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Zusammenfassung

Systemidentifikation hat die Aufgabe, eine Anzahl von zusammengatien Kom-
ponenten der realen Welt in einem Modell abzubilden. Wenn diese Abbildung durch
den Transfer von menschlichem Expertenwissen in ein Modell geschieht, wird dies als
wissensbasierte Modellierung bezeichnet. Wenn die Informatidbendas System
allerdings nur implizit und formlos in Datenbésiden vorliegen, wird die Abbildung
dieses Wissens mit Hilfe von Algorithmen als datengetriebene Modellierung bezeich-
net.

In dieser Arbeit wird vorgeschlagenjirf die datengetriebene Systemidenti-
fizierung die Klasse der sogenannten Takai-Sugeno Fuzzy Modelle zu benutzen.
Dies wird durch das Vorhandensein effektiver Lernalgorithmendfese Klasse von
Modellen begiindet. Des weiteren ist es oft vorteilhaft, die bei der Systemidenti-
fizierung gefundenen Modelle auch interpretieren darlen. Daher wird auf die
Formulierung verschiedener Interpretierbarkeitsfaktoren, welche zu einem objektiven
und leicht zu implementierenden Interpretierbarkeitsnig@akagi-Sugeno-Modelle
zusammengéhrt werden Bnnen, besonderer Wert gelegt.

Um optimale Strukturen der Modelle zu identifizieren, werden neue Konzepte
aus dem Bereich der Heuristik, speziell der evoludi@m Berechnungsmethoden,
als generell nutzbare Suchmethode angewendet. Optimale und schlanke Modell-
strukturen sind in Hinsicht auf Genauigkeit, aber insbesondere im Hinblick auf die
Generalisierungthigkeit von Modellen sehr ilmschenswert. Allerdings spielt die
notwendige Kodierung von potentiellen Modellen innerhalb eirigrsklichen Evolu-
tion eine bedeutende, wenn nicht sogar die entscheidende Rolle. Aus diesem Grunde
wird in dieser Arbeit eine in diesem Zusammenhang neuartige Methode der Kodierung
vorgeschlagen. Dabei wird der Suchraum eines evolatem Algorithmus durch
sogenannte Genotyp-Schablonen aufgespannt, welche mit Hilfe einer kontextfreien
Grammatik formuliert werden.



Die vorgeschlagene Methode zur Systemidentifizierung mittels Takagi-Sugeno-
Modellen wird dann an einemikstlichen und einem komplexen realen Problem
getestet. In der realen Problemstellung geht es um die Identifikation von Modellen,
welche die Toxizi&t von MoleKilen vorhersagen. Diese Modelle sollen also einen
Zusammenhang von einfach zu messenden oder zu berechnenden Eigenschaften von
Molekilen, sogenannten molekularen Deskriptoren, zu deren Giftigkeit aufdecken
und herstellen.



Abstract

System identification is the task to map several related components of a real world
system into a model. If this is done by transferring human expertise into a model, the
process is called knowledge-driven modeling. If the system information is embedded
in data-bases and the implicit existent expertise is mapped by algorithms into a model,
the process is called data-driven modeling.

This thesis suggests for data-driven system identification the class of Takagi-
Sugeno fuzzy models as target. This class of models provides the possibility to make
use of powerful learning algorithms. On the other hand the human interpretability of
the resulting models can be assured.

Because of this, necessary interpretability factors are worked out and an objective
interpretability measure for Takagi-Sugeno fuzzy models is formulated.

Evolutionary computation, as a general search method, is used to identify an
optimal model structure. Optimal and sparse model structures are desirable for reasons
of accuracy and generalization capability. The way in which candidate solutions (i.e.
models), are encoded in evolutionary algorithms is a central factor in population based
search methods. The author proposes a novel grammar based method to formulate
genotype-templates. These templates will be used to define the genotype search space.

The presented approach of data-driven system identification via evolutionary re-
trieval of Takagi-Sugeno fuzzy models is tested with artificial data and with a complex
real world dataset considering the prediction of molecular toxicity.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

In generalmodelsare simplified mappings of parts of reality to any kind of material.
Today’s world is full of models. Each formula is a model, toy cars are models of their
big counterparts, the brain together with the senses forms a model of our environment,
and thus models specify our behavior. In science and industry models become more
and more important, because they are used to understand, control, optimize, predict
or simulate real world processes. Beside the intellectual benefits there is obviously a
huge potential of capital gains.

The traditional method of modeling is to utilize human expert knowledge and
intuition in combination with data obtained by observations, polls or measurements.
These data were mainly stored in books and thus they are not directly accessible by
computerized processing methods. However, as a consequence of the technical devel-
opment in computer science, the capacity of electronically based storing and process-
ing data doubles approximately every 18 month. This trend started in the middle of the
twentieth century and is unbroken till now. Furthermore, the worldwide cross-linking
of computers via the Internet, which started in the 1990s, enabled the possibility to
share and process data worldwide. Associated with these developments, the amount
of available data reached a level that could not be handled completely by man. Fur-
thermore, it can be assumed that many datasets contain sufficient correlated data to
establish new and efficient models of real world processes.

A natural consequence is to try to take advantage of these neglected data with
the help of computational processing. This processing is referreddatasmining
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or knowledge discoveryNowadays, most of these approaches focus on handpicked
data-sets, which are classified as most probable to bring in invested resources. Log-
ically and wisely all available human expert knowledge should be incorporated into
the emerging model. This is comparable to the first stage of a gold rush, which will
continue until most of the obviously fruitful claims are exploited. In a second stage
the focus will change to the bulk of medium to low profit modeling. Human prepro-
cessing and incorporation of human expert knowledge becomes undesired because of
costs. Fully data-driven methods are needed to meet these demands. Nevertheless,
the possibility to incorporate human expert knowledge into a data-driven constructed
model should be preserved, since a medium profit targeted datamining process could
always identify a high profitable model with applications worth to invest human re-
sources.

Having these assumptions in mind, the problem tackled in this thesis is to develop
a fully data-driven method for modeling, in order to meet the upcoming requirements
of information handling. The title of this thesis was chosen as it is, because a model
is, by definition, always related to a real world system and the model template was
selected for various reasons as a Takagi-Sugeno fuzzy model.

1.2 Thesis Contributions

The main contribution of this thesis is the development of an extendable framework
for automatic and data-driven modeling. Extendable in the sense, that a model class
Is used that is also comprehensible for humans and not only executable for machines.
An important point is that the resulting models can be refined or analyzed by human
experts.

To achieve this goal, an objective interpretability measure for the chosen class
of Takagi-Sugeno fuzzy models is provided. To keep the framework as general as
possible, evolutionary computation was deployed. To stick to the required principles
of generality a novel concept of grammar based problem encoding is introduced, pre-
sented and applied to artificial and real world data.
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1.3 Thesis Structure

This section briefly summarizes the organization of the content and the notation of
this thesis. Following the table of content are a list of figures, a list of tables and a
list of used abbreviations. The appendix is concerned with the presented real world
examplé. The bibliography can be found at the end of the thesis, followed by an
index. Furthermore, it should be mentioned that the availability of the down-loadable
versiong of the bibliography entries were finally checked in March 2004. Due to
the rapid development of the Internet it is possible that some references are no longer
reachable.

1.3.1 Organization of the Content

This thesis covers basic concepts and applications of system identification, fuzzy logic
and evolutionary computation and their integration synergism. The used concepts are
reflected in chapter2 to 4, always with a focus on the implementation of a data-
driven system identification algorithm. In the second half of chaptenovel concept

of defining genotype search spaces is presented. This method will be used in the
subsequent chapteksto 6, which deal with the implementation and testing of the
developed system identification algorithm.

Chapter 1 (this chapter) provides a brief summary of the organization and notation
used in this thesis.

Chapter 2 contains all used definitions and findings regarding system identification.
The chapter start with explanations of the terms system and model. This is
followed by a summary of model types and model application areas. The main
focus is on the tasks which come along with system identification based on data-
driven concepts. Especially mathematical methods for parameter estimation of
models are recapitulated, with respect to purely data-driven modeling. Further-
more, the importance and the relation between model complexity and model
validation is stressed and several model validation approaches are discussed.

For readers of the electronic pdf version it is worth noting that the graphically presented results of
Sec.6.2are linked to the appendix.

20nly some free available papers were linked with the bibliography. Readers of the electronic
version can click on the concerning link to read the referenced paper.
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Chapter 3 starts with a basic introduction to fuzzy concepts, different fuzzy models
and fuzzy operations. The main focus is on the functionality of Takagi-Sugeno
fuzzy models, which will be discussed in greater detail. This covers the selec-
tion criteria responsible for choosing Takagi-Sugeno fuzzy models for system
identification, methods of parameter and structure learning of Takagi-Sugeno
fuzzy models and a detailed discussion of interpretability considerations.

Chapter 4 presents the terminology, possibilities and restrictions of evolutionary
computation. The representation (genotype) of candidate solutions is used as
the initial point to introduce the main concepts of evolutionary computation. An
important part of this chapter proposes and introduces a novel grammar based
representation scheme, which provides an often applicable simplification of the
in general hard to solve problem encoding task.

Chapter 5 utilizes the concepts which were introduced in the previous chapters, to
establish a general framework for data-driven system identification via evolu-
tionary optimized Takagi-Sugeno Fuzzy Systems.

Chapter 6 present the results obtained by applying the in chapeveloped and
in chapter5 implemented approach of grammar based solution encoding to an
artificial and to a complex real world dataset. In all cases the data were used
with different levels of cross-validation to validate and compare the results.

Chapter 7 concludes with a brief summary of achieved results and newly introduced
concepts. The extension capabilities of the presented framework is outlined and
finally an outlook of interesting future work in the field of data-driven system
identification is given.

1.3.2 Notation

As mentioned above, this thesis contains an index with all relevant technical terms
stating the page of appearance in the thesis. Terms which are inserted into the index
can be identified by theitalic appearance. Furthermore indexed terms may be set
in bold font if the term occur in a description or in a (sub)section title. Descriptive
names of functions, like#odelout(-), are setin typewriter font, vectors are marked by

an underline (e.gw) and matrices are written as bold set capital letters ¢¢)g.The
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variabley always denotes the desired model outputatite ‘calculated model output.
Quotation marks are used if a term (for example "good”) is not clearly defined.

1.3.3 Summary

This and all subsequent chapters will end with a short outline of the concerning
chapter-content.

This chapter provided the problem statement, the motivation to tackle this prob-
lem and a short sketch of the main thesis contribution, namely a novel grammar based
concept of problem encoding. Furthermore, the organization of the thesis content was
given and the applied notation was mentioned.



Chapter 2

System Identification

The termsystemhas its origin in the Greek language and can be explained in such

a way, that a system consists of several components, which somehow form a whole.
The general behavior of a system can be described by some important characteristics,
all referring to thestate of a systemThe state of a system describes the system at

a certain point in time. Systems with a finite or countable number of system states
are calleddiscrete systemand systems with an uncountable number of system states
are calleccontinuous systemg€losely related to these terms are the following system
characteristics:

Static systemsdoes not change their system states in time.

Stationary systemare characterized by the fact that their system state changes are
constant in time.

Dynamic systemsre characterized by the fact that their actual system states are
defined by their initial states and the time depending system inputs.

In fact all systems are dynamic (continuous), but many systems can be considered as
static by observing a certain time segment. Furthermore, lets define external influences
as system state changing factors which are not generated by system parts. By doing
so another mutually exclusive characteristic of a system is described by the terms:

Open systemsare characterized by the fact that their system states are subject to
external influences.
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Closed systemare characterized by the fact that their system states are not subject
to external influences.

Again, all systems are op&rbut many systems can be considered as closed, because
the influence of external factors to the system state is negligible. Each model of a
system should be designed in such a way that the external factors affecting the system
state of the model are minimized.

System identificatiors the task to map several related components of the real
world into a model. What the term model subsumes and what system identification
is used for will be pointed out in the next sections. Because this thesis focuses on
data-driven mathematical system identification, Qe8provides a brief overview of
tasks which has to be performed before starting such a kind of system identification
and Sec2.4 deals with the necessary parameter optimization of candidate models.
This chapter will close with two sections considering generally valid statements about
model complexity (Se@.5) and the resulting needs for model validation (Sz6).

2.1 Model Types

A modelalways imitates the behavior of a real world system. A somewhat rough
classification leads to the following four different model types:

e Scaled models
o Flowcharts
e Tables

e Mathematical models

2.1.1 Scaled Models

Scaled models are often used to validate theoretical assumptions. For example a
bench-scaled model of a production facility is used to validate if the actual production

process is feasible or, for example, a bench-scaled model of a bridge, using new ma-
terials, has to undergo severe tests to validate the expected carrying capacity. Scaled

1Except the one system subsuming all existing parts (possibly the universe).
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models are also used in iterative simulation-optimization processes. For example, the
impact of a car-design to the potential clientele and to service ability is tested with a
one-to-one model. The response is used to optimize the product.

2.1.2 Flowcharts

A flowchart or a characteristic diagram is used to illustrate the steps in a process.
Each box in a flowchart represents a step and each arrow represents the sequence of
steps. By visualizing the process, a flowchart can quickly help to identify bottlenecks

or inefficiencies. There are three basic types of flowcharts. The first type, lets call it
basic flowchart, is used to outline a process quickly or to chart a process that involves
few people. The second type, often caltgzportunity flowchar{88], is used to help

to understand or improve a process that has many steps, including when things go
right and when things go wrong. deployment flowchaf87] illustrates the detailed

steps in a procedure for each group of people involved in the process.

2.1.3 Look-Up Tables

Grid based look-up tables are, because of their simplicity, by far the most used models.
Usually a set of observed input-output data is simply stored in a table and the model
responds to an unseen input with the output calculated as a linear interpolation of the
stored output values of the closest stored points to the actual input. A normal car
produced at the beginning of the®tentury contains about 100 grid based look-up
tables. Grid based look-up tables are easy to implement models which has no need
of parameter optimization. Due to the curse of dimensionality (see 3ég) this

type of model is restricted to problems of very few inputs. Grid based look-up tables
exhibit a strong similarity to mathematical models. In fact they can be interpreted
as fuzzy models with triangular membership functions which fulfill the condition of
complementarity (see Seg.3.9.

2.1.4 Mathematical Models

The derivation of mathematical models are twofold. Firstly, mathematical models
can be derived by the utilization of expert knowledge. Experts typically map their
knowledge in an analytically expression by using differential equations or state space
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equations. This kind of model derivation is referreckaswledge-basedheoretical
mechanistic axiomaticor white-box modeling Knowledge-based modeling is only
applicable if the real world process is fully understood. Because the resulting models
are fully interpretable, they are callehite box models These theoretical derived
models are widely used to model chemical, mechanical, electrical or fluid processes.
Nowadays there exist big libraries containing whole model-packages and software to
implement mainly time continuous models. Commonly used software packages are
Dymola, Spice, Simpack, Hysis, AspernPlus, Adams and gProms.

Secondly, mathematical models can be derived by the utilization of available
data. This kind of model derivation is callethta-driven experimental statistical
or black-box modeling. The possiblanalytical expressionsepresenting the model
are various and the derived models are mainly used for control and prediction tasks.
The interpretability of the resulting models depends on the chosen kind of analytical
expression. The general characteristics of analytical expression are used to distin-
guish between so calladodel classesCommon mathematical model classes are, for
example, artificial neural networks and fuzzy models. It is worth noting that this clas-
sification is very rough and that there exist several finer classifications, depending on
the chosen model characteristics. If instances of the class of artificial neural networks
are used to model a system, the resulting models are da#iek-box modeldbecause
artificial neural networks are mostly difficult to interpret. In the case of fuzzy rule
based models, the resulting analytical expression is often referrghiggsboxmodel,
because the system behavior can be easily formulated in human language and thus, is
accessible to the human intellect. Furthermore there exist many hybrid forms utiliz-
ing more than one available concept and thus, there exist so caigeboxmodels
(with various subdivisions) which can not be clearly classifiedlask-boxor white-
boxmodels. Commonly used software packages for data-driven modeling are Matlab,
Maple and Mathematica.

2.2 Application Areas of System Identification

Theapplication areas of system identificati@an be classified by "where” and "what

for” system identification is used. The "where” is described by Bid, which rep-
resents system identification usage of high frequency by deep black towards low fre-
quency usage represented by a lighter gray. The decreasing frequency comes along
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with an increasing complexity and a decreasing expertise in the concerning application

area.
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Figure 2.1: Application areas of system identification depending on expertise and
complexity of the system. The darker the more common is the use of models.

The "what for” can be divided in five main application areas, namely simula-
tion, analysis, optimization, prediction and control. The next subsections give a short
outline and some examples of models in these areas.

2.2.1 System ldentification with Computational Intelligence

Although it should be evident, the author thinks that it is necessary to emphasize that
this thesis does not cover the "classical” methods of system identification. There exists
excellent literature]85 184,100 91] concerning the description of systems and their
behavior, the mapping of knowledge into differential equations to describe real world
systems and the application of filters to predict system states. Doing so and the related
background knowledge is often subsumed by the term "system theory” and the author
strongly recommends to use and to apply this know-how if possible.

The aim of this thesis is to target systems, which firstly are too complex to be
tackled with low parameterized models and secondly are too unknown to have the
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possibility to map human expertise into well formulated analytical expressions. The
term system identification perfectly describes what is done in this thesis, namely map-
ping a real world process into a model. Because of this it can be realized that system
identification or modeling is more and more done by methods which are classified as
soft-computing methods P2 4].

2.2.2 Simulation

Simulationis the classical field for system identification. If a reliable model of the
target system is available, performing simulations can be traced back to one of the
following reasons:

e The model provides a bigger specification range than the (implemented) system.
e Simulations are often cheaper than real world experiments.

The latter reason has to looked at from a financial as well as from a time consuming
point of view. Widely known representatives are crash test models, production facility
models or flight simulators.

2.2.3 Analysis

The most ambitious idea in model analysis is to use a data-driven model to get a
deeper insight to the underlying real world system. A commonly used method to an-
alyze data-driven models is to extract fuzzy rules from the model structure. A typical
example of analysis based on data-driven modetiaia mining where sometimes

huge data bases are scanned for unknown relationships. Another interesting applica-
tion are automatic theorem proofers. A list of research groups working in this field
and available software can be found &8].

More conservative approaches use knowledge-based models to play with some
model functionalities to improve understanding of the functioning of the underlying
process. A classical example are formulas, which can be seen as generalized models.
In the domain of science the proving and arranging of formulas are based on varying
and introducing model parameters.
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2.2.4 Optimization

Optimization utilizes the model of a process to find optimal model inputs due to a
desired process output. Often system outputs are contradictory and models are used
to find a Pareto-optimaBp] set of parameters regarding the desired outputs. Obvious
advantages to use models for optimization tasks are the saving of time and the decou-
pling from the real process. The precondition for optimizing is the availability of an
accurate model for all operating conditions which may occur during optimization.

2.2.5 Prediction

For prediction models it is important to distinguish between open and closed systems.
By modeling a closed loop system the possibility of predicting arbitrary many steps
in the future exist. Note, that by using digital computers even the predictions of a per-
fect modeled system will become more and more inaccurate because of accumulating
rounding errors. How fast this deviance grows depend orchiaeticbehavior L61]

of the system. By assuming a restricted, non-linear and deterministic dynamic system,
deterministic chaos arises through positive and negative feedbacks. Positive feedbacks
in form of local instabilities lead to a divergence in neighbouring values of system
states. Globally appearing negative feedbacks have a stabilizing effect. If neither
the positive nor the negative feedbacks get out of hand, the system stays in a limited
space, following an aperiodic trajectory. This trajectory shows a sensitive dependency
to infinitesimally small changes in the initial conditions of the system. Although very
"small” changes can lead after a "short” time to totally different system behavior, the
resulting trajectory is often self-similar. The behavior of a system that generates deter-
ministic chaos can be explained by a deterministic non-linear (not necessarily known)
model of differential equations.

If the modeled system is an open system, the prediction range is restricted by
the last available input variable. Assume we want to model a system by using
ur(t — 7),ua(t — 4),uz(t — 6),us(t — 5),y(t — 1) andy(t — 3), wheret denotes time-
steps,up, Uz, uz denotes external system inputs andenotes the model output. Fur-
thermore assume that the latest available value is alway givér-dybecause most
real processes have no direct feed-through. Under these terms the farest reaching pre-
diction for this model with six inputs would be given bt + 3) (caused by (t —4)),



2.3. Tasks in System Identification 13

a so called 3-step-ahead prediction, or more genekastep-ahead prediction with
k = 3 asprediction horizon

Prediction models are for example used for short-term stock market forecasts and
weather forecast, but also for climatic progression forecast etc., which indicates that
prediction is often utilized in optimization and analysis tasks. In fact, closed system
modeling for prediction is synonymous to simulation.

2.2.6 Control

Most models focontroltasks are implemented as look-up-tablE3y. As mentioned

in Sec.2.1.3look-up-tables are the by far most used model type and because nearly
all look-up-table based models are utilized in control tasks, control is the biggest ap-
plication area for system identification.

2.3 Tasks in System Identification

The process of system identification includes three tasks, namely:
e Selecting a model class.
e Selecting the model structure.
e Parameter optimization of the model.

The selection of a model class could also be seen as a first stage in selecting a
model structure. However, it is obvious that the space of all mathematical models
comprises models with very different characteristics. In general a model designer has
a couple of very specific characteristics in mind that a model should possess. Because
of this, and to reduce the model search space, at the beginning of each modeling
process a specific model class is selected. The latter two points are normally done
iteratively, where the structure selection is done in boundaries specified by the model
class, and the parameter optimization task is embedded into a loop of model structure
selections.
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2.3.1 Selecting a Model Class

The first and most fundamental task in data-driven modeling is the decision which
model class should be used to model the target system. The framework of this model
class will provide the basic conditions such as flexibility, interpretability and learning
capability of the model. A model class used for data-driven modeling should meet the
following conditions:

Universal approximation ability should be given. This is obvious since the objec-
tive of system identification is to model the target system as good as possible.
An ex ante restriction in the modeling accuracy would be in conflict to most
goals of system identification.

Availability of efficient learning algorithms should be given. This is a must for all
data-driven approaches, since the model parameters has to be optimized on the
basis of data.

Adjustable interpretability of the model class should be given, because a general
approach to data-driven system identification should provide all application ar-
eas of system-identification reaching from control, where sometimes there is
no need for interpretability, to analysis, where interpretability is indispensable.
Since interpretability and accuracy are contradictory goals, the interpretability
abilities of the model class should be adjustable.

Incorporation of expert knowledge should be possible. This point is not directly
intelligible, because the modeling process is data-driven. But if the application
area is for example analysis and the performed system identification was suc-
cessful, the possibility to incorporate new insights obtained by model analysis
should be given.

2.3.2 Selecting the Model Structure

Selecting a good model structure is the most challenging task in system identification.
By considering data-driven system identification we assume that no expert knowledge
about the real system is available. Thus, model structure optimization subsumes the
task of identifying relevant inputs and the adaption of the internal connectivity struc-
ture of the model. Although there exist several methods to create model structures (see
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Sec.2.5.4and2.5.5, it has to be always in mind, that it is very restrictive to assume
that the real system is in some special way decomposable (for example additively).

2.3.3 Parameter Optimization of the Model

Once a model structure is chosen, the model paranietexe to be adapted in such

a way that the computed model output is as "close” as possible to the desired system
output. There exist two mainly used parameter optimization techniques for supervised
learning. Firstly, the so called gradient descent methods like backpropagh8@n [

156 which iteratively refine a solution and secondly, methods which directly solve a
system of overdetermined equations. The latter concept will be used in this thesis and
thus is discussed in greater detail in the next sections.

2.4 Parameter Optimization with Different Error
Measures

In this thesis onlysupervised learningechniques are mentioned. All supervised learn-

ing methods are based on available knowledge about the input and output data of a
process. The objective of such methods is to minimize some error measure, which is
calculated by differences of the model behavior and the expected process output, in
order to obtain an optimal model. The next subsections provide a mathematical ex-
pression of this error measure and based on this, methods to find (sub)optimal model
parameters are shown.

2.4.1 Loss Functions and Cost Functions

Because in this thesis only single output models are considered, all following defini-
tions and equations are formulated for this kind of models, e.g. the output of a model
is written as a scalar. In order to optimize, the need of formulating a mathematical
expression of what to optimize arises. Loss functions are used to measure the model
outputModelout(u) =y of a single input vectou to a real valued error and cost
functions are used to provide the analytical term which will be minimized to obtain

a "good” model. In supervised methods the value provided by the loss function is

2To be precisely the parametd?sof Eq. 2.21).
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usually computed as the difference between the measured processyaugnd the
model outputode10ut (Uy,) = Ym, Whereu, is them input vector of a given set of
input vectors (e.g. matrikl), the so called training set. A formal definition of what
is loss incurred by a model outputat locationu, given a desireq is given by the
following definition.

Definition 2.1 (Loss function). Let (y,¥) € 9" x 9 be the tuple consisting of a the
desired model output y and a calculated model oufputhen a functiory” x & —
[0,0) with the propertyloss (y,y) = 0 for all y € 9 will be called a loss function.

Thus, a loss function defines a measure to assess a single model output and the
so calledcost functionprovides an expression to assess the model output for a set of
inputs. A formal definition of what is cost incurred by a model output veggivén
a desired output vectgrand an input matrixJ can be characterized by definition.

Definition 2.2 (Cost function). Let (loss (-),U) € L x U be the pair consisting of
an arbitrary loss functiorioss (-) and an Mx N input matrixU consisting of M

input vectors y, of length N, the functionost : £ x U — [0, ) will be called a cost
function.

A common definition of a cost function i§M_, 10ss(+), simply performing a
summation of all losses caused by a set of input vectors.

2.4.1.1 Binary Classification

For binary classification the simplest loss function is given by

0 ify=y
loss(y§) =4 0 Y (2.1)
1 otherwise

This definition does not distinguish between different classes nor between different
types of error (i.efalse positiveor false negativd). Replacing the "otherwise” case
in Eq. (2.2) by a function the incurred loss can be weighted.

This becomes necessary if the importance of the correctness of a model classifi-
cation regarding different classes varies. For example a model has to classify blood

3A false negative is a pattern which the classifier wrongly assigns to class 1, a false negative is
wrongly assigned to class -1.
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donations into two classes, namely harmless (1) and contaminated (-1). The classifica-
tion of a contaminated blood donation into the class harmless (false positive) has to be
avoided at any price. On the other hand the misclassification of a harmless blood do-
nation into the class contaminated (false negative) has only perishable consequences.
Often it is necessary to take a certain confidence value for the classification result into
account. In this caséde10ut (u), which is used to calculate becomes a real valued
function, even thougii € {—1,1}. In this case, sdiy) denotes the class label, and the
absolute valudy|| the confidence of the model output. Common corresponding loss
functions are the "soft margin” loss, the "logistic” loss and the "inverse complemen-
tary log-log” function. Matters become more complex when dealing with more than
two classes. Because each type of misclassification could potentially incur different
loss,i x i matrices, withi equal to the number of different classes, are used to store
the possible confidence values.

2.4.1.2 Regression

The most common choice for loss functions dealing with real valued differences is
loss(y,y) = (y—¥)?> orequivalently loss(§) = &2, (2.2)

with & representing a tuple. For efficient implementation of learning procedures the
loss function should be computationally cheap to evaluate. Furthermore it should
have no or only a small number of discontinuities in the first derivative and it has to
be convex in order to ensure the uniqueness of the solution.

The task of a learning procedure is to minimize the cost function. By using a
loss function as given by Eq2 5) the most common cost function to be minimized is

given by
M

cost(&,U) = 3 (y-9)* (2.3)

m=1
Linear optimization problems applying a cost function as given in equafic) ére
calledleast squaregLS) problems. If Eq.Z.3) is used for nonlinear problem opti-
mization the problem is calledr@onlinear least squaregroblem. If furthermore the
loss function is weighted, i.e.

Loss(y,9) = w(y—Y)%, (2.4)
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the concerning cost function offers the advantage that knowledge about the relevance
and/or confidence of each data sample can be taken into account. Optimization prob-
lems minimized by cost functions using weighted loss functions are caiéghted
least squaresndweighted nonlinear least squarpsoblems, respectively.

Note, that a cost function as given in EQ.J) is, because of it quadratic scaling
of errors, very sensitive to outliers. By choosing as loss function the more general
expression

loss(y,9) =|| (y=9) || orequivalently loss(§)=&P (2.5)

it is possible to show1[33 that the more the exponeptrises the more the cost func-
tion is sensitive to outliers. This is the reason for another very common choice of the
cost function, namely the sum of absolute errors, by chogsiadl.

2.4.2 Linear Parameter Optimization

A problem whose model outpwt depends linearly on th&l parameterav, (n =
1,...,N) is referred as a linear optimization problem:

N
¥ = Wo-+X1W1 +XoW2 + -+ +XaWn = Wo+ H XaWn, (2.6)
n=1

by, for sake the of simplicity, omitting the index and thex, can be (non-linear)
transformed values of the original inputs. In the following the parametess,, will

be calledweights the parameteng will be calledbias (intercept-termin the statisti-

cal jargon),y will be named desired model output apaill be denoted as computed
model output. The usage of the term "weights” for this kind of parameters has its
origin in the artifical neural network community. In statistics theare calledegres-

sion coefficient®r parameter estimateshe x, are calledregressorsor independent
variableandy is called thedependent variable
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2.4.2.1 Least Squares

As mentioned above the goal in LS is to minimize the concerning cost function. To
derive an analytical solution we first rewrite the problem

Wo +X11W1 + XgoWo + -+ + XgngWh = Y1
Wo +X21W1 + XopWo + -+ 4+ XonWh = Y2
Wo +XmiW1 + Xm2W2 + -+ + XmnWnh = Ym

in vector/matrix form
Xw=y, (2.7)

with w = (Wo,Wa,...,Wn)T andy = (y1,¥2,...,¥m)'. In this caseX is referred as the
regression matrix If m > n the set is calledbverdeterminedut since the Eq.2.7)
volitional represents an inadequate model of a real world problem, the existence of
an exact solution is seldom given. In general a vector of residualéy,ro, .. .,rn)T
with

r=Xw-y,(r#0) (2.8)

will remain. By utilization Eq. 2.3) as cost function we derive
1
cost(8%,X) = 51 = S(Xw—y)T (Xw—y) = MIN. (2.9)

The norm|| r ||= /I Tr of the residual vector is callegsiduum Note that for conve-
nience the cost function ist multiplied by'2 in order to get rid of the factor 2 in the
gradient. Considering Eg2(9), the gradient of the cost function with respect to the
weight vectow has to be equal to zero. This leads to

000%55290 —XTr = XT(Xw—y) =0 (2.10)
or
(XTX)w= (XTy). (2.11)

Equations 2.102.11) are called therthogonal equationsf the linear least squares
problem, since at the optimum the residualare orthogonal to all regressoxs
(columns ofX). The transition from Z.7) to (2.102.1]) is calledGauss transfor-
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mation because this proceeding was first described by Gauss in 1795. Noxd that
is identical to theHessian matrix

H— 0%cost (82,X)
o 62(52)

of the cost function. To compute the weight-vectowe have to solve

=XTX (2.12)

w=(XTX)"*(XTy), (2.13)
which is denoted as theast squares estimat@he expressioX"X)~1XT is called
the pseudo inversef the regression matriX. An important fact is that the accuracy
of a numerical inversion depends on the condition of the Hessian matrix and thus, on
the condition of the regression matdx The condition of a matrix can be defined by
the ratio
p o )\max (214)

B )\min .
of the largest to the smallest eigenvalue of a matrix. Remember that a matrix is termed
orthogonalif its transpose equals its inverse

XT=X"1 or XTX=XXT =1 (2.15)

and that a product of orthogonal matrices is also orthogonal. Thus, if the regres-
sion matrix is orthogonal so is the corresponding Hessian. By considering that the
eigenvalues\, correspond to the variance ¥f projected to th&™ axis, an orthogo-

nal Hessian with equal eigenvalues correspond to a contour plot of the cost function
forming perfect circles and an origin identical to the origin of the weight space. The
inversion of the Hessian with a numerical error equal to zero is possible. The more
p rises and thus, the contour lines of the cost function becomes more elliptic, the
lower is the numerically accuracy of the inversion. Therefore, a direct matrix inver-
sion, with its bad numerical properties, is seldom performed. For "big” residugls

and "small” weightg|w|| often the very fas€Cholesky decompositidi4§ is used to

build the pseudo inverse ¢f. More stable approaches asghogonalization meth-
ods[149 which base on the factorization & = QR whereQ is aM x M matrix

andR is a triangular matrix. A famous representative of this class istieseholder
transformation151], which is also used in this thesis.
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2.4.2.2 Regularization

If Amin reaches zero a matrix becomes singular (ran®lk,) < m) and for this rea-

son becomes uninvertible. If this happens with the Hessian m4frix, a unique
solution is no longer available, since for a rank deficit of one the solution is a line in
the weight space, for a rank deficit of two the solution is a plane et cetera. A method to
handle this uninvertibility is to applsegularization[152). Furthermore regularization

is used to improve the results obtained by the above described LS estimates. This im-
provement is caused by the fact that a good regularization leads to more "circle-like”
contour plots of the (hyper)parabolic cost function, with a minimum closer to the ori-
gin of the weight-space. Due to this fact and foremost to make inversion possible, the
eigenvalues have to be changed. This can be done by adding a cetidai diagonal
elements of the Hessiafi" X, leading to

w= (XTX+al) XTy. (2.16)
Performing this regularization causes that zero eigenvalues are setrd thus, the
condition p of the Hessian matrix is no longer infinite. Considering the case of a
"very small” eigenvalué\nin, p at least decreases equal to a factoﬁ?r{. Metaphor-
ically speaking the contour lines of the cost function become more “circle-like” with
a minimum closer to the origin of the weight-space. This approach is often denoted
asridge regressionn statistics. Unfortunately there is a price which have to be paid.
Firstly, the residual will increase as increases, because only significant elements
(with respect to their eigenvalue) of the regressors will contribute to calcwlated
secondly, iterative search approaches to find (sub)optimal valuestfas to be per-
formed. Ridge regression islmear regularizationmethod and therefore a special
case of the so calletikhonov-Phillips regularizatioywhich utilizes an arbitrary ma-
trix L instead of the identity matrikin Eq. (2.16).

In this thesis regularization only occurs in form of penalizing a fithness value
during an evolutionary search process. Nevertheless, regularization schemes become
very important if human expert knowledge should constrain a m@&®l [n this case
regularization restricts the flexibility (by preserving the complexity) of the regularized
model.
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2.4.3 Polynomial Models

Polynomial models can be used to approximate linear and non-linear processes. If
the available information about a process is very sparse and noisy, linear models are
a good choice to describe this processlirkar modelis a simple model with only

a small number of parameters. Approximating a process of dimensiohaktgch

linear model can be written as polynomial

Y = Wo -+ WilU1 + Wl . .. WnUn (2.17)

or more compact

N
y= Zownun with  up =1, (2.18)
n=

andwg denoting the offset. Figurg.2(a)shows a one-dimensional linear polynomial
(order = 1), Fig.2.2(b)shows a two-dimensional linear polynomial (order = 1).

1.4
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U

(@y=0.7+0.5u;. (b) y = 0.7 — 0.2u; + 0.5u,.

Figure 2.2: A one-dimensional polynomial of order one (a) and a two-dimensional
polynomial of order one (b).

Linear models of higher dimensionality are represented-dymensional hyper-
planes, which are graphically not presentable. The implementation of linear models
is easy, the evaluation speed is fast, their sensitivity to noisy data is low, constraints
of the model output can be incorporated by utilizing quadratic programming and prior
knowledge can be utilized by applying regularization. For these reasons linear models
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are the standard models. Many systems can be approximated by linear models and
to avoid breaking a butterfly on a wheel, linear models should be applied first. Not
until the results of a linear system modeling are unusable, more parameters should be
added to the analytical expression to perform a non-linear modeling. In the case of
polynomials, non-linear approximation is done by usmdimensional polynomials

of order two or more. Acomplete n-dimensional polynomiaf orderk is given by

N N N N N
¥ =Wp+ anunJr z Z WhynoUngn, + -+ + Z Z Wiy Ung..nye- (2.19)
n=1

np=1n=ny n=1 =1
The offset together with the first sum describes a linear model. Each follow-
ing sum increases the polynomial order by one. Thus, the second sum subsumes
all quadratic terms of the polynomial (likeZ,uiuy,...), the third all cubic terms
(like U3, u2uy, u2uz, usUpus,...) and so on. The number of terms of a complete
dimensional polynomial is equal to

(N+K)!

P="NK

(2.20)

By using non-linear models it should always be in mind, that the number of model
parameters no longer rise linearly but exponentially. Therefore some complexity con-
sideration as introduced in the following sections should be known.

2.5 Model Complexity and Regularization

Model complexity considerations are independent from specific properties such as
whether models are linear or non-linear. This section explains the bias/variance
dilemma and the therewith aligned termgerfittingandunderfitting Based on these

considerations the importance of different datasets for system identification and sys-
tem validation is demonstrated. In this context some possible proceedings are pre-
sented when dealing with very small datasets. Finally some modeling approaches and
templates of system structures are introduced that can help to reduce the complexity
of the modeling problem and the finally identified system structure, respectively.
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2.5.1 Model Complexity and Model Flexibility

In the mid 1960s Kolmogorov defined tlaégorithmic complexity{ 102 of a given
function to be the length of the shortest model that describes the function after a finite
amount of computation. Thu&olmogorov complexity109 is an expression that

can be used as a neutral reference point to measure the complexity of mathematical
models. Because in this thesis only algorithmically describable models are considered,
thecomplexity of a modes defined as

N =P+ P, (2.21)

whereP; is the total number of operators aBglis the total number of operands. In the
following complexity and number of parameters are used as synonyms. Furthermore,
the estimation of "best” values fd?; will be referred to agparameter optimization
and the estimation of "best” values 85 will be denoted astructure optimization

It is important to notice that each parameter has not necessarily the same impact
on the coverage of possible state spaces of the system. Let usfiefibiity as the
value of the accessible state space of a model by performing parameter variation. If
a model possesses parameters which have no influence on the model flexibility, for
example, when applying regularization, the remaining parameters which affects the
flexibility are referred to asffective parametersThus, the parameteR of a model
determine the search space for parameter optimization and the effective parameters
determine the accessible state space of a model. Logically, complexity and flexibility
should not be used as synonyms, because a more complex model is not necessarily as
flexible as a model with fewer parameters (see se@iérh.
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2.5.2 Bias Error and Variance Error

Each model error can be decomposed in two different parts, namdbyatherror and
thevarianceerror. Assuming Eq.4.5) as loss function we can write

E((y—9)?)
E((J+n-9)?)
E((§—9)%) +E(n?), (2.22)

E()

with y: measurable process output

. noisefree process output

<

: model output

S

. noise

Obviously Eg. .22 splits the measured process output into the unmeasurable true
process output and the noise variance. The loss function is minimal if the model
describes the true process perfectly (y.es y). Thus, the loss function value becomes
equal to the noise variance. Because the model does not influence the noise variance,
only the decomposition of the model ersor y is considered in the following.

E((y—9?) =E((y-E@®) — (I—E®¥)))?)
—E((y-E)’) +E((9-EG)?)

= (Y-E@)*+E(§-E¥)?) (2.23)
(model erroj? = (bias erroj? + variance error

If the chosen model structure is flexible enough, the parameters of the model can be
set to optimal values and the bias error will be zero. This is, for example, the case
for linear models of orden (i.e. with 2-n parameters) which are used to model lin-
ear processes of less or equal ordex< n. On the other hand, ifn > n the model
structure is not flexible enough to model the process exactly and the error due to
this process/model mismatch is called bias error. To come out with a zero bias er-
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ror by modeling arbitraynonlinear processes, so callegiversal approximatorare
needed. For this kind of approximator models (e.g. polynomial, artifical neural net-
works, fuzzy systems, etc.) a zero bias error can always be achieved by increasing the
complexity of the approximator structure.

2.5.3 Bias/Variance Tradeoff

Obviously a too simple model has a high bias error, since it can not predict the noise-
free system states, but a low variance error. On the other hand a too complex model
has a low bias, but a high variance error. A too simple model can be improved by
adding parameters because, the increase in the variance error is overcompensated by a
decrease in the bias error. On the other hand, a too flexible model can be improved by
discarding parameters because, the increase in the bias error is overcompensated by a
decrease of the variance error. Thus, the optimal model, on the basis of certain data,
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(a) Low variance error due to less noise or (b) High variance error due to high noise

more data. or few data.

Figure 2.3: Bias/variance tradeoff. The optimal model flexibility is determined by the
model error which can be decomposed into a bias and a variance part.

is a model somewhere between and the contradictory behavior of bias and variance
error is referred as bias/variance tradeofb@s/variance dilemmaFigure2.3illus-
trates the effect of different bias and variance errors on the model error. Unfortunately

4Not total arbitrary because only smooth processes are considered.
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bias and variance errors are unknown in practice. Thus, one of the two possible tech-
niques, as described in sectidrb.4and sectior?.5.5 has to be applied to identify a
(sub)optimal model flexibility.

2.5.4 Implicit Structure Optimization

Implicit structure optimizatioralso referred agegularizationis often used if the es-
timation of the model error is computationally expensive. Regularization techniques
decrease thenodel flexibilityby retaining the complexity of the model. Logically,
regularization is only applicable to already overly flexible models. Because of this
restriction implicit structure optimization is used in this thesis only for fitness penal-
ization and not in the classical context. The interested reader is referrEgavhich
provides a good overview to regularization techniques.

2.5.5 Explicit Structure Optimization

Explicit structure optimizations mostly used if the estimation of the model error is
computationally cheap, because then it becomes possible to evaluate several models
with different number of parameters. These models are compared by their resulting
errors computed on the test dataset. Explicit structure optimization can be divided into
the following four categories:

Forward selectionis a strategy which starts with a very simple or empty model and
gradually increases the flexibility of this model by adding either new parame-
ters or whole substructures. At each iteration step, a number of possible ways
in which the model can be made more flexible is identified and the accord-
ing model errors are computed. The optimal refinement step is selected and
included in the current model. This is done until the models performance is
acceptable or become worse. The advantage of using forward selection is that
unnecessarily complex models do not have to be computed. Representatives of
model classes which are optimized by the usage of forward selection are:

e Linear parameterized models which can utilize orthogonal least squares
[22,23] algorithms.
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e The projection pursui5] algorithm which build up multilayer perceptron
neural networks with individually activation functions by using a staggered
optimization process to adapt the weights.

e The classical artificial neural networks, which than often refer to the term
growing networkdike Marchand’s algorithm17], tiling algorithm [13Q,
upstart algorithm%4], cascade-correlation algorithra]] or the scheme of
simple expanding recurrent neural networR4][

e Tree based approaches6]153 163 like the local linear model tree
(LOLIMQOT) [131,137 which iteratively partitions the input space.

e Theadaptive spline modelinfASMOD) [97] algorithm which assumes
that the desired system behavior can be additively decomposed, such that
it can be successfully modeled from a linear combination of sewveral
dimensional sub-models.

Backward eliminationstarts with a very complex model and iteratively deletes pa-
rameters or substructures. Representatives of model classes which are optimized
by the usage of backward elimination are:

e Linear parameterized models which can use an orthogonal least squares.

e The classical artificial neural networks, which than often refer to the term
pruning A survey can be found irnlp5.

Stepwise selectiois a mixture of forward selection and backward elimination. In
general all forward selection methods can be extended by backward elimination,
which is normally performed in order to discover and discard redundant param-
eters or substructures. If forward selection and backward elimination is both
considered in each iteration, this is referred as stepwise selection with the clas-
sification and regression tregg (CART) and multivariate adaptive regression
splines p6] (MARS) as typical representatives.

Evolutionary based structure optimizatiois a general method to identify optimal
bias/variance error balanced models. Obviously the comparison of all models
with different flexibility would lead to the optimal model. Unfortunately this
approach becomes even for small problems infeasible, since the search space
Is enormous. A possible way to handle these enormous search space is to use
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evolutionary computation (EC), which have been theoretically and empirically
proven to provide the means for efficient search, even in complex spéiies [
Thus, EC has become a common and general method for structure optimization.
This approach was also chosen in this thesis and will be discussed in greater
detail in chapteb.

2.6 Model Generalization Estimation

The generalization error is the model error emerged from unseen data. In this thesis
generalization estimations are persistently used to select an optimal model (regarding
to a given cost function) out of a set of models. Normally generalization estimations
are tackled by statistical methods, which give assumptions how statistics asymptot-
ically distribute by increasing average sample size. But if some of the premises, as
for example the assumption of normal distribution of certain variables, are violated
or if only very few data samples are available, the asymptotical behavior can not be
guaranteed and the consequences are disputable. To avoid this kind of problems this
section focuses only on methods which can approximate the distribution of parameters
without any strong assumptions.

As mentioned above many problems do not provide enough data to calculate are-
liable generalization error of a final chosen model. Thus, model selection algorithms
have to use error estimations or other model dependent information criteria. Sec-
tion 2.6.2gives an insight to generalization estimation techniques which can be used
if the available dataset is sufficient. In S@d6.3generalization estimation techniques
on small datasets will be discussed and Qe6.4gives a short outline of alternative
usable information about the model.

2.6.1 Good and Best Feature-Subset

After choosing a final model, the parameter optimization of this model is always per-
formed by using the whole dataset withsamples. In the following we will refer to
Miain=M — ] (j < M is the fold size of the cross-validation) as the dataset used for
each validation, to good feature-subseis a subset which contains all relevant inputs
of the matrixU and to the uniquéest feature-subsétat contains all relevant inputs
but no others.
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2.6.2 Training-, Validation- and Test-Dataset

Considering a three times representative dataset, this means each input space region
is covered at least three times by very similar data, a common approach is to divide
the dataset in training, validation and test data. ¥haing datasets used to opti-

mize the parameters of a chosen model. The parameter optimized model is validated
by computing its error on thealidation dataset Thus, if model selection should be
performed, the validation dataset is used to choose a model from a set of available
models and consequently the validation dataset is responsible for structure optimiza-
tion in the model identification process. Finally, after structure and parameter opti-
mization, the identified model is tested with unseen data, the so dabédataset

This whole procedure of optimizing and evaluating the generalization error is referred
to assplit sampling Unfortunately split sampling is only applicable for at least three
times representative data, which is for most real world problems not available. If this
constraint can not be fulfilled, the need for computationally more expensive validation
approaches aris&%.

2.6.3 Cross-Validation

In j-fold cross-validationsometimes callecbtation estimatiol, the data is randomly
divided into j disjoint subsets of (approximately) equal size. The model is trained
] times, each time leaving out one of the subsets from training, but using only the
omitted subset witlkk members to compute the chosen error criterion. The mean of
the evaluated model errors is the overajifold cross validated model erroEg,).

A first formal description ofj-fold cross-validation was given byt72 in 1974. If |
equals the total available sample sMethis is calledeave-one-out cross-validation

The leave-one-out approach is the computationally cheapest representative in the class
of complete cross-validatiotechniques. All members of complete cross-validation
techniques use as accuracy measure the average(g,ﬂ?)llpossibilities for choosing

M/j instances out of. Thus, repeating-fold cross-validation multiple times using
different splits provides a better Monte-Carlo estimate to the conceleawg-j-out
model error.
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2.6.3.1 Cross-Validation with Discontinuous Loss Functions

For model error estimation of continuous cost functions the use of leave-one-out cross-
validation often works well, but if the cost function is discontinuous, for example in
the case of binary classification, leave-one-out cross-validation may perform poorly
and j-fold cross-validation should be preferred. A common choige=s10, because

if j gets too small, the error estimate becomes pessimistically biased because of the
difference in the dataset size between the full-sample analysis and the cross-validation
analyses.

2.6.3.2 Cross-Validation vs. Complete Cross-Validation

Foremost it is notable that leave-one-out cross-validation for model selection is often

a bad choice, because many problems possess the property that small changes in the
data causes large changes in the model seledfdd Considering the selection of
feature-subsets in linear regression, 5-fold and 10-fold cross-validation works better
than leave-one-ouilp]. Even values of in the range of = 2 to j =4 may work better

if the j-fold cross-validation is done repeatedly to refine the model error estimate
towards the concerning leajeeut cross-validation.

2.6.3.3 Equivalence of Leavg-Out to Information Criteria

It was shown that leave-one-out cross-validation using deviance as loss function is
asymptotically equivalent tdkaike’s information criteriorfAIC) [173 (for informa-

tion criteria see also Se2.6.4), but leave}-out (j > 1) cross-validation is asymptoti-
cally equivalent to th&ayesian information criterio(BIC) if the following condition

holds [L66: L

(logM —1)°
BIC will choose thebest feature-subsetith probability limy_.. P = 1, whereas AIC
will choose only agood feature-subsetith an asymptotic probability of onel75.
Furthermore other studieg§, 166 have found that AIC overfits badly in small sam-
ples where BIC works well.

j=M (2.24)
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2.6.3.4 Feature-Subset Selection

A notable observation is that for selecting feature-subsets by |pau{j > 1) in a

linear regression the probability of selecting the best feature-subsejjs. iR # 1,
unlessv =1 [165. To give a better understanding of this statement, recall that by
omitting the noise variance the model error consist of a variance error and the squared
bias error as given in Eq2(23. By assuming a linear function to be learned, the bias
for "good” feature-subsets is zero, thus, the generalization error of good subsets in
linear problems will differ only in the variance error

_2p
I\/Itrain7

E(Y-E)?) (2.25)

with p as the number of inputs in the feature-subsets. By definition the "best” feature-
subset has the smallest valueflf M tends to infinity the differences in the model
error among the models with a good feature-subset will all go to zero. Therefore it
is difficult to guess which subset is best based on the model error, eMeimsivery

large. It is well known that unbiased estimates of the model error, such as those based
on AIC (see2.6.4, do not produce consistent estimates of the best subg8t [In
leave{-out cross-validatioMyin is equal toM — j and thus, the differences of the
cross-validation estimates of the model error among the good feature-subsets contain
a factorm. By makingMain Small enough (and thereby making each regression
based oMy 4in cases bad enough), we can make the differences of the cross-validation
estimates large enough to detect. It turns out that to rivekg small enough to guess

the best subset consistently, we have to haval'u:ra% = 0. The crucial distinction
between cross-validation and split-sample validation is that with cross-validation, after
guessing the best subset, the training of the linear regression model for that subset
iIs done by using alM cases. In split-sample validation onW;,in cases are ever

used for training. If the main purpose is really to choose the best subset, it can be
suspected to ha% go to zero even for split-sample validation. But choosing the
best subset is not the same thing as getting the best model error. If the interest is more
to achieve a good generalization than in choosing the best subset, it is not favorable to
base the regression estimate in cross-vaidation onMgly, cases, because in split-
sample validation that bad regression estimate is what we are stuck with. Thus, there
is a conflict between the two goals of choosing the best subset and getting the best
generalization in split-sample validation.
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2.6.3.5 Bootstrapping

Bootstrapping (sometimes referredlagyging was proposed b7, 48] and a good
introduction can be found inlRY. The bootstrap method uses the original dataset
D°'Y, consisting oM data-pairgx.,, Ym), t0 generate any number of synthetic datasets
DY",DJ",..., also withM samples. The differences to the original dataset is, that
the synthetic datasets can have multiple instances of one data-pair, because the data-
pairs are drawn with replacement frob?®. Typically each synthetic datasets has

a random fraction ofv 1/e ~ 37% duplicated instances. The synthetic datasets are
now used for parameter optimization, yielding in a set of simulated measured weight
vectorsw;”", w5, ..., which will be distributed around®'9. The weight-vectom®'™

again is considered to be distributed arowi®. For a large class of problems the
bootstrap method does yield easy and very quick Monte Carlo estimates of the real
generalization error. Good results were achieved in the field of artificial neural net-
works [120, 181]. In contrast, bootstrapping seems to perform bad on empirical de-
cision trees J01]. Always have in mind that bootstrapping supposes that the dataset
D" consist ofM independent and identically distributed data points. Thus, in inde-
pendent and identically distributed data the sequential order of data points is not of
consequence to the process that is used to commpute

2.6.4 Information Criteria

A possibility to avoid computational cost during validation is the usagafofma-
tion criteria (IC) instead of error estimates based on the repetitive model parameter
recalculation on subsets of the available data. All information criteria are of the form

information criteria = measure of fit + complexity penalty (2.26)

and the best model is defined as the model with the lowest information criterion. Thus,
parameter optimization is still done by minimizing a cost functieat (-), but model
selection is performed by comparing the information criteria of the different models.
A demand on alcomplexity penaltiess that they should increase with the number
of model parameterll and should decrease while the number of ddtancreases.
Furthermore, in the limiM — o the complexity penalty should tend to zero because
the variance error also tends to zero. Two common information criteria are:
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e Akaike’s information criteriof{AIC)°® :
AIC(p) =MIn(cost(:))+pN  (with p =2 as the most common choice).

e Bayesian information criterio(BIC) :
BIC =MIn(cost(-)) +In(M)N.

In the case of applying a regularization method to a model and model selection is done
by IC, remember (see Sez.5.]) that the effective number of parametdig; of the
model decrease aridl has to be replaced bYe.

2.7 Summary

This chapter introduced the basic concepts which are necessary to understand the
problems related with system identification. After a brief description of different
model types a list of possible application areas was given. A more detailed view
to system identification was emerged by describing the tasks to be performed for ev-
ery system identification process. The possibilities to optimize parameters in a fixed
model structure were discussed and several approaches to achieve a model structure
were presented. The least squares parameter optimization method was mathematically
inspected and will later be used to optimize the parameters of Takagi-Sugeno fuzzy
models. The important subject of model complexity respectively flexibility and the
strongly related subject of model generalization estimation were discussed in greater
detail to provide the necessary background to model validation schemes.

5In fact AIC is the acronym for "An Information Criterion” as originally suggested from Akaike.
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Takagi-Sugeno Fuzzy Models

3.1 Fuzzy Logic and Fuzzy Models

Fuzzy logicis an extension to the classical two-valued logic by concepts of fuzzy
set theory, introduced by Zadeh in 196B4{]. A fuzzy mode(FM) makes use of
fuzzy logic concepts to represent a knowledge-base and/or to model interactions and
relations of system variables. The application of fuzzy logic to rule-based models
leads to the class of fuzzy rule based models which consider "if-then” rules whose
antecedents and, model dependent, consequents are composed of fuzzy statements. In
the following, unless otherwise stated, the term fuzzy model is used in the meaning
of fuzzy rule based model. Knowledge in FMs is representelingyiistic variables

with an associated set d¢ihguistic values Linguistic values are defined by fuzzy
sets, where &uzzy set An U is a setA = {u,pa(u)|u € U} of ordered pairs which

are defined by anembership functiofMF) pa(u) € [0,1] and alinguistic termfor
labeling.

Lin and Lee [L1]] excellently remarked that: "One of the biggest differences
between crisp and fuzzy sets is that the former always have unique MFs, whereas
every fuzzy set has an infinite number of MFs that may represent it”. In a broad sense
any field can be fuzzified and hence generalized by replacing the concept of a crisp
set in the target field by the concept of a fuzzy set. Examples for basic fields which
can be fuzzified are graph theory, arithmetic or probability theory resulting in fuzzy
graph theory, fuzzy arithmetic and fuzzy probability theory. Examples for applied
fields are stability theory, neural networks or mathematical programming resulting in
fuzzy stability theory, fuzzy neural networks and fuzzy mathematical programming.

35
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(membership functions)

A cold warm hot

activation value

A
Y

temperature (linguistic variable)

valid input interval

Figure 3.1: A linguistic variable named temperature with assigned fuzzy sets.

Fuzziness should not be confused with probability since it deals with determinis-
tic plausibility, while probability concerns the likelihood of nondeterministic, stochas-
tic events. Fuzziness and randomness differ in nature because they represent different
aspects of uncertainty. The uncertainty of fuzziness is found in the definition of a
concept or the meaning of a term such as "cold water” or "old person”, whereas the
uncertainty of probability generally relates to the occurrence of phenomena. From
a modeling point of view fuzzy MFs represent similarities of objects to imprecisely
defined properties, while probabilities give information about relative frequencies.

3.2 Fuzzy Inference Systems

A fuzzy inference systeisia rule-based model that uses fuzzy logic to reason about
data [L91]. The relationships between system variables are represented by means of
fuzzy if-then rules of the following form:

IF antecedent propositiorHEN consequent proposition.
The antecedent proposition is always a fuzzy proposition of the types’A” where

un is then™ element of the model input vectaomndA is a fuzzy set. The proposition‘s
truth value depends on the degree of similarity betwgesndA.
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The basic structure of a fuzzy inference system consists of four main components
(see Fig3.2), namely:

A fuzzifier which maps crisp (real-valued) inputs into fuzzy values.

An inference enginethat applies a fuzzy reasoning mechanism to obtain a fuzzy
output.

A defuzzifier, which maps the fuzzy output into a crisp (real-valued) output.

A knowledge-basevhich contains both a set of fuzzy rules, known asrtile-base
and a set of MFs known as tldatabase

Knowledge—Base

Crisp . Inference Defuzzifier | Crisp
Tnput » Fuzzifier HFuzzy Engine 4>Fuzzy efuzzifier —> Output
Input Output

& J

Figure 3.2: Basic structure of a fuzzy inference system.

All fuzzy rule-based models share this general structure. A categorization of FMs into
the three mostly mentioned model classes depends on the form of the consequent of
the fuzzy if-then rules and is given as follows:

In linguistic fuzzy modelsboth, the antecedent and the consequent, are fuzzy propo-
sitions.

Fuzzy relational modelsare generalizations of linguistic models in which the rela-
tion between antecedent and consequent terms is fuzzy.

In Takagi-Sugeno fuzzy modelshe antecedent is a fuzzy proposition and the con-
sequent is a crisp function.
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More general, the classification of a fuzzy rule-based model is based on different
assignments to logical parameters of the model, where the model parameters can be
classified into four distinct categories42 (Tab. 3.1):

Class Parameters
MF types
Logical Fuzzy operators

Reasoning mechanism

Defuzzification method

Relevant features
Structural | Number of MFs

Number of rules

Antecedents of rules
Connective | Consequents of rules

Rule weights

Operational| MFs values

Table 3.1: Parameter classification of a fuzzy inference system.

The logical parameters are usually predefined by the designer based on available
software tools and/or on the general problem characteristics. This thesis focuses on
Takagi-Sugeno FMs because of the problem characteristics of data-driven modeling.
Thus, the next sections provide a description of the logical parameters chosen to per-
form data-driven system identification, why they were chosen and where these models
are situated in the soft-computing nomenclature.

3.2.1 Membership Function Types

The supportof a MF is the crisp set of all points in U which fulfill pa(u) > 0.
A fuzzy set whose support is a single pointUnwith pa(u) = 1 is called a fuzzy
singleton Commonly used MFs are triangular, trapezoidal, bell-shaped and Gaussian
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functions. In this thesis b-splines are used as MFs because they offer some interesting
characteristicsB-splinesare defined over a knot-vectdr consisting of at leadt+ 1
elements, wittk denoting the order of the b-splines. Each element of the knot-vector

is called knot and the b-spline values can be recursiay?9] calculated by

Ajitk—u
I = BX 1 (u), where

Bf(u) =1,if ue [Aj,Aj41)

= 0,otherwise (3.2)

Abbreviation: u : inputvalue

B‘j((u) . activation value of thg™" b-spline

defined over the knots; to j + k.

The concept of a knot-vector and the characteristics of b-splines meets our demands
in four ways.

e It is compatible with the construction demands of so called descriptive FMs.
Each single knot-vector defines a whole set of MFs for one linguistic variable.
These sets of MFs define, together with a labeling, the globally interpretable
fuzzy sets which cover the input space.

e It is easy to achieve a finer grid of linguistic terms on each one-dimensional
projection by simply inserting some knots in the concerning knot-vector.

e B-splines can form extremely different shapes simply by changing their order
or their knot-positions.

e B-splines show some for FMs essential characteristics such as positivity and
local support and furthermore they form a partition of unity (activation of all b-
splines defined by one knot-vector sum up to the same value) which simplifies
the interpretation of a FM and improves its learning capabilitl&s]|
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Obviously (see Fig3.3(c) b-splines of higher ordek(> 2) are no longer nor-
malized to one. From a semantic point of view this is no problem. In fact, single
MFs with a maximum activation below one, by simultaneously fulfilling the partition
of unity, normally are better qualified to fit the ideas behind fuzzy reasoning. This
statement will be justified in Se&3.2

1Of - -~ - - LOF === === === 1

0.5 - - - SIS --- 05F--f- - \- -

activation value
activation value
activation value

1 2 3 4 5 6
knots knots knots

(b) Order 2. (c) Order 3.

Figure 3.3: Univariate b-spline functions of different order. The green shaded areas
highlight the domain where the partition of unity is valid.

3.2.2 Fuzzy Operators

As with classic sets we need to define operations on fuzzy sets because we would like
to be able to use compounds of linguistic descriptions (i.e. rules) in a mathematical
way. The intersection and union operations of fuzzy sets, which are often referred to as
t-norms(triangular norms) anttconorms(triangular conorms), respectivel¢d, 43],

are used to aggregate rule antecedents and to calculate the rule consequents. T-norms
are two-parameter functions of the form

t:[0,1] % [0,1] — [0,1], (3.2)

such that
Hang(U) = t[ua(u), us(u)], (3.3)
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where the function(-, -) satisfies the following conditions:
Boundary conditions: t(0,0) =0,

t(Ma(u), 1) = t(1, pa(W) = Ha(u).
Commutativity: t(pa(u), us(u)) =t(ps(u),palu)).
Monotonicity: If pa(u) < pc(u) andpg(u) < pp(u)
thent(pa(u), us(u)) < t(kc(u), Hp(u))
Associativity: t(Ha(u), t(ks(u), ke(u))) = t(t(Hau), pe(u)), kc(u)).
Typical nonparametric t-norms are:
Intersection: aAb = min(ab).
Algebraic product: a-b = ab
Bounded product: a®b = max (0,a+b—1).
a b=1
Drastic product: a®b = b, a=1
0, ab<l

Y

T-conorms (often referred as s-norms) are two-parameter functions of the form
s:[0,1] x [0,1] — [0,1], (3.4)

such that
MauB (U) = STHA(), (W), (3.5)

where the functiors(-, -) satisfies the following conditions:

Boundary conditions: s(1,1) =1,

(
(

S(Ha(u),0) = S(0,Ha(u)) = Ha(u)
Commutativity: S(pa(u), us(u)) = s(pus(u), Ha(u)).
Monotonicity: If pa(u) < pc(u) andpg(u) < pp(u)

thens(pa(u), pe(u)) < skc(u), bp(u))
Associativity: S(Ha(U), t(HB(u), bc(u))) = S(S(Ha(u), He(u)), kc(u)).-

Typical nonparametric t-conorms are:
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Union: avb = max(ab).
Algebraic sum: atb = a+b-—ab
Bounded sum: a®b = min(1l,a+b).
a b=0
Drasticsum: adb = b, a=0
1, ab>0.

There exist several parametric t-norms and t-conodr§| jwith the standard min and

max operations as, respectively, the upper bound of t-norms (the weakest intersection)
and the lower bound of t-conorms (the strongest union). The t-norms and t-conorms
can be seen as aggregation operations on fuzzy sets, which combine several fuzzy
sets to produce a single set. A general definition for an aggregation operation was
formulated by 99] in the following way:

h:0,4"—[0,1], n>2, (3.6)

such that
Fa(U) = h(pa, (U), Hay (U), - -, Han (U)) - VueU. (3.7)

3.2.3 Reasoning Mechanism

There exist four principal modes of fuzzy reasoning, nanealgegorical reasoning,
syllogistic reasoning, dispositional reasoniagd qualitative reasoning.Qualitative
reasoning refers to a mode of reasoning in which the antecedents and/or consequents
propositions involve fuzzy or linguistic variables. Because qualitative reasoning plays

a key role in fuzzy logic applications in the realms of control and system analyisis [

176 145108 21], this thesis will focus on this mode of reasoning. For information
about the other modes of reasoning the reader is referrdd £1[95.

3.2.4 Defuzzification Method

If the used consequents propositions involve fuzzy or linguistic variables, the model
output has to be defuzzified in order to obtain one crisp output value. Obviously this
is not necessary if the model output is presented to another fuzzy model or directly
to a human. By using Takagi-Sugeno FMs the defuzzification step is omitted, since
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the consequents propositions of rules in Takagi-Sugeno FMs does not contain fuzzy
or linguistic variables.

3.2.5 The Output Evaluation of a Takagi-Sugeno Fuzzy Model

To consolidate the above discussed concepts the principle procedure to evaluate the
output of a Takagi-Sugeno FM is described. Because in Takagi-Sugeno Fis-the
fuzzification steis omitted the following steps must be carried out:

Fuzzification— Aggregation— Activation — Accumulation

Thefuzzification stepises the MFs to map crisp model inputs to the degrees of mem-
bership. These degrees of membership will be denotﬂﬁi‘na(ﬂn), with r = rule index
(r €1,...,R, whereaR represents the number of rules in the rule-ba&ie)ienoting
theit fuzzy set ofinpun (n€ 1,...,N, whereaN is the number of model inputs) and
un is then™ element of the model input vectar

Theaggregation stepgombines the individual linguistic statements with the help
of a fuzzy operation (see Sex.2.2 to the degree of rule fulfillment. When the fuzzy
model is in conjunctive form and the product operator is used as t-norm the degree of
fulfillment of ruler is:

(W) = 7 (ug) - () . - (). (3.9)

Figure 3.4 illustrates two bivariate MFs, constructed by multiplying two univariate
b-splines. In the artificial neural network community the support of the resutting
variate function is often denoted eeceptive field.

The activation stefs used to calculate the output activations of the rules. Lin-
guistic fuzzy models, for example, often usestthe-operation to cut the output MFs
at the smallest degree of rule fulfillment. In the case of Takagi-Sugeno FMs the activa-
tion step comprises the task of calculating a function whose output is taken as degree
of rule fulfillment.

The accumulation stejs used to join all rule activation values together. In the
case of linguistic FMs the accumulation step yield in a fuzzy set, by applying, for

1To be consistently with Fig3.2the defuzzification step in Takagi-Sugeno FMs can also be seen as
a function which maps each value to itself.
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(a) Aligned bivariate b-spline. (b) Displaced bivariate b-spline.

Figure 3.4: Bivariate b-splines formed by univariate b-splines. The aligned bi-
variate b-spline (a) is formed by two univariate b-splines of order three with knot-
vectorsA = A% = (0,0.3,0.6,1). The displaced bivariate b-spline (b) is formed
by two univariate b-splines of order three with knot-vect@Jrs: (0,0.3,0.6,1) and

A% =(0,0.1,0.1001, 1).

example, thenax-operation. In the case of Takagi-Sugeno FMs the accumulation step
yields in the final model output, which is normally calculated as a weighted average
of all rule activations.

3.3 Interpretability Conditions of Fuzzy Models

Each fuzzy-modeling process has to deal with an important trade-off between inter-
pretability and accuracy of the model. By fulfilling all criteria which support a good
interpretability the FM is heavily restricted and logically the accuracy is inferior as

a FM disregarding all interpretability consideration. In fact the author has the opin-
ion that many kernel based modeishich are termed as "(interpretable) FMs” are de
facto not interpretable. This is caused by the fact that many authors disregard the se-
mantic consistency of the resulting model. The most basic assumption is that a fuzzy

°Nearly all kernel based methods can be seen as FMs. For example local linear models or radial
basis function networks were shown to be equivalent to zero order TSHY/E32 113. Also support
vector machines or wavelet networks are strongly related to fuzzy models because the used kernels can
be interpreted as fuzzy sets, drawing the kernel based method into a fuzzy framework.
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set has to be convex. Convexity of fuzzy sets can be defined in termscofiiss,
where an-cut of a fuzzy sefA is a crisp sefy that contains all the elements of the
universal set that have a membership gradeAmgreater than or equal t. A fuzzy
set is convex (see also Fig.5(a) if and only if each of itx-cuts is a convex set. Or,
equivalently, a fuzzy sek is convex if and only if

Ha(Auz + (1= A)u2) = min(pa(u1), ba(Uz)), (3.9)

with  ug,u; € U,A € [0, 1].

Note that this definition of convex fuzzy sets does not imply that the membership
function of a convex fuzzy set is a convex function.

1.0 T 1.0 —

0.0 — 0.0

(a) Convex fuzzy set (b) Non-convex fuzzy set.

Figure 3.5: Convex and non-convex fuzzy set.

Kernel based approaches which do not fulfill the convexity condition (see
Fig. 3.5(b) can, by definition, not be termed as FMs. For an extensive and more math-
ematically based inspection of fuzzy set semantics the interested reader is referred
to [107]. Some remarks about convexity and complementary or non-complementary
MFs with respect to the output of FMs can be foundGf][

Other conditions are not so fundamental and kernel based approaches violating
these conditions can, by definition, be denoted as FMs. Besides the indispensable
convexity of fuzzy sets, the interpretability of FMs depends on the fulfillment of other
conditions.
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3.3.1 Fuzzy Set Configurations Causing Semantic Inconsistency

To clarify the term sematic inconsistency some undesirable fuzzy set configurations
are shown. The following figures show a linguistic variable called "annual salary”
covered by two fuzzy sets which are labelmlorRandwWEALTHY .

1.0 1.0
POOR WEALTHY . POOR WEALTHY
0.0 0.0
annual salary annual salary

Figure 3.6: Fulfilling the ordinal condition of fuzzy sets.

Figure3.6illustrates the ordinal condition. The left hand side fuzzy set distribu-
tion has as semantic consequence that a person cowdhlerHy to a certain degree,
but the same person is simultaneously not eseR Obviously a proper semantic
interpretability is not given. The right hand side of F&j6 illustrates the corrected
version of the left hand side, now fulfilling the ordinal condition.

Figure3.7illustrates the leveling condition (i.e. the special case of normalization
to one). The left hand side of Fi§.7 exhibits different degrees of maximal fulfill-
ments for two fuzzy sets covering the same linguistic variable (i.e. annual salary). The
semantical consequence is th&®@ORperson is never e800ORas awEALTHY person
IS WEALTHY . Applying double standards is in general not desirable. Again, the right
hand side of Fig3.7 provides, with respect to the leveling condition, a correct version
of the left hand side.

1.0 1.0

POOR WEALTHY . POOR WEALTHY

0.0 0.0
annual salary ’

annual salary

Figure 3.7: Fulfilling the leveling (i.e. normalization to one) condition of fuzzy sets.

Figure3.8illustrates theomplementarity conditiorA person classified as 100%
POOR (kernel activation equals one) can not be pawlgALTHY or vice versa. Itis
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always desirable that the activations of all inputs sum up to an equal value. This
property is denoted gsartition of unityor as complementarity condition.

1.0 1.0

POOR WEALTHY > POOR WEALTHY

0.0 0.0
annual salary annual salary

Figure 3.8: Fulfilling the complementarity condition of fuzzy sets.

Figure3.9 again illustrates the complementarity condition. The attentive reader
will have realized that the fuzzy sets (see right hand side of &i).does not ev-
erywhere fulfill the complementarity condition. In fact the right hand side of &ig.
illustrates the one and only possible fuzzy set distribution for two triangular (not trape-
zoidal) fuzzy sets fulfilling all interpretability conditions for a semantically correct in-
terpretation. Corresponding to the above examples b-splines of order two would yield
in semantically correct MFs.

1.0 1.0

POOR WEALTHY —> POOR WEALTHY

0.0 0.0
annual salary annual salary

Figure 3.9: Fulfilling the complementarity condition of fuzzy sets part two.

3.3.2 Interpretability Factors

Beside these sematic conditions there exist other factors which influence the inter-
pretability of a fuzzy model. Unfortunately an objective and commonly used measure
for model interpretability is still not available. Thus, reasonable accuracy comparisons
of FMs are restricted to models using the same model structure. The interpretability
factors can be classified into two different classes. The first category is concerned with
the fuzzy set distribution of a FM as exemplarily shown in S8.1and the second
category is concerned to the rule-structure of a FM.
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The fuzzy set distribution, sometimes denotedasantic criteriais very im-
portant, since every fuzzy set should represent a linguistic term with a clear semantic
meaning. The focus of fuzzy set distribution should lie on the meaning of the en-
semble of labels instead of the absolute meaning of each term in isolation. Thus, the
following criteria should be fulfilled by a fuzzy set distribution to facilitate the task of
assigning linguistic terms as good as possible.

Complementarity: For each input element of the universe of discourse, all member-
ship values of the fuzzy sets should sum up to one. This characteristic is known
as forming goartition of unityand guarantees a uniform distribution of meaning
among the elements. Furthermore a fuzzy set distribution forming a partition of
unity improves the learning capabilitiesd7,66] of a FM.

Leveling: The leveling condition is a generalized form of the most of the time un-
necessary strict, but commonly known, normalization (to one) condition, which
claims that at least one input element of the universe of discourse should activate
the membership value equal to one. A normalization to one has as consequence
that there exist an absolute truth, e.g. an age were you are only old, a state were
a liquid is only hot and so on. This is often contradictory to the reasons why
fuzzy concepts were introduced. The more general leveling condition fits better
in a fuzzy framework because it claims only an equalized maximum activation
level of all fuzzy sets of the same linguistic variable. For the sake of simplic-
ity Fig.3.6-Fig. 3.9 only made use of normalized triangular MFS. However, by
using b-splines of higher ordek ¢& 2) the leveling condition could be imple-
mented. In the case of b-splines, which are defined over uniformly distributed
knots, the leveling condition implicitly holds (Fi§.3(c)).

Human manageable number of elementsSince a human being can handle only
a certain number of conceptual entities 7+ 2), the number of MFs covering
one input should not exceed this quantity.

Distinguishability: Each linguistic label should have semantic meaning and the
fuzzy set should clearly define a range in the universe of discourse of the in-
put variable.

Beside the fuzzy set distribution the rule structure has to be taken into account
to define an overall interpretability measure. As discussed in se8tib@a fuzzy
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rule relates one or more input-variable conditions via a t-norm, called antecedents, to
a corresponding output conclusion, called consequent. The interpretability of a FM
is influenced by the structure of each rule and by the whole set of rules. These rule-
structure criteria, also callesiyntactic criteria for interpretability are given by the
following conditions.

Completeness A fuzzy rule based model should infer for each conceivable model
input a corresponding output. In addition to this, some authors cl&jdi/]
that the fuzzy set obtained by combining all the individual rule outputs, has to
be non empty. This requirement is unnecessary strict, since the main objective
of the completeness condition is to assure that the model output is always well
defined. In the following this objective will be fulfilled by simply introducing a
default model output of zero. This results in an always well defined and sfooth
output behavior of the model.

Consistency The consequents of two or more simultaneously firing rules with the
same antecedents should not be contradictory but semantically close.

Readability: The number of conditions (premises) of each rule should not exceed
the human manageable number of conceptual entities+ 2).

Simplicity: In general it is desirable to model a system by an FM with only a few
rules, but the overall number of rules has no direct influence on the interpretabil-
ity properties of a FM. Note that there exist very complex real world sequences
which can be described by highly specialized human experts. If this descrip-
tion would be mapped into a mathematical model, the number of rules would
be enormous, but the interpretability would still be given. The simplicity con-
dition should be seen as the demand that as few as possible rules are activated
simultaneously in order to enable a local view of the behavior.

3.3.3 An Exemplary Interpretability Measure

With an objective interpretability measure (IM) it becomes possible to compare the
accuracy of FMs using different structural assumptions. All the above mentioned in-

3The output will be denoted as smooth if all rules use convex and non-crisp fuzzy sets. For example
the usage of b-splines (no coincident knots) of order three or higher as fuzzy sets always produce a
smooth model output without discontinuities.
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terpretability conditions can be subsumed in only five objective interpretability factors
(IF). These five IFs, each with values in the range [0,1], can than be joined by a prod-
uct operation to form an objective IM, which again is always in the range from zero
(no interpretability) to one (best interpretability):

IM = _ﬁn:i (3.10)

with interpretability factoil F; concerning the number of used premises:

R

IFy =
T SR (2 max(3,NoR))2

(3.11)

R : number of rules,

NoR : number of premises of rule

The numbers two and three in E§.11) are used to control the maximum number of
used premises in one rule. In this case one up to three premises lead to an interpretabil-
ity factor of one (full interpretable). By using more premises the interpretability de-
creases quadratically. The chosen numbers and the quadratic factor reflect the obser-
vation that human beings can hardly understand rules with more than three premises.

Interpretability factol F> concerns the number of fuzzy sets covering the inputs:

N

F2= SN (6—max(7,NOFS))2

(3.12)

N : number of model inputs,

NoFS, : number of fuzzy sets covering inpuit

Here the numbers six and seven reflect the observation that human beings can hardly
manage more than sevér 7+ 2) conceptual entities. Again, if more conceptual
entities (fuzzy sets) are used, the interpretability factor decreases quadratically.
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Interpretability factod F3 concerns the number of simultaneously activated rules:

M

IFs= SV (3—max(4,NOARy))2

(3.13)

M : number of data patterns,

NoARy : number of activated rules.

In Eqg. (3.13 the numbers three and four are chosen due to a compromise concerning
the values used in Eg3(1]) and the fact that already a problem with two inputs, each
input covered by fuzzy sets of order two, leads to four simultaneously activated rules
(in the case of a complete rule-base using no "dont’t care” rules). Again, a quadratic
decrease in interpretability is implemented by the quadratic term, which should reflect
the capabilities of human beings.

Interpretability factodF4 concerns the different levels of the maximum activa-
tions of the fuzzy sets covering the same input:

N

IFy =
*7 N (1- /MaxDv,)

(3.14)

N : number of model inputs,
MaxDiV;,, : maximal difference in activation values

of fuzzy sets covering input.

Obviously the square root operation in E8.15 should penalize "higher” differences
in the maximum activation of fuzzy sets more than "lower” differences.

Interpretability factod F5 concerns the violation of the complementarity condi-
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tion of fuzzy sets:

N

IFs = ———— (3.15)
Sho1PVh
N : number of model inputs,
(uy®—up™) i kn
oy - 0, [Fuzzyset if 32,/ FuzzySet> 1.0,
o=

1 1 (unmaxfunmin) th i
+( —Wt) otherwise

Kn : number of fuzzy sets covering inpuit

At bestlFs has never to be calculated because the used fuzzy sets inherently supports
the fulfillment of the complementarity condition (as it is the case by using b-splines
as fuzzy sets). If for some reasons the integration is not possible, a "big” number of
uniformly distributed input patterns can be used to approxirtaie

3.3.4 Avoiding the Curse of Dimensionality

By using the local support areas of the fuzzy sets covering the inputs, it is possible
to construct am-dimensional latticer{ = number of model inputs). A rule-base in
which each grid is considered by one fuis denoted as &ully defined rule-base.
Obviously the number of rules in a fully defined rule-base increases exponentially
with the number of used inputs and thus the resulting models become infeasible for
high-dimensional systems. Moreover, by considering a fully defined rule-base the
number of premises for each rule is equal to the number of inputs, which violates
for high-dimensional problems the above mentioned readability condition. To tackle
these two problems, by preserving the interpretability, some authorslosé tare’
as a valid input labeld2,115. Variables in a given rule that are labeled with "don’t
care” are considered as irrelevant and thus, a rule like

IF eye-coloris "don’t care” AND hobbyis dangerougHEN injury risk Is high

is equivalent to the rule

4This means that each grid is covered by orgimensional function build by one-dimensional
MFs (e.g. b-splines).
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IF hobbyis dangerousHEN injury risk Is high.

Another possible way to bypass the curse of dimensionality and to ensure inter-
pretability is to use default rules with a firing strength inverse proportional to the
firing strength of all other rules.

In the following, models with so callepartly defined rule-basesvill be used.
Rules of a partly defined rule-base do not necessarily cover all input regions and fur-
thermore they make use of "don’t care” premises. By using a default model output of
zero to assure an always well defined model output behavior (see completeness con-
dition in Sec.3.3.2 the resulting models are applicable to high-dimensional problems
without loosing their interpretability.

3.4 Takagi-Sugeno Fuzzy Models

Takagi and Sugeno proposed in 1985 a FM with a rule-base compRsinigs of the
form:

Rule : IF uiIs AillAND ---AND UNIS Ai,\'l\'THEN yr = fr(u), (3.16)

with A, : fuzzy set of then linguistic variable,
in: fuzzy set number of the® linguistic variable,
N : length of input vectou,

yr : output of ruler.

Since the functiond; () are not fuzzy sets, in most cases Takagi-Sugeno fuzzy mod-
els (TSFM) are hard to interpret. Note, that there are two exemptions to this general
statement. The first exemption is that TSFMs possess excellent interpretation for dy-
namic processed B7. The second exemption can be established by chods{ngto

be a real valug,. The values is denoted asingletonof ruler and is a special case

of a fuzzy set. Thus, the interpretability of a singleton TSFMs is maintained. TSFMs
utilizing constant functions (singleton FMs) as rule-consequents are also denoted as
zerd" order TSFMs, TSFM with linear functions as rule-consequents are died

order TSFMs,etc.



54 Chapter 3. Takagi-Sugeno Fuzzy Models

However, each rule output is a function of the input vector and the overall model
outputy of a Takagi-Sugeno fuzzy model (TSFM) is mostly calculated as a weighted
sum of all rule outputy,?

5 2 (W (u) 3.17
Y SPam(u) =

with R: total number of rules,

L : aggregated premise activation of rulée.g. Eq.3.9).

The aggregated premise activations are also denoted as the rule firing levels, which
are defined as the output of E.T) utilizing fuzzy sets of rule

b (W) = (K (un)), (3.18)

whereh is an arbitrary t-norm. In the case of TSFMsisually denotes the algebraic
product or minimum operation. An unnormalized version of BylT), as proposed
by [179 180, has for its output

R
y=> W (u), (3.19)
r=1

with w; : real values (singleton) of rule.

In the following the algebraic product will be used as t-norm. Obviously the denomi-
nator in Eq. 8.17) forces a normalization, which is, in general, necessary to assure the
interpretability of the FM. However, if the rule-base is fully defined and, as assumed,
the algebraic product is used as t-norm and furthermore the partition of unity holds the
denominator can be canceled. The resulting kind of TSFM is equivalent to a normal-
ized lattice based (radial)-basis function netwd@®, p8]. Furthermore, the extension

of this result, namely that TSFMs are equivalent to local model networks, was shown

by [77].
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3.4.1 Takagi-Sugeno Fuzzy Models for System Identification

Zerd" order TSFMs are a widely applied model class in industry to tackle static prob-
lems because of interpretability issues and because the rule-consequences can be es-
timated simultaneously in a single LS optimization. This single step estimation is
referred to aglobal estimation.Unfortunately many users totally negate the inter-
pretability issues by freeing all constraints which could yield in an interpretable fuzzy

set distribution. By doing so one of the main advantages ofzerder TSFMs van-

ishes and the user would be better off using TSFM of higher order or other approxi-
mation techniques.

3.4.1.1 Approximate Takagi-Sugeno Fuzzy Models

Approximate TSFMs(ATSFMs) have an incomplete rule-base and the interpretability
is generally lessened or nonexistent since there exists no global term set definition.
Each rule defines its own MFs on arbitrarily inputs, generally violating the inter-
pretability conditions stated in sectidh3.2 Consequently ATSFMs do not suffer
from the curse of dimensionality and thus, it is easy to construct an ATSFM with
fewer rules but the same prediction quality as it is possible with a higher constraint
but more interpretable TSFM.

3.4.1.2 Descriptive Takagi-Sugeno Fuzzy Models

The main criterion to denote a TSFM as "descriptive” is the existence of a global term
set definition for each input variabl2g]. Unfortunately descriptive TSFMs (DTSFM)

are not necessarily interpretable, since interpretability depends on more factors than a
global term set definition. However, together with a high fulfillment of the in®82
introduced interpretability factors, DTSFMs provides the most interpretable class of
TSFMs; capable to use the powerful and well established methods of single step LS
to determine the model parameters.

3.4.2 Parameter Estimation of Takagi-Sugeno Fuzzy Models

For the remainder the term "parameter optimization” always refers to optimization
of the consequent parameters. The consequent parameters correspond to the output
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weights in a basis function formulation or the so called coefficients in a spline ap-
proximation formulation. These parameters can easily be calculated by single step
LS methods as described in S@c4.2and B8,132 157]. This simplicity of optimal
parameter estimation is a main reason to utilize TSFM in data-driven modeling. Of
course parameter optimization of TSFMs can also be performed by iterative gradient
methods 18]. These methods are preferable if fast to calculate low-accuracy solution
are needed, for example in algorithms which operate in real-time. Another reason
to use iterative gradient methods is the computationalcastl the large memory
requirements of direct methods. If non of these reasons are important, direct meth-
ods are preferable and thus, in the following only direct optimization techniques are
considered.

3.4.3 Global Parameter Estimation of Takagi-Sugeno FMs

By using global estimation all parameters of a model are estimated in a single LS
optimization. If we assume complete polynomials as rule consequents the parameter
vector (in the consequent proposition) of a one rule of a TSFM contains

~ (N+K)!
P= NIk (3.20)
with N : number of model inputs,

k: order of the TSFM,

parameters (see also Ef20. Thus, the total number of parameters which have to be
estimated ina TSFM is

W=R-P, (3.21)
with R: number of rules,

P : number of rule parameters.

SDirect optimization techniques are generally based on performing a matrix inversion that has a
computationally cost o®(p®).
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In the following the parameter vector containing all parameters of a TSFM is denoted
as weight vector and is for zero order TSFMs

w=[wy - wg]". (3.22)
In the case of a first order TSFM the weight vector is
W= (W11 Wi Wip - WR1WR2 - WRp] . (3.23)
The associated regression maiiXor M available data samples becomes
X = [X3PX5P- - XEY) (3.24)

with the regression sub-matrices

Dr(up)  uLa®r(up)  ua®r(ug) - up®r(ug)
wsub_ Dr(Up) U 1®Dr(Up)  Upo®r(Up) <o Upp®y(Uy)
r - . . . .
Dr(Uy) UmaPr(uy) Um2®Pr(Uy) oo umpPr(Uy),

where u,,, denotes thani" input vector of the availablé/ data samples and,(-)
denotes the combined linguistic statements of the antecedents af felg. ann-
variate b-spline function). The model output is then given by

¥=Xw, (3.25)

withy=[91y - Ym]T. For zero and first order TSFMs the globally optimal weights
can be calculated, as described in S£4.2.1 in a single step. Because the global LS
estimation is a very efficient way to optimize the rule consequents this method will be
used in the following. However, global LS estimation is not always applicable since its
computational complexity grows cubically with the number of weights. Concerning
"large” data sets (e.g datasets with more thah0000 samples) local estimation meth-
ods has to be used, which only grow linearly with the number of paramétegs [
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3.5 Structure Identification of Takagi-Sugeno FMs

From a system identification point of view, structure identification of a TSFM matches
the task to select a model structure (see 2€9). In the case of TSFMs, structure
selection subsumes the task to:

e Select a pool of independent variables which are potentially related to the de-
sired outputy.

e Cover these selected variables (features) with fuzzy sets.
e Select the shape of the fuzzy sets.

Obviously all three tasks should be done in an optimal way to achieve a good accuracy
in combination with ideal generalization abilities.

3.5.1 Feature Selection

Feature selection methods become necessary if the dependencies of available infor-
mation to a system output of interest is unknown. Selecting a set of features which
is optimal for a given task is a problem which plays an important role in a wide vari-
ety of contexts and applications. This includes pattern recognition, adaptive control,
machine learning, data-mining and modeling.

Methods for feature selection reaches from statistical tools and the classical
greedy-algorithm28], over graphical analysid ] to global search methods like evo-
lutionary computation. The first two approaches yield normally in suboptimal fea-
ture selections and the graphical analysis is hardly applicable in purely data-driven
approaches. Evolutionary search methods provide, at least theoretically, an easy to
implement global search method for optimal feature selection.

3.5.2 Input Space Partitioning

Input space partitioning provides information for fuzzy set positioning. There exist
three common methods to partition the input space:

1. Clustering methods3[67, 75,69, 76] like C-means.

2. Decision tree based methods like CARIB] or LOLIMOT [137).
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3. Global search method like evolutionary computatiaf| [

By using clustering methods, the identified clusters are projéctedhe input axes.

The space between the cluster borders are used as the support of fuzzy sets. Soft
clustering methods also provide utilizable information about the fuzzy set shape. De-
cision tree based approaches split the input space. This is done recursively in input
areas where a selected model produces the highest classification/approximation error.
The splitting is normally done axis orthogonal and thus directly usable as information
to place fuzzy sets. The third method is the most general. Especially evolutionary
computation has as advantage that, at least theoretically, it is possible to identify an
optimal input space patrtition for fuzzy sets.

3.5.3 Fuzzy Set Shape Selection

The selection of an optimakhape for each fuzzy set is almost always a highly non-
linear problem. Again, the usage of classical mathematical metl@&fisd identify

the (absolute) optimal shape are applicative only for very small problems. But to
preserve the possibility of an (absolute) optimal fuzzy set shape selection a global
search method has to be chosen.

3.6 Summary

In this chapter the structure of TSFMs was presented. The main focus pertained the
interpretability of FMs. It was clarified that a descriptive TSFM is not necessarily
interpretable. A usable interpretability measure based on five interpretability factors
was introduced. Furthermore, the generally necessary tasks to achieve optimal TSFMs
were listed and possible strategies to fulfill these tasks were presented. It was justified
that evolutionary computation is an appropriate concept for structure identification of
data-driven TSFM. Because of this, the next chapter gives a problem specific intro-
duction to evolutionary computation. These concepts, in combination with a novel
method to formulate the genotype search space of candidate solutions with the help of
grammar-based genotype templates, will later be used to identify optimal DTSFMs.

5The clusters can also be directly interpreted as multi-dimensional fuzzy sets. This leads to approx-
imate TSFMs.
"Optimal with respect to model accuracy and model interpretability.
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Evolutionary Computation

The idea ofevolutionary computatio(EC) is to utilize principles of evolution in na-

ture to find (sub)optimal solutions to NP-complete problems. Thus, most ideas used in
EC have their origin in observations of biological based functionality. The basic func-
tionality of natural evolution was first correctly described and published by Charles

Robert Darwin (see Figd.1) in his famous book on "The Origin of Species3(
from 1859.

Figure 4.1: Charles Robert Darwih {2" February 1809, T 0 April 1882).
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Thus, artificial evolution considers a solution to a given problem as an individual
and a set of solutions as a population, the term EC subsumes all population based
approaches which possess the following characteristics:

e Random variation of individual solutions.
¢ Alteration of potentially useful structures to generate new solutions.
e A selection mechanism to increase the proportion of better solutions.

The schematic functionality of EC is depicted in FHg2 and the classification with
respect to other search metho8§g][is illustrated in Fig4.3. In the following the indi-

Initial Population Final Population
New Population
Mutation and
Reproduction

Figure 4.2: Schematic functionality of evolutionary processes.

viduals of a population are denotedlaslij(1 < i <) wherel stands for the number

of individuals in the according population. Furthermore a population, although not
sorted, will be represented by a tuptey = (Indii)1<i<|, with t as iteration (gener-
ation) index. This notation is caused by the fact that several individuals in the same
population can be identical, thus, a set-theory based nomenclature would be cumber-
some.

At a first glance EC seems not to introduce new concepts with respect to more
traditional search methods like, parallel simulated anneallag) [or parallel tabu
search T1]. The main difference of population based algorithms to all other tech-
niques is the concept of competition between candidate solutions.

Different characteristics of EC leads to special evolutionary algorithms (EAS),
with names like genetic algorithm33] (GAs) , evolutionary strategiesl$4, 164
(ESs) , evolutionary programmin®J|, genetic programmingl04 or artificial im-
mune systems3[3]. To shortly outline the functionality of an EA or to do research
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Enumerative
techniques

Dynamic
programming

Guided random
search technique

Simulated Tabu Evolutionary
annealing search computation

Figure 4.3: A taxonomy of search methods.

Calculus—based
techniques
Direct
methods

in theoretical analysis of fundamental qualities, these terms are very useful. From the
perspective of most users of EC concepts it is unimportant which strategy is used, be-
side the fact that the found solution is satisfactory. For this reason nowadays most EC
approaches use a set of characteristics depending on the problem to solve, yielding
hybridization of several methods. This has as consequence a decoupling from clas-
sical terminology with its strict categorization, leading to an explanation of used EC
concepts.

4.1 Nomenclature of Evolutionary Computation

As already mentioned EC utilizes principles of natural evolution. Because of this and
for simplicity EC make use of terms with their origin in biology:

¢ Individual - a particular biological organism.

e Fitness - measurement that express the success of an individual to handle its
living conditions.

e Population - group of interbreeding individuals within a given area.
e Phenotype - refers to the composition of a particular individual.
e Gene - is a functional entity that encodes a specific feature of an individual.

e Genotype/DNA - refers to a specific combination of genes carried by an indi-
vidual and can be seen as a blueprint which is transcribed into proteins which
build the phenotype.
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Keeping the limitations of nomenclature transfer between different scientific areas in
mind, the above-mentioned terms have in EC the same meaning with the exception of
the following modifications:

¢ Individual - particular solution to a certain problem. An individual in EC sub-
sumes the genotype and the phenotype.

e Fitness - measurement computed via a fitness function which expresses the suc-
cess of an individual to solve the problem.

e Genotypé - blueprint which can be transcribed via function(s) into a phenotype.

4.2 Genotype Representation

Evolution, like all search algorithms, is limited and constrained by the representation
(i.e. genotype) it can modify. Aenotype representatiaa a mapping from the state
space of possible encodings to the state space of a genotype. To fully understand
this statement it is necessary to realize that the location of information carried by a
genotype is twofold. Firstly, and most apparent, information is embedded in the struc-
ture of the genotype. In the case of natural genotypes this is the base pair sequence
and for a string based artificial counterpart it is each element (Bit) of the considered
string. Secondly, and not so obvious, the structure for itself can carry information.
This structure is meant by genotype representation. Already Kbzg mentioned

that:

"Representation is a key issue in genetic algorithm work because the rep-
resentation scheme can severely limit the window by which the system
observes its world.” [...] "String-based representation schemes are dif-
ficult and unnatural for many problems and the need for more powerful

representations has been recognized for some 84 &%, 36].”

Therefore, and to familiarize the used terminology, the following section starts with
a brief discussion of the biological archetype of a genotype representation and their
algorithmic counterparts.

LIn EC literature the terms genotype, chromosome and DNA (seldom used) are mostly used inter-
changeably. In the following the term genotype is used to describe a set of genetic parameters that
encode a candidate solutions, because this is closer to the biological meaning.
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4.2.1 The Biological Genotype

Thegenotypégblueprint) of each living entity on this planet is encoded indeexyri-
bose nucleic acigDNA) . The structure of DNA was discovered by James Watson
and Francis Crick§9] (see Fig4.4) in 1953.

(a) James Watson (b) Francis Crick

Figure 4.4: Watson and Crick, the discoverer of the structure of DNA.

DNA is shaped like a twisted step-ladder also known as a double helix (see
Fig. 4.5. The genetic information is carried on the rungs of the ladder. In reality
each rung is equivalent to a base pair formed by two nucleotide bases and the sup-
porting bannister is formed by sugar and phosphate. Four nucleotide bases (adenine,
thymine, guanine and cytosine) are used in the DNA and only four different com-
binations of base pairs are possible, because adenine always goes with thymine and
guanine always goes with cytosine. The creation of an organism, also pakew-
type from this genotype is a complex process. Because the details of this process are
not within the scope of this thesis, in the following only a short outline of the func-
tionality is given. To value the potential to further research in EC, some in EA seldom
implemented, biological functionalities are mentioned.

Consistently three base pairs (called a codon) encode a certain amino acid. Since
there exist 4 = 64 possible combinations to form a codon and only 22 natural amino
acid®, the genetic code is redundant. Each DNA segment containing the information

2As things are now there are 22 known natural amino acids, possibly there are more.
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Figure 4.5: Schematic structure of DNA with sugar-phosphate backbone and four
different nucleotide bases, each base-pair joined by hydrogen bonds.

for making a protein constitutes a gene. The information in a protein-encoding gene
is copied into anessenger ribonucleic ac(chRNA) molecule that moves to so called
ribosomes. Aibosomemoves along a mRNA molecule, reading the codon for protein
assembly as it goes. As it moves, the ribosome assembles amino acids into a gradu-
ally lengthening protein chain. At the end of the coded message, translation stops, the
ribosomal subunits separate and detach from the mRNA, and the completed protein
is released. While DNA stores the informatigrpteinsare the actors in each cell.

The functional tasks proteins perform are various. Proteins give form and elasticity
to tissue, they transport and store material and information, they recognize and bind
foreign substances and signal proteins, they catalyze biochemical processes and they
stimulate cell division. Thus, proteins form the machinery which build up a pheno-
type. Research estimations numeralize the number of different proteins in the human
body to 100000. It is important to state that information is only passed from genotype
to phenotype.

Biological Genotype (DNA)— Proteins— Phenotype

The impact of genes on phenotype features of an organism can seldom be de-
scribed by a simple one-to-one correspondence between genes and features. Several
genes can have an influence on one phenotypical characteristic, which is referred as
polygeny On the other hand the terpteiotropydescribes the effect that a single gene
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affects many phenotype features.

In the following we should always have in mind that this description of the bi-
ological process is by far not complete nor that the process is fully understood. For
example, positional factors in the ovum are suspected to have influence on the gene
expressions and some proteins for them self influence gene expressions too. Further-
more there exist theories that some proteins cgtleans (proteinaceous infectious
particles) inherit specific protein attributes absolutely decoupled from information
provided by the DNA.

4.2.2 Non-Coding Genotype Segments

Non-coding segmentalso referred amtrons in biological and EC literature, are
genes which are not used in the genotype to phenotype mapping process. In con-
trast to non-coding segments all coding segments are subsumed by thexterin
biology the term intron describes in fact only one kind of non-coding DNA which can
be found within, but not between, genes. Another familiar type of non-coding seg-
ment in biology is defined bgromotefterminatorsequences, referred as ptGA in EC
literature [L21], which defines start and end points of a coding sequence, respectively.
Because in general this distinction is not made in EC literature, in the following the
term non-coding segment is used.

Human DNA consists of approximately 97% non-coding DNA and only 3% cod-
ing DNA. The maintenance of such a large amount of non-coding DNA and the there-
with aligned bit of extra processing for the biological organism, leads to the assump-
tion that there must be an advantage to having it in the genome. Because non-coding
segments are disregarded in the genotype to phenotype mapping process, they obvi-
ously do not contribute to the overall fitness of the individuals. Intuitive motivations
for their existence in biological systems are that non-coding segments may guard
against the disruptive effects of crossover, promote diversity, provide natural back-
ups for the coding regions, and thus possibly expedite the evolution of better adapted
individuals. It is also hypothesized that non-coding segments of genotypes enable a
variable combination of coding segments they separate, a process eatlecghuf-
fling [40,58,59]. Thus, the introduction of a counterpart concept in EC could have the
same effects on candidate solutions to a problem.
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4.2.3 Atrtificial Genotypes

As mentioned above, a genotype is defined and consists of a structure (the double
helix) and the information embedded in this structure (the base pair sequence). By
using digital computers, a straightforward way to implement an artificial genotype is
to use any data-structure which can carry information and to use a function to map
this genotype to a phenotype (Artificial GenotypeFunction(s)— Phenotype).

It is important to say that in artificial genotypes this information is not compelled
to be used for the genotype to phenotype mapping, but it can also be used to parame-
terize the operators (for example mutation) working on the genotype representation.

It is comprehensible that in the early days of EC the genotype was chosen as
simple as possible, firstly to simplify the implementation and secondly to analyze
the fundamental behavior of operations on the genotype representation. Thus, the
most common genotype was (and is) a structure consisting of memory cells stringed
together. This memory cells could carry binary values as for example in GAs or real
valued variables as for example in ESs.

One exception is the use of tree-structures for genotype representation in the field
of genetic programming. This is founded in the fact that tree-structures can easily be
parsed and mapped into a corresponding, for example LI Brpgramming expres-
sion. Itis incomprehensible, that the tree-structure based genotype representation did
not become popular in other evolutionary based methods, although a tree-structure
implicitly supports the concept of building-blocks and hierarchical composition.

4.2.4 Fixed versus Variable Length Representation

For abbreviation artificial genotype representation is in the following sometimes re-
ferred aencoding Natural evolution is open-ended with respect to the complexity of
created life forms. EC applications that use only fixed length encoding do not share
this advantage of open ended complexity. Thus, variable length encoding schemata
have more expressive power and freedom to solve problems where the structure and
size of a satisfactory solution is unknown in advance. Variable length representations
in EC have been investigated since the early 1990’s and the most famous representa-
tives are thanessy GA§62] and the concept of genetic programmiri@¥§]. A good

survey can be found irvD).



68 Chapter 4. Evolutionary Computation

4.3 Solution Representation and Evaluation

Each evolutionary algorithmic approach for problem solving shows three basic com-
ponents which are highly correlated and which have to be specified, namely:

Therepresentatiorencodes alternative candidate solutions for manipulation.
Theobjective functiondescribes the purpose to be fulfilled.
Thefitness functionreturns a quality measurement for a particular solution.

The possible genotype representations of candidate solutions define the size and shape
of the search space for the evolutionary algorithm. Because it is important to un-
derstand the consequences of different or inadequate representation and evaluation
schemes the next sections provide a deeper insight into this problem. The provided
information will later be used to justify the introduction of a novel and general repre-
sentation scheme, which utilizes grammar based genotype templates to span a search
space for evolutionary algorithms.

To evaluate the different candidate solutions it is necessary to distinguish be-
tween objective and fitness functions. By using the information provided by these
evaluation functions an evolutionary algorithm tries to establish a gradient in the ap-
propriate search space, which directs the subsequent individuals to "better” search
space regions. This and other essential considerations will be discussed in following
sections.

4.3.1 Objective Function

An objective is something that an evolutionary optimizer seeks to accomplish or to
obtain by means of his evolutionary operators. The evolutionary operators work on
the genotype of a solution but the objective function judges about the characteristic
of the phenotype. Thus, the objective function provides a gradient in the phenotype
search space. Unfortunately, many problems have various objectives and the user
has to decide which objectives have to be fulfilled. Often predefined values are used
to weight the importance of each objective, but most time it is unknown in advance
which objectives are mutually exclusive.
Difficulties can also arise if the ratio of feasible solutions is small and further-

more the objective function evolves no gradient to feasible phenotype regions. This
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could happen if all feasible solutions are equivalent in their objective measurement.
For example the finding of a truth assignment that satisfies a well-formed Boolean
expression (referred as satisfiability or SAT problési, f1]) leads only to objective
values off(Indi) = 0 or f(Indi) = 1, according to fulfillment or non-fulfillment of

the expression. Similar difficulties arises in other combinatorial problems.

4.3.2 Fitness Function

The main difference to the objective function is that the goal of the fitness function
(also called thevaluation functiohis to provide a gradient for the evolutionary oper-
ators in the genotype search space. Nevertheless, the fithess has always to be propor-
tional to the objective value, but the fitness function can yield several distinct fithess
values for one objective measurement provided by the objective function. The fitness
function, in the following denoted af(-), returns a quality measurement for a par-
ticular solution, which can be used to compare different candidate solutions by the
operator-. The operatos- is interpreted as "is better than”, thus, for maximization
problems>- denotes "greater than” and for minimization problemslenotes "less
than”. A possible approach for the above mentioned SAT problem is to calculate the
fitness as the number of conjuncts that evaluate to 8gdr to change the Boolean
variables into floating-point number&41] in the range[0, 1]. It becomes clear that

the fitness function is highly aligned with the genotype representation forming the
genotype search space.

4.3.3 Search Space

The objective of nearly all real-world problems poses constraints, thus, setting up the
objective functions includes the formulation of boundary conditions. These boundary
conditions constituteshenotype search spa¢gee Fig4.6). The phenotype search
space is divided into a space fafasible solutiongulfilling the boundary conditions
and a space ahfeasible solutionsvhich does not fulfill the constraints.

Logically the phenotype search space for feasible solutions is not necessary ad-
junctive nor convex and the ratip = % of feasible solutions can be approxi-
mately determined by randomly generating a huge number of random pointsfrom

and checking if they belong tBeasipieOr NOt.
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infeasible search space

feasible search space

Figure 4.6: The rectangular area represents an exemplary two-dimensional phenotype
search spac®, the blue areas the feasible and the white areas the infeasible parts.

4.3.3.1 Search Space Size

To point out the size of search spaces of even simple problems consider the task to
find the highest output valui(us, up) for the Schaffer function (see Fid.7). The ob-
jective function, which in this case is identical to the fitness function, is to maximize:

sir(y/u2 4+ u3) — 0.5
f(ul,U2)=O5 ! 2

(14 0.001(2 + )

Lets assume we only need a solution of low accuracy (0.001 in a rarjgel 6f10]).

For the sake of simplicity we encode both input varialbleandu, with 15 Bits, which
leads to an input variable resolution of 0.00061. Thus, already this simply problem
has a search space size & 21° =230 — 1 073 741,824 different states. Obviously

the size of the search space is not determined by the objective function, but by the
chosen representation.

(4.1)
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Figure 4.7: The Schaffer function.
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4.3.3.2 Choice of an Appropriate Search Space

It is important so recognize, that by choosing the search space in an inappropriate or
to restrictive manner, the possibility of numerous duplicate solutions or the precluding
from any possible solution can occur. A descriptive example is givehdid [where

the problem is to construct four equilateral triangles with six matches

]
N

Figure 4.8: Two triangles, both fulfilling the equilateral constraint.

It is easy to construct two such triangles (see Bi) or eight triangles only
partly fulfilling the equilateral constraint (see F§9). If we place the leftover sixth
match in Fig.4.9 from bottom left to upper right we will actually result in sixteen
triangles, but again only the outer one is fulfilling the equilateral constraint.

<]
N

Figure 4.9: Eight triangles but only the outer triangle fulfills the equilateral constraint.

With the knowledge that the search space is incorrect, the interested reader may
try to find the correct solution before turning over to the next page. To solve the task,

3In the original problem formulation the length of each triangle side should also be equal to the
length of a match.
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the search space has to be moved to three dimensions (seelf)g.By assuming a
wrong search space, it is not possible to find the correct answer.

Figure 4.10: Four triangles, all fulfilling the equilateral constraint.

4.3.3.3 Genotype Search Space

The distinction made in Sed.3.1and Sec4.3.2of objective and fitness functions

was justified by the possible existing diversity of the phenotype search space and the
genotype search spack was stated that the evolutionary process follows a gradient in
the genotype search space which is constituted by the fithess function. For the sake of
simplicity the terms feasible solution and infeasible solution in the following are used
twofold. Firstly by referring a phenotype solution and secondly to refer to a genotype
representation which is mapped into a feasible/infeasible phenotype solution.

As mentioned above and again illustrated in Fidl1(b)the search spacg of
feasible phenotypes is often not adjunctive. Thus, the primary goal of each genotype
representation is to establish a genotype search sgasech that the evolutionary
search gets the possibility to follow fitness gradients in such a way that the distances
between feasible regions of the search space and also the total size of the infeasible
solution space is, in comparison to the phenotype search space, minimized. Often
only this minimization of distances in the genotype search space makes it possible to
bridge the infeasible solution gap between feasible solutions by single point mutations
in the genotype. As consequence "good” genotype search spaces should contain sets
of genotypes connected by single point mutations that map into the same phenotype.
This allows genetic changes to be made while maintaining the current phenotype and
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it also reduces the chance of becoming trapped in sub-optimal regions of the genotype
search space. Using non-coding segments in the genotype is partly motivated (another
reason is to memorize good and already used building blocks) by the same reason of
supporting genetic changes based on single point mutations. Hdiir@)illustrates
exemplarily improved properties of the genotype search space in comparison to the
corresponding phenotype search space depicted it Rid(b)

infeasible search space

infeasible search space

feasible search space feasible search space

(a) Possible genotype search spgce (b) Phenotype search spage

Figure 4.11: Possible modified genotype search space (a) and the concerning pheno-
type search space (b) given by the objective function.

For a comparison of different genotype to phenotype mappingslé€k ywhere
illustrative examples concerning the inter-phenotype accessibility are given. This con-
cept of finding a "good” redundant genotype to phenotype mappings is also followed
by using decoders, a method which will be explained in the next section.

4.3.4 Infeasible Solution Handling

As discussed above, the genotype search space of possible solution encodings to a
problem is normally divided into feasible and infeasible solution areas. Because only
feasible solutions are of interest, it becomes necessary to deal with infeasible solu-
tions. There exist three possible approaches in EC which can be used, namely avoiding
infeasible solutions, repairing infeasible solutions or penalizing infeasible solutions.
To obtain an understanding and to realize the pros and cons, each of these approaches
is shortly outlined.
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4.3.4.1 Avoiding Infeasible Solutions

One strategy to avoid infeasible solutions is based on preserving a feasible population
of solutions by using special representations and evolutionary operators. By consid-
ering a disjoint integer valued string to encode candidate solutions for solving the
traveling salesman problem, a special evolutionary operator would be the swapping of
two integer values in the genotype. Several representations and specialized evolution-
ary operators were developed to tackle these kind of permutation problems.

Another interesting technique to avoid infeasible solutions is to use de-
coders [126,106, 72, 64], where an arbitrary genotype search spgcs mapped into
the phenotype search spae= [—1,1]" by some decoders. Thus, the genotype does
not encode the solution directly, but instead provides a set of instructions how to build
a feasible solution. However, it should be noted that several factors should be taken
into account while using decoders4Q:

e For each solutiop € P there is a decoded soluti@h
e Each decoded solutiahcorresponds to a feasible solutipn
e All solutions in? should be represented by the same number of decodings

e Small changes in the decoded solution result in small changes in the solution
itself.

Anyway, the more constrained a problem is, especially if constraints depend on
other constraints, the more sophisticated it becomes to create appropriate operators
or decoders. However, if it is possible to implement a strategy that avoids infeasible
solutions, the arising advantages like no need for additional parameters and no need
to evaluate infeasible solutions, is worth.

4.3.4.2 Repairing Infeasible Solutions

There exist two kinds of repair processes for infeasible solutions which have to be
distinguished. Methods based on repairing infeasible solutions are usually good only
for handling specific explicit constraints and maybe inefficient for implicit constraints.
Furthermore, most repair strategies are problem domain specific.

The first method replaces the genotypes of infeasible solutions with their repaired
counterparts. These repaired genotypes are then used to evaluate the fithess. This
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strategy is related to what is callédmarckian evolutiof90, 190. Jean-Baptiste
Lamarck (see Fig4.12and PQ]) was a botanist, zoologist and natural philosopher
in France who assumed that an individual improves during its lifetime and that the
resulting improvements are inheritated to its offsprings. The algorithmic implemen-
tation of Lamarckian evolution performs an improvement of the phenotype by any
learning mechanism. Afterward the improvements are stored in the genotype.

Figure 4.12: Jean-Baptiste Lamarc¢kift August 1744, T 18 December 1829).

The second method replaces the phenotypes (or temporarily modifies the geno-
type) of infeasible solutions without coding back the changes into the genotype. This
strategy is related to a combination of learning and evolution, which is called the
Baldwin effec{190 183.

4.3.4.3 Penalizing Infeasible Solutions

Penalizing methods can be divided into four different approaches, namely:

Death penalty simply rejects all infeasible solutions. Problems can occur if the
ratio p of feasible solutions is very small. Thus, it is possible that no feasible
solution can be found by randomly generating candidate solutions.

Static penalty] 74] uses the modified fitness function

f(indi) — f(Indi), if IndiPhenoypejs feasible
| f(Indi)+penalty(Indi), otherwise,

wherepenalty(Indi) tends to zero (assuming a minimization problem) the less
constraint violations occur. Theenalty(-) function is usually based on a dis-
tance measure to provide a gradient to the feasible solution search space.
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Dynamic Penalty[94] alters the penalty term by a factor which is proportional to
the number of already computed iterations (generations) in such a way, that the
penalty term becomes more and more relevant during evolution. One drawback
of methods based on dynamic penalties is to predefine the annealing factor (and,
if used, other constants).

Adaptive Penaltyses the idea, that if constraints pose no problem, the search should
be performed with decreased penalties and vice versa. Thus, the parameters
which influence the penalty term could depend for example on the ratio of feasi-
ble and infeasible solutions of the l&sgenerations](], or on some predefined
thresholds, which define distances to feasible regi@i§|] or the parameters
could be implemented self-adaptive as strategy parameters in the genotype.

4.3.5 Summary

This section provided fundamental information about two very important parts of EAs,
namely the representation scheme and the evaluation functions. This information will
be used as a starting point and as a motivation to introduce grammar based genotype-
templates (in Sed.5) to define search spaces for EAs.

4.4 Evolutionary Operators

This section defines and discusses essential operators to modify the genotype rep-
resentation. It is notable that there exist several problem specific evolutionary
operators 115 like the virus infection approachlp8 146, multiple crossover
schemes 193, order conserving permutation operatiods8§ 189, 144 and many
others, which will not be mentioned here because of their specialized application ar-
eas. But all evolutionary operations could be classified into mutation, recombination
or selection. The following inspection of different evolutionary operators uses an EC
point of view and not a biological point of view, although again terms originated from
biology are used. Evolutionary operations on tree based genotypes which are used for
a concrete EA implementation in chapfeare presented in Seic5.6



4.4. Evolutionary Operators 77

4.4.1 Mutation

The mutationoperator performs, depending on the implementation, changes in the
variables of a genotype and/or changes in the structure of a genotype. These changes
can be implemented in various ways, but a general definition of the mutation function,
which is often called ane-parent-operatqibecause the mutation function takes only

one genotype as input, can be given as follows.

Definition 4.1 (Mutation function). The functionmut(genotypeindi),p_ ) is
a function which varies the variables or the structure of the genotype of Indi
with a probability given by a mutation probability vector n. The output of

mut (genotypéindi), p_ ) is the mutated individuaihdi.

The different possible variations performed by the mutation function can be clas-
sified by the target(s) of the variation, namely:

¢ Variation of binary valued genotype variables, which is mostly implemented by
inverting each binary value in the genotype with a given probability.

e Variation of integer valued genotype variables, which can be implemented by
increasing/decreasing or randomly replacing of an integer value in the genotype
with a given probability.

e Variation of real valued genotype variables, which can be done by increas-
ing/decreasing or randomly replacing each real value in the genotype with a
given probability. The variation of real valued genotype variables are often per-
formed by using concepts developed for a special methology called evolutionary
strategies.

e Variation of the genotype structure, which can be implemented by rearranging,
shortening or widening the genotype structure.

e Variation by swapping, shifting, scrambling, inverting, etc. the content of sev-
eral memory cells of the genotype. These operations are referred as sequencing-
operations and are used in the field of solving permutation problems, where the
ordering and non-repetition of values is important. Because this problem type
does not occur in the context of this thesis, the interested reader is referred
to [125.
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In the methology of evolutionary strategies real valued genotype variables are
divided into two different classes, namelgcision variablesndstrategy parameters
The decision variables are used to form the phenotype and the strategy parameters are
self-adjusting real valued variables parameterizing the mutation function.

Thus, each ES-individual is equivalent to a vector of real numbers and contains
values for all decision variableg € R(j = 1,2,...,J) for the stated problem. Fur-
thermore each individual contaimg (1 < ny < J) standard deviationg, € R (k =
1,2,...,ng) which are called (averagegte of mutationsTheseoy are strategy param-
eters which are adjusted self-adaptively during the optimization process. The decision
variables of an offspring are inherited (via a recombination function - see next sec-
tion 4.4.2 by one of the parents (same as in GAs), whereas the strategy parameters
are inherited by intermediate crossover. Mutation is the main operator in ES and is
done by changing the valuesof andx; by two different methods. First the values
are multiplied with a normal distributed random number. Then every decision variable
Xj is changed by adding a normally distributed random number with expected value
zero and standard deviatiar.

4.4.2 Recombination

The recombination operator is inspired by the principles of sexual reproduction in
biology and thus utilizes parts of (at least) two parent-genotypes to build up a new
genotype which is calledffspring-genotypend is therefore also calleghultiple-
parent-operator Again, the implementation of recombination can be done in various
ways and for tackling permutation problems, which are not focused in this thesis, spe-
cial recombination implementations are necessary. Further information can be found
in [138 189 144,125. Nevertheless, a general definition ofeombination function

is as follows.

Definition 4.2 (Recombination function). Denote by Geia set of genotypes of indi-
viduals of population Pop, tharec (Genp ) is a function which utilizes parts of
these genotypes to build up a new genotype which is denoted as offspring-genotype
Gen®C. The recombination probability vector o gives the probability how much
genotype-material each genotype shares with the resulting offspring-gefiotype

4More common is the use of a single probability value to determine the probability if recombination
between certain parent-genotypes happens.
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To illustrate the functionality of recombination lets discuss a widely used recom-
bination technique called-point-crossover.Consider the case of two string based
genotypes (parent-genotypes) in which each memory cell contains a binary based
variable. By selecting a number of string-position, referredrassover-pointsit is
possible to recombine the two genotypes, resulting in a new genotype (i.e. offspring-
genotype), as depicted in Fig.13 If memory cells are copied randomly from

parent 1 genotype |0 [0 |o[o]o[o]o[o]o]o]o]0]
parent 2 genotype |1|1 1|1|1 1|1|1|1 l|1 1|
offspring genotype |O|0|1|1|1|O|0|0|0|l|1|0|

Figure 4.13: 4-point-crossover in strings-based genotypes with two parents. Only one
of the two possible offspring structures is shown.

any parent the crossover scheme is calledorm crossover.Uniform crossover is
mostly used in a parameterized fordi/[7, 167], meaning that for each memory cell
a given probability is used to decide if this or its counterpart from the other parent-
genotype is used in the offspring-genotype. These crossover schemes can easily be
extended to deal with more then two parent-genotypes, leading to so oalikid
recombination-crossoverT.his multi-recombination techniques seems to have advan-
tages since49, 182, 2] reported that global optima where found faster and more often
using multi-recombination then two-parent-recombination.

In genetic programming, where the individuals consist of unbalanced trees,
crossover is implemented as subtree swapping (seetHid. Multi-recombination
can be implemented straightforward by swapping sub-trees between more than two
parent individuals.

If Gen = rec(Genp_ ) with ¥Gen € Pop_1 holds for allGen(i = 1,...,1)
with | equal to the number of individuals iPop the replacement method is called
generational replacement meaning that between each successive generations the
complete population is replaced by recombined individuals. If at least one genotype
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Figure 4.14: Crossover in tree-based genotypes. The two shown parent-genotypes
exchange parts of their tree-structure at the randomly chosen crossover points (CP) .
Only one of the two possible offspring structures is shown.

in Pop is not a recombination of genotypes Bbp_1, the replacement strategy is
referred asteady-state replacemeft77.

4.4.3 Selection

Selection is the operation by which individuals are chosen for reproduction. Repro-
duction means creating an offspring by recombination or cloning. Selected individuals
are copied into the so calledating poolwhich can be seen as a temporary cache for
individuals and is in the following referred &® pating poot Selection is performed on

the basis of fithess values which are calculated with help of a so called fitness function
(see Sed4.3.D. The fitness does not necessarily depend only on the phenotype of the
individual, but can also be influenced by the genotype of the individual.

Definition 4.3 (Selection function). Denote by< Indi > a tuple of individuals of
population Pop, tharsel (f(< Indi>)) is a function which returns an Indi on the
basis of the fitness valuesafindi >.

Again, there exist various possible selection schemes, but the three most com-
mon are:

e Fitness-proportional selection.
e Rank-based selection.

e Tournament selection.
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All these selection methods share the characteristic that theyaextinctive mean-

ing that even the individual with the worst fithess has a chance to reproduce. To
compare different selection schem@g][suggests to define some terms on the base
of thefitness distributiorof a population, which is defined as follows:

Definition 4.4 (Fitness distribution). The function §is : R — ZJ assigns to each
fitness value |fgi € R the number of individuals in a population Pop carrying this
fitness value, whergy is called the fitness distribution of a population Pop.

Comparable expressions based on the fitness distribution are:

Selection intensity: The termselection intensityvas introduced in population ge-
netics L9 to obtain a normalized and dimension-less measure and is defined as
follows.

Definition 4.5 (Selection intensity). The change of the average fitness of a
population due to selection is called selection intensity and is calculated as

(f(Popmating poo) — f(POR))
0'*
with f(Pop): average fithess of a population,

*

Sellnt=

Y

o” : mean variance of (PO fmating poo)-

For completeness it should be noted that some autle@§][use the ternse-
lection pressurewhich also describes the change in the average fitness after
applying a selection mechanism to the individuals of a population, computed on
the base of the so callethkeover timeTakeover has occurred if all individuals

of a population have the same fitness value.

Selection variance:Selection variances the expected variance of the fitness distri-
bution of the temporarily population in the mating pool.

Definition 4.6 (Selection variance).The selection variance is the normalized
expected variance of the fitness distribution of the population after applying a
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selection method to the fitness distributigg, fi.e.

o* 2
SelVar= (—2),
o
with ¢* : mean variance of (PO fmating poo),

o : mean variance of (fPop ).

4.4.3.1 Fitness-Proportional selection

Let E(Indi;) = | - ps(Indij) (with 1 as population size angs(Indij) as fithess-
proportional selection probability) be the expectation value of possible participations
of Indi; in each reproduction iteration. Good fithess-proportional selection méthods

as the in Alg.4.1 describedstochastic universal sampling selectidechnique, are
characterized by a minimal spread. Nevertheless, based on basic analysis and some
empirical observations, proportional selection schemes seem to be very unsgjted [

Algorithm 4.1  Stochastic Universal Sampling(:)

Input:  Pop
Output:  POpmating pool

(1) Popmating pool<— &
(2) sum—0
(3) pointer« drand(0,1)
@) fori—1,...,1
(5) sum« sum4-E(Indij)
(6) while sum> pointer
(7)  POopmating pool<— Indij
(8) pointer— pointer+1
(9) end while

(20) end for

5The classicatoulette wheel selectionave a high spread and is therefore no good choice.
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4.4.3.2 Rank-based selection

In rank-based selectiomethods 188, 5], the population is sorted according to their
fitness. The selection criteria for each individual depends therefore only on its position
in the individuals rank and no longer on the actual fithess value. The probability of
each individual being selected for mating is its ranking normalized by the population
size. The commonly used rank-based selection method uses’liaeking which

lead to following selection probabilitigs; for Indi; to be copied into the mating pool.

We have:

ps(lndii) = :ll—- (Emax— (Emax— Emin)m) ) (4.2)

with ps(Indij) >0 Vie{1,...,1},

lzl ps(Indij) = 1.

Because of the constraints given2), Emin = 2— Emax and 1< Epax < 2 must hold.
Ranking introduces a uniform scaling across the population and provides a simple and
effective way of controlling the selection intensity.

4.4.3.3 Tournament selection

In tournament selectioj63] a numbelC of competitors (individuals), often denoted
astournament sizeis chosen randomly from the population and the best individual
from this group is allowed to reproduce. The parameter for tournament selection is
the tournament siz€ with valid values ranging from.1..,| (number of individuals

in population). The selection intensity for tournament selection can approximately
calculated 12] as

Sellntoy(C) ~ \/2- (log(C) —log+/4.14-10g(C)) (4.3)

8For an example using non-linear ranking see page 604f [
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and the approximation for the selection variance is givenldy [

SelVafou(C) = 1—-0.0096-log(1+ 7.11- (C—1)), (4.4)
. 1
with SelVafkou(2) =1— s

As already mentioned irLp]:

"It is shown that for the same selection intensity tournament selection
has the smallest loss of diversity and the highest selection variance. It is
concluded that tournament selection is in some sense the best selection
method among the threé”

The aim of this section was to give a short outline about the functionality of the most
common selection schemes and their pros and cons. The two important measures
for recombination operations, namely selection intensity and selection variance were
presented to provide the reader with information about the measures which are com-
monly used to predict the number of steps until a population converges to a unique
solution. Concerning this thesis the main reason for this brief summary of recombina-
tion schemes was to justify the decision of the author to use tournament selection in
the EA implementations presented later.

4.5 Tree Based Genotype Representation

This section provides the reader with the encoding scheme of candidate solutions,
which will be used in the following chapters. The search space of the evolutionary
algorithms will be defined by so callegenotype-template§ his proposed novel and

very general applicable concept of genotype-templates simplifies the design of prob-
lem specific genotype representations. The author describes how a genotype-template
can easily be formulated with the help of grammars. This method should not be con-
fused with genetic programming concepts, which also utilizes tree-based genotype
representations, but which does not provide a grammar-based and simple scheme to
define the genotype search space, nor the possibility to encode nearly arbitrary prob-
lems. The proposed method of genotype-templates combines the expressive power of
grammars with the advantages of a general tree-based encoding scheme.

"They refer to tournament, truncation and ranking selection.
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Especially by building genotypes from scratch, the challenge shifts from find-
ing a solution for the original problem to the task of finding a possible and adequate
genotype encoding. A good genotype representation should fulfill the following re-
quirements:

e Simplicity in construction of variable length genotype templates.
e Easiness to implement evolutionary operations.

e Possibility to constrain genotype variables.

¢ Possibility to introduce expert knowledge.

¢ Implicit support of building blocks.

The usage of trees to represent genotypes is an elegant method for many encoding
tasks, to solve, or at least an alternative, to simplify the fulfillment of these require-
ment$. To explain how the fulfillment of these requirements is supported by repre-
senting the genotype with tree structures, the next section provides some basics of
trees. Referring to these basics S&é.2shows the qualitative potential of tree struc-
tures to fulfill the stated requirements.

45.1 Tree Basics

An interrelated, undirected and non-circular graph is referrette®s Unbalanced
trees are trees of data with any number of branchesodeis one branch of a tree

and all nodes and connections of a tree will be referredoagplete-tree Lets A be

a node with two branches (see Figl15, namely B and C, then B and C are called
child-nodesof node A, and A is callegharent-nodeof B and/or C. The only node in

a tree without a parent-node is callembt-nodeand nodes without child-nodes are
calledleaf-nodes. The depth of a nodés equal to the number of parent-nodes on
the graph to the root node plus one. Thus, a root-node has a depth of one. For the
children of the root-node (i.e. B and C) the depth is two, and so on. Child-nodes with
the same parent-node are calgtblingsand alevelsubsumes all nodes with the same
depth. Asub-treeof a complete-tree subsumes all nodes starting at a certain node of a
complete-tree. Thus, a complete-tree is a subtree of itself.

8The more astonishing is the fact that up to now there exist only very nascent attempts at extending
EC theory to tree encoding$18 139.
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(A
B) ©:
@

Figure 4.15: Exemplary unbalanced tree with eight nodes, a light red shaded root-
node, four dark red shaded leaf-nodes and a total depth of four.

4.5.2 Tree Structures for Genotype Encoding

By using tree structures to fulfill the above stated requirements for a good genotype
representation, the nodes of the used tree should also fulfill some requirements.

e Nodes can act as containers for variables (decision variables and/or strategy
parameters).

e Classes of nodes are distinguishable by a node label.

e Nodes can be tagged as untouchable. Untouchable nodes (and their content) can
not be removed or altered by evolutionary operations.

e Nodes can be tagged as inactive which means that the complete subtree with
node as root-node will not be used in the genotype to phenotype mapping.

Each genotype representation needs a place to store information which is used to
build the phenotype. Obviously the most common place are provided locations, as the
base-pairs in the natural genotype or decision variables in artificial genotypes. Beside
this information storage, the structure of the genotype itself can carry information.
Thus, it is necessary to distinguish betwemniable informationandstructure infor-
mation The variable information in trees can be localized in nodes and each variable
information location can be labeled with a variable name.

By regarding the structure of the genotype as information medium it is straight-
forward to subsume nodes with identical variable information locations by assigning
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them the same node-label. By labeling the nodes it is possible to construct a genotype
state space with the help of a gramm&8(). In the following a genotype state space
description is denoted a&gnotype-template

4.5.3 Example of a Tree Based Genotype Representation

To clarify this concept let us construct a simple example. Assuming the task is to find a
(sub)optimal input vectox consisting of three elements to minimize a system output
Each vector element could lie in the interjal10,10].  Figure4.16 illustrates a

Figure 4.16: Tree based genotype representation.

possible encoding with trees. The root node can be labeled&sTOR’ and each
node-children of the root node can be labeled @sCTOR-ELEMENT”. The nodes
"VECTOR-ELEMENT" are containers for the decision variablgs

Q VECTOR Q
. VECTOR-ELEMENT ‘ x€[-10,10]

(a) Structure. (b) Node-Labels. (c) Variables.

Figure 4.17: Simple example of a tree based genotype representation with (a) illustrat-
ing the structure, (b) the corresponding node-labels and (c) the embedded variables.

A more informative illustration of the same genotype is given in Eid7, where
the interesting information about the genotype representation is divided into three sub-
figures, giving information about the tree structure, node-labels and decision variables.
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4.5.4 Grammars as Framework for Genotype-Templates

By using node-labels it is possible to define the space of all possible genotypes with
help of a grammar, where a grammar is a high-level notation used to describe the
structure of data, for example the structure of a sentence or the structure of a genotype.
Consider the following grammat.1 that defines e.g. the structure of (a subset of)
English sentences:

Grammar 4.1 Grammar that defines the structure of a subset of English sentences.

<sentence ::= <nounphrase <verbphrasg.
<nounphrase ::= <article> <nourn>
<verbphrase ::= <verbb> <nounphrase
<article> :=a| the

<nourt> ::=man | dog

<verb> ::= likes | bites

Grammar.1is in Backus-Naur fornfBNF) [8] , which is a way of representing
context free grammars. BNF was developed in the 1960s by the ALGOL commit-
tee, in particular, John Backus and Peter Naur, to describe the ALGOL programming
language. It is equivalent in descriptive power to context free grammars developed
independently by Noam Chomsky to describe natural languages. A BNF grammar is
a set of rules and a single non-terminal (called the start symbol). A rule has:

e Non-terminals, enclosed k>, which must be defined by (appear by itself on
the left hand side of) at least one rule.

e Terminals, actual strings like ”.” and the words in the example (elgg in
grammar.l).

e Metasymbols like =, |,., <>.

By having the requirements for nodes in a tree for genotype encoding in mind (see
Sec.4.5.2), it is possible to formulate a grammar which defines the genotype space
based on trees.

Note that in gramma#.2 the symbols boolean, integer, double and string are
stated only for the sake of simplicity as terminal symbols. Obviously these symbols
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Grammar 4.2 Grammar defining a genotype space on the basis of trees.

<genotype-template ::= <node-list>,<conjunction-list-,<constraint-list-

<node-list>- ::= empty | <node>,<node-list>

<node> ::= <node-labe}l,<min-succ-size-,<max-succ-size ,<var-list>
<conjunction-list- ::= empty | <conjunction>,<conjunction-list-
<conjunction> ::= <node>,<node>,<predetermined

<var-list> ::= empty | <var>,<var-list>

<var> 1= <var-name-,<min-value>,<max-value-,<var-type>,<untouchable
<constraint-list- ::= empty | <constraint-,<constraint-list-

<constraint- ::= <node>, <var-name-,<conditiorn>,<scope-

<predetermined,<untouchable ::= boolean
<min-succ-size-,<max-succ-size ::= integer
<min-value>,<max-value- ::= double
<node-labet,<var-name-,<var-type> ::= string
<conditiorn> = > | < | ===

<scope> ::=sibling | level | all

are again defined by non-terminal symbols (to be precise this should be done by some
regular expression).

With the non-terminal symbokuntouchable it is possible to detach certain
decision variables embedded in the concerning nodes from evolutionary operations
like mutation. The non-terminal symbelpredetermined is used to force specific
compounds to be present in the genotype. By using the gramiathe genotype
of the example given in Sed.5.3can easily be described by the following genotype-
template:

Genotype Template 4.1Genotype template for example given in S&&.3

node (VECTOR, 3, 3, empty)

node (VECTOR-ELEMENT, 0, 0,X)

var (X, -10.0, 10.0, real, FALSE)

conjunction (VECTOR, VECTOR-ELEMENT, FALSE)
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4.5.5 Constraint Handling in Tree Based Genotypes

Most problems which are tackled with methods of EC exhibit several problem spe-
cific constraints. As mentioned in Set.3.4there exist three possible methods to
deal with constraints, namely avoiding infeasible solutions, repairing infeasible solu-
tions and penalizing infeasible solution. By using grammar based genotype-templates
many constraints can already be fulfilled by setting up a problem specific genotype-
template. For example the trivial constraint that a vector should consist of exactly
three elements is implicitly given by the concerning genotype-temglatd his kind
of requirements is already checked by performing the evolutionary operations. Thus,
infeasible solutions are avoided.

In grammar4.2 the attentive reader should have recognized the existence of a
non-terminal symbol referred asconstraint-. By using this symbol it is possible
to construct simple constraints like an increasing order of decision variable values.
The scope where this configuration should be fulfilled is given by the non-terminal
symbol <scope>, which can have as valuesibling, level or all. In the genotype-
template4.1a statement likeonstraint (VECTOR-ELEMENT, X, >, sibling) forces
at certain stages of the evolutionary process a fulfilment of the claimed alignment.
Because the unwanted configuration of the decision variables are sometimes present in
the genotype, this constraint handling method can be classified as repairing infeasible
solutions.

4.5.6 Evolutionary Operations on Tree Based Genotypes

With respect to common genotype representations evolutionary operations on tree
based genotypes differ only for the mutation operation and for the recombination op-
eration, which will be pointed out in the following.

4.5.6.1 Mutation of Tree Based Genotypes

By considering mutation operations we have to distinguish between variable informa-
tion mutation and structure information mutation.

The mutation of variable information is implemented by traversing all nodes of
the tree based genotype representation. Each node is checked for variables and if there
are variables each variable is, due to a certain probability, chosen to be subject of mu-
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tation. Values of real decision variables are changed by means of evolutionary strategy
concepts as described in Sdc4.1 Values of integer decision variables are changed
by increasing, decreasing or replacing the original value by chance. The grammar
based genotype-template provides in all cases the legal ranges of each variable.

The mutation of structure information is implemented by adding, deleting or
expanding a randomly chosen node. Again, the grammar based genotype-template
provides all information to validate the correctness of each structure information mu-
tation.

4.5.6.2 Recombination of Tree Based Genotypes

Compared to string based genotypes the recombination operations simplifies to sub-
tree swapping. One big advantage of tree based genotypes is that the tree structure
inherently offers a classification of functional entities represented by sub-trees. Fur-
thermore, in the case of grammar based genotype-templates the validation if the sub-
tree swapping results in valid genotypes can be easily and efficiently performed by
checking the grammar.

4.6 Summary

This chapter introduced the main concepts of EC and outlined the importance of the
genotype representation for each EA. Furthermore the advantages and disadvantages
of different selection schemes was shown. It was clarified that the search space of
the evolutionary process is always defined by the candidate solution encoding and
thus, a good genotype representation is the core of each EA. Furthermore it was stated
that in most applications the challenge shifts from finding a solution for the original
problem to the task of finding a possible and adequate genotype encoding. Because of
this, trees were introduced to encode candidate solutions with the demands to simplify
constraint handling, accelerate implementation and to provide the capability to handle
variable length encodings. The most important subject matter in this chapter was the
introduction of a novel concept, which uses grammars as tool to formulate general
usable genotype-templates.



Chapter 5

Evolutionary Optimization of Descriptive
Takagi-Sugeno Fuzzy Models

This chapter provides a grammar based genotype-template which is used to construct
highly interpretable DTSFM candidates with a partly defined rule-base §S&4).

These DTSFM candidates are used in an evolutionary process which directs the search
to optimal DTSFMs. The genotype-template and the algorithmic description of the
evolutionary loop provided in this chapter are used in chaptermodel an artificial

and a complex real world system.

5.1 Michigan vs. Pittsburgh Approach

There exist two commonly used methods to represent FMs in a population. The so
called Michigan approacl2p] utilizes each individual in a population as one part (i.e.
rule) of the candidate solution. Thus, the complete population of each generation rep-
resents only one candidate solution. Each individual can be seen as a functional entity
of the overall candidate solution. For many candidate solutions it is meaningful to
introduce more than one type of functional entity. In this case the Michigan approach
has to deal with sub-populations, with each sub-population consisting of individuals
representing the same type of functional entity. The hardest problem that occurs using
the Michigan approach is to find an optimal combination scheme for the individual to
form a candidate solution.

In the second approach, known as the Pittsburgh appr@aghelach individual
represents a candidate solution. Thus, the complete population of each generation

92



5.2. Acquiring the Genotype Tree Structure 93

represents several candidate solutions. In combination with tree based genotypes the
Pittsburgh approach is obviously more suitable to use. This is caused by the fact that
each sub-tree can already be seen and encoded as functional entity. The difficult prob-
lem of merging functional entities to a candidate solution (which is again a highly
non-linear problem) does not occur, because it is assumed to be done by the evolu-
tionary operations like crossover.

5.2 Acquiring the Genotype Tree Structure

It is useful to sketch the structure of the tree representation of the target genotype-
template (see Figh.1), which will than be formulated with help of grammé&r2 Dur-

ing modeling the candidate DTSFMs should be able to make use of different features
from an arbitrarily large feature set. These features should be covered with b-splines
which act as fuzzy sets.

Figure 5.1: Sketch of the target tree based genotype. The concerning genotype tem-
plate is given in grammés.1

5.2.1 Rule-Base and Knowledge-Base

The structure of a FM consist of two main parts, the rule-base and the knowledge-
base. These two parts are also reflected in the sketch of the genotype treesotL.Fig.
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The left side encodes the rule-base and the right side encodes the knowledge-base.
Below the starting node of the rule-base there are the single rules, each rule containing
one or more premises. The left hand side of the tree represents the knowledge-base,
with single features (inputs) of the problem, each covered by a knot-vector which
constitutes the b-spline based fuzzy-sets.

5.2.2 Genotype to Phenotype Mapping

By using genotype-templates the implementation of problem specific genotypes be-
comes much more efficient with respect to implementation and maintenance time of
the resulting evolutionary algorithm. But it has always to be kept in mind that the
function, which performs the genotype to phenotype mapping, can be far from trivial
and still has to be carried out by an expert. Regarding this genotype to phenotype
mapping function for DTSFMs some specific considerations have to be explained.

5.2.3 B-spline Specific Implementation Considerations

Because of implementation reasons the knot-vector was split into an external and an
internal part, each with knot-positions as elements. The external knot-vector consist of
two x knots, withx = 2-k (k = order). Thus, for example, six b-splines of order three
are defined over an external knot-vector consisting of six knots (three left external
knots plus three right external knots) plus three internal knots as illustrated i5.Eig.
This terminology differs from the commonly used o8| but it is very convenient
for our implementation.

It is convenient, because it is desirable to encode the genotype knot-positions
with possible values in a fixed range (€/@.1]). Because of interpretability reasons,
itis also desirable that the b-splines form a partition of unity in the respective input di-
mension. By rescalifigthe internal knot-position to (assuming zero as minimum and
one as maximum) to the minimumm(n,) and maximum hax,) values of the con-
cerning input dimension, it is always guaranteed that the complementarity condition
hold. The encoded external knot-vector consist one half each of the left external knot-
vectorA®" and right external knot-vecta™¥™, both with possible values ii®, 1] and
number of elements equal to the order

1n the following the term rescaling is used to describe the rescaling during the genotype to pheno-
type mapping.
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Figure 5.2: Left external, internal and right external knot-vector forming a com-
bined knot-vectoi = (0,1.2,1.99,3.4,4.2,4.9,6.3,7,8) with an assumed input in-

terval [2,6]. The green shaded area represents this interval in which the internal knots
can be moved, new knots can be added or old knots can be deleted. The external knots
are always arranged outside this interval.

The encoded left external knot-vectdf" is rescaled (assuming zero as min-
imum and one as maximum) tin, — w (leftmost possible knot-position
of A" and min, — % (rightmost possible knot-position af™). The en-

coded right external knot-vect(z:right is rescaled (assuming zero as minimum and
one as maximum) tmax, + % (leftmost possible knot-position af'9™) and

ma, — M Mh) (rightmost possible knot-position afg).

5.2.4 Feature-Set Selection Implementation Considerations

A decision variable calledeatureindexwhich is located in eachREMISEnode of
aRULE node, acts as a selector which of the encoded features in the knowledge-base
is used. Because the knowledge-base encodes betoelea min ruleand coded

max rule (predetermined by the model designer) rules, the decision variable should
be able to accept values in the rangeded min rule coded max rul¢ Furthermore

the decision variabléeatureindexshould be be assigned only distinct values for alll
siblings. Figures.3illustrates the node labeling and the decision variables which are
embedded in the nodes.
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ODTSFM EXTERNAL ® RULEBASE O @ ®
KNOTVECTOR
OKNOWLEGE EXRERNAL ‘ RULE Q @ knotpos ‘
BASE KNOT

G FEATURE INTERNAL ‘ PREMISE G col @ Sfeatureindex
KNOTVECTOR order kernelpos
INTERNAL 0 knotpos
KNOT
(a) Labels. (b) Variables.

Figure 5.3: Genotype labels and variables of a DTSFM.

5.2.5 Fuzzy-Set Selection Implementation Considerations

The decision variablkernel poscan store real values in the range [0,1]. These values
are converted by Algs.1to indices of fuzzy sets (defined in the knowledge-base) cov-
ering the concerning input. During the phenotype to genotype conveksomel pos
(assuming zero as minimum and one as maximum) is rescaled to the minimum avail-
able data-pattern value of the concerning inpuing) and tomax, — w,

wherema, is the maximum available data-pattern value of input

Algorithm 5.1 Kernel selection algorithm.

Input:  Genotype decision variableernel pos
Output: Indexi of concerning fuzzy set.

(1) n«col

(2) kernelpos— rescale(kernelpo$

(3) stop+— FALSE

(4) i — order,

(5) while i < number of elements (A") and stop= FALSE
(6) if kernelpos< Al then stop«— FALSE

(7)) i—i+1

(8) end while

(9) i —i—(order+1)
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5.3 The Used Genotype-Template

The on gramma#.2 based syntactic formulation of the so far described genotype-
template is given by template 1. This template contains only very few parameters
which have to be predetermined by the user. The bold-and-italic typeset symbols

Genotype Template 5.1DTSFM genotype template.

node (DTSFM, 2, 2, empty)

node (KNOWLEDGE BASE, max feature max feature empty)

node (FEATURE, 2, 2, (ol, order))

node (EXTERNAL KNOT-VECTOR, max order- 2, max order- 2, empty)
node (INTERNAL KNOT-VECTOR, min kernel, max kerne| empty)
node (EXTERNAL KNOT, 0, 0,knotpo3

node (INTERNAL KNOT, 0, 0,knotpo3

node (RULE BASE, min coded rule max coded rule empty)

node (RULE, min premise max premise empty)

node (PREMISE 0, O, (featureindexkernel po3)

var (col, 0, max col—1, integer, FALSE)

var (order, min order, max order, integer, FALSE)
var (knotpos 0.0, 10, real, FALSE)

var (featureindex0, max feature—1, integer, FALSE)
var (kernelpos0.0, 10, real, FALSE)

conjunction (DTSFM, RULE BASE, TRUE)

conjunction (DTSFM, KNOWLEDGE BASE, TRUE)

conjunction (KNOWLEDGE BASE, FEATURE, FALSE)

conjunction (FEATURE, EXTERNAL KNOT-VECTOR, TRUE)
conjunction (FEATURE, INTERNAL KNOT-VECTOR, TRUE)
conjunction (EXTERNAL KNOT-VECTOR, EXTERNAL KNOT, FALSE)
conjunction (INTERNAL KNOT-VECTOR, INTERNAL KNOT, FALSE)
conjunction (RULE BASE, RULE, FALSE)

conjunction (RULE, PREMISE FALSE)

constraint (FEATURE, col, ! =, sibling)
constraint (EXTERNAL KNOT, knot pos >, sibling)
constraint (INTERNAL KNOT, knotpos >, sibling)
constraint (PREMISE featureindex>, sibling)




98 Chapter 5. Evolutionary Optimization of Descriptive Takagi-Sugeno FMs

represent external variables which have to be predefined by the model designer or are
derived from the given data-set (irmax col= number of columns of the input matrix).

In fact only four different model predicates have to be given, namely the maximum
number of features the EA is allowed to select from the input datenfiee. featurs,

ranges for the smoothness of the used fuzzy setsrengmax orde), ranges for the

used number of fuzzy sets covering each input (haw/max kerne) and ranges for

the encoded number of rules (irein/max coded rulg. Keep in mind that the number

of rules of the phenotype can be lower than the number givemioycoded rule
because it is possible that the genotype contains several equal rules, of which only one
instance is used in the resulting model.

5.4 The Implemented Evolutionary Algorithm

This section provides an explanation of the used EA in pseudo-code. The input pa-
rameters of the evolutionary process are firstly the instructions how to encode the
problem, i.e. the genotype-template, secondly standard evolutionary parameters like
PopulationSizeandTournamentSizend thirdly parametersin/max orderconcern-
ing the target phenotype, i.e. concerning a DTSFM.

Regarding the first point grammar2 will be used. Regarding the second point
the evolutionary parameters comprise normally also parameters like mutation and
crossover probability. To keep the approach as simple as possible these parameters
were fixed for all runs which are performed to achieve the results presented in chap-
ter6. Only thePopulationSizend the stop criteria varied for the artificial and the real
world data-set. The other reasonable evolutionary parameters which are implemented
as parts of the overall EA are described in the following sections.

5.4.1 Implementation Environment

Obviously a detailed description of all implemented functions would go beyond the
scope of this thesis; but for information, the described algorithms are embedded in
a software library programmed by the author of this thesis. The core library pro-
vides structures and functions to deal with matrices. Based on this, a generalized
basis function network library and an evolutionary computation library were pro-
grammed. The used programming language is C with additional functionality given
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by the GLib B0]. The GLib is a library which provides, besides many other things
like definitions for standard variable types, functions to deal with trees. It is also used
as core for GTK+§8], a library for the designing of graphical user interfaces. Both,
GLib and GTK+ are available for many platforms and both are distributed under the
lesser general public license, which means that they are freely available for personal
and commercial use.

5.4.2 Implemented Crossover

Crossover is implemented by randomly choosing two genotypes. Two nodes of the
same type (identical node-labels) are selected, again by random, from each of these
genotypes. In the first genotype the selected node (and the concerning sub-tree) is
replaced by a copy of the sub-tree chosen in the second genotype. This is done each
generatiorindiSizetimes. Algorithm5.2 gives a description in pseudo-code.

Algorithm 5.2 crossover(:).

Input:  pop
Output: Recombinedop.

(1) fori«1,...,IndiSize
(2) r«drand(1,IndiSizg
(3) genotypE™her genotype
(4) if drand(0,1) < 0.5
(5) r « drand(1,IndiSize
(6) genoty p&°ther_ genotype
7) nodé®"e’ — RamdomNodgenoty p&then
(8) nodé"te’ RamdomNodeO f Ty pgenoty p&her noddather)
(9) SubtreeCopy-— CopySubt ree(noddnothe’
(10) noddae’ SubtreeCopy
(11) endif
(12) NewPop— NewPopt genoty p&ther
(13) end for
(14) pop+ NewPop
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5.4.3 Implemented Structure Information Mutation

The implemented structure mutation operation is described by2AtgKeep in mind

that the genotype-template can be used to countercheck if a node can be added or
a node and the concerning sub-tree can be erased from the genotype. The func-
tions GetRandomNodeOfGenotype(-) and AddPossibleSubtree(:) in Alg. 5.3 are
assumed to perform this check and therefore, shrinking or growing of the genotype
is only done in a space defined by the genotype-template. In addition to that the
following algorithms make use of some basic functions with self-explanatory names
like drand(min,max, which returns a random value betwemm andmax Instruc-

tions in row (7) and (10) of Alg5.3implement the idea that the structural mutation
should have, to certain degree, a general direction in terms of shrinking or growing
the genotype-size. In this case the initial valuéeiProbin instruction (3) causes a
tendency to add new parts to the genotype.

Algorithm 5.3  MutateStructureInfo(:).

Input:  genotype
Output: Mutatedgenotype

(1) NodeSize— GetNumberOfNodes(genotype
(2) NodeSizeMutate« round(y/(NodeSizedrand(0,1)3)
(3) DelProb+— 0.4
(4) for i< 1,... NodeSizBMutate
(5) node« GetRandomGenotypeNode(genotype
(6) if drand(0,1) < DelProb
(7 DelProb« MIN(0.95,DelProb- 1.2)
(8) genotype— DelSubtree(genotypenode
(9) else
(10) DelProb«+ M2x(0.05, DelProb- 0.8)
(12) genotype— AddPossibleSubtree(genotypenode
(12) endif
(13) end for
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5.4.4 Implemented Variable Information Mutation

The variable mutation operation is outlined in A4, which performs mutation of

real valued decision variables by means of evolutionary strategies and mutation of
integer valued decision variables by increasing, decreasing or random replacement of
the original value. The decision variables are namebe coupled strategy parameter

is referred as®P and the in the genotype defined range for the decision vanaisle

given byvmin andvmax

Algorithm 5.4  MutateVariableInfo(-).

Input:  genotype
Output: Mutatedgenotype

(1) NodeSize— GetNumberOfNodes(genotypé
(2) for all nodesnin genotype
(3) if drand(0,1) < drand(0,0.05)

4) randomly reinitialize all decision variables inn
(5) else
(6) for all decision variablesvin n
(7) if type(v) =real
(8) MutateRealValuedVariable(V,V°P) (Alg. 5.5
9) end if
(20) if type(v) =integer
(11) MutateIntegerValuedVariable(V) (Alg. 5.6
(12) end if
(13) end for
(14) endif

(15) end for
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Algorithm 5.5  MutateRealValuedVariable(:).

Input:  v,\®P
Output: Mutatedv, v°P.

(1) r < MAX(drand(0,1),0.000001
(2) V8P \SP.exp(0.1-y/—2-log(r) - sin(6.283185307drand(0,1)))
(3) if V8P > viafior vsP < v
(4)  v*P— drand(Vmin, Vmax)
(5) endif
(6) r — MaX(drand(0,1),0.0000079
(7) v v+vSP.\/—2.log(r) -0.001
(8) if V> VmaxOrV < Vmin
(9) v« drand(Vmin,Vmax)

(10) end if

Algorithm 5.6  MutateIntegerValuedVariable().

Input: .
Output: Mutatedv.

(1) if drand(0,1) < 0.005
(2) if drand(0,1) < 0.5
3) if drand(0,1) < 0.5

4) V—V+1

(5) else

(6) V—v—1

(7 end if

(8) else

(9) V < round(drand(Vmin, Vimax) )
(10) endif
(11) if V> VmaxOrV < Vmin
(12) V < round(drand(Vmin, Vimax))
(13) endif

(14) end if
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5.4.5 Implemented Evolutionary Loop

Algorithm 5.7 briefly outlines all steps that are performed during the evolutionary pro-
cess to identify an optimal DTSFM. The stop criteria of this evolutionary loop could
be a fitness value, a generation index or elapsed time. Note that in this implementation
an individual (model) is the better, the smaller the fithess value becomes. This sounds
irritating but it simplifies the fitness calculation and is an often used procedure. Dur-
ing the evolutionary process the fittest genotype is always stored as elite genotype. In
the implementation the elite genotype has the index Ae).

5.4.5.1 Initialization of the Genotype

The initialization in instruction (1) of Alg5.7is done by buildingndiSizegenotypes

with help of the genotype-templafel The creation of each genotype starts always
with the root-node. Subsequently valid nodes are added at random and filled with de-
cision variables. The decision variables are also initialized randomly but within valid
ranges provided by the genotype-template. The implemented initialization supports
"small” structures which will be subsequently driven to bigger structures. This initial-
ization procedure is motivated by the fact that very special and narrow support areas
can cause a failure in the parameter optimization process. This happens, for example,
if not enough data-patterns lie in the support areas of the rules and the overdetermined
system of linear equation can not be solved.

5.4.5.2 Generalization Error Estimation as Fitness Factor

The DTSFM fitness is proportional to the normalized mean square error of the com-
puted model output, computed with help of E§.19, to the desired output. The
model output is calculated by a function referredcasodeloutput(-) (see instruc-

tion (15) in Alg.5.7), which indicates that a cross-validation (see $e6.3 is per-
formed. By assuming a 10 times cross-validatiom £ 10) the cross-validation is
done in the following way. After the genotype to phenotype mapping the model pa-
rameters are determined times on the base 0(%1) available training data. Each

time the model output is calculated without using the data that were used for param-
eter optimization. These outputs are added to the total model output vector. Because
numerous different splittings of the dataset are possible, it is not a complete cross-
validation. On the other hand the leave-one-out method, the computationally cheapest
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complete cross-validation, tends to include unnecessary components in the model, and
has been shown to be asymptotically incorrddt4. Other authors also showed that

the leave-one-out method underestimates the true predictive &irdrgnd does not

work well for data with strong clusterizatiob()].

To keep the golden mean, a cross-validation very similar to Monte Carlo cross-
validation (MCCV) [L71 was implemented. In MCCV the data are partitioridd
times into disjoint train and test subsets, where the test subset is a frﬁeﬁéﬂ(’;—l)
of the overall dataZ0]. The main difference between MCCV and normal cross-
validation is that in MCCYV the different test subsets are chosen randomly and need
not be disjoint.

In this thesis the subsets are also chosen randomly for each complete cross-
validation estimation, but they are disjoint. Every generation the generalization error
estimation of the elite individual is recalculated as an average of the prior and the
actual cross-validation estimation (see instruction (23) in Al@). This procedure
decreases the probability that a small model generalization error estimation is based
on a disadvantageous and seldom subset selection. On the other hand every genera-
tion it is possible that a new model with a "very good” generalization error estimation,
possibly based on a disadvantageous subset selection, replaces the elite individual. To
hold down the probability of these undesired occurrences the subsets are forced to be
disjoint.

5.4.5.3 Fitness Penalization by Interpretability Factors

As discussed the interpretability of the resulting model can be a crucial aspect if, for
example, the user wants to extract knowledge out of the model. By using b-splines
as fuzzy sets and a complete rule-base with "don’t care” premises only the number
of possible fuzzy sets on each input, the number of "non-don’t care” premises and
the number of simultaneously activated rules are of intéréBhe complementarity
condition implicitly holds for b-spline based fuzzy sets. The first two interpretability
factors can be fulfilled by an appropriate setting of the model parameters (e.g. the
variablesmin/max kernelandmin/max premisan the genotype-templat1). Thus,

only the number of simultaneously activated rules is calculated in the evolutionary
loop, wherelntFactorsz(-) of instruction (16) in Algs.7implements Eq.3.15).

2Until chapter7 the "leveling” interpretability factotF4 (Sec.3.15 will not be discussed.
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Algorithm 5.7 EvolutionaryLoop(-)

Input:  Genotype Template, evolutionary parameters, DTSFM parameters.

Output: Evolutionary optimizedT SFM

(1) pop«< InitPop(GenotypeTemplattndiSize
(2) fitnessgijite < MAXDOUBLE
(3) generation— 0
(4) while StopCriteria= FALSE
(5) fitnesgestingen— MAXDOUBLE
(6) if generation>0
(7 pop«— crossover(pop
(8) endif
(9) fori«0,...,IndiSize
(20) if genotype> 0 and generation> 0

11 genotype«— MutateStructureInfo(genotype
(22) genotype«< MutateVariableInfo(genotypg
(13) end if

(14) DT SFM « genotype2phenotype(genotype

(15) NMse < NMSE(CvModelOutput (DT SFM), DesiredOut put
(16) inter pretability; < IntFactorz(DT SFM)

(17) fitness « nmse+ m

(18) if fitness < fithessestincen

(29) fitnesgestingen— fitness

(20) genoty pPBestingen— genoty pe

(21) end if

(22) end for

(23) fitness,me - (fltne3§|,te~(ag§;g§;el)+fltnesgme)

(24) if fitnessestincen< fitNessgiie

(25) fitnesgiite < fitn€SBestingen

(26) genoty pgiite < geNoty PgestinGen

(27) endif

(28) pop+« TournamentSelection(pop TournamentSize
(29) generation— generationt 1

(30) end while
(31) DT SFM« genotype2phenotype(genotypgiie)

(Alg. 5.2)

(Alg. 5.3
(Alg. 5.4)

(Sec5.2.9

(Eq.3.13
(Sec4.3.4.3

(Sec4.4.3.3

(Sec5.2.29
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5.5 Summary

This chapter presented the description of the complete EA implementation for DTSFM
identification. First of all the decision to use the Pittsburgh approach for encoding
was justified. This was followed by presenting a possible genotype tree structure
and the concerning genotype-template. The template was formulated on the base of
grammard.2. After this the most important parts of the EA were described in pseudo-
code.

At this stage all required parts and information for data-driven modeling via EC
is provided and thus, in the next chapter the described implementation is tested on an
artificial and on a real world dataset.



Chapter 6

Data Analysis

In this chapter the developed concepts and algorithms will be applied to an artificial
and to a complex real world problem. The EA implementation as described in chap-
ter5is used for both datasets.

6.1 Artificial Data

The purpose of this section is to validate the in the last chapter provided EA. By using

an artificial dataset it is best possible to check if the EA is able to select the correct

inputs and to cover the interesting regions by rules. The artificial dataset was created
by generating 31 times 31 uniformly distributed data points of the function given by

U2704l U270.8

us+0.75
g2(ug,Up) :8~sin(10uz+5u+1)-2(e( 025 )2—0.8'e(%u3)2—0.4-e(m)2>.

The model output is illustrated in Fi§.1and the function namgy is taken over from
the below mentioned papers. Originally the problem is a function approximation
problem [L2§ and it was shown that this can be done very efficiently using a b-spline
based model]96. The authors used a complete rulebase and presented the function
approximator only two features and the concerning output. A very high accuracy was
obtained by using only 60 receptive fields (rules).

In the following the original input space will be widened by 20 additional inputs,
which are noisy versions of the original ones. The noise ratio reaches from standard
deviation 0.05 to standard deviation 0.5 with mean zero of the original values. Thus,

107
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Figure 6.1: The artificial dataset.

the task is now to do a function approximation and to select the best possible input fea-
ture set to perform this function approximation. Input columns 0 and 11 (se&%ig.
were originally used to calculate the desired output depicted in@-ig.We expect

that the EA identifies these originally used inputs, or at least that the selected DTSFM
utilizes features with a low noise ratio.
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Figure 6.2: The used input dataset to approximate the funggioBolumn 1 to 10 are
noisy versions of column 0 and column 12 to 21 are noisy versions of column 11. The

input on the x-axis is plotted against the concerning output (of the noiseless input) on
the y-axis.
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Three evolutionary runs utilizing genotype-templaté were performed. The
EA was implemented as described in Sedbeside that the fithess penalizing instruc-
tions (16)-(17) in Alg.5.7 were not used. All three evolutionary modeling processes
were activated with identical parameters and a different random generator initializa-
tion. The best run results in a model which produces a mean square error (MSE)
of 10.1345 by using 49 rules. The MSE was calculated by presenting the identified
model the same input patterns asi2$ 196. The used inputs and the coverage with
fuzzy sets of this model are depicted in @ and the concerning model output is
shown in Fig.6.4(b)
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Figure 6.3: Used fuzzy sets to approximate function output depicted ird Hi¢h)

The mean MSE of all three runs result in 10.92 and the smallest model uses
only 21 rules. In comparison to the results ih9f this is not so impressive (MSE
= 2.8 with 60 rules), but by considering that an approach with equi-spaced b-spline
distribution and a complete rulebase with 64 rules (without "don’t care” premises)
leads to a MSE of 10.91 the results are more than acceptable.

Furthermore, it has alway to keep in mind that the EA also has to select the
relevant inputs and to choose premises from a huge amount of possible premises.
Because of this a cross-validation size of 31 was used. Other parameters were set to
one hour calculation time (AMD XP2000+ CPU) leading to, depending on the run, 59
to 85 generatioris Each generation a population of 80 individuals were calculated.

1t should be remarked that the algorithms were not fully optimized for speed. For example lookup
tables could be used more extensively to speed up the calculations. The author estimates that a two to
ten times faster computation is possible.
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(b) Approximated function output.

Figure 6.4: Original and approximated function output.

As parameters for the target moahein/max premise 1/3, min/max order= 1/3,
min/max coded rule 10/100,min/max kernef 1/15 andmin/max feature= 1/3 were
chosen. Note that the three best models use exactly two premises in each rule.

The same parameters were used to calculate three "headless chitkgrtept
runs by simply omitting crossover in the EA. All of these runs show slower conver-
gence behavior and all runs lead to higher model MSEs as obtained by the worst
identified model using crossover. After these encouraging results with artificial data,
the approach has to confirm the shown capabilities by applying it to a complex real
world problem.
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6.2 Real World Data

In February 2004 approximately 23 millioB3] chemical compounds were registered

in the Chemical Abstract Service. Because of their abundance and wide use in numer-
ous fields of production, a better understanding of their ecotoxicological impact on
plant life, wild life, and the environment in general is of high interest. Apart from the
ethical considerations associated with the use of animals, models which can give a clue
to toxicity are of highly economical use, because they avoid useless, time consuming
and expensive pilot batches.

6.2.1 Quantitative Structure Activity Relationships

In the following the widely accepted assumption is supported that macroscopic prop-
erties like toxicity and ecotoxicity strongly depend on microscopic features and the
structure or the similarity]59 of molecules. This assumption is referrecdjasntita-

tive structure activity relationshipand was applied in the past years to a wide variety
of chemical, biological, physical, and technological properizs]14].

6.2.2 Data Description

The used toxicity dataset was built up by the U.S Environmental Protection Agency
[44,45,46] by starting from a revision of experimental data from literature. The dataset
is one of the biggest available and furthermore very reliab&][ Nevertheless, the
dataset is based on experimental results involving living beings and thus, the testbed
could never be identical. Therefore, the dataset is more or less noisy with a certain
probability of containing outliers. The used dataset contains 568 organic compounds
commonly used in industrial processes. Each compound is described by 167 molec-
ular descriptors (see Se®.2.3 and one toxicity value. Twelve of the molecular de-
scriptors (feature 126-137) provide no information because the minimum descriptor
value equals the maximum descriptor value for all molecules. These descriptors were
removed from the dataset yielding in a total number of 155 descriptors. For a deeper
chemical inside the interested reader is referre®6@p. [The dataset was used in the
European Community project IMAGETOX§] (Intelligent Modeling Algorithms for
General Evaluation of TOXicities) and according to the project rules, it is not allowed
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to distribute the data. However, people can easily ask the project member Dr. Emilio
Benfenati [L1] to obtain it.

The toxicity value referres to the acute toxicity for the fish species fathead min-
now (Pimephales promelas) and is expressed as -log(LC50(mmol/l)), with LC50 as
abbreviation for lethal concentration with 50% death rate after 96 hours. Thus, a high
toxicity value expressed in the -log(LC50(mmol/l) measure is induced by the fact that
only few molecules per mmol are needed to cause the above mentioned death rate. A
high -log(LC50(mmol/l) value stands for a high aquatic toxicity.

6.2.3 Molecular Descriptors

The descriptors are used to mathematically characterize the molecules. Many of the
descriptors were calculated by the Environmental Chemistry and Toxicology Lab-
oratory at Istituto Mario NegriJ18, using special software like Hyperchem 5.0,
CODESSA 2.2.1 and Pallas 2.1. The set of descriptors can be split, according to
the classification schema present in CODESS@ [nto six categories.

Constitutional descriptors depending on the number and type of atoms, bonds, and
functional groups.

Geometrical descriptors contain information about the molecular surface area and
volume, moments of inertia, shadow area, projections, and gravitational indices.

Topological descriptors are molecular connectivity indices which are related the the
degree of branching in the compounds.

Electrostatic descriptors such as partial atomic charges and other depending on the
possibility for some sites in the molecule to form hydrogen bonds.

Quantum-Chemicals descriptors like the total energy of the molecule, ionization
potentials, the energies of the lowest unoccupied and highest occupied orbital,
etc.

Physicochemicaldescriptors such as logD pH5.

In the chemical community it is common to classify descriptors with respect to
their correlation to the desired outpyit The Pearson Product-Moment Correlation
Coefficient or correlation coefficient for short is in the following referredRaf is a
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measure of the degree of linear relationship between two variables, i.e. the experimen-
tal toxicity valuey and the by a model computed toxicity vaaéWhile in regression
the emphasis is on predicting one variable from the other, in correlation the emphasis
is on the degree to which a model may describe the relationship between two vari-
ables. In regression the interest is directional, one variable is predicted and the other
is the predictor; in correlation the interest is non-directional, the relationship is the
critical aspect. The correlation coefficidRimay take on any value between plus and
minus one, where the sign of the correlation coefficient defines the direction of the
relationship, either positive or negative. In this thesis this direction is not important
and therefore only absolute correlations values are taken into account.

Many papers use instead & the squared correlation value to present the
achieved results. In the following also squared correlation values, referiRvei
be used, wherB? is given by

R2: ( ZMZl(ym_y)<ym_y_> — )2, (61)
VI = 92/ Sh (I — )2

with M : number of experimental toxicity measurements,

1 M
~ 1M
yzmél)’m

The squared correlation is also known as¢befficient of determinatiorit is one of

the best means for evaluating the strength of a relationship. For example, we know
that the correlation between experimental toxicity and predicted toxicRy49.8. If

we square this number we will finl? = 0.64. Thus, 64 percent of the experimental
toxicity is directly accounted for the predicted toxicity and vice versa. For fast com-
parison Tab6.1 list the descriptor classification and the concerning correlation and
squared correlation values.
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Classification Correlation Squared Correlation
substantial descriptors |IR| >0.99 |R?| >0.9801
important descriptors| 0.99> |R| >0.80|0.9801> |R?| >0.64
likely descriptors 080> |R| >050| 064> |R?| >025
specific descriptors | 0.50> |R| 025> |R?|

Table 6.1: Common classification of molecular descriptors.

6.2.4 Toxicity Prediction With Multi-Linear Regression

A simple (multi)linear regression should always be one of the first steps in modeling
a new dataset. Therefore, the best descriptor concerning the correlation to the output
was computed by a linear regression. Furthermore the best possible combination of
up to four descriptors was calculated by computing the resulting correlations of all
possible permutations. The best four-dimensional linear model results in a squared
correlation to the experimental obtained outputRSf= 0.6482. Tab.6.2 lists the
results and the identified (multi)linear models to obtain these results. All more flexible
models have to yield a better accuracy to legitimate them-self.

R’> | Feat.| Feature Name Polynomial Model
0.4773| 151 logD pH5 0.0356386+ 0.447185 ug
0.6056| 41 | Molecular weight —1.21074+ 0.00884406 ug

155 | logD pH9 +0.340867 ug

0.6269 11 | Relative number of H atomg 0.0593391-2.3744 ug
50 | Kier & Hall index (order 0) +0.196906 u;

155 | logD pH9 +0.334053 uy

0.6482| 49 | Randic index (order 3) —1.3297940.228086 ug
53 | Kier & Hall index (order 3) +0.286063 u;

99 | Topographic electronic index —0.834284 uy

155 | logD pH9 +0.235826 u3

Table 6.2: Best found squared correlation values by performing (multi)linear regres-
sions for all possible models using one, two, three and four input features.

6.2.5 Toxicity Prediction With DTSFMs

All together 90 evolutionary runs were performed to calculate a validated model for
toxicity prediction. All of these runs were done by utilizing genotype-temate
Again the EA implementation as described in S&el was applied. The runs can
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be divided into three experiment. In the first and second experiment, each involving

36 EA runs, the complete available descriptor set was used as input for the model
identification process. In these experiments no interpretability measure was used to
modify the fitness of the candidate models. Parameters differ only in the number of

allowed input features, allowed number of premises of a rule and the cross-validation
size.

The most often selected features of all 72 computed models are than used in
Sec.6.2.5.3to build a reduced descriptor set. On this reduced descriptor set again 18
models are calculated, this time with a fitness penalized by the fulfillment value of an
interpretability factor.

6.2.5.1 First Experiment Allowing Three Premises

In the evolutionary runs of the first experiment the maximal allowed premises were set
to three. This was done by setting the genotype-template variatiteésax premises

= 1/3. All together 36 runs were calculated with three different settings for the
genotype-template variablesin/max featuresnamely 1/5, 1/10 and 1/15. The evolu-
tionary parameters for each of the runs were set to population size = 100, tournament
size =10 and one hour calculation time was chosen as stop criterion. Furthermore one
half of the runs used as fitness for the candidate models a 8 time cross-validated nor-
malized error estimation and the other half a 71 time cross-validated normalized error
estimation. The chosen cross-validation sizes are founded on the available number of
568 molecules. Thus, a cross-validation size of 8 yields in data-subsets of size 71 and
vice versa.

For each different parameter setting six runs were performed. Gabkhows
the best, the mean and the worse model results for each setting. The DTSFM resulting
in the bold red printed values is presented in greater detail.

The inputs of this model are listed in Tab.4 Figure 6.5 shows the used
fuzzy sets and the concerning data distribution of the model inputs. The calculated
model output is plotted against the experimental toxicity values, which is illustrated
in Fig. 6.6.
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best mean worst

max Feat. CV|NMSE| R* [Rules| NMSE| R* |[[NMSE| R°
5 8 | 0.2304| 0.6854| 9 0.2403| 0.6721|| 0.2485| 0.6608
5 71 || 0.2317| 0.6837| 11 | 0.2451| 0.6653|| 0.2601| 0.6448
10 8 || 0.2220| 0.6941| 14 | 0.2308| 0.6849| 0.2476| 0.6619
10 71 0.2219| 0.6970, 11 || 0.2315| 0.6839|| 0.2457| 0.6645
15 8 || 0.2166| 0.7043| 16 | 0.2197| 0.7000| 0.2228| 0.6958
15 71 || 0.2156| 0.7056| 12 || 0.2266| 0.6907|| 0.2327| 0.6823

Table 6.3: Toxicity modeling results of experiment one. The model (bold-red) inputs,
fuzzy sets and output are shown by Tall, respectively, Fig6.5and Fig.6.6.
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Figure 6.5: Input features as listed in T&blcovered by the fuzzy sets with input-data
(x-axis) versus experimental toxicity data (y-axis).

Descriptor Class| Feat.| Descriptor Name

Constitutional 10 | Relative number of H atoms
Constitutional 29 | Relative number of single bonds
Topological 49 | Kier&Hall index (order 0)
Topological 61 | Average Bonding Info. content (order Q)
Topological 70 | Bonding Info. content (order 1)
Geometrical 83 | ZX Shadow

Electrostatic 129 | HA dependent HDSA-1
Electrostatic 132 | HA dependent HDSA-2/TMSA
Physicochemical 149 | logD pH3

Physicochemical 150 | logD pH5

Physicochemical 153 | logD pH7.4

Table 6.4: Used descriptors of the best model of Eab.
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Figure 6.6: Experimental toxicity versus predicted toxicity of the best DTSFM of
experiment one with model inputs as given in Tald

The illustrated model uses only 12 rules with a total of 14 premises. Thus, only
two rules uses two premises. The squared correlation value is 0.7056 which is equiva-
lent to a correlation of 0.84. A descriptor with this magnitude of correlation is referred
as important and so should the model. It is interesting that very few of the calculated
models make use of more than one premise in each rule. This could be caused by an
inadequacy search of the EA or because of easy to model QSAR. The latter is more
likely since the complex relationships of the artificial dataset were established by the
EA. On the other hand it is not possible to model to many special dependencies be-
cause a high number of dependencies need also a high number of data pattern to model
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the process. To check if more premises will be used if more premises are allowed in
the modeling process experiment two was performed.

6.2.5.2 Second Experiment Allowing Several Premises

The second experiment is a retake of the first one, except that more premises are al-
lowed in the evolutionary search. To be precisely in this experiment the number of al-
lowed premises is set to the number of allowed features. Again 36 models (always six
with the same settings) were calculated and the results are listed i6.5aBecause

of the bigger search space and the possible high flexibility of the candidate models in
the following the most flexible model with the more reliable cross-validation size is
depicted in greater detail, although it is not the best found model.

The computed squared correlation of this model to the experimental toxicity val-
ues is 0.6784. The corresponding correlation value is 0.8237 which classifies this
model also as important. The model uses 10 rules, each rule consisting of only one
premise. The overall convergence of the EA is slower than in the first experiment and
it can be seen that for 10 and 15 features the 8 time cross-validated models clearly
outperform the 71 times cross-validated ones. In general this is an indication for over-
fitting, but if so, the concerning models should offer a higher flexibility as the 71 times
cross-validated ones. This is not the case since nearly all models use one premise in
each rule. The conclusion is the same as in experiment one. It seems that there exist
simple and substantial relations between the descriptor values of a molecule to the tox-
icity of this molecule. It is most likely that a modeling of more specific dependencies
needs more data and/or more precise experimental toxicity values.

But there is no reason to dramatize. In comparison to other QSAR modeling
methods 123 124 using the same dataset, the presented results seems to be superior
in prediction accuracy as well as in model simplicity (and therefore more reliable),
although a direct comparison is not really possible due to the different validation pro-
cedures. To further increase the accuracy of the modeling process, the input dataset
is reduced to decrease the search space for candidate models. This is done by select-
ing the most often used features in models of this and the first experiment as listed in
Tab.6.7. For the interested reader the never used features are also listed 618ab.
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best mean worst
max Feat. CV|NMSE| R* [Rules| NMSE| R* |[[NMSE| R°
5 8 | 0.2303] 0.6856| 9 || 0.2456| 0.6647| 0.2627| 0.6413
5 71 || 0.2336| 0.6813] 7 | 0.2477| 0.6620| 0.2634| 0.6410
10 8 || 0.2143| 0.7074| 13 || 0.2356| 0.6784| 0.2528| 0.6548
10 71| 0.2369| 0.6765| 8 || 0.2437| 0.6672| 0.2551| 0.6517
15 8 |/ 0.2182| 0.7020| 15 || 0.2383] 0.6748| 0.2584| 0.6474
15 71 || 0.2356| 0.6784| 10 || 0.2504) 0.6581| 0.2774| 0.6212

Table 6.5: Toxicity modeling results of experiment two. The model (bold-red) inputs,

fuzzy sets and output are shown by Tal, respectively, Fig6.7 and Fig.6.8.
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Figure 6.7: Input features as listed in Takb covered by the fuzzy sets with input-data
(x-axis) versus experimental toxicity data (y-axis).

| Descriptor Class

Feat.| Descriptor Name

0)

Quantum-Chemicals 1 | Binding Energy (kcal/mol)

Constitutional 12 | Relative number of O atoms

Constitutional 14 | Relative number of N atoms

Topological 46 | Randic index (order 1)

Topological 59 | Average Complementary Info. content (order
Topological 69 | Average Bonding Info. content (order 1)
Geometrical 88 | ZX Shadow / ZX Rectangle

Electrostatic 101 | PPSA-1 Partial positive surface area
Physicochemical 149 | logD pH3

Physicochemical 151 | logD pH6.5

Table 6.6: Used descriptors of the best model of Gab.
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Figure 6.8: Experimental toxicity versus predicted toxicity of the selected DTSFM of
experiment two with model inputs as given in Tals.
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| Index | Descriptor Name | Descriptor Class | Frequency
2 Heat of Formation (kcal/ma) Quantum-Chemicals 5
5 LUMO (eV)* Quantum-Chemicals 16
8 Relative number of C atoms Constitutional 9
10 | Relative number of H atoms Constitutional 16
12 | Relative number of O atoms Constitutional 12
29 | Relative number of single bonds Constitutional 16
40 | Molecular weight Constitutional 13
42 | Gravitation index (all bonds) Constitutional 11
43 | Gravitation index (all pairs) Constitutional 6
46 | Randic index (order 1) Topological 6
48 | Randic index (order 3) Topological 8
49 | Kier&Hall index (order O) Topological 14
53 | Kier shape index (order 1) Topological 9
64 | Information content (order 1) Topological 11
65 | Average Structural Information content (order|1Jopological 5
66 | Structural Information content (order 1) Topological 9
69 | Average Bonding Information content (order 1)) Topological 6
70 | Bonding Information content (order 1) Topological 8
74 | Structural Information content (order 2) Topological 6
77 | Average Bonding Information content (order 2)) Topological 9
80 | Moment of inertia A Geometrical 5
83 | XY Shadow Geometrical 5
88 | ZX Shadow / ZX Rectangle Geometrical 18
90 | Molecular volume / XYZ Box Geometrical 8
95 | Min partial charge (Qmin) Electrostatic 6
104 | FPSA-1 Fractional PPSA (PPSA-1/TMSA) Electrostatic 6
105 | FNSA-1 Fractional PNSA (PNSA-1/TMSA) Electrostatic 8
115 | PPSA-3 Atomic charge weighted PPSA Electrostatic 6
116 | PNSA-3 Atomic charge weighted PNSA Electrostatic 5
118 | FPSA-3 Fractional PPSA (PPSA-3/TMSA) Electrostatic 20
119 | FNSA-3 Fractional PNSA (PNSA-3/TMSA) Electrostatic 5
149 | logD pH3 Physicochemical 18
150 | logD pH5 Physicochemical 16
151 | logD pH6.5 Physicochemical 11
152 | logD pH7 Physicochemical 6
153 | logD pH7.4 Physicochemical 18
154 | logD pHY* Physicochemical 19

Table 6.7: Most frequently used molecular descriptors in all evolutionary computed
DTSFMs. The eight descriptors marked with a star were also useti2i¥) yvho
selected 17 descriptors (16 of the descriptors are present in the dataset used for this
thesis) out of a nearly identical descriptor-set with help of a principle component anal-
ysis.
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Index | Descriptor Name Descriptor Class
16 | Relative number of S atoms Constitutional
17 | Number of F atoms Constitutional
18 | Relative number of F atoms Constitutional
20 | Relative number of Cl atoms Constitutional
23 | Number of | atoms Constitutional
24 | Relative number of | atoms Constitutional
26 | Relative number of P atoms Constitutional
27 | Number of bonds Constitutional
30 | Number of double bonds Constitutional
31 | Relative number of double bonds Constitutional
56 | Info. content (order 0) Topological
60 | Complementary Info. content (order 0) Topological
62 | Bonding Info. content (order 0) Topological
73 | Average Structural Info. content (order 2) Topological
81 | Moment of inertia B Geometrical
82 | Moment of inertia C Geometrical
84 | XY Shadow / XY Rectangle Geometrical
85 | YZ Shadow Geometrical
86 | YZ Shadow /YZ Rectangle Geometrical
99 | Topographic electronic index (all bonds) Electrostatic
109 | PNSA-2 Total charge weighted PNSA Electrostatic
110 | DPSA-2 Difference in CPSAs (PPSA2-PNSA2) Electrostatic
112 | FNSA-2 Fractional PNSA (PNSA-2/TMSA) Electrostatic
113 | WPSA-2 Weighted PPSA (PPSA2*TMSA/1000) Electrostatic
122 | RPCG Relative positive charge (QMPOS/QTPLUS) | Electrostatic
123 | RPCS Relative positive charged SA (SAMPOS*RPC®)lectrostatic
130 | HA dependent HDSA-1/TMSA Electrostatic
133 | HA dependent HDSA-2/SQRT(TMSA) Electrostatic
135 | HA dependent HDCA-1/TMSA Electrostatic
142 | HASA-2/TMSA Electrostatic
145 | HACA-1/TMSA Electrostatic
146 | HACA-2 Electrostatic
148 | HACA-2/SQRT(TMSA) Electrostatic

Table 6.8: Molecular descriptors never used in all evolutionary computed DTSFMs.
It is notable that one of the descriptors, namely "Moment of inertia B” was one of 17
selected descriptors idi27.
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6.2.5.3 Model Identification on the Reduced Feature Set

As mentioned above the third experiment was performed using a reduced feature set
with molecular descriptors as given in T&b7. This feature set was derived by using

all features which were used at least five times during experiment one and experiment
two. Figure6.9 gives an overview of the distribution of used features during the
modeling process in experiment one and two. In the following evolutionary runs only
37 inputs were considered, which significantly reduces the search space for an optimal
model.
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Figure 6.9: Frequency distribution of used features in evolutionary identified models
using the complete feature set. The dashed blue line indicates that for the final model
only the 37 most often selected features were used.

With help of this experiment the final best model should be identified. Because of
this it becomes necessary to make use of the implemented penalizing scheme, which
favorites interpretable models. All parameters were chosen as in experiment one,
except that only the more reliable 71 times cross-validation procedure is used and that
the fitness of each candidate DTSFM is proportional to the normalized MSE and the
penalty factor computed by EB.3. This penalizing scheme should encourage the
modeling process to use models with at most four simultaneously activated rules.

The summarized results of the 18 evolutionary runs are presented ir6.Bab.
Although the best model yield in a squared correlation of 0.7021 to the experimental
toxicity the slightly worse, but much smaller model is presented in greater detail. This
very sparse model uses only six rules with eight premises and its computed output
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has a squared correlation to the experimental toxicity values of 0.7002 (normal cor-
relation is 0.8368). Tablé.10lists the features selected by this model and Big1
illustrates the computed versus the experimental toxicity values. The interpretability
value of simultaneously activated rules were for all final models calculated to one,
meaning that in all models at most four rules are activated simultaneously. Thus, the
presented model is fully interpretable in terms of the very strict objective IM defined
in Sec.3.3.3

best mean worst
max Feat. CV|NMSE| R* [Rules| NMSE| R* |[[NMSE| R°
5 71 0.2196] 0.7002] 6 | 0.2428]| 0.6685| 0.2629| 0.6410

10 71| 0.2252| 0.6925| 7 0.2321| 0.6830|| 0.2384| 0.6744
15 71 0.2182] 0.7021| 10 | 0.2284| 0.6881| 0.2385| 0.6744

Table 6.9: Toxicity modeling results with the reduced feature set. The model (bold-
red) inputs, fuzzy sets and output are shown by Bah) respectively, Fig6.10and
Fig.6.11

| Descriptor Class  Feat. | Descriptor Name |

Constitutional 3 (10) | Relative number of H atoms
Constitutional 4 (12) | Relative number of O atoms
Topological 11 (49) | Kier&Hall index (order 0)
Geometrical 21 (88) | ZX Shadow / ZX Rectangle
Physicochemical 36 (154)| logD pH9

Table 6.10: Used descriptors of the highlighted model of Ga®.
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Figure 6.10: Input features (see also Tal.0 covered by the fuzzy sets used in the
DTSFM found on the reduced feature set with the concerning input (x-axis) versus
toxicity (y-axis) data. For the FM output see Figll



6.3. Summary 125

o 0430
X
@]
o
(]
S
(@)
e 5509 5660
o3
0401 /" 5590
0245 750
> 4758
£ o358 1 3508
; 0246 ° 520 )
040 0936
o) 20532 @17.0 4858 358
8 os® 8 1299
Q 052894 850
= .‘5%3123 05::
o [ ]
S 3 e onge
o 048,
@219 ®s7
®
@48 440
173 ff;m a0
o 056 0’1: 2 522910
450
5 0282 o .
° 2 1768
4539
8 0142955 % 27;1& 3520
0 0141
o) o8
—= o238 sote
@339 0 202
14
%7852
660

less toxic experimental toxicity =~ more toxic
—_— e

Figure 6.11: Experimental toxicity versus predicted toxicity of the DTSFM found on
the reduced feature set (see Tal¥). The used model inputs are given in TakLQ

6.3 Summary

In this chapter the described methods and algorithms were successfully tested on an
artificial and, more important, on a complex real world dataset. It was shown that
tree-based genotypes, which are defined with the help of grammar-based genotype-
templates, are capable to perform complex system identification tasks. In example
important features were selected out of a feature set consisting of 155 molecular de-
scriptors. These features were covered by fuzzy sets and the resulting model is, with
respect to the IM measure defined in S28.3 fully interpretable. Thus, not only the



126 Chapter 6. Data Analysis

functionality of the system identification was demonstrated, but also interesting infor-
mation for scientists who work in the field of QSAR was provided. The next chapter
will shortly summarize this thesis and will also give a selective view to possible future

work.



Chapter 7

Conclusions

This chapter will briefly summarize the proposed and developed concepts and their
application presented in this thesis. Furthermore some possible extensions are pro-
posed.

7.1 Brief Summary of Work and Discussion

Firstly a motivation for and an introduction to system identification was given and
by doing so, the crucial problems which occur during data-driven modeling were dis-
cussed. The tasks in each system identification process were listed as selecting an
analytical expression as framework for the model, selecting the model structure and
to perform parameter optimization of the model. The mathematical problem of pa-
rameter optimization in overdetermined systems were presented in greater detail. It
was justified that complexity and flexibility of a model should not be confused. Based
on this the common generalization error estimation methods were listed and observed
which of them are applicable for pure data-driven modeling.

The introspection of system identification was followed by the decision to use the
class of zero order Takagi-Sugeno fuzzy models as analytical expression. This class
of models were chosen because of their possibility to utilize powerful learning algo-
rithms based on direct least squares and because of the fact that the resulting models
can be refined or analyzed by human experts, if necessary. To retain this accessibility
for human beings, interpretability factors concerning the rule-base of Takagi-Sugeno
fuzzy models were formulated and assembled to an objective interpretability measure.
The proposed interpretability factors are easy to calculate and thus, the resulting in-

127
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terpretability measure might be beneficial for the comparisons of models derived by
different model identification schemes. Thanks to the "good” choice of using b-splines
as fuzzy sets not all interpretability factors had to be implemented, because some were
inherently fulfilled. Nevertheless, a provision of such interpretability factors is indis-
pensable since models which are claimed to be "interpretable” can not be compared
only on the base of accuracy.

After this the model structure selection method was chosen to base on evolution-
ary computation. This decision was justified by the fact that evolutionary methods are,
at least theoretically, capable to provide an optimal solution for the structure identifi-
cation problem. A detailed insight to evolutionary computation and especially to the
problems related with an optimal genotype representation were given.

On the base of these insights a novel and grammar based method was proposed to
formulate arbitrary genotype-templates. These genotype-templates provide a general
concept to define genotype search spaces, which cope with the observation that in EC
the challenge shifts more and more from finding a solution for the original problem,
to the task of finding a possible and adequate genotype encoding.

Moreover, a tree based genotype representation was favored and the evolution-
ary operations for this kind of representation were described and fully implemented.
The implementation was described in greater detail and the most important algorithms
were given in pseudo-code. With help of tree-based genotype representations, which
are instances of a search space defined by the concerning genotype-templates, it be-
comes possible to build commonly usable libraries, comprising genotype-templates
and the concerning genotype to phenotype mapping functions. Thus, this thesis gives
a possible solution to avoid unnecessary reimplementations of EAs. By using the pro-
posed method the concepts of modularity and reusability are applied to the design
of EAs. The selected task of system identification via DTSFMs provides a valuable
problem which was described, implemented and tested. Furthermore all relevant top-
ics which are possibly of interest for Takagi-Sugeno fuzzy modeling were outlined
and often discussed in greater detail.

The capabilities of the method was demonstrated on an artificial dataset and a
complex real world system. The first was done for testing and the second to perform
a challenging and meaningful task. During the modeling experiments important de-
scriptors for toxicity prediction were identified and a sparse and accurate model was
obtained.
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7.1.1 Inherently Fulfilling the Leveling Interpretability Condition

As already mentioned the so called leveling interpretability condition for fuzzy sets
was not implemented for the used experiments. This is firstly caused by the fact that
the artificial dataset was only motivated to test the implemented algorithms without
further intention to interpret the found models. Concerning the real world problem the
problem of different levels of maximum activations of fuzzy sets never emerged (at
least not in the best found models), because features covered by fuzzy sets of order
three b-splines were containing only one active fuzzy set.

The second and more relevant reason of the non-implementation of the leveling
condition is caused by the insight that the b-spline approach can be extended in such
a way that fuzzy sets based on this extension inherently fulfill the leveling condition.
This can be done without loosing the flexibility of b-spline based method4.97 |t
was suggested that a fuzzy set could be constructed by more than one b-spline. This
was motivated by the attempt to overcome the direct relationship between the width
of the univariate basis functions and its order. As already mentioneiBjnt[might
be necessary to have wide basis functions, for instance, to increase the initial rate of
convergence. In1[g] this was implemented by so called dilated basis functions. The
extension proposed here to the standard b-spline approach is similar but not equivalent
to the use of dilated b-splines.

An extension fulfilling the leveling condition is based on a combination of at least
order— 1 b-splines defined over a knot-vector consistingfer- 2 — 1 knots. By
doing so the maximum accumulated activation value of such combined b-splines is
guaranteed to be one.

AN JAVAN AN AN
A A A3 g As A6 A7 Ag Ao

Figure 7.1: Combined b-splines forming a more capable fuzzy set.

Furthermore, by combining a number of b-splines equal to their order, utilizing
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for each combined b-spline a knot-vectorastier- 2 knots, the restriction of b-spline
based fuzzy sets (order 1), which have only a single point as maximum activation
support, vanishes (see FigJl).

A careful implementation of combined b-splines will result in first class fuzzy
sets, because they inherently fulfill the stated complementarity and leveling inter-
pretability factors.

7.2 Future Work

This section provides some thoughts which might be promising research areas.

7.2.1 Incorporation of Process Knowledge

As mentioned in Secs.4.5.3prior available knowledge based on human expertise
can already be considered in the formulation of the genotype-template and in the for-
mulation of genotype constraints. If expert knowledge is available much of these
knowledge concerns more general qualities of the output behavior of a system. For
example "here we expect a sharp positive peak” or "in this area the output is near
zero”. Itis quite difficult to construct a hypothesis space already mentioning this kind
of constraints. A more tractable way of considering these constraints is by penaliz-
ing the fitness of the candidate solutions proportional to the constraint violation. This
strategy was also followed by the implementation of the interpretability constFaint
Unfortunately we have to keep in mind that the more constraints are implemented by
using penalties, the more the problem becomes multi-objective. There exist methods
to deal with multi-objectivities in ECJ1], but normally a good balance, to be pre-
cisely the desired Pareto-optimal point, of the different objectives have to be provided
by the model-designer. Some approaches try to provide several Pareto-optimal candi-
date solutions to a problem. But these methods are restricted to simple problems or
few objectives, since the number of Pareto-optimal solutions increases exponentially
with the number of objectives, i.e. with the number of constraints implemented by
penalizing candidate models.

It has also to be considered that qualitative expertise, which is not supported by
data, will not be mentioned by parameter optimization techniques based on LS. In
these cases the parameters have to be encoded into the genotype and at a certain time
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of the identification process these parameters have to be decoupled from the embedded
LS based parameter optimization technique. After decoupling the parameters from the
LS optimization these parameters are also subject of evolutionary changes, which are
influenced by penalizing the fitness due to violation of the qualitative expertise. A first
implementation and some interesting results concerning this technique are presented
in [82).

7.2.2 Hierarchical Modeling

More and more complex real world systems become subject to modeling approaches
and completely data-driven approaches are tentatively used to model them. The ap-
plication area of fuzzy rule based models has reached economic and ecological fields.
Overall, the complexity of systems which are tackled by modeling rises dramatically,
but the framework of all used models hardly ever uses hierarchical structures, although
the underlying real world problems must be assumed to be of hierarchical nature.
Thus, it becomes more and more indispensable to deal with hierarchical models.

There exist adaptive hierarchical approaches like ASMOD &nd real hierar-
chical approaches like NetFANB(, 81]. Why it is not common to use them? Firstly,
the necessity is only given for more complex problems and many, still not considered,
low-complex problems have the potential to be solved by non-hierarchical models.
Secondly, the demands to model hierarchical systems are far more challenging and
thus the availability of implemented tools tends to zero.

Using FMs is nowadays an accepted approach and widely used in industry
and thus, the scientific focus should (and also will) move to the modeling of high-
complexity problems. Implementing hierarchical models needs many pieces and yet
these pieces are not easily available in a bundle. Furthermore, by now there is no
commonly used set of artificial benchmark data describing different hierarchical sys-
tems. The author of this thesis thinks that hierarchical modeling is an issue of highest
interest, but it is an issue where still some requirements are missing.

7.3 Summary

This last chapter gave a short summary of the presented concepts and the newly devel-
oped methods in this thesis. Although a comprehensive guideline for the data-driven
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identification of descriptive Takagi-Sugeno fuzzy models via evolutionary computa-
tion was constituted, the last section indicates that interesting extensions are imagin-
able and thus, | curiously look forward to them.



Appendix A

List of Molecules

This appendix lists the molecules contained in the toxicity dataset used b 3ec.

The list of molecules subsumes the molecule number used in this thesis, the concern-
ing molecule name and a molecule code which was assigned by the US Environmen-
tal Protection Agency. This code refers to different chemical classes (seé.Tain
pagel39), according to a classification defined by the US Environmental Protection

Agency.

"4-(hexyloxy)-m-anisaldehyde” 5
"5-bromo-2-nitrovanillin” 5
"p-chlorophenyl-o-nitrophenyl ether” 3.1

"3'-chloro-o-formotoluidide” 10.4
"di-n-butylisophthalate” 8.1
"1.1-diphenyl-2-propyn-1-ol” 4.2
"4.7-dithiadecane” 12.1
"4.9-dithiadodecane” 12.1
"2-chloroethyl-n-cyclohexyl carbamate” 21

. "phenobarbital” 23

. "2.4-dinitrophenol #9” 14

. "urethane” 21

. "salicylic acid na+ #2" 7

. "benzamide” 8.2

. "1.1-dimethylhydrazine” 11.1

. "pentobarbital” 23

. "amobarbital” 23

. "caffeine” 23.1

. "2-methyl-1.4-naphthoquinone” 6.2
. "2.3.4.6-tetrachlorophenol” 14.1

. "4-chloro-3-methyl phenol #1” 14.1
. "tolazoline hydrochloride” 15.5

. "amphetamine sulfate” 23.1

. "diethyl ether” 3

. "strychnine hemisulphate salt” 22

©COoND O WN P

. "aniline #1” 10.3

. "carbaryl (sevin) #2” 21

. "ethanol” 4

. "nicotine sulfate #1” 23.1

. "2-hydroxybenzamide” 8.2

. "hexanal #2" 5

. "dicumarol” 8

. "p-phenoxybenzaldehyde” 5
. "'methanol-rhodamine b” 4

. "2-propanol #1" 4

. "acetone #1" 6

. "chloroform” 2

. "methyl sulfoxide” 12.3

. "hexachloroethane #1” 2

. "2.2’-methylene bis(3.4.6-trichlorophenol)”

141

41.
42.

43,
44,
45,
46.
47.
48.
49.
50.
51.
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"4’-aminopropiophenone” 6
"1-propanol#1” 4
"1-butanol” 4

"1-pentanol” 4

"benzene #2” 13
"1.1.1-trichloroethane #1" 2
"thiopental.sodium salt” 23
"acetonitrile” 9

"ethanal #1” 5
"dichloromethane” 2
"iodoform” 2
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99.

. "2-methyl-2-propanol” 4 103.
. "2.2.2-trifluoroethanol” 4 104.
. "3.3-dimethyl-2-butanone” 6 105.
. "pentachloroethane” 2 106.
. "5.5-dimethylhydantoin” 15.5 107.
. "3-methyl-3-pentanol” 4 108.
. "3-methyl-1-pentyn-3-ol” 4.2 109.
. "1-ethynyl-cyclohexanol” 4.2 110.
. "tris(2-butoxyethyl) phosphate” 19 ﬁ%
. "2-methyl-1-propanol” 4 113,
. "1.2-dichloropropane” 2 114.
. "1.2-diaminopropane” 10 115.
. "2-butanol” 4
. "2-butanone” 6 11e.
. "1-amino-2-propanol” 4 117.
. "1.1.2-trichloroethane” 2 118.
. "trichloroethylene” 2.1 119.
. "methyl acetate #1” 8 g(l)
. "1.1.2.2-tetrachloroethane” 2 '
. "b-ionone” 6 122.
. "4.4'-isopropylidenebis(2.6-dichlorophenol)”123.
1
. "p-tert-pentylphenol” 14 igg
. "1.8-diamino-p-menthane” 10 126.
. "a.a-2.6-tetrachlorotoluene” 13.1 127.
. "acenaphthene” 13 128.
. "3-methylindole” 15.6 129.
. "rotenone #1" 22 130.
. "diphenyl phthalate” 8.1 131.
. "diethyl phthalate” 8.1 132.
. "di-n-butylorthophthalate #1” 8.1 133.
. "azinphos-methyl” 22 134.
. "salicylanilide” 18 135.
. "hexachloro-1.3-butadiene” 2.1 136.
. "pentachlorophenol #7” 14.1 137,
. "2.4.6-trichlorophenol #1” 14.1 138
. "3-trifluoromethyl-4-nitrophenol” 14.1 139'
. "anthranilamide” 8.2 140'
. "2-nitrophenol” 14 '
. "2-sec-butyl-4.6-dinitrophenol (dinoseb #1)” ﬁ%
. "salicylaldehyde” 5 143.
. "1-naphthol” 14 144.
. "2-phenylphenol” 14 145.
. "3.5-dibromosalicylaldehyde” 5 146.
. "naphthalene” 13 147.
. "quinoline” 15.3 148.
. "n.n-diethylcyclohexylamine” 10.2 149.
. "'n.n-diethylaniline” 10.5 150.
"2-(n-ethyl-m-toluidino)ethanol” 10.5 151.
100. "1-benzoylacetone” 6.1 152.
101. "ethyl p-aminobenzoate #2" 8 igi

102. "piperine (aliphatic)” 15.3
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"2.4-dihydroxybenzaldehyde” 5
"o-xylene #1” 13

"o-cresol” 14
"1.2-dichlorobenzene” 13.1
"2-chloroaniline #2” 10.3
"2-fluorotoluene #1” 13.1
"2-chlorophenol #1” 14.1
"1.2.4-trimethylbenzene” 13
"3.4-dichlorotoluene” 13.1
"3.4-dichloroaniline #1” 10.3

. "allyl methacrylate” 8.3

"2.3-dibromopropanol” 4
"2-methylbutyraldehyde” 5
"1.2.3-trichloropropane #1” 2
"3-pentanone” 6

"2-butanone oxime” 16
"2-(diisopropylamino)ethanol” 10.2

"2.4-dinitroaniline #1” 10.3
"2.2’-methylenebis(4-chlorophenol)” 14.1

"p-tert-butylphenol” 14
"isopropylbenzene” 13
"acetophenone” 6

"nitrobenzene” 13
"m-aminoacetophenone” 6

"m-nitrotoluene” 13
"n.n-dimethyl-p-toluidine #1” 10.5

"p-nitroaniline” 10.3
"4-nitrophenol #1” 14
"p-dimethylaminobenzaldehyde” 5

"1.4-dinitrobenzene” 13
"n.n-diethylethanolamine” 10.2

"ethylbenzene #1” 13
"benzylamine” 10
"benzaldehyde #1” 5
"n-methylaniline” 10.4
"cyclohexanone oxime” 16
"2-cyanopyridine” 15.3
"2-ethylpyridine” 15.3
"solketal” 3.3
"hexamethylenetetramine (aliphatic)” 15.4
"phenyl ether” 3.1
"n-ethyl-m-toluidine” 10.4
"tripropylamine” 10.2

"triethanolamine” 10.2
"benzyl-tert-butanol” 4

"1-(2-hydroxyethyl)piperazine” 15
"n.n-dimethylbenzylamine” 10.2
"4-acetamidophenol” 18
"4-butylaniline” 10.3
"nonylphenol (mixed)” 14
"2-ethyl-1-hexanol” 4
"4-chlorobenzaldehyde” 5



155.
156.
157.
158.
159.
160.
161.
162.
163.

164.
165.

166.
167.

168.

169.
170.
171.
172.

173.

174.
175.

176.
177.

178.
179.

180.
181.
182.
183.
184.

185.
186.

187.
188.

189.
190.
191.
192.
193.
194.
195.
196.

197.
198.

199.
200.
201.
202.
203.
204.
205.
206.

"5-ethyl-2-methylpyridine” 15.3

"5-diethylamino-2-pentanone” 10.2

"diethyl malonate #1” 8
"2.4-dimethylphenol” 14
"dibutyl fumarate #3” 8
"dibutyl adipate” 8
"p-bromoaniline” 10.3
"p-xylene” 13

"4-methylphenol (p-cresol)” 14

"4-chloroaniline #1” 10.3
"4-chlorophenol” 14.1
"4-toluidine #1” 10.3
"isobutyl acrylate #1” 8.3
"1-bromopropane” 2
"acrolein #1” 5
"1.2-dichloroethane” 2
"2-chloroethanol #5” 4
"propylamine” 10

"propionitrile” 9
"chloroacetonitrile” 9
"ethylenediamine” 10

"allyl alcohol” 4.1
"2-propyn-1-ol #1" 4.2
"acetaldoxime” 16
"2-methyl-2.4-pentanediol” 4.3
"tert-octylamine” 10
"tert-butyl sulfide” 12.1
"2-pentanone” 6
"4-methyl-2-pentanone #2” 6
"isopropyl ether” 3
"toluene #1” 13
"4-picoline” 15.3
"chlorobenzene” 13.1
"cyclohexanol” 4
"cyclohexanone #2" 6.2
"phenol #1” 14

"3-picoline” 15.3
"1-methylpiperazine” 15
"2-picoline” 15.3
"2-methylpiperazine” 15
"propyl acetate” 8
"1.3-dibromopropane #1" 2

"1-bromobutane” 2
"butylamine” 10

"allyl cyanide” 9
"1.3-diaminopropane” 10
"malononitrile (hominals)” 9
"2-methoxyethylamine” 10
"diethylamine” 10.1
"pyrrole” 15.6
"tetrahydrofuran” 3.3
"furan” 3.3

207.
208.
209.
210.

211.
. "1.4-dichlorobutane” 2
213.

214.
215.
216.
217.
218.

219.
220.

221.
222.

223.
224,

225.
. "diethanolamine” 10.1
227.

228.
229.
230.
231.

232.
233.

234.
235.

236.
237.
238.

239.

240.
241.

242.

243.
244,

245.

246.
247.
248.

249.
250.
251.
252.
253.
254,

255.
. "1.2.4-trichlorobenzene” 13.1
257.

258.
259.
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"t-butyl disulfide” 12.2
"5-methyl-2-hexanone” 6
"diethyl sebacate #1” 8
"2-heptanone” 6
"hexane” 1

"amylamine” 10
"valeraldehyde #1" 5
"2-butyne-1.4-diol” 4.3
"2-(ethylamino)ethanol” 10.1
"cyclohexane” 1

"pyridine #1” 15.3
"s-trioxane” 3.3
"6-methyl-5-hepten-2-one” 6
"2-octanone” 6
"2-ethoxyethyl acetate” 8

"1-bromohexane” 2
"hexylamine” 10

"1-hexanol” 4

"2-hydroxyethyl ether” 4.3
"n-propyl sulfide” 12.1
"n-heptylamine” 10
"1.4-dicyanobutane” 9
"1-heptanol” 4
"1-bromooctane” 2
"octylamine” 10

"1-octanol #2” 4
"2-(2-ethoxyethoxy)ethanol” 4

"nonanoic acid” 7
"2-undecanone” 6
"nonylamine” 10
"triethylene glycol #1” 4
"1-decanol” 4

"propoxur (baygon)” 21
"2-methyl-3-butyn-2-ol” 4.2
"2.2.2-trichloroethanol” 4
"dicofol (kelthane)” 22
"triphenyl phosphate” 19
"fensulfothion” 22
"aldicarb” 21

"phenyl salicylate” 8

"ethyl salicylate #1” 8
"2.4.6-tribromophenol” 14.1
"4-amino-2-nitrophenol” 14
"benzophenone #2" 6
"n-phenyldiethanolamine” 10.5
"4-(diethylamino)benzaldehyde” 5
"catechol” 14

"2.4-dichlorophenol” 14.1

"2.4-dinitrotoluene” 13
"3-ethoxy-4-hydroxybenzaldehyde” 5
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260. "vanillin #1" 5 313. "1-fluoro-4-nitrobenzene” 13.1
261. "n.n-dimethylaniline #1” 10.5 314. "a.a.a-trifluoro-m-tolunitrile” 9
262. "1-chloro-3-nitrobenzene” 13.1 315. "4-fluoroaniline” 10.3
263. "malathion” 22 316. "2-chloro-6-fluorobenzaldehyde” 5
264. "2-chloro-4-nitroaniline #2" 10.3 317. "a.a.a-4-tetrafluoro-o-toluidine” 10.3
265. "p-isopropyl benzaldehyde” 5 318. "o-fluorobenzaldehyde” 5
266. "diphenylamine” 10.4 319. "a.a.a-trifluoro-o-tolunitrile” 9
267. ”2-phen0xyethano|” 4 320. "a.a.a-triﬂuoro-m-tOlualdehyde #1"5
268. "4-ethylphenol” 14 321. "4-fluoro-n-methylaniline” 10.4
269. "2-methylvaleraldehyde” 5 322. "[(1s)-endo]-(-)-borneol #2" 4
270. "2.4-pentanedione #2” 6.1 g;i (15)—(|—)—c§r§phor 6.2
271. "ethyl h " . /Cineole” 3.3
2792 ,,Et ty ?Zi?%ate 8 325. "neoabietic acid #1” 7
- pdana 326. "2.3-dihydrobenzofuran” 3.3

;;2 ”?u:ytlj_acetate#ﬁ, 33 327. "exo-norborneol” 4
- w4-dioxane ¥ 328. "norbornylene” 1.1

275. "dodecylamine” 10 329. "2.6-pyridinedicarboxylic acid” 15.3

276. "tributyl phosphate #1” 19 . pwgricli "
277. "5.5-dimethyl-1.3-cyclohexanedione” 6.1 330. ,,3 pyrldlneca"rboxaldehyde 153
331. "5-nonanone” 6

278. "1-chloro-2-propanol” 4 332. "2.3-dimethyl-1.3-butadiene” 1.1
279. "tetrachloroethylene #1” 2.1 333. "abietic acid” 7

280. "2-phenyl-3-butyn-2-ol” 4.2 334. "flavone” 3.3

281. "2.6-di-tert-butyl-4-methylphenol” 14 335. "2.4.6-trimethylphenol” 14

282. "saccharin sodium salt hydrate” 16 336. "o-tolunitrile” 9

283. "dibenzofuran #2" 3.3 337. "o-tolualdehyde” 5

284. "phenyl 4-aminosalicylate #1” 8 338. "benzoic acid. sodium salt” 7
285. "n.n-diethyl-m-toluamide” 8.2 339. "4.6-dinitro-o-cresol #1” 14

340. "amylbenzene” 13
341. "tert-butyl acetate” 8
342. "1.3-dichlorobenzene” 13.1

286. "propionic acid. sodium salt” 7
287. "1-(2-aminoethyl)piperazine” 15

288. "d?butyl supcinate" 8 343. "n-butyl sulfide” 12.1
289. "diethyl adipate #1" 8 344. "2'-hydroxy-4'-methoxyacetophenone #1"
290. "2-aminoethanol” 10 6
291. "ethyl acetate” 8 345. "o-nitrobenzaldehyde #2" 5
292. "m-diethylbenzene” 13 346. "4-nitrobenzaldehyde” 5
293. "1.3-dichloropropane #1" 2 347. "3-methyl-2-butanone” 6
294. "hexanoic acid” 7 348. "2.6-dinitrophenol” 14
295. "hexyl acetate” 8 349. "1.2-dibromobenzene” 13.1
296. "butyl ether” 3 350. "n-allylaniline” 10.4
297. "1-nonanol” 4 351. "4-ethylaniline” 10.3
;gg :d"n'h_‘ﬁ?(yg{?'ge" 10.1 352. "isovaleraldehyde” 5

. "o-vanillin n "
300. "3-methoxyphenol” 14 ggi é_thrie(j‘j‘cr‘;n”oene? 6
301. "4-methoxyphenol” 14 355. "manool” 4.1
302. "p-dimethoxybenzene” 13 356. "tetraethyltin” 24
303. "2.3-benzofuran” 3.3 357. "1.2-dimethylpropylamine” 10
304. "1.4-diazabicyclo[2.2.2]octane” 15 358. "2.4-dimethyl-3-pentanol” 4
305. "adamantane” 1 359. "n.n-diphenylformamide #1” 8.2
306. "disulfoton #1" 22 § 360. "diethyl benzylmalonate” 8
ggg ,,E?g%g%r”t,’,'tzazl' sodium salt” 23 361. :pentabr_omophenol,’,’ 14.1
309. "2.5-dinitrophenol” 14 362. 2.4.6?tr||odophenol 141
310. "diuron” 18 363. "2.4—d|methoxybenzaldehyde“ 5
311. "p-fluorophenyl ether #1” 3.1 364. "2-acetamidophenol #1" 18

312. "diazinon” 22 365. "2-chloro-4-methylaniline” 10.3
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366. "4-ethoxy-2-nitroaniline” 10.3 416. "cis-3-hexen-1-ol" 4.1
367. "methyl p-nitrobenzoate” 8 417. "trans-3-hexen-1-ol" 4.1
368. ”4-I”Iltl’)(/)bpenzamlde” 8.2 418. "2-3C€ty|-1-methy|pyrr0|e" 15.6
369. "4-nitrophenyl phenyl ether” 3.1 j;g 3h%hneyrl])é|5|¥gggs 1125:;3
370. "benzyl sulfoxide” 12.3 . .
371. "3-acetamidophenol” 18 421. "2-hydroxypropyl acrylate #1" 8.3
372. "4-(2-hydroxyethyl)morpholine” 16 422. ”2_-am|no-5-bromopyr|d|ne }5-3
373. "a.a’-dichloro-p-xylene” 13.1 jgi "ilZt:gtlykl)s;rizgilﬁg’ofggonate 19
374. "2.5-dimethylfuran” 3.3 - AT :
375. "1.5-dichloropentane” 2 igg "Lnu‘i;rl‘ﬁhrggc:Zrt?]t;‘ipgoate 8
376. "1-bromoheptane” 2 '
377. "propyl disurf)ide" 12.2 427. "'methyl 4-cyanobenzoate” 9
378. "1.6-dicyanohexane” 9 428. "tetrachlorocatechol” 14.1
379. "2.3 4-trichloroaniline” 10.3 42y, abromo-2'.5"-dimethoxyacetophenone
380. “5-chlorosallcylzildehyde 5 430. "tetrabutyltin” 24
381. "4-propylphenol” 14 ) 431. "3.4-dimethyl-1-pentyn-3-ol” 4.2
222 gezn:jqﬂEloroben%[ald%hyd;ZS 432. "n-vinylcarbazole” 15.6
- -2.2-dichloroacetamide” 8. 433. "3-benzyloxyaniline” 10.3
384. "1-methyl heptylamine #1” 10 434 ”carboft?lrar)l(’)’lzf !
385. ::Z-decf':m?]ne"#l" 6 435. "tert-butyl methyl ether” 3
386. "pentyl ether”3 436. "1.9-decadiene” 1.1
387. "A-methyloxazole” 16 437. "p-phenylazophenol” 14
388. "2-methylimidazole” 15.6 438. "3.5-diiodo-4-hydroxybenzonitrile” 9
ggg "g-gg?grq%?;i?gr?;’ 5-2 439. "3.5-dibromo-4-hydroxybenzonitrile #1” 9
391. "4.6-dimethoxy-2-hydroxybenzaldehyde” 5332 ,,gi;ﬁ;%i?}fﬁizmd l
392. ”propam_l 18 , 442. "t-butylstyrene” 13
393. 2.4.6?tr|—tert-butylphenol 14 443, "5-bromosalicylaldehyde” 5
ggg "ﬁ'ﬁ:g:gm?/lr%rlrﬁzlﬁrtﬁgg’%lz2'1 444, "3-chloro-2-chloromethyl-1-propene” 2.1
396, ”Zlbutyn-l-ol” 49 ’ 445, "3.5-dichloro-4-hydroxybenzonitrile” 9
397, ”2.5-dimethyl—2..4-hexadiene” 11 446. "di-n-butylterephthalate” 8.1
308. "1-adamantanamine” 10 447. "4 .4'-dihydroxydiphenyl ether #1” 3.1
399. "3-cyano-4.6-dimethyl-2-hydroxypyridine” 448. "2.6-dichlorobenzamide” 8.2
15.3 4 y 4 Py 449. "n-decylamine” 10
400. "2.3.4.5.6-pentafluoroaniline” 10.3 450. "aminocarb” 21 _
401. "carbophenothion” 22 411216 "2.4.5-tribromoimidazole (hominal) #1”
402. "triphenylphosphine oxide” 19 452 "0-ethyl o-(p-nitropheny/
403. "2-hydroxyethyl acrylate” 8.3 phenyl)phosphonothioate” 22
404. "1-octyn-3-ol" 4.2 453. "(+-)-4-pentyn-2-ol” 4.2
405. ::Z-nonanon_e" 6 i 454. "4-chlorocatechol” 14.1
406. "trans-1.2-dichlorocyclohexane” 2 455. "methyl 2.4-dihydroxybenzoate” 8
407. "p-phenoxyphenol” 14 456. "pentachloropyridine” 15.3
408. "2-hydroxyethyl methacrylate” 8.3 457. "(1r.2s.5r)-(-)-menthol” 4
409. "3-bromothiophene” 17 458. "1-(p-toluenesulfonyl)imidazole” 15.6
410. "2.4-dichlorobenzaldehyde” 5 459. "2’.4’-dichloroacetophenone” 6
411. "phenyl disulfide” 12.2 460. "n-octyl cyanide #1” 9
412. "ethyl 3-aminobenzoate methanesulfonic 461. "a.a.a-4-tetrafluoro-m-toluidine” 10.3
acid salt (ms-222)” 8 462. "trans-2-phenyl-1-cyclohexanol” 4
413. "1.1.1.3.3.3-hexafluoro-2-propanol” 4 463. "2-ethoxyethyl methacrylate” 8.3
414. "1.5-hexadien-3-ol" 4.1 464. "2.3.6-trimethylphenol” 14
415. "3-butyn-1-ol" 4.2 465. "n-undecyl cyanide” 9
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466.

467.
468.

469.
470.
471.

472.
21
473.

474,
475.
476.
477.
478.

479.
480.

481.

482.
483.
484.

485.
486.

487.
488.
489.
490.
491.

492.
493.

494.
495,
496.
497.
498.

499.
500.

501.

502.
15.2
503.

504.
505.
506.

507.
508.

"0-methoxybenzamide” 8.2

"2.4-dichlorobenzamide” 8.2
"tetrahydrofurfuryl methacrylate” 8.3

"4.5-dichloroguaiacol” 14.1

"benzyl methacrylate” 8.3

"hexyl acrylate #1" 8.3
"p-(tert-butyl)-phenyl-n-methylcarbamate”

"1-benzylpiperazine” 15
"3-(3-pyridyl)-1-propanol” 15.3
"tridecylamine” 10
"2-amino-4'-chlorobenzophenone” 6
"methyl 2.5-dichlorobenzoate” 8
"chlorpyrifos #2 (dursban)” 22

"5-bromovanillin” 5
"cyclohexyl acrylate” 8.3

"triethyl nitrilotricarboxylate” 21
"4.5-dichlorocatechol” 14.1
"2.3.5.6-tetrachloroaniline” 10.3
"2.6-diphenylpyridine” 15.3
"1.3-dichloro-4.6-dinitrobenzene #1” 13.1
"2.3-dimethylvaleraldehyde” 5
"2-decyn-1-0l" 4.2
"5-chloro-2-pyridinol” 15.3

"isopropyl disulfide” 12.2
"2.4.5-trimethoxybenzaldehyde” 5
"isopropyl methacrylate” 8.3
"1-hexen-3-ol” 4.1
"2.3.4.5-tetrachlorophenol” 14.1
"1.2-bis(4-pyridyl)ethane” 15.3
"1.3-diethyl-2-thiobarbituric acid” 23
"dimethyl nitroterephthalate” 8.1
"5-chloro-2-mercaptobenzothiazole” 16
"dimethyl aminoterephthalate” 8.1

"3.6-dithiaoctane” 12.1
"3-dimethylaminopropyl chloride.hcl” 10.2

"4’-chloro-3’-nitroacetophenone” 6
"2-amino-4-chloro-6-methylpyrimidine #1”

"2.6-dimethoxytoluene” 13
"2-dimethylaminopyridine” 15.3
"2.2-dimethyl-1-propylamine” 10
"isopimaric acid” 7
"2-amino-5-chlorobenzonitrile” 9
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516. "tripropargylamine” 10.2

517. "n.n-bis(2.2-diethoxyethyl)methylamine
#1"10.2

518. "1.4-bis(3-aminopropyl)piperazine” 15
519. "3-hydroxy-3.7.11-trimethyl-1.6.10-
goldecatriene”

520. "1-(2-chloroethyl)pyrrolidine.hcl” 15.5
521. "n-undecylamine” 10

522. "1-heptyn-3-o0l" 4.2

523. "p-ethoxybenzaldehyde” 5

524. "[1(r)-endo]-(+)-3-bromocamphor” 6.2
525. "resmethrin” 22

526. "terbufos (counter)” 22

527. "a.a.a’.a’-tetrabromo-o-xylene” 13.1
528. "2'.3".4'-trichloroacetophenone” 6

529. "2".3".4’-trimethoxyacetophenone #2" 6
530. "diethyl chloromalonate” 8

531. "n-ethylbenzylamine” 10.1

532. "4-bromophenyl 3-pyridyl ketone” 15.3
533. "4-benzoylpyridine” 15.3

534. "2.2.5.5-tetramethyltetrahydrofuran” 3.3
535. "3-hydroxy-2-nitropyridine” 15.3

536. "alachlor” 18

537. "4-octylaniline” 10.3

538. "methomyl (lannate)” 21

539. "6-chloro-2-pyridinol” 15.3

540. "3-amino-5.6-dimethyl-1.2.4-triazine” 15.4
541. "4-(diethylamino)salicylaldehyde” 5
542. "6-chloro-2-picoline” 15.3

543. "3.6-dimethyl-1-heptyn-3-ol” 4.2

544, "2.4.5-trimethyloxazole” 16

545. "4-dimethylamino-3-methyl-2-butanone” 6

546. "m-bromobenzamide” 8.2

547. "oxamyl #1” 21

548. "2.6-diisopropylaniline #1” 20

549. "2-methyl-3.3.4.4-tetrafluoro-2-butanol” 4
550. "chloromethyl styrene” 13.1

551. "(+-)-sec-butylamine” 10

552. "n-(3-methoxypropyl)-3.4.5-
trimethoxybenzylamine”

10.1

553. "2-(bromomethyl)tetrahydro-2h-pyran” 3.3

554. "4-decylaniline” 10.3
555. "4-hexyloxyaniline #1 (nominal conc.)”

"1.1.1-trichloro-2-methyl-2-propanol(hydrate)” 4 10.3

5009.
510.

511.
512.

513.
514.
515.

"2-dodecanone” 6
"4-dimethylaminocinnamaldehyde” 5

"1.3.5-trichloro-2.4-dinitrobenzene” 13.1
"2-chloro-5-nitrobenzaldehyde #1” 5

"2-chloro-6-methylbenzonitrile” 9
"2-bromo-3-pyridinol” 15.3
"2-chloro-3-pyridinol” 15.3

556. "methyl 4-chloro-2-nitrobenzoate” 8
557. "5-hydroxy-2-nitrobenzaldehyde” 5
558. "fenvalerate #1 (pydrin)” 22

559. "permethrin” 22

560. "3.8-dithiadecane” 12.1
561. "2’-(octyloxy)-acetanilide” 18

562. "p-(tert-butyl)benzamide” 8.2
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563. "2.9-dithiadecane” 12.1 567. "3-(3.4-dichlorophenoxy)benzaldehyde” 5

564. "dl-3-butyn-2-ol" 4.2 568. "2.4-dinitro-1-naphthol sodium salt (martius
565. "3-(4-tert-butylphenoxy)benzaldehyde” 5 yellow)” 14

566. "flucythrinate” 22

Code Class Name Code Class Name
1.0 Alkanes 10.5 Tertiary, aromatic amines
1.1 Alkenes 11.1 Azine compounds
2.0 Saturated Hydrocarbons | 12.0 Thiols
2.1 Unsaturated Hydrocarbons 12.1  Sulfides
3.0 Basic Ethers 12.2 Disulfides
3.1 Diphenyl Ethers 12.3 Sulfo compounds
3.3 Cyclic Ethers 13.0 Benzenes
4.0 Basic Alcohols 13.1 Chlorinated Benzenes
4.1 Alkene Alcohols 14.0 Phenols
4.2  Alkyne Alcohols 14.1 Chlorinated Phenols
4.3 Diols 15.0 Piperazines
5.0 Aldehydes 15.2 Pyrimidines
6.0 Basic Ketones 15.3 Pyridines
6.1 beta-Diketones 15.4 Triazines
6.2 Cyclic Ketones 15.5 5-Membered ring aliphatics
7.0 Carboxylic Acids 15.6 5-Membered ring aromatics
8.0 Basic Esters 16.0 Multiple hetero-atom compounds
8.1 Phthalates 17.0 Heterocyclic sulfur compounds
8.2 Amides 18.0 Anilides and Ureas
8.3 Acrylates 19.0 Phosphorous compounds
9.0 Nitriles 20.0 Quaternary ammonium compounds
10.0 Primary, aliphatic amines | 21.0 Carbamates
10.1 Secondary, aliphatic amines22.0  Other pesticides
10.2 Tertiary, aliphatic amines | 23.0 Barbitals
10.3 Primary, aromatic amines | 23.1 DEAS-complex structures
10.4 Secondary, aromatic amine24.0 Organometallics

Table A.1: Definition of molecule classification codes.
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List of Descriptors

CoNoOGO LN

"Total Energy (kcal/mol)”, "QM1”
"Binding Energy (kcal/mol)”, "QM2”
"Heat of Formation (kcal/mol)”, "QM3”
"Dipole Moment (D)”, "QM4”

"HOMO (eV)”, "QM5”

"LUMO (eV)", "QM6”

"Number of atoms”, "C1”

"Number of C atoms”, "C2”

"Relative number of C atoms”, "C3”

. "Number of H atoms”, "C4”

. "Relative number of H atoms”, "C5”

. "Number of O atoms”, "C6”"

. "Relative number of O atoms”, "C7”

. "Number of N atoms”, "C8"

. "Relative number of N atoms”, "C9”

. "Number of S atoms”, "C10”

. "Relative number of S atoms”, "C11”

. "Number of F atoms”, "C12"

. "Relative number of F atoms”, "C13”

. "Number of Cl atoms”, "C14”"

. "Relative number of Cl atoms”, "C15"

. "Number of Br atoms”, "C16”

. "Relative number of Br atoms”, "C17”

. "Number of | atoms”, "C18”

. "Relative number of | atoms”, "C19”

. "Number of P atoms”, "C20”"

. "Relative number of P atoms”, "C21"

. "Number of bonds”, "C22"

. "Number of single bonds”, "C23”

. "Relative number of single bonds”, "C24”
. "Number of double bonds”, "C25"

. "Relative number of double bonds”, "C26”
. "Number of triple bonds”, "C27”"

. "Relative number of triple bonds”, "C28”
. "Number of aromatic bonds”, "C29"

36.
37.
38.
39.
40.
41.
42.

"Relative number of aromatic bonds”, "C30”
"Number of rings”, "C31”

"Relative number of rings”, "C32”

"Number of benzene rings”, "C33”

"Relative number of benzene rings”, "C34”"
"Molecular weight”, "C35”

"Relative molecular weight”, "C36”

43. "Gravitation index (all bonds)”, "C37”
44. "Gravitation index (all pairs)”, "C38"
45. "Wiener index”, "T1”

46. "Randic index (order 0)", "T2"

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.

"Randic index (order 1)”, "T3”
"Randic index (order 2)”, "T4”
"Randic index (order 3)”, "T5"
"Kier&Hall index (order 0)”, "T6”
"Kier&Hall index (order 1)”, "T7”
"Kier&Hall index (order 2)", "T8"
"Kier&Hall index (order 3)”, "T9”
"Kier shape index (order 1)”, "T10”
"Kier flexibility index”, "T13”
"Average Info. content (order 0)”, "T14”
57. "Info. content (order 0)”, "T15”

58. "Average Structural Info. content (order 0)”,
1!T16H

59. "Structural Info. content (order 0)”, "T17”
60. "Average Complementary Info. content
(order 0)”, "T18”

61. "Complementary Info. content (order 0)”,
"T19”

62. "Average Bonding Info. content (order 0)”,
"T20"

63. "Bonding Info. content (order 0)”, "T21"
64. "Average Info. content (order 1)”, "T22”

65. "Info. content (order 1)”, "T23"
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66. "Average Structural Info. content (order 1)”, 106. "FNSA-1 Fractlonal PNSA

"T24”

67. "Structural Info. content (order 1)", "T25"
68. "Average Complementary Info. content
(order 1)”, "T26”

69. "Complementary Info. content (order 1)”,
”T27”

70. "Average Bonding Info. content (order 1)”,
"T28"

71. "Bonding Info. content (order 1)”, "T29"
72. "Average Info. content (order 2)”, "T30”

73. "Info. content (order 2)”, "T31”

(PNSA-1/TMSA) ", "E18’

107. "WPSA-1 Welghted PPSA
(PPSA1*TMSA/1000) ", "E19”

108. "WNSA-1 Weighted PNSA
(PNSA1*TMSA/1000) ", "E20”

109. "PPSA-2 Total charge weighted PPSA ",
"E21”

110. "PNSA-2 Total charge weighted PNSA ",
”E22”

111. "DPSA-2 D|fference in CPSAs

(PPSA2 PNSA2) 7,

2. "FPSA-2 Fractlonal PPSA

74. "Average Structural Info. content (order 2)”, (PPSA 2/TMSA) ",

"T32"
75. "Structural Info. content (order 2)”, "T33”

76. "Average Complementary Info. content
(order 2)", "T34”

Z_%gf:omplementary Info. content (order 2)”,
z_?ééﬁverage Bonding Info. content (order 2)”,
79. "Bonding Info. content (order 2)”, "T37"
80. "Balaban index”, "T38"

81. "Moment of inertia A", "G1”

82. "Moment of inertia B”, "G2”

83. "Moment of inertia C”, "G3”

84. "XY Shadow”, "G4"

85. "XY Shadow / XY Rectangle”, "G5”

86. "YZ Shadow”, "G6”

87. "YZ Shadow / YZ Rectangle”, "G7”

88. "ZX Shadow”, "G8”

89. "ZX Shadow / ZX Rectangle”, "G9”

90. "Molecular volume”, "G10”

91. "Molecular volume / XYZ Box”, "G11”
92. "Molecular surface area”, "G12”

93. "Max partial charge for a C atom”, "E3”
94. "Min partial charge for a C atom ”, "E4”
95. "Max partial charge (Qmax) ", "E7”

96. "Min partial charge (Qmin) ”, "E8”

97. "Polarity parameter (Qmax-Qmin) ", "E9”

98. "Polarity parameter / square distance ”,
”Elo”

99. "Topographic electronic index (all pairs) ",
HEllH

100. "Topographic electronic index (all bonds) ”

”1%11.2,”’TMSA Total molecular surface area”,

”1%12:.3,:’PPSA—1 Partial positive surface area ”,
}I(E)%%':’PNSA-l Partial negative surface area ”,
(E)EZ’EngﬁSlA%ﬁ”erence in CPSAs

105. "FPSA-1 Fract|onal PPSA
(PPSA-1/TMSA) ", "E

113. "FNSA-2 Fractlonal PNSA

(PNSA-2/TMSA) ",
114. "WPSA-2 Welghted PPSA
(PPSA2*TMSA/1000) ", "E26”"
115. "WNSA-2 Weighted PNSA
(PNSA2*TMSA/1000) ”, "E27"
11%.; "PPSA-3 Atomic charge weighted PPSA”,
"EDg”
11275.9 "PNSA-3 Atomic charge weighted PNSA ",
"E2Q”
118. "DPSA-3 Difference in CPSAs
(PPSA3-PNSA3) ", "E30”

119. "FPSA-3 Fractlonal PPSA
(PPSA-3/TMSA) ",

120. "FNSA-3 Fractlonal PNSA
(PNSA-3/TMSA) ",
121. "WPSA-3 Welghted PPSA
(PPSA3*TMSA/1000) ", "E33”
122. "WNSA-3 Weighted PNSA
(PNSA3*TMSA/1000) ”, "E34”
123. "RPCG Relative positive charge
(QMPOS/QTPLUS) ", "E35”
124. "RPCS Relative positive charged SA
(SAMPOS*RPCG) ", "E36”
125. "RNCG Relative negative charge
(QMNEG/QTMINUS) *, "E37”
126. "RNCS Relative negative charged SA
(SAMNEG*RNCG) ", "E38"

127. "min(#HA; #HD) ", "E51”

128. "count of H-acceptor sites ", "E52”"

129. "count of H-donors sites ", "E53”

130. "HA dependent HDSA-1 ", "E54”

131. "HA dependent HDSA-1/TMSA ", "E55”
'132. "HA dependent HDSA-2 ", "E56”

133. "HA dependent HDSA-2/TMSA ", "E57"
134{.3 "HA dependent HDSA-2/SQRT(TMSA) ",
"E5g

135. "HA dependent HDCA-1 ", "E59”
136. "HA dependent HDCA-1/TMSA ", "E60”
137. "HA dependent HDCA-2 ", "E61”
138. "HA dependent HDCA-2/TMSA ", "E62”

139. "HA dependent HDCA-2/SQRT(TMSA) ”,
"E63"
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140. "HASA-1", "E64” 149. "HACA-2/SQRT(TMSA) », "E73"
141. "HASA-1/TMSA ", "E65” 150. "logD pH3”, "pH3”
142. "HASA-2 ", "E66” ., i
143. HHASA_Z/TMSA ﬂ, 1!E67” 151- |OgD pHS ] pH5
144. "HASA-2/SQRT(TMSA) ", "E68” 152. "logD pH6.5", "pH6.5"
146, "HACAL/TMSA ", "ET0" 153. logD pHT, 'pH 7
147: HHACA_Z H, ”E7]-H7 154. ”logD pH7.4”, ”pH7.4”
148. "HACA-2/TMSA ", "E72” 155. "logD pH9”, "pHY”
Code| Descriptor Class Number of Descriptors
QM | Quantum-Chemicals 6

C | Constitutional 38

T | Topological 36

G | Geometrical 12

E | Electrostatic 57

PH | Physicochemical 6

Table B.1: Definition of chemical descriptor codes.
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