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Abstract

We identify Co1, M(24)′ and the Monster group from their 3-local information.

Let G be a finite group and H1 and H2 be two subgroups of G such that H1 is

the normalizer of a 3-central element in G and H2 is the normalizer of a maximal

elementary abelian 3-group in G. In this thesis we show that if H1 has shape

31+12.2Suz : 2, H2 has shape 38 : Ω−8 (3) and H1∩H2 has shape 38.36.2U4(3) : 2, then

G is isomorphic to the Monster group. If H1 has shape 31+10.U5(2) : 2, H2 has shape

37Ω7(3) and H1 ∩H2 has shape 37.35.U4(2) : 2, then G ∼= M(24)′. If H1 has shape

31+4.Sp4(3) : 2, H2 has shape 36 : 2M12 and H1 ∩H2 has shape 36.32.(GL2(3)× 2),

then G ∼= Co1. Also we identify the group M(24)′ by the structure of the normalizer

of a 3-central element.
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Chapter 1

Introduction

The classification of the finite simple groups is announced around 1981. Let me give

some notations to state the classification theorem. Set K1 := {Zp; p is a prime},
K2 := {An;n ≥ 5} (the alternating groups of degree at least 5) and let K3 be the set

of all simple groups of Lie type and K4 be the set of all 26 sporadic simple groups.

Set K :=
⋃4
i=1Ki. Now we can state the classification theorem.

Theorem 1.1 (Classification Theorem) Each finite simple group is isomorphic to

one of the groups in K.

The first proof for theorem 1.1 was so complicated. So, soon after the classifica-

tion was announced, Gorenstein, Lyons and Solomon started a program whose aim

was to give a better proof for theorem above. We refer the reader to ([GLS1]-[GLS6])

for more details of this program.

Let me give the following definition. In what follows p is a prime.

Definition 1.2 Let G be a finite group and let p be a prime.

i) Op(G) is the largest normal p-subgroup of G.

ii) We say that G has characteristic p if CG(Op(G)) ≤ Op(G).

iii) A local p-subgroup of G is a subgroup of the form NG(T ) for some p-subgroup

1 6= T of G. If each p-local subgroup of G has characteristic p we say that G has

local characteristic p.

iv) G is called Kp-group if any simple section in any p-local of G is isomorphic

to one of the groups in K.

4



Many of the groups in K are of local characteristic p, for some prime p. For

example, each group of Lie type defined over a field of characteristic p is of local

characteristic p. There are also some examples of the groups in K4, such as the

groups J4, M24 and TH for p = 2, Ly for p = 5 and ON for p = 7. Also each group

Ap is of local characteristic p and so there are some examples in the groups in K2.

It seems that the classification of all finite Kp-groups of local characteristic p will

give a new proof for theorem 1.1. This is the main idea of a recent program led by

Meierfrankenfeld, Stellmacher and Stroth (see [MS] and [MSS]). The main idea of

this program is to classify the finite groups of local characteristic p, for p a prime,

and this thesis has application in this project. In the next sections of this chapter

we close to the classification of the finite groups of local characteristic p to see where

this thesis is applied.

1.1 Groups of local characteristic p and H-Structure

Theorem

In this section at first, we give some information about the classification of the

finite groups of local characteristic p, in general. Then we will state the H-structure

theorem where this thesis is applied. Our information in this section come from

[MSS] and [MS]. In what follows p is a prime.

Assumption *: G is a Kp-group and each local subgroup of G which contains

a Sylow p-subgroup of G is of characteristic p.

In [MSS], they split the project into three major parts:

1) Modules.

2) Local Analysis.

3) Global Analysis.

To see the connection between these steps we invite the reader to see ([MS] and

[MSS], specially example 1.2 in [MSS]). In fact, the main results of the steps 1 and

2 for a finite group G which satisfies the assumption *, are the structures of some

p-locals of the group G (an amalgam for G), and in the next step (step 3 (global

analysis)) they need to identify the group G with these p-local information. This
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thesis has application in the final step of this program (step 3) when the groups

M(24)′, Co1 and F1 are appeared. In the remainder of this section we state the H-

theorem where this thesis is applied. We note that H-structure theorem is proved

in [MS].

To state the H-structure theorem precisely, we need more definitions, but here we

just give some definitions and we state the H-structure theorem to see an application

of this thesis. We recall that H-structure theorem is proved in [MS] and we invite

the reader to see [MS] for an exact exposition of H-structure theorem. In what

follows, p is a prime, G is a finite Kp-group and S ∈ Sylp(G).

Notations: 1) `(S) is the set of all subgroups X ≤ G of characteristic p and

containing S.

2) For M ∈ `(S), by ([MSS], lemma 2.0.1) we denote by YM the unique maximal

elementary abelian normal p-subgroup of M such that Op(M/CM(YM)) = 1.

3) C = NG(Ω1(Z(S))) and C̃ ∈ `(S) with C ≤ C̃ and C̃ is maximal. Set

Q = Op(C̃).

4) Set E = Op(F ?
p (CC̃(YC̃))), where F ?

p (X) is the inverse image of F ?(X/Op(X)).

5) For M ∈ `(S), set M0 =
〈
QM
〉

and M0 = M0S.

E-uniqueness: If X is some p-local of G with E ≤ X, then X ≤ C̃.

Assume thatM ∈ `(S) and we have E-uniqueness. Then by ([MSS], lemmas 2.4.1

and 2.4.2) we get that M = M0(M ∩ C̃). Therefore M0 determins the structure of

M . We recall that a subgroup P ∈ `(S) is called minimal parabolic if S is contained

in a unique maximal subgroup of P and S is not normal in P . Now we can state

the H-structure theorem.

Theorem 1.3 (H-Structure Theorem)

Let G be a finite group which satisfies the assumption *. Assume that Op(〈X|X ∈ `(S)〉) =

1 and we have E-uniqueness. Let M ∈ `(S) with M0 be maximal and YM is not

contained in Q. Then one of the following holds.

(1) There is a subgroup H of G with M0 ≤ H and Op(H) = 1, such that for

F ?(H) the parabolics containing S are as in one of the folowing groups.

i) A group of Lie type in characteristic p and of rank at least three.

ii) p = 2 and we have He, Co2, Co1, M(24)′, J4, Suz, F2, F1 or U4(3).
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iii) p = 3 and we have Co1, M(24)′ or F1.

(2) p = 2 and M is an extension of an elementary abelian group of order 16 by

L3(2), C̃ is an extension of an extraspecial group of order 32 by S3 × S3. Further

there are minimal parabolics P1 and P2 with P1/O2(P1) ∼= P2/O2(P2) ∼= S3 and

O2(〈P1, P2〉 = 1.

(3) p = 3, M and C̃ are as in Co3. There are two minimal parabolics P1 and P2

with P1/O3(P1) ∼= L2(9), P2/O3(P2) ∼= SL2(9) and O3(〈P1, P2〉 = 1.

(4) M0 is a minimal parabolic.

Let me look at the results of theorem 1.3, in details. In case (3) by [KPR] we

get that G ∼= Co3 and in case (2) it seems that by [As4] the group G is known and

F ?(G) ∼= G2(3). In case (1) of theorem 1.3 we have the structure of a subgroup H

of G and naturally the following question arises:

Question 1.4 Is H a proper subgroup of G?.

Our attempt in this thesis is to give a negative answer to question 1.4 in case

(1)(iii). In fact in this case (case (1)(iii)), by theorem 1.3 we have the structures

of two 3-local subgroups of G and in this thesis we will identify the group G with

these two 3-locals of G. Cases (1)(i) and (1)(ii) are still under investigations. But

we heard from Professor Stroth in [OR] that for case (1)(i) and when p is odd, it

would be interesting to prove the following theorem:

Theorem 1.5 Let G be a finite Kp-group containing a subgroup H which is a group

of Lie type in characteristic p and of rank at least three. If H is strongly p-embedded

( i.e NG(P ) ≤ H for each nontrivial p-subgroup P of H), then G = H

I heard that Professor Parker and Professor Stroth have recently proved the

theorem above. In the next sections we will state our main results and we will give

an outline of the proofs.

1.2 Main results

As we said in section 1.1, in this thesis we identify three finite known simple groups

Co1, M(24)′ and F1 from their 3-local information. Before we state our main theo-

rems we need some definitions.
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Definition 1 Let G be a finite group and S ∈ Syl3(G). We say that G is of Co1-

type, if there are two subgroups H1 and H2 in G containing S such that;

i) H1 = NG(Z(O3(H1))), O3(H1) is an extraspecial group of order 35, H1/O3(H1) ∼=
Sp4(3) : 2 and CH1(O3(H1)) = Z(O3(H1)) = 〈t〉.

ii) O3(H2) is an elementary abelian group of order 36 and H2/O3(H2) ∼= 2M12.

iii) (H1 ∩H2)/O3(H2) is an extension of an elementary abelian group of order 9

by GL2(3)× Z2.

Definition 2 Let G be a finite group, τ ∈ G be of order three and H1 = NG(〈τ〉).

We say that G is of M(24)′-type, if

i) O3(H1) is extraspecial group of order 311 and exponent 3, H1/O3(H1) ∼= U5(2) :

2 and CG(O3(H1)) = Z(O3(H1)).

ii) Let U be an elementary abelian subgroup in O2(H1) of order 16 such that

NH1(U)O3(H1)/O3(H1) is an extension of a special group of order 28 with center

UO3(H1)/O3(H1) by (3 × A5).2. Then 〈τ〉 is not weakly closed in CH1(A) with

respect to CG(A) for some subgroup A of U of order 4 such that all involutions in

A are non 2-central involutions in O2(H1).

Definition 3 Let G be a finite group and S ∈ Syl3(G). We say that G is of

Monster-type if there are subgroups H1 and H2 in G containing S such that:

i) H1 = NG(Z(O3(H1))), O3(H1) is extraspecial group of order 313, H1/O3(H1) ∼=
2Suz : 2 and CH1(O3(H1)) = Z(O3(H1)).

ii) O3(H2) is an elementary abelian group of order 38 and H2/O3(H2) ∼= Ω−8 (3)

with the natural action.

iii) (H1 ∩ H2)/O3(H2) is an extension of an elementary abelian group of order

36 by 2U4(3) : 2.

In this thesis we shall prove theorems 4, 5 and 6.

Theorem 4 A group of Co1-type is isomorphic to Co1.

Theorem 5 A group of M(24)′-type is isomorphic to M(24)′.

Theorem 6 A group of Monster-type is isomorphic to the largest sporadic simple

group, the Monster.
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Also we shall prove the following corollary.

Corollary 7 Let D be a finite group and S ∈ Syl3(G). Let D1 and D2 be two

subgroups of D containing S such that:

i) D1 = ND(Z(O3(D1))), O3(D1) is extraspecial group of order 311 and exponent

3, D1/O3(D1) ∼= U5(2) : 2 and CD1(O3(D1)) = Z(O3(D1)) = 〈α〉.
ii) O3(D2) is an elementary abelian group of order 37 and D2/O3(D2) ∼= O7(3)

with natural action.

iii) (D1 ∩ D2)/O3(D2) is an extension of an elementary abelian group of order

35 by U4(2) : 2.

Then D is isomorphic to M(24)′.

Theorem 4 is proved in chapter 3, theorem 5 and corollary 7 are proved in chapter

4 and theorem 6 is proved in chapter 5. We note that we have used of theorem 4 and

corollary 7 in the proof of theorem 6 and corollary 7 is a consequence of theorem

5. In the next section we give an outline of the proofs. We note that the results

of chapters 3 and 4 are published in [Sa1] and [Sa2], respectively. But the results

of chapter 5 still are not published elsewhere. Also we notice that, as a personal

interest we have identified the group M(24) from its 3-local information in [Sa3].

We follow [As3] for notations for Fischer’s groups. We have used the atlas [AT]

notations for group extensions and other simple groups except for orthogonal groups

and symplectic groups. By notations in [AT], we use of notations Ωε
n(q) and PSpn(q)

instead of Oε
n(q) and Sn(q), respectively. The other notations follow [As1]. For a

finite group G, O(G) is the largest normal subgroup of G of odd order. We denote

by p1+2n and pm+2n (m ≥ 2) an extraspecial group of order p1+2n and a special

group of order pm+2n with center of order pm, respectively. We say that H has

shape A.B.C.....Z when H has a normal series with factors of shape A,B,C, ..., Z.

1.3 An outline of the proofs

In this section we give an ouline of the proofs of our main theorems. We recall that

theorem 4 and corollary 7 are used in the proof of theorem 6.
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1.3.1 Theorem 4

This theorem is proved in chapter 3. Assume that G is of Co1-type and we keep

the notations in definition 1. The main idea is to show that G has an involution z

such that the group G and the involution z satisfy the conditions of theorem 2.3.3,

then the theorem 4 holds. We start by the group H2. Lemma 2.4.2 will give us

more information about the group H2. Set E = O3(H2). By 2.4.2, under the action

of H2/E on P (E) (the set of the subgroups of order 3 in E) we have three orbits

L, I and J such that |L| = 12, |I| = 132 and |J | = 220. Also by the structure of

H1 ∩H2 and 2.4.2 we have 〈t〉 ∈ J and t = abc where 〈a〉, 〈b〉 and 〈c〉 are in L and

〈ab〉 and 〈ab−1〉 are in I. Set U = 〈a, b〉 ≤ E. The major part of the proof is to find

the structure of the centralizer of each element of order three of U in the group G.

We explain the proof in four steps.

Setp 1: The structure of CG(U)

Set M = CG(U). Of course the structure of NM(〈t〉) and NM(E) are known.

This and lemma 2.4.4 will able us to select a suitable involution z ∈ CM(t) and

show that there is an element 1 6= h /∈ U of order three in CM(z) such that h is

conjugate to t in CM(z). Further CE(z) is of order 81 and contains a Sylow 3-

subgroup of CM(z). From the structure of H2 we could find a suitable involution

α ∈ NH2(U) \M such that CH1∩M(α) and CH2∩M(α) will satisfy the conditions of

theorem 2.3.6. Then theorem 2.3.6 will give us that CM(α) ∼= U4(2) and this will

help us to show that Y = O2(CM(t, z))O2(CM(h, z)) is an extraspecial group of

order 32. Then the structure of NM(Y )/ 〈U, Y 〉 ∼= S3 × S3 will be known. We will

invoke theorem 2.3.8 to show that NM(Y ) = CM(z) and then theorem 2.3.5 will give

us that M/U ∼= U4(3).

Step 2: The structure of CG(a)

Of course, from step 1 we have the structure of CG(U) = M and by lemma

2.4.2 we have the structure of CH2(a) as well. Set C = CG(z, a) and W = CE(z)

(remember z from step 1). By lemma 2.4.2 we get that |P (W )∩ I| = 4. Let u ∈ W
be conjugate to a in C ∩ H2 and u /∈ 〈U, c〉. The structure of M and lemma 2.4.2

will able us to show that K = O2(CC(u))O2(CC(c)) is an extraspecial group of order

27 and then the structure of NC(K)/ 〈a,K〉 ∼= U4(2) will be known. Again we will
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invoke theorem 2.3.8 to show that NC(K) = C and then theorem 2.3.4 will give us

that CG(a) ∼= 3Suz.

Step 3: The structure of CG(ab)

Set s = ab. From the structure of H2 we are able to find an involution

α ∈ (CG(s) ∩ NH2(U)) \ (CG(U)) such that CH1(α, s)/ 〈s, α〉 and CH2(s, α)/ 〈s, α〉
satisfy the conditions of theorem 2.3.6. Then theorem 2.3.6 will give us that

CG(s, α)/ 〈s, α〉 ∼= U4(2). This will be useful to show that CG(U) is of index 2 in

CG(s) and then CG(s) is known. In fact CG(s) ∼= 3U4(3) : 2.

Final step:

Set D = CG(z) (remember z from steps 1 and 2). From the structures of CG(a),

H1 and CG(s) we will be able to show that Q = O2(CD(a))O2(CD(s))O2(CD(t))

is an extraspecial group of order 29 and then the srructure of ND(Q)/Q ∼= Ω+
8 (2)

will be known. Finally, we will invoke theorem 2.3.8 to show that D = NG(Q) and

theorem 4 will follow from theorem 2.3.3.

1.3.2 Theorem 5 and Corollary 7

Theorem 5 and Corollary 7 are proved in chapter 4. Of course, Corollary 7 is a

consequence of theorem 5. Assume that G is of M(24)′-type. The strategy is to

show that there is an elementary abelian subgroup M of order 211 in G such that

G and M satisfy the conditions of theorem B in [Re]. Then the theorem will follow

from ([Re], lemma 9) and ([As3], theorem 34.1). By notations in definition 2 we

shall show that CH1(A) and CG(A) satisfy the conditions of theorem 1 in [Pa]. Then

by ([Pa], theorem 1) we have that CG(A)/A ∼= U6(2). This and ([SD], theorem

3.1) will give us that CG(z) ∼= 2M(22) : 2 for each involution z ∈ A. Of course,

the structure of CG(z) shows that there is an elementary abelian subgroup M of

order 211 containing z such that NCG(z)(M)/M ∼= M22 : 2 and CG(z,M) = M .

This and since all involutions of A are conjugate in G will able us to show that

NG(M)/M ∼= M24 and G and NG(M) satisfy the conditions of theorem B in [Re] as

desired.
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1.3.3 Theorem 6

This theorem is proved in chapter 5 and so we could use of theorem 4 and corollary

7. Assume that G is of Monster-type and we keep the notations in definition 3. We

start by choosing an involution z ∈ H1 such that zO3(H1) ∈ Z(H1/O3(H1)). Our

attempt is to show that there is an involution t ∈ G, t 6= z such that CG(z) and

CG(t) satisfy the conditions of theorem 2.3.1. Then theorem 6 follows from theorem

2.3.1. Set 〈τ〉 = Z(O3(H1)).

Let 〈r〉 ∈ (O3(H2) ∩ O3(H1)) be a non isotropic element under the action

of H2/O3(H2) on P (O3(H2)). Then we shall show that CH1(r)/ 〈r〉, CH2(r)/ 〈r〉,
CG(r)/ 〈r〉 and CH1∩H2(r)/ 〈r〉 satisfy the conditions of corollary 7. Thus by corol-

lary 7 we get that CG(r) ∼= 3M(24)′. Hence r is not conjugate to τ in G.

The actions of z on O3(H1) and O3(H2) show that L = CO3(H2)(z) = 〈τ, ε〉 is of

order 9. Also, in CH2(z) we have that τ is conjugate to ε and τε is conjugate to

τ−1ε. Further τε is conjugate to r in G. Set s = τε. Then CG(s, z) and CH1(z) will

able us to show that either O2(CG(z)) = 〈z〉 or O2(CG(z)) is an extraspecial group

of order 225. Set W = CG(z)/O2(CG(z)). The next step is to show that W is of

Co1-type. Then by theorem 4 we will get that W ∼= Co1.

From the structures of CG(z, τ) and CH2(z) and orbit calculations we can

show that there is an elementary abelian subgroup E of order 36 in W such that

NW (E)/E ∼= 2M12. To have that W is of Co1-type, we need to find another 3-local

subgroup X in W such that NW (E), X and X ∩ NW (E) satisfy the conditions of

definition 1. An easy observation shows that such a 3-local X of W is not contained

in any 3-local of W which is found up to now. So we need to generate such a

3-local subgroup X of W . This has been done by using of theorem 2.4.2 about the

structure of NW (E) and 3-local information of the group CG(z, τ) ∼= 3Suz. Then

we have that W ∼= Co1 by theorem 4. This will give us that CG(z) is as desired.

The next step is to find the involution t and the structure of CG(t).

The structure of CG(s, z) will able us to select an involution t in O2(CG(z, s)) such

that CG(z, t) and CG(t) satisfy the conditions of theorem 2.3.2. Thus by theorem

2.3.2 we get that CG(t) ∼= 2F2 and then theorem 6 follows from theorem 2.3.1.
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1.4 Recent characterizations for the sporadic sim-

ple groups

As we said in the last sections, in the final stage of the classification of the finite

groups of local characteristic p, p a prime, they need to identify a Kp-group G

from its p-local information. This is the idea behind of many recent identifications

for the sporadic simple groups, and here we will mention some of them. Ly and

the Monster are characterized from their 5-local information in [PR] and [PW1],

respectively. A 3-local identification for M(22) and U6(2) has been done in [Pa].

Co3 is characterized in [KPR] from two of its 3-local subgroups and in [PW2], the

Monster group is identified by its 7-local subgroups.
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Chapter 2

Preliminaries

In this chapter we give some preliminary lemmas and theorems which are required

in the next chapters.

2.1 Elementary definitions and results

Definition 2.1.1 Let G be a finite group and H be a subgroup of G. Let X ⊂ H.

Then X is said to be weakly closed in H with respect to G if XG ∩H = {X}.

Definition 2.1.2 Let p be a prime, a p-element x of a group G is called p-central,

if CG(x) contains a Sylow p-subgroup of G. If CG(x) does not contain a Sylow

p-subgroup of G, we say that x is non p-central.

Lemma 2.1.3 (Frattini Argument) Let H be a normal subgroup of G and P ∈
Sylp(H), for a prime p. Then G = NG(P )H.

Proof : See ([As1], 6.2).�

Lemma 2.1.4 (Three subgroup lemma) Let X, Y and Z be three subgroups of a

finite group G with [X, Y, Z] = [Y, Z,X] = 1. Then [Z,X, Y ] = 1.

Proof : See ([As1], 8.7).�

Definition 2.1.5 Let 1 6= T ≤ T1 ≤ H be groups, then T is called strongly closed

in T1 with respect to H, if T h ∩ T1 ≤ T for each h ∈ H.

14



Definition 2.1.6 For a prime p, a subgroup 1 6= T of a group H is called strongly

p-embedded in H if p divides |T | and p does not divide |T ∩ T g| for all g ∈ H such

that g /∈ T .

2.2 p-Groups

Definition 2.2.1 Let G be a finite p-group, p a prime.

i) Let K(G) be the set of all elementary abelian subgroups of G of maximal order.

Set J(G) = 〈K(G)〉. J(G) is called the Thompson subgroup of G.

ii) Ω1(G) = 〈g ∈ G; gp = 1〉.
iii) Φ(G) is the intersection of all maximal subgroups of G. Φ(G) is called the

Frattini subgroup of G.

iv) If Z(G) = [G,G] = Φ(G), then G is called a special group.

v) G is called an extraspecial group if G is special and Z(G) is cyclic.

Theorem 2.2.2 Suppose that p is a prime, X is a finite group and P ∈ Sylp(X).

Let x, y ∈ Z(J(P )) be X-conjugate. Then x and y are NX(J(P ))-conjugate.

Proof : Let X be a finite group and P ∈ Sylp(X). Let x, y ∈ Z(J(P )) be X-

conjugate. Then J(P ) ≤ (CX(x) ∩ CX(y)). Therefore there are T ∈ Sylp(CX(x))

and R ∈ Sylp(CX(y)) such that J(P ) ∈ T ∩ R. By definition 2.2.1(i) we get that

J(P ) = J(T ) = J(R). We have T g ≤ CX(y) for some g ∈ X. Therefore by Sylow’s

theorem we get that T gx = R for some x ∈ CX(y). This gives us that

J(P )gx = J(T )gx = J(T gx) = J(R) = J(P ).

Hence x is conjugate to y in NX(J(P )) and the lemma holds.�

Theorem 2.2.3 Let p be odd and P be an extraspecial p-group of order p1+2n and

exponent p. Then

i) P/Z(P ) is a 2n-dimensional symplectic space over GF (p).

ii) Aut(P )/Inn(P ) ∼= GSp2n(p) : 2.

Proof : ([GLS2], theorem 10.5).�
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Theorem 2.2.4 (Coprime action) Let G be a finite p-group and V be a finite group

of order coprime to p. Assume that G acts on V then

i) V = CV (G)[V,G].

ii) [V,G,G] = [V,G].

iii) Let N be a G-invariant normal subgroup of V , then CV/N(G) = CV (G)N/N .

iv) Let r be a prime divisor of |V |. Then there is a G-invariant Sylow r-subgroup

in V .

v) If G is elementary abelian and noncyclic then V =
〈
CV (g)|g ∈ G]

〉
.

Proof : i), ii), iii), iv) follow from ([As1], 24.4, 24.5, 18.7(1) and 18.7(4)) respec-

tively, and v) follows from ([BH], X.1.9).�

2.3 Some basic theorems

In this section we give some known theorems which are used in the next chapters.

We need the following theorem for identifying the Monster group in chapter 5.

Theorem 2.3.1 ([GMS]) Let G be a finite group containing two involutions z and

t such that F ∗(CG(z)) = K is an extraspecial 2-group of order 225, CG(z)/K ∼= Co1

and CG(t) ∼= 2F2, where F2 is the baby monster group. Then G is the Monster

group.

We make use of the next theorem for identifying F2, the baby monster group

when we use of theorem 2.3.1.

Theorem 2.3.2 ([Bi]) Let G be a finite group and z be an involution in G such

that

1) F ∗(CG(z)) is an extraspecial 2-group of width 11, and

2) CG(z)/F ∗(CG(z)) is isomorphic to the second conway group Co2.

Then one of the following holds:

a) G = O(G)CG(z).

b) G is isomorphic to F2, the baby monster group.

The next theorem identifies Co1 by the structure of the centralizer of a 2-central

involution. We will apply this theorem in chapter 3 for identiying Co1.
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Theorem 2.3.3 ([As2], lemma 49.15) Let G be a finite group containing an involu-

tion z such that F ∗(CG(z)) = K is an extraspecial 2-group of order 29, CG(z)/K ∼=
Ω+

8 (2) and z is not weakly closed in K with respect to G. Then G is isomorphic to

Co1.

In chapter 3 for identifying Co1 we need to determine the structures of the

centralizers of two non 3-central elements. Therefore we shall use of the following

two theorems for the groups Suz and U4(3).

Theorem 2.3.4 ([As2], lemma 48.17) Let G be a finite group containing an involu-

tion z such that F ∗(CG(z)) = K is an extraspecial 2-group of order 27, CG(z)/K ∼=
Ω−6 (2) and z is not weakly closed in K with respect to G. Then G is isomorphic to

Suz.

Theorem 2.3.5 ([Ph]) Let t0 be an involution in U4(3). Denote by H0 the central-

izer of t0 in U4(3). Let G be a finite group with the following properties:

a) G has no subgroup of index 2.

b) G has an involution z such that H = CG(z), the centralizer of z in G is

isomorphic to H0.

Then G is isomorphic to U4(3).

We shall use of the following theorem in chapter 3.

Theorem 2.3.6 ([Ha]) Suppose that X is isomorphic to the centralizer of a non-

trivial 3-central element in PSp4(3) and that H is a group with an element d such

that CH(d) ∼= X. Let P ∈ Syl3(CH(d)) and E2 be the elementary abelian subgroup

of P of order 27. If E2 does not normalize any 3′-subgroup of H and d is not

H-conjugate to its inverse, then either H has a normal subgroup of index 3 or

H ∼= PSp4(3).

The next theorem will be required when we apply the theorem 2.3.6.

Theorem 2.3.7 ([Pa],lemma 6) Suppose that X is a group such that O3(X) is an

extraspecial group of order 27 and exponent 3, X/O3(X) ∼= SL2(3), O2(X) = 1
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and that a Sylow 3-subgroup of X contains an elementary abelian subgroup of order

27. Then X is isomorphic to the centralizer of a non-trivial 3-central element in

PSp4(3).

The following theorem will play a crucial role in the final stage of the proof of

theorem 1.4. This theorem is due to Goldschmidt.

Theorem 2.3.8 (Goldschmidt’s theorem) Let G be a finite group, S ∈ Syl2(G) and

A be an abelian subgroup of S such that A is strongly closed in S with respect to G.

Set M =
〈
AG
〉
. For X ≤ G, define X = MO(M)/O(M). Then

i) A = O2(M)Ω1(S).

ii) M is a central product of an abelian group and groups isomorphic to one of:

L2(2n), n ≥ 3, Sz(2n+1), n ≥ 1, U3(2n), n ≥ 2, L2(q) for q ≡ 3, 5 (mod 8), J1 or a

group of Ree type (2G3(3n), n > 1).

Proof : See ([Go], theorem A).�

Theorem 2.3.9 ([Go], theorem A and lemma 3.2) Let N be a finite simple group

isomorphic to L2(2n), n ≥ 3, Sz(2n+1), n ≥ 1 or U3(2n), n ≥ 2. Let T ∈ Syl2(N)

and B = NN(T ), then there is an abelian subgroup A of T such that A is strongly

closed in T with respect to N . Also we have

i) B is a semi-direct product TH where CH(T ) = 1 and [T,H] = T .

ii) If N ∼= L2(2n), then H is cyclic of order 2n − 1, A = T and A is elementary

abelian.

iii) If N ∼= Sz(2n+1), then H is cyclic of order 2n − 1, A = Z(T ), |A| = 2n,

|T | = 22n and A is elementary abelian.

iv) If N ∼= U3(2n), then H is cyclic of order 2n − 1/d where d = 1 if n is even

and d = 3 if n is odd, A = Z(T ), |A| = 2n, |T | = 23n and A is elementary abelian.

Theorem 2.3.10 ([Go], theorem A and lemma 3.4) Let N be a finite simple group

isomorphic to L2(q) for q ≡ 3, 5 (mod 8), J1 or a group of Ree type. Let T ∈
Syl2(N), then there is an abelian subgroup A of T such that A is strongly closed in

T with respect to N . Also we have

i) A = T .
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ii) If N ∼= L2(q), then |T | = 4 and NN(A) ∼= A4.

iii) If N is isomorphic to J1 or a group of Ree type, then O(CN(A)) = Z(NN(A))

is cyclic and NN(A)/CN(A) is a Frobenius group of order 21.

2.4 Modules

Definition 2.4.1 i) Let V be a vector space, P (V ) is the set of 1-dimensional sub-

spaces of V .

ii) Let H be a finite group, V a GF (p)H-module and A ≤ H, then we say that

A acts cubic on V if [V,A,A,A] = 1.

Lemma 2.4.2 Let X ∼= 2M12 and E be a faithful irreducible 6-dimensional

GF (3)X-module. Then X has three orbits L, I and J on P (E):

i) |L| = 12 and X is 5-transitive on L. For an element 〈x〉 of L, we have

CX(x) ∼= M11 and NX(〈x〉) ∼= 2×M11.

ii) |I| = 132 and for an element 〈x〉 of I, we have NX(〈x〉) ∼= A6.2 × 2 and

x = yz where 〈y〉 and 〈z〉 are two distinct elements of L.

iii) |J | = 220 and for an element 〈x〉 of J , we have NX(〈x〉) is an extension of

an elementary abelian group of order 9 by GL2(3) × 2 and x = ryz where 〈r〉, 〈y〉
and 〈z〉 are three distinct elements of L.

iv) Let 〈τ〉 be an element of the orbit L and U1 be a Sylow 3-subgroup of NX(〈τ〉).

Then |CE(U1)| = 33, the action of U1 on E is cubic and [E,U1] : U1 is a special

3-group of order 37 and exponent 3 with center of order 27.

v) Let x = x1x2x3 where 〈x1〉, 〈x2〉 and 〈x3〉 are three distinct elements of L.

Then |O3(CX(x1) ∩ CX(x))| = 9 = |O3(CX(x3x2) ∩ CX(x))| and [E,X1] : X1 is the

unique extraspecial 3-group of order 35 in E : CX(x) where X1 = O3(CX(x)). Also,

O3(CX(x)) does not centralize any element of the orbit L and acts cubic on E.

vi) Let T ∈ Syl3(E : X), then E is a characteristic subgroup of T .

vii) Let x ∈ X and 〈x1x2〉 ∈ I where 〈x1〉 and 〈x2〉 are two distinct elements of

L. If x centralizes x1x2, then x2 centralizes each xi, i = 1, 2.

Proof : Let K and Y be two non conjugate subgroups in X isomorphic to M11

(see ([AT],page 32)). Then every subgroup of index at most 12 in X/Z(X) ∼= M12 is

conjugate to the image of either K or Y . Moreover X = 〈Y,K〉 and Y ∩K ∼= L2(11).
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Let Z be one of the subgroups K, Y and K ∩ Y . By [JLPW] a faithful irreducible

GF (3)Z-module of dimension less or equal to 6 is 5-dimensional. This means that Z

normalizes in E a 1-subspace or a 5-subspace. Suppose that E contains a 1-subspace

normalized by K and a 1-subspace normalized by Y . Then both these 1-spaces are

normalized by K ∩ Y and hence they are the same and so normalized by the whole

X = 〈K,Y 〉, a contradiction to the irreducibility of E. Applying the same argument

we obtain that subspaces in E normalized by K and Y have different dimensions and

we can choose our notation such that Y normalizes a 1-space D and K normalizes

a 5-space H in E. Set L = {DX} and L1 = {HX}. Then L is an orbit of X on

P (E) of length 12 and L1 is an orbit of X on hyperplanes in E of Length 12 and X

is 5-transitive on both orbits L and L1. We note that for each element M ∈ L1 we

have that P (M) ∩ L = ∅.

Let 〈x〉 and 〈y〉 be two distinct elements of L and M ∈ L1. Then 〈x, y〉∩M 6= 1.

Let F = 〈xy〉 and C = 〈xy−1〉. Since P (M) ∩ L = ∅, either F ≤ M or C ≤ M .

Since X is 5-transitive on L1, we get that the intersection of any five elements of L1

is conjugate to either F or C. Let S be the set of all elements of L1 contaning F

and S1 = L1 \S. Assume that |S| ≥ 7, then by 5-transitivity of X on L1 we get that

there is an element g ∈ X such that |Sg ∩S| ≥ 5 and Sg 6= S. This gives us that the

interection of the elements in S, Sg and S ∩ Sg all are equal to F , a contradiction

to Sg 6= S. Hence |S| ≤ 6. A same argument shows that |S1| ≤ 6. Therefore both

F and C are contained in exactly six elements of L1. Since X is 5-transitive on L1

we get that F is conjugate to C. Hence X is transitive on the set I of all 〈x1x2〉
where 〈x1〉 and 〈x2〉 are two distinct elements of L and |I| = 2(12

2 ) = 132. Since X

is 3-transitive on L, the remaining (12
3 ) = 220 elements are in another orbit J and

the normalizer of any element of J is an extension of an elementary abelian group of

order 32 by GL2(3)× 2 and the normalizer of any element of I is 2×A6.2. So i),ii)

and iii) hold. We note that as E is a faithful irreducible X-module, for involutions

x ∈ Z(X) we have that x acts fixed point freely on E.

Let x ∈ X and x centralize an element 〈δδ1〉 from the orbit I where 〈δ〉 and

〈δ1〉 are in the orbit L. Then (δδ1)x = δxδx1 = δδ1. It gives that δx = δδ1(δx1 )−1.

As δ is not conjugate to δδ1 and δδ1δ2 in X for each δ2 ∈ L and δ2 /∈ {δ1, δ}, we

get that x2 centralizes δ and δ1 and vii) holds. Let 〈τ〉 ∈ L, U1 ∈ Syl3(CX(τ))

and T = 〈τδδ1〉 ∈ J . Set N1 = NX(T ), U = O3(N1) and let P ∈ Syl3(N1). By i)

20



and ([AT], page 18) we get that CX(τ, δδ1) is an extension of an elementary abelian

group of order 9 by a cyclic group of order 4. Hence by vi) and conjugations in

CX(τ) we may assume that 〈δ, δ1〉 ≤ CE(U1). Therefore 〈τ, δ, δ1〉 ≤ CE(U1) and

|CE(U1)| ≥ 33. By ([AT],page 32) we get that NX(P )/P is of order 8 and by iii)

we have that N1/U ∼= GL2(3)× 2. Hence NX(P ) = NN1(P ). This and i),ii)and iii)

give us that CE(P ) = T . We have CE(U1) is NX(U1)-invariant and by ([AT], page

32) we get that NX(U1)/U1
∼= GL2(3)× 2. Therefore if |CE(U1)| ≥ 34, we get that

|CE(P )| ≥ 9 which is a contradiction. Hence |CE(U1)| ≤ 33. This gives us that

CE(U1) is of order 27 and 〈τ, δ, δ1〉 = CE(U1). We assume that U is conjugate to U1

in X, then |CE(U)| = 27. By iii) we have N1 = U(B1 × Z2), where B1
∼= GL2(3).

Let x ∈ B1 be of order three and 〈U, x〉 = P . Under the action of B1 we have

CE(U) = T ⊕ E1 where |E1| = 32. Since E1 is a natural B1-module, x centralizes

one element of order three in E1. But this is a contradiction to CE(P ) = T . This

contradiction shows that U and U1 are not conjugate in X. As T is the only subgroup

of order three of E which is B1-invariant, we have CE(U) = T .

By ([AT],page 18), NCX(τ)(U1) = U1B where B ∼= SD16. By ([Ch], theorem

A) we get that U and U1 do not act quadratically on E. Let i ∈ Z(B1) be an

involution. Then i is a 2-central involution in X. Let z ∈ Z(B) be an involution.

Then by ([AT],page 18) CCX(τ)(z) ∼= GL2(3). As z is of determinant 1, either∣∣CE/〈τ〉(z)
∣∣ = 3 or

∣∣CE/〈τ〉(z)
∣∣ = 33. By ([AT],page 18)NCX(τ)(r̂) is a subgroup

of M10 × 2 for each element r̂ ∈ E/ 〈τ〉 of order three. As there is no subgroup

isomorphic to CCX(τ)(z) in M10× 2, we get that
∣∣CE/〈τ〉(z)

∣∣ 6= 3 and then |CE(z)| =
34. Since each involution z in CX(τ) is conjugate to i in X and |CE(z)| = 34, we

have |CE(i)| = 34. Let E1 and E2 be two subgroups of E such that E1/T = CE/T (U)

and E2/CE(U1) = CE/CE(U1)(U1). Then E1 is B1-invariant and E2 is B-invariant.

Therefore R = 〈E1, U〉 is an extraspecial group. So |E1| = 33. Since i acts fixed

point freely on E1/T and |CE(i)| = 34, we get that i acts trivially on E/E1. Let x

be an element in E/E1, then xi = x and [x, u]i = [x, u] for each u ∈ U . This gives

that [x, u] = 1. Therefore [E,U ] ≤ E1. Hence [E,U, U ] ≤ [E1, U ] = T . Obviously

[E,U ] 6= T . So [E,U, U ] = T and U acts cubic on E. Therefore R is the unique

extraspecial normal subgroup in EN1 of order 35. We have 〈τ, δ, δ1〉 = CE(U1). As

CE(z, U1) is B-invariant and z ∈ Z(B), by vi) we get that CE(U1) ≤ CE(z). This

gives us that 〈E2, U1〉 is a special group of order 37. Hence [E,U1] is of order 35 and
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U1 acts cubic on E.

Let F = E : P then F ∈ Syl3(E : N1) . Let A be an elementary abelian

subgroup of P of order 32. Then |U ∩ A| ≥ 3. As for each element x1 ∈ U we have

|CE(x1)| ≤ 33, we get that |CE(A)| ≤ 33. So for each element y ∈ P of order three

we have |CE(y)| ≤ 34. Hence E is the unique maximal abelian subgroup of F . Now

iv),v),vi) hold and the lemma is proved. �

By 2.4.2 and ([AT],page 18) we have the following lemma.

Lemma 2.4.3 Let X ∼= M11 and E be a faithful irreducible 5-dimensional GF (3)X-

module. Then under the action of X on P (E) we have two orbits J1 and J2:

i) |J1| = 11, X is 4-transitive on J1 and for an element 〈x〉 ∈ J1, we have

CX(x) ∼= A6 and NX(〈x〉) ∼= M10.

ii) |J2| = 110. For an element 〈x〉 ∈ J2, we have CX(x) ∼= 32 : 4 and x = x1x2

where 〈x1〉 and 〈x2〉 are two distinct elements of J1.

The next lemma follows from ([AT],page 4) and 2.4.3.

Lemma 2.4.4 Let X ∼= A6 and E be a faithful irreducible 4-dimensional GF (3)X-

module. Then under the action of X on P (E) we have three orbits Y1, Y2 and Y3

such that:

i) |Y1| = 10 and for 〈x〉 ∈ Y1 we have CX(x) is an extension of an elementary

abelian group of order 9 by Z2. Further X is 3-transitive on Y1 and CX(x) has index

2 in NX(〈x〉).

ii) |Y2| = |Y3| = 15 and for 〈x〉 ∈ Yi we have CX(x) ∼= A4.

iii) Let T ∈ Syl3(E : X), then E is a characteristic subgroup of T .

Lemma 2.4.5 Suppose that X ∼= S4 and V is a faithful 3-dimensional GF (3)X-

module. Then

i) There is a set of 1-dimensional subspaces β = {〈v1〉 , 〈v2〉 , 〈v3〉} such that

X/O2(X) acts as S3 on β and each subspace in β is inverted by O2(X).

ii) X has orbits of length 3,6 and 4 on P (V ) with representatives 〈v1〉, 〈v1 + v2〉
and 〈v1 + v2 + v3〉 respectively.
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Proof : Let Q = O2(X) and Q] = {q1, q2, q3}. Then, as V is a faithful irreducible

GF (3)X-module and X acts transitively on Q] by conjugation, we get that V =

CV (q1) ⊕ CV (q2) ⊕ CV (q3) and that X permutes the subspaces {CV (qi)|1 ≤ i ≤ 3}
transitively. Setting 〈vi〉 = CV (qi), we have that i) holds.

Obviously {〈vi〉 |1 ≤ i ≤ 3} is an orbit of length 3 on P (V ). The subspaces

〈v1 ± v2 ± v3〉 form an orbit of length 4 and the subspaces 〈vi ± vj〉 with i 6= j give

an orbit of length 6. This proves ii). �

The following lemma is well-known.

Lemma 2.4.6 Suppose that X is a group, V is an elementary abelian normal 2-

subgroup of X and x ∈ X is an involution. Set C := CX(x). Then there is a one to

one correspondence between V C-orbits on the involutions in the coset V x and the

C-orbits on the elements of CV (x)/[V, x]. Furthermore, for vx an involution in V x,

|(vx)V C | = |(v[V, x])C ||[V, x]|.

Proof : The map (vx)V C 7−→ (v[V, x])C , where vx ∈ V x is an involution, is the

required bijection.�

Lemma 2.4.7 Suppose that X ∼= Ω−6 (2) ∼= PSp4(3) and V is the natural GF (2)X-

module of dimension 6. Then

i) X has two classes of involutions. Let x ∈ X be an involution, then 3 divides

|CX(x)|.
ii) X has two orbits V1 and V2 on P (V ) such that |V1| = 27, for 〈v〉 ∈ V1 we

have that CX(v) is an extension of an elementary abelian group of order 16 by A5,

|V2| = 36 and for 〈v〉 ∈ V2 we have that CX(v) ∼= S6.

iii) Let x ∈ X be an involution, then |CV (x)| = 16 and |[V, x]| = 4.

iv) Suppose that A ≤ X is of order 32, r ∈ Z(A) and A contains an elementary

abelian group of order 16, then CV (A) ≤ [CV (r), A].

v) Let Y ≤ X be an elementary abelian subgroup of X. If |Y | = 16, then

|CV (Y )| = 2. There is no elementary abelian group of order 8 in X all of whose

non trivial elements are non 2-central.

vi) Let x and y be two distinct 3-central elements in X and D ≤ X be an ele-

mentary abelian group of order 27 containing 〈x, y〉. Then CX(xy)/D is isomorphic

to a subgroup of D8.
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vii) Let r ∈ X be a 2-central involution, then CX(r)/O2(CX(r)) is an exten-

sion of an elementary abelian group of order 9 by a group of order 2, O2(CX(r))

is an extraspecial group of order 32 and CX(r)/O2(CX(r)) acts irreducibly on

O2(CX(r))/ 〈r〉. Let N ∈ Syl3(CX(r)), then any N-invariant nontrivial subgroup of

O2(CN(r)) is isomorphic to Q8.

viii) Let N be the quasisimple group Sp4(3). Then N has two classes of invo-

lutions. Let z and r be two involutions in N such that z is a 2-central involution

and r is a non 2-central involution, then O2(CN(r)) ∼= Q8 × Q8, CN(r)/O2(CN(r))

is an elementary abelian group of order 9 and z ∈ Z(N). Let X1 ∈ Syl3(CN(r))

and Y < O2(CN(r)) be X1-invariant and |Y ∩ Z(O2(CN(r)))| = 2, then either

Y = Y ∩ Z(O2(CN(r))) is of order 2 or Y ∼= Q8.

Proof : Parts i), ii), iii), vii) and viii) follow from the atlas of finite groups ([AT],page

26) or by easy calculation. Part iv) follows from v) and so we just prove v) and

vi). Let Y ≤ X be an elementary abelian 2-group, if |Y | = 16, then by ii) we get

that |CV (Y )| = 2. We note that if |Y | = 16, then NX(Y )/Y ∼= A5 and NX(Y )

is a maximal subgroup of X([AT],page 26). Let Y be of order 8 such that all of

whose non trivial elements are non 2-central . Let T ∈ Syl2(X) which contains Y

and A ≤ T be an elementary abelian group of order 16. By ([AT],page 26) we have

NX(A)/A ∼= A5 and the extension splits. Let F1
∼= A5 be a subgroup of NX(A),

F ∈ Syl2(F1) and F ≤ T , then F is an elementary abelian group of order four and

T = A : F . By ([AT],page 2) we have that all involutions in F are conjugate. By

([AT],page 26) we get that Z(T ) is of order 2 and hence CA(f) is of order 4 for each

involution f ∈ F . Now if Y is not a subgroup of A, then we get that Z(T ) ≤ Y ∩A
and this gives us that there is a 2-central involution in Y which is a contradiction.

Hence Y ≤ A. By ([AT],page 26) under the action of NX(A)/A on P (A) we have two

orbits B and C such that |B| = 5, the involutions in B are 2-central involutions in X,

|C| = 10 and the involutions in C are non 2-central involutions in X. Also NX(A)/A

is 3-transitive on B. This gives us that B = {〈x1〉 , 〈x2〉 , 〈x3〉 , 〈x4〉 , 〈x1x2x3x4〉} and

C = {〈xixj〉 , 〈xixjxr〉 where i 6= j 6= r, i = 1, ...4, j = 1, ...4, r = 1, ..., 4 and 〈xi〉,
〈xj〉 and 〈xr〉 are in B}. By the representations of the elements in the orbit C we

get that P (Y ) is not a subset of C and v) is proved.

Let x and y be two 3-central elements in X and D an elementary abelian group

of order 27 in X containing 〈x, y〉. By ([AT], page 26) each element of order three
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in X is conjugate to an element of D and NX(D)/D ∼= S4. Also by ([AT],page 26)

we get that NX(D)/D has three orbits D1, D2 and D3 on P (D) such that |D1| = 3,

|D2| = 4 and |D3| = 6. If D1 = {〈xi〉 , i = 1, 2, 3}, then D2 = {〈x1 ± x2 ± x3〉} and

D3 = {〈xi ± xj〉 , i 6= j, }. Since x and y are two 3-central elements , we get that 〈x〉
and 〈y〉 are in the orbit D2 and we can see that 〈xy〉 is in D1 ∪D3. By ([AT],page

26) we get that CX(xy)/D is of order at most 4 and CX(xy) = CNX(D)(xy). Since

a Sylow 2-subgroup of S4 is isomorphic to D8 we have proved vi) and the lemma is

proved. �

The following lemma follows from the atlas ([AT],page 85) or by easy calculation.

Lemma 2.4.8 Suppose that X ∼= Ω+
8 (2) and V is the natural GF (2)X-module of

dimension 8. Then

i) Let x ∈ X be an involution, then 3 divides the order of CX(x). Further X has

5 classes 2A, 2B, 2C, 2D and 2E of involutions. If x is in one of the classes 2B, 2C

or 2D, then |CX(x)| = 210 · 32 · 5, if x is in class 2A, then x is a 2-central involution

and 27 divides the order of CX(x). If x is in class 2E, then |CX(x)| = 210 · 3.

ii) X has two orbits N1 and N2 on P (V ), the elements of N1 are isotropic el-

ements and the elements of N2 are non isotropic elements. Let 〈v〉 ∈ Ni, then 3

divides the order of the stabilizer of 〈v〉 in X. Let 〈x〉 ∈ N1, then CX(x) is an ex-

tenstion of an elementary abelian group of order 26 by A8. For 〈y〉 ∈ P (O2(CX(x)))

we have that either y is a 2-central involution or y is in class 2B.

iii) Let x ∈ X be in one of the classes 2C, 2D or 2E, then CX(x) = [V, x].

iv) Let x ∈ X be in one of the classes 2A or 2B, then |CV (x)| = 64. If x is in

class 2A, then CX(x) has 3 orbits of lengths 1,6 and 9 on CV (x)/[V, x] and if x is

in class 2B, then 9 does not divide the lengths of orbits of CX(x) on CV (x)/[V, x].

Let x be in class 2B and T ∈ Syl2(CX(x)), then CV (T ) ≤ [CV (x), T ].

v) Let Y ≤ X be an elementary abelian group of order 81, then any element of

order three of X is conjugate to an element of Y . Further NX(Y )/Y is an extension

of an extraspecial group of order 32 by S3 and under the action of NX(Y )/Y on

P (Y ), we have 5 orbits Li, i = 1, 2, ..., 5 such that |L1| = |L2| = |L3| = 4 and for

〈x〉 ∈ L1 ∪L2 ∪L3, we have CX(x) ∼= 3×U4(2), |L4| = 16 and for 〈x〉 ∈ L4 we have

|CX(x)| = 23 · 35, |L5| = 12 and for 〈x〉 ∈ L5 we have |CX(x)| = 23 · 34. Also for
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〈x〉 ∈ Li, i = 1, 2, 3, 4, 5, we have that 〈x〉 is not conjugate to any element of Lj in

X for j 6= i and j = 1, 2, ..., 5.

Proof : The lemma follows from the atlas ([AT],page 85) and the natural action

of X on V . Let x ∈ X be an involution, then as |V | = 28, we have |CV (x)| ≥ 24 and

|[V, x]| ≥ 22. Also it is known that dim([V, x]) + dim(CV (x)) = dim(V ) (identify

[V, x] by 1−x). We remark that as V is a natural module for X, we have |CV (x)| =
22α for some 1 ≤ α ≤ 3. By ([AT],page 85) X has 5 classes 2A,2B,2C,2D and 2E of

involutions and by using the notations in [AS] we have that the involutions in class

2A are in orthogonal Suzuki form a2, the involutions in class 2B are in orthogonal

Suzuki form c2, the involutions in class 2C are in orthogonal Suzuki form a4, the

involutions in class 2D are in orthogonal Suzuki form a′4 and the involutions in class

2E are in orthogonal Suzuki form c4. In fact involutions in the classes 2C and 2D

are conjugate in O+
8 (2) ∼= X : 2. We just remind that if x ∈ X is an invoution and

x is in orthogonal Suzuki form al, a
′
l or cl, then l = dim[V, x]. �

The next lemma follows from ([AT], page 141).

Lemma 2.4.9 Let X ∼= Ω−8 (3) and V be a natural GF (3)X-module. Then X has

three orbits A,B and C on P (V ) such that:

i) The elements in A are isotropic points and for 〈x〉 ∈ A we have NX(〈x〉) is an

extension of an elementary abelian group of order 36 by 2U4(3) : 2. Further CX(x)

is of index 2 in NX(〈x〉).

ii) The elements in B and C are non isotropic points and for 〈x〉 ∈ B ∪ C we

have NX(〈x〉) ∼= Ω7(3) : 2. Further CX(x) is of index 2 in NX(〈x〉).
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Chapter 3

Characterization of Co1

In this chapter we prove theorem 4. So in this chapter G is a group of Co1-type and

we keep the notations H1, H2 and t in definition 1. In 1.3.1 we gave an outline of the

proof for theorem 4. We said there that our strategy is to determine the structure

of the centralizer of a 2-central involution in the group G. We find an involution z

in G such that CG(z) is an extension of an extraspecial 2-group of order 29 by Ω+
8 (2)

and the main result will follow by applying the theorem 2.3.3.

Let me give a sketch of the proof and say how this chapter is organized. This

chapter has four sections. In section 3.1 we will select a suitable subgroup U = 〈a, b〉
of order 9 in O3(H2) and we shall show that NG(U)/CG(U) ∼= D8 (lemma 3.1.4(i)).

Our first step is to find the structure of the centralizer of each element of order three

of O3(H2) in the group G. We note that by 2.4.2 and 2.2.2 the elements of order

three in O3(H2) are from three conjugacy classes of the elements of order three in

G. Also by 2.4.2 we are allowed to assume that t = abc and we have in H2 that,

a, b and c are conjugate and ab and ab−1 are conjugate. Further t is not conjugate

to a or ab in G. We will start by CG(U) in section 3.2. In section 3.2 we will find

the structure of CG(U). We will prove that CG(U)/U ∼= U4(3) (theorem 3.2.14). In

section 3.2 theorems 2.3.8 and 2.3.5 have played a crucial role. In section 3.3 we will

give the structure of CG(a), we show that CG(a)/ 〈a〉 ∼= Suz (theorem 3.3.14). Of

course in section 3.3 we have used of theorem 2.3.8 in the final stage when we will

show that CG(a)/ 〈a〉 satisfies the conditions of theorem 2.3.3. Then 2.3.3 will give

us the structure of CG(a) as desired. In section 3.4, at first we find the structure of

CG(ab), then we will select an involution z in CG(U) and we will give the structure
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of CG(z). To determine the structure of CG(ab) we will invoke Thompson’s transfer

lemma to show that CG(U) is of index 2 in CG(ab). Then the structure of CG(ab)

will be known. In theorem 3.4.10 we shall prove that CG(ab)/U ∼= U4(3) : 2. In

lemmas 3.4.18 and 3.4.19, by using of the structures CG(a), CG(s), CG(U) and H1

we will show that there is an extraspecial group K of order 29 in CG(z) which is

CH2(z)-invariant. In lemma 3.4.22 we will determine the structure of NG(K) and we

shall show that NG(K)/K ∼= Ω+
8 (2). In lemma 3.4.26, theorem 2.3.8 is used to show

that CG(z) = NG(K) and then G and CG(z) will satisfy the conditions of theorem

2.3.3. Then 2.3.3 will give us that G ∼= Co1 and theorem 4 will be proved.

3.1 Some first steps

Notations: By our assumption H2/O3(H2) ∼= 2M12 and O3(H2) is a 6-dimensional

H2/O3(H2)-module, so we adopt the notations L, I and J in 2.4.2 for orbits

H2/O3(H2) on O3(H2). Then we have 〈t〉 ∈ J . We now fix a, b and c such that

t = abc where 〈b〉,〈a〉 and 〈c〉 are in L. Set R = O3(H1) and E = O3(H2). Let U =

〈b, a〉, then U is a subgroup of E of order 9 such that |P (U) ∩ L| = |P (U) ∩ I| = 2.

Set Ca = CG(a), we use the bar notation for Ca = Ca/ 〈a〉. Let R1 = O3(CCa
(t)).

Lemma 3.1.1 i) |E ∩O3(Ca ∩H1)| = 35.

ii) (Ca∩H1)/O3(Ca∩H1) ∼= SL2(3)×Z2 where O3(Ca∩H1) is a special 3-group

of order 37 and exponent 3 with center of order 27.

iii) O3(Ca ∩H1) ≤ O3(Ca ∩H1 ∩H2).

Proof : We note that R ≤ H2. Assume that x = a or b or c and x ∈ R. Then

as x /∈ Z(R), there is an element 1 6= y ∈ R such that [x, y] = t or t−1. By this,

the representations of the elements in the orbits I, L, J in 2.4.2 and since t = abc,

we get that 〈xy〉 ∈ I ∪ J , a contradiction. Therefore aR is an element of order

three in H1/R ∼= Sp4(3) : 2. By 2.4.2(v), O3(Ca ∩H1 ∩H2) = EU1 where U1 is an

elementary abelian group of order 9. As |CR(a)| ≤ 34, |CH1(a)|3 ≥ |EU1| = 38 and

|Sp4(3) : 2|3 = 34, we get that aR is a 3-central element in H1/R and |CR(a)| = 34.

The structure of the centralizer of a 3-central element in PSp4(3) can be found

in ([AT],page 26). By ([AT],page 26) we get that (Ca ∩ H1)/O3(Ca ∩ H1) is an

extension of an element of order 2 by SL2(3), O3(Ca ∩H1) = CR(a)R1 where R1 is
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an extraspecial 3-group of order 27 and exponent 3 and |CR(a)| = 34. Since a Sylow

2-subgroup of the normalizer of a Sylow 3-subgroup in Sp4(3) is a four-group, we

have (Ca∩H1)/O3(Ca∩H1) ∼= SL2(3)×Z2. Since O3(Ca∩H1) ≤ O3(Ca∩H1∩H2)

and by 2.4.2 Ca ∩ H1 6= Ca ∩ H1 ∩ H2, we have |E ∩ O3(Ca ∩ H1)| = 35. As U1

acts trivially on E/(E ∩ O3(Ca ∩ H1)) and by 2.4.2(iv) |[E,U1]| = 35, we get that

[E,U1] = E ∩ O3(Ca ∩ H1). Now by 2.4.2(iv) we have O3(Ca ∩ H1) is a special

3-group of order 37 and exponent 3 with center of order 27. �

By 2.4.3, under the action of CH2/E(a) ∼= M11 on P (E), we have two orbits J1

and J2 such that J1 is of length 11 and J2 is of length 110.

We have 〈t, a〉 ≤ O3(Ca∩H1) and by 3.1.1(iii) O3(Ca∩H1) ≤ O3(Ca∩H1∩H2).

We note that by 2.4.2(i) for each four distinct elements 〈xi〉, i = 1, ..., 4, from the

orbit L we have that x1, ..., x4 are linear independent. So 〈a, b, c〉 ≤ Z(O3(Ca ∩H1))

and by 3.1.1(ii) we get that 〈a, b, c〉 = Z(O3(Ca∩H1)) and P (Z(O3(Ca∩H1)))∩L =

{〈a〉 , 〈b〉 , 〈c〉}. Since t = bac, if x ∈ (Ca ∩ H1), then x centralizes t as well. So

t ∈ Z(Ca ∩ H1) and then Ca ∩H1 = CCa
(t). We have that Z(R1) =

〈
b, c
〉

and

R1 ≤ O3(CNCa
(E)(t)). This and 3.1.1(ii) give us that R1 is a special 3-group of order

36. So by 3.1.1 we get the following lemma.

Lemma 3.1.2 i) R1 is a special 3-group of order 36.

ii) CCa
(t)/R1

∼= SL2(3)× Z2.

iii) Z(R1) =
〈
b, c
〉
.

The following lemma follows from 3.1.2.

Lemma 3.1.3 Let x be an element of order three in E, 〈x〉 ∈ J and x = x1x2x3

where 〈xi〉 ∈ L. Let y = xixj or x−1
i xj, i 6= j and i = 1, 2, 3, j = 1, 2, 3. Then

i) O3(CG(x, y)) is a special 3-group of order 37.

ii) CG(x, y)/O3(CG(x, y)) ∼= SL2(3)× Z2.

iii) Z(O3(CG(x, y))) = 〈x1, x2, x3〉.

Further notations: Set M = CCa
(b) and M̃ = M/

〈
b
〉
. Then M̃ ∼= CG(U)/U

(we recall that U = 〈b, a〉).

Lemma 3.1.4 i) NG(U)/CG(U) ∼= D8.

ii) There is an involution α ∈ H2 such that aα = b and αE is a 2-central

involution in H2/E.
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Proof : We have that NG(U)/CG(U) is isomorphic to a subgroup of GL2(3).

As by 2.2.2 〈a〉 and 〈ab〉 are not conjugate in G, we get that NG(U)/CG(U) is

isomorphic to a subgroup of D8. By ([GLS3], table 5.3b) we get that the preimage

of a 2-central involution in M12 is an involution in 2M12 and the preimage of a

non 2-central involution in M12 is an element of order 4 in 2M12. Let x ∈ H2 be

an involution such that xE ∈ Z(H2/E), then as E is a faithful irreducible H2/E-

module, we get that x acts fixed point freely on E. Since M12 is a simple group and

L is an orbit of H2/E, there are elements α and β in H2 such that α is of order 2 and

aα = b and β is of order 4 and aβ = b−1 and bβ = a. Now 〈α, β〉 /CG(U)∩〈α, β〉 ∼= D8

and the lemma is proved. �

3.2 Identifying U4(3)

In this section we shall find the structure of M . We will show that M ∼= 3U4(3).

We recall our notations :

• Z(O3(H1)) = 〈t〉, t = abc and Ca = CG(a) where 〈b〉, 〈a〉 and 〈c〉 are in L.

• We use the bar notation for Ca = Ca/ 〈a〉.
• We have that R1 = O3(CCa

(t)) = O3(Ca ∩H1), t = bc and M = CCa
(b), where

〈c〉 and
〈
b
〉

are in the orbit J1.

• We have M̃ = M/
〈
b
〉

and R̃1 = O3(CM̃(t̃)).

By 2.4.3(i), we have M̃1/Ẽ ∼= A6
∼= Ω−4 (3) where M̃1 = M̃ ∩ (C̃a ∩H2). By 2.4.4

under the action of M̃1/Ẽ on P (Ẽ) we have three orbits Y1, Y2 and Y3 such that Y1

has length 10 and Y2 and Y3 have lengths 15.

Lemma 3.2.1 i) CM̃(t̃)/R̃1
∼= SL2(3).

iii) R̃1 is an extraspecial 3-group of order 35.

Proof : By 3.1.2 Z(R1) =
〈
c, b
〉

and CCa
(t) contains a subgroup X such that

X =
〈
Q, y

〉
where Q ∼= Q8, y ∈ E, X/R1

∼= SL2(3) and X acts trivially on

Z(R1). Therefore (M∩CCa
(t))/R1 contains a subgroup isomorphic to SL2(3). Since

CCa∩H2
(t) contains an involution x, such that b

x
= c, we get that CM(Z(R1))/R1

∼=
SL2(3). Since t = bc, we get (M∩CCa

(t))/R1 = CM(Z(R1))/R1
∼= SL2(3). We have

that (M ∩ CCa
(t))/

〈
b
〉
≤ CM̃(t̃). Let x

〈
b
〉

be an element in CM̃(t̃) with x ∈ M .

Since t = bc, we have x ∈ CCa
(t)). Hence (M ∩CCa

(t))/
〈
b
〉

= CM̃(t̃). As there is no
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subgroup isomorphic to A4 in CM̃(t̃), we have
〈
t̃
〉
∈ Y1. By 3.1.2 we have that R1 is

special 3-group of order 36 with Z(R1) =
〈
a, b
〉
. So R̃1 = R1/

〈
b
〉

is an extraspecial

3-group of order 35. �

Further notations: Let z̃ ∈ CM̃(t̃) be an involution such that z̃R̃1 ∈
Z(CM̃(t̃)/R̃1). Set

W̃ = CẼ(z̃), Ñ = CN
M̃

(Ẽ)(z̃), C̃z̃ = CM̃(z̃).

We get the following lemma.

Lemma 3.2.2 i) |R̃1 ∩ Ẽ| = 33.

ii) |W̃ | = 9.

iii) Let T̃ ∈ Syl3(NM̃(Ẽ)), then Ẽ is a characteristic subgroup of T̃ and T̃ ∈
Syl3(M̃).

Proof : From 3.1.1(i) we get that |R̃1 ∩ Ẽ| = 33. Since z̃ acts fixed point freely

on R̃1/Z(R̃1), ii) follows from i) and iii) follows from 2.4.2(iv). �

Lemma 3.2.3 i) Ñ = NC̃z̃
(W̃ ) and Ñ/W̃ ∼= D8.

ii) W̃ ∈ Syl3(C̃z̃).

iii) P (W̃ ) =
{〈
t̃
〉
,
〈
h̃
〉
,
〈
h̃1

〉
,
〈
h̃2

〉}
where

〈
t̃
〉

is conjugate to
〈
h̃
〉

,
〈
t̃
〉

is not

conjugate to
〈
h̃i

〉
in C̃z̃, for i = 1, 2, and

〈
h̃1

〉
is not conjugate to

〈
h̃2

〉
in C̃z̃.

Proof : By ([AT],page 4) we get that Ñ/W̃ ∼= D8, where D8 is a dihedral group

of order 8. As there is no subgroup isomorphic to D8 in NM̃1
(
〈
t̃
〉
), there is another

element h̃ ∈ W̃ of order three which is Ñ -conjugate to t̃. As by ([AT],page 4), A6

has only one class of involutions , z̃ centralizes some element from the orbits Y2 and

Y3. Let
〈
h̃1

〉
∈ (Y2 ∩ P (W̃ )) and

〈
h̃2

〉
∈ (Y3 ∩ P (W̃ )). By 2.2.2, we get that

〈
h̃
〉

and
〈
h̃i

〉
are not M̃ -conjugate for i = 1, 2. As

{〈
t̃
〉
,
〈
h̃
〉}

is the orbit of NC̃z̃
(W̃ )

which contains
〈
t̃
〉
, we have [NC̃z̃

(W̃ ,
〈
t̃
〉
) : NC̃z̃

(W̃ )] = 2. Since NN
C̃z̃

(〈t̃〉)(W̃ ) =

NÑ(W̃ ,
〈
t̃
〉
) and NÑ(W̃ ,

〈
t̃
〉
) is of index 2 in Ñ , we get Ñ = NC̃z̃

(W̃ ). As W̃ is a

characteristic subgroup of Ñ and W̃ ∈ Syl3(Ñ), we have W̃ ∈ Syl3(C̃z̃) and the

lemma is proved. �

By 3.2.3 we have that
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P (W̃ ) =
{〈
t̃
〉
,
〈
h̃
〉
,
〈
h̃1

〉
,
〈
h̃2

〉}
where

〈
t̃
〉

is conjugate to
〈
h̃
〉

and
〈
t̃
〉

is not conjugate to
〈
h̃i

〉
in C̃z̃ for i = 1, 2.

Further
〈
h̃1

〉
is not conjugate to

〈
h̃2

〉
in C̃z̃. In the next lemma we show that

Ñ = NC̃z̃
(
〈
h̃2

〉
) = NC̃z̃

(
〈
h̃1

〉
).

Lemma 3.2.4 i) Ñ = NC̃z̃
(
〈
h̃2

〉
).

ii) Ñ = NC̃z̃
(
〈
h̃1

〉
).

Proof : We prove i) and the proof of ii) is similar. As Ñ ≤ NC̃z̃
(
〈
h̃2

〉
), it is

enough for us to show that CC̃z̃
(h̃2) is of index 2 in Ñ . Let b 6= x ∈ E be an element

of order three. Then as
〈
b
〉
∈ J1, by 2.4.3 we get that either 〈x〉 ∈ J2 or

〈
xb
〉
∈ J2.

Hence CM̃(x
〈
b
〉
) is isomorphic to a subgroup of C̃Ca

(r) for some element r such that

〈r〉 is in the orbit J2. We have the structure of CCa
(y) for each element 〈y〉 ∈ J2.

Let h̃ = c1

〈
b
〉
, then h̃2 = cc1

〈
b
〉
, where c1 ∈ E is an element of order three. Let

x
〈
b
〉
∈ CC̃z̃

(h̃2) and z̃ = z
〈
b
〉
, where x, z ∈ M and z is an involution, then as

cc1 is not conjugate to cc1b in M , we have x ∈ CCa
(cc1, z, b). Therefore CC̃z̃

(h̃2) is

isomorphic to CCa
(cc1, z, b)/

〈
b
〉
. Let X = CCa

(cc1). As by 2.4.3 cc1 is conjugate

to t in Ca, we get that X/O3(X) ∼= SL2(3) × 2, O3(X) ∼= R1 is a special 3-group

of order 36 and Z(O3(X)) = 〈c, c1〉. As Ñ ≤ NC̃z̃
(
〈
h̃2

〉
), by 3.2.3(ii) we get that

W̃ is a Sylow 3-subgroup of CC̃z̃
(h̃2). We have that z ∈ (CCa

(c) ∩ CCa
(c1)) and

W =
〈
c, c1, b

〉
is a subgroup of CX(z). Since CX(〈c, c1〉)/O3(X) ∼= SL2(3), we have

z ∈ O2(X) and CX(z)/ 〈c, c1〉 ∼= SL2(3)× 2. Since 〈c, c1〉 is normal in CX(z),we get

that x normalizes W . Therefore CC̃z̃
(h̃2) is isomorphic to NCX(z)(W )/

〈
b
〉 ∼= W̃ : 22.

Since NCX(z)(W )/
〈
b
〉
≤ Ñ , we have CC̃z̃

(h̃2) ≤ Ñ and the lemma holds. �

Lemma 3.2.5 Let K̃ be a W̃ -invariant 3′-subgroup of C̃z̃. Then

i) Either K̃ = 〈z̃〉 or K̃ is a 2-group and |K̃| ≤ 25.

ii) Either for each element x̃ ∈ W̃ ] we have CK̃(x̃) = 〈z̃〉 and then K̃ = 〈z̃〉 or

for x̃ = t̃ or x̃ = h̃ we have CK̃(x̃) ∼= Q8.

Proof : As K̃ is W̃ -invariant, by coprime action we have

K̃ =
〈
CK̃(x̃), x̃ ∈ W̃ ]

〉
.
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Assume that x̃ = t̃, then K̃ ∩ CC̃z̃
(x̃) = 〈z̃〉 or K̃ ∩ CC̃z̃

(x̃) = O2(CC̃z̃
(x̃)) ∼= Q8 by

3.2.1(ii). Suppose that x̃ = h̃2 or x̃ = h̃1, then by 3.2.4 K̃ ∩ CC̃z̃
(x̃) = 〈z̃〉.

Therefore either for each element x̃ ∈ W̃ ] we have CK̃(x̃) = 〈z̃〉 and then K̃ = 〈z̃〉
or for x̃ = t̃ or x̃ = h̃ we have CK̃(x̃) ∼= Q8. So K̃ is a 2-group. In the latter case by

Wielandt’s order formula ([BH],XI.12.4) we get that
∣∣∣K̃∣∣∣ ≤ 25 and hence the lemma

is proved. �

Set

Ỹ =
〈
O2(CC̃z̃

(h̃)), O2(CC̃z̃
(t̃))
〉

.

Then we get the following lemma.

Lemma 3.2.6 i) There is a subgroup X̃ ∼= PSp4(3) in M̃ containing z̃ and W̃ .

ii) Ỹ is an extraspecial 2-group of order 25.

iii) Ỹ is the unique maximal W̃ -invariant 3′-subgroup of C̃z̃.

iv) Ñ ≤ NC̃z̃
(Ỹ ).

v) There is an involution α ∈ NH2(U) conjugate to z in H2 such that aα = b,

W̃ ≤ CM̃(α) and α centralizes Y (z is a pre-preimage of z̃).

Proof : By 3.1.4(i) we have that NG(U)/CG(U) ∼= NH2(U)/CH2(U) ∼= D8, where

U = 〈a, b〉. We have that M1 = CH2(U), where M1 is the pre-preimage of M̃1.

By 2.4.3(i) M1/E ∼= M̃1/Ẽ ∼= A6. By ([GLS3] table 5.3b) the preimage of each 2-

central involution in M12 is a 2-central involution in 2M12. So there is an involution

α ∈ NH2(U) such that 〈αE,M1/E〉 ∼= S6, CM̃1/Ẽ
(α) ∼= S4 and α is conjugate to z

(pre-preimage of z̃) in H2 (there is such an involution in M12). By 2.4.2(i) we have

that NH2(〈a〉)/E ∼= NH2(〈b〉)/E ∼= 2 ×M11. Since there is no subgroup isomorphic

to S6 in NH2(〈a〉)/E, we get that α normalizes neither 〈a〉 nor 〈b〉 and hence α

does not act fixed point freely on U . In fact α centralizes either ab or a−1b. By

2.4.2(i), CH2(b)/E
∼= M11 and by 2.4.3(i) we get that ab and a−1b are conjugate

in NH2(U). So we may assume that α centralizes ab. Since α is conjugate to z in

H2, we have |CE(α)| = 34 and then |CẼ(α)| = 27, as α /∈ CG(U) and does not act

fixed point freely on U . Set Ṽ = CẼ(α). Then Ẽ = Ṽ ⊕ 〈r̃〉, with 〈r̃〉 ∈ P (Ẽ),

which is CM̃1/Ẽ
(α)-invariant and then by 2.4.4 NM̃1/Ẽ

(〈r̃〉) ∼= S4. So we get that

CM̃1/Ẽ
(α) = NM̃1/Ẽ

(〈r̃〉). Therefore for an involution γ ∈ O2(CM̃1
(α)/Ṽ ) we have
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that |CṼ (γ)| = 3 and hence Ṽ is a faithful, irreducible CM̃1
(α)/Ṽ -module. By 2.4.4

CM̃1/Ẽ
(r̃) ∼= A4. Now let x̃ ∈ CM̃1

(α) be an involution which inverts r̃. Then

CẼ(x̃) ≤ Ṽ . Since x̃ is conjugate to z̃ in M̃1, we may assume that z̃ ∈ CM̃1
(α) and

W̃ = CẼ(z̃) ≤ Ṽ . We recall that W̃ =
〈
h̃, t̃
〉

. Let K̃1 = CC
M̃

(t̃)(α), then since

W̃ ≤ Ṽ and by 3.2.1 CM̃(t̃)/R̃1
∼= SL2(3), we get that K̃1/O3(K̃1) ∼= SL2(3). Now

as Ṽ ≤ CM̃(t̃), we get that O3(K̃1) is an extraspecial 3-group of order 27. As Ṽ is

elementary abelian of order 27, we get that K̃1 satisfies the conditions of 2.3.7. Set

K̃2 = CN
M̃

(Ẽ)(α) and X̃ =
〈
K̃1, K̃2

〉
. Then O3(K̃2) = Ṽ and K̃1 = CX̃(t̃). Since

t̃ ∈ Ṽ and CK̃1
(Ṽ ) = Ṽ , we have CX̃(Ṽ ) = Ṽ . By 2.4.5 under the action of K̃2/Ṽ

on P (Ṽ ) we have three orbits of lengths 3,4 and 6. As |NK̃1
(Ṽ )/Ṽ | = 6, we get that〈

t̃
〉

is in the orbit of length 4. By 3.2.3 we have that
〈
h̃2

〉
and

〈
h̃1

〉
are in P (W̃ )

and they are not conjugate to
〈
t̃
〉

in M̃ . Since W̃ ≤ Ṽ , we have
〈
h̃2

〉
and

〈
h̃1

〉
are in P (Ṽ ). Therefore under the action of NX̃(Ṽ )/Ṽ on P (Ṽ ),

〈
t̃
〉

is in the orbit

of length 4. This gives us that |NX̃(Ṽ )/Ṽ | = 24. As K̃2 ≤ NX̃(Ṽ ) and K̃2/Ṽ ∼= S4,

we have K̃2 = NX̃(Ṽ ).

Let Ṽ1 ≤ Ṽ be of order 9. If Ṽ1 contains t̃, then since there is no Ṽ -invariant

3′-subgroup in K̃1, there is no Ṽ -invariant 3′-subgroup in CX̃(Ṽ1). Suppose that Ṽ1

does not have an element conjugate to t̃ and let V1 and V be two subgroups of E

such that V /
〈
b
〉

= Ṽ and V1/
〈
b
〉

= Ṽ1. Since
〈
b
〉

is in the orbit J1 , by 2.4.3 for

each element
〈
b
〉
6= 〈x〉 ∈ J1 we have

〈
xb
〉
∈ J2. As by 2.4.3(i) for each four distinct

elements 〈xi〉 ∈ J1, i = 1, ..., 4, we have that x1,...,x4 are linear independent, so

for each element 〈x〉 ∈ J2 such that x = x1x2, where xi 6= b for i = 1, 2, we have〈
xb
〉
∈ J2 as well. Therefore V1 has an element x conjugate to t in Ca. Let t

g
= x,

then by 3.1.2 CCa
(x)/R1

g ∼= SL2(3)×2 where R1
g

is a special group of order 36 with

Z(R1
g
) =

〈
cg, b

g
〉

. Since |V | = 34, we have that a V -invariant 3′-subgroup in CCa
(x)

is contained in CCa
(E) and so centralizes V . Since K̃2/Ṽ is faithful and irreducible

on Ṽ , no 3′-subgroup of CX̃(Ṽ1) is Ṽ -invariant. Let T̃ ∈ Syl3(K̃1) containing Ṽ

and ỹ ∈ NK̃1
(T̃ ) which inverts t̃. Then ỹ normalizes Ṽ . We have that

〈
t̃
〉

is in

the orbit of length 4 under the action of K̃2/Ṽ on P (Ṽ ), so NK̃2
(
〈
t̃
〉
) = CK̃2

(t̃).

This gives us that ỹ centralizes t̃, but ỹ inverts t̃, a contradiction. Therefore t̃ is

not conjugate to it’s invers in X̃. As there is no normal subgroup of index 3 in K̃2,

we get that X̃ ∼= PSp4(3) by 2.3.6. Since both subgroups K̃1 and K̃2 are in M̃ ,
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i) holds. By ([AT],page 26) we have that O2(CX̃(z̃)) = O2(CX̃(z̃, h̃))O2(CX̃(z̃, t̃))

is a W̃ -invariant 2-subgroup of M̃ . Since O2(CX̃(t̃, z̃)) = O2(CC̃z̃
(t̃)) ∼= Q8 and

O2(CX̃(h̃, z̃)) = O2(CC̃z̃
(h̃)) ∼= Q8, we get that Ỹ is an extraspecial 2-group of order

32 of plus type and for each element x̃ ∈ W̃ of order three we have O2(CC̃z̃
(x̃)) ≤ Ỹ .

Therefore v) holds and by 3.2.5(i) we have that ii) and iii) hold. Further iv) follows

from iii) and 3.2.3(i). �

We are going to find the structure of NC̃z̃
(Ỹ ) and then we will show that

NC̃z̃
(Ỹ ) = C̃z̃. In this section we use of the notation * for the natural homomorphism

C̃z̃ 7→ C̃z̃/ 〈z̃〉.

Lemma 3.2.7 Let x̃ ∈ W̃ be an element of order three. Then CC̃z̃
(x̃) ≤ NC̃z̃

(Ỹ ).

Proof : For x̃ = t̃ and x̃ = h̃ we have that CC̃z̃
(x̃)/ 〈x〉 ∼= SL2(3), so CC̃z̃

(x̃) =〈
W̃ ,O2(CC̃z̃

(x̃))
〉

and therefore CC̃z̃
(x̃) ≤ NC̃z̃

(Ỹ ). For x̃ = h̃2 and x̃ = h̃1 , we get

by 3.2.4 that CC̃z̃
(x̃) ≤ Ñ and so we get by 3.2.6 that CC̃z̃

(x̃) ≤ NC̃z̃
(Ỹ ). �

Lemma 3.2.8 NC̃z̃
(Ỹ )/Ỹ ∼= (S3 × S3).

Proof : As no element of order three in W̃ centralizes Ỹ and by 3.2.3(ii), W̃ ∈
Syl3(C̃z̃), we get that CC̃z̃

(Ỹ ) is a 3′-group. As by 3.2.6(iii) Ỹ is the unique maximal

W̃ -invariant 3′-subgroup of C̃z̃, we have CC̃z̃
(Ỹ ) = 〈u〉. Since by 3.2.6(ii) Ỹ is an

extraspecial 2-group of order 25, by ([GLS2],theorem 10.6) we get that NC̃z̃
(Ỹ )/Ỹ is

isomorphic to a subgroup of O+
4 (2). As Ñ Ỹ /Ỹ ∼= (S3×S3) and S3×S3 is a maximal

subgroup of O+
4 (2) of index 2, we have NC̃z̃

(Ỹ )/Ỹ ∼= S3 × S3. �

By 3.2.8 we get that O2(NC̃z̃
(Ỹ )) = G̃1G̃2 where G̃i

∼= SL2(3), G̃i / O
2(NC̃z̃

(Ỹ ))

and G̃1 ∩ G̃2 = 〈z̃〉. The following lemma follows from the structure of NC̃z̃
(Ỹ ).

Lemma 3.2.9 i) Let r̃?Ỹ ? ∈ NC̃z̃
(Ỹ )?/Ỹ ? be an involution, then |CỸ ?(r̃?)| = 4.

If 3 divides the order of CN
C̃z̃

(Ỹ )?(r̃?) then a Sylow 3-subgroup of CN
C̃z̃

(Ỹ )?(r̃?) is

conjugate to either h̃1

?
or h̃2

?
in C̃z̃

?
.

ii) Ỹ ? = O2(C
C̃z̃

?(h̃?))⊕O2(C
C̃z̃

?(t̃?)).

iii) Let 〈x̃?〉 ∈ (P (O2(C
C̃z̃

?(h̃?))) ∪ P (O2(C
C̃z̃

?(t̃?)))), then 3 divides the order

of CN
C̃z̃

(Ỹ )?(x̃?) and a Sylow 3-subgroup of CN
C̃z̃

(Ỹ )?(x̃?) is conjugate to h̃? in C̃?.

35



Let 〈x̃?〉 ∈ P (Y ?) and x̃? = r̃1
?r̃2

?, where
〈
r̃?1

〉
∈ P (O2(C

C̃z̃
?(h̃?))) and 〈r̃2

?〉 ∈
P (O2(C

C̃z̃
?(t̃?))), then 3 does not divide the order of CN

C̃z̃
(Ỹ )?(x̃?) and x̃? is a 2-

central involution in C̃z̃
?
.

iv) Under the action of NC̃z̃
(Ỹ )?/Ỹ ? on P (Ỹ ?) we have two orbits, one of them

is of length 6 and the other one has length 9.

v) Let T̃1

?
be a Sylow 2-subgroup of NC̃z̃

(Ỹ )?, then Ỹ ? is a characteristic subgroup

of T̃1

?
, Z(T̃1

?
) is of order 2 and T̃1

?
is a Sylow 2-subgroup of C̃z̃

?
.

vi) Let x̃? ∈ NC̃z̃
(Ỹ )? be an involution and x̃? /∈ Ỹ ? then CỸ ?(x̃?) = [Ỹ ?, x̃?]. So

by 2.4.6 all involutions in x̃?Ỹ ? are conjugate.

Proof : Let r̃? ∈ NC̃z̃
(Ỹ )? be an involution such that r̃? /∈ Ỹ ? and r̃? normalizes

W̃ ?. Then either r̃? inverts t̃? and h̃? or
〈
t̃?
〉r̃?

=
〈
h̃?
〉

. In the first case by 3.2.1

we get that |CO2(C
C̃z̃

? (t̃?))(r̃
?))| = 2 = |CO2(C

C̃z̃
? (h̃?))(r̃

?))|. Therefore in this case

|CỸ ?(r̃?)| = 4. If
〈
t̃?
〉r̃?

=
〈
h̃?
〉

, then for each involution x̃? in O2(C
C̃z̃

?(t̃?)) we have

x̃?(x̃?)r̃
?

is centralized by r̃?. Since O2(C
C̃z̃

?(t̃?)) is an elementary abelian group of

order 4, in this case |CỸ ?(r̃?)| = 4 as well. Part v) follows from i). The proof of the

other parts is easy and follows from the structure of NC̃z̃
(Ỹ )? in 3.2.8. �

We recall that if T ≤ T1 ≤ H be groups, then T is strongly closed in T1 with

respect to H, if T h ∩ T1 ≤ T for each h ∈ H. We are going to show that Ỹ ? is

strongly closed in NC̃z̃
(Ỹ )? with respect to C̃z̃

?
.

Lemma 3.2.10 Let r̃? ∈ Ỹ ? be an involution and g̃? ∈ C̃z̃
?

such that ẽ? = (r̃?)g̃
? ∈

NC̃z̃
(Ỹ )?. If 3 divides |CN

C̃z̃
(Ỹ )?(ẽ?)|, then ẽ? ∈ Ỹ ?.

Proof : Let r̃? ∈ Ỹ ? be an involution and g̃? ∈ C̃z̃
?

such that ẽ? = (r̃?)g̃
? ∈

NC̃z̃
(Ỹ )?, ẽ? /∈ Ỹ ? and 3 divides |CN

C̃z̃
(Ỹ )?(ẽ?)|. By 3.2.9(i) we have that a Sylow

3-subgroup of CN
C̃z̃

(Ỹ )?(ẽ?) is conjugate to either h̃1

?
or h̃2

?
in C̃z̃

?
. By 3.2.9(iii)

we have that either 3 divides the order of CN
C̃z̃

(Ỹ )?(r̃?) and a Sylow 3-subgroup of

CN
C̃z̃

(Ỹ )?(r̃?) is conjugate to h̃? in C̃? or 3 does not divide the order of CN
C̃z̃

(Ỹ )?(r̃?)

and r̃? is a 2-central involution in C̃z̃
?
. Since h̃? is not conjugate to h̃1

?
or h̃2

?
in C̃z̃

?
,

we get by 3.2.9(iii) that r̃? is a 2-central involution in C̃z̃
?
. By 3.2.3(i), no element

of order 2 in NC̃z̃
(Ỹ )? centralizes a Sylow 3-subgroup. So by 3.2.9(i) and 3.2.4 we
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get that a Sylow 3-subgroup of C
C̃z̃

?(ẽ?)/ 〈ẽ?〉 is of order 3 and self centralizing. Let

(h̃2

?
)ẽ

?
= h̃2

?
and f̃ ? ∈ NC̃z̃

(Ỹ )? be an involution such that ẽ? 6= f̃ ? /∈ Ỹ ? and

(h̃1

?
)f̃

?
= h̃1

?
. As h̃2

?
is not conjugate to h̃1

?
in C̃z̃

?
, we deduce that ẽ? is not

conjugate to f̃ ? in C̃z̃
?
. Since ẽ? is conjugate to a 2-central involution of C̃z̃

?
, by

3.2.9 (iii) f̃ ? is not conjugate to any involution of Ỹ ? in C̃z̃
?
. By 3.1.4(i) there is a

subgroup X̂ such that X̂/B2
∼= D8

∼= NH2(U)/CH2(U) as U = 〈a, b〉 ≤ E. Let β be

an element in X̂ such that (h̃2

?
)β = h̃1

?
and (ẽ?)β = f̃ ?. This gives us that f̃ ? is a

2-central involution in C̃z̃
?

and so f̃ ? is conjugate to some involutions of Ỹ ? in C̃z̃
?
,

which is a contradiction. Hence the lemma is proved. �

Lemma 3.2.11 Let x̃? ∈ NC̃z̃
(Ỹ )? be an involution such that x̃? /∈ Ỹ ? and

3||CN
C̃z̃

(Ỹ )?(x̃?)|. Then |C
C̃z̃

?(x̃?)|2 = 16. Further P̂ = C
C̃z̃

?(x̃?)/ 〈x̃?〉 contains

a nilpotent normal subgroup P̂1 such that P̂ /P̂1
∼= S3.

Proof : By 3.2.9(i) and vi) we have that X̃1

?
=
〈
CỸ ?(x̃?), x̃?

〉
is an elementary

abelian 2-group of order 8 and CN
C̃z̃

(Ỹ )?(x̃?)/X̃1

? ∼= S3. By 3.2.9(i) we may assume

that
〈
h̃2

?
〉
∈ Syl3(C

C̃z̃
?(x̃?)), since

〈
x̃?, h̃2

?
〉

= C
C̃z̃

?(h̃2

?
). So a Sylow 3-subgroup

of P̂ = C
C̃z̃

?(x̃?)/ 〈x̃?〉 is of order 3 and it is self-centralizing. Now by Feit and

Thompson’s theorem [FT], we get that P̂ contains a nilpotent normal subgroup

P̂1 such that P̂ /P̂1
∼= S3, A5 or L3(2). Let P̃1

?
≤ C

C̃z̃
?(x̃?) such that x̃? ∈ P̃1

?

and P̂1 = P̃1

?
/ 〈x̃?〉. Let further T̃ ? ∈ Syl2(P̃1

?
). Then there is a subgroup P̃3

?
in

C
C̃z̃

?(x̃?) such that P̃3

?
/T̃ ? ∼= S3, A5 or L3(2). By 3.2.10 we have that 〈x̃?〉 is not

conjugate to any element of P (Ỹ ?), so x̃? is not a 2-central involution. Therefore

16 ≤ |C
C̃z̃

?(x̃?)|2 ≤ 32 and h̃2

?
acts fixed point freely on T̃ ?/ 〈x̃?〉. So either |T̃ ?| = 8

and P̃3

?
/T̃ ? ∼= S3 or T̃ ? = 〈x̃?〉 and P̃3

?
/T̃ ? ∼= L3(2). Let f̃ ? ∈ CN

C̃z̃
(Ỹ )?(x̃?) be an

involution such that f̃ ? /∈ Ỹ ? and
〈
h̃1

?
〉
∈ Syl3(C

C̃z̃
?(f̃ ?)). Then |

〈
x̃?, f̃ ?

〉
| = 4

and
〈
x̃?, f̃ ?

〉
∩ Ỹ ? = 1. Also, we have that f̃ ? is not conjugate to x̃? and as

3||CN
C̃z̃

(Ỹ )?(f̃ ?)|, we deduce that f̃ ? is not conjugate to any involution in Ỹ ? by

3.2.10. Therefore the case that P̃3

?
/T̃ ? ∼= L3(2) does not happen and hence the

lemma holds. �

Lemma 3.2.12 Ỹ ? is strongly closed in NC̃z̃
(Ỹ )? with respect to C̃z̃

?
.
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Proof : Let r̃? ∈ Ỹ ? be an involution and let g̃? ∈ C̃z̃
?

such that ẽ? = (r̃?)g̃
? ∈

NC̃z̃
(Ỹ )?. If 3 divides the order of CN

C̃z̃
(Ỹ )?(ẽ?), then by 3.2.10 we get that ẽ? ∈ Ỹ ?.

So assume that 3 does not divide the order of CN
C̃z̃

(Ỹ )?(ẽ?).

Assume 3||CN
C̃z̃

(Ỹ )?(r̃?)|. As ẽ? inverts h̃? and t̃?, we conclude that ẽ? centralizes

some involution in Ỹ ? which is conjugate to r̃? in NC̃z̃
(Ỹ )?. Therefore we may assume

that ẽ? centralizes r̃?. Since 〈r̃?〉 is in the orbit of length 6 in P (Ỹ ?), we get that r̃?

is not a 2-central involution. Therefore a Sylow 2-subgroup of C
C̃z̃

?(r̃?) is of order

32 and there is a Sylow 2-subgroup X̃? of C
C̃z̃

?(r̃?) which contains an elementary

abelian 2-group Ỹ ? of order 16 and contains the involution ẽ?. We have that ẽ? ∈ X̃?,

ẽ? /∈ Ỹ ? and ẽ? is conjugate to involution r̃? ∈ Ỹ ? in C̃z̃
?
. Let ẽ? = ẽ1

?ẽ2
?, where for

i = 1, 2, we have that 3||CN
C̃z̃

(Ỹ )?(ẽi
?)|, ẽi? /∈ Ỹ ? and [ẽ?, ẽi

?] = 1. By 3.2.10 we get

that ẽi
? is not conjugate to ẽ? in C̃z̃

?
, ẽi

? is not in any elementary abelian subgroup of

C̃z̃
?

of order 16 and ẽi
? is not conjugate to any involution in any elementary abelian

subgroup of order 16 in CN
C̃z̃

(Ỹ )?(ẽ?). Therefore a Sylow 2-subgroup of C
C̃z̃

?(ẽ?) is

not isomorphic to a Sylow 2-subgroup of C
C̃z̃

?(r̃?). But this is a contradiction to ẽ?

being conjugate to r̃? in C̃z̃
?
. Therefore this case does not happen.

So we have that 3 does not divide the order of CN
C̃z̃

(Ỹ )?(r̃?) and therefore r̃? is a 2-

central involution in C̃z̃
?
. We have that CỸ ?(ẽ?) = 〈r̃1

?〉×〈r̃2
?〉 where 〈r̃i?〉 ∈ P (Ỹ ?)

such that 〈r̃i?〉 is not a 2-central involution in C̃z̃
?
, for i = 1, 2, and 〈r̃1

?r̃2
?〉 is a 2-

central involution in C̃z̃
?
. Set x̃? = r̃1

?r̃2
?. Then by our assumption ẽ? is conjugate to

x̃? in C̃z̃
?
. Let X̃? be a Sylow 2-subgroup of C

C̃z̃
?(ẽ?) which contains CN

C̃z̃
(Ỹ )?(ẽ?) and

X̃1

?
≤ X̃? be an elementary abelian subgroup of order 16 in X̃?. Let ẽ? = ẽ1

?ẽ2
? with

ẽi
? /∈ Ỹ ? for i = 1, 2. Then we have that 3||NC̃z̃

(Ỹ )?(ẽi
?)| and so 〈ẽi?〉 is not conjugate

to an element of P (Ỹ ?) in C̃z̃
?
. So ẽi

? /∈ X̃1

?
. By 3.2.11 |C

C̃z̃
?(ẽ1

?)|2 = 16 and

P̂ = C
C̃z̃

?(ẽ1
?)/ 〈ẽ1

?〉 contains a nilpotent normal subgroup P̂1 such that P̂ /P̂1
∼= S3.

Since CN
C̃z̃

(Ỹ )?(ẽ1
?)/
〈
ẽ1
?, CỸ ?(ẽ1

?)
〉 ∼= S3, we have

〈
CỸ ?(ẽ1

?), ẽ1
?
〉
/ 〈ẽ1

?〉 ≤ P̂1 and

therefore
〈
CỸ ?(ẽ1

?), ẽ1
?
〉

= O2(C
C̃z̃

?(ẽ1
?)). By a similar argument we can show

that
〈
C
X̃1

?(ẽ1
?), ẽ1

?
〉

= O2(C
C̃z̃

?(ẽ1
?)). Therefore we have that ẽ? ∈ C

X̃1
?(ẽ1

?) ≤〈
CỸ ?(ẽ1

?), ẽ1
?
〉
. This gives us that ẽ2

? ∈ O2(C
C̃z̃

?(ẽ1
?)) which is a contradiction to

our assumptions ẽ2
? /∈ Ỹ ?. So this case does not happen and hence Ỹ ? is strongly

closed in NC̃z̃
(Ỹ )? with respect to C̃z̃

?
. �
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Lemma 3.2.13 C̃z̃ = NC̃z̃
(Ỹ ).

Proof : Set H̃? =
〈

(Ỹ ?)C̃z̃
?
〉

. Assume that 3 does not divide the order of H̃?.

Then as H̃?∩NC̃z̃
(Ỹ )? is normal in NC̃z̃

(Ỹ )?, by the structure of NC̃z̃
(Ỹ ) in 3.2.8 we

get that H̃? ∩ NC̃z̃
(Ỹ )? = Ỹ ?. Therefore Ỹ ? ∈ Syl2(H̃?) and so Ỹ ? ≤ Z(NH̃?(Ỹ ?))

and Burnside’s p-complement theorem gives us that H̃? = O(H̃?)Ỹ ?. Now by the

Frattini argument C̃z̃
?

= O(H̃?)NC̃z̃
(Ỹ )?. Since 3 does not divide the order of H̃?, we

get that O(H̃?) is a W̃ ?- invariant 3′-subgroup of C̃z̃
?
, so by 3.2.5(i) either O(H̃?) = 1

or O(H̃?) = Ỹ ? and hence C̃z̃ = NC̃z̃
(Ỹ ).

Now assume 3||H̃?|. We recall that by 3.2.3 W̃ is a Sylow 3-subgroup of C̃z̃.

If |H̃?|3 = 3, then either some element conjugate to h̃2

?
or h̃1

?
is in H̃? or some

element conjugate to t̃? is in H̃?. Let h̃2

?
or h̃1

?
be in H̃?. Then by 3.2.4 and as

H̃?∩NC̃z̃
(Ỹ )? is normal in NC̃z̃

(Ỹ )?, by the structure of NC̃z̃
(Ỹ ) in 3.2.8 we get that

H̃? is a group whose Sylow 3-subgroup is of order three and it is self-centralizing.

Now by [FT] and as |H̃?|2 ≥ 16, we get that O2(H̃?) 6= 1. Since H̃? is normal in

C̃z̃
?
, we deduce that O2(H̃?) is Ñ?-invariant and therefore O2(H̃?) = Ỹ ?. Hence

H̃? ≤ NC̃z̃
(Ỹ )? and by the Frattini argument we get that C̃z̃ = NC̃z̃

(Ỹ ).

Let t̃? ∈ H̃?, then as by 3.2.3 t̃? is conjugate to h̃? in NC̃z̃
(W̃ )? and by 3.2.6

NC̃z̃
(W̃ )? ≤ NC̃z̃

(Ỹ )? , we have W̃ ? =
〈
h̃?, t̃?

〉
≤ H̃? and a Sylow 3-subgroup of

H̃? is of order 9. Let H̃1

?
be a minimal normal subgroup of H̃?. As W̃ ? ≤ H̃?,

by 3.2.6(iii) we have O3′(H̃
?) is a subgroup of Ỹ ?. Let H̃1

?
be a 3′-group. Then

H̃1

?
≤ O3′(H̃

?) ≤ Ỹ ? and as W̃ ? ≤ H̃?, we get that H̃1

?
= Ỹ ? or H̃1

?
is an elementary

abelian group of order 4. Therefore either CH̃?(H̃1

?
) ≤ NH̃?(Ỹ ?) or CH̃?(H̃1

?
)/H̃1

?

is a group whose Sylow 3-subgroup is of order 3 and is self-centralizing. In the

first case by the Frattini argument we have that C̃z̃ = NC̃z̃
(Ỹ ) and so the lemma

holds. In the second case by [FT] we get that CH̃?(H̃1

?
)/H̃1

?
is isomorphic to A5

or L3(2). Since |Out(A5)| = |Out(L3(2))| = 2 ([AT],pages 2,3), W̃ ? ≤ H̃? and by

3.2.1 and 3.2.4 there is no subgroup isomorphic to A5 or L3(2) in the centralizer of

each element of order three of W̃ ?, this case does not happen. Hence 3 divides the

order of H̃1

?
. Since there is no section isomorphic to a non abelian simple group

in the centralizer of each element of W̃ ? of order three, H̃1

?
is a simple group and

it is the unique minimal normal subgroup in H̃?. As H̃1

?
∩ NH̃?(Ỹ ?) is normal in

NH̃?(Ỹ ?), we have H̃1

?
∩ Ỹ ? 6= 1. Now by 3.2.12, H̃1

?
satisfies the conditions of
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the Goldschmidt’s Theorem [Go]. By [Go] we get that H̃1

?
is isomorphic to one

of the groups L2(2n) for n ≥ 3, Sz(2n+1), for n ≥ 1, U3(2n), for n ≥ 2, L2(q) for

q ≡ 3, 5 (mod 8), J1 (the smallest Janko group) or a group of Ree type. By 2.3.9

and 2.3.10 and as |H̃1

?
|3 = 3 or 9 and |H̃1

?
∩ Ỹ ?| is of order 4 or 16, we get that

the only possibility for H̃1

?
is to be isomorphic to L2(4) ∼= A5. But as W̃ ? ≤ H̃?,

|Out(A5)| = 2 ([AT],page 2) and by 3.2.4 and 3.2.1 there is no subgroup isomorphic

to A5 in the centralizer of some element of order three of W̃ ?, this case does not

happen and hence the lemma is proved. �

Theorem 3.2.14 M ∼= 3U4(3).

Proof : We have that C̃z̃ is isomorphic to the centralizer of an involution in

U4(3) ( we remark that the structure of the centralizer of an involution in U4(3) has

completly determined in [Ph]). Let X̃ be a subgroup of index 2 in M̃ . We have that

M̃ contains a perfect subgroup M̃1 = NM̃(Ẽ) which by 2.4.3(i) M̃1/Ẽ ∼= A6 and

by 3.2.2(iii) M̃1 contains the normalizer of a Sylow 3-subgroup of M̃ . Now we have

that M̃1 = M̃1

′
≤ M̃ ′ ≤ X̃ and by the Frattini argument we get that M̃ = X̃. But

this is a contradiction to X̃ being of index 2 in M̃ . Hence there is no subgroup of

index 2 in M̃ . Now the theorem follows from 2.3.5. �

3.3 Identifying Suz

In this section we shall find the structure of Ca. We will show that Ca ∼= 3Suz. We

recall our notations:

• Z(O3(H1)) = 〈t〉, t = abc and Ca = CG(a) where 〈a〉,〈b〉 and 〈c〉 are in L.

• We use the bar notation for Ca = Ca/ 〈a〉 and M = CCa
(b).

• We have J1 of length 11 and J2 of length 110 are the orbits of CH2/E(a) on

P (E).

• R1 = O3(CCa
(t)). By 3.1.2 R1 is a special 3-group of order 36,

〈
b, c
〉

= Z(R1)

and t = bc, where 〈c〉 and
〈
b
〉

are in the orbit J1 and
〈
t
〉

is in the orbit J2.

• We have M̃ = M/
〈
b
〉

and z̃ ∈ CM̃(t̃) is an involution such that z̃R̃1 ∈
Z(CM̃(t̃)/R̃1).

Further notations: By 3.1.2 we have that CCa
(t)/R1

∼= SL2(3) × Z2. Let
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z ∈ CCa
(t) be an involution such that z acts trivially on Z(R1). Then z is the

preimage of z̃. Set

W = CE(z) and Cz = CCa
(z).

We have the following lemma.

Lemma 3.3.1 i) |R1 ∩ E| = 34.

ii) |W | = 27.

iii) Let 〈x〉 ∈ (J1 ∩ P (W )), then CCz
(x)/ 〈x〉 is an extension of an extraspecial

2-group of order 32 by (S3 × S3).

Proof : Part i) follows from the 3.1.1(i). Since z is the preimage of z̃, ii) follows

from 3.2.2(ii). Part iii) follows from 3.2.14 and ([AT],page 52). �

Since 〈a〉 ∈ L, by 2.4.2(i) we have that Ca ∩H2/E ∼= M11. Now the following

lemma follows from ([AT],page 18).

Lemma 3.3.2 CCa∩H2
(z) = WX where X ∼= GL2(3).

By 2.4.5, under the action of CCa∩H2
(z)/

〈
W, z

〉
on P (W ) we have three orbits

Ni, i = 1, 2, 3 such that;

|N1| = 3, |N2| = 4 and |N3| = 6.

By 3.2.14 and ([AT],page 52), we have that |NM∩Cz
(W )/

〈
W, z

〉
| = 4, so

〈
b
〉
∈

N1 or
〈
b
〉
∈ N3. By 3.1.2(ii) we get that CNCa

(W )(t, z)/
〈
W, z

〉
is of order 2, so〈

t
〉
∈ N3. By 3.2.14 we get that t and b are not conjugate in Ca. Therefore

〈
b
〉
∈ N1.

By 2.4.3(i) for each four distinct elements 〈xi〉 ∈ J1, i = 1, ..., 4, we have that x1,...,x4

are linear independent. Since
〈
b
〉
∈ J1, and by the representations of the elements

in the orbit N2 in 2.4.5 (for 〈x〉 ∈ N2 we have x = x1x2x3, where 〈xi〉 ∈ N1 for

i = 1, 2, 3) we get that N1 is the orbit of NCz
(W )/W on P (W ) containing

〈
b
〉

and

N2 ⊆ J2. Hence |NCz
(W )/

〈
W, z

〉
| = 24.

Lemma 3.3.3 Let F1 ∈ Syl3(CCa∩H2
(z)), then

i) CCa∩H2
(z) = NCz

(W ).

ii) W = J(F1).

iii) F1 ∈ Syl3(Cz).
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Proof : We have that |NCz
(W )/

〈
W, z

〉
| = 24 and |CCa∩H2

(z)/
〈
W, z

〉
| = 24.

Since CCa∩H2
(z)/

〈
W, z

〉
is a subgroup of NCz

(W )/
〈
W, z

〉
, we get that CCa∩H2

(z) =

NCz
(W ). We have CCa∩H2

(z)/
〈
W, z

〉
= X where X ∼= S4. Let x ∈ X be an element

of order three. As 〈x, xy〉 ∼= Alt(4) for some element y ∈ X and W is a faithful,

irreducible X-module, we get |CW (x)| ≤ 3. Therefore W = J(F1) and ii) holds.

Part iii) follows from i) and ii). �

We note that N1 ⊆ J1, N2 ∪ N3 ⊆ J2 and
〈
t
〉
∈ N3. Let 〈x〉 ∈ J2 ∩ P (W )

and let z act trivially on Z(O3(CCa
(x))). By 3.1.2 and as there is an involu-

tion α in CCa∩H2
(x) which does not act trivially on Z(O3(CCa

(x))), we get that

CCCa
(x)(Z(O3(CCa

(x))))/O3(CCa
(x)) ∼= SL2(3). Therefore CCz

(x)/Z(O3(CCa
(x))) ∼=

SL2(3)×2. Hence |NCCz
(x)(W )/

〈
W, z

〉
| = 2 and this gives us that 〈x〉 /∈ N2. There-

fore for 〈x〉 ∈ N2 we have z does not act trivially on Z(O3(CCa
(x))).

Lemma 3.3.4 Let 〈x〉 be in the orbit N2. Then

i) O3(CCz
(x)) is an extraspecial 3-group of order 27.

ii) CCz
(x)/O3(CCz

(x)) ∼= SL2(3)× Z2.

iii) O2(CCz
(x)) = 〈z〉.

iv) x is not conjugate to its inverse in Cz.

Proof : Let t
g

= x where g ∈ Ca. Then by 3.1.2 CCz
(x)/C

R1
g(z) ∼= SL2(3)×Z2. As

C
R1

g(z) is normal in CCz
(x), z does not act trivially on Z(R1

g
) and W is a subgroup

of CCz
(x), we get that C

R1
g(z) is an extraspecial 3-group of order 33 or 35. By

3.3.3(iii) we get that the order of a Sylow 3-subgroup of Cz is 34. Therefore C
R1

g(z) is

an extraspecial 3-group of order 33 and hence i) and ii) hold. As CCCz
(x)(CR1

g(z)) =

〈z〉, iii) holds. Let y ∈ Cz and xy = x−1, then y ∈ NCz
(〈x〉). Now by the structure

of CCz
(x) in i) and ii) we get that NCCz

(x)(W ) < N〈
CCz

(x),y
〉(W ). By i) and ii)

we have that [CCz
(x) : NCCz

(x)(W )] = 4. As |N2| = 4, we have NNCz
(x)(W ) ≤

CCz
(x) and hence N〈

CCz
(x),y

〉(W ) ≤ NCCz
(x)(W ). But this is a contradiction to

N〈
CCz

(x),y
〉(W ) > NCCz

(x)(W ). So iv) holds. �

Lemma 3.3.5 Let K be a W -invariant 3′-subgroup of Cz. Then

i) K is a 2-group and |K| ≤ 27.

ii) For each element x ∈ W ]
we have CK(x) = 〈z〉 or CK(x) is an extraspecial

2-group.
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Proof : As K is W -invariant, by coprime action we have

K =
〈
CK(x), x ∈ W ]

〉
.

Let x = b, then by 3.3.1(iii), we have CCz
(x)/ 〈x〉 is an extension of an extraspecial

2-group of order 25 by (S3×S3). Since (O2(CCz
(x))∩K)/ 〈z〉 is W -invariant, either

K ∩CCz
(x) = 〈z〉 or K ∩CCz

(x) = O2(CCz
(x)) or K ∩CCz

(x) ∼= Q8. Let x = t. We

have that z acts trivially on Z(R1), CCa
(x, z)/Z(R1) ∼= SL2(3) × 2 and CCa

(x, z)

contains an involution α such that b
α

= c. So K ∩ CCz
(x) = 〈z〉 or K ∩ CCz

(x) =

O2(CCz
(x)) ∼= Q8. Let 〈x〉 ∈ N2, then by 3.3.4 we have K ∩ CCz

(x) = 〈z〉.
Therefore either for each element x ∈ W ]

we have CK(x) = 〈z〉 and then K = 〈z〉
or CK(x) is an extraspecial 2-group. So K is a 2-group. In the latter case by

Wielandt’s order formula ([BH],XI.12.6) we get that
∣∣K/ 〈z〉∣∣13−1 ≤ (24)3×3(22)6×3.

Hence
∣∣K∣∣ ≤ 27 and the lemma is proved. �

Let u ∈ W be an element of order three such that 〈u〉 ∈ N1 and u /∈
〈
b, c
〉
. Set

K = O2(CCz
(t))O2(CCz

(u)), we are going to show that K is an extraspecial 2-group

of order 27.

Lemma 3.3.6 i) O2(CCz
(u)) = O2(CCz

(u, b))O2(CCz
(u, c))

ii) K = O2(CCz
(b))O2(CCz

(c)) and K is an extraspecial 2-group of order 27.

Proof : By 3.3.1(iii) O2(CCz
(u)) is an extraspecial 2-group of order 25. We have that

O2(CCz
(t)) is an extraspecial 2-group of order 23 and CCz

(u)/
〈
u,O2(CCz

(u))
〉 ∼=

(S3 × S3). Since u /∈
〈
b, c
〉
, we have

〈
b, c, u

〉
= W . We have O2(CCz

(t)) ≤
(O2(CCz

(b)) ∩ O2(CCz
(c))) (we remark that O2(CM̃(t̃, z̃)) was a subgroup of Ỹ =

O2(CM̃(z̃)) and t is the preimage of t̃.) and so O2(CCz
(t)) ∩ O2(CCz

(u)) is a sub-

group of CCz
(W ) = 〈z〉. Hence O2(CCz

(t)) ∩ O2(CCz
(u)) = 〈z〉. As

〈
b
〉

and 〈c〉
are two 3-central elements in CCa

(u), so by 3.2.14 and ([AT],page 52)we get that

O2(CCz
(u, b)) ∼= O2(CCz

(u, c)) ∼= Q8 and O2(CCz
(u, b)) and O2(CCz

(u, c)) both are

subgroups of O2(CCz
(u)). We have O2(CCz

(u, b)) ∩ O2(CCz
(u, c)) ≤ O2(CCz

(t)) ∩
O2(CCz

(u)) = 〈z〉 and hence |O2(CCz
(u))| = |O2(CCz

(u, b))O2(CCz
(u, c))| = 25.

Therefore O2(CCz
(u)) = O2(CCz

(u, b))O2(CCz
(u, c)) and now i) holds.

We have O2(CCz
(t)) ≤ (O2(CCz

(b))∩O2(CCz
(c))) and O2(CCz

(t))∩O2(CCz
(u)) =

〈z〉, so by i) we get thatO2(CCz
(u)) normalizesO2(CCz

(t)) and thenO2(CCz
(t))O2(CCz

(u))
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is an extraspecial 2-group of order 27. Also since O2(CCz
(t))∩O2(CCz

(u)) = 〈z〉, we

get thatO2(CCz
(b)) = O2(CCz

(b, u))O2(CCz
(t)) andO2(CCz

(c)) = O2(CCz
(c, u))O2(CCz

(t)).

Now by i) we have thatO2(CCz
(b))O2(CCz

(c)) = O2(CCz
(t))O2(CCz

(u)) and ii) holds.

�

We note that |N1| = 3 so N1 = {
〈
b
〉
, 〈c〉 , 〈u〉}. By 3.3.6 we get that for each

〈x〉 ∈ N1, O2(CCz
(x)) is a subgroup of K. By the structures of the centralizers of the

elements of order three in W in 3.1.2, 3.3.1 and 3.3.4, we get that any W -invariant

3′-subgroup in Cz say X is a 2-group (see 3.3.5(i)) and it is generated by {X ∩
O2(CCz

(x)), x ∈ W ]}. We remark that for 〈x〉 ∈ N3 we have O2(CCz
(x)) centralizes

Z(O3(CCz
(x))), Z(O3(CCz

(x))) contains some elements y and r such that 〈y〉 and

〈r〉 are from the orbit N1 with x = yr and O2(CCz
(x)) ≤ O2(CCz

(y)) ∩ O2(CCz
(r)).

Also for 〈x〉 ∈ N3 we have CCz
(x)/O2(CCz

(x)) is an elementary abelian group of

order 27.

Lemma 3.3.7 i) K is the unique maximal W -invariant 3′-subgroup of Cz.

ii) NCz
(W ) ≤ NCz

(K).

iii) Let x ∈ W be an element of order three, then O2(CCz
(x)) ≤ K.

iv) Let W1 be a subgroup of W of order 9 such that |P (W1) ∩ N3| = 3 and

P (W1) ∩N1 = ∅, then K =
〈
O2(CCz

(x))|x ∈ W1
]
〉

.

Proof : By 3.3.5(i), K is a maximal W -invariant 3′-subgroup of Cz and a W -

invariant 3′-subgroup of Cz is a 2-group. Let 〈x〉 ∈ N2 then by 3.3.4 O2(CCz
(x)) =

〈z〉 and so O2(CCz
(x)) is a subgroup of K. Let 〈x〉 ∈ N3. Then O2(CCz

(x)) cen-

tralizes Z(O3(CCz
(x))). We have Z(O3(CCz

(x))) contains some elements y and

r such that 〈y〉 and 〈r〉 are from the orbit N1 and x = yr and O2(CCz
(x)) ≤

O2(CCz
(y)) ∩ O2(CCz

(r)). By 3.3.6 we have O2(CCz
(d)) ≤ K for each element〈

d
〉
∈ N1. Therefor i) and iii) hold and ii) follows from i).

Let W1 be a subgroup of W of order 9 such that |P (W1)∩N3| = 3 and P (W1)∩
N1 = ∅. We have |N3| = 6 and so N3 = {

〈
t
〉
,
〈
ub
〉
,
〈
u−1b

〉
, 〈uc〉 , 〈u−1c〉 ,

〈
c−1b

〉
}.

This gives us that |P (W1) ∩ N2| = 1. Since W =
〈
u, b, c

〉
and CCz

(W ) = 〈z〉 (see

3.3.3), we get that O2(CCz
(y)) ∩ O2(CCz

(x)) = 〈z〉 for 〈x〉 6= 〈y〉 where 〈x〉 and 〈y〉
are from P (W1) ∩ N3. Now since by 3.1.2 O2(CCz

(x)) ∼= Q8 for each 〈x〉 ∈ N3,

|K| = 27 and by iii) we get that K is generated by {O2(CCz
(x)), x ∈ W1

]} and the

lemma is proved. �
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Lemma 3.3.8 Let x ∈ W be an element of order three, then CCz
(x) ≤ NCz

(K).

Proof : Let 〈x〉 ∈ N1 ∪ N3, then by 3.3.1(ii) and 3.1.1 we have CCz
(x) ≤

O2(CCz
(x))NCz

(W ). Let 〈x〉 ∈ N2, then there is a subgroup X ≤ CCz
(x) such

that X ∼= Q8,
〈
X, y

〉 ∼= SL2(3) with y ∈ W is an element of order three and

CCz
(x) =

〈
X,NCCz

(x)(W )
〉

. Let s ∈ X be an element of order 4 and W1 =

W ∩ O3(CCz
(x)). By the representation of an element in the orbit N2 (we re-

mark that |N2| = 4 in 2.4.5 we may assume that x = ubc. Let f = s2 ∈ Z(X),

then f is an involution which acts fixed point freely on O3(CCz
(x))/ 〈x〉, f nor-

malizes W and so f does not invert b or u or c. As f acts fixed point freely on

O3(CCz
(x))/ 〈x〉, neither b or c nor u is in O3(CCz

(x)). We have |N2| = 4 and so

N2 = {
〈
cub
〉
,
〈
u−1bc

〉
,
〈
b
−1
cu
〉
,
〈
c−1bu

〉
}. Since neither b or c nor u is in W1, we

get that |P (W1) ∩ N2| = 1, in fact P (W1) ∩ N2 = 〈x〉. Therefore W1 is of order

9 and |P (W1) ∩ N3| = 3. Let r ∈ O3(CCz
(x)), then [s, r] = d ∈ O3(CCz

(x)). Let

g ∈ O3(CCz
(x)) such that sd = gs. Since by 3.3.7(ii) NCz

(W ) ≤ NCz
(K) and

O3(CCz
(x)) ≤ NCz

(W ), we get that K
sr

= K
sd

= K
gs

= K
s
. Therefore K

s
is a

W1-invariant 3′-subgroup of Cz. By 3.3.7(iii) for each element w of order three in W

we have O2(CCz
(w)) is a subgroup of K, so by 3.3.7(iv) we get that K

s
= K. Hence

s ∈ NCz
(K) and therefore X ≤ NCz

(K). As by 3.3.7(ii) we have NCz
(W ) ≤ NCz

(K),

the lemma is proved. �

We are going to show that NCz
(K) = Cz.

Lemma 3.3.9 NCz
(K)/K ∼= PSp4(3).

Proof : By 3.3.7(ii) and i) we get that there is an elementary abelian sub-

group Ŵ of order 27 in NCz
(K)/K such that there is no Ŵ -invariant 3′-subgroup

in NCz
(K)/K. Let 〈x〉 be an element from the orbit N2. Then by 3.3.4 we get that

CCz
(x)K/K satisfies the conditions of theorem 2.3.7 and 2.3.6(if we set xK/K = d

in 2.3.6, then d is not conjugate to its inverse in Cz by 3.3.4(iv) ). Therefore by

2.3.6 we have NCz
(K)/K ∼= PSp4(3). We note that by the structure of NCz

(W ) in

3.3.3(i) and 3.3.2 we get that there is no normal subgroup of index 3 in NCz
(W ) so

NCz
(K)/K has no normal subgroup of index 3. �
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We recall that for a prime p, a subgroup T of a group H is called strongly p-

embedded in H if p divides |T | and p does not divide |T ∩ T g| for all g ∈ H such

that g /∈ T .

Lemma 3.3.10 NCz
(K) is strongly 3-embedded in Cz.

Proof : Let x ∈ NCz
(K) be an element of order three, then by ([AT],page 26),

x is conjugate to an element of W in NCz
(K). So we may assume that x ∈ W

and then by 3.3.8 we have that CCz
(x) ≤ NCz

(K). Now assume that 3 divides∣∣NCz
(K) ∩NCz

(K)g
∣∣ for some g ∈ Cz and let X1 ∈ Syl3(NCz

(K) ∩ NCz
(K)g). Let

X1 / E0 and E0 be a 3-subgroup of NCz
(K). Then for some element x ∈ X1 of

order three we have E0 ≤ CCz
(x). So by 3.3.8, E0 ≤ NCz

(K)g. Therefore X1 ∈
Syl3(NCz

(K)) ∩ Syl3(NCz
(K)g). We may assume that W ≤ X1. Then NCz

(X1) ≤
NCz

(W ) ≤ NCz
(K) ∩ NCz

(K)g follows from 3.3.7(ii). Now Sylow’s theorem gives

that NCz
(K) = NCz

(K)g, so g ∈ NCz
(NCz

(K)). As K is a characteristic subgroup

of NCz
(K), we have g ∈ NCz

(K) and hence NCz
(K) is strongly 3-embedded in Cz.

�

We use of the notation * for the natural homomorphism Cz 7→ Cz/ 〈z〉.

Lemma 3.3.11 Let r? ∈ K
?

be an involution and g? ∈ Cz
?

such that (r?)g
? ∈

NCz
(K)? and (r?)g

?
/∈ K?

. Then 3 does not divide the order of CNCz
(K)?((r?)g

?
).

Proof : Let r? ∈ K
?

be an involution and g? ∈ Cz
?

such that (r?)g
? ∈ NCz

(K)?,

(r?)g
?
/∈ K?

and 3 divides the order of CNCz
(K)?((r?)g

?
). By 2.4.7(ii) we get that 3

divides |CNCz
(K)?(r?)|. Let P

? ∈ Syl3(CNCz
(K)?(r?)) and P1

? ∈ Syl3(CNCz
(K)?(rg

?
)).

Then as by 3.3.10NCz
(K)? is strongly 3-embedded in Cz

?
, we have P

? ∈ Syl3(CCz
?(r?))

and P1
? ∈ Syl3(CCz

?((r?)g
?
)). Since g? ∈ Cz

?
, we have (P

?
)g

? ∈ Syl3(C(NCz
(K)?)g? ((r?)g

?
))

and as by 3.3.10 (NCz
(K)?)g

?
is strongly 3-embedded in Cz

?
, we get that (P

?
)g

? ∈
Syl3(CCz

?((r?)g
?
)). Hence (P

?
)g

?g1?
= P1

?
for some g1

? ∈ CCz
?((r?)g

?
). Now we have

P1
? ≤ NCz

(K)?∩(NCz
(K)?)g

?g1?
and as by 3.3.10 NCz

(K)? is strongly 3-embedded in

Cz
?
, we get that g?g1

? ∈ NCz
(K)?. Therefore (r?)g

?g1? ∈ K?
. As g1

? ∈ CCz
?((r?)g

?
),

we have (r?)g
?

= (r?)g
?g1? ∈ K?

. But this is a contradiction to our assumption that

(r?)g
?
/∈ K?

. Hence the lemma is proved. �
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Lemma 3.3.12 K
?

is strongly closed in NCz
(K)? with respect to Cz

?
.

Proof : Let r? ∈ K?
be an involution and g? ∈ Cz

?
such that (r?)g

? ∈ NCz
(K)? and

(r?)g
?
/∈ K

?
. Then by 3.3.11, 2.4.6 and 2.4.7(iii) and ([AT],page 26) we get that

the only possibility is that (r?)g
?
K
?

is a non 2-central involution and then under

the action of CNCz
(K)?((r?)g

?
) on the involutions in (r?)g

?
K
?

we have two orbits of

lengths 4 and 12. Since (r?)g
?
K
?

is a non 2-central involution, by ([AT],page 26)

and 3.3.11 we get that |CNCz
(K)?((r?)g

?
)| = 24+5. Let S

?
be a Sylow 2-subgroup of

NCz
(K)?, D

?
= (K

?
)g

?
and T

?
be a Sylow 2-subgroup of NCz

(D)?, then (r?)g
? ∈ D?

.

We may assume that CS?((r?)g
?
) is a subgroup of T

?
. By 2.4.7(i)and ii)) we have

that (r?)g
?

= x?k
?

where x? /∈ K
?
, 1 6= k

? ∈ CK?((r?)g
?
) and 3 divides the order

of the centralizers of x? and k
?

in NCz
(K)? . Let CK?((r?)g

?
) be contained in

D
?
. Then

〈
(r?)g

?〉
CK?((r?)g

?
) is contained in D

?
and so x? ∈ D

?
. This gives

us that x? is conjugate to an involution in K
?

which is a contradiction to 3.3.11.

Hence CK?((r?)g
?
) is not contained in D

?
. By ([AT],page 26) we get that the 2-

rank of PSp4(3) is 4. Since there is no elementary abelian group of order 8 in

PSp4(3) all of whose non trivial elements are non 2-central (see 2.4.7(v)), we get

that CK?((r?)g)D
?
/D

?
is of order 2 or 4. Since |CNCz

(K)?((r?)g
?
)| = 24+5, |D?| = 26

and by 3.3.11 and 2.4.7(i) we have that CS?((r?)g
?
) ∩D?

= (K
? ∩D?

)
〈
(r?)g

?〉
, we

have |CS?((r?)g
?
)D

?| ≥ 24+5+6−4 = 211.

Now set A
?

= CS?((r?)g
?
)D

?
, then A

?
is of index at most 2 in T

?
. Let V

? ≤
CK?((r?)g

?
) such that |V ?| ≤ 4, V

? ∩ D?
= 1 and V

?
D
?
/D

?
= CK?((r?)g

?
)D

?
/D

?
.

We note that by 3.3.11, 2.4.6 and 2.4.7(iii) and ([AT],page 26) we get that f
?
D
?

is a non 2-central involution in NCz
(D)?/D

?
for each involution f

? ∈ V ?
( we recall

that V
? ≤ K

?
and D

?
= (K

?
)g

?
). Now let A

?
= T

?
, then as V

?
D
?
/D

?
is a normal

subgroup of A
?
/D

?
, we get that Z(A

?
/D

?
) ∩ V ?

D
?
/D

? 6= 1. But this gives us

that there is an involution in V
?

say f
?

such that f
?
D
?

is a 2-central involution

in NCz
(D)?/D

?
which is a contradiction. Therefore |A?| = 211 and V

?
is of order

2. This gives us that
〈
K
? ∩D?

, (r?)g
?
〉

is of order 16 and by 2.4.7(iii) we get that

CD?(f
?
) =

〈
K
? ∩D?

, (r?)g
?
〉

. As f
?
D
?

is a non 2-central involution in NCz
(D)?/D

?
,

we have that A
?
/D

?
is a subgroup of order 25 of CNCz

(D)?/D
?(f

?
D
?
). By the structure

of the centralizer of a non 2-central involuton in PSp4(3) ([AT],page 26) we get that

A
?
/D

?
contains an elementary abelian group of order 16 and Z(A

?
/D

?
) =

〈
f
?
D
?
〉

.
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Thus by 2.4.7(v) we get the following contradiction.

(r?)g
? ∈ CD?(A

?
) ≤

[
CD?(f

?
), A

?
]

=
[
CD?(f

?
), CS?((r?)g

?
)D

?
]

=
[
(K

? ∩D?
)
〈
(r?)g

?〉
, CS?((r?)g

?
)
]

=
[
K
? ∩D?

, CS?((r?)g
?
)
]
≤ K

? ∩D?
.

This contradiction shows that K
?

is strongly closed in NCz
(K)? with respect to

Cz
?

and hence the lemma is proved. �

Lemma 3.3.13 Cz = NCz
(K).

Proof : By 3.3.12, K
?

is strongly closed in NCz
(K)? with respect to Cz

?
. So by

Goldschmidt’s theorem [Go] we have H
?

=
〈

(K
?
)Cz

?
〉

contains no section isomor-

phic to Ω−6 (2). Therefore NCz
(K)? ∩H?

= K
?
. As NCz

(K)? = NCz
?(K

?
), we have

K
? ∈ Syl2(H

?
). Hence K

? ≤ Z(NH
?(K

?
)) and Burnside’s p-complement theorem

gives us that H
?

= O(H
?
)K

?
. Now by the Frattini argument Cz

?
= O(Cz

?
)NCz

(K)?.

Since by 3.3.10, NCz
(K)? contains a Sylow 3-subgroup of Cz

?
, we conclude that

O(Cz
?
) is a W

?
- invariant 3′-subgroup of Cz

?
. By 3.3.7(i), O(Cz

?
) = 1 and hence

Cz = NCz
(K). �

Theorem 3.3.14 Ca ∼= 3Suz.

Proof : By 3.2.14 CCa
(u) ∼= 3U4(3) and by ([AT],page 52), U4(3) has only one

class of involutions and so z is not weakly closed in O2(CCz
(u)) with respect to

CCa
(u). Therefore z is not weakly closed in K with respect to Cz. Now Ca ∼= Suz

follows from 3.3.13 and 2.3.4 and the theorem holds. �

3.4 2-central involution

In this section we try to find an ivolution z in the group G such that CG(z) is

an extension of an extraspecial 2-group of order 29 by Ω+
8 (2). We recall our last

notations:

• R = O3(H1), E = O3(H2), Z(R) = 〈t〉;
• t = abc, Ca = CG(a) ∼= 3Suz, U = 〈a, b〉 and CU = CG(U) where 〈a〉,〈b〉 and

〈c〉 are in L.
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• z is a 2-central involution in Ca = Ca/ 〈a〉 such that CE(z) =
〈
c, b, u

〉
is of

order 27.

• We have J1 of length 11 and J2 of length 110 are the orbits of CH2/E(a) on

P (E).

• We have M = CCa
(b) and M̃ = M/

〈
b
〉
.

• z̃ ∈ CM̃(t̃) is an involution such that z̃R̃1 ∈ Z(CM̃(t̃)/R̃1). By 3.2.13 Ỹ =

O2(CM̃(z̃)) is an extraspecial group of order 32.

Further notations: Let s = ba and z be the preimage of z of order 2, then

Cs = CG(s) and C = CCs(z).

• W = CE(z) is the preimage of W , and Y = O2(CCU
(z)) is a Sylow 2-subgroup

of the pre-preimage of Ỹ .

At first, we determine the structure of Cs. We shall show that Cs/U ∼= U4(3) : 2.

The following lemma follows from 3.2.14.

Lemma 3.4.1 i) O3(CU) = U and CU/U ∼= U4(3).

ii) Y is an extraspecial group of order 32. Further Y = O2(CG(U, c, z))O2(CG(U, u, z)).

Proof : i) follows from 3.2.14. We have Ỹ =
〈
O2(CC̃z̃

(h̃)), O2(CC̃z̃
(t̃))
〉

=

O2(CM̃(z̃)). Hence Y = O2(CG(U, c, z))O2(CG(U, u, z)). By 3.2.6 we get that

Y is an extraspecial group of order 32 and the lemma is proved.�

Lemma 3.4.2 i) |W | = 34.

ii) W ∈ Syl3(C).

iii) NC(W )/W ∼= D8.2.

iv) 〈c〉 is not normalized by NC(W ).

v) Under the action of NC∩CU
(W )/W on P (W ), the orbit containing 〈c〉 is of

length 2.

Proof : As z is the preimage of z, by 3.3.1(ii), we get that W is of order 34 and

by 3.2.3(ii) we get that W ∈ Syl3(C ∩ CU). We have that 〈a, b, c〉 ≤ W and as

t = abc, we get that CCU
(c) = CCU

(t). By 3.1.2 we have that CCU
(t)/O3(CCU

(t)) ∼=
SL2(3) where O3(CCU

(t)) is a special group of order 37 with center 〈a, b, c〉 =
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W ∩ O3(CCU
(t)). Further z acts fixed point freely on O3(CCU

(t))/Z(O3(CCU
(t))

. Therefore NCCU∩C(c)(W )/W is of order 2. On the other hand by 3.2.3(i) we have

that NCU∩C(W )/W ∼= D8. Hence 〈c〉 is not normalized by NC∩CU
(W ). So there is

an element u 6= c in W conjugate to c in NC(W ). By 2.4.2(i) for each five distinct

elements 〈xi〉, i = 1, ..., 5, from the orbit L we have that x1, ..., x5 are linear inde-

pendent. As |W | = 81 = 34, we have L∩P (W ) = {〈a〉 , 〈u〉 , 〈b〉 , 〈c〉}, and further as

s = ab, we get that W ∈ Syl3(C) and {〈c〉 , 〈u〉} is the orbit of NC(W )/W on P (W )

which contains 〈c〉. Hence NCU
(W ) is of index at most 2 in NC(W ). By 3.2.6(v)

there is an involution α ∈ H2 ∩C such that α /∈ CU . Since H2 ∩C is a subgroup of

NC(W ) and α ∈ H2 ∩ C, we get that NCU
(W ) is of index 2 in NC(W ). By 3.2.3(i)

NCU
(W )/W ∼= D8, so NC(W )/W ∼= D8.2 and the lemma is proved. �

We have that 〈a, b, c〉 ≤ W and by 3.4.2(iv) 〈c〉 is not normalized by NC∩CU
(W ).

So there is an element u 6= c in W conjugate to c in NC∩CU
(W ). By 2.4.2(i) for each

five distinct elements 〈xi〉, i = 1, ..., 5, from the orbit L we have that x1, ..., x5 are

linear independent, hence

L ∩ P (W ) = {〈a〉 , 〈u〉 , 〈b〉 , 〈c〉}.

Let L1 = L ∩ P (W ), L2 = {〈a−1bcu〉 , 〈ab−1cu〉 , 〈ac−1bu〉 , 〈au−1cb〉}, L3 =

{〈abcu〉 , 〈a−1b−1cu〉 , 〈a−1c−1bu〉 , 〈a−1u−1cb〉}, L4 = {〈x1x2x3〉 where 〈x1〉, 〈x2〉 and

〈x3〉 are three distinct elements of L1} and L5 = {〈x1x2〉 where 〈x1〉 and 〈x2〉 are

two distinct elements of L1}. Then |L1| = |L2| = |L3| = 4, |L4| = 16, |L5| = 12 and

P (W ) =
⋃5
i=1 Li. Now let F be a subgroup of W of order 27. Then we can see that

|P (F )∩L4| 6= 0 and if 〈x1x2x3〉 ∈ L4 is in P (F ), then
〈
x−1

1 x2

〉
or 〈x1x2〉 is in P (F ).

In fact we have proved the following lemma.

Lemma 3.4.3 i) Let F ≤ W be of index 3. Then F contains elements from the

orbits I and J as well. F contains elements x = x1x2x3 and y where y = x1x
−1
2 or

y = x1x2 and 〈xi〉 ∈ {〈c〉 , 〈b〉 , 〈u〉 , 〈a〉}, for i = 1, 2, 3.

ii) L ∩ P (W ) = {〈a〉 , 〈u〉 , 〈b〉 , 〈c〉}.

Lemma 3.4.4 i) Y is the unique maximal W -invariant 3′-subgroup in C.

ii) NC(W ) ≤ NC(Y ).
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Proof : Let F ≤ W be a subgroup of order 27, then by 3.4.3(i) and 3.1.3 we

get that, CC(F ) is a subgroup of a group X such that O3(X) is a special 3-group of

order 37, Z(O3(X)) is of order 27, |P (Z(O3(X)))∩L| = 3, Z(O3(X)) = W ∩O3(X),

X/O3(X) ∼= SL2(3) × 2 and zO3(X) ∈ Z(X/O3(X)). Let g ∈ CC(a) then as

s = ab, we have g ∈ CC(b). Hence g ∈ (C ∩ CU) and therefore CC(a) = CC(b).

Since CC(a) = CC(b), |P (Z(O3(X))) ∩ L| = 3 and |P (W )) ∩ L| = 4, we have

U ≤ Z(O3(X)). Since |P (Z(O3(X))) ∩ L| = 3 and U ≤ Z(O3(X)), we deduce

that Z(O3(X)) = 〈a, b, c〉 or Z(O3(X)) = 〈a, b, u〉. Since O2(CC(F )) is W -invariant

and Z(O3(X)) ≤ W , we get that only in the case of F = Z(O3(X)), we have

O2(CC(F )) 6= 〈z〉. Therefore if O2(CC(F )) 6= 〈z〉, then F = 〈U, c〉 or F = 〈U, u〉.
Now 3.4.1(ii) gives us that O2(CC(F )) ≤ Y . This and coprime action give us that

the order of a maximal W -invariant 3′-subgroup in C is 32 and is contained in Y .

So we have proved i) and ii) follows from i). �

We note that Y = O2(CG(U, c, z))O2(CG(U, u, z)) and c and u are conjugate in

NC∩CU
(W ). By 3.4.1 we have CU/U ∼= U4(3). Let Y1 ≤ Y be normal in NCU

(Y ),

then either Y1 = Y or Y1 = 〈z〉.

Lemma 3.4.5 i) NCs(Y )/ 〈CCs(Y ), Y 〉 ∼= (S3 × S3).

ii) CC(Y )Y/ 〈Y, s〉 ∼= S3.

Proof : Since Z(Y ) = 〈z〉, we have NCs(Y ) = NC(Y ). Let X̂ = CC(Y )/ 〈z, s〉.
Since U ≤ CC(Y ), we have 3||X̂|. We have that W ≤ CCU

(z) and CCU
(Y ) ∩

W = U(see 3.2.1(i) and 3.2.4(ii),(i)). So by 3.4.2(ii) we have U ∈ Syl3(CC(Y )).

Hence |X̂|3 = 3 and 〈â〉 = U 〈z〉 / 〈z, s〉 ∈ Syl3(X̂). Let x̂ ∈ CX̂(â) be a 3′-

element then x ∈ C ∩ CU( x is a preimage of x̂). Since CCU∩C(Y ) = 〈U, z〉, we

have CX̂(â) = 〈â〉. Now by [FT] we get that X̂/O3′(X̂) ∼= A5, L3(2), Z3 or S3.

Since O3′(X̂) is W -invariant, by 3.4.4(i) we get that O3′(X̂) = 1. Let X̂ ∼= A5

or L3(2). Since X̂ is W -invariant, W normalizes X where X is the preimage of

X̂. Therefore W normalizes X ′ ∼= SL2(5), SL2(7) , A5 or L3(2). By ([AT], pages

2 and 3) we get that |Out(A5)| = |Out(L3(2))| = 2. Therefore a subgroup of

order 27 in W say F centralizes X ′. By 3.4.3(i) and 3.1.1 we get that, CC(F )

is a subgroup of a group X1 such that O3(X1) is a special group of order 37 and

X1/O3(X1) ∼= SL2(3)×2. So there is no section isomorphic to A5 or L3(2) in CC(F ).
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Hence this case does not happen and X̂ ∼= Z3 or S3. Since by 3.2.6(v) there is an

involution α ∈ C ∩H2, z 6= α which centralizes Y , we have X̂ ∼= S3. Since Y is an

extraspecial 2-group of order 25 (see 3.2.6(ii)), by ([GLS2],theorem 10.6) we get that

NC(Y )/CC(Y )Y is isomorphic to a subgroup of O+
4 (2) ∼= S3×S3. By 3.2.3(i) we have

that NCU∩C(W )/ 〈U, z〉 ∼= S3 × S3. Since α ∈ CC∩H2(Y ) and C ∩H2 ≤ NC(W ) by

3.4.2(iii), we get that NC(W )Y/CC(Y )Y ∼= S3×S3. As NC(W )Y/CC(Y )Y ∼= S3×S3

and O+
4 (2) ∼= (S3 × S3).2, we have that NC(Y )/CC(Y )Y ∼= (S3 × S3) and hence the

lemma holds. �

Lemma 3.4.6 i) There is an involution α in NG(U) ∩ Cs ∩H2 such that α is not

conjugate to an involution of CU in Cs.

ii) CG(α, s)/ 〈α, s〉 ∼= U4(2) and CG(α, s, z) ≤ NCs(Y ).

ii) Let T ∈ Syl2(NCs(Y )), then T ∈ Syl2(Cs).

Proof : By 3.1.4(i), NG(U)/CU ∼= D8. By 3.2.6(v), there is an involution α 6= z

in X = NG(U) ∩ Cs ∩ H2 conjugate to z in H2 which centralizes Y and aα = b.

Since by 3.4.1 CU/U ∼= U4(3) and α centralizes Y , by ([AT],page 52) we get that

CCU/U(α) ∼= 2 × U4(2). By ([AT],page 26) we get that |U4(2)|3 = 34 and hence

|CCs(α)|3 ≥ 35. By 3.4.2(i),(ii) we have that for an involution f ∈ CU , |CCs(f)|3 =

34. Hence α is not conjugate to an involution of CU in Cs and i) holds.

We have CG(α, U)/ 〈s, α〉 ∼= U4(2) and by 3.2.6(v) 〈s, u, c〉 ≤ CCU
(α). Since

t = sc, we get that t ∈ CCU
(α). Since α is conjugate to z in H2, by 3.4.2(i),

CE(α) is of order 81. Set V = CE(α), as E ≤ CU , we have V ≤ CG(α, U).

We use the notation ̂ for the natural homomorphism onto CG(α, s)/ 〈s, α〉. We

have that V̂ is an elementary abelian group of order 27, ̂CG(α, U) ∼= U4(2) and

V̂ ≤ ̂CG(α, U). So by ([AT], page 26) we get that N ̂CG(α,U)
(V̂ )/V̂ ∼= S4 and V̂ is

a faithful N ̂CG(α,U)
(V̂ )/V̂ -module. By 2.4.5, under the action of N ̂CG(α,U)

(V̂ )/V̂ on

P (V̂ ) we have three orbits Ii, i = 1, 2, 3, such that |I1| = 3, |I2| = 4 and |I3| = 6. By

3.1.3 we get that CG(t, s)/O3(CG(t, s)) ∼= SL2(3)× 2, O3(CG(t, s) is a special group

of order 37, Z(O3(CG(t, s))) = 〈U, c〉, CG(Z(O3(CG(t, s))))/O3(CG(t, s)) ∼= SL2(3)

and CG(Z(O3(CG(t, s))))/O3(CG(t, s)) is faithful on O3(CG(t, s))/Z(O3(CG(t, s))).

Since |CU(α)| = 3, 〈s, c〉 ≤ V , |V | = 81, we get that α /∈ CG(Z(O3(CG(t, s))))

and ̂CG(t, s, α)/ ̂O3(CG(t, s, α)) ∼= SL2(3). Further ̂O3(CG(t, s, α)) is an extraspe-

cial group of order 27. This gives us that | ̂CG(α, s)|3 = 81 and ̂CG(α, U, t, s) =
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̂CG(α, t, s).

Set D̂ = ̂CG(s, t, α) and F̂ = N ̂CG(α,s)
(V̂ ). Let x ∈ NCG(s,α)(V ). Then as

s = ab and by 2.4.2(i) for each four distinct elements 〈xi〉, i = 1, ..., 4, from the

orbit L we have that x1, ..., x4 are linear independent, we deduce that x2 ∈ CU .

Hence NCG(U,α)(V ) is of index at most 2 in NCG(s,α)(V ) and as α /∈ CU , we get

that F̂ = N ̂CG(α,U)
(V̂ ). Therefore F̂ /V̂ ∼= S4. We note that by 3.3.14 we get

that CG(c) ∼= 3Suz and there is no section isomorphic to CG(c) in H1, so c is not

conjugate to t in G. Let y ∈ Cs and suppose that ty = t−1, then as s = ab and

t = abc, we get that cy = abc−1. But this and 2.4.2(iii) give us that c is conjugate

to t, which is a contradiction. So t is not inverted in Cs. In fact CG(t, s) = CG(s, c).

From the structure of D̂ we get that |ND̂(V̂ )| = 342, so
〈
t̂
〉

is in the orbit of lenght 4

under that action of F̂ /V̂ on P (V̂ ) and hence
〈
t̂
〉
∈ I2. Let V̂1 ≤ V̂ be of index 3. If

t̂ ∈ V̂1, then from the structure of D̂ we get that there is no V̂ -invariant 3′-subgroup

in C ̂CG(α,s)
(V̂1). We recall that

〈
t̂
〉
∈ I2.

Now assume that I2 ∩ P (V̂1) = ∅. We note that s = ab, t = sc and t̂ is

in the orbit of length 4. So there are at least 4 elements conjugate to c in V .

Since by 2.4.2(i) for each four distinct elements 〈xi〉, i = 1, ..., 4, from the orbit

L we have that x1, ..., x4 are linear independent and V is of order 81, we have

|P (V ) ∩ L| = 4 and as P (V̂1) does not contain an element conjugate to t̂, we

have |P (V1) ∩ L| = 0. Let 〈g〉 and 〈r〉 be two elements of P (V ) ∩ L such that

P (V ) = {〈g〉 , 〈r〉 , 〈c〉 , 〈u〉}. We remark that |P (U) ∩ L ∩ P (V )| = 0. By 2.4.2(i)

for each five distinct elements 〈xi〉, i = 1, ..., 5, from the orbit L we have that

x1, ..., x5 are linear independent, so s = ab = c±1u±1g±1r±1. As V is of order 81,

the same argument shows that V = 〈c, u, g, r〉. Now as |P (V1) ∩ L| = 0, s =

ab = c±1u±1g±1r±1 and V1 is of order 27, we can see that V1 contains two elements

x = x−1
1 x2 and y = x1x2x3 where 〈xi〉 ∈ (P (V ) ∩ L), for i = 1, 2, 3. Hence by

3.1.3 we get that CG(V1) is a subgroup of X where X/O3(X) ∼= SL2(3)× 2, O3(X)

is a special group of order 37, Z(O3(X)) = 〈x1, x2, x3〉, CG(Z(O3(X)))/O3(X) =

C/O3(X) ∼= SL2(3) and CG(Z(O3(X)))/O3(X) is faithful on O3(X)/Z(O3(X)).

Since α is trivial on Z(O3(X)), we have α ∈ CC(Z(O3(X))). Hence there is X1 ≤ X

with CCs(V1, α) ≤ X1 and X1/Z(O3(X)) ∼= SL2(3)× 2. Since V ≤ X1, V is of order

81 and Z(O3(X)) ≤ V , there is no V̂ -invariant 3′-subgroup in C ̂CG(α,s)
(V̂1). So in any

case there is no V̂ -invariant 3′-subgroup in C ̂CG(α,s)
(V̂1). By coprime action we get
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that there is no V̂ -invariant 3′-subgroup in ̂CG(α, s). We have | ̂CG(α, s)|3 = 81 and
̂CG(α, U) ∼= U4(2). Since ̂CG(α, U) ≤ ̂CG(s, α), |U4(2)|3 = 81 (see ([AT, page 26))

and there is no subgroup of index 3 in ̂CG(α, U), we get that there is no subgroup

of index 3 in ̂CG(α, s). Now we can see that ̂CG(α, s) satisfies the conditions of

2.3.6 (in 2.3.6 set: t̂ = d, H = ̂CG(α, s), V̂ = E2 and D̂ = X , we note that

as D̂ = ̂CG(t, U, α, s) and ̂CG(α, U) ∼= U4(2), we get that D̂ is isomorphic to the

centralizer of a non-trivial 3-central element in U4(2)). Now by 2.3.6 we get that
̂CG(α, s) ∼= U4(2). This gives us that ̂CG(α, U) = ̂CG(α, s). By 3.2.13 we have that

CG(U, z) = NCU
(Y ). As α centralizes Y and ̂CG(α, U) = ̂CG(α, s), we conclude that

CG(s, z, α) ≤ NCs(Y ) and ii) holds.

Let T ∈ Syl2(NC(Y )), T1 ∈ Syl2(NCU
(Y )) with T1 ≤ T and α ∈ T . Then by

lemmas 3.2.9(v) and 3.2.8 we have Y is a characteristic subgroup in T1 and |T1| = 27.

By 3.4.5(i), (ii) we get that T is of order 28 and so T = T1 〈α〉. We remark that from

the structure of T1 in 3.2.9 and as |CT (α)| = 27 (by ii)), T = T1 〈α〉 is of order 28 and

CT (Y ) = 〈α, z〉 is normal in T , we get that Z2(T ) ∼= Z2 × Z4 and 〈α, z〉 ≤ Z2(T ).

Therefore 〈α, z〉 = Ω1(Z2(T )) is a characteristic subgroup of T and αy = αz for

some element y ∈ T . Now let x ∈ NC(T ) be a 2-element, then x normalizes 〈α, z〉.
If x centralizes α, then by ii) we get that x ∈ NCs(Y ) and so x ∈ T . If x does not

centralize α we get that αx = αz and then xy centralizes α. Now ii) gives us that

xy ∈ T and as y ∈ T , we get that x ∈ T . Hence T ∈ Syl2(C) and the lemma holds.

�

Lemma 3.4.7 There is a subgroup H of index 2 in Cs containing CU .

Proof : Let F ∈ Syl2(CU) and T ∈ Syl2(Cs) containing F . We recall that

U = 〈a, b〉, s = ab and so CU ≤ Cs. By 3.4.5(i),(ii) and 3.4.6(iii) we have |T | = 28

and by 3.2.9(v) and 3.2.8 we get that |F | = 27. So F is a maximal subgroup of

T . By 3.4.6(i) there is an involution α in T such that α is not conjugate to any

involution of F in Cs. Therefore Thompson’s transfer lemma ([BH], XII.8.2) gives

us that Cs has a subgroup H of index 2. Now we have H ∩CU is a normal subgroup

of CU of index at most 2, as CU/U ∼= U4(3)(3.4.1), we have CU ≤ H and the lemma

is proved. �

Further notations: By 3.4.7 there is a subgroup H of index 2 in Cs containing

CU , we fix the notation H for such a subgroup of index 2 in Cs. Set
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Hz = CH(z) and D = NCU
(Y ).

Lemma 3.4.8 i) D = NH(Y ) = CCU
(z).

ii) NH(W ) ≤ D.

iii) NH(W ) = NCU
(W ).

iv) D contains a Sylow 2-subgroup of Hz.

v) |R ∩ E| = 33.

Proof : By 3.2.13 we conclude that D = CG(U, z) and by 3.2.8 D/ 〈U, Y 〉 ∼=
S3 × S3. Since CU is a subgroup of H, we have D ≤ NH(Y ) and by 3.4.5(i),ii)) we

get that D is of index 2 in NC(Y ). As H is of index 2, by 3.4.5(i),(ii),(iii) we get

that D = NH(Y ) and i) holds. Since 〈Y,W 〉 ≤ CU ≤ H, by 3.4.4(i) we get that Y

is the unique maximal W -invariant 3′-subgroup in H. Therefore NH(W ) ≤ NH(Y )

and by i) NH(W ) ≤ D so ii) holds. Since D ≤ CU ≤ H, by 3.2.6(iv) NCU
(W ) ≤ D

and by ii) NH(W ) ≤ D, we get that NH(W ) = NCU
(W ). Since D is of index 2

in NC(Y ) and H is of index 2 in Cs, by 3.4.5(iii) we get that D contains a Sylow

2-subgroup of Hz. As RE ≤ O3(H1 ∩ H2) and the order of a maximal elementary

abelian subgroup of R is 33, we have |R ∩ E| = 33 and the lemma is proved. �

Remark: 1) Let N ∼= U4(2), then by ([AT],page 26) we get that N has two

classes of involutions. Let x ∈ N be a 2-central involution, then CN(x)/O2(CN(x))

is an extension of an elementary abelian group of order 9 by a group of order 2

and O2(CN(x)) is an extraspecial group of order 32 (this gives us that the cen-

ter of a Sylow 2-subgroup of N is of order 2). Let V be a Sylow 3-subgroup of

CN(x) then CO2(CN (x))(V ) = 〈x〉. Let y be a non 2-central involution in N , then

CN(y)/O2(CN(y)) ∼= S3 and O2(CN(y)) is an elementary abelian group of order 16.

2) Let y = x1x2x3x4 or y = x1x2x3 where 〈xi〉 6= 〈xj〉 for i 6= j and 〈xi〉 and 〈xj〉
are in P (W )∩L for j, i = 1, ..., 4. Then as by 2.4.3(i) for each four distinct elements

〈xi〉, i = 1, ..., 4, from the orbit J1 we have that x1, ..., x4 are linear independent, we

get that y is conjugate to t in Ca. Let y = tg, F = Rg and N = Hg
1 where g ∈ Ca. By

3.1.2 we get that CG(a, y)/O3(CG(a, y)) ∼= SL2(3) × 2 with O3(CG(a, y)) is special

group of order 37. This gives us that |CG(a, y)|3 = 37+1 = 38. Since a /∈ Z(F ), we

have |CF (a)| ≤ 34 and by ([AT],page 26) |U4(2)|3 = 81 = 34. Since by the general

assumption N/F ∼= 2U4(2) : 2 and |CG(a, y)|3 = 38, we get that if a /∈ F , then aF

is a 3-central element in N/F .
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3) Let T be a Sylow 3-subgroup of Cs containing E. Then by 2.4.2(iv), E is a

characteristic subgroup of T and therefore T ∈ Syl3(Cs∩H2). Let x ∈ CH2(s), then

sx = axbx = s = ab, since 〈a〉 and 〈b〉 are in the orbit L and by 2.4.2(i) for each five

distinct elements 〈xi〉, i = 1, ..., 5, from the orbit L we have that x1, ..., x5 are linear

independent, we get that x2 ∈ CU . Therefore T ≤ CU .

We are going to show that CU = H and then 3.4.1 will give us the structure of

H. In the following lemma we show that D/ 〈s〉 is strongly 3-embedded in Hz/ 〈s〉,
this will help us to prove that D = Hz. Finally we will show that CU is strongly

2-embedded in H and then by Bender’s theorem [Be] we get that CU = H.

Lemma 3.4.9 D/ 〈s〉 is strongly 3-embedded in Hz/ 〈s〉.

Proof : Let 〈s〉 6= 〈x〉 ≤ D be of order three. Since by 3.4.2(ii), W ∈ Syl3(C)

and W ≤ D, we may assume that x ∈ W . If x ∈ U , then CG(s, x) = CU and so

CG(s, x, z) ≤ D. So we assume that x /∈ U , then by 3.2.3(iii), x is conjugate to an

element β ∈ {yr|y ∈ U, r ∈ {c, cu, c−1u}}. Since s = ab, we see that 〈s, x〉 contains

an element x1x2x3x4 or x1x2x3 where 〈xi〉 6= 〈xj〉 for i 6= j and 〈xi〉 and 〈xj〉 are

in P (W ) ∩ L, j, i = 1, ..., 4. Since by 2.4.2(i) for each five distinct elements 〈xi〉,
i = 1, ..., 5, from the orbit L we have that x1, ..., x5 are linear independent, we get

that 〈s, x〉 contains an element conjugate to t in H2. Let y ∈ 〈s, x〉 be conjugate to

t, y = tg, F = Rg and N = Hg
1 with g ∈ H2. Assume first that s /∈ F . Assume

further thst a /∈ F and b /∈ F . By the general assumption CN(s, z, x)/CF (s, z, x)

is isomorphic to a subgroup of 2U4(2). By 3.1.2 we get that aF and bF are two

3-central elements in N/F (|CN/F (aF )|3 = |CN/F (bF )|3 = |U4(2)|3 = 34). As FE ≤
O3(N ∩ H2) and the order of a maximal elementary abelian subgroup of F is 33,

we have |F ∩ E| = 33 and hence EF/F is an elementary abelian group of order

27 containing aF and bF . Since s = ab, by 2.4.7(vii) we get that sF is a non 3-

central element in N/F and CN(s, x)/O3(CN(s, x)) is a 2-group. Since by 3.4.2(ii)

W ∈ Syl3(C), we get that CN(s, z, x) ≤ NC(W ) (we remark that W ≤ O3(CN(s, x))

and as by 3.4.2(ii) W ∈ Syl3(C), we conclude that W = CO3(CN (s,x))(z)). This gives

us that CHz(x) ≤ NH(W ). Since by 3.4.8(ii) NH(W ) ≤ D, we get that CHz(x) ≤ D.

Now suppose that s /∈ F and one of the elements a or b are in F , as F = O3(N) and

W ∈ Syl3(C), by 3.4.2(ii) we get that CF (x, z) ≤ W . Since s = ab, CF (x, z) ≤ W
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and by 2.4.2(i) for each five distinct elements 〈xi〉, i = 1, ..., 5, from the orbit L we

have that x1, ..., x5 are linear independent, we get that CN(s, x, z) ≤ CCU
(x, z) ≤ D.

Suppose that s ∈ F . As by the general assumption CN(F ) = 〈y〉, we get that

involutions rF ∈ Z(N/F ) act fixed point freely on F/Z(F ). Therefore as 〈y, s〉 ≤ C,

we have zF /∈ Z(N/F ). As CN(y)/F ∼= 2U4(2) and zF /∈ Z(N/F ), by 2.4.7(viii) we

get that CN(s, x, z)/CF (s, x, z) is an extension of a 2-group by an elementary abelian

group of order 9. Since W is of order 34, W ∈ Syl3(C) (3.4.2(i),(ii)) and 9 divides

the order of CN/F (z), we get that CF (z) = 〈x, s〉. Therefore O2(CN(s, x, z)) is W -

invariant and hence by 3.4.4(i), we have O2(CN(s, x, z)) ≤ Y . In fact CN(s, x, z) ≤
〈Y,NC(W )〉, then by 3.4.4(ii) we have CC(x) ≤ NC(Y ) and then CHz(x) ≤ NH(Y ).

Now by 3.4.9(i) we conclude that CHz(x) ≤ D. Hence we have proved that for each

subgroup 〈s〉 6= 〈x〉 ≤ W of order three we have CHz(x) ≤ D.

Assume that h ∈ Hz and 3 divides |D/ 〈s〉∩Dh/ 〈s〉 |. Let X1 ∈ Syl3(D∩Dh). As

W ∈ Syl3(C) and W is an elementary abelian group, we may asume that X1 ≤ W .

Let X1 be a normal subgroup of a 3-subgroup X2 of Dh, then Z(X1) ∩ Z(X2) 6= 1.

As for each x ∈ W we have CHz(s, x) ≤ D, we get that X2 ≤ D. Therefore

X1 ∈ Syl3(D) and we may assume that W = X1 (by 3.4.2(ii)) W ∈ Syl3(C) and as

W ≤ D ≤ Hz, we get that W ∈ Syl3(Hz) ). Hence we may assume that h ∈ NHz(W )

and by 3.4.8(ii) we get that h ∈ D. Therefore D is strongly 3-embedded in Hz and

the lemma is proved. �

We recall that H is a subgroup of index 2 in Cs and CU ≤ H, so by 3.4.8(i)

D ≤ Hz.

Theorem 3.4.10 Cs/U ∼= U4(3) : 2.

Proof : We begin by showing that D = Hz. Denote by ? be the natural homomor-

phism Hz → Hz/ 〈s, z〉. Then by 3.4.9 D? is strongly 3-embedded in H?
z . Let r? ∈ Y ?

be an involution and g? ∈ H?
z such that (r?)g

? ∈ D?. Let T ? be a Sylow 2-subgroup

of D?. Then as U ≤ D, we get that 3 divides the order of CD?(T ?). Therefore 3

divides |CD?(r?)| and 3 divides |CD?((r?)g
?
)| as well. Let P ? ∈ Syl3(CD?(r?)) and

P ?
1 ∈ Syl3(CD?((r?)g

?
)). Then as by 3.4.9 D? is strongly 3-embedded in H?

z , we

have P ? ∈ Syl3(CH?
z
(r?)) and P ?

1 ∈ Syl3(CH?
z
((r?)g

?
)). Since g? ∈ H?

z , we have

(P ?)g
? ∈ Syl3(C(D?)g? ((r?)g

?
)) and as by 3.4.9 (D?)g

?
is strongly 3-embedded in H?

z ,
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we have (P ?)g
? ∈ Syl3(CH?

z
((r?)g

?
)). Hence (P ?)g

?g?
1 = P ?

1 for some g?1 ∈ CH?
z
((r?)g

?
).

Now we have P ?
1 ≤ D? ∩ (D?)g

?g?
1 and as by 3.4.9 D? is strongly 3-embedded in H?

z ,

we get that g?g?1 ∈ D?. Therefore (r?)g
?g?

1 ∈ Y ?. As g?1 ∈ CH?
z
((r?)g

?
), we have

(r?)g
?

= (r?)g
?g?

1 ∈ Y ?. Hence Y ? is strongly closed in D? with respect to H?
z .

Let X? =
〈
(Y ?)H

?
z
〉

and Z? = O(X?). Assume that 3 divides the order of Z?.

As O3′(Z
?) is of odd order and O3′(Z

?) is W ?-invariant, we get that O3′(Z
?) = 1 by

3.4.4(i). Hence F (Z?) = Z? ∩D? = U?. Since F (Z?) is normal in H?
z , F (Z?) = U?

and D? is strongly 3-embedded in H?
z , by 3.4.9, we get that H?

z ≤ D? and hence

H?
z = D?.

Now assume that 3 does not divide the order of Z?. Then as Z? is of odd order

and Z? is W ?-invariant, we get that Z? = 1 by 3.4.4(i). Let B1 = {L2(2n), n ≥ 3,

Sz(2n+1), n ≥ 1, U3(2n), n ≥ 2} and B2 = {L2(q), q ≡ 3, 5 (mod 8), J1, group of

Ree type }. Let O2(X?) = 1. Then since Y ? is strongly 2-closed in D? with respect

to H?
z , |Y ?| = 16 and Z? = 1, we get with Goldschmidt’s theorem [Go] that either

X? ∈ B1∪B2 or X? is the central product of groups P ?
1 and P ?

2 where P ?
i ∈ B1∪B2,

i = 1, 2. We note that, if Q? is a quasisimple normal subgroup of X?, then, as

O2(X?) = 1 = Z?, we get that Z(Q?) = 1. First we assume that X? is the central

product of groups P ?
i and P ?

i ∈ B1 ∪ B2, i = 1, 2. Then since |Y ?| = 16, we have

|Y ∩ P ?
i | = 4, i = 1, 2, and by 2.3.9 and 2.3.10 we get that 3 divides the order of

P ?
i , i = 1, 2. Since W ? ∈ Syl3(H?

z ) by 3.4.2(ii), W ? ≤ D?, by 3.4.9 D? is strongly 3-

embedded in H?
z and there is no section isomorphic to a non abelian simple group in

D? (see 3.2.13), we get that there is no section isomorphic to a non abelian simple

group in the centralizers of the elements of order three in H?
z . But this gives us

that 3 does not divide the order of P ?
i , i = 1, 2 which is a contradiction. Therefore

X? ∈ B1 ∪ B2. By 3.4.8(i),iv)) and 3.2.13 we get that D? = NH?
z
(Y ?) contains a

Sylow 2-subgroup of H?
z . So by 2.3.9 and 2.3.10, we get that X? = L2(16) and

Y ? ∈ Syl2(X?). This gives us that 15 divide the order of NH?
z
(Y ?) (see 2.3.9(ii)).

By 3.4.8(i) D? = NH?
z
(Y ?) and by 3.2.13, 5 does not divide the order of D?. Hence

this case does not happen. Now we assume that O2(X?) 6= 1. Then as O2(X?) is

W ?-invariant, we get by 3.4.4(i) that O2(X?) ≤ Y ?. Since O2(X?) is normal in H?
z ,

we get that O2(X?) = Y ? and so H?
z ≤ NH?

z
(Y ?). We note that D?/Y ? ∼= S3 × S3

acts irreducibly on Y ?. By 3.4.8(i) D? = NH?
z
(Y ?), so H?

z ≤ D? and hence H?
z = D?.

In fact as CU/U ∼= U4(3) by 3.4.1 and by ([AT],page 52) U4(3) has just one class

58



of involutions, we have proved that for each involution f ∈ CU , CH(f) is a subgroup

of CU . We will show that CU is strongly 2-embedded in H. Let h ∈ H such that

|CU/ 〈s〉 ∩Ch
U/ 〈s〉 | is even and let X1 ∈ Syl2(CU ∩Ch

U). Let X2 be a 2-subgroup of

Ch
U such that X1 / X2. Then Z(X1) ∩ Z(X2) 6= 1. As for each involution x ∈ CU ,

CH(x) ≤ CU we get that X2 ≤ CU . Therefore X1 ∈ Syl2(CU) and we may assume

that h normalizes a Sylow 2-subgroup T of CU . By conjugations in CU if necessary

we may assume that Y ≤ T . Then by 3.2.9(v) we have that h ∈ NH(Y ). Therefore

h ∈ D ≤ CU and we get that CU is strongly 2-embedded in H.

Assume CU < H. By 3.4.1 CU/U ∼= U4(3) so H 6= O(H)Hz. Since CU is

strongly 2-embedded in H and H 6= O(H)Hz, by Bender’s theorem [Be] we get

that H/O(H) has a normal subgroup L/O(H) of odd index such that L/O(L) is

isomorphic to Sz(q), L2(q) or U3(q), q > 2, a power of 2. We have CU ≤ Ca and

by 3.3.14 Ca/ 〈a〉 ∼= Suz. As there is no subgroup isomorphic to 3 × U4(3) in Suz

(see([AT],page 131)), we get that CU is a non split extension of U by U4(3) (see

3.4.1). Since L is of odd index in H, we have CU ≤ L. By ([Gor], theorem 16.4) we

get that the centralizer of each involution in L/O(H) is 2-closed, but D = CCU
(z) is

not 2-closed (see 3.2.13). Therefore CU = H and then by 3.4.1 we have H/U ∼= U4(3)

which proves the theorem. �

For the remainder of this chapter we denote by A the centralizer of z in G.

Lemma 3.4.11 i) CA(a)/ 〈a〉 is an extension of an extraspecial 2-group of order 27

by Ω−6 (2).

ii) O3(C) = U and C/U is an extension of an extraspecial 2-group of order 25

by (S3 × S3).2.

iii) Let X be a W -invariant 3′-subgroup of C, then X ≤ Y . In particular

O2(C) = Y and C = NCs(Y ).

Proof : Since z is the preimage of z, i) follows from 3.3.13 and ii) follows from

3.2.13 and 3.4.10. We have Y is extraspecial with center 〈z〉, so NCs(Y ) ≤ C. Now

by ii) and 3.4.5 we get that C = NCs(Y ). Then iii) follows from 3.4.4(i) and the

lemma holds. �

We note that each involution in M11 is a 2-central involution in M12 and the

preimage of a 2-central involution in M12 is an involution in 2M12 ([GLS3] table
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5.3b). In fact, each involution in 2M12 is 2-central.

Let N ∼= M12 and r ∈ N be a 2-central involution, then by ([AT],page 32)

we get that CN(r)/O2(CN(r)) ∼= S3, O2(CN(r)) is extraspecial of order 32 and

CN(r)/O2(CN(r)) acts faithfully on O2(CN(r))/Z(O2(CN(r))). By the general as-

sumption we have H2/E ∼= 2M12 and E/U is an elementary abelian group of order

81. By 3.4.1 CU/U ∼= U4(3), so by ([AT],page 52) we get that NCU
(E)/E ∼= A6 and

hence (H2 ∩ CU)/E ∼= A6. Since z ∈ H2 ∩ CU and (H2 ∩ CU)/E ∼= A6, we get that

zE /∈ Z(H2/E) and by ([AT],page 32) CH2(z)/ 〈W, z〉 is an extension of a 2-group of

order 25 by S3. By 3.3.3(i) and 3.3.2 we get that |NA∩Ca(W )/W | = 24 ·3. By 2.4.2(i)

we get that (Ca∩H2)/E ∼= M11 and NH2(〈a〉)/E ∼= M11×2. Since CH2(z) ≤ NA(W ),

z ∈ Ca ∩ H2, NH2(〈a〉)/E ∼= M11 × 2 and the centralizer of an involution in M11

is isomorphic to GL2(3) ([AT],page 18), we get that NA∩H2(W, 〈a〉)/W is of order

25 ·3. As NA∩Ca(W ) is of index at most 2 in NA(W, 〈a〉), |NA∩Ca(W )/W | = 24 ·3 and

NA∩H2(W, 〈a〉)/W is of order 25 ·3, we get that NA(W, 〈a〉)/W is of order 25 ·3. Since

|L ∩ P (W )| = 4 (see 3.4.3(ii)), CH2(z) ≤ NA(W ) and |CH2(z)| = 4|NA(W, 〈a〉)|, we

get that CH2(z) = NA(W ). Under the action of NA(W )/W on P (W ) we see that

L ∩ P (W ) is the orbit containing 〈a〉. We collect this in the following lemma.

Lemma 3.4.12 i) NA(W ) = CH2(z) and |NA(W )/W | = 27 · 3.

ii) Under the action of NA(W )/W on P (W ) we have that L∩P (W ) is the orbit

containing 〈a〉.

Lemma 3.4.13 Let F ∈ Syl3(CA(a)) such that W ≤ F . Then

i) W = J(F ).

ii) F ∈ Syl3(A).

Proof : By 3.3.2 and 3.3.3(i) NCa∩A(W )/ 〈W, z〉 = X̂ with X̂ ∼= S4 and W/ 〈a〉
a faithful, irreducible X̂-module. Let x̂ ∈ X̂ be an element of order three. We have

that
〈
x̂, x̂ŷ

〉 ∼= A4 for some element ŷ ∈ X̂. By 3.4.2(i) we have that |W | = 81 = 34.

Hence |CW (x̂)| ≤ 9. Therefore W = J(F ). Let F1 be a 3-subgroup of A such that

F /F1, then W /F1. Now by 3.4.12(i) we get that |F1| ≤ 35. Hence F = F1 and the

lemma is proved. �

We remark that for an element x ∈ W of order three, we have that NA(W, 〈x〉) =

NH2(〈x〉 ,W )∩A as we have NA(W ) = CH2(z) by 3.4.12(i). By the general assump-
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tion CH1(R) = 〈t〉. Hence for an involution rR ∈ Z(H1/R) we have that r acts fixed

point freely on R/Z(R).

Lemma 3.4.14 Under the action of NA(W )/ 〈W, z〉 on P (W ) we have 5 orbits L1,

L2, L3, L4 and L5 such that L1 = L ∩ P (W ) and

i) |L1| = |L2| = |L3| = 4, |L4| = 16, |L5| = 12.

ii) L2 = {〈a−1bcu〉 , 〈ab−1cu〉 , 〈ac−1bu〉 , 〈au−1cb〉}.
iii) L3 = {〈abcu〉 , 〈a−1b−1cu〉 , 〈a−1c−1bu〉 , 〈a−1u−1cb〉}.
iv) L4 = {〈x〉, such that x = x1x2x3 and 〈x1〉, 〈x2〉 and 〈x3〉 are three distinct

elements of L1}.
v) L5 = {〈x〉, such that x = x1x2 and 〈x1〉 and 〈x2〉 are two distinct elements of

L1}.

Proof : By 2.4.2(ii) we have NH2(〈s〉)/E ∼= M10 : 2 ∼= A6.2
2. We have E/U

is an elementary abelian group of order 81 and by 3.4.1 CU/U ∼= U4(3). So

by ([AT],page 52) we get that NCU
(E)/E ∼= A6 and hence (H2 ∩ CU)/E ∼= A6.

Since z ∈ H2 ∩ CU and NH2(〈s〉)/E ∼= A6.2
2, we get with ([AT],page 4) that

|(NH2(〈s〉) ∩ A)/W | = 25. As by 3.4.12(i) we have NA(W ) = CH2(z), we get

that |NA(〈s〉 ,W )/W | = 25. Since by 3.4.12(i) |NA(W )/W | = 27 · 3, we con-

clude that under the action of NA(W )/W on P (W ) the orbit containing 〈s〉 is

of length 12. Let L1 = L ∩ P (W ), then by 3.4.12(ii) L1 is the orbit containing

〈a〉 and |L1| = 4. Set L5 = {〈x〉, such that x = x1x2 and 〈x1〉 and 〈x2〉 are

two distinct elements of L1}. Then |L5| = 2(4
2) = 12. By 3.3.2 and 3.3.3(i) we

have NA∩Ca(W )/W ∼= GL2(3) and W is a faithful, irreducible NA∩Ca(W )/ 〈W, z〉-
module. Now by 2.4.5 we get that NA∩Ca(W )/W acts 3-transitively on L1 \ {〈a〉}.
Let B1 = {〈u〉 , 〈c〉 , 〈b〉} = L1\{〈a〉}, B2 = {〈cu−1〉 , 〈cu〉 , 〈bu−1〉 , 〈bu〉 , 〈bc−1〉 , 〈bc〉}
and B3 = {〈b−1cu〉 , 〈c−1ub〉 , 〈u−1cb〉}. Then by 2.4.5 NA∩Ca(W )/W acts transitively

on Bi, i = 1, 2, 3. Since NA(W )/W is transitive on B2 and L1, we get that all ele-

ments of L5 are conjugate in NA(W ). Since 〈s〉 ∈ L5 and the orbit containing 〈s〉
is of length 12, we get that L5 is the orbit containing 〈s〉. By 3.1.2 we get that

W ∈ Syl3(CA(t, a)). If z acts fixed point freely on R/Z(R), then zR ∈ Z(H1/R).

As aR is a 3-central element in H1/R ∼= 2U4(2) : 2 and |U4(2)|3 = 34 ([AT],page

26), we get that |CA(t, a)|3 = 35 which is a contradiction to W ∈ Syl3(CA(t, a))

and |W | = 34(see 3.4.2(i)). Hence z does not act fixed point freely on R/Z(R) and
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so zR /∈ Z(H1/R). By 3.4.12(i) we have NA(W, 〈t〉) = CH1∩H2(z). By the general

assumption H1 ∩H2/E is an extenstion of an elementary abelian group of order 9

by GL2(3)× 2 and O3(H1 ∩H2/E) is the natutal module for H1 ∩H2/O3(H1 ∩H2).

Since CH1∩H2(τ)/O3(H1 ∩H2) ∼= GL2(3), zR /∈ Z(H1/R) and z centralizes t, we get

that |NH1∩A(W )/W | = 23 · 3. By 3.4.12(i) |NA(W )/W | = 27 · 3. This gives us that

the orbit containing 〈t〉 is of length 16. Set L4 = {〈x〉, such that x = x1x2x3 and

〈x1〉, 〈x2〉 and 〈x3〉 are three distinct elements of L1}. Then |L4| = 4(4
3) = 16. We

have NA(W )/W is transitive on L1 and B2, so all elements of L4 are conjugate in

NA(W ). Since 〈t〉 ∈ L4 and the orbit containing 〈t〉 is of length 16, we get that L4 is

the orbit containing 〈t〉. Now set L2 = {〈a−1bcu〉 , 〈ab−1cu〉 , 〈ac−1bu〉 , 〈au−1cb〉} and

L3 = {〈abcu〉 , 〈a−1b−1cu〉 , 〈a−1c−1bu〉 , 〈a−1u−1cb〉}. Then |L3| = |L2| = |L1| = 4.

We note that by 3.3.4(iv) bcu and c−1u−1b−1 are not conjugate in NA∩Ca(W ) and

by 3.2.3(iii) cu and c−1u are not conjugate in NA∩CU
(W ). By 3.2.8 and 3.2.3(i)

NC̃z̃
(Ỹ )/Ỹ = NC̃z̃

(W̃ )Ỹ /Ỹ , so by 3.2.9(i) there is an involution in NA∩CU
(W ) which

acts fixed point freely on W/U . Hence cu is conjugate to c−1u−1 in NA∩CU
(W ). As

NA(W )/W is transitive on L1 and B3, all elements of L2 are conjugate in NA(W )

and all elements of L3 are conjugate as well. Since |P (W )| = 40, we get that

|P (W )|−(|L1|+|L4|+|L5|) = 8 and so either L2 and L3 are two orbits or L2∪L3 is an

orbit. Since by 2.4.2(i) for each five distinct elements 〈xi〉, i = 1, ..., 5, from the orbit

L we have that x1, ..., x5 are linear independent, we get that the elements in L2 and

L3 are conjugate to 〈t〉 in H2. Assume that L2 ∪L3 is an orbit of NA(W )/W . Then

for 〈x〉 ∈ L2 ∪ L3 we have |NA(W, 〈x〉)|2 = 24, as by 3.4.12(i), |NA(W )/W | = 27 · 3.

We have x = tg for some g ∈ H2, and then by 3.4.12(i) NA(〈x〉 ,W ) = CHg
1∩H2

(z).

By the general assumption we have (Hg
1 ∩H2)/O3(Hg

1 ∩H2) ∼= GL2(3)×2. Therefore

for each involution f ∈ Hg
1 ∩ H2 we have |CHg

1∩H2
(f)|2 = 25 or 23. Hence L2 ∪ L3

is not an orbit and hence L2 and L3 are two orbits of length 4 and the lemma is

proved. �

Further notation: For the remainder of this chapter we adopt the notations

L1, L2, L3, L4 and L5 from 3.4.14.

Remarks:1) By 2.4.2(i) for each five distinct elements 〈xi〉, i = 1, ..., 5 from the

orbit L we have that x1, ..., x5 are linear independent, so (L2 ∪ L3 ∪ L4) ⊆ J . By

2.4.2(ii) we get that L5 = I ∩P (W ). We recall that 〈t〉 ∈ L4, 〈s〉 ∈ L5 and 〈a〉 ∈ L1.
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2) Let N ∼= U4(2) and X ≤ N be an elementary abelian group of order 27. Then

by ([AT], page 26) NN(X)/X ∼= S4, NN(X) is a maximal subgroup of N and N has

just one class of subgroups isomorphic to X. By coprime action and the structure of

the centralizes of the elements of order three in N ([AT],page 26) we get that there

is no X-invariant 3′-subgroup in N .

Lemma 3.4.15 i) Let 〈x〉 ∈ L2 ∪ L3. Then CA(x)/ 〈x, z〉 ∼= U4(2). In particular

O2(CA(x)) = 〈z〉.
ii) zR /∈ Z(H1/R).

Proof : Let 〈x〉 ∈ L2 ∪ L3 ∪ L4. Then as by 2.4.2(i) for each five distinct elements

〈xi〉, i = 1, ..., 5 from the orbit L we have that x1, ..., x5 are linear independent,

we get that x is conjugate to t in H2. Let x = tg, N = Hg
1 and F = Rg with

g ∈ H2. By 3.4.12(i) we have NA(W, 〈x〉) = CN∩H2(z). By the general assumption

N ∩H2/E is an extenstion of an elementary abelian group of order 9 by GL2(3)×2.

If zF /∈ Z(N/F ), as z centralizes x, we get that |NN∩A(W )/W | = 23 · 3. This gives

us that the orbit containing 〈x〉 is of length 16 as by 3.4.12(i) |NA(W )/W | = 27 · 3.

Now by 3.4.14(i) we get that 〈x〉 ∈ L4. Therefore, if 〈x〉 ∈ L2 ∪ L3 we have

that zF ∈ Z(N/F ) and zR /∈ Z(H1/R). Suppose that 〈x〉 ∈ L2 ∪ L3. Then as

zF ∈ Z(N/F ) and CN(F ) = Z(F ), we get that z acts fixed point freely on F/Z(F )

and hence CA(x)/ 〈x, z〉 ∼= U4(2). Now the lemma is proved. �

Lemma 3.4.16 Let 〈x〉 be in the orbit L4. Then

i) O3(CA(x)) is an extraspecial 3-group of order 27.

ii) CA(x)/O3(CA(x))) is an extension of Q8×Q8 by an elementary abelian group

of order 9.

iii) O2(CA(x)) ∼= Q8.

iv) Let X be a W -invariant 3′-subgroup of CA(x), then X ≤ O2(CA(x)) and

either X = 〈z〉 or X = O2(CA(x)).

Proof : We have 〈t〉 ∈ L4 and so we just prove the lemma for x = t. Since

|L4| = 16, we get that NA∩H1(W ) has index 16 in NA(W ) and zR /∈ Z(CG(t)/R)

by 3.4.15(ii). Therefore zR is a non 2-central involution in CH1(t)/R
∼= 2U4(2) and

by 2.4.7(viii) we get that CA(t)/CR(z) is an extension of Q8 ×Q8 by an elementary

abelian group of order 9. As CH1(R) = Z(R), any involution rR ∈ Z(H1/R) acts
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fixed point freely on R/Z(R). We have zR /∈ Z(H1/R) by 3.4.15(ii). If z acts

fixed point freely on R/Z(R), then rz centralizes R, which is a contradiction. By

coprime action we have R = CR(z) [z,R]. As CR(z) and [z, R] are CA(t)/CR(z)-

invariant, O2(CA(t)/CR(z)) ∼= Q8 × Q8, |R/Z(R)| = 81 and by the general as-

sumption CH1(R) = Z(R), we get that CR(z) ∼= [z,R] is an extraspecial group of

order 27. Since CR/Z(R)(z) is of order 9, |O2(CA(t)/CR(z))|2 = 26 and CR/Z(R)(z)

is CA(t)/CR(z)-invariant, we have O2(CA(t)) > 〈z〉. We have O2(CA(t)) central-

izes CR(z) and so |O2(CA(t))CR(z)/CR(z) ∩ Z(O2(CA(t)/CR(z)))| = 2 (we remark

that rCR(z) ∈ Z(O2(CA(t)/CR(z)) and r acts fixed point freely on R/Z(R)). As

O2(CA(t)) is W -invariant, by 2.4.7(viii) either O2(CA(t)) ∼= Q8 or O2(CA(t)) ∼=
Q8 × Q8. If |O2(CA(t))| = 26, then as [R/Z(R), z] is of order 9 and [R/Z(R), z] is

O2(CA(t))-invariant, we get that 2 divides the order of CO2(CA(t))([R, z]), but then 2

divides the order of CH1(R) which is a contradiction to the general assumption. So

O2(CA(t)) ∼= Q8. Now let X be a W -invariant 3′-subgroup of CA(t), then X/CR(z) ≤
O2(CA(t)/CR(z)). As CR(z) is of order 27, |W | = 81 (by 3.4.2(i)) and |CA(t)|3 = 35,

we have |W ∩CR(z)| = 9. Since X is W -invariant, CR(z) is an extraspecial group of

order 27 and |W ∩CR(z)| = 9, we have X ≤ O2(CA(t)). As O2(CA(x)) ∼= Q8 and X

is W -invariant we get that either X = 〈z〉 or X = O2(CA(x)) ∼= Q8 and the lemma

is proved. �

Lemma 3.4.17 Let K̂ be a W -invariant 3′-subgroup of A. Then

i) K̂ is a 2-group and |K̂| ≤ 29.

ii) CA(x) ∩ K̂ ≤ O2(CA(x)) for each element x ∈ W of order three.

iii) K̂ =
〈
K̂ ∩O2(CA(x))|x ∈ W ]

〉
.

Proof : As K̂ is W -invariant, by coprime action we have

K̂ =
〈
CK̂(x), x ∈ W ]

〉
.

Suppose that x = a then by 3.4.11(i) we have CA(x)/ 〈x〉 is an extension of an

extraspecial 2-group of order 27 by U4(2). As K̂∩CG(x) is W -invariant, by 5.13 and

5.7 we get that K̂ ∩ CG(x) ≤ O2(CA(x)) and by 5.5(ii) and coprime action we get

that K̂ ∩ CA(x) = 〈z〉 or K̂ ∩ CA(x) is an extraspecial 2-group and |K̂ ∩ CA(x)| ≤
25. Assume that x = t, then 〈x〉 ∈ L4 and by 3.4.16(iv),(iii) we get that either

K̂ ∩ CA(x) = 〈z〉 or K̂ ∩ CA(x) = O2(CA(x)) ∼= Q8.
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Suppose that x = s, then 〈x〉 ∈ L5 and by 3.4.11(iii) we get that K̂∩CA(x) ≤ Y .

Since K̂ ∩ CA(x) ≤ Y is W -invariant, by 3.2.5(ii) and coprime action we get that

O2(CA(x))∩K ∼= Q8 or K̂ ∩CA(x) = 〈z〉 or K̂ ∩CA(x) = O2(CA(x)). Assume that

〈x〉 ∈ L2 ∪ L3, then by 3.4.15 (i) K̂ ∩ CG(x) = 〈z〉.
Hence either for each element x ∈ W ] we have CK̂(x) = 〈z〉 and then K̂ = 〈z〉 or

CK̂(x) is an extraspecial 2-group. So by Wielandt’s order formula ([BH],XI.12.6) we

get that K̂ is a 2-group and 2|W ||K̂||P (W )|−1 ≤ |O2(CA(a))||a||L1||O2(CA(s))||s||L5||O2(CA(t))||t||L4||O2(CA(ta))||tau||L2|

|O2(CA(tu))||tu||L3|. Now by lemmas 3.4.14(i), 3.4.11(i),(ii), 3.4.16(iii), 3.4.2(i) and

3.4.15(i) and as |a| = |t| = |tu| = |tau| = |s| = 3, we conclude that |K̂| ≤ 29 and

hence the lemma is proved. �

We recall that U = 〈a, b〉 is a subgroup of W of order 9, u /∈ U and Y =

O2(CA(U)) = O2(CA(U, c))O2(CA(U, u)). Set

Kz = O2(CA(u))Y .

Lemma 3.4.18 i) O2(CA(a)) = O2(CA(u, a))Y and O2(CA(b)) = Y O2(CA(u, b)).

ii) Kz = O2(CA(a))O2(CA(b)) and Kz is an extraspecial 2-group of order 29.

iii) O2(CA(c)) = O2(CA(c, a))O2(CA(c, b)) and O2(CA(u)) = O2(CA(u, a))O2(CA(u, b)).

Proof : As a, u, c and b are conjugate in NA(W ) by6.12(ii), we get that i) and iii)

follow from 3.3.6(ii). We recall that u and c are conjugate in A ∩ CU and NA(W )

acts 2-transitively on L1. By 3.4.11(i) O2(CA(a)) is an extraspecial 2-group of order

27, so by 3.4.12(ii) we get that O2(CA(x)) is an extraspecial 2-group of order 27 for

all 〈x〉 ∈ L ∩ P (W ). By i) we have that Y ≤ O2(CA(b)) ∩ O2(CA(a)). By i) and

iii) and as O2(CA(u)) is an extraspecial 2-group, we get that Kz is an extraspecial

2-group. We have O2(CA(u))∩Y ≤ O2(CCU
(u)) and as ub is conjugate to bc in Ca by

2.4.3(ii) we get with 3.1.2 that O2(CCa(u, b)) ∼= Q8. Therefore |O2(CA(u))∩ Y | ≤ 8.

Since both O2(CA(u)) and Y are W -invariant and Kz is a 2-group, we get that Kz

is a W -invariant 3′-subgroup of A. Hence by 3.4.17(i) we have that |Kz| ≤ 29. As

by 3.2.6(ii) |O2(CA(u)) ∩ Y | ≤ 8, |Y | = 25 and |O2(CA(u))| = 27, we conclude that

Kz is of order 29 and the lemma is proved. �

Lemma 3.4.19 i) Kz is the unique maximal W -invariant 3′-subgroup of A.

ii) NA(W ) ≤ NA(Kz).

iii) For x ∈ W ] we have that O2(CA(x)) ≤ Kz.
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Proof : By lemmas 3.4.17(i) and 3.4.18(ii), Kz is a maximal W -invariant 3′-

subgroup of A and any W -invariant 3′-subgroup of A is a 2-group. Suppose that

〈x〉 ∈ L1, then by 3.4.18(i),iii)) we have that O2(CA(x)) is a subgroup of Kz. Assume

that 〈x〉 ∈ L2 ∩ L3. Then by 3.4.15(i) O2(CA(x)) = 〈z〉 is a subgroup of Kz.

Suppose that x = s, then 〈x〉 ∈ L5 and by 3.4.11(iii) O2(CA(x)) = Y and hence

O2(CA(x)) ≤ Kz. Assume that 〈x〉 ∈ L4, then by 3.4.16(iii) O2(CA(x)) ∼= Q8

and hence O2(CA(x)) centralizes a subgroup of order 27 of W , as |Aut(Q8)|3 = 3.

Therefore by 3.4.3(i) there is an element 〈y〉 ∈ L5 such that O2(CA(x)) ≤ CA(y).

As 〈s〉 ∈ L5 we may assume that y = s, then by 3.4.11(iii) and as O2(CA(x)) is

W -invariant, we get that O2(CA(x)) ≤ Y and hence O2(CA(x)) ≤ Kz. Now iii)

holds, ii) follows from i) and i) follows from iii) and 3.4.17(ii). �

Lemma 3.4.20 Let V = 〈a, bcu, b−1u〉 and X be a V -invariant 3′-subgroup of A.

Then X ≤ Kz.

Proof : Let V = 〈a, bcu, b−1u〉, then P (V ) ∩ L1 = {〈a〉}, P (V ) ∩ L2 = {〈a−1bcu〉},
P (V )∩L3 = {〈abcu〉}, P (V )∩L4 = {〈bcu〉 , 〈acu−1〉 , 〈abc−1〉 , 〈auc−1〉 , 〈abu−1〉 , 〈acb−1〉 , 〈aub−1〉}
and P (V ) ∩ L5 = {〈b−1u〉 , 〈c−1b〉 , 〈cu−1〉}. Let α ∈ NA(W ) be of order 2 and

[α, V ] = 1, then [α, a] = 1. Since α centralizes each element of P (V ) ∩ L5 and L1

is α-invariant, we have [α,W ] = 1 and hence α = z. Now let X be a V -invariant

3′-subgroup in A, then X ∩ NA(W ) = 〈z〉. Let F ≤ V be of order 9, then either

P (V ) ⊆ L4 or |P (F ) ∩ L5| ≥ 1. Let |P (F ) ∩ L5| ≥ 1 and 〈y〉 ∈ (P (F ) ∩ L5),

then y = xv where 〈x〉 and 〈v〉 are from L1 \ {〈a〉}. By 3.4.11(ii) we have that

CA(y)/ 〈x, v〉 is an extension of an extraspecial group of order 32 by (S3×S3)2. We

have V ∩ 〈x, v〉 = 〈y〉, CA(y)/O2(CA(y)) is irreducible on O2(CA(y))/Z(O2(CA(y))

and X ∩ NA(W ) = 〈z〉. As CA(y)/O3(CA(y)) is isomorphic to the centralizer of a

2-central involution in Cs/U ∼= U4(3) : 2, we get that X ∩CA(y) ≤ O2(CA(y)). Now

let P (F ) ⊆ L4 and 1 6= y ∈ F , then by 3.4.16 we have O3(CA(y)) is an extraspecial

3-group of order 27, CA(y)/O3(CA(y))) is an extension of Q8×Q8 by an elementary

abelian group of order 9 and O2(CA(y)) ∼= Q8. We note that as X ∩NA(W ) = 〈z〉,
we have (X ∩CA(y))O2,3(CA(y))/O2,3(CA(y))∩Z(CA(y)/O2,3(CA(y))) = 1 and this

gives us that X ∩ CA(y) ≤ O2(CA(y)). Therefore CX(F ) ≤ O2(CA(x)) for some

element x ∈ V of order three. Now by coprime action and 3.4.19(iii) we get that

X ≤ Kz and the lemma is proved. �
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Lemma 3.4.21 CA(a) ≤ NA(Kz).

Proof : As by 3.4.19(ii) NA(W ) is a subgroup of NA(Kz), we have NCa∩A(W ) ≤
NA(Kz). Set Q = O2(CA(a)). By 3.3.4 we get that for x = bcu we have that

CA(x, a)Q/ 〈a,Q〉 is a split extension of an extraspecial 3-group of order 27 by

SL2(3). As z acts nontrivially on Z(O3(CCa
(x))), we get by 3.3.2 and 3.3.3(i)

that CA(x, a) is not contained in NCa∩A(W ). Set X = CA(x, a) and let P ≤
X be a 3-group such that PQ/Q = O3(XQ/Q). We have W ≤ X and so by

3.4.13(i),(ii) we get that P ≤ NA(W ). Now 3.4.19(ii) gives us that P ≤ NA(Kz).

Set V = P ∩ W , then we have that Z(P ) = 〈a, x〉 and V is of order 27. Let

y ∈ X be an element of order 4 such that ŷ = 〈y〉Q/Q ∈ XQ/Q is of or-

der 4. Then ŷ2 acts fixed point freely on P/Z(P ) and y2 ∈ NA(W ). We have

x = bcu and ŷ2 centralizes x, so ŷ2 does not invert b, c and u. Hence P (V ) ∩ L1 =

{〈a〉}. Now by the representations of the elements in the orbits Li in 3.4.14 for

i = 1, ..., 5 we get that P (V ) ∩ L2 = {〈a−1bcu〉}, P (V ) ∩ L3 = {〈abcu〉}, P (V ) ∩
L4 = {〈bcu〉 , 〈acu−1〉 , 〈abc−1〉 , 〈auc−1〉 , 〈abu−1〉 , 〈acb−1〉 , 〈aub−1〉} and P (V )∩L5 =

{〈b−1u〉 , 〈c−1b〉 , 〈cu−1〉}. So V = 〈a, bcu, b−1c〉 and |P (V ) ∩ L1| = |P (V ) ∩ L2| =

|P (V ) ∩ L3| = 1, |P (V ) ∩ L5| = 3 and |P (V ) ∩ L4| = 7. Now let r ∈ P , then

d = [y, r] ∈ PQ. Let yd = gy for some g ∈ PQ. By 3.4.19(ii),iii) we get that PQ is

a subgroup of NA(Kz). Therefore we have that

((Kz)
y)r = (Kz)

yr
= (Kz)

yd = (Kz)
gy = (Kz)

y.

Hence (Kz)
y is V -invariant and therefore by 3.4.20 we get that (Kz)

y = Kz.

This gives us that y ∈ NA(Kz) and so CA(a, x) normalizes Kz. Since by 3.4.11(i),

CA(a)Q/Q ∼= 3×U4(2) and by 3.3.2 and 3.3.3(i), NA∩Ca(W )Q/Q is an extension of

an elementary abelian group of order 81 by S4, by ([AT],page 26) NCa∩A(W )Q/Q

is a maximal subgroup of CA(a)Q/Q. Therefore CA(a) ≤ NA(Kz) and the lemma

holds. �

Lemma 3.4.22 NA(Kz)/Kz
∼= Ω+

8 (2).

Proof : We note that for N ∼= U4(2) and F an elementary abelian group in N of

order 27, that by ([AT],page 26) each element of order three in N is conjugate to an

element of F . So by 3.4.11(i) and 3.4.13(ii) we get that each element of order three
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of A is conjugate to an element of W in A. Now by 3.4.11(i),(ii), 3.4.15(i) and 3.4.16

we get that no element of order three in W centralizes Kz. Further by 3.4.19(i) Kz is

the unique maximal W -invariant 3′-subgroup of A. Therefore CA(Kz) = 〈z〉. Since

by 3.4.18(ii), Kz is an extraspecial 2-group of order 29, by ([GLS2],theorem 10.6)

NA(Kz)/Kz is isomorphic to a subgroup of Aut(Kz)/Inn(Kz) ∼= O+
8 (2). By ([AT],

page 85) the normalizer of an elementary abelian group of order 81 in O+
8 (2) is

isomorphic to S3wrS4. Hence from the structure of NA(W ) in 3.4.12(i) we conclude

that NA(Kz)/Kz is not isomorphic to O+
8 (2). By 3.4.21 we have that CA(a) ≤

NA(Kz). As Ω+
8 (2) is the unique simple subgroup of index 2 in O+

8 (2), from the

structure of CA(a) in 3.4.11(i) we get that CA(a)Kz/Kz is isomorphic to a subgroup

of Ω+
8 (2). Let Ω+

8 (2) ∼= N̂ ≤ Aut(Kz)/Inn(Kz). We have that CA(a)Kz/Kz is

isomorphic to a subgroup of N̂ . By 3.4.19(ii), NA(W ) ≤ NA(Kz). Suppose that

NA(W )Kz/Kz is isomorphic to a subgroup of N̂ . Then NA(W )Kz/Kz is isomorphic

to a maximal subgroup of Ω+
8 (2) ([AT],page 85) and as CA(a) is not a subgroup of

NA(W ) by 3.4.11(i) and 3.4.12(i), we get that NA(Kz)/Kz
∼= N̂ ∼= Ω+

8 (2).

So it is enough for us to show that NA(W )Kz/Kz is isomorphic to a subgroup

of N̂ . Since N̂ is of index 2 in Aut(K)/Inn(K), either NA(W )Kz/Kz is isomor-

phic to a subgroup of N̂ or NA(W )Kz/Kz has a subgroup F ? of index 2 isomorphic

to a subgroup of N̂ . We assume that NA(W )Kz/Kz is not isomorphic to a sub-

group of N̂ and hence NA(W )Kz/Kz has a subgroup F ? of index 2 isomorphic to

a subgroup of N̂ . We note that as F ? is of index 2 in NA(W )Kz/Kz, by 3.4.12(i)

and as CKz(W ) = 〈z〉, we get that |F ?| = 35 · 25. By 3.3.2 and 3.3.3(i) we have

NA∩Ca(W )/ 〈W, z〉 ∼= S4 and as CA(a)Kz/Kz is isomorphic to a subgroup of N̂ ,

we deduce that NCa∩A(W )Kz/Kz is isomorphic to a subgroup of F ?. Let X̂ ≤ N̂

be an elementary abelian group of order 81, then by ([AT],page 85) we get that

NN̂(X̂)/X̂ is an extension of an elementary abelian group of order 8 by S4. We note

that Z(O2(NN̂(X̂)/X̂)) is of order 2 and NN̂(X̂)/O3,2(NN̂(X̂)) acts faithfully on

O2(NN̂(X̂)/X̂)/Z(O2(NN̂(X̂)/X̂))). From the structure of NN̂(X̂)/X̂ we get that

there is no subgroup of index 2 in NN̂(X̂)/X̂ containing a section isomorphic to S4.

But F ? is isomorphic to a subgroup of index 2 of NN̂(X̂), NA∩Ca(W )/ 〈W, z〉 ∼= S4

and NA∩Ca(W )Kz/Kz is a subgroup of F ?. This shows that NA(W )Kz/Kz is iso-

morphic to a subgroup of N̂ and the lemma is proved. �

Lemma 3.4.23 Let x ∈ W be of order three, then CA(x) ≤ NA(Kz).
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Proof : By 3.4.19(ii) we have NA(W ) ≤ NA(Kz). So it is enough to prove the

lemma for just one element from each orbit Li, i = 1, 2, 3, 4, 5. Let x = a, then

〈x〉 ∈ L1 and by 3.4.21 we have that CA(x) ≤ NA(Kz). Let x = s, then 〈x〉 ∈ L5

and by 3.4.11(ii),(iii) we have CA(s)/Y ∼= (S3 × S3).2, so CA(x) ≤ 〈Y,NA(W )〉.
Now by 3.4.19(ii), we have CA(x) ≤ NA(Kz). Let x = t then 〈x〉 ∈ L4. We

have W ≤ NA(Kz) and by 3.4.2(i) W is an elementary abelian group of order

81, so WKz/Kz is an elementary abelian group of order 81. Since NA(Kz)/Kz
∼=

Ω+
8 (2) by 3.4.22 and |L4| = 16, by 2.4.8(v) we get that |CNA(Kz)/Kz(xKz)| = 23 · 35.

On the other hand by 3.4.16 we get that |CA(x)/O2(CA(x))| = 23 · 35. Since by

3.4.19(iii) O2(CA(x)) ≤ Kz and |CA(x)/O2(CA(x)))| = |CNA(Kz)/Kz(xKz)|, we have

|CNA(Kz)(x)| = |CA(x)| and hence CA(x) ≤ NA(Kz). Let 〈x〉 ∈ L2 ∪ L3, then by

3.4.15(i) CA(x)/ 〈x, z〉 ∼= U4(2). Since |L2| = |L3| = 4 and NA(Kz)/Kz
∼= Ω+

8 (2), by

2.4.8(v) we get that CNA(Kz)/Kz(xKz) ∼= 3×U4(2) and hence |CNA(Kz)(x)| = |CA(x)|.
This gives us that CA(x) ≤ NA(Kz) and the lemma is proved. �

Set B = NA(Kz). In what follows we use the notation * for the natural homo-

morphism A 7→ A/ 〈z〉. We are going to show that B is strongly 3-embedded in A

and we will use this to show that A = B.

Lemma 3.4.24 B is strongly 3-embedded in A.

Proof : Let x ∈ B be of order three, then by 3.4.22 and 2.4.8(v), x is conjugate

to an element of W in B. So we may assume that x ∈ W and then by 3.4.23 we

have that CA(x) ≤ B. So we have CA(x) ≤ B for all 3-element x ∈ B. Now assume

that 3 divides |B ∩Bg| for some g ∈ A and let X1 ∈ Syl3(B ∩ Bg). Let E0 be a

3-subgroup of Bg with X1 / E0. Then for some element x ∈ X1 of order three we

have E0 ≤ CA(x). So E0 ≤ B. Therefore X1 ∈ Syl3(B)∩Syl3(Bg). We may assume

that W ≤ X1, then W ≤ NA(Kg
z ). Now 3.4.19(i) gives us that Kg

z = Kz, hence

g ∈ B and the lemma is proved. �

Lemma 3.4.25 K?
z is strongly closed in B? with respect to A?.

Proof : Let r? ∈ K?
z be an involution and g? ∈ A? such that (r?)g

? ∈ B? and

(r?)g
?
/∈ K?

z . By 2.4.8(ii) we get that 3 divides |CB?(r?)|. By 2.4.8(i) B?/K?
z has 5

classes, 2A,2B,2C,2D and 2E of involutions. Let (r?)g
?
K?
z be in class 2A, then 27
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divides the order of CB?((r?)g
?
). Now by 2.4.8(iv) and 2.4.6 we get that 3 divides

the order of each involution in (r?)g
?
K?
z . Let (r?)g

?
K?
z be in one of the classes 2C,

2B,2D or 2E, then by 2.4.8(iii),(i),(iv) and 2.4.6 we get that 3 divides the order

of each involution in (r?)g
?
K?
z . Therefore 3 divides the order of CB?((r?)g

?
). Let

P ? ∈ Syl3(CB?(r?)) and P ?
1 ∈ Syl3(CB((r?)g

?
)). Then as by 3.4.24 B? is strongly

3-embedded in A?, we have P ? ∈ Syl3(CA?(r?)) and P ?
1 ∈ Syl3(CA?((r?)g

?
)). Since

g? ∈ A?, we have (P ?)g
? ∈ Syl3(C(B?)g? ((r?)g

?
)) and as by 3.4.24 (B?)g

?
is strongly

3-embedded in A?, we get that (P ?)g
? ∈ Syl3(CA?((r?)g

?
)). Hence (P ?)g

?g?
1 = P ?

1

for some g?1 ∈ CA?((r?)g
?
). Now we have P ?

1 ≤ B? ∩ (B?)g
?g?

1 and as by 3.4.24 B?

is strongly 3-embedded in A?, we get that g?g?1 ∈ B?. Therefore (r?)g
?g?

1 ∈ K?
z . As

g?1 ∈ CA?((r?)g
?
), we have (r?)g

?
= (r?)g

?g?
1 ∈ K?

z . But this is a contradiction to our

assumption that (r?)g
?
/∈ K?

z . Hence K?
z is strongly closed in B? with respect to A?

and the lemma is proved. �

Lemma 3.4.26 A = B

Proof : By 3.4.25, K?
z is strongly closed in B? with respect to A?. So by Gold-

schmidt’s theorem [Go] we have H? =
〈
(K?

z )A
?〉

contains no section isomorphic to

Ω+
8 (2). Therefore B? ∩ H? = K?

z and as B? = NA?(K?
z ), we have K?

z ∈ Syl2(H?).

Hence K?
z ≤ Z(NH?(K?

z )) and Burnside’s p-complement theorem gives us that

H? = O(H?)K?
z . Now by the Frattini argument A? = O(A?)B?. Since by 3.4.13, B?

contains a Sylow 3-subgroup of A?, we get that O(A?) is a W ?-invariant 3′-subgroup

of A?. Now by 3.4.19(i), O(A?) = 1 and hence A = B. �

Now we can prove the Theorem 4.

Proof : As by ([AT],page 52) U4(3) has just one class of involutions and by 3.4.1

CU/U ∼= U4(3) we get that z is not weakly closed in Y with respect to CU . Therefore

z is not weakly closed in Kz with respect to G. Now the theorem follows from 3.4.26

and 2.3.3. �
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Chapter 4

Characterization of M(24)′

In this chapter we will prove theorem 5 and corolarry 7. Therefore in this chapter

G is a group of M(24)′-type and we keep the notations G, H1 and τ as in definition

2. We gave a sketch of the proof for theorem 5 in 1.3.2.

This chapter has three sections. In section 4.1 we give some preliminary lemmas

which are needded in the next sections. In section 4.2 we will select a suitable non

2-central involution z in O2(H1) and we shall show that CG(z) ∼= 2M(22) : 2. Then

in section 4.3 we will select an elementary abelian subgroup M of order 211 in CG(z)

and we shall determine the structure of NG(M). This will able us to use ([Re],

lemma 9) to find the structure of the centralizer of a 2-central involution in G and

the main result follows from ([As3], theorem 34.1).

4.1 Preliminaries

In this section we give some lemmas which are required in the next sections.

Remark: Let X ∼= U5(2). By ([AT], page 73) if x ∈ X is an element of order

three in class 3A, then NX(〈x〉) ∼= 3 × U4(2). So x is not inverted in X. But x is

inverted in Aut(X) and NAut(X)(〈x〉) ∼= (3 × U4(2)) : 2. This and ([AT], page 73)

give us that Aut(X) has one class of subgroups isomorphic to (3× U4(2)) : 2.

Lemma 4.1.1 Let X ∼= U5(2), then
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i) X has two classes 2A and 2B of involutions. For x ∈ 2A, x is a 2-central

involution, O3(CX(x)) = 1 and CX(x) has shape 21+6.31+2.SL2(3). For x ∈ 2B,

CX(x) has shape 24+4 : 32.2.

ii) There is an elementary abelian subgroup Y of order 16 in X such that

NX(Y )/O2(NX(Y )) ∼= 3×A5 and O2(NX(Y )) is a special group of order 28 with cen-

ter Y . Under the action of NX(Y )/O2(NX(Y )) on P (Y ) we have two orbits I1 and

I2 such that |I1| = 5, |I2| = 10 and NX(Y )/O2(NX(Y )) is 3-transitive on I1. The

elements of I1 are 2-central and the elements of I2 are non 2-central. Furthermore

for an element 〈x〉 ∈ I2 we have CX(x) = CNX(Y )(x) and O3(NX(Y )) = 1.

iii) Let I1 and I2 be as in ii) and 〈x〉 ∈ I2 and x = x1x2, where 〈x1〉 and 〈x2〉
are two distinct elements from the orbit I1. Then for i = 1, 2, CX(x, xi) is of index

2 in Cx(x) and contains O2,3(CX(x)).

iv) Let Y , I1 and I2 be as in ii). Then there are some elementary abelian

subgroups A of order 4 in Y such that P (A) ⊆ I2. If 〈x1x2〉 ∈ I2 ∩ P (A),

where 〈x1〉 and 〈x2〉 are two distinct elements from the orbit I1, then P (A) =

{〈x1x2〉 , 〈x3x1〉 , 〈x3x2〉}, where x1 6= x3 6= x2 and 〈x3〉 ∈ I1 and CX(A) =

CX(x1, x2, x3) = CX(Y,A). Further all such subgroups of Y are conjugate in

NAut(X)(Y ).

v) Let A be as in iv), then O2(CX(A)) = O2(NX(Y )), CX(A) ≤ NX(Y ) and

CX(A)/O2(CX(A)) is of order three. Let X1 = Aut(X). Then CX1(A)/O2(CX(A)) ∼=
S3 and O3(CX1(A)/O2(CX(A))) acts trivially on Z(O2(CX(A))) and acts fixed point

freely on O2(CX(A))/Z(O2(CX(A))).

vi) Let Y be as in ii) and X1 = Aut(X). Then there is a subgroup F ∼= (3 ×
U4(2)) : 2 in X1 containing Y . Further X1 has one class of subgroups isomorphic to

F .

vii) By notations in ii), there is no subgroup B of order 8 in Y such that P (B) ⊂
I2.

Proof : i) follows from ([AT], page 73). Let X ∼= U5(2) and X1 = X : 2 ∼=
U5(2) : 2. By ([AT], pages 73) we get that X has an elementary abelian subgroup

Y of order 16 such that O2(NX(Y )) is a special group of order 28 with center Y ,

NX(Y )/O2(NX(Y )) ∼= 3×A5 and the extension splits. Further CX(Y )/O2(NX(Y ))

is of order 3, CX(Y )/O2(NX(Y )) acts fixed point freely on O2(NX(Y ))/Y and

NX(Y )/O2(NX(Y )) ∼= 3 × A5. This gives us that Y centralizes an element u
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of order three in X and CX(u) contains a subgroup isomorphic to A5 as well.

Now by ([AT], page 73) we get that CX(u) ∼= 3 × U4(2). Set F = CX(u), then

F contains Y . Also u is conjugate to u−1 in X1. So by ([AT], page 73) we

get that X1 has one class of subgroups isomorphic to NX1(〈u〉) ∼= F : 2 and

CX1(u) = F . We note that O3(NX(Y )) = 1. Set K = NX(Y )/O2,3(NY (Y )).

By ([AT], page 73) K has two orbits I1 and I2 on P (Y ) such that |I1| = 5,

|I2| = 10 and K is 3-transitive on I1. The elements of I1 are 2-central and the

elements of I2 are non 2-central in X. We have I1 = {〈x1〉 , 〈x2〉 , 〈x3〉 , 〈x4〉 , 〈x5〉
where x5 = x1x2x3x4} and I2 = {〈xixj〉 where 〈xi〉 and 〈xj〉 are two distinct el-

ements from the orbit I1}. Now by the representations of the elements in the

orbits I1 and I2 we get that there is no subgroup T of order 8 in Y such that

P (T ) ⊂ I2. Let A ≤ Y be of order 4 such that P (A) = {〈x1x2〉 , 〈x3x1〉 , 〈x3x2〉}.
Then by the representations of the elements in the orbits I1 and I2 we get that

P (A) ⊆ I2. From the natural action of K on I1 we get that CK(x1x2, x2) and

CK(x1x2, x1) are of index 2 in CK(x1x2). Therefore CK(A) = CK(x1, x2, x3). Since

by ([AT], page 73) CX(x1x2) = CNX(Y )(x1x2), we have CX(x1, x2, x3) = CX(Y ). By

([AT], page 73) NX1(Y )/O2(CX(Y )) ∼= (3 × A5) : 2. So NX1(Y )/CX(Y ) ∼= S5 and

CX1(x1, x2, x3)/O2(CX(Y )) ∼= S3. Let B ≤ Y be of order 4 and P (B) ⊂ I2. Then

by the representations of the elements in the orbits I1 and I2 we get that if xixj ∈ B
where 〈xi〉 and 〈xj〉 are two distinct elements from the orbit I1 then B = 〈xixj, xixr〉
where xi 6= xr 6= xj and 〈xr〉 ∈ I1. Since NX1(Y )/CX(Y ) ∼= S5 acts 5-transitively on

I1, we get that B is conjugate to A in NX1(Y ). Hence the lemma is proved.�

Lemma 4.1.2 Let X ∼= U4(2). Then there is an elementary abelian subgroup Y of

order 16 in X with NX(Y )/Y ∼= A5. Also, there is a subgroup A in Y of order four

all of whose involutions are non 2-central in X and they are conjugate in NX(Y ).

We have CAut(X)(A) is an extenstion of Y by a group of order 2 and it is nonabelian.

Further X has one class of subgroups isomorphic to NX(Y ).

Proof : The lemma follows from ([AT], page 26). Let X ∼= U4(2) and X1 =

Aut(X). By ([AT], page 26) X has an elementary abelian subgroup Y of order

16 with NX(Y )/Y ∼= A5 and NX1(Y )/Y ∼= S5. Further by ([AT], page 26) we

conclude that NX(Y ) is a maximal subgroup in X and X has one class of subgroups

isomorphic to NX(Y ). By ([AT], page 26) NX(Y )/Y has two orbits I1 and I2
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on P (Y ) such that |I1| = 5, |I2| = 10 and NX(Y )/Y is 3-transitive on I1. The

elements of I1 are 2-central and the elements of I2 are non 2-central in X. This

gives us that I1 = {〈x1〉 , 〈x2〉 , 〈x3〉 , 〈x4〉 , 〈x1x2x3x4〉} and I2 = {〈xixj〉 , 〈xixjxr〉
where i 6= j 6= r, i = 1, ...4, j = 1, ...4, r = 1, ..., 4 and 〈xi〉, 〈xj〉 and 〈xr〉 are in I1}.
By the representations of the elements in the orbits I1 and I2 we get that there is

an elementary abelian subgroup A of order 4 in Y such that P (A) ⊆ I2. Further if

〈x1x2〉 ∈ I2∩P (A), where 〈x1〉 and 〈x2〉 are two distinct elements from the orbit I1,

then P (A) = {〈x1x2〉 , 〈xix1〉 , 〈xix2〉}, where x1 6= xi 6= x2 and 〈xi〉 ∈ I1. By ([AT],

page 26) CX(x1x2) ≤ CNX(Y )(x1x2) and CX1(x1x2) ≤ CNX1
(Y )(x1x2). Therefore from

the natural action of NX(Y )/Y and NX1(Y )/Y on I1 we get that CX(A) = Y and

CX1(A)/Y is of order 2 and the lemma holds.�

Lemma 4.1.3 Let X ∼= Ω7(3). Then X has 3 classes 2A, 2B and 2C of involutions.

Further

i) If x ∈ 2A then CX(x) ∼= 2U4(3) : 2.

ii) If x ∈ 2B then CX(x) ∼= (22 × U4(2)) : 2.

iii) If x ∈ 2C then CX(x) ∼= S4 × 2(A4 × A4) : 2.

iv) There is no elementary abelian subgroup A of order 4 in X such that CX(A)

contains an elementary abelian group of order 16, |CX(A)|2 = 32 and a Sylow 2-

subgroup of CX(A) is nonabelian.

Proof : (i),(ii) and (iii) follow from ([AT], page 106). Let X ∼= Ω7(3) and A =

〈x, y〉 ≤ X be an elementary abelian subgroup of order 4 such that CX(A) contains

an elementary abelian group of order 16, |CX(A)|2 = 32 and a Sylow 2-subgroup of

CX(A) is nonabelian. Assume that x ∈ 2A, then by i) W = CX(x)/ 〈x〉 ∼= U4(3) : 2.

We note that by ([AT], pages 52, 53), we get that the order of a Sylow 2-subgroup

of the centralizer of each involution in U4(3) : 2 is at least 32. So |CX(A)|2 ≥ 26

and hence x /∈ 2A. Assume that x ∈ 2C. Then by iii) CX(x) = F × Y where

F ∼= S4 and Y ∼= 2(A4 × A4) : 2. We note that x ∈ Y . If A ∩ F 6= 1 then we get

that |CX(A)|2 ≥ 26. Hence A ∩ F = 1. Let A ≤ Y then F ≤ CX(A) and from the

structure of Y we get that |CY (A)|2 ≥ 23. This gives us that A ∩ Y = 〈x〉. Now

let y = fe where 1 6= f ∈ F and 1 6= e ∈ Y . Let T ∈ Syl2(CX(x)) and A ≤ T .

We note that by i), ii) and iii) we get that each involution of X is 2-central in X

and Z(T ) is an elementary abelian group of order 4. Hence there is an involution
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a ∈ Z(T ) such that a ∈ 2B. By iii), CX(Z(T )) = CF (Z(T )) × Y ∼= D8 × Y .

Hence O2(CX(Z(Y ))) = O2(Y ). On the other hand, by ii), ([AT], page 26) and

since a ∈ 2B, we get that O2(CX(Z(T ))) = L1 ? L2, where L1
∼= L2

∼= SL2(3) and

L1 ? L2 is the central product of L1 and L2. Further, Lw1 = L2 for some involution

w ∈ CX(Z(T )). This gives us that CX(x) = (K1 ? K2 × K3) 〈u, t〉, where 〈u, t〉 is

an elementary abelian group of order 4, K1
∼= K2

∼= SL2(3), K3
∼= A4, Kt

1 = K2,

[K3, t] = 1 and K1?K2 is the central product of K1 and K2. Now from the structures

of F and Y we get that |CF (f)| ≥ 4 and |CY (e)| ≥ 16. This gives us that x /∈ 2C.

Assume that x ∈ 2B. Then from the structure of CX(x) in ii) and as the order of a

Sylow 2-subgroup of the centralizer of each involution in U4(2) : 2 is at least 25 (see

[AT], pages 26, 27), we get that y /∈ CX(x), a contradiction. So x /∈ 2B and the

lemma is proved.�

Lemma 4.1.4 Let X ∼= M(22). Then

i) There is an elementary abelian subgroup A of order 9 in X such that all of

whose elements of order three are 3-central elements in X.

ii) X has an elementary abelian subgroup N of order 210 such that NX(N)/N ∼=
M22. Further for T ∈ Syl2(NX(N)) we have N = J(T ).

Proof : By ([As3], lemma 39.4) we get that there is an elementary abelian

subgroup Y of order 35 in X such that NX(Y )/Y ∼= O5(3). By ([As3], lemmas

39.3(ii) and 39.6) we get that under the action of NX(Y )/Y on P (Y ) the singular

points are 3-central elements in X. Since there is a singular line in Y , we get that

there is a subgroup A of order 9 in X all of whose elements of order three are

3-central elements in X and i) is proved.

By ([As3], lemma 25.7) we get that X has an elementary abelian subgroup N

of order 210 such that NX(N)/N ∼= M22. Let t ∈ N be a 3-transposition, then by

([As3], lemma 37.6) we get that CX(t) ∼= 2U6(2). Further by ([As3], 30.1, 30.3) we

get that NCX(t)(N)/N ∼= L3(4) and for T ∈ Syl2(NCX(t)(N)) we have N = J(T ).

Let P ∈ Syl3(NCX(t)(N)), then by ([As3], lemma 22.2) we get that CN(P ) is of order

4. Let k ∈ X/N be an involution. Then since M22 has just one class of involutions

(see [AT], page 39) we may assume that k ∈ NCX(t)(N). Since L3(4) has one class of

involutions and there is an involution in NCX(t)(N)/N ∼= L3(4) which inverts P , we

may assume that k inverts P . This gives us that |[k,N ]| = 24 and so |CN(k)| = 26.
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Now let S ∈ Syl2(NX(N)) which contain T . Let E 6= N be an elementary abelian

subgroup in S of order 210. Then as |CN(k)| = 26, M22 has one class of involutions

and the 2-rank of M22 is 4, we conclude that |E ∩N | = 26. This gives us that there

is an elementary abelain subgroup K of order 16 in X = X/N such that CN(K) is

of order 26. We may assume that k ∈ K. Then E ∩N = CN(k) and so contains t.

This gives us that N and E are two elementary abelian subgroups of order 210 in

CX(t). So N = E by ([As3], 30.3) and the lemma is proved.�

4.2 The centralizer of a non 2-central involution

In this section we select a non 2-central involution z in O2(H1) and we will determine

the structure of CG(z).

Notations: We have O2(H1)/O3(H1) ∼= U5(2). So by 4.1.1(ii) O2(H1) contains

an elementary abelian subgroup U of order 16 such that NO2(H1)(U)O3(H1)/O3(H1)

is an extension of a special group of order 28 with center UO3(H1)/O3(H1) by (3×
A5). By 4.1.1(ii) U contains some 2-central involutions and some non 2-central

involutions of O2(H1). In fact by 4.1.1(ii) we get that if a and d are two distinct

involutions in U such that d and a are two 2-central involutions in O2(H1) then ad

is a non 2-central involution in O2(H1). We keep these notations U , a and d in the

remainder of this chapter. Set z = ad and R = O3(H1).

We are going to show that CG(z) ∼= 2M(22) : 2. To do this we will select

a suitable involution t ∈ U and we shall show that CG(z, t, τ)/ 〈z〉 satisfies the

conditions of theorem 1 in [Pa] and so CG(z, t)/ 〈z, t〉 ∼= U6(2) by ([Pa], theorem 1).

This will help us to invoke theorem 4.2.1 in [DS] to show that CG(z) is as desired.

We remark that O2(H1) is a subgroup of CG(τ).

Lemma 4.2.1 i) CR(z) is an extraspecial group of order 37.

ii) CR(d) is an extraspecial group of order 27.

iii) CR(U) = Z(R).

Proof : We have O2(H1)/R ∼= U5(2). Set K̂ = NO2(H1)/R(UR/R) and let P̂ =

O2(K̂). Then by 4.1.1(ii) Û = Z(P̂ ) and K̂/P̂ ∼= 3 × A5. Set X̃ = K̂/P̂ . By

4.1.1(ii) we get that X̃ has two orbits I1 and I2 on P (Û) such that |I1| = 5, X̃

76



is 3-transitive on I1 and the elements in the orbit I1 are 2-central in CG(τ)R/R,

|I2| = 10 and the elements in I2 are non 2-central involutions in CG(τ)R/R. Let I1 =

{〈x̂1〉 , 〈x̂2〉 , ..., 〈x̂5〉}, Û = 〈x̂1, x̂2, x̂3, x̂4〉 and x̂5 = x̂1x̂2x̂3x̂4. Then I2 = {〈x̂ix̂j〉, for

i 6= j and i, j = 1, ..., 5}. Set Ŵ = 〈x̂2, x̂3, x̂1〉 and R = R/Z(R). As X̃ is 3-transitive

on I1, there are 10 subgroups conjugate to Ŵ in Û . Therefore X̃ has two orbits L and

I on the set of hyperplanes in Û such that |L| = 10, Ŵ ∈ L and |I| = 5. By 2.2.3(i)

R is a 10-dimensional symplectic space. Let {vi, wi}, i = 1, ..., 5 be a symplectic

base for R. If [vi, x̂j] = 1 for some i = 1, ..., 5 and j = 1, ..., 5, then [wi, x̂j] = 1. So

|CR(x̂j)| = 32α, α ≥ 0, j = 1, ..., 5, |CR(Û)| = 32γ, γ ≥ 0 and |CR(Ŵ )| = 32β, β ≥ 0.

Now by coprime action and as |L| = 10, we get that 310 = |R| ≥ (32β)10. This gives

us that |CR(Ŵ )| = 1 and at least iii) holds. Since |I| = 5 and |CR(Ŵ )| = 1, we get

that for Ŵ1 ∈ I we have that |CR(Ŵ1)| = 27. We remark that if CR(x̂1) = Z(R) then

x̂1x̂2 centralizes R which is a contradiction. Therefore |CR(d)| ≥ 27. Set T = [R, d].

Then T is CH1/R(d)-invariant. Since dR is a 2-central involution in H1/R, by 4.1.1(i),

we get that CH1/R(d) has shape 21+6.31+2.SL2(3).2. But by ([AT],page 112), we get

that there is no subgroup isomorphic to CH1/R(d) in PSp6(3) : 2 and GSp6(3).

Therefore |T | ≥ 38. This gives us that |CR(d)| = 33 and ii) holds. By ([AT], page

73) CH1/R(d) is a maximal subgroup of H1/R. Therefore CR(〈x̂1, x̂2〉) = 1. Now

by coprime action we have 310 = |R| = |CR(x̂1)||CR(x̂2)||CR(x̂1x̂2)| = 34|CR(x̂1x̂2)|.
Hence |CR(x̂1x̂2)| = 36 and i) holds. Now the lemma is proved.�

Lemma 4.2.2 i) O3(CH1(z)) = CR(z), O2(CH1(z)/CR(z)) is a special group of or-

der 28, Z(O2(CH1(z)/CR(z))) = UCR(z)/CR(z) and CH1(z)/O3,2(CH1(z)) is an ex-

tension of an elementary abelian group of order 9 by a group of order 4. Further

CH1(z) contains a Sylow 3-subgroup of CG(z).

ii) O3,2(CG(τ, d)) is an extension of an extraspecial group of order 27 by an

extraspecial group of order 27 and CG(d, τ)/O3,2(CG(τ, d)) is an extension of an

extraspecial group of order 27 by SL2(3).

iii) O3′(CH1(z)) = 〈z〉.

Proof : We have H1 = NG(〈τ〉) and by 4.2.1(i)(ii) CR(z) is an extraspecial group

of order 37 and CR(d) is an extraspecial group of order 27. By 4.1.1(ii) we get that

CR(z) = O3(CH1(z)) and by 4.2.1(iii) we get that CG(CR(z)) = Z(R). So 〈τ〉 is the

center of each Sylow 3-subgroup of CH1(z). Therefore CH1(z) contains a Sylow 3-
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subgroup of CG(z). Now since dR is a 2-central involution and zR is a non 2-central

involution in CG(τ)/R, i) and ii) follow from 4.1.1(i). By i) if 〈z〉 < O3′(CH1(z))

then |O2(CH1(z)) ∩ U | ≥ 4. This gives us that there is a subgroup B in U of order

4 such that |CR(B)| ≥ 37. This and 4.2.1(i)(ii) give us that all involutions in B

are non 2-central in H1. Since by 4.1.1(ii) CH1(z)R/R is a maximal subgroup of

NH1(U)R/R, we get that CR(z) ≤ CR(U), a contradiction to 4.2.1(iii). Therefore

O3′(CH1(z)) = 〈z〉 and the lemma is proved.�

Further notations: By 4.1.1(iv) there is a subgroup A ≤ U of order 4 contain-

ing z such that all involutions in A are non 2-central in O2(H1). Further A = 〈z, ab〉
where b is conjugate to d in NO2(H1)(U) . We fix the notation A for such a subgroup

of U . Set t = ab.

Lemma 4.2.3 i) CR(A) is an extraspecial group of order 35 and O3(CH1(A)) =

CR(A).

ii) O2(CH1(A)/ 〈CR(A), A〉) ∼= Q8 ×Q8 and CH1(A)/O3,2(CH1(A)) ∼= S3.

iii) CH1(A) contains a Sylow 3-subgroup of CG(A).

iv) O2(CH1(A)) = A.

Proof : Set X = CH1(A)R/R. Then by 4.1.1(ii),(v) we get that O3(X) = 1 and

O2(X)/A is a group of order 26 with center of order at least 4. Further by 4.1.1(v)

X/O2(X) ∼= S3 and O3(X/O2(X)) acts trivially on Z(O2(X)) and acts fixed point

freely on O2(X)/Z(O2(X)). Assume that CR(A) is an extraspecial group of order

35. By 4.1.1(v) we get that O2(CH1(A)R/R) is a special group with center UR/R.

So if O2(CH1(A)) 6= A then we get that A < O2(CH1(A)) ∩ U . This gives us

that there is a subgroup B in U of order 8 such that |CR(B)| ≥ 35. This and

4.2.1(i)(ii) give us that all involutions in B are non 2-central in H1, a contradiction

to 4.1.1(vii). So O2(CH1(A)) = A. Now as CR(A) is an extraspecial group of

order 35, by 2.2.3(ii) we get that CH1(A)/CR(A)A is isomorphic to a subgroup of

Sp4(3) : 2. This and as O2(X)/A is a group of order 26 with the center of order at

least 4, X/O2(X) ∼= S3 and acts fixed point freely on O2(X)/Z(O2(X)) give us that

O2(CH1(A)/ 〈CR(A), A〉) ∼= Q8 × Q8 and the lemma is proved. So it is enough to

show that CR(A) is an extraspecial group of order 35.

By 4.2.1(i),(ii) CR(z) is an extraspecial group of order 37 and CR(d) is an ex-

traspecial group of order 27. Therefore as aR and bR are conjugate to dR in H1/R,
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we get that CR(a) and CR(b) are two extraspecial group of order 27. Since dR 6= aR,

we have CR(a) ∩ CR(d) = Z(R). Since z = ad, we get that CR(d, z) and CR(a, z)

are two subgroup of CR(a, d). Hence CR(d, z) = CR(a, z) = Z(R). This gives us

that d and a act fixed point freely on CR(z)/Z(R). Suppose that b acts fixed point

freely on CR(z)/Z(R). Then we get that t centralizes CR(z). Since z 6= t and as

CH1(z)R/R is maximal in NH1(U)R/R and tR is conjugate to zR in NH1(U)R/R,

we get that CR(z) is NH1(U)R/R-invariant. This and 4.1.1(ii) give us that each non

2-central involution in U centralizes CR(z) and so U centralizes CR(z), a contradic-

tion to 4.2.1(iii). Therefore CR(b) ≤ CR(z). Since |CR(b)| = 27 and |CR(z)| = 37,

we have |CR(z, t)| = 35. Hence CR(A) is an extraspecial group of order 35 and the

lemma is proved.�

Lemma 4.2.4

Proof : Set X = CH1(A)/A. By 4.2.3(i),(ii) X/O3,2(X) ∼= S3 and O3,2(X) is an

extension of ai) CG(A)/A ∼= U6(2) and the extension does not split.

ii) CG(z) ∼= 2Aut(M(22)). n extraspecial group of order 35 by Q8 × Q8. By

4.2.3(iv) we have that O2(X) = 1. By 4.1.1(v) we get that there is an element

x ∈ CH1(A) such that x2 ∈ CH1(U) and x does not act trivially on U . By this

and the structure of X we get that Z(O2(X/O3(X))) is of order 2. Therefore

O3(X)/Z(O3(X)) is an irreducible X/O3(X)-module. By 4.1.1(iv) each subgroup

of U of order 4 such that all of whose involutions are non 2-central involutions

in H1, is conjugate to A in H1. So τ is not weakly closed in CH1(A). Therefore

by 4.2.3(i),(ii),(iii) and ([Pa], theorem 1) we get that CG(A)/A ∼= U6(2). Since

O2(CH1(A)/CR(A)) is a special group of order 28, we have A ≤ CG(A)′ and hence

CG(A) is a quasisimple group and i) holds.

Set M̃ = CG(z)/ 〈z〉. By i) F ?(CM̃(t̃)) ∼= 2U6(2). Assume that F ?(M̃) is simple.

Then by ([DS], theorem 3.1) we get that M̃ ∼= M(22) or M̃ ∼= M(22) : 2. By 4.2.2(i)

CH1(z) is the centralizer of a 3-central element in CG(z). So by 4.2.2(i) and ([AT]

,page 163) we get that M̃ is not isomorphic to M(22). Therefore M̃ ∼= M(22) : 2.

By 4.2.2(i) we get that z ∈ CG(z)′. Therefore CG(z) ∼= 2M(22) : 2 and the lemma

is proved. Hence it is enough to show that F ?(M̃) is a nonabelian simple group.

Let K̃ be a minimal normal subgroup of F ?(M̃). Assume that 3||K̃|. Then by

4.2.2(i) we get that τ̃ ∈ K̃. Therefore by i) τ̃ ∈ K̃∩F ?(CM̃(t̃)). Hence F ?(CM̃(t̃)) ≤
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K̃. This gives us that K̃ is a nonabelian group and as F ?(CM̃(t̃)) ≤ K̃, we get that

K̃ ∼= M(22). Therefore K̃ = F ?(M̃) and the lemma is proved in this case. Now

assume that 3 does not divide the order of K̃. Then we get that O3′(M̃) 6= 1. Set

N = M̃/O3′(M̃). Then 3||N | and O3′(N) = 1. Hence 3||K1|, where K1 is a minimal

normal subgroup of N . It follows from the previous case that F ?(N) ∼= M(22).

By 4.1.4 there is an elementary abelian subgroup of order 9 in F ?(N) all of whose

elements of order three are conjugate to τ . Now by 4.2.2(iii) and coprime action

we get that O3′(M̃) = 1, a contradiction. Hence this case does not happen and the

lemma is proved.�

4.3 Proof of theorem 5 and corollary 7

In this section we shall prove the theorem 5 and corollary 7. First we recall our last

notations.

• R = O3(H1). U ≤ O2(H1) is an elementary abelian group of order 16, a and d

are two distinct involutions in U such that d and a are two 2-central involutions in

O2(H1) and z = ad is a non 2-central involution in O2(H1).

• A = 〈z, t〉 is a subgroup of U of order 4 such that all involutions in A are

conjugate in NH1(U) and t = ab, where b is conjugate to d in NH1(U).

Lemma 4.3.1 There is an elementary abelian subgroup M of order 211 in CG(z)

containing A and d such that NCG(z)(M)/M ∼= M22 : 2 and CG(M, z) = M .

Proof : By 4.2.4(ii) we have CG(z) ∼= 2M(22) : 2. By ([As3], 23.8), the preimage

of an involution of M(22) is an involution in 2M(22). By ([AT], page 163) we con-

clude that there is an elementary abelian subgroup of order 210 in M(22). Therefore

by ([AT], page 163) we get that there is an elementary abelian subgroup M of order

211 in CG(z) such that NCG(z)(M)/M ∼= M(22) : 2 and CG(M, z) = M . By 4.2.4(i)

we have CG(A)/A ∼= U6(2). By ([AT],page 115) we get that NCG(A)(M)/M ∼= L3(4)

and each involution of CG(A) is conjugate to an involution of M in CG(A). Therefore

we may assume that d ∈M and the lemma is proved.�

Further notations: By 4.3.1 there is an elementary abelian subgroup M of
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order 211 in CG(z) containing A and d such that NCG(z)(M)/M ∼= M22 : 2 and

CG(z,M) = M . We fix the notation M for such a subgroup of CG(z).

Lemma 4.3.2 i) NG(M)/M ∼= M24.

ii) Let S ∈ Syl2(NG(M)), then M = J(S).

iii) NG(M) contains a Sylow 2-subgroup of G.

iv) NG(M)/M has two orbits of lengths 276 and 1771 on P (M). Further the

orbit containing 〈z〉 has length 276.

v) There is a subgroup D in NG(M)/M isomorphic to M23 and containing

O2(NCG(z)(M)/M) such that under the action of D on P (M) we have that z and

t are conjugate and the orbit containing 〈z〉 is of length 23. In particular z is not

conjugate to zt under the action of D on P (M).

Proof : Since CG(z,M) = 1, we have CG(M) = 1. Therefore NG(M)/M is

ismorphic to a subgroup of GL11(2). We have NCG(z)(M)/M ∼= M22 : 2. Set

X = NCG(z)(M)/M , F = O2(X) and Y = NG(M)/M . By 4.2.4(ii) and ([AT],

page 163) we have NCG(z)(A)/A ∼= U6(2).2. So by 4.2.4(i) and ([AT], page 115)

CX(A) ∼= L3(4) and NX(A) ∼= L3(4) : 2. This gives us that t and zt are conjugate

under the action of X and they are not conjugate under the action of F . In fact

under the action of F on P (M) the orbit containing 〈t〉 is of length 22. Let N2 be the

orbit of F on P (M) containing 〈t〉, then F acts 3-transitively on N2. Therefore F

has 7 orbits Ni, i = 1, ..., 7, on P (M) such that |N2| = |N7| = 22, |N3| = |N6| = 231

and |N4| = |N5| = 770 and N1 = {〈z〉}. Further N2 = {
〈
tF
〉
}, N3 = {

〈
(tt1)F

〉
,

where t1 6= t and 〈t1〉 ∈ N2}, N4 = {
〈

(tt1t2)F
〉

, where ti 6= t and 〈ti〉 ∈ N2, i = 1, 2}

and N9−j = {
〈

(zx)F
〉

, where 〈x〉 ∈ Nj}, j = 2, 3, 4. We note that F acts 3-

transitively on N2 and N7. We note that t and zt are conjugate under the action of

X. Hence as M22 is a {2, 3, 5, 7, 11}-group, either X has five orbits Li, i = 1, ..., 5,

on P (M) such that L1 = {〈z〉}, |L2| = 44, |L3| = |L4| = 231 and |L5| = 1540

or X has six orbits Li, i = 1, ..., 6, on P (M) such that L1 = {〈z〉}, |L2| = 44,

|L3| = |L4| = 231 and |L5| = |L6| = 770. Let S ∈ Syl2(NCG(z)(M)), then by ([As3],

lemma 31.1) we get that M = J(S). So as t is conjugate to z in H1, we get by

2.2.2 that Y 6= X. We note that by 4.2.2(ii), 4.2.4(ii) and ([AT], page 163) we get

that d is not conjugate to z in G. So Y is not transitive on P (M). Since GL11(2)
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is a {2, 3, 5, 7, 11, 17, 23, 31, 73, 89, 127}-group we conclude that the orbit of Y on

P (M) containing 〈z〉 has length 1+44 or 1+231+44. Set I = {〈z〉Y }. Assume that

|I| = 45. We note that CY (A) ≤ F . We have CY (A) ∼= L3(4) and by ([As3], lemma

30.2) under the action of CY (A) on P (M/A) we have three orbits of lengths 21, 210

and 280. By this and the lengths of the orbits Ni, i = 1, ..., 7, we get that CY (A)

has 7 orbits Vi, i = 1, ..., 7 on P (M) such that |V1| = 21 = |V2| = |V6| = |V7|,
|V3| = 1 = |V4| = |V5| and other orbits of CY (A) on P (M) have at least length

210. Since NX(A) ∼= L3(4) : 2 and all involutions in A are conjugate, we have

NY (A)/CY (A) ∼= S3. Set β = {V1, V2, V6, V7}. Since |I| = 45, we get that |I ∩ β| =
2. But I ∩ β is NY (A)/CY (A)-invariant and hence |I ∩ β| ≥ 3, a contradiction.

This contradiction shows that the orbit of Y on P (M) containing 〈z〉 has length

1+231+44=276 and hence |Y | = |M24|.
We have |I| = 276 and N2∪N7 ⊂ I. Also one of the orbits N3 or N6 is contained

in I. We note that 11 does not divide the order of GL9(2), so CM(F ) = 〈z〉. Since

|I| = 276, three of the orbits Vi, i = 1, 2, 6, 7 are contained in N2 ∪ N7 ∪ Ni ⊂ I

where Ni is one of the orbits N3 or N6. We may assume that V1, V2 and V7 are

contained in I. Let y2 and y7 be two elements in NY (A) such that zy2 = t and

zy7 = zt, y2
i ∈ CY (A), i = 2, 7 and NY (A) = CY (A) 〈y2, y7〉. Then as I is an orbit of

Y , we get that 〈y2, y7〉 acts on the set {V1, V2, V7}. This gives us that V
y2
i = Vi and

V
y1
j = Vj, i 6= j for some i, j = 1, 2, 7. We may choose notations such that V

y2
2 = V2

and V
y7

7 = V7. At least one of the orbits V2 or V7 is contained in N2 ∪N7. Assume

that Vs ⊂ N2 ∪ N7 where s = 2 or 7. Assume also that Vs ⊂ Ns. Set D =
〈
F , ys

〉
.

Then as Ns = Vs ∪ {〈x〉} where x = zt if s = 2 and x = t if s = 7, we get that

Ns is D-invariant. We note that CF (x) contains CY (A) ∼= L3(4). Since |Ns| = 22

we get that |D| = 22|CY (x)|. We note that x is conjugate to z under the action

of Y , so CY (x) ∼= M22 : 2. As 112 does not divide the order of Y and L3(4) is a

maximal subgroup in M22 (see [AT], page 39), we deduce that |CD(x)| = |L3(4)|
or |L3(4) : 2| and so |D| ≤ 2|M22|. This gives us that ys normalizes F and so ys

centralizes z, a contradiction. Therefore Vs ⊂ Nr where r = 2 or 7 and r 6= s.

Set W = {〈z〉} ∪ Nr. Then W is an orbit of D on P (M) of length 23. Further

CD(z) ∼= M22 acts 3-transitively on W − {〈z〉} = Nr of length 22. Therefore D is

4-transitive on W and D ∼= M23. Since CY (F ) ≤ X we get that CY (F ) = 1. Since

Out(M23) = 1 (see [AT], page 71), we have NY (D) = D. This gives us that Y is a
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transitive extension of D and hence Y ∼= M24. Now i) holds and ii) follows from i)

and ([As3], lemma 22.1) and the lemma is proved.�

Lemma 4.3.3 i) NG(M) contains a Sylow 2-subgroup of G and NG(M) controls

the fusion in M with respect to G. Thus z and d are not conjugate in G and d is a

2-central involution in G.

ii) O2(CG(d)) is an extraspecial group of order 213 and CG(d)/O2(CG(d)) ∼=
3U4(3) : 2.

Proof : By 4.3.2(i) and 4.2.4(ii) we get that z is a non 2-central involution in G.

We recall that A = 〈z, t〉 is an elementary abelian group of order 4 and all involution

of A are conjugate in G. Let 1 6= r ∈ G be a 2-central involution. We may assume

that CG(r) contains a Sylow 2-subgroup of CG(z). By 4.2.4(i) and ([AT], page

115) we get that O(CG(A, r)) = 1. Also by 4.2.4(ii) and ([AT], page 163) we get

that O(CG(z, r)) = 1. This and coprime action give us that O(CG(r)) = 1. We

note that 4.3.1 we have CG(M, z) = M . Hence CG(M) = M . Now by 4.3.2(i),(ii)

([Re], theorem B) we get that the groups G and NG(M) satisfy the conditions of

theorem B in [Re]. Of course G 6= NG(M) and so i) follows from ([Re], lemma 3

and the corollary after lemma 3). Also by ([Re], lemmas 4, 8 and 9) we get that

O2(CG(d)) is an extraspecial group of order 213, O(CG(d)/O2(CG(d))) is of order 3

and either CG(d)/O2(CG(d)) ∼= 3U4(3) : 2 or CG(d)/O2,2′(CG(d)) ∼= Aut(M22). Since

by 4.2.2(ii) |CG(d)|3 ≥ 37, we get that O2(CG(d)) is an extraspecial group of order

213 and CG(d)/O2(CG(d)) ∼= 3U4(3) : 2 and the lemma is proved. �

Now we can prove the Theorem 5.

Proof : By 4.3.3(ii) O2(CG(d)) is an extraspecial group of order 213 and

CG(d)/O2(CG(d)) ∼= 3U4(3) : 2. By 4.2.4(ii) and ([AT], page 163) we get that

z ∈ O2(CG(d)) and hence a = zd ∈ O2(CG(d)). Since a is conjugate to d in H1,

we get that d is not weakly closed in O2(CG(d)) with respect to G. Now by ([As3],

theorem 34.1) we conclude that G ∼= M(24)′ and the theorem is proved.�

The proof of Corollary 7.

Proof : We adopte the notations D, D1, D2 and α as in corollary 7. Set

D12 = D1 ∩ D2 and L = O3(D2). We have D12/O3(D12) ∼= U4(2) : 2. Since the
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order of a maximal elementary abelian subgroup in O3(D1) is 36 and L and O3(D1)

are two subgroups of O3(D12), we get that |O3(D1) ∩ L| = 36 and D12/O3(D1) ∼=
3 × U4(2). By 4.1.1(vi),(ii) there is an elementary abelian subgroup U1 of order

16 in O2(D12) such that O2(ND1(U1)O3(D1)/O3(D1)) is a special group of order

28 with center U1O3(D1)/O3(D1) and ND1(U1)O3(D1)/O3(D1) is an extension of

O2(ND1(U1)O3(D1)/O3(D1)) by (3 × A5) : 2. By 4.1.1(iv) there are some elemen-

tary abelian subgroups V ≤ U1 ≤ CD12(α) of order 4 such that all involutions in

V are non 2-central in D1 and all such subgroups of U1 are conjugate in D1. If we

show that 〈α〉 is not weakly closed in CD1(V ) with respect to CD(V ) then the corol-

lary follows from theorem 5. So it is enough to show that 〈α〉 is not weakly closed

in CD1(V ) with respect to CD(V ). By 4.1.2(iii) we get that a Sylow 2-subgroup

of CD12(V )/CL(V ) is an extension of an elementary abelian group of order 16 by

an element of order 2 and a Sylow 2-subgroup of CD12(V ) is nonabelian. Now by

4.1.3(iv) we get that |CD2/L(V )| ≥ 26. Since CL(V ) is CD2(V )/CL(V )-invariant,

|CD2/L(V )| > |CD12/L(V )| and α ∈ CL(V ), we get that 〈α〉 is not weakly closed in

CL(V ) with respect to CD2(V ). As L ≤ D1, we have shown that 〈α〉 is not weakly

close in CD1(V ) with respect to CD(V ) and the corollary holds.�

Remark: In theorem 5 we could replace H1/R ∼= U5(2) : 2 by some 2-local

information about U5(2) : 2. In fact to prove theorem 5 we have just used of some

2-local information about H1/R. But we should remark that all 2-local information

which are used about H1/R identify U5(2) : 2.
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Chapter 5

Characterization of the Monster

group

In this chapter we will prove theorem 6. So in this chapter G is of Monster type and

we keep the notations S, H1 and H2 in definition 3. We gave a sketch of the proof for

theorem 6 in 1.3.3. Our strategy for identifying the Monster group is to determine

the structures of the centralizers of involutions in G. We find two involutions z and

t in G such that CG(z) is a faithful extension of an extraspecial 2-group of order 225

by Co1 and CG(t) ∼= 2F2 where F2 is the baby monster group . Then the main result

follows by applying theorem 2.3.1 which is proved by Griess, Meierfrankenfeld and

Segev.

5.1 The centralizer of a non 3-central element

In this section we select an element s of order three in the group G and we shall

show that CG(s) ∼= 3M(24)′. We make use of the following information about the

action of H1/O3,2(H1) ∼= Suz : 2 on P (O3(H1)/Z(O3(H1))) (see [AT], page 131).

Lemma 5.1.1 Set M = H1/O3,2(H1). Then M has two orbits L and K on

P (O3(H1)/Z(O3(H1))). Moreover;

a) If X ∈ L, then CM(X) is an extension of an elementary abelian group of

order 35 by Z2 ×M11.

b) If X ∈ K, then CM(X) ∼= U5(2) : 2.
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Notations: Set Q ∼= O3(H2), Y = O3(H1), H12 = H1 ∩H2 and let 〈τ〉 = Z(Y ).

Then by assumption Q is a natural H2/Q-module. So we adopte the notations A,

B and C from 2.4.9 for the orbits of H2/Q on P (Q). We remark that 〈τ〉 ∈ A.

Lemma 5.1.2 i) |Q ∩ Y | = 37 and O3(H12) = QY .

ii) P (Q ∩ Y ) ∩B 6= ∅ and P (Q ∩ Y ) ∩ C 6= ∅.

iii) Let z ∈ H1 be an involution such that zY ≤ Z(H1/Y ). Then CY (z) = Z(Y ).

Proof : By the general assumption Q and Y are two subgroups of O3(H12) and

|O3(H12)| = 314. Since Y is an extraspecial group of order 313, we have |Q∩Y | ≤ 37.

As |O3(H12)| = 314, we get that |Q ∩ Y | = 37 and O3(H12) = QY and i) holds.

Let z ∈ H1 be an involution such that zY ≤ Z(H1/Y ). Since by assumption

CG(Y ) = Z(Y ) and zY ∈ Z(H1/Y ), we get that z acts fixed point freely on Y/Z(Y )

and iii) holds. Now by iii) and coprime action we have that Q∩Y = Z(Y )⊕[z,Q∩Y ].

By assumption H12/QY ∼= 2U4(3) : 2 ∼= 2O−6 (3). Therefore [z,Q ∩ Y ] is a natural

H12/QY -module. Hence P (Q∩ Y )∩B 6= ∅ and P (Q∩ Y )∩C 6= ∅ and ii) holds.�

Further notations: By 5.1.2(ii), let 〈s〉 ∈ P (Q ∩ Y ) \ A. Then by 2.4.9(ii),

CH2(s)/Q
∼= Ω7(3).

Theorem 5.1.3 CG(s) ∼= 3M(24)′.

Proof : By our assumption 〈s〉 ∈ P (Q ∩ Y ) \ A. So by 2.4.9(ii), CH2(s)/Q
∼=

Ω7(3). We have Q/ 〈s〉 is a CH2(s)/Q-module. Since Z(Y ) ∈ A and the elements in A

are isotropic elements, by ([AT], page 106) we get that CG(s, τ)/Q is an extension of

an elementary abelian group of order 35 by U4(2). This gives us that CH1(s) contains

a section isomorphic to U4(2). We remark that by 5.1.2(iii), involutions zY ∈
Z(H1/Y ) act fixed point freely on Y/Z(Y ). Since there is no section isomorphic

to U4(2) in M11 (see [AT], page 18), by 5.1.1(i),(ii) we get that CH1(s)/CY (s) ∼=
U5(2) : 2. Since Y is an extraspecial group of order 313 and s ∈ Y , we deduce that

CY (s)/ 〈s〉 is an extraspecial group of order 311. This gives us that CH1(s) contains

a Sylow 3-subgroup of CG(s). Set L = CG(s)/ 〈s〉 , Li = CHi
(s)/ 〈s〉, i = 1, 2, and

L3 = CH12(s)/ 〈s〉. Now we see that the groups L and Li, i = 1, 2, 3, satisfy the

conditions of corollary 7. Hence by corollary 7, L ∼= M(24)′ and the theorem is

proved.�
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5.2 2-central involution

In this section we show that G has an involution z such that the centralizer of z in

G is a faithful extension of an extraspecial group of order 225 by Co1.

Further notations: Let z ∈ H1 be an involution such that zY ≤ Z(H1/Y ).

Set L = CQ(z).

Lemma 5.2.1 i) CH1(z) ∼= 6Suz : 2.

ii) z acts fixed point freely on τ⊥/ 〈τ〉.
iii) CH12(z)/L ∼= 2U4(3) : 2 and CH2(z)/L ∼= 2U4(3) : D8.

iv) |L| = 9 and there is an element ε in L such that ε is conjugate to τ in CH2(z)

and ε /∈ τ⊥.

v) τ−1ε and τε are non isotropic elements in L.

Proof : By 5.1.2(iii), CH1(z) ∼= 6Suz : 2 and i) holds. Since zY ∈ Z(H1/Y ),

we have zO3(H12) ∈ Z(H12/O3(H12). By 5.1.2(i), we get that H12/Y ∼= 6U4(3) : 2.

Therefore by (i) and 5.1.2(i), L is of order 9 and CH12(z)/L ∼= 2U4(3) : 2. This and

([AT], page 141) give us that CH2(z)/L ∼= 2U4(3) : D8 and iii) holds. By ([AT], page

128), we get that there is no subgroup isomorphic to CH2(z) in H1. Hence there is

an element ε ∈ L conjugate to τ in CH2(z). Since H12 = NH2(Z(Y )), we conclude

that τ⊥/ 〈τ〉 is a natural H12/O3(H12)-module. This gives us that z acts fixed point

freely on τ⊥/ 〈τ〉. Tehrefore ε /∈ τ⊥. Since τ and ε are isotropic elements and ε /∈ τ⊥,

we get that τ−1ε and τε are non isotropic elements in L. Now the lemma holds.�

Further notations: By 5.2.1(v), there are some non isotropic elements in L.

So by conjugations in G we may, and do, assume that s ∈ L. By 5.2.1(iv), there

is an element ε ∈ L conjugate to τ in CH2(z) and ε /∈ τ⊥. So we may assume that

s = τε. We keep these notations s and ε in the remainder of this chapter.

Lemma 5.2.2 i) s and τ−1ε are conjugate in CH2(z).

ii) For t = s or τ−1ε we have CG(t, z)/ 〈t〉 is an extension of an extraspecial

2-group of order 213 by 3U4(3) : 2. Further O2(CG(t, z))/ 〈z〉 is an irreducible

CG(t, z)/O2,3(CG(z, t))-module.

Proof : By 5.2.1(iii), CH2(z)/L ∼= 2U4(3) : D8. By 5.1.3 and ([AT], page 200), we

get that there is no subgroup isomorphic to 2U4(3) : D8 or 2U4(3) : 22 in CG(s).
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This and as L is normal in CH2(z) give us that there is an element conjugate to

s in L. Since by 5.2.1(iv), L is of order 9, s is conjugate to τ−1ε in CH2(z). We

remark that by 5.1.3 and the structure of H1 we get that s is not conjugate to τ

in G. Since CH2(z, s) contains a section isomorphic to 3U4(3) : 2, by 5.1.3 and

([AT], page 200), we get that CG(z, s)/ 〈s〉 is an extenstion of an extraspecial group

of order 213 by 3U4(3) : 2. By ([As3], 29.9), O2(CG(z, s))/ 〈z〉 is an irreducible

CG(t, z)/O2,3(CG(z, s))-module and the lemma is proved.�

Lemma 5.2.3 Let K = O3́(CG(z)). Then either K = 〈z〉 or is an extraspecial

group of order 225.

Proof : Set K = O3́(CG(z)). We recall that L = 〈τ, s〉. By coprime action we

have that

K =
〈
CK(t); t ∈ L]

〉
.

We recall that by 5.2.1(iv) and 5.2.2(i), ε is conjugate to τ in CH2(z) and s is

conjugate to τ−1ε in CH2(z). Assume that t = τ . Then by 5.2.1(i), CG(z, t) ∼= 6Suz.

Since CG(z, t) ∩ K is normal in CG(z, t), we get that CK(t) = 〈z〉. Suppose that

t = s. Then by 5.2.2(ii), CK(t) is isomorphic to a subgroup of O2(CG(t, z)) which

is extraspecial of order 213. Therefore K is 2-group. Since by 5.2.2(ii), CG(t, z)/ 〈t〉
acts irreducibly on O2(CG(t, z))/ 〈z〉, we get that |CK(t)/ 〈z〉| = 212 or 1. Hence

either for all t ∈ L of order three we have CK(t) = 〈z〉 and then K = 〈z〉 or for

both t we have CK(t) is extraspecial of order 213. In the later case by Wielandt’s

order formula ([BH],XI.12.4) |K| = 225 and K = CK(s)CK(τ−1ε). Therefore K is

an extraspecial group of order 225 and the lemma hold.�

Further notations: Set W = CG(z). We use the bar notation for W/O2(W ).

We are going to show that W is isomorphic to Co1. Since by 5.2.1(iii),(iv),

CH12(z) is an extension of an elementary abelian group of order 9 by 2U4(3) : 2, by

([AT], page 52) we get that there is an elementary abelian subgroup E of order 36

in CH12(z).

Further notations: We keep the notation E for an elementary abelian subgroup

in CH12(z) of order 36.
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Lemma 5.2.4 NW (E)/E ∼= 2M12 and the extension splits.

Proof : By 5.2.1(i) and ([AT], page 128), we get that NH1∩W (E)/E ∼= (2 ×M11).

On the other hand by 5.2.1(iii) and ([AT], page 52), we get that NH2∩W (E)/E ∼=
(2 × A6)22. Since there is no subgroup isomorphic to (2 × A6)22 in 2 ×M11 (see

[AT], page 18), we have NW (E) 6= NCH1
(z)(E).

Set X̃ = NH1∩W (E)/E. Then X̃ has seven orbits L0, L1, L2, L3, L4, L5, L6 on

P (E) such that L0 = {〈τ〉} and |L1| = |L2| = |L3| = 11 and |L4| = |L5| = |L6| =

110. Further L1 = {
〈
εX̃
〉
}, X̃ acts 4-transitively on L1, L4 = {〈x1x2〉X̃ , where

〈x1〉 and 〈x2〉 are two distinct elements from the orbit L1}, L1+i = {〈τx〉X̃ , where

〈x〉 ∈ Li}, L2+i = {〈τ−1x〉X̃ , where 〈x〉 ∈ Li}, i = 1, 4. We note that 〈s〉 ∈ L2 and

〈τ〉 and 〈s〉 are conjugate to 〈ε〉 and 〈τ−1ε〉 in H2 ∩W , respectively. By 2.4.4(iii),

E = J(F ) where F ∈ Syl3(H2 ∩W ). Therefore by 2.2.2, 〈τ〉 is conjugate to 〈ε〉 and

〈s〉 is conjugate to 〈τ−1ε〉 in NH2∩W (E). Hence under the action of NW (E)/E on

P (E) we get that L0 and L1 are in the same orbit and L2 and L3 are in the same

orbit. We recall that by 5.1.3 and the structure of H1, we get that τ is not conjugate

to s in G. Thus, L0 and L2 or L3 are not in the same orbit. If M = L0 ∪ L1 and

one, two or three of L4, L5 and L6 be in the same orbit, then 61, 29 or 19 divides∣∣NW (E)/E
∣∣, respectively. But GL6(3) is a {2, 3, 5, 7, 11, 13}-group. Therefore M

is an orbit of NW (E)/E of length 12 that the stabilizer of every element of M in

NW (E)/E is 2 × M11 and NW (E)/E is 5-transitive on M . Hence NW (E)/E is

an extension of M12. As M12 does not have a faithful representation on GF (3)

of dimension 6 ( see [JLPW]), NW (E)/E is not isomorphic to 2 × M12. Hence

NW (E)/E ∼= 2M12. Let rE ∈ Z(NW (E)/E) be an involution. Since a faithful,

irreducible, GF (3)NW (E)/E-module has dimension at lease 6, we get that r acts

fixed point freely on E. Hence CNW (E)(r)
∼= 2M12 and the extension splits. This

completes the proof.�

Further notations: In the remainder of this chapter X is a fixed complement of

E in NW (E). By 2.4.2, X has three orbits M , I and J on P (E) such that |M | = 12,

|I| = 132 and |J | = 220. We keep these notations M , I and J for the orbits of X

on P (E). We recall that 〈τ〉 and 〈ε〉 are in M and 〈s〉 ∈ I. Set T =
〈
sδ
〉
, where

τ 6= δ 6= ε and
〈
δ
〉
∈M . Then T ∈ J . Set D = CG(z, τ) and N2 = ND(T ).
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Lemma 5.2.5 i) O3(CD(T )) is a special group with center
〈
τ , ε, δ

〉
, CD(T )/O3(CD(T )) ∼=

SL2(3)× 2 and the extension splits.

ii) Let B1 be a fixed complement of O3(CD(T )) in CD(T ) and i ∈ Z(O2(B1)) be

an involution. Then |CE(i)| = 34.

iii) There is a subgroup B3 =
〈
X1, k

〉 ∼= SL2(3) in CD(Z(O3(N2))) such that

k ∈ E is of order three and X1
∼= Q8 is a quaternion group.

Proof : We recall that L = 〈τ, s〉. By 5.2.1(iii), CW (L) contains a section

isomorphic to U4(3). So by 5.2.1(i) and [Wi2] we get that CD(L)/L ∼= U4(3). Also

by 5.2.1(i), 2.4.2(iv),(vii) and [Wi2] we get that O3(CD(T )) is a special group with

center
〈
τ , ε, δ

〉
, CD(T )/O3(CD(T )) ∼= SL2(3) × 2 and the extension splits. Now i)

holds. Let B1 be a fixed complement of O3(CD(T )) in CD(T ) and i ∈ Z(O2(B1)) be

an involution. We remark that i acts fixed point freely on O3(CD(T ))/Z(O3(CD(T )))

and O2(CD(T ))/O3(CD(T )) acts trivially on Z(O3(CD(T ))). Since i ∈ Z(B1), we

have i normalizes E. By 2.4.2(i) and ([AT], page 18), we get that CD∩X(i) ∼= GL2(3).

Therefore i is of determinat 1. Hence
∣∣∣CE/〈τ〉(i)∣∣∣ = 3 or

∣∣∣CE/〈τ〉(i)∣∣∣ = 33. By 2.4.3,

NCX(τ)(〈r̂〉) is a subgroup of M10× 2 for each element r̂ ∈ E/ 〈τ〉 of order three. As

there is no subgroup isomorphic to CX∩D(i) in M10 × 2, we get that
∣∣∣CE/〈τ〉(i)∣∣∣ 6= 3

and then
∣∣CE(i)

∣∣ = 34 and ii) holds. By i) and ii) and since i acts fixed point freely on

O3(CD(T ))/Z(O3(CD(T ))), we get that there is a subgroup B2 =
〈
X1, k

〉 ∼= SL2(3)

in CD(Z(O3(N2))) such that k ∈ E is of order three and X1
∼= Q8 is a quaternion

group. Now the lemma is proved.�

Further notations: By 5.2.5(iii), we keep the notation B1 for a fixed comple-

ment of O3(CD(T )) in CD(T ) such that B1 =
〈
X1, k

〉 ∼= SL2(3) in CD(Z(O3(N2))),

where k ∈ E is of order three and X1
∼= Q8 is a quaternion group.

Lemma 5.2.6 NW (T ) is a faithful extension of an extraspecial group of order 35 by

Sp4(3) : 2 and contains a Sylow 3-subgroup of W .

Proof : Set N1 = NNW (E)(T ), U = O3(X ∩ N1) and R = [E,U ]U . By 2.4.2(iii),

N1/E is an extension of U by GL2(3)× 2. By 2.4.2(v), R is the unique extraspecial

normal subgroup in N1 of order 35. We remark that By ([AT], page 32) N1 ∩X =

NX(U). Let K = N1 ∩ N2. Then K = E(K ∩ NX(U)). By 2.4.2(v), U is not a

subgroup of K. By 2.4.2(v)(i) and ([AT], page 18), K ∩ NX(U) contains a Sylow
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3-subgroup U1 of CX(τ). Since U1 6= U , we have |U ∩ U1| = 3. Hence U1 has index

at most 23 in K ∩ NX(U). We remark that by [Wi2], N2 is a split extension of

O3(N2) by SL2(3) ∗ D8 and O3(N2) is a special group of order 37 and exponent 3

with center of order 33. Let P ∈ Syl3(K). Then by considering orders we have

P ∈ Syl3(N2). Let F ∈ Syl3(N1) containing P . Then as P is of index three in F ,

we conclude that P / F and hence R ≤ NW (Z(P )). We have U ≤ R and U is not

contained in P . Therefore F = PR. By 2.4.2(vi), E is a characteristic subgroup

of F and hence F ∈ Syl3(W ). We note that from the structure of N2 we get that

Z(P ) = Z(O3(N2)). Since R ≤ NW (Z(O3(N2))), we get that CD(Z(O3(N2)))R is

a group. Set N3 = CD(Z(O3(N2)))R. We are going to show that R / N3.

Lemma (5.2.6.1) There is an extraspecial normal subgroup R1 of order 35 in

N3.

Proof : We have N3/O3(N2) ∼= SL2(3) × 〈â〉 where â is of order 3. So N3 =

O3(N3)B1. Let i be an involution in Z(B1). Then CO3(N3)(i) =
〈
Z(O3(N2)), a

〉
where a is a preimage of â. Therefore [X1, CO3(N3)(i)] = 1. By coprime action we

have O3(N2) = CO3(N2)(i)[i, O3(N2)]. Set E1 = CO3(N2)(a). As CO3(N3)(i) is B1-

invariant, we deduce that [a, k] ∈ E ∩ CO3(N3)(i). Let y ∈ E1. Then by the three

subgroup lemma, [y, k] ∈ E1. Therefore E1 is B1-invariant. On the other hand,

under the action of B1 on O3(N2)/Z(O3(N2)) we have O3(N2)/Z(O3(N2)) = Ṽ1⊕Ṽ2,

where
∣∣∣Ṽ1

∣∣∣ =
∣∣∣Ṽ2

∣∣∣ = 32. Clearly E1 ∩ Z(O3(N2)) = Z(F ) is of order three. If a acts

trivially on O3(N2)/Z(O3(N2)) then O3(N3)E/E is an abelian subgroup of order 33

in F/E. As by ([AT], page 32), F/E is an extraspecial group of order 33, we get

that a does not act trivially on O3(N2)/Z(O3(N2)). Since CO3(N2)/Z(O3(N2))(a) 6= 1

and a does not act trivially on O3(N2)/Z(O3(N2)), we get that
∣∣E1

∣∣ = 33. Let

E1 ≤ E. Then E ∩ O3(N2) =
〈
Z(O3(N2)), E1

〉
and E ∩ O3(N2) is B1-invariant.

Therefore there is a subgroup U1 in O3(N2) of order 32 such that
∣∣U1 ∩ E

∣∣ = 1

and U1Z(O3(N2))/Z(O3(N2)) is B1-invariant. Since [U1, k] ≤ E, we get that k

acts trivially on U1Z(O3(N2))/Z(O3(N2)). As k
i

= k and û1
i

= û1
−1

for each

û1 ∈ U1Z(O3(N2))/Z(O3(N2)) of order three, we get that [U1, k] = 1. Therefore〈
U1, k, Z(O3(N2))

〉
is an abelian subgroup of F of order 36 and this is a contradiction

to 2.4.2(v). Assume that E1 is abelian. Let r ∈ E1 such that r /∈ E. Then

[k, r] ∈ E1, therefore
[
k, r, r

]
= 1. As

[
E ∩O3(N2), r

]
≤ Z(O3(N2)), we have
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[
E ∩O3(N2), r, r

]
= 1. Since E =

〈
k,E ∩O3(N2)

〉
, we deduce that

[
E, r, r

]
= 1.

As by Theorem A in [Ch] no element of order three in CX(τ) acts quadratically on

E, we have a contradiction. Hence E1 is not abelian and then E1 is an extraspecial

group of order 33. Let u ∈ Z(O3(N2)) such that 1 6= [u, a] ∈ Z(F ). Set R1 =〈
E1, u, a

〉
. Then R1 is an extraspecial group of order 35 and Z(R1) = Z(F ).

We have O3(N3) =
〈
O3(N2), a

〉
. Since a normalizes Z(O3(N2)) and â acts

quadratically on O3(N2)/Z(O3(N2)) so
[
R1, O3(N3)

]
≤ Z(O3(N2))E1. Let x ∈

O3(N2) and ax = ae, where e ∈ E1Z(O3(N2)). Let f ∈ E1 × 〈u〉. Then f
x

=

fy ∈ R
x

1 , where y ∈ E1Z(O3(N2)). Therefore
[
yf, ae

]
∈
〈
Z(F ), [y, a]

〉
. As R

x

1 is

an extraspecial group with center Z(F ), we conclude that [y, a] ∈ Z(F ) and this

gives us that y ∈ E1 × 〈u〉 and then E1 × 〈u〉 ≤ R
x

1 ∩ R1. Let ax = aem, where

e ∈ E1 × 〈u〉, m ∈ Z(O3(N2)) and [m, a] /∈ Z(F ). Then (ax)3 = (am)3 /∈ Z(F ) and

this is a contradiction to R
x

1 being an extraspecial group. Hence R
x

1 = R1 and R1 is

normal in O3(N3). By 2.4.2(v) [k, a, a, a] = 1. So [k, a] ∈
〈
u, Z(F )

〉
. Now as R1 is

X1-invariant, we get that R1 is normal in O3(N3)B1 = N3.�

We are going to show that R is a subgroup of O3(N3). If not, let x ∈ R with

x /∈ O3(N3). Then we have R ∩ R1 =
〈
u, Z(F )

〉
and [x,E1] ≤ R ∩ R1. as [x,E1] is

not in Z(O3(N2)), we have R ≤ O3(N3).

Now we show that R1 = R. We have R1 / N3 and N3/R1 is an extension of an

extraspecial group of order 33 by SL2(3). Let Z(O3(N3/R1)) =
〈
dR1

〉
where d ∈

Z(O3(N2)) and let iO3(N3) ∈ Z(N3/O3(N3)) being an involution, then i normalizes

F . So by 2.4.2(vi), i normalizes E. As i centralizes T , we deduce that i ∈ N1. Since

R is normal in N1, we have R
i

= R. Let x ∈ R ∩ R1d and x = df , where f /∈ R
(as d /∈ R) and f

i
= f

−1
Z(F ). Since d

i
= d, we get that xi = df

i
. Now we have

x−1xi = f
−1
f
i ∈ R, so f ∈ R and this is a contradiction. Therefore R ∩ R1d = ∅

and hence R = R1.

Finally R is normal in N =
〈
N1, N3

〉
. By 2.2.3(ii), Aut(R)/Inn(R) ∼= Sp4(3) : 2.

We note that Z(O3(N2)) =
〈
τ , δ, ε

〉
, u ∈ Z(O3(N2)), a /∈ N3 and T =

〈
τδε
〉
. Now

as [a, u] ∈ T , T ∈ J , a ∈ X and by the representations of the elements in the

orbits M , J and I in 2.4.2, we get that 〈u〉 ∈ I. Therefore u is conjugate to s

in W . Now by 5.2.2(ii), ([AT], page 52) and as CW (Z(O3(N2))) ≤ CW (T , u), we

get that CW (R) ≤ CN1
(T , U, u). Since CN1

(U) = T , we deduce that CW (R) = T .
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Hence N/Z(R) is a subgroup of Aut(R). So N/R is isomorphic to a subgroup of

Sp4(3) : 2. Since N1/R is a maximal subgroup of Sp4(3) : 2 ([AT], page 26), we get

that N/R ∼= Sp4(3) : 2 and the lemma is proved.�

Lemma 5.2.7 W ∼= Co1.

Proof : By 5.2.4, 5.2.6 and definition 1, we get that W is of Co1-type. So by theorem

4 W ∼= Co1 and the lemma is proved.�

Theorem 5.2.8 CG(z) is a faithful extension of an extraspecial group of order 225

by Co1.

Proof : By theorem 5.2.7, CG(z)/O2(CG(z)) is isomorphic to Co1. By 5.2.3 K =

O2(CG(z)) = 〈z〉 orK is an extraspecial group of order 225. By 5.2.2(ii), O2(CG(s, z))

is an extraspecial group of order 213 and CG(s, z)/O2(CG(s, z)) is an extension of

an elementary abelian group of order 32 by U4(3) : 2. If K = 〈z〉, then Co1 must

have a subgroup isomorphic to CG(s, z)/ 〈z〉. But Co1 does not have an elementary

abelian subgroup of order 212 ([AT], page 180). Hence K is an extraspecial 2-group

of order 225 and the theorem is proved.�

5.3 Proof of theorem 6

In this short section we prove the theorem 6. By ([As3] 34.13) there is an involution

t ∈ O2(CG(s, z)) such that t is not conjugate to z in CG(s) and CG(s, t)/ 〈s〉 ∼=
2M(22) : 2. Set W̃1 = CG(t)/ 〈t〉.

Lemma 5.3.1 W̃1
∼= F2, the baby monster group.

Proof : As CG(s, t)/ 〈s〉 ∼= 2M(22) : 2, by 5.2.7 and Lagrange theorem t is not

conjugate to z in G. By 5.2.7 and ([AS2] lemmas 32.1 and 32.2) we get that W̃2 =

CG(z, t)/ 〈t〉 is an extension of an extraspecial 2-group of order 223 by Co2. Now

applying 2.3.2 we have either W̃1 = O(W̃1)W̃2 or W̃1
∼= F2. Since CG(s, t)/ 〈s〉 ∼=

2M(22) : 2, the case W̃1 = O(W̃1)W̃2 does not happen. Hence W̃1
∼= F2 and the

lemma is proved.�

Now we can prove the Theorem 6:

Proof : It follows from 5.2.7, 5.3.1 and 2.3.1.�
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tion genau einen Punkt festläßt. (German) J. Algebra 17 (1971) 527–554.

[Bi] J. Bierbrauer; A characterization of the ”baby monster” F2, including a

note on 2E6(2). J. Algebra 56 (1979), no. 2, 384–395.

[BH] N. Blackburn and B. Huppert; Finite Groups III, 1982.

[Ch] A. Chermak; Quadratic Pairs; J. Algebra, volume 277, no 1, 36-72

(2004).

[AT] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson;

”Atlas of Finite Groups ,” Clarendon,Oxford,1985.

[DS] S. L. Davis and R. Solomon; Some Sporadic Characterizations. Com-

munications in Algebra, 9(17), 1725-1742 (1981).

94



[FT] W. Feit and J. G. Thompson; Finite groups which contain a self-

centralizing subgroup of order 3. Nagoya Math. J. 21(1962) 185–197.

[Go] D. Goldschmidt; 2-fusion in finite groups. Ann. of Math. (2) 99 (1974),

70–117.

[Gor] D. Gorenstein; Finite Groups; New York, Harper and Row 1968.

[GLS1] D. Gorenstein, R. Lyons and R. Solomon; The Classification of the Finite

Simple Groups, volume 40.1 of Mathematical Surveys and Monographs.

American Mathematical Society, Providence, RI, 1994.

[GLS2] D. Gorenstein, R. Lyons and R. Solomon; The Classification of Fi-

nite Simple Groups,Number 2,Volume 40 of mathematical Surveys and

monographs. American Mathematical Society, 1996 .

[GLS3] D. Gorenstein, R. Lyons and R. Solomon; The Classification of Fi-

nite Simple Groups,Number 3,Volume 40 of mathematical Surveys and

monographs. American Mathematical Society, 1998 .

[GLS4] D. Gorenstein, R. Lyons and R. Solomon; The Classification of Fi-

nite Simple Groups,Number 4,Volume 40 of mathematical Surveys and

monographs. American Mathematical Society, 1999 .

[GLS5] D. Gorenstein, R. Lyons and R. Solomon; The Classification of Fi-

nite Simple Groups,Number 5,Volume 40 of mathematical Surveys and

monographs. American Mathematical Society, 2002 .

[GLS6] D. Gorenstein, R. Lyons and R. Solomon; The Classification of Fi-

nite Simple Groups,Number 6,Volume 40 of mathematical Surveys and

monographs. American Mathematical Society, 2005 .

[GMS] R. Griess, U. Meierfrankenfeld and Y. Segev; ”A uniqueness proof for

the Monster”. Ann. of Math. (2) 130 (1989), no. 3, 567–602.

[Ha] J. L. Hayden; A characterization of the finite simple group PSp4(3);

Canada. J.Math. 25(1973),539-553.

95



[JLPW] Ch. Jansen, K. Lux, R. A. Parker and R. A. Wilson; An Atlas of Brauer

Characters; Clarendon, Oxford 1995.

[MS] U. Meierfrankenfeld and G. Stroth; Groups of local characteristic p, The

H-structure theorem; preprint.

[MSS] U. Meierfrankenfeld, B. Stellmacher and G. Stroth; Finite groups of

local characteristic p :An overview.In Proceeding Durham Conference

on Finite Groups, 2001.

[OR] Oberwolfach Report, Mini-Workshop: Amalgams for Graphs and Ge-

ometries, http://www.mfo.de/programme/schedule/2004.

[Pa] Ch. Parker; A 3-local characterization of U6(2) and Fi22; J. Algebra 300

(2006), no. 2, 707–728.

[KPR] I. Korchagina , Ch. Parker and P. J. Rowley, A 3-local characterization of

Co3. European Journal of Combinatorics, Volume 28, Issue 2 , February

2007, 559-566.

[PR] Ch. Parker and P. J. Rowley; A characteristic 5 identification of the

lyons group. J. London Math. Soc. (2) 69 (2004), no. 1, 128-140.

[PW1] Ch. Parker and C. Wiedorn; A 5-local identification of the Monster.

Archiv Math. Volume 83, Number 5, 2004, 404 - 415.

[PW2] Ch. Parker and C. Wiedorn; A 7-local identification of the Monster.

Nagoya Math. J. 178 (2005), 129–149.

[Ph] K. W. Phan; A characterization of the finite simple group U4(3), J.

Australian Math. Soc. 10(1969),77-94.

[Re] A. Reifart; Some simple groups related to M24. J. Algebra 45 (1977),

no. 1, 199–209.

[Sa1] M. R. Salarian; An identification of Co1. Submitted to J. Algebra.

[Sa2] M. R. Salarian; A 3-local characterization of M(24)′. Submitted to J.

Group theory.

96



[Sa3] M. R. Salarian; A 3-local characterization of M(24). Submitted to J.

Group theory.

[Wi1] R. A. Wilson; The odd-local subgroups of the Monster, J. Austral. Math.

Soc. Ser. A 44(1988) ,1-16.

[Wi2] R. A. Wilson; The Complex Leech Lattice and Maximal Subgroups of

the Suzuki Group; J. Algebra 84, 151-188(1983).

97


	Abstract
	Contents
	1 Introduction
	1.1 Groups of local characteristic p and H-Structure Theorem
	1.2 Main results
	1.3 An outline of the proofs
	1.3.1 Theorem 4
	1.3.2 Theorem 5 and Corollary 7
	1.3.3 Theorem 6

	1.4 Recent characterizations for the sporadic simple groups

	2 Preliminaries
	2.1 Elementary definitions and results
	2.2 p-Groups
	2.3 Some basic theorems
	2.4 Modules

	3 Characterization of Co1
	3.1 Some first steps
	3.2 Identifying U4(3)
	3.3 Identifying Suz
	3.4 2-central involution

	4 Characterization of M(24)´
	4.1 Preliminaries
	4.2 The centralizer of a non 2-central involution
	4.3 Proof of theorem 5 and corollary 7

	5 Characterization of the Monster group
	5.1 The centralizer of a non 3-central element
	5.2 2-central involution
	5.3 Proof of theorem 6

	Bibliography

