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Abstract 
 

Changes in human land use have caused significant losses, as well as fragmentation and 

degradation of suitable habitats for many plant species. Hence, a growing number of species are 

restricted to small and more isolated populations. In such populations plant fitness may be 

reduced due to harsh environmental conditions and due to a loss of genetic variation. Reduced 

fitness, in turn, may increase the extinction risk of populations, thereby endangering the 

persistence of associated organisms, for example specialized herbivorous insects. 

Sanguisorba officinalis represents the sole host plant of two endangered large blue butterfly 

species, Maculinea nausithous and M. teleius. Caterpillars of Maculinea butterflies initially feed 

on the inflorescences of their host plants before they leave the plant and complete their life cycle 

as social parasites of Myrmica red ants. In the present thesis I investigated patterns of 

interactions between the dusky large blue, M. nausithous, its host plant S. officinalis, and its host 

ant Myrmica rubra. The question whether adult butterflies are able to locate their host ants prior 

to oviposition was in the focus of a field experiment. Due to intensive land use and 

abandonment, many butterfly populations are restricted to small habitat patches which are 

exposed to secondary succession, and which carry small populations of the host plant S. 

officinalis. I examined the genetic structure of 24 S. officinalis populations which support the 

butterfly M. nausithous and measured traits related to sexual reproduction to find out whether 

these populations may be threatened by a loss of genetic variation. To investigate whether 

selection pressures associated with mowing and succession may create genetic differentiation 

between plant populations I grew seedlings originating from regularly mown meadows and 

successional fallows in a common environment and exposed them to a defoliation treatment. The 

experiment was also designed to examine whether plant performance and the ability to 

compensate for biomass loss caused by mowing may differ between populations of different size, 

density, and level of genetic variation. 

There was no experimental evidence for host ant related oviposition in M. nausithous 

despite the close obligate association between butterflies and ants. Rather, eggs were deposited 

according to host plant traits which indicate a sufficient availability of resources. This pattern 

was consistent across time and independent from butterfly densities. The results indicate that 

adult females maximize offspring fitness by avoiding intra-specific competition between 
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caterpillars within ant nests, and by preferentially selecting plants which support the early larval 

development best. 

Analysis of AFLP profiles revealed only marginal genetic differentiation between 24 

populations of S. officinalis and the absence of differentiation between populations located in 

managed meadows and successional fallows. Further, populations did not follow a pattern of 

isolation by distance. Intra-population genetic diversity was variable but not related to population 

size, plant density, and the habitat of origin. The results suggest that considerable gene flow 

compensates the effects of genetic drift. The commonness of the plant, its pollination by 

generalist and highly mobile insects, and the outcrossing breeding system are likely to promote 

gene flow among populations. Seed mass and the percentage of germination strongly declined in 

small and sparse populations. However, this decline was not associated with decreasing genetic 

diversity. Thus, environmental factors, for example inter-specific competition, are likely to 

account for the fitness loss. 

Seedlings of S. officinalis originating from mown meadows and successional fallows 

differed neither in performance nor in their ability to compensate for the loss of above-ground 

biomass. However, independently from the habitat of origin populations differed in leaf 

development and also exhibited variation in their response to defoliation. This variation was not 

related to population size, plant density, or the level of genetic variation. Thus, unknown 

selection pressures rather than genetic drift and inbreeding may explain the observed population 

differentiation. The absence of any differences between habitats may be explained by the 

perennial life form of S. officinalis and gene flow which both may have prevented effective 

selection. 

The present thesis revealed that populations of S. officinalis supporting the butterfly M. 

nausithous are currently not threatened by genetic erosion. As intra-population genetic variation 

is not reduced in small populations and gene flow from surrounding sites seems sufficient, 

conservation efforts should focus on the improvement of habitat quality. As plant offspring from 

successional fallows retain the potential to cope with defoliation, mowing at low frequencies 

seems to be an appropriate management strategy to conserve these populations and their 

associated butterfly populations in the long term. 



 5

1 Introduction 
 

1.1 Consequences of landscape change for the host plants of specialized herbivorous insects 

Vascular plants serve as food for approximately half of the insect species in the world 

(Schoonhoven et al., 2005). Most herbivorous insects are restricted to the use of one ore a few 

plant species whereas a smaller proportion of them feed on a wider range of taxa (Strong et al., 

1984). The host range of a species may be limited by a number of factors, such as trade-offs in 

feeding efficiency (Joshi and Thompson, 1995), or neuronal constraints on host plant selection 

behavior (Bernays, 1998). Generalist herbivores may benefit from higher resource availability 

(Bernays and Minkenberg, 1997) and may shift to alternative plants in the course of 

environmental change (Braschler and Hill, 2007). However, food specialists as monophagous 

butterflies are expected to respond more sensitively to resource limitation (Steffan-Dewenter and 

Tscharntke, 2000). 

In most contemporary landscapes, human activity represents a major source of variation in 

resource availability. There has been a significant loss, fragmentation and degradation of habitat 

for many plant species, caused by intensive agriculture, settlement, and the abandonment of 

traditional land use practices (WallisDeVries et al., 2002). Hence, many plant species are 

restricted to small remnant populations, which often grow under unfavorable environmental 

conditions. Such changes are expected to have major consequences for those herbivores which 

rely on a single host plant and which are very unlikely to shift to alternatives. 

On one hand, small and isolated habitat patches are less likely occupied by a species due to a 

higher extinction risk and a lower colonization probability (Hanski and Gilpin, 1997). Thus, 

specialized herbivores may show lower incidences in small plant populations than in large 

populations (e.g. Kéry et al., 2001; Zeipel et al., 2006). On the other hand, changes in landscape 

structure and land use practice may endanger the persistence of insect populations by affecting 

their host plant populations. 

Small plant populations may face an increased risk of extinction because they are more 

susceptible to environmental and demographic stochasticity (Lande, 1988; Boyce, 1992). 

Further, plants growing in small populations may suffer from reduced fitness due to harsh 

environmental conditions (e.g. Schmidt and Jensen, 2000; Vergeer et al., 2003a), and due to a 

loss of genetic variation (Ellstrand and Elam, 1993; Reed and Frankham 2003). Specialized 
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herbivores may be adversely affected if such processes affect the quality and quantity of the 

target plant tissue, for example seed set (Colling and Matthies, 2004). In addition, the interacting 

effects of genetic erosion, poor habitat quality, and environmental stress may endanger the long 

term persistence of plant populations in agriculturally used landscapes, and therewith the long 

term persistence of their associated herbivorous insects. Thus, gaining knowledge on factors 

which may affect plant quality and the viability of plant populations is essential for the effective 

conservation of higher trophic levels, such as herbivores, and their parasites or predators. 

The present thesis focuses on the plant Sanguisorba officinalis which represents the single 

host plant of two endangered Maculinea butterfly species. One part investigates patterns of 

interaction between the butterfly Maculinea nausithous, and its plant and ant host. However, the 

main emphasize is put on the genetic population structure of host plant populations and its 

relationship to plant fitness. The question whether plant populations have adapted to agricultural 

management represents a further aspect of this work.  

 

1.2 The Maculinea system 

Lycaenid butterflies comprise approximately 6000 species, and therewith represent one of the 

most species rich families within the Lepidoptera. From those species whose life histories are 

known, about 75 percent have established facultative or obligate associations with ants (Pierce et 

al. 2002). Most of these associations are mutualistic, i.e. phytophagous or aphytophagous 

caterpillars provide additional food supplies to ants, which in turn protect caterpillars against 

natural enemies (e.g. Pierce et al., 1987; Seufert and Fiedler, 1996). In a few lycaenid species 

caterpillars enter the ant nests to feed on ant brood, resources of the ant colonies, or to be fed by 

worker ants. Only 37 lycaenid species are known to exhibit such social parasitism, among them 

all currently known species of the genus Maculinea (Fiedler, 1998). 

Adult Maculinea butterflies lay their eggs on the inflorescences of specific host plants 

(Table 1) where the newly hatched larvae feed on flowers and developing seeds until they reach 

the 4th instar. At this stage caterpillars leave the plant and, if discovered by foraging workers of 

specific Myrmica ants (Table 1), they are picked up and carried into the ant nests. Once adopted, 

caterpillars live as social parasites within ant nests until pupation. Maculinea species have 

evolved two different strategies to exploit their host ants. So called cuckoo feeders receive food 

particles from the worker ants, whereas predatory species prey on the ant brood (Table 1). Adults 
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emerge from pupae after one or two years of development inside the ant nests (Thomas et al., 

1998; Witek et al., 2006). The chemical mimicry of the hydrocarbon surface of the ant brood 

enables both, caterpillar adoption and the integration into the colonies (Elmes et al., 2002). 

Caterpillars are parasitized by specialized ichneumonid wasps, either on the host plant (Anton et 

al., 2007), or within ant nests (Thomas and Elmes, 1993), depending on the species. From the 

currently described Maculinea species which all show a palaearctic distribution, there are five 

species known from Europe (Wynhoff, 1998, Table 1). However, recent analyses based on 

genetic markers consider Maculinea alcon and Maculinea rebeli as one, ecologically 

differentiated species (Als et al., 2004). All European Maculinea species are named in the Red 

Data Book of European Butterflies (Van Swaay and Warren, 1999) as well as in many national 

and regional red lists (Wynhoff, 1998). They are considered as vulnerable or endangered by the 

World Conservation Union (IUCN, 2000) and three of them are listed in the EC Habitats´ 

Directive. Because all Maculinea species depend on two resources during their life cycle they are 

considered to respond particularly sensitive to human influence (Thomas, 1995; Johst et al., 

2006). As they represent typical inhabitants of endangered habitats, and due to their complex 

interactions with different trophic levels, Maculinea butterflies have been proposed as suitable 

indicator organisms for habitat quality and biodiversity (Thomas et al., 2005). To get a deeper 

knowledge on the inter- and intra-specific variation in their functional ecology across Europe, the 

EC-funded research project “MacMan – Maculinea butterflies of the habitats directive and 

European red list as indicators and tools for habitat conservation and management” (EVK2-CT-

2001-00126) was initiated, in which the present PhD thesis is embedded. 



 8

Table1 Host plant, host ant, and habitat use of the five European Maculinea species.  

 

Maculinea species Host plants Myrmica host ants Feeding style Habitata 

M. arion Origanum vulgarea 

Thymus spec. a 

M. sabuletia 

M. lobicornisf 

predatory warm, dry grassland 

M. rebeli Gentiana cruciataa M. schenckia cuckoo Very dry grassland 

M. alcon Gentiana pneumonanthea 

Gentiana asclepiadeae 

M. scabrinodisa 

M. ruginodisa 

M. rubraa 

M. salinab 

M. vandelic 

cuckoo moist grassland 

M. nausithous Sanguisorba officinalisa M. rubraa predatory moist grassland, fen 

M. teleius Sanguisorba officinalisa M. scabrinodisa 

M. gallienii d 

M. rubrad 

 M. ruginodisd 

predatory moist grassland, fen 

 
aThomas (1995) 
bTartally (2005) 
cSielezniew and Stankiewicz (2004) 
dStankiewicz and Sielezniew (2002) 
eEbert and Rennwald (1991) 
fSielezniew et al. (2003) 
 

1.3 Host plant selection behavior in herbivorous insects 

Plants that fall into the host range of an herbivorous insect may vary substantially in their 

nutritional and anti-herbivore components (Schoonhoven et al., 2005) and thus, may vary in their 

suitability to serve as food for the herbivore. Variation in plant characteristics may occur in space 

and across time, among species, populations, and individuals. Thus, insects need to distinguish 

between plants of variable quality. Many herbivorous insects have evolved sophisticated 

mechanisms which enable them to locate and to evaluate potential host plants efficiently by 

using visual, chemical, and mechanical cues (Bernays and Chapman, 1994). 

The immature stages of many herbivorous insect taxa, e.g. the caterpillars of most 

Lepidoptera, show a low mobility and thus, a restricted ability to choose their diet. Their 

development and survival largely depend on the host choice of their parents. Based on this 

assumption, evolutionary theory predicts a correlation between adult oviposition preference and 
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offspring performance (Jaenike, 1978; Thompson and Pellmyr, 1991). However, there exist only 

few examples for such relationship (e.g. Via, 1986; Singer et al., 1988; Janz et al., 1994). 

Contrariwise, oviposition on alternative plants rather than those supporting offspring 

development best appears to be common (Thompson, 1988; Mayhew, 1997). Among the factors 

which have been discussed to be responsible for such alternative behavior, the environmental 

context of a plant seems to be the most important one. The spatial arrangement of host plants 

(Moravie et al., 2006), the presence of predators and parasites (Yamaga and Ogushi, 1999), or 

the availability of nectar sources (Janz et al., 2005) may drive the decision of an insect towards a 

low-quality plant.  

For lycaenid butterflies which have established facultative or obligate associations with 

ants the suitability of a plant may be determined by the presence of ants rather than by characters 

of the host plant. Indeed, some mutualistic lycaenids have been shown to lay their eggs in the 

vicinity of their associated ants (e.g. Pierce and Elgar, 1985; Jordano et al., 1992). In contrast to 

mutualistic lycaenids, caterpillars of Maculinea butterflies spend only a short time on their host 

plants before they finish their life cycle as social parasites within host ant colonies. Regarding 

the dependence of Maculinea caterpillars on their host ants it has been suggested that females 

may enhance the chance of their offspring to be detected and adopted by ovipositing on plants 

growing within the feeding range of their host ants  (Van Dyck et al., 2000; Wynhoff 2001). 

However, the limited capacity of an ant colony to support a certain number of caterpillars may 

select against ant dependent oviposition (Thomas and Elmes, 2001). While Van Dyck et al. 

(2000) found temporally constricted oviposition patterns which may indicate adult host ant 

recognition in one Maculinea species other work suggests random oviposition regarding the 

presence of ants (Thomas and Elmes, 2001; Nowicki et al., 2005). Current models describing the 

dynamics of Maculinea populations assume random distribution of eggs (Hochberg et al., 1994; 

Thomas et al., 1998; Griebeler and Seitz, 2002). A change of this assumption may alter the 

outcome of these models and therewith, the recommendations for species conservation (Thomas 

and Elmes, 2001). 

Recent studies investigating the oviposition behavior in the genus Maculinea have been 

largely descriptive. However, to assess whether adult butterflies actively use ant cues for host 

plant selection or whether egg-laying is mediated by habitat parameters and host plant characters, 

experimental manipulation is necessary.  
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Chapter 2 of the present thesis examines the role of host ant odors and host plant characteristics 

for the selection of oviposition sites by M. nausithous butterflies. It also investigates whether 

butterflies change their behavior across time to encounter intra-specific competition for suitable 

plants. The present work represents the first applying an experimental approach under field 

conditions. 

 

1.4 Genetic structure, genetic diversity, and fitness in plant populations 

Genetic diversity which represents one of the three fundamental levels of biodiversity determines 

the evolutionary potential of a species or population to adapt to changing environmental 

conditions. Genetic diversity arises from mutation or may be added to a population by gene flow, 

whereas genetic drift and directional selection may eliminate it. The relative impact of each 

factor largely depends on population size and varies among characters, as coding and non-coding 

DNA, protein polymorphism, or quantitative characters (Frankham et al., 2002). Human induced 

habitat fragmentation which divides large and continuous populations into smaller and more 

isolated remnants has a major impact on the strength of genetic drift and the magnitude of gene 

flow. 

Genetic drift refers to the random change of allele frequencies across generations (Ridley, 

1996). The probability of an allele to get lost through genetic drift depends on its initial 

frequency and on the size of the population (Wright, 1931; Kimura, 1983). Rare alleles are 

predicted to disappear from small populations more rapidly than from large populations. Thus, 

small populations are more likely to loose genetic variation by random genetic processes. 

Inbreeding, i.e. mating among relatives represents a further consequence arising from small 

population sizes. Inbreeding increases homozygosity and it may promote the expression of 

deleterious alleles in the next generation. Thus, offspring emerging from small populations is 

more likely to suffer from inbreeding depression (Ellstrand and Elam, 1993; Reed and 

Frankham, 2003). In plants, survival (e.g. Oostermeijer et al., 1994) and traits related to growth 

(e.g. Luijten et al., 2000), reproduction (e.g. Ågren, 1996; Hensen and Oberprieler, 2005), and 

stress tolerance (e.g. Vergeer et al., 2003b; Pluess and Stöcklin, 2004) may be particularly 

affected. 

Gene flow may compensate for the loss of genetic diversity. Its magnitude may be 

influenced by various environmental factors such as the spatial separation of populations 
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(Wright, 1943) and the presence of physical barriers (Keller and Largiadère, 2003), or by species 

traits as dispersal ability (Peterson and Denno, 1997) and breeding system (Loveless and 

Hamrick, 1984). The restriction of gene flow, as resulting from fragmentation processes, may 

facilitate genetic erosion within populations and genetic differentiation between populations. 

Under the assumption of the island model (Wright, 1943) most gene flow in dispersal limited 

organisms is likely to occur among neighboring populations and should decline as geographic 

distances increase. Thus, populations should become genetically more isolated over distance. 

Isolation by distance is predicted to occur if gene flow and genetic drift are at equilibrium 

(Hutchison and Templeton, 1999). The absence of such relationship combined with strong 

population differentiation indicates that genetic drift has exceeded the impact of gene flow. 

However, low genetic structure and the lack of isolation by distance point at strong recent or 

historical gene flow (Hutchison and Templeton, 1999). 

Recent meta-analyses confirm the commonness of reduced genetic variation and fitness in 

small populations of many plant species (Leimu et al., 2006; Honnay and Jacquemyn, 2007). 

While most studies have concentrated on rare species new results suggests that common species 

may be likewise or even stronger affected (Honnay and Jacquemyn, 2007). As common species 

provide food for a larger number of organisms than rare species (Strong et al., 1984) any adverse 

effects of habitat fragmentation may have strong implications for the maintenance of trophic 

interactions within ecosystems and thus, for species diversity. 

Sanguisorba officinalis which represents the sole host plant of two endangered large blue 

butterfly species, Maculinea nausithous and Maculinea teleius, is a common plant species in the 

Upper Rhine Valley (Germany). Despite its commonness the majority of plant populations are 

not suitable for the butterflies as they are exposed to intensive agricultural use. Mowing up to 

three times per year prevents the development of caterpillars which feed on the inflorescences of 

the plant. Thus, many butterfly populations are restricted to small habitat patches which carry 

small host plant populations and which are exposed to ongoing succession (Geißler-Strobel, 

1999; Loritz and Settele, 2005a). In these populations genetic variation might be eliminated by 

genetic drift having negative consequences for plant fitness. Additionally, mowing and 

succession differently influence the flowering phenology of S. officinalis (Musche, personal 

observation) so that gene flow between managed and unmanaged populations might be 

restricted.  
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Recently, restricted gene flow between (Hatcher et al., 2004), and the loss of genetic 

diversity and fitness within host plant populations (Severns, 2003) have emerged as factors 

which may put populations of specialized herbivorous insects at risk, including Maculinea 

butterflies (Kéry et al., 2001). Knowing the genetic structure of S. officinalis may help to assess 

the suitability of the currently occupied plant populations for the conservation of the butterflies 

M. nausithous and M. teleius in an intensively used landscape. 

Chapter 3 investigates the genetic structure of 24 S. officinalis populations, growing in 

mown and succesional habitats, which all support colonies of the butterfly M. nausithous. 

Additionaly, it is examined whether measures of reproductive fitness can be related to population 

size, plant density, genetic diversity, or habitat of origin.  

 

1.5 Selection by agricultural practice and succession 

Environmental heterogeneity is often associated with genetic heterogeneity as different 

environments produce different selection pressures favoring those characters which maximize 

fitness under the prevailing conditions (Antonovics, 1971; Hedrick et al., 1976). Further, 

different environments may establish barriers against gene flow which enhance genetic 

differentiation (Silvertown et al., 2005). Thus, many plant species which grow across a variety of 

habitats show patterns of local adaptation and small-scale genetic differentiation (Linhart and 

Grant, 1996). Agricultural practice represents a main force shaping the environmental conditions 

in human-used landscapes. For example, the application of herbicides (Warwick, 1991), grazing 

(Carman and Briske, 1985), or trampling (Warwick, 1980) have been shown to cause strong 

selection favoring locally adapted genotypes. 

Mowing represents the most common land use practice applied on meadows inhabited by 

the study plant S. officinalis. Selection by mowing has also been shown to favor traits which 

enable plants to avoid foliage loss (Warwick and Briggs, 1978) or which facilitate regrowth (e.g. 

McNeilly, 1981; Painter et al., 1989). Due to the abandonment of meadows many populations of 

S. officinalis have become subject to secondary succession. Successional change however, may 

alter selection pressures, resulting in populations dominated by highly competitive genotypes 

(Ronce and Olivieri, 1997). Consequently, adaptation to contrasting selection pressures 

associated with mowing and succession may cause population differentiation in both, 

morphological characters and response to defoliation. 
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The response of host plants to stress caused by agricultural practice may be relevant for the 

conservation of Maculinea butterflies because all five European species exist in habitats which 

have been created by human land use and whose maintenance depends on certain management 

schemes (Thomas et al., 1998; Johst et al., 2006; Loritz and Settele, 2005b). Although the habitat 

requirements among Maculinea species differ in many ways, intensive land use and 

abandonment have been considered as common threats which affect all of them likewise (e.g. 

Thomas, 1995; Höttinger et al., 2003; Sielezniew et al., 2005). Populations of the dusky large 

blue Maculinea nausithous can be found in both, mown meadows and successional fallows. The 

latter often carry large populations and higher densities of the butterfly (Settele and Geißler, 

1988; Skórka et al., 2007) and thus, represent important sources for the colonization of empty 

habitat patches. Fallow habitats support large densities of the host ant Myrmica rubra (Seifert, 

1996), a circumstance which is likely to explain the high population densities of M. nausithous 

(Anton et al., in press). However ongoing succession suppresses the host plant S. officinalis due 

to increasing interspecific competition. Thus, for the maintenance of plant and butterfly 

populations habitat management is essential (Stettmer et al., 2001; Grill et al., in press).  

Chapter 4 examines whether S. officinalis seedlings of currently unmanaged sites retain 

their potential to cope with defoliation, or whether mowing and succession may create 

population differentiation in plant performance and response. Further, the question whether 

population size, plant density, or the level of genetic diversity may affect the ability of plants to 

compensate for biomass loss is addressed. 
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2 No experimental evidence for host ant related oviposition in a 
parasitic butterfly 
 

Martin Musche, Christian Anton, Andrew Worgan, and Josef Settele (Journal of Insect Behavior 

19, 631-643) 

 

Abstract 

The ability of adult butterflies of the genus Maculinea to locate their host ants prior to 

oviposition has been the subject of much discussion. We studied the egg laying behavior of the 

dusky large blue Maculinea nausithous whose larvae parasitize colonies of the ant Myrmica 

rubra. Flowerheads of the initial food plant were sprinkled with soil from ant nests, which 

contain chemicals involved in the nest recognition behavior of ants. The experiment was 

conducted to determine whether ant-released chemicals may act as oviposition cues and whether 

intraspecific competition for suitable plants may force female butterflies to alternative decisions. 

Host plant choice was not influenced by the presence of nest-derived host-ant cues. Density 

dependent shifts to less suitable host plants could not be ascertained nor changes in egg laying 

behavior across the flight period. The observed egg distribution could be primarily explained by 

host plant characteristics and environmental variability among sites. The result confirms the 

theory that host ant dependent oviposition appears to be a disadvantageous strategy in the face of 

resource limitation within ant colonies and the immobility of caterpillars. 
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3 Genetic population structure and reproductive fitness in the plant 

Sanguisorba officinalis in populations supporting colonies of an 

endangered Maculinea butterfly 
 

Martin Musche, Josef Settele, and Walter Durka (International Journal of Plant Sciences, in 

press) 

 

Abstract 

The loss of genetic variation in small populations through drift and inbreeding is thought to 

decrease fitness and population viability. In order to evaluate the suitability of small S. officinalis 

populations for the long-term conservation of an endangered Maculinea butterfly species we 

investigated the plants´ genetic population structure using amplified fragment length 

polymorphism (AFLP) and measured life history traits related to reproduction. Genetic distances 

among populations were low (mean FST = 0.008) and not correlated with geographic distances 

indicating that substantial gene flow compensates for the effects of genetic drift. Analysis of 

molecular variance indicated the absence of genetic differentiation among different habitat types 

and low differentiation among populations. High outcrossing rates (tm = 0.856 and tm = 0.972) 

obtained in two populations suggest that gene flow is promoted by the mating system. 

Populations differed in the level of intra-population genetic variation. These differences were not 

related to habitat type, population size, or plant density. Mean seed mass and the percentage of 

germination decreased in small and low-density populations. However, reduced fitness was not 

related to lower levels of genetic variation. Thus, the observed fitness decline was presumably 

due to lower habitat quality associated with small populations and low plant densities. The 

relevance of the results for the conservation of Maculinea butterflies is discussed. 
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4 Performance and response to defoliation of Sanguisorba officinalis 

(Rosaceae) seedlings from mown and successional habitats 
 

Martin Musche, Josef Settele, and Walter Durka (Annals of Botany, submitted) 

 

Abstract 

In agricultural habitats selection may favor plants that show a pronounced ability to tolerate 

stress induced by specific management methods. However, genetic erosion which may be 

associated with habitat fragmentation may diminish this ability. To assess the role of mowing as 

selection pressure and the impact of fragmentation processes on the ability to tolerate foliage loss 

we grew 215 plants of the perennial herb Sanguisorba officinalis L. originating from 14 

differently sized populations, located in mown meadows and successional fallows, in a common 

environment and measured their performance and response to defoliation. Plants from meadows 

and fallows neither differed in performance characters nor in their ability to compensate foliage 

loss. However, independently from the habitat of origin populations differed in both, 

performance and response to defoliation. This variation was not due to differences in population 

size, plant density, or level of genetic variation, indicating its independence from genetic drift 

and inbreeding which may go along with habitat fragmentation. Thus, differences in performance 

and response between populations appear to be the outcome of unknown selection pressures. 

Plants from successional fallows retain their potential to cope with mowing presumably due to 

the low generation turnover of the perennial species. Selection by mowing may act over time 

scales larger than those reflected by the developmental stage of the current habitats. 
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5 Synthesis 
 

5.1 Interactions between Maculinea butterflies and their two essential resources 

Host plant choice of female Maculinea nausithous butterflies was not influenced by the presence 

of nest-derived host ant cues. The behavioral pattern did not change across the flight season and 

was independent from host plant and butterfly densities. The results suggest that oviposition in 

this species is independent from the presence of its host ant Myrmica rubra. Further, there are no 

indications for a trade-off between oviposition in the vicinity of ant nests and the avoidance of 

intra-specific competition on the host plants, as suggested by Van Dyck et al. (2000). Although 

ant-dependent oviposition may enhance the probability of adoption, subsequent overcrowding of 

the resource limited ant colonies may lead to scramble competition between the predatory 

caterpillars. By distributing eggs randomly across the habitat, butterflies are considered to avoid 

intra-specific competition and to enhance overall caterpillar survival (Thomas and Elmes, 2001), 

despite the fact that a large percentage of eggs end up in the foraging range of non-host ant 

species (Thomas and Elmes, 1998). Therefore, random oviposition with regard to the presence of 

host ants seems to be an appropriate and cost effective strategy to maximize offspring fitness. 

Instead of host ant cues, host plant traits and habitat specific factors determined the 

distribution of eggs among plants. Butterflies avoided ovipositing on small inflorescences and 

they preferred a distinct medium flowering stage, as already demonstrated in previous work 

(Figurny and Woichiechowski, 1998). Large inflorescences contain more flowers and seeds and 

therefore, provide more resources for the early development of caterpillars. However, increased 

parasitation by the wasp Neotypus melanocephalus that likewise prefers large inflorescences 

(Anton et al., 2007) might challenge the benefits resulting from the observed oviposition 

behavior. 

While host plant traits shape the interaction between plants and butterflies at the individual 

level, there are no indications that host plant characters may influence butterflies at the 

population level. A related study on M. nausithous (Anton et al., in press) showed that the 

density of adults and eggs at a given site is clearly limited by the density of host ants, whereas 

plant density, the number of inflorescences per plant, and the size of inflorescences seemingly do 

not influence these life cycle stages. However, reduced plant availability is likely to lead to intra-

specific competition among caterpillars on the inflorescences (Anton et al. in press).  
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The absence of ant-dependent oviposition and the strong host ant limitation at the population 

level are likely the result of the predatory feeding style of M. nausithous. In contrast to predatory 

Maculinea species, the cuckoo species M. alcon and M. rebeli use their diet more efficiently 

because feeding on the resources of the ant colony causes less damage than feeding on the ants 

themselves (Thomas and Elmes, 1998). Hence, one host ant colony supports a much larger 

number of caterpillars (e.g. Als et al., 2002), and overcrowding of ant colonies leads to contest 

competition instead of scramble competition (Thomas et al., 1993). Hence, the need to avoid the 

concentration of caterpillars within single ant colonies might not be as essential as for predatory 

species. Whether cuckoo species might even benefit from ant-dependent oviposition cannot be 

answered at that time. The results that were presented for the cuckoo feeder M. alcon (Van Dyck 

et al., 2000) might indicate such behavior. However, more detailed experimental work is needed 

in the future to investigate oviposition in non-predatory Maculinea species more detailed. 

 

5.2. Genetic diversity, genetic population structure and reproductive fitness of Sanguisorba 

officinalis 

Populations of S. officinalis showed an extremely low genetic structure across the study region. 

While some populations were slightly differentiated, there was no differentiation among habitats. 

Further, genetic population structure did not follow a pattern of isolation by distance. These 

results suggest that gene flow among populations is not restricted and compensates any effects of 

genetic drift. Although present gene flow cannot be directly estimated from patterns of genetic 

structure, the commonness of the species and its pollination by generalist and highly mobile 

pollinators suggest that gene flow at a sufficient level is still maintained. The outcrossing 

breeding system which has been confirmed in this work is also likely to promote gene flow. The 

absence of genetic differentiation among meadows and successional fallows may indicate that 

gene flow is not restricted between both habitats. However, the pattern may also be explained by 

the possibility that populations from successional fallows have preserved the initial genetic 

composition of meadow populations. 

All populations retained a high level of intra-population genetic variation, regardless of 

their size, density, and habitat of origin. Thus, genetic drift and inbreeding have not eliminated 

genetic variation from small and sparse populations. Additionally, there are no indications that 

different selective forces which may be associated with different habitats have reduced the level 
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of genetic variation in meadows or fallows. The maintenance of genetic variation may be either 

due to the above mentioned compensatory effects of gene flow, or due to the perennial life form 

of the species. Genetic drift is expected to act slowly in species with long generation turnover 

(Loveless and Hamrick, 1984), so that recent fragmentation processes do not lead to an 

immediate loss of genetic variation. 

Plants from small and sparse populations of S. officinalis developed significantly lighter 

and less fertile seeds. However, the decline in reproductive fitness was not accompanied by a 

loss of genetic variation. Thus, environmental factors associated with population size and plant 

density are more likely to be responsible for the observed fitness loss than inbreeding depression. 

Most populations of small size and low density were situated in successional fallows where inter-

specific competition may reduce maternal investment into sexual reproduction, for example seed 

mass (Platenkamp and Shaw, 1993). Nonetheless, it cannot be excluded that genetic factors 

might have contributed to the observed patterns. In particular, the density dependence of 

germination which could not entirely be explained by seed mass might be an indication for 

increased selfing or biparental inbreeding caused by altered pollinator behavior. 

Although plant density often correlates with population size it is considered as the more 

accurate measurement in continuously distributed plant species (Gram and Sork, 1999). Plant 

density may also be of greater biological relevance because it shapes the interaction between 

plants and their pollinators (Charnov, 1976; Klinkhamer et al., 1989; Kunin, 1997). Nonetheless, 

plant density has been included in few population genetic studies only (e.g. Tarayre and 

Thompson, 1997; Van Rossum et al., 2004). Future work on S. officinalis should focus on the 

relationship between plant density and mating system by incorporating a larger number of 

populations. The calculation of outcrossing rates based on seeds and seedlings may help to assess 

whether genetic load is expressed at the time of germination. Finally, common garden 

experiments investigating the relationship between pollinator behavior and reproductive success 

(see Kunin, 1993; Bosch and Waser, 2001) may uncover the mechanisms underlying the 

correlation between plant density and germination in S. officinalis. 

 

5.3 The response of S. officinalis from meadows and successional fallows to mowing 

Selection pressures associated with mowing and succession may generate population 

differentiation in morphological characters and in response to defoliation (e.g. Carman and 
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Briske, 1985; Houssard and Escarré, 1995). Seedlings of Sanguisorba officinalis originating 

from frequently mown meadows and successional fallows developed similar amounts of above-

ground biomass and did not differ in leaf traits. Moreover, plants from both habitats responded in 

a similar manner to artificial defoliation. The absence of differentiation is most likely due to the 

perennial life form of S. officinalis. Perennial species with low generation turnover are thought to 

respond to selection with a certain time lag (Linhart and Grant, 1996). Plants from successional 

fallows are likely the survivors of former meadow populations which have retained the ability to 

cope with defoliation. However, selection for phenotypic plasticity or the homogenizing effects 

of gene flow may also explain the observed patterns in part. 

Independently from their habitat of origin populations were differentiated in both, 

performance traits and response to defoliation. These differences could not be attributed to 

population size, plant density, and the level of intra-population genetic diversity. Thus, it is 

unlikely that genetic drift and inbreeding which may go along with habitat fragmentation account 

for the observed population differentiation. Plants from small or genetically less diverse 

population may be particularly vulnerable to environmental stress (e.g. Heschel and Paige, 1995; 

Pluess and Stoecklin, 2004) as caused by agricultural practice. S. officinalis plants from such 

populations did not show reduced performance, even though they had been exposed to 

defoliation. Therefore, habitat fragmentation does not seem to influence plant response to 

mowing in the study area. Rather, the observed population differentiation is likely due to 

unknown selection pressures which may be associated with environmental heterogeneity. 

However, to assess whether population differentiation was caused by genetic drift or selection 

future work should focus on a comparison of population differences at neutral marker loci and 

quantitative traits (Fst vs. Qst matrices, Merilä and Crnokrak, 2001; Willi et al., 2007). Such 

comparison was not done within the present study because it was primarily designed to search 

for differences between habitats. In the present work a similar ability of seedlings from meadows 

and fallows to perform and to respond to mowing was revealed. However, selection by mowing 

and succession might affect later stages of the life cycle, for example clonal propagation 

(Houssard and Escarré, 1995) or sexual reproduction (McKinney and Fowler, 1991; Ronce et al., 

2005). Therefore, future work should consider the response of plants in the long term. 

Additionally, the inclusion of a competition treatment (e.g. Painter et al., 1989; Pluess and 

Stoecklin, 2005) may uncover whether more competitive genotypes dominate successional 
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fallows. The extension of the experiment to established plants from the original habitats may 

help to assess whether selective events acting between juvenile and adult stage may shape both, 

plant performance and response to defoliation. 

 

5.4 Conclusions 

The persistence of the dusky large blue, Maculinea nausithous, largely depends on the 

availability of its two essential resources, the host plant Sanguisorba officinalis and the host ant 

Myrmica rubra. Despite the fact that host ants represent the limiting resource on most sites 

(Anton et al., 2007) adult butterflies oviposit randomly with respect to the presence of ants. 

Therefore, population models describing the spatial and temporal dynamics of Maculinea 

populations should be based on a random distribution of eggs rather than on ant-dependent 

oviposition. 

Plant populations in the study area, all of them supporting populations of the butterfly M. 

nausithous, are currently not threatened by genetic erosion. Gene flow from surrounding 

populations seems sufficient to prevent the loss of genetic diversity which may be caused by 

genetic drift and inbreeding. In order to increase reproductive fitness of small populations and to 

maintain them as refuges for the threatened butterflies, conservation efforts should concentrate 

on the improvement of habitat quality. However, this recommendation does not necessarily apply 

to other regions. Plant populations at the range margin of the distribution which are commonly 

smaller and more isolated may be more severely affected by genetic erosion. In such regions, 

alternative conservation measures should consider the maintenance of gene flow and large 

population sizes. 

Although successional fallows support high population densities of the host ant M. rubra, 

strong interspecific competition from other plant species endangers the persistence of the host 

plant for S. officinalis. Thus, habitat management is essential to preserve these sites for the 

conservation of the butterfly M. nausithous. The present work revealed that S. officinalis 

seedlings from successional fallows retain the potential to establish under mowing conditions. 

Moreover, the ability to withdraw defoliation is not affected by genetic erosion which may be 

associated with small population sizes and low plant densities. Thus mowing represents an 

appropriate conservation measure for all investigated plant populations. However, the time and 
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frequency of mowing should take the requirements of the host ants and the phenology of 

butterflies into account (Johst et al., 2006).  

Apart from mowing, many habitats supporting M. nausithous are grazed by cattle and 

horses (Loritz 2003). However, S. officinalis has been described as vulnerable to trampling 

(Stammel, 2003). Future experiments should be designed to evaluate the role of grazing and 

trampling on the establishment, performance and persistence of S. officinalis and to investigate 

whether trampling by livestock may cause evolutionary changes in this plant species. 
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