

Synthesen und Strukturen organozinnsubstituierter Oxoanionen

DISSERTATION

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Naturwissenschaftlichen Fakultät II — Chemie und Physik der Martin-Luther-Universität Halle-Wittenberg

> von Herrn Diplom-Chemiker TOBIAS HERNTRICH

geb. am 01.12.1976 in Nordhausen

Gutachter:

- 1. Prof. Dr. Kurt Merzweiler
- 2. Dr. Nicola Pinna

Halle (Saale), 12.03.2008

urn:nbn:de:gbv:3-000013593

[http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ade%3Agbv%3A3-000013593]

Die vorliegende Arbeit wurde unter Anleitung von Herrn Prof. Dr. K. Merzweiler in der Zeit von Mai 2004 bis Dezember 2007 an der Naturwissenschaftlichen Fakultät II — Chemie und Physik der Martin-Luther-Universität Halle-Wittenberg angefertigt.

Inhaltsverzeichnis

1.	Einl	eitung	1
	1.1 (Organozinnverbindungen mit Sn–O-Bindungen	1
	1.2 S	trukturchemie der Organozinnverbindungen	2
	1.3 D	arstellung von heteronuklearen Organozinnoxoverbindungen	
2.	Auf	gabenstellung	7
3.	Erg	ebnisse und Diskussion	8
	3.1 U	msetzungen von R ₃ SnCl mit Oxoanionen	
	3.1.1	Die Umsetzung von Ph ₃ SnCl mit Na ₃ VO ₄	8
	3.1.2	Die Struktur von [{ $(Ph_3Sn)_3(VO_4)$ } ₆ \cdot 6 C ₆ H ₆] (1c)	
	3.1.3	Die Umsetzung von Bz ₃ SnCl mit Na ₃ VO ₄ und Na ₂ MoO ₄	
	3.1.4	Die Struktur von $[(Bz_3Sn)_2MoO_4 \cdot DMF]$ (2)	15
	3.1.5	Die Umsetzung von Ph ₃ SnCl mit Phosphaten und Chalkogeniten	
	3.2 U	msetzungen von Ph ₃ SnOH mit Säuren	
	3.2.1	Die Umsetzung von Ph ₃ SnOH mit H ₃ PO ₄	
	3.2.2	Die Struktur von $[{(Ph_3Sn)_3(PO_4)}_6 \cdot 2 C_6H_6](3)$	
	3.2.3	Die Umsetzung von Ph ₃ SnOH mit H ₃ AsO ₃	
	3.2.4	Die Struktur von [(Ph ₃ Sn) ₃ AsO ₃] (4)	
	3.2.5	Die Struktur von [($Ph_3Sn_2O \cdot 2 \{(Ph_3Sn_3AsO_3\}\}$] (5)	32
	3.2.6	Die Umsetzungen von [(Ph ₃ Sn) ₃ AsO ₃] mit Metallcarbonylen	35
	3.2.7	Die Struktur von [(CO) ₄ FeAs(OSnPh ₃) ₃] (6)	38
	3.2.8	Darstellung und Struktur von [(Ph ₃ Sn · DMF)(Ph ₃ Sn)(Ph ₂ SnOH)AsO ₄] ₂ (7)	
	3.2.9	Darstellung und Struktur von [(Ph ₃ Sn) ₂ SeO ₃ · L] (L = CHCl ₃ , DMF) (8a, 8b)	48
	3.2.10	Die Umsetzung von Ph ₃ SnOH mit Te(OH) ₆	54
	3.2.11	Die Strukturen von <i>trans</i> -[(Ph_3SnO) ₄ Te(OH) ₂] (9a) und	
		cis-[(Ph ₃ SnO) ₄ Te(OH) ₂ · 3 H ₂ O] (9b)	56
	3.2.12	Darstellung und Struktur von <i>trans</i> -[(Ph ₃ SnO) ₂ Te(OMe) ₄] (10)	61
•	3.3 U	msetzungen von Ph ₃ SnOH mit Alkoxiden und Silylamiden	
	3.3.1	Die Umsetzung von Ph ₃ SnOH mit Ti(O ⁱ Pr) ₄	68
	3.3.2	Die Struktur von [Ti(OSnPh ₃) ₄] (11)	71
	3.3.3	Die Struktur von Ph ₃ SnO'Pr (12)	73
	3.3.4	Die Umsetzung von Ph ₃ SnOH mit [(MeO) ₂ Ti(acac) ₂]	74
	3.3.5	Die Struktur von $[(MeO)_2Ti(acac)_2]$ (13)	75
	3.3.6	Die Struktur von [{(Ph_3SnO)Ti(acac) ₂ } ₂ O] (14)	
	3.3.7	Darstellung und Struktur von [Pb ₆ O ₄ (μ_3 -OSnPh ₃) ₄] (15)	80
	5.5.8	Die Struktur von $[Pn_3 \text{Sn}(SlVle_3)_2]$ (16)	
	3.3.9 2 2 10	Darstenung und Struktur von [$O(NSI_2Me_6)_2/2(\mu - USnPn_3)_4$] (17) Die Umsetzungen von Dh SnOU wit $O(O^{\dagger}D_{m})$ Es $(O^{\dagger}D_{m})$	
	3.3.10	Die Umsetzungen von Ph ₃ SnOH mit Uu(U Bu), $fe(U Bu)_3$ und UV(U Pr) ₃ Die Struktun von Dh SnO ^t Du (19)	
	3.3.11	Die Struktur von [(DbSn) (Db SnO)(OMa) (VO) (VO) 1(10)	
	3.3.12	Die Struktur von $[(r11301)_6(r1133010)((01916)_9(v03)_2(v04)_2](19)$	
	3.3.13		
4.	Zus	ammenfassung	
	Summary		

5	. Ex	xperimenteller Teil107
	5.1	Arbeitstechnik und spektroskopische Methoden107
	5.2	Darstellung der Ausgangsverbindungen109
	5.3	Darstellung von [{(Ph_3Sn)_3VO_4}_6 \cdot 6 C_6H_6] (1c) 109
	5.4	Darstellung von [(Bz ₃ Sn) ₂ MoO ₄ \cdot DMF] (2)110
	5.5	Darstellung von [{(Ph_3Sn) ₃ (PO_4)} ₆ · 2 C ₆ H ₆] (3)111
	5.6	Darstellung von [(Ph ₃ Sn) ₃ AsO ₃] (4)
	5.7	Darstellung von [(Ph_3Sn)_2O \cdot 2 {As(OSnPh_3)_3}] (5)114
	5.8	$Darstellung \ von \ [(CO)_4 FeAs(OSnPh_3)_3] \ (6) \ 115$
	5.9	$Darstellung \ von \ [\{(Ph_3Sn \cdot DMF)(Ph_3Sn)(Ph_2SnOH)AsO_4\}_2] \ (7) \ 117$
	5.10	Darstellung von [(Ph_3Sn) ₂ SeO ₃ · L] (L = CHCl ₃ : 8a, DMF : 8b) 118
	5.11	Darstellung von trans-[(Ph ₃ SnO) ₄ Te(OH) ₂] (9a)120
	5.12	Darstellung von trans-[(Ph ₃ SnO) ₂ Te(OMe) ₄] (10)122
	5.13	Darstellung von [Ti(OSnPh ₃) ₄] (11)
	5.14	$Darstellung \ von \ [\{Ti(acac)_2(OSnPh_3)\}_2O] \ (14) \ 125$
	5.15	Darstellung von [Pb ₆ O ₄ (μ_3 -OSnPh ₃) ₄] (15)
	5.16	Darstellung von [Co{Co(NSi ₂ Me ₆)} ₂ (μ -OSnPh ₃) ₄] (17)129
	5.17	$Darstellung \ von \ [(PhSn)_6(Ph_3SnO)(OMe)_9(VO_3)_2(VO_4)_2] \ (19) 130$
6	. Kı	ristallstrukturuntersuchungen132
	6.1	$[{(Ph_{3}Sn)_{3}VO_{4}}_{6} \cdot 6 C_{6}H_{6}] (1c)134$
	6.2	$[(Bz_3Sn)_2MoO_4 \cdot DMF]$ (2)
	6.3	$[\{(Ph_3Sn)_3(PO_4)\}_6 \cdot 2C_6H_6] (3) \dots 139$
	6.4	$[(Ph_{3}Sn)_{3}AsO_{3}] (4) \dots 142$
	6.5	$[(Ph_{3}Sn)_{2}O \cdot 2 \{(Ph_{3}Sn)_{3}AsO_{3}\}] (5) \dots 144$
	6.6	[(CO) ₄ FeAs(OSnPh ₃) ₃] (6)146
	6.7	$[\{(Ph_{3}Sn \cdot DMF)(Ph_{3}Sn)(Ph_{2}SnOH)AsO_{4}\}_{2}]\ (7) \$
	6.8	$[(Ph_{3}Sn)_{2}SeO_{3}\cdot CHCl_{3}](8a)150$
	6.9	$[(Ph_{3}Sn)_{2}SeO_{3} \cdot DMF]$ (8b)
	6.10	trans-[(Ph ₃ SnO) ₄ Te(OH) ₂] (9a)
	6.11	<i>cis</i> -[(Ph ₃ SnO) ₄ Te(OH) ₂ · 3 H ₂ O] (9b)156
	6.12	trans-[(Ph ₃ SnO) ₂ Te(OMe) ₄] (10)
	6.13	$[Ti(OSnPh_3)_4]$ (11)
	6.14	Ph ₃ SnO ^{<i>i</i>} Pr (12)

6.15 [(MeO) ₂ Ti(acac) ₂] (13)	
6.16 [{ $(Ph_3SnO)Ti(acac)_2$ }O] (14)	
6.17 [Pb ₆ O ₄ (µ ₃ -OSnPh ₃) ₄] (15)	
6.18 Ph ₃ SnN(SiMe ₃) ₂ (16)	
6.19 [Co{Co(NSi ₂ Me ₆)} ₂ (μ -OSnPh ₃) ₄] (17)	
6.20 Ph ₃ SnO ^t Bu (18)	
6.21 [(PhSn) ₆ (Ph ₃ SnO)(OMe) ₉ (VO ₃) ₂ (VO ₄) ₂] (19)	
Anhang	
A. Verwendete Abkürzungen	
A.1 Bezeichnungen für Moleküle und Molekülgruppen	
A.2 Indizierung der IR- und NMR-Spektren A.3 Sonstige Abkürzungen	
B. Verzeichnis der Verbindungen	
C. Verzeichnis der Abbildungen	
0	
D. Verzeichnis der Tabellen	

1. Einleitung

1.1 Organozinnverbindungen mit Sn–O-Bindungen

Obwohl die metallorganische Chemie des Zinns mit Mono-, Di-, Tri- und Tetraorganozinnverbindungen schon ausgiebig untersucht wurde, sind relativ wenige Verbindungen mit einer Sn–O–E-Struktureinheit (E = Element), abgesehen von den Organozinnalkoholaten und -carboxylaten (E = Kohlenstoff), publiziert [1, 2]. Darüber hinaus sind auch einige Verbindungen dieses Typs mit E = Si, Sn bekannt.

Von den kristallographisch charakterisierten Verbindungen des Typs $(R_3SnO)_nEO_m$ werden nur etwa 40 Substanzen (10%) von heterobimetallischen Organozinnoxoverbindungen (E = Metall) gestellt. Man kann dabei 15 verschiedene Metalle, welche über Sauerstoff an Organozinneinheiten gebunden sind, unterscheiden.

Untersuchungen an dieser Verbindungsklasse haben im Verlauf der letzten Jahre stark zugenommen. Ursächlich dafür sind die interessante Strukturchemie im akademischen Sinn, sowie die vielfältigen technischen Anwendungsmöglichkeiten [2].

Verbindungen mit $(R_nSn)_mOM$ -Einheiten, vor allem R_nSn -substituierte Oxometallate (M = Metall), zeigen mannigfaltige und komplexe Festkörperstrukturen. Das Spektrum reicht von polymeren, dreidimensionalen Netzwerken (z. B. $[(Me_2Sn)_4V_2O_9])$ [3] über Cluster-verbindungen ($[(Me_2NH_2){(Mes_2Sn)_3W_3O_{12}(\mu_3-OH)} \cdot DMF]$) [4] bis hin zu molekularen Verbindungen ($[(Mes_3Sn)_3MoO_4]$) [5].

Molekulare Verbindungen erhält man bei sperrigen Organogruppen am Sn-Atom, die eine weitere Koordination des Zinns verhindern. Polymere werden bei der Anwesenheit von Donoratomen (N, O, S etc.) gebildet, die Zinnatome koordinieren können. So kann beispielsweise durch eine geeignete Wahl der Organosubstituenten die Molekülgröße gesteuert werden. Weiterhin können in Clustern, Oligomeren und Polymeren wiederkehrende Teilstrukturen [6], beispielsweise Sn₂O₂-Vierringe [7], beobachtet werden.

Besonders in der organischen Chemie finden Organozinnverbindungen vielfältigen Einsatz. Organozinnoxoverbindungen werden in der homogenen und heterogenen Katalyse angewendet. Organozinnoxometallate des Typs $[(R_3Sn)_2MoO_4]$ · n H₂O (R = Me, ^{*n*}Bu, ^{*c*}Hex, Ph, Bz), lassen sich für die Sulfoxidation von Benzothiophen und Epoxidierung von Olefinen nutzen [8].

Weiterhin setzt man [{ $R_2SnOH(H_2O)_2$ }(OTf)_2] (R = ^{*n*}Bu, ^{*t*}Bu) für Acetylierungen [9], [^{*t*}Bu₂SnOH(Cl)]₂ für die schonende Abspaltung von Acetyl-Schutzgruppen [10], (MeO)₃Si(CH₂)₂SnHBu₂ für Organozinnhydrid-katalysierte Hydrierungen [11], Me₂SnCl₂ für chemo- und stereoselektive Benzylierungen [12] und PhSnBu₃ für Kreuzkupplungsreaktionen [13] ein, um nur einige ausgewählte Beispiele zu nennen. Gemische aus (^{*t*}Bu₂SnO)₃ und (*p*-MeOC₆H₄)₂TeO werden hingegen in Bezug auf ihr Potential zur CO₂-Fixierung untersucht [14].

Des Weiteren sollte es möglich sein, heteroatomsubstituierte Organozinnoxoverbindungen als Precursoren zur Gewinnung von Sn/M-Mischoxiden (M = Heteroatom) zu nutzen, wie es bereits bei analogen Pb/Zr-Alkoxiden des Typs $Pb_3ZrO(O'Bu)_8$ gezeigt werden konnte [15]. Heteronukleare Mischoxide werden bereits weit verbreitet in technischen Prozessen eingesetzt. Bei den zinnhaltigen Mischoxiden spielen die elektronischen bzw. elektrooptischen Eigenschaften eine besondere Rolle [16] Ihre Darstellung erfolgt bisher über Sol-Gel-Verfahren [17, 18], MOCVD-Verfahren [19, 20], gemeinsame Fällung [21, 22] oder mechano-chemische Methoden [15, 23, 24].

Bei der thermischen Zersetzung heteronuklearer Organozinnoxide sollten Oxidgemische verbleiben, die im Hinblick auf ihre katalytische Aktivität, ihre speziellen elektrischen Eigenschaften sowie auf eine Kombination beider [25] untersucht werden können. Bisher sind Systeme für die NO-Reduktion - mit Zeoliten des Typs Sn-ZSM5 [26], zur Kohlenwasserstoffoxidation - durch Oxide der Zusammensetzung $V_x Sn_{x-1}O_2$ [27] und zur selektiven Alkylierung von Phenolen - durch Sn/Re/Ce/O-Phasen [28] bekannt.

Bezüglich der thermischen Zersetzung heteroatomsubstituierter Organozinnoxoverbindungen wurde häufig die Dotierung von TiO_2 durch Sn^{4+} untersucht, welche einen Einfluss auf die elektronische und photokatalytische Aktivität [29] zeigt. Anwendungen hierfür ergeben sich in der Luft- und Wasseraufbereitung [30, 31, 32, 33].

1.2 Strukturchemie der Organozinnverbindungen

In der Koordinationschemie des Zinns ist die Möglichkeit der Ausbildung unterschiedlicher Koordinationszahlen, die von zwei bis zwölf reichen, strukturell besonders interessant. Vor allem Sn(II)-Verbindungen zeigen hierbei ein sehr breites Spektrum. So enthält

Einleitung

 $Sn[N(SiMe_3)_2]_2$ [34] zweifach koordiniertes Zinn und in Cp₂Sn(TMEDA) [35] liegt eine zwölffache Koordination vor.

In Sn(IV)-Verbindungen des Typs R_{4-n} Sn X_n (R = Alkyl, Aryl; X = Halogen, OR, SR, etc.) liegt am häufigsten eine vier-, fünf- oder sechsfache Koordination vor. Dabei ergeben sich als Koordinationspolyeder das Tetraeder, die trigonale Bipyramide und das Oktaeder (Abb. 1).

Abb. 1. Koordinationspolyeder für vier-, fünf- und sechsfach koordiniertes Zinn

Tetraedrisch koordiniertes Zinn ist hauptsächlich bei den monomeren Verbindungen des Typs R_4Sn , wie beispielsweise Me₄Sn [36] und Ph₄Sn [37] zu finden. Triorganozinnverbindungen des Typs R_3SnX zeigen dagegen bereits eine starke Tendenz zur intermolekularen Aggregation, wenn die Organogruppen R nicht zu sperrig sind und X gute Donoreigenschaften besitzt. So bildet Ph₃SnCl [38] isolierte Einheiten, wohingegen Me₃SnCl [39] und Ph₃SnF [40] als Kettenpolymere vorliegen.

Mono- und Diorganozinnverbindungen der Zusammensetzung $RSnX_3$ und R_2SnX_2 liegen fast ausschließlich als Polymere oder Cluster vor. Die Verknüpfung der $RSnX_3$ bzw. R_2SnX_2 -Einheiten kann dabei über elektrostatische Wechselwirkungen, van-der-Waals-Kräfte, Dipol-Dipol-Wechselwirkungen oder Wasserstoffbrückenbindungen (X = OH) erfolgen [41].

Betrachtet man speziell die Strukturen der bekannten Ph_3Sn -substituierten Oxoanionen so können sowohl monomere Verbindungen z. B. [{ $(Ph_3SnCl)_2 \cdot EtOPO_2$ }{ CH_2NMe_2Et }] [42]), [$(Ph_3SnCl)_2$ { $Ph_2AsCH_2CH_2(O)AsPh_2$ }] [43], Mehrkernverbindungen z. B. [$(Ph_2PO_4(Ph_3Sn))$] [44], [$Ph_3SnOP(O)(OMe)(Me)$]) [45] wie auch polymere Substanzen z. B. [$(Ph_3Sn)_2SO_4 \cdot 2H_2O$] [46], [$(Ph_3SnO)PhSeO_2$] [47]) beobachtet werden.

1.3 Darstellung von heteronuklearen Organozinnoxoverbindungen

Zur Darstellung von Organozinnverbindungen mit einer Sn–O–M-Einheit stehen mehrere Möglichkeiten zur Verfügung. Ein Weg ist hierbei die gezielte Substitution an Organozinnoxiden, -hydroxiden oder -alkoxiden. Andererseits ist es auch denkbar, die Sn–O-Bindung während der Reaktion auszubilden. In Laufe der eigenen Untersuchungen sollten vor allem zwei Reaktionsrouten eingeschlagen werden:

1) Umsetzung von Ph_3SnOH und $(Ph_3Sn)_2O$

Der erste Weg sollte über die Umsetzung von Ph_3SnOH oder $(Ph_3Sn)_2O$ verlaufen. Speziell Ph_3SnOH , welches mit Basen (Gl. 1) und Säuren (Gl. 2) reagieren kann, sollte in einer Vielzahl von Untersuchungen als bevorzugter Ausgangsstoff eingesetzt werden.

$$Ph_{3}SnOH + B^{-} \longrightarrow Ph_{3}SnO^{-} + HB$$
(Gl. 1)

$$Ph_{3}SnOH + H^{+} \longrightarrow Ph_{3}Sn^{+} + H_{2}O$$
(Gl. 2)

1a) Umsetzungen im sauren Medium

Ph₃SnOH lässt sich im sauren Milieu von Oxosäuren unter Wasserabspaltung zu den gewünschten Zielverbindungen nach Gl. 3 umsetzen. Beim Einsatz von $(Ph_3Sn)_2O$ kommt es zunächst zu einer Hydrolyse die zu Ph₃SnOH führt (Gl. 4), das anschließend gemäß Gl. 3 weiterreagiert.

$$n \operatorname{Ph_3SnOH} + \operatorname{H_nMO_m} \longrightarrow (\operatorname{Ph_3Sn})_n \operatorname{MO_m} + n \operatorname{H_2O}$$
(Gl. 3)
$$n (\operatorname{Ph_3Sn})_2 \operatorname{O} + \operatorname{H_nMO_m} \longrightarrow (\operatorname{Ph_3Sn})_n \operatorname{MO_m} + n \operatorname{Ph_3SnOH}$$
(Gl. 4)
$$(\operatorname{M} = \operatorname{P}, \operatorname{As}, \operatorname{Se}, \operatorname{Te})$$

Beispielsweise ließen sich auf diesem Wege Ph_3SnOH mit H_2SeO_4 zu [(Ph_3Sn)₂SeO₄] [48] und mit H_2SO_4 zu [(Ph_3Sn)₂SO₄ · H_2O] [46] umsetzen.

Im wasserfreien Medium spielen Triphenylzinnalkoxide eine wichtige Rolle als Ausgangssubstanzen, da sie ebenfalls für die Umsetzung mit Oxosäuren genutzt werden

Einleitung

können (Gl. 5). Sie sind im Allgemeinen reaktiver als Ph₃SnOH, neigen aber selbst zur Hydrolyse.

$$n \operatorname{Ph}_3 \operatorname{SnOR} + \operatorname{H}_n \operatorname{MO}_m \longrightarrow (\operatorname{Ph}_3 \operatorname{Sn})_n \operatorname{MO}_m + n \operatorname{ROH}$$
(Gl. 5)
(R = Me, Et etc.)

1b) Umsetzung von Ph₃SnOH im basischen Medium

Ein weiterer Weg zur Umsetzung von Ph₃SnOH beruht auf der Deprotonierung der OH-Gruppe. Dies kann durch den Einsatz von Organometallverbindungen wie z. B. Alkoxiden, Amiden und Carboxylaten erfolgen (Gl. 6).

Auch ist an die entsprechende Umsetzung von (Ph₃Sn)₂O zu denken (Gl. 7). Hierbei muss aber anstelle einer O–H-Bindung eine Sn–O-Bindung gespalten werden.

$$n \operatorname{Ph}_3 \operatorname{SnOH} + \operatorname{MR}_n \longrightarrow (\operatorname{Ph}_3 \operatorname{SnO})_n \operatorname{M} + n \operatorname{HR}$$
 (Gl. 6)

$$n (Ph_3Sn)_2O + MR_n \longrightarrow (Ph_3SnO)_nM + n Ph_3SnR$$

$$(Gl. 7)$$

$$(R = O'Bu, N(SiMe_3)_2, OAc; M = Metall)$$

Die Umsetzungen von Ph₃SnOH und (Ph₃Sn)₂O mit basischen Reagenzien sind in der Literatur ebenso beschrieben wie die entsprechenden Umsetzungen mit protischen Reagenzien.

Beispielsweise konnte bereits in den 1960er Jahren über die Umsetzung von (Ph₃Sn)₂O mit LiBu zu Ph₃SnOLi, welches einen interessanten Synthesebaustein darstellt, berichtet werden [49]. Ph₃SnOLi wurde aber nicht isoliert, sondern direkt in Lösung weiterverarbeitet, wobei eine kristallographische Charakterisierung ausblieb.

Allerdings gelang es 1994 OLIVER et al. ausgehend von Me₃Al und $(Ph_3Sn)_2O$ [Me₂Al(μ -OSnPh_3)]₂ zu synthetisieren und strukturell zu charakterisieren [50].

1960 setzte COHEN Ph₃SnOH mit Ti($O^{n}Bu$)₄ um, wobei [(Ph₃SnO)₄Ti] als ein weißes Pulver isoliert wurde. Auch hier wurde keine strukturelle Charakterisierung vorgenommen [51].

Hingegen sind analoge Silicium- und Germaniumverbindungen beschrieben. So konnte im Jahr 2000 über die Darstellung von $(Ph_3MO)_4Ti$ aus $Ti(O^tBu)_4$ und Ph_3MOH (M = Si, Ge) berichtet werden [52]. In beiden Verbindungen ist das zentrale Ti-Atom von vier Ph_3MO -Gruppen umgeben.

Ferner wurde über die Umsetzung von Ni $(acac)_2$ mit Ph₃SnOH zu [Ni $(acac)_2$ (Ph₃SnOH)]₂ berichtet. Es stellte sich heraus, dass es nicht zur Abspaltung der acac-Gruppen kommt, sondern eine Adduktbildung beobachtet wird [53].

Umsetzungen physiologisch relevanter Moleküle mit R_3MOH (M = Sn, Pb) konnten ebenfalls untersucht werden. So wurden bereits 1983 verschiedene Triorganozinn- und Triorganobleisubstituierte Aminosäurederivate hergestellt und NMR- bzw. IR-spektroskopisch untersucht [54].

2) Umsetzung von Ph₃SnCl

Der zweite Reaktionsweg beruht auf der Umsetzung von Triorganozinnhalogeniden. Die meisten in der Literatur bekannten Synthesen für Organozinnoxoverbindungen erfolgten durch Umsetzung von Organozinnhalogeniden mit Salzen von Oxoanionen oder den entsprechenden Säuren (Gl. 8).

$$n \operatorname{R}_3 \operatorname{SnX} + \operatorname{MO}_m^{n-} \longrightarrow (\operatorname{R}_3 \operatorname{Sn})_n \operatorname{MO}_m + n \operatorname{X}^-$$
 (Gl. 8)

Im wässrigen Medium werden die Alkali- oder Ammoniumsalze der MO_m^{n-} -Einheit eingesetzt. In organischen Lösungsmitteln können beispielsweise die entsprechenden Tetraalkylammoniumverbindungen genutzt werden.

Die Bildung von polymeren oder monomeren Strukturen ist dabei wieder speziell von der Organosubstitution am Zinn abhängig.

Die Darstellung von Verbindungen des Typs $(R_3Sn)_xMO_y$ (R = Me, Ph; M = V [3, 55], Cr, Mo, W [56], Tc [57], Re [58]) unter Einsatz von Triorganozinnhalogeniden, wurde in der Literatur beschrieben.

Obwohl die Synthesewege zu den heterobimetallischen Oxoverbindungen nicht besonders schwierig erscheinen, konnten bisher nur wenige derartige Verbindungen strukturell charakterisiert werden. Ursache können ablaufende Nebenreaktionen sein, bei denen verschiedene Produkte entstehen können, die die Isolierung der Zielverbindungen erschweren [59, 60]. Außerdem liegen häufig komplizierte Strukturmotive vor, deren Aufklärung meist von der Einkristallstrukturanalyse abhängt. NMR-Untersuchungen können bei der Strukturaufklärung nur hilfreich sein, wenn die Substanz ausreichend gut löslich ist und eindeutige Kopplungsmuster zu den NMR-aktiven Nachbarkernen messbar sind.

Aufgabenstellung

2. Aufgabenstellung

Ziel der vorliegenden Arbeit ist die Synthese und Charakterisierung sauerstoffverbrückter Organozinnverbindungen, in denen R₃Sn- und R₂Sn-Einheiten (R = Ph, Bz) mit Bausteinen des Typs EO_n^{m-}(E = z. B. P, As, Se, Te) zu molekularen oder supramolekularen Strukturen verknüpft sind. Des Weiteren wird über die Umsetzungen von Ph₃SnOH mit Silylamiden (Pb[N(SiMe₃)₂]₂, Co[N(SiMe₃)₂]₂ und Alkoxiden (z. B. Ti(OⁱPr)₄, V(O)(OⁿPr)₃) berichtet, wobei molekulare Strukturen als auch heterobimetallische Oxocluster gebildet werden. Die strukturelle Charakterisierung erfolgt dabei über die Kristallstrukturanalyse, IR- und NMR-Spektroskopie.

3. Ergebnisse und Diskussion

3.1 Umsetzungen von R₃SnCl mit Oxoanionen

Der am häufigsten beschriebene Weg zur Darstellung von R₃SnO-substituierten Verbindungen verläuft über die Umsetzung von R₃SnX (X = Halogen) mit den Alkalisalzen verschiedener Oxoanionen. Dabei kommt es unter Abspaltung von X⁻ zur Bildung von R₃Sn–O–M-Struktureinheiten (M = z. B. P, V, Mo etc.). Den Schwerpunkt der im Folgenden beschriebenen Umsetzungen bilden die Reaktionen von R₃SnCl (R = Ph, Bz) mit PO₄³⁻, VO₄³⁻ und MoO₄²⁻.

3.1.1 Die Umsetzung von Ph₃SnCl mit Na₃VO₄

Wie in vorausgegangenen Untersuchungen [61] gezeigt werden konnte, reagiert Natriumorthovanadat mit Triphenylzinnchlorid in einem Wasser-Dichlormethan-Gemisch zu Triphenylzinnorthovanadat (Ph_3Sn)₃VO₄ (<u>1</u>), das als ein weißes, luftstabiles Pulver isoliert werden kann.

Bei der Kristallisation von <u>1</u> aus DMF bildet sich ein Solvat $[(Ph_3Sn)_3VO_4 \cdot DMF]$ (<u>1a</u>) [55]. <u>1a</u> liegt als Kettenpolymer vor, wobei ein Strang aus VO₄³⁻-Anionen und Ph₃Sn⁺-Kationen gebildet wird. An den Vanadateinheiten befinden sich weiterhin je zwei terminale Ph₃Sn-Gruppen, von denen eine durch ein DMF-Lösungsmittelmolekül koordiniert wird. Hieraus ergibt sich eine Kette bestehend aus alternierend angeordneten C₃SnO₂-Bipyramiden und VO₄-Tetraedern, die über gemeinsame Ecken verknüpft sind. Zusätzlich sind die VO₄-Tetraeder terminal mit einer eine C₃SnO₂-Bipyramide und einem C₃SnO-Tetraeder verknüpft. Da die Löslichkeit von <u>1</u> im Lauf von Tagen abnimmt und es nur frisch synthetisiert in den gängigen organischen Lösungsmitteln gut löslich ist, liegt die Vermutung nahe, dass anfangs in Lösung kleinere, molekulare Einheiten vorliegen. Auch dies konnte schon durch ein einzelnes Ergebnis bestätigt werden [61]. So wurde neben der polymeren Kettenstruktur eine zyklische Modifikation nachgewiesen. Hierbei handelt es sich um das Oktamer [(Ph₃Sn)₃VO₄]₈ (<u>1b</u>), bei dem ein Ring aus jeweils acht alternierend angeordneten VO₄- Tetraedern und C_3SnO_2 -Bipyramiden gebildet wird. Jeder VO₄-Tetraeder ist wiederum von zwei terminalen C_3SnO -Tetraedern koordiniert. Allerdings konnten bei der kristallographischen Strukturaufklärung von <u>1b</u>, aufgrund mangelnder Kristallqualität, lediglich die Positionen der Schweratome (Sn, V, O, C) des oligomeren Gerüsts gesichert werden. Um die Ringstruktur von <u>1b</u> noch eingehender zu charakterisieren, sollten weitere Untersuchungen folgen.

In den vorangegangenen Experimenten im Reagenzglasmaßstab konnten nur geringe Mengen an <u>**1b**</u> synthetisiert werden. Daher sollten Umsetzungen von Ph₃SnCl in Dichlormethan mit wässriger Na₃VO₄-Lösung im Molverhältnis 3:1 folgen. Nach 6-stündiger Reaktion bei Raumtemperatur wurde das organische Lösungsmittel abdestilliert, der verbleibende Rückstand mit Wasser gewaschen und getrocknet. Die Substanz konnte in den gängigen organischen Lösungsmitteln (außer Alkanen), zumindest in geringen Mengen, gelöst werden, und fällt nach einiger Zeit oder beim Abkühlen als weißes Pulver aus.

In den beschriebenen Versuchen <u>**1b**</u> zu reproduzieren, wurde das Hexamer $[(Ph_3Sn)_3(VO_4)]_6$ (<u>**1c**</u>) isoliert und strukturell charakterisiert (Gl. 9).

$$18 \text{ Ph}_{3}\text{SnCl} + 6 \text{ NaVO}_{3} + 12 \text{ NaOH} \longrightarrow [(\text{Ph}_{3}\text{Sn})_{3}(\text{VO}_{4})]_{6} + 18 \text{ NaCl} + 6 \text{ H}_{2}\text{O}$$

$$\underline{1c}$$
(Gl. 9)

Das IR-Spektrum von <u>1c</u> ist identisch mit dem von <u>1b</u> und ähnelt auch dem von <u>1a</u>, wenn man von den Banden des DMF-Moleküls absieht. Die intensivste Bande befindet sich bei 852 cm⁻¹ und kann der asymmetrischen VO-Valenzschwingung der VO₄-Gruppe zugeordnet werden (<u>1a</u> = 837 cm⁻¹). Geht man bei der VO₄-Einheit von einer lokalen C_{2v} Symmetrie aus, sollten theoretisch drei Banden sichtbar sein, die im IR-Spektrum von <u>1c</u> aber nicht aufgelöst werden, sondern zu einer breiten Bande verschmelzen. Die typischen Banden für die CH-Deformationsschwingungen der Phenylgruppen liegen bei 694 cm⁻¹ und 726 cm⁻¹ und die SnC-Valenzschwingung der Ph₃Sn-Gruppe ist bei 449 cm⁻¹ gut zu erkennen (<u>1a</u> = 727, 695, 452 cm⁻¹).

3.1.2 Die Struktur von $[{(Ph_3Sn)_3(VO_4)}_6 \cdot 6 C_6H_6]$ (<u>1c</u>)

Blassgelbe Kristalle von <u>**1c**</u> erhält man nach einigen Tagen aus einer gesättigten Lösung von $(Ph_3Sn)_3(VO_4)$ in Benzol. Aufgrund fehlgeordneter Phenylgruppen konnte die Struktur von <u>**1c**</u> nur bis zu einem R1-Wert von 6,96 % (wR2 = 16,79 %) verfeinert werden. Bei der Strukturverfeinerung war es nicht möglich, die Positionen der Wasserstoffatome zu bestimmen, jedoch konnten alle übrigen Atome (C, O, V, Sn) lokalisiert werden.

<u>**1c**</u> kristallisiert triklin in der Raumgruppe $P\bar{1}$ mit einer Formeleinheit in der Elementarzelle. Dabei wird ein 24-gliedriger Ring aus 6 Vanadium-, 12 Sauerstoff- und 6 Zinnatomen gebildet. Der Ringdurchmesser beträgt für gegenüberliegende V-Atome ca. 15,1 Å und für gegenüberliegende Sn-Atome ca. 12,7 Å.

In <u>**1c**</u> befinden sich die Ph_3Sn -Gruppen sowohl in terminalen, als auch verbrückenden Einheiten (Abb. 2). Man erkennt den gewellten, zentrosymmetrischen Sechsring, in welchem die praktisch linearen O–Sn–O-Gruppen die Seiten und die V-Atome die Eckpunkte bilden.

Abb. 2.Molekülstruktur von <u>1c</u> mit Schwingungsellipsoiden (Aufenthaltswahr-
scheinlichkeit 50 %; nur *ipso*-Kohlenstoffatome der Phenylgruppen dargestellt)

Bei alleiniger Betrachtung der Vanadiumatome, findet man einen Sechsring in einer Sesselkonformation mit entsprechend alternierenden Torsionswinkeln für die V-Atome von $\pm 16,8(1)^{\circ}$. Ein gleichartig strukturierter Sechsring wird auch aus den Zinnatomen der verbrückenden Segmente aufgebaut, wobei die Torsionswinkel hier $\pm 25,5(4)^{\circ}$ betragen.

Im Polyedermodell lässt sich die Ringstruktur von <u>1c</u> auf der Basis eckenverknüpfter VO₄-Tetraeder und C₃SnO₂-Bipyramiden beschreiben. Zusätzlich sind die VO₄-Tetraeder in der Peripherie mit zwei terminalen Ph₃SnO-Tetraedern verknüpft. Die C₃SnO₂-Bipyramiden zeigen nur eine geringfügige Abweichung von der idealen Geometrie. Eine gleichmäßige Ausrichtung der Phenylgruppen (z. B. eine Propelleranordnung) ist dabei allerdings nicht zu beobachten.

Da in <u>1c</u> sowohl verbrückende als auch terminale Ph_3Sn -Gruppen vorliegen, gibt es zwei Arten von Zinn–Sauerstoff- bzw. Vanadium–Sauerstoffabständen. Für die terminalen Gruppen liegen die Sn–O-Abstände zwischen 1,975(5) Å und 1,997(5) Å; die V–O-Abstände zwischen 1,722(5) Å und 1,751(5) Å. In den verbrückenden Segmenten betragen die Sn–O-Abstände 2,195(4) Å - 2,236(5) Å und die V–O-Abstände 1,6336(5) Å - 1,662(4) Å. Diese Werte entsprechen denen, die für <u>1a</u> und <u>1b</u> bestimmt wurden. Es werden die kurzen Sn–O-Bindungen in den terminalen Gruppen und die längeren Sn–O-Bindungen entlang der Kette gefunden. Der umgekehrte Fall wird für die V–O-Bindungen realisiert.

Im Kettenstrang werden annähernd lineare O–Sn–O-Einheiten mit Winkeln von 176,5(2)° bis 177,6(2)° beobachtet. Die O–Sn–C-Winkel betragen 87,8(2)° - 92,5(2)° und die drei C–Sn–C-Winkel ergänzen jeweils zu 360°. Dies zeigt, dass sich die Zinnatome der verbrückenden Gruppen in einer Ebene befinden, welche durch die drei *ipso*-Kohlenstoffatome aufgespannt wird.

Die terminalen Sn-Atome der Ph₃SnO-Gruppen zeigen eine verzerrt tetraedrische Umgebung mit O-Sn-C-Winkel von 97,8(3)° - 112,3(3)°.

Die O–V–O-Winkel liegen sowohl für die verbrückenden als auch für die terminalen Bindungen zwischen $106,9(3)^{\circ}$ und $111,3(4)^{\circ}$ und somit im Bereich der idealen Tetraederwinkel. Für die V- und die verbrückenden Sn-Atome variieren also die O–M–O-Winkel nur schwach untereinander.

Dagegen liegen die V–O–Sn-Winkel in den verbrückenden Segmenten zwischen $149,2(3)^{\circ}$ und 176,5 (4)° bzw. in den terminalen zwischen $140,0(4)^{\circ}$ und $157,2(4)^{\circ}$. Man erkennt also eine deutliche Flexibilität der Sn–O–V-Winkel.

Die Ringbildung kann aber weder durch die Flexibilität der V-O-Sn-Winkel, noch durch

unterschiedliche Bindungsgeometrien, welche in Tab. 1 zusammengefasst sind, erklärt werden.

Sogmont	Bindungswinkel		
Segment	Kettenpolymer (<u>1a</u>)	Ringstruktur (<u>1c</u>)	
O–Sn–O(verbr.)	171,3(2)	176,4(2) - 177,6(2)	
O–V–O(verbr.)	110,6(2)	107,7(3) - 111,3(4)	
O–V–O(term.)	108,7(2)	106,9(3) - 109,4(3)	
Sn–O–V(verbr.)	163,9(3) - 173,2(3)	149,2(3) - 176,5(4)	
Sn–O–V(term.)	150,4(2) - 158,3(3)	140,0(4) - 157,2(4)	

Tab. 1.Vergleich von Bindungswinkeln [$^{\circ}$] in <u>1a</u> und <u>1c</u>

Allein durch die Drehung der VO₄-Gruppen wird die Richtung der Kettenbildung gesteuert. In Abb. 3 sind die Ausrichtungen der Tetraeder in der Ketten- sowie der Ringstruktur gegenübergestellt.

Strukturausschnitt von 1a

Abb. 3.Ausrichtung der VO4-Tetraeder in <u>1a</u> und <u>1c</u> (O- und Sn-Atome mit
Schwingungs-ellipsoiden; Aufenthaltswahrscheinlichkeit 50 %)

Sind die terminalen Gruppen entlang der Kette immer auf der gleichen Seite so wird eine Ringstruktur gebildet, die den Strukturen der Cyclosilicate K_4 SrSi₃O₉ [62] und Ca₃Y₂(Si₃O₉)₂ [63] ähnelt.

Folgt man beispielsweise der Ringstruktur im Uhrzeigersinn findet man die terminalen Gruppen stets auf der Außenseite des Rings. Auch an den V-V-V-V-Torsionswinkeln können die unterschiedlichen Verknüpfungsmuster verdeutlicht werden, wenn man die Struktur auf die V-Atome reduziert. Im idealisierten Fall einer planaren Kettenstruktur sollten sie 180° betragen und in einer planaren Ringstruktur bei 0° liegen.

Somit ist das Tris(triphenylzinn)-orthovanadat eine Modellsubstanz in Bezug auf eine Ringbzw. Kettenbildung und die damit verbundene Oligomer- bzw. Polymerstruktur.

3.1.3 Die Umsetzung von Bz₃SnCl mit Na₃VO₄ und Na₂MoO₄

Da für <u>1</u> sowohl Ring- als auch polymere Kettenstrukturen gefunden wurden und die analoge Mesitylverbindung [(Mes₃Sn)₃VO₄] [61] als Monomer vorliegt, sollte mehr über den Einfluss der Organylsubstituenten auf die Struktur von Organozinnvanadaten herausgefunden werden. Parallel zu diesen Untersuchungen wurden weitere Oxometallate, wie beispielsweise das WO_4^{2-} - oder das MoO_4^{2-} -Ion, untersucht. Hierbei ließen sich zwei Tribenzylzinnderivate isolieren.

Analog zur Synthese von <u>1a</u> und <u>1c</u> wurde Tribenzylzinnchlorid mit Natriumorthovanadat umgesetzt. Als Produkt erhält man hierbei einen weißen, schwerlöslichen Feststoff, welcher im IR-Spektrum die zu erwartende intensive Bande für die Valenzschwingung der VO₄-Einheit bei 820 cm⁻¹ zeigt. Diese ist im Vergleich mit <u>1c</u> geringfügig zu tieferen Wellenzahlen verschoben. Die CH-Deformationsschwingungen bei 725 und 694 cm⁻¹ sowie die SnC-Valenzschwingung bei 453 cm⁻¹ liegen im gleichen Bereich wie in <u>1c</u>. Auch die Elementaranalyse (Tab. 2) spricht für das zu erwartende [(Bz₃Sn)₃VO₄]. Leider war es nicht möglich diese Verbindung zu kristallisieren und somit eine genaue Strukturaufklärung durchzuführen.

	$[(Bz_3Sn)_2MoO_4 \cdot DMF] (\underline{2})$	[(Bz ₃ Sn) ₃ VO ₄]
C : ber. (gef.)	53,13 (53,18)	58,63 (55,60)
H : ber. (gef.)	5,85 (5,91)	4,92 (5,79)
N : ber. (gef.)	1,38 (1,70)	-

Tab. 2. Elementaranalysen von $[(Bz_3Sn)_2MoO_4 \cdot DMF]$ und $[(Bz_3Sn)_3VO_4]$

Bei einer zweiten Umsetzung von Bz_3SnCl mit Na_2MoO_4 in einem DMF-Wasser-Gemisch konnte [$(Bz_3Sn)_2(MoO_4)_6 \cdot DMF$] (2) als weißes Pulver nach Gl. 10 synthetisiert werden.

Allerdings konnten von <u>2</u> nur einige Kristalle mit einem Zersetzungspunkt von 115 °C, durch Überschichtung einer wässrigen Natriummolybdatlösung mit einer Lösung von Tribenzylzinnchlorid in DMF, gewonnen werden.

$$2 \operatorname{Bz}_3 \operatorname{SnCl} + \operatorname{Na}_2 \operatorname{MoO}_4 \xrightarrow{DMF} [(\operatorname{Bz}_3 \operatorname{Sn})_2(\operatorname{MoO}_4) \cdot \operatorname{DMF}] + 2 \operatorname{NaCl} (Gl. 10)$$

$$(\underline{2})$$

Es galt nun herauszufinden, ob <u>2</u> entsprechend $[({}^{n}Bu_{4}N)\{(Ph_{3}Sn)_{3}(MoO_{4})_{2}\}]$ [4] polymer oder wie $[(Mes_{3}Sn)_{2}MoO_{4}]$ [5] bzw. $[(Ph_{3}Si)_{2}MoO_{4}(PPh_{3})]$ [64] monomer vorliegt.

Im IR-Spektrum von $\underline{2}$ befinden sich neben der intensitätsstärksten Bande bei 824 cm⁻¹ weitere, separierte Banden bei 879, 797, 755, 719, 695 und 626 cm⁻¹. Diese intensiven Banden im Bereich von 700 - 900 cm⁻¹ sind ein charakteristisches Merkmal der Valenz-schwingungen von MoO₄-Anionen [56]. Das Auftreten von mehreren Banden in diesem Bereich ist ein Indiz dafür, dass die lokale Symmetrie der MoO₄-Gruppen von T_d abweicht. Im Fall der T_d-Symmetrie sind zwei Banden (v_{as}, δ_{as}) zu beobachten. Die δ_{as} (MoO) wäre hier bei deutlich niedrigeren Wellenzahlen (200 - 400 cm⁻¹) zu finden als die v_{as}(MoO) (600 - 900 cm⁻¹). Diese Beobachtungen deuten also darauf hin, dass $\underline{2}$ als Kettenpolymer mit zwei unterschiedlichen Substituenten an der MoO₄-Einheit vorliegt und man so theoretisch eine lokale C_S-Symmetrie erhält, wobei mit vier aktiven IR-Banden zu rechnen ist. Dies steht auch in guter Übereinstimmung mit dem IR-Spektrum von $\underline{2}$, jedoch ist eine genaue Zuordnung der Banden aufgrund von Überlappung mit den CH-Valenzschwingungen der Phenylgruppen nicht möglich.

Weiterhin lässt sich die Bande bei 450 cm⁻¹ einer SnC-Valenzschwingung zuordnen und bei 2923 cm⁻¹ wird eine Bande beobachtet, die den aliphatischen CH₂-Valenzschwingungen zuzuschreiben ist. Die CO-Valenzschwingung des DMF-Moleküls befindet sich bei 1646 cm⁻¹. Sie ist im Vergleich zum freien DMF (vCO 1687 cm⁻¹) zu deutlich kleineren Wellenzahlen verschoben, was einer Schwächung der C–O-Bindung entspricht.

NMR-spektroskopische Untersuchungen konnten aufgrund der zu geringen Löslichkeit von $\underline{2}$ nicht durchgeführt werden. Allerdings ließ sich der Aufbau von $\underline{2}$ durch eine Kristallstrukturanalyse aufklären.

3.1.4 Die Struktur von $[(Bz_3Sn)_2MoO_4 \cdot DMF](\underline{2})$

 $\underline{2}$ kristallisiert beim Überschichten einer wässrigen Na₂MoO₄-Lösung mit Bz₃SnCl in DMF in Form rhombischer Kristalle in der Raumgruppe F2dd mit 16 Formeleinheiten in der Elementarzelle.

Die Struktur von <u>2</u> entspricht einer Kette, in der Ph_3Sn -Einheiten und MoO₄-Gruppen zu einem Strang vernetzt sind. Zusätzlich ist ein O-Atom der MoO₄-Einheit an eine terminale $Ph_3Sn(DMF)$ -Gruppe gebunden und das vierte O-Atom verbleibt unkoordiniert (Abb. 4a).

Wie das Polyedermodell in Abb. 4 zeigt, werden in <u>2</u> MoO₄-Tetraeder durch C₃SnO₂-Bipyramiden zu einem Strang miteinander verbunden, wobei jedes MoO₄-Tetraeder wiederum mit einer peripheren C₃SnO₂-Bipyramide verknüpft ist und dabei eine Ecke des MoO₄-Tetraeders unkoordiniert verbleibt.

Abb. 4. Strukturausschnitt von <u>2</u>
a) mit Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %, ohne Phenylgruppen);
b) Polyedermodell

In $\underline{2}$ sind die Mo-Atome und Sn-Atome der Kette praktisch coplanar angeordnet. Mit Blickrichtung entlang der Kettenachse erkennt man, dass die terminalen Ph₃Sn-Gruppen abwechselnd ober- und unterhalb der Kettenebene, welche aus den Mo- und verbrückenden Sn-Atomen aufgespannt wird, angeordnet sind.

Die Anordnung der einzelnen Stränge führt zur Ausbildung von Hohlräumen bzw. Kanälen. Wie in Abb. 5 dargestellt ist, verlaufen die Zickzack-Ketten jeweils parallel zur a-b-Flächendiagonalen in Richtung [110] bzw. [-110].

Abb. 5.Elementarzelle und Strukturausschnitt von <u>2</u> mit Blick in Richtung der ab-
Flächendiagonalen (Darstellung ohne Phenylgruppen)

Hierbei bildet sich in a-Richtung ein Hohlraummotiv (Abb. 6), welches den erforderlichen Platz für die Benzylgruppen zur Verfügung stellt.

Abb. 6.Ausschnitt aus der Struktur von <u>2</u> mit Blickrichtung entlang der
kristallographischen a- bzw. c-Achse

In 2 betragen die Mo-O-Abstände entlang der Kette 1,718(4) Å bzw. 1,735(5) Å und zur

terminalen Bz_3SnO -Gruppe 1,764(5) Å (Abb. 4). Das unkoordinierte, terminale Sauerstoffatom ist mit einem Mo–O-Abstand von 1,682(6) Å deutlich kürzer gebunden.

Die Sn–O-Abstände entlang der Kette betragen 2,230(5) Å und 2,260(5) Å. Für die terminale Gruppe beträgt der Sn–O-Abstand 2,168(5) Å und zum koordinierenden DMF-Molekül 2,342(7) Å.

Die Sn–C-Abstände liegen in der terminale Einheit zwischen 2,155(8) Å und 2,171(8) Å und sind somit genauso lang wie in den verbrückenden Gruppen in denen man Bindungslängen zwischen 2,143(8) Å und 2,156(6) Å findet.

In [$\{Bz_{10}(SnO_3)(SnOH)_2\}HPO_4$] [65], welches in einer Ringstruktur mit verbrückenden, trigonal-bipyramidal koordinierten C₂SnO₃-Gruppen vorliegt, finden sich mit 2,11(1) - 2,163(8) Å gleich lange Sn–C-Bindungen wie in <u>2</u>.

Auch das Bz₃SnOH bildet eine Kettenstruktur mit Sn–C-Abständen zwischen 2,154(5) und 2,172(6) Å und Sn–O-Bindungslängen zwischen 2,191(4) und 2,283(5), welche in sehr guter Übereinstimmung mit den Werten von $\underline{2}$ stehen [66].

In den MoO₄-Gruppen betragen die O–Mo–O-Winkel 108,9(3)° - 110,0(3)° und liegen somit im Bereich der Tetraederwinkel. Entlang der Kette werden O–Sn–O-Winkel von 177,3(2)° gemessen. Die O–Sn–C-Winkel liegen zwischen 88,3(3)° und 91,4(3)°. Die C–Sn–C-Winkel betragen 122,9(3)°, 118,5(3)° bzw. 118,5(3)° und ergänzen damit zu 360°, woran die trigonalbipyramidale Umgebung der verbrückenden Sn-Atome deutlich zum Ausdruck kommt.

Ähnliche Koordinationsverhältnisse finden sich auch in der terminalen Ph_3SnO -Gruppe. Der O–Sn–O-Winkel ist mit 177,2(2)° nahezu linear, die O–Sn–C-Winkel liegen zwischen 89,5(3)° bzw. 94,4(2)° und die C–Sn–C-Winkel ergänzen mit 123,0(3)°, 121,0(3)° und 115,9(3)° ebenfalls zu 360°.

Bei der Betrachtung der CH₂-Gruppe der Bz₃Sn-Einheiten lassen sich unterschiedliche Sn–C– C-Winkel in terminaler bzw. verbrückender Position feststellen. So liegen die Winkel in den verbrückenden Einheiten mit 113,6(1)° - 114,4(2)° enger beieinander als in den terminalen Positionen mit Werten zwischen 111,1(1)° - 119,0(1)°. In den terminalen Positionen wird eine ungleichmäßige Ausrichtung der C₆-Ringe festgestellt, was durch Koordination des Lösungsmittels erklärt werden kann. Man misst dabei O–Sn–C–C-Torsionswinkel von $64,7(2)^{\circ}$, $-173,2(2)^{\circ}$ und $-103,9(2)^{\circ}$ für die terminale Gruppe und $82,5(2)^{\circ}$, $86,2(2)^{\circ}$ und $87,2(2)^{\circ}$ für die verbrückende Gruppe. Neben diesen sehr ähnlichen Torsionswinkeln in der verbrückenden Einheit wird weiterhin eine propellerförmige Ausrichtung der Phenylgruppen beobachtet (Abb. 7).

Bz₃Sn-Gruppe verbrückend

Bz₃Sn-Gruppe terminal

Abb. 7.Ausrichtung der Benzylgruppen in <u>2</u> mit Schwingungsellipsoiden (Aufenthalts-
wahrscheinlichkeit 50 %; Blick entlang der O–Sn-Bindung)

Vergleicht man $\underline{2}$ mit anderen Triorganozinnmolybdaten, kann der Einfluss des Benzylsubstituenten genauer untersuchen werden. So sind bereits verschiedene alkyl- und arylsubstituierte Organozinnmolybdate strukturell bekannt.

Beim kleinsten Arylsubstituenten, der Phenylgruppe, wie beispielsweise in $[({}^{n}Bu_{4}N){(Ph_{3}Sn)_{3}(MoO_{4})_{2}}]$ [4], wird ein ionisch aufgebautes Polymer mit R₄N⁺-Kationen und $\{(Ph_{3}Sn)_{3}(MoO_{4})_{2}\}^{-}$ -Anionen gebildet. Dabei sind drei Sauerstoffatome der MoO₄-Einheit von Organozinngruppen koordiniert und es kommt zur Ausbildung eines dreidimensionalen Netzwerks, so dass ausschließlich verbrückende R₃Sn-Gruppen zu beobachten sind. Im Gegensatz dazu liegt das Mesitylderivat [(Mes_{3}Sn)_{2}MoO_{4}] als Monomer vor, in welchem ebenfalls zwei terminale O-Atome beobachtet werden, jedoch die R₃Sn-Gruppen [5].

Sowohl in der Phenyl- als auch in der Mesitylverbindung sind MoO₄-Tetraeder zu erkennen. Das Polymer zeigt trigonal-bipyramidal koordinierte Zinnatome in den Brückensegmenten und beim Trimesitylzinnderivat werden ausschließlich tetraedrisch koordinierte Mes₃Sn-Gruppen in terminaler Position gefunden. Es zeigt sich also, dass der Benzylsubstituent, welcher im sterischen Anspruch zwischen Phenyl- und Mesitylgruppe einzuordnen ist, auch eine entsprechende Zwischenstruktur ausbildet. Die Bz₃Sn-Gruppen liegen dabei sowohl terminal als auch verbrückend vor.

Der Einfluss der Organogruppen auf die Strukturen von Organozinnmolybdaten kann auch an weiteren Substituenten untersucht werden. Kommt es, wie im [(*p*-Tol₃Sn)₂MoO₄], zur

Erweiterung des Raumbedarfs der Phenylgruppe durch eine Methylgruppe in *para*-Stellung zum Zinn, wird ebenfalls ein 3D-Netzwerk aufgebaut. Wie auch in <u>2</u> kann ein unsubstituiertes O-Atom der MoO_4^{2-} -Einheit, sowie terminale *p*-Tol₃Sn-Gruppen festgestellt werden. Das [(2,6-Xyl_3Sn)_2MoO_4] dagegen bildet eine monomere Verbindung, die im Aufbau [(Mes_3Sn)_2MoO_4] gleicht.

Bei Trialkylzinnmolybdaten, wie z. B. [(Me₃Sn)₂MoO₄] [56], weist die MoO₄²⁻-Einheit erwartungsgemäß nur verbrückende Sauerstoffatome auf. [(Me₃Sn)₂MoO₄] liegt in einer Schichtstruktur vor. Dies ist auf den geringen Platzbedarf der Organozinngruppen zurückzuführen. Tab. 3 zeigt die Mo–O-Bindungslängen ausgesuchter Organozinnmolybdate im Vergleich.

Verbindung	Mo-O _{term}	Mo-OSn
$[(Bz_3Sn)_2MoO_4 \cdot DMF] (\underline{2})$	1,683(5)	1,718(4); 1,735(5); 1,765(3)
$[(Mes_3Sn)_2MoO_4]$	1,696(4)	1,811(3)
$[(2,6-Xyl_3Sn)_2MoO_4]$	1,67(1); 1,69(1)	1,79(1); 1,82(1)
$[(p-Tol_3Sn)_2MoO_4]$	1,669(5) - 1,677(9)	1,725(4) - 1,804(5)
$[^{n}Bu_{4}N\{(Ph_{3}Sn)_{3}(MoO_{4})_{2}\}]$	1,704(7); 1,720(6)	1,754(6); 1,791(6)
[ⁿ Bu ₄ N(Ph ₃ SnMoO ₄)]	1,706(5) - 1,730(6)	1,785(5) - 1,805(5)
[ⁿ Bu ₄ N(Me ₃ SnMoO ₄)]	1,716(4); 1,731(4)	1,769(4); 1791(3)
$[(Me_3Sn)_2MoO_4]$	-	1,752(6); 1,755(8)

Tab. 3.Mo–O-Bindungslängen ausgewählter Verbindungen [Å]

Aus Tab. 3 geht hervor, dass sich die Mo–O-Bindungslängen von terminalen und verbrückenden O-Atomen der MoO₄-Einheiten unterscheiden. Ebenfalls ist ersichtlich, dass in der MoO₄-Gruppe häufig unkoordinierte Sauerstoffatome verbleiben. Nur bei sehr kleinen Substituenten, wie z. B. der Me₃Sn-Gruppe, sind alle O-Atome an Zinn gebunden. Ab einer bestimmten Molekülgröße liegen die Triorganozinnmolybdate als Monomere vor, wie bereits das $[(2,6-Xyl_3Sn)_2MoO_4]$ zeigt. $[(Bz_3Sn)_2MoO_4 \cdot DMF]$ (**2**) und $[(p-Tol_3Sn)_2MoO_4]$ zeigen ähnliche Koordinationen der MoO₄-Einheit und auch vergleichbare Mo–O-Bindungslängen. Insgesamt belegen diese Untersuchungen, dass selbst kleine Änderungen im sterischen Anspruch der Organogruppen einen entscheidenden Einfluss auf die Ausbildung verschiedener Strukturmotive haben.

3.1.5 Die Umsetzung von Ph₃SnCl mit Phosphaten und Chalkogeniten

Die bisherigen Untersuchungen haben gezeigt, dass bei der Umsetzung von Oxoanionen der Nebengruppenelemente z. B. des Vanadiums, Chroms und Molybdäns mit Ph₃SnCl bevorzugt Polymere in Form von Ketten-, Schicht- oder Netzwerkstrukturen gebildet werden. Eindimensionale Kettenpolymere entstehen, wenn die Oxoanionen durch Organozinngruppen zu einem Strang verbunden werden und die terminalen Positionen der MO_x -Einheiten (M = V, Cr, Mo, etc.) unkoordiniert verbleiben. In 2D-Strukturen werden die Ketten zu einer Schichtstruktur miteinander verbunden und in 3D-Strukturen kommt es zu einer räumlichen Vernetzung der Ketten.

In den folgenden Untersuchungen sollten nun Oxoanionen der Hauptgruppenelemente, wie z. B. PO_4^{3-} , SeO_3^{2-} , TeO_3^{2-} , mit Organozinneinheiten nach Gl. 11 substituiert werden.

$$n \operatorname{Ph_3SnCl} + \operatorname{Na}_n(\operatorname{MO}_m) \longrightarrow n \operatorname{NaCl} + (\operatorname{Ph_3Sn})_n(\operatorname{MO}_m)$$
 (Gl. 11)
(M = P, Se, Te)

Bereits 1974 konnte $[(Me_2Sn)_3(PO_4)_2]$ [67], das durch Umsetzung von Me_2SnCl_2 mit Na_3PO_4 entsteht, strukturell charakterisiert werden. Auch $[(Bz_3Sn)_2HPO_4]$ [65] ist seit 2004 bekannt. Ziel war es daher zunächst, ein analoges Ph₃Sn-Derivat herzustellen.

Dazu wurde Ph₃SnCl mit Na₃PO₄, Na₂HPO₄ oder (NH₄)₃PO₄ in Wasser-Toluol-, Wasser-Dichlormethan-Gemischen oder in Methanol bzw. 96 %igem Ethanol umgesetzt.

Schon nach wenigen Minuten Reaktionszeit bildete sich jeweils ein weißer Niederschlag. Dieser wurde, nachdem das organische Lösungsmittel eingeengt oder abdestilliert wurde, abfiltriert, gewaschen, im Vakuum getrocknet und IR-spektroskopisch untersucht. Die IR-Spektren wiesen dabei untereinander starke Ähnlichkeiten auf. Es waren zum Teil breite Banden zu erkennen von denen nur einige mit ausreichender Sicherheit zugeordnet werden konnten.

In den IR-Spektren lassen sich jeweils breite Banden im Bereich zwischen 920 bis 1120 cm⁻¹, welche für das Vorhandensein von Phosphaten sprechen, nachweisen. Auch konnten die Banden in einem Bereich zwischen 445 und 460 cm⁻¹ jeweils den SnC-Valenzschwingungen und die Banden zwischen 690 und 730 cm⁻¹ den CH-Gerüstschwingungen der Phenylgruppen zugeordnet werden.

Die NMR-spektroskopischen Untersuchungen der Niederschläge wurden dadurch erschwert,

dass sich nur ein Teil der Substanz in Lösung bringen ließ. Im ¹¹⁹Sn-NMR-Spektrum war nur (Ph₃Sn)₂O eindeutig zuzuordnen, dessen Bildung sich durch Hydrolyse des Ph₃SnCl erklären lässt (Gl. 12).

$$2 \operatorname{Ph_3SnCl} + \operatorname{H_2O} \longrightarrow (\operatorname{Ph_3Sn})_2 \operatorname{O} + 2 \operatorname{HCl}$$
(Gl. 12)

Im ³¹P-NMR findet man breite Signale zwischen $\delta = -5$ bis $\delta = 10$ ppm, was möglicherweise auf das Vorliegen verschiedener Phosphatspezies zurückzuführen ist.

Bei den Elementaranalysen der Rohprodukte sowie der unlöslichen Feststoffe, die für die NMR-Untersuchungen nicht genutzt werden konnten, deuten die Messwerte jeweils auf einen Chlorid-Restgehalt von mindestens 1 % hin. Es schien sich also um Substanzgemische zu handeln, die nicht aufgetrennt und einzeln analysiert werden konnten. Die Untersuchungen haben jedoch gezeigt, dass erfolgreiche Umsetzungen mit Phosphaten möglich, aber die Analysenergebnisse für eine Charakterisierung der Substanzen noch nicht von ausreichender Qualität sind.

In analogen Umsetzungen, bei denen Ph₃SnCl, gelöst in CH_2Cl_2 oder Toluol, mit wässrigen Lösungen von K₂TeO₃ bzw. K₂SeO₃ umgesetzt wurde, konnten die Produkte ebenfalls nicht ausreichend charakterisiert werden. Bei den Umsetzungen war es meist nur möglich, die Ausgangsstoffe zurückzugewinnen bzw. (Ph₃Sn)₂O und Ph₄Sn als Nebenprodukte zu identifizieren.

Die Reaktionsprodukte lagen nach dem Abkondensieren des Lösungsmittels als weiße Pulver vor und konnten nur teilweise wieder in Lösung gebracht werden. Das ¹¹⁹Sn-NMR-Spektrum zeigt üblicherweise eine Anzahl von Signalen in einem Bereich zwischen $\delta = 50$ bis $\delta = -200$ ppm, wobei nur Ph₄Sn, (Ph₃Sn)₂O, Ph₂SnO und Ph₃SnCl eindeutig zugeordnet werden können. Es scheint also so, dass es in Lösung neben der Hydrolyse und anschließenden Kondensation des Ph₃SnCl auch zu Phenylgruppenübertragungen kommt, wobei neben Ph₄Sn auch Ph₂SnO entsteht (Gl. 13).

$$2 \operatorname{Ph}_{3}\operatorname{SnOH} \longrightarrow \operatorname{Ph}_{4}\operatorname{Sn} + \operatorname{Ph}_{2}\operatorname{SnO} + \operatorname{H}_{2}\operatorname{O}$$
(Gl. 13)

Das Problem dieser Art der Phenylgruppenübertragung bei Umsetzungen von Ph₃SnOH ist in der Literatur bekannt und auch schon in früheren Untersuchungen aufgetreten [59, 60]. Eine besonders ungewöhnliche Variante der Phenylgruppenübertragung konnte bei der Umsetzung von Ph₃SnCl in CH₂Cl₂ mit wässriger K₂TeO₃-Lösung im Molverhältnis 2:1 beobachtet werden. Hierbei bildete sich bei Raumtemperatur nach einer Woche Ph₃TeCl in kristalliner Form und in einer Ausbeute von etwa 25 %. Bisher können zum Reaktionsmechanismus und zur Art der gebildeten Zinnkomponenten keine Angaben gemacht werden. Es kann allerdings, bedingt durch die Hydrolyse des Ph₃SnCl, von einem sauren Milieu in Lösung ausgegangen werden. Weiterhin muss man unter diesen sauren Bedingungen eine Sn– C-Bindungsspaltung annehmen, wobei die Phenylreste direkt auf das Tellur übertragen werden.

Aus der Literatur ist bekannt, dass Organozinnverbindungen zur Übertragung organischer Reste auf andere Verbindungen genutzt werden. Dies lässt sich auf die gut polarisierbare Sn– C-Bindung zurückführen [13].

Die bisherigen Untersuchungen, bei denen R_3SnCl (R = Ph, Bz) mit Na_nMO_m bzw. K_nMO_m (M = V, Mo, P, Se, Te) umgesetzt wurde, haben gezeigt, dass sich dieser Reaktionsweg für die Synthese von hydrolysestabilen Verbindungen anbietet, da im wässrigen Medium gearbeitet wird. Allerdings wurde auch das Auftreten komplexer Nebenreaktionen beobachtet, die nicht im Einzelnen aufgeklärt werden konnten. Weiterhin gestaltete sich die Strukturaufklärung durch das Ausfallen schwerlöslicher Niederschläge als recht problematisch, da die NMR-Spektroskopie nicht mehr uneingeschränkt genutzt werden konnte und auch das Umkristallisieren durch schlechte Löslichkeit nur bedingt möglich war. Zur Charakterisierung der synthetisierten Verbindungen verblieben daher meist nur die IR-Spektroskopie sowie die Einkristallstrukturanalyse.

3.2 Umsetzungen von Ph₃SnOH mit Säuren

Im folgenden Abschnitt wird auf die Umsetzung von Ph_3SnOH mit Oxosäuren eingegangen. In einer Säure-Base-Reaktion kommt es nach Gl. 14, wie auch im vorangegangenen Abschnitt, zur formalen Bildung eines Ph_3Sn^+ -Kations.

$$n \operatorname{Ph}_3 \operatorname{SnOH} + \operatorname{H}_n \operatorname{MO}_m \longrightarrow (\operatorname{Ph}_3 \operatorname{Sn})_n \operatorname{MO}_m + n \operatorname{H}_2 \operatorname{O}$$
 (Gl. 14)
(M = P, As, Se, Te)

Da bei dieser Reaktionsführung keine festen Nebenprodukte zu erwarten sind, sollte die Aufarbeitung des Reaktionsgemisches im Vergleich zu den Umsetzungen aus Kapitel 3.1, bei der es zur Abscheidung von NaCl kommt, erleichtert sein.

3.2.1 Die Umsetzung von Ph₃SnOH mit H₃PO₄

Neben der Umsetzung von Ph₃SnCl mit Na₃PO₄ besteht eine weitere Möglichkeit zur Darstellung von (Ph₃Sn)₃PO₄ in der Umsetzung von Ph₃SnOH bzw. (Ph₃Sn)₂O mit H₃PO₄ (Gl. 15 und 16).

$$3 Ph_3SnOH + H_3PO_4 \longrightarrow (Ph_3Sn)_3PO_4 + 3 H_2O$$
(Gl. 15)
$$3 (Ph_3Sn)_2O + 2 H_3PO_4 \longrightarrow 2 (Ph_3Sn)_3PO_4 + 3 H_2O$$
(Gl. 16)

Wird Ph₃SnOH bzw. (Ph₃Sn)₂O mit wässriger Phosphorsäure umgesetzt, kann die Bildung eines weißen, schwerlöslichen Niederschlags beobachtet werden. Das IR-Spektrum dieser Substanz entspricht dem der Verbindung, die bei der Umsetzung von Ph₃SnCl mit Na₃PO₄ erhalten wurde. Auch hier erwiesen sich weitere Versuche die Struktur aufzuklären als erfolglos. Dies entspricht den Untersuchungen, die im Jahr 1999 veröffentlicht wurden [68]. Die eigenen Untersuchungen haben hierbei gezeigt, dass zumindest die IR-Daten in relativ guter Übereinstimmung reproduzierbar waren und zudem ein Zersetzungspunkt von 160 °C bestimmt werden konnte. Versuche zur Gewinnung von Einkristallen blieben jedoch erfolglos. Wird die Umsetzung dagegen mit wasserfreier Phosphorsäure in THF durchgeführt, bleibt die Reaktionslösung klar und aus einer Überschichtung der Reaktionslösung mit Heptan ist ein kristallines Produkt zu gewinnen. Ein gleichartiger Reaktionsverlauf ist auch bei der Umsetzung von H₃PO₄ mit Ph₃SnOMe zu beobachten, wobei ebenfalls (Ph₃Sn)₃PO₄ (<u>3</u>) entsteht.

Im IR-Spektrum von <u>3</u> beobachtet man Banden bei 993, 1020 und 1074 cm⁻¹, welche von einer breiten Bande im Bereich von 1000 cm⁻¹ bis 1150 cm⁻¹ überlagert werden. Diese lassen sich den P–O-Valenzschwingungen zuordnen und sprechen für eine C_{2v} -Symmetrie der PO₄-Einheit.

Charakteristische Schwingungen der OSnPh₃-Gruppe findet man bei 449, 693 und 730 cm⁻¹. Dabei kann die niederfrequente Bande der vSnC-Schwingung und die Banden bei höheren Wellenzahlen den δCH-Schwingungen zugeordnet werden.

Im ¹¹⁹Sn-NMR-Spektrum ist nur ein Signal bei $\delta = -101,3$ ppm zu finden. Daher kann davon ausgegangen werden, dass <u>3</u> in Lösung als eine diskrete, monomere Verbindung vorliegt.

Auch das ³¹P-NMR-Spektrum von <u>3</u> weist nur ein Signal bei $\delta = -192,9$ ppm auf. Da allerdings keine Kopplungskonstanten zu finden sind, lassen sich die NMR-Spektren zur Charakterisierung nicht uneingeschränkt nutzen.

Allerdings konnte eine massenspektroskopische Untersuchung erfolgreich durchgeführt werden. Es werden Fragmente, die der Zusammensetzung $[(Ph_3Sn)_3PO_4]^+ = 1145$ entsprechen, beobachtet. Als weitere Fragmentierungsprodukte seien $(Ph_3Sn)PO_4^+ = 444$ m/e, $(Ph_3Sn)^+ = 351$ m/e und Ph⁺ = 77 m/e genannt.

3.2.2 Die Struktur von $[{(Ph_3Sn)_3(PO_4)}_6 \cdot 2 C_6H_6]$ (3)

Ähnlich wie <u>1</u>c löst sich frisch synthetisiertes <u>3</u> in den gängigen organischen Lösungsmitteln wie Benzol, THF, Toluol, etc. gut. Die Löslichkeit nimmt allerdings mit zunehmendem Alter stark ab, wobei <u>3</u> nach einem Tag nur noch in DMSO oder DMF gelöst werden kann, aber nicht mehr zur Kristallisation zu bringen ist. Da Vanadate und Phosphate häufig ähnliche Strukturen ausbilden, wie es z. B. bei $[(Ph_3Si)_3VO_4]$ [69] und $[(Ph_3Si)_3PO_4]$ [70] der Fall ist, galt es nun herauszufinden, ob $(Ph_3Sn)_3PO_4$ analog zu $(Ph_3Sn)_3VO_4$ zyklische oder/und lineare Molekülstrukturen ausbildet.

Kompakte, säulenförmige Kristalle von $\underline{3}$ konnten aus einer konzentrierten Lösung in Benzol

erhalten werden. Hierbei kristallisiert <u>3</u> orthorhombisch in der Raumgruppe Pcab mit 4 Formeleinheiten in der Elementarzelle. Entsprechend <u>1c</u> liegt auch <u>3</u> als zyklisches Hexamer vor. Es bestätigt sich also die Vorhersage von DIOP et al., nach der $(Ph_3Sn)_3PO_4$ nicht in einer Schicht- oder Netzwerkstruktur, sondern in einer Kettenstruktur mit unterschiedlich koordinierten Zinnatomen vorliegt [68].

Obwohl mehrere Kristallisationsversuche durchgeführt wurden, konnten von <u>3</u> nur Kristalle in relativ schlechter Qualität erhalten werden. Dies ist auf fehlgeordnete Phenylgruppen und Benzolmoleküle zurückzuführen. Somit lassen sich auch nur ungefähre Strukturdaten angeben. Es war lediglich möglich, die Lagen des Schweratomgerüsts (Sn, P, O) sowie der *ipso*-Kohlenstoffatome anisotrop zu verfeinern. Einzelne Atome der Phenylgruppen, die Wasserstoffatome der Phenylgruppen sowie Lösungsmittelmoleküle waren nicht eindeutig zu lokalisieren. Die gesamte Struktur konnte somit nur bis zu einem R1-Wert von 17,98 % (wR2 = 34,89 %) verfeinert werden.

Jedoch ist festzustellen, dass Ph₃Sn-Gruppen PO₄-Anionen miteinander zu einem Strang verknüpfen und diese auch als terminale Gruppe koordinieren.

Wie Abb. 8 zeigt, sind PO_4 -Tetraeder und C_3SnO_2 -Bipyramiden zu einem 24-gliedrigen hexameren Ring miteinander verbunden, wobei die Phosphateinheiten, zusätzlich zwei terminale C_3SnO -Tetraeder koordinieren, was exakt der Struktur von <u>1c</u> entspricht.

Abb. 8.Molekülstruktur von <u>3</u> mit Schwingungsellipsoiden (Aufenthaltswahrschein-
lichkeit 50 %; nur *ipso*-Kohlenstoffatome der Phenylgruppen dargestellt)

Auch nach mehreren Kristallisationsversuchen war die Strukturlösung von $\underline{3}$ nicht weiter zu verbessern. Daher muss auf eine Diskussion der Bindungslängen und Bindungswinkel verzichtet werden.

Allerdings sind aus der Literatur bereits einige Organozinnphosphate bekannt. So liegt $[(Me_2Sn)_3(PO_4)_2 \cdot 8 H_2O]$ in einer Bänderstruktur mit koordinierenden Wassermolekülen vor [71]. Die Zinnatome sind dabei oktaedrisch koordiniert und es werden P–O-Abstände von 1,52(2) Å - 1,56(2) Å gefunden. Die Sn–O-Bindungen liegen zwischen 2,04(2) Å und 2,18(4) Å, wobei Wassermoleküle die Sn-Atome zusätzlich im Abstand von 2,89(3) Å und 3,05(3) Å koordinieren.

Ähnliche Bindungssituationen können auch im $[Ph_3SnOP(O)(OPh)_2]$ [44] gefunden werden, welches wie <u>1c</u> und <u>3</u> als zyklisches Hexamer vorliegt. Der Ring wird dabei entsprechend <u>3</u> aus O₂SnC₃-Bipyramiden und PO₄-Tetraeder gebildet, wobei die terminalen Positionen der PO₄-Tetraeder hierbei durch Phenylgruppen abgesättigt sind. Die durchschnittlichen O–Sn– O-Winkel betragen 177,0° und es können annähernd gleiche Sn–O–Abstände von 2,234 ± 0,015 Å gemessen werden. Auch am Phosphor werden entlang der Kette mit 1,487 ± 0,012 Å etwa gleich lange P–O-Bindungslängen gemessen. Die Ringformation bedingt eine relativ starke Deformation der PO₄-Tetraeder, was an den ringinternen O–P–O-Winkeln von ca. 118,5° deutlich wird.

In Analogie zu $\underline{3}$ kann auch im [Ph₃SnOP(O)(OPh)₂] beobachtet werden, dass sich alle terminalen Gruppen der PO₄-Tetraeder auf der äußeren Ringseite befinden und somit die PO₄-Tetraeder gleich ausgerichtet vorliegen. Auch in $\underline{3}$ befinden sich die terminalen Ph₃Sn-Gruppen immer auf der gleichen Seite des Rings und es ist vorstellbar, dass sich durch Drehung der PO₄-Tetraeder eine lineare Struktur bilden kann.

Im Vergleich von <u>3</u> mit <u>1c</u> ist lediglich eine Substitution der P-Atome durch V-Atome zu beobachten, die sich in unterschiedlichen Atomradien (V = 1,32 Å; P = 1,04 Å) [72] und unterschiedlichen Elektronegativitäten (V = 1,5; P = 2,1) [73] äußert. Jedoch bleiben die Koordinationsverhältnisse in beiden Fällen gleich.

Wie in Abb. 9 dargestellt ist, zeigen die terminalen Ph₃Sn-Gruppen beider Verbindungen eine relativ starke Abweichung von einer Propellerausrichtung der Phenylgruppen. In den verbrückenden Segmenten ist die Ausrichtung der Phenylgruppen relativ genau vorgegeben, was eine einheitliche Orientierung hervorruft.

Abb. 9.Ausrichtung der Ph_3SnO -Gruppen in $\underline{1c}$ und $\underline{3}$

Da die P–O–Sn–O–P-Einheiten in <u>3</u> wie auch die V–O–Sn–O–V-Einheiten in <u>1c</u> als linear zu betrachten ist, lassen sich beide Strukturen auf die eines Sechsrings reduzieren. Betrachtet man lediglich den Sechsring der aus den Vanadium- bzw. Phosphoratomen aufgebaut wird (Abb. 10), kann jeweils eine Sesselkonformation ermittelt werden.

Vanadium-Gerüst aus 1c

Phosphor-Gerüst aus $\underline{3}$

Abb. 10. Vanadium- bzw. Phosphorgerüst in <u>1c</u> und <u>3</u>

Im Gegensatz zu den Ph_3Sn -substituierten Verbindungen liegen die analogen Siliciumverbindungen [$(Ph_3Si)_3VO_4$] bzw. [$(Ph_3Si)_3PO_4$] [69, 70] als diskrete Moleküle mit ausschließlich terminalen Ph_3Si -Gruppen vor. Dies kann durch die geringere Tendenz zur Erhöhung der Koordinationssphäre bei den Siliciumatomen erklärt werden.

Bindung[(Ph_3Si)_3VO_4][(Ph_3Si)_3PO_4]Si-O1,647(2) - 1,661(2)1,659(2) - 1,669(2)V-O bzw. P-O1,572(2) - 1,745(2)1,544(2) - 1,561(2)

Tab. 4. Ausgewählte Bindungslängen [Å] in $[(Ph_3Si)_3VO_4]$ und $[(Ph_3Si)_3PO_4]$

Tab. 4 zeigt, dass sich im monomeren [(Ph_3Si)₃ VO_4] und [(Ph_3Si)₃ VO_4] die Si–O-Abstände im gleichen Bereich befinden und sich die P–O- bzw. V–O-Bindungslängen deutlich voneinander unterscheiden. Die V–O-Bindungslängen des [(Ph_3Si)₃ VO_4] zeigen aber eine Übereinstimmung mit denen aus <u>1c</u>.

Die Ermittlung der exakten Bindungsparameter des (Ph₃Sn)₃PO₄ bleibt zukünftigen Untersuchungen vorbehalten, die sich dabei auf eine bessere Kristallqualität stützen müssen.

3.2.3 Die Umsetzung von Ph₃SnOH mit H₃AsO₃

In den folgenden Untersuchungen sollte nun geklärt werden, ob sich Oxosäuren des Arsens ebenfalls mit Ph₃SnOH umsetzen und die Produkte strukturell charakterisieren lassen. Vom Arsen kann man verschiedene Oxosäuren ableiten. So existieren beispielsweise stabile Oxoanionen des Typs AsO_3^{3-} und AsO_4^{3-} . Die Umsetzung von H₃AsO₃ mit Ph₃SnOH sollte unter Wasserabspaltung zu Verbindungen des Typs (Ph₃Sn)_nH_{3-n} AsO₃ (n = 1, 2, 3) führen. Jedoch liefern die Umsetzungen im Molverhältnis 1:1, 1:2 und 1:3 jeweils nur die dreifach substituierte Arsenverbindung nach Gl. 17.

$$3 \operatorname{Ph}_{3}\operatorname{SnOH} + \operatorname{H}_{3}\operatorname{AsO}_{3} \longrightarrow [(\operatorname{Ph}_{3}\operatorname{Sn})_{3}\operatorname{AsO}_{3}] + 3 \operatorname{H}_{2}\operatorname{O}$$
(Gl. 17)
4

Zur Darstellung von <u>4</u> suspendiert man Arsenik in Wasser und setzt mit einer Lösung von Ph₃SnOH in Dichlormethan um. Innerhalb einiger Stunden bildet sich $[(Ph_3Sn)_3AsO_3]$ (<u>4</u>) in

quantitativer Ausbeute. $\underline{4}$ ist luftstabil, kann aus DMF umkristallisiert werden und schmilzt bei 184 - 186 °C.

In vorangegangenen Untersuchungen von SRIVASTAVA et al. zur Darstellung von Triorganozinnestern der Arsenigen Säure konnte $[(Ph_3Sn)_3AsO_3]$ aus der Umsetzung von Ph_3SnO^{*i*}Pr mit As(OCOCH₃)₃ erhalten werden, wobei keine Kristallstrukturanalyse durchgeführt wurde [74]. Die vergleichbare Umsetzung von Ph_3SnOH mit As₂O₃ in Toluol wird dagegen als ergebnislos beschrieben.

Im ¹¹⁹Sn-NMR-Spektrum von <u>4</u> ist ein Signal bei $\delta = -102,1$ ppm zu finden. Außerdem sind Satelliten mit Kopplungskonstanten von {²J ¹¹⁹Sn,¹³C} = 45 Hz; {³J ¹¹⁹Sn,¹³C} = 62 Hz und {¹J ¹¹⁹Sn,¹³C} = 853 Hz zu beobachten, die ungefähr im Verhältnis 2:2:1 vorliegen (Abb. 11). Dies entspricht nicht den Ergebnissen von SRIVASTAVA et al., die im ¹¹⁹Sn-NMR-Spektrum ein Signal bei $\delta = -126,5$ ppm beobachten konnten.

Abb. 11. ¹¹⁹Sn-NMR-Spektrum von $\underline{4}$ in C₆D₆

Untersucht man <u>4</u> IR-spektroskopisch, so lassen sich zwei intensive Banden bei 662 und 731 cm⁻¹ den AsO-Valenzschwingungen (v_s und v_{as}) zuordnen. Diese stehen mit der erwarteten C_{3v}-Symmetrie in guter Übereinstimmung. Allerdings ist eine Überlagerung mit den Banden der γ CH der Phenylgruppen, von denen nur eine bei 697 cm⁻¹ erkennbar ist, beobachtbar. Die SnC-Valenzschwingung der OSnPh₃-Gruppen liegt bei 448 cm⁻¹ im zu erwartenden Bereich. Eine thermogravimetrische Untersuchung zeigt, dass <u>4</u> in einem Temperaturbereich zwischen 20 °C bis 500 °C einen Massenverlust von ca. 64 % aufweist. Wird die Temperatur weiter auf

650 °C erhöht, vermindert sich die Masse noch einmal um 4 % und bis 800 °C um weitere 7 %. Dies führt dazu, dass oberhalb von 800 °C noch ca. 22 % der Ausgangsmasse verbleiben.

Nach der DTG-Kurve liegen die Zersetzungspunkte bei 350 °C, 650 °C und 790 °C, was auch mit den Masseänderungen übereinstimmt (Abb. 12).

Als Ergebnis der thermogravimetrischen Untersuchung erkennt man, dass nicht nur die organischen Bestandteile und flüchtige As-Verbindungen abgespalten werden, sondern auch flüchtige Sn-Verbindungen entstehen und thermisch abgetrennt werden. Bei den verbleibenden 22 % der Ausgangsverbindung konnte SnO₂ durch Pulverdiffraktometrie als einzige kristalline Phase nachgewiesen werden. Vermutlich liegen weitere amorphe Bestandteile vor, die allerdings nicht weiter charakterisiert werden konnten.

Abb. 12. DTA und DTG von <u>4</u>

Bei einem Versuch H₃AsO₃ mit (Ph₃Sn)₂O in einem Toluol-Wasser-Gemisch umzusetzen, wurde [(Ph₃Sn)₂O · 2 {(Ph₃Sn)₃AsO₃}] (**5**) als Produkt erhalten. So konnte gezeigt werden, dass **4** nicht nur aus Ph₃SnO^{*i*}Pr und Ph₃SnOH herstellbar ist, sondern (Ph₃Sn)₂O in gleicher Weise eingesetzt werden kann (Gl. 18).

$$3 (Ph_3Sn)_2O + 2 H_3AsO_3 \longrightarrow 2 [(Ph_3Sn)_3AsO_3] + 3 H_2O$$
(Gl. 18)

$$\underline{4}$$

 $\underline{5}$ kann aber auch direkt aus $\underline{4}$ und (Ph₃Sn)₂O hergestellt werden, indem beide Komponenten in Toluol gelöst, kurz erwärmt und anschließend eingeengt werden.

Das ¹¹⁹Sn-NMR-Experiment zeigt, dass in Lösung beide Einheiten isoliert vorliegen und keine koordinativen Wechselwirkungen zwischen den Molekülen auftreten.

Auch im IR-Spektrum ist <u>5</u> nicht von einem Gemisch der Ausgangsstoffe zu unterscheiden.

Allein durch ein Röntgenbeugungsexperiment konnte der Aufbau von <u>5</u> aufgeklärt werden.

3.2.4 Die Struktur von [(Ph₃Sn)₃AsO₃] (<u>4</u>)

Aus DMF kristallisiert $\underline{4}$ orthorhombisch in der Raumgruppe P2₁2₁2₁ mit vier Formeleinheiten in der Elementarzelle. Wie Abb. 13 veranschaulicht, liegt $\underline{4}$ als monomere Verbindung vor, in der das zentrale As-Atom von Ph₃SnO-Gruppen pyramidal koordiniert wird.

Wird das freie Elektronenpaar mit einbezogen besetzt dies die Spitze einer trigonalen Pyramide, in deren Zentrum sich das As-Atom befindet und die Basis durch drei O-Atome aufgespannt wird. Das As-Atom weist dabei einen Abstand von ca. 0,820 Å zur Pyramidenebene auf.

Abb. 13.Molekülstruktur von <u>4</u> (ohne H-Atome) mit Schwingungsellipsoiden
(Aufenthaltswahrscheinlichkeit 50 %)
Die As–O-Bindungslängen betragen 1,710(3) - 1,748(3) Å. Dies entspricht den Werten einer isolierten AsO₃-Gruppe, wie man sie beispielsweise auch im Triacetoarsenit [75] beobachtet. Die Sn–O-Abstände liegen mit 1,977(3) - 1,992(4) Å in einem Bereich, der für tetraedrisch aufgebaute Ph₃SnO-Gruppen typisch ist. Für die Sn–C-Abstände werden Werte zwischen 2,121(5) - 2,145(4) Å gefunden.

Die As-O-Sn-Winkel betragen $123,8(2) - 133,5(2)^{\circ}$ und die O-As-O-Winkel 97,3(2) - $101,5(2)^{\circ}$, welche damit kleiner sind als ideale Tetraederwinkel.

Die Triphenylsilyl-Verbindung [(Ph₃Si)₃AsO₃] ist analog zu <u>4</u> aufgebaut [76]. Es werden ähnliche As–O-Bindungslängen (1,728(2) - 1,761(2) Å) beobachtet, welche im Mittel um 0,014 Å länger sind als in <u>4</u>. Wie zu erwarten ist, sind auf Grund der geringeren Atomgröße die Si–O-Abstände immer kürzer als die Sn–O-Abstände. Die O–As–O-Winkel beim [(Ph₃Si)₃AsO₃] betragen 99,42(9)° - 98,26(8)° und befinden sich damit im gleichen Bereich wie in <u>4</u>. Gleiches trifft auch für die As–O–M-Winkel (M = Si, Sn), mit Werten zwischen 133,2(1)° und 146,9(1)°, zu.

Dies sind auch übliche Werte, wenn man mit dem [{SnPh₃NO₃}dpaoe] (dpaoe = 1,2-Bis(diphenylarsoryl)-ethylen) [77] vergleicht. Hier liegt der As–O–Sn-Winkel bei 140,2(3)°, mit einer Sn–OAs-Bindungslänge von 2,190(6) Å und einem damit einhergehenden As–O-Abstand von 1,666(6) Å. Die deutlichen Unterschiede in den As–O- und Sn–O-Bindungslängen, sowie der erhöhte Bindungswinkel sind hierbei vor allem auf die höhere Koordinationszahl des Zinns (KZ = 5) und auf die unterschiedlichen Substituenten am Arsen zurückzuführen.

Aus komplexchemischer Sicht ist <u>4</u> ein Neutralligand, der für die Koordination von Metallzentren eingesetzt werden kann. Umsetzungen des $[(Ph_3Sn)_3AsO_3]$ oder $[(Ph_3Si)_3AsO_3]$ sind in der Literatur allerdings noch nicht beschrieben.

3.2.5 Die Struktur von [(Ph₃Sn)₂O · 2 {(Ph₃Sn)₃AsO₃}] (<u>5</u>)

Aus einer konzentrierten Benzol- bzw. Toluollösung kristallisiert <u>5</u> in Form gut ausgeprägter, farbloser, klarer Prismen in der Raumgruppe $R\bar{3}mit$ zwei Formeleinheiten in der Elementarzelle. Abb. 14 soll die Struktur von <u>5</u> veranschaulichen.

Abb. 14.Ausschnitt aus der Kristallstruktur von 5 mit 2 Elementarzellen (nur *ipso-*Kohlenstoffatome dargestellt)

Im Kristall arrangieren sich die einzelnen (Ph₃Sn)₂O- und {(Ph₃Sn)₃AsO₃}-Bausteine so, dass entlang der linearen Sn–O–Sn-Bindung der (Ph₃Sn)₂O-Gruppe (**Einheit B**), welche sich parallel zur c-Achse erstreckt, beidseitig eine {(Ph₃Sn)₃AsO₃}-Einheit (**Einheit A**) positioniert ist. Am Abstand zwischen den As- und Sn-Atom beider Einheiten (5,106(2) Å) erkennt man, dass es dabei zu keiner Wechselwirkung des As mit dem Sn-Atom aus **Einheit B** kommt (Abb. 14).

Co-Kristallisationen verschiedener Moleküle sind in der Literatur vielfältig beschrieben. Meist ergibt sich die gemeinsame Kristallisation verschiedener Stoffe aus einer Wirt-Gast-Beziehung, in der Gastmoleküle in das Gitter des Wirts eingelagert sind. Hierbei kommt es üblicherweise zu einer Veränderung des Wirts-Gitters, was durch Wechselwirkungen (z. B. Wasserstoffbrücken) der unterschiedlichen Moleküle verursacht wird. Ein Beispiel hierfür ist ein Co-Kristallisat von Acetylen mit Aceton und DMSO [78], das über H-Brücken stabilisiert ist. In <u>5</u> werden allerdings keine koordinativen Wechselwirkungen zwischen den einzelnen Einheiten beobachtet. Offensichtlich werden ${(Ph_3Sn)_3AsO_3}$ und $(Ph_3Sn)_2O$ allein durch van-der-Waals-Wechselwirkungen zusammengehalten.

Beim Vergleich der Struktur des $[(Ph_3Sn)_3AsO_3]$ -Moleküls in <u>4</u> und <u>5</u> sind gleiche Koordinationen am Zinn und Arsen zu verzeichnen. Allerdings befindet sich das As-Atom in <u>5</u> auf einer 3-zähligen kristallographischen Achse, was zur Folge hat, dass man drei gleiche As-O-Bindungslängen mit 1,741(2) Å und drei gleich lange Sn-O-Bindungen mit 1,982(2) Å

erhält. Die Sn–C-Bindungen liegen zwischen 2,115(3) Å und 2,130(3) Å und somit im gleichen Bereich wie in $\underline{4}$.

Strukturausschnitt von <u>5</u> Einheit A

Strukturausschnitt von 5 Einheit B

Abb. 15.Struktureinheiten von 5 (ohne H-Atome) mit Schwingungsellipsoiden
(Aufenthaltswahrscheinlichkeit 50 %)

Für die $(Ph_3Sn)_2O$ -Einheit in <u>5</u> betragen die Sn–O-Bindungslängen 1,924(1) Å und die Sn–C-Bindungen jeweils 2,135(3) Å, welche im Mittel etwas länger sind als die der { $(Ph_3Sn)_3AsO_3$ }-Gruppe.

Vergleicht man die Molekülstruktur von $(Ph_3Sn)_2O$ in <u>5</u> mit der Kristallstruktur des reinen $(Ph_3Sn)_2O$, stellt man als erstes die starken Abweichungen im Sn–O–Sn-Winkel fest. In <u>5</u> ist die Sn–O–Sn-Einheit linear, während im Bis(triphenylzinn)-oxid Sn–O–Sn-Winkel von 137,3(1)° [79] bzw. 136,2(1)° [80] gefunden werden. Außerdem ergeben sich Abweichungen für die Sn–O-Bindungslängen, welche im $(Ph_3Sn)_2O$ 1,952 Å und 1,958 Å bzw. 1,962 Å und 1,966 Å betragen. Aus der Linearisierung des Sn–O–Sn-Winkels ergibt sich also eine deutliche Verkürzung der Sn–O-Bindung. Allerdings muss man auch das relativ große Schwingungsellipsoid des Sauerstoffatoms in der $(Ph_3Sn)_2O$ -Gruppe in <u>5</u> berücksichtigen. Dies spricht dafür, dass eine leicht gewinkelte, um die dreizählige Achse fehlgeordnete, Sn–O–Sn-Einheit vorliegt.

Die Phenylgruppen der (Ph₃Sn)₂O-Gruppe in <u>5</u> sind auf Lücke angeordnet und die O–Sn–C– C-Torsionswinkel betragen 7° (Abb. 15). Folgt man der Sn–O–Sn-Einheit, die sich parallel entlang der kristallographischen c-Achse erstreckt, stößt man auf ein As-Atom der {(Ph₃Sn)₃AsO₃}-Einheit. Hierbei ist zu bemerken, dass die Ph₃SnO-Gruppen in **Einheit A** um ca. 60° gegen die Phenylgruppen aus **Einheit B** verdreht sind. So kann man eine lineare Anordnung von Atomen in der Reihenfolge —Sn—O—Sn—As—, entlang der c-Achse feststellen. Dabei sind die Bindungen zu den Substituenten (Sn–C bzw. As–O) aufeinander folgender Sn- bzw. As-Atome um jeweils 60° gegeneinander verdreht.

3.2.6 Die Umsetzungen von [(Ph₃Sn)₃AsO₃] mit Metallcarbonylen

Analog zu Phosphanen R_3P werden in der Komplexchemie auch häufig R_3As -Liganden (R = Alkyl, Aryl) eingesetzt. Über vergleichbare (RO)₃As-Komplexe ist bisher allerdings wenig bekannt.

Durch Umsetzungen von $[(Ph_3Sn)_3AsO_3]$ (<u>4</u>) mit Metallcarbonylen M(CO)₆ (M = Cr, Mo, W) sollten beispielsweise (Ph_3SnO)_3As-Komplexe des Typs $[(CO)_5ML]$ (L = (Ph_3SnO)_3As) zugänglich sein. Analoge Ph_3As-Komplexe, wie beispielsweise $[Cr(CO)_5(AsPh_3)]$, sind in der Literatur bereits beschrieben [81].

Zur Darstellung wird eine THF-Lösung des Metallcarbonyls mit UV-Licht bestrahlt. Dabei kommt es zur Bildung des [M(CO)₅THF]-Komplexes. Anschließend wird der Ligand L (L = Ph_3As , (Ph_3SnO)₃As) zugegeben und es wird das THF-Molekül durch L substituiert (Gl. 19 und 20).

$$M(CO)_{6} + THF \xrightarrow{h\nu} [(CO)_{5}M(THF)] + CO \qquad (Gl. 19)$$

$$[(CO)_{5}M(THF)] + L \longrightarrow [(CO)_{5}ML] + THF \qquad (Gl. 20)$$

$$(M = Cr, Mo, W; L = Ph_{3}As, (Ph_{3}SnO)_{3}As)$$

Die Umsetzung von $M(CO)_6$ mit THF unter UV-Bestrahlung kann sehr gut über die Farbänderung der Reaktionslösung verfolgt werden. Nachdem die Komplexe [(CO)₅M(THF)] in Lösung als orange-gelb Verbindungen vorliegen, kommt es nach Zugabe von <u>4</u> bereits nach wenigen Minuten zu einem Farbumschlag. So verfärbte sich die Lösung der Chromverbindung stechend-grün, die der Molybdän- und Wolframverbindung jeweils gelb bis schwach grün. Nach dem Abdestillieren des Lösungsmittels und dem Trocknen im Vakuum kann jeweils ein Feststoff isoliert werden, welcher farblich der Reaktionslösung entspricht. Auch unter Schutzgas und Dunkelheit entfärben sich die Substanzen über einen Zeitraum von Tagen weitgehend. Da es nicht mehr möglich war, die Verbindungen wieder vollständig in Lösung zu bringen und eine Kristallisation ausblieb, konnte keine einwandfreie Charakterisierung erfolgen.

Im Gegensatz dazu ergibt die Umsetzung von $\underline{4}$ mit Fe₂(CO)₉ einen eindeutigeren Reaktionsverlauf (Gl. 21).

$$(Ph_3Sn)_3AsO_3 + Fe_2(CO)_9 \longrightarrow [(CO)_4FeAs(OSnPh_3)_3] + Fe(CO)_5 \qquad (Gl. 21)$$

$$\underline{6}$$

Zur Darstellung von [(CO)₄FeAs(OSnPh₃)₃] ($\underline{6}$) wird eine Suspension von Fe₂(CO)₉ in THF mit einer Lösung von $\underline{4}$ in THF für 2 h unter Rückfluss erhitzt wird. Im Anschluss daran werden unter reduziertem Druck die flüchtigen Bestandteile (THF, Fe(CO)₅) entfernt. Im Kolben verbleibt ein gelbes Pulver, welches aus einem THF-Heptan-Gemisch umkristallisiert werden kann. Als Produkt erhält man $\underline{6}$ in Form eines gelben Pulvers bzw. hellgelber Kristallnadeln.

Neben der SnC-Valenzschwingung bei 444 cm⁻¹ finden sich im IR-Spektrum von <u>6</u> zwischen 600 und 900 cm⁻¹ mehrere Banden, die eine genaue Zuordnung der CH-Deformationsschwingungen und AsO-Valenzschwingungen nicht zulassen. Man beobachtet aber drei intensive vCO-Banden bei 1942 cm⁻¹, 1963 cm⁻¹ und 2050 cm⁻¹. Die drei vCO-Banden sprechen für ein (CO)₄FeL-Fragment (L = Ligand) mit C_{3v}-Symmetrie. In der Literatur gibt es vielfältige Beispiele zu IR-spektroskopischen Untersuchungen an substituierten Eisencarbonylkomplexen. Tab. 5 zeigt die vCO-Frequenzen einiger ausgewählter Verbindungen im Vergleich mit <u>6</u>.

Hierzu wurde in <u>6</u> für das Eisenatom eine ideale trigonal-bipyramidale Koordination angenommen und die IR-Banden bei 2050 cm⁻¹, 1963 cm⁻¹ und 1942 cm⁻¹ der Rasse A_1'' , E bzw. A_1' zugeordnet.

L	vCO in cm ⁻¹ (A_1'', E, A_1')
P(OPh) ₃ [82]	2086, 1997, 1963
$P(OMe)_{3}[83]$	2065, 1992, 1966
PPh ₃ [84]	2052, 1979,1947
$As(OSnPh_3)_3$ (6)	2050, 1963, 1942
P(NMe ₂) ₃ [85]	2048, 1973, 1936
As(<i>o</i> -Tol) ₃ [86]	2047, 1971, 1943
P(<i>o</i> -Tol) ₃ [86]	2043, 1975, 1947

Tab. 5.CO-Bandenlagen ausgewählter Verbindungen des Typs (CO)₄FeL

In Tab. 5 wird deutlich, dass sich der As(OSnPh₃)₃-Komplex im Vergleich zu den Phosphan-Komplexen vor allem in den E und A₁" CO-Valenzschwingungen merklich unterscheidet. Grund dafür ist möglicherweise der unterschiedliche Raumbedarf der Substituenten. Die A₁" Valenzschwingung spiegelt vor allem den Einfluss des Liganden auf die axiale CO-Gruppe und damit die π -Acidität wieder. Hierbei entspricht <u>6</u> in etwa den analogen P(Ph)₃-, P(*o*-Tol)₃und As(*o*-Tol)₃-substituierten Verbindungen.

Der Vergleich der beiden As-Liganden in Tab. 5 ist schwierig, da sich durch die *ortho*-Substitution am Aromaten große sterische Wechselwirkungen ergeben. Auch der Vergleich der IR-Daten der PPh₃- und P(*o*-Tol)₃-Komplexe zeigen deutliche Unterschiede in den Bandenlagen. Jedoch ist anhand dieses Beispiels ersichtlich, dass sich der Substituenteneinfluss bei den Arsenverbindungen geringer auswirkt als bei den Phosphorverbindungen. Dies könnte darauf zurückzuführen sein, dass die Fe–P-Bindung kürzer und stärker ist als die entsprechende As–Fe-Bindung.

Insgesamt widerspiegeln die vCO-Frequenzen die Gesamtheit aller π - und σ -Bindungsanteile, sowie die sterischen Wechselwirkungen zwischen Ligand und Metallzentrum. Da in der Literatur nur begrenzt Vergleichsmöglichkeiten für As(OR)₃-substituierte Metallcarbonyle zu finden sind, ist eine genaue Zuordnung der einzelnen Ligandparameter und deren einzelner Einflüsse nicht möglich.

NMR-Untersuchungen von <u>6</u> zeigen im ¹¹⁹Sn-NMR-Spektrum ein Signal bei $\delta = -91,4$ ppm, welches von Satellitenpaaren mit Kopplungskonstanten von {²J ¹¹⁹Sn, ¹³C} = 48 Hz; {³J ¹¹⁹Sn, ¹³C} = 64 Hz und {¹J ¹¹⁹Sn, ¹³C} = 400 Hz flankiert wird. Weiterhin beobachtet man ein Satellitenpaar mit einem Intensitätsverhältnis von 11:107:11, welches vermutlich einer {⁴J ¹¹⁹Sn, ¹¹⁷Sn} = 8,5 Hz entspricht.

Das ¹³C-NMR-Experiment zeigt im Vergleich zum $[(Ph_3Sn)_3AsO_3]$ (<u>4</u>) nur ein hinzugekommenes Signal bei $\delta = 214,7$ ppm, wobei dies den drei äquatorialen CO-Liganden gemeinsam zuzuordnen ist. Eine Aufspaltung bzw. ein separates Signal für den *trans*-Ligand kann allerdings nicht registriert werden und ist als häufiges Phänomen beschrieben [86].

3.2.7 Die Struktur von [(CO)₄FeAs(OSnPh₃)₃] (<u>6</u>)

Aus einem THF-Heptan-Gemisch kristallisiert <u>6</u> in Form blassgelber, kompakter Prismen in der Raumgruppe P2₁/n mit vier Formeleinheiten in der Elementarzelle. Die Molekülstruktur von <u>6</u> ist in Abb. 16 schematisch dargestellt.

Abb. 16. Molekülstruktur von <u>6</u> mit Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %)

In <u>6</u> sind die (Ph₃SnO)₃As-Einheit und die Fe(CO)₄-Gruppe über eine As–Fe-Bindung mit einer Bindungslänge von 2,305(1) Å verbunden. Diese Bindung fällt kürzer aus als in (CO)₄FeAs(o-Tol)₃ mit 2,393(1) Å. Durch die Koordination der Fe(CO)₄-Gruppe ergeben sich in der (Ph₃SnO)₃As-Einheit im Vergleich mit <u>4</u> und <u>5</u> nur geringfügige Änderungen in den As–O-Abständen, die in <u>6</u> zwischen 1,721(3) Å und 1,738(3) Å liegen. Die Sn–O-Bindungslängen in <u>6</u> liegen zwischen 2,001(3) Å und 2,015(3) Å und sind damit um durchschnittlich 0,024 Å länger als in <u>4</u> und <u>5</u>. Die As–O–Sn-Bindungswinkel betragen 121,3(1)° - 131,1(1)° und stimmen ebenfalls mit den Werten aus <u>4</u> und <u>5</u> überein (Abb. 17).

Abb. 17.Strukturausschnitt von <u>6</u> mit Schwingungsellipsoiden (Aufenthalts-
wahrscheinlichkeit 50%; nur *ipso*-Kohlenstoffatome der Ph₃Sn-Gruppen)

Bei den CO-Gruppen am Eisen stellt man fest, dass der zum As *trans*-ständige Ligand mit 1,761(5) Å einen kleineren Fe–C-Abstand aufweist als die übrigen CO-Liganden in der äquatorialen Ebene. Hier liegen die Fe–C-Bindungslängen zwischen 1,780(5) Å und 1,795(6) Å. Der Einfluss des As(OSnPh)₃-Liganden auf die Carbonylgruppen der Fe(CO)₄- Einheit ist also im IR-Spektrum an der vCO-Frequenz gut zu erkennen und äußert sich ebenfalls deutlich in den Fe–C-Bindungslängen. Die C–O-Bindungslängen der axialen und äquatorialen Positionen sind allerdings weniger betroffen. So beträgt die Länge der axialen C–O-Bindung 1,148(5) Å und die äquatorialen C–O-Bindungslängen liegen zwischen 1,145(5) Å und 1,149(6) Å.

Als Koordinationspolyeder ergeben sich für die Sn-Atome jeweils C₃SnO-Tetraeder. Das As-Atom liegt im Zentrum einer trigonalen Pyramide, bei der die Grundfläche aus drei Sauerstoffatomen gebildet wird und die Spitze durch das Fe-Atom besetzt ist.

Das Fe-Atom befindet sich im Zentrum einer verzerrten trigonalen Bipyramide mit drei CO-Gruppen in äquatorialen Positionen, sowie dem As-Atom und der verbleibenden CO-Gruppe in axialen Positionen. Die trigonal-bipyramidale Koordination des Eisens ist gut an den C– Fe–C-Winkeln zu erkennen. Für die äquatorialen Kohlenstoffatome ergeben sich C–Fe–C-Winkel von 125,6(3)°, 114,1(3)° und 120,2(2)°, die zusammen 359,9° ergeben und somit für die Planarität dieser äquatorialen FeC₃-Einheit sprechen. Die Winkel der axialen CO-Liganden zu den äquatorialen CO-Positionen liegen auch nahe bei 90° mit C–Fe–C-Winkeln von 88,8(2)°, 89,6(2)° und 95,3(2)°. Auch kann der Winkel C–Fe–As entlang der idealisierten dreizähligen Achse mit 174,8(1)° als nahezu linear bezeichnet werden.

Hinsichtlich der As–Fe-Bindung ist festzustellen, dass sich die äquatorialen Carbonylgruppen der Fe(CO)₄-Gruppe in annähernd ekliptischer Position zu den As–O-Bindungen der OSnC₃-Gruppen anordnen. Die O–As–Fe–C-Torsionswinkel betragen hierbei, $-6,3(2)^{\circ}$; $9(2)^{\circ}$ und $0,5(2)^{\circ}$. Ferner befinden sich die Ebenen, die sich aus drei Sauerstoffatomen am Arsen und den drei äquatorialen Kohlenstoffatomen am Eisen ausbilden, in fast paralleler Anordnung zueinander. Der Winkel zwischen den Ebenen beträgt dabei ca. $2,6^{\circ}$.

Im Vergleich der Bindungssituation von <u>6</u> mit ähnlichen Verbindungen aus der Literatur liegt mit $[(CO)_4FeAs(o-Tol)_3]$ nur ein relevantes Beispiel vor. Wie in <u>6</u> befindet sich das As-Atom in tetraedrischer Umgebung, ist aber nun nicht mehr von drei Sauerstoff-, sondern von drei Kohlenstoffatomen koordiniert. Weiterhin zeigt die Methylsubstitution am Aromaten der Arseneinheit einen deutlichen Einfluss auf die Fe–As-Bindung.

Dies kann am Beispiel von $[(CO)_4FeP(Ph)_3]$ und $[(CO)_4FeP(o-Tol)_3]$ verdeutlicht werden. Betrachtet man die Fe–P-Bindung liegt diese im Fall der PPh₃-Verbindung bei 2,244(1) Å. Durch die Einführung einer Methylgruppe steigt die Bindungslänge Fe–P auf 2,306(1) Å an. Dies muss auch beim Vergleich von <u>6</u> mit $[(CO)_4FeAs(o-Tol)_3]$ berücksichtigt werden, welches einen deutlich größeren Fe–As-Abstand und Fe–C_{ax}-Abstand aufweist.

Die an Arsen gebundenen Substituenten zeigen ihren Einfluss sowohl in den Fe–As- und Fe– C_{ax} -Bindungslängen, als auch in den vCO-Bandenlagen im IR-Spektrum.

L	Fe-M (M = P, As)	Fe-C _{ax}	Ø Fe–C _{äq}
Fe(CO) ₅ [87]	-	1,806(4)	1,833
P(Ph) ₃	2,244(1)	1,795(5)	1,795
(CO) ₄ FeP(NMe ₂) ₃	2,245(1)	1,793(6)	1,787
As(OSnPh ₃) ₃	2,301(1)	1,761(5)	1,784
P(o-Tol) ₃	2,306(1)	1,777(6)	1,763
$As(As_3C_4^{\ t}Bu_4) [89]$	2,370(1)	1,772(9)	1,794
$As[(^{t}Bu)(As_{4}^{t}Bu_{3})_{2}]$ [88]	2,387(2)	1,717(11)	1,755
As(o-Tol) ₃	2,393(1)	1,772(7)	1,787

Tab. 6.Ausgewählte Bindungslängen [Å] von Verbindungen des Typs [(CO)₄FeL]

Aus Tab. 6 wird ersichtlich, dass sich bei allen aufgeführten Substituenten sowohl die axialen als auch äquatorialen Fe–C-Bindungen im Vergleich zum Fe(CO)₅ verkürzen. Die Abnahme der Bindungslängen kann sterischer und/oder elektronischer Natur sein. Dies ist daran zu erkennen, dass die Länge der Fe–M-Bindung nicht immer mit den Fe–C- und C–O-Abständen korreliert.

Im Vergleich mit anderen Eisencarbonylen, die eine Fe–As-Bindung aufweisen, wie $[(CO)_5FeAs\{({}^tBu)(As_4{}^tBu_3)_2\}]$ und $[(CO)_5FeAs(As_3C_4{}^tBu_4)]$, ist die As–Fe-Bindung in <u>6</u> relativ kurz. Gründe dafür liegen in der höheren Elektronegativität des Sauerstoffatoms der OSn-Einheit, sowie im geringeren Platzbedarf der Ph₃SnO-Gruppe im Vergleich zu den ^tBu-Substituenten.

In Analogie zum Tolman-Kegelwinkel θ der PR₃-Substituenten sollte es auch bei AsR₃-Gruppen möglich sein, den räumlichen Platzbedarf der Gruppe durch einen entsprechenden Winkel widerzuspiegeln. Es ist leicht ersichtlich, dass Substituenten mit abnehmender Entfernung zum As sich zunehmend geringer im Winkel θ bemerkbar machen. So kann beispielsweise die Verlängerung einer Bindung durch ein zusätzliches Atom θ deutlich verkleinern. Dies konnte bereits im Vergleich von P(CH₃)₃ und P(OCH₃)₃ mit den Tolmann-Winkeln 118° bzw. 107° gezeigt werden [90]. Daher sollte der sterische Anspruch des (Ph₃SnO)₃As-Liganden mit dem des (*o*-Tol)₃As-Liganden vergleichbar sein, obwohl sich beide Liganden in ihren Eigenvolumen stark voneinander unterscheiden.

3.2.8 Darstellung und Struktur von [(Ph₃Sn · DMF)(Ph₃Sn)(Ph₂SnOH)AsO₄]₂ (<u>7</u>)

Wie sich gezeigt hat, konnte $[(Ph_3Sn)_3AsO_3]$ (<u>4</u>) in guter Ausbeute hergestellt und durch eine Kristallstrukturanalyse charakterisiert werden. Um zu untersuchen, ob sich Arsensäure analog verhält, wurde Ph₃SnOH mit H₃AsO₄ in Ethanol bei RT umgesetzt (Gl. 26). Nach dem Einengen der Lösung fällt ein weißes Pulver aus, welches IR- und NMR-spektroskopisch untersucht wurde. Das gleiche Produkt, jedoch in geringerer Ausbeute, konnte auch aus der Umsetzung von Ph₃SnCl mit (NH₄)₃AsO₄ erhalten werden (Gl.27), wobei allerdings Nebenreaktionen auftraten.

 $3 Ph_3SnOH + H_3AsO_4 \longrightarrow (Ph_3SnO)_3AsO + 3 H_2O$ (Gl. 26)

$$3 Ph_3SnCl + (NH_4)_3AsO_4 \longrightarrow (Ph_3SnO)_3AsO + 3 NH_4Cl$$
(Gl. 27)

Die erhaltenen Pulver, welche luftstabil und in polaren Lösungsmitteln wie DMF oder DMSO in der Wärme löslich sind, konnten NMR-spektroskopisch untersucht werden. Im ¹¹⁹Sn-NMR-Spektrum ist ein breites Signal bei $\delta = -287$ ppm ohne Kopplungsmuster zu beobachten. Daher ist davon auszugehen, dass nur eine zinnhaltige Spezies vorhanden ist. Das ¹H-NMR weist Signale im aromatischen Bereich zwischen $\delta = 7,2$ und $\delta = 7,8$ ppm auf.

Das IR-Spektrum zeigt eine intensive, dreifach aufgespaltete Bande bei 803, 852 und 897 cm⁻¹, was für eine C_{3v} -Symmetrie des AsO₄³⁻-Ions spricht. Für die Ph₃SnO-Gruppen finden sich die üblichen Banden der γ CH bei 728 und 696 cm⁻¹ und die vSnC bei 448 cm⁻¹.

Bei Kristallisation des nach Gl. 26 und 27 erhaltenden Rohprodukts aus DMF, erhält man nicht $(Ph_3Sn)_3AsO_4$, sondern einen zweikernigen, Ph_2Sn -verbrückten, dinuklearen Arsenat-komplex der Zusammensetzung [{ $(Ph_3Sn \cdot DMF)(Ph_3Sn)(Ph_2SnOH)AsO_4$ }] (<u>7</u>).

Da sich $\underline{7}$ beim Umkristallisieren fast quantitativ bildet und auch kein Ph₄Sn nachgewiesen werden kann, könnte die Bildung der Ph₂SnOH-Gruppe formal nach Gl. 28 erklärt werden.

$$2 (Ph_3Sn)_3AsO_4 + H_2O \longrightarrow [(Ph_3Sn)_2AsO_4(Ph_2SnOH)]_2 + 2 C_6H_6$$
(Gl. 28)

 $\underline{7}$ kristallisiert aus einer gesättigten DMF-Lösung in Form gut ausgeprägter, separierter Nadeln in der Raumgruppe P $\overline{1}$ mit einer Formeleinheit pro Elementarzelle. Abb. 18 zeigt die Struktur von $\underline{7}$.

Abb. 18.Molekülstruktur von 7 (ohne H-Atome) mit Schwingungsellipsoiden
(Aufenthaltswahrscheinlichkeit 50 %)

 $\underline{7}$ setzt sich aus zwei (Ph₃Sn)₂AsO₄-Einheiten, die über zwei Ph₂Sn-Gruppen miteinander verbunden sind und somit einen 8-gliedrigen As₂O₄Sn₂-Ring aufbauen, zusammen. Dabei befindet sich im Mittelpunkt des Achtrings ein Symmetriezentrum.

Beide Ph_2Sn -Gruppen sind zusätzlich durch zwei OH-Gruppen verbrückt. Der somit vorliegende Sn_2O_2 -Vierring ist hierbei mit $87,8(2)^\circ$ fast senkrecht zur annähernd planaren O_4 -Ebene des $As_2O_4Sn_2$ -Achtrings angeordnet. Von den terminalen Ph_3Sn -Gruppen der AsO_4 -Gruppen ist jeweils eine Gruppe zusätzlich durch ein DMF-Molekül koordiniert.

In der Polyederbeschreibung für die Metallatome kann man von zwei zentralen C_2SnO_4 -Oktaedern mit *cis*-ständig angeordneten C-Atomen der Phenylgruppen ausgehen. Beide Oktaeder sind dabei über eine gemeinsame Kante, die aus zwei Sauerstoffatomen gebildet wird, miteinander verknüpft. Die apikalen Positionen der Oktaeder sind beidseitig durch bidentate AsO₄-Tetraeder verbunden. Die AsO₄-Tetraeder sind terminal mit jeweils einem C_3SnO -Tetraeder und einer C_3SnO_2 -Bipyramide verknüpft (Abb. 19).

Verbindungen mit zwei verbrückenden, kantenverknüpften O4SnC2-Oktaedern sind in der

Literatur bekannt. Man findet monomere und polymere Verbindungen z. B. $[^{n}Bu_{2}Sn(OH)(OTf)(H_{2}O)]_{2}$ [91] und $[^{n}Bu_{2}Sn\{(\mu-OH)(\mu-OSO_{2}C_{6}H_{2}(CH_{3})_{3})\}]$ [92].

Abb. 19.Zentraleinheit von $\underline{7}$ in Polyederdarstellung (AsO₄-Tetraeder dunkel; C₃SnO-
Tetraeder, C₃SnO₂-Bipyramiden und C₂SnO₄-Oktaeder hell)

In $\underline{7}$ existieren somit je zwei Zinnatome mit der Koordinationszahl vier (terminale Ph₃SnO-Einheiten), fünf (terminale OSnPh₃ · DMF-Einheiten) und sechs (zentrale O₄SnPh₂-Gruppen). Da in $\underline{7}$ unterschiedlich koordiniert Zinnatome vorliegen, sollte sich dies in den Sn–O-Bindungslängen widerspiegeln (Abb. 20). Den kürzesten Sn–O-Abstand findet man für die unkoordinierte, terminale Ph₃SnO-Gruppe mit 1,994(3) Å. Die durch DMF koordinierte, terminale Ph₃SnO-Gruppe weist mit 2,088(2) Å schon einen deutlich größeren Sn–O-Abstand auf, wobei das DMF Molekül die Ph₃Sn-Gruppe mit einem Sn–O-Abstand von 2,546(3) Å koordiniert. Bei den verbrückenden Zinnatomen des Achtrings liegen die Sn–O-Abständ zur OH-Gruppe beträgt 2,148(2) Å bzw. 2,158(2) Å. Der Anstieg der Bindungslängen spiegelt also die steigende Koordinationszahl der Zinnatome gut wider (Tab. 7).

Abb. 20. Strukturausschnitt von <u>7</u> (ohne H-Atome) mit Schwingungsellipsoiden (Aufenthaltswahrscheinlickeit 50 %; nur *ipso*-Kohlenstoffatome der Phenylgruppen)

Die As–O-Abstände lassen sich grob in drei kürzere und einen längeren einteilen. Die längste As–O-Bindung zur unkoordinierten, terminalen Gruppe (As–O1) beträgt 1,712(2) Å. Die kürzeren As–O-Abstände zu den verbrückenden Gruppen (As–O4, As–O3) liegen zwischen 1,672(2) Å und 1,677(2) Å und zur DMF-koordinierten Ph₃Sn-Gruppe beträgt der As–O-Abstand (As–O2) 1,688(2) Å. Mit steigender Koordinationszahl am Zinn werden die Sn–O-Abstände größer und die As–O-Abstände kleiner (Tab. 7).

Bei Betrachtung der Sn–C-Bindung stellt man fest, dass diese im Fall der Ph₂Sn-Gruppen mit 2,156(4) Å und 2,166(4) Å) etwas länger ausfallen als bei den Triphenylzinngruppen mit Werten zwischen 2,118(3) Å und 2,140(3) Å.

Tab. 7. Sn–O-Bindungslängen [Å] entlang der Sn–O–As-Bindung im Vergleich

Fragment	OSnPh ₃	OSnPh ₃ (DMF)	O ₄ SnPh ₂
Ø Sn–O	1,994(3)	2,088(2)	2,145(3)

Die Summe der C–Sn–C-Bindungswinkel der Triphenylzinngruppen ergibt im Fall der unkoordinierten Ph_3Sn -Einheit (Sn1) 337,4°. Bei der durch DMF koordinierten Gruppe (Sn2) zeigt die Winkelsumme von 353,7° die Tendenz einer trigonal-bipyramidalen Koordination.

Der C-Sn-C-Winkel der Diphenylzinngruppen beträgt $101,5(2)^{\circ}$. Dieser große Winkel (Idealfall am Oktaeder 90°) beruht auf dem größeren Platzbedarf der Phenylgruppen im Vergleich zu den an Zinn gebundenen Sauerstoffatomen. Der O-Sn-O-Winkel im Sn₂O₂-Vierring beträgt 72,6(1)° und die übrigen O-Sn-O-Winkel liegen zwischen 81,2(8)° und 84,2(8)°.

Ein zu <u>7</u> analoges { $(Ph_2Sn)(OH)(MoO_4)$ }-Gerüst ist in [$(^{n}Bu_4N)_2$ { $(Ph_2Sn)_2(\mu-OH)_2(\mu-MoO_4)_2$ }] zu erkennen [93], wobei hier { $(Ph_2Sn)_2(\mu-OH)_2(\mu-MoO_4)_2$ }²⁻-Anionen neben $^{n}Bu_4N^+$ -Kationen vorliegen. Wie auch in <u>7</u> findet man einen relativ großen C-Sn-C-Winkel (109,2(2)°) für die Diphenylzinngruppen und einen kleinen Wert (68,8(2)°) für den O-Sn-O-Winkel im Vierring. Die Sn-OMo-Bindungslängen betragen durchschnittlich 2,122 Å und die Sn-OH-Bindungslänge 2,182 Å, welche mit den Werten in <u>7</u> vergleichbar sind.

Das [(Et₄N){(SnMe₃)₇(HAsO₄)₄} · 2 H₂O] [94], welches zwar in einer komplexen, ionischen Netzwerkstruktur mit verbrückenden HAsO₄-Gruppen und Wasserstoffbrückenbindungen zwischen den Hydrogenarsenateinheiten vorliegt, zeigt ähnliche Strukturmerkmale wie <u>7</u>. Man findet AsO₄-Tetraeder sowie zwei Arten von C₃SnO₂-Bipyramiden. Die Me₃Sn-Gruppen verknüpfen AsO₄-Tetraeder miteinander und liegen ebenfalls terminal, durch H₂O-Moleküle koordiniert, vor. Die As–O-Abstände zu den Me₃Sn-Gruppen betragen zwischen 1,655(2) Å und 1,696(2) Å und sind damit kürzer als die die As–O-Bindung zur OH-Gruppe mit 1,743(2) Å bzw. 1,726(2) Å. Die Sn–O-Bindungslängen zur AsO₄-Einheit variieren zwischen 2,172(2) Å und 2,357(2) Å und sind somit größer als in <u>7</u>. Die Sn–O-Bindung zur OH-Gruppe ist mit 2,367(2) Å ebenfalls relativ lang. Ursache hierfür ist der stärker ionische Charakter, welcher in <u>7</u> nicht so deutlich ausgeprägt ist.

Das ¹¹⁹Sn-NMR-Spektrum in von <u>7</u> DMSO-d₆ zeigt Signale ohne Kopplungsmuster bei $\delta = -127,8$ ppm, sowie ein relativ breites Signal bei $\delta = -202,0$ ppm. Im ¹H-NMR-Spektrum liegen die Signale für die Aromaten zwischen $\delta = 7,0$ und $\delta = 7,7$ ppm und die Signale für das DMF-Molekül bei $\delta = 2,74$ bzw. $\delta = 2,88$ ppm (CH₃) und bei $\delta = 7,95$ ppm (CH).

Im IR-Spektrum von <u>7</u> ist eine scharfe Bande bei 3589 cm⁻¹ erkennbar, welche einer freien OH-Gruppe zuzuordnen ist. Weiterhin werden eine breite SnC-Valenzschwingung bei 449 cm⁻¹ und die CO-Valenzschwingung des DMF-Moleküls bei 1654 cm⁻¹, welche im Vergleich zum freien DMF (vCO = 1687 cm⁻¹) deutlich zu niedrigeren Wellenzahlen

verschoben ist, beobachtet. Die intensive Bande bei 800 cm⁻¹ mit einer Schulter bei 894 cm⁻¹ kann der Valenzschwingung der AsO₄-Einheit zugeordnet werden, welche nun in einer idealisierten C_S- bzw. C₁-Symmetrie vorliegt. Dies stimmt mit den Literaturwerten von Na₃AsO₄ und Me₃AsO₄ überein, bei denen die v_{as} bei 818 cm⁻¹ bzw. bei 975 cm⁻¹ zu finden sind [95, 96].

Außerdem wurde von <u>7</u> eine thermogravimetrische Untersuchung durchgeführt (Abb. 21). Ein starker Massenverlust findet zwischen 200 °C und 400 °C statt, wobei insgesamt ca. 60 % der Ausgangsmasse verloren gehen. Erhöht man die Temperatur weiter bis auf 1000 °C verbleiben noch ca. 22 % der Ausgangsmasse. Dies spricht dafür, dass auch flüchtige Zinnkomponenten abgespalten werden. Der kristalline Anteil des Zersetzungsproduktes konnte durch ein Röntgenbeugungsexperiment als SnO₂ nachgewiesen werden.

Abb. 21. Thermogravimetrische Untersuchung von <u>7</u>

Entsprechende Untersuchungen des Rohprodukts (Abb. 22) zeigen ebenfalls einen starken Massenverlust (ca. 60 %) in einem Temperaturbereich von 200 bis 500 °C. Wird die Temperatur bis auf 1000 °C erhöht gehen weitere 15 % der Masse verloren, wobei insgesamt ca. 25 % der Ausgangsmasse verbleiben.

Abb. 22. Thermogravimetrische Untersuchung vom Rohprodukt der Umsetzung von Ph₃SnOH mit As₂O₅

Bei der Umsetzung von Ph₃SnCl mit $(NH_4)_3AsO_4$ konnten zwei Nebenprodukte isoliert werden. So erhält man aus der Reaktionslösung $[Cl(Ph_2)Sn(OH)OSn(Ph_2)]_2$, welches bereits 1993 durch die Hydrolyse von Ph₂SnCl₂ synthetisiert wurde [97].

Ein weiteres Nebenprodukt konnte lediglich NMR-spektroskopisch untersucht werden. Hier zeigt das ¹¹⁹Sn-NMR (500 MHz, 27 °C, CDCl₃) zwei Signale bei $\delta = -145$ ppm und $\delta = -130$ ppm. Um das Signal bei $\delta = -145$ ppm findet man Satellitenpaare die einer $\{^{2}J^{119}_{Sn},^{13}_{C}\} = 46$ Hz, $\{^{3}J^{119}_{Sn},^{13}_{C}\} = 58$ Hz, $\{^{1}J^{119}_{Sn},^{13}_{C}\} = 438$ Hz sowie einer $\{^{4}J^{119}_{Sn},^{117}_{Sn}\} = 8,5$ Hz Kopplung entsprechen würden. Weiterhin wird eine sehr große Kopplungskonstante von 4600 Hz beobachtet, die einer $\{^{2}J^{-119}_{Sn},^{117}_{Sn}\}$ zuzuordnen ist. Eine genauere Charakterisierung dieser Substanz war allerdings nicht möglich.

3.2.9 Darstellung und Struktur von [($Ph_3Sn_2SeO_3 \cdot L$] (L = CHCl₃, DMF) (<u>8a</u>, <u>8b</u>)

Analog zur Reaktion der Arsenite und Arsenate, kann Ph_3SnOH auch mit einer Lösung von SeO_2 in Wasser umgesetzt werden, wobei es nach Gl. 29 zur Bildung von [(Ph_3Sn)₂SeO₃] <u>8</u> kommt.

$$2 \operatorname{Ph}_{3}\operatorname{SnOH} + \operatorname{SeO}_{2} + \operatorname{H}_{2}O \longrightarrow [(\operatorname{Ph}_{3}\operatorname{Sn})_{2}\operatorname{SeO}_{3}] + 2 \operatorname{H}_{2}O \qquad (Gl. 29)$$

$$\underline{\mathbf{8}}$$

<u>**8**</u> ist in organischen Lösungsmitteln wie DMF, CHCl₃ und C₆H₆ löslich. Dabei ist es möglich, verschiedene Solvate zu isolieren. Aus Chloroform kristallisiert [(Ph₃Sn)₂SeO₃ · CHCl₃] (<u>**8a**</u>) und aus DMF [(Ph₃Sn)₂SeO₃ · DMF] (<u>**8b**</u>).

Das IR-Spektum von <u>8a</u> zeigt breite Banden bei 822 und 896 cm⁻¹, die den SeO-Valenzschwingungen zuzuordnen sind, welche aber mit den CH-Deformationsschwingungen (697 cm⁻¹ und 730 cm⁻¹) der Phenylgruppen überlagern. Eine genaue Analyse der lokalen Symmetrie der SeO₃²⁻ -Einheit kann anhand des IR-Spektrums allerdings nicht erfolgen, da die Banden sehr breit ausfallen und eine eventuell zu erwartende Aufspaltung nicht erkennbar ist. Weiterhin kann eine Bande bei 447 cm⁻¹ der SnC-Valenzschwingung zugeordnet werden und die Bande bei 2931 cm⁻¹ der aliphatischen CH-Schwingung des CHCl₃-Moleküls.

Das ¹¹⁹Sn NMR-Spektrum von <u>8a</u> zeichnet sich durch ein relativ breites Signal bei δ = -98 ppm aus, wobei keine Kopplungsmuster zu beobachten sind. Aus dem ⁷⁷Se-NMR-Experiment war aufgrund der geringen Löslichkeit keine weitere Information zu erhalten.

Das ¹³C-NMR-Spektrum zeigt mehrere Signale mit Bereich zwischen $\delta = 125$ ppm und $\delta = 142$ ppm. Auch hier fallen die Signale breit aus und überlappen teilweise, so dass eine genaue Zuordnung nicht möglich ist. Ein breites Signal bzw. Multiplett ist auch im ¹H-NMR-Spektrum zwischen $\delta = 7,1$ ppm und $\delta = 7,8$ ppm zu finden.

Nach den NMR-spektroskopischen Untersuchungen kann davon ausgegangen werden, dass **<u>8a</u>** in Lösung nicht als monomere Verbindung vorliegt, sondern es zur Aggregation kommt, wobei vermutlich Oligomere bzw. Polymere entstehen.

Entsprechend verhält sich auch <u>**8b**</u>. Im ¹H-NMR-Spektrum konnte ein Intensitätsvergleich der Protonensignale der DMF-Moleküle ($\delta_{CH3} = 2,85$ ppm bzw. 2,92 ppm) mit den aromatischen Signalen erfolgen. So zeigt sich, dass formal etwa 1,5 Moleküle DMF pro Formeleinheit vorhanden sind, was auch durch die Resultate der Elementaranalyse bestätigt werden konnte. Das ¹¹⁹Sn- und ⁷⁷Se-NMR-Spektrum von <u>**8b**</u> gleicht dem von <u>**8a**</u>.

Im IR-Spektrum von <u>8b</u> finden sich zusätzliche Banden bei 1647, 1680 und 2926 cm⁻¹, welche dem DMF-Molekül zuzuordnen sind. Die Banden sind relativ breit, aber die Bande bei 1680 cm⁻¹ lässt sich dem unkoordiniertem DMF und die bei 1647 cm⁻¹ dem an die Ph₃Sn-Einheit gebundenen Molekül zuordnen. Die breite Bande der SeO-Valenzschwingung befindet sich im gleichen Bereich wie in <u>8a</u>.

Da von **<u>8a</u>** und <u>**8b**</u> Röntgeneinkristallstrukturanalysen durchgeführt werden konnten, ließ sich

die Voraussage bestätigen, nach der [(Ph₃Sn)₂SeO₃] im Festkörper genau wie [(Ph₃Sn)₃PO₄] als Kettenpolymer vorliegt [68].

<u>8a</u> kristallisiert monoklin in der Raumgruppe C2/c mit 8 Formeleinheiten in der Elementarzelle. Weiterhin findet man Lösungsmittelmoleküle (CHCl₃) im Kristall. Die CHCl₃-Moleküle sind jedoch fehlgeordnet und lassen sich deshalb nur schwierig lokalisieren. Eine Verfeinerung des Strukturmodells konnte bis zu einem R1-Wert von 8,55 % (wR2 = 22,12 %) erfolgen. Es lässt sich jedoch mit Sicherheit feststellen, dass ein Kettenpolymer gebildet wird, bei welchem Ph₃Sn-Gruppen SeO₃-Einheiten zu einem Strang miteinander vernetzen und jede SeO₃-Gruppe wieder eine terminale Ph₃Sn-Einheit koordiniert. Entlang der Kette sind die Se- und verbrückenden Sn-Atomen coplanar angeordnet und verlaufen in Richtung der kristallographischen b-Achse (Abb. 23).

Abb. 23.Ausschnitt aus der Kettenstruktur von <u>8a</u> mit Schwingungsellipsoiden
(Aufenthaltswahrscheinlichkeit 50 %; nur *ipso*-Kohlenstoffatome)

Die Sn–O-Abstände in den verbrückenden Ph₃Sn-Gruppen betragen 2,219(6) Å und 2,241(6) Å, in der terminalen Ph₃Sn-Gruppe 2,037(7) Å. Die Se–O-Bindungen sind relativ ähnlich und liegen zwischen 1,670(6) Å und 1,721(7) Å. Die O–Sn–O-Bindungswinkel in den verbrückenden Einheiten betragen 174,8(2)° und an den Se-Atomen liegen die O–Se–O-Winkel zwischen 99,5(3)° und 101,7(3)°.

Hierbei ergibt sich eine strangförmige Verknüpfung von C3SnO-Bipyramiden und trigonalen

SeO₃-Pyramiden über gemeinsame Ecken, wobei zusätzlich je ein terminales C_3 SnO-Tetraeder mit der SeO₃-Pyramide verknüpft ist (Abb. 24).

Abb. 24.Strukturausschnitt von $\underline{8a}$ in Polyederdarstellung (SeO₃-Pyramiden: dunkel,
C₃SnO-Tetraeder und C₃SnO₂-Bipyramiden: hell)

Im Gegensatz dazu kristallisiert <u>**8b**</u> tetragonal in der Raumgruppe I4₁cd mit 16 Formeleinheiten in der Elementarzelle.

Entsprechend der Struktur von <u>**8a**</u> liegt auch <u>**8b**</u> als Kettenpolymer vor, in dem Ph_3Sn -Gruppen die SeO₃-Bausteine miteinander verknüpfen und auch in terminalen Positionen koordinieren.

Im Gegensatz zu <u>**8a**</u> ist die periphere Ph₃Sn-Gruppe in <u>**8b**</u> durch ein DMF-Molekül koordiniert. Die Auswirkungen auf die Sn–O- und Se–O-Bindungslängen im Vergleich zu <u>**8a**</u> sind relativ gering (Tab. 8), jedoch wird eine unterschiedliche Struktur ausgebildet.

	Se–O(term.)	Se–O(verbr.)	Sn–O(term.)	Sn–O(verbr.)	Sn–O(DMF)
89	1 721(7)	1,670(6);	2 037(7)	2,219(6);	_
<u>0a</u>	1,721(7)	1,683(6)	2,037(7)	2,241(6)	
8h	1 701(6)	1,666(5);	2 119(5)	2,204(5);	2 387(8)
	1,701(0)	1,682(5)	2,117(3)	2,222(5)	2,307(0)

Tab. 8.Ausgewählte Bindungslängen [Å] in <u>8a</u> und <u>8b</u>

In <u>**8b**</u> erfolgt die Ausrichtung der Kette entlang der kristallographischen c-Achse. Eine Translationseinheit der Kette beträgt ca. 20,706 Å, welches erwartungsgemäß der Gitterkonstanten in c-Richtung entspricht. Im Gegensatz zu <u>**8a**</u> sind die Se- und verbrückenden Sn-Atome nicht coplanar sondern helical angeordnet. (Abb. 25).

Abb. 25.Strukturausschnitt von <u>8b</u> mit eingezeichneter Elementarzelle und
Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %)

Die Koordinationsgeometrie der Se- und Sn-Atome ist analog zu <u>8a</u>, wobei das Sn-Atom der terminalen $Ph_3SnO(DMF)$ -Gruppe in trigonal-bipyramidaler Koordination vorliegt.

Sowohl in <u>8a</u> als auch in <u>8b</u> sind im Gegensatz zu <u>1</u> und <u>3</u> die Phenylgruppen der verbrückenden Ph₃Sn-Gruppen nicht propellerförmig angeordnet, was die jeweiligen OSnCC-Torsionswinkel (116°, 124°, 140° bzw. 38°, 48°, 89°) zeigen.

Im Vergleich der vCO-Schwingungen in den IR-Spektren von <u>8b</u>, <u>2</u> und <u>7</u> ist eine Korrelation zwischen der CO-Valenzschwingung und der Sn–O(DMF)-Bindungslänge in der terminalen $Ph_3Sn(DMF)$ -Gruppe zu erkennen. Wie Tab. 9 zeigt, entspricht eine Verlängerung der Sn–O-Bindung einer Zunahme der Wellenzahl im IR-Spektrum.

Verbindung	Bindungslänge R ₃ Sn····O=C(H)N(Me) ₂	vCO
$[(Bz_3Sn)_2MoO_4 \cdot DMF] \mathbf{\underline{2}}$	2,342(7)	1646
$[(Ph_3Sn)_2SeO_3 \cdot DMF] \underline{\mathbf{8b}}$	2,387(8)	1647
$[(Ph_3Sn \cdot DMF)(Ph_3Sn)(Ph_2SnOH)AsO_4]_2 \underline{7}$	2,546(3)	1654
DMF(in CCl ₄)	-	1687

Tab. 9.Sn–O(DMF)-Bindungslängen [Å] und vCO-Frequenzen [cm⁻¹] ausgewählterVerbindungen im Vergleich

Im Gegensatz zum [$(Ph_3Sn)_3AsO_3$] bildet [$(Ph_3Sn)_2SeO_3$] eine polymere Kettenstruktur aus. Dies lässt sich auf ein freies Sauerstoffatom der $(Ph_3Sn)_2SeO_3$ -Gruppen zurückführen, welches eine weitere Ph_3Sn-Einheiten koordiniert und dadurch eine supramolekulare Struktur aufgebaut wird.

Entsprechend <u>8a</u> und <u>8b</u> liegt $[(Me_3Sn)_2SeO_3 \cdot H_2O]$ [98] polymer vor und kristallisiert in der Raumgruppe P2₁/c. Gleichfalls wird eine Kettenstruktur mit verbrückenden und terminalen, durch H₂O koordinierten, Me₃Sn-Einheiten gebildet. Alle Sn-Atome zeigen damit eine trigonal-bipyramidale *trans*-C₃SnO₂-Geometrie. Das Se-Atom liegt wie in <u>8</u> in einer pyramidalen Koordination vor. Die Sn–O-Bindungen in der Kette mit 2,263(6) Å und 2,293(6) Å liegen im gleichen Bereich wie in <u>8a</u> und <u>8b</u>. Der Sn–O-Abstand zum koordinierten H₂O-Molekül ist mit 2,660(7) Å etwas länger als der Sn–O-Abstand zum koordinierten DMF-Molekül in <u>8</u>. Hierbei ist allerdings zu bedenken, dass die Wassermoleküle je zwei Wasserstoffbrücken zu den Sauerstoffatomen der SeO₃-Einheit ausbilden, was sowohl Einfluss auf die Se–O- als auch Sn–O-Bindungen hat.

Die zu <u>8a</u> bzw. <u>8b</u> analoge Schwefelverbindung [(Ph₃Sn)₂SO₃] kristallisiert ebenfalls als Kettenpolymer in der Raumgruppe P2₁/n [99]. Es werden für die verbrückenden, trigonalbipyramidal koordinierten Zinnatome Sn–O-Bindungslängen von 2,264(3) Å und 2,252(3) Å und für die terminale Gruppe 2,032(2) Å ermittelt. Man erkennt also, dass [(Ph₃Sn)₂SO₃] längere Sn–O-Abstände entlang der Kette enthält als (Ph₃Sn)₂SeO₃. Dies ist vermutlich auf den stärker ionischen Charakter des Sulfits zurückzuführen. Der Sn–O-Abstand in der terminalen Gruppe ist dagegen typisch für tetraedrisch koordinierte Ph₃SnO-Gruppen und steht mit dem aus <u>8a</u> in guter Übereinstimmung.

Die S-O-Bindungslängen sind mit Werten zwischen 1,511(3) Å und 1,519(3) Å in den verbrückenden bzw. 1,568(3) Å in den terminalen Segmenten deutlich kürzer als die Se-O-

Bindungslängen in <u>8a</u> und <u>8b</u>. Entsprechend den Erwartungen stellt man fest, dass eine Verkürzung der M–O-Abstände (M = S, Se) mit einer Verlängerung der Sn–O-Abstände einhergeht.

Bei analogen, Ph₃Sn-substituierten Verbindungen der Selensäure konnten bisher nur zwei Ph₄P⁺-Derivate kristallographisch untersucht werden, bei welchen es sich um $[(Ph_4P){(Ph_3Sn)(Ph_3SnX)(SeO_4)}]$ (X = Cl, Br) handelt [48]. Neben polymeren, kettenförmigen {(Ph₃Sn)(Ph₃SnX)SeO₄}⁻-Anionen liegen Ph₄P⁺-Kationen vor, welche sich zwischen den Strängen anordnen. Es wird jeweils eine Kette aus C₃SnO₂-Bipyramiden und SeO₄-Tetraedern gebildet, wobei jedes SeO₄-Tetraeder eine terminale C₃Sn(O)X-Bipyramide koordiniert.

Obwohl die Verbindungen ionisch aufgebaut sind, findet man ähnliche Sn–O-Abstände im Vergleich zu <u>8a</u> und <u>8b</u>. So liegen bei beiden Selenaten die Sn–O-Bindungslängen in den verbrückenden Segmenten zwischen 2,208(7) Å und 2,215(3) Å und in der terminalen Gruppe bei 2,276(3) Å bzw. 2,313(7) Å.

Bisher konnte also gezeigt werden, dass die Oxoanionen des Selens bei Umsetzungen mit R₃Sn-Einheiten bevorzugt Kettenstrukturen ausbilden. Netzwerke können über Wasserstoffbrückenbindungen der Lösungsmittelmoleküle realisiert werden. In ionisch aufgebauten Verbindungen liegen separierte Kationen und Anionenstränge vor.

3.2.10 Die Umsetzung von Ph₃SnOH mit Te(OH)₆

Nachdem Ph₃SnOH erfolgreich mit H₂SeO₃ umgesetzt wurde, bestand nun die Aufgabe darin, Ph₃Sn-Derivate der Tellursäure zu synthetisieren. Von der Tellursäure lassen sich hierbei Anionen der formalen Zusammensetzung $[TeO_6(H)_n]^{(6-n)-}$ ableiten. Da die Orthotellursäure als schwache Säure einzustufen ist (pK₁ = 7,70; pK₂ = 10,95), sollte es möglich sein, die Substitution der H-Atome durch Ph₃Sn-Gruppen sequenziell durchzuführen. Bei unvollständiger Substitution besteht die Möglichkeit zur Ausbildung supramolekularer Strukturen, wobei dies durch Koordination einer OH-Gruppen an das Sn-Atom einer anderen Einheit erfolgen könnte.

Die Umsetzungen von Ph₃SnOH bzw. (Ph₃Sn)₂O (Gl. 30 und 31) mit Te(OH)₆ im Sn-Te-Verhältnis 1:1 bis 6:1 resultierten aber immer in der Bildung der gleichen Verbindung, bei der es sich um [(Ph₃SnO)₄Te(OH)₂] <u>**9**</u> handelt.

$$4 \operatorname{Ph}_{3}\operatorname{SnOH} + \operatorname{Te}(\operatorname{OH})_{6} \longrightarrow [(\operatorname{Ph}_{3}\operatorname{SnO})_{4}\operatorname{Te}(\operatorname{OH})_{2}] + 4 \operatorname{H}_{2}\operatorname{O}$$
(Gl. 30)

$$2 (Ph_3Sn)_2O + Te(OH)_6 \longrightarrow [(Ph_3SnO)_4Te(OH)_2] + 2 H_2O$$
(Gl. 31)
9

Die Umsetzungen erfolgten im einem Dichlormethan-Wasser- bzw. Toluol-Wasser-Gemisch bei RT. Nachdem das organische Lösungsmittel abdestilliert wurde, konnte eine farblose, mikrokristalline Verbindung abfiltriert und aus Dichlormethan umkristallisiert werden. Dabei erhält man das *trans*-[(Ph₃SnO)₄Te(OH)₂] <u>**9a**</u> in Form prismatischer Stäbchen.

Ebenfalls konnte das entsprechende cis-[(Ph₃SnO)₄Te(OH)₂ · 3 H₂O] **9b** aus einem Überschichtungsexperiment erhalten werden. Hierzu wurde eine wässrige Lösung von Te(OH)₆ mit einer Lösung Ph₃SnOH in Toluol überschichtet. Nach ca. drei Wochen bildeten sich an der Phasengrenze der Lösungen farblose, kompakte Kristalle, die für eine Einkristallstrukturanalyse geeignet waren. Obwohl eine Vielzahl an Versuchen durchgeführt wurde, konnte **9b** nicht reproduziert werden, so dass nur die Kristalle dieser einen Umsetzung zur Charakterisierung genutzt werden konnten.

Das IR-Spektrum von <u>9a</u> zeigt die intensivste Bande bei 734 cm⁻¹, welche der TeO-Valenzschwingung zugeordnet wird. Dies stimmt mit den Literaturwerten für eine TeO₆-Einheit gut überein. So liegen im Li₆TeO₆ die Banden für die v_{as}-TeO bei 700 bzw. 640 cm⁻¹ [95].

In <u>**9a**</u> ist allerdings keine Aufspaltung der Bande erkennbar, da es in diesem Bereich zu einer Überlappung mit den γ CH-Gerüstschwingungen der Phenylgruppen kommt und somit nur ein breites Signal beobachtet werden kann. Im IR-Spektrum von (Ph₃Sn)₂O beispielsweise liegen die Banden der γ CH bei 695 und 723 cm⁻¹. In <u>**9a**</u> findet sich die niederfrequente Bande bei 697 cm⁻¹, wobei die Bande bei höheren Wellenzahlen nicht eindeutig zu identifizieren ist.

Für den Fall einer O_h -Symmetrie der Te O_6 -Gruppe wären nur zwei IR-aktive Banden zu erwarten. Allerdings ist eine Symmetrieerniedrigung zu D_{4h} anzunehmen, was im IR-Spektrum jedoch nicht zu erkennen ist. So kann die breite Bande bei 734 cm⁻¹ aus einer Überlagerung von zwei oder mehreren einzelnen Banden zusammengesetzt sein.

Die OH-Gruppen geben ein scharfes Signal bei 3553 cm⁻¹ und die Bande für die SnC-Valenzschwingung der Ph₃Sn-Gruppen liegt bei 446 cm⁻¹.

<u>**9a**</u> zeigt im ¹¹⁹Sn-NMR ein Signal bei $\delta = -114,2$ ppm mit einer Kopplungskonstanten von $\{{}^{2}J{}^{_{119}}Sn, {}^{_{125}}Te\} = 379$ Hz. Dies steht in guter Übereinstimmung mit den publizierten Daten für

trans-[(Bu₃SnO)₂{CH₂(Ph₂SnO)₂}₂Te] [100]. Die Verschiebung für den ¹¹⁹Sn-Kern liegt hier bei $\delta = 81,9$ ppm bzw. $\delta = 93,6$ ppm mit {²J¹¹⁹Sn, ¹²⁵Te} = 434 Hz und 504 Hz. Im ¹²⁵Te-NMR-Spektrum von **9a** ist nur ein Signal ohne Kopplungsmuster bei $\delta = 751,4$ ppm zu finden. Für *trans*-[(Bu₃SnO)₂{CH₂(Ph₂SnO)₂}₂Te] wird eine Verschiebung von $\delta = 712,5$ ppm bestimmt. Die Resonanzen der Phenylgruppen im ¹H-NMR-Spektrum liegen im Bereich zwischen $\delta =$ 7,1 und $\delta = 7,8$ ppm und das Signal für die beiden OH-Gruppen findet sich bei $\delta = 1,24$ ppm. In den IR-spektroskopischen Untersuchungen von **9b** und **9a** konnten keine gravierenden Unterschiede festgestellt werden.

Das ¹¹⁹Sn-NMR-Spektrum von <u>**9b**</u> dagegen zeigt zwei Signale bei $\delta = -113,2$ ppm bzw. $\delta = -118,3$ ppm und Kopplungskonstanten mit { ${}^{2}J_{{}^{119}Sn},{}^{125}Te}$ } = 372 Hz bzw. { ${}^{2}J_{{}^{119}Sn},{}^{125}Te}$ } = 375 Hz. Das Signalverhältnis von 1:1 spricht für ein *cis*-Isomer in Lösung.

Im ¹²⁵Te-NMR (500 MHz, 27 °C, C₆D₆) findet man ein Signal bei δ = 754,8 ppm, wobei hier keine Kopplungsmuster zu erkennen sind.

3.2.11 Die Strukturen von *trans*-[(Ph₃SnO)₄Te(OH)₂] (<u>9a</u>) und cis-[(Ph₃SnO)₄Te(OH)₂ · 3 H₂O] (<u>9b</u>)

Aus einer gesättigten Dichlormethanlösung kristallisiert <u>**9a**</u> triklin in Form kompakter Kristalle in der Raumgruppe $P\overline{1}$ mit einer Formeleinheit in der Elementarzelle.

In <u>**9a**</u> ist ein zentrales Te-Atom, welches sich auf einem kristallographischen Inversionszentrum befindet, zu erkennen. Es ist an vier Ph_3SnO -Gruppen und zwei, zueinander *trans*-ständige, OH-Gruppen gebunden (Abb. 26).

Abb. 26.Molekülstruktur von <u>9a</u> (ohne H-Atome) mit Schwingungsellipsoiden
(Aufenthaltswahrscheinlichkeit 50 %)

Die Te–O-Abstände zu den OSnPh₃-Gruppen sind mit 1,905(2) Å gleich lang und zur OH-Gruppe beträgt der Te–O-Abstand 1,937(3) Å. Da die Te–O-Abstände zu den OH-Gruppen größer sind als zu den Ph₃SnO-Gruppen und alle *cis*-O–Te–O-Winkel im Bereich von $88,7(1)^{\circ}$ bis 90,6(1)° liegen, kann man die TeO₆-Einheit also als gestrecktes TeO₆-Oktaeder beschreiben.

Die beobachteten Bindungslängen stimmen weitgehend mit Literaturwerten für eine isolierte TeO₆-Einheit überein, in welchen *trans*-ständige Liganden gleiche Bindungslängen aufweisen. So ergeben sich im [(Me₄Si₂O₃)₃Te] [101] Te–O-Abstände zwischen 1,878(7) Å und 1,927(7) Å. *Trans*-[(Bu₃SnO)₂{CH₂(Ph₂SnO)₂}₂Te] [100], welches die einzige weitere kristallographisch charakterisierte, organozinnsubstituierte Verbindung der Tellursäure ist, zeigt Te–O-Bindungslängen zwischen 1,907(3) Å und 1,915(3) Å.

Die Sn–O-Abstände in <u>**9a**</u> liegen zwischen 1,995(2) Å und 2,017(2) Å, so wie es für terminale Ph₃SnO-Gruppen üblich ist. In den Ph₃SnO-Einheiten werden variable O–Sn–C–C-Torsionswinkel beobachtet, wobei dies durch die Ausrichtung der OH-Gruppe der TeO₆-Einheit zu erklären ist. Die Sn–O–Te-Bindungswinkel liegen in einem engen Bereich zwischen 123,6(1)° - 126,6(1)°.

Im Gegensatz zur Tellursäure stellt sich in der Kristallstruktur von <u>9a</u> heraus, dass die einzelnen Moleküle untereinander nicht assoziiert sind, was für diese Verbindungsklasse ungewöhnlich ist. Erkennbar ist dies an den großen intermolekularen O····O-Abständen (6,713 Å) benachbarter Moleküle entlang der kristallographischen a-Achse (Abb. 27).

Abb. 27. Packung von <u>9a</u> im Kristall (nur *ipso*-Kohlenstoffatome) mit teilweise eingezeichneten TeO₆-Oktaedern

Das entsprechende cis-[(Ph₃SnO)₄Te(OH)₂ · 3 H₂O] (**<u>9b</u>**), kristallisiert ebenfalls in der Raumgruppe P1 mit zwei Formeleinheiten in der Elementarzelle. Wie auch in **<u>9a</u>** beobachtet man ein zentrales Te-Atom, welches vier Ph₃SnO-Gruppen und zwei OH-Gruppen koordiniert (Abb. 28). Die beiden OH-Gruppen befinden sich in *cis*-Stellung und verzerren die TeO₆-Einheit stärker als es in **<u>9a</u>** der Fall ist. Ergebnisse und Diskussion

Abb. 28. Molekülstruktur von <u>9b</u> mit Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %)

Die *cis*-O–Te–O-Winkel liegen zwischen 85,7(3)° und 95,6(3)°, wobei der kleinste Winkel von den Sauerstoffatomen der OH-Gruppen eingeschlossen wird und sich der größte Winkel zwischen den *trans* zu den OH-Gruppen stehenden OSnPh₃-Gruppen befindet. Die *trans*-O–Te–O-Winkel sind zwischen 172,8(2)° und 178,1(3)° nachzuweisen.

Die Te–O-Abstände können in zwei Gruppen eingeteilt werden. Für die Te–O-Bindung in den Te–O–Sn-Einheiten findet man Werte zwischen 1,867(6) Å und 1,910(5) Å, welche gut mit den Werten aus <u>**9a**</u> übereinstimmen. Die Te–O-Abstände zu den OH-Gruppen betragen 1,964(5) Å und 1,966(6) Å. Daraus ergibt sich wieder eine Deformation des TeO₆-Oktaeders. Die Sn–O-Abstände sind etwa gleich lang und liegen zwischen 1,996(5) Å und 2,011(6) Å. Für die Te–O–Sn-Winkel werden Werte zwischen 120,9(3)° und 126,4(3)° ermittelt, was den Erwartungen entspricht.

Abb. 29. Ausschnitt aus der Struktur von <u>9b</u> mit Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %) und eingezeichneter Elementarzelle (nur Te-, Sn- und O-Atome)

In Analogie zu <u>**9a**</u> besteht die Kristallstruktur von <u>**9b**</u> wieder aus isolierten $\{(Ph_3SnO)_4Te(OH)_2\}$ -Einheiten, zwischen denen keine Wasserstoffbrücken zu beobachten sind (Abb. 29). Die drei Wassermoleküle koordinieren weder die Sn-Atome, noch sind Wechselwirkungen mit den OH-Gruppen der $\{(Ph_3SnO)_4Te(OH)_2\}$ -Einheiten zu beobachten. Die interatomaren Abstände der O-Atome der Wassermoleküle betragen untereinander O7–O8 2,58(2) und O8–O9 3,03(2) und es ist daher von H-Brücken zwischen den Wassermolekülen auszugehen.

3.2.12 Darstellung und Struktur von trans-[(Ph₃SnO)₂Te(OMe)₄] (<u>10</u>)

Bei Versuchen $[(Ph_3SnO)_4Te(OH)_2]$ aus Methanol zu kristallisieren, wurde *trans*- $[(Ph_3SnO)_2Te(OMe)_4]$ (<u>10</u>) in ca. 70 %iger Ausbeute nach Gl. 32 als farblose Substanz erhalten.

$$(Ph_{3}SnO)_{4}Te(OH)_{2} + 4 MeOH \longrightarrow [(Ph_{3}SnO)_{2}Te(OMe)_{4}] + 2 Ph_{3}SnOH + 2 H_{2}O$$

$$\underline{10}$$
(Gl. 32)

In methanolischer Lösung werden also nicht nur die beiden OH-Gruppen verestert, sondern es kommt auch zur Eliminierung von zwei Ph₃Sn-Gruppen.

<u>10</u> war für spektroskopische Untersuchungen besser geeignet als <u>9a</u>. Es konnten NMRspektroskopische Untersuchungen an den Kernen ¹H, ¹³C, ¹¹⁹Sn als auch ¹²⁵Te durchgeführt werden. Das ¹²⁵Te-NMR-Spektrum zeigt ein Signal bei $\delta = 747,3$ ppm mit Kopplungskonstanten von {²J¹²⁵Te,¹¹⁷Sn} = 567 Hz und {²J¹²⁵Te,¹¹⁹Sn} = 593 Hz (Abb. 30). Die gleichen Kopplungskonstanten erhält man auch im ¹¹⁹Sn-NMR-Spektrum, wobei eine Verschiebung für den ¹¹⁹Sn-Kern von $\delta = -106,7$ ppm gemessen wird. Außerdem kann man weitere Satellitenpaare mit {²J ¹¹⁹Sn, ¹³C} = 48 Hz und {³J ¹¹⁹Sn, ¹³C} = 62 Hz beobachten.

Im ¹³C-NMR liegen die Signale der aromatischen Kohlenstoffatome bei $\delta = 140,6$ ppm, $\delta = 136,7$ ppm, $\delta = 129,4$ ppm bzw. $\delta = 128,2$ ppm und das Signal für die Methylgruppen bei $\delta = 54,1$ ppm. Das ¹H-NMR-Spektrum ergibt ein Signal für die Methylgruppen bei $\delta = 3,42$ ppm. Die Phenylgruppen zeigen dazu im Bereich zwischen $\delta = 7,2$ und $\delta = 7,8$ ppm ein Multiplett.

Abb. 30. 125 Te-NMR Spektrum von <u>10</u> in C₆D₆

Auch im IR-Spektrum von <u>10</u> stößt man wieder auf eine breite Bande für die TeO-Valenzschwingungen bei 764 cm⁻¹. Das Bandenpaar bei 736 cm⁻¹ und 697 cm⁻¹ kann den CH-Deformationsschwingungen der Phenylgruppen zugeordnet werden und die SnC-Valenzschwingung wird bei 447 cm⁻¹ beobachtet. Weiterhin befindet sich im Bereich zwischen 250 cm⁻¹ bis 1100 cm⁻¹ eine Vielzahl an Banden, die jedoch nicht eindeutig zugeordnet werden konnten.

Auch hier sollte die TeO₆-Einheit in einer D_{4h}-Symmetrie vorliegen, wobei zwei IR-aktive Te–O-Valenzschwingungen im gleichen Frequenzbereich zu beobachten wären. Die einzelne, breite Bande in <u>10</u> kann so als eine Überlagerung von zwei eng beieinander liegenden Banden interpretiert werden, die nicht einzeln aufgelöst werden können.

In einer massenspektrometrischen Untersuchung von <u>10</u> fehlt das Signal bei m/z = 984, welches der Molekülmasse entsprechen würde. Die Signale mit dem größten m/z-Verhältnis findet man bei m/z = 969, 953 und 907. Dies entspricht [M⁺–Me], [M⁺–OMe]; [M⁺–Ph –Me]. Weitere charakteristische Signale liegen bei m/z = 573 [TeO₆(SnPh₃)]⁺, 511 [TeO₂(SnPh₃)]⁺ 351 [Ph₃Sn]⁺, 274 [Ph₂Sn]⁺, 197 [PhSn]⁺, 154 [Ph₂]⁺, 120 [Sn]⁺ und 77 [Ph]⁺.

Abb. 31. Ergebnis der thermogravimetrischen Untersuchung von <u>10</u>

Demnach ist <u>10</u> bis etwa 200 °C stabil. In einem Temperaturintervall zwischen 200 - 500 °C gehen ca. 73 % der Masse verloren, wobei kein Schmelzpunkt zu erkennen ist. Dies zeigt, dass auch flüchtige metallorganische Verbindungen (flüchtige Zinnverbindungen) abgespalten werden. Die verbleibenden 27 % bei einer Temperatur von 490 °C könnten einem Tellur-Zinn-Verhältnis von ungefähr 1:1 entsprechen, wobei noch ein O-Atom im Gemisch verbleiben sollte, was also einer Substanz der formalen Zusammensetzung SnTeO entspricht. Zinn(IV)-oxitelluride sind in der Literatur noch nicht beschrieben. Allerdings wurde eine Verbindung des Typs UTeO bereits 1964 durch Pulverdiffraktometrie untersucht [102]. Vergleichbare Verbindungen des Typs M₂O₂Te (M = z. B. La-Nd, Sm-Ho) sind dagegen aber häufiger zu finden [103].

Kristalle von <u>10</u> erhält man nach mehreren Tagen aus einer methanolischen Lösung von <u>9</u> in Form klarer, farbloser Plättchen. In der triklinen Elementarzelle (Raumgruppe $P\bar{1}$) befinden sich zwei kristallographisch unabhängige Moleküle, wobei sich die Te-Atome durch ihre speziellen Lagen auszeichnen (Abb. 32).

Abb. 32.Elementarzelle von <u>10</u> mit den zwei kristallographisch unabhängigenMolekülen; Schwingungsellipsoide (Aufenthaltswahrscheinlichkeit 50 %)

Die Te-Atome befinden sich jeweils auf einem kristallographischen Inversionszentrum und sind an vier MeO-Gruppen und zwei *trans*-ständige OSnPh₃-Einheiten koordiniert (Abb. 33). In <u>10</u> liegen die Te-O-Abstände zu den Methoxygruppen zwischen 1,922(3) Å und 1,945(4) Å. Der Abstand zum Sauerstoffatom der Ph₃SnO-Gruppen beträgt Te1–O1 1,879(3) Å bzw. Te2–O4 1,884(3) Å mit einem Sn–O-Abstand von Sn1–O1 2,006(3) Å bzw. Sn2–O4 2,014(3) Å, welches mit den Werten aus <u>9a</u> und <u>9b</u> übereinstimmt.

Abb. 33. Molekülstruktur von <u>10</u> mit Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %)

Im Vergleich der Te–O-Bindungslängen von <u>9a</u>, <u>9b</u> und <u>10</u>, ist festzustellen, dass die OHbzw. MeO-Gruppen die längeren und die OSnPh₃-Gruppen die kürzeren Abstände aufweisen (Tab. 10).

Tab. 10. Ausgewählte Te–O-Abstände [Å] von <u>9a</u>, <u>9b</u> und <u>10</u>

Verbindung	Te–OH	Te–OMe	Te–OSnPh ₃
<u>9a</u>	1,937(2)	-	1,905(2)
<u>9b</u>	1,964(5) - 1,966(6)	-	1,867(6) - 1,910(5)
<u>10</u>	-	1,922(3) - 1,945(4)	1,879(3) - 1,884(3)

Bedingt durch die kristallographische P1-Symmetrie betragen die O–Te–O-Bindungswinkel für alle *trans*-ständigen Sauerstoffatome 180°, die Werte für die *cis*-O–Te–O-Winkel liegen zwischen $88,3(1)^{\circ}$ und $91,8(1)^{\circ}$.

Man findet Te–O–Sn-Winkel von 119,6(3)° und 123,1(3)°. Die zueinander *trans*-ständigen OSnPh₃-Gruppen beeinflussen jeweils zwei MeO-Gruppen in ihrer Ausrichtung bezüglich der Ebene die aus den Sauerstoffatomen der Methoxygruppen aufgespannt wird. Hieraus ergeben sich zwei Paare von cis-ständigen MeO-Gruppen mit gleicher Ausrichtung ihrer Methylgruppe. *Trans*-ständige MeO-Einheiten zeigen eine anti-periplanare Ausrichtung der

Methylgruppen bezüglich der O-Te-O-Achse.

In der Kristallstruktur von <u>10</u> liegen zwei symmetrieunabhängige Moleküle vor. Sie weisen praktisch identische Bindungslängen und -winkel auf, unterscheiden sich jedoch in der Ausrichtung einer Ph₃Sn-Gruppe. Man erkennt die unterschiedliche Orientierung der C₆-Ringe an den O–Sn–C–C-Torsionswinkeln, die an Sn1 0,4(4)°; 53,1(4)° bzw. 95,0(4)° und an Sn2 5,0(4)°; 38,7(4)° bzw. 72,1(4)° betragen (Abb. 34).

Den Erwartungen gemäß stellt man fest, dass durch die Drehung eines Phenylrings die Bindungssituation gleichartiger Moleküle nur unwesentlich verändert wird.

Abb. 34. Orientierung der Phenylgruppen in <u>10</u> (Blickrichtung entlang der Sn–O-Bindung)

Verbindung	M-O(M = Si Sn)	Te–OM (M =
verbindung		Si, Sn)
$[(Me_sSi_2O_2)_2Te][102]$	1 648(7) - 1 708(7)	1,878(7) –
	1,040(7) - 1,700(7)	1,927(7)
$trans-[(Bu_3SnO)_2\{CH_2(Ph_2SnO)_2\}_2Te]$	1 082(3): 1 086(3): 2 015(3)	1,907(3) –
[101]	1,762(5), 1,760(5), 2,015(5)	1,915(3)
Qa	1 995(2): 2 017(2)	1,905(2)
<u>7a</u>	1,775(2), 2,017(2)	
01-	1 996(5): 2 011(6)	1,867(6);
<u>20</u>	1,770(5), 2,011(0)	1,910(5)
<u>10</u>	2.006(4), 2.014(2)	1,879(3);
	2,000(4), 2,014(3)	1,884(3)

Tab. 11.M-O-Bindungslängen [Å] (M = Si, Sn, Te) ausgewählter Verbindungen im
Vergleich

Der Vergleich von Verbindungen mit einer TeO₆-Einheit (Tab. 11) untereinander zeigt, dass sich sowohl Sn–O- als auch Te–O-Abstände im gleichen Bereich befinden.
3.3 Umsetzungen von Ph₃SnOH mit Alkoxiden und Silylamiden

Im folgenden Abschnitt soll auf das Reaktionsverhalten von Ph₃SnOH gegenüber Verbindungen des Typs $M(OR)_n$ (M = Ti, Fe, Cu; R = Me, ^{*i*}Pr, ^{*t*}Bu) und $M[N(SiMe_3)_2]_2$ (M = Zn, Pb, Co) eingegangen werden.

Ph₃SnOH sollte durch die Umsetzung mit Metallalkoxiden (z. B. TiOⁱPr)₄ oder mit Metallamiden (z. B. Pb[N(SiMe₃)₂]₂) unter der Abspaltung von ROH oder HN(SiMe₃)₂ deprotoniert werden. Diese Reaktionen erfordern inerte Bedingungen in wasserfreien Lösungsmitteln, da sowohl die Ausgangsstoffe als auch die Reaktionsprodukte stark hydrolyseempfindlich sind.

3.3.1 Die Umsetzung von Ph₃SnOH mit Ti(OⁱPr)₄

Bereits 1959 berichtete COHEN über die Synthese von $[Ti(OSnPh_3)_4]$, das durch Umsetzung von Ph₃SnOH mit Ti $(O^nBu)_4$ in Benzol entsteht [51]. Das Produkt wurde als ein weißes Pulver mit einem Schmelzpunkt von 215 - 216 °C in 20 %iger Ausbeute erhalten. Weiterhin wurde eine Elementaranalyse durchgeführt, sowie der Ti- und Sn-Gehalt bestimmt.

Auf der Basis dieser Ergebnisse wurden eigene Untersuchungen durchgeführt, wobei Lösungsmittel und Reaktionsdurchführung optimiert wurden. Die Umsetzung von $Ti(O^iPr)_4$ mit Ph₃SnOH in einem Hexan-THF-Gemisch liefert in guter Ausbeute [Ti(OSnPh₃)₄] <u>11</u> (Gl. 33). <u>11</u> wird als weißes, farbloses Pulver mit einem Schmelzpunkt von 227 - 230 °C erhalten. Es ist mäßig luftstabil und färbt sich nach einigen Wochen an der Luft leicht grau.

$$4 \operatorname{Ph}_{3}\operatorname{SnOH} + \operatorname{Ti}(O^{i}\operatorname{Pr})_{4} \longrightarrow [\operatorname{Ti}(\operatorname{OSnPh}_{3})_{4}] + 4 \operatorname{HO}^{i}\operatorname{Pr}$$
(Gl. 33)
11

Der Reaktionsverlauf kann bei der Umsetzung nach Gl. 33 sehr gut NMR-spektroskopisch verfolgt werden. Im ¹H-NMR-Spektrum der Reaktionslösung finden sich nach einer Reaktionszeit von 2 h bei RT oder unter Rückfluss die Signale von Isopropanol. Im ¹¹⁹Sn-NMR-Spektrum sind mehrere Signale zu erkennen, die unter anderem Ph₃SnOH ($\delta = -82$ ppm) und (Ph₃Sn)₂O ($\delta = -83$ ppm) zugeordnet werden konnten.

Dies zeigte, dass es nötig war die Reaktionsbedingungen weiter zu verbessern. Im Verlauf der Untersuchungen sollte sich herausstellen, dass die besten Synthesebedingungen gegeben sind, wenn die Zinnkomponente langsam zu einer gekühlten Lösung der Titanverbindung in THF-Hexan zugetropft wird. Es ist weiterhin zu bemerken, dass die Reaktionslösung während der gesamten Durchführung farblos bleibt. Die Bildung brauner Niederschläge, wie bei COHEN beschrieben, wird nicht beobachtet.

Das ¹¹⁹Sn-NMR (C₆D₆) von frisch synthetisiertem <u>11</u> zeigt nur ein Signal bei $\delta = -112,1$ ppm. Man erkennt im Spektrum Satellitensignale mit einer Kopplungskonstanten von {²J ¹¹⁹Sn, ¹³C} = 45 Hz; {³J ¹¹⁹Sn, ¹³C} = 62 Hz.

Die NMR-Spektren von <u>11</u> zeigen eine Lösungsmittelabhängigkeit. So beträgt die Verschiebung für den ¹¹⁹Sn-Kern in Chloroform $\delta = -114,8$ ppm und in THF $\delta = -119,8$ ppm. In allen drei Fällen ist aber nach wenigen Stunden die Bildung von (Ph₃Sn)₂O zu beobachten, das NMR-spektroskopisch nachgewiesen werden konnte.

Im ⁴⁷Ti-NMR-Spektrum (TiCl₄ in CCl₄ als Standard) von <u>**11**</u> ist ein Signal bei ca. δ = 330 ppm zu beobachten (Abb. 35). Aufgrund des Quadrupolmoments von ⁴⁷Ti (I = 5/2) ist das Signal relativ breit. Weiterhin zeichnet sich der ⁴⁷Ti-Kern durch eine geringe Empfindlichkeit, mit einem gyromagnetischen Verhältnis von γ = 1,508 · 10⁷ rad T⁻¹s⁻¹ und einer natürlichen Häufigkeit von 7,4 %, aus [104].

<u>11</u> zeigt im IR-Spektrum die intensitätsstärkste Bande, die einer vTiO-Schwingung zugeordnet werden kann, bei 782 cm⁻¹ mit einer Schulter bei 815 cm⁻¹. Ideale T_d-Symmetrie für die TiO₄-Einheit sollte zu zwei aktiven IR-Banden der Rasse F₂, einer Valenzschwingung (v_{as}) bei größeren Wellenzahlen und eine Deformationsschwingung (δ_{as}) bei tieferen Wellenzahlen, führen. Aufgrund des IR-Spektrums also, könnte von einer tetraedrischen TiO₄-Einheit ausgegangen werden, da nur eine Valenzschwingung zu beobachten ist. Die Deformationsschwingung ist aufgrund der Intensitätsschwäche häufig nicht zu beobachten.

Die Bande der vTiO-Schwingung in <u>11</u> ist allerdings im Vergleich zu den Titanalkoxiden $Ti(OR)_4$ (R = Et, ^{*i*}Pr; vTiO : 625 bzw. 619 cm⁻¹) und zu [Ti(OSiMe₃)₄] (vTiO : 517 cm⁻¹) zu höheren Wellenzahlen verschoben [105].

Weiterhin werden die CH-Deformationsschwingungen bei 697 und 733 cm⁻¹, sowie die vSnC-Schwingung bei 447 cm⁻¹ beobachtet.

In einer thermogravimetrischen Untersuchung wurde festgestellt, dass sich <u>11</u> unter Abspaltung der Phenylgruppen zu einem weißgrauen Zinn-Titan-Oxidgemisch zersetzt. Im verbleibenden Pulver konnte Zinn(IV)-oxid neben anderen kristallinen Bestandteilen durch Pulverdiffraktometrie nachgewiesen werden. Der Massenverlust beträgt ca. 65 % und verläuft in zwei Stufen. Bis 240 °C findet man einen Massenverlust von 3%, anschließend folgt bis 440 °C die Abspaltung weiterer Bestandteile bis 35 % der Masse verbleiben, das etwa einem Zinn/Titan-Oxidgemisch entsprechen sollte. Ab 800 °C gehen weitere 4 % an Masse verloren, womit bei 1000 °C nur noch 30 % der Ausgangsmasse vorliegen. In Abb. 36 ist das Ergebnis der thermogravimetrischen Untersuchung abgebildet.

Abb. 36. Ergebnis der thermogravimetrischen Untersuchung von <u>11</u>

In der Literatur sind bisher nur drei Verbindungen mit Ti–O–Sn-Strukturfragmenten kristallographisch untersucht wurden. Es handelt sich hierbei um die Sn(II)-Verbindungen $[{SnTi}_2(O^iPr)_9](SnCl_3)]$ [106] und $[(\mu-ONep)_2Sn_3(\mu-THME)_2Ti(ONep)_2]$ (Nep = Neopentyl, THME = Tri(hydroximethyl)-ethan) [107], sowie die Sn(IV)-Verbindung [I₂Sn{Ti}(OⁱPr)₅}_2]

[108]. Die genannten Verbindungen wurden dabei durch Umsetzung von Zinnhalogeniden mit Titanalkoxiden synthetisiert.

3.3.2 Die Struktur von [Ti(OSnPh₃)₄] (<u>11</u>)

<u>11</u> kristallisiert trigonal in der Raumgruppe R3mit 6 Formeleinheiten in der Elementarzelle. Im Kristall liegen diskrete Moleküle vor, die lediglich van-der-Waals-Kontakte aufweisen. Abb. 37 verdeutlicht, dass <u>11</u> ein zentrales Ti-Atom enthält, das von vier Ph₃SnO-Gruppen nahezu tetraedrisch koordiniert ist. Ti, Sn1 und O1 befinden sich dabei auf einer dreizähligen kristallographischen Drehachse.

Abb. 37.Molekülstruktur von <u>10</u> (ohne H-Atome) mit Schwingungsellipsoiden
(Aufenthaltswahrscheinlichkeit 50 %)

Dies bedingt, dass in <u>11</u> drei gewinkelte und eine lineare Ti–O–Sn-Einheit vorliegen. Beim Blick entlang der kristallographischen c-Achse erkennt man die Vorzugsrichtung in der TiO₄-Einheit, welche durch die lineare Ti–O–Sn-Einheit (Ti–O1–Sn1) ausgezeichnet ist, wohingegen die übrigen drei Ti–O–Sn-Gruppen einen Ti–O–Sn-Winkel von ungefähr 137° einschließen. Als Koordinationspolyeder für die Metallatome ergeben sich ein TiO₄-Tetraeder und vier C_3 SnO-Tetraeder. Aufgrund der Verzerrung des TiO₄-Tetraeders kann man auch von der Geometrie einer trigonalen Pyramide sprechen, welche die Hauptachse entlang der kristallographischen c-Achse ausbildet und in deren Zentrum sich das Ti-Atom befindet. Entlang der linearen Ti–O–Sn-Einheit beträgt der Ti–O-Abstand 1,774(4) Å. Die drei übrigen Ti–O-Bindungen sind mit 1,795(2) Å gleich lang. Entsprechend beträgt ein Sn–O-Abstand (Sn1–O1) 1,927(4) Å und die drei weiteren 1,964(2) Å. Hierzu muss allerdings gesagt werden, dass das Schwingungsellipsoid des linear koordinierten O-Atoms überdurchschnittlich groß ausfällt, was auch auf eine Fehlordnung hinweisen könnte.

Die Sn–C-Bindungslängen betragen in den gewinkelten Einheiten 2,122(3) Å bis 2,132(3) Å und in der Gruppe mit linearer Ti–O–Sn-Anordnung 2,141(3) Å.

Die O–Ti–O-Winkel (109,46(8) - 109,49(8)°) liegen alle im Bereich des idealen Tetraederwinkels und es sind nur geringe Abweichungen der Werte untereinander zu beobachten.

11 ist isostrukturell zu der analogen Si- und Ge-Verbindung wie Tab. 12 zeigt [52].

	[Ti(OSiPh ₃) ₄]	[Ti(OGePh ₃) ₄]	<u>11</u>
Raumgruppe	R3	R3	R3
Zellparameter	18,930(5);	19,131(2);	19,385(2);
[a; c in [Å]	29,014(8)	29,3810(14)	29,809(5)
Ti–O-Abstände [Å]	3×1,782(4)	3 × 1,796(5)	3 × 1,795(2)
	$1 \times 1,798(7)$	$1 \times 1,788(10)$	$1 \times 1,774(4)$
	3 × 1,650(4)	3 × 1,777(5)	3 × 1,964(2)
M-O-Abstande [A]	1 × 1,613(7)	1 × 1,752(9)	1 × 1,927(4)
O–Ti–O-Winkel [°]	109,2(1) - 109,8(1)	109,2(2) - 109,7(2)	109,46(8) - 109, 49(8)
M O T: Winkel [°]	3×148,2(3)	3 × 142,3(3)	3×136,8(1)
$W = O = 11 - W \text{ Inker} \begin{bmatrix} 1 \end{bmatrix}$	1×180	1×180	1×180

Tab. 12.Ausgewählte Bindungsparameter von Verbindungen des Typs $Ti(OMPh_3)_4$ (M = Si, Ge, Sn)

Entsprechend den von Si bis Sn zunehmenden Atomradien steigt auch die Größe der Elementarzelle an. Die drei Beispiele zeigen ähnliche Ti-O-Bindungslängen mit jeweils

einem linearen Ti–O–M-Bindungswinkel. Auch ist die M–O-Bindung entlang der linearen Baugruppe kürzer als in den gewinkelten Varianten.

Die TiO₄-Einheit ist in allen drei Verbindungen in Bezug auf die O–Ti–O-Winkel nahezu perfekt. Der M–O–Ti-Bindungswinkel in den gewinkelten Einheiten nimmt von der Si- über die Ge- bis hin zur Sn-Verbindung linear ab.

Festzustellen ist, dass sich <u>11</u> kristallographisch analog zu der entsprechenden Si- und Ge-Verbindung verhält und die Linearisierung einer Ti–O–M-Einheit möglicherweise auf sterische Wechselwirkungen der Phenylgruppen zurückzuführen ist. So werden lineare Ti–O– M-Einheiten auch beispielsweise in $[(c-Hex)_7Si_7O_{12}TiOSiMe_3]$ [109] und in $[N(C_2H_4O)_3TiOSiPh_3]$ [110] beobachtet. In beiden Fällen handelt es sich allerdings um Komplexe in denen das Titan an unterschiedliche Substituenten gebunden ist.

Liegen nur gleichartige Substituenten vor, zeigen tetraedrisch koordinierte Titanverbindungen eine gleichmäßigere Verteilung der Ti–O–M-Winkel. So werden im $[{(NH_2)(^tBu)_2SiO)_4Ti}]$ vier gleiche Ti–O–Si-Winkel von ca. 171° beobachtet [111]. Im $[(^tBuPh_2SiO)_4Ti]$ liegen dagegen zwei unterschiedliche Ti–O–Si-Winkel mit 175,4(2)° und 166,5(2)° vor [112].

3.3.3 Die Struktur von Ph₃SnO'Pr (<u>12</u>)

Ph₃SnO'Pr ist eine literaturbekannte Verbindung und konnte unter anderem zur Darstellung von [(Ph₃Sn)₃AsO₃] [74] synthetisch genutzt werden.

Da aber noch keine Untersuchungen zur Kristallstruktur bekannt waren, konnte dies im Rahmen der eigenen Arbeit durchgeführt werden.

<u>**12**</u> kristallisiert in der Raumgruppe P2₁cn mit 4 Formeleinheiten in der Elementarzelle. Formal wird <u>**12**</u> als ein Nebenprodukt der Umsetzung von $Ti(O^{i}Pr)_{4}$ mit Ph₃SnOH (Gl. 34) gebildet.

$$Ph_3SnOH + Ti(O^iPr)_4 \longrightarrow Ph_3SnO^iPr + (^iPrO)_3TiOH$$
 (Gl. 34)

Läst man eine Lösung von Ti $(O^{i}Pr)_{4}$ in Hexan und eine Lösung von Ph₃SnOH in Benzol in einem dünnen Schlenkgefäß ineinander diffundieren, so erhält man nach ca. vier Tagen an der Grenzschicht der Lösungen säulenförmige Kristalle der Zusammensetzung Ph₃SnO^{*i*}Pr <u>12</u> (Abb. 38). Dabei befindet sich das Zinnatom erwartungsgemäß in tetraedrischer Umgebung.

Abb. 38.Molekülstruktur von <u>12</u> mit Schwingungsellipsoiden (Aufenthaltswahr-
scheinlichkeit 50 %)

Im Gegensatz zum [Ph₃SnOMe · 1,5 MeOH] [61] oder [Ph₃SnO^{*i*}Bu · ^{*i*}BuOH] [113], die eindimensionale Kettenpolymere bilden, liegen in <u>12</u> isolierte Moleküle vor. Dies muss auf die größere Raumerfüllung der OCH(CH₃)₂-Gruppe zurückzuführen sein.

Der Sn–O-Abstand beträgt 1,972(4) Å und befindet sich im zu erwartenden Bereich für eine terminale Ph₃SnO-Gruppe. Die O–C-Bindungslänge beträgt 1,399(8) Å und für den damit einhergehenden Sn–O–C-Winkel findet man einen Wert von 123,9(4)°. Weiterhin liegen die Sn–C-Bindungslängen im Bereich von 2,124(6) Å bis 2,137(5) Å, was den Werten entspricht, die auch beim Ph₃SnOMe gefunden wurden.

3.3.4 Die Umsetzung von Ph₃SnOH mit [(MeO)₂Ti(acac)₂]

Nachdem die Umsetzung von Ph₃SnOH mit Ti(OⁱPr)₄ zu der monomeren Verbindung [Ti(OSnPh₃)₄] (<u>11</u>) geführt hat, sollte nun versucht werden weitere Ph₃Sn-substituierte Ti-Komplexe darzustellen. Dazu wurde [(ⁱPrO)₂Ti(acac)₂] bzw. [(MeO)₂Ti(acac)₂] (<u>13</u>) mit Ph₃SnOH in THF umgesetzt. Da bereits Synthesen für <u>13</u>, ausgehend vom [Ti(OⁱPr)₄],

beschrieben waren [114], aber die Struktur noch nicht aufgeklärt werden konnte, sollte dies im Verlauf der Untersuchungen geschehen.

Setzt man [(MeO)₂Ti(acac)₂] oder [(^{*i*}PrO)₂Ti(acac)₂] mit Ph₃SnOH um, kann in beiden Fällen der gebildete Alkohol (MeOH, ^{*i*}PrOH) abdestilliert und NMR-spektroskopisch identifiziert werden. Im Reaktionsgefäß verbleibt jeweils ein gelbes Öl, für welches im ¹¹⁹Sn-NMR mehrere Signale zu beobachten sind.

Im Fall der Umsetzung nach Gl. 35 wurde die ölige Substanz in THF gelöst und es konnten nach zwei Wochen bei -25 °C hellgelbe, kompakte Kristallplättchen der Zusammensetzung [{(Ph₃SnO)Ti(acac)₂}₂O] <u>14</u> isoliert werden.

$$2 [(MeO)_2Ti(acac)_2] + 4 Ph_3SnOH \longrightarrow [{(Ph_3SnO)Ti(acac)_2}_2O] + 4 MeOH + (Ph_3Sn)_2O$$

$$\underline{13} \qquad \underline{14} \qquad (Gl. 35)$$

Im IR-Spektrum von <u>14</u> findet sich eine Vielzahl an Banden die teilweise stark überlappen, was eine genaue Zuordnung schwierig macht. Die intensitätsstarken Banden bei 770 und 843 cm^{-1} könnten vTiO-Schwingungen zugeordnet werden. Die Acetylacetonatgruppen ergeben intensive vCO-Banden bei 1380 cm⁻¹, 1519 cm⁻¹ und 1587 cm⁻¹. Die SnC-Valenzschwingung zeigt eine Bande bei 454 cm⁻¹.

NMR-spektroskopische Untersuchungen dieser kristallinen Verbindung stellten sich allerdings als ergebnislos heraus, da sowohl im ¹¹⁹Sn-NMR als auch im ¹³C-NMR mehrere Signale beobachtet wurden, wobei eine genaue Zuordnung nicht erfolgen konnte. So wurden beispielsweise bei Untersuchung des ¹¹⁹Sn-Kerns mehrere Signale in einem Bereich zwischen $\delta = 50$ und $\delta = -220$ ppm beobachtet werden. Dies mag daran liegen, dass <u>14</u> schlecht zu kristallisieren ist und sich die Kristalle nicht vollständig von öligen Rückständen befreien ließen.

3.3.5 Die Struktur von [(MeO)₂Ti(acac)₂] (<u>13</u>)

Häufig liegen Verbindungen der titanhaltigen Acetylacetonatkomplexe als Öle vor, aber in einem Fall war es möglich <u>13</u> durch Überschichten einer Toluol-Lösung mit Hexan in Form

gelber Stäbchen zu erhalten. Dabei kristallisiert <u>13</u> triklin in der Raumgruppe P1 mit drei unabhängigen Molekülen in der asymmetrischen Einheit (Abb. 39).

Abb. 39.Elementarzelle von 13 mit zwei Paaren von drei unabhängigen Molekülen mit
Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %)

Die einzelnen Moleküle unterscheiden sich nur geringfügig in der Anordnung ihrer Substituenten, was sich in den Ausrichtungen der Methoxy- und Acetylacetonatgruppen äußert (Abb. 40).

Die Ti-Atome sind jeweils oktaedrisch von zwei Acetylacetonat- und zwei Methoxygruppen koordiniert. Bei der TiO₆-Einheit liegen die O–Ti–O-Bindungswinkel für *cis*-ständige O-Atome zwischen 83° und 101° und für die entsprechende *trans*-Anordnung zwischen 167° und 171°. Die MeO-Gruppen ordnen sich in *cis*-Stellung zueinander an (Abb. 23) und weisen O–Ti–O-Winkel zwischen 98,3(1)° und 100,3(1)° auf. Dabei betragen die Ti–O-Abstände 1,783(3) Å - 1,808(3) Å.

Abb. 40. Strukturmodell von <u>13</u> mit Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %)

Im Gegensatz dazu sind die Ti–O-Abstände zu den Acetylacetonatgruppen deutlich länger und liegen zwischen 1,977(4) Å und 2,085(3) Å. Für die Koordination der Acetylacetonatgruppen betragen die O–Ti–O-Winkel ca. 83°.

Die Ti–O-Bindungslängen zu den Acetylacetonatgruppen sind im Vergleich zum $[Cl_2Ti(acac)_2]$ (1,930(7) Å - 1,973(7) Å), welches ebenfalls in einer *cis*-Konformation vorliegt, etwas größer [115]. Dies ist auf den unterschiedlichen Einfluss von Cl- bzw. MeO-Substituenten zurückzuführen. Wie auch <u>13</u> ist $[Cl_2Ti(acac)_2]$ häufig als Öl angefallen und ließ sich nur schlecht kristallisieren.

Einkernige Verbindungen des Typs $[(RO)_2Ti(acac)_2]$ sind kristallographisch bisher nicht charakterisiert wurden, allerdings existieren dinukleare Komplexe des Typs $[{Ti(OR)_3(acac)}_2]$ (R = Me, Et, Pr) [114]. Im $[{Ti(OMe)_3(acac)}_2]$ beispielsweise werden zwei Ti(OMe)_2(acac)-Einheiten durch zwei OMe-Gruppen miteinander verknüpft. Dabei ergibt sich das Strukturmotiv von zwei kantenverknüpften TiO₆-Oktaedern. Die Ti–O-Abstände liegen dabei zwischen 1,804(1) Å und 2,017(1) Å, was den Werten von <u>13</u> entspricht.

3.3.6 Die Struktur von [{(Ph₃SnO)Ti(acac)₂}₂O] (<u>14</u>)

Wird eine Lösung von <u>14</u> in THF mit Heptan überschichtet, so bilden sich nach zwei Wochen bei -25 °C große, hellgelbe Kristalle in Form von dünnen, länglichen Plättchen. <u>14</u> kristallisiert in der Raumgruppe P2₁/n mit 2 Formeleinheiten in der Elementarzelle.

<u>14</u> besteht aus je zwei Ti-Atomen, die durch ein gemeinsames Sauerstoffatom, welches sich auf einem kristallographischen Inversionszentrum befindet, miteinander verbunden werden (Abb. 41). Zusätzlich ist jedes Ti-Atom an zwei Acetylacetonatgruppen und eine $Ph_3SnO-Einheit$ gebunden.

Abb. 41. Molekülstruktur von <u>14</u> mit Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %)

Bei der Betrachtung der Ti–O-Abstände zu den acac-Gruppen stellt man fest, dass diese mit 1,992(4) Å bis 2,098(4) Å denen aus <u>12</u> entsprechen. Der Ti–O-Abstand zum zentralen Sauerstoffatom beträgt 1,818(1) Å und das Sauerstoffatom der terminalen Organozinngruppen weist zum Titanatom einen deutlich kürzeren Abstand von 1,786(4) Å auf. Der Sn–O-Abstand von 1,979(4) Å und der Sn–O–Ti-Winkel von 136,6(2)° liegen im üblichen Bereich. In der Ti–O–Sn-Brücke stimmt der Ti–O-Abstand mit dem in [Ti(OSnPh₃)₄] (<u>11</u>) gut überein, obwohl das Ti-Atom in <u>10</u> tetraedrisch und in <u>14</u> oktaedrisch koordiniert ist. Der Sn–O-

Abstand ist in <u>10</u> allerdings etwas kürzer als in <u>14</u>, was wahrscheinlich auf sterische Einflüsse sowie die unterschiedliche Koordinationszahl des Ti zurückzuführen ist.

Die C–O-Abstände der acac-Gruppen liegen zwischen 1,267(7) Å und 1,298(7) Å und somit auch im üblichen Bereich.

Für den O–Ti–O-Winkel der Ti(acac)₂-Gruppen werden $82,6(2)^{\circ} - 81,9(1)^{\circ}$ gemessen, wobei diese mit den Literaturwerten für [{Ti(acac)₂O}{OSi(C₆H₅)₂}₃] [116] und mit <u>12</u> in guter Übereinstimmung stehen.

Das Polyedermodel von <u>14</u> zeigt zwei eckenverknüpfte TiO₆-Oktaeder, die über ein gemeinsames Sauerstoffatom miteinander verbunden sind (Abb. 42). Jeweils in *cis*-Stellung zum verbrückenden Sauerstoffatom wird eine Ph_3Sn -Gruppe in Form eines C₃SnO-Tetraeders koordiniert. Über die verbleibenden Koordinationsstellen der TiO₆-Oktaeder werden die Acetylacetonat-Gruppen koordiniert.

Die TiO_6 -Oktaeder liegen allerdings recht stark verzerrt vor, wobei die Titanatome im Zentrum in Richtung der verbrückenden O-Atome verschoben sind.

Abb. 42. Zentraleinheit von <u>14</u> in Polyederdarstellung (TiO₆-Oktaeder hell; C₃SnO-Tetraeder dunkel)

In den Verbindungen [{Ti(OⁿPr)₃(tmhd)}₂] (tmhd = 2,2,6,6-Tetramethylheptan-3,5-dionat) und [{Ti(OMe)₃(acac)}₂] [114], welche beide ebenfalls als zweikernige Titankomplexe vorliegen, ergeben sich unterschiedliche Bindungssituationen im Vergleich zu <u>14</u>. Die Ti-Atome werden hier nicht durch ein gemeinsames O-Atom, sondern durch zwei μ -OMe- bzw. μ -OⁿPr-Gruppen miteinander verbunden. Dabei ergibt sich eine unterschiedliche Verknüpfung der Ti O_6 -Oktaeder, welche nun nicht über eine gemeinsame Ecke, sondern über eine gemeinsame Kante miteinander verbunden sind.

3.3.7 Darstellung und Struktur von $[Pb_6O_4(\mu_3 - OSnPh_3)_4]$ (15)

In Analogie zu den Metallalkoholaten $M(OR)_n$ lassen sich in einigen Fällen auch Silylamide $M\{N(SiR_3)_2\}_2$ (M = Pb, Co) für die Deprotonierung von Ph₃SnOH einsetzen.

Setzt man Pb[N(SiMe₃)₂]₂ mit Ph₃SnOH um, kann nach Gl. 36 ein Blei-Oxo-Cluster der Zusammensetzung [Pb₆O₄(μ_3 -OSnPh₃)₄] <u>15</u> isoliert werden.

$$12 \operatorname{Ph_3SnOH} + 6 \operatorname{Pb}[N(\operatorname{SiMe_3})_2]_2 \longrightarrow [\operatorname{Pb_6O_4}(\mu_3 - \operatorname{OSnPh_3})_4] + 4 (\operatorname{Ph_3Sn})_2 \operatorname{O} + 12 \operatorname{HN}(\operatorname{SiMe_3})_2 \underbrace{15}$$
(Gl. 36)

Zur Darstellung von <u>15</u> wird eine Lösung von Ph₃SnOH in THF oder Benzol zu einer auf -60 °C gekühlten Lösung von Pb[N(SiMe₃)₂]₂ in Heptan langsam zugetropft. Die Reaktionslösung wird anschließend im Kältebad auf RT erwärmt, wobei ab -20 °C ein Farbumschlag zu beobachten ist. Die anfangs tief gelb gefärbte Lösung beginnt sich allmählich zu entfärben, wobei aber kein Niederschlag beobachtet wird.

Im ¹¹⁹Sn-NMR-Spektrum der Reaktionslösung kann die Bildung von $[Ph_3SnN(SiMe_3)_2]$ <u>16</u> am Signal bei $\delta = -112$ ppm im erkannt werden. Spuren von Ph_3SnOH bzw. $(Ph_3Sn)_2O$ sind hierbei nicht zu finden. Wird das Lösungsmittel abdestilliert erhält man jedoch Kristalle unterschiedlicher Verbindungen. Zum einen bilden sich gelblich schimmernde Nadeln und gelbe Prismen, zum anderen farblose Plättchen.

Die kompakten, gelben Kristalle erwiesen sich als $[Pb_6O_4(\mu_3-OSnPh_3)_4]$ (<u>15</u>) und bei den nadelförmigen, gelben Kristallen handelte es sich um $[Ph_3SnN(SiMe_3)_2]$ (<u>16</u>), welches nach Gl. 37 zugänglich ist und ebenfalls strukturell charakterisiert werden konnte.

$$12 \operatorname{Ph_3SnOH} + [N(\operatorname{SiMe_3})_2]^- \longrightarrow \operatorname{Ph_3SnN}(\operatorname{SiMe_3})_2 + \operatorname{OH}^-$$
(Gl. 37)
$$\underline{16}$$

Bei den farblosen Kristallen stellte sich heraus, dass es sich um das Nebenprodukt der Reaktion (Gl. 36), nämlich (Ph₃Sn)₂O, handelt.

Bei Versuchen <u>15</u> umzukristallisieren ist festzustellen, dass die Substanz nur noch geringe Löslichkeit in THF hat und sich in Lösung neben einem weißen Pulver $(Ph_3Sn)_2O$ bildet, welches im ¹¹⁹Sn-NMR-Spektrum gut zu identifizieren ist. <u>15</u> ist im festen Zustand unter Schutzgas einige Tage stabil, zersetzt sich aber an der Luft innerhalb weniger Minuten. Ab einer Temperatur von 68 °C zerfällt <u>15</u> unter Bildung graubrauner Abbauprodukte.

<u>15</u> kristallisiert bei –25 °C aus einem Benzol-Heptan-Gemisch hexagonal in der Raumgruppe P6₃ mit 2 Formeleinheiten in der Elementarzelle. Nach dem Ergebnis der Kristallstrukturanalyse besitzt <u>15</u> eine Clusterstruktur, die aus sechs Pb-Atomen, vier O-Aomen und vier Ph₃SnO-Gruppen besteht (Abb. 43).

Abb. 43. Molekülstruktur von <u>15</u> mit Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %)

Die Pb-Atome definierten dabei die Ecken eines leicht verzerrten Oktaeders mit Pb^{...}Pb-Abständen zwischen 3,657(1) Å und 3,672(1) Å, was deutlich über dem doppelten Kovalenzradius des Bleis von 1,46 Å liegt. Die Dreiecksflächen des Pb₆-Oktaeders sind alternierend mit μ_3 -O-Atomen bzw. μ_3 -OSnPh₃-Gruppen überkappt (Abb. 44). Dabei weicht die Anordnung der acht O-Atome allerdings stark von der eines Würfels ab, so dass nur im weitesten Sinne von der Geometrie eines Pb₆O₈-Kuboktaeders gesprochen werden kann.

Abb. 44. Strukturausschnitt von <u>15</u> mit eingezeichnetem Pb₆-Oktaeder (Schwingungsellipsoide, Aufenthaltswahrscheinlichkeit 50%; nur *ipso*-Kohlenstoffatome)

Die O-Atome der Ph₃SnO-Gruppen weisen einen Abstand von ca. 1,310 Å zu den Dreiecksflächen des Pb₆-Oktaeders auf, die unkoordinierten μ_3 -Sauerstoffatome dagegen nur 0,485 Å.

In <u>15</u> besitzen die Sn-Atome eine verzerrt tetraedrische Umgebung, die aus einem O-Atom und drei C-Atomen der Phenylgruppen besteht. Die Pb-Atome sind von vier O-Atomen koordiniert und besetzen die Spitze einer tetragonalen Pyramide.

Die Pb–O-Abstände für die Sauerstoffatome der Ph₃SnO-Gruppen liegen zwischen 2,469(7) Å - 2,502(8) Å und für die unsubstituierten O-Atome zwischen 2,163(7) Å - 2,184(7) Å. Die Sn–O-Bindungslängen betragen 1,975(8) Å und 1,99(1) Å, welches typische Werte für terminale Ph₃SnO-Gruppen sind.

In der Literatur sind bereits verschiedene Pb₆- Pb₄- und Pb₃-Oxocluster bekannt, wobei aber noch keine Beispiele mit Organozinnsubstituenten zu finden sind.

Das Strukturmerkmal eines $Pb_6(\mu_3-O)_4(\mu_3-OR)_4$ -Clusters wurde bereits am Beispiel eines Isopropylyates (R = ^{*i*}Pr) [117] beschrieben. In Analogie zu <u>15</u> wird auch die alternierende

Flächenüberkappung der Pb₆-Einheit durch Sauerstoffatome bzw. OR-Einheiten beobachtet. Außerdem befinden sich die Pb^{...}Pb-Abstände mit 3,684(3) Å, 3,617(3) Å, 3,686(3) Å im gleichen Bereich wie in <u>15</u>.

Ein weiterer Pb₆-Oxocluster konnte aus der Umsetzung von RSi(OH)₃ mit Pb[N(SiMe₃)₂] erhalten werden, wobei [(PbO)₆(R₂Si₂O₃)₂] [R = 2,6-^{*i*}Pr₂C₆H₃N(SiMe₃)] gebildet wird [118]. Hier kommt es nicht zur Ausbildung eines Pb₆-Oktaeders, sondern das zentrale Strukturmotiv ist ein Pb₂O₂-Vierring in welchem die Bleiatome vierfach koordiniert sind. Außerdem liegen vier weitere Pb-Atome dreifach durch Sauerstoff koordiniert vor. Dies bedingt auch, dass Pb– O-Abstände zwischen 2,155(3) Å (KZ Pb = 3) und 2,546(3) Å (KZ Pb = 4) gefunden werden. Auch ist ein Ph₃SiO-substituierter Blei-Oxo-Cluster der Zusammensetzung [Pb₄(OSiPh₃)₆O] mit adamantanartigem Pb–O-Gerüst bekannt [119]. Die Sauerstoffatome der Ph₃SiO-Gruppen sind hier nur an je zwei Pb-Atome koordiniert und man findet ein zentrales μ_4 -Sauerstoffatom. Die Koordination der Pb-Atome ähnelt der in <u>15</u>, wobei aber unterschiedliche Pb–O-Abstände gemessen werden. Das zentrale, vierfach koordinierte Sauerstoffatom weist Pb–O-Bindungslängen zwischen 2,25(1) Å und 2,31(1) Å auf. Die O-Atome der Ph₃SiO-Gruppen zeigen dagegen kürzere (2,28(1) Å - 2,32(1) Å) und längere (2,36(1) Å - 2,49(1) Å) Pb–O-Bindungen.

In $[Pb_3(\mu-O^tBu)_6]$ ist eine nahezu lineare Anordnung der drei Pb-Atome, wobei das zentrale Pb-Atom sechsfach und die terminalen Pb-Atome dreifach durch O-Atome koordiniert sind, zu sehen [120].

Die Bildung von Blei-Oxo-Clustern mit zusätzlichen O-Atomen lässt sich häufig bei der Synthese von Verbindungen des Typs R_2Pb ($R = OSnPh_3$, O^iPr , $OSiR_3$ etc.) beobachten und ist wahrscheinlich auf die Anwesenheit von Verunreinigungen, welche die Bildung von PbO-Clustern katalysieren, zurückzuführen [121]. Dies wird beispielsweise bei den Blei-Alkoxiden vermutet. So erhält man bei der Synthese von [Pb(O^tBu)₂]₂ nicht nur das Zielprodukt, sondern auch den tetranuklearen Cluster [Pb₄(O^tBu)₆O] nach Gl. 38 [122].

$$2 \left[Pb(O^{t}Bu)_{2} \right]_{2} \longrightarrow \left[Pb_{4}(O^{t}Bu)_{6}O \right] + {}^{t}Bu_{2}O \tag{Gl. 38}$$

3.3.8 Die Struktur von [Ph₃SnN(SiMe₃)₂] (<u>16</u>)

Im Lauf der Untersuchungen konnte die Struktur von <u>16</u> aufgeklärt werden, welche zu diesem Zeitpunkt noch nicht publiziert war. Allerdings konnten 2006 BOCHMANN und Mitarbeiter <u>16</u> durch Umsetzung von [{NaN(SiMe₃)₂}₂ · THF] mit Ph₃SnF darstellen und kristallographisch charakterisieren [123]. Daher soll nur kurz auf die eigenen Ergebnisse eingegangen werden, bei denen <u>16</u> durch Umsetzung von Ph₃SnOH mit Pb[{N(SiMe₃)₂}₂] nach Gl. 37 erhalten wurde.

<u>**16**</u> kristallisiert in der Raumgruppe P1 mit zwei Formeleinheiten in der Elementarzelle. Das Ergebnis der Einkristallstrukturanalyse ist in Abb. 45 dargestellt.

Abb. 45. Molekülstruktur von <u>16</u> mit Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %)

Wie für den sehr sperrigen N(SiMe₃)₂-Substituenten zu erwarten ist, liegt eine monomere Verbindung vor, in der das Zinn tetraedrisch durch ein N- und drei C-Atome koordiniert ist. In <u>16</u> beträgt der Sn–N-Abstand 2,068(4) Å und ist mit dem in [(Cp)(Me₃Si)₂NSn(μ -Cp)Lipmdeta] (pmdeta = [(Me₂NCH₂)₂NMe] (Sn–N 2,183(2) Å) [124] vergleichbar, obwohl es sich hier um eine ionisch aufgebaute Sn(II)-Verbindung handelt und die Bindung so länger ist. Die Sn–C-Abstände liegen in einem relativ engen Bereich zwischen 2,142(4) Å und 2,147(5) Å, was bei der Ph₃Sn-Gruppe übliche Werte sind.

Für die N–Si-Abstände in der N(SiMe₃)₂-Gruppe werden Werte von 1,737(5) Å - 1,744(4) Å gefunden, welche ebenfalls länger sind als im [(Cp)(Me₃Si)₂NSn(μ -Cp)Li-pmdeta] (N–Si = 1,710(2) Å).

3.3.9 Darstellung und Struktur von $[Co{Co(NSi_2Me_6)_2}_2(\mu - OSnPh_3)_4]$ (<u>17</u>)

Bei der Umsetzung von Co $[N(SiMe_3)_2]_2$ mit Ph₃SnOH wurde ein anderes Verhalten beobachtet als bei der entsprechenden Umsetzung von Ph₃SnOH mit Pb $[N(SiMe_3)_2]_2$. Zur Durchführung der Reaktion wird eine tiefgrüne Lösung von Co $[N(SiMe_3)_2]_2$ in Hexan vorgelegt und Ph₃SnOH, gelöst in THF oder Benzol, bei –60 °C zugetropft (Gl. 39).

$$4 \operatorname{Ph_3SnOH} + 3 \operatorname{Co}[N(\operatorname{SiMe_3})_2]_2 \longrightarrow [\operatorname{Co}\{\operatorname{Co}(\operatorname{NSi_2Me_6})_2\}_2(\mu - \operatorname{OSnPh_3})_4] + 4 \operatorname{HN}(\operatorname{SiMe_3})_2 \underbrace{17} (Gl. 39)$$

Hierbei ist zunächst kein Farbumschlag festzustellen. Erst beim Rühren bei RT färbt sich die Lösung allmählich braun. Nun wird die Reaktionslösung auf etwa 75% eingeengt und mit Hexan überschichtet. Nach ca. 2 Wochen fällt bei -25 °C ein blassblaues kristallines Produkt, neben einem braunen Feststoff aus der Lösung aus. Die blaue Verbindung ist luft- und feuchtigkeitsempfindlich und zersetzt sich oberhalb von 45 °C, wobei als Rückstand eine graue Substanz verbleibt. Die Einkristallstrukturanalyse der blauen Kristalle ergab, dass es sich um einen dreikernigen, sauerstoffverbrückten Kobaltkomplex der Zusammensetzung [Co{Co(NSi₂Me₆)₂}₂(μ -OSnPh₃)₄] (<u>17</u>) handelt.

BÜRGER und WANNAGAT beobachteten bei der Umsetzung von $CoCl_2$ mit $NaN(SiMe_3)_2$ ebenfalls die Bildung einer blauen und einer braunen Verbindung [125]. Hierbei wurde vermutet, dass es sich um das blaue [(Me₃Si)₂NCoCl · n THF] und um ein braunes Zersetzungsprodukt handelt.

Die Bildung der braunen Substanz könnte auf die Oxidationsempfindlichkeit von $Co[N(SiMe_3)_2]_2$ zurückzuführen sein, was auch schon POWER in seinen Untersuchungen vermutet hatte [126, 127].

Für eine Suszeptibilitätsmessung stand nicht genug Reinsubstanz von <u>17</u> zur Verfügung, um die vorliegenden Kobaltspezies genauer untersuchen zu können. Bei der Aufnahme eines IR-Spektrums zeigte sich, dass sich <u>17</u> an der Luft zersetzt und somit kein Spektrum aufgenommen werden konnte. NMR-spektroskopische Untersuchungen konnten aufgrund des paramagnetischen Co-Kerns ebenfalls nicht erfolgreich durchgeführt werden. Somit konnte <u>17</u> allein durch die Kristallstrukturuntersuchung charakterisiert werden.

<u>17</u> bildet blassblaue, schichtartig aufgebaute Plättchen, die aus einem Benzol-Heptan-Gemisch, bei -25 °C über einen Zeitraum von drei Wochen kristallisiert werden können. Man findet ein orthorhombisches Kristallsystem mit der Raumgruppe P2₁cn und vier Formeleinheiten in der Elementarzelle. Ein vereinfachtes Strukturmodell von <u>17</u> ist in Abb. 46 dargestellt.

Abb. 46. Strukturmodell von <u>17</u> (Sn–O- und Co–O-Bindungen dunkel)

<u>17</u> enthält ein zentrales Kobaltatom, das tetraedrisch von vier Ph_3SnO -Gruppen umgeben ist. Zusätzlich sind die verbrückenden Ph_3SnO -Gruppen paarweise an jeweils eine terminale $CoN(SiMe_3)_2$ -Einheit koordiniert.

Hieraus ergibt sich für <u>17</u> ein spirocyclisches Co_3O_4 -Grundgerüst, in welchem die zwei eckenverknüpften Co_2O_2 -Ringe um ca. 84,8° gegeneinander verdreht sind.

Im Molekül findet man Co^{···}Co-Abstände von 2,858(2) Å und 2,861(1) Å, welche deutlich über dem doppelten Kovalenzradius (1,26 Å) liegen (Abb. 47). Die Co–O-Abstände an Co1 betragen 1,955(6) Å - 2,001(5) Å (Abb. 47).

Abb. 47. Strukturausschnitt von <u>17</u> mit Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %; nur ipso-Kohlenstoffatome)

Die Co–O-Abstände der terminalen Gruppen liegen mit Werten zwischen 1,929(5) Å - 1,948(6) Å in einem engen Bereich. Obwohl die terminalen Co-Atome eine kleinere Koordinationszahl besitzen als das zentrale Atom, werden ähnliche Co–O-Bindungslängen gemessen. Die Co–N-Bindungslängen zu den $(Me_3Si)_2N$ -Gruppen betragen hierbei 1,887(7) Å und 1,903(8) Å, welche mit denen von Co[N(SiMePh_2)_2]_2 [128], Co[N(SiMe_3)_2]_3 [127], sowie [Co{N(SiMe_3)_2}_2]_2 [126] weitgehend übereinstimmen (Tab. 13).

Tab. 13.	Co–N- und Co···	Co-Abstände [A	A] ausgewählter	Verbindungen

	<u>17</u>	Co[N(SiMePh ₂) ₂] ₂	Co[N(SiMe ₃) ₂] ₃	$[Co{N(SiMe_3)_2}_2]_2$
Co–N	1,887(7);	1,893(3);	1 870(3)	1,910(5);
	1,903(8)	1,904(3)	1,070(3)	2,062(4)
Co Co	2,858(2);	_	_	2 583(1)
	2,861(1)			2,505(1)

Weiterhin können in <u>17</u> Sn–O-Bindungslängen in den terminalen Ph_3SnO -Gruppen zwischen 1,963(6) und 1,977(5) Å beobachtet werden, welche sich damit im zu erwartenden Bereich befinden.

In der Literatur sind bereits Co-Verbindungen mit Ph_3MO -Substituenten (M = C, Si), wie beispielsweise [{Co(OCPh_3)_2}_2]; [(Ph_3CO)_2Co(THF)_2] und [{Co(OSiPh_3)_2(THF)}_2], bekannt [129].

Die aufgeführten zweikernigen Co-Komplexe zeigen als gemeinsames Strukturmotiv zwei OMPh₃-Einheiten (M = C, Si, Sn), die zwei Kobaltzentren miteinander verbinden. Dabei wird jeweils ein Co_2O_2 -Vierring aufgebaut. Außerdem liegen die Co-Atome in trigonal-planarer Koordination vor.

Für das zweikernige Alkoxid [$\{Co(OCPh_3)_2\}_2$] beträgt der Co···Co-Abstand 2,910(2) Å und ist damit wesentlich länger ist als bei [$\{Co\{N(SiMe_3)_2\}_2\}_2$] (Tab. 16), aber nur geringfügig größer als in <u>17</u>. Außerdem findet man Co–O-Abstände zu den verbrückenden Sauerstoffatomen von durchschnittlich 1,969 Å, welche im Vergleich zu <u>17</u> nur geringfügig größer ausfallen.

Die zu $[{Co(OCPh_3)_2}_2]$ analog aufgebaute Cyclohexylverbindung $[(Co{OC(C_6H_{11})_3}_2)_2]$ [129] enthält einen ähnlichen Co₂O₂-Vierring.

Das Silanolat [{Co(OSiPh₃)₂(THF)}₂] ist nach dem gleichen Strukturmotiv aufgebaut, wobei aber die Koordination eines THF-Moleküls pro Kobaltatom beobachtet wird, wodurch sich jeweils CoO₄-Tetraeder ableiten. Auch hier findet man einen relativ großen Co^{...}Co-Abstand von 2,916(2) Å. Weiterhin ist auch eine einkernige Co-Verbindung [(Ph₃CO)₂Co(THF)₂] [129] aus diesen Untersuchungen bekannt, wobei hier das Kobalt verzerrt tetraedrisch koordiniert ist.

Der auffälligste Unterschied zwischen <u>17</u> und den Verbindungen aus der Literatur ist das Vorliegen von verschiedenen koordinierten Co-Atomen in <u>17</u>, was Art und Anzahl der Koordinationspartner betrifft. Weiterhin ist <u>17</u> der einzige bekannte dreikernige Co-Komplex mit koordinierenden R_n SnO-Gruppen.

3.3.10 Die Umsetzungen von Ph₃SnOH mit Cu(O^tBu), Fe(O^tBu)₃ und OV(OⁿPr)₃

Neben der erfolgreichen Umsetzung von Ph_3SnOH mit dem $Ti(O^iPr)_4$ sollte auch die Umsetzung mit anderen Alkoholaten nach dem gleichen Schema möglich sein. Hierzu wurden

Cu(O^tBu) und Fe(O^tBu)₃ mit Ph₃SnOH in verschiedenen Lösungsmitteln bei RT und in der Siedehitze umgesetzt.

Setzt man Fe(O'Bu)₃ mit Ph₃SnOH in Toluol, Benzol oder THF um, beobachtet man nach 6stündigem Rühren die Bildung eines braunen Niederschlags, welcher abfiltriert wurde, sich jedoch nicht genauer charakterisieren ließ. Allerdings konnte in einem Fall ein Ligandenaustausch beobachtet werden, wobei Ph₃SnO'Bu (<u>18</u>) isoliert und charakterisiert werden konnte. Hierzu wurden beide Komponenten in Toluol unter Rückfluss für vier Stunden gerührt und anschließend das Lösungsmittel komplett abdestilliert. Der verbliebene braune Rückstand wurde in THF aufgenommen, über Celite filtriert, aufkonzentriert und in einem Schlenkgefäß mit Hexan überschichtet. Hierbei erhält man <u>18</u> in ca. 30 %iger Ausbeute.

Ein ähnliches Reaktionsverhalten war bei der Umsetzung von Ph₃SnOH mit dem Cu(O^tBu) zu beobachten. So konnten nach einer Reaktionszeit von einigen Stunden unter Rückfluss oder bei RT und nach Abdestillieren des Lösungsmittels (THF, Toluol etc.) nur graue bis braune amorphe Rückstände isoliert werden, die nicht mehr rückstandsfrei in Lösung zu bringen waren. Ein kristallines Produkt konnte auch nach wiederholten Versuchen nicht erhalten werden.

Erfolgreich verlief allerdings die Umsetzung von Ph_3SnOH mit $OV(O^nPr)_3$ in Acetonitril. Hierbei war gemäß Gl. 40 die Bildung von $(Ph_3Sn)_3VO_4$ zu erwarten.

$$3 Ph_3SnOH + OV(O^nPr)_3 \longrightarrow (Ph_3Sn)_3VO_4 + 3^nPrOH$$
(Gl. 40)

Es wurde aber eine komplex aufgebaute Clusterverbindung der Zusammensetzung $[(PhSn)_6(Ph_3SnO)(OMe)_9(VO_3)_2(VO_4)_2]$ <u>19</u> isoliert. <u>19</u> konnte sowohl über eine Elementaranalyse als auch durch eine Röntgeneinkristallstrukturanalyse eindeutig charakterisiert werden.

Die Reaktionsführung erwies sich als außerordentlich kompliziert. In ersten Untersuchungen wurde versucht eine Lösung von Ph_3SnOH mit $OV(O^nPr)_3$ zu überschichten oder beide Komponenten in Benzol, THF, Alkanen oder Toluol umzusetzen. Hierbei ließen sich nur gelbe bis rötliche Öle isolieren, die nicht zur Kristallisation zu bringen waren. Allerdings konnte bei einer Umsetzung nach erfolgter Reaktion in Acetonitril, das Rohprodukt in Methanol aufgenommen werden und nach einigen Wochen blassgelbe, kompakte Kristalle neben einem grünen Pulver isoliert werden.

Das Produkt zeigt im IR-Spektrum deutliche Unterschiede zu $(Ph_3Sn)_3VO_4$ (<u>1</u>). Im Bereich unterhalb 1100 Wellenzahlen lassen sich die Banden nicht genau zuordnen. Jedoch kann ein intensives Bandenpaar bei 822 cm⁻¹ und 896 cm⁻¹ erkannt werden. Diese sind vermutlich den VO-Valenzschwingungen zuzuordnen, da sie im gleichen Bereich liegen wie in <u>1a</u> und <u>1c</u>. Außerdem lassen sich die δ CH- und vCH-Banden der MeO-Gruppen bei 1430 cm⁻¹ und 2931 cm⁻¹ beobachten. Eine NMR-spektroskopische Untersuchung verblieb ergebnislos, da nicht genug Substanz in Lösung gebracht werden konnte.

3.3.11 Die Struktur von Ph₃SnO^tBu (<u>18</u>)

<u>18</u> kristallisiert in Form farbloser, kompakter Stäbchen aus einem THF-Hexan-Gemisch in der Raumgruppe $P2_1/n$ mit 4 Formeleinheiten in der Elementarzelle. Abb. 48 zeigt das Ergebnis der Kristallstrukturanalyse.

Abb. 48. Molekülstruktur von <u>18</u> mit Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %)

<u>18</u> enthält ein Sn-Atom, das von drei C- und einem O-Atom tetraedrisch koordiniert ist. Der Sn–O-Abstand beträgt 1,977(2) Å und die Sn–C-Abstände liegen zwischen 2,138(3) Å und 2,141(2) Å. Die O–C Bindungslänge beträgt 1,428(3) Å. Somit entsprechen die Sn–O- und

die C–O-Bindung in <u>18</u> denen in Ph₃SnO^{*i*}Pr. Der Sn–O–C-Winkel dagegen, welcher in <u>18</u> 129,6(2)° beträgt, ist im Vergleich zu <u>12</u> mit 123,8(4)° leicht erhöht.

Wie bei Ph_3SnO^iPr findet man auch in <u>18</u> isolierte Moleküle die keine Tendenz zur Assoziation zeigen. Dagegen bilden [$Ph_3SnO^iBu \cdot {}^iBuOH$] [113] und [$Ph_3SnOMe \cdot 1,5$ MeOH] [61] eindimensionale Kettenstrukturen mit H-Brücken zwischen den einzelnen Molekülen.

3.3.12 Die Struktur von [(PhSn)₆(Ph₃SnO)(OMe)₉(VO₃)₂(VO₄)₂] (<u>19</u>)

<u>19</u> kristallisiert triklin in der Raumgruppe P1 mit einer Formeleinheit in der Elementarzelle. Es wird ein bimetallischer Oxocluster mit vier Vanadium- und sieben Zinnatomen, die durch Sauerstoffatome bzw. Methoxygruppen miteinander verbunden sind, beobachtet (Abb. 49).

Abb. 49. Strukturmodel von <u>19</u> mit Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %; C19, 25, 31, 37, 43, 49: *ipso*-C-Atome der PhSn-Gruppen)

Wenn man von ionischen Einheiten ausgeht um die Struktur von <u>19</u> zu beschreiben, kann das Gerüst des Clusters in fünf Teile zerlegt werden:

$1 \times [(Ph_3SnO)VO_3]^{2-}$	(Einheit A)
$1 \times [(MeO)VO_3]^{2-}$	(Einheit B)
$1 \times [V_2O_6(OMe)_2]^{4-}$	(Einheit C)
$2 \times [(PhSn)_3(OMe_3)_3O]^{4+}$	(Einheiten D)

Die Vanadateinheiten (Einheit A, B, C) arrangieren sich in der zentralen Clusterebene, die durch die vier V-Atome aufgespannt wird. Auf beiden Seiten dieser Ebene wird eine $[(PhSn)_3(OMe_3)_3O]^{4+}$ -Gruppe (Einheit D) koordiniert, so dass man von einer Sandwich-Struktur sprechen kann (Abb. 50).

Abb. 50.Strukturmodell von 19 (V-Atome in Polyederdarstellung; Sn Schwarz; O Grau;
C Weiβ)

Die einzelnen Einheiten sind dabei über verbrückende O-Atome bzw. MeO-Gruppen miteinander verbunden. Einheit A (V1) und B (V2) koordinieren je eine Einheit D bidentat über ein O-Atom und eine MeO-Gruppe und die zweite monodentat über ein O-Atom. Einheit C (V3, V4) verbrückt die beiden Einheiten D über je zwei O-Atome und eine MeO-Gruppe.

Hierbei ergibt sich für die VO₄-Gruppen (Einheit A und B) eine tetraedrische Koordination für das Vanadium. In Einheit C sind zwei pyramidal koordiniert VO₅-Gruppen über eine gemeinsame Kante miteinander verbunden, wobei es zur Bildung eines V₂O₂-Vierungs und der daraus hervorgehenden V₂O₈-Struktureinheit kommt.

Die Einheiten D bestehen aus drei Sn-Atomen, die oktaedrisch durch fünf O-Atome und ein C-Atom koordiniert sind. Dabei ist jedes CSnO₅-Oktaeder über Kanten so an zwei Nachbaroktaeder gebunden, dass jeweils ein O-Atom (O17 bzw. O18) das Zentrum der $[(PhSn)_3(OMe_3)_3O]^{4+}$ -Gruppe bildet. Die CSnO₅-Oktaeder sind dabei so aufgebaut, dass sich das gemeinsame O-Atom jeweils in *trans*-Position zum C-Atom der Phenylgruppe befindet (Abb. 51). Definiert man nun die Vorzugsachse der Oktaeder entlang dieser O–Sn–C-Bindung befinden sich unterschiedliche Substituenten in den äquatorialen Positionen. Alle drei Oktaeder weisen in der äquatorialen Ebene zwar zwei *cis*-ständige (μ -OMe)-Gruppen auf, aber die beiden verbleibenden Positionen sind unterschiedlich besetzt. Bei Sn1, Sn2, Sn4, und Sn6 findet man jeweils ein Paar von (μ -O)-Atomen. Bei Sn3 und Sn5 sind diese Positionen dagegen durch ein (μ_3 -O)-Atom und eine (μ -OMe)-Gruppe besetzt.

Abb. 51.Strukturausschnitt von 19 (Sn-Atome in Polyederdarstellung; V Weiß; O Grau;
C Schwarz)

Bei genauerer Betrachtung der einzelnen Fragmente ist festzustellen, dass die (μ -O)-Atome (O2, O3, O4; O5, O6, O7) der VO₄-Gruppen (Einheit A und B) und die O-Atome O9 und O14 der [V₂O₆(OMe)₂]^{4–}-Gruppe einfach zwischen V- und Sn-Atomen verbrücken. Die O-Atome (O11, O12) des V₂O₂-Vierrings, sowie die zentralen O-Atome der [(PhSn)₃(OMe₃)₃O]⁴⁺-Einheiten sind dagegen μ_3 -verbrückend. Bis auf die terminale OMe-Gruppe an Sn2 wirken die Methoxygruppen einfach verbrückend.

Die terminalen Positionen der VO₄-Gruppen sind bei Einheit A durch eine Ph₃Sn-Gruppe und in Einheit B durch eine Methylgruppe abgesättigt. In der Einheit D verbleiben zunächst zwei unkoordinierte O-Atome (O13, O16).

Wie auch in den Alkylestern der Vanadiumsäure, ist die Koordination der Vanadiumatome stark von den Substituenten abhängig. So zeigen $OV(OMe)_3$ sowie die zweikernigen Verbindungen [{(ROH)(RO)_2VO}_2(C_2O_4)] R = C_2H_5, C_3H_7) eine oktaedrische Koordination des Vanadiums. $OV(O^tBu)_3$ [130] und [(Ph_3Sn)_3VO_4] enthalten dagegen tetraedrisch koordiniertes Vanadium. In **19** werden sowohl VO₄-Tetraeder als auch VO₅-Pyramiden beobachtet. Dies deutet darauf hin, dass die [(PhSn)_3(OMe_3)_3O]-Gruppen die Koordinationssphäre des Vanadium noch stark einschränken, obwohl eine Tendenz zur Erhöhung der Koordinationszahl von vier auf fünf zu beobachten ist.

Die unterschiedlichen Koordinationen der Metallzentren haben natürlich Auswirkungen auf die Metall-Sauerstoff-Abstände (Abb. 52). An V1 liegen die V–O-Bindungslängen mit 1,693(4) Å - 1,718(4) Å relativ eng beieinander, da jeweils nur V–OSn-Bindungen existieren. An V2 dagegen findet man einen relativ langen V–O-Abstand von 1,772(2) Å zur Methoxygruppe und drei etwa gleich lange Abstände zwischen 1,690(5) Å und 1,696(4) Å entlang den V–O–Sn-Einheiten. Für die V–O-Bindungslängen der tetraedrisch koordinierten V-Atome werden also ähnliche Werte gefunden wie auch in [(Ph₃Sn)₃VO₄] (<u>1c</u>).

An V3 und V4 sind die V–O-Bindungen über einen weiten Bereich verteilt. Die kürzesten Bindungen, zu den terminalen Sauerstoffatomen, liegen bei 1,603(4) Å und 1,601(4) Å. Für die Sauerstoffatome der V–O–Sn-Gruppen betragen die V-O-Bindungslängen 1,721(4) Å und 1,716(4) Å. Die Bindungen zu den O-Atomen der verbrückenden Methoxygruppen betragen 1,966(5) Å und 1,961(4) Å. Die längsten V-O-Bindungen werden erwartungsgemäß zu den μ_3 -O-Atomen im V₂O₂-Vierring beobachtet, welche an V3 1,869(4) Å bzw. 2,025(4) Å und an V4 1,873(4) Å bzw. 2,027(4) Å betragen. In den VO₅-Gruppen ist die Streuung der V–O-Bindungslängen deutlich größer. Der Grund dafür liegt zum einen in der erhöhten Koordinationszahl und zum anderen in den unterschiedlichen Koordinationspartnern.

Die clusterinternen Sn–O-Bindungslängen lassen sich paarweise einteilen. So zeigen Sn2/Sn7; Sn3/Sn5 bzw. Sn4/Sn6 eine ähnliche Koordination der Vanadateinheiten, was sich in den Sn–O-Bindungslängen widerspiegelt (Tab. 14).

	Sn2	Sn3	Sn4	Sn5	Sn6	Sn7
Sn O	2,065(4)-	2,056(4)-	2,054(4)-	2,074(4)-	2,038(4)-	2,072(4)-
511-0	2,152(5)	2,139(4	2,175(4)	2,143(4)	2,186(4)	2,157(4)
Sn–C	2,144(6)	2,129(6)	2,120(6)	2,132(6)	2,145(6)	2,134(5)

Tab. 14.Ausgewählte Bindungslängen [Å] in 19

Die clusterexterne Ph_3SnO -Gruppe zeigt einen Sn–O-Abstand von 2,096(4) Å. Hierbei ist weiterhin ein koordiniertes MeOH-Molekül mit einem Sn–O-Abstand von 2,501(4) Å zu beobachten.

Des Weiteren lässt sich in <u>19</u> erkennen, dass die einzelnen Oxocluster vermutlich über ein Wasserstoffbrückennetz, welches durch Methanol- und Wassermoleküle ausgebildet wird, miteinander verbunden vorliegen (Abb. 52). Dies kann aber zum derzeitigen Stand der Untersuchungen nur als Mutmaßung vorgeschlagen werden da die Lösungsmittelmoleküle sowie die gebundenen Wasserstoffatome nicht vollständig lokalisiert werden konnten.

Abb. 52. Wasserstoffbrücken in <u>19</u> (C65, O27, O28: fehlgeordnetes Methanol)

Die Cluster in <u>19</u> arrangieren sich in einer Kettenstruktur mit isolierten Doppelsträngen (Abb. 53). Die Lösungsmittelmoleküle liegen fehlgeordnet vor und man kann nur die O···O-Abstände beurteilen. An der terminalen, clusterexternen Ph₃Sn-Einheit ist ein Methanolmolekül koordiniert, welches im Abstand von ca. 2,72(2) Å ein Sauerstoffatom (O26) eines Wassermoleküls über eine H-Brücke koordiniert. Dieses Wassermolekül ist wiederum an die O-Atome (O27, O28) von einem fehlgeordneten Methanolmolekül mit einem O···O-Abstand von ca. 2,88(2) Å bzw. 2,587(2) Å koordiniert. Dieses Methanolmolekül koordinieren wiederum zwei weitere Clustereinheiten über die terminalen O-Atome (O13, O16) ihrer [V₂O₆(OMe)₂]-Gruppen mit O···O-Abständen von ca. 2,82(2) Å

Abb. 53. Strukturausschnitt von <u>19</u> mit Wasserstoffbrückennetzwerk (grau) in (1 = koordiniertes MeOH, 2 = Wasser, 3 = fehlgeordnetes MeOH)

3.3.13 Die Umsetzung von Ph₃SnOH mit Me₂Zn

Analog den Synthesen die zu $[{R_2M(\mu-OSnPh_3)}_2]$ (M = Al, Ga) geführt haben [50], sollte auch Dimethylzink mit Ph₃SnOH bzw. (Ph₃Sn)₂O umgesetzt werden. Da hierbei nur mit der Abspaltung von CH₄ bzw. Ph₃SnMe zu rechnen war, schienen die Aussichten für eine erfolgreiche Umsetzung viel versprechend.

Wird bei –60 °C zu einer Lösung von Me₂Zn in Hexan eine Lösung von Ph₃SnOH in THF oder Toluol zugetropft, kann beim allmählichen Erwärmen auf RT, eine kräftige Gasentwicklung beobachtet werden. Anfangs bleibt die Lösung klar und neben einem weißen Pulver beginnen sich, nach einem Tag bei –25 °C, Kristalle auszubilden, bei welchen es sich aber um (Ph₃Sn)₂O handelt. Das Pulver konnte nicht genauer charakterisiert werden, da die Löslichkeit in organischen Lösungsmitteln für eine NMR-Untersuchung nicht ausreichend war. Auch gibt ein IR-Spektrum keine weiteren Hinweise zur Aufklärung der Struktur und eine Indizierung der Ergebnisse eines Pulverbeugungsexperimentes war nicht möglich, obwohl es sich um eine kristalline Verbindung handelte.

Im ¹¹⁹Sn-NMR-Spektrum der Reaktionslösung direkt im Anschluss an die Reaktion, sind mehrere Signale im Bereich zwischen $\delta = -60$ und $\delta = -270$ ppm zu beobachten. Nachdem das Lösungsmittel komplett abdestilliert und das Rohprodukt im Vakuum getrocknet wurde konnten IR-Untersuchungen des Rückstandes das Vorhandensein von Ph₃Sn-Gruppen (v = 454, 700, 731, 1428 cm⁻¹) belegen. Die Zuordnung der intensiven Banden bei 803, 1101 und 1260 cm⁻¹ war nicht möglich.

Sn und Zn konnten allerdings im Rohprodukt qualitativ nachgewiesen werden.

4. Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Synthese und der strukturellen Charakterisierung organozinnsubstituierter Oxoanionen, insbesondere der Triphenylzinnderivate. Die Zielverbindungen sind durch verschiedene Synthesemethoden zugänglich:

1) Umsetzung von R₃SnCl mit Oxoanionen

Triorganozinnhalogenide können mit Oxoanionen im wässrigen Medium nach Gl. 1 umgesetzt werden.

$$x \operatorname{R}_{3}\operatorname{SnCl} + \operatorname{MO}_{y}{}^{x-} \longrightarrow (\operatorname{R}_{3}\operatorname{Sn})_{x}\operatorname{MO}_{y} + x \operatorname{Cl}^{-}$$
(Gl. 1)
(R = Ph, Bz; M = V, Mo)

2) Umsetzung von Ph₃SnOH oder (Ph₃Sn)₂O mit Oxosäuren

Formal verläuft die Umsetzung von Ph₃SnOH mit Oxosäuren schrittweise unter der Abspaltung von Wasser gemäß Gl. 2.

$$n \operatorname{Ph}_{3}\operatorname{SnOH} + \operatorname{H}_{x}\operatorname{MO}_{y} \longrightarrow (\operatorname{Ph}_{3}\operatorname{Sn})_{n}\operatorname{H}_{(x-n)}\operatorname{MO}_{y} + n \operatorname{H}_{2}\operatorname{O}$$
 (Gl. 2)
(M = P, As, Se, Te)

Nicht hydrolyseempfindliche Produkte werden im wässrigen Medium synthetisiert. Muss Wasser bei den Umsetzungen ausgeschlossen werden, wird Ph₃SnOH durch ein Alkoholat, wie beispielsweise Ph₃SnOMe, ersetzt.

(Ph₃Sn)₂O reagiert zunächst unter Hydrolyse des Oxids (Gl. 3). Das dabei gebildete Ph₃SnOH reagiert gemäß Gl. 2.

$$n (Ph_3Sn)_2O + H_nMO_m \longrightarrow (Ph_3Sn)_nMO_m + n Ph_3SnOH$$
 (Gl. 3)

3) Umsetzung von Ph₃SnOH mit Silylamiden und Alkoxiden

Bei der Umsetzung von Ph₃SnOH mit Alkoxiden oder Silylamiden ist es möglich die OH-Gruppe zu deprotonieren (Gl. 4).

$$n \operatorname{Ph}_{3}\operatorname{SnOH} + \operatorname{MR}_{m} \longrightarrow (\operatorname{Ph}_{3}\operatorname{SnO})_{n}\operatorname{MR}_{m-n} + n \operatorname{RH}$$
(Gl. 4)
(M = Ti, Co, Pb; R = OMe, OⁱPr, N(SiMe_3)₂)

Die in der Arbeit untersuchten R_n Sn-substituierten Oxoanionen (R = Ph, Bz) können nach strukturellen Gesichtspunkten in drei Gruppen unterteilt werden:

1. Organozinnsubstituierte Oxoanionen mit monomeren Strukturen

Monomere Komplexe des Typs $M(OSnPh_3)_n$ (M = As, Ti) werden erhalten, wenn die Anzahl der terminalen O-Atome der MO_y^{x-} -Einheit gleich der Ladung ist (x = y). So liegen $[(Ph_3Sn)_3AsO_3]$ (<u>4</u>) und $[Ti(OSnPh_3)_4]$ (<u>11</u>) als Monomere mit ausschließlich terminalen Ph_3SnO-Gruppen vor.

Tab. 1.Grundgerüst von $[(Ph_3Sn)_3AsO_3]$ (<u>4</u>) und $[Ti(OSnPh_3)_4]$ (<u>11</u>) im Vergleich
(Oxo-Einheiten: dunkel; Organozinn-Gruppen: hell)

Verbindung	<u>4</u>	<u>10</u>	
Oxo-Einheit	AsO ₃ ³⁻	TiO ₄ ^{4–}	
Organozinnsubstituenten	$3 \times terminal Ph_3Sn$	$4 \times \text{terminal Ph}_3\text{Sn}$	
Strukturmerkmal		J J J J	

99

Triphenylzinnarsenit (<u>4</u>) zeigt außerdem Einsatzmöglichkeiten als Komplexligand. So konnte aus der Umsetzung von <u>4</u> mit $Fe_2(CO)_9$ ein (Ph₃SnO)₃As-koordiniertes Eisencarbonyl der Zusammensetzung [(CO)₄FeAs(OSnPh₃)₃] (<u>6</u>) erhalten werden.

Die Tellurverbindungen *trans-/cis-*[(Ph₃SnO)₄Te(OH)₂] (**9a**, **9b**) und trans-[(Ph₃SnO)₂Te(OMe)₄] (10) liegen ebenfalls monomer, mit terminalen Ph₃Sn-Gruppen vor. Als zentrale Oxo-einheiten werden formal $TeO_4(OH)_2^{4-}$ - bzw. $TeO_2(OMe)_4^{2-}$ -Ionen beobachtet. Ähnliche Strukturmerkmale werden auch bei der zweikernigen Titanverbindung $[{(Ph_3SnO)(acac)_2Ti}_2O]$ (13) beobachtet. Desgleichen zeigen auch die Triphenylzinnalkoholate $Ph_3SnO'Pr(\underline{12})$ und $Ph_3SnO'Bu(\underline{18})$ einen monomeren Aufbau. Bei Versuchen ein Triphenylzinnarsenat zu synthetisieren, wurde an der Organozinneintheit eine partielle Abspaltung von Phenylresten beobachtet. Dabei kommt es zur Bildung einer dimeren, Ph₂Sn- und Ph₃Sn-substituierten As(V)-Verbindung der Zusammensetzung $[{(Ph_3Sn)(Ph_3Sn \cdot DMF)(Ph_2SnOH)AsO_4}_2]$ (7). In 7 kann dabei zwischen terminalen Ph_3Sn-Gruppen und verbrückenden Ph₂Sn-Gruppen unterschieden werden.

2. Organozinnsubstituierte Oxoanionen mit polymeren Strukturen

Polymere Verbindungen des Typs $(R_3Sn)_nMO_y$ (R = Ph, Bz; M = P, Se, V, Mo) entstehen, wenn die Oxoanionen zusätzliche Donorfunktionen enthalten. So verfügen MO_y ^{*x*-}-Anionen, bei denen y = x + 1 bzw. y = x + 2 ist, über ein bzw. zwei zusätzliche O-Atome, die eine Vernetzung über Koordination von Ph₃Sn-Gruppen zulassen. Hierbei ist allerdings auch der sterische Anspruch der Organozinngruppen zu bedenken, welcher in Konkurrenz zu einer Vernetzung steht.

Kettenstrukturen werden beispielsweise in $[(Bz_3Sn)_2MoO_4 \cdot DMF]$ (<u>2</u>) und $[(Ph_3Sn)_2SeO_3 \cdot L]$ (L = CHCl₃ : <u>8a</u>; DMF : <u>8b</u>) ausgebildet. Neben terminalen, einfach gebundenen R₃Sn-Gruppen (R = Ph, Bz) liegen auch verbrückende, zweifach durch Sauerstoff koordinierte, R₃Sn-Einheiten vor (Tab.2).

Tab. 2. $[(Bz_3Sn)_2MoO_4 \cdot DMF]$ (2) und $[(Ph_3Sn)_2SeO_3 \cdot DMF]$ (8b) im Vergleich
(Oxo-Einheiten: dunkel; Organozinn-Gruppen: hell)

Merkmal	<u>2</u>	<u>8b</u>
Oxoeinheit	MoO ₄ ²⁻	SeO ₃ ²⁻
Sturkurelle Funktion	$1 \times \text{verbrückend}$	$1 \times \text{verbrückend}$
der R ₃ Sn-Eiheiten	$1 \times terminal$	$1 \times terminal$
Strukturmerkmal		

Ferner konnten auch Polymere mit Ringstrukturen dargestellt werden. In $[(Ph_3Sn)_3VO_4 \cdot 6 C_6H_6]$ (<u>1</u>) und $[(Ph_3Sn)_3PO_4 \cdot 2 C_6H_6]$ (<u>3</u>) werden 24-gliedrige $Sn_6O_{12}M_6$ -Ringe (M = V, P), mit terminalen und verbrückenden Ph₃Sn-Gruppen beobachtet.

Bei den verbrückenden Ph_3Sn - bzw. Bz_3Sn -Gruppen erfolgt die Koordination der Oxoeinheiten jeweils in den axialen Positionen einer trigonal-bipyramidalen O_2SnC_3 -Einheit. Die terminalen Ph_3Sn -Gruppen liegen in Form von C_3SnO -Tetraedern vor. Kommt es zur Koordination von Lösungsmittelmolekülen wird die Koordinationssphäre des Zinns zu der einer trigonalen Bipyramide erweitert.

3. Clusterverbindungen

Weiterhin konnten Oxoclusterverbindungen der Zusammensetzung [Pb₆O₄(µ₃-OSnPh₃)₄]

(<u>15</u>), $[Co{Co(NSi_2Me_6)}_2(\mu$ -OSnPh_3)_4] (<u>17</u>) und $[(PhSn)_6(Ph_3SnO)(OMe)_9(VO_3)_2(VO_4)_2]$ (<u>19</u>) charakterisiert werden. <u>15</u> und <u>17</u> gehen aus der Reaktion von Ph_3SnOH mit Pb[N(SiMe_3)_2]_2 bzw. Co[N(Si(Me_3)_2]_2 hervor (Abb. 1). In <u>15</u> liegt ein Pb_6-Oktaeder vor, dessen Dreiecksflächen alternierend mit μ_3 -O-Atomen bzw. μ_3 -OSnPh_3-Gruppen überkappt sind. <u>17</u> enthält dagegen einen dreikernigen Co-Komplex, in dem ein zentrales Co-Atom über je zwei μ -OSnPh_3-Gruppen mit zwei terminalen CoN(SiMe_3)_2-Einheiten verbunden ist. Hierbei befinden sich das zentrale Co-Atom in einer tetraedrischen und die terminalen Co-Atome in einer trigonal-planaren Umgebung. Sowohl in <u>15</u> als auch in <u>17</u> werden terminale, tetraedrisch aufgebaute Ph_3SnO-Einheiten beobachtet, die im Fall des [Pb_6O_4(μ_3 -OSnPh_3)_4] (15) über das O-Atom μ_3 -verbrückend und in (17) μ -verbrückend wirken.

Abb. 1.Strukturausschnitte und verbrückende μ_3 - bzw. μ -OSnPh₃-Gruppen in <u>15</u> bzw.<u>17</u> (Pb- und Co-Atome: dunkel; C₃Sn-Gruppen: hell)

Die Vanadiumverbindung <u>19</u>, die durch Umsetzung von Ph₃SnOH mit OV(O^{*n*}Pr)₃ hergestellt wird, ist vergleichsweise kompliziert aufgebaut. In <u>19</u> liegen vier V-Atome nahezu in einer Ebene. Durch die Sauerstoffumgebung der V-Atome kann man hierbei zwei VO₄ ^{3–} -Einheiten und eine V₂O₆ ^{4–} -Einheit unterscheiden, wobei die VO₄-Tetraeder terminal durch eine Me-Gruppe bzw. SnPh₃-Gruppe koordiniert vorliegen. Dieser Vanadatkern wird sandwichartig von zwei [(PhSn)₃(OMe₃)₃O] ⁴⁺ -Gruppen koordiniert. Der Aufbau der [(PhSn)₃(OMe₃)₃O] ⁴⁺ -Gruppen entspricht dabei drei über Kanten verknüpften CSnO₅-Oktaedern, die ein gemeinsames Sauerstoffatom koordinieren.

Summary

The present thesis concerns the synthesis and structural characterization of organotin, particularly triphenyltin substituted oxo anions. Preparation of the target substances can be achieved by several ways:

1) Reactions of R₃SnCl with oxo anions

Triorganotin halides react with oxo anions in an aqueous solution according to equation 1.

$$x \operatorname{R}_{3}\operatorname{SnCl} + \operatorname{MO}_{y}{}^{x-} \longrightarrow (\operatorname{R}_{3}\operatorname{Sn})_{x}\operatorname{MO}_{y} + x \operatorname{Cl}^{-}$$
(eq. 1)
(R = Ph, Bz; M = V, Mo)

2) Reactions of Ph₃SnOH and (Ph₃Sn)₂O with oxoacids

The reaction of Ph₃SnOH with acids formally proceeds with the elimination of water (eq. 2).

$$n \operatorname{Ph}_3 \operatorname{SnOH} + \operatorname{H}_x \operatorname{MO}_y \longrightarrow (\operatorname{Ph}_3 \operatorname{Sn})_n \operatorname{H}_{(x-n)} \operatorname{MO}_y + n \operatorname{H}_2 \operatorname{O}$$
 (eq. 2)
(M = P, As, Se, Te)

Therefore, substances not sensitive to water are synthesized in an aqueous solution. If water must be excluded from the reaction mixture Ph₃SnOH is replaced by an alkoxide, e. g. Ph₃SnOMe.

 $(Ph_3Sn)_2O$ initially undergoes hydrolysis (eq. 3) and thereby generates Ph_3SnOH which reacts as shown in eq. 2.

$$n (Ph_3Sn)_2O + H_nMO_m \longrightarrow (Ph_3Sn)_nMO_m + n Ph_3SnOH$$
 (eq. 3)

3) Reaction of Ph₃SnOH with silylamides and alkoxides

Furthermore it is possible to deprotonate the OH group of Ph₃SnOH by using silylamides or alkoxides (eq. 4).
Summary

$$n \operatorname{Ph}_3\operatorname{SnOH} + \operatorname{MR}_m \longrightarrow (\operatorname{Ph}_3\operatorname{SnO})_n \operatorname{MR}_m + n \operatorname{RH}$$
 (eq. 4)
(M = Ti, Co, Pb; R = OMe, OⁱPr, N(SiMe_3)₂)

The investigated compounds can be divided into three groups:

1. Organotin substituted oxo anions with monomeric structures

Monomeric substances of the type $M(OSnPh_3)_x$ (M = As, Ti) are obtained if the charge of the MO_y^{x-} unit equals the number of terminal O-atoms (x = y). This substitution pattern can be found in [(Ph_3Sn)_3AsO_3] (<u>4</u>) and [Ti(OSnPh_3)_4] (<u>11</u>) where only terminal Ph_3SnO groups exist.

Tab. 1.Central cores of $[(Ph_3Sn)_3AsO_3]$ (<u>4</u>) and $[Ti(OSnPh_3)_4]$ (<u>11</u>) (oxo unit: dark;
organotin groups: grey)

Compound	<u>4</u>	<u>11</u>
Oxo unit	AsO ₃ ³⁻	TiO ₄ ⁴⁻
Organotin unit	$3 \times \text{terminal Ph}_3\text{Sn}$	$4 \times \text{terminal Ph}_3\text{Sn}$
Structural features		J J J

The tris(triphenylstannyl) arsenite ($\underline{4}$) can also serve as a complex ligand. Hence [(CO)₄FeAs(OSnPh₃)₃] ($\underline{6}$) had been obtained by the reaction of $\underline{4}$ with Fe₂(CO)₉.

The Te-compounds *trans*- and *cis*-[(Ph_3SnO)_4Te(OH)_2] (<u>**9a**</u>, <u>**9b**</u>) and *trans*-[(Ph_3SnO)_2Te(OMe)_4] (<u>**10**</u>) are also monomeric with terminal Ph_3Sn groups only.

[{(Ph_3SnO)(acac)₂Ti}₂O] (<u>13</u>) a binuclear Ti-complex displays similar structural features. Likewise the triphenyltin alkoxides Ph_3SnO^iPr (<u>12</u>) and Ph_3SnO^iBu (<u>18</u>) are also monomers.

Attempts to synthesize $(Ph_3Sn)_3AsO_4$ failed but a partial cleavage of phenyl groups from the organotin unit was observed. The product, $[{(Ph_3Sn)(Ph_3Sn \cdot DMF)(Ph_2SnOH)AsO_4}_2]$ (7), a binuclear As(IV) compound with terminal Ph_3Sn groups and bridging Ph_2Sn groups, was

isolated.

2. Organotin substituted oxo anions with polymeric structures

Polymeric compounds of the type $(R_3Sn)_xMO_y$ (R = Ph, Bz; M = P, Se, V, Mo) arise if the oxo anion contains extra donor functions. MO_y^{x-} anions, with y = x + 1 or y = x + 2 have one or two additional O atoms which allow a crosslinking to other Ph₃Sn groups. However the steric demands of the organotin group must be considered because they can be the limiting factor in connection of units.

 $[(Bz_3Sn)_2MoO_4 \cdot DMF]$ (2) and $[(Ph_3Sn)_2SeO_3 \cdot L]$ (L = CHCl₃ : <u>8a</u>; DMF : <u>8b</u>) for example form chain polymers. Besides terminal and singly bonded R₃Sn groups (R = Ph, Bz) one can observe bridging R₃Sn units that are connected to two O atoms (Tab. 2).

Tab. 2.Polymeric framework of $[(Bz_3Sn)_2MoO_4 \cdot DMF]$ (**2**) and $[(Ph_3Sn)_2SeO_3 \cdot DMF]$ (**8b**) (oxo units: dark; organotin groups: grey)

Compound	<u>2</u>	<u>8b</u>
Oxo unit	MoO4 ²⁻	SeO ₃ ²⁻
Function of	$1 \times bridging$	$1 \times bridging$
organotin units	$1 \times terminal$	$1 \times \text{terminal}$
Structural features		

Furthermore polymers with cyclic structures have been prepared. $[(Ph_3Sn)_3VO_4 \cdot 6 C_6H_6]$ (<u>1</u>) and $[(Ph_3Sn)_3PO_4 \cdot 2 C_6H_6]$ (<u>3</u>) form 24 memberd $Sn_6O_{12}M_6$ rings (M = V, P) with terminal and bridging Ph₃Sn groups.

All bridging Ph_3Sn and Bz_3Sn groups are connected to tow oxo units with the O atoms in *trans* position that a trigonal bipyramidal C_3SnO_2 unit is formed. Terminal R_3Sn groups are connected by a single O atom such that the coordination leads to a C_3SnO tetrahedron. The geometry of the terminal organotin unit can only be extended to trigonal bipyramidal if solvent molecules are coordinated.

3. Cluster compounds

Oxocluster compounds like $[Pb_6O_4(\mu_3-OSnPh_3)_4]$ (**15**), $[Co\{Co(NSi_2Me_6)\}_2(\mu-OSnPh_3)_4]$ (**17**) and $[(PhSn)_6(Ph_3SnO)(OMe)_9(VO_3)_2(VO_4)_2]$ (**19**) were also characterized. Compounds **15** and **17** are produced by the reaction of Ph_3SnOH with Pb[N(SiMe_3)_2]_2 and Co[N(Si(Me_3)_2]_2. **15** shows a Pb₆ octahedron, with the faces capped by alternating μ_3 -O atoms and μ_3 -OSnPh_3 groups. **17** exists as a trinuclear Co complex, with a central Co atom connected by two μ -OSnPh_3 groups to two CoN(SiMe_3)_2 units. The central Co atom exhibits a tetrahedral coordination and the terminal Co atoms have a trigonal planar arrangement. **15**, as well as **17** reveal only terminal, tetrahedral coordinated Ph_3SnO units which arein the case of **15** μ_3 bridging and μ -bridging in **17**.

Tab. 3. Bridging μ_3 - and μ -OSnPh₃ units in <u>15</u> and <u>17</u> (Pb, Co atoms: dark; C₃SnO groups: grey)

The vanadium compound <u>19</u>, which is formed by the reaction of Ph₃SnOH with $OV(O^nPr)_3$ has a comparatively complex arrangement. <u>19</u> shows four V atoms arranged in a plane. Due to the different surroundings of the V atoms it is possible to distinguish between two VO_4^{3-} units and one $V_2O_6^{4-}$ unit with the VO_4^{3-} units are terminally coordinated by a Me and SnPh₃ group. The core, consisting of four V atoms, is surrounded by two $[(PhSn)_3(OMe_3)_3O]^{4+}$ units in a sandwich like arrangement. These units are formed by three CSnO₅ octahedra, connected along the edges and sharing one common O atom.

5. Experimenteller Teil

5.1 Arbeitstechnik und spektroskopische Methoden

Arbeitstechnik

Ein großer Teil der Umsetzungen erforderte inerte Bedingungen. Hierzu wurde unter Schutzgasatmosphäre (Ar) gearbeitet. Die Reaktionen fanden in Schlenkgefäßen, welche über Schlauchverbindungen an eine Hahnleiste angeschlossen wurden, statt.

Die Synthesen wurden in wasserfreien Lösungsmitteln durchgeführt. Hierzu wurden Ether, THF, Toluol, Benzol über Natrium und Benzophenon; Acetonitril, Chloroform und Dichlormethan über Phosphorpentoxid sowie DMF über Calciumhydrid getrocknet und anschließend unter Argonatmosphäre destilliert und aufbewahrt.

Bei allen synthetisierten Verbindungen wurde besonders auf die Optimierung der Kristallisationsbedingungen geachtet. Die Kristalle sollten möglichst gut ausgebildet und von ausreichender Größe sein. So entstanden einige Kristalle über den Zeitraum von mehreren Wochen in überschichteten Lösungen. Hierzu wurde eine Komponente in einem Lösungsmittel höherer Dichte gelöst und mit einem Lösungsmittel geringerer Dichte, in welchem die Verbindung weniger löslich ist, überschichtet. Die Überschichtungen sollten eine möglichst kleine Grenzschicht und geringe Vermischung der Lösungsmittel aufweisen.

Spektroskopische Methoden

IR-Spektroskopie

Für die Aufnahme von IR-Spektren stand ein 5000 FTIR Gerät der Firma Mattson zur Verfügung. Alle Spektren wurden in KBr- oder in CsBr-Verreibungen aufgenommen.

NMR-Spektroskopie

NMR-Spektren wurden an einem Gemini 2000 und Unity 500 der Firma Varian aufgenommen. Dabei wurde für die ¹H- und ¹³C-Spektren TMS, für die ³¹P-Spektren H₃PO₄, für die ¹¹⁹Sn-Spektren Me₄Sn, für die ⁴⁷Ti-Spektren TiCl₄ in CCl₄ und für die ¹²⁵Te-Spektren eine wässrige Te(OH)₆-Lösung als Standard verwendet.

Massenspektrometrie

Massenspektren wurden an einem AMD 402 der Firma Intectra aufgenommen, wobei die Ionisierung durch Elektronenstoß erfolgte.

Elementaranalysen

Alle C-, H-, N- Analysen wurden an einem CHNS 932 Gerät der Firma LECO durchgeführt. Halogengehalte wurden durch Verbrennen der Substanz am Platinkontakt mit anschließender Titration mit Quecksilbernitrat gegen Diphenylcarbazid bestimmt.

Als Chromatographie-System wurde ein B-680 der Firma Büchi verwendet.

Röntgeneinkristallstrukturanalysen

Die Röntgeneinkristallstrukturanalysen wurden an einem Flächendetektor Stoe-IPDS unter Verwendung von MoK_{α}-Strahlung ($\lambda = 0.71073$ Å, Grafitmonochromator) durchgeführt. Die Absorptionskorrektur erfolgte numerisch.

Differential-Thermo-Gravimetrie

Die DTA- und TG-Analysen wurden an einem STA 409 der Firma Netzsch, bei einer Aufheizrate von 10 K / min in Korundtiegeln unter Luft, durchgeführt.

Schmelzpunkte

Zur Bestimmung der Schmelzpunkte wurde ein Melt Temp II der Firma Laboratory Devices genutzt.

5.2 Darstellung der Ausgangsverbindungen

Ph₃SnCl, (Ph₃Sn)₂O, Na₂MoO₄ · 2 H₂O, ZnMe₂, Fe₂(CO)₉, Ti(OⁱPr)₄, K₂TeO₃, SeO₂, As₂O₃, As₂O₅, K₂SeO₃, OV(O^{*n*}Pr) und Te(OH)₆ standen zur Verfügung.

 $Ph_{3}SnOH \ [60], \ Bz_{3}SnCl \ [131], \ (NH_{4})_{3}AsO_{4} \ [132], \ [(MeO)_{2}Ti(acac)_{2}] \ [114], \ Pb[N(SiMe_{3})_{2}]_{2} \ [133] \ und \ Co[N(SiMe_{3})_{2}]_{2} \ [125] \ und \ wurden \ nach \ Literaturvorschrift \ hergestellt.$

5.3 Darstellung von $[{(Ph_3Sn)_3VO_4}_6 \cdot 6 C_6H_6] (\underline{1c})$

2,31 g (6 mmol) Ph₃SnCl werden in 50 ml Dichlormethan gelöst und mit 20 ml einer wässrigen Lösung von 0,37 g (2 mmol) Na_3VO_4 für 6 h kräftig gerührt. Anschließend wird das organische Lösungsmittel im Vakuum entfernt, der verbleibende Feststoff abfiltriert, mit Wasser gewaschen und im Vakuum getrocknet.

Um Kristalle von <u>1c</u> zu erhalten, wird das Rohprodukt in Benzol aufgenommen, über Celite filtriert und anschließend bis zur einsetzenden Trübung eingeengt. Nach zwei Tagen bilden sich bei -25 °C blassgelbe, klare Kristallbüschel, welche sich über einen Zeitraum von einigen Stunden an der Luft langsam trüben.

Charakterisierung von <u>1c</u> (Kristalle):

Summenformel:	$[C_{360}H_{306}O_{2}]$	$_{24}Sn_{18}V_{6}$]
Molekulargewicht:	[7458,8]	
Ausbeute:	0,4 g (>15	% bezogen auf Ph ₃ SnCl)
Schmelzpunkt:	ab 210 °C (Zersetzung)
Elementaranalyse:	ber. (%):	С 57,97; Н 4,14
	gef. (%):	C 56,44; H 4,02

Abb. 54. IR-Spektrum von <u>1c</u>

Bandenlagen (v in cm⁻¹): 449 m; 662 w; 694 s; 726 s; 852 s, br; 1075 m; 1427 m; 1478 w; 3043 m; 3063 w

5.4 Darstellung von $[(Bz_3Sn)_2MoO_4 \cdot DMF](\underline{2})$

2,56 g (6 mmol) Bz₃SnCl werden in 50 ml Dichlormethan gelöst und mit 20 ml einer wässrigen Lösung von 0,73 g (3 mmol) $Na_2MoO_4 \cdot 2 H_2O$ für 6 h gerührt. Anschließend wird das organische Lösungsmittel im Vakuum entfernt. Der ausfallende Feststoff wird abfiltriert, mit Wasser gewaschen und im Vakuum getrocknet.

Kristalle von <u>2</u> konnten lediglich aus einem Überschichtungsexperiment gewonnen werden. Hierzu wurden 0,06 g (0,25 mmol) Na₂MoO₄ · 2 H₂O in Wasser gelöst und mit einer Lösung von 0,21 g (0,5 mmol) Bz₃SnCl in DMF überschichtet. Nach zwei Wochen bei RT bilden sich farblose Kristalle von <u>2</u> an der Grenzschicht der beiden Lösungen. Charakterisierung von <u>2</u> (Kristalle):

Summenformel:	C45H49MoN	NO_5Sn_2	
Molekulargewicht:	[1017,2]	[1017,2]	
Ausbeute:	einige Krist	einige Kristalle	
Schmelzpunkt:	115 °C (Zer	rsetzung)	
Elementaranalyse:	ber. (%):	C 53,13; H 5,85; N 1,38	
	gef. (%):	C 53,18; H 5,91; N 1,70	

Abb. 55. IR-Spektrum von <u>2</u>

Bandenlagen (v in cm⁻¹): 450 m; 626 m; 695 s; 719 s; 797 sh, 755 s; 824 s; 879 m; 1450 m; 1490 m; 1596 m; 1646 s; 2923 w; 3055 w; 3076 w

5.5 Darstellung von $[{(Ph_3Sn)_3(PO_4)}_6 \cdot 2 C_6H_6]$ (3)

Eine Lösung von 5,50 g (15 mmol) Ph_3SnOH bzw. 1,50 g (3,5 mmol) $Ph_3SnOMe \cdot 1,5$ MeOH in 25 ml THF wird zu 0,49 g (5 mmol) bzw. 0,11 g (1,17 mmol) wasserfreier H_3PO_4 , gelöst in 25 ml THF, langsam zugetropft und für 6 h bei RT gerührt. Die anfangs klare Lösung trübt

sich nach wenigen Stunden leicht ein. Es werden ca. 20 ml Lösungsmittel abdestilliert und anschließend kann <u>3</u> als weißes Pulver abfiltriert werden.

Die frisch hergestellte Verbindung ist in den gängigen organischen Lösungsmitteln löslich und lässt sich aus Benzol in Form schichtartig angeordneter, klarer Plättchen kristallisieren.

Charakterisierung von <u>3</u>:

Summenformel:	$[C_{336}H_{282}O_{24}P_6Sn_{18}]$	
Molekulargewicht:	[7026,6]	
Ausbeute:	3,238 g (55 % bezogen auf Ph ₃ SnOH); ca. 0,5 g (25	% bezogen
	auf Ph ₃ SnOMe · 1,5 MeOH)	
Schmelzpunkt:	ab 145 °C (Zersetzung)	
Elementaranalyse:	ber. (%): C 57,43; H 4,04	
	gef. (%): C 58,01; H 4,17	
	(die gefundenen Werte für Kohlenstoff und Wasserst	toff würden
	für etwa 4 Lösungsmittelmoleküle sprechen)	
NMR:	¹¹⁹ Sn-NMR (500 MHz, 27 °C, C_6D_6) $\delta = -101,3$ ppm	Ĺ
	³¹ P-NMR (200 MHz, 27 °C, C_6D_6) $\delta = -192,9$ ppm	

Abb. 56. IR-Spektrum von <u>3</u>

Bandenlagen (v in cm⁻¹): 449 m; 693 s; 730 s; 993 s; 1020 s; 1074 s; 1428 m; 3047 m; 3491 br

5.6 Darstellung von [(Ph₃Sn)₃AsO₃] (<u>4</u>)

13,21 g (36 mmol) Ph₃SnOH werden in 100 ml Dichlormethan gelöst und mit einer Suspension von 1,13 g (6 mmol) As₂O₃ in 20 ml Wasser für 8 h kräftig gerührt, wobei allmählich ein weißer Niederschlag ausfällt. Anschließend wird bis zur Trockene eingeengt und der verbleibende Feststoff aus heißem DMF umkristallisiert und über Celite filtriert. Über Nacht bilden sich stäbchenförmige, klare Kristalle, die auf einem Papierfilter gesammelt und mit Ether gewaschen werden.

Charakterisierung von <u>4</u>:

Summenformel:	$C_{54}H_{45}AsO_3Sn_3$
Molekulargewicht:	[1173,0]
Ausbeute:	12,59 g (90 % bezogen auf Ph ₃ SnOH)
Schmelzpunkt:	184 - 186 °C
Elementaranalyse:	ber. (%): C 55,29; H 3,87
	gef. (%): C 55,28; H 3,90
NMR:	$^{119}\text{Sn-NMR-Spektrum}$ (500 MHz, 27 °C, CDCl ₃) δ = $-102,1$
	ppm { ${}^{2}J_{119}Sn,{}^{13}C$ } = 45 Hz; { ${}^{3}J_{119}Sn,{}^{13}C$ } = 62 Hz; { ${}^{1}J_{119}Sn,{}^{13}C$ } = 853
	Hz
	¹³ C-NMR-Spektrum (500 MHz, 27 °C, CDCl ₃) δ = 128,8 ppm
	${}^{3}J_{C, 119}S_{n} = 60,8 Hz; \delta = 129,6 ppm {}^{4}J_{C, 119}S_{n} = 12,9 Hz;$
	$\delta = 137,2 \text{ ppm } \{^2 J_{C, 119} S_{N} \} = 46,1 \text{ Hz}; \delta = 140,3 \text{ ppm}$

Abb. 57. IR-Spektrum von <u>4</u>

Bandenlagen (v in cm⁻¹): 448 m; 493 m; 662 w; 697 s; 731 s; 994 w; 1024 w; 1072 m; 1258 w; 1382 w; 1426 m; 1479 m; 1677m; 3015 br

5.7 Darstellung von $[(Ph_3Sn)_2O \cdot 2 \{As(OSnPh_3)_3\}] (\underline{5})$

In einem Rundkolben werden 0,72 g (1 mmol) $(Ph_3Sn)_2O$ und 2,35 g (2 mmol) $[(Ph_3Sn)_3AsO_3]$ in 100 ml Toluol gelöst. Anschließend wird soviel Heptan zugesetzt bis sich der ausfallende Niederschlag nur noch in der Wärme löst. Die Reaktionslösung wird für einige Tage bei –25 °C aufbewahrt und es können klare, kompakte Kristallstäbchen isoliert werden.

Charakterisierung von 5:

Summenformel:	$C_{144}H_{120}As_2O_7Sn_8$
Molekulargewicht:	[3062,1]
Ausbeute:	2,1 g (70 % bezogen auf (Ph_3Sn) ₃ AsO ₃

150 - 154 °C (Zersetzung)

Abb. 58. IR-Spektrum von <u>5</u>

Bandenlagen (v in cm⁻¹): 441 m; 495 m; 694 s; 733 s; 1068 m; 1465 m; 1684m; 3031 br

5.8 Darstellung von [(CO)₄FeAs(OSnPh₃)₃] (<u>6</u>)

Eine Lösung von 1,17g (1 mmol) (Ph₃Sn)₃AsO₃ in 25 ml THF wird langsam zu einer Suspension von 0,36 g (1 mmol) Fe₂(CO)₉ in 25 ml THF zugetropft, wobei sich die Lösung nach wenigen Minuten kräftig gelb färbt. Im Wasserbad wird für 2 h bei 50 °C Badtemperatur gerührt und anschließend das Lösungsmittel sowie das entstandene Fe(CO)₅ im Vakuum abdestilliert. Der verbleibende, hellgelbe Rückstand wird in 25 ml Benzol aufgenommen, mit ca. 50 ml Heptan überschichtet und bei -25°C gelagert. Neben einem gelben Pulver bilden sich nach ca. 2 Wochen gelbe, kompakte Kristalle, welche abfiltriert und im Vakuum getrocknet werden. Charakterisierung von (<u>6</u>):

Summenformel: C58H45AsFeO7Sn3 Molekulargewicht: [1340,9] 0,7 g (50 % bezogen auf (Ph₃Sn)₃AsO₃) Ausbeute: Schmelzpunkt: 70 - 75 °C (Zersetzung) Elementaranalyse: ber. (%): C 51,95; H 3,38 C 51,52; H 3,35 gef. (%): 119 Sn-NMR-Spektrum (500 MHz, 27 °C, CDCl₃) $\delta = -91,4$ ppm, NMR: ${^{2}J^{_{119}}Sn, {^{13}C}} = 48 \text{ Hz}; {^{3}J^{_{119}}Sn, {^{13}C}} = 64 \text{ Hz}; {^{1}J^{_{119}}Sn, {^{13}C}} = 400 \text{ Hz};$ ${^{4}J_{119}}_{Sn,117}_{Sn} = 8,5 \text{ Hz}$ 13 C-NMR-Spektrum (500 MHz, 27 °C, CDCl₃) δ = 128,6 ppm, 129,1 ppm ${^{3}J_{13}C, ^{119}Sn} = 64$ Hz, 130,5 ppm, 136,1 ppm ${^{2}J_{13}C, ^{12}C}$ 119 sn} = 48,8 Hz, 214,7 ppm

Abb. 59. IR-Spektrum von <u>6</u>

Bandenlagen (v in cm⁻¹): 360 w; 444 m; 497 w; 518 w; 622 m; 695 m; 728 m; 751 m; 767 m; 818 m; 1075 m; 1428 m; 1942 s; 1963 s; 2050 m; 3063 w

5.9 Darstellung von [{(Ph₃Sn · DMF)(Ph₃Sn)(Ph₂SnOH)AsO₄}₂] (<u>7</u>)

2,20 g (6 mmol) Ph₃SnOH werden in 50 ml Methylenchlorid gelöst und zu 0,23 g (1 mmol) As₂O₅, gelöst in 20 ml Wasser, zugetropft. Es wird für 6 h kräftig gerührt, wobei ein weißer Niederschlag ausfällt. Anschließend wird bis zur Trockene eingeengt, der verbleibende Feststoff aus heißem DMF umkristallisiert und über Celite filtriert. Bei –25 °C bilden sich über Nacht stäbchenförmige, klare Kristalle, die auf einem Papierfilter gesammelt und mit Ether gewaschen werden.

In entsprechender Weise können auch 2,31 g (6 mmol) Ph_3SnCl mit 0,39 g (2 mmol) $(NH_4)_3AsO_4$ in 96 % igem Ethanol suspendiert und für 4 h unter Rückfluss erhitzt werden. Es wird ebenfalls ein weißer Feststoff erhalten, welcher sich nur in DMF umkristallisieren lässt und <u>7</u> wieder als DMF-Solvat anfällt.

Charakterisierung von <u>7</u>:

Summenformel:	$C_{102}H_{96}As_2N_2O_{12}Sn_6$	
Molekulargewicht:	[2404,0]	
Ausbeute:	1,9 g bzw. 1,4 g (ca. 80 % bezogen auf Ph ₃ SnOH; ca. 60	%
	bezogen auf Ph ₃ SnCl)	
Schmelzpunkt:	196 - 198 °C	
Elementaranalyse:	ber. (%): C 50,96; H 4,03; N 1,17	
	gef. (%): C 51,20; H 4,13; N 1,29	

Abb. 60. IR-Spektrum von <u>7</u>

Bandenlagen (v in cm⁻¹): 380 w; 449 m; 501 w; 617 w; 670 w; 696 m; 730 m; 800 s; 852, 894 sh; 1103 m; 1187 m; 1383 m; 1429 s; 1481 m; 1654 s; 3024 m; 3589m

5.10 Darstellung von $[(Ph_3Sn)_2SeO_3 \cdot L]$ (L = CHCl₃ : <u>8a</u>, DMF : <u>8b</u>)

0,11 g (1 mmol) SeO₂ werden in 10 ml Wasser gelöst mit 0,73 g (2 mmol) Ph₃SnOH in 20 ml Dichlormethan umgesetzt. Es wird anschließend bis zur Trockene eingeengt, wobei ein weißer Rückstand verbleibt, der in Toluol, Benzol, Chloroform etc. löslich ist. Kristalle bilden sich sowohl aus einer konzentrierten CHCl₃-Lösung, als auch aus einer DMF-Lösung bei RT über den Zeitraum einiger Tage. Man erhält hierbei das CHCl₃-Solvat [(Ph₃Sn)₂SeO₃ · CHCl₃] <u>**8a**</u>, sowie das DMF-Solvat [(Ph₃Sn)₂SeO₃ · DMF] <u>**8b**</u>.

Charakterisierung von **<u>8a</u>**:

Summenformel: $C_{37}H_{31}Cl_3O_3SeSn_2$

Molekulargewicht:	[946,4]
Ausbeute:	einige Kristalle
Schmelzpunkt:	ab 40 °C (Zersetzung)

Charakterisierung von **<u>8b</u>**:

Summenformel:	C ₃₉ H ₃₇ NO ₄ Set	Sn ₂
Molekulargewicht:	[900,0]	
Ausbeute:	0,7 g (40 % be	ezogen auf Ph ₃ SnOH)
Schmelzpunkt:	125 - 129 °C (Zersetzung)
Elementaranalyse:	ber. (%)	C 52,98; H 4,22; N 1,58
	gef. (%):	C 51,62; H 4,55; N 2,16
	(der zu hohe	Gehalt an Kohlenstoff und Stickstoff kann auf
	anhaftendes D	MF zurückgeführt werden)

Abb. 61. IR-Spektrum von <u>8a</u>

Bandenlagen (v in cm^{-1}):

447 m; 600 m; 672 m; 697 s; 730 m; 822 br; 896 br; 1023 m; 1042 m; 1074 sh; 1430 m; 2828 m; 2931 m; 3047 m; 3065 m

Abb. 62. IR-Spektrum von <u>8b</u>

Bandenlagen (v in cm⁻¹): 380 w; 453 m; 617 w; 670 m; 696 s; 745 s; 1076 w; 1377 m; 1427 m; 1479 w; 1579 w; 1647 s; 1680 m; 2825 w; 2876 w; 2983 w; 3042 m

5.11 Darstellung von *trans*-[(Ph₃SnO)₄Te(OH)₂] (<u>9a</u>)

Zu einer Suspension von 4,40 g (12 mmol) Ph₃SnOH in 75 ml 96 % igem Ethanol gibt man 0,69 g (3 mmol) Te(OH)₆ und erhitzt dies für 6 h unter Rückfluss, wobei sich ein weißer Niederschlag bildet. Nachdem das Lösungsmittel abdestilliert wurde, kann dieser aus Dichlormethan, Benzol oder Toluol umkristallisiert werden, wobei <u>9a</u> jeweils in Form klarer, prismatischer Kristalle anfällt.

Kristalle von cis-[(Ph₃SnO)₄Te(OH)₂] (<u>9b</u>) bildeten sich in einem Überschichtungs-

experiment, wobei 0,08 g (0,2 mmol) Ph_3SnOH , gelöst in CH_2Cl_2 mit 0,01 g (0,05 mmol) $Te(OH)_6$, gelöst in Wasser, in einem Reagenzglas überschichtet wurde. Innerhalb einer Woche konnten an der Phasengrenze kompakte, klare Kristalle beobachtet werden.

Charakterisierung von <u>9a</u>:

Summenformel:	$C_{72}H_{62}O_6Sn_4Te$
Molekulargewicht:	[1625,7]
Ausbeute:	2,92 g (60% bezogen auf Ph ₃ SnOH)
Schmelzpunkt:	204 - 208 °C
Elementaranalyse:	ber. (%): C 53,20; H 3,84
	gef. (%): C 53,09; H 3,92
NMR:	$^{119}Sn~(500$ MHz, 27 °C, C ₆ D ₆) δ = –114,2 ppm { ² J $^{119}Sn,^{125}Te}$ =
	379 Hz
	¹²⁵ Te (500 MHz, 27 °C, C_6D_6) $\delta = 751.4$ ppm

Abb. 63. IR-Spektrum von <u>9a</u>

Bandenlagen (v in cm⁻¹): 350 w; 446 m; 500 m; 608 m; 697 m; 734 s; 1003 w; 1075 w; 1427 m; 1480 w; 3047 m; 3553 m

5.12 Darstellung von trans-[(Ph₃SnO)₂Te(OMe)₄] (<u>10</u>)

2,00 g (1,2 mmol) $[(Ph_3SnO)_4Te(OH)_2]$ werden in 100 ml Methanol für 30 min unter Rückfluss erhitzt. Anschließend werden ca. 50 ml Methanol abdestilliert. Nach einigen Tagen fällt <u>**10**</u> bei RT aus der Reaktionslösung in Form kompakter Kristalle aus, kann abfiltriert und im Vakuum getrocknet werden.

Charakterisierung von <u>10</u>:

Summenformel:	$C_{40}H_{42}O_6Sn_2Te_1$
Molekulargewicht:	[983,8]
Ausbeute:	0,8 g (70 % bezogen auf [(Ph ₃ SnO) ₄ Te(OH) ₂]
Schmelzpunkt:	140 - 142 °C
Elementaranalyse:	ber. (%): C 48,81; H 4,30
	gef. (%): C 50,01; H 4,49
NMR:	¹ H (500 MHz, 27 °C, C ₆ D ₆) δ = 3,42 ppm (CH ₃), δ = 7,2 - 7,8
	ppm (C_6H_5)
	¹³ C (500 MHz, 27 °C, C ₆ D ₆) δ = 51,1 ppm (CH ₃),
	δ = 140,6 ppm, δ = 136,7 ppm, δ = 129,4 ppm und δ =
	128,2 ppm (C_6H_5)
	^{119}Sn (500 MHz, 27 °C, $C_6D_6)$ δ = –106,7 ppm { 2J $^{_{125}}Te, ^{^{119}}Sn$ } =
	593 Hz
	^{125}Te (500 MHz, 27 °C, C ₆ D ₆) δ = 747,3 ppm { 2J $^{125}\text{Te},^{117}\text{Sn}\}$ =
	567 Hz, $\{{}^{2}J{}^{125}Te,{}^{119}Sn\} = 593$ Hz

Abb. 64. IR-Spektrum von <u>10</u>

Bandenlagen (v in cm⁻¹): 337 w; 447 m; 502 m; 558 m; 697 m; 736 s; 764 s; 1018 s; 1077 m; 1428 m; 1479 w; 2823 m; 2900 sh; 2927 m; 2963 m; 3014 w; 3059 m

5.13 Darstellung von [Ti(OSnPh₃)₄] (<u>11</u>)

Zu einer Lösung von 1,48 ml (1,40 g, 5 mmol) $Ti(O^{i}Pr)_{4}$ in 50 ml Hexan werden bei -60 °C 7,34 g (20 mmol) Ph₃SnOH, gelöst in 50 ml THF, über einen Zeitraum von 2 min zugetropft. Nach langsamer Erwärmung auf RT wird für weitere 3 h gerührt. Hiernach wird das Lösungsmittel abdestilliert und der ausfallende weiße Feststoff aus Benzol umkristallisiert, wobei <u>11</u> in Form klarer Kristallstäbchen anfällt.

Charakterisierung von 11:

Summenformel: $C_{72}H_{60}O_4Sn_4Ti$ Molekulargewicht:[1511,9]

Experimenteller Teil

Ausbeute:	6,71 g (89 % bezogen auf Ti(O^i Pr) ₄				
Schmelzpunkt:	215 - 216 °C				
Elementaranalyse:	ber. (%):	С 56,95; Н 4,00			
	gef. (%):	С 57,19; Н 3,94			
NMR:	¹¹⁹ Sn (500 M)	Hz, 27 °C, C ₆ D ₆) $\delta = -112,1 \text{ ppm } \{^2 J_{119} \text{ sn},^{13} \text{ C}\} =$			
	45 Hz; { ³ J ¹¹⁹ Sr	$h^{13}_{,1C}$ = 62 Hz.			

Abb. 65. IR-Spektrum von <u>11</u>

Bandenlagen (v in cm⁻¹): 447 m; 661 m; 697 m;733 m; 782 s; 815 m; 1021 w; 1076 m; 1428 m; 1479 m; 2975 w; 3052 m; 3427 br

Darstellung von Ph₃SnO'Pr <u>12</u> (Kristalle):

Wird die Reaktion dagegen so geführt, dass man beide Reaktanden in THF löst und für 3 h unter Rückfluss erwärmt, kann <u>12</u> nach der Filtration über Celite in Form von kleinen stäbchenförmigen Kristallen isoliert werden. <u>12</u> kristallisiert über einen Zeitraum von 1-2 Wochen bei –25 °C aus einer gelben, konzentrierten THF-Lösung, welche mit der 3-fachen Menge Heptan überschichtet wird. Weiterhin fällt hierbei als Hauptprodukt eine gelbe, wachsartige Substanz an, die nicht weiter charakterisiert werden konnte.

Charakterisierung von <u>12</u>:

Summenformel:	$C_{21}H_{22}OSn$
Molekulargewicht:	[409,1]
Ausbeute:	einige Kristalle

5.14 Darstellung von [$\{Ti(acac)_2(OSnPh_3)\}_2O$] (<u>14</u>)

Zu einer Lösung von 1,54 g (5 mmol) $[(MeO)_2Ti(acac)_2]$ in Hexan werden 3,67 g (10 mmol) Ph₃SnOH, gelöst in 25 ml THF, über einen Zeitraum von 2 min zugetropft und für 6 h bei RT gerührt. Anschließend werden im Vakuum alle flüchtigen Bestandteile abdestilliert, der ölige, gelbliche Rückstand in ca. 25 ml THF aufgenommen und mit Heptan überschichtet. <u>14</u> kristallisiert bei –25 °C über den Zeitraum von ein bis zwei Wochen in Form gelber, ineinander verwachsener Kristallplatten.

Charakterisierung von 14:

Summenformel:	$C_{56}H_{58}O_{11}S$	n_2Ti_2
Molekulargewicht:	[1240,2]	
Ausbeute:	2,5 g (40 %	bezogen auf Ph ₃ SnOH)
Schmelzpunkt:	> 80 °C (Ze	ersetzung)
Elementaranalyse:	ber. (%):	С 54,25; Н 4,71
	gef. (%):	С 55,47; Н 4,93

Abb. 66. IR-Spektrum von <u>14</u>

Bandenlagen (v in cm⁻¹): 346 w; 454 m; 481 m; 646 s; 681 s; 698 s; 735 s; 770 m; 843 m; 929 m; 1021 m; 1075 m; 1274 m; 1380 s; 1429 s; 1485 m; 1519 s; 1587 s; 2973 w; 2991 w; 3002 w; 3047 m; 3064 w

Darstellung von <u>13</u> (Kristalle):

 $[(MeO)_2Ti(acac)_2]$ wurde nach einer in der Literatur publizierten Synthese [114] hergestellt, wobei die Erzeugung von <u>13</u> in kristalliner Form gelang. Dazu wurde das Rohprodukt aus einem Toluol-Hexan-Gemisch umkristallisiert, wobei <u>13</u> in Form kompakter, gelber Stäbchen anfällt.

Abb. 67. IR-Spektrum von <u>13</u>

Bandenlagen (v in cm⁻¹): 358 m; 429 w; 455 m; 502 m; 596 m; 638 m; 666 m; 777 m; 930 m; 1024 s; 1189 m; 1279 m; 4691 s; 1423 m; 1531 s; 1573 s; 2920 m;

5.15 Darstellung von $[Pb_6O_4(\mu_3 - OSnPh_3)_4]$ (15)

Eine Lösung von 3,16 g (6 mmol) $Pb[N(SiMe_3)_2]_2$ in Heptan wird auf -70 °C abgekühlt und 4,40 g (12 mmol) Ph₃SnOH, gelöst in 50 ml THF, langsam zugetropft. Die Reaktionslösung wird im Kältebad auf RT gebracht und für weitere 3 h gerührt. Anschließend wird das Lösungsmittel abdestilliert und aus Benzol oder THF umkristallisiert.

Um geeignete Kristalle für eine Einkristallstrukturanalyse zu gewinnen, wird die Reaktionslösung um etwa ein Drittel eingeengt und mit der doppelten Menge Heptan in einem langen, dünnen Schlenkgefäß überschichtet. Über einen Zeitraum von einigen Tagen bilden sich bei -25 °C kompakte, blassgelbe Kristallnadeln sowie gelbliches Pulver und kristallines (Ph₃Sn)₂O.

Experimenteller Teil

Charakterisierung von 15:

Summenformel:	$C_{72}H_{60}O_8Pb_6Sn_4$
Molekulargewicht:	[2771,2]
Ausbeute:	0,90 g (30% bezogen auf Pb[N(SiMe ₃) ₂] ₂)
Schmelzpunkt:	ab 70 °C Zersetzung

Die Darstellung des $Pb[N(SiMe_3)_2]_2$ erfolgt nach [133]. Hierbei werden jedoch 10 g (36 mmol) $PbCl_2$ mit 13,25 g (72 mmol) $NaN(SiMe_3)_2$ unter denselben Bedingungen (100 ml THF) umgesetzt. Nach erfolgter Reaktion wird zuerst das Lösungsmittel unter vermindertem Druck abdestilliert und anschließend im Hochvakuum $Pb[N(SiMe_3)_2]_2$ vom verbleibenden NaCl abgetrennt.

Summenformel:	$C_{12}H_{36}N_2PbSi_4$
Molekulargewicht:	527,974
Ausbeute:	12 g (63 % auf PbCl ₂)

Darstellung von <u>16</u> (Kristalle):

Als ein Nebenprodukt bei dieser Reaktion bildet sich auch $Ph_3SnN(SiMe_3)_2$ (<u>16</u>), welches in Form kompakter Stäbchen mit schwach-gelblichem Schimmer gewonnen werden konnte. Darüber hinaus lies sich ein voluminöses, dunkelbraunes Pulver beobachten, welches sich sehr schlecht von den kristallinen Produkten abtrennen ließ und darum keine genaue Charakterisierung erfolgte.

Abb. 68. IR-Spektrum von <u>16</u>

Bandenlagen (v in cm⁻¹): 443 m; 454 m; 656 w; 697 s; 729 s; 775 w; 975 w; 995 m; 1022 w; 1058 w; 1072 m; 1257 w; 1301 w; 1380 m; 1426 s; 1478 m; 3058 m

5.16 Darstellung von $[Co{Co(NSi_2Me_6)}_2(\mu - OSnPh_3)_4]$ (<u>17</u>)

Bei –60 °C wird zu einer hellgrünen Lösung von 2,85 g (7,5 mmol) $Co[N(SiMe_3)_2]_2$ in 25 ml Hexan eine Lösung von 5,5 g (15 mmol) Ph₃SnOH in 50 ml THF oder Benzol zugetropft. Eine Dunkelfärbung der Reaktionslösung kann bei langsamer Erwärmung beobachtet werden. Nach dem Rühren bei RT für weitere zwei Stunden erfolgte eine Überschichtung mit Hexan. Nach einigen Tagen bilden sich aus einer dunkelbraunen Lösung blassblaue, wachsartigerscheinende Kristalle von <u>17</u>.

Experimenteller Teil

Charakterisierung von <u>17</u>:

Summenformel:
Molekulargewicht:
Ausbeute:
Schmelzpunkt:

C₈₄H₉₆Co₃N₂O₄Si₄Sn₄ [1961,7] ca. 1 g (20 % bezogen auf Ph₃SnOH Zersetzung bei RT

5.17 Darstellung von [(PhSn)₆(Ph₃SnO)(OMe)₉(VO₃)₂(VO₄)₂] (<u>19</u>)

Ein Lösung von 0,97 g (4 mmol) $OV(O^nPr)_3$ in 30 ml Acetonitril wird zu 4,4 g (12 mmol) Ph₃SnOH, gelöst in 50 ml Acetonitril, zugetropft und für 6 h unter Rückfluss erhitzt. Nach dem Abkühlen auf RT wird das Lösungsmittel im Vakuum abdestilliert. Das verbleibende gelb-rote Öl wird in wenig Methanol aufgenommen und bei –25 °C für mehrere Tage aufbewahrt. Über einen Zeitraum von Wochen bildet sich neben einem grünen Pulver eine gelb-grüne kristalline Verbindung. Diese Kristalle wurden in Mineralöl unter dem Mikroskop aussortiert und somit vom verbleibenden Pulver abgetrennt.

Charakterisierung von 19:

Summenformel:	$C_{63}H_{72}O_{24}Sn_7V_4$
Molekulargewicht:	[2248,0]
Ausbeute:	einige Kristalle
Schmelzpunkt:	ab 53°C Zersetzung

Abb. 69. IR-Spektrum von <u>19</u>

Bandenlagen (v in cm⁻¹): 353 m; 447 m; 600 m; 672 m; 697 m; 730 m; 822 s; 896 s; 1023 m; 1042 m; 1074 m; 1430 m; 2828 m; 2931 m; 3047m; 3065 m

6. Kristallstrukturuntersuchungen

Die Kristallstrukturuntersuchungen erfolgten an einem STOE IPDS am Institut für Anorganische Chemie der Universität Halle-Wittenberg. Hierbei wurde für die Beugungsexperimente ein Flächendetektor benutzt. Alle Proben wurden mit Mo-K α -Strahlung unter Verwendung von Graphitmonochromatoren untersucht. Die Kristallstrukturen wurde mit den Programmen X-STEP32 und SHELX durch Nutzung direkter Methoden und anschließender Differenz-Fourier-Synthesen bestimmt [134]. In allen erforderlichen Fällen erfolgte eine numerische Absoptionskorrektur. Die Optimierung der Atomparameter erfolgte über die Methode der kleinsten Fehlerquadrate unter Verwendung folgender Gewichtungsfunktion:

$$\frac{1}{w} = \sigma^2(F_0)$$

Für die ermittelten Gütewerte gilt:

$$\mathbf{R}_{1} = \left(\frac{\sum \left(\left| F_{o} \right| - \left| F_{c} \right| \right)}{\sum \left| F_{o} \right|} \right)$$

wR₂ =
$$\sqrt{\frac{\sum [w \cdot (F_o^2 - F_c^2)^2]}{\sum [w \cdot (F_o^2)^2]}}$$

Die Atomformfaktoren f wurden aus den Atomformfaktoren der ruhenden Atome f_0 über folgende Beziehung korrigiert:

$$f = f_{\rm O} \exp\left(-B \frac{\sin^2 \Theta}{\lambda^2}\right); B = 8 \pi^2 U$$

Hierbei ist U der Temperaturfaktor, welcher mit der Schwingungsamplitude des Atoms in

folgender Beziehung steht:

$$U = \overline{u}^2$$

Die Koeffizienten U_{iso} und U_{ij} geben Auskunft über die isotropen bzw, anisotropen Schwingungstensoren T:

$$\mathbf{T} = -\mathbf{ln}\left(\frac{f}{f_o}\right)$$

wobei

$$T_{iso} = 8 \pi^2 U_{iso} \frac{\sin^2 \Theta}{\lambda^2} \qquad bzw, \ T_{anis} = 2 \pi^2 \left(\sum_{i=1}^3 \sum_{i=1}^3 U_{ij} m_i m_j a^*_{ii} a^*_{ji} \right)$$

mit
$$m_i / m_j$$
Miller'sche Indizes $(m_1 = h, m_2 = k, m_3 = l)$ a_i / a_j Gitterkonstanten $(a_1 = a, a_2 = b, a_3 = c)$ a_i^* / a_j^* reziproke Gitterkonstanten $(a_1^* = a^*, a_2^* = b^*, a_3^* = c^*)$

Der Koeffizient U_{eq} errechnet sich aus einem Drittel des orthogonalisierten Schwingungstensors U_{ij} .

Die Abbildungen der Molekülstrukturen wurden mit Hilfe des Programmes Diamond Version 3.1c erstellt [135].

6.1 $[{(Ph_3Sn)_3VO_4}_6 \cdot 6 C_6H_6] (\underline{1c})$

 $\underline{1c}$ kristallisiert aus Benzol in Form blassgelber Nadeln.

$C_{360}H_{306}O_{24}Sn_{18}V_6$		
7458,8		
triklin		
PĪ		
19,456(2); 20,102(2); 22,995(3)		
78,02(1); 78,48(2); 87,69(1)		
8620 (2)		
2		
1,432		
220		
$38 \times 38 \times 11$		
2,02 - 24,00		
55423		
25484		
19242		
1784		
1,493		
1,957; -1,607		
0,0521		
0,0545 / 0,1619		
0,0742 / 0,1876		

Lageparameter ($\cdot 10^4$) und Koeffizienten U_{eq} [Å² $\cdot 10^4$]:

Atom	x	У	Z	\mathbf{U}_{eq}	Atom	х	У	Z	Ueq
C(1)	2923(5)	-662(4)	2074(4)	47(2)	C(103)	-782(4)	5071(5)	3836(4)	45(2)
C(2)	2693(7)	-1250(7)	1941(5)	75(3)	C(104)	-1336(5)	5481(6)	3672(5)	64(3)
C(3)	2985(8)	-1480(8)	1410(5)	91(4)	C(105)	-1836(6)	5721(7)	4095(6)	77(3)
C(4)	3546(11)	-1116(9)	1025(6)	122(6)	C(106)	-1782(6)	5533(6)	4717(5)	71(3)
C(5)	3774(10)	-537(9)	1136(7)	128(7)	C(107)	-1226(7)	5119(6)	4875(5)	76(3)
C(6)	3485(7)	-301(7)	1660(6)	92(4)	C(108)	-731(6)	4882(6)	4440(4)	62(3)
C(7)	1410(4)	-589(4)	3317(3)	36(2)	C(109)	-1149(4)	2987(4)	5131(3)	39(2)
C(8)	1222(5)	-1278(5)	3540(4)	50(2)	C(110)	-1320(5)	3142(5)	5705(4)	49(2)
C(9)	532(5)	-1432(5)	3876(4)	58(3)	C(111)	-801(6)	3361(6)	5967(5)	64(3)
C(10)	53(4)	-928(5)	3989(4)	54(2)	C(112)	-107(5)	3400(5)	5652(5)	64(3)
C(11)	254(5)	-243(5)	3773(5)	58(2)	C(113)	67(5)	3236(5)	5094(5)	57(2)
C(12)	923(4)	-82(5)	3439(4)	49(2)	C(114)	-454(4)	3043(5)	4819(4)	48(2)
C(13)	3012(4)	395(4)	3158(4)	40(2)	C(115)	-2775(4)	3297(4)	4512(3)	36(2)
C(14)	3180(5)	239(5)	3731(4)	56(2)	C(116)	-3480(4)	3083(5)	4697(4)	49(2)
C(15)	3573(6)	683(6)	3934(6)	78(3)	C(117)	-4012(5)	3498(6)	4533(4)	61(3)
C(16)	3809(6)	1294(7)	3555(6)	80(3)	C(118)	-3862(5)	4152(6)	4174(4)	65(3)
C(17)	3630(6)	1474(6)	2987(6)	77(3)	C(119)	-3168(5)	4371(5)	4002(4)	56(2)
C(18)	3247(5)	1022(5)	2785(4)	56(2)	C(120)	-2635(4)	3959(4)	4164(4)	43(2)
C(19)	1059(6)	-733(7)	1294(5)	75(3)	C(121)	-1819(4)	1591(4)	4597(3)	36(2)
C(20)	1275(9)	-1362(7)	1119(7)	105(5)	C(122)	-1740(4)	1091(4)	5094(4)	43(2)
C(21)	1103(12)	-1984(9)	1541(10)	132(7)	C(123)	-1609(5)	414(5)	5027(4)	56(2)
C(22)	730(10)	-1956(9)	2125(9)	115(6)	C(124)	-1557(4)	255(5)	4453(5)	56(2)
C(23)	536(8)	-1354(10)	2292(6)	104(5)	C(125)	-1637(4)	780(5)	3953(4)	49(2)
C(24)	725(6)	-731(7)	1870(5)	78(3)	C(126)	-1766(4)	1433(5)	4029(3)	44(2)
C(25)	2199(6)	96(5)	-72(4)	65(3)	C(127)	-5263(4)	854(4)	6686(4)	46(2)

Kristall struktur unter such ungen

C(26)	2113(9)	-111(10)	-596(6)	113(5)	C(128)	-5976(5)	736(7)	6834(5)	73(3)
C(27)	2706(11)	-158(11)	-1038(6)	126(6)	C(129)	-6218(7)	126(9)	7267(6)	98(5)
C(28)	3357(10)	10(9)	-991(6)	105(5)	C(130)	-5763(9)	-296(7)	7545(5)	87(4)
C(20)	3445(8)	240(8)	-495(7)	102(4)	C(131)	-5063(8)	-184(7)	7393(6)	100(5)
C(29)	3443(8) 2070(C)	240(8)	-495(7)	102(4)	C(131)	-5005(8)	-104(7)	(3)	100(5)
C(30)	2070(0)	2/4(7)	-30(5)	70(3)	C(132)	-4813(0)	405(0)	5905(0)	01(4)
C(31)	512(5)	802(7)	392(5)	12(3)	C(133)	-4450(4)	1252(4)	5198(4)	43(2)
C(32)	-95(7)	864(9)	794(6)	94(4)	C(134)	-4906(5)	1091(6)	4842(5)	62(3)
C(33)	-622(8)	1333(11)	636(8)	113(6)	C(135)	-4667(6)	716(6)	4401(5)	75(3)
C(34)	-531(9)	1727(12)	81(10)	133(7)	C(136)	-3963(6)	515(5)	4291(5)	65(3)
C(35)	58(9)	1685(15)	-327(10)	183(12)	C(137)	-3516(5)	679(5)	4627(4)	54(2)
C(36)	593(7)	1219(10)	-177(7)	122(7)	C(138)	-3751(4)	1058(5)	5073(4)	48(2)
C(37)	2876(7)	3366(6)	1233(5)	78(3)	C(139)	-5425(4)	2571(5)	5865(4)	45(2)
C(38)	3309(13)	3901(10)	914(11)	181(12)	C(140)	-6063(5)	2617(6)	5662(5)	65(3)
C(39)	3200(20)	4515(13)	1170(14)	226(16)	C(141)	-6422(6)	3231(8)	5577(6)	87(4)
C(40)	2767(16)	4537(14)	1711(13)	177(10)	C(142)	-6164(6)	3814(6)	5699(5)	72(3)
C(41)	2359(10)	4000(10)	2003(8)	116(5)	C(143)	-5526(6)	3790(5)	5904(6)	70(3)
C(42)	2423(8)	3417(8)	1756(6)	97(4)	C(144)	-5178(5)	3180(6)	5979(5)	67(3)
C(43)	2564(5)	2635(5)	30(4)	57(2)	C(145)	-2994(4)	3272(5)	7887(3)	74(3)
C(44)	2412(7)	2076(6)	-204(5)	78(3)	C(146)	-3298(6)	3333(8)	8474(4)	179(10)
C(45)	2226(9)	2164(9)	-764(6)	104(5)	C(147)	-2891(9)	3519(9)	8846(5)	243(18)
C(45)	2220(9)	2104(0)	1101(6)	104(5)	C(147)	2091(9)	3515(9)	0620(3)	243(10)
C(40)	2137(8)	2004(10)	-1101(0)	104(5)	C(140)	-2170(9)	3043(8)	0032(7)	290(30)
C(47)	2302(9)	3372(9)	-8/6(6)	105(5)	C(149)	-18/4(6)	3584(8)	8045(7)	1/8(11)
C(48)	2503(7)	3287(7)	-304(5)	82(3)	C(150)	-2281(5)	3398(7)	7672(4)	120(6)
C(49)	3866(5)	1876(6)	/11(6)	122(7)	C(151)	-4575(5)	∠5⊥U(6)	//39(4)	58(3)
C(50)	4105(7)	1746(8)	134(6)	192(12)	C(152)	-5165(7)	2848(8)	7920(9)	133(7)
C(51)	4706(8)	1359(9)	19(8)	184(10)	C(153)	-5781(8)	2522(10)	8258(10)	147(9)
C(52)	5068(7)	1103(8)	480(10)	249(19)	C(154)	-5829(6)	1832(8)	8334(6)	83(4)
C(53)	4829(7)	1233(11)	1057(8)	430(40)	C(155)	-5240(8)	1477(8)	8146(7)	104(5)
C(54)	4228(7)	1619(10)	1172(5)	350(30)	C(156)	-4616(6)	1805(6)	7831(6)	87(4)
C(55)	460(4)	2750(4)	1591(4)	42(2)	C(157)	-3787(5)	3964(4)	6674(4)	51(2)
C(56)	577(5)	3401(5)	1637(5)	62(3)	C(158)	-4111(5)	4495(5)	6897(5)	56(2)
C(57)	802(7)	3907(7)	1093(6)	87(4)	C(159)	-4219(6)	5110(6)	6505(6)	75(3)
C(58)	917(7)	3707(7)	538(5)	82(4)	C(160)	-3993(7)	5157(7)	5886(6)	81(4)
C(59)	801(6)	3052(6)	501(4)	72(3)	C(161)	-3655(7)	4614(6)	5656(5)	77(3)
C(60)	590(5)	2563(5)	1026(4)	57(2)	C(162)	-3542(5)	4020(5)	6056(4)	55(2)
C(61)	591(4)	1851(4)	3165(3)	34(2)	C(163)	2767(10)	1188(9)	5435(10)	111(5)
C(62)	151(5)	1693(5)	3737(4)	52(2)	C(164)	2382(13)	1037(9)	5983(10)	120(6)
C(63)	422(6)	1540(6)	4268(4)	62(3)	C(165)	1848(13)	1456(12)	6162(8)	126(7)
C(64)	1152(6)	1554(6)	4228(4)	64(3)	C(166)	1708(11)	2059(11)	5781(11)	128(6)
C(65)	1598(5)	1717(6)	3666(5)	64(3)	C(167)	2142(12)	2231(10)	5188(10)	123(6)
C(66)	1320(4)	1853(5)	3132(4)	47(2)	C(168)	2643(10)	1792(11)	5045(8)	113(5)
C(67)	-674(4)	1281(4)	2379(3)	38(2)	C(169)	2070(15)	2517(6)	7144(6)	220(20)
C(68)	-1341(5)	1511(6)	2291(4)	59(2)	C(170)	2617(8)	2114(11)	7324(7)	153(10)
C(69)	-1848(5)	1025(7)	2302(5)	72(3)	C(171)	2476(8)	1535(9)	7780(8)	129(7)
C(70)	-1693(6)	351(7)	2373(5)	74(3)	C(172)	1786(10)	1360(7)	8055(5)	125(6)
C(71)	-1035(5)	117(5)	2469(5)	60(3)	C(173)	1238(6)	1763(11)	7875(8)	139(8)
C(72)	-522(5)	580(5)	2472(4)	46(2)	C(174)	1380(11)	2342(9)	7420(9)	181(14)
C(73)	-2881(5)	3020(5)	2513(4)	48(2)	C(181)	-4283(13)	6582(8)	7439(8)	247(19)
C(74)	-3027(6)	2715(5)	3123(4)	59(2)	C(182)	-4954(9)	6661(9)	7312(12)	400(40)
C(75)	-3437(6)	2140(6)	3333(5)	74(3)	C(183)	-5044(8)	6864(9)	6717(15)	390(40)
C(76)	-3692(6)	1837(6)	2925(5)	68(3)	C(184)	-4463(13)	6988(8)	6247(10)	211(16)
C(77)	-3544(8)	2116(7)	2326(6)	86(4)	C(185)	-3791(9)	6910(7)	6373(9)	152(8)
C(78)	-3144(6)	2720(6)	2106(5)	72(3)	C(186)	-3701(7)	6707(8)	6969(11)	150(8)
C(79)	-2785(5)	4820(5)	2391(4)	57(3)	O(1)	2044(3)	590(3)	2257(3)	52(2)
C(80)	-3511(6)	4869(7)	2544(5)	80(3)	0(2)	1808(3)	759(4)	1083(3)	59(2)
C(81)	-3813(7)	5501(9)	2511(5) 2687(7)	102(5)	0(2)	2244(3)	1862(3)	1510(3)	59(2)
C(82)	-3368(9)	6042(7)	2678(6)	93(4)	0(4)	923(2)	1281/3)	1980(2)	43(1)
C(82)	-2654/71	5966(6)	2536/51	75(2)	0(5)	-679/31	2652/21	2750(2)	45(1)
C(84)	_0367/E	5388(5)	2326(2)	58(2)	0(6)	-1520/21	3800(3)	2696(2)	55(2)
C(01)	_1777(5)	4072/51	1075///	50(2)	0(7)	_247/21	3800(3)	3065(3)	52(2)
C(05)	-1//(5) -2072/7\	4550(6)	12/3(4) 860/5\	JU(Z) 75/2)	0(8)	-24/(2)	3006(3)	3807(3)	JZ(Z) 46(1)
C(00) C(07)	-20/3(/) _1801/0)	4667(0)	242(E)	15(5) Q5(1)	0(0)	-135/(3)	3003(3) 2247/21	5630/2)	±∪(⊥) 28(1)
0(00)	-1001(9)	100/(0)	272(J) 27(E)	シン(生) 107/E1	0(3)	-2000(3)	447/(3) 1076/3)	5057(Z) 6205(2)	JO(1)
	-124U(9)	±ムサン(ダ) 2702(10)	37(0) 453/7)	106/5)	O(10)	-3912(3)	19/0(3)	$0 \angle 0 \supset (\angle)$	+0(1)
C(89)	-931(/)	3/83(1U)	±5∠(/)	TO0(2)	O(11)	-3UI8(3)	2404(3)	0009(3)	(1)
C(90)	-1207(6)	3694(7)	$\pm 0/0(5)$	/8(3)	U(12)	-2884(3)	1110(3)	0509(3)	40(⊥) 20(1)
C(91)	984(4)	4520(5)	3300(4)	48(Z)	V(1)	$\pm / 4 / (\pm)$	$\perp \perp \perp \angle (\perp)$	$\pm / \pm 3 (\pm)$	3∠(⊥) 20(1)
C(92)	$\pm 443(5)$	5050(7)	3344(6)	11(3)	V(Z)	-964(1)	3293(1) 1050(1)	3U92(1)	3U(1)
C(93)	∠TU/(6)	4881(8)	3494(7)	9U(4)	V(3)	-310/(1)	1952(1)	0298(1)	$2 \heartsuit (\perp)$
C(94)	2297(6)	4225(8)	3007(0)	8⊥(4)	sn(⊥)	∠438(⊥)	-∠89(⊥)	∠846(⊥)	30(L)

C(95)	1845(6)	3692(8)	3699(6)	84(4)	Sn(2)	1353(1)	183(1)	656(1)	61(1)
C(96)	1183(5)	3858(5)	3541(5)	60(2)	Sn(3)	2899(1)	2469(1)	872(1)	59(1)
C(97)	-144(4)	5361(5)	2298(4)	48(2)	Sn(4)	135(1)	1976(1)	2384(1)	35(1)
C(98)	-127(7)	6064(6)	2213(5)	72(3)	Sn(5)	-2273(1)	3917(1)	2203(1)	45(1)
C(99)	-234(9)	6470(7)	1671(6)	92(4)	Sn(6)	-35(1)	4731(1)	3148(1)	42(1)
C(100)	-364(7)	6157(7)	1216(5)	82(4)	Sn(7)	-1937(1)	2625(1)	4733(1)	33(1)
C(101)	-400(6)	5481(6)	1300(5)	71(3)	Sn(8)	-4825(1)	1675(1)	5975(1)	40(1)
C(102)	-297(5)	5068(6)	1841(4)	65(3)	Sn(9)	-3617(1)	3041(1)	7301(1)	43(1)

Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]:

Bindungslängen									
Sn(1)-C(1)	2,104(9)	Sn(6)-C(103)	2,129(8)	Sn(4)-O(4)	2,228(5)				
Sn(1)-C(7)	2,122(7)	Sn(7)-C(109)	2,155(8)	V(2)-O(5)	1,653(6)				
Sn(1)-C(13)	2,122(8)	Sn(7)-C(115)	2,147(8)	Sn(4)-O(5)	2,208(6)				
Sn(2)-C(19)	2,121(12)	Sn(7)-C(121)	2,161(8)	V(2)-O(6)	1,733(6)				
Sn(2)-C(25)	2,130(11)	Sn(8)-C(127)	2,136(9)	Sn(5)-O(6)	1,986(6)				
Sn(2)-C(31)	2,124(12)	Sn(8)-C(133)	2,122(9)	V(2)-O(7)	1,745(5)				
Sn(3)-C(37)	2,131(13)	Sn(8)-C(139)	2,105(9)	Sn(6)-O(7)	1,986(6)				
Sn(3)-C(43)	2,121(10)	Sn(9)-C(145)	2,111(6)	V(2)-O(8)	1,661(5)				
Sn(3)-C(49)	2,195(10)	Sn(9)-C(151)	2,142(9)	Sn(7)-O(8)	2,197(5)				
Sn(4)-C(55)	2,143(8)	Sn(9)-C(157)	2,159(9)	V(3)-O(9)	1,662(5)				
Sn(4)-C(61)	2,124(7)	V(1)-O(1)	1,641(6)	Sn(7)-O(9)	2,204(5)				
Sn(4)-C(67)	2,149(7)	Sn(1)-O(1)	2,204(6)	V(3)-O(10)	1,736(5)				
Sn(5)-C(73)	2,112(9)	V(1)-O(2)	1,723(6)	Sn(8)-O(10)	1,991(5)				
Sn(5)-C(79)	2,118(11)	Sn(2)-O(2)	1,998(6)	V(3)-O(11)	1,751(6)				
Sn(5)-C(85)	2,122(9)	V(1)-O(3)	1,753(6)	Sn(9)-O(11)	1,974(6)				
Sn(6)-C(91)	2,144(8)	Sn(3)-O(3)	1,976(6)	V(3)-O(12)	1,657(6)				
Sn(6)-C(97)	2,140(9)	V(1)-O(4)	1,646(5)	O(12)-#1Sn(1)	2,235(5)				
Sn(1)-C(1)	2,104(9)	Sn(6)-C(103)	2,129(8)						

Bindungswinkel							
V(1) - O(1) - Sn(1)	166,2(4)	O(6)-V(2)-O(7)	106,9(3)	C(61)-Sn(4)-O(4)	91,3(2)		
V(1)-O(2)-Sn(2)	147,0(4)	O(12)-V(3)-O(9)	109,6(3)	C(55)-Sn(4)-O(4)	88,8(3)		
V(1) - O(3) - Sn(3)	147,0(4)	O(12)-V(3)-O(10)	110,1(3)	C(67) - Sn(4) - O(4)	88,7(3)		
V(1) - O(4) - Sn(4)	149,2(3)	O(9) - V(3) - O(10)	110,0(3)	O(5) - Sn(4) - O(4)	177,4(2)		
V(2) - O(5) - Sn(4)	154,3(3)	O(12) - V(3) - O(11)	109,2(3)	O(6) - Sn(5) - C(73)	105,1(3)		
V(2) - O(6) - Sn(5)	151,4(4)	O(9) - V(3) - O(11)	108,7(3)	O(6) - Sn(5) - C(79)	103,1(3)		
V(2)-O(7)-Sn(6)	140,0(4)	O(10)-V(3)-O(11)	109,2(3)	O(6)-Sn(5)-C(85)	108,1(3)		
V(2) - O(8) - Sn(7)	176,5(4)	C(1)-Sn(1)-O(1)	89,7(3)	O(7) - Sn(6) - C(103)	112,2(3)		
V(3) - O(9) - Sn(7)	176,1(3)	C(13)-Sn(1)-O(1)	88,8(3)	O(7)-Sn(6)-C(97)	104,1(3)		
V(3) - O(10) - Sn(8)	157,1(4)	C(7)-Sn(1)-O(1)	92,2(3)	O(7) - Sn(6) - C(91)	97,8(3)		
V(3) - O(11) - Sn(9)	138,0(3)	C(1)-Sn(1)-O(12)#1	89,6(3)	C(115)-Sn(7)-O(8)	87,7(2)		
V(3)-O(12)-Sn(1)#1	159,5(3)	C(13)-Sn(1)-O(12)#1	89,6(3)	C(109)-Sn(7)-O(8)	92,5(2)		
O(1)-V(1)-O(4)	107,6(3)	C(7)-Sn(1)-O(12)#1	90,1(2)	C(121)-Sn(7)-O(8)	90,6(2)		
O(1)-V(1)-O(2)	111,3(3)	O(1)-Sn(1)-O(12)#1	177,6(2)	C(115)-Sn(7)-O(9)	89,4(2)		
O(4)-V(1)-O(2)	110,4(3)	O(2) - Sn(2) - C(19)	106,0(3)	C(109)-Sn(7)-O(9)	90,8(2)		
O(1)-V(1)-O(3)	108,9(3)	O(2) - Sn(2) - C(31)	103,0(4)	C(121)-Sn(7)-O(9)	89,3(2)		
O(4)-V(1)-O(3)	109,9(3)	O(2)-Sn(2)-C(25)	99,9(3)	O(8) - Sn(7) - O(9)	176,4(2)		
O(2)-V(1)-O(3)	108,8(3)	O(3) - Sn(3) - C(43)	111,1(3)	O(10) - Sn(8) - C(139)	102,8(3)		
O(5)-V(2)-O(8)	110,5(3)	O(3)-Sn(3)-C(37)	102,4(4)	O(10) - Sn(8) - C(133)	105,4(3)		
O(5)-V(2)-O(6)	110,3(3)	O(3)-Sn(3)-C(49)	105,2(3)	O(10) - Sn(8) - C(127)	106,5(3)		
O(8)-V(2)-O(6)	110,7(3)	C(61)-Sn(4)-O(5)	91,0(3)	O(11)-Sn(9)-C(145)	105,0(3)		
O(5)-V(2)-O(7)	108,3(3)	C(55) - Sn(4) - O(5)	90,8(3)	O(11)-Sn(9)-C(151)	108,9(3)		
O(8)-V(2)-O(7)	110,2(3)	C(67)-Sn(4)-O(5)	89,3(3)	O(11)-Sn(9)-C(157)	105,7(3)		

6.2 $[(Bz_3Sn)_2MoO_4 \cdot DMF](\underline{2})$

<u>2</u> kristallisiert aus einer wässrigen DMF-Lösung in Form farbloser Rhomben.

Summenformel		$C_{45}H_{49}MoNO_5Sn_2$				
Molekulargewicht [g	g/mol)	1017,17				
Kristallsystem		orthorhombisch				
Raumgruppe		F2dd				
Zelldimensionen	a;b;c; [Å]	13,834(3); 21,978(6); 58,633(14)				
	α;β;γ; [°]	90; 90; 90				
	V [Å ³]	17827(7)				
Formeleinheiten		16				
Röntgenographische	Dichte [g/cm ³]	1,516				
Messtemperatur [K]		220				
Kristallgröße [mm]		$60 \times 30 \times 15$				
Messbereich 2Θ [°]		2,03 - 26,00				
Gemessene Reflexe		20436				
Unabhängige Reflex	te	7488				
Unabhängige Reflex	te $F_O > 4\sigma(F_O)$	6185				
Anzahl der verfeiner	rten Parameter	488				
μ (Mo–K α) [mm ⁻¹]		1,432				
Maximale Restelekt	ronendichte [e ⁻ / Å ³]	0,462; -0,652				
R _{int}		0,0411				
$R1 / wR2 (I > 2\sigma(I))$	1	0,0344 / 0,0790				
R1 / wR2 (alle Date	n)	0,0453 / 0,0826				

Lageparameter $(\cdot 10^4)$ und Koeffizienten $U_{eq}\,[{\mathring{A}}^2\,\cdot 10^4]$:

Atom	x	Y	Z	U _{eq}	Atom	х	У	Z	\mathbf{U}_{eq}
C(1)	3080(7)	-1370(3)	1145(2)	92(2)	C(28)	698(8)	-3673(4)	333(2)	104(3)
C(2)	3195(5)	-1870(3)	1318(2)	73(2)	C(29)	-1922(6)	-1643(3)	379(2)	80(2)
C(3)	3608(8)	-1780(4)	1522(2)	107(3)	C(30)	-1545(5)	-1018(3)	443(1)	66(2)
C(4)	3779(13)	-2256(8)	1677(3)	168(7)	C(31)	-1189(7)	-635(3)	275(2)	93(3)
C(5)	3455(14)	-2828(8)	1613(4)	166(8)	C(32)	-845(10)	-54(4)	342(2)	115(4)
C(6)	3022(9)	-2930(4)	1413(4)	138(6)	C(33)	-848(9)	125(3)	561(2)	103(3)
C(7)	2904(7)	-2459(3)	1264(2)	109(4)	C(34)	-1185(8)	-253(4)	723(2)	102(3)
C(8)	749(6)	-995(3)	1448(2)	82(2)	C(35)	-1539(7)	-829(3)	665(2)	91(2)
C(9)	-126(5)	-631(3)	1427(1)	67(2)	C(36)	661(6)	-1994(3)	226(1)	79(2)
C(10)	-113(7)	-15(4)	1481(2)	89(3)	C(37)	867(5)	-1873(3)	-17(1)	68(2)
C(11)	-956(11)	328(5)	1460(2)	125(4)	C(38)	914(6)	-1278(3)	-101(2)	86(2)
C(12)	-1757(11)	94(8)	1394(3)	137(5)	C(39)	1127(8)	-1175(5)	-327(2)	118(4)
C(13)	-1827(8)	-507(8)	1337(2)	134(4)	C(40)	1251(8)	-1648(7)	-476(2)	120(4)
C(14)	-988(7)	-874(5)	1350(2)	100(3)	C(41)	1190(8)	-2227(6)	-397(2)	116(4)
C(15)	1373(6)	-245(3)	903(1)	74(2)	C(42)	1013(7)	-2339(3)	-171(2)	88(2)
C(16)	2075(5)	-219(2)	715(1)	66(2)	C(43)	-1244(7)	-2126(5)	-232(2)	107(3)
C(17)	1854(8)	-436(3)	503(2)	88(2)	C(44)	-1699(12)	-2937(5)	-478(3)	161(6)
C(18)	2486(11)	-369(5)	319(2)	119(4)	C(45)	-1355(11)	-1943(7)	-629(3)	159(6)
C(19)	3363(11)	-109(5)	347(2)	114(4)	N	-1437(6)	-2328(4)	-434(2)	97(2)
C(20)	3602(8)	87(4)	559(2)	110(3)	0(1)	972(5)	-1600(2)	968(1)	98(2)
C(21)	2990(7)	29(3)	740(2)	83(2)	0(2)	-35(5)	-2625(2)	1137(1)	95(2)
C(22)	-995(6)	-3264(3)	338(1)	79(2)	0(3)	1384(4)	-2759(2)	805(1)	96(2)
C(23)	-170(6)	-3597(3)	229(1)	73(2)	0(4)	-367(4)	-2214(2)	680(1)	76(1)
C(24)	-275(8)	-3837(3)	15(2)	96(3)	0(5)	-1282(5)	-2403(3)	-55(1)	107(2)
C(25)	452(14)	-4127(4)	-94(2)	132(4)	Mo)	498(1)	-2299(1)	899(1)	55(1)
C(26)	1322(12)	-4194(4)	17(4)	146(6)	Sn(1)	1733(1)	-884(1)	1169(1)	56(1)
C(27)	1447(9)	-3959(5)	227(3)	141(6)	Sn(2)	-776(1)	-2291(1)	324(1)	63(1)

Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]:

Bindungslängen							
Sn(1)-C(1)	2,153(8)	N-C(45)	1,428(15)				
Sn(1)-C(8)	2,143(8)	Mo-O(1)	1,718(4)				
Sn(1)-C(15)	2,156(6)	Mo-O(2)	1,735(5)				
Sn(2)-C(22)	2,162(6)	Mo-O(3)	1,682(6)				
Sn(2)-C(29)	2,155(8)	Mo-O(4)	1,764(5)				
Sn(2)-C(36)	2,171(8)	Sn(1) - O(1)	2,230(5)				
O(5)-C(43)	1,206(13)	Sn(1)-O(2)	2,260(5)				
N-C(43)	1,292(14)	Sn(2)-O(4)	2,168(5)				
N-C(44)	1,411(12)	Sn(2)-O(5)	2,342(7)				

Bindungswinkel							
Sn(1)-C(1)-C(2)	114,2(5)	O(3)-Mo-O(1)	109,7(3)	C(1)-Sn(1)-O(2)#2	90,6(3)		
Sn(1)-C(8)-C(9)	113,6(5)	O(3)-Mo-O(2)	108,9(3)	C(15)-Sn(1)-O(2)#2	89,2(3)		
Sn(1)-C(15)-C(16)	114,4(5)	O(1)-Mo-O(2)	110,0(3)	O(1)-Sn(1)-O(2)#2	177,3(2)		
Sn(2)-C(22)-C(23)	111,1(4)	O(3)-Mo-O(4)	108,8(3)	C(29)-Sn(2)-C(22)	123,1(3)		
Sn(2)-C(29)-C(30)	112,5(5)	O(1)-Mo-O(4)	109,6(2)	C(29)-Sn(2)-O(4)	89,8(3)		
Sn(2)-C(36)-C(37)	119,0(5)	O(2)-Mo-O(4)	109,9(3)	C(22)-Sn(2)-O(4)	94,4(2)		
O(5)-C(43)-N	127,3(10)	C(8)-Sn(1)-C(1)	122,9(3)	C(29)-Sn(2)-C(36)	121,0(3)		
C(43)-N-C(44)	123,2(10)	C(8)-Sn(1)-C(15)	118,7(3)	C(22)-Sn(2)-C(36)	115,9(3)		
C(43)-N-C(45)	120,9(10)	C(1)-Sn(1)-C(15)	118,5(3)	O(4)-Sn(2)-C(36)	89,5(3)		
C(44)-N-C(45)	115,8(10)	C(8)-Sn(1)-O(1)	91,3(3)	C(29)-Sn(2)-O(5)	89,6(3)		
Mo-O(1)-Sn(1)	159,3(4)	C(1)-Sn(1)-O(1)	91,4(3)	C(22)-Sn(2)-O(5)	83,7(3)		
Mo-O(2)-Sn(1)#1	154,4(4)	C(15)-Sn(1)-O(1)	88,2(3)	O(4) - Sn(2) - O(5)	177,2(2)		
Mo-O(4)-Sn(2)	150,2(3)	C(8)-Sn(1)-O(2)#2	89,1(3)	C(36) - Sn(2) - O(5)	93,1(3)		
C(43)-O(5)-Sn(2)	138,7(7)						

6.3 $[{(Ph_3Sn)_3(PO_4)}_6 \cdot 2C_6H_6](\underline{3})$

<u>**3**</u> kristallisiert aus Benzol in Form farbloser Plättchen.

Summenformel		$C_{336}H_{282}O_{24}P_6Sn_{18}$				
Molekulargewicht [g/mol)	7026,6				
Kristallsystem		orthorhombisch				
Raumgruppe		Pcab				
Zelldimensionen	a;b;c; [Å]	33,690(2); 33,797(2); 33,827(5				
	α;β;γ; [°]	90; 90; 90				
	$V[Å^3]$	38516(6)				
Formeleinheiten		8				
Röntgenographische	e Dichte [g/cm ³]	1,204				
Messtemperatur [K]		220				
Messbereich 2Θ [°]		1,71 - 24,07				
Gemessene Reflexe		86350				
Unabhängige Reflex	xe	29053				
Unabhängige Reflex	$\ker F_O > 4\sigma(F_O)$	14242				
Anzahl der verfeiner	rten Parameter	1246				
μ (Mo–K α) [mm ⁻¹]		1,218				
Maximale Restelekt	ronendichte [e ⁻ / Å ³]	2,505; -0,926				
R _{int}		0,1329				
R1 / wR2 (I > $2\sigma(I)$))	0,1054 / 0,2940				
R1 / wR2 (alle Date	n)	0,1798 / 0,3489				

Lageparameter ($\cdot 10^4$) und Koeffizienten Ueq [Å² $\cdot 10^4$]:

Atom	x	Y	Z	\mathbf{U}_{eq}	Atom	x	У	Z	U _{eq}
C(1)	10888(4)	6445(5)	2547(4)	82(7)	C(97)	11440(5)	7551(3)	-889(4)	87(8)
C(2)	10886(5)	6855(5)	2577(4)	90(7)	C(98)	11851(5)	7587(4)	-877(5)	88(7)
C(3)	10784(5)	7034(4)	2933(5)	101(7)	C(99)	12024(5)	7944(5)	-769(5)	118(10)
C(4)	10686(6)	6804(5)	3259(4)	119(9)	C(100)	11786(7)	8266(4)	-672(6)	141(15)
C(5)	10688(6)	6393(5)	3228(4)	135(10)	C(101)	11375(7)	8230(4)	-684(6)	165(18)
C(6)	10789(5)	6214(4)	2872(5)	108(8)	C(102)	11202(4)	7873(5)	-793(6)	127(11)
C(7)	11096(5)	5528(3)	2136(4)	69(5)	C(103)	10529(4)	7133(4)	-1103(4)	74(6)
C(8)	11430(4)	5362(5)	2310(5)	100(7)	C(104)	10296(5)	7024(4)	-782(4)	87(6)
C(9)	11449(5)	4956(5)	2374(6)	144(12)	C(105)	9888(5)	7088(6)	-792(5)	133(10)
C(10)	11133(6)	4716(3)	2263(6)	132(10)	C(106)	9714(4)	7260(6)	-1122(7)	136(11)
C(11)	10798(5)	4882(5)	2089(6)	120(9)	C(107)	9947(6)	7368(6)	-1444(5)	163(13)
C(12)	10780(4)	5288(5)	2025(5)	98(7)	C(108)	10355(6)	7305(5)	-1434(4)	112(8)
C(13)	11681(3)	6354(4)	1895(4)	65(5)	C(109)	10858(3)	5653(3)	-1488(3)	44(4)
C(14)	11893(5)	6527(5)	2202(4)	134(10)	C(110)	10632(4)	5941(3)	-1300(3)	59(5)
C(15)	12288(5)	6632(6)	2147(5)	156(12)	C(111)	10324(3)	6126(3)	-1502(4)	76(6)
C(16)	12471(4)	6562(5)	1785(6)	121(9)	C(112)	10243(4)	6024(4)	-1892(4)	98(8)
C(17)	12259(4)	6389(5)	1478(4)	82(6)	C(113)	10470(4)	5737(4)	-2080(3)	90(7)
C(18)	11864(4)	6285(4)	1533(4)	88(6)	C(114)	10777(4)	5551(3)	-1878(3)	67(5)
C(19)	10127(6)	7597(5)	1918(6)	66(5)	C(115)	11906(3)	5451(3)	-1448(4)	53(4)
C(20)	10253(8)	7804(7)	2258(8)	99(8)	C(116)	12016(4)	5827(3)	-1571(4)	73(6)
C(21)	9970(12)	7941(8)	2540(10)	131(12)	C(117)	12386(4)	5887(3)	-1744(5)	93(7)
C(22)	9536(14)	7869(7)	2435(9)	137(13)	C(118)	12645(3)	5571(4)	-1793(5)	102(8)
C(23)	9454(8)	7668(7)	2103(8)	96(7)	C(119)	12534(4)	5195(3)	-1669(5)	93(8)
C(24)	9742(8)	7512(7)	1848(6)	84(6)	C(120)	12165(4)	5134(3)	-1497(4)	73(6)
C(25)	11134(6)	7708(6)	1712(7)	102(8)	C(121)	11212(3)	5098(3)	-631(2)	47(4)
C(26)	11209(9)	8110(6)	1666(10)	330(40)	C(122)	11441(3)	5162(3)	-295(3)	54(4)
C(27)	11562(11)	8271(7)	1804(12)	250(20)	C(123)	11337(4)	4983(4)	60(3)	68(5)
C(28)	11840(8)	8030(11)	1989(10)	240(20)	C(124)	11004(4)	4740(3)	80(3)	67(5)
C(29)	11766(7)	7629(11)	2036(8)	202(18)	C(125)	10775(3)	4676(3)	-256(4)	69(5)
Kristall struktur unter such ungen

C(30)	11413(8)	7467(5)	1897(7)	132(10)	C(126)	10879(3)	4855(3)	-612(3)	52(4)
C(31)	10393(5)	7637(4)	922(4)	202(20)	C(127)	11887(4)	3317(3)	-1362(5)	76(6)
	10070(5)	7037(4)	922(1)	112(0)	C(127)	10102(5)	3317(S)	1502(3)	220(20)
C(3Z)	100/0(5)	/889(5)	880(4)	113(8)	C(128)	12183(5)	311/(5)	-1200(8)	230(30)
C(33)	9946(4)	8004(5)	506(6)	108(8)	C(129)	12127(6)	2725(5)	-1677(9)	310(40)
C(34)	10145(5)	7868(5)	173(4)	113(8)	C(130)	11775(6)	2533(3)	-1582(7)	120(10)
C(35)	10469(5)	7616(5)	215(4)	107(8)	C(131)	11479(4)	2733(4)	-1378(5)	82(6)
C(36)	10593(4)	7501(4)	589(5)	82(6)	C(132)	11535(4)	3125(4)	-1267(5)	89(7)
C(37)	9546(5)	6439(4)	1900(5)	53(4)	C(133)	12129(4)	3895(4)	-524(4)	64(5)
C(37)))))))))	6400(6)	1900(3)	JJ(I)	C(133)	12129(4)	4017(2)	324(H) 201(F)	01(3)
C(38)	9875(6)	6490(6)	21/0(6)	/6(6)	C(134)	12022(5)	4217(3)	-291(5)	88(7)
C(39)	9802(7)	6658(8)	2544(6)	93(7)	C(135)	12085(6)	4207(5)	115(5)	122(10)
C(40)	9425(9)	6800(8)	2634(7)	101(8)	C(136)	12256(8)	3875(7)	288(4)	152(14)
C(41)	9094(8)	6744(7)	2383(8)	95(7)	C(137)	12363(7)	3553(5)	56(6)	165(15)
C(42)	9168(6)	6571(5)	2030(6)	66(5)	C(138)	12300(6)	3564(4)	-350(5)	136(12)
C(43)	9905(5)	5640(4)	1214(5)	50(4)	C(139)	12553(4)	4102(4)	-1434(5)	89(8)
C(44)	10152(6)	5616(5)	872(6)	61(5)	C(140)	12870(5)	4199(5)	-1190(4)	111(9)
	10221(6)	5010(5)	760(6)	71(6)	C(141)	12021(4)	1212(5)	1255(1)	162(16)
C(45)	10321(0)	5252(6)	709(0)	71(0)	C(141)	13231(4)	4312(0)	-1355(7)	103(10)
C(46)	10266(6)	4923(6)	1004(6)	68(5)	C(142)	132/4(4)	4327(5)	-1/63(7)	156(19)
C(47)	10023(6)	4933(5)	1328(6)	69(5)	C(143)	12956(6)	4230(5)	-2007(5)	141(15)
C(48)	9833(5)	5302(5)	1444(5)	55(4)	C(144)	12596(5)	4117(4)	-1842(5)	83(6)
C(49)	9353(5)	6489(4)	861(4)	43(4)	C(145)	11725(8)	3874(6)	-2729(7)	115(9)
C(50)	9061(5)	6305(5)	627(5)	59(5)	C(146)	11904(7)	3599(8)	-2480(6)	124(10)
C(51)	8860(6)	6485(7)	309(6)	77(6)	C(147)	12042(8)	3243(7)	-2632(12)	215(19)
0(52)	8983(7)	6904(7)	241(7)	90(7)	C(140)	12000/11	3161/91	_2022(12)	240(20)
	0203(/)	0904(/) 7000/C)	291(/) 465(7)	90(1)	C(140)	11001(11)	$3 \pm 0 \pm (0)$	-3033(13)	270(20)
C(53)	9258(7)	/099(6)	405(7)	δT(ρ)	C(149)	11821(14)	3436(12)	-3∠8⊥(8)	3∠∪(3U)
C(54)	9458(6)	6877(5)	774(6)	71(5)	C(150)	11683(13)	3792(10)	-3129(7)	2000(700)
C(55)	11445(5)	6901(5)	451(5)	57(5)	C(151)	11919(6)	4867(6)	-2593(6)	73(6)
C(56)	11564(6)	7039(6)	829(6)	69(5)	C(152)	12270(8)	4735(7)	-2794(7)	102(8)
C(57)	11746(7)	7392(7)	886(7)	91(7)	C(153)	12532(9)	5045(9)	-2941(9)	122(11)
C(58)	11796(8)	7646(7)	574(8)	101(8)	C(154)	12436(9)	5456(12)	-2879(7)	122(11)
C(59)	11665(8)	7529(6)	189(7)	91(7)	C(155)	12100(9)	5562(6)	-2650(8)	95(7)
	11400(6)	7329(0)	100(7)	$\mathcal{I}(\mathcal{I})$	C(155)	12107(9)	5502(0)	2030(0)	95(7) 95(6)
C(60)	11488(6)	/163(6)	122(6)	/2(6)	C(156)	11845(7)	5267(7)	-2512(7)	85(6)
C(61)	11483(5)	5857(4)	653(4)	43(4)	C(157)	10928(8)	4613(6)	-2622(6)	86(7)
C(62)	11292(5)	5623(5)	935(5)	57(5)	C(158)	10919(10)	4940(7)	-2864(8)	112(9)
C(63)	11491(7)	5314(6)	1137(6)	72(6)	C(159)	10519(16)	5063(8)	-3006(9)	150(16)
C(64)	11891(8)	5237(7)	1022(7)	94(7)	C(160)	10158(12)	4842(11)	-2864(10)	141(13)
C(65)	12110(8)	5472(7)	726(6)	89(7)	C(161)	10222(9)	4530(9)	-2617(8)	111(9)
C(66)	11870(6)	5777(5)	551(5)	63(5)	C(162)	10607(8)	4420(7)	-2500(7)	90(7)
0(67)	10622(4)	6220(4)	04(4)	45(4)	C(162)	11069(7)	1646(7)	1252(0)	172/1E)
C(07)	10033(4)	6220(4)	94(4)	45(4)	C(103)	11000(7)	1645(7)	-1352(9)	1/3(15)
C(68)	10299(5)	6444(5)	164(5)	54(4)	C(164)	11358(9)	164/(/)	-1060(7)	162(13)
C(69)	9938(5)	6334(6)	-18(5)	64(5)	C(165)	11652(7)	1358(9)	-1058(7)	170(14)
C(70)	9929(7)	5998(7)	-269(5)	73(6)	C(166)	11656(7)	1067(7)	-1349(9)	165(14)
C(71)	10259(6)	5767(6)	-326(6)	67(5)	C(167)	11366(9)	1065(7)	-1641(7)	151(12)
C(72)	10610(6)	5875(5)	-150(5)	57(5)	C(168)	11072(7)	1354(9)	-1643(7)	169(14)
C(73)	12586(4)	6925(4)	-136(4)	70(5)	Sn(1)	11109(1)	6142(1)	2037(1)	62(1)
C(74)	12515(4)	6844(4)	260(5)	83(6)	$\operatorname{Sn}(2)$	10584(1)	7467(1)	1505(1)	69(1)
C(75)	12657(5)	7000(5)	550(3)	09(7)	Sn(2)	10301(1) 0621(1)	6191(1)	1220(1)	45(1)
	10060(5)	7425(5)	112(2)	114/10)	Gm (4)	2041(1) 11101/1\	0101(1)	エンンラ(エ) 270/1 \	10(1) 10(1)
C(76)	12009(5)	/435(5)	443(5)	114(1U)	511(4)	TTTQT(T)	0339(1)	3/9(I)	40(1)
C(77)	12939(5)	/516(4)	46(6)	104(8)	Sn(5)	12468(1)	6505(1)	-584(1)	69(1)
C(78)	12798(5)	7261(5)	-243(4)	101(8)	Sn(6)	11142(1)	7037(1)	-1109(1)	61(1)
C(79)	12717(7)	6716(7)	-1136(6)	97(7)	Sn(7)	11339(1)	5378(1)	-1180(1)	45(1)
C(80)	12471(6)	6903(7)	-1408(8)	127(10)	Sn(8)	12037(1)	3891(1)	-1142(1)	62(1)
C(81)	12626(12)	7042(8)	-1763(8)	230(20)	Sn(9)	11505(1)	4416(1)	-2468(1)	68(1)
C(82)	13027(13)	6992(11)	-1846(8)	250(20)	P(1)	10606(1)	6513(1)	1303(1)	44(1)
C(82)	13273(8)	6804(13)	_1575/121	310(30)	P(2)	11512(1)	6304(1)	-606(1)	44(1)
	10110(0)	CCCC(11)	1000(10)	2TO(20)	F(4)	11205(1)	4202(1)	1F14/1	IT(1)
C(84)	13118(7)	0000(11)	-IZZU(IU)	2000(700)	P(3)	11305(1)	4392(1)	-1514(1)	45(1)
C(85)	12630(5)	5921(4)	-383(5)	94(7)	O(T)	T0707(3)	θT./8(3)	1611(3)	51(3)
C(86)	12882(5)	5878(6)	-60(5)	121(10)	0(2)	10739(3)	6903(3)	1521(3)	54(3)
C(87)	12999(5)	5502(7)	60(5)	127(11)	0(3)	10169(3)	6522(3)	1244(3)	49(3)
C(88)	12865(6)	5170(5)	-143(6)	134(11)	O(4)	10846(3)	6454(3)	929(3)	54(3)
C(89)	12613(6)	5214(4)	-465(6)	100(8)	0(5)	11522(3)	6247(3)	-166(3)	52(3)
C(90)	12496(5)	5590(5)	-586(4)	89(7)	0(6)	11909(3)	6523(3)	-734(3)	55(3)
C(Q1)	11355/5)	6802(4)	-1683/31	72(6)	0(7)	11178/21	6609(2)	_711(2)	51(2)
	11505(5)	7100/2(4)	1001(5)	12(0)	0(1)	11455(3)	5009(3)	0 - 1 (2)	51(3)
C(92)	11535(6)	1798(3)	-1091(5)	134(1U)	0(8)	11455(3)	5935(3)	-851(3)	54(3)
C(93)	11642(6)	7145(4)	-2284(5)	⊥45(11)	0(9)	11243(3)	4830(3)	-1526(3)	52(3)
C(94)	11570(5)	6785(5)	-2470(4)	109(8)	0(10)	11606(3)	4288(3)	-1178(3)	52(3)
C(95)	11390(5)	6478(4)	-2262(4)	74(5)	0(11)	11523(3)	4260(3)	-1901(3)	54(3)
C(96)	11283(4)	6532(3)	-1869(4)	83(6)	0(12)	10931(3)	4149(3)	-1454(3)	55(3)

		- ?		
Ausoewählte	Rindungslänger	n I A I und	Rindungswinke	· · · ·
11ubge wante	Dingungslunge	i [ii] unu	Dingungswinke	' - L J•

	Bindungslängen								
Sn(1)-C(1)	2,139(12)	Sn(6)-C(103)	2,090(13)	Sn(6)-O(7)	1,978(10)				
Sn(1)-C(7)	2,102(11)	Sn(7)-C(109)	2,137(8)	Sn(7)-O(9)	2,216(10)				
Sn(1)-C(13)	2,110(11)	Sn(7)-C(115)	2,129(9)	Sn(7)-O(8)	2,222(9)				
Sn(2)-C(19)	2,13(2)	Sn(7)-C(121)	2,129(7)	Sn(8)-O(10)	1,982(10)				
Sn(2)-C(25)	2,142(18)	Sn(8)-C(127)	2,138(10)	Sn(9)-O(11)	1,990(11)				
Sn(2)-C(31)	2,150(12)	Sn(8)-C(133)	2,115(12)	P(1)-O(3)	1,487(11)				
Sn(3)-C(37)	2,105(17)	Sn(8)-C(139)	2,120(11)	P(1)-O(4)	1,516(11)				
Sn(3)-C(43)	2,105(16)	Sn(9)-C(145)	2,163(19)	P(1)-O(1)	1,575(11)				
Sn(3)-C(49)	2,125(15)	Sn(9)-C(151)	2,11(2)	P(1)-O(2)	1,577(10)				
Sn(4)-C(55)	2,114(17)	Sn(9)-C(157)	2,12(3)	P(2)-O(5)	1,500(11)				
Sn(4)-C(61)	2,132(15)	Sn(1)-O(1)	1,984(10)	P(2)-O(8)	1,510(10)				
Sn(4)-C(67)	2,120(16)	Sn(2)-O(2)	1,978(11)	P(2)-O(7)	1,571(11)				
Sn(5)-C(73)	2,113(10)	Sn(3)-O(3)	2,199(10)	P(2)-O(6)	1,585(11)				
Sn(5)-C(79)	2,169(18)	Sn(3)-O(12)	2,203(10)	P(3)-O(9)	1,494(10)				
Sn(5)-C(85)	2,158(13)	Sn(4)-O(5)	2,194(10)	P(3)-O(12)	1,518(11)				
Sn(6)-C(91)	2,128(11)	Sn(4)-O(4)	2,211(10)	P(3)-O(11)	1,565(11)				
Sn(6) -C(97)	2,141(10)	Sn(5)-O(6)	1,950(11)	P(3)-O(10)	1,564(11)				

Bindungswinkel								
O(1)-Sn(1)-C(7)	99,3(5)	O(7)-Sn(6)-C(103)	99,6(5)	O(5)-P(2)-O(7)	108,9(6)			
O(1) - Sn(1) - C(13)	115,9(5)	O(7)-Sn(6)-C(91)	115,6(5)	O(8)-P(2)-O(7)	108,9(7)			
O(1) - Sn(1) - C(1)	108,6(5)	O(7)-Sn(6)-C(97)	109,1(5)	O(5)-P(2)-O(6)	108,3(7)			
O(2)-Sn(2)-C(19)	111,8(6)	C(121)-Sn(7)-O(9)	93,4(4)	O(8)-P(2)-O(6)	110,2(6)			
O(2)-Sn(2)-C(25)	97,3(7)	C(115)-Sn(7)-O(9)	90,1(4)	O(7)-P(2)-O(6)	103,6(6)			
O(2)-Sn(2)-C(31)	111,3(5)	C(109)-Sn(7)-O(9)	89,8(4)	O(9) - P(3) - O(12)	115,2(7)			
C(37) - Sn(3) - O(3)	90,8(5)	C(121)-Sn(7)-O(8)	88,6(4)	O(9) - P(3) - O(11)	108,9(6)			
C(43)-Sn(3)-O(3)	92,6(5)	C(115)-Sn(7)-O(8)	87,6(4)	O(12) - P(3) - O(11)	110,3(6)			
C(49)-Sn(3)-O(3)	89,2(5)	C(109)-Sn(7)-O(8)	90,6(4)	O(9) - P(3) - O(10)	109,4(6)			
C(37)-Sn(3)-O(12)#1	87,1(5)	O(9)-Sn(7)-O(8)	177,6(4)	O(12) - P(3) - O(10)	108,7(6)			
C(43)-Sn(3)-O(12)#1	88,9(5)	O(10)-Sn(8)-C(133)	99,4(5)	O(11)-P(3)-O(10)	103,8(6)			
C(49)-Sn(3)-O(12)#1	91,3(5)	O(10)-Sn(8)-C(139)	110,1(5)	P(1)-O(1)-Sn(1)	132,3(6)			
O(3) - Sn(3) - O(12) # 1	177,9(4)	O(10)-Sn(8)-C(127)	114,8(5)	P(1)-O(2)-Sn(2)	135,8(7)			
C(55)-Sn(4)-O(5)	90,2(6)	O(11)-Sn(9)-C(151)	111,3(6)	P(1) - O(3) - Sn(3)	143,1(7)			
C(67) - Sn(4) - O(5)	92,8(5)	O(11)-Sn(9)-C(157)	110,4(7)	P(1) - O(4) - Sn(4)	177,0(7)			
C(61) - Sn(4) - O(5)	90,3(5)	O(11)-Sn(9)-C(145)	99,2(7)	P(2)-O(5)-Sn(4)	143,5(7)			
C(55)-Sn(4)-O(4)	87,6(6)	O(3) - P(1) - O(4)	114,9(7)	P(2)-O(6)-Sn(5)	136,6(7)			
C(67) - Sn(4) - O(4)	88,4(5)	O(3) - P(1) - O(1)	108,5(6)	P(2)-O(7)-Sn(6)	132,7(6)			
C(61)-Sn(4)-O(4)	90,7(5)	O(4) - P(1) - O(1)	110,0(6)	P(2)-O(8)-Sn(7)	176,0(8)			
O(5)-Sn(4)-O(4)	177,8(4)	O(3) - P(1) - O(2)	109,1(6)	P(3)-O(9)-Sn(7)	142,5(7)			
O(6)-Sn(5)-C(73)	110,3(5)	O(4)-P(1)-O(2)	110,4(6)	P(3)-O(10)-Sn(8)	132,3(7)			
O(6)-Sn(5)-C(85)	110,8(5)	O(1) - P(1) - O(2)	103,3(6)	P(3) - O(11) - Sn(9)	135,7(7)			
O(6)-Sn(5)-C(79)	98,1(7)	O(5)-P(2)-O(8)	116,2(6)	P(3)-O(12)-Sn(3)#1	176,6(7)			

$6.4 \quad [(Ph_3Sn)_3AsO_3] (\underline{4})$

<u>**4**</u> kristallisiert aus DMF in Form farbloser Stäbchen.

Summenformel		$C_{54}H_{45}AsO_3Sn_3$
Molekulargewicht [g/mol)	1	1172,89
Kristallsystem		orthorhombisch
Raumgruppe		P2 ₁ 2 ₁ 2 ₁
Zelldimensionen a;b;o	c; [Å]	9,804(2); 19,061(3); 25,857(8)
α;β;	γ; [°]	90; 90; 90
V [Å	Λ^3]	4832(2)
Formeleinheiten		4
Röntgenographische Dicht	te $[g/cm^3]$	1,612
Messtemperatur [K]		220
Kristallgröße [mm]		$18 \times 18 \times 38$
Messbereich 2 Θ [°]		2,14 - 26,02
Gemessene Reflexe		37648
Unabhängige Reflexe		9386
Unabhängige Reflexe F _O >	$> 4\sigma(F_0)$	7380
Anzahl der verfeinerten Pa	arameter	730
μ (Mo–K α) [mm ⁻¹]		2,260
Maximale Restelektronend	dichte $[e^{-}/Å^3]$	0,899; -0,372
R _{int}		0,0518
R1 / wR2 (I > $2\sigma(I)$)		0,0297 / 0,0543
R1 / wR2 (alle Daten)		0,0457 / 0,0585
Flack-Parameter		-0,0083

Lageparameter (·104) und Koeffizienten Ueq [Å² ·10⁴]:

Atom	x	У	z	Ueq	Atom	x	У	z	\mathbf{U}_{eq}
C(1)	11312(5)	3385(3)	1385(2)	61(1)	C(32)	9112(8)	5505(3)	2535(2)	84(2)
C(2)	11649(8)	2748(4)	1594(3)	102(2)	C(33)	9990(8)	5392(4)	2946(2)	92(2)
C(3)	12949(10)	2487(5)	1527(4)	127(3)	C(34)	10925(8)	5864(4)	3082(2)	90(2)
C(4)	13899(8)	2852(4)	1247(3)	97(2)	C(35)	11048(7)	6469(4)	2800(2)	81(2)
C(5)	13564(7)	3476(3)	1039(3)	93(2)	C(36)	10189(6)	6590(3)	2388(2)	67(1)
C(6)	12263(6)	3740(3)	1108(2)	75(1)	C(37)	6151(6)	5117(2)	-116(2)	60(1)
C(7)	8129(6)	3189(2)	812(2)	60(1)	C(38)	5470(7)	5300(3)	336(2)	66(1)
C(8)	8365(10)	2492(4)	706(3)	104(3)	C(39)	4106(7)	5195(3)	385(2)	73(2)
C(9)	7679(10)	2157(4)	311(3)	113(3)	C(40)	3349(8)	4908(3)	-9(3)	79(2)
C(10)	6758(10)	2504(4)	21(3)	102(2)	C(41)	4009(8)	4714(4)	-459(3)	82(2)
C(11)	6500(8)	3190(4)	125(3)	96(2)	C(42)	5375(8)	4822(3)	-511(2)	74(2)
C(12)	7183(7)	3525(3)	514(2)	75(2)	C(43)	8295(6)	6471(3)	-363(2)	59(1)
C(13)	8332(5)	3503(2)	2151(2)	55(1)	C(44)	7116(8)	6837(3)	-422(2)	76(2)
C(14)	9087(7)	3536(3)	2594(2)	71(2)	C(45)	7077(10)	7543(3)	-536(3)	93(2)
C(15)	8504(11)	3379(4)	3066(2)	90(2)	C(46)	8255(11)	7899(4)	-582(3)	95(2)
C(16)	7195(10)	3187(3)	3098(3)	93(2)	C(47)	9454(12)	7544(5)	-522(3)	106(3)
C(17)	6419(10)	3149(4)	2662(3)	103(2)	C(48)	9504(8)	6831(4)	-417(2)	84(2)
C(18)	6980(7)	3309(3)	2178(2)	80(2)	C(49)	9107(6)	4815(3)	-876(2)	64(1)
C(19)	7786(5)	7446(2)	1484(2)	57(1)	C(50)	9930(8)	4246(3)	-813(3)	83(2)
C(20)	7372(7)	7895(3)	1868(2)	77(2)	C(51)	10525(9)	3928(4)	-1244(4)	108(3)
C(21)	7277(7)	8603(3)	1779(3)	93(2)	C(52)	10255(10)	4179(7)	-1724(3)	121(3)
C(22)	7596(8)	8875(3)	1310(3)	94(2)	C(53)	9501(11)	4734(8)	-1781(3)	141(4)
C(23)	8054(8)	8440(3)	925(3)	88(2)	C(54)	8899(9)	5057(5)	-1365(2)	108(3)
C(24)	8130(7)	7731(3)	1004(2)	70(1)	Sn(1)	9228(1)	3702(1)	1409(1)	55(1)
C(25)	5912(6)	5884(3)	1710(2)	61(1)	Sn(2)	7881(1)	6340(1)	1618(1)	55(1)

C(26)	5705(8)	5175(3)	1780(2)	68(1)	Sn(3)	8235(1)	5368(1)	-238(1)	61(1)
C(27)	4419(8)	4910(4)	1864(2)	83(2)	As	9881(1)	5335(1)	917(1)	55(1)
C(28)	3326(9)	5356(6)	1882(2)	99(3)	0(1)	9029(4)	4724(2)	1303(1)	74(1)
C(29)	3506(8)	6065(5)	1810(3)	93(2)	0(2)	8674(5)	6001(2)	957(1)	73(1)
C(30)	4786(7)	6311(4)	1723(2)	77(2)	0(3)	9507(5)	5033(2)	310(1)	84(1)
C(31)	9213(6)	6117(2)	2252(2)	54(1)					

	Bindungslängen							
Sn(1)-C(1)	2,132(5)	Sn(3)-C(49)	2,137(5)					
Sn(1)-C(7)	2,121(5)	Sn(1) - O(1)	1,977(3)					
Sn(1)-C(13)	2,145(4)	Sn(2)-O(2)	1,986(3)					
Sn(2)-C(19)	2,138(4)	Sn(3)-O(3)	1,992(4)					
Sn(2)-C(25)	2,131(6)	As-O(3)	1,710(3)					
Sn(2)-C(31)	2,138(5)	As-O(2)	1,739(4)					
Sn(3)-C(37)	2,122(6)	As-0(1)	1,748(3)					
Sn(3)-C(43)	2,127(5)							

Bindungswinkel							
O(1) - Sn(1) - C(7)	107,68(17)	O(3)-Sn(3)-C(49)	98,05(18)				
O(1) - Sn(1) - C(1)	111,68(18)	O(1)-As-O(2)	97,27(17)				
O(1) - Sn(1) - C(13)	104,94(14)	O(1)-As-O(3)	101,48(19)				
O(2)-Sn(2)-C(25)	108,57(18)	O(2)-As-O(3)	98,89(18)				
O(2)-Sn(2)-C(31)	110,84(17)	As-O(1)-Sn(1)	133,53(19)				
O(2) - Sn(2) - C(19)	101,50(16)	As - O(2) - Sn(2)	123,79(17)				
O(3) - Sn(3) - C(37)	115,07(18)	As - O(3) - Sn(3)	132,7(2)				
O(3)-Sn(3)-C(43)	114,06(18)						

6.5 $[(Ph_3Sn)_2O \cdot 2 (Ph_3Sn)_3AsO_3] (5)$

<u>5</u> kristallisiert aus Benzol in Form farbloser Prismen.

Summenformel		$C_{144}H_{120}As_2O_7Sn_8$		
Molekulargewicht [g	/mol)	3062,06		
Kristallsystem		trigonal		
Raumgruppe		$R\bar{3}$		
Zelldimensionen	a;b;c; [Å]	19,263(3); 19,263(3); 29,553(5)		
	α;β;γ; [°]	90; 90; 120		
	V [Å ³]	9497(2)		
Formeleinheiten		3		
Röntgenographische	Dichte [g/cm ³]	1,606		
Messtemperatur [K]		220		
Messbereich 2Θ [°]		2,54 - 25,85		
Gemessene Reflexe		16211		
Unabhängige Reflexe	e	7488		
Unabhängige Reflexe	$e F_O > 4\sigma(F_O)$	3603		
Anzahl der verfeinert	en Parameter	323		
μ (Mo–K α) [mm ⁻¹]		2,125		
Maximale Restelektr	onendichte [e ⁻ / Å ³]	1,040; -1,050		
R _{int}		0,0509		
R1 / wR2 (I > $2\sigma(I)$)		0,0293 / 0,0548		
R1 / wR2 (alle Daten)	0,0344 / 0,0552		

Lageparameter ($\cdot 10^4$) und Koeffizienten Ueq [Å² $\cdot 10^4$]:

Atom	x	У	Z	Ueq	Atom	x	У	Z	\mathbf{U}_{eq}
Sn(1)	8475(1)	4328(1)	1219(1)	31(1)	C(11)	8956(2)	6782(2)	993(2)	52(1)
Sn(2)	13333	6667	2318(1)	37(1)	C(12)	8837(2)	6061(2)	1182(1)	41(1)
As	6667	3333	712(1)	32(1)	C(13)	8343(2)	4372(2)	1932(1)	29(1)
0(1)	7490(1)	3383(1)	988(1)	51(1)	C(14)	7733(2)	4488(2)	2112(1)	35(1)
0(2)	13333	6667	1667	71(2)	C(15)	7662(2)	4543(2)	2570(1)	42(1)
C(1)	9392(2)	4061(2)	1075(1)	32(1)	C(16)	8196(2)	4499(2)	2862(1)	44(1)
C(2)	9239(2)	3275(2)	1026(1)	44(1)	C(17)	8794(2)	4376(2)	2692(1)	44(1)
C(3)	9861(3)	3127(3)	962(2)	55(1)	C(18)	8859(2)	4311(2)	2227(1)	39(1)
C(4)	10640(2)	3739(3)	941(1)	50(1)	C(19)	14355(2)	6574(2)	2503(1)	41(1)
C(5)	10792(3)	4511(3)	971(2)	67(1)	C(20)	14787(2)	6443(2)	2169(2)	51(1)
C(6)	10181(2)	4673(2)	1035(2)	54(1)	C(21)	15469(3)	6416(2)	2277(2)	58(1)
C(7)	8643(2)	5404(2)	915(1)	33(1)	C(22)	15726(3)	6498(3)	2702(2)	69(1)
C(8)	8566(3)	5467(2)	456(1)	54(1)	C(23)	15319(3)	6626(3)	3039(2)	77(2)
C(9)	8681(3)	6175(3)	268(2)	68(1)	C(24)	14624(3)	6662(3)	2947(1)	60(1)
C(10)	8868(3)	6825(3)	539(2)	58(1)					

Bindungslängen						
Sn(1)-O(1)	1,982(2)	Sn(2)-O(2)	1,9244(5)			
Sn(1)-C(1)	2,115(3)	Sn(2)-C(19)	2,135(3)			
Sn(1)-C(13)	2,129(3)	As-0(1)	1,741(2)			
Sn(1)-C(7)	2,130(3)					

Bindungswinkel							
O(1)-Sn(1)-C(1)	103,85(11)	O(2)-Sn(2)-C(19)	104,82(9)				
O(1) - Sn(1) - C(13)	107,45(11)	O(1)-As-O(1)#2	99,96(11)				
C(1)-Sn(1)-C(13)	109,86(11)	As - O(1) - Sn(1)	129,68(13)				
O(1) - Sn(1) - C(7)	110,98(11)	Sn(2)-O(2)-Sn(2)#2	180,0				

6.6 [(CO)₄FeAs(OSnPh₃)₃] (<u>6</u>)

<u>2</u> kristallisiert aus einem THF–Heptan–Gemisch in Form blass-gelber Prismen.

Summenformel		$C_{58}H_{45}AsFeO_7Sn_3$		
Molekulargewicht	[g/mol)	1340,78		
Kristallsystem		monoklin		
Raumgruppe		$P2_1/n$		
Zelldimensionen	a;b;c; [Å]	22,423(5); 11,126(2); 23,530(5)		
	α;β;γ; [°]	90; 111,46(2); 90		
	$V[Å^3]$	5463(2)		
Formeleinheiten		4		
Röntgenographisch	e Dichte [g/cm ³]	1,630		
Messtemperatur [K		220		
Kristallgröße [mm]		$41 \times 10 \times 08$		
Messbereich 2 Θ [°]]	2,05 - 26,06		
Gemessene Reflexe	e	41712		
Unabhängige Refle	exe	10601		
Unabhängige Refle	exe $F_O > 4\sigma(F_O)$	6604		
Anzahl der verfeine	erten Parameter	631		
μ (Mo–K α) [mm ⁻¹]		2,267		
Maximale Restelek	tronendichte $[e^{-}/Å^3]$	0,433, -0,321		
R _{int}		0,0725		
$R1 / wR2 (I > 2\sigma(I))$))	0,0329 / 0,0507		
R1 / wR2 (alle Date	en)	0,0744 / 0,0576		

Atom	х	У	Z	Ueq	Atom	х	У	Z	Ueq
C(1)	3481(2)	5135(4)	5859(2)	53(1)	C(36)	189(2)	1796(5)	4683(2)	82(2)
C(2)	3987(3)	5905(5)	5958(2)	78(2)	C(37)	3366(2)	760(5)	3996(2)	55(1)
C(3)	4403(3)	6173(6)	6541(3)	102(2)	C(38)	3633(3)	-354(6)	4033(2)	83(2)
C(4)	4323(3)	5649(7)	7030(3)	117(3)	C(39)	4274(3)	-478(7)	4161(3)	111(2)
C(5)	3814(4)	4897(7)	6939(2)	121(3)	C(40)	4650(3)	504(9)	4238(3)	102(2)
C(6)	3394(3)	4645(6)	6354(2)	87(2)	C(41)	4392(3)	1641(7)	4198(2)	91(2)
C(7)	3312(2)	5337(4)	4343(2)	54(1)	C(42)	3746(2)	1757(6)	4082(2)	77(2)
C(8)	2991(3)	6070(5)	3851(2)	72(1)	C(43)	1857(2)	-703(4)	3423(2)	51(1)
C(9)	3292(4)	6479(6)	3473(3)	103(2)	C(44)	1662(3)	-776(6)	2801(2)	91(2)
C(10)	3910(5)	6173(8)	3590(4)	120(3)	C(45)	1288(3)	-1721(7)	2483(3)	112(2)
C(11)	4233(3)	5445(7)	4068(3)	102(2)	C(46)	1090(3)	-2587(6)	2776(3)	98(2)
C(12)	3936(2)	5029(5)	4440(2)	73(2)	C(47)	1286(3)	-2549(5)	3389(3)	93(2)
C(13)	1903(2)	5167(4)	4736(2)	49(1)	C(48)	1672(3)	-1612(5)	3714(2)	76(2)
C(14)	1416(2)	4409(5)	4408(2)	65(1)	C(49)	1849(2)	2325(5)	3318(2)	59(1)
C(15)	788(2)	4688(5)	4297(2)	81(2)	C(50)	2128(3)	3268(5)	3133(2)	77(2)
C(16)	643(3)	5745(6)	4517(3)	86(2)	C(51)	1759(4)	4149(6)	2739(3)	105(2)
C(17)	1121(3)	6509(5)	4841(3)	86(2)	C(52)	1122(4)	4071(7)	2533(3)	109(2)
C(18)	1746(2)	6228(5)	4948(2)	67(1)	C(53)	829(3)	3154(7)	2706(3)	106(2)
C(19)	1905(2)	б(4)	6232(2)	50(1)	C(54)	1199(3)	2287(6)	3103(2)	87(2)
C(20)	2089(3)	-998(5)	5998(2)	74(1)	C(55)	4273(2)	77(5)	6547(2)	65(1)
C(21)	2384(3)	-1967(5)	6370(3)	102(2)	C(56)	3384(2)	1394(5)	6576(2)	62(1)
C(22)	2483(3)	-1931(6)	6974(3)	103(2)	C(57)	3403(2)	-518(5)	5579(2)	70(1)
C(23)	2304(3)	-966(7)	7211(3)	98(2)	C(58)	4158(2)	1890(5)	5798(2)	66(1)
C(24)	2020(2)	11(5)	6847(2)	74(2)	Sn(1)	2875(1)	4713(1)	4949(1)	48(1)
C(25)	1244(2)	2933(4)	6176(2)	49(1)	Sn(2)	1493(1)	1543(1)	5685(1)	45(1)
C(26)	1395(2)	4116(5)	6108(2)	69(1)	Sn(3)	2379(1)	866(1)	3850(1)	48(1)

Kristallstrukturuntersuchungen

C(27)	1237(3)	5037(5)	6427(3)	90(2)	As	2766(1)	1744(1)	5265(1)	39(1)
C(28)	916(3)	4775(7)	6808(3)	93(2)	Fe	3646(1)	863(1)	5993(1)	49(1)
C(29)	761(3)	3620(7)	6877(2)	92(2)	0(1)	2898(1)	2919(3)	4842(1)	49(1)
C(30)	919(2)	2711(5)	6560(2)	72(1)	0(2)	2205(1)	2368(3)	5517(1)	49(1)
C(31)	744(2)	1185(4)	4840(2)	51(1)	0(3)	2307(1)	810(3)	4676(1)	48(1)
C(32)	792(2)	315(6)	4442(2)	86(2)	O(4)	4669(2)	-465(4)	6907(2)	96(1)
C(33)	295(3)	89(7)	3901(3)	107(2)	O(5)	3242(2)	1760(4)	6964(2)	90(1)
C(34)	-257(3)	728(7)	3749(2)	94(2)	0(6)	3259(2)	-1419(4)	5328(2)	106(1)
C(35)	-317(3)	1569(6)	4130(3)	101(2)	0(7)	4493(2)	2567(4)	5699(2)	98(1)

Bindungslängen							
Sn(1)-C(1)	2,126(4)	Fe-C(56)	1,780(5)				
Sn(1)-C(7)	2,121(4)	C(57)-O(6)	1,149(6)				
Sn(1)-C(13)	2,111(4)	Fe-C(57)	1,793(6)				
Sn(2)-C(19)	2,137(4)	C(58)-O(7)	1,145(5)				
Sn(2)-C(25)	2,124(4)	Fe-C(58)	1,795(6)				
Sn(2)-C(31)	2,119(4)	Sn(1)-O(1)	2,015(3)				
Sn(3)-C(37)	2,115(4)	Sn(2)-O(2)	2,001(3)				
Sn(3)-C(43)	2,137(4)	Sn(3)-O(3)	2,010(2)				
Sn(3)-C(49)	2,127(5)	As-O(2)	1,721(3)				
C(55)-O(4)	1,148(5)	As-O(1)	1,733(3)				
Fe-C(55)	1,761(5)	As-O(3)	1,738(3)				
C(56)-O(5)	1,147(5)	As-Fe	2,3045(9)				

	Bindungswinkel								
O(4)-C(55)-Fe	177,8(5)	O(2)-As-Fe	116,85(9)						
O(5)-C(56)-Fe	176,9(4)	O(1)-As-Fe	117,90(9)						
O(6)-C(57)-Fe	178,1(5)	O(3)-As-Fe	115,77(9)						
O(7)-C(58)-Fe	177,0(5)	C(55)-Fe-C(56)	89,6(2)						
O(1) - Sn(1) - C(13)	106,17(15)	C(55)-Fe-C(57)	88,8(2)						
O(1) - Sn(1) - C(7)	101,61(14)	C(56)-Fe-C(57)	125,6(2)						
O(1) - Sn(1) - C(1)	107,97(14)	C(55)-Fe-C(58)	95,3(2)						
C(13)-Sn(1)-C(1)	114,25(16)	C(56)-Fe-C(58)	114,1(2)						
O(2)-Sn(2)-C(31)	108,40(14)	C(57)-Fe-C(58)	120,2(2)						
O(2)-Sn(2)-C(25)	99,28(15)	C(55)-Fe-As	174,78(17)						
O(2)-Sn(2)-C(19)	106,61(13)	C(56)-Fe-As	89,82(14)						
O(3)-Sn(3)-C(37)	106,92(13)	C(57)-Fe-As	87,35(15)						
O(3)-Sn(3)-C(49)	111,52(14)	C(58)-Fe-As	89,65(14)						
O(3)-Sn(3)-C(43)	101,84(14)	As - O(1) - Sn(1)	131,12(14)						
O(2)-As-O(1)	101,14(13)	As - O(2) - Sn(2)	128,25(16)						
O(2)-As-O(3)	102,76(12)	As - O(3) - Sn(3)	121,28(14)						
O(1)-As-O(3)	99,69(12)								

6.7 $[{(Ph_3Sn \cdot DMF)(Ph_3Sn)(Ph_2SnOH)AsO_4}_2](\underline{7})$

<u>**7**</u> kristallisiert aus DMF in Form farbloser Nadeln.

Summenformel	$C_{102}H_{96}As_2N_2O_{12}Sn_6$		
Molekulargewicht [g/mol)	2404,0		
Kristallsystem	triklin		
Raumgruppe	PĪ		
Zelldimensionen a;b;c; [Å]	13,384(3); 14,131(3); 14,590(3)		
α;β;γ; [°]	84,28(3); 73,25(3); 63,30(3)		
V [Å ³]	2359,2(9)		
Formeleinheiten	2		
Röntgenographische Dichte [g/cm ³]	1,692		
Messtemperatur [K]	220		
Kristallgröße [mm]	$38 \times 34 \times 30$		
Messbereich 2Θ [°]	2,21 - 25,00		
Gemessene Reflexe	18475		
Unabhängige Reflexe	7701		
Unabhängige Reflexe $F_O > 4\sigma(F_O)$	7017		
Anzahl der verfeinerten Parameter	563		
μ (Mo–K α) [mm ⁻¹]	2,321		
Maximale Restelektronendichte [e ^{-/} Å ³]	0,969; -0,932		
R _{int}	0,0361		
R1 / wR2 (I > $2\sigma(I)$)	0,0251 / 0,0645		
R1 / wR2 (alle Daten)	0,0294 / 0,0760		

Atom	x	У	Z	\mathbf{U}_{eq}	Atom	x	У	Z	U _{eq}
C(1)	2825(3)	569(3)	-2340(2)	27(1)	C(32)	-669(3)	7369(3)	-2426(2)	30(1)
C(2)	3227(4)	-336(3)	-2918(3)	35(1)	C(33)	-1588(3)	8141(3)	-1771(3)	34(1)
C(3)	3083(4)	-1218(3)	-2548(3)	41(1)	C(34)	-1368(4)	8653(4)	-1149(3)	38(1)
C(4)	2540(4)	-1220(4)	-1591(3)	41(1)	C(35)	-240(4)	8354(4)	-1142(3)	41(1)
C(5)	2116(5)	-327(4)	-1015(3)	48(1)	C(36)	671(3)	7582(4)	-1794(3)	37(1)
C(6)	2259(4)	559(4)	-1385(3)	41(1)	C(37)	2712(3)	3453(3)	483(2)	26(1)
C(7)	2888(3)	2070(3)	-4328(2)	28(1)	C(38)	3255(3)	2557(3)	-127(3)	36(1)
C(8)	3851(4)	1751(4)	-5128(3)	43(1)	C(39)	4234(4)	1672(4)	-9(3)	53(1)
C(9)	3716(4)	1762(4)	-6025(3)	49(1)	C(40)	4697(4)	1677(4)	724(3)	48(1)
C(10)	2634(4)	2093(4)	-6145(3)	46(1)	C(41)	4175(4)	2562(4)	1332(3)	44(1)
C(11)	1671(4)	2405(4)	-5364(3)	40(1)	C(42)	3194(3)	3438(4)	1216(3)	35(1)
C(12)	1808(3)	2391(3)	-4452(3)	34(1)	C(43)	1730(4)	6088(3)	431(2)	32(1)
C(13)	4680(3)	1842(3)	-2827(2)	30(1)	C(44)	931(4)	7074(4)	860(3)	41(1)
C(14)	4858(4)	2748(4)	-2948(4)	45(1)	C(45)	1287(6)	7835(4)	980(3)	57(2)
C(15)	5862(4)	2733(4)	-2856(4)	58(1)	C(46)	2448(6)	7604(5)	680(4)	65(2)
C(16)	6701(4)	1803(5)	-2633(3)	53(1)	C(47)	3252(6)	6635(6)	262(4)	65(2)
C(17)	6534(4)	916(5)	-2521(4)	56(1)	C(48)	2904(4)	5871(4)	136(3)	45(1)
C(18)	5534(4)	923(4)	-2618(3)	41(1)	C(49)	1072(4)	8775(4)	-3822(3)	43(1)
C(19)	3523(3)	5897(3)	-3479(2)	27(1)	C(50)	277(6)	10692(5)	-3692(5)	88(2)
C(20)	4276(3)	6120(3)	-4261(3)	34(1)	C(51)	2047(6)	9629(5)	-4983(4)	74(2)
C(21)	5298(4)	6075(4)	-4175(3)	45(1)	Ν	1115(4)	9657(3)	-4156(3)	47(1)
C(22)	5580(4)	5830(4)	-3319(4)	49(1)	0(1)	1776(2)	3023(2)	-2035(2)	26(1)
C(23)	4833(4)	5627(4)	-2540(3)	42(1)	0(2)	1894(2)	4638(2)	-3117(2)	25(1)
C(24)	3814(3)	5648(3)	-2619(3)	33(1)	0(3)	1880(2)	4704(2)	-1261(2)	24(1)
C(25)	1664(3)	5937(3)	-4947(2)	22(1)	O(4)	-133(2)	4942(2)	-1703(2)	22(1)

C(26)	1781(3)	6613(3)	-5692(2)	30(1)	0(5)	371(2)	3996(2)	7(2)	22(1)
C(27)	1595(4)	6504(3)	-6554(3)	35(1)	0(6)	1764(3)	7886(2)	-4162(2)	40(1)
C(28)	1290(3)	5723(3)	-6692(2)	32(1)	As	1320(1)	4365(1)	-1992(1)	19(1)
C(29)	1195(3)	5036(3)	-5974(3)	32(1)	Sn(1)	3112(1)	1887(1)	-2930(1)	24(1)
C(30)	1386(3)	5141(3)	-5110(2)	26(1)	Sn(2)	1897(1)	6083(1)	-3585(1)	21(1)
C(31)	479(3)	7085(3)	-2461(2)	23(1)	Sn(3)	1241(1)	4861(1)	267(1)	19(1)

Bindungslängen									
Sn(1)-C(1)	2,118(4)	C(49)-O(6)	1,224(5)	As-0(3)	1,677(2)				
Sn(1)-C(7)	2,118(3)	C(49)-N	1,311(6)	Sn(3)-O(3)	2,140(2)				
Sn(1)-C(13)	2,120(4)	C(50)-N	1,463(7)	As-O(4)	1,672(2)				
Sn(2)-C(19)	2,122(3)	C(51)-N	1,453(6)	Sn(3)-O(5)	2,148(2)				
Sn(2)-C(25)	2,140(3)	As-0(1)	1,712(2)	Sn(3)-O(5)#1	2,158(3)				
Sn(2)-C(31)	2,133(4)	Sn(1)-O(1)	1,994(3)	Sn(2)O(6)	2,546(3)				
Sn(3)-C(37)	2,156(4)	As-0(2)	1,688(2)	Sn(3)-O(4)#1	2,150(2)				
Sn(3)-C(43)	2,166(4)	Sn(2)-O(2)	2,088(2)						

Bindungswinkel									
O(6)-C(49)-N)	125,1(4)	O(4)-As-O(1)	107,39(12)	O(3)-Sn(3)-O(4)#1	162,44(8)				
C(49)-N-C(51)	120,4(4)	O(3)-As-O(1)	111,56(13)	O(5)-Sn(3)-O(4)#1	84,38(9)				
C(49)-N-C(50)	122,1(4)	O(2)-As-O(1)	104,12(12)	O(3) - Sn(3) - C(37)	93,61(12)				
C(51)-N-C(50)	117,4(4)	O(1)-Sn(1)-C(13)	108,81(13)	O(5)-Sn(3)-C(37)	93,78(12)				
As - O(1) - Sn(1)	131,20(13)	O(1)-Sn(1)-C(1)	98,89(12)	O(4) #1-Sn(3)-C(37)	97,35(11)				
As - O(2) - Sn(2)	126,69(13)	O(1) - Sn(1) - C(7)	110,69(13)	O(3) - Sn(3) - O(5) # 1	84,27(10)				
As - O(3) - Sn(3)	125,44(12)	O(2)-Sn(2)-C(19)	102,84(13)	O(5)-Sn(3)-O(5)#1	72,61(11)				
As-O(4)-Sn(3)#1	124,46(12)	O(2)-Sn(2)-C(31)	98,24(11)	O(4) #1-Sn(3)-O(5) #1	81,85(9)				
Sn(3)-O(5)-Sn(3)#1	107,39(11)	O(2)-Sn(2)-O(6)	176,26(10)	C(37)-Sn(3)-O(5)#1	166,39(11)				
C(49)-O(6)-Sn(2)	130,1(3)	C(19)-Sn(2)-O(6)	80,89(13)	O(3) - Sn(3) - C(43)	96,29(11)				
O(4)-As-O(3)	114,43(12)	C(31)-Sn(2)-O(6)	79,89(11)	O(5)-Sn(3)-C(43)	164,61(13)				
O(4)-As-O(2)	111,41(12)	C(25)-Sn(2)-O(6)	84,21(12)	O(4) #1-Sn(3)-C(43)	94,90(12)				
O(3)-As-O(2)	107,46(11)	O(3)-Sn(3)-O(5)	81,24(8)	O(5)#1-Sn(3)-C(43)	92,05(13)				

$6.8 \quad [(Ph_3Sn)_2SeO_3 \cdot CHCl_3] (\underline{8a})$

8a kristallisiert aus Chloroform in Form farbloser, kompakter Stäbchen.

Summenformel		$C_{37}H_{31}Cl_3O_3SeSn_2$		
Molekulargewicht [g/m	nol)	946,31		
Kristallsystem		monoklin		
Raumgruppe		C2/c		
Zelldimensionen a	ı;b;c; [Å]	26,081(2); 12,4187(7); 26,619(2)		
0	ι;β;γ; [°]	90; 114,36(1); 90		
I	/ [Å ³]	7854(1)		
Formeleinheiten		8		
Röntgenographische D	ichte [g/cm ³]	1,601		
Messtemperatur [K]		220		
Kristallgröße [mm]		$30 \times 12 \times 06$		
Messbereich 2 Θ [°]		2,17 - 25,99		
Gemessene Reflexe		29957		
Unabhängige Reflexe		7620		
Unabhängige Reflexe H	$F_{\rm O} > 4\sigma(F_{\rm O})$	5573		
Anzahl der verfeinerter	n Parameter	415		
μ (Mo-K α) [mm ⁻¹]		2,435		
Maximale Restelektron	endichte [e ⁻ / Å ³]	4,653; -1,195		
R _{int}		0,0705		
R1 / wR2 (I > $2\sigma(I)$)		0,0633 / 0,2038		
R1 / wR2 (alle Daten)		0,0855/0,2212		

Atom	x	У	z	\mathbf{U}_{eq}	Atom	x	У	z	Ueq
Sn(1)	3804(1)	5028(1)	4244(1)	35(1)	C(15)	4552(5)	4893(9)	3024(4)	51(3)
Sn(2)	2541(1)	7371(1)	2419(1)	32(1)	C(16)	4963(4)	5682(9)	3212(4)	50(2)
Se	2571(1)	4975(1)	3165(1)	30(1)	C(17)	5031(4)	6288(9)	3664(4)	52(2)
Cl(1)	4696(2)	9643(4)	1711(2)	88(1)	C(18)	4692(4)	6095(8)	3949(4)	44(2)
Cl(2)	3483(2)	9736(4)	1217(2)	105(1)	C(19)	3155(4)	8317(7)	3050(4)	37(2)
Cl(3)	4093(3)	7971(4)	1962(3)	127(2)	C(20)	3011(4)	9129(8)	3318(4)	54(3)
0(1)	2950(3)	5163(6)	3863(3)	46(2)	C(21)	3426(6)	9747(10)	3740(6)	77(4)
0(2)	2872(3)	5888(5)	2913(3)	47(2)	C(22)	3998(6)	9533(9)	3873(5)	75(4)
0(3)	2870(2)	3827(5)	3083(3)	40(2)	C(23)	4141(4)	8723(9)	3609(5)	61(3)
C(1)	3957(4)	3462(7)	4619(4)	41(2)	C(24)	3747(4)	8113(9)	3209(4)	47(2)
C(2)	4407(4)	2842(8)	4611(4)	48(2)	C(25)	2779(4)	6728(7)	1798(4)	37(2)
C(3)	4534(6)	1859(9)	4891(5)	75(4)	C(26)	2554(5)	7115(9)	1263(4)	52(2)
C(4)	4216(6)	1502(9)	5173(5)	68(4)	C(27)	2754(7)	6681(12)	879(6)	81(4)
C(5)	3786(6)	2111(11)	5174(5)	73(4)	C(28)	3134(6)	5891(12)	1015(6)	81(4)
C(6)	3660(5)	3091(9)	4900(4)	57(3)	C(29)	3351(5)	5489(10)	1549(6)	68(3)
C(7)	3969(4)	6254(7)	4854(4)	39(2)	C(30)	3173(4)	5893(8)	1934(4)	47(2)
C(8)	3850(5)	7325(8)	4703(4)	52(2)	C(31)	1739(4)	7160(7)	2449(5)	52(3)
C(9)	3968(5)	8134(10)	5102(6)	67(3)	C(32)	1279(4)	6920(10)	1977(8)	92(6)
C(10)	4206(5)	7846(11)	5658(5)	70(4)	C(33)	736(7)	6803(17)	1971(15)	173(14)
C(11)	4323(5)	6797(12)	5813(4)	65(3)	C(34)	741(15)	6990(20)	2520(30)	260(30)
C(12)	4205(4)	5994(9)	5418(4)	50(2)	C(35)	1199(13)	7270(17)	2959(15)	165(15)
C(13)	4266(4)	5305(7)	3755(4)	35(2)	C(36)	1672(8)	7310(12)	2917(9)	100(6)
C(14)	4201(4)	4706(8)	3293(4)	43(2)	C(37)	4102(6)	9310(12)	1828(7)	83(4)

Bindungslängen						
Sn(1)-O(1)	2,037(7)	Sn(2)-O(2)	2,219(6)	Sn(2)-O(3)	2,241(6)	
Sn(1)-C(1)	2,148(9)	Sn(2)-C(25)	2,146(9)	Se-0(1)	1,721(7)	
Sn(1)-C(7)	2,136(9)	Sn(2)-C(31)	2,142(9)	Se-0(3)	1,683(6)	
Sn(1)-C(13)	2,134(9)	Sn(2)-C(19)	2,131(8)	Se-O(2)	1,670(6)	

Bindungswinkel						
C(19)-Sn(2)-O(2)	90,5(3)	O(2)-Sn(2)-O(3)#1	174,8(2)	O(2)-Se-O(1)	100,7(3)	
C(31)-Sn(2)-O(2)	91,4(3)	O(1) - Sn(1) - C(13)	117,4(3)	O(3)-Se-O(1)	99,5(3)	
C(25)-Sn(2)-O(2)	88,9(3)	O(1) - Sn(1) - C(7)	99,0(3)	Se-O(3)-Sn(2)#2	128,9(3)	
C(19)-Sn(2)-O(3)#1	92,5(3)	O(1)-Sn(1)-C(1)	105,2(3)	Se-0(1)-Sn(1)	123,3(3)	
C(31)-Sn(2)-O(3)#1	83,5(3)	O(2)-Se-O(3)	101,7(3)	Se-O(2)-Sn(2)	132,0(3)	
C(25)-Sn(2)-O(3)#1	93,4(3)					

6.9 [(Ph₃Sn)₂SeO₃ · DMF] (<u>8b</u>)

<u>8b</u> kristallisiert aus DMF in Form farbloser Quader.

Summenformel	$C_{39}H_{37}NO_4SeSn_2$		
Molekulargewicht [g/mol)	900,04		
Kristallsystem	tetragonal		
Raumgruppe	I4 ₁ cd		
Zelldimensionen a;b;c; [Å]	27,783(2); 27,783(2); 20,706 (1)		
α;β;γ; [°]	90; 90; 90		
$V[Å^3]$	15983(2)		
Formeleinheiten	16		
Röntgenographische Dichte [g/cm ³]	1,496		
Messtemperatur [K]	220		
Kristallgröße [mm]	$60 \times 60 \times 22$		
Messbereich 2Θ [°]	2,07 - 25,96		
Gemessene Reflexe	59791		
Unabhängige Reflexe	7744		
Unabhängige Reflexe $F_0 > 4\sigma(F_0)$	6816		
Anzahl der verfeinerten Parameter	400		
μ (Mo-K α) [mm ⁻¹]	2,197		
Maximale Restelektronendichte $[e^{-7}/Å^3]$	2,302; -0,467		
R _{int}	0,0887		
R1 / wR2 (I > $2\sigma(I)$)	0,0440 / 0,1135		
R1 / wR2 (alle Daten)	0,0525 / 0,1179		
Flack-Parameter	-0,0103		

Atom	x	У	z	$\mathbf{U}_{\mathbf{eq}}$	Atom	x	У	z	Ueq
C(1)	7128(3)	2352(3)	2519(4))	47(2)	C(25)	5411(2)	1862(2)	2691(3)	61(2)
C(2)	6940(6)	2015(4)	2103(7))	108(5)	C(26)	5573(5)	1393(3)	2608(5)	179(11)
C(3)	7125(9)	1573(6)	2039(9)	142(7)	C(27)	5717(6)	1236(3)	2000(6)	330(30)
C(4)	7510(7)	1427(4)	2338(7)	110(5)	C(28)	5700(5)	1548(3)	1476(4)	184(11)
C(5)	7718(5)	1742(5)	2783(9)	107(5)	C(29)	5538(3)	2018(3)	1560(3)	88(4)
C(6)	7515(4)	2194(4)	2872(6)	81(3)	C(30)	5394(3)	2175(2)	2167(3)	76(3)
C(7)	6172(3)	3244(3)	2149(4)	46(2)	C(31)	4884(3)	2750(2)	3749(4)	74(3)
C(8)	5785(3)	3437(3)	2474(4)	57(2)	C(32)	4516(3)	2945(4)	3377(4)	120(6)
C(9)	5373(3)	3580(4)	2160(6)	75(3)	C(33)	4394(4)	3428(4)	3443(7)	206(15)
C(10)	5344(4)	3512(5)	1485(6)	89(4)	C(34)	4639(5)	3715(3)	3882(10)	390(40)
C(11)	5714(3)	3312(5)	1157(5)	81(3)	C(35)	5007(5)	3520(4)	4255(10)	410(40)
C(12)	6129(3)	3181(4)	1477(4)	61(2)	C(36)	5129(3)	3038(4)	4188(6)	193(14)
C(13)	7179(3)	3520(3)	3303(3)	43(2)	C(37)	4264(4)	1685(5)	2645(8)	95(4)
C(14)	7340(3)	3358(3)	3898(4)	58(2)	C(38)	3769(11)	1218(7)	1953(16)	310(30)
C(15)	7271(3)	3992(3)	3127(4)	56(2)	C(39)	3417(6)	1681(16)	2953(15)	320(30)
C(16)	7528(4)	4288(3)	3547(5)	70(3)	Ν	3846(5)	1496(5)	2501(8)	155(7)
C(17)	7712(4)	4117(4)	4127(5)	71(3)	0(1)	6335(2)	2783(2)	3432(2)	43(1)
C(18)	7601(4)	3674(4)	4299(4)	73(3)	0(2)	5802(2)	2162(2)	4072(3)	55(1)
C(19)	4940(3)	1469(3)	4225(6)	68(2)	0(3)	6704(2)	2284(2)	4360(2)	46(1)
C(20)	4462(4)	1317(4)	4323(6)	75(3)	O(4)	4369(3)	1922(4)	3106(4)	97(3)
C(21)	4376(5)	918(5)	4711(8)	105(4)	Se	6351(1)	2216(1)	3715(1)	41(1)
C(22)	4740(6)	672(5)	5039(8)	115(5)	Sn(1)	6815(1)	3045(1)	2649(1)	35(1)
C(23)	5172(5)	821(5)	4953(8)	116(5)	Sn(2)	5135(1)	2049(1)	3601(1)	50(1)
C(24)	5299(4)	1214(4)	4571(6)	88(4)					

Bindungslängen					
Sn(1)-C(1)	2,130(7)	N-C(39)	1,60(4)		
Sn(1)-C(7)	2,138(7)	Se-0(1)	1,682(5)		
Sn(1)-C(13)	2,143(7)	Sn(1) - O(1)	2,222(5)		
Sn(2)-C(19)	2,136(10)	Se-0(2)	1,701(6)		
Sn(2)-C(25)	2,100(6)	Sn(2)-O(2)	2,119(5)		
Sn(2)-C(31)	2,093(6)	Se-0(3)	1,666(5)		
O(4)-C(37)	1,197(17)	Sn(1)-O(3) #1	2,204(5)		
N-C(37)	1,309(14)	Sn(2)-O(4)	2,387(7)		
N-C(38)	1,39(3)				

Bindungswinkel						
O(4)-C(37)-N	128,3(16)	C(1)-Sn(1)-O(1)	92,4(2)			
C(37)-N-C(38)	123(2)	C(7) - Sn(1) - O(1)	86,3(2)			
C(37)-N-C(39)	113,4(19)	C(13)-Sn(1)-O(1)	91,4(2)			
C(38)-N-C(39)	122,8(17)	O(3) #2-Sn(1)-O(1)	178,9(2)			
Se-O(1)-Sn(1)	123,0(3)	C(31)-Sn(2)-O(2)	94,9(3)			
Se-O(2)-Sn(2)	126,7(3)	C(25)-Sn(2)-O(2)	97,5(3)			
Se-O(3)-Sn(1)#1	135,5(3)	C(31)-Sn(2)-O(4)	84,4(3)			
C(37) - O(4) - Sn(2)	129,9(8)	C(25)-Sn(2)-O(4)	84,5(3)			
O(3)-Se-O(1)	100,9(3)	O(2)-Sn(2)-O(4)	178,0(2)			
O(3)-Se-O(2)	100,9(3)	C(19)-Sn(2)-O(4)	85,6(4)			
O(1)-Se-O(2)	102,1(3)					

6.10 trans-[(Ph₃SnO)₄Te(OH)₂] (<u>9a</u>)

<u>9a</u> kristallisiert aus Dichlormethan in Form farbloser Prismen.

$C_{72}H_{62}O_6Sn_4Te$		
1625,72		
triklin		
PĪ		
9,966(2); 13,654(3); 13,682(3)		
71,15(2); 71,48(2); 74,81(3)		
1782,7(7)		
2		
1,642		
220		
$38 \times 23 \times 19$		
2,37 - 26,00		
10349		
5909		
5009		
380		
1,986		
0,559; -1,071		
0,0270		
0,0245 / 0,0582		
0,0328 / 0,0604		

Atom	x	У	Z	\mathbf{U}_{eq}	Atom	x	У	Z	U _{eq}
C(1)	1531(3)	827(2)	1496(2)	40(1)	C(22)	2824(7)	3578(4)	4635(6)	91(2)
C(2)	1274(4)	1859(3)	1557(3)	52(1)	C(23)	2855(6)	3330(4)	3742(5)	88(2)
C(3)	2124(5)	2560(3)	845(3)	63(1)	C(24)	1631(5)	3097(4)	3661(4)	69(1)
C(4)	3257(5)	2244(3)	56(3)	63(1)	C(25)	-3352(4)	2754(2)	5591(2)	42(1)
C(5)	3509(5)	1237(4)	-31(3)	70(1)	C(26)	-3978(4)	3723(3)	5838(3)	56(1)
C(6)	2652(4)	527(3)	680(3)	58(1)	C(27)	-5263(5)	3842(3)	6610(3)	66(1)
C(7)	848(4)	-1658(3)	1964(3)	51(1)	C(28)	-5943(5)	3002(4)	7138(3)	66(1)
C(8)	2197(5)	-2306(3)	2008(3)	66(1)	C(29)	-5358(5)	2044(3)	6904(3)	66(1)
C(9)	2600(7)	-3225(4)	1667(4)	93(2)	C(30)	-4073(4)	1916(3)	6135(3)	56(1)
C(10)	1658(10)	-3465(5)	1243(6)	117(3)	C(31)	-1930(4)	3544(2)	2879(3)	42(1)
C(11)	376(10)	-2813(6)	1165(5)	116(2)	C(32)	-1300(5)	4412(3)	2243(3)	56(1)
C(12)	-43(б)	-1920(4)	1536(4)	75(1)	C(33)	-1682(6)	4984(3)	1298(3)	70(1)
C(13)	-2054(4)	356(3)	2502(3)	43(1)	C(34)	-2661(7)	4721(3)	995(3)	76(2)
C(14)	-3186(4)	251(3)	3406(3)	60(1)	C(35)	-3292(7)	3866(4)	1600(4)	80(1)
C(15)	-4590(5)	624(4)	3336(4)	73(1)	C(36)	-2917(5)	3283(3)	2540(3)	64(1)
C(16)	-4893(5)	1082(4)	2364(4)	69(1)	Sn(1)	149(1)	-251(1)	2512(1)	37(1)
C(17)	-3787(5)	1215(4)	1466(4)	74(1)	Sn(2)	-1434(1)	2651(1)	4356(1)	38(1)
C(18)	-2378(5)	853(3)	1527(3)	62(1)	0(1)	414(2)	-795(2)	3991(2)	38(1)
C(19)	384(4)	3099(2)	4467(3)	48(1)	O(2)	-840(2)	1215(2)	4079(2)	37(1)
C(20)	369(6)	3370(4)	5364(4)	72(1)	0(3)	1871(2)	411(2)	4353(2)	43(1)
C(21)	1583(8)	3613(5)	5442(5)	97(2)	Те	0	0	5000	29(1)

Bindungslängen					
Sn(1)-C(1)	2,127(3)	Sn(1) - O(1)	1,995(2)		
Sn(1)-C(7)	2,153(4)	Sn(2)-O(2)	2,017(2)		
Sn(1)-C(13)	2,136(4)	Te-O(1)	1,905(2)		
Sn(2)-C(19)	2,120(4)	Te-O(2)	1,905(2)		
Sn(2)-C(25)	2,119(3)	Te-O(3)	1,937(2)		
Sn(2)-C(31)	2,131(3)				

Bindungswinkel						
O(1)-Sn(1)-C(1)	112,79(12)	O(2)-Sn(2)-C(25)	111,76(11)	O(1)-Te-O(2)	91,35(9)	
O(1) - Sn(1) - C(7)	101,64(11)	O(2)-Sn(2)-C(31)	111,76(11)	O(2)-Te-O(3)	90,64(10)	
O(1)-Sn(1)-C(13)	112,16(11)	Te-0(1)-Sn(1)	126,55(10)	O(1)-Te-O(3)	89,38(10)	
O(2)-Sn(2)-C(19)	108,82(11)	Te-O(2)-Sn(2)	123,57(11)			

6.11 cis-[(Ph₃SnO)₄Te(OH)₂ · 3 H₂O] (<u>9b</u>)

 $\underline{2}$ kristallisiert aus einem Wasser-Dichlormethan-Gemisch in Form farbloser Quader.

Summenformel	$C_{72}H_{68}O_9Sn_4Te$		
Molekulargewicht [g/mol)	1679,77		
Kristallsystem	triklin		
Raumgruppe	PĪ		
Zelldimensionen a;b;c; [Å]	13,785(3); 14,073(3); 18,992(4)		
α;β;γ; [°]	96,90(3); 90,49(3); 108,66(3)		
V [Å ³]	3461(1)		
Formeleinheiten	2		
Röntgenographische Dichte [g/cm ³]	1,610		
Messtemperatur [K]	220		
Kristallgröße [mm]	$34 \times 34 \times 26$		
Messbereich 2Θ [°]	2,04 - 26,01		
Gemessene Reflexe	25811		
Unabhängige Reflexe	12453		
Unabhängige Reflexe $F_O > 4\sigma(F_O)$	8567		
Anzahl der verfeinerten Parameter	783		
μ (Mo-K α) [mm ⁻¹]	1,893		
Maximale Restelektronendichte $[e^{-7}/Å^3]$	3,004; -2,076		
R _{int}	0,0626		
R1 / wR2 (I > $2\sigma(I)$)	0,0608 / 0,1551		
R1 / wR2 (alle Daten)	0,0900 / 0,1779		

Atom	x	У	Z	U _{eq}	Atom	x	У	Z	Ueq
C(1)	10190(6)	56(6)	2558(5)	39(2)	C(44)	8071(7)	484(8)	4384(5)	48(2)
C(2)	9798(7)	-460(7)	3119(5)	45(2)	C(45)	8682(8)	276(9)	4912(5)	59(3)
C(3)	9844(7)	-1441(7)	3175(6)	52(2)	C(46)	8581(8)	-698(9)	5000(6)	59(3)
C(4)	10301(9)	-1890(8)	2643(6)	57(3)	C(47)	7898(9)	-1489(9)	4576(7)	68(3)
C(5)	10686(9)	-1371(9)	2082(6)	63(3)	C(48)	7295(8)	-1305(8)	4041(5)	50(2)
C(6)	10646(8)	-424(7)	2028(5)	48(2)	C(49)	6596(7)	-759(6)	2093(5)	43(2)
C(7)	10155(7)	1737(7)	1349(5)	43(2)	C(50)	5775(8)	-1050(8)	1577(5)	56(3)
C(8)	9361(10)	1123(9)	865(5)	67(3)	C(51)	5856(10)	-1562(10)	915(6)	70(3)
C(9)	9422(11)	1262(10)	139(6)	75(3)	C(52)	6693(12)	-1767(9)	759(6)	78(4)
C(10)	10243(11)	1955(12)	-94(6)	77(4)	C(53)	7537(10)	-1499(9)	1263(7)	73(4)
C(11)	11001(10)	2593(11)	375(7)	75(4)	C(54)	7454(7)	-1003(7)	1919(5)	50(2)
C(12)	10948(8)	2476(9)	1105(6)	62(3)	C(55)	6432(11)	5097(8)	3101(6)	64(3)
C(13)	11297(7)	2602(7)	3137(5)	43(2)	C(56)	6937(14)	6072(8)	2937(7)	86(4)
C(14)	11477(9)	3629(8)	3241(8)	74(4)	C(57)	6420(20)	6601(11)	2597(9)	123(8)
C(15)	12321(10)	4279(9)	3665(8)	87(4)	C(58)	5380(20)	6154(17)	2424(10)	151(11)
C(16)	12993(9)	3901(10)	3955(7)	75(4)	C(59)	4894(16)	5188(14)	2580(9)	114(6)
C(17)	12841(8)	2877(9)	3861(6)	62(3)	C(60)	5400(11)	4664(10)	2913(7)	77(4)
C(18)	11987(7)	2209(8)	3452(5)	49(2)	C(61)	8756(9)	5348(7)	3918(6)	57(3)
C(19)	8126(8)	4046(7)	1184(5)	43(2)	C(62)	8822(12)	5955(10)	4576(7)	87(4)
C(20)	8005(10)	4951(8)	1450(6)	65(3)	C(63)	9719(18)	6685(12)	4832(9)	114(7)
C(21)	8814(13)	5857(8)	1419(8)	83(4)	C(64)	10592(15)	6762(13)	4428(12)	119(8)
C(22)	9720(12)	5848(10)	1148(8)	84(4)	C(65)	10530(12)	6191(10)	3790(12)	107(6)
C(23)	9819(11)	4933(10)	903(7)	81(4)	C(66)	9566(10)	5470(8)	3522(8)	73(4)
C(24)	9033(9)	4027(8)	909(6)	58(3)	C(67)	6451(8)	3566(7)	4430(4)	44(2)
C(25)	6888(7)	1776(7)	207(5)	44(2)	C(68)	5628(8)	3837(8)	4663(6)	56(3)
C(26)	6550(10)	731(9)	88(6)	69(3)	C(69)	5131(10)	3462(10)	5240(7)	73(3)

C(27)	6493(11)	188(10)	-587(7)	83(4)	C(70)	5427(10)	2776(10)	5578(6)	70(3)
C(28)	6762(10)	718(11)	-1147(6)	72(4)	C(71)	6216(11)	2468(11)	5338(6)	79(4)
C(29)	7117(10)	1743(11)	-1072(6)	74(4)	C(72)	6737(11)	2851(10)	4767(6)	74(4)
C(30)	7179(9)	2290(9)	-393(5)	63(3)	0(1)	8693(4)	1312(4)	2804(3)	39(1)
C(31)	5456(7)	2477(7)	1542(5)	43(2)	0(2)	7564(4)	1828(4)	1822(3)	37(1)
C(32)	5058(7)	1985(7)	2117(5)	48(2)	0(3)	6903(4)	1483(4)	3182(3)	38(1)
C(33)	4049(8)	1838(10)	2294(6)	63(3)	0(4)	7436(4)	3352(4)	2746(3)	35(1)
C(34)	3455(8)	2238(10)	1875(6)	67(3)	0(5)	8581(5)	2928(4)	3748(3)	43(2)
C(35)	3846(9)	2733(10)	1317(6)	66(3)	0(6)	9342(4)	3204(4)	2472(3)	40(1)
C(36)	4836(8)	2861(8)	1132(5)	53(3)	0(7)	12406(18)	6203(13)	2409(11)	211(9)
C(37)	4912(7)	-285(7)	3358(5)	45(2)	O(8)	12780(6)	5286(6)	1244(5)	78(3)
C(38)	4655(9)	396(9)	3838(7)	69(3)	0(9)	13868(18)	4760(11)	-103(8)	211(13)
C(39)	3642(10)	292(11)	3983(8)	80(4)	Sn(1)	10098(1)	1525(1)	2448(1)	37(1)
C(40)	2879(9)	-524(11)	3619(7)	74(4)	Sn(2)	6962(1)	2604(1)	1225(1)	39(1)
C(41)	3107(9)	-1215(12)	3148(6)	79(4)	Sn(3)	6476(1)	-32(1)	3125(1)	36(1)
C(42)	4120(8)	-1115(9)	3008(5)	60(3)	Sn(4)	7294(1)	4294(1)	3582(1)	45(1)
C(43)	7386(7)	-321(7)	3940(5)	42(2)	Те	8046(1)	2315(1)	2780(1)	31(1)

Bindungslängen								
Sn(1)-C(1)	2,146(8)	Sn(4)-C(67)	2,158(10)					
Sn(1)-C(7)	2,142(9)	Te-O(1)	1,899(5)					
Sn(1)-C(13)	2,150(9)	Sn(1) - O(1)	2,000(6)					
Sn(2)-C(19)	2,159(9)	Te-O(2)	1,900(5)					
Sn(2)-C(25)	2,117(8)	Sn(2)-O(2)	2,007(5)					
Sn(2)-C(31)	2,124(9)	Te-O(3)	1,867(6)					
Sn(3)-C(37)	2,129(9)	Sn(3)-O(3)	2,011(6)					
Sn(3)-C(43)	2,139(8)	Te-O(4)	1,910(5)					
Sn(3)-C(49)	2,133(9)	Sn(4)-O(4)	1,996(5)					
Sn(4)-C(55)	2,148(11)	Te-O(5)	1,964(5)					
Sn(4)-C(61)	2,123(11)	Te-O(6)	1,966(6)					

Bindungswinkel									
Te-0(1)-Sn(1)	120,9(3)	O(3)-Sn(3)-C(49)	113,2(3)	O(2)-Te-O(4)	88,4(2)				
Te-O(2)-Sn(2)	122,4(3)	O(3)-Sn(3)-C(43)	105,4(3)	O(3)-Te-O(5)	87,8(3)				
Te-O(3)-Sn(3)	126,4(3)	O(4)-Sn(4)-C(61)	109,5(4)	O(1)-Te-O(5)	91,5(2)				
Te-O(4)-Sn(4)	125,0(3)	O(4)-Sn(4)-C(55)	100,7(3)	O(2)-Te-O(5)	175,4(3)				
O(1) - Sn(1) - C(7)	111,9(3)	O(4)-Sn(4)-C(67)	114,9(3)	O(4)-Te-O(5)	88,4(2)				
O(1) - Sn(1) - C(1)	97,7(3)	O(3)-Te-O(1)	89,4(3)	O(3)-Te-O(6)	172,8(2)				
O(1) - Sn(1) - C(13)	113,8(3)	O(3)-Te-O(2)	95,6(3)	O(1)-Te-O(6)	87,7(2)				
O(2)-Sn(2)-C(25)	101,0(3)	O(1)-Te-O(2)	91,6(2)	O(2)-Te-O(6)	91,1(3)				
O(2)-Sn(2)-C(31)	109,2(3)	O(3)-Te-O(4)	92,4(2)	O(4)-Te-O(6)	90,4(2)				
O(2)-Sn(2)-C(19)	106,8(3)	O(1)-Te-O(4)	178,1(3)	O(5)-Te-O(6)	85,7(3)				
O(3)-Sn(3)-C(37)	97,4(3)								

6.12 trans-[(Ph_3SnO)₂Te(OMe)₄] (<u>10</u>)

<u>10</u> kristallisiert aus Methanol in Form farbloser Kristallplättchen.

Summenformel	$C_{40}H_{42}O_6Sn_2Te$
Molekulargewicht [g/mol)	983,72
Kristallsystem	triklin
Raumgruppe	PĪ
Zelldimensionen a;b;c; [Å]	10,128(1); 14,224(2); 16,181(2)
α;β;γ; [°]	100,44(1); 107,92(1); 110,66(1)
V [Å ³]	1962,2(4)
Formeleinheiten	2
Röntgenographische Dichte [g/cm ³]	1,665
Messtemperatur [K]	220
Kristallgröße [mm]	$34 \times 34 \times 22$
Messbereich 2Θ [°]	2,20 - 25,92
Gemessene Reflexe	15026
Unabhängige Reflexe	6983
Unabhängige Reflexe $F_O > 4\sigma(F_O)$	6117
Anzahl der verfeinerten Parameter	445
μ (Mo-K α) [mm ⁻¹]	2,045
Maximale Restelektronendichte $[e^{-7}/Å^3]$	1,212; -1,301
R _{int}	0,0344
R1 / wR2 (I > $2\sigma(I)$)	0,0334 / 0,0930
R1 / wR2 (alle Daten)	0,0396 / 0,1089

Atom	x	У	Z	U _{eq}	Atom	x	У	Z	\mathbf{U}_{eq}
C(1)	4487(5)	1985(4)	-4692(3)	36(1)	C(26)	403(6)	3364(4)	-348(3)	43(1)
C(2)	5568(9)	1604(7)	-4540(5)	77(2)	C(27)	2149(5)	3631(3)	2137(3)	29(1)
C(3)	6181(12)	1437(9)	-5178(6)	110(4)	C(28)	2192(5)	4624(4)	2143(3)	39(1)
C(4)	5694(8)	1652(6)	-5985(5)	65(2)	C(29)	2189(6)	5287(4)	2882(4)	48(1)
C(5)	4618(7)	2031(5)	-6144(4)	48(1)	C(30)	2110(6)	4955(5)	3626(3)	50(1)
C(6)	4027(6)	2216(5)	-5500(4)	47(1)	C(31)	2013(6)	3964(5)	3622(3)	46(1)
C(7)	4869(5)	2400(4)	-2355(3)	36(1)	C(32)	2024(5)	3301(4)	2881(3)	38(1)
C(8)	5150(6)	1549(5)	-2183(4)	52(1)	C(33)	4595(5)	2681(4)	1423(3)	39(1)
C(9)	5935(7)	1605(6)	-1293(5)	67(2)	C(34)	4783(6)	1771(5)	1519(4)	45(1)
C(10)	6453(7)	2517(7)	-573(4)	73(2)	C(35)	6253(7)	1803(6)	1774(4)	58(2)
C(11)	6187(7)	3356(6)	-723(4)	62(2)	C(36)	7510(6)	2708(6)	1940(4)	60(2)
C(12)	5395(6)	3303(5)	-1621(3)	47(1)	C(37)	7333(6)	3603(6)	1851(4)	65(2)
C(13)	2714(6)	3434(4)	-3838(3)	38(1)	C(38)	5880(6)	3595(4)	1590(4)	49(1)
C(14)	1196(7)	3226(5)	-3999(4)	53(1)	C(39)	1371(7)	-517(4)	1629(3)	46(1)
C(15)	676(8)	3995(6)	-4118(4)	62(2)	C(40)	2287(8)	95(5)	-802(5)	61(2)
C(16)	1654(9)	4976(5)	-4070(4)	66(2)	0(1)	1716(4)	917(3)	-3905(2)	43(1)
C(17)	3165(9)	5200(5)	-3918(4)	66(2)	0(2)	1332(4)	-475(3)	-5403(2)	50(1)
C(18)	3690(7)	4432(5)	-3800(4)	54(1)	0(3)	469(4)	1125(3)	-5541(2)	42(1)
C(19)	1237(7)	-600(5)	-6322(4)	55(1)	O(4)	889(4)	1252(2)	1007(2)	36(1)
C(20)	-701(7)	1254(6)	-6204(4)	63(2)	O(5)	1630(4)	665(2)	-371(2)	35(1)
C(21)	1622(5)	3077(4)	-156(3)	34(1)	0(6)	1214(4)	-599(3)	698(2)	39(1)
C(22)	2327(6)	3068(4)	-771(4)	42(1)	Sn(1)	3512(1)	2248(1)	-3726(1)	33(1)
C(23)	1790(7)	3294(6)	-1571(4)	58(2)	Sn(2)	2361(1)	2667(1)	1047(1)	29(1)
C(24)	571(7)	3561(5)	-1755(4)	53(1)	Te(1)	0	0	-5000	35(1)
C(25)	-122(7)	3597(5)	-1150(4)	57(2)	Te(2)	0	0	0	30(1)

Bindungslängen								
Sn(1)-C(1)	2,135(5)	Te(1)-O(2)	1,930(3)					
Sn(1)-C(7)	2,143(4)	Te(1)-O(3)	1,945(4)					
Sn(1)-C(13)	2,125(4)	Te(2)-O(4)	1,884(3)					
Sn(1) - O(1)	2,006(4)	Te(2)-O(5)	1,922(3)					
Sn(2)-C(21)	2,124(4)	Te(2)-O(6)	1,935(3)					
Sn(2)-C(27)	2,145(4)	O(2)-C(19)	1,435(6)					
Sn(2)-C(33)	2,147(4)	O(3)-C(20)	1,425(6)					
Sn(2)-O(4)	2,014(3)	O(5)-C(40)	1,432(6)					
Te(1)-O(1)	1,879(3)	O(6)-C(39)	1,442(6)					

Bindungswinkel									
Te(1)-O(1)-Sn(1)	128,08(19)	O(4) - Sn(2) - C(21)	114,39(16)						
C(19)-O(2)-Te(1)	120,7(3)	O(4)-Sn(2)-C(27)	96,95(15)						
C(20)-O(3)-Te(1)	122,4(4)	O(4) - Sn(2) - C(33)	107,37(17)						
Te(2)-O(4)-Sn(2)	123,16(16)	O(1)-Te(1)-O(2)	88,63(15)						
C(40)-O(5)-Te(2)	123,3(3)	O(1)-Te(1)-O(3)	89,00(15)						
C(39)-O(6)-Te(2)	119,6(3)	O(2)-Te(1)-O(3)	89,67(16)						
O(1)-Sn(1)-C(13)	107,40(17)	O(4)-Te(2)-O(5)	88,29(14)						
O(1) - Sn(1) - C(1)	111,33(16)	O(4)-Te(2)-O(6)	91,77(14)						
O(1)-Sn(1)-C(7)	94,80(16)	O(5)-Te(2)-O(6)	90,03(14)						

6.13 $[Ti(OSnPh_3)_4](\underline{11})$

<u>11</u> kristallisiert aus Benzol in Form farbloser Kristallstäbchen.

Summenformel	$C_{72}H_{60}O_4Sn_4Ti$
Molekulargewicht [g/mol)	1511,86
Kristallsystem	trigonal
Raumgruppe	$R\overline{3}$
Zelldimensionen a;b;c; [Å]	19,385(2); 19,385(2); 29,809(5)
α;β;γ; [°]	90; 90; 120
$V [Å^3]$	9701(2)
Formeleinheiten	6
Röntgenographische Dichte [g/cm ³]	1,553
Messtemperatur [K]	220
Kristallgröße [mm]	$60 \times 53 \times 18$
Messbereich 2Θ [°]	2,05 - 25,86
Gemessene Reflexe	25302
Unabhängige Reflexe	4192
Unabhängige Reflexe $F_O > 4\sigma(F_O)$	3604
Anzahl der verfeinerten Parameter	324
μ (Mo-K α) [mm ⁻¹]	1,688
Maximale Restelektronendichte $[e^{-7}/Å^3]$	0,848; -1,060
R _{int}	0,0762
R1 / wR2 (I > $2\sigma(I)$)	0,0299 / 0,0852
R1 / wR2 (alle Daten)	0,0357 / 0,0880

Atom	х	У	z	Ueq	Atom	x	У	z	Ueq
Sn(1)	0	0	1229(1)	35(1)	C(11)	1190(2)	-2255(2)	2710(2)	59(1)
Sn(2)	-874(1)	-1927(1)	2912(1)	32(1)	C(12)	561(2)	-2192(2)	2896(1)	46(1)
Ti	0	0	2471(1)	29(1)	C(13)	-698(2)	-1750(2)	3617(1)	33(1)
0(1)	0	0	1876(1)	65(1)	C(14)	18(2)	-1131(2)	3784(1)	40(1)
0(2)	941(1)	157(1)	2672(1)	47(1)	C(15)	156(2)	-1027(2)	4234(1)	46(1)
C(1)	1022(2)	-105(2)	1075(1)	51(1)	C(16)	-410(2)	-1538(2)	4538(1)	49(1)
C(2)	1218(3)	-241(2)	656(2)	67(1)	C(17)	-1131(2)	-2155(2)	4382(1)	48(1)
C(3)	1937(3)	-279(3)	593(2)	82(2)	C(18)	-1272(2)	-2255(2)	3924(1)	39(1)
C(4)	2396(3)	-188(3)	952(2)	80(1)	C(19)	-2043(2)	-2831(2)	2738(1)	36(1)
C(5)	2221(3)	-56(3)	1368(2)	83(1)	C(20)	-2658(2)	-2668(2)	2695(1)	52(1)
C(6)	1529(2)	-18(3)	1435(2)	68(1)	C(21)	-3426(2)	-3278(3)	2601(2)	66(1)
C(7)	68(2)	-2048(2)	2626(1)	38(1)	C(22)	-3586(2)	-4042(3)	2548(2)	68(1)
C(8)	220(3)	-1967(3)	2175(1)	69(1)	C(23)	-2984(3)	-4202(3)	2582(2)	96(2)
C(9)	842(3)	-2031(4)	1993(2)	89(2)	C(24)	-2220(2)	-3606(2)	2676(2)	78(1)
C(10)	1325(3)	-2174(3)	2268(2)	68(1)					

Bindungslängen							
Sn(1)-C(1)	2,141(3)	Sn(1) - O(1)	1,927(4)				
Sn(2)-C(7)	2,132(3)	Sn(2)-O(2)	1,964(2)				
Sn(2)-C(13)	2,130(3)	Ti-O(1)	1,774(4)				
Sn(2)-C(19)	2,122(3)	Ti-0(2)	1,795(2)				

Bindungswinkel							
O(1)-Sn(1)-C(1)	102,5(1)	O(1)-Ti-O(2)	109,46(8)				
O(2) - Sn(2) - C(19)	104,,7(1)	O(2)-Ti-O(2)#1	109,49(8)				
O(2)-Sn(2)-C(13)	113,1(1)	Ti-O(1)-Sn(1)	180,0				
O(2)-Sn(2)-C(7)	107,3(1)	Ti-O(2)-Sn(2)	136,8(1)				

6.14 Ph₃SnO^{*i*}Pr (<u>12</u>)

<u>12</u> kristallisiert aus Benzol in Form farbloser Stäbchen.

Summenformel	$C_{21}H_{22}OSn$			
Molekulargewicht [g/mol)	409,08			
Kristallsystem	orthorhombisch			
Raumgruppe	P2 ₁ cn			
Zelldimensionen a;b;c; [Å]	7,3544(16); 15,716(3); 16,286(3)			
α;β;γ; [°]	90; 90; 90			
V [Å ³]	1882,4(6)			
Formeleinheiten	4			
Röntgenographische Dichte [g/cm ³]	1,443			
Messtemperatur [K]	220			
Kristallgröße [mm]	$24 \times 15 \times 09$			
Messbereich 2Θ [°]	2,50 - 25,92			
Gemessene Reflexe	15171			
Unabhängige Reflexe	3617			
Unabhängige Reflexe $F_O > 4\sigma(F_O)$	2704			
Anzahl der verfeinerten Parameter	292			
μ (Mo-K α) [mm ⁻¹]	1,359			
Maximale Restelektronendichte $[e^{-7}/Å^3]$	0,760; -0,853			
R _{int}	0,1053			
R1 / wR2 (I > $2\sigma(I)$)	0,0360 / 0,0659			
R1 / wR2 (alle Daten)	0,0592 / 0,0719			
Flack-Parameter	0.0098			

Atom	x	У	z	\mathbf{U}_{eq}	Atom	x	У	Z	\mathbf{U}_{eq}
C(1)	-6138(8)	-2847(3)	-1554(4)	32(1)	C(13)	-6163(7)	-4577(4)	-2997(4)	35(1)
C(2)	-5892(9)	-2809(4)	-713(4)	43(2)	C(14)	-7350(9)	-5147(4)	-2620(5)	51(2)
C(3)	-6878(10)	-2256(4)	-222(5)	52(2)	C(15)	-8323(11)	-5713(5)	-3104(7)	71(2)
C(4)	-8131(10)	-1718(5)	-592(5)	57(2)	C(16)	-8154(12)	-5727(5)	-3934(7)	75(3)
C(5)	-8398(10)	-1732(4)	-1423(5)	53(2)	C(17)	-6979(12)	-5174(5)	-4303(5)	61(2)
C(6)	-7412(8)	-2291(4)	-1898(5)	43(1)	C(18)	-5990(9)	-4600(4)	-3839(4)	43(2)
C(7)	-2544(7)	-4301(3)	-1581(3)	32(1)	C(19)	-1740(9)	-2807(5)	-3278(5)	56(2)
C(8)	-2423(10)	-5181(4)	-1563(4)	42(2)	C(20)	-1463(16)	-2092(7)	-3861(8)	83(3)
C(9)	-1127(10)	-5589(5)	-1076(5)	57(2)	C(21)	-799(16)	-3585(7)	-3545(8)	86(3)
C(10)	45(10)	-5117(5)	-604(4)	49(2)	0	-3600(5)	-2941(3)	-3154(3)	49(1)
C(11)	-54(8)	-4250(5)	-617(4)	48(2)	Sn	-4602(1)	-3694(1)	-2298(1)	31(1)
C(12)	-1352(8)	-3836(4)	-1098(4)	42(1)					

Bindungslängen								
Sn-C(1)	2,124(6)	O-C(19)	1,399(8)					
Sn-C(7)	2,137(5)	Sn-O	1,972(4)					
Sn-C(13)	2,131(6)							

Bindungswinkel									
O-C(19)-C(21)	112,3(7)	C(19)-O-Sn	123,9(4)	C(1)-Sn-C(13)	115,2(2)				
O-C(19)-C(20)	109,8(7)	0-Sn-C(1)	103,06(19)	O-Sn-C(7)	112,95(18)				
C(21)-C(19)-C(20)	112,0(7)	O-Sn-C(13)	102,4(2)	C(1)-Sn-C(7)	110,2(2)				

6.15 [(MeO)₂Ti(acac)₂] (<u>13</u>)

13 kristallisiert aus einem Toluol-Hexan-Gemisch in Form gelber Stäbchen,

Summenformel		$C_{12}H_{20}O_{6}Ti$		
Molekulargewicht [g	/mol)	308,2		
Kristallsystem		triklin		
Raumgruppe		PĪ		
Zelldimensionen	a;b;c; [Å]	7,867(1); 14,662(3); 20,950(4)		
	α;β;γ; [°]	99,99(2); 94,40(2); 104,62(2)		
	V [Å ³]	2284,5(8)		
Formeleinheiten		6		
Röntgenographische	Dichte [g/cm ³]	1,344		
Messtemperatur [K]	-	220		
Messbereich 2Θ [°]		1,99 - 26,00		
Gemessene Reflexe		15445		
Unabhängige Reflexe	e	8272		
Unabhängige Reflexe	$e F_O > 4\sigma(F_O)$	5549		
Anzahl der verfeiner	ten Parameter	514		
μ (Mo-K α) [mm ⁻¹]		0,579		
Maximale Restelektr	onendichte $[e^{-}/Å^3]$	0,778; -0,839		
R _{int}		0,0902		
R1 / wR2 (I > $2\sigma(I)$)		0,0656 / 0,1749		
R1 / wR2 (alle Daten	l)	0,0959 / 0,2030		

Lageparameter ($\cdot 10^4$) und Koeffizienten Ueq [Å² $\cdot 10^4$]:

Atom	x	У	Z	U _{eq}	Atom	x	У	Z	\mathbf{U}_{eq}
Ti(1)	-3544(1)	7364(1)	-2229(1)	39(1)	C(9)	-5218(7)	6957(4)	-814(2)	49(1)
Ti(2)	2311(1)	7622(1)	938(1)	35(1)	C(10)	-3203(8)	8515(5)	-179(3)	69(2)
Ti(3)	6632(1)	7250(1)	4303(1)	32(1)	C(11)	-2435(7)	9096(4)	-2843(3)	62(2)
0(1)	-4420(4)	6540(2)	-3126(2)	44(1)	C(12)	-1537(9)	5838(5)	-2396(4)	80(2)
0(2)	-5735(4)	7848(2)	-2402(2)	42(1)	C(13)	1287(6)	7888(3)	-418(2)	37(1)
0(3)	-5428(5)	6310(2)	-1925(2)	54(1)	C(14)	-567(6)	6421(3)	-163(2)	41(1)
O(4)	-3257(5)	8031(3)	-1306(2)	52(1)	C(15)	1703(7)	8545(4)	-891(3)	56(1)
O(5)	-2243(4)	8403(2)	-2492(2)	48(1)	C(16)	-112(6)	7066(3)	-579(2)	43(1)
0(6)	-1899(4)	6717(3)	-2157(2)	51(1)	C(17)	-2037(7)	5522(4)	-386(3)	58(1)
0(7)	2320(4)	8146(2)	118(1)	36(1)	C(18)	-307(5)	8483(3)	1669(2)	39(1)
0(8)	240(4)	6547(2)	407(2)	42(1)	C(19)	901(5)	7387(3)	2209(2)	35(1)
0(9)	330(4)	8304(2)	1141(2)	43(1)	C(20)	-1404(7)	9192(4)	1687(3)	54(1)
0(10)	1731(4)	7114(2)	1742(2)	41(1)	C(21)	-57(6)	8054(3)	2193(2)	44(1)
0(11)	3898(4)	8736(2)	1341(2)	44(1)	C(22)	1031(7)	6914(4)	2785(3)	53(1)
0(12)	3829(4)	6890(2)	806(2)	47(1)	C(23)	4181(8)	9710(4)	1334(3)	61(1)
0(13)	4142(3)	6392(2)	4190(2)	35(1)	C(24)	5229(8)	6697(5)	1156(4)	76(2)
0(14)	5672(4)	8107(2)	4977(2)	40(1)	C(25)	2683(5)	6538(3)	4363(2)	34(1)
0(15)	8830(3)	8346(2)	4394(2)	38(1)	C(26)	4067(5)	8100(3)	5066(2)	35(1)
0(16)	5614(4)	8001(2)	3686(2)	41(1)	C(27)	1046(6)	5704(4)	4139(3)	48(1)
0(17)	7060(4)	6486(2)	3610(2)	42(1)	C(28)	2590(5)	7383(3)	4753(2)	39(1)
0(18)	7660(4)	6831(2)	4953(2)	39(1)	C(29)	3879(7)	8928(4)	5567(3)	50(1)
C(1)	-5800(6)	6413(3)	-3525(2)	37(1)	C(30)	9265(5)	9038(3)	4091(2)	33(1)
C(2)	-6984(5)	7605(3)	-2871(2)	40(1)	C(31)	6315(5)	8729(3)	3471(2)	32(1)
C(3)	-5968(6)	5696(3)	-4158(2)	42(1)	C(32)	11175(6)	9625(4)	4246(3)	49(1)
C(4)	-7094(6)	6895(4)	-3426(2)	46(1)	C(33)	8107(5)	9260(3)	3650(2)	37(1)
C(5)	-8381(6)	8139(4)	-2811(3)	54(1)	C(34)	5154(6)	9037(3)	2995(2)	43(1)
C(6)	-5932(6)	6263(4)	-1368(2)	45(1)	C(35)	6253(8)	6015(5)	2973(3)	68(2)

C(7)	-3954(7)	7788(4)	-802(2)	50(1)	C(36)	8379(7)	7213(5)	5608(3)	59(1)
C(8)	-7400(8)	5380(4)	-1342(3)	64(2)					

Bindungslängen										
Ti(1)-O(1)	2,016(4)	O(1)-C(1)	1,272(5)							
Ti(1)-O(2)	2,053(3)	O(2)-C(2)	1,269(5)							
Ti(1)-O(3)	2,078(3)	O(3)-C(6)	1,270(5)							
Ti(1)-O(4)	1,977(4)	O(4)-C(7)	1,290(6)							
Ti(1)-O(5)	1,806(3)	O(5)-C(11)	1,384(6)							
Ti(1)-O(6)	1,800(3)	O(6)-C(12)	1,406(6)							
Ti(2)-O(7)	1,999(3)	O(7)-C(13)	1,272(5)							
Ti(2)-O(8)	2,048(4)	O(8)-C(14)	1,268(6)							
Ti(2)-O(9)	2,085(3)	O(9)-C(18)	1,264(5)							
Ti(2)-O(10)	1,996(3)	O(10)-C(19)	1,280(5)							
Ti(2)-O(11)	1,808(3)	O(11)-C(23)	1,390(6)							
Ti(2)-O(12)	1,803(3)	O(12)-C(24)	1,391(6)							
Ti(3)-O(13)	2,014(3)	O(13)-C(25)	1,288(5)							
Ti(3)-O(14)	2,042(3)	O(14)-C(26)	1,288(5)							
Ti(3)-O(15)	2,013(3)	O(15)-C(30)	1,277(5)							
Ti(3)-O(16)	2,075(3)	O(16)-C(31)	1,247(5)							
Ti(3)-O(17)	1,783(3)	O(17)-C(35)	1,411(7)							
Ti(3)-O(18)	1,804(3)	O(18)-C(36)	1,404(6)							

Bindungswinkel										
O(6)-Ti(1)-O(5)	99,62(15)	O(12)-Ti(2)-O(8)	91,98(15)	O(15)-Ti(3)-O(16)	83,25(12)					
O(6)-Ti(1)-O(4)	98,25(15)	O(11)-Ti(2)-O(8)	167,94(14)	O(13)-Ti(3)-O(16)	85,41(12)					
O(5)-Ti(1)-O(4)	93,92(16)	O(10)-Ti(2)-O(8)	89,36(14)	O(14)-Ti(3)-O(16)	81,13(13)					
O(6)-Ti(1)-O(1)	88,12(14)	O(7)-Ti(2)-O(8)	83,37(13)	C(1) - O(1) - Ti(1)	132,9(3)					
O(5) - Ti(1) - O(1)	96,82(15)	O(12)-Ti(2)-O(9)	171,66(14)	C(2)-O(2)-Ti(1)	132,5(3)					
O(4) - Ti(1) - O(1)	166,44(14)	O(11)-Ti(2)-O(9)	87,47(14)	C(6)-O(3)-Ti(1)	130,9(4)					
O(6)-Ti(1)-O(2)	168,89(16)	O(10)-Ti(2)-O(9)	83,31(12)	C(7)-O(4)-Ti(1)	132,6(4)					
O(5)-Ti(1)-O(2)	88,22(13)	O(7)-Ti(2)-O(9)	85,05(12)	C(11)-O(5)-Ti(1)	140,8(3)					
O(4) - Ti(1) - O(2)	88,98(14)	O(8)-Ti(2)-O(9)	83,13(13)	C(12)-O(6)-Ti(1)	142,4(4)					
O(1)-Ti(1)-O(2)	83,11(13)	O(17)-Ti(3)-O(18)	100,22(15)	C(13)-O(7)-Ti(2)	132,5(3)					
O(6)-Ti(1)-O(3)	91,61(16)	O(17)-Ti(3)-O(15)	98,20(13)	C(14)-O(8)-Ti(2)	132,7(3)					
O(5) - Ti(1) - O(3)	168,75(14)	O(18)-Ti(3)-O(15)	89,06(13)	C(18)-O(9)-Ti(2)	129,6(3)					
O(4)-Ti(1)-O(3)	83,66(15)	O(17)-Ti(3)-O(13)	88,84(13)	C(19)-O(10)-Ti(2)	131,8(3)					
O(1)-Ti(1)-O(3)	84,21(14)	O(18)-Ti(3)-O(13)	100,96(13)	C(23)-O(11)-Ti(2)	137,0(3)					
O(2)-Ti(1)-O(3)	80,76(14)	O(15)-Ti(3)-O(13)	166,59(12)	C(24)-O(12)-Ti(2)	138,6(4)					
O(12)-Ti(2)-O(11)	98,22(15)	O(17)-Ti(3)-O(14)	168,11(15)	C(25)-O(13)-Ti(3)	132,6(3)					
O(12)-Ti(2)-O(10)	89,91(13)	O(18)-Ti(3)-O(14)	89,84(14)	C(26)-O(14)-Ti(3)	130,7(3)					
O(11)-Ti(2)-O(10)	97,04(15)	O(15)-Ti(3)-O(14)	88,21(12)	C(30)-O(15)-Ti(3)	132,7(3)					
O(12)-Ti(2)-O(7)	101,14(13)	O(13)-Ti(3)-O(14)	82,99(12)	C(31)-O(16)-Ti(3)	132,0(3)					
O(11)-Ti(2)-O(7)	88,34(14)	O(17)-Ti(3)-O(16)	89,64(15)	C(35)-O(17)-Ti(3)	139,3(3)					
O(10)-Ti(2)-O(7)	166,93(12)	O(18)-Ti(3)-O(16)	168,29(14)	C(36)-O(18)-Ti(3)	136,1(3					

6.16 [{(Ph_3SnO)Ti(acac)₂}₂O] (<u>14</u>)

14 kristallisiert aus einem THF-Heptan-Gemisch in Form blassgelber Kristallplättchen.

Summenformel		$C_{56}H_{58}O_{11}Sn_2Ti$		
Molekulargewicht [g/mol)	1240,20		
Kristallsystem	-	monoklin		
Raumgruppe		$P2_1/n$		
Zelldimensionen	a;b;c; [Å]	11,357(2); 12,117(2); 19,364(3)		
	α;β;γ; [°]	90; 93,26(2); 90		
	$V [Å^3]$	2660,5(7)		
Formeleinheiten		2		
Röntgenographisch	e Dichte [g/cm ³]	1,548		
Messtemperatur [K]]	220		
Kristallgröße [mm]		$30 \times 09 \times 06$		
Messbereich 2Θ [°]		1,98 - 25,95		
Gemessene Reflexe	;	16789		
Unabhängige Refle	xe	5064		
Unabhängige Refle	xe $F_O > 4\sigma(F_O)$	3297		
Anzahl der verfeine	rten Parameter	323		
μ (Mo-K α) [mm ⁻¹]		1,276		
Maximale Restelek	tronendichte $[e^{-}/Å^3]$	1,899; -0,792		
R _{int}		0,0959		
R1 / wR2 (I > $2\sigma(I)$)	0,0489 / 0,1098		
R1 / wR2 (alle Date	en)	0,0874 / 0,1314		

Atom	x	У	Z	Ueq	Atom	x	У	Z	$\mathtt{U}_{\mathtt{eq}}$
C(1)	3551(7)	13749(5)	557(3)	42(2)	C(19)	4394(10)	10713(7)	3903(4)	70(3)
C(2)	2992(6)	12635(4)	488(3)	29(1)	C(20)	5435(9)	10251(8)	4147(4)	68(3)
C(3)	1816(5)	12485(5)	605(3)	34(1)	C(21)	5910(8)	9425(9)	3804(4)	67(2)
C(4)	1240(6)	11467(5)	549(3)	34(1)	C(22)	5398(6)	9069(6)	3196(3)	50(2)
C(5)	-50(б)	11396(6)	648(4)	50(2)	C(23)	1777(6)	8473(5)	2022(3)	35(1)
C(6)	2786(7)	9515(7)	-1853(3)	53(2)	C(24)	899(6)	8699(5)	1516(3)	39(2)
C(7)	2966(5)	9278(5)	-1095(3)	32(1)	C(25)	-248(6)	8376(6)	1601(4)	45(2)
C(8)	3178(5)	8214(5)	-860(3)	34(1)	C(26)	-536(6)	7802(6)	2179(4)	47(2)
C(9)	3224(5)	7907(5)	-175(3)	30(1)	C(27)	333(7)	7559(5)	2683(3)	46(2)
C(10)	3340(7)	6718(5)	43(4)	44(2)	C(28)	1488(6)	7885(5)	2611(3)	40(2)
C(11)	4706(6)	7517(5)	1735(3)	36(2)	Sn	3605(1)	8893(1)	1948(1)	32(1)
C(12)	4447(6)	6497(5)	2029(3)	42(2)	Ti	3557(1)	10213(1)	341(1)	23(1)
C(13)	5166(8)	5595(6)	1936(4)	55(2)	0(1)	3785(4)	10073(3)	1257(2)	32(1)
C(14)	6125(8)	5695(7)	1571(4)	59(2)	0(2)	1762(3)	10570(3)	419(2)	31(1)
C(15)	6415(7)	6697(7)	1291(3)	52(2)	0(3)	3690(4)	11850(3)	315(2)	29(1)
C(16)	5698(6)	7594(6)	1362(3)	43(2)	0(4)	2904(4)	10108(3)	-693(2)	32(1)
C(17)	4346(6)	9522(5)	2918(3)	35(1)	0(5)	3164(4)	8597(3)	324(2)	32(1)
C(18)	3832(7)	10339(6)	3291(4)	53(2)	0(6)	5000	10000	0	28(1)

Bindungslängen										
Sn-0(1)	1,977(4)	C(9)-O(5)	1,283(7)							
Sn-C(11)	2,138(6)	Ti-O(1)	1,786(4)							
Sn-C(17)	2,152(6)	Ti-O(2)	2,098(4)							
Sn-C(23)	2,151(7)	Ti-O(3)	1,991(4)							
C(4)-O(2)	1,269(7)	Ti-O(4)	2,100(4)							
C(2)-O(3)	1,294(7)	Ti-O(5)	2,007(4)							
C(7)-O(4)	1,275(7)	Ti-O(6)	1,8192(10)							

Bindungswinkel										
O(1)-Sn-C(11)	110,4(2)	O(1)-Ti-O(5)	86,72(16)	O(3)-Ti-O(4)	93,42(15)					
O(1)-Sn-C(17)	106,54(19)	O(6)-Ti-O(5)	93,42(13)	O(5)-Ti-O(4)	81,91(15)					
C(11)-Sn-C(17)	103,9(2)	O(3)-Ti-O(5)	171,32(17)	O(2)-Ti-O(4)	77,81(16)					
O(1)-Sn-C(23)	110,7(2)	O(1)-Ti-O(2)	92,00(18)	Ti-0(1)-Sn	136,6(2)					
C(11)-Sn-C(23)	113,9(2)	O(6)-Ti-O(2)	162,61(12)	C(4)-O(2)-Ti	131,1(4)					
C(17)-Sn-C(23)	110,9(2)	O(3)-Ti-O(2)	82,61(16)	C(2)-O(3)-Ti	132,6(4)					
O(1)-Ti-O(6)	105,30(15)	O(5)-Ti-O(2)	89,23(17)	C(7)-O(4)-Ti	126,9(4)					
O(1)-Ti-O(3)	96,48(16)	O(1)-Ti-O(4)	164,78(18)	C(9)-O(5)-Ti	128,8(4)					
O(6)-Ti-O(3)	93,50(13)	O(6)-Ti-O(4)	85,54(12)	Ti#1-0(6)-Ti	180					

6.17 $[Pb_6O_4(\mu_3-OSnPh_3)_4]$ (<u>15</u>)

<u>15</u> kristallisiert aus einem THF-Heptan-Gemisch in Form blassgelber Nadeln.

$C_{72}H_{60}O_8Pb_6Sn_4$		
2771,10		
hexagonal		
P6 ₃		
16,328(2); 16,328(2); 17,567(3)		
90; 90; 120		
4056(1)		
2		
2,269		
220		
$50 \times 34 \times 26$		
2,73 - 25,91		
29869		
5229		
4706		
271		
13,656		
1,297; -0,780		
0,0982		
0,0376 / 0,1032		
0,0433 / 0,1066		
-0,0036		

Atom	x	У	z	\mathbf{U}_{eq}	Atom	x	У	z	Ueq
C(1)	-3367(8)	-7920(8)	-5218(8)	42(3)	C(17)	-5392(13)	-11652(12)	-2528(12)	81(6)
C(2)	-2813(10)	-7824(9)	-5850(9)	59(4)	C(18)	-4843(10)	-10910(10)	-2018(9)	59(3)
C(3)	-2786(9)	-8591(9)	-6138(10)	67(4)	C(19)	-1554(9)	-8811(8)	-1488(7)	46(3)
C(4)	-3293(10)	-9460(11)	-5805(11)	72(5)	C(20)	-1093(10)	-8335(11)	-2155(8)	60(4)
C(5)	-3850(11)	-9558(9)	-5185(9)	62(4)	C(21)	-143(11)	-8082(13)	-2283(9)	71(4)
C(6)	-3887(9)	-8797(9)	-4886(7)	50(3)	C(22)	330(10)	-8294(12)	-1738(12)	77(5)
C(7)	-3389(9)	-9733(9)	-158(7)	44(3)	C(23)	-98(11)	-8731(12)	-1092(12)	75(5)
C(8)	-3506(12)	-10587(10)	69(9)	66(4)	C(24)	-1033(10)	-8992(9)	-964(9)	60(4)
C(9)	-3793(11)	-10920(11)	817(10)	72(4)	Sn(1)	-3333	-6667	-4798(1)	36(1)
C(10)	-3915(12)	-10398(15)	1324(9)	82(5)	Sn(2)	-3012(1)	-9295(1)	-1307(1)	39(1)
C(11)	-3769(14)	-9514(15)	1106(9)	82(5)	0(1)	-3333	-6667	-3665(8)	43(3)
C(12)	-3531(11)	-9202(11)	375(9)	65(4)	0(2)	-3213(5)	-8220(5)	-1516(5)	41(2)
C(13)	-3863(10)	-10396(9)	-2091(8)	54(3)	0(3)	-2143(5)	-6591(5)	-2434(5)	35(2)
C(14)	-3457(12)	-10624(11)	-2706(9)	65(4)	O(4)	-3333	-6667	-928(8)	35(3)
C(15)	-3989(16)	-11322(14)	-3201(11)	89(6)	Pb(2)	-1994(1)	-6581(1)	-1205(1)	38(1)
C(16)	-4943(19)	-11831(14)	-3133(12)	97(6)	Pb(1)	-3258(1)	-7921(1)	-2908(1)	38(1)

Bindungslängen							
Sn(1) - C(1)	2,150(12)	Pb(1)-O(2)	2,502(8)				
Sn(2)-C(7)	2,126(11)	O(3)-Pb(1)#1	2,163(7)				
Sn(2)-C(13)	2,136(14)	Pb(2)-O(3)	2,172(8)				
Sn(2)-C(19)	2,125(12)	Pb(1)-O(3)	2,184(7)				
Sn(1) - O(1)	1,991(14)	Pb(2)-O(4)	2,175(3)				
Sn(2)-O(2)	1,975(8)	Pb(2)-Pb(1)#1	3,6574(7)				
Pb(1)-O(1)	2,495(7)	Pb(2)-Pb(1)	3,6719(7)				
Pb(2)-O(2)	2,469(7)	Pb(2)-Pb(2)#1	3,6723(8)				
O(2)-Pb(2)#2	2,497(8)	Pb(1)-Pb(1)#1	3,6570(8)				

Bindungswinkel								
O(1)-Sn(1)-C(1) 110,1(4) O(3)-Pb(2)-Pb(2)#1 84,62(19)								
O(2)-Sn(2)-C(19)	107,1(4)	O(4)-Pb(2)-Pb(2)#1	32,41(12)					
O(2) - Sn(2) - C(7)	109,1(4)	O(2) - Pb(2) - Pb(2) #1	100,73(18)					
Sn(1)-O(1)-Pb(1)	122,2(3)	O(2)#1-Pb(2)-Pb(2)#1	42,02(17)					
Pb(1)-O(1)-Pb(1)#1	94,3(4)	Pb(1)#1-Pb(2)-Pb(2)#1	60,127(11)					
Sn(2)-O(2)-Pb(2)	121,3(4)	Pb(1)-Pb(2)-Pb(2)#1	89,767(8)					
Sn(2)-O(2)-Pb(2)#2	130,1(3)	Pb(2)#2-Pb(2)-Pb(2)#1	60,0					
Pb(2)-O(2)-Pb(2)#2	95,4(3)	O(3) #2-Pb(1)-O(3)	97,3(4)					
Sn(2) - O(2) - Pb(1)	113,0(4)	O(3) #2-Pb(1)-O(1)	75,6(3)					
Pb(2)-O(2)-Pb(1)	95,2(2)	O(3) - Pb(1) - O(1)	75,3(3)					
Pb(2)#2-O(2)-Pb(1)	94,0(3)	O(3) #2-Pb(1)-O(2)	75,4(3)					
Pb(1)#1-O(3)-Pb(2)	115,1(3)	O(3)-Pb(1)-O(2)	74,3(3)					
Pb(1)#1-O(3)-Pb(1)	114,5(4)	O(1) - Pb(1) - O(2)	134,4(3)					
Pb(2)-O(3)-Pb(1)	114,9(3)	O(3) #2-Pb(1)-Pb(1)#1	85,0(2)					
Pb(2)-O(4)-Pb(2)#1	115,2(2)	O(3) - Pb(1) - Pb(1) #1	32,6(2)					
O(3)-Pb(2)-O(4)	96,7(4)	O(1) - Pb(1) - Pb(1) #1	42,87(18)					
O(3) - Pb(2) - O(2)	75,2(3)	O(2)-Pb(1)-Pb(1)#1	100,11(17)					
O(4)-Pb(2)-O(2)	74,9(2)	O(3) #2-Pb(1)-Pb(1)#2	32,9(2)					
O(3)-Pb(2)-O(2)#1	75,4(3)	O(3) - Pb(1) - Pb(1) #2	84,68(19)					
O(4)-Pb(2)-O(2)#1	74,3(2)	O(1) - Pb(1) - Pb(1) #2	42,87(18)					
O(2)-Pb(2)-O(2)#1	134,1(3)	O(2)-Pb(1)-Pb(1)#2	100,97(18)					
O(3) - Pb(2) - Pb(1) #1	32,40(18)	Pb(1)#1-Pb(1)-Pb(1)#2	60,0					
O(4)-Pb(2)-Pb(1)#1	84,4(3)	O(3) #2-Pb(1)-Pb(2) #2	32,5(2)					
O(2) - Pb(2) - Pb(1) #1	100,76(18)	O(3)-Pb(1)-Pb(2)#2	84,8(2)					
O(2) #1-Pb(2)-Pb(1)#1	43,03(18)	O(1)-Pb(1)-Pb(2)#2	101,3(2)					
O(3) - Pb(2) - Pb(1)	32,64(18)	O(2)-Pb(1)-Pb(2)#2	42,93(18)					
O(4) - Pb(2) - Pb(1)	84,0(3)	Pb(1)#1-Pb(1)-Pb(2)#2	90,233(8)					
O(2) - Pb(2) - Pb(1)	42,73(18)	Pb(1)#2-Pb(1)-Pb(2)#2	60,266(11)					
O(2) #1-Pb(2)-Pb(1)	100,68(18)	O(3) #2-Pb(1)-Pb(2)	84,7(2)					
Pb(1)#1-Pb(2)-Pb(1)	59,861(17)	O(3)-Pb(1)-Pb(2)	32,4(2)					
O(3) - Pb(2) - Pb(2) #2	84,6(2)	O(1)-Pb(1)-Pb(2)	100,9(2)					
O(4) - Pb(2) - Pb(2) #2	32,41(12)	O(2)-Pb(1)-Pb(2)	42,04(17)					
O(2) - Pb(2) - Pb(2) #2	42,61(18)	Pb(1)#1-Pb(1)-Pb(2)	59,872(11)					
O(2)#1-Pb(2)-Pb(2)#2	100,16(16)	Pb(1)#2-Pb(1)-Pb(2)	90,005(8)					
Pb(1)#1-Pb(2)-Pb(2)#2	89,993(8)	Pb(2)#2-Pb(1)-Pb(2)	60,137(16)					
Pb(1)-Pb(2)-Pb(2)#2	59,736(11)							

6.18 Ph₃SnN(SiMe₃)₂ (<u>16</u>)

<u>2</u> kristallisiert aus einem THF-Heptan-Gemisch in Form farbloser Stäbchen.

$C_{24}H_{33}NSi_2Sn$
510,38
triklin
ΡĪ
9,417(2); 11,855(3); 12,182(3)
84,41(3); 84,22(3); 72,57(3)
1287,8(6)
2
n ³] 1,316
220
30 imes 18 imes 15
2,27 - 26,14
10140
4672
) 3904
er 254
1,094
$e^{-}/Å^{3}$] 1,298; -2,174
0,0533
0,0364 / 0,0945
0,0488 / 0,1134

Atom	x	У	Z	Ueq	Atom	x	У	Z	Ueq
C(1)	-386(7)	1582(6)	492(5)	56(2)	C(15)	-3503(6)	3344(6)	4342(5)	52(2)
C(2)	2721(7)	812(6)	-571(5)	62(2)	C(16)	-4138(6)	4300(5)	3634(5)	50(2)
C(3)	876(7)	3398(5)	-785(5)	54(2)	C(17)	-3342(6)	4562(5)	2676(5)	49(1)
C(4)	4569(8)	2881(8)	-36(5)	80(2)	C(18)	-1889(5)	3868(5)	2432(4)	39(1)
C(5)	5029(5)	1882(5)	2258(4)	45(1)	C(19)	2055(5)	2173(5)	4279(4)	38(1)
C(6)	2917(7)	4376(5)	1824(7)	68(2)	C(20)	1673(6)	3294(5)	4639(4)	42(1)
C(7)	1302(5)	-29(4)	2922(4)	30(1)	C(21)	2248(7)	3530(6)	5572(5)	58(2)
C(8)	142(6)	-488(5)	3203(4)	44(1)	C(22)	3192(6)	2607(7)	6172(5)	58(2)
C(9)	328(7)	-1688(5)	3171(5)	53(1)	C(23)	3560(6)	1477(6)	5852(4)	58(2)
C(10)	1707(7)	-2433(5)	2856(5)	52(2)	C(24)	2995(6)	1248(5)	4915(4)	47(1)
C(11)	2885(7)	-1990(5)	2570(5)	54(2)	N	2048(4)	2283(4)	1383(3)	37(1)
C(12)	2704(6)	-789(5)	2588(5)	49(1)	Si(1)	1359(2)	2029(1)	184(1)	37(1)
C(13)	-1219(5)	2896(4)	3136(4)	36(1)	Si(2)	3562(2)	2837(1)	1372(1)	39(1)
C(14)	-2045(5)	2650(5)	4095(4)	43(1)	Sn	1054(1)	1835(1)	2887(1)	32(1)

Bindungslängen								
Si(1)-C(1)	1,865(6)	Sn-C(7)	2,147(5)					
Si(1)-C(2)	1,867(5)	Sn-C(13)	2,142(4)					
Si(1)-C(3)	1,878(6)	Sn-C(19)	2,147(4)					
Si(2)-C(4)	1,879(7)	N-Si(2)	1,737(5)					
Si(2)-C(5)	1,865(5)	N-Si(1)	1,744(4)					
Si(2)-C(6)	1,862(6)	Sn-N	2,068(4)					
	В	indungswinkel						
Si(2)-N-Si(1)	123,3(2)	C(6)-Si(2)-C(5)	110,3(3)					
Si(2)-N-Sn	118,9(2)	N-Si(2)-C(4)	112,7(3)					
Si(1)-N-Sn	117,8(2)	C(6) - Si(2) - C(4)	107,6(4)					
N-Si(1)-C(1)	111,8(2)	C(5)-Si(2)-C(4)	103,9(3)					
N-Si(1)-C(2)	111,9(2)	N-Sn-C(13)	112,07(18)					
C(1)-Si(1)-C(2)	106,5(3)	N-Sn-C(19)	113,17(18)					
N-Si(1)-C(3)	111,6(2)	C(13)-Sn-C(19)	102,76(17)					
C(1)-Si(1)-C(3)	106,3(3)	N-Sn-C(7)	106,47(17)					
C(2)-Si(1)-C(3)	108,4(3)	C(13)-Sn-C(7)	113,37(19)					
N-Si(2)-C(6)	109,8(3)	C(19)-Sn-C(7)	109,12(19)					
N-Si(2)-C(5)	112,2(2)							

6.19 $[Co{Co(NSi_2Me_6)}_2(\mu - OSnPh_3)_4]$ (17)

<u>2</u> kristallisiert aus einem THF-Hexan-Gemisch in Form blassblauer Kristallplättchen.

	$C_{84}H_{96}Co_3N_2O_4Si_4Sn_4$		
g/mol)	1961,54		
	orthorhombisch		
	P2 ₁ cn		
a;b;c; [Å]	15,035(1); 23,963(2); 29,793(3)		
α;β;γ; [°]	90; 90; 90		
V [Å ³]	10734(1)		
	4		
Dichte [g/cm ³]	1,214		
	220		
	2,10 - 26,14		
	72892		
e	20786		
$e F_O > 4\sigma(F_O)$	14597		
ten Parameter	910		
	1,450		
ronendichte [e ⁻ / Å ³]	0,909; -0,889		
	0,0709		
	0,0497 / 0,1349		
ı)	0,0802 / 0,1547		
	-0,0163		
	g/mol) a;b;c; [Å] $\alpha;\beta;\gamma; [^{\circ}]$ V [Å ³] Dichte [g/cm ³] e e F _O > 4 σ (F _O) ten Parameter conendichte [e ⁻ /Å ³]		

Atom	x	У	Z	Ueq	Atom	x	У	Z	Ueq
Sn(1)	6558(1)	7518(1)	-222(1)	37(1)	C(35)	4741(13)	9174(5)	1946(5)	109(5)
Sn(2)	4103(1)	7431(1)	1614(1)	42(1)	C(36)	4570(9)	8680(4)	1704(4)	75(3)
Sn(3)	3579(1)	8839(1)	100(1)	42(1)	C(37)	2418(8)	8998(4)	498(3)	59(2)
Sn(4)	3504(1)	6095(1)	118(1)	38(1)	C(38)	1827(8)	9414(6)	384(4)	87(4)
Co(1)	4458(1)	7468(1)	383(1)	34(1)	C(39)	1111(11)	9528(9)	648(6)	127(7)
Co(2)	6013(1)	7454(1)	934(1)	45(1)	C(40)	941(11)	9210(12)	1014(6)	154(10)
Co(3)	2997(1)	7466(1)	-232(1)	44(1)	C(41)	1498(13)	8794(9)	1126(6)	127(6)
Si(1)	7376(2)	7966(1)	1582(1)	62(1)	C(42)	2268(10)	8677(6)	884(4)	86(4)
Si(2)	7613(2)	6763(1)	1262(1)	60(1)	C(43)	3456(6)	9184(3)	-562(3)	42(2)
Si(3)	2277(2)	7202(1)	-1181(1)	56(1)	C(44)	3673(8)	9735(4)	-623(4)	67(3)
Si(4)	1069(2)	7756(1)	-483(1)	58(1)	C(45)	3577(9)	10007(4)	-1019(4)	78(3)
0(1)	5746(4)	7497(2)	298(2)	42(1)	C(46)	3246(8)	9718(5)	-1384(4)	72(3)
0(2)	4743(4)	7436(2)	1039(2)	44(1)	C(47)	3005(8)	9166(4)	-1340(3)	68(3)
0(3)	3732(4)	8026(2)	62(2)	45(1)	C(48)	3125(8)	8907(4)	-928(3)	60(3)
0(4)	3667(4)	6913(2)	95(2)	42(1)	C(49)	4716(6)	9225(3)	397(3)	47(2)
N(1)	7068(5)	7390(3)	1283(2)	52(2)	C(50)	4566(7)	9665(3)	702(3)	52(2)
N(2)	2063(5)	7472(3)	-656(2)	47(2)	C(51)	5264(9)	9981(4)	858(4)	71(3)
C(1)	7539(6)	8159(4)	-118(3)	50(2)	C(52)	6141(8)	9872(5)	710(4)	69(3)
C(2)	8094(7)	8165(4)	250(4)	62(2)	C(53)	6276(7)	9445(4)	427(4)	68(3)
C(3)	8751(8)	8550(5)	280(4)	78(3)	C(54)	5586(6)	9124(4)	256(4)	60(3)
C(4)	8888(8)	8940(5)	-30(6)	86(4)	C(55)	3807(6)	5770(3)	-535(3)	41(2)
C(5)	8321(11)	8949(5)	-403(6)	102(5	C(56)	4591(7)	5940(5)	-755(3)	59(2)
C(6)	7664(8)	8558(4)	-457(4)	72(3)	C(57)	4787(8)	5703(6)	-1168(4)	74(3)
C(7)	5901(6)	7681(4)	-842(3)	46(2)	C(58)	4220(13)	5327(5)	-1365(4)	94(5)
C(8)	6055(7)	7316(5)	-1191(3)	59(2)	C(59)	3469(11)	5153(5)	-1141(4)	85(4)
C(9)	5779(10)	7447(5)	-1634(4)	79(4)	C(60)	3248(8)	5379(4)	-727(3)	59(3)

C(10)	5318(9)	7928(5)	-1717(3)	75(3)	C(61)	4341(6)	5697(3)	599(3)	41(2)
C(10)	5154(9)	8298(5)	-1369(4)	80(3)	C(62)	4251(8)	5768(4)	1056(3)	58(2)
C(11)	5151(5)	0100(3)	1302(1)	66(3)	C(02)	1231(0)	5/00(1)	1250(3)	69(2)
C(12)	5450(6)	0102(4)	-932(3)	05(3)	C(03)	4/14(0)	5424(4)	1350(3)	00(3)
C(13)	7155(6)	6705(4)	-265(3)	44(2)	C(64)	5301(8)	5028(5)	1197(4)	70(3)
C(14)	7974(6)	6655(4)	-476(4)	56(2)	C(65)	5429(7)	4957(4)	738(4)	61(3)
C(15)	8364(8)	6134(4)	-515(4)	72(3)	C(66)	4951(6)	5301(4)	439(3)	47(2)
C(16)	7943(7)	5676(5)	-351(5)	80(4)	C(67)	2139(6)	5952(3)	297(3)	45(2)
C(17)	7129(9)	5732(4)	-140(4)	76(3)	C(68)	1954(7)	5609(4)	664(4)	59(3)
C(18)	6750(6)	6235(4)	-98(3)	50(2)	C(69)	1108(9)	5480(5)	780(5)	80(4)
C(19)	4557(7)	6747(4)	2010(3)	52(2)	C(70)	401(7)	5702(5)	518(4)	70(3)
C(20)	5436(7)	6612(4)	2072(3)	56(2)	C(71)	560(7)	6054(5)	176(4)	67(3)
C(21)	5683(10)	6157(5)	2341(4)	78(4)	C(72)	1441(6)	6175(4)	64(3)	57(2)
C(22)	5100(11)	5860(5)	2559(4)	75(4)	C(73)	6876(10)	8605(5)	1299(5)	89(4)
C(23)	4190(12)	5976(5)	2516(3)	85(4)	C(74)	6974(10)	7943(6)	2173(4)	91(4)
C(24)	3913(8)	6419(4)	2243(3)	65(3)	C(75)	8616(8)	8071(7)	1598(5)	101(4)
C(25)	2709(6)	7339(4)	1536(3)	51(2)	C(76)	6787(10)	6216(5)	1096(4)	84(4)
C(26)	2163(8)	7549(6)	1879(4)	89(4)	C(77)	8091(11)	6568(6)	1821(5)	102(5)
C(27)	1243(10)	7438(7)	1865(6)	105(5)	C(78)	8555(7)	6764(6)	861(4)	83(4)
C(28)	877(8)	7148(5)	1531(4)	77(3)	C(79)	1858(12)	7659(6)	-1656(4)	95(5)
C(29)	1386(7)	6953(5)	1198(4)	65(3)	C(80)	3514(9)	7140(6)	-1241(4)	87(4)
C(30)	2298(6)	7048(4)	1192(3)	53(2)	C(81)	1751(11)	6496(5)	-1252(4)	97(5)
C(31)	4400(7)	8199(4)	1945(3)	51(2)	C(82)	1027(11)	7731(6)	145(4)	90(4)
C(32)	4395(9)	8218(4)	2412(3)	68(3)	C(83)	951(9)	8513(5)	-661(5)	86(4)
C(33)	4588(11)	8703(6)	2630(4)	90(4)	C(84)	81(9)	7356(7)	-707(6)	106(5)
C(34)	4811(14)	9175(5)	2400(4)	112(6)					

Bindungslängen										
Sn(1)-O(1)	1,972(6)	Sn(4)-C(67)	2,147(9)	Si(1)-C(75)	1,882(13)					
Sn(1)-C(7)	2,132(9)	Co(1)-O(1)	1,955(6)	Si(1)-C(73)	1,904(14)					
Sn(1)-C(13)	2,148(9)	Co(1)-O(2)	2,001(5)	Si(2)-N(1)	1,713(8)					
Sn(1)-C(1)	2,151(9)	Co(1)-O(3)	1,973(6)	Si(2)-C(78)	1,853(11)					
Sn(2)-O(2)	1,965(6)	Co(1)-O(4)	1,980(5)	Si(2)-C(76)	1,872(14)					
Sn(2)-C(25)	2,120(10)	Co(1)-Co(2)	2,8572(15)	Si(2)-C(77)	1,873(13)					
Sn(2)-C(19)	2,131(10)	Co(2)-N(1)	1,903(8)	Si(3)-N(2)	1,724(8)					
Sn(2)-C(31)	2,136(9)	Co(2)-O(2)	1,935(6)	Si(3)-C(80)	1,875(13)					
Sn(3)-O(3)	1,963(6)	Co(2)-O(1)	1,940(6)	Si(3)-C(81)	1,878(12)					
Sn(3)-C(49)	2,136(9)	Co(1)-Co(3)	2,8609(15)	Si(3)-C(79)	1,899(12)					
Sn(3)-C(37)	2,146(11)	Co(3)-N(2)	1,887(7)	Si(4)-N(2)	1,722(8)					
Sn(3)-C(43)	2,148(8)	Co(3)-O(4)	1,929(5)	Si(4)-C(82)	1,871(13)					
Sn(4)-O(4)	1,977(5)	Co(3)-O(3)	1,948(6)	Si(4)-C(84)	1,889(14)					
Sn(4)-C(61)	2,131(8)	Si(1)-N(1)	1,706(8)	Si(4)-C(83)	1,897(12)					
Sn(4)-C(55)	2,147(8)	Si(1)-C(74)	1,861(12)							

Bindungswinkel							
N(1)-Co(2)-O(2)	137,1(3)	Co(2)-O(2)-Co(1)	93,1(2)	O(3)-Co(1)-O(4)	85,0(2)		
N(1)-Co(2)-O(1)	135,3(3)	Sn(2)-O(2)-Co(1)	138,3(3)	O(1)-Co(1)-O(2)	85,2(2)		
O(2)-Co(2)-O(1)	87,4(2)	Co(3)-O(3)-Sn(3)	130,0(3)	O(3) - Co(1) - O(2)	128,1(2)		
N(1)-Co(2)-Co(1)	175,7(2)	Co(3) - O(3) - Co(1)	93,7(2)	O(4)-Co(1)-O(2)	121,8(2)		
O(2) - Co(2) - Co(1)	44,37(16)	Sn(3)-O(3)-Co(1)	135,1(3)	O(1)-Co(1)-Co(2)	42,61(17)		
O(1) - Co(2) - Co(1)	43,02(17)	Co(2) - O(1) - Co(1)	94,4(3)	O(3)-Co(1)-Co(2)	137,63(17)		
N(2)-Co(3)-O(4)	137,0(3)	Co(2) - O(1) - Sn(1)	129,8(3)	O(4) - Co(1) - Co(2)	137,12(16)		
N(2)-Co(3)-O(3)	135,8(3)	Co(1)-O(1)-Sn(1)	135,7(3)	O(2) - Co(1) - Co(2)	42,55(17)		
O(4)-Co(3)-O(3)	87,1(2)	Co(3)-O(4)-Sn(4)	129,4(3)	O(1) - Co(1) - Co(3)	132,66(17)		
N(2)-Co(3)-Co(1)	177,8(2)	Co(3)-O(4)-Co(1)	94,1(2)	O(3)-Co(1)-Co(3)	42,80(16)		
O(4) - Co(3) - Co(1)	43,64(16)	Sn(4)-O(4)-Co(1)	136,5(3)	O(4)-Co(1)-Co(3)	42,25(16)		
O(3) - Co(3) - Co(1)	43,50(16)	O(1) - Co(1) - O(3)	117,5(2)	O(2)-Co(1)-Co(3)	142,19(18)		
Co(2)-O(2)-Sn(2)	128,6(3)	O(1)-Co(1)-O(4)	124,2(2)	Co(2) - Co(1) - Co(3)	175,15(5)		

6.20 Ph₃SnO^tBu (<u>18</u>)

<u>18</u> kristallisiert aus einem THF-Hexan-Gemisch in Form farbloser Stäbchen.

Summenformel	$C_{22}H_{24}OSn$		
Molekulargewicht [g/mol)	423,10		
Kristallsystem	monoklin		
Raumgruppe	$P2_1/n$		
Zelldimensionen a;b;c; [Å]	10,106(2); 21,016(4); 10,445(2)		
α;β;γ; [°]	90; 111,34(2); 90		
V [Å ³]	2066,3(7)		
Formeleinheiten	4		
Röntgenographische Dichte [g/cm ³]	1,360		
Messtemperatur [K]	220		
Kristallgröße [mm]	$41 \times 21 \times 21$		
Messbereich 2Θ [°]	2,37 - 25,89		
Gemessene Reflexe	15589		
Unabhängige Reflexe	3926		
Unabhängige Reflexe $F_0 > 4\sigma(F_0)$	3462		
Anzahl der verfeinerten Parameter	314		
μ (Mo-K α) [mm ⁻¹]	1,241		
Maximale Restelektronendichte $[e^{-7}/Å^3]$	1,091 / -0,951		
R _{int}	0,0774		
R1 / wR2 (I > $2\sigma(I)$)	0,0284 / 0,0708		
R1 / wR2 (alle Daten)	0,0330 / 0,0730		

Lageparameter $(\cdot 10^4)$ und Koeffizienten $U_{eq}\,[{\mathring{A}}^2\,\cdot 10^4]$:

Atom	x	У	Z	$\mathtt{U}_{\mathtt{eq}}$	Atom	x	У	Z	$\mathtt{U}_{\mathtt{eq}}$
Sn	8206(1)	1588(1)	5500(1)	33(1)	C(12)	10860(4)	2362(1)	5657(3)	54(1)
C(1)	7608(3)	442(1)	7064(3)	41(1)	C(13)	12297(5)	2484(2)	5988(5)	76(1)
C(2)	6099(4)	660(2)	6720(6)	80(1)	C(14)	13273(5)	2012(3)	6537(5)	92(1)
C(3)	8250(5)	217(2)	8553(3)	66(1)	C(15)	12834(5)	1424(3)	6754(6)	91(1)
C(4)	7692(5)	-87(1)	6110(4)	70(1)	C(16)	11399(4)	1295(2)	6430(4)	64(1)
C(5)	7136(3)	2405(1)	5876(2)	35(1)	C(17)	7011(3)	1205(1)	3515(2)	43(1)
C(6)	7209(3)	2563(1)	7196(3)	41(1)	C(18)	5564(3)	1328(1)	2907(3)	52(1)
C(7)	6517(3)	3103(1)	7412(3)	49(1)	C(19)	4788(5)	1103(2)	1601(4)	73(1)
C(8)	5741(4)	3481(1)	6307(4)	52(1)	C(20)	5464(7)	755(2)	900(4)	92(2)
C(9)	5677(4)	3335(1)	4993(3)	52(1)	C(21)	6883(8)	616(2)	1498(5)	94(2)
C(10)	6385(3)	2798(1)	4782(3)	44(1)	C(22)	7675(5)	842(2)	2807(4)	65(1)
C(11)	10399(3)	1766(1)	5881(3)	41(1)	0	8482(2)	964(1)	6992(2)	44(1)

Bindungslängen					
Sn-O	1,9768(16)	Sn-C(17)	2,141(2)		
Sn-C(5)	2,140(2)	C(1)-O	1,428(3)		
Sn-C(11)	2,138(3)				

Bindungswinkel					
0-Sn-C(11)	97,44(9)	O-Sn-C(17)	112,46(8)		
O-Sn-C(5)	108,88(8)	C(1)-O-Sn	129,66(15)		
6.21 $[(PhSn)_6(Ph_3SnO)(OMe)_9(VO_3)_2(VO_4)_2](\underline{19})$

<u>2</u> kristallisiert aus Methanol in Form von gelb-grünen Stäbchen.

Summenformel	$C_{65}H_{82}O_{28}Sn_7V_4$		
Molekulargewicht [g/mol)	2345,90		
Kristallsystem	triklin		
Raumgruppe	PĪ		
Zelldimensionen a;b;c; [Å]	13,884(1); 16,079(2); 20,389(2)		
α;β;γ; [°]	100,42(1); 104,00(1); 102,84(1)		
V [Å ³]	4171,8(7)		
Formeleinheiten	2		
Röntgenographische Dichte [g/cm ³]	1,868		
Messtemperatur [K]	220		
Kristallgröße [mm]	$38 \times 38 \times 30$		
Messbereich 2Θ [°]	2,12 - 25,89		
Gemessene Reflexe	32404		
Unabhängige Reflexe	14999		
Unabhängige Reflexe $F_O > 4\sigma(F_O)$	12752		
Anzahl der verfeinerten Parameter	922		
μ (Mo-K α) [mm ⁻¹]	2,554		
Maximale Restelektronendichte $[e^{-7}/Å^3]$	1,825; -1,979		
R _{int}	0,0447		
R1 / wR2 (I > $2\sigma(I)$)	0,0450 / 0,1248		
R1 / wR2 (alle Daten)	0,0539 / 0,1385		

Lageparameter ($\cdot 10^4$) und Koeffizienten U_{eq} [Å² $\cdot 10^4$]:

Atom	x	У	Z	Ueq	Atom	х	У	Z	Ueq
C(1)	-1362(7)	4033(4)	1639(3)	42(2)	C(53)	253(6)	11972(4)	4215(4)	40(2)
C(2)	-2079(7)	4459(5)	1811(4)	49(2)	C(54)	229(6)	11156(4)	3829(3)	34(1)
C(3)	-2762(7)	4701(5)	1301(4)	57(2)	C(55)	-1368(9)	1627(6)	1191(5)	65(3)
C(4)	-2742(8)	4512(6)	619(4)	63(2)	C(56)	3710(7)	5147(4)	3053(4)	45(2)
C(5)	-2035(9)	4101(6)	446(4)	67(3)	C(57)	4761(7)	7161(5)	1347(4)	49(2)
C(6)	-1361(8)	3866(5)	946(4)	59(2)	C(58)	52(6)	6382(4)	998(4)	41(2)
C(7)	-966(6)	3488(4)	3302(3)	40(2)	C(59)	263(6)	10356(4)	2042(3)	38(2)
C(8)	-337(7)	3968(4)	3977(3)	43(2)	C(60)	-1902(6)	7021(5)	1695(4)	45(2)
C(9)	-693(8)	3874(5)	4555(4)	57(2)	C(61)	-354(6)	9066(5)	4197(3)	41(2)
C(10)	-1652(9)	3335(6)	4471(5)	66(3)	C(62)	4433(6)	10052(4)	3713(3)	39(2)
C(11)	-2262(9)	2863(6)	3825(5)	67(3)	C(63)	2240(8)	9222(6)	5747(4)	58(2)
C(12)	-1932(7)	2944(5)	3230(4)	56(2)	C(64)	5938(6)	8537(5)	4143(3)	40(2)
C(13)	862(6)	3126(4)	2339(3)	40(2)	C(65)	4180(20)	9480(20)	497(15)	200(10)
C(14)	1312(9)	3200(7)	1818(5)	69(3)	Sn(1)	-402(1)	3648(1)	2437(1)	36(1)
C(15)	2172(9)	2879(7)	1804(5)	69(3)	Sn(2)	3089(1)	6244(1)	1999(1)	26(1)
C(16)	2546(7)	2473(6)	2280(5)	59(2)	Sn(3)	4420(1)	8338(1)	2625(1)	25(1)
C(17)	2121(9)	2404(7)	2807(6)	78(3)	Sn(4)	3743(1)	7118(1)	3701(1)	26(1)
C(18)	1281(8)	2731(6)	2837(5)	60(2)	Sn(5)	167(1)	8367(1)	1738(1)	25(1)
C(19)	3252(6)	5126(4)	1327(3)	35(2)	Sn(6)	-1(1)	7551(1)	3125(1)	25(1)
C(20)	2385(7)	4545(5)	825(3)	45(2)	Sn(7)	1161(1)	9661(1)	3327(1)	24(1)
C(21)	2473(8)	3801(5)	387(4)	55(2)	V(1)	1243(1)	5855(1)	2842(1)	26(1)
C(22)	3414(7)	3662(5)	443(4)	55(2)	V(2)	2376(1)	8536(1)	4402(1)	26(1)
C(23)	4269(8)	4226(6)	935(6)	69(3)	V(3)	2048(1)	7792(1)	1241(1)	26(1)
C(24)	4190(7)	4960(5)	1381(5)	57(2)	V(4)	2850(1)	9574(1)	2298(1)	25(1)
C(25)	5816(5)	9111(4)	2531(3)	28(1)	0(1)	565(4)	4913(3)	2965(2)	38(1)
C(26)	5857(6)	9914(5)	2346(4)	39(2)	0(2)	462(4)	6526(3)	2685(2)	32(1)

C(27)	6753(7)	10395(5)	2254(4)	54(2)	0(3)	1705(4)	5633(3)	2139(2)	30(1)
C(28)	7601(7)	10083(5)	2348(4)	49(2)	O(4)	2268(4)	6345(3)	3567(2)	32(1)
C(29)	7599(7)	9309(6)	2548(4)	53(2)	0(5)	1211(4)	7781(3)	4053(2)	34(1)
C(30)	6705(5)	8830(4)	2627(4)	35(1)	0(6)	3347(4)	8199(3)	4171(2)	32(1)
C(31)	4547(6)	6881(4)	4642(3)	36(2)	0(7)	2254(4)	9462(3)	4143(2)	31(1)
C(32)	4428(10)	7284(9)	5274(4)	89(4)	O(8)	2737(4)	8789(3)	5326(2)	42(1)
C(33)	4949(11)	7142(11)	5911(5)	102(5)	0(9)	2345(4)	6812(3)	1263(2)	30(1)
C(34)	5518(9)	6531(7)	5898(5)	78(3)	0(10)	645(4)	7296(3)	1287(2)	30(1)
C(35)	5676(8)	6164(6)	5298(5)	69(3)	0(11)	1621(3)	8855(3)	1635(2)	25(1)
C(36)	5185(7)	6323(6)	4668(4)	55(2)	0(12)	3295(3)	8550(3)	1850(2)	26(1)
C(37)	-801(6)	8530(4)	812(3)	33(1)	0(13)	1971(4)	7888(3)	462(2)	37(1)
C(38)	-1761(6)	8685(5)	789(4)	45(2)	0(14)	2330(4)	10080(3)	2886(2)	30(1)
C(39)	-2310(8)	8922(6)	215(4)	60(2)	0(15)	3926(3)	9420(3)	3052(2)	25(1)
C(40)	-1902(9)	9007(7)	-326(5)	74(3)	0(16)	3365(4)	10344(3)	1986(2)	36(1)
C(41)	-974(9)	8853(7)	-317(4)	71(3)	0(17)	3265(3)	7381(2)	2744(2)	23(1)
C(42)	-406(7)	8624(6)	253(4)	53(2)	0(18)	962(3)	8397(2)	2758(2)	24(1)
C(43)	-1268(5)	6792(4)	3386(3)	29(1)	0(19)	4467(4)	7153(3)	1976(2)	31(1)
C(44)	-2190(6)	7012(5)	3301(4)	41(2)	0(20)	5038(3)	8042(3)	3583(2)	29(1)
C(45)	-3039(7)	6459(6)	3397(4)	55(2)	0(21)	3909(4)	6035(3)	2967(2)	34(1)
C(46)	-2957(7)	5702(5)	3599(4)	52(2)	0(22)	160(3)	9606(3)	2337(2)	26(1)
C(47)	-2038(7)	5485(5)	3695(4)	47(2)	0(23)	-106(4)	8845(3)	3561(2)	28(1)
C(48)	-1203(6)	6023(4)	3586(3)	34(1)	0(24)	-926(4)	7590(3)	2104(2)	30(1)
C(49)	1136(5)	10902(4)	3898(3)	27(1)	0(25)	-1570(5)	2143(3)	1783(3)	57(2)
C(50)	2043(6)	11458(4)	4354(3)	42(2)	0(26)	3634(8)	8072(6)	-1265(5)	111(3)
C(51)	2063(7)	12276(5)	4739(4)	51(2)	0(27)	4540(30)	10620(30)	1011(19)	409(18)
C(52)	1151(7)	12518(4)	4662(3)	44(2)	0(28)	3890(30)	8430(30)	50(20)	400(18)

Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]:

	Bindungslängen							
Sn(1)-C(1)	2,119(7)	Sn(2)-O(17)	2,080(4)	Sn(7)-O(18)	2,072(4)			
Sn(1)-C(7)	2,128(6)	Sn(2)-O(21)	2,150(4)	Sn(7)-O(14)	2,083(4)			
Sn(1)-C(13)	2,142(8)	Sn(2)-O(19)	2,152(5)	Sn(7)-O(7)	2,089(4)			
Sn(2)-C(19)	2,144(6)	Sn(3)-O(17)	2,056(4)	Sn(7)-O(22)	2,129(4)			
Sn(3)-C(25)	2,129(6)	Sn(3)-O(12)	2,071(4)	Sn(7)-O(23)	2,157(4)			
Sn(4)-C(31)	2,120(6)	Sn(3)-O(20)	2,119(4)	V(1)-O(1)	1,693(4)			
Sn(5)-C(37)	2,132(6)	Sn(3)-O(15)	2,127(4)	V(1)-O(4)	1,702(4)			
Sn(6)-C(43)	2,145(6)	Sn(3)-O(19)	2,139(4)	V(1)-O(2)	1,708(4)			
Sn(7)-C(49)	2,134(5)	Sn(4)-O(17)	2,054(4)	V(1)-O(3)	1,718(4)			
C(55)-O(25)	1,460(10)	Sn(4)-O(4)	2,072(5)	V(2)-O(5)	1,690(5)			
C(56)-O(21)	1,444(8)	Sn(4)-O(6)	2,079(4)	V(2)-O(6)	1,696(4)			
C(57)-O(19)	1,438(8)	Sn(4)-O(20)	2,155(4)	V(2)-O(7)	1,696(4)			
C(58)-O(10)	1,449(8)	Sn(4)-O(21)	2,175(4)	V(2)-O(8)	1,772(4)			
C(59)-O(22)	1,437(7)	Sn(5)-O(11)	2,073(4)	V(3)-O(13)	1,603(4)			
C(60)-O(24)	1,412(8)	Sn(5)-O(18)	2,092(4)	V(3)-O(9)	1,721(4)			
C(61)-O(23)	1,425(7)	Sn(5)-O(24)	2,113(4)	V(3)-O(12)	1,870(4)			
C(62)-O(15)	1,440(7)	Sn(5)-O(10)	2,117(4)	V(3)-O(10)	1,966(5)			
C(63)-O(8)	1,409(9)	Sn(5)-O(22)	2,143(4)	V(3)-O(11)	2,025(4)			
C(64)-O(20)	1,428(8)	Sn(5)-Sn(7)	3,2945(8)	V(3)-V(4)	3,0458(14)			
C(65)-O(28)	1,68(4)	Sn(6)-O(2)	2,038(4)	V(4)-O(16)	1,601(4)			
C(65)-O(27)	1,83(4)	Sn(6)-O(18)	2,060(4)	V(4)-O(14)	1,716(4)			
Sn(1)-O(1)	2,096(4)	Sn(6)-O(5)	2,116(4)	V(4)-O(11)	1,875(4)			
Sn(2)-O(3)	2,065(4)	Sn(6)-O(23)	2,161(4)	V(4)-O(15)	1,961(4)			
Sn(2)-O(9)	2,078(4)	Sn(6)-O(24)	2,186(4)	V(4)-O(12)	2,027(4)			

Bindungswinkel							
O(28)-C(65)-O(27)	178(3)	C(37)-Sn(5)-O(22)	92,07(19)	O(9)-V(3)-V(4)	131,45(14)		
O(1) - Sn(1) - C(1)	96,6(2)	O(11) - Sn(5) - Sn(7)	84,32(11)	O(12)-V(3)-V(4)	40,49(12)		
O(1) - Sn(1) - C(7)	92,7(2)	O(18) - Sn(5) - Sn(7)	37,48(10)	O(10)-V(3)-V(4)	105,11(12)		
C(1)-Sn(1)-C(7)	115,9(3)	O(24) - Sn(5) - Sn(7)	88,35(11)	O(11)-V(3)-V(4)	36,92(12)		
O(1)-Sn(1)-C(13)	93,3(2)	O(10) - Sn(5) - Sn(7)	127,85(12)	O(16) - V(4) - O(14)	104,6(2)		
C(1)-Sn(1)-C(13)	125,3(3)	C(37) - Sn(5) - Sn(7)	131,42(16)	O(16) - V(4) - O(11)	109,4(2)		
C(7) - Sn(1) - C(13)	117,2(3)	O(22)-Sn(5)-Sn(7)	39,39(10)	O(14) - V(4) - O(11)	98,9(2)		

Kristall struktur unter such ungen

O(3) - Sn(2) - O(9)	91,56(17)	O(2) - Sn(6) - O(18)	90.14(16)	O(16) - V(4) - O(15)	108.5(2)
O(3) - Sn(2) - O(17)	91,80(15)	O(2) - Sn(6) - O(5)	89.54(17)	O(14) - V(4) - O(15)	91,44(18)
O(9) - Sn(2) - O(17)	87 06(15)	O(18) - Sn(6) - O(5)	$90 \ 07(17)$	O(11) - V(4) - O(15)	136 51(17)
O(2) - Sn(2) - O(19)	07,00(13)	O(10) - Sn(6) - O(12)	97 5(2)	O(16) - V(4) - O(12)	101.6(2)
O(3) - SII(2) - C(19)	$\frac{97,0(2)}{100,2(2)}$	O(2) - SII(0) - C(43)	$\frac{97, 5(2)}{166, 0(2)}$	O(10) - V(4) - O(12)	101,0(2)
O(3) - SII(2) - C(13)	100,3(2)	O(18) - SII(0) - C(43)	100, 9(2)	O(14) - V(4) - O(12)	10(10)
O(17) - SII(2) - C(19)	107,9(2)	O(3) - SII(6) - C(43)	100,0(2)	O(11) - V(4) - O(12)	77,10(17) 75,00(16)
O(3) - Sn(2) - O(21)	89,80(18) 160 FF(1F)	O(2) - Sil(6) - O(23)	164,33(18)	O(15) - V(4) - O(12)	/5,08(10)
O(9) - Sn(2) - O(21)	162,55(15)	O(18) - Sn(6) - O(23)	/5,09(15)	O(16) - V(4) - V(3)	112,38(17)
O(17) - Sn(2) - O(21)	75,51(15)	O(5) - Sn(6) - O(23)	85,37(16)	O(14) - V(4) - V(3)	131,83(16)
C(19) - Sn(2) - O(21)	96,7(2)	C(43) - Sn(6) - O(23)	97,99(19)	O(11) - V(4) - V(3)	40,46(12)
O(3) - Sn(2) - O(19)	166,66(15)	O(2) - Sn(6) - O(24)	91,32(16)	O(15) - V(4) - V(3)	104,39(12)
O(9) - Sn(2) - O(19)	84,04(17)	O(18) - Sn(6) - O(24)	73,78(16)	O(12) - V(4) - V(3)	36,79(13)
O(17) - Sn(2) - O(19)	75,44(15)	O(5) - Sn(6) - O(24)	163,82(17)	V(1) - O(1) - Sn(1)	143,0(3)
C(19) - Sn(2) - O(19)	95,6(2)	C(43) - Sn(6) - O(24)	95,3(2)	V(1) - O(2) - Sn(6)	144,8(2)
O(21) - Sn(2) - O(19)	90,70(18)	O(23) - Sn(6) - O(24)	89,53(15)	V(1) - O(3) - Sn(2)	129,3(2)
O(17) - Sn(3) - O(12)	87,19(16)	O(18) - Sn(7) - O(14)	87,28(15)	V(1) - O(4) - Sn(4)	131,7(2)
O(17) - Sn(3) - O(20)	73,61(16)	O(18) - Sn(7) - O(7)	89,39(15)	V(2) - O(5) - Sn(6)	133,0(2)
O(12)-Sn(3)-O(20)	156,06(17)	O(14) - Sn(7) - O(7)	89,21(17)	V(2) - O(6) - Sn(4)	144,1(3)
O(17) - Sn(3) - O(15)	95,72(15)	O(18)-Sn(7)-O(22)	77,08(15)	V(2)-O(7)-Sn(7)	131,4(2)
O(12)-Sn(3)-O(15)	70,76(15)	O(14) - Sn(7) - O(22)	84,04(16)	C(63)-O(8)-V(2)	125,5(5)
O(20) - Sn(3) - O(15)	96,58(15)	O(7) - Sn(7) - O(22)	165,12(15)	V(3)-O(9)-Sn(2)	137,8(2)
O(17) - Sn(3) - C(25)	166,58(19)	O(18)-Sn(7)-C(49)	171,8(2)	C(58)-O(10)-V(3)	124,6(4)
O(12) - Sn(3) - C(25)	102,9(2)	O(14) - Sn(7) - C(49)	99,8(2)	C(58)-O(10)-Sn(5)	128,5(4)
O(20)-Sn(3)-C(25)	98,5(2)	O(7) - Sn(7) - C(49)	94,84(19)	V(3) - O(10) - Sn(5)	106,57(19)
O(15)-Sn(3)-C(25)	95,95(19)	O(22) - Sn(7) - C(49)	99,36(19)	V(4) - O(11) - V(3)	102,61(19)
O(17) - Sn(3) - O(19)	76,21(16)	O(18) - Sn(7) - O(23)	74,94(15)	V(4) - O(11) - Sn(5)	130,6(2)
O(12)-Sn(3)-O(19)	93,42(16)	O(14) - Sn(7) - O(23)	162,13(15)	V(3) - O(11) - Sn(5)	106,05(18)
O(20) - Sn(3) - O(19)	95,65(16)	O(7) - Sn(7) - O(23)	92,34(17)	V(3) - O(12) - V(4)	102,73(19)
O(15)-Sn(3)-O(19)	162,79(17)	O(22) - Sn(7) - O(23)	90,13(16)	V(3) - O(12) - Sn(3)	131,3(2)
C(25)-Sn(3)-O(19)	94,2(2)	C(49)-Sn(7)-O(23)	97,8(2)	V(4) - O(12) - Sn(3)	106,92(17)
O(17) - Sn(4) - O(4)	90,71(16)	O(18) - Sn(7) - Sn(5)	37,92(10)	V(4) - O(14) - Sn(7)	135,0(2)
O(17) - Sn(4) - O(6)	90,38(15)	O(14) - Sn(7) - Sn(5)	79,46(11)	C(62) - O(15) - V(4)	124,6(4)
O(4) - Sn(4) - O(6)	88,89(18)	O(7) - Sn(7) - Sn(5)	125,92(11)	C(62) - O(15) - Sn(3)	126,8(4)
O(17) - Sn(4) - C(31)	167.7(2)	O(22) - Sn(7) - Sn(5)	39,71(10)	V(4) - O(15) - Sn(3)	107.23(18)
O(4) - Sn(4) - C(31)	100.0(2)	C(49) - Sn(7) - Sn(5)	139.07(16)	Sn(4) = O(17) = Sn(3)	109.57(18)
O(6) - Sn(4) - C(31)	95.9(2)	O(23) - Sn(7) - Sn(5)	85.26(10)	Sn(4) = O(17) = Sn(2)	106.53(16)
O(17) - Sn(4) - O(20)	72.90(15)	O(1) - V(1) - O(4)	108.2(2)	Sn(3) = O(17) = Sn(2)	106.09(16)
O(4) - Sn(4) - O(20)	163 11(15)	O(1) - V(1) - O(2)	1097(2)	Sn(6) = O(18) = Sn(7)	106,93(16)
O(6) - Sn(4) - O(20)	87 19(18)	O(4) - V(1) - O(2)	111 4(2)	Sn(6) = O(18) = Sn(5)	108, 13(19)
C(31) - Sn(4) - O(20)	96 7(2)	O(1) - V(1) - O(3)	110, 6(2)	Sn(7) = O(18) = Sn(5)	100, 10(15) 104, 59(16)
O(17) - Sn(4) - O(21)	75, 50(15)	O(4) - V(1) - O(3)	1084(2)	C(57) = O(19) = Sn(3)	121 0(4)
O(4) - Sn(4) - O(21)	87 15(18)	O(2) - V(1) - O(3)	108, 5(2)	C(57) = O(19) = Sn(2)	122,5(4)
O(6) - Sn(4) - O(21)	165 27(16)	O(5) - V(2) - O(6)	113 5(2)	Sn(3) = O(19) - Sn(2)	10078(18)
C(31) = Sn(4) = O(21)	98 8(2)	O(5) - V(2) - O(0)	115, 5(2) 106 8(2)	C(64) = O(20) = Sn(2)	128 8(4)
O(20) - Sn(4) - O(21)	90,0(2)	O(5) - V(2) - O(7)	110, 0(2)	C(64) = O(20) = Sn(4)	120,0(4)
O(20) - SII(4) - O(21)	92, 51(17) 95 17(16)	O(6) - V(2) - O(7)	110,9(2)	C(04) = O(20) = SII(4)	124, 2(4) 102 57(10)
O(11) - Sn(5) - O(18)	155,17(10)	O(5) - V(2) - O(8)	111,0(2)	G(56) = O(21) = Sn(4)	103, 57(10)
O(11) - SII(3) - O(24)	155,01(10)	O(8) - V(2) - O(8)	100,0(2)	C(36) = O(21) = SII(2)	110,0(4)
O(18) - Sn(5) - O(24)	74,08(10) 71 FC(1C)	O(7) = V(2) = O(8)	108,5(2)	C(56) = O(21) = SII(4)	122,4(4)
O(11) - Sn(5) - O(10)	/1,50(10) 02 (2)(15)	O(13) - V(3) - O(9)	104,8(2)	SH(2) = O(21) = SH(4)	100,01(10)
O(10) - SII(5) - O(10)	93,02(15) 04 75(16)	O(13) - V(3) - O(12)	$\perp \cup \forall, \angle (\angle)$	C(59) - O(22) - Sn(7)	$\perp \angle \perp$, $\angle (4)$
O(24) - Sn(5) - O(10)	74,/5(10)	O(9) - V(3) - O(12)	90,14(19) 100 2(2)	C(59) - O(22) - Sn(5)	100, 00(10)
O(11) - Sn(5) - C(37)	101,3(Z)	U(13) - V(3) - U(10)	$\perp \cup \heartsuit$, \Im (\angle)	Sin(7) = O(22) = Sin(5)	TOO'AO(TP)
U(18) - Sn(5) - C(37)	101 E(2)	U(9) - V(3) - U(10)	91,8(2)	$C(b_{\perp}) - O(23) - Sn(7)$	102 0(4)
U(24) - Sn(5) - C(37)	IUI,5(2)	$\cup (12) - \vee (3) - \cup (10)$	13/,U3(17)	$C(b_{\perp}) = O(23) = Sn(6)$	123,2(4)
U(10) - Sn(5) - C(37)	98,9(2)	U(13) - V(3) - O(11)	IUI,12(19)	Sn(7) = O(23) = Sn(6)	100,51(17)
U(11) - Sn(5) - O(22)	93,84(16)	U(9) - V(3) - O(11)	153,71(17)	C(60) - O(24) - Sn(5)	126,3(4)
U(18) - Sn(5) - O(22)	76,33(14)	O(12) - V(3) - O(11)	77,26(17)	C(60) - O(24) - Sn(6)	128,0(4)
U(24) - Sn(5) - O(22)	95,54(16)	U(10) - V(3) - O(11)	75,72(17)	Sn(5) - O(24) - Sn(6)	102,90(19)
O(10) - Sn(5) - O(22)	163,14(17)	O(13) - V(3) - V(4)	111,92(17)	1	

Anhang

A. Verwendete Abkürzungen

A.1 Bezeichnungen für Moleküle und Molekülgruppen

Bz	Benzyl	$-CH_2(C_6H_5)$
^t Bu	tertiär-Butyl	$-C(CH_3)_3$
c-Hex	Cyclohexyl	$-C_6H_{11}$
Mes	Mesityl	$-C_6H_2(CH_3)_3$
Me	Methyl	-CH ₃
Nep	Neopentyl	$-C_5H_{11}$
Ph	Phenyl	$-C_{6}H_{5}$
ⁱ Pr	<i>iso</i> -Propyl	$-CH(CH_3)_2$
o-Tol	ortho-Tolyl	$-C_{6}H_{4}(CH_{3})$
<i>p</i> -Tol	para-Tolyl	$-C_{6}H_{4}(CH_{3})$
DMF	N,N-Dimethylformamid	HCON(CH ₃) ₂
DMSO	Dimethylsulfoxid	C ₂ H ₆ OS
THF	Tetrahydrofuran	C_4H_8O

A.2 Indizierung der IR- und NMR-Spektren

IR	Infrarot
NMR	Kernmagnetische Resonanz
ν	Valenzschwingung
γ	Deformationsschwingung aus der Ebene
δ	Deformationsschwingung (Beugungsschwingung)
w	schwach
m	mittel
S	stark
VS	sehr stark
sh	Schulter

A.3 Sonstige Abkürzungen

- [X] Literaturstelle
- (X) Reaktionsgleichung
- Smp. Schmelzpunkt
- RT Raumtemperatur

B. Verzeichnis der Verbindungen

1	$[(Ph_3Sn)_3VO_4]$
1c	$[(Ph_3Sn)_{18}(VO_4)_6 \cdot 6 C_6H_6]$
2	$[(Bz_3Sn)_2)MoO_4 \cdot DMF]$
3	$[(Ph_3Sn)_{18}(PO_4)_6 \cdot 2C_6H_6]$
4	$(Ph_3Sn)_3AsO_3$
5	$[(Ph_3Sn)_3AsO_3 \cdot (Ph_3Sn)_2O]$
<u>-</u>	$[(CO)_4 \text{FeAs}(OSnPh_2)_2]$
<u> </u>	$[(Ph_2Sn)_2(Ph_2SnOH)AsO_4]_2$
<u>/</u> 8a	$[(Ph_{3}Sn)_{2}(Ph_{2}SnO1)/Photometry (Ph_{3}SnO2)]$
<u>0a</u> 8h	$[(\text{In}_{3}\text{Si}_{2}\text{Si}_{2}\text{Si}_{3}\text{Circ}_{3}]$
00	$\begin{bmatrix} (\Pi_3 S \Pi)_2 S C O_3 & D V \Pi^2 \end{bmatrix}$
<u>9a</u>	$tras-[(Pn_3SnO)_4 Te(OH)_2]$
<u>9b</u>	cis-[(Ph ₃ SnO) ₄ Te(OH) ₂]
<u>10</u>	$tras-[(Ph_3SnO)_2Te(OMe)_4]$
<u>11</u>	[Ti(OSnPh ₃) ₄]
<u>12</u>	Ph ₃ SnO ⁱ Pr
13	$[(MeO)_2Ti(acac)_2]$
14	$[(Ph_3SnO)Ti(acac)_2]_2O$
15	$[Pb_6O_4(\mu_3-OPh_3Sn)_4]$
16	Ph ₃ SnN(SiMe ₃) ₂
17	$[Co{Co(NSi_2Me_6)}_2(\mu-OSnPh_3)_4]$
18	Ph_2SnO^tBu
10	$[(PhSn)_{c}(PhsSnO)(OMe)_{c}(VO_{c})_{c}$
17	

- Ph₃SnN(SiMe₃)₂
- $[Co{Co(NSi_2Me_6)}_2(\mu-OSnPh_3)_4]$
- Ph₃SnO^tBu
- $[(PhSn)_6(Ph_3SnO)(OMe)_9(VO_3)_2(VO_4)_2]$

C. Verzeichnis der Abbildungen

Abb. 1.	Koordinationspolyeder für vier-, fünf- und sechsfach koordiniertes Zinn	3
Abb. 2.	Molekülstruktur von 1c mit Schwingungsellipsoiden (Aufenthaltswahr-	
	scheinlichkeit 50 %; nur ipso-Kohlenstoffatome der Phenylgruppen dargestellt)	. 10
Abb. 3.	Ausrichtung der VO ₄ -Tetraeder in 1a und 1c (O- und Sn-Atome mit	
	Schwingungsellipsoiden; Aufenthaltswahrscheinlichkeit 50 %)	. 12
Abb. 4.	Strukturausschnitt von 2	. 15
Abb. 5.	Elementarzelle und Strukturausschnitt von 2 mit Blick in Richtung der ab-	
	Flächendiagonalen (Darstellung ohne Phenylgruppen)	. 16
Abb. 6.	Ausschnitt aus der Struktur von 2 mit Blickrichtung entlang der	
	kristallographischen a- bzw. c-Achse	. 16
Abb. 7.	Ausrichtung der Benzylgruppen in 2 mit Schwingungsellipsoiden (Aufenthalts-	
	wahrscheinlichkeit 50 %; Blick entlang der O-Sn-Bindung)	. 18
Abb. 8.	Molekülstruktur von 3 mit Schwingungsellipsoiden (Aufenthaltswahrschein-	
	lichkeit 50 %; nur ipso-Kohlenstoffatome der Phenylgruppen dargestellt)	. 25
Abb. 9.	Ausrichtung der Ph ₃ SnO-Gruppen in 1c und 3	. 27
Abb. 10.	Vanadium- bzw. Phosphorgerüst in 1c und 3	. 27
Abb. 11.	119 Sn-NMR-Spektrum von 4 in C ₆ D ₆	. 29
Abb. 12.	DTA und DTG von 4	. 30
Abb. 13.	Molekülstruktur von 4 (ohne H-Atome) mit Schwingungsellipsoiden	
	(Aufenthaltswahrscheinlichkeit 50 %)	. 31
Abb. 14.	Ausschnitt aus der Kristallstruktur von 5 mit 2 Elementarzellen (nur ipso-	
	Kohlenstoffatome dargestellt)	. 33
Abb. 15.	Struktureinheiten von 5 (ohne H-Atome) mit Schwingungsellipsoiden	
	(Aufenthaltswahrscheinlichkeit 50 %)	. 34
Abb. 16.	Molekülstruktur von 6 mit Schwingungsellipsoiden (Aufenthalts-	
	wahrscheinlichkeit 50 %)	. 38
Abb. 17.	Strukturausschnitt von 6 mit Schwingungsellipsoiden (Aufenthaltswahr-	
	scheinlichkeit 50%; nur <i>ipso</i> -Kohlenstoffatome der Ph ₃ Sn-Gruppen)	. 39
Abb. 18.	Molekülstruktur von 7 (ohne H-Atome) mit Schwingungsellipsoiden	
	(Aufenthaltswahrscheinlichkeit 50 %).	. 43
Abb. 19.	Zentraleinheit von 7 in Polyederdarstellung (AsO ₄ -Tetraeder dunkel; C ₃ SnO-	
	Tetraeder, C ₃ SnO ₂ -Bipyramiden und C ₂ SnO ₄ -Oktaeder hell)	. 44
Abb. 20.	Strukturausschnitt von 7 (ohne H-Atome) mit Schwingungsellipsoiden (Aufent-	
	haltswahrscheinlickeit 50 %; nur ipso-Kohlenstoffatome der Phenylgruppen)	. 45
Abb. 21.	Thermogravimetrische Untersuchung von 7	. 47
Abb. 22.	Thermogravimetrische Untersuchung vom Rohprodukt der Umsetzung von	
	Ph ₃ SnOH mit As ₂ O ₅	. 48
Abb. 23.	Ausschnitt aus der Kettenstruktur von 8a mit Schwingungsellipsoiden	
	(Aufenthaltswahrscheinlichkeit 50 %; nur <i>ipso</i> -Kohlenstoffatome)	. 50
Abb. 24.	Strukturausschnitt von 8a in Polyederdarstellung (SeO ₃ -Pyramiden: dunkel,	
	C ₃ SnO-Tetraeder und C ₃ SnO ₂ -Bipyramiden: hell)	. 51
Abb. 25.	Strukturausschnitt von 8b mit eingezeichneter Elementarzelle und	
	Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %)	. 52
Abb. 26.	Molekülstruktur von 9a (ohne H-Atome) mit Schwingungsellipsoiden	. 57
Abb. 27.	Packung von 9a im Kristall (nur <i>ipso</i> -Kohlenstoffatome) mit teilweise	-
	eingezeichneten TeO ₆ -Oktaedern.	. 58

Abb. 2	8. Molekülstruktur von 9b mit Schwingungsellipsoiden (Aufenthaltswahr-	
	scheinlichkeit 50 %)	. 59
Abb. 2	9. Ausschnitt aus der Struktur von 9b mit Schwingungsellipsoiden (Aufenthalts-	
	wahrscheinlichkeit 50 %) und eingezeichneter Elementarzelle	
	(nur Te-, Sn- und O-Atome)	. 60
Abb. 3	0. ¹²⁵ Te-NMR Spektrum von 10 in C_6D_6	. 62
Abb. 3	1. Ergebnis der thermogravimetrischen Untersuchung von 10	. 63
Abb. 3	2. Elementarzelle von 10 mit den zwei kristallographisch unabhängigen	
	Molekülen; Schwingungsellipsoide (Aufenthaltswahrscheinlichkeit 50 %)	. 64
Abb. 3	3. Molekülstruktur von 10 mit Schwingungsellipsoiden (Aufenthaltswahr-	
	scheinlichkeit 50 %)	. 65
Abb. 3	4. Orientierung der Phenylgruppen in 10 (Blickrichtung entlang der	
	Sn–O-Bindung)	. 66
Abb. 3	5. ⁴⁷ Ti-NMR Spektrum von 11	. 69
Abb. 3	6. Ergebnis der thermogravimetrischen Untersuchung von 11	. 70
Abb. 3	7. Molekülstruktur von 10 (ohne H-Atome) mit Schwingungsellipsoiden	
	(Aufenthaltswahrscheinlichkeit 50 %)	.71
Abb. 3	8. Molekülstruktur von 12 mit Schwingungsellipsoiden (Aufenthaltswahr-	
	scheinlichkeit 50 %)	.74
Abb. 3	9. Elementarzelle von 13 mit zwei Paaren von drei unabhängigen Molekülen mit	
	Schwingungsellipsoiden (Aufenthaltswahrscheinlichkeit 50 %)	. 76
Abb. 4	0. Strukturmodell von 13 mit Schwingungsellipsoiden (Aufenthaltswahr-	
	scheinlichkeit 50 %)	.77
Abb. 4	1. Molekülstruktur von 14 mit Schwingungsellipsoiden (Aufenthaltswahr-	
	scheinlichkeit 50 %)	. 78
Abb. 4	2. Zentraleinheit von 14 in Polyederdarstellung (TiO ₆ -Oktaeder hell;	
	C ₃ SnO-Tetraeder dunkel)	. 79
Abb. 4	3. Molekülstruktur von 15 mit Schwingungsellipsoiden (Aufenthaltswahr-	
	scheinlichkeit 50 %)	. 81
Abb. 4	4. Strukturausschnitt von 15 mit eingezeichnetem Pb ₆ -Oktaeder (Schwingungs-	
	ellipsoide, Aufenthaltswahrscheinlichkeit 50%; nur ipso-Kohlenstoffatome)	. 82
Abb. 4	5. Molekülstruktur von 16 mit Schwingungsellipsoiden (Aufenthaltswahr-	
	scheinlichkeit 50 %)	. 84
Abb. 4	6. Strukturmodell von 17 (Sn–O- und Co–O-Bindungen dunkel)	. 86
Abb. 4	7. Strukturausschnitt von 17 mit Schwingungsellipsoiden (Aufenthaltswahr-	
	scheinlichkeit 50 %; nur ipso-Kohlenstoffatome)	. 87
Abb. 4	8. Molekülstruktur von 18 mit Schwingungsellipsoiden (Aufenthalts-	
	wahrscheinlichkeit 50 %)	. 90
Abb. 4	9. Strukturmodel von 19 mit Schwingungsellipsoiden (Aufenthaltswahr-	
	scheinlichkeit 50 %; C19, 25, 31, 37, 43, 49: ipso-C-Atome der PhSn-Gruppen).	. 91
Abb. 5	0. Strukturmodell von 19 (V-Atome in Polyederdarstellung; Sn Schwarz; O Grau;	
	C Weiß)	. 92
Abb. 5	1. Strukturausschnitt von 19 (Sn-Atome in Polvederdarstellung: V Weiß: O Grau:	.93
Abb. 5	2. Wasserstoffbrücken in 19 (C65, O27, O28: fehlgeordnetes Methanol)	.95
Abb. 5	3. Strukturausschnitt von 19 mit Wasserstoffbrückennetzwerk (grau) in (1 =	
	koordiniertes MeOH, 2 = Wasser, 3 = fehlgeordnetes MeOH)	.96
Abb. 5	4. IR-Spektrum von 1c	110
Abb. 5	5. IR-Spektrum von 2	111
Abb. 5	6. IR-Spektrum von 3	112
	1	

Abb. 57.	IR-Spektrum von 4	114
Abb. 58.	IR-Spektrum von 5	115
Abb. 59.	IR-Spektrum von 6	116
Abb. 60.	IR-Spektrum von 7	118
Abb. 61.	IR-Spektrum von 8a	119
Abb. 62.	IR-Spektrum von 8b	120
Abb. 63.	IR-Spektrum von 9a	121
Abb. 64.	IR-Spektrum von 10	123
Abb. 65.	IR-Spektrum von 11	124
Abb. 66.	IR-Spektrum von 14	126
Abb. 67.	IR-Spektrum von 13	127
Abb. 68.	IR-Spektrum von 16	129
Abb. 69.	IR-Spektrum von 19	131

D. Verzeichnis der Tabellen

Tab. 1.	Vergleich von Bindungswinkeln [°] in 1a und 1c	12
Tab. 2.	Elementaranalysen von [(Bz ₃ Sn) ₂ MoO ₄ · DMF] und [(Bz ₃ Sn) ₃ VO ₄]	13
Tab. 3.	Mo-O-Bindungslängen ausgewählter Verbindungen [Å]	19
Tab. 4.	Ausgewählte Bindungslängen [Å] in [(Ph ₃ Si) ₃ VO ₄] und [(Ph ₃ Si) ₃ PO ₄]	28
Tab. 5.	CO-Bandenlagen ausgewählter Verbindungen des Typs LFe(CO) ₄	37
Tab. 6.	Ausgewählte Bindungslängen [Å] von Verbindungen des Typs [(CO) ₄ FeL]	41
Tab. 7.	Sn–O-Bindungslängen [Å] entlang der Sn–O–As-Bindung im Vergleich	45
Tab. 8.	Ausgewählte Bindungslängen [Å] in 8a und 8b	51
Tab. 9.	Sn–O(DMF)-Bindungslängen [Å] und vCO-Frequenzen [cm ⁻¹] ausgewählter	
	Verbindungen im Vergleich	53
Tab. 10.	Ausgewählte Te–O-Abstände [Å] von 9a, 9b und 10	65
Tab. 11.	M-O-Bindungslängen [Å] ($M = Si, Sn, Te$) ausgewählter	
	Verbindungen im Vergleich	67
Tab. 12.	Ausgewählte Bindungsparameter von Verbindungen des Typs (Ph ₃ MO) ₄ Ti	
	(M = Si, Ge, Sn)	72
Tab. 13.	Co-N- und Co Co-Abstände [Å] ausgewählter Verbindungen	87
Tab. 14.	Ausgewählte Bindungslngen [Å] in 19	95

E. Literaturverzeichnis

- [1] V. Chandrasekhar, S. Nagendran, V. Daskar, *Coordination Chemistry Reviews* **2002**, 235, 1.
- [2] H. W. Roesky, I. Haiduc, N. S. Hosmane, *Chem. Rev.* 2003, 103, 2579.
- [3] F. Rosenland, K. Merzweiler Z. Anorg. Allg. Chem. 2001, 629(10), 2403.
- [4] M. Kondrazka, Dissertation, Martin Luther Universität Halle/Saale, 2004.
- [5] M. Kondrazka, T. Herntrich, K. Merzweiler, Z. Anorg. Allg. Chem. 2004, 630, 1798.
- [6] V. Chandrasekhar, V. Baskar, R. Boomishankar, K. Gopal, S. Zacchini, J. F. Bickley, A. Steiner, *Organometallics* **2003**, 22, 3710.
- [7] R. O. Day, V. Chandrasekhar, K. C. Kumara Swamy, J. M. Holmes, S. D. Burton, R. R. Holmes, *Inorg. Chem.* 1988, 27, 2887.
- [8] M. Abrantes, A. A. Valente, M. Pillinger, I. S. Gonçalves, J. Rocha, C. C. Romão, *Chem. Eur. J.* **2003**, 9, 2685.
- [9] K. Sakamoto, Y. Hamada, H. Akashi, A.Orita, J. Otera, *Organometallics*. **1999**, 18, 18, 3555.
- [10] A. Orita, Y. Hamada, T. Nakano, S. Toyoshima, J. Otera, *Chem. Eur. J.* **2001**, 7, 15, 3321.
- [11] Q. J. Fu, A. M. Steele, S. C. Tsang, *Green Chmistry*. 2001, 3, 71.
- [12] F. Iwasaki, T. Maki, O. Onomura, W. Nakashima, Y. Matsumura, *J. Org. Chem.* **2000**, 65, 996.
- [13] J. H. Li, B. X. Tang, L. M. Tao, Y.X. Xie, Y. Liang, M. B. Zhang, J. Org. Chem. 2006, 71, 7488.
- [14] J. Beckmann, D. Dakternieks, A. Duthie, N. A. Lewcenko, C. Mitchell, *Angew. Chem. Int. Ed.* **2004**, 43, 6683.
- [15] D. J. Teff, J. C. Huffman, K. G. Caulton, J. Am. Chem. Soc. 1996, 118, 4030.
- [16] L. C. Klein, Sol-Gel Technology for Thin Films, Fibres, Preforms, Electronics and Speciality Shapes; Noyes Publications; Park Ridge, NJ, **1988**.
- [17] M. M. Oliveira, D. C. Schnitzler, A. J. G. Zarbin, *Chem. Mater.* **2003**, 15,1903.
- [18] S. Mahanty, S. Roy, S. Sen, J. Cryst. Growth 2004, 261, 77.
- [19] S. K. Zheng, T. M. Wang, W. C. Hao, R. Shen, *Vaccuum* 2002, 65, 155.
- [20] Y. Cao, W. Yang. W. Zhang, G. Liu, P. Yue, New J. Chem. 2004, 28, 218.
- [21] J. Lin, C. Yu, D. Lo, S. K. Lam, J. Catal. 1999, 183, 368.
- [22] S. K. Kulshreshtha, R. Sasikala, V. Sudarsan, J. Mater. Chem. 2001, 11, 930.
- [23] P. R. Santos, M. R. Cassia-Santos, L. G. P. Simoes, J. W. Gomes, E. Longo, J. Am. Ceram. Soc. 2002, 85, 225.
- [24] L. B. Kong, J. Ma, H. Huang, J. Alloys Compd. 2002, 336, 315.
- [25] A. Ovenston, D. Sprinceana, J. R. Walls, M. Caldararu, *Journal of Material Science*, 1994, 29, 4946.
- [26] Y. Hirao, C. Yokoyama, M. Misono, *Chem. Commun.* 1996, 597.
- [27] S. Bordoni, F. Castellani, F. Cavani, F. Trifiro, M. Gazzano, J. Chem. Soc., Faraday Trans. **1994**, 90, 2981.
- [28] R. Klimkiewicz, H. Grabowska, H. Teterycz, *App. Catalysis, A: Gerneral.* **2003**, 246(1), 125.
- [29] F. Fresno, D. Tudela, J. M. Coronado, M. Fernández-Carcía, A. B. Hungría, J. Soria,

Phys. Chem. Chem. Phys. 2006, 8, 2421.

- [30] J. Lin, C. Yu, D. Lo, S. K. Lam, J. Catal. 1999, 183, 368.
- [31] S. K. Zheng, T. M. Wang, W. C. Hao, R. Shen, *Vaccuum* 2002, 65, 155.
- [32] Y. Cao, W. Yang. W. Zhang, G. Liu, P. Yue, New J. Chem. 2004, 28, 218.
- [33] Y. Hirao, C. Yokoyama, M. Misono, Chem. Commun. 1996, 597.
- [34] T. Fjeldberg, H. Hope, M. F. Lappert, P. P. Power, A. J. Thorne, *Chem. Commun.* **1983**, 639.
- [35] D. R. Armstrong, M. A. Beswick, N. L. Cromhout, C. N. Harmer, D. Moncrieff, C. A. Russell, P. R. Raithby, A. Steiner, A. E. H. Wheatley, D. S. Wright, *Organometallics*, 1998, 17, 3176.
- [36] B. Krebs, G. Henkel, M. Dartmann, Acta Cryst. Sec. C 1989, 45, 1010.
- [37] P. C. Chieh, J. Trotter, J. Chem. Soc. A.1970, 911.
- [38] N. G. Bokii, G. N. Zakharova, Yu. T. Struchov, Zh. Strukt. Khim. 1970, 11, 895.
- [39] B. Hossain, J. L. Lefferts, K. C. Molloy, D. van der Helm, J. J. Zuckermann, *Inorg. Chim. Acta* **1979**, 36, L409.
- [40] D. Tudela, E. Gutiérrez-Puebla, A. Monge, J. Chem. Soc. Dalton Trans. 1992, 1069.
- [41] K. C. Molloy, *Chemistry of Tin*, Ed. P.J. Smith, Chapman & Hall **1998**, London, 138.
- [42] E. V. Grigoriev, N. S. Yashina, V. S. Petrosyan, L. Pellerito, A. Gianguzza, A. Pellerito, E. V. Avtomonov, J. Lorberth, A. A. Prischenko, M. V. Livantsov, J. Organomet. Chem. 1999, 577, 113.
- [43] C. Pelizzi, G. Pelizzi, J. Chem. Soc. Dalton Trans., 1983, 4, 847.
- [44] K.C. Molloy, F. A. K. Nasser, C. L. Barnes, D. van der Helm. J. J. Zuckerman, *Inorg. Chem.* **1982**, 21, 960.
- [45] J. G. Masters, J. A. K. Nasser, M. B. Hossain, A. P. Hagen, D. van der Helm, J. J. Zuckerman. J. Organomet. Chem. **1990**, 385, 39.
- [46] C. A. Diop, L. Diop, A. R. Toscano, *Main Group Metal Chem.* 2002, 25, 327.
- [47] V. Chandrasekhar, M. G. Muralidhara, K. R. J. Thomas, E. R. T. Tiekink. *Inorg. Chem.* **1992**, 31, 4707.
- [48] C. A. Diop, L. Diop, U. Russo, A. Sánchez-Díaz, A. Castiñeiras, Z. Naturforschung 2001, 233.
- [49] H. Schumann, P. Jutzi, A. Roth, P. Schwabe, E. Schauer, *J. Organometal. Chem.* **1967**, 10, 71.
- [50] S. U. Ghazi, R. Kumar, M. J. Heeg, J. P. Oliver, *Inorg. Chem.* **1994**, 33, 411.
- [51] Cohen, H. J. J. Org. Chem. 1960, 25, 154.
- [52] B. F. G. Johnson, M. C. Klunduk, C. M. Martin, G. Sankar, S. J. Teate, J. M. Thomas. *Inorg. Chem.* 2000, 596, 221.
- [53] M. Döring, G. Hahn, Organometallics **1997**, 16, 1879.
- [54] G. Roge, F. Huber, H. Preut, A. Silvestri, R. Barbieri, J. Chem. Soc. Dalton Trans. 1983, 595.
- [55] T. Herntrich, K. Merzweiler. Z. Anorg. Allg. Chem. 2006, 632, 2341.
- [56] F. Rosenland. Dissertation, Universität (TH) Karlsruhe (1994).
- [57] B. Kanellakopulos, K. Raptis, B. Nuber, M. L. Ziegler. Z. Naturforsch. Teil B 1991, 46, 15.
- [58] E. Herdtweck, P. Kiprof, W. A. Hermann, J. G. Kuchler, I. Degnan. Z. Narurforsch. *Teil B* **1990**, 379, 223.
- [59] J. Beckmann, D. Dakternieks, A.Duthie, C. Mitchell, F. Ribot, J. B. d'Espinose de la Caillerie, B. Revel, *App. Organomet. Chem.* **2004**, 18, 353.
- [60] B. Kushlefsky, I. Simmons, A. Ross, *Inorg. Chem.* **1963**, *2*, 187.
- [61] T. Herntrich. *Diplomarbeit*, Universität Halle/Saale (2004).

- [62] V. Kahlenberg, R. Kaindl, D. M. Többens, Z. Anorg. Allg. Chem. 2006, 632, 2037.
- [63] H. Yamane, T. Nagasawa, M. Shimada, T. Endo, *Acta Cryst., Sec. C: Crystal Structure Communication* **1997**, C53, 1533.
- [64] M. Huang, C. W. DeKock, Inorg. Chem. 1993, 32, 2287.
- [65] C. Ma, J. Zhang, Q. Jiang, R. Zhang, *Inorganica Chimica Acta* 2004, 357, 2791.
- [66] H. Reuter, Z. Kristallogr. 2004, 219, 487.
- [67] J. P. Ashmore, T. Chivers, K. A. Kerr, J. H. G. Van Roode, *J. Chem. Soc., Chem. Com.*, **1974**, 653.
- [68] C. A. K. Diop, L. Diop, U. Russo, *Main Group Metal Chem.* 1999, 22, 217.
- [69] G. Ferguson, B. J. O'Leary, T. R. Spalding, *Acta Crystallogr., Sect. E : Struct. Rep. Online*, **2005**, 61, o906.
- [70] F. J. Feher, J. F. Walzer, *Inorg. Chem.* **1991**, 30(8), 1690.
- [71] J. P. Ashmore, T. Chivers, K. A. Kerr, J. G. van Rode, *Inorg. Chem.* 1977, 6, 191.
- [72] J. H. Huheey, E. A. Keiter, R. L. Keiter, *Anorganische Chemie*, W. de Gryter, 2. Auflage, **1995**, 335.
- [73] J. H. Huheey, E. A. Keiter, R. L. Keiter, *Anorganische Chemie*, W. de Gryter, 2. Auflage, **1995**, 215.
- [74] J. N. Pandey, G. Srivastava, Inorg. Chim. Acta 1986, 122, 185.
- [75] ^{a)} B. Kamenar, M. Bruvo, J. Butumovic, Z. Anorg. Allg. Chem. 1993, 619, 943. ^{b)} R. E. Marsh, Acta Crystallogr., Sect. B: Struct. Sci. 1997, 53, 317.
- [76] G. Ferguson, J. W. Pollock, B. O'Leary, T. R. Spalding, *Acta Cryst., Sec. C: Cryst. Struct. Commun.* **1996**, C52, 619.
- [77] S. Dondi, M. Nardelli, C. Pellizzi, G. Pellizzi, G. Predieri, *J. Organomet. Chem.* **1986**, 308, 195.
- [78] R. Boese, M. T. Kirchner, W. E. Billups, L. R. Norman, *Angewandte Chemie* **2003**, 115(17), 2005.
- [79] C. Glidewell, D. C. Liles, Acta Cryst., Sec. B: Struct. Crystallogr. Cryst. Chem. 1978, 34, 1693.
- [80] M. Nieger, H. Hupfer, D. Hanssgen, W. Ross, *Private Communication* 1999.
- [81] A. J. Carty, N. J. Taylor, A. W. Coleman, M. F. Lappert. Chem. Comm. 1979, 639.
- [82] M. van Rentergem, G. P.van der Kelen, E. C. Claeys, J. Mol. Struct. 1982, 80, 317.
- [83] C. A. Udovich, R. J. Clark, H. Haas, Inorg. Chem. 1969, 8, 1066.
- [84] ^{a)} P. E. Riley, R. E. Davis, *Inorg. Chem.* 1980, 19, 159. ^{b)} T. S. Barnard, M. R. Mason, *Inorg. Chem.* 2001, 40(19), 5001.
- [85] A. H. Cowley, R. E. Davis, K. Remadna, J. Am. Chem. Soc. 1981, 20(7), 2146.
- [86] J. A. S. Howell, M. G. Palin, P. McArdle, D. Cunningham, Z. Goldschmidt, H. E. Gottlieb, D. Hezroni-Langerman, *Inorg. Chem.* **1993**, 32, 3493.
- [87] B. Beagley, D. W. J. Cruickshank, P. M. Pinder, A. G. Robiette, G. M. Sheldrick, *Acta Cryst., Sec. B* **1969**, 25, 737.
- [88] K. Mast, O. J. Scherer, G. Wolmershäuser, Z. Anorg. Allg. Chem. 1999, 625, 1475.
- [89] P. B. Hitchcock, J. A. Johnson, J. F. Nixon, *Angew. Chem., Int. Ed. Engl.*1993, 32(1), 103.
- [90] C. A. Tolman, *Chem. Rev.* **1977**, 77, 313.
- [91] K. Sakamoto, Y. Hamada, H. Akashi, A. Orita, J. Otera, *Organometallics* **1999**, 18, 3555)
- [92] R. Kapoor, A. Gupta, P. Kapoor, P. Venugopalan, *J. Organomet. Chem.* **2001**, 619, 157.
- [93] B. Krebs, B. Lettmann, H. Pohlmann, R. Frohlich, Z. Kristallogr. 1991, 196, 231.
- [94] A. Diassé-Sarr, A. H. Barry, T. Jouini, L. Diop, B. Mahieu, M. F. Mahon, K. C.

Molloy, J. Organomet. Chem. 2004, 689, 2087.

- [95] a) J. Weidlein, U. Müller, K. Dehnicke, *Schwingungsfrequenzen I* **1981**, G. Thime Verlag, Stuttgart.
- [96] F. K. Vansant, B. J. van der Veken, J. Mol. Struct. 1974, 22, 173.
- [97] M. J. Cox, E. R. T. Tiekink, Zeitschr. für Kristallographie 1993, 209, 622.
- [98] A. Diasse-Sarr, L. Diop, M. F. Mahon, K. C. Molloy, *Main Group Met. Chem.* **1997**, 20(4), 223.
- [99] M. Herberhold, S. Gerstmann, W. Milius, B. Wrackmeyer, Z. Naturforsch. 1997, 52b, 1278.
- [100] J. Beckmann, D. Dakternieks, J. O'Connell, K. Jurkschat, M. Schürmann, *Eur. J. Inorg. Chem.*, **2002**, 1484.
- [101] M. Driess, C. von Haenisch, K. Merz. Z. Anorg. Allg. Chem. 1999, 625, 493.
- [102] A. J. Klein, H. Jellinek, F. Jellinek, J. Inorg. Nucl. Chem. 1964, 26(1), 1127.
- [103] F. A. Weber, T. Schleid, Z. Anorg. Allg. Chem. 1999, 625, 1833.
- [104] R. K. Harris, B. E. Mann, NMR and the Periodic Table, Academic Press, London, UK, 1979, 5.
- [105] C. G. Barraclough, D. C. Bradley, J. Lewis, I. M. Thomas, J. Chem. Soc. 1961, 2601.
- [106] M. Veith, S. Mathur, V. Huch, Chem. Commun. 1997, 2197.
- [107] T. J. Boyle, J. M. Segall, T. M. Alam, M. A. Rodriguez, J. M. Santana, J. Am. Chem. Soc. 2002, 124, 6904.
- [108] M. Veith, S. Mathur, C. Mathur, V. Huch, Organometallics, 1998, 17, 1044
- [109] M. Crocker, R. H. M. Herold, A. G.Orpen, Chem. Commun. 1997, 2411.
- [110] W. M. P. B. Menge, J. G. Verkade, *Inorg. Chem.* **1991**, 30, 4628.
- [111] S. Kliem, U. Klingebiel, M. Noltemeyer, Z. Anorg. Allg. Chem. 2005, 631, 99.
- [112] D. Mansfeld, M. Schürmann, M. Mehring, Appl. Organometal. Chem. 2005, 19, 1185.
- [113] H. Reuter, D. Schröder, Acta Cryst. Sec.C. 1993, 49, 954.
- [114] R. J. Errington, J. Ridland, W. Clegg, R. A. Coxall, J. M. Sherwood, *Polyhedron* 1998, 17, 659.
- [115] G. Ferguson, C. Glidewell, Acta Cryst. Sec. C, 2001, C57, 264.
- [116] D. Hoebbel, M. Nacken, H. Schmidt, V. Huch, M. Veith, J. Mater. Chem. 1998, 8(1), 171.
- [117] A. I. Yanovsky, N. Ya. Turova, E. P. Turevskaya, Yu. T. Struchkov. *Koord. Khim.* 1982, 8, 153.
- [118] U. N. Nehete, V. Chandrasekhar, V. Jancik, H. W. Roesky, R. Herbst-Irmer, *Organometallics* **2004**, 23, 5372.
- [119] C. Gaffney, P. G. Harrison, T. J. King, Chem. Comm. 1980, 1251.
- [120] S. C. Goel, M. Y. Chiang, W. E. Buhro, Inorg. Chem. 1990, 29, 4640.
- [121] C. S. Weinert, I. A. Guzei, A. L. Rheingold, L. R. Sita, Organometallics 1998, 17, 498.
- [122] R. Papiernik, L. G. Hubert-Pfalzgraf, M. C. Massiani, Inorg. Chim. Acta 1989, 165, 1.
- [123] Y. Sarazin, S. J. Coles, D. L. Hughes, M. B. Hursthouse, M. Bochmann, *Eur. J. Inorg. Chem.* **2006**, 3211.
- [124] M. A. Paver, C. A. Russell, D. Stalke, D. S. Wright, J. Chem. Soc., Chem. Commun. 1993, 1349.
- [125] H. Bürger, U. Wannagat. Mh. Chem. 1963, 94, 1008.
- [126] B. D. Murray, P. P. Power, *Inorg. Chem.* 1984, 23, 4584.
- [127] J. J. Ellison, P. P. Power, S. C. Shoner, J. Am. Chem. Soc. 1989, 111, 8044.
- [128] R. A. Bartlett, P. P. Power, J. Am. Chem. Soc. 1987, 109,7563.
- [129] G. A. Sigel, R. A. Bartlett, D. Decker, M. M Olmstead, P. P. Power, Inorg. Chem.

1987, 26, 1773.

- [130] J. Spandl, I. Brüdgam, H. Hartl, Z. Anorg. Allg. Chem. 2000, 626, 2125.
- [131] K. Sisido, Y. Takeda, Z. Kinugawa, J. Am. Chem. Soc. 1961, 83, 538.
- [132] G. Brauer. *Handbuch der Präp. Anorg. Chem.* Bd.1, 3. Auflage, Ferdinand Enke Verlag, Stuttgart, **1975**, 580.
- [133] M. J. S. Gynane, D. H. Harris, M. F. Lappert, P. P. Power, P. Rivière, M. Rivière-Baudet, J. Chem. Soc. Dalton Trans. 1977, 2004.
- [134] G. Sheldrick, *X-STEP32 : Stoe & Cie Darmstadt*, **1997**, University Cambridge, England.
- [135] K. Brandenburg Diamond Version 3.1e, **1997-2007**, Crystal Impact GbR, Bonn, Deutschland.

Bedanken möchte ich mich an erster Stelle bei meiner Familie, die mich zu jeder Zeit uneingeschränkt unterstützt hat und bei meiner Freundin für ihr aufrichtiges Vertrauen in mich.

Mein besonderer Dank gilt ebenfalls Herrn Prof. Dr. K. Merzweiler, der mich stets freundlich, mit großem Engagement durch mein Studium begleitet hat und durch sein Interesse sowie die zahlreichen fachlichen Diskussionen wesentlich zum Gelingen der Arbeit beigetragen hat.

Weiterhin möchte ich mich bedanken bei:

- Dr. Ch. Wagner und den Mitgliedern der Arbeitsgruppe für die Unterstützung, die sehr gute Zusammenarbeit und das nette Klima.

- meinen Freunden Benjamin Glettner und Ronald Lindner für die gute Zeit während des Studiums.

- Dr. D. Ströhl und Mitarbeiterinnen für die gute Zusammenarbeit bei der Anfertigung und Aufklärung der NMR-Spektren.

- Dr. T. Müller für die Durchführung der thermogravimetrischen Untersuchungen und die freundliche Zusammenarbeit.

- Frau E. Leißring und Herrn Dr. H. Schmidt für die Aufnahme der Massenspektren und die nützlichen Beiträge zum Thema.

- Frau R. Ziehn für die Durchführung der Elementaranalysen.

- den Mitarbeitern des Instituts für Anorganische Chemie, besonders Frau Dr. A. Sorkau, für die kontinuierliche Motivation während des Studiums.

Lebenslauf

Persönliche Daten:

Name:	Tobias Herntrich
Geburtsdatum:	01.12.1976
Geburtsort:	Nordhausen

Schulbildung:

1983 - 1991	Polytechnische Oberschule, Wipperdorf
1991 - 1996	Schiller-Gymnasium, Bleicherode
	Abschluss: Abitur
1993 - 1994	Auslandsaufenthalt in den USA (Vermillion, S.D.) mit
	High School Abschluss
1996 - 1997	Zivildienst: AWO Kurheim, Bad Sachsa

Studium

1997 - 1999	Wirtschaftsinformatik, Berufsakademie Heidenheim
1999 - 2004	Chemiestudium, Martin-Luther-Universität Halle/Saale
	Abschluss: Diplom
seit 2004	Promotion in der Anorganischen Chemie unter Anleitung
	von Prof. Dr. K. Merzweiler zum Thema "Synthesen und
	Strukturen organozinnsubstituierter Oxoanionen"

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Halle / Saale, den 13.12.2007