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4



Contents

Introduction 7

Notation 11

1 The closed convex sets in Rp 13

1.1 The space F̂ of closed subsets of Rp . . . . . . . . . . . . . . . . . . . . . . . 13
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3.1 Semi–continuity of F̂–valued functions . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Semi–continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Locally bounded functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5



6 Contents

3.5 Conjugates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Biconjugation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Duality 65

4.1 Fenchel duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Lagrange duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Some special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Relationship to vector optimization 77

5.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Point relation vs. set relation approach . . . . . . . . . . . . . . . . . . . . . 80

5.3 On the structure of vector optimization problems . . . . . . . . . . . . . . . . 83

Appendix 87

A Some calculus rules of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B Partially ordered sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C Ordered conlinear spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Index of notation 95

Bibliography 97



Introduction 7

Introduction

Since the middle of the 80ies, set–valued optimization problems, i.e., optimization problems
with a set–valued objective map, have been investigated. This field of research is called set–
valued optimization or set optimization. The most results in the literature are based on the
following (or a similar) solution concept:

One considers a set–valued objective map F : X ⇒ Y and a set of feasible points S ⊆ X,
where X and Y are linear spaces and Y is partially ordered by a convex pointed cone. A
pair (x̄, ȳ) with x̄ ∈ S and ȳ ∈ F (x̄) is called a minimizer of the set–valued optimization
problem if ȳ is a minimal element of the set F (S) :=

⋃
x∈S F (x), where the minimality

notion is understood with respect to the partial ordering in the space Y . Therefore, (in this
work) set optimization based on this solution concept is called set optimization with point
relations. In this field, there are papers on optimality conditions, e.g. Corley [21], Luc [58],
Jahn and Rauh [43], Götz and Jahn [32], Chen and Jahn [16], Crespi, Ginchev and Rocca
[22], as well as papers on duality assertions, e.g. Tanino and Sawaragi [79], Corley [19], where
only the dual problems are set–valued, and Kawasaki [44], Postolică [66], Corley [20], Luc
and Jahn [59], Song [73], where both the primal and the dual problem are set–valued. A
good survey as well as further references can be found in the book of Jahn [42]. Set–valued
optimization problems based on this solution concept naturally occur in vector optimization,
for instance, as dual problems (see e.g. Tanino and Sawaragi [79], Corley [19]). Of course,
vector optimization problems provide a very important special case of set optimization with
numerous applications. Moreover, it turned out that the answer to certain problems in vector
optimization can be found, if the vector optimization problem is considered in a set–valued
framework. For instance, by Hamel, Heyde, Löhne, Tammer and Winkler [34] a set–valued
approach is used to solve the problem of the duality gap in linear vector optimization in the
case that the right hand side of the inequality constraints is zero.

Optimization with set relations (actually ”set optimization with set relations”) provides quite
a different approach to set optimization. The basic idea is to understand the set–valued
objective map as a function f : X → P(Y ) into the space P(Y ) of all subsets of Y . This
space is provided with an appropriate ordering relation. Such ordering relations have been
investigated, for instance, by Young [83], Nishnianidze [64], Brink [13], Kuroiwa [49] and
Hamel [33]. In the special case that Y is a linear space, K ⊆ Y a convex pointed cone and
A,B ⊆ Y , these relations can be expressed by

A 4K B :⇔ B ⊆ A + K and A 2K B :⇔ A ⊆ B −K.

In a sequence of very similar papers of Kuroiwa, e.g. [49], [50], [51], [52], [53], corresponding
optimization problems are investigated and some first steps towards a duality theory are
taken. These optimization problems are based on the following solution concept: A point
x ∈ S is called a 4K–minimal solution of the set–valued optimization problem if

(
f(x) 4K f(x̄), x ∈ S

) ⇒ f(x̄) 4K f(x).

Some other results in this field are generalizations of Ekeland’s variational principle (Truong
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[80]) as well as Phelps type minimal point theorems (Hamel and Löhne [35]) to the framework
of these ordering relations.

This work is concerned with optimization with set relations, however, our investigations are
not based on the solution concept introduced above. Instead we use the lattice structure
of the image space P(Y ) and ask for the infimum and supremum of the objective function
over the set S. Our theory is modeled on scalar optimization rather than vector optimiza-
tion. Nevertheless we show that this approach is beneficial for a better understanding of the
structures in vector optimization and set optimization with point relations, because problems
of this kind are hidden in every vector optimization and set optimization problem. Let us
proceed with a more detailed discussion.

In this work we investigate optimization problems based on set relations where we restrict
the image space of the objective function f to the family of closed convex subsets of Rp, in
the following denoted by Ĉ. The space Ĉ is equipped with an addition and a multiplication
by nonnegative reals, more precisely, it is a conlinear space (see Appendix C). The reason for
supposing convex sets is that many assertions, even in the classical theory, require convexity
of the objective function. The convexity notion in our framework, however, implies that the
values are convex sets. The convexity of the sets also ensures that the ”second distributive
law” is valid in our image space Ĉ, which is beneficial in some cases. The reason for the
closedness is that we only use convergences that do not distinguish between a set and its
closure. The space Ĉ is ordered by set inclusion. In fact, (Ĉ,⊇) is an ordered conlinear space
(see Appendix C). In contrast to that, Ĉ being equipped with the orderings 4K or 2K is
just a quasi–ordered conlinear space, because 4K and 2K are not antisymmetric. Of course,
one can switch over to equivalence classes in order to obtain antisymmetry. Then, however,
4K and 2K reduce to the usual set inclusion ⊇ and ⊆, respectively. We next observe that
our image space (Ĉ,⊇) is order complete (a complete lattice). Infimum and supremum of a
nonempty subset A ⊆ Ĉ can be expressed by

inf A = cl conv
⋃

A∈A
A and supA =

⋂

A∈A
A.

This allows us to proceed analogously to the classical scalar optimization theory. We consider
a Ĉ–valued objective function and a set S ⊆ X of feasible points. Our goal is to determine the
sets infx∈S f(x) and supx∈S f(x) or, equivalently, the sets cl conv

⋃
x∈S f(x) and

⋂
x∈S f(x).

It is also interesting to ask for a corresponding solution concept (in the space X), however,
this is beyond the scope of this work.

Optimization based on set inclusion subsumes the classical scalar optimization theory. This
can be seen by the following simple reformulation. Consider an extended real–valued objective
function f : X → R∪{−∞, +∞}. Then the function f̄ , defined by f̄(·) := {f(·)}+R+ (where
we set {+∞}+ R+ = ∅ and {−∞}+ R+ = R), is a Ĉ–valued function and it holds

{
inf
x∈S

f(x)
}

+ R+ = inf
x∈S

f̄(x) and
{

sup
x∈S

f(x)
}

+ R+ = sup
x∈S

f̄(x).

On the other hand, in case we know infx∈S f̄(x) ∈ Ĉ and supx∈S f̄(x) ∈ Ĉ we obtain the real
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counterparts by

inf
x∈S

f(x) = inf
{

inf
x∈S

f̄(x)
}

and sup
x∈S

f(x) = inf
{

sup
x∈S

f̄(x)
}

.

We observe that a scalar optimization problem can be decomposed into two components,
namely,

1. an optimization problem based on set inclusion, where the involved sets have the special
structure of Ar := {s ∈ R| s ≥ r}, r ∈ R ∪ {−∞,+∞}.

2. the (trivial) problem of determining the infimum of such sets.

In this manner it is interesting to compare the construction of real numbers by Dedekind
cuts.

Optimization problems based on set inclusion are also hidden in other problems such as vector
optimization problems and set optimization problems based on point relations. Similar to the
scalar case, set optimization problems can be decomposed into two components, namely,

1. an optimization problem based on set inclusion, in fact, the problem to determine the
set

F (S) :=
⋃

x∈S

F (x),

2. the problem of determining the set Inf F (S) of infimal or the set MinF (S) of minimal
(efficient) points with respect to the partial ordering in Y .

We show in this work that a separate investigation of both parts leads to deeper insights into
the structure of set optimization problems based on point relations. Many assertions that
are well–known for scalar problems can be generalized to optimization problems based on
set inclusion. For instance, we will generalize a biconjugation theorem and duality assertions
of Fenchel as well as Lagrange type to this framework. In doing so, we essentially maintain
the structures of the scalar case. Putting both components together, certain parts of these
structures are lost. This is due to the fact that the second component, which is ”nontrivial” in
contrast to the scalar case, destroys the lattice structure in the sense that the set of minimal
points cannot be described with an infimum (in the sense of lattice theory) in the space Y .

The investigations on optimization problems with set relations leads to some results, which
could be of independent interest. Embedding of convex sets into a linear space has been
investigated by many authors, beginning with the paper of R̊adström [67], but only for spaces
of compact or bounded sets. We extend some results to nonbounded sets. Secondly, we
obtain some results on convergence in the space of closed convex subsets of Rp. We introduce
a convergence class and investigate the relationsship to well–known convergences.

This work is organized as follows. Chapter 1 is devoted to the study of algebraic and order
theoretic properties of the ordered conlinear space (Ĉ,⊕,⊇) of closed convex subsets of Rp



10 Introduction

(where ⊕ is the closure of the Minkowski addition). This involves an investigation of the dual
description of a closed convex set by its support function, which leads to an assertion about
the possibility of embedding certain subsets of Ĉ into a linear space. Some results in this
context are extensively used in the subsequent chapters.

The second chapter deals with topological properties of Ĉ. We introduce a convergence class
in Ĉ, which seems to be new. We define this convergence by appropriate concepts of upper
and lower limits. A characterization by (a certain type of) convergence of support functions
is indicated. We compare our convergence with well–established concepts such as Painlevé–
Kuratowski convergence and scalar convergence.

In Chapter 3, we investigate functions with values in Ĉ. Based on the results of the second
chapter, we develop semi–continuity concepts. Moreover, we introduce the notion of a conju-
gate of a Ĉ–valued function. The main result of this chapter is a biconjugation theorem for
Ĉ–valued functions.

Chapter 4 is devoted to optimization problems with Ĉ–valued objective function and with
respect to the set relation approach. In particular, we draw our attention to duality theory.
We prove weak as well as strong duality assertions based on Fenchel as well as Lagrange
approach. The biconjugation theorem, established in Chapter 3, provides a main tool for the
proof of the strong duality assertions.

The last chapter contains a comparison of the duality results for optimization with set inclu-
sion and duality assertions in vector optimization (and set optimization with point relations).
The closest relationship between both types of problems can be shown for vector optimiza-
tion problems based on weakly minimal points. In this context, a strong duality result for
vector optimization problems is easily obtained from a duality result for a problem based on
set inclusion and vise versa. Moreover, we continue to point out that optimization problems
based on set relations are hidden in every vector optimization problem.

In the appendix we summarize some well–known facts, which could be useful for reading this
work. Part A is a collection of calculus rules for sets. In Part B we recall some fundamental
notions with respect to partially ordered sets and Part C gives the definition of an ordered
conlinear space, which is the underlying structure of the image space of an optimization
problem based on set inclusion.
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Notation

Up to a few exceptions, we frequently use the notation of Rockafellar’s ”Convex Analysis”
[1]. The following notations are not in accordance with this book. We write R (instead
of R) for the set of real numbers and N for the set of positive integers. We set Rp

+ :=
{y ∈ Rp| ∀i ∈ {1, ..., p} : yi ≥ 0} and R+ := R1

+. The symbol ⊕ does not mean the direct
sum, instead it will be used for the ”closed Minkowski addition”, i.e., for A,B ∈ Rp we set
A⊕B := cl (A+B). The Euclidian norm in Rp is denoted by ‖·‖ (instead of | · |). Furthermore
we write rg T :=

⋃
x∈X T (x) for the range of a function T : X → Y . By rbA we denote the

relative boundary of a set A ⊆ Rp, i.e., rbA := cl A\riA. A cone C ⊆ Rp is said to be pointed
if its lineality space is zero, i.e., C ∩ −C = {0}. The Euclidian (closed) unit ball is denoted
by B (instead of B). If M is a matrix, MT denotes the transposed matrix. Further notations
are defined when they first occur. A short explanation can be found at page 95 f.
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Chapter 1

The closed convex sets in Rp

In this chapter, we investigate algebraic and order theoretic properties of the space of closed
convex subsets of Rp. In the following, this space is denoted by Ĉ. Equipped with the partial
ordering ”set inclusion” this space is an example for an ordered conlinear space, see Appendix
C. In particular, Ĉ is not a linear space. However, the structure of a conlinear space is rich
enough for a meaningful definition of a cone as well as a convex set.

This chapter is organized as follows. In Section 1.1, we briefly summarize some properties of
the space of closed subsets of Rp. Section 1.2 is devoted to corresponding properties of the
space of closed convex subsets of Rp. In contrast to the closed subsets, the second distributive
law is satisfied. Another very important aspect is that closed convex sets can be equivalently
described by its support functions. Rockafellar [1] introduced the concept of oriented closed
convex sets. This concept plays a crucial role in this work. In the third section of this chapter,
we investigate the possibility of embedding subsets of Ĉ into a linear space. We divide this
space into classes that can be embedded. These classes depend on the recession cone of the
sets. With the aid of the orientation we can re-interpret the inverse elements of the embedded
elements as sets (with opposite orientation).

1.1 The space F̂ of closed subsets of Rp

In this section we summarize some simple facts about the space of closed subsets of Rp. Note
that all the assertions of this section remain valid if Rp is replaced by an arbitrary linear
topological space. The space of all nonempty closed subsets of Rp is denoted by F(Rp) and
the space of all closed subsets of Rp is denoted by F̂(Rp). For simplicity of notation, we just
write F and F̂ , respectively.

In F̂ we introduce an addition ⊕ : F̂ × F̂ → F̂ and a multiplication by nonnegative real
numbers · : R+ × F̂ → F̂ , defined by

∀A,B ∈ F̂ : A⊕B := cl (A + B) = cl {y ∈ Rp| ∃a ∈ A,∃b ∈ B : y = a + b} ,

13
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∀A ∈ F̂ , α ≥ 0 : α · A :=

{
{y ∈ Rp| ∃a ∈ A : y = α a} if α > 0
{0} if α = 0.

The latter distinction of cases ensures that 0 · ∅ = {0}. As usual, we sometimes write αA

instead of α ·A. For all A,B, C ∈ F̂ (including the empty set) and all α, β ∈ R+ the following
calculus rules hold true:

(C1) (A⊕B)⊕ C = A⊕ (B ⊕ C), (C2) {0} ⊕A = A,
(C3) A⊕B = B ⊕A, (C4) α (β A) = (αβ)A,
(C5) 1 ·A = A, (C6) α (A⊕B) = α A⊕ α B,
(C7) 0 ·A = {0}.

This means that (F̂ ,⊕, · ) is a conlinear space, see Appendix C. For simplicity, we say F̂
is a conlinear space. The rule (C1) (in particular, if Rp is replaced by an arbitrary linear
topological space) can be shown by Proposition A.4 (vii). The other rules are obvious.

The second distributive law is not valid in F̂ . This is clear because the second distributive
law would imply that each member of F̂ is a convex subset of Rp.

The set inclusion provides a partial ordering in F̂ such that (F̂ ,⊆) and (F̂ ,⊇) are ordered
conlinear spaces. Both spaces are order complete, see Appendix B. For instance, for a
nonempty subset A ⊆ (F̂ ,⊆), the infimum and supremum can be expressed by

INFA =
⋂

A∈A
A, SUPA = cl

⋃

A∈A
A.

1.2 The space Ĉ of closed convex subsets of Rp

This section deals with the space of closed convex subsets of Rp, which plays an important
role in the whole work. Many assertions in this section are also valid in a more general setting,
i.e., Rp can be replaced by a more general space.

The space of all nonempty closed convex subsets of Rp is denoted by C(Rp) and the space of
all closed convex subsets of Rp is denoted by Ĉ(Rp). For abbreviation, we continue to write C
and Ĉ instead of C(Rp) and Ĉ(Rp), respectively.

In Ĉ we introduce the same addition and the same multiplication by nonnegative real numbers
as in F̂ . Of course, these operations are closed in Ĉ, i.e., Ĉ is a conlinear subspace of F̂ . Hence
the rules (C1) – (C7) are valid. Additionally, the second distributive law is satisfied, i.e.,

(C8) ∀A ∈ Ĉ, ∀α, β ≥ 0 : α A⊕ β A = (α + β)A.

Conversely, Ĉ is the set of all members of F̂ satisfying (C8). It is easy to see that neither
Ĉ nor C is a linear space, since the axiom of existence of an inverse element is violated.
Moreover, it is not possible to embed C into a linear space. Indeed, assuming there is an
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injective homomorphism j (an embedding) from C into a linear space L. For K := Rp
+ ∈ C

we have K = K ⊕ K. Hence j(K) = j(K) + j(K) and 0L = j({0}) 6= j(K). Then there
must be an inverse element l ∈ L of j(K), i.e., j(K) + l = 0L. It follows 0L = j(K) + l =
j(K) + l + j(K) = j(K), a contradiction.

Let K ⊆ Rp be a nonempty closed convex cone. The set CK ⊆ Ĉ is defined to be the set of
all elements A ∈ C with 0+A = K. The following assertions tells us that CK ⊆ Ĉ has the
structure of a convex cone, even though Ĉ is not a linear space. The concept of a cone and
a convex set can be analogously defined as in the framework of linear spaces, for the details
see Appendix C.

Proposition 1.2.1 CK is a convex cone in Ĉ.

Proof. Let A,B ∈ CK . It remains to show 0+(A ⊕ B) = K. This is a consequence of [1,
Corollary 9.1.1] if we can verify the following condition: If z1 ∈ 0+A and z2 ∈ 0+B such that
z1 + z2 = 0, then z1 belongs to the lineality space of A and z2 belongs to the lineality space of
B. Indeed, we have 0+A = 0+B = K and the lineality spaces of A and B are equal, namely
0+A∩ (−0+A) = 0+B ∩ (−0+B) = K ∩ (−K). Hence the mentioned condition is satisfied. ¤

Note that [1, Corollary 9.1.1] also implies that the addition ⊕ in CK ⊆ C reduces to the usual
Minkowski addition +, i.e., the closure operation is superfluous.

Rockafellar [1, Section 39] introduced the concept of orientation of convex sets in Rp. A
convex set A ⊆ Rp that is identified with its convex indicator function δ( · |A) is said to be
supremum oriented and a convex set A that is identified with the concave function −δ( · |A)
is called infimum oriented. This concept plays a crucial role in our theory. Thus we introduce
the following notation: The space Ĉ? is defined to be the space Ĉ having supremum oriented
members. By Ĉ¦ we denote the same space, but with infimum oriented members. Analogously,
we define C?, C¦, C?

K and C¦K . If not stated otherwise, the orientation is not changed while
manipulating sets. For instance, this means that Ĉ? and Ĉ¦ are conlinear spaces, the recession
cone of a supremum (infimum) oriented set is supremum (infimum) oriented, and so on.

The space Ĉ is now equipped with one of the reflexive, transitive and antisymmetric relations
⊇ and ⊆. We establish standard relations in dependence on the orientation of the members
of the space. In fact, let the standard relation be ⊇ in the space Ĉ? and ⊆ in Ĉ¦. Both these
standard relations have the meaning of ”less or equal”. Since sets with opposite orientation
will be used in order to define a substitute for inverse elements in the framework of the
conlinear space Ĉ, this identification is useful to obtain the well–known formulas of the context
of linear spaces. Further motivation is given later on.

Convention 1.2.2 Throughout this work we use the following conventions.

(i) For A1, A2 ∈ A ⊆ Ĉ? we write A1 ≤ A2 instead of A1 ⊇ A2.

(ii) For A1, A2 ∈ A ⊆ Ĉ¦ we write A1 ≤ A2 instead of A1 ⊆ A2.

(iii) We write A ⊆ Ĉ if the corresponding assertion is valid for both A ⊆ Ĉ? or A ⊆ Ĉ¦.
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For the notation A ⊆ C and A ⊆ CK we use a convention analogous to (iii).

This convention means that certain assertions for subsets of Ĉ have to be interpreted dif-
ferently, where the interpretation depends on the orientation, and they are valid for both
interpretations. For instance, for A1, A2 ∈ A ⊆ Ĉ we write

A1 ≤ A2 if

{
A1 ⊇ A2 in case that A ⊆ Ĉ?

A1 ⊆ A2 in case that A ⊆ Ĉ¦.

Of course, Ĉ? and Ĉ¦ (equipped with its standard relations) are ordered conlinear spaces.

Proposition 1.2.3 The spaces Ĉ? and Ĉ¦ are order complete and the infimum and supremum
of nonempty sets A ⊆ Ĉ? and B ⊆ Ĉ¦ can be expressed as follows:

supA =
⋂

A∈AA, inf A = cl conv
⋃

A∈AA,

supB = cl conv
⋃

B∈B B, inf B =
⋂

B∈B B.

Proof. Follows from the definition. ¤

In every order complete ordered conlinear space (Y,⊕,¹) it is evident that

inf A⊕ inf B ¹ inf(A+ B) and sup(A+ B) ¹ supA⊕ supB, (1.1)

where A + B := {A⊕B| A ∈ A, B ∈ B}. In particular, (1.1) is valid in Ĉ? and Ĉ¦. In
general, (1.1) does not hold with equality, see Example 1.2.5 below. We next show that, in
dependence on the orientation, one inequality in (1.1) is even satisfied with equality. This
equality is essential in duality theory, see Remark 3.5.4 below.

Proposition 1.2.4 For nonempty sets A,B ⊆ Ĉ? and Ā, B̄ ⊆ Ĉ¦ it holds

inf(A+ B) = inf A⊕ inf B and sup(Ā+ B̄) = sup Ā ⊕ sup B̄.

Proof. It holds

inf(A+ B) Pr. 1.2.3= cl conv
⋃

C∈A+B
C = cl conv

⋃

A∈A, B∈B
(A⊕B)

≤ cl conv
⋃

A∈A, B∈B
(A + B) = cl conv

( ⋃

A∈A
A +

⋃

B∈B
B

)

Pr. A.4 (ix)
= cl

(
cl conv

⋃

A∈A
A + cl conv

⋃

B∈B
B

)
Pr. 1.2.3= inf A⊕ inf B.

By (1.1) (or directly) we deduce equality. The second part is completely analogous. ¤

In general, the latter assertion is not true for the supremum in Ĉ? and the infimum in Ĉ¦, as
the following example shows.
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Example 1.2.5 Let A,B ⊆ C?(R2), A := {A1, A2}, where A1 := {(0, 1)T } + R2
+, A2 :=

{(1, 0)T }+ R2
+, and B := {B}. Then, supA⊕ supB =

(
A1 ∩ A2

)⊕ B =
{
(1, 1)T

}
+ B+ R2

+.
But, sup(A+ B) = sup

{
A1 ⊕ B, A2 ⊕ B

}
= R2

+, i.e., sup(A+ B) 6= supA⊕ supB.

supA⊕ supB sup(A+ B)

A2⊕B

A1⊕B

A1

A2

supA

B = supB

Up to now, all the operations used did not influence the orientation of a set. We express the
change of the orientation of a set as follows: Given an oriented set A we denote by ¢A the
same set, but with opposite orientation. As usual, the negative of a convex set A is defined
by

−A := {y ∈ Rp| − y ∈ A} .

By convention, if A is an oriented set, this operation does not manipulate the orientation of
A. In contrast to this, we introduce a second concept of a negative of a convex set which
does so. Given an oriented set A, we define ¯A being the set −A, but with the opposite
orientation. Instead of two signs, we now have four signs, namely +,−,¢,¯. Obviously, the
following assertions hold true:

A = ¢ ¢ A = ¯ ¯ A, −A = ¢ ¯ A = ¯ ¢ A,

¢A = + ¢ A = −¯ A, ¯A = + ¯ A = −¢ A.

Clearly, an expression is independent of the order of the signs. Note that ¢ and ¯ are
signs but not operations. This means, the addition of contrarily oriented elements is not
defined. Nevertheless, we write A ¢ B := A + (¢B) and A ¯ B := A + (¯B), if these
expressions are defined, i.e., A and B are contrarily oriented. For a given set A ⊆ Ĉ we set
¯A := {¯A| A ∈ A}. It can be easily shown (Proposition 1.2.3) that

¯ inf A = sup¯A and ¯ supA = inf ¯A. (1.2)

Further motivation for the usage of the sign ¯ is given later on. For instance, we define
convex and concave functions with values in Ĉ and we obtain the well–known convexity–
concavity dualism for such functions, i.e., a function f : X → Ĉ is convex if and only if
¯f : X → Ĉ is concave. In the next section we embed certain subsets of C? and C¦ in a (the
same) linear space. There, ¯A gets the meaning of an ”inverse element” of A with respect to
this embedding.



18 Chapter 1. The closed convex sets in Rp

1.3 Embedding subsets of Ĉ into a linear space

Embedding of spaces of convex sets into linear spaces was already investigated by R̊adström
[67], and as remarked there, the idea seems to go back to investigations of Brunn [15] in
1889. A nice overview over the literature in this field can be found in [3]. In the literature,
compactness or boundedness assumptions to the sets are usually supposed. In this section,
we investigate spaces of unbounded convex sets, too.

The aim of this section is to embed the convex cone CK ⊆ C into a partially ordered linear
space. In dependence on the orientation of the members of CK we use different embedding
maps. This procedure allows us to re–interpret the inverse element of the embedding map’s
image of a member of CK as an element of C−K having opposite orientation.

The following lemma is a refinement of [1, Theorem 13.1]. It is shown that only the set
ri (0+A)◦ := ri ((0+A)◦) (instead of the whole space Rp) is essential for the description of a
nonempty closed convex set by its support function.

Lemma 1.3.1 Let A,B ⊆ Rp be a nonempty closed and convex. Then,

(i) ri (0+A)◦ ⊆ dom δ∗( · |A ) ⊆ (0+A)◦,

(ii) A =
⋂

y∗∈ri (0+A)◦
{y ∈ Rp| 〈y∗, y〉 ≤ δ∗ (y∗|A )},

(iii) A ⊆ B ⇔ ∀y∗ ∈ ri (0+B)◦ : δ∗(y∗|A) ≤ δ∗(y∗|B),

(iv) If 0+B is pointed, then

A ⊆ B ⇔ ∀y∗ ∈ Rp \ rb (0+A)◦ : δ∗(y∗|A) ≤ δ∗(y∗|B).

Proof. (i) As a consequence of [1, Theorem 14.2] we have cl dom δ∗( · |A ) = (0+A)◦,
compare [36, Theorem 2.2.4], too. Together with [1, Theorem 6.3] this yields ri (0+A)◦ =
ri cl dom δ∗( · |A ) ⊆ dom δ∗( · |A ) ⊆ (0+A)◦.

(ii) From [1, Theorem 13.1] and (i) we obtain

A =
⋂

y∗∈Rp

{
y ∈ Rp| 〈y∗, y〉 ≤ δ∗ (y∗|A )

}
=

⋂

y∗∈(0+A)◦

{
y ∈ Rp| 〈y∗, y〉 ≤ δ∗ (y∗|A )

}
.

It remains to show

Y1 :=
⋂

y∗∈(0+A)◦

{
y ∈ Rp| 〈y∗, y〉 ≤ δ∗ (y∗|A )

}
=

⋂

y∗∈ri (0+A)◦

{
y ∈ Rp| 〈y∗, y〉 ≤ δ∗ (y∗|A )

}
=: Y2.

The inclusion Y1 ⊆ Y2 is obvious. In order to show Y2 ⊆ Y1 let y ∈ Y2 be arbitrarily chosen.
It holds 〈y∗, y〉 ≤ δ∗ (y∗|A ) for all y∗ ∈ ri (0+A)◦. Let ȳ∗ ∈ (0+A)◦ and y∗ ∈ ri (0+A)◦, then
λȳ∗ + (1− λ)y∗ ∈ ri (0+A)◦ for all λ ∈ [0, 1) (compare [1, Theorem 6.1]). It follows

〈λȳ∗ + (1− λ)y∗, y〉 ≤ δ∗ (λȳ∗ + (1− λ)y∗|A ) ≤ λ δ∗ (ȳ∗|A ) + (1− λ)δ∗ (y∗|A ) .
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By virtue of (i) we deduce that δ∗ (y∗|A ) < +∞. Letting λ → 1 we obtain 〈ȳ∗, y〉 ≤ δ∗ (ȳ∗|A ),
i.e., y ∈ Y1.

(iii) It remains to show ”⇐”. Let y ∈ A be given. Then we have 〈y∗, y〉 ≤ δ∗(y∗|A) for all
y∗ ∈ Rp and so 〈y∗, y〉 ≤ δ∗(y∗|B) for all y∗ ∈ ri (0+B)◦. From (ii) we obtain y ∈ B.

(iv) Again, it remains to show ”⇐”. Let y∗ ∈ Rp\(0+A)◦. By (i) we obtain +∞ = δ∗(y∗|A) ≤
δ∗(y∗|B) and hence y∗ 6∈ ri (0+B)◦. This means we have ri (0+B)◦ ⊆ (0+A)◦. Since 0+B is
pointed, we deduce that ri (0+B)◦ = int (0+B)◦ ⊆ int (0+A)◦ = ri (0+A)◦ ⊆ Rp \ rb (0+A)◦.
From (iii) we deduce A ⊆ B. ¤

The following example shows that the pointedness assumption in statement (iv) of the pre-
ceding lemma cannot be omitted.

Example 1.3.2 Let A = R2
+ and B =

{
y ∈ R2| y1 ≥ 1

}
. Then we have (0+B)◦ ⊆ rb (0+A)◦

and, by (i), the right–hand side of (iv) is satisfied. But A 6⊆ B.

(0+A)◦

A

(0+B)◦

B

The preceeding lemma is an essential tool for the proof of duality assertions for Ĉ–valued
functions. Furthermore, in the next chapter it is used to characterize a new type of conver-
gence of convex sets by convergence of support functions. As a byproduct, we obtain the
statement that C?

K and C¦K can be embedded into a linear space. We first give an equivalent
characterization of the ordered conlinear spaces C?

K and C¦K (where K is the neutral element,
i.e., they are cones but not conlinear subspaces of C? and C¦) by certain spaces of real–valued
functions having the same domain (which depends on K). Then, the possibility of embedding
into a linear space is obvious.

Let Γ?
K be the space of all positively homogeneous concave functions from riK◦ into R and

let Γ¦K be the space of all positively homogeneous convex functions from riK◦ into R. The
spaces Γ?

K and Γ¦K are conlinear spaces with respect to the addition and multiplication by
nonnegative real numbers, being defined pointwise using the corresponding operation in R.
Moreover, Γ?

K and Γ¦K equipped with the ordering relation ≤, which is defined pointwise using
the usual ≤ relation in R, are ordered conlinear spaces.

Theorem 1.3.3 Let K ⊆ Rp be a nonempty closed convex cone. Then,

(i) There exists a bijective map j? : C?
K → Γ?

K such that for all A,B ∈ C?
K and all positive

real numbers α > 0 it holds

(a) j?(A + B) = j?(A) + j?(B), (b) j?(αA) = αj?(A),
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(c) j?(K) = 0Γ?
K
, (d) A ⊇ B ⇔ j?(A) ≤ j?(B).

(ii) There exists a bijective map j¦ : C¦−K → Γ¦K such that for all A,B ∈ C¦−K and all positive
real numbers α > 0 it is true that

(a) j¦(A + B) = j¦(A) + j¦(B), (b) j¦(αA) = αj¦(A),

(c) j¦(−K) = 0Γ¦K , (d) A ⊆ B ⇔ j¦(A) ≤ j¦(B).

Proof. (i) Consider the map j?, assigning to every A ∈ C?
K the negative support function

of the set A ⊆ Rp, restricted to the set riK◦ ⊆ Rp. More precisely, γA = j?(A) is defined by
γA : riK◦ → R ∪ {−∞, +∞}, γA(y∗) := −δ∗(y∗|A ). The map j? is a function from C?

K into
Γ?

K . Indeed, let A ∈ C?
K . Since A is nonempty, we have δ∗(y∗|A ) > −∞ for all y∗ ∈ Rp. With

the aid of Lemma 1.3.1 (i) we obtain δ∗(y∗|A ) < +∞ for all y∗ ∈ riK◦. Hence γA = j?(A)
only attains values in R. Since support functions are sublinear and riK◦ is a convex cone,
γA = j?(A) is positively homogeneous and concave on riK◦.

Lemma 1.3.1 (ii) yields that j? : C?
K → Γ?

K is injective.

We next show that j? : C?
K → Γ?

K is surjective. Given some γ ∈ Γ?
K we define a function

d : Rp → R ∪ {+∞} by

d(y∗) :=

{
−γ(y∗) if y∗ ∈ riK◦

+∞ else.

It is easy to see that d is convex, positively homogeneous, not identically +∞ and never
−∞. With the aid of [1, Corollary 13.2.1] we conclude that cl d is the support function of the
nonempty closed convex set

Aγ :=
⋂

y∗∈ri K◦
{y ∈ Rp| 〈y∗, y〉 ≤ d(y∗)} =

⋂

y∗∈ri K◦
{y ∈ Rp| 〈y∗, y〉 ≤ −γ(y∗)} .

Applying [1, Corollary 8.3.3], taking into account the considerations in [1, page 62] and
applying Lemma 1.3.1 (ii) we obtain

0+Aγ =
⋂

y∗∈ri K◦
0+ {y ∈ Rp| 〈y∗, y〉 ≤ d(y∗)} =

⋂

y∗∈ri K◦
{y ∈ Rp| 〈y∗, y〉 ≤ 0} = K.

By definition, we have j?(Aγ)(y∗) = −cl d(y∗) for all y∗ ∈ riK◦. With the aid of [1, Theorem
7.4] we have cl d(y∗) = d(y∗) for all y∗ ∈ riK◦. Hence j?(Aγ) = γ.

(i)(a) and (i)(b) follow from elementary properties of the supremum in R, compare [1, page
113], too. (i)(c) follows from the definition of the polar cone and of the support function.
(i)(d) is a consequence of [1, Corollary 13.1.1].

(ii) Define j¦(A) := −j?(¯A) and use (i). ¤

Let Ĉ?
K := C?

K ∪{∅} ⊆ Ĉ? and let Γ̂?
K := Γ?

K ∪{+∞K}, where +∞K is an abbreviation for the
function defined on riK◦ and being identically +∞. Likewise, we define Ĉ¦K := C¦K ∪{∅} ⊆ Ĉ¦
and Γ̂¦K := Γ¦K ∪ {−∞K}.
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Corollary 1.3.4 Theorem 1.3.3 remains valid if C?
K , C¦−K , Γ?

K and Γ¦K are replaced by Ĉ?
K ,

Ĉ¦−K , Γ̂?
K and Γ̂¦K , respectively.

Proof. Extend the isomorphisms j? and j¦ of Theorem 1.3.3 using the conventions j?(∅) =
+∞K and j¦(∅) = −∞K , respectively. ¤

Let ΓK be the space of all positively homogeneous (and not necessarily convex or concave)
functions γ : ri K◦ → R. Let ΓK be equipped with an addition and a scalar multiplication,
defined pointwise using the corresponding operation in R, and with an ordering relation ≤,
defined pointwise using the usual ≤ relation in R. Then, the space ΓK is a partially ordered
linear space. Theorem 1.3.3 yields that (C?

K ,⊇) and (C¦−K ,⊆) are isomorphic to convex
cones in the partially ordered linear space (ΓK ,≤). Let j? : C?

K → ΓK be the injective
homomorphism which embeds C?

K into ΓK and let j¦ : C¦−K → ΓK be analogously defined.
Then it easily follows that

∀A ∈ C?
K : j?(A) + j¦(¯A) = 0, ∀A ∈ C¦−K : j¦(A) + j?(¯A) = 0. (1.3)

In this sense, ¯A can be regarded as the ”inverse element” of a nonempty closed convex set
A. However, this does not imply that C?

K ∪C¦−K is a linear space, because it is not a conlinear
space.

Of course, Ĉ?
K and Ĉ¦K can also be embedded into a smaller linear space than ΓK , for instance

in the space of real–valued positively homogeneous DC-functions (e.g. [81]) being defined
on ri K◦. However, the main advantage of ΓK is that infimum and supremum in ΓK can be
described pointwise by the infimum and supremum in R. This means that the space (ΓK ,≤)
is Dedekind complete and for nonempty subsets A ⊆ ΓK it holds

A bounded above ⇒ ∀y∗ ∈ riK◦ :
(
sup
γ∈A

γ
)
(y∗) = sup

γ∈A

(
γ(y∗)

)
,

A bounded below ⇒ ∀y∗ ∈ riK◦ :
(
inf
γ∈A

γ
)
(y∗) = inf

γ∈A
(
γ(y∗)

)
.

Let A,B be nonempty subsets of CK such that A is bounded below and B bounded above
(see Convention 1.2.2). Further, let j be the map which embeds CK into the linear space ΓK

(where j stands for j? or j¦ as defined above). Then, from Proposition B.1 we conclude that

j(inf A) ≤ inf
A∈A

j(A) and j(supB) ≥ sup
B∈B

j(B). (1.4)

The following proposition shows that, in dependence of the orientation, one assertion in (1.4)
even holds with equality.

Proposition 1.3.5 Let A ⊆ C?
K be nonempty and bounded below and let B ⊆ C¦K be nonempty

and bounded above. Then,

j?(inf A) = inf
A∈A

j?(A) and j¦(supB) = sup
B∈B

j¦(B).
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Proof. Taking into account Proposition B.1, it remains to show that infA∈A j?(A) ∈ Γ?
K

and supB∈B j¦(B) ∈ Γ¦K . This is true because the pointwise infimum (supremum) over a set
of concave (convex) functions is concave (convex), too. ¤

The following example shows that, in general, (1.4) is not satisfied with equality.

Example 1.3.6 Let A = {A1, A2} ⊆ Ĉ?(R2) as in Example 1.2.5. Then, j?(supA), j?(A1)
and j?(A2) are functions from −intR2

+ into R, given by

j?(supA)(y∗) = −δ∗
(
y∗

∣∣A1 ∩A2

)
= −(y∗1 + y∗2),

j?(A1)(y∗) = −δ∗
(
y∗

∣∣A1

)
= −y∗2, j?(A2)(y∗) = −δ∗

(
y∗

∣∣A2

)
= −y∗1.

Hence, supA∈A j?(A) 6= j?(supA).

The boundedness assumptions in (1.4) are very restrictive, because the infimum with respect
to Ĉ? over a subset A ⊆ Ĉ?

K ⊆ Ĉ? often has a recession cone larger than K. The following
result is valid without boundedness assumptions. It is used to prove duality assertions for
Ĉ–valued functions.

Proposition 1.3.7 Let A := {Ai ∈ Ĉ?| i ∈ I} ⊆ Ĉ?, where I is an arbitrary index set. Then
it holds

∀y∗ ∈ Rp : −δ∗
(
y∗| inf

i∈I
Ai

)
= inf

i∈I

{−δ∗
(
y∗|Ai

)}
,

∀y∗ ∈ Rp : −δ∗
(
y∗| sup

i∈I
Ai

) ≥ sup
i∈I

{−δ∗
(
y∗|Ai

)}
.

Proof. Without loss of generality we can assumeA ⊆ C?. We have infi∈I Ai = cl conv
⋃

i∈I Ai.
Hence, the first assertion follows from the first part of [1, Corollary 16.5.1].

Since supi∈I Ai =
⋂

i∈I Ai, the second part of [1, Corollary 16.5.1] yields δ∗
( · | supi∈I Ai

)
=

cl conv
{
δ∗

( · |Ai

) | i ∈ I
}
, where the convex hull of a collection of functions is defined as

the convex hull of the pointwise infimum of the collection, i.e., cl conv
{
δ∗

( · |Ai

) | i ∈ I
}

=
cl conv infi∈I δ∗

( · |Ai

)
, compare [1, page 37]. It follows that δ∗

( · | supi∈I Ai

) ≤ infi∈I δ∗
( · |Ai

)

which proves the second assertion. ¤



Chapter 2

Convergence of closed convex sets

In this chapter, we introduce a convergence concept for closed convex subsets of Rp, which
seems to be new. This convergence is called C–convergence. It is defined by appropri-
ate notions of upper and lower limits. We compare this convergence with the well–known
Painlevé–Kuratowski convergence [47], [4], [68] as well as with scalar convergence (i.e., the
pointwise convergence of support functions) of convex sets [82], [69], [70], [74]. In Chapter
3, C–convergence is used to define a meaningful concept of ”lower semi–continuous hull” of
a Ĉ–valued functions. Although C–convergence does not coincide with scalar convergence, it
can be equivalently described by convergence of support functions. In fact, we show that a
sequence {An}n∈N C–converges to Ā if and only if the corresponding support functions con-
verge pointwise, except at relative boundary points of the domain the support function of
Ā, to the support function of Ā. This characterization of C–convergence is used in the next
chapter in order to prove a biconjugation theorem for Ĉ–valued functions.

This chapter is organized as follows. In Section 2.1 we recall some basic properties of the
well–known Painlevé–Kuratowski convergence. As mentioned in [68, page 111], the natural
setting for the study of Painlevé–Kuratowski convergence is the space F̂ of closed subsets
of Rp. Section 2.2 is devoted to C–convergence. We proceed analogously to the previous
section by introducing upper and lower limits. However, in contrast to Painlevé–Kuratowski
convergence, C–convergence is adapted to the space Ĉ of closed convex subsets of Rp. We
show that, under certain assumptions, our new concepts of upper and lower limits coincide
with the well–known concepts related to Painlevé–Kuratowski convergence. In Section 2.3 we
investigate the relationship between C–convergence and scalar convergence.

2.1 Painlevé–Kuratowski convergence

In this section, we summarize some results about Painlevé–Kuratowski convergence in the
space F̂ of closed subsets of Rp. Our main reference is the book of Rockafellar/Wets [68]. We

23



24 Chapter 2. Convergence of closed convex sets

frequently use the following notation of [68]:

N∞ := {N ⊆ N| N \N finite} and N#
∞ := {N ⊆ N| N infinite} .

Let {yn}n∈N ⊆ Rp be a sequence. Sometimes we write ȳ = limn∈N yn or yn → ȳ instead of

ȳ = limn→∞ yn. Moreover, we write ȳ = limn∈N yn or yn
N−→ ȳ in the case of convergence

of a subsequence designated by an index set N ∈ N#∞ or N ∈ N∞. It is clear that every
subsequence of {yn}n∈N can be expressed by {yn}n∈N , where N belongs to N#∞. In case of
N ∈ N∞, {yn}n∈N denotes a subsequence of {yn}n∈N that arises by omitting finitely many
members. For example, a subsequence of a subsequence {yn}n∈N (N ∈ N#∞) can be expressed
by some N̄ ∈ N#∞ with N̄ ⊆ N as {yn}n∈N̄ . An analogous notation is used for sequences in
other spaces, where the limit has to be defined appropriately.

Definition 2.1.1 ([68]) For a sequence {An}n∈N ⊆ F̂ the outer limit is the set

LIMSUP
n→∞ An :=

{
y ∈ Rp| ∃N ∈ N#

∞, ∀n ∈ N, ∃yn ∈ An : yn
N−→ y

}
.

The inner limit of a sequence {An}n∈N ⊆ F̂ is the set

LIM INF
n→∞ An :=

{
y ∈ Rp| ∃N ∈ N∞, ∀n ∈ N, ∃yn ∈ An : yn

N−→ y
}
.

The limit of the sequence exists if the outer and inner limits coincide. Then we write

LIM
n→∞An = LIM SUP

n→∞ An = LIM INF
n→∞ An.

In [68], the closedness of the members of the sequence is not supposed a priori. However, as
it can be seen in [68, Proposition 4.4], the outer and inner limits only depend on the closure
of the sequence’s members.

In contrast to [68], we use capital letters in the notation of the (outer and inner) limit. This
is because the notation with small letters is reserved for the (upper and lower) limit in the
space Ĉ to be defined later on. The following characterization of outer and inner limits is very
important for the considerations in the next section.

Proposition 2.1.2 ([68]) For a sequence {An}n∈N ⊆ F̂ it holds

LIMSUP
n→∞ An =

⋂

N∈N∞
cl

⋃

n∈N

An, LIM INF
n→∞ An =

⋂

N∈N#
∞

cl
⋃

n∈N

An.

Proof. See [68, Exercise 4.2.(b)]. ¤

We observe that the characterization in the preceeding proposition can be expressed by the
supremum and infimum in the space F̂ . According to the definition of outer and inner limits
of [68] the relation ⊆ has the meaning of ”less or equal”, i.e., the infimum is related to the
intersection and the supremum is related to the closure of the union. Hence, we can write

LIM SUP
n→∞ An = INF

N∈N∞
SUP
n∈N

An, LIM INF
n→∞ An = INF

N∈N#
∞

SUP
n∈N

An. (2.1)

This characterization is the starting point in the next section.
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2.2 C–Convergence

In the preceeding section, we have seen that Painlevé–Kuratowski convergence can be ex-
pressed with the aid of the supremum and infimum in the space F̂ . Likewise, we introduce
corresponding concepts in the space Ĉ. This means, the supremum and infimum notions in
the following definition are based on the considerations in Section 1.2.

Definition 2.2.1 The upper limit and the lower limit of a sequence {An}n∈N ⊆ Ĉ? are
defined, respectively, by

lim sup
n→∞

An := sup
N∈N#

∞

inf
n∈N

An and lim inf
n→∞ An := sup

N∈N∞
inf
n∈N

An.

The upper limit and the lower limit of a sequence {An}n∈N ⊆ Ĉ¦ are defined, respectively, by

lim sup
n→∞

An := inf
N∈N∞

sup
n∈N

An and lim inf
n→∞ An := inf

N∈N#
∞

sup
n∈N

An.

In the following, we frequently use Convention 1.2.2. For a sequence {An}n∈N ⊆ Ĉ it is evident
that

lim sup
n→∞

−An = − lim sup
n→∞

An, lim inf
n→∞ −An = − lim inf

n→∞ An,

lim sup
n→∞

¢An = ¢ lim inf
n→∞ An, lim sup

n→∞
¯An = ¯ lim inf

n→∞ An.

In the space R∪{−∞, +∞}, we only know the latter equality (with the usual ”−” instead of
”¯”), where the first two equalities are also valid in the framework of Painlevé–Kuratowski
convergence.

Proposition 2.2.2 Let {An}n∈N ⊆ Ĉ be a sequence. Then,

lim inf
n→∞ An ≤ lim sup

n→∞
An.

Proof. Since N∞ ⊆ N#∞, this follows from the definition. ¤

The upper and lower limits can be used to introduce a convergence concept in Ĉ.

Definition 2.2.3 A sequence {An}n∈N ⊆ Ĉ is said to be C–convergent to some A ∈ Ĉ (with
the same orientation as the sequence) if

lim inf
n∈N

An = lim sup
n∈N

An = A.

Then, the limit A is denoted by limn∈NAn and we write An → A or An
C−→ A.

Proposition 2.2.4 (upper vs. outer limit) Let {An}n∈N ⊆ Ĉ? and {Bn}n∈N ⊆ Ĉ¦, where
Ĉ? and Ĉ¦ are considered to be subsets of F̂ . Then it holds

LIM SUP
n→∞ An ⊆ lim inf

n→∞ An, LIMSUP
n→∞ Bn ⊆ lim sup

n→∞
Bn,

LIM INF
n→∞ An ⊆ lim sup

n→∞
An, LIM INF

n→∞ Bn ⊆ lim inf
n→∞ Bn.
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Proof. Rely on the definition of the upper and lower limits and (2.1). ¤

The following examples show that (in case of existence) the limit with respect to Painlevé–
Kuratowski convergence can be different from the limit with respect to C–convergence. It can
be seen that neither C–convergence implies Painlevé–Kuratowski convergence nor vice versa.

Example 2.2.5 Painlevé–Kuratowski convergence does not coincide with C–convergence: (i)
Let {An}n∈N ⊆ Ĉ?(R2) be defined by An :=

{
(y1, y2) ∈ R2| y2 ≤ ny1

}
. By an easy calculation

it can be seen that

{
(y1, y2) ∈ R2| 0 ≤ y1

}
= LIM

n→∞An 6= lim
n→∞An = R2.

A1 A2 A3 A4 LIM
n→∞

An lim
n→∞

An

(ii) Let {An}n∈N ⊆ Ĉ?(R2) be defined by

An :=

{ {
(y1, y2) ∈ R2| y2 ≤ ny1

}
if n is odd

R2 if n is even.

In view of (i), it can be easily seen that limn→∞An = R2, but LIMn→∞An does not exist. In
fact, we have LIMSUPn→∞An = R2, but LIM INFn→∞An =

{
(y1, y2) ∈ R2| 0 ≤ y1

}
. (iii)

Let {An}n∈N ⊆ Ĉ?(R2) be defined by

An :=

{ {
(y1, y2) ∈ R2| y2 ≤ ny1

}
if n is odd{

(y1, y2) ∈ R2| 0 ≤ y1

}
if n is even.

By (i), it can be easily seen that LIMn→∞An =
{
(y1, y2) ∈ R2| 0 ≤ y1

}
, but limn→∞An does

not exist. In fact, we have lim supn→∞An =
{
(y1, y2) ∈ R2| 0 ≤ y1

}
, but lim infn→∞An = R2.

Proposition 2.2.6 (Convergence of subsequences) Let {An}n∈N ⊆ Ĉ be a sequence.
Then the following statements hold true:

(i) ∀N̂ ∈ N#
∞ : lim inf

n∈N̂
An ≥ lim inf

n→∞ An,

(ii) ∀N̂ ∈ N#
∞ : lim sup

n∈N̂

An ≤ lim sup
n→∞

An,

(iii) If An → Ā, then every subsequence of {An}n∈N converges to the same limit.
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Proof. (i), (ii) In case of {An}n∈N ⊆ Ĉ? we have

lim inf
n∈N̂

An = sup
N∈N∞

inf
n∈N∩N̂

An ≥ sup
N∈N∞

inf
n∈N

An = lim inf
n→∞ An,

lim sup
n∈N̂

An = sup
N∈N#

∞,N⊆N̂

inf
n∈N

An ≤ sup
N∈N#

∞

inf
n∈N

An = lim sup
n→∞

An.

The case {An}n∈N ⊆ Ĉ¦ is similar.

(iii) For all N ∈ N#∞ it holds

lim sup
n∈N

An

(ii)

≤ lim sup
n→∞

An = lim inf
n→∞ An

(i)

≤ lim inf
n∈N

An.

Proposition 2.2.2 yields equality. ¤

Proposition 2.2.7 (Monotonicity of upper and lower limits) Let be given two sequences
{An}n∈N , {Bn}n∈N ⊆ Ĉ (with the same orientation). Then,

(i)
( ∃N̂ ∈ N∞, ∀n ∈ N̂ : An ≤ Bn

) ⇒ lim inf
n→∞ An ≤ lim inf

n→∞ Bn,

(ii)
( ∃N̂ ∈ N∞, ∀n ∈ N̂ : An ≤ Bn

) ⇒ lim sup
n→∞

An ≤ lim sup
n→∞

Bn.

Proof. For example, let {An}n∈N , {Bn}n∈N ⊆ Ĉ?. Let N̂ ∈ N∞ such that An ≤ Bn for all
n ∈ N̂ . Hence, for all N ∈ N∞ with N ⊆ N̂ we have infn∈N An ≤ infn∈N Bn.

(i) Given some y ∈ lim infn→∞Bn, we conclude that

∀N ∈ N∞ with N ⊆ N̂ : y ∈ inf
n∈N

Bn ⊆ inf
n∈N

An.

By the definition of N∞, we have y ∈ infn∈N An even for all N ∈ N∞, i.e., y ∈ lim infn→∞An.

(ii) Let be given some y ∈ lim supn→∞Bn. Note that N ∩ N̂ ∈ N#∞ for all N ∈ N#∞. Hence

∀N ∈ N#
∞ : y ∈ inf

n∈N∩N̂
Bn ⊆ inf

n∈N∩N̂
An ⊆ inf

n∈N
An,

i.e., y ∈ lim supn→∞An. ¤

Proposition 2.2.8 Let be given a set of sequences {A(i)
n }n∈N ⊆ Ĉ, where i belongs to an

arbitrary index set I. Then it holds

(i) lim inf
n→∞ inf

i∈I
A(i)

n ≤ inf
i∈I

lim inf
n→∞ A(i)

n , (ii) lim sup
n→∞

inf
i∈I

A(i)
n ≤ inf

i∈I
lim sup

n→∞
A(i)

n ,

(iii) lim inf
n→∞ sup

i∈I
A(i)

n ≥ sup
i∈I

lim inf
n→∞ A(i)

n , (iv) lim sup
n→∞

sup
i∈I

A(i)
n ≥ sup

i∈I
lim sup

n→∞
A(i)

n .

Proof. For all n ∈ N and all i ∈ I it holds infi∈I A
(i)
n ≤ A

(i)
n . Proposition 2.2.7 yields that

lim infn→∞ infi∈I A
(i)
n ≤ lim infn→∞A

(i)
n for all i ∈ I. Hence (i) is true. The proof of (ii) –

(iv) is similar. ¤
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Remark 2.2.9 (limit of sum 6= sum of limits) In the space F̂ , the supremum–oriented
version of (i) (i.e., we have to replace ”liminf” by ”LIMSUP” and ”inf” by ”SUP”) even holds
with equality if I is finite. This is not true in the present case, see Example 2.2.10 below.
In Kuratowski [47], the union of sets is understood as a ”sum”. This means, for Painlevé–
Kuratowski convergence, but not for C–convergence, the limit of the ”sum” of two sequences
is equal to the ”sum” of its limits. In our framework, however, the sum is understood as the
closure of the Minkowski–addition. Nevertheless, also in this sense, limit and sum cannot be
interchanged, see Example 2.2.11 below. But, even in the space F , this is only possible by
an extension of the convergence concept to so–called ”total convergence” and by additional
assumptions, see [68, Exercise 4.29]. It remains open if similar extensions are successful for
C–convergence, too. A detailed discussion about topologies for which the basic operations
in C(X) (namely (A,B) → A ⊕ B, (A,B) → inf {A,B} and (α, A) → α · A) in C(X) are
jointly continuous can be found in [4, Section 4.3]. These operations are jointly continuous
with respect to the scalar topology (which is related to the scalar convergence, see Section
2.3), but this topology is admissible (i.e., it extends the topology of the underlying space X)
if and only if X is finite dimensional, see [4, Exercise 4.3.1 (c)]. If X is infinite dimensional,
the linear topology [4] suffices all requirements. In Theorem 2.3.6 below, we give an equivalent
characterization of C–convergence by convergence of support functions. This shows that we
can interchange limit and sum at least in many special cases.

Example 2.2.10 Proposition 2.2.8 (i) – (iv) does not hold with equality (for instance, (i)
and (ii) in case of supremum orientation): Let {An}n∈N , {Bn}n∈N ⊆ Ĉ?(R), An = {n},
Bn = {−n}. Then limn→∞An = limn→∞Bn = ∅, hence inf {limn→∞An, limn→∞Bn} = ∅.
But, inf {An, Bn} = [−n, n] and consequently, limn→∞ inf {An, Bn} = R.

Example 2.2.11 The sum of limits is different from the limit of the sum: Let the se-
quences {An}n∈N and {Bn}n∈N as in Example 2.2.10. Then ∅ = limn→∞An ⊕ limn→∞Bn 6=
limn→∞(An ⊕Bn) = {0}.

Example 2.2.12 The sum of convergent sequences is not convergent: Consider two se-
quences {An}n∈N , {Bn}n∈N ⊆ Ĉ?(R2) being defined by

An :=

{ {
(y1, y2) ∈ R2| y2 = ny1, y2 ≥ 0

}
if n is odd{

(y1, y2) ∈ R2| y1 = 0, y2 ≥ 0
}

if n is even,

Bn :=

{ {
(y1, y2) ∈ R2| y2 = −ny1, y2 ≤ 0

}
if n is odd{

(y1, y2) ∈ R2| y1 = 0, y2 ≤ 0
}

if n is even.

Then, {An}n∈N converges to Ā =
{
(y1, y2) ∈ R2| y1 = 0, y2 ≥ 0

}
and {Bn}n∈N converges to

B̄ =
{
(y1, y2) ∈ R2| y1 = 0, y2 ≤ 0

}
. But, the subsequence {A2n ⊕B2n}n∈N converges to{

(y1, y2) ∈ R2| y1 = 0
}

and {A2n+1 ⊕B2n+1}n∈N converges to
{
(y1, y2) ∈ R2| y1 ≥ 0

}
, i.e.,

{An ⊕Bn}n∈N is not convergent.
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A1

B1

A1 + B1

A2

B2

A2 + B2

A3

B3

A3 + B3

A4

B4

A4 + B4

A5

B5

A5 + B5

Proposition 2.2.13 (Sequences of singletons) Let {yn}n∈N ⊆ Rp be a sequence.

(i) If yn → ȳ, then {yn} C−→ {ȳ}.

(ii) For
{{yn}

}
n∈N ⊆ C?, ‖yn‖ → +∞ implies that lim sup

n→∞
{yn} = ∅.

(iii) Conversely, if {yn} C−→ Ā ∈ Ĉ?, then Ā = ∅ or Ā = {ȳ} for some ȳ ∈ Rp. In the latter
case we have yn → ȳ.

Proof. (i) For all N ∈ N#∞ it holds ȳ ∈ cl
⋃

n∈N {yn} ⊆ cl conv
⋃

n∈N {yn}. Hence ȳ ∈
lim supn→∞ {yn}. Since yn → ȳ, we can write

∀ε > 0, ∃n0(ε) : cl conv
⋃

n≥n0(ε)

{yn} ⊆ Bε(ȳ).

Hence

lim inf
n→∞ {yn} =

⋂

n0∈N
cl conv

⋃

n≥n0

{yn} ⊆
⋂

ε>0

cl conv
⋃

n≥n0(ε)

{yn} ⊆
⋂

ε>0

Bε(ȳ) = {ȳ} .

This yields {ȳ} ≥ lim supn→∞ {yn} ≥ lim infn→∞ {yn} ≥ {ȳ}.
(ii) If ‖yn‖ → +∞, there exists N ∈ N#∞ such that yn/ ‖yn‖ N→ y ∈ Rp. Using Proposition
2.2.6 (ii) we obtain ∅ = lim infn∈N {yn} ≤ lim supn∈N {yn} ≤ lim supn→∞ {yn}.

(iii) The sequence {yn}n∈N has a subsequence {yn}n∈N̂ (N̂ ∈ N#∞) such that either yn
N̂−→ ȳ

for some ȳ ∈ Rp or ‖yn‖ N̂−→ +∞. By (i) and (ii) we conclude that, respectively, either
limn∈N̂ {yn} = {ȳ} or lim supn∈N {yn} = ∅ (without loss of generality we assume

{{yn}
}

n∈N ⊆
C?). Since

{{yn}
}

n∈N is supposed to be convergent, the result follows from Proposition 2.2.6
(iii). ¤
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Sometimes, a slight generalization of part (i) of the previous assertions is useful. Taking into
account Example 2.2.11 and Example 2.2.12 this is not a direct consequence of the previous
assertion.

Proposition 2.2.14 Let {yn}n∈N ⊆ Rp be a sequence and A ∈ Ĉ. Then, yn → ȳ implies{{yn}+ A
} C−→ {ȳ + A}.

Proof. A direct proof can be given similarly to the proof of Proposition 2.2.13 (i). Further-
more, this statement is a direct consequence of Proposition 2.3.1 below. ¤

In the following we restrict ourselves to supremum–oriented sets. Of course, analogous asser-
tions can be shown for infimum oriented sets if we simultaneously switch over from ”liminf”
to ”limsup”, ”inf” to ”sup” and so on.

The following characterization of the lower limit is useful in order to show further properties
of the lower and upper limits.

Proposition 2.2.15 Let {An}n∈N ⊆ Ĉ? be a sequence. Then, y ∈ lim infn→∞An if and only
if the following assertion holds true:

∃
{

(λ(m)
0 , ..., λ(m)

p ), (k(m)
0 , ..., k(m)

p ), (z(m)
0 , ..., z(m)

p )
}

m∈N
⊆ [0, 1]p+1 × Np+1 × (Rp)p+1 :

y = lim
m→∞

p∑

j=0

λ
(m)
j z

(m)
j ,

∀j ∈ {0, 1, ..., p} ,∀m ∈ N : z
(m)
j ∈ A

k
(m)
j

,

∀j ∈ {0, 1, ..., p} , ∀m ∈ N : k
(m)
j ≥ m,

∀m ∈ N :
p∑

j=0

λ
(m)
j = 1.

Proof. (i) Let y ∈ A := lim infn→∞An. By definition we have A =
⋂

m∈N clVm, where
Vm := conv

⋃
k≥m Ak. Hence y ∈ cl Vm for all m ∈ N. This yields

∀m ∈ N, ∀ε > 0 ∃vm,ε ∈ Vm : ‖y − vm,ε‖ < ε.

Choosing ε := 1/m we obtain a sequence {v(m)}m∈N, defined by v(m) := vm,1/m, which is
convergent to y ∈ A. The sequence {v(m)}m∈N is a sequence of convex combinations v(m) of
elements in Zm :=

⋃
k≥m Ak. Since Zm ⊆ Rp, Carathéodory’s theorem allows us to write

y = lim
m→∞ v(m), v(m) =

p∑

j=0

λ
(m)
j z

(m)
j ,

where λ
(m)
j ∈ [0, 1], z

(m)
j ∈ Zm (j ∈ {0, ..., p}) and

∑p
j=0 λ

(m)
j = 1. Since z

(m)
j ∈ Zm =

⋃
k≥m Ak, there exists k

(m)
j ≥ m such that z

(m)
j ∈ A

k
(m)
j

.
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(ii) The opposite direction can be seen as follows. For arbitrarily given n ∈ N, we have

y = lim
m∈N

p∑

j=0

λ
(m)
j z

(m)
j = lim

m≥n

p∑

j=0

λ
(m)
j z

(m)
j .

Hence y ∈ cl conv
⋃

k≥n Ak for all n ∈ N. This yields y ∈ lim infn→∞An. ¤

Remark 2.2.16 Of course, the previous proposition remains true if the condition is formu-
lated for a sequence in [0, 1]p̄+1 × Np̄+1 × (Rp)p̄+1, where p̄ ≥ p.

The following assertion is used in the following several times.

Proposition 2.2.17 Let L be a linear subspace of Rp. The map TL : Ĉ? → Ĉ?, defined by
TL(A) = (A⊕ L) ∩ L⊥ has the following properties:

(i) For y ∈ Rp, TL({y}) is a singleton set,

(ii) T̄L : Rp → Rp, T̄L(y) ∈ TL({y}) is a well–defined linear continuous operator.

(iii) TL(A) = cl T̄L(A), where T̄L(A) :=
⋃

y∈A T̄L(y).

(iv) If L is the lineality space of A ⊆ Rp, then A = TL(A) + L.

(v) If L is the lineality space of A ⊆ Rp, then the lineality space of TL(A) ⊆ Rp is {0}, i.e.,
TL(A) has a pointed recession cone.

Proof. By [1, Corollary 1.6.1], there is a one–to–one linear transformation of Rp onto
itself, which carries L onto the subspace L̄ := {y ∈ Rp| ym+1 = 0, ym+2 = 0, ..., yp = 0}, where
m = dimL. Hence, without loss of generality we can assume that L = L̄. Thus, the
assertions (i) – (iv) are elementary. By [1, Corollary 8.3.3], we have 0+TL(A) ∩−0+TL(A) =
0+(A⊕ L) ∩ 0+(−A⊕ L) ∩ L⊥ = 0+A ∩ −0+A ∩ L⊥ = L ∩ L⊥ = {0}, which proves (v). ¤

The next two theorems tell us that, under additional assumptions, Painlevé–Kuratowski con-
vergence and C–convergence coincide. For the special case K = {0}, the statement of the
next theorem can be found in [2, Lemma 1.1.9]. A noticeable simplification of part (A) of the
proof is due to C. Zălinescu1.

Theorem 2.2.18 Let K ⊆ Rp be a nonempty closed convex cone and let {An}n∈N ⊆ C?
K be

a sequence such that infn∈NAn ∈ C?
K . Then,

lim inf
n→∞ An = cl conv LIM SUP

n→∞ An.

1e-mail conversation, October 2004
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Proof. Of course, we have lim infn→∞An ⊇ LIMSUPn→∞An and hence

lim inf
n→∞ An ⊇ cl conv LIM SUP

n→∞ An. (2.2)

In the following we can assume that lim infn→∞An 6= ∅, because otherwise (2.2) yields the
desired assertion.

(A) First, we prove the opposite inclusion for the special case that K is pointed, i.e., K∩−K =
{0}. Let y ∈ A := lim infn→∞An be given. By Proposition 2.2.15 we have

∃
{

(λ(m)
0 , ..., λ(m)

p ), (k(m)
0 , ..., k(m)

p ), (z(m)
0 , ..., z(m)

p )
}

m∈N
⊆ [0, 1]p+1 × Np+1 × (Rp)p+1 :

y = lim
m→∞ v(m), v(m) =

p∑

j=0

λ
(m)
j z

(m)
j , (2.3)

∀j ∈ {0, 1, ..., p} ,∀m ∈ N : z
(m)
j ∈ A

k
(m)
j

,

∀j ∈ {0, 1, ..., p} , ∀m ∈ N : k
(m)
j ≥ m,

∀m ∈ N :
p∑

j=0

λ
(m)
j = 1.

Without loss of generality we can assume that

∀m ∈ N :
∥∥∥λ

(m)
0 z

(m)
0

∥∥∥ ≤
∥∥∥λ

(m)
1 z

(m)
1

∥∥∥ ≤ ... ≤
∥∥∥λ(m)

p z(m)
p

∥∥∥ , (2.4)

and
∥∥λ

(m)
p z

(m)
p

∥∥ 6= 0 for all m ∈ N. We can successively switch over to subsequences, again
indexed by m, such that

∀j ∈ {0, 1, ..., p} : λ
(m)
j

m−→ λj ∈ [0, 1] and
λ

(m)
j z

(m)
j∥∥∥λ

(m)
p z

(m)
p

∥∥∥
m−→ yj ∈ Rp. (2.5)

Assume that the sequence {λ(m)
j z

(m)
j }m∈N is unbounded for some j ∈ {0, 1, ..., p}, then it

is unbounded for j = p. Hence, there is a subsequence, again indexed by m, such that∥∥λ
(m)
p z

(m)
p

∥∥ m−→ +∞. It follows λ
(m)
j /

∥∥∥λ
(m)
p z

(m)
p

∥∥∥ m−→ 0. By the characterization of recession
cones of [1, Theorem 8.2], applied to the set infn∈NAn, we deduce that yj ∈ K for all
j ∈ {0, ..., p}. From (2.3) we deduce that

v(m)

∥∥λ
(m)
p z

(m)
p

∥∥ =
p∑

j=0

λ
(m)
j z

(m)
j∥∥∥λ

(m)
p z

(m)
p

∥∥∥
.

Taking the limit we obtain 0 =
∑p

j=0 yj . Hence yp ∈ K ∩ −K = {0}. This contra-

dicts (2.5), which yields that ‖yp‖ = 1. Hence the sequence {λ(m)
j z

(m)
j }m∈N is bounded

for each j ∈ {0, ..., p}. Therefore, we can successively extract subsequences (again denoted
by) {λ(m)

j z
(m)
j }m∈N being convergent to zj ∈ Rp.
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If λj = 0, [1, Theorem 8.2] yields that zj ∈ K. In case of λj 6= 0, we can assume that λ
(m)
j 6= 0

for all m ∈ N. Hence we have
∥∥∥∥z

(m)
j − zj

λj

∥∥∥∥ ≤
∥∥∥∥∥z

(m)
j − zj

λ
(m)
j

∥∥∥∥∥ +

∥∥∥∥∥
zj

λ
(m)
j

− zj

λj

∥∥∥∥∥
m−→ 0,

i.e., {z(m)
j }m∈N, where z

(m)
j ∈ ⋃

n≥m An, converges to cj := zj/λj ∈ Rp. Thus we find

a sequence {a(n)
j }n∈N with a

(n)
j ∈ An having a subsequence converging to cj . This means

cj = zj/λj ∈ LIMSUPn→∞An. Let us assume that λj 6= 0 for j ∈ {0, ..., r} and λj = 0 for
j ∈ {r + 1, ..., p} . Setting k :=

∑p
j=r+1 zj we obtain

y =
r∑

j=0

λjcj + k ∈ conv LIM SUP
n→∞ An + K ⊆ cl conv LIM SUP

n→∞ An + K.

From Proposition A.4 (viii), A.1 (iv), A.4 (vi), A.1 (iii) we obtain

y ∈ cl conv LIM SUP
n→∞ An + K ⊆ cl conv LIM SUP

n→∞ (An + K) ⊆ cl conv LIMSUP
n→∞ An. (2.6)

(B) We now turn to the general case, i.e., the lineality space L := K ∩ −K of infn∈NAn is
not necessarily {0}. Let TL : Ĉ? → Ĉ? and T̄L : Rp → Rp be defined as in Proposition 2.2.17.
The following quantities hold true:

TL( inf
n→∞An)

Pr. 2.2.17 (iii)
= cl T̄L(cl conv

⋃

n∈N
An)

Pr. A.5 (i), A.7 (iii)
= cl conv

⋃

n∈N
T̄L(An)

Pr. 2.2.17 (iii)
= inf

n→∞TL(An),
(2.7)

TL(lim inf
n→∞ An)

Pr. 2.2.17 (iii)
= cl T̄L(lim inf

n→∞ An)
Pr. A.5 (ii)

⊆ cl
⋂

N∈N∞
T̄L( inf

n∈N
An)

Pr. A.2 (i)

⊆
⋂

N∈N∞
TL( inf

n∈N
An)

(2.7)
= lim inf

n→∞ TL(An).
(2.8)

By (2.7), we have 0+ infn→∞ TL(An) = TL(K). Proposition 2.2.17 (v) yields that TL(K) is
pointed. Applying part (A) to the sequence {TL(An)}n∈N ⊆ C?

TL(K) we obtain

TL(lim inf
n→∞ An)

(2.8)

⊆ lim inf
n→∞ TL(An)

part (A)

⊆ cl conv LIM SUP
n→∞ TL(An). (2.9)

Of course, we have An + L = An for all n ∈ N. This yields

cl conv LIMSUP
n→∞ TL(An) = cl conv LIM SUP

n→∞ (An ∩ L⊥) ⊆ cl conv LIM SUP
n→∞ An, (2.10)

By [1, Corollary 8.3.3], we have 0+ lim infn→∞An =
⋂

N∈N∞ 0+ infn∈N An = K. Thus,

lim inf
n→∞ An

Pr. 2.2.17 (iv)
= TL(lim inf

n→∞ An) + L
(2.9), (2.10)

⊆ cl conv LIMSUP
n→∞ An + L.

As in (2.6) we obtain cl conv LIM SUPn→∞An + L ⊆ cl conv LIM SUPn→∞An. ¤

An analogous result for the upper and inner limits can be obtained even by weaker assump-
tions. The result is proven using the previous theorem.
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Theorem 2.2.19 Let {An}n∈N ⊆ Ĉ? be a sequence such that for all N̄ ∈ N#∞ there exists
some Ñ ∈ N#∞ with Ñ ⊆ N̄ and some nonempty closed convex cone K ⊆ Rp such that

∀n ∈ Ñ : An ∈ C?
K and inf

n∈ eN
An ∈ C?

K .

Then it holds
lim sup

n→∞
An = LIM INF

n→∞ An.

Proof. Clearly, we have A := lim supn→∞ ⊇ LIM INFn→∞An. To show the opposite
inclusion let N̂ ∈ N#∞ be arbitrarily given. By the cluster point description of outer limits
[68, Proposition 4.19] there exists some N̄ ∈ N#∞ with N̄ ⊆ N̂ such that {An}n∈N̄ is convergent
(with respect to Painlevé–Kuratowski convergence). By assumption, there exists Ñ ∈ N#∞
with Ñ ⊆ N̄ such that 0+

(
inf

n∈ eN An

)
= K. Of course, {An}n∈ eN is convergent, too. By

Theorem 2.2.18 it follows

A = lim sup
n→∞

An

Pr. 2.2.6⊆ lim sup
n∈ eN

An

Pr. 2.2.2⊆ lim inf
n∈ eN

An = cl conv LIMSUP
n∈ eN

An. (2.11)

The convergence of {An}n∈ eN implies the convexity of the set LIMSUP
n∈ eN An (because

LIM INF
n∈ eN An is a convex set, see [68, Proposition 4.15]). Hence we obtain

A ⊆ LIMSUP
n∈ eN

An ⊆ cl
⋃

n∈ eN
An ⊆ cl

⋃

n∈ bN
An.

Since N̂ ∈ N#∞ was chosen arbitrarily, it follows A ⊆ LIM INFn→∞An. ¤

Corollary 2.2.20 Let K ⊆ Rp be a nonempty closed convex cone and let {An}n∈N ⊆ C?
K

a sequence such that infn∈NAn ∈ C?
K . Then, {An}n∈N is C–convergent if and only if it is

Painlevé–Kuratowski–convergent. In case of convergence, we have

lim
n→∞An = LIM

n→∞An.

Proof. Follows from Theorem 2.2.18 and Theorem 2.2.19. ¤

2.3 Scalar convergence vs. C–convergence

Convergence of convex closed sets that is determined by the pointwise convergence of the
support functions associated to the sets was investigated by many authors such as Wijsman
[82], Salinetti/Wets [70] and Sonntag/Zălinescu [74]. An overview and further references can
be found in Beer [4]. Following the article by Sonntag and Zălinescu we call this convergence
scalar convergence. A sequence {An}n∈N ⊆ C is said to be S–convergent to some Ā ∈ C if

∀y∗ ∈ Rp : δ∗(y∗|An) → δ∗(y∗|Ā).
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Then we write An
S→ Ā. In this section, we investigate the relationship between scalar

convergence and C–convergence. We start with a result of Sonntag and Zălinescu [74]. The
following extension of this result is due to C. Zălinescu2.

Proposition 2.3.1 ([74]) Let {An}n∈N ⊆ C. Then An
S−→ Ā implies An

C−→ Ā.

Proof. For example, let {An}n∈N ⊆ C?. In [74, Proposition 1] it is shown that An
S−→ Ā

implies that Ā = lim infn→∞An.

To show that Ā = lim supn→∞An, let N ∈ N#∞. Then, Ā = S − limn∈N An, and so
Ā = lim infn∈N An ≥ infn∈N An for all N ∈ N#∞. Hence we have Ā = lim infn∈N An ≥
sup

N∈N#
∞

infn∈N An = lim supn→∞An. It follows Ā = lim infn→∞An ≤ lim supn→∞An ≤ Ā,

i.e., An
C−→ Ā. ¤

We next want to investigate the opposite inclusion. Assuming that C–convergence implies
scalar convergence we can deduce that the sum of two C–convergent sequences is convergent
as well. This, however, contradicts Example 2.2.12. Indeed, the sequence {An}n∈N ⊆ C in
Example 2.2.12 C–converges to Ā :=

{
(y1, y2) ∈ R2| y1 = 0, y2 ≥ 0

}
, but for y∗ = (1, 0) the

sequence {δ∗(y∗|An)}n∈N is not convergent. However, we can show that C–convergence implies
the pointwise convergence of the support function, except at relative boundary points of the
domain of the support function of the C–limit. Moreover, C–convergence is equivalent to this
property. We start with some auxiliary assertions.

Proposition 2.3.2 Let K ⊆ Rp be a nonempty pointed closed convex cone. Then, for y∗ ∈
riK◦ and k ∈ K \ {0} it holds 〈y∗, k〉 < 0.

Proof. We have intK◦ 6= ∅ and consequently y∗ ∈ intK◦. Hence there exists some ε > 0
such that y∗ + εk ∈ K◦. This yields 〈y∗ + εk, k〉 = 〈y∗, k〉+ ε ‖k‖2 ≤ 0, hence 〈y∗, k〉 < 0. ¤

Proposition 2.3.3 Let {An}n∈N ⊆ Ĉ? such that lim infn→∞An 6= ∅ and let {yn}n∈N ⊆
Rp \ {0} be a sequence such that yn ∈ An for all n ∈ N, ‖yn‖ → ∞ and yn/ ‖yn‖ → k. Then,
k ∈ 0+ lim infn→∞An.

Proof. We show that y + µk ∈ lim infn→∞An for arbitrarily given y ∈ lim infn→∞An and
µ > 0. Using the characterization of Proposition 2.2.15, we obtain

y + µk = lim
m→∞

p∑

j=0

λ
(m)
j z

(m)
j + lim

m→∞µ
ym

‖ym‖ .

Setting λ
(m)
p+1 := µ

‖ym‖ , z
(m)
p+1 := ym, k

(m)
p+1 := m and

∀j ∈ {0, ..., p + 1} : λ̃
(m)
j :=

λ
(m)
j

(1 + λ
(m)
p+1)

,

2e-mail conversation, October 2004
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we obtain

y + µk = lim
m→∞(1 + λ

(m)
p+1)

p+1∑

j=0

λ̃
(m)
j z

(m)
j = lim

m→∞

p+1∑

j=0

λ̃
(m)
j z

(m)
j .

By Proposition 2.2.15 and taking into account Remark 2.2.16 we obtain that y + µk ∈
lim infn→∞An. ¤

Proposition 2.3.4 Let {An}n∈N ⊆ Ĉ? such that lim infn→∞An 6= ∅. Denoting by L the
lineality space of lim infn→∞An, we define TL : Ĉ? → Ĉ? as in Proposition 2.2.17. Then,

TL(lim inf
n→∞ An) = lim inf

n→∞ TL(An).

Proof. Set Ā := lim infn→∞An. As in (2.8) we obtain TL(Ā) ≥ lim infn→∞ TL(An). It
follows that TL(Ā) ≥ lim infn→∞

(
An⊕L

)
. For all N ∈ N∞ we have infn∈N An ≤ Ā and hence

0+
(
infn∈N An

) ⊇ 0+Ā ⊇ L. With the aid of Proposition 1.2.4 we obtain infn∈N

(
An ⊕ L

)
=(

infn∈N An

)⊕L = infn∈N An for all N ∈ N∞. Hence lim infn→∞
(
An⊕L

)
= lim infn→∞An =

Ā. It follows that TL(Ā) ≥ lim infn→∞ TL(An) ≥ Ā. Of course, lim infn→∞ TL(An) ≥ L⊥ and
so TL(Ā) ≥ lim infn→∞ TL(An) ≥ Ā ∩ L⊥ = TL(Ā). ¤

Lemma 2.3.5 Let {An}n∈N ⊆ Ĉ? such that lim infn→∞An 6= ∅. Then,

∀y∗ ∈ ri (0+ lim inf
n→∞ An)◦ : lim inf

n→∞ −δ∗(y∗|An) = −δ∗(y∗| lim inf
n→∞ An).

Proof. Set Ā := lim infn→∞An. From Proposition 1.3.7 we easily obtain

∀y∗ ∈ Rp : lim inf
n→∞ −δ∗(y∗|An) ≤ −δ∗(y∗|Ā).

It remains to show that lim supn→∞ δ∗(y∗|An) ≤ δ∗(y∗|Ā) for all y∗ ∈ ri (0+Ā)◦.

(A) We first prove the case that 0+Ā is pointed. Assume the assertion is not true. This
means there exists some y∗ ∈ ri (0+Ā)◦ such that lim supn→∞ δ∗(y∗|An) > δ∗(y∗|Ā). Hence,
there is some ε > 0 and some N ∈ N#∞ such that δ∗(y∗|An) > δ∗(y∗|Ā) + ε for all n ∈ N . It
follows

∀n ∈ N, ∃yn ∈ An : 〈y∗, yn〉 > δ∗(y∗|Ā) +
ε

2
. (2.12)

We distinguish between two cases.

(i) If there exists some Ñ ∈ N#∞ with Ñ ⊆ N such that yn → ȳ ∈ Rp we conclude that
ȳ ∈ LIMSUPn→∞An ⊆ lim infn→∞An = Ā. This contradicts (2.12).

(ii) Otherwise there is some Ñ ∈ N#∞ with Ñ ⊆ N such that ‖yn‖ 6= 0, ‖yn‖ → ∞ and
yn/ ‖yn‖ → k ∈ Rp. From Proposition 2.3.3 we deduce that k ∈ 0+Ā. Proposition 2.3.2
yields 〈y∗, k〉 < 0. But, from (2.12) we deduce that 〈y∗, k〉 ≥ 0, a contradiction.

(B) If 0+Ā is not pointed, consider its lineality space L := 0+Ā ∩ (−0+Ā) 6= {0}. Let
TL : Ĉ? → Ĉ? be defined as in Proposition 2.2.17. Proposition 2.3.4 yields that TL(Ā) =



2.3. Scalar convergence vs. C–convergence 37

lim infn→∞ TL(An). From [1, Corollary 8.3.3] and [1, Corollary 16.4.2] we deduce that(
0+TL(Ā)

)◦ = (0+Ā)◦ ⊕ L. By [1, Theorem 6.3] and [1, Corollary 6.6.2] we conclude
that ri

(
0+TL(Ā)

)◦ = ri (0+Ā)◦ + L. This implies that ri
(
0+TL(Ā)

)◦ ⊇ ri (0+Ā)◦. More-
over, from L ⊆ 0+Ā we conclude that L⊥ ⊇ (0+Ā)◦. For arbitrary A ∈ C it is true that
δ∗

(
y∗|TL(A)

)
= δ∗ (y∗|A) for all y∗ ∈ L⊥. Since 0+TL(Ā) is pointed, for all y∗ ∈ ri (0+Ā)◦

(⊆ ri
(
0+TL(Ā)

)◦ ∩ L⊥) we have

lim sup
n→∞

δ∗(y∗|An) = lim sup
n→∞

δ∗(y∗|TL(An))
part (A)

≤ δ∗(y∗|TL(Ā)) = δ∗(y∗|Ā).

This completes the proof. ¤

It follows the main result of this section, an equivalent characterization of C–convergence. For
A ∈ C we denote by rbA := A \ riA the relative boundary of A.

Theorem 2.3.6 If {An}n∈N ⊆ Ĉ and Ā ∈ C, the following statements are equivalent:

(i) An
C−→ Ā,

(ii) ∀y∗ ∈ Rp \ rb (0+Ā)◦ : δ∗(y∗|An) → δ∗(y∗|Ā).

Proof. We adopt our notation to the case {An}n∈N ⊆ Ĉ?.

(i) ⇒ (ii). By Proposition 1.3.7 we easily deduce that

∀y∗ ∈ Rp : δ∗(y∗|Ā) = δ∗(y∗| lim sup
n→∞

An) ≤ lim inf
n→∞ δ∗(y∗|An). (2.13)

By Lemma 1.3.1 (i) we obtain δ∗(y∗|An) → δ∗(y∗|Ā) = +∞ for all y∗ ∈ Rp \ (0+Ā)◦. It
remains to show that δ∗(y∗|An) → δ∗(y∗|Ā) for all y∗ ∈ ri (0+Ā)◦. This follows from Lemma
2.3.5 and (2.13).

(ii) ⇒ (i). Let Bn := infk≥n Ak. Then, {Bn}n∈N ⊆ Ĉ? and {−δ∗( · |Bn)}n∈N are increasing. It
follows

∀y∗ ∈ Rp \ rb (0+Ā)◦ : −δ∗(y∗|Ā) = lim inf
n→∞ −δ∗(y∗|An)

= sup
n∈N

inf
k≥n

−δ∗(y∗|An) (2.14)

Pr. 1.3.7= sup
n∈N

−δ∗(y∗|Bn) = lim
n→∞−δ∗(y∗|Bn).

Hence, for all n ∈ N we obtain

∀y∗ ∈ Rp \ rb (0+Ā)◦ : δ∗(y∗|Ā) ≤ δ∗(y∗|Bn). (2.15)

Since Bn+1 ⊆ Bn and Bn 6= ∅ for all n ∈ N, there exists some n0 ∈ N such that the
lineality space of Bn is constant for all n ≥ n0. Without loss of generality we can set
L := 0+Bn ∩ −0+Bn for all n ∈ N. We next show that 0+Ā ∩ −0+Ā = L. For y∗ ∈ Rp \ L⊥

we have δ∗(y∗|Bn) = +∞ for all n ∈ N. By (2.14) we have either δ∗(y∗|Ā) = +∞ or
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y∗ ∈ rb (0+Ā)◦. Taking into account Lemma 1.3.1 (i) we obtain ri (0+Ā)◦ ⊆ L⊥, hence
L ⊆ 0+A. It follows that L ⊆ 0+Ā ∩ −0+Ā. Further, from (2.15) and Lemma 1.3.1 (i) we
deduce that ri (0+Bn)◦ ⊆ (0+Ā)◦ and hence 0+Ā ⊆ 0+Bn for all n ∈ N. This yields that
0+Ā ∩ −0+Ā ⊆ L.

Proceeding as in the proof of Lemma 2.3.5 we have
(
0+TL(Ā)

)◦ = (0+Ā)◦ ⊕ L. Since
(0+Ā)◦ ⊆ L⊥, it follows

(
0+TL(Ā)

)◦∩L⊥ = (0+Ā)◦. From [1, Theorem 6.5] we conclude that
ri

(
0+TL(Ā)

)◦ ∩L⊥ = ri (0+Ā)◦. Moreover, we have δ∗(y∗|Ā) = δ∗(y∗|TL(Ā)) for all y∗ ∈ L⊥.
For all y∗ ∈ Rp and all l ∈ L it holds δ∗(y∗|TL(Ā)) = δ∗(y∗ + l |TL(Ā)). Analogous assertions
are valid for Bn (instead of Ā). Together with (2.15) we obtain δ∗(y∗|TL(Ā)) ≤ δ∗(y∗|TL(Bn))
for all y∗ ∈ Rp \ rb (0+TL(Ā))◦. Lemma 1.3.1 (iv) yields that TL(Ā) ⊆ TL(Bn) for all n ∈ N.
With the aid of Proposition 2.2.17 (iv) we conclude that Ā ⊆ Bn for all n ∈ N and so
Ā ⊆ ⋂

n∈NBn = lim infn→∞An.

On the other hand, for all y∗ ∈ Rp \ rb (0+Ā)◦ we have

−δ∗(y∗| lim inf
n→∞ An) = −δ∗(y∗| sup

n∈N
Bn)

Pr. 1.3.7≥ sup
n∈N

−δ∗(y∗|Bn)
(2.14)
= −δ∗(y∗|Ā).

From Lemma 1.3.1 (iii) we deduce that lim infn→∞An ⊆ Ā. Hence lim infn→∞An = Ā. As
in the second part of the proof of Proposition 2.3.1 we obtain Ā = lim supn→∞An and hence
An

C−→ Ā. ¤



Chapter 3

Functions with values in Ĉ

In this chapter, we investigate Ĉ–valued functions, i.e., functions with values in the space Ĉ
of closed convex subsets of Rp. In our optimization problems, based on set relations, the
objective functions are of this type. Moreover, Ĉ–valued functions frequently occur in other
fields of Optimization and Nonlinear Analysis. For instance, the sublevel map of a (epi–
)closed quasi–convex vector–valued function (compare Luc [57, Theorem 5.8 and Proposition
6.3 (i)]) and many kinds of subdifferential maps ∂f(·) (e.g. the classical one [1] and that of
Clarke [18]) are Ĉ–valued functions.

The aim of our investigations is to generalize some important concepts and assertions from
Convex Analysis to the case of Ĉ–valued functions (instead of extended real–valued functions).
In doing so, we try to point out the similar structures. It turns out that certain well–
known concepts for set–valued maps, such as semi–continuity notions, are not appropriate
in this context. Therefore, we introduce some new concepts. Our semi–continuity notions
are compared with the usual notions of upper, lower, outer and inner semi–continuity of a
set–valued map.

This chapter is organized as follows. In the first section, we summarize some well–known
semi–continuity notions of set–valued maps. We point out that these concepts are adapted
to the framework of F̂–valued functions. In the next section, we introduce a semi–continuity
concept for Ĉ–valued functions. This concept is based on the results of Chapter 2 and seems
to be new. In Section 3.3, we present a sufficient condition, called local boundedness, such that
semi–continuity for Ĉ–valued functions (see Section 3.2) coincides with the classical concepts
based on the outer and inner limits (see Section 3.1). Section 3.4 is devoted to convex
functions. It can be seen that many assertions, which are known for extended real–valued
convex functions, can be generalized to the context of this work. So we introduce conjugates
for Ĉ–valued functions and, finally, in Section 3.6 we prove a biconjugation theorem, which is
completely analogous to the classical variant.

39



40 Chapter 3. Functions with values in bC

3.1 Semi–continuity of F̂–valued functions

In this section, we summarize some well–known facts on semi–continuity of set–valued maps.
Our main reference is the book by Rockafellar and Wets [68]. Even though in [68] arbitrary
set–valued maps f : Rn ⇒ Rp are considered, we formulate these results only for F̂–valued
functions, i.e., we suppose the closedness of the values. This is no loss of generality, because
semi–continuity properties are not influenced by the closure operation to the values of the
map f , see [68, Proposition 4.4, Definition 5.4].

Although in [68] the terms outer and inner limit (instead of upper and lower limit) are used,
it might be beneficial to identify the relation ⊆ by ”less or equal”. This is suggestive by the
usage of the notation ”limsup” and ”liminf” in [68] and, furthermore, we use concepts like
supremum, infimum, epigraph and hypograph, which are based on this identification. Let us
recall the concepts of outer and inner limits as well as some of their basic properties. As in
Section 2.1, we use capital letters in order to distinguish these concepts from the new concepts
to be introduced in the next section.

Throughout this section (and this chapter) let X = Rn, although many assertions are also
valid in a more general context. The notation

⋃
xn→x̄, for instance, means the union over all

sequences converging to x̄.

Definition 3.1.1 ([68]) Let f : X → F̂ . The outer limit of f at x̄ ∈ X is defined by

LIMSUP
x→x̄

f(x) :=
⋃

xn→x̄

LIMSUP
n→∞ f(xn),

and the inner limit of f at x̄ ∈ X is defined by

LIM INF
x→x̄

f(x) :=
⋂

xn→x̄

LIM INF
n→∞ f(xn).

Note that the outer limit (and obviously also the inner limit) is always a closed subset of Rp,
i.e., it belongs to F̂ , see [68, Proposition 4.4]. Together with (2.1) this yields the following
description of outer and inner limits by the supremum and infimum in (F̂ ,⊆).

LIMSUP
x→x̄

f(x) = SUP
xn→x̄

INF
N∈N∞

SUP
n∈N

f(xn), (3.1)

LIM INF
x→x̄

f(x) = INF
xn→x̄

INF
N∈N#

∞
SUP
n∈N

f(xn).

Definition 3.1.2 ([68]) A function f : X → F̂ is said to be outer semi–continuous (osc) at
x̄ ∈ X if

f(x̄) ⊇ LIMSUP
x→x̄

f(x).

A function f : X → F̂ is said to be inner semi–continuous (isc) at x̄ ∈ X if

f(x̄) ⊆ LIM INF
x→x̄

f(x).

If f is osc (isc) at every x̄ ∈ X we simply say f is osc (isc).
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By the identification of ⊆ with ”less or equal” it is clear that outer and inner semi–continuity
can be considered as generalizations of upper and lower semi–continuity of extended real–
valued functions to the set–valued case. As noticed in [68], Choquet [17] already used the
term upper semi–continuous instead of outer semi–continuous. But, what is often called upper
semi–continuous in the literature differs from this concept, see [68, p.193 and 5.7(b)]. The
inner semi–continuity, however, is mostly called lower semi–continuity in the literature. It is
quite natural to ask for an equivalent description of semi–continuity by the ”epigraph” and
”hypograph” as it is well–known for extended real–valued functions.

Definition 3.1.3 The epigraph of a function f : X → F̂ is defined to be the set

epi f :=
{

(x,A) ∈ X × F̂| A ⊇ f(x)
}

,

and the hypograph of a function f : X → F̂ is the set

hyp f :=
{

(x,A) ∈ X × F̂| A ⊆ f(x)
}

.

Note that, for all x ∈ X, we have (x, ∅) ∈ hyp f and (x,Rp) ∈ epi f . For a characterization of
semi–continuity we need to know what is meant by closedness of the epigraph and hypograph.

Definition 3.1.4 A subset A ⊆ X × F̂ is closed if for every sequence {(xn, An)}n∈N ⊆ A
with xn → x̄ ∈ X and An → Ā ∈ F̂ (with respect to Painlevé–Kuratowski convergence) it
is true that (x̄, Ā) ∈ A. The closure of a set A ⊆ X × F̂ is defined to be the set of all
(x̄, Ā) ∈ X × F̂ such that there is a sequence {(xn, An)}n∈N ⊆ A with xn → x̄ and An → Ā.
The closure of A is denoted by clA.

It follows the characterization of outer semi–continuity by the hypograph (and the graph) of
the function.

Proposition 3.1.5 For all functions f : X → F̂ the following statements are equivalent:

(i) hyp f is closed,

(ii) f is osc,

(iii) gr f ⊆ X × Rp is closed.

Proof. (i) ⇔ (ii). Follows from [68, Exercise 5.6 (c)].

(ii) ⇔ (iii). See [68, Theorem 5.7 (a)]. ¤

Likewise, inner semi–continuity can be characterized by the closedness of the epigraph. Note
that the description by the graph fails in this case, i.e., a function f : X → F̂ that is isc does
not necessarily have a closed graph, see [68, Fig. 5–3. (b)].

Proposition 3.1.6 For all functions f : X → F̂ the following statements are equivalent:
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(i) epi f is closed,

(ii) f is isc.

Proof. Follows from [68, Exercise 5.6 (d)]. ¤

We next consider the outer semi–continuous hull of a F̂–valued function. We observe that
the outer semi–continuous hull is defined analogously to the upper semi–continuous hull of
extended real–valued functions and it has comparable properties.

Definition 3.1.7 Let f : X → F̂ . The outer semi–continuous hull of f is the function
(osc f) : X → F̂ defined by

(osc f)(x) := LIMSUP
x′→x

f(x′).

Let us collect some basic properties of the outer semi–continuous hull.

Proposition 3.1.8 Let f : X → F̂ . Then it holds

(i) gr (osc f) = cl (gr f),

(ii) hyp (osc f) ⊇ cl (hyp f),

(iii) (osc f) is osc,

(iv) ∀x ∈ X : (osc f)(x) ⊇ f(x),

(v) f is osc at x̄ ∈ X ⇔ (osc f)(x̄) = f(x̄),

(vi) gr f convex ⇒ gr (osc f) convex.

Proof. (i) See [68, page 154, 5(2) and 5(3)].

(ii) Let (x̄, Ā) ∈ cl (hyp f). Then, there exist {xn}n∈N ⊆ X and {An}n∈N ⊆ F̂ such that
x̄ = limn→∞ xn, Ā = LIMn→∞An and An ⊆ f(xn) for all n ∈ N. Hence,

(osc f)(x̄) = LIM SUP
x→x̄

f(x) ⊇ LIMSUP
n→∞ f(xn)

⊇ LIMSUP
n→∞ An = LIM

n→∞An = Ā,

i.e., (x̄, Ā) ∈ hyp (osc f).

(iii) By (i), gr (osc f) is closed. Hence, (osc f) is osc, by Proposition 3.1.5.

(iv) Choosing the special sequence xn ≡ x, we obtain

(osc f)(x) = LIM SUP
x′→x

f(x′) ⊇ LIM SUP
n→∞ f(xn) = LIM SUP

n→∞ f(x) = f(x).

(v) By definition, f is osc at x̄ if and only if f(x̄) ⊇ (osc f)(x̄). By (iv), this equivalent to
f(x̄) = (osc f)(x̄).
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(vi) Since gr f is convex, cl (gr f) is convex, too. Hence, the convexity of gr (osc f) follows
from (i). ¤

The next example shows that the opposite inclusion in assertion (ii) of the previous proposition
does not hold true, in general.

Example 3.1.9 Let f : R→ F̂(R) be defined by

f(x) =





{−1} if x < 0
{ 1} if x > 0
∅ if x = 0.

Then, (0, {−1, 1}) belongs to hyp (osc f) but it does not belong to cl (hyp f).

Remark 3.1.10 As noticed in [68], an analogous definition of the inner semi–continuous
hull, namely by (isc f)(x) := LIM INFx′→x f(x′), is not constructive in the sense that (isc f)
is not necessarily isc. In the framework of Ĉ–valued functions we will have similar problems.
An example is given there.

Remark 3.1.11 In Proposition 3.1.8 (vi) we consider the convexity of gr f . Recall that gr f

is convex if and only if for all λ ∈ [0, 1] and all x1, x2 ∈ X is holds f
(
λx1 + (1 − λ)x2

) ⊇
λf(x1)⊕ (1−λ)f(x2). Having in mind that ⊆ has the meaning of ”less or equal”, this can be
interpreted as concavity of f although in the literature this property is often called convexity
of f . In view of the analogy to extended real–valued functions, Proposition 3.1.8 (vi) should
be expressed as follows: f concave ⇒ (osc f) concave.

3.2 Semi–continuity

Based on the considerations of Section 2.2 we introduce the concepts of upper and lower limits
for functions with values in Ĉ. We first show that the concept of outer limit is not appropriate
to define semi–continuity in the framework of Ĉ–valued functions. As in the previous section,
we set X = Rn, although many assertions are also valid in a more general context.

Example 3.2.1 Let f : R→ C(R),

f(x) :=





{−1} if x < 0
{0} if x = 0
{1} if x > 0.

Then the outer semi–continuous hull of f , namely

(osc f)(x) =





{−1} if x < 0
{−1, 0, 1} if x = 0
{1} if x > 0,

is not convex–valued.
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This might suggest to redefine the outer semi–continuous hull as follows:

(õsc f)(x) := cl conv LIM SUP
x′→x

f(x′).

However, (õsc f) has not necessarily a closed graph (and hence it is not osc) as the following
example shows.

Example 3.2.2 Let f : R→ Ĉ(R),

f(x) :=





{
1
x

}
if ∃n ∈ N : x ∈ [

2−2n, 2−2n+1
)

{− 1
x

}
if ∃n ∈ N : x ∈ [

2−2n+1, 2−2n+2
)

∅ else.

Then the modified outer semi–continuous hull (õsc f) of f is obtained as

(õsc f)(x) =





{
1
x

}
if ∃n ∈ N : x ∈ (

2−2n, 2−2n+1
)

{− 1
x

}
if ∃n ∈ N : x ∈ (

2−2n+1, 2−2n+2
)

[− 1
x , 1

x

]
if ∃n ∈ N : x = 2−n

∅ else.

It is easily seen that gr (õsc f) is not closed. Indeed, the sequence {(2−n, 0)}n∈N belongs to
the graph of (õsc f), but its limit (0, 0) does not.

1

õsc f

1

f
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We next introduce a new notion of upper and lower limits, which is adapted to the framework
of Ĉ–valued functions. In the following, we frequently use Convention 1.2.2.

Definition 3.2.3 Let f : X → Ĉ and let x̄ ∈ X. The upper limit of f at x̄ is defined by

lim sup
x→x̄

f(x) := sup
xn→x̄

lim sup
n→∞

f(xn),

and the lower limit of f at x̄ is defined by

lim inf
x→x̄

f(x) := inf
xn→x̄

lim inf
n→∞ f(xn).

The limit of f at x̄ exists if the upper and lower limits coincide. Then we write

lim
x→x̄

f(x) = lim sup
x→x̄

f(x) = lim inf
x→x̄

f(x).
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In case Ĉ = Ĉ(R), these concepts coincide with the classical upper and lower limits of ex-
tended real-valued functions f : X → R ∪ {−∞, +∞} if we identify f(·) with the function
({f(·)}+ R+) : X → Ĉ? (where we set {+∞}+ R+ = ∅ and {−∞}+ R+ = R).

As in the case of F̂-valued functions, the upper and lower limits can be expressed by the
supremum and infimum.

Proposition 3.2.4 Let f : X → Ĉ? and x̄ ∈ X. Then,

lim sup
x→x̄

f(x) = sup
xn→x̄

sup
N∈N#

∞

inf
n∈N

f(xn),

lim inf
x→x̄

f(x) = inf
xn→x̄

sup
N∈N∞

inf
n∈N

f(xn).

Let f : X → Ĉ¦ and x̄ ∈ X. Then,

lim sup
x→x̄

f(x) = sup
xn→x̄

inf
N∈N∞

sup
n∈N

f(xn),

lim inf
x→x̄

f(x) = inf
xn→x̄

inf
N∈N#

∞
sup
n∈N

f(xn).

Proof. Follows from Definition 2.2.1 and Definition 3.2.3. ¤

In case of outer limits for F̂–valued functions (see Definition 3.1.1), we observe that the set⋃
xn→x̄ LIMSUPn→∞ f(xn) is always closed, i.e., the closure operation, which is implicitly

contained in the infimum in formula (3.1), is superfluous. An analogous result is valid for
Ĉ–valued functions.

Proposition 3.2.5 Let f : X → Ĉ? and x̄ ∈ X. Then it holds

lim inf
x→x̄

f(x) =
⋃

xn→x̄

lim inf
n→∞ f(xn).

Proof. We have to show that
⋃

xn→x̄ lim infn→∞ f(xn) is convex and closed.

(i) Convexity. Let y1, y2 ∈
⋃

xn→x̄ lim infn→∞ f(xn) and λ ∈ [0, 1] be given. Hence there exist

sequences
{
x

(i)
n

}
n∈N ⊆ X, (i = 1, 2) with x

(i)
n → x̄ such that yi ∈ lim infn→∞ f(x(i)

n ). We

define a sequence
{
x

(3)
n

}
n∈N ⊆ X by

{
x(3)

n

}
n∈N :=

{
x

(1)
1 , x

(2)
1 , x

(1)
2 , x

(2)
2 , x

(1)
3 , x

(2)
3 , ...

}
.

Since
{
x

(i)
n

}
n∈N, (i = 1, 2) are subsequences of

{
x

(3)
n

}
n∈N, Proposition 2.2.6 yields that

lim infn→∞ f(x(i)
n ) ⊆ lim infn→∞ f(x(3)

n ), (i = 1, 2). Hence we obtain λy1 + (1 − λ)y2 ∈
lim infn→∞ f(x(3)

n ). From x
(3)
n → x̄ it follows that λy1 + (1− λ)y2 ∈

⋃
xn→x̄ lim infn→∞ f(xn).

(ii) Closedness. Let {ym}m∈N ⊆ ⋃
xn→x̄ lim infn→∞ f(xn) be convergent to some ȳ ∈ Rp.

For all m ∈ N there exists a sequence
{
x

(m)
n

}
n∈N ⊆ X such that x̄ = limn→∞ x

(m)
n and
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ym ∈ lim infn→∞ f(x(m)
n ). Hence, we can construct a strictly increasing function n0 : N → N

by

∀m ∈ N, ∃n0(m) ∈ N, ∀n ≥ n0(m), ∀k ∈ {1, ..., m} :
∥∥∥x(k)

n − x̄
∥∥∥ <

1
m

.

An ”inverse function” of n0 : N→ N can be defined by m0(n) := sup {m ∈ N| n ≥ n0(m)}. Of
course, m0 : N→ N ∪ {−∞} is (not necessarily strictly) increasing and we have m0(n) →∞
for n →∞. Consider the sequence {x̄n}n∈N ⊆ X defined by

{x̄n}n∈N :=
{

x
(1)
1 , x

(2)
1 , ..., x

(m0(1))
1 , x

(1)
2 , x

(2)
2 , ..., x

(m0(2))
2 , . . . , x(1)

n , x(2)
n , ..., x(m0(n))

n , . . .
}

.

where, without loss of generality, it can be assumed that m0(n) 6= −∞ for all n ∈ N. Clearly,
the sequence {x̄n}n∈N converges to x̄ and it has the following property:

∀m ∈ N :
{
x(m)

n

}
n≥n0(m)

⊆ {
x̄n

}
n∈N.

By Proposition 2.2.6 (i), for all m ∈ N we have lim infn→∞ f(x(m)
n ) ⊆ lim infn→∞ f(x̄n) and,

consequently, the sequence {ym}m∈N is a subset of lim infn→∞ f(x̄n). Since lim infn→∞ f(x̄n)
is a closed subset of Rp it follows that ȳ ∈ lim infn→∞ f(x̄n) ⊆ ⋃

xn→x̄ lim infn→∞ f(xn). ¤

The following relationship between the outer and inner limits in F̂ and the upper and lower
limits in Ĉ is an easy consequence of the definition. For f : X → Ĉ? we have

lim inf
x→x̄

f(x) ⊇ LIMSUP
x→x̄

f(x) and lim sup
x→x̄

f(x) ⊇ LIM INF
x→x̄

f(x). (3.2)

In case of f : X → Ĉ¦, it always holds

lim inf
x→x̄

f(x) ⊇ LIM INF
x→x̄

f(x) and lim sup
x→x̄

f(x) ⊇ LIMSUP
x→x̄

f(x).

We next define semi–continuity concepts for functions Ĉ–valued functions.

Definition 3.2.6 A function f : X → Ĉ is lower semi–continuous (lsc) at x̄ ∈ X if

f(x̄) ≤ lim inf
x→x̄

f(x).

A function f : X → Ĉ is said to be upper semi–continuous (usc) at x̄ ∈ X if

f(x̄) ≥ lim sup
x→x̄

f(x).

A function f : X → Ĉ is said to be continuous at x̄ ∈ X if f is simultaneously lsc and usc at
x̄. If f is lsc (usc, continuous) at every x̄ ∈ X we say f is lsc (usc, continuous).

Of course, f is continuous at x̄ ∈ X if and only if f(x̄) = limx→x̄ f(x).

Proposition 3.2.7 Let f : X → Ĉ? and x̄ ∈ X. If f is isc (lsc) at x̄, then f is usc (osc) at
the same point.
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Proof. Follows from (3.2). ¤

Another benefit of our semi–continuity concept is the following characterization, which will
be used in the proof of the biconjugation theorem in Section 3.6 below. The proof is based
on the assertions of Section 2.3.

Theorem 3.2.8 Let f : X → Ĉ? and let x̄ ∈ dom f . Then the following statements are
equivalent:

(i) f is lsc at x̄,

(ii) For all y∗ ∈ ri
(
0+f(x̄)

)◦ the function

f̄y∗ : X → R ∪ {−∞,+∞} , f̄y∗(x) := −δ∗
(
y∗|f(x)

)

is lsc at x̄.

Proof. Let be given an arbitrary sequence {xn}n∈N with xn → x̄.

(i) ⇒ (ii). Let the sequence {x̃n}n∈N be defined by x̃2n := xn and x̃2n+1 := x̄. From (i) we
deduce that f(x̄) = lim infn→∞ f(x̃n). Lemma 2.3.5 implies that

∀y∗ ∈ ri
(
0+f(x̄)

)◦ : −δ∗
(
y∗|f(x̄)

)
= lim inf

n→∞ −δ∗
(
y∗|f(x̃n)

) ≤ lim inf
n→∞ −δ∗

(
y∗|f(xn)

)
.

(ii) ⇒ (i). With aid of Proposition 1.3.7 we obtain

∀y∗ ∈ ri
(
0+f(x̄)

)◦ : −δ∗
(
y∗|f(x̄)

) ≤ lim inf
n→∞ −δ∗

(
y∗|f(xn)

) ≤ −δ∗
(
y∗| lim inf

n→∞ f(xn)
)
.

From Lemma 1.3.1 (iii) we deduce that f(x̄) ≤ lim infn→∞ f(xn). ¤

The next assertion about nested lower limits is essential for an expedient definition of the
lower semi–continuous hull of a Ĉ?–valued function. An analogous assertion for the upper
limit is not true, see the Example 3.2.15 below.

Proposition 3.2.9 Let f : X → Ĉ? and x̄ ∈ X. Then it holds

lim inf
x→x̄

f(x) = lim inf
x→x̄

(
lim inf

w→x
f(w)

)
.

Proof. Clearly, we have f(x) ≥ lim infw→x f(w) for all x ∈ X and hence

lim inf
x→x̄

f(x) ≥ lim inf
x→x̄

(
lim inf

w→x
f(w)

)
.

In order to show the opposite inequality let {xn}n∈N with xn → x̄ be arbitrarily given. For
all y∗ ∈ ri

(
0+ lim infn→∞ f(xn)

)◦ it holds

−δ∗
(

y∗
∣∣∣∣lim inf

n→∞
(
lim inf
w→xn

f(w)
)) Pr. 1.3.7≥ lim inf

n→∞

(
lim inf
w→xn

−δ∗
(
y∗|f(w)

))

= lim inf
n→∞ −δ∗

(
y∗|f(xn)

)

Lem. 2.3.5= −δ∗
(
y∗| lim inf

n→∞ f(xn)
)

.
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Lemma 1.3.1 (iii) yields that lim infn→∞
(
lim infw→xn f(w)

) ⊆ lim infn→∞ f(xn). Hence
lim infn→∞

(
lim infw→xn f(w)

) ≥ infxn→x̄ lim infn→∞ f(xn) = lim infx→x̄ f(x). ¤

We next introduce the lower semi–continuous hull of a Ĉ?–valued function.

Definition 3.2.10 Let f : X → Ĉ?. The lower semi–continuous hull of f is the function
(lsc f) : X → Ĉ?, defined by

(lsc f)(x) := lim inf
x′→x

f(x′).

In order to show that the lower semi–continuous hull of a function f : X → Ĉ? has similar
(but not completely the same) properties as the outer semi–continuous hull we define the
epigraph of f as well as its closedness.

Definition 3.2.11 The epigraph of a function f : X → Ĉ? is defined to be the set

epi f :=
{

(x,A) ∈ X × Ĉ?| A ≥ f(x)
}

.

Definition 3.2.12 A subset A ⊆ X × Ĉ? is closed if for every sequence {(xn, An)}n∈N ⊆ A
with xn → x̄ ∈ X and An → Ā ∈ Ĉ? (with respect to C–convergence) it is true that (x̄, Ā) ∈ A.
The closure of a set A ⊆ X × Ĉ? is defined to be the set of all (x̄, Ā) ∈ X × Ĉ? such that there
is a sequence {(xn, An)}n∈N ⊆ A with xn → x̄ and An → Ā. The closure of A is denoted by
clA.

Let us collect some properties of the lower semi–continuous hull of a Ĉ?–valued function.

Proposition 3.2.13 For f : X → Ĉ? the following statements hold true:

(i) gr (lsc f) ⊇ cl (gr f),

(ii) epi (lsc f) ⊇ cl (epi f),

(iii) (lsc f) is lsc,

(iv) ∀x ∈ X : (lsc f)(x) ≤ f(x),

(v) f is lsc at x̄ ∈ X ⇔ (lsc f)(x̄) = f(x̄),

(vi) gr (lsc f) is closed,

(vii) epi (lsc f) is closed.

Proof. (i) Let (x̄, ȳ) ∈ cl (gr f). Then there exists a sequence {(xn, yn)}n∈N ⊆ gr f converging
to (x̄, ȳ). Let {yn} , {ȳ} ∈ C?. For all n ∈ N, we have {yn} ≥ f(xn). Hence

{ȳ} = lim
n→∞ {yn} = lim inf

n→∞ {yn} Pr. 2.2.7= lim inf
n→∞ f(xn)

≥ inf
x′n→x̄

lim inf
n→∞ f(x′n) = lim inf

x→x̄
f(x) = (lsc f)(x̄),

(3.3)
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i.e., (x̄, ȳ) ∈ gr (lsc f).

(ii) Let (x̄, Ā) ∈ cl (epi f). Then there exist {xn}n∈N ⊆ X and {An}n∈N ⊆ Ĉ? such that
x̄ = limn→∞ xn, Ā = limn→∞An and An ≥ f(xn) for all n ∈ N. Similarly to (3.3), we obtain
(x̄, Ā) ∈ epi (lsc f).

(iii) Let x̄ ∈ X be arbitrarily given. Then, by Proposition 3.2.9, we have

(lsc f)(x̄) = lim inf
x→x̄

f(x) = lim inf
x→x̄

(
lim inf

w→x
f(w)

)
= lim inf

x→x̄
(lsc f)(x).

(iv) Choosing the special sequence xn ≡ x we obtain

(lsc f)(x) = lim inf
x′→x

f(x′) ≤ lim inf
n→∞ f(xn) = lim inf

n→∞ f(x) = f(x).

(v) By definition, f is lsc at x̄ if and only if f(x̄) ≤ (lsc f)(x̄). By (iv) this equivalent to
f(x̄) = (lsc f)(x̄).

(vi) Let {(xn, yn)}n∈N ⊆ gr (lsc f) with (xn, yn) → (x̄, ȳ) ∈ X × Rp be given. Proceeding as
in (i), but replacing f by (lsc f), we obtain {ȳ} ≥ (lsc (lsc f))(x̄). From (iii) we conclude that
(lsc (lsc f))(x̄) = (lsc f)(x̄). Hence (x̄, ȳ) ∈ gr (lsc f).

(vii) Let {(xn, An)}n∈N ⊆ epi (lsc f) with x̄ = limn∈N xn, Ā = limn∈NAn. Proceeding as in
(ii), but replacing f by (lsc f), we obtain (x̄, Ā) ∈ epi (lsc (lsc f)). From (iii) we conclude that
(x, Ā) ∈ epi (lsc f). ¤

The next example shows that neither the closedness of epi f nor the closedness of gr f implies
that f is lsc.

Example 3.2.14 Let f : R→ Ĉ?(R) be defined by

f(x) =

{
{1/x} if x 6= 0
∅ if x = 0.

It can be easily seen that gr f ⊆ R×R is closed. Moreover, we observe that epi f ⊆ R×Ĉ?(R)
is closed. Indeed, let {(xn, An)}n∈N ⊆ epi f be a sequence converging to (0, Ā). (the case
x̄ 6= 0 is obvious). We can assume that there is a subsequence {xn}n∈N̂ (N̂ ∈ N#∞) of {xn}n∈N
such that xn > 0 for all n ∈ N̂ or xn < 0 for all n ∈ N̂ (otherwise we obviously have Ā = ∅).
Then, by Proposition 2.2.6, it follows Ā = limn→∞An = lim supn→∞An ≥ lim supn∈N̂ An ≥
lim infn∈N̂ An. Now it is easy to see that lim infn∈N̂ An = ∅ and hence Ā = ∅. Of course, it
holds (0, ∅) ∈ epi f . However, f is not lsc, because (lsc f) can be easily calculated as

(lsc f)(x) =

{
{1/x} if x 6= 0
R if x = 0.

In Remark 3.1.10 (due to [68]) we noticed that an inner semi–continuous hull of a F̂–valued
function that is analogously defined to the outer semi–continuous hull is not necessarily inner
semi–continuous. There are analogous problems with the upper semi–continuous hull of Ĉ?–
valued functions. This is due to the fact that there is no analogous assertion to Proposition
3.2.9 for upper limits, as the following example shows.
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Example 3.2.15 For functions f : X → Ĉ?, in general, we have

lim sup
x→x̄

f(x) 6= lim sup
x→x̄

(
lim sup

w→x
f(w)

)
.

Indeed, consider the function f : R2 → Ĉ?(R), defined by

f(x) :=

{
{‖x‖} if x1 ≥ 0

{−‖x‖} if x1 < 0.

Then it holds

lim sup
w→x

f(w) :=





{‖x‖} if x1 > 0 or x2 = 0
{−‖x‖} if x1 < 0

∅ if x1 = 0 and x2 6= 0.

Hence we obtain

{0} = lim sup
x→0

f(x) 6= lim sup
x→0

(
lim sup

w→x
f(w)

)
= ∅.

3.3 Locally bounded functions

The concept of local boundedness of a set–valued map plays an important role in Variational
Analysis, see [68]. As an easy consequence of the definition ([68, Definition 5.14]), local
boundedness of a map f : Rn ⇒ Rp at x̄ implies that f(x̄) is a bounded subset of Rp.
This means, local boundedness is (at least locally) adapted to set–valued maps with bounded
values. Therefore we introduce a slightly generalized concept, adapted to the framework
of Ĉ?–valued functions. It turns out that this concept provides a sufficient condition for
the coincidence of lower (upper) semi–continuity with outer (inner) semi–continuity. In this
section, we set X = Rn.

Definition 3.3.1 A function f : X → Ĉ? is said to be locally bounded at x̄ ∈ dom f if there
exists a neighborhood V ∈ N (x̄) such that the following conditions are satisfied:

(i) 0+ infx∈V f(x) ⊆ 0+f(x̄),

(ii) ∀x ∈ V ∩ dom f : 0+f(x) ⊇ 0+f(x̄).

Remark 3.3.2 If f : X → Ĉ? locally bounded at x̄ ∈ dom f , (i) and (ii) of the previous
definition are always satisfied with equality. (Indeed, the opposite inclusion in (i) follows
from infx∈V f(x) ≤ f(x̄) and Proposition A.9 and the opposite inclusion in (ii) follows from
(i).) In view of the embedding theorem in the form of Corollary 1.3.4 this means, locally,
the values of f can be embedded into a partially ordered linear space (extended by a largest
element) and the embedding yields a set in the linear space which is bounded below.

We next clarify the relations between our local boundedness concept and the classical one.
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Proposition 3.3.3 Let f : X → Ĉ? such that f(x̄) is bounded for some x̄ ∈ dom f . Then f

is locally bounded in the sense of the above definition if and only if f is locally bounded in the
sense of [68] (where f is understood to be a set–valued map f : X ⇒ Rp in the latter case).

Proof. In the present situation, condition (i) of Definition 3.3.1 has the meaning of
0+cl conv

⋃
x∈V f(x) = {0} and condition (ii) is always satisfied. This is equivalent to the

boundedness of
⋃

x∈V f(x). ¤

Theorem 3.3.4 Let f : X → Ĉ? be locally bounded at x̄ ∈ dom f . Then,

lim inf
x→x̄

f(x) = cl conv LIMSUP
x→x̄

f(x).

Proof. Clearly, we have lim infx→x̄ f(x) ⊇ cl conv LIM SUPx→x̄ f(x). To show the opposite
inclusion let y ∈ lim infx→x̄ f(x) be given. Then there exists a sequence {xn}n∈N with xn → x̄

such that y ∈ lim infn→∞ f(xn). Assuming that there exists some n0 ∈ N such that f(xn) = ∅
for all n ≥ n0, we obtain lim infn→∞ f(xn) = ∅, which contradicts y ∈ lim infx→x̄ f(x). Hence,
by {xnk

}k∈N := {xn}n∈N ∩ dom f , we obtain a subsequence of {xn}n∈N. By the definition of
the lower limit, we have lim infn→∞ f(xn) = lim infk→∞ f(xnk

). By the local boundedness,
we find k0 ∈ N such that, setting K := 0+f(x̄), f(xnk

) and infk≥k0 f(xnk
) belong to Ĉ?

K

for all k ≥ k0. Theorem 2.2.18 yields y ∈ cl conv LIMSUPk→∞ f(xnk
), hence we obtain

y ∈ cl conv
⋃

xn→x̄ LIMSUPn→∞ f(xn) = LIM SUPx→x̄ f(x). ¤

In the next example we show that the assertion of the preceeding theorem can fail if one of
the conditions in the definition of the local boundedness concept is not satisfied.

Example 3.3.5 Let f : R→ C?(R) be defined by

f(x) =

{ {
1
x

}
if x 6= 0

{0} if x = 0,

i.e., (ii) is satisfied, but (i) is not. Then we have

R = lim inf
x→0

f(x) 6= cl conv LIM SUP
x→0

f(x) = {0} .

Example 3.3.6 Let f : R→ C?(R2) be defined by

f(x) =

{ {
y ∈ R2| y2 = 1, y1 = 1/x

}
if x 6= 0{

y ∈ R2| y2 = 0
}

if x = 0,

i.e., (i) is satisfied, but (ii) is not. An easy calculation shows that

{
y ∈ R2| 0 ≤ y2 ≤ 1

}
= lim inf

x→0
f(x) 6= cl conv LIMSUP

x→0
f(x) =

{
y ∈ R2| y2 = 0

}
.
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lim inf
x→0

f(x)cl conv LIM SUP
x→0

f(x) = f(0)

y1

x

y2

0

1

The local boundedness of a function f : X → Ĉ? at a point x̄ ∈ dom f also implies that
lim supx→x̄ f(x) = LIM INFx→x̄ f(x) (see Corollary 3.3.9 below). However, as shown in the
next theorem, a weaker assumption is already sufficient.

Theorem 3.3.7 Let f : X → Ĉ? be a function and let x̄ ∈ dom f such that for all sequences
{xn}n∈N ⊆ X with xn → x̄ there exists a subsequence {xnk

}k∈N and a nonempty closed convex
cone K ⊆ Rp with

∀k ∈ N : f(xnk
) ∈ C?

K and inf
k∈N

f(xnk
) ∈ C?

K .

Then it holds

lim sup
x→x̄

f(x) = LIM INF
x→x̄

f(x).

Proof. Of course, lim supx→x̄ f(x) ⊇ LIM INFx→x̄ f(x). In order to show the opposite
inclusion let y ∈ Rp \LIM INFx→x̄ f(x) be given (the case LIM INFx→x̄ f(x) = Rp is obvious).
Hence there exists a sequence {xn}n∈N ⊆ X with xn → x̄ such that y 6∈ LIM INFn→∞ f(xn).
Every subsequence of {xn}n∈N is again a sequence converging to x̄, hence our assumption
ensures that Theorem 2.2.19 is applicable. It follows that y 6∈ lim supn→∞ f(xn). ¤

The next example shows that the assertion of the previous theorem can fail if the assumption
is not satisfied.

Example 3.3.8 Let f : R→ C?(R2) be defined by

f(x) =

{
R2 if x ≤ 0

conv
{(−1,− 1

x

)
,
(
1, 1

x

)}
if x > 0,

i.e., the condition in the previous theorem is not satisfied. Then we have

{
y ∈ R2| − 1 ≤ y2 ≤ 1

}
= lim sup

x→0
f(x) 6= LIM INF

x→0
f(x) =

{
y ∈ R2| y2 = 0

}
.



3.4. Convex functions 53

x

y1

y2

lim sup
x→0

f(x)
LIM INF

x→0
f(x)

Corollary 3.3.9 Let f : X → Ĉ? be locally bounded at x̄ ∈ dom f . Then,

lim sup
x→x̄

f(x) = LIM INF
x→x̄

f(x).

Proof. By the local boundedness of f at x̄, for every sequence {xn}n∈N with xn → x̄ there
exists some n0 ∈ N such that

∀n ≥ n0 : f(xn) ∈ C?
K and inf

n≥n0

f(xn) ∈ C?
K ,

where K := 0+f(x̄). Hence, Theorem 3.3.7 yields the desired assertion. ¤

Corollary 3.3.10 Let f : X → Ĉ? be locally bounded at every x̄ ∈ dom f . Then the following
statements are equivalent:

(i) epi f ⊆ X × Ĉ? is closed,

(ii) f is lsc,

(iii) gr f ⊆ X × Rp is closed.

Proof. (i) ⇒ (iii). Elementary (using Proposition 2.2.13 (i)).

(iii) ⇒ (ii). Proposition 3.1.5 yields that f is osc. By Theorem 3.3.4, f is lsc.

(ii) ⇒ (i). Follows from Proposition 3.2.13 (v), (vii). ¤

3.4 Convex functions

In this section, we investigate convex and concave Ĉ–valued functions. As a main result, we
show that semi–continuity in the sense of Section 3.2 coincides with the classical concepts of
outer and inner semi–continuity. We next introduce convex and concave Ĉ–valued functions.
We proceed analogously to the scalar case. We set X = Rn even though many assertions are
also valid in more general context.
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Definition 3.4.1 A function f : X → Ĉ is said to be convex if

∀λ ∈ [0, 1], ∀x1, x2 ∈ X : f(λ · x1 + (1− λ) · x2) ≤ λ f(x1)⊕ (1− λ) f(x2).

A concave function is analogously defined (replacing ≤ by ≥).

The following figure shows (the graph of) a convex and a concave function f : R→ Ĉ?(R).

x x

yy

f convex f concave

Proposition 3.4.2 A function f : X → Ĉ is convex (concave) if and only if epi f ⊆ X × Ĉ
(hyp f ⊆ X × Ĉ) is convex.

Proof. The proof is immediate. ¤

Usually, convexity of a set–valued map is defined by convexity of its graph. The relationship
is as follows.

Proposition 3.4.3 A function f : X → Ĉ? is convex if and only if gr f is likewise. A
function f : X → Ĉ¦ is concave if and only if gr f is convex.

Proof. Follows from the definition. ¤

It can be easily seen that a concave function f : X → Ĉ? and a convex function f : X → Ĉ¦
do not have convex graphs, in general. Functions of this (or similar) type are called ”fans”
by Ioffe, compare [38]. In the most cases these functions have worse properties than its
counterparts (with convex graph). In Chapter 4, for instance, they occur as objective functions
of dual problems.

The following proposition shows that the values of a convex Ĉ?–valued function essentially
have the same recession cone. An analogous result for concave Ĉ?–valued functions is not
true. A systematic study of assertions of this type can be found in [54].

Proposition 3.4.4 Let f : X → Ĉ? be convex. If x̄ ∈ ri dom f , then 0+f(x) ⊆ 0+f(x̄) for
all x ∈ dom f and 0+f(x) = 0+f(x̄) for all x ∈ ri (dom f).

Proof. Note that dom f is convex. Let x ∈ dom f be arbitrarily given and, by hypothesis,
x̄ ∈ ri dom f . By [1, Theorem 6.4], there exists µ > 1 such that x̂ := µx̄ + (1− µ)x ∈ dom f .
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Set λ := 1/µ ∈ (0, 1). The convexity of f yields f(x̄) ⊇ λf(x̂)⊕ (1−λ)f(x). Since x̂ ∈ dom f

we can choose some ŷ ∈ f(x̂), hence f(x̄) ⊇ λ {ŷ}+ (1− λ)f(x) := Cx. Of course, f(x) ⊆ Rp

is a nonempty closed convex set for each x ∈ dom f . Therefore, Proposition A.9 yields
0+Cx ⊆ 0+f(x̄). With the aid of [1, Theorem 8.1] we conclude that 0+Cx = 0+f(x), hence
0+f(x) ⊆ 0+f(x̄).

Assume there is some x̃ ∈ ri dom f with 0+f(x̃) ( 0+f(x̄), then the first part yields 0+f(x) ⊆
0+f(x̃) for all x ∈ dom f , whence the contradiction 0+f(x̄) ( 0+f(x̄). ¤

Theorem 3.4.5 Let f : X → Ĉ? be convex. Then, for all x̄ ∈ X it holds

lim inf
x→x̄

f(x) = LIM SUP
x→x̄

f(x).

Proof. Of course, we always have lim infx→x̄ f(x) ⊇ LIMSUPx→x̄ f(x). To show the
opposite inclusion let y ∈ lim infx→x̄ f(x) be given. Hence there exists a sequence {xn}n∈N
with xn → x̄ such that y ∈ lim infn→∞ f(xn). By Proposition 2.2.15 this can be written as

∃
{

(λ(m)
0 , ..., λ(m)

p ), (k(m)
0 , ..., k(m)

p ), (z(m)
0 , ..., z(m)

p )
}

m∈N
⊆ [0, 1]p+1 × Np+1 × (Rp)p+1 :

y = lim
m→∞

p∑

j=0

λ
(m)
j z

(m)
j ,

∀j ∈ {0, 1, ..., p} , ∀m ∈ N : z
(m)
j ∈ f(x

k
(m)
j

),

∀j ∈ {0, 1, ..., p} , ∀m ∈ N : k
(m)
j ≥ m,

∀m ∈ N :
p∑

j=0

λ
(m)
j = 1.

We define two sequences {ym}m∈N ⊆ Rp and {x̃m}m∈N ⊆ X by

ym :=
p∑

j=0

λ
(m)
j z

(m)
j x̃m :=

p∑

j=0

λ
(m)
j x

k
(m)
j

.

Then we have ym → y, x̃m → x̄ and the convexity of f yields that

ym =
p∑

j=0

λ
(m)
j z

(m)
j ∈

p∑

j=0

λ
(m)
j f

(
x

k
(m)
j

)
⊆ f




p∑

j=0

λ
(m)
j x

k
(m)
j


 = f (x̃m)

for all m ∈ N. By [68, 5(1)], this means y ∈ LIM SUPx→x̄ f(x). ¤

Corollary 3.4.6 Let f : X → Ĉ? be convex. Then the following statements hold true:

(i) (lsc f) = (osc f),
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(ii) (lsc f) is convex,

(iii) (lsc f) : X → Ĉ?
K for some nonempty closed convex cone K ⊆ Rp.

Proof. (i) Follows from Theorem 3.4.5.

(ii) f convex ⇔ gr f convex ⇒ cl (gr f) = gr (osc f) convex ⇔ osc f = lsc f convex.

(iii) Since lsc f is osc and convex, its graph is closed and convex. If dom (lsc f) = ∅ there
is nothing to prove, otherwise, there exists some x̄ ∈ ri dom (lsc f). From Proposition 3.4.4
we deduce that 0+(lsc f)(x) ⊆ 0+(lsc f)(x̄) =: K for all x ∈ dom (lsc f). It remains to prove
the opposite inclusion for all x ∈ dom (lsc f). Indeed, let ŷ ∈ 0+(lsc f)(x̄) and ȳ ∈ (lsc f)(x̄)
be arbitrarily chosen. By [1, Theorem 8.3] we have ȳ + λŷ ∈ (lsc f)(x̄) for all λ ≥ 0 and
equivalently (0, ŷ) ∈ 0+gr (lsc f). Given some x ∈ dom (lsc f) we can choose y ∈ (lsc f)(x).
Since (0, ŷ) ∈ 0+gr (lsc f), [1, Theorem 8.3] yields that y + λŷ ∈ (lsc f)(x) for all λ ≥ 0 and
equivalently ŷ ∈ 0+(lsc f)(x). ¤

Corollary 3.4.7 For some nonempty closed convex cone K ⊆ Rp and a function f : X → Ĉ?
K ,

the following statements are equivalent:

(i) f is convex and lsc,

(ii) gr f ⊆ X × Rp is convex and closed,

(iii) epi f ⊆ X × Ĉ? is convex and closed,

(iv) For all y∗ ∈ riK◦ the function

f̄y∗ : X → R ∪ {−∞,+∞} , f̄y∗(x) := −δ∗
(
y∗|f(x)

)

is convex and closed.

Proof. (i)⇔ (ii)⇔ (iii). The equivalence of the convexity assertions follows from Proposition
3.4.2 and Proposition 3.4.3. The equivalence of the lower semi–continuity and closedness
assertions follows similarly to the proof of Corollary 3.3.10 (using Corollary 3.4.6 (i) instead
of Theorem 3.3.4).

(i) ⇔ (iv). From Corollary 1.3.4 (convexity) and Theorem 3.2.8 taking into account Corollary
3.4.6 (iii). ¤

Theorem 3.4.8 Let f : X → Ĉ? be convex. Then the following assertions hold true:

(i) f is lsc at every x̄ ∈ ri (dom f),

(ii) f is continuous at every x̄ ∈ int (dom f).
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Proof. (i) Let x̄ ∈ ri (dom f) be given and let K := 0+f(x̄). By Theorem 3.2.8, it remains
to show that, for all y∗ ∈ riK◦, f̄y∗ is lsc at x̄. From Proposition 3.4.4 we deduce that
0+f(x) = K for all x ∈ ri (dom f). Hence, for all y∗ ∈ riK◦ it is true that x̄ ∈ ri dom f̄y∗ ,
whence, by [1, Theorem 7.4], f̄y∗ is lsc at x̄.

(ii) By [68, Theorem 5.9 (b)], f is isc at x̄ ∈ int (dom f). Hence, by Proposition 3.2.7, f is
usc at x̄. Now the assertion follows from (i). ¤

We close this section with some assertions with respect to local boundedness of convex func-
tions. These statements are not used in the following, however, they illuminate some addi-
tional connections between the previous assertions and known results for set–valued maps
and could be of independent interest.

Theorem 3.4.9 Let f : X → Ĉ? be convex and lsc. Then, f is locally bounded at every
x̄ ∈ dom f .

Proof. Let x̄ ∈ dom f , V := {x̄} + B and K := 0+f(x̄). By Proposition 3.2.13 (v) and
Corollary 3.4.6 (iii) we have 0+f(x) = K for all x ∈ dom f . Hence, condition (ii) in the
definition of the local boundedness is satisfied. It remains to show 0+ infx∈V f(x) ⊆ K. First
we show that

inf
x∈V

f(x) =
⋃

x∈V

f(x). (3.4)

We have to show that
⋃

x∈V f(x) is convex and closed. Since V and f are convex, the set⋃
x∈V f(x) is convex. Since V is compact and gr f is closed, we deduce that

⋃
x∈V f(x) is

closed. From (3.4) it follows that

0+ inf
x∈V

f(x) = 0+
⋃

x∈V

f(x).

Let k ∈ 0+
⋃

x∈V f(x) be given. By [1, Theorem 8.2], k is the limit of a sequence {λnyn}
where λn ↓ 0 and yn ∈ ⋃

x∈V f(x). Clearly, for all n ∈ N there exists xn ∈ V such that
yn ∈ f(xn). Since V is bounded, we have (λnxn, λnyn) → (0, k). Applying [1, Theorem 8.2]
to the closed convex set gr f ⊆ X×Rp, we obtain (0, k) ∈ 0+gr f . With the aid of [1, Theorem
8.3] we deduce that ȳ + λk ∈ f(x̄ + λ · 0) = f(x̄) for all λ ≥ 0 and arbitrary ȳ ∈ f(x̄), which
is equivalent to k ∈ 0+f(x̄) = K. ¤

Corollary 3.4.10 If f : X → Ĉ? is convex, then f locally bounded at every x̄ ∈ ri (dom f).

Proof. Theorem 3.4.9 yields that lsc f is locally bounded at every x ∈ dom (lsc f). By
Theorem 3.4.8 (i), we know that f(x̄) = (lsc f)(x̄) for all x̄ ∈ ri (dom f). ¤

Corollary 3.4.11 Let f : X → Ĉ? be convex. Then, for all x̄ ∈ X it holds

lim sup
x→x̄

f(x) = LIM INF
x→x̄

f(x).
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Proof. If x̄ ∈ ri (dom f), this follows from Corollary 3.4.10 and Corollary 3.3.9. Otherwise,
we have lim supx→x̄ f(x) = LIM INFx→x̄ f(x) = ∅. ¤

3.5 Conjugates

In this section, we introduce conjugates of Ĉ–valued functions. We observe that a lot of
properties being well–known for the classical conjugate notion remain valid. The lack of
linearity with respect to the image space is compensated by the concept of oriented sets
against the background of the considerations on embedding, see Section 1.2 and Section 1.3.
We set X = X∗ = Rn even though many assertions are also valid in more general spaces.

Definition 3.5.1 Let f : X → Ĉ and c ∈ Rp. The function f∗c : X∗ → Ĉ, defined by

f∗c (x∗) := sup
x∈X

{〈x∗, x〉 · {c}¯ f(x)} ,

where the set {c} is considered to have the opposite orientation of f , is said to be the conjugate
of f with respect to c. The function f∗∗c : X → Ĉ, defined by

f∗∗c (x) := (f∗c )∗c ,

is said to be the biconjugate of f with respect to c.

Clearly, f and f∗c are contrarily oriented, but f and f∗∗c have the same orientation. For
instance, if f : X → Ĉ? and {c} ∈ C?, we can express the biconjugate by using supremum
oriented sets only:

f∗∗c (x) = sup
x∗∈X∗

{
〈x, x∗〉 {c}+ inf

x′∈X

{− 〈
x∗, x′

〉 {c}+ f(x′)
}}

. (3.5)

As an easy consequence of the definition we obtain the Fenchel–Young inequality

∀x ∈ X, x∗ ∈ X∗, c ∈ Rp : f∗c (x∗) ≥ 〈x∗, x〉 · {c}¯ f(x). (3.6)

The following proposition collects some further properties of conjugates.

Proposition 3.5.2 Let f, f1, f2 : X → Ĉ (with the same orientation) be given. Then, for all
c ∈ Rp the following statements hold true:

(i) f∗c is convex and lsc (even if f is not),

(ii) f∗∗c is convex and lsc,

(iii) f1 ≤ f2 ⇒ (f1)∗c ≥ (f2)∗c ,

(iv) f1 ≤ f2 ⇒ (f1)∗∗c ≤ (f2)∗∗c ,
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(v) f∗∗c ≤ f ,

(vi) f∗∗c = f∗∗−c.

Proof. (i) and (ii). Convexity. For all λ ∈ [0, 1] and all x∗1, x
∗
2 ∈ X∗ it holds

f∗c
(
λx∗1 + (1− λ)x∗2

)

= sup
x∈X

{
〈λx∗1 + (1− λ)x∗2, x〉 {c}¯ f(x)

}

= sup
x∈X

{
λ
(〈x∗1, x〉 {c}¯ f(x)

)⊕ (1− λ)
(〈x∗2, x〉 {c}¯ f(x)

)}

≤ sup
x1,x2∈X

{
λ
(〈x∗1, x1〉 {c}¯ f(x1)

)⊕ (1− λ)
(〈x∗2, x2〉 {c}¯ f(x2)

)}

(1.1)

≤ sup
x1∈X

{
λ
(〈x∗1, x1〉 {c}¯ f(x1)

)}⊕ sup
x2∈X

{
(1− λ)

(〈x∗2, x2〉 {c}¯ f(x2)
)}

= λf∗c
(
x∗1

)⊕ (1− λ)f∗c
(
x∗2

)
.

Lower semi–continuity. For all x̄∗ ∈ X∗ it holds

lim inf
x∗→x̄∗

f∗c (x∗) = inf
x∗n→x̄∗

lim inf
n→∞ sup

x∈X

{〈x∗n, x〉 {c}¯ f(x)
}

Pr. 2.2.8 (iii)

≥ inf
x∗n→x̄∗

sup
x∈X

lim inf
n→∞

{〈x∗n, x〉 {c}¯ f(x)
}

Pr. 2.2.14= sup
x∈X

{〈x̄∗, x〉 {c}¯ f(x)
}

= f∗c (x̄∗).

(iii) and (iv). Since f1 ≤ f2 implies ¯f1 ≥ ¯f2, this is obvious.

(v) From (3.5) we deduce

f∗∗c (x) = sup
x∗∈X∗

{
〈x, x∗〉 {c}+ inf

x′∈X

{− 〈
x∗, x′

〉 {c}+ f(x′)
}}

≤ sup
x∗∈X∗

{
〈x, x∗〉 {c} − 〈x∗, x〉 {c}+ f(x)

}
= f(x).

(vi) Replace 〈x, x∗〉 {c} and 〈x∗, x′〉 {c} in formula (3.5), respectively, by 〈x,−x∗〉 {−c} and
〈−x∗, x′〉 {−c}. ¤

Example 3.5.3 (set–valued support function) The following set–valued map is often
used in the literature. Given a subset S ⊆ X, the set–valued indicator function is defined by

∆(x |S) :=

{
{0} if x ∈ S

∅ else.

If ∆( · |S) is considered to be a function with values in Ĉ?, ∆( · |S) is convex if and only if the
set S is likewise. The conjugate of ∆( · |S) : X → Ĉ? with respect to c ∈ Rp is the function
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∆∗
c( · |S) : X∗ → C¦,

∆∗
c(x

∗|S) = sup
x∈S

{〈x∗, x〉 {c}} =
[−δ∗(x∗,−S), δ∗(x∗, S)

] · {c} ,

where {c} ∈ C¦ and, by convention,

∀α ∈ R : [−∞, α] {c} := (−∞, α] {c} =
⋃

λ≤α

(
λ {c}),

∀α ∈ R : [α, +∞] {c} := [α, +∞) {c} =
⋃

λ≥α

(
λ {c}),

[−∞,+∞] {c} := (−∞, +∞) {c} = R · {c} =
⋃

λ∈R

(
λ {c}),

[+∞,−∞] {c} := ∅ (this case occurs if S = ∅).
In order to emphasize the analogy to the scalar case, ∆∗

c( · |S) is called the (set–valued) support
function (with respect to c ∈ Rp) of f . If S is closed and convex, one can easily verify (using
[1, Theorem 13.1]) that the biconjugate ∆∗∗

c ( · |S) is equal to ∆( · |S). Of course, this is also
a consequence of the set–valued biconjugation theory to be developed in the next section.

Remark 3.5.4 An axiomatic approach to duality and conjugation was given by Mart́ınez–
Legaz and Singer [62]. Recently, this theory was extended up to the framework of complete
lattices, see [26], which is general enough in order to apply these results to optimization with
set relations. The spaces Ĉ? and Ĉ¦ can be considered as two complete lattices. The change of
orientation corresponds to the bijection s in [26]. In axiomatic duality a so–called ”condition
inf–d” plays a crucial role. In our framework this is condition is equivalent to the requirement
that (1.1) is satisfied with equality. Another observation is that in [26, Theorem 4.1] coupling
functions with a special form are considered, which corresponds to the form of our coupling
functions, namely 〈 · , · 〉 {c}.

3.6 Biconjugation theorem

In this section, we prove a biconjugation theorem for functions f : X → Ĉ?. In the next
chapter, this result is used to prove strong duality assertions for convex optimization problems
based on set relations. As in the previous section, we set X = X∗ = Rn. We begin with an
auxiliary assertion.

Lemma 3.6.1 Let K ⊆ Rp be a nonempty closed convex cone which is not a linear subspace
of Rp. Then it holds

(y ∈ riK ∧ y∗ ∈ riK◦) ⇒ 〈y, y∗〉 < 0.

Proof. Assume the contrary. By the definition of the polar cone, this means that there
exists ȳ ∈ riK and ȳ∗ ∈ riK◦ such that 〈ȳ, ȳ∗〉 = 0. We show that

∀y∗ ∈ K◦ : 〈ȳ, y∗〉 = 0. (3.7)
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Assuming that (3.7) is not true, we find some ỹ∗ ∈ K◦ such that 〈ȳ, ỹ∗〉 < 0. Since ȳ∗ ∈ riK◦,
there exists some µ > 1 such that ŷ∗ := µȳ∗ + (1 − µ)ỹ∗ ∈ K◦. Hence 〈ȳ, ŷ∗〉 > 0, which
contradicts ŷ∗ ∈ K◦.

With the aid of (3.7) and the bipolar theorem [1, Theorem 14.1] we obtain −ȳ ∈ K◦◦ = K.
Since K is a convex cone and ȳ ∈ K ∩ (−K), we have K = K + {−ȳ}. From ȳ ∈ riK we
conclude 0 ∈ riK + {−ȳ} = ri (K + {−ȳ}) = ri K. This implies linK = aff K = K, i.e. K is
a linear subspace of Rp, a contradiction. ¤

In order to formulate the biconjugation theorem, the vector c ∈ Rp, which is involved in the
definition of the biconjugate, has to be chosen appropriately. Therefore we define the set Cf ,
which depends on the function f : X → Ĉ?, as follows:

Kf := inf
x∈dom f

0+f(x),

Cf :=

{
riKf ∪ −riKf if Kf ( Rp is a not linear subspace of Rp or Kf = Rp

Rp \Kf if Kf ( Rp is a linear subspace of Rp or Kf = ∅.

Let us enumerate some basic properties of the sets Kf and Cf . These statements easily follow
from the definition and some results of Section 3.4.

(i) Cf is nonempty,

(ii) If f(·) ≡ ∅, then Cf = Rp,

(iii) If f(x) = Rp for some x ∈ X, then Cf = Rp (this case does not occur in Theorem 3.6.2,
but in Corollary 3.6.3),

(iv) If f : X → Ĉ?
K , then K = Kf ,

(v) If f is convex, then Kf = 0+f(x) for all x ∈ ri dom f ,

(vi) If f is convex and lsc, then Kf = 0+f(x) for all x ∈ dom f .

It follows the main result of this section and one of the main results of this work.

Theorem 3.6.2 (Biconjugation theorem) For all functions f : X → Ĉ? \ {Rp} the fol-
lowing statements are equivalent:

(i) f is convex and lsc,

(ii) For all c ∈ Cf it holds f = f∗∗c ,

(iii) There exists c ∈ Rp such that f = f∗∗c .

Proof. If f is identically ∅ we directly conclude that f = f∗∗c for all c ∈ Cf = Rp and, of
course, f is convex and lsc. Therefore, dom f is assumed to be nonempty, and hence Kf 6= ∅.
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(i) ⇒ (ii): From Corollary 3.4.6 (iii) and Proposition 3.2.13 (v) we deduce that x 7−→ 0+f(x)
is constant on dom f , i.e., setting K := Kf , we have f : X → Ĉ?

K . From Corollary 3.4.7
we deduce that for all y∗ ∈ riK◦ the function f̄y∗ : X → R ∪ {−∞,+∞}, f̄y∗(x) :=
−δ∗

(
y∗|f(x)

)
is convex and closed. By a classical biconjugation theorem, e.g. [1, Theorem

12.2], it follows that

∀y∗ ∈ riK◦ : f̄y∗ = f̄∗∗y∗ . (3.8)

Let x ∈ X and c ∈ Cf be arbitrarily chosen. In dependence on K 6= Rp, we distinguish
between two cases.

(A) Let K ( Rp be a not a linear subspace of Rp. In view of Proposition 3.5.2 (vi) we can
assume that c ∈ riK. For arbitrarily given y∗ ∈ riK◦, Lemma 3.6.1 yields that 〈y∗, c〉 < 0.
Hence there exists αy∗ > 0 such that 〈αy∗y

∗, c〉 = −1. This can be rewritten as

∀t ∈ R : −δ∗
(
αy∗y

∗| {t · c}) = −〈αy∗y
∗, t · c〉 = t. (3.9)

For α := αy∗ > 0 we have

α · (−δ∗ (y∗|f(x))
)

= −δ∗ (αy∗|f(x)) = f̄α y∗(x)
(3.8)
= f̄∗∗α y∗(x)

= sup
x∗∈X∗

{
〈x, x∗〉+ inf

x′∈X

{− 〈
x∗, x′

〉
+ f̄α y∗(x′)

}}

(3.9)
= sup

x∗∈X∗

{
−δ∗

(
αy∗| 〈x, x∗〉 {c}) + inf

x′∈X

{−δ∗
(
αy∗| − 〈

x∗, x′
〉 {c})− δ∗

(
αy∗|f(x′)

)}}

= sup
x∗∈X∗

{
−δ∗

(
αy∗| 〈x, x∗〉 {c}) + inf

x′∈X

{−δ∗
(
αy∗| − 〈

x∗, x′
〉 {c}+ f(x′)

)}}

Pr. 1.3.7= sup
x∗∈X∗

{
−δ∗

(
αy∗| 〈x, x∗〉 {c})− δ∗

(
αy∗

∣∣∣∣ inf
x′∈X

{− 〈
x∗, x′

〉 {c}+ f(x′)
})}

= sup
x∗∈X∗

{
−δ∗

(
αy∗

∣∣∣∣ 〈x, x∗〉 {c}+ inf
x′∈X

{− 〈
x∗, x′

〉 {c}+ f(x′)
})}

Pr. 1.3.7≤ −δ∗
(

αy∗
∣∣∣∣ sup

x∗∈X∗

{
〈x, x∗〉 {c}+ inf

x′∈X

{− 〈
x∗, x′

〉 {c}+ f(x′)
}})

(3.5)
= −δ∗

(
αy∗

∣∣f∗∗c (x)
)

= α · (−δ∗ (y∗|f∗∗c (x))
)
.

It follows that δ∗(y∗|f∗∗c (x)) ≤ δ∗(y∗|f(x)) for all y∗ ∈ riK◦. If f(x) = ∅ we conclude that
δ∗(y∗|f∗∗c (x)) = −∞ for some y∗ and hence f∗∗c (x) = ∅. If x ∈ dom f , we have 0+f(x) = K.
Hence, by Lemma 1.3.1 (iii) we deduce that f(x) ≤ f∗∗c (x). Finally, 3.5.2 (v) yields f(x) =
f∗∗c (x).

(B) Let K ( Rp be a linear subspace of Rp and let c ∈ Rp \K. Letting {c} ∈ C?, we define the
set B := R+ {c} ∈ C?. Consider the function f̃ : X → Ĉ?, f̃(x) := f(x) + B (by [1, Corollary
9.1.2] this sum is closed). Of course, f̃ is convex and lsc and f̃(x) 6= Rp. For x ∈ dom f , [1,
Corollary 9.1.2] yields K̃ := 0+f̃(x) = 0+f(x) + B = K + B. In particular, K̃ is not a linear
space and c ∈ ri K̃. Therefore, f̃ satisfies the assumptions of case (A). For arbitrary x ∈ X it
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follows

f(x) + B = f̃(x)
part (A)

= f̃∗∗c (x)

= sup
x∗∈X∗

{
〈x, x∗〉 {c}+ inf

x′∈X

{− 〈
x∗, x′

〉 {c}+ f(x′) + B
}}

Pr. 1.2.4, (1.1)

≤ f∗∗c (x)⊕B ≤ f∗∗c (x).

By the same arguments (replace c by −c) we obtain f(x)−B ≤ f∗∗−c(x) = f∗∗c (x). Together we
have (f(x)−B)∩(f(x)+B) ≤ f∗∗c (x). It remains to show that f(x) ≤ (f(x)−B)∩(f(x)+B).
Let y ∈ (f(x) + B) ∩ (f(x) − B) be given (the case f(x) = ∅ is immediate). This means
y = y1 + r1c = y2 − r2c for y1, y2 ∈ f(x) and real numbers r1, r2 ≥ 0. If r1 + r2 = 0 there is
nothing to prove. For r1 + r2 > 0 it follows

y =
r2

r1 + r2
(y1 + r1c) +

r1

r1 + r2
(y2 − r2c) =

r2

r1 + r2
y1 +

r1

r1 + r2
y2 ∈ f(x).

Hence f(x) ≤ f∗∗c (x) and Proposition 3.5.2 (v) yields equality.

(ii) ⇒ (iii): Since Cf is always nonempty, this is obvious.

(iii) ⇒ (i): Follows from Proposition 3.5.2 (ii). ¤

It follows a local variant of the biconjugation theorem. In this assertion, the assumption
f(x) 6= Rp can be omitted.

Corollary 3.6.3 Let f : X → Ĉ? be convex and let x̄ ∈ dom f . Then, the following state-
ments are equivalent:

(i) f is lsc at x̄ ∈ X,

(ii) For all c ∈ Cf it holds f(x̄) = f∗∗c (x̄),

(iii) There exists c ∈ Rp such that f(x̄) = f∗∗c (x̄).

Proof. (i) ⇒ (ii). If f(x̄) = Rp, Proposition 3.5.2 (v) yields that f(x̄) = f∗∗c (x̄) = Rp

for all c ∈ Cf (= Rp). Therefore let f(x̄) 6= Rp. By Corollary 3.4.6 and Proposition 3.2.13
(iii), (lsc f) : X → Ĉ? is convex, lsc and Ĉ?

K–valued for some nonempty closed convex cone
K ⊆ Rp. Since f is lsc at x̄ ∈ dom f we obtain K = 0+f(x̄) 6= Rp. Hence (lsc f)(x) 6= Rp for
all x ∈ X. Theorem 3.6.2 yields (lsc f) = (lsc f)∗∗c for all c ∈ C(lsc f). Using Proposition 3.2.13
(iv) and Proposition 3.5.2 (iv) we conclude that f(x̄) = (lsc f)(x̄) = (lsc f)∗∗c (x̄) ≤ f∗∗c (x̄).
Proposition 3.5.2 (v) yields that f(x̄) = f∗∗c (x̄) for all c ∈ C(lsc f). It remains to show that
C(lsc f) = Cf . Therefore, we show that K = Kf

(
= infx∈dom f 0+f(x)

)
. Since K = 0+f(x̄)

we have K ≥ Kf . From (lsc f) ≤ f we conclude that K = 0+(lsc f)(x) ≤ 0+f(x) for all
x ∈ dom f . Hence K ≤ Kf .

(ii) ⇒ (iii). Since Cf is always nonempty, this is obvious.

(iii) ⇒ (i). By Proposition 3.5.2 (ii), f∗∗c is lsc. From f∗∗c ≤ f we obtain lim infx→x̄ f∗∗c (x) ≤
lim infx→x̄ f(x). Hence f(x̄) = f∗∗c (x̄) ≤ lim infx→x̄ f∗∗c (x) ≤ lim infx→x̄ f(x). ¤
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Finally, we express the biconjugation theorem by conventional notations. The set Cf is defined
as above, but in the definition of Kf , 0+f(x) is replaced by 0+(cl conv f(x)) (in order to have
a correct definition of Cf for a set–valued map f : Rn ⇒ Rp, which has not closed convex
values a priori).

Corollary 3.6.4 Let f : Rn ⇒ Rp be a set–valued map with nonempty graph and f(x) 6= Rp

for all x ∈ X. Then, the following statements are equivalent:

(i) gr f is closed and convex,

(ii) For all c ∈ Cf it holds

∀x ∈ Rn : f(x) =
⋂

x∗∈Rn

{
〈x, x∗〉 {c} − cl conv

⋃

x′∈Rn

{〈
x∗, x′

〉 {c} − f(x′)
}
}

,

(iii) There exists c ∈ Rp such that f can be expressed as in (ii).

Proof. Follows from Theorem 3.6.2 and the results of Section 3.4. ¤



Chapter 4

Duality

In this chapter, we investigate optimization problems with Ĉ–valued objective function. Given
an objective function f : X → Ĉ and a set S ⊆ X of feasible points, we are interested in the
sets infx∈S f(x) and supx∈S f(x).

We already know that these problems are not of the same type, because one of them involves
the union and the other one the intersection. In this chapter, we prove weak as well as
strong duality assertions. In order to obtain strong duality it is essential to start either
with an infimum problem for Ĉ?–valued functions or with a supremum problem for Ĉ¦–valued
functions. Otherwise, it seems to be not possible to obtain comparable duality assertions,
see Remark 4.1.4 below. However, the other type of problem occurs as the dual problem.
Exemplary, we consider primal problems with Ĉ?–valued functions.

The main tool for proving strong duality assertions is the biconjugation theorem developed in
Section 3.6. We consider a Fenchel duality approach as well as a Lagrange duality approach.
The problem formulation as well as the proofs are very analogous to the well–known scalar
case. In the last section of this chapter, we calculate some special cases.

4.1 Fenchel duality

In this section, we prove weak and strong duality assertions for optimization problems with Ĉ?–
valued objective function. We speak about Fenchel duality because our duality theorem has
the same structure as the classical Fenchel duality theorem for extended real–valued functions,
for instance, see [1, Theorem 31.1] or [10, Theorem 3.3.5]. This means, for instance, that the
dual problem of a given problem of the form infx∈X

{
f(x) − g(x)

}
(or similar) is expressed

by the conjugates of f and g. In contrast to that, this structure gets lost in many other
generalizations of the classical Fenchel duality, for instance, see [78]. In this section, we set
X = X∗ = Rn and U = U∗ = Rm, because our main attention is drawn to the image space.
Nevertheless, an extension to more general spaces should be possible. As in the scalar theory,
the constraint qualification has to be strengthened in case of infinite dimensional X and U .

65
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For given functions f : X → Ĉ? and g : U → Ĉ?, a linear map A : X → U and a vector
c ∈ Rp, let

p : X → Ĉ? and dc : U∗ → Ĉ?

be defined, respectively, by

p(x) = f(x)⊕ g(Ax) and dc(u∗) = ¯
(
f∗c (A∗u∗)⊕ g∗c (−u∗)

)
.

We consider the following optimization problems, the primal problem

(P) P := inf
x∈X

p (x),

and the dual problem associated to (P)

(Dc) Dc := sup
u∗∈U∗

dc(u∗).

Analogous to the scalar optimization theory, we introduce the value function by

v : U → Ĉ?, v(u) := inf
x∈X

{
f(x)⊕ g(Ax− u)

}
.

The following proposition collects some properties of the value function.

Proposition 4.1.1 The value function v : U → Ĉ? has the following properties:

(i) If f and g are convex, then v is convex,

(ii) v(0) = P ,

(iii) ∀c ∈ Rp, ∀u∗ ∈ U∗ : v∗c (u∗) = ¯dc(u∗),

(iv) ∀c ∈ Rp : v∗∗c (0) = Dc.

Proof. (i) For arbitrary u1, u2 ∈ U and λ ∈ (0, 1) it holds

λv(u1)⊕ (1− λ)v(u2)

= λ inf
x1∈X

{
f(x1)⊕ g(Ax1 − u1)

}⊕ (1− λ) inf
x2∈X

{
f(x2)⊕ g(Ax2 − u2)

}

Pr. 1.2.4= inf
x1,x2∈X

{
λf(x1)⊕ λg(Ax1 − u1)f(x1)⊕ (1− λ)f(x2)⊕ (1− λ)g(Ax2 − u2)

}

f , g convex

≥ inf
x1,x2∈X

{
f
(
λx1 + (1− λ)x2

)⊕ g
(
A (λx1 + (1− λ)x2)− (λu1 + (1− λ)u2)

)}

= inf
x∈X

{
f (x)⊕ g

(
Ax− (λu1 + (1− λ)u2)

)}
= v(λu1 + (1− λ)u2).

(ii) Obvious.
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(iii) Let c ∈ Rp ({c} ∈ C?) and u∗ ∈ U∗ be given. Then we have

v∗c (u
∗) = sup

u∈U

{
¢ 〈u∗, u〉 {c}¯ v(u)

}

(1.2)
= ¯ inf

u∈U

{〈−u∗, u〉 {c}+ v(u)
}

= ¯ inf
u∈U

{
〈−u∗, u〉 {c}+ inf

x∈X

{
f(x)⊕ g(Ax− u)

}}

Pr. 1.2.4= ¯ inf
u∈U

inf
x∈X

{〈−u∗, u〉 {c}+ f(x)⊕ g(Ax− u)
}

Pr. A.4 (v)
= ¯ inf

x∈X
inf
u∈U

{(
f(x)− 〈A∗u∗, x〉 {c})⊕ (

g(Ax− u)− 〈−u∗, Ax− u〉 {c})
}

Pr. 1.2.4= ¯ inf
x∈X

{
f(x)− 〈A∗u∗, x〉 {c}}⊕¯ inf

u′∈U

{
g(u′)− 〈−u∗, u′

〉 {c}}

= f∗c (A∗u∗)⊕ g∗c (−u∗) = ¯dc(u∗).

(iv) It holds v∗∗c (0) = supu∗∈U∗ ¯v∗c (u∗)
(iii)
= supu∗∈U∗ dc(u∗) = Dc. ¤

It follows the main result of this section. This assertion was announced in the form of Corollary
4.1.3 in [55] and is to be published in the present form in [56]. We present two different proofs,
the first one makes use of the biconjugation theorem developed in Section 3.6 and the second
one is a ”direct proof” using a scalar duality theorem.

Theorem 4.1.2 (Duality theorem) The problems (P) and (Dc) (with arbitrary c ∈ Rp)
satisfy the weak duality inequality, i.e., Dc ≤ P .

Furthermore, let f and g be convex, let

0 ∈ ri (dom g −A dom f) (4.1)

and, in dependence on K := 0+P , let the element c ∈ Rp be chosen as follows:

(i) c ∈ riK ∪ −riK, if K ( Rp is not a linear subspace of Rp or K = Rp,

(ii) c ∈ Rp \K, if K ( Rp is a linear subspace of Rp.

Then, we have strong duality, i.e., Dc = P .

Proof. Consider the value function v : U → Ĉ? of problem (P). By Proposition 4.1.1 (ii),
(iv), for all c ∈ Rp we have P = v(0) and v∗∗c (0) = Dc. Since v∗∗c ≤ v, we obtain the weak
duality inequality. From Proposition 4.1.1 (i) we conclude that v is convex. It is easy to check
that dom v = dom g − Adom f . By virtue of (4.1), this implies 0 ∈ ri dom v. Theorem 3.4.8
(i) yields that v is lsc at 0. By Proposition 3.4.4, we conclude that K = 0+P = 0+v(0) =
infu∈dom v 0+v(u), i.e., the choice of the vector c by (i) and (ii) ensures that c belongs to the
set Cv, defined in Section 3.6. The local variant of the biconjugation theorem (Corollary
3.6.3) yields that v(0) = v∗∗c (0), i.e., we have strong duality. ¤
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We continue with a second proof of Theorem 4.1.2 wherein the strong duality assertion is
obtained from a corresponding scalar strong duality result using the embedding procedure as
in the proof of the biconjugation theorem. This proof is independent of the considerations
about semi–continuity in Chapter 3 and it was already published in the author’s paper [56].

Second proof of Theorem 4.1.2. The weak duality can be proven as above or by the
Fenchel–Young inequality (3.6). The proof of the strong duality assertion is organized as
follows. We start with case (i). Then we show that case (ii) is a consequence of case (i).

(i) In case of K = Rp there is nothing to prove because the strong duality immediately follows
from the weak duality assertion. Therefore, let K ( Rp be not a linear subspace of Rp. It is
easy to verify that Dc = D−c. Hence it suffices to consider the case c ∈ riK.

With the aid of Proposition 1.3.7 it follows that

∀y∗ ∈ Rp : −δ∗(y∗|P ) = −δ∗
(
y∗| inf

x∈X
p(x)

)
= inf

x∈X

{−δ∗
(
y∗| p(x)

)}
.

By the extended real–valued functions f̄y∗ : X → R ∪ {−∞, +∞} and ḡy∗ : U → R ∪
{−∞, +∞} being defined, respectively, by f̄y∗(x) := −δ∗

(
y∗| f(x)

)
and ḡy∗(u) := −δ∗

(
y∗| g(u)

)

this can be rewritten as a collection of scalar optimization problems

∀y∗ ∈ Rp : −δ∗(y∗|P ) = inf
x∈X

{
f̄y∗(x) + ḡy∗(Ax)

}
. (4.2)

The convexity of f and g implies the convexity of f̄y∗ and ḡy∗ , respectively. Clearly, we
have dom f = dom f̄y∗ and dom g = dom ḡy∗ . Hence, (4.1) implies that 0 ∈ ri (dom ḡy∗ −
A dom f̄y∗). A scalar duality theorem, for instance [10, Theorem 3.3.5], yields that

∀y∗ ∈ Rp : −δ∗(y∗|P ) = sup
u∗∈U∗

{−f̄∗y∗(A
∗u∗)− ḡ∗y∗(−u∗)

}
. (4.3)

Let y∗ ∈ riK◦ be arbitrarily given. Since c ∈ riK, Lemma 3.6.1 yields that 〈y∗, c〉 < 0.
Hence, there exists αy∗ > 0 such that 〈αy∗y

∗, c〉 = −1. This can be rewritten as

∀t ∈ R : −δ∗
(
αy∗y

∗| {t · c}) = −〈αy∗y
∗, t · c〉 = t. (4.4)
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For α := αy∗ > 0 and letting {c} ∈ C? we have

α · (−δ∗ (y∗|P )
)

= −δ∗ (αy∗|P )
(4.3)
= sup

u∗∈U∗

{−f̄∗αy∗(A
∗u∗)− ḡ∗αy∗(−u∗)

}

= sup
u∗∈U∗

{
inf
x∈X

{−〈A∗u∗, x〉+ f̄αy∗(x)
}

+ inf
u∈U

{〈u∗, u〉+ ḡαy∗(u)}
}

(4.4)
= sup

u∗∈U∗

{
inf
x∈X

{−δ∗
(
αy∗

∣∣−〈A∗u∗, x〉 · {c})− δ∗
(
αy∗

∣∣f(x)
)}

+ inf
u∈U

{−δ∗
(
αy∗

∣∣〈u∗, u〉 · {c})− δ∗
(
αy∗

∣∣g(u)
)}}

= sup
u∗∈U∗

{
inf
x∈X

{−δ∗
(
αy∗

∣∣−〈A∗u∗, x〉{c}+f(x)
)}

+ inf
u∈U

{−δ∗
(
αy∗

∣∣ 〈u∗, u〉{c}+ g(u)
)}}

Pr. 1.3.7= sup
u∗∈U∗

{
−δ∗

(
αy∗

∣∣ inf
x∈X

{−〈A∗u∗, x〉{c}+f(x)
})− δ∗

(
αy∗

∣∣ inf
u∈U

{〈u∗, u〉{c}+g(u)
})}

= sup
u∗∈U∗

{
−δ∗

(
αy∗

∣∣∣∣ inf
x∈X

{−〈A∗u∗, x〉{c}+ f(x)
} ⊕ inf

u∈U

{〈u∗, u〉{c}+g(u)
})}

Pr. 1.3.7≤ −δ∗
(

αy∗
∣∣∣∣ sup

u∗∈U∗

{
inf
x∈X

{−〈A∗u∗, x〉 {c}+ f(x)
} ⊕ inf

u∈U

{〈u∗, u〉 {c}+ g(u)
}})

= −δ∗
(

αy∗
∣∣∣∣ sup

u∗∈U∗

{
¯f∗c (A∗u∗)⊕¯g∗c (−u∗)

})

= −δ∗ (αy∗|Dc) = α · (−δ∗ (y∗|Dc)
)
.

It follows that δ∗(y∗|Dc) ≤ δ∗(y∗|P ) for all y∗ ∈ riK◦. Lemma 1.3.1 (iii) yields P ⊇ Dc. By
the weak duality inequality we obtain P = Dc.

(ii) Let K ( Rp be a linear subspace of Rp and let c ∈ Rp\K. Consider the set B := R+ {c} ⊆
C?. We define a new objective function by p̃ : X → Ĉ?, p̃(x) := p(x)⊕B = f(x)⊕(g(Ax)⊕B).
By Proposition 1.2.4, we have P̃ := infx∈X p̃(x) =

(
infx∈X p(x)

)⊕B = P⊕B. With the aid of
[1, Corollary 9.1.2] we conclude that P̃ = P⊕B = P +B and K̃ := 0+P̃ = 0+P +B = K+B.
Clearly, K̃ is not a linear space and c ∈ ri K̃. It is an easy task to show that g̃ : U → Ĉ?,
g̃(·) := g(·)⊕B is convex and (4.1) remains true for the new problem, hence, we have strong
duality by part (i) of this theorem. For the conjugate g̃∗c : U∗ → Ĉ¦ of g̃ it holds

g̃∗c (u
∗) = ¯ inf

u∈U
{− 〈u, u∗〉 {c} ⊕ g(u)⊕B} Pr. 1.2.4= g∗c (u

∗)⊕¯B.

Hence, the dual objective function d̃ : U∗ → Ĉ? for the problem infx∈X p̃(x) is given by

d̃c(u∗) = ¯f∗c (A∗u∗)⊕¯g∗c (−u∗)⊕B = dc(u∗)⊕B.

Since 0 ∈ B we deduce that d̃c ≤ dc, hence D̃c := supu∗∈U∗ d̃c(u∗) ≤ Dc. The strong duality
assertion for the problem infx∈X p̃(x) yields P + B = P̃ ≤ D̃c ≤ Dc. Likewise (replace c by
−c), it follows P − B ≤ D−c = Dc. Hence, (P + B) ∩ (P − B) ≤ Dc. As in the last part of
the proof of Theorem 3.6.2 we can show that P ≤ (P +B)∩ (P −B), hence we have P ≤ Dc.
By the weak duality assertion it follows P = Dc. ¤
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We next express the preceeding theorem by conventional notations. Although the analogy
to the scalar theory is more difficult to see, this form could be more convenient for possible
applications. Moreover, we try to avoid the convex hull and closure operations if they are
superfluous. Let f : Rn ⇒ Rp be a set–valued map. We say f has closed (convex) values if
f(x) ⊆ Rp is closed (convex) for all x ∈ Rn. Clearly, if f has a closed (convex) graph, then
f has closed (convex) values. The opposite implication is not true, in general. The map f

has closed values and a convex graph if and only if f can be interpreted as a convex function
f : Rn → Ĉ?.

Corollary 4.1.3 For given set–valued maps f : Rn ⇒ Rp and g : Rm ⇒ Rp, a linear map
A : Rn → Rm and a vector c ∈ Rp, we have

⋃

x∈Rn

(
f(x) + g(Ax)

) ⊆
⋂

u∗∈Rm

( ⋃

x∈Rn

(
f(x)− 〈A∗u∗, x〉 {c}) +

⋃

u∈Rm

(
g(u) + 〈u∗, u〉 {c})

)
.

If f and g additionally have convex graphs and closed values and satisfy the condition 0 ∈
ri (dom g−A dom f) and, in dependence on K := 0+(cl conv

⋃
x∈X

(
f(x)+g(Ax)

)
, the vector

c ∈ Rp is chosen as in Theorem 4.1.2, we have strong duality, i.e.,

cl
⋃

x∈Rn

(
f(x) + g(Ax)

)
=

⋂

u∗∈Rm

cl
( ⋃

x∈Rn

(
f(x)− 〈A∗u∗, x〉 {c})+

⋃

u∈Rm

(
g(u) + 〈u∗, u〉 {c})

)
.

Proof. For all u∗ ∈ Rm, we have
⋃

x∈Rn

(
f(x) + g(Ax)

)
=

⋃

x∈Rn

(
f(x)− 〈A∗u∗, x〉 {c}+ g(Ax) + 〈u∗, Ax〉 {c})

⊆
⋃

x∈Rn

(
f(x)− 〈A∗u∗, x〉 {c}) +

⋃

u∈Rm

(
g(u) + 〈u∗, u〉 {c}).

Taking the intersection over all u∗ ∈ Rm we obtain the weak duality inclusion.

Let f and g have convex graphs and closed values. This means f and g can be interpreted as
convex functions f : Rn → Ĉ? and g : Rm → Ĉ?. In the present case, we can show that

inf
x∈X

{f(x)⊕ g(Ax)} = cl
⋃

x∈X

(
f(x) + g(Ax)

)
. (4.5)

Indeed, by elementary arguments we deduce that P :=
⋃

x∈X cl
(
f(x) + g(Ax)

)
is convex.

Furthermore, from Proposition A.2 (ii) we conclude that cl
⋃

x∈X cl p(x) = cl
⋃

x∈X p(x),
where p(x) = f(x) + g(Ax). Together we obtain (4.5). By analogous arguments the right–
hand side of the strong duality equality equals Dc in Theorem 4.1.2. ¤

Remark 4.1.4 It seems to be not possible to obtain comparable duality assertions if we start
with an infimum problem with a Ĉ¦–valued objective function. The reason for that seems to
be that (1.1) is not satisfied with equality in this case. Equality in (1.1) is equivalent to the
condition ”inf-d”, which plays an important role in the axiomatic duality theory by Getán,
Martinez–Legaz and Singer [26].
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4.2 Lagrange duality

This section is devoted to Lagrange duality of optimization problems with Ĉ?–valued objective
function and set–valued constraints. As before we set X = X∗ = Rn and U = U∗ = Rm.

Let f : X → Ĉ?, let G : X ⇒ U be a set–valued map and let CU ⊆ U be a nonempty closed
convex cone. We consider the following optimization problem:

(P) P := inf
x∈S

f(x), S := {x ∈ X| G(x) ∩ −CU 6= ∅} .

Constraints of this type have been considered by many authors such as [7], [20], [57], [32],
[41], [22]. We next recall the notion of C–convexity. In the following, this concept is used to
describe convexity with respect to the constraints.

Definition 4.2.1 (e.g. [41]) Let X, Y be real linear spaces and let C ⊆ Y be a convex cone.
A set–valued map H : X ⇒ Y is said to be C–convex if

∀x1, x2 ∈ X, ∀λ ∈ [0, 1] : H
(
λx1 + (1− λ)x2

)
+ C ⊇ λH(x1) + (1− λ)H(x2).

The Lagrangian of the problem (P) (with respect to c ∈ Rp) is defined by

Lc : X × U∗ → Ĉ?, Lc(x, u∗) := f(x)⊕¯∆∗
c

(
u∗

∣∣− CU −G(x)
)
,

where ∆∗
c

( · ∣∣− CU −G(x)
)

: U∗ → Ĉ¦ is the set–valued support function (see Section 3.5) of
the set −CU −G(x). Hence, the Lagrangian can be expressed (for {c} ∈ C?) by

Lc(x, u∗) = f(x)⊕ inf
u∈G(x)+CU

{
〈u∗, u〉 {c}

}
.

Perhaps, this definition looks a little unusual. If f is an extended real–valued function and
G a vector–valued function, our constraint reduces to G(x) ∈ −CU (or G(x) ≤CU

0) and the
Lagrangian is usually defined by L(x, u∗) := f(x) + 〈u∗, G(x)〉, but only those u∗ ∈ U∗ are
involved into the theory that belong to −C◦

U . If we define the Lagrangian analogously to
above by L(x, u∗) := f(x)− δ∗

(
u∗

∣∣−CU −G(x)
)

(using the convention −∞+∞ = +∞), we
obtain

L(x, u∗) = f(x) + 〈u∗, G(x)〉 − δ∗
(
u∗

∣∣− CU

)
,

where the support function of −CU has the simple form

δ∗
(
u∗

∣∣− CU

)
=

{
0 if u∗ ∈ −C◦

U

+∞ else.

The set–valued support function, however, has a more complicated form, namely, letting L

be the lineality space of C◦
U and {c} ∈ C¦, it can be expressed by

∆∗
c

(
u∗

∣∣− CU

)
=





R+ · {c} if u∗ ∈ C◦
U \ L

R− · {c} if u∗ ∈ −C◦
U \ L

0 if u∗ ∈ L

R · {c} else.
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This means, we do not obtain a meaningful analogue to the Lagrangian in the classical form.

By Proposition 1.2.4, the Lagrangian can be written as

Lc(x, u∗) = f(x)⊕ inf
u∈G(x)

{
〈u∗, u〉 {c}

}
⊕ inf

u∈CU

{
〈u∗, u〉 {c}

}
,

where {c} ∈ C?. An easy calculation shows that

Lc(x, u∗) = f(x)⊕
[

inf
u∈G(x)

〈u∗, u〉 , sup
u∈G(x)

〈u∗, u〉
]
{c} ⊕





R+ · {c} if u∗ ∈ −C◦
U \ L

R− · {c} if u∗ ∈ C◦
U \ L

0 if u∗ ∈ L

R · {c} else,

where the interval [α, β] for α, β ∈ R ∪ {−∞, +∞} is defined as in Section 3.5.

In the scalar theory we re–obtain the original problem from the Lagrangian by taking the
supremum over all u∗ ∈ U∗ (or all u∗ ∈ −C◦

U ). A corresponding result is given in the following
two propositions.

Proposition 4.2.2 For all x ∈ S and all c ∈ Rp it holds

sup
u∗∈U∗

Lc(x, u∗) = f(x).

Proof. From x ∈ S we deduce that 0 ∈ −CU −G(x). For arbitrary c ∈ Rp it holds

sup
u∗∈U∗

Lc(x, u∗)
(1.1)

≤ f(x)⊕ sup
u∗∈U∗

¯∆∗
c

(
u∗

∣∣− CU −G(x)
)

= f(x)⊕∆∗∗
c

(
0

∣∣− CU −G(x)
)

Pr. 3.5.2 (v)

≤ f(x)⊕∆c

(
0

∣∣− CU −G(x)
)

= f(x).

Since L(x, 0) = f(x), it follows that supu∗∈U∗ Lc(x, u∗) = f(x). ¤

The preceeding proposition clarifies the relation between the problem (P) and the Lagrangian
only for feasible points x ∈ S. It remains the question what happens if x is not feasible. By the
analogy to scalar optimization, we expect that supu∗∈U∗ Lc(x, u∗) = ∅ in this case. This can
be shown under additional assumptions to the constraints and to the choice of c ∈ Rp. Note
that the following proposition is not used in the proof of the duality theorem. In particular,
the additional assumption 0+G(x)∩−CU = {0} in the following proposition is not necessary
for duality assertions.

Proposition 4.2.3 If for some x ∈ dom f ∩ domG the condition 0+G(x) ∩ −CU = {0} is
satisfied, then for all c ∈ Rp \ −0+f(x) it holds

sup
u∗∈U∗

Lc(x, u∗) =

{
f(x) if x ∈ S

∅ else.
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Proof. The case x ∈ S follows from Proposition 4.2.2. Let x 6= S, i.e., G(x) ∩ −CU = ∅.
Since 0+G(x) ∩−CU = {0}, the separation theorem [1, Corollary 11.4.1] yields the existence
of some ū∗ ∈ U∗ such that

α(x, ū∗) = inf
u∈G(x)

〈ū∗, u〉 > sup
u∈−CU

〈ū∗, u〉 ≥ 0. (4.6)

Assuming that there exists some u ∈ −CU such that 〈ū∗, u〉 > 0, we get supu∈−CU
〈ū∗, u〉 =

+∞. This contradicts (4.6) because we supposed G(x) 6= ∅. Hence ū∗ ∈ −C◦
U . Of course,

it is true that supu∗∈U∗ Lc(x, u∗) ≥ supλ>0 Lc(x, λū∗). Therefore, it remains to show that
supλ>0 Lc(x, λū∗) = ∅. Since ū∗ ∈ −C◦

U , an easy calculation shows that Lc(x, λū∗) ⊆ f(x)⊕
[λα(x, ū∗), +∞] {c} . Hence it remains to show that

⋂

λ>0

(
f(x)⊕ [λα(x, ū∗), +∞] {c}

)
= ∅.

Assume the contrary, i.e., there exists some y ∈ Rp such that

∀λ > 0 : y ∈ f(x)⊕ [λα(x, ū∗),+∞] {c} .

Hence, for all n ∈ N we have y ∈ f(x) + [nα(x, ū∗),+∞] {c}+ 1
nB. Consequently,

∀n ∈ N, ∃ yn ∈ {y}+ 1
nB, ∃µn ≥ n · α(x, ū∗) > 0 : yn − µnc ∈ f(x).

It follows
1
µn

(
yn − µn · c

)
=

yn

µn
− c

n→∞−→ −c.

By [1, Theorem 8.2] this implies −c ∈ 0+f(x), a contradiction. ¤

The next example shows that the assumption 0+G(x) ∩ −CU = {0} cannot be omitted in
the preceeding proposition. However, this assumption is fulfilled in many important special
cases, such as for vector–valued or compact–valued functions G.

Example 4.2.4 Let f , K and c as in Proposition 4.2.3 and let 0 ∈ dom f . We set A :={
x ∈ R2

+| x2 ≥ 1
x1

}
, G(x) := {x}+A and CU :=

{
u ∈ R2| u1 ≥ 0

}
. Then we have C◦

U \{0} ={
u∗ ∈ R2| u∗1 < 0, u∗2 = 0

}
. An easy computation shows

Lc(0, u∗) := f(0) +





R+ · {c} if u∗ ∈ −C◦
U \ {0}

R− · {c} if u∗ ∈ C◦
U \ {0}

0 if u∗ = 0
R · {c} else.

.

It follows that supu∗∈U∗ Lc(0, u∗) = f(0) 6= ∅, but G(0) ∩ −CU = ∅, i.e., 0 6∈ S.

We next define the dual problem. The dual objective function is defined by

φc : U∗ → Ĉ?, φc(u∗) := inf
x∈X

Lc(x, u∗).
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The dual problem associated to (P) is defined by

(Dc) Dc := sup
u∗∈U∗

φc(u∗).

As in the scalar optimization theory, we introduce the value function by

v : U → Ĉ?, v(u) := inf
{
f(x)| x ∈ X : (G(x)− {u}) ∩ −CU 6= ∅}

= inf
{
f(x)| x ∈ X : u ∈ G(x) + CU

}
.

The following proposition collects some properties of the value function.

Proposition 4.2.5 The value function v : U → Ĉ? has the following properties:

(i) If f is convex and G is CU–convex, then v is convex,

(ii) v(0) = P ,

(iii) ∀c ∈ Rp, ∀u∗ ∈ U∗ : v∗c (u∗) = ¯φc(−u∗),

(iv) ∀c ∈ Rp : v∗∗c (0) = Dc.

Proof. (i) For arbitrary u1, u2 ∈ U and λ ∈ (0, 1) it holds

λv(u1)⊕ (1− λ)v(u2)
= λ inf

{
f(x1)

∣∣x1 ∈ X : u1 ∈ G(x1) + CU

}

⊕ (1− λ) inf
{
f(x2)

∣∣x2 ∈ X : u2 ∈ G(x2) + CU

}
Pr. 1.2.4= inf

{
λf(x1)⊕ (1− λ)f(x2)

∣∣ x1, x2 ∈ X : u1 ∈ G(x1) + CU , u2 ∈ G(x2) + CU

}
Convexity

≥ inf
{
f(λx1+(1−λ)x2)

∣∣x1, x2 ∈X : λu1+(1−λ)u2 ∈ G(λx1+(1−λ)x2) + CU

}

= inf
{
f(x)

∣∣ x ∈ X : λu1 + (1− λ)u2 ∈ G(x) + CU

}

= v(λu1 + (1− λ)u2).

(ii) Obvious.

(iii) Let c ∈ Rp (where {c} ∈ C?) and u∗ ∈ U∗ be given. Then,

v∗c (u
∗) = ¯ inf

u∈U

{〈−u∗, u〉 {c}+ v(u)
}

= ¯ inf
u∈U

{
〈−u∗, u〉 {c}+ inf

{
f(x)

∣∣x ∈ X : u ∈ G(x) + CU

}}

Pr. 1.2.4= ¯ inf
{〈−u∗, u〉 {c}+ f(x)

∣∣x ∈ X, u ∈ U : u ∈ G(x) + CU

}

= ¯ inf
x∈X

{
inf

u∈G(x)+CU

{〈−u∗, u〉 {c}+ f(x)
}}

Pr. 1.2.4= ¯ inf
x∈X

{
f(x)⊕ inf

u∈G(x)+CU

{〈−u∗, u〉 {c}}
}

= ¯φc(−u∗).

(iv) It holds v∗∗c (0) = supu∗∈U∗ ¯v∗c (u∗)
(iii)
= supu∗∈U∗ φ∗c(−u∗) = supu∗∈U∗ φ∗c(u∗) = Dc. ¤
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Since Ĉ? is order complete, we have

∀c ∈ Rp : sup
u∗∈U∗

inf
x∈X

Lc(x, u∗) ≤ inf
x∈X

sup
u∗∈U∗

Lc(x, u∗), (4.7)

even if Lc is replaced by an arbitrary function from X ×U∗ into Ĉ?. By Proposition 4.2.2 we
know that infx∈X supu∗∈U∗ Lc(x, u∗) ≤ P . Hence, (4.7) yields weak duality between (P) and
(Dc), i.e., Dc ≤ P . Furthermore, it is easy to see that strong duality (i.e., P = Dc) implies
that (4.7) is satisfied with equality. It follows the main result of this section, a strong duality
theorem.

Theorem 4.2.6 Let f be convex and let G be CU–convex, let

G(dom f) ∩ −intCU 6= ∅, (4.8)

and, in dependence on K := 0+P , let the vector c ∈ Rp be chosen as follows:

(i) c ∈ riK ∪ −riK, if K ( Rp is not a linear subspace of Rp or K = Rp,

(ii) c ∈ Rp \K, if K ( Rp is a linear subspace of Rp.

Then, we have strong duality, i.e., Dc = P .

Proof. The proof is exactly the same as the (first) proof of Theorem 4.1.2, but using
Proposition 4.2.5 instead of Proposition 4.1.1. ¤

4.3 Some special cases

In this section, we indicate some special optimization problems and calculate the correspond-
ing dual problem. We consider the problem of minimizing a convex function f : Rn → Ĉ?

with respect to a nonempty closed convex set S ⊆ Rn. This problem can be formulated as

inf
x∈Rn

{
f(x) + ∆(x |S)

}
,

where ∆( · |S) : Rn → Ĉ? is the set–valued indicator function, defined in Section 3.5. Recall
that its conjugate ∆∗

c( · |S) : Rn → Ĉ¦ was already considered in Section 3.5 and in Section
4.2.

As a special case for the function f , let us consider f(x) = {M · x}, where M is a real p× n

matrix. An easy computation shows that

f∗c (x∗) =
⋃

x∈Rn

{(
M − c · (x∗)T

) · x}
=:

(
M − c · (x∗)T

) · Rn.

In the special case of n = p (recall that Ĉ? = Ĉ?(Rp)) and M := I being the n×n unit matrix,
Corollary 4.1.3 yields the following dual description of a nonempty closed convex set S ⊆ Rn.
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In contrast to the usual dual description S =
⋂

x∗∈Rn {x ∈ Rn| 〈x∗, x〉 ≤ δ∗(x∗|S)}, we have
a different parameterization in the following formula, i.e., the same x∗ may generate different
sets. This parameterization depends on the choice of c. If 0+S is not a linear subspace of Rn,
for all c ∈ ri (0+S) it holds

S =
⋂

x∗∈Rn

((
I − c · (x∗)T

) · Rn +
[−δ∗(x∗,−S), δ∗(x∗, S)

] · {c}
)

. (4.9)

Moreover, if 0+S is a linear subspace of Rn, (4.9) is valid for all c ∈ Rn \ 0+S. Note that in
(4.9) the constraint qualification (4.1) is superfluous, see Remark 4.3.1 below.

We next turn to the case of linear inequality constraints. Let A be a real m× n matrix and
b ∈ Rm a given vector. We write u ≤ v if v − u ∈ Rm

+ . Consider the problem

inf
x∈S

{Mx} , S = {x ∈ Rn| Ax ≥ b} . (4.10)

In problem (P) in Section 4.1, we set g(·) = ∆( · | S̄), where S̄ := {u ∈ Rm| u ≥ b}. The
(set–valued) support function of S̄ (where {c} ∈ C¦) can be expressed by

∆∗
c(u

∗|S̄) =
⋃

u≥b

(〈u∗, u〉 {c}) =
⋃

u≥0

(〈u∗, u + b〉 {c})

=
{
c · (u∗)T · b} +

⋃

u≥0

(〈u∗, u〉 {c}) =
{
c · (u∗)T · b} + ∆∗

c(u
∗|Rm

+ ),

where

∆∗
c(u

∗|Rm
+ ) =





R+ · {c} if u∗ ∈ Rm
+ \ {0}

R− · {c} if u∗ ∈ Rm− \ {0}
{0} if u∗ = 0
R · {c} else.

Note that ∆∗
c(u

∗|Rm
+ ) = −∆∗

c(−u∗|Rm
+ ), hence the dual objective function dc : Rm → Ĉ? (see

Section 4.1) is given by

dc(u∗) = ¢
(
M − c · (AT · u∗)T

) · Rn ¢
{
c · (u∗)T · b} ¢ ∆∗

c(u
∗|Rm

+ ).

By Theorem 4.1.2 (Fenchel duality theorem) we obtain the following strong duality assertion.
Since S is polyhedral, we have infx∈S {Mx} =

⋃
x∈S {Mx} =: M · S. Let K := 0+(M · S).

If there exists some x ∈ Rn such that Ax ≥ b, then, for all c ∈ riK if K is not a linear
subspace of Rp and for all c ∈ Rp \K if K is a linear subspace of Rp it is true that (we omit
the orientation)

M · S =
⋂

u∗∈Rm

((
M − c · (AT · u∗)T

) · Rn +
{
c · (u∗)T · b} + ∆∗

c(u
∗|Rm

+ )
)

. (4.11)

Remark 4.3.1 In Theorem 4.1.2 (Fenchel duality theorem) we suppose the constraint quali-
fication (4.1). In the second proof of this theorem we use this condition in order to obtain the
corresponding condition for the scalar problems (4.2). If all these problems are polyhedral,
(4.1) can be replaced by dom g ∩ A dom f 6= ∅, compare e.g. [10, Corollary 5.1.9]. Hence, in
(4.9) and (4.11) the constraint qualification reduces to S 6= ∅.



Chapter 5

Relationship to vector optimization

In this chapter, we discuss the relationship between the duality theory developed in the
previous chapter and duality theory in vector optimization and set optimization with point
relations. Duality assertions for vector optimization problems have been investigated by many
authors such as Gale, Kuhn and Tucker [24], van Slyke and Wets [72], Breckner [12], Zowe
[86], Brumelle [14], Gerstewitz (Tammer) [25], Jahn [39], [40], [41], Sawaragi, Nakayama and
Tanino [71], Göpfert and Gerth (Tammer) [28], Göpfert and Nehse [30], Tammer [75], Boţ
and Wanka [11] and many others. References with respect to the extention to set–valued
objective maps are already enumerated in the introduction.

Duality for vector optimization problems (and the extension to set optimization problems with
point relations) have been developed in a very general setting, so the image space is often
a general linear topological space. In contrast to this, up to now, our duality results have
been developed for finite dimensional ”image spaces” only (more precisely, the image space
is based on a finite dimensional space). So our comparison is made in a finite dimensional
context.

This chapter is organized as follows. We start with recalling some notions such as that of
a supremal and an infimal set and we collect some related auxiliary assertion. The second
section is devoted to a comparison of duality assertions of both types of set optimization
problems, i.e., a comparison between point relation approach and set relation approach. In the
last section, we continue the discussion about the structure of vector optimization problems,
started in the introduction. We use the duality results of the previous chapter in order to
give an alternative representation of a vector optimization problem.

5.1 Basic concepts

In this section, we recall some basic concepts of vector optimization and prove some auxiliary
assertions that will be used in the following two sections. Throughout this section, let C ⊆ Rp

be a closed convex pointed cone with nonempty interior. The cone C has the meaning of the

77
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ordering cone in the following sense:

y1 ≤ y2 :⇔ y2 − y1 ∈ C and y1 < y2 :⇔ y2 − y1 ∈ intC.

The duality assertions considered in Section 5.2 below are mainly based on the concepts of
supremal and infimal sets, which seem to be due to Nieuwenhuis [63] and was extended by
Tanino [77]. The notion of an infimal point is closely related to the concept of a weakly
minimal point (or weakly efficient point), for instance, see [63],[40],[77],[57]. Given a set
A ⊆ Rp, a point y ∈ Rp is said to be a weakly minimal point of A if

y ∈ A and ({y} − intC) ∩A = ∅.

The set of all weakly minimal points of A is denoted by wMin[A, C] or simply by wMinA. A
point y ∈ Rp is said to be an infimal point of A if

y 6∈ A + intC and {y}+ intC ⊆ A + intC.

The set of all infimal points of A is denoted by Inf[A,C] or by Inf A. Likewise, by replacing
C by −C, we define weakly maximal points and supremal points of A as well as the sets
wMax[A,C] and Sup[A,C].

In contrast to [77], we avoid the extension of the space Rp by two imaginary elements +∞
and −∞, because this makes the proofs a little bit easier. As a consequence, it may happen
that the infimal set is empty. In particular, we have Inf[∅, C] = ∅ (instead of Inf[∅, C] = +∞)
and Inf[A,C] = ∅ (instead of Inf[A,C] = −∞) if A + C = Rp. Otherwise, the infimal set is
nonempty, see [63, Theorem I-18].

We next summarize some properties of supremal and infimal sets.

Proposition 5.1.1 ([63],[77]) Let A ⊆ Rp. Then it holds

(i) Inf[A,C] = Inf[clA, C],

(ii) Inf A = wMin cl (A + intC),

(iii) If A + C 6= Y , then A + intC = Inf A + intC.

Proof. (i) See [63, Theorem I-15] or apply Proposition A.8.
(ii) See [77, Proposition 4.3] or apply Proposition A.8.
(iii) See [77, Proposition 4.4]. ¤

Similar to the relation 4K , discussed in the introduction, we define a relation in P(Rp) by

A 4C B :⇔ B ⊆ cl (A + C).

Of course, this relation is reflexive and transitive, but not antisymmetric. In the following
two corollaries we present some simple properties concerning infimal sets.
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Corollary 5.1.2 Let A ⊆ B ⊆ Rp such that B + C 6= Rp. Then, Inf B 4C Inf A.

Proof. Let y ∈ Inf A. By Proposition 5.1.1 (iii) we conclude that {y}+ intC ⊆ A + intC ⊆
B + intC = Inf B + intC. Letting c ∈ intC, for all λ > 0 we have y + λc ∈ Inf B + intC,
hence y ∈ cl (Inf B + intC) ⊆ cl (Inf B + C). ¤

Corollary 5.1.3 Let A,B ⊆ Rp. Then,
(
Inf B 4C Inf A, Inf A 4C Inf B

) ⇒ Inf A = Inf B.

Proof. We can assume that Inf A and Inf B are nonempty, hence A+C 6= Y and B+C 6= Y .
Using Proposition A.8, we obtain Inf A + intC = Inf B + intC. Proposition 5.1.1 (iii) yields
A + intC = B + intC. Hence, the result follows from the definition of the infimal set. ¤

We close this section with two results on the existence of weakly minimal elements of closed
convex subsets of Rp.

Proposition 5.1.4 Let A ⊆ Rp be a nonempty closed convex set with Rp 6= 0+A ⊇ C. Then,

∀c ∈ intC : A = wMin[A, C] + R+ · {c} .

Proof. ”⊇”. wMin[A,C] + R+ · {c} ⊆ A + C ⊆ A + 0+A = A.

”⊆”. For given y ∈ A, define α := inf {γ ∈ R| y + γc ∈ A}. If α = −∞, we conclude that
−c ∈ 0+A. Hence, 0 = c− c ∈ intC + 0+A ⊆ int 0+A. This contradicts 0+A 6= Rp. Hence we
have −∞ < α ≤ 0. The closedness of A implies that y′ := y + αc ∈ A. We next show that y′

even belongs to wMin[A,C]. Assuming the contrary yields some y′′ ∈ ({y′} − intC) ∩A. We
have y′′ = y′ − c′ for some c′ ∈ intC. Furthermore, there exists some δ > 0 such that c′′ :=
c′ − δc ∈ intC. Hence we obtain y′′′ := y′′ + c′′ ∈ A + C ⊆ A + 0+A = A. On the other hand
we have y′′′ = y′ − δc = y + (α− δ)c ∈ A where (α− δ) < α. This contradicts the minimality
of α. Consequently, we obtain y′ ∈ wMin[A,C] and hence y ∈ wMin[A,C] + R+ · {c}. ¤

Proposition 5.1.5 Let A ⊆ Rp be a nonempty closed convex set with 0+A ⊇ C. Then, for
all y ∈ Rp \A and all c ∈ intC there exists some α > 0 such that y + αc ∈ wMin[A,C].

Proof. Let ȳ ∈ Rp \ A and c̄ ∈ intC be given. Define the set B := {ȳ} + R+ {c̄}. Assume
that A ∩ B = ∅. Then, the separation theorem [1, Theorem 11.3] implies the existence of
some y∗ ∈ Rp \ {0} such that

−∞ < sup
a∈A

〈y∗, a〉 ≤ inf
b∈B

〈y∗, b〉 < ∞. (5.1)

By Lemma 1.3.1 (i) we know that y∗ ∈ (0+A)◦. Since 0+A ⊇ C, we obtain (0+A)◦ ⊆
C◦ and hence y∗ ∈ C◦ \ {0}. Proposition 2.3.2 yields that 〈y∗, c̄〉 < 0. It follows that
infb∈B 〈y∗, b〉 = −∞, which contradicts (5.1). Hence, we have A∩B 6= ∅. Consequently, there
exists some ᾱ > 0 such that ȳ + ᾱc̄ ∈ A. From Proposition 5.1.4 we deduce that there exists
ŷ ∈ wMin[A,C] and α̂ ≥ 0 such that ȳ+ ᾱc̄ = ŷ+ α̂c̄. It remains to show that α := ᾱ− α̂ > 0.
Assuming the contrary, we obtain ȳ ∈ wMin[A,C] + C ⊆ A + 0+A = A, a contradiction. ¤
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5.2 Point relation vs. set relation approach

The aim of this section is to show that a strong duality assertion with respect to set relation
approach follows from a strong duality assertion with respect to point relation approach and
vice versa. This is expressed by the ”equivalence theorem”, which states that, without the
typical constraint qualification, both types of strong duality assertions are equivalent. We
begin with the definition of the dual pair of set optimization problems with point relations.
Of course, as a special case we can consider vector optimization problems instead.

For given set–valued maps F : Rn ⇒ Rp, G : Rn ⇒ Rm, a closed convex pointed cone C ⊆ Rp

with nonempty interior and a nonempty closed convex cone CU ⊆ Rm, we define a primal set
optimization problem by (the superscript ”PR” stands for ”point relation”)

(PPR) P̄ := Inf
[ ⋃

x∈S

F (x), C
]
, S := {x ∈ Rn| G(x) ∩ −CU 6= ∅} .

For given c ∈ Rp, consider the Lagrangian L̄c : Rn × Rm ⇒ Rp, defined similar to the
Lagrangian Lc : Rn × Rm → Ĉ? in Section 4.2, by

L̄c(x, u∗) := F (x) + C +
⋃

u∈G(x)+CU

{〈u∗, u〉 {c}}.

The dual objective function Φc : Rm ⇒ Rp is defined by

Φc(u∗) := Inf
⋃

x∈Rn

L̄c(x, u∗),

and the dual problem associated to (PPR) is as follows:

(DPR
c ) D̄c := Sup

⋃

u∗∈Rm

Φc(u∗).

Let us first prove some auxiliary assertions.

Proposition 5.2.1 Let X be an arbitrary set and H : X ⇒ Rp be a set–valued map. Then
it holds

(i)
( ⋃

x∈X

wMinH(x)− intC

)
∩

( ⋂

x∈X

H(x)
)

= ∅,

If H has nonempty closed convex values and 0+H(x) ⊇ C for all x ∈ X, then it holds

(ii)
( ⋃

x∈X

wMinH(x)− intC

)
∪

( ⋂

x∈X

H(x)
)

= Rp,

(iii) Sup
⋃

x∈X

Inf H(x) = wMin
⋂

x∈X

H(x).
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Proof. (i) Assume there exists some y ∈ (⋃
x∈X wMinH(x)− intC

)∩ (⋂
x∈X H(x)

)
. Hence

there is some x̄ ∈ X such that y ∈ (
wMinH(x̄) − intC

) ∩ H(x̄). Consequently, there
exists some ȳ ∈ wMinH(x̄) such that y ∈ {ȳ} − intC. Since ȳ ∈ wMinH(x̄) we have
({ȳ} − intC) ∩H(x̄) = ∅ and hence y 6∈ H(x̄), a contradiction.

(ii) Let y ∈ Rp \⋂
x∈X H(x). Then there exists some x̄ ∈ X such that y 6∈ H(x̄). Let c ∈ intC

be given. By Proposition 5.1.5 there exists α > 0 such that y + αc ∈ wMin[H(x̄), C]. Hence,
y ∈ ⋃

x∈X wMinH(x)− intC.

(iii) By Proposition 5.1.1 (ii) we have Inf H(x) = wMin cl
(
H(x) + intC

)
. By virtue of

Proposition A.3 (iii) and A.10 and since C ⊆ 0+H(x) it follows Inf H(x) = wMinH(x). Let
y ∈ Sup

⋃
x∈X Inf H(x) = Sup

⋃
x∈X wMinH(x). By the definition of the supremal set this is

equivalent to

y 6∈
⋃

x∈X

wMinH(x)− intC , {y} − intC ⊆
⋃

x∈X

wMinH(x)− intC

By (i) and (ii), this is equivalent to

y ∈
⋂

x∈X

H(x) ,
({y} − intC

) ∩
( ⋂

x∈X

H(x)
)

= ∅,

i.e., y ∈ wMin
⋂

x∈X H(x). ¤

We next investigate convex problems. We suppose that the objective map F is C–convex
(see Definition 4.2.1) and, as in Section 4.2, the map G is supposed to be CU–convex. Of
course, F is C–convex if and only if f(·) := cl (F (·) + C) is convex function f : Rn → Ĉ? (see
Corollary 3.4.7). Furthermore, if G : Rn ⇒ Rm is CU–convex, we deduce that for all u∗ ∈ Rm

the map
gu∗( · ) := cl

⋃

u∈G( · )+CU

(〈u∗, u〉 {c})

can be interpreted as a convex function gu∗ : Rn → Ĉ?. Consequently, we have the following
relationship between the objective function Φc of problem (DPR

c ) and the objective function
φc of problem (Dc), defined in Section 4.2.

Proposition 5.2.2 If F is C–convex and G is CU–convex, we have

∀u∗ ∈ Rm : Φc(u∗) = Inf φc(u∗).

Proof. For arbitrary u∗ ∈ Rm it holds

Φc(u∗) = Inf
⋃

x∈Rn

L̄(x, u∗) Pr. 5.1.1 (i)
= Inf cl

⋃

x∈Rn

L̄(x, u∗)

Pr. A.2 (iii), A.4 (vii)
= Inf cl

⋃

x∈Rn

(
f(x)⊕ gu∗(x)

)

f , gu∗ convex
= Inf inf

x∈Rn
L(x, u∗) = Inf φc(u∗). ¤

We now compare strong duality between the problems (PPR) and (DPR
c ) with strong duality

between the problems (P) and (Dc), defined in Section 4.2.
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Theorem 5.2.3 (Equivalence theorem) Let F be C–convex and let G be CU–convex. If
S 6= ∅, then for all c ∈ Rp the following strong duality assertions are equivalent:

(i) Inf
⋃

x∈S F (x) = Sup
⋃

u∗∈Rm Φc(u∗),

(ii) infx∈S f(x) = supu∗∈Rm φc(u∗).

Proof. The C–convexity of F and the CU–convexity of G imply that the set
⋃

x∈S f(x) is
convex, hence

Inf
⋃

x∈S

F (x)
Pr. 5.1.1 (ii)

= wMin cl
( ⋃

x∈S

F (x) + intC
)

Pr. A.1 (iii), A.2 (iii), A.4 (vii)
= wMin cl

⋃

x∈S

f(x) = wMin inf
x∈S

f(x)

Moreover, taking into account that 0+φc(u∗) ⊇ C for all u∗ ∈ Rm, we have

Sup
⋃

u∗∈Rm

Φc(u∗)
Pr. 5.2.2= Sup

⋃

u∗∈Rm

Inf φc(u∗)
Pr. 5.2.1 (iii)

= wMin sup
u∗∈Rm

φc(u∗).

We directly conclude that (ii) implies (i). In order to show the opposite inclusion, let (i)
be satisfied. Note that S 6= ∅ implies that 0+ infx∈S f(x) ⊇ C and by the weak duality
inequality it follows that 0+ supu∗∈Rm φc(u∗) ⊇ C. If infx∈S f(x) 6= Rp, Proposition 5.1.4
yields (c ∈ intC)

inf
x∈S

f(x) = wMin inf
x∈S

f(x) + R+ · {c} = wMin sup
u∗∈Rm

φc(u∗) + R+ · {c} = sup
u∗∈Rm

φc(u∗),

otherwise (ii) follows from the weak duality inequality of Section 4.2. ¤

Finally, we prove a duality theorem for the problems (PPR) and (DPR
c ) by applying the duality

theorem of Section 4.2, which is based on set relation approach.

Theorem 5.2.4 (Duality Theorem) For the problems (PPR) and (DPR
c ), for all c ∈ Rp it

holds weak duality, i.e.,

(D̄c − intC) ∩ P̄ = ∅.

If, additionally, F is C–convex and G is CU–convex and the constraint qualification

G(domF ) ∩ −intCU 6= ∅ (5.2)

is satisfied, for all c ∈ intC, we have strong duality between (PPR) and (DPR
c ), i.e., P̄ = D̄c.
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Proof. Weak duality. It holds

D̄c − intC = Sup
⋃

u∗∈Rm

Φc(u∗)− intC ⊆
⋃

u∗∈Rm

Φc(u∗)− intC

=
⋃

u∗∈Rm

Inf
⋃

x∈Rn

L̄c(x, u∗)− intC

Pr. 5.1.1 (ii)
=

⋃

u∗∈Rm

wMin cl
( ⋃

x∈Rn

L̄c(x, u∗) + intC

)
− intC

Pr. A.1 (iii), A.2 (iii), A.4 (vii)
=

⋃

u∗∈Rm

wMin cl
⋃

x∈Rn

L̄c(x, u∗)− intC =: A1.

On the other hand, we have

P̄ = Inf
⋃

x∈S

F (x)
Pr. 5.1.1 (ii)

= wMin cl
( ⋃

x∈S

F (x) + intC

)
⊆ cl

⋃

x∈S

(
F (x) + C

)
.

For x ∈ S and arbitrary u∗ ∈ Rm, it is easy to check that F (x) + C ⊆ L̄(x, u∗) and hence
F (x) + C ⊆ ⋂

u∗∈Rm L̄(x, u∗). Using a (very easy to prove) weak duality assertion analogous
to that in Section 4.2, but for F̂–valued functions, we obtain

P̄ ⊆ cl
⋃

x∈S

⋂

u∗∈Rm

L̄c(x, u∗) ⊆ cl
⋃

x∈Rn

⋂

u∗∈Rm

L̄c(x, u∗) ⊆
⋂

u∗∈Rm

cl
⋃

x∈Rn

L̄c(x, u∗) =: A2

Proposition 5.2.1 (i) yields that A1 and A2 are disjoint. Hence (D̄c − intC) ∩ P̄ = ∅.
Strong duality. It is easy to verify that the assumptions of Theorem 4.2.6 are satisfied. For
instance, we have K := 0+ infx∈S f(x) ⊇ C. Since c ∈ intC we deduce that either K = Rp

or K ( Rp is not a linear subspace of Rp and c ∈ riK. Theorem 4.2.6 yields strong duality
between (P) and (Dc). Hence the result follows from Theorem 5.2.3. ¤

5.3 On the structure of vector optimization problems

In this section, we discuss the structure of a vector optimization problems and set optimization
problems with point relations. We already started this discussion in the introduction.

Let C ⊆ Rp be a closed convex pointed cone and A ⊆ Rp. Recall that an element y ∈ A is
said to be minimal (or efficient) if y ∈ A and ({y}−C \ {0})∩A = ∅. The set of all minimal
elements of A is denoted by Min[A,C].

Let F : Rn ⇒ Rp set–valued objective map and let S ⊆ Rn a set which describes the
constraints. Then we are interested to know the set

Min
[ ⋃

x∈S

F (x), C
]
, (5.3)

We observe that problem (5.3) consists of the following two components:
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(i) A :=
⋃

x∈S F (x) (an optimization problem based on set inclusion),

(ii) Min [A,C] (the determination of the set of minimal points).

Note that the union in (i) can be interpreted as the infimum in the ordered conlinear space
(P̂(Rp),⊇) of all subsets of Rp.

We next investigate convex problems. Recall that a set–valued map F : Rn ⇒ Rp is said to
be C–closed (e.g. [57]) if gr (F (·) + C) is closed. It is easy to verify that F is C–convex (see
Definition 4.2.1) and C–closed if and only if f(·) := cl (F (·)+C) can be interpreted as a lower
semi–continuous convex function f : Rn → Ĉ? (see Corollary 3.4.7). Moreover, the following
assertion holds true.

Proposition 5.3.1 Let F be C–convex and C–closed and let S ⊆ Rn be convex and compact.
Then,

Min
[ ⋃

x∈S

F (x), C
]

= Min
[
inf
x∈S

f(x), C
]
.

Proof. We show that the set P :=
⋃

x∈S F (x) + C is convex and closed. Indeed, let yi ∈ P ,
(i = 1, 2). It follows yi ∈ F (xi) + C for some xi ∈ S, (i = 1, 2). Hence λy1 + (1 − λ)y2 ∈
λ
(
F (x1) + C

)
+ (1− λ)

(
F (x2) + C

) ⊆ F (λx1 + (1− λ)x2) + C ⊆ P . To show the closedness,
let {yn}n∈N ⊆ P with yn → ȳ be given. Then there is a sequence {xn}n∈N ⊆ S such that
(xn, yn) ∈ gr

(
F (·) + C

)
. Since S is compact we can choose a convergent subsequence xnk

→
x̄ ∈ S. Since gr

(
F (·)+C

)
is closed, we deduce that (x̄, ȳ) ∈ gr

(
F (·)+C

)
, i.e., ȳ ∈ F (x̄)+C ⊆

P . Hence we have P = cl conv P = cl conv
⋃

x∈S(F (x) + C) = cl conv
⋃

x∈S cl (F (x) + C) =
infx∈S f(x). As an easy consequence of the definition of minimal elements we always have
Min[A,C] = Min[A + C, C] (for this, C has to be pointed). It follows that Min[P, C] =
Min[

⋃
x∈S F (x) + C,C] = Min[

⋃
x∈S F (x), C]. ¤

As in Section 4.2, let G : Rn ⇒ Rm be a set–valued map, CU ⊆ Rm a nonempty closed convex
cone and S := {x ∈ Rn| G(x) ∩ −CU 6= ∅}. Using the strong duality assertion of Theorem
4.2.6 we obtain an equivalent characterization of the problem (5.3). For simplicity we suppose
that C has a nonempty interior.

Corollary 5.3.2 Let F be C–convex and C–closed, let G be CU–convex, S compact, c ∈ intC

and G(domF ) ∩ −intCU 6= ∅. Then,

Min
[ ⋃

x∈S

F (x), C
]

= Min
[ ⋂

u∗∈Rm

φc(u∗), C
]
.

where φc : Rm → Ĉ? is the dual objective function of problem (P) for f(·) := cl (F (·) + C),
defined in Section 4.2.

Proof. By Proposition 5.3.1 we know that Min
[⋃

x∈S F (x), C
]

= Min [infx∈S f(x), C],
where the convexity of S is an easy consequence of the CU–convexity of G. In order to get
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infx∈S f(x) = supu∗∈Rm φc(u∗) we apply Theorem 4.2.6. The assumptions of Theorem 4.2.6
are easy to verify, for instance, we have K := 0+ infx∈S f(x) ⊇ C. Since c ∈ intC we deduce
that either K = Rp or K ( Rp is not a linear subspace of Rp and c ∈ riK. ¤

We close this work with an illustration how duality of optimization problems based on set
inclusion can be used to sandwich the infimal set of a vector optimization problem. In scalar
optimization we can use approximate primal and dual problems in order to get upper and
lower bounds for the infimum of the original problem. For instance, we can take the infimum
(supremum) over finitely many primal (dual) feasible points in order to obtain such bounds.
Let us proceed analogously. Instead of the problems (P) and (Dc), defined in Section 4.2, we
consider the following approximate problems

P̃ := inf
x∈eS

f(x), S̃ ⊆ S; D̃c := sup
u∗∈eSD

φc(u∗), S̃D ⊆ Rm.

By the weak duality we always have D̃c ≤ Dc ≤ P ≤ P̃ . If D̃c + C 6= Rp, Corollary 5.1.2
yields that

Inf D̃c 4C Inf Dc 4C Inf P 4C Inf P̃ .

Of course, if F is C–convex we have

Inf P = Inf inf
x∈S

f(x) = Inf
( ⋃

x∈S

F (x) + C

)
= Inf

⋃

x∈S

F (x) =: Inf F (S).

Hence the set Inf F (S) is sandwiched in the following sense:

Inf D̃c 4C Inf F (S) 4C Inf P̃ .

P̃

INF P̃

F (S)

F (S̃)

φc(S̃D) INFF (S)

D̃c

INF D̃c

By Corollary 5.1.3, strong duality between (P) and (Dc) implies that

Inf Dc = Inf F (S) = Inf P.
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Appendix

A Some calculus rules of sets

For the convenience of the reader we collect some simple calculus rules for sets. Of course,
these rules are involved in many books (but unfortunately not all in one). Therefore, we
present the most assertions with proof. Furthermore, in case of inclusions, we show that the
opposite inclusion is not true, in general.

Proposition A.1 Let X be a linear space, let Ai, A, B ⊆ X and let I be an arbitrary index
set. Then,

(i) conv
⋂

i∈I Ai ⊆
⋂

i∈I conv Ai,

(ii) conv
⋃

i∈I Ai ⊇
⋃

i∈I conv Ai,

(iii)
⋃

i∈I(Ai + B) =
(⋃

i∈I Ai

)
+ B,

(iv)
⋂

i∈I(Ai + B) ⊇
(⋂

i∈I Ai

)
+ B,

(v) conv (A + B) = conv A + conv B.

Proof. The proof of (i) – (iv) is immediate, (v) can be found in [60]. ¤

In general, (i), (ii) and (iv) does not hold with equality as the following examples show:
(i) A1 = {0, 2}, A2 = {1}.
(ii) A1 = {0, 1}, A2 = {2, 3}.
(iv) A1 = {0}, A2 = {1}, B = [−1, 1].

Proposition A.2 Let X be a topological space, let Ai, A, B ⊆ X and let I be an arbitrary
index set. Then,

(i) cl
⋂

i∈I Ai ⊆
⋂

i∈I cl Ai,

(ii) cl
⋃

i∈I Ai ⊇
⋃

i∈I cl Ai,
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(iii) cl
⋃

i∈I Ai = cl
⋃

i∈I cl Ai,

(iv) cl (A ∪B) = clA ∪ clB.

Proof. (i) cl
⋂

i∈I Ai ⊆ cl
⋂

i∈I clAi. Since
⋂

i∈I clAi is closed, cl
⋂

i∈I cl Ai =
⋂

i∈I cl Ai.

(ii) For all i ∈ I we have cl
⋃

i∈I Ai ⊇ cl Ai. Hence cl
⋃

i∈I Ai ⊇
⋃

i∈I clAi.

(iii) From (ii).

(iv) Since clA ∪ clB is closed, this follows from (iii). ¤

To see that, in general, (i) and (ii) does not hold with equality consider the following examples:
(i) A1 = (0, 1), A2 = (1, 2).
(ii) I = N, Ai = {1/i}.

Proposition A.3 Let X be a linear topological space and let A ⊆ X be convex. Then,

(i) cl A is convex,

(ii) intA is convex,

(iii) intA 6= ∅ implies that clA = cl (intA) and int (cl A) = intA.

Proof. For instance, see [46]. ¤

Assertion (iii) of the previous proposition, in general, does not hold for nonconvex sets. For
instance, consider A = [0, 1] ∪ {2} and A = R \ {0} ⊆ R, respectively.

Proposition A.4 Let X be a linear topological space, let Ai, A, B ⊆ X and let I be an
arbitrary index set. Then,

(i) cl conv A ⊇ conv clA,

(ii) cl conv A = cl conv clA,

(iii) cl conv
⋂

i∈I Ai ⊆
⋂

i∈I cl conv Ai,

(iv) cl conv
⋃

i∈I Ai ⊇
⋃

i∈I cl conv Ai,

(v) cl conv
⋃

i∈I Ai = cl conv
⋃

i∈I cl conv Ai,

(vi) cl (A + B) ⊇ clA + cl B,

(vii) cl (A + B) = cl (clA + clB),

(viii) cl conv (A + B) ⊇ cl conv A + cl conv B,

(ix) cl conv (A + B) = cl (cl conv A + cl conv B).
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Proof. (i) cl conv A ⊇ clA. Since cl conv A is convex, we have cl conv A ⊇ conv clA.
(ii) Follows from (i).
(iii) Since

⋂
i∈I Ai ⊆

⋂
i∈I cl conv Ai and

⋂
i∈I cl conv Ai is closed and convex.

(iv) For all i ∈ I it holds cl conv
⋃

i∈I Ai ⊇ cl conv Ai. Hence (iv) is true.
(v) From (iv).
(vi) Let x ∈ cl A + clB, i.e., x = ā + b̄ with ā ∈ cl A and b̄ ∈ clB. Let B be a neighborhood
base of the origin of X, formed by balanced absorbing sets (for instance, see [31]). Then,
for A ⊆ X it holds clA =

⋂ {A + V | V ∈ B}. Let V ∈ B be given. By the definition of a
topological linear space there exists W ∈ B such that W + W ⊆ V . For such W ∈ B there
exists a ∈ A and b ∈ B such that ā− a ∈ W and b̄− b ∈ W . Hence (ā + b̄)− (a + b) ∈ V . Let
us sum up these facts: For all V ∈ B there exists y := a + b ∈ A + B such that x − y ∈ V ,
i.e., x ∈ cl (A + B). Consequently, we have clA + clB ⊆ cl (A + B).
(vii) From (vi).
(viii) From (vi) and Proposition A.1 (v).
(ix) From (viii). ¤

In general, (i), (iii), (iv), (vi) and (viii) do not hold with equality:
(i) A =

{
x ∈ R2| x2 ≥ 1/x1, x1 > 0

} ∪ {0, 0}.
(iii) A1 = {0, 2} , A2 = {1, 3}.
(iv) A1 = {0} , A2 = {1}.
(vi) and (viii). A =

{
x ∈ R2| x2 ≥ 1/x1, x1 > 0

}
, B =

{
x ∈ R2| x2 = 0, x1 ≤ 0

}
.

Proposition A.5 Let X,Y be arbitrary sets, let Ai ⊆ X, let I be an arbitrary index set and
T : X → Y a function. Then,

(i) T
(⋃

i∈I Ai

)
=

⋃
i∈I T (Ai),

(ii) T
(⋂

i∈I Ai

) ⊆ ⋂
i∈I T (Ai).

Proof. (i) T
(⋃

i∈I Ai

)
=

⋃{
T (x)| x ∈ ⋃

i∈I Ai

}
=

⋃
i∈I

⋃
x∈Ai

T (x) =
⋃

i∈I T (Ai).
(ii) y ∈ T

(⋂
i∈I Ai

) ⇒ ∀i ∈ I : y ∈ T
(
Ai

) ⇒ ⋂
i∈I T (Ai). ¤

To see that, in general, (ii) does not hold with equality, let T : R→ R, T (x) = ‖x‖, A1 = R+,
A2 = R−.

Proposition A.6 Let X,Y be linear spaces, let A ⊆ X and let T : X → Y be a linear
operator. Then, conv T (A) = T (conv A).

Proof. Follows from the definition of the convex hull (by convex combinations). ¤

Proposition A.7 Let X, Y be normed spaces, let A ⊆ X and let T : X → Y be a linear
continuous operator. Then,
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(i) T (cl A) ⊆ clT (A),

(ii) T (cl conv A) ⊆ cl conv T (A),

(iii) cl T (cl conv A) = cl conv T (A).

Proof. (i) Let y ∈ T (clA). Then there is some x ∈ clA such that y = T (x). There exists a
sequence {an}n∈N ⊆ A with an → x. Hence T (an) → y, i.e., y ∈ clT (A).
(ii) Follows from (i) and Proposition A.6.
(iii) Follows from (ii) and Proposition A.6. ¤

In order to see that, in general, (i) and (ii) do not hold with equality consider the set A ={
x ∈ R2| x2 ≥ 1/x1, x1 > 0

}
and the operator T : R2 → R, T (x) = x1.

Proposition A.8 Let X be a linear topological space, A, B ⊆ X and intB 6= 0. Then,
A + intB = cl A + intB.

Proof. Of course, A+intB ⊆ cl A+intB. To show the opposite inclusion let y ∈ cl A+intB.
We have y−a ∈ intB for some a ∈ cl A. For all neighborhoods N of 0 there exists some ā ∈ A

such that −ā ∈ {−a}+N . Since intB is nonempty and open, there exists some neighborhood
N of 0 such that y − ā ∈ {y − a}+ N ⊆ intB. ¤

Proposition A.9 Let A,B ⊆ Rp be nonempty closed convex sets. Then, A ⊆ B implies
0+A ⊆ 0+B.

Proof. [1, Corollary 8.3.3] yields 0+A = 0+(A ∩B) = 0+A ∩ 0+B ⊆ 0+B. ¤

The previous assertion is not true for nonclosed sets, in general. For instance, setting A :={
x ∈ R2| x1 > 0, x2 > 0

}
and B := A ∪ {0, 0}, we obtain 0+A = R2

+ and 0+B = B.

Proposition A.10 Let A,B ⊆ Rp be convex and let intB 6= ∅. Then it holds

A + intB = int (A + B).

Proof. Of course, A+intB ⊆ A+B. Since A+intB is open, it follows A+intB ⊆ int (A+B).
Without loss of generality we can assume A 6= ∅. Hence we have int (A + B) 6= ∅. The
definition of the relative interior of a convex set implies int (A+B) = ri (A+B), intB = ri B
and riA ⊆ A. Finally, from [1, Corollary 6.6.2] it follows int (A+B) = ri (A+B) = riA+riB =
riA + intB ⊆ A + intB. ¤

In the previous assertion the assumptions to A and B cannot be omitted as the following
examples show.

(i) A, B ⊆ R2, A = B, B = {0} (intB = ∅). Then ∅ = A + intB 6= int (A + B) = intB.
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(ii) A,B ⊆ R2, A = conv
{
(0, 1)T , (0,−1)T

}
, B = B ∪ conv

{
(1, 0)T , (2, 0)T

}
(B is not

convex). The point (0, 3/2)T belongs to int (A + B), but it does not belong to A + intB.

(iii) A,B ⊆ R2, A = conv
{
(−1, 1)T , (−1,−1)T

} ∪ conv
{
(1, 1)T , (1,−1)T

}
, B = B (A is not

convex). The point (0, 0)T belongs to int (A + B), but it does not belong to A + intB.

B Partially ordered sets

In this section, we recall some basic ideas with respect to partially ordered sets, which can
be found, for instance, in [6] or [84].

Let (Y,≤) be a partially ordered set, i.e., Y is equipped with a reflexive, transitive and
antisymmetric relation.

If V is a subset of Y and the point y0 ∈ Y satisfies v ≤ y0 for all v ∈ V , then y0 is called an
upper bound of V . The subset V is now said to be bounded above.

If y0 ∈ Y is an upper bound of V such that y0 ≤ ȳ for any other upper bound ȳ ∈ Y of V ,
then y0 is called least upper bound or supremum of V and is denoted by supV . If V has a
supremum, then it is uniquely defined. This is an easy consequence of the antisymmetry of
the relation ≤.

The definitions of bounded below and lower bound are analogous. The greatest lower bound or
infimum is defined analogously and is denoted by inf V .

A partially ordered set Y is said to be order complete (or a complete lattice) if every subset
of Y has a supremum and an infimum. If Y is order complete and V = ∅, then supV = inf Y

and inf V = sup Y . The set Y is called Dedekind complete if every nonempty subset of Y

which is bounded above (bounded below) has a supremum (infimum). Note that for Dedekind
completeness an one–sided condition is already sufficient, this means Y is Dedekind complete
if and only if every nonempty subset of Y which is bounded above has a supremum [84,
Theorem 1.4]. An element ȳ ∈ Y is called the largest element of (Y,≤) if y ≤ ȳ for all y ∈ Y .
The smallest element is defined analogously. If (Y,≤) has a largest (smallest) element, then
it is uniquely defined.

Let (Y,≤), (Y ?,≤?) be Dedekind complete partially ordered sets with Y ? ⊆ Y and such that
≤ and ≤? coincide on Y ?. We denote the supremum (infimum) of a subset V ⊆ Y with
respect to (Y,≤) by supV (inf V ) and the supremum (infimum) of a subset V ⊆ Y ? with
respect to (Y ?,≤?) by sup? V (inf? V ).

Proposition B.1 If ∅ 6= V ⊆ Y ? is bounded above, then supV ≤ sup? V . Under the
additional assumption supV ∈ Y ? we even have equality.

Proof. By hypothesis, the set V ⊆ Y ? is bounded above (with respect to (Y ?,≤?)).
Hence V ⊆ Y is bounded above (with respect to (Y,≤)). Since V is nonempty and (Y,≤) and
(Y ?,≤?)) are Dedekind complete, supV and sup? V exist. Of course, sup? V ∈ Y ? is an upper
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bound of V with respect to (Y,≤). By the definition of the supremum we get supV ≤ sup? V .
The second assertion follows from the definition. ¤

C Ordered conlinear spaces

The concept of an ordered conlinear space provides the theoretical background of this work
and seems to be the natural framework for convexity rather than linear spaces. A systematic
study of this concept can be found in Hamel [33]. Similar concepts like semi–linear spaces
and almost linear spaces are also discussed there. Here we just give some definitions.

Definition C.1 ([33]) A set Y equipped with an addition + : Y × Y → Y is said to be a
(real) conlinear space (Y, +) if the following axioms are satisfied:

(C1) (Y, +) is a commutative monoid with neutral element θ, i.e.,

(i) ∀y1, y2, y3 ∈ Y : y1 + (y2 + y3) = (y1 + y2) + y3,

(ii) ∃θ ∈ Y, ∀y ∈ Y : y + θ = θ + y = y,

(iii) ∀y1, y2 ∈ Y : y1 + y2 = y2 + y1.

(C2) There is mapping from R+ × Y into Y , assigning α ≥ 0 and y ∈ Y the product αy :=
α · y ∈ Y such that the following conditions are satisfied:

(i) ∀y ∈ Y,∀α, β ≥ 0 : α · (β · y) = (αβ) · y,

(ii) ∀y ∈ Y : 1 · y = y,

(iii) ∀y ∈ Y : 0 · y = θ.

(iv) ∀α ≥ 0, ∀y1, y2 ∈ Y : α · (y1 + y2) = (α · y1) + (α · y2).

Definition C.2 ([33]) Let (Y,+) be a conlinear space and ≤ a partial ordering on Y satis-
fying the following conditions:

(O1)
(
y1, y2, y ∈ Y , y1 ≤ y2

) ⇒ y1 + y ≤ y2 + y,

(O2)
(
y1, y2 ∈ Y, y1 ≤ y2, α ≥ 0

) ⇒ αy1 ≤ αy2.

Then, (Y, +,≤) is called an ordered conlinear space.

Definition C.3 ([33]) Let (Y, +) be a conlinear space. A subset V ⊆ Y is said to be convex
if v1, v2 ∈ V, λ ∈ [0, 1] implies that λv1 + (1− λ)v2 ∈ V .

In [33], a cone in conlinear space Y is defined to be an element y ∈ Y satisfying αy = y for
all α > 0. In contrast to this, we define a cone in Y as a subset of Y , because this definition
is closer related to the usual definition of a cone in linear spaces.
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Definition C.4 Let (Y, +) be a conlinear space. A subset V ⊆ Y is said to be cone if
v ∈ V, α > 0 implies that αv ∈ V .
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Index of notation

N positive integers
Rp p–dimensional Euclidean space
‖·‖ Euclidean norm in Rp

Rp
+ non–negative orthant of Rp

R+ equals R1
+

[a, b] closed interval in R
(a, b) open interval in R
clA closure of the set A

intA (topological) interior of the set A

riA relative interior of the set A

rbA relative boundary of the set A

conv A convex hull of the set A

linA (aff A) linear (affine) hull of the set A

K◦ polar cone of a nonempty cone K ⊆ Rp

L⊥ orthogonal space of a linear subspace L ⊆ Rp (L⊥ = L◦)
0+A recession cone of a nonempty convex set A ⊆ Rp

F̂ (F) set of (nonempty) closed subsets of Rp

Ĉ (C ) set of (nonempty) closed convex subsets of Rp

CK set of all A ∈ C with 0+A = K

ĈK CK ∪ {∅}
Ĉ?, C?, Ĉ?

K , C?
K Ĉ, C, ĈK , CK , but with supremum oriented members

Ĉ¦, C¦, Ĉ¦K , C¦K Ĉ, C, ĈK , CK , but with infimum oriented members
ΓK set of positively homogeneous real–valued functions defined on riK◦

Γ?
K set of convave members of ΓK

Γ¦K set of convex members of ΓK

Γ̂?
K Γ?

K extended by a largest element +∞K

Γ̂¦K Γ¦K extended by a smallest element −∞K

N (x) set of all neighborhoods of x

N#∞ set of infinite subsets of N
N∞ set of cofinal subsets of N
inf (INF) (alternative concept of) infimum
sup (SUP) (alternative concept of) supremum
lim inf (LIM INF) (alternative concept of) lower limit
lim sup (LIMSUP) (alternative concept of) upper limit

95
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lim (LIM) (alternative concept of) limit
Inf[A, C] infimal set of A (with respect to the ordering cone C)
Sup[A, C] supremal set of A (with respect to the ordering cone C)
Min[A,C] set of minimal (= minimal efficient) elements of A
Max[A,C] set of maximal (= maximal efficient) elements of A
wMin[A,C] set of weakly minimal (= minimal weakly efficient) elements of A
wMax[A,C] set of weakly maximal (= maximal weakly efficient) elements of A
Inf A (SupA) = Inf[A,C] (= Sup[A,C])
MinA (MaxA) = Min[A, C] (= Max[A,C])
wMinA (wMaxA) = wMin[A,C] (= wMax[A,C])
⊕ closed Minkowski addition
¢ (Minkowski addition with) change of orientation
¯ equals ”¢−”
epi f (hyp f) epigraph (hypograph) of a function f

gr f graph of a map f

dom f (effective) domain of a map f

rg f range of a map f

isc f inner semi–continuous hull of f

osc f outer semi–continuous hull of f

lsc f lower semi–continuous hull of f

usc f upper semi–continuous hull of f

δ(·|A) (convex) indicator function of A ⊆ Rp

δ∗(·|A) support function of A ⊆ Rp

∆(·|A) set–valued indicator function of A ⊆ Rp

∆∗
c(·|A) set–valued support function of A ⊆ Rp with respect to c ∈ Rp

f∗(·) the conjugate of a real–valued function f

f∗c (·) the conjugate of a Ĉ–valued function f
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