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Introduction

The study of long time behaviour of solutions to nonlinear dissipative evolutionary equa-

tions has attracted the interest of many mathematicians for a long time. The research in

this field has been focused principally on two aspects. One is concerned with the asymp-

totic behaviour of families of global solutions for initial data starting from any bounded set

in certain Sobolev space with the aim to find a compact invariant set which absorbs these

solutions, that is, an attractor. We refer to Temam [Tem88], Hale [Hal88], and Babin and

Vishik [BV92] for a comprehensive study of this subject.

Another important aspect is the study of the convergence to an equilibrium of global

bounded solutions as time goes to infinity. In the ODE case, the classical theory of Lya-

punov functions and La Salle’s invariance principle allow to prove convergence of global

bounded solutions to an equilibrium provided that the set of equilibrium points is finite

or discrete. This condition can be checked in many problems arising in applications. The

same technique can be used for PDEs, but in this case, it is not so easy to describe the

structure of the set of equilibrium points. Therefore one should look for new methods to

establish convergence to steady state for such problems.

For nonlinear dissipative evolutionary equations there exist some papers which de-

velop new techniques in different settings and provide positive results in this direction,

we refer to [Zel68, Mat78, Sim83, Lio84, HR92, HP92, BP97, Jen98, RH99]. A seminal

contribution was made by Simon [Sim83], who was the first to observe that in case of

analytic nonlinearities and under suitable growth conditions any global bounded solution

of a gradient-like evolution equation converges to an equilibrium. His idea relies on a
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generalization of the so-called ojasiewicz inequality for analytic functions defined in finite

dimensional space Rn. Jendouby [Jen98] simplified Simon’s proof and obtained a cor-

responding convergence result for a class of hyperbolic evolution equations. Since then

the ojasiewicz-Simon inequality has been used by many authors to prove convergence to

steady state of bounded solutions of several types of evolution equations, see for example

[AFIR01, AF01, HT01, AP03, Chi03, FIRP04, WZ04, CF05, PW06].

Actually, the problems studied in the aforementioned papers are related to the first

order equation

u(t) + E ′(u(t)) = t > (0.0.1)

and the second order equation

(t) + u(t) + E ′(u(t)) = t > (0.0.2)

respectively, where the nonlinear term E ′ is the Fréchet derivative of a functional E ∈ C (V),

and V is a Hilbert space which is densely and continuously embedded into another Hilbert

space H. The main assumption in all of the above papers to prove convergence to single

steady state is that the functional E satisfies the ojasiewicz-Simon inequality near some

point ϑ ∈ V in the ω-limit set, that is, there exist constants θ ∈ ( / ], C � and σ >

such that for all v ∈ V with | v− ϑ |V< σ, there holds

| E(v) − E(ϑ) | −θ� C | E ′(v) |V ′

where V ′ denotes the topological dual of V.

A typical functional E, which satisfies the ojasiewicz-Simon inequality and often ap-

pears in applications, is given by

E(v) = α(v v) +

∫
Ω
Φ(x v)dx v ∈ V

where Ω is a bounded domain with smooth boundary in Rn, α : V × V → R is a bilinear,

continuous, symmetric, and coercive form, and the nonlinear term Φ(x ·) is a C (V) function

with suitable growth conditions. We refer to Chill [Chi03] for a comprehensive study of

this subject.
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As to nonlinear evolutionary equations with memory term there has been only some

progress concerning convergence to steady state. The reason for this lies essentially in

the fact that these problems do not generate in general a semi-flow in the natural phase

space. Another difficulty consists in finding Lyapunov functions for such problems which

are appropriate to investigate the asymptotic behaviour of global bounded solutions.

We will now describe some positive results in this direction. There are some papers

which deal with the equation

+ B u+

∫t

a(t− s)B u(s)ds+ E ′(u) = t > (0.0.3)

where B and B are closed, linear, self-adjoint, positive operators on a Hilbert space H.

The first positive result was obtained by Fašangová and Prüss in [FP99, FP01], where the

authors develop a method which combines techniques from nonlinear Volterra equations

in finite dimensions (cf. [GLS90]) and harmonic analysis of vector-valued functions (cf.

[Chi98]). The main problem of this approach is that in order to establish convergence to

an equilibrium one has to assume that the set of stationary points of (0.0.3) is discrete,

a condition that is not easy to verify and not fulfilled in general. Recently, Chill and

Fašangová [CF05], using ideas from Dafermos [Daf70] and [AF01], were able to prove that

under suitable conditions on the kernel a any global bounded solution u of (0.0.3) converges

to a steady state, provided that the functional E satisfies the ojasiewicz-Simon inequality

near some ϑ ∈ ω(u). Note that the latter allows to avoid additional assumptions on the

set of equilibria.

A series of papers is concerned with non-conserved phase field models with memory of

the form

ut + φt =

∫t

a(t− s)Δu(s)ds+ f (0.0.4)

φt =Δφ−Φ ′(φ) + u (0.0.5)
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complemented by Neumann boundary and initial conditions, and the corresponding vari-

ants in the conserved case. Concerning convergence to steady state, we refer to the pioneer-

ing works [AF01] and [AP03], in which the approach via the ojasiewicz-Simon inequality

is used for the first time in the context of phase field models.

During the last years many papers have also addressed the problem of global existence

and dynamic properties such as existence of attractors for the model (0.0.4)-(0.0.5) (and

variants of it) in different settings. We refer to Giorgi et. al. [GGP99] and Grasselli et. al.

[GP04] and the references given therein.

Further, there exist some results for the system

ut + φt =

∫t

a (t− s)Δu(s)ds+ f (0.0.6)

φt =

∫t

a (t− s)(Δφ−Φ ′(φ) + u)(s)ds+ f (0.0.7)

on [ ∞) ×Ω, Ω ⊂ Rn a bounded domain, together with Neumann boundary and initial

conditions. This system was proposed by Rotstein et. al. in [RBNCN01] as a phenomenolo-

gical model to describe phase transitions in the presence of a slowly relaxing internal

variable. Novick-Cohen [NC02] obtained global well-posedness of it in a weak sense in the

case n � , by means of the Galerkin method and energy estimates, where Φ(s) = (s − ) ,

the well-known double-well potential. In [GP04] existence of a uniform attractor is shown

for the system (0.0.6)-(0.0.7) with a quadratic potential.

The purpose of the present thesis is twofold. The first objective is to establish the

global strong well-posedness of (0.0.6)-(0.0.7) in the Lp-setting in the case n � , as well

as of its conserved version, that is,

ut + φt =γΔu+

∫t

a (t− s)Δu(s)ds+ f (0.0.8)

φt = −

∫t

a (t− s)Δ
[
Δφ−Φ ′(φ) + u

]
(s)ds+ f (0.0.9)

on [ ∞) × Ω, Ω ⊂ Rn (n � ) a bounded domain, together with Neumann boundary

condition for u φ, and Δφ as well as initial conditions.
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The second and main goal of this thesis consists in proving convergence to steady

state for the conserved phase field model with memory (0.0.8)-(0.0.9). To achieve this,

it is crucial to understand a simplified model which in abstract form can be written as a

nonlinear evolutionary equation in a real Hilbert space H of the form

u(t) +

∫t

a(t− s)E ′(u(s))ds = f(t) t > (0.0.10)

Here E ′ is the Fréchet derivative of a functional E ∈ C (V), where V is a Hilbert space

which densely and continuously injects into H. The scalar kernel a belongs to a certain

kernel class whose prototypical example is given by

a(t) = Ce−wtt−α t >

where C w α are positive constants with α ∈ ( ).

Problems of the form (0.0.10) also arise in several other applications such as e.g. non-

linear heat conduction with memory and nonlinear viscoelasticity. For these reasons, a

separate section of this thesis is devoted to the study of convergence to steady state of

global bounded solutions of the abstract equation (0.0.10).

This thesis is organized as follows. In Chapter 1, we describe a theoretical framework

and tools to solve abstract linear problems of parabolic type in Banach spaces. The chapter

consists of two parts. The first part is devoted to the class of sectorial operators and

subclasses of it, which play an important role in the theory of maximal regularity. This

will be the subject of the second part, where we will recall fundamental results in the

context of maximal regularity, such as a version of the well-known Dore-Venni theorem

due to Prüss and Sohr [PS90], the operator-valued version of the famous Mikhlin Fourier

multiplier theorem due to Weis [Wei01], and a resent result in the theory of abstract

parabolic Volterra equations due to Zacher [Zac05]. These results will be used in Chapter

3 and 4 to obtain optimal regularity estimates for linearized versions of the phase field

models to be studied.
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Chapter 2 gives an outline of the physical background of heat conduction in materials

with memory. On the basis of the discussion in [JF85, BFJ86] and [RBNCN01] we propose

a conserved phase field model, which can be interpreted as a non-isothermal Cahn-Hilliard

equation with memory and relaxing chemical potential.

In Chapter 3 we prove the global strong well-posedness of the non-conserved phase field

system with memory (0.0.6)-(0.0.7) in an Lp-setting. Assuming enough regularity of the

kernels a and a , we apply a recent result in the theory of abstract parabolic Volterra

equations, which was proved in [Zac05], to obtain a local strong solution in the framework of

Bessel potential spaces. To solve (0.0.6)-(0.0.7), we first show that this system is equivalent

to a semilinear problem of Volterra type of the form

v =

∫t

b(t− s)Δv(s)ds+H(v) + f(t) (0.0.11)

where H(v) is a non-local nonlinear term. Maximal regularity of an appropriate lineariza-

tion and the contraction mapping principle then yield the local well-posedness of (0.0.11).

Finally, global well-posedness of (0.0.6)-(0.0.7) (in the case of trivial history) is obtained

by means of energy estimates and the Gagliardo-Nirenberg inequality. The main result of

this chapter is stated in Theorem 3.2.2.

Chapter 4 is concerned with the conserved phase field model (0.0.8)-(0.0.9). Our proof

of the local strong well-posedness is again based on linearization and the contraction map-

ping principle. However, our approach to obtain maximal regularity for the linearized

problem differs from that in the previous chapter. Using inversion of the convolution (cf.

[Prü93, Thm. 8.6]) we reformulate the linear version of the system (0.0.8)-(0.0.9) as an

abstract system

(B + A)v = −B ϕ+ B h (0.0.12)

(B + A )ϕ = Av+ B h (0.0.13)

where the operator A is the canonical extension of the negative Laplacian in Lp(Ω) to
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Lp(R Lp(Ω)), and the operators Bi are the Volterra operators defined in (1.1.3) that corre-

spond to the kernels ∗ a and ∗ a , respectively. Further, if we assume that ϕ is known

in (0.0.12)-(0.0.13) then by the method of sums of operators, the unknown function v in

(0.0.12) can be represented as

v = −(B + A)− B ϕ+ (B + A)− B h (0.0.14)

Inserting this into equation (0.0.13) leads to the problem

(B + A + A(B + A)− B )ϕ = h (0.0.15)

If ϕ solves (0.0.15), then this together with (0.0.14) yields the solution of the system

(0.0.12)-(0.0.13).

As to (0.0.15), note that the method of sums is not applicable since the power angles

of the operators Bi, i = , are in general greater than π/ and therefore the parabolicity

condition is not satisfied. However, by imposing an extra assumption that roughly speaking

says that the imaginary parts of the Laplace transforms of ∗ a and ∗ a have the same

sign, we are able to use the operator-valued version of the Mikhlin Fourier multiplier

theorem in one variable to obtain existence and uniqueness for (0.0.15).

Having solved (0.0.8)-(0.0.9) locally, global strong well-posedness (in the case of trivial

history), Theorem 4.3.1, is obtained in the same fashion as for the non-conserved model by

using energy estimates and the Gagliardo-Nirenberg inequality.

Finally, in Chapter 5 we investigate convergence to steady state for the abstract model

(0.0.10) and use the ideas from this first part to prove convergence to steady state for

the conserved phase field model (0.0.8)-(0.0.9). To achieve this, we construct appropriate

Lyapunov functions and employ the ojasiewicz-Simon inequality for the energy functional

associated with the corresponding stationary problem. In the case of the phase field model

considered, this inequality has already been verified and used in the literature, while in the

case of the abstract model (0.0.10) it constitutes an assumption.
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We point out that due to the presence of the convolution term(s), the finding of suitable

Lyapunov functions in either case is a nontrivial task.

To describe how to tackle this problem, let us first consider the abstract models (0.0.1),

and (0.0.2) of first and second order, respectively. For the equation (0.0.1), a canonical

Lyapunov function is given by

Υ (t) = E(u(t))

while in the case of the second order equation (0.0.2),

Υ (t) = | u(t) |H +E(u(t))

is a Lyapunov function. In the first case, Υ (t) is good enough for the approach via

ojasiewicz-Simon inequality, whereas in the second case, one has to modify Υ (t), e.g. by

adding the term of mixed type δ 〈u E ′(u)〉H, where δ > is chosen sufficiently small.

Now, to find an appropriate Lyapunov function for the problem

u+

∫t

a(t− s)E ′(u(s))ds = (0.0.16)

our first idea is to isolate the nonlinear term E ′(·). To this purpose, we assume that there

exists a nonnegative, nonincreasing kernel k such that∫t

a(t− s)k(s)ds = for all t >

Then (0.0.16) can be written in equivalent form as

d

dt
(k ∗ u)(t) + E ′(u(t)) = (0.0.17)

where the symbol ∗ means the convolution of two functions supported in R+. Observe

that (0.0.17) interpolates (0.0.1) and (0.0.2) in the sense that k = leads to (0.0.1) while

k = δ + , δ denoting the Dirac delta, formally gives (0.0.2). The last observation suggests

to consider sums k = e + γ ∗ e with a constant γ > and e positive, decreasing. In this

case (0.0.17) becomes

d

dt
(e ∗ u)(t) + γ(e ∗ u)(t) + E ′(u(t)) = (0.0.18)
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and it turns out that indeed one can find a proper Lyapunov function for (0.0.18), namely

Υ(t) = (e∗ | u |H)(t) + E(u(t))

Similarly as in the case of second order, it is then possible to modify this function to

produce a new Lyapunov function which combined with the ojasiewicz-Simon inequality

allows to prove convergence to single steady state in V for equation (0.0.18), provided that

the range of the solution u is relatively compact in V. This result can be extended to

the case where a function f(t) appears on the right-hand side of equation (0.0.10). The

assumption on such f to make this work is essentially the same as in Huang and Takáč

[HT01].

The main results obtained in this chapter are Theorem 5.2.4 (abstract model) and

Theorem 5.3.4 (phase field model).





Chapter 1

Mathematical Preliminaries

In this chapter we describe a general theoretical framework, which is necessary to under-

stand this thesis. We begin by fixing some of the notations used throughout this thesis,

recall some basic definitions and give references concerning function spaces.

By N, Z, R, C we denote the sets of natural numbers, integers, real and complex numbers

respectively. Let further R+ = [ ∞), C+ = {λ ∈ C : Reλ > }. The capital letters X, Y,

Z will usually stand for Banach spaces; | · |X designates the norm of the Banach space X.

Also, we denote by X ′ the topological dual space of X and by (· ·) the duality relation. The

norm in X ′ is denoted by | · |X ′ , and is defined by | x ′ |X ′= {| (x ′ x) |: x ∈ X : | x |X= }.

For a Hilbert space H we denote by 〈· ·〉H its scalar product. The symbol B(X Y) means

the space of all bounded linear operators from X to Y, we write B(X) = B(X X) for short.

If A is a linear operator in X, D(A), R(A), N(A) stand for domain, range, and null space of

A, respectively, while ρ(A), σ(A) designate resolvent set and spectrum of A. For a closed

operator A we denote by DA the domain of A equipped with the graph norm.

If (Ω Σ μ) is a measure space then Lp(Ω Σ μ X), � p < ∞, denotes the space of all

Bochner-measurable functions f : Ω → X such that | f(·) |p is integrable. This space is also

a well-known Banach space when endowed with the norm

| f |p=

(∫
Ω

| f(t) |p dμ(t)

) /p

and functions equal a.e. are identified. Similarly, L∞(Ω Σ μ X) denotes the space of

(equivalence classes of) Bochner-measurable essentially bounded functions f : Ω → X, and

11
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the norm is defined according to

| f |∞=
t∈Ω

| f(t) |

For Ω ⊂ Rn open, Σ the Lebesgue σ-algebra, μ the Lebesgue measure, we abbreviate

Lp(Ω Σ μ X) to Lp(Ω X). In this case Wm
p (Ω X) is the space of all functions f : Ω → X

having distributional derivatives Dαf ∈ Lp(Ω X) of order | α |� m; the norm in Wm
p (Ω X)

is given by

| f |Wm
p (Ω X)=

⎛⎝ ∑
|α|�m

| Dαf |pp

⎞⎠ /p

for � p < ∞
and

| f |Wm∞ (Ω X)=
|α|�m

| Dαf |∞ for p = ∞
The spaces Wm

p (Ω X) are the well-known Sobolev spaces. Further, we define the Bessel

potential spaces Hsm
p (Ω X), by means of complex interpolation, i.e.

Hsm
p (Ω X) =

[
Lp(Ω X) Wm

p (Ω X)
]
s

for s ∈ ( )

We will also set Hsm
p (Ω X) = Lp(Ω X) if s = , and Hsm

p (Ω X) = Wm
p (Ω X) if s = , and

we denote by Hs
p(Ω X) the completion of C∞(Ω X) in Hs

p(Ω X), where C∞(Ω X) is the

space of test functions (see [Tri92] for the scalar case and [Ama95] for the vector valued

case).

As usual, C(k+ )− is the space of all Ck functions whose kth derivative are locally

Lipschitz continuous.

In the sequel we denote by f and f the Laplace transform and the Fourier transform of

a function f, respectively. The symbol ∗ means the convolution of two functions supported

on the half line, i.e. (a ∗ b)(t) =
∫t

a(t− s)b(s)ds.

1.1 Sectorial operators

Definition 1.1.1. Let X be a complex Banach space, and A be a closed linear operator in
X. We say that A is sectorial if D(A) = X, R(A) = X, N(A) = { }, (−∞ ) ⊂ ρ(A), and

| t(t+A)− |� M t > for some constant M < ∞
We denote the class of sectorial operators in X by S(X). Let further Σθ ⊂ C stand for

the open sector with vertex 0, opening angle θ, which is symmetric with respect to the

positive halfaxis R+, i.e.

Σθ = {λ ∈ C \ { } : | λ |< θ}



13

If A ∈ S(X) then ρ(−A) ⊃ Σθ, for some θ > and {| λ(λ + A)− |: | λ |< θ} < ∞.

Therefore, we may define the spectral angle φA of A ∈ S(X) by

φA = {φ : ρ(−A) ⊃ Σπ−φ
λ∈Σπ−φ

| λ(λ+A)− |< ∞}

We consider some important subclasses of S(X). A sectorial operator A in X is said to

admit bounded imaginary powers, if Ais ∈ B(X) for each s ∈ R and there is a constant C >

such that | Ais |� C for | s |� . The class of such operators will be denoted by BIP(X) and

we will call

θA = |s|→∞
| s |

| Ais |

the power angle of A. The class of operators that admit bounded imaginary powers was

introduced by Prüss and Sohr in [PS90]. An important application of the class BIP(X)

concerns the fractional power spaces

Xα = XAα = (D(Aα) | · |α) |x|α = |x| + |Aαx| < α <

where A ∈ S(X). If A belongs to BIP(X), a characterization of Xα in terms of complex

interpolation spaces can be derived.

Theorem 1.1.2. Assume that A ∈ BIP(X). Then

Xα = [X DA]α α ∈ ( )

the complex interpolation space between X and DA ↪→ X of order α.

For a proof we refer to Triebel [Tri78, pp. 103-104], or Yagi [Yag84].

Recall that for A ∈ S(X), � p � ∞, and γ ∈ ( ), the real interpolation space

(X DA)γ p defined e.g. by the K-method, coincides with the space DA(γ p) which is defined

by means of

DA(γ p) := {x ∈ X : [x]DA(γ p) < ∞}

where

[x]DA(γ p) =

⎧⎨
⎩

(∫∞
[tγ | A(t+A)− x |X]pd/dt

) /p � p < ∞
t> tγ | A(t+A)− x |X p = ∞

see e.g. [CGH00, Prop. 3].

For φ ∈ ( π] we define the space of holomorphic functions on Σφ by H(Σφ) = {f : Σφ →
C holomorphic}, and

H∞(Σφ) = {f : Σφ → C holomorphic and bounded}
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The space H∞(Σφ) with norm | f |
φ∞= {| f(λ) |: | λ |< φ} forms a Banach algebra. We

also set H (Σφ) := ∪α β< Hα β(Σφ), where Hα β(Σφ) := {f ∈ H(Σφ) : | f |
φ
α β< ∞}, and

| f |
φ
α β:=

|λ|�
| λαf(λ) | +

|λ|�
| λ−βf(λ) |

Given A ∈ S(X), fix any φ ∈ (φA π] and let Γ = (∞ ]eiψ ∪ [ ∞)e−iψ with φA < ψ < φ.

Then

f(A) =
πi

∫
Γ
f(λ)(λ−A)− dλ f ∈ H (Σφ)

defines via ΦA(f) = f(A) a functional calculus ΦA : H (Σφ) → B(X) which is a bounded

algebra homomorphism. We say that a sectorial operator A admits a bounded H∞-calculus

if there are φ > φA and a constant Kφ > such that

| f(A) |� Kφ | f |φ∞ for all f ∈ H (Σφ) (1.1.1)

The class of sectorial operators A which admit an H∞-calculus will be denoted by H∞(X)

and the H∞-angle of A ∈ H∞(X) is defined by

φ∞
A = {φ > φA : ( ) is valid }

If A ∈ H∞(X), the functional calculus for A on H (Σφ) extends uniquely to H∞(Σφ). See

[DHP03, Lemma 2.10].

We come now to R-sectorial operators. Let X Y be complex Banach spaces. We recall

that a family of operators T ⊂ B(X Y) is called R-bounded, if there is a constant C > and

p ∈ [ ∞) such that for each N ∈ N, Tj ∈ T, xj ∈ X and for all independent, symmetric

{− }-valued random variables εj on a probability space (Σ M μ) the inequality∣∣∣∣∣∣
N∑

j=

εjTjxj

∣∣∣∣∣∣
Lp(Σ Y)

� C

∣∣∣∣∣∣
N∑

j=

εjxj

∣∣∣∣∣∣
Lp(Σ X)

is valid. The smallest such C is called R-bound of T, we denote it by R(T). The concept

of R-bounded families of operators leads to the two important notions of R-bounded H∞-

calculus and R-sectorial operators, replacing bounded with R-bounded in the definitions of

H∞-calculus and sectorial operators.

Definition 1.1.3. Let X be a Banach space and suppose that A ∈ H∞(X). The operator A
is said to admit an R-bounded H∞- calculus if

R
{
h(A) : h ∈ H∞(Σθ) | h |θ∞�

}
< ∞

for some θ > . We denote the class of such operators by RH∞(X) and define the RH∞-
angle φR∞

A of A as the infimum of such angles θ.
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Definition 1.1.4. Let X be a complex Banach space, and assume that A is a sectorial
operator in X. Then A is called R- sectorial if

RA( ) := R
{
t(t+A)− : t >

}
< ∞

The R-angle φR
A of A is defined by means of

φR
A = {θ ∈ ( π) : RA(π− θ) < ∞}

where
RA(θ) := R

{
λ(λ+A)− : | λ |� θ

}
The class of R-sectorial operators will be denoted by RS(X). The class of R-sectorial

operators was introduced by Clément and Prüss in [CP01], where the inclusion

BIP(X) ⊂ RS(X)

and the inequality

φR
A � θA

were obtained in the special case, when the space X is such that the Hilbert transform

defined by

(Hf)(t) =
ε→ π

∫
ε�|s|� /ε

f(t− s)
ds

s
t ∈ R

is bounded in Lp(R X) for some p ∈ ( ∞). The class of spaces with this property will be

denoted by HT.

There is a well known theorem which says that the set of Banach spaces of class HT

coincides with the class of UMD spaces, where UMD stands for unconditional martingale

difference property. It is further known that HT-spaces are reflexive. Every Hilbert space

belongs to the class HT, and if (Σ M μ) is a measure space and X ∈ HT, then Lp(Σ M μ X)

is an HT-space for < p < ∞. For all of these results see the survey article by Burkholder

[Bur86].

Summarizing, if X is a Banach space of class HT we have the inclusions

RH∞(X) ⊆ H∞(X) ⊆ BIP(X) ⊂ RS(X) ⊆ S(X)

and the corresponding inequalities

φR∞
A � φ∞

A � θA � φR
A � φA � {| λ |: λ ∈ σ(A)}

For a detailed study of the mentioned topics, see for instance [DHP03], and also

[DDH+04].
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1.1.1 Examples

Volterra Operators

Definition 1.1.5. Let a ∈ L loc(R+) be of subexponential growth and suppose a(λ) �= for
all Re λ > . a is called sectorial with angle θ > (or merely θ-sectorial) if

| arg a(λ) |� θ

for all Reλ > .

Definition 1.1.6. Let a ∈ L loc(R+) be of subexponential growth and k ∈ N. a(t) is called
k-regular, if there is a constant c > such that

| λna(n)(λ) |� c | a(λ) |

for all Reλ > , and � n � k.

It is not difficult to see that convolutions of k-regular kernels are again k-regular. Fur-

thermore, k-regularity is preserved by integration and differentiation, while sums and dif-

ferences of k-regular kernels need not be k-regular. However, if a and b are k-regular

and

| a(λ) − b(λ) |� θ < π λ > (1.1.2)

then a+ b is k-regular as well, see [Prü93, p.70].

Some important properties of 1-regular kernels are contained in the following lemma.

Lemma 1.1.7. Suppose a ∈ L loc(R+) is of subexponential growth and 1-regular. Then

(i) a(iρ) := λ→iρ a(λ) exists for each ρ �= ;

(ii) a(λ) �= for each Reλ � ;

(iii) a(i·) ∈ W∞
loc(R \ { });

(iv) | ρa ′(iρ) |� c | a(iρ) | for a.a. ρ ∈ R;

(v) there is a constant c > such that

c | a(| λ |) |�| a(λ) |� c− | a(| λ |) | Reλ � λ �=

(vi) r→∞ a(reiφ) = uniformly for | φ |� π .

The following result expresses the fact that the inverse of an convolution operator

associated with a 1-regular and sectorial kernel belongs to the class BIP(Lp(R X)), for each

Banach space X of class HT, and p ∈ ( ∞).
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Theorem 1.1.8 ([Prü93]). Suppose X belongs to the class HT, p ∈ ( ∞), and let a ∈
L loc(R+) be of subexponential growth. Assume that a is 1-regular and θ-sectorial, where
θ < π. Then there is a unique operator B ∈ S(Lp(R X)) such that

(Bf)(ρ) =
a(iρ)

f(ρ) ρ ∈ R f ∈ C∞(R \ { } X) (1.1.3)

Moreover, B has the following properties:

(i) B commutes with the group of translations;

(ii) (μ+ B)− Lp(R+ X) ⊂ Lp(R+ X) for each μ > , i.e. B is causal;

(iii) B ∈ BIP(Lp(R X)), and the power angle θB = θa, where θa = {| a(λ) |: λ >

};

(iv) σ(B) = { /a(iρ) : ρ ∈ R \ { }}.

The next result provides information about the domain of the operator B in Theorem

1.1.8.

Proposition 1.1.9 ([Prü93]). Let the assumptions of Theorem 1.1.8 hold, let B be defined
by (1.1.3), and let α β � . Then

(i)
μ→∞ | a(μ) | μα < ∞ implies D(B) ↪→ Hα

p(R X);

(ii)
μ→∞ | a(μ) | μβ > and

μ→
| a(μ) |> imply H

β
p(R X) ↪→ D(B).

Elliptic Operators

Let E be a Banach space and A(ξ) denote a B(E)-valued polynomial on Rn, which homo-

geneous of degree m ∈ N, i.e.

A(ξ) =
∑

|α|=m

aαξ
α ξ ∈ Rn

where we use multi-index notation, and aα ∈ B(E).

Definition 1.1.10. The B(E)-valued polynomial A(ξ) is called parameter-elliptic if there is
an angle φ ∈ [ π) such that the spectrum σ(A(ξ)) of A(ξ) in B(E) satisfies

σ(A(ξ)) ⊂ Σφ for all ξ ∈ Rn | ξ |= (1.1.4)

We then call
φA := {φ : (1.1.4) holds} =

|ξ|=

| σ(A(ξ)) |

angle of ellipticity of A.
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The following result shows that differential operators

A(D) =
∑

|α|=m

aαD
α

where D := −i(∂ ∂n), with parameter-elliptic symbols A(ξ) =
∑

|α|=m aαξ
α admit a

bounded H∞-calculus.

Theorem 1.1.11 ([DHP03]). Let E be a Banach space of class HT, n m ∈ N, and
< p < ∞. Suppose A(D) =

∑
|α|=m aαD

α with aα ∈ B(E) is a homogeneous differential
operator of order m whose symbol is parameter-elliptic with angle of ellipticity φA. Let A
denotes its realization in X = Lp(Rn E) with domain D(A) = Hm

p (Rn E). Then A ∈ H∞(X)

with H∞-angle φ∞
A � φA, in particular A is R-sectorial with φR

A � φA.

1.2 Operator-valued Fourier Multipliers

Let X be a Banach space and consider the spaces Lp(R X) for < p < ∞. We denote by

D(R X) the space of X-valued C∞-functions with compact support and we let D ′(R X) :=

B(D(R) X) denote the space of X-valued distributions. The X-valued Schwartz space S(R X)

and the space of X-valued temperate distributions S ′(R X) are defined similarly. Let Y be

another Banach space. Then, given M ∈ Lloc(R B(X Y)), we may define an operator

TM : F− D(R X) → S ′(R Y) by means of

TMφ := F− MFφ for all Fφ ∈ D(R X) (1.2.1)

where F denotes the Fourier transform. Since F− D(R X) is dense in Lp(R X), we see that

TM is well-defined and linear on a dense subset of Lp(R X).

The following theorem, which is due to Weis [Wei01], contains the operator-valued

version of the famous Mikhlin Fourier multiplier theorem in one variable.

Theorem 1.2.1. Suppose X and Y are Banach spaces of class HT and let < p < ∞. Let
M ∈ C (R \ { } B(X Y)) be such that the following conditions are satisfied.

(i) R {M(ρ) : ρ ∈ R \ { }} := κ < ∞;

(ii) R
{
ρM ′(ρ) : ρ ∈ R \ { }

}
:= κ < ∞.

Then the operator TM defined by (1.2.1) is bounded from Lp(R X) into Lp(R Y) with norm

| TM |B(Lp(R X) Lp(R Y))� C(κ + κ )

where C > depends only on p, X, and Y.
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A rather short and elegant proof of this theorem is given in [DHP03].

An important result due to Kalton and Weis [KW01], which can be applied together

with Theorem 1.2.1, gives necessary conditions for the R-boundedness of the symbol of the

form M(ρ A), which is often encountered in applications.

Theorem 1.2.2. Let X be a Banach space, A ∈ RH∞(X) and suppose that {hλ}λ∈Λ ⊂
H∞(Σθ) is uniformly bounded, for some θ > φR∞

A , where Λ is an arbitrary index set. Then
{hλ(A) : λ ∈ Λ} is R-bounded.

Actually, the strong condition A ∈ RH∞(X) in this result may not be easy to check in

a general Banach space X. However, if X = Lp with < p < ∞ then from Kalton and Weis

[KW01, Thm. 5.3], it follows that

RH∞(X) = H∞(X) and φR∞
A = φ∞

A

1.3 Sums of closed linear operators

The following result, which is an extension of the well-known Dore-Venni theorem [DV87],

is due to Prüss-Sohr [PS90].

Theorem 1.3.1. Suppose X belongs to the class HT, and assume A B ∈ BIP(X) commute
in the resolvent sense and satisfy the strong parabolicity condition θA + θB < π. Then

(i) A+ B is closed and sectorial;

(ii) A+ B ∈ BIP(X) with θA+B � {θA θB};

(iii) there is a constant C > such that

| Ax | + | Bx |� C | Ax+ Bx | x ∈ D(A) ∩D(B)

In particular, if A or B is invertible, then A+ B is invertible as well.

The next result is known as the mixed derivative theorem and is due to Sobolevskii

[Sob64].

Theorem 1.3.2. Suppose A, B are sectorial operators in a Banach space X, commuting
in the resolvent sense. Assume that their spectral angles satisfy the parabolicity condition
φA +φB < π. Further suppose that A+ μB with natural domain D(A+ μB) = D(A)∩D(B)

is closed for each μ > and there is a constant M > such that

| Ax |X +μ | Bx |X� M | Ax+ μBx |X for all x ∈ D(A) ∩D(B) μ >
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Then there exists a constant C > such that

| AαB −αx |X� C | Ax+ Bx |X for all x ∈ D(A) ∩D(B) α ∈ [ ]

In particular, if A or B is invertible, then AαB −α(A + B)− is bounded in X, for each
α ∈ [ ].

1.4 Abstract parabolic Volterra equations

In this section, the basic theory of an parabolic Volterra equation is stated. This is done

by making use of the monograph of Prüss [Prü93]. This section is divided into two parts.

The first one is devoted to the concept of the resolvent, which is central for the theory

of linear Volterra equations. In the second part, a recent result in the theory of maximal

Lp-regularity for a parabolic Volterra equation due to Zacher [Zac05] is stated. Here we

will also cite a result due to Clément and Prüss [CP90], which is very useful to obtain

a-priori estimates.

We begin by giving the notions of solutions of abstract Volterra equations. Let X be a

complex Banach space, A a closed linear in general unbounded operator in X with dense

domain D(A), and a ∈ Lloc(R+) a scalar kernel. We consider the Volterra equation

u(t) +

∫t

a(t− s)Au(s)ds = f(t) t ∈ J (1.4.1)

where f ∈ C(J X), J = [ T ].

1.4.1 Resolvent families

Definition 1.4.1. A family {S(t)}t� ⊂ B(X) of bounded linear operators in X is called a
resolvent for (1.4.1) if the following conditions are satisfied.

(S1) S(t) is strongly continuous on R+ and S( ) = I;

(S2) S(t) commutes with A, which means that S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax for
all x ∈ D(A) and t � ;

(S3) the resolvent equation holds

S(t)x = x+

∫t

a(t− s)AS(s)xds for all x ∈ D(A) t �

Suppose S(t) is a resolvent for (1.4.1) and let u(t) be a mild solution of (1.4.1). If we

convole (1.4.1) with S(t), then from (S1)-(S3), it follows that

∗ u = S ∗ f
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i.e. S ∗ f is continuously differentiable and

u(t) =
d

dt

∫t

S(t− s)f(s)ds t ∈ J (1.4.2)

This is the variation of parameters formula for Volterra equation (1.4.1).

Definition 1.4.2. Equation (1.4.1) is called parabolic, if the following conditions hold.

(P1) a(λ) �= , /a(λ) ∈ ρ(A) for all Re λ > .

(P2) There is a constant M � such that H(λ) = (I+ a(λ)A)− /λ satisfies

| H(λ) |� M

| λ |
for all λ >

The notion of parabolicity yields to the following result Prüss [Prü93, Thm. 3.1].

Theorem 1.4.3. Let X be a Banach space, A a closed linear operator in X with dense
domain D(A), a ∈ Lloc(R+). Assume (1.4.1) is parabolic, and a(t) is k-regular, for some
k � .
Then there is a resolvent S ∈ Ck− (R+ B(X)) for (1.4.1), and there is a constant M >

such that the estimates

| tnS(n)(t) |� M for all t � n � k− (1.4.3)

| tkS(k− )(t) − skS(k− )(s) |� M | t− s | [ +
t

t− s
] � s < t < ∞ (1.4.4)

are valid.

Remark 1.4.1. If A ∈ S(X) with spectral angle φA < π and the kernel a is 1-regular and
θ-sectorial with θ < π, such that the condition of parabolicity θ+φA < π holds, then there
is a resolvent operator S ∈ C(( +∞) B(X)) for (1.4.1), which is also uniformly bounded in
R+.

1.4.2 Maximal regularity in Lp

The following definition introduced by Zacher [Zac05] collects the notions of sectoriality,

k-regularity and the conditions of Proposition 1.1.9.

Definition 1.4.4. Let a ∈ Lloc(R+) be of subexponential growth, and assume r ∈ N, θa > ,
and α � . Then a is said to belong to the class Kr(α θa) if

(K ) a is r-regular;

(K ) a is θa-sectorial;
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(K )
μ→∞ | a(μ) | μα < ∞,

μ→∞ | a(μ) | μα > ,
μ→

| a(μ) |> .

Further, K∞(α θa) := {a ∈ Lloc(R+) : a ∈ Kr(α θa) for all r ∈ N}. The kernel a is called
a K-kernel if there exist r ∈ N, θa > , and α � , such that a ∈ Kr(α θa).

A typical example of a K-kernel is given by

a(t) =
tα−

Γ(α)
e−ηt t >

which belongs to the class K∞(α απ) for every α > and η � .

The concept of K-kernels is very useful when working with Bessel potential spaces, since

it connects the order of the kernels with the order of the Bessel potential spaces. The

following result due to Zacher [Zac05] expresses this fact.

Corollary 1.4.5. Let X be a Banach space of class HT, p ∈ ( ∞), and J = [ T ] or
J = R+. Suppose a ∈ K (α θ) with θ < π, and assume in addition a ∈ L (R+) in the case
J = R+. Then the restriction B := B|Lp(J X) of the operator B constructed in Theorem 1.1.8
to Lp(J X) is well-defined. The operator B belongs to the class BIP(Lp(J X)) with power
angle θB � θB = θa and is invertible satisfying B− w = a∗w for all w ∈ Lp(J X). Moreover
D(B) = Hα

p(J X).

The next result gives necessary and sufficient conditions for the existence of a unique

solution u of (1.4.1) in the space

Hα+κ
p (J X) ∩Hκ

p(J DA)

Theorem 1.4.6 (Zacher, [Zac05]). Let X be a Banach space of class HT, p ∈ ( ∞),
J = [ T ] or R+, and A an R-sectorial operator in X with R-angle φR

A. Suppose that a

belongs to K (α θa) with α ∈ ( ) and that in addition a ∈ L (R+) in the case J = R+.
Further let κ ∈ [ /p) and α + κ �= { /p + /p}. Assume the parabolicity condition
θa + φR

A < π. Then (1.4.1) has a unique solution in Hα+κ
p (J X) ∩ Hκ

p(J DA) if only if the
function f satisfies the subsequent conditions:

(i) f ∈ Hα+κ
p (J X);

(ii) f( ) ∈ DA( + κ
α − pα p), if α+ κ > /p;

(iii) f( ) ∈ DA( + κ
α − α − pα p), if α+ κ > + /p.

The next result is due to Clément and Prüss [CP90].
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Theorem 1.4.7. Let X be a Banach space, � p < ∞, ν ∈ L loc(R+) nonnegative,
nonincreasing, and let Bp be defined in Lp(R+ X) by

(Bpu)(t) =
d

dt
(ν ∗ u)(t) t � u ∈ D(Bp)

with domain
D(Bp) = {u ∈ Lp(R+ X) : ν ∗ u ∈ Wp(R+ X)}

Then Bp is m-accretive. In particular, if X = H is a Hilbert space, then∫T

〈Bpu(t) u(t)〉 | u |
p−
H dt � T >

for each u ∈ D(Bp).

Remark 1.4.2. Let a be a 1-regular and θ-sectorial kernel with θ < π. Let B be the operator
from Proposition 1.1.9 associated with a, and assume that there exists ν ∈ L loc(R+)

nonnegative, and nonincreasing, such that a ∗ ν = . Then from Theorem 1.4.7, it follows
that (Bu)(t) = (Bpu)(t) = d

dtν ∗ u(t), for each u ∈ D(B) ∩ D(Bp). In particular for p =

and D(B) = Hα(J L (Ω)), it follows that∫T

〈Bu u〉dt =

∫T 〈
d

dt
ν ∗ u u

〉
dt �





Chapter 2

Physical background

2.1 Heat conduction

In this section we discuss a mathematical model for the process of heat conduction in

materials with memory. We begin our discussion with a constitutive relation between the

heat flux and the temperature u. A simple relation for it is given by

q = −λ∇u (2.1.1)

where λ > . (2.1.1) is well-know as Fourier’s law for the heat flux. Assuming that ut =

− q then it follows from (2.1.1) the diffusion equation

ut − λΔu = (2.1.2)

where λ is the thermal diffusivity. The diffusion equation has the unphysical property

that if a sudden change of temperature is made at some point on the body, it will be felt

instantly everywhere, though with exponentially small amplitudes at distant points, i.e.

the diffusion gives rise to infinite speeds of propagations. The problem of infinite speeds

of propagation generated by diffusion were first discussed in the work of Cattaneo [Cat49].

Later [Cat58] proposed the equation

τ
d

dt
q + q = −λ∇u (2.1.3)

for the heat flux (see also Maxwell [Max67]), where τ > . From (2.1.3), we obtain a

telegraph equation

utt +
τ
ut = r Δu (2.1.4)

25
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with r = λ/τ. Equation (2.1.4) is hyperbolic and it transmits waves of temperature with

speed r. The waves are attenuated as a result of relaxation, and steady heat flow may be

induced by temperature gradients. Equation (2.1.3) can be expressed as an integral over

the history of the temperature gradient,

q(t x) = −
λ

τ

∫t

−∞
(

−
t− s

τ

)
∇u(s x)ds

A more general form for the heat flux is

q(t x) = −

∫t

−∞ a(t− s)∇u(s x)ds (2.1.5)

where a(t) is a positive, decreasing relaxation function that tends to zero as t → ∞.

Integral expressions like (2.1.5) are also used in Boltzmann’s theory of linear viscoelasticity

to express the present value of the stress in term of past values of the strain or strain of rate

(see Boltzmann [Bol76], Maxwell [Max67], and Volterra [Vol09a], [Vol09b], for the early

history of linear viscoelasticity).

Using Cattaneo-Maxwell’s equation (2.1.3) and the works of Coleman and collaborators

[CN60, Col64, CM66, CG67], Gurtin and Pipkin [GC68] give a general constitutive theory

for rigid heat conductors that propagate waves. They consider after linearization, the

expression for the internal energy and the heat flux q as follows

e(t x) = c+ νu(t x) +

∫t

−∞ b(t− s)u(s x)ds (2.1.6)

and

q(t x) = −

∫t

−∞ a(t− s)∇u(s x)ds (2.1.7)

where ν �= , a(t) and b(t) are positve, decreasing relaxation functions that tend to zero

as t → ∞. By Coleman and Gurtin [CG67] we could also consider the heat flux as a

perturbation of Fourier’s law, that is

q(t x) = −γ∇u−

∫t

−∞ a(t− s)∇u(s x)ds (2.1.8)

where γ is a positive constant, which represent an instantaneous conductivity of heat.

Equations (2.1.6) and (2.1.8) yield the heat equation with memory:

νu+

∫t

−∞ b(t− s)u(s)ds = γΔu+

∫t

−∞ a(t− s)Δu(s)ds (2.1.9)

The prototype of relaxation functions, that we consider throughout this work, is given

by

a(t) =
tα−

Γ(α)
−βt and b(t) = t >



27

where α > and β � . Observe that some of these kernels enjoy the property of having

a fast and slow relaxation (e.g. if α < ). The fast relaxation at time t near to zero

corresponds to an instantaneous thermal conductivity. We refer the reader to [JP89, JP90,

JCVL96] for a modern discussion of these topics.

2.2 Phase field systems with memory

In this section we discuss a non-conserved as well as conserved phase field model with

memory. For the non-conserved phase field model with memory reads as

ut+
l
φt =

∫t

a (t− s)Δu(s)ds+ f in J×Ω (2.2.1)

τφt =

∫t

a (t− s)

[
ξ Δφ+

φ− φ

η
+ u

]
ds+ f in J×Ω (2.2.2)

∂ u = ∂ φ = on J× ∂Ω

u( x) = u (x) φ( x) = φ (x) in Ω

where

f (t x) =

∫
−∞ a (t− s)Δu(s x)ds (t x) ∈ J×Ω

f (t x) =

∫
−∞ a (t− s)

[
ξ Δφ+

φ− φ

η
+ u

]
(s x)ds (t x) ∈ J×Ω

contains the history of the system; we refer to [RBNCN01] for the physical background.

2.2.1 Conserved model

We denote by φ the concentration of one of the two components in the alloy, and by j the

concentration flux. The corresponding physical law at constant temperature u is given by

τφt = −div j (2.2.3)

Classical theory assumes j to be proportional to the gradient of the local chemical potential

μ, i.e.,

j = −ξ ∇μ (2.2.4)

The free-energy Fu at constant temperature u is assumed to be given by an expression

of the form

Fu(φ) =

∫
Ω

[
ξ

| ∇φ | +Φ(φ) − ρuφ− u

]
dx
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where ρ � denotes an entropy coefficient (see Caginalp-Fife [CF88]) and the term −ρuφ

corresponds to the entropic contribution to the free-energy, due to the difference in the

entropy densities of the two components of the alloy. The functional derivative of Fu with

respect to φ is then given by

δFu

δφ
= −ξ Δφ+Φ ′(φ) − ρu

By Cahn-Hilliard [CH58], it follows that

μ ≡ δFu

δφ
= −ξ Δφ+Φ ′(φ) − ρu (2.2.5)

So, at time t, μ is completely determined by the concentration φ and temperature u. In

the isothermal case equations (2.2.3)-(2.2.5) yield the standard Cahn-Hilliard equation

φt = ξ Δ
(
−ξ Δφ+Φ ′(φ)

)
where Φ ′(φ) = k(φ − φ), which represents a double-well potential.

If we assume that the temperature also varies in time and space (that is u = u(t x)),

then the internal energy e of the system is given by

e = −
δFu

δu

where the presence of φ is due to the fact that it may also be considered as a form of

energy. From the energy equation it follows that

ut + ρφt = −div q (2.2.6)

where q is the heat flux in the alloy.

Equations (2.2.3)-(2.2.6) yield the non-isothermal Cahn-Hilliard equation

ut + ρφt = −div q

φt = ξ Δ
(
−ξ Δφ+Φ ′(φ) − ρu

)
Using the argument given in [RBNCN01], the relaxed chemical potential can be written as

μ |rel=

∫t

−∞ a (t− s)
δFu

δφ
(s)ds

where a denotes a history kernel. If we assume that μ contains only a relaxing chemical

potential μ |rel and a ( ) is bounded, then there is no instantaneous contribution from

the history of the system to the chemical potential to μ |rel ( ). This can be avoided by

considering relaxation functions of the form

a (t) =
tα −

Γ(α )
e−βt t >



29

where α > and β � . This way, for α < we have a fast and a slow relaxation. The

fast relaxation near t = + responses to an instantaneous contribution of the concentration

history. Finally, equations (2.2.3) and (2.2.4) yield

τφt = ξ Δμ |rel (2.2.7)

Finally, if the alloy is contained in a region Ω ⊂ Rn equation (2.2.7) should be supple-

mented with boundary conditions on the boundary ∂Ω. These are usually of the form

∂ φ = ∂ μ |rel= (2.2.8)

where ∂ means the normal derivative at ∂Ω. The physical meaning of the second of these

two conditions is that none of the mixture can pass through the wall of the container, while

the first means a neutral wall, which does not interact with the substances. In addition, a

usual boundary condition for u is given by

∂ e = ∂ u = (2.2.9)

which means an insulated wall.

Since ∂ Φ ′(φ) = Φ ′′(φ)∂ φ = , the boundary conditions (2.2.8) and (2.2.9) take the

equivalent form

∂ u = ∂ φ = ∂ (Δφ) =

With these boundary conditions, equation (2.2.7) truly ensures conservation of mass and

energy, as can be seen by the divergence theorem, integrating (2.2.3) and (2.2.6) over Ω

Now we can write the equations of the conserved model

ut + ρφt = γΔu+

∫t

−∞ a (t− s)Δu(s)ds in J×Ω (2.2.10)

τφt = −ξ

∫t

−∞ a (t− s)Δ
[
ξ Δφ−Φ ′(φ) + ρu

]
(s)ds in J×Ω (2.2.11)

∂ u = ∂ φ = ∂ (Δφ) = on J× ∂Ω

u( x) = u (x) φ( x) = φ (x) in Ω

Here J is an interval of the form [ T ] with T > , and Ω is a smooth bounded domain in Rn.

The constants ρ, τ, and ξ are all positive and represent the latent heat, a relaxation time,

and a correlation length, respectively. The nonlinearity Φ : R → R is a given potential,

which satisfies certain growth conditions. In particular, Φ can be the double-well potential

Φ(s) = k(s − ) (k > ), which is considered frequently in the literature. The kernels a

and a are scalar kernels, which satisfy properties discussed bellow.

In the sequel, we will assume w.l.o.g. that all constants in the models (2.2.1)-(2.2.2)

and (2.2.10)-(2.2.11) are equal to one.





Chapter 3

A non-conserved phase field model

In this chapter we obtain the global well-posedness in the strong sense in the Lp-setting

for a phase field model with memory

ut+φt =

∫t

a (t− s)Δu(s)ds+ f in J×Ω (3.0.1)

φt =

∫t

a (t− s)
[
Δφ+ φ− φ + u

]
ds+ f in J×Ω (3.0.2)

∂ u = ∂ φ = on J× ∂Ω (3.0.3)

u( x) = u (x) φ( x) = φ (x) in Ω (3.0.4)

where

f (t x) =

∫
−∞ a (t− s)Δu(s x)ds (t x) ∈ J×Ω (3.0.5)

f (t x) =

∫
−∞ a (t− s)

[
Δφ+ φ− φ + u

]
(s x)ds (t x) ∈ J×Ω (3.0.6)

J = [ T ] is an interval on R, and Ω a smooth bounded domain in Rn.

3.1 Local well-posedness

This section is devoted to the local well-posedness of (3.0.1)-(3.0.4). To achieve this, we will

reduce the system (3.0.1)-(3.0.4) to a semilinear equation of Volterra type. Our strategy

to solve this semilinear equation consists of two steps. Firstly we solve the linear version of

it using maximal regularity tools (Theorem 1.4.6), and secondly we apply the contraction

31
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principle to solve nonlinear problem by means of linearization and results from first step

and the contraction mapping principle.

We would like to begin with some definitions. Let T > be given and fixed and let Ω

be a smooth bounded domain in Rn. For < δ � T and < p < ∞, we define the spaces

Z(δ) = Hα+κ
p ([ δ] X) ∩Hκ

p([ δ] DA)

Zi(δ) = H +αi+κi
p ([ δ] X) ∩Hκi

p ([ δ] DA)

Xi(δ) = Hαi+κi
p ([ δ] X)

Xi(δ) = H +αi+κi
p ([ δ] X)

for i = , where α αi > , and κ κi � , and X := Lp(Ω), and A is a closed linear operator

in X with dense domain D(A). The spaces Z(δ) and Zi(δ) denote the corresponding

spaces Z(δ) and Zi(δ) resp., with zero trace at t = . A similar definition holds for Xi(δ)

and Xi(δ). Whenever no confusion may arise, we shall simply write Z, Zi, etc., resp. Z,

Zi, etc. if δ = T . Furthermore, in case that κi ∈ [ /p) and αi + κi �= /p, we define the

natural phase spaces for Zi by

Yi
p =(X DA)γi p with γi = +

κi

+ αi
−
p( + αi)

for i =

Ỹi
p =(X DA)σi p with σi = +

κi

+ αi
−

+ αi
−
p( + αi)

for i =

Let J = [ T ] be an interval on R, and let Ω be a smooth bounded domain in Rn. We

consider the system

ut + φt =a ∗ Δu+ f in J×Ω (3.1.1)

φt =a ∗ Δφ+ a ∗ (φ− φ ) + a ∗ u+ f in J×Ω (3.1.2)

∂ u =∂ φ = on J× ∂Ω (3.1.3)

u( x) =u (x) φ( x) = φ (x) in Ω (3.1.4)

where f and f are as in (3.0.5)-(3.0.6).

For the discussion of equations (3.1.1)-(3.1.4), we will assume that the kernels ai belong

to K (αi θi), with θi ∈ ( π) and αi ∈ ( ) for i = , and we will set A = −Δ equipped

with Neumann boundary condition in X.

If we consider φ as known then equation (3.1.1) is equivalent to the two problems

(I)

⎧⎨
⎩ u∗

t = −a ∗Au∗ + f in J×Ω

u∗( ) = u in Ω



33

and

(II)

⎧⎨
⎩ wt = −a ∗Aw− φt in J×Ω

w( ) = in Ω

by means of the relation u = u∗ + w. Observe that Theorem 1.4.6 gives necessary and

sufficient conditions to obtain a strong solution of (I) and also for (II). Indeed, integrating

the equation (I) over [ t], we have

u∗ = − ∗ a ∗Au∗ + ∗ f + u

It is easy to show that a := ∗a is a kernel that belongs to the class K ( +α θ + π).

In addition, it is well-known that A = −Δ with Dirichlet- or Neumann- or Robin-boundary

conditions belongs to the class BIP(X) with power angle θA = . Moreover, from [CP01] it

follows that A ∈ RS(X) too, with R-angle φR
A = . Hence, (I) transforms into the equation

(1.4.1), with f = ∗ f + u . Therefore, we may apply Theorem 1.4.6. A similar argument

holds for (II).

Now we want to have a representation formula for the mild solution of (II). For this, we

take f = − ∗φt and a = ∗ a in (1.4.1). On the other hand, since A ∈ S(X) with spectral

angle φA = , it follows from Remark 1.4.1 that (1.4.1) admits a resolvent operator S.

Using this fact and the variation of parameters formula, it follows that the mild solution

w of equation (II) can be represented as

w =
d

dt
(−S ∗ ∗ φt) = −S ∗ φt (3.1.5)

Now substituting u = u∗ +w in (3.1.2) and using (3.1.5) it follows that

φt = −a ∗Aφ+ a ∗ (φ− φ ) + a ∗ u∗ − a ∗ S ∗ φt + f in J×Ω (3.1.6)

Defining

g(t) = ∗ a ∗ u∗ + ∗ f + φ and H(φ) = ∗ a ∗ (φ− φ ) − ∗ a ∗ S ∗ φt

then (3.1.6) can be rewritten as

φ = − ∗ a ∗Aφ+H(φ) + g(t) (3.1.7)

Now we will establish the equivalence between system (3.1.1)-(3.1.4) and equation (3.1.7).

To do so, we will first assume that the functions in (3.1.1)-(3.1.4) and (3.1.7) enjoy enough

regularity (later, we will make precise this aspect).
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We begin assuming that u∗ as well as φ are known in (I) and (3.1.7), respectively. Using

φ in equation (II) we obtain a function w, and by defining a new function u = u∗ +w one

can show (after an easy computation) that the pair (u φ) is a solution of (3.1.1)-(3.1.4).

The converse direction is trivial.

We will now make precise the type of regularity which we will give to the solutions.

A natural choice for the regularity class of the solution (u φ) of (3.1.1)-(3.1.4) is deliv-

ered by Theorem 1.4.6, therefore we can assume that (u φ) belongs to Z ×Z . In addition,

by applying the contraction mapping principle, we see that the solution φ of (3.1.7) belongs

to Z , if and only if H(φ) + g(t) ∈ X . From Corollary 1.4.5 we have that for each function

u∗ ∈ Lp(J X) (in particular in Z ) the function ∗a ∗u∗ is in X , hence g ∈ X , provided

that u∗ ∈ Lp(J X) and ∗ f + φ ∈ X .

From equation (II) and Theorem 1.4.6, it follows that the solution w of (II) belongs to

Z . Since u = u∗ + w is a solution of (3.1.1), we have u ∈ Z . On the other hand, since

u∗ ∈ Z and w ∈ Z , we have to impose a condition which relates the spaces Z and Z . In

fact, the embedding Z ↪→ Z is an admissible condition, which is equivalent to

α − α � κ − κ and κ � κ (3.1.8)

The following auxiliary results are needed to estimate the nonlinear term H(φ) in equa-

tion (3.1.7) in X . To this purpose we begin with an estimate for products of functions in

Bessel potential spaces.

Lemma 3.1.1. Let � κ < , α > , n ∈ N. Suppose that p > n + α . Then there is a
constant C > and an ε > such that

| uvw |Hκ+ε
p (Lp)� C | u |Z| v |Z| w |Z (3.1.9)

is valid for all u v w ∈ Z.

Proof. Let ρi > for i = such that

=
ρ

+
ρ

=
ρ

+
ρ

which in particular mean that ρ and ρ are greater than 2. Let ε > such that < κ+ε < ,
then from the characterization of Hκ+ε

p via differences (see [Tri92]) and with the aid of
Hölder’s inequality, it follows that

| uvw |Hκ+ε
p (Lp)� C | u |Hκ+ε

pρ (Lpρ )| v |Hκ+ε
pρ (Lpρ )| w |Hκ+ε

pρ (Lpρ ) (3.1.10)

Observe that (3.1.10) is valid for κ = ε = too.
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On the other hand, the mixed derivative theorem yields

Z ↪→ H
( −θ)α+κ
p (H θ

p )

Then for completion of the proof, we have to check the validity of the Sobolev embeddings

H
( −θ)α+κ
p (H θ

p ) ↪→ Hκ+ε
pρ (Lpρ ) and H

( −θ)α+κ
p (H θ

p ) ↪→ Hκ+ε
pρ (Lpρ )

Is easy to verify that the first embedding is valid for some θ ∈ ( ), provided

p � αn

(α− ε)

(
−
ρ

)
+
α− ε

(
−
ρ

)
=

αn

(α− ε)

(
ρ

)
+
α− ε

(
ρ

)
(3.1.11)

and the second one is valid for some θ ∈ ( ), provided

p � αn

(α− ε)

(
−
ρ

)
+
α− ε

(
−
ρ

)
(3.1.12)

Taking ρ = ρ = , (3.1.11) and (3.1.12) are equivalent to

p � αn

(α− ε)
+

(α− ε)

Then the claim follows from the strict inequality

αn

(α− ε)
+

(α− ε)
>
n

+
α

since ε > .

Lemma 3.1.2. Let X be a Banach space of class HT, and let J = [ T ], T > . Further
let b ∈ K (β θ), β > , θ < π. Assume that the constants κ � and ε ∈ ( ) are given
and suppose further that < β + κ < . Then for all u ∈ Hκ+ε

p (J X) there is a constant
c(T) > , such that

| b ∗ u |
Hβ+κ

p (J X)
� c(T) | u |Hκ+ε

p (J X) (3.1.13)

Moreover, c(T) → as T → .

Proof. We begin by recalling the notion of fractional derivatives. Let α > . The fractional
derivative of order α of a function f ∈ Hα

p(J X) is defined by

Dα
t f(t) =

dm

dtm

∫t

gm−α(t− s)f(s)ds

where m = [α] ∈ N, and gα(t) := tα−

Γ(α) .
Observe that by Corollary 1.4.5 the operator Dα

t coincides with the operator given there,
if α ∈ ( ). Moreover, it defines an isometrical isomorphism from Hα

p(J X) to Lp(J X).
On the other hand, since f ∈ Hα

p(J X), it follows that

| gε ∗ f | Hα
p(J X)� c(T) | f | Hα

p(J X) (3.1.14)
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where c(T) > and c(T) → as T → . Indeed, observing that the operators Dα
t and gε ∗ ·

commute in Hα
p(J X), we have

| gε ∗ f | Hα
p(J X)=| Dα

t (gε ∗ f) |Lp(J X)=| gε ∗Dα
t f |Lp(J X)

Using this and Young’s inequality the claim follows with c(T) :=| gε |L (J).
Now, since b ∗ gε and d

dtb ∗ gε are of order tβ+ε and tβ+ε− respectively, it follows that
the operator Dε

t(b ∗ ·) : Hκ+ε
p (J X) → H

β+κ
p (J X) is well-defined, linear and bounded. On

the other hand, since ε < and the identity gε ∗Dε
t = I is valid in Hε

p(J X), we obtain

| b ∗ u |
Hβ+κ

p (J X)
=| gε ∗Dε

t(b ∗ u) |
Hβ+κ

p (J X)
(3.1.15)

Therefore, (3.1.13) follows from (3.1.14) and (3.1.15) with α = β + κ, since the operator
Dε

t(b ∗ ·) is bounded in Hκ+ε
p (J X).

We can now estimate H(φ) in X .

Corollary 3.1.3. Let α α ∈ ( ) and κ κ ∈ [ /p) such that the condition (3.1.8)
holds. Let ai ∈ K (αi θi), with θi < π/ , for i = and let S be the operator given in
(3.1.5). Suppose that p > n + (α + ) . Then the map H : Z → X , defined as

H(φ) = ∗ a ∗ (φ− φ ) − ∗ a ∗ S ∗ φt

is continuous and bounded in Z . Moreover, there is a constant K(T) > , with K(T) →
as T → , such that

| H(v) | X � K(T) · [| v |Z + | v |Z + | v− v( ) | X

]
(3.1.16)

is valid for all v ∈ Z .

Proof. Let v ∈ Z , then ∗ vt ∈ X . From Lemma 3.1.2 with b = ∗ a and β = + α ,
it follows that there is a constant c(T) > , such that

| ∗ a ∗ S ∗ vt | X � c(T) | S ∗ vt |
H

κ +ε
p (Lp)

(3.1.17)

On the other hand, from the embedding Z ↪→ Hκ +ε
p (ε < α ) and maximal regularity

of equation (II), we obtain the existence of a constant C > , such that

| S ∗ vt |
H

κ +ε
p (Lp)

�| S ∗ vt |Z � C· | ∗ vt | X = C· | v− v( ) | X (3.1.18)

Therefore, from (3.1.17) and (3.1.18), there exists a constant K(T) > with

| ∗ a ∗ S ∗ vt | X � K(T) | v− v( ) | X (3.1.19)

Finally, Lemma 3.1.2, yields

| ∗ a ∗ (v− v ) | X � c(T)
(
| v |

H
κ +ε
p (Lp)

+ | v |
H

κ +ε
p (Lp)

)
(3.1.20)

Hence, using the embedding Z ↪→ Hκ +ε
p (Lp) (ε < α ) and Lemma 3.1.1, the proof is

complete.
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3.1.1 Contraction mapping principle

In this section we solve the equation

φ = − ∗ a ∗Aφ+H(φ) + g(t) t ∈ J (3.1.21)

in Z , where the nonlinearity H(φ) and the function g(t) are defined by

H(φ) = ∗ a ∗ (φ− φ ) − ∗ a ∗ S ∗ φt t ∈ J and (3.1.22)

g(t) = ∗ a ∗ u∗ + ∗ f + φ t ∈ J (3.1.23)

We begin with the linear version of (3.1.21), that is

v∗ = − ∗ a ∗Av∗ + g(t) t ∈ J (3.1.24)

Theorem 1.4.6 allows us to define an operator L in Z by

Lv = v+ ∗ a ∗Av v ∈ Z

which is an isomorphism between Z and the space

E :=

{
g ∈ X : g( ) ∈ Yp and gt( ) ∈ Ỹp if α + κ >

p

}
Observe that the function g defined by (3.1.23) belongs to E, if and only if

(i) fi ∈ X̃i for i = ,

(ii) φ ∈ Yp,

(iii) f ( ) ∈ Ỹp, if α + κ > p .

On the other hand, from Corollary 3.1.3, it follows H(w) ∈ X , for each w ∈ Z . Further-

more, it easy to check that H(w) ∈ E too, actually H(w)( ) = d/dtH(w)(t)|t= = . Now,

let v∗ ∈ Z denote the solution of Lv∗ = g and assume that in equation (3.1.21) φ ∈ Z is

known. By defining v = φ− v∗, equation (3.1.21) is equivalent to a fix point problem

v = L− H(v+ v∗) =: Tv in Z

We have now the following result concerning the solution of equation (3.1.21).

Theorem 3.1.4. Let αi ∈ ( ), < θi < π/ , κi ∈ [ /p) for p > , and let ai ∈
K (αi θi) for i = . Suppose that p > n + (α + ) , αi + κi �= /p, i = and that the
condition (3.1.8) holds. Then for some < δ � T , equation (3.1.21) has a unique local
solution in Z (δ), if conditions
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(i) fi ∈ X̃i for i = ,

(ii) φ ∈ Yp,

(iii) f ( ) ∈ Ỹp, if α + κ > p ,

are fulfilled.

Proof. Assume that the conditions (i)-(iii) are fulfilled. Defining g by (3.1.23), it follows
that g ∈ E, and from Theorem 1.4.6 there is a unique solution v∗ in Z of equation

Lv∗ = g

Since H(w) ∈ E, for each w ∈ Z we have that equation (3.1.21) is equivalent to a
fix point problem. Consider the ball Br( ) ⊂ Z (δ), where r > is fixed, and define
T : Br( ) ⊂ Z (δ) → Z (δ) by Tv = L− H(v∗ + v). Furthermore, let b := ∗ a . We first
show that T is a contraction by using Lemma 3.1.1 and Corollary 3.1.3.

| Tv− Tw | Z (δ)� | L− || H(v∗ + v) −H(v∗ +w) | X (δ)

�C | b ∗ (v−w)
[
(v∗ +w) + (v∗ + v)(v∗ +w) + (v∗ + v)

]
| X (δ)

+ C | b ∗ S ∗ (vt −wt) | X (δ) +C | b ∗ (v−w) | X (δ)

�CK(δ) | v−w | Z (δ)

[
| v∗ |Z (δ) + | w | Z (δ) + | v | Z (δ)

]
+ C | b ∗ S ∗ (vt −wt) | X (δ) +CK(δ) | v−w | Z (δ)

Using the same argument as in the proof of Corollary 3.1.3, it follows that

| Tv− Tw | Z (δ)�CK(δ) | v−w | Z (δ)

[
(| v∗ |Z (δ) +r) + C

]
� | v−w | Z (δ)

(3.1.25)

since K(δ) → as δ → .
To show that TBr( ) ⊂ Br( ), in a similar way we obtain that

| Tv | Z (δ)� | L− || H(v∗ + v) |X (δ)

�CK(δ)
[
| v∗ + v |Z (δ) + | v∗ + v |Z (δ) + | v∗ + v− v∗( ) | X (δ)

]
�CK(δ)

[
| v∗ |Z (δ) + r+ (| v∗ |Z (δ) +r) + | v∗ − v∗( ) | X (δ)

]
< r

(3.1.26)

provided δ > is small enough. Note that | v∗ |Z (δ)→ as δ → , since v∗ is a fixed
function.

Hence, the contraction mapping principle yields a unique fixed point v ∈ Br( ) of T and
therefore, φ = v∗ + v is the unique strong solution of (3.1.21) in [ δ].
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Concerning continuation of the solution φ, observe that by Theorem 3.1.4, there exists

a δ > and a unique solution φ = v + v∗ of (3.1.21) in Z (δ). On the other hand, from

the embedding Z (δ) ↪→ C ([ δ] Ỹp)∩C([ δ] Yp) we have φ(δ) ∈ Yp and φt(δ) ∈ Ỹp. This

fact allows us to continue the solution. Indeed, let T be the map defined in the proof of

Theorem 3.1.4, and let v ∈ Z (δ) be its unique fixed point. For η > consider the space

Mv := {ψ ∈ Z (δ+ η) : ψ|[ δ] = v}

The set Mv is not empty and with the metric induced by Z (δ + η), we have that (Mv d)

is a complete metric space, where

d(f g) :=| f− g |Z (δ+η) for all f g ∈ Mv

Now we can apply the contraction mapping principle in Mv. From (3.1.25) and (3.1.26),

it is easy to show that T has a unique fixed point ψ ∈ Mv, for some δ ∈ (δ δ+η), provided

η > is chosen sufficiently small. Hence, the function φ := v∗ +ψ is the unique solution of

(3.1.7) in Z (δ ). Successive application of this argument yields a solution φ on a maximal

time interval [ tmax), which is characterized by the two equivalent conditions

⎧⎪⎨
⎪⎩ δ→tmax

| φ(δ) |Yp
does not exist, or

δ→tmax

| φt(δ) |
Ỹp

does not exist if α > /p

and

| φ |Z (tmax)= ∞
As we already proved in this section, (3.1.21) and the system (3.1.1)-(3.1.2) are equiv-

alent. Therefore, we obtain the following result.

Theorem 3.1.5. Let αi ∈ ( ), < θi < π/ , κi ∈ [ /p) for p > , and let ai ∈
K (αi θi) for i = . Suppose that p > n + (α + ) , αi + κi �= /p for i = , and that
the condition (3.1.8) holds. Then for some < δ < tmax the system (3.1.1)-(3.1.4) has a
unique solution (u φ) ∈ Z (δ) × Z (δ), if the data are subject to the following conditions.

(i) f ∈ X̃ and f ∈ X̃ ,

(ii) u ∈ Yp and φ ∈ Yp,

(iii) fi( ) ∈ Ỹi
p, if αi + κi > p for i = .
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3.2 Global well-posedness

In this section we want to solve the nonlinear system

ut + φt =

∫t

−∞ a (t− s)Δu(s)ds in J×Ω (3.2.1)

φt =

∫t

−∞ a (t− s)
[
Δφ+ φ− φ + u

]
(s)ds in J×Ω (3.2.2)

∂ u = ∂ φ = on J× ∂Ω (3.2.3)

u( x) =u (x) φ( x) = φ (x) in Ω (3.2.4)

globally in time in the setting used in the previous section. We restrict ourselves to the

case where the system has trivial history, i.e.

u(t x) = φ(t x) = (t x) ∈ (−∞ ) ×Ω (3.2.5)

For the sake of simplicity we also set κ = . In case κ �= the global existence result

remains true, but the calculation is more length. Observe that from (3.1.8) it follows that

α � α if κ = .

We now begin the discussion concerning global existence of (3.2.1)-(3.2.4). From (3.2.5)

and the definition of the operator B in Corollary 1.4.5, which is associated with the kernel

a , (3.2.1)-(3.2.4) can be written as follows

ut + φt =

∫t

a (t− s)Δu(s)ds in J×Ω (3.2.6)

Bφt =Δφ+ φ− φ + u in J×Ω (3.2.7)

∂ u =∂ φ = on J× ∂Ω (3.2.8)

u( x) =u (x) φ( x) = φ (x) in Ω (3.2.9)

The subsequent result gives an a-priori estimate in case that the kernels a and a

satisfy the following conditions:

(P1) a ∈ L loc(R+), such that

Re
∫T

[a ∗ψ](t)ψ(t)dt � for all ψ ∈ L (( T) C) and T >

(P2) a ∈ L loc(R+), and there exists ν ∈ L loc(R+) nonnegative, nonincreasing, such

that ∫t

a (t− s)ν(s)ds = for all t >
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Observe that the condition (P1) corresponds to the definition of positive type and (P2)

corresponds to an particular case of the definition of completely positive type, see [Prü93].

Lemma 3.2.1. Let (u φ) ∈ Z (δ) × Z (δ) be the solution of (3.2.6)-(3.2.9), with p � .
Assume that the conditions (P1) and (P2) are fulfilled. Then there is constant M > ,
independent of δ, such that, the inequalities

−M �
<δ<tmax

{
| u(δ) |L (Ω) + | φ(δ) |

H (Ω)
+ | φ(δ) |L (Ω) − | φ(δ) |L (Ω)

}

+

∫tmax

〈a ∗ ∇u ∇u〉dt+

∫tmax

〈Bφt φt〉dt

�
[
| u |L (Ω) + | φ |

H (Ω)
+ | φ |L (Ω)

]
hold.

Proof. We multiply (3.2.6) by u and (3.2.7) by φt, add the result and integrate by parts,
to obtain

d

dt

{∫
Ω

| u | dx+

∫
Ω

| ∇φ | dx+

∫
Ω

| φ | dx−

∫
Ω

| φ | dx

}
+ 〈a ∗ ∇u ∇u〉 + 〈Bφt φt〉 =

(3.2.10)

Integrating (3.2.10) over ( δ) (δ < tmax) one obtains

| u |L (Ω) + | φ |
H (Ω)

+ | φ |L (Ω) − | φ |L (Ω)

+

∫δ

〈Bφt φt〉ds] +

∫δ

〈a ∗ ∇u ∇u〉ds

�
[
| u |L (Ω) + | φ |

H (Ω)
+ | φ |L (Ω)

] (3.2.11)

Note that the term
∫δ 〈Bφt φt〉ds is positive, since B is accretive (see Theorem 1.4.7).

On the other hand, the parabola x − x is bounded from below by − . Therefore, taking
the supremum over ( tmax) in (3.2.11), the proof is completed.

We can now state our main result of this chapter.

Theorem 3.2.2. Let αi ∈ ( ), < θi < π/ , and let ai ∈ K (αi θi) for i = . Suppose
that p � and n � , αi �= /p for i = , and the condition α � α holds. If

(i) the conditions (P1) and (P2) are fulfilled, and

(ii) u ∈ Yp and φ ∈ Yp,

then the system (3.2.6)-(3.2.9) has a unique global solution (u φ) ∈ Z × Z .
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Proof. Let < δ < tmax and let (u φ) ∈ Z (δ) × Z (δ) be the unique local solution of
(3.2.6)-(3.2.9), given by Theorem 3.1.5. From Lemma 3.2.1 it follows that

φ ∈ L∞([ tmax) L (Ω)) (3.2.12)

If ρ ∈ ( / / ), then the inequality

−
n

p
� ρ( −

n

p
) −

n( − ρ)

is valid for p � and n � . Therefore, by the Gagliardo-Nirenberg inequality, it follows
that there is a constant C := C(Ω) > , such that

| φ |L p(Ω)� C | φ |
ρ
Hp(Ω)

| φ |
−ρ

L (Ω) (3.2.13)

Furthermore, from (3.2.12) and (3.2.13) we obtain

| φ |Lp(Lp)� C | φ |
ρ

L ρp(Hp)
� C | φ |

ρ
Lp(Hp)

� C | φ |
ρ

Z (δ) (3.2.14)

since ρ < / . On the other hand, by maximal Lp-regularity, there is a constant M :=

M(T) > , such that

| u |Z (δ) + | φ |Z (δ)� M( + | φ |Lp([ δ] Lp))

Hence (3.2.14) yields
| φ |Z (δ)� M( + | φ |

ρ
Z (δ))

with a different constant M, which is independent of δ < tmax. Therefore,

| φ |Z (tmax)< ∞
This in turn yields the boundedness of u ∈ Z (tmax). Hence the global existence of (3.2.6)-
(3.2.7) follows.



Chapter 4

A conserved phase field model

In this chapter we show the global well-posedness in the strong sense in the Lp-setting for

the following system

ut + φt = γΔu+

∫t

a (t− s)Δu(s)ds+ f in J×Ω (4.0.1)

φt = −

∫t

a (t− s)Δ[Δφ−Φ ′(φ) + u](s)ds+ f in J×Ω (4.0.2)

∂ u = ∂ φ = ∂ (Δφ) = on J× ∂Ω (4.0.3)

u( x) = u (x) φ( x) = φ (x) in Ω (4.0.4)

where

f (t) =

∫
−∞ a (t− s)Δu(s)ds in J×Ω (4.0.5)

f (t) = −

∫
−∞ a (t− s)Δ[Δφ−Φ ′(φ) + u](s)ds in J×Ω (4.0.6)

J is an interval of the form [ T ] with T > , and Ω is a smooth bounded domain in Rn.

4.1 Main assumptions on the potential Φ and on the kernels

The basic assumption on the potential function Φ : R → R to obtain local existence is

Φ ∈ C −(R) (4.1.1)

43
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Furthermore, for global existence we suppose that there are constants m m ∈ R such

that

Φ(s) � −
m

s −m for each s ∈ R and λ > m (4.1.2)

where λ is the smallest nontrivial eigenvalue of the negative Laplacian on Ω with homo-

geneous Neumann boundary conditions. Also, we will assume the growth condition

| Φ ′′′(s) |� C
(

+ | s |β
)

s ∈ R (4.1.3)

with some constants C β > for n � , and in case n = with the restriction β < .

The main assumptions on the kernels a and a are the following:

(P0) ai ∈ K (αi θai
) with θai

< π , and α � α with αi ∈ ( ) for i = . Further,

a (iρ) · a (iρ) � , for all ρ ∈ R \ { }.

(P1) a ∈ L loc(R+), such that

Re
∫T

a ∗ψ(t)ψ(t)dt � for all ψ ∈ L (( T) C) and T >

(P2) a ∈ L loc(R+), and there exists ν ∈ L loc(R+) nonnegative, nonincreasing, such

that ∫t

a (t− s)ν(s)ds = for all t >

(P0) is the main condition to obtain local well-posedness, and (P1)-(P2) are needed addi-

tionally to obtain global well-posedness. Observe that the condition (P1) corresponds to

definition of positive type and (P2) corresponds to a particular case of the definition of

completely positive type, see [Prü93].

A typical example of kernels that satisfy the properties (P0)-(P2) is

a(t) =
tα−

Γ(α)
e−ηt t >

for every α ∈ ( ) and η � .

Important properties of all these types of kernels are discussed in the monograph Prüss

[Prü93].

4.2 Local well-posedness

Let T > be given and fixed and let Ω be a smooth bounded domain in Rn. For < δ � T

and < p < ∞, we define the space

Z
βi
i (δ) = Hβi

p ([ δ] X) ∩ Lp([ δ] DAi)
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for i = , where βi > , and X := Lp(Ω), and A is a closed linear operator in X with dense

domain D(A), and DAi means the domain of Ai equipped with the graph norm. The space

Z
βi
i (δ) denotes the corresponding space Z

βi
i (δ) with zero traces at t = . Whenever no

confusion may arise, we shall simply write Z
βi
i , and Z

βi
i if δ = T . Furthermore, we will

assume that βi /∈ { /p + /p}, and define the natural phase spaces for Zβi
i by

Yi
p(βi) =(X DAi)γi p with γi = −

pβi
if βi >

p
for i =

Ỹi
p(βi) =(X DAi)σi p with σi = −

βi
−
pβi

if βi > +
p

for i =

When no confusion can arise, we shall simply write | · |p q to designate the norm on

Lp(J Lq(Ω)), and we write simply | · |p if p = q.

4.2.1 Fourier multipliers and auxiliary results

We begin our discussion assuming that the kernels ai are 1-regular and θai
-sectorial with

θai
∈ ( π), for i = . We consider the integrated version of model (4.0.1)-(4.0.4) which

reads

u+ φ = b ∗ Δu+ ∗ f + u + φ in J×Ω (4.2.1)

φ = − b ∗ Δ[Δφ−Φ ′(φ) + u] + ∗ f + φ in J×Ω (4.2.2)

∂ u =∂ φ = ∂ Δφ = on J× ∂Ω (4.2.3)

u( x) = u (x) φ( x) = φ (x) in Ω (4.2.4)

where the functions fi are as in (4.0.5)-(4.0.6) and the kernels b and b are given by

b (t) := γ+

∫t

a (s)ds

b (t) :=

∫t

a (s)ds

(4.2.5)

In order to apply Theorem 1.1.8, we have to show that the kernels bi are θi-sectorial

with θi < π and also -regular. From the sectoriality of ai, it follows immediately that

| bi(λ) |� |
π

+ ai(λ) |� θai
+
π
< π Reλ >

The 1-regularity of b follows from (1.1.2), i.e.

|
γ

λ
− ∗̂ a (λ) |� π

+ | a (λ) |< π Reλ >

The 1-regularity of b is trivial. Moreover, it is easy to show that b ∈ K ( π/ + θa ) for

γ > and b ∈ K ( + α π/ + θa ). In case that γ = , b ∈ K ( + α π/ + θa ).
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We concentrate first on the case of vanishing traces at t = linear version of (4.2.1)-

(4.2.4), that is

u+ φ = − b ∗Au+ ∗ (f − f ( )) (4.2.6)

φ = − b ∗A φ+ b ∗Au+ ∗ (f − f ( )) (4.2.7)

where A := −Δ with domain

D(A) := {v ∈ Hp(Ω) : ∂ v = on ∂Ω}

and

D(A ) := {v ∈ Hp(Ω) ∩D(A) : ∂ Av = on ∂Ω}

To solve system (4.2.6)-(4.2.7), will first reformulate it in the following way. Let v(t) =

e−ωtu(t), ϕ(t) = e−ωtφ(t), hi(t) = e−ωt ∗ (fi(·) − fi( )), di(t) = e−ωtbi(t) for i = ,

where ω > is fixed. Then (4.2.6)-(4.2.7) is equivalent to

v+ϕ = − d ∗Av+ h (4.2.8)

ϕ = − d ∗A ϕ+ d ∗Av+ h (4.2.9)

Observe that the kernels di enjoy the same properties of regularity and sectoriality as bi,

moreover, di ∈ L (R+) for i = .

Now we associate with the kernels di the operators Bi from Theorem 1.1.8 with domain

D(Bi) for i = . So, the system (4.2.8)-(4.2.9) can be written in abstract form as follows:

(B + A)v = −B ϕ+ B h (4.2.10)

(B + A )ϕ = Av+ B h (4.2.11)

where (Aiv)(t) := Aiv(t) with domain D(Ai) = Lp(R+ DAi), for i = . The operators

Bi and Aj commute in the resolvent sense, and they belong to the class BIP(Lp(R+ X))

with power angle θBi
= θi and θAj = (i j = ), respectively. Therefore, from Theorem

1.3.1 it follows that Bi +Aj belongs to BIP(Lp(R+ X)), moreover, it is invertible, since Bi is

invertible. In particular, observe that the operator B (B + A)− is bounded in Lp(R+ X).

Now assume that ϕ is known, then we can represent v in (4.2.10) as

v = −(B + A)− B ϕ+ (B + A)− B h (4.2.12)

In this way, (4.2.10)-(4.2.11) can be associated with an operator G defined in Lp(R+ X) by

G = B + A + A(B + A)− B
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with domain D(G) = D(B ) ∩D(A ). Hence, a solution ϕ of the equation

Gϕ = h (4.2.13)

with h := A(B + A)− B h + B h , combined with (4.2.12) yields a solution (v ϕ) ∈
(D(B ) ∩D(A)) ×D(G) of (4.2.10)-(4.2.11). Furthermore, by using the formulation above,

we get a solution (u φ) of (4.2.6)-(4.2.7) in an interval J := [ T ], for each T > with the

same regularity as (v ϕ).

One possibility to prove the existence and uniqueness of a strong solution φ of (4.2.13)

in D(G) is to show that the symbol of the operator G is invertible and its inverse fulfills

the assumptions of Theorem 1.2.1.

Theorem 4.2.1. Let X be a Banach space of class HT, and let A ∈ RH∞(X) with RH∞-
angle φR∞

A < π, and let A denote the canonical extension of A to Lp(R+ DA) for < p < ∞.
Let di be scalar kernels which are 1-regular and θi-sectorial with θi < π for i = . Let Bi

be the operator defined by (1.1.3), with di in place of a, for i = . Furthermore, assume
that the following conditions hold:

(i) di ∈ L (R+), for i = ;

(ii) for all ρ ∈ R \ { } it holds that d (iρ) · d (iρ) � ;

(iii) D(B ) ↪→ D(B );

(iv) φR∞
A < π−σ with σ := {θ θ }.

Then for each f ∈ Lp(R+ X) there exists a unique solution ϕ ∈ D(G) := D(B ) ∩D(A ) of
the equation

Gϕ = f (4.2.14)

where G = B + A + A(B + A)− B . In particular, if di ∈ K (βi θi) with βi > for
i = , then ϕ ∈ H

β
p (R+ X) ∩ Lp(R+ DA ) =: Z

β (R+).

Proof. Define mj(iρ) = /dj(iρ) for j = , and ρ ∈ R \ { }. Let ε ∈ (φ∞
A (π − σ)/ ) and

define g(iρ μ) = m (iρ) + μ + μm (iρ)(μ+m (iρ))− for μ ∈ Σε and ρ ∈ R \ { }.
Let ρ ∈ R \ { } fixed and assume that d (iρ) � . Hence from condition (ii) and the

sectoriality of di, i = , it follows that d (iρ) � , and

< (mj(iρ)) < θj j =

Furthermore, the inequalities

− ε < (m (iρ) + μ ) < θ

− ε < (μm (iρ)(m (iρ) + μ)− ) < θ
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hold for all μ ∈ Σε. Since ε ∈ (φR∞
A (π− σ)/ ), we obtain that

− ε < (g(iρ μ)) < ( ε+ σ) < π

Analogously, we obtain that

−( ε+ σ) < (g(iρ μ)) < ε

if we assume that d (iρ) � . Therefore, g(iρ μ) �= for all μ ∈ Σε and ρ ∈ R \ { }.
Moreover, since dj ∈ L (R+) and by the continuity of the function , it follows that
g( ) > . Therefore, (g(iρ μ))− =: M(iρ μ) is analytic in μ and uniformly bounded for
all ρ ∈ R \ { }, and all μ ∈ Σε, thus we have {M(iρ ·)}ρ∈R\{ } ∈ H∞(Σε). Moreover, since
A ∈ RH∞(Lp(R+ X)) with φR∞

A � φR∞
A , it follows from Theorem 1.2.2 that

R {M(iρ A) : ρ ∈ R \ { }} < ∞
From the 1-regularity of di and Kahane’s contraction principle (cf. [DHP03, Lemma 3.5]),
it follows that the set

{iρ∂ g(iρ A) : ρ ∈ R \ { }}

is also R-bounded. Since a product of R-bounded families is also R-bounded, we obtain

R{ρ∂ M(iρ A) : ρ ∈ R \ { }} < ∞
Therefore, by Theorem 1.2.1, the operator

TMf := F− [M(· A)Ff]

is a Fourier Lp-multiplier in the sense of distributions. Hence, from the uniqueness of
Fourier transform, it follows that the function ϕ := TMf|R+ is the unique solution of (4.2.14)
in D(G). Moreover, from Corollary 1.4.5, it follows that ϕ ∈ Z

β (R+).

Corollary 4.2.2. Suppose that the conditions of Theorem 4.2.1 are satisfied. Furthermore,
we assume that di ∈ K (βi θi) for i = , with β � β . Then the system (4.2.8)-(4.2.9)
has a unique solution (v ϕ) ∈ Z

β (R+) × Z
β (R+) if and only if

hi ∈ Hβi
p (R+ X) for i =

Remark 4.2.1. The condition β � β in Corollary 4.2.2 ensures the existence of a unique
solution (v ϕ) with optimal regularity, whereas in case β < β we obtain also a unique
solution (v ϕ) with v+ϕ ∈ Z

β (R+) and v ∈ Lp(R+ DA), hence no optimal regularity.
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Now we consider the non-homogeneous version of (4.2.6)-(4.2.7) that is

u+ φ = − b ∗Au+ ∗ f + u + φ (4.2.15)

φ = − b ∗A φ+ b ∗Au+ ∗ f + φ (4.2.16)

Corollary 4.2.3. Suppose that the kernels ai fulfill the condition (P0), and assume that
αi �= /p for i = . In case that γ = in (4.2.5), the system (4.2.15)-(4.2.16) has a
unique solution (u φ) ∈ Z +α × Z +α if and only if the following conditions hold:

(i) fi ∈ H
αi
p (J X), for i = ;

(ii) u ∈ Yp( + α ) and φ ∈ Yp( + α );

(iii) ut( ) ∈ Ỹp( + α ) and φt( ) ∈ Ỹp( + α ), if αi > p , for i = .

Proof. We begin with the necessity part. From the condition (P0), we have that α � α .
Hence, Z +α ↪→ Z +α therefore, u − u + φ − φ + b ∗ Au = ∗ f ∈ H +α

p (J X). In
addition, since Au ∈ Lp(J X), it follows from Corollary 1.4.5 that b ∗ Au ∈ H +α

p (J X).
Therefore, φ − φ + b ∗ A φ − b ∗ Au = ∗ f ∈ H +α

p (J X). Hence, the condition (i)
is proved. The conditions (ii) and (iii) follow from the embeddings Z +αi

i ↪→ C (J Ỹi
p( +

αi)) ∩ C(J Yi
p( + αi)), provided αi > /p holds for i = . If α > /p > α then we set

ut( ) = ; in this case Hα
p (J X) = Hα

p (J X). Analogously, in the case, /p > α � α , we
set ut( ) = φt( ) = .

Now, we prove the sufficiency part. Firstly, we will discuss the non-homogenous version
of (4.2.15)-(4.2.16). For this we consider the problems

w (t) = − (b ∗Aw )(t) + x (4.2.17)

w (t) = − (b ∗A w )(t) + x (4.2.18)

Moreover, if the kernels bi for i = have more regularity we can also consider the
problems

z (t) = − (b ∗Az )(t) + ty (4.2.19)

z (t) = − (b ∗A z )(t) + ty (4.2.20)

Observe that from the variation of parameters formula (1.4.2) the mild solutions of
(4.2.17) and (4.2.18) are given by

wi(t) = Si(t)xi for i =

where Si corresponds to the resolvent operator of equation (4.2.17) and (4.2.18) respectively.
Analogously, we have that the solutions of (4.2.19) and (4.2.20) are given by

zi(t) = ( ∗ Si)(t)yi for i =
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Since + αi > /p for i = , it follows from [Zac05, Thm. 3.2] that

if xi ∈ Yi
p( + αi) then wi ∈ Z

+αi
i for i =

Similarly,
if αi > /p and yi ∈ Ỹi

p( + αi) then zi ∈ Z
+αi

i for i =

We set y = f ( ) − f ( ) and y = f ( ) in (4.2.19)-(4.2.20) and define h := ∗ (f −

f ( )) + b ∗A (w + z ) and h := ∗ (f − f ( )) + b ∗A(w + z ) if αi > /p for i = ;
otherwise we set fi( ) = for i = . In this case, it follows that zi = for i = .
Clearly, hi ∈ H

+αi
p (J X) for i = since α � α . Therefore, from Corollary 4.2.2

there exists a unique solution (v ϕ) ∈ Z +α × Z +α of (4.2.15)-(4.2.16). Hence, from
(4.2.17)-(4.2.18), it follows that the functions u := v+w + z and φ := ϕ+w + z satisfy
the system

u+ φ = − b ∗Au+ ∗ f + x + x

φ = − b ∗A φ+ b ∗Au+ ∗ f + x

Moreover, if xi ∈ Yi
p( +αi) for i = and yi ∈ Ỹi

p( +αi) for i = , in case αi > /p, then
(u φ) ∈ Z +α ×Z +α . On the other hand, from Z

+αi
i ↪→ C (J Ỹi

p( +αi))∩C(J Yi
p( +αi))

for i = , it follows that u( ) = x = u , ut( ) = f ( ) − f ( ), φ( ) = x = φ , and
φt( ) = f ( ).

Remark 4.2.2. In case that γ > , the result remains true if we set α = in this case only
second part of (iii).

4.2.2 Contraction mapping principle

Let (u∗ φ∗) ∈ Z +α × Z +α be the solution of the linear system

u∗ + φ∗ = − b ∗Au∗ + ∗ f + u∗( ) + φ∗( ) (4.2.21)

φ∗ = − b ∗A φ∗ + b ∗Au∗ + ∗ f + φ∗( ) (4.2.22)

and assume that (u φ) ∈ Z +α × Z +α is known in the following semilinear system

u+ φ = − b ∗Au+ ∗ f + u∗( ) + φ∗( ) (4.2.23)

φ = − b ∗A φ+ b ∗Au− b ∗AΦ ′(φ) + ∗ f + φ∗( ) (4.2.24)

Let u∗ = u − u∗ and φ∗ = φ − φ∗, then from (4.2.21)-(4.2.24), it follows that (u∗ φ∗)

satisfies the equations

u∗ + φ∗ = − b ∗Au∗ (4.2.25)

φ∗ = − b ∗A φ∗ + b ∗Au∗ − b ∗AΦ ′(φ∗ + φ∗) (4.2.26)
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Since α � α , we have that φ∗ ∈ H +α
p (J X), therefore the function u∗ in (4.2.25) can

be represented as

u∗ = (B + A)− B φ∗ (4.2.27)

Using this in (4.2.26) we obtain that φ∗ is a solution of

Gφ∗ = −AΦ ′(φ∗ + φ∗) (4.2.28)

Therefore, by means of this formulation, the system (4.2.23)-(4.2.24) is equivalent to solving

equation (4.2.28) which in turn is equivalent to the fixed point problem

Tφ∗ := TM(−AΦ ′(φ∗ + φ∗)) (4.2.29)

where TM is the Lp-multiplier associated with the operator G. Observe that the map T

is well-defined in Z +α , provided that −AΦ ′(w) ∈ Lp(J X) for all w ∈ Z +α , and some

p > .

We define the closed ball BR( ) ⊂ Z +α as the set of all φ∗ ∈ Z +α such that

| φ∗ |
Z

+α � R. Analogously, we define the shifted ball BR(φ∗) ⊂ Z +α by means of

BR(φ∗) := {w ∈ Z +α : w = φ∗ + φ∗ φ∗ ∈ BR( )}

In addition, we have the embedding

Z +α ↪→ C(J H
− /(p( +α ))

p (Ω)) ↪→ C(J×Ω)

provided the condition p � n/ + /( + α ) holds. This way, all functions w ∈ BR(φ∗) are

uniformly bounded. It follows that the same holds for φ∗ ∈ BR( ).

Lemma 4.2.4. Let α ∈ [ ) and n/ + /( + α ) � p < ∞. Let Φ ∈ C −(R), and
let φ∗ ∈ Z +α be fixed. Then the map T defined by (4.2.29) has a unique fixed point
φ∗ ∈ Z +α (δ) for some < δ � T . Furthermore, there exists a constant C(δ) > such
that

| Tw− Tz |
Z

+α
(δ)

� C(δ) | w− z |
Z

+α
(δ)

(4.2.30)

| Tw |
Z

+α
(δ)

� C(δ)[| w |
Z

+α
(δ)

+ | φ∗ |
Z

+α
(δ)

] (4.2.31)

hold for all w z ∈ BR( ). Moreover, C(δ) → as δ → .

Proof. Observe that, in order to prove (4.2.30)-(4.2.31), it suffices to check that

| ΔΦ ′(u) − ΔΦ ′(v) |p� c(δ) | u− v |
Z

+α
(δ)

(4.2.32)

| ΔΦ ′(u) |p� c(δ) | u |
Z

+α
(δ)

(4.2.33)

are valid for all u v ∈ BR(φ∗), where c(δ) enjoys the same properties as C(δ).
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Since all functions in BR(φ∗) are uniformly bounded, it follows from Hölder’s inequality
that

| ΔΦ ′(u) − ΔΦ ′(v) |p� |ΔuΦ ′′(u) − ΔvΦ ′′(v) |p + || ∇u | Φ ′′′(u)− | ∇v | Φ ′′′(v) |p

� |Δu |rp| Φ ′′(u) −Φ ′′(v) |r ′p + | Δu− Δv |rp| Φ ′′(v) |r ′p

+ | ∇u | σp| Φ ′′′(u) −Φ ′′′(v) |σ ′p + || ∇u | − | ∇v | |σp| Φ ′′′(v) |σ ′p

�c(T){| Δu |rp| Φ ′′(u) −Φ ′′(v) |∞ + | Δu− Δv |rp| Φ ′′(v) |∞
+ | ∇u | σp| Φ ′′′(u) −Φ ′′′(v) |∞ + || ∇u | − | ∇v | |σp| Φ ′′′(v) |∞}

where c(δ) := {δ /r ′p δ /σ ′p}. On the other hand, we have

∇w ∈ H
θ ( +α )/

p ([ δ] H
( −θ )

p (Ω)) ↪→ L σp([ δ] ×Ω)

and

Δw ∈ H
θ ( +α )/
p ([ δ] H

( −θ )
p (Ω)) ↪→ Lrp([ δ] ×Ω)

for some θ θ ∈ ( ) and for all w ∈ BR(φ∗), provided that r σ > are chosen close
enough to 1. Therefore, we have

| ΔΦ ′(u) − ΔΦ ′(v) |p� c(δ)(R+ | φ∗ |
Z

+α
(δ)

) | u− v |
Z

+α
(δ)

which yields (4.2.32). By using the arguments above, it follows that (4.2.33) holds too.
Therefore, we obtain (4.2.30)-(4.2.31) by setting u = w+φ∗ and v = z+φ∗. Furthermore,
note that | φ∗ |

Z
+α

(δ)
→ as δ → , since φ∗ is a fixed function. Hence, the contraction

mapping principle yields a unique fixed point φ∗ ∈ BR( ) of T.

The lemma above delivers a unique fixed point φ∗ ∈ Z +α (δ), for each function

φ∗ ∈ Z +α . If we choose (u∗ φ∗) as the unique solution of (4.2.21)-(4.2.22) and u∗ as

in (4.2.27), then (u φ) ∈ Z +α (δ) × Z +α (δ) is the unique solution of (4.2.23)-(4.2.24),

where u := u∗ + u∗ and φ := φ∗ + φ∗. In addition, if α > /p then the embedding

Z +α (δ) ↪→ C ([ δ] Ỹp( + α )) ∩ C([ δ] Yp( + α ))

is valid. This fact allows us to continue the solution φ. Indeed, let η > and consider the

space

Mφ∗ := {ψ ∈ Z +α (δ+ η) : ψ|[ δ] = φ∗}

The set Mφ∗ is not empty and with the metric induced by Z +α (δ + η), we have that

(Mφ∗ d) is a complete metric space, where

d(f g) := | f− g |
Z

+α
(δ+η)

f g ∈ Mφ∗
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We can now apply the contraction mapping principle to Mφ∗ . From (4.2.30) and

(4.2.31), it is easy to show that T has a unique fixed point φ∗ ∈ Mφ∗ for some δ ∈ (δ δ+η),

provided η > is chosen sufficiently small. Hence, the par (u∗ φ∗), where u∗ is obtained

by (4.2.27), allows us to define the functions φ := φ∗ + φ∗ and u := u∗ + u∗, which are

the unique solution of (4.2.23)-(4.2.24) in Z +α (δ ) × Z +α (δ ). A successive applica-

tion of this argument yields a solution φ on a maximal time interval [ tmax), which is

characterized by the two equivalent conditions⎧⎪⎨
⎪⎩ δ→tmax

| φ(δ) |Yp( +α ) does not exist, or

δ→tmax

| φt(δ) |
Ỹp( +α )

does not exist if α > /p

and

| φ |
Z

+α
(tmax)

= ∞
Actually, we have proved the following result, which corresponds to the main result of

this section.

Theorem 4.2.5. Let p ∈ ( ∞). Assume that γ = in (4.2.5), that the kernels ai fulfill
the condition (P0), and that Φ ∈ C −(R). Furthermore, suppose that p > n/ + /( + α )

and αi �= /p for i = . Then for some < δ < tmax, the system (4.2.1)-(4.2.4) has a
unique solution (u φ) ∈ Z +α (δ) × Z +α (δ) if the data satisfy the following conditions:

(i) fi ∈ H
αi
p ([ δ] X) for i = ;

(ii) u ∈ Yp( + α ) and φ ∈ Yp( + α );

(iii) ut( ) ∈ Ỹp( + α ) and φt( ) ∈ Ỹp( + α ) if αi > p for i = .

This result remains true if γ > ; in this case condition (iii) has to be modified as in

Remark 4.2.2.

The approach used in the sections above can be also applied to the classical Cahn-

Hilliard equation with temperature, that is,

ut + φt = Δu in J×Ω (4.2.34)

φt = − Δ[Δφ−Φ ′(φ) + u] in J×Ω (4.2.35)

∂ u = ∂ φ = ∂ (Δφ) = on J× ∂Ω (4.2.36)

u( x) = u (x) φ( x) = φ (x) in Ω (4.2.37)

Indeed, set bi(t) = for i = , f (t) = f (t) = in (4.2.1)-(4.2.4) then (4.2.1)-(4.2.4)

reduces to the integral version of (4.2.34)-(4.2.37). With this setting, it is not difficult to

prove the following result.
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Theorem 4.2.6. Let p > n/ + . Assume that Φ ∈ C −(R). Then for some < δ < tmax,
the system (4.2.34)-(4.2.37) has a unique solution (u φ) ∈ Z (δ) × Z (δ) if the data satisfy
the following conditions:

u ∈ W
− /p

p (Ω) and φ ∈ W
− /p

p (Ω)

4.3 Global well-posedness

In this section we want to solve the nonlinear system

ut + φt =γΔu+

∫t

−∞ a (t− s)Δu(s)ds in J×Ω (4.3.1)

φt = −

∫t

−∞ a (t− s)Δ
[
Δφ−Φ ′(φ) + u

]
(s)ds in J×Ω (4.3.2)

∂ u = ∂ φ = ∂ (Δφ) = on J× ∂Ω (4.3.3)

u( x) =u (x) φ( x) = φ (x) in Ω (4.3.4)

globally in time in the setting considered in the previous sections. We restrict ourselves to

the case where the system has trivial history, i.e.

u(t x) = φ(t x) = (t x) ∈ (−∞ ) ×Ω (4.3.5)

In order to obtain an a-priori estimate for our system, we assume, for instance, that the

kernel a is 1-regular and θa -sectorial with θa < π/ . Let B be the operator from Theorem

1.1.8 associated with the kernel a , and assume that condition (4.3.5) holds. In this way,

the system (4.3.1)-(4.3.4) can be written as

ut + φt =γΔu+ a ∗ Δu in J×Ω (4.3.6)

Bφt = − Δ[Δφ−Φ ′(φ) + u] in J×Ω (4.3.7)

∂ u = ∂ φ = ∂ (Δφ) = on J× ∂Ω (4.3.8)

u( x) =u φ( x) = φ in Ω (4.3.9)

On the other hand, since
∫

Ω u(t x)dx and
∫

Ω φ(t x)dx are conserved quantities, i.e.∫
Ω
u(t x)dx =

∫
Ω
u (x)dx = const and

∫
Ω
φ(t x)dx =

∫
Ω
φ (x)dx = const

we may, without loss of generality, assume that∫
Ω
φ (x)dx =

∫
Ω
u (x)dx =
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In fact, it suffices to replace the solution φ by φ−c with c = |Ω|

∫
Ω φ (x)dx, and to replace

Φ ′ by Φ ′ (s) := Φ ′(s+ c).

Denoting by v = −Δ−
N f the unique solution of the problem

−Δv =f in Ω

∂ v = on ∂Ω

∫
Ω
vdx =

where f ∈ L (Ω) and
∫

Ω fdx = , we have that

−Δ−
N Bφt = Δφ−Φ ′(φ) + u (4.3.10)

is equivalent to (4.3.7). On the other hand, multiplying (4.3.6) by u and (4.3.10) by φt,

adding and integration by parts yields

d

dt
{

∫
Ω

( [| u | +γ | ∇u | ] + | ∇φ | +Φ(φ))dx}

+ 〈a ∗ ∇u ∇u〉 +
〈
B(−Δ

− /
N φt) −Δ

− /
N φt

〉
=

(4.3.11)

Here 〈· ·〉 denotes the usual scalar product in L (Ω). Observe that the presence of the terms

〈a ∗ · ·〉 and 〈B· ·〉 in the energy equality (4.3.11) forces us to impose extra conditions on

the kernels a and a in order to obtain an a-priori estimate. Assume that a satisfies

condition (P1), and a the condition (P2). Integrating (4.3.11) over [ δ] with δ < tmax

and using the condition (4.1.2) yields

(
| u | +γ | ∇u |

)
+

(
| ∇φ | −m | φ |

)
+

∫δ

〈a ∗ ∇u ∇u〉ds+

∫δ 〈
B(−Δ

− /
N φt) −Δ

− /
N φt

〉
ds

�
∫
Ω

| Φ(φ ) | dx+ | u | + | ∇φ | +m | Ω |

(4.3.12)

On the other hand, note that from the growth condition (4.1.3) it follows that

| Φ ′′(s) |�C( + | s |β+ ) (4.3.13)

| Φ ′(s) |�C( + | s |β+ ) (4.3.14)

| Φ(s) |�C( + | s |β+ ) (4.3.15)

Hence, the left-hand side of (4.3.12) remains bounded from above, provided that φ ∈
Lβ+ (Ω), which can be ensured in case β < and n � by the embedding W ↪→ L .

Further, from Poincaré’s inequality it follows that (4.3.12) is also bounded from below by 0.

Now, we estimate the term ΔΦ ′(φ) by using the Gagliardo-Nirenberg inequality. Observe
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that ΔΦ ′(φ) = Φ ′′(φ)Δφ + Φ ′′′(φ) | ∇φ | . From (4.3.13), Hölder’s inequality, and the

Gagliardo-Nirenberg inequality, we obtain

| Φ ′′(φ)Δφ |p� K[ p+ | φ |
ρ (β+ )

Wp
| φ |

( −ρ )(β+ )
L ] | φ |

ρ
Wp

| φ |
−ρ

L (4.3.16)

provided that

(ρ + (β+ )ρ )( −
n

p
+
n

) = −
n

p
+
n

(β+ ) (4.3.17)

is satisfied for some ρ ρ ∈ ( ). Similarly, we estimate the term | ∇φ | Φ ′′′(φ) obtaining

| Φ ′′′(φ) | ∇φ | |p� K[ p+ | φ |
ρ β
Wp

| φ |
( −ρ )β
L ] | φ |

ρ
Wp

| φ |
− ρ

L (4.3.18)

provided the condition

( ρ + βρ )( −
n

p
+
n

) = −
n

p
+
n

(β+ ) (4.3.19)

holds for some ρ ρ ∈ ( ). Observe that the conditions (4.3.17) and (4.3.19) are satisfied

if, e.g., ρ + (β+ )ρ < , and ρ + βρ < , and p � . Furthermore, if we choose ρi, for

i = such that ρ ε ∈ ( /p ), where ρ := ρ + (β + )ρ and ε := ρ + βρ , then from

(4.3.16)-(4.3.18) and Hölder’s inequality we have

| ΔΦ ′(φ) |p p�K [| φ |
ρ
Lp(Wp)

| φ |
−ρ

L∞(L ) + | φ |
ρ

Lp(Wp)
| φ |

− ρ
L∞(L )

+ | φ |
ρ
Lp(Wp)

| φ |
β+ −ρ
L∞(L ) + | φ |εLp(Wp)| φ |

β+ −ε
L∞(L )]

�K [| φ |
ρ

Z
+α

(δ)
+ | φ |

ρ

Z
+α

(δ)
+ | φ |

ρ

Z
+α

(δ)

+ | φ |ε
Z

+α
(δ)

]

(4.3.20)

where K and K are positive constants, which depend only on Ω. On the other hand, by

maximal Lp-regularity, there is a constant M := M(T) > , such that

| u |
Z

+α
(δ)

+ | φ |
Z

+α
(δ)

� M
(

+ | ΔΦ ′(φ) |p p

)
(4.3.21)

Hence, from (4.3.20) and (4.3.21) it follows that

| φ |
Z

+α
(δ)

� M

where the constant M is independent of δ < tmax. Therefore

| φ |
Z

+α
(tmax)

< ∞
This in turn yields the boundedness of u ∈ Z +α (tmax). Hence the global existence for

(4.3.6)-(4.3.7) follows.
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We can now state our main result of this chapter.

Theorem 4.3.1. Let p � , n � , and γ = . Assume that ai satisfies the condition (P0)
for i = , and that the potential Φ fulfils the conditions (4.1.1)-(4.1.3). Further, suppose
that the conditions (P1) and (P2) hold. Then the system (4.3.6)-(4.3.7) has a unique global
solution (u φ) ∈ Z +α × Z +α if the following conditions hold:

u ∈ Yp( + α ) and φ ∈ Yp( + α )

In case that γ > , the result remains true if we set α = .

The arguments used above can be applied also to the classical Cahn-Hilliard equation

(4.2.34)-(4.2.35) to obtain a global solution.

Theorem 4.3.2. Let p � and n � . Assume that the potential Φ fulfils the conditions
(4.1.1)-(4.1.3). Then the system (4.2.34)-(4.2.35) has a unique global solution (u φ) ∈
Z × Z if the following conditions are satisfied:

u ∈ W
− /p

p (Ω) and φ ∈ W
− /p

p (Ω)





Chapter 5

Convergence to steady state

In this chapter we study the asymptotic behavior of global bounded solutions of the semi-

linear evolutionary equation with memory

v(t) +

∫t

a(t− s)E ′(v(s))ds = f(t) t � (5.0.1)

on a real Hilbert space H. We suppose that the nonlinear term E ′ is the Fréchet derivative

of a functional E ∈ C (V), where V is another Hilbert space which injects continuously and

densely into H. In order to prove the convergence to steady state of equation (5.0.1), we

assume that E satisfies the so-called ojasiewicz-Simon inequality. Examples of functionals

E, which satisfy the ojasiewicz-Simon inequality can be found in Haraux and Jendoubi

[HJ99], Haraux, Jendoubi, and Kavian [HJK03], and Chill [Chi03].

Under suitable conditions on the scalar kernel a and the function f, we show that the

equation (5.0.1) is dissipative and gradient-like in the sense that for every global bounded

solution v with relative compact range in V the ω-limit set is contained in the set of

steady states of (5.0.1). For this we adopt ideas from Vergara and Zacher [VZ06], where a

Lyapunov function was constructed in the finite dimensional case and employed to prove

convergence to steady state in the framework of the ojasiewicz inequality.

Using the ideas of this approach we prove also that any global bounded solution of a

conserved phase field model with memory converges to a steady state.
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5.1 Preliminaries and main assumptions

Let V and H be real Hilbert spaces (with inner product 〈· ·〉V resp. 〈· ·〉H) such that V is

densely and continuously embedded into H. We shall identify H with its dual H ′, that is,

we have

V ↪→ H ≈ H ′ ↪→ V ′

The operator E ′ is nonlinear and continuous from V into V ′, and it is the Fréchet derivative

of a functional E ∈ C (V).

Definition 5.1.1. We say that the function E satisfies the ojasiewicz-Simon inequality

near some point ϑ ∈ V, if there exist constants θ ∈ ( / ], C > , and σ > such that for
all v ∈ V with | v− ϑ |V� σ there holds

| E(v) − E(ϑ) | −θ� C | E ′(v) |V ′

The number θ will be called the ojasiewicz exponent. This exponent plays an important

role with regard to the rate of convergence to a stationary point.

We will assume that the kernel a is nonnegative and satisfies the following assumptions:

(A1) There is a nonnegative nonincreasing kernel k ∈ Lloc(R+) such that∫t

k(s)a(t− s)ds = t >

(A2) There is a constant γ > such that the solution e of

e(t) + γ

∫t

e(s)ds = k(t) t > (5.1.1)

is nonnegative.

Remark 5.1.1. For each γ > the unique solution of (5.1.1) is given by

eγ(t) := k(t) − γ( −γ· ∗ k)(t) t >

Hence, if condition (A2) holds, by decreasing γ, we may assume that e is strictly positive
and strictly decreasing on ( ∞). Furthermore, e ∈ L (R+) and t→∞ e(t) = , therefore
k∞ := t→∞ k(t) = γ

∫∞
e(s)ds > .

Remark 5.1.2. The conditions (A1)-(A2) imply that a ∈ L (R+).

For the function f ∈ L (R+ H) we assume that d
dt(k ∗ f)(t) =: g(t) satisfies the condition

(B1) g ∈ L (R+ H) ∩ L (R+ H) is such that∫∞ (∫∞
s

| g(τ) |H dτ

)
ds < ∞
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Lemma 5.1.2. Let H be a real Hilbert space. Let k ∈ L loc(R+) be a nonnegative and
nonincreasing kernel. Assume that there is a nonnegative kernel a ∈ L loc(R+) such that
k ∗ a = . Let v ∈ L loc(R+ H) and suppose that k ∗ v ∈ H loc(R+ H). Then

(i)
∫t

s

〈
d
dτ (k ∗ v) (τ) v(τ)

〉
H
dτ �

(
k ∗ | v |H

)
(t) −

(
k ∗ | v |H

)
(s) +

∫t
s k(τ) | v(τ) |H dτ,

for all t > and a.a. s ∈ ( t).

(ii) If in addition k∗ | v |H∈ H loc(R+) then〈
d

dt
(k ∗ v) (t) v(t)

〉
H

� d

dt
(k ∗ | v |H)(t) + k(t) | v(t) |H

for a.a. t > .

Proof. Firstly, let T > be arbitrarily fixed and let kμ ∈ H ([ T ]) be a nonnegative and
nonincreasing kernel. A simple computation yields the identity〈

d

dt
(kμ ∗ v)(t) v(t)

〉
H

=
d

dt

(
kμ ∗ | v |H

)
(t)+kμ(t) | v(t) |H +

∫t

(−kμ(τ)) | v(t)−v(t−τ) |H dτ

Hence, since −kμ(t) � , t > , we obtain that〈
d

dt
(kμ ∗ v) (t) v(t)

〉
H

� d

dt

(
kμ ∗ | v |H

)
(t) + kμ(t) | v(t) |H t > (5.1.2)

as well as its integral version, that is∫t

s

〈
d

dτ
(kμ ∗ v) (τ) v(τ)

〉
H

dτ �
(
kμ ∗ | v |H

)
(t) −

(
kμ ∗ | v |H

)
(s) +

∫t

s
kμ(τ) | v(τ) |H dτ

(5.1.3)
for < s < t � T .

Next, we proceed by an approximation argument. Let Bi be the operator defined in
Theorem 1.4.7 associated with the kernel k, that is

Biv =
d

dt
k ∗ v i =

with domain

D(B ) =
{
v ∈ L ([ T ]) : k ∗ v ∈ H ([ T ])

}
D(B ) =

{
v ∈ L ([ T ] H) : k ∗ v ∈ H ([ T ] H)

}
respectively. These operators are m-accretive on R respectively H. The Yosida approxima-
tion Bi μ of Bi is defined by

Bi μ = Bi( + μBi)
− μ >
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Denote by sμ the solution of the 1-dimensional Volterra equation

s(t) + μ(a ∗ s)(t) = t > (5.1.4)

Since by assumption a is a completely positive kernel, it follows from [Prü93, Prop. 4.5]
that the solution sμ of (5.1.4) is positive and nonincreasing in ( ∞), for every μ > . In
addition, it is not difficult to see by differentiating (5.1.4) that sμ ∈ H ([ T ]). Define then
a sequence of kernels kμ ∈ H ([ T ]) by

kμ(t) =
μ
s

μ
(t) t > μ =

n
n ∈ N

On the other hand, since k ∗a = we obtain that the Yosida approximation is given by

Bi μv =
d

dt
(kμ ∗ v) v ∈ D(Bi μ) i =

Therefore, since ∈ D(B ) and by assumption v ∈ D(B ), we have that

kμ ∗ v → k ∗ v in H ([ T ] H) as μ → (5.1.5)

kμ → k in L ([ T ]) as μ → (5.1.6)

In particular d/dt(kμ ∗ v) → d/dt(k ∗ v) in L ([ T ] H), as well as〈
d

dt
(kμ ∗ v) v

〉
H

→
〈
d

dt
(k ∗ v) v

〉
H

in L ([ T ]) (5.1.7)

kμ∗ | v |H → k∗ | v |H in L ([ T ]) (5.1.8)

Hence, from (5.1.6) there is a subsequence μn → as n → ∞ such that kμn → k for a.e.
( T), as well as from (5.1.8), we obtain that kμn∗ | v |H (s) → k∗ | v |H (s) a.a. s ∈ ( T).
Now, let t ∈ ( T) be arbitrary fixed and choose s ∈ ( t) such that

n→∞kμn∗ | v |H (s) = k∗ | v |H (s) (5.1.9)

On the other hand, from (5.1.7) and by convergence dominated theorem we obtain that

n→∞
∫t

s

〈
d

dt
(kμn ∗ v) v

〉
H

(τ)dτ =

∫t

s

〈
d

dt
(k ∗ v) v

〉
H

(τ)dτ (5.1.10)

Therefore, from Fatou’s lemma, (5.1.6), and (5.1.8)-(5.1.10) in (5.1.3) yield then (i).
Now, we assume that k∗ | v |H∈ H ([ T ]); hence | v |H∈ D(B ). Therefore, by Yosida’s

approximation we obtain that

d

dt
kμ∗ | v |H → d

dt
k∗ | v |H in L ([ T ]) as μ → (5.1.11)

Hence, the desired inequality in (ii) follows from (5.1.2) by passing to limit for a.e. t > .
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The following proposition provides sufficient conditions on the kernel a and the function

v, such that all assumptions in Lemma 5.1.2 hold.

Proposition 5.1.3. Let Y be a Banach space of class HT. Let a ∈ K (α θ) with α ∈ ( )

and θ < π. Suppose that there exists a kernel k ∈ L loc(R+) positive and nonincreasing in
( ∞) such that a ∗ k = holds. If v ∈ Hα([ T ] Y) then

k ∗ v ∈ H ([ T ] Y) and k∗ | v |Y ∈ H ([ T ])

Proof. Let B be the operator defined in Theorem 1.4.7 associated with the kernel k with
domain

D(B) = {v ∈ L ([ T ] Y) : k ∗ v ∈ H ([ T ] Y)}

Since a ∈ K (α θ) we obtain from Corollary 1.4.5 that D(B) = Hα([ T ] Y), hence k ∗ v ∈
H ([ T ] Y).

Next, let p ∈ ( { /( − α)}), from the characterization of Hα
p via differences (see

[Tri92]), it follows that there exits a constant C(J) > such that

| | v |Y |Hα
p(J)� C(J) | v |Hα(J Y)

holds. Therefore, | v |Y∈ Hα
p(J), hence k∗ | v |Y ∈ Hp([ T ]) ↪→ H ([ T ]).

5.2 The model equation

Let f ∈ C(J V ′) and E ∈ C (V) be as above, with J := [ T ], T > . We consider the model

equation

v+ a ∗ E ′(v) = f t ∈ J (5.2.1)

where the scalar kernel a is locally integrable on R+.

Remark 5.2.1. There is no existence result for solutions of the equation (5.2.1) under the
general hypotheses given above. In some concrete examples, however, existence of solutions
is known. Indeed, set H = L (Ω) and V = H (Ω). Assume that the energy functional E is
of the form

E(v) = α(v v) +

∫
Ω
Φ(v)dx (5.2.2)

where α : V × V → R is a bounded coercive bilinear form on V and Φ is a nonlinear term.
Then (5.2.1) can be written as a semilinear Volterra equation of variational type, that is

〈w v(t)〉V +

∫t

b(t− s)α(w v(s))ds = 〈w F(v t)〉V V ′ t ∈ J w ∈ V (5.2.3)

where b = ∗a and 〈w F(v t)〉V V ′ = 〈w ∗ f〉V V ′ − ∗a∗ 〈w Φ ′(v)〉V V ′ . By [Prü93, Thm.
7.3] (in its scalar version) we obtain that the linearized problem of equation (5.2.3) is well-
posedness. This together with the contraction mapping principle and a Lipschitz condition
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on F yields the local well-posedness of (5.2.3). Global well-posedness is obtained by using
the coercivity of the form α and assuming certain growth conditions on the nonlinear term
F.

Now, assuming the condition (A1) we rewrite equation (5.2.1) as

d

dt
(k ∗ v) + E ′(v) = g (5.2.4)

where g(t) := d
dt(k ∗ f)(t). In addition, from the condition (A2) equation (5.2.4) can be

written as
d

dt
(e ∗ v) + γ(e ∗ v) + E ′(v) = g (5.2.5)

The following definition gives a notion of solution of (5.2.5).

Definition 5.2.1. A function v ∈ C(J V) is called

(a) a weak solution of (5.2.5) if v ∈ H (J V ′)∩C(J V) and e ∗ v ∈ H (J V ′), and (5.2.5)
holds a.e. on J;

(b) a mild solution of (5.2.5) if v ∈ H (J H) ∩ C(J V) and e ∗ v ∈ H (J H), and (5.2.5)
holds a.e. on J;

(c) a global bounded weak (mild) solution of (5.2.5) if v is a weak (mild) solution on each
interval J = [ T ], T > , and v ∈ L∞(R+ V).

In the sequel we will assume that v is a mild solution of (5.2.5).

Now, we will derive energy estimates. Let v be a mild solution of (5.2.5) and let

g ∈ L (R+ H). We multiply equation (5.2.5) by v to obtain〈
d

dt
(e ∗ v) v

〉
H

+ γ 〈e ∗ v v〉H +
d

dt
E(v) = 〈g v〉H

Assuming that e∗ | v |H∈ H (J), then from Lemma 5.1.2 (ii) and Young’s inequality, it

follows that

d

dt

{
(e∗ | v |H) + E(v) +

ε

∫∞
t

| g(s) |H ds

}
� −

{
(k(t) − ε) | v |H +γe∗ | v |H

}
Hence, for any global solution v of (5.2.4) the function Ψ : R+ → R defined by

Ψ(t) := (e∗ | v |H)(t) + E(v(t)) +
ε

∫∞
t

| g(s) |H ds (5.2.6)

is differentiable almost everywhere and decreasing on R+, provided that k∞ > ε.

Actually, we have proved the following result.
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Proposition 5.2.2. Let v be a mild solution of equation (5.2.5) such that e∗ | v |H∈ H (J).
Assume (A1)-(A2) and g ∈ L (R+ H). Then the function Ψ : J → R defined by (5.2.6) is
absolutely continuous and decreasing on J.

Remark 5.2.2. By using Lemma 5.1.2 (i) one can also show without the aid of the assump-
tion e∗ | v |H∈ H (J), that the function Ψ is decreasing on R+. Hence, from [HS65, Thm.
17.12], we have that Ψ has a finite derivative a.e. on J, where J ⊂ R+ is a compact interval.

For the next result we recall the notion of ω-limit set. For every bounded solution v of

(5.2.5) the ω-limit set is defined by

ω(v) = {ϑ ∈ V : there exists (tn) ↗ ∞ s.t. v(tn) → ϑ in V}

Proposition 5.2.3. Let v be a global bounded mild solution of equation (5.2.5) such that
e∗ | v |H∈ H loc(R+). Assume (A1)-(A2) and (B1), and that the set {v(t) : t � } is
relatively compact in V. Then

(i) v ∈ L (R+ H).

(ii) The potential E is constant on ω(v) and t→∞ E(v(t)) exists.

(iii) For every ϑ ∈ ω(v) one has E ′(ϑ) = .

Proof. Choose ε > small enough such that k∞ > ε, and define k∞ := k∞ − ε > . Then
the function Ψ defined by (5.2.6) is such that

−
d

dt
Ψ(t) � k∞ | v(t) |H +

γ
∫t

e(s) | v(t− s) |H ds t >

holds. Therefore, v ∈ L (R+ H) and e∗ | v |H∈ L (R+). Since the solution v has relatively
compact range in V, it follows that the ω(v) is nonempty, compact and connected. Let
ϑ ∈ ω(v) and choose tn ↗ ∞ such that v(tn) → ϑ in V. Since v ∈ L (R+ H) we obtain

v(tn + s) = v(tn) +

∫tn+s

tn

v(τ)dτ → ϑ in H for every s ∈ [ ]

This, together with the relative compactness of the trajectory, implies that v(tn + s) → ϑ

in V for every s ∈ [ ]. Therefore, n→∞ E(v(tn + s)) = E(ϑ) for every s ∈ [ ], and
thus, by the dominated convergence theorem,

E(ϑ) =
n→∞

∫
E(v(tn + s))ds

In addition, integrating Ψ(tn + ·) defined in (5.2.6) over [ ], we obtain

E(ϑ) +
n→∞

∫tn+

tn

[
e ∗ | v |H (s) +

ε

∫∞
s

| g(τ) |H dτ

]
ds =

n→∞
∫

Ψ(tn + s)ds = Ψ∞
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From assumption (B1), it follows that n→∞ ∫tn+
tn

∫∞
s | g(τ) |H dτds = , and since

e ∗ | v |H∈ L (R+), we obtain that E(ϑ) = Ψ∞, that is E is constant on ω(v). Further, as
a consequence of the above, we obtain that (e∗ | v |H)(t) → as t → ∞. Indeed, if the
contrary was true then there would be ε > and a sequence tn → ∞ as n → ∞ such that
(e∗ | v |H)(tn) � ε for all n ∈ N. By compactness, there exists a subsequence tnk

such that
E(v(tnk

)) → Ψ∞ as k → ∞, hence (e∗ | v |H)(tnk
) → as k → ∞, a contradiction. Hence

(e∗ | v |H)(t) → as t → ∞. Moreover, we see that t→∞ E(v(t)) = Ψ∞. Hence the claim
(ii) is proved.

Next, since E ∈ C (V), we have that E ′(v(tn + s)) → E ′(ϑ) in V ′ for every s ∈ [ ].
Further, using the dominated convergence theorem and equation (5.2.4) we obtain that

E ′(ϑ) =
n→∞

∫
E ′(v(tn + s))ds

=
n→∞

[
−

∫
d

dt
(k ∗ v)(tn + s)ds+

∫tn+

tn

g(s)ds

]
= −

n→∞{(k ∗ v)(tn + ) − (k ∗ v)(tn)} =

(5.2.7)

Indeed, since e ∈ L (R+) and e ∗ | v |H (t) → as t → ∞, it follows from Jensen’s inequality
that (e ∗ v)(t) → as t → ∞ in H. Furthermore, since e ∗ | v |H∈ L (R+), it follows that
e ∗ v ∈ L (R+ H). Hence, using the definition of k in (5.2.7), we obtain that

E ′(ϑ) = −γ
n→∞

∫tn+

tn

(e ∗ v)(s)ds =

With this, our claims are proved.

In order to state our main result, we firstly define 〈· ·〉V ′ by

〈v u〉V ′ = (R− v u)V V ′ u v ∈ V ′

where R : V → V ′ stands for the Riesz map and R− : V ′ → V its inverse, we will denote

this in the sequel as K.

Theorem 5.2.4. Let v be a global mild solution of equation (5.2.5) such that e∗ | v |H∈
H loc(R+). Suppose that

(i) the set {v(t) : t � } is relatively compact in V;

(ii) (A1)-(A2) and (B1) hold;

(iii) E ∈ C (V);

(iv) for every v ∈ V the operator K ◦ E ′′(v) ∈ B(V) extends to an element of B(H), and
the mapping K ◦E ′′ is continuous from V into B(H) equipped with the strong operator
topology;
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(v) E satisfies the ojasiewicz-Simon inequality near each point ϑ ∈ ω(v) ⊂ V.

Then t→∞ v(t) = ϑ in V, and ϑ is a stationary solution, i.e. E ′(ϑ) = .

Proof. From the assumptions (iii), (iv) and equation (5.2.5) we obtain

d

dt

〈
E ′(v) e ∗ v〉

V ′ =
d

dt

〈
KE ′(v) e ∗ v〉

V V ′ =
d

dt

〈
KE ′(v) e ∗ v〉

H

=
〈
K ◦ E ′′(v)v e ∗ v〉

H
+

〈
E ′(v)

d

dt
(e ∗ v)

〉
V ′

=
(
K ◦ E ′′(v)v e ∗ v)

H
− | E ′(v) |V ′ +

〈
E ′(v) g− γe ∗ v〉

V ′

Since, K◦E ′′(v(t)) is uniformly bounded for t > in H, it follows from the uniform bounded-
ness principle and Jensen’s inequality we have

(
K ◦ E ′′(v)v e ∗ v)

H
� M | v |H| e ∗ v |H� M

| v |H +
M | e |

e∗ | v |H

In addition, 〈
E ′(v) g− γe ∗ v〉

V ′ � | E ′(v) |V ′ +γ | e | e∗ | v |H + | g |H

Hence,

−
d

dt

〈
E ′(v) e ∗ v〉

V ′ � −
M

| v |H −
M | e |

e∗ | v |H −γ | e | e∗ | v |H − | g |H + | E ′(v) |V ′

Next, let ϑ ∈ ω(v), and define a new energy function Υ : R+ → R by

Υ(t) := Ψ(t) − E(ϑ) + δ

{〈
E ′(v(t)) (e ∗ v)(t)〉

V ′ +

∫∞
t

| g(s) |H ds

}
t > (5.2.8)

for some δ > fixed, where the function Ψ is defined as in (5.2.6). Then the Υ is differen-
tiable, and its derivative satisfies the estimate

−
d

dt
Υ(t) � k∞ | v(t) |H +

γ
e∗ | v |H

+ δ

{
−
M

| v |H −
M | e |

e∗ | v |H + | E ′(v) |V ′ −γ | e | e∗ | v |H

}
� (k∞ − δM) | v |H + [γ− δ | e | (M+ γ )]e∗ | v |H +

δ
| E ′(v) |V ′

Hence, if we choose δ > small enough, then there is a constant C > such that

−
d

dt
Υ(t) � C

{
| v |H +e∗ | v |H + | E ′(v) |V ′

}
(5.2.9)

Therefore, the function Υ(t) is decreasing, and by the proof of Proposition 5.2.3

t→∞Υ(t) =
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In addition, we can assume that Υ(t) > for all t > . Since, if there is a t > such
that Υ(t) = then Υ(s) = for all s � t, and in this case, from (5.2.9), it follows that
v(s) = E ′(v(s)) = for all s � t, hence v(t) is a steady state.

Now, we will use our main assumption (v). Let ϑ ∈ ω(v), since E is constant on ω(v),
it follows from assumption (v) and compactness of the ω-limit set that there is a open set
U ⊂ V such that ω(v) ⊂ U, and there are constants θ ∈ ( / ] and C > such that

| E(v(t)) − E(ϑ) | −θ� C | E ′(v(t)) |V ′ (5.2.10)

holds for every v(t) ∈ U. Further, since t→∞ (v(t) ω(v)) = we have that there is a
t∗ � such that v(t) ∈ U for all t � t∗ and (5.2.10) holds. Next, we compute and estimate
the time derivative of Υ(t) −θ. By (5.2.8) we obtain

Υ(t) −θ �C
{

| E(v(t)) − E(ϑ) | −θ +(e∗ | v |H) −θ+ | E ′(v(t)) | −θ
V ′ | e ∗ v | −θ

V ′

+

(∫∞
t

| g(s) |H ds

) −θ
}

�C
{

| E ′(v(t)) |V ′ +(e∗ | v |H) ( −θ)+ | e ∗ v |
−θ
θ

V ′ +

(∫∞
t

| g(s) |H ds

) ( −θ)
}

Since, ( − θ) � and ( − θ)/θ � for all θ ∈ ( / ], it follows that

Υ(t) −θ � C

{
| E ′(v(t)) |V ′ +(e∗ | v |H) + | e ∗ v |V ′ +

(∫∞
t

| g(s) |H ds

) }

� C

{
| E ′(v(t)) |V ′ +(e∗ | v |H) +

(∫∞
t

| g(s) |H ds

) } (5.2.11)

Therefore, from (5.2.9) and (5.2.11) it follows that

−
d

dt
[Υ(t)θ] = −θΥ(t)θ− d

dt
Υ(t)

�
θC

{
| v |H +e∗ | v |H + | E ′(v) |V ′

}
C

{
| E ′(v(t)) |V ′ +(e∗ | v |H) +

(∫∞
t | g(s) |H ds

) }
� C

{
| v |H +e∗ | v |H + | E ′(v) |V ′

} /
− C

(∫∞
t

| g(s) |H ds

)
� C

{
| v |H + | e ∗ v |H + | E ′(v) |V ′

}
− C

(∫∞
t

| g(s) |H ds

)
(5.2.12)

This in turn implies that v ∈ L ([t∗ ∞) H). Therefore t→∞ v(t) exist in H, hence from
the relative compactness of v(t) in V, it follows our claim.

Remark 5.2.3. Theorem 5.2.4 remains true if the assumption e ∗ | v |H∈ H loc(R+) is
dropped. In fact, by Remark 5.2.2 the function Υ in (5.2.8) is still nonincreasing and thus
differentiable a.e. on R+. In order, to deduce v ∈ L ([t∗ ∞) H) from (5.2.12) we apply
[HS65, Thm. 18.14] to the function −Υθ.
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5.3 Long-time behaviour for a phase field model

Let J = [ T ] with T > be an interval, and let Ω be a smooth bounded domain in R . We

consider the system

u+ φ = a ∗ Δu in J×Ω (5.3.1)

μ = E ′(φ) − u in J×Ω (5.3.2)

φ = a ∗ Δμ in J×Ω (5.3.3)

∂ u = ∂ φ = ∂ μ = on J× ∂Ω (5.3.4)

u( x) =u (x) φ( x) = φ (x) in Ω (5.3.5)

where the kernels ai are 1-regular and θi-sectorial with θi < π/ , i = . The nonlinear

term E ′ is defined by

E ′(φ) := −Δφ+Φ ′(φ)

with Φ satisfying the following growth conditions

(B2) Φ ∈ C −(R) such that

| Φ ′′′(s) |� C
(

+ | s |β
)

s ∈ R

for some constants C, and some β ∈ ( );

(B3) there are constants m m ∈ R such that

Φ(s) � −
m

s −m for each s ∈ R and λ > m

where λ > is the smallest nontrivial eigenvalue of the negative Laplacian on Ω

with homogeneous Neumann boundary conditions.

The system (5.3.1)-(5.3.5) is a conserved phase field model with memory and relaxed

chemical potential, which has been studied in Chapter 4, where the global well-posedness

was obtained (cf. Theorem 4.3.1).

We will assume in the sequel that we regard a global solution of (5.3.1)-(5.3.5) enjoys

the following regularity

(φ u) ∈ H (J L (Ω) × L (Ω)) ∩ L (J H (Ω) ×H (Ω))

On the other hand, since the solution u and φ of (5.3.1)-(5.3.5) are conserved quantities,

we can w.l.o.g. assume that ∫
Ω
u(t x)dx =

∫
Ω
φ(t x)dx =
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for all t � . In fact, it suffice to replace u by u−u, φ by φ−φ, and Φ(·) by Φ(·+φ), where

the bar means v := |Ω|

∫
Ω vdx. In addition, the long-time behaviour is not affected by this

normalization. By means of this normalization we can rewrite the system (5.3.1)-(5.3.5) in

an abstract form in the Lp-settings as follows

u+ φ = − a ∗Au in J×Ω (5.3.6)

μ =E ′(φ) − u in J×Ω (5.3.7)

φ = − a ∗APμ in J×Ω (5.3.8)

u( x) =u (x) φ( x) = φ (x) in Ω (5.3.9)

where A := −Δ with domain

D(A) =
{
w ∈ Hp(Ω) : ∂ w = on ∂Ω

} ∩ X with X :=

{
w ∈ Lp(Ω) :

∫
Ω
w(x)dx =

}
and P is the projection onto R(A) in Lp(Ω) defined by Pv := v− v.

We set H = L (Ω)∩X and V = D(A / ) = H (Ω)∩X, hence the operator A is self-adjoint,

invertible, positive definite, and coercive i.e.

〈Aw w〉 � λ | w | for each w ∈ V

where λ > is the smallest nontrivial eigenvalue of the negative Laplacian on Ω with

homogeneous Neumann boundary conditions.

Next, assume that the kernels a and a satisfy the condition (A1). Multiplying (5.3.6)

by u we obtain
d

dt
| u | +

〈
φ u

〉
+

〈
d

dt
(k ∗ v ) v

〉
= (5.3.10)

where v := a ∗ A / u = −A− / (u + φ). As to equation (5.3.8), we multiply by Pμ, this

yields 〈
φ Pμ

〉
+

〈
d

dt
(k ∗ v ) v

〉
= (5.3.11)

where v := a ∗A / Pμ = −A− / φ. Using the definition of μ and adding equation (5.3.10)

to (5.3.11) we obtain

d

dt

{
| u | +E(φ)

}
+

〈
d

dt
(k ∗ v ) v

〉
+

〈
d

dt
(k ∗ v ) v

〉
= (5.3.12)

where E(φ) :=
∫

Ω | ∇φ | +Φ(φ)dx. Observe that, since the kernels ai are of positive

type, it follows from equation (5.3.12) that

| u(t) | +E(φ(t)) � | u | +E(φ )
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In view of condition (B3), we then deduce, using the Poincaré-Wirtinger inequality, that

| u(t) |L + | φ(t) |H � C(u φ ) t > (5.3.13)

Moreover, since Ω is a bounded domain in R , this shows that φ ∈ L∞(R+ L (Ω)), by

Sobolev embedding.

Next, we will discuss the integrability of the operator family {Aκa ∗ S(t)}t� , κ ∈ [ ),

where S(t) denotes the resolvent family associated to the Volterra equation

z+ a ∗Az = f z( ) = z (5.3.14)

Observe that the mild solution of (5.3.14) can be written by means of the variation of

parameters formula as

z(t) = S(t)z + (S ∗ f)(t) t >

Lemma 5.3.1. Let Y be a Banach space, A ∈ S(Y) be an invertible sectorial operator in
Y with spectral angle ϕA < π. Assume that the kernel a ∈ L (R+) in (5.3.14) satisfies the
following assumptions:

(i) a is 2-regular and θa-sectorial such that ϕA + θa < π/ holds;

(ii) λ→ a(λ) �= and
(

a(i·)
) ′

∈ L (− ).

Then there exists a uniform integrable resolvent family S for equation (5.3.14), that is
S ∈ L (R+ B(Y)). Moreover, for each κ ∈ [ ), Aκa ∗ S ∈ L (R+ B(Y)).

Proof. Firstly, the existence of a resolvent family S ∈ C(( ∞) B(Y)) follows from assump-
tion (i) (see Remark 1.4.1). The uniform integrability of the resolvent follows from [Prü93,
Thm. 10.2 and Lem. 10.2].

Note that the uniform integrability of the resolvent together with the assumption a ∈
L (R+) implies a∗S ∈ L (R+ B(H)), that is the last statement of lemma holds in case κ = .
Let now κ ∈ ( ). Observe that the Laplace transform of Aκa ∗ S is given by

Âκa ∗ S(λ) = Aκ

(
λ

a(λ)
+A

)−

=: T(λ) λ >

From the sectoriality of the operator A, the parabolicity condition ϕA +θa < π/ , and the
1-regularity of a, we can see that there is a constant M > such that

| T(λ) |B(Y)�
M

( + | λ
a(λ) |) −κ

� M

( + | λ |) −κ
λ �
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holds. Moreover, from the 2-regularity of a we obtain

| T ′(λ) |B(Y)�
M

( + | λ |) −κ
λ � (5.3.15)

| T ′′(λ) |B(Y)�
| λ |

M

( + | λ |) −κ
λ � λ �= (5.3.16)

Now, we define the inverse Fourier transformation of T in the distributional sense as
the operator R : R+ → B(Y) given by

(R |χ) = (T |
π N→∞

∫N

−N
eiρtχ(ρ)dρ) for all χ ∈ C∞( ∞) (5.3.17)

Next, we choose a C∞(R)-function ϕ(ρ) such that ϕ(ρ) = for | ρ |� M + , ϕ(ρ) = for
| ρ |� M+ , � ϕ � elsewhere. Then for M > arbitrarily fixed, after two integrations
by parts (5.3.17) becomes

(R |χ) =

∫∞ (
π N→∞

∫N

−N
eiρtϕ(ρ)T(iρ)dρ

)
χ(t)dt

−

∫∞ (
πt N→∞

∫N

−N
eiρt[( −ϕ(ρ))T(iρ)] ′′dρ

)
χ(t)dt

Since the integrands

π N→∞
∫N

−N
eiρtϕ(ρ)T(iρ)dρ and

πt N→∞
∫N

−N
eiρt[( −ϕ(ρ))T(iρ)] ′′dρ

above are locally integrable functions on ( ∞), hence from the estimate (5.3.16) we can
then represent the operator R by means of the formula

R(t) =
π

∫∞
−∞ eiρtϕ(ρ)T(iρ)dρ−

πt

∫∞
−∞ eiρt[( −ϕ(ρ))T(iρ)] ′′dρ a.a t >

=R (t) + R (t)

In order to show that Ri belongs to L (R+ B(Y)), for i = , we proceed exactly as in the
proof of [Prü93, Thm. 10.1-10.2] with Ri in place of Si. We will not repeat it here.

The following result states the global boundedness of the solution (φ u) of the system

(5.3.6)-(5.3.9).

Theorem 5.3.2. Let ai ∈ L (R+). Assume that the kernels ai for i = , satisfy the
assumptions of Lemma 5.3.1. Further, suppose that the conditions (A1)-(A2) and (B2)-
(B3) hold. Assume that (φ u ) ∈ D(A )×D(A). Then the solution (φ u) of (5.3.6)-(5.3.9)
is globally bounded, that is (φ u) ∈ L∞(R+ ×Ω) , moreover this has relative compact range
in W := V ×H.
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Proof. Consider the Volterra equations

zi(t) +

∫t

ai(s)A
izi(t− s)ds = fi(t) t > zi( ) = z i i = (5.3.18)

From Lemma 5.3.1 we have that there exists resolvent families Si ∈ L (R+ B(Y)) for i = .
By means of the variation of parameters, the solutions of (5.3.18) are given by

zi(t) = Si(t)z i +

∫t

Si(s)fi(t− s)ds t >

So, for q ∈ [ ∞], it is easy to see that if z i ∈ Y and fi ∈ Lq(R+ Y) then zi ∈ Lq(R+ Y)

(see [Prü93, p. 257]).
Next, we rewrite the system (5.3.6)-(5.3.9) as follows:

e(t) +

∫t

a (t− s)Ae(s)ds =

∫t

a (t− s)Aφ(s)ds t > with e = u+ φ (5.3.19)

φ(t) +

∫t

a (t− s)A φ(s)ds = −

∫t

a (t− s)A[Φ ′(φ(s)) + φ(s) − e(s)]ds t > (5.3.20)

e( ) = e = u + φ φ( ) = φ (5.3.21)

The variation of parameters formula then yields the integral equations

e(t) =S (t)e + (A / a ∗ S ∗A / φ)(t) (5.3.22)

φ(t) =S (t)φ − (Aa ∗ S ∗ [Φ ′(φ) + φ− e])(t) t > (5.3.23)

By assumptions (B2)-(B3) and the solution properties of the linear problems, this system
of integral equations can be solved locally by means of the contraction mapping principle,
say for any p � . Therefore, from the energy estimation (5.3.13), we have that there is
precisely one global bounded mild solution

(φ u) ∈ C(R+ W)

which depends continuously on the data.
Now, to prove that (φ u) ∈ L∞(R+ ×Ω) we proceed with a bootstrap argument. Set

p = and r = . Suppose that we already know

φ ∈ L∞(R+ Hrn
(Ω)) ↪→ L∞(R+ Lpn(Ω)) with

pn
=
rn

−

Then from condition (B2) we obtain Φ ′(φ) ∈ L∞(R+ Lpn/(β+ )(Ω)). On the other hand,
since A −δ/ a ∗S ∈ L (R+ B(Lrn(Ω)), for each δ ∈ ( ), by Lemma 5.3.1, it follows from
(5.3.22) that

e ∈ L∞(R+ H −δ
rn

(Ω)) ↪→ L∞(R+ Ltn(Ω)) with
tn

=
pn

+
δ
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Note that

Φ ′(φ) + φ− e ∈ L∞(R+ Lpn/(β+ )(Ω)) ↪→ L∞(R+ Lsn(Ω)) with
sn

=
β+

pn

Moreover, since (A )( −δ/ )a ∗ S ∈ L (R+ B(Lsn(Ω)) by Lemma 5.3.1, it follows that

φ ∈ L∞(R+ H −δ
sn

(Ω)) ↪→ L∞(R+ Hrn+
(Ω)) with

sn
=
rn+

+
− δ

Hence,
β+

pn
=
sn

=
pn+

+
− δ

Inductively this yields

pn
= (β+ )n

[
p

−
− δ

(β+ )

]
+

− δ

(β+ )

Since by assumption β < , we may choose < δ < ( − β)/ to get the bracket negative.
Then the iteration ends after finitely many steps. As a consequence we obtain

φ ∈ L∞(R+ ×Ω)

Moreover, since H −δ
sn

(Ω) and H −δ
rn

(Ω) are compactly embedded in H (Ω), and L (Ω)

respectively, it follows that {(φ(t) u(t)) t � } is relative compact in W.

Define a functional Ξ on W by

Ξ(φ u) :=

∫
Ω

| ∇φ | +Φ(φ) + | u | dx = E(φ) + | u | (5.3.24)

and define the ω-limit set of the solution (φ u) of (5.3.1)-(5.3.3) by

ω(φ u) = {(ζ ϑ) ∈ W : there exits (tn) ↗ ∞ s.t. (φ u)(tn) → (ζ ϑ) in W as n → ∞}

Our main results of this section read as follows.

Theorem 5.3.3. Let (φ u) be a global bounded solution of (5.3.1)-(5.3.3). Assume that
the assumptions of Theorem 5.3.2 hold and that the kernels ai ∈ K (αi θi) with αi ∈ ( )

and θi ∈ ( π/ ). Further, suppose that the functional Ξ defined in (5.3.24) satisfies the
ojasiewicz-Simon inequality near some point (ζ ϑ) of ω(φ u). Then t→∞(φ(t) u(t)) =

(ζ ϑ) in W, and (ζ ϑ) is a stationary solution, i.e. Ξ ′(ζ ϑ) = .

Proof. We begin computing the Frechét derivative of the functional Ξ : W → R on W, it
is given by

(Ξ ′(φ u) (h k))W ′ W = (E ′(φ) h)V ′ V + 〈u k〉H
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hence
| Ξ ′(φ u) |W ′=| A− / PE ′(φ) | + | u |

Next, assume the condition (A2) for ki with i = and define a Lyapunov function
Ψ̃ : R+ → R by

Ψ̃(t) := Ξ(φ u) +
(
e ∗ | v | +e ∗ | v |

)
(5.3.25)

Since ai ∈ K (αi θi) we obtain from Corollary 1.4.5 that the functions vi defined in (5.3.10)
and (5.3.11) for i = , respectively satisfy the assumptions of Lemma 5.1.2. Hence, by
applying the inequality of Lemma 5.1.2 (ii) in (5.3.12) a simple computation shows that

−
d

dt
Ψ̃(t) �

(
γ e ∗ | v | +k∞ | v | +γ e ∗ | v | +k∞ | v |

)
(5.3.26)

where k∞
i := t→∞ ki(t) > for i = , which exist by Remark 5.1.1. Hence,

vi ∈ L (R+ ×Ω) and ei∗ | vi | ∈ L (R+) ∩ C ( ∞) for i =

By applying the arguments in the proof of Proposition 5.2.3, to the function Ψ̃, it is not
hard to check that the functional Ξ(φ u) is constant on ω(φ u) and that for all w ∈ ω(φ u)

one has that Ξ ′(w) = . Indeed, since vi ∈ L (R+ ×Ω), it follows that φ u ∈ L (R+ V ′),
hence φ(tn+s) → ζ in V ′ for all s ∈ [ ] and the same holds for u(tn+s). The compactness
of the range of (φ u) in W yields the convergence in W for all s ∈ [ ]. The rest of the
arguments follow of the same way as the proof of Proposition 5.2.3.

As in the proof of Theorem 5.2.4, we must modify the Lyapunov function Ψ̃ to prove
convergence in the desired space. Define Υ̃ : R+ → R by

Υ̃(t) := Ψ̃(t) − Ξ(ζ ϑ) − δ
〈
A− / u(t) (e ∗ v )(t)

〉
− δ

〈
A− PE ′(φ(t)) A− / (e ∗ v )(t)

〉
(5.3.27)

for some fixed δi > , for i = .
Next, we will check that Υ̃(t) is a Lyapunov function. To this end, we begin with some

estimates.
From the definition of v in (5.3.10), v in (5.3.11), and the condition (A2) for k , it

follows that
u = A− / d

dt
(k ∗ v )

and

d

dt

〈
e ∗ v A− / u

〉
=

〈
d

dt
(k ∗ v ) − γ e ∗ v A− / u

〉
+

〈
e ∗ v A− / u

〉
= | u | −γ

〈
e ∗ v A− / u

〉
− 〈e ∗ v v − v 〉

holds. Hence, by Young’s inequality, it follows that

d

dt

〈
e ∗ v A− / u

〉
� | u | −c

[
| v | + | v | +e ∗ | v |

]
(5.3.28)
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with some constant c > . In a similar way we have

d

dt

〈
A− PE ′(φ) A− / e ∗ v

〉
=

〈
−v +A− / PΦ ′′(φ)φ e ∗ v

〉
+

〈
A− PE ′(φ) Pμ−A− / γ e ∗ v

〉
= −

〈
v +A− / PΦ ′′(φ)A / v e ∗ v

〉
+ | A− / PE ′(φ) | −

〈
A− PE ′(φ) u+A− / γ e ∗ v

〉
Hence, using the L∞-bound for φ, and Young’s inequality yield

d

dt

〈
A− PE ′(φ) A− / e ∗ v

〉
� | A− / PE ′(φ) | −c

[
| v | +e ∗ | v | + | u |

]
(5.3.29)

for some constant c > .
Choosing δ > small and then δ > even smaller in (5.3.27), then we obtain from

the estimates (5.3.26), and (5.3.28)-(5.3.29) that

−
d

dt
Υ̃(t) � c

[
| v | +e ∗ | v | + | v | +e ∗ | v | + | u | + | A− / PE ′(φ) |

]
= c

[
| v | +e ∗ | v | + | v | +e ∗ | v | + | Ξ ′(φ u) |W ′

]
(5.3.30)

for some constant c > . Therefore, Υ̃(t) is positive, decreasing, and since ei∗ | vi | → ,
we also have | ei ∗ vi | → as t → ∞ for i = , hence

t→∞ Υ̃(t) =
t→∞Ξ(φ(t) u(t)) − Ξ(ζ ϑ) =

In a similar way as in the previous section we estimate Υ̃(t) −θ obtaining

Υ̃(t) −θ � C
{

| Ξ ′(φ(t) u(t)) |W ′ +(e ∗ | v |H) + (e ∗ | v |H)
}

(5.3.31)

as well as

−
d

dt
[Υ̃(t)θ] = −θΥ̃(t)θ− d

dt
Υ̃(t)

� C
| v | +e ∗ | v | + | v | +e ∗ | v | + | Ξ ′(φ u) |W ′

| Ξ ′(φ(t) u(t)) |W ′ +(e ∗ | v | ) + (e ∗ | v | )

� C
{
| v | + | v | + | Ξ ′(φ(t) u(t)) |W ′

}
(5.3.32)

Therefore, we obtain that

A− / φ A− / u ∈ L (R+ L (Ω))

hence t→∞ A− / φ and t→∞ A− / u exist in L (Ω). In addition, since (φ(t) u(t))

has range relative compact in W, it follows that

t→∞(φ(t) u(t)) = (ζ ϑ) in W
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Remark 5.3.1. Following the lines of the proof of [CFP06, Proposition 6.6] it holds that the
functional Ξ defined in (5.3.24) satisfies the ojasiewicz-Simon inequality near some point
(ζ ϑ) of ω(φ u) in Theorem 5.3.3 is satisfied if for e.g. the potential Φ is real analytic in
a neighborhood of the ω-limit set of the solution (φ u) and if the nonlinearity Φ satisfies
the growth condition (B2).

Combining the results of Chapter 4 and 5 we obtain

Theorem 5.3.4. Let aj ∈ L (R+) be scalar kernels for j = . Assume that aj ∈
K (αj θaj

), αj ∈ ( ), α � α , for j = . In addition, we suppose that the subse-
quent conditions hold:

(i) the nonlinearity Φ satisfies (B2)-(B3);

(ii) a is of positive type, that is

Re
∫T

[a ∗ψ](t)ψ(t)dt � for all ψ ∈ L (( T) C) and T >

(iii) a (iρ) · a (iρ) � , ρ ∈ R \ { };

(iv) aj satisfies the conditions (A1)-(A2), for j = .

Then for each p � the system (5.3.1)-(5.3.5) is globally well-posedness and the solution
(φ u) enjoy the following regularity

(φ u) ∈ H +α
p (J Lp(Ω)) ∩ Lp(J D(A )) ×H +α

p (J Lp(Ω)) ∩ Lp(J D(A))

provided the initial condition (φ u ) ∈ D(A ) ×D(A). If in addition we assume that

(v) Φ is real analytic in a neighborhood of the ω-limit set of the solution φ;

(vi) aj is 2-regular, λ→ aj(λ) �= , and
(

aj(i·)
) ′ ∈ L (− ) for j = .

Then t→∞(φ(t) u(t)) = (ζ ϑ) exists in H (Ω)×L (Ω) and (ζ ϑ) is a stationary solution
of the system (5.3.1)-(5.3.5), that is

ϑ = const x ∈ Ω

−Δζ+Φ ′(ζ) − ϑ = const x ∈ Ω

∂ ζ = x ∈ ∂Ω
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5.4 Rate of convergence

In this section we show that the ojasiewicz exponent θ in the ojasiewicz-Simon inequality

determines the decay rate of the solution to the steady state.

First observe that for t > large enough, from (5.3.30) and (5.3.31), we have that there

is a constant c > such that

−
d

dt
Υ̃(t) � cΥ̃(t) ( −θ)

holds. Since Υ̃(t) > for all t > t with t > large enough, we obtain from this inequality

that
−

− θ

d

dt
Υ̃(t)−( − θ) � −c if θ ∈

( )
and

d

dt
( Υ̃(t)) � −c if θ =

Hence, integrating these differential inequalities, we obtain that there is a constant C >

such that for large t > ,

Υ̃(t) �

⎧⎪⎪⎨
⎪⎪⎩
C( + t)− − θ if θ ∈

( )
C −ct if θ =

In addition, since

−
d

dt

[
Υ̃(t)θ

]
� C | vi | for i =

we obtain

| φ(t) − ζ |V ′�
∫∞
t

| v (s) | ds � C Υ̃(t)θ

the same holds for the solution u, that is

| u(t) − ϑ |V ′�
∫∞
t

| v (s) | ds � C Υ̃(t)θ

The same argument can be applied to obtain rate of convergence to steady state for the

abstract model (5.0.1) in case that f = . Actually, the argument in this section was first

used in [HJ01], and [HJK03] in case without kernel and [CF05] for the equation (0.0.3).

However, note that no convergence rate are obtained in the energy space W = V ×H.
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