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Zusammenfassung

Systemidentifikation hat die Aufgabe, eine Anzahl von zusammengehörenden Kom-

ponenten der realen Welt in einem Modell abzubilden. Wenn diese Abbildung durch

den Transfer von menschlichem Expertenwissen in ein Modell geschieht, wird dies als

wissensbasierte Modellierung bezeichnet. Wenn die Informationenüber das System

allerdings nur implizit und formlos in Datenbeständen vorliegen, wird die Abbildung

dieses Wissens mit Hilfe von Algorithmen als datengetriebene Modellierung bezeich-

net.

In dieser Arbeit wird vorgeschlagen, für die datengetriebene Systemidenti-

fizierung die Klasse der sogenannten Takai-Sugeno Fuzzy Modelle zu benutzen.

Dies wird durch das Vorhandensein effektiver Lernalgorithmen für diese Klasse von

Modellen begr̈undet. Des weiteren ist es oft vorteilhaft, die bei der Systemidenti-

fizierung gefundenen Modelle auch interpretieren zu können. Daher wird auf die

Formulierung verschiedener Interpretierbarkeitsfaktoren, welche zu einem objektiven

und leicht zu implementierenden Interpretierbarkeitsmaß für Takagi-Sugeno-Modelle

zusammengeführt werden k̈onnen, besonderer Wert gelegt.

Um optimale Strukturen der Modelle zu identifizieren, werden neue Konzepte

aus dem Bereich der Heuristik, speziell der evolutionären Berechnungsmethoden,

als generell nutzbare Suchmethode angewendet. Optimale und schlanke Modell-

strukturen sind in Hinsicht auf Genauigkeit, aber insbesondere im Hinblick auf die

Generalisierungf̈ahigkeit von Modellen sehr ẅunschenswert. Allerdings spielt die

notwendige Kodierung von potentiellen Modellen innerhalb einer künstlichen Evolu-

tion eine bedeutende, wenn nicht sogar die entscheidende Rolle. Aus diesem Grunde

wird in dieser Arbeit eine in diesem Zusammenhang neuartige Methode der Kodierung

vorgeschlagen. Dabei wird der Suchraum eines evolutionären Algorithmus durch

sogenannte Genotyp-Schablonen aufgespannt, welche mit Hilfe einer kontextfreien

Grammatik formuliert werden.
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Die vorgeschlagene Methode zur Systemidentifizierung mittels Takagi-Sugeno-

Modellen wird dann an einem künstlichen und einem komplexen realen Problem

getestet. In der realen Problemstellung geht es um die Identifikation von Modellen,

welche die Toxiziẗat von Molek̈ulen vorhersagen. Diese Modelle sollen also einen

Zusammenhang von einfach zu messenden oder zu berechnenden Eigenschaften von

Molekülen, sogenannten molekularen Deskriptoren, zu deren Giftigkeit aufdecken

und herstellen.



Abstract

System identification is the task to map several related components of a real world

system into a model. If this is done by transferring human expertise into a model, the

process is called knowledge-driven modeling. If the system information is embedded

in data-bases and the implicit existent expertise is mapped by algorithms into a model,

the process is called data-driven modeling.

This thesis suggests for data-driven system identification the class of Takagi-

Sugeno fuzzy models as target. This class of models provides the possibility to make

use of powerful learning algorithms. On the other hand the human interpretability of

the resulting models can be assured.

Because of this, necessary interpretability factors are worked out and an objective

interpretability measure for Takagi-Sugeno fuzzy models is formulated.

Evolutionary computation, as a general search method, is used to identify an

optimal model structure. Optimal and sparse model structures are desirable for reasons

of accuracy and generalization capability. The way in which candidate solutions (i.e.

models), are encoded in evolutionary algorithms is a central factor in population based

search methods. The author proposes a novel grammar based method to formulate

genotype-templates. These templates will be used to define the genotype search space.

The presented approach of data-driven system identification via evolutionary re-

trieval of Takagi-Sugeno fuzzy models is tested with artificial data and with a complex

real world dataset considering the prediction of molecular toxicity.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

In general,modelsare simplified mappings of parts of reality to any kind of material.

Today’s world is full of models. Each formula is a model, toy cars are models of their

big counterparts, the brain together with the senses forms a model of our environment,

and thus models specify our behavior. In science and industry models become more

and more important, because they are used to understand, control, optimize, predict

or simulate real world processes. Beside the intellectual benefits there is obviously a

huge potential of capital gains.

The traditional method of modeling is to utilize human expert knowledge and

intuition in combination with data obtained by observations, polls or measurements.

These data were mainly stored in books and thus they are not directly accessible by

computerized processing methods. However, as a consequence of the technical devel-

opment in computer science, the capacity of electronically based storing and process-

ing data doubles approximately every 18 month. This trend started in the middle of the

twentieth century and is unbroken till now. Furthermore, the worldwide cross-linking

of computers via the Internet, which started in the 1990s, enabled the possibility to

share and process data worldwide. Associated with these developments, the amount

of available data reached a level that could not be handled completely by man. Fur-

thermore, it can be assumed that many datasets contain sufficient correlated data to

establish new and efficient models of real world processes.

A natural consequence is to try to take advantage of these neglected data with

the help of computational processing. This processing is referred to asdata mining

1
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or knowledge discovery. Nowadays, most of these approaches focus on handpicked

data-sets, which are classified as most probable to bring in invested resources. Log-

ically and wisely all available human expert knowledge should be incorporated into

the emerging model. This is comparable to the first stage of a gold rush, which will

continue until most of the obviously fruitful claims are exploited. In a second stage

the focus will change to the bulk of medium to low profit modeling. Human prepro-

cessing and incorporation of human expert knowledge becomes undesired because of

costs. Fully data-driven methods are needed to meet these demands. Nevertheless,

the possibility to incorporate human expert knowledge into a data-driven constructed

model should be preserved, since a medium profit targeted datamining process could

always identify a high profitable model with applications worth to invest human re-

sources.

Having these assumptions in mind, the problem tackled in this thesis is to develop

a fully data-driven method for modeling, in order to meet the upcoming requirements

of information handling. The title of this thesis was chosen as it is, because a model

is, by definition, always related to a real world system and the model template was

selected for various reasons as a Takagi-Sugeno fuzzy model.

1.2 Thesis Contributions

The main contribution of this thesis is the development of an extendable framework

for automatic and data-driven modeling. Extendable in the sense, that a model class

is used that is also comprehensible for humans and not only executable for machines.

An important point is that the resulting models can be refined or analyzed by human

experts.

To achieve this goal, an objective interpretability measure for the chosen class

of Takagi-Sugeno fuzzy models is provided. To keep the framework as general as

possible, evolutionary computation was deployed. To stick to the required principles

of generality a novel concept of grammar based problem encoding is introduced, pre-

sented and applied to artificial and real world data.
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1.3 Thesis Structure

This section briefly summarizes the organization of the content and the notation of

this thesis. Following the table of content are a list of figures, a list of tables and a

list of used abbreviations. The appendix is concerned with the presented real world

example1. The bibliography can be found at the end of the thesis, followed by an

index. Furthermore, it should be mentioned that the availability of the down-loadable

versions2 of the bibliography entries were finally checked in March 2004. Due to

the rapid development of the Internet it is possible that some references are no longer

reachable.

1.3.1 Organization of the Content

This thesis covers basic concepts and applications of system identification, fuzzy logic

and evolutionary computation and their integration synergism. The used concepts are

reflected in chapters2 to 4, always with a focus on the implementation of a data-

driven system identification algorithm. In the second half of chapter4 a novel concept

of defining genotype search spaces is presented. This method will be used in the

subsequent chapters5 to 6, which deal with the implementation and testing of the

developed system identification algorithm.

Chapter 1 (this chapter) provides a brief summary of the organization and notation

used in this thesis.

Chapter 2 contains all used definitions and findings regarding system identification.

The chapter start with explanations of the terms system and model. This is

followed by a summary of model types and model application areas. The main

focus is on the tasks which come along with system identification based on data-

driven concepts. Especially mathematical methods for parameter estimation of

models are recapitulated, with respect to purely data-driven modeling. Further-

more, the importance and the relation between model complexity and model

validation is stressed and several model validation approaches are discussed.

1For readers of the electronic pdf version it is worth noting that the graphically presented results of
Sec.6.2are linked to the appendix.

2Only some free available papers were linked with the bibliography. Readers of the electronic
version can click on the concerning link to read the referenced paper.
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Chapter 3 starts with a basic introduction to fuzzy concepts, different fuzzy models

and fuzzy operations. The main focus is on the functionality of Takagi-Sugeno

fuzzy models, which will be discussed in greater detail. This covers the selec-

tion criteria responsible for choosing Takagi-Sugeno fuzzy models for system

identification, methods of parameter and structure learning of Takagi-Sugeno

fuzzy models and a detailed discussion of interpretability considerations.

Chapter 4 presents the terminology, possibilities and restrictions of evolutionary

computation. The representation (genotype) of candidate solutions is used as

the initial point to introduce the main concepts of evolutionary computation. An

important part of this chapter proposes and introduces a novel grammar based

representation scheme, which provides an often applicable simplification of the

in general hard to solve problem encoding task.

Chapter 5 utilizes the concepts which were introduced in the previous chapters, to

establish a general framework for data-driven system identification via evolu-

tionary optimized Takagi-Sugeno Fuzzy Systems.

Chapter 6 present the results obtained by applying the in chapter4 developed and

in chapter5 implemented approach of grammar based solution encoding to an

artificial and to a complex real world dataset. In all cases the data were used

with different levels of cross-validation to validate and compare the results.

Chapter 7 concludes with a brief summary of achieved results and newly introduced

concepts. The extension capabilities of the presented framework is outlined and

finally an outlook of interesting future work in the field of data-driven system

identification is given.

1.3.2 Notation

As mentioned above, this thesis contains an index with all relevant technical terms

stating the page of appearance in the thesis. Terms which are inserted into the index

can be identified by theiritalic appearance. Furthermore indexed terms may be set

in bold font if the term occur in a description or in a (sub)section title. Descriptive

names of functions, likeModelOut(·), are set in typewriter font, vectors are marked by

an underline (e.g.w) and matrices are written as bold set capital letters (e.g.X). The
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variabley always denotes the desired model output and ˆy the calculated model output.

Quotation marks are used if a term (for example ”good”) is not clearly defined.

1.3.3 Summary

This and all subsequent chapters will end with a short outline of the concerning

chapter-content.

This chapter provided the problem statement, the motivation to tackle this prob-

lem and a short sketch of the main thesis contribution, namely a novel grammar based

concept of problem encoding. Furthermore, the organization of the thesis content was

given and the applied notation was mentioned.



Chapter 2

System Identification

The termsystemhas its origin in the Greek language and can be explained in such

a way, that a system consists of several components, which somehow form a whole.

The general behavior of a system can be described by some important characteristics,

all referring to thestate of a system. The state of a system describes the system at

a certain point in time. Systems with a finite or countable number of system states

are calleddiscrete systemsand systems with an uncountable number of system states

are calledcontinuous systems. Closely related to these terms are the following system

characteristics:

Static systemsdoes not change their system states in time.

Stationary systemsare characterized by the fact that their system state changes are

constant in time.

Dynamic systemsare characterized by the fact that their actual system states are

defined by their initial states and the time depending system inputs.

In fact all systems are dynamic (continuous), but many systems can be considered as

static by observing a certain time segment. Furthermore, lets define external influences

as system state changing factors which are not generated by system parts. By doing

so another mutually exclusive characteristic of a system is described by the terms:

Open systemsare characterized by the fact that their system states are subject to

external influences.

6
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Closed systemsare characterized by the fact that their system states are not subject

to external influences.

Again, all systems are open1, but many systems can be considered as closed, because

the influence of external factors to the system state is negligible. Each model of a

system should be designed in such a way that the external factors affecting the system

state of the model are minimized.

System identificationis the task to map several related components of the real

world into a model. What the term model subsumes and what system identification

is used for will be pointed out in the next sections. Because this thesis focuses on

data-driven mathematical system identification, Sec.2.3provides a brief overview of

tasks which has to be performed before starting such a kind of system identification

and Sec.2.4 deals with the necessary parameter optimization of candidate models.

This chapter will close with two sections considering generally valid statements about

model complexity (Sec.2.5) and the resulting needs for model validation (Sec.2.6).

2.1 Model Types

A modelalways imitates the behavior of a real world system. A somewhat rough

classification leads to the following four different model types:

• Scaled models

• Flowcharts

• Tables

• Mathematical models

2.1.1 Scaled Models

Scaled models are often used to validate theoretical assumptions. For example a

bench-scaled model of a production facility is used to validate if the actual production

process is feasible or, for example, a bench-scaled model of a bridge, using new ma-

terials, has to undergo severe tests to validate the expected carrying capacity. Scaled

1Except the one system subsuming all existing parts (possibly the universe).
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models are also used in iterative simulation-optimization processes. For example, the

impact of a car-design to the potential clientele and to service ability is tested with a

one-to-one model. The response is used to optimize the product.

2.1.2 Flowcharts

A flowchart or a characteristic diagram is used to illustrate the steps in a process.

Each box in a flowchart represents a step and each arrow represents the sequence of

steps. By visualizing the process, a flowchart can quickly help to identify bottlenecks

or inefficiencies. There are three basic types of flowcharts. The first type, lets call it

basic flowchart, is used to outline a process quickly or to chart a process that involves

few people. The second type, often calledopportunity flowchart[88], is used to help

to understand or improve a process that has many steps, including when things go

right and when things go wrong. Adeployment flowchart[87] illustrates the detailed

steps in a procedure for each group of people involved in the process.

2.1.3 Look-Up Tables

Grid based look-up tables are, because of their simplicity, by far the most used models.

Usually a set of observed input-output data is simply stored in a table and the model

responds to an unseen input with the output calculated as a linear interpolation of the

stored output values of the closest stored points to the actual input. A normal car

produced at the beginning of the 21th century contains about 100 grid based look-up

tables. Grid based look-up tables are easy to implement models which has no need

of parameter optimization. Due to the curse of dimensionality (see Sec.3.3.4) this

type of model is restricted to problems of very few inputs. Grid based look-up tables

exhibit a strong similarity to mathematical models. In fact they can be interpreted

as fuzzy models with triangular membership functions which fulfill the condition of

complementarity (see Sec.3.3.2).

2.1.4 Mathematical Models

The derivation of mathematical models are twofold. Firstly, mathematical models

can be derived by the utilization of expert knowledge. Experts typically map their

knowledge in an analytically expression by using differential equations or state space



2.2. Application Areas of System Identification 9

equations. This kind of model derivation is referred asknowledge-based, theoretical,

mechanistic, axiomaticor white-box modeling. Knowledge-based modeling is only

applicable if the real world process is fully understood. Because the resulting models

are fully interpretable, they are calledwhite box models. These theoretical derived

models are widely used to model chemical, mechanical, electrical or fluid processes.

Nowadays there exist big libraries containing whole model-packages and software to

implement mainly time continuous models. Commonly used software packages are

Dymola, Spice, Simpack, Hysis, AspernPlus, Adams and gProms.

Secondly, mathematical models can be derived by the utilization of available

data. This kind of model derivation is calleddata-driven, experimental, statistical

or black-box, modeling. The possibleanalytical expressionsrepresenting the model

are various and the derived models are mainly used for control and prediction tasks.

The interpretability of the resulting models depends on the chosen kind of analytical

expression. The general characteristics of analytical expression are used to distin-

guish between so calledmodel classes. Common mathematical model classes are, for

example, artificial neural networks and fuzzy models. It is worth noting that this clas-

sification is very rough and that there exist several finer classifications, depending on

the chosen model characteristics. If instances of the class of artificial neural networks

are used to model a system, the resulting models are calledblack-box models, because

artificial neural networks are mostly difficult to interpret. In the case of fuzzy rule

based models, the resulting analytical expression is often referred aswhite-boxmodel,

because the system behavior can be easily formulated in human language and thus, is

accessible to the human intellect. Furthermore there exist many hybrid forms utiliz-

ing more than one available concept and thus, there exist so calledgrey-boxmodels

(with various subdivisions) which can not be clearly classified asblack-boxor white-

boxmodels. Commonly used software packages for data-driven modeling are Matlab,

Maple and Mathematica.

2.2 Application Areas of System Identification

Theapplication areas of system identificationcan be classified by ”where” and ”what

for” system identification is used. The ”where” is described by Fig.2.1, which rep-

resents system identification usage of high frequency by deep black towards low fre-

quency usage represented by a lighter gray. The decreasing frequency comes along
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with an increasing complexity and a decreasing expertise in the concerning application

area.
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• thermal/
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• physiological systems
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Figure 2.1: Application areas of system identification depending on expertise and
complexity of the system. The darker the more common is the use of models.

The ”what for” can be divided in five main application areas, namely simula-

tion, analysis, optimization, prediction and control. The next subsections give a short

outline and some examples of models in these areas.

2.2.1 System Identification with Computational Intelligence

Although it should be evident, the author thinks that it is necessary to emphasize that

this thesis does not cover the ”classical” methods of system identification. There exists

excellent literature [185,184,100,91] concerning the description of systems and their

behavior, the mapping of knowledge into differential equations to describe real world

systems and the application of filters to predict system states. Doing so and the related

background knowledge is often subsumed by the term ”system theory” and the author

strongly recommends to use and to apply this know-how if possible.

The aim of this thesis is to target systems, which firstly are too complex to be

tackled with low parameterized models and secondly are too unknown to have the
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possibility to map human expertise into well formulated analytical expressions. The

term system identification perfectly describes what is done in this thesis, namely map-

ping a real world process into a model. Because of this it can be realized that system

identification or modeling is more and more done by methods which are classified as

soft-computing methods [192,4].

2.2.2 Simulation

Simulationis the classical field for system identification. If a reliable model of the

target system is available, performing simulations can be traced back to one of the

following reasons:

• The model provides a bigger specification range than the (implemented) system.

• Simulations are often cheaper than real world experiments.

The latter reason has to looked at from a financial as well as from a time consuming

point of view. Widely known representatives are crash test models, production facility

models or flight simulators.

2.2.3 Analysis

The most ambitious idea in model analysis is to use a data-driven model to get a

deeper insight to the underlying real world system. A commonly used method to an-

alyze data-driven models is to extract fuzzy rules from the model structure. A typical

example of analysis based on data-driven models isdata mining, where sometimes

huge data bases are scanned for unknown relationships. Another interesting applica-

tion are automatic theorem proofers. A list of research groups working in this field

and available software can be found in [86].

More conservative approaches use knowledge-based models to play with some

model functionalities to improve understanding of the functioning of the underlying

process. A classical example are formulas, which can be seen as generalized models.

In the domain of science the proving and arranging of formulas are based on varying

and introducing model parameters.
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2.2.4 Optimization

Optimization utilizes the model of a process to find optimal model inputs due to a

desired process output. Often system outputs are contradictory and models are used

to find a Pareto-optimal [85] set of parameters regarding the desired outputs. Obvious

advantages to use models for optimization tasks are the saving of time and the decou-

pling from the real process. The precondition for optimizing is the availability of an

accurate model for all operating conditions which may occur during optimization.

2.2.5 Prediction

For prediction models it is important to distinguish between open and closed systems.

By modeling a closed loop system the possibility of predicting arbitrary many steps

in the future exist. Note, that by using digital computers even the predictions of a per-

fect modeled system will become more and more inaccurate because of accumulating

rounding errors. How fast this deviance grows depend on thechaoticbehavior [161]

of the system. By assuming a restricted, non-linear and deterministic dynamic system,

deterministic chaos arises through positive and negative feedbacks. Positive feedbacks

in form of local instabilities lead to a divergence in neighbouring values of system

states. Globally appearing negative feedbacks have a stabilizing effect. If neither

the positive nor the negative feedbacks get out of hand, the system stays in a limited

space, following an aperiodic trajectory. This trajectory shows a sensitive dependency

to infinitesimally small changes in the initial conditions of the system. Although very

”small” changes can lead after a ”short” time to totally different system behavior, the

resulting trajectory is often self-similar. The behavior of a system that generates deter-

ministic chaos can be explained by a deterministic non-linear (not necessarily known)

model of differential equations.

If the modeled system is an open system, the prediction range is restricted by

the last available input variable. Assume we want to model a system by using

u1(t − 7),u2(t − 4),u2(t − 6),u3(t − 5),y(t − 1) andy(t − 3), wheret denotes time-

steps,u1,u2, u3 denotes external system inputs andy denotes the model output. Fur-

thermore assume that the latest available value is alway given byt−1 because most

real processes have no direct feed-through. Under these terms the farest reaching pre-

diction for this model with six inputs would be given byy(t +3) (caused byu2(t−4)),
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a so called 3-step-ahead prediction, or more general ak-step-ahead prediction with

k = 3 asprediction horizon.

Prediction models are for example used for short-term stock market forecasts and

weather forecast, but also for climatic progression forecast etc., which indicates that

prediction is often utilized in optimization and analysis tasks. In fact, closed system

modeling for prediction is synonymous to simulation.

2.2.6 Control

Most models forcontrol tasks are implemented as look-up-tables [135]. As mentioned

in Sec.2.1.3look-up-tables are the by far most used model type and because nearly

all look-up-table based models are utilized in control tasks, control is the biggest ap-

plication area for system identification.

2.3 Tasks in System Identification

The process of system identification includes three tasks, namely:

• Selecting a model class.

• Selecting the model structure.

• Parameter optimization of the model.

The selection of a model class could also be seen as a first stage in selecting a

model structure. However, it is obvious that the space of all mathematical models

comprises models with very different characteristics. In general a model designer has

a couple of very specific characteristics in mind that a model should possess. Because

of this, and to reduce the model search space, at the beginning of each modeling

process a specific model class is selected. The latter two points are normally done

iteratively, where the structure selection is done in boundaries specified by the model

class, and the parameter optimization task is embedded into a loop of model structure

selections.
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2.3.1 Selecting a Model Class

The first and most fundamental task in data-driven modeling is the decision which

model class should be used to model the target system. The framework of this model

class will provide the basic conditions such as flexibility, interpretability and learning

capability of the model. A model class used for data-driven modeling should meet the

following conditions:

Universal approximation ability should be given. This is obvious since the objec-

tive of system identification is to model the target system as good as possible.

An ex ante restriction in the modeling accuracy would be in conflict to most

goals of system identification.

Availability of efficient learning algorithms should be given. This is a must for all

data-driven approaches, since the model parameters has to be optimized on the

basis of data.

Adjustable interpretability of the model class should be given, because a general

approach to data-driven system identification should provide all application ar-

eas of system-identification reaching from control, where sometimes there is

no need for interpretability, to analysis, where interpretability is indispensable.

Since interpretability and accuracy are contradictory goals, the interpretability

abilities of the model class should be adjustable.

Incorporation of expert knowledge should be possible. This point is not directly

intelligible, because the modeling process is data-driven. But if the application

area is for example analysis and the performed system identification was suc-

cessful, the possibility to incorporate new insights obtained by model analysis

should be given.

2.3.2 Selecting the Model Structure

Selecting a good model structure is the most challenging task in system identification.

By considering data-driven system identification we assume that no expert knowledge

about the real system is available. Thus, model structure optimization subsumes the

task of identifying relevant inputs and the adaption of the internal connectivity struc-

ture of the model. Although there exist several methods to create model structures (see



2.4. Parameter Optimization with Different Error Measures 15

Sec.2.5.4and2.5.5), it has to be always in mind, that it is very restrictive to assume

that the real system is in some special way decomposable (for example additively).

2.3.3 Parameter Optimization of the Model

Once a model structure is chosen, the model parameters2 have to be adapted in such

a way that the computed model output is as ”close” as possible to the desired system

output. There exist two mainly used parameter optimization techniques for supervised

learning. Firstly, the so called gradient descent methods like backpropagation [186,

156] which iteratively refine a solution and secondly, methods which directly solve a

system of overdetermined equations. The latter concept will be used in this thesis and

thus is discussed in greater detail in the next sections.

2.4 Parameter Optimization with Different Error

Measures

In this thesis onlysupervised learningtechniques are mentioned. All supervised learn-

ing methods are based on available knowledge about the input and output data of a

process. The objective of such methods is to minimize some error measure, which is

calculated by differences of the model behavior and the expected process output, in

order to obtain an optimal model. The next subsections provide a mathematical ex-

pression of this error measure and based on this, methods to find (sub)optimal model

parameters are shown.

2.4.1 Loss Functions and Cost Functions

Because in this thesis only single output models are considered, all following defini-

tions and equations are formulated for this kind of models, e.g. the output of a model

is written as a scalar. In order to optimize, the need of formulating a mathematical

expression of what to optimize arises. Loss functions are used to measure the model

output ModelOut(u) = ŷ of a single input vectoru to a real valued error and cost

functions are used to provide the analytical term which will be minimized to obtain

a ”good” model. In supervised methods the value provided by the loss function is

2To be precisely the parametersP1 of Eq. (2.21).
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usually computed as the difference between the measured process outputym and the

model outputModelOut(um) = ŷm, whereum is themth input vector of a given set of

input vectors (e.g. matrixU), the so called training set. A formal definition of what

is loss incurred by a model output ˆy at locationu, given a desiredy is given by the

following definition.

Definition 2.1 (Loss function). Let (y, ŷ) ∈ Y ×Y be the tuple consisting of a the

desired model output y and a calculated model outputŷ. Then a functionY ×Y →
[0,∞) with the propertyloss (y, ŷ) = 0 for all y ∈ Y will be called a loss function.

Thus, a loss function defines a measure to assess a single model output and the

so calledcost functionprovides an expression to assess the model output for a set of

inputs. A formal definition of what is cost incurred by a model output vector ˆy given

a desired output vectory and an input matrixU can be characterized by definition.

Definition 2.2 (Cost function). Let (loss (·),U) ∈ L ×U be the pair consisting of

an arbitrary loss functionloss (·) and an M×N input matrixU consisting of M

input vectors um of length N, the functioncost : L×U→ [0,∞) will be called a cost

function.

A common definition of a cost function is∑M
m=1loss(·), simply performing a

summation of all losses caused by a set of input vectors.

2.4.1.1 Binary Classification

For binary classification the simplest loss function is given by

loss(y, ŷ) =

0 if y = ŷ

1 otherwise.
(2.1)

This definition does not distinguish between different classes nor between different

types of error (i.e.false positiveor false negative3). Replacing the ”otherwise” case

in Eq. (2.1) by a function the incurred loss can be weighted.

This becomes necessary if the importance of the correctness of a model classifi-

cation regarding different classes varies. For example a model has to classify blood

3A false negative is a pattern which the classifier wrongly assigns to class 1, a false negative is
wrongly assigned to class -1.
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donations into two classes, namely harmless (1) and contaminated (-1). The classifica-

tion of a contaminated blood donation into the class harmless (false positive) has to be

avoided at any price. On the other hand the misclassification of a harmless blood do-

nation into the class contaminated (false negative) has only perishable consequences.

Often it is necessary to take a certain confidence value for the classification result into

account. In this caseModelOut(u), which is used to calculate ˆy, becomes a real valued

function, even thoughy∈ {−1,1}. In this case, sgn(ŷ) denotes the class label, and the

absolute value‖ŷ‖ the confidence of the model output. Common corresponding loss

functions are the ”soft margin” loss, the ”logistic” loss and the ”inverse complemen-

tary log-log” function. Matters become more complex when dealing with more than

two classes. Because each type of misclassification could potentially incur different

loss, i× i matrices, withi equal to the number of different classes, are used to store

the possible confidence values.

2.4.1.2 Regression

The most common choice for loss functions dealing with real valued differences is

loss(y, ŷ) = (y− ŷ)2 or equivalently ˆloss(ξ) = ξ2, (2.2)

with ξ representing a tuple. For efficient implementation of learning procedures the

loss function should be computationally cheap to evaluate. Furthermore it should

have no or only a small number of discontinuities in the first derivative and it has to

be convex in order to ensure the uniqueness of the solution.

The task of a learning procedure is to minimize the cost function. By using a

loss function as given by Eq. (2.5) the most common cost function to be minimized is

given by

cost(ξ2,U) =
M

∑
m=1

(y− ŷ)2. (2.3)

Linear optimization problems applying a cost function as given in equation (2.3) are

called least squares(LS) problems. If Eq. (2.3) is used for nonlinear problem opti-

mization the problem is called anonlinear least squaresproblem. If furthermore the

loss function is weighted, i.e.

loss(y, ŷ) = w(y− ŷ)2, (2.4)
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the concerning cost function offers the advantage that knowledge about the relevance

and/or confidence of each data sample can be taken into account. Optimization prob-

lems minimized by cost functions using weighted loss functions are calledweighted

least squaresandweighted nonlinear least squaresproblems, respectively.

Note, that a cost function as given in Eq. (2.3) is, because of it quadratic scaling

of errors, very sensitive to outliers. By choosing as loss function the more general

expression

loss(y, ŷ) =|| (y− ŷ) ||p or equivalently ˆloss(ξ) = ξp (2.5)

it is possible to show [133] that the more the exponentp rises the more the cost func-

tion is sensitive to outliers. This is the reason for another very common choice of the

cost function, namely the sum of absolute errors, by choosingp = 1.

2.4.2 Linear Parameter Optimization

A problem whose model output ˆy depends linearly on theN parameterswn (n =
1, . . . ,N) is referred as a linear optimization problem:

ŷ = w0 +x1w1 +x2w2 + · · ·+xnwn = w0 +
N

∑
n=1

xnwn, (2.6)

by, for sake the of simplicity, omitting the indexm and thexn can be (non-linear)

transformed values of the original inputsun. In the following the parameterswn will

be calledweights, the parameterw0 will be calledbias (intercept-termin the statisti-

cal jargon),y will be named desired model output and ˆy will be denoted as computed

model output. The usage of the term ”weights” for this kind of parameters has its

origin in the artifical neural network community. In statistics thewn are calledregres-

sion coefficientsor parameter estimates, thexn are calledregressorsor independent

variableandy is called thedependent variable.
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2.4.2.1 Least Squares

As mentioned above the goal in LS is to minimize the concerning cost function. To

derive an analytical solution we first rewrite the problem

w0 +x1,1w1 + x1,2w2 + · · · + x1,nwn = y1

w0 +x2,1w1 + x2,2w2 + · · · + x2,nwn = y2
...

...
...

...
...

...

w0 +xm,1w1 + xm,2w2 + · · · + xm,nwn = ym

in vector/matrix form

Xw = y, (2.7)

with w = (w0,w2, . . . ,wn)T andy = (y1,y2, . . . ,ym)T. In this caseX is referred as the

regression matrix. If m≥ n the set is calledoverdeterminedbut since the Eq. (2.7)

volitional represents an inadequate model of a real world problem, the existence of

an exact solution is seldom given. In general a vector of residualsr = (r1, r2, . . . , rn)T

with

r = Xw−y,(r 6= 0) (2.8)

will remain. By utilization Eq. (2.3) as cost function we derive

cost(ξ2,X) =
1
2

rTr =
1
2
(Xw−y)T(Xw−y)≡MIN. (2.9)

The norm|| r ||=
√

rTr of the residual vector is calledresiduum. Note that for conve-

nience the cost function ist multiplied by 1/2 in order to get rid of the factor 2 in the

gradient. Considering Eq. (2.9), the gradient of the cost function with respect to the

weight vectorw has to be equal to zero. This leads to

∂cost(ξ2,X)
∂w

= XTr = XT(Xw−y) = 0 (2.10)

or

(XTX)w = (XTy). (2.11)

Equations (2.10/2.11) are called theorthogonal equationsof the linear least squares

problem, since at the optimum the residualsr are orthogonal to all regressorsxn

(columns ofX). The transition from (2.7) to (2.10/2.11) is calledGauss transfor-
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mation, because this proceeding was first described by Gauss in 1795. Note thatXTX

is identical to theHessian matrix

H =
∂2cost(ξ2,X)

∂2(ξ2)
= XTX (2.12)

of the cost function. To compute the weight-vectorw we have to solve

w = (XTX)−1(XTy), (2.13)

which is denoted as theleast squares estimate. The expression(XTX)−1XT is called

thepseudo inverseof the regression matrixX. An important fact is that the accuracy

of a numerical inversion depends on the condition of the Hessian matrix and thus, on

the condition of the regression matrixX. The condition of a matrix can be defined by

the ratio

ρ =
λmax

λmin
. (2.14)

of the largest to the smallest eigenvalue of a matrix. Remember that a matrix is termed

orthogonalif its transpose equals its inverse

XT = X−1 or XTX = XXT = I (2.15)

and that a product of orthogonal matrices is also orthogonal. Thus, if the regres-

sion matrix is orthogonal so is the corresponding Hessian. By considering that the

eigenvaluesλk correspond to the variance ofX projected to thekth axis, an orthogo-

nal Hessian with equal eigenvalues correspond to a contour plot of the cost function

forming perfect circles and an origin identical to the origin of the weight space. The

inversion of the Hessian with a numerical error equal to zero is possible. The more

ρ rises and thus, the contour lines of the cost function becomes more elliptic, the

lower is the numerically accuracy of the inversion. Therefore, a direct matrix inver-

sion, with its bad numerical properties, is seldom performed. For ”big” residuals‖r‖
and ”small” weights‖w‖ often the very fastCholesky decomposition[148] is used to

build the pseudo inverse ofH. More stable approaches areorthogonalization meth-

ods [149] which base on the factorization ofX = QR whereQ is a M×M matrix

andR is a triangular matrix. A famous representative of this class is theHouseholder

transformation[151], which is also used in this thesis.
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2.4.2.2 Regularization

If λmin reaches zero a matrix becomes singular (rank Rk(Xm,n)≤m) and for this rea-

son becomes uninvertible. If this happens with the Hessian matrixXTX, a unique

solution is no longer available, since for a rank deficit of one the solution is a line in

the weight space, for a rank deficit of two the solution is a plane et cetera. A method to

handle this uninvertibility is to applyregularization[152]. Furthermore regularization

is used to improve the results obtained by the above described LS estimates. This im-

provement is caused by the fact that a good regularization leads to more ”circle-like”

contour plots of the (hyper)parabolic cost function, with a minimum closer to the ori-

gin of the weight-space. Due to this fact and foremost to make inversion possible, the

eigenvalues have to be changed. This can be done by adding a certainα to all diagonal

elements of the HessianXTX, leading to

w = (XTX +αI)−1XTy. (2.16)

Performing this regularization causes that zero eigenvalues are set toα and thus, the

condition ρ of the Hessian matrix is no longer infinite. Considering the case of a

”very small” eigenvalueλmin, ρ at least decreases equal to a factor ofα
λmin

. Metaphor-

ically speaking the contour lines of the cost function become more ”circle-like” with

a minimum closer to the origin of the weight-space. This approach is often denoted

asridge regressionin statistics. Unfortunately there is a price which have to be paid.

Firstly, the residual will increase asα increases, because only significant elements

(with respect to their eigenvalue) of the regressors will contribute to calculatew and

secondly, iterative search approaches to find (sub)optimal values forα has to be per-

formed. Ridge regression is alinear regularizationmethod and therefore a special

case of the so calledTikhonov-Phillips regularization, which utilizes an arbitrary ma-

trix L instead of the identity matrixI in Eq. (2.16).

In this thesis regularization only occurs in form of penalizing a fitness value

during an evolutionary search process. Nevertheless, regularization schemes become

very important if human expert knowledge should constrain a model [82]. In this case

regularization restricts the flexibility (by preserving the complexity) of the regularized

model.
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2.4.3 Polynomial Models

Polynomial models can be used to approximate linear and non-linear processes. If

the available information about a process is very sparse and noisy, linear models are

a good choice to describe this process. Alinear modelis a simple model with only

a small number of parameters. Approximating a process of dimensionalityN each

linear model can be written as polynomial

ŷ = w0 +w1u1 +w2u2 . . .wnun (2.17)

or more compact

ŷ =
N

∑
n=0

wnun with u0 = 1, (2.18)

andw0 denoting the offset. Figure2.2(a)shows a one-dimensional linear polynomial

(order = 1), Fig.2.2(b)shows a two-dimensional linear polynomial (order = 1).
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Figure 2.2: A one-dimensional polynomial of order one (a) and a two-dimensional
polynomial of order one (b).

Linear models of higher dimensionality are represented byn-dimensional hyper-

planes, which are graphically not presentable. The implementation of linear models

is easy, the evaluation speed is fast, their sensitivity to noisy data is low, constraints

of the model output can be incorporated by utilizing quadratic programming and prior

knowledge can be utilized by applying regularization. For these reasons linear models
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are the standard models. Many systems can be approximated by linear models and

to avoid breaking a butterfly on a wheel, linear models should be applied first. Not

until the results of a linear system modeling are unusable, more parameters should be

added to the analytical expression to perform a non-linear modeling. In the case of

polynomials, non-linear approximation is done by usingn-dimensional polynomials

of order two or more. Acomplete n-dimensional polynomialof orderk is given by

ŷ = w0 +
N

∑
n=1

wnun +
N

∑
n1=1

N

∑
n2=n1

wn1n2un1n2 + · · ·+
N

∑
n1=1
· · ·

N

∑
nk=nk−1

wn1...nkun1...nk. (2.19)

The offset together with the first sum describes a linear model. Each follow-

ing sum increases the polynomial order by one. Thus, the second sum subsumes

all quadratic terms of the polynomial (likeu2
1,u1u2, . . . ), the third all cubic terms

(like u3
1,u

2
1u2,u2

1u3,u1u2u3, . . . ) and so on. The number of terms of a completen-

dimensional polynomial is equal to

P =
(N+k)!

N!k!
. (2.20)

By using non-linear models it should always be in mind, that the number of model

parameters no longer rise linearly but exponentially. Therefore some complexity con-

sideration as introduced in the following sections should be known.

2.5 Model Complexity and Regularization

Model complexity considerations are independent from specific properties such as

whether models are linear or non-linear. This section explains the bias/variance

dilemma and the therewith aligned termsoverfittingandunderfitting. Based on these

considerations the importance of different datasets for system identification and sys-

tem validation is demonstrated. In this context some possible proceedings are pre-

sented when dealing with very small datasets. Finally some modeling approaches and

templates of system structures are introduced that can help to reduce the complexity

of the modeling problem and the finally identified system structure, respectively.
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2.5.1 Model Complexity and Model Flexibility

In the mid 1960s Kolmogorov defined thealgorithmic complexity[102] of a given

function to be the length of the shortest model that describes the function after a finite

amount of computation. Thus,Kolmogorov complexity[109] is an expression that

can be used as a neutral reference point to measure the complexity of mathematical

models. Because in this thesis only algorithmically describable models are considered,

thecomplexity of a modelis defined as

N = P1 +P2, (2.21)

whereP1 is the total number of operators andP2 is the total number of operands. In the

following complexity and number of parameters are used as synonyms. Furthermore,

the estimation of ”best” values forP1 will be referred to asparameter optimization

and the estimation of ”best” values forP2 will be denoted asstructure optimization.

It is important to notice that each parameter has not necessarily the same impact

on the coverage of possible state spaces of the system. Let us defineflexibility as the

value of the accessible state space of a model by performing parameter variation. If

a model possesses parameters which have no influence on the model flexibility, for

example, when applying regularization, the remaining parameters which affects the

flexibility are referred to aseffective parameters. Thus, the parametersP1 of a model

determine the search space for parameter optimization and the effective parameters

determine the accessible state space of a model. Logically, complexity and flexibility

should not be used as synonyms, because a more complex model is not necessarily as

flexible as a model with fewer parameters (see section2.5.5).
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2.5.2 Bias Error and Variance Error

Each model error can be decomposed in two different parts, namely thebiaserror and

thevarianceerror. Assuming Eq. (2.5) as loss function we can write

E(·) = E
(
(y− ŷ)2)

= E
(
(ỹ+n− ŷ)2)

= E
(
(ỹ− ŷ)2)+E(n2), (2.22)

with y : measurable process output,

ỹ : noisefree process output,

ŷ : model output,

n : noise.

Obviously Eq. (2.22) splits the measured process output into the unmeasurable true

process output and the noise variance. The loss function is minimal if the model

describes the true process perfectly (i.e. ˆy= y). Thus, the loss function value becomes

equal to the noise variance. Because the model does not influence the noise variance,

only the decomposition of the model errory - ŷ is considered in the following.

E
(
(y− ŷ)2)= E

(
(y−E(ŷ)− (ŷ−E(ŷ)))2)

= E
(
(y−E(ŷ))2

)
+E

(
(ŷ−E(ŷ))2)

= (y−E(ŷ))2 +E
(
(ŷ−E(ŷ))2) (2.23)

(model error)2 = (bias error)2 +variance error

If the chosen model structure is flexible enough, the parameters of the model can be

set to optimal values and the bias error will be zero. This is, for example, the case

for linear models of ordern (i.e. with 2·n parameters) which are used to model lin-

ear processes of less or equal orderm≤ n. On the other hand, ifm > n the model

structure is not flexible enough to model the process exactly and the error due to

this process/model mismatch is called bias error. To come out with a zero bias er-
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ror by modeling arbitrary4 nonlinear processes, so calleduniversal approximatorsare

needed. For this kind of approximator models (e.g. polynomial, artifical neural net-

works, fuzzy systems, etc.) a zero bias error can always be achieved by increasing the

complexity of the approximator structure.

2.5.3 Bias/Variance Tradeoff

Obviously a too simple model has a high bias error, since it can not predict the noise-

free system states, but a low variance error. On the other hand a too complex model

has a low bias, but a high variance error. A too simple model can be improved by

adding parameters because, the increase in the variance error is overcompensated by a

decrease in the bias error. On the other hand, a too flexible model can be improved by

discarding parameters because, the increase in the bias error is overcompensated by a

decrease of the variance error. Thus, the optimal model, on the basis of certain data,
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Figure 2.3: Bias/variance tradeoff. The optimal model flexibility is determined by the
model error which can be decomposed into a bias and a variance part.

is a model somewhere between and the contradictory behavior of bias and variance

error is referred as bias/variance tradeoff orbias/variance dilemma. Figure2.3 illus-

trates the effect of different bias and variance errors on the model error. Unfortunately

4Not total arbitrary because only smooth processes are considered.
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bias and variance errors are unknown in practice. Thus, one of the two possible tech-

niques, as described in section2.5.4and section2.5.5, has to be applied to identify a

(sub)optimal model flexibility.

2.5.4 Implicit Structure Optimization

Implicit structure optimizationalso referred asregularizationis often used if the es-

timation of the model error is computationally expensive. Regularization techniques

decrease themodel flexibilityby retaining the complexity of the model. Logically,

regularization is only applicable to already overly flexible models. Because of this

restriction implicit structure optimization is used in this thesis only for fitness penal-

ization and not in the classical context. The interested reader is referred to [134] which

provides a good overview to regularization techniques.

2.5.5 Explicit Structure Optimization

Explicit structure optimizationis mostly used if the estimation of the model error is

computationally cheap, because then it becomes possible to evaluate several models

with different number of parameters. These models are compared by their resulting

errors computed on the test dataset. Explicit structure optimization can be divided into

the following four categories:

Forward selectionis a strategy which starts with a very simple or empty model and

gradually increases the flexibility of this model by adding either new parame-

ters or whole substructures. At each iteration step, a number of possible ways

in which the model can be made more flexible is identified and the accord-

ing model errors are computed. The optimal refinement step is selected and

included in the current model. This is done until the models performance is

acceptable or become worse. The advantage of using forward selection is that

unnecessarily complex models do not have to be computed. Representatives of

model classes which are optimized by the usage of forward selection are:

• Linear parameterized models which can utilize orthogonal least squares

[22,23] algorithms.
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• The projection pursuit [55] algorithm which build up multilayer perceptron

neural networks with individually activation functions by using a staggered

optimization process to adapt the weights.

• The classical artificial neural networks, which than often refer to the term

growing networkslike Marchand’s algorithm [117], tiling algorithm [130],

upstart algorithm [54], cascade-correlation algorithm [51] or the scheme of

simple expanding recurrent neural networks [24].

• Tree based approaches [56, 153, 163] like the local linear model tree

(LOLIMOT) [ 131,132] which iteratively partitions the input space.

• The adaptive spline modeling(ASMOD) [97] algorithm which assumes

that the desired system behavior can be additively decomposed, such that

it can be successfully modeled from a linear combination of severaln-

dimensional sub-models.

Backward eliminationstarts with a very complex model and iteratively deletes pa-

rameters or substructures. Representatives of model classes which are optimized

by the usage of backward elimination are:

• Linear parameterized models which can use an orthogonal least squares.

• The classical artificial neural networks, which than often refer to the term

pruning. A survey can be found in [155].

Stepwise selectionis a mixture of forward selection and backward elimination. In

general all forward selection methods can be extended by backward elimination,

which is normally performed in order to discover and discard redundant param-

eters or substructures. If forward selection and backward elimination is both

considered in each iteration, this is referred as stepwise selection with the clas-

sification and regression tree [15] (CART) and multivariate adaptive regression

splines [56] (MARS) as typical representatives.

Evolutionary based structure optimizationis a general method to identify optimal

bias/variance error balanced models. Obviously the comparison of all models

with different flexibility would lead to the optimal model. Unfortunately this

approach becomes even for small problems infeasible, since the search space

is enormous. A possible way to handle these enormous search space is to use
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evolutionary computation (EC), which have been theoretically and empirically

proven to provide the means for efficient search, even in complex spaces [61].

Thus, EC has become a common and general method for structure optimization.

This approach was also chosen in this thesis and will be discussed in greater

detail in chapter5.

2.6 Model Generalization Estimation

The generalization error is the model error emerged from unseen data. In this thesis

generalization estimations are persistently used to select an optimal model (regarding

to a given cost function) out of a set of models. Normally generalization estimations

are tackled by statistical methods, which give assumptions how statistics asymptot-

ically distribute by increasing average sample size. But if some of the premises, as

for example the assumption of normal distribution of certain variables, are violated

or if only very few data samples are available, the asymptotical behavior can not be

guaranteed and the consequences are disputable. To avoid this kind of problems this

section focuses only on methods which can approximate the distribution of parameters

without any strong assumptions.

As mentioned above many problems do not provide enough data to calculate a re-

liable generalization error of a final chosen model. Thus, model selection algorithms

have to use error estimations or other model dependent information criteria. Sec-

tion 2.6.2gives an insight to generalization estimation techniques which can be used

if the available dataset is sufficient. In Sec.2.6.3generalization estimation techniques

on small datasets will be discussed and Sec.2.6.4gives a short outline of alternative

usable information about the model.

2.6.1 Good and Best Feature-Subset

After choosing a final model, the parameter optimization of this model is always per-

formed by using the whole dataset withM samples. In the following we will refer to

Mtrain = M− j ( j �M is the fold size of the cross-validation) as the dataset used for

each validation, to agood feature-subsetas a subset which contains all relevant inputs

of the matrixU and to the uniquebest feature-subsetthat contains all relevant inputs

but no others.
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2.6.2 Training-, Validation- and Test-Dataset

Considering a three times representative dataset, this means each input space region

is covered at least three times by very similar data, a common approach is to divide

the dataset in training, validation and test data. Thetraining datasetis used to opti-

mize the parameters of a chosen model. The parameter optimized model is validated

by computing its error on thevalidation dataset. Thus, if model selection should be

performed, the validation dataset is used to choose a model from a set of available

models and consequently the validation dataset is responsible for structure optimiza-

tion in the model identification process. Finally, after structure and parameter opti-

mization, the identified model is tested with unseen data, the so calledtest dataset.

This whole procedure of optimizing and evaluating the generalization error is referred

to assplit sampling. Unfortunately split sampling is only applicable for at least three

times representative data, which is for most real world problems not available. If this

constraint can not be fulfilled, the need for computationally more expensive validation

approaches arise [65].

2.6.3 Cross-Validation

In j-fold cross-validation(sometimes calledrotation estimation), the data is randomly

divided into j disjoint subsets of (approximately) equal size. The model is trained

j times, each time leaving out one of the subsets from training, but using only the

omitted subset withk members to compute the chosen error criterion. The mean of

the evaluatedj model errors is the overallj-fold cross validated model error (Ecv).

A first formal description ofj-fold cross-validation was given by [172] in 1974. If j

equals the total available sample sizeM, this is calledleave-one-out cross-validation.

The leave-one-out approach is the computationally cheapest representative in the class

of complete cross-validationtechniques. All members of complete cross-validation

techniques use as accuracy measure the average of all
( M

M/ j

)
possibilities for choosing

M/ j instances out ofM. Thus, repeatingj-fold cross-validation multiple times using

different splits provides a better Monte-Carlo estimate to the concerningleave-j-out

model error.
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2.6.3.1 Cross-Validation with Discontinuous Loss Functions

For model error estimation of continuous cost functions the use of leave-one-out cross-

validation often works well, but if the cost function is discontinuous, for example in

the case of binary classification, leave-one-out cross-validation may perform poorly

and j-fold cross-validation should be preferred. A common choice isj = 10, because

if j gets too small, the error estimate becomes pessimistically biased because of the

difference in the dataset size between the full-sample analysis and the cross-validation

analyses.

2.6.3.2 Cross-Validation vs. Complete Cross-Validation

Foremost it is notable that leave-one-out cross-validation for model selection is often

a bad choice, because many problems possess the property that small changes in the

data causes large changes in the model selected [17]. Considering the selection of

feature-subsets in linear regression, 5-fold and 10-fold cross-validation works better

than leave-one-out [16]. Even values ofj in the range ofj = 2 to j = 4 may work better

if the j-fold cross-validation is done repeatedly to refine the model error estimate

towards the concerning leave-j-out cross-validation.

2.6.3.3 Equivalence of Leave-j-Out to Information Criteria

It was shown that leave-one-out cross-validation using deviance as loss function is

asymptotically equivalent toAkaike’s information criterion(AIC) [173] (for informa-

tion criteria see also Sec.2.6.4), but leave-j-out (j > 1) cross-validation is asymptoti-

cally equivalent to theBayesian information criterion(BIC) if the following condition

holds [166]:

j = M
1

(logM−1)
. (2.24)

BIC will choose thebest feature-subsetwith probability limM→∞ P = 1, whereas AIC

will choose only agood feature-subsetwith an asymptotic probability of one [175].

Furthermore other studies [78,166] have found that AIC overfits badly in small sam-

ples where BIC works well.



32 Chapter 2. System Identification

2.6.3.4 Feature-Subset Selection

A notable observation is that for selecting feature-subsets by leave-j-out ( j > 1) in a

linear regression the probability of selecting the best feature-subset is limM→∞ P 6= 1,

unless j
M = 1 [165]. To give a better understanding of this statement, recall that by

omitting the noise variance the model error consist of a variance error and the squared

bias error as given in Eq. (2.23). By assuming a linear function to be learned, the bias

for ”good” feature-subsets is zero, thus, the generalization error of good subsets in

linear problems will differ only in the variance error

E
(
(ŷ−E(ŷ))2)=

2p
Mtrain

, (2.25)

with p as the number of inputs in the feature-subsets. By definition the ”best” feature-

subset has the smallest value ofp. If M tends to infinity the differences in the model

error among the models with a good feature-subset will all go to zero. Therefore it

is difficult to guess which subset is best based on the model error, even ifM is very

large. It is well known that unbiased estimates of the model error, such as those based

on AIC (see2.6.4), do not produce consistent estimates of the best subset [175]. In

leave-j-out cross-validationMtrain is equal toM− j and thus, the differences of the

cross-validation estimates of the model error among the good feature-subsets contain

a factor 1
Mtrain

. By makingMtrain small enough (and thereby making each regression

based onMtrain cases bad enough), we can make the differences of the cross-validation

estimates large enough to detect. It turns out that to makeMtrain small enough to guess

the best subset consistently, we have to have limM→∞
Mtrain

M = 0. The crucial distinction

between cross-validation and split-sample validation is that with cross-validation, after

guessing the best subset, the training of the linear regression model for that subset

is done by using allM cases. In split-sample validation onlyMtrain cases are ever

used for training. If the main purpose is really to choose the best subset, it can be

suspected to haveMtrain
M go to zero even for split-sample validation. But choosing the

best subset is not the same thing as getting the best model error. If the interest is more

to achieve a good generalization than in choosing the best subset, it is not favorable to

base the regression estimate in cross-vaidation on onlyMtrain cases, because in split-

sample validation that bad regression estimate is what we are stuck with. Thus, there

is a conflict between the two goals of choosing the best subset and getting the best

generalization in split-sample validation.
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2.6.3.5 Bootstrapping

Bootstrapping (sometimes referred asbagging) was proposed by [47,48] and a good

introduction can be found in [129]. The bootstrap method uses the original dataset

Dorg, consisting ofM data-pairs(xm,ym), to generate any number of synthetic datasets

Dsyn
1 ,Dsyn

2 , . . . , also withM samples. The differences to the original dataset is, that

the synthetic datasets can have multiple instances of one data-pair, because the data-

pairs are drawn with replacement fromDorg. Typically each synthetic datasets has

a random fraction of∼ 1/e≈ 37% duplicated instances. The synthetic datasets are

now used for parameter optimization, yielding in a set of simulated measured weight

vectorswsyn
1 ,wsyn

2 , . . . , which will be distributed aroundworg. The weight-vectorworg

again is considered to be distributed aroundwtrue. For a large class of problems the

bootstrap method does yield easy and very quick Monte Carlo estimates of the real

generalization error. Good results were achieved in the field of artificial neural net-

works [120, 181]. In contrast, bootstrapping seems to perform bad on empirical de-

cision trees [101]. Always have in mind that bootstrapping supposes that the dataset

Dorg consist ofM independent and identically distributed data points. Thus, in inde-

pendent and identically distributed data the sequential order of data points is not of

consequence to the process that is used to computew.

2.6.4 Information Criteria

A possibility to avoid computational cost during validation is the usage ofinforma-

tion criteria (IC) instead of error estimates based on the repetitive model parameter

recalculation on subsets of the available data. All information criteria are of the form

information criteria = measure of fit + complexity penalty (2.26)

and the best model is defined as the model with the lowest information criterion. Thus,

parameter optimization is still done by minimizing a cost functioncost(·), but model

selection is performed by comparing the information criteria of the different models.

A demand on allcomplexity penaltiesis that they should increase with the number

of model parametersN and should decrease while the number of dataM increases.

Furthermore, in the limitM→ ∞ the complexity penalty should tend to zero because

the variance error also tends to zero. Two common information criteria are:
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• Akaike’s information criterion(AIC)5 :

AIC(ρ) = M ln(cost(·))+ρN (with ρ = 2 as the most common choice).

• Bayesian information criterion(BIC) :

BIC = M ln(cost(·))+ ln(M)N.

In the case of applying a regularization method to a model and model selection is done

by IC, remember (see Sec.2.5.1) that the effective number of parametersNeff of the

model decrease andN has to be replaced byNeff.

2.7 Summary

This chapter introduced the basic concepts which are necessary to understand the

problems related with system identification. After a brief description of different

model types a list of possible application areas was given. A more detailed view

to system identification was emerged by describing the tasks to be performed for ev-

ery system identification process. The possibilities to optimize parameters in a fixed

model structure were discussed and several approaches to achieve a model structure

were presented. The least squares parameter optimization method was mathematically

inspected and will later be used to optimize the parameters of Takagi-Sugeno fuzzy

models. The important subject of model complexity respectively flexibility and the

strongly related subject of model generalization estimation were discussed in greater

detail to provide the necessary background to model validation schemes.

5In fact AIC is the acronym for ”An Information Criterion” as originally suggested from Akaike.
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Takagi-Sugeno Fuzzy Models

3.1 Fuzzy Logic and Fuzzy Models

Fuzzy logicis an extension to the classical two-valued logic by concepts of fuzzy

set theory, introduced by Zadeh in 1965 [194]. A fuzzy model(FM) makes use of

fuzzy logic concepts to represent a knowledge-base and/or to model interactions and

relations of system variables. The application of fuzzy logic to rule-based models

leads to the class of fuzzy rule based models which consider ”if-then” rules whose

antecedents and, model dependent, consequents are composed of fuzzy statements. In

the following, unless otherwise stated, the term fuzzy model is used in the meaning

of fuzzy rule based model. Knowledge in FMs is represented bylinguistic variables

with an associated set oflinguistic values. Linguistic values are defined by fuzzy

sets, where afuzzy set Ain U is a setA = {u,µA(u)|u ∈U} of ordered pairs which

are defined by amembership function(MF) µA(u) ∈ [0,1] and alinguistic termfor

labeling.

Lin and Lee [111] excellently remarked that: ”One of the biggest differences

between crisp and fuzzy sets is that the former always have unique MFs, whereas

every fuzzy set has an infinite number of MFs that may represent it”. In a broad sense

any field can be fuzzified and hence generalized by replacing the concept of a crisp

set in the target field by the concept of a fuzzy set. Examples for basic fields which

can be fuzzified are graph theory, arithmetic or probability theory resulting in fuzzy

graph theory, fuzzy arithmetic and fuzzy probability theory. Examples for applied

fields are stability theory, neural networks or mathematical programming resulting in

fuzzy stability theory, fuzzy neural networks and fuzzy mathematical programming.

35
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Figure 3.1: A linguistic variable named temperature with assigned fuzzy sets.

Fuzziness should not be confused with probability since it deals with determinis-

tic plausibility, while probability concerns the likelihood of nondeterministic, stochas-

tic events. Fuzziness and randomness differ in nature because they represent different

aspects of uncertainty. The uncertainty of fuzziness is found in the definition of a

concept or the meaning of a term such as ”cold water” or ”old person”, whereas the

uncertainty of probability generally relates to the occurrence of phenomena. From

a modeling point of view fuzzy MFs represent similarities of objects to imprecisely

defined properties, while probabilities give information about relative frequencies.

3.2 Fuzzy Inference Systems

A fuzzy inference systemis a rule-based model that uses fuzzy logic to reason about

data [191]. The relationships between system variables are represented by means of

fuzzy if-then rules of the following form:

IF antecedent propositionTHEN consequent proposition.

The antecedent proposition is always a fuzzy proposition of the type ”un is A” where

un is thenth element of the model input vectoru andA is a fuzzy set. The proposition‘s

truth value depends on the degree of similarity betweenun andA.
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The basic structure of a fuzzy inference system consists of four main components

(see Fig.3.2), namely:

A fuzzifier which maps crisp (real-valued) inputs into fuzzy values.

An inference enginethat applies a fuzzy reasoning mechanism to obtain a fuzzy

output.

A defuzzifier, which maps the fuzzy output into a crisp (real-valued) output.

A knowledge-basewhich contains both a set of fuzzy rules, known as therule-base,

and a set of MFs known as thedatabase.

Fuzzy
Crisp
Input

Fuzzifier

Input Output
FuzzyEngine

Inference Defuzzifier Crisp
Output

Knowledge−Base

Rule−Base

Database

Figure 3.2: Basic structure of a fuzzy inference system.

All fuzzy rule-based models share this general structure. A categorization of FMs into

the three mostly mentioned model classes depends on the form of the consequent of

the fuzzy if-then rules and is given as follows:

In linguistic fuzzy modelsboth, the antecedent and the consequent, are fuzzy propo-

sitions.

Fuzzy relational modelsare generalizations of linguistic models in which the rela-

tion between antecedent and consequent terms is fuzzy.

In Takagi-Sugeno fuzzy modelsthe antecedent is a fuzzy proposition and the con-

sequent is a crisp function.
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More general, the classification of a fuzzy rule-based model is based on different

assignments to logical parameters of the model, where the model parameters can be

classified into four distinct categories [142] (Tab.3.1):

Class Parameters

MF types

Logical Fuzzy operators

Reasoning mechanism

Defuzzification method

Relevant features

Structural Number of MFs

Number of rules

Antecedents of rules

Connective Consequents of rules

Rule weights

Operational MFs values

Table 3.1: Parameter classification of a fuzzy inference system.

The logical parameters are usually predefined by the designer based on available

software tools and/or on the general problem characteristics. This thesis focuses on

Takagi-Sugeno FMs because of the problem characteristics of data-driven modeling.

Thus, the next sections provide a description of the logical parameters chosen to per-

form data-driven system identification, why they were chosen and where these models

are situated in the soft-computing nomenclature.

3.2.1 Membership Function Types

The supportof a MF is the crisp set of all pointsu in U which fulfill µA(u) > 0.

A fuzzy set whose support is a single point inU with µA(u) = 1 is called a fuzzy

singleton. Commonly used MFs are triangular, trapezoidal, bell-shaped and Gaussian
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functions. In this thesis b-splines are used as MFs because they offer some interesting

characteristics.B-splinesare defined over a knot-vectorλ, consisting of at leastk+1

elements, withk denoting the order of the b-splines. Each element of the knot-vector

is called knot and the b-spline values can be recursively [32,29] calculated by

Bk+1
j (u) =

u−λ j

λ j+k−1−λ j
Bk

j(u)+
λ j+k−u

λ j+k−λ j+1
Bk

j+1(u), where

B1
j (u) = 1, if u∈ [λ j ,λ j+1)

= 0,otherwise. (3.1)

Abbreviation: u : input value,

Bk
j(u) : activation value of thej th b-spline

defined over the knotsλ j to j +k.

The concept of a knot-vector and the characteristics of b-splines meets our demands

in four ways.

• It is compatible with the construction demands of so called descriptive FMs.

Each single knot-vector defines a whole set of MFs for one linguistic variable.

These sets of MFs define, together with a labeling, the globally interpretable

fuzzy sets which cover the input space.

• It is easy to achieve a finer grid of linguistic terms on each one-dimensional

projection by simply inserting some knots in the concerning knot-vector.

• B-splines can form extremely different shapes simply by changing their order

or their knot-positions.

• B-splines show some for FMs essential characteristics such as positivity and

local support and furthermore they form a partition of unity (activation of all b-

splines defined by one knot-vector sum up to the same value) which simplifies

the interpretation of a FM and improves its learning capabilities [187].
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Obviously (see Fig.3.3(c)) b-splines of higher order (k > 2) are no longer nor-

malized to one. From a semantic point of view this is no problem. In fact, single

MFs with a maximum activation below one, by simultaneously fulfilling the partition

of unity, normally are better qualified to fit the ideas behind fuzzy reasoning. This

statement will be justified in Sec.3.3.2.
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Figure 3.3: Univariate b-spline functions of different order. The green shaded areas
highlight the domain where the partition of unity is valid.

3.2.2 Fuzzy Operators

As with classic sets we need to define operations on fuzzy sets because we would like

to be able to use compounds of linguistic descriptions (i.e. rules) in a mathematical

way. The intersection and union operations of fuzzy sets, which are often referred to as

t-norms(triangular norms) andt-conorms(triangular conorms), respectively [42,43],

are used to aggregate rule antecedents and to calculate the rule consequents. T-norms

are two-parameter functions of the form

t : [0,1]× [0,1]→ [0,1], (3.2)

such that

µA∩B(u) = t[µA(u),µB(u)], (3.3)
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where the functiont(·, ·) satisfies the following conditions:
Boundary conditions: t(0,0) = 0,

t(µA(u),1) = t(1,µA(u)) = µA(u).
Commutativity: t(µA(u),µB(u)) = t(µB(u),µA(u)).
Monotonicity: If µA(u)≤ µC(u) andµB(u)≤ µD(u)

thent(µA(u),µB(u))≤ t(µC(u),µD(u)).
Associativity: t(µA(u), t(µB(u),µC(u))) = t(t(µA(u),µB(u)),µC(u)).

Typical nonparametric t-norms are:
Intersection: a∧b = min (a,b).
Algebraic product: a·b = ab.

Bounded product: a�b = max (0,a+b−1).

Drastic product: a�̂b =


a, b = 1

b, a = 1

0, a,b < 1.

T-conorms (often referred as s-norms) are two-parameter functions of the form

s : [0,1]× [0,1]→ [0,1], (3.4)

such that

µA∪B(u) = s[µA(u),µB(u)], (3.5)

where the functions(·, ·) satisfies the following conditions:

Boundary conditions: s(1,1) = 1,

s(µA(u),0) = s(0,µA(u)) = µA(u).
Commutativity: s(µA(u),µB(u)) = s(µB(u),µA(u)).
Monotonicity: If µA(u)≤ µC(u) andµB(u)≤ µD(u)

thens(µA(u),µB(u))≤ s(µC(u),µD(u)).
Associativity: s(µA(u), t(µB(u),µC(u))) = s(s(µA(u),µB(u)),µC(u)).

Typical nonparametric t-conorms are:
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Union: a∨b = max(a,b).

Algebraic sum: a+̂b = a+b−ab.

Bounded sum: a⊕b = min(1,a+b).

Drastic sum: a⊕̂b =


a, b = 0

b, a = 0

1, a,b > 0.

There exist several parametric t-norms and t-conorms [111] with the standard min and

max operations as, respectively, the upper bound of t-norms (the weakest intersection)

and the lower bound of t-conorms (the strongest union). The t-norms and t-conorms

can be seen as aggregation operations on fuzzy sets, which combine several fuzzy

sets to produce a single set. A general definition for an aggregation operation was

formulated by [99] in the following way:

h : [0,1]n→ [0,1], n≥ 2, (3.6)

such that

µ̂A(u) = h(µA1(u),µA2(u), . . . ,µAn(u)) ∀u∈U. (3.7)

3.2.3 Reasoning Mechanism

There exist four principal modes of fuzzy reasoning, namelycategorical reasoning,

syllogistic reasoning, dispositional reasoningandqualitative reasoning.Qualitative

reasoning refers to a mode of reasoning in which the antecedents and/or consequents

propositions involve fuzzy or linguistic variables. Because qualitative reasoning plays

a key role in fuzzy logic applications in the realms of control and system analysis [116,

176, 145, 108, 21], this thesis will focus on this mode of reasoning. For information

about the other modes of reasoning the reader is referred to [112,195].

3.2.4 Defuzzification Method

If the used consequents propositions involve fuzzy or linguistic variables, the model

output has to be defuzzified in order to obtain one crisp output value. Obviously this

is not necessary if the model output is presented to another fuzzy model or directly

to a human. By using Takagi-Sugeno FMs the defuzzification step is omitted, since
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the consequents propositions of rules in Takagi-Sugeno FMs does not contain fuzzy

or linguistic variables.

3.2.5 The Output Evaluation of a Takagi-Sugeno Fuzzy Model

To consolidate the above discussed concepts the principle procedure to evaluate the

output of a Takagi-Sugeno FM is described. Because in Takagi-Sugeno FMs thede-

fuzzification stepis omitted1 the following steps must be carried out:

Fuzzification→ Aggregation→ Activation→ Accumulation

Thefuzzification stepuses the MFs to map crisp model inputs to the degrees of mem-

bership. These degrees of membership will be denoted asµAin
n

r (un), with r = rule index

(r ∈ 1, . . . ,R, whereatR represents the number of rules in the rule-base),Ain
n denoting

theith fuzzy set of inputn (n∈ 1, . . . ,N, whereatN is the number of model inputs) and

un is thenth element of the model input vectoru.

Theaggregation stepcombines the individual linguistic statements with the help

of a fuzzy operation (see Sec.3.2.2) to the degree of rule fulfillment. When the fuzzy

model is in conjunctive form and the product operator is used as t-norm the degree of

fulfillment of rule r is:

µr(u) = µ
A

i1
1

r (u1) ·µ
A

i2
2

r (u2) · . . . ·µ
A

iN
N

r (uN). (3.8)

Figure 3.4 illustrates two bivariate MFs, constructed by multiplying two univariate

b-splines. In the artificial neural network community the support of the resultingn-

variate function is often denoted asreceptive field.

Theactivation stepis used to calculate the output activations of the rules. Lin-

guistic fuzzy models, for example, often uses themin-operation to cut the output MFs

at the smallest degree of rule fulfillment. In the case of Takagi-Sugeno FMs the activa-

tion step comprises the task of calculating a function whose output is taken as degree

of rule fulfillment.

The accumulation stepis used to join all rule activation values together. In the

case of linguistic FMs the accumulation step yield in a fuzzy set, by applying, for

1To be consistently with Fig.3.2the defuzzification step in Takagi-Sugeno FMs can also be seen as
a function which maps each value to itself.
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(a) Aligned bivariate b-spline.
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(b) Displaced bivariate b-spline.

Figure 3.4: Bivariate b-splines formed by univariate b-splines. The aligned bi-
variate b-spline (a) is formed by two univariate b-splines of order three with knot-
vectorsλ1 = λ2 = (0,0.3,0.6,1). The displaced bivariate b-spline (b) is formed
by two univariate b-splines of order three with knot-vectorsλ1 = (0,0.3,0.6,1) and
λ2 = (0,0.1,0.1001,1).

example, themax-operation. In the case of Takagi-Sugeno FMs the accumulation step

yields in the final model output, which is normally calculated as a weighted average

of all rule activations.

3.3 Interpretability Conditions of Fuzzy Models

Each fuzzy-modeling process has to deal with an important trade-off between inter-

pretability and accuracy of the model. By fulfilling all criteria which support a good

interpretability the FM is heavily restricted and logically the accuracy is inferior as

a FM disregarding all interpretability consideration. In fact the author has the opin-

ion that many kernel based models2 which are termed as ”(interpretable) FMs” are de

facto not interpretable. This is caused by the fact that many authors disregard the se-

mantic consistency of the resulting model. The most basic assumption is that a fuzzy

2Nearly all kernel based methods can be seen as FMs. For example local linear models or radial
basis function networks were shown to be equivalent to zero order TSFMs [93,132,113]. Also support
vector machines or wavelet networks are strongly related to fuzzy models because the used kernels can
be interpreted as fuzzy sets, drawing the kernel based method into a fuzzy framework.
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set has to be convex. Convexity of fuzzy sets can be defined in terms of itsα-cuts,

where anα-cut of a fuzzy setA is a crisp setAα that contains all the elements of the

universal setU that have a membership grade inA greater than or equal toα. A fuzzy

set is convex (see also Fig.3.5(a)) if and only if each of itsα-cuts is a convex set. Or,

equivalently, a fuzzy setA is convex if and only if

µA(λu1 +(1−λ)u2)≥min(µa(u1),µA(u2)), (3.9)

with u1,u2 ∈U,λ ∈ [0,1].

Note that this definition of convex fuzzy sets does not imply that the membership

function of a convex fuzzy set is a convex function.

1.0

0.0

(a) Convex fuzzy set

0.0

1.0

(b) Non-convex fuzzy set.

Figure 3.5: Convex and non-convex fuzzy set.

Kernel based approaches which do not fulfill the convexity condition (see

Fig.3.5(b)) can, by definition, not be termed as FMs. For an extensive and more math-

ematically based inspection of fuzzy set semantics the interested reader is referred

to [107]. Some remarks about convexity and complementary or non-complementary

MFs with respect to the output of FMs can be found in [66].

Other conditions are not so fundamental and kernel based approaches violating

these conditions can, by definition, be denoted as FMs. Besides the indispensable

convexity of fuzzy sets, the interpretability of FMs depends on the fulfillment of other

conditions.
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3.3.1 Fuzzy Set Configurations Causing Semantic Inconsistency

To clarify the term sematic inconsistency some undesirable fuzzy set configurations

are shown. The following figures show a linguistic variable called ”annual salary”

covered by two fuzzy sets which are labeledPOORandWEALTHY .

annual salaryannual salary

1.0

0.00.0

1.0

POOR WEALTHY POOR WEALTHY

Figure 3.6: Fulfilling the ordinal condition of fuzzy sets.

Figure3.6 illustrates the ordinal condition. The left hand side fuzzy set distribu-

tion has as semantic consequence that a person could beWEALTHY to a certain degree,

but the same person is simultaneously not evenPOOR. Obviously a proper semantic

interpretability is not given. The right hand side of Fig.3.6 illustrates the corrected

version of the left hand side, now fulfilling the ordinal condition.

Figure3.7illustrates the leveling condition (i.e. the special case of normalization

to one). The left hand side of Fig.3.7 exhibits different degrees of maximal fulfill-

ments for two fuzzy sets covering the same linguistic variable (i.e. annual salary). The

semantical consequence is that aPOORperson is never asPOORas aWEALTHY person

is WEALTHY . Applying double standards is in general not desirable. Again, the right

hand side of Fig.3.7provides, with respect to the leveling condition, a correct version

of the left hand side.

POOR WEALTHY

annual salary

1.0

0.0annual salary

1.0

0.0

POOR WEALTHY

Figure 3.7: Fulfilling the leveling (i.e. normalization to one) condition of fuzzy sets.

Figure3.8illustrates thecomplementarity condition. A person classified as 100%

POOR (kernel activation equals one) can not be partlyWEALTHY or vice versa. It is
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always desirable that the activations of all inputs sum up to an equal value. This

property is denoted aspartition of unityor as complementarity condition.

1.0

0.0

POOR WEALTHY

annual salary

POOR WEALTHY

annual salary

1.0

0.0

Figure 3.8: Fulfilling the complementarity condition of fuzzy sets.

Figure3.9 again illustrates the complementarity condition. The attentive reader

will have realized that the fuzzy sets (see right hand side of Fig.3.8) does not ev-

erywhere fulfill the complementarity condition. In fact the right hand side of Fig.3.9

illustrates the one and only possible fuzzy set distribution for two triangular (not trape-

zoidal) fuzzy sets fulfilling all interpretability conditions for a semantically correct in-

terpretation. Corresponding to the above examples b-splines of order two would yield

in semantically correct MFs.

1.0

0.0

POOR

annual salary

WEALTHY

1.0

0.0

POOR WEALTHY

annual salary

Figure 3.9: Fulfilling the complementarity condition of fuzzy sets part two.

3.3.2 Interpretability Factors

Beside these sematic conditions there exist other factors which influence the inter-

pretability of a fuzzy model. Unfortunately an objective and commonly used measure

for model interpretability is still not available. Thus, reasonable accuracy comparisons

of FMs are restricted to models using the same model structure. The interpretability

factors can be classified into two different classes. The first category is concerned with

the fuzzy set distribution of a FM as exemplarily shown in Sec.3.3.1and the second

category is concerned to the rule-structure of a FM.



48 Chapter 3. Takagi-Sugeno Fuzzy Models

The fuzzy set distribution, sometimes denoted assemantic criteria, is very im-

portant, since every fuzzy set should represent a linguistic term with a clear semantic

meaning. The focus of fuzzy set distribution should lie on the meaning of the en-

semble of labels instead of the absolute meaning of each term in isolation. Thus, the

following criteria should be fulfilled by a fuzzy set distribution to facilitate the task of

assigning linguistic terms as good as possible.

Complementarity: For each input element of the universe of discourse, all member-

ship values of the fuzzy sets should sum up to one. This characteristic is known

as forming apartition of unityand guarantees a uniform distribution of meaning

among the elements. Furthermore a fuzzy set distribution forming a partition of

unity improves the learning capabilities [187,66] of a FM.

Leveling: The leveling condition is a generalized form of the most of the time un-

necessary strict, but commonly known, normalization (to one) condition, which

claims that at least one input element of the universe of discourse should activate

the membership value equal to one. A normalization to one has as consequence

that there exist an absolute truth, e.g. an age were you are only old, a state were

a liquid is only hot and so on. This is often contradictory to the reasons why

fuzzy concepts were introduced. The more general leveling condition fits better

in a fuzzy framework because it claims only an equalized maximum activation

level of all fuzzy sets of the same linguistic variable. For the sake of simplic-

ity Fig.3.6-Fig. 3.9 only made use of normalized triangular MFS. However, by

using b-splines of higher order (k > 2) the leveling condition could be imple-

mented. In the case of b-splines, which are defined over uniformly distributed

knots, the leveling condition implicitly holds (Fig.3.3(c)).

Human manageable number of elements: Since a human being can handle only

a certain number of conceptual entities(≈ 7±2), the number of MFs covering

one input should not exceed this quantity.

Distinguishability : Each linguistic label should have semantic meaning and the

fuzzy set should clearly define a range in the universe of discourse of the in-

put variable.

Beside the fuzzy set distribution the rule structure has to be taken into account

to define an overall interpretability measure. As discussed in section3.2.2a fuzzy
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rule relates one or more input-variable conditions via a t-norm, called antecedents, to

a corresponding output conclusion, called consequent. The interpretability of a FM

is influenced by the structure of each rule and by the whole set of rules. These rule-

structure criteria, also calledsyntactic criteria, for interpretability are given by the

following conditions.

Completeness: A fuzzy rule based model should infer for each conceivable model

input a corresponding output. In addition to this, some authors claim [9, 37]

that the fuzzy set obtained by combining all the individual rule outputs, has to

be non empty. This requirement is unnecessary strict, since the main objective

of the completeness condition is to assure that the model output is always well

defined. In the following this objective will be fulfilled by simply introducing a

default model output of zero. This results in an always well defined and smooth3

output behavior of the model.

Consistency: The consequents of two or more simultaneously firing rules with the

same antecedents should not be contradictory but semantically close.

Readability: The number of conditions (premises) of each rule should not exceed

the human manageable number of conceptual entities(≈ 7±2).

Simplicity : In general it is desirable to model a system by an FM with only a few

rules, but the overall number of rules has no direct influence on the interpretabil-

ity properties of a FM. Note that there exist very complex real world sequences

which can be described by highly specialized human experts. If this descrip-

tion would be mapped into a mathematical model, the number of rules would

be enormous, but the interpretability would still be given. The simplicity con-

dition should be seen as the demand that as few as possible rules are activated

simultaneously in order to enable a local view of the behavior.

3.3.3 An Exemplary Interpretability Measure

With an objective interpretability measure (IM) it becomes possible to compare the

accuracy of FMs using different structural assumptions. All the above mentioned in-

3The output will be denoted as smooth if all rules use convex and non-crisp fuzzy sets. For example
the usage of b-splines (no coincident knots) of order three or higher as fuzzy sets always produce a
smooth model output without discontinuities.
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terpretability conditions can be subsumed in only five objective interpretability factors

(IF). These five IFs, each with values in the range [0,1], can than be joined by a prod-

uct operation to form an objective IM, which again is always in the range from zero

(no interpretability) to one (best interpretability):

IM =
5

∏
i=1

IFi (3.10)

with interpretability factorIF1 concerning the number of used premises:

IF1 =
R

∑R
r=1(2−max(3,NoPr))2

(3.11)

R : number of rules,

NoPr : number of premises of ruler.

The numbers two and three in Eq. (3.11) are used to control the maximum number of

used premises in one rule. In this case one up to three premises lead to an interpretabil-

ity factor of one (full interpretable). By using more premises the interpretability de-

creases quadratically. The chosen numbers and the quadratic factor reflect the obser-

vation that human beings can hardly understand rules with more than three premises.

Interpretability factorIF2 concerns the number of fuzzy sets covering the inputs:

IF2 =
N

∑N
n=1(6−max(7,NoFSn))2

(3.12)

N : number of model inputs,

NoFSn : number of fuzzy sets covering inputn.

Here the numbers six and seven reflect the observation that human beings can hardly

manage more than seven(≈ 7± 2) conceptual entities. Again, if more conceptual

entities (fuzzy sets) are used, the interpretability factor decreases quadratically.
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Interpretability factorIF3 concerns the number of simultaneously activated rules:

IF3 =
M

∑M
m=1(3−max(4,NoARm))2

(3.13)

M : number of data patterns,

NoARm : number of activated rules.

In Eq. (3.13) the numbers three and four are chosen due to a compromise concerning

the values used in Eq. (3.11) and the fact that already a problem with two inputs, each

input covered by fuzzy sets of order two, leads to four simultaneously activated rules

(in the case of a complete rule-base using no ”dont’t care” rules). Again, a quadratic

decrease in interpretability is implemented by the quadratic term, which should reflect

the capabilities of human beings.

Interpretability factorIF4 concerns the different levels of the maximum activa-

tions of the fuzzy sets covering the same input:

IF4 =
N

∑N
n=1(1−

√
MaxDiVn)

(3.14)

N : number of model inputs,

MaxDiVn : maximal difference in activation values

of fuzzy sets covering inputn.

Obviously the square root operation in Eq. (3.15) should penalize ”higher” differences

in the maximum activation of fuzzy sets more than ”lower” differences.

Interpretability factorIF5 concerns the violation of the complementarity condi-
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tion of fuzzy sets:

IF5 =
N

∑N
n=1PVn

(3.15)

N : number of model inputs,

PVn =


(umax

n −umin
n )

∑kn
j=1

R
FuzzySetj

if ∑kn
j=1

R
FuzzySetj ≥ 1.0,

1+(1− (umax
n −umin

n )
∑kn

j=1
R

FuzzySetj
) otherwise

kn : number of fuzzy sets covering inputn.

At bestIF5 has never to be calculated because the used fuzzy sets inherently supports

the fulfillment of the complementarity condition (as it is the case by using b-splines

as fuzzy sets). If for some reasons the integration is not possible, a ”big” number of

uniformly distributed input patterns can be used to approximateIF5.

3.3.4 Avoiding the Curse of Dimensionality

By using the local support areas of the fuzzy sets covering the inputs, it is possible

to construct ann-dimensional lattice (n = number of model inputs). A rule-base in

which each grid is considered by one rule4 is denoted as afully defined rule-base.

Obviously the number of rules in a fully defined rule-base increases exponentially

with the number of used inputs and thus the resulting models become infeasible for

high-dimensional systems. Moreover, by considering a fully defined rule-base the

number of premises for each rule is equal to the number of inputs, which violates

for high-dimensional problems the above mentioned readability condition. To tackle

these two problems, by preserving the interpretability, some authors use ”don’t care”

as a valid input label [92,115]. Variables in a given rule that are labeled with ”don’t

care” are considered as irrelevant and thus, a rule like

IF eye-colorIS ”don’t care” AND hobbyIS dangerousTHEN injury risk IS high

is equivalent to the rule

4This means that each grid is covered by onen-dimensional function build byn one-dimensional
MFs (e.g. b-splines).
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IF hobbyIS dangerousTHEN injury risk IS high.

Another possible way to bypass the curse of dimensionality and to ensure inter-

pretability is to use default rules with a firing strength inverse proportional to the

firing strength of all other rules.

In the following, models with so calledpartly defined rule-baseswill be used.

Rules of a partly defined rule-base do not necessarily cover all input regions and fur-

thermore they make use of ”don’t care” premises. By using a default model output of

zero to assure an always well defined model output behavior (see completeness con-

dition in Sec.3.3.2) the resulting models are applicable to high-dimensional problems

without loosing their interpretability.

3.4 Takagi-Sugeno Fuzzy Models

Takagi and Sugeno proposed in 1985 a FM with a rule-base comprisingR rules of the

form:

Ruler : IF u1IS Ai1
1 AND · · ·AND uN IS AiN

N THEN ŷr = fr(u), (3.16)

with An : fuzzy set of thenth linguistic variable,

in : fuzzy set number of thenth linguistic variable,

N : length of input vectoru,

ŷr : output of ruler.

Since the functionsfr(·) are not fuzzy sets, in most cases Takagi-Sugeno fuzzy mod-

els (TSFM) are hard to interpret. Note, that there are two exemptions to this general

statement. The first exemption is that TSFMs possess excellent interpretation for dy-

namic processes [137]. The second exemption can be established by choosingfr(·) to

be a real valuesr . The valuesr is denoted assingletonof rule r and is a special case

of a fuzzy set. Thus, the interpretability of a singleton TSFMs is maintained. TSFMs

utilizing constant functions (singleton FMs) as rule-consequents are also denoted as

zeroth order TSFMs, TSFM with linear functions as rule-consequents are calledfirst

order TSFMs,etc.
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However, each rule output is a function of the input vector and the overall model

outputŷ of a Takagi-Sugeno fuzzy model (TSFM) is mostly calculated as a weighted

sum of all rule outputs ˆyr :

ŷ = ∑R
r=1 fr(u)µr(u)
∑R

r=1µr(u)
, (3.17)

with R : total number of rules,

µr : aggregated premise activation of ruler (e.g. Eq.3.8).

The aggregated premise activations are also denoted as the rule firing levels, which

are defined as the output of Eq. (3.7) utilizing fuzzy sets of ruler

µr(u) = h(µAi
n

r (un)), (3.18)

whereh is an arbitrary t-norm. In the case of TSFMsh usually denotes the algebraic

product or minimum operation. An unnormalized version of Eq. (3.17), as proposed

by [179,180], has for its output

ŷ =
R

∑
r=1

wrµr(u), (3.19)

with wr : real valuesr (singleton) of ruler.

In the following the algebraic product will be used as t-norm. Obviously the denomi-

nator in Eq. (3.17) forces a normalization, which is, in general, necessary to assure the

interpretability of the FM. However, if the rule-base is fully defined and, as assumed,

the algebraic product is used as t-norm and furthermore the partition of unity holds the

denominator can be canceled. The resulting kind of TSFM is equivalent to a normal-

ized lattice based (radial)-basis function network [93,98]. Furthermore, the extension

of this result, namely that TSFMs are equivalent to local model networks, was shown

by [77].
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3.4.1 Takagi-Sugeno Fuzzy Models for System Identification

Zeroth order TSFMs are a widely applied model class in industry to tackle static prob-

lems because of interpretability issues and because the rule-consequences can be es-

timated simultaneously in a single LS optimization. This single step estimation is

referred to asglobal estimation.Unfortunately many users totally negate the inter-

pretability issues by freeing all constraints which could yield in an interpretable fuzzy

set distribution. By doing so one of the main advantages of zeroth order TSFMs van-

ishes and the user would be better off using TSFM of higher order or other approxi-

mation techniques.

3.4.1.1 Approximate Takagi-Sugeno Fuzzy Models

Approximate TSFMs(ATSFMs) have an incomplete rule-base and the interpretability

is generally lessened or nonexistent since there exists no global term set definition.

Each rule defines its own MFs on arbitrarily inputs, generally violating the inter-

pretability conditions stated in section3.3.2. Consequently ATSFMs do not suffer

from the curse of dimensionality and thus, it is easy to construct an ATSFM with

fewer rules but the same prediction quality as it is possible with a higher constraint

but more interpretable TSFM.

3.4.1.2 Descriptive Takagi-Sugeno Fuzzy Models

The main criterion to denote a TSFM as ”descriptive” is the existence of a global term

set definition for each input variable [25]. Unfortunately descriptive TSFMs (DTSFM)

are not necessarily interpretable, since interpretability depends on more factors than a

global term set definition. However, together with a high fulfillment of the in Sec.3.3.2

introduced interpretability factors, DTSFMs provides the most interpretable class of

TSFMs; capable to use the powerful and well established methods of single step LS

to determine the model parameters.

3.4.2 Parameter Estimation of Takagi-Sugeno Fuzzy Models

For the remainder the term ”parameter optimization” always refers to optimization

of the consequent parameters. The consequent parameters correspond to the output
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weights in a basis function formulation or the so called coefficients in a spline ap-

proximation formulation. These parameters can easily be calculated by single step

LS methods as described in Sec.2.4.2and [38,132,157]. This simplicity of optimal

parameter estimation is a main reason to utilize TSFM in data-driven modeling. Of

course parameter optimization of TSFMs can also be performed by iterative gradient

methods [18]. These methods are preferable if fast to calculate low-accuracy solution

are needed, for example in algorithms which operate in real-time. Another reason

to use iterative gradient methods is the computational cost5 and the large memory

requirements of direct methods. If non of these reasons are important, direct meth-

ods are preferable and thus, in the following only direct optimization techniques are

considered.

3.4.3 Global Parameter Estimation of Takagi-Sugeno FMs

By using global estimation all parameters of a model are estimated in a single LS

optimization. If we assume complete polynomials as rule consequents the parameter

vector (in the consequent proposition) of a one rule of a TSFM contains

P =
(N+k)!

N!k!
, (3.20)

with N : number of model inputs,

k : order of the TSFM,

parameters (see also Eq.2.20). Thus, the total number of parameters which have to be

estimated in a TSFM is

W = R·P, (3.21)

with R : number of rules,

P : number of rule parameters.

5Direct optimization techniques are generally based on performing a matrix inversion that has a
computationally cost ofO(p3).
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In the following the parameter vector containing all parameters of a TSFM is denoted

as weight vector and is for zero order TSFMs

w = [w1 · · · wR]T. (3.22)

In the case of a first order TSFM the weight vector is

w = [w1,1 w1,2 · · · w1,P · · · wR,1 wR,2 · · · wR,P]T. (3.23)

The associated regression matrixX for M available data samples becomes

X = [Xsub
1 Xsub

2 · · · Xsub
R ] (3.24)

with the regression sub-matrices

Xsub
r =


Φr(u1) u1,1Φr(u1) u1,2Φr(u1) · · · u1,PΦr(u1)
Φr(u2) u2,1Φr(u2) u2,2Φr(u2) · · · u2,PΦr(u2)

...
...

...
...

Φr(uM) uM,1Φr(uM) uM,2Φr(uM) · · · uM,PΦr(uM),


whereum denotes themth input vector of the availableM data samples andΦr(·)
denotes the combined linguistic statements of the antecedents of ruler (e.g. ann-

variate b-spline function). The model output is then given by

ŷ = Xw, (3.25)

with ŷ = [ŷ1 ŷ2 · · · ŷM]T. For zero and first order TSFMs the globally optimal weights

can be calculated, as described in Sec.2.4.2.1, in a single step. Because the global LS

estimation is a very efficient way to optimize the rule consequents this method will be

used in the following. However, global LS estimation is not always applicable since its

computational complexity grows cubically with the number of weights. Concerning

”large” data sets (e.g datasets with more than≈ 10000 samples) local estimation meth-

ods has to be used, which only grow linearly with the number of parameters [136].
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3.5 Structure Identification of Takagi-Sugeno FMs

From a system identification point of view, structure identification of a TSFM matches

the task to select a model structure (see Sec.2.3). In the case of TSFMs, structure

selection subsumes the task to:

• Select a pool of independent variables which are potentially related to the de-

sired outputy.

• Cover these selected variables (features) with fuzzy sets.

• Select the shape of the fuzzy sets.

Obviously all three tasks should be done in an optimal way to achieve a good accuracy

in combination with ideal generalization abilities.

3.5.1 Feature Selection

Feature selection methods become necessary if the dependencies of available infor-

mation to a system output of interest is unknown. Selecting a set of features which

is optimal for a given task is a problem which plays an important role in a wide vari-

ety of contexts and applications. This includes pattern recognition, adaptive control,

machine learning, data-mining and modeling.

Methods for feature selection reaches from statistical tools and the classical

greedy-algorithm [28], over graphical analysis [14] to global search methods like evo-

lutionary computation. The first two approaches yield normally in suboptimal fea-

ture selections and the graphical analysis is hardly applicable in purely data-driven

approaches. Evolutionary search methods provide, at least theoretically, an easy to

implement global search method for optimal feature selection.

3.5.2 Input Space Partitioning

Input space partitioning provides information for fuzzy set positioning. There exist

three common methods to partition the input space:

1. Clustering methods [3,67,75,69,76] like C-means.

2. Decision tree based methods like CART [15] or LOLIMOT [ 132].
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3. Global search method like evolutionary computation [25].

By using clustering methods, the identified clusters are projected6 on the input axes.

The space between the cluster borders are used as the support of fuzzy sets. Soft

clustering methods also provide utilizable information about the fuzzy set shape. De-

cision tree based approaches split the input space. This is done recursively in input

areas where a selected model produces the highest classification/approximation error.

The splitting is normally done axis orthogonal and thus directly usable as information

to place fuzzy sets. The third method is the most general. Especially evolutionary

computation has as advantage that, at least theoretically, it is possible to identify an

optimal input space partition for fuzzy sets.

3.5.3 Fuzzy Set Shape Selection

The selection of an optimal7 shape for each fuzzy set is almost always a highly non-

linear problem. Again, the usage of classical mathematical methods [95] to identify

the (absolute) optimal shape are applicative only for very small problems. But to

preserve the possibility of an (absolute) optimal fuzzy set shape selection a global

search method has to be chosen.

3.6 Summary

In this chapter the structure of TSFMs was presented. The main focus pertained the

interpretability of FMs. It was clarified that a descriptive TSFM is not necessarily

interpretable. A usable interpretability measure based on five interpretability factors

was introduced. Furthermore, the generally necessary tasks to achieve optimal TSFMs

were listed and possible strategies to fulfill these tasks were presented. It was justified

that evolutionary computation is an appropriate concept for structure identification of

data-driven TSFM. Because of this, the next chapter gives a problem specific intro-

duction to evolutionary computation. These concepts, in combination with a novel

method to formulate the genotype search space of candidate solutions with the help of

grammar-based genotype templates, will later be used to identify optimal DTSFMs.

6The clusters can also be directly interpreted as multi-dimensional fuzzy sets. This leads to approx-
imate TSFMs.

7Optimal with respect to model accuracy and model interpretability.
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Evolutionary Computation

The idea ofevolutionary computation(EC) is to utilize principles of evolution in na-

ture to find (sub)optimal solutions to NP-complete problems. Thus, most ideas used in

EC have their origin in observations of biological based functionality. The basic func-

tionality of natural evolution was first correctly described and published by Charles

Robert Darwin (see Fig.4.1) in his famous book on ”The Origin of Species” [30]

from 1859.

Figure 4.1: Charles Robert Darwin (? 12th February 1809, † 19th April 1882).

60
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Thus, artificial evolution considers a solution to a given problem as an individual

and a set of solutions as a population, the term EC subsumes all population based

approaches which possess the following characteristics:

• Random variation of individual solutions.

• Alteration of potentially useful structures to generate new solutions.

• A selection mechanism to increase the proportion of better solutions.

The schematic functionality of EC is depicted in Fig.4.2 and the classification with

respect to other search methods [52] is illustrated in Fig.4.3. In the following the indi-

Evaluation

New Population Selection

Mutation and
Reproduction

Initial Population Final Population

Figure 4.2: Schematic functionality of evolutionary processes.

viduals of a population are denoted asIndii(1≤ i ≤ I) whereI stands for the number

of individuals in the according population. Furthermore a population, although not

sorted, will be represented by a tuplePopt = 〈Indii〉1≤i≤I , with t as iteration (gener-

ation) index. This notation is caused by the fact that several individuals in the same

population can be identical, thus, a set-theory based nomenclature would be cumber-

some.

At a first glance EC seems not to introduce new concepts with respect to more

traditional search methods like, parallel simulated annealing [150] or parallel tabu

search [71]. The main difference of population based algorithms to all other tech-

niques is the concept of competition between candidate solutions.

Different characteristics of EC leads to special evolutionary algorithms (EAs),

with names like genetic algorithms [73] (GAs) , evolutionary strategies [154, 164]

(ESs) , evolutionary programming [53], genetic programming [104] or artificial im-

mune systems [33]. To shortly outline the functionality of an EA or to do research



62 Chapter 4. Evolutionary Computation

methods
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Evolutionary
computation
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Dynamic
programming
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Figure 4.3: A taxonomy of search methods.

in theoretical analysis of fundamental qualities, these terms are very useful. From the

perspective of most users of EC concepts it is unimportant which strategy is used, be-

side the fact that the found solution is satisfactory. For this reason nowadays most EC

approaches use a set of characteristics depending on the problem to solve, yielding

hybridization of several methods. This has as consequence a decoupling from clas-

sical terminology with its strict categorization, leading to an explanation of used EC

concepts.

4.1 Nomenclature of Evolutionary Computation

As already mentioned EC utilizes principles of natural evolution. Because of this and

for simplicity EC make use of terms with their origin in biology:

• Individual - a particular biological organism.

• Fitness - measurement that express the success of an individual to handle its

living conditions.

• Population - group of interbreeding individuals within a given area.

• Phenotype - refers to the composition of a particular individual.

• Gene - is a functional entity that encodes a specific feature of an individual.

• Genotype/DNA - refers to a specific combination of genes carried by an indi-

vidual and can be seen as a blueprint which is transcribed into proteins which

build the phenotype.



4.2. Genotype Representation 63

Keeping the limitations of nomenclature transfer between different scientific areas in

mind, the above-mentioned terms have in EC the same meaning with the exception of

the following modifications:

• Individual - particular solution to a certain problem. An individual in EC sub-

sumes the genotype and the phenotype.

• Fitness - measurement computed via a fitness function which expresses the suc-

cess of an individual to solve the problem.

• Genotype1 - blueprint which can be transcribed via function(s) into a phenotype.

4.2 Genotype Representation

Evolution, like all search algorithms, is limited and constrained by the representation

(i.e. genotype) it can modify. Agenotype representationis a mapping from the state

space of possible encodings to the state space of a genotype. To fully understand

this statement it is necessary to realize that the location of information carried by a

genotype is twofold. Firstly, and most apparent, information is embedded in the struc-

ture of the genotype. In the case of natural genotypes this is the base pair sequence

and for a string based artificial counterpart it is each element (Bit) of the considered

string. Secondly, and not so obvious, the structure for itself can carry information.

This structure is meant by genotype representation. Already Koza [103] mentioned

that:

”Representation is a key issue in genetic algorithm work because the rep-

resentation scheme can severely limit the window by which the system

observes its world.” [. . . ] ”String-based representation schemes are dif-

ficult and unnatural for many problems and the need for more powerful

representations has been recognized for some time [34,35,36].”

Therefore, and to familiarize the used terminology, the following section starts with

a brief discussion of the biological archetype of a genotype representation and their

algorithmic counterparts.

1In EC literature the terms genotype, chromosome and DNA (seldom used) are mostly used inter-
changeably. In the following the term genotype is used to describe a set of genetic parameters that
encode a candidate solutions, because this is closer to the biological meaning.



64 Chapter 4. Evolutionary Computation

4.2.1 The Biological Genotype

Thegenotype(blueprint) of each living entity on this planet is encoded in thedeoxyri-

bose nucleic acid(DNA) . The structure of DNA was discovered by James Watson

and Francis Crick [89] (see Fig.4.4) in 1953.

(a) James Watson (b) Francis Crick

Figure 4.4: Watson and Crick, the discoverer of the structure of DNA.

DNA is shaped like a twisted step-ladder also known as a double helix (see

Fig. 4.5). The genetic information is carried on the rungs of the ladder. In reality

each rung is equivalent to a base pair formed by two nucleotide bases and the sup-

porting bannister is formed by sugar and phosphate. Four nucleotide bases (adenine,

thymine, guanine and cytosine) are used in the DNA and only four different com-

binations of base pairs are possible, because adenine always goes with thymine and

guanine always goes with cytosine. The creation of an organism, also calledpheno-

type, from this genotype is a complex process. Because the details of this process are

not within the scope of this thesis, in the following only a short outline of the func-

tionality is given. To value the potential to further research in EC, some in EA seldom

implemented, biological functionalities are mentioned.

Consistently three base pairs (called a codon) encode a certain amino acid. Since

there exist 43 = 64 possible combinations to form a codon and only 22 natural amino

acids2, the genetic code is redundant. Each DNA segment containing the information

2As things are now there are 22 known natural amino acids, possibly there are more.
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Figure 4.5: Schematic structure of DNA with sugar-phosphate backbone and four
different nucleotide bases, each base-pair joined by hydrogen bonds.

for making a protein constitutes a gene. The information in a protein-encoding gene

is copied into amessenger ribonucleic acid(mRNA) molecule that moves to so called

ribosomes. Aribosomemoves along a mRNA molecule, reading the codon for protein

assembly as it goes. As it moves, the ribosome assembles amino acids into a gradu-

ally lengthening protein chain. At the end of the coded message, translation stops, the

ribosomal subunits separate and detach from the mRNA, and the completed protein

is released. While DNA stores the information,proteinsare the actors in each cell.

The functional tasks proteins perform are various. Proteins give form and elasticity

to tissue, they transport and store material and information, they recognize and bind

foreign substances and signal proteins, they catalyze biochemical processes and they

stimulate cell division. Thus, proteins form the machinery which build up a pheno-

type. Research estimations numeralize the number of different proteins in the human

body to 100000. It is important to state that information is only passed from genotype

to phenotype.

Biological Genotype (DNA)→ Proteins→ Phenotype

The impact of genes on phenotype features of an organism can seldom be de-

scribed by a simple one-to-one correspondence between genes and features. Several

genes can have an influence on one phenotypical characteristic, which is referred as

polygeny. On the other hand the termpleiotropydescribes the effect that a single gene
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affects many phenotype features.

In the following we should always have in mind that this description of the bi-

ological process is by far not complete nor that the process is fully understood. For

example, positional factors in the ovum are suspected to have influence on the gene

expressions and some proteins for them self influence gene expressions too. Further-

more there exist theories that some proteins calledprions (proteinaceous infectious

particles) inherit specific protein attributes absolutely decoupled from information

provided by the DNA.

4.2.2 Non-Coding Genotype Segments

Non-coding segments, also referred asintrons in biological and EC literature, are

genes which are not used in the genotype to phenotype mapping process. In con-

trast to non-coding segments all coding segments are subsumed by the termexon. In

biology the term intron describes in fact only one kind of non-coding DNA which can

be found within, but not between, genes. Another familiar type of non-coding seg-

ment in biology is defined bypromoter/terminatorsequences, referred as ptGA in EC

literature [121], which defines start and end points of a coding sequence, respectively.

Because in general this distinction is not made in EC literature, in the following the

term non-coding segment is used.

Human DNA consists of approximately 97% non-coding DNA and only 3% cod-

ing DNA. The maintenance of such a large amount of non-coding DNA and the there-

with aligned bit of extra processing for the biological organism, leads to the assump-

tion that there must be an advantage to having it in the genome. Because non-coding

segments are disregarded in the genotype to phenotype mapping process, they obvi-

ously do not contribute to the overall fitness of the individuals. Intuitive motivations

for their existence in biological systems are that non-coding segments may guard

against the disruptive effects of crossover, promote diversity, provide natural back-

ups for the coding regions, and thus possibly expedite the evolution of better adapted

individuals. It is also hypothesized that non-coding segments of genotypes enable a

variable combination of coding segments they separate, a process calledexon shuf-

fling [40,58,59]. Thus, the introduction of a counterpart concept in EC could have the

same effects on candidate solutions to a problem.
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4.2.3 Artificial Genotypes

As mentioned above, a genotype is defined and consists of a structure (the double

helix) and the information embedded in this structure (the base pair sequence). By

using digital computers, a straightforward way to implement an artificial genotype is

to use any data-structure which can carry information and to use a function to map

this genotype to a phenotype (Artificial Genotype→ Function(s)→ Phenotype).

It is important to say that in artificial genotypes this information is not compelled

to be used for the genotype to phenotype mapping, but it can also be used to parame-

terize the operators (for example mutation) working on the genotype representation.

It is comprehensible that in the early days of EC the genotype was chosen as

simple as possible, firstly to simplify the implementation and secondly to analyze

the fundamental behavior of operations on the genotype representation. Thus, the

most common genotype was (and is) a structure consisting of memory cells stringed

together. This memory cells could carry binary values as for example in GAs or real

valued variables as for example in ESs.

One exception is the use of tree-structures for genotype representation in the field

of genetic programming. This is founded in the fact that tree-structures can easily be

parsed and mapped into a corresponding, for example LISP [1], programming expres-

sion. It is incomprehensible, that the tree-structure based genotype representation did

not become popular in other evolutionary based methods, although a tree-structure

implicitly supports the concept of building-blocks and hierarchical composition.

4.2.4 Fixed versus Variable Length Representation

For abbreviation artificial genotype representation is in the following sometimes re-

ferred asencoding. Natural evolution is open-ended with respect to the complexity of

created life forms. EC applications that use only fixed length encoding do not share

this advantage of open ended complexity. Thus, variable length encoding schemata

have more expressive power and freedom to solve problems where the structure and

size of a satisfactory solution is unknown in advance. Variable length representations

in EC have been investigated since the early 1990’s and the most famous representa-

tives are themessy GAs[62] and the concept of genetic programming [105]. A good

survey can be found in [70].
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4.3 Solution Representation and Evaluation

Each evolutionary algorithmic approach for problem solving shows three basic com-

ponents which are highly correlated and which have to be specified, namely:

Therepresentationencodes alternative candidate solutions for manipulation.

Theobjective functiondescribes the purpose to be fulfilled.

Thefitness functionreturns a quality measurement for a particular solution.

The possible genotype representations of candidate solutions define the size and shape

of the search space for the evolutionary algorithm. Because it is important to un-

derstand the consequences of different or inadequate representation and evaluation

schemes the next sections provide a deeper insight into this problem. The provided

information will later be used to justify the introduction of a novel and general repre-

sentation scheme, which utilizes grammar based genotype templates to span a search

space for evolutionary algorithms.

To evaluate the different candidate solutions it is necessary to distinguish be-

tween objective and fitness functions. By using the information provided by these

evaluation functions an evolutionary algorithm tries to establish a gradient in the ap-

propriate search space, which directs the subsequent individuals to ”better” search

space regions. This and other essential considerations will be discussed in following

sections.

4.3.1 Objective Function

An objective is something that an evolutionary optimizer seeks to accomplish or to

obtain by means of his evolutionary operators. The evolutionary operators work on

the genotype of a solution but the objective function judges about the characteristic

of the phenotype. Thus, the objective function provides a gradient in the phenotype

search space. Unfortunately, many problems have various objectives and the user

has to decide which objectives have to be fulfilled. Often predefined values are used

to weight the importance of each objective, but most time it is unknown in advance

which objectives are mutually exclusive.

Difficulties can also arise if the ratio of feasible solutions is small and further-

more the objective function evolves no gradient to feasible phenotype regions. This
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could happen if all feasible solutions are equivalent in their objective measurement.

For example the finding of a truth assignment that satisfies a well-formed Boolean

expression (referred as satisfiability or SAT problem [57,41]) leads only to objective

values of f (Indi) = 0 or f (Indi) = 1, according to fulfillment or non-fulfillment of

the expression. Similar difficulties arises in other combinatorial problems.

4.3.2 Fitness Function

The main difference to the objective function is that the goal of the fitness function

(also called theevaluation function) is to provide a gradient for the evolutionary oper-

ators in the genotype search space. Nevertheless, the fitness has always to be propor-

tional to the objective value, but the fitness function can yield several distinct fitness

values for one objective measurement provided by the objective function. The fitness

function, in the following denoted asf (·), returns a quality measurement for a par-

ticular solution, which can be used to compare different candidate solutions by the

operator�. The operator� is interpreted as ”is better than”, thus, for maximization

problems� denotes ”greater than” and for minimization problems� denotes ”less

than”. A possible approach for the above mentioned SAT problem is to calculate the

fitness as the number of conjuncts that evaluate to true [39] or to change the Boolean

variables into floating-point numbers [141] in the range[0,1]. It becomes clear that

the fitness function is highly aligned with the genotype representation forming the

genotype search space.

4.3.3 Search Space

The objective of nearly all real-world problems poses constraints, thus, setting up the

objective functions includes the formulation of boundary conditions. These boundary

conditions constitutes aphenotype search space(see Fig.4.6). The phenotype search

space is divided into a space offeasible solutionsfulfilling the boundary conditions

and a space ofinfeasible solutionswhich does not fulfill the constraints.

Logically the phenotype search space for feasible solutions is not necessary ad-

junctive nor convex and the ratioρ = |P |
|Pfeasible| of feasible solutions can be approxi-

mately determined by randomly generating a huge number of random points fromP
and checking if they belong toPfeasibleor not.
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infeasible search space

feasible search space

Figure 4.6: The rectangular area represents an exemplary two-dimensional phenotype
search spaceP , the blue areas the feasible and the white areas the infeasible parts.

4.3.3.1 Search Space Size

To point out the size of search spaces of even simple problems consider the task to

find the highest output valuef (u1,u2) for the Schaffer function (see Fig.4.7). The ob-

jective function, which in this case is identical to the fitness function, is to maximize:

f (u1,u2) = 0.5−
sin2(

√
u2

1 +u2
2)−0.5

(1+0.001(u2
1 +u2

2))
. (4.1)

Lets assume we only need a solution of low accuracy (0.001 in a range of[−10,10]).
For the sake of simplicity we encode both input variablesu1 andu2 with 15 Bits, which

leads to an input variable resolution of 0.00061. Thus, already this simply problem

has a search space size of 215 ·215 = 230 = 1,073,741,824 different states. Obviously

the size of the search space is not determined by the objective function, but by the

chosen representation.
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Figure 4.7: The Schaffer function.
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4.3.3.2 Choice of an Appropriate Search Space

It is important so recognize, that by choosing the search space in an inappropriate or

to restrictive manner, the possibility of numerous duplicate solutions or the precluding

from any possible solution can occur. A descriptive example is given in [127], where

the problem is to construct four equilateral triangles with six matches3.

Figure 4.8: Two triangles, both fulfilling the equilateral constraint.

It is easy to construct two such triangles (see Fig.4.8) or eight triangles only

partly fulfilling the equilateral constraint (see Fig.4.9). If we place the leftover sixth

match in Fig.4.9 from bottom left to upper right we will actually result in sixteen

triangles, but again only the outer one is fulfilling the equilateral constraint.

Figure 4.9: Eight triangles but only the outer triangle fulfills the equilateral constraint.

With the knowledge that the search space is incorrect, the interested reader may

try to find the correct solution before turning over to the next page. To solve the task,

3In the original problem formulation the length of each triangle side should also be equal to the
length of a match.
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the search space has to be moved to three dimensions (see Fig.4.10). By assuming a

wrong search space, it is not possible to find the correct answer.

Figure 4.10: Four triangles, all fulfilling the equilateral constraint.

4.3.3.3 Genotype Search Space

The distinction made in Sec.4.3.1and Sec.4.3.2of objective and fitness functions

was justified by the possible existing diversity of the phenotype search space and the

genotype search space. It was stated that the evolutionary process follows a gradient in

the genotype search space which is constituted by the fitness function. For the sake of

simplicity the terms feasible solution and infeasible solution in the following are used

twofold. Firstly by referring a phenotype solution and secondly to refer to a genotype

representation which is mapped into a feasible/infeasible phenotype solution.

As mentioned above and again illustrated in Fig.4.11(b)the search spaceP of

feasible phenotypes is often not adjunctive. Thus, the primary goal of each genotype

representation is to establish a genotype search spaceG such that the evolutionary

search gets the possibility to follow fitness gradients in such a way that the distances

between feasible regions of the search space and also the total size of the infeasible

solution space is, in comparison to the phenotype search space, minimized. Often

only this minimization of distances in the genotype search space makes it possible to

bridge the infeasible solution gap between feasible solutions by single point mutations

in the genotype. As consequence ”good” genotype search spaces should contain sets

of genotypes connected by single point mutations that map into the same phenotype.

This allows genetic changes to be made while maintaining the current phenotype and
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it also reduces the chance of becoming trapped in sub-optimal regions of the genotype

search space. Using non-coding segments in the genotype is partly motivated (another

reason is to memorize good and already used building blocks) by the same reason of

supporting genetic changes based on single point mutations. Figure4.11(a)illustrates

exemplarily improved properties of the genotype search space in comparison to the

corresponding phenotype search space depicted in Fig.4.11(b).

infeasible search space

feasible search space

(a) Possible genotype search spaceG .

infeasible search space

feasible search space

(b) Phenotype search spaceP .

Figure 4.11: Possible modified genotype search space (a) and the concerning pheno-
type search space (b) given by the objective function.

For a comparison of different genotype to phenotype mappings see [169], where

illustrative examples concerning the inter-phenotype accessibility are given. This con-

cept of finding a ”good” redundant genotype to phenotype mappings is also followed

by using decoders, a method which will be explained in the next section.

4.3.4 Infeasible Solution Handling

As discussed above, the genotype search space of possible solution encodings to a

problem is normally divided into feasible and infeasible solution areas. Because only

feasible solutions are of interest, it becomes necessary to deal with infeasible solu-

tions. There exist three possible approaches in EC which can be used, namely avoiding

infeasible solutions, repairing infeasible solutions or penalizing infeasible solutions.

To obtain an understanding and to realize the pros and cons, each of these approaches

is shortly outlined.
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4.3.4.1 Avoiding Infeasible Solutions

One strategy to avoid infeasible solutions is based on preserving a feasible population

of solutions by using special representations and evolutionary operators. By consid-

ering a disjoint integer valued string to encode candidate solutions for solving the

traveling salesman problem, a special evolutionary operator would be the swapping of

two integer values in the genotype. Several representations and specialized evolution-

ary operators were developed to tackle these kind of permutation problems.

Another interesting technique to avoid infeasible solutions is to use de-

coders [126,106,72,64], where an arbitrary genotype search spaceG is mapped into

the phenotype search spaceP = [−1,1]n by some decoders. Thus, the genotype does

not encode the solution directly, but instead provides a set of instructions how to build

a feasible solution. However, it should be noted that several factors should be taken

into account while using decoders [140]:

• For each solutionp∈ P there is a decoded solutiond.

• Each decoded solutiond corresponds to a feasible solutionp.

• All solutions inP should be represented by the same number of decodingsd.

• Small changes in the decoded solution result in small changes in the solution

itself.

Anyway, the more constrained a problem is, especially if constraints depend on

other constraints, the more sophisticated it becomes to create appropriate operators

or decoders. However, if it is possible to implement a strategy that avoids infeasible

solutions, the arising advantages like no need for additional parameters and no need

to evaluate infeasible solutions, is worth.

4.3.4.2 Repairing Infeasible Solutions

There exist two kinds of repair processes for infeasible solutions which have to be

distinguished. Methods based on repairing infeasible solutions are usually good only

for handling specific explicit constraints and maybe inefficient for implicit constraints.

Furthermore, most repair strategies are problem domain specific.

The first method replaces the genotypes of infeasible solutions with their repaired

counterparts. These repaired genotypes are then used to evaluate the fitness. This
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strategy is related to what is calledLamarckian evolution[90, 190]. Jean-Baptiste

Lamarck (see Fig.4.12 and [90]) was a botanist, zoologist and natural philosopher

in France who assumed that an individual improves during its lifetime and that the

resulting improvements are inheritated to its offsprings. The algorithmic implemen-

tation of Lamarckian evolution performs an improvement of the phenotype by any

learning mechanism. Afterward the improvements are stored in the genotype.

Figure 4.12: Jean-Baptiste Lamarck (? 1st August 1744, † 18th December 1829).

The second method replaces the phenotypes (or temporarily modifies the geno-

type) of infeasible solutions without coding back the changes into the genotype. This

strategy is related to a combination of learning and evolution, which is called the

Baldwin effect[190,183].

4.3.4.3 Penalizing Infeasible Solutions

Penalizing methods can be divided into four different approaches, namely:

Death penalty simply rejects all infeasible solutions. Problems can occur if the

ratio p of feasible solutions is very small. Thus, it is possible that no feasible

solution can be found by randomly generating candidate solutions.

Static penalty[74] uses the modified fitness function

f̂ (Indi) =

{
f (Indi), if Indiphenotypeis feasible

f (Indi)+penalty(Indi), otherwise,

wherepenalty(Indi) tends to zero (assuming a minimization problem) the less

constraint violations occur. Thepenalty(·) function is usually based on a dis-

tance measure to provide a gradient to the feasible solution search space.
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Dynamic Penalty[94] alters the penalty term by a factor which is proportional to

the number of already computed iterations (generations) in such a way, that the

penalty term becomes more and more relevant during evolution. One drawback

of methods based on dynamic penalties is to predefine the annealing factor (and,

if used, other constants).

Adaptive Penaltyuses the idea, that if constraints pose no problem, the search should

be performed with decreased penalties and vice versa. Thus, the parameters

which influence the penalty term could depend for example on the ratio of feasi-

ble and infeasible solutions of the lastk generations [10], or on some predefined

thresholds, which define distances to feasible regions [170], or the parameters

could be implemented self-adaptive as strategy parameters in the genotype.

4.3.5 Summary

This section provided fundamental information about two very important parts of EAs,

namely the representation scheme and the evaluation functions. This information will

be used as a starting point and as a motivation to introduce grammar based genotype-

templates (in Sec.4.5) to define search spaces for EAs.

4.4 Evolutionary Operators

This section defines and discusses essential operators to modify the genotype rep-

resentation. It is notable that there exist several problem specific evolutionary

operators [115] like the virus infection approach [168, 146], multiple crossover

schemes [193], order conserving permutation operations [138, 189, 144] and many

others, which will not be mentioned here because of their specialized application ar-

eas. But all evolutionary operations could be classified into mutation, recombination

or selection. The following inspection of different evolutionary operators uses an EC

point of view and not a biological point of view, although again terms originated from

biology are used. Evolutionary operations on tree based genotypes which are used for

a concrete EA implementation in chapter5 are presented in Sec.4.5.6.
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4.4.1 Mutation

The mutationoperator performs, depending on the implementation, changes in the

variables of a genotype and/or changes in the structure of a genotype. These changes

can be implemented in various ways, but a general definition of the mutation function,

which is often called aone-parent-operator, because the mutation function takes only

one genotype as input, can be given as follows.

Definition 4.1 (Mutation function). The functionmut (genotype(Indi), p
mut

) is

a function which varies the variables or the structure of the genotype of Indi

with a probability given by a mutation probability vector p
mut

. The output of

mut (genotype(Indi), p
mut

) is the mutated individual ˆIndi.

The different possible variations performed by the mutation function can be clas-

sified by the target(s) of the variation, namely:

• Variation of binary valued genotype variables, which is mostly implemented by

inverting each binary value in the genotype with a given probability.

• Variation of integer valued genotype variables, which can be implemented by

increasing/decreasing or randomly replacing of an integer value in the genotype

with a given probability.

• Variation of real valued genotype variables, which can be done by increas-

ing/decreasing or randomly replacing each real value in the genotype with a

given probability. The variation of real valued genotype variables are often per-

formed by using concepts developed for a special methology called evolutionary

strategies.

• Variation of the genotype structure, which can be implemented by rearranging,

shortening or widening the genotype structure.

• Variation by swapping, shifting, scrambling, inverting, etc. the content of sev-

eral memory cells of the genotype. These operations are referred as sequencing-

operations and are used in the field of solving permutation problems, where the

ordering and non-repetition of values is important. Because this problem type

does not occur in the context of this thesis, the interested reader is referred

to [125].
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In the methology of evolutionary strategies real valued genotype variables are

divided into two different classes, namelydecision variablesandstrategy parameters.

The decision variables are used to form the phenotype and the strategy parameters are

self-adjusting real valued variables parameterizing the mutation function.

Thus, each ES-individual is equivalent to a vector of real numbers and contains

values for all decision variablesx j ∈ R( j = 1,2, . . . ,J) for the stated problem. Fur-

thermore each individual containsnσ(1≤ nσ ≤ J) standard deviationsσk ∈ R+(k =
1,2, . . . ,nσ) which are called (average)rate of mutations. Theseσk are strategy param-

eters which are adjusted self-adaptively during the optimization process. The decision

variables of an offspring are inherited (via a recombination function - see next sec-

tion 4.4.2) by one of the parents (same as in GAs), whereas the strategy parameters

are inherited by intermediate crossover. Mutation is the main operator in ES and is

done by changing the values ofσ j andx j by two different methods. First the valuesσ j

are multiplied with a normal distributed random number. Then every decision variable

x j is changed by adding a normally distributed random number with expected value

zero and standard deviationσ j .

4.4.2 Recombination

The recombination operator is inspired by the principles of sexual reproduction in

biology and thus utilizes parts of (at least) two parent-genotypes to build up a new

genotype which is calledoffspring-genotypeand is therefore also calledmultiple-

parent-operator. Again, the implementation of recombination can be done in various

ways and for tackling permutation problems, which are not focused in this thesis, spe-

cial recombination implementations are necessary. Further information can be found

in [138,189,144,125]. Nevertheless, a general definition of arecombination function

is as follows.

Definition 4.2 (Recombination function). Denote by Gena set of genotypes of indi-

viduals of population Pop, thanrec (Gen, p
rec

) is a function which utilizes parts of

these genotypes to build up a new genotype which is denoted as offspring-genotype

Genrec. The recombination probability vector p
mut

gives the probability how much

genotype-material each genotype shares with the resulting offspring-genotype4.

4More common is the use of a single probability value to determine the probability if recombination
between certain parent-genotypes happens.
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To illustrate the functionality of recombination lets discuss a widely used recom-

bination technique calledn-point-crossover.Consider the case of two string based

genotypes (parent-genotypes) in which each memory cell contains a binary based

variable. By selecting a number of string-position, referred ascrossover-points, it is

possible to recombine the two genotypes, resulting in a new genotype (i.e. offspring-

genotype), as depicted in Fig.4.13. If memory cells are copied randomly from

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

parent 1 genotype

parent 2 genotype

offspring genotype

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

Figure 4.13: 4-point-crossover in strings-based genotypes with two parents. Only one
of the two possible offspring structures is shown.

any parent the crossover scheme is calleduniform crossover.Uniform crossover is

mostly used in a parameterized form [177, 167], meaning that for each memory cell

a given probability is used to decide if this or its counterpart from the other parent-

genotype is used in the offspring-genotype. These crossover schemes can easily be

extended to deal with more then two parent-genotypes, leading to so calledmulti-

recombination-crossover .This multi-recombination techniques seems to have advan-

tages since [49,182,2] reported that global optima where found faster and more often

using multi-recombination then two-parent-recombination.

In genetic programming, where the individuals consist of unbalanced trees,

crossover is implemented as subtree swapping (see Fig.4.14). Multi-recombination

can be implemented straightforward by swapping sub-trees between more than two

parent individuals.

If Geni = rec( ˜Gen, p
rec

) with ∀ ˜Geni ∈ Popt−1 holds for allGeni(i = 1, . . . , I)
with I equal to the number of individuals inPopt the replacement method is called

generational replacement, meaning that between each successive generations the

complete population is replaced by recombined individuals. If at least one genotype
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CP CP

Figure 4.14: Crossover in tree-based genotypes. The two shown parent-genotypes
exchange parts of their tree-structure at the randomly chosen crossover points (CP) .
Only one of the two possible offspring structures is shown.

in Popt is not a recombination of genotypes ofPopt−1, the replacement strategy is

referred assteady-state replacement[177].

4.4.3 Selection

Selection is the operation by which individuals are chosen for reproduction. Repro-

duction means creating an offspring by recombination or cloning. Selected individuals

are copied into the so calledmating poolwhich can be seen as a temporary cache for

individuals and is in the following referred asPopmating pool. Selection is performed on

the basis of fitness values which are calculated with help of a so called fitness function

(see Sec.4.3.2). The fitness does not necessarily depend only on the phenotype of the

individual, but can also be influenced by the genotype of the individual.

Definition 4.3 (Selection function). Denote by< Indi > a tuple of individuals of

population Pop, thansel ( f (< Indi >)) is a function which returns an Indi on the

basis of the fitness values of< Indi >.

Again, there exist various possible selection schemes, but the three most com-

mon are:

• Fitness-proportional selection.

• Rank-based selection.

• Tournament selection.
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All these selection methods share the characteristic that they arenot extinctive, mean-

ing that even the individual with the worst fitness has a chance to reproduce. To

compare different selection schemes [12] suggests to define some terms on the base

of thefitness distributionof a population, which is defined as follows:

Definition 4.4 (Fitness distribution). The function fdis : R→ Z+
0 assigns to each

fitness value fIndi ∈ R the number of individuals in a population Pop carrying this

fitness value, where fdis is called the fitness distribution of a population Pop.

Comparable expressions based on the fitness distribution are:

Selection intensity: The termselection intensitywas introduced in population ge-

netics [19] to obtain a normalized and dimension-less measure and is defined as

follows.

Definition 4.5 (Selection intensity).The change of the average fitness of a

population due to selection is called selection intensity and is calculated as

SelInt=
( f (Popmating pool)− f (Popt))

σ∗
,

with f (Pop) : average fitness of a population,

σ∗ : mean variance of f(Popmating pool).

For completeness it should be noted that some authors [63,6] use the termse-

lection pressure, which also describes the change in the average fitness after

applying a selection mechanism to the individuals of a population, computed on

the base of the so calledtakeover time. Takeover has occurred if all individuals

of a population have the same fitness value.

Selection variance:Selection varianceis the expected variance of the fitness distri-

bution of the temporarily population in the mating pool.

Definition 4.6 (Selection variance).The selection variance is the normalized

expected variance of the fitness distribution of the population after applying a
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selection method to the fitness distribution fdis, i.e.

SelVar=
(σ∗)2

σ2 ,

with σ∗ : mean variance of f(Popmating pool),

σ : mean variance of f(Popt).

4.4.3.1 Fitness-Proportional selection

Let E(Indii) = I · ps(Indii) (with I as population size andps(Indii) as fitness-

proportional selection probability) be the expectation value of possible participations

of Indii in each reproduction iteration. Good fitness-proportional selection methods5,

as the in Alg.4.1 describedstochastic universal sampling selectiontechnique, are

characterized by a minimal spread. Nevertheless, based on basic analysis and some

empirical observations, proportional selection schemes seem to be very unsuited [12].

Algorithm 4.1 Stochastic Universal Sampling(·)

Input: Popt

Output: Popmating pool.

(1) Popmating pool←∅
(2) sum← 0

(3) pointer← drand(0,1)
(4) for i← 1, . . . , I

(5) sum← sum+E(Indii)
(6) while sum> pointer

(7) Popmating pool← Indii
(8) pointer← pointer+1

(9) end while
(10) end for

5The classicalroulette wheel selectionhave a high spread and is therefore no good choice.
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4.4.3.2 Rank-based selection

In rank-based selectionmethods [188, 5], the population is sorted according to their

fitness. The selection criteria for each individual depends therefore only on its position

in the individuals rank and no longer on the actual fitness value. The probability of

each individual being selected for mating is its ranking normalized by the population

size. The commonly used rank-based selection method uses linear6 ranking which

lead to following selection probabilitiesps for Indii to be copied into the mating pool.

We have:

ps(Indii) =
1
I

(
Emax− (Emax−Emin)

r(Indii)−1
I −1

)
, (4.2)

with ps(Indii)≥ 0 ∀i ∈ {1, . . . , I},
I

∑
i=1

ps(Indii) = 1.

Because of the constraints given in (4.2), Emin = 2−Emax and 1≤Emax≤ 2 must hold.

Ranking introduces a uniform scaling across the population and provides a simple and

effective way of controlling the selection intensity.

4.4.3.3 Tournament selection

In tournament selection[63] a numberC of competitors (individuals), often denoted

as tournament size, is chosen randomly from the population and the best individual

from this group is allowed to reproduce. The parameter for tournament selection is

the tournament sizeC with valid values ranging from 1, . . . , I (number of individuals

in population). The selection intensity for tournament selection can approximately

calculated [12] as

SelIntTour(C)≈
√

2· (log(C)− log
√

4.14· log(C)) (4.3)

6For an example using non-linear ranking see page 60 in [125].
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and the approximation for the selection variance is given by [12]

SelVarTour(C) = 1−0.0096· log(1+7.11· (C−1)), (4.4)

with SelVarTour(2) = 1− 1
π
.

As already mentioned in [13]:

”It is shown that for the same selection intensity tournament selection

has the smallest loss of diversity and the highest selection variance. It is

concluded that tournament selection is in some sense the best selection

method among the three”7.

The aim of this section was to give a short outline about the functionality of the most

common selection schemes and their pros and cons. The two important measures

for recombination operations, namely selection intensity and selection variance were

presented to provide the reader with information about the measures which are com-

monly used to predict the number of steps until a population converges to a unique

solution. Concerning this thesis the main reason for this brief summary of recombina-

tion schemes was to justify the decision of the author to use tournament selection in

the EA implementations presented later.

4.5 Tree Based Genotype Representation

This section provides the reader with the encoding scheme of candidate solutions,

which will be used in the following chapters. The search space of the evolutionary

algorithms will be defined by so calledgenotype-templates. This proposed novel and

very general applicable concept of genotype-templates simplifies the design of prob-

lem specific genotype representations. The author describes how a genotype-template

can easily be formulated with the help of grammars. This method should not be con-

fused with genetic programming concepts, which also utilizes tree-based genotype

representations, but which does not provide a grammar-based and simple scheme to

define the genotype search space, nor the possibility to encode nearly arbitrary prob-

lems. The proposed method of genotype-templates combines the expressive power of

grammars with the advantages of a general tree-based encoding scheme.

7They refer to tournament, truncation and ranking selection.
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Especially by building genotypes from scratch, the challenge shifts from find-

ing a solution for the original problem to the task of finding a possible and adequate

genotype encoding. A good genotype representation should fulfill the following re-

quirements:

• Simplicity in construction of variable length genotype templates.

• Easiness to implement evolutionary operations.

• Possibility to constrain genotype variables.

• Possibility to introduce expert knowledge.

• Implicit support of building blocks.

The usage of trees to represent genotypes is an elegant method for many encoding

tasks, to solve, or at least an alternative, to simplify the fulfillment of these require-

ments8. To explain how the fulfillment of these requirements is supported by repre-

senting the genotype with tree structures, the next section provides some basics of

trees. Referring to these basics Sec.4.5.2shows the qualitative potential of tree struc-

tures to fulfill the stated requirements.

4.5.1 Tree Basics

An interrelated, undirected and non-circular graph is referred astree. Unbalanced

trees are trees of data with any number of branches. Anodeis one branch of a tree

and all nodes and connections of a tree will be referred ascomplete-tree. Lets A be

a node with two branches (see Fig.4.15), namely B and C, then B and C are called

child-nodesof node A, and A is calledparent-nodeof B and/or C. The only node in

a tree without a parent-node is calledroot-nodeand nodes without child-nodes are

called leaf-nodes. The depth of a nodeis equal to the number of parent-nodes on

the graph to the root node plus one. Thus, a root-node has a depth of one. For the

children of the root-node (i.e. B and C) the depth is two, and so on. Child-nodes with

the same parent-node are calledsiblingsand alevelsubsumes all nodes with the same

depth. Asub-treeof a complete-tree subsumes all nodes starting at a certain node of a

complete-tree. Thus, a complete-tree is a subtree of itself.

8The more astonishing is the fact that up to now there exist only very nascent attempts at extending
EC theory to tree encodings [178,139].
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C

A

B

Figure 4.15: Exemplary unbalanced tree with eight nodes, a light red shaded root-
node, four dark red shaded leaf-nodes and a total depth of four.

4.5.2 Tree Structures for Genotype Encoding

By using tree structures to fulfill the above stated requirements for a good genotype

representation, the nodes of the used tree should also fulfill some requirements.

• Nodes can act as containers for variables (decision variables and/or strategy

parameters).

• Classes of nodes are distinguishable by a node label.

• Nodes can be tagged as untouchable. Untouchable nodes (and their content) can

not be removed or altered by evolutionary operations.

• Nodes can be tagged as inactive which means that the complete subtree with

node as root-node will not be used in the genotype to phenotype mapping.

Each genotype representation needs a place to store information which is used to

build the phenotype. Obviously the most common place are provided locations, as the

base-pairs in the natural genotype or decision variables in artificial genotypes. Beside

this information storage, the structure of the genotype itself can carry information.

Thus, it is necessary to distinguish betweenvariable informationandstructure infor-

mation. The variable information in trees can be localized in nodes and each variable

information location can be labeled with a variable name.

By regarding the structure of the genotype as information medium it is straight-

forward to subsume nodes with identical variable information locations by assigning



4.5. Tree Based Genotype Representation 87

them the same node-label. By labeling the nodes it is possible to construct a genotype

state space with the help of a grammar [160]. In the following a genotype state space

description is denoted asgenotype-template.

4.5.3 Example of a Tree Based Genotype Representation

To clarify this concept let us construct a simple example. Assuming the task is to find a

(sub)optimal input vectorx consisting of three elements to minimize a system outputy.

Each vector element could lie in the interval[−10,10]. Figure4.16 illustrates a

x2x1 x3

Figure 4.16: Tree based genotype representation.

possible encoding with trees. The root node can be labeled as ”VECTOR” and each

node-children of the root node can be labeled as ”VECTOR-ELEMENT”. The nodes

” VECTOR-ELEMENT” are containers for the decision variablesxi .

(a) Structure.

VECTOR

VECTOR−ELEMENT

(b) Node-Labels.

x    [−10,10]

(c) Variables.

Figure 4.17: Simple example of a tree based genotype representation with (a) illustrat-
ing the structure, (b) the corresponding node-labels and (c) the embedded variables.

A more informative illustration of the same genotype is given in Fig.4.17, where

the interesting information about the genotype representation is divided into three sub-

figures, giving information about the tree structure, node-labels and decision variables.
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4.5.4 Grammars as Framework for Genotype-Templates

By using node-labels it is possible to define the space of all possible genotypes with

help of a grammar, where a grammar is a high-level notation used to describe the

structure of data, for example the structure of a sentence or the structure of a genotype.

Consider the following grammar4.1 that defines e.g. the structure of (a subset of)

English sentences:

Grammar 4.1 Grammar that defines the structure of a subset of English sentences.

<sentence> ::= <nounphrase> <verbphrase>.

<nounphrase> ::= <article> <noun>

<verbphrase> ::= <verb> <nounphrase>

<article> ::= a | the
<noun> ::= man | dog
<verb> ::= likes | bites

Grammar4.1 is in Backus-Naur form(BNF) [8] , which is a way of representing

context free grammars. BNF was developed in the 1960s by the ALGOL commit-

tee, in particular, John Backus and Peter Naur, to describe the ALGOL programming

language. It is equivalent in descriptive power to context free grammars developed

independently by Noam Chomsky to describe natural languages. A BNF grammar is

a set of rules and a single non-terminal (called the start symbol). A rule has:

• Non-terminals, enclosed in<>, which must be defined by (appear by itself on

the left hand side of) at least one rule.

• Terminals, actual strings like ”.” and the words in the example (e.g.dog in

grammar4.1).

• Metasymbols like ::=, |,., <>.

By having the requirements for nodes in a tree for genotype encoding in mind (see

Sec.4.5.2), it is possible to formulate a grammar which defines the genotype space

based on trees.

Note that in grammar4.2 the symbols boolean, integer, double and string are

stated only for the sake of simplicity as terminal symbols. Obviously these symbols
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Grammar 4.2 Grammar defining a genotype space on the basis of trees.

<genotype-template> ::= <node-list>,<conjunction-list>,<constraint-list>

<node-list> ::= empty | <node>,<node-list>

<node> ::= <node-label>,<min-succ-size>,<max-succ-size>,<var-list>

<conjunction-list> ::= empty | <conjunction>,<conjunction-list>

<conjunction> ::= <node>,<node>,<predetermined>

<var-list> ::= empty | <var>,<var-list>

<var> ::= <var-name>,<min-value>,<max-value>,<var-type>,<untouchable>

<constraint-list> ::= empty | <constraint>,<constraint-list>

<constraint> ::= <node>, <var-name>,<condition>,<scope>

<predetermined>,<untouchable> ::= boolean
<min-succ-size>,<max-succ-size> ::= integer
<min-value>,<max-value> ::= double
<node-label>,<var-name>,<var-type> ::= string
<condition> ::= > | < | == | !=
<scope> ::= sibling | level | all

are again defined by non-terminal symbols (to be precise this should be done by some

regular expression).

With the non-terminal symbol<untouchable> it is possible to detach certain

decision variables embedded in the concerning nodes from evolutionary operations

like mutation. The non-terminal symbol<predetermined> is used to force specific

compounds to be present in the genotype. By using the grammar4.2, the genotype

of the example given in Sec.4.5.3can easily be described by the following genotype-

template:

Genotype Template 4.1Genotype template for example given in Sec.4.5.3.

node (VECTOR, 3, 3, empty)

node (VECTOR-ELEMENT, 0, 0,x)

var (x, -10.0, 10.0, real, FALSE)

conjunction (VECTOR, VECTOR-ELEMENT, FALSE)
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4.5.5 Constraint Handling in Tree Based Genotypes

Most problems which are tackled with methods of EC exhibit several problem spe-

cific constraints. As mentioned in Sec.4.3.4 there exist three possible methods to

deal with constraints, namely avoiding infeasible solutions, repairing infeasible solu-

tions and penalizing infeasible solution. By using grammar based genotype-templates

many constraints can already be fulfilled by setting up a problem specific genotype-

template. For example the trivial constraint that a vector should consist of exactly

three elements is implicitly given by the concerning genotype-template4.1. This kind

of requirements is already checked by performing the evolutionary operations. Thus,

infeasible solutions are avoided.

In grammar4.2 the attentive reader should have recognized the existence of a

non-terminal symbol referred as<constraint>. By using this symbol it is possible

to construct simple constraints like an increasing order of decision variable values.

The scope where this configuration should be fulfilled is given by the non-terminal

symbol<scope>, which can have as valuessibling, level or all. In the genotype-

template4.1a statement likeconstraint (VECTOR-ELEMENT, x, >, sibling) forces

at certain stages of the evolutionary process a fulfillment of the claimed alignment.

Because the unwanted configuration of the decision variables are sometimes present in

the genotype, this constraint handling method can be classified as repairing infeasible

solutions.

4.5.6 Evolutionary Operations on Tree Based Genotypes

With respect to common genotype representations evolutionary operations on tree

based genotypes differ only for the mutation operation and for the recombination op-

eration, which will be pointed out in the following.

4.5.6.1 Mutation of Tree Based Genotypes

By considering mutation operations we have to distinguish between variable informa-

tion mutation and structure information mutation.

The mutation of variable information is implemented by traversing all nodes of

the tree based genotype representation. Each node is checked for variables and if there

are variables each variable is, due to a certain probability, chosen to be subject of mu-
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tation. Values of real decision variables are changed by means of evolutionary strategy

concepts as described in Sec.4.4.1. Values of integer decision variables are changed

by increasing, decreasing or replacing the original value by chance. The grammar

based genotype-template provides in all cases the legal ranges of each variable.

The mutation of structure information is implemented by adding, deleting or

expanding a randomly chosen node. Again, the grammar based genotype-template

provides all information to validate the correctness of each structure information mu-

tation.

4.5.6.2 Recombination of Tree Based Genotypes

Compared to string based genotypes the recombination operations simplifies to sub-

tree swapping. One big advantage of tree based genotypes is that the tree structure

inherently offers a classification of functional entities represented by sub-trees. Fur-

thermore, in the case of grammar based genotype-templates the validation if the sub-

tree swapping results in valid genotypes can be easily and efficiently performed by

checking the grammar.

4.6 Summary

This chapter introduced the main concepts of EC and outlined the importance of the

genotype representation for each EA. Furthermore the advantages and disadvantages

of different selection schemes was shown. It was clarified that the search space of

the evolutionary process is always defined by the candidate solution encoding and

thus, a good genotype representation is the core of each EA. Furthermore it was stated

that in most applications the challenge shifts from finding a solution for the original

problem to the task of finding a possible and adequate genotype encoding. Because of

this, trees were introduced to encode candidate solutions with the demands to simplify

constraint handling, accelerate implementation and to provide the capability to handle

variable length encodings. The most important subject matter in this chapter was the

introduction of a novel concept, which uses grammars as tool to formulate general

usable genotype-templates.



Chapter 5

Evolutionary Optimization of Descriptive

Takagi-Sugeno Fuzzy Models

This chapter provides a grammar based genotype-template which is used to construct

highly interpretable DTSFM candidates with a partly defined rule-base (Sec.3.3.4).

These DTSFM candidates are used in an evolutionary process which directs the search

to optimal DTSFMs. The genotype-template and the algorithmic description of the

evolutionary loop provided in this chapter are used in chapter6 to model an artificial

and a complex real world system.

5.1 Michigan vs. Pittsburgh Approach

There exist two commonly used methods to represent FMs in a population. The so

called Michigan approach [26] utilizes each individual in a population as one part (i.e.

rule) of the candidate solution. Thus, the complete population of each generation rep-

resents only one candidate solution. Each individual can be seen as a functional entity

of the overall candidate solution. For many candidate solutions it is meaningful to

introduce more than one type of functional entity. In this case the Michigan approach

has to deal with sub-populations, with each sub-population consisting of individuals

representing the same type of functional entity. The hardest problem that occurs using

the Michigan approach is to find an optimal combination scheme for the individual to

form a candidate solution.

In the second approach, known as the Pittsburgh approach [27], each individual

represents a candidate solution. Thus, the complete population of each generation

92
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represents several candidate solutions. In combination with tree based genotypes the

Pittsburgh approach is obviously more suitable to use. This is caused by the fact that

each sub-tree can already be seen and encoded as functional entity. The difficult prob-

lem of merging functional entities to a candidate solution (which is again a highly

non-linear problem) does not occur, because it is assumed to be done by the evolu-

tionary operations like crossover.

5.2 Acquiring the Genotype Tree Structure

It is useful to sketch the structure of the tree representation of the target genotype-

template (see Fig.5.1), which will than be formulated with help of grammar4.2. Dur-

ing modeling the candidate DTSFMs should be able to make use of different features

from an arbitrarily large feature set. These features should be covered with b-splines

which act as fuzzy sets.

R K

F

Ve Vi

e i

Figure 5.1: Sketch of the target tree based genotype. The concerning genotype tem-
plate is given in grammar5.1
.

5.2.1 Rule-Base and Knowledge-Base

The structure of a FM consist of two main parts, the rule-base and the knowledge-

base. These two parts are also reflected in the sketch of the genotype tree of Fig.5.1.
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The left side encodes the rule-base and the right side encodes the knowledge-base.

Below the starting node of the rule-base there are the single rules, each rule containing

one or more premises. The left hand side of the tree represents the knowledge-base,

with single features (inputs) of the problem, each covered by a knot-vector which

constitutes the b-spline based fuzzy-sets.

5.2.2 Genotype to Phenotype Mapping

By using genotype-templates the implementation of problem specific genotypes be-

comes much more efficient with respect to implementation and maintenance time of

the resulting evolutionary algorithm. But it has always to be kept in mind that the

function, which performs the genotype to phenotype mapping, can be far from trivial

and still has to be carried out by an expert. Regarding this genotype to phenotype

mapping function for DTSFMs some specific considerations have to be explained.

5.2.3 B-spline Specific Implementation Considerations

Because of implementation reasons the knot-vector was split into an external and an

internal part, each with knot-positions as elements. The external knot-vector consist of

two x knots, withx = 2 ·k (k = order). Thus, for example, six b-splines of order three

are defined over an external knot-vector consisting of six knots (three left external

knots plus three right external knots) plus three internal knots as illustrated in Fig.5.2.

This terminology differs from the commonly used one [38], but it is very convenient

for our implementation.

It is convenient, because it is desirable to encode the genotype knot-positions

with possible values in a fixed range (e.g.[0,1]). Because of interpretability reasons,

it is also desirable that the b-splines form a partition of unity in the respective input di-

mension. By rescaling1 the internal knot-position to (assuming zero as minimum and

one as maximum) to the minimum (minn) and maximum (maxn) values of the con-

cerning input dimension, it is always guaranteed that the complementarity condition

hold. The encoded external knot-vector consist one half each of the left external knot-

vectorλleft and right external knot-vectorλright, both with possible values in[0,1] and

number of elements equal to the orderk.

1In the following the term rescaling is used to describe the rescaling during the genotype to pheno-
type mapping.
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Figure 5.2: Left external, internal and right external knot-vector forming a com-
bined knot-vectorλ = (0,1.2,1.99,3.4,4.2,4.9,6.3,7,8) with an assumed input in-
terval [2,6]. The green shaded area represents this interval in which the internal knots
can be moved, new knots can be added or old knots can be deleted. The external knots
are always arranged outside this interval.

The encoded left external knot-vectorλleft is rescaled (assuming zero as min-

imum and one as maximum) tominn− (maxn−minn)
4 (leftmost possible knot-position

of λleft) andminn− (maxn−minn)
1000 (rightmost possible knot-position ofλleft). The en-

coded right external knot-vectorλright is rescaled (assuming zero as minimum and

one as maximum) tomaxn+ (maxn−minn)
1000 (leftmost possible knot-position ofλright) and

maxn− (maxn−minn)
4 (rightmost possible knot-position ofλright).

5.2.4 Feature-Set Selection Implementation Considerations

A decision variable calledf eatureindex, which is located in eachPREMISEnode of

a RULE node, acts as a selector which of the encoded features in the knowledge-base

is used. Because the knowledge-base encodes betweencoded min ruleand coded

max rule (predetermined by the model designer) rules, the decision variable should

be able to accept values in the range [coded min rule, coded max rule]. Furthermore

the decision variablef eatureindexshould be be assigned only distinct values for all

siblings. Figure5.3 illustrates the node labeling and the decision variables which are

embedded in the nodes.
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Figure 5.3: Genotype labels and variables of a DTSFM.

5.2.5 Fuzzy-Set Selection Implementation Considerations

The decision variablekernelposcan store real values in the range [0,1]. These values

are converted by Alg.5.1to indices of fuzzy sets (defined in the knowledge-base) cov-

ering the concerning input. During the phenotype to genotype conversion,kernelpos

(assuming zero as minimum and one as maximum) is rescaled to the minimum avail-

able data-pattern value of the concerning input (minn) and to maxn− (maxn−minn)
4 ,

wheremaxn is the maximum available data-pattern value of inputn.

Algorithm 5.1 Kernel selection algorithm.

Input: Genotype decision variablekernelpos.

Output: Index i of concerning fuzzy set.

(1) n← col

(2) kernelpos← rescale(kernelpos)
(3) stop← FALSE

(4) i← ordern
(5) while i < number of elements (λn) and stop= FALSE

(6) if kernelpos< λn
i then stop← FALSE

(7) i← i +1

(8) end while

(9) i← i− (ordern +1)
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5.3 The Used Genotype-Template

The on grammar4.2 based syntactic formulation of the so far described genotype-

template is given by template5.1. This template contains only very few parameters

which have to be predetermined by the user. The bold-and-italic typeset symbols

Genotype Template 5.1DTSFM genotype template.

node (DTSFM, 2, 2, empty)
node (KNOWLEDGE BASE, max feature, max feature, empty)
node (FEATURE, 2, 2, (col, order))
node (EXTERNAL KNOT-VECTOR, max order· 2, max order· 2, empty)
node (INTERNAL KNOT-VECTOR, min kernel, max kernel, empty)
node (EXTERNAL KNOT, 0, 0,knot pos)
node (INTERNAL KNOT, 0, 0,knot pos)
node (RULE BASE, min coded rule, max coded rule, empty)
node (RULE, min premise, max premise, empty)
node (PREMISE, 0, 0, (f eatureindex, kernelpos))

var (col, 0,max col−1, integer, FALSE)
var (order, min order, max order, integer, FALSE)
var (knot pos, 0.0, 1.0, real, FALSE)
var ( f eatureindex, 0,max feature−1, integer, FALSE)
var (kernelpos, 0.0, 1.0, real, FALSE)

conjunction (DTSFM, RULE BASE, TRUE)
conjunction (DTSFM, KNOWLEDGE BASE, TRUE)
conjunction (KNOWLEDGE BASE, FEATURE, FALSE)
conjunction (FEATURE, EXTERNAL KNOT-VECTOR, TRUE)
conjunction (FEATURE, INTERNAL KNOT-VECTOR, TRUE)
conjunction (EXTERNAL KNOT-VECTOR, EXTERNAL KNOT, FALSE)
conjunction (INTERNAL KNOT-VECTOR, INTERNAL KNOT, FALSE)
conjunction (RULE BASE, RULE, FALSE)
conjunction (RULE, PREMISE, FALSE)

constraint (FEATURE, col, ! =, sibling)
constraint (EXTERNAL KNOT, knot pos, >, sibling)
constraint (INTERNAL KNOT, knot pos, >, sibling)
constraint (PREMISE, f eatureindex, >, sibling)
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represent external variables which have to be predefined by the model designer or are

derived from the given data-set (i.e.max col= number of columns of the input matrix).

In fact only four different model predicates have to be given, namely the maximum

number of features the EA is allowed to select from the input data (i.e.max feature),

ranges for the smoothness of the used fuzzy sets (e.g.min/max order), ranges for the

used number of fuzzy sets covering each input (i.e.min/max kernel) and ranges for

the encoded number of rules (i.e.min/max coded rule). Keep in mind that the number

of rules of the phenotype can be lower than the number given bymin coded rule,

because it is possible that the genotype contains several equal rules, of which only one

instance is used in the resulting model.

5.4 The Implemented Evolutionary Algorithm

This section provides an explanation of the used EA in pseudo-code. The input pa-

rameters of the evolutionary process are firstly the instructions how to encode the

problem, i.e. the genotype-template, secondly standard evolutionary parameters like

PopulationSizeandTournamentSize, and thirdly parametersmin/max orderconcern-

ing the target phenotype, i.e. concerning a DTSFM.

Regarding the first point grammar4.2 will be used. Regarding the second point

the evolutionary parameters comprise normally also parameters like mutation and

crossover probability. To keep the approach as simple as possible these parameters

were fixed for all runs which are performed to achieve the results presented in chap-

ter6. Only thePopulationSizeand the stop criteria varied for the artificial and the real

world data-set. The other reasonable evolutionary parameters which are implemented

as parts of the overall EA are described in the following sections.

5.4.1 Implementation Environment

Obviously a detailed description of all implemented functions would go beyond the

scope of this thesis; but for information, the described algorithms are embedded in

a software library programmed by the author of this thesis. The core library pro-

vides structures and functions to deal with matrices. Based on this, a generalized

basis function network library and an evolutionary computation library were pro-

grammed. The used programming language is C with additional functionality given
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by the GLib [60]. The GLib is a library which provides, besides many other things

like definitions for standard variable types, functions to deal with trees. It is also used

as core for GTK+ [68], a library for the designing of graphical user interfaces. Both,

GLib and GTK+ are available for many platforms and both are distributed under the

lesser general public license, which means that they are freely available for personal

and commercial use.

5.4.2 Implemented Crossover

Crossover is implemented by randomly choosing two genotypes. Two nodes of the

same type (identical node-labels) are selected, again by random, from each of these

genotypes. In the first genotype the selected node (and the concerning sub-tree) is

replaced by a copy of the sub-tree chosen in the second genotype. This is done each

generationIndiSizetimes. Algorithm5.2gives a description in pseudo-code.

Algorithm 5.2 crossover(·).

Input: pop.

Output: Recombinedpop.

(1) for i← 1, . . . , IndiSize

(2) r ← drand(1, IndiSize)
(3) genotypefather← genotyper
(4) if drand(0,1) < 0.5

(5) r ← drand(1, IndiSize)
(6) genotypemother← genotyper
(7) nodefather← RamdomNode(genotypefather)
(8) nodemother← RamdomNodeO f Type(genotypefather,nodefather)
(9) SubtreeCopy← CopySubtree(nodemother)

(10) nodefather← SubtreeCopy

(11) end if
(12) NewPop← NewPop+genotypefather

(13) end for
(14) pop← NewPop
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5.4.3 Implemented Structure Information Mutation

The implemented structure mutation operation is described by Alg.5.3. Keep in mind

that the genotype-template can be used to countercheck if a node can be added or

a node and the concerning sub-tree can be erased from the genotype. The func-

tions GetRandomNodeOfGenotype(·) and AddPossibleSubtree(·) in Alg. 5.3 are

assumed to perform this check and therefore, shrinking or growing of the genotype

is only done in a space defined by the genotype-template. In addition to that the

following algorithms make use of some basic functions with self-explanatory names

like drand(min,max), which returns a random value betweenmin andmax. Instruc-

tions in row (7) and (10) of Alg.5.3 implement the idea that the structural mutation

should have, to certain degree, a general direction in terms of shrinking or growing

the genotype-size. In this case the initial value ofDelProb in instruction (3) causes a

tendency to add new parts to the genotype.

Algorithm 5.3 MutateStructureInfo(·).

Input: genotype.

Output: Mutatedgenotype.

(1) NodeSize← GetNumberOfNodes(genotype)
(2) NodeSize2Mutate← round(

√
(NodeSize·drand(0,1)3)

(3) DelProb← 0.4

(4) for i← 1, . . . ,NodeSize2Mutate

(5) node← GetRandomGenotypeNode(genotype)
(6) if drand(0,1) < DelProb

(7) DelProb← MIN(0.95,DelProb·1.2)
(8) genotype← DelSubtree(genotype,node)
(9) else

(10) DelProb← MAX(0.05,DelProb·0.8)
(11) genotype← AddPossibleSubtree(genotype,node)
(12) end if
(13) end for
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5.4.4 Implemented Variable Information Mutation

The variable mutation operation is outlined in Alg.5.4, which performs mutation of

real valued decision variables by means of evolutionary strategies and mutation of

integer valued decision variables by increasing, decreasing or random replacement of

the original value. The decision variables are namedv, the coupled strategy parameter

is referred asvsp and the in the genotype defined range for the decision variablev is

given byvmin andvmax.

Algorithm 5.4 MutateVariableInfo(·).

Input: genotype.

Output: Mutatedgenotype.

(1) NodeSize← GetNumberOfNodes(genotype)
(2) for all nodesn in genotype

(3) if drand(0,1) < drand(0,0.05)
(4) randomly reinitialize all decision variables in n

(5) else
(6) for all decision variablesv in n

(7) if type(v) = real

(8) MutateRealValuedVariable(v,vsp) (Alg. 5.5)

(9) end if
(10) if type(v) = integer

(11) MutateIntegerValuedVariable(v) (Alg. 5.6)

(12) end if
(13) end for
(14) end if
(15) end for
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Algorithm 5.5 MutateRealValuedVariable(·).

Input: v,vsp

Output: Mutatedv,vsp.

(1) r ← MAX(drand(0,1),0.000001)
(2) vsp← vsp·exp(0.1·

√
−2· log(r) ·sin(6.283185307·drand(0,1)))

(3) if vsp > vsp
max or vsp < vsp

min

(4) vsp← drand(vmin,vmax)
(5) end if
(6) r ← MAX(drand(0,1),0.000001)
(7) v← v+vsp·

√
−2· log(r) ·0.001

(8) if v > vmax or v < vmin

(9) v← drand(vmin,vmax)
(10) end if

Algorithm 5.6 MutateIntegerValuedVariable(·).

Input: v.

Output: Mutatedv.

(1) if drand(0,1) < 0.005

(2) if drand(0,1) < 0.5

(3) if drand(0,1) < 0.5

(4) v← v+1

(5) else
(6) v← v−1

(7) end if
(8) else
(9) v← round(drand(vmin,vmax))

(10) end if
(11) if v > vmax or v < vmin

(12) v← round(drand(vmin,vmax))
(13) end if
(14) end if
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5.4.5 Implemented Evolutionary Loop

Algorithm 5.7briefly outlines all steps that are performed during the evolutionary pro-

cess to identify an optimal DTSFM. The stop criteria of this evolutionary loop could

be a fitness value, a generation index or elapsed time. Note that in this implementation

an individual (model) is the better, the smaller the fitness value becomes. This sounds

irritating but it simplifies the fitness calculation and is an often used procedure. Dur-

ing the evolutionary process the fittest genotype is always stored as elite genotype. In

the implementation the elite genotype has the index zero (Indi0).

5.4.5.1 Initialization of the Genotype

The initialization in instruction (1) of Alg.5.7 is done by buildingIndiSizegenotypes

with help of the genotype-template5.1. The creation of each genotype starts always

with the root-node. Subsequently valid nodes are added at random and filled with de-

cision variables. The decision variables are also initialized randomly but within valid

ranges provided by the genotype-template. The implemented initialization supports

”small” structures which will be subsequently driven to bigger structures. This initial-

ization procedure is motivated by the fact that very special and narrow support areas

can cause a failure in the parameter optimization process. This happens, for example,

if not enough data-patterns lie in the support areas of the rules and the overdetermined

system of linear equation can not be solved.

5.4.5.2 Generalization Error Estimation as Fitness Factor

The DTSFM fitness is proportional to the normalized mean square error of the com-

puted model output, computed with help of Eq. (3.19), to the desired output. The

model output is calculated by a function referred asCvModelOutput(·) (see instruc-

tion (15) in Alg. 5.7), which indicates that a cross-validation (see Sec.2.6.3) is per-

formed. By assuming a 10 times cross-validation (cv = 10) the cross-validation is

done in the following way. After the genotype to phenotype mapping the model pa-

rameters are determinedcv times on the base of(cv−1)
cv available training data. Each

time the model output is calculated without using the data that were used for param-

eter optimization. These outputs are added to the total model output vector. Because

numerous different splittings of the dataset are possible, it is not a complete cross-

validation. On the other hand the leave-one-out method, the computationally cheapest
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complete cross-validation, tends to include unnecessary components in the model, and

has been shown to be asymptotically incorrect [174]. Other authors also showed that

the leave-one-out method underestimates the true predictive error [119] and does not

work well for data with strong clusterization [50].

To keep the golden mean, a cross-validation very similar to Monte Carlo cross-

validation (MCCV) [171] was implemented. In MCCV the data are partitionedM

times into disjoint train and test subsets, where the test subset is a fractionβ = (cv−1)
cv

of the overall data [20]. The main difference between MCCV and normal cross-

validation is that in MCCV the different test subsets are chosen randomly and need

not be disjoint.

In this thesis the subsets are also chosen randomly for each complete cross-

validation estimation, but they are disjoint. Every generation the generalization error

estimation of the elite individual is recalculated as an average of the prior and the

actual cross-validation estimation (see instruction (23) in Alg.5.7). This procedure

decreases the probability that a small model generalization error estimation is based

on a disadvantageous and seldom subset selection. On the other hand every genera-

tion it is possible that a new model with a ”very good” generalization error estimation,

possibly based on a disadvantageous subset selection, replaces the elite individual. To

hold down the probability of these undesired occurrences the subsets are forced to be

disjoint.

5.4.5.3 Fitness Penalization by Interpretability Factors

As discussed the interpretability of the resulting model can be a crucial aspect if, for

example, the user wants to extract knowledge out of the model. By using b-splines

as fuzzy sets and a complete rule-base with ”don’t care” premises only the number

of possible fuzzy sets on each input, the number of ”non-don’t care” premises and

the number of simultaneously activated rules are of interest2. The complementarity

condition implicitly holds for b-spline based fuzzy sets. The first two interpretability

factors can be fulfilled by an appropriate setting of the model parameters (e.g. the

variablesmin/max kernelandmin/max premisein the genotype-template5.1). Thus,

only the number of simultaneously activated rules is calculated in the evolutionary

loop, whereIntFactor3(·) of instruction (16) in Alg.5.7 implements Eq. (3.15).

2Until chapter7 the ”leveling” interpretability factorIF4 (Sec.3.15) will not be discussed.
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Algorithm 5.7 EvolutionaryLoop(·)

Input: Genotype Template, evolutionary parameters, DTSFM parameters.

Output: Evolutionary optimizedDTSFM.

(1) pop← InitPop(GenotypeTemplate, IndiSize)
(2) f itnesselite← MAXDOUBLE
(3) generation← 0
(4) while StopCriteria= FALSE
(5) f itnessBestInGen← MAXDOUBLE
(6) if generation> 0
(7) pop← crossover(pop) (Alg. 5.2)
(8) end if
(9) for i← 0, . . . , IndiSize

(10) if genotypei > 0 and generation> 0
(11) genotypei ← MutateStructureInfo(genotypei) (Alg. 5.3)
(12) genotypei ← MutateVariableInfo(genotypei) (Alg. 5.4)
(13) end if
(14) DTSFMi ← genotype2phenotype(genotypei) (Sec.5.2.2)
(15) nmsei ← NMSE(CvModelOutput(DTSFMi),DesiredOut put)
(16) interpretabilityi ← IntFactor3(DTSFMi) (Eq.3.13)
(17) f itnessi ← nmsei + 1

interpretabilityi
(Sec.4.3.4.3)

(18) if f itnessi < f itnessBestInGen

(19) f itnessBestInGen← f itnessi
(20) genotypeBestInGen← genotypei
(21) end if
(22) end for

(23) f itnesselite← ( f itnesselite·(ageelite−1)+ f itnesselite)
ageelite

(24) if f itnessBestInGen< f itnesselite

(25) f itnesselite← f itnessBestInGen

(26) genotypeelite← genotypeBestInGen

(27) end if
(28) pop← TournamentSelection(pop,TournamentSize) (Sec.4.4.3.3)
(29) generation← generation+1
(30) end while
(31) DTSFM← genotype2phenotype(genotypeelite) (Sec.5.2.2)
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5.5 Summary

This chapter presented the description of the complete EA implementation for DTSFM

identification. First of all the decision to use the Pittsburgh approach for encoding

was justified. This was followed by presenting a possible genotype tree structure

and the concerning genotype-template. The template was formulated on the base of

grammar4.2. After this the most important parts of the EA were described in pseudo-

code.

At this stage all required parts and information for data-driven modeling via EC

is provided and thus, in the next chapter the described implementation is tested on an

artificial and on a real world dataset.



Chapter 6

Data Analysis

In this chapter the developed concepts and algorithms will be applied to an artificial

and to a complex real world problem. The EA implementation as described in chap-

ter5 is used for both datasets.

6.1 Artificial Data

The purpose of this section is to validate the in the last chapter provided EA. By using

an artificial dataset it is best possible to check if the EA is able to select the correct

inputs and to cover the interesting regions by rules. The artificial dataset was created

by generating 31 times 31 uniformly distributed data points of the function given by

g2(u1,u2) = 8·sin(10u2+5u+1) ·2
(

e−( u2−0.1
0.25 )2

−0.8·e−( u2+0.75
0.15 )2

−0.4·e−( u2−0.8
0.1 )2

)
.

The model output is illustrated in Fig.6.1and the function nameg2 is taken over from

the below mentioned papers. Originally the problem is a function approximation

problem [128] and it was shown that this can be done very efficiently using a b-spline

based model [196]. The authors used a complete rulebase and presented the function

approximator only two features and the concerning output. A very high accuracy was

obtained by using only 60 receptive fields (rules).

In the following the original input space will be widened by 20 additional inputs,

which are noisy versions of the original ones. The noise ratio reaches from standard

deviation 0.05 to standard deviation 0.5 with mean zero of the original values. Thus,

107
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Figure 6.1: The artificial dataset.

the task is now to do a function approximation and to select the best possible input fea-

ture set to perform this function approximation. Input columns 0 and 11 (see Fig.6.2)

were originally used to calculate the desired output depicted in Fig.6.1. We expect

that the EA identifies these originally used inputs, or at least that the selected DTSFM

utilizes features with a low noise ratio.

Figure 6.2: The used input dataset to approximate the functiong2. Column 1 to 10 are
noisy versions of column 0 and column 12 to 21 are noisy versions of column 11. The
input on the x-axis is plotted against the concerning output (of the noiseless input) on
the y-axis.
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Three evolutionary runs utilizing genotype-template5.1 were performed. The

EA was implemented as described in Sec.5.4beside that the fitness penalizing instruc-

tions (16)-(17) in Alg.5.7 were not used. All three evolutionary modeling processes

were activated with identical parameters and a different random generator initializa-

tion. The best run results in a model which produces a mean square error (MSE)

of 10.1345 by using 49 rules. The MSE was calculated by presenting the identified

model the same input patterns as in [128,196]. The used inputs and the coverage with

fuzzy sets of this model are depicted in Fig6.3 and the concerning model output is

shown in Fig.6.4(b).

col=000 col=001 col=012

Figure 6.3: Used fuzzy sets to approximate function output depicted in Fig.6.4(b).

The mean MSE of all three runs result in 10.92 and the smallest model uses

only 21 rules. In comparison to the results in [196] this is not so impressive (MSE

= 2.8 with 60 rules), but by considering that an approach with equi-spaced b-spline

distribution and a complete rulebase with 64 rules (without ”don’t care” premises)

leads to a MSE of 10.91 the results are more than acceptable.

Furthermore, it has alway to keep in mind that the EA also has to select the

relevant inputs and to choose premises from a huge amount of possible premises.

Because of this a cross-validation size of 31 was used. Other parameters were set to

one hour calculation time (AMD XP2000+ CPU) leading to, depending on the run, 59

to 85 generations1. Each generation a population of 80 individuals were calculated.

1It should be remarked that the algorithms were not fully optimized for speed. For example lookup
tables could be used more extensively to speed up the calculations. The author estimates that a two to
ten times faster computation is possible.
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(b) Approximated function output.

Figure 6.4: Original and approximated function output.

As parameters for the target modelmin/max premise= 1/3,min/max order= 1/3,

min/max coded rule= 10/100,min/max kernel= 1/15 andmin/max feature= 1/3 were

chosen. Note that the three best models use exactly two premises in each rule.

The same parameters were used to calculate three ”headless chicken” [143] test

runs by simply omitting crossover in the EA. All of these runs show slower conver-

gence behavior and all runs lead to higher model MSEs as obtained by the worst

identified model using crossover. After these encouraging results with artificial data,

the approach has to confirm the shown capabilities by applying it to a complex real

world problem.
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6.2 Real World Data

In February 2004 approximately 23 million [83] chemical compounds were registered

in the Chemical Abstract Service. Because of their abundance and wide use in numer-

ous fields of production, a better understanding of their ecotoxicological impact on

plant life, wild life, and the environment in general is of high interest. Apart from the

ethical considerations associated with the use of animals, models which can give a clue

to toxicity are of highly economical use, because they avoid useless, time consuming

and expensive pilot batches.

6.2.1 Quantitative Structure Activity Relationships

In the following the widely accepted assumption is supported that macroscopic prop-

erties like toxicity and ecotoxicity strongly depend on microscopic features and the

structure or the similarity [159] of molecules. This assumption is referred asquantita-

tive structure activity relationshipsand was applied in the past years to a wide variety

of chemical, biological, physical, and technological properties [84,114].

6.2.2 Data Description

The used toxicity dataset was built up by the U.S Environmental Protection Agency

[44,45,46] by starting from a revision of experimental data from literature. The dataset

is one of the biggest available and furthermore very reliable [162]. Nevertheless, the

dataset is based on experimental results involving living beings and thus, the testbed

could never be identical. Therefore, the dataset is more or less noisy with a certain

probability of containing outliers. The used dataset contains 568 organic compounds

commonly used in industrial processes. Each compound is described by 167 molec-

ular descriptors (see Sec.6.2.3) and one toxicity value. Twelve of the molecular de-

scriptors (feature 126-137) provide no information because the minimum descriptor

value equals the maximum descriptor value for all molecules. These descriptors were

removed from the dataset yielding in a total number of 155 descriptors. For a deeper

chemical inside the interested reader is referred to [96]. The dataset was used in the

European Community project IMAGETOX [79] (Intelligent Modeling Algorithms for

General Evaluation of TOXicities) and according to the project rules, it is not allowed
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to distribute the data. However, people can easily ask the project member Dr. Emilio

Benfenati [11] to obtain it.

The toxicity value referres to the acute toxicity for the fish species fathead min-

now (Pimephales promelas) and is expressed as -log(LC50(mmol/l)), with LC50 as

abbreviation for lethal concentration with 50% death rate after 96 hours. Thus, a high

toxicity value expressed in the -log(LC50(mmol/l) measure is induced by the fact that

only few molecules per mmol are needed to cause the above mentioned death rate. A

high -log(LC50(mmol/l) value stands for a high aquatic toxicity.

6.2.3 Molecular Descriptors

The descriptors are used to mathematically characterize the molecules. Many of the

descriptors were calculated by the Environmental Chemistry and Toxicology Lab-

oratory at Istituto Mario Negri [118], using special software like Hyperchem 5.0,

CODESSA 2.2.1 and Pallas 2.1. The set of descriptors can be split, according to

the classification schema present in CODESSA [96] into six categories.

Constitutional descriptors depending on the number and type of atoms, bonds, and

functional groups.

Geometrical descriptors contain information about the molecular surface area and

volume, moments of inertia, shadow area, projections, and gravitational indices.

Topological descriptors are molecular connectivity indices which are related the the

degree of branching in the compounds.

Electrostatic descriptors such as partial atomic charges and other depending on the

possibility for some sites in the molecule to form hydrogen bonds.

Quantum-Chemicalsdescriptors like the total energy of the molecule, ionization

potentials, the energies of the lowest unoccupied and highest occupied orbital,

etc.

Physicochemicaldescriptors such as logD pH5.

In the chemical community it is common to classify descriptors with respect to

their correlation to the desired outputy. The Pearson Product-Moment Correlation

Coefficient or correlation coefficient for short is in the following referred asR. R is a
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measure of the degree of linear relationship between two variables, i.e. the experimen-

tal toxicity valuey and the by a model computed toxicity value ˆy. While in regression

the emphasis is on predicting one variable from the other, in correlation the emphasis

is on the degree to which a model may describe the relationship between two vari-

ables. In regression the interest is directional, one variable is predicted and the other

is the predictor; in correlation the interest is non-directional, the relationship is the

critical aspect. The correlation coefficientR may take on any value between plus and

minus one, where the sign of the correlation coefficient defines the direction of the

relationship, either positive or negative. In this thesis this direction is not important

and therefore only absolute correlations values are taken into account.

Many papers use instead ofR the squared correlation value to present the

achieved results. In the following also squared correlation values, referred asR2 will

be used, whereR2 is given by

R2 =

(
∑M

m=1(ym− ȳ)(ŷm− ¯̂y)√
∑M

m=1(ym− ȳ)2
√

∑M
m=1(ŷm− ¯̂y)2

)2

, (6.1)

with M : number of experimental toxicity measurements,

y =
1
M

M

∑
m=1

ym,

ŷ =
1
M

M

∑
m=1

ŷm.

The squared correlation is also known as thecoefficient of determination. It is one of

the best means for evaluating the strength of a relationship. For example, we know

that the correlation between experimental toxicity and predicted toxicity isR= 0.8. If

we square this number we will findR2 = 0.64. Thus, 64 percent of the experimental

toxicity is directly accounted for the predicted toxicity and vice versa. For fast com-

parison Tab.6.1 list the descriptor classification and the concerning correlation and

squared correlation values.
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Classification Correlation Squared Correlation
substantial descriptors | R | ≥ 0.99 | R2 | ≥ 0.9801
important descriptors 0.99> | R | ≥ 0.80 0.9801> | R2 | ≥ 0.64
likely descriptors 0.80> | R | ≥ 0.50 0.64> | R2 | ≥ 0.25
specific descriptors 0.50> | R | 0.25> | R2 |

Table 6.1: Common classification of molecular descriptors.

6.2.4 Toxicity Prediction With Multi-Linear Regression

A simple (multi)linear regression should always be one of the first steps in modeling

a new dataset. Therefore, the best descriptor concerning the correlation to the output

was computed by a linear regression. Furthermore the best possible combination of

up to four descriptors was calculated by computing the resulting correlations of all

possible permutations. The best four-dimensional linear model results in a squared

correlation to the experimental obtained output ofR2 = 0.6482. Tab.6.2 lists the

results and the identified (multi)linear models to obtain these results. All more flexible

models have to yield a better accuracy to legitimate them-self.

R2 Feat. Feature Name Polynomial Model
0.4773 151 logD pH5 0.0356386+0.447185·u0

0.6056 41 Molecular weight −1.21074+0.00884406·u0

155 logD pH9 +0.340867·u1

0.6269 11 Relative number of H atoms 0.0593391−2.3744·u0

50 Kier & Hall index (order 0) +0.196906·u1

155 logD pH9 +0.334053·u2

0.6482 49 Randic index (order 3) −1.32979+0.228086·u0

53 Kier & Hall index (order 3) +0.286063·u1

99 Topographic electronic index −0.834284·u2

155 logD pH9 +0.235826·u3

Table 6.2: Best found squared correlation values by performing (multi)linear regres-
sions for all possible models using one, two, three and four input features.

6.2.5 Toxicity Prediction With DTSFMs

All together 90 evolutionary runs were performed to calculate a validated model for

toxicity prediction. All of these runs were done by utilizing genotype-template5.1.

Again the EA implementation as described in Sec.5.4 was applied. The runs can
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be divided into three experiment. In the first and second experiment, each involving

36 EA runs, the complete available descriptor set was used as input for the model

identification process. In these experiments no interpretability measure was used to

modify the fitness of the candidate models. Parameters differ only in the number of

allowed input features, allowed number of premises of a rule and the cross-validation

size.

The most often selected features of all 72 computed models are than used in

Sec.6.2.5.3to build a reduced descriptor set. On this reduced descriptor set again 18

models are calculated, this time with a fitness penalized by the fulfillment value of an

interpretability factor.

6.2.5.1 First Experiment Allowing Three Premises

In the evolutionary runs of the first experiment the maximal allowed premises were set

to three. This was done by setting the genotype-template variablesmin/max premises

= 1/3. All together 36 runs were calculated with three different settings for the

genotype-template variablesmin/max features, namely 1/5, 1/10 and 1/15. The evolu-

tionary parameters for each of the runs were set to population size = 100, tournament

size = 10 and one hour calculation time was chosen as stop criterion. Furthermore one

half of the runs used as fitness for the candidate models a 8 time cross-validated nor-

malized error estimation and the other half a 71 time cross-validated normalized error

estimation. The chosen cross-validation sizes are founded on the available number of

568 molecules. Thus, a cross-validation size of 8 yields in data-subsets of size 71 and

vice versa.

For each different parameter setting six runs were performed. Table6.3 shows

the best, the mean and the worse model results for each setting. The DTSFM resulting

in the bold red printed values is presented in greater detail.

The inputs of this model are listed in Tab.6.4. Figure 6.5 shows the used

fuzzy sets and the concerning data distribution of the model inputs. The calculated

model output is plotted against the experimental toxicity values, which is illustrated

in Fig. 6.6.
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best mean worst
max Feat. CV NMSE R2 Rules NMSE R2 NMSE R2

5 8 0.2304 0.6854 9 0.2403 0.6721 0.2485 0.6608
5 71 0.2317 0.6837 11 0.2451 0.6653 0.2601 0.6448
10 8 0.2220 0.6941 14 0.2308 0.6849 0.2476 0.6619
10 71 0.2219 0.6970 11 0.2315 0.6839 0.2457 0.6645
15 8 0.2166 0.7043 16 0.2197 0.7000 0.2228 0.6958
15 71 0.2156 0.7056 12 0.2266 0.6907 0.2327 0.6823

Table 6.3: Toxicity modeling results of experiment one. The model (bold-red) inputs,
fuzzy sets and output are shown by Tab.6.4, respectively, Fig.6.5and Fig.6.6.

col=010 col=029 col=049 col=061 col=070 col=083

col=129 col=132 col=149 col=150 col=153

Figure 6.5: Input features as listed in Tab.6.4covered by the fuzzy sets with input-data
(x-axis) versus experimental toxicity data (y-axis).

Descriptor Class Feat. Descriptor Name

Constitutional 10 Relative number of H atoms
Constitutional 29 Relative number of single bonds
Topological 49 Kier&Hall index (order 0)
Topological 61 Average Bonding Info. content (order 0)
Topological 70 Bonding Info. content (order 1)
Geometrical 83 ZX Shadow
Electrostatic 129 HA dependent HDSA-1
Electrostatic 132 HA dependent HDSA-2/TMSA
Physicochemical 149 logD pH3
Physicochemical 150 logD pH5
Physicochemical 153 logD pH7.4

Table 6.4: Used descriptors of the best model of Tab.6.3.
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Figure 6.6: Experimental toxicity versus predicted toxicity of the best DTSFM of
experiment one with model inputs as given in Tab.6.4.

The illustrated model uses only 12 rules with a total of 14 premises. Thus, only

two rules uses two premises. The squared correlation value is 0.7056 which is equiva-

lent to a correlation of 0.84. A descriptor with this magnitude of correlation is referred

as important and so should the model. It is interesting that very few of the calculated

models make use of more than one premise in each rule. This could be caused by an

inadequacy search of the EA or because of easy to model QSAR. The latter is more

likely since the complex relationships of the artificial dataset were established by the

EA. On the other hand it is not possible to model to many special dependencies be-

cause a high number of dependencies need also a high number of data pattern to model
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the process. To check if more premises will be used if more premises are allowed in

the modeling process experiment two was performed.

6.2.5.2 Second Experiment Allowing Several Premises

The second experiment is a retake of the first one, except that more premises are al-

lowed in the evolutionary search. To be precisely in this experiment the number of al-

lowed premises is set to the number of allowed features. Again 36 models (always six

with the same settings) were calculated and the results are listed in Tab.6.5. Because

of the bigger search space and the possible high flexibility of the candidate models in

the following the most flexible model with the more reliable cross-validation size is

depicted in greater detail, although it is not the best found model.

The computed squared correlation of this model to the experimental toxicity val-

ues is 0.6784. The corresponding correlation value is 0.8237 which classifies this

model also as important. The model uses 10 rules, each rule consisting of only one

premise. The overall convergence of the EA is slower than in the first experiment and

it can be seen that for 10 and 15 features the 8 time cross-validated models clearly

outperform the 71 times cross-validated ones. In general this is an indication for over-

fitting, but if so, the concerning models should offer a higher flexibility as the 71 times

cross-validated ones. This is not the case since nearly all models use one premise in

each rule. The conclusion is the same as in experiment one. It seems that there exist

simple and substantial relations between the descriptor values of a molecule to the tox-

icity of this molecule. It is most likely that a modeling of more specific dependencies

needs more data and/or more precise experimental toxicity values.

But there is no reason to dramatize. In comparison to other QSAR modeling

methods [123,124] using the same dataset, the presented results seems to be superior

in prediction accuracy as well as in model simplicity (and therefore more reliable),

although a direct comparison is not really possible due to the different validation pro-

cedures. To further increase the accuracy of the modeling process, the input dataset

is reduced to decrease the search space for candidate models. This is done by select-

ing the most often used features in models of this and the first experiment as listed in

Tab.6.7. For the interested reader the never used features are also listed in Tab.6.8.
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best mean worst
max Feat. CV NMSE R2 Rules NMSE R2 NMSE R2

5 8 0.2303 0.6856 9 0.2456 0.6647 0.2627 0.6413
5 71 0.2336 0.6813 7 0.2477 0.6620 0.2634 0.6410
10 8 0.2143 0.7074 13 0.2356 0.6784 0.2528 0.6548
10 71 0.2369 0.6765 8 0.2437 0.6672 0.2551 0.6517
15 8 0.2182 0.7020 15 0.2383 0.6748 0.2584 0.6474
15 71 0.2356 0.6784 10 0.2504 0.6581 0.2774 0.6212

Table 6.5: Toxicity modeling results of experiment two. The model (bold-red) inputs,
fuzzy sets and output are shown by Tab.6.6, respectively, Fig.6.7and Fig.6.8.

col=001 col=012 col=014 col=046 col=059 col=069

col=088 col=101 col=149 col=151

Figure 6.7: Input features as listed in Tab.6.6covered by the fuzzy sets with input-data
(x-axis) versus experimental toxicity data (y-axis).

Descriptor Class Feat. Descriptor Name

Quantum-Chemicals 1 Binding Energy (kcal/mol)
Constitutional 12 Relative number of O atoms
Constitutional 14 Relative number of N atoms
Topological 46 Randic index (order 1)
Topological 59 Average Complementary Info. content (order 0)
Topological 69 Average Bonding Info. content (order 1)
Geometrical 88 ZX Shadow / ZX Rectangle
Electrostatic 101 PPSA-1 Partial positive surface area
Physicochemical 149 logD pH3
Physicochemical 151 logD pH6.5

Table 6.6: Used descriptors of the best model of Tab.6.5.
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Figure 6.8: Experimental toxicity versus predicted toxicity of the selected DTSFM of
experiment two with model inputs as given in Tab.6.6.
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Index Descriptor Name Descriptor Class Frequency

2 Heat of Formation (kcal/mol)? Quantum-Chemicals 5
5 LUMO (eV)? Quantum-Chemicals 16
8 Relative number of C atoms Constitutional 9
10 Relative number of H atoms Constitutional 16
12 Relative number of O atoms Constitutional 12
29 Relative number of single bonds? Constitutional 16
40 Molecular weight? Constitutional 13
42 Gravitation index (all bonds) Constitutional 11
43 Gravitation index (all pairs) Constitutional 6
46 Randic index (order 1) Topological 6
48 Randic index (order 3) Topological 8
49 Kier&Hall index (order 0)? Topological 14
53 Kier shape index (order 1) Topological 9
64 Information content (order 1) Topological 11
65 Average Structural Information content (order 1)Topological 5
66 Structural Information content (order 1) Topological 9
69 Average Bonding Information content (order 1) Topological 6
70 Bonding Information content (order 1) Topological 8
74 Structural Information content (order 2) Topological 6
77 Average Bonding Information content (order 2) Topological 9
80 Moment of inertia A Geometrical 5
83 XY Shadow Geometrical 5
88 ZX Shadow / ZX Rectangle Geometrical 18
90 Molecular volume / XYZ Box Geometrical 8
95 Min partial charge (Qmin) Electrostatic 6
104 FPSA-1 Fractional PPSA (PPSA-1/TMSA) Electrostatic 6
105 FNSA-1 Fractional PNSA (PNSA-1/TMSA) Electrostatic 8
115 PPSA-3 Atomic charge weighted PPSA? Electrostatic 6
116 PNSA-3 Atomic charge weighted PNSA Electrostatic 5
118 FPSA-3 Fractional PPSA (PPSA-3/TMSA)? Electrostatic 20
119 FNSA-3 Fractional PNSA (PNSA-3/TMSA) Electrostatic 5
149 logD pH3 Physicochemical 18
150 logD pH5 Physicochemical 16
151 logD pH6.5 Physicochemical 11
152 logD pH7 Physicochemical 6
153 logD pH7.4 Physicochemical 18
154 logD pH9? Physicochemical 19

Table 6.7: Most frequently used molecular descriptors in all evolutionary computed
DTSFMs. The eight descriptors marked with a star were also used in [122] who
selected 17 descriptors (16 of the descriptors are present in the dataset used for this
thesis) out of a nearly identical descriptor-set with help of a principle component anal-
ysis.
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Index Descriptor Name Descriptor Class
16 Relative number of S atoms Constitutional
17 Number of F atoms Constitutional
18 Relative number of F atoms Constitutional
20 Relative number of Cl atoms Constitutional
23 Number of I atoms Constitutional
24 Relative number of I atoms Constitutional
26 Relative number of P atoms Constitutional
27 Number of bonds Constitutional
30 Number of double bonds Constitutional
31 Relative number of double bonds Constitutional
56 Info. content (order 0) Topological
60 Complementary Info. content (order 0) Topological
62 Bonding Info. content (order 0) Topological
73 Average Structural Info. content (order 2) Topological
81 Moment of inertia B? Geometrical
82 Moment of inertia C Geometrical
84 XY Shadow / XY Rectangle Geometrical
85 YZ Shadow Geometrical
86 YZ Shadow / YZ Rectangle Geometrical
99 Topographic electronic index (all bonds) Electrostatic
109 PNSA-2 Total charge weighted PNSA Electrostatic
110 DPSA-2 Difference in CPSAs (PPSA2-PNSA2) Electrostatic
112 FNSA-2 Fractional PNSA (PNSA-2/TMSA) Electrostatic
113 WPSA-2 Weighted PPSA (PPSA2*TMSA/1000) Electrostatic
122 RPCG Relative positive charge (QMPOS/QTPLUS) Electrostatic
123 RPCS Relative positive charged SA (SAMPOS*RPCG)Electrostatic
130 HA dependent HDSA-1/TMSA Electrostatic
133 HA dependent HDSA-2/SQRT(TMSA) Electrostatic
135 HA dependent HDCA-1/TMSA Electrostatic
142 HASA-2/TMSA Electrostatic
145 HACA-1/TMSA Electrostatic
146 HACA-2 Electrostatic
148 HACA-2/SQRT(TMSA) Electrostatic

Table 6.8: Molecular descriptors never used in all evolutionary computed DTSFMs.
It is notable that one of the descriptors, namely ”Moment of inertia B” was one of 17
selected descriptors in [122].
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6.2.5.3 Model Identification on the Reduced Feature Set

As mentioned above the third experiment was performed using a reduced feature set

with molecular descriptors as given in Tab.6.7. This feature set was derived by using

all features which were used at least five times during experiment one and experiment

two. Figure6.9 gives an overview of the distribution of used features during the

modeling process in experiment one and two. In the following evolutionary runs only

37 inputs were considered, which significantly reduces the search space for an optimal

model.
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Figure 6.9: Frequency distribution of used features in evolutionary identified models
using the complete feature set. The dashed blue line indicates that for the final model
only the 37 most often selected features were used.

With help of this experiment the final best model should be identified. Because of

this it becomes necessary to make use of the implemented penalizing scheme, which

favorites interpretable models. All parameters were chosen as in experiment one,

except that only the more reliable 71 times cross-validation procedure is used and that

the fitness of each candidate DTSFM is proportional to the normalized MSE and the

penalty factor computed by Eq. (3.13). This penalizing scheme should encourage the

modeling process to use models with at most four simultaneously activated rules.

The summarized results of the 18 evolutionary runs are presented in Tab.6.9.

Although the best model yield in a squared correlation of 0.7021 to the experimental

toxicity the slightly worse, but much smaller model is presented in greater detail. This

very sparse model uses only six rules with eight premises and its computed output
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has a squared correlation to the experimental toxicity values of 0.7002 (normal cor-

relation is 0.8368). Table6.10lists the features selected by this model and Fig.6.11

illustrates the computed versus the experimental toxicity values. The interpretability

value of simultaneously activated rules were for all final models calculated to one,

meaning that in all models at most four rules are activated simultaneously. Thus, the

presented model is fully interpretable in terms of the very strict objective IM defined

in Sec.3.3.3.

best mean worst
max Feat. CV NMSE R2 Rules NMSE R2 NMSE R2

5 71 0.2196 0.7002 6 0.2428 0.6685 0.2629 0.6410
10 71 0.2252 0.6925 7 0.2321 0.6830 0.2384 0.6744
15 71 0.2182 0.7021 10 0.2284 0.6881 0.2385 0.6744

Table 6.9: Toxicity modeling results with the reduced feature set. The model (bold-
red) inputs, fuzzy sets and output are shown by Tab.6.10, respectively, Fig.6.10and
Fig. 6.11.

Descriptor Class Feat. Descriptor Name

Constitutional 3 (10) Relative number of H atoms
Constitutional 4 (12) Relative number of O atoms
Topological 11 (49) Kier&Hall index (order 0)
Geometrical 21 (88) ZX Shadow / ZX Rectangle
Physicochemical 36 (154) logD pH9

Table 6.10: Used descriptors of the highlighted model of Tab.6.9.

col=003 (010) col=004 (012) col=011 (049) col=022 (088) col=036 (154)

Figure 6.10: Input features (see also Tab.6.10) covered by the fuzzy sets used in the
DTSFM found on the reduced feature set with the concerning input (x-axis) versus
toxicity (y-axis) data. For the FM output see Fig.6.11.
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Figure 6.11: Experimental toxicity versus predicted toxicity of the DTSFM found on
the reduced feature set (see Tab.6.9). The used model inputs are given in Tab.6.10.

6.3 Summary

In this chapter the described methods and algorithms were successfully tested on an

artificial and, more important, on a complex real world dataset. It was shown that

tree-based genotypes, which are defined with the help of grammar-based genotype-

templates, are capable to perform complex system identification tasks. In example

important features were selected out of a feature set consisting of 155 molecular de-

scriptors. These features were covered by fuzzy sets and the resulting model is, with

respect to the IM measure defined in Sec.3.3.3, fully interpretable. Thus, not only the



126 Chapter 6. Data Analysis

functionality of the system identification was demonstrated, but also interesting infor-

mation for scientists who work in the field of QSAR was provided. The next chapter

will shortly summarize this thesis and will also give a selective view to possible future

work.



Chapter 7

Conclusions

This chapter will briefly summarize the proposed and developed concepts and their

application presented in this thesis. Furthermore some possible extensions are pro-

posed.

7.1 Brief Summary of Work and Discussion

Firstly a motivation for and an introduction to system identification was given and

by doing so, the crucial problems which occur during data-driven modeling were dis-

cussed. The tasks in each system identification process were listed as selecting an

analytical expression as framework for the model, selecting the model structure and

to perform parameter optimization of the model. The mathematical problem of pa-

rameter optimization in overdetermined systems were presented in greater detail. It

was justified that complexity and flexibility of a model should not be confused. Based

on this the common generalization error estimation methods were listed and observed

which of them are applicable for pure data-driven modeling.

The introspection of system identification was followed by the decision to use the

class of zero order Takagi-Sugeno fuzzy models as analytical expression. This class

of models were chosen because of their possibility to utilize powerful learning algo-

rithms based on direct least squares and because of the fact that the resulting models

can be refined or analyzed by human experts, if necessary. To retain this accessibility

for human beings, interpretability factors concerning the rule-base of Takagi-Sugeno

fuzzy models were formulated and assembled to an objective interpretability measure.

The proposed interpretability factors are easy to calculate and thus, the resulting in-

127
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terpretability measure might be beneficial for the comparisons of models derived by

different model identification schemes. Thanks to the ”good” choice of using b-splines

as fuzzy sets not all interpretability factors had to be implemented, because some were

inherently fulfilled. Nevertheless, a provision of such interpretability factors is indis-

pensable since models which are claimed to be ”interpretable” can not be compared

only on the base of accuracy.

After this the model structure selection method was chosen to base on evolution-

ary computation. This decision was justified by the fact that evolutionary methods are,

at least theoretically, capable to provide an optimal solution for the structure identifi-

cation problem. A detailed insight to evolutionary computation and especially to the

problems related with an optimal genotype representation were given.

On the base of these insights a novel and grammar based method was proposed to

formulate arbitrary genotype-templates. These genotype-templates provide a general

concept to define genotype search spaces, which cope with the observation that in EC

the challenge shifts more and more from finding a solution for the original problem,

to the task of finding a possible and adequate genotype encoding.

Moreover, a tree based genotype representation was favored and the evolution-

ary operations for this kind of representation were described and fully implemented.

The implementation was described in greater detail and the most important algorithms

were given in pseudo-code. With help of tree-based genotype representations, which

are instances of a search space defined by the concerning genotype-templates, it be-

comes possible to build commonly usable libraries, comprising genotype-templates

and the concerning genotype to phenotype mapping functions. Thus, this thesis gives

a possible solution to avoid unnecessary reimplementations of EAs. By using the pro-

posed method the concepts of modularity and reusability are applied to the design

of EAs. The selected task of system identification via DTSFMs provides a valuable

problem which was described, implemented and tested. Furthermore all relevant top-

ics which are possibly of interest for Takagi-Sugeno fuzzy modeling were outlined

and often discussed in greater detail.

The capabilities of the method was demonstrated on an artificial dataset and a

complex real world system. The first was done for testing and the second to perform

a challenging and meaningful task. During the modeling experiments important de-

scriptors for toxicity prediction were identified and a sparse and accurate model was

obtained.
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7.1.1 Inherently Fulfilling the Leveling Interpretability Condition

As already mentioned the so called leveling interpretability condition for fuzzy sets

was not implemented for the used experiments. This is firstly caused by the fact that

the artificial dataset was only motivated to test the implemented algorithms without

further intention to interpret the found models. Concerning the real world problem the

problem of different levels of maximum activations of fuzzy sets never emerged (at

least not in the best found models), because features covered by fuzzy sets of order

three b-splines were containing only one active fuzzy set.

The second and more relevant reason of the non-implementation of the leveling

condition is caused by the insight that the b-spline approach can be extended in such

a way that fuzzy sets based on this extension inherently fulfill the leveling condition.

This can be done without loosing the flexibility of b-spline based methods. In [157] it

was suggested that a fuzzy set could be constructed by more than one b-spline. This

was motivated by the attempt to overcome the direct relationship between the width

of the univariate basis functions and its order. As already mentioned in [18] it might

be necessary to have wide basis functions, for instance, to increase the initial rate of

convergence. In [18] this was implemented by so called dilated basis functions. The

extension proposed here to the standard b-spline approach is similar but not equivalent

to the use of dilated b-splines.

An extension fulfilling the leveling condition is based on a combination of at least

order−1 b-splines defined over a knot-vector consisting oforder·2−1 knots. By

doing so the maximum accumulated activation value of such combined b-splines is

guaranteed to be one.

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

Figure 7.1: Combined b-splines forming a more capable fuzzy set.

Furthermore, by combining a number of b-splines equal to their order, utilizing
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for each combined b-spline a knot-vector oforder·2 knots, the restriction of b-spline

based fuzzy sets (order> 1), which have only a single point as maximum activation

support, vanishes (see Fig.7.1).

A careful implementation of combined b-splines will result in first class fuzzy

sets, because they inherently fulfill the stated complementarity and leveling inter-

pretability factors.

7.2 Future Work

This section provides some thoughts which might be promising research areas.

7.2.1 Incorporation of Process Knowledge

As mentioned in Sec.5.4.5.3prior available knowledge based on human expertise

can already be considered in the formulation of the genotype-template and in the for-

mulation of genotype constraints. If expert knowledge is available much of these

knowledge concerns more general qualities of the output behavior of a system. For

example ”here we expect a sharp positive peak” or ”in this area the output is near

zero”. It is quite difficult to construct a hypothesis space already mentioning this kind

of constraints. A more tractable way of considering these constraints is by penaliz-

ing the fitness of the candidate solutions proportional to the constraint violation. This

strategy was also followed by the implementation of the interpretability constraintIF3.

Unfortunately we have to keep in mind that the more constraints are implemented by

using penalties, the more the problem becomes multi-objective. There exist methods

to deal with multi-objectivities in EC [31], but normally a good balance, to be pre-

cisely the desired Pareto-optimal point, of the different objectives have to be provided

by the model-designer. Some approaches try to provide several Pareto-optimal candi-

date solutions to a problem. But these methods are restricted to simple problems or

few objectives, since the number of Pareto-optimal solutions increases exponentially

with the number of objectives, i.e. with the number of constraints implemented by

penalizing candidate models.

It has also to be considered that qualitative expertise, which is not supported by

data, will not be mentioned by parameter optimization techniques based on LS. In

these cases the parameters have to be encoded into the genotype and at a certain time
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of the identification process these parameters have to be decoupled from the embedded

LS based parameter optimization technique. After decoupling the parameters from the

LS optimization these parameters are also subject of evolutionary changes, which are

influenced by penalizing the fitness due to violation of the qualitative expertise. A first

implementation and some interesting results concerning this technique are presented

in [82].

7.2.2 Hierarchical Modeling

More and more complex real world systems become subject to modeling approaches

and completely data-driven approaches are tentatively used to model them. The ap-

plication area of fuzzy rule based models has reached economic and ecological fields.

Overall, the complexity of systems which are tackled by modeling rises dramatically,

but the framework of all used models hardly ever uses hierarchical structures, although

the underlying real world problems must be assumed to be of hierarchical nature.

Thus, it becomes more and more indispensable to deal with hierarchical models.

There exist adaptive hierarchical approaches like ASMOD [97] and real hierar-

chical approaches like NetFAN [80,81]. Why it is not common to use them? Firstly,

the necessity is only given for more complex problems and many, still not considered,

low-complex problems have the potential to be solved by non-hierarchical models.

Secondly, the demands to model hierarchical systems are far more challenging and

thus the availability of implemented tools tends to zero.

Using FMs is nowadays an accepted approach and widely used in industry

and thus, the scientific focus should (and also will) move to the modeling of high-

complexity problems. Implementing hierarchical models needs many pieces and yet

these pieces are not easily available in a bundle. Furthermore, by now there is no

commonly used set of artificial benchmark data describing different hierarchical sys-

tems. The author of this thesis thinks that hierarchical modeling is an issue of highest

interest, but it is an issue where still some requirements are missing.

7.3 Summary

This last chapter gave a short summary of the presented concepts and the newly devel-

oped methods in this thesis. Although a comprehensive guideline for the data-driven
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identification of descriptive Takagi-Sugeno fuzzy models via evolutionary computa-

tion was constituted, the last section indicates that interesting extensions are imagin-

able and thus, I curiously look forward to them.



Appendix A

List of Molecules

This appendix lists the molecules contained in the toxicity dataset used in Sec.6.2.

The list of molecules subsumes the molecule number used in this thesis, the concern-

ing molecule name and a molecule code which was assigned by the US Environmen-

tal Protection Agency. This code refers to different chemical classes (see Tab.A.1 on

page139), according to a classification defined by the US Environmental Protection

Agency.

1. ”4-(hexyloxy)-m-anisaldehyde” 5
2. ”5-bromo-2-nitrovanillin” 5
3. ”p-chlorophenyl-o-nitrophenyl ether” 3.1
4. ”3’-chloro-o-formotoluidide” 10.4
5. ”di-n-butylisophthalate” 8.1
6. ”1.1-diphenyl-2-propyn-1-ol” 4.2
7. ”4.7-dithiadecane” 12.1
8. ”4.9-dithiadodecane” 12.1
9. ”2-chloroethyl-n-cyclohexyl carbamate” 21
10. ”phenobarbital” 23
11. ”2.4-dinitrophenol #9” 14
12. ”urethane” 21
13. ”salicylic acid na+ #2” 7
14. ”benzamide” 8.2
15. ”1.1-dimethylhydrazine” 11.1
16. ”pentobarbital” 23
17. ”amobarbital” 23
18. ”caffeine” 23.1
19. ”2-methyl-1.4-naphthoquinone” 6.2
20. ”2.3.4.6-tetrachlorophenol” 14.1
21. ”4-chloro-3-methyl phenol #1” 14.1
22. ”tolazoline hydrochloride” 15.5
23. ”amphetamine sulfate” 23.1
24. ”diethyl ether” 3
25. ”strychnine hemisulphate salt” 22

26. ”aniline #1” 10.3
27. ”carbaryl (sevin) #2” 21
28. ”ethanol” 4
29. ”nicotine sulfate #1” 23.1
30. ”2-hydroxybenzamide” 8.2
31. ”hexanal #2” 5
32. ”dicumarol” 8
33. ”p-phenoxybenzaldehyde” 5
34. ”methanol-rhodamine b” 4
35. ”2-propanol #1” 4
36. ”acetone #1” 6
37. ”chloroform” 2
38. ”methyl sulfoxide” 12.3
39. ”hexachloroethane #1” 2
40. ”2.2’-methylene bis(3.4.6-trichlorophenol)”
14.1
41. ”4’-aminopropiophenone” 6
42. ”1-propanol#1” 4
43. ”1-butanol” 4
44. ”1-pentanol” 4
45. ”benzene #2” 13
46. ”1.1.1-trichloroethane #1” 2
47. ”thiopental.sodium salt” 23
48. ”acetonitrile” 9
49. ”ethanal #1” 5
50. ”dichloromethane” 2
51. ”iodoform” 2

133
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52. ”2-methyl-2-propanol” 4
53. ”2.2.2-trifluoroethanol” 4
54. ”3.3-dimethyl-2-butanone” 6
55. ”pentachloroethane” 2
56. ”5.5-dimethylhydantoin” 15.5
57. ”3-methyl-3-pentanol” 4
58. ”3-methyl-1-pentyn-3-ol” 4.2
59. ”1-ethynyl-cyclohexanol” 4.2
60. ”tris(2-butoxyethyl) phosphate” 19
61. ”2-methyl-1-propanol” 4
62. ”1.2-dichloropropane” 2
63. ”1.2-diaminopropane” 10
64. ”2-butanol” 4
65. ”2-butanone” 6
66. ”1-amino-2-propanol” 4
67. ”1.1.2-trichloroethane” 2
68. ”trichloroethylene” 2.1
69. ”methyl acetate #1” 8
70. ”1.1.2.2-tetrachloroethane” 2
71. ”b-ionone” 6
72. ”4.4’-isopropylidenebis(2.6-dichlorophenol)”
14.1
73. ”p-tert-pentylphenol” 14
74. ”1.8-diamino-p-menthane” 10
75. ”a.a-2.6-tetrachlorotoluene” 13.1
76. ”acenaphthene” 13
77. ”3-methylindole” 15.6
78. ”rotenone #1” 22
79. ”diphenyl phthalate” 8.1
80. ”diethyl phthalate” 8.1
81. ”di-n-butylorthophthalate #1” 8.1
82. ”azinphos-methyl” 22
83. ”salicylanilide” 18
84. ”hexachloro-1.3-butadiene” 2.1
85. ”pentachlorophenol #7” 14.1
86. ”2.4.6-trichlorophenol #1” 14.1
87. ”3-trifluoromethyl-4-nitrophenol” 14.1
88. ”anthranilamide” 8.2
89. ”2-nitrophenol” 14
90. ”2-sec-butyl-4.6-dinitrophenol (dinoseb #1)”
14
91. ”salicylaldehyde” 5
92. ”1-naphthol” 14
93. ”2-phenylphenol” 14
94. ”3.5-dibromosalicylaldehyde” 5
95. ”naphthalene” 13
96. ”quinoline” 15.3
97. ”n.n-diethylcyclohexylamine” 10.2
98. ”n.n-diethylaniline” 10.5
99. ”2-(n-ethyl-m-toluidino)ethanol” 10.5
100. ”1-benzoylacetone” 6.1
101. ”ethyl p-aminobenzoate #2” 8
102. ”piperine (aliphatic)” 15.3

103. ”2.4-dihydroxybenzaldehyde” 5
104. ”o-xylene #1” 13
105. ”o-cresol” 14
106. ”1.2-dichlorobenzene” 13.1
107. ”2-chloroaniline #2” 10.3
108. ”2-fluorotoluene #1” 13.1
109. ”2-chlorophenol #1” 14.1
110. ”1.2.4-trimethylbenzene” 13
111. ”3.4-dichlorotoluene” 13.1
112. ”3.4-dichloroaniline #1” 10.3
113. ”allyl methacrylate” 8.3
114. ”2.3-dibromopropanol” 4
115. ”2-methylbutyraldehyde” 5
116. ”1.2.3-trichloropropane #1” 2
117. ”3-pentanone” 6
118. ”2-butanone oxime” 16
119. ”2-(diisopropylamino)ethanol” 10.2
120. ”2.4-dinitroaniline #1” 10.3
121. ”2.2’-methylenebis(4-chlorophenol)” 14.1
122. ”p-tert-butylphenol” 14
123. ”isopropylbenzene” 13
124. ”acetophenone” 6
125. ”nitrobenzene” 13
126. ”m-aminoacetophenone” 6
127. ”m-nitrotoluene” 13
128. ”n.n-dimethyl-p-toluidine #1” 10.5
129. ”p-nitroaniline” 10.3
130. ”4-nitrophenol #1” 14
131. ”p-dimethylaminobenzaldehyde” 5
132. ”1.4-dinitrobenzene” 13
133. ”n.n-diethylethanolamine” 10.2
134. ”ethylbenzene #1” 13
135. ”benzylamine” 10
136. ”benzaldehyde #1” 5
137. ”n-methylaniline” 10.4
138. ”cyclohexanone oxime” 16
139. ”2-cyanopyridine” 15.3
140. ”2-ethylpyridine” 15.3
141. ”solketal” 3.3
142. ”hexamethylenetetramine (aliphatic)” 15.4
143. ”phenyl ether” 3.1
144. ”n-ethyl-m-toluidine” 10.4
145. ”tripropylamine” 10.2
146. ”triethanolamine” 10.2
147. ”benzyl-tert-butanol” 4
148. ”1-(2-hydroxyethyl)piperazine” 15
149. ”n.n-dimethylbenzylamine” 10.2
150. ”4-acetamidophenol” 18
151. ”4-butylaniline” 10.3
152. ”nonylphenol (mixed)” 14
153. ”2-ethyl-1-hexanol” 4
154. ”4-chlorobenzaldehyde” 5



135

155. ”5-ethyl-2-methylpyridine” 15.3
156. ”5-diethylamino-2-pentanone” 10.2
157. ”diethyl malonate #1” 8
158. ”2.4-dimethylphenol” 14
159. ”dibutyl fumarate #3” 8
160. ”dibutyl adipate” 8
161. ”p-bromoaniline” 10.3
162. ”p-xylene” 13
163. ”4-methylphenol (p-cresol)” 14
164. ”4-chloroaniline #1” 10.3
165. ”4-chlorophenol” 14.1
166. ”4-toluidine #1” 10.3
167. ”isobutyl acrylate #1” 8.3
168. ”1-bromopropane” 2
169. ”acrolein #1” 5
170. ”1.2-dichloroethane” 2
171. ”2-chloroethanol #5” 4
172. ”propylamine” 10
173. ”propionitrile” 9
174. ”chloroacetonitrile” 9
175. ”ethylenediamine” 10
176. ”allyl alcohol” 4.1
177. ”2-propyn-1-ol #1” 4.2
178. ”acetaldoxime” 16
179. ”2-methyl-2.4-pentanediol” 4.3
180. ”tert-octylamine” 10
181. ”tert-butyl sulfide” 12.1
182. ”2-pentanone” 6
183. ”4-methyl-2-pentanone #2” 6
184. ”isopropyl ether” 3
185. ”toluene #1” 13
186. ”4-picoline” 15.3
187. ”chlorobenzene” 13.1
188. ”cyclohexanol” 4
189. ”cyclohexanone #2” 6.2
190. ”phenol #1” 14
191. ”3-picoline” 15.3
192. ”1-methylpiperazine” 15
193. ”2-picoline” 15.3
194. ”2-methylpiperazine” 15
195. ”propyl acetate” 8
196. ”1.3-dibromopropane #1” 2
197. ”1-bromobutane” 2
198. ”butylamine” 10
199. ”allyl cyanide” 9
200. ”1.3-diaminopropane” 10
201. ”malononitrile (nominals)” 9
202. ”2-methoxyethylamine” 10
203. ”diethylamine” 10.1
204. ”pyrrole” 15.6
205. ”tetrahydrofuran” 3.3
206. ”furan” 3.3

207. ”t-butyl disulfide” 12.2
208. ”5-methyl-2-hexanone” 6
209. ”diethyl sebacate #1” 8
210. ”2-heptanone” 6
211. ”hexane” 1
212. ”1.4-dichlorobutane” 2
213. ”amylamine” 10
214. ”valeraldehyde #1” 5
215. ”2-butyne-1.4-diol” 4.3
216. ”2-(ethylamino)ethanol” 10.1
217. ”cyclohexane” 1
218. ”pyridine #1” 15.3
219. ”s-trioxane” 3.3
220. ”6-methyl-5-hepten-2-one” 6
221. ”2-octanone” 6
222. ”2-ethoxyethyl acetate” 8
223. ”1-bromohexane” 2
224. ”hexylamine” 10
225. ”1-hexanol” 4
226. ”diethanolamine” 10.1
227. ”2-hydroxyethyl ether” 4.3
228. ”n-propyl sulfide” 12.1
229. ”n-heptylamine” 10
230. ”1.4-dicyanobutane” 9
231. ”1-heptanol” 4
232. ”1-bromooctane” 2
233. ”octylamine” 10
234. ”1-octanol #2” 4
235. ”2-(2-ethoxyethoxy)ethanol” 4
236. ”nonanoic acid” 7
237. ”2-undecanone” 6
238. ”nonylamine” 10
239. ”triethylene glycol #1” 4
240. ”1-decanol” 4
241. ”propoxur (baygon)” 21
242. ”2-methyl-3-butyn-2-ol” 4.2
243. ”2.2.2-trichloroethanol” 4
244. ”dicofol (kelthane)” 22
245. ”triphenyl phosphate” 19
246. ”fensulfothion” 22
247. ”aldicarb” 21
248. ”phenyl salicylate” 8
249. ”ethyl salicylate #1” 8
250. ”2.4.6-tribromophenol” 14.1
251. ”4-amino-2-nitrophenol” 14
252. ”benzophenone #2” 6
253. ”n-phenyldiethanolamine” 10.5
254. ”4-(diethylamino)benzaldehyde” 5
255. ”catechol” 14
256. ”1.2.4-trichlorobenzene” 13.1
257. ”2.4-dichlorophenol” 14.1
258. ”2.4-dinitrotoluene” 13
259. ”3-ethoxy-4-hydroxybenzaldehyde” 5
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260. ”vanillin #1” 5
261. ”n.n-dimethylaniline #1” 10.5
262. ”1-chloro-3-nitrobenzene” 13.1
263. ”malathion” 22
264. ”2-chloro-4-nitroaniline #2” 10.3
265. ”p-isopropyl benzaldehyde” 5
266. ”diphenylamine” 10.4
267. ”2-phenoxyethanol” 4
268. ”4-ethylphenol” 14
269. ”2-methylvaleraldehyde” 5
270. ”2.4-pentanedione #2” 6.1
271. ”ethyl hexanoate” 8
272. ”butanal #1” 5
273. ”butyl acetate” 8
274. ”1.4-dioxane #1” 3.3
275. ”dodecylamine” 10
276. ”tributyl phosphate #1” 19
277. ”5.5-dimethyl-1.3-cyclohexanedione” 6.1
278. ”1-chloro-2-propanol” 4
279. ”tetrachloroethylene #1” 2.1
280. ”2-phenyl-3-butyn-2-ol” 4.2
281. ”2.6-di-tert-butyl-4-methylphenol” 14
282. ”saccharin sodium salt hydrate” 16
283. ”dibenzofuran #2” 3.3
284. ”phenyl 4-aminosalicylate #1” 8
285. ”n.n-diethyl-m-toluamide” 8.2
286. ”propionic acid. sodium salt” 7
287. ”1-(2-aminoethyl)piperazine” 15
288. ”dibutyl succinate” 8
289. ”diethyl adipate #1” 8
290. ”2-aminoethanol” 10
291. ”ethyl acetate” 8
292. ”m-diethylbenzene” 13
293. ”1.3-dichloropropane #1” 2
294. ”hexanoic acid” 7
295. ”hexyl acetate” 8
296. ”butyl ether” 3
297. ”1-nonanol” 4
298. ”di-n-hexylamine” 10.1
299. ”o-vanillin #1” 5
300. ”3-methoxyphenol” 14
301. ”4-methoxyphenol” 14
302. ”p-dimethoxybenzene” 13
303. ”2.3-benzofuran” 3.3
304. ”1.4-diazabicyclo[2.2.2]octane” 15
305. ”adamantane” 1
306. ”disulfoton #1” 22
307. ”secobarbital. sodium salt” 23
308. ”bromacil” 22
309. ”2.5-dinitrophenol” 14
310. ”diuron” 18
311. ”p-fluorophenyl ether #1” 3.1
312. ”diazinon” 22

313. ”1-fluoro-4-nitrobenzene” 13.1
314. ”a.a.a-trifluoro-m-tolunitrile” 9
315. ”4-fluoroaniline” 10.3
316. ”2-chloro-6-fluorobenzaldehyde” 5
317. ”a.a.a-4-tetrafluoro-o-toluidine” 10.3
318. ”o-fluorobenzaldehyde” 5
319. ”a.a.a-trifluoro-o-tolunitrile” 9
320. ”a.a.a-trifluoro-m-tolualdehyde #1” 5
321. ”4-fluoro-n-methylaniline” 10.4
322. ”[(1s)-endo]-(-)-borneol #2” 4
323. ”(1s)-(-)-camphor” 6.2
324. ”cineole” 3.3
325. ”neoabietic acid #1” 7
326. ”2.3-dihydrobenzofuran” 3.3
327. ”exo-norborneol” 4
328. ”norbornylene” 1.1
329. ”2.6-pyridinedicarboxylic acid” 15.3
330. ”3-pyridinecarboxaldehyde” 15.3
331. ”5-nonanone” 6
332. ”2.3-dimethyl-1.3-butadiene” 1.1
333. ”abietic acid” 7
334. ”flavone” 3.3
335. ”2.4.6-trimethylphenol” 14
336. ”o-tolunitrile” 9
337. ”o-tolualdehyde” 5
338. ”benzoic acid. sodium salt” 7
339. ”4.6-dinitro-o-cresol #1” 14
340. ”amylbenzene” 13
341. ”tert-butyl acetate” 8
342. ”1.3-dichlorobenzene” 13.1
343. ”n-butyl sulfide” 12.1
344. ”2’-hydroxy-4’-methoxyacetophenone #1”
6
345. ”o-nitrobenzaldehyde #2” 5
346. ”4-nitrobenzaldehyde” 5
347. ”3-methyl-2-butanone” 6
348. ”2.6-dinitrophenol” 14
349. ”1.2-dibromobenzene” 13.1
350. ”n-allylaniline” 10.4
351. ”4-ethylaniline” 10.3
352. ”isovaleraldehyde” 5
353. ”2-hexanone” 6
354. ”2-tridecanone” 6
355. ”manool” 4.1
356. ”tetraethyltin” 24
357. ”1.2-dimethylpropylamine” 10
358. ”2.4-dimethyl-3-pentanol” 4
359. ”n.n-diphenylformamide #1” 8.2
360. ”diethyl benzylmalonate” 8
361. ”pentabromophenol” 14.1
362. ”2.4.6-triiodophenol” 14.1
363. ”2.4-dimethoxybenzaldehyde” 5
364. ”2-acetamidophenol #1” 18
365. ”2-chloro-4-methylaniline” 10.3
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366. ”4-ethoxy-2-nitroaniline” 10.3
367. ”methyl p-nitrobenzoate” 8
368. ”4-nitrobenzamide” 8.2
369. ”4-nitrophenyl phenyl ether” 3.1
370. ”benzyl sulfoxide” 12.3
371. ”3-acetamidophenol” 18
372. ”4-(2-hydroxyethyl)morpholine” 16
373. ”a.a’-dichloro-p-xylene” 13.1
374. ”2.5-dimethylfuran” 3.3
375. ”1.5-dichloropentane” 2
376. ”1-bromoheptane” 2
377. ”propyl disulfide” 12.2
378. ”1.6-dicyanohexane” 9
379. ”2.3.4-trichloroaniline” 10.3
380. ”5-chlorosalicylaldehyde” 5
381. ”4-propylphenol” 14
382. ”pentafluorobenzaldehyde” 5
383. ”2.2-dichloroacetamide” 8.2
384. ”1-methyl heptylamine #1” 10
385. ”2-decanone #1” 6
386. ”pentyl ether” 3
387. ”4-methyloxazole” 16
388. ”2-methylimidazole” 15.6
389. ”2-adamantanone” 6.2
390. ”a-decanolactone” 8
391. ”4.6-dimethoxy-2-hydroxybenzaldehyde” 5
392. ”propanil” 18
393. ”2.4.6-tri-tert-butylphenol” 14
394. ”3.4-dichloro-1-butene #1” 2.1
395. ”n.n-dibutylformamide” 8.2
396. ”2-butyn-1-ol” 4.2
397. ”2.5-dimethyl-2.4-hexadiene” 1.1
398. ”1-adamantanamine” 10
399. ”3-cyano-4.6-dimethyl-2-hydroxypyridine”
15.3
400. ”2.3.4.5.6-pentafluoroaniline” 10.3
401. ”carbophenothion” 22
402. ”triphenylphosphine oxide” 19
403. ”2-hydroxyethyl acrylate” 8.3
404. ”1-octyn-3-ol” 4.2
405. ”2-nonanone” 6
406. ”trans-1.2-dichlorocyclohexane” 2
407. ”p-phenoxyphenol” 14
408. ”2-hydroxyethyl methacrylate” 8.3
409. ”3-bromothiophene” 17
410. ”2.4-dichlorobenzaldehyde” 5
411. ”phenyl disulfide” 12.2
412. ”ethyl 3-aminobenzoate methanesulfonic
acid salt (ms-222)” 8
413. ”1.1.1.3.3.3-hexafluoro-2-propanol” 4
414. ”1.5-hexadien-3-ol” 4.1
415. ”3-butyn-1-ol” 4.2

416. ”cis-3-hexen-1-ol” 4.1
417. ”trans-3-hexen-1-ol” 4.1
418. ”2-acetyl-1-methylpyrrole” 15.6
419. ”4-phenylpyridine” 15.3
420. ”phenyl sulfoxide” 12.3
421. ”2-hydroxypropyl acrylate #1” 8.3
422. ”2-amino-5-bromopyridine” 15.3
423. ”diethyl benzylphosphonate” 19
424. ”4-acetylpyridine” 15.3
425. ”methyl p-chlorobenzoate” 8
426. ”butyl phenyl ether” 3
427. ”methyl 4-cyanobenzoate” 9
428. ”tetrachlorocatechol” 14.1
429. ”a-bromo-2’.5’-dimethoxyacetophenone
#1” 6
430. ”tetrabutyltin” 24
431. ”3.4-dimethyl-1-pentyn-3-ol” 4.2
432. ”n-vinylcarbazole” 15.6
433. ”3-benzyloxyaniline” 10.3
434. ”carbofuran” 21
435. ”tert-butyl methyl ether” 3
436. ”1.9-decadiene” 1.1
437. ”p-phenylazophenol” 14
438. ”3.5-diiodo-4-hydroxybenzonitrile” 9
439. ”3.5-dibromo-4-hydroxybenzonitrile #1” 9
440. ”dehydroabietic acid” 7
441. ”2-allylphenol” 14
442. ”t-butylstyrene” 13
443. ”5-bromosalicylaldehyde” 5
444. ”3-chloro-2-chloromethyl-1-propene” 2.1
445. ”3.5-dichloro-4-hydroxybenzonitrile” 9
446. ”di-n-butylterephthalate” 8.1
447. ”4.4’-dihydroxydiphenyl ether #1” 3.1
448. ”2.6-dichlorobenzamide” 8.2
449. ”n-decylamine” 10
450. ”aminocarb” 21
451. ”2.4.5-tribromoimidazole (nominal) #1”
15.6
452. ”o-ethyl o-(p-nitrophenyl
phenyl)phosphonothioate” 22
453. ”(+-)-4-pentyn-2-ol” 4.2
454. ”4-chlorocatechol” 14.1
455. ”methyl 2.4-dihydroxybenzoate” 8
456. ”pentachloropyridine” 15.3
457. ”(1r.2s.5r)-(-)-menthol” 4
458. ”1-(p-toluenesulfonyl)imidazole” 15.6
459. ”2’.4’-dichloroacetophenone” 6
460. ”n-octyl cyanide #1” 9
461. ”a.a.a-4-tetrafluoro-m-toluidine” 10.3
462. ”trans-2-phenyl-1-cyclohexanol” 4
463. ”2-ethoxyethyl methacrylate” 8.3
464. ”2.3.6-trimethylphenol” 14
465. ”n-undecyl cyanide” 9
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466. ”0-methoxybenzamide” 8.2
467. ”2.4-dichlorobenzamide” 8.2
468. ”tetrahydrofurfuryl methacrylate” 8.3
469. ”4.5-dichloroguaiacol” 14.1
470. ”benzyl methacrylate” 8.3
471. ”hexyl acrylate #1” 8.3
472. ”p-(tert-butyl)-phenyl-n-methylcarbamate”
21
473. ”1-benzylpiperazine” 15
474. ”3-(3-pyridyl)-1-propanol” 15.3
475. ”tridecylamine” 10
476. ”2-amino-4’-chlorobenzophenone” 6
477. ”methyl 2.5-dichlorobenzoate” 8
478. ”chlorpyrifos #2 (dursban)” 22
479. ”5-bromovanillin” 5
480. ”cyclohexyl acrylate” 8.3
481. ”triethyl nitrilotricarboxylate” 21
482. ”4.5-dichlorocatechol” 14.1
483. ”2.3.5.6-tetrachloroaniline” 10.3
484. ”2.6-diphenylpyridine” 15.3
485. ”1.3-dichloro-4.6-dinitrobenzene #1” 13.1
486. ”2.3-dimethylvaleraldehyde” 5
487. ”2-decyn-1-ol” 4.2
488. ”5-chloro-2-pyridinol” 15.3
489. ”isopropyl disulfide” 12.2
490. ”2.4.5-trimethoxybenzaldehyde” 5
491. ”isopropyl methacrylate” 8.3
492. ”1-hexen-3-ol” 4.1
493. ”2.3.4.5-tetrachlorophenol” 14.1
494. ”1.2-bis(4-pyridyl)ethane” 15.3
495. ”1.3-diethyl-2-thiobarbituric acid” 23
496. ”dimethyl nitroterephthalate” 8.1
497. ”5-chloro-2-mercaptobenzothiazole” 16
498. ”dimethyl aminoterephthalate” 8.1
499. ”3.6-dithiaoctane” 12.1
500. ”3-dimethylaminopropyl chloride.hcl” 10.2
501. ”4’-chloro-3’-nitroacetophenone” 6
502. ”2-amino-4-chloro-6-methylpyrimidine #1”
15.2
503. ”2.6-dimethoxytoluene” 13
504. ”2-dimethylaminopyridine” 15.3
505. ”2.2-dimethyl-1-propylamine” 10
506. ”isopimaric acid” 7
507. ”2-amino-5-chlorobenzonitrile” 9
508.
”1.1.1-trichloro-2-methyl-2-propanol(hydrate)” 4
509. ”2-dodecanone” 6
510. ”4-dimethylaminocinnamaldehyde” 5
511. ”1.3.5-trichloro-2.4-dinitrobenzene” 13.1
512. ”2-chloro-5-nitrobenzaldehyde #1” 5
513. ”2-chloro-6-methylbenzonitrile” 9
514. ”2-bromo-3-pyridinol” 15.3
515. ”2-chloro-3-pyridinol” 15.3

516. ”tripropargylamine” 10.2
517. ”n.n-bis(2.2-diethoxyethyl)methylamine
#1” 10.2
518. ”1.4-bis(3-aminopropyl)piperazine” 15
519. ”3-hydroxy-3.7.11-trimethyl-1.6.10-
dodecatriene”
4.1
520. ”1-(2-chloroethyl)pyrrolidine.hcl” 15.5
521. ”n-undecylamine” 10
522. ”1-heptyn-3-ol” 4.2
523. ”p-ethoxybenzaldehyde” 5
524. ”[1(r)-endo]-(+)-3-bromocamphor” 6.2
525. ”resmethrin” 22
526. ”terbufos (counter)” 22
527. ”a.a.a’.a’-tetrabromo-o-xylene” 13.1
528. ”2’.3’.4’-trichloroacetophenone” 6
529. ”2’.3’.4’-trimethoxyacetophenone #2” 6
530. ”diethyl chloromalonate” 8
531. ”n-ethylbenzylamine” 10.1
532. ”4-bromophenyl 3-pyridyl ketone” 15.3
533. ”4-benzoylpyridine” 15.3
534. ”2.2.5.5-tetramethyltetrahydrofuran” 3.3
535. ”3-hydroxy-2-nitropyridine” 15.3
536. ”alachlor” 18
537. ”4-octylaniline” 10.3
538. ”methomyl (lannate)” 21
539. ”6-chloro-2-pyridinol” 15.3
540. ”3-amino-5.6-dimethyl-1.2.4-triazine” 15.4
541. ”4-(diethylamino)salicylaldehyde” 5
542. ”6-chloro-2-picoline” 15.3
543. ”3.6-dimethyl-1-heptyn-3-ol” 4.2
544. ”2.4.5-trimethyloxazole” 16
545. ”4-dimethylamino-3-methyl-2-butanone” 6
546. ”m-bromobenzamide” 8.2
547. ”oxamyl #1” 21
548. ”2.6-diisopropylaniline #1” 20
549. ”2-methyl-3.3.4.4-tetrafluoro-2-butanol” 4
550. ”chloromethyl styrene” 13.1
551. ”(+-)-sec-butylamine” 10
552. ”n-(3-methoxypropyl)-3.4.5-
trimethoxybenzylamine”
10.1
553. ”2-(bromomethyl)tetrahydro-2h-pyran” 3.3
554. ”4-decylaniline” 10.3
555. ”4-hexyloxyaniline #1 (nominal conc.)”
10.3
556. ”methyl 4-chloro-2-nitrobenzoate” 8
557. ”5-hydroxy-2-nitrobenzaldehyde” 5
558. ”fenvalerate #1 (pydrin)” 22
559. ”permethrin” 22
560. ”3.8-dithiadecane” 12.1
561. ”2’-(octyloxy)-acetanilide” 18
562. ”p-(tert-butyl)benzamide” 8.2
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563. ”2.9-dithiadecane” 12.1
564. ”dl-3-butyn-2-ol” 4.2
565. ”3-(4-tert-butylphenoxy)benzaldehyde” 5
566. ”flucythrinate” 22

567. ”3-(3.4-dichlorophenoxy)benzaldehyde” 5
568. ”2.4-dinitro-1-naphthol sodium salt (martius
yellow)” 14

Code Class Name Code Class Name
1.0 Alkanes 10.5 Tertiary, aromatic amines
1.1 Alkenes 11.1 Azine compounds
2.0 Saturated Hydrocarbons 12.0 Thiols
2.1 Unsaturated Hydrocarbons 12.1 Sulfides
3.0 Basic Ethers 12.2 Disulfides
3.1 Diphenyl Ethers 12.3 Sulfo compounds
3.3 Cyclic Ethers 13.0 Benzenes
4.0 Basic Alcohols 13.1 Chlorinated Benzenes
4.1 Alkene Alcohols 14.0 Phenols
4.2 Alkyne Alcohols 14.1 Chlorinated Phenols
4.3 Diols 15.0 Piperazines
5.0 Aldehydes 15.2 Pyrimidines
6.0 Basic Ketones 15.3 Pyridines
6.1 beta-Diketones 15.4 Triazines
6.2 Cyclic Ketones 15.5 5-Membered ring aliphatics
7.0 Carboxylic Acids 15.6 5-Membered ring aromatics
8.0 Basic Esters 16.0 Multiple hetero-atom compounds
8.1 Phthalates 17.0 Heterocyclic sulfur compounds
8.2 Amides 18.0 Anilides and Ureas
8.3 Acrylates 19.0 Phosphorous compounds
9.0 Nitriles 20.0 Quaternary ammonium compounds
10.0 Primary, aliphatic amines 21.0 Carbamates
10.1 Secondary, aliphatic amines22.0 Other pesticides
10.2 Tertiary, aliphatic amines 23.0 Barbitals
10.3 Primary, aromatic amines 23.1 DEAS-complex structures
10.4 Secondary, aromatic amines24.0 Organometallics

Table A.1: Definition of molecule classification codes.
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List of Descriptors

1. ”Total Energy (kcal/mol)”, ”QM1”
2. ”Binding Energy (kcal/mol)”, ”QM2”
3. ”Heat of Formation (kcal/mol)”, ”QM3”
4. ”Dipole Moment (D)”, ”QM4”
5. ”HOMO (eV)”, ”QM5”
6. ”LUMO (eV)”, ”QM6”
7. ”Number of atoms”, ”C1”
8. ”Number of C atoms”, ”C2”
9. ”Relative number of C atoms”, ”C3”
10. ”Number of H atoms”, ”C4”
11. ”Relative number of H atoms”, ”C5”
12. ”Number of O atoms”, ”C6”
13. ”Relative number of O atoms”, ”C7”
14. ”Number of N atoms”, ”C8”
15. ”Relative number of N atoms”, ”C9”
16. ”Number of S atoms”, ”C10”
17. ”Relative number of S atoms”, ”C11”
18. ”Number of F atoms”, ”C12”
19. ”Relative number of F atoms”, ”C13”
20. ”Number of Cl atoms”, ”C14”
21. ”Relative number of Cl atoms”, ”C15”
22. ”Number of Br atoms”, ”C16”
23. ”Relative number of Br atoms”, ”C17”
24. ”Number of I atoms”, ”C18”
25. ”Relative number of I atoms”, ”C19”
26. ”Number of P atoms”, ”C20”
27. ”Relative number of P atoms”, ”C21”
28. ”Number of bonds”, ”C22”
29. ”Number of single bonds”, ”C23”
30. ”Relative number of single bonds”, ”C24”
31. ”Number of double bonds”, ”C25”
32. ”Relative number of double bonds”, ”C26”
33. ”Number of triple bonds”, ”C27”
34. ”Relative number of triple bonds”, ”C28”
35. ”Number of aromatic bonds”, ”C29”

36. ”Relative number of aromatic bonds”, ”C30”
37. ”Number of rings”, ”C31”
38. ”Relative number of rings”, ”C32”
39. ”Number of benzene rings”, ”C33”
40. ”Relative number of benzene rings”, ”C34”
41. ”Molecular weight”, ”C35”
42. ”Relative molecular weight”, ”C36”
43. ”Gravitation index (all bonds)”, ”C37”
44. ”Gravitation index (all pairs)”, ”C38”
45. ”Wiener index”, ”T1”
46. ”Randic index (order 0)”, ”T2”
47. ”Randic index (order 1)”, ”T3”
48. ”Randic index (order 2)”, ”T4”
49. ”Randic index (order 3)”, ”T5”
50. ”Kier&Hall index (order 0)”, ”T6”
51. ”Kier&Hall index (order 1)”, ”T7”
52. ”Kier&Hall index (order 2)”, ”T8”
53. ”Kier&Hall index (order 3)”, ”T9”
54. ”Kier shape index (order 1)”, ”T10”
55. ”Kier flexibility index”, ”T13”
56. ”Average Info. content (order 0)”, ”T14”
57. ”Info. content (order 0)”, ”T15”
58. ”Average Structural Info. content (order 0)”,
”T16”
59. ”Structural Info. content (order 0)”, ”T17”
60. ”Average Complementary Info. content
(order 0)”, ”T18”
61. ”Complementary Info. content (order 0)”,
”T19”
62. ”Average Bonding Info. content (order 0)”,
”T20”
63. ”Bonding Info. content (order 0)”, ”T21”
64. ”Average Info. content (order 1)”, ”T22”
65. ”Info. content (order 1)”, ”T23”
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66. ”Average Structural Info. content (order 1)”,
”T24”
67. ”Structural Info. content (order 1)”, ”T25”
68. ”Average Complementary Info. content
(order 1)”, ”T26”
69. ”Complementary Info. content (order 1)”,
”T27”
70. ”Average Bonding Info. content (order 1)”,
”T28”
71. ”Bonding Info. content (order 1)”, ”T29”
72. ”Average Info. content (order 2)”, ”T30”
73. ”Info. content (order 2)”, ”T31”
74. ”Average Structural Info. content (order 2)”,
”T32”
75. ”Structural Info. content (order 2)”, ”T33”
76. ”Average Complementary Info. content
(order 2)”, ”T34”
77. ”Complementary Info. content (order 2)”,
”T35”
78. ”Average Bonding Info. content (order 2)”,
”T36”
79. ”Bonding Info. content (order 2)”, ”T37”
80. ”Balaban index”, ”T38”
81. ”Moment of inertia A”, ”G1”
82. ”Moment of inertia B”, ”G2”
83. ”Moment of inertia C”, ”G3”
84. ”XY Shadow”, ”G4”
85. ”XY Shadow / XY Rectangle”, ”G5”
86. ”YZ Shadow”, ”G6”
87. ”YZ Shadow / YZ Rectangle”, ”G7”
88. ”ZX Shadow”, ”G8”
89. ”ZX Shadow / ZX Rectangle”, ”G9”
90. ”Molecular volume”, ”G10”
91. ”Molecular volume / XYZ Box”, ”G11”
92. ”Molecular surface area”, ”G12”
93. ”Max partial charge for a C atom”, ”E3”
94. ”Min partial charge for a C atom ”, ”E4”
95. ”Max partial charge (Qmax) ”, ”E7”
96. ”Min partial charge (Qmin) ”, ”E8”
97. ”Polarity parameter (Qmax-Qmin) ”, ”E9”
98. ”Polarity parameter / square distance ”,
”E10”
99. ”Topographic electronic index (all pairs) ”,
”E11”
100. ”Topographic electronic index (all bonds) ”,
”E12”
101. ”TMSA Total molecular surface area ”,
”E13”
102. ”PPSA-1 Partial positive surface area ”,
”E14”
103. ”PNSA-1 Partial negative surface area ”,
”E15”
104. ”DPSA-1 Difference in CPSAs
(PPSA1-PNSA1) ”, ”E16”
105. ”FPSA-1 Fractional PPSA
(PPSA-1/TMSA) ”, ”E17”

106. ”FNSA-1 Fractional PNSA
(PNSA-1/TMSA) ”, ”E18”
107. ”WPSA-1 Weighted PPSA
(PPSA1*TMSA/1000) ”, ”E19”
108. ”WNSA-1 Weighted PNSA
(PNSA1*TMSA/1000) ”, ”E20”
109. ”PPSA-2 Total charge weighted PPSA ”,
”E21”
110. ”PNSA-2 Total charge weighted PNSA ”,
”E22”
111. ”DPSA-2 Difference in CPSAs
(PPSA2-PNSA2) ”, ”E23”
112. ”FPSA-2 Fractional PPSA
(PPSA-2/TMSA) ”, ”E24”
113. ”FNSA-2 Fractional PNSA
(PNSA-2/TMSA) ”, ”E25”
114. ”WPSA-2 Weighted PPSA
(PPSA2*TMSA/1000) ”, ”E26”
115. ”WNSA-2 Weighted PNSA
(PNSA2*TMSA/1000) ”, ”E27”
116. ”PPSA-3 Atomic charge weighted PPSA ”,
”E28”
117. ”PNSA-3 Atomic charge weighted PNSA ”,
”E29”
118. ”DPSA-3 Difference in CPSAs
(PPSA3-PNSA3) ”, ”E30”
119. ”FPSA-3 Fractional PPSA
(PPSA-3/TMSA) ”, ”E31”
120. ”FNSA-3 Fractional PNSA
(PNSA-3/TMSA) ”, ”E32”
121. ”WPSA-3 Weighted PPSA
(PPSA3*TMSA/1000) ”, ”E33”
122. ”WNSA-3 Weighted PNSA
(PNSA3*TMSA/1000) ”, ”E34”
123. ”RPCG Relative positive charge
(QMPOS/QTPLUS) ”, ”E35”
124. ”RPCS Relative positive charged SA
(SAMPOS*RPCG) ”, ”E36”
125. ”RNCG Relative negative charge
(QMNEG/QTMINUS) ”, ”E37”
126. ”RNCS Relative negative charged SA
(SAMNEG*RNCG) ”, ”E38”
127. ”min(#HA; #HD) ”, ”E51”
128. ”count of H-acceptor sites ”, ”E52”
129. ”count of H-donors sites ”, ”E53”
130. ”HA dependent HDSA-1 ”, ”E54”
131. ”HA dependent HDSA-1/TMSA ”, ”E55”
132. ”HA dependent HDSA-2 ”, ”E56”
133. ”HA dependent HDSA-2/TMSA ”, ”E57”
134. ”HA dependent HDSA-2/SQRT(TMSA) ”,
”E58”
135. ”HA dependent HDCA-1 ”, ”E59”
136. ”HA dependent HDCA-1/TMSA ”, ”E60”
137. ”HA dependent HDCA-2 ”, ”E61”
138. ”HA dependent HDCA-2/TMSA ”, ”E62”
139. ”HA dependent HDCA-2/SQRT(TMSA) ”,
”E63”
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140. ”HASA-1 ”, ”E64”
141. ”HASA-1/TMSA ”, ”E65”
142. ”HASA-2 ”, ”E66”
143. ”HASA-2/TMSA ”, ”E67”
144. ”HASA-2/SQRT(TMSA) ”, ”E68”
145. ”HACA-1 ”, ”E69”
146. ”HACA-1/TMSA ”, ”E70”
147. ”HACA-2 ”, ”E71”
148. ”HACA-2/TMSA ”, ”E72”

149. ”HACA-2/SQRT(TMSA) ”, ”E73”

150. ”logD pH3”, ”pH3”

151. ”logD pH5”, ”pH5”

152. ”logD pH6.5”, ”pH6.5”

153. ”logD pH7”, ”pH 7”

154. ”logD pH7.4”, ”pH7.4”

155. ”logD pH9”, ”pH9”

Code Descriptor Class Number of Descriptors
QM Quantum-Chemicals 6

C Constitutional 38
T Topological 36
G Geometrical 12
E Electrostatic 57

PH Physicochemical 6

Table B.1: Definition of chemical descriptor codes.
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