Plant performance under changing temperatures: functional characterization of ELF3 in *Arabidopsis thaliana* and *Hordeum vulgare*

Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

der

Naturwissenschaftliche Fakultät III Agrar- und Ernährungswissenschaften, Geowissenschaften und Informatik

der Martin-Luther-Universität Halle-Wittenberg

vorgelegt von Herrn M. Sc. Zihao Zhu geb. am 12.11.1992 in Shanghai, China

Gutachter:

1. Prof. Dr. Marcel Quint

2. Prof. Dr. Salomé Prat

Verteidigung am 24.04.2023 Halle (Saale)

Table of contents

Tabl	le of contents	I
List	of abbreviations	.111
List	of figures	. V
List	of tables	VI
1	Introduction	1
	1.1 Plant performance under changing environment	1
	1.2 The circadian clock anticipates cyclic environmental changes	2
	1.3 Plant thermomorphogenesis signaling	4
	1.4 <i>H. vulgare</i> as a model crop for adaptation to climate change	5
	1.5 Natural variation for growth and developmental plasticity	7
	1.6 Objectives	9
2	Materials and Methods	10
	2.1 Plant material	10
	2.1.1 A. thaliana lines	10
	2.1.2 <i>H. vulgare</i> lines	10
	2.2 Physiological assay	10
	2.2.1 Seed sterilization and stratification	10
	2.2.2 A. thaliana temperature assays	11
	2.2.3 Growth assays under temperature cycles	11
	2.2.4 <i>H. vulgare</i> temperature assay on plates	13
	2.2.5 H. vulgare temperature assay in growth chambers	13
	2.2.6 <i>H. vulgare</i> temperature assay in greenhouses	15
	2.3 Molecular biology methods	16
	2.3.1 DNA sequencing	16
	2.3.2 Transcriptional analysis	17
	2.4 Computational analysis	17
	2.4.1 Phylogenetic analysis	17
	2.4.2 Population genetic analysis	18
	2.4.3 Growth curve modeling	18
	2.4.4 Principal component analysis (PCA)	19
	2.4.5 Pairwise correlation analysis	19
	2.4.6 Statistical analysis and data visualization	19
3	Results I – Emergence and evolution of <i>ELF3</i> and its prion-like domain	21
	3.1 Evolutionary origins of ELF3/EEC and PrD	21
	3.2 PolyQ length contributes to PrD of ELF3 in Brassicales	26
	3.3 ELF3 polyQ variation among Arabidopsis accessions	27
	3.4 Evolution of Arabidopsis ELF3 and polyQ	30
	3.5 Association of polyQ variation and temperature responsive hypocotyl elongation	33
4	Results II – Arabidopsis <i>ELF3</i> controls temperature responsiveness of the circadian	
cloc	k independently of the evening complex	37
	4.1 ELF3 and GI participate in complicated temperature-photoperiod crosstalk	37
	4.2 <i>ELF3</i> and <i>GI</i> are not essential for temperature responsiveness under constant	
	conditions	40
	4.3 ELF3 is required for clock-controlled physiological processes under temperature	;
	cycles	40

4.4 Neither <i>phyB</i> nor the EC is essential for <i>ELF3</i> -mediated rhythmic output under temperature cycles	ЛЛ
4.5 <i>ELF3</i> is required for the oscillator's responsiveness to temperature cycles	46
4.6 <i>ELF3</i> is essential for precise gating of temperature signals	49
 4.7 Functional ELF3 is not required for temperature entrainment in <i>H. vulgare</i> 5 Results III – An exotic allele of barley <i>ELF3</i> contributes to developmental plasticity at 	51 t
elevated temperatures	53
5.1 <i>ELF3</i> is involved in barley thermomorphogenesis	53
5.2 <i>ELF</i> 3 sequence variation in HIF pairs	54
5.3 Elevated temperatures accelerate barley seedling establishment	55
5.4 An exotic <i>ELF3</i> allele affects barley temperature responsive growth and	
architecture	58
5.5 An exotic <i>ELF3</i> allele affects barley floral transition at elevated temperatures	62
5.6 An exotic <i>ELF3</i> allele stabilizes total grain weight at elevated temperatures	67
6 Discussion	73
6.1 Potential functions of ELF3 polyQ and phase separation	73
6.2 Arabidopsis <i>ELF3</i> is an essential temperature Zeitnehmer	75
6.3 Arabidopsis <i>ELF3</i> can function independently of the EC	76
6.4 <i>ELF3</i> mediates crop domestication	11
6.5 ELF3 is involved in barley thermomorphogenesis	18
6.6 Exolic barley <i>ELF3</i> alleles contribute to temperature responsive developmental	70
plasticity	19
6.7 Early nowening is an adaptive response under climate change	01
CULCIUSIONS	00
0 Deferences	04 85
Annendix	00
	96
Appendix II	01
Appendix III	02
Appendix IV	02
Appendix V	10
Appendix VI	14
Acknowledgments	25
Curriculum Vitae	26
List of publications	26
Declaration under Oath1	27

List of abbreviations

3D	three-dimensional
ANOVA	analysis of variance
Arabidopsis	Arabidopsis thaliana (L.) Heynh.; A. thaliana
ATS	A. thaliana solution
barley	Hordeum vulgare L.; H. vulgare
BBX	B-box zinc finger protein
bHLH	basic helix-loop-helix
BLAST	Basic Local Alignment Search Tool
BM	BARLEY MADS-box
BR	brassinosteroids
CAA	cvtosine-adenine-adenine
CCA1	CIRCADIAN CLOCK ASSOCIATED 1
CCR2	COLD. CIRCADIAN RHYTHM, AND RNA BINDING 2
cDNA	complementary DNA
CO	CONSTANS
CO_2	carbon dioxide
	Columbia-0
	days after sowing
	darkness
	deoxyribonucleic acid
EC	evening complex
EEC	
FLF	EARLY ELOWERING
Fig	Figure
FT	FLOWERING LOCUS T
G	threonine
GA	Gibberellic acid
GAPDH	alvceraldehyde 3-phosphate dehydrogenase
GI	GIGANTEA
HEB-25	Halle Exotic Barley-25
HIF	heterogenous inbred family
HSD	honestly significant difference
Hsn	Hordeum vulgare ssp. Spontaneum
	indole-3-acetic acid
Indels	insertion-deletion mutations
Ka	nonsynonymous substitution rate
Ks	synonymous substitution rate
13	third leaf
	long days
	light-emitting diodes
	continuous light
	liquid-liquid phase separation
	log-likelihood ratio

LUC	luciferase
LUX	LUX ARRYTHMO
Ν	asparagine
NaClO	sodium hypochlorite
NAM	nested association mapping
NASC	Nottingham Arabidopsis Stock Centre
NIL	near isogenic line
OE	overexpression
PAR	photosynthetically active radiation
PCA	principal component analysis
PCH1	PHOTOPERIODIC CONTROL OF HYPOCOTYL1
PCL1	PHYTOCLOCK 1
PCR	polymerase chain reaction
phyA/B	phytochrome A/B
PIÉ4	PHYTOCHROME INTERACTING FACTOR 4
PLAAC	Prion-Like Amino Acid Composition
polvQ	polyglutamine
PP2A	PROTEIN 19 PHOSPHATASE2a subunit A3
Ppd-H1	PHOTOPERIOD H1
PrD	prion-like domain
PRR	PSEUDO-RESPONSE REGULATOR
QTL	guantitative trait locus
RAE	relative amplitude error
RIL	recombinant inbred line
RNA	ribonucleic acid
RT-gPCR	reverse transcription quantitative real-time PCR
RVE8	REVEILLE 8
scp	secure copy protocol
SD	short days
SEM	standard error of mean
SNP	single nucleotide polymorphism
SSH	public secure shell
STRING	Search Tool for the Retrieval of Interacting Genes/Proteins
SVP	SHORT VEGETATIVE PHASE
Т0	coleoptile tiller
T1	first tiller
TGW	thousand grain weight
TIC	TIME FOR COFFEE
TIP41	INTERACTING PROTEIN OF 41 KDA
TOC1	TIMING OF CAB EXPRESSION 1
VRN	VERNALIZATION
W	tryptophan
w/v	weight/volume
Ws-2	Wassilewskija-2
XBAT	XB3 ORTHOLOG 5 IN ARABIDOPSIS THALIANA
YUC	YUCCA
ZT	Zeitgeber time

List of figures

Fig. Fig.	1-1 Plant anticipation, acclimation, and adaptation to changing environment 1-2 <i>A. thaliana</i> EARLY FLOWERING 3 as a key player in plant circadian clock and thermomorphogenesis	1 2
Fia	1 3 An overview of pathways controlling floral transition in <i>H</i> , vulgare	د ۵
Fig.	1-5 All overview of pathways controlling itoral transition in <i>Th. valgare</i>	0 Q
Fig.	2-1 Infrared imaging platform for circadian rhythmicity analysis	0
Fig.	2-2 Image-based plant phenotyping for barley temperature assay in growth chamber	are
· ·9·		14
Fia.	3-1 Phylogenetic tree of ELF3 and EEC.	.23
Fia.	3-2 Arabidopsis ELF3 PrD and conserved regions of ELF3 and EEC.	.25
Fig.	3-3 Phylogenetic tree and sequence alignment of Brassicales ELF3	.26
Fig.	3-4 Natural variation of ELF3 polyQ length in Arabidopsis accessions.	.28
Fig.	3-5 Geographic distribution of ELF3 polyQ variation in Arabidopsis accessions	.29
Fig.	3-6 Population genetic signatures of Arabidopsis ELF3.	.31
Fig.	3-7 Genetic variation of <i>ELF3</i> in Arabidopsis accessions	.32
Fig.	3-8 Association of ELF3 polyQ variation with hypocotyl phenotypes	.34
Fig.	3-9 Visualization of potential polyQ-phenotype association.	.35
Fig.	4-1 <i>ELF</i> 3 and <i>GI</i> are involved in temperature-photoperiod crosstalk.	.38
Fig.	4-2 I emperature-photoperiod crosstalk at a higher temperature regime.	.39
Fig.	4-3 I nermoresponsive growth is intact in continuous light.	.40
Fig.	4-4 <i>ELF3</i> is required for mythmic physiological processes under temperature cycles	5. 10
Fia	4.5 Clock controlled cotyledon movement entrained by different temperature cycles	.42
ı ıg.	4-3 Clock-controlled cotyledon movement entrained by different temperature cycles	י. ⊿२
Fia.	4-6 <i>FLF</i> 3-mediated rhythmic output is independent of <i>phyB / UX</i> and <i>FLF</i> 4	45
Fia.	4-7 <i>ELF3</i> is required for the oscillator's responsiveness to temperature changes	.47
Fig.	4-8 The oscillator's responsiveness to temperature changes in darkness.	.48
Fig.	4-9 ELF3 is essential for circadian gating of temperature signals.	.50
Fig.	4-10 H. vulgare elf3 seedlings can be entrained by temperature cycles.	.51
Fig.	5-1 <i>ELF3</i> is involved in the early temperature response of barley seedlings	.53
Fig.	5-2 Variations in <i>ELF</i> 3 sequence among HIF pairs.	.55
Fig.	5-3 Elevated temperatures accelerate early growth and development of barley	- 0
F :		.56
Fig.	5-4 Percentage of plants with coleoptile tillers	.58
гıg.	3-3 Effects of exolic <i>ELF</i> 3 alleles and elevated temperatures on barley growin and	50
Fia	5-6 Effects of evotic ELE3 alleles and elevated temperatures on barley tillering	61
Fig.	5-7 Principal component analysis (PCA) of barley growth traits	62
Fig.	5-8 Effects of elevated temperatures on barley leaf chlorophyll content	63
Fia.	5-9 Effects of exotic <i>ELF3</i> alleles and elevated temperatures on barley floral	
- 3	transition	.64
Fig.	5-10 An exotic ELF3 allele interacts with elevated temperatures to control meristem	1
-	development and transcript levels of flowering genes.	.66
Fig.	5-11 Growth and development phenotypes from temperature assay in greenhouses	5.
		.68
Fig.	5-12 Effects of exotic <i>ELF3</i> allele and elevated temperatures on barley spike	
	parameters.	.69

Fig. 5-13 Effects of exotic ELF3 allele and elevated temperatures on barley y	ield related
parameters.	70
Fig. 5-14 Correlation of temperature responses in selected traits.	71
Fig. 6-1 STRING-network for Arabidopsis ELF3 and its interactors.	77
Appendix Fig. 1 Genomic setup of the used HIFs	101

List of tables

Table 1 Gene homologues of the evening complex and <i>EEC</i> in various plant genomes22Table 2 List of <i>A. thaliana</i> accessions used in this study
Table 4 List of identified ELF3 and EEC homologues in 274 plant genomes
Table 5 Hypocotyl growth rate under temperature cycles in LL (related to Fig. 4-4B)110
Table 6 Transcript levels of genes under temperature cycles in LL (related to Fig. 4-7). 111 Table 7 Transcript levels of genes under temperature cycles in LL (normalized to <i>TIP41</i>).
Table 8 Transcript levels of genes under temperature cycles in DD (related to Fig. 4-8).
Table 9 Plant height during barley seedling establishment (related to Fig. 5-3A)114
Table 10 Length and width of the first and second leaves (related to Fig. 5-3D)115
Table 11 Plant height during barley growth and development (related to Fig. 5-5A)116
Table 12 Top-view plant area during barley growth and development (related to Fig. 5-5B)
Table 13 Side-view plant area during barley growth and development (related to Fig. 5-
5C) 118
Table 14 Plant volume during barley growth and development (related to Fig. 5-5D)119
Table 15 Top-view convex hull area during barley growth and development (related to Fig.
5-5F)
Table 16 Side-view convex hull area during barley growth and development (related to
Table To Class New convex has alreaded ing balley growth and development (related to
FIG 5-5F) 121
Fig. 5-5F)
Table 17 Total tiller number during barley growth and development (related to Fig. 5-6).
Table 17 Total tiller number during barley growth and development (related to Fig. 5-6). 122 Table 18 Chlorophyll content in the second leaf during barley growth and development
Table 17 Total tiller number during barley growth and development (related to Fig. 5-6). 122 Table 18 Chlorophyll content in the second leaf during barley growth and development (related to Fig. 5.8)
 Fig. 5-5F)
 Fig. 5-5F)

1 Introduction

1.1 Plant performance under changing environment

Like other organisms living on Earth, plants experience regular environmental changes with the rotation of the planet. These include light/dark and warm/cool cycles with a period of around 24 h, as well as seasonal changes in photoperiod and temperature. Plants have evolved an internal oscillator, known as circadian clock, that allows them to anticipate regular daily events and to adjust their internal cellular mechanisms accordingly (Thomas and Vince-Prue, 1996) (Fig. 1-1).

Fig. 1-1 Plant anticipation, acclimation, and adaptation to changing environment.

Hypocotyl elongation and leaf hyponasty response to high ambient temperature in *Arabidopsis thaliana* seedlings were used as examples.

With the proceedings of global climate change, extreme weather and climate events become more frequent and intense, including elevated atmospheric CO₂, droughts and flooding due to shifts in precipitation patterns, and extreme temperatures (Pörtner *et al.*, 2022). These unpredictable environmental changes, even moderate, can impact plant ecophysiology, spatial distribution, and productivity, threatening crop yield stability and food security (Leng and Huang, 2017). Meanwhile, individual plants are capable of temporarily adjusting their growth and development as a response to these changes, which is known as acclimation (Fig. 1-1). The term acclimation therefore applies to growth adjustments within the life cycle of a single or many plants. However, not all plant populations have the ability to acclimate. This ability can be achieved by natural selection when plant populations are exposed to the same changing environment over many generations. The ability to acclimate is therefore an evolutionary process which is called adaptation. Adaptation increases the fitness of a population in changing environments. Therefore, understanding how plants anticipate,

acclimate, and adapt to a changing environment is pivotal to keep the pace and mitigate the negative influence of climate changes.

1.2 The circadian clock anticipates cyclic environmental changes

As plants are more frequently encountering predictable environmental changes, circadian anticipation is the most general ability that contributes to plant performance. The circadian clock is an endogenous key network that utilizes external cues (known as Zeitgeber, time-giver), primarily light/dark and temperature cycles, as timing input to precisely generate internal biological rhythms. The oscillator components (known as Zeitnehmer, time-taker) receive the timing information from the Zeitgeber and help to reset and keep synchrony with the external environment. This Zeitgeber-Zeitnehmer communication is known as entrainment that sets the period and phase of the oscillator (Wang *et al.*, 2022). The period here indicates the necessary time for a completed cycle, whereas the phase is a specific time point (e.g., peak or valley positions) within a cycle, both determining the waveform of rhythmicity (McClung, 2006). Once correctly entrained, the rhythmicity generated by the oscillator can be sustained for several cycles, even in the absence of environmental cues (i.e., free-running conditions, such as constant light and temperature conditions). The ability of the circadian clock to anticipate cyclic environmental changes thereby confers fitness advantages to organisms (Xu *et al.*, 2022).

Knowledge of the plant circadian clock is mainly generated from studying the model plant *Arabidopsis thaliana* (Arabidopsis), with light as a primary Zeitgeber. In Arabidopsis, the central part of the circadian clock, the oscillator, is composed of multiple interconnected transcriptional-translational feedback loops (Huang and Nusinow, 2016; Nohales and Kay, 2016) (Fig. 1-2, left part). The morning loop contains two partially redundant MYB-like transcription factors CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) which positively regulate the expression of *PSEUDO-RESPONSE REGULATOR 9* (*PRR9*) in the morning and *PRR7* in the afternoon (Farré *et al.*, 2005; Nakamichi *et al.*, 2010), while repressing two additional afternoon-phased genes, *PRR5* and *GIGANTEA* (*GI*) (Lu *et al.*, 2012; Kamioka *et al.*, 2016). PRR9, PPR7, and PRR5 later repress the expression of *CCA1/LHY*, allowing the induction of evening-phased genes (Nakamichi *et al.*, 2010; Adams *et al.*, 2015). In the early evening, accumulation of TIMING OF CAB EXPRESSION 1 (TOC1/PRR1) represses *GI*, which in turn activates *TOC1* (Kim *et al.*, 2007). With the removal of repression and partially induced by another morning-

2

phased component REVEILLE 8 (RVE8), three evening-phased proteins EARLY FLOWERING 3 (ELF3), ELF4, and LUX ARRYTHMO (LUX) accumulate and form a protein complex, named the evening complex (EC) (Hsu *et al.*, 2013). TOC1, GI, and the EC represent the evening loop (Fig. 1-2, left part). The EC directly represess the transcription of *PRR9*, *PRR7*, and *GI*, allowing CCA1 and LHY to accumulate before dawn (Nusinow *et al.*, 2011; Herrero *et al.*, 2012; Ezer *et al.*, 2017).

Fig. 1-2 *A. thaliana* EARLY FLOWERING 3 as a key player in plant circadian clock and thermomorphogenesis.

Left part: circadian clock morning loop is composed of CCA1 and LHY, which regulate PRRs and TOC1, whereas TOC1, GI, and the EC (ELF3/ELF4/LUX) form the evening loop. The connections between circadian clock oscillator components indicate transcriptional-translational regulation, with light/dark cycle as an example. For flowering control, ELF3 functions as a substrate adaptor for CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) dependent degradation of GI, resulting in reduced expression of flowering-promoting genes *CONSTANS* (*CO*) and *FLOWERING LOCUS T* (*FT*) (Yu *et al.*, 2008). Right part: ELF3 is crucial for both temperature sensing and signaling. *YUC*, auxin biosynthesis genes; IAA, indole-3-acetic acid; BR, brassinosteroids; P, phosphorylation; Ub, Ubiquitination.

Although the transcriptional-translational feedback loops of identified integral components can explain circadian rhythmicity, the actual Zeitnehmer is still intriguing. Via potential interactions with photoreceptor phytochrome B (phyB), ELF3 and GI present one possible Zeitgeber-Zeitnehmer junction (Yeom *et al.*, 2014). Consistently, mutants of *ELF3* and *GI* display disrupted oscillator rhythmicity or periodicity under free-running conditions, as well as pleiotropic phenotypes such as elongated hypocotyls and altered flowering time (Hicks *et al.*, 1996; Park *et al.*, 1999; McWatters *et al.*, 2000) (Fig. 1-2). A recent study demonstrated that photoperiod-responsive growth and flowering time were lost in *elf3 gi*

double mutants, and thereby established these two genes as essential Zeitnehmers for clock entrainment to light signals (Anwer *et al.*, 2020).

Unlike the junction to the light Zeitgeber, the mechanism of clock entrainment to temperature cycles is still poorly understood (Avello *et al.*, 2019; Gil and Park, 2019). Based on the little that is known, *PRR7* and *PRR9* have conceivable roles for integrating temperature input to the oscillator, as *prr7 prr9* double mutants displayed arrhythmia depending on temperature regimes (Salomé and McClung, 2005; Salomé *et al.*, 2010). In addition, the EC has been proposed to repress the temperature input to the clock (Mizuno *et al.*, 2014). However, a previous finding suggested *ELF3* to not function as a temperature Zeitnehmer (Thines and Harmon, 2010).

1.3 Plant thermomorphogenesis signaling

While the circadian clock confers the ability to handle daily environmental fluctuations, plants still face challenges from unpredictable environments. As one of the most important aspects of climate change, global warming refers to the rise in ambient temperatures mainly due to increased concentration of greenhouse gases. Plants can acclimate rapidly to elevated temperatures with morphological and developmental adjustments, collectively termed thermomorphogenesis (Quint *et al.*, 2016). In Arabidopsis, thermomorphogenic seedling phenotypes include elongated hypocotyls and leaf hyponasty, which are known to avoid heat reflected from the ground and improve transpirational cooling capacity (Koini *et al.*, 2009; van Zanten *et al.*, 2009; Crawford *et al.*, 2012) (Fig. 1-1).

Changes in ambient temperatures can be perceived via multiple systems, with phyB as the first identified plant temperature sensor (Jung *et al.*, 2016; Legris *et al.*, 2016). Warm temperatures accelerate the dark/thermal reversion of phyB from its active Pfr form to its inactive Pr form (Delker *et al.*, 2017) (Fig. 1-2, right part). By stabilizing ELF3, the active Pfr form of phyB mediates degradation of the basic helix-loop-helix (bHLH) transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) (Nieto *et al.*, 2015). As a central regulator of thermomorphogenesis signaling, PIF4 accumulates at warm temperatures and activates auxin biosynthesis genes, promoting cell elongation in petioles and hypocotyls, as well as thermonastic leaf movement (Franklin *et al.*, 2011; Park *et al.*, 2019) most likely in concert with brassinosteroid action (Ibañez *et al.*, 2018). On the other hand, PIF4 mediates thermal acceleration of flowering by activating *FT* (Kumar *et al.*, 2012).

4

In addition to phyB thermosensing, the prion-like domain (PrD) of ELF3 functions as a thermosensor, enabling the liquid-liquid phase separation (LLPS) of ELF3 from its dilute phase into liquid droplets (dense phase) at high temperatures (Jung *et al.*, 2020) (Fig. 1-2, right part). The aggregation of ELF3 in dense phase coordinates with its restricted mobilization to the nucleus (Ronald and Davis, 2021; Ronald *et al.*, 2022), and thereby relieves the transcriptional repression of *PIF4* (as a component of the EC) and potentially the direct interaction with PIF4 (Box *et al.*, 2015; Nieto *et al.*, 2015; Raschke *et al.*, 2015). In addition, B-box zinc finger protein 18 (BBX18) recruits the E3 ligase XB3 ORTHOLOG 5 IN ARABIDOPSIS THALIANA 31 (XBAT31) and XBAT35 to target ELF3 for degradation at high temperatures (Zhang *et al.*, 2021).

1.4 H. vulgare as a model crop for adaptation to climate change

With its multiple functions in the circadian clock and thermomorphogenesis, *ELF3* has been described as one of the key plasticity genes, conferring acclimation responses to changing environments (Blackman, 2017; Laitinen and Nikoloski, 2019). In the context of global climate change, expanding knowledge generated from Arabidopsis to crops and crop models is pivotal to achieve crop-level adaptations and yield stability (Challinor *et al.*, 2014). However, although *ELF3* homologues have been identified in multiple of crop species (Faure *et al.*, 2012; Zakhrabekova *et al.*, 2012; Ning *et al.*, 2015; Alvarez *et al.*, 2016; Lu *et al.*, 2017; Ridge *et al.*, 2017), their roles in crop acclimation and adaptation to changing temperatures are largely unknown.

Barley (*Hordeum vulgare*) as a globally cultivated robust crop, has emerged as a distinguished model for understanding crop adaptation to climate change (Dawson *et al.*, 2015; Harwood, 2019). The barley ortholog of Arabidopsis *ELF3*, *HvELF3* (also known as *EARLY MATURITY 8* or *Praematurum-a*), has conserved functions in flowering time regulation, which plays a critical role in barley adaptation/domestication to short growing seasons (Faure *et al.*, 2012; Zakhrabekova *et al.*, 2012). In addition, although the cycling of circadian genes tends to follow a different bimodal pattern and the predicted oscillator network needs to be validated, HvELF3 is conserved as a core component also in the barley circadian clock (Müller *et al.*, 2020).

The current understanding of barley temperature responses is mainly restricted to its reproductive development, which is regulated by the circadian clock, photoperiod, and vernalization (Jacott and Boden, 2020) (Fig. 1-3). Loss of *ELF3* function facilitates the

5

expression of the photoperiod response gene *PHOTOPERIOD H1* (*Ppd-H1*), which corresponds to Arabidopsis *PRR*37 (Turner *et al.*, 2005; Faure *et al.*, 2012). Up-regulation of *Ppd-H1* promotes the expression of *FT1*, a barley homologue of Arabidopsis *FT* (Campoli *et al.*, 2012). In addition, a potentially conserved barley GI-CO1-FT1 pathway promotes *FT1* directly or via Ppd-H1, providing another connection to the circadian clock as *GI* is predicted to be repressed by barley LUX1 (Müller *et al.*, 2020). Furthermore, in the vernalization pathway, VERNALIZATION 1 (VRN1) and VRN2 as key regulators activate or repress *FT1* (also known as *VRN3*) (Yan *et al.*, 2006; Trevaskis *et al.*, 2007). Florigen FT1 translocates from leaves to the shoot apical meristem, associated with the expression of barley floral meristem identity genes *VRN1*, *BARLEY MADS-box 3* (*BM3*), and *BM8*, initiating inflorescence development (Trevaskis *et al.*, 2007; Li *et al.*, 2015). Cooperating with FT1 in the acceleration of flowering, gibberellic acid (GA) biosynthesis is induced under long days, which is known to be related with *ELF3* function (Boden *et al.*, 2014).

Fig. 1-3 An overview of pathways controlling floral transition in *H. vulgare*.

The connections with question marks are based on their functions in Arabidopsis, which have not been validated yet in barley.

The reproductive development of barley is generally accelerated in an *ELF3* loss-of-function background (Faure *et al.*, 2012; Zakhrabekova *et al.*, 2012). High ambient temperatures further induce the flowering in *elf3* mutants, however, with even reduced or invariable *FT1* levels, suggesting *FT1*-independent pathways (Hemming *et al.*, 2012; Ejaz and von Korff, 2017). In the circadian clock pathway, ELF3 function is required for the temperature responsiveness of *GI* and *PRR* genes (Ford *et al.*, 2016; Müller *et al.*, 2020). In addition, acting downstream of *ELF3*, the effects of *Ppd-H1* in thermal acceleration of flowering depend on the allelic variation for *VRN1* (Ejaz and von Korff, 2017; Ochagavía *et al.*, 2021).

For example, *Ppd-H1* promotes floral development in the presence of a spring *VRN1* allele but not a winter *vrn1* allele, indicating the interaction with the vernalization pathway (Ejaz and von Korff, 2017). These findings suggest that the effects of temperature connect to all three major pathways in barley reproductive development, with ELF3 playing critical upstream roles.

1.5 Natural variation for growth and developmental plasticity

As our knowledge of barley *ELF3* was generated from induced mutants, it is necessary to have a confirmation in diverse genetic backgrounds for breeding applications. Domestication and breeding confer resilience to crops against adverse environments, however, such improvement meanwhile eliminates genetic diversity (Gasparini *et al.*, 2021). To improve growth and developmental plasticity ready for upcoming challenges, exploiting natural variation provides another approach that helps to identify new favorable alleles from wild relatives.

In Arabidopsis, recombinant inbred line (RIL) populations were generated using bi-parental crosses (natural accessions Bay-0 and Sha) or intercrossing of 19 accessions (MAGIC population) (Anwer et al., 2014; Box et al., 2015; Raschke et al., 2015). Based on these populations, natural variation within *ELF3* was found to affect thermoresponsive growth, contributing to our understanding of its role in circadian clock and thermomorphogenesis. Besides single nucleotide polymorphisms (SNPs) in Arabidopsis ELF3, the temperature sensing PrD harbors natural variation of polyglutamine (polyQ) length caused by expanded cytosine-adenine-adenine (CAA) repeats. Similar to the aggregation of ELF3 responding to high temperatures (Jung et al., 2020), in humans, the polyQ-extended proteins are known to aggregate in the degenerated neurons leading to so-called polyQ diseases (Fan et al., 2014). This consistency suggests that the polyQ determines the thermosensing function of Arabidopsis ELF3-PrD. Variations in polyQ length have been investigated from more than one hundred natural accessions (Tajima et al., 2007; Undurraga et al., 2012). These studies reported significant correlations between polyQ length and circadian clock parameters, using natural or transgenic lines. However, the associations of polyQ length with temperature responsive phenotypes were not prominent (Press et al., 2016). Thus, regarding temperature sensing and signaling, potential effects and evolutionary meaning of ELF3 polyQ variation are still unknown.

7

Barley germplasm consists of genetically diverse landraces and exotic accessions, and a large proportion of which is presumed to be adapted to various abiotic stresses (Newton et al., 2011; Russell et al., 2011). For instance, a spontaneous recessive elf3 mutant was identified in barley landraces from the Qinghai-Tibetan Plateau, where low temperatures are the main restrictions for growth (Xia et al., 2017). To examine potentially beneficial alleles from exotic progenitors in an elite background, the nested association mapping (NAM) population Halle Exotic Barley-25 (HEB-25) was generated by crossing 25 exotic barley accessions with the elite cultivar Barke (Maurer et al., 2015) (Fig. 1-4A). Based on this population, ELF3 was identified in a quantitative trait locus (QTL) region, responsible for various agronomic traits under different environments (Maurer et al., 2016; Herzig et al., 2018). To study the effects of exotic ELF3 variants, heterogeneous inbred family (HIF) pairs were generated based on HEB-25 (Zahn et al., 2022, Preprint) (Fig. 1-4B). In each HIF pair, two nearly isogenic sister lines differ only in the homozygous cultivated (elite) or exotic (wild) ELF3 allele or region, allowing direct comparison. Recent field experiments revealed significant roles of exotic ELF3 alleles in barley development and grain yield (Zahn et al., 2022, Preprint), demonstrating that HIF pairs have suitable genetic backgrounds to study barley temperature responses.

Fig. 1-4 H. vulgare HEB-25 population and HIF concept.

(A) Geographic origins of HEB-25 parental lines (Maurer *et al.*, 2015). Parental lines of HIF pairs used in this study are highlighted. (B) Generation of *ELF3* HIF pairs. *Hsp*, *Hordeum vulgare ssp. spontaneum*.

1.6 Objectives

The principal objective of this thesis is to functionally characterize *ELF3* as a determinant of plant performance under changing temperatures, from the eudicot model Arabidopsis to the monocot model crop barley. The work included the following aspects:

- I) Trace the evolutionary emergence of *ELF3*. Taking advantage of available plant genomes, this work intended to identify *ELF3* homologues across the plant kingdom, with the focus on PrD existence. In parallel, this work attempted to investigate natural variation of ELF3 polyQ length among Arabidopsis accessions and its correlation with temperature responsive phenotypes.
- II) Determine the role of *ELF3* in circadian clock temperature entrainment in Arabidopsis seedlings. Infrared time-lapse imaging and genetic analyses allowed evaluation of oscillator rhythmicity under temperature cycles. The major focus was to understand how cyclic temperature signals are perceived by the oscillator, and whether *ELF3* acts as a temperature Zeitnehmer.
- III) Explore thermomorphogenesis and the potential role of *HvELF3* in barley. A combination of physiological assays, image-based phenotyping, and transcriptional analyses enabled characterizing growth, development, and yield-related responses to high temperatures in barley. In this process, using *elf3* loss-of-function alleles and HIF pairs generated from the HEB-25 population helped to evaluate the general function of *ELF3*, and specifically the function of exotic *ELF3* alleles.

2 Materials and Methods

2.1 Plant material

2.1.1 A. thaliana lines

All *A. thaliana* mutant lines used were in the Ws-2 (Wassilewskija-2) or the Columbia-0 (Col-0) background. The *elf3-4* (Hicks *et al.*, 1996; Zagotta *et al.*, 1996), *gi-158* and *elf3-4 gi-158* (Anwer *et al.*, 2020), *phyB-10* (Feldmann, 1991; Franklin *et al.*, 2003), and *pcl1-2* (Onai and Ishiura, 2005) null mutants were in the Ws-2 background. The *elf3-4 phyB-10* was generated by crossing. The *elf4-2*, *elf4-2 ELF3-OE*, and *elf3-1 ELF4-OE* mutants in the Col-0 background have likewise been described previously (Nusinow *et al.*, 2011; Box *et al.*, 2015; Jung *et al.*, 2020). Ws-2, *elf3-4*, *phyB-10*, and *elf3-4 phyB-10* additionally harbor a *CCR2:LUC* reporter construct, and Ws-2 and *pcl1-2* additionally harbor *GI:LUC*. Natural accessions of A. thaliana obtained from Nottingham Arabidopsis Stock Centre

(NASC) are listed in Appendix I.

2.1.2 H. vulgare lines

Three HIF pairs (10_190, 16_105, and 17_041) were selected from the barley NAM population HEB-25, with exotic barley accessions collected from Syria, Afghanistan, and Iran, respectively (Maurer *et al.*, 2015; Zahn *et al.*, 2022, Preprint) (Fig. 1-4). The genomic setup of these three HIF pairs was previously described and is visualized in Appendix II (Zahn *et al.*, 2022, Preprint). Bowman (elite cultivar), *elf3^{BW289}*, and *elf3^{BW290}* (*eam8.k* and *eam8.w* loss-of-function mutants BW289 and BW290 in Bowman background) were used as control and have been described previously (Faure *et al.*, 2012; Zakhrabekova *et al.*, 2012).

2.2 Physiological assay

2.2.1 Seed sterilization and stratification

A. thaliana seeds were surface sterilized by washing with 70% ethanol for 3 min, and with 4% NaClO (with 0.3% TritonX) for 8 min using an orbital shaker. Seeds were then rinsed with sterile water three times for 10 min each and stratified in sterile water for 3 d at 4°C in darkness. *H. vulgare* seeds used for sterile culture were likewise surface sterilized by washing with 4% NaClO for 30 min and cold stratified for 2 d at 4°C in darkness.

2.2.2 A. thaliana temperature assays

Sterilized seeds were allowed to germinate on solid *A. thaliana* solution (ATS) nutrient medium with 1% (w/v) sucrose (Lincoln *et al.*, 1990). Unless stated otherwise, seedlings were grown on vertically oriented plates placed in long days (LDs, 16 h light: 8 h dark) or short days (SDs, 8 h light: 16 h dark) with 90 μ mol m⁻²s⁻¹ photosynthetically active radiation (PAR) using white fluorescent lamps (T5 4000K). Seedlings were grown at constant 16, 20, 22, or 28°C for 8 d. For temperature shift assays, seedlings grown at 20°C for 4 d were either shifted to 28°C or kept at 20°C for an additional 4 d. For assays in constant light (LL, 90 μ mol m⁻²s⁻¹), seedlings were grown at constant 16, 22, or 28°C for 8 d. Seedlings were grown at constant 16, 22, or 28°C for 8 d. Seedlings were imaged and the length of hypocotyl was measured using the segmented line tool in ImageJ (http://imagej.nih.gov/ij/) or using RootDetection 0.1.2 (http://www.labutils.de/rd.html). Temperature response (%) was calculated as the ratio of each measured hypocotyl length at higher temperature (22°C or 28°C) relative to the median hypocotyl length at lower temperature (16°C or 20°C).

Temperature shift assays (20°C to 28°C) were used for screening of 253 *A. thaliana* accessions. The experiments were performed separately in nine sequential batches and Col-0 was included in each batch (n=6-32 depending on germination). To compare the data obtained among different batches, relative hypocotyl length was calculated by normalizing absolute value to the median hypocotyl length of Col-0 (Accession ID: 6909) at 20°C for each batch.

2.2.3 Growth assays under temperature cycles

2.2.3.1 Growth conditions

To unobstructedly visualize hypocotyl and cotyledons in air, seeds were sown on the agar ledge formed by removing part of the agar in square plates (Fig. 2-1, left part). After sowing, the redundant seeds were removed to ensure adequate seed-seed distance (around 5 mm), and small ditches were made next to each seed. Seeds were then relocated to the ditches so that the position of seeds and young seedlings were relatively fixed during the experiment. The plates were placed in constant light (LL, 30 μ mol m⁻²s⁻¹) under specified temperature cycles (12 h 22°C: 12 h 16°C or 12 h 28°C: 12 h 22°C). For free-running conditions, seedlings were entrained by temperature cycles for 2 d after germination in LL and then on day 3 at Zeitgeber time (ZT) 00 (start of subjective warm period) seedlings were released into constant 22°C.

Fig. 2-1 Infrared imaging platform for circadian rhythmicity analysis.

Left part: Sowing step, camera screen with the view of plates and setting parameters, and the platform for imaging.

Right part: Images of the same Ws-2 seedlings at various ZTs were shown as examples. The seedlings were under free-running conditions after temperature cycle entrainment.

2.2.3.2 Construction of infrared imaging platform

An infrared-based imaging system was constructed inside the growth chamber to monitor seedling phenotypes under cycling conditions (e.g., light/dark cycles and temperature cycles) with infrared illuminations (Fig. 2-1, left part). The camera (Panasonic G5, Kadoma, Osaka, Japan) was modified with infrared long pass 830 nm cut filters, which enabled imaging in darkness without disturbing seedling growth. The setting parameters of the camera were: lens H-PS14042, aperture f4.5, shutter speed 1.3", and ISO 200.

Imaging started at ZT00 on day 3 after germination. Photographs were taken every 60 min for 96 h. Interval timer shooting was achieved by using a remote controller (Rollei, Norderstedt, Germany).

2.2.3.3 Circadian rhythmicity analysis

Image stacks were imported as 'Image Sequence' in ImageJ (http://imagej.nih.gov/ij/), so that seedlings can be measured separately across different time points and minor changes between time points can be thereby detected (Fig. 2-1, right part). For cotyledon movement measurement, the angle between cotyledon position to its relative horizontal was defined as elevation angle, which was measured using the Angle tool. In case of non-straight seedling positions, relative coordinates were generated using the Rotated Rectangle tool,

to ensure both cotyledons having the same elevation angle. Hypocotyl length was measured using the Segmented Line tool, by slightly adjusting the control nodes between time points. The growth rate was calculated as absolute growth rate between two time points. The circadian parameters of cotyledon movement were determined using MFourFit method integrated in BioDare2 analysis platform (Zielinski *et al.*, 2014). The relative amplitude error (RAE) analysis was used to estimate the robustness of the circadian rhythm: RAE values range from 0 to 1, where 0 represents a robust rhythm, and 1 represents no rhythm.

2.2.4 *H. vulgare* temperature assay on plates

Sterilized Bowman and *elf3^{BW290}* seeds were sown on solid ATS nutrient medium with 1% (w/v) sucrose (Lincoln *et al.*, 1990). Vertically oriented plates were placed in darkness at 20°C to allow germination. After germination, plates were shifted to constant 28°C or were kept at constant 20°C, with LD (16 h light: 8 h dark) and light intensity of 90 µmol m⁻²s⁻¹. The position of leaf tips was marked on the plate after germination and seedlings were imaged in two consecutive days at ZT08. The leaf length (from the marked position, *n*=9-17) was measured using RootDetection 0.1.2 (http://www.labutils.de/rd.html).

2.2.5 *H. vulgare* temperature assay in growth chambers

2.2.5.1 Growth conditions

Seeds of three HIF pairs (10_190, 16_105, and 17_041), Bowman, and *elf3^{BW290}* were directly sown in soil and placed in a growth chamber with day/night temperatures of 20°C/16°C, light intensity of 300 µmol m⁻²s⁻¹ and LD (16 h light: 8 h dark). Five days after sowing (DAS), uniformly germinated seedlings (*n*=11) were either shifted to high ambient day/night temperatures (28°C/24°C, hereafter called 28°C treatment) or were kept at the 20°C/16°C temperature regime (hereafter called 20°C treatment). The position of plants in the growth chambers was randomly rotated twice per week.

2.2.5.2 Construction of image-based phenotyping platform

To non-destructively acquire barley growth and developmental phenotypes, an imagebased phenotyping platform was constructed (Fig. 2-2A). A 1.2 m \times 1.2 m \times 1.8 m phenotyping frame was customized with a stand positioned in the middle of the frame to fix the position and direction of the plants during each imaging time point. The platform included three Raspberry Pi 3 model B single-board microcomputers and three Raspberry Pi RGB camera modules (V2 8MP, Raspberry Pi foundation, Cambridge, England, UK), which enabled imaging from three directions: two side-views separated by 90° and a top-view. The illumination was provided by two light-emitting diodes (LED) lamps (4.6W, Philips, Eindhoven, Netherlands) from the top, and two LED light sets (10W, Neewer, Shenzhen, China) from the sides. The camera modules and light sets were positioned on the top of the frame or outside of it using tripods. The lens-pot distances were 1.25 m to the middle of the pot for side-views and 1.3 m to the top of the pot surface for top-view. To distinguish the plant parts from the surroundings, white foils (Colormatt-Hintergrund Super White, Studioexpress Vertriebs GmbH, Wiernsheim, Germany) were used as imaging background, blue cages (HNP Metalltechnik GmbH, Quedlinburg, Germany) were added to all pots, and blue meshes (Klartext Wunderlich Coating GmbH & Co. KG, Osterode am Harz, Germany) were used to cover the soil surface from 8 DAS.

Fig. 2-2 Image-based plant phenotyping for barley temperature assay in growth chambers.

(A) Schematic representation of the phenotyping setup. Pi, a Raspberry Pi microcomputer and an RGB camera module with illumination. (B) Example of raw and output images from image analysis pipelines. (C) Correlation of plant height values obtained from image analysis (x axis) and from manual measurement (y axis). All values (*n*=880) obtained at 8, 16, 28, 35, and 49 DAS were used for analysis and plotting.

The operation protocol for simultaneously acquiring images from several directions was previously described (Tovar *et al.*, 2018). To use a Windows computer as a remote host, secure copy protocol (scp) was used to copy the public secure shell (SSH) key, and the rsync package was installed using Cygwin (https://www.cygwin.com) for proper synchronization of images.

2.2.5.3 Phenotyping

Plant height was manually measured daily between 5 and 14 DAS, from soil surface to the highest point of plants without straightening the plants. From 8 until 52 DAS, besides the manual measurement of plant height, total tiller number was counted, and each plant was imaged every two to four days. The images were analyzed with the HTPheno pipeline (Hartmann *et al.*, 2011) for plant height (two side-views) and plant area (all three views) (Fig. 2-2B). The extracted values displayed a strong correlation with the manually measured values during the experiment (Fig. 2-2C), demonstrating the robustness of the imaging and image analysis pipelines.

Plant volume was calculated as the square root of the product of two side-view areas and the top-view area. For convex hull area, the plant silhouette images derived from the HTPheno pipeline were further analyzed using the Hull and Circle plugin (Karperien, A., version 2.0a) in ImageJ (http://imagej.nih.gov/ij/).

The days until visible third leaf, coleoptile tiller, first tiller, flag leaf sheath opening, and heading (first visible awns) were daily scored. The chlorophyll content was measured using the SPAD-502Plus chlorophyll meter (Konica Minolta, Chiyoda City, Tokyo, Japan) every week from 16 until 52 DAS. The measurement took place around 3 cm from the leaf collar of the second leaf. For destructive measurement of leaf size, the first and second leaves of harvested plants (*n*=5) were imaged 16 DAS. The leaf length and width of the first and second leaves were measured using ImageJ (http://imagej.nih.gov/ij/). The measurement of leaf width took place at 2 cm from the leaf collar. All measurement and imaging were conducted between ZT03 and ZT06 on each measurement day.

2.2.6 H. vulgare temperature assay in greenhouses

Seeds of HIF pair 10_190 (hereafter called HIF pair 10), Bowman, and *elf3^{BW290}* were coated with Rubin TT (BASF, Ludwigshafen, Germany) to avoid fungal infections before being sown in soil. The experiment was conducted in the greenhouses at Julius Kühn-Institut

(Quedlinburg, Germany). Plants were grown under the 20°C treatment and LD (16 h light: 8 h dark, light intensity of 300 μ mol m⁻²s⁻¹). Plants (*n*=12-15) that reached BBCH-13 (Lancashire et al., 1991) were either shifted to the 28°C treatment or were kept under the 20°C treatment conditions.

The developmental stage was scored at 73 DAS. Plant height and total tiller number were scored at 118 DAS. At maturity (166 DAS for 28°C and 195 DAS for 20°C), the aerial part of the plants was harvested. From three randomly selected spikes of each plant, the length of the spike (excluding the awns) was measured, and the number of grains and florets per spike was determined. The average data for each plant was used for further analysis. Plant dry weight was measured after placing plant materials (aerial parts excluding the spikes) into a drying oven for 1 d at 60°C. The grains were threshed using an LD180 laboratory thresher (Wintersteiger, Ried im Innkreis, Austria). The number of grains per plant, grain area, thousand grain weight (TGW), and grain weight per plant were measured using MARVIN ProLine seed analyzer (MARVITECH GmbH, Wittenburg, Germany).

2.3 Molecular biology methods

Primer sequences used for PCR, sequencing, and RT-qPCR are listed in Appendix III.

2.3.1 DNA sequencing

For *A. thaliana* ELF3 polyQ variation, *ELF3* coding sequences of 319 Arabidopsis accessions were obtained from 1001 genomes (Weigel and Mott, 2009). As these sequences contained a large proportion of unknown nucleotides in *ELF3* polyQ regions, polyQ variation of 115 accessions was correct with previously published dideoxy sequencing data (Tajima *et al.*, 2007; Undurraga *et al.*, 2012). In addition, the PrD regions were dideoxy sequenced and corrected in *ELF3* of the other 204 additional accessions. The PrD regions including polyQ were amplified using DreamTaq DNA polymerase (Thermo Fisher Scientific, Waltham, USA).

For *H. vulgare* HIF pairs, the entire *ELF3* genomic sequences was amplified using Ex Taq DNA Polymerase (Takara Bio, Kusatu, Shiga, Japan) and 1186 bp of promoter sequence upstream of the ELF3 start codon in HIF pair 10 was amplified using ALLin[™] RPH Polymerase (highQu GmbH, Kraichtal, Germany).

The amplicons were purified using GeneJET Purification Kits (Thermo Fisher Scientific, Waltham, USA) and submitted to Eurofins Genomics (Ebersberg, Germany) for dideoxy sequencing.

2.3.2 Transcriptional analysis

For *A. thaliana* under temperature cycles, seedlings were entrained in LL (90 μ mol m⁻²s⁻¹) or darkness (DD), under 12 h 22°C: 12 h 16°C for 8 d. On day 9, starting from ZT00, the samples were harvested every 4 h. For the temperature gating assay, seedlings were entrained under temperature cycles (with LL) as described above for 8 d. On day 9, starting from ZT00, seedlings were either treated with a 4 h temperature pulse (28°C) at various ZTs, or were kept under the same conditions (no treatment) before samples were harvested at the specified time. For *H. vulgare* under temperature cycles, Bowman and *elf3^{BW289}* seedlings were entrained in LL (90 μ mol m⁻²s⁻¹), under 12 h 22°C: 12 h 16°C for 14 d. On day 15, starting from ZT00, the samples were harvested every 4 h.

For the *H. vulgare* temperature assay in growth chambers, leaf samples of HIF pair 10_190 (10_elite and 10_wild) were harvested at ZT08 at 5, 12, 19, 27, 33, and 40 DAS.

All experiments were performed using three biological replicates. Total RNA was extracted using the NucleoSpin RNA Plant Kit (Macherey-Nagel), cDNA was synthesized using the PrimeScript RT Reagent Kit (Perfect Real Time, Takara Bio), and quantitative real-time-PCR (qRT-PCR) was performed on an AriaMx Real-Time PCR System (Agilent) using Absolute Blue Low Rox Mix (Thermo Fisher Scientific). The relative expression values ($2^{\Delta Ct}$ values) were calculated using reference genes *PP2A* (AT1G13320) and *TIP41* (AT4G34270) for *A. thaliana*, and *HvACTIN* and *HvGAPDH* (Kikuchi *et al.*, 2012; Zakhrabekova *et al.*, 2012) for *H. vulgare*.

2.4 Computational analysis

2.4.1 Phylogenetic analysis

Copy number of ELF3, EEC, ELF4, and LUX in 42 plant species was obtained using HMMER (Finn *et al.*, 2011) and BLASTp (Altschul *et al.*, 1990) searches based on the Arabidopsis protein and coding sequences. ELF3 and EEC copies were classified using InterProScan (Jones *et al.*, 2014).

In addition, Arabidopsis ELF3 and EEC protein sequences were used to identify their homologous genes from available plant genomes in Phytozome v12.1, v13 (Goodstein *et al.*, 2012) and OneKP databases (Matasci *et al.*, 2014). In total, 434 sequences were obtained from 274 plant genomes (Appendix IV). Sequence alignment was performed using MUSCLE (Edgar, 2004) in AliView (Larsson, 2014).

Maximum likelihood phylogenetic analysis of the sequence alignment was performed using IQ-Tree (Nguyen *et al.*, 2015) with 10,000 replications of ultrafast bootstrap on the CIPRES Science Gateway (Miller *et al.*, 2012). The JTT+F+R10 model was selected as the best-fit amino acid substitution model according to Bayesian Information Criterion for the phylogenetic analysis of ELF3 in green plants. The JTT+R3 model was selected for the phylogenetic analysis of identified Brassicales ELF3. All identified ELF3 and EEC sequences were subjected to PLAAC (Lancaster *et al.*, 2014) to identify probable PrD regions with a default minimum domain length of 60. For each sequence, the COREscore and Log-likelihood ratio (LLR, without a hard cut-off compared to COREscore) were retrieved to represent prion-like properties.

For *A. thaliana* accessions, after removing the stop codon (as well as the sequence after a premature stop codon in one accession, ID: 9089), the corrected *ELF3* coding sequences from all 319 accessions were aligned and phylogenetic analysis was performed as described above. The MG+F3X4 model was selected as the best-fit codon model.

2.4.2 Population genetic analysis

Sequence polymorphism ($\pi a/\pi s$), nucleotide diversity (π), and Tajima's D (Tajima, 1989) of *ELF3* were calculated among 319 Arabidopsis accessions, as well as sequence divergence (Ka/Ks) of *ELF3* between Arabidopsis and other Brassicaceaes, using sliding window analyses (width: 30, step: 3) in DnaSP v6 (Rozas *et al.*, 2017). The *ELF3* sequences of nine Brassicaceaes (*A. lyrata, A. halleri, B. oleracea var. capitata, B. stricta, C. hispanica, C. rubella, D. sophioides, E. salsugineum, T. arvense*) were used as an interspecific group for Ka/Ks analysis.

2.4.3 Growth curve modeling

For the *H. vulgare* temperature assay in growth chambers, growth curves were modeled for all traits which were obtained on successive days, as cubic splines in SAS PROC TRANSREG (SAS Institute, Inc., Cary, USA) with nknots set to 1. Based on the predicted

values the following parameters were derived for each line: maximum increase (difference between two consecutive days), day of maximum increase, maximum value, day of maximum value, end point value, and total area under the curve (based on the trapezoidal rule with trapezoids defined between each two consecutive days).

2.4.4 Principal component analysis (PCA)

PCA was performed with SAS PROC PRINCOMP (SAS Institute, Inc., Cary, USA) based on the arithmetic means of all obtained traits from *H. vulgare* temperature assay in growth chambers, or the derived growth curve modeling traits, for each line. Due to the different units and scales of the traits, the PCA was based on the correlation matrix.

2.4.5 Pairwise correlation analysis

For *H. vulgare* temperature assays in growth chambers and in greenhouses, pairwise correlation coefficients were determined for Bowman, *elf3^{BW290}*, and HIF pair 10_190 between all investigated traits obtained from both growth and development, and yield component experiments. As for PCA, correlations across all lines were based on arithmetic means, as well as the derived growth curve modeling traits. All Pearson correlation coefficients and their *P* values were computed using SAS PROC CORR (SAS Institute, Inc., Cary, USA).

2.4.6 Statistical analysis and data visualization

Unless stated otherwise, statistical analysis was performed in R (R Core Team, 2013) and data visualization was based on the ggplot2 package (Wickham *et al.*, 2016).

For the evolution of *ELF3*: sequence alignment was visualized in Jalview (Waterhouse *et al.*, 2009); phylogenetic trees were visualized and annotated in iTOL (Letunic and Bork, 2007); geographic distribution of *A. thaliana* accessions was mapped using the geodata (Hijmans *et al.*, 2022) and ggrepel (Slowikowski *et al.*, 2018) packages; distributions and Pearson correlations of polyQ length and phenotypic data were computed and visualized using the ggpubr (Kassambara, 2020) and plot3D (Soetaert, 2021) packages.

For *A. thaliana* physiological assays, hypocotyl length data were analyzed by two-way ANOVA, whereas growth rate, RAE, and RT-qPCR data were analyzed by one-way ANOVA and followed by Tukey's HSD *post hoc* test. The effect of the temperature pulse in the gating assay was analyzed by a two-sided Student's t-test using GraphPad QuickCalcs

(<u>http://graphpad.com/quickcalcs/</u>). Different cycling conditions were shaded in the plot using the package ggpattern (FC and Davis, 2022).

For *H. vulgare* physiological assays, significant differences between temperature treatments and genotypes were analyzed by two-way ANOVA followed by Tukey's HSD *post hoc* test. The genomic setup of HIF pairs was visualized using the chromoMap package (Anand and Rodriguez Lopez, 2022). The package ggbeeswarm (Clarke and Sherrill-Mix, 2017) was used for distribution of biological replicates in the boxplots, arranged without overlapping. Correlation between measured and extracted values was calculated and plotted using the ggpmsic package (Aphalo *et al.*, 2022). The results of PCA and pairwise correlation analysis were visualized using the ggrepel (Slowikowski *et al.*, 2018) and corrplot (Wei *et al.*, 2017) packages.

3 Results I – Emergence and evolution of *ELF3* and its prionlike domain

A recent study revealed that a prion-like domain (PrD) in Arabidopsis EARLY FLOWERING 3 (ELF3) functions as a thermosensor, which is required for the phase separation of ELF3 in response to temperature changes (Jung *et al.*, 2020). However, as ELF3 from the model grass *Brachypodium distachyon* lacks a PrD and temperature responsive aggregation, it is unknown whether and how the PrD is conserved in ELF3 across the plant kingdom. This chapter aims to trace the evolutionary emergence of ELF3 and its duplicate gene *ESSENCE OF ELF3 CONSENSUS (EEC)* with a focus on PrD existence. Furthermore, the length variation of polyglutamine (polyQ) within the ELF3-PrD was investigated among Arabidopsis natural accessions, as well as its correlation with temperature responsive hypocotyl elongation.

3.1 Evolutionary origins of ELF3/EEC and PrD

In the model plant Arabidopsis, the major functions of ELF3 in circadian clock regulation require the evening complex (EC) with the involvement of ELF4 and LUX (Nusinow *et al.*, 2011; Ezer *et al.*, 2017). Previous studies revealed ELF3 homologue in the charophyte *Klebsormidium nitens*, whereas potential homologues of ELF4 and LUX were identified even in chlorophytes like *Chlamydomonas reinhardtii* (Linde *et al.*, 2017). To obtain a general picture about the evolution of *ELF3* and its similar duplicate *EEC* across the plant kingdom, the copy number of the EC members *ELF3*, *ELF4*, and *LUX*, as well as *EEC* was determined in 42 plant species ranging from unicellular green algae to flowering plants (Table 1). An *ELF3* homologue was identified in the charophyte *Chara braunii*, confirming the origin of *ELF3* in charophyta. However, in contrast to previous reports (Linde *et al.*, 2017), no *ELF4* and only one *LUX* homologue was identified in *Chlamydomonas reinhardtii*, and four *ELF3* homologues were identified in *Physcomitrium patens* (Table 1). Interestingly, in contrast to the identification of the EC components back to the charophytes, the *EEC* homologues were only detected in the eudicots (Table 1). These data suggest that a duplication event in the last common ancestor of the eudicots gave rise to *EEC* in this lineage.

	Species	Orders	ELF3	EEC	ELF4	LUX
Chlorophyte	Chlamydomonas reinhardtii	Chlamydomonadales	0	0	0	1
	Chara braunii	Charales	1	0	1	1
	Klebsormidium nitens	Klebsormidiales	1	0	2	1
Charophyte	Mesotaenium endlicherianum	Zygnematales	1	0	2	1
	Penium margaritaceum	Desmidiales	1	0	4	1
	Spirogloea muscicola	Spirogloeales	1	0	3	1
Bryophyto	Physcomitrium patens	Funariales	4	0	1	4
ыуорнусе	Marchantia polymorpha	Marchantiales	1	0	1	1
Lycophyte	Selaginella moellendorffii	Selaginellales	2	0	4	1
Fern	Ceratopteris richardii	Polypodiales	4	0	8	6
Gymnosperm	Ginkgo biloba	Ginkgoales	3	0	2	1†
Angiosperm	Amborella trichopoda	Amborellales	1	0	2	1
	Musa acuminata	Zingiberales	4	0	5	3
	Brachypodium distachyon	Poales	1	0	3	1
	Dioscorea cayenensis	Dioscoreales	2*	0	2	1
	Hordeum vulgare	Poales	1	0	2	1
Monocot	Oryza sativa	Poales	2	0	3	1
	Panincum hallii var. hallii	Poales	2	0	3	1
	Setaria italica	Poales	2	0	2	1
	Triticum aestivum	Poales	1	0	6	3
	Zea mays	Poales	2	0	3	2
	Beta vulgaris	Caryophyllales	1	0	3	2
	Daucus carota	Apiales	1	0	4	3
	Helianthus annuus	Asterales	2	1	10	7
	Arabidopsis halleri	Brassicales	1	1	5	2
	Arabidopsis lyrata	Brassicales	1	1	5	2
	Arabidopsis thaliana	Brassicales	1	1	5	2
	Brassica oleracea	Brassicales	2	3	13	2
	Cucumis sativus	Cucurbitales	1	1	3	2
	Manihot esculenta	Malpighiales	1	1	6	2
	Glycine max	Fabales	2	1	8	2
Eudicot	Lupinus angustifolius	Fabales	2*	1*	7	2
	Medicago truncatula	Fabales	2	1	4	1
	Phaseolus vulgaris	Fabales	1	1	6	1
	Vigna angularis	Fabales	2*	1*	6	1
	Gossypium raimondii	Malvales	1	3	12	3
	Theobroma cacao	Malvales	1	1	4	1
	Prunus persica	Rosales	1	1	3	1
	Populus trichocarpa	Malpighiales	1	1	7	2
	Solanum lycopersicum	Solanales	3	1	7	2
	Solanum tuberosum	Solanales	3	1	7	2
	Vitis vinifera	Vitales	1	1	4	1

 Table 1 Gene homologues of the evening complex and EEC in various plant genomes.

* In different species of the same genus

[†] Potential homologue

To trace the evolution and divergence of ELF3 and EEC in more detail, the homologues of ELF3 and EEC were identified from 274 plant genomes and the phylogenetic relationships among them were reconstructed. The sequences from similar angiosperm groups (e.g., basal angiosperms, monocots, eudicots, core eudicots) mostly clustered together in the phylogenetic tree (Fig. 3-1). As expected, Arabidopsis ELF3 and EEC were separated into two different clades, with only core eudicot species included. In orders such as Buxales, Trochodendrales, Proteales, and Ranunculales, which are eudicots but not core eudicots, only ELF3 homologues were detected and positioned in a clade with basal angiosperm and monocot ELF3s. Interestingly, this clade is more closely related to the EEC clade than to the ELF3 clade from core eudicots. In addition, more genetic changes might have occurred in Brassicales and Saxifragales EEC as indicated by branch lengths (Fig. 3-1).

Fig. 3-1 Phylogenetic tree of ELF3 and EEC.

The tree was constructed with the full-length protein sequences obtained from 274 plant genomes, using maximum likelihood IQ-Tree JTT+F+R10 model with 10,000 replications of ultrafast bootstrap (shown as circles). The ELF3 and EEC clades are marked based on the position of Arabidopsis ELF3 and EEC, respectively. The labels are colored according to

species group and clade. PLAAC derived scores are shown as stacked bar charts outside of the tree. Leaf names and scores are listed corresponding to the branch ID in Appendix IV.

Arabidopsis ELF3 is known to harbor a prion-like domain (PrD) which mediates the phase separation of ELF3 in response to temperature changes (Jung et al., 2020). I next asked whether the PrD is conserved in identified ELF3/EEC homologues and analyzed all sequences using PLAAC and obtained COREscore and LLR: both scores indicate the probability to have prion subsequences with LLR not imposing a hard cutoff (Lancaster et al., 2014). For instance, the PrD of Arabidopsis ELF3 was predicted to contain two subsequence regions and the overall COREscore and LLR are both 31.534 (Figs. 3-1, 3-2). When considering the hard cutoff, COREscore based PrD prediction mainly identified ELF3 sequences from core eudicots (Fig. 3-1). Besides that, ELF3 homologues in the moss Physcomitrium patens and Sphagnum fallax, as well as the monocot Sorghum bicolor were predicted to have a PrD with relatively low but positive COREscore. The highest scores were detected in Brassicales ELF3, with several species (Capsella grandiflora: 59.885, Arabidopsis lyrata: 58.268, Capsella rubella: 57.518, Alyssum linifolium: 49.964, Arabidopsis halleri: 46.358, Descurainia sophioides: 45.537, Brassica rapa: 32.622, and Isatis tinctoria: 32.092) displaying an even higher score than Arabidopsis, suggesting potentially conserved temperature sensing functions of PrD. Moreover, although four highly conserved regions were identified between ELF3 and EEC, the PrD region diverged between EEC and ELF3 of monocots compared to ELF3 in core eudicots. Notably, none of the sequences in the EEC clade was predicted to have a PrD (Figs. 3-1, 3-2). These data suggest the emergence of PrD in Brassicales ELF3.

Fig. 3-2 Arabidopsis ELF3 PrD and conserved regions of ELF3 and EEC.

(A) PLAAC analysis of Arabidopsis ELF3 with a default minimum domain length of 60. (B) Multiple sequence alignment of ELF3/EEC homologues in monocots *Hordeum vulgare*, *Brachypodium distachyon*, *Zea mays*, *Oryza sativa*, and core eudicots *Arabidopsis thaliana*, *Arabidopsis lyrata*, *Capsella rubella*, *Gossypium hirsutum*, *Prunus persica*, *Phaselous vulgaris*, and *Populus trichocarpa*. Red rectangles indicate Arabidopsis ELF3 PrD regions as predicted in (A).

3.2 PolyQ length contributes to PrD of ELF3 in Brassicales

As the prediction of PrD was mainly restricted to ELF3 from Brassicales species, I investigated whether the potential PrDs of these species are conserved at the sequence level. I constructed a phylogenetic tree with identified Brassicales ELF3 only, separating different families (Fig. 3-3). As features of PrD (Harrison and Gerstein, 2003), we observed a considerable proportion of asparagine (N) and glutamine (Q) in the sequence alignment of part of predicted PrD regions (Fig. 3-3). Interestingly, Brassicaceae species displayed a polyglutamine (polyQ) stretch with different length, which was related to the PrD COREscore (Figs. 3-1, 3-3). For example, Capsella grandiflora with the highest COREscore (59.885) also displayed the longest polyQ stretch (33Q). It is important to note that the Arabidopsis accession used here was Col-0 with 7Q in the ELF3 polyQ stretch, whereas other species with longer polyQ all displayed a higher PrD COREscore compared to Arabidopsis. Since Arabidopsis accessions are known to vary in ELF3 polyQ length (Tajima et al., 2007; Undurraga et al., 2012), this might also be the case for the natural accessions in other Brassicales, which cannot be addressed in this phylogenetic tree. Nevertheless, these data suggest that ELF3 PrD is mainly contributed by polyQ length observed in the family Brassicaceae.

Fig. 3-3 Phylogenetic tree and sequence alignment of Brassicales ELF3.

The tree was constructed with the full-length protein sequences using maximum likelihood IQ-Tree JTT+R3 model with 10,000 replications of ultrafast bootstrap (shown as circles). Eight Poales species were used for rooting and collapsed. The labels are colored according

to the species family. The multiple sequence alignment represents polyQ regions in the PrD, with a frequency plot indicating sequence identity below the alignment. Amino acid asparagine (N) and glutamine (Q) are colored within the alignment.

3.3 ELF3 polyQ variation among Arabidopsis accessions

Although data are lacking from most Brassicaceae species, natural variation of ELF3 polyQ length has been investigated in several collections of Arabidopsis accessions (Tajima *et al.*, 2007; Undurraga *et al.*, 2012). The 1001 genomes provide polymorphism information in *ELF3*, whereas polyQ length cannot be identified due to unknown nucleotides in the region, probably caused by common problems of Illumina sequencing approaches in highly repetitive regions. Therefore, I first sequenced the corresponding *ELF3* region and corrected polyQ lengths in 204 Arabidopsis accessions from the 1001 genomes collection. Together with previously reported polyQ lengths in 115 accessions, PrD/polyQ sequence information in a total of 319 Arabidopsis accessions was obtained for further analyses (Tajima *et al.*, 2007; Undurraga *et al.*, 2012) (Fig. 3-4A).

Among the 319 Arabidopsis accessions, polyQ length in ELF3 displayed a normal distribution with 16Q being most frequent, although 15Q and 17Q were rather rare (Fig. 3-4B). The polyQ length ranged from 7Q to 29Q with a slightly skewed distribution towards <16Q. These data suggest that PrDs are conserved across Arabidopsis accessions, as it was originally discovered in Col-0 with the shortest polyQ length 7Q (Jung *et al.*, 2020).

To test whether the polyQ length is associated with geographic origin of the corresponding accessions, I plotted all obtained accessions on a map with the focus of Europe regions (where the most accessions were collected) (Fig. 3-4C). I could not detect special distribution patterns of ELF3 polyQ length, as the accessions collected from close sites can have varying polyQ length. For instance, the ELF3 polyQ length in accessions collected from Spain (ID: 9584) and Central Europe (ID: 7520) were both mixed with accessions with relatively short polyQ stretches in ELF3 (Fig. 3-4C). However, on a world map, several accessions with long polyQ stretches in ELF3 were detected in non-European regions (Fig. 3-5A). For example, all four accessions from Azerbaijan had 22-23Q (ID: 9069, 9070, 9089, and 9091), one accession carrying the longest polyQ was from Pakistan (29Q, ID: 8424), and one with 27Q was from Japan (ID: 7207) (Fig. 3-5A).

Fig. 3-4 Natural variation of ELF3 polyQ length in Arabidopsis accessions.

(A) An overview of Arabidopsis accessions with known ELF3 polyQ length. In total, 319 accessions included in the 1001 genomes collection were used in this study. (B) Density plot represents the distribution of ELF3 polyQ length from Arabidopsis accessions used in this study. The dashed line represents the mean polyQ length. (C) Geographic distribution of Arabidopsis accessions mapped with corresponding polyQ length and elevation information in Europe. The accession ID, name, and polyQ length are listed in Appendix I.

Fig. 3-5 Geographic distribution of ELF3 polyQ variation in Arabidopsis accessions.

(A) Arabidopsis accessions were plotted on a world map with corresponding polyQ length.(B) Association of ELF3 polyQ variation and average temperatures (historical climate data:
January and July, 1970-2000) in Europe. The accession ID, name, and polyQ length are listed in Appendix I.

In general, I could not detect potential associations of polyQ length with geographic or available climatic data of the local regions, for instance elevation (Fig. 3-4C) or average temperatures in January and July, respectively (Fig. 3-5B). On this basis, these data suggest that the polyQ variation in ELF3 is not likely to be an evolutionary adaptation to different environments, which needs to be validated by quantitative analyses.

3.4 Evolution of Arabidopsis ELF3 and polyQ

To further investigate whether polyQ variation confers any adaptive capabilities, I first tested whether Arabidopsis *ELF3* is under any directional selection pressure. I performed sliding window analyses for sequence polymorphism ($\pi a/\pi s$) based on the full-length coding sequence of *ELF3* in 319 Arabidopsis accessions, as well as sequence divergence (Ka/Ks) analyses using nine Brassicaceae *ELF3* as an interspecific group. Across the coding region of ELF3, I observed few $\pi a/\pi s$ and Ka/Ks peaks (>1) with one Ka/Ks peak within the PrD region, indicating that these sites may be under positive selective pressure (Fig. 3-6A). The highest peak of both $\pi a/\pi s$ and Ka/Ks was detected at the same site. However, this could be explained by a relatively low synonymous substitution rate (Ks) at the site, as the overall nonsynonymous substitution rate (Ka) and nucleotide diversity (π) were very low in ELF3 (Fig. 3-6A, B). The latter suggests that apart from the polyQ variation, *ELF3* is highly conserved among Arabidopsis accessions. And indeed, mostly null, or negative values of Tajima's D were detected across the coding region with an overall value of -2.45 (*P*<0.001) (Fig. 3-6C). The negative Tajima's D indicates that Arabidopsis *ELF3* might have experienced a recent selective sweep.

Fig. 3-6 Population genetic signatures of Arabidopsis *ELF3*.

(A-C) Sequence polymorphism and divergence (A), nucleotide diversity (B), and Tajima's D (C) of full-length *ELF3* were calculated from 319 Arabidopsis accessions using sliding window analyses (width: 30, step: 3). The *ELF3* sequences of nine Brassicaceae species (*A. lyrata*, *A. halleri*, *B. oleracea var. capitata*, *B. stricta*, *C. hispanica*, *C. rubella*, *D. sophioides*, *E. salsugineum*, *T. arvense*) were used as an interspecific group for Ka/Ks analysis. Shaded regions represent the predicted PrD, based on the sequence alignment using Arabidopsis ELF3.

Although only limited sequence variation was detected in *ELF3*, I next asked whether it is associated with polyQ variation. I constructed a phylogenetic tree with full-length coding sequence of *ELF3* from all 319 Arabidopsis accessions. After collapsing the identical sequences, I connected the leaves/nodes which displayed the same polyQ variation (Fig. 3-7). As connections largely crossed over the phylogenetic tree, the phylogeny of *ELF3* is not likely to be influenced by polyQ variation. These data suggest that even if polyQ variation might be of evolutionary relevance, it is not the driving force of *ELF3* evolution.

Fig. 3-7 Genetic variation of *ELF3* in Arabidopsis accessions.

The phylogenetic tree was constructed with the full-length coding sequences (without stop codon) obtained from 319 Arabidopsis accessions, using maximum likelihood IQ-Tree MGF3X4 model with 10,000 replications of ultrafast bootstrap (shown as circles). Identical sequences are collapsed and those with the same polyQ length are connected. The length of polyQ is shown as bar charts inside of the tree. The accession ID, name, and polyQ length are listed in Appendix I.

3.5 Association of polyQ variation and temperature responsive hypocotyl elongation

As a multifunctional protein, ELF3 plays prominent roles in circadian clock regulation and thermomorphogenesis. Previous studies reported significant correlation of ELF3 polyQ length with circadian rhythm parameters in natural Arabidopsis accessions (Tajima *et al.*, 2007) as well as transgenic lines (Undurraga *et al.*, 2012). However, such associations seemed to be more complicated or weaker regarding growth and developmental phenotypes at normal or elevated temperatures, which might depend on the genetic background of the transgenic lines (Undurraga *et al.*, 2012; Press *et al.*, 2016).

To further investigate potential associations between ELF3 polyQ variation and temperature responsive phenotypes in natural Arabidopsis accessions, growth assays were performed under normal (20°C) and elevated (28°C shift) temperatures. Hypocotyl length was measured as a classic phenotype to represent temperature responsiveness. For the growth assays, 253 accessions were selected as a subset of the previously described 319 accessions with similar distribution of polyQ variation (Figs. 3-4A, 3-8A). Relative hypocotyl length displayed more divergence after a temperature shift to 28°C compared to those kept at 20°C, however, no correlation was detected between polyQ length and relative hypocotyl length at either 20°C or 28°C (Fig. 3-8B). I then calculated the temperature response of hypocotyl elongation, and again no correlation with polyQ length was detected (Fig. 3-8C). Similarly, no association could be detected using a three-dimensional visualization of polyQ length, relative hypocotyl length at 20°C and 28°C (Figs. 3-8C, 3-9).

Therefore, these data suggest that ELF3 polyQ variation is not likely to be associated with temperature responsive hypocotyl elongation in natural Arabidopsis accessions. Consistently, previous reports using transgenic lines from two different genetic backgrounds could barely detect any associations of ELF3 polyQ length with temperature responsive phenotypes (Press *et al.*, 2016; Jung *et al.*, 2020). This indicates that the effects of polyQ length, if any, are not prominent and are very likely to be masked by the genetic backgrounds.

33

Fig. 3-8 Association of ELF3 polyQ variation with hypocotyl phenotypes.

(A) Distribution of polyQ length in 253 Arabidopsis accessions used for growth assays. (B, C) Distribution of relative hypocotyl length at 20°C or after a temperature shift to 28°C (B), temperature response (C), and their correlation with polyQ variation. Relative hypocotyl length represents the normalization of absolute hypocotyl length to median value of Col-0 at 20°C of each experiment. Vertical dashed lines in the density plots of (A) and (B) represent mean values. Arithmetic means of each accession shown as rugs below the distributions were used for distribution and Pearson correlation analysis. (D) Three-dimensional (3D) visualization of potential association among polyQ length, and relative hypocotyl length at 20°C and 28°C. θ and π represent the rotation angles of the 3D plot. The 3D plot can be visualized from four other directions in Fig. 3-9.

Fig. 3-9 Visualization of potential polyQ-phenotype association.

Four-direction 3D visualization of potential association among polyQ length and relative hypocotyl length at 20°C and 28°C. θ and π represent the rotation angles of the plot.

In conclusion, based on phylogenetic analyses using available plant genomes, the PrD emerged in Brassicales ELF3 (Fig. 3-1). Its functions in ELF3 temperature responsive aggregation are therefore not expected to be conserved in the other species. In addition, the ELF3 homologue EEC, whose function remains unknown, emerged as a duplication of ELF3 in core eudicots. Importantly, EEC lacks a predicted PrD (Figs. 3-1, 3-2). Sequence alignment of Brassicales ELF3 orthologues revealed that the PrD is mainly contributed by

long polyQ which is restricted to species in the Brassicaceae family (Fig. 3-3). The 1001 genomes collection provides a population of natural Arabidopsis accessions to study the potential evolution of *ELF3* and polyQ. Although extensive variation in polyQ length was observed in 319 accessions, it is independent of the sequence variation outside the PrD region in ELF3 (Fig. 3-7). Population genomics suggest that, except for the polyQ stretch, *ELF3* coding sequence is highly conserved, probably under negative selection pressure (Fig. 3-6). Furthermore, I found no evidence that polyQ variation is associated with geographic or climatic conditions at the original collection sites of the corresponding Arabidopsis accessions, or temperature responsive hypocotyl length (Figs. 3-4, 3-5). Nevertheless, I cannot rule out the potential effects of few accessions with extreme polyQ length, as such effects might be masked in correlation analyses by the vast majority of accessions with moderate polyQ length in this study. It is worth further studying these accessions to understand the evolutionary meaning of polyQ variation.

4 Results II – Arabidopsis *ELF3* controls temperature responsiveness of the circadian clock independently of the evening complex¹

In Arabidopsis, *ELF3* is not only involved in thermomorphogenesis with its thermosensory PrD, but also functions as light Zeitnehmers together with *GIGANTEA* (*GI*). As outlined in the introduction, *ELF3* and *GI* together act as light Zeitnehmer, albeit at different times of day. However, regarding temperature entrainment of the oscillator, the role of ELF3 and/or the entire evening complex (EC, ELF3-ELF4-LUX) remains intriguing. This chapter aims to understand how cyclic temperature signals are perceived by the oscillator, and whether *ELF3* acts as a temperature Zeitnehmer.

4.1 *ELF*3 and *GI* participate in complicated temperature-photoperiod crosstalk

Temperature and light serve as two prominent entrainment cues of the circadian clock, both independently and collaboratively (Eckardt, 2005; Gil and Park, 2019). To assess whether light Zeitnehmers *ELF3* and *GI* concurrently control circadian temperature entrainment, I first estimated the extent of a possible temperature-photoperiod interconnection. Hypocotyl elongation was used as a classic phenotypic readout, which is known to be highly responsive to both temperature and photoperiod variations (Niwa *et al.*, 2009). Hypocotyl length was measured in Ws-2, the single mutants *elf3-4* and *gi-158*, and an *elf3-4 gi-158* double mutant grown in LD (Fig. 4-1A) or SD (Fig. 4-1B) conditions. To estimate temperature response under these photoperiods, the seedlings were grown at constant 16°C or 22°C. I observed greater hypocotyl elongation at higher temperature in all four genotypes under both photoperiods (Fig. 4-1A, B). However, the extent of the temperature response in LD or SD differed among them: Ws-2 and *gi-158* were more responsive in SD than in LD, whereas *elf3-4* and *elf3-4 gi-158* displayed the opposite behavior (Fig. 4-1C).

¹ This chapter is adapted from **Zhu Z, Quint M, Anwer MU**. 2022. Arabidopsis EARLY FLOWERING 3 controls temperature responsiveness of the circadian clock independently of the evening complex. Journal of Experimental Botany **73**, 1049-1061.

Similar results were observed in seedlings grown under similar photoperiods, but at a higher temperature regime with constant 20°C or 28°C: only Ws-2 was less temperature responsive in both LD and SD, whereas all three mutants displayed the opposite results (Fig. 4-2A). Moreover, a similar response was detected in a temperature shift assay, where 4-day-old

seedlings were shifted from 20°C to 28°C or were kept at 20°C for an additional 4 d (Fig. 4-2B). Interestingly, the *elf3-4 gi-158* double mutant displayed an additive effect on hypocotyl length in LD, but not in SD or under constant 16°C. These results demonstrate that mutations in *ELF3* and/or *GI* affect temperature response, which is also strongly influenced by the photoperiod.

Together, this suggests that *ELF3* and *GI* are involved in a probably rather complicated temperature-photoperiod crosstalk.

Fig. 4-1 *ELF3* and *GI* are involved in temperature-photoperiod crosstalk.

(A, B) Representative images and hypocotyl length of 8-day-old Arabidopsis seedlings grown in long day (LD, 16 h light: 8 h dark, A) and short day photoperiods (SD, 8 h light: 16 h dark, B), at constant 16°C or 22°C. Scale bars=4 mm. (C)Temperature response of the measured hypocotyl length at 22°C relative to the median hypocotyl length at 16°C shown in (A) and (B). Boxes show medians and interguartile ranges. The whiskers extend to 1.5x interguartile ranges. Dots represent the values of individual seedlings. Different letters above the boxes indicate significant differences (two-way ANOVA and Tukey's HSD test, P<0.05).

Fig. 4-2 Temperature-photoperiod crosstalk at a higher temperature regime.

(A, B) Representative images and hypocotyl length of 8-day-old Arabidopsis seedlings grown in long day (LD, 18 h light: 6 h dark) and short day photoperiods (SD, 6 h light: 18 h dark). Scale bars=4 mm. (A) Seedlings were grown at constant 20°C or 28°C. (B) Seedlings grown at 20°C for 4 d were shifted to 28°C or were kept at 20°C for additional 4 d. Boxes show medians and interquartile ranges. The whiskers extend to 1.5x interquartile ranges. Dots represent the values of individual seedlings. Different letters above the boxes indicate significant differences (two-way ANOVA and Tukey's HSD test, P<0.05).

4.2 *ELF3* and *GI* are not essential for temperature responsiveness under constant conditions

Next, I sought to determine whether temperature responsive growth remains intact in the absence of photocycles, and whether *ELF3* and *GI* control temperature responsiveness under these non-cycling conditions. In continuous light (LL) conditions, I observed that Ws-2 and *elf3-4* displayed the same hypocotyl length at 16°C and 28°C, whereas *elf3-4* showed a longer hypocotyl length than Ws-2 at 22°C (Fig. 4-3). Similar temperature response patterns were detected in *gi-158* and *elf3-4 gi-158*, although they had longer hypocotyls at 22°C and 28°C than Ws-2 and *elf3-4*, respectively. In contrast to the previous experiments (Figs. 4-1, 4-2), the temperature response among all four genotypes was relatively similar under non-cycling conditions (Fig. 4-3). As such, temperature response defects in *elf3* and *gi* mutants depend on the presence of photocycles, while their temperature response remains intact in the absence of photoperiods (i.e., LL). These data indicate that although *ELF3* and *GI* play important roles in temperature-photoperiod crosstalk, they are not essential for temperature responsiveness under non-cycling conditions.

Fig. 4-3 Thermoresponsive growth is intact in continuous light.

Hypocotyl length of 8-day-old Arabidopsis seedlings grown in continuous light (LL) at constant 16°C, 22°C, or 28°C. Boxes show medians and interquartile ranges. The whiskers extend to 1.5x interquartile ranges. Dots represent the values of individual seedlings. Different letters above the boxes indicate significant differences (two-way ANOVA and Tukey's HSD test, P<0.05).

4.3 *ELF3* is required for clock-controlled physiological processes under temperature cycles

Rhythmic patterns of several physiological processes such as growth and leaf movement are controlled by the circadian clock. Under diurnal conditions, circadian oscillators coordinate hypocotyl elongation with daily cyclic environmental changes such as photoperiod, resulting in maximum growth rate at dawn or early morning in SD and LD, respectively (Nozue *et al.*, 2007; Niwa *et al.*, 2009). This is largely processed by the light

Zeitnehmers *ELF3* and *GI*, which function to repress growth during the night and day times, respectively (Anwer *et al.*, 2020).

While the conclusions of the data shown so far apply to non-cycling temperature conditions, I next aimed to understand the role of *ELF3* and *GI* under cycling temperature conditions. To circumvent potential temperature-photoperiod crosstalk (Figs. 4-1, 4-2), I decided to design the experiments in the absence of photoperiod. It is important to note here that in darkness, ELF3 is degraded, and phyB is absent in the nucleus (Liu *et al.*, 2001; Yu *et al.*, 2008). Ensuring both temperature sensors are functional, I used LL conditions with temperature cycles (12 h 22°C: 12 h 16°C) for entrainment. Growth rates of Ws-2, *elf3-4*, *gi-158*, and *elf3-4 gi-158* seedlings were measured every hour for 4 d (facilitated by the infrared imaging platform, Fig. 2-1).

Rhythmic growth patterns were detected in Ws-2 and *gi-158* with maximum growth rates during mid to late stages (~ZT08) of the warm period (22°C) (Fig. 4-4A, B). In contrast, no clear growth peaks were detected in *elf3-4* and *elf3-4 gi-158*. The mutant *elf3-4* displayed a constant growth rate, which was lower than that of Ws-2 during the warm period, but marginally higher during the cool period (16°C). Importantly, although *elf3-4 gi-158* seedlings displayed overall higher growth rates compared to *elf3-4*, no clear growth peaks were detected. These results indicate that rhythmic growth under temperature cycles requires *ELF3*, while *GI* most probably only plays a minor role.

Cotyledon movement is another classic physiological output being regulated by the circadian clock (Millar *et al.*, 1995). As expected for a functional clock, rhythmic cotyledon movement was detected in Ws-2 and *gi-158*, with open and closed cotyledons during the warm and cool periods, respectively (Fig. 4-4A, C). This is in line with a previous report where similar patterns were observed in Col-0 and *gi-2* seedlings entrained by 12 h 22°C: 12 h 12°C temperature cycles (Tseng *et al.*, 2004). However, in contrast to Ws-2 and *gi-158*, the cotyledon movement was undetectable in *elf3-4* and *elf3-4 gi-158* seedlings under the same conditions, mirroring the growth rate data (Fig. 4-4A-C) and suggesting a dysfunctional clock. Based on the cotyledon movement data, relative amplitude error (RAE) analysis confirmed robust rhythms in Ws-2 and *gi-158* (RAE ~0.5), whereas both *elf3-4* and *elf3-4 gi-158* were arrhythmic (RAE ~1.0) (Fig. 4-4D).

41

Fig. 4-4 ELF3 is required for rhythmic physiological processes under temperature cycles.

(A) Representative images of 5-day-old Ws-2 and elf3-4 seedlings grown in LL under temperature cycles (12 h 22°C: 12 h 16°C). Non-shaded areas: 22°C; blue-shaded areas: 16°C. Scale bars=1 mm. Sketches above the images are shown for illustration purposes and represent the cotyledon movement of a hypothetical plant. The red arcs represent the hypothetical angles between two cotyledons. Hypocotyl growth rate (B) and cotyledon elevation angles (C) of Arabidopsis seedlings grown under temperature cycles as in (A). Lines represent the mean and ribbons indicate the standard error of mean (SEM) (n=8). (D) Relative amplitude error of cotyledon movement data shown in (C). Boxes show medians and interquartile ranges. The whiskers extend to 1.5x interquartile ranges. Dots represent the values of individual seedlings. Different letters above the boxes indicate significant differences (one-way ANOVA and Tukey's HSD test, P<0.05). Statistics of hypocotyl growth are in Appendix V.

To confirm that the observed cotyledon movement was driven by the circadian oscillator rather than the temperature variations, the seedlings entrained by temperature cycles for 2 d were transferred into free-running conditions (LL and constant 22°C). Robust rhythms were observed in Ws-2 and *gi-158*, whereas both *elf3-4* and *elf3-4 gi-158* were arrhythmic in free-running conditions (Fig. 4-5A).

Fig. 4-5 Clock-controlled cotyledon movement entrained by different temperature cycles.

(A-C) Cotyledon elevation angle of Arabidopsis seedlings and the RAE of cotyledon movements. Seedlings were grown in LL under temperature cycles: 12 h 22°C: 12 h 16°C for (A) and 12 h 28°C: 12 h 22°C for (B) and (C). (A, C) On day 3 after germination, starting from ZT00, seedlings were released into constant conditions (constant 22°C). Non-shaded areas: 22°C; blue-striped areas: subjective 16°C; orange-shaded areas: 28°C; orange-striped areas: subjective 28°C. Lines represent the mean and ribbons indicate the SEM (*n*=8). Boxes show medians and interquartile ranges. The whiskers extend to 1.5x interquartile ranges. Dots represent the values of individual seedlings. Different letters above the boxes indicate significant differences (one-way ANOVA and Tukey's HSD test, *P*<0.05).

Previous studies reported that the rhythmicity in *prr7 prr9* double mutants was dependent on the temperature regime, with robust rhythms under 28°C: 22°C cycles but arrhythmia under 22°C: 12°C cycles (Salomé and McClung, 2005; Salomé *et al.*, 2010). To investigate whether this applies to the observed arrhythmia in *elf3-4* and *elf3-4 gi-158*, I monitored the cotyledon movement also under a comparable high temperature cycle regime (12 h 28°C: 12 h 22°C) and under free-running conditions (LL and constant 22°C) after entrainment. Consistent with the results from the low temperature cycle regime, robust rhythms were not detected in *elf3-4* or *elf3-4 gi-158*, as also evident from high RAE values (Fig. 4-5B, C).

Collectively, these data demonstrate that in contrast to clock-controlled rhythmic processes under photocycles (Anwer *et al.*, 2020), only *ELF3*, but not *GI*, is essential for clock-controlled rhythmic physiological processes under temperature cycles.

4.4 Neither *phyB* nor the EC is essential for *ELF3*-mediated rhythmic output under temperature cycles

As both ELF3 and phyB function as temperature sensors (Jung *et al.*, 2016; Legris *et al.*, 2016; Jung *et al.*, 2020), the observed arrhythmia in *elf3* could be caused by (i) the absence of the thermosensory function of ELF3 in response to temperature cycles, and/or by (ii) a defect in possible temperature signal transduction and integration via the functional phyB-ELF3 interaction (Liu *et al.*, 2001; Ezer *et al.*, 2017). I next investigated the possible participation of phyB in circadian clock temperature entrainment, by using *phyB-10* and *elf3-4 phyB-10* seedlings grown under temperature cycles in LL. Similar to Ws-2, *phyB-10* loss-of-function mutants also displayed rhythmic cotyledon movement, whereas both elf3-4 and elf3-4 phyB-10 were arrhythmic (RAE ~1.0) (Fig. 4-6A). These results demonstrate that *phyB* is not necessary for rhythmic cotyledon movement under temperature cycles. Thus, in contrast to *phyB*, *ELF3* is essential to generate such clock-controlled output, suggesting that cyclic change in temperature is mainly relayed to the oscillator through *ELF3*.

Fig. 4-6 ELF3-mediated rhythmic output is independent of phyB, LUX, and ELF4.

(A-C) Cotyledon elevation angle of Arabidopsis seedlings and the RAE of cotyledon movements. Seedlings were grown in LL under temperature cycles (12 h 22°C: 12 h 16°C). Non-shaded areas: 22°C; blue-shaded areas: 16°C. Lines represent the mean and ribbons indicate the SEM (n=8). Boxes show medians and interquartile ranges. The whiskers extend to 1.5x interquartile ranges. Dots represent the values of individual seedlings. Different letters above the boxes indicate significant differences (one-way ANOVA and Tukey's HSD test, P<0.05). n.s., not significant (two-sided Student's *t*-test).

The arrhythmia in *elf3* under temperature cycles could also be explained by a general clock dysfunction in LL (McWatters *et al.*, 2000; Herrero *et al.*, 2012). To exclude this possibility and to investigate the role of the EC in temperature entrainment, I tested whether the clock could be functionally entrained by temperature cycles in the absence of LUX or ELF4 – the other two components of the EC (Nusinow *et al.*, 2011; Ezer *et al.*, 2017). It is important to note here that loss-of-function of both *LUX* and *ELF4* display clock and developmental defects that resemble *elf3* null mutants, including arrhythmia in LL (McWatters *et al.*, 2000; Onai and Ishiura, 2005; Herrero *et al.*, 2012). However, I observed that unlike the arrhythmia in *elf3-4*, both *pcl1-2* (*lux*) and *elf4-2* mutants, despite changes in phase and amplitude, displayed rhythmic cotyledon movement under temperature cycles (Fig. 4-6B, C). Interestingly, overexpression of *ELF3* in *elf4-2* (*elf4-2 ELF3-OE*) could restore the amplitude decrease observed in the *elf4-2* single mutant, whereas *elf3-1 ELF4-OE* was still arrhythmic (RAE ~1.0) (Fig. 4-6C). These data demonstrate the important and specific role of *ELF3* in temperature entrainment of the circadian clock, which appears to be independent of an intact EC and possibly a functional oscillator.

4.5 *ELF*3 is required for the oscillator's responsiveness to temperature cycles

As the arrhythmia in clock-controlled physiological processes under temperature cycles was specifically observed in the absence of *ELF3*, I hypothesized that this arrhythmia was a result of a dysfunctional oscillator that can no longer respond to changes in external temperature. To test this, I monitored the steady-state transcript levels of the key central oscillator genes *CCA1*, *LHY*, *PRR9*, *PRR7*, and *TOC1* under temperature cycles in LL. As expected for a functional oscillator, Ws-2 and *gi-158* displayed rhythmic expression of these genes, although differences in the transcript level were occasionally detected (Fig. 4-7A-E). In Ws-2 and *gi-158*, *CCA1* and *LHY* displayed peak transcript abundance at ZT00/24, *PRR9* at ZT04, *PRR7* at ZT08, and *TOC1* at ZT16 (Ws-2) or ZT12 (*gi-158*). In contrast, no rhythmic expression was detected in *elf3-4* and *elf3-4 gi-158*. In the absence of *ELF3*, almost no transcripts of *CCA1* and *LHY* can be detected, whereas *PRR9*, *PRR7*, and *TOC1* maintained high transcript levels without oscillations (Fig. 4-7A-E).

Fig. 4-7 ELF3 is required for the oscillator's responsiveness to temperature changes.

Steady-state transcript levels of key clock oscillator genes *CCA1* (A), *LHY* (B), *PRR9* (C), *PRR7* (D), and *TOC1* (E), and the major growth promoter *PIF4* (F). Arabidopsis seedlings were harvested every 4 h after being entrained under temperature cycles (12 h 22°C: 12 h 16°C) for 8 d in LL. Non-shaded areas: 22°C; blue-shaded areas: 16°C. Expression levels were normalized to *PP2A*. Error bars indicate the SEM (*n*=3) of three biological replicates. Statistics and normalization to a second reference gene *TIP41* are in Appendix V.

Similar patterns of steady-state transcript level of these key clock genes were detected when plants were grown under the same temperature cycles in darkness (DD, Fig. 4-8A-E). The exceptions were that, in DD, *gi-158* displayed a temporarily slightly advanced peak of transcript abundance for *PRR7* at ZT04, slight peaks of *CCA1*, *LHY*, and *PRR9* expression

at ZT00/24 were detected in *elf3-4*, and no clear expression pattern of *TOC1* was detected in all four genotypes. These results indicate that *ELF3* is required to correctly set the phase of key central oscillator genes in response to cyclic temperatures.

Fig. 4-8 The oscillator's responsiveness to temperature changes in darkness.

Steady-state transcript levels of key clock oscillator genes *CCA1* (A), *LHY* (B), *PRR9* (C), *PRR7* (D), and *TOC1* (E), and the major growth promoter *PIF4* (F). Arabidopsis seedlings were harvested every 4 h after being entrained under temperature cycles (12 h 22°C: 12 h 16°C) for 8 d in DD. Non-shaded areas: 22°C; blue-shaded areas: 16°C. Expression levels were normalized to *PP2A*. Error bars indicate the SEM (*n*=3) of three biological replicates. Statistics are in Appendix V.

Provided that the circadian clock regulates thermoresponsive growth by regulating the major growth promoter *PIF4* (Box *et al.*, 2015; Raschke *et al.*, 2015), I next monitored the steady-state transcript abundance of *PIF4* as a proxy to gauge the oscillator's ability to regulate its target genes under temperature cycles. I observed that, in Ws-2 and *gi-158*, the transcript levels of *PIF4* specifically peaked during the warm period at ZT08 in LL, consistent with their rhythmic hypocotyl growth rate (Figs. 4-4B, 4-7F). In DD, Ws-2 displayed the *PIF4* peak transcript abundance at the same time (ZT08) as in LL, whereas the peak was advanced to ZT04 in *gi-158* (Fig. 4-8F). Importantly, no clear peak of *PIF4* expression was detected in *elf3-4 gi-158*, mainly due to pronounced high transcript abundance during the cool period. Taken together, these data demonstrate that the oscillator's ability to properly respond to temperature input depends on functional *ELF3*.

4.6 *ELF3* is essential for precise gating of temperature signals

One hallmark property of the circadian clock is to regulate the oscillator's own sensitivity to environmental inputs in a time-of-day-dependent manner, termed as circadian gating. This ensures that the downstream processes maintain correct rhythms but are not influenced by untimely environmental inputs. For instance, a sudden change in light and temperature caused by cloud shading would not substantially affect the clock-controlled rhythmic processes.

To test the clock's gating ability in response to temperature, I monitored the steady-state transcript level of key clock-regulated temperature-responsive genes *PRR7*, *PRR9*, and *PIF4*. Seedlings entrained by temperature cycles were either treated with a 4 h temperature pulse (28°C pulse) at various ZTs or were kept under the same conditions (no treatment) before being harvested at the specified time points (Fig. 4-9). I found that in Ws-2, the temperature responsiveness of these genes was mainly restricted from late night to early morning (between ZT16 and ZT04) when the induction of *PRR7*, *PRR9*, and *PIF4* expression was detected (Fig. 4-9). In *gi-158*, the gates were opened slightly earlier, with induction of *PPR7* (ZT12-ZT24) and *PIF4* (ZT16-ZT24) observed. In contrast, the gating ability of the oscillator was severely compromised in *elf3-4* and *elf3-4* gi-158. In the absence of *ELF3*, at some random time points, the response to the temperature pulse was opposite to that of the wild type, whereas no response was detected at the remaining time points. Hence, the transcript levels of *PRR7*, *PRR9*, and *PIF4* remained unchanged at the vast majority of time points. These data demonstrate that *ELF3* is not only essential to generate

49

robust rhythms under temperature cycles but is also pivotal to maintain the proper phase by gating the non-resetting temperature cues.

Fig. 4-9 ELF3 is essential for circadian gating of temperature signals.

Effect of a 28°C temperature pulse at specified ZTs on the transcript levels of *PRR7*, *PRR9*, and *PIF4*. Arabidopsis seedlings were grown under temperature cycles (12 h 22°C: 12 h 16°C) for 8 d in LL. On day 9, seedlings were either treated with a temperature pulse (28°C pulse) for 4 h at indicated ZTs or were kept under the same conditions (no treatment, 22°C/16°C) before samples were harvested (as shown in the scheme). At the indicated ZTs, red bars represent transcript levels after treatment with a temperature pulse, whereas black lines represent transcript levels at the same time without treatment. Non-shaded areas: 22°C; blue-shaded areas: 16°C. Expression levels were normalized to *PP2A*. Error bars indicate the SEM (*n*=3) of three biological replicates. Asterisks above lines or bars indicate significant differences (* *P*<0.05; ** *P*<0.01; *** *P*<0.001; two-sided Student's *t*-test).

4.7 Functional ELF3 is not required for temperature entrainment in *H. vulgare*

As the results so far demonstrate that *ELF3* controls circadian clock temperature entrainment in Arabidopsis, I next asked whether this role may be conserved across species. To test this, I chose the monocot model crop barley (*H. vulgare*), which diverged from the eudicot Arabidopsis lineage appr. 160 million years ago (<u>http://www.timetree.org</u>, Kumar *et al.*, 2017). I monitored the steady-state transcript abundance of barley circadian clock genes *HvCCA1*, *HvTOC1*, *HvPRR73*, and *HvGI* in cultivar Bowman and *elf3^{BW289}* (*elf3/eam8.k* loss-of-function mutant BW289 in Bowman background) seedlings entrained under the same temperature cycles in LL (Fig. 4-10).

Fig. 4-10 H. vulgare elf3 seedlings can be entrained by temperature cycles.

Steady-state transcript levels of barley clock genes *CCA1*, *TOC1*, *PRR73*, and *GI*. Bowman and *elf3^{BW289}* (*elf3/eam8.k* loss-of-function mutant BW289 in Bowman background) seedlings were harvested every 4 h after being entrained under temperature cycles (12 h 22°C: 12 h 16°C) for 14 d in LL. Non-shaded areas: 22°C; blue-shaded areas: 16°C. Expression levels were normalized to *HvACTIN*. Error bars indicate the SEM (*n*=3) of three biological replicates.

Barley clock genes displayed rhythmic expression patterns under temperature cycles in Bowman (Fig. 4-10). However, such rhythmic patterns were also maintained in *elf3^{BW289}*, although the amplitude was reduced in *HvCCA1* and *HvPRR73*, and the expression peak was shifted in *HvGI* (Fig. 4-10). These data show that the barley circadian oscillator was slightly disturbed in the absence of *ELF3* under temperature cycles. However, in contrast to Arabidopsis, functional ELF3 is not a prerequisite for the oscillator's responsiveness to temperature changes in barley.

In conclusion, this chapter established Arabidopsis *ELF3* as an essential Zeitnehmer for temperature sensing of the circadian oscillator, which thereby coordinates the rhythmic control of temperature responsive physiological outputs.

5 Results III – An exotic allele of barley *ELF*3 contributes to developmental plasticity at elevated temperatures²

For understanding crop acclimation and adaptation to changing temperatures, barley (*H. vulgare*) stands out as an excellent monocot model. As shown in the previous two chapters, the barley homologue of ELF3 lacking PrD is neither a potential thermosensor, nor a prerequisite for clock temperature entrainment. However, the importance of *HvELF3* in barley flowering time adaptation to short growing seasons is not negligible (Faure *et al.*, 2012; Zakhrabekova *et al.*, 2012). This chapter aims to understand the role of *HvELF3* in barley thermomorphogenesis, by using *elf3* loss-of-function alleles, as well as heterogeneous inbred family (HIF) pairs generated from the HEB-25 population.

5.1 ELF3 is involved in barley thermomorphogenesis

I first performed a temperature assay on agar plates mimicking the standard growth conditions for Arabidopsis seedling assays. Leaf length was measured for the elite cultivar Bowman and *elf3^{BW290}* loss-of-function mutant seedlings grown in LD at 20°C or 28°C. In two consecutive days after germination, no difference in leaf length was observed between Bowman and *elf3^{BW290}* at 20°C. However, at 28°C *elf3^{BW290}* displayed longer leaves compared to Bowman (Fig. 5-1).

Fig. 5-1 *ELF3* is involved in the early temperature response of barley seedlings.

≥ 20°C, 2 d
≥ 28°C, 1 d
⇒ 28°C, 2 d
Bowman and *elf3^{BW290}* seedlings were grown at 20°C or 28°C in LD (16 h light/ 8 h dark). Boxes show medians and interquartile ranges. The whiskers extend to 1.5x interquartile ranges. Dots represent the values of individual plants (*n*=9-17). Different letters above the boxes

indicate significant differences (small and capital letters for the first and second days, respectively, two-way ANOVA and Tukey's HSD test, *P*<0.05).

² This chapter is adapted from **Zhu Z, Esche F, Babben S, Trenner J, Serfling A, Pillen K, Maurer A, Quint M**. 2023. An exotic allele of barley EARLY FLOWERING 3 contributes to developmental plasticity at elevated temperatures. Journal of Experimental Botany, doi: 10.1093/jxb/erac470.

These data suggest that *ELF3* is involved in the early temperature response of barley seedlings, being a repressor of elongation growth similar to the role of Arabidopsis *ELF3* (Box *et al.*, 2015; Raschke *et al.*, 2015).

5.2 ELF3 sequence variation in HIF pairs

To further study the role of *ELF3* in barley temperature response, in addition to Bowman and *elf3^{BW290}*, three HIF pairs (10_190, 16_105, and 17_041) were selected from the barley NAM population HEB-25 (Maurer *et al.*, 2015) (Fig. 1-4A), which displayed differences for several developmental phenotypes between the HIF sister lines in previous field experiments (Zahn *et al.*, 2022, Preprint). Each HIF pair contains two near-isogenic lines (NILs), carrying either *HvELF3* (elite) from cultivar Barke or *HspELF3* (wild) from exotic barley accessions (Fig. 1-4B).

I first determined the full-length genomic sequence of *ELF3* in the three used HIF pairs and compared them to the previously sequenced parental lines (Zahn et al., 2022, Preprint). A W669G substitution was detected in all three wild lines (Fig. 5-2). Furthermore, the 16 105 HspELF3 (hereafter called 16 wild) and 17 wild HIF pairs belong to the same haplotype carrying four additional non-synonymous single-nucleotide polymorphisms (SNPs) in *ELF3* compared to 10 wild (Fig. 5-2). In line with the previous observation using barley landraces from the Qinghai-Tibetan Plateau (Xia et al., 2017), SNPs and insertion-deletion mutations (Indels) were identified especially in intron 2 of ELF3 in 16 wild and 17 wild. However, the previously described alternative splicing mutation in intron 3 was not detected in these HIF lines (Xia et al., 2017). In the previous field experiments, the strongest effects were found on shooting and head within HIF pair 10, which could be validated also in controlled environments (Zahn et al., 2022, Preprint). Consistent with the phenotypes, differences in transcription levels were observed in FT1 and VRN1, which are known to be regulated via ELF3, between 10 elite and 10 wild, without changes in ELF3 transcript levels (Zahn et al., 2022, Preprint). Structural modeling of translated ELF3 protein variants predicted a potential influence of the W669G mutation (Fig. 5-2) on protein structure, which might be responsible for the observed phenotypic differences (Zahn et al., 2022, Preprint). Hence, although the previous field and indoor experiments were not performed in a temperature context, using these phenotypically divergent HIF pairs promised to provide a suitable genetic background to study the role of exotic ELF3 alleles in barley temperature response.

Fig. 5-2 Variations in *ELF3* sequence among HIF pairs.

Black rectangles (exons) and connecting lines (introns) represent the structure of barley *ELF3* (cv. Barke). Positions of the nonsynonymous single-nucleotide polymorphisms (SNPs) are shown as red vertical bars with corresponding amino acid substitutions shown above the scheme. The positions of the synonymous SNPs and the insertion-deletion mutations (Indels) in introns are shown as blue vertical bars. All mutations are listed in the table, using the Barke sequence as reference. The sequence of the 104-bp-insertion at position 1989 is: AGCAAA ATGAAT GAATCT ACACTC TAAAAT ATGTCT ATATAC ATCGTA TGTAGT CCACTA GTGGAA TCTCTA GAAAGA CTTATA TTTAGG AACGGA GGGAGT AT.

In the following, I systematically analyzed the role of *ELF3* on temperature-sensitive development in general, and divided development into early seedling establishment, vegetative growth, and reproductive growth.

5.3 Elevated temperatures accelerate barley seedling establishment

To investigate the effect of *ELF3* and elevated temperatures on barley seedling establishment, the eight described genotypes were grown in LD with day/night temperatures of 20°C/16°C (20°C treatment) or 28°C/24°C (28°C treatment). At elevated temperatures, plant height was significantly increased in *elf3^{BW290}* from 6 days after sowing (DAS) on (Fig. 5-3A). This effect was also present in the corresponding cultivar Bowman, but much delayed (reliably from 13 to 14 DAS on). As observed in the temperature assay on plates (Fig. 5-1), the differences in plant height between Bowman and *elf3^{BW290}* were mostly observed at 28°C but not at 20°C (Fig. 5-3A). Hence, plant height is obviously a phenotype that is conditionally regulated by barley *ELF3* at elevated temperature during early vegetative growth. Similar results were obtained for HIF pair 10, with 10_wild showing a stronger temperature response compared to 10_elite (Fig. 5-3A), suggesting a genetic effect of the exotic barley allele on

plant height. In contrast, in HIF pairs 16 and 17, only temperature effects could be detected, but no allelic differences between the underlying *ELF3* variants.

Fig. 5-3 Elevated temperatures accelerate early growth and development of barley seedlings.

Seedlings were grown in LD (16 h light/ 8 h dark) at day/night temperatures of 20/16°C (20°C). Five days after sowing (DAS), seedlings were shifted to 28/24°C (28°C) or were kept at 20°C. (A) Plant height was measured manually. Lines represent the mean and ribbons indicate the SEM (*n*=11). Hashtags (for Bowman and HIF elite lines with *HvELF3*) and asterisks (for *elf3^{BW290}* and HIF wild lines with *HspELF3*) indicate significant differences between two temperature treatments (# and *, *P*<0.05; ## and **, *P*<0.01; ### and ***, *P*<0.001; two-way ANOVA). (B) Schematic representation of a barley seedling in its three-leaf stage. (C) Days until visible third leaf (L3) and first tiller (T1). Boxes show medians and interquartile ranges. The whiskers extend to 1.5x interquartile ranges. Dots represent the values of individual plants. Different letters above the boxes indicate significant differences (two-way ANOVA and Tukey's HSD test, *P*<0.05). (D) Length and width of the first (circles) and second (squares) leaves (*n*=5) in all genotypes at 16 DAS. The genotypic effect and multiple comparisons are shown in Appendix VI.

Interestingly, I observed pauses of plant height increase in all genotypes during seedling establishment, most likely because plant height was first dominated by the length of the first leaf, before the second leaf took over (Fig. 5-3A, B). Notably, these pauses occurred earlier at elevated temperatures in almost all genotypes, indicating accelerated growth and development.

To test for accelerated development, the formation of the third leaf (L3) and the first tiller (T1) was scored during the experiment (Fig. 5-3B, C). Consistent with the results shown so far (Figs. 5-1, 5-3A), *elf3^{BW290}* displayed earlier L3 formation compared to Bowman at 28°C but not at 20°C (Fig. 5-3C). In contrast, the formation of the T1 in both Bowman and *elf3^{BW290}* was neither genotype nor temperature dependent. Except for the T1 formation in 10_elite, elevated temperatures generally accelerated the formation of the L3 and T1 in HIF pairs independently of *ELF3* alleles (Fig. 5-3C). Prior to the T1 formation, barley seedlings can develop coleoptile tillers (T0), which arise from below ground (Fig. 5-3B). Coleoptile tiller development was known to be related to seedling vigor in wheat (Liang and Richards, 1994; Fujita *et al.*, 2000), and can be suppressed by high ambient temperatures (Cannell, 1969). In confirmation of these reported observations, T0 formation was largely absent at 28°C, especially in Bowman and HIF pair 10 with no T0 at 18 DAS (Fig. 5-4). These results suggest less vigorous seedlings despite (or maybe rather because of) accelerated growth and development.

Fig. 5-4 Percentage of plants with coleoptile tillers.

Bowman, *elf3*^{BW290} and HIF pairs were grown in LD (16 h light/ 8 h dark) at day/night temperatures of 20/16°C (20°C). At 5 DAS, seedlings were shifted to 28/24°C (28°C) or were kept at 20°C. The formation of coleoptile tillers (T0) was scored at 18 DAS (n=11).

In addition to accelerated development, elevated temperatures also cause morphological changes, for example narrow leaves in wheat, reviewed by Lippmann *et al.* (2019). To test whether leaf shape was influenced by temperature, leaf length and width of the first and the second leaves were measured at 16 DAS. No difference in length or width was observed in the first leaf of each genotype, possibly due to its initiation before the start of the temperature treatments (Fig. 5-3D). However, significantly narrower second leaves were observed at 28°C regardless of the genotype, whereas leaf length did not differ, suggesting reduced leaf area as previously reported in wheat (Huang and Taylor, 1993; Lohraseb *et al.*, 2017).

Taken together, these results demonstrate that early seedling establishment is accelerated by elevated temperatures in barley, with *ELF3* alleles mainly affecting plant height.

5.4 An exotic *ELF*3 allele affects barley temperature responsive growth and architecture

As significant effects of elevated temperatures were observed on multiple phenotypes during barley seedling establishment (Figs. 5-3, 5-4), I next asked whether the growth of barley plants would be further affected by prolonged high temperatures and whether *ELF3* alleles may differ in these responses. An image-based phenotyping platform was used to obtain phenotypic data in a non-destructive manner (Fig. 2-2).

Starting from 8 DAS, each plant was imaged every two to four days to obtain growth curves under 20°C or 28°C treatment. In confirmation of the above-described results (Fig. 5-3A), a similar effect of temperature on plant height was observed during the first two weeks of cultivation, lasting until around 30 DAS in all genotypes (Fig. 5-5A).

Fig. 5-5 Effects of exotic *ELF3* alleles and elevated temperatures on barley growth and plant architecture.

(A-F) Bowman, *elf3*^{BW290} and HIF pairs were grown in LD (16 h light/ 8 h dark) at day/night temperatures of 20/16°C (20°C). At 5 DAS, seedlings were shifted to 28/24°C (28°C) or were kept at 20°C. Plant height (A, average of two side-views) and plant area from top- (B) and side- (C, average of two side-views) views were obtained using the HTPheno pipeline. Plant volume (D) was estimated using plant area data from top-view (B) and two side-views (C). Top- (E) and side- (F) view convex hull area was obtained using the Hull & Circle pipeline. Lines represent the mean and ribbons indicate SEM (*n*=11). Hashtags (for Bowman and HIF elite lines with *HvELF3*) and asterisks (for *elf3*^{BW290} and HIF wild lines with *HspELF3*) indicate significant differences between two temperature treatments (# and *, *P*<0.05; ## and **, *P*<0.01; ### and ***, *P*<0.001; two-way ANOVA). The genotypic effect and multiple comparisons are shown in Appendix VI.

However, after around 30 DAS, the positive effect of high temperature on plant height diminished and plants grown at 20°C were of similar size or even taller than those grown at 28°C. Although the time point when the 20°C grown plants surpassed the 28°C grown plants was genotype dependent, at 52 DAS, all genotypes displayed greater plant height at 20°C (Fig. 5-5A). These data are consistent with previously reported negative effects of high temperature on plant height at maturity (Abou-Elwafa and Amein, 2016). Considering the allelic effects of *ELF3*, both the *elf3^{BW290}* mutant and 10_wild allele surpassed their corresponding control lines (Bowman, 10_elite) after 31 and 38 DAS, respectively, under both temperature treatments (Fig. 5-5A). In contrast, in HIF pairs 16 and 17, the elite and exotic *ELF3* alleles did not differ remarkably in plant height, with mainly temperature effects observed.

Similar to plant height, reduced plant area was observed at elevated temperatures at 52 DAS, except for HIF pair 16 showing no temperature effect (Fig. 5-5B). Albeit greater in plant height, the plant area of *elf3^{BW290}* was smaller than Bowman from 45 DAS at 20°C and from 35 DAS at 28°C. However, the plant area of 10_elite and 10_wild plants did not differ at 20°C, but only at 28°C (Fig. 5-5B). In general, from 42 DAS, *elf3^{BW290}* and 10_wild at 28°C displayed lowest plant areas from both top- and side-views among all genotypes (Fig. 5-5B, C). As such, extended elongation growth seems to come at the cost of reduced leaf area for light interception and photosynthesis, which likely depends on *ELF3*. To represent plant biomass, the plant volume was estimated based on the plant areas of top- and two side-views, displaying similar trends as plant areas (Fig. 5-5D).

Interestingly, although the plant area was reduced in *elf3^{BW290}* and 10_wild at 28°C, relatively high convex hull areas were observed from both top- and side-views, especially in 10_wild (Fig. 5-5E, F). The convex hull area represents the smallest area enclosing the whole plant silhouette. Different to plant area, the convex hull area is mainly contributed by leaf length and bolting, representing the expansion of plants. Using both parameters (area and convex

hull area) allowed a more comprehensive description of plant architecture. These observations of reduced plant area but increased or stable convex hull area in *elf3^{BW290}* and 10_wild at 28°C could be a consequence of thinner leaves at 28°C (Fig. 5-3D). This conclusion is generally acceptable as the total tiller number at 52 DAS was not different (in *elf3^{BW290}*, HIF pair 10, 16_elite, and 17_elite) or even higher (in Bowman, 16_wild, and 17_wild) at 28°C (Fig. 5-6). The larger convex hull area is a proxy for a more openly structured habitus of the shoot. From work in Arabidopsis, it is known that such loose architectural adjustments promote ventilation and thereby facilitate evaporative leaf cooling at elevated temperatures (Crawford *et al.*, 2012).

Fig. 5-6 Effects of exotic *ELF3* alleles and elevated temperatures on barley tillering.

Barley seedlings were grown in LD (16 h light/ 8 h dark) at day/night temperatures of 20/16°C (20°C). At 5 DAS, seedlings were shifted to 28/24°C (28°C) or were kept at 20°C. Lines represent the mean ribbons indicate SEM and (*n*=11). Hashtags (for Bowman and HIF elite lines with HvELF3) and asterisks (for elf3^{BW290} and HIF wild lines with HspELF3) indicate significant differences between two temperature treatments (# and *, P<0.05; ## and **, P<0.01; ### and ***, P<0.001; two-way ANOVA). Multiple comparisons are shown in Appendix VI.

To assess the overall phenotypic responses to elevated temperatures during vegetative growth and development, a principal component analysis (PCA) was carried out based on the arithmetic means of all obtained traits (Fig. 5-7A). The first two principal components (PC1 and PC2) accounted for 75.8% of the variance. PC1 separated samples by temperature treatment, whereas PC2 separated samples by genotype. While *elf3^{BW290}* displayed a clear divergence from other genotypes at both temperatures, this separation was observed in 10_wild only at 28°C (Fig. 5-7A). To avoid a potential bias in correlation caused by large amounts of non-significant data as part of the growth curve measured during early vegetative stage, an additional PCA was performed based on the growth curve modeling traits (Fig. 5-7B). Using these traits allowed to tone down the wealth of data and to focus on important time points (e.g., day of maximum increase, day of maximum value,

and end point) as well as general patterns of the growth curves (e.g., total area under the curve) instead of considering all measurement time points identically in the analysis. Again, clustering of *elf3^{BW290}* and 10_wild at 28°C was detected (Fig. 5-7B).

Fig. 5-7 Principal component analysis (PCA) of barley growth traits.

(A, B) PCA was based on the correlation matrix using the arithmetic means of all obtained traits (A), or the derived growth curve modeling traits (B) obtained from temperature assay in growth chambers.

Taken together, these data so far demonstrate that the Syrian *ELF3* allele in HIF pair 10 (10_wild) and *elf3^{BW290}* mutant tend to behave similarly during vegetative growth and development. It can therefore be concluded that *ELF3* in general but also naturally occurring genetic variation in wild barley populations contributes to architectural changes of shoot tissues at elevated temperatures.

5.5 An exotic *ELF3* allele affects barley floral transition at elevated temperatures

The plant life cycle can be divided into distinct phases from germination to senescence. The timing of transition from one phase to the next can be either accelerated or delayed by high temperatures, depending on plant species and temperature regimes, reviewed by Lippmann *et al.* (2019). Therefore, I asked whether exotic *ELF3* alleles are involved in regulating developmental timing of leaf senescence and flowering at elevated temperatures.

As chlorophyll degradation is one of the hallmarks of leaf senescence (Guo *et al.*, 2021), I monitored the chlorophyll content of the second leaf every week during the temperature assay in growth chambers (Fig. 5-8). As expected, all genotypes displayed earlier leaf senescence with reduced chlorophyll content at 28°C compared to 20°C. Independent of *ELF3*, earlier onset of leaf senescence was observed at both temperatures in HIF pairs 16 and 17, indicating an effect of the genetic background in these lines outside of the *ELF3* locus (Fig. 5-8). Consistent with previous reports from various species (Djanaguiraman and Prasad, 2010; Lobell *et al.*, 2012; Shirdelmoghanloo *et al.*, 2016), these data suggest premature leaf senescence at elevated temperatures in barley but argues against a role of *ELF3* in its regulation.

Fig. 5-8 Effects of elevated temperatures on barley leaf chlorophyll content.

Barley seedlings were grown in LD (16 h light/ 8 h dark) at day/night temperatures of 20/16°C (20°C). At 5 DAS, seedlings were shifted to 28/24°C (28°C) or were kept at 20°C. Lines represent the mean and ribbons indicate SEM (*n*=11). Hashtags (for Bowman and HIF elite lines with HvELF3) and asterisks (for elf3^{BW290} and HIF wild lines with HspELF3) indicate significant differences between two temperature treatments (# and *, P<0.05; ## and **, P<0.01; ### and ***, P<0.001; two-way ANOVA). Multiple comparisons are shown in Appendix VI.

Senescence of old leaves enables remobilization and retranslocation of nutrients to newly formed organs (e.g., sink leaves or seeds), and often correlates with the timing of flowering (Kim *et al.*, 2020). To test whether and how barley flowering time is affected by elevated temperatures and *ELF3* alleles, the days until flag leaf sheath opening (BBCH-47, Fig. 5-9A) (Lancashire *et al.*, 1991) and the days until heading as a proxy for flowering time (BBCH-49, Fig. 5-9B) were scored. In contrast to most Arabidopsis accessions (Ibañez *et al.*, 2017), but consistent with a previous report in barley (Ejaz and von Korff, 2017), Bowman displayed delayed flag leaf sheath opening and heading at high temperatures, whereas *elf3^{BW290}* displayed the opposite temperature effect (Fig. 5-9A, B). Although 10_elite plants did not finish flowering at both temperatures until the end of the experiment (62 DAS, data therefore

omitted from Fig. 5-9A, B), 10_wild plants flowered much earlier (Fig. 5-9A-C). Interestingly, the flowering time of 10_wild plants was further accelerated by elevated temperatures, displaying an even larger temperature response compared to *elf3^{BW290}* (Fig. 5-9A-C). The early flowering of *elf3^{BW290}* and 10_wild at 28°C indicates early bolting, which could partially explain previously observed architectural changes of these two lines (Figs. 5-5, 5-7). In addition, the flowering time of 17_wild was not temperature dependent (Fig. 5-9A, B), whereas HIF pair 16 and 17_elite did not start showing heading until the end of the experiment (data therefore omitted from Fig. 5-9A, B). Taken together, as in the vast majority of phenotypes the sister lines of HIF pair 10 differed, further analyses focused on these genotypes.

Fig. 5-9 Effects of exotic ELF3 alleles and elevated temperatures on barley floral transition.

(A-C) Barley seedlings were grown in LD (16 h light/ 8 h dark) at day/night temperatures of 20/16°C (20°C). At 5 DAS, seedlings were shifted to 28/24°C (28°C) or were kept at 20°C. Days until flag leaf sheath opening (A) and heading (B) were scored in the lines showing visible awns before the end of the experiment. Boxes show medians and interquartile ranges. The whiskers extend to 1.5x interquartile ranges. Dots represent the values of individual plants. Different letters above the boxes indicate significant differences (two-way ANOVA and Tukey's HSD test, P<0.05). (C) Representative images of Bowman, *elf3^{BW290}*, 10_elite, and 10_wild plants at 38 DAS. Scale bar = 10 cm.

To better understand the differences in the timing of floral transition between the elite and wild alleles of HIF pair 10, I first assessed the allelic effects on barley meristem development

and found that from 19 DAS, 10_wild plants displayed faster inflorescence development than 10_elite at both temperatures (Fig. 5-10A). In contrast to 10_elite, the meristem development of 10_wild was drastically accelerated by elevated temperatures, consistent with the flowering time results (Fig. 5-9).

Next, to substantiate these observations on the molecular and regulatory levels, the transcriptional behavior of barley floral regulator genes was investigated in leaf samples from the plants used for meristem dissection (Fig. 5-10B). With few exceptions, transcript levels of Ppd-H1, FT1, and VRN1 remained largely unaltered by temperature or ELF3 allele. The exceptions were: 10 elite at 28°C had reduced transcript levels of *Ppd-H1* (19 to 27 DAS) and VRN1 (27 DAS) compared to 20°C; 20 wild at 28°C displayed reduced transcript levels of *Ppd-H1* and *FT1* at 40 DAS (Fig. 5-10B). As expected, during meristem development, transcript abundance of BM3 and BM8 increased in both lines and temperature conditions. However, the onset of BM3 and BM8 induction occurred already at 19 DAS in 10 wild at 28°C, which is earlier compared to 10 wild at 20°C and 10 elite (Fig. 5-10B). In line with the time points displaying morphological differences in shoot apical meristems (Fig. 5-10A), 10 wild plants displayed induced expression of BM3 and BM8 at 28°C between 19 to 33 DAS, when compared to 10 elite under the same conditions (for BM3), or 10_wild at 20°C (for BM8) (Fig. 5-10B). Importantly, across development, ELF3 transcript levels hardly varied between both alleles in most time points. Moreover, ~1.2 kb of promoter sequence upstream of the ELF3 start codon was identical between both alleles (Zahn et al., 2022, Preprint). These data suggest that the observed phenotypes including the differences in transcript abundance of downstream genes are due to post-transcriptional differences between both alleles, possibly on the level of functional protein.

Together, flowering time data, floral meristem dissection and gene expression analyses demonstrate that the exotic *ELF3* allele in HIF pair 10 (10_wild) accelerates barley floral transition at elevated temperatures, putatively by promoting the transcript levels of floral regulators including *BM3* and *BM8* MADS-box genes.

Fig. 5-10 An exotic *ELF3* allele interacts with elevated temperatures to control meristem development and transcript levels of flowering genes.

(A) Representative images of shoot apical meristem and inflorescence in 10_elite and 10_wild plants grown in LD (16 h light/ 8 h dark) at day/night temperatures of 20/16°C (20°C).

At 5 DAS, seedlings were shifted to $28/24^{\circ}C$ ($28^{\circ}C$) or were kept at $20^{\circ}C$. Three plants were harvested per genotype per temperature at 12, 19, 27, 33, and 40 DAS. Figures in white boxes indicate Waddington scale scores until 6.0. Scale bars, white = 500 µm; red = 2 cm. (B) Transcript levels of barley flowering genes. Leaf samples were harvested at ZT08 during meristem dissection at each time point in (A), as well as at 5 DAS before the start of temperature treatment. Expression levels were normalized to *HvACTIN* and *HvGAPDH*. Error bars indicate the SEM (*n*=3) of three biological replicates. Hashtags (for 10_elite) and asterisks (for 10_wild) indicate significant differences between two temperature treatments (# and *, *P*<0.05; ## and **, *P*<0.01; ### and ***, *P*<0.001; two-way ANOVA). Multiple comparisons are shown in Appendix VI.

5.6 An exotic *ELF3* allele stabilizes total grain weight at elevated temperatures

Under climate change scenarios, crop production and grain yield are predicted to be severely threatened by rising temperatures (Battisti and Naylor, 2009; Asseng *et al.*, 2015). With ambient temperature increased by 7 to 8°C, striking yield losses were observed in barley (Ejaz and von Korff, 2017; Ochagavía *et al.*, 2021). Interestingly, the early flowering mutant *elf3^{BW290}* was reported to maintain seed number at elevated temperatures (Ejaz and von Korff, 2017), thereby representing some sort of increased yield stability. Since (i) the exotic *ELF3* allele in HIF pair 10 (10_wild) behaved like *elf3^{BW290}* in many of the assays performed so far and (ii) to assess the effect of 10_wild on yield components at elevated temperatures, I performed a temperature assay in a greenhouse setting. In this assay, four genotypes (Bowman, *elf3^{BW290}*, and HIF pair 10) were grown in LD with day/night temperatures of 20°C/16°C (20°C treatment) or 28°C/24°C (28°C treatment). To avoid the effects of elevated temperatures on early seedling establishment (Figs. 5-3, 5-4), the temperature treatments started from the three-leaf stage (BBCH-13, 15 to 17 DAS) (Lancashire *et al.*, 1991).

I first examined whether the growth and developmental traits under greenhouse conditions were comparable to the results from the environmentally better controlled growth chamber experiments. Despite the expected generally delayed phase transition under greenhouse conditions, early heading was observed in *elf3^{BW290}* at both temperatures and in 10_wild at 28°C; all four genotypes displayed reduced plant height at elevated temperatures, 118 DAS (Fig. 5-11A, B). Total tiller number was not changed in Bowman but reduced in *elf3^{BW290}* at 28°C, 118 DAS, whereas both lines in HIF pair 10 had more tillers at 28°C than 20°C (Fig. 5-11C). Taken together, although the total tiller number data were different, the vast majority of phenotypes from the growth chambers were reproducible in the greenhouse (Figs. 5-6,

67

5-9, 5-11A-C). This suggested that documentation of yield related phenotypes in the greenhouse may as well provide reliable insight into the roles of *ELF3* and especially the exotic 10_wild allele.

Fig. 5-11 Growth and development phenotypes from temperature assay in greenhouses.

(A-D) Barley seedlings were grown in greenhouse conditions with LD (16 h light/ 8 h dark) and day/night temperatures of 20/16°C (20°C). Plants that reached the three-leaf stage were shifted to 28/24°C (28°C) or were kept at 20°C. The developmental stage (A) was scored at 73 DAS, whereas plant height (B) and total tiller number (C) were scored at 118 DAS. The developmental stage of all *elf3^{BW290}* plants at both temperatures was at BBCH-59 or further at 73 DAS. At maturity, plant dry weight (aerial part, D) was scored. Boxes show medians and interquartile ranges. The whiskers extend to 1.5x interquartile ranges. Dots represent the values of individual plants (*n*=12-15). Different letters above or below the boxes indicate significant differences (two-way ANOVA and Tukey's HSD test, *P*<0.05).

I subsequently measured plant (shoot) dry weight, spike parameters (ear length and grains/florets per spike), and grain parameters (grain number, grain area, thousand grain weight, and grain weight per plant) at maturity. I found plant dry weight to be reduced in Bowman and 10_elite at 28°C, but it was not influenced by temperature in *elf3^{BW290}* and 10_wild (Fig. 5-11D). At both temperatures, plant dry weight was lower in *elf3^{BW290}* and 10_wild when compared to Bowman and 10_elite, respectively.

The ear length (excluding awns) of Bowman and *elf3^{BW290}* was not temperature dependent, with *elf3^{BW290}* having shorter ears than Bowman (Fig. 5-12A). Shorter ears were also

observed in 10_wild compared to 10_elite, but only at elevated temperatures. At 28°C, the number of grains and florets per spike was reduced in all genotypes except *elf3^{BW290}* (Fig. 5-12B, C). Such an *elf3^{BW290}* phenotype was consistent with the previous report by Ejaz and von Korff (2017). While *elf3^{BW290}* had less grains and florets per spike than Bowman under both temperatures, 10_wild only showed reduced numbers at 28°C compared to 10_elite (Fig. 5-12B, C). The ratio of grains and florets per spike was slightly reduced in HIF pair 10 at 28°C (Fig. 5-12D), indicating the negative effects of high temperature on floret fertility as previously reported for wheat (Prasad and Djanaguiraman, 2014).

Fig. 5-12 Effects of exotic *ELF3* allele and elevated temperatures on barley spike parameters.

(A-D) Barley seedlings were grown in greenhouse conditions with LD (16 h light/ 8 h dark) and day/night temperatures of 20/16°C (20°C). Plants that reached the three-leaf stage were shifted to 28/24°C (28°C) or were kept at 20°C. At maturity, the spike parameters ear length (A), number of grains (B) and florets (C) per spike, and grain/floret ratio (D) were scored. Boxes show medians and interquartile ranges. The whiskers extend to 1.5x interquartile ranges. Dots represent the values of individual plants (n=12-15). Different letters above or below the boxes indicate significant differences (two-way ANOVA and Tukey's HSD test, P<0.05).

The total grain number per plant displayed similar trends as the number of grains per spike, except that 10_wild had reduced total grain number at 20°C (Figs. 5-12B, 5-13A). The grain area was not affected by temperature in Bowman and *elf3^{BW290}*, with *elf3^{BW290}* having smaller

grain area compared to Bowman (Fig. 5-13B). In contrast, 10_elite and 10_wild displayed the same grain area which is reduced at 28°C.

Fig. 5-13 Effects of exotic *ELF3* allele and elevated temperatures on barley yield related parameters.

(A-D) Barley seedlings were grown in greenhouse conditions with LD (16 h light/ 8 h dark) and day/night temperatures of 20/16°C (20°C). Plants that reached the three-leaf stage were shifted to 28/24°C (28°C) or were kept at 20°C. At maturity, number of grains per plant (A) grain area (B), thousand grain weight (C), and grain weight per plant (D) were scored. Boxes show medians and interquartile ranges. The whiskers extend to 1.5x interquartile ranges. Dots represent the values of individual plants (n=12-15). Different letters above or below the boxes indicate significant differences (two-way ANOVA and Tukey's HSD test, P<0.05).

The thousand grain weight (TGW) was not affected by temperature in Bowman, *elf3^{BW290}* and 10_elite, whereas 10_wild had reduced TGW at 28°C (Fig. 5-13C). The reduction of TGW in 10_wild resulted in reduced grain weight per plant at 28°C, whereas the total grain weight of the other genotypes was mostly dependent on the number of grains per plant (Fig. 5-13A-D). Although the total grain weight was strikingly reduced in 10_wild at 20°C compared to 10_elite, it was not different at 28°C (Fig. 5-13D). These data suggest that the decrease in total grain weight caused by elevated temperatures is mainly due to reduced grain number, which is mitigated in HIF pair 10 with the exotic *ELF3* allele.

To understand whether these yield related parameters are linked to morphological and/or developmental traits, I analyzed putative correlations of temperature responses amongst

selected traits in Bowman, *elf3^{BW290}*, and HIF pair 10. As expected, high correlations can be observed among traits within similar growth and developmental stages (Fig. 5-14). During the early vegetative growth stage, temperature induced leaf and tiller formation correlated strongly with early plant architectural traits (e.g., convex hull area, area, and volume, 16 DAS). Similarly, temperature-induced reduction in total grain weight strongly correlated with grain number, plant dry weight, and late plant architectural traits (e.g., area and volume, 52 DAS, Fig. 5-14). Moreover, although the temperature response of TGW was not correlated with any other yield related trait, it correlated positively with the response of late plant architectural traits (Fig. 5-14). These correlation patterns indicate potential connections of traits in barley response to elevated temperature.

Fig. 5-14 Correlation of temperature responses in selected traits.

Pairwise correlation coefficients were determined for Bowman, *elf3*^{BW290}, and HIF pair 10 between selected growth, developmental, and yield related traits. Numbers in the bracket indicate DAS. Pearson correlation coefficients were tested for significance and only significant coefficients with P<0.05 are not crossed.

In conclusion, these data demonstrate that an exotic barley *ELF3* allele from Syrian origin not only contributes to thermomorphogenic architectural adjustments, but also accelerates floral transition at elevated temperatures, potentially mitigating further yield loss by early flowering which prevents detrimental effects of high temperatures on grain development.

6 Discussion

In the context of global climate change, plant performance, especially yield performance, largely depends on the ability of plants to tackle cyclic light/temperature changes, as well as unpredictable environmental events. Therefore, characterizing the key players involved in plant anticipation, acclimation, and adaptation is a pivotal step to prevent potential yield losses. This work focused on the functions of *ELF3*, regarding plant performance under changing temperatures in Arabidopsis and barley.

6.1 Potential functions of ELF3 polyQ and phase separation

Sensing changes in ambient temperature is the first step in plant thermomorphogenesis. Among the known plant temperature sensors reviewed by Hayes *et al.* (2021), the PrD in Arabidopsis ELF3 mediates liquid-liquid phase separation (LLPS) of ELF3 to form aggregates at elevated temperatures (Jung *et al.*, 2020). The ELF3 PrD is featured by polyQ repeats, which vary in length among Arabidopsis accessions as investigated in this study (Figs. 3-2, 3-4). I found the probability of PrD existence to be related with the polyQ length in Brassicaceae family (Figs. 3-1, 3-3), whereas the shortest polyQ stretch with the length of 7Q was enough for PrD functions in Arabidopsis ecotype Col-0 (Jung *et al.*, 2020). However, the ELF3 from non-Brassicales species rarely contained polyQ or a predicted PrD (Fig. 3-1). As replacing Arabidopsis ELF3 with *Brachypodium distachyon* ELF3 that lacks PrD abolished the temperature responsiveness (Jung *et al.*, 2020), these results suggest the temperature sensing ability of ELF3 PrD is only applicable to a limited number of plant species.

To understand the evolutionary meaning and potential functions of polyQ variation, I next focused on natural Arabidopsis accessions. I found that apart from the polyQ variation, the coding sequence of Arabidopsis *ELF3* was highly conserved among accessions (Figs. 3-6, 3-7). In the geographic distribution of 319 sequenced Arabidopsis accessions, no significant pattern was observed between polyQ length and elevation (Fig. 3-4) or seasonal temperature variations (Fig. 3-5). As closely located accessions are expected to experience similar natural selection pressure, the observations in this study argue against the hypothesis that the polyQ variation is an evolutionary adaptation to varying latitudes or ambient temperatures (Wilkinson and Strader, 2020; Xu *et al.*, 2021).

73

Furthermore, no promising correlation between polyQ length and temperature responsive hypocotyl phenotypes was detected in the temperature assays using Arabidopsis accessions (Figs. 3-8, 3-9). This is consistent with previous reports using transgenic lines with different polyQ length in two different genetic backgrounds (Press *et al.*, 2016; Jung *et al.*, 2020). Therefore, it can be concluded that the temperature sensing functions of the ELF3 PrD mainly depend on the 'qualitative' existence of polyQ, rather than its 'quantitative' length. However, the potential effects of polyQ length (especially for extremely long polyQ repeats) on the aggregation properties under high temperatures cannot be ruled out. From a physical chemistry point of view, the aggregation properties of polyQ peptides depend on both polyQ length and temperature (Walters and Murphy, 2009; Böker and Paul, 2022). This means the longer the peptide is, the lower the transition temperature is required for its aggregation. For example, a polyQ peptide self-aggregates at a physiological temperature when its chain length is more than 25Q (Böker and Paul, 2022). Whether this also applies to the thermodynamics of ELF3 (which harbors polyQ peptide) needs to be investigated at a molecular level.

Interestingly, compared to temperature response, polyQ variation in ELF3 displayed more prominent correlations with circadian rhythm parameters. In natural Arabidopsis accessions, polyQ lengths were negatively correlated with circadian phase and period (Tajima *et al.*, 2007), whereas in transgenic lines, increase (23Q) or decrease (7Q and 10Q) in polyQ length resulted in higher RAE, compared to the most frequent polyQ length (16Q) (Undurraga *et al.*, 2012). These results suggest that the polyQ stretch (and PrD) mainly contributes to circadian clock functions, with temperature sensing being secondary. This hypothesis may also apply to *ELF3* itself, as the emergence and duplication of *ELF3* occurred much earlier with the other EC components, compared to the emergence of its PrD (Table 1; Fig. 3-1).

And indeed, temperature is just one of the aspects that affect LLPS behavior, reviewed by Xu *et al.* (2021). Besides environmental factors, LLPS also highly depends on the concentration and identities of macromolecules to form membraneless compartments. These compartments include cytoplasmic single-domain aggregations (e.g., purified ELF3 PrD at high temperatures) (Jung *et al.*, 2020), as well as nuclear bodies containing photoreceptors (so-called photobodies) or circadian clock components (Ronald and Davis, 2019). These LLPSs all seem to be related to cellular localization of proteins: in a light and temperature dependent manner, photoreceptor phyB reversibly accumulates as photobodies in the subnuclear compartments (Yamaguchi *et al.*, 1999; Hahm *et al.*, 2020;

74

Chen *et al.*, 2022); in a time-of-day dependent manner, circadian clock regulators such as ELF3, TOC1 (Wang *et al.*, 2010), ELF4 and GI (Herrero *et al.*, 2012; Kim *et al.*, 2013) (co)localize at nuclear bodies.

Interestingly, recent reports revealed that cellular localization of ELF3 is also responsive to light quality (Ronald *et al.*, 2022), in addition to high ambient temperatures (Ronald and Davis, 2021), further suggesting that the LLPS behavior of ELF3 may not be limited to temperature response. As ELF3 is known to interact with phyB, ELF4, and GI, future work is needed to understand whether and how ELF3 contributes to the LLPS behavior of other proteins and/or protein complexes under various stimuli.

6.2 Arabidopsis ELF3 is an essential temperature Zeitnehmer

Although plant temperature sensors such as phyB and ELF3 have been identified, it remains unclear how temperature information is integrated in the circadian oscillator. A previous study proposed ELF3 to be an essential component of the oscillator but dismissed its function as a temperature Zeitnehmer (Thines and Harmon, 2010). These conclusions were based on experiments performed on etiolated seedlings entrained by temperature cycles in darkness. However, under these conditions, (i) phyB is not photoactivated and is absent from the nucleus (Chen et al., 2003); (ii) ELF3 degrades quickly as its accumulation is facilitated by interaction with phyB in light (Liu et al., 2001; Yu et al., 2008; Nieto et al., 2015). As such, the non-responsiveness of the oscillator to temperature cycles could be partially attributed to the absence of both temperature sensors in darkness. On the other hand, a later study highlighted the importance of the EC in clock temperature sensing, based on experiments with different combinations of photoperiod and temperature (Mizuno et al., 2014). However, under the applied the experimental settings it was difficult to examine the exact role of ELF3 in temperature entrainment, as ELF3 functions as a light Zeitnehmer (Anwer et al., 2020) and is involved in complicated photoperiod-temperature crosstalk (Figs. 4-1, 4-2). Therefore, whether ELF3 functions as a temperature Zeitnehmer remained unclear.

Using temperature entrainment in continuous light eliminates these complications and provides the best possible condition to investigate the role of *ELF3* in the presence of phyB. Under these conditions, I found that the clock entrainment to temperature cycles requires functional *ELF3*. In *elf3* loss-of-function mutants, the oscillator components failed to properly respond to regular temperature changes (Fig. 4-7), or to sudden temperature pulses (Fig.

4-9). Consequently, clock-controlled physiological processes such as diurnal hypocotyl growth and cotyledon movement were arrhythmic under temperature cycles in *elf3* (Figs. 4-4, 4-5). Moreover, in confirmation of previous observations in etiolated seedlings (Thines and Harmon, 2010), *elf3* mutants failed to generate robust rhythms of key clock genes under temperature cycles in darkness (Fig. 4-8). Together, these data demonstrate that *ELF3* is an essential temperature Zeitnehmer for clock entrainment to temperature cycles.

Interestingly, another temperature sensor phyB was not responsible for sensing cyclic temperatures under conditions of this study, as *phyB* loss-of-function mutants displayed rhythmic cotyledon movement under temperature cycles (Fig. 4-6A). Although in this case the temperature sensing can be achieved by ELF3 PrD, the role of phyB in clock-dependent thermomorphogenesis could not be eliminated as *elf3* mutants still displayed intact temperature response under non-cycling conditions (Fig. 4-3). Thus, regarding temperature sensing and signaling transduction, the functional divergence between phyB and ELF3 needs to be further clarified.

6.3 Arabidopsis ELF3 can function independently of the EC

The functions of Arabidopsis ELF3 have long been associated with its recruitment of ELF4 and LUX in forming the EC (Fig. 6-1), which acts as a core component of the circadian clock and a transcriptional repressor (Nusinow *et al.*, 2011; Chow *et al.*, 2012). In the EC, LUX is required for DNA binding (Onai and Ishiura, 2005), whereas ELF4 modulates ELF3 activity and stabilizes this binding property at high temperatures (Herrero *et al.*, 2012; Jung *et al.*, 2020; Silva *et al.*, 2020). However, in temperature entrainment experiments of this study, rhythmic cotyledon movements were detected in the loss-of-function mutants *pcl1 (lux)* and *elf4* (Fig. 4-6B, C), suggesting that the temperature Zeitnehmer function of ELF3 is independent of its interaction with LUX or ELF4.

Fig. 6-1 STRING-network for Arabidopsis ELF3 and its interactors.

Arabidopsis ELF3 currently has eight experimentally determined interactors based on the STRING database (Szklarczyk *et al.*, 2021). The minimum interaction score was set as high confidence (0.700).

The EC-independent role of *ELF3* was also observed in ELF3-PIF4 interaction (Fig. 6-1), which prevents PIF4 from transcriptional activation of its target genes (Nieto *et al.*, 2015). This observation was based on the stabilization of ELF3 in light by phyB (Liu *et al.*, 2001), which likely competed with COP1-mediated ELF3 degradation (Yu *et al.*, 2008; Nieto *et al.*, 2022). Other circadian clock related interactors of ELF3 include TIME FOR COFFEE (TIC) (Hall *et al.*, 2003) and PHOTOPERIODIC CONTROL OF HYPOCOTYL1 (PCH1) (Huang *et al.*, 2016) (Fig. 6-1), as well as GI (Yu *et al.*, 2008), CCA1 and SHORT VEGETATIVE PHASE (SVP) (Yoshida *et al.*, 2009) (which were not detected by the STRING database in Fig. 6-1). Furthermore, regarding thermomorphogenesis, recent studies revealed the interactions of ELF3 with BBX18 and BBX23 (Ding *et al.*, 2018), by which BBX18 further recruits XBAT31 and XBAT35, mediating ELF3 degradation (Zhang *et al.*, 2021). As these interactions were (i) based on large and unspecific binding regions in ELF3, (ii) observed under various experimental conditions, and (iii) responsible for different functions of ELF3 in regulating circadian clock and ecophysiology, it is still unknown whether and how they are interconnected (e.g., competitive binding).

6.4 ELF3 mediates crop domestication

Since it was identified (Hicks *et al.*, 1996), *ELF3* has been extensively studied in the model eudicot Arabidopsis, whereas understanding its functions in other plants especially crop species has just started. Our current knowledge highlights the conserved role of *ELF3* in

crop domestication: a process of plant selection for agriculturally favorable traits aimed for human requirements, rather than survival in natural and uncultivated environments (Chen *et al.*, 2015). Natural variation or loss-of-function in *ELF3* generally affects photoperiodic flowering in various species, including rice (Matsubara *et al.*, 2012; Saito *et al.*, 2012; Andrade *et al.*, 2022), barley (Faure *et al.*, 2012; Zakhrabekova *et al.*, 2012), wheat (Alvarez *et al.*, 2016), soybean (Lu *et al.*, 2017), chickpea (Ridge *et al.*, 2017), garden pea and lentil (Weller *et al.*, 2012). This allows the cultivation of LD crops under short growing seasons, and thereby extends spatial distribution.

As photoperiodic flowering is regulated by the circadian clock, the clock-related functions of *ELF3* are expected to be conserved. And indeed, the expression patterns of both flowering and clock related genes were altered in *ELF3* mutants in various species (Faure *et al.*, 2012; Saito *et al.*, 2012; Weller *et al.*, 2012; Andrade *et al.*, 2022). However, not all functions of *ELF3* were conserved across species. For example, a chickpea *elf3* mutant strongly affecting flowering time had no effect on rhythmic expression of clock genes (Ridge *et al.*, 2017). Similarly, in this study, barley *elf3^{BW289}* mutants showed only slightly altered expression levels of key clock genes and remained to be rhythmic under temperature cycles (Fig. 4-10). Therefore, functional divergence of *ELF3* among species needs to be further elucidated. Furthermore, natural variation of soybean *ELF3* (also known as *J*) displayed an extended vegetative phase, improving yield under SD conditions (Lu *et al.*, 2017). Together, these findings have already made *ELF3* an attractive breeding target in key crops, whereas exploring the regulatory mechanisms of *ELF3* under various environmental stimuli is still necessary for breeding applications.

6.5 ELF3 is involved in barley thermomorphogenesis

Barley was one of the first crop species for which an *ELF3* homologue/orthologue was identified with strong effects on flowering time regulation (Faure *et al.*, 2012; Zakhrabekova *et al.*, 2012). In my thesis, barley was used as a monocot model, to explore the potential role of *ELF3* in crop thermomorphogenesis. Under elevated temperatures, barley lines displayed increased plant height (Figs. 5-1, 5-3A) and accelerated formation of leaves and tillers (Fig. 5-3C), which were coupled with reduced leaf width (Fig. 5-3D) and the absence of a coleoptile tiller (Fig. 5-4). These observations are consistent with previous reports in barley and wheat (Cannell, 1969; Huang and Taylor, 1993; Abou-Elwafa and Amein, 2016), even comparable to Arabidopsis thermomorphogenic phenotypes such as elongation of

hypocotyl and petioles (Quint *et al.*, 2016). Therefore, the general phenotypic responses to elevated temperatures during early vegetative development (thermomorphogenesis) seem to be largely conserved between monocots and eudicots.

During seedling establishment, the *elf3*^{BW290} mutant and the exotic allele 10_wild, which was derived from the HEB-25 mapping population (Maurer *et al.*, 2015), mainly interacted with temperature in controlling elongation growth (Figs. 5-1, 5-3A), again similar to *elf3* mutant phenotypes in Arabidopsis (Figs. 4-1, 4-2). However, the regulatory level of thermomorphogenesis in barley remains unclear, as (i) elongation of cereal leaves likely employs different mechanisms than those of eudicots (Fricke, 2002), and (ii) orthologous relationships of *PIF4*, the major thermomorphogenic regulator downstream of Arabidopsis *ELF3* (Box *et al.*, 2015; Raschke *et al.*, 2015), are not phylogenetically traceable between Arabidopsis and barley.

Upon prolonged exposure to elevated temperatures, plant height, area, and estimated biomass were reduced (Fig. 5-5). In combination with tillering (Fig. 5-6) and accelerated flowering (Fig. 5-9), these phenotypes collectively resulted in architectural changes in the *elf3^{BW290}* mutant and 10_wild (Figs. 5-5, 5-7, 5-9C). Such architectural acclimation can be characterized as well-distributed and distant plant organs (Fig. 5-9C), analogous to the open rosette structure in Arabidopsis, which improves leaf cooling and maintains photosynthetic efficiency at high temperatures (Crawford *et al.*, 2012). Interestingly, *elf3^{BW290}* displayed such architecture even at 20°C compared to Bowman (Figs. 5-5, 5-9C), similar to the constitutively thermoresponsive long hypocotyls and petioles in Arabidopsis *elf3* mutants at 16-22°C (Figs. 4-1, 4-2) (Jung *et al.*, 2020). These conserved architectural responses across species suggest that *ELF3* might play a similar role in thermomorphogenesis in Arabidopsis and cereals. As the cereal ELF3 generally lacks the PrD (Fig. 3-1), it remains unclear whether temperature sensing functions are also conserved.

6.6 Exotic barley *ELF3* alleles contribute to temperature responsive developmental plasticity

As reproductive development is especially vulnerable to increasing temperature and ultimately accounts for plant yield performance, understanding the mechanisms of temperature responsive flowering contributes to crop adaptation to temperate climates (Fjellheim *et al.*, 2014). Although inflorescence development in barley is generally inhibited by elevated temperatures reviewed by Jacott and Boden (2020) and observed in Bowman,

floral transition was induced early by elevated temperatures in *elf3^{BW290}* and 10_wild (Figs. 5-9, 5-10). The observations of Bowman and *elf3^{BW290}* are highly consistent with a previous report using similar conditions (Ejaz and von Korff, 2017).

In contrast to the loss-of-function mutant *elf3^{BW290}* with truncated ELF3 protein (Zakhrabekova *et al.*, 2012), only a single amino acid substitution differentiates the two alleles of HIF pair 10 (W669G, Fig. 5-2). As transcript levels of *ELF3* between the two sister lines were mostly unchanged under diurnal conditions (Zahn *et al.*, 2022, Preprint) as well as at elevated temperatures (Fig. 5-10B), the W669G substitution may be responsible for functional differences on the protein level. And indeed, the W669G substitution was predicted to affect the secondary structure of ELF3 protein, putatively disturbing protein-protein interactions (Zahn *et al.*, 2022, Preprint).

Therefore, it is important to understand the functional divergence of different *ELF3* alleles in regulating its downstream genes. Under diurnal conditions, *elf3^{BW290}* promoted flowering by relieving the repression of *Ppd-H1* expression, whereas 10_wild induced the transcript levels of *FT1* and *VRN1* without influencing the levels of *Ppd-H1* (Ejaz and von Korff, 2017; Zahn *et al.*, 2022, Preprint). Surprisingly, no temperature effect was observed on the transcript levels of *Ppd-H1*, *FT1*, and *VRN1* during inflorescence development (Fig. 5-10). In contrast, associated with meristem development, the transcript levels of floral inducer MADS-box genes *BM3* and *BM8* were induced early by elevated temperatures exclusively in 10_wild (Fig. 5-10). As down-regulation of *BM3* and *BM8* was reported to be correlated with drought sensitive late flowering (Gol *et al.*, 2021), these observations suggest a convergent responsive pathway to naturally accompanying high temperature and drought.

Considering the molecular connection between *ELF3* and *BM3/BM8*, gibberellic acid (GA) is a candidate mediator. It was reported that constitutive early flowering of barley *elf3* mutants is a result of induced GA biosynthesis, which can be blocked by the GA inhibitor paclobutrazol (Boden *et al.*, 2014). In addition, GA might act as an FT1-like mobile florigen (Fig. 1-3) (King and Evans, 2003). In Arabidopsis, GA biosynthesis is induced by high temperatures, and it has been suggested that bioactive GA contributes to thermomorphogenesis by delivering temperature signals from the root to the shoot via one of its precursors (Stavang *et al.*, 2009; Camut *et al.*, 2019). These results may provide insights for future research to study the role of GA in barley temperature response.

Surprisingly and in contrast to the above-described significant phenotypes of HIF pair 10, exotic *ELF3* alleles in HIF pairs 16 and 17 did not show a comparable temperature sensitivity (Figs. 5-5, 5-7), although they carried four more amino acid substitutions in addition to the

80

W669G replacement in ELF3 (Fig. 5-2). This discrepancy suggests that the observations in HIF pair 10 rely on the genetic background apart from *ELF3*. And indeed, while HIF pair 10 carries the wild allele of *Ppd-H1*, HIF pairs 16 and 17 have the elite alleles; HIF pair 16 also has the wild allele of VRN1, whereas HIF pairs 10 and 17 contain the elite allele (Zahn et al., 2022, Preprint). Thus, the wild Ppd-H1 in HIF pair 10 is likely a prerequisite for the temperature phenotypes caused by exotic *ELF3*, although its expression did not differ (Figs. 5-9, 5-10). Moreover, the interesting temperature insensitive early flowering of 17 wild could result from the combination of exotic ELF3 and elite Ppd-H1 (Fig. 5-9A, B). Likewise, the overall late flowering of HIF pair 16 (did not show heading until the end of the experiment) can be explained by its specific wild VRN1. These hypotheses are supported by previous reports showing allelic effects of *Ppd-H1* and *VRN1* in barley temperature responsive flowering (Ejaz and von Korff, 2017; Ochagavía et al., 2021). With varying developmental behaviors observed in exotic variants of *ELF3*, these data again emphasize the important upstream role of ELF3 in barley floral transition at elevated temperatures. Nevertheless, the potential involvements of photoperiod and vernalization pathways, as well as other circadian clock components (Fig. 1-3) are worth investigating in greater detail.

6.7 Early flowering is an adaptive response under climate change

Besides the scientific interest in the regulatory mechanisms of flowering time, the goal of plant production under global climate change is to prevent yield loss. Generally, negative effects of elevated temperatures were observed on several yield related parameters in barley (Figs. 5-12, 5-13), consistent with previous reports (Dias and Lidon, 2009; Ejaz and von Korff, 2017; Ochagavía *et al.*, 2021). The total grain number was strongly affected by high temperatures in Bowman and 10_elite (Fig. 5-13A). In contrast, the reduction in grain number was not observed in *elf3^{BW290}* and 10_wild, resulting in stabilized total grain weight per plant (Fig. 5-13), which is potentially achieved by the nature of early flowering (Figs. 5-9, 5-10).

Early flowering or early maturing is generally coupled with yield loss, due to reduced leaf area and time available for photosynthetic assimilate production. However, it can also be a strategy of plants to avoid upcoming seasonal stressful conditions such as drought and heat in late spring or summer (Shavrukov *et al.*, 2017). Under global warming scenarios, various species display advanced flowering, and this trend is predicted to continue, indicating early flowering being an adaptive response (Parmesan and Yohe, 2003; Anderson *et al.*, 2012;

Zheng *et al.*, 2016; Büntgen *et al.*, 2022). Providing further evidence, the short life cycle of *elf3^{BW290}* and 10_wild at elevated temperatures was also characterized by open canopy architectures and stabilized total grain weight (Figs. 5-5, 5-9C, 5-13). With early flowering being an evolutionary heat (or drought) escape strategy under climate change (Franks *et al.*, 2007), *ELF3* therefore is a potentially important player contributing to this adaptive response. While the mechanistic consequences of allelic *ELF3* variants require extensive molecular studies, these findings encourage systematic exploitation of this genetic resource for breeding climate resilient crops.

7 Conclusions

This thesis characterized the functions of *ELF3* in Arabidopsis and barley, focusing on its role as a determinant of plant performance under changing temperatures. By identifying *ELF3* homologues and determining ELF3 PrD existence across the plant kingdom, this work traced the emergence of PrD to Brassicales species. Natural variation of ELF3 polyQ among Arabidopsis accessions was investigated, which is not correlated with geographic origins or temperature responsive phenotypes. Based on the infrared time-lapse imaging and genetic analyses under temperature cycles, Arabidopsis *ELF3* was revealed as an essential temperature Zeitnehmer independently of the evening complex. The role of *ELF3* in thermal responsive phenotypes of barley was investigated, using *elf3* loss-of-function alleles and HIF pairs generated from the HEB-25 population. An exotic allele of ELF3 was identified that contributes to plant architectural and developmental acclimation at high ambient temperatures.

8 Summary

Plants have evolved to anticipate and adjust their growth and development responding to environmental changes. To keep the pace of global climate change and to avoid yield loss, understanding the key regulators of plant performance is therefore imperative. This work characterized the functions of EARLY FLOWERING 3 (ELF3) in plant responses to changing temperatures. The evolutionary emergence of ELF3 temperature sensing prionlike domain (PrD) was traced to Brassicales species, while monocot crops generally lack such a domain in ELF3. Although PrDs are likely featured by polyglutamine (polyQ) repeats, the polyQ natural variation among Arabidopsis thaliana accessions was not associated with geographic origins or temperature responsive phenotypes. These findings indicate that rather than the length of polyQ, its presence alone is sufficient to contribute to phase separation properties that are potentially not limited to temperature sensing. Linked to its thermosensory functions, Arabidopsis thaliana ELF3 was revealed as an essential temperature Zeitnehmer (time-taker) that coordinates rhythmic physiological outputs with temperature cycles. Importantly, this function is independent of an intact evening complex. Although these temperature related functions of *ELF3* were largely unknown in crop species, ELF3 is an important flowering time regulator in crop domestication to short growing seasons. The thermomorphogenic functions of *ELF3* were further explored in barley, a monocot crop model. From a segregating mapping population, an exotic ELF3 allele was identified playing significant roles in various levels of barley temperature response. Barley plants carrying this allele displayed architectural adjustment and accelerated floral transition at elevated temperatures, which consequently stabilized total grain weight. These results highlight ELF3 as a determinant of plant performance under changing temperatures and provide insightful information for breeding applications.

9 References

- **Abou-Elwafa SF, Amein KA**. 2016. Genetic diversity and potential high temperature tolerance in barley (Hordeum vulgare). World Journal of Agricultural Research **4**, 1-8.
- Adams S, Manfield I, Stockley P, Carré IA. 2015. Revised Morning Loops of the Arabidopsis Circadian Clock Based on Analyses of Direct Regulatory Interactions. PLoS One 10, e0143943.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of molecular biology **215**, 403-410.
- Alvarez M, Tranquilli G, Lewis S, Kippes N, Dubcovsky J. 2016. Genetic and physical mapping of the earliness per se locus Eps-A m 1 in Triticum monococcum identifies EARLY FLOWERING 3 (ELF3) as a candidate gene. Functional & Integrative Genomics 16, 365-382.
- Anand L, Rodriguez Lopez CM. 2022. ChromoMap: an R package for interactive visualization of multi-omics data and annotation of chromosomes. BMC bioinformatics 23, 1-9.
- Anderson JT, Inouye DW, McKinney AM, Colautti RI, Mitchell-Olds T. 2012. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings of the Royal Society B: Biological Sciences 279, 3843-3852.
- Andrade L, Lu Y, Cordeiro A, Costa JM, Wigge PA, Saibo NJ, Jaeger KE. 2022. The evening complex integrates photoperiod signals to control flowering in rice. Proceedings of the National Academy of Sciences **119**, e2122582119.
- Anwer MU, Boikoglou E, Herrero E, Hallstein M, Davis AM, James GV, Nagy F, Davis SJ. 2014. Natural variation reveals that intracellular distribution of ELF3 protein is associated with function in the circadian clock. eLife **3**, e02206.
- Anwer MU, Davis A, Davis SJ, Quint M. 2020. Photoperiod sensing of the circadian clock is controlled by EARLY FLOWERING 3 and GIGANTEA. The Plant Journal **101**, 1397-1410.
- Aphalo PJ, Slowikowski K, Mouksassi S. 2022. Package 'ggpmisc'.
- Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall G, White JW. 2015. Rising temperatures reduce global wheat production. Nature climate change 5, 143-147.
- Avello PA, Davis SJ, Ronald J, Pitchford JW. 2019. Heat the Clock: Entrainment and Compensation in Arabidopsis Circadian Rhythms. Journal of circadian rhythms **17**, 5-5.
- Battisti DS, Naylor RL. 2009. Historical warnings of future food insecurity with unprecedented seasonal heat. Science **323**, 240-244.
- Blackman BK. 2017. Changing responses to changing seasons: natural variation in the plasticity of flowering time. Plant Physiology **173**, 16-26.
- Boden SA, Weiss D, Ross JJ, Davies NW, Trevaskis B, Chandler PM, Swain SM. 2014. EARLY FLOWERING3 regulates flowering in spring barley by mediating gibberellin production and FLOWERING LOCUS T expression. The Plant Cell **26**, 1557-1569.
- **Böker A, Paul W**. 2022. Thermodynamics and Conformations of Single Polyalanine, Polyserine, and Polyglutamine Chains within the PRIME20 Model. The Journal of Physical Chemistry B **126**, 7286-7297.
- Box Mathew S, Huang BE, Domijan M, Jaeger Katja E, Khattak Asif K, Yoo Seong J, Sedivy Emma L, Jones DM, Hearn Timothy J, Webb Alex AR, Grant A, Locke

James CW, Wigge Philip A. 2015. ELF3 Controls Thermoresponsive Growth in Arabidopsis. Current Biology 25.

- Büntgen U, Piermattei A, Krusic PJ, Esper J, Sparks T, Crivellaro A. 2022. Plants in the UK flower a month earlier under recent warming. Proceedings of the Royal Society B **289**, 20212456.
- Campoli C, Shtaya M, Davis SJ, von Korff M. 2012. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1affects circadian expression of flowering time genes, but not clock orthologs. BMC Plant Biology **12**, 1-15.
- Camut L, Regnault T, Sirlin-Josserand M, Sakvarelidze-Achard L, Carrera E, Zumsteg J, Heintz D, Leonhardt N, Lange MJP, Lange T. 2019. Root-derived GA12 contributes to temperature-induced shoot growth in Arabidopsis. Nature Plants 5, 1216-1221.
- **Cannell R**. 1969. The tillering pattern in barley varieties: II. The effect of temperature, light intensity and daylength on the frequency of occurrence of the coleoptile node and second tillers in barley. The Journal of Agricultural Science **72**, 423-435.
- Challinor AJ, Watson J, Lobell DB, Howden S, Smith D, Chhetri N. 2014. A metaanalysis of crop yield under climate change and adaptation. Nature climate change 4, 287-291.
- Chen D, Lyu M, Kou X, Li J, Yang Z, Gao L, Li Y, Fan L-m, Shi H, Zhong S. 2022. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. Molecular cell 82, 3015-3029. e3016.
- Chen M, Schwab R, Chory J. 2003. Characterization of the requirements for localization of phytochrome B to nuclear bodies. Proceedings of the National Academy of Sciences **100**, 14493-14498.
- **Chen YH, Gols R, Benrey B**. 2015. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol **60**, 35-58.
- **Chow BY, Helfer A, Nusinow DA, Kay SA**. 2012. ELF3 recruitment to the PRR9 promoter requires other Evening Complex members in the Arabidopsis circadian clock. Plant signaling & behavior **7**, 170-173.
- Clarke E, Sherrill-Mix S. 2017. Package 'ggbeeswarm'.
- Crawford AJ, McLachlan DH, Hetherington AM, Franklin KA. 2012. High temperature exposure increases plant cooling capacity. Current Biology **22**, R396-R397.
- **Dawson IK, Russell J, Powell W, Steffenson B, Thomas WT, Waugh R**. 2015. Barley: a translational model for adaptation to climate change. New Phytologist **206**, 913-931.
- **Delker C, van Zanten M, Quint M**. 2017. Thermosensing enlightened. Trends in Plant Science **22**, 185-187.
- **Dias A, Lidon F**. 2009. Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis. Journal of Agronomy and Crop Science **195**, 137-147.
- **Ding L, Wang S, Song Z-T, Jiang Y, Han J-J, Lu S-J, Li L, Liu J-X**. 2018. Two B-box domain proteins, BBX18 and BBX23, interact with ELF3 and regulate thermomorphogenesis in Arabidopsis. Cell Reports **25**, 1718-1728. e1714.
- **Djanaguiraman M, Prasad PV**. 2010. Ethylene production under high temperature stress causes premature leaf senescence in soybean. Functional Plant Biology **37**, 1071-1084.
- **Eckardt NA**. 2005. Temperature entrainment of the Arabidopsis circadian clock. The Plant Cell **17**, 645-647.
- **Edgar RC**. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research **32**, 1792-1797.
- **Ejaz M, von Korff M**. 2017. The genetic control of reproductive development under high ambient temperature. Plant Physiology **173**, 294-306.

- Ezer D, Jung J-H, Lan H, Biswas S, Gregoire L, Box MS, Charoensawan V, Cortijo S, Lai X, Stöckle D, Zubieta C, Jaeger KE, Wigge PA. 2017. The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nature Plants 3, 17087.
- Fan H-C, Ho L-I, Chi C-S, Chen S-J, Peng G-S, Chan T-M, Lin S-Z, Harn H-J. 2014. Polyglutamine (PolyQ) diseases: genetics to treatments. Cell transplantation **23**, 441-458.
- **Farré EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA**. 2005. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Current Biology **15**, 47-54.
- Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ, von Korff M, Laurie DA. 2012. Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proceedings of the National Academy of Sciences 109, 8328-8333.
- FC M, Davis TL. 2022. Package 'ggpattern'.
- **Feldmann KA**. 1991. T DNA insertion mutagenesis in Arabidopsis: mutational spectrum. The Plant Journal **1**, 71-82.
- Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity searching. Nucleic acids research **39**, W29-W37.
- Fjellheim S, Boden S, Trevaskis B. 2014. The role of seasonal flowering responses in adaptation of grasses to temperate climates. Frontiers in Plant Science 5, 431.
- Ford B, Deng W, Clausen J, Oliver S, Boden S, Hemming M, Trevaskis B. 2016. Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner. Journal of Experimental Botany **67**, 5517-5528.
- Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD. 2011. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proceedings of the National Academy of Sciences **108**, 20231-20235.
- Franklin KA, Praekelt U, Stoddart WM, Billingham OE, Halliday KJ, Whitelam GC. 2003. Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiology **131**, 1340-1346.
- Franks SJ, Sim S, Weis AE. 2007. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proceedings of the National Academy of Sciences 104, 1278-1282.
- **Fricke W**. 2002. Biophysical limitation of cell elongation in cereal leaves. Annals of Botany **90**, 157-167.
- Fujita R, Ueno K, Yamazaki K. 2000. The development of coleoptile tillers in relation to seedling vigor in early-maturing varieties of spring type wheat. Plant production science 3, 275-280.
- **Gasparini K, dos Reis Moreira J, Peres LEP, Zsögön A**. 2021. De novo domestication of wild species to create crops with increased resilience and nutritional value. Current Opinion in Plant Biology **60**, 102006.
- **Gil KE, Park CM**. 2019. Thermal adaptation and plasticity of the plant circadian clock. New Phytologist **221**, 1215-1229.
- Gol L, Haraldsson EB, von Korff M. 2021. Ppd-H1 integrates drought stress signals to control spike development and flowering time in barley. Journal of Experimental Botany 72, 122-136.
- Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic acids research **40**, D1178-D1186.

- Guo Y, Ren G, Zhang K, Li Z, Miao Y, Guo H. 2021. Leaf senescence: Progression, regulation, and application. Molecular Horticulture 1, 1-25.
- Hahm J, Kim K, Qiu Y, Chen M. 2020. Increasing ambient temperature progressively disassembles Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nature communications **11**, 1-14.
- Hall A, Bastow RM, Davis SJ, Hanano S, McWatters HG, Hibberd V, Doyle MR, Sung S, Halliday KJ, Amasino RM. 2003. The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. The Plant Cell 15, 2719-2729.
- Harrison PM, Gerstein M. 2003. A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes. Genome Biology **4**, 1-14.
- Hartmann A, Czauderna T, Hoffmann R, Stein N, Schreiber F. 2011. HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC bioinformatics **12**, 1-9.
- **Harwood WA**. 2019. An introduction to barley: the crop and the model. *Barley*: Springer, 1-5.
- Hayes S, Schachtschabel J, Mishkind M, Munnik T, Arisz SA. 2021. Hot topic: Thermosensing in plants. Plant, Cell & Environment 44, 2018-2033.
- Hemming MN, Walford SA, Fieg S, Dennis ES, Trevaskis B. 2012. Identification of hightemperature-responsive genes in cereals. Plant Physiology **158**, 1439-1450.
- Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, Berns MC, Uhlworm H, Coupland G, Saini R, Jaskolski M, Webb A, Gonçalves J, Davis SJ. 2012. EARLY FLOWERING4 Recruitment of EARLY FLOWERING3 in the Nucleus Sustains the Arabidopsis Circadian Clock. The Plant Cell 24.
- Herzig P, Maurer A, Draba V, Sharma R, Draicchio F, Bull H, Milne L, Thomas WT, Flavell AJ, Pillen K. 2018. Contrasting genetic regulation of plant development in wild barley grown in two European environments revealed by nested association mapping. Journal of Experimental Botany 69, 1517-1531.
- Hicks KA, Millar AJ, Carre IA, Somers DE, Straume M, Meeks-Wagner DR, Kay SA. 1996. Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science **274**, 790-792.
- Hijmans RJ, Ghosh A, Mandel AM. 2022. Package 'geodata'.
- Hsu PY, Devisetty UK, Harmer SL. 2013. Accurate timekeeping is controlled by a cycling activator in Arabidopsis. eLife 2, e00473.
- **Huang B, Taylor HM**. 1993. Morphological development and anatomical features of wheat seedlings as influenced by temperature and seeding depth. Crop Science **33**, 1269-1273.
- **Huang H, Nusinow DA**. 2016. Into the Evening: Complex Interactions in the Arabidopsis Circadian Clock. Trends in Genetics **32**, 674-686.
- Huang H, Yoo CY, Bindbeutel R, Goldsworthy J, Tielking A, Alvarez S, Naldrett MJ, Evans BS, Chen M, Nusinow DA. 2016. PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis. eLife **5**, e13292.
- Ibañez C, Delker C, Martinez C, Bürstenbinder K, Janitza P, Lippmann R, Ludwig W, Sun H, James GV, Klecker M. 2018. Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1. Current Biology 28, 303-310. e303.
- Ibañez C, Poeschl Y, Peterson T, Bellstädt J, Denk K, Gogol-Döring A, Quint M, Delker
 C. 2017. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana. BMC Plant Biology 17, 1-14.
- Jacott CN, Boden SA. 2020. Feeling the heat: developmental and molecular responses of wheat and barley to high ambient temperatures. Journal of Experimental Botany **71**, 5740-5751.

- Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics **30**, 1236-1240.
- Jung J-H, Barbosa AD, Hutin S, Kumita JR, Gao M, Derwort D, Silva CS, Lai X, Pierre E, Geng F. 2020. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature **585**, 256-260.
- Jung J-H, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S. 2016. Phytochromes function as thermosensors in Arabidopsis. Science **354**, 886-889.
- Kamioka M, Takao S, Suzuki T, Taki K, Higashiyama T, Kinoshita T, Nakamichi N. 2016. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock. The Plant Cell **28**, 696.
- Kassambara A. 2020. Package 'ggpubr'. *R package version 0.1*, Vol. 6.
- **Kikuchi R, Kawahigashi H, Oshima M, Ando T, Handa H**. 2012. The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley. Journal of Experimental Botany **63**, 773-784.
- Kim C, Kim SJ, Jeong J, Park E, Oh E, Park Y-I, Lim PO, Choi G. 2020. High ambient temperature accelerates leaf senescence via PHYTOCHROME-INTERACTING FACTOR 4 and 5 in Arabidopsis. Molecules and cells **43**, 645.
- Kim W-Y, Fujiwara S, Suh S-S, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE. 2007. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature **449**, 356-360.
- Kim Y, Lim J, Yeom M, Kim H, Kim J, Wang L, Kim WY, Somers DE, Nam HG. 2013. ELF4 regulates GIGANTEA chromatin access through subnuclear sequestration. Cell Reports 3, 671-677.
- **King RW, Evans LT**. 2003. Gibberellins and flowering of grasses and cereals: prizing open the lid of the" florigen" black box. Annual Review of Plant Biology **54**, 307.
- Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA. 2009. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Current Biology **19**, 408-413.
- Kumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Molecular biology and evolution **34**, 1812-1819.
- Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, Wigge PA. 2012. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature **484**, 242-245.
- Laitinen RA, Nikoloski Z. 2019. Genetic basis of plasticity in plants. Journal of Experimental Botany **70**, 739-745.
- Lancashire PD, Bleiholder H, Boom TVD, Langelüddeke P, Stauss R, Weber E, Witzenberger A. 1991. A uniform decimal code for growth stages of crops and weeds. Annals of applied Biology **119**, 561-601.
- Lancaster AK, Nutter-Upham A, Lindquist S, King OD. 2014. PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics **30**, 2501-2502.
- Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics **30**, 3276-3278.
- Legris M, Klose C, Burgie ES, Rojas CCR, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ. 2016. Phytochrome B integrates light and temperature signals in Arabidopsis. Science **354**, 897-900.

Leng G, Huang M. 2017. Crop yield response to climate change varies with crop spatial distribution pattern. Scientific Reports **7**, 1-10.

Letunic I, Bork P. 2007. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127-128.

- Li C, Lin H, Dubcovsky J. 2015. Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley. The Plant Journal 84, 70-82.
- Liang Y, Richards R. 1994. Coleoptile tiller development is associated with fast early vigour in wheat. Euphytica **80**, 119-124.
- Lincoln C, Britton JH, Estelle M. 1990. Growth and development of the axr1 mutants of Arabidopsis. The Plant Cell **2**, 1071-1080.
- Linde AM, Eklund DM, Kubota A, Pederson ER, Holm K, Gyllenstrand N, Nishihama R, Cronberg N, Muranaka T, Oyama T. 2017. Early evolution of the land plant circadian clock. New Phytologist **216**, 576-590.
- Lippmann R, Babben S, Menger A, Delker C, Quint M. 2019. Development of wild and cultivated plants under global warming conditions. Current Biology **29**, R1326-R1338.
- Liu XL, Covington MF, Fankhauser C, Chory J, Wagner DR. 2001. ELF3 encodes a circadian clock–regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. The Plant Cell **13**, 1293-1304.
- Lobell DB, Sibley A, Ivan Ortiz-Monasterio J. 2012. Extreme heat effects on wheat senescence in India. Nature climate change 2, 186-189.
- Lohraseb I, Collins NC, Parent B. 2017. Diverging temperature responses of CO2 assimilation and plant development explain the overall effect of temperature on biomass accumulation in wheat leaves and grains. AoB Plants 9, plw092.
- Lu S, Zhao X, Hu Y, Liu S, Nan H, Li X, Fang C, Cao D, Shi X, Kong L. 2017. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nature genetics **49**, 773-779.
- Lu SX, Webb CJ, Knowles SM, Kim SHJ, Wang Z, Tobin EM. 2012. CCA1 and ELF3 Interact in the Control of Hypocotyl Length and Flowering Time in Arabidopsis. Plant Physiology **158**, 1079-1088.
- Matasci N, Hung L-H, Yan Z, Carpenter EJ, Wickett NJ, Mirarab S, Nguyen N, Warnow T, Ayyampalayam S, Barker M. 2014. Data access for the 1,000 Plants (1KP) project. Gigascience 3, 2047-2217X-2043-2017.
- Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M. 2012. Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant and Cell Physiology **53**, 709-716.
- Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif JC, Pillen K. 2015. Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC genomics **16**, 1-12.
- Maurer A, Draba V, Pillen K. 2016. Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping. Journal of Experimental Botany 67, 2507-2518.
- McClung CR. 2006. Plant circadian rhythms. The Plant Cell 18, 792-803.
- McWatters HG, Bastow RM, Hall A, Millar AJ. 2000. The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature **408**, 716-720.
- Millar AJ, Carre IA, Strayer CA, Chua N-H, Kay SA. 1995. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science **267**, 1161-1163.
- Miller MA, Pfeiffer W, Schwartz T. 2012. The CIPRES science gateway: enabling highimpact science for phylogenetics researchers with limited resources. *Proceedings of*

the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the extreme to the campus and beyond, 1-8.

- Mizuno T, Nomoto Y, Oka H, Kitayama M, Takeuchi A, Tsubouchi M, Yamashino T. 2014. Ambient Temperature Signal Feeds into the Circadian Clock Transcriptional Circuitry Through the EC Night-Time Repressor in Arabidopsis thaliana. Plant and Cell Physiology **55**, 958-976.
- Müller LM, Mombaerts L, Pankin A, Davis SJ, Webb AA, Goncalves J, von Korff M. 2020. Differential effects of day/night cues and the circadian clock on the barley transcriptome. Plant Physiology **183**, 765-779.
- Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua N-H, Sakakibara H. 2010. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 Are Transcriptional Repressors in the Arabidopsis Circadian Clock. The Plant Cell **22**, 594-605.
- Newton AC, Flavell AJ, George TS, Leat P, Mullholland B, Ramsay L, Revoredo-Giha C, Russell J, Steffenson BJ, Swanston JS. 2011. Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food security **3**, 141-178.
- Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution **32**, 268-274.
- Nieto C, Catalán P, Luengo LM, Legris M, López-Salmerón V, Davière JM, Casal JJ, Ares S, Prat S. 2022. COP1 dynamics integrate conflicting seasonal light and thermal cues in the control of Arabidopsis elongation. Science Advances 8, eabp8412.
- **Nieto C, López-Salmerón V, Davière J-M, Prat S**. 2015. ELF3-PIF4 interaction regulates plant growth independently of the Evening Complex. Current Biology **25**, 187-193.
- Ning Y, Shi X, Wang R, Fan J, Park CH, Zhang C, Zhang T, Ouyang X, Li S, Wang G-L. 2015. OsELF3-2, an ortholog of Arabidopsis ELF3, interacts with the E3 ligase APIP6 and negatively regulates immunity against Magnaporthe oryzae in rice. Molecular Plant 8, 1679-1682.
- **Niwa Y, Yamashino T, Mizuno T**. 2009. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Plant and Cell Physiology **50**, 838-854.
- Nohales MA, Kay SA. 2016. Molecular mechanisms at the core of the plant circadian oscillator. Nature Structural & Molecular Biology 23, 1061-1069.
- Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, Maloof JN. 2007. Rhythmic growth explained by coincidence between internal and external cues. Nature **448**, 358-361.
- Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farre EM, Kay SA. 2011. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature **475**, 398-402.
- Ochagavía H, Kiss T, Karsai I, Casas AM, Igartua E. 2021. Responses of Barley to High Ambient Temperature Are Modulated by Vernalization. Frontiers in Plant Science 12.
- **Onai K, Ishiura M**. 2005. PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock. Genes to Cells **10**, 963-972.
- Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG. 1999. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science **285**, 1579-1582.
- Park Y-J, Lee H-J, Gil K-E, Kim JY, Lee J-H, Lee H, Cho H-T, Vu LD, De Smet I, Park C-M. 2019. Developmental programming of thermonastic leaf movement. Plant Physiology 180, 1185-1197.

- **Parmesan C, Yohe G**. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature **421**, 37-42.
- Pörtner HO, Roberts DC, Adams H, Adler C, Aldunce P, Ali E, Begum RA, Betts R, Kerr RB, Biesbroek R. 2022. Climate change 2022: impacts, adaptation and vulnerability.
- **Prasad PV, Djanaguiraman M**. 2014. Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Functional Plant Biology **41**, 1261-1269.
- **Press MO, Lanctot A, Queitsch C**. 2016. ELF3 polyQ variation in Arabidopsis thaliana reveals PIF4-independent role in thermoresponsive flowering. bioRxiv, 038257.
- Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, Zanten M. 2016. Molecular and genetic control of plant thermomorphogenesis. Nature Plants 2.
- R Core Team. 2013. R: A language and environment for statistical computing.
- Raschke A, Ibanez C, Ullrich K, Anwer M, Becker S, Glockner A, Trenner J, Denk K, Saal B, Sun X, Ni M, Davis S, Delker C, Quint M. 2015. Natural variants of ELF3 affect thermomorphogenesis by transcriptionally modulating PIF4-dependent auxin response genes. BMC Plant Biology 15, 197.
- Ridge S, Deokar A, Lee R, Daba K, Macknight RC, Weller JL, Tar'an B. 2017. The chickpea Early Flowering 1 (Efl1) locus is an ortholog of Arabidopsis ELF3. Plant Physiology **175**, 802-815.
- **Ronald J, Davis SJ**. 2019. Focusing on the nuclear and subnuclear dynamics of light and circadian signalling. Plant, Cell & Environment **42**, 2871-2884.
- **Ronald J, Davis SJ**. 2021. Arabidopsis ELF3 sub-nuclear localization responds to changes in ambient temperature. Plant Physiology.
- **Ronald J, Su C, Wang L, Davis SJ**. 2022. Cellular localization of Arabidopsis EARLY FLOWERING3 is responsive to light quality. Plant Physiology.
- Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution **34**, 3299-3302.
- Russell J, Dawson IK, Flavell AJ, Steffenson B, Weltzien E, Booth A, Ceccarelli S, Grando S, Waugh R. 2011. Analysis of >1000 single nucleotide polymorphisms in geographically matched samples of landrace and wild barley indicates secondary contact and chromosome - level differences in diversity around domestication genes. New Phytologist **191**, 564-578.
- Saito H, Ogiso-Tanaka E, Okumoto Y, Yoshitake Y, Izumi H, Yokoo T, Matsubara K, Hori K, Yano M, Inoue H. 2012. Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short-and long-day conditions. Plant and Cell Physiology **53**, 717-728.
- Salomé PA, McClung CR. 2005. PSEUDO-RESPONSE REGULATOR 7 and 9 Are Partially Redundant Genes Essential for the Temperature Responsiveness of the Arabidopsis Circadian Clock. The Plant Cell **17**, 791-803.
- Salomé PA, Weigel D, McClung CR. 2010. The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. The Plant Cell 22, 3650-3661.
- Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, De Groot S, Soole K, Langridge P. 2017. Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Frontiers in Plant Science 8, 1950.
- Shirdelmoghanloo H, Taylor JD, Lohraseb I, Rabie H, Brien C, Timmins A, Martin P, Mather DE, Emebiri L, Collins NC. 2016. A QTL on the short arm of wheat (Triticum

aestivum L.) chromosome 3B affects the stability of grain weight in plants exposed to a brief heat shock early in grain filling. BMC Plant Biology **16**, 1-15.

- Silva CS, Nayak A, Lai X, Hutin S, Hugouvieux V, Jung J-H, López-Vidriero I, Franco-Zorrilla JM, Panigrahi KC, Nanao MH. 2020. Molecular mechanisms of Evening Complex activity in Arabidopsis. Proceedings of the National Academy of Sciences 117, 6901-6909.
- Slowikowski K, Schep A, Hughes S, Lukauskas S, Irisson J-O, Kamvar ZN, Ryan T, Christophe D, Hiroaki Y, Gramme P. 2018. Package 'ggrepel'. Automatically position non-overlapping text labels with 'ggplot2.
- Soetaert K. 2021. Package 'plot3D'.
- Stavang JA, Gallego Bartolomé J, Gómez MD, Yoshida S, Asami T, Olsen JE, García - Martínez JL, Alabadí D, Blázquez MA. 2009. Hormonal regulation of temperature - induced growth in Arabidopsis. The Plant Journal 60, 589-601.
- Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P. 2021. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic acids research **49**, D605-D612.
- **Tajima F**. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics **123**, 585-595.
- Tajima T, Oda A, Nakagawa M, Kamada H, Mizoguchi T. 2007. Natural variation of polyglutamine repeats of a circadian clock gene ELF3 in Arabidopsis. Plant biotechnology **24**, 237-240.
- **Thines B, Harmon FG**. 2010. Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. Proceedings of the National Academy of Sciences **107**, 3257-3262.
- Thomas B, Vince-Prue D. 1996. Photoperiodism in plants: Elsevier.
- Tovar JC, Hoyer JS, Lin A, Tielking A, Callen ST, Elizabeth Castillo S, Miller M, Tessman M, Fahlgren N, Carrington JC. 2018. Raspberry Pi–powered imaging for plant phenotyping. Applications in Plant Sciences 6, e1031.
- Trevaskis B, Tadege M, Hemming MN, Peacock WJ, Dennis ES, Sheldon C. 2007. Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiology **143**, 225-235.
- **Tseng T-S, Salomé PA, McClung CR, Olszewski NE**. 2004. SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. The Plant Cell **16**, 1550-1563.
- Turner A, Beales J, Faure S, Dunford RP, Laurie DA. 2005. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science **310**, 1031-1034.
- Undurraga SF, Press MO, Legendre M, Bujdoso N, Bale J, Wang H, Davis SJ, Verstrepen KJ, Queitsch C. 2012. Background-dependent effects of polyglutamine variation in the Arabidopsis thaliana gene ELF3. Proceedings of the National Academy of Sciences 109, 19363-19367.
- van Zanten M, Voesenek LA, Peeters AJ, Millenaar FF. 2009. Hormone-and lightmediated regulation of heat-induced differential petiole growth in Arabidopsis. Plant Physiology **151**, 1446-1458.
- Walters RH, Murphy RM. 2009. Examining polyglutamine peptide length: a connection between collapsed conformations and increased aggregation. Journal of molecular biology **393**, 978-992.
- Wang L, Fujiwara S, Somers DE. 2010. PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. The EMBO Journal **29**, 1903-1915.

- Wang S, Steed G, Webb AA. 2022. Circadian entrainment in Arabidopsis. Plant Physiology 190, 981-993.
- Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189-1191.
- Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J. 2017. Package 'corrplot'. Statistician 56, e24.
- Weigel D, Mott R. 2009. The 1001 genomes project for Arabidopsis thaliana. Genome Biology **10**, 1-5.
- Weller JL, Liew LC, Hecht VF, Rajandran V, Laurie RE, Ridge S, Wenden B, Vander Schoor JK, Jaminon O, Blassiau C. 2012. A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proceedings of the National Academy of Sciences 109, 21158-21163.
- Wickham H, Chang W, Wickham MH. 2016. Package 'ggplot2'. Create elegant data visualisations using the grammar of graphics. Version, Vol. 2, 1-189.
- Wilkinson EG, Strader LC. 2020. A Prion-based thermosensor in plants. Molecular cell 80, 181-182.
- Xia T, Zhang L, Xu J, Wang L, Liu B, Hao M, Chang X, Zhang T, Li S, Zhang H. 2017. The alternative splicing of EAM8 contributes to early flowering and short-season adaptation in a landrace barley from the Qinghai-Tibetan Plateau. Theoretical and applied genetics **130**, 757-766.
- Xu X, Yuan L, Yang X, Zhang X, Wang L, Xie Q. 2022. Circadian clock in plants: Linking timing to fitness. Journal of integrative plant biology **64**, 792-811.
- Xu X, Zheng C, Lu D, Song CP, Zhang L. 2021. Phase separation in plants: New insights into cellular compartmentalization. Journal of integrative plant biology **63**, 1835-1855.
- Yamaguchi R, Nakamura M, Mochizuki N, Kay SA, Nagatani A. 1999. Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. The Journal of cell biology **145**, 437-445.
- Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proceedings of the National Academy of Sciences 103, 19581-19586.
- **Yeom M, Kim H, Lim J, Shin A-Y, Hong S, Kim J-I, Nam HG**. 2014. How do phytochromes transmit the light quality information to the circadian clock in Arabidopsis? Molecular Plant **7**, 1701-1704.
- Yoshida R, Fekih R, Fujiwara S, Oda A, Miyata K, Tomozoe Y, Nakagawa M, Niinuma K, Hayashi K, Ezura H. 2009. Possible role of EARLY FLOWERING 3 (ELF3) in clock dependent floral regulation by SHORT VEGETATIVE PHASE (SVP) in Arabidopsis thaliana. New Phytologist **182**, 838-850.
- Yu J-W, Rubio V, Lee N-Y, Bai S, Lee S-Y, Kim S-S, Liu L, Zhang Y, Irigoyen ML, Sullivan JA. 2008. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Molecular cell **32**, 617-630.
- Zagotta MT, Hicks KA, Jacobs CI, Young JC, Hangarter RP, Meeks Wagner DR. 1996. The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. The Plant Journal **10**, 691-702.
- Zahn T, Zhu Z, Ritoff N, Krapf J, Junker A, Altmann T, Schmutzer T, Tueting C, Kastritis PL, Quint M, Pillen K, Maurer A. 2022. Exotic alleles of EARLY FLOWERING 3 determine plant development and grain yield in barley. bioRxiv, 2022.2007.2015.500212. [Preprint]
- Zakhrabekova S, Gough SP, Braumann I, Müller AH, Lundqvist J, Ahmann K, Dockter C, Matyszczak I, Kurowska M, Druka A. 2012. Induced mutations in circadian clock

regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proceedings of the National Academy of Sciences **109**, 4326-4331.

- Zhang LL, Shao YJ, Ding L, Wang MJ, Davis SJ, Liu JX. 2021. XBAT31 regulates thermoresponsive hypocotyl growth through mediating degradation of the thermosensor ELF3 in Arabidopsis. Science Advances **7**, eabf4427.
- Zheng B, Chenu K, Chapman SC. 2016. Velocity of temperature and flowering time in wheat–assisting breeders to keep pace with climate change. Global Change Biology 22, 921-933.
- **Zhu Z, Quint M, Anwer MU**. 2022. Arabidopsis EARLY FLOWERING 3 controls temperature responsiveness of the circadian clock independently of the evening complex. Journal of Experimental Botany **73**, 1049-1061.
- Zhu Z, Esche F, Babben S, Trenner J, Serfling A, Pillen K, Maurer A, Quint M. 2023. An exotic allele of barley EARLY FLOWERING 3 contributes to developmental plasticity at elevated temperatures. Journal of Experimental Botany, doi: 10.1093/jxb/erac470.
- Zielinski T, Moore AM, Troup E, Halliday KJ, Millar AJ. 2014. Strengths and limitations of period estimation methods for circadian data. PLoS One 9, e96462.

Appendix

Appendix I

Table 2 List of A	thaliana	accessions	used in	this study
Table Z LISU OF A.	lliallaria	accessions	useu m	this study.

		N			Dia 1
	Stock N.	Name	PolyQ length	Sequencing	Phenotyping
265	WT_1369	PYL-6	17	yes	yes
350	WT_1480	TOU-A1-88	19	yes	
430	WT_0830	Gr-1	21	yes	yes
484	WT_1637	BRR23	16	yes	yes
628	WI_1643	LI-OF-061	19	yes	yes
915	VVI_1254	LIN S-5	13	yes	
1006	WI_1494	Ale-Stenar-77-31	19	yes	yes
1061	WI_0993	Broesarp-11-135	14	yes	
1652	WI_1656	DuckLkSP40	16	yes	yes
1684	WI_1658	Haz-10	16	yes	yes
1741	WI_1660	KBS-Mac-74	16	yes	yes
1793	WT_1663	L-R-5	16	yes	yes
1797	WT_1664	L-R-10	16	yes	yes
2141	WI_1678	MSGA-61	16	yes	yes
2159	WT_1679	Paw-13	16	yes	yes
2166	WT_1680	Paw-20	16	yes	yes
2171	WT_1342	Paw-26	16	yes	yes
2191	WT_1681	Pent-7	16	yes	yes
2276	WT_1409	SLSP-31	18	yes	yes
4840	WT_1689	UKSW06-240	19	yes	yes
5104	WT_1534	UKSE06-252	7	yes	yes
5353	WT_1529	UKNW06-003	14	yes	yes
5644	WT_1532	UKNW06-481	18	yes	yes
5651	WT_1693	UKNW06-488	18	yes	yes
5720	WT_1520	Cal-2	23	yes	yes
5768	WT_1525	UKID63	16	yes	yes
5784	WT_1764	Ty-1	25	yes	yes
5811	WT_1518	UKID107	18	yes	yes
5837	WT_0797	Bor-1	13		yes
5921	WT_1067	DralV 3-7	12	yes	
6009	WT_1072	Eden-1	11		
6016	WT_1080	Eds-1	14		
6039	WT_1169	Hovdala-2	16		
6040	WT_1196	Kni-1	19		
6042	WT_1258	Lom1-1	11		
6043	WT_1772	Loev-1	16		
6046	WT_1728	Loev-5	16	yes	yes
6064	WT_1324	Nyl-2	14		
6074	WT_1330	oer-1	9	yes	yes
6077	WT_1500	Rev-3	20	yes	yes
6086	WT_1736	Sr:3	16	yes	yes
6088	NA	Stu1-1	16		
6091	WT_1502	T1010	19	yes	yes
6094	WT_1433	T1040	11	yes	yes
6097	WT_1737	T1070	17	yes	yes
6101	WT 1503	T1120	11	yes	yes
6102	WT_1739	T1130	13	yes	yes
6104	WT_1740	T1160	20	yes	yes
6105	WT 1741	T450	13	yes	yes
6109	WT_1436	T510	11	yes	yes
6119	WT_1504	T620	11	yes	yes
6123	WT_1505	T680	14	yes	yes
6125	WT ¹⁴⁴²	T710	20	yes	yes
6126	WT_1743	T720	17	yes	yes
6131	WT_1744	T780	20	yes	yes
6142	WT_1445	Т900	20	ves	ves
6145	WT_1749	T930	20	ves	ves
6149	WT_1446	Т970	14	yes	yes

ID*	Stock N.	Name	PolyQ length	Sequencing [†]	Phenotyping
6150	WT_1751	T980	21	yes	yes
6151	WT_1752	T990	16	yes	yes
6166	WT_1753	TAA 17	9	yes	yes
6180	WT_1453	TaeL 07	7	yes	yes
6194	WT_1755	TDr-8	13	yes	yes
6242	WT_1757	Tomegap-2	16	yes	yes
6243	WT_1479	Tottarp-2	16	yes	yes
6244	WT_1758	TRae 01	14	yes	yes
6255	WT_1513	TV-7	9	yes	yes
6268	WT_1763	TV-22	9	yes	yes
6276	WT_1512	TV-30	9	yes	yes
6390	WT_1515	Udul 3-36	21	yes	yes
6396	WT_1516	Udul 4-9	12	yes	yes
6814	WT_1702	KNO-15	16	yes	yes
6830	WT_1215	Kz-13	14		
6897	WT_0780	Ag-0	16		yes
6898	WT_0784	An-1	19		yes
6900	WT_0978	Bil-5	16		
6901	WT_0979	Bil-7	16		
6903	WT_0798	Bor-4	13		yes
6904	WT_0799	Br-0	23		yes
6907	WI_1028	CIBC-17	17		
6908	WT_1604	CIBC-5	19		yes
6909	WI_1034	Col-0	7	yes	yes
6911	WT_1042	Cvi-0	9	yes	yes
6913	WT_1073	Eden-2	11		
6915	WI_0816	EI-2	15		yes
6919	WT_0826	Ga-0	9		yes
6920	WT_1123	Got-22	16		
6922	WI_0832	Gu-0	19		yes
6923	WI_1172	HR-10	14		
6924	W1_0836	HR-5	19		yes
6926	VV1_0845	Kin-U	19	yes	yes
6929	VV1_0847	Kondara	14		yes
6931	VVI_0850	KZ-9	14		yes
6932 6022	VVI_1239	Ler-1	17		
6933	VVI_1257	LL-U Ma O	13		
0930 6040	WT_0064	IVIS-U M- 0	15		yes
6042	VVI_0004		14		yes
6043	WT 1617		10		yes
0944 6045		NFA-0 Nok 2	14		yes
0940 6051	WT_0000		10		yes
6056	WT_0880	Fuz-23 Du2 7	12		yes
6057	WT_1265		10		yes
6058	WT_1303	Puz-o	10	Voc	yes
6050	WT_0005	Na-u Ronnos_1	12	yes ves	yes
6061	WT_1379	Se 0	13	yes	yes
6063	WT_0092	Serbo	14		yes
6966	WT_1021	Solbo Sa-1	14	VAS	yes ves
6967	WT_1417	Sq-8	15	ycs	Ves
6968	WT_0000	Tamm-2	9		Ves
6060	WT 1455	Tamm-27	9		Ves
6070	WT_0008		13		Ves
6971	WT 1484	Ts-5	13	Ves	Ves
6973	WT 1548	10-0	15	Ves	Ves
6974	NA	UII2-5	10	yes	yco
6975	WT 0011	Uod-1	12		ves
6976	WT 1550	Uod-7	21		Ves
6979	WT_0918	Wei-0	12		,
6981	WT 1622	Ws-2	16		
6982	WT_0921	Wt-5	14		
6984	WT_0924	7dr-1	13		
6990	WT 1722	Amel-1	15	ves	ves
6992	WT_0785	Ang-0	12	,	ves
7002	WT_0789	Baa-1	12	yes	yes

ID*	Stock N.	Name	PolyQ length	Sequencing [†]	Phenotyping
7003	WT_1598	Bs-1	12		yes
7008	WT_0792	Benk-1	12	yes	yes
7025	WT_0794	BI-1	16	•	yes
7036	WT ¹⁵⁹⁹	Bu-0	19	yes	yes
7058	WT_0998	Bur-0	23	yes	yes
7063	NA	Can-0	20	•	•
7067	WT 1040	Ct-1	11		
7077	WT_0807	Co-1	9		yes
7081	WT ¹⁶⁰⁵	Со	13	yes	yes
7094	WT ¹⁰⁴⁴	Da-0	11	•	•
7103	WT_0814	Dra-0	12		yes
7106	WT_1607	Dr-0	13		ves
7111	WT_1077	Edi-0	16	ves	5
7126	WT_0821	Es-0	9	ves	ves
7127	WT_0822	Est	19	,	ves
7143	WT_0828	Gel-1	14	ves	ves
7161	WT_0827	Gd-1	14	,	ves
7162	WT_0837	Hs-0	16		ves
7169	WT_0834	Hh-0	15	ves	ves
7177	WT_0840	Jm-0	11	,	ves
7183	WT 1703	Kas-1	16	ves	,
7192	WT_0844	Kil-0	16	ves	ves
7202	WT_0842	Kb-0	19	ves	ves
7207	WT_0849	Kvoto	27	ves	ves
7208	WT_0852	lan-0	7	,	ves
7213	WT 1238	Ler-0	17	Ves	ves
7217	WT_0856	L m-2	19	ves	ves
7223	WT_0854	Li.2.1	16	Ves	Ves
7236	WT_0855	Litva	14	Ves	Ves
7255	WT_0859	Mh-0	11	yoo	Ves
7258	WT_0870	Nw-0	14	Ves	ves
7268	WT_0869	Nn-0	13	yes	ves
7273	WT 1317	No-0	10		Ves
7282	WT_0873	$\Omega r_{-}\Omega$	10	VAS	Ves
7288	WT 1335	01-0 0v-0	16	Ves	yes
7200	WT_1348	Dy-0 Peteraof	10	yes	ycs
7208	WT_0876		13	VAS	VAS
7305	WT 1610	Pt_0	13	Ves	Ves
7306	WT_1013	Pog_0	10	yes	yes
7307	WT 1358	Pn_0	19	Ves	yes
7322	WT_1386	Rsch-/	13	Ves	Ves
7322	WT_1800	Rubezhnoe-1	1/	yes	yes
7327	WT 1404	Sf_1	0		yes
7311	WT_1404	Sn-1	9 18	VAS	yes ves
7347	WT_0890	Stw_0	10	yes	yes ves
7340	WT_0003		1 4 01	Voc	yes
7349	WT_0902		16	yes	yes
7373	WT_1403	Von 0	10		yes
7303	WT_0913		15		
7394	WT_0910	Wa-1	21		200
7390	VVI_1576			yes	yes
7415	WT 0022	VVII-Z	14		yes
7410	WT 1505	10-0 71	10		
7418	VVI_1595		19	yes	yes
7401	VVI_1136		1		
7471	VVI_0880	KLD-I	19		yes
7475	VVI_1706		16		yes
1411	VVI_15/4		10	yes	yes
7514	VVI_0890	RRS-7	21		yes
/515	W1_0889	RRS-10	13		yes
1516	NA	var2-1	9		
/517		varz-6	9		
/520	VV1_0857	Lp2-2	26		yes
/521	VVI_1260	Lp2-6	21		
/525	VVI_1384	Rmx-A180	18	yes	yes
7529	VVI_1707	62/RMX-1MN4	18	yes	yes
7530	W [_1708	627RMX-1MN5	18	yes	yes

7917 WT_1359 PNA3.10 21 yes yes 8214 WT_1609 Gy-0 19 yes 8222 NA Lis-2 13 13 8227 WT_1471 THoe 03 9 yes yes 8230 WT_0940 Algutsrum 22 22 8233 WT_1135 Gul1-2 11 8235 WT_1157 Hod 12 8237 WT_1190 Kaevlinge-1 9 8238 WT_11252 Liarum 16 8242 WT_1251 Lilloe-1 21 8244 WT_1313 NC-6 14 8247 WT_1395 San-2 20 yes yes 8256 WT_0954 Ba1-2 19 8258 WT_0755 Bla-1 9 yes 8258 WT_0795 Bla-1 9 yes yes 8263 WT_1086 En-1 11 8297 WT_1188 Hov4-1 16 yes 9833 yes 8312 WT_1611 Is-0 1	g
8214 WT_1609 Gy-0 19 yes 8222 NA Lis-2 13 13 8227 WT_1471 THoe 03 9 yes yes 8230 WT_0940 Algutsrum 22 14 14 8231 WT_1047 Dem-4 16 15 16 8234 WT_1135 Gul1-2 11 14 14 8235 WT_1190 Kaevlinge-1 9 9 28 8238 WT_1193 Kent 11 16 14 8241 WT_1252 Liarum 16 16 16 8242 WT_1313 NC-6 14 14 14 14 8247 WT_1313 NC-6 14 14 14 14 8247 WT_0954 Ba1-2 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 10 10 10 10 11	
8222 NA Lis-2 13 8227 WT_1471 THoe 03 9 yes yes 8230 WT_0940 Algutsrum 22 22 8233 WT_1047 Dem-4 16 4 8234 WT_1135 Gul1-2 11 4 8235 WT_1157 Hod 12 4 8237 WT_1190 Kaevlinge-1 9 9 8238 WT_11252 Liarum 16 4 8241 WT_1253 Lilloe-1 21 4 8242 WT_1335 San-2 20 yes yes 8246 WT_1335 San-2 20 yes yes 8247 WT_167 Vimmerby 16 yes yes 8256 WT_0954 Ba1-2 19 9 yes 8258 WT_0955 Ba4-1 17 yes 9 8264 WT_0795 Bla-1 9 yes 9 8290 WT_1186 Hov4-1 16 9 yes	
8227 WT_1471 THoe 03 9 yes yes 8230 WT_0940 Algutsrum 22 8233 WT_1047 Dem-4 16 8234 WT_1135 Gul1-2 11 8235 WT_1157 Hod 12 8237 WT_1190 Kaevlinge-1 9 8238 WT_11252 Liarum 16 8241 WT_1252 Liarum 16 8242 WT_133 Kent 11 8246 WT_1313 NC-6 14 8247 WT_1395 San-2 20 yes yes 8256 WT_0954 Ba1-2 19 8258 yes 98283 8264 WT_0955 Ba4-1 17 yes 98283 yes 98283 8270 WT_1186 En-1 11 9 yes 98283 yes	
8230 WT_0940 Algutsrum 22 8233 WT_1047 Dem-4 16 8234 WT_1135 Gul1-2 11 8235 WT_1177 Hod 12 8237 WT_1190 Kaevlinge-1 9 8238 WT_1193 Kent 11 8241 WT_1252 Liarum 16 8242 WT_1253 Lilloe-1 21 8244 WT_1313 NC-6 14 8247 WT_1395 San-2 20 yes yes 8248 WT_0954 Ba1-2 19 8256 WT_0955 Ba4-1 17 8264 WT_0795 Bla-1 9 yes yes 8283 WT_1059 Dra3-1 16 8290 WT_1086 En-1 11 8290 WT_1086 En-1 11 8306 WT_1168 Hov4-1 16 8311 WT_1610 In-0 16 yes yes 8312 WT_1611 Is-0 17 yes 8312 WT_1255 Lis-1 <td></td>	
8233 WT_1047 Dem-4 16 8234 WT_1135 Gul1-2 11 8235 WT_1157 Hod 12 8237 WT_1190 Kaevlinge-1 9 8238 WT_11252 Liarum 16 8241 WT_1252 Liarum 16 8242 WT_1253 Lilloe-1 21 8246 WT_1313 NC-6 14 8247 WT_1767 Vimmerby 16 yes 8256 WT_0954 Ba1-2 19 8258 8256 WT_0955 Ba4-1 17 8264 8264 WT_0795 Bla-1 9 yes 8283 WT_1059 Dra3-1 16 8290 8290 WT_1086 En-1 11 8306 WT_1168 Hov4-1 16 8311 WT_1610 In-0 16 yes 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98<	
8234 WT_1135 Gul1-2 11 8235 WT_1157 Hod 12 8237 WT_1190 Kaevlinge-1 9 8238 WT_11252 Liarum 16 8241 WT_1253 Lilloe-1 21 8242 WT_1313 NC-6 14 8247 WT_1395 San-2 20 yes yes 8248 WT_1767 Vimmerby 16 yes yes 8256 WT_0954 Ba1-2 19 8258 WT_0955 Ba4-1 17 8264 WT_0795 Bla-1 9 yes yes 8283 WT_1059 Dra3-1 16 8290 WT_1086 En-1 11 8290 WT_1086 En-1 11 8306 WT_1168 Hov4-1 16 8312 WT_1610 In-0 16 yes yes 8312 WT_1255 Lis-1 15 8334 WT_1263 Lu-1 13 8343 WT_0865 Na-1 22 yes yes	
8235 WT_1157 Hod 12 8237 WT_1190 Kaevlinge-1 9 8238 WT_1193 Kent 11 8241 WT_1252 Liarum 16 8242 WT_1253 Lilloe-1 21 8246 WT_1313 NC-6 14 8247 WT_1395 San-2 20 yes yes 8249 WT_1767 Vimmerby 16 yes yes 8256 WT_0954 Ba1-2 19 8258 WT_0955 Ba4-1 17 8264 WT_0795 Bla-1 9 yes 98 8283 WT_1059 Dra3-1 16 8290 WT_1086 En-1 11 8297 WT_1115 Ge-0 18 8306 WT_1168 Hov4-1 16 9 yes 8311 WT_1610 In-0 16 yes 8312 WT_1611 Is-0 17 yes 8326 WT_1255 Lis-1 15 8334 WT_0865 Na-1 22 yes	
8237 WT_1190 Kaevlinge-1 9 8238 WT_1193 Kent 11 8241 WT_1252 Liarum 16 8242 WT_1253 Lilloe-1 21 8246 WT_1313 NC-6 14 8247 WT_1395 San-2 20 yes yes 8249 WT_1767 Vimmerby 16 yes yes 8256 WT_0954 Ba1-2 19 8258 WT_0955 Ba4-1 17 8264 WT_0795 Bla-1 9 yes 98258 yes 98258 8209 WT_1059 Dra3-1 16 98259 993	
8238 WT_1193 Kent 11 8241 WT_1252 Liarum 16 8242 WT_1253 Lilloe-1 21 8246 WT_1313 NC-6 14 8247 WT_1395 San-2 20 yes yes 8249 WT_1767 Vimmerby 16 yes yes 8256 WT_0954 Ba1-2 19 8258 WT_0955 Ba4-1 17 8264 WT_0795 Bla-1 9 yes yes 8283 WT_1059 Dra3-1 16 8290 WT_1186 En-1 11 8297 WT_1115 Ge-0 18 8306 WT_1168 Hov4-1 16 8311 WT_1610 In-0 16 yes 98 98 98 98 98 99 98 9	
8241 WT_1252 Liarum 16 8242 WT_1253 Lilloe-1 21 8246 WT_1313 NC-6 14 8247 WT_1395 San-2 20 yes yes 8249 WT_1767 Vimmerby 16 yes yes 8256 WT_0954 Ba1-2 19 8258 yes 8258 WT_0955 Ba4-1 17 yes 8283 8264 WT_0795 Bla-1 9 yes 98283 8200 WT_1059 Dra3-1 16 8297 WT_1115 Ge-0 18 8306 WT_1168 Hov4-1 16 9 yes 98312 YT_1610 In-0 16 yes 8311 WT_1610 In-0 16 yes 98326 YT_1255 Lis-1 15 8334 WT_1263 Lu-1 13 3343 YT_0865 Na-1 22 yes	
8242 WT_1253 Lilloe-1 21 8246 WT_1313 NC-6 14 8247 WT_1395 San-2 20 yes yes 8249 WT_1767 Vimmerby 16 yes yes 8256 WT_0954 Ba1-2 19 8258 WT_0955 Ba4-1 17 8264 WT_0795 Bla-1 9 yes 98258 yes 98258 8283 WT_1059 Dra3-1 16 8290 WT_1086 En-1 11 8297 WT_1115 Ge-0 18 8306 WT_1168 Hov4-1 16 8311 WT_1610 In-0 16 yes 98312 WT_1611 Is-0 17 yes 8326 WT_1255 Lis-1 15 15 8334 WT_0865 Na-1 22 yes	
8246 WT_1313 NC-6 14 8247 WT_1395 San-2 20 yes yes 8249 WT_1767 Vimmerby 16 yes yes 8256 WT_0954 Ba1-2 19 8 14 8256 WT_0955 Ba4-1 17 9 yes 8264 WT_0795 Bla-1 9 yes 8283 WT_1059 Dra3-1 16 8290 8290 WT_1086 En-1 11 11 8297 WT_1115 Ge-0 18 8306 WT_1610 In-0 8311 WT_1610 In-0 16 yes 98312 YT_1611 Is-0 17 yes 8326 WT_1255 Lis-1 15 15 15 15 13 13 8343 WT_0865 Na-1 22 yes 14 14	
8247 WT_1395 San-2 20 yes yes 8249 WT_1767 Vimmerby 16 yes yes 8256 WT_0954 Ba1-2 19 9 yes 8258 WT_0955 Ba4-1 17 9 yes 8264 WT_0795 Bla-1 9 yes 8283 WT_1059 Dra3-1 16 9 8290 WT_1086 En-1 11 11 8297 WT_1115 Ge-0 18 9 8306 WT_1168 Hov4-1 16 9 8311 WT_1610 In-0 16 yes 8312 WT_1611 Is-0 17 yes 8326 WT_1255 Lis-1 15 15 8334 WT_0865 Na-1 22 yes	
8249 WT_1767 Vimmerby 16 yes yes 8256 WT_0954 Ba1-2 19 9 9 8258 WT_0955 Ba4-1 17 9 yes 8264 WT_0795 Bla-1 9 yes 8283 WT_1059 Dra3-1 16 9 8290 WT_1086 En-1 11 8297 WT_1115 Ge-0 18 8306 WT_1610 In-0 16 8311 WT_1610 In-0 16 yes 8312 WT_1611 Is-0 17 yes 8326 WT_1255 Lis-1 15 15 8334 WT_0865 Na-1 22 yes	
8256 WT_0954 Ba1-2 19 8258 WT_0955 Ba4-1 17 8264 WT_0795 Bla-1 9 yes 8283 WT_1059 Dra3-1 16 8290 WT_1086 En-1 11 8297 WT_1115 Ge-0 18 8306 WT_1610 In-0 16 8311 WT_1610 In-0 16 8312 WT_1611 Is-0 17 8326 WT_1255 Lis-1 15 8334 WT_1263 Lu-1 13 8343 WT_0865 Na-1 22 yes	
8258 WT_0955 Ba4-1 17 8264 WT_0795 Bla-1 9 yes 8283 WT_1059 Dra3-1 16 8290 WT_1086 En-1 11 8297 WT_1115 Ge-0 18 8306 WT_1610 In-0 16 8311 WT_1610 In-0 16 8312 WT_1611 Is-0 17 8326 WT_1255 Lis-1 15 8334 WT_1263 Lu-1 13 8343 WT_0865 Na-1 22 yes	
8264 WT_0795 Bla-1 9 yes 8283 WT_1059 Dra3-1 16 8290 WT_1086 En-1 11 8297 WT_1115 Ge-0 18 8306 WT_1610 In-0 16 8311 WT_1610 In-0 16 8312 WT_1611 Is-0 17 8326 WT_1255 Lis-1 15 8334 WT_1263 Lu-1 13 8343 WT_0865 Na-1 22 yes	
8283 WT_1059 Dra3-1 16 8290 WT_1086 En-1 11 8297 WT_1115 Ge-0 18 8306 WT_1168 Hov4-1 16 8311 WT_1610 In-0 16 8312 WT_1611 Is-0 17 8326 WT_1255 Lis-1 15 8334 WT_1263 Lu-1 13 8343 WT_0865 Na-1 22 yes	
8290 WT_1086 En-1 11 8297 WT_1115 Ge-0 18 8306 WT_1168 Hov4-1 16 8311 WT_1610 In-0 16 yes 8312 WT_1611 Is-0 17 yes 8326 WT_1255 Lis-1 15 15 8334 WT_1263 Lu-1 13 13 8343 WT_0865 Na-1 22 yes	
8297 WT_1115 Ge-0 18 8306 WT_1168 Hov4-1 16 8311 WT_1610 In-0 16 yes 8312 WT_1611 Is-0 17 yes 8326 WT_1255 Lis-1 15 8334 WT_1263 Lu-1 13 8343 WT_0865 Na-1 22 yes	
8306 WT_1168 Hov4-1 16 8311 WT_1610 In-0 16 yes 8312 WT_1611 Is-0 17 yes 8326 WT_1255 Lis-1 15 8334 WT_1263 Lu-1 13 8343 WT_0865 Na-1 22 yes	
8311 WT_1610 In-0 16 yes 8312 WT_1611 Is-0 17 yes 8326 WT_1255 Lis-1 15 8334 WT_1263 Lu-1 13 8343 WT_0865 Na-1 22 yes	
8312 WT_1611 Is-0 17 yes 8326 WT_1255 Lis-1 15 8334 WT_1263 Lu-1 13 8343 WT_0865 Na-1 22 yes	
8326 WT_1255 Lis-1 15 8334 WT_1263 Lu-1 13 8343 WT_0865 Na-1 22 yes	
8334 WT_1263 Lu-1 13 8343 WT_0865 Na-1 22 yes	
8343 WT_0865 Na-1 22 yes	
_	
8351 WT_1333 Ost-0 11 yes	
8354 WT_0875 Per-1 11 yes	
8357 WT 0877 Pla-0 9 yes	
8365 WT 1371 Rak-2 19 yes yes	
8366 WT_0885 Rd-0 19 yes	
8369 WT 1733 Rev-1 19 yes yes	
8376 WT 1396 Sanna-2 16 yes	
8386 WT 1418 Sr:5 12 yes yes	
8387 WT 1420 St-0 15 yes yes	
8424 WT 1612 Kas-2 29 yes yes	
8427 WT 1509 Ull2-13 16 yes yes	
8699 WT 1716 328PNA062 16 yes yes	
9069 WT 1579 Xan-5 23 yes yes	
9070 WT 1580 Xan-6 23 yes yes	
9089 WT 1311 Nar-3 23 yes yes	
9091 WT 1312 Nar-5 22 yes yes	
9114 WT 1228 Lag2-7 9 yes yes	
9128 WT 1581 Yeg-2 16 yes yes	
9130 WT 1582 Yeg-4 16 yes yes	
9133 WT 1584 Yeg-7 16 yes yes	
9134 WT 1585 Yeg-8 16 yes yes	
9298 WT 1078 Edi-1 14 yes	
9343 WT 1606 Dju-1 13 yes yes	
9370 WT 1718 EkS 3 13 yes yes	
9437 WT 1732 Puk-2 15 yes yes	
9476 WT 1557 VarA 1 9 yes yes	
9481 WT 1769 Yst-1 14 yes yes	
9507 WT 1031 IP-Coa-0 13 ves	
9512 WT 1566 IP-Vid-1 10 ves ves	
9513 WT_0930 IP-Adc-5 10 ves ves	
9536 WT 1037 IP-Cor-0 19 ves	
9540 WT 1084 IP-Elb-0 9 ves ves	
9559 WT 1304 IP-Mon-5 21 ves ves	
9564 WT 1318 IP-Nog-17 9 ves ves	
9568 WT 1338 IP-Pan-0 14 ves ves	
9577 WT 1382 IP-Ria-0 9 ves ves	
9578 WT 1391 IP-Sac-0 14 ves ves	
9584 WT 1429 IP-Stp-0 26 ves ves	
9587 WT_1457 IP-Tdc-0 18 yes yes	

ID*	Stock N.	Name	PolvQ length	Sequencing [†]	Phenotyping
9589	WT 1476	IP-Tor-1	20	Ves	Ves
9590	WT 1759	IP-Trs-0	18	Ves	Ves
0501	WT 1553	IP_\/ad_0	18	Ves	Ves
0503	WT 1561	IP_{27}	23	yes ves	yes
9595	WT_1562	II = Vaz=0	23	yes vos	yes
9594	WT 1567	IF-Vulli-0	20	yes	yes
9097	WT_1507	IF-VIY-I	10	yes	yes
9602	VVI_1572		14	yes	yes
9606	WT_0933	Altba-1	16	yes	
9622	VVI_1/24	BIJISK-4	16	yes	yes
9635	WI_1319	Nosov-1	14	yes	yes
9636	WT_1320	Noveg-1	14	yes	yes
9637	WT_1729	Noveg-2	14	yes	yes
9642	WT_1374	Rakit-3	14	yes	yes
9644	WT_1596	Zupan-1	11	yes	yes
9692	WT 1017	Castelfed-3-208	17	yes	
9706	WT ¹⁰⁵⁵	Dospa-1	16	ves	
9713	WT_1421	Stara-1	12	ves	ves
9714	WT_1127	Grivo-1	15	ves	ves
9718	WT 1411	Smoli-1	18	Ves	Ves
0723	WT 1/08	Slavi-2	16	Ves	Ves
0722	WT_0071	Diavi-2 Polo 2	16	ycs voo	yes
9733	WT_0971		10	yes	
9730	VV1_1467	Telu-2	19	yes	yes
9754	WI_1419	Sredn-1	12	yes	yes
9768	WI_1389	Ru4-16	22	yes	yes
9775	WT_0974	Berg-1	14	yes	yes
9783	WT_1491	Tu-PK-7	13	yes	yes
9794	WT_1486	Tu-B1-2	18	yes	yes
9804	WT 1326	Obe1-15	18	yes	yes
9806	WT_1387	Ru-2	13	ves	ves
9810	WT_1489	Tu-KS-7	19	ves	ves
9811	WT 1490	Tu-NK-12	13	Ves	Ves
0816	WT 1/03		13	Ves	Ves
0825	WT_0083		14	yes	yes
9023	WT_0903	IF-DUa-U	0	yes	yes
9037	WT_1030		9	yes	
9843	VV1_1085	IP-EID-0	10	yes	
9873	WI_1314	IP-Ndc-0	15	yes	yes
9876	WI_1336	IP-Pad-0	23	yes	yes
9878	WT_1345	IP-Pee-0	13	yes	yes
9879	WT_1347	IP-Per-0	12	yes	yes
9885	WT_1362	IP-Prd-0	11	yes	yes
9886	WT 1363	IP-Pru-0	17	yes	yes
9887	WT ¹³⁶⁷	IP-Pun-0	19	yes	yes
9898	WT_1414	IP-Som-0	14	ves	ves
9900	WT_1483	IP-Tri-0	12	ves	ves
9904	WT 1558	IP-Vas-0	22	Ves	Ves
0012	WT 1726		18	Ves	Ves
0026	WT_1/20		18	Ves	yes
9920 0025	WT_1402		10	yes	yes
9935	WT_1723	DAU-15	10	yes	yes
9941	WI_0765	Fel-U	19		yes
9960	WI_0737	Klar-1	21	yes	yes
9965	WI_0725	Mammo-2	9	yes	yes
9966	WT_0723	Monte-1	13	yes	yes
9973	WT_0716	Mitterberg-1-181	17	yes	yes
9982	WT_0729	Apost-1	20	yes	yes
10004	WT_0734	Bolin-1	14	yes	yes
10006	WT 0754	Kastel-1	16	yes	yes
10027	WT ⁻ 1632	Uk-6	16	yes	yes
14312	WT 1623	Kos-1	21	ves	ves
14318	WT_1629	Shu-1	16	ves	ves
15560	WT 1631	Valm	17	Ves	ves
15501	WT 1632		12		VAS
15500	WT 1624		17	yos	yes
10092	VVI_1034		17	yes	yes
10093	VVI_1//0	00E3-2	12	yes	yes

* Accession ID based on the 1001 genomes collection [†] 'yes' means it was sequenced and/or phenotyped in this thesis

Appendix II

Comparison of two sister lines (upper chromosomes, elite line; lower chromosomes, wild line) in each HIF pair based on the genotype data generated from the Infinium iSelect 50k SNP chip (Zahn *et al.*, 2022, Preprint). Black regions were not covered in genotyping. Green and orange parts represent homozygous elite and wild regions, respectively, whereas yellow parts represent heterozygous loci. The arrows indicate the *ELF3* locus on chromosome 1H. The additional seven major flowering time genes exhibited the same fixed homozygous alleles between sister lines in all three HIF pairs. Window scaling was based on length proportion and 200 windows were created for the longest chromosome.
Appendix III

Stock N.	Primer name	Sequence (5' - 3')	Purpose
3270	ELF3_PRD_F	ACAAAGGGGTGACTCGGAGA	PCR/sequencing
3271	ELF3_PRD_R	GTCACTCCTCCCCCATCTCT	PCR/sequencing
1235	HvELF3_F1	CCGAGTGAGTGAGTGAGTGA	PCR/sequencing
1238	HvELF3_R6	AGCATACTCTGAAGCGCTAATTG	PCR/sequencing
1236	HvELF3_F4	AGTGAGTGAGTGAGCATGGC	sequencing
1239	HvELF3_F5	TAGTTCACACGGCAGAGACA	sequencing
1249	HvELF3_F6	TCCATCATTTTGCGTGCCTT	sequencing
1250	HvELF3_F7	GTTGTCGGTGCTATTGGTCC	sequencing
1240	HvELF3_R7	TTGTTGTCGGTAGGAGCAGG	sequencing
3964	pHvELF3_F1	GGAGCAACTTTTGAACACATGC	PCR/sequencing
3965	pHvELF3_R1	CTTGAGGGTGGTGTCGTTGA	PCR/sequencing
3966	pHvELF3_F2	GCCCATTTTGCGTCGAAAGT	PCR/sequencing
3967	pHvELF3_R2	GCATGCCGGATTTATTCGACC	PCR/sequencing
708	PP2A_F	TATCGGATGACGATTCTTCGTGCAG	qRT-PCR ref
707	PP2A_R	GCTTGGTCGACTATCGGAATGAGAG	qRT-PCR ref
1604	TIP41_F	GTGAAAACTGTTGGAGAGAAGCAA	qRT-PCR ref
1603	TIP41_R	TCAACTGGATACCCTTTCGCA	qRT-PCR ref
289	CCA1_F	TCTGTGTCTGACGAGGGTCGAATT	qRT-PCR
288	CCA1_R	ACTTTGCGGCAATACCTCTCTGG	qRT-PCR
287	LHY_F	CAACAGCAACAACAATGCAACTAC	qRT-PCR
286	LHY_R	AGAGAGCCTGAAACGCTATACGA	qRT-PCR
291	TOC1_F	ATCTTCGCAGAATCCCTGTGATA	qRT-PCR
290	TOC1_R	GCACCTAGCTTCAAGCACTTTACA	qRT-PCR
279	PRR9_F	GCACAGAGAAACCAAAGGAA	qRT-PCR
278	PRR9_R	CTTTCACTCGAGGACGTTGT	qRT-PCR
285	ELF3_F	GATGCCCACCATAATGACC	qRT-PCR
284	ELF3_R	TTGCTCGCGGATAAGACTTT	qRT-PCR
277	PRR7_F	TGAAAGTTGGAAAAGGACCA	qRT-PCR
276	PRR7_R	GITCCACGIGCATIAGCICI	qRT-PCR
1805	PIF4_F	ATCATCTCCGACCGGTTTGC	qRT-PCR
1806	PIF4_R	AGTGCTCACCAACCTAGTG	qRT-PCR
1257	HVACTIN_F	GCCGIGCITICCCTCIAIG	qRT-PCR ref
1258	HVACTIN_R	GUTTUTUUTIGATGTUUUTTA	qRT-PCR ref
1253	HVGAPDH_F	GIGAGGCIGGIGCIGAIIACG	qRT-PCR ref
1254	HVGAPDH_R	IGGIGCAGCIAGCAIIIGAGAC	qRI-PCR ref
2209	HVCCA1_F	CGACAAGACACAGCAAGCAI	qRI-PCR
2210	HVCCA1_R		qRI-PCR
2211	HVIOC1_F		qRT-PCR
2212	HVIOC1_R		qRT-PCR
2215	HVPRR/3_F	GCAACATTTCGGGGGAAGCTG	qRT-PCR
2216	HVPRR/3_R		
2213	HVGI_F	AGGCGAAATGGTAATGTTGC	
2214	HVGI_R		
2223	Рра-н1_н	GAIGGAIICAAAGGCAAGGA	
2224	Рра-н1_к	GAACAATIGGCTCCTCCAAA	
1408			
1409	VRN1_R	GCCCAGGIGGAAAGGAAACI	
1406		GUUGTUTAUTTUAAUTGUUA	
1407	FI1_K	GIGAGCGGIGAGIAGGICAA	
1418	BM3_F		
1419	RW3_K	GGAGICGIAIGAGGCIGICG	
1416		GAACIGGIGGAGAGGGCAGAA	
1417	RWA ^{-K}	AIGAGCIAGICIGGGCIIGG	
1255	HVELF3_F		
1256	HVELF3_R	CATGAATTCCCCAGCTGTAG	

 Table 3 List of primers used in this study.

Appendix IV

Table 4 List of identified *ELF3* and *EEC* homologues in 274 plant genomes.

			CORE	1 5	
Branch ID	Leaf name	LLR [*]	SCORE	Original name	Source [†]
210	Ac Acorus americanus	_0 373	0	Acora 01G003700 1 p	Phytozome
213	AL Desidenia eveterilia	-0.373	0		
211	Al_Posidonia_australis	4.428	0	BYQW_scalloid_2000764	OnekP
209	Al_Spirodela_polyrhiza_1	-5.258	0	Spipo14G0012700	Phytozome
217	Al_Spirodela_polyrhiza_2	-11.702	0	Spipo21G0028200	Phytozome
210	Al_Zostera_marina	-1	0	Zosma3g01990.1	Phytozome
222	Am_Amborella_trichopoda	2.151	0	evm_scaffold00036.83	Phytozome
391	Ap Daucus carota	8.556	0	DCAR 000777	Phytozome
392	Ap Mydocarpus sp	3 761	0	AJEN scaffold 2101285	OneKP
303	An Pittosporum resiniferum	2 743	0	SALZ scaffold 2015578	OneKP
207		0.000	0	SXML coeffedd 2017220	OneKD
397	Aq_liex_paraguailerisis	9.023	0		
396	Aq_liex_vomitoria	11.641	0	ASMV_scattold_2109631	OnekP
218	Asp_Asparagus_officinalis_1	-4.139	0	evm.model.AsparagusV1_01.2112	Phytozome
174	Asp_Asparagus_officinalis_2	4.749	0	evm.model.AsparagusV1_05.2084	Phytozome
172	Asp_Drakaea_elastica	-1.113	0	XZME_scaffold_2000911	OneKP
171	Asp Goodyera pubescens	3.49	0	VTUS scaffold 2009034	OneKP
387	Ast Helianthus annuus 1	6.375	0	HanXRQChr02q0047961	Phytozome
385	Ast Helianthus annuus 2	4 142	0	HanXRQChr17g0539091	Phytozome
163	Ast Helianthus annuus 3	1 011	0	HanXROChr05q0139911	Phytozome
386	Ast Lactuca sativa 1	10.024	10 024	Loot 1 v5 gp 3 25081 1	Phytozomo
200	Ast Lastuca_sativa_1	7 400	0.024	Lsat_1_v5_gi1_5_25961.1	Phytozome
388	Asi_Laciuca_saliva_2	7.469	0	Lsal_1_v5_gn_6_7561.1	Phylozome
389	Ast_Phelline_lucida	5.153	0	AUIP_scaffold_2029906	OneKP
390	Ast_Platycodon_grandiflorus	7.735	0	IHPC_scaffold_2000327	OneKP
223	Au_Illicium_floridanum	0.868	0	VZCI_scaffold_2013687	OneKP
421	Be Aextoxicon punctatum	7.334	0	QUTB scaffold 2017709	OneKP
160	Bo Heliotropium areagii	2.293	0	ABEH scaffold 2016792	OneKP
161	Bo Heliotropium mendocinum	1 789	0	MZOB_scaffold_2058736	OneKP
77	Br Akania lucens	6 698	0	HV7L scaffold 2142848	OneKP
1 I 255	Dr_Akania_luceris	40.064	40.064	Abdi 0096-0016 1 m	Dhutazama
200	BI_AIyssum_innoium_1	49.904	49.904		Phytozome
47	Br_Alyssum_linifolium_2	-4.38	0	Alyll.0032s0261.1.p	Phytozome
257	Br_Arabidopsis_halleri_1	46.358	46.358	Araha.14473s0003.1	Phytozome
45	Br_Arabidopsis_halleri_2	-4.531	0	Araha.25327s0001.1	Phytozome
259	Br_Arabidopsis_lyrata_1	58.268	58.268	AL4G18010.t1	Phytozome
44	Br Arabidopsis lyrata 2	-1.131	0	AL3G35380.t1	Phytozome
262	Br Arabidopsis thaliana 1	31.534	31.534	AT2G25930.1	Phytozome
41	Br Arabidopsis thaliana 2	-3.481	0	AT3G21320.1	Phytozome
285	Br Arabis alnina	21 631	21 631	TZWR scaffold 2004755	OneKP
200	Br Boochora stricta 1	26.640	26.640	Rostr 26326c0056 1	Phytozomo
200	Br_Boschere_stricte_2	4 20	20.043	Bostr 10424-0520 1	Dhytozome
49	Br_Boechera_stricta_2	-4.38	0	BOSIF. 1942450520. 1	Phylozome
276	Br_Brassica_nigra_1	26.42	0	IPWB_scaffold_2086871	OneKP
59	Br_Brassica_nigra_2	2.095	0	IPWB_scaffold_2016265	OneKP
266	Br_Brassica_oleracea_1	24.423	24.225	Bol045737	Phytozome
279	Br_Brassica_oleracea_2	24.426	0	Bol026498	Phytozome
56	Br Brassica oleracea 3	2.949	0	Bol026618	Phytozome
69	Br Brassica oleracea 4	1.664	0	Bol038369	Phytozome
38	Br Brassica oleracea 5	-1 907	0	Bol018791	Phytozome
267	Br Brassica rana 1	32 622	32 622	Brara 104408 1	Phytozome
207	Br_Brassica_rapa_2	20.276	20.276	Brara D01576 1	Dhytozomo
270	Bi_Biassica_iapa_2	20.270	20.270		Phytozome
57	Br_Brassica_rapa_3	0.287	0	Brara.C03827.1	Phylozome
70	Br_Brassica_rapa_4	-2.667	0	Brara.E02076.1	Phytozome
39	Br_Brassica_rapa_5	-4.357	0	Brara.A02777.1	Phytozome
268	Br_Cakile_maritima_1	28.992	28.992	Camar.4838s0002.1.p	Phytozome
67	Br_Cakile_maritima_2	-3.044	0	Camar.0343s0018.1.p	Phytozome
261	Br Capsella grandiflora 1	59.885	59.885	Cagra.25895s0001.1	Phytozome
50	Br Capsella grandiflora 2	-3 787	0	Cagra 1757s0023 1	Phytozome
258	Br Capsella rubella 1	57 518	57 518	Caruby10022728m	Phytozome
16	Br Cancolla rubolla 2	2 797	0	Caruby1001212011	Dhytozomo
40 245	DI_Capsella_IUDella_Z	-3.101	0		
345	ы_Carica_papaya	0.000	0	evin.model.supercontig_/8.11	Phylozome
272	Br_Caulanthus_amplexicaulis_1	26.168	26.168	Caamp.0008s0143.1.p	Phytozome
60	Br_Caulanthus_amplexicaulis_2	-5.067	0	Caamp.1039s1307.1.p	Phytozome
250	Br_Cleome_violacea_1	12.66	12.66	Clevi.0008s0742.1.p	Phytozome
246	Br_Cleome_violacea_2	2.435	0	Clevi.0032s0147.1.p	Phytozome

Branch ID	Leaf name	LLR*	CORE	Original name	Source [†]
22	Pr. Cloome violence 2	E 200	o	Clavi 0041a0070 1 p	Dhutozomo
33	BI_Cleonie_violacea_3	-3.309	0	Clevi.0041s0079.1.p	Phytozome
31	Br_Cleome_violacea_4	-7.503	0		Phytozome
36	Br_Cochlearia_officinalis	-13.934	0	CSUV_scaffold_2017998	OneKP
35	Br_Corynandra_viscosa	-8.22	0	UPZX_scatfold_2004150	OneKP
275	Br_Crambe_hispanica_1	23.548	23.548	Crahi.0581s0023.1.p	Phytozome
270	Br_Crambe_hispanica_2	24.821	24.821	Crahi.0693s0003.1.p	Phytozome
55	Br_Crambe_hispanica_3	4.115	0	Crahi.0068s0027.1.p	Phytozome
68	Br_Crambe_hispanica_4	-2.611	0	Crahi.0437s0023.1.p	Phytozome
256	Br_Descurainia_sophioides_1	45.537	45.537	Desop.0027s0043.1.p	Phytozome
48	Br_Descurainia_sophioides_2	-6.067	0	Desop.0097s0103.1.p	Phytozome
286	Br_Diptychocarpus_strictus_1	16.025	16.025	Distr.0001s0039.1.p	Phytozome
64	Br_Diptychocarpus_strictus_2	-5.326	0	Distr.0033s0025.1.p	Phytozome
43	Br_Draba_oligosperma	-17.711	0	LAPO_scaffold_2110461	OneKP
269	Br Eruca vesicaria 1	25.84	25.84	Eruve.0086s0018.1.p	Phytozome
66	Br Eruca vesicaria 2	2.251	0	Eruve.6574s0001.1.p	Phytozome
284	Br Euclidium syriacum 1	18.346	18.346	Eusyr.0003s0426.1.p	Phytozome
253	Br Euclidium svriacum 2	24.947	24.693	Eusvr.0134s0253.1.p	Phytozome
37	Br Euclidium svriacum 3	-6.517	0	Eusvr.0017s0291.1.p	Phytozome
281	Br Eutrema salsugineum 1	22.857	22.857	Thhalv10001926m	Phytozome
53	Br Eutrema salsugineum 2	-3 326	0	Thhalv10020453m	Phytozome
249	Br Gynandropsis gynandra 1	29 192	29 192	MBOU scaffold 2008466	OneKP
32	Br Gynandropsis gynandra 2	-12 482	0	MBQU_scaffold_2009842	OneKP
287	Br Gyrostemon ramulosus 1	1 72	0	IAXP scaffold 2011631	OneKP
70	Br_Gyrostemon_ramulosus_1	4.72	0	UAXP_scalloid_2017306	OneKP
12	Br_boria_amara_1	-3.404	20 505	DAXF_scallold_2017500	Dhitozomo
200	DI_IDEIIS_AIIIAIA_I	29.090	29.595	Ibeam 2422e0005 1 n	Phylozome
202	DI_IDEIIS_AIIIAIA_2	0.745	0	Ibeam 3284=0005.1.p	Phytozome
52	Br_iberis_amara_3	-2.715	0	Ibeam.3284\$0005.1.p	Phylozome
271	Br_Isatis_tinctoria_1	32.092	32.092	Isati.050550007.1.p	Phytozome
61	Br_Isatis_tinctoria_2	-3.282	0	Isati.0644s0022.1.p	Phytozome
254	Br_Lepidium_sativum_1	16.937	16.937	Lesat.0012s0041.1.p	Phytozome
42	Br_Lepidium_sativum_2	-7.046	0	Lesat.0024s0264.1.p	Phytozome
75	Br_Limnanthes_douglasii	9.337	0	CRNC_scaffold_2042295	OneKP
265	Br_Lunaria_annua_1	18.304	0	Luann.0747s0002.1.p	Phytozome
71	Br_Lunaria_annua_2	1.354	0	Luann.0007s0252.1.p	Phytozome
263	Br_Malcolmia_maritima_1	27.59	27.59	Mamar.0033s0092.1.p	Phytozome
40	Br_Malcolmia_maritima_2	-5.591	0	Mamar.0029s0981.1.p	Phytozome
346	Br_Moringa_oleifera_1	6.367	0	CZPV_scaffold_2006628	OneKP
76	Br_Moringa_oleifera_2	-7.309	0	CZPV_scaffold_2051291	OneKP
273	Br_Myagrum_perfoliatum_1	27.741	27.741	Myper.0026s0027.1.p	Phytozome
62	Br_Myagrum_perfoliatum_2	-5.61	0	Myper.0028s0672.1.p	Phytozome
251	Br_Polanisia_dodecandra_1	26.869	26.869	QSKP_scaffold_2009050	OneKP
34	Br_Polanisia_dodecandra_2	-4.087	0	QSKP_scaffold_2009380	OneKP
247	Br_Reseda_odorata	3.014	0	SWPE_scaffold_2062214	OneKP
264	Br_Rorippa_islandica_1	28.979	28.979	Roisl.0082s0517.1.p	Phytozome
51	Br_Rorippa_islandica_2	2.957	0	Roisl.0115s0477.1.p	Phytozome
248	Br_Salvadora_sp	15.32	15.32	RTTY_scaffold_2003647	OneKP
280	Br_Schrenkiella_parvula_1	23.649	22.433	Sp4g05820.1	Phytozome
65	Br Schrenkiella parvula 2	1.012	0	Sp3g19380.1	Phytozome
277	Br Sinapis alba 1	23.533	0	VMNH scaffold 2015996	OneKP
58	Br Sinapis alba 2	-2.57	0	VMNH scaffold 2086691	OneKP
274	Br Stanleya pinnata 1	23.827	0		Phytozome
54	Br Stanleya pinnata 2	-2.741	0	Stapi.3359s0003.1.p	Phytozome
282	Br Thlaspi arvense 1	22.936	22.936	Thlar.0125s0039.1.p	Phytozome
63	Br Thlaspi arvense 2	-3.702	0	Thlar.0048s0138.1.p	Phytozome
344	Br Tropaeolum peregrinum	8,484	0	MYZV scaffold 2059453	OneKP
245	Bu Buxus sempervirens 1	-2 463	0	IWMW scaffold 2002385	OneKP
244	Bu Buxus sempervirens 2	-2 492	0	IWMW scaffold 2090445	OneKP
427	Ca Amaranthus hypochondriacus	6.345	0	AHYPO 008224-RA	Phytozome
428	Ca Beta vulgaris	12 526	- 12 526	FI 10Ac2d03948 1	Phytozome
429	Ca Chenopodium quipoa	13 705	13 705	AUR62009205-RA	Phytozome
130	Ca Spinacia oleraçea	13 430	13 /20	Spov3_chr4_03810	Phytozome
	Cha Chara braunii	-0 022	10. 4 09 N	Chraunii El E3	other
168	Co Cajonhora chuquitensis	0.022	0	VTL scaffold 2070022	
100	Co_Calophora_chuquiterisis	3.1/	0	RE II scaffold 2007/82	
118	Co Hydrandea guercifolia	0.14 0.371	0	ZETV scattold 2007402	
-10		0.071	0	2C11_300000_2002010	Oligiti

419 Co. Lysea.opeche 5:256 0 UVV y. schlind. 20:20:20 0n+RP 123 Cuccumis, salivas, 1 0.809 0 Cucas.300780.1 Phylocome 123 Cuccumis, salivas, 2 5.011 0 Cucas.300780.1 Phylocome 124 Die Ceratodin purpureus 7.332 0 CepurGG1.90(1670.1p. Phylocome 120 Die Diecores, aliata, 1 4.025 Die Diecores, aliata, 1 4.025 Die Jacoscores, aliata, 1 4.025 Die Jacoscore, aliata, 1 4.026 Die Jacoscore, aliata, 1 4.025 Die Jacoscore, aliata, 1 4.026 Die Jacoscore, aliata, 1 4.025 Die Jacoscore, aliata, 1 4.026 Die Jacoscore, aliata, 1 4.026 Die Jacoscore, aliata, 1 4.026 Die Jacoscore, aliata, 1	Branch ID	Leaf name	LLR*	CORE	Original name	Source [†]	
433 Cu Cucumis sativus 1 0.909 0 Cucusa 338720.1 Phytozome 433 Gu Cucumis sativus 2 5011 Cucusa 387760.1 Phytozome 44 De Penkam, margaritacoum 33.88 0 Pmargaritacoum, ELF3 other 422 Dii Dillenia Indica 1 3.065 0 EHNF scaffod 200714 OnekP 713 Dio Dioscorea, alita 2 3.157 0 ENAS Scaffod 201524 OnekP 713 Dio Dioscorea, alita 2 4.375 0 Dioal.25253007.1.p Phytozome 714 Er_Andisa, humilis 9.336 ODDo. Scaffol 2.105263 OnekP 715 Er_Fouquieria macdougali 2 0.285 YSRZ scaffol 2.002112 OnekP 715 Er_Modedandron, Icomentasum 5.883 0 WXXX, scaffol 2.002112 OnekP 716 Er_Shoodoandron, Icomentasum 5.883 0 WXXX, scaffol 2.005241 OnekP 716 Er_Shoodoandron, Icomentasum 5.883 0 WXXX, scaffol 2.005414 OnekP 716 Fab.Aceaa, argynophylia <td>419</td> <td>Co Nyssa ogeche</td> <td>5 258</td> <td>0</td> <td>VUSY scaffold 2027802</td> <td>OneKP</td>	419	Co Nyssa ogeche	5 258	0	VUSY scaffold 2027802	OneKP	
123 Cu.Cucumis_astivus_2 5011 0 Cuesas 300760.1 Phytozome 16 Dic.Carcatoon, purpureus 7.332 0 CepurGG 1.96106700.1.p Phytozome 170 Dic.Discorna, aliat_1 3.095 0 EHNF_scaffod_200714 OnekP 171 Dic.Discorna, aliat_1 4.025 0 Dicla/223460035.1.p Phytozome 171 Dic.Discorna, aliat_2 4.375 0 Dicla/223460035.1.p Phytozome 172 Dic.Discorna, aliat_2 4.375 0 Dicla/223460035.1.p Phytozome 172 Dic.Discorna, aliat_2 -0.285 0 YSRZ_scaffod_202614 OnekP 174 Er_Messi_Ianceolugali 6.646 VSRZ_scaffod_202614 OnekP 174 Er_Messi_Ianceolugali 7.238 0 DTOA_scaffod_203614 OnekP 175 Funderstam_acougalia 0.268 0 WRPP_scaffod_2017785 OnekP 176 Er_Synespalum_diuloficum_1 6.333 WRPP_scaffod_2023748 OnekP 176 Fa_Synespalum_diuloficu	433	Cu Cucumis sativus 1	0.909	0	Cucsa 395270 1	Phytozome	
4 De_Penum_margantaneum 33.88 0 Pranspartneseum_ELF3 order 421 Dit, Dilenia_indica_1 3.085 0 EHNF_scaffod_2000714 Onek/P 422 Dit, Dilenia_indica_2 3.157 0 ENNF_scaffod_2010714 Onek/P 173 Dio. Dioscorea_alata_2 4.375 0 Diola/2525x0071,1p Phytozome 385 Djp_Symphoricarpos_sp 5.666 0 CAD2_scaffod_2002823 Onek/P 415 Er_Fouquieta_macologiali_1 6.646 0 YSRZ_scaffod_202914 Onek/P 417 Er_Mess_inneolata 7.238 0 DTOA_scaffod_2039541 Onek/P 418 Er_Meissanzota 7.238 0 DTOA_scaffod_20395414 Onek/P 414 Er_Synsepalum_diulcificum_1 6.333 0 WXXX_scaffod_201785 Onek/P 416 Er_Ternstoormia_gmynophyla 7.992 0 ZCDJ_scaffod_20168643 Onek/P 417 Fab_Acobia_proposa0_1 13.408 arahy.Tifrunner_gmn1.am1.145YS61. Phytozome 317	123	Cu Cucumis sativus 2	5 011	0	Cucsa 360760 1	Phytozome	
16 Die. Ceraidon purpureus 7.332 0 CepurG 1.95(16770.1.p. Phytozome 170 Die. Dilenna, Indica1 3.086 EHNF, sacrified. 2001144 OnekP 170 Die. Discorcea, aliata1 4.025 Die.al.2284:0036.1.p. Phytozome 181 Die. Spreas, aliata	4	De Penium margaritaceum	33.88	0	Pmargaritaceum ELE3	other	
422 Dil, Dillenia, Indica, 1 3.065 0 EHNF, Exaffold, 2000714 OnekP 170 Di, Diescrama, aliala, 1 4.025 0 Diela/2525a0071.1 p Phytozome 173 Dio, Diescrama, aliala, 2 4.375 0 Diela/2525a0071.1 p Phytozome 385 Dip, Symphoticarpos, sp. 5.666 0 CAD2, sanffold, 200573 OnekP 415 Er, Fonquieria, macdougali, 1 6.646 0 YSRZ, sanffold, 200573 OnekP 417 Er, Maesa, Janoeolata 7.238 0 DTOA, sanffold, 2005414 OnekP 417 Er, Maesa, Janoeolata 7.238 0 DTOA, sanffold, 2005414 OnekP 418 Er, Manikarn, Zapota 0.26 0 BEFC, Sanffold, 201786 OnekP 416 Er, Synsspalum, duklficum, 1 5.333 0 WXXX, sanffold, 200844 OnekP 176 Fab, Acacia, anymorbylia 7.92 0 ZCDJ, sanffold, 201683 OnekP 177 Fab, Acacia, anymorbylia 7.92 CZD, sanffold, 2016843 OnekP	16	Dic Ceratodon purpureus	7.332	0	CepurGG1.9G105700.1.p	Phytozome	
170 Dit Ditemin_indica_Z 3.157 0 EHNF_scaffol_2011941 OnekP 212 Dio Dioscorea, aliata_1 4.025 Diod.2234900361.p Phytozome 212 Dio. Dioscorea, aliata_Z 4.375 O Diod.2234900361.p Phytozome 214 Dio. Dioscorea, aliata_Z 4.375 O Diod.2234900361.p Phytozome 215 Er_Forquienta_macchugali_1 6.646 VSRZ_scaffol_2020112 OnekP 165 Er_Forquienta_macchugali_2 -0.285 O VSRZ_scaffol_2020112 OnekP 166 Er_Forquienta_macchugali 0.245 O VSRZ_scaffol_201785 OnekP 167 Er_Meniliara_zapati 0.238 0 WRXP_scaffol_201785 OnekP 168 Er_Tenstoemin_gymanthera 1.567 NGRR_scaffol_201785 OnekP 169 Er_Ienstoemic_gymanthera 1.567 NGRR_scaffol_201785 OnekP 217 atab_angymophylia 7.982 O ZCul_scaffol_201785 OnekP 218 atab_angymophylia 7.982 O ZCul_scaffol_2	422	Dil Dillenia indica 1	3.095	0	EHNF scaffold 2000714	OneKP	
173 Dis_Descres_alata_1 4.025 0 Disal_22520007.1 Phytecome 200 Dip_Symphorcarpos_sp 5.666 0 CA2_scr007.1 Phytecome 385 Dip_Symphorcarpos_sp 5.666 0 CA2_scr0101.2092112 OneKP 415 Er_Fouquieria_macologalii_1 6.646 0 YSR2_scr0101.2092112 OneKP 417 Er_Massa_ancolata 7.238 0 DTOA_scr0101.2092112 OneKP 418 Er_Massa_ancolata 7.238 0 DTOA_scr0101.209214766 OneKP 418 Er_Massa_ancolata 7.238 0 WXXX_scr0101.200528 OneKP 416 Er_Synsepalum_dulciform_1 6.833 0 WXXX_scr0101.2018766 OneKP 5167 Er_Synsepalum_dulciform_1 7.932 0 ZCDJ_scr0101.2018763 OneKP 517 Fab_Acacia_grgymphylla 7.992 0 ZCDJ_scr0101.2018763 OneKP 518 Acacia_scr0101.2018763 OneKP OneKP Phylczome OneKP 517 Fab_Acacia	170	Dil Dillenia indica 2	-3 157	0	EHNE scaffold 2011941	OneKP	
212 Dis_Dissours_lata_2 4.75 0 Disd.23340036.1,p Phytozome 950 Dis_Symphorizampos.pp 5.666 0 CA2. scrifid.2007/29 OneKP 154 Er_Loquieria_mocolugalii_2 -0.285 0 DOD_scrifid.2005143 OneKP 155 Er_Loquieria_mocolugalii_2 -0.285 0 YSR2, scrifid.2005144 OneKP 156 Er_Loduieria_mocolugalii_2 -0.285 0 YSR2, scrifid.2005144 OneKP 157 Er_Monikams_zapota 0.28 0 EFC, scrifid.2017765 OneKP 156 Er_Tenstoremia_gymmanthera -1.867 NGRP.scrifid.2006141 OneKP 157 Er_Synsepalum_dulofficum_1 -0.233 0 WRPP_scrifid.2006141 OneKP 158 Er_Tenstroemia_gymmanthera -1.867 NGRP_scrifid.2017785 OneKP 159 Fab Acacia_argymphytia 7.92 2 CLD_scrifid.2017863 OneKP 151 Fab Acacia_argymophytia 7.92 2 CLD_scrifid.2017751 Phytozome 151 Fab	173	Dio Dioscorea alata 1	4.025	0	Dioal.2252s0007.1.p	Phytozome	
385 Dip_Symptonicarpos_sp 5.668 0 CAO2_scrifted_2007129 OneKP 154 Er_Addisa_humilis 9.336 0 ODO_scrifted_2015633 OneKP 155 Er_Fouquieria_macolougalii_2 -0.285 YSR2_scrifted_200914 OneKP 156 Er_Maesa_lanceolata 7.333 0 DTOA_scrifted_200914 OneKP 161 Er_Manikar_zapota 0.28 0 BEFC_scrifted_200514 OneKP 176 Er_Synsepalum_duclifourm_1 6.333 0 WRPP_scrifted_200514 OneKP 186 Er_Adocala_argynamethera -1.667 0 NGRR_scrifted_2023483 OneKP 186 Er_Tenstroemia_gynnamthera -1.667 0 NGRR_scrifted_2023483 OneKP 394 Fab_Arachis_hypogae_1 13408 arahy:Tirrunner_gmm_annt.ann1.KSTS51.1 Phytozome 314 Fab_Cleer_arietinum_1 -2.311 O.201 Calital Phytozome 321 Fab_Cleer_arietinum_1 -2.311 Calital Phytozome 321 Fab_Cleer_arietinum_1	212	Dio Dioscorea alata 2	4.375	0	Dioal.2934s0036.1.p	Phytozome	
164 Er_Ardisa_humils - - 9.336 0 ODDO_scafful_2105263 OneKP 115 Er_Fouquieria_macdougalii_2 -0.285 0 YSR2_scafful_2020112 OneKP 116 Er_Manikara_zapota 7.238 0 DTOA_scafful_2020114 OneKP 116 Er_Rododendron_formentosum 5.663 0 WXXV_scafful_2016766 OneKP 1167 Er_Synsepalum_ducificum_1 0.238 0 WRPP_scafful_2008628 OneKP 1167 Er_Synsepalum_ducificum_1 0.238 0 WRPP_scafful_2008628 OneKP 1167 Fab_Acacia_argyrophylia 7.992 0 ZCDJ_scafful_2016803 OneKP 117 Fab_Acacia_argyrophylia 7.992 0 ZCDJ_scafful_2012843 OneKP 117 Fab_Acacia_argyrophylia 7.992 0 ZCDJ_scafful_2012843 OneKP 117 Fab_Bauhinia_tomentosa 4.066 JETM_scafful_2024467 OneKP 117 Fab_Cloer_arietinum_1 2.311 0 Ca_10118 Phytozome	395	Dip Symphoricarpos sp	5.666	0	CAQZ scaffold 2007129	OneKP	
415 Er_Fouquieria_macdougall_1 6.446 0 YSR2_scaffol_202019 OneKP 155 Er_Fouquieria_macdougall_2 -0.285 0 YSR2_scaffol_202019 OneKP 413 Er_Manikarz_appta -0.26 0 PSR2_scaffol_2018766 OneKP 414 Er_Phododandron_tomentosum 5.663 0 WXVX_scaffol_200528 OneKP 415 Er_Synsepalum_duictikum_1 6.333 0 WRPP_scaffol_2006141 OneKP 166 Er_Tenstoremia_gynnanthera -1.367 0 NGRR_scaffol_2008141 OneKP 304 Fab_Acacia_argyrophylia 7.982 0 ZCD_scaffol_201633 OneKP 317 Fab_Acacia_ingyrophylia 7.983 0 arahy.Titunner.gm1.am1.KSTYS1. Phytozome 321 Fab_Cicer_arietinum_1 -2.311 0 Ca_01620 Phytozome 316 Fab_Cicer_arietinum_3 9.459 Ca_0118 Phytozome Phytozome 317 Fab_Cicer_arietinum_3 9.459 Ca_0121387 OneKP 318 Ci	164	Er Ardisia humilis	-9.336	0	ODDO scaffold 2105263	OneKP	
165 Er_Fouquera_macdougal_2 -0.285 0 YSRZ_scaffol_200514 OneKP 417 Er_Manikara_zapota 0.26 0 BEFC_scaffol_200514 OneKP 418 Er_Manikara_zapota 0.26 0 BEFC_scaffol_200524 OneKP 414 Er_Synsepalum_dictificum_1 6.333 0 WRPP_scaffol_2006528 OneKP 1167 Er_Synsepalum_dictificum_1 6.333 0 WRPP_scaffol_2006528 OneKP 1167 Er_Synsepalum_dictificum_1 6.333 0 WRPP_scaffol_2006528 OneKP 319 Fab_Arachis_hypogae_1 1.3408 arahy.Tifrunner.gm1.ann1.145885 Phytozome 317 Fab_Bathinia_tomentosa 4.066 JETM_scaffol_2003748 OneKP 314 Fab_Cicer_arietinum_1 -2.311 O Ca_01620 Phytozome 317 Fab_Cicer_arietinum_3 9.459 O Ca_10117 Phytozome 320 Fab_Copater_arietinum_3 9.459 O Ca_10117 Phytozome 321 Fab_Cicer_arietinum_3	415	Er Fouquieria macdougalii 1	6.646	0	YSRZ scaffold 2092112	OneKP	
417 Er_Maesa_lanceolata	165	Er Fouquieria macdougalii 2	-0.285	0	YSRZ scaffold 2020919	OneKP	
413 Er_Manikara_zapola 0.26 0 EEFC_scaffol_2018785 OneKP 414 Er_Synsepalum_dukaficum_1 6.833 0 WRPP_scaffol_2005785 OneKP 414 Er_Synsepalum_dukaficum_1 6.333 0 WRPP_scaffol_2005143 OneKP 167 Er_Synsepalum_dukaficum_1 7.357 0 NGRR_scaffol_2002483 OneKP 319 Fab_Acacia_argyrophylia 7.92 2 ZCDJ_scaffol_2023483 OneKP 314 Fab_Acacia_argyrophylia 7.92 2 ZCDJ_scaffol_2023483 OneKP 317 Fab_Bathinia_tomentosa 4.086 outptt arahy.Tifunner.gun1.am1.14SSB6. Phylozome 314 Fab_Cleer_arietinum_1 -2.311 C_a_01620 Phylozome Phylozome 317 Fab_Cleer_arietinum_1 -3.318 0.76 RCL_scaffol_2042167 OneKP 316 Fab_Cleer_arietinum_1 -3.832 0 Giyma.04G050200.1 Phylozome 317 Fab_Cleer_arietinum_1 -3.832 0 Giyma.04G050760.1 Phylozome	417	Er Maesa lanceolata	7.238	0	DTOA scaffold 2095414	OneKP	
416 Er_Rhodotenizon, tomentosum 6.683 0 WXVZ seafold_201785 OneKP 141 Er_Synsepalum_duloficum_1 0.338 0 WRPP_scaffold_2006528 OneKP 166 Er_Synsepalum_duloficum_1 0.338 0 WRPP_scaffold_2006528 OneKP 167 Er_Synsepalum_duloficum_1 1.367 0 NGRR_scaffold_2016863 OneKP 304 Fab_Arachis_hypogae_1 1.3408 0 arahy.Tifrunner.gmn1.am1.KSTYS1. Phytozome 321 Fab_Cicer_arietinum_1 -2.311 0 G.01620 OneKP 295 Fab_Cicer_arietinum_1 -2.311 0 G.0173 Phytozome 307 Fab_Cicer_arietinum_3 9.459 0 Ca.10118 Phytozome 307 Fab_Coderacalyx, motorius 8.216 0 SUAK_scaffold_2042160.1 Phytozome 308 Fab_Glycine_max_1 3.832 0 Glyma.170221600.1 Phytozome 314 Fab_Glycine_max_3 3.074 0 Glyma.04050200.1 Phytozome 314	413	Er Manilkara zapota	0.26	0	BEFC scaffold 2018766	OneKP	
414 Er_Synsepalum_duklificum_1 6.333 0 WRPP_scaffold_2006828 OneKP 167 Er_Synsepalum_duklificum_1 0.333 0 WRPP_scaffold_2008141 OneKP 168 Er_Ternstroemia_gymnanthera -1.567 0 NGRR scaffold_2018633 OneKP 319 Fab_Arachis_typogaea_1 13.408 0 arahy.Tifnunner gmn1.ann1.14ST81-1 Phytozome 317 Fab_Arachis_typogaea_2 12.403 0 arahy.Tifnunner gmn1.ann1.1KSTY51-1 Phytozome 314 Fab_Cicer_arietinum_1 -2.311 0 Ca_09197 Phytozome 317 Fab_Cicer_arietinum_3 9.458 0 Ca_10118 Phytozome 317 Fab_Copariera_orfficinalis 8.233 8.076 RKLL_scaffold_2013837 OmeKP 308 Fab_Glyoine_max_1 3.832 0 Gjma.176231600.1 Phytozome 314 Fab_Glyoine_max_3 3.074 0 Gjma.176231601.1 Phytozome 315 Fab_Glyoine_max_3 3.074 0 Gjma.176231602.003744 OneKP <td>416</td> <td>Er Rhododendron tomentosum</td> <td>5.663</td> <td>0</td> <td>WXVX scaffold 2017785</td> <td>OneKP</td>	416	Er Rhododendron tomentosum	5.663	0	WXVX scaffold 2017785	OneKP	
167 Er_Synseplum_dubificum_2 0.238 0 WRPP_scaffold_2003441 OneKP 319 Fab_Acacia_argyrophyla 7,992 0 ZCDJ_scaffold_2023483 OneKP 314 Fab_Arachis_hypogaea_1 13.408 0 arahy.Tiffunner.gmn1.ann1.KSTB61 Phytozome 321 Fab_Bachachis_hypogaea_2 12.403 0 arahy.Tiffunner.gmn1.ann1.KSTB61 Phytozome 321 Fab_Cicer_arietinum_1 -2.311 0 Ca_01620 Phytozome 325 Fab_Cicer_arietinum_2 5.523 0 Ca_01620 Phytozome 307 Fab_Codaricalyr_motolus 8.216 0 SL/KK scaffoid_201387 OneKP 308 Fab_Codarier_officinalis 8.233 8.076 RKLL_scaffoid_201387 OneKP 308 Fab_Glycine_max_3 3.074 G Gyma.0460500.1 Phytozome 309 Fab_Glycine_max_3 3.074 G Gyma.0461612020474 OneKP 316 Glycine_max_3 3.074 G Gyma.0461612003084 OneKP 317 Fab_Glycininiza_glabra	414	Er Synsepalum dulcificum 1	6.333	0	WRPP scaffold 2006528	OneKP	
166 Er_Ternstroemia_gymanthera -1.667 0 NCRR_scaffold_202483 OneKP 304 Fab_Arachis_hypogaea_1 13.408 0 arahy.Tiffunner.gnm1.ann1.14ST61.1 Phytozome 317 Fab_Arachis_hypogaea_2 12.403 0 arahy.Tiffunner.gnm1.ann1.14ST51.1 Phytozome 317 Fab_Crear_arietinum_1 -2.311 0 Ca_01620 Phytozome 318 Fab_Crear_arietinum_3 9.459 0 Ca_01917 Phytozome 317 Fab_Coler_arietinum_3 9.459 0 Ca_10118 Phytozome 320 Fab_Coler_arietinum_3 9.459 0 Ca_10137 OneKP 320 Fab_Coler_arietinum_3 9.459 0 Ca_101387 OneKP 320 Fab_Coler_arietinum_3 3.450 Rian_MacBio2200.1 Phytozome 321 Fab_Bolyine_max_2 7.18 0 Glyma D4605200.1 Phytozome 328 Fab_Colyine_max_2 7.18 0 Glyma D460612_200527.1 Phytozome 313 Fab_Glyminiz_alpintota	167	Er Synsepalum dulcificum 2	0.238	0	WRPP scaffold 2008141	OneKP	
319 Fab_Acacia_argyrophyla 7.992 0 ZCD_jscaffold_2016863 OneKP 317 Fab_Arachis_hypogaea_2 12.403 0 arahy.Tifrunner.gnm1.ann1.KSTS1.1 Phytozome 321 Fab_Bauhinia_tomentosa 4.086 0 JETM_scaffold_2003748 OneKP 321 Fab_Cicer_arietinum_1 -2.311 0 Ca_019197 Phytozome 295 Fab_Cicer_arietinum_2 5.523 0 Ca_01917 Phytozome 307 Fab_Colora_rietinum_3 9.459 0 Ca_10118 Phytozome 307 Fab_Colora_rietinum_3 9.459 0 Ca_10118 Phytozome 308 Fab_Colycine_max_1 3.832 0 Flkn.scaffold_201377 OneKP 308 Fab_Glycine_max_2 7.18 0 Glyma.04050200.1 Phytozome 314 Fab_Glycine_max_3 3.074 0 Glyma.04050200.1 Phytozome 315 Fab_Glycine_max_3 3.074 0 Glyma.040272 OneKP 312 Fab_Glycine_max_3	166	Er_Ternstroemia_gymnanthera	-1.567	0	NGRR_scaffold_2023483	OneKP	
304 Fab_Arachis_hypogaea_1 13.406 or arahy_Tifrunner_gmm1.am.1.45SB6.1 Phytozome 317 Fab_Bauhinia_tomentosa 4.086 0 JETM_scaffold_2003748 OneKP 314 Fab_Cicer_arietinum_1 -2.311 0 Ca_01620 Phytozome 317 Fab_Cicer_arietinum_1 -2.311 0 Ca_01620 Phytozome 317 Fab_Cicer_arietinum_1 -2.311 0 Ca_01620 Phytozome 317 Fab_Colore_arietinum_2 5.523 0 Ca_01917 Phytozome 320 Fab_Colore_arietinum_1 -3.832 0 SUAK_scaffold_202167 OneKP 320 Fab_Copariera_officinalis 8.233 8.076 RkL_scaffold_202163 OneKP 320 Fab_Glycine_max_3 3.074 0 Glyma 046397500.1 Phytozome 312 Fab_Glycine_max_3 3.074 0 Glyma 046397500.1 Phytozome 312 Fab_Glycine_max_3 3.074 0 Glyma 046397500.1 Phytozome 312 Fab_Glycine_max_3	319	Fab Acacia argyrophylla	7.992	0	ZCDJ scaffold 2016863	OneKP	
317 Fab_Arachis_hypogaea_2 12.403 o arahy.Tirrunner.gmm1.annt.KSTY51.1 Phytozome 321 Fab_Bauhinia_tomentosa 4.086 0 JETM_scaffold_2003748 OneKP 314 Fab_Cicer_arietinum_1 -2.311 0 Ca_01620 Phytozome 295 Fab_Cicer_arietinum_2 5.523 0 Ca_01917 Phytozome 307 Fab_Copariera_officinalis 8.243 8.076 RKLL_scaffold_2042167 OneKP 308 Fab_Glycine_max_1 3.832 0 Glyma.176231600.1 Phytozome 308 Fab_Glycine_max_3 3.074 0 Glyma.176231600.1 Phytozome 309 Fab_Glycine_max_3 3.074 0 Glyma.176231601.1 Phytozome 317 Fab_Glycymtriza_lepidota 4.786 0 JTQ_scaffold_200572.0 OneKP 313 Fab_Glycymtriza_lepidota 4.786 0 JTQ_scaffold_200572.0 OneKP 314 Fab_Cotus_japonicus_1 4.146 V_LNB_scaffold_200577.1 Phytozome 315 <	304	Fab_Arachis_hypogaea_1	13.408	0	arahy.Tifrunner.gnm1.ann1.14SSB6.1	Phytozome	
321 Fab Bauhina formentosa 4.066 0 JETM_scaffold_2003748 OneKP 314 Fab_Cicer_arietinum_1 -2.311 0 Ca_01620	317	Fab_Arachis_hypogaea_2	12.403	0	arahy.Tifrunner.gnm1.ann1.K5TY51.1	Phytozome	
314 Fab_Cicer_arietinum_1 -2.311 0 Ca_0fizo Phytozome 295 Fab_Cicer_arietinum_2 5.523 0 Ca_09197 Phytozome 307 Fab_Coler_arietinum_3 9.459 0 Ca_10118 Phytozome 307 Fab_Copaire_ordina 8.216 0 SUAK_scaffold_201387 OneKP 308 Fab_Copien_max_1 3.832 0 Glyma.046050200.1 Phytozome 298 Fab_Glycine_max_2 7.18 0 Glyma.046050200.1 Phytozome 309 Fab_Glycine_max_3 3.074 0 Glyma.066197500.1 Phytozome 309 Fab_Glycymiza_lepidota 5.826 0 PE2P_scaffold_2003784 OneKP 315 Fab_Gonymiza_lepidota 4.736 0 JTGQ_scaffold_2003784 OneKP 311 Fab_Lotus_japonicus_1 4.1 0 Lija0003552.1 Phytozome 336 Fab_Lotus_japonicus_2 -1.494 0 Lija0007351.1 Phytozome 337 Fab_Lotusi_japonicus_2 -	321	Fab Bauhinia tomentosa	4.086	0	JETM scaffold 2003748	OneKP	
295 Fab_Cicer_arietinum_2 5.523 0 Ca_09197 Phytozome 131 Fab_Codariocalyz_motorius 8.216 0 SUAK_scaffold_2042167 OneKP 320 Fab_Codariocalyz_motorius 8.216 0 SUAK_scaffold_2042167 OneKP 320 Fab_Glycine_max_1 3.832 0 Glyma.046050200.1 Phytozome 298 Fab_Glycine_max_2 7.18 0 Glyma.04605020.1 Phytozome 298 Fab_Glycine_max_3 3.074 0 Glyma.04605020.1 Phytozome 298 Fab_Glycine_max_3 3.074 0 Glyma.04605020.1 Phytozome 298 Fab_Glycine_max_3 3.074 0 Glyma.04605020.1 Phytozome 313 Fab_Glycine_max_1 5.826 0 PE2P_scaffold_2003784 OneKP 311 Fab_Glycine_max_1 4.76 0 LNB_scaffold_2003784 OneKP 311 Fab_Iotus_japonicus_1 4.14 0 Lija0003561 Phytozome 303 Fab_Lotus_japonicus_2	314	Fab_Cicer_arietinum_1	-2.311	0	Ca_01620	Phytozome	
131 Fab_Colear_anethnum_3 9.459 0 Ca_10118 Phytozome 307 Fab_Codatiocalyx_motorius 8.216 0 SUAK_scaffold_2042167 OneKP 320 Fab_Copatifera_officinalis 8.233 8.076 RKLL_scaffold_2013837 OneKP 308 Fab_Glycine_max_1 3.832 0 Glyma.04C050200.1 Phytozome 304 Fab_Glycine_max_2 7.18 0 Glyma.04C050200.1 Phytozome 309 Fab_Glycyrthiza_glabra 5.826 0 PEZP_scaffold_200386 OneKP 313 Fab_Glycyrthiza_glabra 5.826 0 PEZP_scaffold_2003784 OneKP 314 Fab_Glycyrthiza_glabra 5.826 0 PLSP_scaffold_2003784 OneKP 315 Fab_Lotus_japonicus_1 4.1 0 Lija0003866.1 Phytozome 305 Fab_Lotus_japonicus_2 -1.444 0 Lija0013066.1 Phytozome 306 Fab_Lotus_japonicus_2 -0.094 Lalb_Chr25Q0280491 Phytozome 307 Fab_Medicago_trunc	295	Fab_Cicer_arietinum_2	5.523	0	Ca_09197	Phytozome	
307 Fab_Codariocalyx_motorius 8.216 0 SUAK_scaffold_2042167 OneKP 320 Fab_Coyaifera_officinalis 8.233 8.076 RKLL_scaffold_2018377 OneKP 328 Fab_Glycine_max_1 3.832 0 Glyma.17G23160.1 Phytozome 298 Fab_Glycine_max_3 3.074 0 Glyma.17G23160.1 Phytozome 309 Fab_Glycymbra glabra 5.826 0 PEZP_scaffold_200388 OneKP 313 Fab_Glycymbra glabra 5.826 0 PEZP_scaffold_2003784 OneKP 314 Fab_Glycymbra glabra 4.736 0 JTOQ_scaffold_2003784 OneKP 315 Fab_Lotus_japonicus_1 4.1 0 Lj3g0013066.1 Phytozome 303 Fab_Lotus_japonicus_2 -1.494 0 Lj3g0013056.1 Phytozome 304 Fab_Lopinus_albus_3 -5.606 0 Lab_Chr23g0267721 Phytozome 305 Fab_Medicago_truncatula_2 2.124 Meditr3g103970.1 Phytozome 305 Fab_Medicago_trun	131	Fab_Cicer_arietinum_3	9.459	0	Ca_10118	Phytozome	
320 Fab_Copaifera_officinalis 8.233 8.076 RKLL_scaffold_2013837 OneKP 308 Fab_Glycine_max_1 3.832 0 Glyma.04G05020.1 Phytozome 308 Fab_Glycine_max_2 7.18 0 Glyma.04G05020.1 Phytozome 309 Fab_Glycine_soja 3.832 0 FPLR_scaffold_200374 OneKP 313 Fab_Glycyrthiza_lepidota 4.736 0 JTCQ_scaffold_2005272 OneKP 314 Fab_Glycyrthiza_lepidota 4.736 0 JTCQ_scaffold_2005272 OneKP 315 Fab_Glycyrthiza_lepidota 4.736 0 JTQQ_scaffold_2005272 OneKP 311 Fab_Lotus_japonicus_1 4.1 0 Lj3g0013066.1 Phytozome 313 Fab_Lotus_japonicus_2 -1.494 0 Lj3g0013066.1 Phytozome 316 Fab_Lupinus_albus_3 -5.666 0 Lab_Chr23g0350511 Phytozome 316 Fab_Medicago_truncatula_1 5.546 Medtr3g1013070.1 Phytozome 316 Fab_Medicago_tr	307	Fab_Codariocalyx_motorius	8.216	0	SUAK_scaffold_2042167	OneKP	
308 Fab_Glycine_max_1 3.832 0 Glyma.406050200.1 Phytozome 298 Fab_Glycine_max_2 7.18 0 Glyma.17G231600.1 Phytozome 309 Fab_Glycine_max_3 3.074 0 Glyma.08G19750.1 Phytozome 309 Fab_Glycyrrhiza_lepidota 3.832 0 FPLP_scaffold_2024074 OneKP 312 Fab_Glycyrrhiza_lepidota 4.736 0 JTQQ_scaffold_2003784 OneKP 305 Fab_Lotus_japonicus_1 4.1 0 Lijg0009532.1 Phytozome 303 Fab_Lupinus_albus_1 4.25 0 Lalb_Chr23035951 Phytozome 306 Fab_Lupinus_albus_2 -0.094 0 Lab_Chr230267721 Phytozome 305 Fab_Medicago_truncatula_1 5.546 Medtr30103970.1 Phytozome 315 Fab_Medicago_truncatula_3 3.787 0 Medtr30163200.1 Phytozome 301 Fab_Phaseolus_acutifolius_1 10.42 0 Phacu.CVR.01G033200.1 Phytozome 315 Fab_Phaseolus_	320	Fab_Copaifera_officinalis	8.233	8.076	RKLL_scaffold_2013837	OneKP	
298 Fab_Glycine_max_2 7.18 0 Glyma.08G197500.1 Phytozome 134 Fab_Glycine_soja 3.074 0 Glyma.08G197500.1 Phytozome 090 Fab_Glycyrthiza_glabra 5.826 0 PEZP_scafiol_2008368 OneKP 312 Fab_Glycyrthiza_glabra 5.826 0 PEZP_scafiol_2003724 OneKP 315 Fab_Golycyrthiza_glabra 4.736 0 JTQQ.scaffol_2003784 OneKP 315 Fab_Lotus_japonicus_1 4.1 0 Lig30013066.1 Phytozome 303 Fab_Lupinus_albus_1 4.25 0 Lalb_Chr22g0355951 Phytozome 306 Fab_Lupinus_albus_2 -0.094 0 Lalb_Chr25g0280491 Phytozome 306 Fab_Medicago_truncatula_1 5.546 0 Medtr3g016920.1 Phytozome 315 Fab_Medicago_truncatula_3 3.787 0 Medtr3g015480.1 Phytozome 316 Fab_Phaseolus_untatus_1 10.42 0 Phacu_CVR.010633200.1 Phytozome 317	308	Fab_Glycine_max_1	3.832	0	Glyma.04G050200.1	Phytozome	
134 Fab_clycine_max_3 3.074 0 Glyma.86197500.1 Phytozome 309 Fab_clycyriniza_glabra 3.832 0 FPLR_scaffold_2024074 OneKP 313 Fab_clycyriniza_glabra 5.826 0 PEZP_scaffold_2008368 OneKP 315 Fab_clycyriniza_lepidota 4.736 0 JTQQ_scaffold_2003784 OneKP 305 Fab_compholobium_polymorphum 1.146 0 VLNB_scaffold_2003784 OneKP 311 Fab_Lotus_japonicus_1 4.1 0 Lj3g0013066.1 Phytozome 303 Fab_Lupinus_albus_1 4.25 0 Lalb_Chr23g035951 Phytozome 306 Fab_Lupinus_albus_3 -5606 0 Lalb_Chr23g0260491 Phytozome 315 Fab_Medicago_truncatula_1 5.546 0 Medtr3g103970.1 Phytozome 316 Fab_Phaseolus_acutifolius_1 10.42 0 Phacu.CVR.010G033200.1 Phytozome 315 Fab_Phaseolus_uautifolius_2 2.607 0 Phacu.CVR.010G033200.1. Phytozome	298	Fab_Glycine_max_2	7.18	0	Glyma.17G231600.1	Phytozome	
309 Fab_Glycine_soja 3.832 0 FPLR_Scaffold_2024074 OneKP 313 Fab_Glycyrntiza_glabra 5.826 0 PELR_Scaffold_2005272 OneKP 312 Fab_Glycyrntiza_lepidota 4.736 0 JTQQ_scaffold_2005272 OneKP 305 Fab_Cotus_japonicus_1 4.1 0 Lj3g000366.1 Phytozome 303 Fab_Lotus_japonicus_2 -1.444 0 Lj3g0013066.1 Phytozome 303 Fab_Lupinus_albus_1 4.25 0 Lab_Chr23g0267721 Phytozome 304 Fab_Lupinus_albus_2 -0.094 0 Lab_Chr23g0267721 Phytozome 305 Fab_Medicago_truncatula_2 2.124 0 Medtr3g103970.1 Phytozome 315 Fab_Medicago_truncatula_3 3.767 0 Medtr3g103970.1 Phytozome 316 Fab_Phaseolus_acutifolius_2 2.607 0 Phacu CVR.001G033200.1 Phytozome 317 Fab_Phaseolus_upignis_1 11.373 0 Phytozome 147 316	134	Fab_Glycine_max_3	3.074	0	Glyma.08G197500.1	Phytozome	
313 Fab_Glycyrrhiza_glabra 5.826 0 PEZP_scaffold_2003868 OneKP 312 Fab_Glycyrrhiza_lepidota 4.736 0 JTQQ_scaffold_2003724 OneKP 311 Fab_Lotus_japonicus_1 4.1 0 L/j3g0013066.1 Phytozome 313 Fab_Lotus_japonicus_2 -1.494 0 L/j3g0013066.1 Phytozome 303 Fab_Lupinus_albus_1 4.25 0 Lalb_Chr23g0257951 Phytozome 304 Fab_Lupinus_albus_2 -0.094 0 Lalb_Chr23g0267721 Phytozome 305 Fab_Medicago_truncatula_1 5.546 0 Medtr3g103970.1 Phytozome 315 Fab_Medicago_truncatula_3 3.787 0 Medtr3g103970.1 Phytozome 318 Fab_Phaseolus_acutifolius_1 10.42 0 Phacu.CVR.010G13200.1 Phytozome 316 Fab_Phaseolus_uatufolius_2 2.607 0 Phacu.CVR.010G13200.1 Phytozome 302 Fab_Phaseolus_lunatus_2 2.607 0 Phutolo000037300.1.v1 Phytozome <tr< td=""><td>309</td><td>Fab_Glycine_soja</td><td>3.832</td><td>0</td><td>FPLR_scaffold_2024074</td><td>OneKP</td></tr<>	309	Fab_Glycine_soja	3.832	0	FPLR_scaffold_2024074	OneKP	
312 Fab_Glycyrrhiza_lepidota 4.736 0 JTQQ_scaffold_2005272 OneKP 305 Fab_Gompholobium_polymorphum 1.146 0 VLNB_scaffold_2003784 OneKP 311 Fab_Lotus_japonicus_1 4.11 0 Lj1g0009532.1 Phytozome 303 Fab_Lupinus_albus_1 4.25 0 Lab_Chr23g0359511 Phytozome 306 Fab_Lupinus_albus_2 -0.094 0 Lab_Chr23g03267721 Phytozome 306 Fab_Medicago_truncatula_1 5.546 0 Medtr3g103970.1 Phytozome 315 Fab_Medicago_truncatula_3 3.787 0 Medtr3g103970.1 Phytozome 301 Fab_Phaseolus_acutifolius_1 10.42 0 Phacu.CVR.0110G33200.1 Phytozome 313 Fab_Phaseolus_acutifolius_2 2.607 0 Phacu.CVR.0110G3290.1.v1 Phytozome 314 Fab_Phaseolus_ulgaris_1 11.873 0 Phvul.010617000.1 Phytozome 302 Fab_Phaseolus_ulgaris_1 11.373 0 Phvul.010632900.1.v1 Phytozome	313	Fab_Glycyrrhiza_glabra	5.826	0	PEZP_scaffold_2008368	OneKP	
305 Fab_Gompholobium_polymorphum 1.146 0 VLNB_scaffold_2003784 OneKP 311 Fab_Lotus_japonicus_1 4.1 0 Lj1g0009532.1 Phytozome 303 Fab_Lotus_japonicus_2 -1.494 0 Lalb_Chr22g0355951 Phytozome 306 Fab_Lupinus_albus_1 4.25 0 Lalb_Chr22g0355951 Phytozome 306 Fab_Lupinus_albus_3 -5.606 0 Lalb_Chr22g035951 Phytozome 296 Fab_Medicago_truncatula_1 5.546 0 Medtr3g015480.1 Phytozome 312 Fab_Medicago_truncatula_3 3.787 0 Medtr8g015480.1 Phytozome 301 Fab_Phaseolus_acutifolius_1 10.42 0 Phacu.CVR.001G033200.1 Phytozome 313 Fab_Phaseolus_lunatus_1 10.83 0 Pl01G0000037300.1.v1 Phytozome 300 Fab_Phaseolus_lunatus_2 2.607 0 Phacu.CVR.010G32900.1 Phytozome 314 Fab_Phaseolus_ulgaris_1 11.373 0 Phvul.010G32900.1 Phytozome	312	Fab_Glycyrrhiza_lepidota	4.736	0	JTQQ_scaffold_2005272	OneKP	
311 Fab_Lotus_japonicus_1 4.1 0 Ljag0009532.1 Phytozome 139 Fab_Lupinus_albus_1 4.25 0 Lalb_Chr22g0355951 Phytozome 303 Fab_Lupinus_albus_2 -0.094 0 Lalb_Chr22g0355951 Phytozome 306 Fab_Lupinus_albus_3 -5.606 0 Lalb_Chr22g035951 Phytozome 304 Fab_Medicago_truncatula_1 5.546 0 Medtr3g103970.1 Phytozome 315 Fab_Medicago_truncatula_3 3.787 0 Medtr8g015480.1 Phytozome 318 Fab_Phaseolus_acutifolius_1 10.42 0 Phacu.CVR.010G3200.1 Phytozome 318 Fab_Phaseolus_acutifolius_2 2.607 0 Phacu.CVR.0106170000.1 Phytozome 300 Fab_Phaseolus_lunatus_1 10.893 0 Pl0160000335200.1.v1 Phytozome 302 Fab_Phaseolus_vulgaris_2 2.607 0 Phul.0106142900.7 Phytozome 316 Fab_Trifolium_pratense_1 -1.436 0 Tp57577_TGAC_v2_mRNA26220 Phytozome 317 Fab_Trifolium_pratense_3 5.806 0 T	305	Fab_Gompholobium_polymorphum	1.146	0	VLNB_scaffold_2003784	OneKP	
139 Fab_Lous_japonicus_2 -1.494 0 Lj3g0013066.1 Phytozome 303 Fab_Lupinus_albus_1 4.25 0 Lab_Chr22g0355951 Phytozome 306 Fab_Lupinus_albus_2 -0.094 0 Lab_Chr22g0267721 Phytozome 306 Fab_Lupinus_albus_3 -5.606 0 Lab_Chr23g0267721 Phytozome 307 Fab_Medicago_truncatula_1 5.546 0 Medtr1g016920.1 Phytozome 315 Fab_Medicago_truncatula_2 2.124 0 Medtr3g103970.1 Phytozome 301 Fab_Phaseolus_acutifolius_1 10.42 0 Phacu.CVR.0016033200.1 Phytozome 303 Fab_Phaseolus_junatus_1 10.42 0 Phacu.CVR.0016033200.1.v1 Phytozome 304 Fab_Phaseolus_junatus_1 10.893 0 Pl01G000037300.1.v1 Phytozome 305 Fab_Phaseolus_junatus_1 11.373 0 Phyulo1016032900.1 Phytozome 305 Fab_Phaseolus_junatus_1 11.373 0 Phyulo200.7 Phytozome 316 Fab_Trifolium_pratense_1 -1.436 Tp57577_TGAC_V2_mRNA26220	311	Fab_Lotus_japonicus_1	4.1	0	Lj1g0009532.1	Phytozome	
303 Fab_Lupinus_albus_1 4.25 0 Lab_Chr23g0355951 Phytozome 306 Fab_Lupinus_albus_3 -0.094 0 Lab_Chr23g0267721 Phytozome 307 Fab_Lupinus_albus_3 -5.606 0 Lab_Chr23g0280491 Phytozome 296 Fab_Medicago_truncatula_1 5.546 0 Medtr3g103970.1 Phytozome 312 Fab_Medicago_truncatula_3 3.787 0 Medtr8g103970.1 Phytozome 312 Fab_Phaseolus_acutifolius_1 10.42 0 Phacu.CVR.001G033200.1 Phytozome 301 Fab_Phaseolus_acutifolius_2 2.607 0 Phacu.CVR.001G033200.1 Phytozome 302 Fab_Phaseolus_unatus_1 10.893 0 Pl01G000033300.1.v1 Phytozome 302 Fab_Phaseolus_vulgaris_1 11.373 0 Phvul.001G032900.1 Phytozome 317 Fab_Trifolium_pratense_1 -1.436 0 Tp57577_TGAC_v2_mRNA26220 Phytozome 318 Fab_Tirfolium_pratense_3 5.806 0 Tp57577_TGAC_v2_mRNA3055 Phyt	139	Fab_Lotus_japonicus_2	-1.494	0	Lj3g0013066.1	Phytozome	
306 Fab_Lupinus_albus_2 -0.094 0 Lalb_Chr23g0267721 Phytozome 130 Fab_Medicago_truncatula_1 5.606 0 Lalb_Chr23g0280491 Phytozome 315 Fab_Medicago_truncatula_2 2.124 0 Medtr3g103970.1 Phytozome 315 Fab_Medicago_truncatula_3 3.787 0 Medtr3g015480.1 Phytozome 301 Fab_Phaseolus_acutifolius_1 10.42 0 Phacu.CVR.010G033200.1 Phytozome 303 Fab_Phaseolus_acutifolius_2 2.607 0 Phacu.CVR.010G170000.1 Phytozome 304 Fab_Phaseolus_lunatus_1 10.893 0 Pl01G0000335200.1.v1 Phytozome 305 Fab_Phaseolus_vulgaris_1 11.373 0 Phvul.001G032900.1 Phytozome 306 Fab_Phaseolus_vulgaris_2 2.607 0 Phvul.001G032900.1 Phytozome 307 Fab_Phaseolus_vulgaris_2 2.607 0 Phvul.001G032900.1 Phytozome 316 Fab_Trifolium_pratense_1 -1.436 Tp57577_TGAC_v2_mRNA26220 Phytozome <td>303</td> <td>Fab_Lupinus_albus_1</td> <td>4.25</td> <td>0</td> <td>Lalb_Chr22g0355951</td> <td>Phytozome</td>	303	Fab_Lupinus_albus_1	4.25	0	Lalb_Chr22g0355951	Phytozome	
130 Fab_Lupinus_albus_3 -5.606 0 Lalb_Cht25g0280491 Phytozome 296 Fab_Medicago_truncatula_1 5.546 0 Medtr1g016920.1 Phytozome 315 Fab_Medicago_truncatula_2 2.124 0 Medtr3g013970.1 Phytozome 301 Fab_Medicago_truncatula_3 3.787 0 Medtr3g015480.1 Phytozome 301 Fab_Phaseolus_acutifolius_1 10.42 0 Phacu.CVR.010G170000.1 Phytozome 300 Fab_Phaseolus_lunatus_1 10.893 0 Pl01G000037300.1.v1 Phytozome 302 Fab_Phaseolus_ulgaris_1 11.373 0 Phvul.010G132900.1 Phytozome 313 Fab_Thaseolus_vulgaris_2 2.607 0 PhytoZome Phytozome 302 Fab_Phaseolus_vulgaris_1 11.373 0 Phvul.010G132900.1 Phytozome 314 Fab_Trifolium_pratense_1 -1.436 0 Tp57577_TGAC_v2_mRNA26220 Phytozome 313 Fab_Trifolium_pratense_3 5.806 Tp57577_TGAC_v2_mRNA36220 Phytozome 313 Fab_Vigna_unguiculata_1 11.059 0 Vigun	306	Fab_Lupinus_albus_2	-0.094	0	Lalb_Chr23g0267721	Phytozome	
296Fab_Medicago_truncatula_15.5460Medtr1g016920.1Phytozome315Fab_Medicago_truncatula_22.1240Medtr3g013970.1Phytozome312Fab_Medicago_truncatula_33.7870Medtr3g015480.1Phytozome301Fab_Phaseolus_acutifolius_110.420Phacu.CVR.0016033200.1Phytozome303Fab_Phaseolus_acutifolius_22.6070Phacu.CVR.00160170000.1Phytozome306Fab_Phaseolus_lunatus_110.8930Pl01G000037300.1.v1Phytozome307Fab_Phaseolus_lunatus_22.6070Phut0.0106032900.1Phytozome308Fab_Phaseolus_vulgaris_111.3730Phvul.0016032900.1Phytozome316Fab_Trifolium_pratense_1-1.4360Tp57577_TGAC_v2_mRNA26220Phytozome313Fab_Trifolium_pratense_35.8060Tp57577_TGAC_v2_mRNA3055Phytozome310Fab_Vigna_unguiculata_111.0590Vigun08g035200.1.pPhytozome318Fab_Xanthocercis_zambesiaca4.6090ZSSR_scaffold_200289OneKP319Fab_Anthocercis_zambesiaca4.6090ZSSR_scaffold_2001528OneKP338Fag_Carya_illinoinensis_18.7630Caril.016031500.1.pPhytozome343Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP355Fag_Carya_illinoinensis_28.6930Caril.016024800.1.pPhytozome344Fag_Castanea_crenata	130	Fab_Lupinus_albus_3	-5.606	0	Lalb_Chr25g0280491	Phytozome	
315Fab_Medicago_truncatula_22.1240Medtr3g103970.1Phytozome132Fab_Medicago_truncatula_33.7870Medtr8g015480.1Phytozome301Fab_Phaseolus_acutifolius_110.420Phacu.CVR.001G033200.1Phytozome308Fab_Phaseolus_acutifolius_22.6070Phacu.CVR.010G170000.1Phytozome300Fab_Phaseolus_lunatus_110.8930Pl01G000037300.1.v1Phytozome302Fab_Phaseolus_ulgaris_111.3730Phvul.001G032900.1Phytozome314Fab_Phaseolus_vulgaris_22.6070Phvul.010G12900.7Phytozome315Fab_Phaseolus_vulgaris_22.6070Phvul.010G12900.7Phytozome316Fab_Trifolium_pratense_1-1.4360Tp57577_TGAC_V2_mRNA26220Phytozome313Fab_Trifolium_pratense_24.640Tp57577_TGAC_V2_mRNA3433Phytozome314Fab_Vigna_unguiculata_111.0590Vigun08g035200.1.pPhytozome315Fab_Vigna_unguiculata_25.2370Vigun08g035200.1.pPhytozome316Fab_Vigna_unguiculata_33.7660Vigun10g177000.1.pPhytozome317Fab_Vigna_unguiculata_14.2520LWDA_scaffold_20025321OneKP318Fab_Vigna_unguiculata_33.7660Vigun10g177000.1.pPhytozome318Fab_Vigna_unguiculata_14.2520LWDA_scaffold_2001528OneKP339Fag_Carya_illinoinensis_1	296	Fab_Medicago_truncatula_1	5.546	0	Medtr1g016920.1	Phytozome	
132Fab_Medicago_truncatula_33.7870Medtr&g015480.1Phytozome301Fab_Phaseolus_acutifolius_110.420Phacu.CVR.001G033200.1Phytozome138Fab_Phaseolus_acutifolius_22.6070Phacu.CVR.010G170000.1Phytozome136Fab_Phaseolus_lunatus_110.8930Pl01G000033500.1.v1Phytozome136Fab_Phaseolus_ularius_22.6070Pl01G0000335200.1.v1Phytozome302Fab_Phaseolus_vulgaris_111.3730Phvul.01G032900.1Phytozome316Fab_Phaseolus_vulgaris_22.6070Phvul.010G142900.7Phytozome316Fab_Trifolium_pratense_1-1.4360Tp57577_TGAC_v2_mRNA26220Phytozome297Fab_Trifolium_pratense_24.640Tp57577_TGAC_v2_mRNA26520Phytozome298Fab_Vigna_unguiculata_111.0590Vigun08g035200.1.pPhytozome310Fab_Vigna_unguiculata_25.2370Vigun09g227400.1.pPhytozome315Fab_Vigna_unguiculata_33.7660Vigun10g177000.1.pPhytozome318Fab_Vanhocercis_zambesiaca4.6090ZSSR_scaffold_2025321OneKP338Fag_Baltula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Carya_illinoinensis_18.7630Caril.16G031500.1.pPhytozome342Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_11	315	Fab_Medicago_truncatula_2	2.124	0	Medtr3g103970.1	Phytozome	
301Fab_Phaseolus_acutifolius_110.420Phacu.CVR.001G033200.1Phytozome138Fab_Phaseolus_acutifolius_22.6070Phacu.CVR.010G170000.1Phytozome300Fab_Phaseolus_lunatus_110.8930Pl01G000037300.1.v1Phytozome302Fab_Phaseolus_ulgaris_111.3730Phvul.001G032900.1Phytozome303Fab_Phaseolus_vulgaris_22.6070Phvul.010G142900.7Phytozome304Fab_Phaseolus_vulgaris_22.6070Phvul.010G142900.7Phytozome316Fab_Trifolium_pratense_1-1.4360Tp57577_TGAC_V2_mRNA26220Phytozome297Fab_Trifolium_pratense_35.8060Tp57577_TGAC_V2_mRNA3433Phytozome313Fab_Trifolium_pratense_35.8060Tp57577_TGAC_V2_mRNA9055Phytozome310Fab_Vigna_unguiculata_111.0590Vigun08g035200.1.pPhytozome310Fab_Vigna_unguiculata_33.7660Vigun09g227400.1.pPhytozome318Fab_Xanthocercis_zambesiaca4.6090ZSSR_scaffold_2025321OneKP339Fag_Alnus_serrulat_14.2520LWDA_scaffold_2001528OneKP338Fag_Bay_lupendula6.1670Carl.16G031500.1.pPhytozome343Fag_Carya_illinoinensis_18.7630Carl.101G224800.1.pPhytozome342Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_1 <t< td=""><td>132</td><td>Fab_Medicago_truncatula_3</td><td>3.787</td><td>0</td><td>Medtr8g015480.1</td><td>Phytozome</td></t<>	132	Fab_Medicago_truncatula_3	3.787	0	Medtr8g015480.1	Phytozome	
138Fab_Phaseolus_acutifolius_22.6070Phacu_CVR_010G170000.1Phytozome300Fab_Phaseolus_lunatus_110.8930Pl01G0000037300.1.v1Phytozome136Fab_Phaseolus_lunatus_22.6070Pl10G000033200.1.v1Phytozome302Fab_Phaseolus_vulgaris_111.3730Phvul.001G032900.1Phytozome137Fab_Phaseolus_vulgaris_22.6070Phvul.010G142900.7Phytozome316Fab_Trifolium_pratense_1-1.4360Tp57577_TGAC_v2_mRNA26220Phytozome297Fab_Trifolium_pratense_35.8060Tp57577_TGAC_v2_mRNA13433Phytozome298Fab_Vigna_unguiculata_111.0590Vigun08g035200.1.pPhytozome310Fab_Vigna_unguiculata_25.2370Vigun09g227400.1.pPhytozome318Fab_Xanthocercis_zambesiaca4.6090ZSSR_scaffold_2025321OneKP339Fag_Alnus_serrulata_14.2520LWDA_scaffold_2001528OneKP338Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Carya_iillinoinensis_18.7630Carli.16G031500.1.pPhytozome141Fag_Castanea_crenata-1.430NHUA_scaffold_204876OneKP342Fag_Castanea_crenata-1.430NHUA_scaffold_204876OneKP342Fag_Castanea_dentata_10.8440Caden.01G011300.1.pPhytozome144Fag_Castanea_dentata_10.844	301	Fab_Phaseolus_acutifolius_1	10.42	0	Phacu.CVR.001G033200.1	Phytozome	
300Fab_Phaseolus_lunatus_110.8930PI01G0000037300.1.v1Phytozome136Fab_Phaseolus_lunatus_22.6070PI10G0000335200.1.v1Phytozome302Fab_Phaseolus_vulgaris_111.3730Phvul.001G032900.1Phytozome137Fab_Phaseolus_vulgaris_22.6070Phvul.010G142900.7Phytozome316Fab_Trifolium_pratense_1-1.4360Tp57577_TGAC_v2_mRNA26220Phytozome297Fab_Trifolium_pratense_24.640Tp57577_TGAC_v2_mRNA9055Phytozome298Fab_Vigna_unguiculata_111.0590Vigun08g035200.1.pPhytozome310Fab_Vigna_unguiculata_25.2370Vigun09g227400.1.pPhytozome318Fab_Xanthocercis_zambesiaca4.6090ZSSR_scaffold_2025321OneKP339Fag_Alnus_serrulata_14.2520LWDA_scaffold_2001528OneKP338Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Carya_illinoinensis_18.7630Caril.16G031500.1.pPhytozome141Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome	138	Fab_Phaseolus_acutifolius_2	2.607	0	Phacu.CVR.010G170000.1	Phytozome	
136Fab_Phaseolus_lunatus_22.6070P110G0000335200.1.v1Phytozome302Fab_Phaseolus_vulgaris_111.3730Phvul.001G032900.1Phytozome137Fab_Phaseolus_vulgaris_22.6070Phvul.010G142900.7Phytozome316Fab_Trifolium_pratense_1-1.4360Tp57577_TGAC_v2_mRNA26220Phytozome297Fab_Trifolium_pratense_24.640Tp57577_TGAC_v2_mRNA13433Phytozome133Fab_Trifolium_pratense_35.8060Tp57577_TGAC_v2_mRNA9055Phytozome299Fab_Vigna_unguiculata_111.0590Vigun08g035200.1.pPhytozome310Fab_Vigna_unguiculata_25.2370Vigun09g227400.1.pPhytozome318Fab_Vigna_unguiculata_33.7660Vigun10g177000.1.pPhytozome318Fab_Xanthocercis_zambesiaca4.6090ZSSR_scaffold_2002989OneKP339Fag_Alnus_serrulata_14.2520LWDA_scaffold_2001528OneKP338Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Carya_illinoinensis_18.7630Caril.01G224800.1.pPhytozome141Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome144Fag_Castanea_dentata_113.3820L/ZWG_ccastfold_20142161OneKP342Fag_Castanea_dentata_20.844	300	Fab_Phaseolus_lunatus_1	10.893	0	PI01G0000037300.1.v1	Phytozome	
302Fab_Phaseolus_vulgaris_111.3730Phvul.001G032900.1Phytozome137Fab_Phaseolus_vulgaris_22.6070Phvul.010G142900.7Phytozome316Fab_Trifolium_pratense_1-1.4360Tp57577_TGAC_v2_mRNA26220Phytozome297Fab_Trifolium_pratense_24.640Tp57577_TGAC_v2_mRNA13433Phytozome133Fab_Trifolium_pratense_35.8060Tp57577_TGAC_v2_mRNA9055Phytozome299Fab_Vigna_unguiculata_111.0590Vigun08g035200.1.pPhytozome310Fab_Vigna_unguiculata_25.2370Vigun09g227400.1.pPhytozome318Fab_Xanthocercis_zambesiaca4.6090ZSSR_scaffold_2025321OneKP339Fag_Alnus_serrulata_14.2520LWDA_scaffold_2001528OneKP340Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP355Fag_Carya_illinoinensis_18.7630Caril.16G031500.1.pPhytozome141Fag_Carya_illinoinensis_28.6930Caril.01G224800.1.pPhytozome143Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome	136	Fab_Phaseolus_lunatus_2	2.607	0	PI10G0000335200.1.v1	Phytozome	
137Fab_Phaseolus_vulgars_22.6070Phyvul.010G142900.7Phytozome316Fab_Trifolium_pratense_1-1.4360Tp57577_TGAC_v2_mRNA26220Phytozome297Fab_Trifolium_pratense_24.640Tp57577_TGAC_v2_mRNA13433Phytozome133Fab_Trifolium_pratense_35.8060Tp57577_TGAC_v2_mRNA9055Phytozome299Fab_Vigna_unguiculata_111.0590Vigun08g035200.1.pPhytozome310Fab_Vigna_unguiculata_25.2370Vigun09g227400.1.pPhytozome315Fab_Vigna_unguiculata_33.7660Vigun10g177000.1.pPhytozome318Fab_Xanthocercis_zambesiaca4.6090ZSSR_scaffold_2002989OneKP339Fag_Alnus_serrulata_14.2520LWDA_scaffold_2001528OneKP140Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Carya_illinoinensis_18.7630Caril.16G031500.1.pPhytozome141Fag_Carya_illinoinensis_28.6930Caril.01G224800.1.pPhytozome143Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome144Fag_Castanea_dentata_111.3820UIXWG scaffold_2012481OneKP	302	Fab_Phaseolus_vulgaris_1	11.373	0	Phvul.001G032900.1	Phytozome	
316Fab_Infolum_pratense_1-1.4360Ip5/5/7_IGAC_v2_mRNA26220Phytozome297Fab_Trifolium_pratense_24.640Tp57577_TGAC_v2_mRNA13433Phytozome133Fab_Trifolium_pratense_35.8060Tp57577_TGAC_v2_mRNA9055Phytozome299Fab_Vigna_unguiculata_111.0590Vigun08g035200.1.pPhytozome310Fab_Vigna_unguiculata_25.2370Vigun09g227400.1.pPhytozome315Fab_Vigna_unguiculata_33.7660Vigun10g177000.1.pPhytozome318Fab_Xanthocercis_zambesiaca4.6090ZSSR_scaffold_2025321OneKP339Fag_Alnus_serrulata_14.2520LWDA_scaffold_2001528OneKP140Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Carya_illinoinensis_118.7630Caril.01G224800.1.pPhytozome141Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome144Fag_Castanea_dentata_111.3820LIZWG scaffold_2013484OneKP	137	Fab_Phaseolus_vulgaris_2	2.607	0	Phvul.010G142900.7	Phytozome	
297Fab_Introlum_pratense_24.640Ip5/5/7_IGAC_v2_mRNA13433Phytozome133Fab_Trifolium_pratense_35.8060Tp57577_TGAC_v2_mRNA9055Phytozome299Fab_Vigna_unguiculata_111.0590Vigun08g035200.1.pPhytozome310Fab_Vigna_unguiculata_25.2370Vigun09g227400.1.pPhytozome135Fab_Vigna_unguiculata_33.7660Vigun10g177000.1.pPhytozome318Fab_Xanthocercis_zambesiaca4.6090ZSSR_scaffold_2025321OneKP339Fag_Alnus_serrulata_14.2520LWDA_scaffold_2001528OneKP140Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Carya_illinoinensis_18.7630Caril.16G031500.1.pPhytozome141Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome	316	Fab_Irifolium_pratense_1	-1.436	0	1p5/5/7_1GAC_v2_mRNA26220	Phytozome	
133Fab_Infolium_pratense_35.8060Ip5/5/7_IGAC_V2_mRNA9055Phytozome299Fab_Vigna_unguiculata_111.0590Vigun08g035200.1.pPhytozome310Fab_Vigna_unguiculata_25.2370Vigun09g227400.1.pPhytozome135Fab_Vigna_unguiculata_33.7660Vigun10g177000.1.pPhytozome318Fab_Xanthocercis_zambesiaca4.6090ZSSR_scaffold_2025321OneKP339Fag_Alnus_serrulata_14.2520LWDA_scaffold_2001528OneKP140Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Carya_illinoinensis_18.7630Caril.01G224800.1.pPhytozome141Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome	297	Fab_Irifolium_pratense_2	4.64	0	1p5/5/7_1GAC_v2_mRNA13433	Phytozome	
299Fab_Vigna_unguiculata_111.0590Vigun08g035200.1.pPhytozome310Fab_Vigna_unguiculata_25.2370Vigun09g227400.1.pPhytozome135Fab_Vigna_unguiculata_33.7660Vigun10g177000.1.pPhytozome318Fab_Xanthocercis_zambesiaca4.6090ZSSR_scaffold_2025321OneKP339Fag_Alnus_serrulata_14.2520LWDA_scaffold_2001528OneKP140Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Carya_illinoinensis_18.7630Caril.01G224800.1.pPhytozome141Fag_Carya_illinoinensis_28.6930Caril.01G224800.1.pPhytozome143Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome	133	Fab_Irifolium_pratense_3	5.806	0	1p57577_1GAC_V2_mRNA9055	Phytozome	
310Fab_Vigna_unguiculata_25.2370Vigun09g227400.1.pPhytozome135Fab_Vigna_unguiculata_33.7660Vigun10g177000.1.pPhytozome318Fab_Xanthocercis_zambesiaca4.6090ZSSR_scaffold_2025321OneKP339Fag_Alnus_serrulata_14.2520LWDA_scaffold_2001528OneKP140Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Carya_illinoinensis_18.7630Caril.16G031500.1.pPhytozome141Fag_Carya_illinoinensis_28.6930Caril.01G224800.1.pPhytozome143Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome	299	Fab_Vigna_unguiculata_1	11.059	0	Vigun08g035200.1.p	Phytozome	
135Fab_Vigna_unguiculata_33.7660Vigun10g177000.1.pPhytozome318Fab_Xanthocercis_zambesiaca4.6090ZSSR_scaffold_2025321OneKP339Fag_Alnus_serrulata_14.2520LWDA_scaffold_2001528OneKP140Fag_Alnus_serrulata_20.0770LWDA_scaffold_2001528OneKP338Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Carya_illinoinensis_118.7630Caril.16G031500.1.pPhytozome141Fag_Carya_illinoinensis_28.6930Caril.01G224800.1.pPhytozome143Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome144Fag_Castanea_dentata_20.8440LZWC scaffold_2013481OneKP	310	Fab_Vigna_unguiculata_2	5.237	0	Vigun09g227400.1.p	Phytozome	
318Fab_Xanthocercis_Zambesiaca4.6090ZSSR_scaffold_2025321OneKP339Fag_Alnus_serrulata_14.2520LWDA_scaffold_2001528OneKP140Fag_Alnus_serrulata_20.0770LWDA_scaffold_2001528OneKP338Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Carya_illinoinensis_18.7630Caril.16G031500.1.pPhytozome141Fag_Carya_illinoinensis_28.6930Caril.01G224800.1.pPhytozome143Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome343Fag_Castanea_numila_111.3820LIZWC scaffold_2013481OceKP	135	Fab_Vigna_unguiculata_3	3.766	0	Vigun10g177000.1.p	Phytozome	
339Fag_Ainus_serrulata_14.2520LWDA_scarloid_2002989OneKP140Fag_Ainus_serrulata_20.0770LWDA_scafloid_2001528OneKP338Fag_Betula_pendula6.1670CWZU_scafloid_2047095OneKP335Fag_Carya_illinoinensis_18.7630Caril.16G031500.1.pPhytozome141Fag_Carya_illinoinensis_28.6930Caril.01G224800.1.pPhytozome143Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome343Fag_Castanea_numila_111.3820LIZWG scaffold_2013481OneKP	318	Fab_Xanthocercis_zambesiaca	4.609	0	ZSSR_scaffold_2025321	OneKP	
140Fag_Ainus_serrulata_20.0770LWDA_scarloid_2001528OneKP338Fag_Betula_pendula6.1670CWZU_scaffold_2047095OneKP335Fag_Carya_illinoinensis_18.7630Caril.16G031500.1.pPhytozome141Fag_Carya_illinoinensis_28.6930Caril.01G224800.1.pPhytozome143Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome343Fag_Castanea_numila_111.3820LIZWC scaffold_2013481OneKP	339	Fag_Alnus_serrulata_1	4.252	0	LVVDA_scaffold_2002989	OneKP	
338Fag_Betula_pendula6.1670CW2U_scartoid_2047095OneKP335Fag_Carya_illinoinensis_18.7630Caril.16G031500.1.pPhytozome141Fag_Carya_illinoinensis_28.6930Caril.01G224800.1.pPhytozome143Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome343Fag_Castanea_numila_111.3820UZWC_scaffold_2013481OneKP	140	Fag_Alnus_serrulata_2	0.077	0	LWDA_scatfold_2001528	OneKP	
335Fag_Carya_iiiinoinensis_18.7630Carll.16G031500.1.pPhytozome141Fag_Carya_iilinoinensis_28.6930Caril.01G224800.1.pPhytozome143Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome343Fag_Castanea_numila_111.3820UZWC_scaffold_2013481OneKP	330 225		0.167	U	CvvZU_scattold_2047095		
141Fag_Carya_ininonensis_28.6930Carll.01G224800.1.pPhytozome143Fag_Castanea_crenata-1.430NHUA_scaffold_2004876OneKP342Fag_Castanea_dentata_113.38311.983Caden.01G011300.1.pPhytozome144Fag_Castanea_dentata_20.8440Caden.05G056000.1.pPhytozome343Fag_Castanea_numila_111.3820UZWC_scaffold_2013481OneKP	330	ray_Carya_iiinoinensis_1	0.703 0.600	U	Caril 01C224820 4 -	Phylozome	
14-5 Fag_Castanea_crenata -1.43 0 INFUA_scattold_2004876 OneKP 342 Fag_Castanea_dentata_1 13.383 11.983 Caden.01G011300.1.p Phytozome 144 Fag_Castanea_dentata_2 0.844 0 Caden.05G056000.1.p Phytozome 343 Fag_Castanea_numila_1 11.382 0 UZW/G_scatfold_2013481 OneKP	141 142	ray_Carya_iiinoinensis_2	0.093	U		Choke	
342 Fag_Castanea_dentata_1 13.383 11.983 Caden.01G011300.1.p Phytozome 144 Fag_Castanea_dentata_2 0.844 0 Caden.05G056000.1.p Phytozome 343 Fag_Castanea_numila_1 11.382 0 UZWC coeffold 2013481 OnoKP	140 240	ray_Castanea_crenata	-1.43	U 11.000	10 - 040	Dhutozora	
144 ray_castanea_uentata_2 0.844 0 caden.0560560000.1.p Phytozome	34Z 111	ray_Castanea_dentata_1	13.383	0	Caden 05C056000 1 ~	Phytozome	
	3/3	r ay_casianea_deniaia_2 Fag_Castanea_numila_1	0.044	0	LIZWG scaffold 2013/81	n nekp	

Branch ID	Leaf name	LLR*	CORE score	Original name	Source [†]
145	Fag_Castanea_pumila_2	0.844	0	UZWG_scaffold_2006913	OneKP
340	Fag Fagus sylvatica	17.561	0	SVVG scaffold 2073660	OneKP
336	Fag Juglans nigra	11.044	11.044	DXQW scaffold 2063283	OneKP
334	Fag Lophozonia obligua 1	5.209	0	TJLC scaffold 2013402	OneKP
146	Fag Lophozonia obliqua 2	4.989	0	TJLC scaffold 2000518	OneKP
142	Fag Morella cerifera	6.522	0	INSP scaffold 2003628	OneKP
341	Fag Quercus shumardii	6.339	0	HENI scaffold 2011763	OneKP
15	Fu Physcomitrium patens 1	1.381	0	Pp3c1 12790V3.1	Phytozome
18	Fu Physcomitrium patens 2	9.158	9.158	Pp3c11 14750V3.1	Phytozome
14	Fu Physcomitrium patens 3	-1.19	0	Pp3c7 10610V3.1	Phytozome
17	Fu Physcomitrium patens 4	10 678	10 678	Pp3c7 = 10630V3 = 1	Phytozome
405	Gen Apocynum androsaemifolium	3 577	0	JCLO scaffold 2046858	OneKP
404	Gen Coffea arabica 1	10 574	10 574	evm model Scaffold 597 214	Phytozome
155	Gen Coffea arabica 2	-7 319	0	evm model Scaffold 352 280	Phytozome
406	Gen Holarrhena pubescens	7 206	0	JGYZ scaffold 2047241	OneKP
379	Ger Françoa appendiculata	0 764	0	HDWE scaffold 2006203	OneKP
378	Ger Geranium carolinianum	6.528	0	VKGP scaffold 2014390	OneKP
1	Gi Ginkgo biloba 1	-3 292	0	Gb 05973	other
27	Gi Ginkgo biloba 2	0.459	0	Gb 02475	other
28	Gi_Ginkgo_biloba_2	11 027	0	Gb 27015	other
20	lc Pyrenacantha malvifolia	3 23	0	07711 scaffold 2009667	
12	KL Klobsormidium, pitops	12 047	0	Klobsormidium nitons ELE3	othor
101		2 577	0	CPET_cooffold_2016722	OneKP
200	Lam_Enuthrantha_guttata_1	1 054	0	Migut E01551 1	Dhutozomo
399	Lam_Erythranthe_guttata_1	-1.054	0	Migut A00160 1	Phylozome
402	Lam_Erythranthe_guitata_2	-2.914	0	Migut 100002 1	Phylozome
102		-11.810	0		Phylozome
403	Lam_Olea_europaea	9.884	0	TORX_scatfold_2011390	OneKP
400	Lam_Schlegella_parasitica	4.313	0	GAKQ_SCATIOID_2018921	OneKP
228		8.111	0	CKAN_00080000	Phytozome
227	Lau_Cinnamomum_kanehirae_2	1.//4	0	CKAN_00191600	Phytozome
230	Lau_Cinnamomum_kanehirae_3	3.659	0	CKAN_01147800	Phytozome
229	Lau_Peumus_boldus	2.785	0	KRJP_scaffold_2014506	OneKP
224	Mag_Annona_muricata	4.793	0	YZRI_scatfold_2000887	OneKP
225	Mag_Magnolia_grandiflora	-0.664	0	WBOD_scaffold_2005290	OneKP
226	Mag_Myristica_fragrans	-1.432	0	OBPL_scatfold_2009542	OneKP
108	Malp_Bischofia_javanica	2.028	0	VNMY_scaffold_2017888	OneKP
374	Malp_Chrysobalanus_icaco_1	7.824	0	ZBVT_scaffold_2012782	OneKP
106	Malp_Chrysobalanus_icaco_2	1.763	0	ZBVT_scaffold_2063962	OneKP
101	Malp_Croton_tiglium	-5.256	0	VVPY_scaffold_2064728	OneKP
104	Malp_Erythroxylum_coca	6.93	0	RPPC_scaffold_2073745	OneKP
99	Malp_Euphorbia_mesembryanthemifolia	5.173	0	LSLA_scaffold_2057717	OneKP
373	Malp_Licania_michauxii_1	11.341	0	HBUQ_scaffold_2004829	OneKP
105	Malp_Licania_michauxii_2	4.262	0	HBUQ_scaffold_2008544	OneKP
431	Malp_Linum_usitatissimum_1	0.122	0	Lus10007459	Phytozome
434	Malp_Linum_usitatissimum_2	-6.683	0	Lus10006857	Phytozome
435	Malp_Linum_usitatissimum_3	-5.882	0	Lus10037599	Phytozome
94	Malp_Malesherbia_fasciculata	3.485	0	COAQ_scaffold_2010793	OneKP
376	Malp_Manihot_esculenta_1	-0.284	0	Manes.16G077200.1	Phytozome
102	Malp_Manihot_esculenta_2	1.062	0	Manes.04G136600.1	Phytozome
377	Malp_Manihot_grahamii_1	-1.162	0	XNLP_scaffold_2017807	OneKP
103	Malp_Manihot_grahamii_2	0.611	0	XNLP_scaffold_2007743	OneKP
74	Malp_Ochna_serrulata_1	-7.242	0	CKDK_scaffold_2093907	OneKP
73	Malp_Ochna_serrulata_2	-4.567	0	CKDK_scaffold_2024476	OneKP
366	Malp_Passiflora_caerulea	9.443	0	SIZE_scaffold_2013559	OneKP
93	Malp_Passiflora_edulis	2.53	0	EZZT_scaffold_2008682	OneKP
107	Malp_Phyllanthus_sp	0.113	0	YGAT_scaffold_2006934	OneKP
367	Malp_Populus_deltoides_1	2.871	0	Podel.06G246600.1.p	Phytozome
96	Malp Populus deltoides 2	-4.345	0	Podel.03G048200.1.p	Phytozome
368	Malp Populus trichocarpa 1	3.123	0	Potri.006G233800.1	Phytozome
97	Malp Populus trichocarpa 2	-3.066	0	Potri.003G045000.1	Phytozome
375	Malp Ricinus communis 1	4.274	0	29794.m003359	Phytozome
100	Malp Ricinus communis 2	6.649	0	30146.m003441	Phytozome
369	Malp Salix dasvclados	6.089	0	IEPQ scaffold 2006985	OneKP
371	Malp Salix eriocephala	2.712	0	GLVK scaffold 2015191	OneKP
372	Malp_Salix_purpurea_1	5.041	0	SapurV1A.3017s0030.1	Phytozome

Branch ID	Leaf name	LLR*	CORE	Original name	Source [†]
95	Maln Salix nurnurea 2	-0.628	0	Sapur\/14 1320c0030 1	Phytozome
370	Malp_Salix_purpurea_z	8 502	0	KKDO scaffold 2024203	OneKP
08	Malp_Viola_canadensis	0.092	0	NILE scaffold 2011630	
340	Maly Riva orollana 1	6 173	0	KDTE scaffold 2000852	OneKP
02 02	Maly Bixa_orellana_1	0.173	0	KPTE_scallold_2009052	OneKP
32	Maly Edgeworthin enverthe	2.744	0	AVA/IM apoffold 2017162	OneKP
432	Malv_Eugewortina_crirysaittia	2.00	0	AvvJivi_scalloid_2017105	Dhutazama
304 90	Malv_Gossypium_barbadense_1	13.335	0	Gobar A07 G024900.1.p	Phylozome
00	Malv_Gossypium_barbadense_2	3.27	0	Gobar.A09G064400.1.p	Phytozome
88	Malv_Gossypium_barbadense_3	-0.212	0	Gobar.D05G137700.1.p	Phylozome
350	Malv_Gossypium_darwinii_1	12.053	0	Godar.D07G025000.1.p	Phytozome
81	Maiv_Gossypium_darwinii_2	3.27	0	Godar.A09G102700.1.p	Phytozome
89	Malv_Gossypium_darwinii_3	-0.212	0	Godar.D05G144000.1.p	Phytozome
355	Malv_Gossypium_hirsutum_1	13.335	0	Gohir.12072500.1.p	Phytozome
79	Malv_Gossypium_hirsutum_2	3.27	0	Gohir.A09G080800.1.p	Phytozome
87	Malv_Gossypium_hirsutum_3	-0.212	0	Gohir.D05G134900.1.p	Phytozome
352	Malv_Gossypium_mustelinum_1	13.335	0	Gomus.A0/G024200.1.p	Phytozome
83	Malv_Gossypium_mustelinum_2	3.27	0	Gomus.A09G087900.1.p	Phytozome
90	Malv_Gossypium_mustelinum_3	-0.212	0	Gomus.D05G143100.1.p	Phytozome
353	Malv_Gossypium_tomentosum_1	13.335	0	Gotom.A07G024400.1.p	Phytozome
82	Malv_Gossypium_tomentosum_2	3.27	0	Gotom.A09G098300.1.p	Phytozome
86	Malv_Gossypium_tomentosum_3	-0.212	0	Gotom.D05G145400.1.p	Phytozome
351	Malv_Gossypuim_raimondii_1	15.088	0	Gorai.001G024000.1	Phytozome
109	Malv_Gossypuim_raimondii_2	-0.768	0	Gorai.003G060800.1	Phytozome
78	Malv_Gossypuim_raimondii_3	4.037	0	Gorai.006G096400.1	Phytozome
85	Malv_Gossypuim_raimondii_4	-0.212	0	Gorai.009G138600.1	Phytozome
356	Malv_Hibiscus_cannabinus	9.587	0	OLXF_scaffold_2014757	OneKP
84	Malv_Hoheria_angustifolia	2.866	0	ZSAB_scaffold_2036792	OneKP
347	Malv_Muntingia_calabura	5.291	0	ATFX_scaffold_2046240	OneKP
348	Malv_Schizolaena_sp	19.081	19.081	WMUK_scaffold_2000766	OneKP
357	Malv Theobroma cacao 1	12.755	0	Thecc1EG037249t1	Phytozome
91	Malv Theobroma cacao 2	1.03	0	Thecc1EG028963t1	Phytozome
394	Malv Wikstroemia indica	3.012	0	QJXB scaffold 2000421	OneKP
11	Mar Marchantia polymorpha	6.259	0	Mapoly0014s0139.1	Phytozome
382	My Corymbia citriodora 1	3.829	0	Cocit.F0677.1.p	Phytozome
149	My Corymbia citriodora 2	0.614	0	Cocit.F2489.1.p	Phytozome
384	My Eucalyptus grandis 1	6.712	0	Eucar.C02997.1	Phytozome
150	My Eucalyptus grandis 2	-3.7	0	Eucar.F03094.1	Phytozome
147	My Oenothera berlandieri	-0.807	0	EQYT scaffold 2010727	OneKP
148	My Oenothera suffulta	0 102	0	JKNQ scaffold 2008905	OneKP
383	My Syzygium micranthum	5 413	0	NEBM scaffold 2013272	OneKP
381	My Tetrazygia bicolor	7 021	0 0	SWGX scaffold 2006915	OneKP
220	Ny Nymphaea colorata 1	-1 499	0 0	Nycol A02041 1 p	Phytozome
221	Ny Nymphaea colorata 2	-0.43	0	Nycol E00558 1 p	Phytozome
122	Ox Conhalotus follicularis	-0.40	0	V7V/L scaffold 2010285	OneKP
365	Ox_Cupopia_copopsis	-0.922	0	TILIZ scaffold 2007112	OneKP
364	Ox_Curionia_capensis	8 002	0	THHD scaffold 2000302	
26	Di Thuja plicata 1	0.332	0	Thupl 20277040c0002.1 p	Dhytozomo
20	Fi_Inuja_plicata_1	2.00	0	Thup: 20220725-0010 1 p	Phytozome
20 175	Pi_inuja_piicata_2	1.332	0	11upi.2936072380010.1.p	Phylozome
175	Poa_Ananas_comosus	0.492	0	AC0003652.1	Phytozome
200	Poa_Brachypodium_distachyon	2.001	0	Bradi2g14290.1	Phylozome
201	Poa_Bracnypodium_nybridum	2.225	0	Brany.D02G0200100.1.p	Phytozome
203	Poa_Brachypodium_mexicanum	1.256	0	Brame.03PG298400.1.p	Phytozome
199	Poa_Brachypodium_stace	-1.3/3	0	Brast08G002600.1	Phytozome
202	Poa_Brachypodium_sylvaticum	0.681	0	Brasy1G332900.1.p	Phytozome
185	Poa_Eleusine_coracana	9.799	0	ELECO.r07.1AG0021330.1	Phytozome
207	Poa_Hordeum_vulgare	8.521	0	HORVU1Hr1G094980.1	Phytozome
208	Poa_Joinvillea_ascendens	-2.572	0	Joasc.09G167600.1.p	Phytozome
177	Poa_Miscanthus_sinensis_1	9.101	0	Misin05G173100.1.p	Phytozome
191	Poa_Miscanthus_sinensis_2	7.289	0	Misin16G260800.1.p	Phytozome
189	Poa_Oropetium_thomaeum_1	-3.217	0	Oropetium_20150105_04072A	Phytozome
186	Poa_Oropetium_thomaeum_2	6.586	0	Oropetium_20150105_23950A	Phytozome
188	Poa_Oryza_sativa_1	7.122	0	LOC_Os06g05060.1	Phytozome
187	Poa_Oryza_sativa_2	4.465	0	LOC_Os01g38530.1	Phytozome
198	Poa_Panicum_hallii_1	2.73	0	Pahal.C01693.1	Phytozome
180	Poa_Panicum_hallii_2	8.052	0	Pahal.H01171.1	Phytozome

Branch ID	Leaf name	LLR*	CORE score	Original name	Source [†]	
197	Poa_Panicum_virgatum_1	4.549	0	Pavir.J05026.1	Phytozome	
181	Poa_Panicum_virgatum_2	5.856	0	Pavir.Ea01714.1	Phytozome	
179	Poa_Paspalum_vaginatum_1	3.039	0	Pavag03G158100.1.p	Phytozome	
193	Poa_Paspalum_vaginatum_2	3.616	0	Pavag09G259600.1.p	Phytozome	
194	Poa_Setaria_italica_1	0.234	0	Seita.3G121000.1	Phytozome	
182	Poa_Setaria_italica_2	2.893	0	Seita.5G204600.1	Phytozome	
195	Poa_Setaria_viridis_1	2.118	0	Sevir.3G123200.1	Phytozome	
183	Poa_Setaria_viridis_2	1.548	0	Sevir.5G206400.1	Phytozome	
192	Poa_Sorghum_bicolor_1	9.728	0	Sobic.009G257300.1	Phytozome	
178	Poa_Sorghum_bicolor_2	7.568	7.568	Sobic.003G191700.1	Phytozome	
204	Poa_Thinopyrum_intermedium	2.623	0	Thint.03G0586000.1.p	Phytozome	
205	Poa_Triticum_aestivum	4.536	0	Traes_1AL_52C5531A4.1	Phytozome	
196	Poa_Urochloa_fusca_1	1.605	0	Urofu.3G150900.1.p	Phytozome	
184	Poa_Urochloa_fusca_2	6.492	0	Urofu.5G292000.1.p	Phytozome	
190	Poa_Zea_mays_1	-6.01	0	Zm00008a026555_T01	Phytozome	
176	Poa_Zea_mays_2	3.352	0	Zm00008a014437_T01	Phytozome	
7	Pol_Ceratopteris_richardii_1	-7.733	0	Ceric.02G084100.1.p	Phytozome	
5	Pol_Ceratopteris_richardii_2	9.303	0	Ceric.03G010400.1.p	Phytozome	
6	Pol_Ceratopteris_richardii_3	-0.499	0	Ceric.08G069300.1.p	Phytozome	
8	Pol_Ceratopteris_richardii_4	-0.468	0	Ceric.14G010200.1.p	Phytozome	
241	Pr_Meliosma_cuneifolia	1.903	0	AALA_scaffold_2014849	OneKP	
242	Pr_Platanus_occidentalis	-2.051	0	VQFW_scaffold_2009679	OneKP	
232	Ra_Aquilegia_coerulea_1	4.37	0	Aqcoe7G417000.1	Phytozome	
231	Ra_Aquilegia_coerulea_2	5.394	0	Aqcoe7G142600.1	Phytozome	
239	Ra_Argemone_mexicana	0.579	0	CCHG_scaffold_2063783	OneKP	
234	Ra_Capnoides_sempervirens	2.671	0	AUGV_scatfold_2013471	OneKP	
240	Ra_Chelidonium_majus	4.231	0	XMVD_scatfold_2053225	OneKP	
235	Ra_Corydalis_linstowiana	6.197	0	ZGQD_scaffold_2013982	OneKP	
233	Ra_Hypecoum_procumbens	6.617	0	NMGG_scatfold_2065255	OneKP	
238	Ra_Papaver_bracteatum	10.145	0	ZSNV_scatfold_2025678	OneKP	
237	Ra_Papaver_rhoeas	3.289	0	IORZ_scatfold_2027685	OneKP	
230	Ra_Papaver_somniterum	3.681	0	SUFP_scaffold_202/421	OneKP	
323	Ro_Cannabis_sativa	4.12	0	DGNP_scalloid_2005108	OneKP	
324		8.408	0	RTAD_scalloid_2008995	OneKP	
333	Ro_Dryas_oclopetala	5.009	0	SQCF_scalloid_2000931	OneKP	
127	Ro_Elaeagnus_pungens	4.241	0	EDUN apoffold 2010547	OneKP	
320	Ro_Ficus_feligiosa	4.399	0	EDHN_Scallold_2010547	Dhutozomo	
329	Ro_Flagalia_vesca_1	7.24	0	mma02050.1-V1.0-Hybrid	Phytozomo	
328	Ro_Flagalia_vesca_2	2.555	0	makar Evb2 4 226 65	Phytozomo	
124	Ro_Flagalia_X_alialiassa_1	0.147	0	maker Fyb6 1 133 36	Phytozomo	
124	Ro_Fragula_caroliniana	2.333	0	M/V/EE scoffold 2057738	OnoKP	
322	Ro Humulus lupulus	4 085	0	AOGE scaffold 2008477	OneKP	
331	Ro Kerria japonica	4.000	0	T IOV scaffold 2000477	OneKP	
330	Ro Malus domestica	9 319	0	MDP0000129641	Phytozome	
326	Ro Morus nigra	-2.6	0	XV.IB scaffold 2000580	OneKP	
332	Ro Prunus persica 1	6 704	0	Prupe 1G416000 1	Phytozome	
126	Ro Prunus persica 2	3 564	0	Prupe 3G054300 1	Phytozome	
327	Ro Rosa palustris	6 607	0	IANR scaffold 2013640	OneKP	
129	Ro Ziziphus jujuba	3 032	0	ZHEF scaffold 2043480	OneKP	
425	San Daenikera sp	-4 541	0	BSEY scaffold 2085931	OneKP	
426	San Exocarpos cupressiformis	-0.808	0	XGFU scaffold 2013721	OneKP	
361	Sap Acer negundo 1	9.815	0	VFFP scaffold 2005559	OneKP	
120	Sap Acer negundo 2	3.16	0	VFFP scaffold 2007973	OneKP	
113	Sap Ailanthus altissima	-0.739	0	QICX scaffold 2038041	OneKP	
362	Sap Anacardium occidentale 1	5.959	0	Anaoc.0019s0253.1.p	Phytozome	
110	Sap Anacardium occidentale 2	-2.798	0	Anaoc.0914s0004.1.p	Phytozome	
117	Sap Azadirachta indica	4.735	0	UVDC scaffold 2042648	OneKP	
359	Sap Citrus clementina 1	3.718	0	Ciclev10007592m	Phytozome	
115	Sap_Citrus_clementina_2	6.085	0	Ciclev10024969m	Phytozome	
360	Sap_Citrus_sinensis 1	3.718	0	orange1.1g004928m	Phytozome	
116	Sap_Citrus_sinensis_2	6.085	0	orange1.1g004483m	Phytozome	
119	Sap_Kirkia_wilmsii	-3.289	0	BCAA_scaffold_2073197	OneKP	
121	Sap_Litchi_chinensis	0.193	0	WAXR_scaffold_2000314	OneKP	
118	Sap_Melia_azedarach	3.007	0	VCCF_scaffold_2010620	OneKP	

337Sap_Phellodendron_amurense11.04411.044PGKL_scaffold_2074628358Sap_Poncirus_trifoliata_12.4640Ptrif.0001s0468.1.p114Sap_Poncirus_trifoliata_27.1750Ptrif.0007s0826.1.p112Sap_Quassia_amara-2.8820IKFD_scaffold_2008453262Sap_Turise_trifoliata_47.1720Ptrif.0007s0826.1.p	OneKP Phytozome Phytozome OneKP OneKP OneKP
358Sap_Poncirus_trifoliata_12.4640Ptrif.0001s0468.1.p114Sap_Poncirus_trifoliata_27.1750Ptrif.0007s0826.1.p112Sap_Quassia_amara-2.8820IKFD_scaffold_2008453262Sap_Tavisadandron_podiagene_47.4720VI/DUt_scaffold_20140014	Phytozome Phytozome OneKP OneKP OneKP
114Sap_Poncirus_trifoliata_27.1750Ptrif.0007s0826.1.p112Sap_Quassia_amara-2.8820IKFD_scaffold_2008453262Sap_Touisedeadeadea7.4520VUOLtageffold_2008453	Phytozome OneKP OneKP OneKP
112 Sap_Quassia_amara -2.882 0 IKFD_scaffold_2008453 262 Sap_Tavisadandan radiana 4 7.452 0 XUOLt sufficient 2008453	OneKP OneKP OneKP
	OneKP OneKP
303 Sap_roxicodendron_radicans_1 7.153 U YUOM_scaffold_2012634	OneKP
111 Sap_Toxicodendron_radicans_2 1.377 0 YUOM_scaffold_2008412	
151 Sax_Astilbe_chinensis 2.439 0 CKKR_scaffold_2063203	OneKP
423 Sax_Bergenia_sp 11.044 9.833 CIAC_scaffold_2027267	OneKP
153 Sax_Cercidiphyllum_japonicum 4.16 0 NUZN_scaffold_2001312	OneKP
290 Sax_Hamamelis_virginiana_1 9.638 0 YHXT_scaffold_2010362	OneKP
154 Sax_Hamamelis_virginiana_2 8.866 0 YHXT_scaffold_2011928	OneKP
288 Sax Itea virginica 6.302 0 UWFU scaffold 2004878	OneKP
293 Sax_Kalanchoe_fedtschenkoi_1 14.679 14.679 Kaladp0039s0732.1	Phytozome
29 Sax_Kalanchoe_fedtschenkoi_2 8.615 0 Kaladp0092s0181.1	Phytozome
294 Sax Kalanchoe laxiflora 1 14.679 14.679 Kalax.0540s0009.1	Phytozome
30 Sax Kalanchoe laxiflora 2 6.627 0 Kalax.1678s0001.1	Phytozome
289 Sax Loropetalum chinense 9.843 0 HQRJ scaffold 2024346	OneKP
424 Sax Oresitrophe rupifraga 15.118 14.861 UHBY scaffold 2030188	OneKP
152 Sax Pectiantia pentandra 1.092 0 DAYQ scaffold 2058037	OneKP
10 Se Selaginella moellendorffii 1 6.305 0 411196	Phytozome
12 Se Selaginella moellendorffii 2 6.481 0 415241	Phytozome
158 So Ipomoea nil -2.256 0 NHAG scaffold 2051016	OneKP
159 So Ipomoea purpurea 1.272 0 SDXI scaffold 2016990	OneKP
412 So Solanum lycopersicum 1 6.085 0 Solyc08q065870.2.1	Phytozome
408 So Solanum lycopersicum 2 9.606 0 Solyc12g095900.1.1	Phytozome
410 So Solanum lycopersicum 3 7.095 0 Solyc11g070100.1.1	Phytozome
157 So Solanum lycopersicum 4 -8.102 0 Solyc06q062480.2.1	Phytozome
411 So Solanum tuberosum 1 4.65 0 PGSC0003DMT400035914	Phytozome
407 So Solanum tuberosum 2 13.836 13.836 PGSC0003DMT400075345	Phytozome
409 So Solanum tuberosum 3 9.803 0 PGSC0003DMT400065601	Phytozome
156 So Solanum tuberosum 4 -8.645 0 PGSC0003DMT400012338	Phytozome
21 Sphag Sphagnum fallax 1 5.92 0 Sphfalx0084s0050.1	Phytozome
19 Sphag Sphagnum fallax 2 3.142 0 Sphfalx0299s0004.1	Phytozome
23 Sphag Sphagnum fallax 3 12.032 11.574 Sphfalx0004s0165.1	Phytozome
24 Sphag Sphagnum magellanicum 1 16.26 0 Sphmag10G060500.1.p	Phytozome
22 Sphag Sphagnum magellanicum 2 0.869 0 Sphmag11G082000.1.p	Phytozome
20 Sphag Sphagnum magellanicum 3 3.988 0 Sphmag04G092400.1.p	Phytozome
9 Spi Spirogloea muscicola -6.514 0 Smuscicola ELF3	other
243 Tr Trochodendron aralioides 2.412 0 SWOH scaffold 2004856	OneKP
292 Vi Tetrastigma voinierianum 5.056 0 SZPD scaffold 2011653	OneKP
291 Vi Vitis vinifera 1 6.756 0 GSVIVT01035337001	Phytozome
169 Vi Vitis vinifera 2 1.417 0 GSVIVT01016905001	Phytozome
213 Zi Musa acuminata 1 -1.007 0 GSMUA Achr1T05150 001	Phytozome
214 Zi Musa acuminata 2 -2.244 0 GSMUA Achr5T09620 001	Phytozome
215 Zi Musa acuminata 3 -7.679 0 GSMUA Achr1T14390 001	Phytozome
216 Zi Musa acuminata 4 -6.123 0 GSMUA Achr2T08490 001	Phytozome
380 Zy Krameria lanceolata 2.279 0 ZHMB scaffold 2016475	OneKP
2 Zvg Mesotaenium endlicherianum 1.983 0 Mendlicheranium ELF3	other

* For each sequence, the Log-likelihood ratio (LLR) and COREscore were retrieved using PLAAC (http://plaac.wi.mit.edu, Lancaster *et al.*, 2014) to represent prion-like properties [†] Gene homologues were identified from available plant genomes in Phytozome v12.1, v13

[†] Gene homologues were identified from available plant genomes in Phytozome v12.1, v13 (https://phytozome-next.jgi.doe.gov, Goodstein *et al.*, 2012) and OneKP (http://www.onekp.com, Matasci *et al.*, 2014) databases

Appendix V

Time (h)/ZT	* 48/ZT00	52/ZT04	56/ZT08	60/ZT12	64/ZT16	68/ZT20	72/ZT24	_
Genotype			Growth	(mm h ⁻¹) ± \$	6EM (<i>n</i> =8)			P
Ws-2	0.0075 ±	0.0533 ±	0.0996 ±	0.0584 ±	0.0164 ±	0.0100 ±	0.0042 ±	0.004
	0.0056 a†	0.0250 ab	0.0353 b	0.0199 ab	0.0092 a	0.0071 a	0.0034 a	
elf3-4	0.0273 ±	0.0448 ±	0.0469 ±	0.0432 ±	0.0258 ±	0.0244 ±	0.0278 ±	0.299
	0.0070	0.0113	0.0071	0.0113	0.0058	0.0074	0.0114	
gi-158	0.0082 ±	0.0795 ±	0.0746 ±	0.0533 ±	0.0318 ±	0.0126 ±	0.0264 ±	0.002
	0.0065 a	0.0125 c	0.0192 bc	0.0178 abc	0.0078 abc	0.0072 ab	0.0206 abc	
elf3-4	0.0788 ±	0.0858 ±	0.0971 ±	0.0806 ±	0.0595 ±	0.0476 ±	0.0656 ±	0.300
gi-158	0.0202	0.0148	0.0112	0.0150	0.0111	0.0144	0.0174	
	72/ZT00	76/ZT04	80/ZT08	84/ZT12	88/ZT16	92/ZT20	96/ZT24	_
Ws-2	0.0042 ±	0.0361 ±	0.0836 ±	0.0410 ±	0.0095 ±	0.0128 ±	0.0019 ±	0.003
	0.0034 a	0.0138 ab	0.0187 b	0.0208 ab	0.0055 a	0.0128 a	0.0011 a	
elf3-4	0.0278 ±	0.0239 ±	0.0258 ±	0.0150 ±	0.0364 ±	0.0382 ±	0.0205 ±	0.649
	0.0114	0.0086	0.0081	0.0064	0.0144	0.0108	0.0073	
gi-158	0.0264 ±	0.0589 ±	0.0941 ±	0.0540 ±	0.0309 ±	0.0196 ±	0.0062 ±	0.002
	0.0206 a	0.0199 ab	0.0100 b	0.0162 ab	0.0123 a	0.0098 a	0.047 a	
elf3-4	0.0656 ±	0.0641 ±	0.0756 ±	0.0725 ±	0.0529 ±	0.0575 ±	0.0296 ±	0.399
gi-158	0.0174	0.0115	0.0145	0.0183	0.0163	0.0129	0.0127	_
	96/ZT00	100/ZT04	104/ZT08	108/ZT12	112/ZT16	116/ZT20	120/ZT24	_
Ws-2	0.0019 ±	0.0408 ±	0.0405 ±	0.0711 ±	0.0049 ±	0.0058 ±	0.0239 ±	0.001
	0.0011 a	0.0121 ab	0.0120 ab	0.0231 b	0.0043 a	0.0056 a	0.0131 ab	
elf3-4	0.0205 ±	0.0314 ±	0.0276 ±	0.0255 ±	0.0425 ±	0.0168 ±	0.0108 ±	0.193
	0.0073	0.0119	0.0070	0.0064	0.0125	0.0064	0.0035	
gi-158	0.0062 ±	0.0461 ±	0.0535 ±	0.0530 ±	0.0155 ±	0.0223 ±	0.0164 ±	0.024
	0.0047	0.0117	0.0190	0.0149	0.0073	0.0098	0.0113	
elf3-4	0.0296 ±	0.0804 ±	0.0776 ±	0.0401 ±	0.0530 ±	0.0356 ±	0.0211 ±	0.017
gi-158	0.0127 ab	0.0102 b	0.0216 ab	0.0079	0.0147 ab	0.0129 ab	0.0107 a	_
	120/ZT00	124/ZT04	128/ZT08	132/ZT12	136/ZT16	140/ZT20	144/ZT24	_
Ws-2	0.0239 ±	0.0296 ±	0.0668 ±	0.0366 ±	0.0019 ±	0.0064 ±	0.0009 ±	0.000
	0.0131 a	0.0154 ab	0.0116 b	0.0078 ab	0.0013 a	0.0039 a	0.0005 a	
elf3-4	0.0108 ±	0.0295 ±	0.0334 ±	0.0172 ±	0.0162 ±	0.0204 ±	0.0142 ±	0.458
	0.0035	0.0120	0.0105	0.0059	0.0056	0.0090	0.0090	
gi-158	0.0164 ±	0.0534 ±	0.0861 ±	0.0335 ±	0.0076 ±	0.0000 ±	0.0000 ±	0.000
	0.0113 ab	0.0124 bc	0.0219 c	0.0119 ab	0.0050 ab	0.0000 a	0.0000 a	
elf3-4	0.0211 ±	0.0394 ±	0.0428 ±	0.0193 ±	0.0268 ±	0.0257 ±	0.0032 ±	0.104
gi-158	0.0107	0.0109	0.0125	0.0070	0.0088	0.0112	0.0032	

Table 5 Hypocotyl growth rate under temperature cycles in LL (related to Fig. 4-4B).

* Seedlings were grown under 12 h 22°C: 12 h 16°C temperature cycles in LL. Indicated time points (every 4 h) were selected for statistics.

[†]Different letters indicate significant differences in growth rate within indicated time points per genotype per day (one-way ANOVA and Tukey's HSD test). The value with the highest mean is considered as a peak (shown in bold) that is significantly higher than the values of more than three other time points.

7T *	7T00/24	7T04	ZT08	7T12	7T16	7T20	• /•
Genotype	2100/24	<u></u>	A1 relative exc	ression + SEM	(n=3)	2120	- P
We-2	2 2428 +	1 5875 +	0 2306 +	0.0621 +	0 1062 +	0 3102 +	0.001
VV3-Z	2.2420 ± 0 7727 a†	0.1476 ab	0.2500 <u>-</u> 0.0583 h	0.0021 <u>+</u> 0.0174 b	0.1002 <u>+</u> 0.0244 b	0.0102 <u>1</u> 0.0613 h	0.001
elf3-4	0 1007 +	0.0976 +	0.0719 +	0.0610 +	0.0244.5	0.0010.0	0 064
	0.0175	0.0016	0.0139	0.0051	0.0063	0.0165	0.004
ai-158	1 2499 +	0 7480 +	0.0544 +	0.0133 +	0.0565 +	0.5993 +	0 000
gi 100	0 1559 a	0.1260 b	0.0090 c	0.0013 c	0.0098 c	0.1529 b	0.000
elf3-4 ai-158	0.0667 +	0.0528 +	0.0449 +	0.0542 +	0.0780 +	0 1194 +	0.001
0//0 / g/ /00	0.0070 a	0.0008 a	0.0023 a	0.0034 a	0.0062 ab	0.0202 b	0.001
	0.00104	<u> </u>	Y relative exp	ression + SFM (n=3)		_
Ws-2	4,4052 +	1 1700 +	0.5359 +	0 0787 +	0 1578 +	0 9713 +	0 000
	0.9873 a	0.1084 b	0.2465 b	0.0286 b	0.0230 b	0.1112 b	
elf3-4	$0.0854 \pm$	0.1132 ±	$0.0840 \pm$	0.0521 ±	$0.0700 \pm$	0.1930 ±	0.003
	0.0059 a	0.0343 ab	0.0175 a	0.0139 a	0.0029 a	0.0287 b	
ai-158	2.9962 ±	0.2764 ±	0.0689 ±	0.0083 ±	0.0746 ±	1.5321 ±	0.017
J	1.4138 a	0.0165 ab	0.0215 b	0.0000 b	0.0132 b	0.1575 ab	
elf3-4 ai-158	0.0110 ±	0.0116 ±	0.0040 ±	0.0088 ±	0.0090 ±	0.0169 ±	0.002
	0.0004 ab	0.0017 ab	0.0004 b	0.0040 ab	0.0004 ab	0.0012 a	
		PR	R9 relative exp	ression ± SEM	(n=3)		_
Ws-2	0.0328 ±	0.2447 ±	0.1253 ±	0.0539 ±	0.0212 ±	0.0177 ±	0.000
	0.0126 ab	0.0509 c	0.0025 b	0.0156 ab	0.0051 ab	0.0022 a	
elf3-4	0.1354 ±	0.1033 ±	0.1221 ±	0.1241 ±	0.1445 ±	0.1509 ±	0.665
	0.0079	0.0056	0.0079	0.0137	0.0414	0.0163	
ai-158	0.0410 ±	0.1950 ±	0.1186 ±	0.0264 ±	0.0253 ±	0.0427 ±	0.000
5	0.0049 a	0.0329 с	0.0087 b	0.0051 a	0.0008 a	0.0071 a	
elf3-4 qi-158	0.1948 ±	0.1635 ±	0.1483 ±	0.2593 ±	0.2118 ±	0.3008 ±	0.066
Ū	0.0350	0.0275	0.0124	0.0581	0.0265	0.0359	
		PR	R7 relative exp	pression ± SEM	(<i>n</i> =3)		_
Ws-2	0.0463 ±	0.2812 ±	0.5575 ±	0.2657 ±	0.1247 ±	0.0398 ±	0.000
	0.0070 ab	0.0129 c	0.0078 d	0.0544 c	0.0446 b	0.0060 a	
elf3-4	0.3115 ±	0.3402 ±	0.4039 ±	0.2385 ±	0.3555 ±	0.4791 ±	0.034
	0.0218 ab	0.0641 ab	0.0239 ab	0.0488 a	0.0302 ab	0.0552 b	
gi-158	0.0721 ±	0.4797 ±	0.9709 ±	0.1570 ±	0.0402 ±	0.0418 ±	0.001
	0.0275 a	0.1555 ab	0.3374 b	0.0254 a	0.0104 a	0.0038 a	
elf3-4 gi-158	0.4483 ±	0.5457 ±	0.2909 ±	0.2832 ±	0.3623 ±	0.7201 ±	0.023
	0.0280 ab	0.1809 ab	0.0169 a	0.0463 a	0.0222 ab	0.0777 b	_
		ТО	C1 relative exp	ression ± SEM	(<i>n</i> =3)		
Ws-2	0.2311 ±	0.1547 ±	0.2169 ±	0.4489 ±	0.5571 ±	0.2739 ±	0.001
	0.0307 ab	0.0156 a	0.0225 ab	0.0443 bc	0.1131 c	0.0244 ab	
elf3-4	0.3609 ±	0.2800 ±	0.4263 ±	0.3676 ±	0.4075 ±	0.3496 ±	0.675
	0.0158	0.0134	0.0825	0.0445	0.0973	0.0056	
gı-158	0.1724 ±	0.1092 ±	0.2894 ±	0.4294 ±	0.3179 ±	0.2090 ±	0.000
	0.0089 ab	0.0148 a	0.0263 bc	0.0481 d	0.0350 cd	0.0186 abc	
elf3-4 gi-158	0.3555 ±	0.2486 ±	0.3904 ±	0.2658 ±	0.2906 ±	0.3292 ±	0.027
	0.0100 ab	0.0194 a	0.0263 b	0.0463 ab	0.0285 ab	0.0236 ab	_
		<u>PI</u>	F4 relative exp	ression ± SEM (n=3)	0.0047	
Ws-2	0.0286 ±	0.2991 ±	0.4161 ±	0.2523 ±	0.0797 ±	0.0217 ±	0.000
- 160 . 4	0.0068 a	0.0551 b	U.U241 b	0.0563 b	0.0186 a	0.0062 a	0.400
elf3-4	0.2105 ±	0.2620 ±	0.2830 ±	0.3101 ±	0.2288 ±	0.2284 ±	0.129
ai 150	0.0184	0.0064	0.0411	0.0306	0.0269	0.0180	0.000
gi-158	U.U482 ±	$0.41/5 \pm$	0.6012 ±	0.2010 ±	0.0333 ±	$0.0177 \pm 0.0000 =$	0.000
0162 1 - 450	0.0059 ab	0.0546 C	U.Ub16 d	0.0291 D	0.0041 ab	0.0028 a	0 704
ei13-4 gi-158	U.3/39 ±	0.3722 ± 0.0074	0.3904 ±	$0.4293 \pm$	U.3300 ±	$0.4019 \pm$	0.734
	0.0430	0.0271	0.0172	0.0407	0.0750	0.0131	

 Table 6 Transcript levels of genes under temperature cycles in LL (related to Fig. 4-7).

* Seedlings were grown under 12 h 22°C: 12 h 16°C temperature cycles in LL for 8 d. On day 9, starting from ZT00, samples were harvested every 4 h. Expression levels were normalized to *PP2A*. [†] Different letters indicate significant differences in expression level within indicated time points per genotype (one-way ANOVA and Tukey's HSD test). The value with the highest mean is considered as a peak (shown in bold) that is significantly higher than the values of more than three other time points.

7 T*	ZT00/24	7T04	7T08	7T12	ZT16	7T20	
Genotype	2100/21	CC	A1 relative exp	pression + SEM	(n=3)	2120	P
Ws-2	1.8204 +	1 0539 +	0 4563 +	0 1533 +	0 1828 +	0 6715 +	0.001
110 2	0.3081 a [†]	0.3406 ab	0.0545 b	0.0523 b	0.0425 b	0.1905 b	0.001
elf3-4	0.1544 +	0.4005 +	0.2252 +	0.1761 +	0.3459 +	0.3706 +	0.047
	0.0160	0.1180	0.0435	0.0250	0.0512	0.0444	
qi-158	3.6910 ±	0.8647 ±	0.1978 ±	0.0506 ±	0.2105 ±	3.5906 ±	0.001
5	1.0694 a	0.1871 b	0.0979 b	0.0155 b	0.0102 b	0.8222 a	
elf3-4 qi-158	0.3236 ±	0.3118 ±	0.1671 ±	0.1737 ±	0.2614 ±	0.3754 ±	0.602
0	0.2081	0.0301	0.0253	0.0484	0.0234	0.0898	
	-	Lh	IY relative exp	ression ± SEM	(<i>n</i> =3)		
Ws-2	5.5182 ±	1.6866 ±	0.4443 ±	0.1723 ±	0.1909 ±	2.7373 ±	0.000
	0.4642 a	0.4339 bc	0.1154 c	0.0553 c	0.0039 c	0.9278 b	
elf3-4	0.2253 ±	0.2880 ±	0.1318 ±	0.1870 ±	0.1745 ±	0.6756 ±	0.000
	0.0179 a	0.0512 ab	0.0105 a	0.0049 a	0.0646 a	0.0426 b	
gi-158	5.7996 ±	0.4666 ±	0.1378 ±	0.0539 ±	0.1884 ±	5.0783 ±	0.001
	1.9007 a	0.0521 b	0.0399 b	0.0177 b	0.0413 b	0.8279 a	
elf3-4 gi-158	0.1837 ±	0.0285 ±	0.1087 ±	0.0219 ±	0.0264 ±	0.0737 ±	0.144
	0.0948	0.0030	0.0499	0.0046	0.0033	0.0292	
		PR	R9 relative exp	pression ± SEM	(<i>n</i> =3)		
Ws-2	0.1181 ±	0.4720 ±	0.3977 ±	0.1741 ±	0.0667 ±	0.2005 ±	0.015
	0.0108 ab	0.1328 a	0.0628 ab	0.0408 ab	0.0344 b	0.0994 ab	
elf3-4	0.2159 ±	0.3668 ±	0.3456 ±	0.3704 ±	0.4035 ±	0.8881 ±	0.049
	0.0223 a	0.0531 ab	0.0512 ab	0.0351 ab	0.1402 ab	0.2794 b	
gi-158	0.0933 ±	0.2545 ±	0.4211 ±	0.1587 ±	0.0794 ±	0.1984 ±	0.000
<i>110 1 1 1</i> 00	0.0305 a	0.0356 ab	0.0302 b	0.0294 a	0.0154 a	0.0658 a	
elf3-4 gi-158	$0.4237 \pm$	0.4796 ±	0.4946 ±	0.4888 ±	1.1621 ±	1.1386 ±	0.002
	0.1602 a	0.0690 a	0.0901 a	0.0391 a	0.1250 b	0.2096 b	
	0.0710 .	0.0792	A 2402 ±	Dression ± SEIM	(<i>n=3</i>)	0 1 / 11 1	
VVS-2	$0.0712 \pm$	0.2703 I	1.3103 ±	0.0001 ±	0.2799 ±	$0.1411 \pm$	0.000
olf? 1	0.0043 a	0.0020 ab	0.1355 0	0.2400 D	0.0079 ab	0.0229 ab	0 122
6113-4	0.4757 ±	0 /317	0.0720 1	0 1508	0.4053	0 1062	0.125
ai_158	0.045	2 3501 +	2 2 2 2 2 1 +	1 0363 +	0.4900	0.1902	0.000
gi-100	0.1 44 0 ± 0.0269 a	0 2075 c	0.3763 c	0.0930 h	0.1530 <u>+</u> 0.0537 ab	0.2070 <u>+</u> 0.0149 ab	0.000
elf3-4 ai-158	1 4909 +	2 1698 +	2 2135 +	1 8657 +	2 1383 +	2 4344 +	0 497
ciio + gi 100	0.3774	0.2511	0.4283	0.3856	0.3451	0 2268	0.407
	0.0111	TO	C1 relative exc	pression + SEM	(n=3)	0.2200	
Ws-2	0.4939 ±	0.7581 ±	0.6684 ±	1.6722 ±	0.5627 ±	0.5940 ±	0.000
	0.0302 a	0.1264 a	0.1217 a	0.1997 b	0.0281 a	0.0219 a	
elf3-4	1.1617 ±	1.3364 ±	1.7945 ±	1.3964 ±	1.2212 ±	1.6132 ±	0.499
	0.1302	0.2924	0.3527	0.1759	0.3362	0.0961	
gi-158	0.4691 ±	1.4310 ±	1.7915 ±	1.9640 ±	0.9478 ±	1.0811 ±	0.036
•	0.1156 a	0.1604 ab	0.6708 ab	0.1714 b	0.1259 ab	0.0861 ab	
elf3-4 gi-158	0.8808 ±	1.3757 ±	1.3460 ±	0.9150 ±	1.5050 ±	1.5736 ±	0.502
-	0.1422	0.2116	0.4821	0.1944	0.2669	0.4146	
		PII	F4 relative exp	ression ± SEM	(<i>n</i> =3)		
Ws-2	0.1074 ±	0.6061 ±	1.1929 ±	0.7713 ±	0.2091 ±	0.0796 ±	0.000
	0.0035 a	0.0802 bc	0.1364 d	0.1799 cd	0.0205 ab	0.0155 a	
elf3-4	0.6111 ±	1.1694 ±	0.7410 ±	1.0251 ±	1.3850 ±	1.0126 ±	0.049
	0.0582 a	0.2737 ab	0.0395 ab	0.0963 ab	0.2228 b	0.1178 ab	
gi-158	0.2251 ±	1.5621 ±	2.4750 ±	0.7262 ±	0.0580 ±	0.0905 ±	0.000
	0.0915 ab	0.2260 c	0.1535 d	0.1269 b	0.0549 a	0.0155 a	
elf3-4 gi-158	1.0559 ±	1.9220 ±	1.6899 ±	1.6970 ±	2.3498 ±	2.4644 ±	0.049
	0.2557 a	0.1204 ab	0.3049 ab	0.2294 ab	0.1983 ab	0.4898 b	

Table 7 Transcript levels of genes under temperature cycles in LL (normalized to *TIP41*).

* Seedlings were grown under 12 h 22°C: 12 h 16°C temperature cycles in LL for 8 d. On day 9, starting from ZT00, samples were harvested every 4 h. Expression levels were normalized to *TIP41* (AT4G34270).

[†] Different letters indicate significant differences in expression level within indicated time points per genotype (one-way ANOVA and Tukey's HSD test). The value with the highest mean is considered as a peak (shown in bold) that is significantly higher than the values of more than three other time points.

7T *	ZT00/24	7T04	7T08	7T12	7T16	7T20	- /
Genotype	2100/24	<u> </u>	1 relative ever	Sector + SEM (n=3)	2120	Þ
	1 2574 +	0.6520 ±	$0.5125 \pm$		0.0502 +	0 2726 ±	0.000
VVS-Z	1.23/4 ± 0.0621 of	0.0009 ±	$0.0130 \pm 0.2051 \text{ bc}$	0.1004 ± 0.0104 cd	0.00392 ±	$0.2730 \pm$	0.000
olf? 1	0.0051 a	0.0002 D	0.2001 bc	0.0104 Cu	0.0020 0	0.0100 bcu	0 000
6113-4	0.4107 ±	0.1393 ±	0.0223 ±	0.0200 ±	$\pm 00700 \pm 0070.0$	0.2390 ±	0.000
ai 150	0.0004 a 1 1712 ⊥	0.0203 C	0.0011 0	0.0037 0	0.0040 0	0.0245.0	0.002
yi-156	1.17 IS I	1.2214 ±	0.1751 ±	0.0000 ±	0.0000 ±	0.4039 ±	0.002
-152 1 -: 150	0.2000 a	0.4053 a	0.0312.0	0.0099 0	0.0102 0		0.004
eii3-4 yi-150	0.0032 ±	0.0043 ±	0.0309 ±	0.0207 ±	0.0000 ±	0.0099 ±	0.004
	0.0171	0.0150		$\frac{0.0071}{0.0071}$	0.0073	0.0232	_
M/a 0	0 7000 +		relative expre		0.0700 +	0.5002 -	
VVS-Z	2.7008 I	1.0804 ±	$0.4135 \pm$	$0.0277 \pm$	$0.0789 \pm$	$0.5893 \pm$	0.000
- 150 4	0.3554 a	0.3283 D	0.0173 DC	0.0092 C	0.0117 C	0.1235 DC	0.000
elt3-4	0.2001 ±	0.0569 ±	0.0086 ±	0.0189 ±	$0.0489 \pm$	0.2315 ±	0.000
	0.0077 a	0.0066 D	0.0017 b	0.0126 b	0.0054 b	0.0544 a	0.000
gi-158	0.8628 ±	0.5746 ±	0.0203 ±	0.0104 ±	0.0309 ±	0.5875 ± 0.5675	0.000
100 A 1 A 50	0.0902 a	0.0916 a	0.0038 b	0.0003 b	0.0103 b	0.2054 a	o o ,
elf3-4 gi-158	0.0165 ±	0.0112 ±	$0.0032 \pm$	0.0067 ±	0.0145 ±	0.0259 ±	0.076
	0.0021	0.0029	0.0004	0.0019	0.0038	0.0118	-
		PRR	Prelative expre	ession ± SEM (n=3)		
Ws-2	0.0191 ±	0.0707 ±	0.1235 ±	0.0182 ±	0.0182 ±	0.0071 ±	0.000
	0.0077 a	0.0121 ab	0.0307 b	0.0008 a	0.0138 a	0.0010 a	
elf3-4	0.2480 ±	0.2290 ±	0.1046 ±	0.0788 ±	0.0557 ±	0.1378 ±	0.000
	0.0196 a	0.0426 a	0.0130 b	0.0150 b	0.0076 b	0.0325 a	
gi-158	0.0561 ±	0.3896 ±	0.1089 ±	0.0583 ±	0.0131 ±	0.0192 ±	0.000
	0.0283 a	0.0808 b	0.0435 a	0.0104 a	0.0014 a	0.0056 a	
elf3-4 gi-158	0.2095 ±	0.2745 ±	0.2187 ±	0.1534 ±	0.1096 ±	0.1508 ±	0.018
	0.0474 ab	0.0283 a	0.0337 ab	0.0238 ab	0.0209 b	0.0110 ab	_
		PRR	7 relative expre	ession ± SEM (n=3)		_
Ws-2	0.0544 ±	0.3754 ±	1.2529 ±	0.2273 ±	0.1954 ±	0.1178 ±	0.000
	0.0095 a	0.1112 a	0.3027 b	0.0957 a	0.0275 a	0.0230 a	
elf3-4	0.5748 ±	0.5198 ±	1.0803 ±	0.9360 ±	0.8973 ±	1.0932 ±	0.509
	0.1601	0.1831	0.2927	0.1266	0.0615	0.4919	
gi-158	0.5732 ±	2.5391 ±	0.4870 ±	0.3980 ±	0.3433 ±	0.4701 ±	0.002
•	0.0575 a	0.7324 b	0.2074 a	0.0340 a	0.0298 a	0.1349 a	
elf3-4 ai-158	0.7825 ±	0.8412 ±	0.9947 ±	0.5547 ±	0.4696 ±	0.6372 ±	0.510
0	0.2720	0.1663	0.2969	0.0958	0.0492	0.2218	
		TOC	relative expre	ession ± SEM (n=3)		-
Ws-2	0.9602 ±	0.2613 ±	1.2131 ±	1.0353 ±	1.3578 ±	0.8997 ±	0.016
	0.2345 ab	0.0329 a	0.0514 b	0.1270 ab	0.3430 b	0.0282 ab	
elf3-4	1.3573 ±	2.0654 ±	1.5174 ±	1.2508 ±	1.4111 ±	1.9775 ±	0.369
	0.1940	0.6431	0.0916	0.1465	0.2885	0.1485	
ai-158	0.8942 ±	0.9496 ±	0.8324 ±	0.9055 ±	1.4289 ±	1.1089 ±	0.499
5	0.3355	0.1865	0.0399	0.1122	0.2970	0.2600	
elf3-4 ai-158	1.2253 +	2.1064 +	1.2452 +	1.0964 +	1.2418 +	1.3230 +	0.095
ee . gee	0.0890	0.3141	0.1378	0.1763	0.1816	0.3751	0.000
		PIF4	relative expre	ssion + SFM (r	n=3)	0.0101	-
Ws-2	0 1223 +	0 2543 +	0 7268 +	0 3206 +	0 1358 +	0.0663 +	0 000
VV3-2	0.0534 ab	0.2040 <u>+</u> 0.0069 ab	0.1074 c	0.0266 b	0.1000 <u>-</u> 0.0214 ab	0.0008 a	0.000
olf3_1	0.000+ ab	0.6128 +	0.3535 +	0.3875 +	0.0214 ab	0.0030 a	0 180
	0.4000 ±	0.1697	0.0163	0.0648	0.2330 1	0.0518	0.100
ai-158	0.0211	1 0020 +	0.3012 +	0.00-0	0.0000	0.2/10 +	0.005
gi-100	0.0000 ±	1.0023 ±	0.0912 1	$0.2473 \pm$	0.2179 ±	0.2410 ±	0.000
alf2_1 ai 152	0.1209 a	0.6003 +	0.0900 a	0.0929 a 0.37/6 ±	0.0200 a	0.0717a	0 036
ens-4 yr-150	0.4001 I	0.0330 I	$0.0204 \pm$	0.0140 I	0.0442 I 0.0200 h	0.0040 I	0.030
	0.0020 ab	0.1109.0	0.0944 ab	0.0103 ab	0.0300.0	ds eucu.u	

Table 8 Transcript levels of genes under ter	nperature cycles in DD (related to Fig. 4-8)	
--	--	--

* Seedlings were grown under 12 h 22°C: 12 h 16°C temperature cycles in DD for 8 d. On day 9, starting from ZT00, samples were harvested every 4 h. Expression levels were normalized to *PP2A*. [†] Different letters indicate significant differences in expression level within indicated time points per genotype (one-way ANOVA and Tukey's HSD test). The value with the highest mean is considered as a peak (shown in bold) that is significantly higher than the values of more than three other time points.

Appendix VI

Table വ	Plant I	height during bar	ley seedling esta	ablishme	ent (related to Fig	. 5-3A				
Genotyp(emp.				lant height (mm) -	E SEM	(<i>n</i> =11)			
Time		5 DAS	6 DAS	ت	7 DAS	٩	8 DAS	ď	9 DAS	Р
	20°C	11.91 ± 1.50abcd ¹	$\overline{1}$ 32.73 ± 1.3	32ef ***	51.27 ± 2.07fg	***	68.36 ± 1.84gh	***	91.45 ± 3.16fg	***
DOWINAL	_28°C	11.64 ± 0.94abcd	45.18 ± 1.2	28ace***	65.00 ± 0.99bce	t ***	90.00 ± 1.29bcd	e***	110.09 ± 2.17abdef	***
000///1	20°C	13.55 ± 2.40abcd	e 39.09±2.7	73cef ***	59.82 ± 2.94cef(*** D	83.82 ± 2.72cde	h***	103.36 ± 2.72adefg	***
06710	28°C	23.73 ± 3.32e	68.64 ± 3.7	*** p22	96.45 ± 3.34d	***	129.00 ± 3.03f	***	143.36 ± 3.02h	**
10 olito	20°C	19.36 ± 1.72bce	48.64 ± 2.2	20abc***	70.36 ± 1.56abc	e***	90.64 ± 1.42bcd	e***	105.55 ± 1.47adefg	***
	_28°C	10.73 ± 1.60abcd	50.64 ± 1.8	34abc***	74.73 ± 1.35abc	***	102.36 ± 1.67ab	***	121.82 ± 2.76abc	***
10 wild	20°C	10.18 ± 0.89abd	32.00 ± 1.5	59ef ***	49.82 ± 1.80fg	***	71.55 ± 2.00gh	***	93.82 ± 2.67efg	***
	_28°C	18.00 ± 2.88bcde	59.64 ± 2.6	36abd***	82.73 ± 2.65ad	***	113.00 ± 2.37af	***	131.09 ± 3.01ch	***
16 alita	20°C	9.82 ± 2.49abd	36.18 ± 3.7	77cef ***	57.82 ± 3.89efg	***	81.27 ± 3.78egh	***	101.45 ± 3.51defg	***
	_28°C	8.00 ± 1.14ad	48.73 ± 2.7	74abc***	75.45 ± 2.83ab	***	104.64 ± 3.42ab	***	127.45 ± 3.76bch	***
16 wild	20°C	7.00 ± 2.39a	26.45 ± 3.4	t5f ***	45.45 ± 3.41g	***	66.27 ± 2.97g	***	89.73 ± 2.40g	***
	28°C	7.27 ± 1.04a	47.36 ± 1.5	55abc***	70.64 ± 1.38abc	e***	99.00 ± 1.66abc	***P	112.91 ± 2.83abcde	***
17 olito	_20°C	14.18 ± 2.17abcd	e 38.00±4.3	30cef ***	56.82 ± 4.74efg	**	73.91 ± 6.28egh	*	95.82 ± 6.94efg	*
	28°C	18.45 ± 2.05bce	55.82 ± 4.7	15abd***	77.18 ± 5.62ab	**	100.55 ± 6.68abc	*	108.09 ± 7.21abdef	j0.452
17	_20°C	20.64 ± 2.87ce	47.55 ± 4.1	l6abc***	62.64 ± 4.56bce	بو	83.18 ± 4.77deg	h**	101.55 ± 5.62defg	*
	28°C	19.27 ± 2.07bce	60.09 ± 2.9)2bd ***	81.82 ± 3.02ad	***	109.00 ± 3.16a	***	117.55 ± 4.84abcd	0.155
Time		10 DAS	P 11 DAS	(0)	12 DAS		13 DAS		14 DAS	
	20°C	106.91 ± 3.71ef	** 120.27 ± 4.5	56bc *	125.73 ± 5.06c	0.432	2132.00 ± 5.04f	0.390	155.82 ± 6.15g	*
DOWINAL	28°C	115.00 ± 2.09cdef	0.113121.36 ± 2.9	99bc 0.0	97143.73 ± 4.59c	***	183.00 ± 4.62bc	***	205.64 ± 3.57abcf	***
	_20°C	123.55 ± 2.83cde	*** 139.45 ± 3.7	77c **	147.91 ± 3.58c	0.119)158.27 ± 3.67cef	0.057	190.91 ± 5.43f	***
06710	_28°C	146.36 ± 2.84b	0.478176.73 ± 6.8	34a ***	222.55 ± 7.90b	***	253.55 ± 6.78d	**	259.73 ± 7.14de	0.537
	20°C	119.91 ± 1.17cdef	*** 129.18 ± 1.4	t9bc ***	144.09 ± 3.54c	***	172.73 ± 4.94ce	***	199.00 ± 2.92bcf	***
	28°C	127.91 ± 3.27abcd	0.170168.18 ± 3.3	35a ***	200.09 ± 3.54ab	***	216.64 ± 8.28a	0.081	225.00 ± 5.80abc	0.418
10 wild	20°C	109.27 ± 2.80def	*** 127.64 ± 3.5	50bc ***	135.09 ± 2.85c	0.112	l153.73 ± 3.95ef	**	181.09 ± 8.64fg	**
	_28°C	144.36 ± 2.77ab	** 187.73 ± 3.0)8a ***	218.73 ± 2.63ab	***	230.27 ± 3.34ad	*	260.64 ± 3.10e	***
16 elite	20°C	115.82 ± 2.82cdef	** 126.18 ± 2.3	38bc *	132.73 ± 2.44c	0.069)159.18 ± 4.25cef	***	182.64 ± 4.82fg	**
	_28°C	134.00 ± 3.45abc	$0.214175.64 \pm 6.5$	56a ***	206.27 ± 5.43ab	**	219.45 ± 5.29a	0.098	236.64 ± 6.80ade	0.060
16 wild	20°C	103.27 ± 1.97f	*** 110.55 ± 2.2	27b *	127.55 ± 4.01c	**	151.45 ± 4.79ef	**	175.64 ± 3.74fg	***
	_28°C	124.91 ± 2.63acde	** 168.36 ± 3.3	35a ***	196.73 ± 2.87ab	***	206.82 ± 3.29ab	*	228.91 ± 4.62abd	***
17 alita	20°C	107.91 ± 7.11ef	$0.239118.55 \pm 6.9$	91bc 0.2	96140.73 ± 8.31c	0.054	1170.82 ± 9.94ce	*	195.36 ± 9.61cf	0.091
	_28°C	131.55 ± 7.82abc	* 174.00 ± 8.9)5a **	195.45 ± 9.60a	0.118	3206.36 ± 8.78ab	0.412	235.45 ± 10.60ade	*
17 wild	20°C	115.00 ± 5.25cdef	0.096125.27 ± 4.6	36bc 0.1	59141.00 ± 6.74c	0.069)171.27 ± 7.34ce	**	197.18 ± 7.09cf	*
	28°C	132.91 ± 5.00abc	* 175.82 ± 6.0)1a ***	207.64 ± 5.34ab	***	219.09 ± 3.88a	0.098	231.45 ± 5.04ade	0.066
† Differen ‡ Significa	t letters int incre	s indicate significant ease of plant height	t differences at eac t compared to the p	th time pc previous t	int (two-way ANOV ime point (*, <i>P</i> <0.05	A and ;	Tukey's HSD test, <0.01; ***, <i>P</i> <0.00	<i>P</i> <0.05 1; two-s)). ided Student's <i>t</i> -test)	

Genotype	e Temp	L	ength or width (mm) ±	: SEM (<i>n</i> =5) at 16 DA	AS
Time		Length first leaf	Length second leaf	Width first leaf	Width second leaf
Rowman	20°C	105.30 ± 1.40ab†	197.85 ± 7.50abcd	8.98 ± 0.16abcd	9.51 ± 0.42acd
Downan	_28°C	95.45 ± 7.92ab	205.25 ± 3.65acd	7.88 ± 0.47a	7.20 ± 0.43fi
B/1/200	20°C	114.96 ± 6.07b	211.44 ± 9.19acd	8.55 ± 0.45abd	9.27 ± 0.42ade
DW290	_28°C	113.44 ± 3.43ab	221.16 ± 2.84a	8.28 ± 0.20ab	7.31 ± 0.28fi
10 olito	20°C	112.77 ± 2.02ab	193.71 ± 2.63abcd	9.16 ± 0.12abcd	10.31 ± 0.13abc
	_28°C	109.38 ± 1.49ab	216.81 ± 3.63ac	8.04 ± 0.25ab	8.23 ± 0.18efgh
10 wild	20°C	115.44 ± 1.35b	194.73 ± 3.03abcd	9.02 ± 0.18abcd	10.56 ± 0.12bc
	_28°C	105.63 ± 6.69ab	213.36 ± 11.41ac	8.11 ± 0.40ab	7.87 ± 0.28fghi
16 olito	20°C	103.82 ± 2.24ab	181.93 ± 4.34bd	9.32 ± 0.32bcd	10.73 ± 0.08b
	_28°C	97.73 ± 0.99ab	190.86 ± 2.55bcd	8.48 ± 0.31ab	8.51 ± 0.15degh
16 wild	20°C	93.45 ± 1.65a	174.94 ± 3.54b	10.00 ± 0.16c	10.33 ± 0.13abc
TO_WIIU	_28°C	99.45 ± 4.12ab	189.58 ± 7.84bcd	9.87 ± 0.23cd	8.96 ± 0.16deg
17 olito	20°C	107.19 ± 1.49ab	214.87 ± 2.91ac	8.72 ± 0.19abcd	9.14 ± 0.17de
	_28°C	100.00 ± 6.18ab	198.82 ± 9.87abcd	8.00 ± 0.32ab	6.87 ± 0.31i
17 wild	20°C	103.48 ± 3.35ab	204.52 ± 4.82abcd	8.44 ± 0.09ab	9.59 ± 0.17abcd
	28°C	102.25 ± 2.89ab	213.67 ± 3.76ac	8.58 ± 0.15abd	7.55 ± 0.12fhi

Table 10 Length and width of the first and second leaves (related to Fig. 5-3D).

[†] Different letters indicate significant differences (two-way ANOVA and Tukey's HSD test, *P*<0.05).

Table	F Plar	nt height during	barley growth <i>ɛ</i>	and developmer	nt (related to Fi	g. 5-5A).			
Genotype	eTemp				Plant height (mm) ± SEM (<i>n</i> =11)			
Time		8 DAS	11 DAS	14 DAS	16 DAS	18 DAS	21 DAS	24 DAS	
Bowman	20°C	36.82 ± 2.89a⁺	75.68 ± 3.77ab	97.09 ± 5.17d	144.36 ± 6.67a	163.91 ± 4.82a	235.64 ± 7.60ab	273.32 ± 5.78a	
	_28°C	50.55 ± 2.34abc	72.64 ± 2.57ab	137.05 ± 4.36abcg	172.32 ± 7.42abce	⊧ 249.91 ± 4.43df	290.27 ± 6.93c	345.27 ± 5.88ef	
RW200	20°C	44.82 ± 2.92ab	92.68 ± 3.17bcd	127.82 ± 5.22ab	179.82 ± 4.93bcde	204.91 ± 4.47bc	283.50 ± 7.20c	325.41 ± 5.48de	
06740	_28°C	84.27 ± 3.17f	118.23 ± 5.26e	192.32 ± 4.28e	266.59 ± 6.62g	287.00 ± 3.57e	332.27 ± 9.57e	370.00 ± 10.55f	
10 alita	20°C	52.59 ± 1.55abcd	83.82 ± 1.52abc	135.41 ± 3.54abc	154.73 ± 3.98ab	185.73 ± 7.71ab	232.95 ± 6.48ab	270.86 ± 3.12a	
	_28°C	65.91 ± 2.47cdef	103.95 ± 3.51cde	152.05 ± 4.42acfg	202.86 ± 6.77def	226.09 ± 7.42cf	274.36 ± 6.27cd	309.91 ± 5.16cd	
10 wild	20°C	41.09 ± 2.21a	87.86 ± 3.59abcd	1 128.00 ± 3.14ab	156.14 ± 3.47ab	193.45 ± 3.82ab	246.41 ± 3.98bd	280.73 ± 5.57abc	
	28°C	78.09 ± 3.23ef	124.05 ± 3.24e	189.23 ± 2.92e	226.09 ± 5.04f	270.05 ± 6.64de	288.86 ± 4.60c	319.50 ± 7.63de	
16 alita	20°C	44.45 ± 2.92ab	82.86 ± 2.62abc	125.05 ± 4.26b	149.73 ± 2.55ab	188.50 ± 5.96ab	225.05 ± 4.61ab	278.86 ± 2.98abc	
	_28°C	66.68 ± 4.24cdef	107.86 ± 5.39de	169.73 ± 5.04ef	195.18 ± 9.45def	237.59 ± 8.81f	285.36 ± 6.95c	326.91 ± 3.64de	
16 wild	20°C	35.86 ± 2.88a	69.59 ± 3.02a	120.18 ± 3.53bd	144.64 ± 2.45a	179.64 ± 2.23ab	210.86 ± 4.85a	272.95 ± 3.67a	
	_28°C	62.59 ± 2.23bcde	108.45 ± 4.41de	162.68 ± 3.41fg	191.00 ± 5.38cde	230.64 ± 6.05cf	281.23 ± 3.49cd	325.55 ± 8.15de	
17 olito	20°C	42.00 ± 6.07a	74.50 ± 6.58ab	132.00 ± 10.13abc	155.45 ± 7.83ab	191.55 ± 9.05ab	231.09 ± 11.27ab	284.45 ± 8.97abc	
	28°C	62.14 ± 7.56bcde	107.91 ± 7.93de	156.27 ± 9.06cfg	200.82 ± 9.15def	237.18 ± 10.21f	280.91 ± 7.96cd	306.77 ± 10.86bcd	
17 wild	20°C	49.82 ± 5.34abc	80.14 ± 4.57ab	133.14 ± 6.03abc	162.91 ± 6.29abc	191.36 ± 6.81ab	232.50 ± 10.77ab	276.45 ± 5.70ab	
	28°C	69.55 ± 4.10def	107.95 ± 5.03de	155.95 ± 4.33cfg	206.32 ± 8.42df	233.14 ± 4.26cf	285.23 ± 5.13c	326.00 ± 7.91de	
Time		28 DAS	31 DAS	35 DAS	38 DAS	42 DAS	45 DAS	49 DAS	52 DAS
Downoo	20°C	364.09 ± 6.63acdef	f 396.95 ± 5.54ac	435.55 ± 4.10bc	448.14 ± 7.43ac	527.32 ± 8.83d	578.91 ± 6.54e	629.32 ± 7.19bc	663.95 ± 6.22a
	28°C	387.18 ± 7.43efg	410.86 ± 8.74ce	436.18 ± 8.77b	428.18 ± 7.65ab	448.95 ± 6.95ag	447.82 ± 6.81cg	447.86 ± 8.54ef	470.50 ± 15.28e
	_20°C	399.14 ± 4.61eg	452.91 ± 6.96d	515.18 ± 11.85e	565.00 ± 8.96de	621.50 ± 12.02ef	693.55 ± 11.06f	768.68 ± 10.49d	764.55 ± 6.58d
DVZ3U	_28°C	418.50 ± 7.06g	468.45 ± 11.81d	543.45 ± 8.32e	552.86 ± 8.96e	592.64 ± 8.51f	586.50 ± 8.31e	584.82 ± 6.62ab	572.77 ± 8.29c
	20°C	334.09 ± 8.98abc	381.41 ± 6.92abc	403.91 ± 8.69abcd	430.86 ± 9.29ab	481.18 ± 7.69abco	1 491.95 ± 8.63abc	566.64 ± 13.19a (666.55 ± 12.77a
	_28°C	328.09 ± 6.08ab	344.82 ± 3.80b	378.82 ± 7.97a	375.64 ± 10.61f	424.77 ± 7.00g	449.91 ± 9.14cg	469.68 ± 6.46ef	504.55 ± 7.11e
10 wild	20°C	359.23 ± 9.77abcdf	f 401.05 ± 4.31ac	421.00 ± 7.05bcd	480.45 ± 6.35c	596.27 ± 9.95f	670.82 ± 8.19f	761.82 ± 6.77d	802.64 ± 6.58d
	_28°C	356.55 ± 11.35abcdf	f 446.45 ± 9.52de	538.36 ± 7.77e	601.05 ± 12.70d	659.91 ± 8.41e	674.59 ± 9.94f	668.45 ± 9.08c	654.41 ± 8.90a
16 olito	20°C	337.55 ± 7.66abcd	369.09 ± 6.25ab	378.64 ± 12.62a	437.55 ± 13.33abc	499.27 ± 15.20bcd	516.09 ± 12.82b	562.91 ± 9.88a	574.77 ± 8.95bc
	_28°C	369.05 ± 5.75cdef	370.86 ± 7.71ab	385.23 ± 7.60ad	393.36 ± 9.57bf	461.82 ± 11.18acg	471.95 ± 9.48abcc	g496.32 ± 12.82f (512.95 ± 14.44e
16 wild	_20°C	321.55 ± 3.94b	379.27 ± 7.57abc	417.27 ± 7.35abcd	464.91 ± 8.79ac	518.41 ± 7.40bd	562.41 ± 11.42de	592.55 ± 11.23ab	617.50 ± 7.45abc
	_28°C	371.95 ± 4.39def	379.86 ± 5.73abc	396.86 ± 5.07acd	401.05 ± 8.15bf	443.14 ± 6.00ag	457.36 ± 10.50acg	489.64 ± 8.75f	510.36 ± 9.39e
17 elite	20°C	330.00 ± 11.14ab	379.59 ± 11.11abc	401.91 ± 7.23abcd	427.59 ± 9.57ab	478.59 ± 18.67abco	1 496.86 ± 8.20ab	549.36 ± 9.07a	593.73 ± 17.52bc
	_28°C	341.68 ± 10.08abcd	350.18 ± 9.07b	389.95 ± 6.02ad	378.36 ± 6.80f	439.73 ± 8.42ag	440.23 ± 5.78g	474.73 ± 16.49ef	486.18 ± 15.78e
17_wild	20°C	332.59 ± 5.66abc	363.45 ± 9.39ab	380.00 ± 5.22a 382 27 ± 5 36ad	430.41 ± 8.99ab 303 14 + 0.27hf	477.27 ± 5.73abc	516.86 ± 7.92bd 434 55 ± 10 514	592.95 ± 12.70ab /30 27 + 8 12e	626.09 ± 7.73ab 490.45 ± 9.15a
		indianto dianifiant o		100.001 ± 0.0000				1001 - 0 - 17.001	00-00-00-00-
- Ulleren	IL IELLERS	s indicate significant (uillerences al each t	ime point (two-way F	ANOVA and Tukey s	Hou lest, P<0.00).			

Table	Top	-view plant area	a during barley	growth and de	velopment (I	elated to Fig.	. 5-5B).		
Genotype	Temp			Top-vie	w plant area (×1	0 ³ mm ²) ± SEM (≀	7=11)		
Time		8 DAS	11 DAS	14 DAS	16 DAS	18 DAS	21 DAS	24 DAS	
Downon	20°C	0.02 ± 0.01b [†]	0.04 ± 0.01h	0.18 ± 0.03f	0.47 ± 0.07d	0.85 ± 0.10e	2.67 ± 0.23a	3.34 ± 0.24g	
	_28°C	0.05 ± 0.01abc	0.08 ± 0.01ah	0.27 ± 0.03af	0.71 ± 0.06ad	1.49 ± 0.13abde	: 4.74 ± 0.41def	5.16 ± 0.27abf	
	20°C	0.11 ± 0.03abcdef	0.25 ± 0.04bcdefg	0.37 ± 0.06abdf	0.69 ± 0.09ad	1.22 ± 0.08de	2.84 ± 0.21a	4.03 ± 0.22fg	
067110	_28°C	0.22 ± 0.03f	0.35 ± 0.06b	0.63 ± 0.10bcdeg	1.56 ± 0.19cfg	2.48 ± 0.21cfg	4.50 ± 0.22bcdef	6.70 ± 0.58bcdei	
10 elite	20°C	0.10 ± 0.02abcdef	0.20 ± 0.03abcdefc	g 0.53 ± 0.06abcde	1.11 ± 0.09abc	1.98 ± 0.12abc	3.21 ± 0.28abcd	5.96 ± 0.26abcde	
	_28°C	0.12 ± 0.01abcdef	0.26 ± 0.02bdefg	0.85 ± 0.09g	1.69 ± 0.09efg	2.72 ± 0.13fg	4.85 ± 0.49ef	6.95 ± 0.23cdehi	
10 wild	20°C	0.05 ± 0.01abce	0.18 ± 0.03acdegh	0.39 ± 0.03abcdf	0.95 ± 0.08abd	1.47 ± 0.12abde	3.20 ± 0.26abcd	5.50 ± 0.26abcdf	
	_28°C	0.20 ± 0.04df	0.29 ± 0.04bdfg	0.77 ± 0.07eg	2.10 ± 0.13e	3.10 ± 0.10f	4.53 ± 0.26bdef	8.54 ± 0.27h	
16 alita	20°C	0.07 ± 0.02abce	0.11 ± 0.02aceh	0.37 ± 0.05abdf	0.78 ± 0.07abd	1.60 ± 0.15abd	2.93 ± 0.18ac	5.34 ± 0.29abcdf	
	_28°C	0.17 ± 0.03def	0.30 ± 0.03bfg	0.67 ± 0.06cdeg	1.99 ± 0.14eg	3.08 ± 0.16f	4.63 ± 0.44bdef	8.18 ± 0.44hi	
16 wild	20°C	0.04 ± 0.01ab	0.13 ± 0.03acdeh	0.34 ± 0.05abf	0.67 ± 0.07ad	1.40 ± 0.13ade	3.31 ± 0.19abcde	4.92 ± 0.20afg	
	_28°C	0.16 ± 0.03acdef	0.19 ± 0.02acdefgh	n 0.52 ± 0.06abcde	1.62 ± 0.12cefg	2.70 ± 0.14fg	5.05 ± 0.37f	7.30 ± 0.31ehi	
17 olito	20°C	0.08 ± 0.02abcde	0.10 ± 0.03ach	0.31 ± 0.06af	0.65 ± 0.11ad	1.18 ± 0.19de	2.86 ± 0.33a	3.96 ± 0.44fg	
	28°C	0.11 ± 0.03abcdef	0.27 ± 0.04bdfg	0.50 ± 0.08abcde	1.31 ± 0.14bcf	2.16 ± 0.19bcg	3.72 ± 0.50abcdet	f 6.45 ± 0.59abcde	
17 1111	20°C	0.10 ± 0.03abcdef	0.13 ± 0.02acdeh	0.43 ± 0.08abcdf	0.75 ± 0.07ad	1.49 ± 0.21abde	· 3.13 ± 0.16abc	5.24 ± 0.42abdf	
	28°C	0.17 ± 0.03cdef	0.34 ± 0.03bf	0.69 ± 0.07ceg	1.64 ± 0.12efg	2.52 ± 0.11cfg	3.89 ± 0.35abcdet	f 7.03 ± 0.20cehi	
Time		28 DAS	31 DAS	35 DAS	38 DAS	42 DAS	45 DAS	49 DAS	52 DAS
Downon	20°C	6.46 ± 0.34e	9.47 ± 0.49f	16.49 ± 0.72b	25.04 ± 0.87ad	39.95 ± 1.09abc	54.35 ± 1.75acd	73.78 ± 1.68ade	85.37 ± 2.01abcd
DOWINALI	28°C	10.52 ± 0.50bcg	15.89 ± 0.62abceg	26.21 ± 1.03def	33.32 ± 0.91bce	42.13 ± 0.78abcd	47.95 ± 0.83abce	53.08 ± 1.19fg	55.62 ± 1.65gh
	_20°C	6.94 ± 0.34de	11.15 ± 0.42df	18.26 ± 0.76b	26.76 ± 0.89acd	33.63 ± 1.46b	38.70 ± 1.56e	42.02 ± 1.74g	43.42 ± 1.80fg
062770	28°C	12.36 ± 0.65cfg	17.08 ± 1.00bcegh	19.78 ± 1.23ab	21.54 ± 1.25d	20.93 ± 1.39e	18.22 ± 1.09f	11.86 ± 0.94i	10.07 ± 0.80i
10 alita	20°C	10.05 ± 0.29abc	15.00 ± 0.53abcde	21.37 ± 0.70abcd	28.25 ± 1.09abc	39.94 ± 1.35abc	50.11 ± 1.97abc	70.18 ± 2.15abcd	90.32 ± 1.98abc
	28°C	12.51 ± 0.27cfg	16.95 ± 0.45bcegh	25.52 ± 0.72cdef	34.03 ± 0.93be	40.56 ± 1.22abc	49.02 ± 1.59abce	58.43 ± 2.17cf	68.91 ± 2.15eh
10 wild	20°C	10.20 ± 0.44abc	16.18 ± 0.65abceg	24.64 ± 0.84acdf	34.98 ± 1.40e	48.10 ± 1.72cd	56.88 ± 2.31cd	72.37 ± 2.82abde	81.46 ± 3.40acde
	_28°C	14.17 ± 0.35f	17.96 ± 0.80eghi	21.01 ± 0.91abcd	23.01 ± 0.66ad	24.94 ± 0.65e	24.74 ± 0.79f	25.58 ± 1.17h	29.70 ± 0.76f
16 alita	20°C	9.27 ± 0.41abd	13.86 ± 0.50abcd	20.38 ± 0.69abc	25.33 ± 0.81ad	36.64 ± 1.65ab	43.35 ± 1.90be	59.10 ± 2.63bcf	75.38 ± 2.67cde
	_28°C	14.41 ± 0.70f	21.67 ± 0.94i	33.26 ± 1.16g	41.56 ± 2.02f	50.43 ± 2.41d	57.73 ± 3.43cd	65.52 ± 4.80abcdf	73.35 ± 4.82de
16 wild	20°C	9.18 ± 0.47abd	13.57 ± 0.55abd	20.00 ± 0.99ab	25.90 ± 1.04ad	36.35 ± 1.54ab	45.32 ± 2.29abe	63.39 ± 2.53abcdf	81.26 ± 3.27cde
	_28°C	13.09 ± 0.50fg	19.61 ± 0.70ghi	29.67 ± 1.09efg	37.09 ± 0.87ef	44.69 ± 1.84acd	53.49 ± 2.12abcd	61.22 ± 1.58bcdf	71.34 ± 1.83de
17 alita	20°C	7.80 ± 0.78ade	12.57 ± 1.17adf	20.03 ± 1.86ab	25.84 ± 2.65ad	40.94 ± 3.50abc	53.10 ± 4.03abcd	76.34 ± 5.16ae	96.46 ± 5.76ab
	28°C	11.28 ± 0.93bcg	17.69 ± 1.31cegh	26.97 ± 1.84ef	37.46 ± 2.06ef	46.52 ± 2.13cd	54.93 ± 2.86acd	65.33 ± 3.72abcdf	73.24 ± 4.29de
17 wild	20°C	9.65 ± 0.67ab	16.15 ± 1.05abceg	25.03 ± 0.76acdef	34.13 ± 1.02be	50.10 ± 1.63d	61.24 ± 1.59d	84.15 ± 2.85e	$98.78 \pm 3.83b$
I	282	13.U/ ± 0.61tg	ZU.19 ± U./5hi	30.09 ± 0.74eg	37.44 ± 1.08et	41.29 ± 1.42cd	54.U5 ± 1.83acd	05.05 ± 2.79abcdf	/3.35 ± 2.9/de
[†] Different	: letters	indicate significant	differences at each	time point (two-way	ANOVA and Tul	<ey's hsd="" p<="" td="" test,=""><td><0.05).</td><td></td><td></td></ey's>	<0.05).		

Table	Side	e-view plant an	ea during barl	ley growth an	d developme	nt (related to	Fig. 5-5C).		
Genotype	€Temp			Side-vie	w plant area (×1)	0 ³ mm²) ± SEM (<i>r</i>	1=11)		
Time		8 DAS	11 DAS	14 DAS	16 DAS	18 DAS	21 DAS	24 DAS	
Bowman	20°C 28°C	0.09 ± 0.01h [†] 0.10 ± 0.01gh	0.20 ± 0.02e 0.23 ± 0.03de	0.43 ± 0.03g 0.53 ± 0.04eg	0.63 ± 0.05e 0.84 ± 0.06abd€	0.93 ± 0.08d 1.44 ± 0.09ab	1.82 ± 0.16d 2.66 ± 0.15abc	2.90 ± 0.22d 4.35 ± 0.21abc	
BW290	_20°C 28°C	0.16 ± 0.01acefgr 0.27 ± 0.02d	1 0.32 ± 0.02bd 0.50 ± 0.03ca	0.58 ± 0.02efg 1.00 ± 0.06dh	0.83 ± 0.03ade 1.46 ± 0.08fa	1.24 ± 0.03ad 1.91 ± 0.13bcf	2.28 ± 0.05ad 3.35 ± 0.20bcf	3.42 ± 0.09bd 4.65 ± 0.28ac	
10 alita	_20°C	0.21 ± 0.00abcd	0.39 ± 0.01abc	0.80 ± 0.04abcc	1 1.07 ± 0.04abc	1.59 ± 0.07abc	2.84 ± 0.10abc	4.53 ± 0.16abc	
	_28°C	0.23 ± 0.01bcd	0.51 ± 0.01cfg	0.93 ± 0.03cd	1.43 ± 0.04fg	2.15 ± 0.06ef	3.80 ± 0.08ef	5.80 ± 0.19ef	
10_wild	20°C 28°C	0.15 ± 0.01aefgh 0.27 ± 0.01d	0.36 ± 0.01ab 0.62 ± 0.02f	0.66 ± 0.03abef 1.15 ± 0.03h	* 0.90 ± 0.02abd€ 1.70 ± 0.04f	∋ 1.41 ± 0.05a 2.56 ± 0.06e	2.66 ± 0.07abc 4.29 ± 0.08e	4.30 ± 0.13abc 6.42 ± 0.19ef	
16 elite	_20°C	0.17 ± 0.01abcefc	0.35 ± 0.02abd	0.66 ± 0.04abef	0.97 ± 0.05abd	1.45 ± 0.07ab	2.76 ± 0.10abc	4.40 ± 0.17abc	
1		0.21 ± 0.01abcde	0.52 ± 0.021g	0.99 ± 0.03an	1.4/ ± 0.081g	2.34 ± 0.13er	4.21 ± 0.22e	0.89 ± 0.241	
16_wild	20°C 28°C	0.12 ± 0.01fgh 0.21 ± 0.01abcd	0.30 ± 0.02bde 0.47 ± 0.03acg	0.60 ± 0.03betg 0.92 ± 0.04cd	0.85 ± 0.05abde 1.38 ± 0.07gh	● 1.32 ± 0.05ad 2.20 ± 0.10ef	2.51 ± 0.08ad 4.08 ± 0.18ef	4.08 ± 0.13ab 6.71 ± 0.22f	
17 alita	_20°C	0.14 ± 0.02efgh	0.29 ± 0.03bde	0.58 ± 0.06efg	0.76 ± 0.08de	1.15 ± 0.15ad	2.13 ± 0.22ad	3.52 ± 0.34abd	
	_28°C	0.23 ± 0.03bd	0.46 ± 0.05acg	0.77 ± 0.08abcf	1.13 ± 0.10bch	1.90 ± 0.16bcf	3.40 ± 0.29cf	5.44 ± 0.45ce	
17 wild	20°C	0.18 ± 0.02abcef	0.35 ± 0.03ab	0.69 ± 0.05abef	0.96 ± 0.07abd	1.47 ± 0.10ab	2.59 ± 0.17ab	4.18 ± 0.25ab	
	28°C	0.23 ± 0.01bd	0.49 ± 0.03cg	0.82 ± 0.03acd	1.27 ± 0.04cgh	1.98 ± 0.11cf	3.80 ± 0.14ef	5.94 ± 0.21ef	
Time		28 DAS	31 DAS	35 DAS	38 DAS	42 DAS	45 DAS	49 DAS	52 DAS
Rowman	20°C	5.63 ± 0.32f	8.31 ± 0.38f	12.81 ± 0.48cde	17.72 ± 0.68bc	25.08 ± 0.82b	30.23 ± 0.97a	34.73 ± 0.87abd37.97	7 ± 0.98def
	_28°C	7.89 ± 0.33abde	11.20 ± 0.39abd	16.12 ± 0.46ab	19.91 ± 0.47ab	26.37 ± 0.49abc	29.82 ± 0.55a	30.82 ± 0.50d 33.09	9 ± 0.51f
BW290	20°C	6.36 ± 0.21ef	9.00 ± 0.28ef	12.51 ± 0.41de	15.80 ± 0.63cd	19.33 ± 0.86f	20.65 ± 0.72d	21.56 ± 0.92e 22.8'	1 ± 1.03g
		7.39 ± 0.39ader	9.54 ± 0.52der	10.66 ± 0.70e	10.78 ± 0.75e	11.46 ± 0.79g	11.20 ± 0.75e	9.31 ± 0.731 ± 8.21	/ ± 0.03h
10_elite	20-C 28° C	8.51 ± 0.29abc 9.41 ± 0.29bc	11.75 ± 0.28abc 13.15 ± 0.24bc	15.46 ± 0.52ap 17.24 ± 0.21b	19.90 ± 0.51ab 20.77 ± 0.31ab	26.68 ± 0.51abc 26.68 ± 0.51abc	29.53 ± 0.52a 30.76 ± 0.38ac	30.69 ± 0.7∪ap 44.8 32.24 ± 0.80bd 37.69	1 ± ∪./ ∠abc 9 ± 1.12ef
10 wild	_20°C	8.27 ± 0.27abd	12.20 ± 0.29bc	16.80 ± 0.69b	22.05 ± 0.57a	29.26 ± 0.76acde	e32.23 ± 0.73abc	36.16 ± 1.00ab 39.95	5 ± 1.30cde
	_28°C	9.39 ± 0.26bc	12.45 ± 0.34bc	13.64 ± 0.38acd	13.65 ± 0.39de	15.36 ± 0.32fg	17.39 ± 0.24d	19.05 ± 0.32e 19.09	9 ± 0.48g
16_elite		8.24 ± 0.24abd 11 90 + 0 20h	11.75 ± 0.32abc	15.29 ± 0.72abc 21 38 ± 0.67f	20.20 ± 0.65ab	20.30 ± 0.08abc 32 03 + 1 14e	29.19 ± 0.67a 35.40 + 1.38h	33.05 ± 0.78pd 39.2 36 30 + 1 28ah 41 20	1 ± 0.88cde 0 + 1 85acda
10,000	_20°C	7.73 ± 0.25abde	11.56 ± 0.32abcd	15.85 ± 0.31ab	21.43 ± 0.60a	28.32 ± 0.70abcc	132.28 ± 0.91abc	36.45 ± 0.81ab 43.37	7 ± 0.80acd
	28°C	11.77 ± 0.34gh	16.85 ± 0.37g	20.93 ± 0.59f	26.24 ± 0.57f	32.39 ± 0.89de	34.99 ± 1.08bc	36.81 ± 0.80ab 42.09	9 ± 0.71acde
17 elite	20°C	6.50 ± 0.62def	9.66 ± 0.81adef	14.01 ± 0.63acd	19.01 ± 1.30abc	25.33 ± 1.57ab	31.58 ± 1.52abc	38.52 ± 1.60ac 46.08	8 ± 1.83ab
	_28°C	9.06 ± 0.70abc	12.46 ± 0.81bc	16.70 ± 0.55b	21.52 ± 1.16a	28.18 ± 1.18abc	31.53 ± 1.10abc	34.24 ± 1.10abd37.03	3 ± 1.40ef
17 wild	20°C	7.59 ± 0.34ade	11.02 ± 0.45abde	15.97 ± 0.42ab	21.65 ± 0.61a	29.69 ± 0.63cde	35.21 ± 0.84b	42.42 ± 1.04c 49.86	6 ± 1.59b
1	282	10.06 ± 0.28cg	13.55 ± 0.40c	11./5 ± 0.24b	ZZ.Z4 ± 0./1a	28.58 ± 0.92abcc	131./2 ± 0.92abc	34./1 ± 1.0/abd38.85	9 ± 1.14de
[†] Differen	t letters	s indicate significan	t differences at ea	ch time point (two	-way ANOVA and	I Tukey's HSD tes	st, P<0.05).		

Table.	14 14	nt volume dur	ing barley gro	wth and develc	pment (related	to Fig. 5-5D).			
Genotype	eTemp				Plant volume (×10	⁴ mm ³) ± SEM (<i>n</i> =11	(
Time		8 DAS	11 DAS	14 DAS	16 DAS	18 DAS	21 DAS	24 DAS	
Rowman	20°C	0.02 ± 0.01a [†]	0.10 ± 0.03e	0.58 ± 0.09f	1.38 ± 0.21d	2.77 ± 0.40d	9.37 ± 1.06c	16.89 ± 1.86e	
	_28°C	0.07 ± 0.02ab	0.21 ± 0.04ae	0.87 ± 0.09f	2.19 ± 0.16ad	5.55 ± 0.54ad	17.47 ± 1.03abdg	31.12 ± 2.14abd	
	20°C	0.14 ± 0.03abcd	0.48 ± 0.07abc	1.07 ± 0.11bf	2.11 ± 0.16ad	4.26 ± 0.19ad	11.83 ± 0.37bc	21.57 ± 1.00de	
06710	_28°C	0.39 ± 0.05e	0.93 ± 0.14fg	2.47 ± 0.31deg	5.75 ± 0.61fg	9.56 ± 0.97cf	22.12 ± 1.36defg	37.93 ± 3.62bci	
	20°C	0.18 ± 0.03abcd	0.55 ± 0.04abcd	1.84 ± 0.16abcd	⇒ 3.49 ± 0.22abc	7.03 ± 0.49abc	15.86 ± 1.01abcd	34.83 ± 1.79abc	
	_28°C	0.24 ± 0.02cde	0.79 ± 0.03bdfg	2.64 ± 0.14dg	5.74 ± 0.27fg	11.05 ± 0.47efg	25.77 ± 1.61ef	48.08 ± 2.15fhi	
10 wild	20°C	0.09 ± 0.02abd	0.46 ± 0.05abc	1.31 ± 0.09abcf	2.73 ± 0.13abd	5.40 ± 0.40ad	14.80 ± 0.78abc	31.67 ± 1.54abcd	
	_28°C	0.35 ± 0.04e	1.02 ± 0.07f	3.10 ± 0.18g	7.65 ± 0.31e	13.99 ± 0.38e	28.33 ± 0.97e	58.92 ± 2.25fg	
16 olito	20°C	0.11 ± 0.04abcd	0.34 ± 0.04ace	1.27 ± 0.15bcf	2.71 ± 0.25abd	5.79 ± 0.51abd	14.87 ± 0.91abc	32.02 ± 1.91abcd	
	28°C	0.26 ± 0.03cde	0.90 ± 0.07fg	2.55 ± 0.17deg	6.54 ± 0.57eg	13.02 ± 1.08eg	28.10 ± 1.97e	61.91 ± 3.76g	
16 wild	20°C	0.06 ± 0.02ab	0.30 ± 0.05ace	1.09 ± 0.12bf	2.18 ± 0.21ad	4.94 ± 0.40ad	14.30 ± 0.71abc	28.58 ± 1.43abde	
	28°C	0.26 ± 0.04cde	0.63 ± 0.06bcdg	2.08 ± 0.20acde	5.51 ± 0.40fg	11.40 ± 0.75efg	28.69 ± 2.16e	56.93 ± 2.66fgh	
17 olito	20°C	0.12 ± 0.03abcd	0.28 ± 0.07ae	1.04 ± 0.17bf	1.98 ± 0.32ad	4.13 ± 0.71ad	11.58 ± 1.46bc	22.86 ± 3.01ade	
	28°C	0.23 ± 0.06bcde	0.76 ± 0.11bdfg	1.75 ± 0.27abce	4.13 ± 0.50bcf	8.97 ± 0.96bcf	19.02 ± 2.69adfg	44.50 ± 4.95chi	
47 wild	20°C	0.17 ± 0.03abcd	0.40 ± 0.06ace	1.41 ± 0.19abcf	2.65 ± 0.30abd	5.74 ± 0.76ad	14.44 ± 1.19abc	30.50 ± 2.93abd	
	28°C	0.27 ± 0.04ce	0.89 ± 0.08dfg	2.13 ± 0.16ade	5.13 ± 0.32cfg	9.97 ± 0.67cfg	23.10 ± 1.23efg	49.28 ± 2.10fghi	
Time		28 DAS	31 DAS	35 DAS	38 DAS	42 DAS	45 DAS	49 DAS	52 DAS
	20°C	45.50 ± 3.61f	81.06 ± 5.33e	164.31 ± 9.16ef	277.92 ± 14.27 cdg	497.75 ± 21.10a	702.23 ± 31.46abd	943.09 ± 33.36ab	1109.30 ± 40.36cd
DOWIN	28°C	80.84 ± 5.02abc	140.52 ± 7.00abc	258.45 ± 10.77bcg	358.01 ± 10.58abcef	536.17 ± 12.88abc	650.08 ± 13.51ab	710.01 ± 18.15d	780.13 ± 21.02g
	20°C	52.65 ± 2.71ef	94.33 ± 4.16de	167.69 ± 7.86def	256.45 ± 14.17dg	352.78 ± 21.24e	405.27 ± 22.31e	443.52 ± 28.59e	477.56 ± 31.94e
DVZ3U	28°C	81.81 ± 6.21abc	124.29 ± 10.15acd	150.31 ± 13.83f	159.05 ± 15.28h	167.58 ± 16.47f	152.75 ± 14.71f	101.85 ± 12.29f	81.74 ± 9.68f
10 olito	20°C	84.99 ± 3.90abcd	143.18 ± 5.41abc	224.48 ± 9.10abc	332.93 ± 14.19abcd€	e 520.01 ± 13.98ab	661.28 ± 23.91ab	972.16 ± 30.95ab	1345.74 ± 31.89abc
	28°C	104.86 ± 4.01cdg	170.55 ± 5.13bf	272.79 ± 5.55cg	380.41 ± 9.43abef	535.18 ± 16.43abc	679.85 ± 17.59ab	780.11 ± 31.51bd	990.87 ± 44.36dg
10 wild	_20°C	83.06 ± 3.73abc	154.20 ± 6.35bcf	261.45 ± 12.06bcg	408.56 ± 17.55befi	638.72 ± 26.78bcd	766.89 ± 31.73abcd	974.34 ± 42.81ab	1142.68 ± 57.16cd
	28°C	111.23 ± 4.11dgh	165.92 ± 7.63bcf	197.55 ± 9.13adef	206.43 ± 7.89gh	242.42 ± 7.64ef	273.29 ± 7.47ef	303.58 ± 10e	328.01 ± 10.99ef
16 olito	20°C	79.04 ± 3.46abce	138.09 ± 5.86abc	215.62 ± 10.31abde	319.30 ± 14.06abcd	504.58 ± 24.11a	608.22 ± 26.75a	805.05 ± 36.27bd	1077.21 ± 40.87d
	28°C	142.15 ± 6.79i 2	247.81 ± 10.69g	379.69 ± 16.66i	542.91 ± 30.63j	738.59 ± 42.22d	855.51 ± 58.37cd	933.45 ± 64.58ab	1126.97 ± 85.75cd
16 wild	20°C	74.02 ± 4.22abe	134.40 ± 5.96abcd	221.95 ± 6.34abcd	342.23 ± 14.33abcd€	ef538.56 ± 23.21abc	687.62 ± 35.27ab	919.27 ± 37.67ab	1236.57 ± 46.31acd
	_28°C	134.02 ± 5.96hi	234.62 ± 8.56g	353.45 ± 14.97hi	499.52 ± 16.12ij	679.79 ± 30.52d	807.52 ± 38.29bcd	911.13 ± 28.93abd	1123.46 ± 31.23cd
17 alita	20°C	59.11 ± 7.47aef	110.85 ± 12.73ade	195.63 ± 16.40adef	307.89 ± 33.11acd	516.39 ± 49.57ab	730.73 ± 56.56abcd	1069.9 ± 75.25ac	1436.56 ± 95.83ab
	_28°C	97.42 ± 10.10bcdg1	167.20 ± 14.91bf	267.14 ± 15.87bcg	416.28 ± 31.10efi	607.51 ± 36.87abc	d739.14 ± 43.32abcd	878.68 ± 51.56abd	1006.23 ± 65.06dg
17_wild	20°C	74.87 ± 5.76abe 113 93 + 4 81ch	140.34 ± 9.79abc 191 72 + 8 84f	251.46 ± 9.32abcg 303.06 + 7 26db	397.79 ± 15.95abef 426.78 + 18.28fi	662.38 ± 23.28cd 619.38 + 27.50abo	869.35 ± 31.03c d736 65 + 32 00abcd	1231.19 ± 49.59c 891 82 + 43 81ahd	1568.23 ± 77.05b 1053 76 + 49 13d
[†] Differen	t letters	indicate significant	differences at each	time point (two-way	ANOVA and Tukey's	HSD test, <i>P</i> < 0.05).			

i ---4 ī 1

Table	Top-view conve	ex hull area	during barley growth	and developm	ent (related	to Fig. 5-5E).	
Genotyp	eTemp		Top-view convex hul	ll area (×10 ⁵ pixels	²) ± SEM (n=11)		
Time	8 DAS	11 DAS	14 DAS 16 DAS	18 DAS	21 DAS	24 DAS	
Bowman	20°C 0.09 ± 0.07a [†] 28°C 0.05 ± 0.03a	0.01 ± 0.00a 0.01 ± 0.01a	0.01 ± 0.00a0.04 ± 0.01a 0.02 ± 0.00a0.07 ± 0.02ab	0.21 ± 0.07abc	0.29 ± 0.04a 0.46 ± 0.10ab	0.49 ± 0.03a 1.21 ± 0.20bcde	
BW290	_20°C 0.00 ± 0.00a 28°C 0.05 ± 0.03a	0.02 ± 0.01a 0.07 ± 0.03a	0.02 ± 0.01a0.06 ± 0.01ab 0.13 + 0.06a0.32 ± 0.10e	0.18 ± 0.03ab	0.57 ± 0.10abc	0.82 ± 0.13abcd 1.54 ± 0.17ef	
10 elite	_20°C 0.08 ± 0.04a	0.01 ± 0.00a	0.04 ± 0.01a0.10 ± 0.02ab	cd 0.28 ± 0.09abc	0.51 ± 0.05abc	0.84 ± 0.05abcd	
	_28°C 0.01 ± 0.00a	0.02 ± 0.01a	0.16 ± 0.10a0.23 ± 0.04bc	de 0.41 ± 0.06abc	0.68 ± 0.06abce	1.47 ± 0.17def	
10_wild	28°C 0.04 ± 0.02a	0.02 ± 0.01a 0.02 ± 0.01a	0.15 ± 0.07a0.27 ± 0.03de	c 0.15 ± 0.03ab 0.44 ± 0.03abc	0.05 ± 0.13abce 1.31 ± 0.18d	:0.6∠ ± 0.07abca 1.89 ± 0.19f	
16 elite	20°C 0.11 ± 0.09a	0.03 ± 0.01a	0.01 ± 0.00a0.06 ± 0.01ab	c 0.23 ± 0.06abc	0.44 ± 0.05ab	0.66 ± 0.07abc	
. : .	20°C_0.03 ± 0.02a	0.05 ± 0.04a	0.03 ± 0.01a0.23 ± 0.04e	0.17 ± 0.02ab	0.48 ± 0.10ab	1.31 ± 0.11caer 0.62 ± 0.02ab	
	28°C 0.02 ± 0.01a	0.05 ± 0.02a	0.04 ± 0.01a0.21 ± 0.02ab	cde0.56 ± 0.12c	1.06 ± 0.19de	1.17 ± 0.15bcde	
17 olito	_20°C 0.02 ± 0.02a	0.02 ± 0.01a	0.02 ± 0.00a0.05 ± 0.01a	0.10 ± 0.02b	0.33 ± 0.04ab	0.51 ± 0.08a	
	_28°C 0.02 ± 0.01a	0.04 ± 0.03a	0.04 ± 0.01a0.17 ± 0.03ab	cde0.50 ± 0.16ac	0.49 ± 0.05ab	1.12 ± 0.22abcde	
17 wild	20°C 0.01 ± 0.01a	0.01 ± 0.00a	0.03 ± 0.01a0.07 ± 0.02ab	c 0.18 ± 0.04ab	0.46 ± 0.05ab	0.92 ± 0.16abcde	
	28°C 0.02 ± 0.01a	0.03 ± 0.01a	$0.05 \pm 0.01a 0.23 \pm 0.05cd$	e 0.32 ± 0.03abc	0.79 ± 0.05bce	1.06 ± 0.07abcde	
Time	28 DAS	31 DAS	35 DAS 38 DAS	42 DAS	45 DAS	49 DAS	52 DAS
Rowman	20°C 1.15 ± 0.10a	2.31 ± 0.28ab	c3.76 ± 0.25a5.03 ± 0.32ab	6.88 ± 0.32bd	7.67 ± 0.29f	9.99 ± 0.66f	10.50 ± 0.47d
	28° C 2.05 ± 0.14bcc	le3.04 ± 0.17ab	c4.16 ± 0.32a4.23 ± 0.21ab	4.91 ± 0.47ace	4.14 ± 0.17beg	4.68 ± 0.21dg	4.92 ± 0.31f
RW/290	20°C 1.24 ± 0.13a	2.97 ± 0.55ab	c3.81 ± 0.24a5.55 ± 0.25b	7.20 ± 0.42d	7.26 ± 0.30df	7.86 ± 0.29bce	7.55 ± 0.42abce
	_28°C 2.73 ± 0.18d	3.48 ± 0.22c	4.25 ± 0.50a4.63 ± 0.54ab	0 4.26 ± 0.51ae	3.47 ± 0.29g	2.54 ± 0.23h	2.44 ± 0.21g
10 elite	20°C 1.46 ± 0.14ab	2.35 ± 0.20ab	c3.31 ± 0.26a4.82 ± 0.47ab	5.88 ± 0.46abcc	15.74 ± 0.38abcd	6.77 ± 0.37abc	8.19 ± 0.33abc
	28°C 2.28 ± 0.18cd€	2.90 ± 0.19ab	c3.73 ± 0.27a4.33 ± 0.27ab	0 4.10 ± 0.17ae	5.04 ± 0.28bceg	4.87 ± 0.24adg	5.91 ± 0.33cet
10_wild	20°C 1.42 ± 0.13ab 28°C 2 55 ± 0 14cd	2.80 ± 0.2/ab 3 25 + 0 20ac	C3.06 ± 0.28a4.95 ± 0.37ap 3 50 + 0 20a4 84 + 0 44ab	0.58 ± 0.24bcd	7.11 ± 0.32adT 4 57 + 0 29hcer	9.38 ± 0.58ef 5 43 + 0 26ado	10.54 ± 0.590 7 33 + 0 70ace
10	_20°C 1.22 ± 0.13a	$1.93 \pm 0.23b$	3.17 ± 0.24a3.56 ± 0.24ab	6.02 ± 0.46abcc	15.81 ± 0.40abcd	7.71 ± 0.58bce	9.71 ± 0.53bd
	28°C 2.34 ± 0.20cde	3.16±0.29ab	c4.02 ± 0.30a5.45 ± 0.68b	4.27 ± 0.22ae	5.34 ± 0.43bce	5.03 ± 0.35adg	5.82 ± 0.40ef
16 wild	20°C 1.45 ± 0.24ab	2.07 ± 0.22ab	2.83 ± 0.18a3.25 ± 0.22a	5.14 ± 0.32abce	96.13 ± 0.54acdf	8.33 ± 0.65cef	10.68 ± 0.79d
	_28°C 1.77 ± 0.09ab€	9 2.65 ± 0.22ab	c3.94 ± 0.38a4.75 ± 0.73ab	0 4.49 ± 0.35ae	4.62 ± 0.42bceg	5.23 ± 0.33adg	6.30 ± 0.47acef
17 elite	20°C 1.16 ± 0.14a	1.98 ± 0.23ab	3.61 ± 0.43a3.79 ± 0.42ab	5.21 ± 0.41abce	e5.76 ± 0.40abcd	6.78 ± 0.31abc	8.56 ± 0.48abd
	28°C 1.87 ± 0.19abc	e2.88 ± 0.29ab	c4.03 ± 0.34a4.71 ± 0.27ab	4.55 ± 0.42ae	4.61 ± 0.42bceg	4.65 ± 0.39dg	4.68 ± 0.24fg
17_wild	20°C 1.50 ± 0.12ab	2.46 ± 0.22ab	c4.05 ± 0.44a4.15 ± 0.28ab c3 38 + 0 24ad 21 + 0 38ab	0 6.02 ± 0.66abcc	15.45 ± 0.32abce 3 00 + 0 27ec	6.28 ± 0.28abd 4 26 ± 0 35ch	7.65 ± 0.43abce 4 58 ± 0.35fn
† Difforon	+ lottore indicate cignif	icont difference	s at each time point (two-we		V.SU = V.E. VS	-1.50 - V.VOYI	2007 1007

Different letters indicate significant differences at each time point (two-way ANOVA and Tukey's HSD test, P<0.05).

Tableo	Side-view co	nvex hull area d	uring barley (growth and c	levelopment (related to Fig	. 5-5F).	
Genotype	эТетр		Side-view c	convex hull area	i (×10 ⁵ pixels²) ± {	SEM (<i>n</i> =11)		
Time	8 DAS	11 DAS	14 DAS	16 DAS	18 DAS	21 DAS	24 DAS	
Bowman	20°C 0.02 ± 0.01	a [†] 0.03 ± 0.01b	0.15 ± 0.03a	0.18 ± 0.02a	0.36 ± 0.05c	1.06 ± 0.10a	1.71 ± 0.09a	
	28°C 0.03 ± 0.01	a 0.05±0.01abc	0.15 ± 0.03a	0.28 ± 0.02a	0.65 ± 0.06ac	1.43 ± 0.10ab	2.48 ± 0.14bcdf	
BW290	20°C 0.03 ± 0.018	a 0.06±0.01abco	de0.23 ± 0.03abc 0 30 ± 0 03d	: 0.28 ± 0.02a	0.66 ± 0.05ac	1.46 ± 0.08ab 2 33 ± 0 13de	2.16 ± 0.10abcd 3 33 ± 0 18a	
	20°C 0.02 ± 0.02	a 0.06 + 0.01abcr	1e0.19 + 0.02d	0.38 + 0.03a	0.68 + 0.04ab	2.33 ± 0.13de 1 48 + 0.07ahc	2.03 ± 0.10e 2.03 + 0.05abc	
10_elite	28°C 0.05 ± 0.026	a 0.10 ± 0.01adef	0.28 ± 0.02abc	d0.62 ± 0.03bc	0.98 ± 0.04be	1.95 ± 0.12ce	2.82 ± 0.11ef	
10 wild	20°C 0.02 ± 0.01	a 0.05 ± 0.00bc	0.17 ± 0.02a	0.32 ± 0.02a	0.58 ± 0.04ac	1.37 ± 0.03a	2.08 ± 0.07abcd	
	_28°C 0.05 ± 0.01	a 0.13±0.01f	0.36 ± 0.02cd	0.82 ± 0.04b	1.32 ± 0.05d	2.47 ± 0.06d	3.33 ± 0.12e	
16 elite	20°C 0.03 ± 0.01	a 0.04 ± 0.00b	0.18 ± 0.03a	0.29 ± 0.03a	0.53 ± 0.04ac	1.36 ± 0.07a	1.94 ± 0.08ab	
	_28°C 0.03 ± 0.00	a 0.10 ± 0.01def	0.33 ± 0.02bcd	0.68 ± 0.05bc	1.24 ± 0.06de	2.35 ± 0.11de	3.06 ± 0.08ef	
16_wild	20°C 0.03 ± 0.01; 28°C 0.03 ± 0.015	a 0.05 ± 0.01abc	0.21 ± 0.03ab	0.25 ± 0.02a	0.53 ± 0.03ac 1 17 + 0.05da	1.16 ± 0.04a 2 14 + 0.094a	1.77 ± 0.07a 2 84 + 0 12ef	
	20°C 0.03 ± 0.01	a 0.06 ± 0.01abco	de0.19 ± 0.02ab	0.21 ± 0.03a	0.46 ± 0.07ac	2.11 ± 0.03a 1.20 ± 0.13a	1.60 ± 0.16a	
1/_elite	28°C 0.05 ± 0.02	a 0.10 ± 0.02ef	0.25 ± 0.05abc	:d0.60 ± 0.07c	0.99 ± 0.09e	1.87 ± 0.14bce	2.63 ± 0.23cdf	
17 1111	20°C 0.03 ± 0.01	a 0.05 ± 0.01abcc	d 0.28 ± 0.04abc	:d0.29 ± 0.03a	0.64 ± 0.07ac	1.40 ± 0.11ab	2.08 ± 0.15abcd	
	28°C 0.06 ± 0.02	a 0.10 ± 0.01adef	0.28 ± 0.03abc	:d0.66 ± 0.06bc	1.10 ± 0.08de	2.08 ± 0.10de	2.64 ± 0.07df	
Time	28 DA	S 31 DAS	35 DAS	38 DAS	42 DAS	45 DAS	49 DAS	52 DAS
Bowman	20°C 3.05 ± 0.12	ab 4.24 ± 0.17a	6.41 ± 0.17abc	: 6.26 ± 0.20ab	9.20 ± 0.24ae	9.96 ± 0.20ae	10.50 ± 0.27bc	11.51 ± 0.20a
	_28°C 4.32 ± 0.16	eg 5.48 ± 0.12cd	$6.95 \pm 0.21 bcd$	6.11 ± 0.22ab	7.26 ± 0.30cdg	6.92 ± 0.14g	6.32 ± 0.17de	6.90 ± 0.36d
R\M/200	20°C 3.34 ± 0.16	abcd 4.45 ± 0.21ab	7.17 ± 0.10cde	7.74 ± 0.15de	10.55 ± 0.12f	10.52 ± 0.22ef	10.69 ± 0.22c	10.86 ± 0.25a
06710	28°C 5.23 ± 0.16	6.25 ± 0.24d	8.23 ± 0.37e	7.71 ± 0.46cde	8.76 ± 0.36ab	7.18 ± 0.32dg	5.68 ± 0.29e	5.37 ± 0.24e
10 elite	20°C 3.41 ± 0.12	abcd 4.62 ± 0.13abc	5.95 ± 0.20ab	6.30 ± 0.27ab	8.82 ± 0.25ab	8.84 ± 0.33ab	9.04 ± 0.25a	11.10 ± 0.34a
	_28°C 3.89 ± 0.10	cdeg 4.52±0.07ab	5.70 ± 0.20a	5.56 ± 0.17a	6.91 ± 0.17g	7.55 ± 0.19bcdg	7.26 ± 0.19d	8.03 ± 0.18cd
10 wild	20°C 3.63 ± 0.10	abcdg4.91 ± 0.13abc	6.61 ± 0.11abc	7.23 ± 0.20bce	10.60 ± 0.25f	11.57 ± 0.32f	12.67 ± 0.34f	13.57 ± 0.35f
1	28°C 4.51 ± 0.15 -28°C 2.51 ± 0.15	et 6.14±0.26d	8.04 ± 0.34de	8.49 ± 0.31d	10.48 ± 0.24et	9.94 ± 0.26ae	9.08 ± 0.20a	9.24 ± 0.22bc
16_elite	28°C 136 + 013	auc 1-1-0-1-0-0-0a an 5-1-5+0-1-5hr	0.10 ± 0.17 a 6 35 ± 0 20ahr	5 68 + 0 26a	7 64 + 0 24bcda	7 7 2 + 0 35hcda	7 28 + 0 344	7 65 + 0 104
	20° C $3.06 \pm 0.12^{\circ}$	ab 4.15±0.09a	6.18 ± 0.19abc	6.06 ± 0.14ab	8.90 ± 0.35ab	9.39 ± 0.40ae	9.69 ± 0.41abc	11.13 ± 0.43a
	28°C 4.04 ± 0.100	deg 4.88±0.08abc	5.94 ± 0.16ab	5.52 ± 0.12a	7.16 ± 0.19dg	7.36 ± 0.28cdg	7.44 ± 0.30d	7.83 ± 0.28cd
17 alita	20°C 2.98 ± 0.23	a 4.07 ± 0.31a	6.06 ± 0.38abc	: 5.95 ± 0.39a	8.27 ± 0.35abcd	8.53 ± 0.40abcd	9.39 ± 0.31abc	10.77 ± 0.34a
	28°C 3.78 ± 0.27	bcdeg4.46 ± 0.28ab	6.11 ± 0.27abc	: 5.95 ± 0.24a	7.37 ± 0.24cdg	7.21 ± 0.23dg	7.18 ± 0.29d	7.20 ± 0.30d
17 wild	20°C 3.51 ± 0.18	abcd 4.60 ± 0.18abc	6.10 ± 0.26abc	: 6.51 ± 0.16abc	8.56 ± 0.18abc	8.66 ± 0.18abc	9.47 ± 0.24abc	10.82 ± 0.30a
,	28°C 4.07 ± 0.12(deg 5.23 ± 0.13bc	6.08 ± 0.17abc	: 5.69 ± 0.15a	6.81 ± 0.22g	6.55 ± 0.25g	6.42 ± 0.26de	7.25 ± 0.26d
[†] Differen	t letters indicate sic	phificant differences a	t each time point	(two-way ANOV,	A and Tukey's HSI	D test, <i>P</i> <0.05).		

							Ю-0-R	
Genoryp								
IIme	0°0°	14 DAS 0 64 ± 0 20abcda†	16 UAS	18 DAS	21 DAS	24 DAS	28 UAS	
Bowman	28°C	0.00 ± 0.00e	$0.82 \pm 0.12c$	$1.09 \pm 0.09d$	$2.09 \pm 0.09c$	3.00 ± 0.23e	5.91 ± 0.16d	
	_20°C	0.91 ± 0.21cd	1.73 ± 0.14ab	2.45 ± 0.21bc	3.09 ± 0.31abc	: 4.73 ± 0.38abd	6.09 ± 0.37d	
DVZ3U	_28°C	0.18 ± 0.12abe	1.36 ± 0.20bc	1.64 ± 0.24ad	3.09 ± 0.21abc	: 3.91 ± 0.25de	5.91 ± 0.28d	
10 elite	20°C	0.55 ± 0.16abcde	2.00 ± 0.00ab	2.00 ± 0.00abc	3.64 ± 0.24ab	5.36 ± 0.20abc	9.00 ± 0.45ab	
	_28°C	0.00 ± 0.00e	1.36 ± 0.15bc	2.00 ± 0.00abc	3.00 ± 0.23abc	: 5.09 ± 0.09abd	8.36 ± 0.28abc	
10 wild	20°C	0.82 ± 0.12acd	1.91 ± 0.09ab	2.00 ± 0.00abc	3.45 ± 0.16ab	5.36 ± 0.20abc	8.82 ± 0.23ab	
	_28°C	0.00 ± 0.00e	1.55 ± 0.16abc	2.18 ± 0.12abc	3.45 ± 0.16ab	5.09 ± 0.16abd	$6.55 \pm 0.28cd$	
16_elite	20-02 28°C	1.09 ± 0.09d 0.27 + 0.14abce	2.00 ± 0.19ab 1.36 + 0.15bc	2.18 ± 0.12abc	4.00 ± 0.13a 3.82 + 0.18a	5.82 ± 0.38abc 6.00 + 0.30bc	10.18 ± 0.460 10.09 + 0.28ab	
10.01	_20°C	0.91 ± 0.21cd	2.27 ± 0.14a	2.36 ± 0.15abc	3.82 ± 0.18a	5.73 ± 0.33abc	9.36 ± 0.31ab	
	28°C	0.09 ± 0.09be	1.36 ± 0.15bc	2.09 ± 0.09abc	4.00 ± 0.27a	5.73 ± 0.19abc	10.00 ± 0.30ab	
4.7 olito	20°C	0.73 ± 0.14abcd	1.55 ± 0.25abc	1.73 ± 0.19abd	3.18 ± 0.30abc	: 4.55 ± 0.34ad	8.18 ± 0.67ac	
	_28°C	0.27 ± 0.14abce	1.36 ± 0.24bc	1.82 ± 0.23abd	3.18 ± 0.30abc	: 5.36 ± 0.39abc	8.18 ± 0.62ac	
17 wild	20°C	0.91 ± 0.09cd	1.82 ± 0.12ab	2.18 ± 0.12abc	3.73 ± 0.27ab	5.55 ± 0.21abc	8.64 ± 0.34ab	
	28°C	0.55 ± 0.16abcde	1.64 ± 0.20ab	2.64 ± 0.15c	3.73 ± 0.19ab	6.64 ± 0.39c	9.55 ± 0.34ab	
Time		31 DAS	35 DAS	38 DAS	42 DAS	45 DAS	49 DAS	52 DAS
Bowman	20°C	8.82 ± 0.50de	10.27 ± 0.65gh	12.00 ± 0.62fg	15.45 ± 0.59df	18.55 ± 0.96eh	21.73 ± 0.99cef	23.73 ± 0.70bef
	_28°C	6.45 ± 0.21f	9.91 ± 0.56gh	13.36 ± 0.53fg	19.64 ± 0.91acd	24.64 ± 0.75abcde	e29.09 ± 0.87abdgl	134.82 ± 1.26cdg
D00///A	20°C	7.27 ± 0.38ef	8.55 ± 0.34g	10.00 ± 0.27f	12.91 ± 0.56f	15.09 ± 0.89h	18.64 ± 0.72f	20.55 ± 0.90ef
062770	_28°C	7.09 ± 0.48ef	9.91 ± 0.68gh	11.55 ± 0.55fg	15.82 ± 0.78df	19.55 ± 0.62aeh	20.09 ± 1.02ef	20.45 ± 0.84f
10 olito	20°C	11.55 ± 0.39abc	16.00 ± 0.56abcd	19.82 ± 0.54abc)	22.82 ± 0.71ab	25.55 ± 0.61abcd	27.27 ± 0.92abcd	28.91 ± 1.16abc
	_28°C	9.82 ± 0.40ad	14.73 ± 0.41abcf	18.45 ± 0.62ab	24.09 ± 0.91abe	28.91 ± 0.80bdfg	32.55 ± 0.71dgh	35.18 ± 0.92cdg
10 wild	20°C	10.55 ± 0.21abd	12.00 ± 0.33efh	14.09 ± 0.46eg	17.36 ± 0.54cdf	20.73 ± 0.89aceh	25.27 ± 0.81abcef	27.36 ± 0.74abef
	_28°C	6.82 ± 0.23ef	10.91 ± 0.25egh	14.64 ± 0.58deg	20.09 ± 1.16acd	23.18 ± 0.62abce	25.45 ± 0.67abcef	[:] 26.64 ± 0.61abef
16 elite	20°C ,	12.73 ± 0.76bc	17.45 ± 0.96cd	21.45 ± 0.87bc	26.73 ± 1.54be	32.09 ± 1.99fg	34.55 ± 2.00gh	36.36 ± 1.54dg
	_28°C `	12.45 ± 0.37bc	16.64 ± 0.51bcd	20.27 ± 0.71abc)	25.73 ± 1.29be	27.00 ± 1.00bcdfg	29.73 ± 1.44abdgł	ו31.55 ± 1.83acdg
16 wild	20°C .	12.10 ± 0.43abc	16.27 ± 0.27abcd	20.00 ± 0.70abc)	23.64 ± 0.80ab	25.64 ± 1.09abcdf	27.82 ± 0.87abcdg	g27.64 ± 0.83abe
	_28°C `	13.45 ± 0.49c	18.00 ± 0.59d	22.27 ± 0.89c	29.27 ± 1.27e	32.27 ± 1.66g	35.27 ± 1.77h	37.64 ± 1.81g
17 elite	20°C	9.82 ± 0.63ad	13.82 ± 1.08abef	$18.27 \pm 1.11abd$	22.36 ± 1.65abc	:24.36 ± 1.86abcde	26.82 ± 2.07abcde	e29.36 ± 2.25abcd
	_28°C	9.82 ± 0.75ad	13.82 ± 0.91abef	17.45 ± 1.35ade;	22.36 ± 1.40abc	:26.91 ± 1.83bcdfg	30.55 ± 2.37adgh	32.27 ± 2.15acdg
17_wild	20°C	10.91 ± 0.28abd 11 73 + 0 49abc	13.45 ± 0.62aef 15 82 + 0 42ahcd	17.64 ± 0.62ade	19.64 ± 0.97acd 24 91 + 1 34ahe	121.91 ± 1.50ace	23.45 ± 1.45bcef 35 00 + 1 84b	25.18 ± 1.85abef 36.45 + 1.95dd
† Differen	t letters	indicate significant	differences at ear	ch time point (two	o-way ANOVA a	nd Tukey's HSD te	ist, P<0.05).	

Table T Total tiller number during barley growth and development (related to Fig. 5-6)

Genotype	eTemp)		SPAD readings	± SEM (<i>n</i> =11)		
Time		16 DAS	23 DAS	30 DAS	37 DAS	44 DAS	52 DAS
Bourmon	20°C	41.45 ± 0.91adef [†]	45.02 ± 0.64bcd	44.96 ± 0.44cde	46.88 ± 0.81ab	45.64 ± 0.59a	42.68 ± 2.06bc
Dowman	28°C	39.27 ± 1.13f	39.97 ± 0.48ef	41.42 ± 0.44ef	42.15 ± 0.52cd	37.44 ± 3.88ab	0.85 ± 0.85f
D/1/200	20°C	39.55 ± 1.21f	40.55 ± 0.91efg	39.99 ± 0.40fg	40.85 ± 0.41cde	42.55 ± 0.47ab	43.27 ± 0.51c
DVV290	_28°C	38.53 ± 0.50f	37.90 ± 0.61f	37.48 ± 0.51g	36.99 ± 0.50e	33.90 ± 3.46abc	0.00 ± 0.00f
10 olito	20°C	44.48 ± 1.07abcde	47.97 ± 0.60abc	46.61 ± 1.02abc	47.52 ± 1.15ab	47.55 ± 0.99a	29.57 ± 4.96abc
IU_ente	28°C	42.58 ± 0.75adef	42.83 ± 0.61deg	44.38 ± 0.66cde	44.87 ± 0.60bc	43.61 ± 0.60ab	7.95 ± 4.03def
10 wild	20°C	39.94 ± 1.02ef	43.79 ± 1.19deg	42.54 ± 0.80def	42.45 ± 0.62cd	44.15 ± 0.75ab	42.65 ± 1.66bc
TO_wild	28°C	38.69 ± 0.77f	40.27 ± 0.44ef	39.26 ± 0.55fg	40.35 ± 0.87de	42.05 ± 0.66ab	23.06 ± 5.38ad
16 olito	20°C	45.75 ± 0.74bcd	48.75 ± 1.28ab	45.42 ± 1.21bcd	45.20 ± 0.78abc	;45.63 ± 0.55a	19.18 ± 5.05ade
TO_ente	28°C	43.18 ± 0.97abdef	44.16 ± 0.52cdg	41.91 ± 0.44def	41.25 ± 0.61cde	10.82 ± 5.00d	0.16 ± 0.16f
16 wild	20°C	45.04 ± 0.68abcd	45.41 ± 0.64bcd	45.20 ± 0.93bcd	44.99 ± 0.92bc	42.62 ± 0.83ab	24.01 ± 4.00ad
TO_WIIU	28°C	41.01 ± 0.40aef	41.74 ± 0.32defg	140.04 ± 0.46fg	37.33 ± 1.78e	13.80 ± 5.20d	4.97 ± 3.73ef
17 olito	20°C	47.50 ± 1.41bc	49.77 ± 1.13a	49.62 ± 1.02a	49.50 ± 0.87a	47.55 ± 0.90a	25.19 ± 4.38ad
1/_ente	28°C	45.75 ± 1.31bcd	$45.36 \pm 0.76 bcd$	45.49 ± 0.60bcd	47.76 ± 1.17ab	21.13 ± 6.40cd	3.37 ± 3.37ef
17 wild	20°C	48.93 ± 0.79c	49.85 ± 0.81a	48.78 ± 1.06ab	48.99 ± 0.86ab	43.02 ± 1.22ab	25.75 ± 5.26ab
	28°C	44.32 ± 0.90abcde	43.71 ± 0.83deg	44.11 ± 0.60cde	42.35 ± 0.76cd	30.27 ± 4.79bc	3.34 ± 2.86ef

Table 18 Chlorophyll content in the second leaf during barley growth and development (related to Fig. 5-8).

[†] Different letters indicate significant differences at each time point (two-way ANOVA and Tukey's HSD test, *P*<0.05).

Time		12 DAS	19 DAS	27 DAS	33 DAS	40 DAS
Genotype	Temp		Ppd-H1 relat	tive expression ± S	EM (<i>n</i> =3)	
10 olito	20°C	0.5953 ± 0.0771a†	1.0878 ± 0.1463a	1.4070 ± 0.0896a	0.9001 ± 0.1029a	0.9610 ± 0.1550ab
	28°C	0.4858 ± 0.0818a	0.6202 ± 0.0438b	0.4941 ± 0.0558b	0.4351 ± 0.1101a	0.4889 ± 0.0468c
10 wild	20°C	0.9827 ± 0.1660a	0.6969 ± 0.0813ab	1.4690 ± 0.0070a	1.1348 ± 0.1484a	1.0965 ± 0.1195b
TU_WIU	28°C	0.9601 ± 0.3120a	0.4276 ± 0.0235b	1.3214 ± 0.2059a	1.1150 ± 0.3222a	0.5234 ± 0.0231ac
	_		FT1 relativ	e expression ± SEI	M (<i>n</i> =3)	
10 alita	20°C	0.0039 ± 0.0010ab	0.1057 ± 0.0515a	0.3694 ± 0.0952ab	1.0975 ± 0.1111ab	0.5810 ± 0.0959a
	28°C	0.0012 ± 0.0004a	0.0366 ± 0.0049a	0.0907 ± 0.0114a	0.3794 ± 0.0981b	0.3756 ± 0.1634a
10 wild	20°C	0.0149 ± 0.0035b	0.1366 ± 0.0212a	0.5773 ± 0.0895b	1.3145 ± 0.4021ab	1.7149 ± 0.1277b
	28°C	0.0112 ± 0.0043ab	0.0994 ± 0.0211a	0.3241 ± 0.0911ab	2.2500 ± 0.6589a	0.6048 ± 0.1410a
			VRN1 relati	ve expression ± SE	EM (<i>n</i> =3)	
10 alita	20°C	0.8940 ± 0.1655a	4.1969 ± 0.9151a	6.5418 ± 1.2402a	8.3500 ± 0.6266a	6.7857 ± 1.5543a
	28°C	0.6817 ± 0.0982a	2.5177 ± 0.0956a	0.1257 ± 0.2178b	5.8349 ± 1.3113a	4.6895 ± 0.6559a
10 wild	20°C	1.0197 ± 0.0964a	1.8994 ± 0.0371a	7.1400 ± 0.8869a	6.4362 ± 0.6593a	5.3958 ± 0.4752a
	28°C	0.9393 ± 0.2899a	2.9647 ± 0.8071a	8.0983 ± 0.3481a	5.9167 ± 1.1447a	3.1167 ± 0.5153a
			BM3 relativ	ve expression ± SE	M (<i>n</i> =3)	
10 alita	20°C	2.5E-05 ± 2.5E-05a	0.0003 ± 0.0001a	0.0388 ± 0.0179a	0.2197 ± 0.0106ab	0.3027 ± 0.0326a
	28°C	3.1E-06 ± 2.4E-06a	0.0003 ± 0.0002a	0.0063 ± 0.0014a	0.1010 ± 0.0397b	0.3052 ± 0.0625a
10 wild	20°C	5.6E-05 ± 2.7E-05a	0.0014 ± 0.0002a	0.1192 ± 0.0111ab	0.3416 ± 0.0169a	0.3058 ± 0.0255a
	28°C	2.6E-05 ± 1.6E-05a	0.0180 ± 0.0002b	0.2793 ± 0.0933b	0.3157 ± 0.0330a	0.1904 ± 0.0135a
			BM8 relativ	ve expression ± SE	M (<i>n</i> =3)	
10 alita	20°C	0.0005 ± 2.9E-04a	0.0016 ± 6.5E-04a	0.0097 ± 0.0041a	0.1119 ± 0.0111a	0.2633 ± 0.0129a
	28°C	0.0004 ± 1.3E-04a	0.0005 ± 2.6E-05a	0.0025 ± 0.0005a	0.1331 ± 0.0456a	0.4696 ± 0.1616ab
10 wild	20°C	0.0003 ± 5.4E-05a	0.0007 ± 1.4E-04a	0.0525 ± 0.0098a	0.1961 ± 0.0511a	0.7725 ± 0.0194b
	28°C	0.0002 ± 4.5E-05a	0.0102 ± 9.1E-04b	0.1879 ± 0.0373b	0.5960 ± 0.0811b	0.6754 ± 0.0479b
			ELF3 relati	ve expression ± SE	EM (<i>n</i> =3)	
10 alita	20°C	0.9134 ± 0.1589a	0.3463 ± 0.0968a	0.9213 ± 0.0614ab	0.4026 ± 0.0220a	0.7685 ± 0.1112a
	28°C	1.2925 ± 0.0467a	0.3143 ± 0.0160a	0.6066 ± 0.1113a	0.3339 ± 0.0433a	0.6138 ± 0.0253a
10 wild	20°C	1.0100 ± 0.2786a	0.4938 ± 0.0248a	1.2601 ± 0.0985b	0.5108 ± 0.0562a	1.3877 ± 0.0381b
	28°C	0.5650 ± 0.1950a	0.3073 ± 0.0390a	0.7655 ± 0.0431a	0.3744 ± 0.0381a	0.5744 ± 0.0845a

Table 19 Transcript levels of barley flowering genes during growth and development (related
to Fig. 5-10B).

[†] Different letters indicate significant differences at each time point (two-way ANOVA and Tukey's HSD test, *P*<0.05).

Acknowledgments

First of all, I would like to thank my supervisor Professor Dr. Marcel Quint for giving me the opportunity to work in his group and guiding me throughout my PhD. I will always be very grateful for his constant encouragement and inspirational advice, as well as for giving me great freedom to work on diverse scientific projects. These are necessary for me to complete this thesis. In addition, this thesis would not have been possible without the funding support of the European Social Fund (ESF).

Then, I wish to gratefully appreciate Dr. Carolin Delker and Dr. Usman Muhammad Anwer for their encouragement, enlightening discussions, and suggestions during our scientific meetings. I would like to thank Professor Dr. Klaus Pillen, Dr. Andreas Maurer, and Tanja Zahn for the great collaboration in our barley project.

Many results presented in this thesis are inseparable from the contributions of my colleagues. I would like to thank Jana Trenner for her help with the phylogenetic analysis and microscopy, as well as Dr. Steve Babben and Finn Esche for their assistance in barley phenotyping and sequencing. I would like to thank Kathrin Denk, Annette Pahlich, Matthias Reimers, and Lara Grüttner for their help in the experiments. I also greatly appreciate the efforts of Dr. Albrecht Serfling in the barley yield component experiment.

I am also thankful to all members of the Quint lab for their understanding and support. I thank the AGRIPOLY Graduate School 'Determinants of Plant Performance' for providing a great international research environment in Halle. Special thanks to PD Dr. Carsten Milkowski for organizing all meetings, lectures, and excursions.

Last but not least, I would like to thank my friends and family for their unconditional and endless support during my PhD.

Curriculum Vitae

Personal data

Name	Zihao Zhu
Date of birth	12 November 1992
Place of birth	Shanghai, China
Nationality	Chinese

Education

Since Dec 2017	PhD student Crop Physiology Martin-Luther- University Halle-Wittenberg, Germany
Sep 2015 – Sep 2017	MSc Plant Sciences Wageningen University & Research, the Netherlands
Sep 2011 – July 2015	BSc Plant Biotechnology Shanghai Jiao Tong University, China

List of publications

- **Zhu Z**, Quint M, Anwer MU. 2022. Arabidopsis EARLY FLOWERING 3 controls temperature responsiveness of the circadian clock independently of the evening complex. Journal of Experimental Botany 73, 1049-1061.
- Zahn T, **Zhu Z**, Ritoff N, Krapf J, Junker A, Altmann T, Schmutzer T, Tueting C, Kastritis PL, Quint M, Pillen K, Maurer A. 2022. Exotic alleles of EARLY FLOWERING 3 determine plant development and grain yield in barley. bioRxiv, 2022.07.15.500212. [Preprint]
- **Zhu Z**, Esche F, Babben S, Trenner J, Serfling A, Pillen K, Maurer A, Quint M. 2023. An exotic allele of barley EARLY FLOWERING 3 contributes to developmental plasticity at elevated temperatures. Journal of Experimental Botany, doi: 10.1093/jxb/erac470.

Declaration under Oath

Eidesstattliche Erklärung / Declaration under Oath

Ich erkläre an Eides statt, dass ich die Arbeit selbstständig und ohne fremde Hilfe verfasst, keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

I declare under penalty of perjury that this thesis is my own work entirely and has been written without any help from other people. I used only the sources mentioned and included all the citations correctly both in word or content.

Datum / Date

Unterschrift des Antragstellers / Signature of the applicant