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Symbols

symbol meaning units

 0  dielectric (average) constant -

q

 scattering vector 1m

0 angular frequency of the incident light rad s

V  scattering volume 3m

0I  intensity of light beam 2W m

x , z  position coordinate, length scale m

,R , position in spherical polar coordinates -

d  solid angle sr

,R  scattering cross section -

 turbidity -

 i fk k


 wavevector of the incident (scattered) beam 1m

i wavelength in a media m

i angular frequency in a media rad s

t time s

 0iE E  incident (incoming) electric field V m

in

 unit vector -

ip  dipole moment C m

 polarizability 3m

 number density of particles in mixture .partn V

n refractive index -

 scattering angle rad

fn

 vector of the polarization -
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R~ distance between scattering volume and detector m

p  pressure Pa

T  temperature K

,i ic C  concentration of species i 3mol m

SE  scattering electric filed V m

R  Rayleigh ratio -

S t  cS S  dynamic, generalized (static) structure factor kg mol

ik  thermodynamic coefficients -

 molar gas constant  8.314 J mol K

iM  molecular weight of species i kg mol

i chemical potential of species i J mol

TC generalized osmotic susceptibility -

 correlation length m

( )G t , )(rG  time (space) autocorrelation function -

N  Avogadro’s constant 23 16.022 10 mol

Bk Boltzmann constant 231.38 10 J K

T isothermal compressibility 1Pa

 critical exponent -

 sound wave length m

'c c speed (in medium) of sound m s

 density 3kg m

S entropy J K

 R BMI I intensity of Rayleigh (Brillouin) line 2W m

 P vc c heat capacities at constant pressure (volume) J K
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u mass velocity m s

 S V  shear (volume) viscosities Pa s

i Onsager kinetic coefficient 3kg s m

i Onsager kinetic coefficient 1Pa s K

 Onsager kinetic coefficient  J Pa s K mol  

im mass of species i kg

 thermal conductivity  W m K

ik' viscous stress tensor Pa

Q heat current   3J kg mol m 

I mass diffusion current  J Pa mol

ijD coefficients of the Fick’s diffusion matrix 2m s

Tik thermal diffusion ratio -

Pik thermodynamic quantity -

, , Ta D coefficient of the thermal conductivity -

T thermal expansion coefficient 1K 

 divergence of u m s

ijP algebraic function -
 
1 2

12 21

, ,
,

M M
M M

 

coupling parameters -

 width of Brillouin component rad s

 heat capacity ratio -

iA amplitudes of the relaxation modes -

CT , .c visT critical (demixing) temperature K

cix critical mole fraction of species i -

R coefficient of the optical justage -
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TrI intensities of the transmitted light 2W m

BI intensities of the background scattering 2W m

u depolarization coefficient -

,c d characteristic decay times of ACF s

,c dA characteristic amplitudes of ACF -

ijF thermodynamic correction factor -

i activity coefficient -

ij Kronecker delta -

ijA , ij NTRL parameters K , -

 static structure factor exponent -

 critical exponents of the osmotic susceptibility -

 critical exponents of the correlation length -

 heat capacity exponent above the plait point -

 critical exponents of the mass diffusion -

1,2D two effective diffusivities 2m s

J Landau-Placzek ratio -

,fast slowD diffusivities of the fast (slow) relaxation modes 2m s

Subscripts

i number of component
j number of component

n last component, number of components in a mixture
fast transport properties of a fast mode

slow transport properties of a slow mode
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1 Introduction

In the last years an increasing amount of efforts has been devoted to the theoretical and
experimental investigation of mass transfer in liquid mixtures. In the centre of interest
was the mass transfer across liquid-liquid interfaces. The problem of the detailed
understanding of transport in liquid-liquid interfaces between two (or more) immiscible
liquid phases is of great importance for chemistry and chemical engineering in
operations like liquid extraction, solid extraction, absorption, drying, distillation,
chemical reaction processes as well as for biology in operations like fermentation,
biological filtration and biological syntheses. In spite of its technological importance,
the details of the transfer processes are not very well understood yet. There are several
topic questions of mass transfer under continuous investigation. One is related to the
thermodynamic equilibrium between two phases on their surface area, which bases on
the concept of Nernst who assumed for a non-equilibrium at interfaces, that the
distinction in the chemical potential will cause large forces, which will result in an
immediately establishment of the thermodynamic equilibrium. Mass transfer theory
generally assumes that at the interface a distribution equilibrium exists, but this has not
been confirmed experimentally till now. A second question is, how to define the phase
boundary. Is it an infinitesimal small geometrical locus with certain concentration
profile or a small zone with properties differing from those within the bulk phases. This
could mean for instance that the mobility of molecules in this region is restricted by
adhesive forces and the coefficient of diffusion is noticeably diminished near the liquid-
liquid interface. A third one, related to the former two, could be the question of whether
there exists an interfacial mass transfer resistance. An answer to many of these
questions could be given, knowing the course of the concentration profile crossing the
interface. The application of optical measurements of mass transfer processes seems to
be a promising step towards this goal. Optical techniques are non-destructive and a
concentration measurement with high spatial and time resolution is possible without
major disturbance of the interesting transport processes. To contribute towards a
solution of these questions, the mass transfer of a substance across an interface between
three miscible liquids was studied, the used optical measurement technique is described
and results are presented here.

A typical Light Scattering experiment is shown in Figure 1.1. When incoming light
reacts with matter, the electric field component of the radiation induced an oscillating
polarization of electrons in the molecules. The molecules then serve as secondary
sources of light and subsequently they are sources of scattered radiation. The scattered
light gives us information about molecular structure and motion in the material. In
general, interaction of electromagnetic radiation with a molecule leads either to
absorption, forms the basis of the spectroscopy, or to a scattered radiation. Visible light
is extensively used as a nonperturbative direct probe of the state and the dynamics of
small particles in solution. The light traversing through a medium is scattered into
directions other than that of the reflected and refracted beam by the spatial in
homogeneity of the dielectric constant 
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Fig.1.1: Typical light scattering experiment.

There are two general ways to glean information from a light scattering experiment (see
Fig. 1.1). The first method, called Dynamic Light Scattering (DLS), is to monitor
fluctuations in scattered light I t as a function of time. The second method, called
Static Light Scattering (SLS), is to observe interparticle interference patterns of
scattered light by measuring the intensity I q


as a function of the scattering angle or,

more precisely, of the so-called wave vector q


of scattered radiation.

The intensity of scattered light bears information on the static properties of the
scattering medium: size and shape of the scattereing molecules or clusters and
thermodynamic quantities of the liquid phase. The intensity time correlation function
reflects the dynamics of the medium: Brownian motion of the particles, transport
coefficients and internal motion. We usually deal with very small broadenings  with
respect to the frequency of the incident light 0 , so in the literature these experiments
are often referred to as quasielastic scattering (QELS) instead of dynamic light
scattering (DLS). Such small widths are generally inaccessible to optical spectrometers
because of their limited resolution. They are measured by means of optical beating on
the light detector, the so-called intensity correlation technique. The intrinsic
differential nature of this technique allows measurements of spectral width even smaller
of that of the laser source itself.

DLS or laser photon-correlation spectroscopy (PCS) is an innovative technique to
measure many characteristics of fluids: diffusion coefficient, thermal diffusivity,
viscosity and compressibility. This method is especially powerful for near-critical fluids
for which the size and life time of fluctuations can be easily measured. DLS allows
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monitoring the growth of the particles during a particular chemical or physico-chermical
process and studying the kinetics of such a process.

In contrast to DLS in static light scattering experiments the time-averaged (or 'total')
intensity of the scattered light is observed and measured for a solution. It is related to
time-averaged mean-square dielectric constant fluctuations, which in turn are related to
the time-averaged mean-square fluctuations in the thermodynamics quantities. The
course of the scattered intensity as a function of the detector angle depends on size and
structure of the particles.

In 1869 Tyndall began experimental studies of light scattering from aerosols and, based
on the initial theoretical work of Rayleigh (1871), light scattering has been used to
investigate a variety of physical phenomena. Rayleigh explained the blue color of the
sky and the red sunset as due to the preferential scattering of short-wave visible light by
the molecules in the atmosphere. The theoretical model of Rayleigh assumes scattering
from statistical assemblies of noninteracting particles, which are sufficiently small
compared to the wavelength of the light to be regarded as point-double oscillators.
Debye (1915) made contribution to the theory of large particles and extend the
calculation to the particles of nonspherical shape.

It was soon found that light scattering in multicomponent mixture and in solid gases
could be explained by the Rayleigh theory. In particular, the intensity of scattering by a
condensed phase, consisting of N particles, is equal to the sum over N intensities only in
that case where the particles do not interact with each other. However, from
experimental data one can expect that summation is more complex, dependent on the
interaction of fields of each of scattering particles. To a full interpretation of these data,
on the one hand, it is necessary to have the information on intermolecular forces in the
system, and on the other hand one needs a microscopic theory of an electric field
influence on a molecule. Smoluchowski (1908) and Einstein (1910) elegantly
circumvented this difficulty by considering the liquid to be a continuous medium in
which thermal fluctuation give rise to local inhomogeneities and thereby to density and
concentration fluctuation. These authors developed a fluctuation theory of light
scattering. According to this theory, the intensity of the light scattering can be
calculated from mean-square fluctuations in density for one-component liquid, and / or
fluctuation in the concentration in multicomponent liquid mixture, which in turn can be
determined from macroscopic data such as the isothermal compressibility and
concentration-dependence of the osmotic pressure.

Later Ornstein and Zernike have developed a theory, which takes in account correlation
between fluctuations in different microscopic elements of the scattering volume. They
predicted the angular dependence of light intensity that has been scattered in the fluid
critical region. This theory was developed for the explanation of an extreme increase in
the turbidity of a fluid near the critical point (critical opalescence). This marked increase
in intensity of scattering light is a consequence of the fact that the pair-correlation
function in a system near its critical point becomes infinitely long-ranged.
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In the foregoing phenomenological theories of Rayleigh and Einstein no attempt was
made to describe that particles or elements of a scattering volume optically anisotropic.
Cabaness (1929) and Gans (1921) have shown that it is necessary to bring in those
amendments to these theories to take in account optical anisotropy of molecules and its
influence on the polarization of scattered light. In these theories, however, it is
necessary to calculate the work of orientation in certain directions of chaotically located
particles of a liquid. It is necessary to have experimental information on preferrable
orientation in space of the liquid particles, which are rather difficult to receive. Debye
made such calculation for a solution of anisotropic molecules.

Gross conducted a series of light scattering experiments on liquids observing a central
(unshifted) Rayleigh peak and the Brillouin doublet, which is shifted in the frequency
distribution of the light scattered from thermal sound waves (phonons) in a liquid.
Landau and Placzek (1934) gave a theoretical explanation of these peaks using a quasi-
thermodynamic approach.

With the advent of laser, another type of experiments became possible. Analyzing the
frequency distribution of scattered light, Pecora [8,44] (1964) showed that the spectrum
would yield information about values of diffusion coefficient and under certain
condition it might be used to study rotational motion and flexibility of macromolecules.
The use of classical interference spectroscopy (Fabry-Perot spectroscopy) to resolve the
frequency distribution of scattered light is not possible, since frequency changes are
very small. To spectrally resolve the light scattering in 1964 Cummins, Knable and Yeh
used the optical-mixing technique. Since that moment optical-mixing spectroscopy has
become a major tool for the measurement of transport properties of gases and liquids.

There exists currently considerable interest in the nature of fluctuations in fluid
mixtures driven away from thermal equilibrium by imposing a temperature and
concentration gradient. An interesting feature is that under such nonequilibrium
conditions all fluctuations become long-range. These fluctuations can be studyied by
observing the static and dynamic properties of laser light scattered from such fluids out
of thermal equilibrium. The behaviour of thermodynamic properties of fluids and fluid
mixtures is strongly affected by the presence of critical points, such as the vapour-liquid
critical point in one-component fluids, plait points and consolute points in liquid
mixtures, etc. The presence of long-range fluctuations is associated with critical phase-
transition phenomena. Based on modern theoretical analysis, we are trying to obtain an
accurate representation of the thermodynamic behaviour of fluids and fluid mixtures
close to and not so close to these critical points. The aim is to obtain fundamental
equations for chemical engineering applications over a wide range in temperature and
concentration that incorporate the crossover from singular critical thermodynamic
behaviour to regular thermodynamic behaviour far away from critical phase transitions.
A challenging task of the research is to obtain equations for chemical engineering
applications that incorporate the universal (affected by fluctuations and cooperative
phenomena) critical behaviour of fluids and nonuniversal (affected by specific
intermolecular interactions) behaviour far away from the critical point. The presence of
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long-range fluctuations in fluids and fluid mixtures near critical-point phase transitions
also strongly affects the behaviour of transport properties. The effects of long-range
fluctuations on the transport properties can be understood quantitatively with the
methods of generalized hydrodynamics.

The first investigations of the static light scattering in a ternary critical mixture of
brombenzene-acetone-water were carry out in 1969 by Bak and Goldburg [6]. They had
observed deviations from static scaling law. Indeed larger critical exponents appeared
for the osmotic susceptibility and correlation length than with the three-dimensional
Ising model and the renormalization were to be expected. In 1974, the intensity and
Rayleigh linewidth of light scattering by concentration fluctuation has been examined
by Chu and Lin [13-15], who studied a liquid-liquid critical point in the ternary ethanol-
water-chloroform system. Also in 1982 there have been carried out measurements of
critical exponents in a ternary mixture benzene-water-ethanol by Rousch, Tartiglia, and
Chen [48]. In recent time the behaviour of ternary mixtures is also discussed in
connection with "crossover" effects in aequeous electrolyte solutions. In an
investigation of Sengers et al. [28], a mixture of 3-methylpyridin-water-natriumbromide
showed an enlargement of the critical exponent of the osmotic susceptibility with
increasing concentration in sodium bromide. Müller [39-41] investigated two ternary
mixtures: aniline + cyclohexane + p-xylene and N,N-dimetylformamide + n-heptane +
toluene. In those systems he studied the correlation length of fluctuations, generalized
osmotic susceptibilities, mutual diffusion coefficients, and viscosities as a function of
the compositions and temperatures. Moreover, he investigated the shift in critical
exponents, the validity of power lows, and the role of correction to scaling when
changing from binary critical point to a ternary plaint point. Leipertz et al. [23,24,51-53]
specify results of the thermophysical properties for various binary and ternary
refrigerant liquid mixtures obtained by dynamic light scattering, in both the liquid and
the vapor states, along the saturation line approaching the vapor-liquid critical point.
Moreover, they have found data both for the thermal diffusivity and sound speed, and
for the kinematic viscosity in a wide range of temperatures and pressures.

For the first time the theoretical description of the spectrum of the light, scattered by a
binary solution, has been given by Mountain and Deutch [38]. To calculate the spectrum
of a two-component fluid mixture they are using the approach suggested by Landau and
Placzek in [32]. They used linearized hydrodynamic equations to determine the modes
by which the system returns to equilibrium as well as the relative amplitude for each
mode and thermodynamic fluctuation theory to provide initial values. They obtained
expression for the position and widths of the two-side shifted Brillouin peaks, and the
central, unshifted Rayleigh peak. Mountain and Deutch had found that the Rayleigh
peak consists of a superposition of two Lorentzians that involve the combined dynamic
effect of heat conduction and diffusion. They conclude, that under certain condition it is
possible to simply separate the central peak into two contributions. The first one arises
from mass diffusion and the second one from thermal conduction. Hence, having
measurements of the light scattering spectrum it should be possible to obtain values of
multicomponent diffusion.
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However, Mountain and Deutch have considered behaviour of the spectrum and
transport properties of binary solution only in the hydrodynamic range, i.e. far away
from critical point. Anisimov et al. [1-4,30] have developed aforesaid theory for the
case of a critical mixture. They carried out the correlation analysis of a critical mixture
of methane and ethane. Anisimov’s theory predicts the existence of two-exponential
decay functions in dynamic light scattering in near-critical fluid mixtures. In this one it
is shown that in a binary fluid mixture a coupling can occur between two transport
modes where one is associated with mass diffusion and the other with thermal diffusion.
The authors describe the thermodynamic and transport behavior and the critical
behavior of the dynamic structure factor and they discuss in detail the conditions under
which weak or strong coupling between the contributions of the effective diffusivities
D1 and D2 in the dynamic light scattering are to be expected. Moreover, they found that
the physical meaning of the two diffusivities D1 and D2 changes depending on the
points on the critical locus that were considered. Contrary to the case of the infinite-
dilution limit, where the slow mode diffusivity D1 is associated with the thermal
diffusion and the fast mode D2 with mass diffusion, the authors found that for a liquid-
liquid consolute point the physical meaning of D1 and D2 changes as the slow mode D1

is associated with mass diffusion and the fast D2 with thermal diffusion. Leipertz and
co-workers [23] experimentally verified the theoretical predictions of Anisimov et al. by
simultaneous determination and separation of the mass diffusion from the thermal
diffusion coefficients.

As an object of the investigations the system glycerol (0) + acetone (1) + water (2) (in
the following with GAW abbreviated) was selected. This system shows strong
asymmetry of the critical line. There is one reported measurements of liquid-liquid
equilibrium for this system by Krishna et al. [31]. The plaint point from thermodynamic
stability consideration of this liquid mixture was determinate. Also for this system were
found the NTRL and UNIQUAC parameter set, which are required for determination of
the thermodynamic factor (see section 3.7).

Theories advanced in works Mountain, Deutch and Anisimov are applicable only for a
binary mixture case. Leaist and Hao [35] give a comparison of their Taylor dispersion
and DLS measurements of diffusion coefficient in a ternary system of sodium dodecyl
sulfate in aqueous sodium chloride solution. Similar comparison of Taylor dispersion
and DLS methods has been lead to our study of the GAW system in [26]. Leaist and
Hao formally extended the theoretical approach for a binary mixture by Mountain and
Deutch to ternary solution. But their expression for the spectrum of light scattering by
only the concentration fluctuation case is developed. They have introducing two
eigenvalues for diffusivity. But, they discuss limiting cases of ideal dilute nonelectrolyte
solution or diffusion of macroparticle and conclude that only mass transport modes
should result.



1 Introduction

14

Thus we have the following “open questions”:

 How is the hydrodynamic theory of Mountain and Deutch to be transformed to
describe a ternary liquid mixture?

 Is it possible to describe behaviour of two hydrodynamic relaxation modes
(Anisimov’s theory) in near-critical ternary fluid mixture?

 How the theory Leaist and Hao will change if to extend with inclusion in it
pressure and temperature fluctuations?

It is the main purpose of this thesis to describe the theory of light-scattering experiment
and its application to investigate transport properties for ternary liquids mixtures,
especially the diffusion behaviour in mixtures with liquid-liquid phase separation. This
work deals with the following topics:

 Multicomponent models on the basic linearized hydrodynamic equations and
theory of thermodynamic fluctuation to determinate relaxation diffusion modes.

 Extending and addition aforesaid theories under various conditions and to
ternary liquid mixture case.

 The physical explanation of two hydrodynamic relaxation modes in the vicinity
of different points of binodal curve and far from it.

 Determination of the intensities (amplitudes) of one at towards to a plait point of
the GAW system.

 Discuss the condition at which a two-exponentional decay of the autocorrelation
function (ACF) can be measured by DLS.

 Behavior of GAW system at towards to a plait point.
 The prediction of ternary diffusivities in GAW system in the vicinity form

critical point and far away from it.

This thesis is organized as follows. In Chapter 2 we give the theoretical background on
light scattering from fluctuation of the thermodynamic values in ternary fluids mixture.
We first introduce an equation for the generalized structure factor and turbidity of light
scattering, and the concept of the critical opalescence. On the basic theory of the
linearized hydrodynamic equations we derived the new expressions for the spectrum of
the light scattered of a ternary mixture. Moreover in this Chapter we found expressions
for the time distribution of the scattered light. Here we developed a theory for the
description of the critical phenomenon in the multicomponent mixture. By using this
expression we can predict transport property behaviour in the immediate vicinity to the
critical point and far from it.

Chapter 3 deals with experimental aspects of DLS for ternary mixtures. We describe
methods of the light scattering for measurements of both static and dynamic properties.
For this purpose we use seventeen different composition of GAW system. Three
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samples of our mixtures near plait point were prepared. In this Chapter we discuss
check of optical justage and performance of light scattering measurements. Also we
consider the problem of data evaluations of ACF and estimation data for the chemical
potential gradient.

Chapter 4 deals with describe experimental data for our ternary mixture. We discuss the
behaviour of static properties, such as the generalized osmotic susceptibility and the
correlation length, near critical singularity and far from it. Here also we present a
collection of ternary diffusion data near critical point. We determine critical exponents
of GAW system of the osmotic susceptibility, the correlation length and mass diffusion,
obtained from power-law fitting. Moreover in this Chapter we have shown the
procedure of data evaluation. Finally, we found that, in the vicinity of the critical
solution point the dynamic light scattering measurements in our system reveal two
hydrodynamic relaxation modes with well-separated characteristic relaxation times.

Chapter 5 deals with the analysis of two diffusion modes of ACF in hydrodynamic
range and critical point, and comparison with experiment. The Chapter begins with the
determination of the condition under which it is possible to separate the Rayleigh peak
simply into two contributions, one arising from mutual diffusion and one from thermal
conduction. We discuss in details the behavior of ACF near the critical point. Here we
obtained temperature- and concentration-dependences of both diffusivities and
amplitudes, and we compared them to the experimental data. The Chapter ends with
discussion and conclusion.
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2 Theoretical part

In this section, the theoretical background of dynamic light scattering as well as the
theoretical description of the spectral distribution of the scattered light is presented far
away from critical decomposition point and near to it. Moreover, the theoretical
explanation of the critical opalescence phenomenon is given here. The discussion of
light scattering begins with the scattering theory of electromagnetic waves at isotropic
systems. On the basis of this theory, the equations for static and dynamic light
scattering, necessary of the evaluation for the results of our measurement are deduced.

The dynamic structure factor is calculated from the theory of thermodynamic
fluctuations with the help of linearized hydrodynamic equations appropriate to the three
components fluid. The knowledge necessary for the evaluation and classification of
transport properties near critical point for ternary mixture is made available. In the
vicinity of the critical solution point the calculation of the dynamic structure factor for
ternary liquid system reveal three hydrodynamic relaxation modes with their own
characteristic relaxation times.

2.1 Light Scattering

The interaction of light with matter can be used to obtain important information about
structure and dynamics of matter. When light interacts with matter it will scatter and the
scattered light gives us information about molecular structure and motion in the
material. In general, interaction of electromagnetic radiation with a molecule leads
either to absorption, which forms the basis of the spectroscopy, or to scattering the
radiation. Visible light is extensively used as a nonperturbative direct probe of the state
and the dynamics of small particles in solution. The light traversing a medium is
scattered into directions other than that of the reflected and refracted beam by spatial
inhomogeneity of the dielectric constant The weaker scattering due to spontaneous
thermal fluctuations of in the solvent can usually be neglected or properly subtracted.
In this section the theoretical aspects of light scattering will be reviewed briefly.

The physical origin of light scattering can be simply understood by considering the
particle as an elementary dipole, which is forced to oscillate at the frequency of the
incident field and, in turn, radiates. Almost all of the scattered light has the same
wavelength as the incident radiation and comes from elastic (or Rayleigh) scattering.
The radiated or scattered light at a given time is the sum (superposition) of the electric
fields radiated from all of the charges in the illuminated scattering volume and
consequently depends on the exact position of the charges. The molecules in the
illuminated region are perpetually translating, rotating and vibrating by virtue of
thermal motion (Brownian Motion). Because of this motion the position of the charges
are constantly changing so that the total scattered electric field at the detector will
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fluctuate in time. Implicit in these fluctuations is important structural and dynamical
information about the position and orientations of the molecule. This fluctuation give
rise to a Doppler effect and so the scattered light possesses a range of frequencies
shifted very slightly from the frequency of the incident light. This phenomenon is called
quasi-elastic light scattering or dynamic light scattering. These frequency shifts yield
information relating to the movement (i.e. the dynamics) of the solute molecules.

Consider a small scattering volume V , which is located in the point of origin, as shown
in Fig.2.1. Let the light beam with intensity 0I , which propagates along an axis x , fall
on the given small volume. After passing of a beam through the scattering volume,
intensity becomes equal 0I. Measuring the intensity of light beam before and after the
scattering volume, it is possible to find an intensity difference I on the distance l
inside the scattering substance. This signal difference, known as the turbidity of the
sample, is defined in differential and integral form the following relations:

,
0

l
I
I




 le
I
I 


0

0 (2.1.1)

Let is place in a point P with spherical polar coordinates ,R and  the detector
accepting stream of light, let out inside of a solid angle d by all point small scattering
volume which take place in a point of origin. Thus, the ratio of measured intensity ,J

to incident intensity 0I and the scattering volume V , characterize the scattering ability
of a substance. This value is the so-called the total scattering cross section of the given
substance ,R and it is defined by expression

VI
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VI

J
R

0

2
,

0

,),(    (2.1.2)

The turbidity can be directly obtained from the total scattering cross section by
integration on a solid angle




  dR  , (2.1.3)

Consider the light scattered in molecular scale. Let the plane of a polarized wave be
incident upon a small particle that is located in the point of origin. The incident beam is
directed along the positive x axis, polarized in the z direction (see fig. 2.1) and
assumed to have negligible width. The particle is assumed small in comparison with a
wavelength of light, and isotropic enough that incoming light polarized it along an axis
z . The wavevector of the incident beam is defined as iik 2 , where wavelength in
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the media is equal to i, i is the angular frequency and t is time. Then the incident
electric field be a plane wave of the from

)(exp0 trkiEnE iiii 


(2.1.4)

where in


is a unit vector in the direction of the incident electric field. This one induces a
dipole moment, which is marked as a heavy arrow in figure1:

ii Ep  (2.1.5)

where  denotes the polarizability of the molecule. It is possible to calculate a field of
this dipole radiation in the same point P . If particles behave as isolated independent
scatterers the total radiated field is the superposition of the fields radiated from all
particles, which leads to expression

Fig. 2.1: Scattering dipole, represented by a heavy arrow, is located in the point of
origin; 0I is intensity of incoming beam; 0Iis intensity of transmitted one.
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(2.1.6)

where  is number density of particles. It is possible to express this equation by
dielectric constant or index of refraction n . Polarizability is connected to the index of
refraction with Lorentz-Lorentz expression as

2

2

1 4
2 3

n
n







(2.1.7)

By substituting equation (2.1.7) into (2.1.6) Rayleigh expression for independent
scatterers is obtained:
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 n
R (2.1.8)

In the expression of the Rayleigh formula it was assumed, that separate scatterers
radiate independently from each other. This condition is not valid in dense medium.
Indeed, for absolutely homogeneous media scattering by virtue of interference effect
should be observed only in a direction of incident beam distribution. In real liquid
scattering in other direction is not vanishing on account of thermal fluctuations.

It may be shown by the methods, described in Appendix A. that equation (2.1.4) for the
component of the scattered electric field in the inhomogeneous (dense) medium at a
large distance R~ between scattering volume and detector is

      
V
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


, (2.1.9)

where fn


is polarization and fk


is the propagation vector of this field. The subscript V
indicated that the integral is over the scattering volume. This formula was first derived
by Einstein (1910). By the difference between the incident wave of the scattering wave

ik


and one that reaches the detector fk


the scattering vectors

fi kkq


 (2.1.10)

is defined. Here the values of ik


and fk


are equal in 2 and fn 2 , respectively,

with i is the wavelength in vacuo of incident beam and f that one of scattered wave.



2 Theoretical part 2.1 Light Scattering

20

n is the refractive index of the scattering medium. The angle between ik


and fk


is
called the scattering angle , see fig.2.2. For the case of a quasi-elastic scattering
process, the wavelength of the incident light is slightly changed, so that fi kk


 . As

shown in fig.2.2, the triangle formed by vectors of ik


, fk


and q


is an isosceles one and
the value of q can be obtain from eq. (2.1.10) in follows form

2
sin

4
2

sin2






i

i
n

kq



. (2.1.11)

Fig. 2.2: The light beam with wavevector ik


is scattered in all directions. The detector

receives only scattered light having a wavevector fk


. The scattering vector fi kkq



from the geometry is defined.



Detector

fi kkq




ikiik ,

ffk ,

Polarizer

Analyser

in

fn

2sin4)cos1(42 222222  iififi kkkkkkq

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2.2 Intensity of scattered light

In SLS experiments the time-averaged (or 'total') intensity of the scattered light is
measured, and for one-component liquid or solutions it is related to the time-averaged
mean-square dielectric constant fluctuations, which in turn is related to the time-
averaged mean-square concentration fluctuation. These concentration fluctuations make
a contribution to the scattering that may far exceed the contribution from density
fluctuation. However, in a general case for a multi-component liquid mixture the
fluctuations in the local dielectric constant are related to fluctuations in the local
thermodynamic quantities as the pressure, concentration and temperature (n-component
mixture case):
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In terms of the spatial Fourier transform of the dielectric constant fluctuations equation
for the component of the scattering electric field (2.1.9) can be expressed
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As shown in Appendix B, the time correlation function of the scattering electric field
can be evaluated from (2.2.2) and taking into account that the spectral density of
scattered light is    fffiii knkn  ,,,, 
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In actual photon-correlation experiments, the detectors are photomultiplier tubes which
respond to the intensity of the scattered light (see Chapter 3 for further details). The
total scattering cross section (also called Rayleigt ratio) can be found by substitution of
Eq. (2.2.3) into Eq. (2.1.2)
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where fi   . The angular brackets ... indicate an ensemble average over initial
states of the system. Note that some essential consequences follow from the formula
(2.2.4):

 It is easy to see, that the intensity of the scattered light is inversely proportional
to wavelength 4 in fourth order. As a consequence at visible light, the blue
light is scattered more than red one. This results in the blue colors of the sky
and oceans.

 It is much easier to do scattering experiments with a shorter wavelength than
with a longer one, that is a larger scattering intensities at first case. For
example, visible light is more preferable in experiment than infrared.

 The frequency change occurs only if the fluctuations in the local dielectric
constant ),( tq


 vary with time, that is, scattering could occur from “frozen” 

fluctuations but the frequency of scattering light would be identical to that of
the incident one.

Let us rewrite the expression for Rayleigt ratio (2.2.4) in another form:
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 qS
k

qR f 


In this equation ),( qS


is the generalized structure factor, which containes
information about the fluctuation in the local dielectric constant. It is defined by
Mounain [38] to be

   
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trkirtrrrdrddtqS 


exp)0,'(),'('Re2),(
0

. (2.2.5)

In terms of Fourier-Laplace transforms ),( qS


could be expressed in form

,)(),(̂Re2),( qiqqS 
  (2.2.6)

where
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The caret is used to indicate a Laplace-time transform.

Using the grand canonical Gibbs ensemble, Kirkwood and Goldberg [29] found
expressions for the Rayleigh ratio of scattering due to concentration fluctuation in
multi-component mixtures. Their expression for the light scattering contribution of
composition fluctuation is
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where  is the determinant of the thermodynamic coefficients ik and
ik

 is the

appropriate co-factor of the determinant  , kic , the concentration of a component in

the mixture. The coefficients ik may be written in the following form:
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here,  is molar gas constant, iM and i the molecular weight, and chemical
potential of species i , respectively.

In the case of a binary liquid mixture near a critical point, the Rayleigh ratio due to
concentration fluctuations is obtained from Eqs. (2.2.8)
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1
,)(  PTc denotes the generalized osmotic susceptibility TC ,  the correlation

length of concentration fluctuation, N is Avogadro’s constant and 0 is the mass of
solvent in unit volume of a mixture. For a three-component system Eq. (2.2.8) becomes
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2.3 Critical opalescence

In the vicinity of a critical point the intensity of light scattering from a liquid system
increases enormously. At the approach to the critical solution point a liquid system
takes on a cloudy or opalescent appearance. This phenomenon is called critical
opalescence. The physical mechanism of this phenomenon consists in the existance of
long-range spatial correlations between molecules in the vicinity of critical point. If we
consider the state of our system near a critical point, where local density fluctuations
reach almost macroscopic dimensions, it is necessary to take these correlations into
account. We introduce the space autocorrelation function )(rG , which describes the
probability of finding any molecule at a distance 'r from another one. This function
measured the correlations of the fluctuation in the thermodynamic quantities at two
different points of the fluid mixture 1r and 2r separated by the distance 21' rrr  . As

 21 rr , the concentration fluctuation (for the multicomponent mixture case)
should be uncorrelated so that

 
1 2

1 2lim ( , ) 0
r r

G r r
 

 .

In a spatially uniform system the spatial ACF ),( 21 rrG should be invariant to an
arbitrary translation a so that ),(),( 2121 rrGararG  . Thus the correlation function
depends only on a distance between two different points 21' rrr  of the fluid. The
structure factor for density fluctuation (one-component fluid case) has the form:
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If the system is not correlated, i.e. there exists no correlation between the positions of
the different particles, then the structure factor is equal NqS )(0 

where N is

average number of particles in the scattering volume V . The deviation )()( 0 qSqS


from unity reflects the spatial correlations between different particles in a fluid.

According to the Ornstein–Zernike theory [42, 43], a function )(rG in the limit of very
large 'r has the form

,
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derived to describe the q


dependence of the Rayleigh ratio near a critical singularity.
Here  is the correlation length between two molecules. Thus the expression for
dynamic structure factor becomes

)1()( 22 qTkqS TB 


, (2.3.3)

where Bk and T is the Boltzmann constant, and the isothermal compressibility,
respectively. By substitution of Eqs. (2.2.5) and (2.3.1) in Eq (2.3.3), the excess
Rayleigh ratio for density fluctuations near the critical point becomes
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For a multicomponent liquid mixture the contribution to the Rayleigh ratio due to
concentration fluctuations is given by the value 2qci


 . It describes the

concentration fluctuations in space corresponding to the static structure factor cS . It is
related to the space autocorrelation function of the concentration fluctuations. A
comparison to the structure factor, resulting from the fluctuation theory of Einstein and
Smoluchowski [17], leads to the expression

22
22

1
)()(





q

TckqcqS T
iBiC 




, (2.3.5)

where T is the osmotic susceptibility and  denotes the correlation length of
concentration fluctuations. Then, the Rayleigh ratio becomes
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From the various experiments it is known that in fluid mixtures the magnitude of T as
function of the thermodynamic state, near the critical point, becomes divergent
(arbitrary large). As a consequence the intensity of scattering light increases very
strongly as the critical point is approached. In fact there is so much scattering that the
critical fluid appears cloudy or opalescent. This phenomenon, as mention above, is
called critical opalescence.

The three interrelated phenomena that are observed near the critical solution point in
liquid mixture are:

 Increase in the fluctuation of the thermodynamic quantities in the
multicomponent mixture.

 Increase in the osmotic susceptibility.
 Increase in the correlation length.

Eqs. (2.3.4) and (2.3.6) are correct only for large 'r . Because of the divergence of the
static structure factor in the very immediate neighborhood of the critical point Fisher
[18-21] introduced a positive and very small critical exponent  describing a critical
singularity of the correlation function (2.3.2). Eqs. (2.3.6) could be expressed:
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This equation represents one of several modifications for the correlation function and
predicts a small downward curvature in the reciprocal scattering intensity versus 2q near
the critical point. One must expect =0.0560.008 according to numerical calculation
based on the 3D Ising model [22]. Müller [39-41] has applied the Ornstein–Zernike
theory to ternary liquid mixture near the critical solution point to the obtain data of
diffusivities and other mixtures properties.



2 Theoretical part 2.4 Spectrum of light scattered from hydrodynamic fluctuation

27

2.4 Spectrum of light scattered from hydrodynamic fluctuation

Since the fluctuation in liquid, which are responsible for scattered light, change in time,
the spectral structure of scattered light will be different from that of the incident beam.
The investigation of this spectrum allows studying time behaviour of thermodynamic
fluctuations in the liquid medium.

To analyze the spectral structure of light, which is scattered in the liquid, we will
consider in more detail the character of thermal fluctuations. As is known, in a liquid
always there are sound waves. These waves, which are analogous to Debye waves (or
phonons) in a crystal, are raised from thermal movement of molecules. Incoming light
with a wavelength 0 is scattering on those sound waves which length , that satisfies
the Bragg condition 0)2sin(2  or in wave numbers (see eq. 2.1.11). These waves
are propagating in opposite directions at the adiabatic speed of sound )(qc


, with

projections along the light beam direction that are equal to )2sin()(  qc


(see fig. 3).
The adiabatic speed of sound in a multicomponent mixture is defined as
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where p , , S , and ic are the pressure, density, entropy, and concentration of thi 
component in mixture, respectively. As a result light will be test to Doppler shift, which
reduced to the shift of the angular frequency, is equal

'
)2sin()(2

0 c
qc 








, (2.4.2)

where 'c - speed of sound in medium, '0 cki - is angular frequency of incoming
light. Therefore at the spectrum there are two shifted lines located symmetrically with
respect to the frequency of the incoming beam 0 , and shifted by an amount
proportional to speed of sound:

)(qcq


 . (2.4.3)
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Fig.2.3: Diffraction of light on the sound waves propagating with speed of c . In result
of diffraction arises the Doppler shift proportional to magnitude )2sin()(2  qc


.

Two lines are observed because scattering can occur from phonons traveling in opposite
directions but at the same velocity. Hence, a measurement of these line widths enables
to define the magnitude of the sound attenuation. These lines are the so-called
Brillouin-Mandel’shtam doublet or more simply known as the Brillouin lines.

However, besides the Brillouin-Mandel’shtam doublet, in the spectrum of the light 
scattering there is a third, the central or frequency-unshifted component. This
component is known as Rayleigh line. Landau and Placzek (1934) [32] have given the
explanation of this phenomenon. The sound waves represent pressure fluctuations at a
constant entropy. Generally for the liquid mixture it is necessary to take into account
also temperature or entropy and concentration fluctuation at constant pressure. These
fluctuations are motionless in space and consequently they are not shifted in frequency.
But the Rayleigh peak is broadened somewhat due to the thermal dissipative processes,
which damp out these fluctuations. This peak consists of the superposition of two
Lorentzians (as we will see later). The complex structure of the central Rayleigh peak is
a direct consequence of the coupling between mass diffusion and heat flow
(thermodiffusion) that exist in multicomponent mixtures. Thus the fine structure of the
light scattering spectrum consists of three lines. Landau and Placzek showed that the
ratio, known as the Landau-Placzek ratio, of the central line RI to that of the two
shifted lines BMI2 is determined by thermodynamic fluctuation theory to be
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where Pc and vc are the heat capacities at constant pressure and volume, respectively.
The spectrum of light scattering for multicomponent mixture is schematically
represented on fig.2.4.

Fig. 2.4: The schematic sketch of the spectrum of scattered light for multicomponent
mixture [52].

Landau and Placzek have observed that linewidths are determined by lifetimes of the
pressure, temperature and concentration fluctuations, described by the linearized
hydrodynamic equations of irreversible thermodynamics.

To describe the time dependence of the fluctuations in the local thermodynamic
quantities it is necessary to use the linearized hydrodynamic equations. Let us denote
by means of full density of the mixture. The continuity equation than has the form:

0)(0 



u
t




, (2.4.5)

It means, that the full weight of the fluid in some volume can change only by flowing
in or flowing out. In this equation u is the mass velocity. This linearized theory is
restricted to mall oscillation about equilibrium. Thus the transverse part of the velocity
is not dependent on the density and concentration. For this reason we neglect the
transverse part for the equation of movement of a viscous liquid (known as the Navier-
Stokes equation) in our consideration. This limits the applicability of this theory to
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liquid mixtures in which angular correlations between the molecules are not important
[9,33]. The longitudinal part of the Navier-Stokes equation is
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where S and V are the shear and volume viscosities, respectively. Equilibrium
values in these equations are denoted by a subscript zero.

In a liquid mixture mass transfer can occur by convection and/or diffusion. Mass
transfer due to diffusion is found even if a movement of the liquid as a whole is absent.
Let I be density of this diffusion flux. Then the continuity equations for ternary liquid
mixture case has a form:
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i divIcu
t
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 . (2.4.7)

In the ternary liquid mixture there are two independent variables for concentration.
Since 1222211  mcmcmc , then )1(1 111133 mcmcmc  , where ic and im are
the concentration and mass of each component in the mixture, respectively (see also the
Appendix C).

In addition to the mass diffusion current I in the liquid there is present also the heat
current, which is connected to the thermal conductivity :

TQ  (2.4.8)

Following Landau’s method of solution [33] we will obtain the energy transport 
equation for a ternary liquid mixture
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where ik' is the viscous stress tensor, ki x - derivative of liquid velocity with
respect to coordinates, and S is the entropy. Here we are using the reduced quantities

1 and 2 , which are connected to chemicals potentials of i -th component of the

mixture, where
3

3

1

1
1

''
mm

  and
2

2
2

'
m

  , im - the molar masses of the

pure component. The detailed of this formula derivation is given in Appendix C.
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2.5 Hydrodynamic fluctuations in ternary liquid mixture

In this section the theory will be applied to the case of ternary liquid mixtures. The
new model is based on conclusions of the linearized hydrodynamic equations and of
the methods suggested by Landau [33], and later by Mountain and Deutch [38] for a
binary mixture. In addition, Anisimov presented a theory on the coupling of different
transport modes near the critical point in a binary mixture [1]. Leaist and Hao [35]
already formally extended the theoretical approach for binary solution, given by
Mountain and Deutch, to a ternary solution, but for the special case of a ternary system
in which the temperature and pressure is uniform. They have considered the special
case, in which the concentration fluctuations are much more essential then the others.
So far they did not verify this theoretical concept experimentally.

The main focus of this thesis is a theoretical investigation of transport properties in the
hydrodynamic range and in the critical singularity field. In this section a new
theoretical extension of theory to ternary systems is developed. Here we will present
new expressions for the general case, where the fluctuations in the dielectric constant
are in turn caused by the full set of the local thermodynamic quantities such as the
pressure, temperature and concentration.

The mass diffusion current and the heat current result from concentration and
temperature gradients, respectively, which are present in the mixture. However, I
depends not only on the concentration gradient, and Q - not only on the temperature
gradient. Generally, each of these currents depends on both gradients. If the gradients
of the concentration and temperature are insignificant, for I and Q it is possible to
write linear functions of i and T :

1 1 1 1

2 2 2 2

1 1 2 2 1 1 2 2

I T

I T
Q T T T I I

  
  
      

   
   
      

, (2.5.1)

where ii , and are the Onsager kinetic coefficients. As shown in Appendix C, the
final expressions for currents have the form
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where ijD  are the coefficients of the Fick’s diffusion matrix, Tik is the thermal

diffusion ratio, and Pik the thermodynamic quantity
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which is called the barodiffusion ratio. Let us consider a liquid without any
macroscopic movement. After substitution of I and Q from Eq.(2.5.2) into Eqs.
(2.4.7) and (2.4.9), by the way of simple transformations (see Appendix C), we will
obtain the diffusion equations
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and energy transport equation
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In these equations PC is the heat capacity at constant pressure, and PC  is the
coefficient of the thermal conductivity. The system of the linearized hydrodynamic
equations (2.4.5), (2.4.5), (2.5.3) and (2.5.4) is the system, which described the time
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dependence of the concentration, temperature and pressure fluctuations in the ternary
liquid mixture.

These equations have been already solved for binary mixture by Mountain and Deutch
in [38]. Here we will adhere to their method of solution and transform it to the ternary
mixture case. For beginnings consider the interesting special case of the system in
which the pressure is uniform, and consequently only the concentration and
temperature fluctuate. In this special case there are no sound modes, and consequently
no Brillouin-Mandel’shtam doublet. Aforementioned system for the concentration and 
temperature fluctuations are described by the following system of equations:
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(2.5.5)

For the beginning the system of the linearized hydrodynamic equations should be
expressed in terms of the variables that have been chosen to characterize the local state
of the mixture. Generally, for a ternary system, four such state variable are needed. The
criterion we will use to select the four states variables is that the probability of a
fluctuation is statistically independent. In the Gaussian approximation 01 cpT  ,

021 ccs  and 021 T and either of the obvious candidate choices of the

four thermodynamic variables  21 ,,, ccpT ,  21 ,,, ccpS , or  21 ,,, T do not
satisfy the criterion of the statistical independence. Following Mountain’s consideration 
[16,38], we introduce a set of variables  21 ,,, ccp  , where is defined as

p
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In this expression  
21 ,,

1
ccpT T  , is the thermal expansion coefficient.

Anisimov showed that [1]
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The set  21 ,,, ccp  is statistically independent with
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where Bk  is Boltzmann’s constant. In thermodynamics the derivative   ijcTpii j
c  ,,

and pC and, therefore,
2 and

2
ic are defined and can be derived from

experiment. This is why the introduction of the variable is advantageous.

The next task is to rewrite the linearized hydrodynamic equations (2.4.5), (2.4.6),
(2.5.3) and (2.5.4) in terms of the variables 21 ,,, ccp  and udiv , and the system
(2.5.5) in term of the variables Tcc ,, 21 .

Using Fourier transformation on spatial coordinates
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we will present the system (2.5.5) in following form:
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These differential equations are most easily solved using Laplace transform.
Introducing the Laplace transforms
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The expressions of the Laplace transform for variables ,p and  will be similar to
one for variables ic and, T . We will obtain
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This system, in matrix form is,
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and T has the form
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The general structure of the solution of Eq. (2.5.13) is
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where ijP  is the algebraic function from “i” and “j” variables. The determination of 
the dynamic structure factor, as we will see further, includes different correlations
between these variables. An expression for the correlation function is obtained by
taking inverse Laplace transform of Eq. (2.5.15):
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This inversion requires that we find the roots of denominator of the right hand side of
Eq. (2.5.16). Shift and width of the spectral component by roots of the dispersion
equation are defined (obtained from calculated )det(M ). The solution of this cubic
equation (see Appendix D), is not particularly useful in this case because of its
algebraic complexity. It is more convenient to develop a convergent scheme for
approximating the solution to the dispersion equation, in power series of coefficients.
The solution can be expressed as  )2()1()0( zzzz where )(nz is a term of order
n in any of the small dimensionless parameters  cq 2 ,  cq 2' and  cqDij

2 . Here

c is the adiabatic speed of sound (see Eq. 2.4.1),   VS  3
4' is the generalized

kinematic viscosity. The value  cq 2' is used just in case when pressure fluctuations
are taken into account. In a typical light scattering experiment 1510  cmq


,

sec105 cmc  , so that these quantities are on the order of 210 , 210 , and 410 ,
respectively. In the approximation when linear terms in the small quantities are retained
one obtains for determinant (2.5.14a):

  2
21 ))((),(det zzzzzqM 


, (2.5.17)

where the roots are
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Of course pressure fluctuations occur in a ternary liquid mixture. If we neglect these
fluctuations, the equations will be considerably simplified, as shown above.
Nevertheless, the full set of the linearized hydrodynamic equations (2.4.5), (2.4.6),
(2.5.3) and (2.5.4) should be analyzed. Here we will not write out in detail all
transformation (for details please see Appendix E), in view of their inconvenience. The

55 matrix M for the full set of equations has the form
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and the 55 matrix T has the form
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In linear order approximation the root of matrix determinant (2.5.21 a) is
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, (2.5.23)

where VP CC is the heat capacity ratio. The other three roots of the dispersion
equation (2.5.22), 1z and 3,2z , are congruent with values of roots in the equation
(2.5.17). For the problems discussed in this thesis the expression describing frequency
distribution of light scattering spectrum are not important. Here we are interested only
in expressions for time distribution. In actual DLS experiment the resulting signal has
been processed by a digital correlator, the time autocorrelation function (ACF) is
obtained [1,52]

2
0 ),(1),( tqStqG


 , (2.5.24)

where 0 is a constant depending on experimental condition. The dynamic structure
factor ),( tqS


Eq. (2.2.5) is proportional to ACF of the dielectric constant fluctuations

Eq. (2.2.6). In general, the dielectric constant of a ternary liquid system is a function of
four independent variables:  21 ,,, ccp  (see Eq. 2.2.1). As the instantaneous
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fluctuations of 1,, cP  and 2c are statistically independent, than the fluctuation of the
dielectric constant has the form:
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. (2.5.25)

Next, we need the inverse Laplace transform using Eq. (2.5.16). The dynamic structure
factor in the linear terms, if a uniform pressure system is considered, is given by
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(2.5.26)

Expressions for the correlation function     2
,ˆ qNqNtqN ji


 as function of the

wave number q


are given in Appendix F. Substituting these expressions and static
correlations (Eq. 2.5.8) into Eq. (2.5.26), we find our final expression for the dynamic
structure factor, which can be written as

  tztz eAeAtqS 21
21 2,  


, (2.5.27)

where 1A and 2A are the amplitudes of the two relaxation modes:
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(2.5.29)

As you could see 9,,1  in (2.5.29) are containing only thermodynamics derivatives,
i.e. they are static quantities. The complexity of this expression for the dynamic
structure factor arises from the coupling between mass diffusion and heat flow, which
is given by the thermal diffusion ratio Tik . Thus we see that the Rayleigh peak cannot
in general be simply considered as the superposition of two Lorentzians, the first
arising only from thermal diffusivity and the second only from mass diffusion.
However, there are a number of conditions, met by a wide variety of ternary systems.
In chapter 5 we are looking into these conditions, and show how the results for the
structure factor can be simplified. It follows that in these cases it will be possible to
obtain information about a transport coefficient from analysis of experimental ACF
profile. These equations are correct under following conditions:
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 The fluctuations can be described by the usual linearized hydrodynamic
equations (2.4.5), (2.4.5), (2.5.3) and (2.5.4). In the linearized theory the
deviations of thermodynamic variables about equilibrium are small.

 The dimensionless parameters  cq 2 ,  cq 2' and  cqDij
2 are required

to be small. It means, that the width of the components is small in
comparison with the shift of the Brillouin line.

2.6 Spectrum of light scattered in near-critical ternary fluid mixture

In the previous chapter we considered the light scattering spectrum arising from a
ternary solution, away form its critical point. Far away form critical singularity 1q is
much greater than the range of molecular correlations. Near the critical point this
condition breaks down, as the range of molecular correlations is comparable to 1q . As
the critical point is approached, the q


dependence of fluctuations of thermodynamic

values develops reflecting the long-range of the correlation between two particles. This
results in an expression for the Rayleigh ratio (2.3.4) where the Ornstein–Zernike
correction term is included. Similar corrections should be taking into account at
investigating of the light scattering spectrum near the critical consolute point of the
liquid mixture.

At the beginning we will obtain expressions of transport properties near critical point
adhering to Anisimov’s method [1]. The Onsager kinetic coefficients ii , and ,
included in expression (2.5.1), near the critical point can be written as the sum of the
singular and regular parts. These coefficients for ternary liquid mixture satisfy the
following equations:
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where  is the correlation length diverging at the critical point, r
i

r
i  , , and r are

regular background part of the Onsager kinetic coefficients; ii M' is the mass
density, and iM is the molar mass of thi  component of the mixture. It should be

noted that the expressions for the singular contribution in these coefficients S
i

S
i  , ,

and S are only valid close to the critical point. The singular parts of these coefficients
in the asymptotic vicinity of the critical point are interrelated by [1,30]
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In the following step it is necessary to rewrite transport properties in terms of the
Onsager kinetic coefficients, since the kinetic coefficients are not directly measurable
in experiment. Main mass diffusivities connect to the kinetic coefficient i by
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Substituting of i form Eq. (2.6.1) into the equations (2.6.3), the main mass diffusion
coefficients near critical singularity have a form [1]
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and they vanish at the critical point as reciprocal of correlation length 1 . Here CT is
the critical temperature. From the Eq. (2.6.4) it follows that the quantities of main terms
of the Fick’s diffusion matrix in the asymptotical vicinity of the critical point will be 
equal. This is experimentally confirmed. Pertler [45] in his systematic investigation on
multicomponent mass diffusion found that by approaching the critical singularity, the
main terms become almost equal values. The thermal diffusion coefficient TiD is
related to the kinetic coefficients i and i by
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and tends to a finite value at the critical point whereas Tik diverges as the correlation
length . The singular parts of the kinetic coefficients i and i compensate each
other according to Eqs. (2.6.2), and thus tend to finite value at the critical singularity.
The regular parts of the kinetic coefficient, and consequently also the transport
properties, are very important close to the critical point and cannot be omitted. Thus
the expression for the mass diffusivity according to reference [1,27] is
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where

,
6 0

0
22,11 S

BTk
D 

and where 0 is an amplitude of the order of the molecular size. The parameter '
relates the mass diffusion coefficient 22,11D far away from the critical point, where

 1' , to 0
22,11D as 0

22,1122,11 ' DD  . Asymptotically close to CT Eq. (2.6.6) reduces to
Eq. (2.6.4).

The thermodiffusion coefficients close to the critical singularity tend to finite values, as
it has been mentioned above, and have the form [1,27]
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where cix is the critical mole fraction of species i near the critical point, 0
2,1Tk is the

thermodiffusion ratio far away from the critical point. Near the consolute point the
thermodiffusion ratio becomes

 
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0
2,121212,1 1
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TccccT kxxxxk  , (2.6.8)

and diverges as .

It is possible to see from the formula for the dynamic structure factor (2.5.27), that, in a
near critical ternary liquid mixture, there exists, in general, a three-exponential time
decay. We find three different transport modes that are associated with thermal
diffusion (first time decay) and mass diffusion (other two decays). These three time
exponential modes are defined by coefficients 1z and 3,2z (2.5.18). The diffusivity 3,2z

of the slow mode is associated with mutual diffusion coefficients and diffusivity 1z of
the fast mode is associated with thermal diffusivity,
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, (2.6.9)

with 3,21 zz  where  is the thermal conductivity. According to ref. [1] the second
amplitude from Eqs. (2.5.27) and (2.5.28a,b) near the critical point tends to zero

02 A . Therefore, in the close vicinity of the critical point, the light scattered from
multicomponent liquid system is determined by the fast mass diffusion mode with

TiDz 1 and amplitude 1A .

In the beginning of this section it was stated that in the vicinity of the critical
singularity the correlation length  is comparable with and subsequently even larger
than 1q and the wave numbers q of the static and dynamic properties must be taken
into account. In the case of ternary liquid system, which is characterized by two-
exponent decay, the three decay rates 2

11 )(' qqz


 and 2
22 )(' qqz


 , observed in
light scattering, depend on the wave numbers as
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where 0.06z [11].

Thus, near the critical point, the linewidth of the Rayleigh line is not proportional to a
square of wave number, as in case of the hydrodynamic range, and it contains higher
values of exponents that should appear in expressions of angular dependence of light
scattered.

The present theory allows to calculate thermodynamic and transport properties for
multicomponent mixture and to compare the computed data with experiment. The
theory predicts the existence of the three-exponential decay function in dynamic light
scattering in near-critical ternary fluid mixture. It could be shown that in the ternary
fluid mixture a coupling can occur between three transports modes where one is
associated with thermal diffusions and the others with mass diffusion. Moreover, the
theory allows calculating the relative amplitudes of three relaxations modes for a
multicomponent liquid system if enough information about static and dynamic
properties is available.
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3 Experimental part

In this chapter we have deals with experimental aspects of DLS for ternary mixture. The
preparation of the samples and equipment described here. To determination of the
demixing temperatures and critical concentration of the critical samples we used the
volume equivalence criterion. Moreover procedure of light scattering experiment is
present in this chapter. We discuss methods of the light scattering for measurements of
both static and dynamic properties. For this aim we used seventeen different
composition of GAW system. Three samples of our mixtures near plait point were
made. Here we discuss about check of optical justage and performance of light
scattering measurements. Also we consider problem of measurements of ACF and
estimate data of chemical potential gradient.

3.1 Chemicals and equipment

For all described measurements the system glycerol (0) –acetone (1) –water (2)
(GAW) has been applied, where we used certified ACS acetone (99,9 mole %) from
Acros Organics Company without further purification. The acetone was ECD tested for
pesticide analysis and contained a maximum amount of 0.2% of water. Certificated
C.A.S. spectranalyzed glycerol from Acros Organics Company with a content of 99,5
mole % was used. The specifications by the manufacturer are presented in Table 1 (see
Appendix H).

During the sample preparation three components were weighed in flasks in the sequence
glycerol, water and acetone in order to minimize evaporation losses because of
increasing volatility. After that the samples were closed and sealed quickly with teflon
tape, so that the loss of sample evaporation, especially of acetone, have been minimized.
Since glycerol is very hygroscopic, traces of water have to be removed, because of its
large heat capacity the water content will significantly raise the phase separation
temperature of the system. Therefore the substance was boiled under reflux with
calcium hydride followed by a distillation under reduced pressure and dried nitrogen as
protective gas.

In order to guarantee the purity of the mixtures, which is necessary for the
reproducibility of the measurements, the adsorption of the water on the surface of the
glass must be absolutely avoided. Therefore it is necessary to carry out the following
procedure for the successful treatment of the glass equipment during the work:
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All light scattering cells, glasses, syringes, valves and Erlenmeyer flasks were immersed
in a mixture of a water, sodium hydroxide and hydrogen peroxide for several days, to
remove any organic impurities. Then this glassware was rinsed with distilled water and
subjected to ultrasonic vibration for an hour. Hot water steam was used to remove all
remaining dust particles from inside the flask and cells. The cleaned glassware was
carefully dried at a temperature of 1200C under vacuum, and cooled to room
temperature after 8 hours under a nitrogen atmosphere in order to completely remove all
rests of water.

3.2 Preparation of the samples

From a paper of Krishna et al. [31] the position of the critical line within the phase
diagram was quite exactly known. In all critical measurements there are two different
thermodynamic path approaches to the spinodal surface of a ternary mixture, the
temperature path and concentration one. For better explanation, fig. 3.1 shows a 3D-
diagam with the spinodal surface of a ternary mixture. Different experimental
approaches to this surface are represented in form of arrows.
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Fig.3.1: Different approaches towards to the spinodal surface in a ternary liquid system.
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The determination of the demixing temperatures of each of the critical samples in the
light scattering apparatus had been very difficult. For determination of the demixing
temperatures and the critical mixtures the method, described by Müller [41], was used.
This method consists in the following. The vessel is filled with water and is surrounded
with a cover and a lid made from polystyrene foam to improve the insulation. It was
possible to insert through the lid a thermistor and ampoule. The incoming beam of the
He-Ne laser ( 632.8nm , 5P mW ) passed through the vessel and the ampoule. As a
thermostat has been used an FP40-MH from Julabo Labortechnik GMBH. Distilled
water was used as a thermostat liquid. The temperature measurement was carried out
with a digital thermometer DTC 5.DC and a thermistor attached. The temperature was
constant to approximately 1mK, and less than 3mK for external temperature control
of the thermostat with a PT 100 sensor.

The laser beam vanishes when the phase separation begins. We assumed that at the
demixing temperature .c visT the laser main beam disappeared. This disappearance was

determined by the 00 - diode (see below). As is shown in Fig.3.2, the signal from 00 -
diode sharply decreases at the approach of the critical temperature. Simultaneously in
the same figure (same time axis) time dependence of temperature is shown. At first the
demixing temperature was determined roughly, with temperature data precision 3mK,
by relatively fast cooling down with a rate of 10 mK per minute (see fig. 3.2). The
crossing of these dependences gives the value of the demixing temperature .c visT . It is
possible to notice from figure 3.2, that before the disappearance of the high intensity
laser beam on the 00 - diode the “spinodale circular fringe” appeared shortly, but it was
not judged to be criterion for the demixing temperature, because there is a strong
dependence on the special experimental condition. Afterwards a procedure of
homogenizing (shaking of the sample) was carried out. Than the same procedure was
repeated but with a slow cooling down rate of 2 mK per minute. After this all samples
was sealed with Parafilm before storing, in order to keep the value of the demixing
temperature constant.

To find the sample with the critical concentration all prepared samples were tested by
the volume equivalence criterion. The plait point composition of a ternary system is
defined as the composition at which the volumes of the two coexisting phases are equal
at the phase separation temperature. That is the volume relations Upper LowerV V of the two

phases becomes closest to the value 1 at CT T , as shown in thesis of Müller [41]. The
sample that meets best this criterion at about 20 mK below the decomposition
temperature was defined to be the critical one. The measurement of the critical
composition was carried out in a thermostat bath, in which the temperature was
increasing gradually up to the demixing point. The height relations of two phases were
measured by using of a cathetometer. The volume relations of the two phases
correspond to the height relations in ampoules with a cylindrical cross section.
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Fig. 3.2: Determination of the demixing temperature .c visT on an example of the GAW

10 sample by crossing of the time dependence of temperature and signal strength of 00 -
diode. (Cooling rate 10 mK/min.)

It has been found that the probe GAW11 to be critical. The compositions and demixing
temperatures are listed in Table 2 (Appendix H). Furthermore, the critical behavior was
determined visually (visually estimated values of the volume relations of two phases)
and good agreement was found between both methods.

For the production of the critical samples at first three mixtures near plait point were
made (GAW 9,10, 11, see Table 2). Seventeen samples were prepared along a binodal
curve in the close vicinity of the critical solution point. The weighting of the prepared
mixtures were carried out into hundred-ml Erlenmayer flasks, which were equipped
with teflon valves. To avoid the influence of dust particles, prior to any light scattering
measurement the mixtures were filtered trough teflon membranes with a pore size
diameter of 22.0 m. The mixtures were filled into the Erlenmayer flasks by means of
teflon tubes with inner diameter 0.6 mm and gas-tight syringes through the valves into
the flasks.
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To ensure a long-term stability and handling of the mixtures we used standards glass
ampoules, which could be closed by sealing. These ampoules are made by Fa. Schott
from Duran glass pipes. The ampoules have following geometrics: a length of
approximately 17 cm, a height 8 cm, the inner and outside diameters is 7 mm and 10
mm, accordingly. Filling of the ampoules by the mixtures were carried out in the glove
box with help of syringes and teflon tubes. All used glassware and the mixtures were
warmed up to a temperature well above the critical point in order to prevent any phase
separation of the systems during filling. Between the syringe and the teflon tube were
attached 22.0 m teflon membrane in order to keep away all last dust particles from
the ampoule. To allow measurements in the corresponding phases the filling height of a
liquid in the ampoule was not allowed to exceed 1.5 cm. After this the mixture in
ampoule was frozen by liquid nitrogen and closed by sealing.

3.3 Determination of related quantities

The first step for the preparation of the ternary critical mixture is the determination of
equilibrium data. Therefore an exact knowledge about the behavior of the critical line in
the Gibbs phase space is required. There are quite a number of experimental data for the
system GAW already available. Krishna et al. presented data on the composition of the
coexisting phases at 250C [31]. In additional, they made a modeling of the isothermal
binonal curve at 250C with the help of NTRL and UNIQUAC–model calculations.

Pertler in [45] systematiclly investigated the multicomponent diffusion of the GAW
system in the close vicinity to binodal curve. To receive more exact information about
the course of the complete binodal surface Wild [50] investigated in his master thesis
four ternary system (including GAW) in the critical singularity of the mixtures.
M.Rutten [49] in his PhD thesis obtained, by constructing the Gibbs excess energy
function in the NRTL and UNIQUAC –models, the activity coefficients in GAW
ternary mixture. These experimental equilibrium data are necessary to determinate the
six interaction parameters which fix the Gibbs excess energy function. These data will
be necessary for calculation of the activity coefficient, and consequently of the
thermodynamic correction factor. Which, for one’s turn, is connected with deviations of
the chemical potential i of a species " "i (see section 3.7).

The determination of the refractive index of the mixtures, to be measured, is particularly
important for the calculation of the wave vector q


(see eq. 2.1.11). Strictly speaking the

refractive index has to be taken for this purpose at both 532n and 632.8n wavelengths of
the light used in scattering. However, their difference is negligible. As in the sample
house of refractmeter the more volatile components of a mixture could undergo
evaporation, the procedure of measurements should be done very fast. The
measurements of the refractive index were carried out for each compositions of the
mixture. The refractive indexes of the compositions are listed in Table 3 (Appendix H).
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Figure 3.3 shows the index of refraction behavior in dependence on the ratio of mole
fractions of acetone and water.
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Fig. 3.3: The reflective indexes dependence of the GAW mixture compositions.

The refractive indexes measurements were carried out at the temperature of 298 K. A
thermostat C6 (Fa. Lauda) was used for the temperature control of the refractmeter.
Approximately 0.2 K were the temperature fluctuations.

3.4 Light scattering measurements

All static and dynamic light scattering measurements, reported here, are carried out in a
commercial apparatus ALV/DLS –5000 with an ALV-5000/Fast correlator and
modified fiber-optics detection of Fa. ALV GmbH Langen, Germany, as schematically
shown in Fig.3.4. It is mounted on a vibration-damped table. As light sources we used a
JDS-type He-Ne cw-gas-laser of Uniphase Corp. of about 26mW at 632.8 nm or a
532DPSS Nd:YAG diode-pump, frequency-double laser (Coherent Laser Group) of
about 500 mW at 532 nm. The choice of a laser source basically is caused by the
scattering cross section of the fluctuations to be investigated. Because of the very high
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scattered light intensity at near- critical states, all measurements were performed with
the He-Ne –laser whereas the Nd:YAG –laser had been used far away from critical
point.

A liquid crystal attenuator (LCC-VIS Fa. Newport) has reduced the intensity of the
incident beam of both lasers. For the measurements in the vicinity of the demixing point
the initial intensity of the Nd:YAG –laser must be reduced down to 5-10%. After
passing the attenuator the incident intensity and beam position were analyzed using a
quadrant-diode coupled in with a beam divider plate, which gives a quantity, that is
proportional to the entrance intensity refI . Normalization on this value allows taking
into account of the laser intensity fluctuations.

Fig. 3.4: Light scattering apparatus and recording system: (1a)-(1e) apertures, (2a)-(2d)
mirrors, (3a)-(3c) bispherical lenses, (4) thermostated measurements cell, (5) ALV
digital correlator.

The sample cell was positioned in the center of the scattering cell that was filled with
toluene, which is kept at constant temperature by a Julabo type FP40 thermostat. The
control of the thermostat with circulating distilled water as medium is carried out
externally. For this purpose we were using a PT-100 resistor thermometer and a
thermistor sensor with a sensitivity of better than 0.2 mK. The room temperature was
stabilized at 298 K during all measurements.
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The intensity of the scattered light was measured with photomultipliers. In order to
improve the quality of the signals and to increase the signal-to-noise ratio the intensity
of the scattered light was measured with a special single-mode fiber optics in
connection with a cross-correlation detector. The fiber allows to select one single TEM-
mode. In the SO-SIPD detector the beam is splitted and fed to two photomultiplier tubes
(PMT), which produce a pseudo-cross-correlation function. These two PMT’s have 
been used in order to avoid distortions in measurements of the correlation function from
after-pulse and dead-time effects of the PMTs. The PMT-detector is mounted on a
goniometer, as shown in Figure 3.4, which allows to scan a range of angle from 300 up
to 1520 with an accuracy of better then 0.010. Temperature-, diode-, and angle data are
sent through a central control unit LSE 3018 to the PC. The correlation function is
measured using a special type of a fast photon correlator plate (ALV-5000/FAST) in
direct connection with two PMTs in cross-correlation mode. The method of
measurements of the ACF will be described in section 3.5. This fast correlator enabled
us to obtain delay times down to 12.5 ns for dynamic analysis of scattered light. All
channels of the digital correlator are calculated in real time, using a strongly parallel
architecture. The CPU, which is implemented in programmable gate arrays, performs
1.8*109 of multiply-and-add operation per second.

The quadrant diode (the 00-diode) was applied for the optical determination of the
demixing temperature .c visT and simultaneously for measuring turbidity data. With help
of the 00-diode it was possible to detect not only the intensity of autocorrelation
function but also the change in the position of the laser beam. This is useful for
adjustment of the position of the cuvette and it is controlled and checked regularly with
calibration scattering measurements.

3.5 Check of optical justage of the equipment and performance of the light
scattering measurements

In order to check the justage of the optical device of the light scattering system and the
quality of the toluene bath we carry out calibrating scattering measurements with a
toluene –test sample. After light scattering corrections (as discussed later) for dark –
counting rates, dead time, scattering volume, laser fluctuations and background
correction, toluene, as an isotropic scattering medium, should show no angular
dependence of its scattering intensity.

The quality of the optical justage is described by the coefficient R . It is determined
from measurements of the scattering intensity ( )TolI  , which arises from toluene

scattered in the angular range of 0 030 150  at the constant temperature, related to
the intensity at 900:
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During the whole measurement period this coefficient should not fluctuate more than
3%. These measurements should be repeated several times and performed with
extremely pure and dust free toluene. The cuvette must be very carefully cleaned to
remove all organic rests and any dust particles from the glasses surface. The toluene
must be filtered with a 0.1m teflon filter and filling in the cuvette in a flow box or a
glove box. If there are any light dots in the sample it will not give a good reference.
This test should be done in an angle interval of 05  with about 10…20 seconds each.   

After centrifugation to remove dust particles from the scattering volume, the sample cell
was positioned into the apparatus. It was allowed to come to thermal equilibrium by
observing the intensity profile over a time range of about 2-3 hours. For the near-critical
samples it needs especially long time to come to the thermal equilibrium. The
equilibrium process could be observed using the 00-diode. Strong position fluctuations
were often stated here which are apparently caused by conversion currents within the
sample. In all samples we measured intensities at 11 angles between 400 and 1400 and
about 60 temperatures with a step of 0.2K in a range KTT C 1206.0  . The sampling
time at each angle and temperature was 40 s. This procedure was repeated five times to
get 200 second of total measurement time interrupted by 5 seconds autoscaling
procedure between each sampling time.

The intensity of light scattering measured by the photomultiplier includes a number of
systematic errors. Therefore it should be necessary to take into account a number of
corrections for the evaluation of static scattering data, as shown in the PhD thesis of
Müller [41].

Both the photomultiplier and the diodes show a certain counting rate even in absence of
light waves. This dark counting rate is caused by thermal noise. It depends on the
temperature in the laboratory. Therefore the dark counting rate is a linear function of the
room temperature . For this reason the room temperature was permanently monitored
and kept constant during the light scattering measurements:

1 ( )I I a b   , (3.5.3)

where the coefficient a and b were determined before the measurements.

Every photomultiplier needs a certain time until the charge, caused by registered
photons, is reduced again. This leads to a “memory effect”, because of which the 
intensity contribution, registered at a time t (without dead time), is stored at deadt t .
The dead time of our photomultiplier is approximately 20 ns and it will be corrected by
an exponential term:



3 Experimental part 3.5 Check of optical justage of the equipment…

56

1
2 1

deadI tI I e . (3.5.4)

The scattering volume is the cross volume between the scattering cone in the cuvette
and sight cone provided by a pinholes and shutter of the photomultiplier. It has its
minimum at the scattering angle 090 and the correction is carried out by a sinus
square function:

2
3 2 sinI I . (3.5.5)

Ideally the laser light sources should be very stable in time and space. However, the
laser sources used in practice show temporal and spatial intensity fluctuations, which
are registered by the reference diode (see fig. 3.4). It gives a relative initial intensity

refI . Therefore, for the static light scattering a relative scattering intensity has the form:

3
4

ref

I
I

I
 . (3.5.6)

As it has been noted above near the critical point a liquid mixture shows a more or less
strong turbidity. This is caused by a multiple scattering. The turbidity correction leads
back to a correction regarding the transmission. This correction can be applied, if the
optical paths lengths for the scattered light and for the transmitted light are the same.
Supposed that the center of scattering volume is exactly in the middle of the cylindrical
cuvette. For the turbidity correction

5 4
,

B

Tr ref B

I Iref
I I

I I
 , (3.5.7)

where TrI and BI are the intensities of the transmitted light and the background
scattering, respectively.

In order to extract the effect of criticality from our measurements the following
procedure was applied for background correction. The same mixture has been used and
the intensity of scattered light was measured at 35 K above the critical temperature. At
this high temperature no critical effects are expected and thus BI is taken for
background correction:

5
,

B

B
sc

ref B

I
T

I I
I

T

  . (3.5.8)
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Furthermore, all previous expressions are valid for isotropic light scattering only. A
more general expression is obtained by taking into account the anisotropic part of the
scattered light. If we measure the depolarization u of scattered light we can write the
total scattering intensity (Eq. 3.5.8) with Cabanne’s factor in the form [12]:

6 6
(90)

6 7
u

sc
u

I I





(3.5.9)

The depolarization of the light scattering u was measured with a Glan-Thompson
prism and found that the effect of a depolarized component was negligibly small.
Therefore we performed our data analysis without taking into account any
depolarization.

3.6 Measurements of the autocorrelation function (ACF) and linewidth of
the Rayleigh scattering

With the light scattering apparatus, described in section 3.4, it is possible to measure
both the intensity of the scattered light and simultaneously the relaxation times of the
scattered light. In general, the time autocorrelation function gives us information on the
degree to which two dynamic properties are correlated over a considered period in time.
The exact form of the ACF depends on the underlying scattering process and on the
experimental conditions that are discussed in detail in works of Leipertz et al [52].
Measurements of this intensity time-correlation function provide information about
hydrodynamic transport properties of solute, such as diffusion coefficients and
viscosity.

The starting point is the ACF of the electric field

(1) *( ) ( ) ( )G E t E t   . (3.6.1)

The ACF of a quantity describes the time scales on which changes in this quantity take
place and thus conclusions on the underlying transport and thermophysical behaviour
can be drawn. In pure fluids contributions to the ACF may be caused by entropy
fluctuations. In this case the first-order correlation function of the electric field gives

(1) ( ) exp( )S dG A   , (3.6.2)

where d is the characteristic decay time of the relaxation process caused by thermal
diffusion and SA is the corresponding amplitude. In the case of a liquid mixture there is
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an additional contribution due to concentration fluctuations. Thus the function (1) ( )G 
becomes a sum of two exponential terms [16,27].

(1) ( ) exp( ) exp( )S d C cG A A      . (3.6.3)

The term c denotes the decay time of the mass diffusion process and CA is the
respective amplitude. As it has been shown in section 2.5, at the treatment of the
dynamic structure factor (Eq. 2.5.27) the connection between the temporal fluctuation of
the thermodynamic quantities and the ACF of the first order (1) ( )G  could be obtained.
In actual photon-correlation experiments the photomultiplier are used, which respond to
the intensity of the scattered light. The PMT is a square-law detector, its instantaneous
current output is proportional to the square of the incident electric field

2
( ) ( )I t E t ,

that is to the intensity of the light or the numbers of photons; it follow that the ACF of
second order (2) ( )G  is of fourth order in the electric field

(2) ( ) ( ) ( ) ( ) ( )G E t E t E t E t      , (3.6.4)

where E is the complex conjugate of E . As long as the scattered light intensity obeys
the Gaussian statistics, it is possible to use the well-know properties of the Gaussian
process, that higher order moment of the stochastic variable can be factorised with the
second order moments of the field correlation function [27]. After such a factorisation
the connection between the ACF of the first order and those of the second order can be
described with help of the following equation:

(2)

2(1)

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 ( )

G I t I t E t E t E t E t

E t E t E t E t E t E t E t E t

G

   

   



  

   

     

        



. (3.6.5)

Here, it is assumed that the infinite time average  t  of the intensity is independent

of its starting value, that is, stationary terms were normalized on unity (1) (0) 1G  .
Substitution of equation (3.6.4) into (3.6.3) yields for a mixture

(2) 2

2 2

( ) ( )

exp( 2 ) 2 exp( ) exp( 2 )
S C

S d S C d c C c

G I I

I I I I



   

  

      
, (3.6.6)

where SI and CI are the intensities due to scattering caused by entropy and
concentration fluctuations, respectively. After normalization of the intensity, Eq. (3.6.6)
becomes
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(2) 2( ) 1 ( exp( ) exp( ))S d C cG I I      . (3.6.7)

Generally, any diffusive process would result in an additional exponential term to Eq.
(3.6.7) with its own characteristic decay time and the corresponding transport
coefficient. In all equations for (2) ( )G , we have to take into account both contributions
from thermal diffusion 21 da q  and mass diffusion coefficient 21ij cD q  . The
described correlation technique is applied only for homodyne measurements, when the
detector receives scattered light only (as in our case).

In the general case, the ACF of the first order is composed of a very large number N of
linewidth elements i and perturbation function ( , )  which comes from thermal
noise and from laser intensity fluctuation [41]:

(1)

1

( ) ( ) ( , )i

N

i i
i

G A e  



    . (3.6.8)

As long as the sample is not polydisperse, no distribution function of the linewidth is to
be taken into account.

Fig. 3.5: The ACF of first order with two relaxation times. The two-peaks spectrum is
obtained from this ACF.
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The system used in this work showed two diffusions processes and three diffusion
currents, which can be associated with temperature and concentration fluctuations.
Therefore 3N  , but in our system (GAW) two original relaxation times,
corresponding to the correlation length of the critical fluctuations, are equal. Therefore
in our system only two line widths can be observed, as shown in figure 3.5. The
expression for the calculation of the linewidths reduced to

1 22(1)
1 2( ) 2G A e A e     , (3.6.9)

where iA are the amplitudes of the signal with linewidths i. As it is possible to see,
we receive an expression for ACF of the first order which is congruent with the
equation for the dynamic structure factor (2.5.27). Thus there are two ways, theoretical
and experimental, for a possible separation of the diffusion processes in ternary liquid
mixture in the hydrodynamic range and near critical singularity.

3.7 Estimation of the chemical potential gradient

For the full theoretical analysis we need information about the chemical potential
gradient of the GAW system. The chemical potential gradient of a component i in a
multicomponent mixture is [49]

1

,
1

n
i

T p i ij j
j

c
F c

T






  
  (3.7.1)

with

lnj i
ij ij

j

c
F

c





 


, (3.7.2)

where ijF is known as the thermodynamic correction factor, i is activity coefficient

and the symbol ij is the Kronecker delta. The thermodynamic factor can be calculated
by common excess free enthalpy models such as NTRL, Uniquac or Wilson. Here the
NTRL model was used. From the ternary liquid system from NTRL model it follows
that:



3 Experimental part 3.7 Estimation of the chemical potential gradient

61

1 2
11 12

1 1

2 1
21 22

2 2

c
T F F

c c

c
T F F

c c





 
    

 
    

, (3.7.3)

where thermodynamic factors for ternary system are determined as
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. (3.7.4)

One of the four expressions for the activity coefficients, which were obtained from
NTRL model, has a form:
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  
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. (3.7.5)

The rest of the expressions for the activity coefficients (Eq. 3.7.4), in view of their
complex form, are presented in Appendix G. The NTRL parameters contained in
equation (3.7.5) are determined in the following way [49]:

 expij ij ij

ij
ij

g

A

T





 




. (3.7.6)

The initial parameters ijA and ij for GAW system have been taken from [31], and
presented in Table 4 (see Appendix H). Using both the theoretical model and the
experimental technique we are able to investigate the behaviour of the ternary GAW
liquid system.
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4 Results of the static and dynamic light scattering measurements

In this section we present results of statistic and dynamic light scattering measurements
in the ternary GAW liquid mixture system in the vicinity of its critical solution point
and far from it. The investigated GAW ternary system shows a strong asymmetry of the
projection into the isothermal plane of the critical line as shown in Figure 4.1. Our
present measurements were executed along a binodal curve and in the immediate
vicinity of the critical solution point. The composition of all seventeen samples and the
corresponding decomposition temperatures are given in Table 2 (Appendix H). From
the volume equivalent criterion the composition of the mixture GAW11 is most closely
located to the liquid-liquid critical point.
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Fig. 4.1: Equilibrium diagrams GAW-system. Also, denote the measured sample vs
relations mole fraction acetone and water.
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Here we determined the correlation length, osmotic susceptibility and mass diffusion
coefficient in a wide temperature range. Close to the critical solution point the
experimental data can be well described by simple power laws with three–dimensional
effective critical exponents for all seventeen compositions of the system. The critical
exponents are obtained from the angular distribution of light scattering intensity,
measured for three different critical compositions near and over the temperature range
near the liquid-liquid critical point.

Moreover, we found that, in the vicinity of the critical solution point the dynamic light
scattering measurements in our system reveal two hydrodynamic relaxation modes with
well-separated characteristic relaxation times.

4.1 Determination of the correlation length and the osmotic susceptibility

To determine the generalized osmotic susceptibility and the correlation length from the
normalized scattering intensity at a given temperature we applied the common
procedure by Ornstein, Zernike, and Debye (OZD–method).

2
21

( )
B

sc T T

I T
q

I q C C


 
  (4.1.1)

By this method we calculated the generalized osmotic susceptibility TC (T) from the
scattered intensity at zero angle and the correlation length (T) from the slope of the
graph in Figure 4.2.

As follows from the Eq. (4.1.1) plots of ( )
B

sc

I T
I q versus 2q at each temperature

should yield a straight line. In fact, as you can see on figure 4.2, after correcting the
data for turbidity and the variation of the scattering volume with the scattering angle,
plots of ( )B scI T I q versus 2q at each temperature give a straight line. Additionally
Figure 4.2 shows that there is no peculiarity of multiple scattering observed for low
values of  and q . In the case of data sets that violated the linearity conditions we
restricted ourself to the linear range of angles. In some mixtures at greater measuring
angles the deviation from linearity caused by features of the signal registration.
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Fig. 4.2: Dependence of scattering intensity versus square of wave vector for GAW2
sample at the critical temperature. No signature of multiple scattering is observed for
low values of 2q .

Our experimental measurements were performed in a temperature range rather close to
the critical solution temperature CT . Therefore we assume that the critical behavior of
our data can be represented by simple power laws with critical exponents which
describe the asymptotic behavior of a near critical point. A critical exponent  for a
general function f  is defined by [13,27,39-41]

0

log ( )
lim

log

C

C

f

T T
T














. (4.1.2)

The function f  must be positive and continuous for small positive values of the
reduced temperature . A log-log-plot of the osmotic susceptibility and correlation
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length versus reduced temperature will result in a straight line, as shown in figures 4.3
(b) and 4.4 (b), and described by

,0

0

( )

( )
T TC T C

T





  

 








, (4.1.3)

where and  are the critical exponents of the generalized osmotic susceptibility and
correlation length, respectively. They are related by scaling laws. One of these relations
connects the correlation length exponent  to the susceptibility exponent .
Unfortunately, the hyper scaling relation

(2 )   (4.1.4)

contains the static structure factor exponent , which we cannot determine
independently from the OZD method. Usually in case of a ternary mixture the values of
critical exponents are larger than those in a binary mixture. Fisher and Scesney [20]
explained this trend by a renormalization of critical exponents from an analysis of the
free-electron Ising model

(1 )

(1 )
X

X

  
  

 

 
, (4.1.5)

where  is the heat capacity exponent above the plait point.

The resulting correlation length data of the critical mixture GAW 10, as calculated
according to Eq. (4.1.1) versus reduced temperature ( )R CT T T  is shown in Figure
4.3. At larger distance from the critical solution temperature we found deviations from
linearity showing that the power law will not hold at this distance RT . Near the critical
solution point the values of the correlation length achieve almost macroscopic
dimension.
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Fig. 4.3: The dependence of the correlation length at the critical concentration GAW
11 versus of the reduced temperature. (a) Correlation length as a function of reduced
temperature and the fit to a simple power law (Eq. 4.1.3). (0 = 17.229 0.355; =
0.719 0.011). (b) A log-log plot of the correlation length as a test for a simple power
law.
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Fig.4.4: The generalized osmotic susceptibility CT of critical concentration (GAW 11)
versus temperature: (a) Osmotic susceptibility CT as a function of reduced
temperature and the fit to a simple power law Eq. (4.1.3) (CT,0 = 0.3718 0.004 ; =
1.415 0.005 ) and (b) a log-log plot of osmotic susceptibilities as a test for a simple
power law.
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We were not able to give a single estimate for the uncertainties  of  over the
whole range of measured temperatures. However, we can specify estimates for the
following cases:

 In the range 3CT T K  , due to the low scattering far from critical opalescence
we found 5nm  .

 If 3 0.3CT T K   the higher scattering intensity leads to 0.1nm  .
 At the immediate vicinity of the critical solution point 0.3CT T K  , the system

became very sensitive to fluctuation and the uncertainties grow up to
10nm  .

Similar ranges are obtained for the generalized osmotic susceptibility. From the zero
angle limit of Eq. (4.1.1) we obtain values for the generalized osmotic susceptibility

TC , the temperature dependence of which is presented in Fig 4.4 a. In Fig. 4.4 b the
linearity of the susceptibility data is shown in a log-log plot. Here the linear range is
much larger than in the corresponding plot of the correlation length in Fig. 4.3 b. Since
our data were measured rather close to CT , the divergence of both the correlation length
(Fig. 4.3 b) and osmotic susceptibility (Fig. 4.4 b) with reduced temperature can be
described by a simple power law (Eq. 4.1.3). To determine the parameters in this
equations we performed nonlinear least-square fits, described in [41,47]. As input
parameters we used weighted ( )TC  and  data from the OZD method. In the

objective function the critical amplitude was considered a linear parameter, whereas cT
and the critical exponents were treated as nonlinear parameters in the fit. Table 5 from
Appendix H gives the results for the correlation length fit of five samples near the plait
point of GAW and Table 6 contains those for the osmotic susceptibility. Here we do not
present data for other compositions of the mixture, since it was not possible to obtain
the desired precision in measurements of the correlation length and the osmotic
susceptibility.

As shown in the first column of Tables 5, 6 we achieved satisfying fits with reasonable
results for both properties. The critical temperatures of both fits agree very well with the
experimental decomposition temperatures, given in Table 2. Within their uncertainties
the effective critical exponents  and are very close to values of the renormalized
exponents according to Eq. (4.1.5), ( 0,70x and 1, 417x ) respectively.

In our data analysis, we have paid particular attention to possible errors in the least-
square fitting procedure due to experimental effects. As in [39,40] we find error
estimates in critical exponents, which are due to such effects as reflection, refraction,
dust, temperature uncertainty, optical alignment, extinction coefficient, and linearly of
detectors, over finite ranges of angles and temperature interval. As shown in Eq.(4.1.1)
the OZD method does not consider the singularity of the static structure factor,



4 Results… 4.1 Determination of the correlation length and the osmotic susceptibility

69

described by Eq. (2.3.7) (Section 2.3, Chapter 2). However since the static structure
factor critical exponent  is very small one obtains very similar results when applying
the modified Eq.(2.3.7). So, under the best conditions, a 0.2% back reflection between
the fluid and the glass cell interface at normal incident would result in a positive 25-
30% error in the magnitude of the structure factor critical exponent . But this
influence is within the uncertainties of the other exponents.

4.2 Data evaluation

In DLS the measured experimental ACF were evaluated for one or two effective
relaxation times. In our case the experimental ACF, equation 3.6.7, was evaluated for
two effective relaxation times c and d, allowing for a possible coupling between mass
and thermal diffusion. These exponential signals could be separately observed at a
difference in time scales no less than five times 5 10c d  and different amplitudes,

Eq.(2.5.28),  1 220 100A A . The data on relaxation times and amplitudes are
presented below.
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Fig. 4.5: Fit to an experimental ACF for both the slow and fast mode. From the least-
squares fitting procedure were found following
parameters: 7 2

1 13.5 10 ; 0.18D m s A   and 9 2
2 21.3 10 ; 0.92D m s A   .
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In the case of one relaxation time we applied a modified Discrete-algorithm of
Provencher [47] to the analysis of a single exponential decay curve. In the two or more
exponential case the evaluation of the data sets was done in a two-(or more)-step
procedure. At the beginning it is necessary to determine values for the mode with the
longest decay time and higher amplitude. The long decay time for the beginning of the
fit procedure in the determination of c was required to suppress completely possible
interference from short decay time function. After subtracting these results of the first fit
for the slow mode in function Eq.(3.6.7) from the total ACF, the remainder was
evaluated by another fit to find the decay times at shorter lag time for the fast mode.
Since the temperature dependence of the observed properties in the critical range is
strongly non-linear, the application of a special powerful least-squares fitting procedure
became essential. This procedure in detailed is described in [39,40].

It is of great importance to make sure that the ACF correspond to the theoretical model.
Otherwise we cannot rely on experimental data. A possible way to perform this check is
to transform the experimental ACF 2 ( )G  to the logarithmic time scale ACF and to fit a
polynom to this expression, as shown on figure 4.5. This method is called cumulants
[9,23], where all orders higher than linear should vanish. Such transformation is
basically restricted to positive value of 2 ( ) 1G  , since at a given experimental noise,
the cumulant expansion is restricted to a limited interval of lag times. Significant
information will be lost, if too many channels of correlator at large lag time are omitted,
and the fit is extended too much into the background. Then noise data without relevance
are included. For the advantageous multi-fit procedure it should be necessary to include
up to 5 decay times in the evaluation. This guarantees that all relevant information is
included.

In Fig 4.5, an example of a fit for both modes to an ACF is shown. From a double-
exponential fit the effective two diffusivities for a near critical mixture (GAW 11) are
equal 7 23.5 10 m s and 9 21.3 10 m s . Also, from this fit one could find amplitudes
of the two relaxation modes.

4.3 Determination of the diffusion coefficients

The advantage of our instrumental setup is that under the same experimental conditions,
at which we measured static properties, we obtain the second order time –correlation
function ACF (Eq. 3.6.7) for measured transport properties. In binary mixtures and
some ternary systems [39-41] one obtains single –exponential decay in ACF. In our
case we applied the discrete algorithm by Provencher [47] to calculate the linewidth 
of each signal. To determine the mutual mass diffusion coefficient for each temperature
a linear plot of  2 2q q versus 2q was performed. We identify the zero –angle

linewidth
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20
lim( )ci

ij Tq
D

q


 , (4.3.1)

as mutual mass diffusion coefficient of a multicomponent liquid mixture. In this
formula the term ci denotes the critical part of the scattered linewidth of i th
component of mixture calculated by ci i Bi  , where Bi is the background
linewidth. In the general case of multicomponent systems normalized ACF are
frequently analyzed in terms of a continuous distribution of relaxation time decay rates
A(). The distribution of relaxation times A() is given by


2

(2)

0

1 ( )exp{ ( ( )}G A dt 


   , (4.3.2)

which can be extracted from (2)G  of Eq. (3.6.7) by Laplace inversion using the
regularized positive exponential sum (REPES) algorithm which is described in detail in
[36,37].

Fig. 4.6: 3-D plot of the ACF (2) 1G  versus reduced temperature and relaxation

time for GAW11 fitted according to Eq. (4.3.2).
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When we apply this procedure to our data we typically find a behaviour as presented in
Figure 4.6 for the critical sample GAW 11. The 3-D plot clearly reveals that we obtain
two different modes with a strong dependence on the reduced temperature. Far from the
critical point our system shows double–exponential decay, while with approaching cT
the second slow process is disappearing. This is the first time that in a ternary liquid
mixture we find a fast and a slow transport mode, well separated from each other and
with a different critical behavoiur.

Fig. 4.7: Equilibrium diagram of the GAW-system with the composition of the samples
investigated. Numbers 1, 2, 3 correspond to the GAW10, GAW11, and GAW12
mixtures, respectively.

When we analyze the frequency distribution of the ACF for the three critical samples,
laying close to the plait point as shown on the ternary diagram 4.7, we find that the
peaks associated with the fast relaxation times show a considerable shift to larger
frequency fields and a decrease in their linewidths. The second group of peaks,
associated with slow relaxation times, are disappearing when approaching the critical
point. Figure 4.8 gives a comparison of the slow and fast modes of all three samples
both far away from the critical point with two well-separated modes and close to cT
with only one mode shifted in frequency whereas the other mode disappeared.
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Fig.4.8: Comparison of the fast and slow mode decay times for all investigated mixtures
far away and close to the critical solution temperature. Numbers 1, 2, 3 correspond to
the GAW10, GAW11, and GAW12 mixtures, respectively. Subscript “a” denotes 
samples close to the critical point with a reduced temperature RT =0.00314 K.
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Fig.4.9: Wave-number dependence of the decay of the fast line width. The symbols
correspondent to different reduced temperatures for the GAW11 critical mixture: (1)
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Martin et al. observed a similar experimental behaviour [36,37]. They reported a two-
exponential decay near the critical point of a micellar system, which was analyzed either
by Eqs. (3.6.7) or (4.3.2). When we compare the ACF, reported in [37], with our results
(see Fig. 4.6) we find that, in the present ternary mixture with low-molecular-weight
components, we obtain highly structured ACF with well separated modes. Considering
the temperature dependence of the transport coefficients in both systems when
approaching the critical point, we observe that it is very similar. We analyzed the wave
number dependence of the line width of both the fast and slow modes. As an example
Figure 4.9 shows the fast versus 2q for the critical mixture GAW11 at three different
temperatures. We found that the fast mode shows a diffusive character through the
whole  , Rq T -range. All curves may be extrapolated to zero. The slow mode versus 2q

is given in Figure 4.10. All samples show a crossover from 3q to 2q as expected for
contributions from concentration fluctuations. The crossover appears at higher wave
numbers as the temperature of the system deviates away from cT . Unfortunately the
experimental uncertainties increase with increasing wave numbers but the general
behaviour corresponds to the predictions of Anisimov et al. [1].
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Fig.4.10: Wave-number dependence of the decay of the slow line width. The symbols
correspondent to different reduced temperatures for GAW11 critical mixture: (1)
0.0283, (2) 0.0242, and (3) 0.00187. The slow mode observed a crossover from a 2q to
a 3q behaviour as predicted by Anisimov et al. [1].
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The temperature dependence of both fast and slow modes is present on figures 4.11 and
4.12, respectively. Fig. 4.12 shows the temperature dependence of diffusivity of the
slow mode for eight compositions of GAW. As it can be observed, this dependence of
the slow mode is quite different from that of the fast one. The shape of the temperature
dependence of slow mode is very similar to those, obtained by other investigations
[7,36], expected for the contribution of concentration fluctuations. That can be
associated with mass diffusion.

The mass diffusion coefficient of a multicomponent liquid mixture ijD vanishes near
the critical point and asymptotically close to the plait point the mass-diffusion mode is
responsible for the critical slowing down of the order-parameter fluctuations. Since our
measurements were performed rather close to cT , we assume that the temperature
dependence of the ijD can be described by a simple power law

,0ij ijD D 


 (4.3.3)

As in our static data analysis, described above, we used a special nonlinear least –
square algorithm [39,41,47] to perform a free fit of ternary data to this mode. The
results of it are given in Table 7, Appendix H.
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Fig. 4.13: Critical exponents of the diffusion coefficient for GAW11 critical mixture. To
reduced of the data spread, concerned with experimental conditions, we have
normalized dates on the one no critical samples GAW 19.
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Finally, Fig. 4.13 shows the results found for the critical exponent of the mass
diffusivity in dependence from the reduced mole fraction of the investigated liquid
mixture. The critical exponent of the mass diffusion coefficients for the sample GAW11
is 0.811 . The effective critical exponents show slightly larger values than those
theoretically predicted from the exponent renormalization according to Eq. (4.1.5).
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5 Discussion

In the section “Theoretical part” we have obtained expressions for the positions and 
width of the three peaks of which the spectrum of the light scattering consists. We
found that the central unshifted Rayleigh peak, for ternary liquid mixture, consists of a
superposition of three Lorentzians (in our approximation two) that involve the
combined dynamical effects of heat and mass diffusion.

In this section we find the condition under which it is possible to separate the central
peak into two contributions, one arising from mutual diffusion and one from thermal
conduction. In detail we investigate the behavior of ACF near the critical point. We
obtained temperature- and concentration-dependences of both diffusivities and
amplitudes, and we compared them to the experimental data.

From the autocorrelation functions we can experimentally determine two effective
diffusivities 1D and 2D . In accordance with the theoretical model presented in the
chapter 2, there is a possible physical explanation of 1D and 2D . One of these two
modes can be associated with thermal diffusion and the other with mass diffusion. In the
special case of an incompressible-liquid mixture limit, 1D and 2D are decoupled,
becoming mutual mass diffusion coefficient ijD and thermodiffusion coefficient TD .
Both the slow and fast mode have been measured as a function of temperature for all
different composition investigated in our system.

5.1 Theoretical analysis of two diffusion modes in the hydrodynamic range

The complex structure of the expression describing the central Rayleigh peak is a direct
consequence of the coupling between mass diffusion and heat flow that exist in
multicomponent mixture, which is given by the thermal diffusion ratio Tik . The width
of the Lorentzians are 1z and 2,3z , which both depend on ijD ,  and Tik (see Eqs.
2.5.19 - 2.5.21). Thus we see that the central peak cannot be simply considered as the
superposition of two Lorentzians, the first arising from thermal conduction and the
second from the mass diffusion.

However, there are a number of conditions, met by a wide variety of ternary systems,
that result in a considerably simplified expression for the shape of the Rayleigh
component of spectrum of the light scattered. It means that in these cases it will be
possible to obtain exact data about a transport coefficient from the width of the central
line.
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In general there are too different limiting cases possible. In the case of a dilute solution

 1,2 0c  , the thermal diffusion ratio tends to zero value [1], that is ijD and

0
lim 0

i
Tic

k


 . (5.1.1)

From Eq. (2.5.20) it then follows that 1,2 1M  and 12,21 0M  and diffusivity associated
with the slow mode becomes equal to the thermal diffusivity, while the diffusivity
associated with the fast mode becomes the mass diffusivity

2
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2
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ii
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S

z D q

k T
z q





 
(5.1.2)

with 1 2,3z z . Since in this case thermal and mass diffusivity are uncoupled the central
line of the LS spectrum consists of the superposition of the two Lorentzians, the width
of one is directly proportional only to the thermal diffusivity and the other only to the
mutual diffusion coefficient, as can be seen from Eq. 5.1.2. This limiting case gives us
the possibility to very easily resolve the two components of the Rayleigh peak. The
dynamic structure factor can have a simple form
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. (5.1.3)

Usually, in practice, the dielectric constant is a weak function of the temperature,
therefore only the mass diffusion term will be important.

More important is the case of immixable liquids when ijD , since many
multicomponent solutions satisfy this condition. Under these conditions for ternary
liquid systems we have

 2
1 11 22

2
2,3

1
2

z D D q

z q

 


. (5.1.4)

In this case again the central peak is simplified to the superposition of two Lorentzians,
one due to the mass and the other to the thermal diffusion. In the limit ijD , the
time distribution of the scattering light (Eq.2.5.27) actually reduces to the more simple
form. Since ijD , the mutual diffusion part of the Rayleigh peak superimposes a
much broader peak arising from heat flow. Consequently, in this case it is possible to
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assign the Rayleigh peak to the mass diffusion. Moreover, as in case of infinite dilution,
derivative of dielectric constant with respect to temperature is approximately equal to
zero. Than, for this case ijD the dynamic structure factor of the ternary liquid
mixture is

     2 2 2 2 2
2 3 8 12 9 21 11 22

1
, exp

2
S q t q D q D q D D q t               


, (5.1.5)

the values i are given in Eq. (2.5.29), Chapter 2. Many multicomponent mixtures
satisfy the condition ijD . Hence an experimental determination of and ijD from
measurement of the ACF of the light scattered is possible.

It will be useful to obtain activity coefficients from measured value of J , the Landau-
Placzek ratio (see Eq. 2.4.4)
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5.2 The analysis of two diffusion modes in the critical range and
comparison with experiment

The detailed theoretical analysis of critical diffusivities has been already carried out in
section 2.6. But consequences from this analysis and comparison with experimental
data will be noted here.
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Fig. 5.1: The two effective diffusivities 1 fastD D and 2 slowD D as a function of the
reduced temperature for the mixture GAW11.

Following Eq. (2.6.7) and (2.6.9), the thermal diffusivity  should not exhibit a
significant change in the immediate vicinity of the critical point of a multicomponent
mixture because remains finite and , iP cC is either constant as in mean –field theory
or weakly divergent as in the scaling theory [2-4]. Therefore, asymptotically close to the
plait point the coupling between the two hydrodynamic modes becomes unimportant
and the mode with diffusivity 2D represents a slow diffusion mode and tends to the
mutual diffusion coefficient ijD , while the mode with diffusivity 1D represents a fast
diffusion mode and tends to the thermal diffusion coefficient . When we plot the
results for both 1D and 2D versus reduced temperature we observe a completely
different slope of these two diffusivities as shown in Figure 5.1 for the critical mixture
GAW 11. The 2 ijD D has a steep descent towards the critical temperature whereas the

1D  only slightly decreases towards a finite value. This behaviour is very similar to
that one presented in [1,46] for the binary mixture methane + ethane.
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Fig. 5.2: Amplitudes A1 and A2 of the slow and fast relaxation modes, calculated for
GAW11 mixture versus reduced temperature.

The corresponding amplitudes 1 C S CA I I I  and 2 C S SA I I I  of the two diffusion
modes were calculated from the experimental ACF Eq. (3.6.7). The temperature
dependence of the calculated two amplitudes for the mixture GAW 11 is shown in
Figure 5.2. The amplitude 2A decreases when approaching the critical temperature, as
predicted by theory, while 1A increases in the immediate vicinity to the critical

singularity. Anisimov et al. [1] assume that 1 RA T  at 0RT  for the incompressible
liquid-mixture limit.

As initial parameters for fit of the experimental ACF by Eq. (2.5.24) we used the
coefficients of Fick’s diffusion matrix, which were measured by the Taylor dispersion 
(peak-broadening) method [25,26,35]. The results of the fit are shown in Fig. 5.3, where
the red solid line represents the calculated curve. The black solid line represents the
experimental ACF of GAW mixture, which was fitted simultaneously for the fast and



5 Discussion 5.2The analysis of two diffusion modes in the critical range… 

83

slow modes. The joint fit yielded for transport properties
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Fig. 5.3: Fit to an experimental ACF simultaneously for both the slow and fast mode of
the GAW 11 mixture. 11CT T K  .

This data are obtained for 11CT T K   0.040RT  . If we extrapolate the straight line
of thermal diffusivity on figure 5.1 in the region of large temperatures, the value that
was received by fitting will be found on this line. From this fact the correctness of our
calculation, experimental measurements and fit procedure follows.

We have received the proof of truth of a physical explanation of the nature of a slow
diffusion mode from a comparison of diffusion coefficient performed by DLS and
Taylor dispersion [26]. We performed DLS measurements, starting from a near-critical
state and extending the concentration towards a path followed independently by Taylor
dispersion. In overlapping region we assumed that Fick’s diffusion coefficient can be 
related to the results of our DLS measurements. Figure 5.4 shows the comparison of
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DLS measurements with independent mutual diffusion coefficient data obtained by
Taylor dispersion (TD) along the same concentration path. There is no relation between
the 1D transport coefficient from DLS and any of the four elements of the diffusion
coefficients ijD  of the Fick’s matrix. As shown in Fig. 5.4, there is a direct continuation 

of one diffusion mode 1D (TD) and 1D (DLS) with increasing mole fraction of glycerol.
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Fig. 5.4: Comparison of diffusion coefficient from TD and transport modes from DLS
vs. mole fraction of glycerol in ternary system GAW along the common concentration
path.

The two fast transport modes, which can be associated with thermodiffusion, of the
DLS are well separated from the mass diffusion coefficient and of much smaller
magnitude. The other eigenvalues 2D  of the Fick’s diffusion matrix has no counterpart
in DLS measurements.

Unfortunately, we cannot carry out comparative analysis of the diffusivities on the
whole temperature scale. Since we do not have data about thermodiffusion coefficient
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and Fick’s diffusivities for GAW system at temperatures different from 025 C .
However, from our calculations it follows that the coupling parameters ,i ijM M form

(2.5.20) and iM  from (2.5.29), which represent the coupling between mass and thermal
diffusion, (especially near critical point) are nonzero values. As we approach the critical
singularity, the 1,iM  ijM and iM  always become much larger than unity [1,23].

These modes are strongly coupled, until the condition , ,ij i iM M M
Dij
  is achieved.

As shown above (Fig.5.1), at the critical point of a ternary fluid mixture the mass
diffusion coefficient vanishes, but the thermal diffusivity does not exhibit a significant
change in the immediate vicinity of the critical point. Hence, based on our and
Anisimov’s theory it is possible to approve, that in the near–critical multicomponent
mixture a coupling between the two modes results in two characteristic relaxation times,
neither of which is associated with pure mass diffusion or pure thermal diffusion.
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6 Summary

This thesis deals with detailed investigation of the transport properties of a ternary
liquid mixture by light scattering technique. We have extended the theory of the light
scattering experiment and its application to investigate diffusion processes for
multicomponent mixture in the immediate vicinity of the liquid-liquid critical point and
far from it. As a model system we have chosen of the strongly non-ideal ternary liquid
system glycerol + acetone + water. The main focus of this thesis is a theoretical
investigation of transport properties of ternary liquid mixture in the hydrodynamic range
and in the critical singularity field.

Light scattering technique has appeared to become a very useful tool for the
investigation of diffusive processes and the determination of transport and other
thermophysical properties. Advantages of this method may be summarized as follows:

 Measurements in the critical range almost not require high input energy.
 The light scattering technique allows the determination of both static and

dynamic thermophysical properties of the liquid mixtures.
 In some instances it is possible to determine transport properties of a mixture

simultaneously.
 As distinct from other techniques for the investigation of thermodynamic states

of a substance, which disturb the system during measurement, the light
scattering technique is a non-contact one.

Using this technique we determined both the static and the dynamic properties such as
the correlation length, osmotic susceptibility, thermal diffusion and mass diffusion in
the ternary GAW liquid mixture system in the vicinity of its critical solution point and
far from it. Near the critical solution point both the correlation length and the
generalized osmotic susceptibilities data can be described by simple scaling laws with
three –dimensional Ising critical exponents. For both exponents we obtained values
close to the Fisher renormalization exponents. These results agree with previous
measurements on multicomponent mixtures using photon correlation spectroscopy [39-
41]. We obtained good agreement between the calculated critical temperatures and the
measured decomposition temperatures for all measuring compositions of the GAW
system. Thus, by fitting to simple power laws for both static and dynamic properties
with effective critical exponents we obtained good agreement with our experimental
data.

The main scope of this work is the theoretical description of the time distribution of the
scattered light and comparison with the experimental data. In this work a new
theoretical extension of the theory to ternary systems is developed. We have presented
new expressions for the general case, where the fluctuations in the dielectric constant
are in turn caused by the full set of the local thermodynamic quantities such as the
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pressure, temperature and concentration. In the introduction we have set some “open 
question”, which we have tried toanswer during this work.

Firstly we have extended the theoretical description of the spectrum of light, given by
Mountain and Deutch, to a ternary solution. In contrast to the binary mixture case we
obtain more complicated expressions for the dynamic structure factor, which consists of
a superposition of three Lorentzians that involve the combined dynamic effect of
thermal and mass diffusion. For a ternary liquid mixture it is necessary to take into
account also the combination effect between mass diffusivities of different components
of the investigated system. Moreover in a ternary mixture there are combinations
between the two (in binary mixture one) mass diffusion currents and the heat current.
The expression for two-side Brillouin peaks is the same as in a binary mixture, expect
for widths of the peaks. We have obtained original expressions for the position and
widths of the two-side shifted Brillouin peaks, and the central, unshifted Rayleigh peak
for the ternary liquid system case. We have carried out the analysis of the condition
under which it is possible to separate the central peak simply in two type diffusivity
contribution, which arise from gradient of the entropy and the concentration.

Secondly Leaist and Hao have derived expressions for the correlation function of
scattered light, taking into account only the concentration fluctuation in the local
dielectric constant. They expect a multi-exponential decay in the ACF with (N-1)
diffusion modes for a N-component system. For ternary solutions they derive equations
for two eigenvalues of the diffusion coefficient matrix but than they introduced rather
simplifying approximations so that only one diffusion mode survived. They chose
aqueous solutions of macromolecules or micelles where it is evident that DLS will
record only the diffusion of the macromolecules. Thus, their results do not proof the
assumption of a multi-exponential decay of several mass diffusion modes. In our
theoretical model the local thermodynamic quantities such as the temperature and
pressure fluctuation are not ignored. For this reason the expression for ACF and the
dynamic structure factor has more complicated form. As mentioned above, the shape of
the central Rayleigh component of the spectrum endows a thermal diffusion, besides of
a mass one. Moreover in these expressions a term appears, which describes the two-
shifted Brillouin components that arise from pressure fluctuations. With DLS we have
detected two diffusivity modes, and determine the decay rate of these modes. From the
hydrodynamic theory of fluctuation we derived the expression for them (Eq. 2.5.18).
Moreover, our theoretical model allows to calculate the relative amplitudes of three
relaxations modes for a multicomponent liquid system if enough information about
static and dynamic properties is available (Eqs. 2.5.28 a,b).

Thirdly, following the method suggested by Anisimov al. et, we carried out analysis of
transport properties in field of critical singularity for ternary liquid mixtures. Two –
exponential decay correlation functions are observed far from the critical solution
temperatures. This is the first time that in a ternary liquid mixture we find a fast and a
slow transport mode, well separated from each other and with a different critical
behaviour. However, as the critical point is approached, the correlation functions
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become single –exponential. Two hydrodynamic relaxation modes are associated with
the ACF far from critical singularity. In the immediate vicinity of the critical point, one
is strongly and the other is weakly divergent. According to Anisimov’s theory and to the 
theoretical model, represented in this work, one of these two modes can be associated
with thermal diffusion and the other with mass diffusion. In the special cases of an
incompressible liquid-mixture limit, 1D and 2D are decoupled, becoming thermal
diffusion coefficient TD and mutual mass diffusion coefficient ijD . The overall
behaviour of our dynamic light scattering data in a ternary liquid mixture agrees very
well with the prediction of Anisimov et al. on binary mixtures. We can generalize this
result. Both binary and ternary liquid mixtures may have the same set of order
parameters and effective fields of critical fluctuation, which was confirmed by
Anisimov [5].

The prediction of transport properties in ternary mixtures is still a problem. As initial
parameters for the fit of the experimental ACF we used the coefficients of Fick’s 
diffusion matrix, which were measured by the Taylor dispersion method [25,26,35].
Unfortunately, we cannot carry out comparative analysis of the diffusivities on the
whole temperature scale. Since we do not have data about thermodiffusion coefficient
and Fick’s diffusivities, obtained from Taylor dispersion, for our system at temperatures
different from 025 C . Further investigation at concentration areas far from binodal
curves and the comparison with mass diffusion measurements using other methods like
holographic interferometry and Taylor dispersion, will prove the present physical
interpretation of the two hydrodynamic relaxation mode in a ternary liquid mixture.
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7 Appendix

7.A. Expression for the scattered field

To obtain the basic equation for the scattered field we have used the Maxwell’s 
equations system for a nonconducting, nonmagnetic medium. The derivation of this
equation has been suggesting by Landau and Lifshitz [9,34].

For beginning we simplify our consideration by introducing a local dielectric constant
in the following form

0I    , (7.A.1)

where 0 is average dielectric constant and  is the dielectric constant fluctuation
tensor. If the incident plane wave fields are , ,i i iE D H and scattering field are

, ,s s sE D H , then the totals of these fields at a point in the scattering medium are

i s

i s

i s

E E E

D D D

H H H

 

 

 

, (7.A.2)

where ,E D and H are vectors of the electric field strength, electric displacement and
magnetic field strength, accordingly. Taking into account Maxwell’s equations, we 
obtain an equation for the total displacement vector D and vector of the total electric
field strength E which are related through the dielectric constant (Eq. 7.A.1).

   0 0i i s sD E E E E       (7.A.3)

From Eq. (7.A.2) and neglecting the second order term   sE , Eq. (7.A.3) becomes

 0s s iD E E   (7.A.4)

Solving Eq. (7.A.4) for sE , substituting this equation into one of the Maxwell’s one, we 
obtain an inhomogeneous wave equation
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 
2

2 0
2 2

s
s i

D
D E

c t



      

(7.A.5)

where c is speed of light in a medium. We simplified this equation by introducing a
new vector,  (the Hertz vector) by

sD  (7.A.6)

Substituting Eqs. (7.A.6) into (7.A.5) and solving for the Hertz vector we obtain the
following equation:

      3, ´1
, , ´

4 i

r t
R t E r t d r

R r




 

 , (7.A.7)

where Rand r are defined in Chapter 2 and ´t is the retarded time

0´t t R r
c


  . (7.A.8)

Now we substituted Eq. (2.1.4) for iE into Eq. (7.A.7). Taking into account that

0s sD E , we obtain

   30

0

1
( , ) exp ( )́ , ´

4s i i i

E
E R t i k r t r t n d r

R R r
 

 

 
   

  


  
  . (7.A.9)

In actual light scattering experiment the detectors are a large distance from the
scattering medium, it is possible to expand R r in a power series

f̂R r R r k       , (7.A.10)

where f̂k is a unit vector in the direction R. Substituting Eq. (7.A.10) into Eq. (7.A.8)
we obtain expression for the retarded time

 0 ˆ´ ft t R r k
c


   . (7.A.11)

In the next step we performed a Fourier analysis of the dielectric constant fluctuation
tensor over time interval 
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  , ´ exp ´p p
p

r t r i t   , (7.A.12)

where
2

p p



  . From experimental condition follows, that i p [9]. In view of

this condition and substituting Eqs. (7.A.11) and (7.A.12) into Eq. (7.A.9) we have

 

0

0

3

( , ) exp
4

ˆexp ( ) exp

s p i p
p

p i p f p p i
V

E
E R t i k R t k

R

k i k k k r r i t n d r


 



     

 
     

 





 
 



   
(7.A.13)

where we have ignored terms of higher order then 1
R

and defining

0 ˆ
p f f

f i p

k k
c




 



 



As mentioned above i p . In this case a very good approximation is

0 ˆ
p f f i fk k k k

c


  
  

. (7.A.14)

Thus in this approximations Eq. (7.A.13) becomes

       30

0

( , ) exp exp ,
4s f i f f i

V

E
E R t i k R t k k iq r r t n d r

R
 

 
 

      
 


      

 (7.A.15)

where the scattering vector q


is defined by Eq.(2.1.10) with the geometry of the Fig.

(2.2), and ik


is defined by Eq. (2.1.11) and same figure. If we consider the component
of scattered electric field sE in the direction fn


, we obtain the expression of Eq (2.1.9).
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7.B. A time correlation function

The spectral density I  of a time correlation function 0A A t is defined as

   1
exp 0

2
I dt i t A A t 








  (7.B.1)

where A is the complex conjugate of A . As it has been shown in Chapter 3 this
quantity plays an important role in light scattering measurements. The Fourier inversion
of Eq. (7.B.1) leads to an expression for the time correlation function in the terms of the
spectral density.

  0 expA A t dt i t I 






 (7.B.2)

Hence 0A A t and I  are Fourier transforms of one another. We noted that the

equilibrium mean-square value of the property A is found by setting 0t  in the Eq.
(7.B.2) so that

 2
0A d I 





 (7.B.3)

The integral kernel can be interpreted as the probability of finding a
2

A in the

frequency interval  , d  . The function A t measured over a time interval can
be expressed in terms of its Fourier components so that

 1
2

ni t
n

n

A t A e
T

  (7.B.4)

In laser experiment we have used coherent, monochromatic radiation. Thus after a series
of some algebraic transformation we obtain

   '
'

, '

0 exp
2

nin n
n n

n n

A A dt
A A t e i t

T T
  


 



    (7.B.5)

Using Eq. (7.B.5) we can evaluate expression for the time correlation function of the
scattering electric field from Eq. (2.2.2) to Eq. (2.2.3), taking into account conditions
described there.
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7.C. The relation between thermodynamic and transport properties in the
ternary liquid mixture

The differential of the Gibbs energy 'G per mole of a ternary mixture is given by

3

1

' ' ' '
' i i

i

dP
dG S dT dc

 

   (7.C.1)

where ' and 'S the molar density and entropy, accordingly. 'i are the molar
chemical potentials and 'ic are mass concentrations of a species " "i . The molar density

' is related to the mass density by

'
M


 , (7.C.2)

where

3

1
i i

i

M n
M

n



, (7.C.3)

is molar mass of the ternary mixture, 1 2 3n n n n   the total numbers of mole, iM the
molar masses and in the numbers of moles of the pure components. Since

2 1 2
2 3

2 3

1
' ; '

c c c
c c

m m
 

  , where im are masses of the individual components in the

mixture. Hence, the differential of the Gibbs energy G per unit mass of a ternary
mixture gives a following expression:

1 1 2 2

dP
dG SdT dc dc 


    , (7.C.4)

where i are defined in the end of the section 2.4.

We found the linearized hydrodynamic equations by the way suggested by Landau and
Lifshitz in [33]. The continuity equations for two components in the ternary liquid
mixture could be written in a form
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1
1 1

2
2 2

c
u c divI

t

c
u c divI

t





       


      

(7.C.5)

For the ternary liquid mixture the thermodynamic equation for the energy and enthalpy
is

1 1 2 22

1 1 2 2

1

p
dU TdS d dc dc

dH TdS dp dc dc

  


 


   

   
(7.C.6)

The second equation from (7.C.6) can be expressed in the form

1 1 2 2dp dH TdS dc dc       (7.C.7)

Substituting this expression in the energy transport equation [9,33] we obtain:

2

2

1 1 2 2

2

'
2

' i
ik

k

U
t

S
div u H u Q T u S

T

divQ I I
x





  


  

 
   

                 


     


, (7.C.8)

where , iu I and are also defined in the section 2.4.

The sum of the two last terms from the right side of Eq. (7.C.8) we will write in the
form

 1 1 2 2 1 1 2 2 1 1 2 2divQ I I div Q I I I I                (7.C.9)

The divergence expression in the right side of Eq. (7.C.8), by definition is full energy
flux Q in liquid. In the absence of the macroscopic movement the viscosity flux
disappears and therefore the heat current is simple Q . The equation of the energy
conservation is [9,33]:
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2 2

'
2 2

U div u w u Q
t

 
  

    
            

(7.C.10)

Term by term subtracting Eq. (7.C.10) from Eq. (7.C.8), and taking into account Eq.
(7.C.9), we will obtain the required energy transport equation (2.4.9).

Now we obtain the expression for the heat and mass diffusion current Eqs.(2.5.2).
Between Onsager coefficients there is the simple ratio, as a consequence of the
symmetry principle [1]. Hence

2 2 2
2

2
1 1 1

2 2
2

2
1 1

i
i i i

i i i

i
i i i

i i

T
I T T

T T

T
Q I T

T T


 


  

  

 

        
  

         
  

  

 
(7.C.11)

In view of the symmetry principle T  , we can obtain expressions for currents in
shape of Eqs. (2.5.1). In expression for the heat current it is convenient to exclude a
gradient of the chemical potential i , having expressed it through iI and T .

1 2
1 1 2 2

1 2

T T
Q I I T

 
  

 
   

        
   

, (7.C.12)

where

22

1

i

i i

T
 



  .

As shown in [33] the value  is the thermal conductivity. In the terms 1, ,p T c and 2c
the gradient of the chemical potential i has a form

1 2 1 22 1

1 2 1 22 1

1 1 1 1
1 1 2

, ,1 2 , ,, , , ,

2 2 2 2
2 1 2

, ,1 2 , ,, , , ,

c c p c c Tp T c p T c

c c p c c Tp T c p T c

c c T p
c c T p

c c T p
c c T p

   


   


                                

                                

. (7.C.13)

Substituting i form Eq.(7.C.13) into Eqs. (7.C.12) and (2.5.1), and defining
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
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
 
  

, (7.C.14)

we find equations which are the same as Eqs. (2.5.2). We substitute these equations for
iI and Q in Eq. (7.C.5), and Eq.(2.4.9). We omit terms of the second order i iI  , Eqs.

(7.C.5), and (2.4.9) becomes

 

2

1

1 1 2 2

0

0

i
i

i

c
divI

t
S

T div Q I I
t



  



      


       


. (7.C.15)

We will transform the derivative S
t


 as follows

1 2 1 2

1 1 2 2

, , , ,

P

p c c p c c

C c cS T
t T t T t T t

                       
. (7.C.16)

In results, after substituting Eqs.(2.5.2) into Eqs. (7.C.15) and taking into account
Eq.(7.C.16), we obtain the system of the mass and energy transport equations (2.5.3),
and (2.5.4).
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7.D. The solution of the dispersion equation

The linewidth of the Rayleigh peak, and consequently also values of the thermal
diffusivity and mass diffusion coefficients, are determinate by roots of the dispersion
equation:

 
 

 
 

3 2
11 1 22 2

11 22 11 22 12 21

11 22 1 2 12 22 12 11 21 21

11 22 12 21
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D D D D D D
z

D D M M D D M D D M

D D D D







   

    
  

      
  

(7.D.1)

We will find roots of this dispersion equation in those approximations that are
designated in section 2.5. We solve Eq. (7.D.1) using a method of auxiliary quantities
described in [10]. Let us enter new variables:

 
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
. (7.D.2)

The auxiliary quantities for our equation are
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. (7.D.3)

To find the roots it is necessary to know values R and , which are defined as
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Return to the initial variables we will obtain

2 2 1 1
1 3

2
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. (7.D.5)

Substituting Eq.(7.D.2) into Eqs. (7.D.5) we obtain the roots of the dispersion equation
Eqs. (2.5.18) and (2.5.19).
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7.E. The linearized hydrodynamic equations in terms of the concentrations,
temperature and pressure

To rewrite the linearized hydrodynamic equations in terms of the concentrations,
temperature and pressure it is necessary to repeat the procedure done for a case without
pressure. In terms of Fourier-Laplace transforms

 
 
 
 
 

3

3

3

3

3

(̂ , ) ( , ) ,

(̂ , ) ( , )

(̂ , ) ( , )

(̂ , ) ( , )

(̂ , ) ( , )

iq r zt
ki i

iq r zt
k

iq r zt
k

iq r zt
k

iq r zt
k

c r t d r e c r t

T r t d r e T r t

p r t d r e p r t

r t d r e r t

r t d r e u r t

 





















 

















 

 

 

 

 
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we will present the equations (2.4.5), (2.4.6), (2.5.3) and (2.5.4) in following form:
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The 5 5 matrix M in the terms of (7.E.1) for the full set equations (7.E.2) has the
form (2.5.21 a,b).
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7.F. The expression for the correlation functions of the concentrations and
temperature

The resulting expression for correlation functions contained in Eq. (2.5.26) as function
of the wave number q


, can be written as
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7.G. The expression for the activity coefficients

For concentrated nonideal liquid mixture the thermodynamic factor and also the activity
coefficients can be calculated from one of many models of the excess Gibbs energy. In
this work we were using the NTRL model. The following expressions for the activity
coefficients are additional to Eq. (3.7.5):

 

 
 

 
 

2 12 0 02 12 022 21 21 0 01 011
21

2 1 2 21 0 01 2 1 12 0 02

1 21 0 01 12 01 1 12 12 12 2 0 02 12 02
2 21 21 2 3

1 2 21 0 01 2 1 12 0 02

1 21 0 01 1
0 01 21

ln

2

c c gc g c g
g

c c c g c g c c g c g

c c g c g c c g
c g g

c c g c g c c g c g

c c g
c g g

   

      

 

  
        
     

   
     




 
 

  
 

 
 

 

 
 

2
1 20 10 20 2 0 20 10 202 02

2 3
1 2 21 0 01 2 1 13 0 02

2
2 12 12 12 12 1 0 12 02 12 022

1 12 0 023
1 2 1 12 0 02

1 21 0 01 12 011 12 12 0 20 02
12 2

2 1 12 0 02

;

2ln

c g g g c c g

c c g c g c c g c g

c g g c c g g
c g c g

c c c g c g

c c gc g c g
g

c c g c g c

 

   

   

   
 
     

  
  

  

 
 

   

 
 

    
 

 
 

1 122
1 2 21 0 01

2
2 20 10 10 1 20 10 0 10 20 102 21 12 21 1 0 01 21 01

0 013 2
1 2 21 0 01 0 1 10 2 20

1 12 12 0 20 022
1 12 0 02 1 122

2 2 1 12 0 02

22
;

ln
2 2

c g
c g c g

c g g g c c gc g c c g
c g

c c g c g c c g c g

c g c g
c g c g c g

c c c g c g

      

 

 
  

   

     
 

   

 
   

    

 
 

 
 

1 21 0 01 21 012
3

1 2 21 0 01

0 20 1 10 20 10
0 01 20 3

0 1 10 2 20

2 .

c c g

c c g c g

c c g
c g g

c c g c g

  

  

 


 

 


 



7 Appendix 7.H. Tables

103

7.H. Tables

Table 1: Properties and specifications of the use chemicals in compliance with
manufacturer (Fa. Merck KG Co., Darmstadt) at 298 K .

Glycerol Acetone Water

Chemical formula  3 5 3
C H OH 2 6C H CO 2H O

Molar mass [ kg kmol ] 92.09 58.08 18.03

Molar volume [ 3cm mol ] 55.90 74.07 18.07

Density [ 3kg m ] 1110.3 784.1 996.9

Kinematic viscosity [ 6 210 m s ] 15.2647 0.3901 0.8994

Refractive index [-] 1.429 1.355 1.331

Molecule diameter [ 1010 m ] 4.263 4.500 2.520

Boiling-point [ K ] 563.15 329.35 373.15
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Table 2: Composition of the samples in the Glycerol (0)–Acetone(1)-Water(2) system:
masses im ; mole fractions ix ; ratio of mole fraction acetone to water and their
decomposition temperatures.

Probe m1(g) m0 (g) m2 (g) x1 x0 x2 x1/x2 decT

GAW3 26,471 15,792 9,049 0,403 0,152 0,445 0,907 292,155

GAW4 29,317 20,386 11,155 0,375 0,165 0,46 0,815 293,564

GAW5 28,828 22,141 11,754 0,357 0,173 0,47 0,76 293,966

GAW6 30,533 17,907 9,856 0,414 0,153 0,432 0,961 299,795

GAW7 28,306 24,03 12,022 0,344 0,184 0,471 0,73 298,394

GAW8 27,72 27,003 12,907 0,321 0,197 0,482 0,666 297,994

GAW9 30,887 16,733 9,44 0,43 0,147 0,424 1,014 298,196

GAW10 31,207 15,793 9,132 0,442 0,141 0,417 1,06 297,999

GAW11 31,509 14,771 9,074 0,45 0,133 0,418 1,077 290,961

GAW12 31,784 14,381 8,491 0,466 0,133 0,401 1,161 297,799

GAW13 32,049 13,322 8,696 0,468 0,123 0,409 1,143 286,746

GAW14 32,3 13,137 7,921 0,488 0,125 0,386 1,264 298,797

GAW15 32,528 12,623 7,695 0,498 0,122 0,38 1,311 299,809

GAW16 32,752 11,547 7,51 0,51 0,113 0,377 1,352 294,793

GAW17 32,954 10,888 7,247 0,521 0,109 0,37 1,41 293,383

GAW18 33,148 10,424 7,082 0,53 0,105 0,365 1,451 292,979

GAW19 33,337 10,365 6,934 0,536 0,105 0,359 1,491 295,596
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Table 3: Refractive indices of the samples GAW system at 298 K .

Probe Refractive
index Probe Refractive

index Probe Refractive
index Probe Refractive

index

GAW3 1.3910 GAW8 1.4007 GAW12 1.3873 GAW16 1.3822

GAW4 1.3942 GAW9 1.3907 GAW13 1.3848 GAW17 1.3817

GAW5 1.3967 GAW10 1.3881 GAW14 1.3845 GAW18 1.3807

GAW6 1.3934 GAW11 1.3874 GAW15 1.3839 GAW19 1.3805

GAW7 1.3982

Table 4: NTRL parameter representation of the liquid-liquid equilibrium data [31].

component i component j ijA jiA ij

glycerol water -385.510 -453.180 0.200

glycerol acetone 258.790 735.360 0.200

water acetone 624.750 -198.330 0.200

Table 5: Results of fitting the correlation length (T) to a simple power law (Eq. 4.1.3).

Sample CT in K 0(nm) 

GAW 1 296.8870.004 18.5210.973 0.7010.029

GAW 2 290.8290.005 17.2290.355 0.7190.011

GAW 3 297.6210.004 16.0380.637 0.7110.025
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Table 6: Results of fitting the generalized osmotic susceptibility TC (T) to a simple
power law (Eq. 4.1.3)

Sample CT in K ,0TC (arb. unit) 

GAW 1 296.8850.005 0.29240.0079 1.4160.012

GAW 2 290.8290.003 0.37180.0040 1.4150.005

GAW 3 297.6200.004 0.28570.0040 1.4160.008

Table 7: Results of fitting the mass diffusion coefficient data ijD T to a simple power
law Eq. (4.3.3).

Sample CT in K D12,0


GAW1 296.6290.084 607.37442.33 0.87590.0945

GAW2 290.8820.034 615.35551.49 0.81080.0150

GAW3 297.7520.025 377.30127.08 0.72020.0110
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