v/7(v/3/2,1/2) und
a; = V/7(0,1) gebildet. Dabei sind Distanzen im Gitter wiederum so bemessen, daf
der Abstand zwischen benachbarten Spins eins ist. Auf jede Elementarzelle entfallen
sechs Spins. Demzufolge gibt es N/6 Zellen mit jeweils fiinfzehn Bindungen.
Numerischen Untersuchungen zufolge ist der klassische Grundzustand planar und ver-
kantet mit sechs magnetischen Untergittern [74,75]. Die Orientierung eines klassischen
Spins mit dem Index n im i-ten Hexagon R; entsprechend Abb. 2.12 kann wie folgt
charakterisiert werden:

Sin = s (cos (¢n + QR;) €1 + sin (¢, + QR;) €2), (2.93)

wobei e(9) beliebige, orthogonale Einheitsvektoren sind. Innerhalb eines Hexagons sind
Spins mit geradem Index parallel. Dasselbe gilt fiir die {ibrigen Spins mit ungeradem
Index. Weiterhin schlieen néchstbenachbarte Spins entlang eines Hexagons den Winkel

« ein, was durch
by = 0 n=1,3,5
"l @ n=2,4,6

27 Im zweiten Teil dieser Arbeit steht das Kagomé-Gitter insbesondere aber seine dreidimensionale
Variante im Mittelpunkt der Untersuchungen. Zur Anwendung kommt eine Methode, derer sich bereits
in [28,129] bedient wird.
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Abbildung 2.12: Die allen Berechnungen zugrunde liegende Variante des Maple-Leaf-
Gitters. Sie entspricht der in Abb. 2.8 links dargestellten Version. Physikalisch véllig
gleichwertig ist sein gespiegeltes Gegenstiick. Die Indizes n = 1,...,6 numerieren die
Spins innerhalb eines Hexagons durch. Genauso werden spéter die verschiedenen Ma-
gnonensorten unterschieden.
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Abbildung 2.13: Die beiden entarteten klassischen Grundzustinde des Maple-Leaf-
Gitters, Q; (links) und Qs (rechts). In Richtung der Basisvektoren erfolgt die Drehung
der Spins im mathematisch positiven Sinn.
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Abbildung 2.14: Zur Illustration von (2.96): Die sechs magnetischen Untergitter im
durch Q; charakterisierten Zustand. Das magnetische Feld greift senkrecht zur Papiere-
bene an und bewirkt eine endliche z-Komponente der Spins, wobei die Orientierung
der z (y)-Komponenten erhalten bleibt.
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Abbildung 2.15: Zur Illustration von (2.100): Die sechs magnetischen Untergitter im
durch Q charakterisierten Zustand, wobei die gestrichelte Linie die Richtung des ma-
gnetischen Feldes H = (h},0,0) angibt. Es bewirkt ein Eindrehen der Spins S4,, Sp,
in Feldrichtung um einen Winkel «. Entsprechendes gilt fiir die Spins S¢,,S¢, und
S4,,Sp, um die Winkel 5 respektive +y.

ausgedriickt werden kann. Dann ist die klassische Grundzustandsenergie durch

E = JNs’cosa+ JNs®(cos (Qa;) + cos (Qaz) + cos (Q (a; — az))) /3
+ JNs?(cos (Qa; + ) + cos (Qag — @) + cos (Q (a; — ag) — @) /6
(2.94)

gegeben. Wie beim Dreiecksgitter findet man auch hier einen trivial entarteten Grund-
zustand. Es gibt zwei nichtdquivalente Q, die gleichermafien die Energie minimieren.
Es sind dies o o

Q=202 , Q= (\/3 1) . (2.95)
Einsetzen von Q; in (2.94) liefert ein absolutes Minimum fiir « = 57 /6. Ent-
sprechend erhélt man o = 77/6 unter Verwendung von Q. In beiden Fillen gilt
E = —JNs*(1++/3) /2. Im wesentlichen findet man wiederum eine 120°-Struktur,
wie sie bereits beim Dreiecks- und Kagomé-Gitter auftritt. Anschaulich sind im Zu-
stand Q; die Spins in Richtung von a; um 27/3 und in Richtung von a; um 47/3
gedreht. Genau umgekehrt ist es im Zustand Qs. Auf diese Weise befinden sich acht-
zehn Spins inneralb der magnetischen Elementarzelle. Wegen der Existenz der Vektoren
Qi(2) geniigt spéter eine Sechs-Magnonen-Theorie.
An dieser Stelle sei darauf verwiesen, daf§ sich von nun an die weiteren Betrachtungen
auf den Zustand Q; beziehen. Alle Aussagen gelten uneingeschriankt auch fiir den Zu-
stand Q.
Im Anschlufl an die Spinwellentheorie soll die Spinsteifigkeit in fithrender Ordnung
s? berechnet werden. Daher folgt nun die Ableitung der Suszeptibilitit fiir das klas-
sische Spinsystem. Zuerst wird der Fall untersucht, bei dem ein magnetisches Feld
H = (0,0, h, ) senkrecht zu der durch die planare Spinstruktur definierten Ebene an-
greift. Das Koordinatensystem zur Beschreibung der Spinvektoren ist so gelegt, dafl
fiir hy = 0 geméB Abb. 2.14 S4, = s(1,0,0) sowie Sp, = s(0,—1,0) gilt. Das Feld
wird nun versuchen, die Spins aus der Ebene heraus um einen Winkel « zu drehen,
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so daB} eine von Null verschiedene z-Komponente entsteht. In Kugelkoordinaten lautet
der Ansatz fiir die Spinvektoren daher

1

S4, = s(cosa,0,sine), Sy, =s (—7cosa,§cosa,sina) ,

1 3 ) .
Sp, = s (—icosa, 7c0sa,s1na> , Sp, =5(0,—cosa,sina),

1 V3 : V3 1 :
Se, = s|—zcosa,———cosa,sina|, Sg =s|-—cosa,-cosq,sina |,

2 2 2 2

(2.96)
woraus unter Beriicksichtigung des Feldterms —HS* folgt:
5JNs? 3
E = 28 —JNs2c0s2a<§+3) — hy Nssinc. (2.97)

Die Energie wird minimal, falls sinc = h/Js (6 + v/3) gilt. Somit ist die klassische
Grundzustandsenergie mit einem senkrecht angreifenden Feld durch

JNs2 h2 N
B=-"2 (1+\/§)—m (2.98)

gegeben. Bezogen auf das Volumen V' = N74/3/12 erhilt man daraus in der Notation
von [20] die Suszeptibilitat x| mit

4
M= 1+ 2v3)

Nun wird der andere Fall untersucht, bei dem ein magnetisches Feld in der Ebene an
das Spinsystem koppelt. Die einzelnen Untergitter reagieren darauf unterschiedlich. In
einem Koordinatensystem, in dem das Feld durch H = (h),0,0) gegeben ist, wird
entsprechend Abb. [2.15 der Ansatz

(2.99)

2 2
S4 = s 7(sina—i—cosa),—g(sina—cosa),O),
V6-v2  VE+V2 VE+v2  V6-V2
S4, = | ——siny— ————cosy,—————siny — —————cosv,0 |,
4 4 4 4
V6-v2  VE+V2 VE+v2 o V6-V2
Sp, = s|———siny— o8 7, siny + ———cos~,0 |,
4 4 4 4
2 . 2.
Sp, = s 7(sma—i—cosa),T(s1na—c0sa),0),

288 ist der Gesamtspin, also die Vektorsumme aller N Spins.

46



Se, = s(@sinﬂ—i—%;ﬁcosﬂ,\[;ﬁsinﬂ—@cosﬂﬁ),
Se, = s(@sinﬂ—i—wcosﬂ,—wanﬂ—k@cosﬂﬁ)

(2.100)

gewéhlt. Will man mit diesem Ansatz die klassische Grundzustandsenergie im Feld
berechnen, indem alle relevanten Skalarprodukte unter Einbeziehung des Feldterms
aufaddiert werden, um danach das energetische Minimum durch Ableiten nach «, 8
und v zu bestimmen, so gelangt man zu einem nichtlinearen Gleichungssystem, das
sich einer analytischen Behandlung entzieht. Da aber andererseits die Suszeptibilitét
als Reaktion des Spinsystems im Limes eines verschwindenden magnetischen Feldes zu
verstehen ist, geniigt eine Betrachtung des Problems im Grenzfall eines hinreichend
kleinen k). Dann sind die Abweichungen vom klassischen Grundzustand ohne Feld,
die durch «, 8 und v beschrieben werden, ebenfalls klein. In diesem Sinne kénnen alle
auftretenden Winkelausdriicke in der Energiebeziehung durch die ersten Glieder ihrer
Taylor-Entwicklungen ersetzt werden, d.h.

sina — a, cosa—1—a?/2,
sin3 — B, cosf—1—p5%/2,
siny — v, cosy—1—~%/2.

Tut man dies und verfolgt weiterhin in konsistenter Weise den Gedanken, daf} die ge-
suchte Suszeptibilitéit die lineare Reaktion des Spinsystems auf ein magnetisches Feld
beschreibt, so sollte die Annahme o, 8,7 ~ h) gerechtfertigt sein. Unter dieser Vor-
aussetzung ergibt sich eine Energiebeziehung, die als Entwicklung nach Potenzen von
by, aufzufassen ist29. Zumindest bis zur zweiten Ordnung herrscht Konsistenz. Genau
die Terme zweiter Ordnung sind aber diejenigen, die wegen x = — limy,_,¢ 0*E/Oh?
entscheidend sind, so daf in der Konsequenz alle Beitrédge htherer Ordnung von vorn-
herein unberiicksichtigt bleiben kénnen. In diesem Sinne findet man fiir die Energie
zunéchst

- % (\/é-i- \/5) B — % (\[— \/5) byy

E = h”a

JNs2 JN 2
+ S (VBH1) (@) + - (2vB 1) 82
2 2
n ‘”ZS (@B + By) + JJZS (2\/3 _ 1) ay. (2.101)

Das Ableiten von (2.101) nach den Variablen «, 8 und v zur Bestimmung des absoluten
Minimums fiihrt auf ein lineares Gleichungssystem, dessen L&sung

4—-+/3 9++/3 —15+7/3
= 2 = 2 = .
o= V2h, B 75 Vb, v P V2hy (2.102)

2%Die Energie im Feld 148t sich in aller Allgemeinheit als Entwicklung nach Potenzen der Feldkom-
ponenten aufschreiben.
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lautet. Einsetzen dieser Losung in (2.101) liefert die klassische Grundzustandsenergie
im Limes eines hinreichend kleinen Feldes zu

__JN§? W
B=-22" (1+v3) TV (2.103)

woraus bezogen auf das Volumen

8

XL = m (2.104)

folgt. Die Resultate sind numerisch verifizierbar®.

2.3.4 Lineare Spinwellentheorie fiir den HAFM auf dem
Maple-Leaf-Gitter

Nachdem im letzen Abschnitt die Natur des klassischen Grundzustandes untersucht
wurde, kann sich nun der Frage zugewandt werden, inwieweit Quantenfluktuationen in
der Lage sind, die klassische Fernordnung, die sich im wesentlichen nicht von der im
Dreiecksgitter unterscheidet, zu beeinflussen oder gar zu zerstéren. Diesem Zweck dient
eine LSWT, in der um den klassischen Zustand Q; entwickelt wird®!, Da ein Q-Vektor
existiert, der die klassische Ordnung ausgehend vom geometrischen Gitter erfafit, sind
nur sechs Magnonensorten einzufiihren. Es handelt sich also um eine Sechs-Magnonen-
Theorie. Jedem Platz innerhalb eines Hexagons wird eine eigene Magnonensorte zuge-
ordnet. Zur Unterscheidung dienen Indizes, die mit der Durchnumerierung der Spins
in Abb. 2.12 korrespondieren. Mit 7,4 = exp (iqry,) fiir n = 1,2,3, wobei explizit

—3a; + 2a, 1 (
- - —3v/3, 1) ,
& 7 V28 V3

—a; + 3a, 1 (
= = —F—\— 37 5) )
To 7 58 \/7

S —2a17—a2:\/12_8(_2\/§,_4)

gilt, sowie
6 .
Gn,R = 4/ N Eq ng €xp (—igqR) (2.105)

30Insbesondere kann gezeigt werden, daf ein allgemeiner Ansatz mit beliebigen Feldkomponenten auf
eine Energiebeziehung fiihrt, die bei alleiniger Beriicksichtigung aller Terme bis zur zweiten Ordnung
in den Feldkomponenten die Gestalt

J.NS2 N 2 2 N 2
b= (1+\/§)_3J(4+\/§) (hw+hy)_2J(6+\/§)hz

hat.
31Der bosonische Hamilton-Opeartor ist invariant gegeniiber Q; < Q..

48



unter Beriicksichtigung von (2.9) ist der Fourier-transformierte Hamilton-Operator
durch

H = —JNs (1+3) /2+Js Y H
a
H, = (1 + \/5,) (afy01q + a3qq + a3q03q + ajqa4q + 0y U5q + Gdqtsq)

2+\f

* +
Y1 alqa2 q + 'qualqa2 q) ’qualqa@q + 'qualqa?q)

+
Yo a‘2qa‘3 q T Y2q02q03— q) Y2 a2qa3q + 'Y2qa2qa3q)

&

73qa3qa‘4 q + 73qa3qa‘4 Q)

+
’qua4qa‘5 q + ’qua4qa5 q) ’qua4qa5q + ’qua4qa5q)

2oV
Y3 (s
(’quasqa4q + Y3qU3q01q)
V3
&N

(i
> (0
V3
v
&)
Y5 (5

- ’Y2qa5qa6 qt 'Y2qa5qa6 q) + '72qa5qa6q + 72qa5qag—q)
\f \
- a6qa1 a + Y3qU6qQ1— q) + (73qa§qa1q + 73qa6qafq)
3 1
- Z (’YQqalan) q + 72qa‘1qa5 q) Z (72qa1qa5q + ’YQqalqa q)
3, . 1
-1 (’Y3 a3qa‘5 q T V3q3qas5— q) + 1 (’Y 3qa5q + V3q03q 05 q)
3 1
T (’Y1qa1qa3 q T ’Y1qalqa3 q) + 1 (’qualqa3q + ’quchqa q)
3, . 1
T (’Y1 a4qa6 q T V1qQiqU6— q) + 1 (’Y a‘4qa‘6q + Y1q@4qs q)
3 1, ., i
T (7 103q08_q T V3q02q 06 a) T 1 (73 U sq + ’Y3qa2qa6q)
3 1 i
T (72qa2qa4— + ’Y2qa2qa4 q) + 4 (’Y2qa2qa4q + ’Y2qa2qa4q)
1, , 1
_ 5 (72 a3qa6 q + Yoq®3qQ6— q) + 5 (’Y 3qa6q + Y2qA3qQg q)
1 L, .,
T 9 (7 lqa4— + Y3q1qUs— q) + 2 (’Y3 1qa4q + V3q01q%4 q)
1, 1
-5 (rqua;qa;_q + quagqag,_q) + 3 (’y a2qa5q + Y1q2q03 q) (2.106)

gegeben. Um obigen Hamilton-Operator zu diagonalisieren und physikalisch relevan-
te GroBen wie die Untergittermagnetisierung ableiten zu kénnen, werden, weil ihre
Handhabung duflerst praktikabel ist, Greensche Funktionen benutzt. Konkret soll als
Ordnungsparameter der Erwartungswert der z-Komponente des Spins 1 in der Zelle R;
gemifB Abb.[2.12 berechnet werden. Aufgrund der Translationsinvarianz des Hamilton-
Operators hingt dieser Erwartungswert nicht von der Wahl des Gitterplatzes ab. Da-
durch kann ein diesbeziiglicher Index von vornherein weggelassen werden. Wegen

(SP)y=s— — Z (afy01q) (2.107)
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wird zu Bestimmung von <afqa1q> iiber das Spektraltheorem die Greensche Funktion

q,w) = {{ag;aly)),, (2.108)

benotigt. Die Vorgehensweise ist klar. Aufzustellen ist zunéchst die Bewegungsglei-
chung (2.37) fiir G{;* (q,w). Durch den Kommutator [a;4, H]_ treten weitere Greensche
Funktionen auf. Sie bilden einen geschlossenen Satz, und ihre Bewegungsgleichungen
nehmen zusammen die Gestalt eines linearen Gleichungssystems an. Anders als beim A-
B-Modell, wo das Gleichungssystem durch die spezielle Wahl von ¢ in zwei dquivalente
6 x 6-Blocke zerfiel, bilden die Koeffizienten hier eine 12 X 12-Matrix, die sich nicht auf
diese Weise reduzieren 1df3t. Jede Greensche Funktion héngt von jeder anderen ab. Zur
Ilustration dessen sei die Bewegungsgleichung fiir G;7" (q,w) einmal aufgeschrieben:

2—-+3
wG i (qw) = 1+ Js (1+\/§) Gt (qw)+ Js 4\/_

2++/3 Js
- Js 1 ’Y1qG3—1+ (q,w) + Z’?’qum+ (q,w)

3Js Js
- T’quG;ﬁJr (q,w) + 5
Js Js _
- 773qu1—1+ (q7 w) + I’Y?qGE)l—i_ (q7 w)

3Js 2 —
— T’ﬁqGEﬁJr (q,w) +Js

2+3
- JST’YMGE;T (q,w) - (2.109)

’Y1qG21 (q,w)

’Y;qGZI—i_ (q7 w)

3 _
’)’3qu51Jr (q7 w)

Auf die Angabe aller iibrigen Bewegungsgleichungen soll wegen des Umfangs verzichtet
werden. Dann liefert die bereits bekannte Kramersche Regel

6
Gt (qw) =g (q,w)/ [ ] W —w?, (2.110)
m=1

wobei im Nenner in faktorisierter Form die Determinante der Koeflizientenmatrix steht.
Die Spinwellenmoden sind mit den Polen w = *wp,q,m = 1,...,6 zu identifizieren.
Eine flache Nullmode existiert nicht. Andernfalls kénnte bereits an dieser Stelle die
Rechnung abgebrochen werden, weil Divergenzen in den Summen/Integralen absehbar
wiéren. In volliger Analogie zu den Ausfithrungen in Abschnitt 2.2.2 erfolgt nun die
Partialbruchzerlegung von G{;' (q,w):

g (@w)/ ] @ —wng) =D An(@) | Bm(q) (2.111)

mit

An(q) = 917" (9 +Wimq) /2Wmq H (wfnq - wiq) ’

n#m

Bn(@) = =g (A, ~Wma) /20maq | [ (Whgq —whq) » (2.112)

n#m
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woraus nach Anwendung des Spektraltheorems (2.44) im Grundzustand

(afqt1q) == D _ Bm(q). (2.113)

folgt. Integration von (2.107) im thermodynamischen Limes unter Verwendung von
(2.113) liefert ein endliches, physikalisch verniinftiges (S!¥). Die Aquivalenz aller ma-
gnetischen Untergitter duflert sich dariiber hinaus in der Tatsache, daf} alle Untergit-
termagnetisierungen gleich sind:

(S77) = (557) = (S5") = (5¢) = (55") = (5¢") = (57).

Es ist
(S%) = s —0.346. (2.114)

Obwohl die Quantenkorrektur (0.346) erheblich groBer als beim Dreiecksgitter (0.261)
ausfillt, erweist sich die klassische Fernordnung zumindest im Rahmen der LSWT als
resistent gegeniiber Quantenfluktuationen. Weiterhin 148t sich die Grundzustandsener-
gie angeben:

6
Ey=—JN (1+V3)s(s+1) /243 Y wma/2. (2.115)
q m=1
Im thermodynamischen Limes ergibt sich daraus Fy/JN = —0.54652 — 0.136s. Um das
Bild, das sich abzuzeichnen beginnt, zu vervollstindigen, soll jetzt die Spinsteifigkeit
in fiihrender Ordnung s? berechnet werden. Dazu ist allein das Spinwellenspektrum
zu untersuchen, da die klassischen Suszeptibilitdten bereits bekannt sind. Trotzdem
die wpq nicht in analytisch einfacher Form vorliegen, kann doch folgendes konstatiert
werden:

- Es gibt eine akustische Mode. Die iibrigen fiinf sind optische Moden.

- Wie beim Dreiecksgitter wird die einzige akustische Mode nicht nur im Punkt
q = 0 Null, sondern auch in den Punkten q = Q(3).

- Die akustische Mode ist linear und isotrop in der Umgebung ihrer Nullstellen.

Unter diesen Voraussetzungen kénnen analytische Ausdriicke fiir die Spinwellenge-
schwindigkeiten gewonnen werden. Da die Pole der Greenschen Funktionen paarweise
mit unterschiedlichem Vorzeichen auftreten und es nur eine akustische Mode gibt, wird
die Determinante der Koeffizientenmatrix, deren Loésungen die Spinwellenmoden sind,
in der Umgebung der Nullstellen entwickelt, wobei alle diejenigen Terme vernachléssigt
werden, die nicht die Gestalt a,w"¢*> ", n = 0,2 haben. Auf diese Weise erhilt man in
der Umgebung von q =0

8 (7 + 4\/5) W2 — T (39 + 23\/5) 22 =0 (2.116)
und in der Umgebung der Punkte q = Q)

16 (97 + 56\/3) W=7 (407 + 235\/5) 22 = 0. (2.117)
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Gittertyp ¢ cL Pl pL pi/pL | (S%)
Quadrat | 1.4142135 | 1.4142135 0.25 0.25 1 0.304
Dreieck 1.2990381 | 0.9185586 | 0.2165063 | 0.1082532 2 0.239

Maple-Leaf | 1.1127356 | 0.6774616 | 0.1584936 | 0.0528312 3 0.154

Tabelle 2.2: Die LSWT-Resultate fiir HAFM auf verschiedenen Gittertypen zum Ver-
gleich: Spinwellengeschwindigkeit ¢, Spinsteifigkeit p und Untergittermagnetisierung
(S%) im thermodynamischen Limes mit J =1 und s =1/2.

Aus den Losungen folgen die Spinwellengeschwindigkeiten:

V14+/39 + 23v/3
4(2+v3)
VTV 407 + 2353

Ca=Qzy = CL = Js 4(7+4\/§)

Cq=0 = ¢ =Js

(2.118)

Man kann zeigen, da8 in Analogie zum Dreiecksgitter cq—o Oszillationen aus der Ebene
heraus und cq-q, ,, Oszillationen in der Ebene beschreiben [75]. Die besagte Ebene wird
durch die planare klassische Spinordnung im Grundzustand vorgegeben. Dann lassen
sich die Spinsteifigkeiten p; und p, iiber die hydrodynamische Beziehung p = ¢*x
bestimmen. Eine einfache Rechnung liefert

_ Js* (39 +23V/3) _ Js? (407 4+ 235v/3)
A= S Gr+18va) © 7T 2(963+556v/3)

(2.119)

Bemerkenswert ist die Tatsache, da8 p/p. = 3 gilt. In Tab. 2.2 sind die besprochenen
Parameter fiir das Quadrat-, das Dreiecks- sowie das Maple-Leaf-Gitter einander
gegeniibergestellt. Offensichtlich ist die Tendenz, der ¢, p und (S?%) in gleicher Weise
geniigen. Sie sind am groBten beim unfrustrierten Quadratgitter und am kleinsten
beim Maple-Leaf-Gitter. Dies entspricht der Vorstellung, dafl in einem frustrierten
Spinsystem der Einflul der Quantenfluktuationen vermehrt zum Tragen kommt, wenn
zusétzlich die Koordinationszahl verringert wird. Die Untergittermagnetisierung des
Maple-Leaf-Gitters ist im Rahmen der LSW'T endlich. Inwieweit man diesem Resultat
glauben darfa, offenbart ein Vergleich der LSWT-Resultate mit den Daten der
Exakten Diagonalisierung (ED). In [75] ist dies anhand der Spin-Spin-Korrelationen in
einem endlichen System aus N = 36 Spins s = 1/2 getan worden, wobei die sehr gute
Ubereinstimmung zwischen der LSWT-Niherung und den exakten Lanczos-Daten
fiir die Giite der Theorie in diesem Fall spricht. Die Annahme eines quasiklassisch
geordneten Grundzustandes ist also gerechtfertigt.

Fazit: Das Maple-Leaf-Gitter ist mit z = 5 trotz Frustration noch ferngeordnet.
Die klassische Ordnung wird nicht voéllig zerstort. Der klassische Ordnungsparameter
erfahrt eine Quantenkorrektur, die freilich beim Dreiecksgitter mit » = 6 geringer
ausfillt. Ein zusétzlicher Anhaltspunkt dafiir, daBl die klassische Ordnung quasi
erhalten bleibt, ist die gute Ubereinstimmung zwischen LSWT und ED.

32Dje Spinwellentheorie neigt zu einer Uberbetonung der klassischen Ordnung,.
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Kapitel 3

Die rotationsinvariante
Greenfunktionsmethode

3.1 Allgemeine Grundlagen

Der Formalismus der Greenschen Funktionen, der bereits im letzten Kapitel zur ele-
ganten Diagonalisierung bosonischer Hamilton-Operatoren im Zusammenhang mit der
LSWT herangezogen wurde, ist als eine universelle Methode in der theoretischen Physik
anzusehen. Es ist kaum bekannt, dal Green ein gelernter Miiller aus Nottingham war,
der im Jahre 1828 einen grundlegenden Aufsatz ver6ffentlichte, in dem er das Konzept
der nach ihm benannten Funktionen zur Losung von Problemen aus der Elektrostatik
benutzte [76]. Greensche Funktionen lassen sich z.B. als Reaktion eines physikalischen
Systems auf eine duflere Stérung definieren. Dabei ist die jeweilige Greensche Funktion
eine fiir das System charakteristische Gréfe. In den letzten Jahrzehnten haben Green-
sche Funktionen vermehrt Verwendung bei der Untersuchung wechselwirkender Quan-
tenvielteilchensysteme gefunden, zu denen Quantenspinsysteme zdhlen. Spinsysteme
reagieren auf dulere Magnetfelder, welche eine Ausrichtung der magnetischen Momente
bewirken. In welcher Weise dies geschieht, hiingt vom Spinsystem selbst ab; mafigeblich
ist selbstverstidndlich der Hamilton-Operator. Die dem Experiment direkt zugéingliche
MefBgroBe, die die ” Antwort” des Spinsystems auf die Stoérung von auflen durch das
Magnetfeld charakterisiert, wird als Suszeptibilitidt bezeichnet. Sie hingt im Rahmen
der Kubo-Theorie der linearen Reaktion unmittelbar mit der Greenschen Funktion
((Sz,;5%)), zusammen [39]. Fiir Greensche Funktionen lassen sich Bewegungsgleichun-
gen aufstellen. Deren Losung erlaubt {iber das Spektraltheorem die direkte Berechnung
interessierender thermodynamischer Erwartungswerte. Alle nun folgenden Ausfiihrun-
gen beziehen sich auf diese Technik, die auf der Analyse entsprechender Bewegungs-
gleichungen beruht. Ein Problem, das beim Aufstellen einer Bewegungsgleichnung und
deren Auswertung auftritt, ist die Entstehung einer Hierarchie unendlich vieler Green-
scher Funktionen beliebiger Ordnung. Die exakte Losung der Bewegungsgleichung ist
also im allgemeinen nicht mt')glichH. Greensche Funktionen htherer Ordnung enthalten

!Die Indizierung der Operatoren an(n) erfolgt in Anlehnung an (1.1). Es wird zweckméiBigerweise
von einem Spinsystem auf einem Gitter ausgegeangen.

2Ausnahmen bilden besonders einfache Hamilton-Operatoren ohne Wechselwirkung, wie sie bei-
spielsweise in der LSWT auftreten.
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Operatorprodukte. Um zu erzwingen, dafl die Gleichungshierarchie irgendwo abbricht,
sind diese Operatorprodukte in geeigneter Weise durch Erwartungswerte zu ersetzen,
um Greensche Funktionen héherer Ordnung auf Greensche Funktionen niederer Ord-
nung zuriickfithren zu kénnen. Je nach dem, auf welcher Ebene in der Hierarchie ein
derartiger Abbruch erfolgt, entscheidet die damit verbundene Entkopplung im Prinzip
iiber die Giite der Ndherung. Wenn der Hamilton-Operator ungenéhert eingeht, ist eine
systematische Verbesserung prinzipiell méglich@. Die Methode, in der die Entkopplung
bereits in der urspriinglichen Bewegungsgleichung fiir die gesuchte Greensche Funktion
((4; BY),, erfolgt!, wird als Methode der zufiilligen Phasen (RPA) bezeichnet [38, 39].
In dieser ersten Bewegungsgleichung tritt als einfachste Greensche Funktion héherer
Ordnung (([A4, H]_; B)) mit H als dem Hamilton-Operator auf. Einen Schritt weiter

geht man, wenn man ({[4, H]_; B))_ nicht entkoppelt, statt dessen deren Bewegungs-

gleichung beriicksichtigt und die Greensche Funktion << [[A,H]_,H]| ;B >> approxi-

mativ behandelt. Folgt man dieser Systematik weiter, so werden sich die Endresultate
beliebig genau dem exakten Ergebnis angleichen. Ein solches Vorgehen ist aber kaum
praktikabel, zumal der physikalische Erkenntnisgewinn den mathematischen Aufwand
rechtfertigen sollte. Es ist aber so, dal wesentliche physikalische Eigenschaften bereits
in den Bewegungsgleichungen fiir ((4; B)), respektive (([A, H]_; B>>w enthalten sind.
Deshalb ist es ausreichend, sich auf die Untersuchung der Gleichungen

w{(4; B)), = ([A, B]_) +({[4,H]_; B)),_,
w (14, H]_;BY), = ([[4, 8], B )+ (([14, H]_,H]_;B))

7u beschriinken®. Die RGM basiert auf diesen Gleichungen, wenn man die Operatoren A
und B mit Spinerzeugungs- und Spinvernichtungsoperatoren identifiziert. Fiir die Be-
handlung eines rotationsinvarianten Hamilton-Operators (1.1) im Rahmen der RGM
ist die Forderung, dafl der thermodynamische Erwartungswert der z-Komponente eines
jeden Spins im Gitter zu verschwinden hat, von entscheidender Bedeutung: (SZ%) = 0,
wobei m den Platz im Gitter kennzeichnen soll®. Eine solche Nebenbedingung ist we-
gen der Rotationssymmetrie des Heisenberg-Modells, das keine Richtung im Raum
auszeichnet, durchaus sinnvoll. Sie ist auch mit der Vorstellung eines magnetisch ge-
ordneten Quantenspinsystems vereinbar, weil auch dann eine gedachte Mittelung iiber
alle Richtungen dafiir sorgen wiirde, da8 (S?) = 0 immer erfiillt ist. Magnetische Fer-
nordnung wird, anders als in der LSWT, iiber langreichweitige Korrelationen definiert.
Auf einen bedeutenden Vorteil dieser Betrachtungsweise gegeniiber der Spinwellentheo-
rie ist schon in Kapitel 1 hingewiesen worden - demselben mathematischen Formalismus
gelingt die quantitative Beschreibung sowohl von Ordnung als auch von Unordnung.
Er erlaubt dariiber hinaus auch das Studium von Phaseniibergingen. Im Unterschied
zur RPA, wo ”iiberzdhlige” Operatoren oder Kombinationen davon einfach durch Er-
wartungswerte ersetzt werden, erfolgt das Entkoppeln in der RGM nicht nur auf einer
héheren Stufe in der Gleichungshierarchie, sondern zusétzlich unter Beriicksichtigung
von Vertexparametern, die mit den entsprechenden Erwartungswerten multiplikativ

w

3Der bosonische Hamilton-Operator in der LSWT ist bereits eine Niherung.

44 und B seien beliebige Operatoren.

SEs handelt sich hier um die Kommutatorvariante der allgemeinen Bewegungsgleichung [39].
6 Auf eine problemangepaBte Indizierung soll an dieser Stelle noch verzichtet werden.
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verkniipft werden.

Erstmalig haben Kondo und Yamaji [78] mithilfe dieser Methode die lineare Ket-
te untersucht. Thnen gelang damit die konsistente Beschreibung sowohl des unge-
ordneten Grundzustandes im Falle antiferromagnetischer Kopplung als auch die des
geordneten Grundzustandes im Falle ferromagnetischer Kopplung. AnschlieBend hat
sich vor allem innerhalb der letzten fiinfzehn Jahre eine Vielzahl von Autoren - si-
cherlich anfangs motiviert durch die Entdeckung der Hochtemperatursupraleitung in
den Kupraten - mit dieser Greenfunktionstechnik verstéirkt beschiftigt und sie auf
eine ganze Reihe denkbarer Gitterstrukturen und Modelle erfolgreich angewendet

[28, 29,180, 81, 31,(82, 83,84, 85,86, 187, 88].

3.2 Der Formalismus

Ziel dieser Methode ist das Berechnen von Korrelationsfunktionen des Typs (SoSwr),
wobei R der Verbindungsvektor zwischen zwei Spins ist. Aufgrund der Rotationsinvari-
anz der Theorie gilt (SoSr) = 3 (S5 S%t) /2 = 3 (SZS%). Um iiber das Spektraltheorem
den Erwartungswert <56 SE} berechnen zu konnen, ist die Kenntnis der Greenschen
Funktion ((Sg; Sy )), erforderlich. Deren Bestimmung erfolgt auf der Basis der allge-
meinen Bewegungsgleichung (2.37). Dem Problem angepafit ist wiederum deren Kom-
mutatorvariante:

(5850}, = ([5#:50] ) + (([S%:H] 355 ),

Weil (S%) wegen der Rotationsinvarianz an jedem Platz verschwinden soll, gilt
<[ng, Sy ]_> = 0. Mit dem Aufstellen von Bewegungsgleichungen fiir neu auftreten-

de Greensche Funktionen héherer Ordnung gelangt man zu der fiir wechselwirkende
Quantenvielteilchensysteme typischen algebraischen Gleichungskette, deren Auflésung
praktisch unmdéglich ist. In der RGM erfolgt die Entkopplung, die zum Abbruch der

Gleichungshierarchie fiihrt, in der Bewegungsgleichung fiir << [SE, H ] 350 >> :

o (st _sss)), = ([1se 55 )+ (([Isem_m] isa))

Der Kommutator [[SE, H|_,H ] enthilt Produkte von drei Spinoperatoren. Die Ent-

kopplung dieser Operatorprodukte erfolgt in einer Weise, auf die spéter im Detail einge-
gangen wird. Nach dem Entkoppeln ist das Problem im Rahmen der Niherung gelost.
Allerdings ist die Greensche Funktion dann selbst von (SgSit) abhingig, so daf die
verbleibende Aufgabe darin besteht, ( Sy Sit) selbstkonsistent zu berechnen. Damit ist
die prinzipielle Vorgehensweise klar. Konkret geht es um die Behandlung des iiblichen
Hamilton-Operators des Heisenberg-Modells fiir s = 1/2:

1
H= > JmansSmaSns. (3.1)

ma,nf

In dieser Form hat der Hamilton-Operator beziiglich der Indizierung und der Wahl
des Vorfaktors 1/2 eine Gestalt, der die Ableitung allgemeiner Beziehungen erleichtert.
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Die Summe l3uft iiber alle Zellen und alle Spins. Der Faktor 1/2 gleicht das zweimalige
Zédhlen jeder Bindung aus. Weiterhin indizieren m,n die relevanten Gitterzellen und
o, f numerieren die Spins innerhalb der Zellen durch. Bei der Wahl des Gitters gilt
dieselbe Argumentation wie bei der Spinwellentheorie. Auch hier sollten gewisse Vor-
stellungen iiber den klassischen Grundzustand vorliegen. Es ist auf alle Félle sinnvoll,
das magnetische Gitter zum Ausgangspunkt der eigentlichen Rechnungen zu machen.
Jedoch ist auch hier die Reduktion auf das geometrische Gitter moglich, falls ein die
klassische Ordnung beschreibender reziproker Gittervektor Q existiert. Letztendlich ist
die Wahl des Gitters auch eine Frage der Intuition und der Erfahrung. Ganz allgemein
kann an dieser Stelle nur konstatiert werden, dafl das Gitter so gewdhlt werden musf,
daB die Widerspruchsfreiheit in den Gleichungen gesichert ist”. Unter Benutzung der
Erzeugungs- und Vernichtungsoperatoren fiir Spins wird (3.1) iiberfiihrt in

1 1
=3 Z y — (anasgﬁ +5 (SptaSns + S,;aS,jﬁ)> . (3.2)

ma,nf

Fiir diese Operatoren gelten die bekannten Vertauschungsrelationen
[Sz,Si]_ =+5* [S+,87]_ =257

Mithilfe dieser Beziehungen soll nun die Greensche Funktion << 4ai Sqs)),, berech-
net werden. Gemé der Kubo-Theorie wird die GroBe — ((Si,;Sgs)),, als dynami-
sche Suszeptibilitéit Xj]—a_ﬂ( w) bezeichnet. Entsprechend ist die statische Suszeptibi-
litdt als lim,_,q Xj]—a_ﬂ( w) definiert. Bei SJ, und Sqs handelt es sich um die Fourier-
transformierten Operatoren S;}, und Snﬂ Vorausgesetzt, es gibt N Gitterplitze, so
lautet die entsprechende Fourier-Transformation

St, = \/ Z -, exp (iqRua)
S = ,/NZS;ﬁexp(—ianﬂ). (3.3)
q

Zur Berechnung der gesuchten Greenschen Funktion ((S{,; Sgs))  dient - wie eingangs
ausgefiihrt - die Kommutatorvariante der Bewegungsgleichung (2.37):

w{(Sdui Saad = ([Stor Sis) ) + ({[Siar H] 3 835) ) - (3.9

Uber den Erwartungswert <[Sqa, Syl > ist entsprechend der Forderung nach Rota-

tionsinvarianz zu verfiigen. Dazu W1rd er einer Fourier-Transformation unterzogen. Es
gilt zunéchst

<[S;a, - > Zexp —iq (Ryma — Ry, ))<[S:,§a,S;ﬂ]_>.

vl

-~

Wmanp(Sha)

"Bei der Behandlung des zweidimensionalen Kagomé-Gitters in [28, 29] benutzen die Autoren das
geometrische Gitter, obwohl kein klassischer Ordnungsvektor eindeutig definierbar ist. Die Situation
dhnelt damit der in der entsprechenden LSWT. Was mit Widerspruchsfreiheit gemeint ist, wird in
Abschnitt 3.2.5 verdeutlicht.
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Da aber der thermodynamische Erwartungswert (SZ,) fiir jeden Spin verschwinden
soll, erhilt man <[S+ S;ﬂ]_> = 0. Somit reduziert sich (3.4) unter Beachtung der

qo’
Bewegungsgleichung fiir Operatoren im Heisenberg-Bild iA = [A, H]_ auf

w0 (S S0, = ({18403 a5 )).- (3.5)

Auf der rechten Seite taucht eine Greensche Funktion h6éherer Ordnung auf, deren
Bewegungsgleichung ebenfalls beriicksichtigt wird. Sie ist durch

o {(18550)), =[S sw) )+ ({-350)), (3.5

gegeben, wobei es sich bei <<—S;a; S;ﬂ>> um eine weitere Greensche Funktion héher-

er Ordnung handelt, fiir die bekanntermafien wiederum eine Bewegungsgleichung auf-
zustellen wére. Die sich abzeichnende Hierarchie einer unendlichen Folge Greenscher
Funktionen immer héherer Ordnung soll aber mit (3.6) entsprechend den Darlegungen
am Anfang abgebrochen werden. Dies gelingt durch geeignete Entkopplungsstrategien
im Rahmen einer niherungsweisen Behandlung des Operators —S;;a. Zunichst liefert
das Einsetzen von (3.5) in (3.6)

(S Sa, = (18 55) )+ ((-3aisa)),. @D

Diese Gleichung wird durch das Entkoppeln linearisiert. Im Ergebnis erhélt man einen

gendherten Ausdruck fiir <<S;fa; S‘;ﬂ>>w’ woraus iiber das Spektraltheorem <S;ﬂS;fa>

folgt. Durch die Entkopplungsprozedur ist <<S¢a;5‘;ﬂ>>w selbst eine Funktion einer
Reihe von Erwartungswerten des Typs (S,5S5,,)-

3.2.1 Die Momentenmatrix

qa’

Der Term <[zS+ 5;5] _> in (3.7) stellt ein Element der Momentenmatrix My mit

Megqp = <[i$;a,5;ﬂ] _> = %;@cp (—iq (Rima — Rng)) < [z’S’;’La,Sﬁﬁ]_>

nach der Fourier-Transformation (3.3) dar. Wegen iS;t =[S, H]_ interessiert zuerst
der Kommutator

1
(St H] . = 5 3 Jiuns (S5 [Siher Sis) - + [Sihas SB]_ S5
ly,nB
1 _ 1 _
+ QS;—Y [S;m’snﬂ]_ + 9 [S;La’slv]_ SIﬂ)
1 Z Z
= 5 ZJma,nﬂ (SmaS:ﬂ - Sr—;a nﬂ)
ng

1 z z
+ 3 %: Jryma (SiSke — S8,Siha) -
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Der letzte Ausdruck kann weiter zusammengefafit werden. Es ist zunéchst leicht ein-
zusehen, daf} in

Z Jl’y,ma (Sl—fl—ysrzna - Slzfysr—;a)
by

der Index [y durch nf ersetzt werden kann, woraus mit Jy,4n8 = Jng ma

ma? ma™~nf

[Sar H]_ = 5 3" s (SisaSis — SihaSa + 13S0 = SipSiia)
nf

folgt. Auch diese Beziehung ist noch kompakter formulierbar, denn wegen Jyans =
Ima,ng (1 — Oma,ng) konnen die nétigen Vertauschungen vorgenommen werden, die letzt-
endlich auf

Z.Sr—;a = [S;Lou H]_ = Z Jma,nﬂ (Srznasr—l—ﬂ - Srzzﬂsr—;a) (38)
ng
fithren. Somit kann nun die Berechnung des Kommutators
[isr—;a7 S;ﬂ] _ = Z Jma,l’y ([Srznasl—fi—w S;ﬂ] _ [Slzfysr—:m? S;ﬂ] _)
Iy
erfolgen. Man findet nach einigen Umformungen

[iS:,’m, S;ﬁ] = mans (2552525 + S33Sika) = Omans 3 Jmaty (255,550 + SpaST)

Iy

oder

([ 0] ) = T (24S50S55) + (S7555a)

6ma,n[3 Z Jma,l’y (2 <qusfna> + <S;1a5l—f|_y ) '
Iy

Aufgrund der Rotationsinvarianz gelten fiir die Erwartungswerte vom Typ <ana5fw>
sowie <S$QSTT[3>, die von nun an als Korrelatoren bezeichnet werden, folgende Relatio-
nen:

(SmaSns) = 3(SnaSis) = (SmaSns) + ((SmaSus) + (SmaSus)) /2,
<S;La57:[3> = <Sr7wz57—l—[3> = Cmanf = C:na,nﬂ = Cng,ma,
woraus neben (S;,4Sn8) = 3¢mans/2 auch
< [isy—;ay S;g] _> = 2Jma,nﬂcma,n[3 - 26ma,n[3 Z Jma,l’ycma,l'y
Iy

folgt. Zum Schluf} sind es unter anderem diese Korrelatoren, fiir die selbstkonsistent
zu 16sende Gleichungen aufgestellt werden miissen. Beim Entkoppeln kommen weitere
Korrelatoren hinzu.
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Um endgiiltig zur Momentenmatrix zu gelangen, ist die letzte Gleichung einer Fourier-
Transformation zu unterwerfen:

2 .
Mqaﬂ - N Z Jma,nﬂcma,nﬂ €xXp (_'Lq (Rma — Rn[g))
2 .
- N Z Z 6ma,n[3Jma,l'ycma,l'y €xXp (_Zq (Rma - Rnﬂ)) .
m,n vy

Mit Omans = 0a,80m,n 188t sich der letzte Summand weiter vereinfachen. Durchfiihren
der entsprechenden Operationen liefert

6a,[3 Z Z Jma,l’ycma,l'y €xXp (_Zq (Rma - Rmﬂ)) .
m vy

Falls o = 3 gilt, wird der Exponent in der Summe Null. Ist im Gegensatz dazu « # 3,
so wird der ganze Term selbst Null. Man kann also die Momentenmatrix in kompakter
Gestalt mit rypqns = Rng — Rime auch wie folgt aufschreiben:

2 ) 2
Mqaﬂ = N Z Jma,nﬂcma,nﬂ €xXp (quma,nﬂ) - N(Sa,ﬂ Z Jma,l’ycma,l'y- (39)

m,n m,ly

3.2.2 Die Frequenzmatrix

Es verbleibt damit die Untersuchung des Operators —Séfa aus (3.7). Dazu muf} der
Kommutator [iS+ H] studiert werden. Unter Verwendung von (3.8) ergibt sich

zunéchst
. 1
_Sr—;a = 5 Z Z Jma,nﬂJl'y,kJ ([Srznasr—l—& Slzfyslié] _ [Srzzﬂsr—;a7 Slzfyslié] _
nB lv,ké
1 1 _
+ 3 [anasr—l—ﬂ?Sl—fi—ySkJ]_ 5 [SnﬁSrJrrmaSszySka]_

1 _ 1., _
+t 5 [870Sns S Sl — 5 [SWS;QQ,SWS,;]_) :

ma~nf’

Die einzelnen Term werden gliedweise behandelt. Durch Ausnutzen von [Sz

£1 _
mao? Snﬂ] _
+S% bmans Mit Jnansg = Jupma = Jmans (1 — Gmans) und geeignete Manipulation

der Summenindizes erhilt man

1
2 S Tmempdiks [SaaSis S5Sis] - = =D ImampInsinSiaStSis,
nB lv,ké nB,ly
1
D) Z Z Tmamp Ty ks [SepSmar SiSts] . = Z ImansImainSugSiySmas
nB lv,ké nB,ly
1 _ 1
1 Z Z Tmans Ty ks [SinaSug> SivSks] - = 3 Z Jma;n 8,y SmaSus ST,
nB lv,ké nB,ly
1 _ 1 _
LS s nais S50ty — LS T S
nB,ly nB,ly
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1 _ 1
_Z Z Z Jma,nﬂJl'y,kJ [Sﬁﬂsy—;a7 S;;Sk(;] = _5 Z Jma,nﬂJmayl,ySﬁﬂanaS;—y
nB lv,ké nB,ly
1 _ 1 _
+ Z Z Jmaynﬂ Jn/Byl/ySn,B Sl—’l'—yST'—)"—La - Z Z Jmaynﬂ Jn/Byl’YSl’YST—:B S;wn
nB,ly nB,ly
1 _ 1
12 D Jmanstinks [SiaSis SuSHl_ = 5 D ImansTnsinSiaSiaSh
nB lv,ké nB,ly
1 _ 1 _
S DS ShaSls = Y s uairSnaSis Sl
nB,ly nB,ly
1 _ 1
- Z Z Z Jmaynﬂ Jl’Yyk‘s [STZL,BS;)"—IQ7 Sl’YS];ts] _ = - 5 Z Jmaynﬂ Jmayl’YSTZL,BanaS;—Y
nB lv,ké nB,ly
1 _ 1 _
nB,ly nB,ly
All diese Terme werden nun zu
—Spe = D Tmansmaiy (255t Sha — SigSiaSih)
nB,ly
1 _ _
+ 5 D JmansImaty (S SmaSis = SmaSiySis)
nB,ly
+ Y TmansIusiy (SiaSisSty = SinaSiSi)

nB,ly

1
—+ 5 Z Jma,nﬂJnﬂ,l’Y (S;ﬂ

nB,ly

zusammengefaflt. Diejenigen Terme, die zwei Spinoperatoren mit identischen Indizes

enthalten, sind abzuspalten:

_‘S:’y—;a Z Z Jma,nﬂJma,l'y(

nf ly#np

— SZ

n,

StSt

v~ ma

- SlTyS:ﬂS;;a)

ﬂSlzfyS;La - STzLﬂanaSl—fi—y)

+ Z ana,nﬂ (SﬁﬂSTZLﬂS;La - STzLﬂanaS:ﬂ)
nB
1
-+ 5 Z Z Jma,nﬂJma,l'y (SlTySr—;aS:ﬂ - S;LaSl—'i—yS:ﬂ)
nf ly#ns
1
+ 5 Z ana,nﬂ (S;ﬂsr—;asr—l—ﬂ - S;LaS:ﬂS:ﬂ)
ng
+ Z Z Jma,nﬂJnﬂ,l’Y (SrznaSTzLﬂSl—fi—y - SrznaSlz’yS:ﬂ)
nf lyZma
b3 s ($50S555a — ShaSnaSi)
nB
1
+ 5 Z Z Jma,nﬁJnﬂ,l'y (S;ﬂS;—yS;—m - SlTyS:ﬂS;LOL)
nB lv#ma
+ %Z ana,nﬂ (S;ﬂsr—;asr—;a - S;LaS:ﬂS;La) :
ng
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Bei der Behandlung der Anteile mit gleichen Indizes kommt die Eigenschaft zum Tra-
gen, daf es sich um Spins s = 1/2 handeln soll, so daf folgende Relationen gelten:

StSt =0, S*S*=1/4, S*=1/2-S5"S .

Aus der letzten Gleichung S% = 1/2— S5~ S* erhilt man mit (S?) = 0 die Summenregel
(S™S*) = 1/2. Sodann folgt unter Beriicksichtigung dieser Relationen

_S.fr—;a = Z anﬂ _S+)

+ Z Z Jma nﬂJma Iy (SnﬂSlfyS+ Sﬁﬁsfnasziry)
ng ly#np

1 - —
T2 Zﬂ ;ﬁ Jimeng Tmesty (StySmaSus — SmaSiySus)
nf lv#n

+ Z Z Jma,nﬂJnﬂ,l’y (SrznaSTzLﬂSl—fi—y - SZ Sl’YS+ )

nf lv#ma

1
+ 52 D TmansTnsin (SusStSha = S5SisSha) -

nf lyZma

An dieser Stelle werden die Operatorprodukte gemas

SySESE — maB(SaSh)SE +nac(SaSE) Sk =1napcanSE +naccacSh,
S4S5SE — maB(SiSE) S¢ =na,ca,BSE/2

entkoppelt und durch Korrelatoren ersetzt [78, 80]. Erwartungswerte der Form (S*.S)
oder (S#ST) verschwinden aufgrund der Tatsache, daf die z-Komponente des Gesamt-
spins mit dem Hamilton-Operator (3.1) vertauscht. Den Fehler, den man beim Ent-
koppeln unvermeidlich macht, gleichen Vertexparameter n zum Teil aus. Sie sichern
die Giiltigkeit der Summenregel und gewéhrleisten gegebenenfalls die Eindeutigkeit
der uniformen statischen Suszeptibilitit als MeBgréfie®. Im Rahmen dieser Néiherung
ergibt sich

_Sr—;a = Z ma nﬂ ) :[3 )
+ Z Z Jma,nﬂJma,l’y (nnﬂ,l'ycnﬂ,l'ysy—;a - nma,nﬂcma,nﬂsl—fi—y)
nf ly#np
+ Y Y Jmansdnsiy (TmansCmans St — MairmaiySrz)
nf lyZma

wobei zuvor einige Vertauschungen im Interesse einer grofieren Ubersichtlichkeit vor-
genommen wurden. Um von —S  nach —Sg, 7u gelangen, ist obige Beziehung ent-
sprechend (3.3) wie

—S+ \/ Z 2 €XP (—iqRa)

8Diese Forderung hiingt mit der Isotropie der Greenschen Funktionen im Punkt q = 0 zusammen.
Siehe dazu Abschnitt 3.3.
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gliedweise zu transformieren. Wendet man sich zunichst dem Beitrag
2 Znﬂ ma,nB (Sr—)i'—za - S:[g) zu, dann gilt

% ; % 2‘; Trans (She = Siig) €xp (—iQRma)
= —%; e nﬂ (—iqRyma)
- ‘%;; anﬂ N exp( (@/Rns — aRpma))
- _Z ma nﬂZ (—iaRma)

- XX

ng a

= Z ma,ns - Z ma,nB €XP quma "ﬂ) S+[3

qlﬂ J2 ma,nfB €xXp (Zq/rma nB Z €xXp Zqua ( - q))
m

mit ryens = Rpg — Rpme. Das Ausfilhren der Summationen iiber m in dieser Form

mit dem Vorziehen der Faktoren Jman bzw. J? moyng €XP (1! ma,ng) ist moglich, weil

der Hamilton-Operator selbstverstandhch translationssymmetrisch ist. Genauso findet
man

\/7 Z Z Z Jma nB Jma l’YT’"ﬂ l’YC"ﬂ l’YSma €Xp ( Zqua)

m nf lv#nB

= Z Z Jma,nﬂJma,l’ynnﬂ,l'ycnﬂ,l’ysé—a7
nf ly#np

V Z Z Z Jma nB Jma JvIma,nBCma, nﬂSlfy €Xp ( Zqua)
m nf lv#nB
= Z Z Jma,nﬂJma,lvnma,nﬂcma,nﬂ €xXp (Z.qrma,l'y) S;w
nf ly#np
V Z Z Z Jma nﬂJnﬂ v TImo,nBCme, nﬂS €Xp ( Zqua)

m nf lvEma

= Z Z Jma,nﬂJnﬂ,lvnma,nﬂcma,nﬂ €Xp (Z.qrma,l'y) S;,y,
nB lv#ma

\/7 Z Z Z Jma B J"ﬂ yTIma,ly Cma, l’YS 8 €Xp ( Zqua)

m nf lvEma

= Z Z Jma,nﬂJnﬂ,l'ynma,l'ycma,l’y €xp (Z.qrma,nﬂ) S;g

nB lv#ma
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wiederum mit rp,qy = Rjy — Ry In endgiiltiger Gestalt gewinnt man, indem alle
Beitrige mit entsprechendem Vorzeichen aufsummiert werden,

- St—li—a = Z ma nﬂ - Z ma,ns €XP quma nﬂ) S+5

+ Z Z Jmaynﬂ Jmayl’)’nnﬂyl’)’cnﬂyl’)’sqa
nB ly#np

- Z Z Jma,nﬂJma,lvnma,nﬂcma,nﬂ €xXp (Z.qrma,l'y) S;,y
nB ly#np

+ Z Z Jma,nﬂ Jnﬂ,l’ynma,nﬂcma,nﬂ €xXp (Z.qrma,l'y) S;_,y
nB lv#ma

- Z Z Jma,nﬂ Jnﬂ,l’ynma,l'ycma,l'y €xXp (Z.qrma,nﬂ) S;ﬂ . (3 10)
nB lv#ma

Durch das Entkoppeln ist offensichtlich die ursprﬁngliche Bewegungsgleichung (3.7)
linearisiert worden, denn aus —Sg, = > FqaySq, folgt

<< Sqa,S >>wzz qor {(Sq ay’ ‘;ﬂ>>w

wobei Fy als Frequenzmatrix bezeichnet wird, deren Matrixelemente aus (3.10) zu
bestimmen sind, so dafl ein lineares Gleichungssystem in Matrixform fiir einen Satz
Greenscher Funktionen entsteht, das durch

Z(anv_w25av) ((Saqv; Sq5)) ., = —Maary (3.11)

Y

gegeben ist. Bei n Spins pro Elementarzelle handelt es sich um n x n-Matrizen. Ausge-
hend von der Kramerschen Regel, findet man iiber die Eigenwerte der Frequenzmatrix
die Pole der Greenschen Funktionen. Sie entsprechen den Dispersionsrelationen in der
Spinwellentheorie.

3.2.3 Korrelationsfunktionen

Zur Berechnung der gesuchten Korrelatoren wird das Spektraltheorem herangezogen.
Wegen
_ 1
<Sn[357—;a> = Cma,nB = N Z <S qla> eXp (q/Rma anﬂ))
a9/

gewinnt man nach Summierung dieser Gleichung iiber alle Gitterplitze m unter Aus-
nutzung der Translationssymmetrie

Crmang = N Z <Sq[35 a> eXp Z.qrma,nﬂ) )

woran besagtes Spektraltheorem mit ((S7 : = G} (w) gemif
qo qﬂ

qop

; too G (w + ie) GLos (w — ie)
S—.9 = — 1 qa8 qa8
(54555a) = 27r 40 o exp (w/kT) —1 de
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+ —
qop

Gaop @) = Gaas @)/ ] (@* = wio)

Z Amqaﬂ _ quaﬂ

’
Ww—w w+w
m mq mq

ankniipfen kann. Praktisch zerlegt man G, (w) in einzelne Partialbriiche

woraus sich wegen G s (w) = Gl ;s (—w) als Losung von (3.11)

Amqas = Bmaos = g(—]l—a_ﬂ (Winq) /2Wmq H (w72nq - w?tq) (3.12)

n#m

ergibtg. Alsdann fiihrt die Anwendung der Dirac-Formel (2.46) auf

<S;ﬁ5;a> = Cqap = ZAmqaﬂ (L +2n (Wma)) ,

wobei 1 (Wmq) = 1/ (exXp (Wiq/kT) — 1) die mittlere Magnonenbesetzungszahl ist, die
naturgeméif der Bose-Einstein-Statistik gehorcht. Magnetische Fernordnung dufiert sich
in der Existenz von Kondensattermen [80] in

1 .
Cma,ng = N Z CqaB €XP (_quma,nﬂ) y
q

die in der Summe entsprechend

1 ) .
Cmaons = 77 Z Cqap €XP (—iQTma ng) + Z CQos €xp (—iQrmans) (3.13)
a7#Q Q

abzuspalten sind'%. Um dies einzusehen, sei auf die formale Analogie zur Bose-Einstein-
Kondensation verwiesen''. Man spricht im Falle von LRO von Modenkondensation
bei q = Q, wobei Q der magnetische Ordnungsvektor ist'2. Damit verbunden ist die
Divergenz der statischen Suszeptibilitéit lim,,_,q Xj{a_ﬂ (w) fiir ¢ — Q. Die Beziehung, die
letzteres gewiihrleistet, bezeichnet man als Kondensatbedingung. In Verallgemeinerung
von [80] dienen als Ordnungsparameter die Grenzwerte

Mg = | lm  |3cmans/2]-

Tma,nf |—)00

9In die Greenschen Funktionen geht w quadratisch ein.

10K ondo und Yamaji [78] haben urspriinglich den Ferromagneten auf der linearen Kette untersucht,
ohne einen Kondensatterm abzuspalten. Von hohen Temperaturen kommend, haben sie sich dem Null-
punkt genihert. Auf diese Weise ist es ihnen gelungen, auch den Grundzustand richtig zu beschreiben.
Das konnte so aber nur deshalb funktionieren, weil bei endlichen Temperaturen keine magnetische Ord-
nung existiert. Shimahara und Takada [80] haben den Formalismus dahingehend erweitert und den
Begriff des Kondensats eingefiihrt.

UFir einfache Fille 168t sich zudem direkt zeigen, dafl der Zusatzterm (n + 1) C/4n aus dem all-
gemeinen Spektraltheorem [39] nur fiir diejenigen g von Null verschieden ist, fiir die Kondensation
auftritt. Er ist dann mit dem Kondensatterm zu identifizieren.

12Modenkondensation kann wie beim Ji-Js-Modell auf dem Quadrat-Gitter bei verschiedenen Q
gleichzeitig auftreten.
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Langreichweitige Ordnung liegt also genau dann vor, wenn zwei unendlich voneinander
entfernte Spins noch miteinander korrelieren. Diese Definition bringt die Ordnungspa-
rameter mit den Kondensattermen in Verbindung, denn es folgt

2

Mys =

N o

lim Z CQa[i exp (—’iQrma,n[g) . (314)

|7'ma,n6 |—)OO Q

Fallen die Indizes zusammen (o = ), so handelt es sich bei M2, um das Quadrat der
Magnetisierung M, in dem durch den Index « bezeichneten Untergitter. Oftmals stellt

sich heraus, daf§
Fy= F;, M, :M;, [Fq, Mg]_ =0

erfiillt ist'®. Dann besitzen die Frequenzmatrix Fy und die Momentenmatrix M, ein
gemeinsames, orthogonales System von Eigenvektoren zu reellen Eigenwerten. Mit

Fqlja) = wjqliq), Mqlia) =mjqlia)
folgt fiir die Losungsmatrix G~ (w) aus (3.11
_ : m; :
Gf{ (w) lja) = ﬁ ja)
Jq

bzw. die Zerlegung
Z . i) (Gdl (3.15)

mit den Eigenwerten G/~ = mjq/ (w? ]q) Daraus ergibt sich nach Anwendung des
Spektraltheorems die Korrelatorenmatrlx zu

Cq = Z 2w]q % (14 2n (wiq)) lia) (jdl (3.16)

mit den Matrixelementen

Cqa = Z 2w]q (1 +2n (wjq)) (@ |7a) (ja| B)

J

1 0 0
0 1 0
1) = 0 |- 2) = 0 |- 13) = 1 |>

fir o, 8 = 1,2,3,... als Zeilen- respektive Spaltenindizes. Der Vorteil dieser Darstel-
lungsweise offenbart sich in der Praxis bei der Untersuchnung von Gittern mit Basis. Es
sei an dieser Stelle nochmals betont, da8 sich die dynamische Suszeptibilitit xi~ (w)
von G~ (w) nur durch das Vorzeichen unterscheidet: x3~ (w) = -G~ (w).

130b dies ein allgemeines Merkmal der Theorie ist oder nur vom betrachteten Modell abhsingt, ist
bisher nicht untersucht worden.
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3.2.4 Losungsstrategie

Wie geht man nun im einzelnen vor? Zuerst untersucht man den klassischen Grund-
zustand des Modells, um dadurch das magnetische Gitter festlegen zu kénnen. Im
magnetischen Gitter ist der ordnungsbeschreibende Vektor'? stets Q = 0. Jetzt ist zu
priifen, ob dieselbe Ordnung auch ausgehend vom geometrischen Gitter unter Einbe-
ziehung eines gegebenenfalls von Null verschiedenen Q erhalten werden kann. Wenn
dies so ist, dann 148t sich das Problem {iibersichtlicher gestalten, denn die geometrische
Elementarzelle beinhaltet weniger Spins als die magnetische Elementarzelle, falls beide
nicht schon identisch sind. Entsprechend der Zahl der Spins in den Zellen sind die be-
teiligten Matrizen dimensioniert. Alsdann erfolgt die Bestimmung der Matrixelemente
aus (3.9) und (3.10) und daraufhin die Losung der Gleichung (3.11). Mithilfe des Spek-
traltheorems koénnen jetzt fiir alle auftretenden Korrelatoren Gleichungen aufgestellt
werden. Weitere Gleichungen gewinnt man aus den Summenregeln, deren Zahl der der
Spins in der Elementarzelle entspricht. Falls die Spins innerhalb einer Elementarzel-
le beziiglich ihrer Umgebung, d.h. konkret beziiglich ihrer Kopplung mit umgebenden
Spins, als gleichwertig zu betrachten sind, so reduziert sich die Zahl der zu beriicksichti-
genden Summenregelnﬁ. Bei rdumlicher Anisotropie der Kopplungen ist der Grenzwert
limg_,0 lim,,_,0 G~ (w) nicht eindeutig. Seine Eindeutigkeit ist aber zu fordern'®, wor-
aus man zusammen mit den Summenregeln Gleichungen zur Bestimmung der Vertex-
parameter erhilt. Liegt langreichweitige Ordnung tatséichlich vor, so existieren von Null
verschiedene Kondensatterme. Dann ist zusétzlich die Kondensatbedingung zu erfiillen.
In einer Minimalversion der RGM werden genauso viele Vertexparameter eingefiihrt,
wie sich unabhéngige Gleichungen formulieren lassen. Man halte sich dazu Tab. 3.1 vor
Augen. In der Regel iibersteigt die Zahl der zu unterscheidenden Vertexparameter die
Zahl der zu ihrer Bestimmung vorliegenden Gleichungen. Mit den {iberzéhligen Vert-
exparamtern ist deshalb in geeigneter Weise zu verfahren. Dabei ist das Gleichsetzen
von Vertexparametern eine naheliegende Variante!”. Vertexparamter lassen sich auch
per Hand zueinander in Beziehung setzen, so da} bestimmte Grenzfille'8 konsistent
enthalten sind. Dariiber hinaus ist der Abgleich mit anderen Theorien méglich, womit
die Vertexparameter zur Optimierung der Resultate herangezogen werden kénnen. Mit
der Einfiihrung von Vertexparametern ist eine gewisse Willkiir verbunden. So kann
z.B. zu grofiziiges Gleichsetzen von 7, die zu verschiedenen, sich vielleicht noch durch
das Vorzeichen unterscheidenden Korrelatoren gehéren, bei komplizierteren Systemen
dazu fiihren, da} in bestimmten Parameterregionen Unstetigkeiten auftreten [84], daf
iiberhaupt keine Losungen oder aber gleich mehrere Lésungen existieren'?. Immerhin

1Dies gilt, falls man {iberhaupt von klassischer Ordnung reden kann. Man denke dabei an das
zweidimensionale Kagomé-Gitter, dessen klassischer Grundzustand fiir J > 0 hochgradig entartet ist.

15Wenn alle Spins in einer Zelle in diesem Sinne Aquivalent sind, dann erfiillt die Lésung des Glei-
chungssystems alle Summenregeln simultan.

1¢Die physikalische Forderung besteht bei Gittern mit Basis, wo zusétzlich die Frequenz- mit der
Momentenmatrix vertauscht und die der Autor studiert hat, darin, daf} die uniforme statische Suszep-
tibilitéit yx als MeBgroBe in der Theorie als Eigenwert der Matrix — lim,,_,q Gjlr_ (w) /2 in der Grenze
q — 0 eindeutig zu sein hat.

1"Natiirlich darf das Gleichsetzen nicht in der Form geschehen, da3 danach weniger Parameter als
Gleichungen vorliegen.

18Fiir das Ji-Jo-Modell auf dem Quadrat-Gitter ist das in [31,/82] dargestellt.

9Die beiden letzten Szenarien treten im Anschlufl beim geschichteten Kagomé-Gitter auf.
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handelt es sich um hochgradig nichtlineare Gleichungen. Umso mehr kommt es dann
auf zusdtzliche Informationen von auflen an, um méglichst viele Vertexparameter als
Unbekannte behandeln zu kénnen, die sich zum Schlufl zusammen mit den Korrela-
toren als Losung des Gleichungssystems selbstkonsistent ergeben. Meistens lassen sich
derartige Probleme damit beheben. Wie sich aber zeigen 148t, ist man bei der Wahl ge-
eigneten Inputs jedoch nicht vollkommen frei [81]. Anhand eines Beispiels im Anhang
A.2 soll dies kurz demonstriert werden. In dieser Arbeit steht dagegen der formale
Aspekt der RGM im Vordergrund. Daher soll sich auf die oben erwdhnte Minimalver-
sion beschrénkt werden, womit die soeben erwéhnten Schwierigkeiten einzukalkulieren
sind.

Jetzt kann man bei geniigend hohen Temperaturen starten und eine Ldsung suchen.
Genau dann weifl man, dal unabhéngig davon, ob bei tieferen Temperaturen langreich-
weitige Ordnung einsetzt oder nicht, keine Kondensatterme zu beriicksichtigen sind, da
thermische Fluktuationen letztendlich jegliche Ordnung lingst zerstért haben. Eine ty-
pische Losung in diesem Temperaturbereich enthélt betragsmifig kleine Korrelatoren
und Vertexparameter nahe der Eins, was auch so sein sollte, da die Entkopplung ohne
Vertexparameter (n = 1) genau dann die Realitdt gut beschreibt, wenn thermische
Fluktuationen im Spinsystem dominieren. Systematisch wird anschlieend die Tempe-
ratur bis zu jenem Punkt verringert, bei dem das Gleichungssystem ohne Kondensat
keine Losung mehr besitzt. Unterhalb dieser Temperatur ist das Spinsystem magnetisch
ferngeordnet, und man hat unter Einbeziehung der entsprechenden Kondensate zu rech-
nen. Zuvor hat man sich zu vergewissern, bei welchen Q Modenkondensation auftritt.
Entscheidend dafiir ist die Tatsache, daf die statische Suszeptibilitit lim,, o X~ (w)
bzw. lim,,_,o G§~ (w) fiir genau diese Q divergiertﬂ. Die Divergenz manifestiert sich
beispielsweise darin, daf§ sich im Spektrum wy,q bei g = Q Liicken schlieflen oder ins-
besondere bei ferromagnetischen Kopplungen (Q = 0) ein qualitativer Umschlag von
Wmq ~ ¢ auf wyq ~ ¢* erfolgt. Die Kondensatterme sind von nun an weitere unbekannte
Parameter. Als zusétzliche Gleichungen dienen dann neben der Kondensatbedingung
bestimmte Relationen zwischen den Kondensattermen, auf die im Anschluff anhand
eines Beispiels eingegangen wird.

Es ist aber auch moglich, dal bis zu 7' = 0 herunter Losungen ohne Kondensat exi-
stieren. In diesen Féllen bleibt das betrachtete Spinsystem bis in den Grundzustand
hinein ungeordnet. An dieser Stelle ist der Hinweis nicht unwesentlich, dafl die RGM
das Mermin-Wagner-Theorem [35] nicht verletzt?'. Man braucht also in entsprechend
dimensionierten Systemen gar nicht erst nach Fernordnung zu suchen.

Eine andere Losungsstrategie geht vom Grundzustand aus. Nachdem man den klassi-
schen Ordnungsvektor bestimmt hat, leitet man die Kondensatbedingung ab und fiigt
diese in die Dispersionsrelationen ein. Fiihrt dieses Vorgehen zu divergierenden Inte-
gralen@, dann ist sofort klar, daB der Grundzustand quantenungeordnet ist. Im Um-
kehrschluB folgt aus der Existenz der Integrale die Existenz von Kondensattermen und
daraus die Existenz von magnetischer Fernordnung im Grundzustand. Trifft letzteres
zu, so hat man bei endlichen Temperaturen unter Beachtung des Mermin-Wagner-

20TIn den iiberwiegenden Fillen entsprechen diese Q den klassischen Ordnungsvektoren.

21In der Tatsache, daf in niedrigdimensionalen Systemen die beteiligten Intgrale iiber die Brillouin-
Zone unter der Annahme, dafl Fernordnung existiert, divergieren, offenbart sich dessen Giiltigkeit
innerhalb der RGM.

22Damit sind z.B. Integrale mit offensichtlich logarithmischen Divergenzen gemeint.
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Theorems solange nach Losungen mit Kondensat zu suchen, bis die Kondensatterme
selbst bei einer bestimmten Temperatur Null werden.

3 Fernordnung A Fernordnung
Unbekannte Cmanss T CQas Crma,nBs T
Gleichungen | selbstkonsistente Gleichungen | selbstkonsistente Gleichungen
fiir ¢pa,ng, Summenregel, fiir ¢pa,ng, Summenregel,
ggf. Isotropieforderung, ggf. Isotropieforderung
Kondensatbedingung,
Relationen zwischen Cqqg

Tabelle 3.1: Eine Ubersicht zu der Frage, welche Unbekannten tauchen in welchem
Fall auf, und welche Gleichungen stehen zu ihrer selbstkonsistenten Bestimmung zur
Verfiigung. Diese Darstellung betrifft die Minimalversion der RGM, in die kein Input
von aufen eingeht.

3.2.5 Rotationsinvariante Greenfunktionsmethode fiir die li-
neare Kette

Ein sehr illustratives Beispiel ist das der linearen Kette mit Néchster-Nachbar-
Wechselwirkung nicht zuletzt deswegen, weil die lineare Kette spéter als Grenzfall
im Modell des geschichteten Kagomé-Gitters enthalten ist. Hinzu kommt, daf§ das ur-
spriingliche Ergebnis von Kondo und Yamaji [78] unter Verwendung einer gréferen
Elementarzelle reproduziert werden soll. Auf diese Weise wird ein Gitter mit Basis si-
muliert; unter diesem methodischen Aspekt ist die folgende Rechnung neuartig. Hier
wird sich zeigen, wie der Formalismus auf Gitter mit Basis zu erweitern ist. Es seien N
Spins s = 1/2 mit gleichem Abstand eins entlang einer Kette vorgegeben. Die Wech-
selwirkung wird durch einen Hamilton-Operator vom Typ (3.1) beschrieben. Dabei
sei nur die Kopplung zwischen néchstbenachbarten Spins von Null verschieden. Diese
Kopplung sei J. Dann befindet sich nur ein Spin in jeder geometrischen Elementarzel-
le, deren Basisvektor a; = (1) ist. Untersucht wird jetzt der klassische Grundzustand.
Fiir J < 0 sind alle Spins parallel. Die magnetische Elementarzelle ist mit der geome-
trischen Elementarzelle identisch, und der magnetische Ordnungsvektor ist Q = (0).
Mit J > 0 wird die Energie trivialerweise dann minimal, wenn alle néichstbenach-
barten Spins entlang der Kette paarweise antiparallel ausgerichtet sind. Dann ist die
magnetische Elementarzelle mit Q = (0) doppelt so gro wie die geometrische. Vom
geometrischen Gitter ausgehend, kénnte man die magnetische Ordnung fiir J > 0 auch
durch Q = (7) erfassen. Demzufolge wiirde fiir alle J das geometrische Gitter mit einem
Spin pro Zelle als Ausgangspunkt der weiteren Rechnung geniigen. Falls Fernordnung
iiberhaupt auftritt - und diese Frage soll zunédchst ungeachtet einschligiger Theore-
me offen bleiben -, so wiire Kondensation fiir J < 0 bei Q = (0) und fiir J > 0 bei
Q = (n) zu erwarten. Auf die Vereinfachung, was die Gitterwahl betrifft, wird jedoch
bewuft verzichtet, denn die lineare Kette soll als Gitter mit Basis aufgefalit werden.
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Ausgangspunkt der nun folgenden Ableitungen ist das magnetische Gitter des klassi-
schen Antiferromagneten mit zwei Spins pro Zelle, von denen es bei N Spins N/2 gibt.
Mit der Wahl einer groBeren Zelle fiir J < 0 macht man sowieso nichts falsch. Wichtig
ist nur, dafl dadurch beide Ordnungsvektoren sowohl fiir J < 0 als auch fiir J > 0 mit
Q = (0) zusammenfallen. Unter Benutzung von (3.9) erfolgt nun die Berechnung der
Matrixelemente? von Myg:

Mg = —2J(cz(a1) +ci2(—a1)),
Mgo = 2J(ci2(ar)exp (iqa;) + ci2 (—ay) exp (—igay)),
Mg1 = 2J (ca1 (a1) exp (iqay) + co1 (—a1) exp (—iqay)) ,
Mgo = -2J (021 (a1) + co1 (—31)) .

Es ist leicht einzusehen, daf} alle diese Korrelatoren aus Symmetrieerwigungen her-
aus gleich sein sollten. Natiirlich ist klar, dal bei komplizierteren Systemen Vorsicht
geboten ist, denn (3.11) ist nunmehr im Prinzip iiberbestimmt. Mit ¢i5 (a1) = ¢; folgt

Mqll = Mq22 = —4Jc,
Mq12 = Mq21 = 4J01 COS (qal) . (317)

Beim Aufstellen der Frequenzmatrix Fy nach (3.10) tauchen neben verschiedenen Vert-
exparametern, die alle gleichgesetzt werden, Korrelatoren zwischen iibernéichsten Nach-
barn auf. Es sind dies ¢i; (2a1) , c11 (—2a1) , co2 (2a;) sowie coo (—2a;). Auch sie sollten
gleich sein, woraus mit ¢1; (2a;) = ¢

Fqll = Fq22 = J? (1 + 27’]02 -+ 27701 CcoSs (2qa1)) ,

Fq12 = Fq21 = —J2 COS (qal) (1 + 27701 + 27702) (318)

folgt. Man kann sich leicht davon iiberzeugen, da8 beide Matrizen vertauschen. Zur
Lésung von (3.11) wird diese Eigenschaft ausgenutzt. In der Gestalt von (3.15) erhélt

man
_ 1 m 11 1 mo 1 -1
+ —_-_ " - a
Gq (w)_2w2—w%q<1 1>+2w2—w§q<—1 1 ) (3.19)

mit

miq = —4Jei(1—cos(qay)),

wig = J*(1—cos(qai)) (1 +2n(c1 +c2) — 4nes (1 + cos (qan))) ,

Maq = —4Jeci (14 cos(qay)),

wiq = J2(1+cos(qa1)) (1+2n(ci+ o) —4ner (1 —cos (qar))).  (3.20)

Es wird nun unterstellt, dal Fernordnung in beiden Fillen existiert. Dazu ist zunéchst
lim, o G¢~ (w) im Limes q — 0 zu untersuchen. Man findet

. . 201 11
lim 1 - =
420550 ) J (1 = 6mc1 + 2ncy) ( 11 )
201 1 -1
_ 3.21
J (14 2ncy + 2n¢s) ( -1 1 ) 2

23Die Korrelatoren ¢pq,ng werden durch cag (Tma,ng) ersetzt.
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Auf diese Weise hat man die vermeintlichen Kondensatbedingungen - die Frage, ob sie
iiberhaupt erfiillbar sind, sei vorerst zuriickgestellt - gewonnen. Unter Beachtung der
Vorzeichenverhiltnisse? liefert der Eigenwert

+— _ Mg
Glq (w) = o
mit
1 —6nc +2nc =0 (3.22)
die Kondensatbedingung fiir J < 0 sowie der Eigenwert
= () — _ %24
G2q (w) - w2 _ w%q
mit
14 2nc; + 2nce =0 (3.23)

die Kondensatbedingung fiir J > 0. Es sei an dieser Stelle mit Verweis auf Anhang A.3
bereits angemerkt, daf sich die ferromagnetische Korrelationslinge £ aus der Entwick-
lung des Eigenwertes G{; = lim, o Gy (w) um q = 0 zu £% = 2n¢1/ (1 — 6nc; + 21c,)
ergibt. Entsprechend erhilt man die antiferromagnetische Korrelationslinge &4 aus
der Entwicklung von G35 = lim,0G3; (w) um q = 0. Man findet die Beziehung
& r = —2nci/ (1 + 2nc; + 2ncy). Wegen des Mermin-Wagner-Theorems kann Fernord-
nung bestenfalls im Grundzustand auftreten, auf den sich die Untersuchung der Félle
J < 0 beschrénken soll.

J < 0: Einsetzen der Kondensatbedingung (3.22) in die Dispersionsrelationen
aus (3.20) ergibt mit qa; = ¢,

wiq = —2J/mci (1 —cosqy), waq = —2J+/nc1 (14 cosqy) .

Dies wiederum eingesetzt in (3.16) liefert die Korrelatorenmatrix

a5 (o0 1)
a0 1)

welche offenbar nicht von g abhéngt, womit die beteiligten Summen /Integrale iiber
die Brillouin-Zone auf alle Fille existieren. Aulerdem héngt dann das Ergebnis auch
nicht von der Zahl der Gitterpldtze/Spins ab. Der ferromagnetische Grundzustand ist
langreichweitig geordnet. Im thermodynamischen Limes, bei dem die Summation durch
die Integration ersetzt wird, lautet das zu losende Gleichungsystem dann

1 -|—7T/2 1 —|—71'/2
cp = ; / Cq12 COS gzdg; + Cl2, 2= ; / Cq11 COS 2¢.dg, + Cuy,
—m/2 —m /2
1 -|—7T/2
5 = ;/ quldq:;v + CH, 1-— 67701 + 27702 =0. (324)
—m/2

Die ersten beiden Gleichungen dienen der selbstkonsistenten Bestimmung der Kor-
relatoren ¢; und c¢;. Dazu finden die Greenschen Funktionen G (w) und Gj; (w)

Mp>0:J>0—=¢ <0,c0>0s0owie J <0 —=¢; >0,c0>0
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Verwendung. Zu jeder Funktion gehoért natiirlich ein eigener Kondensatterm. Daher ist
C} von C; zu unterscheiden. Thren Niederschlag findet die Summenregel in der drit-
ten Gleichung, wobei das eingangs durchgefithrte Gleichsetzen gewisser Korrelatoren
dariiber hinaus keine Widersprﬁchela erzeugt. Das eigentliche Problem, das generell
bei Gittern mit Basis auftritt, wenn magnetische Ordnung vorliegt, besteht im Um-
gang mit den verschiedenen Kondensattermen; hier gibt es zur Bestimmung von fiinf
Unbekannten nur vier Gleichungen. Es ist also nach einer weiteren Gleichung zu su-
chen, die die beiden Kondensatterme zueinander ins Verhéltnis setzt. Der allgemeine
Zusammenhang, der dies leistet, lautet: Die Kondensatterme verhalten sich zueinander
wie die entsprechenden statischen Suszeptibilititen bzw. unter der Annahme, dafl die
Grenzwertbildung mit der Division vertauschbar ist, gilt

Caa Gl (w o (w
Q28 — lim lim %U = lim lim X‘}_#(). (3.25)
CQ’Y5 q—>Quw—0 Gqu (w) q—>Quw—0 Xy ( )

Ein Beweis von (3.25) findet sich im Anhang A.1. Hier liefert die Anwendung obiger
Beziehung
Cu _ 1—2nc + 2ncy
012 47’]01
woraus unter Beachtung von (3.22) C},/C}» = 1 folgt?®. Damit stehen jetzt genau-
so viele Gleichungen widerspruchsfrei zur Verfiigung wie Unbekannte vorliegen. Das
Gleichungssystem (3.24) hat dann die Gestalt

(3.26)

= Ci, c2=Cn, Cu=~0Co,
N V % +Cu, 1—6mc+2nc; =0, (3.27)

o~ 8

dessen Losung mit ¢; = ¢; = Cy; = C12 = 1/6 und n = 3/2 gleichzeitig dem exakten
Resultat entsprichtﬁ. Genauso wie die Korrelatorenmatrix cq nicht von q abhéngt,
so sind die Korrelationsfunktionen im Ortsraum mit (S;.6Sns) = 3Cmans/2 = 1/4
abstandsunabhiingig; die Korrelationslinge £ = 1/2nc1/ (1 — 6nc1 + 2ncs) divergiert
vermoge der erfiillten Kondensatbedingung (3.22). Einsetzen der Losung in die Disper-
sionsrelationen ergibt in Ubereinstimmung mit der LSWT fiir s = 1/2

wiq=—J(1—cosg;) <+ —2Js(1—cosq,),
wig=—-J(1+cosq;) <+ —2Js(l+cosqy).

Die Grundzustandenergie pro Spin ist von N unabhingig: Ey/JN = 1/4 = s* mit
negativem J. Folgende Fakten lassen sich nun verallgemeinern:

- Die RGM liefert insbesondere in ihrer Minimalversion vom Gitter unabhéngig im
Grundzustand immer das exakte Ergebnis, solange alle Kopplungen ferromagne-
tisch sind.

**Eine Rechnung mit G5; (w) und Gz (w) muB dasselbe ergeben.

26Fiir J > 0 findet man mit (3.23) C11/C12 = —1.

2"Der Zustand parallel ausgerichteter Spins ist ein Eigenzustand von H und bei vorliegender ferro-
magnetischer Kopplung derjenige mit der tiefsten Energie.
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- Im Grundzustand sind dann die Dispersionsrelationen der RGM mit denen der
LSWT identisch, da letztere im Grundzustand ebenfalls exakt wird.

Diese Eigenschaften lassen sich bei der Fehlersuche nutzen. Als notwendige Bedingung
sollte zumindest das exakte Ergebnis (alle Korrelatoren 1/6, alle Vertexparameter
3/2) im Grundzustand immer dann herauskommen, wenn alle J,,, s negativ sind,
d.h. ¢q = 1/3 unabhiingig von Modell und Gitter. Damit verbunden ist die Tatsache,
dal das Verhiltnis beliebiger statischer Suszeptibilititen immer eins zu sein hat.
Gleichzeitig lassen sich die Spinwellendispersionen im Rahmen einer LSWT um
den vollstindig polarisierten Zustand oftmals mit geringerem Aufwand berechnen.
Einsetzen des exakten Resultats in die Dispersionsrelationen der RGM, ohne dafl das
Gleichungssystem vorher explizit gel6st zu werden braucht, mufl die Spinwellendi-
spersionen der LSWT reproduzieren. Von hohen Temperaturen kommend, geht die
Loésung ohne Kondensat stetig in die Grundzustandslésung mit Kondensat iiber. Der
Ubergangspunkt ist demnach in Ubereinstimmung mit dem Mermin-Wagner-Theorem
T =

J > 0: Nimmt man an, dal Fernordnung im Grundzustand moéglich ist, so ge-
langt man unter Beriicksichtigung von (3.23) zu folgenden Dispersionsrelationen:

Wiq = Waq = 2Jv/—1ci1/1 — cos? g,

Dann hat die Korrelatorenmatrix aus (3.16) die Gestalt

o = —01\/ 1 1 — COS ¢
1 n 1 —cos?q, — COS g, 1 )

Es wire jetzt z.B. die Giiltigkeit der Summenregel zu fordern. Im thermodynamischen

Limes lautet sie
— +7/2
‘ [ — / —— 4.
—71'/2 1-— cos2 qw

f ”/2 quld(Iac

Wenn man annimmt, dafl ein von Null verschiedener Kondensatterm existiert, dann
sollte obiges Integral endlich sein, was es aber nicht ist, weil es logarithmische Diver-
genzen besitzt. Offensichtlich fithrt die Annahme eines ferngeordneten Grundzustan-
des auf einen mathematischen WlderspruchJ Jedes andere Resultat wiirde zudem der
exakten Bethe-Losung widersprechen. Vielmehr erhélt man im thermodynamischen Li-
mes ¢; = —0.27703, c; = 0.08050 sowie 1 = 1.75441 mit 1 + 2nc; + 2nce # 0, woraus
Ey/JN = —0.4156 [78] folgt. Vergleichend sei noch die exakte Energie, die von Hulthén
[79] aus der Bethe-Losung abgeleitet wurde, angegeben: Ey/JN = 1/4—1In2 = —0.4431.
Wie beim Kagomé-Gitter auch, erhélt man trotz fehlender Fernordnung einen Spinwel-
lenausdruck fiir die Grundzustandsenergie im thermodynamischen Limes. Er lautet

EO 23
=0 _ _ 1) + 22
N s(s+ )+7r’

Z8Damit verbunden ist wiq ~ ¢2 fiir T'= 0 und wiq ~ ¢, fiir T > 0.
2Genauso dufert sich in der LSWT die Nichtexistenz magnetischer Ordnung. Wegen wq =

2Js4/1 — cos? q, existiert keine endliche Untergittermagnetisierung,.
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also fiir s = 1/2 folgt Ey/JN = —0.4317. Es ist iiberraschend, da§ gerade die LSWT
eine bessere Abschétzung fiir E, liefert.

Auf der einen Seite ist die Korrelationsldnge €47 im Rahmen der RGM in jedem Fall
endlich; insbesondere findet man im Grundzustand 47 = 1.76963. Andererseits 148t
sich aus dem exakten Ergebnis ableiten, dal £ 4 mit einem potenzartigen Abfall der
Korrelationsfunktionen iiber dem Abstand im Grundzustand divergieren sollte. Dem-
nach scheint die RGM fiir Feinheiten, wie sie die Kritizitéit eines Spinsystems darstellt,
nicht sensibel genug zu sein. Trotzdem ist £ 45 als Korrelationslidnge zu interpretieren,
wenn man der Systematik in der Theorie folgt.

Es soll nun ein Zusammenhang zwischen der uniformen statischen Suszeptibilitit
x und der Matrix lim, o X3~ (w) aufgezeigt werden, der sich fiir Gitter mit Ba-
sis verallgemeinern 148t. Enthilt die Elementarzelle nur einen Spin, so gilt einfach
x = limg_,0 lim,, o X3~ (w) /2 [81]. Fiir die lineare Kette findet man entsprechend

—201
J (1 —6ncy + 2nca)

Was bei zwei oder mehr Spins pro Elementarzelle zu tun ist, liegt nicht sofort auf der
Hand. Ausgangspunkt der Betrachtungen ist daher die Beziehung

_ (87— (s?)’
N, kT

Dabei ist S* = ) S7Z., der Operator der z-Komponente des Gesamtspins, und Ng
ist die Gesamtzahl aller Spins. Weil (SZ,,) = 0 fiir jedes ma gelten soll, verschwindet
der Erwartungswert (S*) ebenfalls und man erhilt x = (S**) /NgkT. Mit Ng, als Zahl
der Gitterzellen folgt daraus

X = NskT 2 (SiaSis) = 2N INGT 2 (SiaSus)

ma,nf ma,nf

o B> 029

X = (3.28)

Bis auf den Vorfaktor Ng/2Ng ist x einerseits gleich der Summe iiber alle Matri-

xelemente von lim, o x{~ (w) = —lim,_ o G¢~ (w) im Punkt q = 0; im vorliegen-
den Fall sind Np = N/2 und Ng = N, so daB sich (3.28) tatsiichlich reproduzieren
188t. Andererseits ist unter Beriicksichtigung von x{~ (w) = —G¥~ (w) der Darstellung

(3.21) zu entnehmen, dafl es sich bei x gleichzeitig um einen Eigenwert der Matrix
limg_,0 lim,, 0 x&~ (w) /2 handelt. Die Beziehung zwischen x und dem Eigenwertspek-
trum von limg_,g lim,,_,o x¢ ~ (w) ist auch bei anderen Modellen, die der Autor daraufhin
untersucht hat (Quadratgitter, Leiter, Kagomé-Gitter, geschichtetes Kagomé-Gitter),
nachweisbar und deshalb bedingt VerallgemelnerungswurdléJ Dort liefert derjenige
Eigenwert, der der Summe iiber alle Matrixelemente proportional ist, stets die Kon-
densatbedingung fiir den rein ferromagnetischen Fall. Wenn alle Kopplungen ferroma-
gnetisch sind, divergiert x zumindest im Grundzustand.

30Gowohl alle Diagonal- als auch alle Nebendiagonalelemente sind fiir sich in diesem Limes gleich.
Mit n Spins pro Elementarzelle gibt es n? Matrixelemente. Davon sind n Diagonal- und n (n — 1) Ne-
bendiagonalelemente a respektive b. Weiterhin gilt Ng/Ng = 1/n. Nach (3.29) findet man schliefllich
2x = a+ (n — 1) b. Wie sich zeigen 148t, ist die rechte Seite der letzten Gleichung immer ein Eigenwert
einer n x n-Matrix des Typs My, = adqa,g + b (1 — 64,3).
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n+1-te Ebene

n—te Ebene

Abbildung 3.1: Das geschichtete Kagomé-Gitter mit den Basisvektoren a; = (0, 2,0),
a, = (v/3,1,0) sowie a3 = (0,0,1). Die einzelnen Ebenen liegen deckungsgleich iiber-
einander, wobei ein Index die Spins innerhalb der Elementarzelle durchnumeriert.

3.3 Das geschichtete Kagomé-Gitter

Wie bereits in den Ausfithrungen im Zusammenhang mit dem Maple-Leaf-Gitter deut-
lich wurde, ist der HAFM auf dem puren Kagomé-Gitter ein Kandidat fiir ein quante-
nungeordnetes Spinsystem, in dem es bestenfalls kurzreichweitige Ordnung gibt. Man
vermutet, dafl es einen Zusammenhang zwischen der wahrscheinlichen Nichtexistenz
von magnetischer Fernordnung und der bereits erwéhnten unendlichen Entartung des
klassischen Grundzustandes infolge der starken Frustration gibt. Aus der LSWT las-
sen sich wegen der flachen Nullmode keine quantitativen Aussagen ableiten®!. Da-
gegen bietet die RGM als alternative Theorie die Moglichkeit, sowohl Ordnung als
auch Unordnung in Spinsystemen formal gleichermaflen zu erfassen. Gerade in den
letzten Jahren haben sich deshalb verschiedene Autoren [28, 29] genau der Frage zuge-
wandt, zu welchem Schlufl die RGM fiir den HAFM auf dem Kagomé-Gitter kommt.
Tatsédchlich beschreibt die RGM einen kurzreichweitig geordneten Grundzustand, in
dem eine Spinfliissigkeitsphase vorliegt. In dieser Arbeit soll nun ein Modell im Rahmen

31Vom mathematischen Standpunkt aus sind flache Nullmoden immer ein Hinweis auf Unordnung.
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der RGM untersucht werden, das eine Verallgemeinerung des zweidimensionalen Ka-
gomé-Gitters dahingehend darstellt, daf die iiblichen Kagomé-Ebenen miteinander in
einer dreidimensionalen Struktur koppeln. Man gelangt auf diese Weise zum geschich-
teten Kagomé-Gitter. In Abb. [3.1 ist dieses Gitter in Ermangelung der Moglichkeit
der perspektivischen Darstellung bei gleichzeitiger Beibehaltung der Ubersichtlichkeit
nur schematisch wiedergegeben. Beschrieben werden soll dieses Modell durch einen
Hamilton-Operator des Typs (3.1) fiir Spins s = 1/2. Die Kopplungen seien nur zwi-
schen nichsten Nachbarn von Null verschieden mit

Jma,nﬂ — JJ_(Sayﬂ + J|| (1 — 6a,[3) .

Dabei ist J) die Ebenenkopplung und J, die Zwischenebenenkopplung. Studiert wer-
den alle denkbaren Vorzeichenverhéltnisse. Demzufolge sind vier Fille zu unterscheiden.
Weiterhin seien N Spins vorhanden. Wegen der speziellen Wahl der Kopplungen besitzt
jede geometrische Elementarzelle drei Spins, so dal es N/3 Elementarzellen gibt. In
allen vier zu untersuchenden Fillen geniigt eine Theorie, die vom geometrischen Gitter
ausgeht, da J, nicht zusétzlich frustriert. Weil J, nicht zusétzlich frustriert, ist der
klassische Grundzustand fiir .J; > 0 genauso hochgradig entartet wie im zweidimensio-
nalen Fall. Vor allem interessiert hier die Frage, ob ein von Null verschiedenes J, fiir
Jj| > 0 insbesondere zu einem ferngeordneten Grundzustand fiihrt. Auf den Einfluf§ der
Zwischenebenenkopplung in quasizweidimensionalen Spinsystemen ist bereits in der
Einfithrung eingegangen worden. Folgende Szenarien sind fiir Jj > 0 beim Einschalten
von J; im Grundzustand denkbar:

- Sobald J, # 0 gilt, setzt langreichweitige Ordnung ein.
- Langreichweitige Ordnung kommt erst bei einem endlichen J, zustande.

- Es gibt trotz J, # 0 niemals Fernordnung.

Wenn magnetische Fernordnung auftreten sollte, so ist auBlerdem zu beriicksichtigen,
daf} das betrachtete Modell zwischen dem zweidimensionalen Kagomé-Gitter und der
linearen Kette interpoliert, d.h. bei positivem Vorzeichen von J, die Fernordnung wie-
derum verschwinden kénnte. Im Spinsystem vollzieht sich gleichzeitig ein Ubergang
hinsichtlich seiner Dimensionalitét; von zwei zu drei Dimensionen wieder hin zu einer
Dimension. Dieser Ubergang kénnte sich auch in der Temperaturabhingigkeit solcher
Groflen wie der spezifischen Wéarme niederschlagen.

Begonnen wird nun mit der Aufstellung der Momentenmatrix My unter Verwendung
der Vektoren r; = a;/2,ry = ay/2 sowie r3 = a3

6 ) 6
Mqaﬂ = N Z Jma,nﬂcma,nﬂ €xXp (quma,nﬂ) - N(Sa,ﬂ Z Jma,l’ycma,l'y-

m,n m,ly

Man findet z.B. fira=£=1

Mg = 2Jy (c11 (r3) exp (iqrs) + ¢11 (—r3) exp (—iqrs))
— 2J1 (c11 (r3) + c11 (—r3))
— 2] (012 (1'1 — 1'2) + 12 (—1'1 + 1'2) + ci3 (1'1) + c13 (—1'1)) .
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Hier wie auch bei den iibrigen Matrixelementen lassen sich die Korrelatoren sinnvoller-
weise zusammenfassen. Dann erhélt man mit der Notation ¢; ;, = ¢ (ir; + jro + krs)

Mqi = Mg = Mgz = —4J1c0p,1 (1 — cos (qrs)) — 8Jjc1,0,0,

Mgz = Mg =4Jjcippcos(q(r —ry)),

Mgz = Mg = 4J||C1,0,0 Cos (qu) )

Mgs = Mgz = 4Jjc10,0 cos (qra) . (3.30)

Die Matrix Mg hat die angenehme Eigenschaft hermitesch zu sein. Da J, einzig additiv
in der Gestalt von —4.J ¢ (1 — cos (qrs3)) ausschlieBlich in den Diagonalelementen
von Mg auftritt, gilt

[Mq (JL=0) , Mg (JL#0)_=0,

so dafl die Eigenvektoren der Momentenmatrix nicht von ¢, abhingen kénnen.

Eine vergleichsweise aufwendige Rechnung liefert die Matrixelemente der Frequenzma-
trix Fy, die ebenfalls hermitesch ist. Im Rahmen der zuvor besprochenen Minimalver-
sion sind zwei Vertexparameter einzufiihren. Alle Korrelatoren in der Ebene werden
mit 7, und alle Korrelatoren zwischen den Ebenen werden mit 7, versehen. Als Ma-
trixelemente erhélt man

Fqi = 2J} (14 mci0, (cos (2qry) + cos (2q (r; — 13)))

+  2m(cr00 +cr10 + 02,0,0))

+ Ji (1 —cos(qrs)) (14 2nL (cop1 + coo2) —4n1co01 (1 + cos (qrs)))

+ 8J)JL (277L01,0,1 (1 —cos (qrs)) + cos (qrs) (77¢01,0,1 - 77||C1,0,0)) )
Fao = 2J|f (1 + myc1,0,0 (cos (2qra) + cos (2q (r1 — r2)))

+ 2 (100 +c1,10 + 02,0,0))

+ JT (1 —cos(qrs)) (142791 (cop1 + coo2) — 4n1co0.1 (1 + cos (qrs)))

+ 8JyJL (2n1c10,1 (1 — cos (qrs)) + cos (qrs) (nicior — Mc100)) s
Fass = 2Jf (1 +mc100 (cos (2qry) + cos (2qr,))

+ 2 (100 + €100 + 02,0,0))

+ Ji (1 —cos(qrs)) (14 2nL (cop1 + coo2) —4n1co01 (1 + cos (qrs)))

+ 8J)JL (277L01,0,1 (1 —cos (qrs)) + cos (qrs) (77¢01,0,1 - 77||C1,0,0)) )
Fqa = Fg = Jj (2mc100cos (q (r1 +12))

— cos(q(ry — 1)) (1 +2m (Beropo + 1,10 + 2,00)))
+ 44 (COS (g (ry —r2)) cos (qrs) (77||01,0,0 + 77J_CO,0,1)
— cos(q(r1 —T2))n1 (00,1 + C10,1)) 5
Faz = Fqa = Jﬁ (2mc1,00 cos (q (1 — 2r5))
— cos(qr) (1 + 2 (3er,00 + €110 + 02,0,0)))
+ 4JJ 1 (cos (qry) cos (ars) (mci0,0 + M1C0,0,1)
cos (qry) 71 (co0,1 + €1,0,1)) »
Fos = Fgp = Jﬁ (2mjc1,0,0 cos (q (2r1 — 12))
— cos (qra) (14 2my (Ber0,0 + €1,1,0 + €2,00)))
+ 4JyJL (cos (grz) cos (qrs) (mci00 + 1Lc001)
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—  cos (qra) N1 (co0,1 + €10,1)) - (3.31)

Sodann 148t sich zeigen, daf die Frequenzmatrix mit der Momentenmatrix vertauscht.
Damit besitzen die gemeinsamen Eigenvektoren keine ¢,-Abhéngigkeit. Weiterhin exi-
stieren analytische Ausdriicke fiir die einzelnen Eigenwerte. Mit

miq = —12Jjc100 —4J1cop, (1 —cosg,),

3Jﬁ (1 + 2 (2c1,00 + 1,10 + 02,0,0))

JT (1 —cosq,) (1 +2n1 (cop1 + cop2) — 4mico0, (1 +cosq,))
4JyJ1L (nreo, (1 —cosq,) — 2nicipn (1 + cosg,)

Tnicrpe — 31)C1,0,0 COS Qz) )
—6Jjc1,0,0 — 4J 1 co0,1 (1 — cosq,) — 2J)c1,0,0Dq,

2
wlq

3
te]
I+ + +

3
Wi Jﬁ (5 + 31 (2¢1,0,0 + €1,1,0 + €2,0,0)

V3¢,

+ 8mc100 (2 cos? q2_y + 2cos? — cos? &

2
\/§q q
2 z 2 Yy
— — -3 =
Ccos 9 Ccos 9

_|_

JI(1—cosg,) (1 +2n, (co0,1 + €0,0,2) — 4m 10,1 (14 cos q;))
JiJ L (=8nreio (14 cosq,) — 2nicoo, (1 —cosg,)
— Oncrp0co8q; + 2277J_Cl,0,1)

_|_

J|
% () (1 +2my (2100 + c1,10 + €200))

+ +

4JJ_ (nJ_CO,(),l (1 — COS qz) + 71C1,0,1 — 7]j|C1,0,0 COS QZ)) Dq:
—6J)c1,0,0 — 4J1Lco0,1 (1 — cos gz) + 2J)c1,0,0Dg,

E
ie]
Il

3
Wig Ji (5 + 3y (2¢1,0,0 + €1,1,0 + €20,0)

2 V36 28

+ 8nci00 (2 cos’ q2_y + 2cos 5

2 \/ng 2 Gy
_ YT 3
COS 2 COSs 9 ) )

+ J3(1—cosq,)(1+2n1 (co0,1 + Co02) — 411001 (14 cosg,))
-+ J||JJ_ (-8’/’”_017071 (1 4+ cos Qz) — 27’”_007071 (1 — COS Qz)
- 67’]”017070 COS g, -+ 227’]J_017071)

J|
- % (Ji (T4 2m (2100 + €1,1,0 + €2,00))

+ 4J1 (nicops (1 —cosq,) +mici01 — MiC1,0,0€08g;)) Dg (3.32)
und
3 3
Dy = \/9 + 16 cos? q2_y + 16 cos? %cos2 %y — 8 cos? % — 24 cos? %y
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erhdlt man die Losungsmatrix zu

3
my;
Zw2 — - lia) Gl

7j=1 Jja

Zur Untersuchung des Tieftemperaturverhaltens der spezifischen Wérme sind spéter
die normierten Eigenvektoren in der Grenze q = 0 von Interesse, die durch

1 1 1 1 1

1
10)=—1{ 0 |, 200=—]| -2 |, [30)=—1] 1 3.33
|>\/§_1 |>\/61|>\/§1 (3.33)
gegeben sind. Ferner muf} untersucht werden, ob lim,_,o G{~ (w) im Limes q — O fiir
beliebige 7 und 7, isotrop ist®’. Die konkrete Rechnung zeigt, da$§ der Isotropieforde-
rung von selbst nicht geniigt wird. Vielmehr ist wegen

lim G a||a[3£]ﬁ + aJ_aﬂQi
w—0 qaf b||a[3£]ﬁ + bJ_a[EQi

mit g = g5 + g, sowie ¢7 = ¢; die Giiltigkeit der Gleichungen

Ao CGlop

=0
blas  blap

zur Bedingung zu machen. Diese Gleichungen dienen zusdtzlich der Bestimmung der
Vertexparameter. In der vorliegenden Minimalversion der RGM fiir das geschichtete
Kagomé-Gitter sind zwei Vertexparameter eingefiihrt worden. Es gibt aber effektiv
nur eine Summenregel, denn alle drei werden gleichzeitig erfiillt. Wenn also die Theorie
widerspruchsfrei bleiben soll, dann darf die Forderung nach Isotropie de facto nur genau
eine weitere Gleichung liefern. Dies gilt es jetzt zu priifen. Man findet

a 4c
b||||aﬂ N };|070 (JH (1 - 277” (2017070 - 017170 - 027070)) + 4JJ— (TU-CLO?I - 77||Cl7070)) 60‘7[3
of
16J,mc?
+ 1M€1,0,0 (1= 64.5)
i
mit
fi = (I (142 (2cr00 + e110 + €200)) +4J1 (M1c101 — Mic100)) X
(JII (1 — 2 (4ero0 — €10 — 02,0,0)) +4J, (77L01,0,1 - 77||01,0,0))
sowile
a 4
J_—aﬂ = — (J” (007071 (1 + 27’]” (2017070 + 01,1,0 + 02,0,0)) + 1677J-Cl,0,0 (017071 - 007071))
bJ_a[i 3fJ_
2J (01,0,0 (1 —2n (300,0,1 - 00,0,2)) + 200,0,1 (mcl,o,l - 77”017070))) 60‘7/3
4

3fL (J|| (Co 0,1 (1 + 21 (2¢1,0,0 + €1,1,0 + €20 0)) + 8n1c1,0,0 (co01 — 01,0,1))

— Ji (e100 (1= 211 (Bco01 — cop,2)) + 4cop,1 (micr00 —Mic10,1))) (1 — bap)

32Der Betrachtung im Anschluf ist die Untersuchung des Elgenwertspektrums der Matrix
limg_,0 limy,4o Gjlr (w) dquivalent. Wihrend die Eigenwerte GJr m]q/r,u]q fiir § = 1,2 in diesem
Limes isotrop sind, ist es der Eigenwert GJFq nicht. Wenn man Isotrople auch fiir diesen Eigenwert
fordert, so gelangt man ebenfalls zu (3.34).
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mit
fi = (Jll (1 + 2 (2c1,00 + €110 + 02,0,0)) +4J (77¢C1,o,1 - 77||C1,0,0)) X
(J1 (1 =271 (Bcoo,1 — co02)) + 8J)mL (cr0,1 — Co0,1)) -
Zunéchst erkennt man, dafl zwei verschiedene Gleichungen existieren. Es sind also nur

die Diagonal- bzw. die Nebendiagonalelemente miteinander zu vergleichen. In der Tat
erhdlt man nach kurzer Rechnung die Bedingung

C1,0,0 (JJ_ (1 —2n1 (3co0,1 — co0,2)) + 8o (cr01 — 00,0,1))

—co0.1 (I (1 — 2y (4er00 — €110 — €2,00))

+4J1 (nicio1 — mici00)) =0, (3.34)
die simultan die Differenzen der entsprechenden Matrixelemente zu Null macht. Die
Forderung nach Isotropie fiihrt also auf genau eine zusétzliche Gleichung fiir 7, . Damit
ist gesichert, dafl es genauso viele Gleichungen gibt wie Unbekannte. Abschlieend soll
die uniforme statische Suszeptibilitit x nach (3.29) mit Ng/Ng = 3 berechnet werden.
Ausfiihren der Summation liefert
_ —2¢1,0,0
a J|| (1 — 2 (401,0,0 —CL1,0 — 02,0,0)) +4J) (77J_01,0,1 - 77||01,0,0)
welches wegen (3.34) mit

X : (3.35)

—200,0,1
Ju (1 =271 (3eo0,0 — Co,02)) + 8JymL (€100 — Co0,1)

iibereinstimmt. Wie man sich leicht {iberzeugen kann, ist x gleichzeitig auch ein Eigen-
wert der Matrix

X:

lim lim x3~ (w) /2,

q—0 w—0

die in diesem Limes mit ad, g +b (1 — d,4) eine einfache Gestalt hat. Ausgestattet mit
dem noétigen theoretischen Riistzeug, konnen nunmehr die einzelnen Fille eingehend
betrachtet werden. Dabei soll so vorgegangen werden, daf alternativ soweit wie moéglich
auch eine entsprechende Spinwellentheorie fiir beliebiges s prisentiert wird.

3.3.1 Der Fall J; <0, J. <0

Der klassische Grundzustand ist in diesem Fall trivial. Alle Spins weisen in dieselbe
Richtung, was durch q = 0 beschrieben wird. Die Resultate von LSWT und RGM
sollten im Grundzustand {ibereinstimmen.

Lineare Spinwellentheorie fiir J; < 0 und J; < 0: Nach (2.9) lautet der
bosonische Hamilton-Operator

H = 2JNs*+J Ns*+ )  H,,

q

(—4Jys — 2J1s (1 — cos (qrs))) (afya1q + a3qa2q + 03qa3q)
+ 2Jyscos (q(r; —r3)) (af a2q + a1q0%,)
+  2Jyscos (qra) (ad,asq + 2q03,)
+ 2Jyscos (qri) (a3ya1q + a3q07y) » (3.36)

Hq
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so dafl die iiblichen Diagonalisierungsprozeduren - hier werden Greensche Funktionen
entsprechend Abschnitt 2.1.2 benutzt - auf

wiq = —6Js—2J.5(1 —cosg,),
waq = —3Jys—2J1s(1—cosgq,) — JysDqg,
wiq = —3Jys—2Js (1 —cosgq,) + JsDq (3.37)

fithren. Da in (3.36) keine Terme der Form a:,gqa:{_q bzZwW. Gmqan—q auftauchen - alle
Kopplungen sind ferromagnetisch -, treten die wy,q als Pole der beteiligten Greenschen
Funktionen nur einfach mit positiven Vorzeichen auf. Alsdann ergibt sich fiir die innere

Energie E
E = (2Jj+J.)Ns(s+1)

> 1 1
+ DD g (eXp o + 5) , (3.38)

q m=1

woraus man Ey/N = (2J; + J1) s* erhélt. Weiterhin gilt im Grundzustand (S%) = s
fiir m = 1,2, 3. Die Gleichheit der Untergittermagnetisierungen ist auch bei endlichen
Temperaturen gegeben, was an sich verniinftig ist. Dennoch ist die Beschreibung des
Uberganges von der geordneten Phase in die thermisch ungeordnete Phase im Rah-
men der LSWT inkonsistent und unphysikalisch, was in Abb. [3.3 sowie Abb. 3.4 zum
Ausdruck kommt®. Die Korrelationsfunktionen klingen in einer Weise ab, in der sie
sich im Hochtemperaturlimes nicht asymptotisch der Null ndhern. Vielmehr gibt es
direkte Nulldurchgéinge bei endlichen Temperaturen, die sich zudem voneinander un-
terscheiden®. AuBerdem findet man ein lineares Einmiinden der Magnetisierung am
?»Ubergangspunkt” vor, obwohl sie dort einem Potenzgesetz mit dem kritischen In-
dex 1/2 gehorchen sollte. Es wird also deutlich, da§ die LSWT zur Charakterisierung
zunehmend ungeordneter Strukturen vollkommen ungeeignet ist und bestenfalls den
Grundzustand und daran anschlieBend die Tieftemperatureigenschaften korrekt be-
schreiben kann.

Ausgehend von (3.37) und (3.38), erfolgt nun exemplarisch die Ableitung der spezifi-
schen Wirme im Tieftemperaturregime. Bei geniigend tiefen Temperaturen liefert nur
die akustische Mode wsq in der Umgebung von q = 0 wesentliche Beitrige zur Summe.
Aus der Entwicklungﬁ3 von wsq in dieser Umgebung folgt beim gleichzeitigen Ubergang
zum thermodynamischen Limes

N —Jys (@2 +¢2) — Jisq?
E=(2Jy+J.)N 2+7/ .
(29 + J.) Ns 3Verz Jprz exp ((—J)s (¢ + qz) —Jisz) /KT) — 1

Um dieses Integral zu l6sen, kann wegen der Exponentialfunktion im Nenner das In-
tegrationsgebiet ins Unendliche ausgedehnt werden, wonach sich die Einfiihrung von

dq.

33Zum besseren Vergleich sind die Abbildungen weiter hinten zu finden.

34Die Quantenkorrekturen, die durch die LSWT gegeben sind, wachsen stetig mit der Temperatur.
Dies entspricht dem Bild angeregter Magnonen, welches aber nur fiir tiefe Temperaturen richtig ist.
Irgendwann ist die Quantenkorrektur einer Korrelationsfunktion gréfer als ihr klassischer Wert. Ab da
bekommt die entsprechende Korrelationsfunktion zusétzlich das falsche Vorzeichen. Dies gilt genauso
fiir die Magnetisierung.

35Immer dann, wenn in dieser Arbeit z.B. Dispersionsrelationen um bestimmte Punkte Q entwickelt
werden, wird stillschweigend vorausgesetzt, dafl zuvor q durch Q + q ersetzt wurde.
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Zylinderkoordinaten empfiehlt:
4z = pCOSP, Gy =psing, ¢;=¢;
mit p € [0, +o0], ¢ € [0, 27] sowie ¢, € [—00, +00]. Dann gilt
E = (2J|| +J.)Ns?
+°°/ / —Jjsp® — Jisqzp dodod
3VBRZ oo exp ((—Jjsp? — Josq?) [kT) — 1

wobei die Integration iiber ¢ sofort ausgefiihrt werden kann, so dafl daraus

+

2N +o0 +o0 —J 3—J 2
E = (2J)+ J.) Ns* + —— / 157 — " L24.P

dpdg,
3Varz —oo €xp ((—Jjsp* — Jrsq?) [kT) — 1 pq

folgt. Eine weitere Koordinatentransformation lautet dann

p=rsinb/\/—Jys, q,=rcosf/\/—Jys

mit 7 € [0, 400],6 € [0,7]. Auch hier 148t sich die Integration iiber é sofort ausfiihren:

7"4

A7 N /+°° dr
3Varz /_JﬁJJ_S?’ o exp(r?/kT)—1

woraus sich nach letztmaliger Substitution 72 = kT'z

9r N T5/2 +00 23/2
E=Q2J+J)N Tk / o @ =19

3VBRZ\ / —J” Jis3Y

ergibt. Damit findet man mit Vprz = 473 / /3 die fiir einen dreidimensionalen Ferro-
magneten korrekten Temperaturabhéingigkeiten der Energie respektive der spezifischen
Wirme zu

E=(2Jy+ J.)Ns*+

3f< 5/2)/4

FE N 2 \/§C (5/2) 5/2
~ = @A+ s /-l (kT)*2,

16, /—JﬁJJ_S?’ﬂ'?’

Rotationsinvariante Greenfunktionsmethode fiir J; < 0 und J, < 0: Begonnen
wird mit dem Grundzustand. Dann ist von vornherein klar, daB magnetische Fernord-
nung existiert, und zwar mit q = 0. Diese ferromagnetische Ordnung wird sich dariiber
hinaus wegen der Dreidimensionalitit des Spinsystems auch thermischen Fluktuatio-
nen gegeniiber bis zu einem gewissen Maf} als resistent erweisen. Es ist also eine von
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Null verschiedene Ubergangstemperatur kT zu erwarten, solange J, < 0 gilt. Fiir
kT < kT lautet das selbstkonsistent zu 16sende Gleichungssystem

3 . 3 .
CL,00 = N Z cqzexp (—iqri) + Ci3, ci10 = N Z Cq12 €xp (—iq (r1 + 12)) + Cho,

q#0 q#0
3 . 3 .
C2,00 = N Z Cq11 €XP (—z2qr1) +Ch, C0,0,1 = N Z Cq11 €XP (—qu3) + Chy,
q#0 q#0
3 . 3 .
1,01 = N Z Cq13 €XP (—zq (1'1 + 1'3)) + Cis, C,0,2 = N Z Cq11 €XP (—z2qr3) + Ci1,
q#0 q#0
1 3
;= v Xt 340
q#0

Als Kondensatbedingungen findet man

i (1 = 2my (4er00 = €10 = €2,00)) + 41 (n1cr0, = Micr00) =0 (3.41)

sowile
J1 (1 =2n1 (3001 — €o0,2)) +8Jymo (€101 — Co0,1) = 0. (3.42)

Hervorzuheben ist die Tatsache, da8 sich beide Kondensatbedingungen aus dem Ei-
genwert G3y (w) = maq/ (w? —w3,) ableiten lassen®. Alle iibrigen spielen bei den
vorliegenden Kopplungsverhiiltnissen offenbar keine Rolle. In Analogie zur linearen
Kette lassen sich demnach auch hier bestimmte Eigenwerte der Losungsmatrix eindeu-
tig einzelnen Féllen zuordnen. Die erste Kondensatbedingung (3.41) ergibt sich durch
die Untersuchung von lim,_,0 G4 (), nachdem man ¢, = 0 gesetzt hat. Sie ist leicht
als die korrekte Kondensatbedingung dadurch zu identifizieren, daf sich einerseits die
Vorzeichenverhiltnisse der einzelnen Korrelatoren richtig reproduzieren lassen und an-
dererseits sie fiir J; = 0 in die Kondensatbedingung fiir einen Ferromagneten auf dem
zweidimensionalen Kagomé-Gitter iibergeht. Demgegeniiber gewinnt man die zweite
Kondensatbedingung (3.42) aus ¢, — 0, wobei zuvor ¢, und ¢, Null gesetzt wurden.
Im Limes Jj = 0 folgt aus ihr (3.22), die Kondensatbedingung fiir einen Ferromagneten
auf der linearen Kette. Im iibrigen ist die Giiltigkeit von (3.34) nicht extra zu fordern,
weil diese Bedingung durch beide Kondensatbedingungen automatisch befriedigt wird.
Auf diese Weise liegen nun neun Gleichungen zur Bestimmung von elf Unbekannten
vor. Es fehlen also noch zwei Gleichungen, die zusammen die Kondensatterme C'5 und
(13 festlegen. Tatsédchlich liefert die Anwendung von (3.25 37

Cu _ Cu _ Iy (1= 2 (2c100 — er10 — €200)) + 471 (i — Myci00) (3.43)
Cia Ci3 4J||77||C1,0,0 . .

Beriicksichtigt man auBerdem die erste Kondensatbedingung (3.41), so folgt sofort
C11 = C9 = Ci3. Ubersteigt kT die kritische Temperatur k7T, so reduziert sich das

36Es ist die Divergenz von limg_, lim,, o G;rq_ (w) zu fordern. Weil dieser Grenzwert vorerst nicht
isotrop ist, gibt es - je nach dem, wie der Grenziibergang q — 0 ausgefiihrt wird - zwei Kondensatbe-
dingungen. Beide Kondensatbedingungen hiingen mit (3.34) zusammen.

$THier mit ¢, = 0,q; — 0,q, — 0. Setzt man zuerst ¢, = g, = 0 und fiihrt danach g, — 0 aus, so
liefert das unter Beachtung der anderen Kondensatbedingung dasselbe Resultat.
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Gleichungssystem auf
23" s exp (—icry) 23 s exp (=i (11 +12))
= —_— X — = — —_
€1,0,0 N - Cqi3 €Xp (—tqr1), C1,1,0 N - Cq12 €Xp (—2q (T 2)),
¥ 3 can exp (—i2ar) 30 carr exp (~iay)
= — X —_ - — —
€2,0,0 N Cql1 €Xp \—22QTr1), Cp,0,1 N Cql1 €Xp | —2Qr3),
q q
3 . 3 .
1,01 = N ;qu €xXp (—zq (1'1 + 1'3)) y €002 = N ;qul exp (—z2qr3) )

1 3
5 = N Z Cq11 (344)
q

im Verbund mit (3.34). Im Grundzustand liefert (3.40) zusammen mit den beiden Kon-
densatbedingungen sowie unter Beriicksichtigung der Relationen zwischen den Konden-
sattermen erwartungsgemaifl folgendes Resultat fiir beliebige ferromagnetische Kopp-
lungen:

€1,00 = €C1,1,0 = C20,0 = Cp,0,1 = C1,0,1 = Cp,0,2 = 6’

_ g3
nm = 77L—27

1
Cu = 0122013:6’

welches aulerdem noch unabhingig von N ist. Mit dieser Losung hat die Korrela-
torenmatrix die einfache Gestalt ¢q = 1/3, so daB die Korrelationsfunktionen mit
(SoSr) = 3cr/2 = 1/4 abstandsunabhiingig werden. Aus (3.14) gewinnt man die Ord-
nungsparameter Mgﬂ bzw. die Magnetisierung M zu

1 1

Weiterhin ist evident, dafl im Grundzustand die Spinwellendispersionen der LSWT mit
den Polen aus (3.32) zusammenfallen:

Wiq = —3Jj—JL(1l—cosg,),
3J, J|
Waq = —7” —Ji (1 —cosg,) — %Dq,
3J, J|
Wiq = “2 g (1 —cosg,) + JDq.
2 2
Fiir die innere Energie findet man
3JUN
E = 3J||N017070 + = €0,0,1- (346)

Im Grundzustand ergibt sich daraus in Korrespondenz zur LSWT das exakte Resultat
zu Ey/N = J;/2 + J. /4. Die Ubereinstimmung zwischen LSWT und RGM fiir kleine
T legt die Frage nahe, inwieweit zumindest niherungsweise die spezifische Warme fiir
tiefe Temperaturen einer dhnlichen Beziehung wie (3.39) geniigt. Gesucht sind also die
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ersten Temperaturkorrekturen von (3.46). Dazu wird davon ausgegangen, daf bei hin-
reichend tiefen Temperaturen alle Korrelatoren sich nur gering von 1/6 unterscheiden

und auBlerdem 7 = 7, =~ 3/2 gilt. Die relevanten tiefliegenden Anregungen werden
durch wsq beschrieben. Man findet zunéchst unter Einbeziehung der Summenregel
1 3 :
CLo0 = 5 + N Z Cqi3 €XP (—1QT1) — Cqu1,
q#0
1 3 :
o1 = 5 + N ; Cqu (exp (—iqr3) —1).
q

Weiterhin sei an die Beziehungen (3.16) und (3.33) erinnert, so dafl ndherungsweise
1 2

Cqap = §5a,ﬂ t3n (wWaq) (3.47)
gilt, woraus wiederum
1 3 2n (w .
cioo = Z+—= (wsq) (exp (—iqry) — 1),
6 N 9
q#0
1 3 2n (w .
oo = =423 208 (o (e — 1) (3.48)
6 N pwrd 9

folgt. Dann verhélt sich die innere Energie wie

E = Ey+ )Y Eqg,
q#0

Eq = 2Jjn(wsq) (exp (—iqri) — 1) + Jin (wsq) (exp (—iqrs) — 1).
Von Interesse ist nunmehr die Auswertung der Summe im thermodynamischen Limes,
wobei nur kleine Wellenzahlen wesentliche Beitréige liefern. Dann geht die Summe in
ein Integral iiber, das iiber den gesamten Raum erstreckt werden kann. Alsdann sind
die Integranden zu entwickeln. Lineare Anteile in den Exponentialfunktionen heben
sich heraus, so dal man

+oo  ptoo —Jug® = 2L
19 — 2%
E = EO T — 3VBRZ / / /oo eXp _d (q2 + q2) _ J_J_q2) /kT) _ 1dq:/dedez
2 z Yy 2 Hz
erhilt. Die Elnfuhrung von thnderkoordlnaten ergibt dann

3VBRZ —00 eXp p2 - qu) /kT) -1

Ein Integral diesen Typs taucht bereits in der Ableitung der spezifischen Wirme im
Rahmen der LSWT auf, wenn man dort s = 1/2 setzt. Im Ergebnis findet man also

E g Jl . V3(/2) 5/2
N - 9 + 1 + _8!]|?JJ_7T3 (kT) ,
N 2 [—8J2] .7
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Beide Formeln stimmen mit (3.39) fir s = 1/2 iiberein. Aus der Entwicklung von
G3q = lim, 0G4y (w) in der Umgebung des magnetischen Ordnungsvektors nach
(A.6) ergeben sich die Korrelationslingen. Um die Korrelationslingen in der Ebene
abzuleiten, wird zunéchst ¢, = 0 in Ggq_ eingesetzt, so daB man als zu untersuchende
Grofe G4~ erhilt. Es gilt

3Qwa

e 4e10,0

lim G = )
Go,qy—0 % J| (1 — 21 (4er0,0 — €10 — 02,0,0)) +4J (77¢C1,0,1 - 77||01,0,0)

Zweimaliges Ableiten nach g, bzw. g, liefert in der Grenze iibereinstimmend

16Jjm1c% 0,0
5
(JII (1 — 2m (4ero0 — €110 — 02,0,0)) +4J, (77L01,0,1 - 77||01,0,0))

Im iibrigen existiert wegen
. 0°Gi,
lim ———* =0
@3y =0 0¢,0q,

kein Mischterm in der Entwicklung, dessen Interpretation Schwierigkeiten bereiten
wiirde. Die Anwendung von (A.6) auf Gy, ergibt folglich &2, = £2 = §|2| mit

3Qwa

2Jmic1,0,0
Jy (1= 2 (4er0 — c1,10 — €200)) + 4J1 (NLero0 — Mic100)

§|2| = (3.50)
Fiir J; = 0 ist dies genau die Beziehung fiir die Korrelationslinge eines Ferromagneten
auf dem zweidimensionalen Kagomé-Gitter. Zum Erhalt der Korrelationslinge zwischen
den Ebenen ist anders als zuvor ¢, = ¢, = 0in G4, einzusetzen, so daf sich G ergibt.
Insofern gilt jetzt

400,0,1

lim Gi~ = .
J1 (L =2n1 (3co,0,1 — €o,0,2)) +8Jym1 (€101 — co0,1)

g0 0%

Die zweite Ableitung von G3,~ im Limes g, — 0 lautet

16J1m1¢5 0,
(J1 (1 = 201 (3eo0, — o)) + 8Jimo (cr00 — Cop))”

woraus mit (A.6) und €2, = £2 in véllig symmetrischer Weise®

¢ 2J1m1¢00,1

= 3.51
T (1 =201 (3001 — Co02)) + 8Jjm. (c10,0 — co,0,1) (3:51)

folgt. Auch diese Formel ist sofort evident, wenn man sie mit der Korrelationsldnge
eines Ferromagneten auf der linearen Kette in Abschnitt 3.2.5 vergleicht. Wegen (3.34)
besteht zwischen beiden Korrelationsléngen folgender Zusammenhang:

Junugj = Jymél-

Dies bedeutet insbesondere, dafl im Limes hoher Temperaturen, wenn also beide Vert-
exparameter Eins werden, &t/ = J)/J. gilt.

85



0.4

02 r

E/N

-04 |

-0.2 -

0.8

0.6 r

CIN

04 r

02

04

0.8

12 16 2

kT

Abbildung 3.2: RGM: Die innere Energie (links) als Funktion der Temperatur £7 fiir

Jy = J1L = —1.00. Zum Vergleich dient das entsprechende Spinwellenresultat fiir s
1/2. Die spezifische Wérme (rechts) als Funktion der Temperatur AT fiir Jy = J.

—1.00.
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Abbildung 3.3: LSWT (links) fiir s = 1/2 und RGM (rechts): Verschiedene Korrelati-
onsfunktionen in Abhéngigkeit von der Temperatur £T fiir .J; = J. = —1.00.
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Abbildung 3.4: LSWT (links) fiir s = 1/2 und RGM (rechts): Die Ordnungsparameter
als Funktionen der Temperatur kT fiir J; = J. = —1.00. Dem direkten Vergleich dient
die Magnetisierungskurve des Ferromagneten auf dem kubischen Gitter bei identischem
Parametersatz.
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Abbildung 3.5: RGM: Die Vertexparameter (links) und die inversen Korrelationslidngen
(rechts) als Funktionen der Temperatur AT fiir J; = J. = —1.00. Wegen 7 ~ 7.
im gesamten Temperaturbereich sowie J = J differiert § aufgrund der Beziehung
Jﬂufﬁ = Jymé3 nur unmerklich von ;.
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Abbildung 3.6: RGM: Die inverse uniforme statische Suszeptibilitéit als Funktion der
Temperatur KT fiir Jy = J, = —1.00.

Um die offensichtlichen Vorteile der RGM gegeniiber der LSWT zu demonstrieren,
sind die selbstkonsistenten Gleichungen fiir den Parametersatz J; = J, = —1.00 geldst
worden. Bei hinreichend kleinen Temperaturen ist die Ubereinstimmung zwischen
dieser Methode und der Spinwellentheorie noch gut. Augenfillig wird diese Tatsache
bei der inneren Energie in Abb. 3.2 und bei den Korrelationsfunktionen in Abb.
3.3. Wihrend aber die LSWT fiir héhere Temperaturen komplett versagt, weil die
Vorstellung angeregter Magnonen eben nur fiir tiefe Temperaturen zutrifft, liefert die
RGM ein physikalisch konsistentes Bild. Erwartungsgeméf gibt es nach Abb. 3.4 eine
eindeutig definierte Ubergangstemperatur KTy ~ 0.87, unterhalb der magnetische
Ordnung vorliegt und die Magnetisierung M von Null verschieden ist. Dicht unterhalb
von kT. geniigt die Magnetisierung der Beziehung M ~ /Tg — T. Die Ubergang-
stemperatur ist eine Funktion von J,. Entsprechend des Mermin-Wagner-Theorems
wird sie Null, falls J, gegen Null geht. Allerdings gestaltet sich die Numerik in der
Nihe des Uberganges als schwierig zu handhaben. Die Liicken in den Diagrammen
in der Umgebung von k7. sind diesem Problem geschuldet. Frustration spielt auch
beim Kagomé-Ferromagneten bei endlichen Temperaturen eine Rolle. Deshalb ist
die Magnetisierung eines Ferromagneten auf dem kubischen Gitter bei gleichen
Kopplungsverhiltnissen und gleicher Koordinationszahl z = 6 stets gréfer als die des
Kagomé-Ferromagneten. Nach Abb.[3.4 liegt die Ubergangstemperatur des kubischen
Ferromagneten bei k7o ~ 0.93. Der Ubergang, der sich bei kT vollzieht, ist ein
Phaseniibergang zweiter Art. Ein damit verbundener Sprung in der spezifischen
Wirme, wie ihn die Landau-Theorie liefert, wird von der Theorie augenscheinlich
nicht reproduziert. Beide Kurvenzweige in Abb. [3.2 scheinen sich in der Verldngerung
am Ubergangspunkt zu schneiden. Aufgrund der numerischen Schwierigkeiten ist eine
endgiiltige Aussage diesbeziiglich nicht méglich. Die uniforme statische Suszeptibilitét
x in Abb. 3.6 sowie die Korrelationsldngen in Abb. 3.5 sind unendlich, solange man
sich in der geordneten Phase befindet. Oberhalb von k7 werden sie endlich und

38Im Zshler von (3.50) und (3.51) stehen die jeweilige Kopplung, der Korrelator zum néchsten
Nachbarn sowie der Faktor 2. Die Nenner sind durch die dazugehorigen Kondensatbedingungen ge-
kennzeichnet.
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gehen fiir hohe Temperaturen gegen Null, wobei gleichzeitig die Vertexparameter
gemdfl Abb. 3.5 rasch gegen Eins streben. Hervorzuheben ist der Umstand, daf§ mit
Ji; JL < 0 im Unterschied zu den iibrigen Féllen, die im Anschlufi untersucht werden,
keinerlei prinzipielle Probleme auftreten, die das Auffinden von sinnvollen Lésungen,
deren Existenz und Eindeutigkeit betreffen. Offenkundig ist die Beschreibung des
reinen Ferromagneten im Rahmen einer Minimalversion der RGM mit nur zwei zu
unterscheidenden Vertexparametern angemessen und ausreichend. Das eigentlich
willkiirliche Gleichsetzen der n beim Entkoppeln und die damit verbundene Gleich-
behandlung unterschiedlicher Korrelatoren scheint physikalisch gerechtfertigt zu sein®,

Fazit: RGM und LSWT beschreiben beide den Grundzustand exakt. Wéihrend
jedoch die LSWT bei endlichen Temperaturen ihre Giiltigkeit verliert, liefert die RGM
ein einfaches, physikalisch verniinftiges Bild. Es existiert eine Ubergangstemperatur
kTec. Dort vollzieht sich ein Phaseniibergang zweiter Art von der ferromagnetisch
geordneten Phase hin zu einer thermisch ungeordneten, paramagnetischen Phase. Aus
J1 — 0 folgt in Einklang mit dem Mermin-Wagner-Theorem kT — 0.

3.3.2 Der Fall J” <0,J, >0

Der klassische Grundzustand ist auch in diesem Fall sehr einfach. Alle Spins innerhalb
einer Ebene sind parallel ausgerichtet. In die entgegengesetzte Richtung weisen die
Spins der benachbarten Ebenen, so da§ die magnetische Ordnung durch Q = (0,0, 7)
beschrieben wird.

Lineare Spinwellentheorie fiir J; < 0 und J, > 0: Der zu diagonalisierende boso-
nische Hamilton-Operator lautet nach (2.9)

H = 2JyNs’— J Ns’+ ) H,
q

Hy ( 4J)s + 2JL3) (alqalq + a2qa2q + a3qa3q)
2Jjs cos (q (r1 — 12)) (0T 02q + 1qa3,)

(arz) (a3qasq + a2qa3,)
2J5 cos (qry) (adqa1q + a3qafq)
— Jisexp (—iqr;) (alqa‘l a™t a2qa2 a™t a3qa;— q)

(

— Jisexp (iqrs) (a1q@1—q + G2q02-q + 03q03—q) - (3.52)

2J||s coSs

+ + +

Ohne auf Details der Rechnung eingehen zu wollen, erhiilt man paarweise mit unter-
schiedlichen Vorzeichen die Pole bzw. Eigenwerte £wpq geméf

wig = 281/(JL (1 - cosg) — 3J)) (JL (L +cosgs) — 3J)),

Waq = Sy Gq+bgq, wsq=5y/aq— bq

(3.53)

3%Der Zustand parallel ausgerichteter Spins ist sowohl klassisch als auch quantenmechanisch als
einfacher Produktzustand derjenige mit der niedrigsten Energie. Das Ersetzen von Operatorproduk-
ten durch Erwartungswerte ist deshalb exakt. Fiir endliche Temperaturen, wenn also das gesamte
Spektrum des Hamilton-Operators in die Zustandssumme eingeht, gilt das jedoch nicht mehr.
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mit
3 3
aq = Jﬁ (18 + 16 cos? % + 16 cos? % cos? % — 8cos? % — 24 cos? %)

+ 4J% (1 —cos®q,) — 12J)J 4,
by = 2Jj (3JII - 2Jl) Dy,

woraus sich die innere Energie zu

E = (2Jy—J.) Ns(s+1)

> 1 1
+ DD wmg (exp (i) 1 + 5) (3.54)

q m=1

ergibt. Bei geniigend tiefen Temperaturen ist nur der akustische Zweig wsq, der sich in

der Umgebung der Punkte q = 0, Q wie 23\/ —JiJ1 (2 + ¢2) + J3 2 verhlt, angeregt.
Entsprechend liefert die Auswertung der Integrale im thermodynamischen Limes

N+/372

~ 1807, 729 (kT)* (3.55)

E:EO

bzw. die spezifische Wérme zu

C \/§W2 3

—=—-——>-—(kT)". 3.56

N 451 J2 s3 (kT) (3:56)
Insofern geniigen die innere Energie wie auch die spezifische Wirme im gesamten
Parameterraum (J sowie J, endlich und von Null verschieden) den typischen
Potenzgesetzen fiir einen dreidimensionalen Antiferromagneten.

Rotationsinvariante Greenfunktionsmethode fiir J; < 0 und J; > O:
Ausgangspunkt der Betrachtungen ist der Grundzustand, wenn J, zusétzlich klein
bleibt. Dann gibt es magnetische Fernordnung, und zwar mit Q = (0,0, 7). Diese
Ordnung ist bis zu einem bestimmten J¢ stabil. Natiirlich exisitiert dann eine
Temperatur k7, unterhalb der thermische Fluktuationen nicht in der Lage sind, diese
Ordnung zu zerstoren, solange J, < J¢ gilt. Fernordnung wird durch das zu 16sende
Gleichungssystem

3 . 3 :
CLoo = 3 Z cqu3 €xp (—iqry) + Cz, cri0 = N Z Cqi2 €XP (—iq (T1 + T2)) + Ciz,

a7Q a7Q
3 ) 3 )
C2,00 = N Z Cq11 €XP (—z2qr1) + Ciy, C0,0,1 = N Z Cq11 €XP (—qu3) - Chy,
a7Q a#Q
3 . 3 .
1,01 = N Z Cq13 €XP (—zq (1'1 + 1'3)) — (s, Co,0,2 = N Z Cq11 €XP (—z2qr3) + Ci1,
a#Q a7Q
1 3
5 = N Z Cq11 + CH (357)
a7Q
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beschrieben. Im Unterschied zu (3.40) gehen wegen (3.13) und Q # 0 einige Kondensat-
terme mit einem anderen Vorzeichen in die Gleichungen ein. Die Kondensatbedingung

J1L (14211 (cop,1 + co0,2) +8Jyno (cr01 — Co0,1)) =0 (3.58)

leitet sich aus dem Grenzwert limg_,q lim,_0 G4, (w) ab, wobei die Reihenfolge der
Grenzwertbildung in q beliebig ist. Entsprechend ergeben sich spéter die Korrelati-
onslédngen aus der Untersuchung des Eigenwertes G, (w) in diesem Limes. Zusétzlich
ist natiirlich die Giiltigkeit von (3.34) zu fordern. Ansonsten werden noch zwei weitere
Gleichungen benétigt, die die Kondensatterme zueinander ins Verhiltnis setzen. Aus
(3.25) unter Beachtung von (3.58) folgt genauso wie beim puren Ferromagneten

CH = 012 = 013. (359)

Interessanterweise geht fiir J;, — 0 die Grundzustandslésung dieses Gleichungssystems
asymptotisch gegen

1
1,00 = €C1,1,0 = C20,0 = Cp,0,2 = 6’
1
€001 = €01 = _6’
3
m = nNL= 9’
1
Cii = Cip=Ciz3= 6

Das Spinsystem verhilt sich in diesem Limes klassisch. In den Kagomé-Ebenen formie-
ren sich die Spins zu quasiklassischen Objekten. Effektiv koppeln somit makroskopische
Spins in Kettenrichtung, so daf} ein beliebig kleines J, geniigt, um fiir klassische Néel-
Ordnung in Kettenrichtung zu sorgen. LSWT und RGM stimmen in dieser Hinsicht
vollkommen iiberein. Den Ubergang zu einem klassischen Spinsystem mit den entspre-
chenden Konsequenzen findet man auch im Fall J > 0 und J; < 0 in Abschnitt 3.3.4.
Verschwindet die magnetische Fernordnung - sei es durch zu groes J, oder zu hohes
kT -, so wird die Physik bekanntermafien durch (3.34) und (3.44) erfaft.

Anwenden von (A.6) auf lim,,_,o G35 (w) ergibt0 folgende Beziehungen, denen die Kor-
relationsldngen gehorchen:

—Jja
& = :
I 4J 1 cop,1 (JJ_ (1 + 211 (o1 + Co0,2) + 8JymL (cr,01 — 00,0,1)))
-2J
2 = 171Co0,1 (3.60)

T (14271 (co0,0 + co0:2) + 81 (€01 — €o0,1))
mit
a = Ji(eio0 (14201 (cop1 + cop2))
4co 0.1 (277J_CO,0,1 +n1cCro1 + 77||C1,0,0))
+ Jj (=coo (1= 2y (der00 — €110 — €2,00))

+ 8nicioo(cio1 —co01)),

“0Im Falle von Fernordnung divergiert dieser Eigenwert vermdge der erfiillten Kondensatbedingung
inq=1Q.
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so daf die Korrelationslingen solange entsprechend Abb. 3.12 divergieren, solange das
Spinsystem ferngeordnet ist. Wenn magnetische Fernordnung existiert und deshalb die
Kondensatbedingung erfiillt ist, dann wird wsq nicht nur in q = 0 Null, sondern auch
in q = Q. Somit handelt es sich hier um ein Beispiel, wo die Existenz von Fernordnung
zum SchlieBen einer Liicke im Spektrum fiihrt. In Abb. 3.7 wird deutlich, dal sowohl
LSWT als auch RGM einen Phaseniibergang im Grundzustand beschreiben. Ubersteigt
J, einen kritischen Wert Jfﬂ, so verschwindet der Ordnungsparameter, wie man
Abb. 3.7 entnehmen kann. Dabei unterscheiden sich die entsprechenden J¢ ungefihr
um eine GréSenordnung (LSWT: J¢ &~ —100J), RGM: J¢ ~ —10J;). Das sich daraus
ergebende, wenig konsistente Bild steht im Widerspruch zur ausgesprochen guten
Ubereinstimmung zwischen den dazugehérigen Grundzustandsenergien nach Abb. [3.9.
Wie ist diese Diskrepanz zu beurteilen? Es ist dabei zunéchst zu konstatieren, daf die
RGM, indem sie die Rolle kurzreichweitiger Korrelationen unterstreicht, tendenziell
dazu neigt, magnetische Fernordnung zu unterschiitzen. Ein gutes Beispiel dafiir ist das
J1-Jo-Modell auf dem Quadratgitter. Hier liefert die RGM selbst in einer verbesserten
Variante mit (Jy/J1), = 0.24 und (J2/J1),, = 0.83 einen zu groffen Bereich fiir die
Spinfliissigkeitsphase [31]. Auch im Falle des HAFM auf dem Quadratgitter ergibt
die RGM in ihrer Minimalversion mit einem Vertexparameter eine Magnetisierung,
die mit M = 0.1494 [80] deutlich geringer als das gut bestétigte Spinwellenresultat
von M = 0.3034 ausfillt. In diesen Kontext pafit somit die Tatsache, dafl die
kritische Kopplung innerhalb der RGM kleiner als die kritische Kopplung innerhalb
der LSWT ausfillt. Dafl der Ordnungsparameter mit wachsendem J,; abnehmen
muf}, ist natiirlich plausibel, weil dann die Kettenbeitrige zunehmend dominieren.
Der HAFM auf der linearen Kette als Grenzfall ist bekanntlich nicht ferngeordnet.
Allerdings ergibt sich aus der exakten Bethe-Losung fiir diesen Fall auch, da die
Korrelationsfunktionen nicht exponentiell mit dem Abstand abnehmen, sondern nach
einem Potenzgesetz mit einer unendlichen Korrelationslangeﬂ. Der Grundzustand ist
in diesem Limes quantenkritisch. Eine beliebig kleine Kopplung zwischen ungeordneten
Ketten geniigt [15], um spontan einen geordneten Grundzustand mit einem von Null
verschiedenen Ordnungsparameter zu erhalten. Offensichtlich kann auch die LSWT
dieses Verhalten nicht reproduzieren, denn dieser Argumentation folgend, sollte J¢
gegen Unendlich streben. Es liefe sich jetzt argumentieren, dafl das Verschwinden des
Ordnungsparameters bei einem endlichen J{ mit der Gitterstruktur in Zusammenhang
steht. Dafl ein anderes Spinsystem mit einer einfacheren Gitterstruktur im Rahmen
der LSWT ebenfalls kritische Kopplungsstirken besitzt, illustriert das Beispiel des
Quadratgitters mit modifizierten Kopplungen im Anhang B. Wenn aber schon die
LSWT, die eigentlich genau dann gute Resultate liefert, wenn Fernordnung vorliegt,
solche, womdoglich der physikalischen Realitdt widersprechenden Aussagen trifft,
wie kann man dann von der RGM erwarten, dafl sie geordnete Strukturen besser
beschreibt? Die Vorteile der RGM liegen bekanntlich verstirkt in dem Bereich endli-
cher Temperaturen, wenn also kurzreichweitige Korrelationen tatséichlich die Physik
bestimmen. Zusammenfassend ist der Autor deshalb geneigt, die Existenz endlicher
J¢ als Artefakte beider Theorien einzustufen. Sie scheinen der Tatsache geschuldet zu
sein, dafl sich ausgesprochen diffiziles Verhalten - wie das des HAFM auf der linearen
Kette - einer Beschreibung mit relativ allgemeinen Methoden entzieht. Zur LSWT ist

“1In der RGM o&ffnet sich oberhalb J{ die Liicke im Spektrum wieder.
12Die Argumentation bezieht sich auf s = 1/2.
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noch anzumerken, dal, bevor die Magnetisierung als Ordnungsparameter Null wird,
bereits einige Korrelationsfunktionen das falsche Vorzeichen bekommen. Deshalb ist
die RGM die konsistentere Theorie. Ordnungs-Unordnungs-Phaseniibergénge kénnen
durch die LSWT nicht widerspruchsfrei definiert werden.

Fiir den Bereich 0.75 < —J,/J; < 0.88 finden sich im Grundzustand keine Lésungen
innerhalb der RGM*3, Wihrend der Verlauf der Vertexparameter in der Umgebung
dieses Bereiches nach Abb. 3.13 schwer zu interpretieren ist, sind die Energie in
Abb. 3.9, die Korrelationsfunktionen in Abb. [3.10 sowie die uniforme statische
Suszeptibilitdt in Abb. 3.11 in gewisser Weise stetige GroBlen, d.h. die entstandene
Liicke lieBe sich einfach unter Verwendung eines Kurvenlineals schlieflen bzw. per Hand
erginzen. Auf das Auftreten von Parameterbereichen ohne Lésung in Verbindung
mit der Zuordnung der Vertexparameter wird in den folgenden Abschnitten néher
eingegangen.

Wendet man sich endlichen Temperaturen zu, so sind zwei Szenarien denkbar. Ist das
betrachtete J, im Verhéltnis zu Jj bereits so grof}, daf§ selbst im Grundzustand keine
Fernordnung vorliegt, so wird Fernordnung bei einem k7", das von Null verschieden ist,
erst recht nicht auftreten. J, frustriert das Spinsystem nicht. Ist im Gegensatz dazu
das verwendete J, kleiner als J¢ bei festem Jj, so existiert eine kritische Temperatur
kTc, oberhalb der die magnetische Fernordnung verschwindet. Es kommt zu einem
Phaseniibergang zweiter Art. Anhand der Wahl des Parametersatzes J; = —1.00
und J; = 4.00 soll diese Situation illustriert werden. Dann ergibt sich k7 =~ 1.57.
Falls J, gegen Null oder gegen J¢ strebt, so folgt daraus kT, — 0. Es sollte
also ein bestimmtes J, existieren, wo die magnetische Ordnung am stabilsten ist
und k7o ein Maximum besitzt. In der Umgebung des Phaseniiberganges gibt es
numerische Probleme. Der Phaseniibergangspunkt kann daher nur nidherungsweise
aus der Interpolation des Ordnungsparameters gewonnen werden. Wegen auftretender
Konvergenzprobleme beim Integrieren in der Umgebung von k7 sind diese Daten
aber nicht hinreichend genau genug, um iiber k7 hinaus auch noch den kritischen
Exponenten verldfflich bestimmen zu kénnen. Aus den verfiigbaren Daten ergibt sich
ein Exponent, der dem Wert 1/2 ziemlich nahe kommt. Die spezifische Wérme in
Abb. 3.8 hat am Ubergangspunkt keinen Sprung, sondern einen Knick. Sie gehorcht
im Tieftemperaturregime unabhingig davon, ob der Grundzustand geordnet oder
ungeordnet isﬂﬂ, einem T3-Gesetz; hierin stimmen RGM und LSWT iiberein. Mit
welcher Potenz kT in fithrender Ordnung in den Tieftemperaturlésungen auftritt,
ist den Gleichungen anzusehen. Auf diesbeziigliche Details im Umgang mit diesen
Gleichungen wird im folgenden Abschnitt eingegangen.

Fazit: RGM und LSWT sagen iibereinstimmend einen geordneten Grundzustand
voraus, der allerdings ab einem kritischen J¢ bei festem J in eine ungeordnete Phase
iibergeht. Dabei differieren die ermittelten J¢ in Abhéngigkeit von der benutzten
Theorie um eine Gréfenordnung. Es gibt jedoch qualitative Anhaltspunkte dafiir, daf
die gefundenen Uberginge als Artefakte einzuordnen sind, weil weder die LSWT noch
die RGM den Limes J, — oo, also den HAFM auf der linearen Kette, addquat in
all seiner Komplexitit beschreiben konnen, zumal die RGM zusétzlich Fernordnung

43 Auch bei endlichen Temperaturen gibt es solche Bereiche insbesondere dann, wenn J; < |J I | gilt.
MFir J, < JY ist bei tiefen Temperaturen wsq in q = 0,Q angeregt. Gilt dagegen J, > J¢, so
trifft das nur noch fiir q = 0 zu.
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Abbildung 3.7: LSWT fiir s = 1/2 (links) und RGM (rechts): Die Ordnungsparameter
als Funktionen von J, fiir Jj = —1.00 und k7" = 0.00.
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Abbildung 3.8: RGM: Der Ordnungsparameter (links) und die spezifische Wérme
(rechts) als Funktionen der Temperatur T fiir J; = —1.00 und J, = 4.00.

unterschitzt. Dagegen ndhern sich im Limes J;, — 0 sowohl LSWT als auch RGM
in gleicher Weise asymptotisch dem exakten Resultat. Die Grundzustandsenergien
sind z.B. dann nicht voneinander zu unterscheiden. Statt eines Sprunges besitzt die
spezifische Wirme am Ubergang einen Knick. Sie ist fiir kleine k7" der dritten Potenz
der Temperatur proportional.

3.3.3 Der Fall J” >0,J, >0

Der klassische Grundzustand des HAFM auf dem zweidimensionalen Kagomé-Gitter
ist bekanntlich hochgradig entartet. Daran &dndert auch die zusétzliche Einfiihrung
von J, nichts. Es gibt keinen ordnungsbeschreibenden Vektor Q.

Lineare Spinwellentheorie fiir J; > 0 und J; > 0O: Als bosonischer Hamilton-
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Abbildung 3.9: RGM: Die Grundzustandsenergie (links) iiber J; im Vergleich mit dem
entsprechenden Spinwellenresultat fiir s = 1/2 und Jj = —1.00. Die innere Energie
(rechts) als Funktion der Temperatur kT fiir J; = —1.00 und J, = 4.00.
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Abbildung 3.10: RGM: Verschiedene Korrelationsfunktionen in Abhéngigkeit von J,
mit J; = —1.00 und £7" = 0.00 (links) sowie in Abhéngigkeit von der Temperatur kT
fiir Jy = —1.00 und J, = 4.00 (rechts).
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Abbildung 3.11: RGM: Die uniforme statische Suszeptibilitdt im Grundzustand als
Funktion von J, fiir J; = —1.00 (links) sowie als Funktion der Temperatur kT fiir
Jjy=—1.00 und J, =4.00 (rechts).
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Abbildung 3.12: RGM: Die Korrelationslingen im Grundzustand als Funktionen von
Jy fiir Jj = —1.00 (links) sowie als Funktionen der Temperatur kT fiir Jj = —1.00 und
J. =4.00 (rechts).
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Abbildung 3.13: RGM: Die Vertexparameter im Grundzustand als Funktionen von J
fir Jj = —1.00 (links) sowie als Funktionen der Temperatur kT fiir J; = —1.00 und

J1 =4.00 (rechts).

Operator findet sich nach (2.9)

H =

Hy =

—JyNs* = JUNs> + > " H,

q
(2J||3 + 2JJ_S) (aii_qalq + a;q@q + a;—qa?’Q)
?)!;is cos (q (ry — ry)) (ai"qa;'_q + 419024
?”;ﬁ cos (qrz) (a3qai_q + a2qa3-q)
?”;ﬁ cos (qr1) (a34ai_q + tsqt1-q)
% cos (q (r1 — 1)) (afqa2q + a1903,)
% 05 (qr) (4zq0sq + 02903q)
Jiis

— cos (ar1) (a3qa1q + asqaly)

- + ,F + ot + o+
Jisexp (—iqrs) (aiqaf_q + ad403_q + adqai_q)

Jisexp (iqrs) (a1q01—q + G2ql2—q + G3q03—q) - (3.61)

Aus ihm lassen sich leicht die Dispersionsrelationen ableiten:

wlq
w2q

mit

= s\/4Ji (1 —cos?q;)+6J;JL (1+cosg,),

= 8v/aq+ by, Wiq=5V0q— bq (3.62)

3
aq = 4J} (2 cos” q2_y + (cos2 \/;qz + cos® q2_y> (1 — 2 cos’ 612—‘1’))
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+ 4J7 (1 —cos’q,) + 3JJ. (3 —cosq,),
by = JyJL(1 —3cosgq;)Dg.

Fiir ¢, = 7 beschreibt wiq eine flache Nullmode. In der Umgebung von ¢, = 7w geniigt
sie ndherungsweise der Beziehung

Wiq & 84/4J7 +3JJ1 |¢.] -

Diese Mode liefert in fiihrender Ordnung eine quadratische Temperaturabhéingigkeit
der inneren Energie. Dagegen erweisen sich die Beitrige von wyq sowie wsq mit

Waq = 8\/(3Jﬁ + 2J||JL) (@ +q) + (471 +6J)J1) @2

in der Umgebung von q = 0 und

Waq R s\/(?)Jﬁ + 4J||JL) (2+¢2) + (472 +3J)JL) ¢

in der Umgebung von q = (0,0, 7) als fiir das Tieftemperaturverhalten unerheblich.
Beide Zweige entarten, falls g, = arccos 1/3 gilt. Aus

E = —(J||+JJ_)NS(S+1)

> 1 1
+ DD g (exp (i) 1 + 5) (3.63)

q m=1

folgt fiir tiefe Temperaturen im thermodynamischen Limes

N
E = Ey+ t (kT)?,
185\/4J2 + 3J,J.
o _ t kT. (3.64)
N = 9s /42 +3J,JL

Es gibt im Rahmen der LSWT keine langreichweitige Ordnung. Wegen der flachen
Nullmode w14 und der Entartung von wsq und wsq fiir ¢, = 7 respektive ¢, = arccos1/3
divergieren die beteiligte Summen/Integrale. Die spezifische Wérme hat nicht die
richtige Temperaturabhéngigkeit fiir kleine k7.

Rotationsinvariante Greenfunktionsmethode fiir J; > 0 und J, > O:
Bei der Auswertung der Gleichungen zeigt sich, dafl sowohl im Grundzustand als
auch bei endlichen Temperaturen nur solche Losungen existieren, die kein Kondensat
besitzen. Langreichweitige Ordnung kommt demnach in keinem Fall zustande. Zu 16sen
ist das Gleichungssystem (3.44) zusammen mit (3.34). Da es keinen magnetischen
Ordnungsvektor gibt, sind die Eigenwerte lim, oG} (w) zur Bestimmung der
Korrelationsléngen auf ihre Extremwerte hin zu untersuchen. Bei G3; (w) handelt es
sich um den gesuchten Eigenwert. Er besitzt das absolute Minimum bei q = (0,0, 7).
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Anwenden von (A.6) ergibt

fﬁ = —Jj (18J|?77||Ci0,0 +J1 (400,0,1 (77||C1,0,0 + 77J_01,0,1) + 877¢C§,0,1

— c1,00 (14211 (co0,10 + €00,2))) + JyJL (8n1c1,0,0 (o0, — €1,0,1)

+  Co0,1 (1 + 21 (8c1,00 + €110 + 02,0,0)))) / ((3J||C1,0,0 + 2JJ_CO,0,1) X
(3Jﬁ (1 + 2 (2¢1,00 + €110 + 02,0,0)) +2J% (14211 (co01 + co02))
JyJL (1277||C1,0,0 + 8n1co0,1 + 2877J_01,0,1))) ;

& —J1 (Jﬁ (—300,0,1 (1 + 21 (2c1,0,0 + €100 + 02,0,0))

_|_

+ 3677”0%,070 + 1291 ¢100 (cop1 + 201,0,1)) + 16Jic§,0,1

+ JyJdL (301,0,0 (1 + 4mco,0,1 + 277J_CO,0,2) + 67, (5¢1,00 — 201,0,1))) /(2%
(3J||C1,0,0 + 2JJ_CO,0,1) (3Jﬁ (1 + 21 (2¢1,00 + €110 + 02,0,0))

4+ 2J% (L4271 (co0,1 + cop2)) + Jj T (12mc1,0,0 + 871co01 + 2871c10,1))) -

(3.65)
Untersucht man obige Beziehungen in den Grenzen J; = 0 bzw. J; = 0, so erhilt man

—277||01,0,0
L+ 2m (2¢1,00 + €1,1,0 + €2,00)

fir J, = 0 sowie 9
—211Cp,0,1
52 — 0, 52 — 3V
| LT 14 2n, (00,0,1 + 00,0,2)

fiir J; = 0. In Abb. 3.15 sind die Korrelationslingen im Grundzustand iiber J, aufge-
tragen. Sie besitzen ein Maximum in der Umgebung von J, = Jj,. Offenbar bewirkt die
zusétzliche Kopplung J, zunichst ordnende Tendenzen im Spinsystem, um aber sehr
bald die dominierende Wechselwirkung schlechthin zu werden. So hingt die Grundzu-
standsenergie fiir J, > J in Abb. [3.14 linear von J, ab, wobei die Ubereinstimmung
mit der eigentlich fiir ungeeignet befundenen LSWT* iiberraschend gut ist. Genau
diesem Bild entsprechen auch die Korrelationsfunktionen sowie die Vertexparameter,
die selbstkonsistent zu bestimmen waren. Die korrespondierenden Losungen fiir den
HAFM auf dem zweidimensionalen Kagomé-Gitter gehen nahtlos und sehr rasch in
diejenigen fiir den HAFM auf der linearen Kette iiber, was man Abb. 3.14 und Abb.
3.15 entnehmen kann. Mit wachsendem J;, nimmt die uniforme statische Suszeptibi-
litdt x nach Abb. 3.16 stetig ab. GeméB (3.35) gilt x ~ 1/J fiir hinreichend groBe J, .
Es soll sich nun explizit der Problematik endlicher Temperaturen zugewandt werden,
wobei zundchst die betrachteten Temperaturen klein gegeniiber den wirkenden Kopp-
lungen sein sollen. Von Interesse ist die Tieftemperaturentwicklung der spezifischen
Wairme. Auf die Numerik ist in diesem Fall kein Verla$}, da sich die Energie nur schwach
mit der Temperatur dndert. Etwaig geltende Potenzgesetze sind numerisch daher nur
schwer zu verifizieren. Insofern bietet sich eine Tieftemperaturentwicklung des gesam-
ten Gleichungssystems als analytischer Ausweg an. Exemplarisch erfolgt nun die Ablei-
tung der Tieftemperaturkorrektur fiir den Korrelator ¢;9. Zunéichst einmal gilt wegen

45Die Energie ist mit den fiir sie relevanten Nachbarkorrelationen unempfindlich gegeniiber der
Existenz oder Nichtexistenz von Fernordnung.
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(3.16) sowie (3.44)

3 )
1,00 = N Z Z 1|JQI> (ja|3) exp (—iqry)

. %ZZ%n (w10) (1) (ia3) exp (~ir)

Der zweite Summand trégt explizit iiber den Faktor n (wjq) die Temperaturabhéngig-
keit in sich. Jetzt ist zu beachten, daf} w34 die einzige akustische Mode fiir q = 0 liefert.
Bedeutende Beitrige zur Summe fiir tiefe Temperaturen werden also durch

m .
— Z ﬂn (wsq) (1]3q) (3q|3) exp (—iqr;)

bestimmt. Im thermodynamischen Limes wird die Summe in ein Integral iiberfiihrt, das
sich ins Unendliche erstreckt. Der erhaltene Ausdruck stellt wegen (3.33) in universeller
Form die Tieftemperaturkorrektur des gesamten Gleichungssystems (3.44) dar. Auf ihn
soll sich nun konzentriert werden. Es folgt dann msq/wsq & 2xwsq mit

wiq A \/a (@ + ¢2) + b2,
a = (Jll (1 — 2 (401,0,0 —C1,1,0 — 02,0,)) +4J; (77J_Cl,0,1 - 77||01,0,0)) )

b =

(JL (1 —2n1 (3co0,1 — co0,2)) + 8JmL (cr01 — Co0,1)) 5

wobei x die uniforme statische Suszeptibilitit ist. Ubrigens besteht wegen (3.34) zwi-
schen a und b der Zusammenhang: J) cyp,1a = Jjc1,00b. In endgiiltiger Form lautet das
zu losende Integral

+oo  p+oo (qw + qZ) -+ bqg
3V / / / dgzdgydg..
BRZ 0 eXp a (g2 +q3) +bg2/ kT) -1

Alsdann gewinnt man nach Einfiilhrung von Zylinderkoordinaten

Arx too Vap® +bg?
Y / / . pdpdqz,
BRZ o0 eXp ap? + bq? /kT)
woraus nach nochmaliger Substitution entsprechend

p=rsing/va, ¢, =rcosp/Vh

mit 7 € [0, +o00] und ¢ € [0, 7]

3

dr
3VBRZa\/_ exp (r/kT) —1
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Abbildung 3.14: RGM: Die innere Energie (links) und verschiedene Korrelationsfunk-
tionen (rechts) in Abhingigkeit von J, > 0 fir J; = 1.00 im Grundzustand. Zum
Vergleich wird die Spinwellenenergie fiir s = 1/2 prisentiert.

hervorgeht. Daran anschliefend erhilt man durch r = kT'z

+oo 3 2
8 ()t / 2 gy 2OV e (3.66)
3Vprzavb 0 exp (z) — 1 45av/b

Damit ist die gesuchte Korrektur der vierten Potenz der Temperatur proportional. Es
darf dann erwartet werden, daB sich diese Proportionalitit auch auf die Losungen des
Gleichungssystems selbst iibertrigt, so dal die innere Energie ebenfalls mit T geht
und demzufolge die spezifische Wirme die korrekte T3-Abhéingigkeit aufweist, die fiir
dreidimensionale Antiferromagnete typisch ist; die LSWT konnte dies nicht leisten,
obwohl die Ubereinstimmung der Grundzustandsenergien verbliiffend ist. Im iibrigen
gilt diese Ableitung fiir alle in Frage kommenden Jj, J., insbesondere also auch in den
Grenzen beliebig kleiner oder groBer Kopplungen. In der spezifischen Wirme spiegelt
sich der Ubergang von einem zwei- zu einem drei- hin zu einem eindimensionalen Spin-
system nicht wider. Die Gestalt der Dispersionsrelationen bestimmt einzig und allein
die Temperaturabhéngigkeit der spezifischen Wérme.

Man konnte glauben, daf einfaches Einsetzen der Grundzustandslésungen in (3.66)
die korrekten Vorfaktoren fiir die Tieftemperaturkorrekturen der Korrelatoren ergeben
wiirde. Diese Annahme ist jedoch falsch. Vielmehr muf§ das gesamte Gleichungssystem
mit Korrektur auch jetzt wieder selbstkonsistent geltst werden. Zwei simple Beispiele
fiir ein System nichtlinearer Gleichungen im Anhang C illustrieren die Notwendigkeit
der sorgfiltigen Untersuchung der Frage, welche Form der Nidherung fiir die Vorfaktoren
die richtige ist.

Bei der Auswertung des Gleichungssystems treten jedoch prinzipielle Schwierigkeiten
auf - die spezifische Wérme ist fiir kleine Temperaturen negativ. Unmittelbare Ursache
fiir die negative spezifische Wérme ist die Tatsache, dafl cp, fiir hinreichend kleine
Temperaturen zunéichst betragsméfBig zunimmt*8, Weitere Inkonsistenzen ergeben sich
bei héheren Temperaturen. So findet man z.B. fiir J; = J, = 1.00 und kT = 2.00

46An sich ist die betragsmiBige Zunahme von Korrelationen mit der Temperatur allein kein
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Abbildung 3.15: RGM: Die Vertexparameter (links) und die Korrelationsléngen (links)
als Funktionen von J, > 0 fiir Jj = 1.00 im Grundzustand.

0.2

0.05

Abbildung 3.16: RGM: Die uniforme statische Suszeptibilitit y geméfl (3.35) iiber
J1 > 0 fiir J; = 1.00 im Grundzustand.

gar keine physikalisch verniiftige Losung, obwohl der Hochtemperatur- als auch
der Tieftemperaturlimes korrekt herauskommen. Exemplarisch ist diese Situation
anhand der Vertexparameter in Abb. 3.17 dargestellt. Auch die Eindeutigkeit der
Losungen ist in gewissen Parameterbereichen nicht gesichert. Im Grenzfall J, = 0,
dem HAFM auf dem puren Kagomé-Gitter, treten diese Besonderheiten nicht in
Erscheinung. Die spezifische Wérme ist auch fiir kleine Temperaturen dann positiv
und besitzt die richtige Proportionalitit zu 72 [28]. AuBerdem lassen sich im gesamten
Temperaturbereich eindeutige, physikalisch verniinftige Losungen ohne Unstetigkeiten
auffinden.

Vermutlich sind zwei Vertexparameter - anders als im Falle des reinen Ferromagneten
- einfach zu wenig, um die komplexen Eigenschaften des geschichteten Kagomé-Gitters

grundsétzliches Problem, da man derartiges Verhalten auch von Spinsystemen [90] kennt, in denen
order-from-disorder auftritt.
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Abbildung 3.17: RGM: Die Vertexparameter fiir J, = 1.00 (links) und J;, = 0.50
(rechts) als Funktionen der Temperatur k7. Es existieren Bereiche, wo es entweder gar
keine Losung gibt oder aber gleichzeitig mehrere zu finden sind. Die entsprechenden
Zweige erhilt man, wenn man beim Iterieren vom Grundzustand oder vom Hochtem-
peraturlimes ausgeht.

mit ausschlieflich antiferromagnetischen Bindungen im gesamten Parameterraum
beschreiben zu konnen. Das pauschale Gleichsetzen von Vertexparametern ist offen-
kundig eine viel zu grobe Approximation, denn es ist genaugenommen iiberhaupt
nicht einzusehen, weshalb Operatorprodukte, die parallelen Spins zuzuordnen sind,
in derselben Weise entkoppelt werden wie Operatorprodukte, die zu verkanteten oder
antiparallelen Spinpaaren gehéren. In einfachen Féllen (Kette, Quadrat, Kagomé)
mag das funktionieren. Es gibt aber auch Beispiele in der Literatur [84], wo ein zu
grofiziigiger Umgang mit den Vertexparametern dhnliche Probleme verursacht, welche
erst dadurch beseitigt werden, wenn zusétzlicher Input von auflen Beriicksichtigung
findet. Trotzdem é#ndert sich hier nichts an der prinzipiellen Erkenntnis hinsichtlich
der Nichtexistenz von magnetischer Fernordnung fiir Jj, J, > 0.

Fazit: LSWT (qualitativ) und RGM (quantitativ) liefern iibereinstimmend, daf$
es sowohl im Grundzustand als auch bei endlichen Temperaturen keine langreichweiti-
ge Ordnung gibt. Da J, > 0 nicht zusétzlich frustriert, wird die unendliche Entartung
des klassischen Grundzustandes nicht aufgehoben. Die Entartung ist eine Folge der
Frustration, die im zweidimensionalen Fall hochstwahrscheinlich fiir Unordnung sorgt.
An dieser Situation dndert sich im Prinzip nichts, wenn man J, ”einschaltet”. In einer
verbesserten Theorie sollten mehr als nur zwei Vertexparameter unterschieden werden.

3.3.4 Der Fall J” >0,J, <0

Beziiglich des klassischen Grundzustandes gelten dieselben Aussagen wie fiir den Fall
Jy>0und J; > 0.

Lineare Spinwellentheorie fiir J; > 0 und J; < 0: Als bosonischen Hamilton-

103



Operator findet man unter Verwendung von (2.9)

H = —JiNs’+J.Ns’+ ) H,,
q
Hy = (2Jys —2J1s (1 — cos(qrs))) (afya1q + a3q02q + 03403q)

3J|I +

- —cos (q(r1 — 12)) (af4a3_q + a1q02-q)

3Jys

— 2” cos (qra) (43,03 o + G2qa3—q)
3Jys

— 212 oo (qry) (a3q01_q + a3q01—q)

——cos (q (r; — 1)) (aii—anq + alqa;q)

Jj|s
+ |2—| cos (qra) (a3yasq + G2qa3,)

Jys
+ |2—|cos (qr1) (adyarq + dsqaly) - (3.67)

Die Dispersionsrelationen haben wiederum eine analytische Form:

wiq = 3\/4Ji (1—cosq,)? — 6JyJ1 (1 — cosqy),

Waq = Sy/0q+bq, Wsq=$vaq— bg (3.68)

3
aq = 4J; <2c032q2y+< 2\/;qg”—l—c0s2q2—‘z’) (1 2c032q2y))

+ 4J2(1—cosq,)? —9JyJ. (1 —cosgy),
by = JyJL(1—cosq;)Dy.

mit

Fiir g, = 0 wird w4 zu einer flachen Nullmode sowie woq und wsq entarten. Darin mani-
festiert sich die Nichtexistenz magnetischer Fernordnung. Alle durch (3.68) gegebenen
Moden sind akustischer Natur. In der Umgebung von q = 0 verhalten sie sich gemif

Wiqg = Sy _3J||JJ_ |Qz )

Woq R \/3 +qy —3J||Jqu,

W3q = \/3 +qy —6J||Jqu

Einsetzen in die Beziehung fiir die innere Energie

E = (—J||+JJ_) Ns(s+1)

1 1
i Z Z “ma (exp (Winq/kT) — 1 i 5) (3.69)

q m=1

im Grenzfall tiefer Temperaturen ergibt, dafl im thermodynamischen Limes der fiihren-
de Term in der Entwicklung quadratisch mit k7" geht und von wiq herriihrt. woq bzw.
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wsq liefern lediglich Beitrége vierter Ordnung. Konkret gelten

Nw

E = Eo+—— ' (kT)?,
° T 8s/ 30 (KT)
C o _ T _r (3.70)

N 98«/—3J||JJ_

Damit gehorcht die spezifische Wirme im Rahmen der LSWT dem Potenzgesetz eines
eindimensionalen Antiferromagneten. Angesichts der prinzipiellen Schwierigkeiten, die
die Spinwellentheorie mit ungeordneten Strukturen hat, ist dies ein Ergebnis, das
nicht verwunderlich ist.

Rotationsinvariante Greenfunktionsmethode fiir J; > 0 und J;, < O:
Bei den gegebenen Parameterverhéltnissen besitzt das Gleichnungssystem nur Losun-
gen ohne Kondensat. Es gelten (3.34) und (3.44). Das ist fiir endliche Temperaturen
ebenso wie fiir den Grundzustand richtig. Allerdings treten auch hier Schwierigkeiten
auf. Es sind dies aber keine prinzipiellen, sondern eher numerische Probleme, die sogar
eine physikalische Interpretation erlauben. Dazu sei der Grundzustand betrachtet,
wobei |J, | mit Null beginnend systematisch vergrofiert wird. Es ist dann folgendes zu
beobachten: Bekanntlich ist wiq eine Mode, die nur von ¢, abhéngt und deshalb bei
festem ¢, eine flache, dispersionslose Mode beschreibt. Fiir ¢, = 0 bildet diese flache
Mode eine Liicke A = limg,_,o wiq, die durch

A= \/3J|| (J|| (1 + 2 (2e1,00 + €110 + 02,0,0)) +4J (77J_Cl,0,1 — 77||01,0,0))

gegeben ist. Nimmt |J, | zu, so schlieBt sich diese Liicke, d.h. A geht gegen Null und
gehorcht dabei einem Exponentialgesetz!’. So findet man z.B. fiir J = 1.00 die Be-
ziehung A = 1.0134 exp (1.4228J, ) nach Abb. 3.19. Tendenziell wird w4 also zu einer
flachen Nullmode fiir ¢, = 0. Gleichzeitig, und das in einem viel stirkeren Mafe, strebt
die Differenz wyq — wsq fiir ¢; = 0 gegen Null. Die Moden wyq und wsq sind demnach
fiir hinreichend grofle |J.| und ¢, = 0 quasientartet; in Abb. 3.20 ist diese Situati-
on dargestellt. Deshalb ergeben sich wegen (3.12) beim Aufstellen der Gleichungen
quasidivergente Integranden fiir alle q in der ¢, = 0-Ebene, die die weitere numeri-
sche Auswertung unmdéglich erscheinen lassen. Ein solches Verhalten 148t sich vielleicht
dadurch erkldren, dal die ferromagnetische Kettenkopplung J, zur Ausbildung ma-
kroskopischer, d.h. quasiklassischer Spins, entlang der Ketten fiihrt. Diese Kettenspins
wiederum koppeln Kagomé-artig miteinander. Im Ergebnis erhilt man sozusagen ein
Spinsystem, das dem HAFM auf dem zweidimensionalen Kagomé-Gitter dhnelt, dessen
Pldtze mit klassischen Spins besetzt sind. Beziiglich des Spektrums deckt sich dieses
Bild mit der LSWT, jedoch mit dem Unterschied, dafl die Nullmode sowie die Entar-
tung der iibrigen Moden fiir beliebiges J, in Erscheinung tritt. Uberraschend ist nur,
dafl die Formierung quasiklassischer Kettenspins mit |J.| ~ J| relativ friih einsetzt.
Freilich 6ffnet sich die Liicke nach Abb. 3.19 wieder, wenn die Temperatur steigt .

Mit dem SchlieBen bzw. Offnen der Liicke ist die Zunahme bzw. Abnahme der Korre-
lationsldngen zumindest in dem numerisch zugéinglichen Parameterbereich verbunden,

4"Dies ist ein Ergebnis, das sich durch Interpolation verifizieren 138t. Man findet ein exponentielles
Schlieflen einer Liicke im Spektrum mit abnehmender Temperatur auch beim Quadratgitter [80].
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was durch Abb. 3.21 illustriert wird. Der Eigenwert G, (w) liefert fiir q = 0 das
absolute Minimum aller Eigenwerte. Aus der Entwicklung folgt somit

—6Jﬁ77||01,0,0 9 Jia

2 = = -
E” o A2 ’ + 2017070A2 (371)

und

a = Ji (01,0,0 (1 - 277J_ (300,0,1 - 00,0,2)) + 400,0,1 (77||C1,0,0 - 77J_Cl,0,1))
+ Jjj (4er00 (3micr00 + 201100 + M1C00,1)
— 0,1 (1 + 2 (2¢1,00 + €110 + 02,0,0))) .

In Abb. [3.22 sind die Vertexparameter und in Abb. [3.23 ist die uniforme statische
Suszeptibilitdt in Abh#ngigkeit von J, bzw. kT dargestellt. Wiahrend es bei den
Vertexparametern keine Auffilligkeiten gibt - fiir grofie kT gehen sie erwartungsgemas
gegen Eins -, fillt die leichte Zunahme von x mit wachsendem |J, | fiir £7° = 0.00 ins
Auge. Als problematisch erweisen sich auch in diesem Fall die Korrelationsfunktionen
in Abb. [3.24 und die innere Energie in Abb. [3.25 insbesondere im Tieftemperatur-
regime. Zu beobachten ist z.B. das kaum merkliche betragsmifBige Anwachsen der
Korrelators ¢y fiir kleine Temperaturen mit der Folge, dafl die innere Energie
in dem entsprechenden Temperaturintervall abnimmt und die spezifische Wérme
nach Abb. [3.26 negativ wird. Das dafiir verantwortliche Verhalten der Ldsungen
ist vermutlich auf die einfache Entkopplung zuriickzufiihren. Im iibrigen wird das
Gleichungssystem durch (3.66) genauso wie im Fall Jj, J. > 0 tieftemperaturkorrigiert.

Fazit: Auch hier liefern LSWT (qualitativ) und RGM (quantitativ) iibereinstimmend,
dal magnetische Fernordnung trotz eines ferromagnetischen J, nicht zustande kommt.
Beschrinkt man sich auf den Grundzustand, so fithrt das ”Aufdrehen” von |J,| im
Rahmen der RGM dazu, dafl in der g, = 0-Ebene die Mode wiq zu einer flachen
Nullmode wird sowie wyq und wsq entarten. Dies geschieht ebenfalls in der LSWT
fir beliebig kleine |J,|. Qualitativ 148t sich das dahingehend deuten, da die Spins
entlang der Ketten makroskopische Spins bilden, die Kagomé-artig wechselwirken.
Das Spektrum entspricht dann effektiv dem eines klassischen Spinsystems auf dem
zweidimensionalen Kagomé-Gitter. Wegen der Quasientartung der Dispersionen und
der damit verbundenen numerischen Probleme ist jedoch dieser Parameterbereich
nicht mehr zugénglich. Fiir kleine £7" - also in einem Bereich, wo Quanteneffekte noch
eine Rolle spielen - wird die spezifischen Wiarme leicht negativ. Vermutlich lassen sich
diese Mingel der Theorie durch die Einfiihrung mehrerer Vertexparameter beseitigen.
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Abbildung 3.18: Die ¢, = 0-Ebene der Brillouin-Zone. Entlang der Pfeile erfolgt die
Darstellung des Spektrums in Abb/3.20.
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Abbildung 3.19: RGM: Die Liicke A als Funktion von J, fiir £7" = 0.00 und J; = 1.00
(links) sowie als Funktion der Temperatur £7 fiir J; = 1.00 und J, = —0.50 (rechts).
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Abbildung 3.20: RGM: Das Grundzustandsspektrum in Abhéngigkeit von J;.
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Abbildung 3.21: RGM: Die Korrelationsldngen als Funktionen von J, fiir k7" = 0.00
und Jj = 1.00 (links) sowie als Funktionen der Temperatur KT fiir J; = 1.00 und
J1 = —0.50 (rechts).
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Abbildung 3.22: RGM: Die Vertexparameter als Funktionen von J, fiir k7 = 0.00
und Jy = 1.00 (links) sowie als Funktionen der Temperatur £7" fiir J; = 1.00 und
J, = —0.50 (rechts).
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Abbildung 3.23: RGM: Die uniforme statische Suszeptibilitdt als Funktion von J, fiir
kT = 0.00 und J; = 1.00 (links) sowie als Funktion der Temperatur kT fiir J;; = 1.00
und J; = —0.50 (rechts).
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Abbildung 3.24: RGM: Einige Korrelationsfunktionen in Abhéngigkeit von J, fiir kT =
0.00 und J; = 1.00 (links) sowie in Abhéngigkeit von der Temperatur AT fiir Jj = 1.00
und J; = —0.50 (rechts).
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Abbildung 3.25: RGM: Die innere Energie als Funktion von J fiir kT' = 0.00 und J); =

1.00 verglichen mit dem Spinwellenresultat (links) und als Funktion der Temperatur
kT fiir Jjj = 1.00 und J, = —0.50 (rechts).
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Abbildung 3.26: RGM: Die spezifische Wérme als Funktion der Temperatur kT fiir
J = 1.00 und J; = —0.50.
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Kapitel 4

Zusammenfassung

Anliegen dieser Arbeit war die detaillierte Darstellung zweier zur Behandlung des
Heisenberg-Modells geeigneter Methoden und deren Anwendung auf verschiedene,
durch dieses Modell beschriebene Quantenspinsysteme. Beide Methoden - sowohl die li-
neare Spinwellentheorie als auch die rotationsinvariante Greenfunktionsmethode - sind
vorrangig analytische Verfahren. Aus physikalischer Sicht galt das Hauptaugenmerk
vor allem der Beantwortung der Frage, ob magnetische Fernordnung in den betref-
fenden Spinsystemen existiert bzw. zu welchen Schliissen beide Methoden unabhéngig
voneinander kommen. Zu den Faktoren, deren jeweiliger Einfluf} iiber Ordnung oder
Unordnung entscheidet, gehéren die Frustration, die Intensitidt und Stérke der Quan-
tenfluktuationen, die Dimensionalitit des Gitters, die Koordinationszahl der wechsel-
wirkenden Spins sowie die Temperatur als duflerer Parameter. Die betrachteten Spin-
systeme enthielten alle mehr als einen Spin pro relevanter Elementarzelle; entsprechend
héher war der zu betreibende formale Aufwand.

In Kapitel 2 ging es zunédchst um vier allgemeine Verfahren zur Diagonalisierung boso-
nischer Hamilton-Operatoren, wie sie typischerweise in der linearen Spinwellentheorie
auftreten. Dabei erwies sich eine Greenfunktionstechnik als die praktikabelste, weil sie
auf das Losen komplizierter nichtlinearer Gleichungen zur Bestimmung der Bogoljubov-
Koeflizienten verzichtet. Alsdann wurde das A-B-Modell mit seinen charakteristischen,
einander durchdringenden Spinsystemen untersucht. Es besitzt wegen einer frustrieren-
den Kopplung J4p ein reichhaltiges klassisches Grundzustandsphasendiagramm. Ein
interessantes Phinomen ergibt sich im Grenzfall schwacher Frustration. Klassisch liegen
dann zwei magnetisch entkoppelte Spinsysteme vor. Jedes Spinsystem ist im Grundzu-
stand fiir sich Néel-geordnet. Beziiglich der relativen Orientierung zueinander ist der
klassische Grundzustand kontinuierlich entartet; die klassische Grundzustandsenergie
héngt nicht von J4p ab. Wie die lineare Spinwellentheorie zeigen konnte, wird die-
se Entartung durch Quantenfluktuationen aufgehoben. Letztere stabilisieren kolineare
Ordnung, die einer relativen Orientierung von ¢ = 0, 7 entspricht. Somit wird die quan-
tenkorrigierte Grundzustandsenergie J4p-abhingig. Insbesondere bedeutet dies, dafl
Spins aus verschiedenen Untersystemen im Quantenfall miteinander korreliert sind.
Das A-B-Modell ist bei relativ schwacher Frustration im Grundzustand magnetisch
ferngeordnet. Der Effekt ist deshalb so interessant, weil die Ordnung durch Quantent-
luktuationen realisiert wird. Im Anschlufl daran stand der HAFM auf dem Maple-Leaf-
Gitter im Mittelpunkt der Betrachtungen. Jeder Spin im Maple-Leaf-Gitter koppelt mit
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fiinf Nachbarspins. Liegt eine antiferromagnetische Kopplung vor, so ist das Spinsystem
geometrisch frustriert. Eine verwandte Gitterstruktur weisen das Dreiecks- und das Ka-
gomé-Gitter auf, weshalb auch hier geometrische Frustration auftritt, wenn nichstbe-
nachbarte Spins antiferromagnetisch koppeln. Im Unterschied zum Maple-Leaf-Gitter
besitzt jedoch jeder Spin im Dreiecksgitter sechs nichste Nachbarn und jeder Spin im
Kagomé-Gitter vier néchste Nachbarn. Wesentliches Element des klassischen Grund-
zustandes in allen drei Fillen ist die 120°-Struktur, entsprechend der sich die Spins
orientieren. Zusitzlich ist der klassische Grundzustand des Kagomé-Gitters hochgradig
entartet. Vom Dreiecksgitter ist bekannt, dafl es trotz Quantenfluktuationen quasiklas-
sische Fernordnung besitzt. Andererseits gilt der Grundzustand des HAFM auf dem
Kagomé-Gitter als quantenungeordnet. In allen drei Gittern steuert die Koordinations-
zahl z den Einflufl der Quantenfluktuationen auf das frustrierte Spinsystem. Wenn also
das Dreiecksgitter mit 2 = 6 quasiklassisch und das Kagomé-Gitter mit 2 = 4 gar nicht
geordnet ist, dann ist die Frage nach dem Grad der Ordnung im Maple-Leaf-Gitter mit
z = b nur natiirlich. Die lineare Spinwellentheorie kam dabei zu dem Ergebnis, dafi der
HAFM auf dem Maple-Leaf-Gitter iiber einen dhnlich geordneten Grundzustand wie
auf dem Dreiecks-Gitter verfiigt. Allerdings ist der Ordnungsparameter verméoge der
geringeren Koordinationszahl gegeniiber dem Dreiecks-Gitter stérker reduziert.

Kapitel 3 beschiftigte sich umfassend mit der rotationsinvarianten Greenfunktionsme-
thode fiir s = 1/2. Neben der ausfiihrlichen Herleitung der wichtigen mathematischen
Zusammenhinge und deren Illustration am Beispiel der linearen Kette, konzentrier-
te sich dieses Kapitel vor allem auf das geschichtete Kagomé-Gitter. Ausgangspunkt
der Uberlegungen war der HAFM auf dem zweidimensionalen Kagomé-Gitter mit sei-
nem Grundzustand, der héchstwahrscheinlich keine magnetische Fernordnung besitzt,
wofiir es zwar keinen exakten Beweis gibt, trotzdem aber geniigend Hinweise und Indi-
zien existieren. Von der Vorstellung ausgehend, dafl dreidimensionale Spinsysteme eher
zu magnetischer Ordnung neigen als zweidimensionale, weil die zusétzliche Dimensi-
on ordnungsreduzierende Fluktuationen jeglicher Art zumeist unterdriickt, wurde ein
Spinsystem auf einem dreidimensionalen Kagomé-Gitter betrachtet; aufler der iiblichen
Kopplung J zwischen néchstbenachbarten Spins innerhalb der Kagomé-Ebenen gibt es
eine zusétzliche Zwischenebenenkopplung J,, vermittels der néchstbenachbarte Spins
angrenzender Ebenen wechselwirken. Gegenstand der Untersuchungen war die Frage,
ob und unter welchen Umsténden in einem solchen Spinsystem wegen J, # 0 insbeson-
dere fiir .J; > 0 magnetische Ordnung mdoglich wird. Aus den Rechnungen im Rahmen
der rotationsinvarianten Greenfunktionsmethode ergab sich aber fiir den Fall eines
antiferromagnetischem Jj, dafl unabhéngig von Gréfie und Vorzeichen der Zwischene-
benenkopplung J;, magnetische Ordnung auch im dreidimensionalen Kagomé-Gitter
nicht vorliegt. Dies ist eine Aussage, die durch die lineare Spinwellentheorie qualitativ
bestitigt wurde. Weil J, nicht zusétzlich frustriert, ist der klassische Grundzustand
fiir Jy > 0 und J, # 0 genauso hochgradig entartet wie im Falle des zweidimensionalen
HAFM auf dem puren Kagomé-Gitter. Magnetische Ordnung findet man nur dann,
wenn J < 0 gilt. Es zeigte sich, dal die rotationsinvariante Greenfunktionsmethode
zumindest prinzipiell in der Lage ist, die magnetischen Eigenschaften eines Quanten-
spinsystems auch bei endlichen Temperaturen konsistent zu beschreiben, wihrend die
lineare Spinwellentheorie entsprechend ihrer Grundannahmen bestenfalls bei tiefsten
Temperaturen verliflliche Resultate liefert, und das auch nur dann, wenn der Grund-
zustand quasiklassisch geordnet ist. Es soll aber nicht verschwiegen werden, dafl die
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rotationsinvariante Greenfunktionsmethode auch ihre Tiicken hat; in gewissen Para-
meterregionen waren z.B. keine selbstkonsistenten Losungen zu finden. In der Willkiir
beim Umgang mit den Vertexparametern ist eine wahrscheinliche Ursache fiir das Auf-
treten dieser und &hnlicher Unzulénglichkeiten in der Theorie zu sehen. So konnten nur
zwei Vertexparameter unterschieden werden, da sich ohne zusétzliche Informationen
von auflen nur genau zwei unabhéngige Gleichungen zu ihrer Bestimmung formulieren
lielen. Weiterer Input scheint also unbedingt notwendig zu sein, will man zu schliissigen
Resultaten im gesamten Parameterraum gelangen.
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Anhang A

Allgemeine Bemerkungen zur RGM

A.1 Relationen zwischen verschiedenen Konden-
sattermen

Will man magnetische Ordnung in einem Gitter mit Basis beschreiben, so sind verschie-
dene Kondensatterme zu unterscheiden, da jede Greensche Funktion ihren eigenen be-
sitzt. Zwischen den Kondensattermen bestehen Relationen, die im selbstkonsistent zu
l6senden Gleichungssystem Beriicksichtigung finden miissen, weil es ansonsten weniger
Gleichungen als Unbekannte gibe - im Anschlul geht es um die Formulierung dieser
Relationen. Betrachtet wird die Korrelationsfunktion <S;ﬂS;a> unter der Annahme,
dal Fernordnung vorliegt, die durch den magnetischen Ordnungsvektor Q beschrieben
wird. Es tritt demzufolge Modenkondensation bei q = Q auf!. Dann gilt

Z <S;ﬂ5;a> exp (—iQTmang) = Z Cqap €XP (—iTma,ns)
q 9#Q

+ NCQasexp (—iQrmans)

woraus fiir die betrachtete Korrelationsfunktion formal

(Sa5Sa4a) = Y Carapdqq + NCqaslaq
a'£Q

folgt. Der Einfachheit halber sei weiterhin angenommen, dafl aufgrund der Vertausch-
barkeit von Mg mit Fy eine Zerlegung der Form (3.15) bzw. (3.16) moglich ist:

G @) = Z%m i) (il 8),
Caas = D g (L4 20 (wia)) (o lia) (il B).

1Es kann auch Modenkondensation bei verschiedenen Q gleichzeitig auftreten; in diesem Zusam-
menhang sei an das Ji-J2-Modell erinnert [31]. Die Betrachtungen sind dann auf das Problem - eine
Greensche Funktion und Modenkondensation bei verschiedenen Q - auszudehnen, wobei sich an der
Grundaussage, dafl sich die Kondensatterme zueinander verhalten wie die korrespondierenden stati-
schen Suszeptibilititen, nichts dndert.
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Wenn es zu Modenkondensation kommt, dann divergiert einer der Eigenwerte von
lim,, o G~ (w) fiir q = (ﬂ Es sei dies der i-te Eigenwert. Dieser Beitrag dominiert
in einer Umgebung von q = Q alle anderen Terme. Insofern verhalten sich in dieser
Umgebung die Matrixelemente wie

. - m; _
lim Gigs (w) ~ =5 (o |id) (ial )
iq

und

Wiq

Caas % 5% (1+ 2 (wi)) {a |ic) (ia B)

Man kann jetzt zwei Elemente der Korrelatorenmatrix zueinander ins Verhéltnis setzen,
so dafl in der betrachteten Umgebung von Q zunichst

Cqys  limy 4o G;ﬂ;; (w)  w—0 G;’JJ (w)

folgt. Mit G¢~ (w) = —x{~ (w) ergibt sich daraus im Limes q — Q

G (w o (w
Cqas = lim lim T_L() = lim lim qu_i(). (A.1)
Cqu aQu0 Gy (w)  a=Qu—-0 x s (w)

Auf diese Weise ist folgende Aussage bewiesen: Zwei Kondensatterme verhalten sich
zueinander wie die korrespondierenden statischen Suszeptibilitdten im Limes q — Q.
Wendet man z.B. die RGM auf das Quadratgitter mit Néchster-Nachbar-Kopplung J
an, wobei jede Elementarzelle zwei Spins enthalten soll, so gelten: C1;/Ciy = 1 fiir
J < 0 und Cy;/C12 = =1 fiir J > 0. Anzumerken ist, da8 es in beiden Fillen zu
Modenkondensation bei q = 0 kommt.

Um Fehler beim Aufstellen und Entkoppeln der Bewegungsgleichungen auszuschlieflen,
kann beispielsweise gepriift werden, wie viele unabhéngige Relationen sich formulieren
lassen und ob deren Zahl mit der Zahl der ”fehlenden” Gleichungen iibereinstimmt.

A.2 Vertexparameter und ihre Rolle bei der Opti-
mierung der RGM-Resultate

Das Beispiel des einfachen HAFM auf dem Quadratgitter soll illustrieren, dafl zusétz-
liche Informationen von auflen nicht unabhingig voneinander zur Verbesserung der
Resultate herangezogen werden kénnen. Es sei dazu der Grundzustand betrachtet. Mit
der moglichen Beschrinkung auf das geometrische Gitter tritt Modenkondensation bei
Q = (m,n) auf. Ohne auf die Details der Rechnung niher eingehen zu wollen, lautet
die dahingehend zu untersuchende Greensche Funktion

Mg

G (w) = (A.2)

2,2
w wq

2Fiir die lineare Kette konnte in Abschnitt 3.2.5 beobachtet werden, daf3 gerade qu_ (w) die Kon-
densatbedingung fiir J < 0 liefert. Im {ibrigen funktioniert der Beweis auch dann, falls [Fy, Mq]_ #0
gelten sollte.
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mit
mq = —8Jeio (1 — )

wa = 2J%(1 = yq) (1 + 6m1c10 + 4mac1y + 20320 — 8mcro (14 7q)) 5
(A.3)

wobei J > 0 und 74 = (cosgq, + cosgq,) /2 gelten [81]. Beim Entkoppeln gehen drei
verschiedene Korrelatoren ¢ g,c1,1 und ¢y in die Bewegungsgleichung ein. Die ent-
sprechende Indizierung ergibt sich aus ¢pn, = c(mr; + nry) unter Verwendung der
Gitterbasis r; = (1,0),ro = (0, 1). Jeder dieser Korrelatoren ist zunéchst mit einem ei-
genen Vertexparameter zu versehen. Unter Beriicksichtigung der Kondensatbedingung

1 4+ 6m1c1,0 + 412011 + 213090 = 0

ist das Gleichungssystem bei N Spins/Zellen

1 . 1 :
o = Y cqexp (—igri) = C, ¢ = N > cqexp (—ig (11 +12)) + C,

q#Q a#Q
Cop = Z cqexp (—iq2r;) + Z cq+C
q#Q q#Q

mit

o= 760 [1=7
4 T 1+

zu 16sen. Hervorzuheben ist, dafl ¢q obige Gestalt unabhéngig davon hat, wieviele Vert-
exparameter unterschieden werden. Dafiir verantwortlich ist die Kondensatbedingung.
Der Kondensatterm C' steht bekanntlich mit der Magnetisierung M iiber M? = 3C/2
in Verbindung. Insgesamt gibt es sieben selbstkonsistent zu bestimmende Parameter,
fiir die aber nur fiinf Gleichungen zur Verfiigung stehen. Eine zunéchst naheliegende
Reduktion der Variablenzahl geméf n; = n fiir + = 1,2, 3 filhrt im thermodynamischen
Limes auf ¢i o = —0.20677,¢c1;; = 0.11615,c20 = 0.09480 und n = 1.70517. Daraus
folgt die Energie pro Spin zu Ey/JN = 3¢;o = —0.62032. Mit dem Kondensatterm
C = 0.01488 ergibt sich allerdings eine Magnetisierung, die mit M = 0.1494 viel zu ge-
ring ausfillt. Magnetische Ordnung wird eben durch eine Theorie, deren Schwerpunkt
kurzreichweitige Korrelationen bilden, in Anwesenheit starker Quantenfluktuationen
nur unzureichend beriicksichtigt. Vielmehr gilt eine Magnetisierung, die ungefdhr dop-
pelt so grof} ist, im Falle des HAFM auf dem Quadratgitter als gesichert. Will man
nun eine Verbesserung der Theorie dadurch erreichen, dal man z.B. iiber M das Kon-
densat C' vorgibt, so bilden die Gleichungen fiir ¢, 9,c;,; und cyy zusammen mit der
Summenregel ein reduziertes, aber in sich geschlossenes Gleichungssystem zur Bestim-
mung von ci, €11, C2,0 und 7, worauf die iibrigen Vertexparameter 7, und 73 keinen
Einflul mehr haben. Letztere haben nur fiir die Erfiillung der Kondensatbedingung zu
sorgen. Gleiches gilt, wenn man iiber die Energie den Korrelator ¢, festlegt. Dann
bilden besagte Gleichungen ein geschlossenes System fiir ¢, ;, ¢z 9, C und 7,. Dabei be-
wirkt eine realistischere Energie (—0.65795 aus LSWT) eine hohere Magnetisierung
(0.2315) bzw. umgekehrt eine realistischere Magnetisierung (0.3034 aus LSWT) eine
tiefere Energie (—0.70458). Wenn man aber M und Ey/JN zusammen fixiert, weil es
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ja drei Vertexparameter gibt, mit deren Hilfe man die Resultate im Prinzip optimieren
kann, dann fiihrt dieses Vorgehen zu einem Widerspruch, denn aus M und Ey/JN
folgen C respektive c¢;o. Es geniigt jetzt die Summenregel, um 7, zu berechnen. Das
dadurch gewonnene Ergebnis ist aber nicht mit Gleichung

1 .
o= Z cqexp (—iqr;) — C
a7Q

vereinbar. Ein solches Gleichungssystem besitzt keine Lésung. Die Annahme, die Frei-
heit in Bezug auf alle Vertexparameter voll ausnutzen zu kénnen, um die Theorie in
optimaler Weise zu verbessern, kann also auf einen Widerspruch fiihren.

A.3 Korrelationslinge

Das Quadratgitter mit einem Spin pro Zelle wird jetzt benutzt, um zu demonstrieren,
wie Korrelationslingen innerhalb der RGM definiert sind und welche Prozedur auf die
entsprechenden Beziehungen fiihrt. Ziel ist es, dieses Verfahren auf Gitter mit Basis
zu erweitern. Ausgangspunkt sind zunéchst (A.2) und (A.3). Im Grundzustand ist das
Spinsystem sowohl fiir J < 0 als auch fiir J > 0 geordnet. Da auf jede Zelle nur ein Spin
entfillt, lauten die magnetischen Ordnungsvektoren Q = (0,0) sowie Q = (w, ) fiir
J < O respektive J > 0. Damit verbunden ist die Divergenz von G~ = lim,,_,o G{~ (w)
in Q mit G§~ = limg_,q G~ Es folgen

_ 401 0
G- = d , J <0,
Q J (1 = 10mero + 4neciq + 213¢20)
_ deig
G - J > 0. (A4)

J (14 6m1c1,0 + 4m201,1 + 213C20)

Entsprechend liefert das Nullsetzen des Nenners von Ga_ die jeweils benotigte Kon-
densatbedingung. In einer Umgebung von Q 148t sich Ga_ darstellen als

1
G ~Gh™
Q+q Q1 + fgzqu i fquz

GG (1= 6.0 - §,4y) - (A-5)

Die Groflen &, und &, werden als Korrelationsldngen bezeichneﬁ, wobei die Indizie-
rung zusétzlich die Richtung im Raum vorgibt. Mischterme der Form fﬁquqy tauchen
in der Entwicklung nicht auf. Kompakt formuliert lauten die Definitionsgleichungen
somit o e
2 1 0°Gg

ez 2G5_ dq2

1 0*Gi~
» Gy = oGt o z : (A.6)
Q qy q=Q

a=Q

3Folgende Uberlegung liegt der Interpretation von ¢ als Korrelationslinge zugrunde: Die Korrela-
tionsfunktionen im realen Raum, an denen man letztendlich interessiert ist, sind mit den Korrelati-
onsfunktionen im reziproken Raum, die das Spektraltheorem liefert, iiber eine Fourier-Transformation
verkniipft. In mathematischen Tabellenwerken [89] findet man einen diesbeziiglichen Zusammenhang;

er lautet
/ T cos (xy)

dz = raexp (—ay) .
o Tt (/) p (—ay)
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Es gilt hier £2, = &2, = £%, d.h. im Gitter ist die 2-Richtung gegeniiber der y-Richtung

nicht ausgezeichnet. Anwenden von (A.6) ergibt

2 = 2 21610
F IO 10mic10 + 4m2c1,1 + 23020
—2mcip
Eir = &= (A7)

14 6mic1,0 + 412011 + 213C00

Insbesondere die Beziehung fiir £%  entspricht der in [81] angegebenen Formel. Das Vor-
zeichen von ¢, o sichert, daB§ (A.6) tatséchlich eine positive Zahl liefert. Weil das Spin-
system im Grundzustand in beiden Féllen ferngeordnet ist, divergiert mit Ga_ auch
die dazugehorige Korrelationslinge. Die Gleichung fiir die jeweilige Korrelationslinge
hat die Gestalt eines Bruches, in dessen Nenner die entsprechende Kondensatbedin-
gung steht. Bei Temperaturen ungleich Null existiert keine magnetische Fernordnung,
die Kondensatbedingungen sind somit nicht erfiillt und die entsprechenden Korrela-
tionsldngen werden endlich, wobei die Divergenz von Ga_ in ein absolutes Minimum
iibergeht. Generell gilt also die folgende Definition: Die Korrelationslingen ergeben sich
aus der Entwicklung von G~ geméfl (A.6) um dasjenige Q, bei dem bei Abwesenheit
von Fernordnung G~ ihr absolutes Minimum besitzt. Wie 148t sich dieses Verfahren
auf Gitter mit Basis iibertragen? Um eine derartige Verallgemeinerungsmoglichkeit zu
finden, wird wiederum das Quadratgitter herangezogen. Die Rechnungen basieren im
Unterschied zu vorher auf einem Gitter, dessen Zellen zwei Spins enthalten®. Dann ist
G~ (w) eine 2x2-Matrix. Im Grundzustand ist Q = (0, 0) sowohl fiir J < 0 als auch fiir
J > 0 der magnetische Ordnungsvektor. Weil die Frequenz- mit der Momentenmatrix
vertauscht und beide Matrizen zudem hermitesch sind, gilt (3.15) mit

_ 1 m 11 1 moy 1 -1
+ — | .l s S
Gq (w)_2w2_w%q<1 1>+2w2_w%q<_1 1 )

und
miq = —8Jeio(l—7q),
wfq = 2J2 (1 — ’)’q) (1 + 67’]10170 + 47’]20171 + 27’]30270 — 87’]10170 (1 + ’}’q)) ,
qu = —SJCLO (1 + ’)’q) ,
Wy = 2J%(147q) (14 6mero+4mcrs + 2n3c0 — 8mcio (1 — 7q)) -
(A.8)
Insofern besitzt die Matrix GI~ = lim,_,o GI~ (w) die Eigenwerte G}, = —mq/w?
q q jq ja/ Wiq

mit 7 = 1,2. Untersucht man diese Eigenwerte in der Umgebung des gemeinsamen
Ordnungsvektors Q = (0,0) nach (A.6), so erhélt man iiberraschenderweise die ferro-
magnetische Korrelationslinge £% sowie die antiferromagnetische Korrelationslinge €2
nach (A.7) aus G respektive G3; . Im Grundzustand divergiert je nach dem, welches
Vorzeichen J hat, einer der Eigenwerte. Eine sinnvoll erscheinende Verallgemeinerung
der Berechnungsvorschrift fiir die Korrelationsldnge auf Gitter mit Basis konnte demzu-
folge wie folgt zu formulieren sein: Ausgehend vom Eigenwertspektrum der Matrix G¥~,

“Der Nenner ist entweder Null oder positiv, weil er vom Spektrum wfl > 0 herriihrt.
5Fiir J > 0 handelt es sich also um das magnetische Gitter.

119



ist (A.6) auf denjenigen Eigenwert anzuwenden, der bei einem bestimmten Q das abso-
lute Minimum® beziiglich aller Eigenwerte und aller q liefert. Einzelne Matrixelemente
herauszugreifen, um sie zu entwickeln, ist dagegen eine wenig geeignete Methode, weil
ein jedes Matrixelement seine eigenen Entwicklungskoeffizienten geméf (A.5) aufweist,
zumal bei komplizierteren Gittern Mischterme in der Entwicklung nicht auszuschlielen
sind. Mischterme treten nach Erfahrung des Autors dann nicht in Erscheinung, wenn
man sich an die Eigenwerte hilt. AbschlieBend sei nochmals ausdriicklich betont, daf§
es sich vorrangig um formale Argumente handelt, auf denen die Verallgemeinerung der
Berechnungsvorschrift beruht. Zur Untermauerung sei deshalb zusétzlich auf die spek-
trale Zerlegung der Korrelatorenmatrix (3.16) verwiesen. Derjenige Eigenwert, der bei
einem bestimmten Q das absolute Minimum aller qu_ bereitstellt, sorgt gleichzeitig
dafiir, daf§ der entsprechende Beitrag in cq die iibrigen dominiert.

A.4 Nichtlineares Gleichungssystem im Tieftempe-
raturregime

Das Tieftemperaturverhalten der spezifischen Wérme ist fiir ein Spinsystem charak-
teristisch. Die spezifische Wirme gehorcht im allgemeinen einem Potenzgesetz in T,
dessen Exponent von der Gitterdimension und dem Vorzeichen der einzelnen Kopplun-
gen abhingt. Wihrend sich derartige Potenzgesetze innerhalb der LSW'T analytisch
bestimmen lassen, stellt die dahingehende Auswertung der selbstkonsistenten RGM-
Losungen im Tieftemperaturregime insbesondere dann ein numerisches Problem dar,
wenn sich die Lésungen nur schwach mit der Temperatur sindern”. Wie man sich den-
noch behelfen kann und was man dabei nicht tun darf, demonstrieren zwei Beispiele
im Anschlu8. Dazu sei zunichst das nichtlineare Gleichungssystem
2

a T
G =
! 1—22 c¢1+c¢’
b z?
Cy = + (Ag)

1—22 ¢ +c
betrachtet. Gesucht sind die Losungen ¢; und ¢y in Abhéngigkeit von z. Eine Lésung
lautet

+ z
cCi = ,
1= a2 / 2
v 2((1@22) +3 (1a—+zb2) + 87
72

1 —2? a+b a+b \2
2(11—352) +3 (1:52) + 87

6Man kann in (A.6) statt mit G&~ auch mit der statischen Suszeptibilitit x§~ rechnen. Wegen
ler_ = —Gjlr_ ist bel Gittern mit Basis nach dem absoluten Maximum aller Eigenwerte der Matrix
Xq~ zu suchen.

“Im allgemeinen sind die ersten Temperaturkorrekturen der Energie bei einem d-dimensionalen
Spinsystem proportional zu T(@t2)/2 fiir einen Ferromagneten und proportional zu T9+! fiir einen
Antiferromagneten. Entsprechend verschieben sich mit zunehmender Dimensionalitit die mafigebli-
chen Nachkommastellen nach hinten. Umso mehr kommt es also auf die Genauigkeit an, wenn diese
Stellen richtig erfafit werden sollen. Andererseits erfordert genaueres Integrieren mehr Rechenzeit ¢
mit t ~ td.
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Fiir sie existiert eine Taylor-Entwicklung um den Punkt x = 0, die an dieser Stelle bis
zur zweiten Ordnung - der ersten Korrektur - ausgewertet wird. Daf einfaches Einsetzen
der Losung fiir £ = 0 in (A.9) mit ¢; ~ a+2*/ (a + b) sowie ¢ = b+ 2%/ (a + b) gerade
nicht die richtigen ersten beiden Taylor-Glieder liefert, zeigt die genauere Analyse.

Vielmehr folgt aus (A.10)
(o)
cp =~ a+la+ T,

a+b

1 2
Co = b+<b+a+b>x.

Dieses Resultat ist natiirlich sofort einleuchtend, denn die Entwicklung der Funktion
1/ (1 — z?) besitzt bereits ihrerseits Glieder zweiter Ordnung. Es darf demzufolge nicht
erwartet werden, daf} sich die Tieftemperaturkorrekturen im Rahmen der RGM einfach
dadurch ergeben, dafl man den explizit temperaturabhéingigen Anteil von jeder Glei-
chung abspaltet, ihn entwickelt und anschlieend die Grundzustandslésungen einsetzt,
zumal die impliziten Temperaturabhingigkeiten verborgen bleiben, welche - wie schon
obiges Beispiel illustriert, bei dem die Abhéngigkeit von z ins Auge sticht - letztendlich
zu einer Modifikation der Vorfaktoren fithren. Deshalb ist folgendes Vorgehen sinnvoll:
Das gesamte Gleichungssystem wird einer Tieftemperaturentwicklung unterzogen und
danach selbstkonsistent gelost. Bereits die Tieftemperaturentwicklung der Gleichungen
bringt dabei die richtigen Temperaturabhéingigkeiten, zumindest was den Exponenten
betrifft, zutage. Zur Untermauerung dessen soll ein zweites Beispiel dienen. Untersucht
wird das Tieftemperaturverhalten der spezifischen Wirme des HAFM auf der linearen
Kette im Rahmen der RGM. Auf den Grundzustand ist bereits in Abschnitt 3.2.5 ein-
gegangen worden. Fiir endliche Temperaturen lautet das zu l6sende Gleichungssystem

1 -|—7T/2 1 —|—71'/2
T = = Cq12 COS ¢2dq,, c3= — Cq11 COS 2¢,dgy,

T J /2 T J_n/2
1 1 +7/2
- = — d A1l
92 T /—71-/2 Cq1104Gy ( )

mit
2 m
Caas = D 22 (1 +2n (wjq)) (elja) (jalB) -

j=1 2wijq

Dabei sind mjq und w;q (3.20) zu entnehmen. Die normierten Eigenvektoren |jq)
héngen nicht von q ab und sind durch

1 1 1 1
1) \/5<1> 2q) ﬁ<1> (A.12)
gegeben. Auflerdem gilt fiir o, 8 = 1,2

|1>=((1)), |2>=((1)). (A.13)

Explizit ist die Temperatur im Ausdruck
n (wijq) = 1/ (exp (wjq/kT) — 1)
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enthalten. Im Prinzip hingt die Genauigkeit der Losung des Gleichungssystems davon
ab, wie genau die Integrale bekannt sind. Hier handelt es sich um eindimensionale In-
tegrale. Demzufolge kann das Gleichungssystem beliebig genau in endlicher Zeit geltst
werden. Numerisches Ableiten der Energie E = 3JN¢; /2 nach der Temperatur bereitet
also keine Schwierigkeiten, da die relevanten Nachkommastellen korrekt und verléfllich
bestimmt werden konnen. Fiir zwei Dimensionen ist dies schon schwieriger, jedoch
stellt das nahezu beliebig genaue Integrieren in drei Dimensionen ein Problem dar.
Aus diesem Grunde werden in einem ersten Schritt die explizit temperaturabhingi-
gen Terme innerhalb des Gleichungssystems ausintegriert, was fiir kleine 7" analytisch
moglich ist und den richtigen Exponenten, mit dem T auftritt, bereits liefert. In einem
zweiten Schritt wird das korrigierte Gleichungssystem numerisch gel6st. Ein solches
Vorgehen ist bei einem eindimensionalen Spinsystem aus den eben genannten Griinden
unnoétig, dennoch soll die folgende Rechnung zeigen, wie gut das exakte Ergebnis mit
dem gendherten iibereinstimmt. Gilt J > 0, so werden bei tiefen Temperaturen die
ersten Anregungen durch die akustische Mode wiq beschrieben. Dann folgt unter Be-
achtung der Eigenschaft, daf} die Integranden gerade Funktionen in q sind, niherungs-
weise

92 +7/2 2
o o~ 2 / Zwmxmam (jat|2) cos g, dg
—|—71'/2
+ / WigX1q” wlq) <1|1Q> <1Q|2> cos gzdqy,
2 -|—7T/2 2
o m [ D et (1) Gl eos s,
4 +7‘r/2
+ 2 [ wgtign (ona) (1) (1a]1) cos2a.dg..
1 9 +71'/2 2
3% L) e (lia it de

—|—71'/2
+ ;/ WiqX1qT (wlq) (1]1q) (1q|1) dg.
0

mit Xjq = qu/2w]2~q. Wegen (A.12) und (A.13) erfolgt die Tieftemperaturkorrek-
tur fiir alle drei Gleichungen in gleicher Weise, denn einerseits gilt (1|1q) (1q|2) =
(1]1q) (1q|1) = 1/2 und andererseits sind fiir k7' < J nur Zustdnde mit kleinem g,
angeregt, so daf die Integranden, die n (wiq) enthalten, in geeigneter Form Taylor-
entwickelt werden. Daf8 dabei die Integration ins Unendliche ausgedehnt werden kann,
versteht sich von selbst. Somit ist die Tieftemperaturkorrektur unter Verwendung von
x = limg 0 X1q, W1q & vag, und cos(¢;) ~ cos(2¢,) ~ 1 fiir alle drei Gleichungen
identisch und durch

T Jo  exp(Vag/kT)-1""
gegeben, wobei a = J? (1 — 21 (3c; — ¢)) /2 gilt und x = —c;J/a der Beziehung (3.28)
entspricht. Ausfiihren der Integration liefert

Jeiw

" 3ava
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Abbildung A.1: RGM: Spezifische Wérme fiir die lineare Kette mit J = 1.00. Ein-
ander gegeniibergestellt sind die Ergebnisse, die man exakt aus dem unkorrigierten
Gleichungssystem und gendhert aus dem korrigierten Gleichungssystem gewinnt.

Damit erhélt man ein tieftemperaturkorrigiertes Gleichungssystem geméifl

9 [T7/2 2 | | Jorr 2

S e
j=1

9 [T7/2 2 . | Jeur
Cr = ;/0 jzzlequqﬂUq) <jq|1>COS2qwde—m(kT)2,
1 9 [+m/2 2 Jern i
2 ¥ & aXsa (L17q) (jal1) dg; — kT)?. A14
s~ 2 > wsain (1) Gt o = 0 (7) (A1)

In Abb. [A.1 ist die spezifische Wirme als Funktion der Temperatur dargestellt. Of-
fensichtlich stimmen die Lésungen von (A.11) mit denen von (A.14) bei hinreichend
tiefen Temperaturen praktisch iiberein. In diesem Regime ist die spezifische Wérme
der Temperatur direkt proportional; die T2?-Abhingigkeit der Temperaturkorrektur
iibertriigt sich erwartungsgemif auf die Korrelatoren und damit auf die Energie. Ein-
faches Einsetzen der Grundzustandslosung in die Tieftemperaturkorrektur liefert mit
C/N = 0.286kT/J gerade den falschen Vorfaktor. Tatséchlich verhélt sich die spe-
zifische Wérme wie C/N = 0.042kT/J. Zum Vergleich sei noch das Ergebnis einer
linearen Spinwellenrechnung angegeben; auch im Rahmen dieser Theorie ist die spe-
zifische Wirme der Temperatur direkt proportional. Man findet C/N = 2xkT/3J =
2.094kT/J fiir s = 1/2. Der Vorfaktor ist vergleichsweise gro8, was vermutlich mit den
Magnonen zusammenhéingt, die in der LSWT keiner Wechselwirkung unterliegen.
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Anhang B

LSWT fiir das Quadratgitter mit
modifizierten Kopplungen

Welche Probleme die LSWT mit der Beschreibung von Phaseniibergingen hat,
soll anhand eines Beispiels demonstriert werden. Dazu wird das Quadratgitter mit
modifizierten Kopplungen untersucht. Es besteht aus N Spins der Linge s. Zwischen
nichsten Nachbarn in a;-Richtung wirkt J,. Entsprechendes gilt fiir néichste Nachbarn
in ay-Richtung vermittels J,. Wird eine der Kopplungen Null, so handelt es sich
um lineare Ketten. Offensichtlich fiihrt das Gleichsetzen der Kopplungen auf das
iibliche Quadratgitter mit rdumlich isotroper Wechselwirkung, d.h., es besteht kein
Unterschied zwischen z- und y-Richtung. Unterschieden werden die Fille J, < 0 sowie
Jz > 0 jeweils mit variablem J, > 0. Dann geniigt immer eine Ein-Magnonen-Theorie,
da jedesmal ein klassischer Ordnungsvektor Q existiert. Die numerische Auswertung
der Gleichungen beschrinkt sich auf den extremen Quantenfall s = 1/2. Der Fall
Jy > 0 wird fiir beliebiges s in [15] diskutiert.

Der Fall J, < 0 und J, > 0: Als Hamilton-Operator ergibt sich

H = (J,—J,)Ns*+) H,

q
Hy = 25(=Jy (1 —cosq)+ Jy)af aiq
—  Jysexp (—igy) aiqal_q — Jysexp (igy) a1q01—q- (B.1)

Eine kurze Rechnung liefert die zur Bestimmung der Magnetisierung nétige Greensche
Funktion G1;* (q,w) = ({(a1q; afy)) 70

—2Jys (1 —cosq,) +2Jys+w

G1_1+ (q7w) = w2 — w2
1q

mit

Wiq = 23\/(—Jw (1 —cosg) +J, (1+cosgy)) (—J, (1 —cosg) + J, (1 — cosgy)).
(B.2)
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Abbildung B.1: Das Quadratgitter mit modifizierten Kopplungen J, und J,. Die geo-
metrische Elementarzelle wird durch a; = (1,0) sowie a; = (0,1) aufgespannt. Sie
enthilt einen Spin.

0.5 T T T T T T
I
I

\
\
\
04 1
4

\

\

\

35

Abbildung B.2: LSWT: Die Magnetisierung (S") des modifizierten Quadratgitters als
Funktion von J, fiir s = 1/2 im Grundzustand.
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Im Grundzustand erhiilt man letztendlich die Magnetisierung! gemif

1
<SIZ> = §— NZA‘L
q

—2J,5 (1 —cosgy) + 2Jys — wiq
2w1q .

Aq = (B.3)

Der Fall J, > 0 und J, > 0: In diesem Fall findet man den bosonischen Hamilton-
Operator zu

H = —(J,+J,)Ns’+) H,,
q
Hy = 2s(J,+ Jy) afqaq

J$ €Xp (_iQw) aii_qail_—q — Jysexp (ZQw) A1q01—q

— Jysexp (—igy) afyaf_, — Jysexp (igy) a1q01_q- (B.4)
Jetzt gilt
2Jys+2Jys +w
G——l— — z Y
11 (q7w) w? — w%q
mit

Wiq = 23\/(Jw (1+cosqy) + Jy (1 +cosgq,)) (J, (1 —cosgy) + J, (1 —cosgy)), (B.5)
womit die Magnetisierung im Grundzustand durch

1
W>=%NZ%,
q

2 2J,s —
Ay = Jgs +2Jys —wiq (B.6)

2w1q

gegeben ist.

In Abb. B.2 ist die Magnetisierung als Funktion von J, aufgetragen. In diesem
simplen Modell sagt die LSWT einen Phaseniibergang voraus. Im Falle von J, > 0
sind es sogar zwei, denn aus (S") = 0 fir J,/J, ~ 30 folgt aus Symmetriegriinden
ebenfalls (S"?) = 0 fiir J,/J, ~ 30. Gemé8 [15] ist die LSWT aber nur dann verliflich,
wenn beide Kopplungen dieselbe Gréflenordnung besitzen. Es wird weiterhin argu-
mentiert, dafl die Existenz kritischer Kopplungen auch damit zusammenhingt, ob
s entsprechend der Haldane-Vermutung [4] ganz- oder halbzahlig ist. Die LSWT
macht beziiglich s keinen Unterschied, weil s nur als einfacher Parameter eingeht,
von dem die erste Quantenkorrektur des Ordnungsparameters gar nicht abhingt.
Ein Molekularfeldzugang [15] liefert hingegen fiir J, > 0 und s = 1/2 folgendes

IDie Magnetisierung ist der Erwartungswert der lokalen z-Komponente. In seinem lokalen Ko-
ordinatensystem zeigt ein Spin in seine lokale z-Richtung. Zur Unterscheidung von einem globalen
Koordinatensystem ist der Erwartungswert der lokalen z-Komponente mit einem Strich versehen.
Siehe dazu auch Abschnitt 2.1.1, wo die Holstein-Primakoff-Transformation behandelt wird.
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Bild: Eine beliebig kleine Zwischenkettenkopplung geniigt, um magnetische Ordnung
herzustellen. Das quasizweidimensionale Spinsystem ordnet sich also spontan. Ganz
anders ist das Verhalten, wenn s = 1 gilt. Hier mufl die Zwischenkettenkopplung
erst einen endlichen kritischen Wert (J,/J, = 40 bzw. J,/J, =~ 40) iibersteigen,
bevor sich das System ordnet [15]. Insbesondere fiir s = 1/2 sind die ermittelten
Phaseniibergénge als Artefakte der LSWT einzustufen. Es ist daher zu vermuten, daf§
die Phaseniibergéinge, die man mit der LSWT und der RGM im Falle des geschichteten
Kagomé-Gitters fiir Jj < 0,J; > 0 findet, nicht der Realitét entsprechen.
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Anhang C

Numerische Integration

Im thermodynamischen Limes geht die Summe ) fq mit

li
Jim, Nqu o | fla)da

in ein Integral iiber. Dabei sind Vgg; das Volumen und N die Zahl der Punkte innerhalb
der ersten Brillouin-Zone. Zur numerischen Auswertung derartiger Integrale wird in
dieser Arbeit die GauB-Quadratur benutzt [89]. Die entsprechenden Néherungsformeln
sind genau dann sehr einfach zu implementieren, wenn sich die Integration iiber das
Intervall [—1, +1] erstreckt. Um also auf moglichst einfache Weise numerisch integrieren
zu konnen, ist die erste Brillouin-Zone entsprechend dieser Mafigabe zu transformieren.
Am Beispiel des Dreiecksgitters nach Abb.C.1 soll dies kurz demonstriert werden. Der
Einfachheit halber sei angenommen, da8 f (q) eine gerade Funktion in g ist!. In der
Folge geniigt es, iiber die halbe Brillouin-Zone zu integrieren, so dal mit Vgrz =

872 /\/3 gilt

1 7’”
dq 2 4y) dgzdg,.
Vo /V BRZf(q) 47T2 / f ¢z, 4y) dgzdgy

l
3

S\a

Die Koordinatentransformation ¢, = 7 (1 + z) /v/3, ¢, = 7 (3 — ) y/3 bildet die rechte
Hilfte der ersten Brillouin-Zone - wie gewiinscht - auf das Gebiet z,y € [—1,+1] ab.
Gleichzeitig transformiert sich das Flichenelement dg,dg, geméf

7T2
dede = \/—2—7

Damit hat das Integral die Gestalt

(3 — z) dzdy.

s/ /+1 (3 —2) f (g (z,9) 9y (2, y)) dzdy. (C.1)

'Wenn es darauf ankommt, die Rechenzeit bei gleichbleibender Genauigkeit bzw. bei gleicher Re-
chenzeit die Genauigkeit zu optimieren, dann sind entsprechende Symmetriebetrachtungen im voraus
von groflem Nutzen.
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Abbildung C.1: Die erste Brillouin-Zone des Dreiecksgitters.

Zur weiteren numerischen Auswertung von (C.1) wird das gesamte Integrationsgebiet
in kleine Zellen zerlegt; der Parameter n kontrolliert dabei die GroBe der Zellen und
damit die Genauigkeit. Die Zelle k,[ ist dann gegeben durch z € [zg, 2],y € [vo, yi]
mit

2(k—1 2k

Ty = —1+g, T =—1+—,
n n

2(1—-1 21

Yo = —1+¥, y=—1+—
n n

und k,l = 1,2,...,n. Die eigentliche Anwendung der Gau-Quadratur geschieht nun,
indem die Zelle k,[ selbst auf ein Gebiet z,y € [—1,+1] abgebildet wird, wobei die
Drei-Punkte-Formel zur Anwendung kommen soll. Dann lauten die Stiitzstellen

_ ((z — @) uw + (x4 + 7o) _ (v = yo) vw + (1 + w0))
Ty = ) yv -
2 2
mit u,v = —1,0,4+1 und w = 4/3/5. Versehen mit den Gewichten 5/9 fiir u,v = +1
und 8/9 fiir u,v = 0 ergibt sich das Integral zu

972 n—>+oo TL2 ZZ Z Z - IEu 8 3 |u|) (8 - 3 |U|) f (Qw (xuayv) 7Qy (xuayv)) .

k=1 l=1 u=—1v=-1
(C.2)
Erfahrungsgeméf gentigt bei der Berechnung von Korrelationsfunktionen ein zweistel-
liges n, um eine hinreichende Genauigkeit von fiinf bis sechs Stellen zu erreichen. Da-
gegen erfordert die Bestimmung der Magnetisierung zumindest ein dreistelliges n, da
der entsprechende Integrand Divergenzen besitzt, die zwar in zwei Dimensionen durch
das Flachenelement ausgeglichen werden, trotzdem aber die Konvergenz verzogern.
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