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1 Introduction 1

1 Introduction

The first revolution in finance began with Harry Markowitz who published in 1952 in
his doctoral dissertation a portfolio selection principle based on identifying the best
stock for an investor and quantified the trade-offs between risk and return inherent in
an entire portfolio of stocks. Later William Sharpe used Markowitz’s ideas to develop
the concept of determining covariances not between every possible pair of stocks, but
between each stock and themarket. Then one can address the optimization problem of
choosing the portfolio with the largest mean return, subject to keeping the risk below
a specified acceptable threshold. For purpose of this optimization problem each stock
could then be characterized by its rate of return and its correlation with the market.
For the pioneering work, Markowitz and Sharpe shared with Merton Miller the 1990
Nobel Prize in economics, the first ever awarded for work in finance. The portfolio
selection work of Markowitz and Sharpe introduced mathematics to the investment
management; and thanks to Robert Merton and Paul Samuelson, one-period models
were replaced by continuous-time, Brownian motion-driven models, and the quadratic
utility function implicit in mean-variance optimization was replaced by more general
increasing, concave utility functions.
The second revolution in finance is connected with the explosion in the market for
derivative securities . The foundamental work here was done by Fisher Black, Robert
Merton, and Myron Scholes in the early 1970s. Black, Merton, and Scholes were
seeking to understand the value of the option to buy one share of stock at a future
date and price specified in advance. This so-called European call-option derives its
value from that of the underlying stock, hence the name derivative security. Based on
the simple principle called absence of arbitrage, Black and Scholes [9] derived in 1973
the now famous formula for the value of the European call-option, which bears their
name, and which was extended by Merton 1973 [58] in a variety of very significant
ways. For this fundamental work, Robert Merton and Myron Scholes were awarded
the 1997 Nobel Prize in economics.

History

The modern portfolio theory started with the famous works of Markowitz (see [54],
[55]), who conceived the idea of trading off the mean return of a portfolio against its
variance. Merton introduced in two works (see [56], [57]) the concept of Itô calculus
with methods of continuous-time stochastic optimal control to solve the problem of
portfolio optimization. In a model with constant coefficients Merton [56] solved the
relevant Hamilton-Jacobi-Bellman equation and produced solutions to both finite and
infinite-horizon models when the utility function is a power function or the logarithm.
The modern mathematical approach to portfolio management in complete markets,
built around the ideas of equivalent martingale measures and the creation of port-
folios from martingale representation theorems, began with Harrison and Kreps [33]
and was further developed by Harrison and Pliska (see [34], [35]) in the context of the
option pricing. Pliska [63], Cox and Huang [11], [12], and Karatzas, Lehoczky and,
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Shreve [38] adapted the martingale ideas to problems of utility maximization. Much
of this development appears in [41].
The stochastic duality theory of Bismut [8] was first applied to study the portfolio
optimization problems in the doctoral dissertation of Xu [70] who formulated a dual
problem whose solution could be shown to exist and to be useful in constructing and
characterizing the solution to the original optimization problem. The methodology
of Xu was applied to deal with incomplete market models by Karatzas, Lehoczky,
Shreve, and Xu [39], where they combined the martingale method with duality meth-
ods to maximize expected utility in incomplete market.
The techniques of Malliavin calculus to compute optimal portfolios, were introduced
by Ocone and Karatzas [61]. The mixed control/filtering problem was studied by
Kuwana (see [50], [51]) and by Lakner [52], see also Karatzas [37], Duffie and Richard-
son [20], and Schweizer [67]. Sass and Haussmann [65] consider the case of a hidden
Markov model for the drift. Pham and Quenez [62] consider a financial market where
price process of risky assets follows a stochastic volatility model. Basak and Shapiro
[4]; Basak, Shapiro, and Tepla [5] embed risk management into portfolio optimiza-
tion problem and analyse the impact of different risk constraints to the portfolio
optimization. Emmer, Klüppelberg, and Korn [24] studied the utility maximization
problem under the constraint of an upper bound for the Capital-at-Risk (CaR) of
a portfolio which is defined as the difference between the mean of the profit-loss
distribution and the VaR. Thereby, the portfolio strategy is restricted to constants.
Dmitrasinovic-Vidovic, Lari-Lavassani, and Li [16] extended the method used in [24]
to the continuous setting to investigate the portfolio optimization problem under Con-
ditional Capital-at-Risk (CCaR) which is proved to be a coherent risk measure if the
random variable describing the risk is continuously distributed.

In this thesis we deal with optimal strategies for portfolios consisting of n risky stocks
and one risk-free bond. Giving a finite planning horizon [0, T ] and starting with some
initial endowment, the aim is to maximize the expected utility of the terminal wealth
of the portfolio by optimal selection of the proportions of the portfolio wealth invested
in stocks and bond, respectively. Assuming a continuous-time market allowing for
permanent trading and rebalancing the portfolio, these proportions have to be found
for every time t up to T .

The utility maximization problem admits a simple solution in the context of the
Black-Scholes model of a complete financial market; this solution has been derived
by Karatzas, Lehoczky, and Shreve [38] and also by Cox and Huang [11], [12]. The
case of an incomplete market has been treated by Karatzas, Lehoczky, Shreve, and
Xu [39]. Here the portfolio can contain shares of a risk-free bond and of stocks whose
prices follow a geometric Brownian motion.

Following the optimal portfolio strategy leads (by definition) to the maximum ex-
pected utility of the terminal wealth. Nevertheless, the terminal wealth is a random
variable with a distribution which is often extremely skew and shows considerable
probability in regions of small values of the terminal wealth. This means that the op-
timal terminal wealth may exhibit large so-called shortfall risks. By the term shortfall
risk we denote the event, that the terminal wealth falls below some threshold value.
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In Germany companies offering some kind of private pension insurances (Riester-
Rente) are obliged by law to pay at least the invested capital without any interest to
the insured person. So the company is confronted with the risk of a terminal wealth
of the portfolio (created with the deposits of the insured person) below the value of
the non-interest-bearing deposits.

In order to incorporate such shortfall risks into the optimization it is necessary to
quantify them by using appropriate risk measures. Lets denote the terminal wealth
of the portfolio at time t = T by XT , and let Q > 0 be a shortfall level which we
will specify later. Then the shortfall risk consists in the random event {XT < Q} or
{G := XT − Q < 0}. Next we assign risk measures to the random variable (risk) G
and denote them by ρ(G). Using these measures, constraints of the type ρ(G) ≤ ε for
some ε > 0 can be added to the formulation of the portfolio optimization problem.

A natural idea is to restrict the probability of a shortfall, i.e.,

ρ(G) = P (G < 0) = P (XT < Q).

This approach corresponds to the widely used concept of Value at Risk (VaR) which
is defined as

VaRε(G) = −ζε(G)

where ζε(G) denotes the ε-quantile of the random variable G. VaR can be interpreted
as the threshold value for the risk G such that G falls short below this value with
some given probability ε, i.e., VaR describes the loss that can occur over a given
period, at a given confidence level, due to exposure to market risk. It holds

P (G < 0) ≤ ε⇔ VaRε(G) ≤ 0⇔ VaRε(XT ) ≤ −Q.

Value-at-risk describes probabilistically the market risk of a trading portfolio. This
risk measure is widely used by banks, securities firms, commodity and energy mer-
chants, and other trading organizations because it is an easily interpretable summary
measure of risk (see Bodnar et al. [10]).

Another risk measure is the Expected Loss defined by

EL(G) = E[G−] = E[(XT −Q)−].

In the example of the pension insurance this is a measure for the average additional
capital the company is obliged to pay as compensation for the shortfall. The con-
straint E[G−] ≤ ε bounds this average additional capital by ε > 0.
Another interesting risk measure is the so called Expected Utility Loss which we
denote by (EUL)

EUL(G) := E[G−] = E[(U(XT )− U(Q))−], (1.1)

this measure deals with the expected loss in utility, see Definition 4.2.

Further risk measures can be found in the class of coherent measures introduced by
Artzner, Delbaen, Eber and Heath [2], and Delbaen [14]. These are measures pos-
sessing the properties of monotonicity, subadditivity, positive homogeneity and the
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translation property. The above (VaR, EL, EUL) risk measures do not belong to this
class, since VaR is not subadditive, and EL and EUL violate the translation invari-
ance property.

In this thesis we analyse the effects of risk management on optimal terminal wealth
choices and on optimal portfolio policies. We first focus on modeling portfolio man-
agers as expected utility maximizers, who derive utility from wealth at some horizon
and who must comply with different risk constraints imposed at that horizon, requir-
ing that the wealth may decrease below a given floor. This analysis was initiated
by the early studies on shortfall constraints (see for example Roy [64], Telser [69],
Kataoka [46]) and is extended in recent studies (see for example Klüppelberg and
Korn [47], Alexander and Baptista [1], Emmer [23]), where the authors conduct a
mean-variance analysis to VaR-based risk management to manage the risk of portfo-
lios. Dmitrasinovic-Vidovic, Lari-Lavassani, Li, and Ware (see [16] and [17]) extended
the result obtained in [24] to deal with Conditional Capital at-Risk in continuous
setting. Bäuerle and Rieder [3] used stochastic control methods to investigate the
problem of maximizing the expected utility in a hidden Markov model.

At more fundamental level Basak and Shapiro [4] study a more general preference
structure and merge the utility maximization and risk management into one opti-
mization problem. The authors demonstrate that risk management practices under
the VaR approach may yield unintended results. They find that a VaR-risk manager
often optimally chooses a larger exposure to risky assets than non-risk managers and
consequently incurs larger losses when losses occur. To overcome this shortcoming of
VaR, we propose and evaluate an alternative forms of risk management that maintain
limited expected losses when losses occur. In [31], [28] we embed risk management
objectives into utility maximization problem using Value at Risk (VaR), Expected
Loss (EL). In Gabih et al. [29] we compare the loss in utility of the portfolio along
with the return of the stock market. Finally, we combine and extend in [30] the
methods used in [29, 65] to study the portfolio optimization problem in the case of
partial information under the Expected Utility Loss.

Basically, we consider as in Black-Scholes model [9], financial investment opportunities
which are given by an instantaneously risk-free market account providing an interest
rate r so that its price S0 = (S0t )t∈[0,T ] is given by

dS0t = rS0t dt, (1.2)

and n risky stocks whose prices S = (St)t∈[0,T ], St = (S1t , . . . , S
n
t )
> evolve according

to

dSit = Sit
[
µidt+

n∑

j=1

σijdW
j
t

]
, Si0 = si0 ∈ R, i = 1, . . . , n. (1.3)

We analyse the effects of risk management on optimal portfolio policies within the
familiar (continuous-time) complete market setting, but in two different situations:
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Full information

First we consider the standard case of full information, where the drift process µ =
(µ1, . . . , µn)

>, the volatility matrix σ, and the Brownian motion W = (Wt)t∈[0,T ],
Wt = (W 1

t , . . . ,W
n
t )
> appearing in the stochastic differential equation (1.3) for the

security price are well known to the portfolio manager. Here we adopt the approach
used by Basak and Shapiro [4] and we directly embed risk management objectives
into utility maximizing framework. Especially, we use three different risk constraints,
Value at Risk VaR for which we give a slightly different optimal solution than the one
given by Basak and Shapiro [4]. Here we find that the expected losses in the state
where there are large losses, are higher than those the portfolio manager would have
incurred if he had not used Value at Risk. This shortcoming we overcome by proposing
an alternative form for risk management, i.g. E[(XT −Q)−] which we call Expected
Loss and which we denote by EL. Since the objective of the portfolio manager is to
maximize the expected utility from the terminal wealth, we find it interesting to deal
with the portfolio optimization problem where the portfolio manager is confronted
with a risk measured by a constraint of the type

EUL(G) := E[G−] = E[(U(XT )− U(Q))−] ≤ ε, (1.4)

where ε is a given bound for the Expected Utility Loss. This risk constraint has
the convenient property that it leads to more explicit calculations for the optimal
strategy we are looking for. In addition it allows to the constrained static problem
to be solved for a large class of utility functions. We keep the shortfall level Q to be
constant. A typical choice for the shortfall level is Q = q with

q = xe(r+δ)T , δ ∈ R,

where x is the initial endowment. Here, the shortfall level is related to the result of
an investment into the money market, xerT is the terminal wealth of a pure bond
portfolio where the portfolio manager follows the buy-and-hold strategy. In this case
shortfall means to reach not an target interest rate of r + δ. For δ = −r we have
q = x, i.e., the shortfall level is equal to the initial capital.

The EUL risk measure (1.4), proves to be efficient once again when we model a
portfolio manager who manages the relative performance, or tracking error of his
portfolio along with a stochastic benchmark Q which can be the level of a portfolio,
or an index, or any economic indicator. Here we consider only one stock market with
initial price 1. The benchmark Q is not a constant but is a random variable and
chosen to be proportional to the result of an investment in a pure stock portfolio, i.e.,

Q = eδTxST , δ ∈ R.

The real number δ measures the over- (δ > 0) or under-performance (δ < 0) of the
stock market in terms of the annual logarithmic return. We refer to [29] for more
details.



1 Introduction 6

We define the tracking error of the portfolio manager’s horizon wealth XT relative to
the benchmark Q as

G = G(XT , Q) = U(XT )− U(Q)

where the random variable G can be interpreted as the utility gain of the termi-
nal wealth relative to the benchmark. Moreover, the shortfall risk is quantified by
assigning to the random variable G a real valued risk measure ρ(G) given by

ρ(G) = EUL(G) := E[G−] = E[(U(XT )− U(Q))−].

Here, the shortfall is related to the event, that the terminal wealth XT of the portfolio
is smaller than the benchmark Q = eδTxST and we measure the shortfall risk using
the Expected Utility Loss. Contrary to the case of a benchmarked money market, we
find here that the decision of the portfolio manager depends on the sensitivity of the
benchmark Q to economic conditions. In [5] VaR is used to measure the shortfall in
the case of a stochastic benchmark.

Partial information

In the second part of this thesis we deal with the case of partial information. This is
the situation when neither the drift process µ nor the Brownian motion W appear-
ing in (1.3) are observable for the portfolio manager. We assume that he can only
observe the stock price S. The volatiliy σ is known and constant. In contrast to the
case of full information, the case of partial information is more realistic since prices
and interest rates are published and available to the public, but drifts and paths of
Brownian motions are only mathematical tools used to create models, but certainly
not observable. Therefore, the fact that portfolio managers have only a partial in-
formation will be modeled by requiring that investment decisions and all processes
appearing in this market have to be adapted to FS = (FS

t )t∈[0,T ], the P -augmented
filtration generated by the stock price, which is smaller than the original filtration.
Basically, the portfolio optimization problem with partial information can be solved
only if the dynamics of the unknown drift is specified. Without other restrictions such
as risk management, models with partial informations were studied by Detemple [15],
Dothan and Feldman [18], Gennotte [32] in a linear Gaussian setting. Later Karatzas
and Xu [43] adopted Bayesian approach for the utility maximization problems, by
combining filtering and martingale representation theory. Karatzas and Zhao [44]
reduced the optimization problem with partial observations to the case of a drift pro-
cess which is adapted to the observation process, so that the martingale method can
be applied. Using the same methodology Lakner [52] [53] proposed a Gaussian drift
driven by an independent Brownian motion and used Clark’s formula (see Theorem
17.1) to reduce the determination of the optimal trading strategy to the calculation of
the Malliavin derivative Dtms, s ∈ [t, T ], of the Kalman filter mt = E[µt|FS

t ], which
is the best estimator for the signal µt given the observation Rs, s ≤ t, where R is the
return process associated with stocks

dRt = (Diag(St))
−1dSt, or equivalently Rt =

∫ t

0

µsds+

∫ t

0

σdWs. (1.5)
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Lakner [53] exploits the fact that the filtering equation for mt provides a closed form
solution for the linear Kalman filter and computes Dtms explicitly.
Sass and Haussmann [65] proposed a drift as an independent continuous-time Markov
chain in a model with constant stock volatilty and simple dynamics for the interest
rate process. In contrast of the case of Gaussian process, it is easier to consider
the unnormalized filter Et (see Chapter IV, Definition 16.1) which satisfies a linear
stochastic differential equation (SDE). The Malliavin derivative DEt of the unnor-
malized filter is characterized by another SDE, and the optimal strategy is given in
[65] in terms of the unnormalized filter and its Malliavin derivative. In [66], Sass and
Haussmann extend this model to stochastic volatility and more general stochastic in-
terest rates whose dynamics are driven by another Brownian motion which is defined
with respect to an equivalent risk neutral measure.
We consider a multi-stock market model as in [65], where prices satisfy a SDE with
instantaneous rates of return µ = (µt)t∈[0,T ], the drift process appearing in Equation
(1.3), is given by

µt = BYt, t ∈ [0, T ], (1.6)

where Y = (Yt)t∈[0,T ] is a stationary, irreducible, continuous time Markov chain inde-
pendent of W with state space {e1, . . . , ed}, the standard unit vectors in Rd, and
B = (Bik)i=1,...,n;k=1,...,d is given by Bik = bki . The columns of the state matrix
B ∈ Rn×d contain the d possible states of µt. Moreover, the continuous Markov
chain Y is characterized by its rate matrix Q ∈ Rd×d, where Qkl, k 6= l, is the jump
rate or transition rate from ek to el, and λk =

∑d
l=1,l 6=kQkl the rate of leaving ek.

For investment decisions only the prices of the stocks are available. Thus we have a
hidden Markov model (HMM) for the stock returns. Under restrictions on the loss
in utility compared to a benchmark, we embed a risk management task to the port-
folio optimization problem. Combining filtering and martingale method, we obtain
in Proposition 15.2 the optimal terminal wealth X∗

T = f(ζT ) as a function of the
conditional state price density ζT . The function f does not fulfill the conditions of
chain rule to state that our optimal terminal wealth has a Malliavin derivative. To
do so, we use approximation arguments in a way to approximate f by a sequence of
functionals (fn)n∈N∗ for which the chain rule is applicable and its Malliavin deriva-
tive (fn(ζT ))n∈N∗ converges to a limit proved to be the Malliavin derivative of our
terminal wealth X∗

T = f(ζT ). To derive the optimal corresponding strategy, we use
the extension of Clark’s formula from D2,1 to D1,1, because we avoid unnecessarily
restrictive moment bound on our terminal wealth X∗

T . In our model it is convenient
to work in D =

⋂
p>1Dp,1 as subspace of D1,1, since the corresponding integrability

conditions we need to apply our chain rules follow directly from Hölder’s inequal-
ity. In our main result, we provide in Proposition 18.3 an explicit representation
for the optimal trading strategy in terms of observable processes and in terms of
the unnormalized filter E and the current wealth X∗

t . All quantities involved are
adapted to the augmented filtration of the stock prices FS. Further, the filters and
their derivatives can be approximated very well because of the linear structure of the
equations they are satisfying. Finally, we examine the particular case of a constant
drift. Here the unnormalized filter coincides with the inverse of the state price density
and its Malliavin derivative can be computed explicitly so that the optimal trading
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strategy coincides with the optimal trading strategy we have obtained in the case of
full information under the same risk constraint. Although the two methodologies of
full information and partial information are different, they lead to the same optimal
trading strategy in the particular case of a Markovian model with a constant drift.

Outline

In Chapter I we set up the background concerning the expected utility maximization
in the familiar continuous-time and complete setting. Section 2 introduces in general
way the Brownian-motion-driven model for our financial market which consists of
one risk-free bond and n stocks, the later being driven by an n-dimensional Brownian
motion. The prices of risky assets and risk-free bond are supposed to evolve according
to Black-Scholes model [9]. Then we describe the different investment decisions of
an investor acting in this market by introducing three different equivalent quantities
modeling the trading operations in the market. These equivalent quantities are the
number of shares φit held in each stock Si

t at time t, the amount of wealth πit = φitS
i
t

invested in this stock, and the fraction of wealth θit =
πit
Xt

invested in this stock, where
Xt is the wealth generated by φ. Section 3 presents the different properties that a
given utility function should have depending to the investor’s taste of risk. Typical
economic utility functions are presented at the end of this section. Section 4 deals
with the portfolio optimization problem of a portfolio manager who receives a de-
terministic initial capital, which he must then invest in a complete market so as to
maximize the expected utility of his wealth at a prespecified final horizon. We set
up the martingale method used to solve this problem in the case of complete market.
The martingale approach is introduced by Karatzas et al. [38], Cox and Huang [11]
and it proceeds basically in three steps. First, on the underlying probability space
we determine a new measure which discounts the growth inherent in the market.
Under this measure, the expected value of the discounted final wealth attained by
any reasonable portfolio is equal to the initial endowment. Second among all random
variables whose expectation under the new measure is equal to the initial endowment,
a most desirable one is determined. Third, it is shown that a portfolio can be con-
structed in a way that attains this most desirable terminal wealth. This portfolio
is optimal, and its construction uses the fact that any martingale with respect to a
Brownian filtration can be represented as a stochastic integral with respect to the
Brownian motion, the integrand in this representation leads to the optimal portfolio.
Section 5 gives a short review of risk measures used in this thesis and their properties.

In Chapter II we examine the portfolio optimization problem where the shortfall
risk is concerned with a deterministic shortfall level Q := q which can be written as
q = xe(r+δ)T , δ ∈ R, where x is the initial capital. Basically, we associate the risk
with the random variable G = XT − q and we adopt three different risk constraints:

• the Value at Risk: P (G < 0) = P (XT < q),

• the Expected Loss: EL(G) = E[G−] = E[(XT − q)−],
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• and the Expected Utility Loss EUL(G) = E[G−] = E[(U(XT )− U(q))−].

In order to analyse the impact of the different risk constraints to the behavior of the
portfolio manager, we formulate the dynamic optimization problem of maximizing
the expected utility from terminal wealth with additional risk constraints bounding
the different forms of loss with a given ε.
To solve the dynamic optimization problem associated with risk constraints, we adapt
the martingale representation approach [Karatzas et al. [38], Cox and Huang [11]],
which allows the problem to be restated as a static variational problem used to obtain
the optimal candidate maximizing the expected utility among the set of all admissi-
ble terminal wealth. By exploiting the market completeness, it turns out that there
exists a strategy whose terminal wealth coincides with the optimal solution given by
the static problem. From the other hand the static problem is solved by adapting
the common duality approach, thereby we define the convex conjugate of the utility
function to which we add additional terms capturing the different risk constraints.
First in Section 6 the shortfall probability or equivalently the Value at Risk is bounded
and added in a form of risk constraint to the optimization. We follow the paper of
Basak and Shapiro [4], but give slightly different solutions. In Section 7 the Expected
Loss is bounded and added to the optimization. This case is not considered explicitly
in [4] and we give the detailed solution for the case of a CRRA utility function. Sec-
tion 8 deals with the Expected Utility Loss as a modification of the Expected Loss
constraint considered in Section 7. Finally, Section 9 illustrates the findings of the
preceding sections with an example.
In Chapter III we investigate the impact of adding a Utility Expected Loss constraint
to the problem of portfolio manager who aims to beat the return of a given port-
folio. More precisely, we deal with a portfolio manager who manages the relative
performance, or tracking error of his portfolio along with other objectives. For a
given benchmark Q representing the performance of a portfolio or an index or any
economic indicator. The task in this chapter is to examine the behavior of a portfolio
manager benchmarking the stock price, this situation leads to a random benchmark
which is proportional to the result of an investment in a pure stock portfolio. The
portfolio optimization problem is formulated with a risk constraint bounding the Ex-
pected Utility Loss with a given ε. Contrary to the case of a benchmarked money
market studied in Chapter II, we find here that the decision of the portfolio manager
depends on the sensitivity of the benchmark to economic conditions.
Section 11 describes the economy and presents the different facts related to the bench-
marking of the stock market. Subsection 11.1 solves the portfolio optimization prob-
lem under the Expected Utility Loss constraint. In particular, we characterize the
optimal terminal wealth and its associated optimal strategy. Section 12 presents some
properties of the optimal portfolio and its asymptotic behavior when the time t ap-
proches the horizon time T . Finally Section 13 illustrates the findings of the previous
sections with numerical examples.
In Chapter IV we investigate the portfolio optimization problem for a model of the
financial market with partial information by choosing portfolio strategies based only
on information about the asset-prices. We embed this problem to a risk management
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by requiring that the loss in utility compared to a benchmark has to be bounded. We
specify the dynamics of the drift process as a stationary, irreducible, continuous time
Markov chain independent ofW . Then we combine the results of filtering obtained by
Sass and Haussmann in [65] with the results of convex-duality approach we have ob-
tained in Chapter II to get the optimal strategy (Proposition 18.3) which is expressed
in terms of the unnormalized filter E , its Malliavin derivative DE , and the parameters
of the model. These quantities are all FS-adapted. In Section 14 we introduce the
market model, where we consider one risk-free asset whose price process is assumed
for simplicity to be equal to 1 at each date. Similar to the case of full information
studied in Chapter II, Section 15 deals with the portfolio optimization problem under
partial information which we solve using the martingale duality approach. The basic
difference is that instead of the state price density

Zt = exp

(
−
∫ t

0

(σ−1BYs)
>dWs −

1

2

∫ t

0

‖σ−1BYs‖2ds
)
,

we use ζt = E[Zt|FS
t ], the FS-conditional state price density as driving process for

the economy. In Section 16 we present the results of HMM filtering. In Section 17
we use approximation arguments to prove that the optimal terminal wealth we have
obtained in Section 15, has a Malliavin derivative. Finally, in Section 18 we derive
our main result Theorem 18.1, which provides the optimal trading strategy in terms
of the unnormalized filter, its Malliavin derivative, the return process, and the pa-
rameters of the model. These processes are all adapted to FS, and are observable or
can be estimated. The particular logarithmic and power utility allows us to compute
in Proposition 18.3 the optimal trading strategy in terms of the current unnormalized
filter, the current terminal wealth, and the return process. Finally we prove that in
the case of a constant drift, our optimal trading strategy obtained in Proposition 18.3
coincides with the optimal trading strategy we have obtained in the case of full infor-
mation (Chapter II) under the same Expected Utility Loss. The Appendix contains
proofs of propositions and lemmas related to our portfolio optimization problems. In
Appendix G we recall results about Malliavin calculus and the chain rules we need
to apply Clark’s formula.
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General notation

N, R set of integer, real numbers

v> transposition of the vector v

X = (Xij)i,j=1,...,n matrix

||x|| = (x,x)
1
2 Euclidean norm

Diag(v) diagonal matrix with diagonal v

1n n-dimensional vector whose entries are all equal 1

1n×d a matrix whose entries are all equal 1

Ck(D), k ∈ N∗ set of k-times continuously differentiable functions on D
Ck

c (D), functions of Ck(D) with a compact support

C∞b (D), functions of C∞(D) which are bounded and have
bounded derivatives of all orders

Lp(D), p ∈ N set of functions on D with
∫
D
||f(x)||p dx <∞

1M(x) indicator function

(Ω,H,P) complete probability space

ω element of Ω

E[F ] expectation of the random variable F

E[F |F ] conditional expectation of the random variable F given
the σ-algebra F

FX = (FX
t )t∈[0,T ] the augmented σ-algebra generated by

an F -adapted process X

S class of smooth random variables. See Appendix G

DF Malliavin derivative of the smooth random variable F

‖F‖p,1 norm, see the definition in Appendix G
Dp,1, p ≥ 1 the closure of space S with respect to the norm ‖F‖p,1
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Chapter I

The Portfolio optimization
problem: A general overview

2 Financial markets

We consider a continuous-time economy with finite horizon [0, T ] which is built on a
complete probability space (Ω,H, P ), on which is defined an n-dimensional Brownian
motion W = (Wt)t∈[0,T ], Wt = (W 1

t , . . . ,W
n
t )
>. We shall denote by F = (Ft)t∈[0,T ]

the P -augmentation of the natural filtration and assume that H = FT . Further, we
assume that all stochastic processes are adapted to F . It is assumed through this
thesis that all inequalities as well as equalities hold P -almost surely. Moreover, it
is assumed that all stated processes are well defined without giving any regularity
conditions ensuring this. As in the Black-Scholes model [9], financial investment
opportunities are given by an instantaneously risk-free market account providing an
interest rate r so that its price S0 = (S0t )t∈[0,T ] is given by

dS0t = rS0t dt, (2.1)

and n risky stocks whose prices S = (St)t∈[0,T ], St = (S1t , . . . , S
n
t )
> evolve according

to

dSit = Sit
[
µidt+

n∑

j=1

σijdW
j
t

]
, Si0 = si0 ∈ R, i = 1, . . . , n, (2.2)

where the interest rate r, the stock instantaneous mean return µ = (µ1, . . . , µn)
> and

the volatility matrix σ = (σij)i,j=1,...,n may be time-depending, but defined in a way
to insure the integrability conditions. Trading in the this economy requires from an
investor which we shall call portfolio manager

• an initial capital x > 0,

• a portfolio process θ = (θt)t∈[0,T ], θt = (θ1t , . . . , θ
n
t )
> where θit indicates the

fraction of wealth invested in stock i at time t,
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• a consumption process c = (ct)t∈[0,T ] where ct indicates the rate with which the
wealth generated by the portfolio θ is consumed at time t.

Depending on the financial conditions of the investor one can impose to the portfolio
and the consumption processes appropriate conditions to determine the set of admis-
sible strategies. A classical example would be that strategies taking values only in
the interval [0, 1], i.e., there is no short-selling.
At any time t, a portfolio manager acts in this market by choosing a trading strat-
egy ψ = (ψt)t∈[0,T ], ψt = (ψ0t , . . . , ψ

n
t )
> where ψi

t is the number of shares held by
the portfolio manager in the asset i. The Rn+1-valued process ψ is assumed to be
F -measurable such that

n∑

i=0

∫ T

0

(ψi
tS

i
t)
2dt <∞.

The wealth process Xt of the portfolio manager is defined at time t in terms of the
trading strategy by

Xt =
n∑

i=0

ψi
tS

i
t .

Moreover, we consider that the trading strategy is self-financing in the sense that
no other money is going in or out the market except the money generated by the
trading strategy, see [49]. Under this assumption and if the wealth Xt > 0, P − a.s,
the portfolio manager can act in the market using the associated portfolio process
θ = (θt)t∈[0,T ], θt = (θ1t , . . . , θ

n
t )
> defined as the fractions of wealth invested in each

risky stock, i.e.,

θit =
ψi
tS

i
t

Xθ
t

, i = 1, . . . , n,

with θ0t = 1 −
∑n

i=1 θ
i
t is the fraction of wealth invested in the risk-free bond. As a

consequence, the wealth process can be formulated in terms of the portfolio process
as a linear stochastic differential equation given by

dXθ
t = Xθ

t

(
r

(
1−

n∑

i=1

θit

)
+

n∑

i=1

µiθ
i
t

)
dt+Xθ

t

( n∑

i=1

n∑

j=1

σijθ
i
tdW

i
t

)
.

Using matrix notation, the dynamics of the wealth process can be formulated as

dXθ
t = Xθ

t [r + θ>t (µ− r1n)]dt+Xθ
t θ
>
t σdWt, Xθ

0 = x. (2.3)

Remark 2.1. In Chapter IV, we shall use another equivalent quantity for the in-
vestment decision which is the amount of wealth invested in risky stocks. More pre-
cisely, we define the amount of wealth invested in the risky stocks by π = (πt)t∈[0,T ],
πt = (π1t , . . . , π

n
t )
>, where πit = ψi

tS
i
t indicates the amount of wealth invested in stock

i at time t. Further, π0t = Xt −
∑n

i=1 π
i
t is the amount of wealth invested in the

risk-free bond. As consequence the wealth process can be reformulated in terms of
the process π as

dXπ
t = π>t (µdt+ σdWt) + (Xπ

t − 1>nπt)rdt, Xπ
0 = x. (2.4)
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3 Utility function of an investor

In his exposition about the theory on the measurement of risk Bernoulli [6] proposed
that the value of an item should not be determined by the price somebody has to
pay for it, but by the utility that this item has for the owner. A classical example
would be that a glass of water has a much higher utility for somebody who is lost in
the desert than somebody in the civilization. Although the glass of water might be
exactly the same and therefore its price, the two persons in the mentioned situation
will perceive its value differently.
Following partially the structure given in [22] Chapter 10, we discuss different prop-
erties that a given utility function should have and we look at some typical economic
utility functions. Intuitively everybody prefers more wealth X than less wealth and
this is the first property we are interested to get for the utility function. Economists
call this the non-satiation attribute and it expresses the fact that an investment with
higher return has always a higher utility than an investment with a lower return as-
suming that both options equally likely.
From this it seems to be important to focus on a utility function whose first derivative
has to be positive. Hence, the first requirement placed on a utility function U from
a wealth parameter X is therefore

U ′(X) > 0.

The second property of a utility function is an assumption about an investor’s taste
of risk. Three assumptions are possible: The investor is averse to risk, the investor
is neutral toward risk and the investor seeks risk. A simple example illustrating the
three different risks is the so called fair gamble which is an investment with expected
value equal to its cost.

Invest Do Not Invest
Outcome Probability Outcome Probability

2 1/2 1 1
0 1/2

The option ”invest” has an expected value of 1
2
2 + 1

2
0 = 1 Euro. Assume that the

investor would have to pay 1 Euro to undertake this investment and obtain these
outcomes. If the investor prefers to not invest, then 1 Euro is kept. In this case the
expected utility of not investing must be higher than the expected utility of investing

U(1) >
1

2
U(2) +

1

2
U(0),

which implies that
U(1)− U(0) > U(2)− U(1),

and this inequality expresses that the change in utility when wealth changes from 0
to 1 is more valuable than the change in utility when wealth changes from 1 to 2 and
hence the utility is modeled by a function such that an additional unit increase is
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less valuable than the last unit increase. This property is fulfilled for a function with
negative second derivative.
Risk neutrality means that an investor is indifferent to weather or not a fair gamble
option is undertaken. When the investor is indifferent between investing and not
investing, the expected utility of investing, or not investing, must be the same

U(1) =
1

2
U(2) +

1

2
U(0),

and this yields after rearranging

U(1)− U(0) = U(2)− U(1).

This expression implies that the change in utility of wealth is independent of the
changes in wealth. Such a characteristic is fulfilled for functions that exhibit a zero
second derivative, therefore indifference to a fair gamble implies a utility function
that should have a zero second derivative.
Risk seeking means that the investor would select a fair gamble and hence the expected
utility of investment must be higher than the expected utility of not investing

U(1) <
1

2
U(2) +

1

2
U(0),

and this yields after rearranging

U(1)− U(0) < U(2)− U(1).

This inequality expresses that the utility of one-unit change from 2 to 1 is greater
than the utility of one-unit change from 0 to 1. Functions with positive second deriva-
tive are functions that exhibit the property of greater change in value for larger unit
changes in the argument.

Another property of utility functions can be derived from the example of an investor
who is deriving some utility from the wealth obtained by investing in risky assets and
risk-free bound. Here, the property is an assumption about how the size of the wealth
invested in risky assets changes when the size of the wealth has changed. In other
words, if the investor’s wealth increases, will be more or less of that wealth invested
in risky stock? Here three kinds of investor’s behavior are possible:

• Decreasing absolute risk aversion: The investor increases the amount invested
in risky assets when the wealth increases.

• Constant absolute risk aversion: The investor keeps the amount invested in
risky assets when the wealth increases.

• Increasing absolute risk aversion: The investor decreases the amount invested
in risky assets when the wealth increases.
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As it is pointed out in [22], the absolute risk aversion can be measured by

A(X) = −U
′′(X)

U ′(X)
,

and as a consequence the type of the investor can be determined according to A′(X):

• A′(X) > 0 : Increasing absolute risk aversion

• A′(X) = 0 : Constant absolute risk aversion

• A′(X) < 0 : Decreasing absolute risk aversion.

It is also possible to use the change of the percentage of wealth invested in risky assets
as wealth changes. This is evaluated by

R(X) = −XU
′′(X)

U ′(X)
= XA(X),

and has the following interpretation

• R′(X) > 0 : Increasing relative risk aversion

• R′(X) = 0 : Constant relative risk aversion

• R′(X) < 0 : Decreasing relative risk aversion.

The most frequently used utility function is the power utility function

U(z) =

{
z1−γ

1−γ , γ ∈ (0,∞) \ {1},
ln z, γ = 1.

(3.5)

With positive first derivative and negative second derivative, the power utility func-
tion (3.5) meets the requirement of risk averse investor who prefers more than less
wealth. Moreover, this function exhibits decreasing absolute risk aversion and con-
stant relative risk aversion. The parameter γ of the power utility function can be
interpreted as relative risk aversion since in this case R(X) = γ.

Remark 3.1. If we choose a logarithmic utility function U(z) = ln z, i.e., we set
γ = 1, then the utility U(X) of the terminal wealth X is equivalent to the annual
logarithmic return . The annual logarithmic return is defined as

L(X) :=
1

T
ln
X

x
,

where x is the initial capital, i.e., X0 = x.
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4 The portfolio optimization problem

4.1 Pointwise maximization

In this section we examine the particular case of portfolio optimization when the
investor maximizes the expected logarithmic utility of the terminal wealth of one
stock with a constant stock return µ and a constant volatility σ, and a bond with a
constant interest rate r. The portfolio manager, starts with initial capital x > 0 and
follows a trading strategy θ = (θt)t∈[0,T ] which leads to the wealth Xθ = (Xθ

t )t∈[0,T ]
defined by

dXθ
t = Xθ

t [(r + θt(µ− r))dt+ θtσdWt], Xθ
0 = x,

which can be expressed as

Xθ
t = xexp

(∫ t

0

(
r + θs(µ− r)− 1

2
(θsσ)

2
)
ds+

∫ t

0

θsσdWs

)
.

The strategy θ is required to be such that the stochastic integral (
∫ t
0
θsσdWs)t∈[0,T ]

is a martingale, which is the case when the inequality E
[ ∫ t

0
θ2sds

]
< ∞ is fulfilled,

or when θ is assumed to be a bounded and deterministic. Moreover, the particular
structure of the logarithmic utility allows to get

E[ln(Xθ
T )] = ln(x) + E

[ ∫ t

0

(
r + θs(µ− r)− 1

2
(θsσ)

2
)
ds+

∫ t

0

θsσdWs

]

= ln(x) + E

[ ∫ t

0

(
r + θs(µ− r)− 1

2
(θsσ)

2
)
ds

]
.

The portfolio maximization is now equivalent to the following pointwise maximization
problem

find a strategy θ∗ which maximizes
(
r + θt(µ− r)− 1

2
(θtσ)

2
)
.

Here, the optimal solution is given by a constant strategy

θ∗t = θ∗, for all 0 ≤ t ≤ T with θ∗ =
µ− r

σ2
.

This strategy is bounded and hence satisfies the required condition for admissibility.
Moreover, if the coefficients of the model are such that µ > r and µ − r < σ2, this
strategy takes values in the interval (0, 1).

4.2 Stochastic control method

The stochastic control method is adequate for Markov models. This method consists
in deriving the so called Hamilton-Jacobi-Bellman equation which allows the analysis
of the model. Merton [56] was the first who applied stochastic control method to
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a dynamic optimization problem in a standard Black-Scholes model with constant
coefficients.
At time t the portfolio manager is assumed to consume its wealth at consumption
rate ct, where by definition a consumption rate is a non-negative Ft-adapted process
c = (ct)t∈[0,T ] such that ∫ T

0

ctdt <∞.

With the additional consumption rate, the wealth process is formulated as controlled
stochastic process satisfying

dXθ,c
t = [rXθ,c

t − ct]dt+Xθ,c
t θt[(µ− r)dt+ σdWt], Xθ,c

0 = x,

and the dynamic optimization problem reads as follows

find a pair (θ∗, c∗) which maximizes E

[ ∫ T

0

e−αtU1(ct)dt+ U2(X
θ,c
T )

]
,

for a given α ∈ (0, 1) and a utility functions U1 and U2 . Let us define the value
function of the maximization problem as

V (t, x) = sup
(θs,cs)t≤s≤T

E

[ ∫ T

t

e−αsU1(cs)ds+ U2(X
θ,c
T )

]
.

The value function expresses the evaluation of the maximal value of the portfolio
manager’s costs as function of the initial capital x at the starting time t. Moreover,
Bellman principle implies that

V (t, x) = sup
(θs,cs)t≤s≤u

E

[ ∫ u

t

e−αsU1(cs)ds+ V (u,Xθ,c
u )

]
,

for u ≤ T . Itô’s lemma applied to the function V (t, x) leads to the so called Hamilton-
Jacobi-Bellman equation

sup
α1≤θ≤α2,c≥0

[
1

2
(xσθ)2Vxx(t, x) +

(
(1− θ)xr + θxµ− c

)
Vx(t, x)

+Vt(t, x)− rV (t, x) + U1(c)

]
= 0,

where V (T, x) = U2(x), V (t, 0) = U2(0),

where α1, α1 are real numbers. Solving this HJB equation leads to the optimal value
function V (t, x) as a solution of a partial differential equation obtained by substituting
the optimal strategy and the consumption processes in the HJB-equation. These
optimal processes are obtained here independently of the derivatives Vt, Vx and Vxx.
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4.3 Martingale method

In this section we adress the portfolio optimization problem of a portfolio manager
who wishes to maximize the expected utility from terminal wealth without any other
restrictions such as risk management. This problem is solved by [Karatzas et al. [38],
Cox and Huang [11]] using the so called martingale approach which we present in
this section. As in Section 2, we consider a risk-free money market account with a
constant interest rate r so that its price at time t, is S0t = e−rt. Further we consider
n risky stocks whose prices S = (St)t∈[0,T ], St = (S1t , . . . , S

n
t )
> evolve according to

dSit = Sit
[
µidt+

n∑

j=1

σijdW
i
t

]
, Si0 = s0 ∈ R, i = 1, . . . , n, (4.6)

with stock instantaneous mean returns µ = (µ1, . . . , µn)
> and the volatility matrix

σ = (σij)i,j=1,...,n are assumed to be constants. Moreover, σ is assumed to satisfy the
non-degeneracy condition

x>σσ>x ≥ δx>x for all x ∈ Rn,

where δ > 0 is a given constant.

The dynamic market completeness implies the existence of a unique state price density
process H = (Ht)t∈[0,T ], given by

dHt = −Ht(rdt+ κ>dWt), H0 = 1, (4.7)

where κ := σ−1(µ − r1n) is the market price of risk in the economy and 1n is the
n-dimensional vector whose all components are one.

The market price of risk κ or equivalently the state price density process H can
be regarded as the driving economic parameter in a portfolio managers dynamic
investment problem.

As it is outlined in Section 2, the portfolio manager is acting in this market using the
portfolio process θ = (θt)t∈[0,T ], θt = (θ1t , . . . , θ

n
t )
> defined as the fractions of wealth

invested in each risky stock, i.e.,

θit =
ψi
tS

i
t

Xθ
t

, i = 1, . . . , n,

with θ0t = 1 −
∑n

i=1 θ
i
t is the fraction of wealth invested in the risk-free bond. As a

consequence, the wealth process can be formulated in terms of the portfolio process
as a linear stochastic differential equation given by

dXθ
t = Xθ

t [r + θ>t (µ− r1n)]dt+Xθ
t θ
>
t σdWt, Xθ

0 = x. (4.8)

At time t = T the portfolio manager reaches the terminal wealth X θ
T . Thereby, the

portfolio process θ is assumed to be admissible in the following sense.
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Definition 4.1.
Given x > 0, we say that a portfolio process θ is admissible at x, if the wealth process
Xθ = (Xθ)t∈[0,T ] starting at X

θ
0 = x satisfies P (Xθ

t > 0, for all t ∈ [0, T ]) = 1. We
shall denote by A(x) the set of all admissible strategies.

Definition 4.2.
We call U : [0,∞) 7→ R ∪ {−∞}, a utility function if U is strictly increasing,
strictly concave, twice continuously differentiable on (0,∞), and its derivative satisfies
limx→0+ U

′(x) =∞ and limx→∞ U
′(x) = 0. Further we denote by I : (0,∞) 7→ (0,∞)

the inverse function of U ′.

In this economy, the portfolio manager is assumed to derive from the terminal wealth
Xθ

T a utility U(Xθ
T ) and his objective is to maximize the expected utility by choosing

an optimal strategy θ∗ from the set of admissible strategies A(x).
The dynamic problem
Find a strategy θ∗ in A(x) that solves

max
θ∈A(x)

E[U(Xθ
T )]. (4.9)

With no additional restrictions such as risk management, the maximization prob-
lem (4.9) was solved in the case of a complete market, by Cox and Huang [11] and
independently by Karatzas, Lehocky and Shreve [38] using martingale and duality
approaches.

In fact, Itô’s Formula implies that the process (HtX
θ
t )t∈[0,T ] is a supermartingale which

implies that the so called budget constraint

E[HTX
θ
T ] ≤ x (4.10)

is satisfied for every θ ∈ A(x). This means that the expected discounted terminal
wealth can not exceed the initial wealth.
In the present case of a complete market, the following theorem is a basic tool in
martingale method, see [41].

Theorem 4.3.
Let x > 0 be given and let ξ be a nonnegative, FT -measurable random variable such
that

E[HT ξ] = x.

Then there exists a portfolio process θ in A(x) such that ξ = X θ
T .

Define

B(x) := {ξ > 0 : ξ is FT −measurable and E[HT ξ] ≤ x}.

In contrast to the dynamic problem, where the portfolio manager is required to max-
imize the expected utility from terminal wealth over a set of processes, in a first
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step the static problem is considered. Here the portfolio manager has the advantage
to maximize only over a set of random variables which are the admissible terminal
wealth.

The static problem
Find a random variable ξ∗ in B(x) that solves

max
ξ∈B(x)

E[U(ξ)]. (4.11)

Assumption
E[HT I(yHT )] <∞ for all y ∈ (0,∞).

Under the last assumption the function χ : (0,∞) −→ (0,∞) defined by χ(y) :=
E[HT I(yHT )] inherits the property of being a continuous, strictly decreasing mapping
of (0,∞) onto itself, and so χ has a (continuous, strictly decreasing) inverse χ−1 from
(0,∞) onto itself. So we define

ξ∗ := I(χ−1(x)HT ),

where x is the initial endowment of the portfolio manager.

Proposition 4.4. The random variable ξ∗ := I(χ−1(x)HT ) satisfies

E[HT ξ
∗] = x, (4.12)

and for every portfolio θ ∈ A(x), we have

E[U(Xθ
T )] ≤ E[U(ξ∗)]. (4.13)

Proof. Equation (4.12) follows directly from the definition of ξ∗ and χ−1. The
inequality (4.13) is a consequence of (4.12), (4.10) and of the following property of
the utility function U with the inverse of its derivative I, see [39]:
For 0 < x, y <∞, we have

U(I(y)) ≥ U(x) + y(I(y)− x).

Theorem 4.5 which is proved in [41] solves the static optimization problem (4.11).

Theorem 4.5.
Consider the portfolio problem (4.9). Let x > 0 and set y := χ−1(x), i.e., y solves
x = E[HT I(yHT )]. Then there exists for ξ

∗ = ξN := I(yHT ), a self-financing portfolio
process θN = (θNt )t∈[0,T ], such that

θN ∈ A(x), XθN

T = ξN ,

and the portfolio process solves the dynamic problem (4.9).
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So far we have not used the assumption of market completeness, this assumption is
used only insure the existence of the portfolio θN which finances ξN . However, when
specialized to the case of logarithmic utility or to power utility defined in (3.5), one
can directly use the Markov property of solutions of stochastic differential equations to
express the current optimal wealth process XθN

t before the horizon T , as a function
of Ht for which we apply Itô’s Formula. The optimal portfolio can be derived by
equating coefficients with the wealth process given in (4.8), a task that we investigate
in the following example.

Example 4.6. The problem of the so called non-risk portfolio manager was studied
by Cox and Huang [12], [11] where the manager has a power utility U given by (3.5)
with a constant relative risk aversion γ. According to Theorem 4.5, the static problem
(4.11) has the optimal solution

ξN = I(yHT ),

with I(x) = x
−1
γ is the inverse function of the derivative of the utility function U and

yN := 1
xγ
e(1−γ)(r+

‖κ‖2

2γ
)T .

Let XN
t be the optimal wealth before the horizon. Itô’s lemma applied to Equations

(4.7) and (4.8) implies that the process (HtX
N
t )t∈[0,T ] is F -martingale, i.e., XN

t =
E
[
HT

Ht
XN

T

∣∣Ft

]
.

Here the optimal terminal wealth XN
T is given by Theorem 4.5 as XN

T := ξN =
I(yNHT ). Moreover, Markov’s property of the solution (Ht)t∈[0,T ] of Equation (4.7)
leads to the computation of this conditional expectation using the fact that lnHT is

normally distributed with mean lnHt − (r + ‖κ‖2
2

)(T − t) and variance ‖κ‖2(T − t).
We get for the optimal terminal wealth before the horizon the following form

XN
t =

eΓ(t)

(yNHt)
1
γ

with Γ(t) :=
1− γ

γ

(
r +

‖κ‖2
2γ

)
(T − t).

The optimal strategy is obtained by a representation approach. In this case, we have
XN

t = F (Ht, t) with F (z, t) =
eΓ(t)

(yNz)
1
γ
for which we apply Itô’s lemma to get

dXN
t =

[
Ft(Ht, t)− rFz(Ht, t)Ht +

‖κ‖2
2

Fzz(Ht, t)H
2
t

]
dt− Fz(Ht, t)Htκ

>dWt,

where Fz, Fzz and Ft denote the partial derivatives of F (z, t) w.r.t. z and t, re-
spectively. If we equate the volatility coefficient of this equation with the volatility
coefficient of Equation (4.8), we derive the following constant optimal strategy

θNt ≡ θN =
1

γ
σ−1κ =

1

γ
(σσ>)−1(µ− r1n) = const

for the optimization in the absence of a risk-constraint which we call normal strategy.
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4.4 The case of stochastic volatility

In [27] we consider an extended Merton’s problem of optimal consumption and in-
vestment in continuous-time with stochastic volatility. We approximate the linear
wealth process by a particular weak Itô-Taylor approximation called Euler scheme,
and then we show that the optimal control of the value function generated by the
Euler scheme is an ε-optimal control of the original problem of maximizing total ex-
pected discounted utility from consumption. More precisely, we consider a financial
market with a risk-free bond

dS0t = rS0t dt, (4.14)

and one risky stock whose prices are given according to

dSt = St[µdt+ σ(Λt)dW
1
t ], S = s0 ∈ R. (4.15)

The process Λt represents an economic factor with mean reversion property and can
be observed by the investor. Models of stochastic volatility are of great interest in
finance since they have the property to capture the stock return variability.
Following Flemming and Hernandez [25], we assume that the dynamics of Λt is given
by

dΛt = g(Λt)dt+ β[ρdW 1
t + (1− ρ2)

1
2dW 2

t ], Λ0 = λ ∈ R (4.16)

with µ > r and −1 ≤ ρ ≤ 1. W 1 and W 2 are two independent Brownian motions.
The functions σ and g are assumed to be in C1(R) and satisfy

• σz =
d
dz
σ is bounded and σl ≤ σ(.) ≤ σu for a given constants 0 < σl < σu;

• gz =
d
dz
g is bounded and there exists k > 0 such that gz ≤ −k.

We denote by θt the trading portfolio corresponding to the fraction of wealth invested
in the risky asset at time t, and let c̃t = ct

Xθ
t

be the fraction of wealth which is

consumed. Then the wealth process satisfies

dXθ
t = Xθ

t [(r + (µ− r)θt − c̃t)dt+ θtσ(Λt)dW
1
t ], Xθ

0 = x > 0, (4.17)

where the processes θ = (θt)t∈[0,T ] and c̃ = (c̃t)t∈[0,T ] are supposed to be admissible
in the sense that they are Ft-progressively measurable such that P[∀t > 0 : |θt| ≤
A1, 0 ≤ c̃t ≤ A2] = 1, where A1 and A2 are given constants. Let A(x) denote the set
of admissible strategies.

The portfolio manager’s objective is to find an investment portfolio and a consumption
rate so as to maximize over the set of admissible strategies the following expected
total discounted utility from consumption

J(x,Λ; θ, c̃) = E

[ ∫ ∞

0

1

1− γ
e−αt(c̃tX

θ
t )
1−γdt

]
, α > 0 and 0 < γ < 1. (4.18)



4 The portfolio optimization problem 26

This is well defined since it is shown in [25] that the value function

V (x,Λ) = sup
θ,c̃∈A(x)

E

[ ∫ ∞

0

1

1− γ
e−αt(c̃tX

θ
t )
1−γdt

]
, α > 0 and 0 < γ < 1,

is bounded. This problem is solved by Flemming and Hernandez in [25], where the
authors write V (x,Λ) in the form V (x,Λ) = xγ

γ
Ṽ (Λ) for some function Ṽ , then, by a

change of probability measure argument the portfolio optimization problem was re-
duced to a stochastic control problem for which the dynamic programming equation
is a non linear differential equation with state Λt given by equation (4.16), and they
show that the value function Ṽ (Λ) is the unique positive classical solution to the dy-
namic programming equation associated with this stochastic problem. In particular,
they obtained via analytic and stochastic control arguments optimal investment and
consumption policies as feedback policies of the current wealth X θ which we approx-
imate by a particular stochastic Itô-Taylor approximation called Euler scheme. Let
us restrict our study to the case of finite time horizon T > 0 and let

V (x,Λ;T ) = sup
θ,c̃∈A(x)

J(x,Λ; θ, c̃, T ) (4.19)

be the associated optimal costs function.

The Euler approximation of the wealth process (4.17) is defined for a given discretiza-
tion 0 = t0 < t1 < · · · < tN = T of the time interval [0, T ] by

Y θ
N(ti+1) = Y θ

N(ti)+(r+θti(µ−r)−c̃ti)Y θ
N(ti)(ti+1−ti)+σ(Λ(ti))θtiY θ

N(ti)(Wti+1−Wti),

for i = 0, 1, 2, · · · , N − 1 with initial value Y θ
0 = x. We shall use the interpolated

Euler scheme which is defined by

Y θ
N(t) = Y θ

N(tnt) + (r + θtnt (µ− r)− c̃tnt )Y
θ
N(tnt)(t− tnt) (4.20)

+ σ(Λ(tnt))θtntY
θ
N(tnt)(Wt −Wtnt

).

with nt := max{0 ≤ i ≤ N, ti ≤ t}. This approximation is a particular case of
the truncated Itô-Taylor expansion which has the important property that it allows
a sufficiently smooth function of an Itô process to be expanded as the sum of a finite
number of terms represented by multiple Itô integrals with constant integrands and
a remainder consisting of a finite number of other multiple Itô integrals with non
constant integrands. We refer to [45] for more details. In [27] we first prove that the
functional

JN(x,Λ; θ, c̃, T ) = E

[ ∫ T

0

1

1− γ
e−αt(c̃tY

θ
N(t))

1−γdt

]
, α > 0 and 0 < γ < 1

(4.21)
is continuous with respect to the controls θ, c̃ ∈ A(x), i.e., if um = (θm, c̃m) is a
sequence of admissible controls converging uniformly in L∞(Ω) to a given admissible
control u = (θ, c̃), i.e.,

sup
0≤t≤T

‖θmt − θt‖L∞(Ω); sup
0≤t≤T

‖c̃mt − c̃t‖L∞(Ω) −→ 0 as m→∞.
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Then, we have

|JN(x,Λ;um, T )− JN(x,Λ;u, T )| −→ 0 as m→∞.

Further we have proved in [27] that the interpolated Euler approximation process
defined in (4.20) converges strongly to the wealth process given by (4.17), i.e.,

E[|Y θ
N(T )−Xθ

T |2] −→ 0 as N →∞.

From the other hand, the conditions of (Theorem 14.5.1 [45]) are satisfied in our
model so that we have the convergence of the Euler scheme in the weak sense and as
consequence we prove in [27] the following main result.

Theorem 4.7.
For T > 0, θ, c ∈ A(x) let

J(x,Λ; θ, c̃, T ) = E

[ ∫ T

0

1

1− γ
e−αt(c̃tX

θ
t )
1−γdt

]
, α > 0 and 0 < γ < 1

be the total discounted utility from consumption, where X θ is the wealth process
given in (4.17). Let YN(t) be its interpolated Euler approximation and

JN(x,Λ; θ, c̃, T ) = E

[ ∫ T

0

1

1− γ
e−αt(c̃tY

θ
N(t))

1−γdt

]
, α > 0 and 0 < γ < 1

its associated total discounted utility of consumption. Let u∗t = (θ∗t , c
∗
t ) be an optimal

control of optimal costs function

V (x,Λ;T ) = sup
θ,c̃∈A(x)

J(x,Λ; θ, c̃, T ), (4.22)

and let u∗N(t) = (θ∗N(t), c̃
∗
N(t)) be an optimal control of the value function

VN(x,Λ;T ) = sup
θ,c̃∈A(x)

JN(x,Λ; θ, c̃, T ). (4.23)

Then, we have
∀ε > 0 there exists a partition (ti)0≤i≤Nε

such that

|J(x,Λ;u∗t , T )− J(x,Λ;u∗N (t), T )| < ε

for every N ≥ Nε.

Proof. Let T > 0, u∗t = (θ∗t , c̃
∗
t ) be an optimal policy of the original problem

V (x,Λ, T ) = sup
θ,c̃∈A(x)

E

[ ∫ T

0

1

1− γ
e−αt(c̃tX

θ
t )
1−γdt

]
, α > 0 and 0 < γ < 1.
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We denote by u∗N(t) = (θ∗N(t), c̃
∗
N(t)) the optimal control of the objective function

VN(x,Λ) = sup
θ,c̃∈A(x)

E

[ ∫ T

0

1

1− γ
e−αt(c̃tY

θ
N(t))

1−γdt

]
, α > 0 and 0 < γ < 1.

associated with the controlled interpolated Euler scheme Y θ
N .

Then, we have

J(x,Λ;u∗t , T )− J(x,Λ;u∗N (t), T ) = J(x,Λ;u∗t , T )− JN(x,Λ;u
∗
t , T ) (4.24)

+ JN(x,Λ;u
∗
t , T )− JN(x,Λ;u

∗
N (t), T )

+ JN(x,Λ;u
∗
N(t), T )− J(x,Λ;u∗N(t), T ).

Since u∗N(t) is the global optimal control associated with JN , it follows that

JN(x,Λ;u
∗
t , T )− JN(x,Λ;u

∗
N(t), T ) ≤ 0.

From the one hand, we have

|J(x,Λ;u∗t , T )− JN(x,Λ;u
∗
t , T )| =

∣∣∣∣E
[ ∫ T

0

e−αT (c̃∗t )
1−γ
(
(Xθ∗

t )1−γ − (Y θ∗

N (t))1−γ
)
dt

]∣∣∣∣

≤ A1−γ2

1− γ

∫ T

0

e−αTE
[
|g(Xθ∗

t )− g(Y θ∗

N (t))|
]
dt,

with g(x) = x1−γ for x > 0. The function g as well the coefficient a(t, x) = x[r+πt(b−
r) − c̃t], b(t, x) = σ(z)πtx of the wealth process satisfy the conditions of (Theorem
14.5.1 [45]), and therefore there exists a positive constant Cg such that

|J(x,Λ;u∗t , T )− JN(x,Λ;u
∗
t , T )| ≤

A1−γ2

1− γ

(∫ T

0

e−αTdt

)
Cg sup

1≤i≤N
|ti − ti−1|

and

|JN(x,Λ;u∗N (t), T )− J(x,Λ;u∗N (t), T )| ≤
A1−γ2

1− γ

(∫ T

0

e−αTdt

)
Cg sup

1≤i≤N
|ti − ti−1|.

On the other hand, the right hand side of (4.24) is positive since u∗ is global optimal
control, it follows that

|J(x,Λ;u∗t , T )− J(x,Λ;u∗N (t)
∗, T )| ≤ 2

A1−γ2

1− γ

(∫ T

0

e−αTdt

)
Cg sup

1≤i≤N
|ti − ti−1|.

Remark 4.8. We emphasize the important fact that the main goal of a stochas-
tic time-discrete approximation is a practical simulation of solutions of stochastic
differential equations needed in situations where a good pathwise approximation is
required, or in situations dealing with expectations of functionals of an Itô process
which can not be determined analytically. From this fact the last result could be
interesting for numerical computations.
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5 Risk measures

In general, a risk is related to the possibility of losing wealth and assumed to be
an undesirable characteristic of a random outcome of a given financial investement.
Without other considerations such as risk constraints, the optimal portfolio strategy
given in Example (4.6) leads (by definition) to the maximum expected utility of the
terminal wealth. Nevertheless, these strategies are more risky since they lead to
extreme positions, and as consequence the optimal terminal wealth does not exceed
the initial investment with a high probability. This distribution is not desirable for
a portfolio manager, who offers, say, a life insurance with a fixed minimum rate of
return. In order to incorporate such shortfall risks into the optimization it is necessary
to quantify them by using appropriate risk measures. By the term shortfall risk we
denote the event, that the terminal wealth falls below some threshold value Q > 0.
In Section 8 we shall introduce a shortfall level which is related to the result of an
investment into the money market. A typical choice is

Q := q = eδTXθ≡0
T = xe(r+δ)T , δ ∈ R.

Here, Xθ≡0
T = xerT is the terminal wealth of a pure bond portfolio where the portfolio

manager follows the buy-and-hold strategy θ ≡ 0. In this case shortfall means to
reach not an target interest rate of r+ δ. For δ = −r we have q = x, i.e., the shortfall
level is equal to the initial capital.

In Section 11 we deal with a stochastic shortfall level Q, which is proportional to
the result of an investment into a pure stock portfolio managed by the buy-and-hold
strategy θ ≡ 1. Especially we set for S0 = 1

Q = eδTXθ≡1
T = eδTxST , δ ∈ R.

The shortfall risk consists of the random event C = {XT < Q} or {G := XT−Q < 0}.
Next we assign risk measures to the random variable (risk) G and denote them by
ρ(G). Using these measures, constraints of the type ρ(G) ≤ ε for some ε > 0 can be
added to the formulation of the portfolio optimization problem.

We now present some risk measures used in this thesis. A natural idea is to restrict
the probability of a shortfall, i.e.,

ρ1(G) = P (G < 0) = P (XT < Q) ≤ ε.

Here ε ∈ (0, 1) is the maximum shortfall probability which is accepted by the portfolio
manager. This approach corresponds to the widely used concept of Value at Risk
(VaR) which is defined as

VaRε(G) = −ζε(G),

where ζε(G) denotes the ε-quantile of the random variable G. VaR can be interpreted
as the threshold value for the risk G such that G falls short this value with some given
probability ε. It holds

P (G < 0) ≤ ε⇔ VaRε(G) ≤ 0⇔ VaRε(XT ) ≤ −Q.
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Value at Risk is the most common tool in risk management for banks and many
financial institutions. It is defined as the worst loss for a given confidence level. For a
confidence level of α = 99% one is 99% certain that at the end of a chosen risk horizon
there will be no smaller wealth than the VaR . In the academic literature many works
have focused on the Value at Risk as risk measure, see for example Duffie and Pan
[19]. Theoretical properties of the Value at risk are discussed in Artzner [2], Cvitanic
and Karatzas [13].
As it is pointed out in [28], the VaR risk measure has the shortcoming to control only
the probability of loss rather than its magnitude and as consequence the expected
losses in the states where there are large losses are higher than the expected losses the
portfolio manager would have incurred by avoiding the use of VaR risk measure. In
order to overcome this shortcoming of the VaR , the risk manager uses as alternative
the so-called Expected Loss denoted by EL and defined as

ρ2(G) = EL(G) := E[G−] = E[(XT −Q)−].

Since the aim is to maximize the expected utility of the terminal wealth XT , one can
also compare the utilities of XT and of a given benchmark Q.
Let U denote a utility function given by Definition 4.2. Realizations of XT with
U(XT ) below the target utility U(Q) are those of an unacceptable shortfall. Then
the random event C can also be written as C = {XT < Q} = {U(XT ) < U(Q)}.
Defining the random variable G = G(XT , Q) = U(XT )−U(Q) we have C = {G < 0}.
The random variable G can be interpreted as the utility gain of the terminal wealth
relative to the benchmark. In order to quantify the shortfall risk we assign to the
random variable G a real-valued risk measure ρ(G) given by

ρ3(G) = EUL(G) := E[G−] = E[(U(XT )− U(Q))−],

and call it Expected Utility Loss (EUL). Here similarly to the EL risk measure, the
risk measure (VaR) can be defined in terms of the utility function in the following
sense

ρ1(G) = P (G < 0) = P (U(XT ) < U(Q)) = P (XT < Q)

since U is strictly increasing. Further risk measures can be found in the class of
coherent measures introduced by Artzner, Delbaen, Eber and Heath [13] and Delbaen
[14] where the characteristics of a risk function ρ(X) have been proposed.

Definition 5.1. Consider a set V of real-valued random variables. A function ρ :
V −→ R is called coherent risk measure if it is

(i) monotonous: X ∈ V, X ≥ 0 =⇒ ρ(X) ≥ 0

(ii) sub-additive: X,Y, X + Y ∈ V =⇒ ρ(X + Y ) ≤ ρ(X) + ρ(Y )

(iii) positively homogeneous X ∈ V, h > 0, X ∈ V =⇒ ρ(hX) = hρ(X)

(iv) translation invariant X ∈ V, a ∈ R =⇒ ρ(X + a) = ρ(X)− a.
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Delbaen [14] proved that the VaR measure is not a coherent risk measure since it
does not fulfil the sub-additivity property. This property expresses the fact that a
portfolio made of sub-portfolios will risk an amount which is at most the sum of the
separate amounts risked by its sub-portfolios.
EUL and EL risk measres do not belong to the class of coherent risk measures, since
they both violate the translation property. We refer to Basak, Shapiro et.al. [4, 5] and
our papers [28, 31], where VaR-based risk measures are used as constraints of portfolio
optimization problems. Constraints modeling the Expected Loss and the Expected
Utility Loss are studied within a portfolio maximization problem in [28, 30, 31].
We shall discuss in the next chapters the behavior of a portfolio manager who wants
to maximize its expected utility from terminal wealth in presence of different shortfall
risks measured by the last discussed risk measures.

Remark 5.2. If we choose a logarithmic utility function U(z) = ln z, i.e., we set
γ = 1, then the maximization of the expected utility E[U(X θ

T )] of the terminal wealth
of the portfolio θ, is equivalent to the maximization of the expected annual logarithmic
return of this portfolio. The annual logarithmic return is defined as

L(Xθ
T ) :=

1

T
ln
Xθ

T

x

where x is the initial capital, i.e., X0 = x. Hence, we find

E[L(Xθ
T )] :=

1

T
E[U(Xθ

T )− U(x)].

For the Expected Utility Loss we derive

E[(U(Xθ
T )− U(Q))−] = T E[(L(Xθ

T )− L(Q))−].

It can be seen, that bounding the Expected Utility Loss by ε is equivalent to bounding
the Expected Loss of the annual logarithmic return by ε

T
.
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Chapter II

Portfolio optimization with
deterministic benchmark

In this chapter we examine the portfolio optimization problem in the presence of
additional risk constraints taking into account that the terminal wealth XT may fall
short of a given deterministic shortfall level Q := q. Basically, we adopt three different
risk constraints

• the shortfall probability P (XT < q), which describes the loss that can occur
over a given period, at a given confidence level,

• the Expected Loss: E[(XT − q)−],

• the Expected Utility Loss E[(U(XT )− U(q))−], which takes care of the magni-
tude of loss in utility.

We shall discuss the impact of the different risk constraints to the behavior of the
portfolio manager.
We formulate the dynamic optimization problem of maximizing the expected utility
from terminal wealth with additional risk constraints bounding the shortfall proba-
bility of the eventual loss with a given ε. The EL and the EUL risk constraints bound
the Expected Loss and the Expected Utility Loss with a given ε, respectively.
Following the normal strategy θN the portfolio manager reaches the terminal wealth
XN

T = ξN given in Theorem 4.5 and in Example 4.6 for the case of a CRRA-utility
function. Let

εmax := E[(U(ξN)− U(q))−]

be the corresponding Expected Utility Loss of the optimal terminal wealth ξN mea-
suring the risk of the normal strategy. Obviously, for ε ≥ εmax the risk constraint is
not binding and the normal strategy θN is optimal for the constrained problem, too.
Therefore, we restrict to the case ε < εmax.

On the other hand, if the bound ε > 0 is chosen too small it may happen, that it
is impossible to find any strategy θt which (starting with the given initial capital
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x) generates a terminal wealth XT that fulfills the risk constraint, i.e., there is no
admissible solution. Depending on the chosen parameters of the financial market this
case can be observed, if the deterministic benchmark q is chosen to be larger than xerT ,
i.e., the result of an investment in the risk-free bond. Then, there is some positive
minimum (or infimum) value εmin which bounds the Expected Utility Loss from below.
Choosing the bound ε for the risk constraint such that 0 ≤ εmin < ε < εmax provides
that the risk constraint is binding and that there exist admissible solutions from which
an optimal solution for the constrained optimization problem can be determined. The
same remark can be derived for the Value at Risk and the Expected Loss.

6 Optimization under Value at Risk constraint

In this section we present the portfolio maximization problem constrained by the
Value at Risk. More precisely, we consider an investor who wishes in addition to
maximize his expected utility from terminal wealth, to control the probability for
a shortfall. Let G = XT − q be the random variable quantifying the shortfall risk.
Given a probability ε ∈ (0, 1) this constraint can be written as

P (G < 0) = P (XT < q) ≤ ε. (6.1)

From the definition of VaR given in Section 5 this is equivalent to

VaRε(G) ≤ 0⇔ VaRε(XT ) ≤ −q.

With constraint (6.1) the agent bounds the probability of negative values of the risk
G = XT − q by ε. We will denote this strategy as VaR-strategy and we call XV aR

t

the wealth generated by following this strategy.

We give a slightly different solution of the dynamic optimization problem of the VaR
agent studied by Basak and Shapiro in [4]. The problem is solved using the martingale
representation approach which consists of formulating the problem as the following
static variational problem:

max
ξ∈B(x)

E[U(ξ)]

subject to P (ξ < q) ≤ ε.

The VaR constraint leads to non-concavity with which the maximization is more com-
plicated. The optimal terminal wealth XV aR

T is characterized by Basak and Shapiro
[4], Proposition 1, where the authors assumed that the solution exists.

Proposition 6.1. Let Q = q > 0 be a fixed benchmark. Moreover, let for y > 0 be
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defined

h = h(y) :=
1

y
U ′(q), and h such that P (HT > h) = ε and

f(z) = f(z; y) :=





I(yz) if z < h,

q if h ≤ z < h,

I(yz) if h ≤ z,

and let be such that for z > 0. Finally, let the initial capital x > 0 and the bound for
the risk constraint ε be such that there exists strictly positive and unique solution y
of the following equation

E[HTf(HT ; y)] = x

Then the VaR-optimal terminal wealth is

XV aR
T = f(HT ) = f(HT ; y).

In the following proposition we present explicit expressions for the VaR agent’s opti-
mal wealth and portfolio strategies before the horizon.

Proposition 6.2. Let the assumptions of Proposition 6.1 be fulfilled. Moreover, let
U be the utility function given in (3.5).

(i) The VaR-optimal wealth at time t < T before the horizon is given by

XV aR
t = F (Ht, t), (6.2)

with F (z, t) :=
eΓ(t)

(yz)
1
γ

−
[
eΓ(t)

(yz)
1
γ

Φ
(
− d1(h, z, t)

)
− qe−r(T−t)Φ

(
− d2(h, z, t)

)]

+

[
eΓ(t)

(yz)
1
γ

Φ
(
− d1(h, z, t)

)
− qe−r(T−t)Φ

(
− d2(h, z, t)

)]
,

for z > 0. Thereby, Φ(·) is the standard-normal distribution function, y and
h, h are as in Proposition 6.1, and

Γ(t) :=
1− γ

γ
(r +

‖κ‖2
2γ

)(T − t),

d1(u, z, t) :=
ln u

z
+ (r − ‖κ‖2

2
)(T − t)

‖κ‖
√
T − t

,

d2(u, z, t) := d1(u, z, t) +
1

γ
‖κ‖

√
T − t.
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(ii) The VaR-optimal fraction of wealth invested in stock at time t < T before the
horizon is

θV aRt = θNΘ(Ht, t),

where Θ(z, t) := 1− qe−r(T−t)

F (z, t)

[
Φ
(
− d2(h, z, t)

)
− Φ

(
− d2(h, z, t)

)]

+
γ

‖κ‖
√
T − tF (z, t)

eΓ(t)

(yz)
1
γ

[
ϕ
(
d1(h, z, t)

)
− ϕ

(
d1(h, z, t)

)]

− γqe−r(T−t)

‖κ‖
√
T − tF (z, t)

[
ϕ
(
d2(h, z, t)

)
− ϕ

(
d2(h, z, t)

)]
,

for z > 0. Thereby, θN = 1
γ
σ−1κ = 1

γ
(σσ>)−1(µ − r1n) denotes the normal

strategy, Θ(Ht, t) is the exposure to risky assets relative to the normal strategy
and ϕ(·) is the standard-normal probability density function.

Proof.

(i) Using Equations (4.7) and (4.8), Itô’s lemma implies that the process HXV aR =
(HtX

V aR
t )t∈[0,T ] is an Ft-martingale:

XV aR
t = E

[
HT

Ht
ξV aR

∣∣Ft

]

= E
[
HT

Ht
I(yHt)

(
1{HT<h} + 1{h≤HT }

)∣∣Ft

]
+ E

[
HT

Ht
q1{h≤HT<h}

∣∣Ft

]
.

These conditional expectations are computed by applying Markov’s property
of solution of stochastic differential equation and using the fact that lnHT is

normally distributed with mean lnHt−(r+ ‖κ‖2
2

)(T−t) and variance ‖κ‖2(T−t).
For more explicit computations we refer to Appendix C.

(ii) From Equality (6.2) it follows XV aR
t = F (Ht, t). The process H = (Ht)t∈[0,T ]

satisfies the SDE (4.7). Applying Itô’s lemma to the function F (Ht, t) we find
that XV aR = (XV aR

t )t∈[0,T ] satisfies the SDE

dXV aR
t =

[
Ft(Ht, t)− rFz(Ht, t)Ht +

‖κ‖2
2

Fzz(Ht, t)H
2
t

]
dt− Fz(Ht, t)Htκ

>dWt,

where Fz, Fzz and Ft denote the partial derivatives of F (z, t) w.r.t. z and t,
respectively. Equating coefficients in front of dWt in the above equation and
Equation (4.8) leads to the following equality:

θVaRt = −σ−1κFz(Ht, t)Ht

F (Ht, t)
= −θNγFz(Ht, t)Ht

F (Ht, t)
. (6.3)
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Computing the derivative Fz we get

Fz(z, t) =
1

γz

[
− F (z, t) + qe−r(T−t)

(
Φ(−d2(h, z))− Φ(−d2(h, z))

)]

− eΓ(t)

(yz)
1
γ ‖κ‖

√
T − tz

[
ϕ(d1(h, z))− ϕ(d1(h, z))

]

+
qe−r(T−t)

‖κ‖
√
T − tz

[
ϕ(d2(h, z))− ϕ(d2(h, z))

]
.

Substituting into (6.3), we get the final form of the optimal strategies before
the horizon.

7 Optimization under Expected Loss constraint

We consider in this section a portfolio manager who wishes to limit his Expected
Loss. In this case he defines his strategy as one which fulfills the constraint

EL(G) := E[G−] = E[(XT − q)−] ≤ ε, (7.4)

where G = XT − q and ε is a given bound for the Expected Loss. We will denote this
strategy as EL-strategy and let XEL

t be the wealth corresponding to this strategy at
time t. Our objective in this section is to solve the optimization problem constrained
by (7.4). The dynamic optimization problem of the EL-portfolio manager can be
restated as the following static variational problem

max
ξ∈B

E[U(ξ)]

subject to E[(ξ − q)−] ≤ ε.

The following proposition characterizes the optimal terminal wealth XEL
T in the

presence of the EL-constraint (7.4). We prove that if a terminal wealth satisfies
XEL

T = f(HT ) where f is given in Proposition 7.1, then it is the optimal solution of
the static variational problem.

Proposition 7.1. Let Q = q > 0 be a fixed benchmark. Moreover, let for y1, y2 > 0
be defined

h = h(y1) :=
1

y1
U ′(q),

h = h(y1, y2) :=
U ′(q) + y2

y1
and

f(z) = f(z; y1, y2) :=





I(y1z) if z < h,

q if h ≤ z < h,

I(y1z − y2) if h ≤ z,
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for z > 0. Finally, let the initial capital x > 0 and the bound for the risk constraint
ε be such that there are strictly positive and solutions y1, y2 of the following system
of equations

E[HTf(HT ; y1, y2)] = x

E[(f(HT ; y1, y2)− q)−] = ε.

Then the EL-optimal terminal wealth is

XEL
T = f(HT ) = f(HT ; y1, y2).

Proof. In order to solve the optimization problem under EL-constraint, the common
convex-duality approach is adapted by introducing the convex-conjugate of the utility
function U with an additional term capturing the EL-constraint as it is shown in the
following lemma which we prove in Appendix A.

Lemma 7.2. Let z, y1, y2, q > 0. Then the solution of the optimization problem

max
x>0

{U(x)− y1zx− y2(x− q)−}

is x∗ = f(z; y1, y2).

Applying the above lemma pointwise for all z = HT (ω) it follows that ξ
∗ = f(HT ; y1, y2)

is the solution of the maximization problem

max
ξ>0

{U(ξ)− y1HT ξ − y2(ξ − q)−}.

Obviously, ξ∗ is FT -measurable and if y1, y2 are chosen as solutions of the system of
equations given in the proposition then it follows ξ∗ = XEL

T .
To complete the proof, let η be any admissible solution satisfying the static budget
constraint and the EL-constraint (7.4). We have

E[U(XEL
T )]− E[U(η)] = E[U(XEL

T )]− E[U(η)]− y1x+ y1x− y2ε+ y2ε

≥ E[U(XEL
T )]− E[y1HTX

EL
T ]− y2E[(X

EL
T − q)−]

−E[U(η)] + E[y1HTη] + y2E[(η − q)−]

≥ 0,

where the first inequality follows from the static budget constraint and the constraint
for the risk holding with equality for XEL

T , while holding with inequality for η. The
last inequality is a consequence of the above lemma. Hence we obtain that XEL

T is
optimal.

Remark 7.3. We have f(z; y1, y2) → I(y1z) for y2 ↓ 0. This limit corresponds to
ε ↑ εmax and we derive the results for the unconstrained problem if we set y2 = 0 and
f(z; y1, 0) := I(y1z).

We present in the following proposition the explicit expressions for the EL-optimal
wealth and portfolio strategy before the horizon.
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Proposition 7.4. Let the assumptions of Proposition 7.1 be fulfilled. Moreover, let
U be the utility function given in (3.5).

(i) The EL-optimal wealth at time t < T before the horizon is given by

XEL
t = F (Ht, t) (7.5)

F (z, t) :=
eΓ(t)

(y1z)
1
γ

[
1− Φ

(
− d1(h, z)

)]

+ qe−r(T−t)
[
Φ
(
− d2(h, z)

)
− Φ

(
− d2(h, z)

)]

+ G(z, h),

for z > 0. Thereby, Φ(·) is the standard-normal distribution function, y1, y2 are
as in Proposition 7.1, Γ(t), d1, d2 are as in Proposition 6.2 and

h = 1
y1qγ

and h = q−γ+y2
y1

,

G(z, h) := e−r(T−t)√
2π

c2(h,z)∫
−∞

e−
1
2 (u−b)

2

(y1tea+bu−y2)
1
γ
du,

c2(h, z) =
1
b
(ln(h

z
)− a), a := −(r + ‖κ‖2

2
)(T − t) and b := −‖κ‖

√
T − t.

(ii) The EL-optimal fraction of wealth invested in stock at time t < T before the
horizon is

θELt = θNΘ(Ht, t)

Θ(z, t) =
1

F (z, t)

eΓ(t)

(y1z)
1
γ

[
1− Φ

(
− d1(h, z)

)
+

γ

‖κ‖
√
T − t

ϕ
(
d1(h, z)

)]

− qγe−r(T−t)

F (z, t)κ
√
T − t

ϕ
(
d2(h, z)

)

+
y1ze

(‖κ‖2−2r)(T−t)

F (z, t)
ψ0
(
c2(h, z), b, y1ze

a, y2, 2b, 1, 1 +
1

γ

)
,

for z > 0. Thereby, θN = 1
γ
σ−1κ = 1

γ
(σσ>)−1(µ − r1n) denotes the normal

strategy, ϕ(·) is the standard-normal probability density function, and Θ(Ht, t)
is the exposure to risky assets relative to the normal strategy and

ψ0(α, β, c1, c2,m, s, δ) :=
1√
2πs

∫ α

−∞

exp(− (u−m)2
2s2

)

(c1eβu − c2)δ
du.

Proof.

(i) The computations and the arguments of this proof are the same as in Proposi-
tion 6.2 part (i), except that we can not compute the conditional expectation

J2 = G(Ht, h) := E

[
HT

Ht

I(y1Ht − y2)1{h≤HT }

∣∣∣Ft

]
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explicitly, but give it in terms of the integral G(z, h).

(ii) From Equation (7.5) it follows XEL
t = F (Ht, t). The process H = (Ht)t∈[0,T ]

satisfies the SDE (4.7). Applying Itô’s lemma to the function F (Ht, t) we find
that the process XEL = (XEL

t )t∈[0,T ] satisfies the SDE

dXEL
t =

[
Ft(Ht, t)− rFz(Ht, t)Ht +

‖κ‖2
2

Fzz(Ht, t)H
2
t

]
dt− Fz(Ht, t)Htκ

>dWt,

where Fz, Fzz and Ft denote the partial derivatives of F (z, t) w.r.t. z and t,
respectively. Equating coefficients in front of dWt in the above equation and
Equation (4.8) leads to the following equality:

θELt = −σ−1κFz(Ht, t)Ht

F (Ht, t)
= −θNγFz(Ht, t)Ht

F (Ht, t)
. (7.6)

Computing the derivative Fz we get

Fz(z, t) = −
eΓ(t)

zγ(y1z)
1
γ

[
1− Φ(−d1(h, z)) +

γ

‖κ‖
√
T − t

ϕ(d1(h, z))

]

+
qe−r(T−t)

‖κ‖
√
T − tz

[
ϕ(d2(h, z))− ϕ(d2(h, z))

]
+

∂

∂z
G(z, h).

For the last term we have

∂

∂z
G(z, h) =

e−r(T−t)√
2π

∂

∂z

[ c2(h,z)∫

∞

l(z, u)du

]

=
e−r(T−t)√

2π

[ c2(h,z)∫

∞

∂

∂z
l(z, u)du+

∂

∂z
c2(h, z)l(z, c2(h, z))

]
,

where

l(z, u) =
e−

1
2
(u−b)2

(y1zea+bu − y2)
1
γ

.

Finally, we get

∂

∂z
G(z, h) =

−y1
γ
e(‖κ‖

2−2r)(T−t)ψ0
(
c2(h, z), b, y1ze

a, y2, 2b, 1, 1 +
1

γ

)

+
qer(T−t)

‖κ‖
√
T − tz

ϕ(−d2(h, z)).

Substituting in (7.6), we get the final form of the optimal strategies before the
horizon.
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8 Optimization under Expected Utility Loss con-

straint

Since the objective of the portfolio manager is to maximize the expected utility from
the terminal wealth, we find it interesting to deal with the portfolio optimization prob-
lem where the portfolio manager is confronted with a risk measured by a constraint
of the type

EUL(G) := E[G−] = E[(U(XT )− U(q))−] ≤ ε, (8.7)

where G = U(XT )− U(q) and ε is a given bound for the Expected Utility Loss. The
resulting constrained dynamic optimization problem reads as

max
θ∈A(x)

E[U(Xθ
T )] (8.8)

subject to E[(U(Xθ
T )− U(q))−] ≤ ε

and it solutions are called EUL-optimal. The corresponding EUL-optimal wealth at
time t ∈ [0, T ] is denoted by XEUL

t and the EUL-optimal strategy by θEULt .

The corresponding static problem is formulated as

max
ξ∈B(x)

E[U(ξ)] (8.9)

subject to E[(U(ξ)− U(q))−] ≤ ε.

The following proposition characterizes the EUL-optimal terminal wealth which we
denote as XEUL

T .

Proposition 8.1. Let Q = q > 0 be a fixed benchmark. Moreover, let for y1, y2 > 0
be defined

h = h(y1) :=
1

y1
U ′(q),

h = h(y1, y2) :=
1 + y2
y1

U ′(q) = (1 + y2)h and

f(z) = f(z; y1, y2) :=





I(y1z) if z < h,

q if h ≤ z < h,

I( y1
1+y2

z) if h ≤ z,

for z > 0. Finally, let the initial capital x > 0 and the bound for the risk constraint
ε be such that there are strictly positive and unique solutions y1, y2 of the following
system of equations

E[HTf(HT ; y1, y2)] = x

E[(U(f(HT ; y1, y2))− U(q))−] = ε.

Then the EUL-optimal terminal wealth is

XEUL
T = f(HT ) = f(HT ; y1, y2).
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Proof. The assumption on the existence of solutions y1, y2 > 0 of the system of
equations given in the proposition implies, that XEUL

T fulfills the risk constraint with
equality. In order to solve the optimization problem under the risk constraint, we
adopt the common convex-duality approach by introducing the convex conjugate of
the utility function U with an additional term capturing the risk constraint as it is
shown in the following lemma. The proof can be found in Appendix B.

Lemma 8.2. Let z, y1, y2, q > 0. Then the solution of the optimization problem

max
x>0

{U(x)− y1zx− y2(U(x)− U(q))−}

is x∗ = f(z; y1, y2).

Applying the above lemma pointwise for all z = HT (ω) it follows that ξ
∗ = f(HT ; y1, y2)

is the solution of the maximization problem

max
ξ>0

{U(ξ)− y1HT ξ − y2(U(ξ)− U(q))−}.

Obviously, ξ∗ is FT -measurable and if y1, y2 are chosen as solutions of the system of
equations given in the proposition then it follows ξ∗ = XEUL

T .

To complete the proof, let η be any admissible solution satisfying the static budget
constraint and the EUL-constraint (8.7). We have

E[U(XEUL
T )]− E[U(η)] = E[U(XEUL

T )]− E[U(η)]− y1x+ y1x− y2ε+ y2ε

≥ E[U(XEUL
T )]− y1E[HTX

EUL
T ]− y2E[(U(X

EUL
T )− U(q))−]

−E[U(η)] + y1E[HTη] + y2E[(U(η)− U(q))−]

≥ 0,

where the first inequality follows from the static budget constraint and the constraint
for the risk holding with equality for XEUL

T , while holding with inequality for η. The
last inequality is a consequence of the above lemma. Hence we obtain that XEUL

T is
optimal.

Remark 8.3. We have f(z; y1, y2) → I(y1z) for y2 ↓ 0. This limit corresponds to
ε ↑ εmax and we derive the results for the unconstrained problem if we set y2 = 0 and
f(z; y1, 0) := I(y1z).

In the following proposition we present the explicit expressions for the EUL-optimal
wealth and portfolio strategies before the horizon.

Proposition 8.4. Let the assumptions of Proposition 8.1 be fulfilled. Moreover, let
U be the utility function given in (3.5).
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(i) The EUL-optimal wealth at time t < T before the horizon is given by

XEUL
t = F (Ht, t) (8.10)

F (z, t) :=
eΓ(t)

(y1z)
1
γ

−
[
eΓ(t)

(y1z)
1
γ

Φ
(
− d1(h, z, t)

)
− qe−r(T−t)Φ

(
− d2(h, z, t)

)]

+

[
(1 + y2)

1
γ eΓ(t)

(y1z)
1
γ

Φ
(
− d1(h, z, t)

)
− qe−r(T−t)Φ

(
− d2(h, z, t)

)]
,

for z > 0. Thereby, Φ(·) is the standard-normal distribution function, y1, y2
and h, h are as in Proposition 8.1, and

Γ(t) :=
1− γ

γ

(
r +

‖κ‖2
2γ

)
(T − t),

d2(u, z, t) :=
ln u

z
+ (r − ‖κ‖2

2
)(T − t)

‖κ‖
√
T − t

,

d1(u, z, t) := d2(u, z, t) +
1

γ
‖κ‖

√
T − t.

(ii) The EUL-optimal fraction of wealth invested in stock at time t < T before the
horizon is

θEULt = θNΘ(Ht, t)

where Θ(z, t) :=

(
1− qe−r(T−t)

F (z, t)

[
Φ
(
− d2(h, z, t)

)
− Φ

(
− d2(h, z, t)

)])
,

for z > 0. Thereby, θN = 1
γ
σ−1κ = 1

γ
(σσ>)−1(µ − r1n) denotes the normal

strategy and Θ(Ht, t) is the exposure to risky assets relative to the normal
strategy.

Proof.

(i) The process HXEUL is an F -martingale and the proof is as in part (i) of Propo-
sition 6.2, if h and h are replaced appropriately. For detailed computations we
refer to Appendix C.

(ii) The same arguments as in the proof of Proposition 7.4 (ii), lead to following
equality for the optimal trading strategy

θEULt = −σ−1κFz(Ht, t)Ht

F (Ht, t)
= −θNγFz(Ht, t)Ht

F (Ht, t)
, (8.11)

where F (z, t) is defined in Proposition 8.4. Further, formal evaluation of the
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derivative Fz yields

Fz(z, t) =
1

γz

[
− F (z, t) + qe−r(T−t)

(
Φ(−d2(h, z, t))− Φ(−d2(h, z, t))

)]

− eΓ(t)

(y1z)
1
γ ‖κ‖

√
T − tz

[
ϕ(d1(h, z, t))− (1 + y2)

1
γϕ(d1(h, z, t))

]

+
qe−r(T−t)

‖κ‖
√
T − tz

[
ϕ(d2(h, z, t))− ϕ(d2(h, z, t))

]
. (8.12)

Thereby, ϕ(·) denotes the standard-normal probability density function. In
Appendix E we show for stochastic benchmark Q = eδTST that the terms in
the second and third line add to zero. Following the same arguments in the case
of deterministic benchmark q, we find that Fz reduces to the expression given
in the first line (see [30]). Substituting into (8.11), we get the final form of the
optimal strategy before the horizon.

The next proposition states two properties of the function Θ(z, t) appearing in the
definition of the above representation of the EUL-optimal strategy.

Proposition 8.5. Let the assumptions of Proposition 8.1 be fulfilled. Moreover, let
U be the utility function given in (3.5). Then, for the function Θ(z, t) defined in
Proposition 8.4 (ii) there hold the following relations.

(i) 0 < Θ(z, t) < 1 for all z > 0 and t ∈ [0, T )

(ii)

lim
t→T

Θ(z, t) =





1 if z < h or z > h

0 if h < z < h,

1
2

if z = h, h

Proof. Using Eq. (8.10) the function F (z, t) can be written as

F (z, t) = F1(z, t) + F2(z, t),

where F1(z, t) =
eΓ(t)

(y1z)
1
γ

[
1− Φ

(
− d1(h, z, t)

)
+ (1 + y2)

1
γΦ
(
− d1(h, z, t)

]

and F2(z, t) = qe−r(T−t)
[
Φ
(
− d2(h, z, t)− Φ

(
− d2(h, z, t)

]
for z > 0.

From the other hand we have from Proposition 8.4

Θ(z, t) = 1− F2(z, t)

F (z, t)
= 1− F2(z, t)

F1(z, t) + F2(z, t)
. (8.13)

The terms F1(z, t) and F2(z, t) are strictly positive since y2 > 0 implies h < h and
the functions d1/2(u, ., .) are strictly increasing w.r.t. u and Φ ist strictly increasing,
too. Hence we have 0 < Θ(z, t) < 1 and it follows assertion (i).
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For the proof of the second assertion we consider the limits of the following functions
for t→ T .

z < h z = h h < z < h z = h z > h
d1/2(h, z, t) +∞ 0 −∞ −∞ −∞
d1/2(h, z, t) +∞ +∞ +∞ 0 −∞

Φ(−d1/2(h, z, t)) 0 1
2

1 1 1

Φ(−d1/2(h, z, t)) 0 0 0 1
2

1

F1(z, t))
1

(y1z)
1
γ

q
2

0 q
2

(
1+y2
y1z

) 1
γ

F2(z, t)) 0 q
2

q q
2

0

Thereby, the relations
(

1
y1h

) 1
γ

= q and
(

1
y1h

) 1
γ

= q

(1+y2)
1
γ
have been used. Substituting

these limits into (8.13) yields the assertion.

Remark 8.6. The second assertion of Proposition 8.5 shows that the lower and
upper bounds for Θ(z, t) given in the first assertion can not be improved. The given
bounds are reached (depending on the value of z) asymptotically if time t approaches
the horizon T .

From the proposition it follows that the EUL-optimal fraction of wealth θEULT invested
in the stock at the horizon is equal to the normal strategy θN in the bad and good
states and equal to 0 in the intermediate states of the market, which are described by
HT . Before horizon T , θEULt is always strictly positive and never exceeds the normal
strategy θN .

9 Numerical results

This section illustrates the findings of the preceding sections with an example. Table
13.1 shows the parameters for the portfolio optimization problem and the underlying
Black-Scholes model of the financial market. In this example the aim is to maximize
the expected logarithmic utility (γ = 1) of the terminal wealth XT of the portfolio
with the horizon T = 20 years. The shortfall level q is set to be 80% of the terminal
wealth of a pure bond portfolio, i.e., q = 0.8xerT . We bound the shortfall probability
P (XT < q) by ε = 10%, i.e., we consider the optimization with the VaR constraint
described in Section 6.

First the solution of the static problem is considered, it leads to the optimal terminal
wealth ξVaR. Figure 9.1 shows the probability density function and its cumulated
counterpart - the distribution function - of this random variable. For the sake of
comparison we also give the corresponding functions for the terminal wealth resulting
from portfolios managed by the

– pure bond strategy θt ≡ θ0 = 0,
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stock µ = 7%, σ = 20%
bond r = 4%
horizon T = 20
initial wealth x = 1
utility function U(x) = ln x, i.e., γ = 1
shortfall level q = 0.8xerT = 1.78 . . .
constraint VaRε(XT − q) ≤ 0 ⇔ P (XT < q) ≤ ε
shortfall probability ε = 10%

Table 9.1: Parameters of the optimization problem

– pure stock strategy θt ≡ θ1 = 1,

– optimal strategy of the unconstrained problem θt ≡ θB = µ−r
γσ2

= 0.75

(see Example 4.6).

Additionally, on the horizontal axes the expected terminal wealths E[XT ] for the
considered portfolios are marked.

While in case of the pure bond portfolio the distribution of the terminal wealth X θ0

T is
concentrated in the single point xerT , the terminal wealth Xθ1

T and XθB

T are absolutely
continuous. It holds

erT = Xθ0

T < E[XθB

T ] < E[Xθ1

T ] = eµT .

We mention that ξB = XθB

T maximizes the expected utility E[U(XθB

T )] and not the
expected terminal wealth E[XθB

T ] itself, therefore the latter inequality is not a con-
tradiction. For parameter sets fulfilling θB = µ−r

γσ2
> 1 the reverse inequality can be

observed.

The distribution of the optimal terminal wealth XVaR
T for the constrained problem

contains a discrete as well as an absolutely continuous part. This follows from the
representation of XVaR

T in Proposition 6.1, which indicates that the probability P (h ≤
HT < h) = 0.1711 . . . is concentrated in the single point q. In the density plot this
probability mass built up at the shortfall level q is marked by a vertical line at q. It is
noted that there is a gap in the support of the absolutely continuous distribution, since
an interval (q0, q) = (1.1343, 1.7804) of values below the shortfall level q (small losses)
carries no probability while the interval (0, q0] (large losses) carries the maximum
allowed probability of ε = 10%. This effect demonstrates a serious drawback of the
VaR constraint which bounds only the probability of the losses but does not care
about the magnitude of losses.

The comparison of the expected terminal wealth yields that the VaR-optimal portfolio
reaches an expected terminal wealth EXVaR

T which is very close below of EXθB

T from
the optimal portfolio of the unconstrained problem.

The solution of the representation problem, i.e., the optimal strategy θ∗t = θVaRt ,
is shown in Figure 9.2. Again we give for the sake of comparison the strategies of
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Figure 9.1: Distribution of the VaR-optimal terminal wealth

the other portfolios considered in Figure 9.1, i.e., the strategies θ0 ≡ 0, θ1 ≡ 1 and
θB ≡ µ−r

γσ2
= 0.75, which are constants. Contrary to this, the optimal strategy θVaRt

is a feedback strategy, i.e., it is a function of time t and the state Xt which is the
wealth at time t. Proposition 6.2 (ii) gives an equivalent representation of θVaRt in
terms of t and the state price density Ht. Since Ht can be expressed in terms of t
and St the optimal strategy can be written also as a function of t and the stock price
St at time t. Figure 9.2 shows the dependence of θVaRt on the stock price St for three
instants t = 0.25T = 5, t = 0.75T = 15 and the time just before the horizon T = 20.
Moreover the dependence of the VaR-optimal strategy on time t and stock price S is
visualized.

It can be seen that at the horizon T the optimal strategies θVaRT and θB of the
constrained and unconstrained problem, respectively, coincide for small and large
stock prices, i.e., for ST ∈ (0, 0.8639) ∪ (1.5759,∞). In case of medium stock prices
(ST ∈ (0.8639, 1.5759)) it holds θVaRt → 0 for t → T , which indicates that in this
case the complete capital is invested in the riskless bond, in order to ensure that the
terminal wealth exceeds q with the required probability 1− ε. For prior instants t in
case of very small stock prices the relation θVaRt > θBt can be observed. This seems
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Figure 9.2: VaR-optimal strategy θVaR as a function of time t and the stock price S

to be very risky and not rational but corresponds to the above described form of the
distribution of the terminal wealth which concentrates the maximum of the allowed
probability ε in the region of very small values of XT , i.e., in a region of large losses.

Measuring the shortfall risk using the shortfall probability leads in case of the VaR-
optimal portfolio to

P (XVaR
T < q) = ε = 0.1 or VaR0.1(XT − q) = 0.

Using the Expected Shortfall as a risk measure one obtains

EL(XVaR
T − q) = E[(XVaR

T − q)−] = 0.0926 . . . =: ε.

For the sake of comparison we present results for the EL-optimal portfolio which
maximizes the expected utility of the terminal wealth EU(XEL

T ) but satisfies the
constraint EL(XEL

T − q) ≤ ε instead of P (XVaR
T < q) = ε = 0.1.
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Figure 9.3: Distribution of the EL-optimal terminal wealth
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Figure 9.3 shows the probability density and distribution function of the EL-optimal
terminal wealth ξEL = XEL

T . As in the previous example there is a discrete as well
as an absolutely continuous part of the distribution. The single point q carries the
probability P (h ≤ HT < h) = 0.1073 . . .. Contrary to the VaR-optimal terminal
wealth now there is no gap in the support of the distribution.

While both (VaR- and EL-) optimal portfolios possess the same Expected Loss ε the
shortfall probability of the EL-optimal terminal wealth is significantly higher, it holds

P (XEL
T < q) = 0.1664 . . . > 0.1 = P (XVaR

T < q).

On the other hand there is nearly no difference in the expected terminal wealths since

E[XVaR
T ] = 3.4097 . . . ≈ 3.3938 . . . = E[XEL

T ].

Both values are close to the expected optimal terminal E[XB
T ] = 3.4903 wealth of the

unconstrained problem.

Figure 9.4 is the analogue to Figure 9.2 and shows the EL-optimal strategy θEL as
a function of time t and stock price S. There is a similar behavior for medium and
large values of S. Differences can be observed for small values of S and if time t
approaches the horizon T . For t→ T the strategy θELt does not tend to the value θB

of the optimal strategy of the unconstrained problem but remains larger. Moreover,
the region of medium stock prices (1.1432, 1.5870) characterized by θELt → 0 for
t→ T is smaller than in case of the VaR-optimal strategy θVaRt , where this region is
the interval (0.8639, 1.5759).
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Chapter III

Portfolio optimization with
stochastic benchmark

10 The aim of this chapter

In this chapter we investigate the impact of adding a Utility Expected Loss con-
straint to the problem of portfolio manager who aims to beat the return of a given
portfolio. More precisely, we deal with a portfolio manager who manages the relative
performance, or tracking error of his portfolio along with other objectives. For a
given benchmark Q representing the performance of a portfolio or an index or any
economic indicator. Contrary to Section 8, now the benchmark Q is not a constant
but is a random variable and chosen to be proportional to the result of an investment
in a pure stock portfolio, i.e.,

Q = eδTXθ≡1
T = eδTxST , δ ∈ R.

The real number δ measures the over- (δ > 0) or under-performance (δ < 0) of the
stock market in terms of the annual logarithmic return. We define the tracking error
of the portfolio manager’s horizon wealth X relative to the benchmark Q as

G = G(XT , Q) = U(XT )− U(Q),

where the random variable G can be interpreted as the utility gain of the termi-
nal wealth relative to the benchmark. Moreover, the shortfall risk is quantified by
assigning to the random variable G a real valued risk measure ρ(G) given by

ρ(G) = EUL(G) := E[G−] = E[(U(XT )− U(Q))−].

The portfolio optimization problem is formulated with a risk constraint bounding the
Expected Utility Loss with a given ε. Contrary to the case of a benchmarked money
market studied in Chapter II, we find here that the decision of the portfolio manager
depends on the sensitivity of the benchmark to economic conditions.
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11 Benchmarking the stock market

In this section we consider in addition to one risk-free bond with a constant interest
rate r, only one risky stock. The shortfall is related now to the event, that the
terminal wealth XT of the portfolio is smaller than the benchmark Q = eδTxST and
we measure the shortfall risk using the Expected Utility Loss.

For the representation of the subsequent results we have to consider three cases of
the underlying Black-Scholes model of the economy. These three cases result if we
compare the quantity ν := σ

κ
= σ2

µ−r with
1
γ
. Thereby, ν is referred to as the sensitivity

of the benchmark to economic conditions (see Basak, Shapiro, Tepla [5]) and γ is the
parameter of the CRRA utility function characterizing the portfolio managers risk
aversion. Using the relation

θN =
µ− r

γσ2
=

κ

γσ
=

1

γν
,

where θN is the normal strategy which is the optimal strategy in the unconstrained
optimization problem (see Example 4.6), the three cases are

a) ν < 1
γ

⇐⇒ θN > 1

b) ν > 1
γ

⇐⇒ θN < 1

c) ν = 1
γ

⇐⇒ θN = 1.

Since the benchmark Q is related to the stock price ST it can be expressed in terms
of the state price density HT at time T . The SDEs (4.6) and (4.7) imply

ST = exp
((
µ− σ2

2

)
T + σWT

)
and HT = exp

(
− (r +

κ2

2
)T − κWT

)

which gives

Q = eδTxST = AH−ν
T where A := x exp

([
δ +

(
µ− σ2

2

)
−
(
r +

κ2

2

)
ν
]
T

)
.

11.1 Optimization under Expected Utility Loss

In this section we solve the optimization problem of a risk manager, who is required
to limit the magnitude of shortfall by maintaining his tracking error relative to the
stock market return to be above some prespecified level ε over an investement horizon
[0, T ]. The dynamic optimization problem of the EUL-risk manager can be restated
in the case os stochastic benchmark as the following static variational problem:

max
ξ∈B

E[U(ξ)]

subject to E[(U(ξ)− U(AH−ν
T ))−] ≤ ε.

The tracking error complicates the optimization by linking the nature of the non-
concavity to the sensitivity of the benchmark to economic conditions. The next
proposition characterizes the form of the EUL -optimal terminal wealth.
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Proposition 11.1. Let Q = xeδTST with δ ∈ R be a random benchmark and U be
the utility function given in (3.5). Moreover, let for y1, y2 > 0 be defined

h = h(y1) :=
( 1

y1Aγ

) 1
1−γν

,

h = h(y1, y2) :=
(1 + y2
y1Aγ

) 1
1−γν

= (1 + y2)
1

1−γν h and

(a) for economies with ν < 1/γ:

f(z) = f(z; y1, y2) :=





I(y1z) if z < h,

Az−ν if h ≤ z < h,

I( y1
1+y2

z) if h ≤ z,

(b) for economies with ν > 1/γ:

f(z) = f(z; y1, y2) :=





I( y1
1+y2

z) if z < h,

Az−ν if h ≤ z < h,

I(y1z) if h ≤ z,

for z > 0. Finally, let the initial capital x > 0 and the bound for the risk constraint
ε be such that there are strictly positive and unique solutions y1, y2 of the following
system of equations

E[HTf(HT ; y1, y2)] = x

E[(U(f(HT ; y1, y2))− U(AH−ν
T ))−] = ε.

Then the EUL-optimal terminal wealth is

XEUL
T = f(HT ) = f(HT ; y1, y2).

The proof is analogous to the proof of Proposition 8.1 if Lemma 8.2 is replaced by
the following lemma which is proven in Appendix D.

Lemma 11.2. Let z, y1, y2 > 0. Then the solution of the optimization problem

max
x>0

{U(x)− y1zx− y2(U(x)− U(Az−ν))−}

is x∗ = f(z; y1, y2).

In the following proposition we present the explicit expressions for the EUL-optimal
wealth and portfolio strategies before the horizon.

Proposition 11.3. Let the assumptions of Proposition 11.1 be fulfilled.
(i) The EUL-optimal wealth at time t < T before the horizon is given by

XEUL
t = F (Ht, t),

where F (z, t) for z > 0 is defined by
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(a) for economies with ν < 1/γ:

F (z, t) =
eΓ1(t)

(y1z)
1
γ

−
[
eΓ1(t)

(y1z)
1
γ

Φ
(
− d1(h, z, t)

)
− A

eΓ2(t)

zν
Φ
(
− d2(h, z, t)

)]
(11.1)

+

[
(1 + y2)

1
γ
eΓ1(t)

(y1z)
1
γ

Φ
(
− d1(h, z, t)

)
− A

eΓ2(t)

zν
Φ
(
− d2(h, z, t)

)]
.

(b) for economies with ν > 1
γ
:

F (z, t) = (1 + y2)
1
γ
eΓ1(t)

(y1z)
1
γ

+

[
eΓ1(t)

(y1z)
1
γ

Φ
(
− d1(h, z, t)

)
− A

eΓ2(t)

zν
Φ
(
− d2(h, z, t)

)]

−
[
(1 + y2)

1
γ
eΓ1(t)

(y1z)
1
γ

Φ
(
− d1(h, z, t)

)
− A

eΓ2(t)

zν
Φ
(
− d2(h, z, t)

)]
.

Hereby, Φ(·) is the standard-normal distribution function, y1, y2 and h, h,A are
as in Proposition 11.1, and

Γ1(t) :=
1− γ

γ

(
r +

κ2

2γ

)
(T − t)

Γ2(t) :=
σ − κ

κ

(
r +

σκ

2

)
(T − t)

d1(u, z, t) :=
ln u

z
+ (r − κ2

2
)(T − t)

κ
√
T − t

+
κ

γ

√
T − t

d2(u, z, t) :=
ln u

z
+ (r − κ2

2
)(T − t)

κ
√
T − t

+ σ
√
T − t.

(ii) The EUL-optimal fraction of wealth invested in stock at time t < T before the
horizon is

θEULt = θNΘ(Ht, t).

Hereby, θN = κ
γσ

= µ−r
γσ2

denotes the normal strategy and Θ(z, t) is the exposure to
risky assets relative to the normal strategy, which is defined for z > 0 as follows

(a) for economies with ν < 1
γ
:

Θ(z, t) := 1− (1− γν)
AeΓ2(t)

zνF (z, t)

[
Φ
(
− d2(h, z, t)

)
− Φ

(
− d2(h, z, t)

)]
,

(b) for economies with ν > 1
γ
:

Θ(z, t) := 1 + (1− γν)
AeΓ2(t)

zνF (z, t)

[
Φ
(
− d2(h, z, t)

)
− Φ

(
− d2(h, z, t)

)]
.

Remark 11.4. The case of an economy with ν = 1
γ
is considered in Proposition

11.5.
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Proof. We give the proof for case (a), i.e., for economies with ν < 1
γ
, the proof for

case (b) is similar.

(i) The proof is similar to Proposition 8.4 (i), if the deterministic benchmark q is
replaced by the stochastic benchmark Q = xeδTST = AH−ν

T . For more details,
we refer to [30].

(ii) Following the same arguments as in Proposition 8.4 (ii), we obtain the following
equality for the optimal trading strategy

θEULt = −κ
σ

Fz(Ht, t)Ht

F (Ht, t)
= −θNγFz(Ht, t)Ht

F (Ht, t)
, (11.2)

where F (z, t) is given in Proposition 11.3. Formal evaluation of the derivative
Fz yields

Fz(z, t) = − 1

γz

[
F (z, t)− (1− γν)

AeΓ2(t)

zν

(
Φ(−d2(h, z, t))− Φ(−d2(h, z, t))

)]

− eΓ1(t)

(y1z)
1
γ κ
√
T − tz

[
ϕ(d1(h, z, t))− (1 + y2)

1
γϕ(d1(h, z, t))

]
(11.3)

+
AeΓ2(t)

zνκ
√
T − tz

[
ϕ(d2(h, z, t))− ϕ(d2(h, z, t))

]
.

In Appendix E we show that the terms in the second and third line add to
zero, hence Fz reduces to the expression given in the first line. Substituting
into Equation (11.2), we get the final form of the optimal strategies before the
horizon.

Finally, the case of an economy with ν = 1
γ
is considered. In this case the optimal

strategy of the unconstrained optimization problem is θN = 1, i.e., the optimal port-
folio is a pure stock portfolio and θN is a ”buy-and-hold” strategy. The following
proposition is proven in Appendix F.

Proposition 11.5. Let U be the utility function given in (3.5) and ν = 1
γ
. Moreover,

let

y := yN =
1

xγ
e(1−γ)(r+

κ2

2γ
)T =

1

xγ
e(1−γ)

µ+r
2

T .

Then the EUL-optimal terminal wealth is ξEUL = ξN = I(yNHT ) and the EUL-
optimal strategy coincides with the normal strategy, i.e., θEULt ≡ θN = 1, provided
that the risk constraint

E[(U(ξN)− U(Q))−] ≤ ε

is fulfilled. Otherwise, there is no admissible solution.
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12 Properties of the optimal portfolio

The next proposition collects two properties of the exposure to risky assets Θ(z, t)
relative to the normal strategy θN given in Proposition 11.3.

Proposition 12.1. Let the assumptions of Proposition 11.1 be fulfilled. Then, for
the function Θ(z, t) defined in Proposition 11.3 (ii) there hold the following relations.

(i) (a) for economies with ν < 1
γ
: 1

θN
< Θ(z, t) < 1

(b) for economies with ν > 1
γ
: 1 < Θ(z, t) < 1

θN

for all z > 0 and t ∈ [0, T ).

(ii)

lim
t→T

Θ(z, t) =





1 if z < min(h, h) or z > max(h, h)

1
θN

if min(h, h) < z < max(h, h),

1
2
(1 + 1

θN
) if z = h, h

Proof. We prove the claim for economies with ν < 1
γ
, economies with ν > 1

γ
are

treated similarly. Using Eq. (11.1) the function F (z, t) can be written as

F (z, t) = F1(z, t) + F2(z, t)

where F1(z, t) =
eΓ1(t)

(y1z)
1
γ

[
1− Φ

(
− d1(h, z, t)

)
+ (1 + y2)

1
γΦ
(
− d1(h, z, t)

)]

and F2(z, t) =
AeΓ2(t)

zν

[
Φ
(
− d2(h, z, t)

)
− Φ

(
− d2(h, z, t)

)]
for z > 0.

From the other hand we have from Proposition 11.3

Θ(z, t) = 1− (1− γν)
F2(z, t)

F (z, t)
= 1−

(
1− 1

θN

) F2(z, t)

F1(z, t) + F2(z, t)
.

Thereby, the relation γν = 1
θN

has been used. The terms F1(z, t) and F2(z, t) are

strictly positive since y2 > 0 implies h < h and the functions d1/2(u, ., .) are strictly
increasing w.r.t. u. Moreover, Φ ist strictly increasing. Hence we have 1

θN
< Θ(z, t) <

1 and it follows assertion (i).

The proof of the second assertion is analogous to the proof of Proposition 8.5.

Remark 12.2. As in Proposition 8.5 dealing with the case of a deterministic bench-
mark the second assertion of Proposition 12.1 shows that the lower and upper bounds
for Θ(z, t) given in the first assertion can not be improved. The given bounds are
reached (depending on the value of z) asymptotically if time t approaches the horizon
T .

From the proposition it follows that the EUL-optimal fraction of wealth θEULT invested
in the stock at the horizon is equal to the normal strategy θN in the bad and good
states and equal to 1 in the intermediate states of the market, which are described
by HT . Before horizon T , θEULt is always bounded by 1 and the normal strategy θN .
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13 Numerical results

This section illustrates the findings of the preceding sections with an example. Table
13.1 shows the parameters for the portfolio optimization problem and the underlying
Black-Scholes model of the financial market. In this example the aim is to maximize
the expected logarithmic utility (γ = 1) of the terminal wealth XT of the portfolio
with the horizon T = 20 years. The benchmark Q is set to be equal to 100% of the
terminal wealth of a pure stock portfolio, i.e., we set δ = 0 and Q = xST . We bound
the Expected Utility Loss by ε = 0.02.

stock µ = 9%, σ = 20%
bond r = 4%
horizon T = 20
initial capital x = 1
utility function U(z) = ln z, i.e., γ = 1
benchmark Q = xST , δ = 0
constraint ε = 0.02

Table 13.1: Parameters of the optimization problem

For the present case of a logarithmic utility function U(z) = ln(z) the risk constraint
can be reformulated in terms of the annual logarithmic return %(z) = 1

T
ln z

x
where x

is the initial capital (see Remark 5.2). It holds

E[(U(XEUL
T )− U(Q))−] ≤ ε = 0.02⇐⇒ E[(%(XEUL

T )− %(Q))−] ≤ ε

T
,

i.e., we bound the expected Loss of the annual logarithmic return by 0.1%.

The chosen parameters correspond to an economy with

ν =
σ

κ
=

σ2

µ− r
= 0.8 <

1

γ
= 1 or equivalently θN =

κ

γσ
=
µ− r

γσ2
= 1.25 > 1.

This is case (a) in the propositions of Subsection 11. The form of the EUL-optimal
terminal wealth XEUL

T as a function f(HT ) of the state price density HT at the horizon
T is given in Proposition 11.1 (a). For the interpretation of the result it seems to be
more convenient to express XEUL

T as a function f̃(ST ) of the terminal stock price ST .
This dependence can be easily derived from the following relation which follows from
the SDEs (4.6) and (4.7)

Ht = G(St, t) := exp

([1
ν

(
µ− σ2

2

)
−
(
r +

κ2

2
)
]
t

)
S
− 1

ν
t for t ∈ [0, T ] (13.4)

which implies

ST = g(HT ) := exp

([
(µ− σ2

2
)−

(
r +

κ2

2
)ν
]
T

)
H−ν

T .
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Figure 13.1 shows the EUL-terminal wealth XEUL
T as a function of the terminal stock

price ST . Moreover, the terminal wealth of the

– pure bond portfolio Xθt≡0
T ,

– pure stock portfolio Xθt≡1
T = ST = Q, which is equal to the chosen benchmark

Q,

– the optimal portfolio of the unconstrained problem XN
T = XθN

T , (see Example
4.6).

are drawn as functions of ST .
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Figure 13.1: EUL-optimal terminal wealth

It can be seen, that for states with large ST , i.e., ST > g(h), the EUL-optimal portfolio
overperforms the stock market, it holdsXEUL

T > Q = ST . For states with intermediate
stock prices, i.e., g(h) ≤ ST ≤ g(h), the EUL-optimal wealth coincides with the
benchmark Q. An underperformance or shortfall of the EUL-optimal portfolio occurs
in the states with small stock prices, i.e., ST < g(h). On the other hand, it can
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Xθt≡0
T Xθt≡1

T = Q XN
T XEUL

T

pure bond pure stock normal EUL-optimal
E[U(XT )] 0.800 1.400 1.425 1.415
E[%(XT )] 0.040 0.070 0.071 0.071
E[XT ] 2.226 6.050 7.758 6.893

E[(U(XT )− U(Q))−] 0.734 0.000 0.077 0.020

Table 13.2: Expected utility E[U(XT )], expected annual logarithmic return E[%(XT )],
expected terminal wealth E[XT ] and Expected Utility Loss E[(U(XT )− U(Q))−]

be seen that the terminal wealth XN
T , resulting from the optimization without risk

constraint, underperforms the stock market in considerable more states of the market.

Table 13.2 gives the expected utilities of the terminal wealth E[U(XT )] (which have
to be maximized in the optimization), the corresponding expected annual return
E[%(XT )], the expected terminal wealth E[XT ] and the risk measure Expected Utility
Loss for the above considered portfolios. The comparison of these values demon-
strates, that imposing an additional risk constraint leads only to small losses of the
expected utility but to considerable gains of the risk measure.

Figure 13.2 shows the probability density functions of the random terminal wealth
Xθt≡0

T , Xθt≡1
T = ST = Q, XN

T and XEUL
T considered above. While the terminal wealth

of the pure bond portfolio Xθt≡0
T is concentrated in the single point erT , the random

variables Q and XN
T possess logarithmic normal distributions. The distribution of

XEUL
T is also absolutely continuous but its probability density function shows jumps

at g(h) and g(h). This is a consequence of the form of XEUL
T as a function of HT

given in Proposition 11.1 (a).

Next, the EUL-optimal strategy θEULt , which leads to the terminal wealth XEUL
T dis-

cussed above, is considered. This strategy is a feedback strategy, i.e., it depends
on time t as well as of the state of the financial market, which can be expressed in
terms of the state price density Ht, the stock price St or of the wealth Xt of the
portfolio at time t, respectively. In Proposition 11.3, (ii) the EUL-optimal strategy
has been given as a function of time t and state price density Ht. This is convenient
from the mathematical point of view. For practical purposes it seems to be more
convenient to express the strategy in terms of t and the stock price St at time t, i.e.,
θEULt = θEUL(t, St). Such a representation can be easily derived from the representa-
tion given in Proposition 11.3, (ii) using the relation Ht = G(t, St) given in (13.4).
The value of θEULt gives the EUL-optimal fraction of wealth, which at time t has to
be invested in the stock, if the stock price St is observed.

The upper plot in Figure 13.3 shows θEUL(t, St) as a function of the stock price St for
the fixed times t = 1

4
T = 5 years, t = 3

4
T = 15 years and its limit for t→ T − 0 = 20

years, (i.e., the time just before the horizon). Moreover, the upper plot displays
the strategies of the pure bond and stock portfolio, which are no feedback strategies
but constants, namely θt ≡ 0 and θt ≡ 1, respectively, and the normal strategy
θt = θN = µ−r

γσ2
= 1.25, which is also constant.
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Figure 13.2: Probability density functions of terminal wealth

The lower plot shows a 3D-plot of θEUL(t, St) as a function of both time t and stock
price St. For t = 1

4
T, 3

4
T and T − 0 one gets the plots of the upper picture as

intersection of the 3D-plot with planes parallel to the (S, θ)-plane. Moreover, the
lower picture contains the path of a simulated stock price St = St(ω), 0 ≤ t < T , in
the (S, t))-plane and the corresponding path of the EUL-optimal strategy θEULt (ω) =
θEUL(t, St(ω)).

The figure shows that the EUL-optimal fraction of wealth θEULt which has to be
invested in the stock is bounded from below by 1, i.e., the strategy of the pure stock
portfolio. It is bounded from above by θN = 1.25, i.e., the normal strategy. Let
us note, that θt > 1 corresponds to a short position in the bond, since the fraction
of wealth invested in the bond is 1 − θEULt < 0. For the present parameters of the
financial market, especially the large positive difference of the mean return µ = 9% of
the stock and the risk-free interest rate r = 4% relative to the volatility of σ = 20%,
it is optimal to borrow money and invest this money into the stock earning the ”high”
mean return µ while paying the ”low” interest rate r.

If time t approaches the horizon then the strategy tends to the normal strategy θN

in the states with small and large stock prices. In the states with intermediate stock
prices the EUL-optimal strategy tends to 1, in order to reach the corresponding EUL-
optimal terminal wealth, which is in this case the stock price, i.e., XEUL

T = Q = ST .
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Figure 13.3: EUL-optimal strategy θEULt = θEUL(t, St) as a function of time t and
stock price St
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Next, we change the value of the mean return of the stock µ from 9% to the lower
value 7%. The other parameters remain unchanged. Now we have an economy with

ν =
σ

κ
=

σ2

µ− r
= 1.33 >

1

γ
= 1 or equivalently θN =

κ

γσ
=
µ− r

γσ2
= 0.75 < 1.

This is case (b) in the propositions of Subsection 11.

Figure 13.4 shows the terminal wealth of the EUL -optimal portfolio and of the other
considered portfolios as a function of the terminal stock price ST . Note that in case
(b) contrary to case (a) it holds h > h and consequently g(h) < g(h).
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Figure 13.4: EUL-optimal terminal wealth

It can be seen, that contrary to the first example where µ = 9%, for states with large
ST , i.e., ST > g(h), the EUL-optimal portfolio underperforms the stock market, it
holds XEUL

T < Q = ST . These are the states where the shortfall happens. For states
with intermediate stock prices, i.e., g(h) ≤ ST ≤ g(h), the EUL-optimal wealth
coincides with the benchmark Q. An overperformance of the EUL-optimal portfolio
occurs in the states with small stock prices, i.e., ST < g(h). As in the first example
it can be seen, that the terminal wealth XN

T , resulting from the optimization without
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Xθt≡0
T Xθt≡1

T = Q XN
T XEUL

T

pure bond pure stock normal EUL-optimal
E[U(XT )] 0.800 1.000 1.025 1.015
E[%(XT )] 0.040 0.050 0.051 0.051
E[XT ] 2.226 4.055 3.489 3.791

E[(U(XT )− U(Q))−] 0.466 0.000 0.077 0.020

Table 13.3: Expected utility E[U(XT )], expected annual logarithmic return E[%(XT )],
expected terminal wealth E[XT ] and Expected Utility Loss E[(U(XT )− U(Q))−]
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Figure 13.5: Probability density functions of terminal wealth

risk constraint, underperforms the stock market in considerable more states of the
market.

Table 13.3 gives the expected utilities of the terminal wealth E[U(XT )], the corre-
sponding expected annual logarithmic return E[%(XT )], the expected terminal wealth
E[XT ] and the risk measure Expected Utility Loss for the above considered portfo-
lios. Once again the comparison of of these values demonstrates, that imposing an
additional risk constraint leads only to small losses of the expected utility but to
considerable gains of the risk measure.

Figure 13.5 shows the probability density functions of the random terminal wealth
Xθt≡0

T , Xθt≡1
T = ST = Q, XN

T and XEUL
T considered above.

Figure 13.6 is analogous to Figure 13.3 and shows θEUL(t, St) as a function of time t
and the stock price St. In the upper picture three times t = 1

4
T = 5 years, t = 3

4
T = 15
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years and the time just before the horizon t = T − 0 = 20 years are fixed. The lower
picture shows a 3D-plot of θEUL(t, St) as a function of both time t and stock price St.

The figure shows that the EUL-optimal fraction of wealth θEULt is bounded from
below by θN = 0.75, i.e., the normal strategy. It is bounded from above by 1 , i.e.,
the strategy of the pure stock portfolio. Contrary to the first example with the larger
mean return µ = 9% of the stock, now it is not necessary to go short into the bond,
since we have 0 ≤ 1 − θEUL ≤ 1 − θN = 0.25. We note, that in the present example
according to Proposition 12.1 (ii), the fraction of wealth invested in the risky stock
by the EUL-optimal portfolio manager is in all states of the financial markets at least
as much as the corresponding fraction of the manager following the normal strategy
θN . Due to this riskier strategy the EUL-optimal portfolio manager reaches a slightly
smaller expected utility of the terminal wealth but he satisfies the risk constraint,
which is violated by the manager following the normal strategy.

As in the first example with µ = 9% we observe, that if time t approaches the horizon
then the strategy tends to the normal strategy θN in the states with small and large
stock prices. In the states with intermediate stock prices the EUL-optimal strategy
tends to 1, in order to reach the corresponding EUL-optimal terminal wealth, which
is in this case the stock price, i.e., XEUL

T = Q = ST .
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Figure 13.6: EUL-optimal strategy θEULt = θEUL(t, St) as a function of time t and
stock price St
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Chapter IV

The case of partial information

In this chapter we extend the model (4.6) to the case of a non constant and random
drift which is not directly observable. We deal with a portfolio manager who is starting
with an initial capital and wishes to maximize his expected utility of terminal wealth
by choosing a portfolio strategy based only on information about the asset-prices in
a given financial market. More precisely, it is assumed that the portfolio manager
cannot directly observe the stock appreciation rates or the driving Brownian motion,
he can only observe past and present stock prices. This fact called partial information
is modeled by requiring that all investment decisions in this market have to be adapted
to the augmented filtration generated by the observed stock price process. Basically,
the utility maximization problem in a setting of partial information can be solved only
if the dynamics of the drift process is specified. We suggest a drift as a continuous
time Markov chain independent of the driving Brownian motion, and we add to the
portfolio optimization problem a risk constraint bounding the Expected Utility Loss
with a given ε, i.e., a constraint of the type

EUL(G) := E[G−] = E[(U(Xπ
T )− U(q))−] ≤ ε,

where the shortfall level q is assumed to be constant.

14 An HMM for the stock return

We consider in this chapter a financial market which consists of one risk-free asset,
whose price process is assumed for simplicity to be equal to 1 at each date, and n
stocks whose prices S = (St)t∈[0,T ], St = (S1t , . . . , S

n
t )
> evolve according to

dSit = Sit
[
µitdt+

n∑

j=1

σijdW
j
t

]
, Si0 = si0 ∈ R, i = 1, . . . , n, (14.1)

where s0 = (s10, . . . , s
n
0 )
> is the constant initial price vector. The volatility matrix

σ = (σij)i,j=1,...,n is assumed to be constant satisfying the non-degeneracy condition

x>σσ>x ≥ δx>x for all x ∈ Rn,
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where δ > 0 is a given constant. Let FS = (FS
t )t∈[0,T ] be the P -augmented filtration

generated by the price process S.

The return process R = (Rt)t∈[0,T ] associated with the stocks is defined by

dRt = (Diag(St))
−1dSt, or equivalently Rt =

∫ t

0

µsds+

∫ t

0

σdWs. (14.2)

The Hidden Markov Model has a finite set of states, each of which is associated with
a (generally multidimensional) probability distribution. Transitions among the states
are governed by a set of probabilities called transition probabilities. In a particu-
lar state an outcome or observation can be generated, according to the associated
probability distribution. It is only the outcome, not the state visible to an external
observer and therefore states are “hidden” to the outside; hence the name Hidden
Markov Model.

Definition 14.1.
We assume that µ = (µt)t∈[0,T ], the drift process of the return is given by

µt = BYt, t ∈ [0, T ], (14.3)

where Y = (Yt)t∈[0,T ] is a stationary, irreducible, continuous time Markov chain inde-
pendent of W with state space {e1, . . . , ed}, the standard unit vectors in Rd, and
B = (Bik)i=1,...,n;k=1,...,d is given by Bik = bki . The columns of the state matrix
B ∈ Rn×d contain the d possible states of µt. To take the unit vectors as state
space is convenient since it allows us to give filtering equations for Y and not only
its transition probabilities. Further Y is characterized by its rate matrix Q ∈ Rd×d,
where Qkl = limt↘0

1
t
P (Yt = el |Y0 = ek), k 6= l, is the jump rate or transition rate

from ek to el, and λk = −Qkk =
∑d

l=1,l 6=kQkl is the rate of leaving ek. Hence in state
ek the waiting time for the next jump is exponentially distributed with parameter λk,
and Qkl/λk is the probability that the chain jumps to el when leaving ek.

The special feature of this chapter is that we consider the case of partial information,
and this is the situation where the drift process and the Brownian motion associated
with the stock prices are not observable to a portfolio manager acting in this mar-
ket. He can only observe the stock prices and hence we have a hidden Markov model
(HMM) for the stock returns. The fact that portfolio managers have only a partial
information will be modeled by requiring that investment decisions and all processes
appearing in this market have to be adapted to the filtration generated by the stock
price, which is smaller than the original filtration.

Similarly to the case of full information, we now introduce the new measure P̃ which
is the risk-neutral probability measure we need for the optimization. This measure
coincides with the reference measure used in filtering due to the structure of the drift
given in Equation (14.3). Let us define the martingale density process Z = (Zt)t∈[0,T ]

Zt = exp

(
−
∫ t

0

(σ−1BYs)
>dWs −

1

2

∫ t

0

‖σ−1BYs‖2ds
)
, (14.4)
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and the risk-neutral probability measure P̃ by dP̃ = ZTdP . The process (σ
−1BYt)t∈[0,T ]

is bounded and hence Girsanov’s Theorem implies that the n-dimensional process

W̃t =Wt +

∫ t

0

σ−1BYsds, t ∈ [0, T ], (14.5)

defines a P̃ -Brownian motion. We denote by Ẽ the expectation operator correspond-
ing to the measure P̃ .

Remark 14.2. For a constant drift, i.e., only d = 1 state, the processes Z and H
coincide (provided r = 0). Further, the analysis presented in Chapter II to solve the
portfolio optimization problem was used in a way that uses only the local martingale
property of Z and avoids the use of P̃ altogether.

The boundedness of the process (σ−1BYt)t∈[0,T ] implies in addition the following
lemma.

Lemma 14.3. Z and Z−1 = (Z−1t )t∈[0,T ] are P -and P̃ -martingales, respectively.
Moreover, for all p ∈ [1,∞), t ∈ [0, T ]

Ẽ[|Zt|p] <∞, Ẽ[|Z−1t |p] <∞ and Ẽ

[∣∣∣∣
∫ t

0

Z−1s ds

∣∣∣∣
p]
<∞.

On the other hand we have the following decompositions for the return process:

dRt = µtdt+ σdWt, and dRt = σdW̃t. (14.6)

Relations (14.2) and (14.6) imply that S, R, and W̃ generate the same filtration
FS. Moreover, this filtration is continuous (see Karatzas and Shreve [42], Corollary
2.7.8 or Lakner [52], Proposition 4.1). As a consequence we have the following key

lemma which allows to state a martingale representation theorem for (P̃ ,FS)-local

martingales with respect to the Brownian motion W̃ . We refer to Proposition 4.2 in
[52] for a detailed proof.

Lemma 14.4. Let M = (Mt)t∈[0,T ] be any (P̃ ,FS)-local martingale. Then, there ex-
ists an Rn-valued process γ = (γt)t∈[0,T ] which is FS-adapted and a.s. square integrable
such that

Mt =M0 +

∫ t

0

γ>s dW̃s, 0 ≤ t ≤ T.

Moreover, if M is square integrable, then γ is unique in L2.

15 The optimization problem under partial infor-

mation

We shall now define an investment decision for a portfolio manager acting in a market
with partial information. We find it convenient to use for the investment decision at
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time t the amount of money πit defined for each stock i by πit = ψi
tS

i
t , where ψ

i
t is

the number of shares held by the portfolio manager in the asset i. In the case of
full information studied in the preceding chapters, we used the portfolio strategy θit
defined in equivalent way by θit =

πit
Xt

for each stock i.

Definition 15.1.
A trading strategy π = (πt)t∈[0,T ] is an n-dimensional FS-adapted, measurable process

which satisfies
∫ T
0
‖πt‖2dt < ∞,

∫ T
0
|µ>t πt|dt < ∞. For initial capital x > 0 the

corresponding wealth process Xπ = (Xπ
t )t∈[0,T ] is defined by

dXπ
t = π>t (µtdt+ σdWt), X0 = x. (15.7)

A trading strategy π is called admissible, if P (Xπ
t > 0, for all t ∈ [0, T ]) = 1. We

shall denote by Ap the set of all admissible strategies.

Itô’s rule implies that for any trading strategy π, the wealth Xπ
t has the form

dXπ
t = π>t σdW̃t, t ∈ [0, T ]. (15.8)

The optimization problem
Let U be a utility function given in Definition 4.2 Chapter I. Our objective in this
chapter is to analyse the behavior of a portfolio manager when he has only partial
information. We consider a portfolio manager who wants to maximize the expected
utility from the terminal wealth, and who is confronted with a risk measured by a
constraint of the type

EUL(G) := E[G−] = E[(U(Xπ
T )− U(q))−] ≤ ε, (15.9)

where ε is a given bound for the Expected Utility Loss and q is a given real number
representing the shortfall level. This case is related to a fixed non-random benchmark
Q = q and a typical choice is

q = eδTXπ≡0
T = xeδT , δ ∈ R.

We refer to Section 5 for a detailed information about the benchmark. The special
feature in this chapter is that the portfolio manager’s decisions have to be adapted
to the augmented filtration FS generated by the stock price process. In the case
of partial information, we call the solutions to the resulting constrained dynamic
optimization problem

max
π∈Ap

E[U(Xπ
T )] (15.10)

subject to E[(U(Xπ
T )− U(q))−] ≤ ε

EUL-optimal. The corresponding EUL-optimal wealth at time t ∈ [0, T ] is denoted
by XEUL

t and the EUL-optimal strategy by πEULt .
In economies with partial information the process Z can not be a driving process
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since its not adapted to the filtration FS. A natural idea to find such a process in
economies where the portfolio manager has only partial information, is to project the
density process Z to the filtration FS and to consider instead the conditional density
process ζ = (ζt)t∈[0,T ],

ζt = E[Zt|FS
t ]. (15.11)

In a similar way to the case of full information studied in Chapter II, the portfolio
optimization problem under partial information can be solved using the martingale
duality approach introduced by Karatzas, Lehoczky, Shreve [38], or Cox, Huang [11].
The basic difference is that instead of Z we have to use the FS-adapted process ζ.
Define

Bp(x) := {ξ > 0 : ξ is FS
T −measurable and E[ζT ξ] ≤ x}.

The corresponding static problem reads as

max
ξ∈Bp(x)

E[U(ξ)] (15.12)

subject to E[(U(ξ)− U(q))−] ≤ ε.

The following proposition characterizes the EUL-optimal terminal XEUL
T .

Proposition 15.2. Let q > 0 be a fixed benchmark. Moreover, let for y1, y2 > 0 be
defined

h = h(y1) :=
1

y1
U ′(q),

h = h(y1, y2) :=
1 + y2
y1

U ′(q) = (1 + y2)h and

f(z) = f(z; y1, y2) :=





I(y1z) if z < h,

q if h ≤ z < h,

I( y1
1+y2

z) if h ≤ z,

for z > 0. Finally, let the initial capital x > 0 and the bound for the risk constraint
ε > 0 be such that there are strictly positive and unique solutions y1, y2 of the
following system of equations

E[ζTf(ζT ; y1, y2)] = x

E[(U(f(ζT ; y1, y2))− U(q))−] = ε.

Then the EUL-optimal terminal wealth is

XEUL
T = f(ζT ) = f(ζT ; y1, y2). (15.13)

Proof. The proof is quite similar to the proof of Proposition 8.1 of Chapter II. We
just need to consider the FS-adapted conditional density process ζ instead of Z.
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Remark 15.3. Under full information the optimal terminal wealth XEUL
T given

in Proposition 8.1 of Chapter II was expressed in terms of HT which is not FS
T -

measurable. Hence the optimal terminal wealth given in Proposition 15.2 under
partial information, is a sub-optimal value under full information

max
π∈Ap

E[U(Xπ
T )] ≤ max

π∈A
E[U(Xπ

T )].

16 HMM filtering results

In this section we present results of HMM filtering which we will use to determine
the optimal trading strategy. In particular, we have to find a good estimator for the
drift process given the observation R. Equations (14.2) and (14.3) show that we are
in the classical situation of HMM filtering with signal Y and observation R, see [21].
We determine the filter E[Yt|FS

t ] for Yt, which is an L2-optimal estimator.

Definition 16.1.
The filter η = (ηt)t∈[0,T ] for Y and the unnormalized filter E = (Et)t∈[0,T ] for Y are
defined by

ηt = E[Yt|FS
t ] and Et = Ẽ[Z−1T Yt|FS

t ].

Bayes’s law implies

Et =
E[ZTZ

−1
T Yt|FS

t ]

E[ZT |FS
t ]

=
E[Yt|FS

t ]

ζt
= ζ−1t ηt. (16.14)

Moreover, the following assertions are fulfilled: 1>d ηt = 1, 1>d Et = ζ−1t , ηkt ∈ [0, 1], and
ηkt ≥ 0,with k = 1, . . . , d.

The optimal strategy will be expressed in terms of the unnormalized filter E and
its Malliavin derivatives. So we need a characterization of the unnormalized filter E
which is given by the following theorem in terms of a linear stochastic differential
equation.

Theorem 16.2.
The unnormalized filter E is given by

Et = E[Y0] +

∫ t

0

Q>Esds+
∫ t

0

Diag(Es)B>(σσ>)−1dRs, t ∈ [0, T ].

Remark 16.3. This theorem proved by Elliott (see Theorem 4 in [21]), is ex-
tended by Sass and Haussman [66] to non trivial volatility σ and stochastic B where
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B = (Bt)t∈[0,T ] is an Rn×d-valued, FS-progressively measurable process satisfying∫ T
0
‖B‖dt < ∞. Since R and S generate the same continuous filtration, Theorem

16.2 allows to use the filter with respect to FS. Moreover, this theorem can be es-
tablished as in [21] via the filter equation for η. For a direct proof of Theorem 16.2,
we refer to Theorem 4 in [21].

Formula(15.13) for the optimal terminal wealth involves the random variable ζT . A
complete representation of the conditional state density process ζ is given in the
following corollary.

Corollary 16.4.
ζ and ζ−1 = (ζ−1t )t∈[0,T ] are continuous FS-martingales with respect to P and P̃ ,

respectively. Furthermore, ζ−1t = Ẽ[Z−1t |FS
t ]

ζ−1t = 1 +

∫ t

0

(BEs)>(σσ>)−1dRs, t ∈ [0, T ].

Proof. Lemma 14.3 implies the martingale property. The representation of ζ−1 is
a consequence of Theorem 16.2 using the fact that ζ−1t = 1>d Et and Q1d = 0.

17 Malliavin derivative

In the particular contexts of utility maximization from investment, the generalized
Clark’s formula leads directly to representations of optimal portfolios for this task.
However, the expressions obtained are fairly general and hard to manipulate further,
as they involve functional derivatives of the Malliavin type, stochastic integrals, and
conditional expectations under an auxiliary probability measure. When specialized to
the case of logarithmic utility, or to a financial market with quite simple coefficients,
the Clark’s formula leads to very explicit expressions for the optimal portfolios in
feedback form on the current level of wealth. In this section we introduce the gradient
operator D acting on the subset of the class of functionals of {W̃t, 0 ≤ t ≤ T} called
D1,1. For the exact definitions of the space D1,1 and the operator D see Appendix G,
and for detailed results we refer to Ocone and Karatzas [61], Nualart and Pardoux
[59]. Because it is a crucial tool and a key result in obtaining the expressions of our
optimal portfolios, we start this section by stating the generalized version of Clark’s
formula which allows for elements of D1,1 to be represented in form of stochastic
integrals. For the proof, see (Karatzas et al., [40]).

Theorem 17.1.
For every F ∈ D1,1 we have

F = E[F ] +

∫ T

0

E[(DtF )
>|Ft]dWt. (17.15)
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Remark 17.2.

i) From (17.15) it follows also that

F = E[F ] +

∫ t

0

E[(DsF )
>|Fs]dWs, 0 ≤ t ≤ T. (17.16)

ii) We need the extension of Clark’s formula in (17.15) from D2,1 to D1,1 in order to

represent the P̃ -martingales Ẽ[F |Ft] as stochastic integrals with respect to the

process W̃ of 14.5 using Bayes’s formula Ẽ[F |Ft] = (Z−1t )E[FZT |Ft] and then
applying the Clark’s formula to FZT , here the process Z is given by (14.4) and

dP̃ = ZTdP . To deal with the Sobolev’s space D1,1 in Theorem 17.1 instead of
D2,1 is therefore useful for avoiding unnecessarily restrictive moment bounds on

the random variables F and DF . For example, if F ∈ L2(P̃ ), it does not follow
that FZT ∈ L2(P ). However,

E[|FZT |p] = Ẽ[|F |pZp−1
T ] ≤

(
Ẽ[F 2]

) p
2
(
Ẽ[Z

2(p−1)/(2−p)
T ]

)1−(p/2)
<∞

if 1 ≤ p < 2.

Let us now provide some preliminary results which are proved by Sass and Haussman
in [65] and in which we use the results of Appendix G for the Brownian motion W̃

and its corresponding measure P̃ .

Proposition 17.3. It holds Ekt ∈ D, k = 1, . . . , d. Further, for every u ∈ [0, T ] we
have DtEu = 0 for t ∈ (u, T ], and

DtEu = σ−1BDiag(Et) +
∫ u

t

(DtEs)Qds+
∫ u

t

(DtEs)Diag(B>(σσ>)−1)dRs,

for all t ∈ [0, u].

Proof. The result follows by applying Proposition G.2 of Appendix G to the
Rd-valued process (E1t , . . . , Edt ).

Remark 17.4. For n = 1, we set B = b. Then we have

DtEu =
b

σ
Et +

∫ u

t

Q(DtEs)ds+
b

σ2

∫ u

t

DtEsdRs.

Therefore, the process (DtEu)u∈[t,T ] satisfies the same stochastic differential equation
as (Eu)u∈[t,T ] with initial value b

σ
Et.

As a consequence of Lemma 14.3, and using the fact that ζ−1T = Ẽ[Z−1T |FS
t ] we have

the following lemma.
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Lemma 17.5. For all p ∈ [1,∞) we have

Ẽ[|ζT |p] <∞ and Ẽ[|ζ−1T |p] <∞.

The chain rule given in G.3 of Appendix G, is instrumental in obtaining the following
lemma.

Lemma 17.6. ζT and ζ−1T lie in D and for t ∈ [0, T ]

Dtζ
−1
T = σ−1BEt +

∫ T

t

(DtEs)B>dRs, (17.17)

DtζT = −ζ2TDtζ
−1
T . (17.18)

Proof. We have ζ−1T = 1dET ∈ D, this implies that Dtζ
−1
T = (DtEt)1d. Using the

fact that Q1d = 0, the representation (17.17) follows from Proposition 17.3.
For g : (0,∞) 7→ R, g(x) = 1

x
, we have ζT = g(ζ−1T ). Lemma 17.5 implies that

g(ζ−1T ) = ζT ∈ ⋂
Lp(P̃ ), and g′(ζ−1T ) = −ζ2T ∈ ⋂

Lp(P̃ ) and the representation
(17.18) follows from the chain rule in Proposition G.3 in Appendix G.

In this section we prove Theorem 17.7, where we use approximation arguments to
show that the optimal terminal wealth (15.13) has a Malliavin derivative. We recall
that the optimal terminal wealth is given as XEUL

T = f(ζT ) = f(ζT ; y1, y2) where

f(z) = f(z; y1, y2) :=





I(y1z) if z < h,

q if h ≤ z < h,

I( y1
1+y2

z) if h ≤ z.

Theorem 17.7.
If strictly positive and unique solutions y1, y2 of

E[ζTf(ζT ; y1, y2)] = x0, E[(U(f(ζT ; y1, y2))− U(q x0))
−] = ε (17.19)

exist. Further, if I ′(y1ζT ) ∈ Lq(P̃ ) for some q > 1, then the optimal terminal wealth
XEUL

T = f(ζT ) given in (15.13) lies in D1,1 and for t ∈ [0, T ]

Dtf(ζT ) = f ′(ζT )DtζT , (17.20)

where

f ′(z) = f ′(z; y1, y2) :=





y1I
′(y1z) if z < h,

0 if h ≤ z < h,
y1
1+y2

I ′( y1
1+y2

z) if h ≤ z,

y1, y2, h and h are as in Proposition 15.2.
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Proof. Let us denote by ‖·‖p and ‖·‖L2 the norms in Lp = Lp(Ω, P̃ ) and L2((0, T )),
respectively. Obviously we can find fn ∈ C1((0,∞)), n ∈ N such that

0 < fn ≤ f, fn → f (n→∞) (17.21)

and

|f ′n(z)|q < yq1|I ′(y1z)|q +
(

y1
1 + y2

)q ∣∣∣∣I
′
(

y1h

1 + y2

)∣∣∣∣
q

, f ′n → f ′ (n→∞), (17.22)

the convergence meant pointwise in both cases.

The condition E[ζTf(ζT ; y1, y2)] = x0 implies f(ζT ) ∈ L1, hence by (17.21) fn(ζT ) ∈
L1, n ∈ N. So we get by the Dominated Convergence Theorem

‖fn(ζT )− f(ζT )‖1 → 0 (n→∞). (17.23)

From the condition in the theorem we have I ′(y1ζT ) ∈ Lq, hence f ′(ζT ) ∈ Lq and by
(17.22) also f ′n(ζT ) ∈ Lq, n ∈ N. So

‖f ′n(ζT )− f ′(ζT )‖q → 0 (n→∞). (17.24)

By Lemma 17.6 we know that ζT ∈ D =
⋂

p>1Dp,1 with the derivative as given
in Equations (17.17) and (17.18). So the conditions of the chain rule G.4 given in
Appendix G are fulfilled. Therefore

Dfn(ζT ) = f ′n(ζT )DζT .

Further ζT ∈ D implies ‖ ‖DζT‖L2‖p < ∞ for all p > 1, in particular for p = q
q−1 .

Using Hölder’s Inequality and (17.24) we obtain

‖‖Dfn(ζT )− f ′(ζT )DζT‖L2‖1 = ‖ |f ′n(ζT )− f ′(ζT )| ‖DζT‖L2‖1
≤ ‖f ′n(ζT )− f ′(ζT )‖q‖ ‖DζT‖L2‖ q

q−1

→ 0 (n→∞).

Since D is a closed operator on D1,1 it follows in combination with (17.23) that
f(ζT ) ∈ D1,1 withDf(ζT ) = f ′(ζT )DζT . Actually we have shown that fn(ζT )→ f(ζT )
in the norm ‖F‖1,1 = ‖F‖1 + ‖ ‖DF‖L2‖1 under which the space D1,1 is closed.

18 Optimal Trading Strategies

In Proposition 15.2 we derive the form of the optimal terminal wealth as XEUL
T =

f(ζT ) = f(ζT ; y1, y2) by proceeding similarly to the case of full information studied
in Chapter II. Then we can proceed as in [65, Section 4] to find the optimal trading
strategy.
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Theorem 18.1.
Let the assumptions of Theorem 17.7 be fulfilled. Then the optimal strategy of the
problem (15.10) is given by

πEULt = (σσ>)−1Ẽ[f ′(ζT )σDtζT | FS
t ], 0 ≤ t ≤ T, (18.1)

where

DtζT = −ζ2T σ−1
(
B Et +

∫ T

t

(σDtEs)B>(σσ>)−1dRs

)
,

σ DtEs = BDiag(Et) +
∫ s

t

(σDtEu)Qdu+

∫ s

t

(σDtEu)Diag
(
B>(σσ>)−1

)
dRu.

Proof. The form of the optimal terminal wealth XEUL
T = f(ζT ; y1, y2) follows from

Proposition 15.2. By Theorem 17.7 this optimal terminal wealth has a Mallivain
derivative. On the other hand, Lemma 17.6 provides ζT ∈ D. The conditions of
Proposition G.4 are fulfilled for ζ and f . Therefore, XEUL

T = f(ζT ; y1, y2) ∈ D1,1 with

DtX
EUL
T = f ′(ζT )DtζT . (18.2)

Using Clark’s Formula in Theorem 17.1, we get for the terminal wealth

XEUL
T = x+

∫ T

0

Ẽ[(DtX
EUL
T )>|FS

t ]dW̃t. (18.3)

Equating (15.8) with (18.3) we obtain

πEULt = (σσ>)−1Ẽ[f ′(ζT )σDtζT | FS
t ], 0 ≤ t ≤ T,

where

DtζT = −ζ2T σ−1
(
B Et +

∫ T

t

(σDtEs)B>(σσ>)−1dRs

)
,

σ DtEs = BDiag(Et) +
∫ s

t

(σDtEu)Qdu+

∫ s

t

(σDtEu)Diag
(
B>(σσ>)−1

)
dRu,

are given by Lemma 17.6 and Proposition 17.3, respectively.

Remark 18.2. We point out that the optimal strategy given in Theorem 18.1 is
given in terms of the processes ζ, E and DE which are all FS-adapted and due to
Theorem 16.2, Corollary 16.4 and Proposition 17.3, their dynamics can be expressed
in terms of the return process R and the parameters B, Q, σσ>.

In what follows we shall derive a convenient representation of the optimal trading
strategy for the important utility functions given in Chapter I Equation (3.5): The
logarithmic utility U1(x) = ln(x), and the power utility Uγ(x) = x1−γ/1− γ for γ > 0,
γ 6= 1. These cover the whole range of risk behavior. Here γ is the Arrow-Pratt



18 Optimal Trading Strategies 77

index of risk aversion. So suppose γ is fixed and assume that the parameters y1, y2
in (17.19) exist. Denoting the inverse of the derivative U ′ by I we have

U ′(x) = x−γ , I(y) = y
−1
γ , I ′(y) = −1

γ
y−

1
γ
−1,

in particular I(x y) = I(x)I(y). Then we can write for all t ∈ [0, T ]

XEUL
T = I(y1)I(ζt)Gt,T , (18.4)

where Gt,T = g(ζt, ζt,T ), ζt,T = ζT/ζt, and

g(z1, z2) =





I(z2), z2 ∈ (0, h
z1
],

I( h
z1
), z2 ∈ ( h

z1
, h
z1
),

I( 1
1+y2

z2), z2 ∈ [ h
z1
,∞).

In particular XEUL
T = I(y1)G0,T . So from condition (17.19) we get

I(y1) =
x

Ẽ[G0,T ]
. (18.5)

In combination with (18.4) this implies

XEUL
t = Ẽ[XEUL

T | FS
t ] = I(y1ζt)Ẽ[Gt,T | FS

t ] =
x I(ζt)Ẽ[Gt,T | Et]

Ẽ[G0,T ]
,

where we used that Et is a sufficient statistic to compute Gt,T as can be seen from its
definition observing that ζt = 1/1>dEt. Thus by (18.4), (18.5)

XEUL
T =

xI(ζt)Gt,T

Ẽ[G0,T ]
=
XEUL

t Gt,T

Ẽ[Gt,T | Et]
. (18.6)

By this representation and the representation of πEULt in Theorem 18.1 we get the
following proposition.

Proposition 18.3. For all γ > 0 and for all 0 ≤ t ≤ T

θEULt =
πEULt

XEUL
t

(18.7)

=
(σσ>)−1

γ

(
Ẽ[Ct,T |XEUL

t , Et]B ηt + Ẽ
[
Ct,T

∫ T

t

(σDtEt,s)B>(σσ>)−1dRs

∣∣∣XEUL
t , Et

])

where Et,s = Es ζt, Ct,T =
ζt,TGt,T

Ẽ[Gt,T | Et]
− ζt,T qt1{hζ−1t <ζt,T<hζ

−1
t }, and qt =

q
XEUL
t

.
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Proof. Using the definition of qt and (18.6)

f ′(ζT ) = −1

γ
ζ−1T (f(ζT )− q1{ζT∈(h,h)})

= −X
EUL
t

γ
ζ−1T

(
XEUL

T

XEUL
t

− qt1{ζT∈(h,h)}

)

= −X
EUL
t

γ
ζ−1T

(
Gt,T

Ẽ[Gt,T | FS
t ]
− qt1{ζT∈(h,h)}

)

= −X
EUL
t

γ
ζt ζ

−2
T Ct,T .

Using the representation of DtζT in Theorem 18.1 we get

f ′(ζT )σDtζT =
XEUL

t

γ
ζtCt,T

(
B Et +

∫ T

t

(σDtEs)B>(σσ>)−1dRs

)

=
XEUL

t

γ
Ct,T

(
B ηt +

∫ T

t

(σDtEt,s)B>(σσ>)−1dRs

)
,

where we used Etζt = ηt.

Remark 18.4. (i) We obtain in a market model with partial information the opti-
mal strategy (Proposition 18.3) which is expressed in terms of the unnormalized filter
E , its Malliavin derivative DE , the state price density ζ, and the parameters of the
model. These quantities are all FS-adapted. Moreover, the filters and derivatives can
be approximated very well using Euler scheme because of the linear structure of the
equations in Theorem 16.2, Corollary 16.4 and in Proposition 17.3. So (Et, XEUL

t )
is a sufficient statistic for the calculation of πEULt , and the Markovian nature of this
statistic is very helpful for Monte Carlo simulations we need to compute the second
term of πEULt see [30].

(ii) The correction factor Ct,T replaces (Ẽ[ζ
−1
γ

t,T | FS
t ])

−1ζ
γ−1
γ

t,T given by Sass and Hauss-
mann [65, Proposition 4.10] in the case of unconstrained problem. In particular this
shows that the solutions coincide for q → 0. For constant µ we get the solution in
[30, Section 4.1], see Corollary 18.5 below.
(iii) Given XEUL

t and qt =
q

XEUL
t

it is optimal to continue trading in t with the same

strategy as when starting at 0 with x. If we would start at t with a different wealth
level the strategy (in terms of the risky fraction) would no longer be optimal. This
applies also to the full information case, but it is different from the unconstrained
case in e.g. [65] where the optimal risky fraction is independent of the current wealth.

Let us examine the particular case of a constant drift which leads to the situation of
full information studied in Chapter II Section 8. We restrict for the sake of simplicity
to the 1-dimensional case. Obviously in this case we have B = µ with Y = 1, and
the P -augmented filtration FS generated by the stock price, coincides with the P -
augmented natural filtration F of the Brownian motion W . It turns out that the
conditional state price density ζ coincides with the state price density Z, further it
results Es = Z−1s = e

1
2
κ2s+κWs for the unnormalized filter, where κ = µ

σ
.
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Corollary 18.5.
For a constant drift the optimal strategy obtained in the case of partial information
coincides with the optimal strategy obtained in the case of full information. More
precisely, it results

πEULt

XEUL
t

= θN
(
1− qx

XEUL
t

[
Φ
(
− d2(h, Zt, t)

)
− Φ

(
− d2(h, Zt, t)

)])

= θEULt ,

where

d2(u, z, t) :=
ln u

z
+ (−κ2

2
)(T − t)

κ
√
T − t

,

d1(u, z, t) := d2(u, z, t) +
1

γ
κ
√
T − t,

θN =
κ

γσ
=

µ

γσ2
.

Thereby, θN denotes the normal strategy of the non-risk manager, and κ = µ
σ
is the

market price of risk.

Proof. Computing the Malliavin derivative of Es we get using the usual chain rule

DtEs = Dt(e
1
2
κ2s+κWs) = e

1
2
κ2sDt(e

κWs)

= e
1
2
κ2sκeκWsDtWs = κZ−1s 1[0,t](s).

On the other hand, the dynamics of Z−1 is given by

dZ−1t = κZ−1t dW̃t. (18.8)

Computing the stochastic integral with respect to the return process we get

∫ T

t

(σDtEt,s)B>(σσ>)−1dRs =

∫ T

t

σ(ζtσ
−1µZ−1s )µσ−2dRs

=

∫ T

t

ζtσ
−2µ2Z−1s σdW̃s = κ2σζt

∫ T

t

Z−1s dW̃s

= κσζt

∫ T

t

κZ−1s dW̃s = κσζt(Z
−1
T − Z−1t ),

where the last equality follows from Equation (18.8). It results

Ẽ
[
Ct,T

∫ T

t

(σDtEt,s)B>(σσ>)−1dRs

∣∣∣ Et
]

= Ẽ
[
ζtCt,Tκσ(Z

−1
T − Z−1t ) | Ft

]

= µẼ
[
(Ct,TZ

−1
T Zt − Ct,T ) | Ft

]
.
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Substituting in Formula (18.7) and using the representation of Ct,T in Proposition
18.3, we get

πEULt

XEUL
t

=
σ−2µ

γ
Ẽ
[
Ct,TZ

−1
T Zt | Ft

]

=
σ−2µ

γ
Ẽ
[ Gt,T

Ẽ[Gt,T | Et]
− qt1{hζ−1t <ζt,T<hζ

−1
t }

∣∣∣Ft

]

=
σ−2µ

γ

{
1− Ẽ

[ qx

XEUL
t

1{h<ZT<h}

∣∣∣Ft

]}

=
σ−2µ

γ

{
1− qx

XEUL
t

Z−1t E
[
ZT1{h<ZT<h}

∣∣∣Ft

]}

= θN
(
1− qx

XEUL
t

[
Φ
(
− d2(h, Zt, t)

)
− Φ

(
− d2(h, Zt, t)

)])

= θEULt ,

where θEULt is the fraction of wealth we have obtained in the case of full information
studied in Chapter II, see Proposition 8.4 (ii). Here, θN = κ

γσ
= µ

γσ2
denotes the

normal strategy.
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Chapter V

Appendix

A Proof of Lemma 7.2

Let z > 0 and consider the function h(x) := U(x)− y1zx− y2(x− q)−. Defining the
two functions

h1(x) := U(x)− y1zx

h2(x) := U(x)− y1zx+ y2(x− q) = U(x)− (y1z − y2)x− y2q,

the function h can be written as

h(x) =

{
h1(x) for x ≥ q,
h2(x) for x < q.

(A.1)

Since h1 and h2 are strictly concave and continuously differentiable, the function
h is a continuous and strictly concave function which is differentiable in (0, q) and
(q,∞) and possesses different one-sided derivatives in the point x = q which are
h′(q − 0) = h′2(q) and h

′(q + 0) = h′1(q).
The functions h1 and h2 attain their maximum values at x1 = I(y1z) and x2 :=
I(y1z − y2), respectively. Since the function I(.) is strictly decreasing and y2 > 0 it
follows x1 < x2. To find the maximum of h one has to consider the following three
cases.

(i) q < x1:
Since U ′ is strictly decreasing we have U ′(q) > U ′(x1) = U ′(I(y1z)) = y1z, hence

z < U ′(q)
y1

= h. Considering the one-sided derivatives at x = q one obtains

h′(q − 0) = h′2(q) = U ′(q)− (y1z − y2) > U ′(q)− y1
U ′(q)

y1
+ y2 > 0

and h′(q + 0) = h′1(q) = U ′(q)− y1z > U ′(q)− y1
U ′(q)

y1
= 0,

i.e., the function h is increasing at x = q. It follows that the function h attains its
maximum on (q,∞) where h(x) = h1(x), i.e., the maximum is at x = x1 = I(y1z).
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(ii) x1 ≤ q < x2:
Now the relation q ≥ x1 implies z ≥ h while q > x2 leads to

U ′(q) < U ′(x2) = U ′(I(y1z − y2)) = y1z − y2,

i.e., z < U ′(q)+y2
y1

= h, which gives h ≤ z < h. It follows that

h′(q − 0) = h′2(q) = U ′(q)− (y1z − y2) > U ′(q)− y1
U ′(q) + y2

y1
+ y2 = 0

and h′(q + 0) = h′1(q) = U ′(q)− y1z ≤ U ′(q)− y1
U ′(q)

y1
= 0.

From the strict concavity of h we deduce that

h′(x) = h′2(x) > h′2(q) > 0 for x < q

h′(x) = h′1(x) < h′1(q) ≤ 0 for x > q.

Thus the function h is strictly increasing for x < q and strictly decreasing for x > q,
hence h attains its maximum at x∗ = q.

The relations
y1

1 + y2
z < u′(q) ≤ y1z

imply

h ≤ z < h =
1 + y2
y1

u′(q). (A.2)

(iii) q ≥ x2:

This case is equivalent to z ≥ h = U ′(q)+y2
y1

. For the one-sided derivatives at x = q
one obtains

h′(q − 0) = h′2(q) = U ′(q)− (y1z − y2) ≤ U ′(q)− y1
U ′(q) + y2

y1
+ y2 = 0

and h′(q + 0) = h′1(q) = U ′(q)− y1z ≤ U ′(q)− y1
U ′(q) + y2

y1
= −y2 < 0.

It follows that the function h is decreasing at x = q attains it maximum on (0, q)
where h(x) = h2(x) and hence the maximum is at x = x2 = I(y1z − y2).

B Proof of Lemma 8.2

Consider the function

h(x) := U(x)− y1zx− y2(U(x)− U(q))−.

Defining the two functions

h1(x) := U(x)− y1zx

h2(x) := U(x)− y1zx+ y2(U(x)− U(q)) = (1 + y2)U(x)− y1zx− y2U(q),
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the function h can be written as

h(x) =

{
h1(x) for x ≥ q,
h2(x) for x < q.

Since h1 and h2 are strictly concave and continuously differentiable, the function h is a
continuous and strictly concave function which is differentiable in [0, q) and (q,∞) and
possesses different one-sided derivatives in the point x = q which are h′(q−0) = h′2(q)
and h′(q + 0) = h′1(q).
The functions h1 and h2 attain its maximum values at x1 := I(y1z) and x2 :=
I
(

y1
1+y2

z
)
, respectively. Since the function I(.) is strictly decreasing and y2 > 0 it

follows x1 < x2. To find the maximum of h one has to consider the following three
cases.

(i) q < x1:
Since U ′ is strictly decreasing we have U ′(q) > U ′(x1) = U ′(I(y1z)) = y1z. Consider-
ing the one-sided derivatives at x = q one obtains

h′(q − 0) = h′2(q) = (1 + y2)U
′(q)− y1z > (1 + y2)y1z − y1z = y1y2z > 0

and h′(q + 0) = h′1(q) = U ′(q)− y1z > y1z − y1z = 0,

i.e., the function h is increasing at x = q. It follows that the function h attains it
maximum on (q,∞) where h(x) = h1(x), i.e., the maximum is at x∗ = x1 = I(y1z).

Solving the inequality U ′(q) > y1z for z it yields

z <
u′(q)

y1
= h. (B.3)

(ii) x1 ≤ q < x2:

Now the relation q ≥ x1 implies U ′(q) ≤ y1z while q < x2 leads to

U ′(q) > U ′(x2) = U ′
(
I
( y1
1 + y2

z
))

=
y1

1 + y2
z.

For the one-sided derivatives at x = q we find

h′(q − 0) = h′2(q) = (1 + y2)U
′(q)− y1z > (1 + y2)

y1
1 + y2

z − y1z = 0

and h′(q + 0) = h′1(q) = U ′(q)− y1z ≤ y1z − y1z = 0.

From the strict concavity of h we deduce that h′(x) = h′1(x) < h′1(q) < 0 for x > q.
Thus the function h is strictly increasing for x < q and strictly decreasing for x > q,
hence h attains its maximum at x∗ = q.

The relations
y1

1 + y2
z < U ′(q) ≤ y1z
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imply

h ≤ z < h =
1 + y2
y1

U ′(q) (B.4)

(iii) q ≥ x2:
In this case we have U ′(q) ≤ U ′(x2) =

y1
1+y2

z, For the one-sided derivatives at x = q
one obtains

h′(q − 0) = h′2(q) = (1 + y2)U
′(q)− y1z ≤ y1z − y1z = 0

and h′(q + 0) = h′1(q) = U ′(q)− y1z ≤ y1z

1 + y2
− y1z < 0.

It follows that the function h is decreasing at x = q attains its maximum on (0, q)
where h(x) = h2(x) and hence the maximum is at x∗ = x2 = I(1+y2

y1
z).

Solving the inequality U ′(q) ≤ U ′(x2) =
y1
1+y2

z for z it follows

z ≥ 1 + y2
y1

U ′(q) = h. (B.5)

C Computation of the current terminal wealth in

Proposition 8.4

The state price density Ht is the solution of the (SDE) (4.7) and its terminal value
HT at the horizon T can be expressed in terms of the value Ht at time t ≤ T by

HT = Ht exp

(
−
(
r +

‖κ‖2
2

)
(T − t)− κ>(WT −Wt)

)

= Ht exp(a+ bη).

Thereby a = −(r + ‖κ‖2
2

)(T − t), b = −‖κ‖
√
T − t and η is a standard Gaussian

random variable, which is independent of Ft.

Applying Itô’s lemma together with Equations (4.7) and (4.8) implies that the process
HXEUL is an F -martingale. As a consequence we get

XEUL
t = E

[
HT

Ht

XEUL
T

∣∣∣Ft

]

= E

[
HT

Ht

I(y1HT )1{HT<h}

∣∣∣Ft

]
+ E

[
HT

Ht

q1{h≤HT<h}

∣∣∣Ft

]
+ (C.6)

E

[
HT

Ht

I

(
y1

1 + y2
HT

)
1{h≤HT }

∣∣∣Ft

]

Using this representation and the facts that Ht is Ft-measurable and η is independent
of Ft, the conditional expectations in Eq. (C.6) can be written in the form

c

Ht

E[g(Ht, η)|Ft] =
c

Ht

ψ(Ht) with ψ(z) = E[g(z, η)], for z ∈ (0,∞),
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where g is a measurable function and c is a real constant . Applying this relation,
the three conditional expectations can be evaluated as follows.

i) For the first term of Equation (C.6), it holds

E

[
HT

Ht

I(y1HT )1{HT<h}

∣∣∣Ft

]
=

y
− 1

γ

1

Ht

E[g(Ht, η)|Ft] =
y
− 1

γ

1

Ht

ψ(Ht)

with g(z, x) = zλeλ(a+bx)1{zea+bx<h}, where λ = 1− 1
γ
. Computing ψ we get

ψ(z) =
1√
2π

∫

R
zλeaθ+bλxe−

1
2
x21{zea+bx<h}dx

=
zλ√
2π
eaλ+

1
2
b2λ2

∫ ∞

ln(
h
z )−a

b

e−
1
2
(x−bλ)2dx

= =
zλ√
2π
eaλ+

1
2
b2λ2

∫ ∞

ln(
h
z )−a

b
−bλ

e−
1
2
x2dx

= zλeΓ(t)
[
1− Φ

( ln(h
z
)− a

b
− bλ

)]
= zλeΓ(t)[1− Φ(−d1(h, z, t))].

Finally we get

E

[
HT

Ht

I(y1HT )1{HT<h}

∣∣∣Ft

]
=

y
− 1

γ

1

Ht

ψ(Ht) = (y1Ht)
− 1

γ eΓ(t)[1− Φ(−d1(h,Ht, t))].

ii) For the second term of Equation (C.6) we obtain

E

[
HT

Ht

q1{h≤HT<h}

∣∣∣Ft

]
=

q

Ht

E[g(Ht, η)|Ft] =
q

Ht

ψ(Ht),

where g(z, x) = zea+bx1{h≤ zea+bx<h}. Computing ψ we get

ψ(z) =
1√
2π

∫

R
zea+bxe−

1
2
x21{h≤ zea+bx<h}dx

=
z√
2π
ea+

1
2
b2
∫ ln(

h
z )−a

b

ln(hz )−a

b

e−
1
2
(x−b)2dx

=
z√
2π
ea+

1
2
b2
∫ ln(

h
z )−a

b
−b

ln(hz )−a

b
−b

e−
1
2
x2dx

= ze−r(T−t)
[
Φ
( ln(h

z
)− a

b
− b
)
− Φ

( ln(h
z
)− a

b
− b
)]

= ze−r(T−t)[Φ(−d2(h, z, t))− Φ(−d2(h, z, t))],
and we have

E

[
HT

Ht

q1{h≤HT<h}

∣∣∣Ft

]
=

q

Ht

ψ(Ht) = qe−r(T−t)[Φ(−d2(h,Ht, t))− Φ(−d2(h,Ht, t))].
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iii) For the third term we obtain

E

[
HT

Ht

I(
y1

1 + y2
HT )1{HT≥h}

∣∣∣Ft

]
=

( y1
1+y2

)−
1
γ

Ht

E[g(Ht, η)|Ft] =
( y1
1+y2

)−
1
γ

Ht

ψ(Ht)

with g(z, x) = zλeλ(a+bx)1{zea+bx≥h} and λ = 1− 1
γ
. Computing ψ we get

ψ(z) =
1√
2π

∫

R
zλeaλ+bλxe−

1
2
x21{zea+bx≥h}dx

=
zλ√
2π
eaλ+

1
2
b2λ2

∫ ln(hz )−a

b

−∞
e−

1
2
(x−bλ)2dx

=
zλ√
2π
eaλ+

1
2
b2λ2

∫ ln(hz )−a

b
−bλ

−∞
e−

1
2
x2dx

= zλeΓ(t)
[
Φ
( ln(h

z
)− a

b
− bλ

)]
= zλeΓ(t)[Φ(−d1(h, z, t))].

Finally we obtain

E

[
HT

Ht

I(
y1

1 + y2
HT )1{HT≥h}

∣∣∣Ft

]
=

( y1
1 + y2

Ht

)− 1
γ

eΓ(t)[Φ(−d1(h,Ht, t))].

D Proof of Lemma 11.2

The proof is analogous to the above proof of Lemma 8.2 if the quantity q is substituted
by q = q(z) = Az−ν . The dependence of q on z affects only the solutions of the
inequalities given in (B.3), (B.4), and (B.5). Taking into account the dependence of
q on z we get the following solutions.

(i) q < x1:

The inequality U ′(q) = (Az−ν)
−γ

= A−γzγν > y1z is fulfilled

(a) for ν < 1
γ

if z <
(

1
y1Aγ

) 1
1−γν

= h,

(b) for ν > 1
γ

if z > h

(ii) x1 ≤ q < x2:

The inequalities y1
1+y2

z < U ′(q) = (Az−ν)
−γ

= A−γzγν ≤ y1z are fulfilled

(a) for ν < 1
γ

if h ≤ z < h =
(
1+y2
y1Aγ

) 1
1−γν

,

(b) for ν > 1
γ

if h ≤ z < h
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(iii) q ≥ x2:

The inequality y1
1+y2

z ≥ U ′(q) = (Az−ν)
−γ

= A−γzγν is fulfilled

(a) for ν < 1
γ

if z ≥ h,

(b) for ν > 1
γ

if z ≤ h.

E Evaluation of the derivative Fz(z, t) in Eq. (11.3)

We rewrite Equation (11.3) as follows

Fz(z, t) = − 1

γz

[
F (z, t)− (1− γν)

AeΓ2(t)

zν

(
Φ(−d2(h, z, t))− Φ(−d2(h, z, t))

)]

+
1

zκ
√
T − t

(V1 + V2),

where

V1 = − eΓ1(t)

(y1z)
1
γ

[
ϕ(d1(h, z, t))− (1 + y2)

1
γϕ(d1(h, z, t))

]
,

and

V2 =
AeΓ2(t)

zν

[
ϕ(d2(h, z, t))− ϕ(d2(h, z, t))

]
.

For simplicity we make the following notation:

a = κ
√
T − t, d1(h, z, t) = d1, d2(h, z, t) = d2, d1(h, z, t) = d1, d2(h, z, t) = d2.

Since d1 = d2 +
a
γ
, this implies that ϕ(d1) = ϕ(d2)e

− 1
2
a2

γ2 e−
a
γ
d2 . Moreover, it holds

− ln(1 + y2)

a
d1 = − ln(1 + y2)

a
d2 + ln(1 + y2)

− 1
γ .

As consequence we obtain

V1 = − eΓ(t)

(y1z)
1
γ

ϕ(d1)

[
1− (1 + y2)

1
γ e−

1
2
(
ln(1+y2)

a
)2e−

ln(1+y2)
a

d1

]

= −e
Γ(t)− 1

2
a2

γ2
− a

γ
d2

(y1z)
1
γ

ϕ(d2)

[
1− e−

1
2
(
ln(1+y2)

a
)2e−

ln(1+y2)
a

d2

]
.

From the other hand we have

Γ(t)− 1

2

a2

γ2
− a

γ
d2 = Γ(t)− 1

2

a2

γ2
− 1

γ
(r − κ2

2
)(T − t) + ln

(h
z

)− 1
γ

= −r(T − t) + ln
(h
z

)− 1
γ

,
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which implies that

V1 = −e
−r(T−t)(h

z
)−

1
γ

(y1z)
1
γ

ϕ(d2)

[
1− e−

1
2
(
ln(1+y2)

a
)2e−

ln(1+y2)
a

d2

]

= −qe−r(T−t)ϕ(d2)
[
1− e−

1
2
(
ln(1+y2)

a
)2e−

ln(1+y2)
a

d2

]

= −V2.

Hence, the claim is proved.

F Proof of Proposition 11.5

Following the argumentation of Lemma 11.2 we get the following solutions z of the
stated inequalities.

(i) q < x1:

The inequality U ′(q) = (Az−ν)
−γ

= A−γzγν > y1z is fulfilled for all z > 0 if y1A
γ ∈

(0, 1). Otherwise there is no solution.

(ii) x1 ≤ q < x2:

The inequalities y1
1+y2

z < U ′(q) = (Az−ν)
−γ

= A−γzγν ≤ y1z are fulfilled for all z > 0

if y1A
γ ∈ [1, 1 + y2). Otherwise there is no solution.

(iii) q ≥ x2:

The inequality y1
1+y2

z ≥ U ′(q) = (Az−ν)
−γ

= A−γzγν is fulfilled for all z > 0 if

y1A
γ ∈ [1 + y2,∞). Otherwise there is no solution.

Provided an optimal solution exists Lemma 11.2 gives the following form of the opti-
mal terminal wealth which depends on the value of y1A

γ

ξ∗ =





I(y1HT ) if y1A
γ ∈ (0, 1)

AH−ν
T = Q if y1A

γ ∈ [1, 1 + y2)

I
(

y1
1+y2

HT

)
if y1A

γ ∈ [1 + y2,∞).

In order to check the existence of an optimal solution one has to check whether there
exist real numbers y1 > 0 and y2 ≥ 0 such that it holds

E[HT ξ
∗] = x

E[(U(ξ∗)− U(Q))−] ≤ ε.

In the first case the parameter y1 can to be chosen such that the budget constraint
is fulfilled with equality, i.e., E[HT ξ

∗] = E[HT I(y1HT )] = x which gives y1 = yN . It
can be observed that ξ∗ coincides with the optimal terminal wealth of the problem
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without risk constraint. If the risk constraint is fulfilled (not necessarily with equality)
then it is the optimal solution since there is no other terminal wealth exceeding the
expected utility of ξ∗.

In the second case ξ∗ coincides with the benchmarkQ. Using ν = 1
γ
, I(z) = z−

1
γ = z−ν

and setting A = ỹ−ν we get

ξ∗ = AH−ν
T = (ỹHT )

−ν = I(ỹHT ).

For the budget constraint this implies

x = E[HT ξ
∗] = E[HT I(ỹHT )]

For the Expected Utility Loss we get E[(U(ξ∗) − U(Q))−] = E[(U(Q) − U(Q))−] =
0 < ε.

If the parameters of our model which are involved in ỹ are such that the budget
constraint is fulfilled with equality then the optimal terminal wealth is ξ∗ = I(ỹHT )
since the risk constraint is always fulfilled. Moreover it coincides with the optimal
terminal wealth of the problem without risk constraint.

For other parameters there is no optimal solution.

In the third case the optimal terminal wealth is ξ∗ = I
(

y1
1+y2

HT

)
if it satisfies

E[HT ξ
∗] = x

E[(U(ξ∗)− U(Q))−] ≤ ε.

For the first equation we get

E[HT ξ
∗] = E

[
HT I

(
y1

1 + y2
HT

)]
.

From the considerations of the problem without risk constraint it is known, that
the equation is fulfilled for y1

1+y2
= yN . For the risk constraint we use that in the

considered case it holds ξ∗ ≤ Q = AH−ν
T (see case (iii) of Lemma 11.2 which holds

for y1A
γ ∈ [1 + y2,∞)). From this property it follows for the Expected Utility Loss

E[(U(ξ∗)− U(Q))−] = E[U(Q)− U(ξ∗)]

= E[U(AH−ν
T )− U(I(yNHT ))].

If the numbers y1 and y2 are such that y1
1+y2

= yN and y1A
γ ∈ [1 + y2,∞) then the

Expected Utility Loss depends on the parameters of the financial market (as µ, r, σ, x)
via A, ν,HT , y

N and the parameter γ of the utility function via I but not directly on
y1 and y2. So, if to a given ε and a yN following from the solution of the first equation
the risk constraint is fulfilled then the optimal terminal wealth is

ξ∗ = I

(
y1

1 + y2
HT

)
= I(yNHT ).
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Hence, it coincides with the optimal terminal wealth of the problem without risk
constraint.

On the other hand, if the risk constraint is not fulfilled, then there is no admissible
solution and consequently no optimal solution.

The given form of yN follows directly from the representation of yN given in Example
4.6 for ν = 1

γ
. Moreover in this case we have θN = γκ

σ
= 1

γν
= 1.

G Malliavin derivative

Consider a complete probability space (Ω,H, P ) and let W = (Wt)t∈[0,T ] be an Rn-
valued standard Brownian motion defined on it, Wt = (W 1

t , . . . ,W
n
t )
>. We shall de-

note by F = (Ft)t∈[0,T ] the P -augmentation of the natural filtration FW = (FW
t )t∈[0,T ],

FW
t = σ(Ws; 0 ≤ s ≤ t) which satisfies the usual conditions of right-continuity and

completion by P -negligible sets.
We shall need to recall the definition of the Malliavin derivative (Ocone and Karatzas
[61]), see also Nualart and Pardoux [59]. Denote by C∞b (Rm) the set of C∞ functions
f : Rm 7→ R which are bounded and have bounded derivatives of all orders. Let S be
the class of smooth functionals, i.e., random variables of the form

F (ω) = f(Wt1(ω), . . . ,Wtd(ω)),

where (t1, . . . , td) ∈ [0, T ]d and the function f(x11, . . . x
n
1 , . . . , x

1
d, . . . , x

n
d) belongs to

C∞b (Rdn). The gradientDF (ω) of the smooth functional F is defined as the (L2([0, T ]))n-
valued random variable DF = (D1F, . . . , DnF ) with components

DiF (ω)(t) =
d∑

j=1

∂

∂xij
f(Wt1(ω), . . . ,Wtn(ω))1[0,tj ](t) i = 1, . . . , n. (G.7)

Finally, let ‖.‖ denote the L2([0, T ]) norm; |.| will be reserved for the Euclidean norm
on Rd, d ≥ 1. For each p ≥ 1, we introduce the norm

‖F‖p,1 =
(
E

[
|F |p +

( n∑

j=1

‖DiF‖2
)p/2])1/p

(G.8)

on S, and we denote by Dp,1 the Banach space which is the closure of S under ‖.‖p,1.

Remark G.1. It is proved that DF is well-defined on Dp,1 by closure for any
p ≥ 1, see [68], Lemma 2.1. Given F ∈ Dp,1, on can find a measurable process
(t, ω) 7→ DtF (ω) such that for a.e. ω ∈ Ω, DtF (ω) = DF (ω)(t) hold for almost all
t ∈ [0, T ]. DtF (ω) is defined uniquely up to sets of measure zero on [0, T ] × Ω. In
general, if X : Ω 7→ L2([0, T ]) is measurable, there exists a B([0, T ])⊗F measurable
random variable, X̃ = (X̃(t, ω))(t,ω)∈[0,T ]×Ω, such that X̃(., ω) = X(ω) holds almost
surely.
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For F = (F1, . . . , Fd)
> ∈ (Dp,1)

d the Malliavin derivative DF is defined by setting
(DF )ik = DiFk, i = 1, . . . ;n, k = 1 . . . , d (transposed to the convention for the Jacobi
matrix). We shall use the space

D =
⋂

p>1

Dp,1.

The following theorem proved in [65] is based on Theorem 4.14 in [60] where it is used
to give a new proof of the generalization of Clark’s formula from Brownian motion
to Itô processes found in [36]. For complete proof of Proposition G.2 we refer to
Proposition 8.3 in [65].

Proposition G.2. For d ∈ N we consider the d-dimensional SDE

dXt = f ν(t,Xt)dt+ fσ(t,Xt)dWt, t ∈ [0, T ], X0 = x0, (G.9)

assuming that x0 ∈ Rd, f ν and fσ are measurable Rd and Rd×n-valued functions
which are continuously differentiable and satisfy

sup
t∈[0,T ], x∈Rd

(∣∣∣ ∂
∂xk

f νi (t, x) +
∂

∂xk
fσij(t, x)

∣∣∣
)
<∞, sup

t∈[0,T ]
(|f νi (t, 0) + fσij(t, o)|) <∞

for i, k = 1, . . . , d, j = 1, . . . , n. Then (G.9) has a unique continuous solution
(Xt)t∈[0,T ] which satisfies Xk

s ∈ D, k = 1, . . . , d,

DtXs = (fσ(t,Xt))
> +

∫ s

t

DtXu(∂xf
ν(u,Xu))

>du

+

∫ s

t

DtXu

n∑

j=1

(∂xf
σ
.j(u,Xu))

>dW j
u

for t ∈ [0, s], and DtXs = 0 for t ∈ (s, T ]. Here ∂x denotes the Jacobi matrix, i.e.,
(∂xf

ν
i )ij =

∂
∂xj
f νi , and f

σ
.j is the jth column of fσ.

The optimal strategy we are looking for is given in terms of Malliavin derivative
of the optimal terminal wealth provided this terminal wealth belongs to D1,1. The
chain rule is crucial to show that our terminal wealth which is a functional of the
conditional state density ζ lies in D1,1. In our model it is easier to work in D since
the required integrability conditions we need to apply the chain rules follow directly
from Hölder’s inequality. Moreover, the chain rules in [60] and [61] are not adequate
for our situation. So we state the following chain rules proved in [65]

Proposition G.3. Suppose that F ∈ D with values in some open interval J , g ∈
C1(J,R), and g(F ), g′(F ) ∈

⋂
p>1 L

p. Then g(F ) ∈ D and Dg(F ) = g′(F )DF .

Proof. Suppose n = 1 and p > 1. Then for every q > p Hölder’s inequality implies

‖‖g′(F )DF‖L2‖p = ‖|g′(F )|‖DF‖L2‖p ≤ ‖g′(F )‖q‖‖DF‖L2‖ pq
q−p

<∞,

hence ‖‖g′(F )DF‖L2‖p,1 <∞. The rest of the proof is similar to the proof of Lemma
A.1 in [61].
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Proposition G.4. Suppose F = (F1, . . . , Fd) ∈ (D)d with values Rd, g ∈ C1(Rd,R),
and g(F ) ∈ L1. If g′(F ) ∈ Lq for some q > 1. Then g(F ) ∈ D1,1 and

Dg(F ) =
d∑

k=1

( ∂

∂xk
g(F1, . . . , Fd)

)
D(Fk).

Proof. The assumptions imply using again Hölder’s inequality

‖‖g′(F )DF‖L2‖1 = ‖|g′(F )|‖DF‖L2‖1
≤ ‖g′(F )‖q‖‖DF‖L2‖ q

q−1
<∞,

hence ‖‖g′(F )DF‖L2‖1,1 < ∞ and similarly to the proof of Lemma A.1 in [61] one
can obtain the claim.
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