

Klonierung, Expression, Reinigung und Charakterisierung von 3β-Hydroxysteroid-Dehydrogenasen aus *Arabidopsis thaliana* (L.) HEYNHOLD

Dissertation

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg

von

Frau Diplompharmazeutin Melanie Witt geb. am 03.12.1975 in Halle (Saale)

Gutachterin/Gutachter:

- 1. Prof. Dr. Beate Diettrich (Halle)
- 2. Prof. Dr. Renate Ulbrich-Hofmann (Halle)
- 3. Prof. em. Dr. Thomas Hartmann (Braunschweig)

Halle (Saale), 10.03.2008

Inhaltsverzeichnis

Abkürz Abbildu Tabelle	ungsverzeichnis Ingsverzeichnis Inverzeichnis	a c e
<u>1 Ein</u>	leitung	1
1.1	Hydroxysteroid-Dehydrogenasen	1
1.2	Short-chain Dehydrogenasen/Reduktasen	3
1.3	3β-Hydroxysteroid-Dehydrogenasen	6
1.3.1	3β-Hydroxysteroid-Dehydrogenasen der Säugetiere	6
1.3.2	3β-Hydroxysteroid-Dehydrogenasen in Prokaryonten	7
1.3.3	3β-Hydroxysteroid-Dehydrogenasen in Pflanzen	8
1.4	Brassinosteroide und deren Biosynthese	11
1.5	Zielstellung dieser Arbeit	15
2 Mat	terial und Methoden	16
2.1	Material	16
2.1.1	Chemikalien und Enzyme	16
2.1.2	Kits	16
2.1.3	Standardlösungen und Puffer	17
2.1.4	cDNA-Bank	17
2.1.5	Plasmide, Bakterienstämme	17
2.1.6	Oligonukleotide	18
2.1.7	Medien	20
2.1.8	Pflanzenlinien	20
2.1.9	Rekombinantes Konstrukt der Δ° -3 β -HSD aus <i>Digitalis lanata</i> EHRH	21
2.1.10	Geräte und Hilfsmittel	21
2.2	Molekularbiologische Methoden	22
2.2.1	Klonierung und rekombinante heterologe Expression	22
2.2.1.1	Konstrukte und Klonierung	22
2.2.1.2	Herstellung kompetenter Zellen	23
2.2.1.3	Transformation in Bakterien	23
2.2.1.4	Rekombinante Expression in <i>E. coli</i>	24
2.2.2	PCR	24
2.2.2.1	Standard-PCR	24
2.2.2.2	Colony-PCR	25
2.2.2.3	RT-PCR	25
2.2.3	Präparation von Nukleinsäuren	26
2.2.3.1	Isolierung genomischer DNA aus Pflanzen	26
2.2.3.2	Präparation von Plasmid-DNA	26
2.2.3.3	Gelextraktion von DNA-Fragmenten	27
2.2.3.4	Isolierung von Gesamt-RNA aus Pflanzen	27
2.2.4	Agarose-Gelelektrophorese	28
2.2.4.1	Elektrophorese von DNA-Fragmenten	28
2.2.4.2	Elektrophorese von RNA	28
2.2.5	Konzentrationsbestimmung von Nukleinsäuren	28

2.2.5.1	Photometrische Bestimmung	28
2.2.0.2	Identificierung hemezugeter T. DNA Insertieremutenten	20
2.2.0		29
2.2.1	Sequenzierung von DNA	30
2.3	Proteinbiochemische Methoden	30
231	Bakterienlyse	30
2.0.1	Reinigung der beterolog exprimierten Proteine	30
2.3.2		21
2.3.3	SDS-FAGE	21
2.3.4		32
2.3.5	Enzymassays und kinetische Charakterisierung	33
2.3.5.1	Spektrophotometrische Messung der Enzymaktivitäten	33
2.3.5.2	Standardassay	34
2.3.5.3	Substrate und Abhängigkeit von der Proteinkonzentration	35
2.3.5.4	Abhängigkeit der Aktivität von der Temperatur	35
2.3.5.5	Abhängigkeit der Aktivität vom pH-Wert	35
2356	Abhängigkeit der Aktivität von der Inkubationszeit	35
2357	Abhängigkeit der Aktivität vom Kosubstrat	35
2.0.0.1	Postimmung von K und V	25
2.3.3.6	Besummung von κ_m und v_{max}	30
21	Chromatographische Analysemethoden	37
2. 1		27
2.4.1		31
2.4.2	Gaschromatographie mit massenspektrometrischer Detektion (GC/MS)	37
2.4.3	Derivatisierung von Steroiden	39
2.4.4	Messungen am Massenspektrometer Finnigan LCQ	40
2.5	Kultivierung und Behandlung von Pflanzen	40
2.5.1	Kultivierung auf Erde	40
2.5.2	Oberflächensterilisierung von Samen	40
2.5.3	Kultivierung unter sterilen Bedingungen	40
2.5.4	Behandlung mit 24-epi-Brassinolid	41
2.5.5	Messung der Wurzellängen	41
2.6	Computergestützte Analysen	41
3 Fr	nahnissa	43
	20011000	
2 1	Isoliarung natantiallar 28 Hudrovystaraid Dabydrogonasan	12
211	Soquopzyorgloiobo	40
0.1.1		40
3.1.2		40
3.1.2.1		46
3.1.2.2	Amplifikation, Klonierung in den pCR [®] 2.1-Vektor und Sequenzierung	46
3.1.2.3	Klonierung in den Expressionsvektor pQE30 und Sequenzierung	47
~ ~		40
3.2	Rekombinante Expression und Enzymaktivität	48
3.2.1	Rekombinante Expression	48
3.2.2	Enzymaktivität von 3 β -HSDs in den lysierten Bakterienkulturen	50
3.2.2.1	Umsetzungen von Substraten und Substratanaloga	50
3.2.3	Vorhersage von Proteineigenschaften	54
	Deinimum den hetenelen ernninsienten Desteine	F 4
5.5	Reinigung der neterolog exprimierten Proteine	54
34	Charakterisierung und kinetische Parameter der rekombinanten	
V 1 T	38-HSD Enzyme	58
3/1	Abhängigkeit der Aktivität von der Proteinkonzentration	50
3/0	Abhängigkeit der Aktivität vom pH Wort	50
0. 4 .2	Abhängigkeit der Aktivität von der Temperatur	50
J.4.J		20
3.4.4	Adnangigkeit der Aktivität von der Inkudationszeit	58

3.4.5 3.4.6	Abhängigkeit der Dehydrogenase-Aktivität vom Kosubstrat Bestimmung von K _m und V _{max}	60 60
3.4.7	Umsetzung von Cholesterol, Sitosterol, Stigmasterol und Campesterol	65
3.4.8	Umsetzung von 28-Homoteasteron	68
3.4.9	K_m -Werte für die Kosubstrate NAD ⁺ und NADH	70
3.4.10	Messung der Isomerase-Aktivität	71
3.5	Transkriptionsanalyse der AtHSD1 und AtHSD2	73
3.5 3.6	Transkriptionsanalyse der <i>AtHSD1</i> und <i>AtHSD2</i>	73 74
3.5 3.6 3.6.1	Transkriptionsanalyse der AtHSD1 und AtHSD2 Analyse von T-DNA-Insertionsmutanten der AtHSD1 und AtHSD2 Genotypische Analyse der T-DNA-Insertionslinien	73 74 74
3.5 3.6 3.6.1 3.6.2	Transkriptionsanalyse der AtHSD1 und AtHSD2 Analyse von T-DNA-Insertionsmutanten der AtHSD1 und AtHSD2 Genotypische Analyse der T-DNA-Insertionslinien Lokalisierung der Insertionen	73 74 74 75

4 Diskussion

80

4.1	Allgemeine Bemerkungen zur Vorgehensweise	80
4.2 4.2.1 4.2.2 4.2.3 4.2.4	Isolierung putativer HSDs aus Arabidopsis thaliana AtHSD1 und AtHSD2 AtSDR1 weitere SDR-Enzyme Eigenschaften und Struktur der DI3βHSD, AtHSD1 und AtHSD2	80 81 81 82 82
4.3 4.3.1 4.3.2 4.3.3 4.3.3.1 4.3.4 4.3.5	Katalytische Aktivitäten und kinetische CharakterisierungSubstratspezifitätenBevorzugung einer Reaktionsrichtung Δ^5 -3-Ketosteroid-Isomerase-Aktivität (KSI)Beziehungen zwischen Enzym-Struktur und Isomerase-AktivitätVergleich von kinetischen Parametern der rekombinanten EnzymeVerfügbarkeit der Substrate <i>in vivo</i>	83 83 86 87 89 90 91
4.4	Expression der AtHSD1 und AtHSD2 in vivo	92
4.5 4.5.1	Charakterisierung der T-DNA-Mutanten <i>hsd1-1, hsd1-2</i> und <i>hsd2-1</i> Wurzellängen und der Effekt des 24- <i>epi</i> -Brassinolids auf die Wurzelelongation	93 95
4.6	Beteiligung der 3β-HSD Enzyme an der Brassinosteroid-Biosynthese	96
4.7	Ansatzpunkte für weiterführende Untersuchungen	98
5 Zus	sammenfassung	99
6 Lite	eraturverzeichnis	102

Anhang	11	6
y		_

Abkürzungsverzeichnis

∆⁵-3β-HSD	Δ^5 -3β-Hydroxysteroid Dehydrogenase aus <i>Digitalis lanata</i> EHRH.
3β-HSD	3β-Hydroxysteroid Dehydrogenase
3β-HSD/KSI	Δ^5 -3 β -Hydroxysteroid Dehydrogenase/ Δ^5 - Δ^4 -Ketosteroid-Isomerase
Abb.	Abbildung
AKR	Aldo-Keto-Reduktase
APS	Ammoniumpersulfat
AS	Aminosäuren
AtHSD1/2	rekombinante 38-HSDs aus Arabidopsis thaliana (L.) HEYNH.
BL	Brassinolid
BLAST	"Basic Local Alignment Search Tool"
bp	Basenpaare
BR	Brassinosteroid
BSA	Rinderserumalbumin ("Bovine Serum Albumin")
BSTFA	N O-Bis(trimethylsilyl)-trifluoracetamid
bzw	beziehungsweise
ca	circa
cDNA	komplementäre DNA (conv DNA")
CDS	kodierende DNA-Sequenz
Col-0	Columbia-0. Ökotyn von Arabidonsis thaliana
ddH ^o O	bidestilliertes Wasser
DEPC	Diethylpyrocarbonat
d h	das heißt
DI3BHSD	rekombinante Λ^5 -3ß-HSD aus <i>Digitalis lanata</i>
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
DNase	Desoxyribonuklease
dNTPs	Desoxyribonukleosidtriphosphate
DTT	Dithiothreitol
FBR	24-eni-Brassinolid
FDTA	Ethylendiamintetraessigsäure (Dinatriumsalz)
EMBI	"European Molecular Biology Laboratory"
EtBr	Ethidiumbromid
FR	Endoplasmatisches Retikulum
<u>a</u>	Fallbeschleunigung $\alpha = 9.81 \text{ ms}^{-2}$
9 0	Gramm
GC/MS	Gaschromatographie mit massenspektrometrischer Detektion
HSD	Hydroxysteroid-Dehydrogenase
hsd	Mutanten der Hydroxysteroid-Dehydrogenasen AtHSD1/2
IPTG	Isopropyl-B-D-thiogalactopyranosid
K _m	Michaelis-Menten-Konstante
k. A.	keine Angabe
kb	Kilobasen (1000 Basenpaare)
LB-Medium	Luria Bertani Medium
MCS	multiple Klonierungstelle ("Multiple Cloning Site")
MDR	Medium-chain (mittelkettige) Dehvdrogenase/Reduktase
MES	2-Morpholinoethansulfonsäure
MeOH	Methanol
mRNA	Boten-RNA ("messenger RNA")
MS-Medium	Murashige-Skoog-Medium
MW	molekulare Masse bezogen auf Proteine (früher "Molecular Weight")
NAD(P) ⁺	Nicotinamid-Adenin-Dinukleotid (Phosphat), oxidierte Form
NAD(P)H	Nicotinamid-Adenin-Dinukleotid (Phosphat), reduzierte Form
NaOH	Natriumhydroxid

ORF	offener Leserahmen ("Open Reading Frame")
PAGE	Polyacrylamidgelelektrophorese
PCR	Polymerasekettenreaktion ("Polymerase Chain Reaction")
RACE	"Rapid Amplification of cDNA Ends"
Rt	Retentionszeit (min)
RT	Raumtemperatur
RNA	Ribonukleinsäure
RNase	Ribonuklease
rpm	Umdrehungen pro Minute
RT-PCR	Reverse Transkriptase Polymerasekettenreaktion
SDR	Short-chain (kurzkettige) Dehydrogenase/Reduktase
SDS	Natriumdodecylsulfat (Sodiumdodecylsulfat)
STA	Standardabweichung
STF	Standardfehler
Tab.	Tabelle
T-DNA	Transfer-DNA
TEMED	Tetramethyl-Ethylendiamin
T _m	Schmelztemperatur
Tris	Tris-(Hydroxymethyl)-aminoethan
U	Enzymeinheit (Unit)
u. a.	unter anderem
UTR	untranslatierter Bereich ("Untranslated Region")
UV	Ultraviolettes Licht
vgl.	vergleiche
VI 95%	95%iges Vertrauensinterwall
V _{max}	maximale Reaktionsgeschwindigkeit
WT	Wildtyp
z. B.	zum Beispiel

Aminosäuren

А	Ala	Alanin	I	lle	Isoleucin	R	Arg	Arginin
С	Cys	Cystein	K	Lys	Lysin	S	Ser	Serin
D	Asp	Asparaginsäure	L	Leu	Leucin	Т	Thr	Threonin
Е	Glu	Glutaminsäure	Μ	Met	Methionin	V	Val	Valin
F	Phe	Phenylalanin	Ν	Asn	Asparagin	W	Trp	Tryptophan
G	Gly	Glycin	Р	Pro	Prolin	Y	Tyr	Tyrosin
Н	His	Histidin	Q	Gln	Glutamin	Х		beliebige AS

Nukleinsäuren

А	Adenin	U	Uracil
С	Cytosin	V	nicht T
G	Guanin	*	Stoppkodon

G Guanin T Thymin

Abbildungsverzeichnis

Abb. 1	Allgemeiner Reaktionsmechanismus	1
Abb. 2	Beispiel der strukturellen Organisation einer SDR	4
Abb. 3	Reaktionsmechanismus von Hydroxysteroid-Dehydrogenasen der SDR-Familie	5
Abb. 4	Reaktionen der bifunktionalen 3β-HSD/KSI des Menschen	7
Abb. 5	Bildung verschiedener Pregnan-Derivate aus Cholesterol während der Biosynthese der Kardenolide	8
Abb. 6	Vereinfachte Gegenüberstellung der anfänglichen Biosynthesewege der Kardenolide und Brassinosteroide	10
Abb. 7	Brassinosteroid-Biosynthesewege	12
Abb. 8	Schema der genotypischen Charakterisierung der T-DNA-Insertionsmutanten	29
Abb. 9	Vergleich der Aminosäuresequenzen der Δ^5 -3 β -HSD aus <i>D. lanata</i> und der Kandidaten-Gene aus <i>A. thaliana</i>	45
Abb. 10	DNA-Gelelektrophorese nach Restriktion der Expressionsplasmide	48
Abb. 11	Proteingele nach SDS-PAGE (Coomassie-Färbung)	49
Abb. 12	Strukturformeln der getesteten Substrate	51
Abb. 13	Relative Enzymaktivitäten für Substrate der Oxidation	52
Abb. 14	SDS-PAGE (Coomassie-Färbung) nach Reinigung über Ni-NTA-Spin Säulen der exprimierten Proteine AtHSD1 und AtHSD2	55
Abb. 15	Elutionschromatogramme der heterolog exprimierten Proteine	57
Abb. 16	SDS-PAGE der gereinigten Proteine (Silberfärbung)	57
Abb. 17	Kinetische Charakterisierung	59
Abb. 18	Abhängigkeit der Dehydrogenase-Aktivität vom Kosubstrat	60
Abb. 19	Michaelis-Menten-Kinetiken für die jeweils geringsten K_m -Werte	61
Abb. 20	Vergleich der ermittelten K_m -Werte und V_{max} -Werte nach nichtlinearer Regression	63
Abb. 21	Vergleich der katalytischen Effizienzen	64
Abb. 22	GC/MS-Analyse nach Umsetzung mit Campesterol (0,2 mM)	66
Abb. 23	Michaelis-Menten-Kinetiken der Dl3βHSD, AtHSD1 und AtHSD2 mit dem Substrat Campesterol	68
Abb. 24	GC/MS-Analyse nach Umsetzung mit 28-Homoteasteron (0,1 mM)	69
Abb. 25	Spezifische Aktivitäten der AtHSD1 und AtHSD2 in Abhängigkeit der Konzentration des 28-Homoteasterons	70
Abb. 26	Michaelis-Menten-Kinetiken der Kosubstrate NAD * und NADH der AtHSD1	71
Abb. 27	Vergleich der Dehydrogenase- und Isomerase-Aktivitäten der AtHSD1	72
Abb. 28	Transkriptionsanalyse der AtHSD1 und AtHSD2 mittels RT-PCR	73
Abb. 29	Genotypische Untersuchung der T-DNA-Insertionslinien mittels PCR	74
Abb. 30	T-DNA-Insertionsstellen in den Linien B15/B21, C5 und E2 nach Sequenzierung und chromosomale Orientierung	75

Abb. 31	RT-PCR-Analyse der Transkriptome von WT-Pflanzen und Insertionsmutanten	77
Abb. 32	Vergleich der Phänotypen des WT und der Mutanten <i>hsd1-1</i> , <i>hsd1-2</i> und <i>hsd2-1</i>	77
Abb. 33	Wurzellängen-Assays der Mutanten hsd1-1, hsd1-2, hsd2-1 und des WT	79
Abb. 34	Konfiguration und Konformation von 5α- und 5β-Steroiden	84
Abb. A-1	Kodierende Sequenzen mit korrespondierenden Aminosäuresequenzen der Δ^5 -3 β -HSD, AtHSD1 und AtHSD2	118
Abb. A-2	pQE30 Vektorkonstrukte	119
Abb. A-3	LCQ-Massenspektren nach Umsetzung mit 28-Homoteasteron	126
Abb. A-4	Phänotyp der Mutante hsd2-1 im Alter von 6 Wochen und 14 Wochen	127
Abb. A-5	Alignment der Aminosäuresequenzen der 3β-HSD/KSI Typ I des Menschen, der Δ^5 -3β-HSD aus <i>D. lanata</i> , der AtHSD1 und AtHSD2	128
Abb. A-6	Katalytische Funktion der SDR1 während der Abscisinsäure-Biosynthese	129
Abb. A-7	Massenspektren des Progesterons und des 5-Pregnen-3,20-dions	129

Tabellenverzeichnis

Tab. 1-1	Beispiele bekannter Hydroxysteroid-Dehydrogenasen	2
Tab. 2-1	Plasmide und Bakterienstämme	17
Tab. 2-2	Primer für die Herstellung, Klonierung und Expression der cDNA-Konstrukte	18
Tab. 2-3	Primer für den Nachweis der T-DNA-Insertion	19
Tab. 2-4	Primer für <i>APT1</i> und die cDNA der Δ^5 -3 β -HSD aus <i>Digitalis lanata</i>	19
Tab. 2-5	SALK-T-DNA-Insertionslinien	21
Tab. 2-6	Übersicht über die verwendeten SCAN- und SIM-Methoden zur Identifizierung der Steroide	39
Tab. 3-1	Ergebnis der Suche nach Δ^5 -3 β -HSD ähnlichen Sequenzen	43
Tab. 3-2	Kandidaten-Gene in A. thaliana	44
Tab. 3-3	Ermittelte Werte für K _m , V _{max} und V _{max} /K _m der Dl3 β HSD, AtHSD1, AtHSD2 und AtSDR1 nach nichtlinearer Regression	62
Tab. 3-4	Relative Aktivitäten der Umsetzung von Cholesterol, Sitosterol und Stigmasterol	65
Tab. 3-5	Ermittelte K_m - und V_{max} -Werte für die Kosubstrate NAD ⁺ und NADH der AtHSD1	70
Tab. 4-1	Akzeptierte Substrate der Dl3βHSD, AtHSD1 und AtHSD2	85
Tab. 4-2	Vergleich der spezifischen 3 β -HSD-Aktivitäten und der Δ^5 -Steroid-Isomerase-Aktivitäten (KSI)	88
Tab. 4-3	Vergleich von K_m und V_{max} verschiedener Substrate mit bekannten 3 β HSDs und Enzymen der BR-Biosynthese	90
Tab. A-1	Übersicht der Klonierungs-, Sequenzierungs- und Expressionsergebnisse	116
Tab. A-2	Ermittelte Kalibriergeraden	119
Tab. A-3	Werte der relativen Aktivitäten in % der Bakterienlysate	120
Tab. A-4	Werte der Aktivitätsabhängigkeit von der Proteinkonzentration	120
Tab. A-5	Werte der Aktivitätsabhängigkeit von dem pH-Wert, der Temperatur, der Inkubationszeit und dem Kosubstrat	121
Tab. A-6	$K_{m}\text{-}$ und $V_{max}\text{-}Werte$ der DI3 βHSD	122
Tab. A-7	K _m - und V _{max} -Werte der AtHSD1	123
Tab. A-8	$K_{m}\text{-}$ und $V_{max}\text{-}Werte$ der AtHSD2	124
Tab. A-9	Wertetabellen der Michaelis-Menten Kinetiken	125
Tab. A-10	Wertetabellen der Michaelis-Menten Kinetiken mit dem Substrat Campesterol	125
Tab. A-11	Wertetabellen der kinetischen Messungen mit dem Substrat 28-Homoteasteron	126

1 Einleitung

1.1 Hydroxysteroid-Dehydrogenasen

Hydroxysteroid-Dehydrogenasen (HSD) gehören zur Enzymklasse der Oxidoreduktasen (EC 1). Sie katalysieren positional und stereospezifisch die reversible Umwandlung (Abb. 1) einer Hydroxyl- in eine Carbonylgruppe (EC 1.1), sowohl am Steroidgrundgerüst als auch in der Seitenkette (Talalay 1963). Als e-Donator/Akzeptor dient NAD(P)⁺/NAD(P)H [oxidierte/reduzierte Form des Nicotinamid-Adenin-Dinukleotids (Phosphat)] (EC 1.1.1).

Abbildung 1 Allgemeiner Reaktionsmechanismus der Oxidation/Reduktion eines Substrat-Moleküls unter Beteiligung der Kofaktoren NAD(P)⁺/NAD(P)H, vereinfacht nach Jörnvall et al. (1995) und Penning (1997b). Wasserstoff wird als Hydrid-Ion vom Substrat abgespalten und auf NAD(P)⁺ übertragen (Jarabak und Talalay 1960).

Hydroxysteroid-Dehydrogenasen sind weit verbreitete Enzyme mit einem großen Spektrum möglicher Substrate. Zahlreiche HSDs aus tierischen Organismen, Bakterien und Pilzen sind bekannt bzw. charakterisiert. Über die Identifizierung, Charakterisierung und Funktion pflanzlicher HSDs gibt es bisher nur wenige Arbeiten.

Allgemein lässt sich feststellen, dass Hydroxysteroid-Dehydrogenasen des Menschen und der Säugetiere eine zentrale Rolle in der Biosynthese und Inaktivierung von Steroidhormonen spielen (Penning 1997b). Es existieren Enzyme mit 3α -, 3β -, 7α -, 11β -, 12α -, 17α -, 17β -, 20α - und 20β -Dehydrogenase-Aktivitäten. Sie können durch die Umsetzung ihrer Substrate die Konzentration aktiver bzw. inaktiver Metabolite modulieren und haben somit einen Einfluss auf die Regulierung der Hormonaktivität (Krozowski 1992).

Zurzeit gibt es mehr als 450 Datenbankeinträge für bekannte Hydroxysteroid-Dehydrogenase Sequenzen (UniProtKnowledgebase, <u>www.ebi.uniprot.org</u>, Dez. 2006). Eine Auswahl gut charakterisierter Enzyme mit den von ihnen katalysierten Reaktionen bzw. Funktionen ist in Tabelle 1-1 aufgelistet.

Hydroxysteroid-Dehydrogenasen können zwei unterschiedlichen Proteinfamilien zugeordnet werden, den Short-chain (kurzkettigen) Dehydrogenasen/Reduktasen (SDR) oder den Aldo-Keto-Reduktasen (AKR) (Penning 1997b). Beiden Familien gehören sowohl Enzyme aus Prokaryonten als auch Eukaryonten an und obwohl sie sich in ihrer Tertiärstruktur, dem Aufbau des aktiven Zentrums und der Kosubstrat-Bindungsstelle unterscheiden, besitzen sie einen ähnlichen katalytischen Reaktionsmechanismus (Jez et al. 1997a, Benach et al. 2002), auf welchen später noch genauer eingegangen wird. Weitere funktionell verwandte Oxidoreduktasen sind in der Familie der Medium-chain (mittelkettigen) Dehydrogenasen/Reduktasen (MDR) zu finden (Jörnvall et al. 1995, Filling et al. 2002).

Name (Familie)	Organismus	Funktion /Substrat	Referenz
3α-HSD (AKR)	Rattus norvegicus	Regulation von Androgenen, Umwandlung von 5α-Dihydrotestosteron in den inaktiven Metaboliten 3α-Androstandiol, EC 1.1.1.213	Pawlowski et al. 1991 Hoog et al. 1994
3β-HSD (SDR)	Comamonas testosteroni	Umsetzung von Testosteron zu Androst-4-en- 3,17-dion, EC 1.1.1.51	Yin et al. 1991 Benach et al. 2002
7α-HSD (SDR)	Escherichia coli	7α-Dehydroxylierung von Cholsäure zu Deoxycholsäure, EC 1.1.1.159	Yoshimoto et al. 1991 Tanaka et al. 1996
11β- HSD1 (SDR)	Homo sapiens	Glucocorticoid-Stoffwechsel, reversible Umwandlung von Cortisol in den inaktiven Metaboliten Cortison, EC 1.1.1.146	Tannin et al. 1991 Hosfield et al. 2005
12α-HSD (k.A.)	<i>Clostridium</i> sp. (strain C 48-50)	Oxidation der 12α-Hydroxylgruppen von Gallensäuren, EC 1.1.1.176	Braun et al. 1991
17α-HSD (k.A.)	<i>Eubacterium</i> sp. VPI 12708	Reduktion der 17α-Hydroxylgruppe von Androst- 4-en-3-on und Epitestosteron, EC k.A.	de Prada et al. 1994
17β- HSD1 (SDR)	Homo sapiens	Reduktion von Estrogenen und Androgenen, u.a. Umsetzung von 17β -Estradiol zu Estron, EC 1.1.1.62	Peltoketo et al. 1988 Ghosh et al. 1995
20α-HSD (AKR)	Homo sapiens	Umwandlung von Progesteron in den inaktiven Metaboliten 20α-Hydroxyprogesteron, EC 1.1.1.149	Zhang et al. 2000 Couture et al. 2003
20β-HSD (SDR)	Brachydanio rerio	Reduktion von 17α-Hydroxyprogesteron zu 17α, 20β-Dihydroxy-4-pregnen-3-on (DHP), EC k.A.	Wang und Ge 2002

 Tabelle 1-1
 Beispiele
 bekannter
 Hydroxysteroid-Dehydrogenasen
 AKR
 Aldo-Keto

 Reduktase, SDR – Short-chain Dehydrogenase/Reduktase, k.A.- keine Angabe.
 Aldo-Keto <t

. .

Proteine der AKR-Familie existieren als Monomere, mit einer molekularen Masse von 34-39 kDa. Ihre dreidimensionale Struktur ist durch eine $(\alpha/\beta)_8$ -"barrel" Faltung charakterisiert, die aus jeweils 8 alternierenden α -Helices und β -Faltblättern aufgebaut ist. Die zueinander parallel liegenden β -Faltblätter bilden den Kern der Struktur, die α -Helices sind antiparallel zu diesen angeordnet (Hoog et al. 1994). Am C-terminalen Ende der Struktur befinden sich zwei herausragende Schleifen. Die NAD(P)(H)-Bindungsstelle ist hochkonserviert, wobei der Nicotinamid-Rest im Kern der "barrel"-Struktur liegt und der Adenin-Rest in der Peripherie des C-terminalen Endes der Struktur (Jez et al. 1997a). Das aktive Zentrum ist sequenziell und strukturell ebenfalls konserviert und gekennzeichnet durch eine katalytische Tetrade: Asp50 Tyr55 Lys84 His117 (Nummerierung bezogen auf die 3 α -HSD der Ratte; Bennett et al. 1996). Für die Substratspezifität scheinen drei Schleifen am C-terminalen Ende der Proteinstruktur eine entscheidende Rolle zu spielen (Jez et al. 1997a). In der AKR-Familie sind neben Hydroxysteroid-Dehydrogenasen, wie den 3α -HSD-Isoenzymen (EC 1.1.1.213) des Menschen (Steckelbroeck et al. 2004), der 3α -HSD der Ratte (Hoog et al. 1994), der 17β -HSD (Leber) der Maus (Deyashiki et al. 1995), der 20α -HSD der Ratte (Jez et al. 1997b), auch Aldose-Reduktasen (ADR, EC 1.1.1.21), Aldehyd-Reduktasen (ALR, EC 1.1.1.2) und Dihydrodiol-Reduktasen (DD, EC 1.3.1.20) vertreten.

Die Mehrzahl der bekannten Hydroxysteroid-Dehydrogenasen gehören jedoch zur SDR-Familie (Benach et al. 2002), so auch die Δ^5 -3 β -HSD aus *Digitalis lanata* (Finsterbusch et al. 1999). Deshalb soll im Folgenden genauer auf diese Proteinfamilie eingegangen werden.

1.2 Short-chain Dehydrogenasen/Reduktasen

Die Familie der Short-chain Dehydrogenasen/Reduktasen (SDR) stellt eine sehr große, funktional heterogene Proteinfamilie dar. Zurzeit existieren mehr als 3000 Proteine mit bekannter Primärstruktur bzw. Sequenz, von ca. 30 Proteinen ist die 3D-Struktur untersucht [cf. Oppermann et al. 2003]. Zu den Enzymen der SDR-Familie gehören neben Oxidoreduktasen auch Lyasen und Isomerasen, ihr Substratspektrum reicht über Alkohole, Zucker, Prostaglandine und Steroide bis hin zu verschiedenen aromatischen Verbindungen und Xenobiotika (Filling et al. 2002, Kallberg et al. 2002a, Oppermann et al. 2003).

Mitglieder der SDR-Familie sind meist multimere Enzyme, deren Untereinheiten eine molekulare Masse von 25 bis 35 kDa aufweisen (Kristan et al. 2005), bzw. aus 250-350 Aminosäuren aufgebaut sind. Einige Enzyme verfügen zusätzlich über N- oder C-terminale transmembrane Domänen oder Signalpeptide (Filling et al. 2002). Trotz der sehr diversen Substratspezifität und einer niedrigen Aminosäuresequenz-Identität von nur ca. 15-30% (Yin et al. 1991, Jörnvall et al. 1995), zeigen die bisher kristallisierten Proteine, bis auf die C-terminale Region, eine sehr ähnliche kompakte Tertiärstruktur, mit einer einheitlichen alternierenden α/β Faltung (Filling et al. 2002, Oppermann et al. 1997, Tanaka et al. 1996). Den Kern der Struktur bilden sieben parallele β -Faltblätter, die, jeweils um 45° gedreht, eine zentrale β -Faltblatt-Struktur (β A- β G) bilden, welche meist von sechs parallelen α -Helices (α B- α G), je drei auf einer Seite, umgeben ist (Abb. 2, Ghosh et al. 1995, Benach et al. 2002).

In der N-terminalen Region einer monomeren Untereinheit befindet sich die NAD(P)(H)-Bindungsstelle (Oppermann et al. 1997) in Form einer Rossmann-Faltung (β A- β F) (Rossmann et al. 1974). In dieser Region lässt sich in allen Mitgliedern der SDR-Familie das konservierte Glycin-reiche Sequenzmotiv GX₃GXG (Position 13-19; alle Nummerierungen beziehen sich auf die 3 β /17 β -HSD aus *Comamonas testosteroni*, Yin et al. 1991 und Benach et al. 1996) wiederfinden, welches in Kombination mit der Rossmann-Faltung generell ein Charakteristikum der Kosubstrat-Bindungsstelle von Dehydrogenasen darstellt (Jörnvall et al. 1995). Ebenso entscheidend für die Bindung des Kosubstrates scheint die konservierte Aminosäure Threonin (Position 12) zu sein (Oppermann et al. 1997), welche im Zusammenspiel mit Asn86 und Asn87 essentiell für die Orientierung der β-Faltblätter innerhalb der β-Faltblätt-Struktur ist. Diese drei Aminosäuren sind indirekt an der korrekten Positionierung des Kosubstrates beteiligt. Direkt an der Kosubstrat Bindung sind die Aminosäuren Asp60 und Ala88 beteiligt, wobei die Carboxylgruppe der Asparaginsäure schwache Wasserstoffbrücken zum Adenin-Ring des Kosubstrates ausbilden kann und Alanin durch hydrophobe Wechselwirkungen mit dem Adenin-Ring in Kontakt steht (Filling et al. 2002). Des Weiteren ist die Alanin-Carbonylgruppe der Hauptkette zusammen mit einem benachbarten Glycin (Position 89) in einen Protonentransfer zwischen Wassermolekülen während der Reaktion involviert. Asn86, Asn87, Ala88 und Gly89 werden als NNAG-Motiv bezeichnet, Thr12 erweitert das Glycin-reiche Motiv zum TGX₃GXG-Motiv (Filling et al. 2002, Oppermann et al. 2003). Weitere konservierte Aminosäuren, wie Thr188, welches mit der Säureamidfunktion des Nicotinamidrings interagiert (Zhou und Tai 1999), Asn179 (Filling et al. 2001) und Pro180 sowie Gly181 des PG-Motivs (Ghosh et al. 2001) sind an der Bindung des Kosubstrates beteiligt.

Abbildung 2 Beispiel der strukturellen Organisation einer SDR.

Ribbon-Darstellung einer monomeren Untereinheit der $3\beta/17\beta$ -HSD aus *Comamonas testosteroni*, Abbildung aus Benach et al. (2002).

Essentiell für die katalytische Aktivität ist die konservierte Aminosäuresequenz YX₃K im aktiven Zentrum (Jörnvall et al. 1981, Krook et al. 1990). Weitere Röntgenstrukturanalysen, Homologievergleiche, chemische Modifikationen und zielgerichtete Mutagenesen haben gezeigt, dass nicht nur Tyr151 und Lys155 eine entscheidende Rolle bei der Bindung und Umsetzung des Substrates spielen, sondern noch weitere Aminosäuren involviert sind. So wird unter Einbeziehung von Ser138 von einer katalytischen Ser-Tyr-Lys (SYK) Triade (Ghosh et al. 1995, Oppermann et al. 1997, Nakamura et al. 2006) und unter Berücksichtigung der in den meisten SDR-Enzymen konservierten Aminosäure Asn111 von einer katalytischen Asn-Ser-Tyr-Lys (NSYK) Tetrade gesprochen (Filling et al. 2002, Oppermann et al. 2003).

Der Reaktionsmechanismus wird in der Literatur folgendermaßen beschrieben: Bei der Betrachtung der Oxidation der funktionellen Hydroxylgruppe eines Substrates, könnte Tyr151 als katalytische Base fungieren, da es durch elektrostatische Einflüsse der positiv geladenen Seitenkette von Lys155 und des Nicotinamidrings der oxidierten Form des Kosubstrates NAD⁺ wahrscheinlich in deprotonierter Form vorliegt (Benach et al. 2002).

Ser138 stabilisiert durch die Bildung einer Wasserstoffbrückenbindung das Substrat bzw. das Produkt (Filling et al. 2002). Eine Wasserstoffbrückenbindung des Serins zur Hydroxylgruppe des Tyrosins ist ebenfalls möglich (Oppermann et al. 1997). Lysin interagiert mit der Ribose am Nicotinamid-Ring und erniedrigt den pKa-Wert des Phenol-Restes des Tyrosins, wodurch ein nucleophiler Angriff an der Hydroxylgruppe des Substrates ermöglicht wird und die Übertragung eines Hydrid-Iones vom C-3 des Substrates auf das C-4 des Nicotinamidrings des Kosubstrates erleichtert wird (Filling et al. 2002). Die Tyr151-OH, die 2`OH der Ribose des Nicotinamidrings, Lys155 und ein Wasser-Molekül, welches durch die Asn111-Carbonylgruppe der Hauptkette positioniert wird, bilden im Aktivitätszentrum ein so genanntes "proton relay system" (Filling et al. 2002). Hierdurch wird eine staffelartige Weitergabe des Protons der Hydroxylgruppe ermöglicht (Abb. 3). Dieses System ist wahrscheinlich noch über Interaktionen weiterer Wasser-Moleküle mit Carbonylgruppen (z. B. Ala88) der Hauptaminosäurekette erweitert (Oppermann et al. 2003).

Abbildung 3 Reaktionsmechanismus von Hydroxysteroid-Dehydrogenasen der SDR-Familie.

Es sind die Übergangszustände der beteiligten Reaktionspartner bei der Dehydrogenierung der Hydroxylgruppe am C-3 eines Substrates dargestellt. Abbildung in Abwandlung nach Benach et al. (2002), basierend auf der Röntgenstrukturanalyse der $3\beta/17\beta$ HSD aus *Comamonas testosteroni* (Yin et al. 1991, Benach et al. 1996) und unter Berücksichtigung von Jörnvall et al. (1995), Ghosh et al. (1995 und 2001), Oppermann et al. (1997) und Filling et al. (2002).

Zusammenfassend lässt sich sagen, dass die Sequenzmotive drei verschiedenen Regionen der 3D-Struktur zugeordnet werden können: einer Kosubstrat-Bindungsregion, mit einer zentralen β-Faltblatt-Struktur typisch für eine Rossmann-Faltung, dem Aktivitätszentrum und einem Bereich proximal zur Substrat-Bindungsregion (Oppermann et al. 2003).

Die Substratspezifität der Enzymreaktionen ist durch den C-terminalen Teil festgelegt (Krozowski 1992), welcher in den bisher charakterisierten Enzymen die größten strukturellen Unterschiede (Persson et al. 1991 und Yin et al. 1991) und nur sehr geringe Sequenzähnlichkeiten aufweist. Strukturell ist diese Substrat-Bindungsregion (Position 181-218) zusammen mit der Kosubstrat-Bindungsregion Teil des Aktivitätszentrums und wird als "active site loop" bezeichnet. Am Anfang (Position 181-194) und am Ende (Position 214-218) dieser Region lassen sich noch strukturelle Ähnlichkeiten finden, wohingegen der Bereich zwischen 194 und 214 am geringsten konserviert aber häufig bei der Erkennung bzw. Orientierung des Substrates involviert ist (Benach et al. 2002).

Aufgrund der stetigen Zunahme der Mitglieder der SDR-Superfamilie und damit auch der funktionalen Diversität innerhalb dieser Familie wird sie, basierend auf dem Vorhandensein der beschriebenen konservierten Motive und deren Variationen, inzwischen in fünf Familien eingeteilt (Oppermann et al. 2003). Unterschiede in der Anzahl der Aminosäuren und den Glycin-reichen Motiven der Kosubstrat-Bindungsregion führten zu einer Einteilung in "classical" (klassisch) SDR (ca. 250 Aminosäuren) und "extended" (erweitert, verlängert) SDR (ca. 350 Aminosäuren) (Persson et al. 1991, Jörnvall et al. 1995). Kallberg et al. (2002a) fügten nach Analysen der Primärstruktur und multipler Sequenz-Vergleiche drei weitere Familien hinzu, bezeichnet als "complex" (komplex), "intermediate" (intermediär) und "divergent" (abweichend) SDRs.

Die Familie der klassischen SDRs stellt die größte Familie dar (ca. 50% aller Sequenzen) und umfasst Oxidoreduktasen (EC 1) wie Carbonyl-Reduktasen und Steroid-Dehydrogenasen. In der Familie der erweiterten SDRs (ca. 25% aller Sequenzen) lassen sich Lyasen (EC 4), Isomerasen (EC 5) und auch multifunktionale Enzyme wiederfinden, wie z. B. die 3 β -Hydroxysteroid-Dehydrogenase/ Δ^5 - Δ^4 -Isomerase des Menschen (Kallberg et al. 2002a).

1.3 3β-Hydroxysteroid-Dehydrogenasen

 3β -Hydroxysteroid-Dehydrogenasen (3β -HSD) konnten aus dem Menschen, verschiedenen tierischen Organismen, Mikroorganismen, Pilzen sowie Pflanzen isoliert werden. Gemeinsamkeit ist die Katalyse der Oxidation einer 3β -Hydroxylgruppe von Steroiden zu einer Carbonylgruppe bzw. deren Reduktion in entgegen gesetzter Reaktionsrichtung.

1.3.1 3β-Hydroxysteroid-Dehydrogenasen der Säugetiere

Für 3β-HSDs der Säugetiere lassen sich zahlreiche Beispiele finden [cf. Simard et al. 2005]. So katalysieren die 3β-Hydroxysteroid-Dehydrogenasen/ Δ^5 - Δ^4 -Isomerasen (3β-HSD/KSI) (EC 1.1.1.145/EC 5.3.3.1) des Menschen die Oxidation und Isomerisierung von Δ^5 -3β-Hydroxysteroiden wie Pregnenolon, 17α-Hydroxypregnenolon, Dehydroepiandrosteron und 5-Androsten3β,17β-diol zu den korrespondierenden Δ⁴-Ketosteroiden Progesteron, 17α-Hydroxyprogesteron, 4-Androsten-3,17-dion und Testosteron (Lachance et al. 1990). Sie sind essentiell für die Biosynthese aller Steroidhormon-Klassen, also den Glucocorticoiden, Mineralocorticoiden, Gestagenen, Androgenen und Estrogenen (Labrie et al. 1992). Zellulär sind sie in den Mitochondrien und dem Endoplasmatischen Retikulum (ER) lokalisiert und sind membrangebundene, dimere Enzyme mit einer monomeren Untereinheit von ca. 370 Aminosäuren und einer strikten Spezifität für das Kosubstrat NAD⁺. Das reduzierte Kosubstrat (NADH) scheint eine Konformationsänderung des Enzyms rund um die Doppelbindung des 3-Oxo- Δ^5 -Produktes zu induzieren und ermöglicht auf diese Weise die Ketosteroid-Isomerase-Aktivität (KSI) (Abb. 4, Thomas et al. 1995). Sie stellen somit bifunktionale Enzyme dar, wobei die Dehydrogenase-Reaktion reversibel und der limitierende Schritt für die Umsetzungsrate ist, die Isomerase-Reaktion hingegen ist irreversibel (Lachance et al. 1990).

Abbildung 4 Reaktionen der bifunktionalen 3β-HSD/KSI des Menschen. Schema in Abwandlung nach Thomas et al. (1995).

In vitro katalysieren sie auch die reversible Umwandlung von 3-Keto-5α-androstanen in 3β-Hydroxy-5α-androstane (Lorence et al. 1990, Rhéaume et al. 1991), sowie die entsprechende Umsetzung von 5α-Pregnanen (Payne et al. 1997), welche keine Δ^5 -Doppelbindung besitzen.

1.3.2 3β-Hydroxysteroid-Dehydrogenasen in Prokaryonten

In Prokaryonten hingegen wurden die 3β -HSD-Aktivität und die Isomerase-Aktivität separat voneinander isoliert, sie sind auf verschiedenen Enzymen lokalisiert (Talalay und Wang 1955). Strukturell sehr gut charakterisiert ist die $3\beta/17\beta$ -HSD (EC 1.1.1.51) aus *Comamonas testosteroni*, mit 253 Aminosäuren und charakteristischen Merkmalen einer SDR (Yin et al. 1991). Sie ist ein tetrameres Protein mit einer monomeren molekularen Masse von 27 kDa (Benach et al. 1996), NAD(H)-abhängig und zeigt sowohl 3β - als auch 17β -Hydroxy-Dehydrogenase- und entsprechend korrespondierende Reduktase-Aktivitäten für Androgene, Estrogene und Isogallensäuren (Talalay und Marcus 1956, Schultz et al. 1977a). Bindungsstudien konnten zeigen, dass bei der Oxidationsreaktion die Bindung des Kosubstrates NAD⁺ gegenüber dem Substrat favorisiert ist (Schultz et al. 1977b) und dass die Umsetzungsrate durch die Dissoziation des reduzierten Kosubstrates NADH limitiert wird (Oppermann et al. 1997).

1.3.3 3β-Hydroxysteroid-Dehydrogenasen in Pflanzen

3β-HSD-Aktivitäten konnten in einigen Pflanzen nachgewiesen werden, so z. B. in *Digitalis* sp., *Strophanthus* sp., *Nicotiana tabacum* und *Solanum tuberosum* (Seidel et al. 1990, Finsterbusch 1999) und im speziellen eine 3β-Brassinosteroid-Dehydrogenase-Aktivität konnte in *Arabidopsis thaliana* und *Lycopersicon esculentum* nachgewiesen werden (Stündl und Schneider 2001).

Die Δ^5 -3 β -HSD aus *Digitalis lanata* ist gereinigt und charakterisiert (Finsterbusch et al. 1999). Sie ist ein NAD⁺-präferierendes, lösliches, wahrscheinlich dimeres Enzym mit einer monomeren molekularen Masse von 29 kDa und wurde der SDR-Familie zugeordnet. Funktionell spielt die Δ^5 -3 β -HSD aus *D. lanata* eine Rolle bei der Biosynthese von Kardenolid-Vorstufen während der Herzglykosid-Biosynthese (Abb. 5).

Abbildung 5 Bildung verschiedener Pregnan-Derivate aus Cholesterol während der Biosynthese der Kardenolide (C.) aus Finsterbusch et al. (1999).

Enzymassays mit verschiedenen C₁₉- und C₂₁-Steroiden zeigten für die Dehydrogenierung eine deutliche Substratpräferenz für Pregnenolon (5-Pregnen-3β-ol-20-on), aber auch andere Steroide wie 5-Androsten-3β-ol-17-on (mit einer 17-Carbonylgruppe anstelle der Seitenkette) und 3β -hydroxylierte 5α - sowie 5β -Pregnane wurden dehydrogeniert. Für die entsprechenden 3a-hydroxylierten 5a- oder 5β-Pregnane konnte keine Aktivität festgestellt werden. Allerdings war bei der Reduktion des 5β-Pregnandions auch 5β-Pregnan-3α-ol-20-on nachweisbar (Finsterbusch 1999). Weiterhin konnte eine Katalyseaktivität für die Reduktion der 3-Ketogruppe für 5 α - und 5 β -Pregnan-3,20-dion, sowie für 5-Pregnen-3,20-dion gefunden werden. Die Substrate 4-Pregnen-3,20-dion (Progesteron) und auch 4-Androsten-3,17-dion wurden als Substrate für die Reduktion nicht akzeptiert, obwohl bei der Oxidation von Pregnenolon neben dem Intermediat 5-Pregnen-3,20-dion auch 4-Pregnen-3,20-dion nachgewiesen werden konnte. Trotz dieses Nachweises konnte die Frage nach einer vorhandenen Isomerase-Aktivität nicht eindeutig geklärt werden, da ebenfalls beobachtet wurde, dass chromatographisch gereinigtes 5-Pregnen-3,20-dion spontan zu 4-Pregnen-3,20-dion isomerisiert, und eine geringe Verunreinigung der Enzympräparation mit einer Isomerase nicht ausgeschlossen werden konnte. Zur Klärung der Bifunktionalität von pflanzlichen HSDs, könnte ein rekombinantes, heterolog exprimiertes und gereinigtes Enzym beitragen, da somit die gleichzeitige Anreicherung der Isomerase ausgeschlossen werden kann. Nach Vervollständigung der cDNA, Isolierung eines Ganzlängenklons und Überexpression in *Escherichia coli* konnte im Lysat der Bakterienkultur eine Δ^5 -3β-HSD-Aktivität nachgewiesen werden (Teuber 2001). Die Reinigung der rekombinanten Δ^5 -3β-HSD steht noch aus.

Da auch in Kardenolid-freien Geweben und Kulturen von *D. lanata* (Seidel et al. 1990, Stuhlemmer und Kreis 1996, Lindemann und Luckner 1997) und in nicht zur Herzglykosid-Biosynthese befähigten Pflanzen wie *Nicotiana tabacum*, *Solanum tuberosum* (Seidel et al. 1990), *Marchantia polymorpha* (Park et al. 1999) *Lycopersicon esculentum* und *Arabidopsis thaliana* (Winter et al. 1999, Stündl und Schneider 2001) 3β-HSD-Aktivitäten feststellbar waren, sollten 3β-HSD-Enzyme noch weitere Funktionen im Steroidmetabolismus in Pflanzen haben.

Erst kürzlich gelang aufgrund von Sequenzähnlichkeiten die Isolierung zweier neuer HSDs der SDR-Familie, deren cDNA-Klone aus *Arabidopsis thaliana* isoliert wurden und nach rekombinanter heterologer Expression Aktivitäten einer 3 β -Hydroxysteroid-Dehydrogenase/ C-4 Decarboxylase (3 β HSD/D) zeigten. Beide At3 β HSD/D Enzyme akzeptierten nur Substrate mit einer freien 3 β -Hydroxylgruppe und einer C-4-Carboxylgruppe. Substanzen ohne die letztere, wie Pregnenolon oder Androstan-3 β ,17 β -diol, wurden nicht akzeptiert. Die Autoren vermuten eine Funktion in der frühen Sterolbiosynthese (Rahier et al. 2006).

Stündl und Schneider (2001) konnten in cytosolischen Fraktionen von Lycopersicon esculentum und Arabidopsis thaliana eine NAD⁺-abhängige 3β-Dehydrogenase-Aktivität bei der Umsetzung des Substrates 24-epi-Teasteron zu 3-Dehydro-24-epi-teasteron nachweisen. Winter et al. (1999) konnten eine stereoselektive Reduktion von 3-Dehydro-24-epi-teasteron zu 24-epi-Teasteron (3β-OH) in der microsomalen Fraktion und zu 24-epi-Typhasterol (3α-OH) in der cytosolischen Fraktion demonstrieren. Diese Ergebnisse deuten darauf hin, dass an der reversiblen Inversion der Konfiguration der funktionellen C-3-Hydroxylgruppe über eine 3-Ketogruppe mindestens zwei Enzyme beteiligt sind. Diese Epimerisierung am C-3 von 3β- zu 3α-Hydroxylgruppen spielt bei verschiedenen Biosynthesen steroidaler Verbindungen, wie z. B. Ecdysteroiden (Milner und Rees, 1985) und Brassinosteroiden, eine Rolle (Stündl und Schneider 2001). Ebenfalls in der cytosolischen Fraktion von Suspensionskulturen von Marchantia polymorpha konnte die Epimerisierung der C-3-Hydroxylgruppe von Teasteron zu Typhasterol über 3-Dehydro-teasteron, welche Teil der Biosynthese von Brassinosteroiden ist (Abb. 7), demonstriert werden (Park et al. 1999). Die entsprechenden Gene und Proteine für die Dehydrogenase- und Reduktase-Reaktionen konnten bisher noch nicht isoliert werden (Fujioka und Yokota 2003). Ebenso unidentifiziert sind die Gene für die Dehydrogenierung und Isomerisierung der Doppelbindung 6), oder anderer Brassinosteroid-Prekursor, während des Campesterols (Abb. der Brassinosteroid-Biosynthese (Choe 2006).

Abbildung 6 Vereinfachte Gegenüberstellung der anfänglichen Biosynthesewege der Kardenolide und Brassinosteroide

Der Bildung der Pregnanderivate geht eine Verkürzung der Seitenkette verschiedener Sterole zu Pregnenolon, wahrscheinlich durch das Enzym Cholesterol-Monooxygenase (SCCE, Side Chain Cleaving Enzym) voraus (Pilgrim 1972, Palazón et al. 1995, Lindemann und Luckner 1997). Durch eine Δ^5 -3 β -HSD und Δ^5 - Δ^4 -KSI wird Pregnenolon zu Progesteron umgewandelt, dessen Δ^5 - Δ^4 -Doppelbindung durch eine 5 β -Reduktase reduziert wird (Seidel et al. 1990, Gärtner et al. 1990 und 1994, Seitz und Gärtner 1994, Stuhlemmer und Kreis 1996, Lindemann und Luckner 1997). Die anschließende Reduktion der 3-Ketogruppe des 5 β -Pregnan-3,20-dions kann ebenfalls durch die Δ^5 -3 β -HSD katalysiert werden (Finsterbusch et al. 1999).

Bei der Umwandlung von Campesterol zu Campest-4-en-3-on könnten ebenfalls eine 3β -HSD und eine KSI beteiligt sein. Die Reduktion der Doppelbindung erfolgt hier durch eine 5α -Reduktase (DET2, DEETIOLATED2, Li et al. 1997a, Noguchi et al. 1999). Auch die Reduktion der 3-Ketogruppe des 5α -Campestan-3-ons zum Campestanol durch eine 3β -HSD wäre denkbar.

1.4 Brassinosteroide und deren Biosynthese

Brassinosteroide (BR) sind im Pflanzenreich weit verbreitete steroidale Phytohormone mit Wachstums- und Entwicklungsbeeinflussenden Aktivitäten (Fujioka und Sakurai 1997b), wie z. B. die Stimulation der Zellteilung und Elongation, Einfluss auf die Differenzierung des vasculären Systems, der Stresstoleranz, der Blattentwicklung und des Wurzelwachstum sowie die Induktion der Ethylenbiosynthese, um nur einige zu nennen [cf. Li und Chory 1999]. Zahlreiche BR-Biosynthese Mutanten sowie BR-insensitive Mutanten zeigen einen charakteristischen dwarf oder semidwarf Phänotyp [cf. Haubrick und Assmann 2006].

Seit der Entdeckung und Isolierung des Brassinolids (BL) aus *Brassica napus* (Grove et al. 1979), sind bisher mehr als 50 natürlich vorkommende Brassinosteroide [Strukturen cf. Teixeira Zullo et al. 2003] und weitere verwandte Substanzen isoliert und charakterisiert (Fujioka und Sakurai 1997b, Fujioka et al. 1998a, Fujita et al. 2006). In Abhängigkeit der Alkyl-Substitution des C-24 in der Seitenkette des 5 α -Cholestan-Grundgerüstes wurden sie als C₂₇-, C₂₈- und C₂₉-Brassinosteroide klassifiziert (Fujioka und Yokota 2003).

Brassinosteroide können vermutlich ausgehend von den pflanzlichen Sterolen Cholesterol (C₂₇) (Nakajima et al. 2002, Fujita et al. 2006), Campesterol (C₂₈) (Fujioka und Sakurai 1997b) und Sitosterol (C₂₉) (Takatsuto et al. 1999) biosynthetisiert werden (Abb. 7). Am meisten verbreitet sind C₂₈-Brassinosteroide, von denen das Brassinolid die höchste biologische Aktivität besitzt (Clouse und Sasse 1998, Fujioka et al. 1998b). Sie werden ausgehend vom Campesterol über Campestanol und Castasteron biosynthetisiert (Fujioka und Sakurai 1997b). Dabei konnten sowohl für die C-22 Oxidation als auch für die C-6 Oxidation frühe und späte Synthesewege identifiziert werden, die untereinander vernetzt sind (Fujioka und Yokota 2003). Ein weiterer Biosyntheseweg ausgehend vom Cholesterol über Cholestanol und 6-Deoxo-28-norcastasteron konnte in L. esculentum nachgewiesen werden (Kim et al. 2004). Nakajima et al. (2002) konnten in A. thaliana zeigen, dass Cholestanol aus Cholesterol und Cholest-4-en-3-on, sowie aus Campestanol biosynthetisiert werden kann. Weiterhin konnten verschiedene 22-hydroxylierte C27-Steroide, wie 22-Hydroxycholesterol, 22-Hydroxycholest-4-en-3-on und 22-Hydroxy-5acholestan-3-on in A. thaliana identifiziert werden (Fujioka et al. 2002). Fujita et al. (2006) konnten mit dem rekombinant exprimierten CYP90B1 (DWARF4), eine C-22 Hydroxylierung für die Substrate Campesterol, Campestanol, Cholesterol, Cholestanol und auch Sitosterol detektieren. Weiterhin wurden in verschiedenen Pflanzen, z. B. Triticum aestivum und Setaria italica, die Steroide 24-Ethylcholest-4-en-3-on, 24-Ethyl-5a-cholestan-3-on und Sitostanol nachgewiesen (Takatsuto et al. 1999). Dies deutet darauf hin, dass in Pflanzen neben den Synthesewegen vom Campesterol über Campestanol und vom Cholesterol über Cholestanol, auch ein paralleler Biosyntheseweg vom Sitosterol über Sitostanol während der BR-Biosynthese existiert.

Zahlreiche BR-Biosynthese-Gene sind mit Hilfe von BR-Biosynthese-Mutanten verschiedener Pflanzen identifiziert oder aufgrund von Sequenzähnlichkeiten kloniert worden. In Abbildung 7 sind die in *A. thaliana* identifizierten Gene bzw. Enzyme angegeben.

11

12

Im Folgenden werden einige der dargestellten Schritte erläutert:

(1-4) Für die Umwandlung des Campesterols zum Campestanol sind mehrere Schritte nötig: Isomerisierung der Doppelbindung von Δ^5 zu Δ^4 , Dehydrogenierung der 3 β -Hydroxylgruppe, 5α-Reduktion der Doppelbindung und Reduktion der Carbonylgruppe am C-3. Der dargestellte Syntheseweg beruht auf Arbeiten von Noguchi et al. (1999), die aufgrund von Fütterungsversuchen mit den entsprechenden ²H-markierten Intermediaten zu der Schlussfolgerung kamen, dass Campesterol über ein 4-en-3β-ol-Intermediat, ein 4-en-3-on-Intermediat und ein 3-on-Intermediat zum Campestanol umgesetzt wird. Hierbei postulieren sie, im Gegensatz zu der bisher festgestellten Reihenfolge in Mensch und Säugetier (Lachance et al. 1990), dass zuerst die Isomerisierung der Doppelbindung erfolgt und dann die Dehydrogenierung der Hydroxylgruppe am C-3. Eine Reaktionsfolge über ein 5-en-3-on-Intermediat und 4-en-3-on-Intermediat (entspräche einer Dehydrogenierung vor der Isomerisierung) konnte von ihnen jedoch nicht ausgeschlossen werden, da weder eine Fütterung noch Detektion des 5-en-3-on-Intermediats vorgenommen wurde und nach Fütterung von [²H₆]-Campesterol kein 4-en-3β-ol-Intermediat im Wildtyp (WT) detektiert werden konnte. Auch in der Mutante det2 (deetiolated2, Chory et al. 1991) wurden nur 0,2% des Campesterols zum (24R)-24-Methylcholest-4-en-3β-ol (Campest-4en-3β-ol) umgesetzt (Noguchi et al. 1999). Das Gen DET2 kodiert ein Protein, welches hohe Sequenzähnlichkeiten zur 5α-Reduktase der Säugetiere zeigt und ähnliche Eigenschaften in der Substratspezifität besitzt. So konnte gezeigt werden, dass DET2 neben der Funktion als 5α-Reduktase während der BR-Biosynthese auch fähig zur Reduktion anderer Steroide mit 3-oxo- Δ^4 -Struktur, wie Progesteron (C₂₁), Androsten-3,17-dion und Testosteron (C₁₉), ist. Für Steroide mit einer 3β-Hydroxyl-Δ⁵-Struktur zeigt DET2 keine Aktivität (Li et al. 1997a). Somit müssen in Pflanzen weitere Enzyme für die Umsetzung von Steroiden mit einer 3 β -Hydroxyl- Δ^5 -Struktur zur 3-oxo- Δ^4 -Struktur vorhanden sein. Auf die Fragen, ob es sich dabei um ein Enzym, ähnlich der 3β-HSD/KSI des Menschen und der Säugetiere, oder zwei unterschiedliche Enzyme, ähnlich dem System in Bakterien handelt und in welcher Reihenfolge die Umwandlung von der 3β -Hydroxyl- Δ^5 -Struktur zur 3-oxo- Δ^4 -Struktur stattfindet, könnte die Klonierung und Expression von 3β-HSDs aus Arabidopsis thaliana Antwort geben.

(7-8) Die Gene *DWF4* (*DWARF4*) und *CPD* (*CONSTITUTIVE PHOTOMORPHOGENESIS AND DWARFISM*) kodieren für die Cytochrom P450-Monooxygenasen CYP90B1 und CYP90A1, welche die C-22 und C-23 Hydroxylierung im BR-Biosyntheseweg katalysieren (Szekeres et al. 1996, Choe et al. 1998). DWF4 und CPD haben hohe Aminosäuresequenz Ähnlichkeiten zu Cytochrom P450-Enzymen der Säugetiere.

(9-10) Eine weitere Rolle könnten 3β-HSDs während der reversiblen C-3 Epimerisierung des Teasteron über 3-Dehydroteasteron zu Typhasterol und der entsprechenden 6-Deoxo- bzw. 6-Deoxo-28-nor-Derivate spielen (Noguchi et al. 2000). Hong et al. (2003) vermuten, dass das Gen *D2* aus *Oryza sativa* (Reis), welches für ein CYP90D2 kodiert, verantwortlich für die Oxidation des C-3 innerhalb der Epimerisierung ist. Diese Schlussfolgerung beruht auf Rettungs-

versuchen der Reis-Mutante *ebisu dwarf* (*d2*) mit BR-Biosynthese-Intermediaten (Hong et al. 2003). Nach ähnlicher Vorgehensweise wird für CYP90D1 aus *A. thaliana* eine Funktion für die Umsetzung von Teasteron zu 3-Dehydroteasteron vermutet (Kim et al. 2005a). Aktivitätstests mit einem rekombinant exprimierten CYP90D2 aus *O. sativa* oder mit dem CYP90D1 aus *A. thaliana* fanden nicht statt. Ohnishi et al. (2006) hingegen beschreiben CYP90D1 und auch CYP90C1 (siehe unten) aus *A. thaliana* als C-23-Hydroxylasen. Wie im Abschnitt 1.3.3 schon erwähnt, konnten Stündl und Schneider (2001) eine NAD⁺-abhängige 3β-Dehydrogenase-Aktivität in der cytosolischen Fraktion aus *A. thaliana* bei der Oxidation von 24-*epi*-Teasteron (3β-OH) zum 3-Dehydro-24-*epi*-teasteron nachweisen. Für die Oxidation des 3-Dehydro-24-*epi*-teasteron zum 24-*epi*-Typhasterol (3α-OH) konnten sie eine, ebenfalls im Cytosol lokalisierte, NADH-abhängige Aktivität detektieren. Somit ließen sich in *A. thaliana* sowohl die 3β- als auch die 3α-Dehydrogenase-Aktivität im Cytosol lokalisierten (Stündl und Schneider 2001). Entsprechende Gene aus *A. thaliana* wurden noch nicht kloniert.

(11-14) Die folgende 2α-Hydroxylierung von Typhasterol bzw. 6-Deoxotyphasterol zu Castasteron bzw. 6-Deoxocastasteron wird wahrscheinlich durch ROT3 (ROTUNDIFOLIA3) ein CYP90C1 katalysiert (Kim et al. 2005a). AtBR6ox1 (CYP85A1) und AtBR6ox2 (CYP85A2) katalysieren vermutlich die C-6 Oxidation von 6-Deoxocastasteron, 6-Deoxo-teasteron, 6-Deoxo-3-dehydroteasteron und 6-Deoxotyphasterol (Shimada et al. 2001). Für CYP85A2 konnte auch eine Katalyse der Bayer-Villiger Oxidation von Castasteron zu Brassinolid nachgewiesen werden (Kim et al. 2005b).

1.5 Zielstellung dieser Arbeit

Bisher ist nur wenig über 3β -Hydroxysteroid-Dehydrogenasen und ihre Funktion in Pflanzen bekannt. Seit der Isolierung der Brassinosteroide als steroidale Phytohormone wird intensiv an der Aufklärung ihrer Biosynthese gearbeitet. Für die meisten Schritte dieser Biosynthese konnten die beteiligten Gene bzw. Enzyme identifiziert werden. Unter den noch nicht identifizierten Schritten lassen sich Reaktionsabläufe finden, die aus den schon beschriebenen Gründen nahe legen, dass sie von 3β -Hydroxysteroid-Dehydrogenasen katalysiert werden.

Ziel der hier vorliegenden Arbeit war die Isolierung, heterologe Expression und Reinigung von 3β-Hydroxysteroid-Dehydrogenasen aus der Modellpflanze *Arabidopsis thaliana* (L.) HEYNH.. Diese sollten hinsichtlich ihrer katalytischen Aktivitäten und Substratspezifitäten charakterisiert werden, um erste Hinweise auf ihre Funktion zu erhalten.

Ausgangspunkt war dabei die Δ^5 -3 β -HSD aus *Digitalis Ianata* EHRH.. Das nativ gereinigte, 29 kDa große Enzym wurde hinsichtlich seiner Substratspezifität mit verschiedenen C₁₉-, C₂₁-, C₂₇-, C₂₈- und C₂₉-Steroiden untersucht und teilweise sequenziert. Nach Sequenzvergleichen wurde es der SDR-Familie zugeordnet (Finsterbusch 1999). Die isolierte cDNA-Sequenz umfasste 780 bp, welche für 259 Aminosäuren kodieren. Nach einer heterologen Expression in *E. coli* konnte im Bakterienlysat 3 β -HSD-Aktivität festgestellt werden (Teuber 2001).

Für vergleichende Untersuchungen hinsichtlich ihrer Substratspezifität sollte auch diese rekombinante 3β-HSD aus *Digitalis lanata* (DI3βHSD) gereinigt werden.

Es sollten weitere Messungen durchgeführt werden, die zur Klärung der Frage nach einer vorhanden Isomerase-Aktivität beitragen.

Um Erkenntnisse zu möglichen metabolischen Funktionen der Hydroxysteroid-Dehydrogenasen in *A. thaliana* zu erhalten, sollte die Expression der identifizierten Gene untersucht werden und gegebenenfalls mit der Charakterisierung von T-DNA-Insertionslinien begonnen werden.

2 Material und Methoden

2.1 Material

2.1.1 Chemikalien und Enzyme

Die im Rahmen dieser Arbeit eingesetzten Chemikalien waren von analytischem Reinheitsgrad und wurden von den Firmen Biomol (Hamburg), Fluka (Schweiz), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg), Sigma (Steinheim), Sigma-Aldrich (Taufkirchen) und Steraloids (New Port, Rhode Island) bezogen. Steroide, welche als Substrate oder interner Standard für enzymatische Aktivitätsmessungen eingesetzt wurden, waren von dem jeweils höchsten erhaltbaren Reinheitsgrad: β -Sitosterol (Sigma: ca. 60%), Stigmasterol (Sigma: 95%), 5 α -Pregnan-3,20-dion, 5 β -Pregnan-3,20-dion, 5 α -Pregnan-3 β -ol-20-on, 5 β -Pregnan-3 β -ol-20-on, 5 β -Pregnan-3 α -ol-20-on (Sigma: ca. 95%), 17 α -Hydroxypregnenolon (Sigma: \geq 96%), 5 α -Pregnan-3 α -ol-20-on (Sigma: 98%), Pregnenolon, 21-Hydroxypregnenolon und 4-Androsten-3,17-dion (Sigma: \geq 98%), Progesteron und 5-Androsten-3 β -ol-17-on (Sigma: \geq 99%), 5-Pregnen-3,20-dion und 5-Androsten-3 β -ol-17-on (Steraloids: k. A.), Cholesterol (Sigma: 99+%), Campesterol (Steraloids: bis zu 30 % verunreinigt mit (24S)-24-Methylcholesterol).

28-Homoteasteron¹ war ein Geschenk von Lydia R. Galagovsky und Javier A. Ramírez des Institutes für Organische Chemie der Universität Buenos Aires, Argentinien (Ramírez et al. 2000). Enzyme, Puffer und Nukleotide für molekularbiologische Arbeiten wurden von Amersham Biosciences (Freiburg), Biomol (Hamburg), Fermentas (St. Leon-Rot), Invitrogen (Karlsruhe), NEB (Frankfurt/Main), peqLab (Erlangen) und Promega (USA) bezogen.

2.1.2 Kits

Folgende Kits wurden im Rahmen dieser Arbeit verwendet:

Name	Hersteller
TOPO TA Cloning [®] pCR 2.1 [®] Kit	Invitrogen
QIAquick [®] Gel Extraction Kit	Qiagen
QIAquick [®] PCR Purification Kit	Qiagen
QIAprep [®] Spin Miniprep Kit (250)	Qiagen
QIAGEN [®] Plasmid Midi Purification Kit	Qiagen
QIAGEN [®] Ni-NTA Spin Kit	Qiagen
RevertAid[TM] H Minus First Strand cDNA Synthesis Kit	Amersham Biosciences
Ready-To-Go [™] RT-PCR Beads	Amersham Biosciences
Quickprep [™] Total RNA Extraction Kit	Amersham Biosciences
GenomicPrep [™] Cells and Tissue DNA Isolation Kit	Amersham Biosciences
GFX [™] PCR DNA and Gel Band Purification Kit	Amersham Biosciences

¹ Bei der Bezeichnung des Steroids wurde die in der zitierten Publikation verwendete CAS-Nummerierung ("Chemical Abstracts Service") der Seitenkette beibehalten. Nach IUPAC Empfehlungen wird das C-28 mit C-24¹ bezeichnet.

2.1.3 Standardlösungen und Puffer

Alle verwendeten Standardlösungen und Puffer basieren auf den Vorschriften von Sambrook et al. (1989). Weitere Angaben befinden sich in den entsprechenden Methoden.

2.1.4 cDNA-Bank

Für die Gewinnung 3β-HSD-ähnlicher Sequenzen aus *Arabidopsis thaliana* (L.) HEYHN. mittels PCR wurde die cDNA-Bank λ ACT 2-hybrid library CD 4-22 (Kim et al. 1997) in ihrer Plasmidform als Template verwendet (Konzentration 13 ng/µL). Die mRNA-Quelle waren 3 Tage alte etiolierte Keimlinge von *Arabidopsis thaliana*, die Insertgrößen waren von 0,6 bis 2,5 kb, die durchschnittliche Insertgröße betrug 1 kb. Sie wurde von der Arbeitsgruppe Grimm aus dem Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben zur Verfügung gestellt.

2.1.5 Plasmide, Bakterienstämme

Folgende Klonierungsvektoren und Wirtsbakterienstämme wurden verwendet:

Plasmid-Vektor	Beschreibung/Verwendung	Referenz
pCR [®] 2.1-TOPO [®]	f1 ori, Kan ^r , Amp ^r , pUC ori, <i>Lac</i> Zα, M13 rev, MCS, T7 promotor, M13 fwd, 3,9 kb T/A-Klonierung, Sequenzierung	Invitrogen
pQE30	colE1 ori, β-lac, Amp ^r , T5 promotor, lac O, 6xHis-tag, MCS, 3,4 kb Überexpression in <i>E. coli</i>	Qiagen
Bakterienstämme Escherichia coli	Genotyp/Charakteristika	Referenz
XL 1-Blue	supE44 hsdR17 recA1 endA1 gyrA46 thi relA1 lac [¯] F´[proAB ⁺ lacI ^q lacZ∆Tn10(Tet ^r)]	Stratagene
TOP10	F^- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80/acZ ΔM15 Δ/acX74 recA1 deoR araD139 Δ(ara-leu)7697 galU galK rpsL (Str ^R) endA1 nupG	Invitrogen
TOP10F'	F'{ $lacl^{q}Tn10$ (Tet ^R)} mcrA Δ (mrr-hsdRMS-mcrBC) Φ 80 $lacZ \Delta$ M15 Δ $lacX74$ recA1 deoR araD139 Δ (ara- leu)7697 galU galK rpsL (Str ^R) endA1 nupG	Invitrogen
M15[pREP4]	<i>E.</i> coli K12 nal ^S str ^S rif ^S thī lac ⁻ ara ⁺ gal ⁺ mt[F^- recA ⁺ uvr ⁺ lon ⁺	Qiagen

Tabelle 2-1 Plasmide und Bakterienstämme

2.1.6 Oligonukleotide

Die eingesetzten Primer wurden von der Firma MWG-Biotech AG (Ebersberg) synthetisiert.

Tabelle 2-2 Primer für die Herstellung, Klonierung und Expression der cDNA-Konstrukte Δ^5 -3β-HSD-ähnlicher Sequenzen aus *Arabidopsis thaliana*, angefügte Restriktionsschnittstellen sind unterstrichen und benannt. Schmelztemperatur (T_m) nach MWG Report.

Gen	Name	Primersequenz 5` [⇒] 3`	T _m ℃
At2a47130	080713 FWD	<u>GGA TCC</u> ATG TCG GGA CTC AGA TTG BamH I	64,4
	080713 REV	GTC GAC TCA AAT GGG CTT AAC GAC	62,7
080714 FWD		GGA TCC ATG TCG GGA CTC AGA TTG BamH I	66,3
	080714 REV	GTC GAC TTA ATC ACG GCT TTG CTT A	63,0
At2q47140	q94k41 FWD	<u>GGA TCC</u> ATG TCT GGA AAA AGA TTG GAT GG BamH I	65,3
5	q94k41 REV	GTC GAC CTA CGG CTT CAC CAC CGA G	69,5
At1g52340	q9c826 FWD	GGA TCC ATG TCA ACG AAC ACT GAA TCT TC BamH I	65,3
5	q9c826 REV	<u>GTC GAC</u> TCA TCT GAA GAC TTT AAA GGA GTG ^{Sal} I	65,4
	q9ls67 FWD	<u>GGA TCC</u> ATG GAA CCG CAT GGA AG BamH I	64,2
At3g29260	3g29260 FWD	<u>GGA TCC</u> ATG TCG GGA CAA AGA TTG BamH I	62,7
	q91ls67 REV	GTC GAC TTA ATT CGA TGT CAG CTT AAC G	63,7
At3g42960	q9m1k9 FWD	<u>GGA TCC</u> ATG GCG AAC TCA GAC AAA AG BamH I	64,8
	q9m1k9 REV	GTC GAC CAC CAA ACG AAA ACT AG	64,8
At3g51680	q9scu0 FWD	GGA TCC ATG CCT GCC CAA GTG ATC BamH I	66,1
	q9scu0 REV	GTC GAC TCA CAA ACC AAC ACA GTT TCT TG Sal I	65,3
At3g29250	3g29250 FWD	<u>GGA TCC</u> ATG TCG GGG CTA AGG GAA G BamH I	67,9
	3g29250 REV	GTC GAC TCA CGT GGT CAT GAG CTT AAC G	68,0
At3g26760	3g26760 FWD	<u>GGA TCC</u> ATG TAT AGA AAG TTA GAA GGA AAA GTA G BamH I	64,7
	3g26760 REV	GTC GAC TTA AGC AGA AGG GAG ATT AAG AGA C Sal I	66,8
At4g03140	4g03140 FWD	GCA TGC ATG ACA GGG ATA TAC AAA G	61,3
	4g03140 REV	GTC GAC TTA CTT CAC TTG GTC AGG TG	64,8
At3g26770	3g26770 FWD	<u>GGA TCC</u> ATG GCG GCC ATA GTA CTG BamH I	66,1
	3g26770 REV	GTC GAC TCA TGA ATC CGA AGG AAA AGG Sal I	65,0
At2g47150	2g47150 FWD	<u>GGA TCC</u> ATG GAT GGC AAA ATC GTG BamH I	62,7
	2g47150 REV	GTC GAC TCA AAT AGG CTT AAC GAC GC	64,8

Tabelle 2-3 Primer für den Nachweis der T-DNA-Insertion in den SALK-Insertionslinien von *Arabidopsis thaliana* (2.1.8), Primer nach "Salk T-DNA verification primer design", Schmelztemperatur (T_m) nach MWG Report.

T-DNA-Insertionslinie	Name	Primersequenz 5 ^{· >} 3 [·]	T _m ℃
SALK 008827	A_LP	ATG CCT GGA TTC ATT TCC ATC	55,9
0/1211_000027	A_RP	GTT TCT GGC TTC GGA TGA TTC	57,9
SALK 000277	B_LP	TCC ACG CCT AAT TGG TAC AAC	57,9
0, 11, _00021,	B_RP	CAA TCG TAT GTA CGA CCA GCG	59,8
SALK 023471	C_LP	TCA ACG AGT TAG ACC GAA CGA	57,9
0/12/1/_020111	C_RP	GAG TCC CGA CAT TTT TGA AGG	57,9
SALK 076271	D_LP	CCC GAC AAA TTC TTT GAT GTG	55,9
	D_RP	CAA GTT TTT ACC GTT GCG ATG	55,9
SALK 133720	E_LP	GAA ACT TCT CAA TCC CCA TGC	57,9
0/12/	E_RP	GAA AAA GGC AAT TTC CTC ATC TG	57,1
SALK 098352	F_LP	AAG AGC GAC TAG ATA TGC TCC G	60,3
	F_RP	TCA ACG AGT TAG ACC GAA CGA	57,9
SALK 049625	G_LP	GAT TTA ACC AGC CCG AGA AGA	57,9
	G_RP	GGC AGA AGC TGC TCT GTT TTT	57,9
SALK 113632	H_LP	TTT CAA TCG GCA AAG ACA GAG	55,9
	H_RP	TTT TCC AGA CAT TGT TGA GAC G	56,5
SALK 049627	J_LP	ATC GTT TGC ACC ACT AGC GTC	59,8
	J_RP	AAT CAA TTA TTT TGA AAC TAT AAC GTG	54,3
-	LBa1	TGG TTC ACG TAG TGG GCC ATC G	64,0
-	LBb1	GCG TTG ACC GCT TGC TGC AAC T	65,8

Tabelle 2-4 Primer für das "Housekeeping-Gene" APT1 als Kontrolle bei der RT-PCR und Primerfür den kodierenden Bereich der cDNA der Δ⁵-3β-HSD aus Digitalis lanata. AngefügteRestriktionsschnittstellen sind unterstrichen und benannt. Schmelztemperatur (T_m) nach MWG Report.

Name	Primersequenz 5` > 3`	T _m ℃
APT1_FWD	GAT CCC AGA ATC GCT AAG ATT GCC TC	64,8
APT1_REV	GCA GCC GAC TTT ACA AGA ACA AAT AGC G	65,1
3bHSD-FWD	GCA TGC ATG TCG TCA AAG CCA AGG TTG	66,5
3bHSD-REV	AAG CTT CTA ACG CAC GAC GGT GAA GC Hind III	66,4

2.1.7 Medien

LB-Medium	("Luria Bertani Broth")	
	Eana Bontain Broth /	

Hefeextrakt	0,5	5 %
Trypton	1	%
NaCl	1	%

Der pH-Wert wurde auf 7,5 eingestellt, die Sterilisation erfolgte im Autoklaven.

Für LB-Agar-Platten wurde zusätzlich 1,5% Agar (Applichem) zugesetzt.

TB-Medium	("Terriffic Broth")
Lösung I (für 900 mL): Hefeextrakt	24 g
Trypton	12 g
Glycerol	4 mL
Lösung II: Kaliumphosphatpuffer pH	7,5 1 mM

900 mL steriler Lösung I werden vor Gebrauch mit 100 mL steriler Lösung II gemischt.

MS-Medium	("Murashige and Skoog")
MS (Murashige and Skoog Basal medium), (Sigma) MES (2-[N-Morpholino]ethansulfonsäure), (Sigma)	0,43 % 0,05 %
Vitaminstock (10 mg Thiamin, 50 mg Pyridoxin, 50 mg Nicotinsäure 200 mg Glycin in 100 mL Wasser, sterilisiert)	e, 0,1 %

Der pH-Wert wurde auf 5,7 eingestellt, die Sterilisation erfolgte im Autoklaven.

Für MS-Agar-Platten wurde zusätzlich 0,8% Agar (Applichem) zugesetzt.

SOC-Medium	("Super Optimal Broth with catabolite repression")
Trypton	2 %
Hefeextrakt	0,5 %
NaCl	10 mM
KCI	2,5 mM
MgCl ₂	10 mM
MgSO ₄	10 mM
Glucose	20 mM

Der pH-wert wurde auf 7,0 eingestellt, die Sterilisation erfolgte im Autoklaven.

2.1.8 Pflanzenlinien

Im Rahmen dieser Arbeit wurden Experimente mit *Arabidopsis thaliana*, Ökotyp Columbia (Col-0) Wildtyp (WT) und verschiedenen T-DNA-Insertionslinien von *Arabidopsis thaliana*, Ökotyp Columbia durchgeführt. Die Samen, welche die segregierende T3-Generation nach der Transformation darstellen, wurden über das Nottingham Arabidopsis Stock Centre (NASC) bezogen (Alonso et al. 2003). In Tabelle 2-5 sind die Pflanzenlinien aufgeführt, welche mit Hilfe des SIGnAL "T-DNA Express" Arabidopsis Gene Mapping Tools (<u>http://signal.salk.edu/cgi-bin/tdnaexpress</u>) ausgewählt und untersucht wurden.

Eine gute Erläuterung der üblichen Schreibweisen, Bezeichnungen und Standards in der *Arabidopsis*-Genetik befindet sich in Meinke und Koornneef (1997).

Tabelle 2-5 SALK-T-DNA-Insertionslinien	Arabidopsis	thaliana,	Ökotyp	Col-0	mit	Angabe	der
ungefähren Region der T-DNA-Insertion nach	n SIGnAL "T-[DNA Expre	ess".				

T-DNA-Insertionslinie	interner Name	Gen	Region der Insertion
SALK_008827	А	At2g47130	300-UTR3
SALK_000277	В	At2g47130	Exon
SALK_023471	С	At2g47130	1000-Promotor
		At2g47140	300-UTR3
SALK_076271	D	At2g47130	Exon
SALK_133720	E	At2g47130	1000-Promotor
		At2g47140	Exon
SALK_098352	F	At2g47130	1000-Promotor
		At2g47140	300-UTR3
SALK_049625	G	At2g47130	300-UTR5
		At2g47140	300-UTR3
SALK_113632	Н	At2g47140	300-UTR5
SALK_049627	J	At2g47130	300-UTR5
		At2g47140	300-UTR3

2.1.9 Rekombinantes Konstrukt der Δ^5 -3 β -HSD aus *Digitalis lanata* EHRH.

Für die Expression der rekombinanten Δ^5 -3β-HSD aus *Digitalis lanata* wurde ein Konstrukt, welches freundlicherweise in Form einer Plasmid-DNA-Präparation von Michael Teuber (Teuber 2001) überlassen wurde, verwendet. Bei diesem war die kodierende Sequenz der Δ^5 -3β-HSD (EMBL: AJ345026, Abb. A-1) über die Restriktionsschnittstellen *Sph* I und *Hind* III in den Expressionsvektor pQE30 kloniert worden (Abb. A-2, in der vorliegenden Arbeit nach der Transformation in die Expressionszellen als Klon HSD bezeichnet).

2.1.10 Geräte und Hilfsmittel

Die wichtigsten Geräte und Hilfsmittel werden in den einzelnen Kapiteln der Methoden aufgeführt.

2.2 Molekularbiologische Methoden

Allgemeine molekularbiologische Standardmethoden wurden, soweit keine anderen Angaben gemacht wurden, nach Sambrook et al. (1989) oder nach den Angaben der Hersteller der eingesetzten Kits oder Enzyme durchgeführt.

Basierend auf der bekannten Sequenz der Δ^5 -3 β -HSD aus *Digitalis lanata* EHRH. wurde in der Arabidopsis-Datenbank (<u>http://www.arabidopsis.org</u>) mit Hilfe der WU-BLAST2 Software eine Suche nach ähnlichen Sequenzen in *Arabidopsis thaliana* (L.) HEYNH. auf Proteinebene durchgeführt. Die Sequenzvergleiche basieren auf dem BLAST-Algorithmus (Altschul et al. 1990 und 1997, Gish und States 1993). Für die jeweiligen kodierenden Bereiche der cDNA der ersten zwölf sequenzähnlichsten Proteine wurden Primer entworfen (Tab. 2-2).

2.2.1 Klonierung und rekombinante heterologe Expression

2.2.1.1 Konstrukte und Klonierung

Für die Klonierung der 3β-HSD-ähnlichen Sequenzen aus *Arabidopsis thaliana* wurden die entsprechenden kodierenden Sequenzen zunächst mit Hilfe der Standard-PCR (2.2.2.1) unter Verwendung der *Pfu*-Polymerase amplifiziert. Dabei wurden die spezifischen Primer so gewählt, dass jeweils die entsprechend vollständige kodierende Sequenz (CDS) amplifiziert wurde, und dass die resultierenden PCR-Produkte am 5` Ende über eine *Bam*H I- bzw. eine *Sph* I-Schnittstelle sowie am 3` Ende über eine *Sal* I-Schnittstelle verfügten, um die Amplifikate nach Zwischenklonierung im pCR[®] 2.1-Vektor in den Expressionsvektor pQE30 klonieren zu können. In Tabelle 2-2 finden sich Angaben über Bezeichnung, ZieI-cDNA, Sequenz und angefügte Restriktionsschnittstellen der verwendeten Oligonukleotide. Als Template diente hierbei eine cDNA-Bank (2.1.4) in ihrer Plasmidform.

Die Amplifikationsprodukte wurden mittels Agarose-Gelelektrophorese (2.2.4.1) aufgetrennt, sofern mehr als eine Bande erschien, ihrer Größe entsprechend ausgewählt und aus dem Gel extrahiert (2.2.3.3). Danach wurden sie einem *"A-tailing"* unterzogen, da die *Pfu*-Polymerase glatte Enden produziert und für die TA-Klonierung in den Zwischenvektor pCR[®] 2.1 Adenosin-Überhänge nötig sind.

Hierfür wurde eine Mischung aus 6 μ L des aus dem Gel extrahierten PCR-Produktes, 1 μ L 10x Reaktionspuffer, 0,2 μ L dATP (10 mM), 1 μ L *Taq*-Polymerase (5 U/ μ L) und 2 μ L steriles bidestilliertes Wasser für 40 min bei 70°C inkubiert.

Die Klonierung und Transformation in die TOP10 oder TOP10F´-Zellen (Tab. 2-1) erfolgte nach Anleitung des Herstellers des TOPO TA Cloning[®]-Kits (Instruction Manual, Invitrogen). Der Erfolg der Transformation wurde mit Hilfe der Colony-PCR (2.2.2.2) überprüft. Positive Kolonien wurden in LB-Medium mit entsprechendem Antibiotikum über Nacht bei 37°C und Schütteln bei 140 rpm (GFL 3032 Schüttelinkubator, hilab) vermehrt und die Plasmide unter Verwendung der

angegebenen Miniprep- oder Midiprep-Kits (2.1.2) und entsprechenden Hersteller-Anleitungen isoliert.

Vor der Umklonierung in den Expressionsvektor pQE30 wurde die Sequenz der klonierten CDS durch Sequenzierung im Zwischenvektor pCR 2.1 überprüft (2.2.7).

Der Restriktionsverdau der Plasmide und des Expressionsvektors erfolgte jeweils mit den Restriktionsenzymen der angefügten Schnittstellen unter Verwendung der mitgelieferten Puffer und Herstellerhinweisen. Der Plasmidverdau wurde über eine DNA-Gelelektrophorese aufgetrennt und die der jeweiligen DNA-Sequenz entsprechenden Banden aus dem Gel extrahiert, ebenso der Verdau des Expressionsvektors.

Für die Ligation wurde die T4-DNA-Ligase (peqlab) verwendet, wobei die fünffache Stoffmenge an Insert mit dem Vektor kombiniert wurde. Da es sich um überstehende Enden handelte, reichte meist eine Inkubation von 1h bei Raumtemperatur aus; wenn nicht, wurde über Nacht bei 4°C inkubiert.

Zur längerfristigen Lagerung bei –80°C wurden von allen positiven Bakterienklonen Glycerin- und DMSO-Stocks angelegt. Hierfür wird 1 mL Bakterienkultur entweder mit 1 mL einer Glycerinlösung (65% (V/V) Glycerin, 0,1 M MgSO₄, 25 mM Tris/HCI pH 8) oder 1 mL einer DMSO-Lösung (7% (V/V) Dimethylsulfoxid) versetzt. Die entsprechenden Plasmid-Präparationen wurden bei –20°C gelagert.

2.2.1.2 Herstellung kompetenter Zellen

Die Herstellung kompetenter Zellen erfolgte von den *E. coli* Stämmen XL 1-Blue und M15[pREP4]. Hierfür wurde konsequent nach der Vorschrift des Protokolls 2 des Handbuches The QIAexpressionist[™] (Qiagen) gearbeitet.

2.2.1.3 Transformation in Bakterien

Die Ligationsansätze mit dem Expressionsvektor pQE30 wurden in XL 1-Blue-Zellen oder M15[pREP4]-Zellen von *E. coli* nach der Hitzeschockmethode (Cohen et al. 1972) transformiert. Hierfür wurden nach Inaktivierung der Ligase für 10 min bei 65°C, 10 μ L des Ligationsansatzes mit 100 μ L der chemisch kompetenten Bakterienkultur für 25 min auf Eis inkubiert, 90 Sekunden im Wasserbad auf 42°C erhitzt und sofort wieder auf Eis gestellt. Nach Zugabe von 500 μ L SOC-Medium wurde der Ansatz für 2 Stunden bei 37°C unter Schütteln (137 rpm) inkubiert und auf LB-Agar-Platten (100 μ g/mL Ampicillin für XL 1-Blue, zusätzlich 25 μ g/mL Kanamycin für M15[pREP4]) ausgestrichen. Die Kultivierung erfolgte über Nacht bei 37°C (Brutschrank B6060, Heraeus Instruments). Um später eine negative Kontrolle für die 3 β -HSD-Aktivität zu haben, bzw. eine Kontrolle auf endogene 3 β -HSD-Aktivität der Bakterienstämme, wurde auch Leerplasmid transformiert. Die Selektion positiver Klone erfolgte wiederum mit der Colony-PCR (2.2.2.2). Vor der Expression wurde die Korrektheit der Vektorkonstrukte nochmals durch Sequenzieren (2.2.7) überprüft.

2.2.1.4 Rekombinante Expression in *E. coli*

Die Expression der HSD-ähnlichen Sequenzen aus *Arabidopsis thaliana*, der Δ^5 -3β-HSD aus *Digitalis lanata* und des Leerplasmids erfolgte in Anlehnung an das Handbuch "The QIAexpressionistTM (Qiagen). Zunächst wurden Stocks positiver Klone zum Animpfen einer Übernachtkultur (LB-Medium, 100 mg/l Ampicillin) verwendet. Diese wurden zum Ansetzen der Expressionskulturen genutzt. Je nach Volumen der Expressionskulturen wurden 10 mL oder 20 mL in 1 L bzw. 2 L LB-Medium (100 mg/L Ampicillin) oder TB-Medium (100 mg/L Ampicillin) überimpft und bis zu einer optischen Dichte von A_{600nm} = 0,6 bis 0,8 bei 37°C im Schüttler bei 140 rpm inkubiert. Die Induktion der Proteinbiosynthese erfolgte durch Zugabe von 1 mM IPTG, es wurde bei 37°C, 140 rpm und unterschiedlichen Zeiten exprimiert. Die Bakterien wurden bei 4°C und 5000 *g* 10 min (Laborzentrifugen 3K10/3K12, Sigma) abzentrifugiert und lysiert (2.3.1). Für die Kontrolle des Verlaufs wurden vor der Induktion und zu verschiedenen Zeiten jeweils 1 mL Probe entnommen und für die SDS-PAGE (2.3.3) aufgearbeitet.

2.2.2 PCR

2.2.2.1 Standard-PCR

Die Polymerasekettenreaktion (PCR) wurde zum Amplifizieren der cDNAs der 3β-HSD-ähnlichen Sequenzen aus *Arabidopsis thaliana*, zur Identifizierung positiv transformierter Bakterienkolonien und zum Nachweis von T-DNA-Insertionen in genomischer DNA bzw. zur Identifizierung homozygoter und heterozygoter T-DNA-Insertionslinien genutzt.

Für einfache bzw. Routine-PCRs wurde die *Taq*-Polymerase (peqlab) verwendet. Um eine geringere Fehlerrate in der Sequenz zu klonierender Produkte zu erzielen, wurde zur Amplifikation die *Pfu*-Polymerase (Promega) mit Korrekturaktivität verwendet. Aufgrund der geringeren Prozessivität wurde die Elongationszeit verlängert. Die Amplifikation der gewünschten Produkte erfolgte im T3 Thermocycler (Biometra) nach folgendem Protokoll.

Reaktionsansatz:

10x Reaktionspuffer (Polymerase entsprechend)	2,5	μL
dNTPs (je 5 mM)	1	μL
Primer FWD (10 pmol/µL)	2,5	μL
Primer REV (10 pmol/µL)	2,5	μL
Template	0,5 – 2	μL
Polymerase (1U/µL)	1	μL
ddH ₂ O steril	ad 25	μL

Programme:	<i>Taq</i> -Poly	merase	<i>Pfu</i> -Polym	erase
Initiale Denaturierung	95°C	5 min	95°C	2 min
Denaturierung	95°C	0,5 min	95°C	0,5 min
Annealing	53 – 60°C	0,5 min x 35	55 – 60°C	0,5 min x 35
Elongation	72°C	1 min 丿	72°C	2,5 min _
Finale Elongation	72°C	5 min	72°C	5 min
	4°C	∞	4°C	∞

2.2.2.2 Colony-PCR

Zur Überprüfung des Transformationserfolges wurde die Colony-PCR angewendet, bei der einzelne Kolonien von *E. coli* als Template dienten. Diese wurden mit sterilisierten Zahnstochern von den LB-Agar-Platten gepickt und kurz in einen PCR-Mastermix getaucht und danach zum Animpfen der Einzelkolonie-Übernachtkultur in LB-Medium überführt. Die Zusammensetzung des Mastermix entsprach der Standard-PCR und enthielt natürlich die entsprechenden Primer für das jeweilige Insert. Beim Standardprogramm wurde die initiale Denaturierung auf 10 min verlängert, um die Bakterienzellen besser aufzuschließen. Die PCR wurde mit der Agarose-Gelelektrophorese (2.2.4.1) ausgewertet.

2.2.2.3 RT-PCR

RT-PCR-Analysen wurden durchgeführt, um die Transkriptakkumulation der 3β-HSD-ähnlichen Sequenzen in verschiedenen Organen von *Arabidopsis thaliana* zu untersuchen. Hierfür wurde Gesamt-RNA aus ca. 8 Wochen alten Pflanzen mit der Phenol-Chloroform Methode (2.2.3.4) isoliert. Mögliche Kontaminationen mit DNA wurden mit der RQ1 RNase-Free DNase (Promega) und entsprechendem Protokoll verdaut. Danach erfolgte die Erststrangsynthese mit der SuperScriptTM II RNase H⁻ Reversen Transkriptase (Invitrogen) und entsprechendem Protokoll. Es wurden 5 μg der Gesamt-RNA und Oligo(dT)₁₂₋₁₈-Primer eingesetzt.

Die reverse Transkription von PolyA⁺-RNA und anschließende Amplifikation der cDNA zur Analyse der Transkriptakkumulation in den T-DNA-Insertionslinien erfolgte aus Gesamt-RNA, welche aus ca. 3 Wochen alten Keimlingen mit dem QuickPrep Total RNA Extraction Kit isoliert wurde. Die reverse Transkription erfolgte mit Ready-to-GoTM RT-PCR Beads (Amersham Biosciences) nach dem Protokoll der Erststrangsynthese. Es wurden 1 μ g der Gesamt-RNA und Oligo(dT)₁₂₋₁₈-Primer verwendet.

Jeweils 1 µL der Erststrangsynthesen wurden zur Amplifikation von cDNA mittels PCR (2.2.2.1) eingesetzt. Als Primer für die Gene At2g47130 und At2g47140 dienten die in Tabelle 2-2 aufgeführten. Zur Kontrolle der Effizienzen wurden Primer (Tab. 2-4) für das "Housekeeping-Gene" *APT1* (*Adenin-Phosphoribosyl-Transferase 1*) verwendet.

2.2.3 Präparation von Nukleinsäuren

2.2.3.1 Isolierung genomischer DNA aus Pflanzen

Schnellpräparation genomischer DNA für PCR

Alle Schritte wurden bei Raumtemperatur durchgeführt. Mit einem 1,5 mL Eppendorf-Reaktionsgefäß wurde eine Blattscheibe ausgestanzt, im Reaktionsgefäß unter flüssigem Stickstoff zerkleinert, mit 400 µL Extraktionspuffer (200 mM Tris-HCL pH 7,5, 250 mM NaCl, 25 mM EDTA, 0,5% SDS) versetzt und für 5 bis 10 s homogenisiert (Labormixer VF2). Anschließend wurde 1 min zentrifugiert (14 000 rpm) und 300 µL des Überstandes wurden mit 300 µL Isopropanol versetzt und präzipitiert (5 min, 14000 rpm). Das entstandene Präzipitat wurde einige Minuten luftgetrocknet und in 100 µL sterilem Wasser gelöst. 1 µL dieser DNA-Lösung war für PCR-Ansätze ausreichend.

Das Protokoll basiert auf der Methode beschrieben bei Edwards et al. (1991).

Isolierung reiner genomischer DNA

1 g Pflanzenmaterial wurde unter flüssigem Stickstoff gemörsert, in 2 mL Extraktionspuffer (100 mM Tris-HCl pH 8,0, 50 mM EDTA, 500 mM NaCl, 10 mM Mercaptoethanol, 1,5% (m/v) SDS) aufgenommen und 10 min bei 65°C inkubiert. Nach Zugabe von 0,6 mL 5 M Kaliumacetatlösung und 10 min auf Eis, wurde zentrifugiert (10 min, 15000 *g*, 4°C). Der Überstand wurde mit 2 mL eines Gemisches aus Phenol/Chloroform/Isoamylalkohol (25:24:1) versetzt und zentrifugiert (5 min, 12000 *g*, 4°C). Dieser Schritt wurde wiederholt bis kein Niederschlag gefällter Proteine in der Interphase mehr zu erkennen war. Die in der wässrigen Phase enthaltene DNA wurde durch Zugabe von 0,7 Volumen Isopropanol (1 h, Raumtemperatur) präzipitiert (5 min, 15000 *g*, 4°C). Das Präzipitat wurde mit 70% Ethanol gewaschen und in 100 μ L sterilem bidestillierten Wasser aufgenommen. Es erfolgte eine photometrische Konzentrationsbestimmung (2.2.5.1).

2.2.3.2 Präparation von Plasmid-DNA

Die Isolierung von Plasmid-DNA aus Bakterien folgt der Methode der Alkalischen Lyse (Birnboim und Doly 1979).

Mini-Präparation

Das Präzipitat von 1,5 mL einer *E. coli* Übernachtkultur wurde in 150 μ L Lösung I (50 mM Glucose, 25 mM Tris-HCl, 10 mM EDTA) resuspendiert. Nach Zugabe von 150 μ L Lösung II (0,2 N NaOH, 1% (m/V) SDS), Mischen bis zur Bakterienlyse, Zugabe von 150 μ L Lösung III (3 M Kaliumacetat pH 4,8), Mischen und Zugabe einiger Tropfen Chloroform wurde 5 min bei Raumtemperatur zentrifugiert. Aus dem wässrigen Überstand wurden die Nukleinsäuren mit 1 Volumen Isopropanol präzipitiert (10 min, 4°C, 12000 x *g*). Das Präzipitat wurde mit 70% igem (v/v) Ethanol gewaschen und nach dem Trocknen an der Luft in 20 μ L sterilem bidestilliertem Wasser resuspendiert.

Teilweise stand auch der QIAprep[®] Spin Miniprep Kit (Qiagen) für eine Isolierung zur Verfügung.

Midi-Präparation

Größere Mengen an Plasmid-DNA, die für Sequenzierungen nötig waren, wurden mit dem QIAGEN[®] Plasmid Midi Purification Kit (Qiagen) nach Herstellerangaben isoliert. Hier wird die alkalische Lyse mit einem chromatographischen Reinigungsschritt (Anionenaustauscher) kombiniert.

2.2.3.3 Gelextraktion von DNA-Fragmenten

Zur Extraktion der Nukleinsäurebanden aus Agarosegelen, wurden die Fragmentbanden unter UV-Licht ausgeschnitten und die DNA mit dem QIAquick[®] Gel Extraction Kit (Qiagen) entsprechend dem Herstellerprotokoll eluiert. Das Prinzip beruht auf der Adsorption der DNA an Silicagelmembranen.

2.2.3.4 Isolierung von Gesamt-RNA aus Pflanzen

Die Isolierung von Gesamt-RNA aus 3 Wochen alten Keimlingen von Arabidopsis thaliana erfolgte mit dem QuickprepTM Total RNA Extraction Kit (Amersham Biosciences) und Herstellerprotokoll. Es wurden 50 mg Pflanzenmaterial verwendet. Hierbei erfolgt die Homogenisierung und Extraktion in einem Puffer, welcher Guanidiniumthiozyanat enthält. Die Fällung der RNA erfolgt mit Lithiumchlorid und Caesiumtrifluoracetat. Das erhaltene Präzipitat wurde in 100 µL DEPC-Wasser gelöst. Die Konzentration der RNA wurde bestimmt (2.2.5.1).

Die Isolierung von Gesamt-RNA aus verschiedenen Organen 8 Wochen alter Pflanzen erfolgte mit der Phenol-Chloroform Methode, einer modifizierten Methode nach Reinbothe et al. (1992). Soweit möglich, erfolgten alle Schritte auf Eis. Es wurden 0,5 bis 3 g Pflanzenmaterial in flüssigen Stickstoff gemörsert, das entstandene Pulver wurde in 6 mL NTES-Puffer (10 mM Tris-HCl pH 7,5, 100 mM NaCl, 1 mM EDTA, 1% (m/V) SDS) und 6 mL Phenol/Chloroform (1:1) mit dem Labormixer (VF 2) mindestens 5 min homogenisiert. Nach Zentrifugation (10 min, 5000 g, 4°C) wurde die wässrige Oberphase wiederum mit 1 Volumen Phenol/Chloroform (1:1) versetzt, mindestens 1 min homogenisiert und anschließend zentrifugiert (10 min, 5000 g, 4°C). Dieser Schritt wurde wiederholt bis kein Proteinniederschlag mehr entstand. Die Fällung der Nukleinsäuren in der wässrigen Phase erfolgte über Nacht bei -20°C durch Zusatz von 0,1 Volumen 3 M Natriumacetatlösung pH 5,2 und 3 Volumen 96% Ethanol. Die Nukleinsäuren wurden präzipitiert (30 min, 5000 g, 4°C), mit 70% Ethanol gewaschen, erneut zentrifugiert, bei Raumtemperatur getrocknet und in 5 mL sterilisiertem, DEPC behandeltem Wasser gelöst. Die Fällung der RNA erfolgte durch Zugabe von 5 mL 4 M LiCI-Lösung pH 5,2 bei 4°C über Nacht. Nach Zentrifugation (30 min, 5000 g, 4°C), waschen mit 70% Ethanol und trocknen bei Raumtemperatur wurde die RNA in 100 µL DEPC-Wasser gelöst. Die Konzentrationsbestimmung erfolgte photometrisch (2.2.5.1). Die RNA-Proben wurden bei -80°C gelagert.
2.2.4 Agarose-Gelelektrophorese

2.2.4.1 Elektrophorese von DNA-Fragmenten

Es wurde mit 1,25%igen Agarosegelen (0,5 g Agarose in 40 mL TTE-Puffer) gearbeitet. Vor dem Gießen des Geles wurden 20 µL Ethidiumbromidlösung (1 mg/mL) zugegeben. Die DNA-Proben wurden mit 10x Probenpuffer (50% Glycerin, 200 mM EDTA pH 7,5, 0,01% Bromphenolblau) versetzt und aufgetragen. Die Elektrophorese erfolgte im TTE-Puffer (90 mM Tris, 3 mM Taurin, 1 mM EDTA) bei einer Spannung von 80 V (Electrophoresis Power Supply EPS 301, Amersham). Als Größenmarker wurden der 100 bp DNA Ladder oder 1 kb DNA Ladder (beide New England Biolabs) oder der O`Range Ruler™ 100 bp DNA Ladder (Fermentas) verwendet. Die aufgetrennten DNA-Fragmente wurde mit Hilfe eines UV-Transilluminators (λ=254 nm, TC-312 A/F, Spectroline) ausgewertet und gegebenenfalls mit einer Videokamera (CCD Video Camera Module N50 und Video Copy Processor P91E) dokumentiert.

2.2.4.2 Elektrophorese von RNA

Für die Auftrennung von RNA-Proben wurde ein denaturierendes Agarosegel (1,2% (m/V)) verwendet. 2,4 g Agarose, 20 mL 10xMOPS-Puffer (400 mM MOPS/NaOH pH 7, 100 mM Natriumacetat, 10 mM EDTA) und 144 mL DEPC-Wasser wurden bis zur vollständigen Auflösung der Agarose erhitzt. Nach Abkühlung wurden 36 mL Formaldehyd zugegeben und das Gel gegossen. Die RNA-Proben (20 μ g RNA) wurden mit 3 Volumen RNA-Probenpuffer und 0,1 Volumen RNA-Stoppuffer versetzt, 15 min bei 65°C (Thermomixer 5437, Eppendorf) denaturiert und sofort auf Eis gestellt. Den Proben wurde vor dem Auftragen auf das Gel je 2 μ L Ethidiumbromidlösung (0,1 mg/mL) zugesetzt. Die elekrophoretische Auftrennung der Gesamt-RNA erfolgte im 1xMOPS-Puffer bei einer Spannung von 100 V (EPS 301, Amersham Pharmacia).

2.2.5 Konzentrationsbestimmung von Nukleinsäuren

2.2.5.1 Photometrische Bestimmung

Die photometrische Konzentrationsbestimmung wurde über die Messung der optischen Dichte bei einer Wellenlänge von 260 nm mit dem GENE QUANT II (Amersham Pharmacia Biotech) durchgeführt. Eine Absorption von 1 bei einer Schichtdicke von 1 cm wurde einer Konzentration von 50 µg/mL DNA bzw. 40 µg/mL RNA gleichgesetzt. Der Proteinindex (Absorption bei 260 nm/Absorption bei 280 nm) diente als Qualitätsmerkmal. Eine proteinfreie Nukleinsäurelösung sollte theoretisch einen Wert zwischen 1,8 – 2,0 aufweisen.

2.2.5.2 Bestimmung mittels Agarosegel

Zur groben Abschätzung geringer Mengen von DNA wurde die Intensität der Bande auf dem Agarosegel mit der Intensität der Banden des Größenmarkers verglichen, dessen Mengenverhältnis der Banden vom Hersteller angeben ist.

2.2.6 Identifizierung homozygoter T-DNA-Insertionsmutanten

Für eine Funktionsanalyse der 3β-HSD-ähnlichen Sequenzen in *Arabidopsis thaliana* wurden SALK-T-DNA-Insertionslinien (2.1.8) für das Gen At2g47130 und für das Gen At2g47140 käuflich erworben. Zwischen 10 bis 20 Samen jeder Pflanzenlinie wurden ausgesät und auf Erde kultiviert (2.5.1). Von jeder einzelnen Pflanze wurde zunächst mit der Schnellpräparation (2.2.3.1) genomische DNA extrahiert und mittels PCR untersucht, ob sie bezüglich der T-DNA-Insertion homozygot oder heterozygot waren.

Hierfür wurden zwei PCR-Reaktionen je Pflanze mit unterschiedlicher Primer Kombination und der genomischen DNA als Template angesetzt. Ein PCR-Ansatz enthielt ein genspezifisches Primerpaar (LP und RP), die mit dem Programm "SALK T-DNA verification primer design" (http://signal.salk.edu/tdnaprimers.html) so konzipiert wurden, dass die Größe des WT-Amplikons ungefähr zwischen 900-1100 bp lag. Der andere PCR-Ansatz enthielt den genspezifischen Primer (RP) der rechtsseitig von der T-DNA-Insertionsstelle flankierenden genomischen Seguenz und einen Left-Border T-DNA-spezifischen Primer (LBa1 oder LBb1). Die Größe der Amplifikate konnte zwischen 610-910 bp (LBa1) bzw. 410-710 bp (LBb1) liegen, in einigen Fällen waren sie jedoch größer. In Tabelle 2-3 sind die Sequenzen aller verwendeten Primer und in Tabelle 2-5 die zugehörigen SALK-T-DNA-Insertionslinien angegeben. Ansonsten entsprachen Reaktionsansatz und Programm der Standard-PCR (2.2.2.1). In Abbildung 8 ist die Vorgehensweise der Identifizierung homozygoter T-DNA-Insertionsmutanten schematisch dargestellt. Es wurde stets eine Kontroll-PCR mit genomischer DNA von WT-Pflanzen mitgeführt. Nach der Identifizierung wurde aus der entsprechenden Pflanze reine genomische DNA (2.2.3.1) gewonnen und zur Bestätigung des Genotyps nochmals mit der gleichen Vorgehensweise überprüft. Die genaue T-DNA-Insertionsstelle wurde durch Sequenzieren (2.2.7) des Produktes der PCR mit den jeweiligen RP-Primern und LBb1 bestimmt.

LP – linker genspezifischer Primer, RP – rechter genspezifischer Primer, BP – T-DNA Left-Border Primer (LBa1 oder LBb1), BPos – Distanz zwischen BP und der Insertionsstelle, für LBa1: 310 bp, für LBb1: 110 bp.

Eine PCR mit den Primern LP und RP liefert das WT-Amplikon, bei einer PCR mit den Primern RP und BP wird der Bereich zwischen der Left-Border der Insertion und der flankierenden genomischen Region amplifiziert. Eine Pflanze ist für die jeweilige T-DNA-Insertion homozygot, wenn kein WT-Allel amplifiziert werden kann.

2.2.7 Sequenzierung von DNA

Die Sequenzierungen der Plasmid-DNA wurden zum Teil von Dr. A. Peterson (Biozentrum, MLU Halle-Wittenberg) durchgeführt. Es kamen ein ALFexpress[™] DNA Sequencer (Amersham-Pharmacia) und ein ABI Prism[®] 377DNA Sequencer (Perkin Elmer) zum Einsatz. Sie erfolgten nach den Methoden von Chen und Seeburg (1985) sowie Sanger et al. (1977).

Des Weiteren wurden Sequenzierungen sowohl von Plasmid-DNA als auch von PCR-Amplifikationsprodukten von T-DNA-Insertionen in genomischer DNA von der Firma MWG-Biotech (Ebersberg) durchgeführt. Die Auswertung der Sequenzdaten erfolgte mit dem Programm OMIGA 2.0 (Oxford Molecular Ltd.).

2.3 Proteinbiochemische Methoden

2.3.1 Bakterienlyse

Die Lyse der *E. coli* Expressionskulturen (2.2.1.4) erfolgte in Anlehnung an das Protokoll 9 des Handbuches "The QIAexpressionist^{TM"} unter nativen Bedingungen. Zu den abzentrifugierten Bakterienzellen wurden je g Pellet 5 mL Lysispuffer (50 mM NaH₂PO₄, 300 mM NaCl, 10 mM Imidazol, pH 8,0) gegeben und resuspendiert. Der Zellaufschluss erfolgte durch Zugabe von Lysozym (Endkonzentration 1 mg/mL Lysispuffer) und nach 30 minütiger Inkubation auf Eis durch Ultraschall (SONOREX TK 30, Bandelin). Die Proben wurden im Ultraschallbad auf Eis 12 x 10 s, mit je 10 s Kühlungspause auf Eis, beschallt. Für die spätere Reinigung über die Nickel-Sepharose-Säulen (2.3.2) war eine anschließende Behandlung mit RNAse A (10 µg/mL) und DNAse I (5 µg/mL) für 15-30 min auf Eis unerlässlich. Die Zellrückstände wurden abzentrifugiert (30 min, 10000 *g*, 4°C) und der Überstand, der die lösliche Proteinfraktion darstellt, möglichst sofort zur Proteinreinigung (2.3.2), Quantifizierung (2.3.4) und für Aktivitätstest (2.3.5) weiter verwendet. Ansonsten wurden die Bakterienlysate für Enzymassays aliquotiert und bei –80°C gelagert.

Die mit der Bradford-Methode (2.3.4) bestimmten Gesamtproteinkonzentrationen der löslichen Fraktionen lagen zwischen 1-1,7 mg/mL. Sie wurden mit Lysispuffer auf ca. 1 mg/mL verdünnt. Die Konzentration der Kontrollfraktion (Leerplasmid) betrug 0,6 mg/mL. Im Assay wurden jeweils 100 µL der löslichen Proteinfraktion eingesetzt.

2.3.2 Reinigung der heterolog exprimierten Proteine

Die rekombinant exprimierten Proteine erhielten durch die Klonierung in den Expressionsvektor pQE30 einen 6fachen Histidin-Anhang (6xHis-tag) am N-Terminus. Dieser erlaubt eine Reinigung über Immobilisierte-Metallionen-Affinitätschromatographie (IMAC) bzw. Ni-Affinitätschromatographie. Es wurden HisTrap™HP-Säulen (Amersham Biosciences) mit 1 oder 5 mL Säulenvolumen verwendet. Die Matrix der Säulen bildet eine mit Nickelionen (Ni²⁺) beladene "Sepharose™ High Performance" (hochvernetzte Agarose, 6%). Histidin bildet Chelatkomplexe mit Nickelionen. Proteine mit einem 6xHis-tag, sollten eine höhere Affinität zu den Nickelionen haben, sofern der Anhang nicht durch die Tertiärstruktur verborgen ist. Die Elution der gebundenen Proteine erfolgt bei verschiedenen Imidazolkonzentrationen. Die notwendige Höhe der Imidazolkonzentration wurde in Vorversuchen mit dem QIAGEN[®] Ni-NTA Spin Kit (Qiagen) bestimmt.

Alle Schritte der Reinigung erfolgten bei 4-12°C, mit Hilfe des ÄKTA™explorer Systems (Pharmacia Biotech). Die Bakterienlysate (2.3.1) wurden nochmals mit dem Lysispuffer 1:1 verdünnt und durch Membranfilter (Durchmesser 0,45 µm) filtriert, um einer Verstopfung der Säule vorzubeugen.

Nach der Equilibrierung mit 5 Säulenvolumen Bindungs- bzw. Waschpuffer und Aufgabe der Proben (20-30 mL) auf die Säule, wurden mit 10 Säulenvolumen Waschpuffer (20 mM Natriumphosphat, 0,5 M NaCl, 20 mM Imidazol, pH 7,4) nicht gebundene Proteine entfernt. Der Zusatz des Imidazols in geringer Konzentration senkt die aufgrund von Histidin-Anteilen vorhandene Bindungskapazität bakterieller Proteine. Die Elution gebundener Proteine erfolgte über einen Imidazol-Gradienten (20–500 mM) der durch die Mischung des Waschpuffers mit dem Elutionspuffer (20 mM Natriumphosphat, 0,5 M NaCl, 500 mM Imidazol, pH 7,4) hergestellt wurde. Die Länge des Gradienten betrug 20 Säulenvolumen. Die Fließgeschwindigkeit betrug 1 mL/min. Die Eluate wurden in 2 mL Fraktionen gesammelt, wobei in den Auffanggefäßen jeweils 2 mL Aufbewahrungspuffer (10 mM Phosphatpuffer pH 8) vorgelegt wurden, um ein Ausfallen der Proteine durch die hohe Imidazolkonzentration zu verhindern und um das Protein zu stabilisieren. Die Fraktionen wurden nach der Verlaufsgrafik des UV-Spektrums bei 280 nm ausgewählt. Es wurde eine Proteinquantifizierung (2.3.4) und eine Überprüfung der Reinheit mittels SDS-PAGE (2.3.3) vorgenommen. Die vereinigten Fraktionen reiner Proteinlösungen wurden nochmals zu gleichen Konzentrationen mit Aufbewahrungspuffer verdünnt. Die Konzentration wurde durch nochmalige Messung bestätigt und unter Zusatz von 2% Glycerol zu 0,5 mL Proben aliquotiert und bis zur Weiterverwendung für Enzymassays (2.3.5) und kinetische Messungen bei -80°C gelagert.

2.3.3 SDS-PAGE

Die denaturierende SDS-PAGE (Sodiumdodecylsulfat-Polyacrylamid-Gelelektrophorese), nach dem diskontinuierlichen Laemmli-System (Laemmli 1970), diente der Überprüfung und Proteindetektion der Überexpression und Proteinreinigung.

Für die PAGE wurden 3,75%ige Sammelgele mit 12%igen Trenngelen kombiniert. Die Proben wurden mit SDS-Probenpuffer (0,625 M Tris-HCI pH 6,8, 10% Glycerol, 2% (m/V) SDS, 4% α-Mercaptoethanol, Bromphenolblau) versetzt und vor dem Auftragen 5 min bei 95°C denaturiert. Als Größenmarker kamen der peqGOLD Protein-Marker I (peqIab), der Prestained Protein Marker, Broad Range (NEB), PageRuler[™]Prestained (Fermentas) oder der PageRuler[™]Protein Ladder (Fermentas) zum Einsatz. Die Elektrophorese fand in der Mini Vertical Gel Elektrophorese

Einheit VGT 3 (180 V, 15-30 mA) im SDS-PAGE-Laufpuffer (Tris 6,0 g/L, Glycin 28,8 g/L, SDS 1 g/L, pH 8,3) statt.

	3,75 % Sammelgel	12 % Trenngel
1,5 M Tris-HCl pH 8,8	-	2,5 mL
0,5 M Tris-HCl pH 6,8	2,5 mL	-
30% Acrylamid	1,25 mL	4,0 mL
10% SDS	0,1 mL	0,1 mL
80% Glycerol	-	0,6 mL
Aqua dest.	6,15 mL	2,6 mL
10% TEMED	0,02 mL	0,1 mL
10% APS	0,08 mL	0,1 mL

Die Anfärbung der Proteinbanden erfolgte nach dem Fixieren (20 min, 50% (V/V) Methanol, 12% (V/V) Essigsäure) mit Coomassie-Färbelösung (30 min, 50% (V/V) Ethanol, 12% (V/V) Essigsäure, 0,2% (m/V) Coomassie Brilliant Blue R250). Der Hintergrund wurde mit einer Entfärberlösung (25% (V/V) Ethanol, 10% (V/V) Essigsäure) entfernt. Zur Aufbewahrung wurden die Gele zunächst in Trocknungslösung (1 h, 40% (V/V) Methanol, 10% (V/V) Essigsäure, 6% (V/V) Glycerol) geschwenkt, danach in Zellophanpapier eingespannt und getrocknet.

Für die Überprüfung der Proteinreinheit nach der Reinigung wurde eine Silberfärbung vorgenommen. Die Gele wurden zunächst 1 h in Fixierlösung (50% (V/V) Methanol, 12% (V/V) Essigsäure, 0,05% Formaldehyd) geschwenkt. Sie wurden 3 x 20 min mit 50% iger (V/V) Ethanollösung gewaschen, 1 min mit 0,02% iger (m/V) Natriumthiosulfatlösung vorbehandelt und 3 x 1 min mit bidestilliertem Wasser gewaschen. Nach 30 min Inkubation in der Imprägnierlösung (0,2% (m/V) Silbernitrat, 0,075% Formaldehyd) wurde kurz mit bidestilliertem Wasser gewaschen und bis zur Färbung der Banden in Entwicklerlösung (4% (m/V) Natriumcarbonat, 0,5% Natriumthiosulfat, 0,05 % Formaldehyd) geschwenkt. Nach dem Abstoppen der Reaktion (50% Methanol, 12% Essigsäure) wurden die Gele mit bidestilliertem Wasser gewaschen und getrocknet (siehe oben).

2.3.4 Konzentrationsbestimmung von Proteinen

Die Proteinquantifizierung erfolgte mit der Bradford-Methode (Bradford 1976). Ein Volumen Bradford-Reagenz (10 mg Serva Blue G250, 5 mL 96% Ethanol, 10 mL 85% Phosphorsäure in 100 mL bidestilliertem Wasser) wurde mit 4 Volumen bidestilliertem Wasser verdünnt. 1-10 μ L Proteinlösung wurden mit dieser Verdünnung versetzt. Die Zunahme der Absorption bei 595 nm wurde mit dem Zweistrahlphotometer UV-160A (Shimadzu) gemessen. Die Berechnung der Proteinkonzentration erfolgte anhand einer Kalibriergeraden, die mit Rinderserumalbumin (BSA) erstellt wurde. Lineare Abhängigkeit lag im Bereich von 60 μ g/mL – 150 μ g/mL vor.

2.3.5 Enzymassays und kinetische Charakterisierung

2.3.5.1 Spektrophotometrische Messung der Enzymaktivitäten

Die photometrischen Messungen der Enzymaktivitäten wurden mit dem Zweistrahlphotometer UV-160A (Shimadzu) mit einem angeschlossenem Thermostaten (Haake Fisons) in auf 40°C temperierten UV-Küvetten (Brand) mit einer Schichtdicke von 1 cm durchgeführt.

Für die Messung der Dehydrogenase-Aktivität wurde die Änderung der Absorption bei 340 nm (entsprechend der NADH-Zunahme) über 30 min verfolgt (Thomas et al. 1988, Rutherfurd et al. 1991). Ein 1 mL umfassender Enzymansatz enthielt 12 μ g Enzym und 0,1 mM NAD⁺ in 10 mM Phosphatpuffer pH 7,5. Die Reaktion wurde durch Zugabe des Substrates Pregnenolon in Ethanol (Endkonzentration 60 μ M) und kurzes Mischen durch Auf- und Abpipettieren in der Küvette (ca. 5 s) gestartet. Als Null-Abgleich diente ein Ansatz mit 12 μ g Protein und 0,1 mM NAD⁺ in 10 mM NAD⁺ in 10 mM Phosphatpuffer pH 7,5. Zur Kontrolle wurde die Änderung der Absorption von Ansätzen ohne Enzym bzw. ohne Substrat unter gleichen Bedingungen verfolgt. Für die Berechnungen wurde ein molarer Extinktionskoeffizient des NADHs von ε_{340} = 6178 L mol⁻¹ cm⁻¹ verwendet (Rutherfurd et al. 1991).

Für die Messung der Isomerase-Aktivität wurde die Änderung der Absorption bei 248 nm (entsprechend der Zunahme von Progesteron) über 30 min verfolgt (Talalay und Wang 1955, Rutherfurd et al. 1991). Allerdings musste hierbei die Kosubstratkonzentration auf 0,05 mM reduziert werden, da NAD⁺/NADH ein Absorptionsmaximum bei 260 nm besitzen und aufgrund ihres hohen Extinktionskoeffizienten bei dieser Wellenlänge bei höheren Konzentrationen die Absorption des entstehenden Progesterons bei 248 nm überdeckten. Ein 1 mL umfassender Enzymansatz enthielt 12 μg Enzym und 0,05 mM NAD⁺ in 10 mM Phosphatpuffer pH 7,5. Die Reaktion wurde gestartet durch Zugabe des Substrates 5-Pregnen-3,20-dion in Ethanol (Endkonzentration 60 μM) und kurzes Mischen. Für die Bestimmung der spontanen Isomerisierung von 5-Pregnen-3,20-dion zu Progesteron wurde unter gleichen Bedingungen ohne Enzym gemessen. 5-Pregnen-3,20-dion wurde hierfür frisch in Ethanol gelöst und so schnell wie möglich vermessen. Für die Berechnungen wurde ein molarer Extinktionskoeffizient des Progesterons von $ε_{248}$ = 15500 L mol⁻¹ cm⁻¹ (Finsterbusch 1999) verwendet.

Die Bestimmung der K_m-Werte der Kosubstrate NAD⁺ und NADH erfolgte durch Messung der Absorptionsänderung bei 340 nm (entsprechend der Zunahme bzw. Abnahme von NADH). Es wurde eine Konzentration der Substrate 5 α -Pregnan-3 β -ol-20-on (NAD⁺) und 5 α -Pregnan-3,20-dion (NADH) im Überschuss bzw. Sättigungsbereich von 0,25 mM gewählt. Dafür war eine Vorinkubation der Ansätze mit 0,25 mM Substrat (5 mM in Ethanol) in 10 mM Phosphattpuffer pH 7,5 für 5-10 min bei 40°C und 1100 rpm (Thermomixer 5437, Eppendorf) erforderlich, um eine vollständige Lösung des Substrates zu gewährleisten. Nach Überführung eines Ansatzes in die vortemperierte Küvette und Zugabe der Proteinlösung (Endkonzentration 5 µg/mL) erfolgte der Reaktionsstart durch Zugabe der NAD⁺/NADH-Lösung (im Reaktionspuffer). Die Messungen erfolgten in einem Konzentrationsbereich von 1-100 µM (NAD⁺) bzw. 5-250 µM (NADH). Es

wurden Kontrollproben ohne Enzym bzw. ohne Kosubstrat durchgeführt. Es wurden Dreifachbestimmungen durchgeführt. Mittelwerte und Standardabweichungen wurden berechnet.

2.3.5.2 Standardassay

Die Bestimmung der Enzymaktivität für verschiedene Substrate erfolgte für die lösliche Proteinfraktion der lysierten Bakterienkulturen und die gereinigten Proteine mit dem Standardassay nach Seidel et al. (1990). Es wurden zunächst die Bedingungen, welche für die pflanzliche Δ^5 -3 β -HSD aus *Digitalis lanata* optimiert waren (Finsterbusch 1999), übernommen. Der Reaktionspuffer (10 mM Phosphatpuffer) wurde auf pH 8,0 eingestellt, da die kinetischen Messungen der nativen Δ^5 -3 β -HSD bei diesem pH-Wert durchgeführt wurden. Als Standardsubstrat für die Oxidation wurde Pregnenolon gewählt, für die Reduktion 5-Pregnen-3,20-dion. Als Kosubstrat der Oxidation wurde NAD⁺, der Reduktion NADH im Überschuss (1 mM) verwendet. Der Assay wurde in 2 mL Reaktionsgefäßen für 30 min bei 50°C und 1100 rpm (Thermomixer 5437, Eppendorf) durchgeführt. Die Reaktion wurde durch Zugabe und Schütteln im Thermomixer (10 min, 1300 rpm) mit 2 Volumen gekühltem Diethylether beendet. Zur Phasentrennung wurde zentrifugiert (1 min, 14000 *g*, RT). Nach dreimaligem Ausschütteln mit Diethylether wurden die vereinigten Diethyletherphasen bei 45°C eingedampft und die Proben in 100 µL Methanol, welches den jeweiligen internen Standard (0,25 mg/mL) enthielt, aufgenommen. Die Identifizierung und Quantifizierung der Produkte erfolgte mittels GC/MS (2.4.2).

Die mit der Bradford-Methode (2.3.4) bestimmten Gesamtprotein-Konzentrationen der löslichen Fraktionen der Bakterienlysate lagen zwischen 1-1,7 mg/mL. Sie wurden mit Lysispuffer auf ca. 1 mg/mL verdünnt. Die Konzentration der Kontrollfraktion (Leerplasmid) betrug 0,6 mg/mL. Im Assay wurden jeweils 100 µL der löslichen Proteinfraktion eingesetzt.

Bei Enzymassays mit gereinigten Proteinen wurde das Gesamtvolumen auf 250 µL reduziert, die Proteinkonzentration im Assayansatz betrug 20 µg/mL (5 µg Protein).

Assayansatz:	Volumen	Konzentr.	Oxidation	Reduktion
Bakterienlysat (2.3.1) oder	100 µL			
Proteinlösung (2.3.2)	40 µL	20 µg/mL		
Substrat (9 mM in DMSO)	3 µL	0,3 mM	Pregnenolon	5-Pregnen- 3,20-dion
Kosubstrat (10 mM in Reaktionspuffer)	50 µL	1 mM	NAD^+	NADH
10 mM Phosphatpuffer pH 8,0	ad 500 µL			

2.3.5.3 Substrate und Abhängigkeit von der Proteinkonzentration

Die Bakterienlysate bzw. reinen Proteinlösungen wurden hingehend ihrer Substratspezifität untersucht. Die Bedingungen entsprachen dem Standardassay (2.3.5.2). Auf die Auswahl der Substrate wird im Kapitel Ergebnisse 3.2.2.1 eingegangen. In Tabelle 2-6 (2.4.2) sind die Substrate bzw. detektierten Produkte aufgeführt.

Die Abhängigkeit der Aktivität von der Proteinkonzentration der gereinigten Proteine wurde ebenfalls unter den Bedingungen des Standardassays mit dem Substrat Pregnenolon bestimmt.

2.3.5.4 Abhängigkeit der Aktivität von der Temperatur

Die Bestimmung der optimalen Reaktionstemperatur für die heterolog exprimierten Proteine aus *Arabidopsis thaliana* erfolgte unter den Bedingungen des Standardassays (2.3.5.2) mit reinen Proteinlösungen und dem Substrat Campesterol (0,3 mM) bei 30°C, 40°C, 50°C und 60°C. Die Proben wurden mit Hilfe der GC/MS (2.4.2) quantitativ ausgewertet.

2.3.5.5 Abhängigkeit der Aktivität vom pH-Wert

Die Bestimmung des optimalen pH-Wertes für die heterolog exprimierten Proteine aus *Arabidopsis thaliana* erfolgte unter den Bedingungen des Standardassays (2.3.5.2) mit reinen Proteinlösungen und dem Substrat Campesterol (0,3 mM). Als Reaktionspuffer wurde der 10 mM Phosphatpuffer mit den pH-Werten 5,5; 6,0; 6,5; 7,0; 7,5 und 8,0 verwendet. Die Proben wurden mit Hilfe der GC/MS (2.4.2) quantitativ ausgewertet.

2.3.5.6 Abhängigkeit der Aktivität von der Inkubationszeit

Die Ermittlung des linearen Verlaufs der Reaktionszeit für die heterolog exprimierten Proteine aus *Arabidopsis thaliana* erfolgte unter den Bedingungen des Standardassays (2.3.5.2) mit reinen Proteinlösungen und dem Substrat Campesterol (0,3 mM). Der Enzymassay wurde jeweils nach 0, 5, 10, 15, 20, 25, 30, 40 und 60 min Inkubationszeit gestoppt. Die Proben wurden mit Hilfe der GC/MS (2.4.2) quantitativ ausgewertet.

2.3.5.7 Abhängigkeit der Aktivität vom Kosubstrat

Die Abhängigkeit der Dehydrogenase-Aktivität vom verwendeten Kosubstrat, wurde für die heterolog exprimierten Proteine aus *Arabidopsis thaliana* unter den Bedingungen des Standardassays (2.3.5.2) mit reinen Proteinlösungen und dem Substrat Campesterol (0,3 mM) getestet. Die Kosubstrate NAD⁺ und NADH wurden jeweils im Überschuss (1 mM) zugegeben. Die Proben wurden mit Hilfe der GC/MS (2.4.2) quantitativ ausgewertet.

2.3.5.8 Bestimmung von K_m und V_{max}

Für die heterolog exprimierte 3β-HSD aus *Digitalis lanata* und die heterolog exprimierten Proteine der Gene At2g47130, At2g47140 und At1g52340 aus *Arabidopsis thaliana* wurden mit verschiedenen Substraten kinetische Messungen durchgeführt (Tab. 2-6). Für die Messungen

wurde der Standardassay (2.3.5.2) mit reiner Proteinlösung (20 µg/mL im Reaktionsansatz), und den jeweiligen Konzentrationsreihen der verschiedenen Substrate durchgeführt. Zunächst wurde unter den Assay-Bedingungen der pflanzlichen Δ^5 -3β-HSD aus *Digitalis lanata* (Finsterbusch 1999) gearbeitet, um die erhaltenen Werte mit den bisher bekannten vergleichen zu können. Folgende Änderungen wurden vorgenommen: Das Gesamtvolumen eines Ansatzes wurde auf 250 µL reduziert, um weniger Protein einsetzen zu können. Für das Substrat Campesterol (0,005-0,2 mM) und 28-Homoteasteron (0,005-0,1 mM) wurde der Assay an die optimierten Bedingungen (pH 7,5; 37°C) angepasst. Für jedes Substrat wurden Kontrollproben unter gleichen Bedingungen ohne Zugabe von Protein angefertigt.

Die Vermessung und Quantifizierung der Proben erfolgte mit GC/MS (2.4.2), im Fall des 28-Homoteasteron mit dem Massenspektrometer Finnigan LCQ (2.4.4). Soweit möglich wurden für die jeweiligen Produkte Kalibriergeraden ermittelt (Tab. A-2). Nach Dreifachbestimmungen wurden Mittelwerte und Standardabweichungen berechnet.

Die Auswertung der kinetischen Daten zur Ermittlung von K_m und V_{max} erfolgte mittels nichtlinearen Regression an die hyperbole Kurve der Michaelis-Menten-Gleichung v =(V_{max} ·[S])/(K_m + [S]) (Michaelis und Menten 1913, Briggs und Haldane 1925) mit Hilfe des Programms "Enzyme Kinetic Modul 1.3 SigmaPlot 10.0" (Systat) und dem gängigen Linearisierungsverfahren nach Hanes-Woolf (Hanes 1932).

Die Bestimmung der K_m- und V_{max}-Werte der Kosubstrate NAD⁺ und NADH erfolgte mittels spektrophotometrischer Messung (2.3.5.1) und Auswertung mittels nichtlinearer Regression (siehe oben).

Die von den Hydroxysteroid-Dehydrogenasen katalysierten Reaktionen sind bei konstanter Enzymkonzentration und konstantem pH-Wert Reaktionen zweiter Ordnung. Um trotzdem die (für Reaktionen erster Ordnung aufgestellte) Michaelis-Menten Beziehung benutzen zu können, wurde jeweils einer der Reaktionspartner (Kosubstrat oder Substrat) im Überschuss zugegeben (im Fall der Kosubstrate 1 mM). Die Reaktion wird dadurch pseudoerster Ordnung, und lässt sich entsprechend Reaktionen erster Ordnung auswerten. Auch bei reversiblen Reaktionen besitzt die Michaelis-Menten Beziehung Gültigkeit, solange die Produktkonzentration gegenüber der Substratkonzentration vernachlässigbar bleibt (Bisswanger 2000). Bei sehr kleinen Substratkonzentrationen (< 0,01 mM) ist dies jedoch experimentell, aufgrund der analytischen Nachweisgrenzen für das Produkt, kaum realisierbar. Es wurde aber in diesen Bereichen darauf geachtet, dass die Produktkonzentration nicht mehr als 50% der Substratkonzentration erreicht. Bei größeren Substratkonzentrationen (≥ 0,02 mM), welche für die Ermittlung von V_{max} entscheidender sind, betrug die Produktkonzentration maximal 10%, meist < 5% der Substratkonzentration. Damit wird die Wahrscheinlichkeit einer einsetzenden Rückreaktion gering.

2.4 Chromatographische Analysemethoden

Enzymassay-Proben die nur zur schnellen qualitativen Überprüfung der Aktivität dienten, wurden mit Hilfe der Dünnschichtchromatographie ausgewertet. Proben sämtlicher Versuche die eine quantitative Aktivitätsbestimmung erforderten wurden über Gaschromatographie mit massenspektrometrischer Detektion vermessen.

2.4.1 Dünnschichtchromatographie (DC)

Für die dünnschichtchromatographische Auswertung wurden 20-40 µL der in Methanol gelösten Enzymassay-Proben sowie Kontrollproben und entsprechende Referenzsubstanzen auf die DC-Platten (DC-Alufolien 20x20 cm Kieselgel 60 F₂₅₄, Merck) aufgetragen und im Laufmittel Methylenchlorid/Ethylacetat (4:1 V/V) entwickelt. Die Detektion erfolgte mit Anisaldehyd-Reagenz R (0,125 mL Anisaldehyd, 2,5 mL Essigsäure (98%), 21,5 mL Methanol, 1,25 mL Schwefelsäure (96%), DAB 10) und anschließender Farbentwicklung bei 120°C im Trockenschrank (HST 5020, mlw). Zur Identifizierung wurden die Rf-Werte und Farben mit den Referenzsubstanzen verglichen.

2.4.2 Gaschromatographie mit massenspektrometrischer Detektion (GC/MS)

Zur Identifizierung und Quantifizierung der steroidalen Umsetzungsprodukte der Enzymassays wurde die Gaschromatographie mit massenspektrometrischer Detektion (GC/MS) eingesetzt. Für die Identifizierung von Intermediaten bzw. Produkten wurden SCAN-Methoden benutzt. Hierbei werden von sämtlichen in der Probe enthaltenen Substanzen komplette Massenspektren detektiert, die einen Vergleich mit Spektrenbibliotheken oder Referenzsubstanzen erlauben. Häufig genutzt wurden Referenzspektren der NIST-Bibliothek ("National Institute of Standardisation", USA).

Geräteparameter

Gerätetyp:	Gaschromatograph Hewlett Packard 5890, Serie II Plus		
Detektor:	HP 5972 Quadrupolmassenspektrometer		
Autosampler:	HP 7673		
Säule:	HP-5 M.S. : 30 m x 0,25 mm ; Filmdicke 0,25 μm		
Stationäre Phase :	crosslinked 5% Phenylmethylsilicone		
Mobile Phase:	Helium		
Druck:	1,18 bar		
Flussrate:	1 mL/min		
Injektionsvolumen:	5 µL		
Injektortemperatur:	320°C		
Detektortemperatur:	320°C		

SCAN-Methoden	SCAN I	SCAN II	SCAN III
Temperaturprogramm			
Initiale Temperatur:	230°C	230°C	180°C
Aufheizrate:	10°C/min	10°C/min	10°C/min
Finale Temperatur:	320°C	320°C	320°C
Laufzeit:	10 min	13 min	15 min
Scan-Parameter			
niedrigste Masse:	50	50	50
höchste Masse:	500	550	475
Scan-Rate:	1,5 scans/s	1,5 scans/s	1,5 scans/s

Für Quantifizierungen einzelner Steroide wurden SIM-Methoden ("selected ion monitoring") angewendet, die aufgrund ihrer erhöhten Empfindlichkeit besser geeignet sind. Entsprechend der zu quantifizierenden Steroide wurden die SIM-Methoden auf die Detektion charakteristischer Fragmentionen-Massen eingestellt. In Tabelle 2-6 sind den identifizierten Substanzen die verwendeten Methoden und charakteristische Massen zugeordnet. Für jede Methode und zu quantifizierende Substanz wurden Kalibriergeraden erstellt, sofern eine Referenzsubstanz zur Verfügung stand. Es wurde stets unter Zusatz eines internen Standards gearbeitet.

SIM-Methoden	Interner Standard	<i>m/z</i> (M ⁺)
SIM I ¹ :	4-Androsten-3,17-dion	286
SIM II ¹ :	Cholesterol	386
SIM III ² :	4-Androsten-3,17-dion	286
SIM IV ³	4-Androsten-3,17-dion	286

Für einen empfindlichen gaschromatographischen Nachweis und eine bessere Trennung sowie Peaksymmetrie von Campesterol und seinen Metaboliten, sowie 28-Homoteasteron und den entsprechenden Umsetzungsprodukten, mussten die Proben derivatisiert (2.4.3) werden.

¹ Temperaturprogramm: entspricht SCAN I

² Temperaturprogramm: entspricht SCAN II ³ Temperaturprogramm: entspricht SCAN III

Tabelle 2-6 Übersicht über die verwendeten SCAN- und SIM-Methoden zur Identifizierung der Steroide. Neben der Molekülionen-Masse (M⁺) sind weitere charakteristische Fragmentionen-Massen, welche zur Identifizierung und teilweise zur Quantifizierung dienten. Die Retentionszeiten (Rt) stellen Mittelwerte dar, da es mit Alterung der Säule zu Verschiebungen kommen kann. Es ist angegeben für welche Substrate Kinetiken durchgeführt wurden.

3-Hydroxy-Steroide	SCAN	charakteristische Fragmentionen-Massen	SIM	Rt (min)	Kinetik
Pregnenolon	SCAN I	316(M ⁺), 298, 255, 231	SIM I	6,2	+
17-Hydroxypregnenolon	SCAN II	332(M ⁺), 314, 271, 253, 213	SIM III	7,2	-
21-Hydroxypregnenolon	SCAN II	332(M ⁺), 314, 271, 253, 213	SIM III	7,9	+
5-Androsten-3β-ol-20-on	SCAN II	288 (M ⁺), 255, 227, 203	SIM II	5,1	-
5β-Pregnan-3β-ol-20-on	SCAN I	318(M ⁺), 300, 257, 233, 215	SIM II	5,6	+
5β-Pregnan-3α-ol-20-on	SCAN I	318(M ⁺), 300, 242, 230, 215, 201	SIM II	5,8	-
5α-Pregnan-3β-ol-20-on	SCAN I	318(M ⁺), 300, 285, 260, 233, 215	SIM II	6,1	+
5α-Pregnan-3α-ol-20-on	SCAN I	318(M ⁺), 300, 274, 233, 215, 173	SIM II	6,1	-
Cholesterol	SCAN III	386(M ⁺), 353, 301, 275, 231, 213	SIM IV	8,1	-
Stigmasterol	SCAN III	412(M ⁺), 369, 351, 300, 271, 255	SIM IV	9,1	-
β-Sitosterol	SCAN III	414(M ⁺), 396, 329, 303, 255, 213	SIM IV	7,1	-
Campesterol-Derivat	SCAN III	472(M ⁺), 443, 415, 382, 343	SIM IV	11,2	+
28-Homoteasteron-Derivat	SCAN III	558(M ⁺), 543, 529, 468, 300	-	9,7	(+)
3-Keto-Steroide	SCAN	charakteristische Fragmentionen-Massen	SIM	Rt (min)	Kinetik
Progesteron	SCAN I	314(M ⁺), 299, 272, 229, 124	SIM I	6,9	-
5-Pregnen-3,20-dion	SCAN I	314(M ⁺), 299, 272, 229, 124	SIM I	7,1	-
17-Hydroxyprogesteron	SCAN II	330(M ⁺), 302, 287, 269, 244, 229	SIM III	6,6	-
21-Hydroxyprogesteron	SCAN II	330(M ⁺), 299, 287, 269, 244, 229	SIM III	6,5	-
4-Androsten-3,17-dion	SCAN I	286(M ⁺), 258, 244, 229, 201, 124	SIM I	5,9	-
5-Androsten-3,17-dion	SCAN I	286(M ⁺), 258, 244, 229, 201, 124	SIM I	6,5	-
5β-Pregnan-3,20-dion	SCAN I	316(M ⁺), 298, 272, 246, 213, 176	SIM II	5,9	+
5α-Pregnan-3,20-dion	SCAN I	316(M ⁺), 298, 258, 231, 217, 175	SIM II	6,3	+
Cholesten-3-on	SCAN III	384(M ⁺), 342, 299, 261, 229, 124	SIM IV	7,2	-
24β-Ethyl-4-cholesten-3-on	SCAN III	412(M ⁺), 370, 305, 289, 271, 229, 124	SIM IV	6,8	-

2.4.3 Derivatisierung von Steroiden

Enzymassay-Proben (in 100 µL Methanol inklusive Interner Standard) der Substrate Campesterol und 28-Homoteasteron wurden bei 40°C vollständig zur Trockene eingedampft und derivatisiert. Campesterol-Proben wurden mit 20 µL BSTFA (Bis(trimethylsilyl)-trifluoracetamid, Roth) für 30 min bei 80°C derivatisiert (Fujioka et al. 1997a, Takatsuto et al. 1999).

28-Homoteasteron-Proben wurden 30 min bei 80°C mit 100 μL wasserfreiem Pyridin behandelt, welches Methanboronsäure (2 mg/mL) enthielt, und danach wie oben mit BSTFA umgesetzt (Fujioka et al. 1997a, Park et al. 1999). Für die Vermessung der Proben an der GC/MS wurden sie bis zur Trockene eingedampft und wieder in 100 μL Methanol aufgenommen.

2.4.4 Messungen am Massenspektrometer Finnigan LCQ

Die Quantifizierungen der Proben nach Umsetzung mit dem Substrat 28-Homoteasteron wurden mit dem Ionenfallen-Massenspektrometer Finnigan LCQ Classic (Thermo Electron, Egelsbach) im Institutsbereich Pharmazeutische Technologie und Biopharmazie unter Anleitung von Frau Manuela Woigk (Arbeitsgruppe Biopharmazie) vermessen. Die Proben (in Methanol) wurden ohne vorhergehende Derivatisierung über eine Spritzenpumpe mit einer Flußrate von 100 µL/min direkt injiziert. Quantifizierung Verhältnis charakteristischer Eine ist über das Molekülionenmassen des Produktes 3-Dehydro-28-homoteasteron (M 460,7 g/mol) m/z: 461 $(M^{+} + 1 [H])$, 483 $(M^{+} + 23 [Na])$, 499 $(M^{+} + 39 [K])$ und des Substrates 28-Homoteasteron (molekulare Masse 462,7 g/mol) *m/z*: 463 (M⁺ +1 [H]), 485 (M⁺ +23 [Na]) und 501 (M⁺ +39 [K]) möglich. Auf diese Weise ließen sich K_m-Werte zumindest abschätzen.

2.5 Kultivierung und Behandlung von Pflanzen

2.5.1 Kultivierung auf Erde

Für die Selektion homozygoter Pflanzen der verschiedenen T-DNA-Insertionslinien (2.1.8) von *Arabidopsis thaliana* wurden die Samen der segregierenden T3-Linien auf Erde (Pflanzerde, Gärtner Spezial) ausgesät und stratifiziert (3 Tage, 4°C), um die Keimung zu synchronisieren. Sie wurden unter Langtag-Bedingungen (16h Tag/8h Nacht) angezogen. Die Keimlinge wurden nach 4-7 Tagen in einzelne Töpfe pikiert und mit Beginn der Blütenbildung räumlich getrennt um Kreuz-Kontaminationen zu vermeiden. Zur Samenernte wurde das oberirdische Pflanzenmaterial eingetütet. Die Samen wurden mit einem handelsüblichen Teesieb von den restlichen Pflanzenteilen getrennt und im Dunkeln bei Raumtemperatur gelagert.

2.5.2 Oberflächensterilisierung von Samen

Zur Sterilisierung wurden die Samen 2 min in 70% (V/V) Ethanol vorinkubiert. Anschließend 10 min mit einer Sterilisationslösung (12% (V/V) Natriumhypochlorit, 0,2% Tween[®] 20) behandelt. Danach wurden sie mindestens fünfmal in sterilem Wasser gewaschen.

2.5.3 Kultivierung unter sterilen Bedingungen

Die sterilisierten Samen (2.5.2) wurden auf 0,5xMS-Agar-Platten (2.1.7) ausgelegt und 3 Tage bei 4°C aufbewahrt. Die Kultivierung erfolgte in einem klimatisiertem Raum bei 22°C und unter Langtag-Bedingungen (16h Tag/8h Nacht). Nach ca. 2 Wochen wurden sie in größere sterile Gefäße mit ebenfalls 0,5xMS-Agar gleicher Zusammensetzung umgesetzt.

2.5.4 Behandlung mit 24-epi-Brassinolid

Pflanzen der isolierten Mutanten und des WT wurden unter Zusatz verschiedener Konzentrationen von 24-*epi*-Brassinolid (in Ethanol) kultiviert (Choe et al. 2002). Hierfür wurde 24-*epi*-Brassinolid (EBR) vor dem Gießen der Platten zum noch flüssigen 0,5xMS-Agar gegeben. Es wurden Platten und größere Gefäße unter Zusatz von EBR in verschiedenen Konzentrationen von 1 nM, 10 nM und 100 nM gegossen. Die weitere Kultivierung entsprach 2.5.3.

2.5.5 Messung der Wurzellängen

Die Samen von WT Pflanzen und isolierter Mutanten wurden auf 0,5xMS-Agar-Platten ohne und unter Zusatz von 24-*epi*-Brassinolid (1 nM, 10 nM, 100 nM) ausgelegt, stratifiziert (3 Tage, 4°C) und unter sterilen Bedingungen (2.5.3) kultiviert. Nach 10, 16 und 20 Tagen wurden je Platte 20 Keimlinge zufällig ausgewählt und ihre Wurzellänge gemessen (Fujioka et al. 1997a). Die Signifikanzprüfung erfolgte mittels t-Test.

2.6 Computergestützte Analysen

Im Folgenden werden häufig genutzte Datenbanken bzw. Software von Datenbanken aufgeführt, welche für Recherchen, Sequenzvergleiche und Auswertungen dienten.

<u>Allgemein</u>	
Arabidopsis-Datenbank	http://www.arabidopsis.org
EMBL-EBI	http://www.ebi.ac.uk
ExPASy	http://www.expasy.org
Homologiesuche	
WU-BLAST2	http://www.arabidopsis.org/cgi-bin/wublast
	(Altschul et al. 1990, Gish und States 1993)
BLAST2	http://www.ebi.ac.uk/blast/index.html
	(Altschul et al. 1990 und 1997)
Sequenzvergleiche	
ClustalW	http://www.ebi.ac.uk/clustalw/index.html
	(Thompson et al. 1994)
MULTALIN	http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_multalin.html
Proteindatenbanken und Infor	mationen zu Proteinfamilien und Domänen
UniProtKnowledgebase	http://www.expasy.uniprot.org/database/knowledgebase.shtml
PROSITE	http://www.expasy.org/prosite
Pfam	http://www.sanger.ac.uk/cgi-bin/Pfam
PRINTS	http://www.bioinf.manchester.ac.uk/cgi-bin/dbbrowser/sprint

Subzelluläre Lokalisation und Prüfung auf Signal- und Targetingpeptide

Die Vorhersage der subzellulären Lokalisation basiert bei allen Programmen auf dem Vergleich der Aminosäuresequenz mit bekannten Sortier-, Signal- und Targetingmotiven. Weiterhin relevant für die Vorhersage sind z.B. die Ladungsverhältnisse der Aminosäuren und das Auftreten typischer Spaltungsstellen für Signalpeptidasen. Die Zuordnung zu einzelnen Kompartimenten erfolgt aufgrund der An- oder Abwesenheit solcher Motive und Merkmale und wird mit einer Wahrscheinlichkeit wiedergegeben.

SUBA	http://www.plantenergy.uwa.edu.au/applications/suba/index.php					
	(Heazlewood et al. 2005), Arabidopsis Subcellular Localisation Database					
SignalP 3.0	http://www.cbs.dtu.dk/services/SignalP/ (Bendtsen et al. 2004)					
	Vorhersage N-terminaler Signalpeptide und Spaltungsstellen, unterscheidet					
	zwischen sekretorisch und nicht-sekretorisch					
WoLF PSORT	http://wolfpsort.seq.cbrc.jp/ (Horton et al. 2006)					
	Vorhersagen für eukaryotische Sequenzen, unterscheidet extrazellulär, Cytosol,					
	Chlorolasten, Mitochondrien, Plasmamembran u. a. Organellen					
iPSORT	http://hc.ims.u-tokyo.ac.jp/iPSORT/ (Bannai et al. 2002)					
	Klassifizierung von eukaryotischen N-terminalen Sortiersignalen					
LOCtree	http://cubic.bioc.columbia.edu/cgi-bin/var/nair/loctree/query (Nair und Rost 2005)					
	Pflanzliche, nicht-membranständige Proteine werden als sekretorisch, intra-					
	zellulär, cytoplasmatisch, nicht-cytosolisch, chloroplastidär oder mitochondrial					
	eingeordnet					
SubLOC	http://www.bioinfo.tsinghua.edu.cn/SubLoc/ (Hua und Sun 2001)					
	Unterscheidet bei eukaryotischen Proteinen zwischen cytoplasmatisch,					
	mitochondrial, nucleär oder extrazellulär					
MultiLoc	http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc/ (Hoglund et al. 2006)					
	unterscheidet zwischen Cytoplasma, extrazellulären Raum, Chloroplasten,					
	Mitochondrien, ER, Plasmamembran, Peroxisomen, Golgi-Apparat und Vakuole					
TargetP	http://www.cbs.dtu.dk/services/TargetP/ (Emanuelsson et al. 2000)					
	Vorhersage von N-terminalen Signalpeptiden, chloroplastidärer Transitpeptide und					
	mitochondrialer Targetingpeptide					

3 Ergebnisse

3.1 Isolierung potentieller 3β-Hydroxysteroid-Dehydrogenasen

3.1.1 Sequenzvergleiche

Der Vergleich der Aminosäuresequenz der Δ^5 -3β-HSD aus *Digitalis lanata* (Abb. A-1) mit Einträgen der EMBL- und UniProt-Datenbank (Tab. 3-1) zeigte, neben sehr hohen Sequenzhomologien zu 3β-HSDs anderer *Digitalis*-Arten, hohe Sequenzhomologien zu putativen Alkoholdehydrogenasen (ADH, Pfam: PF00106, "short chain dehydrogenase") aus *Arabidopsis thaliana* (Ackerschmalwand) und *Lycopersicon esculentum* (Tomate).

Tabelle 3-1Ergebnis der Suche nach Δ⁵-3β-HSD-ähnlichen Sequenzen in der UniProt-
Datenbank (2.6) sortiert nach P-Wert. Aufgeführt sind die ersten zwölf Ergebnisse basierend auf
Sequenzvergleichen mit dem BLAST-Algorithmus. AS - Aminosäuren

Bezeichng.	Organismus	Beschreibung/Genlocus	AS	ldentität in %	Homologie ¹ in %	P-Wert ²
Q93Y47	Digitalis lanata	3β-HSD	259	100	100	5.4e-131
Q5Q1I3	Digitalis thapsi	3β-HSD	259	98	99	3.8e-130
Q5Q1I5	Digitalis thapsi	3β-HSD	259	98	99	3.4e-129
Q5Q1I6	Digitalis grandifl.	3β-HSD	259	96	98	3.5e-127
Q5Q1I2	Digitalis purpurea	3β-HSD	259	95	97	1.4e-125
Q5Q1I4	Digitalis thapsi	3β-HSD	259	95	97	1.4e-125
Q5I8Y3	Digitalis thapsi	3β-HSD	260	95	96	4.2e-124
Q94K41	A. thaliana	putative ADH / At2g47140	257	59	76	3.2e-78
Q9LEG3	L. esculentum	putative ADH	259	62	75	5.2e-78
Q40133	L. esculentum	ADH-homologes Fragment	251	61	74	4.8e-75
Q9LS70	A. thaliana	ADH-ähnliches Protein	296	58	74	3.4e-74
O80713	A. thaliana	putative ADH / At2g47130	257	60	74	5.0e-73
O80714	A. thaliana	putative ADH / At2g47120	258	57	74	1.2e-71

Da die vollständige Sequenz des Genoms von *Arabidopsis thaliana* Wildtyp Columbia (AGI, The Arabidopsis Genome Initiative 2000) in der *Arabidopsis*-Datenbank (2.6) zur Verfügung steht, bestand das Ziel in der Isolierung von 3β-Hxdroxysteroid-Dehydrogenasen aus *A. thaliana*. Ein Vergleich mit Einträgen in der *Arabidopsis*-Datenbank resultierte in einer Liste zahlreicher putativer Mitglieder der SDR-Familie, von denen die ersten Kandidaten-Gene in Tabelle 3-2 aufgeführt sind.

¹ In diesem Zusammenhang bezeichnet der Begriff Homologie die Ähnlichkeit der Aminosäuren und bezieht sich lediglich auf die Sequenz.

² Der P-Wert ist ein Maß der Wahrscheinlichkeit, ob ein Treffer zufällig zustande kam oder signifikant ist. Die Sortierung erfolgt vom Treffer mit der höchsten statistischen Signifikanz (kleinste P-Wert) zu Treffern mit geringerer statistischer Signifikanz (größere P-Werte).

Tabelle 3-2 Kandidaten-Gene in *A. thaliana.* Die abgeleiteten AS-Sequenzen besitzen hohe Homologien zur Δ^5 -3 β -HSD aus *D. lanata.* Tabelle erstellt nach der Homologiesuche mit WuBlast2 in der *Arabidopsis*-Datenbank (2.6), sortiert nach P-Wert. AS – Aminosäuren, k.A. – bezogen auf die gesamte Sequenz kann keine Angabe gemacht werden.

Nr.	AGI-Bezeichng	Beschreibung in der Datenbank	AS	Identität in %	Homologie in %	P-Wert
1	At2g47140.1	SDR, ähnlich der 3β-HSD aus <i>Digitalis lanata</i>	257	59	76	2.4e-80
2	At2g47130.1	SDR, ähnlich der 3β-HSD aus <i>Digitalis lanata</i>	257	60	74	3.8e-75
3	At2g47120.1	SDR, ähnlich der 3β-HSD aus Digitalis lanata	258	57	74	9.0e-74
4	At3g29260.1	SDR, ähnlich der 3β-HSD aus Digitalis lanata	259	56	74	9.0e-74
5	At3g29250.1	SDR, ähnlich der 3β-HSD aus <i>Digitalis lanata</i>	379	57	73	3.5e-72
6	At3g51680.1	SDR, ähnlich der Short-chain ADH aus <i>Tripsacum dactyloides</i>	303	50	64	4.1e-62
7	At1g52340.1	SDR, der Genlocus At1g52340 ist SDR1 (ABA2/GIN2) zugeordnet	285	47	63	1.5e-55
8	At3g26760.1	SDR, ähnlich TASSELSEED2 aus Zea mays	300	42	63	1.8e-52
9	At4g03140.1	SDR, ähnlich der Secoisolariciresinol- Dehydrogenase aus <i>Forsythia x intermedia</i> und ähnlich TASSELSEED2 aus <i>Zea mays</i>	279	43	62	1.8e-52
10	At3g26770.1	SDR, ähnlich TASSELSEED2 aus Zea mays	306	42	61	4.8e-52
11	At3g42960.1	ADH, Arabidopsis-Homologe zu TASSELSEED2 (ATA1)	272	46	63	6.3e-50
12	At2g47150.1	SDR, ähnlich der Secoisolariciresinol- Dehydrogenase aus <i>Forsythia x intermedia</i>	200	k.A.	k.A.	1.3e-42

Die *D. lanata* Δ^5 -3β-HSD zeigt die höchsten Sequenzhomologien (76-73%) zu putativen SDR-Proteinen unbekannter Funktion. Daneben weist sie 63% Homologie zu dem bekannten Enzym SDR1 (ABA2/GIN1) auf. ABA2/GIN1 (At1q52340) konnte durch Charakterisierung der Mutanten aba2 (abscisic acid deficient2) bzw. gin1 (glucose insensitive1) identifiziert werden. Diese Mutanten haben einen Defekt in der Biosynthese der Abscisinsäure. Das Proteinprodukt SDR1 katalysiert die Umwandlung von Xanthoxin zu Abscisinaldehyd, und ist eine cytosolische SDR (González-Guzman et al. 2002). Unter den Einträgen befinden sich Sequenzen, die Ähnlichkeiten zu TASSELSEED2 (TS2) aus Zea mays (Mais) besitzen. Funktionell ist TS2 an der Geschlechtsdeterminierung beteiligt und weist signifikante Ähnlichkeiten zu SDR-Enzymen, im speziellen zu Hydroxysteroid-Dehydrogenasen auf (DeLong et al. 1993). Die Short-chain Alkoholdehydrogenase aus Tripsacum dactyloides kodiert durch GYNOMONOECIOUS SEX FORM1 ist funktionell ähnlich der TS2 (Li et al. 1997b). Die katalytischen Aktivitäten beider Proteine sind noch nicht bekannt. Die Secoisolariciresinol-Dehydrogenase aus Forsythia x intermedia ist ein 32 kDa großes, NAD⁺-abhängiges Enzym, welches die enantiospezifische Umwandlung von (-)-Secoisolariciresinol über ein korrespondierendes Lactol-Intermediat zu (-)-Matairesinol, einem zentralen Prekursor zahlreicher Lignane, katalysiert (Xia et al. 2001).

v v22 1 ** MS SKPRLEGKVA II**TG**AASGIG +Dl 3beta-HSD +01 At2g47140 M SGKRLDGKIV II**TG**GAS**G**IG +02_At2g47130 M SGLRLDGKIA II**TG**GAS**G**IG 04 At3g29260 M SGORLDGKIV II**TG**GAS**GIG** 05 At3q29250 NAVKFTIGKL DILFSNDGSF CVLKLLSGIK FLFCLRASKR YAIGGLSSIW SIVAMKSTSG RIRGGASGIG M SGLRLEGKIV II**TG**GAS**G**IG 03 At2q47120 +06 At3q51680 MPAQV IAEQTTFH-- ----SVHD TIMEETNTTL YPKRLEGKVA IITGGAHGIG MWRSFARSF KLINVPNG-- ----LISK PIRSTLLYST SSRKLEGKVA VI**TG**GASGIG +08_At3g26760 +10 At3g26770 MAAI VLIRSIVRNF KRPATAAS-- ----AAYS TGGGGGGGCTC TSKKLEGKVA LI**TG**GAS**G**LG MTGIYKVIC YYKKLEGKVA LI**tg**gas**g**ig 09 At4g03140 +07_At1g52340 11_At3g42960 MST NTESSSYSSL PSORLLGKVA LITGGATGIG MAN SDKRLFEKVA II**tg**gar**g**I**g** 12 At2g47150 MDGKIV II**TG**GASGTG 23 ▼ 89 +D1 3beta-HSD EETARLFVEH GASVVVADVQ DELGRQVVAS VNSDD---KI SYYHCDVRDE KQVAATVRYA VEKYGRLDIM +01_At2g47140 AESVRLFTEH GARVVIVDVQ DELGQNVAVS IGED----KA SYYHCDVTNE TEVENAVKFT VEKYGKLDVL +02_At2g47130 AEAVRLFTDH GAKVVIVDFQ EELGQNVAVS VGKD----KA SFYRCDVTNE KEVENAVKFT VEKYGKLDVL 04 At3g29260 AEAARLFTDH GAKVVIVDLQ EELGQNVAVS IGLD----KA SFYRCDITDE TEVENAVKFT VEKHGKLDVL 05 At3g29250 AEAVRLFTDH GAKVVIVDIQ EELGQNLAVS IGLD----KA SFYRCNVTDE TDVENAVKFT VEKHGKLDVL 03 At2g47120 ADAARLFTDH GAKVVIVDVQ EELGQNVAVL IGKD----KA SFYRCDVTNE TEVEDAVKFT VEKHGKLDVL +06 At3g51680 KATVMLFARH GATVVIADVD NVAGSSLAKS LSSHKTSPMV AFISCDVSVE ADVENLVNVT VARYGRLDIL KATAEEFVSQ GAQVIIVDID EEAGHMVATE LG----SAA HFLRCDVTEE EQIAKAVETA VTRHGKLDVM KATASEFLRH GARVVIADLD AETGTKTAKE LG----SEA EFVRCDVTVE ADIAGAVEMT VERYGKLDVM +08 At3g26760 +10 At3g26770 +09_At4g03140 +07_At1g52340 KATAGKFISH GAKVIIADIQ PQIGRETEQE LG----PSC AYFPCDVTKE SDIANAVDFA VSLHTKLDIM ESIVRLFHKH GAKVCIVDLQ DDLGGEVCKS LLRGESKETA FFIHGDVRVE DDISNAVDFA VKNFGTLDIL 11_At3g42960 AATARLFTEN GAYVIVADIL ENEGILVAES IG-----G CYVHCDVSKE ADVEAAVELA MRRKGRLDVM 12 At2g47150 AESARLFTDH GAQVVVVDLQ EEQGKT---- ------ SPFQSAKTEQ VFTVVMLQTR 90 VVV ٠ 157 • +Dl 3beta-HSD LSNAGVFG-- ALMTNVIDLD MVDFENVLAT NVRGVANTIK HAARAMVEGK VKGSIICTAS VSASLGGMGP +01_At2g47140 FSNAGVIE-- PF-VSILDLN LNELDRTIAI NLRGTAAFIK HAARAMVEKG IRGSIVCTTS VAAEIAGTAP +02⁻At2g47130 FSNAGVME-- QP-GSFLDLN LEQFDRTMAV NVRGAAAFIK HAARAMVEKG TRGSIVCTTS VASEIGGPGP 04 At3g29260 FSNAGVME-- PH-GSILDLD LEAFDRTMAV NVRGAAAFIK HAARSMVASG TRGSIVCTTS VTAEIGGPGP 05 At3q29250 FSNAGVLE-- AF-GSVLDLD LEAFDRTMAV NVRGAAAFIK HAARSMVASG TRGSIVCTTS IAAEIGGPGP FSNAGVLE-- PL-ESFLDFD LERFDRIMAV NVRGAAAFIK HAARAMVEKG TRGSIVCTTS VSAEIGG-GH 03 At2g47120 +06 At3g51680 FNNAGVLGDQ KKHKSILDFD ADEFDHVMRV NVRGVGLGMK HGARAMIKRG FKGCIISTAS VAGVMGGMGP LNSAGISCSI SP-PSIADLD MDTYDKVMRL NVRGTVLGIK HAARAMIPAG -SGSILCLSS ISGLMGGLGP +08 At3g26760 +10 At3g26770 YNNAGIVGPM TP-ASISQLD MTEFERVMRI NVFGVVSGIK HAAKFMIPAR -SGCILCTS<mark>S</mark> VAGVTGGLAP 09 At4g03140 YNNAGIPCK- TP-PSIVDLD LNVFDKVINT NVRGVMAGIK HAARVMIPRN -SGSIICAGS VTGMMGGLAQ +07_At1g52340 INNAGLCG-- APCPDIRNYS LSEFEMTFDV NVKGAFLSMK HAARVMIPEK -KGSIVSLCS VGGVVGGVGP 11 At3q42960 FNNAGMS--- LNEGSIMGMD VDMVNKLVSV NVNGVLHGIK HAAKAMIKGG RGGSIICTSS SSGLMGGLGG 12 At2g47150 RNQPGVLE-- -TPGSILDLN LERFHRTMAV NVRGAAVSIK HAARAMVEKG TRGSIVCTTS VTSEI---▼ 158 ♦ ٠ ▼ ▼ 218 +Dl 3beta-HSD PAYTASKHAV LGLVKGACAE LGVHGIRVNS VAPYGVATPM PCSAYGMTP- -----SQ MEEANNSRAN +01_At2g47140 HGYTTSKHGL LGLIKSASGG LGKYGIRVNG VAPFGVATPL VCNGFKMEP- -----NV VEQNTSASAN HAYTASKHAL LGLVKSACGG LGKYGIRVNG VAPYAVATAI NS-RDEETV- -----RM VEEYSAATGI +02 At2g47130 HSYTASKHAL LGLVRSACGG LGKYGIRVNG VAPYGVATGL TS-YNEETV- -----KM VEDYCSATAI 04 At3g29260 05_At3g29250 HSYTASKHAL LGLIRSACAG LGQYGIRVNG VAPYGVATGM TSAYNEEAV- ------KM LEEYGEALGN HGYTASKHGL VGLIRSACGD LGKYGIRVNG VAPYAVATPM TS-HDEVTG- ------KQ LEDYFDAKGI 03 At2g47120 +06 At3g51680 HAYTASKHAI VGLTKNAACE LGKYGIRVNC ISPFGVATSM LVNAWRKTSG GDVEDDDVEE MEEFVRSLAN +08 At3g26760 HAYSISKFTI PGVVKTVASE LCKHGLRINC ISPAGIPTPL TLRMFREAFA GHSIRE--EQ LLAIVNATGE +10 At3g26770 HSYTISKFTT PGIVKSAASE LCEHGVRINC ISPGTVATPL TLSYLQKVFP --KVSE--EK LRETVKGMGE 09 At4g03140 HTYSVSKSAV IGIVRSTASE LCKHRIRVNC ISPFAITTSF VMDEMRQIYP G--VDD--SR LIQIVQSTGV +07 At1q52340 HSYVGSKHAV LGLTRSVAAE LGQHGIRVNC VSPYAVATKL ALAHLPEEER ---TEDAFVG FRNFAAANAN 11 At3g42960 HAYTLSKGAI NGVVRTTACE LGSHGIRVNS ISPHGVPTDI LVNAYRKFLN HDKLNVA-EV TDIIAEKGSL 12_At2g47150 -------KQ TEEYCEARGI 219 259 +D1 3beta-HSD LKGVVLKAKH VAEAALFLAS DESA-YVSGQ NLAVDGGFTV VR +01_At2g47140 LKGIVLKARH VAEAALFLAS DESA-YVSGQ NLAVDGGYSV VKP +02_At2g47130 LKGVVLKARH VAEAALFLAS DDSA-YVSGQ NLAVDGGYSV VKPI 04_At3g29260 LKGVVLKARH VADAALFLAS DDSV-YISGQ NLGVDGGYSV VKLTSN 05 At3g29250 LKGVVLKARH IAEAALFLAS DDSV-YISGQ NLVVDGGFSV VKLMTT 03 At2g47120 LKGMVLKASH VAQVALFLAS DDSA-YISGQ NLAVDGGYTV VKPSRD +06 At3g51680 LKGETLRAND IAEAALYLAS DESK-YVNGH NLVVDGGVTT ARNCVGL +08 At3g26760 LKGEKCEEID VAKAALYLAS DDAK-FVTGH NLVVDGGFTC FKSLNLPSA +10 At3g26770 LKGAECEEAD VAKAALYLAS NDGK-YVTGH NLVVDGGMTA FKIAGFPFPS DS LNGEVCEPTD VANAAVYLAS DDSK-YVNGH NLVVDGGFTT VKTLDFPAPD QVK 09 At4g03140 +07 At1g52340 LKGVELTVDD VANAVLFLAS DDSR-YISGD NLMIDGGFTC TNHSFKVFR 11_At3g42960 LTGRAGTVED VAQAALFLAS QESSGFITGH NLVVDGGYTS ATSTMRFIYN +12 At2g47150 FKGVVLKARH VAEAALFLAS DDSV-YISGQ NLAVDGGFCV VKPI

Abbildung 9 Vergleich der Aminosäuresequenzen der Δ⁵-3β-HSD aus *D. lanata* (DI_3betaHSD) und der Kandidaten-Gene aus *A. thaliana* (Tab. 3-2). Die ersten 70 AS von At3g29250 sind nicht dargestellt. ▼ - Konservierte Aminosäuren der SDR-Familie, ◆ - AS der katalytischen Tetrade, rot – Konsensus > 90%, blau – Konsensus > 50% (Matrix Blosum62). Mit einem + sind Sequenzen gekennzeichnet die im Rahmen dieser Arbeit kloniert (3.1.2) und exprimiert (3.2.1) wurden. Die Nummerierung entspricht Tabelle 3-2.

Die aufgeführten Einträge werden in der Datenbank aufgrund von Sequenz- und Strukturähnlichkeiten der SDR-Familie zugeordnet. Aus dem Vergleich der Aminosäuresequenzen (Abb. 9) ist ersichtlich, dass bei der Mehrzahl die typischen Motive und konservierten Aminosäuren der SDR-Familie vorhanden sind (vgl. 1.2). So das Glycin-reiche Motiv der Kosubstrat-Bindungsstelle Gx₃GxG (Position 16-22, alle Nummerierungen in Klammern beziehen sich auf die Sequenz der Δ^5 -3β-HSD) und die Aminosäuren Asp60¹ (65), Asn179 (186) und Thr188 (195), die direkt oder indirekt an der Bindung des Kosubstrates beteiligt sind. Mit Ausnahme von At2g47150 sind ebenfalls die Aminosäuren Asn111 (118), Ser138 (147), Tyr151 (160), Lys155 (164) der katalytischen Tetrade N-S-Y-K (Filling et al. 2002) vorhanden. Die größten Unterschiede der Sequenzen lassen sich in dem C-terminalen Bereich von Position 196 – 208 finden.

3.1.2 Konstrukte und Klonierung

3.1.2.1 Primerentwurf

Für die zwölf kodierenden DNA-Sequenzen, die den in der Tabelle 3-2 aufgelisteten putativen Proteinen entsprechen, wurden Primer (Tab. 2-2, 2.1.6) entworfen, um sie aus einer cDNA-Bank (2.1.4) zu amplifizieren. Vor dem Entwurf der Primer wurden sie auf das Vorhandensein von Signalpeptidsequenzen mit dem Programm SignalP (2.6) überprüft, um für die Expression nur die kodierende Sequenz der reifen Proteine zu transformieren, da das verwendete Wirtsbakterium E. coli nicht zu posttranslationalen Modifikationen fähig ist. Die Analyse verlief für alle Proteinsequenzen negativ, sie wurden von diesem Programm als nicht-sekretorische Proteine prognostiziert. Somit wurden die Primer vom Start- bis zum Stoppkodon der cDNA-Sequenzen abgeleitet. Weiterhin wurden alle entsprechenden kodierenden Seguenzen auf das Vorhandensein von Restriktionsschnittstellen überprüft, um an die Primer Restriktionsschnittstellen der multiplen Klonierungsstelle ("multiple cloning site" MCS) für die Umklonierung in den Expressionsvektor pQE 30 anfügen zu können. Bis auf At4g03140 (Nr.9 in Tab. 3-2) wies keine der Sequenzen eine BamH I-Schnittstelle auf, so dass für alle anderen an das 5` Ende mittels Primerkonstruktion eine BamH I-Schnittstelle angefügt werden konnte. Für At4g03140 wurde die nächst mögliche Sph I-Schnittstelle gewählt, um später die Nukleotidanzahl zwischen dem Histidin-Anhang des Expressionsvektors und dem Insert so gering wie möglich zu halten (Vektorkarte Abb. A-2). Für das 3` Ende wurde eine Sal I-Schnittstelle gewählt, da keine der kodierenden Sequenzen über diese verfügten.

3.1.2.2 Amplifikation, Klonierung in den pCR[®] 2.1-Vektor und Sequenzierung

Der Versuch die zwölf kodierenden Sequenzen mit der *Taq*-Polymerase und den abgeleiteten Primern unter Bedingungen der Standard-PCR (2.2.2.1) aus einer cDNA-Bank (2.1.4) zu amplifizieren lieferte unbefriedigende Ergebnisse. Zwar konnten entsprechende PCR-Fragmente

¹ Nummerierung bezogen auf die $3\beta/17\beta$ -HSD aus *Comamonas testosteroni*, wie sie im Kapitel 1.2 verwendet wurde.

erhalten werden und erfolgreich in den pCR[®] 2.1-Vektor kloniert (2.2.1.1) werden, jedoch wurde nur für At2g47140 (Nr.1, Nummerierung entsprechend Tab. 3-2) eine vollständig mit der Datenbank übereinstimmende 774 bp große Sequenz (Abb. A-1) erhalten, alle anderen wiesen einen oder mehrere Basenaustausche auf oder waren nicht zu amplifizieren. Um die bekannt hohe Fehlerrate der Taq-Polymerase als Ursache für die fehlerhaften Sequenzen ausschließen zu können, wurden die Amplifikationen mit der Pfu-Polymerase, welche eine Korrekturleseaktivität (3`-5` Exonuclease-Aktivität) besitzt, wiederholt und die erhaltenen Fragmente nach der Klonierung nochmals sequenziert. Auf diese Weise konnten mit den Datenbankeinträgen identische kodierende Sequenzen für At2g47130 (Nr.2, 774 bp), At3g51680 (Nr. 6, 912 bp), At1g52340 (Nr. 7, 858 bp), At3g26760 (Nr. 8, 903 bp), At3g26770 (Nr. 10, 921 bp) erhalten werden.

Mit der Kombination der Primer 3g29260 FWD und q91Is67 REV, die für die kodierende Sequenz von At3g29260 (Nr. 4) abgeleitet wurden, konnte ein 783 bp großes Fragment amplifiziert werden, dessen Sequenzierergebnisse zweier unabhängiger Klone teilweise Übereinstimmungen mit der Sequenz von At3g29260 (Nr. 4, 780 bp) und teilweise mit der Sequenz von At3g29260 (Nr. 5, 1140 bp) zeigten. Die Basen 1-47 und 769-783 sind identisch mit dem Anfang und dem Ende der Sequenz von At3g29260 (Nr. 4) und die Basen 48-768 sind identisch mit einem Teil der Sequenz von At3g29250 (Nr. 5). Nur auf At3g29660 bezogen, wiesen beide Klone im Bereich 48-768 30 abweichende Basen auf. Trotz der Unstimmigkeiten wurde auch diese Sequenz (im Weiteren als Sequenz 4 bezeichnet) in den Expressionsvektor umkloniert.

Für At2g47120 (Nr. 3), At3g29250 (Nr. 5), At4g03140 (Nr. 9), At3g42960 (Nr. 11), At2g47150 (Nr. 12) konnten aus der verwendeten cDNA-Bank weder mit der *Taq*-Polymerase noch der *Pfu*-Polymerase auch nach Variation der Annealingtemperatur, Zyklenzahl, Konzentration des Templates, Elongationszeit und MgCl₂-Konzentration keine identischen Fragmente amplifiziert werden. Die Numerierung der AGI-Bezeichnung (Tab. 3-2) wird zur Vereinfachung im weiteren Verlauf als Sequenz-, Klon- und Proteinbezeichnung übernommen (At2g47140.1 = Nr.1 = Sequenz 1 (S1) = Klon 1 = Protein 1 (P1)).

3.1.2.3 Klonierung in den Expressionsvektor pQE30 und Sequenzierung

Die jeweiligen Plasmide mit den identischen Fragmenten (S1, S2, S6, S7, S8, S10) und auch mit dem teilweise übereinstimmenden Fragment (S4) wurden mit *Bam*H I und *Sal* I verdaut und die Inserts wurden in den Expressionsvektor pQE30 subkloniert (Abb. A-2). Der Erfolg wurde nach Plasmid-DNA-Präparation (2.2.3.2) selektionierter Klone für jedes Fragment durch erneuten Verdau mit *Bam*H I und *Sal* I und folgender DNA-Gelelektrophorese überprüft. Die Größen der Insert-Fragmente stimmten mit den erwarteten Größen überein (Abb. 10). Weiterhin wurden die Plasmide vor einer Sequenzierung einem *Eco* RI- Verdau unterzogen, um im Voraus die Identität des pQE30-Vektors abzusichern bzw. den zuvor verwendeten pCR[®] 2.1-Vektor ausschließen zu können. Vor der Expression konnte die Identität der Sequenzen und ihre korrekte Insertion im Vektor nochmals durch Sequenzierung bestätigt werden. Verschiebungen im Leserahmen konnten dabei ebenfalls ausgeschlossen werden.

Abbildung 10 DNA-Gelelektrophorese nach Restriktion der Expressionsplasmide mit *Bam*H I und *Sal* I. Die Bezeichnung der Bahnen entspricht den Klonen mit folgenden Inserts: 1 - At2g47140.1 (774 bp), 2 - At2g47130.1 (774 bp), 4 - At3g29260/At3g29250 (783 bp), 6 - At3g51680.1 (912 bp), 7 - At1g52340.1 (858 bp), 8 - At3g26760.1 (903 bp), 10 - At3g26770.1 (921 bp), L - Leervektor, M - DNA-Größenmarker. Die oberen drei Banden jeder Bahn resultieren aus dem Verdau des pQE30-Vektors (3,5 kb) und des pREP4-Vektors (3,74 kb) der M15-Expressionszellen.

Somit standen sieben Sequenzen aus Arabidopsis thaliana für eine Expression zur Verfügung.

Des Weiteren wurden ein von Teuber (2001) erzeugtes rekombinantes Konstrukt der *D. lanata* Δ^5 -3 β -HSD in pQE30 (bezeichnet als Klon HSD), wobei von ihm die Klonierungsstellen *Sph* I und *Hind* III (Abb. A-2) gewählt wurden, sowie ein Leervektor als Kontrolle für Aktivitätstest in die *E. coli* Expressionszellen transformiert. Eine zusammenfassende Übersicht über die Ergebnisse der PCR, Klonierungen und Sequenzierungen befindet sich im Anhang (Tab. A-1.)

3.2 Rekombinante Expression und Enzymaktivität

3.2.1 Rekombinante Expression

Nach der Transformation der pQE30-Vektorkonstrukte (Abb. A-2) in die *E. coli* Expressionszellen (2.2.1.3) und Induktion der Überexpression (2.2.1.4) von mindestens 4 h wurde der Erfolg mittels SDS-Page überprüft. Die Expression verlief für alle Klone positiv (Abb. 11).

Die Abweichungen zwischen den kalkulierten molekularen Massen und den in der SDS-Page erscheinenden, resultieren aus der Konstruktion des Vektors. Hierbei werden Fusionsproteine erzeugt, wodurch die Proteine um 12 (bzw. 14 bei HSD) Aminosäuren (4 AS durch ATG und RGS-His Epitop, 6 AS des Histidin-Anhangs, 2 bzw. 4 AS durch die Schnittstellen vor dem Insert) am N-Terminus verlängert werden (siehe Vektorkarte Abb. A-2 im Anhang). Eine Verlängerung am C-Terminus durch die noch vorhandenen Schnittstellen der MCS ("multiple cloning site") nach dem Insert ist ebenfalls möglich aber unwahrscheinlicher, da die kodierenden Sequenzen mit Stoppkodon kloniert wurden. Dies erklärt im Falle der HSD den Unterschied von ca. 1 kDa im Vergleich zur nativen molekularen Masse von 29 kDa, welche von Finsterbusch (1999) bestimmt wurde. Der 6fache Histidin-Anhang (6xHis-tag) ermöglicht eine Reinigung der Proteine mittels Ni-NTA Affinitätschromatographie, welche sich an die Expression anschließen sollte. Zuvor wurden jedoch die Enzymaktivitäten der löslichen Proteinfraktionen des Bakterienlysates überprüft, um aus den möglichen Kandidaten potentielle HSDs auswählen zu können. Die Proteine P1, P2, P4, P6, P7, P8 und HSD waren in den löslichen Fraktionen der lysierten Bakterienkulturen

wiederzufinden (Abb. 11). Klon 10 zeigte auf diesem Gel nur eine sehr schwache Bande in Höhe des exprimierten Proteins, trotz dieser geringen Expression wurden auch mit dieser löslichen Fraktion Aktivitätstest durchgeführt.

Abbildung 11 Proteingele nach SDS-PAGE (Coomassie-Färbung) der exprimierten Klone 1, 2, 4, 6, 7, 8, 10, HSD und des Leerplasmids. M1 - peqGOLD Protein-Marker I, ni – nicht induzierte Probe der Bakterienkultur, 2h/4h – Probe nach 2/4 stündiger Induktion mittels IPTG, BL – lösliche Proteinfraktion der lysierten Bakterienkultur. Im grauen Kasten sind die kalkulierten und nach SDS-PAGE geschätzten molekularen Massen sowie die Anzahl der Aminosäuren angegeben.

3.2.2 Enzymaktivität von 3β-HSDs in den lysierten Bakterienkulturen

Die Prüfung der löslichen Proteinfraktionen der lysierten Bakterienkulturen auf Enzymaktivität wurde unter den Bedingungen des Standardassays (Substrat Pregnenolon, 2.3.5.2) durchgeführt. Als Kontrolle der endogenen Aktivität bakterieller Proteine diente eine Fraktion einer Bakterienkultur, welche mit dem Leerplasmid transformiert und ebenfalls induziert wurde. Jede lösliche Proteinfraktion zeigte 3β-Hydroxysteroid-Dehydrogenase Aktivität (Abb. 13).

3.2.2.1 Umsetzungen von Substraten und Substratanaloga

Um Hinweise auf die Substratspezifität, inklusive Stereospezifität der Enzyme zu erhalten, wurden neben dem Substrat der nativen Δ^5 -3 β -HSD, dem Pregnenolon, weitere Substratanaloga sowohl für die Dehydrogenase-Aktivität als auch die Reduktase-Aktivität auf eine mögliche Umsetzung überprüft (Abb. 12). Die Auswahl der Substrate orientierte sich an den von Finsterbusch (1999) gewählten Steroiden, mit denen auf eine Umsetzung durch die native Δ^5 -3 β -HSD aus *D. lanata* geprüft wurde. Neben Verbindungen mit Pregnanstruktur (keine Doppelbindung im Grundgerüst) und Pregnenstruktur (Δ^4 - oder Δ^5 -Doppelbindung), welche zum Teil Intermediate der Kardenolid-Biosynthese (Abb. 5) darstellen, wurden auch die Phytosterole Sitosterol, Stigmasterol und Cholesterol auf eine mögliche Umsetzung geprüft.

Insgesamt konnte für jede Proteinfraktion der exprimierten Klone bei mindestens zwei Substraten aus der Pregnen-, Pregnan- und Phytosterolreihe eine im Vergleich zur Kontrolle höhere Aktivität gemessen werden. Die beobachteten Umsetzungen werden im Folgenden noch genauer dargestellt. Auf die Substrate Campesterol und 28-Homoteasteron wird im Kapitel 3.4.7 bzw. 3.4.8 eingegangen.

Oxidation von C₂₁- und C₁₉-Steroiden mit Pregnenstruktur

Die Umsetzung des Substrates Pregnenolon konnte für alle exprimierten Klone nachgewiesen werden. Als Hauptprodukt wurde Progesteron (4-Pregnen-3,20-dion) identifiziert. In geringen Mengen von ca. 1-3 % der Produktmenge war auch 5-Pregnen-3,20-dion detektierbar. Teilweise konnte eine Umsetzung von 21-Hydroxypregnenolon und 17α -Hydroxypregnenolon zu den entsprechenden 3-Dehydro-Verbindungen beobachtet werden. Die Klone 7, 8 und 10 zeigten für diese Substrate nur sehr geringe bzw. keine Aktivitäten.

Für Abbildung 13 sind beispielhaft die relativen Aktivitäten der klonierten Enzyme berechnet wurden, wenn auch ein quantitativer Vergleich der exprimierten Klone untereinander nur begrenzt möglich ist. Dies liegt vor allem an fehlenden Angaben zur Konzentration der exprimierten Proteine in den lysierten Bakterienkulturen, lediglich die Gesamtproteinkonzentrationen der Proteinfraktionen wurden gleich gehalten (2.3.1). Ein qualitativer Vergleich der Umsetzbarkeit der Testsubstrate durch den jeweiligen Klon ist jedoch möglich.

Eine Oxidation von 5-Androsten-3 β -ol-17-on konnte bei allen Klonen beobachtet werden. Dabei waren sowohl 4-Androsten-3,20-dion und 5-Androsten-3,20-dion als Produkte detektierbar.

Abbildung 12 Strukturformeln der getesteten Substrate

Abbildung 13 Relative Enzymaktivitäten für Substrate der Oxidation. Die Enzymassays wurden mit jeweils 0,3 mM Substrat unter Bedingungen des Standardassays (2.3.5.2) mit den löslichen Proteinfraktionen der lysierten Bakterienkulturen mehrfach durchgeführt. Die Aktivitäten wurden über die Konzentrationen der Produkte mittels GC/MS bestimmt. Die für die Berechnung verwendeten Kalibrierungen der jeweiligen Produkte sind im Anhang (Tab. A-2) aufgeführt. In die Berechnung der relativen Aktivitäten für Pregnenolon sind zwei Messungen eingeflossen, bei den anderen Substraten wurde darauf verzichtet, da sie lediglich zur Orientierung und zur Auswahl der Substrate für kinetische Messungen dienten. Die Aktivität des Klons HSD (2.1.9/3.1.2.3) für das Substrat Pregnenolon (n=2) wurde gleich 100% gesetzt. Die Nummerierung der Klone entspricht der Herkunft laut Tabelle 3-2. LP – induzierter Klon des Leerplasmids, n.d.- nicht detektierbar.

Oxidation von C₂₁-Steroiden mit Pregnanstruktur

Als Produkt der Dehydrogenierung von 5 α -Pregnan-3 β -ol-20-on wurde 5 α -Pregnan-3,20-dion identifiziert. Auffällig waren die deutlich höheren Aktivitäten der Klone 2, 4 und 6 für 5 α -Pregnan-3 β -ol-20-on (siehe Abb. 13). Keine Umsetzung konnte bei den Klonen 7 und 8 beobachtet werden. Die Dehydrogenierung von 5 β -Pregnan-3 β -ol-20-on führte zum Produkt 5 β -Pregnan-3,20-dion. Für dieses Substrat zeigten die Klone 8 und 10 keine eindeutig höhere Aktivität als der Klon des Leerplasmids. Eine Oxidation von 5 β -Pregnan-3 α -ol-20-on zu 5 β -Pregnan-3,20-dion sowie 5 α -Pregnan-3 α -ol-20-on zu 5 α -Pregnan-3,20-dion konnte mittels GC/MS nicht nachgewiesen werden.

Oxidation von Phytosterolen

Bei der Oxidation von Cholesterol konnte im Vergleich zur Kontrolle eine deutlich höhere Konzentration des 3-Dehydro-Produktes Cholesten-3-on mit einem Rf-Wert von 6,9 bei den Klonen HSD, 1, 2, 4 und 7 beobachtet werden. Bei den anderen Klonen waren nur gering höhere bzw. gleiche Produktkonzentrationen zu finden.

Für Sitosterol (24β-Ethyl-5-cholesten-3β-ol) konnte nur bei dem Klon der HSD eine Umsetzung zum korrespondierenden 3-Dehydro-Produkt 24β-Ethyl-4-cholesten-3-on beobachtet werden. Alle anderen Klone wiesen keine höhere Konzentration des Produktes auf als die Kontrolle. Eine Umsetzung von Stigmasterol zur entsprechenden 3-Keto-Verbindung konnte nicht beobachtet werden.

Reduktion von C₂₁- und C₁₉-Steroiden mit einer Δ^4 - oder Δ^5 -Doppelbindung

5-Pregnen-3,20-dion wurde von allen exprimierten Klonen zu Pregnenolon umgesetzt. In der Fraktion des Leerplasmids war kein Pregnenolon detektierbar. Eine Reduktion von Progesteron (4-Pregnen-3,20-dion) zu Pregnenolon hingegen konnte nicht festgestellt werden. Ähnliche Ergebnisse lieferten Experimente der Reduktion von 5-Androsten-3,17-dion. Außer bei dem exprimierten Klon HSD, konnte bei allen anderen ein Produkt mit dem Rf-Wert 4,7 detektiert werden, welches charakteristische Massen einer korrespondierenden 3β-Hydroxylverbindung aufwies und nicht in der Kontrollfraktion vorhanden war. Außerdem war ein zweites Produkt mit einem Rf-Wert von 5 detektierbar, welches jedoch in höheren Mengen auch in der Kontrollfraktion erschien, und somit vermutlich auf eine bakterielle Reduktase-Aktivität zurückzuführen ist. Das Erscheinen von 2 Produkten ist erklärbar, durch die Möglichkeit der Reduktion der Ketogruppen sowohl am C-3 als auch C-17. Eine Umsetzung von 4-Androsten-3,17-dion fand nicht statt. Diese Ergebnisse zeigen Übereinstimmung mit denen von Finsterbusch (1999). Auch mit der nativen $Δ^5-3β$ -HSD konnte eine Reduktion von $Δ^5$ -Ketosteroiden beobachtet werden, von $Δ^4$ -Ketosteroiden hingegen nicht.

Reduktion von C₂₁-Steroiden mit Pregnanstruktur

Bei der Reduktion von 5α-Pregnan-3,20-dion konnte neben dem Hauptprodukt 5α-Pregnan-3β-ol-20-on in geringeren Mengen auch 5α-Pregnan-3α-ol-20-on identifiziert werden. Ebenso konnte bei der Reduktion von 5 β -Pregnan-3,20-dion neben dem 3 β -konfigurierten Hauptprodukt 5 β -Pregnan-3 β -ol-20-on geringe Mengen 5 β -Pregnan-3 α -ol-20-on detektiert werden. Die Klone 1 (At2g47140) und 2 (At2g47130) zeigten für die Reduktion von 5 α -Pregnan-3,20-dion deutlich höhere Aktivitäten als der Klon HSD. Bei der Reduktion von 5 β -Pregnan-3,20-dion hingegen wies der Klon HSD eine dreifach höhere Aktivität als die Klone 1 und 2 auf. Für Klon 8 konnte keine Umsetzung von 5 α -Pregnan-3,20-dion und für Klon 10 keine Umsetzung von 5 β -Pregnan-3,20-dion nachgewiesen werden.

Neben dem Klon HSD wurden die Klone 1 (At2g47140), 2 (At2g47130) und 7 (At1g52340) für eine anschließende Proteinreinigung ausgewählt. Die Auswahl von At2g47140 und At2g47130 beruhte zum einem auf der höchsten Homologie zur *D. lanata* Δ^5 -3 β -HSD und zum anderen zeigten sie für die Mehrzahl der Substrate hohe Umsatzraten. At1g52340 (ABA2, SDR1) war das einzige sequenzähnliche Protein mit bekannter katalytischer Funktion, welches für vergleichende kinetische Messungen gereinigt wurde.

3.2.3 Vorhersage von Proteineigenschaften

Der offene Leserahmen (ORF) von At2g47140 umfasst 1089 bp, wobei ein kodierender Bereich von 774 bp ein Protein bestehend aus 257 Aminosäuren, mit einer kalkulierten molekularen Masse (MW) von 26,85 kDa und einem kalkuliertem isoelektrischen Punkt (IP) von 6,79, kodiert. Der offene Leserahmen von At2g47130 umfasst 855 bp, wobei ebenfalls 774 bp, ein Protein bestehend aus 257 Aminosäuren, mit einer kalkulierten molekularen Masse von 26,9 kDa und einem kalkuliertem isoelektrischen Punkt von 7,04 (www.arabidopsis.org, MW: Bioperl 0.7, IP: EMBOSS 2.0.1) kodieren. Beide Proteine wurden von verschiedenen Programmen als cytosolische Proteine prognostiziert (LOCtree, SubLoc, WolFPSORT, siehe 2.6). Für die AtSDR1 (ORF 1530 bp, kodierender Bereich 858 bp, 285 AS, MW: 30,3 kDa, IP: 6,23) ist die Lokalisation im Cytosol nachgewiesen (Cheng et al. 2002).

Die Aminosäuresequenzen von At2g47140 und At2g47130 sind zu 77% identisch und weisen 86% Sequenzhomologie auf (WU-BLAST2, 2.6). Mit der AtSDR1 verglichen, sind nur noch ca. 42% der Aminosäuren identisch, die Homologie der Sequenz beträgt ca. 57%.

Neben den typischen Domänen der SDR-Familie (Pfam: PF00106, PRINTS: PR00080, PROSITE: PS00061) sind auch Motive der Glucose/Ribitol-Dehydrogenase Familie (PRINTS: PR00081) vorhanden.

3.3 Reinigung der heterolog exprimierten Proteine

Vorversuche mit dem QIAGEN[®] Ni-NTA Spin Kit ergaben erst eine späte Elution der Proteine bei einer Imidazolkonzentration ab 500 mM. Mit einer Imidazolkonzentration von 250 mM im Elutionspuffer konnte auch nach zweimaliger Behandlung der Spin-Säulen keine Elution der Proteine erreicht werden (Abb. 14).

Abbildung 14 SDS-PAGE (Coomassie-Färbung) nach Reinigung über Ni-NTA-Spin Säulen (Qiagen) der exprimierten Proteine AtHSD1 und AtHSD2.

M1 - peqGOLD Protein-Marker I, M2 – peqGOLD prestained Protein-Marker, ni – nicht induzierte Probe der Bakterienkultur, 2h/4h – Probe nach 2/4 stündiger Induktion mittels IPTG, BL – lösliche Proteinfraktion der lysierten Bakterienkultur. Im grauen Kasten sind die Bezeichnungen der verschiedenen Fraktionen angegeben.

Auch bei der Reinigung mittels HisTrap[™]HP-Säulen am ÄKTA[™]explorer System (2.3.2) wurden die Proteine erst bei 90-100% Elutionspuffer (500 mM Imidazol) von der Säule eluiert (siehe Abbildung 15a). Aus diesem Grund konnte ein relativ steiler Elutionsgradient über 20 Säulenvolumen gewählt werden. Um eine quantitative Elution zu erreichen, wurden nach dem Gradienten weitere 10 Säulenvolumen Elutionspuffer über die Säule gegeben. Jedes Protein wurde über eine separate Säule gereinigt, um Verunreinigungen untereinander zu vermeiden. Die Eluate wurden als 2 mL Fraktionen in vorgelegtem Phosphatpuffer (10 mM, pH 8,0) aufgefangen. Von den Fraktionen innerhalb der Peakfläche (z.B. Fraktionen 6-9 in Abb. 15a) wurde die Konzentration (2.3.4) bestimmt.

Die Prüfung auf Dehydrogenase-Aktivität mittels Standardassay (Substrat Pregnenolon) verlief bei jedem Enzym positiv.

Die gereinigten Enzyme aus *Arabidopsis thaliana* werden im Weiteren als AtHSD1 (At2g47140), AtHSD2 (At2g47130) und AtSDR1 (At1g52340) bezeichnet, die heterolog exprimierte Δ^5 -3 β -HSD aus *D. lanata* als DI3 β HSD.

Die Elutionschromatogramme (Abb.15) zeigen neben den heterolog exprimierten Proteinen einen Peak bei ca. 40% Elutionspuffer. Dies könnte zum einen durch Proteasen gespaltenes Protein darstellen, zum anderen könnte es sich um ein durch die Expression des Leerplasmids pQE 30 entstehendes Protein handeln. Wie man der Vektorkarte (Abb. A-2) entnehmen kann, führt auch

die Translation der MCS ohne Insert vom Start- bis zum Stoppkodon zu einem Protein bestehend aus 28 AS (ATG, RGS-His-Epitop, 6xHis-tag, MCS). Entsprechend ist auch in Proteingelen nach einer SDS-PAGE eine ca. 3 kDa große Bande in den Waschfraktionen und einer Elutionsfraktion zu erkennen (siehe Abb. 14). Eine Prüfung dieser Fraktionen des ersten Peaks auf Dehydrogenase-Aktivität verlief negativ.

Abbildung 15 Elutionschromatogramme der heterolog exprimierten Proteine.

a – Gesamtchromatogramm der DI3 β HSD, **b** – AtHSD1, **c** – AtHSD2, **d** – AtSDR1. Die linke Ordinate skaliert die Absorption bei 280 nm, die rechte Ordinate den prozentualen Anteil des Elutionspuffers (% B). F3 – Waschfraktion ungebundener Proteine.

Die Reinheit der Fraktionen und Größe der Proteine wurde mittels SDS-PAGE überprüft, es konnte nach Coomassie-Färbung keine Verunreinigung beobachtet werden. Die Größe der Proteinbanden entsprach den kalkulierten molekularen Massen. Entsprechende Fraktionen wurden ausgewählt und vereinigt. Abbildung 16 zeigt ein Proteingel nach Silberfärbung der vereinigten Fraktionen. Auch hier sind keine Verunreinigungen erkennbar. Die Konzentrationen der vereinigten Fraktionen der einzelnen Proteine lagen zwischen 260-425 µg/mL. Jede Proteinlösung wurde mit 10 mM Phosphatpuffer pH 8,0 auf 250 µg/mL verdünnt.

Abbildung 16 SDS-PAGE der gereinigten Proteine (Silberfärbung).

Bahn 1 – Dl3βHSD, Bahn 2 – AtSDR1 (At1g52340), Bahn 3 – AtHSD2 (At2g47130), Bahn 4 – AtHSD1 (At2g47140), M – Proteinmarker PageRuler™Prestained (Fermentas).

Weiterführend wurde in der Arbeitsgruppe mit der Kristallisation der DI3βHSD begonnen.

3.4 Charakterisierung und kinetische Parameter der rekombinanten 3β-HSD Enzyme

Zur Charakterisierung wurden vor der Ermittlung der K_m- und V_{max}-Werte die Abhängigkeit der Aktivität von der Proteinkonzentration, dem pH-Wert, der Temperatur und der Inkubationszeit der gereinigten heterolog exprimierten Proteine AtHSD1 und AtHSD2 bestimmt.

3.4.1 Abhängigkeit der Aktivität von der Proteinkonzentration

Da die kinetischen Daten durch Einpunktmessungen ermittelt werden sollten, war es erforderlich, die Enzymkonzentration in einem Bereich zu halten, in dem die Aktivität linear von der Proteinmenge abhängt, jedoch ausreicht für die Bildung einer gut detektierbaren Produktmenge auch bei geringer Substratkonzentration. Dieser Bereich wurde für die gereinigten Proteine DI3βHSD und AtHSD1 im Standardassay (2.3.5.2) mit 0,3 mM Pregnenolon ermittelt. Er beträgt für die DI3βHSD 5–20 µg Protein/mL und für die AtHSD1 5-60 µg Protein/mL. (Abb. 17a). Für sämtliche weitere Messungen wurde für alle Proteine eine Konzentration von 20 µg/mL gewählt.

3.4.2 Abhängigkeit der Aktivität vom pH-Wert

Für die AtHSD1 und AtHSD2 wurde die Aktivitätsabhängigkeit im Bereich zwischen pH 5,5 und pH 8,0 bei gleichbleibender Ionenstärke im Phosphatpuffer (10 mM) bei 50°C und 30minütiger Inkubation mit dem Substrat der Dehydrogenierung Campesterol (0,3 mM) bestimmt. Bei beiden Enzymen wurde die höchste Aktivität bei pH 7,0 beobachtet (Abb.17b). Finsterbusch (1999) ermittelte für die gereinigte Δ^5 -3β-HSD ein Optimum bei pH 9,0 im 20 mM Glycin/NaOH-Puffer. Die kinetischen Messungen wurden von ihr im 10 mM Phosphatpuffer bei pH 8,0 durchgeführt. Für die kinetischen Messungen der heterolog exprimierten DI3βHSD wurden die von ihr gewählten Bedingungen beibehalten. Weitere Charakterisierungen der AtHSD1 und AtHSD2 wurden im 10 mM Phosphatpuffer pH 7,0 durchgeführt.

3.4.3 Abhängigkeit der Aktivität von der Temperatur

Die AtHSD1 und AtHSD2 zeigten, mit dem Substrat Campesterol (0,3 mM) und einer Inkubationsdauer von 30 min in einem Temperaturbereich von 30 bis 60°C, die höchste Aktivität bei 40°C (Abb. 17c). Bei der AtHSD2 waren bei 50°C noch 80% der Aktivität vorhanden, danach ist ein starker Abfall der Aktivität zu beobachten. Bei der AtHSD1 hingegen zeigt sich kein klares Temperaturoptimum. Auch bei 60°C sind noch ca. 90% der Aktivität vorhanden. Das Temperaturoptimum der nativen Δ^5 -3 β -HSD liegt bei 50-55°C (Finsterbusch 1999).

3.4.4 Abhängigkeit der Aktivität von der Inkubationszeit

Die Aktivitätsabhängigkeit wurde über einen Zeitraum von 0,5 bis 60 min bei 40°C mit dem Substrat Campesterol (0,3 mM) bestimmt. Für die AtHSD1 und AtHSD2 kann über diesen

Zeitraum eine stetige Zunahme des Produktes beobachtet werden (Abb. 17d). Im Fall der AtHSD2 ist eine etwa lineare Abhängigkeit erkennbar. Die Aktivität ist also im Messzeitraum stabil und es gibt keine Anhaltspunkte für eine etwaige Produkthemmung. Bei der AtHSD1 zeigt die Zunahme des Produktes während der ersten 15 min einen hyperbolen Verlauf, es kommt jedoch innerhalb von 60 min nicht zum Verlust der Aktivität.

Abbildung 17 Kinetische Charakterisierungen.

Es wurde die Abhängigkeit der Aktivität von **a**) der Proteinkonzentration **b**) dem pH-Wert **c**) der Temperatur und **d**) der Inkubationszeit bestimmt. Bei Mehrfachbestimmung (n=2) ist die Standardabweichung in Balken angegeben.

Die Abhängigkeit von der Proteinkonzentration wurde mit dem Substrat Pregnenolon (0,3 mM) ermittelt. Im Assayansatz wurden von der DI3βHSD 0,5–80 µg/mL, von der AtHSD1 0,5–200 µg/mL eingesetzt. Die Aktivität wurde über die Quantifizierung des Produktes Progesteron mittels GC/MS (2.4.2) bestimmt. Die Abhängigkeit von dem pH-Wert, der Temperatur und der Inkubationszeit wurde mit dem Substrat Campesterol (0,3 mM) ermittelt. Da für das Produkt keine Referenzsubstanz zur Verfügung stand und somit keine Kalibrierung möglich war, sind in diesen Fällen die Flächenverhältnisse des Produktes zum Internen Standard (IS) als Maß für die Aktivität angegeben. Für die gaschromatographische Trennung war eine Substitution durch Silylierung notwendig. Hieraus resultiert eine weitere Fehlerquelle der Quantifizierung und die z.T. großen Standardabweichungen.

3.4.5 Abhängigkeit der Dehydrogenase-Aktivität vom Kosubstrat

Die Abhängigkeit der Dehydrogenase-Aktivitäten der AtHSD1 und AtHSD2 von den Kosubstraten NAD⁺ (1 mM) und NADP⁺ (1 mM) wurde mit Campesterol (0,3 mM) unter den optimierten Bedingungen bestimmt. Beide Enzyme akzeptierten sowohl NAD⁺ als auch NADP⁺, wobei jeweils mit NAD⁺ etwas höhere Aktivitäten zu beobachten waren (Abb. 18). Im Bezug auf das Kosubstrat NAD⁺ (100%), ergeben sich für das Kosubstrat NADP⁺ ca. 89% (AtHSD1) bzw. 84% (AtHSD2) relative Aktivität.

Abbildung 18 Abhängigkeit der Dehydrogenase-Aktivität vom Kosubstrat der AtHSD1 (n=2) und AtHSD2. Standardabweichung in Balken.

3.4.6 Bestimmung von K_m und V_{max}

Aufgrund der beobachteten Aktivitäten der Bakterienlysate wurden die Substrate Pregnenolon, 21-Hydroxypregnenolon, 5 α -Pregnan-3 β -ol-20-on und 5 β -Pregnan-3 β -ol-20-on für enzymkinetische Messungen (2.3.5.8) der Dehydrogenase-Aktivität und 5 α -Pregnan-3,20-dion und 5 β -Pregnan-3,20-dion der Reduktase-Aktivität ausgewählt (Strukturformeln siehe Abb. 12). Die kinetischen Messungen wurden bei Substratkonzentrationen in einem Bereich zwischen 0,2 µM und 1000 µM vorgenommen, in Abhängigkeit von der Sättigung der Umsatzrate. Bei höheren Konzentrationen ist die Löslichkeit des Substrates im Phosphatpuffer nicht mehr gegeben.

In den Tabellen A6-A8 im Anhang sind die erhaltenen K_m - und V_{max} -Werte aller Substrate nach nichtlinearer Regression und linearer Auswertung (2.3.5.8) gegenübergestellt.

Den niedrigsten K_m-Wert der hier getesteten Substrate weist die DI3 β HSD für das Substrat Pregnenolon auf, die AtHSD1 für das Substrat der Reduktion 5 α -Pregnan-3,20-dion und die AtHSD2 für das Substrat der Dehydrogenierung 5 α -Pregnan-3 β -ol-20-on. Abbildung 19 zeigt die zugehörigen graphischen Darstellungen.

Abbildung 19 Michaelis-Menten-Kinetiken für die jeweils geringsten K_m-Werte der Dl3 β HSD (Substrat Pregnenolon), der AtHSD1 (Substrat 5 α -Pregnan-3,20-dion) und der AtHSD2 (Substrat 5 α -Pregnan-3 β -ol-20-on). Auswertung mittels nichtlinearer Regression (schwarz) und Linearisierung nach Hanes-Woolf (grau). Standardabweichungen in Balken (n=3).

In folgender Tabelle 3-3 sind die ermittelten K_m- und V_{max}-Werte aller eingesetzten Substrate nach der Auswertung mittels nichtlinearer Regression aufgeführt. Ebenfalls sind die berechneten Werte für V_{max}/K_m als Maß für die katalytische Effizienz angegeben.

Tabelle 3-3 Ermittelte Werte für K_m, V_{max} und V_{max}/K_m der DI3βHSD, AtHSD1, AtHSD2 und AtSDR1 nach nichtlinearer Regression an die Kurve der Michaelis-Menten-Gleichung. V_{max}/K_m ist in der Einheit µkat·kg⁻¹·µM⁻¹ angegeben. STF – Standardfehler, n.b. – nicht bestimmt. Die aufgeführten Geschwindigkeiten des Substrates Campesterol und 21-Hydroxypregnenolon gelten nur unter der Annahme, dass die Kalibriergerade des Produktes die Gleichung y=1x besitzt. Aus diesem Grund ist ein Vergleich der V_{max}- und V_{max}/K_m-Werte des Campesterols mit denen der anderen Substrate nur sehr begrenzt möglich. Auf die Detektion, Quantifizierung und Kinetiken von Campesterol wird im Kapitel 3.4.7 eingegangen.

Protein Substrat		DI3βHSD (± STF)	AtHSD1 (± STF)	AtHSD2 (±STF)	AtSDR1 (± STF)
	$\mathbf{K}_{m}\left(\mu\mathbf{M} ight)$	37 (6)	50 (15)	43 (9)	1205 (997)
Pregnenolon	V _{max} (µkat/kg)	143 (6)	239 (22)	109 (6)	160 (97)
	V_{max}/K_m	3,86	4,78	2,53	0,13
	$\mathbf{K}_{m}\left(\mu\mathbf{M} ight)$	390 (154)	288 (68)	n.b.	n.b.
21-Hydroxy- pregnenolon	V _{max} (µkat/kg)	614 (106)	739 (69)	n.b.	n.b.
	V_{max}/K_m	1,57	2,57	-	-
	$\mathbf{K}_{m}\left(\mu\mathbf{M} ight)$	69 (14)	159 (47)	4,2 (0,8)	n.b.
5α-Pregnan-3β-ol- 20-on	\mathbf{V}_{max} (µkat/kg)	1181 (68)	914 (111)	624 (27)	n.b.
	V_{max}/K_m	17,12	5,75	148,57	-
	$\mathbf{K}_{m}\left(\mu\mathbf{M} ight)$	147 (39)	98 (16)	48 (7)	n.b.
5β-Pregnan-3β-ol- 20-on	\mathbf{V}_{max} (µkat/kg)	3262 (409)	1566 (89)	975 (42)	n.b.
	V_{max}/K_m	22,19	15,98	20,31	-
	\mathbf{K}_{m} (µM)	397 (77)	30 (7)	37 (4)	n.b.
5α-Pregnan-3,20- dion	V_{max} (µkat/kg)	8469 (880)	1441 (84)	1772 (737)	n.b.
	V_{max}/K_m	21,33	48,03	47,89	-
	$\textbf{K}_{m}\left(\mu M\right)$	298 (100)	92 (69)	149 (41)	n.b.
5β-Pregnan-3,20- dion	\mathbf{V}_{max} (µkat/kg)	11030 (1816)	2384 (888)	1780 (256)	n.b.
	V_{max}/K_m	37,01	25,91	11,95	-
	$\mathbf{K}_{m}\left(\mu\mathbf{M} ight)$	239 (34)	306 (56)	87 (19)	n.b.
Campesterol	V _{max} (µkat/kg)	18,6 (1,8)	82 (11)	26 (3)	n.b.
	V _{max} /K _m	0,08	0,27	0,3	-

Bei der Betrachtung des graphischen Vergleichs (Abb. 20) der ermittelten kinetischen Werte ist erkennbar, dass sich die maximalen Geschwindigkeiten der Enzyme DI3 β HSD, AtHSD1 und AtHSD2 bezüglich jeden Substrates in gleichen Dimensionen bewegen. Die geringsten Geschwindigkeiten zwischen 109 und 243 µkat/kg wurden für das Substrat Pregnenolon (mit einer Δ^5 -Doppelbindung) ermittelt, wobei sich die K_m-Werte für die drei genannten Enzyme mit 37 µM, 50 µM und 43 µM ebenfalls nicht wesentlich unterscheiden. Sie liegen in der gleichen Größenordnung wie der ermittelte K_m-Wert der nativen Δ^5 -3 β -HSD mit 20 µM (Finsterbusch 1999). Die AtSDR1 weist einen mit ca. 1200 µM deutlich größeren K_m-Wert für Pregnenolon auf.

Abbildung 20 Vergleich der ermittelten K_m -Werte (links) und der V_{max} -Werte (rechts) nach nichtlinearer Regression (Tab. 3-3).

Es wurde eine logarithmische Skalierung gewählt, um alle Werte in einem Diagramm darstellen zu können. Standardfehler in Balken.

Für das 21-hydroxylierte Pregnenolon wurden, im Vergleich zum nicht substituierten Pregnenolon, höhere maximale Umsetzungsgeschwindigkeiten bestimmt. Die ermittelten K_m-Werte mit 390 μ M (DI3 β HSD) und 288 μ M (AtHSD1) sprechen jedoch für eine Abnahme der Bindungsaffinität durch eine Hydroxylierung am C-21.

Die maximalen Geschwindigkeiten für die Pregnanderivate sind im Vergleich zum Pregnenolon deutlich höher. Auffällig ist dabei die durchschnittlich 5fach größere V_{max} der DI3 β HSD für 5 α - und 5 β -Pregnandion im Vergleich zur AtHSD1 und AtHSD2. Auch der Vergleich der K_m-Werte für die Pregnanderivate zeigt größere Unterschiede. So besitzt die AtHSD2 für das 5 α -Pregnan-3 β -ol-20-on mit ca. 4 μ M den geringsten und in mindestens einer Zehnerpotenz
kleineren K_m-Wert als die DI3 β HSD (ca. 70 μ M) und AtHSD1 (ca. 160 μ M). Die maximale Geschwindigkeit der AtHSD2 ist zwar etwas geringer, aber bewegt sich noch in der gleichen Größenordnung. Hier zeichnet sich eine höhere Substrataffinität der AtHSD2 für 5 α -Pregnan-3 β ol-20-on ab. Für das Substrat der Reduktion 5 α -Pregnandion wurden für die aus *A. thaliana* stammenden HSDs um eine Zehnerpotenz kleinere K_m-Werte mit 30 bzw. 37 μ M ermittelt als für die aus *D. lanata* stammende DI3 β HSD mit ca. 400 μ M.

Abbildung 21 Vergleich der katalytischen Effizienzen.

Als Maß dienen die V_{max}/K_m-Werte in μkat kg^{-1.}μM⁻¹ (Tab. 3-3). Die Werte wurden bis auf eine Kommastelle gerundet.

Die katalytischen Effizienzen aller drei Enzyme sind für die Pregnanderivate größer als für die Pregnene Pregnenolon und 21-Hydroxypregnenolon (Abb. 21).

Die DI3βHSD besitzt die höchste Effizienz für die Reduktion des 5β-Pregnandions. Auch bei der Dehydrogenierung liegt sie für das 5β-Pregnan-3β-ol-20-on etwas höher als für das 5α-Isomer. Die AtHSD1 und AtHSD2 hingegen zeigen für die Reduktion der 5α-konfigurierten Pregnandione höhere katalytische Effizienzen.

Bei der AtHSD1 lässt sich eine Bevorzugung der Reduktionsreaktion gegenüber der Oxidationsreaktion beobachten. Die katalytischen Effizienzen sowohl für das 5 α -Pregnandion gegenüber dem 5 α -Pregnan-3 β -ol-20-on als auch für 5 β -Pregnandione gegenüber 5 β -Pregnan-3 β -ol-20-on sind größer. Sie besitzt für 5 α -Pregnandion die höchste Effizienz und den kleinsten K_m-Wert.

Die AtHSD2 hingegen ist effizienter bei der Oxidation der $5\alpha/\beta$ -Pregnan- 3β -ol-20-one jeweils im Vergleich zur Reduktion der entsprechenden $5\alpha/\beta$ -Pregnandione. Die Effizienz für die Reduktion des 5α -Pregnandion ist gleich der der AtHSD1, jedoch liegt sie für die Dehydrogenierung des

5α-Pregnan-3β-ol-20-ons noch 3fach höher. In diesem Fall kann von einer eindeutig höheren Substrataffinität der AtHSD2 für 5α-Pregnan-3β-ol-20-on gesprochen werden.

Aufgrund der beobachteten höheren Affinität der AtHSD1 und AtHSD2 für 5α-konfigurierte 3β-Hydroxysteroide, wurde auch 28-Homoteasteron getestet (3.4.8). Es handelt sich dabei um ein Analogon des Intermediates Teasteron der Brassinosteroid-Biosynthese (vgl. Abb. 7/Abb. 12). Andere mögliche Substrate, welche Intermediate der Brassinosteroid-Biosynthese darstellen, wie Teasteron, 6-Deoxoteasteron und 6-Deoxo-28-norteasteron, standen leider nicht zur Verfügung.

3.4.7 Umsetzung von Cholesterol, Sitosterol, Stigmasterol und Campesterol

Da sich zwischen der Herzglykosid-Biosynthese und der Brassinosteroid-Biosynthese parallele Reaktionsabfolgen finden lassen (vgl. Abb. 6/Abb. 7) und da bei einigen Messungen der Enzymaktivitäten aus den Bakterienlysaten (3.2.2) teilweise auch eine Umsetzung von Cholesterol und Sitosterol beobachtet werden konnte, wurden die Sterole Cholesterol, Sitosterol, Stigmasterol und Campesterol auf eine Umsetzung durch die gereinigten AtHSD1, AtHSD2 und Dl3βHSD geprüft. Nach der Umsetzung von Cholesterol (*m*/*z* 386 [M+]) konnte bei allen drei Enzymen ein Produktpeak beobachtet werden, dessen Massenspektrum charakteristische Massen des 3-Dehydroproduktes Cholesten-3-on (*m*/*z* 384 [M+], 342, 299, 261, 229, 124) besaß und nicht in der Kontrolle vorhanden war. Hierbei zeigte die AtHSD1 die höchste Aktivität, gefolgt von der AtHSD2. Die Dl3βHSD wies nur eine geringe Aktivität auf (siehe Tab. 3-4). Bei den chromatographischen Auswertungen der Umsetzungen des Sitosterols und Stigmasterols waren auch in der Kontrollprobe Signale mit identischen Retentionszeiten vorhanden, welche Übereinstimmung mit den Massenspektren der dehydrogenierten Produkte zeigten. Aus diesem Grund kann keine klare Aussage zur Umsetzung dieser Phytosterole gemacht werden.

Tabelle 3-4 Relative Aktivitäten in % der Umsetzung von Cholesterol, Sitosterol und Stigmasterol. Es wurden jeweils 0,2 mM Substrat eingesetzt. Die Enzymassays wurden bei 37°C, pH 7,5 im Phosphatpuffer (10 mM), NAD⁺-Überschuss (1 mM) durchgeführt. Die Kontrollproben enthielten kein Enzym. Die Reinheit der Sterole betrug nach Herstellerangaben (Sigma) für Cholesterol 99+%, für Sitosterol 60% und für Stigmasterol 95%.

Substrat	DI3βHSD	AtHSD1	AtHSD2	Kontrolle
Cholesterol	13	100	67	0
Sitosterol	65	100	69	67
Stigmasterol	100	49	67	72

Campesterol ((24*R*)-24-Methylcholesterol) wurde von der Firma STERALOIDS (Newport, Rhode Island) synthetisiert und ist nach Herstellerangaben bis zu 30% mit (24*S*)-24-Methylcholesterol verunreinigt. Bei der gaschromatographischen Trennung zeigte Campesterol (m/z 400 [M⁺]) einen sehr breiten Peak mit Tailing, was eine Detektion des vermuteten dehydrogenierten Produktes (m/z 398 [M⁺]) erschwerte. Durch Silylierung (2.4.3) der 3β-Hydroxylgruppe des Campesterols konnte das Tailing verhindert und die Trennung deutlich verbessert werden. Bei der

Ergebnisse

Derivatisierung mit BSTFA [N,O-Bis(trimethylsilyl)trifluoracetamid] wird das Wasserstoffatom der Hydroxylgruppe durch eine Trimethylsilylgruppe (TMS) ersetzt. Das dehydrogenierte Produkt und der verwendete interne Standard 4-Androsten-3,20-dion bleiben underivatisiert.

In den erhaltenen Gesamtspektren im SCAN-Modus nach enzymatischer Umsetzung konnten zwei neue Signale mit den Retentionszeiten (Rt) 13,4 (m/z 398 [M⁺]) und 13,6 (m/z 396 [M⁺]) beobachtet werden. Diese konnten bei jedem der drei Enzyme beobachtet werden und waren nicht in der Kontrolle ohne Enzym vorhanden. In den Abbildungen 22a+b sind Gesamtspektren der Kontrollprobe und der AtHSD2 dargestellt. Vor dem Signal des TMS-Derivates des Campesterols (m/z 472 [M⁺]) mit Rt 11,2 wurden stets drei weitere Signale mit Rt 10,7 (m/z 400 [M⁺]); 10,9 (m/z 400 [M⁺]) und 11,05 (m/z 474 [M⁺]) beobachtet. Aufgrund der Massenspektren handelt es sich hierbei wahrscheinlich um nichtsilyliertes Campesterol bzw. nichtsilyliertes und silyliertes (24*S*)-24-Methylcholesterol. Die Peaks mit Rt 7,2 und Rt 9,2 sind Verunreinigung und besitzen Massenspektren typisch für Phthalate. Der Peak mit Rt 8,9 zeigte ebenfalls einen Molekülionenpeak m/z: 398, welcher der Molekülmasse des Produktes entspräche, jedoch kann er keiner Substanz eindeutig zugeordnet werden. Abgesehen davon war er stets auch in der Kontrollprobe vorhanden.

Abbildung 22 GC/MS-Analyse nach Umsetzung mit Campesterol (0,2 mM).

a+b) Gesamtspektren nach Silylierung. **a**) Kontrollprobe ohne Enzym, **b**) AtHSD2. ISTD – Interner Standard 4-Androsten-3,20-dion **1** – TMS-Derivat des Campesterols (m/z: 472 [M^{+}]) Rt 11,2 , **2** – (24*R*)-24-Methylcholesten-3-on (m/z: 398 [M^{+}]) Rt 13,4. Die Ordinate stellt die absolute Intensität dar. **c+d**) Massenspektren von **c**) Campesterol (Referenzspektrum der NIST-Bibliothek) **d**) Rt 13,4, welches als 24-Methylcholest-4-en-3-on identifiziert wurde. Die Ordinate stellt die relative Intensität in % dar, die Abszisse m/z das Masse/Ladungsverhältnis.

Leider standen keine Referenzsubstanzen für die zu erwartenden Produkte (24*R*)-24-Methylcholest-4-en-3-on und/oder (24*R*)-24-Methylcholest-5-en-3-on zur Verfügung.

Das erhaltene Massenspektrum von Rt 13,4 (Abb. 22d) zeigte charakteristische Fragmentionen-Peaks (*m/z*: 398 [M+], 383, 356, 341, 313, 275, 274, 229, 124) des (24*R*)-24-Methylcholest-4-en-3-on (Takatsuto et al. 1999, Noguchi et al. 1999) und besitzt charakteristische Massen M-2 (2H) (*m/z*: 398 [M+], 313) des Campesterols (*m/z*: 400 [M+], 315) (vgl. Abb. 22c+d). Aufgrund dieser Übereinstimmungen und der Tatsache, dass dieses Signal nicht in der Kontrolle vorhanden war, wurde es als das Produkt der Dehydrogenierung des Campesterols identifiziert. Ein Referenzspektrum für (24*R*)-24-Methylcholest-5-en-3-on stand nicht zur Verfügung. Jedoch lässt sich aus der relativen Intensität des Fragmentions *m/z* (relative Intensität in %): 124 (100) vermuten, dass es sich um das Δ^4 -en Produkt handelt. Zum Vergleich sind im Anhang (Abb. A-7) Referenzspektren des Progesterons (Δ^4 -en) und des 5-Pregnen-3,20-dions dargestellt. Aus diesen ist ersichtlich, dass das Massenspektrum des Progesterons eine hohe relative Intensität des Fragmentions *m/z*: 124 (85) besitzt, wohingegen im Massenspektrum des 5-Pregnen-3,20dions dieses Fragmention mit einer wesentlich geringeren relativen Intensität erscheint (*m/z*: 124 [10]).

Das Signal mit Rt 13,6 besaß den Molekülionen-Peak *m/z:* 396 (M⁺). Hierbei könnte es sich um ein Steroid mit einer Dien-Struktur handeln, welches vermutlich ein Artefakt des Produktes nach der Aufarbeitung der Proben darstellt.

Die kinetischen Messungen wurden im Konzentrationsbereich 0,005 – 0,2 mM durchgeführt. Hierbei wurden immer gleiche Verhältnisse der Signale mit Rt 13,4 und 13,6 beobachtet. Da für das dehydrogenierte Produkt des Campesterols keine Kalibrierung möglich war, wurde das Flächenverhältniss des Produktes mit Rt 13,4 zum Internen Standard für die Berechnung der Aktivität zugrunde gelegt. Für die Berechnung der V_{max}–Werte wurde eine Kalibriergerade y=1x angenommen. Aus diesem Grund ist zwar ein Vergleich der V_{max}-Werte der drei Enzyme untereinander möglich, jedoch kein Vergleich mit den ermittelten V_{max}-Werten der anderen Substrate.

Der kleinste K_m-Wert für das Produkt (Rt 13,4) wurde für die AtHSD2 mit 87 μ M erhalten. Die K_m-Werte der DI3 β HSD (239 μ M) und AtHSD1 (306 μ M) liegen in einer ähnlichen Größenordnung. Die größte maximale Geschwindigkeit wurde für die AtHSD1 (82 μ kat/kg) erhalten, die maximalen Geschwindigkeiten der DI3 β HSD (19 μ kat/kg) und AtHSD2 (26 μ kat/kg) sind ungefähr gleich. Die katalytischen Effizienzen (V_{max}/K_m) der AtHSD1 (0,27 μ kat·kg⁻¹· μ M⁻¹) und AtHSD2 (0,3 μ kat·kg⁻¹· μ M⁻¹) sind gleich, die der DI3 β HSD (0,08 μ kat·kg⁻¹· μ M⁻¹) ist geringer (Abb. 23).

Abbildung 23 Michaelis-Menten-Kinetiken der DI3βHSD, AtHSD1 und AtHSD2 mit dem Substrat Campesterol. Es wurden drei unabhängige Messungen durchgeführt. Die Auswertung erfolgte mittels nichtlinearer Regression. Standardfehler in Klammern.

3.4.8 Umsetzung von 28-Homoteasteron

28-Homoteasteron wurde von Lydia R. Galagovsky und Javier A. Ramírez (Institut für Organische Chemie der Universität Buenos Aires, Argentinien) synthetisiert (Ramírez et al. 2000) und freundlicher Weise als Geschenk überlassen. Es ist ein strukturelles Analogon des biosynthetischen Brassinosteroid-Prekursors Teasteron (Abb.7 und Abb.12), welches auch selbst in Pflanzen nachgewiesen wurde (Schmidt et al. 1993). Die Enzymassays wurden unter den gleichen Bedingungen durchgeführt wie mit Campesterol (3.4.7). Für eine gaschromatographische Trennung war eine Derivatisierung mit Methanboronsäure und BSTFA (2.4.3) erforderlich (Fujioka et al. 1997a, Park et al. 1999). Das Substrat bildet hierbei ein Methanboronat-TMS-Ether-Derivat (*m*/*z*: 558 [M+]); das dehydrogenierte Produkt bildet ein Methanboronat-Derivat (*m*/*z*: 484 [M+]) (Abb. 24). Bei jedem der drei Enzyme konnte ein Produkt mit Rt 12,2 beobachtet werden. In der Kontrollprobe ohne Enzym war kein Signal mit Rt 12,2 vorhanden (Abb. 24a+b). In den Massenspektren mit Rt 12,2 waren neben dem MolekülionenPeak des Methanboronat-Derivates des 3-Dehydroproduktes *m/z*: 484 [M+] (34 % relative Intensität) auch weitere Fragmentionen-Peaks *m/z*: 407 (17), 306 (65), 253 (69), 169 (100), 124 (95) vorhanden (Abb. 24d), welche nach einem Vergleich mit Literaturangaben theoretisch in dem Methanboronat-Derivat des 3-Dehydro-28-homoteasteron zu finden sein sollten. In der Literatur ließen sich folgende Massenspektren für das Methanboronat-Derivat des Deuterium-markierten [²H₆]3-Dehydroteasterons finden: *m/z*: 476 (M+, 14), 399 (3), 316 (14), 245 (15), 161 (100) (Noguchi et al. 2000) und *m/z*: 476 (M+, 53), 399 (7), 357 (7), 316 (17), 298 (8), 285 (10), 245 (13), 161 (100) (Park et al. 1999). Das Methanboronat-Derivat des 3-Dehydro-28-homoteasterons sollte einige Fragmentionen-Peaks M-6 (²H₆) +14 (CH₂) aufweisen, was bei Rt 12,2 mit *m/z*: 484 (M⁺), 407, 306, 253, 169 der Fall ist. Aufgrund dessen wurde Rt 12,2 als das dehydrogenierte Produkt des 28-Homoteasterons identifiziert.

Abbildung 24 GC/MS-Analyse nach Umsetzung mit 28-Homoteasteron (0,1 mM).

a+b) Gesamtspektren nach Derivatisierung (Methanboronsäure und BSTFA). **a**) Kontrollprobe ohne Enzym, **b**) DI3βHSD, das dehydrogenierte Produkt mit Rt 12,2 ist mit einem Pfeil gekennzeichnet. Der Interne Standard befindet sich bei Rt 8,0. Die Ordinate stellt die absolute Intensität dar, die Abszisse die Retentionszeit in min.

c+d) erhaltene Massenspektren von **c**) Methanboronat-TMS-Ether-Derivat des 28-Homoteasterons (m/z: 558 [M⁺]), Rt 9,7 **d**) Methanboronat-Derivat des 3-Dehydro-28-homoteasterons (m/z: 484 [M+]). Die Ordinate stellt die relative Intensität in % dar, die Abszisse m/z das Masse/Ladungsverhältnis.

Die Methanboronat-Derivate besaßen keine befriedigende Stabilität. Schon nach 30 min waren im Spektrum der Proben Veränderungen zu beobachten. Außerdem waren die Qualität der gaschromatographischen Trennung und die Qualität der Signale für eine Quantifizierung unzureichend. Um dennoch eine Quantifizierung vornehmen zu können, wurden die Proben ohne vorhergehende Derivatisierung an einem Ionenfallen-Massenspektrometer Finnigan LCQ Classic (Thermo Electron, Egelsbach) vermessen (2.4.4). Für die Quantifizierungen wurde das Verhältnis der Molekülionenmasse des Produktes 3-Dehydro-28-homoteasteron m/z: 461 (M⁺ +1 [H]) zu der des Substrates 28-Homoteasteron m/z: 463 (M⁺ +1 [H]) berechnet und mittels internen Standard und Kontrollproben korrigiert. Entsprechende Diagramme sind in Abbildung 25 dargestellt.

Abbildung 25 Spezifische Aktivitäten (V in µkat/kg) der AtHSD1 und AtHSD2 in Abhängigkeit von der Konzentration des 28-Homoteasterons (mM). Die Proben wurden mittels LCQ-Massenspektrometer quantifiziert. Es sind die Mittelwerte von 2 Messungen und die Standardabweichungen in Balken dargestellt.

Aus den erhaltenen Quantifizierungen lassen sich K_m -Werte allenfalls abschätzen. Für die AtHSD1 und AtHSD2 liegen sie vermutlich in einem Bereich zwischen 50-100 μ M. Anhand der Diagramme (Abb. 25) lässt sich erkennen, dass die maximale spezifische Aktivität bei der AtHSD1 bei geringeren Substratkonzentrationen erreicht sein wird, und wahrscheinlich einen kleineren K_m -Wert für 28-Homoteasteron besitzen wird, als die AtHSD1.

3.4.9 K_m-Werte für die Kosubstrate NAD⁺ und NADH

Die Bestimmung der K_m- und V_{max}-Werte für die Kosubstrate NAD⁺ und NADH für das Enzym AtHSD1 erfolgte spektrophotometrisch (2.3.5.1) mit den Substraten 5 α -Pregnan-3 β -ol-20-on (NAD⁺) und 5 α -Pregnan-3,20-dion (NADH).

Für NAD⁺ wurde mit 7 μ M ein kleinerer K_m-Wert als für NADH mit 21 μ M ermittelt (Tab. 3-5). Sie liegen aber in einer gleichen Größenordnung. Abbildung 26 zeigt die zugehörigen graphischen Darstellungen.

Tabelle 3-5 Ermittelte K_m- und V_{max}-Werte für die Kosubstrate NAD⁺ und NADH der AtHSD1. Die Auswertung erfolgte mittels nichtlinearer Regression. Die Standardfehler (STF) sind in Klammern angegeben.

Kosubstrat	K _m in μΜ (± STF)	V _{max} in μkat/kg (± STF)	V _{max} /K _m
NAD ⁺	7,1 (0,87)	6095 (214)	858
NADH	20,9 (2,6)	4097 (119)	196

Abbildung 26 Michaelis-Menten-Kinetiken der Kosubstrate NAD⁺ und NADH der AtHSD1. Die Auswertung erfolgte mittels nichtlinearer Regression. Es wurden jeweils drei Messungen vorgenommen, dargestellt sind die Mittelwerte mit Standardfehlern (in Balken).

3.4.10 Messung der Isomerase-Aktivität

Die Umwandlung von Pregnenolon zu Progesteron erfordert zum einen die Dehydrogenierung der Hydroxylgruppe in Position 3 und zum anderen eine Verschiebung der Doppelbindung von Position 5 zu Position 4 (Abb. 4). Wie in der Einleitung (1.3.3) beschrieben, konnte bisher für die native Δ^5 -3 β -HSD nicht eindeutig geklärt werden, ob dieses pflanzliche Enzym die Isomerisierung der Doppelbindung katalysieren kann oder ob es sich lediglich um einen spontanen Ablauf handelt. Zwar konnte spektrophotometrisch eine Isomerase-Aktivität gemessen werden, jedoch konnte eine Verunreinigung der Enzympräparation mit einer Isomerase nicht ausgeschlossen werden (Finsterbusch et al. 1999). Aus diesem Grund sollte hier ermittelt werden, ob die heterolog exprimierten und gereinigten AtHSDs eine Isomerase-Aktivität besitzen.

Hierfür wurden spektrophotometrische Messungen der Dehydrogenase-Aktivität mit dem Substrat Pregnenolon und der Isomerase-Aktivität mit dem Substrat 5-Pregnen-3,20-dion der AtHSD1 und der spontanen Isomerisierung von 5-Pregnen-3,20-dion zu Progesteron durchgeführt (2.3.5.1). Die jeweiligen Mittelwerte und Standardabweichungen der Dreifachbestimmungen wurden berechnet und sind in einem Diagramm (Abb. 27) dargestellt.

Aus den Steigungen der Tangenten an den linearen Anfangsbereich der Zeit-Umsatz-Kurven ergibt sich für die Dehydrogenase-Aktivität eine Geschwindigkeit von 14,9 nmol·L⁻¹·s⁻¹, bzw. eine spezifische Aktivität 1,24 mkat·kg⁻¹. Für die Isomerase-Aktivität (abzüglich der spontanen Isomerisierung) ergibt sich eine Geschwindigkeit von 107,2 nmol·L⁻¹·s⁻¹ bzw. eine spezifische Aktivität von 8,93 mkat·kg⁻¹. Damit ergibt sich ein klarer Hinweis für eine Isomerase-Aktivität der AtHSD1. Unter dem Einfluss dieses Enzyms steigt die Rate der Isomerisierung gegenüber dem spontanen Ablauf um das ca. 52fache und ist ca. 7,2fach höher als die Rate der Dehydrogenierung.

Abbildung 27 Vergleich der Dehydrogenase- und Isomerase-Aktivitäten der AtHSD1

Die Steigung einer Tangente an den linearen Anfangsbereich der Zeit-Umsatz-Kurve (entspricht dem Bereich in welchem die Konzentration des Enzym-Substrat-Komplexes konstant bleibt ["steady-state", Fließgleichgewicht] und in welchem die Produktkonzentration [P] linear zunimmt) entspricht v =d[P]/t und hat die Einheit μ M·s⁻¹. Sie stellt somit die Umsatzgeschwindigkeit im linearen Bereich dar, was bei dieser Substratkonzentration der maximalen Geschwindigkeit entspricht.

3.5 Transkriptionsanalyse der AtHSD1 und AtHSD2

Die Expression der Gene *AtHSD1* und *AtHSD2* wurde mittels RT-PCR analysiert (2.2.2.3). Die Gesamt-RNA wurde aus Wurzeln, Stängeln, Blättern, Blüten und Schoten 8 Wochen alter *Arabidopsis thaliana* Pflanzen Wildtyp Columbia isoliert (2.2.3.4). Die Qualität der RNA wurde mittels Formaldehyd-Agarose-Gel (2.2.4.2) überprüft und die Konzentration bestimmt (2.2.5.1). Des Weiteren erfolgte ein DNA-Verdau mit RNase freier DNase. Die cDNA-Erststrangsynthese mittels reverser Transkription (2.2.2.3) und die Amplifikation der Transkripte wurden separat durchgeführt.

Es wurden 5 µg der isolierten Gesamt-RNA für die Reverse Transkription und 1 µL der cDNA-Erststrangsynthese für die weitere Amplifikation eingesetzt. Die verwendeten Primer und PCR-Bedingungen sind im Kapitel 2.2.2.3 aufgeführt. Als Kontrolle der Effizienz der reversen Transkription diente die *Adenin-Phosphoribosyl-Transferase 1* (*APT1*, At1g27450).

Beide Gene zeigen innerhalb der Pflanze eine ubiquitäre Expression, wenn auch in unterschiedlichen Expressionsstärken. Für die *AtHSD1* konnte die stärkste Transkription in den Wurzeln festgestellt werden. Die Expression in den Stängeln, Blättern, Blüten und Schoten war nur sehr gering (Abb. 28). Da vor der reversen-Transkription ein DNA-Verdau der Gesamt-RNA Proben erfolgte und in der Negativkontrolle keine Amplifikate vorhanden waren, kann eine Amplifikation noch vorhandener DNA in den Proben ausgeschlossen werden.

Die Transkripte der *AtHSD2* waren in allen Pflanzenteilen nachweisbar, wobei auch hier die höchsten Transkriptmengen in der Wurzel erscheinen. Die *AtHSD2* zeigt insgesamt eine stärkere Expression als die *AtHSD1*.

Diese Ergebnisse stehen im Einklang mit normalisierten cDNA Microarray Daten, welche in der Genevestigator Datenbank (<u>https://www.genevestigator.ethz.ch</u>, Zimmermann et al. 2004) zugänglich sind. Aus diesen Daten (Array-Typ: ATH1:22k Array, "high quality") ist ersichtlich, dass sie beide in der Wurzel ähnlich hoch exprimiert sind, während in anderen Pflanzenorganen und Geweben die AtHSD2 (266761_at) zwei- bis vierfach stärker exprimiert ist als die AtHSD1 (266737_at).

3.6 Analyse von T-DNA-Insertionsmutanten der AtHSD1 und AtHSD2

Durch eine Analyse der Veränderungen des Phänotyps bzw. Transkriptoms einer T-DNA-Mutante können Rückschlüsse auf mögliche Funktionen von Genen gezogen werden. Auf diese Art sollten erste Hinweise auf die möglichen metabolischen Funktionen der ATHSD1 und AtHSD2 erhalten werden.

3.6.1 Genotypische Analyse der T-DNA-Insertionslinien

Die transgenen Pflanzenlinien (2.1.8, Tab. 2-5) mit T-DNA-Insertionen im Bereich der Genloci der *AtHSD1* (At2g47140) und *AtHSD2* (At2g47130) wurden genotypisch bezüglich homo- oder heterozygoter T-DNA-Insertion charakterisiert. Von jeder der 9 SALK-Insertionslinien wurde aus 10 bis 20 Pflanzen der T3-Generation genomische DNA (2.2.3.1) isoliert und mit einem T-DNA-bzw. genspezifischen Primern mittels PCR untersucht (2.2.6).

Aus der Linie Salk_023471 (C) und Salk_133720 (E), mit Insertionen im Bereich des Genlocus der *AtHSD1*, konnten die Pflanzen C5 (Abb. 29b) und E2 (Abb. 29c-d) genotypisch als homozygote Insertionsmutanten identifiziert werden. Die Untersuchungen wurden mit Pflanzen der T4-Generation wiederholt.

Abbildung 29 Genotypische Untersuchung der T-DNA-Insertionlinien mittels PCR (2.2.6).

Für die PCR wurden zwischen 0,3–1 µL der isolierten genomischen DNA (2.2.3.1) eingesetzt. Die Amplifikation des Wildtyp-Allels (Wt) und des Mutanten-Allels (Mt) erfolgte in separaten Ansätzen. Die Sequenzen der Primer sind in Tabelle 2-3 aufgelistet.

M1 – 1 kb DNA-Ladder (NEB), M2/M3 – O`RangeRuler 50 bp/100 bp (Fermentas)

a) Linie B: Amplikon Wt-Allel 1119 bp (B_RP, B_LP), Amplikon des Mt-Allels 582 bp (B_RP, Lba1)

b) Linie C: Amplikon Wt-Allel 1184 bp (C_RP, C_LP), Amplikon des Mt-Allels 651 bp (C_RP, Lba1)

c) Linie E: Amplikon Wt-Allel 1194 bp (E_RP, E_LP), Amplikon des Mt-Allels 1162 bp (E_RP, Lba1)

d) 5 Pflanzen (E2-1 bis E2-5) der T4-Generation der Pflanze E2 (T3).

Aus der Linie Salk_000277 (B), mit einer Insertion im Bereich des Genlocus der *AtHSD2* konnten in einem ersten "Screening" die Pflanzen B9 (ohne Abb.) und B15 (Abb. 29a) als genotypisch homozygote Insertionsmutanten identifiziert werden. Beide Pflanzen starben noch vor der Entwicklung von Schoten ab. In einem zweiten "Screening" unter sterilen Bedingungen konnten die Pflanzen B108 und B113 als homozygote Insertionsmutanten isoliert werden, aber auch bei

diesen blieb die Entwicklung von Schoten aus. Aus diesem Grund wurden weitere Experimente mit Samen (T4-Generation) der heterozygoten Pflanze B21 durchgeführt (Abb. 29a).

Aus den Linien Salk_008827 (A), Salk_076271 (D), Salk_098352 (F), Salk_113632 (H) und Salk_049627 (J) konnten beim Durchmustern von jeweils 10 Pflanzen keine homozygoten Mutanten isoliert werden.

3.6.2 Lokalisierung der Insertionen

Die genaue Lokalisierung der Insertionsstellen erfolgte durch Sequenzierung der erhaltenen PCR-Produkte mit der Kombination des T-DNA-spezifischen Primers LBb1 und dem jeweiligen genspezifischen RP-Primer (Tab. 2-3).

Durch Sequenzieranalysen der Amplifikate des Mutanten-Allels der Pflanzen B15 und B21 wurde die T-DNA-Insertionsstelle 766 bp stromaufwärts des Startkodons im zweiten Exon der *AtHSD2* lokalisiert (im Weiteren als *hsd2-1* bezeichnet). In der Linie C5 (*hsd1-2*) inseriert die T-DNA revers 1249 bp stromaufwärts des Startkodons in der 3`-UTR (untranslatierte Bereiche) der *AtHSD1* und 329 bp stromabwärts des Startkodons, möglicherweise Teil der Promotorregion, der *ATHSD2*. In der Linie E2 (*hsd1-1*) inseriert die T-DNA 859 bp stromaufwärts des Startkodons im dritten Exon der *AtHSD1* (Abb. 30).

Abbildung 30 T-DNA-Insertionsstellen in den Linien B15/B21, C5 und E2 nach Sequenzierung und chromosomale Orientierung.

Die Insertionsstelle der Pflanzen B15/B21 ist im Gen der *AtHSD2* lokalisiert. Dieses besteht aus 2 Exons und einem Intron. Die Insertionsstellen der Pflanzen E2 und C5 sind im Gen der *AtHSD1* lokalisiert. Dieses besteht aus 3 Exons und 2 Introns. In Klammern hinter der Pflanzenbezeichnung ist die im Folgenden gewählte Mutanten-Bezeichnung angegeben. Die Positionsangaben beziehen sich stromaufwärts zum Startkodon. Die Skalierung ist relativ korrespondierend zur Größe.

Die *AtHSD1* und *AtHSD2* liegen zusammen mit den putativen SDRs At2g47150 und At2g47120 in reverser Orientierung auf Chromosom 2.

3.6.3 Analyse des Transkriptoms und Untersuchungen zum Phänotyp

Abhängig von der T-DNA-Insertionsstelle ergeben sich auch in genotypisch homozygoten Insertionsmutanten unterschiedliche Konsequenzen für die Transkription eines Genes (Krysan et al. 1999). Um zu ermitteln ob es sich bei den als genotypisch homozygoten bestimmten Insertionsmutanten *hsd1-1* (E2) und *hsd1-2* (C5) um "knock-out", "knock-down" oder "knock-about"¹ Mutanten handelt, wurde eine Analyse des Transkriptoms mittels RT-PCR (2.2.2.3) durchgeführt. Die Gesamt-RNA wurde aus 21 Tage alten Keimlingen (inklusive Wurzel) des Wildtyps und der T4-Generation der Insertionsmutanten, welche unter sterilen Bedingungen kultiviert wurden, isoliert (2.2.3.4). Die Transkriptakkumulation der heterozygoten *hsd2-1* (B21) wurde ebenfalls untersucht.

Wie in Abbildung 31 ersichtlich, ließ sich in der Mutante *hsd1-1* (Insertion im Exon der *AtHSD1*) kein Transkript der *AtHSD1* detektieren, die *AtHSD2* zeigt erwartungsgemäß eine dem WT ähnliche Expression. Die *hsd1-1* stellt somit eine "knock-out" Mutante der *AtHSD1* dar. Bei der Beobachtung des oberirdischen Phänotyps konnten unter den hier angewendeten Bedingungen jedoch keine Unterschiede zum WT beobachtet werden (Abb. 32a).

In der Mutante *hsd1-2* (Insertion in der 3'-UTR der *AtHSD1* und möglicher Promotorregion der *AtHSD2*, Abb. 30) waren nur noch geringe Transkriptmengen sowohl der *AtHSD1* als auch der *AtHSD2* nachweisbar. Im Vergleich zum WT ist vor allem die Expression der *AtHSD2* reduziert. Sie stellt somit eine "knock-down" Mutante, möglicherweise beider Gene, dar. Phänotypisch zeigten *hsd1-2* Pflanzen im Vergleich zum WT eine verzögerte Keimung und verlangsamtes Wachstum (Abb. 32b+c).

In heterozygoten Pflanzen der Mutante *hsd2-1* (Insertion im Exon der *AtHSD2*) ließen sich erwartungsgemäß Transkripte der *AtHSD2* detektieren. Bei den heterozygoten Pflanzen konnte, ähnlich der Mutante *hsd1-2*, eine verzögerte Keimung und verlangsamtes Wachstum beobachtet werden. Die homozygoten Pflanzen der *hsd2-1* zeigten noch deutlichere Unterschiede im Erscheinungsbild zum WT. Sie waren durch eine noch stärker verzögerte Keimung, extrem verlangsamtes Wachstum, eine kleinere Wuchsform gekennzeichnet und bildeten erst nach drei Monaten ein bis zwei Blüten. Da es bei diesen Pflanzen zu keiner Schotenbildung kam, vermutlich aufgrund fehlender Fertilität, und somit keine Nachfolger-Generation erhalten werden konnte, wurde versucht aus der T4-Generation der heterozygoten Pflanze B21 homozygote Mutanten zu isolieren. Die sterilisierten Samen wurden unter sterilen Bedingungen und unter Zusatz von 1 nM 24-*epi*-Brassinolid (EBR) im Medium kultiviert. Aus 10 analysierten Pflanzen wurden 5 heterozygote, 3 homozygote bezüglich Wt-Allel und 2 homozygote bezüglich Mt-Allel

¹ "knock-out": T-DNA-Insertion in der kodierenden Region oder dem Promotor des Genes lokalisiert; es findet keine Expression des Genes mehr statt.

[&]quot;knock-down": T-DNA-Insertion in der 3'-UTR oder dem Promotor des Genes lokalisiert; die Expression ist reduziert.

[&]quot;knock-about": T-DNA-Insertion in der kodierenden Region des Genes lokalisiert; eine Expression ist aber noch vorhanden. (Bezeichnungen aus Krysan et al. 1999)

isoliert. Allerdings konnte unter den hier angewendeten sterilen Bedingungen keine Schotenbildung erreicht werden.

Abbildung 31 RT-PCR-Analyse der Transkriptome von WT-Pflanzen und Insertionsmutanten.

Die Keimlinge (T4-Generation) des WT und der homozygoten Mutanten *hsd1-1* und *hsd1-2*, sowie heterozygote Pflanzen der Mutante *hsd2-1* wurden unter sterilen Bedingungen (2.5.3) angezogen. Es wurden WT-Pflanzen verglichen, die 7 Tage ohne und unter Zusatz von 1 und 10 nM 24-*epi*-Brassinolid kultiviert wurden (2.5.4). 1 µg der Gesamt-RNA wurde für die reverse Transkription eingesetzt. 1 µL der Erststrangsynthese wurde für die Amplifikation mit einer Annealingtemperatur von 56°C und 40 Zyklen verwendet. Als Kontrolle der Effizienz der reversen Transkription diente die *Adenin-Phosphoribosyl-Transferase 1 (APT1*, At1g27450). Die verwendeten Primer sind in Tabelle 2-2 (At2g47140 und At2g47130) bzw. in Tabelle 2-4 (*APT1*) aufgeführt. NK – Negativkontrolle (Inaktivierung der reversen Transkriptase durch 10 min Inkubation bei 95°C).

Abbildung 32 Vergleich der Phänotypen des WT und der Mutanten hsd1-1, hsd1-2 und hsd2-1.

a) WT und homozygote hsd1-2 (T3-Generation), 6 Wochen (6W)

- **b**) WT, homozygote *hsd*2-1 (zweite von rechts) und heterozygote *hsd*2-1 (rechts)(T3-Generation), 6 W
- c) WT und homozygote hsd1-1 (T4-Generation), 5 Wochen
- d) WT und homozygote hsd1-2 (T4-Generation) unter sterilen Bedingungen, 8 Wochen
- e) wie d) unter Zusatz von 1 nM 24-epi-Brassinolid (EBR).

Aufgrund der katalytischen Aktivitäten der AtHSD1 und AtHSD2 ließ sich u. a. eine Funktion in der Brassinosteroid-Biosynthese vermuten. Da die meisten BR-Biosynthese-Mutanten unter Zusatz von BRs während der Kultivierung einen normalen bzw. dem WT entsprechenden Phänotyp entwickeln (Kauschmann et al. 1996, Li et al. 1996, Szekeres et al. 1996), wurden Pflanzen (T4-Generation) der homozygoten Mutante *hsd1-2* unter Zusatz von 1 nM 24-*epi*-Brassinolid (EBR) unter sterilen Bedingungen kultiviert (2.5.4), um den Effekt der Behandlung auf die Entwicklung zu beobachten. Wie in Abbildung 32e erkennbar, zeigen *hsd1-2* Pflanzen ein retardiertes Wachstum, wohingegen *hsd1-2* Pflanzen unter Zusatz von EBR ein dem WT entsprechendes Erscheinungsbild besitzen.

Bei dieser Gelegenheit wurde auch der Einfluss der EBR-Applikation auf die Transkription der *AtHSD1* und *AtHSD2* in WT-Pflanzen untersucht. In Abbildung 31 ist unter Zusatz von 1 nM EBR eine geringe Reduzierung der Transkriptmengen erkennbar, unter Zusatz von 10 nM EBR hingegen scheint die Expressionsstärke eher dem WT zu entsprechen. Davon abgesehen bestätigte sich hierbei das Ergebnis der Transkriptionsanalyse (3.5). Die *AtHSD2* ist deutlich stärker exprimiert ist als die *AtHSD1*.

Da für beide Gene die höchste Expression in der Wurzel festgestellt wurde, folgten weitere Untersuchungen der Phänotypen durch Messungen der Wurzellängen des WT, der *hsd1-1*, *hsd1-2* und *hsd2-1*. Bei 16 Tage alten Keimlingen konnte bei den Mutanten *hsd1-1* und *hsd2-1* eine Reduzierung der Wurzellänge von ca. 23% bzw. 30% festgestellt werden (Abb. 33a). Die *hsd1-2* zeigte keine signifikanten Unterschiede zum WT. Darauf folgten weitere Analysen homozygoter Pflanzen von 10 und 20 Tage alten Keimlingen, welche ebenfalls unter sterilen Bedingungen ohne oder unter Zusatz von 1 und 10 nM EBR kultiviert wurden (2.5.5). Eine weitere Analyse der Mutante *hsd2-1* wurde nicht durchgeführt, da jeder einzelne Keimling auf homo- oder heterozygoten Genotyp hin untersucht hätte werden müssen.

Nach 10 Tagen konnte für die Mutante *hsd1-1* nur eine schwache, nicht signifikante Reduzierung der Wurzellänge festgestellt werden (Abb. 33b), die nach 20 Tagen signifikant wurde (Abb. 33c+d).

Die Applikation von 1 nM EBR führte nach 10 Tagen beim WT, der *hsd1-1* und *hsd1-2* zu einer gesteigerten Elongation der Wurzel. Im Gegensatz dazu ist ein signifikanter Unterschied von WT und der *hsd1-1* unter Zusatz von 10 nM EBR zu beobachten. Während die Elongation der Wurzel des WT reduziert wird, zeigt die Erhöhung der EBR-Konzentration auf die *hsd1-1* keine veränderte Beeinflussung (Abb. 33b). Nach 20 Tagen war schon bei einer 1 nM EBR-Konzentration eine negative Beeinflussung der Wurzelelongation des WT zu beobachten, während bei der Mutante *hsd1-1* ein positiver Effekt vorlag (Abb. 33c).

Bei der Mutante *hsd1-2* waren im Vergleich zum WT keine Unterschiede der Wurzellängen festzustellen.

Abbildung 33 Wurzellängen-Assays der Mutanten hsd1-1, hsd1-2 und hsd2-1 und des WT.

Je Genotyp wurde die Wurzel von 20 zufällig ausgewählten Keimlingen gemessen.

a bis c) Darstellung der Ergebnisse mittels Box-Plot. Der Teilungsstrich innerhalb der Box stellt den Median dar, die obere Begrenzung das 75%-Quartil, die untere Begrenzung das 25%-Quartil. Die Balken repräsentieren den oberen bzw. unteren "Whisker" und enden im Maximum bzw. Minimum der gemessenen Werte. Weiterhin angegeben ist das arithmetische Mittel (-). Für die Signifikanzprüfung wurden t-Tests (zweiseitig, Varianz entsprechend F-Test) durchgeführt. Mit Sternen sind signifikante Unterschiede jeweils im Vergleich zum WT bei gleicher Konzentration von 24-epi-Brassinolid (EBR) gekennzeichnet (* - signifikant, ** - hochsignifikant). a) 16 Tage alte Keimlinge, hsd1-1 * (P = 0,017258), hsd2-1 ** (P = 0,00196037).

b) 10 Tage alte Keimlinge kultiviert ohne Applikation von EBR (Kontrolle K), unter Zusatz von 1 nM, bzw. 10 nM EBR im Medium. hsd1-1 10 nM * (P = 0,01758)

c) 20 Tage alte Keimlinge ohne (K), unter Zusatz von 1 nM bzw. 10 nM EBR.

hsd1-1 K ** (P = 0,00092), 1 nM * (P = 0,03603)

d) representative Wurzellängen 20 Tage alter Keimlinge des WT und der hsd1-1, Balken = 1 cm.

4 Diskussion

4.1 Allgemeine Bemerkungen zur Vorgehensweise

Zur Identifizierung neuer Gene anhand der Funktion ihrer Genprodukte gibt es generell zwei Strategien: Eine klassische Methode ("forward genetics") besteht in der Erzeugung zufälliger Mutanten, z. B. durch chemische Mutagenese, und der Isolierung einer Mutante mit einem bestimmten Phänotyp aus diesem Pool und der anschließenden Suche nach der genotypischen Ursache für diesen veränderten Phänotyp, z.B. durch "map-based cloning" des mutierten Genes. Ein alternativer Weg eröffnete sich durch Genom Sequenzierungsprojekte von Modellorganismen wie der "Arabidopsis Genom Initiative" (AGI), wodurch die Möglichkeit besteht ein Gen aufgrund seiner Struktur-Homologie zu Genen mit bekannter Funktion zu isolieren, es gezielt zu mutieren und anschließend zu prüfen, welche phänotypischen Veränderungen aus der Mutation dieses Genes resultieren ("reverse genetics"). Die Funktionsanalyse von Genen wird dabei durch die Erzeugung von T-DNA-Insertionslinien durch verschiedene Institute und die Bereitstellung der Samen dieser Linien erleichtert.

Die 3β-Hydroxysteroid-Dehydrogenasen konnten sowohl in eukaryotischen als auch prokaryotischen Spezies als Mitglieder der SDR-Familie nachgewiesen werden. Vor allem im menschlichen und tierischen Organismus sind diese, an der Biosynthese von Steroidhormonen beteiligten Enzyme, gut untersucht, wobei auch gewebespezifische Isoformen identifiziert wurden. Über die Existenz und Funktion dieser Enzyme im Pflanzenreich sind weitaus weniger Daten verfügbar.

4.2 Isolierung putativer HSDs aus Arabidopsis thaliana

Im Genom von *A. thaliana* ließen sich zahlreiche putative SDR-Enzyme (> 50) finden. Hydroxysteroid-Dehydrogenasen aus dieser Familie waren zu Beginn der vorliegenden Arbeit in *A. thaliana* nicht bekannt.

Die Sequenzvergleiche in der *Arabidopsis*-Datenbank ergaben hohe Sequenzhomologien der *D. lanata* Δ^5 -3β-HSD zu zahlreichen putativen Alkoholdehydrogenasen bzw. putativen Enzymen der SDR-Familie. Im Rahmen dieser Arbeit wurde versucht zwölf dieser ähnlichen Sequenzen (Homologie > 60 %) zu klonieren, welche aufgrund der unter 3.1.1 beschriebenen vorhanden typischen Motive in ihrer Aminosäuresequenz der SDR-Familie zugeordnet werden konnten (Abb. 9). Von diesen zwölf Kandidaten konnten sieben kodierende Sequenzen aus einer cDNA-Bank amplifiziert, erfolgreich kloniert und in *E. coli* heterolog exprimiert werden (3.2.1). In jeder der löslichen Proteinfraktionen der jeweiligen Bakterienlysate konnte eine 3β-HSD-Aktivität nachgewiesen werden (3.2.2).

4.2.1 AtHSD1 und AtHSD2

Die Kandidaten At2g47140 (AtHSD1) und At2g47130 (AtHSD2) mit den höchsten Aktivitäten für die Mehrzahl der getesteten Substrate, sowie auch die heterolog exprimierte Δ^5 -3 β -HSD (DI3 β HSD), wurden über den N-terminalen Histidin-Anhang gereinigt (3.3, Abb. 16). Die AtHSD1 und AtHSD2 waren zudem die Kandidaten mit der höchsten Aminosäuresequenz-Identität von 59 bzw. 60 % und 76 bzw. 74 % Homologie zur DI3 β HSD. Untereinander besitzen sie 77% Identität und 86% Homologie bezogen auf ihre Aminosäuresequenzen. Aufgrund dieser hohen Identitäten und Homologien sowohl auf Aminosäuresequenz- und cDNA-Ebene (Daten nicht gezeigt) und der sehr ähnlichen Substratspezifitäten der AtHSD1, AtHSD2 und DI3 β HSD, kann davon ausgegangen werden, dass die AtHSD1 und AtHSD2 zur Δ^5 -3 β -HSD homologe Proteine aus *A. thaliana* darstellen.

4.2.2 AtSDR1

Unter den potentiellen Kandidaten befand sich nur ein Enzym mit einer bekannten katalytischen Funktion - die SDR1 (kodiert durch *ABA2 ABSCISIC ACID DEFICIENT2*, Synonym *GIN1 GLUCOSE INSENSITIVE1*) - welche zur Δ^5 -3 β -HSD *D. lanata* 47 % Identität und 63 % Homologie aufweist. Durch die Charakterisierung der Abscisinsäure-defizienten Mutante *aba2* (Léon-Kloosterziel et al. 1996) konnte für die SDR1 eine katalytische Funktion bei der Umwandlung von Xanthoxin zu Abscisinaldehyd (Abb. A-6) während der Biosynthese des Phytohormons Abscisinsäure nachgewiesen werden (Schwartz et al. 1997). Diese Reaktion erfordert drei Modifikationen des Xanthoxin-Rings: Dehydrogenierung der Hydroxylgruppe, Einführung einer Doppelbindung und Öffnung der Epoxid-Struktur. Mittels der rekombinant exprimierten SDR1 konnte gezeigt werden, dass diese Mehrschrittreaktion allein durch die SDR1 (K_m 20,2 µM) in Abhängigkeit des Kosubstrates NAD⁺ katalysiert wird (Cheng et al. 2002). Das Phytohormon Abscisinsäure ist von Bedeutung für die Stresstoleranz und Stressadaption, über die Beeinflussung der Schließzellen der Stomata für den Wasserhaushalt und für die Induktion der Samenruhe. Die SDR1 spielt damit eine Rolle für Wachstum, Entwicklung, Stress-Antwort und in der Glucose-Signalkaskade (Cheng et al. 2002).

Die kodierende Sequenz der SDR1 (At1g52340, hier bezeichnet als AtSDR1) wurde im Rahmen dieser Arbeit ebenfalls kloniert, exprimiert, gereinigt und für vergleichende kinetische Messungen herangezogen. In den Lysaten der AtSDR1 exprimierenden Bakterien (Klon 7, 3.2.2) konnten auch geringe 3 β -HSD-Aktivitäten festgestellt werden. Der für das Substrat Pregnenolon bestimmte K_m-Wert des gereinigten Enzyms AtSDR1 ist allerdings 30fach größer als die K_m-Werte der AtHSD1 und AtHSD2 (Tab. 3-3) und 60fach größer als der K_m-Werte der SDR1 für das Substrat Xanthoxin. Diese sehr geringe Substrataffinität war zu erwarten, da die Molekülstruktur von Steroiden wesentlich größer ist, als die des beschriebenen Substrates Xanthoxin (Strukturformel im Anhang Abb. A-6). Sie weist jedoch auf eine Verwandschaft von SDR1 und 3 β -HSDs hin.

4.2.3 Weitere SDR-Enzyme

Das erste klonierte pflanzliche *SDR*-Gen war *TS2* aus *Zea mays*, welches durch Kontrolle des Zelltods an der Geschlechtsdeterminierung beteiligt ist. Der Mechanismus ist bisher unbekannt, es wird jedoch aufgrund von Sequenzhomologien zu prokaryotischen HSDs eine Kontrolle des pflanzlichen Steroid-Metabolismus vermutet (DeLong et al. 1993). Drei ähnliche kodierende Sequenzen At3g51680 (Klon 6), At3g26760 (Klon 8) und At3g26770 (Klon 10) zu *TS2* konnten hier kloniert und heterolog exprimiert werden (3.2.1, Abb. 11). In den löslichen Proteinfraktionen der Bakterienlysate konnten 3 β -HSD-Aktivitäten festgestellt werden (3.2.2). Da sie in den meisten Fällen nur schwache Aktivitäten besaßen, wurde auf die Reinigung der Enzyme verzichtet.

Weitere Kandidaten zeigten Ähnlichkeiten zur Secoisolariciresinol-Dehydrogenase aus *Forsythia* x *intermedia*, welche an der Biosynthese eines Prekursors von Lignanen beteiligt ist (Xia et al. 2001). Diese, At4g03140 und At2g47150, sowie auch At2g47120, At3g29250 und At3g42960 waren aus der verwendeten cDNA-Bank nicht amplifizierbar, vermutlich weil entsprechende Transkripte zum Zeitpunkt der Erstellung der Bank nicht ausreichend hoch exprimiert waren.

Der Vollständigkeit halber sei noch das SDR-Gen *SAG13* (*SENESCENCE-ASSOCIATED GENE*, At2g29350) aus *A. thaliana* erwähnt, welches ähnlich einer putativen Tropinon-Reduktase (At2g29290) ist, dessen katalytische Funktion jedoch noch nicht bekannt ist (Miller et al. 1999). Nebenbei bemerkt ergab die Homologiesuche der *D. lanata* Δ^5 -3β-HSD auch Ähnlichkeiten zu putativen Tropinon-Reduktasen (z.B. At1g07450, 28% Identität, 47% Homologie, Daten nicht gezeigt) in *A. thaliana*.

Erst kürzlich wurden zwei 3 β -Hydroxysteroid-Dehydrogenasen/C-4 Decarboxylasen At3 β HSD/D1 (At1g47290) und At3 β HSD/D2 (At2g26260) aus *Arabidopsis thaliana* identifiziert, die Mitglieder der SDR-Familie sind. Beide At3 β HSD/D Enzyme sind hoch spezifisch für 3 β -Hydroxy-4 α -Carboxyl-Steroide. Substrate ohne eine C-4-Carboxylgruppe, wie Pregnenolon, wurden nicht akzeptiert (Rahier et al. 2006).

4.2.4 Eigenschaften und Struktur der DI3βHSD, AtHSD1 und AtHSD2

Für die AtHSD1 und AtHSD2 wurde von allen verwendeten Programmen (siehe 2.6) aufgrund nicht vorhandener Signal- oder Targetingmotive eine Lokalisation im Cytosol prognostiziert. Ebenso wurde eine subzelluläre Lokalisation im Cytosol für die Δ^5 -3β-HSD *D. lanata* und AtSDR1 beschrieben (Finsterbusch et al. 1999, Cheng et al. 2002). Die heterolog exprimierten Dl3βHSD (259 AS), AtHSD1 (257 AS) und AtHSD2 (257 AS) sowie auch die AtSDR1 (285 AS) waren in den löslichen Proteinfraktionen der Bakterienlysate zu finden und konnten erfolgreich über einen Histidin-Anhang bis zur Homogenität gereinigt werden (Abb. 16). Im SDS-Gel erschienen die Proteinbanden der Dl3βHSD, AtHSD1 und AtHSD2 bei ca. 30 kDa (Abb. 14). Das pH-Optimum der AtHSD1 und AtHSD2 wurde im neutralen Bereich pH 7 ermittelt. Jedes der drei Enzyme besitzt die typischen Charakteristika der SDR-Familie (Abb. 9). Sie weisen über große Bereiche der Aminosäuresequenzen hohe Homologien auf, wobei sich die größten Unterschiede im C-terminalen Bereich (198-208) finden lassen. Dieser C-terminale Bereich ist allgemein innerhalb der SDR-Familie am geringsten konserviert und wird in der Literatur als die Substratbindungsregion beschrieben, welche die Substratspezifität determiniert und bei der Erkennung und Orientierung der Substrate involviert ist (Krozowski 1992, Benach et al. 2002). Wie im Folgenden noch genauer erläutert wird, akzeptierten die drei Enzyme die gleichen Substrate, jedoch mit teilweise unterschiedlichen Affinitäten zu diesen.

4.3 Katalytische Aktivitäten und kinetische Charakterisierung

4.3.1 Substratspezifitäten

Wie schon in der Einleitung beschrieben, ist die Δ^5 -3 β -HSD in *Digitalis lanata* an der Kardenolid-Biosynthese beteiligt (Seidel et al. 1990, Lindemann und Luckner 1997). Neben der Umwandlung von Pregnenolon zu Progesteron konnte für sie auch eine Umsetzung von 5 β -Pregnanen, welche biosynthetische Vorstufen der Kardenolide sind, und auch von 5 α -Pregnanen nachgewiesen werden (Finsterbusch et al. 1999). Die 5 α -Pregnan-Derivate sind in *Digitalis*-Arten an der Bildung der Herzglykoside jedoch nicht beteiligt (Furuya et al. 1973, Luckner und Wichtl 2000), weshalb spekulativ weitere physiologische bzw. metabolische Funktionen angenommen werden können.

Im Pflanzenreich weit verbreitete Steroide, mit strukturellen Ähnlichkeiten zu Herzglykosid-Vorstufen sind z.B. die Brassinosteroide. Gemeinsamkeiten bestehen hierbei im steroidalen Grundgerüst und den möglichen biosynthetischen Vorstufen Campesterol, Sitosterol sowie Cholesterol (Fujioka und Sakurai 1997b, Nakajima et al. 2002, Fujita et al. 2006, Takatsuto et al. 1999, Milek et al. 1997), welche eine 3 β -Hydroxylgruppe und eine Δ^5 -Doppelbindung im Ring B besitzen, wie sie auch im Pregnenolon vorhanden sind. Für die DI3βHSD, AtHSD1 und AtHSD2 konnte eine Dehydrogenase-Aktivität sowohl für die C21-Steroide Pregnenolon, 21-Hydroxypregnenolon und 17-Hydroxypregnenolon, das C₁₉-Steroid 5-Androsten-3β-ol-17-on (3.2.2) als auch für das C28-Steroid Campesterol und das C27-Steroid Cholesterol nachgewiesen werden (3.4.7). Ob auch eine Umsetzung der C29-Steroide Sitosterol und Stigmasterol durch die DI3βHSD, AtHSD1 und AtHSD2 möglich ist, konnte aufgrund der Verunreinigung der Substrate nicht geklärt werden (3.4.7). Die bestimmten K_m-Werte für das Substrat Pregnenolon der DI3BHSD (37 µM), der AtHSD1 (50 µM) und der AtHSD2 (43 µM) sind nicht wesentlich unterschiedlich, zeigen Übereinstimmung mit dem K_m-Wert der nativen Δ^{5} -3 β -HSD (20 μ M, Finsterbusch et al. 1999) und sprechen für gleiche Affinitäten der drei Enzyme zu Pregnenolon (Tab. 3-3). Für das Substrat Campesterol zeigen die K_m-Werte hingegen deutliche Unterschiede: die AtHSD2 besitzt mit 87 μ M eine höhere Affinität als die DI3 β HSD (239 μ M) und AtHSD1 (306 µM). Zudem sind die Affinitäten der drei Enzyme zu Campesterol geringer als zu Pregnenolon. Als Erklärung für die herabgesetzte Affinität wäre eine sterische Behinderung durch die Seitenkette des Campesterols denkbar.

Ein wesentlicher Unterschied im Steroidgrundgerüst von Herzglykosiden (HG) und Brassinosteroiden besteht in der Konfiguration am C-5. Während bei der HG-Biosynthese die Δ^4 -Doppelbindung unter Einführung eines β -ständigen Wasserstoffatoms durch die 5 β -Progesteron-Reduktase reduziert wird (Gärtner et al. 1994) und somit die Ringe A/B-*cis* konfiguriert sind, führt bei der BR-Biosynthese eine 5 α -Steroid-Reduktase-Aktivität (DET2, Li et al. 1997a) zu einer A/B-*trans* Konfiguration (Abb. 34).

5α-Steroid (A/B-*trans*)

5β-Steroid (A/B-cis)

Für die nativ gereinigte Δ^5 -3 β -HSD und auch die hier heterolog exprimierten Dl3 β HSD, AtHSD1 und AtHSD2 konnte eine Dehydrogenase- und auch Reduktase-Aktivität für Substrate sowohl mit 5 β -Pregnan- als auch 5 α -Pregnan-Struktur nachgewiesen werden (3.2.2). Sie sind in Bezug auf die Konfiguration des Wasserstoffatoms am C-5 nicht selektiv.

Aus der Bestimmung der kinetischen Parameter der Substrate $5\alpha/\beta$ -Pregnan- 3β -ol-20-on und $5\alpha/\beta$ -Pregnan-3,20-dion ließ sich erkennen, dass die AtHSD1 und AtHSD2 für 5α -konfigurierte Pregnane höhere Affinitäten bzw. Effizienzen besitzen als für 5β -konfigurierte (Tab. 3-3). Die höchste Effizienz der AtHSD2 wurde für die Dehydrogenierung (Oxidation) des 5α -Pregnan- 3β -ol-20-ons festgestellt (Abb. 21). Aufgrund dessen könnte auch eine Dehydrogenierung der BR-Biosynthese-Intermediate Teasteron bzw. 6-Deoxoteasteron/ 6-Deoxo-28-nor-teasteron, welche einen 5α -Gonan-Grundkörper besitzen, zu den entsprechenden 3-Dehydroprodukten möglich sein. Für 28-Homoteasteron konnte eine Umsetzung gezeigt werden, wobei erkennbar war, dass die AtHSD2 wahrscheinlich eine höhere Substrataffinität zu diesem Steroid besitzt, als die AtHSD1 (3.4.8). Vermutlich würden die 6-Deoxo- bzw. 6-Deoxo-28-nor-Derivate des Teasterons aufgrund der nicht vorhandenen Ketofunktion am C-6 noch bessere Substrate darstellen.

Beim Vergleich der katalytischen Effizienzen von Substraten mit einer Δ^5 -Doppelbindung (Pregnenolon, 21-Hydroxypregnenolon, Campesterol) im Ring B und Substraten ohne eine solche (Pregnane) fiel auf, dass die Dehydrogenierung von Pregnanen effizienter ist. Ähnliches konnte für die 3 β -HSD/KSI der Ratte (Nebenniere) festgestellt werden, auch hier stellten 3 β -Hydroxy-5-an-Steroide bessere Substrate dar, als 3 β -Hydroxy-5-en-Steroide (Ishii-Ohba et al. 1986).

Im Rahmen der hier getesteten Steroide kristallisierte sich als wesentliches Kriterium eines Substrates das Vorhandensein einer 3β-Hydroxylgruppe heraus. Eine Akzeptanz von 3α-Hydroxysteroiden als Substrate konnte, in Übereinstimmung mit den Ergebnissen für die native Δ^5 -3 β -HSD (Finsterbusch et al. 1999), nicht festgestellt werden. Sie scheinen eine Gruppenspezifität für 3β-hydroxylierte Steroide zu besitzen. Dies war jedoch kein überraschendes Ergebnis, denn im Gegensatz zu den 3β-HSD/KSI-Enzymen der Säugetiere, welche der SDR-Familie zugeordnet werden, gehören 3α-HSDs der Säugetiere zur AKR-Familie (Penning et al. 1997, Penning 1997b). Für diese konnte zwar auch eine 3β-HSD-Aktivität nachgewiesen werden (Steckelbroeck et al. 2004), aber über den umgekehrten Fall, dass eine 3β-HSD eine wesentliche 3α-HSD-Aktivität besitzt, ließen sich keine Hinweise in der Literatur finden. Es liegt nahe, dass entsprechende 3α-Hydroxysteroid-Dehydrogenasen, welche die reversible Reaktion vom 3-Dehydroteasteron zum Typhasterol (3α -OH) und entsprechender 6-Deoxo/6-Deoxo-28-nor-Derivate katalysieren (Abb. 7), vermutlich in der AKR-Familie zu finden sein werden. Ebenfalls in Übereinstimmung mit Finsterbusch (1999) konnte eine Reduktase-Aktivität für Δ^5 -Ketosteroide beobachtet werden, für Δ^4 -Ketosteroide hingegen nicht (3.2.2).

Im Gegensatz zu den Ergebnissen von Finsterbusch (1999), welche keine Oxidation von 17 α -Hydroxypregnenolon, Cholesterol und Campesterol beobachten konnte, wurden im Rahmen dieser Arbeit auch diese Substrate akzeptiert. Eine Erklärung könnte in der Qualität und der Enzymkonzentration in den Enzympräparationen liegen. Finsterbusch (1999) verwendete für Enzymtests 500 µL eines Proteinextraktes aus Acetontrockenpulver, wohingegen hier durch heterologe Expression konzentriertere Enzympräparationen bzw. gereinigte Enzyme zum Einsatz kamen.

	Oxidation	Reduktion			
C ₁₉ -Steroide	5-Androsten-3β-ol-17-on	5-Androsten-3,17-dion			
C ₂₁ -Steroide	Pregnenolon 21-Hydroxypregnenolon 17α-Hydroxypregnenolon 5α-Pregnan-3β-ol-20-on 5β-Pregnan-3β-ol-20-on	5-Pregnen-3,20-dion 5α-Pregnan-3,20-dion 5β-Pregnan-3,20-dion			
C ₂₇ -Steroide	Cholesterol	-			
C ₂₈ -Steroide	Campesterol	-			
C ₂₉ -Steroide	28-Homoteasteron	-			

Tabelle 4-1 Akzeptierte Substrate der DI3βHSD, AtHSD1 und AtHSD2. Die Strukturformeln der Substrate sind in Abbildung 12 dargestellt.

Es lässt sich zusammenfassen, dass die DI3 β HSD, AtHSD1 und AtHSD2 ein breites Spektrum von steroidalen Substraten akzeptieren (Tab. 4-1), was allgemein für SDR-Enzyme bekannt ist (Oppermann und Maser 1996). Sie besitzen sehr ähnliche Substratspezifitäten für 3 β -Hydroxy-steroide. Es konnte eine Akzeptanz von C₁₉-, C₂₁-, C₂₇-, und C₂₈-Steroiden sowie des C₂₉-Steroids 28-Homoteasteron festgestellt werden. Auszuschließen ist auch nicht, dass eine Umsetzung von 17 β -Hydroxysteroiden möglich ist, wie es für die native Δ^5 -3 β -HSD (Finsterbusch

1999), 3 β -HSDs der Säugetiere (De Launoit et al. 1992) oder auch die 3 β /17 β -HSD aus *Comamonas testosteroni* beschrieben wird (Benach et al. 2002).

Aufgrund der breiten Substratspezifität und den beobachteten 3β-HSD-Aktivitäten für 5β-konfigurierte Steroide wären auch Ecdysteroide als Substrate denkbar. Diese konnten in Pflanzen nachgewiesen werden und sind 3β-Hydroxyl-5β-konfigurierte Steroide (Galbraith und Horn 1966, Lafont 1997).

Weiterhin ließen sich in der Literatur Hinweise auf eine Reduktion von Glucose und Fructose durch Oxidoreduktasen der AKR-Familie in *Digitalis pupurea* finden (Gavidia et al. 2002).

Auch ist nicht auszuschließen, dass eine Dehydrogenierung von Xanthoxin möglich wäre, da umgekehrt auch die AtSDR1 geringe Aktivitäten für Steroide aufwies. Allerdings ist eine Hauptfunktion der AtHSD1 und AtHSD2 während der Abscisinsäure-Biosynthese unwahrscheinlich, da Abscisinsäure-defiziente Mutanten wie *aba2* eine höhere Germinations-Rate besitzen als Wildtyp-Pflanzen (Léon-Kloosterziel et al. 1996). Bei den in dieser Arbeit isolierten Mutanten wurde jedoch eine verzögerte Keimung beobachtet.

4.3.2 Bevorzugung einer Reaktionsrichtung

Der Vergleich der K_m-Werte und katalytischen Effizienzen der AtHSD1 und AtHSD2 für die Dehydrogenierung von 5 α -Pregnan-3 β -ol-20-on und die Rückreaktion (Reduktion von 5 α -Pregnan-3,20-dion) lässt vermuten, dass die Enzyme unterschiedliche Reaktionsrichtungen präferieren. Denn für die AtHSD2 wurde der kleinste K_m-Wert mit 4 µM und die höchste katalytische Effizienz für die Dehydrogenierung von 5 α -Pregnan-3 β -ol-20-on bestimmt, wohingegen die AtHSD1 für dieses Substrat einen K_m-Wert von 160 µM und eine 25fach geringere katalytische Effizienz besitzt. Bei der Reduktion von 5 α -Pregnan-3,20-dions sind die katalytischen Effizienzen gleich (Tab. 3-3). Auch der Vergleich der katalytischen Effizienzen der Oxidation und der Reduktion der 5 β -Pregnane ergab Ähnliches (Abb. 21). Die AtHSD2 fungierte effizienter als Oxidase, die AtHSD1 als Reduktase.

In vivo ist die Richtung von reversiblen Redoxreaktionen nicht nur abhängig von der Verfügbarkeit der Substrate und jeweiliger Affinität der Enzyme zu diesen, sondern wird auch wesentlich vom Redoxstatus des umgebenden Milieus bestimmt. Die cytoplasmatische Konzentration von freien Nicotinamid-Kofaktoren (ca. 1 mM) übertrifft mehrfach die von Steroidhormonen (Agarwal und Auchus 2005). Im Cytosol von eukaryotischen Zellen der Säugetiere ist NADPH der dominierende reduzierende Kofaktor; das [NADPH]/[NAD⁺] Verhältnis beträgt ca. 100:1, und NAD⁺ ist der dominierende oxidierende Kofaktor, das [NADH]/[NAD⁺] Verhältnis beträgt ca. 1:1000 (Williamson et al. 1967, Veech et al. 1969, Steckelbroeck et al. 2004). In *A. thaliana* wird ein ähnliches [NADH]/[NAD⁺] Verhältnis der freien cytosolischen Konzentration, mit 1,2·10⁻³, beschrieben (Shen et al. 2006). Die Gesamtkonzentration des NAD(H)-Systems (ca. 0,6 mM) im Cytosol in Zellen von Spinat- und

86

Gerste-Blättern ist höher als die des NADP(H)-Systems (ca. 0,2 mM), wobei das NAD(H)-System ebenfalls hauptsächlich in oxidierter Form (NAD⁺ ca. 0,6 mM, NADH ca. 1 μ M) vorliegt (Heineke et al. 1991, Wigge et al. 1993). Das NADP(H)-System liegt überwiegend in reduzierter Form vor (NADPH ca. 0,15 mM, NADP⁺ ca. 0,05 mM).

Die AtHSD1 und AtHSD2 akzeptierten bei der Oxidationsreaktion sowohl NAD⁺ als auch NADP⁺, wobei eine leichte Präferenz von NAD⁺ festgestellt wurde (3.4.5). Bei der Reduktionsreaktion wurde NADH akzeptiert. Ein Vergleich von NADH und NADPH wurde im Rahmen dieser Arbeit nicht durchgeführt. Für die native Δ^5 -36-HSD aus *D. lanata* konnte iedoch eine leichte Präferenz von NADPH während der Reduktion gezeigt werden (Finsterbusch 1999). Unter Einbeziehung dieser Ergebnisse zeigen die Kosubstrat-Präferenzen der Δ^5 -3 β -HSD Übereinstimmungen mit den jeweiligen dominierenden oxidierenden/reduzierenden Kosubstraten. Die Reaktionsrichtung könnte auch durch gegenseitige Hemmeffekte der Kosubstrate bestimmt werden, wie es z.B. für die 3α/β(17β)-HSDs (AKR-Familie) des Menschen vermutet wird. In vitro konnte eine Hemmung der NAD⁺-abhängigen 3α-HSD-Aktivität durch geringe Konzentrationen von NADPH festgestellt werden (Steckelbroeck et al. 2004). Die NADPH-abhängige Reduktion wurde hingegen durch NAD⁺ nicht beeinflusst (Lanižnik-Rižner et al. 2003). Aus diesem Grund wird für diese Enzyme geschlussfolgert, dass in vivo bei einer intakten zellulären Redoxbalance die Reduktase-Aktivität vorherrschend sein wird (Steckelbroeck et al. 2004). Allerdings weisen Enzyme der AKR-Familie und SDR-Familie strukturelle Unterschiede auf, wobei AKR-Enzyme keine Rossmann-Falte als Kosubstrat-Bindungsstelle besitzen (siehe 1.1 und 1.2). Interessant wäre an dieser Stelle, ob sich Parallelen in der Beeinflussung der Aktivität finden lassen, z.B. durch weitere Aktivitätsmessungen der AtHSD1, AtHSD2 und DI3BHSD unter Zusatz verschiedener Kombinationen der Kosubstrate.

4.3.3 Δ^5 -3-Ketosteroid-Isomerase-Aktivität (KSI)

Die enzymatische Umwandlung von Δ^5 -3 β -Hydroxysteroiden zu Δ^4 -3-Ketosteroiden, als Teilreaktionen z.B. bei Steroidhormon-Biosynthesen des Menschen, der Kardenolid-Biosynthese und der BR-Biosynthese, erfordert zum einen die Oxidation der 3 β -Hydroxylgruppe durch eine stereospezifische NAD(P)⁺-abhängige 3 β -Hydroxy- Δ^5 -Steroid-Dehydrogenase (E.C. 1.1.1.145) und zum anderen die Umlagerung der Doppelbindung von Δ^5 nach Δ^4 durch eine Δ^5 -Steroid-Isomerase (EC 5.3.3.1) (Talalay und Wang 1955). Wie schon in der Einleitung (1.3) erwähnt, sind beim Menschen und Säugetier beide Aktivitäten auf einem Enzym lokalisiert (Thomas et al. 1988, Luu-The et al. 1989, Lachance et al. 1990), bei Bakterien hingegen auf unterschiedlichen Enzymen (Talalay und Wang 1955). Schon für die native Δ^5 -3 β -HSD aus *Digitalis lanata* stellte sich die Frage, ob sie auch eine Isomerase-Aktivität besitzt. Zwar konnte spektrophotometrisch eine Umwandlung von 5-Pregnen-3,20-dion zu Progesteron (4-Pregnen-3,20-dion) und damit eine Isomerase-Aktivität (mit ca. 6facher Geschwindigkeit verglichen mit der Dehydrogenierung) beobachtet werden, jedoch konnte eine Verunreinigung der nativen Enzympräparation mit einer Isomerase nicht ausgeschlossen werden (Finsterbusch 1999). Eine sichere Aussage war somit

nicht möglich. Im Rahmen dieser Arbeit durchgeführte Enzymassays mit dem Substrat Pregnenolon lieferten als Hauptprodukt Progesteron. 5-Pregnen-3,20-dion als Produkt war dabei nur in geringen Mengen (ca. 1-3% der Gesamtproduktkonzentration) detektierbar. Da aber auch die spontane Isomerisierung von 5-Pregnen-3,20-dion zu Progesteron bekannt ist (Thomas et al. 1995, Finsterbusch et al. 1999), wurden die Geschwindigkeiten der spontanen und enzymatischen Isomerisierung sowie der Dehydrogenierung spektrophotometrisch verglichen (3.4.10). Für die rekombinant exprimierte und gereinigte AtHSD1 wurde eine 52fach höhere Geschwindigkeit der katalysierten Isomerisierung im Vergleich zur spontanen Isomerisierung ermittelt. Die spezifische Isomerase-Aktivität war 7,2fach höher als die spezifische Dehydrogenase-Aktivität. Dieses Ergebnis zeigt Übereinstimmung mit dem von Finsterbusch (1999) ermitteltem Verhältnis dieser Aktivitäten für die Δ^5 -3β-HSD und auch den Verhältnissen. wie sie bei 3β-HSD/KSI Enzymen von Mensch und Säugetier zu finden sind (Tab. 4-2). Eine Verunreinigung des rekombinanten, gereinigten Proteins AtHSD1 mit einer Isomerase kann ausgeschlossen werden (3.3, Abb.16). Somit scheint auch die AtHSD1 ein bifunktionales Enzym darzustellen, mit 3 β -Hydroxy- Δ^5 -Steroid-Dehydrogenase- und Δ^5 -Steroid-Isomerase-Aktivitäten. Für die DI3BHSD sowie die AtHSD2 lässt sich eine solche Bifunktionalität nur vermuten, wird aber ebenfalls angenommen, da auch bei diesen Enzymen hauptsächlich Progesteron als Produkt nachweisbar war. Auch die massenspektrometrischen Daten des Produktes der Oxidation des Campesterols ließen auf eine Entstehung des Δ^4 -3-Dehydro-Produktes schließen (3.4.7).

Tabelle 4-2	Vergleic	h der	spezifischen	3β-HSD-	Aktivitäte	n und	der	Δ^{5} -Stero	id-Isomerase-
Aktivitäten	(KSI). Die e	mittelt	en und referier	ten 3β-HS	SD- und k	SI-Akt	ivitäte	en wurder	n (sofern keine
Fussnote v	orhanden) s	pektro	photometrisch	(analog	2.3.5.1)	mit d	em	Substrat	Pregenenolon
(3β-HSD) bz	w. 5-Pregne	n-3,20	dion (KSI) erm	ittelt.					

Enzym	Spezifische Aktivität (mkat kg ⁻¹)		Verhältnis	Referenz	
	3β-HSD	KSI	KSI/HSD		
AtHSD1 (Arabidopsis thaliana)	1,24	8,93	7,2	-	
Δ^{5} -3 β -HSD (Digitalis lanata)	0,63 ¹	3,89	6,2	Finsterbusch 1999	
3β-HSD/KSI (Mensch, Placenta)	2,48 2,63 ²	14,16 14,85 ³	5,7 5,6	Thomas et al. 1988	
3β-HSD/KSI (Rind, Nebenniere)	1,25 ²	8,97	7,2	Rutherfurd et al. 1991	
3β-HSD/KSI (Ratte, Nebenniere)	0,63 ²	7,73	12,3	Ishii-Ohba et al. 1986	
Δ^5 -3β-HSD (<i>C. testosteroni</i>)	116000- 1500000 ³	-	-	Marcus und Talalay 1956	
Isomerase (C. testosteroni)	-	120500^4 1052000^4	-	Talalay und Wang 1955 Kawahara et al. 1962	

¹Bestimmung mit entsprechendem Standardenzymtest und GC/MS (analog 2.3.5.2)

² Substrat 5-Androsten-3 β -ol-17-on (Dehydroepiandrosteron, DHEA)

³ Substrat Testosteron

⁴ Substrat 5-Androsten-3,17-dion

Diskussion

Wie man den spezifischen Aktivitäten in Tabelle 4-2 entnehmen kann, ist bei der AtHSD1, wie auch bei den anderen aufgeführten Enzymen, die Dehydrogenase-Reaktion langsamer als die Isomerase-Reaktion. Aufgrund dessen scheint die Dehydrogenierung den geschwindigkeitsbestimmenden Schritt darzustellen (Thomas et al. 1988, Lachance et al. 1990). Ein Vergleich mit einer bifunktionalen pflanzlichen Dehydrogenase/Isomerase ist nicht möglich, da bisher keine Publikation existiert. Weitere Übereinstimmungen lassen sich für die Irreversibilität der Isomerase-Reaktion finden (Thomas et al. 1988, Lachance et al. 1990). Während die Dehydrogenase-Reaktion reversibel ist, also eine Reduktion von Δ^5 -3-Ketosteroiden möglich ist, scheint auch bei der AtHSD1 die Isomerase-Reaktion irreversibel zu sein, da Δ^4 -3-Ketosteroide nicht reduziert wurden.

4.3.3.1 Beziehungen zwischen Enzym-Struktur und Isomerase-Aktivität

Im Gegensatz zu den in dieser Arbeit isolierten pflanzlichen SDR-Enzymen, die von verschiedenen Programmen überwiegend als cytosolische Enzyme prognostiziert wurden, handelt es sich, wie zuvor schon beschrieben, bei den humanen 3β-HSD/KSI Enzymen um membrangebundene SDRs mit 372/371 AS (Penning 1997b, Simard et al. 2005). Für diese Enzyme existiert die Hypothese, dass das reduzierte Kosubstrat (NADH) eine Konformationsänderung des Enzyms rund um die Doppelbindung des 3-Oxo- Δ^5 -Produktes zu induzieren vermag und so die Ketosteroid-Isomerase-Aktivität (KSI) ermöglicht (Thomas et al. 1995, Thomas et al. 2003). Ishii-Ohba et al. (1986) konnten auch mit 100 µM NAD⁺ eine ähnlich hohe Isomerase-Aktivität messen, wie mit NADH. In der vorliegenden Arbeit konnte unter Zusatz von 50 µM NAD⁺ (7fache des K_m-Wertes der AtHSD1, Tab. 3-5) eine Isomerase-Aktivität nachgewiesen werden.

Mittels Deletionsmutanten konnte eine katalytische Rolle der Aminosäuren Tyr253 (Thomas et al. 1995), Asp257 und Asp258 (Nummerierung bezogen auf die humane 3β-HSD/KSI) nachgewiesen werden (Thomas et al. 2003). Abbildung A-5 im Anhang zeigt ein Alignment der Aminosäuresequenzen der 3β-HSD/KSI Typ I des Menschen und der DI3βHSD, AtHSD1 und AtHSD2. Asp257 ist bei jedem der Enzyme vorhanden. Asp258 ist in der Sequenz der AtHSD2 vorhanden, in der DI3βHSD und AtHSD1 ist an dieser Position anstelle der Asparaginsäure, die ebenfalls mit einer Carboxylgruppe in der Seitenkette substituierte, Glutaminsäure zu finden. Tyr253 lässt sich in dieser Position bei keinem der drei Enzyme finden, jedoch ist bei allen ein Tyrosin 4 Positionen abwärts von Asp257 vorhanden. Kinetische Analysen mit heterolog exprimierten Deletionsmutanten der AtHSD1/2 bzw. DI3βHSD könnten Aufschluss über die Struktur-Funktionsbeziehungen des pflanzlichen 3β-HSD/KSI Enzyms geben.

4.3.4 Vergleich von kinetischen Parametern der rekombinanten Enzyme

Es wurden zahlreiche enzymkinetische Messungen mit verschiedenen Substraten durchgeführt (Tab. 3-3). Der Konzentrationsbereich der Messungen erstreckte sich bis zur Substratsättigung. Die ermittelten K_m-Werte der DI3 β HSD, AtHSD1 und AtHSD2 liegen in einem Bereich zwischen 4 bis 400 μ M. In der Literatur zu findende K_m-Werte von bekannten 3 β -Hydroxysteroid-Dehydrogenasen des Menschen, der Prokaryonten und auch der erst kürzlich beschriebenen 3 β HSD/D1 und D2 aus *A. thaliana* liegen in einem vergleichbaren Bereich. Sie sind in Tabelle 4-3 gegenübergestellt. Beim Vergleich der rekombinanten DI3 β HSD und der nativen Δ^5 -3 β -HSD sind die ermittelten K_m-Werte sehr ähnlich, die maximalen Reaktionsgeschwindigkeiten weisen größere Unterschiede auf. Die Ursache hierfür könnte einerseits in der schon erwähnten Differenz der Reinheit und Konzentration der Enzympräparation liegen, andererseits könnte die Aktivität durch den Histidin-Anhang beeinflusst sein. Es sei auch darauf hingewiesen, dass die berechneten V_{max}-Werte von der jeweiligen Kalibrierung des Produktes abhängig sind. Diese sind bei Finsterbusch (1999) nicht angegeben.

Enzym	Substrat	Κ _m μΜ	V _{max} µkat/kg	Referenz
AtHSD1 (A.thaliana)	Pregnenolon 5α-Pregnan-3,20-dion Campesterol	50 30 306	239 1441 82	Tab. 3-3
AtHSD2 (A. thaliana)	Pregnenolon 5α-Pregnan-3β-ol-20-on Campesterol	43 4,2 87	109 624 26	Tab. 3-3
DI3βHSD (D. lanata)	Pregnenolon 5β-Pregnan-3β-ol-20-on 5α-Pregnan-3β-ol-20-on Campesterol	37 147 69 239	143 3262 1181 19	Tab. 3-3
∆ ⁵ -3β-HSD (D. lanata)	Pregnenolon 5β-Pregnan-3β-ol-20-on 5α-Pregnan-3β-ol-20-on	20 110 120	770 610 690	Finsterbusch et al. 1999
3β-HSD/KSI Typ I (Mensch, Placenta)	Pregnenolon Dehydroepiandrosteron	1,9 3,7	543 ¹ 717 ¹	Thomas et al. 1988 Thomas et al. 2001
3β-HSD/KSI Typ I I (Mensch, Nebenniere)	Dehydroepiandrosteron	47	1347 ¹	Thomas et al. 2001
3β/17β-HSD (C. testosteroni)	Dehydroepiandrosteron 5α- Dihydrotestosteron	11,4 16,1	-	Benach et al. 2002 Oppermann et al. 1997
3β-HSD/D1 3β-HSD/D2 (A. thaliana)	4α-Carboxy-cholest-7-en- 3β-ol	134 87	24 ² 18 ²	Rahier et al. 2006
DET2 (5α-Reduktase, <i>A. thaliana</i>)	Progesteron Testosteron	0,4 2,5	8,3 ¹ 3,3 ¹	Li et al. 1997a

Tabelle 4-3 Vergleich von K_m und V_{max} verschiedener Substrate mit bekannten 3 β -HSDs und Enzymen der BR-Biosynthese.

¹ Diese V_{max}-Werte waren in nmol·min⁻¹·mg⁻¹ angegeben. Sie wurden mit dem Faktor 0,06⁻¹ in µkat/kg umgerechnet.

² Diese V_{max} -Werte waren in nmol·mg⁻¹·h⁻¹ angegeben. Sie wurden mit dem Faktor 3,6⁻¹ in µkat/kg umgerechnet.

Die für das Substrat Campesterol ermittelten K_m -Werte (87-306 μ M) sind ein bis zwei Zehnerpotenzen größer als apparente Werte die sich für die bekannten BR-Biosynthese-Enzyme

DET2 (Tab. 4-3) oder auch CYP90C1/CYP90D1 (C-23-Hydroxylasen), welche K_m-Werte für verschiedene Substrate zwischen 0,7 und 36 μ M besitzen (Ohnishi et al. 2006), finden lassen. Allerdings wurden die kinetischen Messungen der DET2 mit den natürlichen Substraten der 5 α -Steroidreduktase des Menschen nur in einem Konzentrationsbereich zwischen 0,2 und 2 μ M durchgeführt; die Messungen der C-23-Hydroxylasen in einem Bereich von 0,5 – 48 μ M. Die Auswertung wurde von den Autoren mit der linearen Regression nach Lineweaver-Burk (d.h. einer sehr fehleranfälligen Methode, Lineweaver und Burk 1934) vorgenommen. Die maximalen Geschwindigkeiten für das Substrat Campesterol sind, obwohl ein Vergleich nur begrenzt möglich ist, in einer gleichen Größenordnung wie die referierten der DET2 und auch der 3 β -HSD/D1/2 aus *A. thaliana*.

Für das Substrat 28-Homoteasteron ließen sich K_m-Werte für die AtHSD1 und AtHSD2 abschätzen und liegen vermutlich zwischen 50 bis 100 μ M (Abb. 25). Sowohl zu Campesterol als auch zu 28-Homoteasteron besitzt die AtHSD2 eine höhere Substrataffinität als die AtHSD1 und DI3 β HSD.

Mittels spektrophotometrischer Messungen wurden für die AtHSD1 die K_m-Werte des Kosubstrates der Oxidation NAD⁺ mit 7,1 μ M und des Kosubstrates der Reduktion NADH mit 20,9 μ M ermittelt. Diese sind vergleichbar mit den ermittelten Werten der Δ^5 -3 β -HSD aus *D. lanata* mit 32 μ M für NAD⁺ (Finsterbusch 1999), der 3 β -HSD/KSI des Menschen mit 34 μ M für NAD⁺ (Thomas et al. 2001) sowie der 3 β -HSD/D1 und D2 aus *A. thaliana* mit 8 μ M bzw. 3,1 μ M für NAD⁺ (Rahier et al. 2006). Ein K_m-Wert von 3 β -HSDs für das Kosubstrat NADH ließ sich in der Literatur nicht finden.

4.3.5 Verfügbarkeit der Substrate in vivo

Da über die Existenz von Pregnanen oder Pregnenen in *A. thaliana* bisher nichts bekannt ist, werden im folgenden Abschnitt die Phytosterole und BR-Biosynthese-Intermediate Teasteron sowie entsprechende 6-Deoxo- und 6-Deoxo-28-nor-Derivate als natürliche Substrate der AtHSD1 und AtHSD2 diskutiert.

Sterole haben unterschiedliche essentielle Funktionen in allen eukaryotischen Zellen. Pflanzliche Sterole wie Campesterol, sind nicht nur biosynthetische Vorstufen der Brassinosteroide, sondern sind als so genannte Bulk-Sterole integrale Membrankomponenten, die zusammen mit Phospholipiden eine wesentliche Rolle für die Fluidität und Permeabilität der Membranen spielen und indirekt die Aktivität von membranassoziierten Proteinen, Enzymen, Ionenkanälen und Komponenten von Signaltransduktionswegen beeinflussen (Hartmann 1998). Sie können als freie Sterole mit einer freien 3β-Hydroxylgruppe, als Sterylester oder Sterylglykoside vorliegen (Piironen et al. 2000, Benveniste 2004). In *Arabidopsis thaliana* ist bezogen auf den Gesamtsterolgehalt Sitosterol mit 50% das dominierende Phytosterol, gefolgt von Campesterol mit 20% und Cholesterol mit 10% (Fujioka et al. 1997a, Patterson et al. 1993). Die AtHSD1 und

AtHSD2 akzeptierten neben Campesterol auch Cholesterol als Substrat (3.4.7). Zur Umsetzung von Sitosterol konnte aufgrund der Verunreinigung des Substrates keine eindeutige Aussage getroffen werden. Eine Akzeptanz von Stigmasterol konnte nicht beobachtet werden (3.4.7). Sowohl Campesterol als auch Cholesterol und Sitosterol werden als Vorstufen von Brassinosteroiden in der Literatur diskutiert (Fujioka und Sakurai 1997b, Nakajima et al. 2002, Fujita et al. 2006, Takatsuto et al. 1999). Der Gehalt an Campesterol in WT-Pflanzen beträgt durchschnittlich 40 μ g/g Frischmasse (entspricht 100 nmol/g, ca. 100 μ M) (Shimada et al. 2003, Fujioka et al. 1997a). Welcher Anteil des Campesterols frei verfügbar im Cytosol vorliegt ist nicht bekannt. Der K_m-Wert der AtHSD2 für Campesterol liegt mit 87 μ M im Bereich des Gesamtgehaltes des Campesterols.

Der Gehalt der BR-Biosynthese-Intermediate Teasteron und 6-Deoxoteasteron (ca. 0,3 ng/g) ist um ein Vielfaches geringer, wobei die 6-Deoxo-Derivate dominieren (Shimada et al. 2003). Auch bei diesen wird die Möglichkeit der Konjugation über die 3 β -Hydroxylgruppe beschrieben. So z. B. liegt in Zellsuspensionskulturen von *L. esculentum* der überwiegende Teil des 24-*epi*-Teasterons (3 β) vorwiegend als Carbohydrat-Konjugat bzw. glykosidiert vor, wohingegen eine Konjugation des 3 α -Epimers 24-*epi*-Thyphasterol (3 α) nicht beobachtet wurde (Kolbe et al. 1997 und 1998). Die Möglichkeit der 3 β -Konjugation beeinflusst zum einen das Verhältnis zwischen dem 3 β -Epimer und dem 3 α -Epimer - innerhalb dieser reversiblen Epimerisierung - und auch die Verfügbarkeit der Substrate der 3 β -Hydroxysteroid-Dehydrogenasen.

4.4 Expression der AtHSD1 und AtHSD2 in vivo

Die Genexpression der *AtHSD1* und *AtHSD2* wurde in verschiedenen Pflanzenorganen untersucht (3.5). Beide Gene werden ubiquitär exprimiert, wenn auch Transkripte der *AtHSD1* nur in sehr geringen Mengen in den Schoten, Blüten, Blättern und Stängeln nachweisbar waren. Sie besitzen beide die gleiche organspezifische Expression, wobei die *AtHSD2* insgesamt eine höhere Expression in allen untersuchten Organen aufweist. Am Auffälligsten war, dass sowohl für die *AtHSD1* als auch für die *AtHSD2* die höchsten Transkriptmengen in den Wurzeln nachweisbar waren, was mit Ergebnissen von cDNA Microarray Analysen im Einklang stand. Dies deutet auf ähnliche physiologische Funktionen hin.

Shimada et al. (2003) untersuchten sowohl die organspezifische Expression der BR-Biosynthese Gene *BR6ox1, BR6ox2, CPD, DWF4, ROT3* und *CYP90D* (Funktionen siehe 1.4 und Abb. 7), sowie *BAS1* (putative 26-Hydroxylase, inaktiviert BRs) und *BRI1* (Komponente des BR-Rezeptors) als auch die organspezifische Verteilung endogener Brassinosteroide in *A. thaliana*. Sie konnten endogene Brassinosteroide bzw. Biosynthese-Intermediate und eine Expression der genannten Gene in allen Organen detektieren, was eine ubiquitäre BR-Biosynthese in allen Organen vermuten lässt. Beim Vergleich von Wurzel und Spross, fanden sie eine höhere Expression von *BR6ox1, ROT3, CYP90D* und *BAS1* in den Wurzeln. Die höchste Expression in der Wurzel ist für *ROT3* (Hydroxylierung von Typhasterol zu Castasteron, Abb. 7) beschrieben.

Außerdem enthielten die Wurzeln höhere Anteile der mittleren Biosynthese-Intermediate 6-Deoxocathasteron, 6-Deoxoteasteron und 6-Deoxotyphasterol. Im Gegensatz dazu war der Gehalt an späteren Biosynthese-Produkten (6-Deoxocastasteron und Castasteron) in den Sprossen höher. Übereinstimmende Ergebnisse fanden Bancos et al. (2002) in *A. thaliana* und Yokota et al. (2001) in *L. esculentum*. Auch hier waren der Anteil mittlerer BR-Biosynthese-Intermediate (6-Deoxo-28-nor-Derivate und 6-Deoxo-Derivate von Cathasteron, Teasteron, 3-Dehydro-teasteron und Typhasterol) in den Wurzeln höher als in den Sprossen und spätere Produkte (Castasteron und entsprechende 6-Deoxo-(28-nor)-Derivate) kamen in größeren Mengen in den Sprossen vor. Dies lässt die Hypothese zu, dass die BR-Biosynthese zwar in allen Organen stattfindet, in den Wurzeln aber aktiver ist (Shimada et al. 2003).

Diese Ergebnisse unterstützen die Vermutung, dass die AtHSD1 und AtHSD2 an der BR-Biosynthese beteiligt sein könnten. Denn für beide Gene konnte eine ubiquitäre Expression mit hohen Transkriptmengen in der Wurzel detektiert werden und für beide Enzyme konnte eine Umsetzung des mittleren BR-Analogon 28-Homoteasteron gezeigt werden (3.4.8).

Die Δ^5 -3 β -HSD aus *Digitalis lanata* zeigte ebenfalls eine bevorzugte Expression in der Wurzel (Lindemann, persönliche Mitteilung Dr. P. Lindemann).

Im Zusammenhang mit den Rettungsversuchen unter Zusatz von 1 nM und 10 nM 24-*epi*-Brassinolid im Medium, wurde mittels RT-PCR ein möglicher Einfluss des exogen applizierten 24-*epi*-Brassinolids auf die Transkription beider Gene analysiert. Hierbei wurde nur eine geringe Reduzierung der nachweisbaren Transkriptmengen in WT-Pflanzen festgestellt (Abb. 31). Für vier BR-Biosynthese-Gene (*DWF4*, *CPD*, *BR6ox1* und *ROT3*) wird eine reduzierte Expression nach Behandlung mit 0,1 μ M Brassinolid beschrieben, während *DET2* (5 α -Steroid-Dehydrogenase) keine veränderte Expression zeigt (Mathur et al. 1998, Tanaka et al. 2005). Dies sollte jedoch lediglich als Hinweis gewertet werden, da sich die vorliegende Arbeit nicht

ausdrücklich der Regulation der Genexpression widmete. Es sollten weitere quantifizierende Analysen erfolgen und eine mögliche zeitliche Abhängigkeit untersucht werden.

4.5 Charakterisierung der T-DNA-Mutanten *hsd1-1*, *hsd1-2* und *hsd2-1*

Da für die AtHSD1 und AtHSD2 eine Umsetzung der BR-Prekursor Campesterol und 28-Homoteasteron gezeigt werden konnte, wurde eine Beteiligung beider Enzyme an der Brassinosteroid-Biosynthese vermutet. Die essentielle Rolle von Brassinosteroiden während des Pflanzenwachstums und der Entwicklung konnte durch BR-defiziente (z. Bsp. det2, cpd, dwf4) oder BR-insensitive (bri1, bes1) Mutanten, welche Defekte in der BR-Biosynthese oder der BR-Signaltransduktion aufweisen, gezeigt werden. Diese Mutanten besitzen meist einen charakteristischen dwarf- oder semidwarf-Phänotyp, der sich bei Licht-kultivierten Pflanzen z. B. in einer kleinen kompakten Statur, reduzierter Elongation des Sprosses, dunkelgrünen runden Blättern, einem verlängertem Lebenszyklus bzw. einer verlängerten vegetativen Wachstumsphase, reduzierter apikaler Dominanz und reduzierter Fertilität äußert (Chory et al.

1991, Fujioka et al. 1997a, Azpiroz et al. 1998, Choe et al. 1999a und 2002). BR-defiziente Mutanten lassen sich durch exogene Applikation von Brassinolid retten (Kauschmann et al. 1996, Li et al. 1996, Szekeres et al. 1996). Eine Gegenüberstellung verschiedener BR-dwarf Mutanten befindet sich in Clouse (2002).

Um die Hypothese einer Beteiligung der AtHSD1 und AtHSD2 an der BR-Biosynthese zu bestätigen, wurden die T-DNA-Insertionsmutanten *hsd1-1*, *hsd1-2* und *hsd2-1* isoliert (3.6) und mit ihrer phänotypischen Charakterisierung begonnen. Während die Mutante *hsd1-1* der sonst insgesamt geringer exprimierten *AtHSD1*, bis auf eine reduzierte Elongation der Wurzel (3.6.3), keinen auffälligen Phänotyp im Vergleich zum WT besitzt, wurde bei den Mutanten *hsd1-2* und *hsd2-1* eine verzögerte Keimung und ein verlangsamtes Wachstum bzw. ein verlängerter Lebenszyklus beobachtet. Der Keimungsprozess wird von verschiedenen Phytohormonen beeinflusst. So spielen Abscisinsäure (ABA) und Giberelline eine antagonistische Rolle. Abscisinsäure induziert die Samenruhe während der embryonalen Reifung, wohingegen Giberelline, wie auch Ethylen die Germination stimulieren (Koornneef und Karssen 1994). Für Brassinosteroide wird ebenfalls eine ABA-antagonisierende Rolle beschrieben, in dem sie zur Stimulierung der Samenkeimung beitragen (Steber und McCourt 2001).

Erstaunlicherweise ist die hsd1-2 nur eine "knock-down"-Mutante, bei der die Expression wahrscheinlich beider Gene lediglich reduziert ist (Abb. 31), und bei der hsd2-1 ist ein heterozygoter Genotyp für eine phänotypische Unterscheidbarkeit vom WT ausreichend. Homozygote hsd2-1 Pflanzen wiesen einen noch deutlicheren Phänotyp auf und waren infertil. Während also bei der AtHSD2 schon die Reduktion der Expression zu einem eindeutigen Phänotyp führt, bewirkt der "knock-out" der AtHSD1 in der Mutante hsd1-1 keine wesentlichen phänotypischen Veränderungen. Unter Berücksichtung der Ergebnisse der Transkriptionsanalyse (3.5), die eine stärkere Expression der AtHSD2 ergab, lässt sich vermuten, dass die AtHSD2 von größerer funktionaler Bedeutung ist und die fehlende Expression der AtHSD1 in der Mutante hsd1-1 durch die AtHSD2 kompensiert werden kann. Ähnliche Ergebnisse wurden für CYP85A1 und CYP85A2 (BR-C-6-Oxidasen), welche 83% Identität besitzen und deren Proteinprodukte unterschiedliche Substratspezifitäten für C227- und C28-BRs besitzen, erhalten. Während die cyp85a1 Null-Mutante keine signifikanten Veränderungen in der Entwicklung zeigt, ist die cyp85a2 Mutante durch einen milden abnormalen Phänotyp gekennzeichnet. Die Autoren schlussfolgern, dass das CYP85A2 eine effizientere BR-C-6-Oxidase und von größerer Bedeutung für Wachstum und Differenzierung ist (Kim et al. 2005b). Auch für DET2, deren Expressionsverlust zu einer 90% igen Verminderung der Aktivität in vivo führt, wird die Existenz einer weiteren 5α-Steroid-Isomerase mit geringerer funktionaler Bedeutung in der BR-Biosynthese angenommen (Fujioka et al. 1997a).

Obwohl die beobachteten Erscheinungsbilder der in dieser Arbeit isolierten Mutanten keinen charakteristischen dwarf-Phänotyp besitzen, schließt dies eine Rolle in der BR-Biosynthese nicht aus. Ohnishi et al. (2006) charakterisierten T-DNA-Mutanten der Gene *CYP90C1* und *CYP90D1*,

für welche von den Autoren eine Funktion als C-23-Hydroxylasen beschrieben wird (u.a. Umsetzung von Cathasterone und 6-Deoxocathasterone zu Teasteron und 6-Deoxoteasterone). Im Gegensatz zu den schwachen Phänotypen der *cyp90c1* und *cyp90d1*, wird ein eindeutiger dwarf-Phänotyp der Doppelmutante *cyp90c1 cyp90d1* beschrieben. Ähnliche Ergebnisse lieferte der Vergleich der Phänotypen der Mutanten *cyp85a1* und *cyp85a2* mit der Doppelmutante *cyp85a1 cyp85a2* (Nomura et al. 2005). Vermutlich könnte auch eine *hsd1 hsd2* Doppelmutante, sowie Rettungsversuche mit entsprechenden BR-Intermediaten weiteren Aufschluss bzw. den Beweis der Beteiligung der *AtHSD2* und der *AtHSD1* an der BR-Biosynthese geben. Denkbar ist auch das Vorhandensein weiterer Hydroxysteroid-Dehydrogenasen, wie z. Bsp. At2g47120 und At2g47150, welche ebenfalls charakteristische Motive von SDR-Enzymen aufweisen (Abb. 9) und zusammen mit der *AtHSD1* und *AtHSD2* hintereinander auf Chromosom zwei liegen (Abb. 30).

4.5.1 Wurzellängen und der Effekt des 24-epi-Brassinolids auf die Wurzelelongation

Der Vergleich der Elongation der Wurzeln der Mutanten *hsd1-1*, *hsd1-2* und *hsd2-1* mit dem WT ergab für die *hsd1-1* und *hsd2-1* ein reduziertes Wurzelwachstum (Abb. 33). Da diese phänotypische Veränderung durch zahlreiche Defekte oder Einflüsse ausgelöst werden kann, wurde der Effekt von 24-*epi*-Brassinolid auf die Elongation der Wurzeln der Mutanten, für welche homozygote Pflanzen zur Verfügung standen, untersucht und mit dem WT verglichen. 24-*epi*-Brassinolid (EBR) und auch 24-*epi*-Castasteron (ECS) können abhängig von der Konzentration das Wurzelwachstum stimulieren bzw. die Wurzelelongation von BR-Biosynthese-Mutanten normalisieren (Clouse und Sasse 1998, Müssig et al. 2003).

Hierbei konnte beobachtet werden, dass der Effekt des exogen applizierten 24-epi-Brassinolids abhängig von der Konzentration war und auch das Alter der Keimlinge eine Rolle spielte (Abb. 33). Dies zeigt Übereinstimmungen mit Ergebnissen von Müssig et al. (2003). Sie stellten ebenfalls in Abhängigkeit von der Konzentration einen positiven oder negativen Effekt von Brassinosteroiden auf das Wurzelwachstum fest. Niedrige Konzentrationen von exogen applizierten Brassinosteroiden fördern das Wurzelwachstum des WT und normalisieren die Wurzellänge von BR-defizienten Mutanten, wohingegen höhere Konzentrationen einen inhibitorischen Effekt besitzen. Der Schwellenwert dieser Konzentrationen ist abhängig von der biologischen Aktivität der Brassinosteroide. Außerdem ist dieser Schwellenwert in den BRdefizienten Mutanten dwf1-6 (dwarf1-6) und cbb3 (cabbage3) höher. Sie tolerieren, wahrscheinlich aufgrund des geringeren Gehalts an endogenen Brassinosteroiden, höhere Konzentrationen, bis ein hemmender Effekt eintritt (Müssig et al. 2003). Während das Wurzelwachstum des WT und der hsd1-2 nach 10 Tagen durch 10 nM EBR eindeutig inhibiert wurde, ist bei der hsd1-1 noch ein positiver Effekt vorhanden (Abb. 33). Nach 20 Tagen führte schon 1 nM EBR zu einer Inhibitierung beim WT, wohingegen das Wurzelwachstum der hsd1-1 noch stimuliert wurde. Müssig et al. (2003) stellten bei WT-Pflanzen eine Inhibitierung ab einer Konzentration \ge 1 nM nach 20 Tagen fest, wohingegen 1 nM noch zu einer Stimulierung in der BR-defizienten Mutante *cbb3* führte und erst \ge 10 nM ein negativer Effekt auftrat.

Dies deutet darauf hin, dass es sich bei der *hsd1-1* um eine BR-defiziente Mutante handeln könnte, da sie ebenso wie *cbb3* höhere EBR-Konzentrationen toleriert, bis eine Hemmung des Wurzelwachstums eintrat und die aufgrund der hauptsächlichen Expression der *AtHSD1* in der Wurzel, nur phänotypische Veränderungen im Wurzelwachstum zeigt.

Bei der Mutante *hsd1-2* waren keine Veränderungen der Wurzellänge zu beobachten, obwohl beide Gene eine reduzierte Expression zeigten. Der eindeutige oberirdische Phänotyp der *hsd1-2* muss demzufolge hauptsächlich auf der reduzierten Expression der *AtHSD2* resultieren. In der Wurzel hingegen scheinen die Transkriptmengen der *AtHSD1* und *AtHSD2* für eine normale Elongation noch ausreichend zu sein. Weiterführend wären quantitative Analysen des endogenen Brassinosteroid- bzw. Intermediatgehaltes erforderlich.

4.6 Beteiligung der 3β-HSD Enzyme an der Brassinosteroid-Biosynthese

Die Notwendigkeit der Existenz von Enzymen welche die Fähigkeit besitzen die 3β -Hydroxyl- Δ^5 -Struktur des Campesterols in eine 3-Oxo- Δ^4 -Struktur zu überführen wurde schon von Fujioka et al. (1997a) beschrieben, da nur 3-Oxo- Δ^4 -Steroide direkte Substrate von DET2 (5 α -Steroid-Reduktase) sind und *in vitro* 3β -Hydroxyl- Δ^5 -Steroide nicht als Substrate erkannt werden (Li et al. 1997a). Die Autoren vermuten, dass ein orthologes Enzym zur 3β HSD/KSI des Menschen in *A. thaliana* existieren muss, und die notwendige Dehydrogenierung und Isomerisierung katalysiert (Fujioka et al. 1997a). Im *Arabidopsis*-Genom lassen sich auch entsprechende Gene finden, die hohe Homologien (ca. 50%) zu den 3β -HSD/KSI Genen des Menschen besitzen, so z. B. At1g47290, At2g26260, At2g33630, At2g43420. T-DNA "knock-out" Mutanten dieser Gene zeigen keinen BR-dwarf Phänotyp (Choe 2006). Zwei dieser Gene kodieren die schon erwähnten At3 β HSD/D1 (At1g47290) und At3 β HSD/D2 (At2g26260), für welche eine Funktion in der frühen Sterol-Biosynthese vermutet wird (Rahier et al. 2006).

In der hier vorliegenden Arbeit wurden die AtHSD1 und AtHSD2 als homologe 3 β -Hydroxysteroid-Dehydrogenasen mit hohen Identitäten der Aminosäuresequenz (ca. 60 %) zu der pflanzlichen Δ^5 -3 β -HSD aus *D. lanata* isoliert. Sowohl die DI3 β HSD als auch die AtHSD1 und AtHSD2 akzeptierten Campesterol und Cholesterol als Substrat. GC/MS-Analysen wiesen darauf hin, dass hauptsächlich die isomerisierten 3-Oxo- Δ^4 -Produkte entstanden. Für die AtHSD1 konnte eine Δ^5 - Δ^4 -Isomerase-Aktivität nachgewiesen werden. Die in der vorliegenden Arbeit isolierten und schon beschriebenen T-DNA-Mutanten zeigen z. T. ein retardiertes Wachstum und/oder eine reduzierte Elongation der Wurzel. Diese Phänotypen lassen sich unter Zusatz von 24-*epi*-Brassinolid normalisieren. Sie besitzen aber keinen charakteristischen dwarf-Phänotyp, was in der gegenseitigen Kompensation oder der Existenz redundanter Gene begründet sein könnte.

96

Die *sax1*-Mutante (hyper<u>s</u>ensitiv zu <u>A</u>bscisinsäure und Au<u>x</u>in), welche aufgrund der Hypersensitivität zu Auxin isoliert wurde, besitzt einen dwarf-Phänotyp und kann durch exogen applizierte BR-Intermediate gerettet werden (Ephritikhine et al. 1999a). Aufgrund von Fütterungsversuchen wurde ein Defekt in der Oxidation und Isomerisierung von 3 β -Hydroxy- Δ^5 -Prekursorn zu 3-Keto- Δ^4 -Steroiden während des frühen C-22 Oxidationsweges vermutet (Ephritikhine et al. 1999b). Der genaue Genlocus wurde bisher jedoch nicht identifiziert; eine Klonierung des Genes fand ebenfalls noch nicht statt.

Weiterhin ist eine funktionale Beteiligung bei der Epimerisierung der 3β -Hydroxylgruppe des Teasteron (bzw. 6-Deoxo- und 6-Deoxo-28-norteasterons) zur 3α -Hydroxylgruppe des Typhasterols (bzw. 6-Deoxo- und 6-Deoxo-28-nortyphasterols) denkbar. Dass solche Epimerisierungen, wie sie auch in anderen Steroid-Biosynthesen zu finden sind, in Pflanzen über 3-Dehydro-Intermediate ablaufen und reversibel sind wurde mehrfach beschrieben (Suzuki et al. 1994, Hai et al. 1996, Finsterbusch et al. 1999), so auch in *A. thaliana* (Noguchi et al. 2000, Stündl und Schneider 2001). In dieser Arbeit konnte eine Dehydrogenierung der 3β -Hydroxylgruppe des 28-Homoteasterons durch die AtHSD1, AtHSD2 und DI3 β HSD *in vitro* beobachtet werden. Interessant wäre an dieser Stelle ob die AtHSD1 und AtHSD2 auch bezüglich dieser Brassinosteroide unterschiedliche Reaktionsrichtungen bevorzugen, wie es hier für die 5α -Pregnane beobachtet wurde.

Die meisten der identifizierten Brassinosteroid-Biosynthese-Reaktionen werden von Cytochrom P450-Monooxygenasen katalysiert, welche aufgrund des Mechanismus irreversibel sind (Agarwal und Auchus 2005). Auch für die Reduzierung der Δ^4 -Doppelbindung durch DET2 ist keine Reversibilität beschrieben. Die reversiblen Dehydrogenierungen/Reduzierungen könnten unter Berücksichtung der stereoselektiven Glykosidierung der 3 β -Hydroxylgruppe (Kolbe et al. 1998) einen Einfluss auf die quantitative Regulation der BR-Biosynthese haben.

Wie in der Einleitung schon erwähnt, wird für CYP90D1 aus *A. thaliana* und auch CYP90D2 aus *Oryza sativa* eine katalytische Funktion für die Umsetzung von Teasteron zu 3-Dehydroteasteron vermutet (Kim et al. 2005a, Hong et al. 2003). Eine Beteiligung an der Dehydrogenierung innnerhalb dieser Reaktionsabfolge erscheint allerdings abwegig, da es sich um Cytochrom P450-Enzyme handelt, die in der Regel unter Einführung eines Sauerstoff-Atoms das Substrat oxidieren. Für diese Enzyme könnte die Beteiligung an einem alternativen Biosyntheseweg - über ein 2,3-Epoxy-Derivat - in Betracht gezogen werden, wie er z.B. in *Secale cereale* beschrieben wird (Antonchick et al. 2003 und 2005).

Auch die als Ausgangspunkt dieser Arbeit dienende Δ^5 -3 β -HSD aus *Digitalis lanata* (Finsterbusch 1999) und Dl3 β HSD zeigten katalytische Aktivitäten für 5 α -Pregnane und Campesterol. Dies eröffnet die Frage, ob neben der Beteiligung an der Herzglykosid-Biosynthese auch für dieses Enzym - oder Isoformen dieses Enzyms - eine weitere physiologische Funktion innerhalb der Brassinosteroid-Biosynthese relevant sein könnte.

4.7 Ansatzpunkte für weiterführende Untersuchungen

Die kodierenden Sequenzen der AtHSD1, AtHSD2 und DI3βHSD stehen in Expressionsplasmiden zur Verfügung und lassen sich ohne größere Probleme über den Histidin-Anhang reinigen. Damit könnten die Kristallisationsversuche, wie sie schon für die DI3βHSD begonnen wurden, fortgesetzt werden.

Weiterführende Arbeiten sollten sich der genaueren Untersuchung der metabolischen Funktionen und der katalytischen Fähigkeiten der AtHSD1 und AtHSD2 widmen, da die bisherigen Experimente lediglich Hinweise auf eine Funktion in der Brassinosteroid-Biosynthese geben. Hilfreich wären an dieser Stelle weitere Aktivitätstests mit in Frage kommenden Substraten wie 6-Deoxoteasteron und 6-Deoxo-28-norteasteron, welche bessere Substrate darstellen könnten und in *A. thaliana* dominierender sind als das 6-Oxo-Derivat (Choe et al. 1999b und 2000).

Interessant wären Aktivitätsanalysen hinsichtlich Hemmbarkeit und Bevorzugung der Reaktionsrichtung in Anwesenheit unterschiedlicher Kombinationen der Kosubstrate.

Deletionsmutanten könnten einen Aufschluss über die Struktur-Funktionsbeziehungen der Isomerase-Aktivität geben. Diese sollte in analogen Experimenten noch einmal explizit für die AtHSD2 und auch DI3βHSD nachgewiesen werden.

Die isolierten T-DNA-Mutanten *hsd1-1*, *hsd1-2* und *hsd2-1* sollten phänotypisch und molekularbiologisch weiter charakterisiert werden. Um unerwünschte Nebeneffekte im genetischen Hintergrund ausschließen zu können, sollte zunächst überprüft werden, ob eine singuläre T-DNA-Insertion vorliegt, z.B. durch Analysen der genomischen DNA mittels Southern-Plot und einer T-DNA-spezifischen Sonde. Notwendig wäre auch die Isolierung einer zweiten unabhängigen Mutante der *AtHSD2*, sowie Komplementationstests mit der Linie *hsd2-1* und der *hsd1-1* mit der *hsd1-2*. Durch Kreuzungen sollte versucht werden Doppelmutanten zu erzeugen, was voraussichtlich aufgrund der räumlichen Nähe der Genloci nicht ganz unproblematisch wird. Für den Funktionsnachweis wären quantitative Analysen des endogenen Brassinosteroid- und Intermediatgehaltes in den Mutanten von größter Bedeutung.

5 Zusammenfassung

Hydroxysteroid-Dehydrogenasen katalysieren reversible Redoxreaktionen. Im Menschen und in Säugetieren sind zahlreiche gut charakterisierte Enzyme mit einer zentralen Rolle im Steroidmetabolismus bekannt. Zum Zeitpunkt des Beginns dieser Arbeit existierte nur wenig Wissen über pflanzliche Hydroxysteroid-Dehydrogenasen. Das einzige nativ gereinigte Enzym war die Δ^5 -3 β -HSD aus *Digitalis lanata*, mit beschriebenen Funktionen während der Herzglykosid-Biosynthese.

Das Ziel der vorliegenden Arbeit bestand in der Isolierung und Charakterisierung von 3β-Hydroxysteroid-Dehydrogenasen aus *Arabidopsis thaliana*.

Ausgehend von der Sequenz der Δ^5 -3 β -HSD aus *Digitalis lanata* konnten sieben ähnliche Sequenzen aus einer *Arabidopsis thaliana* cDNA-Bank amplifiziert, kloniert und erfolgreich in *E. coli* exprimiert werden. Für jede der löslichen Proteinfraktionen konnte eine, wenn auch in einigen Fällen nur geringe, 3 β -Hydroxysteroid-Dehydrogenase-Aktivität nachgewiesen werden. Von diesen potentiellen HSD-Kandidaten wurden die AtHSD1 und die AtHSD2, welche bei der Mehrzahl der getesteten Substrate die höchste Aktivität besaßen, sowie die AtSDR1, ein Enzym mit der bekannten katalytischen Funktion in der Abscisinsäure-Biosynthese, sowie die heterolog exprimierte DI3 β HSD für katalytische Charakterisierungen und vergleichende kinetische Analysen über einen N-terminalen Histidin-Anhang mittels Affinitätschromatographie bis zur Homogenität gereinigt. Die Ergebnisse lassen sich wie folgt zusammenfassen:

- Der offene Leserahmen der AtHSD1 umfasst 1089 bp, der der AtHSD2 855 bp, davon gehören bei beiden 774 bp zum kodierenden Bereich. Die abgeleiteten Proteine bestehen aus 257 Aminosäuren und haben eine kalkulierte molekulare Masse von ca. 27 kDa. Nach der Reinigung der Fusionsproteine zeigten sich im SDS-Gel homogene Banden der AtHSD1, AtHSD2 und DI3βHSD bei ca. 30 kDa, ca. 1 kDa größer als die molekulare Masse der nativen Δ⁵-3β-HSD mit 29 kDa. Die AtSDR1 erschien bei ca. 31 kDa.
- Strukturell konnten sie aufgrund der typischen Motive der SDR-Familie zugeordnet werden. Sie wurden als cytosolische Proteine prognostiziert. Sie weisen eine hohe Identität und Homologie der Aminosäuresequenzen auf, wobei die größten Unterschiede im C-terminalen Bereich zu finden waren.
- Das pH-Optimum der AtHSD1 und AtHSD2 lag bei pH 7. Bei einer Temperatur von 40°C wurde die höchste Aktivität beobachtet. Bei der Dehydrogenierung wurden die Kosubstrate NAD⁺ und NADP⁺ akzeptiert, wobei eine NAD⁺-Präferenz festgestellt wurde. Für die AtHSD1 wurde ein K_m-Wert für NAD⁺ von 7 µM, für das Kosubstrat der Reduktion NADH von 21 µM bestimmt.
- Die AtHSD1, AtHSD2 und DI3βHSD besitzen eine breite Substratspezifität für 3β-Hydroxysteroide. Es wurden C₁₉-, C₂₁-, C₂₇-, C₂₈- und C₂₉- Steroide, sowohl mit einer Δ⁵-Doppelbindung im Ring B als auch ohne eine Doppelbindung akzeptiert. Eine Umsetzung von 3α-Hydroxysteroiden konnte nicht beobachtet werden. Weiterhin konnte
eine Reduktion von 5 α - und 5 β -Pregnan-3,20-dion sowie Δ^5 -3-Ketosteroiden festgestellt werden. Δ^4 -3-Ketosteroide wurden, vermutlich aufgrund der Irreversibilität der Isomerisierung, nicht reduziert.

- Mittels spektrophotometrischer Messungen konnte für die AtHSD1 eindeutig eine Δ⁵-Δ⁴-Steroid-Isomerase-Aktivität nachgewiesen werden. Ein Vergleich der Anfangsgeschwindigkeiten der Dehydrogenase-Aktivität und Isomerase-Aktivität ließ den Schluss zu, dass die Dehydrogenierung den geschwindigkeitsbestimmenden Schritt darstellt. Die beobachtete Irreversibilität der Isomerisierung ist analog zur katalytischen Funktionalität der 3β-HSD/KSI Enzyme des Menschen (Thomas et al. 1988, Lachance et al. 1990). Damit gelang der Nachweis, dass diese pflanzliche SDR eine bifunktionale 3β-Hydroxysteroid-Dehydrogenase/Δ⁵-Δ⁴-Isomerase darstellt.
- Aus den Bestimmungen der K_m- und V_{max}-Werte mit den Substraten Pregnenolon, 21-Hydroxypregnenolon, 5α-Pregnan-3β-ol-20-on, 5β-Pregnan-3β-ol-20-on, 5α-Pregnan-3,20-dion und 5β-Pregnan-3,20-dion sowie daraus resultierenden katalytischen Effizienzen ließen sich unterschiedliche Substrataffinitäten erkennen. Die DI3βHSD katalysierte am effizientesten die Reduktion des 5β-Pregnan-3,20-dions, wohingegen die AtHSD1 und AtHSD2 höhere Effizienzen für 5α-Pregnane besitzen. Dabei konnte eine unterschiedliche Bevorzugung der Reaktionsrichtung beobachtet werden. Die AtHSD1 fungierte effizienter als Reduktase, die AtHSD2 als Oxidase. Die AtSDR1 besaß zu dem Substrat Pregnenolon eine deutlich geringere Affinität als die AtHSD1, AtHSD2 und DI3βHSD.
- Es konnten erstmalig pflanzliche 3β-Hydroxysteroid-Dehydrogenasen der SDR-Familie isoliert werden, welche die Dehydrogenierung der Brassinosteroid-Vorstufen Campesterol und 28-Homoteasteron katalysieren können. Aus den kinetischen Analysen und der Bestimmung der K_m-Werte war erkennbar, dass die AtHSD2 zu diesen beiden Substraten eine höhere Affinität besitzt, als die AtHSD1 und DI3βHSD.

Um erste Hinweise auf die physiologische Funktionalität der AtHSD1 und AtHSD2 *in vivo* zu erhalten, wurde ihre Genexpression mittels RT-PCR untersucht sowie mit der genotypischen und phänotypischen Charakterisierung von T-DNA-Insertionsmutanten begonnen.

- Aus der Transkriptionsanalyse war eine höhere Transkriptakkumulation der AtHSD2 als der AtHSD1 in allen untersuchten Organen ersichtlich. Beide Gene zeigten die stärkste Expression in der Wurzel.
- In der hsd1-1 wurde die T-DNA-Insertion im Exon der AtHSD1 lokalisiert, in genotypisch homozygoten Pflanzen dieser Linie waren keine Transkripte nachweisbar. Bei dieser "knock-out" Mutante konnte eine reduzierte Elongation der Wurzel festgestellt werden. Unter dem Einfluss von exogen applizierten 24-epi-Brassinolid ließ sich die Wurzellänge normalisieren. Weiterhin konnte beobachtet werden, dass sie, wie es auch für BR-defiziente Mutanten beschrieben ist (Müssig et al. 2003), höhere Konzentrationen an 24-epi-Brassinolid tolerierte bis ein hemmender Effekt auf die Wurzellänge auftrat.

Ansonsten waren keine auffälligen Unterschiede des Phänotyps im Vergleich zum Wildtyp erkennbar.

- Eine zweite Mutante wurde aufgrund der Insertion der T-DNA in der 3`-UTR der AtHSD1 als hsd1-2 bezeichnet. Die Analyse des Transkriptoms homozygoter Pflanzen zeigte eine Reduktion der Transkripte der AtHSD1 und der AtHSD2. Bei dieser "knock-down" Mutante konnte eine verzögerte Keimung, ein retardiertes Wachstum und ein verlängerter Lebenszyklus beobachtet werden.
- In der *hsd2-1* wurde die T-DNA-Insertion im Exon der *AtHSD2* lokalisiert, allerdings waren Pflanzen, die als genotypisch homozygote Mutanten identifiziert wurden, infertil. Aber auch bei heterozygoten Pflanzen dieser Linie konnte ein, der *hsd1-2* ähnlicher Phänotyp, beobachtet werden. Bei den homozygoten Pflanzen war dieser Phänotyp noch verstärkt.

Aufgrund dieser Ergebnisse und Beobachtungen ist eine Beteiligung der AtHSD1 und AtHSD2 an der Brassinosteroid-Biosynthese denkbar. Weiterhin scheint die AtHSD2 aufgrund der stärkeren Genexpression, der besseren Substrataffinität zu Campesterol und 28-Homoteasteron und des eindeutigeren Phänotyps der *hsd2-1* Mutante von größerer funktionaler Bedeutung zu sein.

6 Literaturverzeichnis

- Agarwal, A. K., and Auchus, R. J., 2005, Minireview: Cellular redox state regulates hydroxysteroid dehydrogenase activity and intracellular hormone potency, Endocrinology 146 (6), 2531-2538.
- Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H., Shinn, P., Stevenson, D. K., Zimmerman, J., Barajas, J., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., C Meyers, C. C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin L., Schmid, M., Weigel, D., Carter, D. E., Marchand, T., Risseeuw, E., Brogden D., Zeko, A., Crosby, W. L., Berry, C. C., and Ecker, J. R., 2003, Genome-wide insertional mutagenesis of *Arabidopsis thaliana*, Science 301, 653-657.
- Altschul, S. F., Gish, W., Miller, W., Myers, E.W., Lipman, D. J., 1990, Basic local alignment search tool, J.Mol.Biol. 215, 403-410.
- Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J.,1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucl.Acids Res. 25, 3389-3402.
- Antonchick, A. P., Schneider, B., Zhabinskii, V. N., Konstantinova, O. V., and Khripach, V. A., 2003, Biosynthesis of 2,3-Epoxybrassinosteroids in seedlings of *Secale cereale*, Phytochemistry *63*, 771-776.
- Antonchick, A. P., Svatoš, A., Schneider, B., Konstantinova, O. V., Zhabinskii, V. N., and Khripach, V. A., 2005, 2,3-Epoxybrassinosteroids are intermediates in the biosynthesis of castasterone in seedlings of *Secale cereale*, Phytochemistry 66, 65-72.
- Azpiroz, R., Wu, Y., LoCascio, J. C., and Feldmann, K. A., **1998**, An *Arabidopsis* brassinosteroid-dependent mutant is blocked in cell elongation, Plant Cell *10*, 219-230.
- Bancos, S., Nomura, T., Sato, T., Molnar, G., Bishop, G. J., Koncz, C., Yokota, T., Nagy, F., and Szekeres M., 2002, Regulation of transcript levels of the *Arabidopsis* cytochrome P450 genes involved in brassinosteroid biosynthesis, Plant Physiol. 130, 504-513.
- Bannai, H., Tamada, Y., Maruyama, O., Nakai, K., and Miyano, S., 2002, Extensive feature detection of N-terminal protein sorting signals, Bioinformatics 18 (2), 298-305.
- Benach, J., Knapp, S., Oppermann, U. C. T., Hägglund, O., Jörnvall, H., and Ladenstein, R., 1996, Crystallization and crystal packing of recombinant 3(or 17)β-hydroxysteroid dehydrogenase from *Comamonas testosteroni* ATTC 11996, Eur.J.Biochem. 236, 144-148.
- Benach, J., Filling, Ch., Oppermann, U. C. T., Roversi, P., Bricogne, G., Berndt, K. D., Jörnvall, H., and Ladenstein, R., 2002, Structure of bacterial 3β/17β-hydroxysteroid dehydrogenase at 1.2 Å resolution: A model for multiple steroid recognition, Biochemistry 41, 14659-14668.
- Bendtsen, J. D., Nielsen, H., von Heinje, G., and Brunak, S., 2004, Improved prediction of signal peptides: SignalP 3.0, J.Mol.Biol. *340*, 783-795.

- Bennett, M. J., Schlegel, B. P., Jez, J. M., Penning, T. M., and Lewis, M., 1996, Structure of 3α-hydroxysteroid/dihydrodiol dehydrogenase complexed with NADP⁺, Biochemistry 35, 10702 – 10711.
- Benveniste, P., 2004, Biosynthesis and accumulation of sterols, Annu.Rev.Plant Biol. 55, 429-457.
- Birnboim, H. C., and Doly, J., 1979, A rapid alkaline extraction procedure for screening recombinant plasmid DNA, Nucl.Acids Res. 7, 1513-1523.
- **Bisswanger, H.**, **2000**, Enzymkinetik. Theorie und Methoden, 3.Edition, Wiley-VCH, Weinheim.
- Bradford, M., 1976, A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal.Biochem. 72, 248-254.
- **Braun, M.**, Luensdorf, H., and Bueckmann, A. F., **1991**, 12α-Hydroxysteroid dehydrogenase from *Clostridium* group P, strain C 48-50. Production, purification and characterization, Eur.J.Biochem. *196*, 439-450.
- Briggs, G. E., and Haldane, J. B. S., **1925**, A note on the kinetics of enzyme action, Biochemical Journal *19*, 338-339.
- Chen, E.Y., and Seeburg, P.H., **1985**, Supercoil sequencing: a fast and simple method for sequencing plasmid DNA, DNA *4*, 165-170.
- Cheng, W.-H., Endo, A., Zhou, L., Penney, J., Chen, H.-C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., Koshiba, T., and Sheen, J., 2002, A unique short-chain dehydrogenase/reductase in *Arabidopsis* glucose signaling and abscisic acid biosynthesis and functions, The Plant Cell *14*, 2723-2743.
- **Choe, S.**, Dilkes, B. P., Fujioka, S., Takatsuto, S., Sakurai, A., and Feldmann, K. A., **1998**, The *DWF*4 gene of *Arabidopsis* encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis, The Plant Cell *10*, 231-243.
- Choe, S., Dilkes, B. P., Gregory, B. D., Ross, A. S., Yuan, H., Noguchi, T., Fujioka, S., Takatsuto, S., Tanaka, A., Yoshida, S., Tax, F. E., and Feldmann, K. A., 1999a, The *Arabidopsis dwarf*1 mutant is defective in the conversion of 24-methylencholesterol to campesterol in brassinosteroid biosynthesis, Plant Physiology 119, 897-907.
- **Choe, S.**, Noguchi, T., Fujioka, S., Takatsuto, S., Tissier, C. P., Gregory, B. D., Ross, A. S., Tanaka, A., Yoshida, S., Tax, F. E., and Feldmann, K. A., **1999b**, The *Arabidopsis* dwf7/ste1 mutant is defective in the Δ^7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis, The Plant Cell *11*, 207-211.
- **Choe, S.**, Tanaka, A., Noguchi, T., Fujioka, S., Takatsuto, S., Ross, A. S., Tax, F. E., Yoshida, S., and Feldmann, K. A., **2000**, Lesion in the sterol Δ^7 reductase gene of *Arabidopsis* cause dwarfism due to a block in brassinosteroid biosynthesis, The Plant Journal *21* (5), 431-443.
- **Choe, S.**, Schmitz, R. J., Fujioka, S., Takatsuto, S., Lee, M.-O., Yoshida, S., Feldmann, K. A., and Tax, F. E., **2002**, *Arabidopsis* brassinosteroid-insensitive *dwarf12* mutants are semidominant and defective in a glycogen synthase kinase 3β-like kinase, Plant Physiology *130*, 1506-1515.

- **Choe, S.**, **2006**, Brassinosteroid biosynthesis and inactivation, Physiologia Plantarum *126*, 539-548.
- **Chory, J.**, Nagpal, P., and Peto, C. A., **1991**, Phenotypic and genetic analysis of *det*2, a new mutant that effects light-regulated seedling development in *Arabidopsis*, The Plant Cell *3*, 445-459.
- Clouse, S. D., and Sasse, J. M., **1998**, Brassinosteroids: Essential regulators of plant growth and development, Annu.Rev.Plant Physiol.Plant Mol.Biol. *49*, 427-451.
- Clouse, S. D., 2002 (September 30), Brassinosteroids, In: Somerville, C. R., Meyerowitz, E. M., eds, The Arabidopsis Book, American Society of Plant Biologists, Rockville, M. D., doi: 10.1199/tab.0009, http://www.aspb.org/publications/arabidopsis/.
- **Cohen, S. N.**, Chang, A.C., and Hsu, L., **1972**, Nonchromosomal antibiotic resistance in bacteria: genetic transformation of *Escherichia coli* by R-factor DNA, Proc.Natl.Acad.Sci. 69, 2110-2114.
- **Couture, J.-F.**, Legrand, P., Cantin, L., Luu-The, V., Labrie, F., and Breton, R., **2003**, Human 20alpha-hydroxysteroid dehydrogenase: chrytallographic and site directed mutagenesis studies lead to the identification of an alternative binding site for C21steroids, J.Mol.Biol. *331*, 593-604.
- **De Launoit, Y.**, Simard, J., Durocher, F., and Labrie, F., **1992**, Androgenic 17βhydroxysteroid dehydrogenase activity of expressed rat type I 3β-hydroxysteroid dehydrogenase/ Δ^5 - Δ^4 isomerase, Endocrinology *130*, 553–555.
- **DeLong, A.**, Calderon-Urrea, A., and Dellaporta, S. L., **1993**, Sex determination gene *TASSELSEED2* of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion, Cell *74*, 757-768.
- **de Prada, P.**, Setchell, K. D., and Hylemon, P. B., **1994**, Purification and characterization of a novel 17α-hydroxysteroid dehydrogenase from an intestinal *Eubacterium* sp. VP 12708, J.Lipid.Res. *35*, 922-929.
- **Deyashiki, Y.**, Ohshima, K., Nakanishi, M., and Sato, K., **1995**, Molecular cloning and characterization of mouse estradiol 17beta-dehydrogenase (A-specific), a member of the aldo-keto reductase family, J.Biol.Chem. *270*, 10461-10467.
- Edwards, K., Johnstone, C., Thompson, C., **1991**, A simple method for the preparation of plant genomic DNA for PCR analysis, Nucl.Acid.Res. *19*, 1349.
- **Emanuelsson, O.**, Nielsen, H., Brunak, S., and von Heijne, G., **2000**, Predicting subcellular localization of proteins based on their N-terminal amino acid sequence, J.Mol.Biol. *300*, 1005-1016.
- Ephritikhine, G., Pagant, S., Fujioka, S., Takatsuto, S., Lapous, D., Caboche, M., Kendrick, R. E., and Barbier-Brygoo, H., 1999a, The sax1 mutation defines a new locus involved in the brassinosteroid biosythesis pathway in *Arabidopsis thaliana*, The Plant Journal 18 (3), 315-320.
- **Ephritikhine, G.**, Fellner, M., Vannini, C., Lapous, D., and Barbier-Brygoo, H., **1999b**, The *sax1* dwarf mutant of *Arabidopsis thaliana* shows altered sensitivity of growth responses to abscicic acid, auxin, gibberellins and ethylene and is partially rescued by exogenous brassinosteroid, The Plant Journal *18* (3), 303-314.

- Filling, Ch., Nordling, E., Benach, J., Berndt, K. D., Ladenstein, R., Jörnvall, H., and Oppermann, U., 2001, Structural role of conserved Asn179 in the short-chain dehydrogenase/reductase scaffold, Biochemical and Biophysical Research Communications 289, 712-717.
- Filling, Ch., Berndt, K. D., Benach, J., Knapp, S., Prozorovski, T., Nordling, E., Ladenstein, R., Jörnvall, H., and Oppermann, U., **2002**, Critical residues for structure and catalysis in short-chain dehydrogenases/reductases, The Journal of Biological Chemistry 277 (28), 25677-25684.
- **Finsterbusch, A.**, **1999**, Reinigung und Charakterisierung der Δ^5 -3 β -Hydroxysteroid-Dehydrogenase (Δ^5 -3 β -HSD) aus *Digitalis lanata* EHRH., Dissertation, Martin-Luther-Universität Halle-Wittenberg.
- **Finsterbusch, A.**, Lindemann, P., Grimm, R., Eckerskorn, C., and Luckner, M., **1999**, Δ⁵-3β-hydroxysteroid dehydrogenase from *Digitalis lanata* EHRH. a multifunctional enzym in steroid metabolism ?, Planta 209, 478-486.
- Fujioka, S., Li, J., Choi, Y.-H, Seto, H., Takatsuto, S., Noguchi, T., Watanabe, T., Kuriyama, H., Yokota, T., Chory, J., and Sakurai, A., 1997a, The *Arabidopsis deetiolated*2 mutant is blocked early in brassinosteroid biosynthesis, The Plant Cell 9, 1951-1962.
- Fujioka, S., and Sakurai, A., 1997b, Brassinosteroids, Natural Product Reports 14, 1-10.
- Fujioka, S., Noguchi, T., Yokota, T., Takatsuto, S., and Yoshida, S., **1998a**, Brassinosteroids in *Arabidopsis thaliana*, Phytochemistry *48* (4), 595-599.
- Fujioka, S., Noguchi, T., Yokota, T., Takatsuto, S., and Yoshida, S., 1998b, Activity of brassinosteroids in the dwarf rice lamina inclination bioassay, Phytochemistry 49, 1841-48.
- Fujioka, S., Noguchi, T., Watanabe, T., Takatsuto, S., and Yoshida, S., 2000, Biosynthesis of brassinosteroids in cultured cells of *Catharanthus roseus*, Phytochemistry *53*, 549-553.
- Fujioka, S., Takatsuto, S., and Yoshida, S., 2002, An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway, Plant Physiol. *130*, 930-939.
- Fujioka, S., and Yokota, T., 2003, Biosynthesis and metabolism of brassinosteroids, Annual Review of Plant Biology 54, 137-164.
- Fujita, S., Ohnishi, T., Watanabe, B., Yokota, T., Takatsuto, S., Fujioka, S., Yoshida, S., Sakata, K., and Mizutani, M., 2006, *Arabidopsis* CYP90B1 catalyses the early C-22 hydroxylation of C₂₇, C₂₈ and C₂₉ sterols, The Plant Journal 45 (5), 765–774.
- Furuya, T., Kawaguchi, K., and Hirotani, M., **1973**, Biotransformation of progesterone by suspension cultures of *Digitalis pupurea* cultured cells, Phytochem. *12*, 1621-1626.
- Galbraith, M. N., and Horn, D. H. S., 1966, An insect-moulting hormone from a plant, J.Chem.Soc.Chem.Commun, 905-906.
- **Gärtner, D. E.**, Wendroth, S., and Seitz, H. U., **1990**, A stereospecific enzyme of the putative biosynthetic pathway of cardenolides. Characterization of a progesterone 5β-reductase from leaves of *Digitalis purpurea* L., FEBS Letters *271*, 239-242.

- **Gärtner, D. E.**, Keilholz, W., and Seitz, H. U., **1994**, Purification, characterization and partial peptide microsequenzing of progesterone 5β-reductase from shoot cultures of *Digitalis pupurea*, Eur.J.Biochem, *225*, 1125-1132.
- Gavidia, I., Pérez-Bermúdez, P., and Seitz, H. U., **2002**, Cloning and expression of two novel aldo-keto reductases from *Digitalis pupurea* leaves, Eur.J.Biochem. 269, 2842-2850.
- Ghosh, D., Pletnev, V. Z., Zhu, D. W., Wawrzak, Z., and Duax, W. L., 1995, Structure of human estrogenic 17β-hydroxysteroid dehydrogenase at 2.20 Å resolution, Structure 3, 503-513.
- Ghosh, D., Sawicki, M., Pletnev, V., Erman, M., Ohno, S., Nakajin, S., and Duax, W. L., 2001, Porcine carbonyl reductase, structural basis for a functional monomer in short-chain dehydrogenases/reductases, J.Biol.Chem. 276, 18457-18463.
- **Gish, W.**, and States, D. J., **1993**, Identification of protein coding regions by database similarity search, Nature Genetics 3, 266-272.
- **González-Guzman, M.**, Apostolova, N., Bellés, J. M., Barrero, J. M., and Piqueras, P., **2002**, The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde, Plant Cell *14*, 1833-1846.
- Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N. B., Worley, J. F., Warthen, J. C. Jr., Steffens, G. L., Flippen-Anderson, J. L., and Cook, J. C. Jr., 1979, Brassinolide, a plant growth-promoting steroid isolated from *Brassica napus* pollen, Nature 281, 216-217.
- Hai, T., Schneider, B., Porzel, A., and Adam, G., **1996**, Metabolism of 24-epicastasterone in cell suspension cultures of *Lycopersicon esculentum*, Phytochemistry *41*, 197-201.
- Hammerum, S., and Djerassi, C., 1975, Mass spectrometry in structural and stereochemical problems-CCXLIV. The influence of substituents and stereochemistry on the mass spectral fragmentation of progesterone, Tetrahedron *31*, 2391-2400.
- Hanes, C. S., 1932, Studies on plant amylases. The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley, Biochemical Journal 26, 1406-1421.
- Hartmann, M., 1998, Plant sterols and the membrane environment, Trends Plant Science 3 (5), 170-175.
- Haubrick, L. L. and Assmann, S. M., 2006, Brassinosteroids and plant function: some clues, more puzzles, Plant Cell and Environment 29, 446-457.
- Heazlewood, J. L., Tonti-Filippini, J., Verboom, R. E., Millar, A. H., 2005, Combining experimental and predicted datasets for determination of the subcellular location of proteins in *Arabidopsis*, Plant Physiol. 139 (2), 598-609.
- Heineke, D., Riens, B., Grosse, H., Hoferichter, P., Peter, U., Flügge, U.-I., and Heldt, H. W., 1991, Redox transfer across the inner chloroplast envelope membrane, Plant Physiol. 95, 1131-1137.
- Hoglund, A., Donnes, P., Blum, T., Adolph, H. W., and Kohlbacher, O., **2006**, MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition, Bioinformatics 22 (10), 1158-1165.

- Hong, Z., Ueguchi-Tanaka, M., Umemura, K., Uozu, S., Fujioka, S., Takatsuto, S., Yoshida, S., Ashikari, M., Kitano, H., and Matsuoka, M., 2003, A rice brassinosteroid-deficient mutant, *ebisu dwarf* (*d2*), is caused by a loss of function of a new member of cytochrome P450, Plant Cell 15, 2900-2910.
- **Hoog, S. S.**, Pawlowski, J. E., Alzari, P. M., Penning T. M., and Lewis, M., **1994**, Threedimensional structure of rat liver 3α-hydroxysteroid/dihydrodiol dehydrogenase: a member of the aldo-keto reductase superfamily, Proc.Natl.Acad.Sci. USA *91*, 2517-2521.
- Horton, P., Park, K.-J., Obayashi, T., and Nakai, K., **2006**, Protein subcellular prediction with WoLF PSORT, Proceedings of *the 4th Annual Asia Pacific Bioinformatics Conference APBC06*, Taipei, Taiwan, 39-48.
- **Hosfield, D. J.**, Wu, Y., Skene, R. J., Hilgers, M., and Jennings, A., **2005**, Conformational flexibility in crystal structures of human 11beta-hydroxysteroid dehydrogenase type I provide insights into glucocorticoid interconversion and enzyme regulation, J.Biol.Chem. *280*, 4639-4648.
- Hua, S., and Sun, Z., 2001, Support vector machine approach for protein subcellular localization prediction, Bioinformatics *17* (8), 721-728.
- **Invitrogen[™]** : TOPO TA Cloning Instruction Manual, Version P, Cat. No K45x0-xx, Invitrogen Corporation, 1999-2002.
- **Ishii-Ohba, H.**, Saiki, N., Inano, H., and Tamaoki, B. I., **1986**, Purification and characterization of rat adrenal 3β-hydroxysteroid dehydrogenase with steroid 5-ene-4-ene-isomerase, J.Steroid.Biochem. *24* (3), 753-760.
- Jarabak, J., and Talalay, P., **1960**, Stereospecificity of hydrogen transfer by pyridine nucleotide-linked hydroxysteroid dehydrogenases, J.Biol.Chem. 235, 2147–2154.
- Jez, J. M., Bennett, M., Schlegel, B. P., Lewis, M., and Penning, T. M., **1997a**, Comparative anatomy of the aldo-keto reductase superfamily, Biochem.J. *326*, 625-636.
- Jez, J. M., Flynn, T. G., and Penning, T. M., **1997b**, A new nomenclature for the aldo-keto reductase superfamily, Biochemical Pharmacology *54*, 639-647.
- Jörnvall, H., Persson, B., and Jeffery, J., **1981**, Alcohol and polyol dehydrogenases are both divided into two protein types, and structural properties cross-relate the different enzyme activities within each type, Proc.Natl.Acad.Sci. USA *78* (7), 4226-4230.
- Jörnvall, H., Persson, B., Krook, M., Atrian, S., Gonzàlez-Duarte, R., Jeffery, J., and Ghosh, D., **1995**, Short-chain dehydrogenases/reductases (SDR), Biochemistry *34* (18), 6003-6013.
- Kallberg, Y., Oppermann, U., Jörnvall, H., and Persson, B., 2002a, Short-chain dehydrogenase/reductase (SDR) relationships: A large family with eight clusters common to human, animal, and plant genomes, Protein Science 11, 636-641.
- Kallberg, Y., Oppermann, U., Jörnvall, H., and Persson, B., 2002b, Short-chain dehydrogenases/reductases (SDRs), Coenzyme-based functional assignments in completed genomes, Eur.J.Biochem. 269, 4409-4417.
- Kauschmann, A., Jessop, A., Koncz, C., Szekeres, M., Willmitzer, L., and Altmann, T., 1996, Genetic evidence for an essential role of brassinosteroids in plant development, Plant Journal 9, 701-713.

- **Kawahara, F. S.**, Wang, S.-F., and Talalay, P., **1962**, The preparation and properties of crystalline Δ^5 -3-ketosteroid isomerase, The Journal of Biological Chemistry 237 (5), 1500-1506.
- Kim, G. T., Fujioka, S., Kozuka, T., Tax, F. E., Takatsuto, S., Yoshida, S., and Tsukaya, H., 2005a, Cyp90C1 and Cyp90D1 are involved in different steps in brassinosteroid biosynthesis pathway in *Arabidopsis thaliana*, Plant J. 41, 710-721.
- Kim, J., Harter, K., Theologis, A., **1997**, Protein-protein interactions among the Aux/IAA proteins, Proc.Natl.Acad.Sci. USA *94* (22), 11786-11791.
- Kim, T. W., Chang, S. C., Lee, J. S., Takatsuto, S., Yokota, T., and Kim, S.-K., 2004, Novel biosynthetic pathway of castasterone from cholesterol in tomato, *Plant Physiology* 135, 1231-1242.
- Kim, T. W., Hwang, J.-Y., Kim, Y.-S., Joo, S.-H., Chang, S. C., Lee, J. S., Takatsuto, S., and Kim, S.-K., 2005b, Arabidopsis CYP85A2, a cytochrome P450, mediates the Bayer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis, The Plant Cell 17, 2397-2412.
- Kolbe, A., Porzel, A., Schneider, B., and Adam, G., 1997, Diglycosidic metabolites of 24-epiteasterone in cell suspension cultures of *Lycopersicon esculentum* L., Phytochemistry 46 (6), 1019-1022.
- Kolbe, A., Schneider, B., Porzel, A., and Adam, G., **1998**, Metabolic inversion of the 3hydroxy function in brassinosteroids, Phytochemistry *48*, 467-470.
- Koornneef, M., and Karssen, C. M., 1994, Seed dormancy and germination, In: Somerville, C. R., Meyerowitz, E. M., eds, Arabidopsis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 313-334.
- **Kristan, K.**, Deluca, D., Adamski, J., Stojan, J., and Lanišnik- Rižner, T., **2005**, Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily, BMC Biochemistry *6*, 28.
- **Krook, M.**, Marakov, L., and Jörnvall, H., **1990**, Purification and structural characterization of placental NAD⁺-linked 15-hydroxyprostaglandin dehydrogenase. The primary structure reveals the enzyme to belong to the short-chain alcohol dehydrogenase family, Biochemistry *29*, 738-743.
- **Krozowski, Z.**, **1992**, 11β-Hydroxysteroid dehydrogenase and the short-chain alcohol dehydrogenase (SCAD) superfamily, Molecular and Cellular Endocrinology *84*, C25-C31.
- Krysan, P. J., Young, J. C., and Sussman, M. R., **1999**, T-DNA as an insertional mutagen in *Arabidopsis*, The Plant Cell *11*, 2283-2290.
- Labrie, F., Simard, J., Luu-The, V., Pelletier, G., Bélanger, A., Lachance, Y., Zhao, H. F., Labrie, C., Breton, N., de Launoit, Y., Dumont, M., Dupont, E., Rhéaume, E., Martel, C., Couët, J., and Trudel, C., **1992**, Structure and tissue-specific expression of 3βhydroxysteroid dehydrogenase/5-ene-4-ene isomerase genes in human and rat classical and peripheral stereogenic tissues, J.Steroid.Biochem.Molec.Biol. *41*, 421-435.
- **Lachance, Y.**, Luu-The, V., Labrie, C., Simard, J., Dumont, M., de Launoit, Y., Guérin, Leblanc, G., and Labrie, F., **1990**, Characterization of human 3 β -hydroxysteroid dehydrogenase/ Δ^5 - Δ^4 -isomerase gene and its expression in mammalian cells, The Journal of Biological Chemistry 256 (33), 20469-20475.

- Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680-685.
- Lafont, R., 1997, Ecdysteroids and related molecules in animals and plants, Archives of Insect Biochemistry and Physiology *35*, 3-20.
- Lanišnik-Rižner, T., Lin, H. K., Peehl, D. M., Steckelbroeck, S., Baumann, D. R., and Penning, T. M., 2003, Human type 3 3α-hydroxysteroid dehydrogenase (aldo-keto reduktase 1C2) and androgen metabolism in prostate cells, Endocrinology 144, 2922-2932.
- Léon-Kloosterziel, K.-M., Alvarez Gil, M., Ruijs, G. J., Jacobsen, S. E., Olszewski, N. E., Schwartz, S. H., Zeevaart, J. A. D., and Koornneef, M., 1996, Isolation and characterization of abscisic acid-deficient *Arabidopsis* mutants at two new loci, The Plant Journal 10 (4), 655-661.
- Li, D., Blakey, C. A., Dewald, C., and Dellaporta, S. L., **1997b**, Evidence for a common sex determination mechanism for pistil abortion in maize and in its wild relative *Tripsacum*, Proc.Natl.Acad.Sci. USA 94, 4217-4222.
- Li, J., Nagpal, P., Vitart, V., McMorris, T. C., and Chory, J., **1996**, A role for brassinosteroids in light-dependent development of *Arabidopsis*, Science 272, 398-401.
- Li, J., Biswas, M. G., Chao, A., Russel, D. W., and Chory, J., 1997a, Conservation of function between mammalian and plant steroid 5α-reductases, Proc.Natl.Acad.Sci. USA 94, 3554-3559.
- Li, J., and Chory, J., 1999, Brassinosteroid action in plants, Journal of Experimental Botany 50, (332), 275-282.
- Lindemann, P., and Luckner, M., 1997, Biosynthesis of pregnane derivatives in somatic embryos of *Digitalis lanata*, Phytochemistry *46*, 507-513.
- Lineweaver, H., and Burk, D., 1934, The determination of enzyme dissociation constants, J.Amer.Chem.Soc. *56*, 658-666.
- Lorence, M. C., Murry, B. A., Trant, J. M., and Mason, J. I., **1990**, Human 3betahydroxysteroid dehydrogenase/delta 5-4 isomerase from placenta: expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids, Endocrinology *126*, 2493-2498.
- Luckner, M., and Wichtl, M., 2000, Digitalis, Wissenschaftliche Verlagsgesellschaft mbH Stuttgart.
- Luu-The, V., Lachance, Y., Labrie, C., Leblanc, G., Thomas, J. L., Strickler, R. C., and Labrie, F., **1989**, Full length cDNA structure and deduced amino acid sequence of human 3beta-hydroxy-5-ene steroid dehydrogenase, Mol.Endocrinol. *3*, 1310-1312.
- **Marcus, P. I.**, and Talalay, P., **1956**, Induction and purification of α- and β-hydroxysteroid dehydrogenases, J.Biol.Chem. *218*, 661-674.
- Mathur, J., Molnár, G., Fujioka, S., Takatsuto, S., Sakurai, A., Yokota, T., Adam, G., Voigt, B., Nagy, F., Maas, C., Schell, J., Koncz, C., and Szekeres, M., 1998, Transcription of the *Arabidopsis CPD* gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids, The Plant Journal 14 (5), 593-602.

- Meinke, D., and Koornneef, M., 1997, Community standards for *Arabidopsis* genetics, The Plant Journal *12* (2), 247-253.
- Michaelis, L., and Menten, M. L., 1913, Kinetics of invertase action, Biochem.Z. 49, 333-369.
- Milek, F., Reinhard, E., and Kreis, W., **1997**, Influence of precursors and inhibitors of the sterol pathway and cardenolide metabolism in *Digitalis lanata* EHRH., Plant Physiol.Biochem. *35* (2), 111-121.
- Miller, J. D., Arteca, R. N., and Pell, E. J., 1999, Senescence-associated gene expression during ozone – induced leaf senescence in *Arabidopsis*, Plant Physiology 120, 1015-1023.
- Milner, N. P., and Rees, H., H., **1985**, Involvement of 3-dehydroecdysone in the 3-epimerization of ecdysone, Biochem.J. 231, 369-374.
- Müssig, C., Shin, G.-H., and Altmann, T., 2003, Brassinosteroids promote root growth in *Arabidopsis*, Plant Physiology 133, 1261-1271.
- Nair, R., and Rost, B., 2005, Mimicking cellular sorting improves prediction of subcellular localization, J.Mol.Biol. 348 (1), 85-100.
- Nakajima, N., Fujioka, S., Tanaka, T., Takatsuto, S., and Yoshida, S., 2002, Biosynthesis of cholestanol in higher plants, Phytochemistry, 60 (3), 275-279.
- Nakamura, S., Oda, M., Kataoka, S., Ueda, S., Uchiyama, S., Yoshida, T., Kobayashi, Y., and Ohkubo, T., 2006, Apo- and holo-structures of 3α-hydroxysteroid dehydrogenase from *Pseudomonas* sp. B-0831, loop-helix transition induced by coenzyme binding, J.Biol.Chem. 281 (42), 31876-31884.
- **Noguchi, T.**, Fujioka, S., Takatsuto, S., Sakurai, A., Yoshida, S., Li, J., and Chory, J., **1999**, *Arabidopsis det2* is defective in the conversion of (24*R*)-24-methylcholest-4-en-3-one to (24*R*)-24-methyl-5α-cholestan-3-one in brassinosteroid biosynthesis, Plant Physiol. *120*, 833-839.
- Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Tax, F. E., Yoshida, S., and Feldmann, K. A., 2000, Biosynthetic pathway of brassinolide in *Arabidopsis*, Plant Physiol. 124, 201-210.
- Nomura, T., Kushiro, T., Yokota, T., Kamiya, Y., Bishop, G. J., and Yamaguchi, S., 2005, The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in *Arabidopsis*, J.Biol.Chem. 280, 17873-17879.
- Ohnishi, T., Szatmari, A.-M., Watanabe, B., Fujita, S., Bancos, S., Koncz, C., Lafos, M., Shibata, K., Yokota, T., Sakata, K., Szekeres, M., and Mizutani, M., 2006, C-23 Hydroxylation by *Arabidopsis* CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis, The Plant Cell 18, 3275-3288.
- **Oppermann, U. C. T.**, and Maser, E., **1996**, Characterization of a 3α-hydroxysteroid dehydrogenase/carbonyl reductase from the gramnegative bacterium *Comomonas testosteroni*, Eur.J.Biochem. *241*, 744-749.
- **Oppermann, U. C. T.**, Filling, Ch., Berndt, K. D., Persson, B., Benach, J., Ladenstein, R., and Jörnvall, H., **1997**, Active site directed mutagenesis of 3β/17β-hydroxysteroid dehydrogenase establishes differential effects on short-chain dehydrogenase/reductase reactions, Biochemistry *36*, 34-40.

- **Oppermann, U.**, Filling, C., Hult, M., Shafqat, N., Wu, X., Lindh, M., Shafqat, J., Nordling, E., Kallberg, Y., Persson, B., and Jörnvall, H., **2003**, Short-chain dehydrogenases/reductases (SDR): the 2002 update, Chemico-Biological Interactions *143-144*, 247-253.
- Palazón, J., Bonfill, M., Cusidó, R. M., Pinol, M. T., and Morales, C., 1995, Effects of auxin and phenobarbital on morphogenesis and production of digitoxin in *Digitalis* callus, Plant Cell Physiol. 36, 247-252.
- Park, S.-H., Han, K.-S., Kim, T.-W., Shim, J.-K., Takatsuto, S., Yokota, T., and Kim, S.-K., 1999, In vivo and in vitro conversion of teasterone to thyphasterol in cultered cells of *Marchantia polymorpha*, Plant Cell Physiol. 40 (9), 955-960.
- Patterson, G. W., Hugly, S., and Harrison, D., **1993**, Sterols and phytyl esters of *Arabidopsis thaliana* under normal and chilling temperatures, Phytochemistry *33*, 1381-1383.
- **Pawlowski, J. E.**, Huizinga, M., and Penning, T. M., **1991**, Cloning and sequencing of the cDNA for rat liver 3α-hydroxysteroid/dihydrodiol dehydrogenase, J.Biol.Chem. *266*,8820-8825.
- Payne, A. H., Abbaszade, I. G., Clarke, T. R., Bain, P. A., and Park, C. H. J., 1997, The multiple murine 3β-hydroxysteroid dehydrogenase isoforms: Structure, function, and tissue-and developmentally specific expression, Steroids 62 (1), 169-175.
- **Peltoketo, H.**, Isomaa, V., Maeentausta, O., and Vihko, R., **1988**, Complete amino acid sequence of human placental 17β-hydroxysteroid dehydrogenase deduced from cDNA, FEBS Lett. 239, 73-77.
- **Penning, T. M.**, Bennett, M. J., Smith-Hoog, S., Schlegel, B. P., Jez, J. M., and Lewis, M., **1997a**, Structure and function of 3α-hydroxysteroid dehydrogenase, Steroids *62*, 101-111.
- Penning, T. M., 1997b, Molecular endocrinology of hydroxysteroid dehydrogenases, Endocrine Reviews 18 (3), 281-305.
- Persson, B., Krook, M., and Jörnvall, H., **1991**, Characteristics of short-chain alcohol dehydrogenases and related enzymes, Eur.J.Biochem. *200*, 537-543.
- **Piironen, V.**, Lindsay, D. G., Miettinen, T. A., Toivo, J., and Lampi, A.-M., **2000**, Plant sterols: biosynthesis, biological function and their importance to human nutrition, J.Sci.Food.Agric. *80* (7), 939-966.
- Pilgrim, H., 1972, Cholesterol side-chain cleaving enzyme: Aktivität in Keimlingen und *in vitro* kultivierten Geweben von *Digitalis pupurea*, Phytochemistry *11*, 1725-1728.
- Rahier, A., Darnet, S., Bouvier, F., Camara, B., and Bard, M., 2006, Molecular and enzymatic characterizations of novel bifunctional 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases from *Arabidopsis thaliana*, The Journal of Biological Chemistry 281 (37), 27264-27277.
- Ramírez, J. A., Teme Centurión, O. M., Gros, E. G., and Galagovsky, L. R., 2000, Synthesis and bioactivity evaluation of brassinosteroid analogs, Steroids 65 (6), 329-337.
- Reinbothe, C., Tewes, A., Luckner, M., and Reinbothe, S., **1992**, Differential gene expression during somatic embryogenesis in *Digitalis lanata* analyzed by in vivo and in vitro protein synthesis, Plant Journal 2, 917-926.

- Rhéaume, E., Lachance, Y., Zhao, H. F., Breton, N., Dumont, M., de Launoit, Y., Trudel, C., Luu-The, V., Simard, J., and Labrie, F., **1991**, Structure and expression of a new complementary DNA encoding the almost exclusive 3beta-hydroxysteroid dehydrogenase/delta5-delta4-isomerase in human adrenals and gonads, Mol.Endocrinol. 5, 1147-1157.
- Rossmann, M. G., Moras, D., and Olsen, K. W., **1974**, Chemical and biological evolution of a nucleotide-binding protein, Nature *250*, 194-199.
- **Rutherfurd, K. J.**, Chen, S., and Shively, J. E., **1991**, Isolation and amino acid sequence analysis of bovine adrenal 3β-hydroxysteroid dehydrogenase/steroid isomerase, Biochemistry *30*, 8108-8116.
- **Sambrook, J.**, Fritsch, E. F., and Maniatis, T., **1989**, Molecular cloning: a laboratory manual, 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- Sanger, F., Nicklen, S., and Coulson, A. R., 1977, DNA sequencing with chain-terminating inhibitors, Proc.Natl.Acad.Sci. 74, 5463-5467.
- Schmidt, J., Yokota, T., Spengler, B., and Adam, G., **1993**, 28-Homoteasterone, a naturallyoccuring brassinosteroid from seeds of *Raphanus sativus*, Phytochemistry *34*, 391-392.
- Schultz, R. M., Groman, E. V., and Engel, L. L., **1977a**, 3(17)β-Hydroxysteroid dehydrogenase of *Pseudomonas testosteroni*; A convenient purification and demonstration of multiple molecular forms, J.Biol.Chem. *252* (11), 3775-3783.
- Schultz, R. M., Groman, E. V., and Engel, L. L., **1977b**, 3(17)β-Hydroxysteroid dehydrogenase of *Pseudomonas testosteroni*; Ligand binding properties, J.Biol.Chem. 252 (11), 3784-3790.
- Schwartz, S. H., Léon-Kloosterziel, K.-M., Koornneef, M., and Zeevaart, J. A. D., 1997, Biochemical characterization of the *aba*2 and *aba*3 mutants in *Arabidopsis thaliana*, Plant Physiol., *114*, 161-166.
- Seidel, S., Kreis, W., and Reinhard, E., 1990, Δ⁵-3β-hydroxysteroid dehydrogenase/Δ⁵- Δ⁴ketosteroid isomerase (3β-HSD), a possible enzyme of cardiac glycoside biosynthesis, in cell cultures and plants of *Digitalis lanata* EHRH., Plant Cell Reports *8*, 621-624.
- Seitz, H. U., and Gärtner, D. E., 1994, Enzymes in cardenolide-accumulating shoot cultures of *Digitalis purpurea* L., Plant Cell Tissue Organ Culture *38*, 337-344.
- **Shen, W.**, Wei, Y., Dauk, M., Tan, Y., Taylor, D. C., Selvaraj, G., and Zou, J., **2006**, Involvement of a glycerol-3-phosphat dehydrogenase in modulating the NADH/NAD⁺ ratio provides evidence of a mitochondrial glycerol-3-phosphat shuttle in *Arabidopsis*, The Plant Cell *18*, 422-441.
- Shimada, Y., Fujioka, S., Miyauchi, N., Kushiro, M., Takatsuto, S., Nomura, T., Yokota, T., Kamiya, Y., Bishop, G. J., and Yoshida, S., 2001, Brassinosteroid 6-oxidases from *Arabidopsis* and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis, Plant Physiol. 26, 770-779.
- Shimada, Y., Goda, H., Nakamura, A., Takatsuto, S., Fujioka, S., and Yoshida, S., 2003, Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in *Arabidopsis*, Plant Physiology 131, 287-297.

- **Simard, J.**, Ricketts, M.-L., Gingras, S., Soucy, P., Feltus, F. A., and Melner, M. H., **2005**, Molecular biology of the 3β -hydroxysteroid dehydrogenase/ Δ^5 Δ^4 isomerase gene family, Endocrine Reviews 26 (4), 525-582.
- Steber, C. M., and McCourt, P., 2001, A role for brassinosteroids in germination in *Arabidopsis*, Plant Physiology *125*, 763-769.
- **Steckelbroeck, S.**, Jin, Y., Gopishetty, S., Oyesanmi, B., and Penning, T. M., **2004**, Human cytosolic 3α–hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3β-hydroxysteroid dehydrogenase activity, The Journal of Biological Chemistry, *279*, 11, 10784-10795.
- **Stündl, U.** and Schneider B., **2001,** 3β-Brassinosteroid dehydrogenase activity in *Arabidopsis* and tomato, Phytochemistry *58*, 989-994.
- Stuhlemmer, U., and Kreis, W., 1996, Cardenolide formation and activity of pregnanemodifying enzymes in cell suspension cultures, shoot cultures and leaves of *Digitalis lanata*, Plant Physiol.Biochem. 34 (1), 85-91.
- Suzuki, H., Inoue, T., Fujioka, S., Takatsuto, S., Yanagisawa, T., Yokota, T., Murofushi, N., and Sakurai, A., 1994, Possible involvement of 3-dehydroteasterone in the conversion of teasterone to typhasterol in cultured cells of *Catharanthus roseus*, Biosci.Biotech.Biochem. *58*, 1186-1188.
- Szekeres, M., Nemeth, K., Koncz-Kalman, Z., Mathur, J., Kauschmann, A., Altmann, T., Redei, G. P., Nagy, F., Schell, J., and Koncz, C., 1996, Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in *Arabidopsis*, Cell 85, 171-182.
- Takatsuto, S., Kosuga, N., Abe, B.-I., Noguchi, T., Fujioka, S., and Yokota, T., 1999, Occurence of potential brassinosteroid precursor steroids in seeds of wheat and foxtail millet, J.Plant Res. 112, 27-33.
- **Talalay, P.**, and Wang, V. S., **1955**, Enzymic isomerisation of Δ^5 -3-ketosteroids, Biochim.Biophys.Acta *18*, 300-301.
- **Talalay, P.**, and Marcus, P. I., **1956**, Specificity, kinetics, and inhibition of α- and βhydroxysteroid dehydrogenases, J.Biol.Chem. *218*, 675-691.
- **Talalay, P.**, **1963**, Hydroxysteroid dehydrogenases. In: Boyer PD, Lardy M, Myrback, K (eds), *Enzymes*. New York Academy Press, New York, 177-202.
- **Tanaka, N.**, Nonaka, T., Tanabe, T., Yoshimoto, T., Tsuru, D., and Mitsui, Y., **1996**, Crystal structures of the binary and ternary complexes of 7alpha-hydroxysteroid dehydrogenase from *Escherichia coli*, Biochemistry *35*, 7715-7730.
- Tanaka, K., Asami, T., Yoshida, S., Nakamura, Y., Matsuo, T., and Okamoto, S., 2005, Brassinosteroid homeostasis in *Arabidopsis* is ensured by feedback expressions of multiple genes involved in its metabolism, Plant Physiology 138, 1117-1125.
- Tannin, G. M., Agarwal, A. K., Monder, C., New, M. I., and White, P. C., 1991, The human gene for 11beta-hydroxysteroid dehydrogenase. Structure, tissue distribution, and chromosomal localization, J.Biol.Chem. 266, 16653-16658.

- **Teixeira Zullo, M. A.**, Kohout, L., and Burgos Martins de Azevedo, M., **2003**, Some notes on the terminology of brassinosteroids, Plant Growth Regulation *39*, 1-11.
- **Teuber, M.**, **2001**, Vervollständigung der DNA-Sequenz der Δ^5 -3β-Hydroxysteroid Dehydrogenase (Δ^5 -3β-HSD) aus *Digitalis lanata* EHRH. mittels RACE-PCR, Diplomarbeit, Martin-Luther-Universität Halle-Wittenberg.
- **Thomas, J. L.**, Berko, E. A., Faustino, A., Myers, R. P., and Strickler, R. C., **1988**, Human placental 3β-hydroxy-5-ene-steroid deydrogenase and steroid $5\rightarrow$ 4-ene-isomerase: purification from microsomes, substrate kinetics, and inhibition by product steroids, J. Steroid.Biochem. *31* (5), 785-793.
- **Thomas, J. L.**, Frieden, C., Nash, W. E., and Strickler, R. C., **1995**, An NADH-induced conformational change that mediates the sequential 3β-hydroxysteroid dehydrogenase/isomerase activities is supported by affinity labeling and the time-dependent activation of isomerase, J.Biol.Chem. *270* (36), 21003-21008.
- **Thomas, J. L.,** Mason, J. I., Blanco, G., and Veisaga, M. L., **2001**, The engineered, cytosolic form of human type I 3β-hydroxysteroid dehydrogenase/isomerase: purification, characterization and crystallization, J.Mol.Endocrinol. *27*, 77–83.
- **Thomas, J. L.**, Duax, W. L., Addlagatta, A., Brandt, S., Fuller, R. R., and Norris, W., **2003**, Structure/function relationships responsible for coenzyme specificity and the isomerase activity of human typ I 3β-hydroxysteroid dehydrogenase/isomerase, J.Biol.Chem. *278* (37), 35483-35490.
- **Thompson, J. D.**, Higgins, D. G., and Gibson, T. J., **1994**, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic.Acid.Res. *22*, 4673-4680.
- Veech, R. L., Eggleston, L. V., and Krebs, H. A., **1969**, The redox state of free nicotinamideadenine dinucleotide in the cytoplasm of rat liver, Biochem J. *115* (4), 609-619.
- Wang, Y. and Ge, W., 2002, Cloning of zebrafish ovarian carbonyl reductase-like 20betahydroxysteroid dehydrogenase and characterization of its spatial and temporal expression, Gen Comp Endocrinol. *127* (3), 209-216.
- Wigge, B., Krömer, S, Gardeström, P., **1993**, The redox levels and subcellular distribution of pyridine nucleotides in illuminated barley leaf protoplasts studied by rapid fractionation, Physiol. Plant. *88*, 10-18.
- Williamson, D. H., Lund, P., and Krebs, H. A., **1967**, The redox state of free nicotinamideadenine dinucleotide in the cytoplasm and mitochondria of rat liver, Biochem J.,*103* (2), 514-527.
- Winter, J., Schneider, B., Meyenburg, S., Strack, D., and Adam, G., **1999**, Monitoring brassinosteroid biosynthetic enzymes by fluorescent tagging and HPLC analysis of their substrates and products, Phytochemistry *51*, 237-242.
- Xia, Z.-Q., Costa, M. A., Pélissier, H. C., Davin, L. B., and Lewis, N. G., 2001, Secoisolariciresinol dehydrogenase purification, cloning, and functional expression; implications for human health protection, J.Biol.Chem. 276 (16), 12614-12623.

- Yin, S. J., Vagelopoulus, N., Lundquist, G., and Jörnvall, H., 1991, Pseudomonas 3βhydroxysteroid dehydrogenase, primary stucture and relationships to other steroid dehydrogenases, Eur.J.Biochem. 197, 359-365.
- **Yoshimoto, T.**, Higashi, H., Kanatani, A., Lin, X. S., and Nagai, H., **1991**, Cloning and sequencing of the 7alpha-hydroxysteroid dehydrogenase gene from *Escherichia coli* HB101 and characterization of the expressed enzyme, J.Bacteriol. *173*, 2173-2179.
- **Yokota, T.**, Sato, T., Takeuchi, Y., Nomura, T., Uno, K., Watanabe, T., and Takatsuto, S., **2001**, Roots and shoots of tomato produce 6-deoxo-28-norcathasterone, 6-deoxo-28nortyphasterol and 6-deoxo-28-norcaststerone, possible precursors of 28norcaststerone, Phytochemistry *58*, 233-238.
- Zhang, Y., Dufort, I., Rheault, P., and Luu-The, V., 2000, Characterization of a human 20alphahydroxysteroid dehydrogenase, J.Mol.Endocrinol. 25, 221-228.
- Zhou, H., and Tai, H. H., 1999, Threonine 188 is critical for interaction with NAD⁺ in human NAD⁺-dependent 15-hydroxyprostaglandin dehydrogenase, Biochem. Biophys. Res. Commun. 257, 414-417.
- Zimmermann, P., Hirsch-Hoffmann, M., Henning, L., and Gruissem, W., 2004, GENEVESTIGATOR: *Arabidopsis* microarray database and analysis toolbox, Plant Physiol. *136*, 2621-2632.

Tabelle A-1 Übersicht der Klonierungs-, Sequenzierungs- und Expressionsergebnisse. Es sind nur Klone angegeben für welche Sequenzierungen erfolgten. Diese lagern alle in Form einer DNA-Plasmidpräparation bei –20°C. Stocks für die Inserts im Vektor pQE 30 in den M15-Expressionszellen lagern bei –80°C. BA – Basenaustausch, n.s. – nicht sequenziert, (+) – sehr geringe Aktivität.

AGI-	s	Klon	Ergebnis der	Sequenzierung	g Insert in	Stocks pQE 30	Ex-	HSD- Aktivität	Reini-
Bezeichnung	Ŭ		<i>Taq </i> pcR 2.1	<i>Pfu /</i> pcR 2.1	pQE 30	in M15- Zellen	sion	des BL	gung
At2a47140 1		1.1	BA	-	-				
,	1	1.2	identisch	-	korrekt	+	+	+	+
		2.2	BA	-	-				
At2a47130 1		2.3	BA	-	-				
/ «zg // 100.1		2.10	2 BA	-	-				
	2	2.13	-	identisch	korrekt	+	+	+	+
		3.1	falsch	-	-				
At2g47120.1		3.11	-	falsch	-				
		3.13	-	falsch	-				
		4.1	falsch	-	-				
At3a29260 1		4.2	falsch	-	-				
Alog20200.1		4.11	-	At3g29260/50	-				
	4	4.13	-	wie 4.11	wie 4.11	+	+	(+)	
At3a20250 1		5.11	-	falsch	-				
Alog29200.1		5.13	-	falsch	-				
At3q51680.1		6.1	falsch	-	-				
		6.3	falsch	-	-				
Alogo 1000. 1	6	6.11	-	identisch	korrekt	+	+	(+)	
		6.12	-	identisch	n.s.	+			
		7.1	BA	-	-				
At1g52340.1	7	7.12	-	identisch	korrekt	+	+	+	+
		7.13	-	identisch	n.s.	+			
At3a26760 1		8.1	BA	-	-				
7 (log207 00.1	8	8.13	-	identisch	korrekt	+	+	(+)	
At4a03140 1		9.11	-	?	-	+			
Altg00140.1		9.12	-	falsch	-				
At3g26770.1	10	10.13	-	identisch	korrekt	+	+	(+)	
		11.1	falsch	-	-				
At3g42960.1		11.11	-	falsch	-				
		11.12	-	falsch					
		12.1	falsch	-	-				
At2g47150.1		12.11	-	falsch	-				
		12.13	-	falsch	-				
Δ^{5} -3 β -HSD		HSD	-	-	korrekt	+	+	+	+
Leerplasmid		pQE30	-	-	-	+	"+"	-	

1 Δ^5 -3 β -HSD Digitalis lanata

ATGTCGTCAAAGCCAAGGTTGGAAGGGTAAAGTGGCAATCATCACCGGAGCCGCTAGCGGC - 60 S S K P R L E G K V A I I T G A A М S ATCGGCGAGGAGACGGCAAGATTGTTCGTGGAGCATGGCGCCTCAGTGGTGGTGGCGGAC - 120 I G E E T A R L F V E H G A S V V V A D GTCCAGGACGAATTGGGGCGCCAGGTCGTCGCTTCCGTAAACTCTGACGACAAGATAAGT - 180 V Q D E L G R Q V V A S V N S D D K I S TACTACCACTGCGATGTCAGAGATGAAAAACAAGTGGCGGCCACCGTCCGCTACGCGGTG - 240 Y Y H C D V R D E K Q V A A TVRYAV GAGAAATACGGGCGCCTCGACATCATGCTGAGCAACGCCGGAGTCTTCGGGGCCTTGATG - 300 E K Y G R L D I M L S N A G V F G A L M ACGAACGTAATCGATCTCGACATGGTTGACTTTGAAAATGTATTGGCGACTAACGTGCGC - 360 T N V I D L D M V D F E N V L A T N V R GGAGTTGCCAACACTATAAAGCACGCGGCACGAGCCATGGTGGAGGGGAAGGTCAAGGGG - 420 G V A N T I K H A A R A M V E G K V K G S I I C T A S V S A S L G G M G P P A Y ACGGCTTCCAAACACGCCGTCCTGGGCCTAGTCAAGGGCGCCTTGCGCCGAGTTGGGGGGTG - 540 T A S K H A V L G L V K G A C A E L G V CACGGGATCCGAGTCAACTCGGTGGCGCCGTACGGTGTGGCGACCCCGATGCCGTGCAGT - 600 H G I R V N S V A P Y G V A T P M P C S GCTTACGGAATGACACCGAGTCAGATGGAGGAGGCCAATAACTCCAGGGCTAACTTGAAG - 660 A Y G M T P S Q M E E A N N S R A N L K GGGGTGGTTTTGAAGGCTAAGCATGTAGCTGAGGCGGCTCTCTTCTTGGCTTCCGATGAG - 720 G V V L K A K H V A E A A L F L A S D E TCGGCTTATGTCAGTGGGCAAAACTTGGCTGTCGACGGCGGCTTCACCGTCGTGCGTTAG - 780 SAYVSGQNLAVDGGFTVVR*

2 At2g47140.1

ΑT	GTC	TGG	AAA	AAG	ATT	GGA	TGG	CAA	AAT	CGT	AAT	TAT	TAC	TGG	CGG	GAGC	CAAG	CGG	GATT	-	60
М	S	G	Κ	R	L	D	G	Κ	I	V	I	I	Т	G	G	Α	S	G	I		
GG	GGC	TGA	GTC	CGT	TCG	ATT	ATT	TAC	CGA	ACA	CGG	GCGC	CTCG	AGT	CGI	'GA'I	CGT	TGA	TGTA	-	120
G	Α	Е	S	V	R	L	F	Т	Ε	Η	G	А	R	V	V	I	V	D	V		
CA	GGA	TGA	GCT	CGG	TCA	AAA	CGT	TGC	AGT	TTC	GAI	CGG	GTGA	AGA	CAA	AGC	CGAG	TTA	CTAT	-	180
Q	D	Е	L	G	Q	Ν	V	Α	V	S	Ι	G	Ε	D	Κ	Α	S	Y	Y		
CA	TTG	CGA	TGT	CAC	GAA	CGA	GAC	GGA	AGT	ΤGA	AAA	ACGC	CCGT	TAA	GTI	CAC	CGT	CGA	AAAA	-	240
Н	С	D	V	Т	Ν	Е	Т	Е	V	Е	Ν	А	V	Κ	F	Т	V	Е	K		
ТΑ	TGG	GAA	GCT	TGA	CGT	ТСТ	GTT	TAG	TAA	CGC	CGG	GCGI	TAAT	AGA	GCC	GTI	TGT	GAG	CATC	-	300
Y	G	Κ	L	D	V	L	F	S	Ν	А	G	V	I	Е	Ρ	F	V	S	I		
СТ	CGA	CTT	AAA	CCT	CAA	CGA	GTT.	AGA	CCG	AAC	GAT	CGC	CAT	TAA	ССІ	CCC	GCGG	CAC	AGCC	-	360
L	D	L	Ν	L	Ν	Ε	L	D	R	Т	Ι	Α	I	Ν	L	R	G	Т	A		
GC	ATT	CAT	CAA	GCA	ГGС	TGC	ACG	TGC	CAT	GGT	GGA	AGAP	AGG	CAT	CCG	GCGG	GCTC	CAT	CGTT	-	420
А	F	I	Κ	Η	А	Α	R	Α	М	V	Ε	Κ	G	I	R	G	S	I	V		
ΤG	CAC	CAC	TAG	CGT	CGC	GGC	TGA	GAT	CGC	TGG	CAC	CGGC	CACC	ACA	CGG	GTA	CAC	GAC	GTCG	-	480
С	Т	Т	S	V	А	Α	Ε	I	А	G	Т	А	Ρ	Η	G	Y	Т	Т	S		
AA	GCA	TGG	GCT	GTT	GGG	TTT	GAT	CAA	ATC	GGC	TTC	CTGG	GTGG	ATT	AGG	GAAA	ATA	TGG	TATA	-	540
Κ	Η	G	L	L	G	L	Ι	Κ	S	А	S	G	G	L	G	Κ	Y	G	I		
AG	AGT	AAA	CGG	CGT	ГGС	TCC	ATT	TGG	TGT	CGC	AAC	CACC	CGTT	AGT	TTG	TAP	ATGG	TTT	CAAG	-	600
R	V	Ν	G	V	А	Ρ	F	G	V	А	Т	Ρ	L	V	С	Ν	G	F	K		
AT	GGA	ACC	AAA	CGT	GGT	GGA	GCA	GAA	CAC	GTC	AGC	CTTC	CGGC	GAA	ТСТ	'AAA	AGGG	CAT	TGTA	-	660
М	Е	Ρ	Ν	V	V	Ε	Q	Ν	Т	S	А	S	А	Ν	L	Κ	G	I	V		
ТΤ	GAA	AGC	TCG	TCA	CGT	GGC	AGA.	AGC	TGC	TCT	GTI	TTT	AGC	GTC	CGA	TGA	GTC	GGC	TTAC	-	720
L	Κ	А	R	Η	V	Α	Ε	Α	А	L	F	L	А	S	D	Е	S	А	Y		
GΤ	TAG	CGG	ACA	GAA	ССТ	GGC	TGT	TGA	CGG	TGG	TTA	ACTO	CGGT	GGT	GAA	GCC	GTA	G		-	774
V	S	G	Q	Ν	L	А	V	D	G	G	Y	S	V	V	Κ	Р	*	_			

3 At2g47130.1

ATGTCGGGACTCAGATTGGATGGCAAAATCGCAATAATAACAGGCGGAGCTAGCGGGATT -60 M S G L R L D G K I A I I T G G A S G GGAGCCGAAGCGGTTAGGCTGTTCACGGACCACGGAGCTAAGGTGGTCATCGTTGACTTT - 120 G A E A V R L F T D H G A K V V I V D F CAAGAAGAACTTGGTCAAAACGTTGCCGTTTCTGTCGGGAAAGACAAAGCAAGTTTTTAC - 180 Q E E L G Q N V A V S V G K D K A S F Y CGTTGCGATGTTACAAACGAAAAGGAGGTAGAAAACGCCGTTAAGTTCACCGTCGAAAAG - 240 R C D V T N E K E V E N A V K F T V E Κ TACGGGAAGCTTGACGTTCTCTTTAGTAACGCCGGCGTTATGGAACAGCCGGGAAGCTTT - 300 Y G K L D V L F S N A G V M E Q P G S F CTCGACTTGAATCTGGAACAGTTTGACCGAACCATGGCGGTCAACGTTCGTGGTGCGGCT - 360 L D L N L E Q F D R T M A V N V R G A A GCGTTTATCAAACACGCTGCACGAGCCATGGTGGAGAAAGGCACGCGTGGGTCAATCGTA - 420 A F I K H A A R A M V E K G T R G S I V TGTACGACCAGCGTCGCGTCGGAGATCGGTGGTCCAGGACCTCACGCGTACACGGCGTCT - 480 C T T S V A S E I G G P G P H A Y T A S AAGCACGCTCTTCTCGGGCTGGTTAAATCGGCTTGTGGCGGGCTAGGGAAGTACGGGATT - 540 K H A L L G L V K S A C G G L G K Y G Т AGAGTCAACGGCGTTGCACCATACGCGGTGGCGACGGCGATAAATAGCCGTGACGAGGAA - 600 R V N G V A P Y A V A T A I N S R D E E ACGGTGAGGATGGTGGAGGAATATAGCGCAGCCACGGGGATTCTCAAAGGTGTGGTGCTT - 660 T V R M V E E Y S A A T G I L K G V V L AAGGCTCGCCATGTGGCAGAGGCGGCTTTGTTTCTGGCTTCGGATGATTCGGCTTACGTT - 720 K A R H V A E A A L F L A S D D S A Y V AGCGGTCAGAATCTGGCTGTTGACGGGGGGTTATAGCGTCGTTAAGCCCATTTGA - 774 S G Q N L A V D G G Y S V V K P I

Abbildung A-1 Kodierende Sequenzen mit korrespondierenden Aminosäuresequenzen.

1) Δ^5 -3 β -HSD aus *Digitalis lanata* (DI3 β HSD) aus Teuber (2001), zugänglich in der EMBL-Datenbank unter der Nummer AJ345026.

2) AtHSD1 (At2g47140.1) zugänglich unter www.arabidopsis.org,

3) AtHSD2 (At2g47130.1) zugänglich unter www.arabidopsis.org.

Start- und Stoppkodon sind unterstrichen.

Die klonierten Sequenzen waren identisch mit den Datenbankeinträgen.

Abbildung A-2 pQE30 Vektorkonstrukte (Qiagen), **a** – für die kodierende Sequenz (cds) der DI3 β HSD, welche über die Schnittstellen *Sph* I und *Hind* III kloniert wurde (Teuber 2001), **b** – für die kodierenden Sequenzen der potentiellen HSDs aus *A. thaliana* (AtHSD) entsprechend den Sequenzen S1 S2 S4 S6 S7 S8 S10, welche über die Schnittstellen *Bam*HI und *Sal* I kloniert wurden, **c** - für die "multiple cloning site" (MCS) ohne Insert, rot – der N-terminale 6xHistidin-Anhang.

Tabelle A-2 Ermittelte Kalibriergeraden. Es wurden 10-13 Konzentrationswerte von 1- 500 μ M gemessen. Linearität lag in allen Fällen von mindestens 1-100 μ M vor. R² – linearer Regressionskoeffizient.

Steroid	Kalibriergerade	R ²	Methode	IS
Pregnenolon Verunreinigung Progesteron	y=1,2061x-0,0039 y=0,0128x+0,0007	0,9940 0,9951	GC/MS SIM I	4-Androsten-3,17-dion 0,25 mg/ml
Progesteron Verunreinigung 5-Pregnen-3,20-dion	y=1,3828x+0,0013 y=0,3541x+0,0001	0,9984 0,9971	GC/MS SIM I	4-Androsten-3,17-dion 0,25 mg/ml
5α-Pregnan-3β-ol-20-on	y=0,5431x-0,0031	0,9938	GC/MS SIM II	Cholesterol 0,25 mg/ml
5β-Pregnan-3β-ol-20-on	y=0,4121x-0,0001	0,9806	GC/MS SIM II	Cholesterol 0,25 mg/ml
5α-Pregnan-3,20-dion	y=0,4841x-0,0008	0,9887	GC/MS SIM II	Cholesterol 0,25 mg/ml
5β-Pregnan-3,20-dion	y=0,5631x-0,00008	0,9927	GC/MS SIM II	Cholesterol 0,25 mg/ml

Tabelle A-3 Werte der relativen Aktivitäten in % der Enzymassays der löslichen Proteinfraktionen der lysierten Bakterienkulturen für Substrate der Oxidationsreaktion. Die angegebenen Standardabweichungen (STA) für das Substrat Pregnenolon beziehen sich auf den Mittelwert (n=2) der Aktivitäten, welche für die prozentuale Berechnung herangezogen wurden.

	relative Aktivität in %										
Klon	Pregnenolon (± STA)	21-Hydroxy- pregnenolon	17-Hydroxy- pregnenolon	5α-Pregnan- 3β-ol-20-on	5β-Pregnan- 3β-ol-20-on						
HSD	100 (± 4,93)	27,24	36,02	67,79	118,76						
1	97,87 (± 2,69)	71,37	33,11	107,42	93,11						
2	111,78 (± 0,71)	37,04	18,42	181,88	93,46						
4	54,98 (± 4,22)	39,75	15,01	171,09	74,65						
6	58,51 (± 8,54)	38,27	11,22	150,17	44,35						
7	19,56 (± 4,34)	3,15	11,34	0	52,71						
8	36,09 (± 4,26)	0	1,11	0	9,79						
10	29,12 (± 5,78)	1,64	2,36	58,21	6,69						
LP	0	0	4,17	1,88	3,81						

Tabelle A-4Werte der Aktivitätsabhängigkeit von der Proteinkonzentration.Es wurdenEinfachbestimmungen durchgeführt.

AtHS	D1	DI3βH	ISD		
Protein- konzentration (µg/ml)	Aktivität (nkat)	Protein- konzentration (μg/ml)	Aktivität (nkat)		
1	4,22	1	1,82		
5	7,99	5	3,46		
10	10,27	10	10,67		
20	13,56	20	18,87		
40	19,74	40	27,86		
60	25,24	60	33,53		
80	28,81	80	34,36		
100	32,49				
120	36,52				
150	39,52				
170	40,69				
200	42,37				

Tabellen A-5 Werte der Aktivitätsabhängigkeit von dem pH-Wert, der Temperatur, der Inkubationszeit und dem Kosubstrat. Sofern Standardabweichungen (STA) angegeben sind, stellen die Werte Mittelwerte aus Dreifachbestimmungen dar. AUC – integrierte Fläche des Peaks, IS – interner Standard.

	AUC Produkt/AUC IS (±STA)					
рН	AtHSD1	AtHSD2				
5,5	0,0297 (0,0136)	0,0319				
6,0	0,0398 (0,0055)	0,0348				
6,5	0,0479 (0,0099)	0,0308				
7,0	0,0681 (0,0011)	0,0515				
7,5	0,0482 (0,0006)	0,0443				
8,0	0,0451 (0,0085)	0,0391				

	AUC Produkt/AUC IS (±STA)						
Temperatur [°C]	AtHSD1	AtHSD2					
30	0,0557 (0,0006)	0,0462					
40	0,0698 (0,0024)	0,0588					
50	0,0614 (0,0106)	0,0474					
60	0,0623 (0,0076)	0,0176					

	AUC Produkt/AUC IS (±STA)					
Zeit [min]	AtHSD1	AtHSD2				
0,5	0,0223 (0,0055)	0				
2,5	0,0311 (-)	0,0116				
5	0,0419 (0,0086)	-				
10	0,0508 (0,0024)	0,0221				
15	0,0553 (0,0022)	0,0146				
20	0,0452 (0,0111)	0,0276				
25	0,0569 (0,0056)	0,0301				
30	0,0676 (0,0152)	0,0418				
40	0,0699 (0,0115)	0,0437				
60	0,0925 (0,0023)	0,0732				

	AUC Produkt/AUC IS (±STA)					
Kosubstrat	AtHSD1	AtHSD2				
NAD⁺ 1 mM	0,0755 (0,0013)	0,0546				
NADP⁺ 1 mM	0,0671 (0,0051)	0,0457				

Tabelle A-6 K_m - und V_{max} -Werte der DI3 β HSD nach den Auswertungsverfahren der linearenRegression (Hanes-Woolf) und der nichtlinearen Regression (Michaelis-Menten). Es wurdenDreifachbestimmungen vorgenommen, Standardabweichungen (STA) wurden berechnet. Bei dernichtlinearen Regression gibt das Programm die Standardfehler (STF) an.

DI3βHSD		Hanes-Woolf (± STA)	Michael (± STF)	is-Menten VI 95%
	κ _m (μΜ)	48 (4)	37 (6)	25-50
Pregnenolon	V _{max} (µkat/kg)	150 (3)	143 (6,4)	130-157
	R ²	0,9957		
	κ _m (μM)	410 (41)	390 (154)	67-714
21-Hydroxy-pregnenolon	V _{max} (μkat/kg)	750 (78)	614 (106)	392-836
	R^2	0,8513		
	κ _m (μM)	53 (14)	69 (14)	40-97
5α-Pregnan-3β-ol-20-on	V _{max} (µkat/kg)	1299 (155)	1181 (68)	1036-1327
	R^2	0,9548		
	κ _m (μM)	179 (35)	147 (39)	52-242
5β-Pregnan-3β-ol-20-on	V _{max} (μkat/kg)	3525 (274)	3262 (409)	2260-4262
	R^2	0,9162		
	K _m (μM)	209 (20)	397 (77)	237-558
5α-Pregnan-3,20-dion	V _{max} (µkat/kg)	7320 (1670)	8469 (880)	6627-10310
	R^2	0,9914		
	κ _m (μΜ)	438 (121)	298 (100)	62-533
5β-Pregnan-3,20-dion	V _{max} (µkat/kg)	12804 (1503)	11030 (1816)	6735-15325
	R^2	0,7661		
	κ _m (μM)	-	239 (34)	163-315
Campesterol	V _{max} (µkat/kg)	-	18,6 (1,8)	14,7-22,6
	R ²	-		

Tabelle A-7 K_m - und V_{max} -Werte der AtHSD1nach den Auswertungsverfahren der linearenRegression (Hanes-Woolf) und der nichtlinearen Regression (Michaelis-Menten). Es wurdenDreifachbestimmungen vorgenommen, Standardabweichungen (STA) wurden berechnet. Bei dernichtlinearen Regression gibt das Programm die Standardfehler (STF) an.

AtHSD1		Hanes-Woolf (± STA)	Michaelis (± STF)	- Menten VI 95%
	κ _m (μΜ)	54 (22)	50 (15)	17-83
Pregnenolon	V _{max} (µkat/kg)	194 (109)	239 (22)	192-286
	R ²	0,9812		
	κ _m (μΜ)	236 (40)	288 (68)	142-434
21-Hydroxy-pregnenolon	V _{max} (µkat/kg)	1245 (656)	739 (69)	592-886
	R ²	0,9313		
	κ _m (μΜ)	123 (24)	159 (47)	63-254
5α-Pregnan-3β-ol-20-on	V _{max} (µkat/kg)	859 (119)	914 (111)	686-1142
	R^2	0,9249		
	κ _m (μΜ)	99 (6)	98 (16)	65-131
5β-Pregnan-3β-ol-20-on	V _{max} (µkat/kg)	1583 (62)	1566 (89)	1377-1756
	R^2	0,9941		
	κ _m (μΜ)	34 (4)	30 (7)	15-45
5α-Pregnan-3,20-dion	V _{max} (µkat/kg)	1486 (153)	1441 (84)	1262-1620
	R^2	0,9992		
	κ _m (μΜ)	84 (45)	92 (69)	-87-270
5β-Pregnan-3,20-dion	V _{max} (µkat/kg)	2240 (736)	2384 (888)	102-4665
	R ²	0,7668		
	κ _m (μM)	-	306 (56)	186-427
Campesterol	V _{max} (µkat/kg)	-	82 (11)	59-106
	R ²	-		

Tabelle A-8Km- und Vmax-Werte der AtHSD2nach den Auswertungsverfahren der linearenRegression (Hanes-Wolf) und der nichtlinearen Regression (Michaelis-Menten). Es wurdenDreifachbestimmungen vorgenommen, Standardabweichungen (STA) wurden berechnet. Bei dernichtlinearen Regression gibt das Programm die Standardfehler (STF) an.

AtHSD2		Hanes-Woolf (± STA)	Michaeli (± STF)	s-Menten VI 95%
	K _m (µM)	111 (10)	43 (9)	23-63
Pregnenolon	V _{max} (µkat/kg)	152 (91)	109 (6)	97-121
	R ²	0,9062		
	κ _m (μM)	4,9 (0,9)	4,2 (0,8)	2,5-5,8
5α-Pregnan-3β-ol-20-on	V _{max} (μkat/kg)	656 (47)	624 (27)	568-680
	R ²	0,9982		
	K _m (μM)	73 (23)	48 (7)	33-63
5β-Pregnan-3β-ol-20-on	V _{max} (μkat/kg)	1112 (145)	975 (42)	888-1063
	R ²	0,9553		
	κ _m (μΜ)	72 (8)	37 (4)	29-45
5α-Pregnan-3,20-dion	V _{max} (µkat/kg)	7108 (4129)	1772 (737)	72-3473
	R ²			
	κ _m (μΜ)	167 (75)	149 (41)	59-240
5β-Pregnan-3,20-dion	\mathbf{V}_{max} (µkat/kg)	1867 (588)	1780 (256)	1223-2337
	R ²	0,9285		
	κ _m (μΜ)	-	87 (19)	47-127
Campesterol	V _{max} (µkat/kg)	-	26 (3)	19-32
	R ²	-	0,933	

Tabelle A-9Wertetabellen der Michaelis-Menten Kinetiken der jeweiligen Substrate, für welche
der kleinste K_m-Wert ermittelt wurde. DI3 β HSD – Pregnenolon; AtHSD1 – 5 α -Pregnan-3,20-dion;
AtHSD2 – 5 α -Pregnan-3 β -ol-20-on. Sofern die Standardfehler (STF) angegeben sind, stellen die
spezifischen Aktivitäten Mittelwerte aus drei unabhängigen Messungen dar.

DI3βHSD		At	HSD1	AtHSD2		
Substrat- konzentration [mM]	Spezif. Aktivität [µkat/kg] (±STF)	Substrat- konzentration [mM]	Spezif. Aktivität [µkat/kg] (±STF)	Substrat- konzentration [mM]	Spezif. Aktivität [µkat/kg] (±STF)	
0,01	41,06 (6,7)	0,01	450,88 (59,27)	0,0002	43,16 (-)	
0,02	48,18 (4,99)	0,02	626,37 (141,07)	0,0004	41,59 (-)	
0,03	55,89 (1,73)	0,04	821,44 (171,81)	0,0006	86,49 (-)	
0,04	66,01 (1,84)	0,06	903,89 (176,72)	0,0008	124,69 (-)	
0,05	71,42 (5,14)	0,08	990,7 (127, 64)	0,001	187,92 (34,32)	
0,06	91,27 (19,84)	0,1	1062,56 (128,61)	0,002	228,73 (12,57)	
0,08	97,93 (21,72)	0,2	1262,37 (138,21)	0,004	281,93 (19,91)	
0,1	104,13 (20,62)	0,4	1377,87 (131,55)	0,006	382,82 (58,13)	
0,2	111,88 (23,06)	0,6	1409,44 (167,09)	0,008	421,68 (70,71)	
0,3	117,3 (21,58)			0,01	413,12 (38,8)	
0,4	137,66 (14,13)			0,02	422,48 (28,56)	
0,5	144,46 (15,73)			0,04	547,66 (103,36)	
0,6	130,82 (1,49)			0,06	605,58 (150,08)	
0,8	145,24 (0,55)			0,08	609,96 (100,53)	
				0,01	648,71 (50,64)	
				0,02	639,62 (95,71)	

Tabelle A-10Wertetabellen der Michaelis-Menten Kinetiken mit dem Substrat Campesterol.Es wurden drei unabhängige Messungen durchgeführt. Standardfehler (STF) in Klammern.

DI3βHSD		AtHSD1			AtHSD2			
Substrat- konzentration [mM]	Spezif. Akti [µkat/kg] (±	ivität :STF)	Substrat- konzentration [mM]	Spezif. Ak [µkat/kg] (:	tivität ±STF)	Substrat- konzentration [mM]	Spezif. Ak [µkat/kg] (:	tivität ±STF)
0,03	2,49 ((0,12)	0,005	2,87	(0,15)	0,005	3,52	(0,16)
0,04	2,27 ((0,13)	0,01	2,48	(0,12)	0,01	3,29	(0,17)
0,05	2,97 ((0,15)	0,015	3,34	(0,17)	0,015	3,24	(0,16)
0,06	3,86 ((0,19)	0,02	4,06	(0,23)	0,02	4,99	(0,25)
0,07	4,16 ((0,35)	0,025	5,69	(0,28)	0,025	5,13	(0,24)
0,08	4,63 ((0,10)	0,03	6,61	(1,08)	0,03	6,75	(0,38)
0,1	5,40 ((0,27)	0,035	7,94	(0,41)	0,035	6,25	(0,31)
0,125	6,81 ((0,33)	0,04	7,64	(0,38)	0,04	7,74	(0,92)
0,15	7,48 ((0,37)	0,05	10,75	(0,56)	0,05	8,93	(0,09)
0,2	8,17 ((0,42)	0,08	20,09	(1,01)	0,06	10,84	(0,54)
			0,1	19,82	(1,07)	0,07	10,88	(0,61)
			0,125	26,06	(1,31)	0,08	14,65	(1,02)
			0,15	28,22	(1,42)	0,1	16,42	(0,82)
			0,2	30,50	(1,53)	0,125	11,73	(0,77)

Abbildung A-3 LCQ-Massenspektren nach Umsetzung mit 28-Homoteasteron (0,1 mM) **a**) Kontrollprobe **b**) ATHSD2. Die Ordinate stellt die relative Intensität in % dar. Die Abszisse das Masse/Ladungsverhältnis m/z.

Tabelle A-11	Wertetabellen der kinetis	schen Messungen mi	it dem Substrat	28-Homoteasteron.
Es sind die Mitt	telwerte von zwei Messunge	en aufgeführt. Standard	dabweichungen (\$	STA) in Klammern.

	AtHSD1	AtHSD2		
Substrat- konzentration [mM]	Spezif. Aktivität [µkat/kg] (±STA)	Substrat- konzentration [mM]	Spezif. Aktivität [µkat/kg] (±STA)	
0	12,7 (11,9)	0	6,3 (0,7)	
0,03	85,9 (17,6)	0,03	28,5 (2,0)	
0,04	51,6 (5,2)	0,04	36,1 (2,1)	
0,05	126,1 (17,3)	0,07	43,3 (6,4)	
0,06	93,8 (28,8)	0,08	57,3 (1,8)	
0,07	65,5 (9,5)	0,09	41,4 (5,9)	
0,08	140,1 (25,1)	0,1	39,1 (8,2)	
0,09	110,1 (27,3)			
0,1	155,9 (12,5)			

Abbildung A-4 Phänotyp der Mutante hsd2-1 im Alter von 6 Wochen und 14 Wochen

- a) Wildtyp-Pflanze (WT) und *hsd2-1* Pflanzen gleichen Alters (6 Wochen),
 b) homozygote *hsd2-1* Pflanze (14 Wochen). Die Rosettenblätter zeigen eine beginnende Seneszenz und die einzige Blüte führte zu keiner Schotenbildung. Der Lebenszyklus von WT-Pflanzen diesen Alters ist zum größten Teil schon beendet.

human3bHSDI D13bHSD AtHSD1 AtHSD2	MTGWSCLVTGAGGFLGQRIIRLLVKEKELKEIRVLDKAFGPELREEFSKLQN-K MSSKPRLEGKVAIITGAASGIGEETARLFVEHGASVVVADVQDELGRQVVASVNSD MSGK-RLDGKIVIITGGASGIGAESVRLFTEHGARVVIVDVQDELGQNVAVSIG-E MSGL-RLDGKIAIITGGASGIGAEAVRLFTDHGAKVVIVDFQEELGQNVAVSVG-K * * *
human3bHSDI D13bHSD AtHSD1 AtHSD2	TKLTVLEGDILDEPFLKRACQDVSVIIHTACIIDVFGVTHRESIMN DKISYYHCDVRDEKQVAATVRYAVEKYGRLDIMLSNAGVFGALMTNVIDLDMVDFENVLA DKASYYHCDVTNETEVENAVKFTVEKYGKLDVLFSNAGVIEPFVS-ILDLNLELDRTIA DKASFYRCDVTNEKEVENAVKFTVEKYGKLDVLFSNAGVMEQPGS-FLDLNLEQFDRTMA
human3bHSDI D13bHSD AtHSD1 AtHSD2	VNVKGTQLLLEACVQASVPVFIYTSSIEVAGPNSYKEIIQNGHEEEPLENTWPAPYPHSK TNVRGVANTIKHAARAMVEGKVKGSIICTASVSASLGGMGPPAYTASK INLRGTAAFIKHAARAMVEKGIRGSIVCTTSVAAEIAGTAPHGYTTSK VNVRGAAAFIKHAARAMVEKGTRGSIVCTTSVASEIGGPGPHAYTASK * *
human3bHSDI D13bHSD AtHSD1 AtHSD2	KLAEKAVLAANGWNLKNGGTLYTCALRPMYIYGEGSRFLSASINEALNNNGILSSVGKFS HAVLGLVKGACAELGVHGIRVNSVAPYGVATPMPCSAYGMTPSQMEEAN HGLLGLIKSASGGLGKYGIRVNGVAPFGVATPLVCNGFKMEPNVVEQNT HALLGLVKSACGGLGKYGIRVNGVAPYAVATAINSRD-EETVRMVEEYS
human3bHSDI Dl3bHSD AtHSD1 AtHSD2	TVNPVYVGNVAWAHILALRALQDPKKAPSIRGQFYYISDDTPHQSYDNLNYTLSKE NSRANLKGVVLKAKHVAEAALFLASDESAYVSGQNLAVDGGFTVVR- SASANLKGIVLKARHVAEAALFLASDESAYVSGQNLAVDGGYSVVKP AATGILKGVVLKARHVAEAALFLASDDSAYVSGQNLAVDGGYSVVKP
human3bHSDI Dl3bHSD AtHSD1 AtHSD2	FGLRLDSRWSFPLSLMYWIGFLLEIVSFLLRPIYTYRPPFNRHIVTLSNSVFTFSYKKAQ
human3bHSDI D13bHSD AtHSD1 AtHSD2	RDLAYKPLYSWEEAKQKTVEWVGSLVDRHKETLKSKTQ

Abbildung A-5 Alignment (ClustIW, Matrix Blosum62) der Aminosäuresequenzen der 3 β -HSD/KSI Typ I des Menschen (human3bHSDI), der Δ^5 -3 β -HSD *D. lan*ata (DI3bHSD), der AtHSD1 und AtHSD2.

Mit einem Stern * sind die Aminosäuren charakteristischer Motive der SDR-Familie gekennzeichnet. Die human3bHSDI (P14060 UniProt) besitzt anstelle des GxxxGxG Motives ein GxxGxxG Motiv (Simard et al. 2005). Mit einem Dreieck ▼ sind die AminosäurenTyr253, Asp257 und/oder Asp258 (Nummerierung bezogen auf die human3bHSDI), für welche mittels Deletionsmutanten eine katalytische Rolle für die Isomerase-Aktivität festgestellt wurde (Thomas et al. 1995 und 2003). Die Farben spiegeln die Eigenschaften der AS durch die jeweilige Seitenkette wieder. rot: hydrophob; rosa: basisch; grün: neutral, polar; blau: sauer.

Abbildung A-6 Katalytische Funktion der SDR1 während der Abscisinsäure-Biosynthese. SDR1 katalysiert in Abhängigkeit von NAD⁺ die Umwandlung von Xanthoxin zu Abscisinaldehyd (Cheng et al. 2002). Abbildung aus Schwartz et al. (1997).

Abbildung A-7 Massenspektren des Progesterons (a) und des 5-Pregnen-3,20-dions (b), (NIST-Bibliothek, National Institute of Standardisation, USA). Die Ordinate stellt die relative Intensität in % dar. Die Abszisse das Masse/Ladungsverhältnis *m*/z.

Ein sehr charakteristisches Fragmention mit einer hohen relativen Intensität im Massenspektrum des Progesterons, und auch anderer Steroide mit Δ^4 -3-Keto-Struktur ist *m/z*: 124 (Hammerum und Djerassi 1975). Das Massenspektrum des 5-Pregnen-3,20-dions hingegen, weist nur eine geringe relative Intensität dieses Fragmentions auf.

Danksagung

Die vorliegende Arbeit wurde am Institutsbereich Pharmazeutische Biologie und Pharmakologie des Instituts für Pharmazie der Naturwissenschaftlichen Fakultät I der Martin-Luther-Universität Halle-Wittenberg in Halle (Saale) angefertigt.

Ich möchte mich herzlich bei den Mitarbeitern des Institutsbereiches bedanken, die mich bei der Anfertigung dieser Arbeit unterstützt haben, mich für die freundliche und zum Teil freundschaftliche Atmosphäre bedanken.

Prof. Dr. Beate Diettrich danke ich für die Überlassung des Themas und die Bereitstellung der Stelle als wissenschaftlicher Mitarbeiter sowie für ihr Interesse am Fortgang der Arbeit.

Prof. Dr. Werner Roos danke ich für das sehr kritische Lesen der vorliegenden Arbeit, die hilfreichen Anregungen und Hinweise sowie fachlichen Gespräche.

Prof. Dr. Birgit Dräger danke ich für die fruchtbaren fachlichen Diskussionen, Gespräche und wertvollen Hinweise zur Auswertung der Daten, sowie das kritische Lesen der vorliegenden Arbeit.

Dr. Peter Lindemann als Leiter der Arbeitsgruppe sei für die Betreuung der Arbeit, die Anregung zum selbstständigen Arbeiten und die Unterstützung bei der Vermessung der GC/MS-Proben und der Proben am LCQ-Massenspetrometer gedankt. In diesem Zusammenhang möchte ich mich auch bei Frau Manuela Woigk des Institutsbereichs Pharmazeutische Technologie und Biopharmazie bedanken.

Dr. Bettina Rahfeld danke ich für die zahlreichen Gespräche und Ratschläge die wesentlich zur Motivation und damit zum Gelingen dieser Arbeit beigetragen haben und auch für die gute Atmosphäre während der Betreuung der Praktika.

Michael Teuber danke ich für die Überlassung des rekombinanten Konstruktes der Δ^5 -3 β -HSD sowie für Tipps und Ratschläge bei experimentellen Arbeiten, vor allem für die Unterstützung während der Proteinreinigung.

Dr. Andrea Peterson danke ich für die gute Zusammenarbeit in Bezug auf die allzu zahlreichen DNA-Sequenzierungen.

Prof. Lydia R. Galagovsky und Dr. Javier A. Ramírez des Institutes für Organische Chemie der Universität Buenos Aires danke ich für die Überlassung des 28-Homoteasterons.

Nina Hildebrandt danke ich für die experimentellen Beiträge der Transkriptionsanalysen, die sie im Rahmen einer Diplomarbeit geleistet hat.

Stefan Biastoff und Charlotte Harnisch sei für das aufmerksame Lesen der Arbeit, die Aufmunterung und jegliche Unterstützung gedankt.

Für die Unterstützung bei tausend kleinen Dingen des Laboralltags möchte ich mich vor allem bei Frau Beate Schöne und Frau D. Watzka und für die Vermessung zahlloser GC/MS-Proben bei Frau Brigitte Marx bedanken.

Stefan Strauss, Heike Kaiser, Yvonne Sichhardt, Lisa, Ute Richter, Ulrike Müller und allen nicht namentlich genannten Mitarbeitern des Institutes danke ich für ein gutes Arbeitsklima, den Erfahrungsaustausch und die gute Laune in den Kaffeepausen.

Mein besonderer persönlicher Dank gilt meinen Großeltern für die umsorgende Betreuung meiner lieben Elise.

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbständig und nur unter der Benutzung der angegebenen Hilfsmittel und Quellen erstellt habe, wobei die aus anderen Werken wörtlich oder inhaltlich entnommenen Stellen als solche gekennzeichnet wurden.

Die Dissertation wurde keiner anderen Hochschule oder Universität vorgelegt.

Halle (Saale), Oktober 2007

(Melanie Witt)

Lebenslauf

Persönliche Daten

Name:	Melanie Witt
Geburtsdatum:	03.12.1975
Geburtsort:	Halle/Saale
Nationalität:	deutsch
Familienstand:	ledig

Schulbildung

09/82 — 08/90	Erste Polytechnischen Oberschule Halle-Neustadt in Halle
09/90 — 08/91	Erweiterte August-Hermann-Francke-Oberschule in Halle
09/91 – 02/93	Gymnasium Alte Landesschule Korbach in Korbach, Hessen
03/93 – 09/95	Landesgymnasium LATINA August-Hermann-Franke in Halle

Studium

10/95 – 09/99	Hochschulstudium der Pharmazie an der Martin-Luther-Universität Halle- Wittenberg
10/99 – 03/00	Diplomarbeit am Institut für Pharmazeutische Biologie der Martin-Luther- Universität Halle-Wittenberg zum Thema: "Aufnahme, Transport und Transformation von ¹⁴ C ₄ -Cholesterol in Pflanzen von <i>Digitalis lanata</i> EHRH."
04/00 - 09/00	Praktikum in der "Apotheke am Bergmannstrost", Halle
11/00	Erteilung der Approbation als Apothekerin
12/00	Erlangung des Diploms

Beruf und Promotion

10/00 — 09/01	Wissenschaftliche Mitarbeiterin am Leibniz-Institut für Pflanzenbiochemie IPB Halle, Abteilung "Stress- und Entwicklungsbiologie"
09/01 – 10/02	Elternzeit
11/02 – 04/07	Wissenschaftliche Mitarbeiterin am Institut für pharmazeutische Biologie und Pharmakologie der Martin-Luther-Universität Halle Wittenberg
05/07 – 07/07	Apothekerin in der Filialapotheke "Stadtgut-Apotheke", Löbejün
11/07	Apothekerin in der "Schlosspark Apotheke", Berlin

Berlin, 9.10.2007