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Chapter 1

Summary

In numerous research areas, scientific progress and the discovery of new knowledge is nowa-
days unthinkable without support of powerful computational methods and software tools
[Nat. Meth. Edit., 2019]. Often exponentially growing amounts and completely new types of
data can only be turned into meaningful interpretations by custom-fit computational solutions.

The life sciences do not constitute an exception. In particular for research approaches relying
on visual observations and imaging techniques, substantial upheavals occurred in the past.
Observations have always been central to science in general [Daston & Lunbeck, 2011], and
in particular to the natural sciences. Here already for ancient times first discoveries of basic
natural laws from astronomical observations are reported [Wilson, 2017]. While until the end
of the Middle Ages only rather rudimentary technical tools were available to support these
efforts, the groundbreaking inventions of telescopes and microscopes towards the end of the
16th century [Croft, 2006; Wilson, 2017] marked the transition into a new era. For biology and
medicine, microscopes opened insights into the so far unknown microscopic world. They paved
the way for pioneering findings, like the first description of cells by Robert Hooke in 1665, and
later on, the formulation of the cell theory with cells as the smallest basic units of all living
organisms by Matthias Jakob Schleiden and Theodor Schwann in 1838-39 [Mazzarello, 1999].

Since then steady progress in imaging technology, like the combination of microscopy and
photography to preserve microscope images beyond the moment [Hazelwood et al., 2007], or the
advent of fluorescence microscopy [Dunst & Tomancak, 2019], pushed forward the frontiers of
what could be made visible by microscopes. These advances came along not only with improved
image quality, but – not least due to the emergence of digital imaging technologies – also with
a massive rise in the amounts of acquired image data. This trend is still ongoing today as new
techniques regularly emerge and let the quantities of image data and the range of different data
types arising from life science experiments explode further [Ouyang & Zimmer, 2017].

Imaging technologies have found their way into virtually all areas of the life sciences. Due
to the highly dynamic evolution of molecular and cell biology in past decades, imaging at
the microscopic scale of tissues, cells, and subcellular structures – and as of late even at the
nanoscopic scale of single molecules and atoms [Ouyang & Zimmer, 2017] – probably forms
the most important field of present bioimaging (cf., e.g., [Meijering et al., 2016]). However, the
range of research questions in the life sciences being tackled with appropriate imaging meth-
ods is not restricted to these scales. Bioimaging also spans the macroscopic scale of complete
organisms with manifold applications, e.g., in plant phenotyping or disease detection [Walter
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1. Summary

et al., 2015; Li et al., 2020; Mohanty et al., 2016]. In a broader sense, even image data ac-
quired as outcome of experiments that do not directly image biological or biomedical subjects,
but encode experimental measurements in visual information, like in case of microarray or
electrophoresis experiments [Dowsey et al., 2003; Rueda, 2014], are considered as part of this
application domain.

The huge variety of bioimage data, and the even larger plurality of data analysis challenges
emerging from these data, have rendered computational tools for data storage, processing,
analysis and interpretation an indispensable cornerstone in modern image-based life science
research [Levet et al., 2021]. The steadily growing amounts of data have in many cases long
ago crossed the limits of what could be analyzed and interpreted manually in a reasonable
time frame. Moreover, without appropriate algorithmic solutions, in some areas of life science
progress might significantly be thwarted, and some scientific questions may never be answered
at all [Cardona & Tomancak, 2012; Myers, 2012]. In addition, visual exploration or manual
measurements add a considerable degree of subjectivity to analysis results. This conflicts with
high quality and reproducibility of findings which are key to sustainable research [Murphy
et al., 2005]. Thus, objective and automatic computational methods for data analysis are indis-
pensable as a matter of principle. In consequence, a large amount of different algorithms and
tools for manifold bioimage analysis problems have been proposed to date, and their number
is still growing continuously [Eliceiri et al., 2012; Lucas et al., 2021].

This thesis presents an overview of the author’s work in the field of image analysis for life
science applications over the last years. Most of this work was carried out in close collaboration
with cooperation partners from different areas of the life sciences. Our work mirrors the plethora
of research questions, types of bioimage data, and image analysis challenges occurring in this
field. From a methodical point of view, our solutions cover a large range of different algorithmic
approaches, techniques and analysis strategies from the fields of image processing and analysis,
as well as machine learning. We thereby focus on the detection and segmentation of objects
and structures in images, and their measurement and quantification.

In the remainder of this thesis, we discuss our work in detail. The structure of presentation
roughly follows the general hierarchy of abstraction levels as it is often found in classical
image processing and analysis [Jähne, 2005, Chap. 1], proceeding from low to increasingly
higher degrees of abstraction. We start our discussion in Section 1.1 and Chapter 2 with work
on the detection of elementary image primitives allocated to the lowest abstraction level in
digital images. In our case, we focus on point- or spot-like structures and small particles which
constitute a frequently appearing pattern in bioimage data. We have worked on the extraction
of such primitives in the context of object detection and image registration problems.

Subsequently, in Section 1.2 and Chapter 3 we present our contributions to the problem
domain of object segmentation from bioimage data. We present work on the segmentation of
various types of cells, e.g., leaf epidermis cells in plants, human cancer cells, or neurons. De-
pending on the appearance of the cells and their characteristics, we adapt and extend different
methodical approaches for their segmentation. In addition, we tackle the problem of extracting
phenotypical data of roots from images combining novel methods of deep learning with classi-
cal morphological image analysis. The segmentation of objects from bioimage data is usually
followed by further analysis steps. We discuss solutions for measuring and quantifying specific
properties of extracted objects in Section 1.3 and Chapter 4.

Besides devising algorithmic solutions optimally tailored to the concrete research question
at hand and enabling automated and objective data extraction and analysis, a second major
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objective in all of our research efforts has always been to evolve our methodical findings into
intuitive and user-friendly software tools. Following the spirit of open-source software devel-
opment in bioimage analysis [Cardona & Tomancak, 2012], we released numerous of our tools
to the public under open licenses. Moreover, we have not just released a collection of separate
tools, but also devised an integrated concept and elaborate library to support effective and
focused development of new algorithmic solutions, which naturally forms the basis for most of
our own tools. We discuss this concept, related tools, as well as supplemental software solutions
emerging from our research in Section 1.4 and Chapter 5.

In Section 1.5 we finally summarize the main findings and contributions of this thesis.

1.1 Detection of Low-Level Features: Keypoints, Spots, Particles

Spots, keypoints, and other punctiform features are in image analysis primarily considered
as image primitives on the lowest level of abstraction. Particularly keypoints often act as
functional components in complex algorithms, e.g., in object recognition or image registration
[Loncomilla et al., 2016; Ma et al., 2021]. Consequently, in such applications not each single
entity of a certain type of structure is of relevance, but a more global view on the complete
feature set is usually sufficient to solve a certain task. In contrast, in bioimages spots and point-
like structures are often directly linked to biological or biomedical objects in experiments and
are of central importance for the research questions. Here, usually each single object needs to be
accurately detected and is of individual importance. Accordingly, there exist different views on
point-like features in images, and depending on the underlying research question or application
scenario different strategies to deal with these structures are implemented in practice.

Below, we discuss solutions for two bioimage analysis problems where spots and point-like
structures play central roles. The first example in Subsec. 1.1.1 presents work from the field of
proteomics where spot-like structures in images define the key outcome of proteomics experi-
ments. Though these spots form the dominating structure in the images, we could show that
tasks like image registration can well be solved without the need to solely rely on the spots.

The second example originates from the field of fluorescence microscopy, which is probably
the most common area of application where point-like structures and especially particles have to
be detected in images. Following the definition in [Chenouard et al., 2014], we summarize under
the term ’particle’ in this context all potential target objects ranging from a single molecule
to a macromolecular complex, organelle, or virus. Subjects of this kind often appear as small
to medium-sized spots in fluorescence microscope images. Many research questions in the life
sciences are linked to the spatial distribution or dynamic behavior of such objects within cells,
tissues, or organisms. Hence, many bioimage analysis pipelines subsume tasks like localizing,
counting, or tracking particles in spatial or temporal contexts [Meijering et al., 2012]. We faced
the challenge of extracting data about various types of particles from fluorescence microscope
images in different research contexts. To solve these tasks, we devised a scale-adaptive detection
approach which we will discuss together with sample applications in Subsec. 1.1.2.

1.1.1 Features for image registration in proteomics experiments

Proteins are essential building blocks of cells and involved in virtually all cell functions. They
are synthesized within a cell by a two-stage process comprising transcription and translation.
First, nucleotide sequences of the DNA are transcribed into RNA molecules, and second, these
are further translated into linear chains of amino acids. These chains form the fundamental
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structure of proteins and define their individual physio-chemical properties [Alberts et al.,
2015, Chap. 3]. The process of protein synthesis is based on a complex regulatory system that
dynamically adapts transcription of genes and subsequent translation into proteins, but also
modifications of proteins and their degradation, to changes in the cellular environment [Vogel
& Marcotte, 2012]. In consequence, the set of all proteins present in a cell, i.e., the proteome,
dynamically changes over time. Monitoring these changes and tracking the composition of the
proteome as a function of cell state allows to systematically discover functional processes within
a cell, and to reveal the role of proteins as central players in these processes [Speicher, 2004].

Two-dimensional gel electrophoresis (2-DE) is an established procedure in proteomics for dis-
secting the composition of proteomes [Magdeldin et al., 2014]. 2-DE separates proteins spatially
by exploiting their individual isoelectrical properties and molecular weights. In 2-DE a mixture
of proteins is first exposed to an electric field on a gel with a pH gradient which causes the
proteins to migrate to an equilibrium position in the carrier medium in accordance with their
isoelectric points [Pomastowski & Buszewski, 2014]. Second, proteins are further split-up in a
direction orthogonal to the first one by binding a specific detergent to the proteins which masks
their intrinsic charges and induces a uniform load per weight unit. In an electric field they are
then pushed through the field at a speed proportional to their loads, triggering a separation
according to their molecular weights [Pomastowski & Buszewski, 2014]. This finally results in
two-dimensional patterns of protein accumulations, which after staining with an appropriate
dye, e.g., appear as dark spots on a brighter background (Fig. 1.1 and 1.2).

Figure 1.1: Sample 2D gel images from the LECB 2D PAGE Gel Images Data
Sets used in [Möller & Posch, 2009] with low to high structural complexity (left
to right), artificially deformed applying thin plate spline transformations.

Protein mixtures sub-
jected to 2-DE usually
originate from varying
cellular conditions. Dif-
ferential comparisons
of the resulting spot
patterns form the fun-
dament for correlating
changes in the proteomes
with these conditions. To
enable the application of
computational methods at this stage, images of the 2-DE gels are acquired (Fig. 1.1). This
results in several image analysis challenges, like quantifying the protein spots or identifying
relevant differences in spot patterns of gels [Dowsey et al., 2003].

In addition, the non-rigid nature of the gels gives raise to local deformations during the 2-DE
process which require compensation prior to any direct comparison of gels. Such a compensation
of deformations defines a task of non-rigid image registration [Sorzano et al., 2008]. Generally
the two basic concepts of featureless versus feature-based registration can be distinguished,
both being used in the domain of 2-DE gel images [Aittokallio et al., 2005]. While methods of
the first category exclusively rely on intensity information, methods of the second class build on
matches of distinct image features. The predestined type of features in gel images are of course
the protein spots themselves, and they commonly yield the dominating fundament for feature-
based image registration in this application [Robotti et al., 2021]. Although a multitude of spot
detection approaches have been devised [Martinotti & Ranzato, 2016], robust spot detection
often marks a notable difficulty [Clark & Gutstein, 2008]. Also, relying exclusively on domain-
specific spot features in the registration of 2-DE gel images and directly coupling the number
of feature locations to a potentially low number of protein spots can have drawbacks.
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A B C D

Figure 1.2: Features detected with the ring detector (A,B) and the keypoint detector SIFT (C,D) on original
(A,C) and synthetically deformed image clips (B,D). Arrows with identical colors mark exemplary pairs of
corresponding feature locations provided by SIFT which are not directly linked to specific protein spots.

We addressed the problem of robust feature detection for 2-DE gel images in [Möller &
Posch, 2009] and could prove that domain-independent, general purpose keypoint features
may help to overcome these issues. In an extensive comparative study on different types of
gel images, we evaluated the performance of spot-specific and model-based detectors versus
the general purpose keypoint detectors SIFT [Lowe, 2004] and SURF [Bay et al., 2006]. We
found that the number of features extracted by SIFT and SURF and their robustness in terms
of repeated detection in images synthetically deformed by common non-rigid transformations
(Fig. 1.1) in tendency outperformed spot-specific detectors (cf. Fig. 1.2). The built-in scale-
invariance of SIFT and SURF allows to detect features on different levels of abstraction, like
constellations of spots supplemental to individual spots (see arrows in Fig. 1.2), and provides
inherent advantages. This revealed new opportunities and flexibility in the design of robust
algorithms for feature-based gel image registration by adopting domain-independent detectors.

1.1.2 Particle detection in fluorescence microscope images

In proteomics studies based on gel electrophoresis, functional processes within cells are mon-
itored indirectly via changes in the proteome. This decouples the occurrence of proteins from
the places where they localize and operate in cells, leaving the spatial dimension of protein
activity and interaction unconsidered. The localization of proteins and other actors in trans-
lational processes and their spatio-temporal traits, however, form important determinants for
understanding cell structure and function [Lundberg & Borner, 2019].

The spatio-temporal dimension of processes within cells can be approached by visual ob-
servation of subcellular structures and functional units directly in the cells. Potential target
structures exhibit an enormous diversity, ranging from essential building blocks of cells like
nuclei, over the universe of proteins and other biomolecules, to dynamic compartments emerg-
ing and disappearing situatively [Alberts et al., 2015]. To visualize structures, fluorescence
microscopy has evolved as one of the key technologies [Thorn, 2016]. It relies on fluorophores
to label target objects. These can either be attached to specific antibodies which bind to the
objects in question, or they may be genetically introduced into cells which then express fluo-
rescent proteins [Nienhaus & Nienhaus, 2017]. When fluorescently labeled samples are exposed
to light of a suitable wavelength, fluorophores emit photons of a defined wavelength by which
target objects become visible and can be localized (e.g., [Dobrucki & Kubitscheck, 2017]).

The automatic detection and quantification of structures in fluorescence microscope images
brings manifold challenges to bioimage analysis. Due to countless influence factors present in
experimental setups, like the technology of the microscope, the protocols for sample prepa-
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A B C D

Figure 1.3: Particle detection result for data used in [Greß et al., 2010]: input image (A), detection result (B),
heatmaps of correlation images over scale ranges [2, 3] (C) and [3, 4] (D). Heatmaps show that smaller scales
primarily focus on point-like structures (C), while in larger scales spot-like patterns dominate (D).

ration and imaging, intrinsic characteristics of fluorescent dyes, or physio-chemical properties
of the targets [Dobrucki & Kubitscheck, 2017], there is no unique appearance of fluorescently
labeled structures in images. Image quality and the level of difficulty of analysis tasks may vary
significantly, e.g., due to differing amounts of distracting fluorescence signals or low contrast
between fluorescently stained target structures and image background [Waters, 2009]. Also, the
structural properties of the fluorescently labeled entities themselves are essential.

A frequent task in the context of fluorescence microscope images is the detection of particles.
Ideally, particles stick out as bright points or small spots from an otherwise dark background in
such images. In practice, however, issues common to fluorescence microscope images in general,
and also the size of the particles, inhomogeneities in their intensity profiles, and large variations
within their shapes, may limit their overall visibility (Fig. 1.3 A and 1.4). Hence, their detection
and quantification in fluorescence microscope images is usually challenging.

In [Greß et al., 2010] we proposed an approach for detecting particles in fluorescence mi-
croscope images capable of dealing with many of the challenges outlined above. The motivation
for devising a new algorithm for this task originated from a project with cooperation partners
from molecular medicine who aimed to count stress granules (SGs) and processing bodies (PBs)
in microscope images. SGs and PBs are cellular compartments localized in the cytosol of cells
which assemble primarily in response to stress, e.g., induced by viral infection [Riggs et al.,
2020]. They play important roles in post-transcriptional regulation and are considered impor-
tant with regard to many severe human diseases [Ivanov et al., 2019]. To date a large amount
of knowledge about their formation and molecular compounds is available, while their general
functions still wait for further elucidation [Youn et al., 2019; Riggs et al., 2020]. One building
block in experiments towards discovering their roles and functions are statistical investigations
on their occurrence and spatial distributions under varying cellular conditions.

To detect SGs and PBs, we built on work of Olivo-Marin [2002] who exploits correlations
between subband images of an à trous wavelet decomposition of a given image to detect bright
spots. The detection is based on the idea that locally maximal wavelet coefficients associated
with significant image structures tend to propagate across different scales, while locally maximal
coefficients originating from noise do not. Thus, in a correlation image calculated as product
over a user-selected subset of denoised wavelet images, i.e., over a selected range of scales, large
values are assumed to refer to relevant spots. While the original approach showed a generally
good detection performance for spots with moderate differences in size, it reached its limits in
our target application where we had to deal with greatly varying sizes of SGs and PBs.

Hence, in [Greß et al., 2010] we refined the method towards improved scale-adaptivity.
By correlating wavelet coefficients not only over one selected interval of scales but over various
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1.1. Detection of Low-Level Features: Keypoints, Spots, Particles

intervals, we managed to detect particles of considerably different sizes in a single run. The key
to achieve this result is a new scheme for particle hypothesis selection based on statistical tests.
Given several scale intervals for which correlation images are calculated, competing particle
hypotheses may result for a single image location. Since at every image location at most one
particle of a certain size can exist (Fig. 1.3 C, D), a decision for the correct scale is imperative.
We solved this issue by creating a hierarchical forest of particle hypotheses in which competing
hypotheses between adjacent scales are compared and singled out based on the concept of
meaningful events [Desolneux et al., 2003]. This finally provided us with a flexible detection
algorithm capable of automatically generating particle hypotheses over different scales, and
selecting the correct scale based on profound statistical measures (Fig. 1.3 B).

In [Greß et al., 2010] we could show that our extended algorithm provides reliable counts
of SGs and PBs from images of fluorescently labeled U2OS osteosarcoma cells (see Fig. 1.3
for an example with SGs). Particles were robustly detected on a wide range of scales with an
increased sensitivity and detection accuracy. These results were confirmed in our subsequent
publication [Möller et al., 2011b], which we discuss more detailed in Subsec. 1.2.2. Here, cells
from the human hepatoma line HUH7 were analyzed, and this time not only SGs and PBs were
fluorescently labeled, but a DAPI-staining of the nuclei was also given. This formed the funda-
ment to segment individual cells, using the nuclei as initializations for active contours [Möller
et al., 2010, 2011b]. As result SGs and PBs could be assigned to individual cells. Such cell-
wise statistics are of interest if in larger cell populations not all cells are equally affected by
stress factors, and global counts on complete images would bias quantitative investigations.

In our work [Bley et al., 2015] also the sizes of particles were of interest to investigate the
role of SGs in situations of cellular stress, particularly with regard to cellular mechanisms of
mRNA stabilization. SGs were detected using our tool MiCA (Subsec. 1.4.3) as user interface to
the implementation of the algorithm in our software library and toolbox MiToBo (Subsec. 1.4.1).
Given manual cell annotations, the number of cells where SGs were observed was determined
and area fractions calculated as the percentage of cell area occupied by SGs. Extracting area
fractions not only requires the decision if a particle is locally present or not, but also an
accurate identification of all its pixels for estimating size. Our approach proved suitable also
for this extended task, yielding reliable quantitative data. New insights into the function of SGs
in post-transcriptional control could be gained, and the dynamics of protein exchange between
SGs and their environment further uncovered.

A B

Figure 1.4: Detection of labeled proteins localizing to sub-
domains in the plasma membrane: inverted input image with
particles of varying size and contrast (A), and result (B).

The particle detection algorithm was
initially developed for counting SGs and
PBs. As no specific assumptions about
the target objects are exploited except
that they stick out from their local sur-
roundings, we successfully applied the
approach also to other types of particles.
In [Bürstenbinder et al., 2017] we
used the detector in studies on the dis-
tribution of proteins in the plasma mem-
brane of Nicotiana benthamiana leaf
cells. The proteins localize to plasma
membrane subdomains which results in
non-uniform, punctuate distribution patterns in the images, which we accurately quantified
with our detector (Fig. 1.4). In [Franke et al., 2015] and [Möller & Schattat, 2019] we adopted
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1. Summary

our particle detection approach as part of semi-automatic pipelines for quantification and cat-
egorization of plastids in leaf epidermis tissue. In images of Arabidopsis thaliana and Nicotiana
benthamiana the large majority of plastids could automatically be extracted, reducing the over-
all processing time of the images dramatically compared to pure manual analysis. Also nuclei
and peroxisomes in leaf cells of N. benthamiana could successfully be detected, underlining the
flexibility of our algorithm and the wealth of potential areas of application.

1.2 Object Segmentation

The overall aim of object segmentation is to identify individual objects of interest in an image,
separate them from each other and from the image background, and generate an explicit rep-
resentation for each of them. Traditionally, segmentation tasks are tackled adopting one of two
complementary perspectives, either focusing on regions or contours [Wu & Castleman, 2008].

A region is defined as a set of adjacent pixels which adhere to a common homogeneity
criterion, e.g., share similar colors or textural properties [Sonka et al., 1999, Sec. 5.3]. Region-
based segmentation can either be implemented in image space where similarities among pixels
in spatial neighborhoods are the central guideline along which regions are formed, or in feature
space which considers pixel properties independent of spatial relations. Though in optimal case
each segmented region is finally associated with exactly one individual object, in practice over-
or undersegmentation frequently occur, and sophisticated workflows for post-processing may
be needed to obtain desired target objects from the results of an initial segmentation.

While the region-based view focuses on similarities of pixels, the dual concept of contours puts
emphasis on the delimitation of objects. The contour of an object is defined as its outer bound-
ary that encloses the interior and separates the object from its surroundings. Contour-based
segmentation relies on the assumption that object boundaries become apparent as discontinu-
ities in the intensity landscape of an image [Sonka et al., 1999, Sec. 5.2]. The direct extraction of
contours completely enclosing each object is naturally the most desirable result, but, e.g., due to
weak local contrast, often only disconnected contour fragments can be extracted. Thus, linking
fragments to end up with closed contours is a common issue in contour-based segmentation.

One approach to bypass several of the typical problems of region- and contour-based meth-
ods are active contour models. They have gained wide popularity due to their great trade
off between flexibility and efficiency [Delgado-Gonzalo et al., 2014; Xing & Yang, 2016]. The
mathematical concepts underlying active contours inherently support the implementation of
topological constraints, e.g., allow to enforce the extraction of a fixed number of closed con-
tours from an image. The target criteria of a segmentation task are in this approach encoded
in energy functionals. These functionals allow to consider and arbitrarily combine a multitude
of different criteria, e.g., based on contour cues [Xie & Mirmehdi, 2008b], region properties
[Michailovich et al., 2007; Wang et al., 2009], or texture measures and shape priors [Cremers
et al., 2007], and form the basis for the large flexibility of these models.

In recent years, the field of image analysis has faced fundamental upheavals, triggered by
the revival of neural networks and the emergence of advanced machine learning concepts. In
particular deep learning based on novel network architectures has led to tremendous progress
in solving image analysis and computer vision problems, e.g, regarding object recognition or
semantic labeling [Eckersley et al., 2021]. For object segmentation, adopting methods of deep
learning marks a fundamental abandonment from predefined image primitives and hand-crafted
features, like keypoints, contours, or regions. In deep learning the segmentation task is formal-
ized as the problem of estimating optimal parameters of a functional model which maps input
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1.2. Object Segmentation

images onto desired segmentation results. Hence, the central assumption underlying deep learn-
ing is that the model by itself learns during training which clues contained in the input image
data provide relevant information to successfully solve an object segmentation task at hand.

The general developments in object segmentation over the decades are also mirrored in
the field of bioimage analysis. Here, manifold kinds of target objects need to be segmented,
with cells being probably the most frequently occurring type [Meijering, 2012; Boquet-Pujadas
et al., 2021]. Object segmentation may be seen as one of the most challenging, yet most crucial
steps in many bioimage analysis pipelines [Meijering et al., 2016]. The outcomes of an initial
segmentation often form the fundament for subsequent analysis steps (cf. Sec. 1.3), and their
accuracy is paramount to the overall quality of the final results delivered by a complete pipeline.

Like in general object segmentation, also in bioimage analysis a large collection of segmenta-
tion approaches has been devised, covering the whole range of different views on the segmen-
tation problem [Meijering, 2012, 2020]. In our own work, we solved the problem of cell seg-
mentation in various contexts. In Subsec. 1.2.1 we present our approach for applying matched
filters as parts of elaborate contour-based analysis pipelines to segment different kinds of plant
cells, and in Subsec. 1.2.2 we discuss a study on general properties of active contour models
and their successful adoption to segment different types of cells in microscope images.

A second area for which we devised segmentation methods are root images. An initial seg-
mentation of roots is prerequisite for topological analysis and extraction of phenotypic data
[Atkinson et al., 2019]. We adopted convolutional neural networks (CNNs) in combination
with skeleton-based morphological analysis to segment roots from images and identify struc-
tural parts of the roots. In Subsec. 1.2.3 we present our approach with which we successfully
participated in the Arabidopsis thaliana Root Segmentation Challenge at the ICCV Workshop
on Computer Vision in Plant Phenotyping and Agriculture (CVPPA) in 2021.

1.2.1 Contour extraction based on matched filters

One of the first steps in contour-based object segmentation is to enhance discontinuities in the
intensity landscape of images, which are commonly associated with object boundaries. Linear
filters are a popular tool for this task (e.g., [Snyder & Qi, 2017, Chap. 5]). Assuming that objects
are entirely brighter or darker than the surrounding background, contours are predominantly
modeled as steep ascents or descents in local intensities along object boundaries. Thus, they
can be localized adopting linear filters that approximate first or second order partial derivatives
of an image function [Nixon & Aguado, 2020, Chap. 4].

Figure 1.5: Example of a matched filter ker-
nel with Mexican Hat profile for detecting
ridge-like structures in images.

Cells are often visualized by fluorescently label-
ing their cell membranes or walls. In microscope im-
ages these structures appear brighter than the back-
ground, but likewise brighter than the cell interior
(Fig. 1.6). Hence, cell boundaries form ridge-like, thin
and elongated structures in the intensity landscape.
For detecting such special structures, matched filters
have proven suitable [Fraz et al., 2012]. They are de-
signed to match the target structures, which in case
of cell boundaries calls for anisotropic properties of
the filter kernels (Fig. 1.5). Consequently, when convolving image functions with such kernels
the filter responses depend on the orientation of the kernel and require the filter to be applied
in different orientations to an image. While this induces a great computational effort, it allows
to accurately localize target structures with high sensitivity.
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1. Summary

Solving the jigsaw puzzle of pavement cell shape. We successfully adopted matched filters as
fundament of a fully automatic approach for the segmentation of leaf epidermis pavement cells
from microscope images. The method is part of a larger pipeline integrating cell segmentation
with quantification and analysis of cell shape – named PaCeQuant as an acronym for pavement
cell shape quantification. PaCeQuant and its implementation in a user-friendly software tool
were initially published in [Möller et al., 2017], while a detailed description of its usage
dedicated to end users can be found in the invited book chapter [Möller et al., 2019b].

The epidermis of leaves and its various types of cells play an essential role in the regulation of
leaf function, growth and development. The most frequently occurring cell type in the epider-
mis of many plants are pavement cells which attract attention due to their prominent shapes
[Jacques et al., 2014], being highly interlocked and jigsaw puzzle-like (Fig. 1.6). To unravel the
cellular processes underlying leaf development and expansion, properties of pavement cells and
particularly the changes in shape which they undergo during growth processes or in mutant
studies have proven a valuable source of information, e.g., to identify key regulators of leaf mor-
phogenesis [Zhang et al., 2011; Armour et al., 2015]. Hence, the quantification of pavement cell
shape with appropriate feature measures forms an important fundament of ongoing research in
this field [Sapala et al., 2019]. To place such investigations on a solid data basis, the analysis of
sufficiently large and representative data sets is indispensable. This in turn is hardly possible
without techniques for an automatic segmentation of cells from images.

A B

C D

Figure 1.6: Images of leaf epidermis pavement cells of the
A. thaliana wildtype (A) and of a Katanin mutant (C)
with stained cell walls acquired from cotyledons of 5-day-old
seedlings, and pseudo-colored segmentation results of PaCe-

Quant (B,D). Images are inverted for improved visibility.

PaCeQuant is the first tool to
provide an integrated, fully automatic
segmentation of pavement cells and
a subsequent quantification of their
shape characteristics, well-suited for
high-throughput screenings of large
cell populations [Möller et al.,
2017]. For shape analysis, staining
protocols exist to fluorescently label
the membranes or walls of pavement
cells [Möller et al., 2017, 2019b].
By means of confocal microscopy sin-
gle optical sections of the stained ma-
terial can then be scanned, result-
ing in images as shown in Fig. 1.6, A
and C. To extract cell contours from
such images, we propose a pipeline in
PaCeQuant which at its core applies
a matched filter with a Mexican hat
profile (Fig. 1.5, cf. [Sofka & Stew-
art, 2006]) to identify candidate lo-
cations for cell contours. This filter-
ing step is complemented with pre-
ceding image enhancement and sub-
sequent post-processing steps. These
amongst others subsume local binarization of filter responses, and gap closing exploiting cues
of a binary watershed segmentation. The complete pipeline generally allows to robustly extract
cell contours from images as demonstrated in Fig. 1.6 B and D.
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1.2. Object Segmentation

Before PaCeQuant emerged, shape analysis of pavement cells was in many cases severely lim-
ited. Often only few cells were considered as the extraction of cell boundaries from images relied
on time-consuming manual procedures [Vanhaeren et al., 2015]. With PaCeQuant this situation
changed and highly accurate cell contours can now be automatically extracted [Möller et al.,
2017]. For a set of 15 cells for which ground truth annotations were given we achieved median
recall and precision values on the cell pixels of around 0.98. Moreover, an extended study on
a set of 373 cells, for which the segmentation results were manually reviewed, revealed that
less than 10% of the cells suffered from relevant local segmentation inaccuracies. Notably, the
statistical distributions of shape features extracted from the cells were only slightly altered by
these issues (more details about our shape features are discussed in Subsec. 1.3.1).

In summary, this proves our novel segmentation as integral part of the PaCeQuant pipeline
to be suitable for high-throughput screenings of large data sets, yielding a solid fundament for
investigations on cell shape formation. Over time the core application was extended to allow
for larger flexibility in configuring single stages of the pipeline, and it was supplemented with
user-friendly tools to ease the practical handling of PaCeQuant itself as well as of extracted
contour and shape data (see Subsec. 1.3.1 and 1.4.3 for details). PaCeQuant is still under active
development investigating, e.g., faster segmentation strategies [Schwede, 2020].

Matched filters for cell segmentation in cytoskeleton studies. Another area of application
requiring an accurate delineation of cell boundaries is the analysis of subcellular organization on
the single cell level. As mentioned in Subsec. 1.1.2, regulatory processes within cells are deeply
linked to the spatial organization of intracellular structures. One key structure of interest
within cells is the cytoskeleton for which we devised quantitative approaches to characterize its
structural properties. We will present more details on this work in Subsec. 1.3.2. Below, we first
discuss our solution for segmenting cells from corresponding image data as an indispensable
prerequisite for later characterization of the cytoskeleton in individual cells.

Compared to cell segmentation for shape analysis, segmentation in the context of cytoskele-
ton analysis poses additional challenges to automatic approaches. Here, it is not sufficient to
stain cell membranes, but simultaneously relevant structures of the cytoskeleton need to be
visualized. In addition, to properly cover the three-dimensional structure of the cytoskeleton,
z-stacks are acquired. Cell membranes and cytoskeletons can be imaged using fluorophores of
differing wavelengths which allows to separate them in different image channels. Yet cell seg-
mentation remains demanding as the overall image quality is often low, e.g., due to increased
amounts of distracting signals, strongly varying local contrast, or phantom structures (Fig. 1.7).

In [Möller & Bürstenbinder, 2019] we present an approach to tackle the segmentation
of cell contours from such image data based on maximum projections of the cell membrane
channel along the z-axis (Fig. 1.7 A, C). Methodically, we adopt the idea of contour extraction
from PaCeQuant [Möller et al., 2017], i.e., make use of matched filters to enhance cell
boundaries. Due to larger gaps remaining between fragments after binarization and initial post-
processing, however, advanced gap closing methods are required. We transform the gap closing
problem into a shortest path problem on the graph defined by the set of pixels and their pairwise
neighborhood relations. Edge weights are derived from the matched filter responses at pixels
linked by an edge, and the Dijkstra algorithm is applied for determining paths between selected
pixels with minimal costs to close gaps in optimal accordance with local image information.

Experiments on test data proved that our approach is capable of automatically extracting
on average more than 90% of the contour of each cell, missing mostly only short boundary
sections (Fig. 1.7 B, D). These high recalls are, however, accompanied by significantly smaller
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A B C D

Figure 1.7: Semi-automatic contour extraction for cytoskeleton analysis: maximum projections along the z-axis
of z-stacks of stained cell membranes (A, C), and final segmentation results (B, D) illustrating automatically
extracted contour sections (blue), automatically filled gaps (magenta), manually closed gaps (red), and surplus
contours in the cells (green) to be removed manually. Images are inverted, and surplus contours outside of the
target cells have been omitted for clearer presentation.

precisions. They are mainly caused by spurious structures sharing a significant similarity with
real contours and hardly erasable automatically (Fig. 1.7 B). Thus, manual post-processing is
inevitable to remove surplus fragments, and also to close the remaining gaps. Anyway, it is
usually much easier to remove structures than to manually fill in missing segments (e.g., using
functionality available in our own tool for editing segmentation results, cf. Subsec. 1.4.3). In
conclusion, our approach still yields a user-friendly, though semi-automatic solution for cell
segmentation in such challenging scenarios, keeping necessary user intervention at low level.

1.2.2 Active contour models: properties, energies and optimization schemes

Object segmentation with active contour models builds on the idea to translate the extraction
of object contours in an image into an optimization problem. Given appropriate mathematical
models of contours which allow to precisely describe their shapes and positions within an
image, optimization methods are applied to optimally align given contour models with object
boundaries present in an image [Delgado-Gonzalo et al., 2014]. The central cornerstone in this
approach are energy functionals defined over contour models and image data, which encode
the target criteria of the segmentation task. They allow to assess the quality of a segmentation,
i.e., quantify the agreement of a segmentation as currently represented by a contour model
with expectations encoded in the energy functionals. Given that an optimal positioning and
shaping of the models with regard to intended object contours yields minimal energy values,
the process of segmentation is turned into an energy minimization problem. In practice, active
contours can often be adopted to new application areas straightaway by customizing their
energy functionals and without need for any substantial changes to the underlying contour
representations or optimization strategies.

Snakes versus level sets. The two most popular variants of mathematical representations for
object boundaries in the context of active contour models are snakes [Kass et al., 1988] and
level sets [Sethian, 1999; Osher & Fedkiw, 2003]. Snakes represent object contours explicitly in
terms of parametric curves in 2D (Fig. 1.8), while level sets adopt an embedding function Φ to
implicitly represent a contour through the values of Φ (Fig. 1.9). Each of the two approaches
has its own individual specifities which need to be considered before selecting one of the models
for a given segmentation task.
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1.2. Object Segmentation

To provide guidance in this selection process, in [Möller & Posch, 2012] we investigated
both representations in a comparative study, carving out their individual characteristics based
on sample segmentation tasks. As a specialty of our work and in contrast to others, we ex-
ploited the fact that energy functionals tailored for either of the two models can in general
be transferred directly to the other representation. Hence, we applied for both concepts the
same energy functionals to focus the comparison on individual properties of the representations
rather than on differences related to segmentation criteria.
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Figure 1.8: Snakes in 2D make use of para-
metric curves, e.g., represented by points
and directed line segments in image space.

As sample applications we considered the task of tis-
sue segmentation for scratch assay analysis, originally
solved with level sets in [Glaß et al., 2011, 2012], and a
task of cell segmentation from fluorescence microscope
images where we adopted snakes for a similar problem
in [Möller et al., 2011b] (see below). In both ap-
plications we used region-based segmentation criteria
formulated on the fundament of the Chan-Vese energy
functional [Chan & Vese, 2001]. Snakes were optimized
by iterative gradient descent which requires to choose a suitable step size, while for level sets
we adopted a parameterless sequential optimization scheme [Song & Chan, 2002].

Φ(x, y) < 0

Φ(x, y) > 0

Φ(x, y) = 0

Figure 1.9: Level set function Φ in 2D with positive
(red) and negative (blue) values encoding the ob-
ject interior and exterior, separated by the zero level
Φ(x, y) = 0 (black line) representing the contour.

The study at first confirmed evident differ-
ences inherent in both contour representations.
E.g., snakes require explicit strategies to keep a
valid topology, like regular corrections for self-
overlaps, while for level sets additional efforts
are necessary to avoid topological changes, e.g.,
splits or merges of objects during the segmenta-
tion process [Han et al., 2003; Glaß et al., 2011].
Apart from this, our study primarily revealed
that identical energy functionals not necessar-
ily result in the same segmentations. While mi-
nor differences in overall segmentation quality
were observed with regard to the scratch assay task, in cell segmentation an additional regular-
ization term had to be added to the energy functional for the level sets to achieve comparable
performance. This indicates a larger sensitivity of level sets to noise, and in particular points
to an implicit regularization inherent in the parametric snake representation. Hence, besides
demonstrating key properties of both models, our study especially outlined implicit differences
not obvious at first sight, but without doubt of high relevance when selecting representations
and energy functionals for specific applications in practice.

Cascaded optimization schemes for snakes. One widespread strategy to adopt active contour
models for new target applications is to combine and fine-tune existing energy functionals, or
extend them with novel and apt criteria. Though a large collection of distinct criteria has been
developed into ready-to-use energy functionals over time, in certain situations it still remains
challenging to solve a segmentation problem by only focusing on energy functionals.

We faced such a problem in research on the role of stress granules (SGs) and processing
bodies (PBs) in post-transcriptional regulation which we already discussed in Subsec. 1.1.2. In
the project, among other things, appearance and quantities of SGs and PBs in individual cells of
a population should be analyzed, requiring an accurate cell segmentation. Established staining
protocols allow to acquire multichannel fluorescence microscope images with various target
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Figure 1.10: Image clip from the training data set used in [Möller et al., 2010] with results: PB channel (A,
contrast enhanced), ground truth annotation (B), initial nuclei contours (C), and final segmentation result (D).

objects being simultaneously labeled, like SGs, PBs, or cell nuclei. However, reserving a separate
channel for an explicit staining of cell membranes or cytoplasm to ease cell segmentation is
often not desirable or not at all possible, and may impair the flexibility in experimental design.
Hence, if cell regions can be extracted solely based on indirect cues from other available channels
this yields a distinct advantage for the automatic analysis of such image data in practice.

We worked out a solution for this in [Möller et al., 2011b] and [Möller et al., 2010],
applying snakes to segment cells from channels with fluorescently labeled PBs (Fig. 1.10). In
these channels the cells exhibit a considerable inhomogeneity in their intensities, i.e., they
appear grained with a gradual decrease in brightness from the centers outwards, and without
obvious discontinuities along their boundaries. To deal with these issues, we proposed a novel
cascaded optimization scheme for snakes by which the contours of all cells in an image are
simultaneously and incrementally expanded from nuclei (Fig. 1.10 C) to complete cell areas
(Fig. 1.10 D). The underlying idea is to gradually adjust the contours to the changing intensity
characteristics of the cell tissue over several iterative runs and to get stepwise closer to the
cell boundaries. The segmentation in each run is initialized from dilated results of the previous
stage. As energy functional we adopted the region-based Chan-Vese energy [Chan & Vese, 2001]
supplemented with a coupling term to penalize snake overlap [Zimmer & Olivo-Marin, 2005].

In our initial publication on this approach [Möller et al., 2011b] segmentation was per-
formed applying a cascaded optimization over three levels. This hard-coded scheme was replaced
in [Möller et al., 2010] by a data-driven optimization schedule which for each cell automati-
cally determines the appropriate number of levels, exploiting changes in intensity distributions
and sizes of cell regions between subsequent levels as termination criteria. In addition, parts of
a cell segmented in former levels were explicitly masked to drive snake expansion.

Based on test data sets with several dozens of cells and given ground truth annotations,
in [Möller et al., 2011b] and [Möller et al., 2010] we could demonstrate that our ap-
proach properly handles grained cell tissue and local intensity variations. In both works, we
achieved median recall and precision values on the cell pixels of about 0.9 – noting that the
definition of ground truth contours is often a challenge in itself even for experts from the field
(cf. Fig. 1.10 B). Altogether, our results indicate that for complex segmentation tasks where
the design of custom-fit energy functionals is difficult, extended optimization schemes may still
yield a suitable starting point to adopt active contour models for solving such tasks.

Snake-based neuron segmentation. Neurons define a special class of cells in higher organisms
[Levitan & Kaczmarek, 2015]. The most striking difference compared to other cell types is their
outstanding morphology which is linked to the ability to develop long elongated protrusions,
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termed neurites (Fig. 1.11). Neurons establish contacts with each other via these neurites to
form complex and spacious networks [Yuste, 2015; Fornito et al., 2016].

Figure 1.11: Image of a neuron with sev-
eral neurites (inverted, contrast enhanced).

Neurons have been in the focus of research for a long
time, and data about their morphology, like numbers
and lengths of neurites or spines, are of high relevance
to discover their functions and behaviors [Meijering,
2010]. To collect such data, it is usually sufficient to
reduce neurons to a skeleton representation which can
be extracted from images without need for an accurate
localization of the complete neuron region.

Complementary to approaching neurons by observ-
ing their morphology, the subcellular level of proteins
and their distributions within neurons – and partic-
ularly along neurites – provides another rich source
of information. Correlating neurite morphology with
spatial distributions of specific proteins adds to the
understanding of regulatory processes underlying neu-
ron formation and remodeling. To extract such distribution data from images, however, neurite
centerlines are not sufficient and segmentation of the complete cell areas is imperative.

In our publication [Misiak et al., 2014] we were among the first to automatically quantify
distributions of proteins along neurites. We approached this task with a fully automatic analysis
pipeline using snakes as one of its central components. Neurons are localized making use of two
different binarization algorithms. A global Niblack thresholding [Niblack, 1985, pp. 115] yields
a rather rough, but mostly connected representation of a neuron, while an Otsu thresholding
[Otsu, 1979] provides a much more accurate localization of the neuron boundaries, however, at
the price of stronger fragmentation. Accordingly, we use the coarse binarization as initialization
and optimize the snakes applying a distance-based energy derived from the Otsu binarization
result. Supplemented by additional heuristics to automatically identify different structural parts
of a neuron, i.e., the soma and the growth cones of each neurite, we automatically extract
profiles of certain proteins as basis for analyzing their spatial localization.

Figure 1.12: 3D heatmap visualization of the spa-
tial distribution of a specific protein within the seg-
mented region of the neuron shown in Fig. 1.11.

In summary, our approach showed superior
performance in segmenting complete neuron ar-
eas compared to two other tools which are
among the few that also provide such a func-
tionality, proving that active contour models
are able to extract even thin and filigree struc-
tures in images. The high quality of our seg-
mentation results was also underlined by ex-
tracted profiles of proteins along the neurites
(Fig. 1.12). We successfully confirmed distribu-
tions from literature for filamentous actin (F-
actin), which is known to contribute to protru-
sions and mainly localized in the growth cones,
and α-tubulin, which is enriched along neurite
shafts. In addition and most important, however, we could for the first time obtain a distinct
distribution for the Zipcode binding protein (ZBP1/IGF2BP1) which is assumed to fulfill im-
portant functions in the spatio-temporal fine-tuning of gene expression [Misiak et al., 2014].
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1.2.3 Deep learning and morphological analysis to unravel root topology

Image segmentation with techniques of deep learning is based on the idea to learn parameters
of a mathematical model which is able to map given input images onto desired segmentation
results. One of the keys to the outstanding performance of these approaches is given by the
complexity of the models used, which basically rely on concatenations of a huge number of
non-linear data transformations [Goodfellow et al., 2016]. This causes them to be defined over
extremely high-dimensional parameter spaces. In consequence, estimating optimal parameters
for such models requires large amounts of training data which may pose obstacles to their use
in practice. If sufficient data are available, however, especially convolutional neural networks
(CNNs) have often superseded established approaches and pushed the performance in solving
image analysis problems to new levels being out of reach before [Gu et al., 2018].

Adopting CNNs to solve a certain task requires to make several elementary decisions, e.g.,
regarding appropriate model architectures, loss functions, or optimization strategies [Breuel,
2015; Mishkin et al., 2017]. Due to a lack in general thumb rules, these decisions often rely
on experience or time-consuming trial and error, where only a small subset of the virtually
unlimited universe of possible configurations is explored. Hence, comparative studies on the
characteristics of different network architectures and hyperparameters in a certain application
domain may provide valuable information and assistance to make the right decisions.

We carried out such studies with regard to the task of segmenting plant roots in images for
root phenotyping. In this area of application, methods of deep learning have gained increasing
importance in the last years. Roots as one of the essential organs of plants exhibit manifold
functions with regard to the plants themselves, but also in the context of the surrounding
ecosystem [de Kroon et al., 2003]. Thus, they have been in the focus of research for a long
time. One key approach in studying root functions are phenotypical analyses of root systems
under varying environmental conditions. These analyses nowadays often rely on image data,
e.g., acquired with the help of minirhizotrons directly in the soil (cf. Subsec. 1.4.4) or from plates
with culture medium [Atkinson et al., 2019]. Though the manual extraction of phenotypical
data from such images is still common, over the years various mainly semi-automatic software
tools for root segmentation have been released (e.g., [Lobet et al., 2011; Shahzad et al., 2018;
Narisetti et al., 2019]). Recently, these are increasingly supplemented with automatic methods
based on deep learning (e.g., [Wang et al., 2019; Yasrab et al., 2019; Gaggion et al., 2021]).

We addressed the problem of segmenting roots of A. thaliana from images of square plates
in the context of the Root Segmentation Challenge at CVPPA1 2021. Given video sequences of
plants covering complete growth periods, and ground truth annotations only for selected frames
[Gaggion et al., 2021], the task was to segment the roots from the images and to identify the
main root of each plant and separate it from the lateral roots (Fig. 1.13).

We solved the task as described in [Möller et al., 2021] by first separating the roots
from the background adopting a CNN with U-Net architecture [Ronneberger et al., 2015] and
VGG16 backbone [Simonyan & Zisserman, 2015]. Then segmented root regions are skeletonized,
gaps closed and disconnected branches reconnected. Finally, a graph search modified from the
one proposed in [Möller & Bürstenbinder, 2019] (Subsec. 1.2.1) for closing gaps in cell
contours is applied to localize the main root of each plant. It is extracted as the path between
the lowest pixel in each plant component and the hypocotyl. This procedure allowed us to
achieve completeness and correctness values on the main root pixels of the challenge test data
set of over 0.91 and 0.95, respectively, and likewise respectable values on the complete root

1CVPPA 2021 workshop website, https://cvppa2021.github.io/ (accessed: September 10, 2021)
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systems of 0.89 and 0.95. Since we were – among the 16 teams that registered for the challenge
– the only team submitting complete results on the test data set, we were declared the winner
of the challenge.

Figure 1.13: Sample data from the CVPPA Root Seg-
mentation Challenge test data set [Gaggion et al., 2021]:
input image (left) and our segmentation result with main
and lateral roots in red and gray, respectively (right).

Our U-Net model was trained in a cas-
caded fashion first using a loss function
combining cross entropy and dice loss
adopted from [Smith et al., 2020], and
subsequently fine-tuning the network ap-
plying focal loss [Lin et al., 2017]. The
choice of this strategy resulted from stud-
ies on different alternative network archi-
tectures, like Hi-Fi [Zhao et al., 2018] or
SegRoot [Wang et al., 2019], on additional
loss functions, like the Weighted Hausdorff
Distance in combination with patch-based
point loss [Xu et al., 2019], and on a range
of learning rates. The studies were con-
ducted prior to the challenge deadline and
rounded off afterwards, and are detailed in our workshop paper [Möller et al., 2021]. Amongst
others, our studies revealed that a thorough mutual adjustment of loss function, normalization
strategy and learning rate is key to successfully solve a segmentation task with CNNs. More-
over, the findings point out potential pitfalls and promising starting points for further research
to improve the overall performance of CNNs in the segmentation of roots in images.

1.3 Analyzing Shape and Texture of Objects

The detection of low-level image features like points or the segmentation of objects, which we
discussed in previous sections, are most of the time only initial steps in more complex pipelines.
Image primitives and objects usually form the fundament for the extraction of further quanti-
tative data from bioimages. In the simplest case, specific entities are just counted or their sizes
are measured, like in our work on the appearance of stress granules and processing bodies in
cells (Subsec. 1.1.2). Other research questions may require to assess spatial intensity distribu-
tions or texture properties (cf. Subsec. 1.2.2), characterize shape, or monitor object dynamics
[Rittscher, 2010]. As there exists an enormous variety of object properties potentially of inter-
est, the large universe of different feature measures proposed in this and other contexts is hardly
to be overviewed (e.g., [Merchant et al., 2008; Li et al., 2015]). Hence, careful consideration is
required before existing measures are chosen or new ones are devised to address an analysis
task. In this section, we will first present our solutions to quantify cell shape in the context of
PaCeQuant which we introduced in Subsec. 1.2.1, and second we will discuss our approaches
for carrying out comparative studies on internal cell organization with texture measures.

1.3.1 Shape quantification and analysis

Leaf epidermis pavement cells pose a special challenge to characterize and quantify their shapes
due to their striking morphology which is dominated by their prominent lobes and necks
(Fig. 1.14, cf. Subsec. 1.2.1). Beyond that, the task to adequately quantify these cell shapes
gets even more challenging as the shapes of the cells and the degree of anisotropic cell growth
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may vary significantly and unpredictably in different experimental situations. Yet, often only
few and rather generic shape features are adopted to quantify the shape of pavement cells [Staff
et al., 2012], only to a limited extend capable to capture the whole complexity of the shapes
[Ivakov & Persson, 2013; Wu et al., 2016]. To still consider the specific lobe and neck structures
in quantification, thus, generic shape measures are often supplemented by data resulting from
manual counts of lobes per cell area [Xu et al., 2010; Gao et al., 2015].

lobes

necks

Figure 1.14: Examples for lobe (red) and neck
(green) regions along the boundary of a pavement
cell, blue circles mark three-cell contact points.

However, to adequately and objectively charac-
terize the shapes of pavement cells, each experi-
ment may rather require an individual and specif-
ically selected set of automatically extracted fea-
tures. These need to account for the specific char-
acteristics of pavement cell shapes as well as for
the large range of potential variation.

Accordingly, to support a wide range of possi-
ble application scenarios out-of-the-box, we offer a
large variety of different shape measures in PaCe-
Quant. They allow for a straightforward interpre-
tation and correlation with phenotypic specifities,
ranging from general and established global shape
measures, over contour- and skeleton-based fea-
tures, to a collection of novel measures explicitly designed for the specific characteristics of
pavement cells [Möller et al., 2017]. For the last ones we were the first to introduce formal
definitions of commonly considered, but never properly defined structural measures, like the
neck width or the cellular core region [Li et al., 2003; Bannigan & Baskin, 2005]. Providing
such definitions paves the way towards automatic quantification of these structural properties
from images, resulting in larger flexibility to characterize cell shape.

Initially PaCeQuant offered a set of 27 shape features for each single cell, later complemented
by the largest empty circle measure [Poeschl et al., 2020]. Another eight measures are
provided to characterize each individual lobe [Möller et al., 2017]. Noteworthy among these
lobe-specific features is the lobe type which principally allows to classify each lobe in one of two
possible categories (Fig. 1.14): lobes of type I refer to two-cell contact points, i.e., are flanked
by only one neighboring cell, while lobes of type II are associated with three-cell contact points
being adjacent to two other cells [Wu et al., 2016]. PaCeQuant has been the first tool which
allowed to categorize lobes in that way, based on its unique ability to automatically segment
complete cell conglomerates (Subsec. 1.2.1). This opens perspectives towards more precise and
target-oriented studies on lobe type specific-effects in cell morphogenesis as shown in our own
work [Mitra et al., 2019], and as taken up also by others (e.g., [Nowak et al., 2021]).

The set of shape features offered by PaCeQuant in conjunction with the high accuracy of
segmented cell contours (Subsec. 1.2.1) yields a profound fundament to precisely quantify shape
characteristics. This was shown on sample data evaluated in [Möller et al., 2017] where we
could successfully confirm earlier findings from literature, e.g., with regard to leaf development
of A. thaliana cotyledons, or concerning shape alterations in A. thaliana mutants impaired in
Katanin function, which is a protein known to hamper lobe growth (cf. Fig. 1.6). Finally, we
could approve different growth properties of type I and type II lobes in cell expansion.

In our work [Mitra et al., 2019] PaCeQuant served as basis for novel discoveries regard-
ing the role of microtubule-associated proteins (MAPs) in cell morphogenesis. Specifically the
member IQD5 of the IQ67 DOMAIN protein family was investigated. The family was previ-
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A B C D

Figure 1.15: (Inverted and contrast enhanced) images with stained cytoskeleton structures: cells from the
control (A) and knock-down (B) populations analyzed in [Möller et al., 2014], and samples with patterns of
microtubule localization for the IQD13 (C) and IQD5 (D) family members from [Bürstenbinder et al., 2017].

ously identified as one of the largest classes of known MAPs in plants [Abel et al., 2005] (see
also Subsec. 1.3.2), and IQD5 was identified to potentially play a special role in this family
(Fig. 1.16) [Bürstenbinder et al., 2017]. Different studies were conducted to characterize
IQD5 in terms of expression domains, subcellular localization, and biological roles. PaCeQuant
was successfully adopted in these studies to quantify differences in cell shape between wildtype
and mutants defective in IQD5. Besides, also the cell contours themselves provided by PaCe-
Quant contributed to novel findings with regard to different organic compounds being essential
ingredients for cell wall expansion. PaCeQuant’s contours formed the basis for automatically
quantifying these compounds along the cell walls from local intensities.

1.3.2 Comparative analysis of texture

The cytoskeleton is the central backbone of a cell. It is formed by a complex system of dif-
ferent types of protein filaments in the cytoplasm and defines essential properties of the cell,
like shape, mechanical properties, and its overall internal organization [Alberts et al., 2015,
Chap. 16]. The cytoskeleton is highly dynamic. Based on dynamic self-organization and steady
interactions with a multitude of proteins, which are members of various signaling pathways
in the cell, parts of the cytoskeleton can rapidly be disassembled or newly generated, or the
formation and localization of segments can be modified. Thus, the filaments of the cytoskele-
ton are capable of exhibiting various higher-order structures and network configurations, e.g.,
depending on the current state of the cellular environment [Nédélec et al., 2003; Letort et al.,
2015]. Analyzing structural properties of the cytoskeleton and its conformational changes under
varying conditions allows to uncover functional roles of proteins and signaling molecules in the
regulation of the cytoskeleton and, hence, in its diverse cellular functions.

The filaments of a cytoskeleton can be distinguished into different types, amongst others into
actin filaments and microtubules [Alberts et al., 2015]. Depending on the research question,
different fluorescence staining protocols exist to label and visualize the target filaments in mi-
croscope images. In Fig. 1.15 sample images of stained cytoskeleton structures are shown. Based
on such images, it is possible to extract data about the specific characteristics of filaments, e.g.,
for quantifying the specifities of a cytoskeleton or for structural comparisons.

The analysis of filament structures in images is often focused on an accurate measurement
of fibers, e.g., to quantify their lengths, widths, or orientations [Matschegewski et al., 2012;
Kimori et al., 2016]. This naturally requires to identify individual fibers in images which is often
rather challenging. Particularly in cases of densely packed fibers with many crossing overs, it is
even hard for human experts to solve this task. An automatic analysis is often biased towards
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filaments which are easy to segment, but not necessarily representative. Moreover, in some
experiments cytoskeleton structures are even completely destroyed or severely fragmented,
rendering filaments in general no longer the dominating structure representative for the status
of the cytoskeleton, and neither a suitable basis for quantifying skeleton characteristics.

In many applications the underlying research questions do not necessarily require to measure
single filaments, though this seems to be the evident solution. E.g., for a global comparison of
cytoskeleton properties and the search for structural similarities and differences, it is sufficient
to quantify the overall appearance of the cytoskeleton rather than of individual substructures.
We have elaborated this idea in [Möller et al., 2014] and [Bürstenbinder et al., 2017]. In
addition, our approach has been invited for presentation in the book chapter [Möller et al.,
2019c]. This chapter is dedicated to end users describing the usage of our tool collection which
subsumes the implementation of our approach in the CytoskeletonAnalyzer2D as well as the
CellBoundaryExtractor2D which implements our semi-automatic approach for cell boundary
extraction from [Möller & Bürstenbinder, 2019] (cf. Subsec. 1.2.1).

The key idea of our method is to adopt texture measures [Xie & Mirmehdi, 2008a] to charac-
terize the structural properties of stained cytoskeleton components. Initially, the region of each
cell is subdivided into a collection of non-overlapping tiles, and for each tile a feature vector
with texture measures is extracted. This results for each cell of a data set in a collection of
feature vectors which locally characterize the structural appearance of the cytoskeleton within
the cell. Subsequently, clustering is applied to all feature vectors over all cells to identify a set
of basic and representative types of structural patterns commonly appearing in the data set.
Since each feature vector is uniquely assigned to a cluster, it is associated with one of these
types. Hence, for each cell a distribution of the basic structural patterns can be extracted to
which its feature vectors are linked to. This essentially forms a structural fingerprint for the
cytoskeleton of the cell, yielding a suitable basis for distinct comparative analyses.

In [Möller et al., 2014] we applied our method to the analysis of filamentous actin (F-
actin) which is one form of appearance of the actin cytoskeleton in cells [Alberts et al., 2015].
Here, we adopted Haralick measures [Haralick et al., 1973] to quantify the textural appearance
of the cytoskeleton. We analyzed a set of 92 human melanoma-derived HT144 cells subsuming
a control population of 35 cells and a knock-down population of 57 cells where a protein
was depleted known to control F-actin organization and causing degenerative changes in the
cytoskeleton. Comparative analysis was performed by hierarchical clustering of the structural
fingerprint vectors of all cells. In doing so, we could demonstrate the suitability of our approach
to separate the two categories of cells to a satisfying degree. On the top level of the cluster
hierarchy two clusters emerged, one containing almost 90% of the knock-down cells, while
approximately two thirds of the control cells were gathered in the second cluster. Given a
certain degree of natural variation among the cells, differences in the responses to stimuli,
and also considering that cell division events which strongly affect actin organization occur
spontaneously in 10 to 20% of the cells, this result is conclusive.

In [Bürstenbinder et al., 2017] we applied our approach to comprehensively character-
ize members of the IQ67 DOMAIN (IQD) family of microtubule-associated proteins (MAPs).
The Arabidopsis IQD family consists of 33 members which can be allocated to four different
phylogenetic groups differing in their organization of conserved motifs [Abel et al., 2005]. The
microtubule cytoskeleton is central for cell growth, and MAPs function in regulating micro-
tubule dynamics, stability and organization.
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Figure 1.16: Network of the 23 IQD67 DOMAIN protein fam-
ily members most strongly associated with the microtubule cy-
toskeleton, based on structural similarity of localization patterns
(adopted from Fig. 5 in [Bürstenbinder et al., 2017]). The node
colors refer to the four different phylogenetic groups which can be
identified within the IQD family.

23 members of the IQD fam-
ily localize to the microtubule
skeleton and strongly label micro-
tubules when expressed in leaves of
N. benthamiana. Notably, the pat-
terns of localization (and possibly
also the microtubule cytoskeletons
themselves) differ between the indi-
vidual family members which may,
e.g., provide cues for their individ-
ual functional roles. Accordingly,
we analyzed these 23 members most
strongly associated with the micro-
tubule cytoskeleton, and compared
their structural patterns of micro-
tubule localization using our ap-
proach. This time we adopted local
binary patterns [Ojala et al., 2002]
as structural measures and used the
structural fingerprint vectors of the
cells to evaluate group-wise similar-
ities between the different members
of the IQD family. Amongst others we could extract a similarity network showing large con-
gruence with the phylogenetic groups defined for the IQD family (Fig. 1.16, node colors). This
gives raise to the assumption that closely related family members share similar functions in
regulating the microtubule cytoskeleton. As remarkable outliers IQD11 and IQD16 were iden-
tified which suggests unique, but similar functions of IQD11 and IQD16 compared to other
IQD members. This could be confirmed in supplemental experiments. Interestingly, IQD5 also
differed from other members of the corresponding phylogenetic group, which gave rise to a
more detailed functional characterization of IQD5 in [Mitra et al., 2019] (see above).

Altogether, our approach for cytoskeleton analysis contributed to the first comprehensive
characterization of the complete IQ67 DOMAIN protein family. Our structure characterization
based on local texture measures turned out to be well-suited for distinguishing different types
of patterns, revealing flexible alternative directions for the analysis of subcellular structures,
particularly in cases where filament structures are either difficult to segment or absent at all.

1.4 Software Development and Tools for Bioimage Analysis

Computational solutions for bioimage analysis and their development process are expected to
meet a variety of requirements. First of all, there is the need for custom-fit algorithms tuned to
optimally exploit given research data. Beyond that, to make new approaches available to end
users these need to be integrated into user-friendly tools, but without loosing the flexibility to
promptly react on shifts in research foci or novel imaging technologies with timely adaptations.
Carpenter et al. [2012] outline a comprehensive collection of criteria which should be aimed at
in developing bioimage analysis software with a prospective high value for developers, users,
and the whole bioimaging community. These criteria subsume user-friendliness by easy acces-
sibility, documentation and support, developer-friendliness via established routines for source
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code organization and maintenance, modularity, interoperability, straight extensibility, and easy
adaptability to future needs. One key paradigm generally considered important for bioimage
analysis software is its public availability in an open-source fashion [Swedlow & Eliceiri, 2009;
Cardona & Tomancak, 2012]. Open software tools, which can intuitively be applied also by
non-computer scientist users, inherently add to transparent and reproducible research. As ev-
eryone can (re)use the software and contribute extensions, it encourages scientific collaboration
[Schindelin et al., 2015].

As already became apparent in previous sections, we developed a considerable number of
basic to elaborate algorithms and workflows in the course of our research over the years. We
followed open-source principles from the beginning and released the majority of our approaches
to the public applying open-source licenses. In this section, we present several of our software
projects and tools in detail, starting in Subsec. 1.4.1 with MiToBo. This is our central library
and toolbox yielding the basis for most of our developments, and collecting the majority of our
tools for microscope image analysis. The core of MiToBo is formed by Alida which we introduce
in Subsec. 1.4.2. Alida not only provides a powerful library, but constitutes an integrated
concept for software development in data analysis. It meets many of the desirable criteria for
bioimage analysis software outlined above and can be seen as the guide line along which we
developed our algorithms and tools. The rich feature collection offered by Alida and MiToBo in
daily research is illustrated in Subsec. 1.4.3 based on the sample applications MiCA [Möller &
Posch, 2011] and PaCeQuant with its supplemental tool collection [Poeschl et al., 2020].

While we developed Alida and MiToBo from scratch, rhizoTrak, which is our tool for annotat-
ing and analyzing images of plant roots (Subsec. 1.4.4), is derived from the existing open-source
software TrakEM2 [Cardona et al., 2012] originally dedicated to neuroscience research.

1.4.1 MiToBo – a library and toolbox for bioimage analysis

When our group entered the field of bioimage analysis more than ten years ago, one of the
dominating software tools in this area was ImageJ2. Its roots date back to the second half of the
1990s where the first versions of ImageJ were released based on the fundament of its predecessor
NIH Image [Schneider et al., 2012]. ImageJ has always been oriented towards maximum benefit
for end users and the community, following a strict open source and public domain paradigm
as stated among the basic concepts on its website3. It aims at easy extensibility which is
particularly reflected in a flexible plugin mechanism for integration of new functionality.

Over the decades a huge and very active community of users and developers emerged around
ImageJ and its main developer Wayne S. Rasband [Schneider et al., 2012]. This led to a con-
tinuous expansion of ImageJ’s core functionality [Levet et al., 2021, Tab. 1], the release of
countless extensions for manifold (bio)image analysis tasks provided by the community, and
also the emergence of special and extended variants of ImageJ like Fiji [Schindelin et al., 2012].

While this substantiates ImageJ’s status as one of the most prominent and widely used soft-
ware tools for bioimage analysis today, limitations and design issues in its software architecture
became more and more obvious over the years [Rueden et al., 2017]. The user-centered devel-
opment process with a clear focus on the use of ImageJ via its graphical user interface (GUI)
and the need to implement a separate graphical front end for each plugin, encouraged tight
interlocks of functionality and GUI even in ImageJ’s core. This significantly hampers the reuse
of ImageJ’s huge repertoire of methods in other contexts, e.g., headless or as library.

2ImageJ website, https://imagej.nih.gov/ij/ (accessed: November 28, 2021)
3Basic concepts of ImageJ: https://imagej.nih.gov/ij/docs/concepts.html (accessed: November 28, 2021)
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ImageJ’s enormous popularity and its extensibility via plugins might render the software
a suitable foundation for our own developments. However, the fundamental deficiencies in its
design collide seriously with several of our primary ideas for developing bioimage analysis
software, like a high modularity and easy extensibility, and particularly a strict separation of
functionality from user and developer interfaces. Accordingly, we decided to develop our own
algorithms and workflows as separate library – but to preserve a maximum of compatibility
with ImageJ to avoid loosing the benefits of ImageJ’s extraordinary rich functionality and the
eminent advantages that an established software offers by its prevalence and community.

As result MiToBo, our Microscope Image Analysis ToolBox, emerged. MiToBo [Möller
et al., 2016] is a Java library comprising basic to advanced methods for image processing and
analysis. As a specialty, MiToBo offers sophisticated mechanisms to access this functionality
in different ways, i.e., via a unified API on the source code level, from the command line or in
scripts, and via a generic plugin in ImageJ and Fiji. New functions and tools are automatically
registered in MiToBo without additional programming effort and are immediately ready for
execution via the different generically generated user interfaces.

The core functionality in MiToBo which is responsible for this flexibility in accessing the
library internals is not specific to algorithm development for bioimage analysis. The underlying
concepts and technologies can directly be transferred to almost every area of application where
functions are used to manipulate data. Consequently, we implemented the basic concepts of
these mechanisms in a separate library termed Alida which is independent of any concrete
application domain. The concepts of Alida are further elaborated in Subsec. 1.4.2.

MiToBo’s and Alida’s developments started in parallel with similar efforts for overcoming the
design shortcomings of ImageJ in its closer periphery. Especially the ImageJ2 project [Rueden
et al., 2017] in parts pursued similar goals of decoupling functionality and interfaces. Although
ImageJ2 envisaged a full rewrite of ImageJ’s core, focusing on modularity and interoperability,
ImageJ2 and MiToBo and Alida, respectively, share many fundamental conceptual ideas, e.g.,
regarding the integration of extensible user and developer interfaces for accessing the functions
within libraries, or concerning the generic execution of tools and plugins. Notably, the ImageJ2
project, from which later on the SciJava cooperation project4 emerged, released its functional
core in an image-independent fashion as library called SciJava Common in 20135.

Naturally, the developments of MiToBo and Alida from the beginning and still today mutu-
ally support and complement each other. While Alida’s functionality steadily grows not least
because of new requirements within MiToBo, vice versa MiToBo constitutes a perfect test case
for Alida’s concepts with regard to the specific area of (bio)image analysis. MiToBo has been
and still is the fundament of most of our algorithmic developments for bioimage analysis. It
formed the basis for various bachelor, master and PhD projects from which also new functions
and extensions emerged. Over the years, MiToBo has grown to a comprehensive collection of
basic to advanced image analysis methods and elaborate pipelines. MiToBo6 is open source
and publicly available on GitHub under GPL license7. It features its own update site8 for easy
installation in Fiji, resulting in a tight integration in the ImageJ ecosystem [Schindelin et al.,
2015]. Since 2019 MiToBo is community partner in the Scientific Community Image Forum
[Rueden et al., 2019]. Most of the tools that we implemented and released in the course of

4SciJava website, https://scijava.org/ (accessed: November 23, 2021)
5scijava-common on GitHub, https://github.com/scijava/scijava-common/releases/tag/scijava-common-1.0.0
6MiToBo homepage, https://mitobo.informatik.uni-halle.de (accessed October 26, 2021)
7GNU General Public License 3, http://www.gnu.org/licenses/gpl-3.0.de.html (September 20, 2021)
8Update sites in Fiji/ImageJ2, https://imagej.net/update-sites/ (accessed: November 23, 2021)
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our research are part of MiToBo, e.g., MiCA [Möller & Posch, 2011], NeuronAnalyzer2D
[Misiak et al., 2014], PaCeQuant [Möller et al., 2017], CellBoundaryExtractor2D and
CytoskeletonAnalyzer2D [Möller & Bürstenbinder, 2019; Möller et al., 2019c] which
are all described in this thesis, or the ScratchAssayAnalyzer [Glaß et al., 2011, 2012].

Finally, MiToBo has proven suitable also as software basis for lectures. We employ MiToBo
in conjunction with ImageJ regularly in our introductory lecture on image processing where
students learn the theoretic foundations of basic image processing methods, and implement and
apply them in practice. MiToBo allows to keep the focus on the algorithmic side and practical
experiments rather than enforcing additional workload on infrastructure or user interfaces.

1.4.2 The Alida concept for data analysis

The motivation for devising a novel concept on design and development of data analysis al-
gorithms and tools was triggered by our aim to build modular and extensible software with a
strict separation of functionality from interfaces. Another important intention was to facilitate
an automatic documentation of data analysis procedures. Given an integrated logging of all
actions applied to data during an analysis process, development and testing are simplified as
algorithmic configurations are automatically recorded. Once a workflow is established, built-in
logging capabilities allow for a gapless documentation of analysis and data generation proce-
dures. This is an essential prerequisite, e.g., for later interpretation, validation and reproduction
of results, or for long-term archival of scientific data [Goldberg et al., 2005].

Our new concept, which we denoted Alida as an acronym for Automatic Logging of Process
Information in Data Analysis, was initially published in [Möller et al., 2011a]. It builds on
the assumption that each data analysis process is formed by a series of analysis or manipulation
actions applied to data items. The complete sequence of all these actions together with the
data items processed or generated during analysis are summarized in the processing graph.
It is implicitly defined by every data analysis pipeline. The nodes of the graph represent the
actions on the data, and the edges represent the flow of data and control between them.

To account for a high modularity in designing data analysis pipelines based on these ideas
and to enable automatic process documentation, every action on data needs to be conceived
as self-contained step, controllable via a unified interface for configuration and execution. In
Alida this is implemented using ’operators’ as fundamental building blocks where all actions
take place. Operators are enforced to provide all relevant data, i.e., input and output data
items as well as configuration parameters and their current settings, through such a unified
interface. In addition, Alida defines a unified execution procedure to generically invoke opera-
tors. In combination, this yields the basis for Alida’s core functions, i.e., for automatic process
documentation, but likewise for generic user interface generation and a visual programming
editor, which we will outline with more details below.

The key idea in Alida to automatically document analysis procedures as presented in [Möller
et al., 2011a] is to transform the implicit processing graph of a data analysis pipeline into an
explicit representation. This requires to register all calls to operators on execution and store
affected data items, settings of configuration parameters, and meta information, e.g., software
versions of the program code used for data analysis. In Alida’s concept with its unified interfaces
and execution procedures, all these data are inherently available for recording in an internal
database once an operator is invoked. By exporting the processing graph with all these data
from the database to an explicit representation a full-featured documentation of the whole
analysis pipeline is readily available.
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Figure 1.17: Screenshot of MiToBo’s GUI in Fiji showing the main window of Fiji (A), the operator chooser
window of MiToBo’s graphical operator runner (B), PaCeQuant’s operator configuration and control window
(C), the main window of the workflow editor Grappa (D), image windows, and a table with result data (E).

Despite their unquestionable relevance, user interfaces (UIs) are often not in the primary
focus of developers. Efforts to release suitable UIs are often not compensated by the scientific
merits to gain, e.g., compared to tackling a challenging problem with new algorithmic solutions
[Levet et al., 2021]. One option to overcome this issue is to relieve developers from explicit UI
programming. Alida’s conceptual basis is a natural starting point for automatic generation of
UIs from source code in a generic fashion as we demonstrated in [Möller & Posch, 2013].

User interfaces basically need to bidirectionally transform input and output (I/O) data of
an operator, i.e., data items to be analyzed, configuration parameter settings, and analysis
results, between their internal and an explicit external representation, interpretable and ed-
itable by the user. To facilitate this in a generic fashion in Alida, we introduced a flexible and
dynamically extendable mechanism of I/O providers which allows to transform manifold kinds
of data between different representations. Besides primitive and corresponding wrapper data
types, enumerations, arrays, and collections, also operators by themselves are out-of-the-box
supported as input parameters of other operators. Given the specification of input and output
parameters of an operator, this provider mechanism forms the basis for generic execution of the
operator via a command line interface (CLI) or a graphical user interface (GUI). Accordingly,
Alida ships with a command line runner and a graphical operator runner. The first one offers
sophisticated functionality for parsing data items and parameters from command line [Möller
& Posch, 2021, Sec. 2.5] and yields the basis for running Alida operators from scripts in a high-
throughput fashion. The latter one lists available operators in a graphical overview from where
they can be selected, configured and executed via automatically generated GUI components.
This runner also forms the basis for MiToBo’s ImageJ plugin that constitutes the entry point
for running MiToBo operators in a generic fashion in ImageJ and Fiji (Fig. 1.17).

Image analysis problems are usually not solved by applying a single operator, but require
the combination of different analysis operations into sophisticated pipelines. The concept of
pipelines and workflows is central to many data analysis tools, like for the data analytics
platform KNIME [Berthold et al., 2009], Galaxy [Afgan et al., 2018], or for tools like ICY
[De Chaumont et al., 2012] or CellProfiler [McQuin et al., 2018] specialized on bioimage data
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analysis. In Alida such pipelines correspond to a special type of operators that define their
inputs, outputs and parameters like usual operators, but setup their functionality on other
operators. Hence, the extension of Alida’s concept towards support for workflows in [Möller
& Posch, 2013] is straightforward. Moreover, by interpreting the process of solving an image
analysis problem as the search for a workflow which combines operators into a suitable graph
structure, the design process can be translated into a graph editing task. This led to the
development of the graphical workflow editor Grappa which allows to interactively arrange
operators in workflows. An early version of Grappa was initially developed by S. Kirchner in
his bachelor project supervised by the author of this thesis [Kirchner, 2012]. This was later
extended and released to the public in [Kirchner et al., 2012] and [Möller & Posch, 2013].

On the technical side, the Alida concept is implemented as library in Java following object-
oriented design principles [Möller et al., 2011a; Posch & Möller, 2017]. For dynamic
handling of available operators and I/O providers, and for specifying configuration parameters
of operators, we adopt Java’s annotation mechanism. All GUI components rely on Java Swing,
and Grappa is based on the JGraphX library for visual graph editing9. The processing graphs
are exported to XML representations where we extend the schema descriptions of graphML
[Brandes et al., 2002] for our needs and provide the tool Chipory for visual exploration of the
graphs which extends the free graph editing and layout tool Chisio [Kucukkececi et al., 2017].

Today Alida10, which in the meantime changed its acronym to Advanced Library for
Integrated Development of Data Analysis Applications, reached a mature status. New features
are integrated diligently, mainly triggered by needs arising from Alida’s role as integral core of
MiToBo. Over the years, the special type of controllable operators was introduced which sup-
port interactions during execution, i.e., can be controlled via ’Run’, ’Pause’ and ’Stop’ buttons
if executed from a GUI. In addition, a batch mode for operators was added, and an online help
which automatically extracts its contents from annotations in operator classes. With regard to
generic GUI generation, the possibility to add and remove operator parameters dynamically
during run time and define dependencies between parameters via callback functions opened new
perspectives for slim GUIs showing only the parameters relevant in the current context. This
mechanism is for example used to keep PaCeQuant’s GUI clear despite its various configura-
tion options (Subsec. 1.4.3). Finally, an infrastructure around collections of MiToBo operators
was established that simplifies their reuse in external programs in a unified manner and from
which, e.g., the MTBCellCounter [Franke et al., 2015] or rhizoTrak (Subsec. 1.4.4) benefit.

1.4.3 Alida and MiToBo in practice: MiCA and PaCeQuant

Alida’s central aim to enable easy reuse of functionality and to allow developers to concentrate
on algorithm design rather than infrastructure, while still offering intuitive interfaces to end
users, significantly reduces developer workload. Prominent examples to illustrate this in practice
are MiCA, the MiToBo Cell Image Analyzer [Möller & Posch, 2011], and PaCeQuant
[Möller et al., 2017; Poeschl et al., 2020].

We released MiCA as one of the first more complex operators in MiToBo. It offers an inte-
grated analysis of fluorescently labeled subcellular structures on the single cell level. For the
detection of subcellular structures, MiCA integrates the scale-adaptive particle detection ap-
proach introduced in Subsec. 1.1.2, while active contour models are adopted for cell boundary
extraction (cf. Subsec. 1.2.2). To support users in combining different energy functionals to solve

9JGraphX project repository, https://github.com/jgraph/jgraphx (accessed: September 21, 2021)
10Alida homepage, https://alida.informatik.uni-halle.de (accessed: October 17, 2021)
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a segmentation task, MiCA implements an intuitive normalization scheme for active contour
energies [Möller & Posch, 2011]. The contours can, e.g., be initialized automatically from
DAPI-stained nuclei applying thresholding and morphological operations. If input images lack
a DAPI channel, subcellular structures can still be quantified for complete images and later on
be combined with manual cell annotations like in [Bley et al., 2015].

A

B

C
D

Figure 1.18: MiCA’s GUI in MiToBo, generated fully automatically, with
main window (A) and nested configuration windows for the integrated cell
segmentation via snakes (B, C), and for the snake energy functional (D)
which allows to define a weighted sum of different energy components.

The algorithms for cell
segmentation with active
contours as well as for the
nuclei and particle detec-
tion are implemented as in-
dividual operators in MiCA.
They are transparently inte-
grated in MiCA’s GUI based
on Alida’s support for us-
ing operators as parame-
ters. Each operator can di-
rectly be configured via its
own configuration window
(Fig. 1.18). For the snake-
based cell segmentation, op-
erators with different opti-
mization strategies are pro-
vided, and flexible combina-
tions of energy functionals
can be used and individually
configured (Fig. 1.18 D). The sets of available active contour operators and energy functionals
are dynamically managed in an automatic fashion based on Alida’s mechanism to index all
currently available classes derived from a common super class.

MiCA illustrates the large flexibility of Alida to handle complex and nested types of con-
figuration parameters in GUI generation, but the overall number of parameters is moderate.
In contrast, PaCeQuant offers a significantly larger number of parameters [Möller et al.,
2019b]. To keep PaCeQuant’s GUI clear, we make use of Alida’s functionality to dynami-
cally change the interface of an operator and adapt the GUI to current configuration settings.
Depending on the selected phases of segmentation and/or feature extraction which are to be
executed (Fig. 1.17 C, top parameter), we add or remove configuration parameters associated
with the different phases via callbacks, resulting in dynamic changes of the GUI. Fig. 1.17 C
shows PaCeQuant’s configuration and control window including parameters for both phases of
segmentation and feature extraction. If the selection of phases is toggled to run only one of
them, the parameter section of the phase which is no longer selected is automatically hidden.

The explicit separation of the two phases of cell segmentation and feature extraction in the
core operator of PaCeQuant enables intermediate user intervention, e.g., if cell segmentation
locally fails or cell contours are externally provided and only shape features are to be extracted.
To support users in correcting inaccurate segmentations, and also to ease the evaluation of
extracted shape features, the core operator was over time supplemented with additional tools
forming an integrated toolset for cell shape analysis11. Beyond an R package for statistical

11Website of PaCeQuant and related tools, accessed: October 26, 2021,
https://mitobo.informatik.uni-halle.de/index.php/Applications/PaCeQuantToolset
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investigations on shape features, we offer two additional tools in MiToBo [Poeschl et al.,
2020]. The LabelImageEditor is an interactive tool for manual post-processing of segmentation
results. It allows, e.g., to remove surplus contours by merging adjacent regions via simple
point-and-click actions or to remove intrusions via a constraint expansion of single regions
which stops as soon as other regions are touched. The FeatureColorMapper allows to color cell
regions according to the values of extracted shape features. The implementation of both tools
as MiToBo operators enables their full integration into the MiToBo ImageJ/Fiji plugin and
allows to directly release them to end users as part of the MiToBo distribution rolled out via
its ImageJ update site.

1.4.4 Annotation and analysis of root images with rhizoTrak

The main area of application of our tool rhizoTrak 12 which we published in [Möller et al.,
2019a] are studies on root growth and development in plant research. Roots are among the
most important, yet least accessible organs of plants. To monitor roots in situ in long-term
developmental studies, acquiring time-series image data with minirhizotrons is an established
technique [Smit et al., 2000]. Minirhizotrons are transparent tubes inserted in the soil next to a
plant which enable repeated scans of their immediate surroundings with scanners or cameras.
From the resulting images (see Fig. 1.19, left, for an example) the number and distribution of
root fragments as well as data about root mass and status can be extracted.

Figure 1.19: Crop of a minirhizotron image (left) with annotations
exported from rhizoTrak (right), colors refer to root status, e.g., green
to living and red to dead segments (image courtesy of A. Weigelt).

An automatic segmentation
of roots from minirhizotron
images is challenging due to
the inhomogeneous image
background, e.g., formed by
soil, air bubbles, water drops,
or earthworm corridors. Sev-
eral approaches for semi- or
fully automatic segmentation
have been proposed, recently
also adopting techniques of
deep learning [Wang et al.,
2019; Smith et al., 2020]
(cf. Subsec. 1.2.3). However,
the reliability of automatic ap-
proaches is often not yet sufficient for unsupervised segmentation without human intervention.
Hence, data extraction commonly still relies on time-consuming manual annotation, which
triggers the need for efficient and user-friendly annotation tools. Though various tools are
available for this purpose (e.g., [Le Bot et al., 2010; Lobet et al., 2011]), each lacks important
features, e.g., with regard to root modeling, editing of annotations, time-series support, or
data export [Möller et al., 2019a]. With rhizoTrak we provide a single open-source tool
integrating most of the relevant functionality and providing large flexibility, particularly for
interactive annotation of time-series image data.

In the development of rhizoTrak we did not start from scratch, but largely benefit from
the open-source Fiji plugin TrakEM2 [Cardona et al., 2012] which forms the fundament of
rhizoTrak. TrakEM2 targets at morphological data mining and three-dimensional modeling,

12rhizoTrak website, https://prbio-hub.github.io/rhizoTrak/ (accessed: November 24, 2021)
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subsuming manifold functionality, e.g., for image visualization and navigation, registration,
annotation, and measuring. As one of its intended areas of application is neural circuit recon-
struction, and since networks of neuronal cells exhibit significant parallels with root systems,
many of TrakEM2’s built-in functionalities and data types as well as its elaborate GUI are
perfectly matching our needs for annotating roots.

In rhizoTrak we extend TrakEM2’s functionality and data structures to account for the dif-
ferences between 3D volumetric image data of neural systems and time-series data of roots.
Besides improved image import and visualization options, this mainly subsumes a larger flexi-
bility in defining status labels attached to treeline segments for tagging root status. In addition,
TrakEM2’s connectors, by which annotation objects can be logically linked together, e.g., to
properly model an object over different slices in a 3D stack, are defined more fail-safe in rhi-
zoTrak. On the programming level unique identifiers were introduced for assigning connectors
to objects whereas in TrakEM2 only geometric coincidence is used. These advanced connectors
are also the fundament for assisting the user with inherent consistency checks to prevent the
creation of topologically inconsistent annotations. rhizoTrak supports the export of annotation
data in RSML format [Lobet et al., 2015] enabling interaction with other tools. In addition,
statistical measurements of annotated roots can be exported for processing with external tools,
e.g., with our own R package rhizoTrakAddons supporting quick statistical investigations.

The public version of rhizoTrak does not yet include functionality for (semi-)automatic root
segmentation, though internally corresponding methods are already under development. For
easy integration of additional image analysis functionality, rhizoTrak features a plugin interface
which allows to dynamically load MiToBo operators into rhizoTrak at run time. These are
required to implement an interface enabling data exchange between MiToBo and rhizoTrak.
In particular approaches based on deep learning may presumably lead to further boosts in
segmentation performance in near future. As such approaches require significant amounts of
properly annotated training data, tools like rhizoTrak for manual annotation – or inspection and
correction of automatically generated segmentation results – form a valuable fundament in these
processes. Hence, ongoing work aims to evolve rhizoTrak towards an integrated platform for
manual annotation as well as automatic segmentation and analysis of time-series root images.

1.5 Contributions and Conclusions

This thesis provides a comprehensive overview of the author’s research on methods and tools for
image analysis in the life sciences over more than one decade. The large diversity of approaches
presented here mirrors the huge variety in analysis tasks emerging from bioimaging and related
areas, and illustrates the importance of objective computational methods.

In our work, we extended existing and devised novel and advanced algorithms for various
problems of low-level feature detection and object segmentation. Regarding elastic registration
of 2-DE gel images, we pointed out domain-independent keypoint features as a larger and more
robust fundament for feature-based registration approaches compared to the commonly used
protein spot features [Möller & Posch, 2009]. For the task of particle detection from mi-
croscope images, we extended an existing algorithm towards improved scale-adaptivity [Greß
et al., 2010], resulting in a larger flexibility and robustness in detection. Besides providing
reliable counts of stress granules in different research contexts for which the algorithm was orig-
inally designed [Bley et al., 2015; Mensch et al., 2018], it underlined its broad applicability
also by robustly detecting plastids, nuclei and peroxisomes [Franke et al., 2015; Erickson et al.,
2018], or protein localizations in the plasma membrane [Bürstenbinder et al., 2017].
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Active contour models have gained widespread use for the segmentation of objects in bioim-
ages. For a task at hand, the selection of the best suited type of active contours is not straight-
forward. To ease this selection process, we carved out individual characteristics of snakes and
level sets in a comparative study in [Möller & Posch, 2012]. In [Misiak et al., 2014] we
adopted snakes to segment the complete areas of neurons. With this approach we were among
the first to extract distributions of biomolecules inside the neurites of a neuron and, hence, to
provide localization profiles in a fully automated fashion. To adopt snakes for the segmentation
of cells with inhomogeneous intensity characteristics and vanishing boundaries, we proposed a
novel cascaded optimization scheme in [Möller et al., 2010, 2011b]. This demonstrated how
challenging segmentation problems in bioimages can be tackled with active contours beyond
solely adapting energy functionals.

Deep learning has added a novel conceptual level to image analysis in general, and specifi-
cally to the detection and segmentation of objects in images. Adopting CNNs for these tasks
has boosted performance with regard to diverse applications, provided that sufficiently large
amounts of representative training data are available. In bioimage analysis research questions
and related image analysis problems are often highly specific, rendering the acquisition of ap-
propriate training data cumbersome. For the CVPPA Arabidopsis thaliana Root Segmentation
Challenge 2021 such data were provided. With our approach combining root segmentation with
CNNs and skeleton-based morphological analysis we were the only team among the 16 teams
registered for the challenge that submitted complete segmentation and main root extraction
results. Hence, we were declared as the winners of the challenge. Beyond that, our work pro-
vided deeper insights into the capabilities and behaviors of various CNN network architectures
and loss functions, forming a valuable foundation for future work to improve CNN performance
in this application domain [Möller et al., 2021].

With PaCeQuant [Möller et al., 2017] and its supplemental tool collection [Poeschl et al.,
2020] we established a novel, pioneering pipeline for the analysis of leaf epidermis pavement
cells in a high-throughput fashion. PaCeQuant is the first tool to integrate cell segmentation
with subsequent quantification of manifold shape characteristics in a fully automated manner. It
paves the way towards an analysis of larger and more representative data sets, and in particular
overcomes the restriction of analyzing isolated cells towards scrutinizing cell conglomerates.
This allows to consider additional morphological aspects of cells, like different types of lobes,
in research studies. PaCeQuant has contributed to new findings in our own research, e.g.,
regarding microtubule-associated proteins [Mitra et al., 2019], and has also been employed
by other labs [Erguvan et al., 2019; Li et al., 2019; Wong et al., 2019a,b]. Besides, we have been
invited to present PaCeQuant with its tools and the R package PaCeQuantAna in two book
chapters [Möller et al., 2019b; Poeschl et al., 2020].

For the comparative analysis of cytoskeleton structures, we devised a novel approach to
quantify and compare cytoskeleton characteristics based on texture measures and methods of
unsupervised machine learning [Möller et al., 2014, 2019c]. Our workflow overcomes the
need of many other approaches to explicitly segment filamentous structures, which results in
larger flexibility with regard to potential fields of application. It proved suitable to group cells
into different genotypical categories according to their actin cytoskeletons [Möller et al.,
2014], and formed the fundament for the first comprehensive characterization of the IQ67
DOMAIN protein family based on their microtubule localization patterns [Bürstenbinder
et al., 2017]. Other research groups employed our approach for the analysis of actin filaments,
e.g., in studies on fibroblasts, cardiomyoblasts, or functions of specific proteins [Hilbig et al.,
2018; Huerta-García et al., 2019; Leinhos et al., 2019].

30



1.5. Contributions and Conclusions

Not least due to a very close collaboration in research with many partners from different
areas of the life sciences, we have always focused our work on evolving our algorithms and
methods into software tools and applications easy to handle by end users. With Alida and
MiToBo we established a development platform and toolbox that strongly supports these goals
[Möller et al., 2016; Posch & Möller, 2017]. The general concepts of Alida and MiToBo
provide a flexible and feature-rich development and test infrastructure. It has proven to form a
suitable fundament for practical experiments in our lectures, and also served as basis for several
student projects and degree theses, from which results were also reintegrated into MiToBo. In
a comparative review of free software tools for microscope image analysis, an early version
of MiToBo was rated among the top five out of 15 tools regarding combined usability and
functionality [Wiesmann et al., 2015, Fig. 7].

MiToBo’s deep anchoring in the ImageJ and Fiji ecosystem renders it easy to release our
solutions to the public, and we substantially benefit from the very active bioimage analysis com-
munity. Our ImageJ update site has been among the top 20% of the sites with largest absolute
access counts in the period from July 2020 to July 202113. Many of the tools presented in this
thesis are part of MiToBo, e.g., MiCA [Möller & Posch, 2011], NeuronAnalyzer2D [Misiak
et al., 2014], CytoskeletonAnalyzer2D [Möller et al., 2019c], or PaCeQuant [Möller et al.,
2017]. Also other tools like the successful ScratchAssayAnalyzer [Glaß et al., 2011, 2012] or
a plugin for biofilm analysis, both implemented as MiToBo operators by Markus Glaß, found
their way into the public as part of the MiToBo toolbox (e.g., [VanOudenhove et al., 2016;
Berens et al., 2017; Gierl et al., 2020; Pavez Lorie et al., 2020]).

Our tool rhizoTrak [Möller et al., 2019a] likewise benefits from the ImageJ and Fiji
ecosystem and is distributed via our ImageJ update site. With rhizoTrak we established a
feature-rich open-source alternative to commercial solutions like WinRHIZO™ Tron14 for the
manual annotation of roots in minirhizotron time-series data. rhizoTrak provides full access
to all annotation data and, hence, yields a flexible platform not only for extracting statistical
data of roots, but also for the acquisition of training data for root segmentation based on deep
learning. Moreover, a direct integration of such techniques in the future towards devising fully
automatic workflows for root segmentation from minirhizotron images is straightforward.

In summary, the work presented in this thesis illustrates the broad range of image analysis
challenges we have worked on over the years. We developed custom-fit algorithmic solutions
and established advanced workflows for diverse problems of object detection, segmentation,
and quantitative analysis. Not least by releasing these approaches as user-friendly tools to
the bioimage analysis community and to end users, our computational methods successfully
contribute to novel findings and advances in various areas of the life sciences.

13Data derived from counts as published on ImageJ Update Site Statistics website,
https://imagej.net/update-sites/stats (accessed: October 19, 2021)

14WinRHIZO™ Tron website, Regent Instruments Inc.,
https://regentinstruments.com/assets/winrhizotron_about2.html (accessed: October 17, 2021)
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Research Article

Robust features for 2-DE gel image
registration

Proteomics is a rapidly growing field of modern biology. Since quantitative data of

proteins involved in dynamic processes of living organisms are essential for under-

standing the basics of life, techniques like 2-DE and related procedures for automatic

data interpretation are at the heart of this research field. They are strongly required to

enable analysis and interpretation of the emerging amount of available data. Analyzing

and interpreting gel image data usually requires the comparison of gels from different

experiments and, thus, a prior registration of gels. This can be accomplished using

featureless, feature-based or hybrid registration approaches combining both techniques.

Recently, the latter ones have shown high performance, and it is undoubtful that in

general robust and reliable features are an essential ingredient and valuable source of

information for high-quality image registration. In this paper we provide a thorough

overview and elaborate analysis of the capabilities of available feature detectors for gel

image registration. Particularly, a detailed and extensive comparative study is presented

where common spot-specific detectors are included as well as image-content indepen-

dent detectors that were not applied to the task of gel image registration until now. The

study incorporates tests on several thousand synthetically deformed images from

different experimental conditions. As a result it provides valuable quantitative data

allowing for direct objective comparisons of various detectors, and is well suited to guide

the design of new registration algorithms.

Keywords:

2-DE / Comparative study / Feature detectors / Image registration / Keypoints
DOI 10.1002/elps.200900293

1 Introduction

1.1 General

Proteomics extends the analysis of the static genome toward

understanding the far more complex and dynamic proteome

of cells, tissues and entire organisms, and for the first time

enables a systems view of biology [1]. To separate proteins

from cell or tissue samples 2-DE has been established over

the last two decades as the de facto experimental technique.

To assess and compare protein quantification and differ-

ences from varying experimental conditions and technical or

biological replicates, it is essential to account for variations

and distortions between gels and resulting gel images. To

assist this analysis, the automatic processing of gel images

is of large interest, especially as the amount of gel data

available increases substantially [2]. For differential analysis,

gel images have to be compared and, thus, usually pairs of

gel images are to be registered in advance. As deviations

between gel images are as well global as also local in nature,

non-rigid transformations have to be applied.

Techniques for registration are classified into feature-

less and feature-based approaches, where combinations

were also proposed [3]. For feature-less methods, the

intensity information of the images is exploited directly (see,

e.g., [4]). On the contrary, features in both images are

detected for feature-based registration. These are subse-

quently matched between images, and the resulting

matches are employed to determine a suitable transforma-

tion for registration. Results and quality of these approaches

obviously depend on the amount, spatial distribution, and

localization accuracy of features used for matching. For

registration of gel images, protein spots have typically been

used as features (e.g. [5–7]) as they are detected anyway to

identify proteins. However, for the registration process there

is no need to restrict potential types of features to spots,

especially as even commercial programs show large variance
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in spot detection [8]. On the other hand, in computer vision

literature several feature detectors have been proposed,

which are independent of specific image structures or

contents and, hence, potentially offer larger flexibility for the

task of gel image registration.

In this work we aim at assessing the appropriateness of

different feature detectors as basis for feature-based regis-

tration of gel images, particularly focusing on a thorough

comparison of common gel-specific spot detectors and

image-content independent keypoint detectors. The work

extends a previous study [9] and includes four spot detectors,

namely the Laplace, Ring, Watershed, and Meaningful

Boundaries detector and two general-purpose keypoint

detectors, Scale Invariant Feature Transform (SIFT) and

Speeded-Up Robust Features (SURF), which are widely used

for various image analysis tasks. As transformation classes

for simulating gel image distortions we consider piecewise

bilinear transformations (PBLT), thin plate splines (TPS),

and the centerpull transformation (CPT), as these have

previously been used to register gel images. We investigate

the characteristics of the various feature detectors as well as

the reproducibility of features detected, taking number,

localization, and robustness into account. The results of this

comparative study are expected to yield valuable guidance to

choose suitable feature types and detectors for robust and

accurate registration of gel images.

1.2 Related work

Automatic registration of gel images has been an area of

active research for a long time. A large amount of different

approaches, either feature-less or feature-based, and also

hybrid combinations have been proposed to solve the

problem of gel image alignment [7, 10, 11]. Nevertheless,

the task still poses challenges, which even up-to-date

commercial products often do not meet in a satisfactory

way [8, 12].

Robust features are obviously required for both feature-

based and combined techniques [7, 13]. Particularly, the

undesirable task of manual landmark selection and warp

improvement, which still takes a considerable amount of

total processing time for a single pair of gel images [12], is to

be eliminated in near future.

For gel image analysis, protein spots are domain-

inherent striking image patterns, i.e. features that appear to

yield a perfect base for gel registration. There is a large

variety of common techniques for detecting spots in litera-

ture, like intensity level and flow analysis [14, 15], Laplacians

[6], watersheds [5, 7], morphological operators [16], or

parametric spot models like 2-D Gaussians [17]. Also, more

complex algorithms have been proposed, e.g., based on

Markov Random Fields [18]. Although these spot-like

structures appear self-evident for the registration task, there

are also some serious drawbacks associated with them.

Their detection often seems to be tricky, not robust even in

cases of only small image variation [8] and still requires a lot

of manual intervention and parameter adjustment

(e.g., [14]). Additionally, using spots as features puts unne-

cessary restrictions on the number and characteristics of

available features per image as well as to their spatial

distribution.

In general, robust and reliable feature detection for

registration tasks calls for a more or less uniform feature

distribution over the entire image as well as a small amount

of mismatched correspondences. Obviously, the quality of

feature matches directly correlates with the quality of the

overall registration result. Moreover, already the robustness

of the features themselves sets the course for all later

processing steps.

The challenge of identifying robust features for image

registration is not specific to the field of gel images, but also

appears in other computer vision applications, such as

camera motion recovery [19], mosaicing [20], or robot navi-

gation [21]. However, here often no assumptions about

specific scene contents can be made, which raises the need

for robust and flexible features that are independent of a

concrete scenario. Flexible keypoint detectors are subject to a

detailed study in [22]. The study shows that among detectors

based on image derivatives (Hessian or moment matrices),

Harris corners [23], and SUSAN [24], the more recently

published scale invariant detectors, the SIFT [25] and SURF

[26], are superior in a general context. Compared to explicit

spot detectors they show larger flexibility as they are not

confined to single image entities, but also consider larger

compositions of significant structure. Particularly, their

scale invariance allows for the extraction of characteristic

intensity configurations on larger scales, e.g., striking

intensity distributions in images. With regard to gel image

registration this opens perspectives to increase the total

number of features as well as toward a more uniform

distribution. Thereby, image-content independent detectors

may contribute valuable improvements regarding the auto-

matic detection of stable features in feature-based gel

registration.

2 Materials and methods

2.1 Feature detectors

In this work we compare four traditional spot detectors and

two recently published general-purpose keypoint detectors.

To this end, quantitative evaluations were conducted using

synthetically deformed real gel images as outlined below.

2.1.1 Spot detectors

In literature, a large amount of different spot-specific feature

detectors can be found. The most frequently used techni-

ques exploit typical spot properties like convexity (Laplace,

Watershed) or elliptical shape (Ring Detector, Watershed).

The Meaningful Boundaries approach relies on statistics

over image contour information.
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2.1.1.1 Laplace detector

The probably most striking property of protein spots is their

convexity. Accordingly, in various works the shape of spots

is explicitly modelled by Gaussians [27]. The Laplace

Detector (e.g., [6, 28]) is also tuned for convex spot detection;

however, it relies on a less restrictive spot model. It solely

assumes that spot centers are given by local image locations

with significant local curvature. Accordingly, the Laplace

Detector locates possible spot positions (S(x, y)5 1) by

searching for positive values in second order derivatives,

approximated in terms of the Laplace images q2xI and q2yI in

x and y direction:

Sðx; yÞ ¼
1; if ðq2xIðx; yÞ40Þ^ q2yIðx; yÞ40Þ
0; otherwise

�

Convex spot positions are usually not isolated, hence

connected components are extracted from the binary image

S. Finally, the centroids of components exceeding a certain

minimum size of several pixels are returned as final spot

locations. To detect a specified number of n spots, the

intensities of all centroid pixels are ranked by increasing

values, and at least the first n entries of the list are returned

as final detection result.

2.1.1.2 Ring and ellipse operators

Although there are types of gel images where protein spots

do not show the typical circular or elliptical shape, this is a

reasonable and justified assumption for a large amount of

experimental data. The Ring operator proposed in [29] is

based on this assumption and detects image locations

showing an elliptical shape, with the inner parts of the

ellipse being darker than the outer ones. Toward this goal,

the detector first thresholds image intensity values I(x, y)

and gradient magnitudes |HI(x, y)|,

f ðx; yÞ ¼
1; if Iðx; yÞotI
0; otherwise

�

and

gðx; yÞ ¼
1; if jHIðx; yÞjotG
0; otherwise

�

and defines a set of pixels in homogeneous image

regions with low intensity P ¼ fðx; yÞjf ðx; yÞ � gðx; yÞ ¼ 1g,

as potential spot center candidates. The thresholds tI and tG
are determined applying Otsu’s method [30]. To increase

robustness with respect to the amount of spots present in

the gels, contrary to [29] we use only pixels located near

object boundaries to determine these thresholds. These

pixels are selected by thresholding local Laplacians.

In a next step, for each ðx; yÞ 2 P an elliptical target region

centered at ðx; yÞ is constructed as a potential spot region. It is

formed by the elliptical region Cx;y and its outer ring Rx;y:

Cx;y ¼fðu; vÞjðu� xÞ2 þ ðv� yÞ2=a2 � r2Mg

Rx;y ¼fðu; vÞjr2m � ðu� xÞ2 þ ðv� yÞ2=a2 � r2Mg

If the outer ring region Rx;y contains larger intensities

than the inner part of Cx;y, its minimum value will be larger

than the minimum of Cx;y. Consequently

Sðx; yÞ ¼ min
ðu;vÞ2Rx;y

Iðu; vÞ � min
ðu;vÞ2Cx;y

Iðu; vÞ;

will be positive and a spot region is hypothesized. All

resulting candidate positions are finally included in a

component labeling step and their centroids again yield the

final spot positions. Since the approach works fully auto-

matic, there is no obvious way to specify the number of

spots to be detected.

2.1.1.3 Watershed detector

A more sophisticated and widely used approach for spot

detection is based on the watershed transformation [5, 7]. Its

main idea is borrowed from geography and defines an

algorithm for segmenting a landscape into valleys and

ridges to analyze its overall topology [31]. It may be

implemented by flooding the landscape, which results in

catchment basins separated by ridges, the so-called water-

sheds. In our experiments we adopt the approach of [5]

where the watershed transform is applied to the gradient

magnitude image of a gel image. Thus, spots and

homogeneous background regions are associated with the

catchment basins while their borders form the watersheds.

However, the watershed transformation tends to over-

segmentation and therefore some post-processing steps

are required to extract the desired subsets of meaningful

watershed regions representing protein spots.

The initial catchment basins are subjected to threshold-

ing – one threshold yI for spot intensities and one for relative

differences yD, as spot regions are assumed to be either of low

intensity or darker than all their neighbors. Subsequently, the

convexity C(r) of each resulting region r is required to be

larger than a threshold yc. CðrÞ is calculated summing the

second order partial derivatives of all pixels of r,

CðrÞ ¼
X

ðx;yÞ2r

q2xIðx; yÞ þ q2yIðx; yÞ

The final post-processing step merges partial regions

belonging to one single spot. It requires the local curvature

along the common border of a pair of partial regions to be

convex, and each resulting spot to be of approximately

elliptical shape.

To verify the elliptical shape of a region r, an ellipse Er is

fit to the bounding rectangle of r and the difference between

the contour cont(r) of r and Er is calculated. Each contour

pixel b of the region is projected onto Er along a ray passing

through the center of the ellipse, yielding pE(b). The ellip-

ticity of r is associated with the overall distance between

contour points and their projections, i.e. with a small

approximation error

emse ¼
1

jcontðrÞj

X

b2contðrÞ

ðb� pEðbÞÞ2
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A merge of adjacent partial regions is only accom-

plished if the ellipticity of the merged region is larger than

the ellipticities of all partial regions.

The final result of the whole spot detection approach is

given by the set of all spot regions, which either result from

the merging process or are directly detected, as they fulfill all

criteria and have no neighbor. The position of every spot

region is defined by its center-of-mass as calculated on

smoothed gel images. To specify the total number of spots

to be returned, the thresholds yI and yD can be adjusted.

As yI showed larger impact in our experiments,

detector adaptation was done by properly adjusting this

threshold.

2.1.1.4 Level lines and meaningful boundaries

The approach of Meaningful Boundaries [32] builds on the

assumption that spot regions are constituted by low

intensity values and exhibit a considerable contrast at their

boundaries. Conceptually, a suitable local threshold is

applied to the image to detect spots as regions exhibiting a

large contrast along their boundaries. Additional constraints

on these boundaries are quite relaxed requiring a certain

compactness and minimal size.

To implement this idea, all potential threshold levels l

are applied to the image yielding the lower level sets

Ol ¼ fðx; yÞjIðx; yÞ � lg

In each level set, the connected components are detected

as potential spot regions and their boundaries computed,

called level lines. Level lines monotonically grow with

increasing levels and eventually merge to form larger regions.

Thus, the set of all level lines constitutes a hierarchy. To

select valid spots from all these hypotheses, the Helmholtz

principle [33] is employed, which judges the significance of a

hypothesis with respect to randomly generated contours.

Specifically, the probability of a random contour with at least

as large contrast as observed for the level line in question is

computed. It can be considered as the p-value under the null

hypothesis of random contours. For a level line c with length

lc and minimal contrast jHminIðx; yÞj this probability is

defined as

PðjHIðx; yÞj � jHminIðx; yÞjÞ
lc
2

A level line is assumed significant if this p-value is

below a threshold e. The distribution of gradient magni-

tudes is estimated as the empirical distribution observed in

the image. As a weak constraint on the shape of the spot its

compactness lc/ac and in addition to [32] the area ac above

specified thresholds is checked. If we consider the ideal

boundary of a spot, which fulfills these criteria, usually level

lines of the adjacent levels will also be significant, yielding

multiple boundaries for one spot. This is resolved choosing

the level line with minimal p-value within each set of adja-

cent significant level lines. To avoid boundaries corre-

sponding to several spots, in contrast to [32] we consider

only level lines in the hierarchy below the first merge of

other level lines, i.e. from the leaves of the tree of level sets to

the first inner node. Finally, the overall number of detected

spot contours mainly depends on the choice of e, thus, in

our experiments adjusting the number of spots detected was

done varying the values of e.

2.1.2 Keypoint detectors

For applications in varying problem domains or in

situations, where no assumption about scene contents or

structures can be made, highly flexible and invariant feature

detectors are required. Two such scale invariant keypoint

detectors are SIFT [25] and SURF [26]. They have proven

their general applicability in various scenarios. However,

until now they have only rarely been applied to the task of

non-rigid registration, and in particular, to the registration

of images with specific structural patterns like gel images.

Accordingly, our study yields new quantitative data about

their robustness and efficiency with regard to the domain of

2-D gel images, and more generally regarding non-rigid

transformations where no systematic surveys have been

done until now.

2.1.2.1 SIFT

The basic concept of SIFT [25] is a thorough analysis of

image characteristics in scale space. The scale of an image is

associated with its resolution, and it has been proven that

difference images between different scale space levels yield

valuable information for robust and reliable re-detectable

features. Different scales are acquired convolving the input

image with Gaussian kernels Gsðx; yÞ,

Isðx; yÞ ¼ Gsðx; yÞ � Iðx; yÞ

and subsequent down-sampling. The standard deviation s

of neighboring scales differs by the same constant factor k

for all scales. Keypoints are then given by local extrema in

difference images Dsðx; yÞ between two scales:

Dsðx; yÞ ¼ Iksðx; yÞ � Isðx; yÞ

For extrema detection, the difference value Dsðx; yÞ of

each point ðx; y;sÞ in scale space is compared to all neigh-

bors in a 3� 3� 3 neighborhood. By fitting a 3-D quadratic

function to the local point, the extremum is localized with

sub-pixel accuracy. In addition, the interpolated difference

value Ds at the extremum allows for ranking of the

keypoints detected. With increase of Ds also the local

contrast at the keypoint position increases. Thus, ranking all

detected keypoints according to Ds allows to select a speci-

fied number of keypoints with highest contrast. In our

experiments we use a threshold for Ds to adapt the SIFT

detector’s feature numbers.

2.1.2.2 SURF

As the SIFT approach is computationally expensive SURF

aims at high efficiency combined with comparable stability
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of features [26]. SURF is based on an analysis of local

Hessian matrices Hðx; y;sÞ over various scales:

Hðx; y;sÞ ¼
Lxxðx; y;sÞ Lxyðx; y;sÞ
Lyxðx; y;sÞ Lyyðx; y;sÞ

� �

where L are the results of convolving the input image with

second order Gaussian derivatives. For efficiency reasons

the entries of the matrix are calculated only approximately

applying discrete box filters as approximations to the

Gaussian derivative kernels. In addition, the images are not

re-sampled within a pyramid, but detection results for

various scales are produced by simply applying differently

sized filters to the input image.

SURF keypoints are finally given by maximal determi-

nant values of local Hessian matrices, detected by

performing a non-maximum suppression in a 3� 3� 3

neighborhood of each point and interpolating in scale and

space, like in the SIFT approach. Also, the ranking of

keypoints is similar to SIFT, i.e. to detect a specified number

of feature points, the determinant values can be thresholded

properly.

For SIFT and SURF we used publically available soft-

ware packages, i.e. the free C11 implementation of SIFT by

A. Vedaldi (http://vision.ucla.edu/�vedaldi/code/siftpp/

siftpp.html) and the original SURF library provided by its

authors (http://www.vision.ee.ethz.ch/�surf/). All other

detectors were re-implemented by us.

2.2 Image datasets

The image characteristics of 2-DE gel images show a large

variation, mainly depending on the applied staining or

fluorescence technique and the overall experimental condi-

tions. Accordingly, within a comparative study of feature

detectors of course not all existing types of gel images

can be included, but rather a representative sample of gel

images has to be selected for meaningful quantitative

results.

2.2.1 Original gels

To achieve this goal we have used three different image

datasets during our experiments resembling a wide range of

different degrees of image quality as well as technical

setups. The first set denoted ‘LECB’ results from a

selection of gels from the LECB 2D PAGE Gel Images Data

Sets [34], freely available for public use (http://www.lecb.

ncifcrf.gov/2DgelDataSets/). The two other sets,

termed ‘UCD-DIGE’ and ‘UCD-Stain,’ were sampled from

the UCD test data used in [35] and are also publically

available.

The LECB data is more than 20 years old. However, as it

has been used in several publications as freely available

reference (e.g., [32]), we included a subset of the data into

our experiments. We used the Human leukemias data set as

base for our tests. It contains 170 images in total, each

image sized 512� 512 pixels in 8-bit GIF format, from

which we selected 36 representative sample images. Since

the amount of structure, i.e. the number of spots in the

images, varies significantly, and since the performance of at

least some of the detectors is to be expected to significantly

depend on the amount of available structure, this selection

was done based on a quantification of image structure. Each

image was partitioned into non-overlapping blocks of 32�

32 pixels, for each block the entropy was computed and

averaged for each image.

Finally, the 12 images with lowest entropy (class ‘LECB-

C0’), 12 images with medium entropy (class ‘LECB-C1’) and

the 12 images with largest entropy (class ‘LECB-C2’) were

chosen for the experiments. All images were converted to

PGM format and automatically cropped given the annotated

valid spot areas within the gels as specified in the comple-

mentary description files. Since not all area specifications

were accurate and sometimes artifacts remained at the

border of images, some images required manual post-

processing (cropping, filling of spurious white regions with

local background color).

The original UCD DIGE data [35] consists of 13 DIGE

gel images resulting from analysis of brain proteins of

female mice at three growth stages where each image

includes three-color channels. For our experiments we

selected the 13 single channel images fluorescently labeled

with Cy3, which form the data set ‘UCD-Dige.’ Finally, our

third set ‘UCD-Stain’ resembles a collection of 14 images

selected from the UCD Silver Stain data [35] originating

from a study of human brain proteins in mental disorder

compared to a normal mental state control set. We selected

all images except the master gel from the control set.

Both UCD image collections include gel images of

high image resolution (approx. 2000� 2000) with 16-bit

sampling. To reduce the computational burden during the

experiments, the images were down-sampled to half of their

original size and converted to 8-bit PGM images as pre-

study gave only marginal differences in performance.

2.2.2 Synthetic image deformations

To compare the reproducibility of various feature detectors,

pairs of images with known correct transformations are

essential as ground truth. These are required to derive exact

positions of corresponding features necessary for quantita-

tive evaluation. As these transformations are hard if at all to

acquire for real image pairs we chose to synthetically deform

the original images in our dataset applying randomly

sampled transformations.

2.2.2.1 Transformations

The type of transformation class potentially affects the

robustness of feature detection and subsequent matching.

Thus, we use three different classes, which previously have

been used to model deformations of gel images, namely

PBLT [36, 37], TPS [38], and CPT [7].
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A PBLT is defined on a rectangular lattice of squares

yielding tie points ~xij. The transformation Tð~xÞ is specified

by displacement vectors ~uij describing the distorted posi-

tions of the tie points. The induced transformation acting on

a point ~x ¼ ðx; yÞ is given by the surrounding tie points and

their displacements:

Tð~xÞ ¼ð1� xÞð1� yÞ~uij þxð1� yÞ~uiþ1;j

þ ð1� xÞy~ui;jþ1 þxy~uiþ1;jþ1

where the coordinates ~x are given with respect to a local

coordinate system for each square of the lattice with unit

length and origin ~xij.

For all our experiments we use a lattice with squares of

size 50 pixels where each tie point is displaced with prob-

ability 0.5 by a randomly drawn displacement vector (see

below).

The TPS transformation [39] employs linear combina-

tions of radial basis functions Uð~xÞ ¼ j~xj2 log j~xj2 to specify

pixel displacements. The basis functions are centered

at irregularly located centers ~xn. With each center

weights ~wn are associated. The resulting transformation is

given as

Tð~xÞ ¼~aþ~ax x þ~ay yþ
X

n

i¼0

~wn Uðj~xn �~xjÞ

where the first three terms describe a common global affine

transformation with translation~a and a non-singular matrix

ð~ax ~ayÞ. In the following we consider affine transforms

without translational component and parameterize with

rotation y and shearing axis f, and scaling factors lx, ly (see

[19]). Note that a PBLT allows to model a global affine

transformation implicitly. The number of centers to

synthetically deform images is chosen as 1:5� 10�4 � N,

where N is the number of pixels in the given image. On

average this gives the same number of displaced centers as

displaced tie points when applying the PBLT. In the

following, a specific TPS is specified by a displacement for

each center, and subsequently, the weights are determined

minimizing the thin plate bending energy [39].

The CPT is inspired by a hypothetical force acting

vertically on the gel at a single point, which in reality might

result from non-uniform gel pouring [7]. The location of this

point is specified by a horizontal offset hoff , and the strength

of the deformation force by a vertical offset voff and the

parabola width pw. The final transformation is defined as

Tð~xÞ ¼
x

yþ ax2 þ bx þ c

� �

where the parameters a; b and c of the parabola equation are

derived from hoff ; voff , and pw.

2.2.2.2 Random deformations

In the following we construct five classes of

image deformations sD ¼ 1; 2; 3; 4; 5 with increasing

amount of distortion for each of the three transformation

models.

Displacement vectors for tie points (PBLT) and centers

(TPS) are drawn from a Gaussian distribution with zero

mean and standard deviation sD as given by the class of

deformation. The shearing angle f is sampled uniformly

from the interval ½0; p4	. The remaining parameters defining a

transformation (see Table 1) were sampled according to the

following schema. Consider a parameter a with neutral

value Z (i.e. no distortion) and a maximum allowed devia-

tion DZ from this neutral value. To sample a for deforma-

tion class sD we draw from a Gaussian with mean

Z þ sD

5 DZ and standard deviation 1
3
DZ
5 . Thus, the admissible

interval of parameter values is covered by the five defor-

mation classes with small overlap (see Fig. 1). For a para-

meter with an admissible interval symmetric around Z and

allowed deviation 7DZ a mixture of two Gaussians with

mean Z 
 sD

5 DZ is used.

To simulate variations in the gray value structure, white

noise was added to the interpolated intensities, which was

sampled independently from a Gaussian distribution

with standard deviation 5 (class ‘LECB-x’) resp. 1

(class ‘UCD-x’).

For each image we generated 10 randomly distorted

images for each transformation class and each

sD 2 f1; 2; 3; 4; 5g. This results in a total of 63� 10� 3�

5 ¼ 9450 distorted images. For examples of distorted gels

see Fig. 2, where TPS transformed images from the LECB

data sets are shown.

2.3 Experimental evaluation

Comparing the robustness and efficiency of feature

detectors is an important task in computer vision in general.

To evaluate the reproducibility of features, the repeatability

score Rsr of a feature detector was introduced in [22]. It

quantifies the probability of a feature in an undistorted

Table 1. Transformation parameters with neutral value (Z) and

interval width DZ, where H and W give the height and

width of the image

y lx ly hoff voff pw

Z 01 1 1 0 0 W

DZ 51 70.05 70.05 
 1
4W 
 1

8H 70.3W

0 2 4 6 8

0
.0

0
.4

α

d
e
n
s
it
y

Figure 1. The five Gaussian distributions used to sample

parameter a with Z5 0 and DZ5 8, one for each of the five

deformation classes.
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image I to be re-localized in a deformed version IT of the

same image with accuracy r:

RsrðI; ITÞ ¼
j ~PI j

jPIj
ð1Þ

with ~PI ¼ f~xi 2 PIj9!~xt 2 PT : j~xt �Tð~xiÞj � rg

PI is the set of features ~xi detected in the undistorted

original gel image, PT is the set of features~xt detected in the

transformed image. ~PI is the subset of features in the

original image that have exactly one counterpart in the

transformed image with distance less or equal to r. It is safe

to assume that this unique counterpart is indeed the correct

corresponding feature for~xi. Thus, for matching, exactly the

features in ~PI may be matched to the correct transformed

position with accuracy r or better. Otherwise, the corre-

sponding feature has been detected with larger localization

error, has not been detected at all, or multiple features have

been detected within a circle of radius r around the correct

transformed position. All these cases impede accurate

registration of the image pair, as only few and/or inaccurate

matches are available for registration. For the evaluation in

this work we use r5 1.5 pixels. This value has already

proven its suitability for the evaluation of feature detectors

for rigid registration (cf. [22]). Summarizing the repeatability

score is a good estimate for the fraction of features in PI,

which may be correctly matched with high location accuracy

by an optimal matching process. In this sense it gives an

upper limit for the performance of accurate matching of gel

images, when matching is based on the features detected.

3 Results and discussion

Assessing and comparing the suitability of different feature

detectors for a certain kind of registration problem is a

difficult task. The performance of each detector heavily

depends on the quality and characteristics of the image data

as well as on parameter settings used during feature

detection. Accordingly, these aspects have to be considered

thoroughly for objective evaluation.

Below we discuss the results of a comparative study.

Initially, we describe the specific characteristics of each feature

detector, particularly, the total numbers of features detected

on different kinds of images, which allows for a general

assessment of detector performance. Subsequently, we

present a direct comparison of detectors based on repeatability

scores as objective quantitative measures for overall detector

quality. All discussions are based on representative example

plots and figures for different detectors and image classes.

Additional plots are available on the Supporting Information

web page (http://www2.informatik.uni-halle.de/agprbio/AG/

Publication/OnlineMaterial/xyz4711).

3.1 Detector characteristics and feature numbers

In general, feature detection results vary significantly with

the characteristics of the detectors and also with different

types of image sets. To illustrate the influence of image data

characteristics we consider the ring detector (referred to as

‘RING’ below) as example detector that does not allow for

easy parameter adjustment, but provides a reasonable set of

default parameters. In Table 2 the average numbers of spots

detected by the RING detector on all available sets of

transformed images using the standard parameters as

proposed in [29] are shown. For the LECB data set detected,

spot numbers increase from set C0 with low structure to C2

with larger amounts of structure, which confirms the

entropy-based categorization of the LECB data (see also

Fig. 2). With regard to the UCD data sets the figures show

that the UCD-Dige images contain considerably less

structure compared to the UCD-Stain data. Indeed, UCD-

Dige images show very low contrast and in large image

areas they even appear nearly homogeneous, while in

comparison in the UCD-Stain images spots tend to be quite

pronounced (Fig. 3).

Table 2 proves the RING detector as quite insensitive to

the different types of transformations applied to the images.

Absolute numbers of features detected as well as repeat-

ability scores (data not shown) are quite stable between

different transformation classes. This observation holds also

for the other five detectors evaluated (data not shown) and

suggests that the suitability of these detectors for registra-

tions of gel images is rather independent of the type of

transformation employed to model gel deformations.

Consequently, we restrict the following evaluation to

one transformation class, namely TPS, as the presented

results can be transferred to the other two types of trans-

formations.

Figure 2. Example gels of the LECB datasets from classes C0, C1

and C2 (left to right), each deformed by TPS with sD5 5.

Table 2. Average numbers of spots detected by the RING

detector applied to all transformed images (covering

all five levels of distortions sD) for each of the five

image data sets

LECB UCD

RING C0 C1 C2 Dige Stain

TPS 23.30 78.07 246.26 5.90 56.41

PBLT 23.43 77.90 246.03 5.99 56.42

CPT 24.30 79.96 250.12 7.16 57.13
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Next we turn to performance characteristics of all six

detectors, i.e. RING, Laplace detector (LAPLACE), mean-

ingful boundaries (LEVEL), watershed detector (WATER),

SIFT, and SURF. For this experiment, parameters of the

spot detectors LAPLACE, WATER, and LEVEL were adjus-

ted to detect as many correct spots as possible, while

restricting the number of apparently incorrect spots to an

amount that seems reasonable. This approach is subjective

to some extent, but appropriate to define a rough common

reference for the detectors due to the lack of ground truth

data. For the RING detector, this adjustment is not feasible,

as it does not allow for an easy way to control the number of

spots detected. Hence, it is always applied with its standard

parameters in the following. In Fig. 4, top row, prototypical

detection results for all six detectors are shown for part of an

undistorted sample gel from the LECB-C1 image set. Table 3

gives the numbers of features detected on average over all

original images in the five data sets. Although LAPLACE,

WATER, and LEVEL were all manually adjusted to detect a

large number of correct spots, the results differ significantly

as the number of apparently incorrect spots increases

differently for the detectors. RING and LEVEL detectors give

the lowest numbers of detected spots. Both detectors are

highly specific and enforce quite strict constraints on

possible spots. Particularly, the RING detector finds only the

most pronounced spots and misses many spots with smaller

contrast. The low figures for the LEVEL detector are due to

the fact that it often does not separate closely adjacent spots

with low contrast, but rather merges these into a larger

common spot region. LAPLACE and WATER yield signifi-

cantly more spots, and their results are to a certain degree

comparable. The slightly higher numbers of WATER are

due to its tendency to split a single spot into more than one

region due to violation of the convexity criteria along the

common border.

In contrast to the spot detectors, general-purpose

keypoint detectors SIFT and SURF are not restricted to

detect spots only, but keypoints may describe image struc-

ture in general. For the results shown in Table 3 and Fig. 4

we therefore applied these detectors with parameters to yield

numbers of features comparable to LAPLACE and WATER.

While the majority of keypoints detected is directly related to

spot centers, in addition also keypoints located at the

borders of spots or between spots are detected. In the latter

cases the keypoints not only characterize single spots, but

rather constellations of several spots (see Fig. 4). This

property provides the content-independent detectors with

the potential for a larger flexibility to represent image

structure, which may be of advantage for subsequent

matching and registration.

The difference in performance between the four spot

detectors confirms observations reported in recently

published comparative studies (e.g., [8]) that different spot

detectors result in a large variation for the number of spots

detected for same gels. In our experiments the variations

mainly relate to different underlying spot models and

detection criteria of the various detectors. LEVEL, WATER,

and RING rely on more or less strict constraints on the form

Figure 3. Crops of a UCD-Dige gel (left) and a UCD-Stain gel

(right) showing the different image characteristics.

LAPLACE

A B C D E F

G H I J K L

WATER LEVEL RING SIFT SURF

LAPLACE WATER LEVEL RING SIFT SURF

Figure 4. Prototypical comparison of detector results for part of a gel from set LECB-C1. The top row shows results on the original image,

the bottom row on a version deformed by TPS with sD5 5.

Electrophoresis 2009, 30, 4137–41484144 B. Möller and S. Posch
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of spots and intensity characteristics, while LAPLACE

assumes only some kind of convexity for spots.

In Table 4 the average numbers of detected features in

deformed images are given for the TPS transformation and

all data sets, averaging over all levels of deformation. The

same parameter settings used for the numbers in Table 3

were applied. The numbers of spots detected in the trans-

formed and original images are comparable in general. The

LEVEL detector is the only exception, which shows this

detector to be quite sensitive to noise added to the inten-

sities. For the LECB sets, which exhibit a large dynamic

range of intensity values and show high contrast, the

numbers increase. On the contrary, for the UCD data with

low contrast and a relatively moderate amount of structure,

the number of spots detected decreases.

Finally, with regard to the UCD data there is another

important aspect to mention. On both image sets, the RING

detector yields only very few spots compared to all the other

detectors. This is mainly due to the automatic threshold

selection of the RING detector, which does not work well in

cases where the background is dominating the image and

foreground objects (here: spots) form only a very small

fraction of all image pixels. This is an inherent problem of

the RING detector and will impede acceptable results on

certain kinds of gel images unless the automatic binariza-

tion stage is modified and made more flexible.

In the second row of Fig. 4, exemplary detection results

are shown visually for a deformed version of the sample gel,

which was generated applying a TPS transformation with

distortion level sD5 5. The results underline the formerly

discussed feature numbers, e.g. the RING detector again

locates only a small fraction of spots present; however, these

are relocated very reliably. The same holds for WATER and

LEVEL, besides the fact that both show a tendency to detect

some more new spots in the transformed image in this case.

This is true in general for the LECB image sets. Considering

SIFT and SURF it should be noted that the formerly

discussed flexibility in feature detection also shows in this

example, as keypoints located between spots or at borders

are robustly relocated to a large degree. The noise sensitivity

of the LEVEL detector is also visible in this example, as

many false spots are detected.

3.2 Detector comparison by repeatability scores

The numbers of spots detected give a first insight into the

individual characteristics of the detectors. However, a more

important property is the rate of spots that are re-detected in

the transformed images with high localization accuracy,

which is quantified with the repeatability score. In Fig. 5

repeatability scores for all detectors are shown for different

amounts of distortion applied to the images. The same

parameter settings as for the results in Tables 3 and 4 are

used. As to be expected, the repeatability scores decrease

with the increase of distortion. This is most pronounced for

the SURF detector, where repeatability scores decline about

15% from distortion levels sD5 1 to sD5 5, almost

independent of the image class. In general, however, this

decrease is rather moderate with few percent in most cases.

It can be concluded that, similar to the variation with regard

to the class of transformations, the variation in performance

due to different amounts of distortion is relatively small,

except for the SURF detector. Since this is true in general,

we summarize all distortion classes into average repeat-

ability scores in the following discussions for conciseness.

For the SURF detector these average numbers are subject to

a larger variation between different distortion levels, which

however does not invalidate the general performance

assessment and validity of conclusions (see Supporting

Information).

While the scores shown in Fig. 5 allow qualitative

conclusions about detector robustness with regard to vary-

ing amounts of distortion, the absolute repeatability scores

have to be interpreted carefully and at this stage do not allow

for a direct comparison of detector performance. This is due

to the fact that the numbers of features underlying the

repeatability scores vary significantly, depending on the

specific parameter settings used for each detector. In Fig. 6

the repeatability scores of all detectors for the image sets

LECB-C1, UCD-Stain, and UCD-Dige are shown for differ-

ent numbers of features detected by varying parameter

settings, which cover a reasonable range of feature numbers

Table 3. Numbers of spots detected in the original images

averaged over each image seta)

LECB UCD

C0 C1 C2 Dige Stain

LAPLACE 105 202 503 311 407

WATER 114 291 802 266 427

LEVEL 70 174 225 185 298

SIFT 109 289 748 299 429

SURF 111 263 731 282 426

RING 22 75 236 8 58

a) Parameters were adjusted manually, see text.

Table 4. Numbers of spots detected in the transformed images,

averaged over all distortion classes within each image

set, applying the same parameter settings used for the

original images shown in Table 3

LECB UCD

C0 C1 C2 Dige Stain

LAPLACE 106 202 503 315 417

WATER 170 309 865 234 444

LEVEL 222 444 288 95 217

SIFT 111 292 745 315 428

SURF 112 262 717 285 427

RING 23 78 246 6 56
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for registration. Since for the RING detector adjustment of

parameters is not easily possible, there is only a single point

in each plot.

A general tendency of the curves is the decreasing

repeatability scores with increasing numbers of features.

There are two potential reasons for this behavior. First, an

increase of feature numbers also increases the potential to

detect multiple features within the radius r considered for

the repeatability score, which in turn decreases the score.

Second, if the detectors are required to return further

features, these may not relate to the same spots (or spot

configurations) in the original and transformed image.

Thus, corresponding features are missing, which prevents

relocalization and decrease the repeatability score. This

effect is more severe as noise is added to intensities, and the

LEVEL detector shows very sensitive to this problem on the

low contrast UCD data sets. On the other hand, an increase

of features returned by a detector may also add corre-

sponding features, which give the possibility for accurate

relocation and increase of the repeatability score. This effect

gives rise to increasing scores as the exceptions to the

general trend.

For small numbers of features, most of the detectors

have repeatability scores of around 80 to 95%. The perfor-

mance of the LAPLACE detector shows the least robustness

with regard to varying spot numbers as its scores quickly

decrease to about 60%, on the UCD-Dige data to 34%. On

the other hand, SIFT proves more stable with relatively high

repeatability rates for all image sets, which are only

moderately affected by the number of keypoints. While on
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Figure 5. Repeatability scores vs. amount of distortion applying

TPS transformations for image sets LECB-C0 (top), LECB-C2

(middle), and UCD-Stain (bottom). Scores are averaged over

each distortion class in each image set and given for each

detector for sD5 1 to sD5 5 from left to right. The error bars

have an extent of 72 times the standard error and give an

approximate 95% confidence interval.
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Figure 6. Repeatability scores vs. numbers of features detected

for image sets LECB-C1 (top), UCD-Stain (middle), and UCD-Dige

(bottom). Scores are averaged over all distortion classes

applying TPS transformation. The error bars have an extent of

72 times the standard error and give an approximate 95%

confidence interval.
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the LECB-C1 images it decreases from 91 to 67%, on both

UCD data sets the performance is constantly above 76%.

Also, SURF shows satisfying scores for most cases; however,

its repeatability scores are consistently about 10% below the

scores of SIFT.

The performance of the WATER detector is comparable

to the ones of SIFT and SURF for low numbers of features,

always ranging between 75 and 85%. However, its drawback

is its limited ability to provide higher numbers of spots,

especially on the low contrast UCD-Dige data. Here, the

score quickly decreases to 58%. The same disadvantage also

holds for the RING detector. While on the LECB and UCD-

Stain data its repeatability score is among the highest ones

for comparable numbers of detected features, for the UCD-

Dige data the performance is very weak. This renders the

RING detector not a suitable alternative especially for low

contrast images.

In summary, the answer to the question of which feature

detector is best suited for gel image registration tasks is still

not a general answer. A suitable detector must allow for large

feature numbers as well as high repeatability scores, inde-

pendent of applied image deformations. The number of

features classical spot detectors can yield is limited by the

number of spots in a gel image. Accordingly, in low-struc-

tured images their feature numbers will often be too small to

allow for robust and accurate registration. Still, their robust-

ness might render them suitable for estimating initial

transformations based only on some few feature corre-

spondences, which subsequently can be refined by data from

other detectors. Image content-independent keypoint detec-

tors also favor structured image regions for keypoint detec-

tion. However, as they are not restricted to spots, their larger

flexibility and also scale-invariance allows for keypoints to be

located elsewhere as well. Consequently, they can nearly be

adjusted to yield any desired number of keypoints. And even

if their repeatability scores decrease with increasing spot

numbers, their scores are most of the time still superior to

the ones that spot-specific detectors can achieve.

4 Concluding remarks

Pairwise registration of 2-DE gel images is a fundamental

prerequisite for comparative proteome analysis. For feature-

based and hybrid registration approaches robust and stable

features detectable with high repeatability and localization

accuracy are indispensable; however, valuable systematic

evaluations and surveys of suitable detectors are rare.

The main contribution of this paper is a novel

systematic qualitative and quantitative analysis of different

feature detectors with regard to non-rigid gel image regis-

tration. Particularly and in contrast to earlier surveys, we not

only consider spot-specific detectors but also include image-

content independent detectors, not applied to gel image

registration until now.

The basic outcomes of our study indicate a large varia-

tion in quantitative and qualitative detection results between

spot-specific and general keypoint detectors, but also among

spot-specific detectors themselves. In addition, repeatability

scores as objective quality measure for detector performance

identify general keypoint detectors as favorable compared to

spot detectors with regard to feature number and robust-

ness, yielding significantly larger numbers of features per

image with a likewise higher repeatability. We assume that

this mainly results from the keypoint detectors’ ability to

detect higher-order features like spot-constellations in

addition to single spots. Since large numbers of stable

features yield an important basis for robust correspondence

detection and high-quality image registration, SIFT and

SURF show advantages over conventional techniques and

should no longer be ignored in the field of feature-based gel

image registration.
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[3] Zitová, B., Flusser, J., Image Vision Comput. 2003, 21,

977–1000.

[4] Wensch, J., Gerisch, A., Posch, S., Image Vision

Comput. 2008, 26, 1000–1011.

[5] PleiXner, K.-P., Hoffmann, F., Kriegel, K., Wenk, C.,

Wegner, S., Sahlstrm, A., Oswald, H. et al., Electro-

phoresis 1999, 20, 755–765.

[6] Rogers, M., Graham, J., Tong, R., 2D electrophoresis gel

registration using point matching and local image-

based refinement, Proceedings of British Machine

Vision Conference, Kingston, UK, 2004.

[7] Srinark, T., Kambhamettu, C., Electrophoresis 2008, 29,

706–715.
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Abstract. Stress granules and processing bodies play a major role in
analysing the physiology of cells under various environmental conditions.
We present a fully automatic approach to detect such particles in fluo-
rescence labeled microscope images. The detection is based on scale-
adaptive analysis of wavelet coefficients allowing for an accurate detec-
tion of particles with a large variety in size. Results on real images
illustrate the appropriateness of our approach and proof high quality.

1 Introduction

Systems biology on the cellular level requires detailed analysis of different par-
ticles in cells like stress granules (SGs) and processing bodies (PBs). They are
suggested to be dynamically linked to places of mRNA sorting and storage or
degradation [1]. To understand and clarify the physiological roles of SGs and
PBs, it is important to investigate the alterations of number, size, shape or con-
tacts of these particles under different physiological conditions. Consequently
the fully automatic detection of SGs and PBs is an essential tool to gain deeper
insights into their biological role and function.

To detect spot-like particles, global and local thresholding techniques are still
used in microscopy [2, 3]. Further techniques include h-dome transform followed
by clustering [4]. Level set methods [5] on the other hand assume an approxi-
mately constant grey level shared by all target entities which typically does not
hold for microscopy images. In [6, 7] a method to detect particles in microscopy
images based on wavelet coefficients is proposed, but best-suited to detect par-
ticles with limited variation in size. Wavelet-based approaches are assumed to
be superior to Fourier-based ones as their basis functions have local support.

We present an extension to the approach in [6, 7] aiming at the variable size of
target entities by automatic scale-adaptation and test-based hypothesis selection.

2 Materials and Methods

The method in [6] is based on multi-scale analysis of wavelet coefficients. The
original image I0(x, y) is recursively smoothed yielding images I1(x, y), . . . ,
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IS(x, y). Wavelet coefficients Ws(x, y) are derived as

Ws(x, y) = Is(x, y)− Is−1(x, y), s ∈ {1, . . . S} (1)

For denoising, the amplitude-scale-invariant Bayes estimator [8] is applied,
yielding adjusted coefficients W̃s(x, y). Features are represented by wavelet co-
efficients of adjacent scales. As the coefficients are correlated across scales due
to the nature of the wavelet transform applied, adjacent scales are combined to
a correlation image

c[a,b](x, y) =

b
∏

s=a

W̃s(x, y) (2)

This correlation image is globally thresholded and the resulting connected com-
ponents yield the final particles detected. The interval of scales [a, b] used to
correlate the wavelet coefficients defines the scales at which the particles of in-
terest are represented. If all particles share the same characteristics, one interval
is appropriate. In other cases one single interval either includes irrelevant scales
or excludes important ones, in both cases often yielding incorrect particle size
or shape, or missing particles.

To overcome these shortcomings we propose a new scale-adaptive technique
which applies the wavelet-based segmentation to a set of – usually overlapping
– intervals [an, bn], corresponding to different scales of particles. If for a target
particle an appropriate interval is available, it is usually correctly detected in this
interval. However, in many cases the particle is also found in adjacent intervals
with incorrect size or shape (Fig. 1). This results in the necessity to select the
correct one from overlapping and, thus, competing particle hypotheses. For this
we propose an approach based on statistical hypothesis testing.

Typically hypotheses from the correlation image of a coarse scale result in
larger regions than hypotheses from finer scales. Additionally, regions can be
split up in finer scales due to the presence of multiple smaller particles or varying
gray values inside larger particles.

We assemble competing hypotheses in trees whose nodes correspond to the
particle regions detected in different intervals. The trees are build bottom-up

Fig. 1. Segmentation for two adjacent in-
tervals (top: coarse, bottom: fine) and re-
sulting hypotheses trees.
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starting with particle hypotheses from the finest scale. At each coarser level
edges are inserted between a region and all overlapping regions of the next finer
scale. Fig. 1 gives an example of the resulting hypotheses trees for two intervals.

In principle, two different regions at a coarse scale may both overlap with
the same region at the next finer scale, destroying the tree characteristics of
the hypothesis graph. However, this happened only once for the whole test
data. Such constellations can for example be resolved using a simple criterion of
largest overlap. The selection of one hypothesis out of several competing ones
is accomplished using again a bottom-up procedure, starting from the fine scale
leaves. Parent nodes are compared with their children and inferior nodes are
deleted.

For comparison we employ the concept of meaningful events ([9]). This con-
cept is tightly related to statistical hypothesis testing. In our case the null hy-
pothesis H0 models the case where no real particle is present at the location to
be analyzed, rather a particle was detected due to noise or chance. To compute
the likelihood P (Fi | H0) of a particle Fi detected under H0, the observations
at all pixels are assumed to be pairwise independent

P (Fi | H0) =
∏

(x,y)∈Fi

P
(

C[an,bn](x, y) = c[an,bn](x, y) | H0

)

(3)

where C[an,bn](x, y) are random variables modelling the correlation value ob-

served at position (x, y). P
(

C[an,bn](x, y) = c[an,bn](x, y) | H0

)

is the probabil-
ity to observe the value c[an,bn] at location (x, y) due to noise. Following [10]

we estimate P
(

C[an,bn](x, y) | H0

)

as the discretized histogram of the complete
correlation image for interval [an, bn].

The p-value p(Fi) of Fi is the probability to observe a particle under the null
hypothesis with correlation values at least as extreme as the ones of Fi. I.e., a
particle with extremer values has at each pixel location in the correlation image
a value larger than the one observed for Fi.

Fig. 3. Detection of stress granules. Left: Detail of image no. 8 with stress granules of
varying sizes. Middle: Detection results using the method [6]. Right: Detection results
using the scale-adaptive method (Image values scaled for visualization of results).
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Still assuming independence of pixels this yields

p(Fi) =
∏

(x,y)∈Fi

P
(

C[an,bn](x, y) ≥ c[an,bn](x, y) | H0

)

(4)

We use this concept to compare a set of overlapping particle hypotheses to delete
inferior nodes from the trees. We keep the particles with smallest p-value which
consequently are assumed to be the ones most unlikely caused by chance. As
p-values of particles with different size of support are compared, these raw p-
values are normalized according to their support to allow fair comparison. In
the case of multiple children their p-values are multiplied for comparison with
the parent and we decide for Fi at the coarser scale if

p (Fi)
1

|Fi| <
∏

{k|Fk child of Fi}

p (Fk)
1

|Fk| (5)

and for particles Fk on the finer scale otherwise.

3 Results

The proposed approach is tested on 10 microscope images of U2OS osteosar-
coma cells stressed with sodium arsenate for one hour before fixation. SGs were
labeled by immunostaining of ZBP1 in red, and for 5 images PBs were labeled
by immunostaining of DCP1A in green.

For our application, two overlapping intervals of scale [a1, b1] = [2, 3] and
[a2, b2] = [3, 4] have shown to be sufficient and will be used for the experiments
reported in the following. Fig. 3 shows a detail of image no. 8 with fluorescently
labeled SGs, and segmentation results for the method [6] with scales [a, b] = [2, 4]
and the proposed scale-adaptive method, respectively. For the scale-adaptive
method the distribution of the size of granules detected in each of the scale
intervals is depicted in Fig. 2. In analogy to Fig. 3, Fig. 4 gives segmentation
results for PBs in a part of image no. 2.

Fig. 4. Detection of processing bodies. Left: Detail of image no. 2 with processing
bodies. Middle: Detection results using the method [6]. Right: Detection results using
the scale-adaptive method. (Image values scaled for visualization of results).
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4 Discussion

Stress granules show a large variety of different sizes and shapes. Using only
one interval of wavelet coefficients as in [6] imposes the implicit constraint on
similar shape and size for all granules. As can be seen from Fig. 3 (middle) this
allows to detect a set of pronounced granules, however, misses several smaller
granules and sometimes leads to incomplete segmentation for large granules, i.e.
their shapes show deep convexities unusual for granules. In contrast, applying
our new scale-adaptive approach based on selection of detection results from
different scale intervals overcomes this problem. The detection is improved as
detected granules cover a larger range of different scales and have more accurate
contours (Fig. 3, right). The local adaptivity of our method shows also in Fig. 2.
Detections from interval [a2, b2] correspond mainly to large-sized granules, while
small granules are detected predominantly in interval [a1, b1].

Detection results for PBs also demonstrate the ability of our approach to
automatically select features from the best scale. Compared to the results of
method [6] our detection also includes PBs of less saliency (Fig. 4) avoiding the
canceling effect of coarse scales. The variance in size among PBs is smaller than
among SGs. Accordingly, a single fine-scale interval should be sufficient to detect
the majority of PBs. Indeed, although intervals [a1, b1] and [a2, b2] are used for
PBs detection, 99% of the PBs are selected from interval [a1, b1].
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ABSTRACT

During cellular stress, protein synthesis is severely

reduced and bulk mRNA is recruited to stress gran-

ules (SGs). Previously, we showed that the SG-

recruited IGF2 mRNA-binding protein 1 (IGF2BP1)

interferes with target mRNA degradation during cel-

lular stress. Whether this requires the formation of

SGs remained elusive. Here, we demonstrate that

the sustained inhibition of visible SGs requires the

concomitant knockdown of TIA1, TIAR and G3BP1.

FRAP and photo-conversion studies, however, indi-

cate that these proteins only transiently associate

with SGs. This suggests that instead of forming a

rigid scaffold for mRNP recruitment, TIA proteins

and G3BP1 promote SG-formation by constantly re-

plenishing mRNPs. In contrast, RNA-binding pro-

teins like IGF2BP1 or HUR, which are dispensable

for SG-assembly, are stably associated with SGs and

the IGF2BP1/HUR-G3BP1 association is increased

during stress. The depletion of IGF2BP1 enhances

the degradation of target mRNAs irrespective of in-

hibiting SG-formation, whereas the turnover of bulk

mRNA remains unaffected when SG-formation is im-

paired. Together these findings indicate that the sta-

bilization of mRNAs during cellular stress is facili-

tated by the formation of stable mRNPs, which are

recruited to SGs by TIA proteins and/or G3BP1. Im-

portantly, however, the aggregation of mRNPs to vis-

ible SGs is dispensable for preventing mRNA degra-

dation.

INTRODUCTION

In response to environmental stress or infection, bulk
protein synthesis is severely reduced due to the impair-
ment of the initiation step of mRNA translation. This
is mainly facilitated by the stress-dependent activation of
kinases phosphorylating the translation initiation factor
eIF2� (EIF2S1). The phosphorylation of eIF2� impairs
the assembly of the ternary eIF2/tRNAi

Met/GTP com-
plex, which is essential for the initiation of mRNA trans-
lation and thus results in the stalling of bulk mRNA in 48S
‘pre-initiation’ complexes (1–3). These associate with vari-
ous RNA-binding proteins (RBPs) in cytoplasmic mRNPs,
which transiently assemble into cytoplasmic stress gran-
ules (SGs). This stress-induced assembly or aggregation of
mRNPs was suggested to essentially rely on the aggrega-
tion of RBPs comprising prion-like or low complexity (LC)
regions, which are frequently observed in intrinsically disor-
dered (ID) proteins [reviewed in (4,5)]. In accord, suggested
ID-like RBPs including TIA1, TIAR (TIAL1) or G3BPs
were demonstrated to induce the formation of SG-like cy-
toplasmic granules at high cytoplasmic concentration, for
instance, when transiently overexpressed in tissue cultured
cells (6,7). In vitro, some of the ID-like proteins found
in SGs were shown to induce the formation of hydrogels,
which resemble RNA germ cell granules in Caenorhabditis
elegans (8). The latter behave like liquid droplets formed or
maintained by the transient interaction of LC-containing
RBPs, which presumably associate with mRNPs contain-
ing translationally stalled mRNAs. Like in germ cells, the
dynamic association of LC-containing RBPs and mRNPs
in stressed cells was proposed to induce a ‘demixing phase
transition’ resulting in the formation of hydrogel-like cyto-
plasmic SGs [reviewed in (4,5)]. Recent studies propose that
the increase of non-polysome associated mRNAduring cel-
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lular stress is essential and sufficient to trigger the formation
of SGs (9).

Although various SG-recruited proteins have been iden-
tified to date, the physiological role of SGs remains largely
elusive. Initially, it was proposed that SGs are essential to fa-
cilitate the block of bulk mRNA translation during cellular
stress (1). However, even when the formation of SGs visible
by fluorescence microscopy was impaired by the depletion
of factors essential for their assembly, the stress-induced
inhibition of bulk protein synthesis appeared largely un-
affected (10,11). Moreover, recent studies have indicated
that SGs disassemble before mRNA translation is fully re-
stored in cells recovering from cold shock (12). These find-
ings strongly suggest that the block of mRNA translation
observed during cellular stress can be facilitated in a largely
SG-independent manner. Despite a potential involvement
of SGs in reorganizing the ‘stress-translatome’, it was pro-
posed that the formation of SGs promotes cell viability (13).
However, it has to be noted that the vast majority of studies
addressing the biological role of SGs rely on the depletion
of factors proposed to be essential for the formation of these
foci. These factors are likely to serve SG-independent roles
in enhancing cell viability and thus their depletion may im-
pair cellular fitness in a largely SG-independent manner.

Various recent findings suggest that SGs serve an essen-
tial role in modulating intracellular signaling during cel-
lular stress. This view is supported by the SG-recruitment
of various key signaling factors and the observation that
perturbing specific signaling cascades impairs the forma-
tion of SGs, respectively. For instance, it was demonstrated
that RSK2 (p90 ribosomal S6 kinase) depletion interferes
with the formation of SGs and reduces cell survival in re-
sponse to cellular stress (14). Notably, RSK2 is recruited to
SGs by associating with the putative prion-like C-terminus
of TIA1, a proposed key factor in the assembly of SGs.
The recruitment of RSK2 to SGs was suggested to pre-
vent or ‘slow down’ the induction of apoptosis during cel-
lular stress. Similar mechanisms were also proposed for the
stress-induced recruitment of RACK1 or ROCK1 to SGs.
The SG-facilitated sequestration of these factors was asso-
ciated with reduced activation of JNK or JIP-1 dependent
apoptosis, respectively [reviewed in (4)]. Notably in this re-
spect, the depletion of O-GlcNac transferase, which mod-
ifies various cellular proteins including key signaling fac-
tors like RACK1, was shown to impair the formation of
SGs (10). Consistent with a role of SGs in modulating the
ROCK1-facilitated control of apoptosis, it was proposed
that the Wnt-dependent activation of Rac1 interferes with
the RhoA-dependent activation of SG-assembly [reviewed
in (4)]. Most recently, it was revealed that the inhibition of
mTORC1 by the sequestering of RAPTOR in SGs prevents
or severely limits the apoptosis of cancer cells during cellu-
lar stress (15). In summary, it appears tempting to speculate
that the assembly of SGs interconnects the stress-induced
block of bulkmRNA translation and key signaling cascades
modulating cell viability and apoptosis [reviewed in (4)].

In previous studies, we demonstrated that the IGF2
mRNA binding protein 1 (IGF2BP1), also termed ZBP1
(Zipcode binding protein 1), is recruited to SGs together
with its target transcripts (16,17). This transient enrich-
ment in SGs was correlated with the selective stabilization

of IGF2BP1-target mRNAs including MYC, ACTB and
MAPK4 (16,18). These findings prompted us to speculate
that the selective stabilization of target mRNAs during cel-
lular stress allows the identification of novel RBP-target
transcripts. Accordingly, we analyzed if the transient de-
pletion of IGF2BP1 allows the identification of target mR-
NAs in stressed tumor-derived cells. As expected, we iden-
tified almost a hundred novel target candidate transcripts,
which were selectively decreased in stressed cells upon the
knockdown of IGF2BP1 (18). Notably, these target mR-
NAs are also subjected to IGF2BP1-dependent regulation
of mRNA translation and/or turnover in non-stressed cells
(18,19). Hence, the selective stabilization of mRNAs by
RBPs during cellular stress allows the identification of tar-
get mRNAs regulated by the same proteins, presumably via
cytoplasmic mRNPs (20), also in non-stressed cells. How-
ever, it remained elusive if the selective stabilization of mR-
NAs observed during cellular stress is facilitated via SGs.

In this study, we addressed the role of SGs in the stress-
induced stabilization of mRNAs. To this end we aimed
at establishing protocols allowing the impairment of SG-
formation without perturbing stress signaling. In remark-
able contrast to various previous reports, our studies reveal
that the sustained inhibition of SGs visible by fluorescence
microscopy requires the concomitant depletion of TIA pro-
teins and G3BP1. FRAP and photo-conversion studies,
however, indicate that these proteins rapidly shuttle between
SGs and the cytoplasm with barely any immobile fraction
in SGs. The opposite is observed for RBPs dispensable for
SG-formation including IGF2BP1, YB1 (YBX1) or HUR
(ELAVL1). This provides further evidence that the recruit-
ment ofmRNPs into SGs by TIA proteins andG3BPs relies
on their transient association/aggregation instead of form-
ing a rigid and largely non-dynamic scaffold for mRNP-
association. Finally, our studies reveal that the stabiliza-
tion of bulkmRNA including IGF2BP1 target transcripts is
largely independent of SG-formation. Taken together these
findings provided strong evidence that the aggregation of
mRNPs in SGs neither required for the control of bulk
mRNA translation nor the stabilization of translationally
stalled transcripts.

MATERIALS AND METHODS

Cell culture, transfections and treatments

U2OS, HUH7 and HEK293 cells were cultured in Dul-
becco’s modified Eagle’s medium supplemented with 10%
fetal bovine serum (FBS). Where stated, plasmids (48
h) or siRNAs (72 h) were transfected, according to
manufacturer’s instructions, using Lipofectamine 2000 or
RNAiMax (Life Technologies), respectively. Cells were
transduced by lentiviral vectors, as previously described
(18,19). All siRNAs and plasmids are depicted in Supple-
mentary Table S1. All transfected cells were splitted 24 h
post-transfection to allow application of different assays
from the same transfection and/or the analysis or sev-
eral (stress) conditions. Oxidative or endoplasmic reticulum
(ER)-stress was induced using sodium-arsenate (2.5 mM)
or thapsigargin (1 �M) for indicated time. Actinomycin D
(ActD) was added (5 �M) to block transcription for the
time indicated.
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Western blotting

Western blotting was essentially performed as recently de-
scribed using RIPA-buffer (20 mM Tris-HCl (pH 7.5), 150
mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% NP-40, 1%
sodium deoxycholate (DOC), 2.5 mM sodium pyrophos-
phate, 1 mM beta-glycerophosphate, 1 mM Na3VO4; sup-
plementedwith protease inhibitor cocktail (SigmaAldrich))
to lyse cells (18,19). For used primary antibodies please refer
to Supplementary Table S2. All secondary antibodies used
were described before (18).

Co-immunopurification

Cells were lysed in gradient buffer (10 mM Hepes pH7.4,
150 mM KCl, 5 mM MgCl2, 0.5% NP40; supplemented
with protease and phosphatase inhibitors). Proteins were
immune-purified by indicated antibodies immobilized to
Dynabeads R© Protein G (Life Technologies). After intense
washing, proteins were eluted using sodium dodecyl sul-
phate sample buffer and analyzed by western blotting, es-
sentially as described previously (17).

Metabolic labeling by 35S-methionine

U2OS cells transfected with indicated siRNAs were pre-
incubated with methionine-free medium overnight 48 h
post-transfection. Protein de novo synthesis was monitored
by the addition of 100 �Ci 35Smethionine per 6-well for 1 h.
Where indicated cells were simultaneously stressed by arse-
nate. Upon extensive washing cells were extracted in RIPA
buffer. Equal amounts of total protein were analyzed by
western blotting using Ponceau-staining to analyze protein
loading and phosphor-imaging to determine newly synthe-
sized proteins.

Sucrose gradient centrifugation

U2OS cells (∼1.5 Mio cells) transfected with indicated siR-
NAs and stressed by arsenate when stated were lysed in gra-
dient buffer 72 h post-transfection. Total protein (DC pro-
tein assay, Bio-Rad) andRNA (OD260) concentrations were
determined to ensure equal loading of the gradients. Linear
15–45% sucrose (w/v) gradients in gradient buffer lacking
NP-40were centrifuged in aBeckman SW-40 rotor at 30 000
revolutions per minute for 2 h. Gradients were fractionated
and ultraviolet-profiles were monitored by a Foxy Jr. frac-
tion collector (Teledyne) with syringe pump (Brandel) (18).

Quantitative reverse transcriptase-polymerase chain reaction
(qRT-PCR) and microarray analyses

Changes in RNA abundance were determined by qRT-PCR
as recently described (18,19). All gene-specific primer pairs
used are shown in Supplementary Table S1. For microar-
ray analyses, total RNA was extracted using TRIZOL and
further purified using RNeasy MinElute Cleanup Kit (QI-
AGEN). RNA integrity and concentration was then exam-
ined on an Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Palo Alto, CA, USA) using the RNA 6.000 LabChip
Kit (Agilent Technologies). Array analyses were performed

at the microarray core facility of the IZKF (Leipzig, Ger-
many) essentially as recently described using two indepen-
dent chip systems (Affimetrix and Illumina) (18). For the
analysis with Affimetrix HG133plus 2.0 chips U2OS cells
were transfected with control (siC) siRNAs or siRNAs di-
rected against TIA-1, TIAR and G3BP1 (siSGs). Where
indicated cells were treated with arsenate and ActD for 2
h (stress). All samples were analyzed in duplicates. Raw,
Mas5- or RMA-normalized data of Affimetrix chips were
analyzed using Bioconductor (www.bioconductor.org) and
R (www.r-project.org). Reliably detected transcripts in both
untreated samples identified by Mas5 present/absent calls
were further analyzed. Ratios (knockdown versus control)
of log2 expression data from non-stressed cells were plotted
against the corresponding ratios of stressed cells to deter-
mine stress- and knockdown-dependent changes in RNA
abundance.

For the analysis using Solexa HumanHT-12 chips (Illu-
mina) U2OS cells were transfected with two independent
sets of TIA-1, TIAR and G3BP1-directed (siSGs) or con-
trol (siC) siRNAs and treated with arsenate and ActD for
indicated time. Reliably detected transcripts in all untreated
samples were identified by a P-value less than 0.001. A
linear regression was applied to the quantile-normalized
and background corrected non-logarithmic expression data
to determine the mRNA degradation over time (slope)
for siSGs versus siC transfected cells. Pearson’s correlation
analyses were used to determine how the inhibition of SG-
formation affects bulk mRNA degradation.

Microscopy and image analyses

Indirect immunostaining was essentially performed as pre-
viously described (16). For primary antibodies please refer
to Supplementary Table S2. All secondary antibodies were
previously described (18). Images were acquired on a Le-
ica TCS-SP5X CLSM equipped with a Ludin live chamber
or a Nikon TE-2000E fluorescence microscope using 63×
magnification and standardized settings. The area fraction
representing the number and size of SGs was automatically
quantified using the Mica2D particle detector of MiToBo
(www.informatik.uni-halle.de/mitobo), an extension pack-
age for ImageJ (www.imagej.nih.gov/ij/). To allow an assess-
ment of SG parameters for individual cells the cell area was
manually labeled.

For FRAP and photo-conversion analyses, U2OS cells
were transiently transfected for 24 h before seeding on glass
bottom dishes (MatTek). Where indicated stably expressing
cell clones were generated by G418 and at least two distinct
clones were included in the studies. If not indicated other-
wise, cells were stressed by arsenate for 25min. Imaging was
conducted up to 1 h after arsenate treatment. FRAP anal-
yses were performed on the TCS-SP5X using the provided
FRAP wizard. The region of interest was selected to cover
a single SG and fluorescence was bleached using the Argon
laser (488 nm) at maximal power. Photo-conversion analy-
ses were performed using the FRAP wizard using standard
settings for the concomitant detection of green-fluorescent
protein (GFP) (Argon laser: 488 nm) and red-fluorescent
protein (RFP) (DPSS laser: 561 nm) fluorescence. Photo-
conversion was induced by using the bleach point function
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of the LAS AF software package at maximal laser power
(Argon laser: 488 nm) for 100ms. The bleach point was cho-
sen in close proximity to a single SG without affecting ad-
ditional SGs. For both, FRAP as well as photo-conversion
analyses, the recovery or loss of fluorescence signal was
recorded at a 300 ms time interval for five frames before
and 100 or 300 frames after bleaching or conversion, respec-
tively. The wizard software application was used to normal-
ize the fluorescence intensities for background bleaching or
conversion. The traffic model for molecules moving in and
out of SGs can be described by first-order kinetics, which
are k1MIN = dMIN/dT and k2MOUT = dMOUT/dT. k1MIN

and k2MOUT describe the traffic constants, whereas MIN

and MOUT are the number of molecules moving into and
out of SGs. At steady-state levels incoming and outgoing
molecules are expected to be balanced and thus the corre-
sponding half-lives are considered to be t1IN = t2OUT. FRAP
parameters determined by first-order kinetics are summa-
rized in Supplementary Figure S8A.

RESULTS

Inhibiting SG-formation without affecting stress signaling

To analyze whether the IGF2BP1-dependent stabilization
of target mRNAs during cellular stress is essentially facil-
itated via SGs, we aimed at inhibiting or severely reduc-
ing SG formation without affecting the phosphorylation of
eIF2� or the block of bulk mRNA translation (1,3). Ini-
tially, we focused our efforts on approaches previously re-
ported to impair the assembly of SGs visible by fluores-
cence microscopy. These included: (i) the knockdown of
FMRP (21); (ii) the transient depletion of ataxin-2 (22);
(iii) the knockdown of RSK2 (14); (iv) the forced expres-
sion of TIA1-�RRM (3,6); (v) the depletion of HDAC6
(23); (vi) the knockdown of TIA-proteins and/or G3BP1,
since these proteins were suggested as key factors of SG as-
sembly (6,24). For all these approaches, SG formation was
monitored in U2OS and/or Huh7 cells upon the transient
depletion or overexpression of the respective protein fac-
tors. Initially, stress was induced by 1 h of arsenate treat-
ment and SG formation was monitored by fluorescence mi-
croscopy upon immunostaining of key SG-components in-
cluding IGF2BP1, YB1, TIA proteins and/or G3BP1, re-
spectively. The number of SG-positive cells as well as the
SG-area fraction indicating the percentage of cell area cov-
ered by SGs was determined manually. In the following we
refer to SGs whenmRNP-aggregates were detectable by flu-
orescence microscopy.

The role of fragile X mental retardation protein (FMRP)
in SG formation was monitored in tumor-derived U2OS
cells upon the siRNA-directed depletion of FMRP (Sup-
plementary Figure S1A and B). Although the endogenous
FMRP was recruited to SGs, SG assembly induced by ar-
senate remained largely unchanged by the knockdown of
FMRP (Supplementary Figure S1A and B). To exclude bias
due to knockdown efficiencies or the transfection proce-
dure we extended our analyses to immortalized FMRP (-/-)
mouse embryonic fibroblasts (MEFs) versusKO-MEFs sta-
bly transduced with Flag-tagged FMRP (25). As in U2OS
cells, the exogenous FMRP was recruited to SGs, but SG
assembly induced either by arsenate (1 h), arsenite (30 min)

or thapsigargin (1 h) (data not shown for arsenite and thap-
sigargin) appeared largely unaffected by the loss of FMRP
(Supplementary Figure S1C and D). Likewise, the number
of SG-positiveU2OS orHuh7 cells remained essentially un-
changed upon the knockdown of ataxin-2 (Supplementary
Figure S2A–D). Surprisingly, in Huh7 SG formation ap-
peared even enhanced upon ataxin-2 depletion as evidenced
by an increase in the apparent size of SGs. The transient
depletion of RSK2 impaired the arsenate-dependent for-
mation of SGs as suggested (data not shown). However,
this inhibition was correlated with an impaired arsenate-
or thapsigargin-induced phosphorylation of eIF2� (Sup-
plementary Figure S3A). This confirmed previous reports
indicating RSK2 to modulate the activation of PKR and
thus the stress-dependent activation of eIF2� (26,27). TIA1
is a key marker of SGs, which was shown to facilitate SG-
formation via a C-terminal prion-like domain (3,6). How-
ever, upon deletion of the N-terminal RRM-domains, the
truncated TIA1-�RRM protein was proposed to impair
the formation of SGs when transiently expressed in tissue-
cultured cells. As reported, TIA1-�RRM appeared to im-
pair the formation of ‘regular’ IGF2BP1-containing SGs
in ∼45% of transiently transfected cells (Supplementary
Figure S3B). However, in the majority of cells, ‘regular’
SGs were formed. Surprisingly, these also contained TIA1-
�RRM. Most notably, however, we also observed an im-
pairment of SG formation in ∼20% of GFP-transfected
cells and in cells expressing high levels of IGF2BP1, HUR
or YB1 (data not shown). Consistent with recent stud-
ies (9), this suggested that the transient expression of pro-
teins, in particular RBPs, can interfere with the forma-
tion of SGs (Supplementary Figure S3B). The knockout of
the SG-recruited histone deacetylase 6 (HDAC6) was re-
ported to prevent the formation of SGs in stressed MEFs
(23). However, in U2OS cells we failed to confirm the re-
cruitment of endogenous as well as GFP-tagged HDAC6
to thapsigargin- (data not shown) or arsenate-induced SGs
(Supplementary Figure S4A and B). Moreover, the assem-
bly of SGs was unchanged in cells depleted of HDAC6
suggesting that SG-formation is largely uncoupled from
HDAC6 function in cancer-derived cells (Supplementary
Figure S4C andD). Finally, we investigated if the formation
of SGs can be inhibited by the depletion of TIA proteins
and/or G3BP1. In previous studies, it was demonstrated
that the formation of SGs is significantly impaired in TIA1
KO-MEFs stressed by arsenite for 30 min (6). Moreover, it
was proposed that the G3BP1 protein is an essential facili-
tator of SG formation (7). However, the assembly of SGs in
U2OS cells treated with arsenate for 1 h was only modestly
decreased by the depletion of TIA1 or TIAR (Supplemen-
tary Figure S5A–D). This supported recent findings sug-
gesting TIA1 only plays aminor role in SG formation (9). In
cells transfected with G3BP1-directed siRNAs, the impair-
ment of SG-formation was significantly more pronounced
with ∼40% of cells lacking visible SGs after 1 h of arsenate
treatment. Consistently, the ‘area fraction of SGs’ was only
modestly reduced by the knockdown of TIA1 or TIAR yet
significantly decreased by the depletion of G3BP1. How-
ever, the depletion of individual factors appeared insuffi-
cient for severely inhibiting SG formation, as previously
suggested for G3BP1/2 depletion (28). This suggested that
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the concomitant depletion of these factors enhances the im-
pairment of SG formation even at late time points of stress
application. To evaluate this by quantitative means and in a
time-resolved manner, we adapted an automated tracing al-
gorithm previously used for identifying focal contacts (18).
This allowed the automated tracing of SGs labeled by indi-
rect immunostaining of YB1 and IGF2BP1 in U2OS cells
treated with arsenate for 30–120 min (Figure 1A–C). In
U2OS cells transfected with control siRNAs (siC),∼80% of
cells contained SGs already 30 min after arsenate applica-
tion (Figure 1B). Consistent with previous studies (6), the
depletion of TIA1 or TIAR essentially abolished SG for-
mation after 30 min of stress induction but ∼80% of cells
contained SGs after 1 h of arsenate treatment. This delay
of SG assembly was significantly enhanced upon the deple-
tion of G3BP1 with only 70% of SG-positive cells after 2 h
of arsenate treatment. The concomitant knockdown of all
three factors in U2OS, termed SG-knockdown/-depletion
(siSGs, SGD), severely impaired SG formation and reduced
the number of SG-positive cells to ∼20% of control levels
after 2 h of arsenate-induced stress (Figure 1A and B). In
agreement with a severely reduced assembly of SGs, we ob-
served a striking reduction in the SG-area fraction upon the
depletion of all three proteins (Figure 1C). This was con-
firmed by an additional set of siRNAs, in another cell line
(Huh7) and thapsigargin to test an additional stressor (Sup-
plementary Figure S6A–C). As observed in U2OS cells, SG
formation was essentially abolished by the concomitant de-
pletion of TIA1, TIAR and G3BP1 irrespective of the used
stressor or cell line. To exclude that the impairment of SG
formation resulted from aberrant stress signaling, the phos-
phorylation of eIF2� was monitored upon the SGD (Fig-
ure 1D; Supplementary Figure S6B). In both cell lines an-
alyzed, U2OS as well as Huh7, the upregulation of eIF2�

phosphorylation by arsenate or thapsigargin appeared un-
changed by the SGD suggesting that ‘stress signaling’ was
largely unaffected. Consistently, sucrose gradient centrifu-
gation revealed that the depletion of polysomes and the shift
of bulk (m)RNA to pre-polysomal fractions was preserved
in arsenate-stressed cells when SG assembly was abolished
by the SGD (Figure 1E). UV260 reads of indicated frac-
tions were averaged over cell populations transfected with
control or TIA1-/TIAR-/G3BP1-directed siRNAs. Thus,
the small variation in UV reads indicated that the SGD
neither affected mRNA translation in non-stressed (Fig-
ure 1E, gray) nor the block of bulk mRNA translation in
arsenate-stressed cells (Figure 1E, black). Finally, this was
evaluated by the metabolic labeling of stressed (+, arsenate)
or non-stressed (−, arsenate) cells transfected with control
(C) or TIA1-/TIAR-/G3BP1-directed (SG) siRNAs (Fig-
ure 1F). In agreement with the polysomal profiling studies,
protein synthesis was massively reduced in response to ar-
senate treatment in both, the control as well as SGD popu-
lations.

In summary, the analyses indicated that the combined
knockdown of TIA1, TIAR and G3BP1 (SGD) substan-
tially impaired the formation of visible SGs without af-
fecting the upregulation of eIF2� phosphorylation or the
stress-induced block of bulk mRNA translation.

SG assembly: dynamic recruitment of mRNPs versus rigid
prion-like scaffolds

Overall our studies were in agreement with the current view
that TIA proteins and G3BP1 are essential for the forma-
tion of SGs. However, the depletion of TIA proteins or
G3BP1 only delayed the formation of SGs, whereas their
combined knockdown severely diminished SG formation in
a sustained manner. This suggested that either these pro-
teins serve redundant functions as prion-like scaffolding or
glue-like factors in the assembly of SGs or that they act re-
dundantly in dynamically recruiting mRNPs to SGs. In line
with the prion-like scaffolding scenario one would expect
the three factors have an average SG half-life longer than
observed for other SG-localized RBPs for which no obvi-
ous role in SG assembly has been reported, e.g. IGF2BP1
(16). Moreover, it is tempting to speculate that a prion-like
scaffolding factor shows some sort of an immobile fraction
in SGs, whereas this should be less pronounced for the tran-
siently stored ‘cargo’, the mRNPs comprising translation-
ally stalled mRNAs and RBPs like IGF2BP1. Aiming to
evaluate these aspects, we analyzed the SG dynamics of the
prion-like TIA1, TIAR and G3BP1 proteins versus three
RBPs (IGF2BP1, YB1 andHUR) that are localized to SGs.
As also demonstrated for HUR and YB1 (9), all three ana-
lyzed RBPs were dispensable for the assembly of SGs, since
SG formation remained unaffected upon the depletion of
each protein (IGF2BP1,HURandYB1) alone aswell as the
concomitant knockdown of all three RBPs (Supplementary
Figure S7A–H).

The dynamics of all proteins were first analyzed byFRAP
in cells transiently and/or stably expressing theGFP-tagged
fusion protein of interest (Figure 2A and B; Supplemen-
tary Figure S8A). Although we aimed at analyzing stably
expressed proteins where feasible, we did not observe signifi-
cant kinetic differences between stably versus transiently ex-
pressed proteins (Supplementary Figure S8). Surprisingly,
however, TIA1, TIAR as well as G3BP1 showed a short
half-live of ∼2–3 s and an insignificant immobile fraction
in SGs (Figure 2A, red; Supplementary Figure S8). The lat-
ter was consistent with previous studies showing an almost
complete fluorescence recovery for TIA1, G3BP, TTP and
CPEB (24,29). However, previous studies suggested that
the immobile fraction of CPEB in SGs was dependent on
whether granules were induced by arsenite or CPEB over-
expression (29). In contrast, we did not observe any sort
of stressor-dependent differences in G3BP1 dynamics (Sup-
plementary Figure S8A). Notably, GFP-G3BP1 signal re-
covered fast and almost complete in both, early and small
(5–15 min after stress-induction) as well as late and large
SGs (30–60 min after stress induction; Supplementary Fig-
ure S8B and D). However, it has to be noted that the ki-
neticmodels fitted to the FRAPdata rely on the assumption
that the state of equilibrium has been reached. This severely
biases studies at early time points of stress induction and
thus the phase of SG initiation. Aiming to compare SG dy-
namics with the movement of proteins in the cytoplasm, the
latter was analyzed by FRAP in the SG-free cytoplasm of
stressed cells (Figure 2A, black). Strikingly, the dynamics of
TIA1 and TIAR were essentially indistinguishable between
SGs and SG-free cytoplasm suggesting that both proteins
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Figure 1. The concomitant depletion of TIA proteins and G3BP1 impairs SG formation. (A) U2OS cells transfected with indicated siRNAs (siC, control;
siSG, siTIA1, siTIAR and siG3BP1) for 72 h were stressed by arsenate (2.5 �M) for 2 h before immunostaining of indicated proteins. Enlargements of the
boxed regions in the merged images are shown in the right panel. Bars, 25 �m. (B and C) The average number of SG containing cells (B) and the SG area
fraction (C) was analyzed by immunostaining for IGF2BP1 and YB1 in U2OS cells transfected with indicated siRNAs. Both parameters were determined
by an automated particle detection tool, adapted from (18), after indicated times of arsenate stress. Error bars indicate SD determined by analyzing at
least 100 cells per condition in three independent experiments. (D) The phosphorylation of eIF2� in non-stressed (−) or arsenate (+, as in A) stressed
U2OS cells transfected with control (siC) or siSG (as in A) siRNAs was determined by western blotting with indicated antibodies. VCL and TUB4A4
served as loading controls to determine knockdown efficiencies as indicated by numbers above each panel. Standard deviation was determined from three
independent experiments. (E) The association of bulk (m)RNA with polysomes was monitored by linear (15–45% w/v) sucrose gradient centrifugation
in stressed (+, arsenate) versus non-stressed (−, arsenate) U2OS cells transfected with control (siC) or siSG siRNAs, as in (A). The distribution of RNA
was monitored by UV spectroscopy and is shown as the average absorbance determined for individual fractions isolated from siC- and siSG-transfected
samples. Error bars indicate SD determined in three independent studies for siC- and siSG-transfected cells. (F) Protein synthesis in arsenate-stressed
(+) versus non-stressed (−) U2OS cells transfected as in (A) was analyzed by metabolic labeling using S35-methionine. The fraction of newly synthesized
proteins was determined by western blotting using autoradiography (right panel). Equal loading was controlled by Ponceau staining (left panel).
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Figure 2. SG dynamics distinguish two classes of SG-associated RBPs. (A and B) The averaged recovery of GFP-fluorescence for the indicated proteins in
SGs (red) or SG-free cytoplasm (black) inU2OS cells stably expressing and/or transiently transfected with the indicated proteins was determined by FRAP.
Representative images of fluorescence intensities observed in SGs for GFP-G3BP1 (A) or GFP-ZBP1 (B) at indicated times of FRAP studies are shown
in pseudo-colors (glow over/under) in the left panels. (C and D) The change in SG-localized photo-converted Dendra-fused G3BP1 (C) or ZBP1 (D) was
determined by time-lapse microscopy. The averaged change of fluorescence intensities was determined over 30 s after photo-conversion. Representative
images of fluorescence intensities observed at indicated time after photo-conversion are shown in left panels. Error bars indicate SD determined for the
number of analyses summarized together with kinetic data in Supplementary Figure S8A. Bars, 5 �m.
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are rapidly exchanged and remain highly dynamic irrespec-
tive of their subcellular localization. Although slightly less
mobile in SGs, this was also observed for G3BP1 (Figure
2A; Supplementary Figure S8).

In sharp contrast to the rapid exchange of TIA pro-
teins and G3BP1, the three RBPs dispensable for SG for-
mation (IGF2BP1, YB1 and HUR) showed significantly
longer half-lives (∼15–20 s) and a striking immobile frac-
tion (∼60–70%) in SGs (Figure 2B, red, Supplementary
Figure S8A). Although less mobile in the cytoplasm when
compared to TIA proteins or G3BP1, the analyzed RBPs
were substantially more dynamic in the SG-free cytoplasm
than in SGs (Figure 2B, black; Supplementary Figure S8A).
Notably, the substantially distinct dynamics of TIA pro-
teins and G3BP1 versus other RBPs like IGF2BP1 were
observed in early as well as late SGs (Supplementary Fig-
ure S8B–D). As for G3BP1, the recovery time of RBPs
like IGF2BP1/ZBP1 in early SGs was shorter. This sug-
gests that the accumulation of mRNPs in SGs could be pro-
nounced at early time point of stress induction. This con-
clusion is of course limited due the fact that an equilibrium
has not been reached and thus the conclusiveness of FRAP
studies remains limited, as out lined above. Taken together,
the presented findings indicated that the prion-like scaffold-
ing TIA proteins and G3BP1 were rapidly turned over in
SGs, whereas the RNA- and thus ‘cargo’-associated RBPs
were substantially less dynamic. This was largely consis-
tent with previous reports indicating complete fluorescence
recovery for G3BP1 or TIA1 but a substantial immobile
fraction for the PABP as well as slow and incomplete ex-
change of CPEB between arsenite-induced SGs and cyto-
plasm (24,29).
To access SG association more directly, the ‘residence-

time’ of one representative of the two classes of SG-
localized proteins, G3BP1 versus IGF2BP1, were tran-
siently expressed as Dendra-fusion proteins in U2OS cells
(Figure 2C and D). Dendra is a GFP, which is photo-
convertible to a RFP by a UV-irradiation or short wave-
length lasers (e.g. 405 or 488 nm). This allowed analyz-
ing how rapidly the SG-localized proteins were exported to
the cytoplasm when the Dendra-fusion protein had been
photo-converted in a single SG (green to red). Consis-
tent with a rapid exchange determined by FRAP, photo-
converted Dendra-G3BP1 was cleared from SGs within
seconds. In contrast, barely any SG-localized Dendra-
IGF2BP1 was lost 30 s after photo-conversion.

In summary, the FRAP and photo-conversion analyses
indicated at least two classes of SG-recruited RBPs: (i) pro-
teins essential for the assembly of SGs includingG3BP1 and
TIA proteins which were rapidly exchanged; (ii) RBPs like
IGF2BP1, YB1 or HURwhich were dispensable for SG as-
sembly but barely exchanged with the SG-free cytoplasm.

G3BP1 promotes SG assembly by the RNA-dependent asso-
ciation with RBPs

The dynamics of TIA proteins or G3BP1 suggested that
these factors could facilitate the dynamic aggregation of
mRNPs in SGs by delivering protein-RNA complexes to
these foci. Accordingly, the association of these ‘mRNP-
movers’ with mRNAs and/or other RBPs like IGF2BP1

should be pronounced during cell stress. Since IGF2BP1
was previously reported to associate with G3BP1 in differ-
entiated P19 neuronal cells (30), we characterized the as-
sociation of IGF2BP1 and G3BP1 during cellular stress.
HEK293 cells were used for these studies due to the high
abundance of IGF2BP1 (20).
Consistent with previous studies, IGF2BP1 copurified

with G3BP1 in a RNA-dependent manner from both,
stressed as well as non-stressed HEK293 cells (Figure 3A).
In stressed cells, the amount of IGF2BP1 copurified with
G3BP1 in a RNA-dependent manner was modestly but
reproducibly increased, the amount of IGF2BP1 copuri-
fied with G3BP1 in a RNA-dependent manner was mod-
estly but reproducibly increased. This was also observed
for the association of G3BP1 with HUR. In agreement,
G3BP1 also associated with stably expressed Flag-tagged
ZBP1, the chicken ortholog of human IGF2BP1 (Fig-
ure 3B), which was previously shown to recover or mimic
IGF2BP1-dependent phenotypes (17). Binding was abol-
ished when all four KH-domains were inactivated by point
mutations (ZBP1-KH1-4; (17)) in the GXXG loop indicat-
ing that IGF2BP1/ZBP1 and G3BP1 associate indirectly
via (m)RNA. Notably, we previously demonstrated that the
ZBP1-KH1-4 mutant does not localize to SGs suggesting
that the SG recruitment of IGF2BP1/ZBP1 essentially re-
lies on RNA binding (17).

The role of G3BP1 in modulating SG formation was sug-
gested to rely on the dephosphorylation of the protein at
S149 as well as RNA binding (7). Accordingly, we investi-
gated whether the association of IGF2BP1 and G3BP1 is
modulated via the acidic domain comprising S149, involves
theRRMand/or the C-terminal RGGdomain (Figure 3C).
To this end, GFP-tagged wild-type andmutant G3BP1 pro-
teins were probed for association with IGF2BP1 by co-
immunoprecipitation (Figure 3D). G3BP1 and the non-
phosphorylatable G3BP1-S149A copurified with IGF2BP1
from transiently transfected HEK293 cells. This was also
observed for the S149E mutant protein (data not shown).
The copurification of the RRM mutant protein (FFVV:
F380,382V) or the RGG-lacking mutant (�RGG) was ei-
ther severely diminished or abolished, respectively. These
findings supported the view that the association of G3BP1
with IGF2BP1 is facilitated indirectly via (m)RNAbut does
not involve the modification of S149 in G3BP1.

G3BPs are considered to act as prion-like nucleators of
SGs by enhancing the formation of these foci via their
oligomerization (7,28,31). The latter is controlled by the
modification of S149, as previously proposed (7). In con-
trast to the view that the prion-like aggregation of G3BPs
and/or TIA proteins provides a rigid and largely non-
dynamic scaffold for SG assembly, our analyses of G3BP1
protein dynamics and stress-dependent protein association
suggested that the protein promotes SG formation by the
dynamic andRNA-dependent recruitment of protein-RNA
complexes. To investigate this in further detail, the G3BP1
wild-type and mutant proteins were transiently and stably
expressed in U2OS cells. The formation of SGs and re-
cruitment of proteins was monitored by indirect immunos-
taining of TIA1 and IGF2BP1 (Figure 4A; only shown for
stably expressing cells). Consistent with previous reports,
transiently expressedG3BP1 induced IGF2BP1- andTIA1-
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Figure 3. The association of G3BP1with IGF2BP1 andHUR is enhanced during cellular stress. (A) The co-immunopurification of IGF2BP1 orHURwith
G3BP1 from arsenate-stressed (+) or non-stressed (−) HEK293 cells was analyzed by western blotting. Where indicated, lysates were supplemented with
RNaseA/T1. ProteinG dynabeads served as negative control. Copurification of IGF2BP1 or HURwith G3BP1 was quantified relative to immunopurified
G3BP1 amounts by quantitative western blotting. The ratio of IGF2BP1/HUR copurified withG3BP1was set to one, as indicated above by numbers above
lanes. Standard deviation of copurification was determined from three independent experiments. (B) The co-immunopurification of endogenous G3BP1
with indicated proteins transiently expressed in HEK293 cells was analyzed by western blotting. Note that RNA binding of ZBP1-KH1-4 is substantially
impaired by point mutation in all four KH domains (17). Flag-GFP served as negative control. (C) Schematic of G3BP1 domains, putative functions of
the indicated domains and relative position of domains indicated by the numbering of residues. (D) Co-immunopurification of endogenous IGF2BP1 with
indicated stably expressed GFP or GFP-fused G3BP mutant proteins. G3BP proteins analyzed: WT, wild type G3BP1; �RGG, G3BP1 lacking amino
acids 425–466; FFVV, full-length G3BP1 with F-V conversion at residues 380 and 382; S149A, full-length G3BP1 with S-A conversion at residue 149.
Western blotting for indicated proteins is shown for the input or co-immunopurified (�-GFP) protein fraction. HEK293 cells stably expressing GFP served
as negative controls. * indicates degradation product.

positive SGs in ∼40% of U2OS cells (Supplementary Fig-
ure S9A). Although the induction of SGs appeared less
pronounced for G3BP1-S149E, both transiently expressed
S149 mutant proteins induced the assembly of SGs. Strik-
ingly, however, all G3BP1 mutants with changes in the
RNA-binding domains failed to induce SGs when tran-
siently expressed. Although all stably expressedG3BP1 pro-
teins were recruited to SGs (Figure 4A), they failed to in-

duce SG formation in the absence of stress (Supplemen-
tary Figure S9A). In agreement, the stress-induced upreg-
ulation of eIF2� phosphorylation remained largely unaf-
fected by the stable expression of all proteins (Supplemen-
tary Figure S9B). However, compared to GFP-expressing
controls, the number of SG-positive cells and more promi-
nently the SG-area fraction were increased in cells stably
expressing wild-type G3BP1 (Figure 4A–C). In contrast,
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Figure 4. The forced expression of G3BP1 protein mutants modulates SG formation. (A) The formation of SGs was monitored in arsenate stressed (1 h)
U2OS cells stably expressing GFP or indicated GFP-fused G3BP1 mutant proteins using immunostaining of SG-localized IGF2BP1 and TIA1. Enlarge-
ments of boxed regions depicted in the merged images are shown in the right panel. Bars, 25 �m. (B and C) The number of SG-positive cells (B) as well as
the SG-area fraction (C) was determined as described in Figure 1B and C. Error bars indicate SD of at least three independent analyses including at least
30 cells per condition. Statistical significance was determined by Student’s t-test: **P < 0.005.
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both these parameters were significantly decreased in cells
expressing the�RGGmutant, which also failed to associate
with IGF2BP1. The number of SG-positive cells as well as
the SG-area fraction was enhanced in cells stably expressing
the other G3BP1 mutant proteins.

In conclusion, these findings supported the view that
G3BP1 promotes SG assembly in a dose andRNA-binding-
dependent manner. In contrast to previous reports (7), the
proposed phosphorylation-dependent control of G3BP1-
aggregation appeared irrelevant for the formation of SGs
in the cells analyzed here. This provided further evidence
that instead of acting as a rigid prion- or glue-like scaf-
fold, G3BP1 promotes SG formation by the dynamic RNA-
dependent recruitment of mRNPs.

SGs are dispensable for mRNA stabilization during cellular
stress

The concomitant knockdown of TIA proteins and G3BP1
allowed the sustained inhibition of SG formation without
affecting stress signaling. This provided a bona fide proto-
col for testing the role of SGs in preventing bulk mRNA
degradation during cell stress.

At first, we monitored the turnover of six mRNAs
in arsenate-stressed U2OS cells concomitantly transfected
with G3BP1-, TIA1- and TIAR-directed siRNAs (SGD;
siSGs). The decay of mRNAs was determined upon the
block of transcription by actinomycin D (ActD) using
qRT-PCR (Figure 5A). Compared to control transfected
cells (siC, black), the turnover of three none IGF2BP1-
associated transcripts (RPLP0, PPIA and VCL) as well
as three IGF2BP1-target mRNAs (ACTB, MAPK4 and
MYC)was essentially unchanged by the SGD (siSG, green).
Although instable mRNAs like MYC are stabilized during
stress, they are still partially degraded. The stress-dependent
stabilization of such mRNAs presumably occurs irrespec-
tive of SGs, since mRNA decay during cellular stress ap-
peared unchanged when the formation of SGswas impaired
by the SGD (Figure 5A). To monitor how the SGD af-
fects the turnover of transcripts induced during the stress
response, we analyzed the decay of three mRNAs encod-
ing heat-shock proteins (HSPs), HSP90 (HSP90AA) and
HSP70 transcripts (HSPA1A/B; HSPA2), during arsenate-
induced cellular stress. For these analyses, cells were stressed
by arsenate for 1 h to induce or boost the synthesis of HSP-
encoding transcript before blocking transcription by ActD.
Like for none stress-induced mRNAs, transcript turnover
was monitored by qRT-PCR (Figure 5B). The synthesis of
the analyzed HSP-encoding transcripts was enhanced by
arsenate confirming the induction of the cellular stress re-
sponse (Figure 5B; gray). Notably, the induction of mRNA
synthesis appeared largely unaffected by the SGD (Fig-
ure 5B; compare black to green). Strikingly, HSP tran-
script levels remained stable over 4 h of ActD treatment
in both cell populations, controls (siC, black) versus SGD
cells (siSGs, green). However, we cannot exclude that elon-
gated stress conditions might reveal significant differences
for HSP-encoding transcripts due to either the inhibition
of SG formation or depletion of TIA/G3BP proteins, re-
spectively. Together our data suggested that the stabiliza-
tion of specific mRNAs could be uncoupled from the for-

mation of SGs during cellular stress. Aiming to monitor
bulk mRNA turnover in stressed cells, steady-state mRNA
levels in non-stressed and arsenate-treated control versus
SGD cells were monitored by comparative microarray anal-
yses (Figure 5C–E; Affymetrix HG133plus2.0). The SGD-
induced change in mRNA abundance before stress induc-
tion (no stress) or in cells treated with arsenate and ActD
for 2 h (stress) was monitored by normalization to siC-
transfected controls. These analyses revealed that the SGD
failed to induce a significant shift in bulk mRNA lev-
els in stressed or non-stressed cells (Supplementary Figure
S10A). This was analyzed in further detail by determin-
ing the log2-fold change in transcript abundance induced
by the SGD in stressed versus non-stressed cells (Figure
5D and E). Irrespective of the normalization method used,
the SGD led to an at least 2-fold up- or down-regulation
of 1168 (6.7%) out of 17 398 reliably detected hits (Figure
5D, green). However, the significantly deregulated hits were
essentially equally distributed over all four quadrants de-
picted in the complex dot plot (Figure 5D and E). More-
over, only 236 (1.2%) of all hits weremore than 2-fold down-
regulated in stressed cells due the SGD (Figure 5D, red).
However, the same number of hits was upregulated or re-
duced by the SGD in the absence of stress (Figure 5D, blue).
These results remained essentially unchanged by the nor-
malization method or evaluation platform used for analyz-
ing the microarray data suggesting that steady-state bulk
mRNA abundance was largely unaffected by the SGD in
stressed and non-stressed cells (Figure 5E). To test how
the SGD affects the turnover of bulk mRNA, transcript
abundance was monitored in cells treated with arsenate and
ActD for 30–120 min. As before, mRNA abundance was
monitored by microarrays, this time using another type of
chip (Illumina; Solexa HumanHT-12). The decay rate of
individual transcripts was calculated by the decline of sig-
nal intensities determined by microarray studies (Supple-
mentary Figure S10B). For each of the reliably detectable
hits (14 338), the ‘slope’ of mRNA degradation in control
cells (siC-transfected) was plotted versus the rate of degra-
dation determined in SGD cells. Consistent with barely
affected steady-state levels, the decay of bulk mRNA ap-
peared largely unaffected by preventing the formation of
SGs. This was also validated by Pearson’s correlation anal-
yses of the determined decay rates (Supplementary Figure
S10B).

In conclusion, the presented findings provided strong ev-
idence that bulk mRNA turnover remained largely unaf-
fected by preventing the formation of visible SGs by the
concomitant knockdown of TIA proteins and G3BP1.

IGF2BP1-directed mRNA stabilization during cellular stress
is independent of SGs

After having shown that the formation of visible SGs is dis-
pensable for bulkmRNA stabilization during cellular stress,
it remained to be addressed if the selective stabilization of
IGF2BP1-target mRNAs is maintained when SG forma-
tion is impaired. Therefore, we monitored the fate of three
IGF2BP1-target transcripts (MYC,ACTB andMAPK4) as
well as one none IGF2BP1-associated mRNA (PPIA) upon
preventing SG formation in arsenate-stressed cells depleted
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Figure 5. The control of mRNA turnover is independent of SG formation. (A) The turnover of indicated mRNAs was analyzed in U2OS cells transfected
with indicated siRNAs (siC, control; siSG, siTIA1, siTIAR and siG3BP1) for 72 h. Cells were treated with arsenate and actinomycin D (ActD + arsenate)
for indicated times. For RPLP0, PPIA and VCLmRNA abundance was determined relative to untreated samples by the �Ct method. For ACTB,MAPK4
and MYC, changes in mRNA levels relative to input (untreated) controls were determined by cross-normalization to RPLP0 using the ��Ct method. (B)
The turnover of indicated stress-induced mRNAs was analyzed in U2OS cells transfected as in A. Before monitoring mRNA turnover by ActD addition,
cells were pre-stressed by arsenate for 1 h (gray). RNA levels observed after 1 h of arsenate stress were set to one. The decay of mRNAs was analyzed by
qRT-PCR using the ��Ct method and RPLP0 for internal cross-normalization as in A. Error bars indicate SD of at least three independent analyses.
Statistical significance was determined by Student’s t-test. (C–E) The abundance of RNAs in stressed (arsenate and ActD for 2 h) and non-stressed U2OS
cells transfected as in A was analyzed by comparative microarray analyses. The concomitant knockdown of indicated proteins was confirmed by western
blotting with VCL and ACTB serving as internal controls (C). The change of RNA abundance in response to the triple knockdown (siSG, as in A) was
determined relative to siC-transfected controls (D). The siSG/siC ratio of transcripts is shown for the average of two independent analyses in stressed and
non-stressed U2OS cells. Transcripts with an at least 2-fold distance to the origin in any direction are indicated in green. Transcripts selectively decreased
at least 2-fold in the siSG-transfected populations during stress without significantly changed abundance under non-stressed conditions are indicated in
red. Transcripts selectively upregulated during stress are indicated in blue. The number of transcripts in the depicted color-coded classes (D) or with an at
least 2-fold distance to the origin in the four quadrants (D) was determined without any normalization of array data (E, w/o) or using indicated tools for
normalization (E, Mas5 or RMA).
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for IGF2BP1 (Figure 6A and B). Consistent with previ-
ous studies (16), target mRNA levels were reduced by the
knockdown of IGF2BP1, whereas PPIA transcript abun-
dance remained largely unaffected (Figure 6B, gray). The
inhibition of SG formation (SGD) itself had no effect on
the abundance of any of the analyzed transcripts support-
ing the view that preventing SG formation does not affect
bulk mRNA turnover (Figure 6B, black). Most strikingly,
however, only the IGF2BP1 target mRNAs were decreased
in their steady-state levels when the SGD was combined
with the knockdown of IGF2BP1 (Figure 6B, white). Com-
pared to the knockdown of IGF2BP1 alone, the decrease
in target mRNA abundance was similar to the quadru-
ple knockdown of TIA1, TIAR, G3BP1 and IGF2BP1.
This suggested that the target mRNA-specific stabiliza-
tion by IGF2BP1 is facilitated via IGF2BP1-containing
mRNPs but independent of SGs. In line with this con-
clusion one would expect that increasing the abundance
of the stabilizing factor IGF2BP1 promotes the stability
of target transcripts during cellular stress due to their in-
creased recruitment into mRNPs. This was tested by mon-
itoring mRNA turnover in stressed U2OS cells stably ex-
pressing GFP or GFP-ZBP1 (Figure 6C). The overexpres-
sion of GFP-ZBP1 (gray) interfered with the turnover of
its target mRNAsMYC, ACTB andMAPK4, as evidenced
by significantly elevated mRNA abundance compared to
GFP-expressing controls. In contrast, the turnover of none
IGF2BP1-associated PPIA mRNA remained largely unaf-
fected by the stable expression of GFP-ZBP1.

In conclusion, our findings indicated that the selective
stabilization of target mRNAs by IGF2BP1 was dose-
dependent but facilitated in a SG-independent manner.

DISCUSSION

In this study, we demonstrate that the stabilization of mR-
NAs during cellular stress can be uncoupled from the ag-
gregation of mRNPs to cytoplasmic SGs visible by fluo-
rescence microscopy. However, RBPs like IGF2BP1 pro-
tect their target mRNAs from decay during cellular stress.
This mRNA stabilization is facilitated in a dose-dependent
manner suggesting that the RBPs recruit target mRNAs to
protective mRNPs, as proposed for IGF2BP1 previously
(20,32,33). The protective mRNPs apparently form stable
RNA-protein complexes, which can transiently assemble
into SGs. Consistently, FRAP and photo-conversion stud-
ies reveal that RBPs like IGF2BP1 shielding target mR-
NAs from degradation, presumably by recruiting these into
mRNPs, are stably incorporated in SGs. In contrast, RBPs
essential for the assembly of SGs but dispensable for bulk
mRNA stabilization, for instance, TIA proteins andG3BPs,
only transiently associate with SGs. This suggests that they
continuously and dynamically recruit mRNPs to SGs in-
stead of forming a rigid and largely non-dynamic protein
scaffold for the assembly of SGs.

SGs are dispensable for the control of bulk mRNA fate in
stressed cells

There is accumulating evidence that the assembly of
mRNPs in super-structures during cellular stress is largely

dispensable for the control of bulk mRNA translation,
whereas relatively little is known about the role of SGs in
controlling mRNA turnover [reviewed in (13,34)].
A putative role of SGs in controlling protein synthesis is

largely based on the observation that key factors modulat-
ing mRNA translation accumulate or transiently associate
with SGs [reviewed in (2,24)]. Experimental proof support-
ing roles of SGs in controlling mRNA translation, how-
ever, remain sparse. On the contrary, recent findings pro-
vide strong evidence that the assembly of mRNPs in SGs is
even dispensable for controlling mRNA translation during
cellular stress. When SG formation is inhibited by the de-
pletion of factors essential for their assembly, the block of
mRNA translation observed during cellular stress is main-
tained (10,11). Moreover, recent findings indicate that dur-
ing the recovery from hypothermia the complete resump-
tion ofmRNA translation is largely uncoupled fromSGdis-
assembly (12). Consistently, we demonstrate that the inhibi-
tion of SG formation by the combined depletion of G3BP1
and TIA proteins neither affects the phosphorylation of
eIF2� nor interferes with the stress-induced block of bulk
mRNA translation.

As observed for the control of mRNA translation, it was
proposed that SGs also modulate the stabilization of bulk
mRNA during cellular stress [reviewed in (13)]. However,
in yeast the depletion of factors essential for the assem-
bly of SGs does not impair bulk mRNA stabilization dur-
ing cellular stress (35). In cancer-derived cells, IGF2BP1
is essential for stabilizing target mRNAs during cellular
stress, as shown here and previously (16). However, al-
though IGF2BPs are recruited to SGs (16,17), their role
in mRNA stabilization during cellular stress is maintained
when the formation of SGs is impaired. Likewise, we ob-
serve that the turnover of stress-induced transcripts, for
instance, HSP-encoding mRNAs, as well as bulk mRNA
turnover remains essentially unchanged when preventing
the formation of SGs. In conclusion, these findings pro-
vide strong evidence that the assembly of mRNPs in SGs
is dispensable for modulating mRNA turnover in cancer-
derived cells. This suggests that cytoplasmic mRNA fate
during cellular stress is largely if not exclusively deter-
mined by the recruitment of mRNAs into comparatively
stable protein-mRNA complexes termed mRNPs. We pro-
pose that the ‘caging’ of mRNAs in mRNPs transiently
protects associated transcripts from being degraded during
cellular stress. In support of this view, the increased abun-
dance of mRNP ‘guards’, for instance, IGF2BP1, enhances
the stress-dependent stabilization of mRNAs. Moreover,
the formation of comparatively stable ‘mRNA cages’ is
supported by FRAP and photo-conversion analyses. These
provide strong evidence that ‘protective’ RBPs, for instance,
IGF2BP1, are barely turned over in SG-recruited mRNPs.
Although these mRNPs are assumed to partially cycle be-
tween SGs, the cytoplasm and remaining polysomes, they
were suggested to be mainly concentrated in the cytoplasm
outside SGs (29). How mRNAs are released from their
cages and why mRNPs associate into SGs remains to be
addressed. However, it is tempting to speculate that post-
translational protein modifications of RBPs provide regu-
latory triggers allowing the control of mRNA association
and mRNP-recruitment to SGs.
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Figure 6. IGF2BP1 stabilizes target mRNAs in a SG-independent manner. (A) The knockdown of indicated proteins in U2OS cells transfected with
indicated siRNAs or siRNA mixtures (C, control; SG, siTIA1, siTIAR and siG3BP1) for 72 h was analyzed by western blotting. VCL served as loading
control. (B) The abundance of indicated mRNAs in cells transfected as in (A) and stressed by arsenate for 2 h was determined by qRT-PCR relative to
controls (siC) using the ��Ct method and RPLP0 for internal cross-normalization. (C) The turnover of indicated mRNAs was analyzed in U2OS cells
stably expressing GFP (black) or GFP-tagged ZBP1 (gray) treated with ActD and arsenate for indicated time. The abundance of indicated mRNAs was
analyzed by qRT-PCR relative to untreated samples using the ��Ct method and RPLP0 for internal cross-normalization. Error bars indicate SD of at
least three independent analyses. Statistical significance was determined by Student’s t-test. *P < 0.05; **P < 0.005.

Prion-like scaffolding versus dynamic recruitment of mRNPs
in SGs

SG formation is considered to essentially rely on the ag-
gregation of proteins comprising LC, also termed prion-
like, domains via which they assemble into larger structures.
Similar to germ cell granules, this aggregation is expected to
induce a ‘demixing phase transition’ resulting in the forma-
tion of hydrogel-like structures with a granularmorphology,
in this case SGs [reviewed in (4,5)]. In agreement with this

view, LC domains have been characterized in various RBPs
localized to SGs and for some of these proteins aggregation
into hydrogel-like superstructures has been demonstrated
in vitro, e.g. TIA1 (6). Notably, there is accumulating evi-
dence that protein-(RNA) aggregates observed in some hu-
man neurodegenerative diseases result from a disturbed SG
homeostasis [reviewed in (5)]. The deregulated subcellular
sorting and/or mutations in LC domains were suggested to
induce aberrant aggregation of LC domain containing pro-
teins like TIA1 or TDP-43 in nuclear and/or cytoplasmic
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foci. However, recent findings nuance this view by provid-
ing evidence that SG formation essentially relies on exces-
sive, non-polysome associated (m)RNA and consistently is
induced by free RNA or single-stranded DNA (9).

If TIAproteins and/orG3BPswould facilitate the assem-
bly of SGs by forming a rigid and barely dynamic prion-
like scaffold one would expect a reduced turnover rate of
these factors in SGs. At least they should reside in SGs
longer than proteins, which are dispensable for the forma-
tion of SGs, for instance, IGF2BP1. However, we observe
the exact opposite, with TIA proteins and G3BP1 having
comparatively short half-lives and an insignificant immo-
bile fraction in SGs. The latter is also supported by previous
studies reporting insignificant immobile fractions for TIA
proteins and G3BP1 (24). Furthermore, the dynamics of
TIA/G3BP proteins in SGs were comparable to those mea-
sured in the SG-free cytoplasm. In contrast, RBPs found to
be dispensable for SG formation but essential for the selec-
tive stabilization of mRNAs during cellular stress, are asso-
ciated with SGs at 4–5 times longer half-lives and strikingly
increased immobile fractions. These observations indicate
that instead of forming a rigid glue-like scaffold, TIA pro-
teins and G3BP1 dynamically recruit mRNPs to SGs and
thus act as ‘mRNPmovers’. In support of this view, we and
other labs largely failed to purify SGs, whereas the subcom-
plexes forming SGs, namely, mRNPs, can be isolated from
stressed cells by density centrifugation (data not shown).
Moreover, we demonstrate that the amount of IGF2BP1
andHUR copurified withG3BP1 during stress is increased.
We therefore conclude that G3BP1 and presumably TIA
proteins promote the assembly of SGs by the dynamic re-
cruitment of mRNPs to sites of SG formation instead of
acting like rigid scaffolds formed by prion-like aggregation.
This dynamic recruitment may involve the transient assem-
bly of TIA proteins and G3BPs via ID protein domains. In
accord with a redundant role of TIA proteins and G3BPs,
the assembly of SGs is only delayed but not prevented when
the factors are depleted separately, whereas it is substan-
tially impaired by their concomitant knockdown.

If the presented findings here also apply to cytoplasmic
granules observed in neurodegenerative diseases remains to
be investigated. Although the formation of SGs in neu-
rons essentially relies on the same proteins (TIA1, TIAR,
G3BP1/2 and TTP), their maturation to pathological struc-
tures was proposed to involve secondaryRBPs like TDP-43,
ATXN2 or FUS (36–38). This suggests the assembly and
persistence of such granules is modulated in a distinct man-
ner.

SGs: connecting protein synthesis to stress-signaling?

In previous studies we suggested that IGF2BPs prevent
target mRNA degradation during cell stress by recruiting
target transcripts to SGs (16). Here, we demonstrate that
the stabilization of mRNAs during cellular stress can be
uncoupled from the assembly of mRNPs in SGs. More-
over, we propose that the formation of SGs requires the dy-
namic recruitment of cytoplasmic mRNPs. Notably, these
findings do not contradict the suggested role of SGs in
modulating cellular signaling, for instance, by sequester-
ing protein-kinases, which in the case of mTOR signaling

can antagonize signaling pathways during cellular stress [re-
viewed in (4,5)]. Moreover, our findings support the hy-
pothesis that SGs play a minor role in modulating mRNA
fate during cellular stress. The latter presumably is largely
and sufficiently facilitated by mRNPs, as supported by here
presented and previous analyses [reviewed in (4,5,13)]. In
conclusion, this suggests that SGs, although dispensable
for controlling mRNA translation and/or turnover, orches-
trate stress signaling and the crosstalk of stalled bulk pro-
tein synthesis with protein unfolding during cellular stress.
This is supported by the finding that a variety of signal-
ing components, e.g. the mTORC1 complex, RACK1 or
the serine/threonine kinase FAST, were recruited to SGs
(24,39,40). The latter was shown to have a significant immo-
bile fraction in SGs suggesting a substantial retention time
for this kinase in SGs (24). This sequestering of signaling
components was, for instance, proposed to enhance cell vi-
ability by modestly promoting autophagy via the inhibition
of mTOR signaling (41). Furthermore, SGs could provide
a dynamic platform for stress-dependent protein modifica-
tions by localizing and concentrating signaling molecules
of distinct parts of the cell. The mechanisms and conse-
quences of SG-directed regulation of stress signaling remain
to be addressed in further detail. Moreover, future stud-
ies have to investigate whether protein-RNA aggregates ob-
served in neurodegenerative diseases serve roles in control-
ling mRNA fate or rather act as signaling modulators as
proposed for SGs.
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Pavement cells (PCs) are the most frequently occurring cell type in the leaf epidermis and play important roles in leaf growth and
function. In many plant species, PCs form highly complex jigsaw-puzzle-shaped cells with interlocking lobes. Understanding of
their development is of high interest for plant science research because of their importance for leaf growth and hence for plant
fitness and crop yield. Studies of PC development, however, are limited, because robust methods are lacking that enable
automatic segmentation and quantification of PC shape parameters suitable to reflect their cellular complexity. Here, we present
our new ImageJ-based tool, PaCeQuant, which provides a fully automatic image analysis workflow for PC shape quantification.
PaCeQuant automatically detects cell boundaries of PCs from confocal input images and enables manual correction of automatic
segmentation results or direct import of manually segmented cells. PaCeQuant simultaneously extracts 27 shape features that
include global, contour-based, skeleton-based, and PC-specific object descriptors. In addition, we included a method for
classification and analysis of lobes at two-cell junctions and three-cell junctions, respectively. We provide an R script for
graphical visualization and statistical analysis. We validated PaCeQuant by extensive comparative analysis to manual
segmentation and existing quantification tools and demonstrated its usability to analyze PC shape characteristics during
development and between different genotypes. PaCeQuant thus provides a platform for robust, efficient, and reproducible
quantitative analysis of PC shape characteristics that can easily be applied to study PC development in large data sets.

Leaves are the major sites of photosynthesis in most
plants and play central roles in carbon fixation and
energy supply. In addition, leaves control gas exchange
and transport of water and nutrients from roots to
shoots (Kalve et al., 2014). From a morphological per-
spective, leaves are remarkably diverse structures. The
diversity is reflected in numerous species-specific
shapes, which are reliable traits for taxonomic identifi-
cation and classification of species (Viscosi and Cardini,

2011; Tsukaya, 2014). Leaf size and shape are not solely
determined by genetic variability but also change during
development and adapt to environmental conditions
(Sultan, 1995, 2000; Cho et al., 2007; Bar and Ori, 2014).
Phenotypic plasticity of leaf morphology helps plants to
optimize sunlight harvesting, CO2 gas exchange, and ac-
climatization to changing ambient temperatures (Nicotra
et al., 2010; de Casas et al., 2011). Hence, understanding
the cellular and molecular mechanisms of growth regu-
lation is of central importance to improve plant yield,
quality, and resource use efficiency.

Because of its high relevance in plant biology, leaf
development has been extensively studied in the past
decades inmany plant species (Bar andOri, 2014, 2015),
including maize (Zea mays; Freeling, 1992), tomato
(Solanum lycopersicum; Gray, 1957), andMedicago truncatula
(Wang et al., 2008). Genetic and phenotypic analyses,
mostly in the model species Arabidopsis (Arabidopsis
thaliana), provide insights into the dynamics of cellular
events that underlie the development from primordia to
the final flat and polar organ (Tsukaya, 2010, 2013;
Vanhaeren et al., 2015). Growth and development are
controlled by complex molecular networks that integrate
internal and external signals (Cho et al., 2007; Wolters and
Jürgens, 2009). A central role in regulation of expansion is
played by the leaf epidermis, which forms a rigid outer
coat of the leaf (Savaldi-Goldstein et al., 2007; Kutschera,
2008; Bai et al., 2010; Marcotrigiano, 2010). In several plant
species, including Arabidopsis, the leaf epidermis is
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composed of three different cell types, which are derived
from specialized epidermal progenitor cells: pavement
cells (PC), stomatal guard cells, and trichomes, also called
leaf hairs (Glover, 2000). Out of these three cell types, PCs
are always present in the epidermis and usually the most
frequently occurring cell type in the epidermis. PCs can
develop highly interlocked, jigsaw-puzzle-like shapes
during expansion and provide a structural barrier against
mechanical insults. This epidermal barrier is interrupted
only by stomata, which form small pores required for gas
exchange and transpiration (Glover, 2000).
At the macroscopic level, studies of leaf geometry

were one of the first applications for shape analysis in
biology (Dale et al., 1971; Ghent, 1973; Kalyoncu and
Toygar, 2015). For example, shapes were quantified by
use of Fourier-based descriptors (McLellan and Endler,
1998), moments, geometric codes, and margin statistics
(Kalyoncu and Toygar, 2015), and leaf serration was
quantified using hierarchy analyses (Biot et al., 2016).
With improving imaging techniques, several studies
addressed the dynamics and changes of PC shape
during leaf development and expansion (Iwata and
Ukai, 2002; Andriankaja et al., 2012; Elsner et al., 2012;
Barbier de Reuille et al., 2015; Vanhaeren et al., 2015).
Key regulators of PC interdigitation were identified by
mutant phenotyping (Xu et al., 2010; Lin et al., 2012; Li
et al., 2013; Guo et al., 2015). In many cases, PC char-
acteristics were described by global descriptors, such as
area or circularity, or by skeleton-based approaches
(Horiguchi et al., 2006; Staff et al., 2012). These methods
oversimplify PC shape and contain no informational
value on the number and degree of lobes (Ivakov and
Persson, 2013; Wu et al., 2016). To quantify lobe num-
bers, two main approaches are widely used: skeleton-
based detection and manual quantification, which
typically underestimate the number of lobes or calcu-
late the number of lobes per area rather than per cell,
respectively (Xu et al., 2010; Gao et al., 2015). More re-
cently, a MATLAB-based tool was developed, which
aims to provide a platform for objective and robust
quantification of lobe number and shape characteristics
by analysis of a refined convex hull (Wu et al., 2016).
The number of features extracted by these tools, how-
ever, is limited to only a few parameters and thus is
not capable to cover the shape variability observable
in PCs.
In addition, most methods that quantify PC shape

rely on manual segmentation of individual cell
outlines. The manual preparation has two major
disadvantages. First, it is very time consuming and
laborious and prevents high-throughput analysis of
PC shape. Second, unless segmentation is carried out
in blind studies, it is prone to bias by the experi-
menter (Vanhaeren et al., 2015). Hence, for objective
quantification of PC shape characteristics, robust and
fully automatic techniques for the segmentation of
cell regions, as well as meaningful and clearly de-
fined shape descriptors are required. Powerful de-
scriptors combined with an unbiased automatic
segmentation would enable comparative analysis of

PC shapes not only within a single set of experiments
but also between data from independent studies
(Ivakov and Persson, 2013). Ideally, such tool should
be user-friendly and run on publicly available open
source platforms.

Here, we present our newly developed tool,
PaCeQuant, for fully automatic segmentation of indi-
vidual PCs from confocal input images and simulta-
neous extraction of 27 different shape parameters. In
addition, PaCeQuant optionally offers the analysis of
shape characteristics of individual lobes at two-cell and
three-cell contact points. The tool is implemented as
plugin for the widely used open-source image analysis
software ImageJ and publicly available under GPL v3.0.
It features a graphical user interface for user-friendly
data input of large data sets. We provide a supplemental
R script for extended data analysis (including statistical
analysis) and comfortable data visualization by boxplots
or violin plots. Extensive comparative evaluations prove
that PaCeQuant is able to produce high-quality seg-
mentations of PCs and to provide robust, reliable, and
reproducible quantification of PC shape characteristics
suitable for shape analysis during development and for
mutant phenotyping.

RESULTS

Overview of PaCeQuant Workflow

The workflow for cell segmentation and feature ex-
traction implemented in PaCeQuant is composed of
two parts. In the first part, we offer an optional auto-
matic segmentation of PCs from confocal microscopy
input images, which consists of four basic stages cov-
ering (I) improvement of the image quality, (II) cell
boundary enhancement, (III) binarization and morpho-
logical postprocessing, and (IV) region filtering. In the
second part, we provide a pipeline for feature extraction
from segmented cell regions, which runs on cell regions,
either defined by the automatic segmentation, after
manual correction of automatic segmentation results or
from manually segmented input images (Fig. 1).

We implemented PaCeQuant in a platform-
independent fashion in Java as part of the Microscope
Image Analysis Toolbox (MiToBo; Möller et al., 2016).
Most of the individual algorithms and processing steps
that are part of the complete workflow are directly
implemented as operators in MiToBo. If external func-
tionality is used, it is explicitly indicated below. The
PaCeQuant tool is publically available under GPL
License 3.0 as part of the MiToBo distribution at
MiToBo’s website (http://www.informatik.uni-halle.
de/mitobo/) and integrates seamlessly in ImageJ/Fiji
(Schindelin et al., 2012) via MiToBo’s own update site
(see “Installation and Usage of PaCeQuant” in “Mate-
rials andMethods” formore information). The source code
of MiToBo and the PaCeQuant plugin is available from
the MiToBo website or on Github (https://github.com/
mitobo-hub/mitobo); detailed documentation can be found
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Figure 1. Workflow of cell segmentation and feature extraction. A, Workflow implemented in PaCeQuant for automatic de-
tection of cell outlines (part 1, light gray) and extraction of shape features (part 2, dark gray). In the first part, input images are
processed in four basic stages (image quality improvement [I] to region filtering [IV], left column) via nine individual processing
steps (panels on the right). In the second part, the feature extraction (step 10) is performed. B, Example of an input image (step 0),
the processed image after outline extraction (step 7), and an image containing identified and filtered regions (step 9) used for
feature extraction. For an overview of all image-processing steps, see Supplemental Figure S1.
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on PaCeQuant’s webpage (http://mitobo.informatik.
uni-halle.de/index.php/Applications/PaCeQuant).
PaCeQuant takes full benefit of all built-in features of
MiToBoand its core libraryAlida (Posch andMöller, 2017).
Alida provides a framework for the development of data
analysis applications in a modular fashion and supports
the automatic generation of graphical user interfaces for
operators (Möller and Posch, 2013). Since Alida also pro-
vides command line interfaces for all implemented oper-
ators, PaCeQuant can be run optionally without graphical
interaction, e.g. remote on a server.

Cell Boundary Segmentation and Region Filtering

To develop an automatic segmentation method, we
used confocal images as input (Fig. 1B), which is a
common method for cell shape analysis (Xu et al., 2010;
Wu et al., 2016). We initially focused our studies on
cotyledons of 5-d-oldArabidopsis seedlings. Cotyledons
resemble the characteristics of true leaves in many as-
pects and have therefore been developed into a popular
model system to study leaf development (Tsukaya et al.,
1994). Cell outlines were visualized by staining of coty-
ledons with the lipophilic dye FM4-64 and imaged as
single optical sections covering groups of adjacent epi-
dermis cells at a resolution of 2.2 to 3.2 pixels/mm.
To extract cell boundaries, images are processed as

follows. First, we use a global contrast stretching to
enhance the contrast of the input images (step 1), fol-
lowed by applying a Gaussian filter (with SD s = 1) for
noise removal (Fig. 1A; Supplemental Fig. S1; step 2). In
stage (II), we further enhance the cell structures by
vesselness enhancement filtering (step 3), which is used
typically to enhance thin elongated structures, such as,
e.g. blood vessels, in digital images (Chaudhuri et al.,
1989; Zhang et al., 2010; Fraz et al., 2012). Here, we
apply a filter kernel, as proposed in Sofka and Stewart
(2006). The rectangular kernel mask is composed of a
Mexican hat profile in normal and a constant profile in
tangential direction. The Mexican hat profile is defined
by a second-order Gaussian derivative (Fig. 1A;
Supplemental Fig. S1). Each image is convolved with
the filter mask in 18 different orientations from 0° to
170°, in successive steps of 10° increase. The resulting
18 filter responses are joined into a single filter response
image by selecting for each pixel themaximal response to
any of the 18filterswhile setting negativemaxima to zero.
The filtered image is postprocessed with a local

median filter of radius r = 1 pixel to account for locally
varying contrasts. To segment cell boundaries, in stage
(III) a local Niblack binarization is applied to the filter
response images (Niblack, 1986; Fig. 1A; Supplemental
Fig. S1; step 4). The Niblack algorithm only yields reli-
able thresholds if intensity variance is present within the
local slidingwindow. Thus, we introduced an additional
test for local variance prior to threshold extraction, and
thresholds are only calculated for window positions
with sufficient local variance. All other positions are
classified as background. To account for small breaks in

the boundaries, the resulting binary image is dilated (r = 3
pixels) and eroded (r = 5 pixels). Very small components
(e.g. dots, linear structures, etc.), whichmost likely refer to
noise artifacts, are eliminated and the detected boundary
components are thinned to a width of 1 pixel (step 5).

An optional gap-closing step may be subsequently
performed on the 1-pixel-boundary images to eliminate
larger gaps in the cell boundaries (step 6). For this, two
different heuristics are implemented in PaCeQuant, a
very simple heuristic based on end-point distances and
a second heuristic, relying on a watershed transforma-
tion on binary images. In the first case, all boundary end
points with an empirically determined maximum dis-
tance of d = 20 pixels are linked to close gaps in between.
In the second case, we apply a Euclidean distance
transformation to the binary image, followed by a wa-
tershed transformation on the distance image using the
implementation available in ImageJ according to
Leymarie and Levine (1992). To remove implausible
boundaries resulting from oversegmentation of the
watershed segmentation, we apply a combination of
different criteria for filtering boundary segments. A
segment is preserved only if it existed in the binary
image already, if it is shorter than 40 pixels and its end
points are located close to previously detected end
points, if it extends a skeleton branch with a sufficient
length, or if it crosses an image region with sufficiently
dark intensity values most likely referring to a cell
boundary. In the resulting binary image, individual cell
regions are segmented according to the postprocessed
watersheds detected in the distance image. To ensure
that neighboring cell regions are not merged, bound-
aries are dilated (radius r = 3 pixels) and holes within
regions are filled (step 7). This is achieved by applying a
component-labeling algorithm to each detected region,
where the region is treated as background and poten-
tial holes are identified as foreground components. By
adding their pixels to the corresponding region, holes
are eliminated. In the final step of stage (III), cell
boundaries are thinned again to a width of 1 pixel using
the skeletonization algorithm of ImageJ (Zhang and Suen,
1984), short open branches are removed, and boundaries
are extended to a final width of three pixels. As a result,
the grayscale input image is converted into a binary
output image where the cell boundaries are represented
by black pixels and the cell regions by white pixels.

Stage (IV) starts with assigning a unique identifier to
each detected cell region by applying component la-
beling to the binary image resulting from the previous
stage (Fig. 1B; step 8). Regions with boundaries that
exceed the image border are removed since these reflect
incomplete cells (Fig. 1; Supplemental Fig. S1; step 9).
The remaining regions are filtered for size to remove un-
specific regions that likely reflect noise from the data set.

Quantification of Shape Characteristics

To analyze and quantify shape characteristics, we
implemented the automatic extraction of 27 features for
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each segmented cell in part 2 (or alternatively stage IV)
of our PaCeQuant workflow (Figs. 1 and 2; part 2 (or
alternatively stage IV), step 10). The features cover four
major groups: (A) global features, (B) contour-based
features, (C) skeleton-based features, and (D) special
features of PCs, e.g. the number and length of lobes
(Fig. 2A; Supplemental Table S1). Group A features
characterize the cell as awholewith a focus on its global
shape (e.g. circularity, degree of elongation). In group
B, we quantify the boundary characteristics, such as
changes in local contour concavity and tangent orien-
tations, which correlate with the degree of contour
folding. The third group of features analyzes shape
characteristics relative to the skeleton of the cell, which
we extract using the algorithm of Zhang and Suen
(1984). The skeleton is defined as the 1-pixel-wide main
axis or backbone of a cell region. It consists of a set of
branches, end points, and branch points and is fre-
quently used to quantify morphological characteristics
of regions in images (Marchand-Maillet and Sharaiha,
1999; Xiong et al., 2010). In the set of group C features,
we included the length of the longest path in the skeleton,
the number of branches (as a rough estimate for the
number of lobes), the average branch length, and the
average radius of the lobes associated with detected
branches. In group D, we extract specific features for PCs,
i.e. their lobe and neck characteristics.

Definition of PC-Specific Features

The automatic extraction and analysis of features
suitable to characterize PC shapes requires a unique
definition of relevant components of PCs involved in
the calculation of shape features, e.g. of lobes or neck
regions. So far, however, most PC shape characteristics
lack such clear definitions, and only vague ideas are
reported in the existing literature that discuss how lobes
are localized along a contour or how their exact di-
mensions are quantified. Similarly, a clear definition for
the neck width of PCs, which is a common measure for
the growth restriction at neck regions, is lacking. In-
stead, the neck width is calculated based on manually
selected line segments that appear reasonable to the
individual user (Li et al., 2003; Bannigan and Baskin,
2005; Fu et al., 2005). This quantification is highly biased
since the selection and definition of the line segments is
highly variable. Thus, we first provide clear definitions
of all relevant components of a PC, which form the
fundament for the set of PC-specific features automat-
ically extracted by PaCeQuant.

We define lobes and necks along the cell contour
based on local curvature orientation (Fig. 2, B–E). First,
the local curvature is estimated for each point along the
contour by applying the robust algorithm of Freeman
and Davis (1977) available in MiToBo. Resulting cur-
vature values are convolved with a Gaussian filter
mask to smooth the profile, which increases the quality
of feature extraction from curvature values. Values
for positions where no curvature is extracted are

interpolated by a nearest neighbor approach. The
resulting contour contains concave and convex seg-
ments that are defined by positive and negative cur-
vature values, respectively. Lobes and necks are
detected by analyzing the signs of local curvature (Fig.
2B). Points where signs change refer to inflection points
connecting the apical parts of lobe contours (Fig. 2C).
We define a neck point as the center point of a convex
contour segment (Fig. 2E). This definition turned out to
be more robust than selecting the point with a maximal
curvature value since local curvature values may suffer
from noise and numerical instabilities due to dis-
cretization. The distance between two adjacent neck
points, termed lobe baseline, represents the basal width
of an individual lobe. If the lobe baseline intersects with
the background of the image (Fig. 2E), we heuristically
adapt the positions of the boundary points of a lobe
section, resulting in virtual neck points. In detail, the neck
points defining a lobe section are virtually shifted to-
ward each other along the contour until the baseline
connecting the two virtual points no longer intersects
with the image background. By shifting a neck point to
a new virtual position, the original neck point is ex-
panded to a neck region, which is flanked by the original
neck point and the new virtual neck point. If shifts for
both adjacent lobe regions of a neck point are necessary,
two virtual neck points will flank the neck region.

A lobe is defined as the contour segment between
two adjacent neck points. To increase detection ro-
bustness and to distinguish lobes from unspecific cur-
vature variations due to segmentation inaccuracies, we
set the threshold for lobe detection by default to contour
segments with a length of $8 pixels. If necessary, the
threshold can be adjusted by the user. The number of
inflection points divided by two refers to the number of
lobes. The line connecting the two inflection points of a
lobe defines the lobe equator and represents the equator
width of a lobe (Fig. 2C). The lobe length is calculated as
the maximal distance between the lobe baseline and the
lobe contour (Fig. 2D). In addition, we calculate the
distances between baseline and equator, and equator
and contour as estimates for the basal and apical lobe
lengths (Supplemental Table S1).

The area enclosed by the baseline and the contour
segments of the lobe represents the lobe region. As a
measure for the relative proportion of lobes to the total
cell area, we calculate the nonlobe area, which yields a
first estimate of the growth restriction/expansion of the
core cell region (i.e. the region between the necks). The
nonlobe area is the area of a cell enclosed by the lobe
baselines and, if neck points were virtually shifted,
by additional pixels of the resulting neck regions
(Supplemental Table S1). As an additional value for the
size of the cellular core region, we quantify the width of
the core region. For this, we utilize the parts of the re-
gion skeleton not belonging to any branch, i.e. the core
skeleton, as an estimate of the cellular core region (Fig.
2F). We exclude the skeleton branches as they usually
refer to lobes of a region. For each pixel of the core
skeleton, the Euclidean distance to the background
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is calculated, and the width of the core region is
double the Euclidian distance. To characterize the core
region more globally, we sort all distances along the
core skeleton in ascending order. Since the region
skeleton is very sensitive to changes in contour shape,
extreme values of this sorted list, i.e. the minimum
and maximum distances, often refer to outliers. To
increase the robustness of the core width values, we
thus extract the first and third quartile entries as

estimates for the minimum and maximum core widths,
respectively.

Accuracy of the Automatic Detection

To assess the quality of PaCeQuant’s segmentation
approach, we compared the results from the fully au-
tomatic cell segmentation with manually extracted cell

Figure 2. List of PaCeQuant cell shape features and basic definitions of PC-specific features. A, List of cell shape features extracted
by PaCeQuant and their units. For a detailed description of feature characteristics, see Supplemental Table S1. B to F, Basic
definitions used for the quantification of PC-specific shape features, including (B) apical and basal parts of a lobe, (C) lobe equator,
(D) lobe baseline, (E) neck point and neck point correction, and (F) core region dimensions.
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outlines. For a subset of 15 individual cells from one
input image (data set 1) we calculated recall and pre-
cision measures of segmented cell areas and distance
measures between manually and automatically
extracted cell contours (Fig. 3; Supplemental Table S2).
The recall quantifies the fraction of the cell area in the
manually segmented cell, which has also been extracted
by the automatic approach. Vice versa, precision
quantifies the ratio of the area detected by automatic
segmentation, which is also part of the manually seg-
mented cell. For both measures, a value of 1 represents
an optimal fit. To compare the similarity of the two
samples, we calculated the F1-score (also known as
Sørensen-Dice index), which is the harmonic mean of
recall and precision and ranges from 0 to 1, with 1 rep-
resenting highest similarity. To compare the accuracy of
the detected contours, we computed the Hausdorff
distance, which measures the (dis)similarity between
two sets of points. For each point of one set it extracts
the minimal distance to a contour pixel in the second
set, and vice versa. Next, the maximum over all mini-
mal distances is identifiedwithin the two sets, hence the
Hausdorff distance refers to the maximal distance that
occurs between two contours at any position.

For the 15 cells in our evaluation set (Fig. 3A) we
found an average recall of 0.976 6 0.0088 (SD) and an

average precision of 0.973 6 0.0121, resulting in an
average F1-score of 0.9756 0.0079 (Supplemental Table
S2). The values are consistent, with a large overlap be-
tweenmanual and automatic segmentation (Fig. 3B, left
and middle). For 12 of the 15 test cells, the Hausdorff
distance was smaller than 6.5 pixels. For 3 cells, dis-
tances of 12.2, 11.7, and 44.2 pixels were found, result-
ing in contour changes of maximum 1 or 2 mm. These
are due to short contour segments where larger devia-
tions between manual and automatic segmentation
appear, often caused by low contrasts along the contour
or by stomata accidentally classified as part of a cell
(Fig. 3B, right).

To further validate the accuracy of the automatic
segmentation and to assess the impact of differences in
segmentation on feature values, we performed a pair-
wise comparison of all 27 extracted features between
manually and automatically segmented cells (Fig. 3C;
Supplemental Fig. S2). For the 11 global features (group
A), the values from manual and automatic segmenta-
tion are almost identical in all 15 cells, as revealed by
straight diagonal lines in the scatterplots. Thus, short
sections at which automatically segmented boundaries
deviate from manual cell boundaries have only minor
effects on this feature class. The three other groups of
contour-based (group B), skeleton-based (groupC), and

Figure 3. Comparison between automatic and manual segmentation of cells based on PaCeQuant features. A, Sample image
containing 15 individual cells, which were segmented fully automatically and manually. Numbers correspond to cell identifiers.
B, Overlay of cell outlines detected by automatic (red) andmanual (blue) segmentation for sample cells with high congruence and
different cell sizes (left, ID 1, large cell; andmiddle, ID 7, small cell) andwith local deviations (right, ID 10). C, Scatterplots of one
exemplary feature for each of the four feature groups (see Fig. 2 and Supplemental Table S1) from a pairwise comparison between
automatic and manual segmentation of all 15 cells. Cells shown in B are highlighted in red (for a summary of all features, see
Supplemental Fig. S2).
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PC-specific (group D) features are slightly more sensi-
tive to the different segmentation methods. A tendency
for higher values in manually segmented cells is seen
for margin roughness (group B), as indicated by an
accumulation of points below the diagonal. Variation
without a clear tendency toward the segmentation
method is seen for “average branch length” and “av-
erage end point distance” (group C), and “average lobe
length” (group D; Supplemental Fig. S2). Notably,
feature values sometimes differ significantly even for
cells with a high overlap of cell boundaries between
manual and automatic segmentation, as seen e.g. in cell
ID 7 for “average branch length” (group C) or “average
lobe length” (group D; see Fig. 3B; Supplemental Fig.
S2; Supplemental Table S2). The differences are con-
sistent with a general sensitivity of skeleton-based fea-
tures (group C) to even small changes in region shape
(Gonzales and Woods, 1996). Likewise, the quanti-
fication of contour-based features (group B) and
PC-specific features (group D) relies on analyzing cur-
vatures and concavities of the region boundary and
thus is sensitive to small variations in shape contours
(e.g. Utcke, 2003).
Variance can be generated by manual segmentation

due to bias caused by different persons and even by a
single person between segmentations generated at dif-
ferent time points (Vanhaeren et al., 2015). The accuracy
of manual segmentation further depends on the sam-
pling density, i.e. the frequency of sampling points
along the cell boundary. To reduce the impact of geo-
metrical discontinuities in manual segmentation,
extracted contours are commonly smoothed, e.g. using
ImageJ’s spline fitting (Wu et al., 2016), which addi-
tionally affects the curvature of the contour. Automatic
segmentation, on the other hand, mostly depends on
the image quality. Local regions of low contrast are
prone to segmentation inaccuracies, and the optional
watershed gap closing potentially leads to over-
segmentation of actual cell borders. In a direct com-
parison, however, bias introduced by PaCeQuant is
identical for all images, and PaCeQuant reproducibly
detects cell regions from experiments conducted at
different times. Thus, our first experiment suggests that
PaCeQuant is suitable to detect cell outlines automati-
cally and to quantify cell shape characteristics with a
very high quality.
The automatic segmentation step works best with

input images with a high image quality, which some-
times is difficult to obtain, e.g. when leaves are curled or
wavy. In such cases, results from the automatic seg-
mentation can be exported from PaCeQuant and can be
manually corrected in ImageJ to remove local inaccur-
acies. PaCeQuant supports two formats for exporting
segmentation results. Segmented cell regions can be
saved as ImageJ ROI files or exported as label images,
which can be edited directly in ImageJ via the ROI
manager or allow for manual corrections by editing
pixel intensities in, e.g. programs like Gimp, respec-
tively. Alternatively, if only a few cells are detectable in
the input image or if input images are not compatible

with the automatic segmentation method implemented
in PaCeQuant, as is the case, e.g. for agarose imprints of
cell outlines, segmentation can be conductedmanually in
ImageJ. In both cases, manually corrected or manually
defined cell regions can be imported into PaCeQuant for
automatic feature quantification and data analysis.

Precision of Lobe Detection

The formation of lobes and indentations is a specific
property of PCs. Thus, lobes are quantified commonly
to describe shape characteristics, mostly by manual
counting or by skeleton-based approaches, which are
prone to bias and often inaccurate. Recently, the Lobe-
Finder program was released, which automatically
measures lobe numbers by analysis of a refined convex
hull (Wu et al., 2016). However, the LobeFinder tool still
relies on manual segmentation of individual cells and
tends to underestimate lobes when compared to man-
ual counting (Wu et al., 2016). To investigate the quality
and suitability of lobe detection based on sign changes
of curvature, which we implemented in PaCeQuant, we
compared the efficiency of PaCeQuant’s lobe detection
with LobeFinder and with manual lobe counting using
the sample set of 15 cells (Fig. 4). For manual counting,
lobes were quantified in the original input image by
four individualswith expertise in PC shape analysis in a
blind study. To compare PaCeQuant with LobeFinder,
cell boundaries automatically extracted by PaCeQuant
were used as input, and all features for which quantifi-
cation algorithms are implemented in both tools (e.g. area,
solidity, and circularity) were quantified and compared.

For all three approaches, a tendency for increased
lobe counts was detected with increasing cell size (Fig.
4A). Notably, manual counting resulted in large dif-
ferences between individual persons in the number of
detected lobes for some of the analyzed cells (Fig. 4, A
and B). The deviations within the four sets of manually
detected lobes increased with increasing size and
complexity of the analyzed cells. For some cells (e.g.
cell ID 15, ID 14, and ID 6) manual counting resulted
in differences of 8 to 11 lobes per cell, which refers
to a deviation of up to 100% for single cells. Neverthe-
less, a significant number of lobes is consistently
detected in all four manual annotations and by both
tools, as shown for cell ID 2 (Fig. 4B). PaCeQuant and
LobeFinder are in the range of lobe numbers counted
by the four individuals. In general, PaCeQuant tends
to detect more lobes than LobeFinder, and lobe num-
bers detected by PaCeQuant are in the upper range
of manual lobe counts (Fig. 4, A and C). For all
other features, such as area, solidity, and convex hull
characteristics, we obtained identical results with
LobeFinder and PaCeQuant, as expected for identical
input contours (Fig. 4C; Supplemental Fig. S3). Thus,
we conclude that PaCeQuant is suitable to quantify
lobes efficiently. The comparison of the three methods
further highlights the subjectivity of manual lobe
counting and demonstrates a requirement for automatic
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Figure 4. Evaluation of lobe detection accuracy by comparison between PaCeQuant results with LobeFinder and manual
lobe counting. A, Number of lobes detected in the 15 sample cells (ID 1–ID 15) after automatic segmentation by
PaCeQuant (orange), LobeFinder (black), and by manual lobe counting (gray). For manual counting, lobes were ana-
lyzed by four independent researchers. The gray line represents the mean lobe number per cell of the four measure-
ments; the gray strip represents the range of the independent measurements. Cells are sorted by their area from small
(left) to large (right). B, Lobe count results in one exemplary cell (ID 2) analyzed with PaCeQuant (left, 20 lobes),
LobeFinder (middle, 16 lobes), and manually (right, 13–20 lobes). Lobes identified by PaCeQuant or LobeFinder are
marked in red. Lobes identified manually are marked in red (nine lobes), blue (eight lobes), pink (four lobes), and
turquoise (three lobes) if identified by four, three, two, or at least one person, respectively. C, Pairwise comparison of
features computed by PaCeQuant and LobeFinder in the sample set of the 15 automatically segmented cells. Scatterplots
are shown for area, solidity, and lobe count (for a summary of all features, see Supplemental Fig. S3). The cell shown in B
is highlighted in red.
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lobe quantification to generate comparable and repro-
ducible data with a constant bias.

Application of PaCeQuant to Large Data Sets

The main goal of PaCeQuant is to enable high-
throughput analysis of PC characteristics. We thus
validated the quality of PaCeQuant results on a larger
data set (data set 2) consisting of 14 individual images
of PCs from cotyledons of 5-d-old wild-type seedlings
(Supplemental Fig. S4). In total, 373 cellswere identified
in the sample set within a time span of 10 min, starting
from data input to result output, which refers to 1.6 s
per cell. As seen for the initial set of 15 cells (see Fig. 3),
some cells, in particular cells adjacent to stomata or
with regions of low contrast, were not detected cor-
rectly (Supplemental Fig. S4B). To study the impact of
such detection inaccuracies on the overall feature
quantification we manually filtered the automatic
PaCeQuant segmentation results. Thirty-one cells
showed locally incorrect cell borders and failed to pass
the manual quality control, which represents #10% of
all detected cells. A pairwise comparison of the distri-
butions for all 27 features between the unfiltered data
set, and the manually filtered data set revealed that the
manual filtering step has only minor effects on feature
distributions and set properties, which are not statisti-
cally significant (P values of 0.623–0.997; Supplemental
Fig. S4A). Thus, detection errors within individual cells
are compensated by the analysis of large data sets,
which can easily be generated with PaCeQuant, and
time-intense manual filtering is not required for reliable
PC shape quantificationwith PaCeQuant. Compared to
manual segmentation, PaCeQuant offers the advantage
of a much faster and unbiased segmentation. Thus,
PaCeQuant is capable of increasing the amount of
quantitative data, which improves the power of statis-
tical analyses and guarantees a larger objectivity and
reproducibility of extracted data.

Analysis of Cell Shape Characteristics
during Development

To assess the usability of high-throughput cell shape
analysis in a biological context, we applied PaCeQuant
to a developmental series of Arabidopsis cotyledons
(Fig. 5). We analyzed PCs of the adaxial side of wild-
type cotyledons at stages of early cell expansion (3 d
after germination [DAG]), of rapid expansion (5 DAG),
and at a stage with first fully expanded cells (7 DAG;
data set 3; Zhang et al., 2011). At 3 DAG, cells range in
size between 245 and 2,320 mm2, with 90% of the cells
being smaller than 1,400 mm2 (Fig. 5, A and B). At
5 DAG, cells span sizes between 245 and 6,367 mm2. At
this stage, 90% of the cells are smaller than 4,042 mm2,
and approximately 50% of all detected cells range in
size between 1,400 and 4,042 mm2. The number of small
cells decreased to ,40% when compared to 3-d-old

seedlings. At 7 DAG, roughly one-third of the detec-
ted cells belongs to the groups of small and medium-
sized cells each, and the last third consist of cells with
sizes larger than 4,040 mm2, ranging up to 12,600 mm2.
The detected cell sizes are in the range of previous re-
ports (Zhang et al., 2011), which further demonstrates
the accuracy of the PaCeQuant measurements. In
leaves, neighboring cells differ largely in their shapes
ranging from small and simple-shaped cells to large
and highly complex cells (Elsner et al., 2012). Consistent
with large differences in cell size and cell differentia-
tion, we observed high variability within the feature
values calculated from analysis of the complete set of
detected cells as input (Fig. 5, C–E, Supplemental Fig.
S5A). The variability increases with increasing age of
the analyzed cotyledons (Supplemental Fig. S5) and
reflects the increasing diversity of cell shape and size
during later stages of cotyledon (Zhang et al., 2011) and
leaf growth (Elsner et al., 2012).

We next aimed to analyze PC shape transitions dur-
ing development of cotyledons in more detail. To
quantify shape characteristics in cells at similar stages
of cellular expansion, we categorized them into small,
medium, and large cells by applying the 90% thresholds
from 3 DAG and 5 DAG as small size threshold (ts) and
medium size threshold (tm), respectively (Fig. 5B). We
analyzed the 27 PC shape features in the three sets and
in the three size categories and compared the feature
distributions by applying the Dunn’s test and by
adjusting P values with the Benjamini-Hochberg pro-
cedure (Fig. 5, C–E; Supplemental Fig. S5). As expected,
values of parameters such as perimeter, length, width,
convex hull perimeter, lobe count, and lobe width
increased significantly (P , 0.001) with increasing
cell size (Fig. 5C; Supplemental Figure S5, A and B).
Consistent with increased lobe formation and growth,
inversely related parameters such as solidity, circular-
ity, or convex hull roundness decreased significantly
(P , 0.001). Other parameters, in particular cellular
eccentricity, were unaffected by cell size or by the de-
velopmental stage (Fig. 5E). Within the individual de-
velopmental stages, we observed highly significant
differences between small and medium and small and
large cells for almost all analyzed features. Between
medium and large cells, significant differences were
visible at 7 DAG (P, 0.001). Within the 5 DAG set, only
a few features differed significantly (P , 0.01) between
medium and large cells. The tendencies, however, were
identical to those measured at 7 DAG.

To analyze geometries of similar-sized cells during
leaf growth, we next compared the three cell popula-
tions (small, medium, and large) across the three de-
velopmental stages. Small cells at 3 DAG differed
significantly from small cells at 7 DAG in 23 out of the
27 analyzed parameters (P , 0.05). Large differences
were observed for PC-specific features such as lobe
count and lobe length and for circularity and solidity
(Supplemental Fig. S5, A and B). Similarly, medium-
sized cells differed between the analyzed develop-
mental stages. Only weak differences were observed
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Figure 5. Analysis of pavement cell shape characteristics during development. A, Epidermal pavement cell shape in the adaxial
side of cotyledons from wild-type (Col-0) seedlings 3, 5, and 7 DAG. The color gradient represents the area of the detected cells
(red, small to yellow, large). B, Relative distribution of cell areas in cotyledons of 3-, 5-, and 7-d-old seedlings. Cells were
categorized into small cells (threshold ts# 1400 mm2, which includes 90% of the cells in 3-d-old seedlings), medium-sized cells
(threshold tm # 4042 mm2, which includes 90% of the cells in 5-d-old seedlings that exceed ts), and large cells ($tm), which
represent the different stages of cell differentiation. C to E, Quantification of cell shape features during differentiation. Cells were
grouped according to (B) or treated as a single input set (all). Numbers on the x axis refer to the number of cells analyzed per
sample set. Feature values are shown in box plots. Results aremedians; boxes range fromfirst to third quartile. For a summary of all
features and statistical analysis of feature values, see Supplemental Figure S5. (C) Solidity decreases with increasing cell size and
differentiation, which is consistent with (D) an increased number of lobes, while other parameters, as shown for (E) eccentricity
are largely unaffected during differentiation.
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between the shape characteristics of large cells at 5 DAG
and 7 DAG samples, and differences were restricted
mostly to PC-specific shape features. These results are
consistent with previous studies, which revealed age-
dependent differences in cell shape of similar sized cells
throughout development (Zhang et al., 2011; Wu et al.,
2016). Differences in shape characteristics are more
pronounced in expanding cell populations and disap-
pear once cells are fully expanded. Thus, our data
provide the first evidence that automatic analysis of
large populations of PCs with PaCeQuant in combi-
nation with size filtering is a suitable approach to
quantify developmental changes of PC shape.

Analysis of Lobe Type Characteristics

Most interdigitations are formed at two-cell contact
points between two adjacent cells and form lobes re-
ferred to as type I lobes (Wu et al., 2016). In addition,
some lobes form at three-cell contact points, referred to
as type II lobes. So far, however, analyses of type I and
type II lobe characteristics are limited because lobe
classification has to be done manually, andmethods for
the quantification of lobe characteristics are missing.
With its automatic segmentation and feature extraction
capabilities, PaCeQuant provides a framework for
the automatic classification of lobe types and shape
quantification.We implemented an optional analysis of
shape characteristics of individual lobes within single
cells, which allows discriminating between lobes at
two-cell contact points (TYPE-1) and three-cell contact
points (TYPE-2; Fig. 6).
We classify lobes into TYPE-1 or TYPE-2 based on the

analysis of their neighborhood in fields of adjacent cells
(Fig. 6A). All lobes for which information on neigh-
boring cells is missing, e.g. at border regions or adjacent
to stomata, and which thus cannot be sorted in either of
the two groups, are classified as UNDEFINED. For
classification, we use the output label images generated
during stage (IV) of the image analysis workflow
implemented in PaCeQuant (see Supplemental Fig. S1,
image 9). In these images, cell boundaries are repre-
sented as a black line with a width of 3 pixels that refers
to the background of the image, and regions belonging
to individual cells are defined by unique labels. In a first
step, cell regions are expanded by dilation with a mask
size of #5 using a built-in MiToBo function. The dila-
tion locally stops as soon as two adjacent cell regions
touch, which removes the boundaries between two
adjacent cells and prevents the fusion of individual cell
labels. Remaining black pixels thus exclusively refer to
background regions, which do not belong to a cell
boundary nor to any cell. Subsequently, for each indi-
vidual lobe within each analyzed cell, the total number
of different labels in its vicinity, defined by an 11 3

11 pixel-sized neighborhood around each pixel of the
lobe, is counted and yields the base for type classifica-
tion. If two different labels are present, i.e. the label of
the analyzed lobe region and one additional neighboring

region, the lobe is classified as TYPE-1 (Fig. 6A). In case
of three labels present at the vicinity of a single lobe, it
belongs to the TYPE-2 group of lobes. The presence of
one or more background pixels at the lobe indicates that
it is located close to an undefined image regionwhere no
further information is available, and the lobe thus is
classified as UNDEFINED.

We applied the lobe classification approach to the
developmental series (see Fig. 5) and quantified the
number of type I and type II lobes within the small-,
medium-, and large-sized cells at 3 DAG, 5 DAG, and
7 DAG (Fig. 6B; Supplemental Figure S6A). We ob-
served only small increases in the number of type II
lobes per cell between small (average lobe number of
1 to 2)- andmedium-sized cells (average lobe number of
2 to 3.5), and only weak differences between small,
medium, and large cells (averaeg lobe number of 1 to
3.8), respectively, during development (Fig. 6B). In
contrast, the number of type I lobes increased during
cellular expansion from an average lobe number of 2 to
an average lobe number of 10 in small- and large-sized
cells, respectively. In medium- and large-sized cells,
most lobes form at two-cell junctions (Fig. 6B). Thus,
consistent with earlier studies, our data suggest that
type II lobes are established mostly during cytokinesis,
while most of the lobes formed during cellular expan-
sion are type I lobes (Jura et al., 2006; Wu et al., 2016).

To quantify shape characteristics of individual lobes,
PaCeQuant extracts five lobe features per lobe, in-
cluding the equator length, the baseline length, the
apical and basal lengths, and the contour length of each
lobe (Supplemental Fig. S6B). In addition, for type II
lobes, we quantify the distance of the contour segments
from the equator to the three-cell-junction point. To
estimate the bending of a lobe from these features, we
calculated the ratio of the lobe equator length to the
total length of the lobe contour (Supplemental Fig. S6,
C–E). In a direct comparison, type II lobes displayed a
larger contour length relative to the equator than type I
lobes, as indicated by log(Equator Length/Total Lobe-
Contour Length) values of #1 and $1 in type II and
type I lobes, respectively (Fig. 6C). This points to a
higher degree of asymmetric expansion at three-cell
junctions. We measured the length of the lobe contour
segments corresponding to the contact sides with the
two neighboring cells and compared the ratio of the
short versus the long contour segments (Fig. 6D;
Supplemental Fig. S6, E and F). Our data revealed a
tendency for a more similar length of the two lobe
contours in small cells when compared to large cells,
which suggests that different levels of expansion of the
two neighboring cells contributed to these changes in
type II lobe characteristics. During development, the
difference between the two nonuniformly growing
parts of the lobes increased further. Our results suggest
that predominant expansion of one the two neighbor-
ing cells contributes to the higher degree of asymmetric
expansion at type II lobes, which is consistent with
previous reports (Jura et al., 2006). Together, we con-
clude that our novel method robustly detects and
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Figure 6. Analysis of type I and type II lobes and quantification of lobe characteristics. A, Image of an exemplary group of
adjacent PCs after neighborhood analysis of individual lobes. Apical contours of type I and type II lobes are shown in blue
and red, respectively. In type II lobes, three-cell contact points (shown as black dots) separate the lobe contours corre-
sponding to the contact sides with the two neighboring cells (referred to as short and long contour segments). B to D,
Analysis of lobe characteristics in PCs from the three developmental time points (3 DAG, 5 DAG, and 7 DAG) and the three
size categories (small, medium, large; see Fig. 5). For an overview of quantified lobe features and statistical analysis, see
Supplemental Figure S6. B, Bar plots showing the average number of type I (TYPE_1) and type II (TYPE_2) lobes per PC. C,
Average ratio of lobe equator length to total contour length in type I and type II lobes in a logarithmic scale. D, Analysis of
the length of the two parts of type II lobe contours that span the distances from the lobe equator to the three-cell contact
point. Scatterplots of all individual type II lobes compare the short (ApicalContourShort) and long (ApicalContourLong)
fragments.
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classifies type I and type II cells based on the analysis of
the lobe neighborhood and quantifies characteristics of
individual lobes, which provides a platform to study
effects of, e.g. gene functions specifically involved in the
formation of type II lobes.

Phenotype Analysis of Cell Shape Mutants

We next applied the PaCeQuant program to analyze
shape characteristics in mutants that differ in PC shape
compared to wild-type seedlings (data set 4; Fig. 7). We
selected a mutant impaired in KATANIN (KTN1)
function. KTN1 encodes a protein with microtubule
severing function, and ktn mutant lines have exten-
sively been studied with respect to microtubule order-
ing and PC shape characteristics (Lin et al., 2013;
Lindeboom et al., 2013; Zhang et al., 2013). In particular,
lobe growth has been shown to be impaired in ktn1
mutants, which results in a reduced length of lobes
(Lin et al., 2013). In addition, we included transgenic
Arabidopsis Pro-35S:IQ67-DOMAIN (IQD)16 lines in our
analysis. IQD16 belongs to a novel class of calmodulin-
binding proteins with potential roles in cellular calcium
signaling (Abel et al., 2005; Abel et al., 2013). Most IQD
family members localize to microtubules, and over-
expression of IQD16 alters microtubule organization
and induces cell elongation (Bürstenbinder et al., 2017a;
Bürstenbinder et al., 2017b). As input, we used 10 im-
ages per genotype of cotyledons from 5-d-old seedlings
(Fig. 7A). We selected 5-d-old seedlings because at this
stage cotyledons are flat, which facilitates fast and easy
image acquisition. In addition, a large number of PCs is
actively expanding at 5 DAG and has developed pro-
nounced lobes (see Fig. 5), which is a prerequisite for
reliable lobe quantification.
We observed comparable distributions of cell sizes in

the two mutant lines when compared to the wild-type
control (Fig. 7B). Since medium- and large-sized cells
are highly similar in cotyledons of Arabidopsis wild-
type seedlings at 5 DAG (see Fig. 5) we assumed that
removal of only small cells from the sample set is suf-
ficient for size filtering and reliable quantification (see
Supplemental Fig. S5B). We thus applied the empiri-
cally determined small size threshold ts from the de-
velopmental analysis of wild-type seedlings (see Fig.
5) to the mutant data set and quantified PC shape
characteristics in all cells larger than 1,404 mm2. After
size filtering, we retained 161, 156, and 226 cells for
wild-type, ktn1-5, and Pro-35S:IQD16, respectively
(Fig. 7B). Thus, approximately 50% of all cells detected
by PaCeQuant are included in the subsequent data
analysis.
Consistent with previous reports, we detected a sig-

nificantly reduced average lobe length in ktn1-5 (P ,

0.001; Fig. 7C; Supplemental Fig. S7B). The lobe length
automatically measured with our novel algorithm re-
sembles lobe length values measured manually by Lin
et al. (2013) and correlates with lobe length values
measured in ktn1 mutants. The total number of lobes is

not altered in ktn1-5 when compared to wild-type
seedlings, which points to roles of KTN1 in lobe
growth, but not in lobe initiation. In addition, we ob-
served increases in cell size (area), but not in cellular
elongation (eccentricity). Nonlobe area as well as min-
imum andmaximum core width are increased in ktn1-5
mutants. Thus, our data suggest that loss of KTN1
promotes isotropic expansion of PCs, possibly by pre-
venting growth restriction at the neck regions. In
transgenic Pro-35:IQD16 lines, lobe length is reduced
even stronger than it is in ktn1-5 (P # 0.001). The re-
duced lobe growth is further reflected by an increased
nonlobe area ratio and by a reduced irregularity of
the cell contour, as reflected by a decreased margin
roughness in Pro-35S:IQD16 , ktn1-5 , Col-0 (Fig. 7C;
Supplemental Fig. S7, A and B). Compared towild-type
and ktn1-5 mutants, we observed a significant elonga-
tion of individual cells in Pro-35:IQD16 seedlings (P ,

0.001), which is represented by increased length (P ,

0.001), reduced width (P , 0.001), and increased ec-
centricity (P, 0.001) values of cells from Pro-35:IQD16
lines. The cell sizes, however, are not altered in Pro-35S:
IQD16 lines, which suggests that IQD16 does not pro-
mote cellular expansion but alters the direction of cel-
lular growth. Thus, our data suggest distinct functions
of KTN1 and IQD16 in regulation of cell growth and
cellular expansion and provide first insights into po-
tential roles of IQD16 in establishment of cellular po-
larity or growth anisotropy. Together, the combined
analysis of 27 shape descriptors provides a platform for
comparative and quantitative analyses with statistical
support suitable for mutant phenotyping and develop-
mental analyses.

DISCUSSION

In this study, we present PaCeQuant, a novel ImageJ-
based tool for automatic segmentation of leaf epidermal
PCs and simultaneous quantification of PC shape
characteristics. The fully automatic segmentation of
individual cells by PaCeQuant is a major advance be-
cause currently all measurements of PCs require man-
ual segmentation. Manual segmentation is very time
consuming and prone to bias introduced by the sub-
jectivity of sample choice and contour labeling
(Vanhaeren et al., 2015; Wu et al., 2016). PaCeQuant
efficiently detects cell outlines in confocal input images
using a combination of contrast and boundary en-
hancement, analysis of skeletons in binary images and
watershed-based gap closing (Fig. 1).

We validated the accuracy of the automatic seg-
mentation implemented in PaCeQuant by comparison
to results from manually segmented cells (Fig. 3;
Supplemental Fig. S2; Supplemental Table S2). In few
cases, PaCeQuant locally determined cell contours with
low accuracy, mostly at regions of lower contrast (Fig.
3; Supplemental Fig. S4). Local regions of deviation
from manually segmented contours, however, only
had weak effects on calculated shape properties of
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individual cells (Fig. 3; Supplemental Fig. S2). When
applied to a larger data set of 373 cells, PaCeQuant
partially failed to segment the contours of less than
10 percent of the cells (Supplemental Fig. S4). Manual
filtering did not affect the calculated feature values
significantly (Supplemental Fig. S4), which suggests
that the large number of analyzed cells generates data
sets robust enough to compensate for minor detection

errors. When compared to manual segmentation,
PaCeQuant reduces the variance in segmentation re-
sults due to its high reproducibility, and bias induced
by PaCeQuant is constant irrespective of when or by
whom segmentations are performed. Thus, PaCeQuant
provides a robust platform for cell segmentation, which
can be used for shape quantification without manual
postprocessing. To account for input data sets with

Figure 7. Phenotypic analysis of pavement cell shape mutants. PC shape analysis in cotyledons of 5-d-old seedlings from wild
type (Col-0) and two mutants, ktn1-5 and transgenic Pro-35S:IQD16 (oxIQD16) plants. A, Inverted confocal images of wild type
and the two mutants stained with FM4-64. B, Relative distribution of cell areas in the three data sets. Numbers in the legend refer
to the total number of cells (Ntotal) from 13 images of the wild type, 13 of ktn1-5, and 17 of oxIQD16. Cells larger than size
threshold ts = 1,400mm2 (N) were used for further analysis (see Fig. 5). C, Violin plots of value distributions for four global (top) and
four PC-specific features (bottom). Circles and crosses refer to medians and means; the vertical black lines in each category
represent the SD (thick lines) and the 95% confidence intervals (thin lines). The width of each violin box represents the local
distribution of feature values along the y axes. For a summary of all features and a statistical analysis, see Supplemental Figure S7.
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medium to low quality of input images and to increase
the compatibility of PaCeQuant with independent
imaging techniques such as agarose imprints or scan-
ning electron microscopy images, we additionally
implemented an optional semiautomatic or manual
segmentation mode, respectively, into PaCeQuant.
The automatic segmentation of individual PCs imple-

mented in PaCeQuant provides the basis for high-
throughput shape quantification. To study developmental
shape transitions and molecular and genetic modes of
shape establishment, imaging must be combined with
the quantification of PC shape characteristics. A com-
bination of advanced imaging, automatic quantifica-
tion of shape features, and computational modeling has
been used to study the development of embryos (De
Rybel et al., 2014; Yoshida et al., 2014), of root meri-
stems (Campilho et al., 2006), of shoots apical meri-
stems (Reddy et al., 2004; Kierzkowski et al., 2012;
Serrano-Mislata et al., 2015), and of flower organs
(Tauriello et al., 2015). In these studies, the direction of
cell division and cell expansion is tracked over time
from semi- and fully automatic 3D segmentations of
individual cells using the MorphoGraphX software (de
Reuille et al., 2014; Barbier de Reuille et al., 2015). In
combination with molecular and developmental data
imaging-based analyses enabled the generation of
comprehensive models of the underlying regulatory
processes (Roeder et al., 2011; Sozzani et al., 2014). All
cell types analyzed by these approaches, however, are
simple shaped cubic or cylindrical cells, whereas PCs
form much more complex and diverse cell shapes
during expansion. The algorithms used to track and
measure growth in these model systems cannot directly
be applied to quantify PC characteristics, as they
oversimplify PC shape geometry, and comparable
quantification methods suitable for robust analysis of
PCs are lacking. In most existing studies that analyzed
PC characteristics, differences in PC shape between
mutants and wild type were quantified by the analysis
of single shape parameters only (Tisné et al., 2008; Xu
et al., 2010; Li et al., 2013) or by a combination of a few
select shape parameters (Fu et al., 2005; Guo et al.,
2015). Although sufficient for direct comparison of
phenotypes, the limited shape information reduces the
informational value of the individual measurements
and hampers a comprehensive comparison of pheno-
types identified in different studies and from different
laboratories (Ivakov and Persson, 2013;Wu et al., 2016).
To provide a standardized platform for PC shape

phenotyping, we included the simultaneous quantifi-
cation of 27 different shape parameters in PaCeQuant.
The 27 features include global geometric and morpho-
logical features, such as area, perimeter, and circularity
(Fig. 2; Supplemental Table S1). In addition, we quan-
tify the number, length, and width of lobes, which are
specific characteristics of PCs, by analysis of the local
curvature along the cell contour. In a direct comparison
with the recently released LobeFinder tool (Wu et al.,
2016), PaCeQuant quantifies more shape features than
LobeFinder (27 versus 8, respectively), including the

length of lobes and the degree of cellular elongation.
PaCeQuant detects in average one to three lobes more
per cell than LobeFinder (Fig. 4). The lobe numbers
detected by PaCeQuant are in the range of lobes
detected by individuals (Fig. 4; Supplemental Fig. S3).
The large differences in the lobe numbers measured by
four independent individuals further demonstrate the
high variability of manual image analysis and highlight
the requirement for automated phenotyping platforms.
Another important parameter in PC shape develop-
ment is the degree of growth restriction at neck regions,
sometimes estimated by the quantification of the neck
width (Li et al., 2003; Bannigan and Baskin, 2005;
Fu et al., 2005). The definition of the neck width, how-
ever, is not clear and renders objective measurements
difficult. We thus developed novel objective and well-
defined algorithms to quantify the extent of the cellular
core region. These two features, the minimal and
maximal core width (Fig. 2; Supplemental Table S1),
quantify the widths of narrow and wide parts of
the core region of PCs, defined by distance of the cell
contour to the central skeleton branch. Small values
represent a small neck width, while large values cor-
respond to a larger neck width. In combination with the
analysis of the nonlobe area and the ratio of nonlobe
area to total area, these values provide information on
the growth restriction at neck regions.

Finally, PaCeQuant is the first tool that not only an-
alyzes and quantifies shape features per cell but also
extracts data per lobe. It provides length and width
measurements of various parts of an individual lobe,
e.g. of the overall lobe length as well as of baseline and
equator lengths. PaCeQuant additionally includes an
automatic identification of type I and type II lobes at
two-cell and three-cell contact points, respectively, for
cells with sufficient neighborhood information (Fig. 6;
Supplemental Fig. S6). This allows detailed analyses of
the characteristics in particular of three-cell contacts,
e.g. at different time points during development, with
regard to lobe symmetry. By applying PaCeQuant on a
developmental time series of Arabidopsis cotyledon
PCs, we demonstrate that PaCeQuant accurately
quantifies shape features over a wide range of cellular
sizes and differing shapes (Fig. 5). In our sample sets,
PaCeQuant automatically detected between 21 and
34 cells per image and simultaneously quantified the
27 shape features with an average processing speed of
1.6 s per cell. The supplemental R script enables fast and
easy data visualization, statistical analysis and data
processing, and supports high-throughput data analy-
sis. Thus, PaCeQuant is suitable to generate large data
sets in a short period of time, which are free from biased
selection of individual cells. The data sets contain in-
formation on the number and distribution of cells from
different stages of cellular expansion. To quantify and
compare shape geometries in defined subsets of cells
during development we applied size filters and ana-
lyzed shape features in small-, medium-, and large-
sized cells. Our data reveal age-dependent differences
in cell shape between populations of similar sized cells,
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which likely reflect different stages of differentiation
(Fig. 5). The results are in agreement with previous
studies, which reported changes of shape in actively
expanding PCs during development (Zhang et al., 2011;
Elsner et al., 2012).

Analysis of lobe types and feature characteristics of
individual lobes indicated that, in a direct comparison,
type II lobes are less regular shaped (Fig. 6). These
differences might be caused by higher growth rates of
one of the two neighboring cells, which is consistent
with earlier reports (Jura et al., 2006). The optional
analysis of lobe types implemented in PaCeQuant thus
provides the first tool to study effects of gene functions
specifically involved in the formation of three-cell
junctions and to measure shape characteristics of indi-
vidual lobes. For the phenotypic analysis of mutants
that, e.g. affect PC shape globally it, however, is not
necessary to distinguish between these two lobe types.
If desired, the user thus can optionally activate lobe
type classification and analysis in the graphical user
interface.

We additionally validated the usability of PaCeQuant
for PC shape quantification in mutant phenotyping as
a first proof of concept (Fig. 7). Consistent with pre-
vious reports, we observed a reduced length of lobes
in ktn1-5 lines (Lin et al., 2013), which confirms that
the analysis of contour curvature implemented in
PaCeQuant is suitable for measurements of lobe
characteristics. We provide evidence that the com-
bined analysis of 27 shape features with PaCeQuant
generates information on multiple aspects of PC
shape and growth, including the size of the cellular
core region and the number and characteristics of
lobes. The analyzed features reflect the geometrical
complexity of PCs. Thus, PaCeQuant enables com-
parative analyses between mutants or during devel-
opment even across different laboratories with a
more complex description of PC shapes than other
existing tools.

We will establish a future database where PaCeQuant
results can be uploaded and directly compared to
existing data sets. Such a database will enable the
identification of, e.g. mutants with highly similar de-
fects in shape formation, which might point to similar
cellular functions and could assist the molecular and
physiological characterization. In the long term, we
aim to implement the collected data in systems biology
approaches to model the underlying molecular and
genetic pathways.

In conclusion, our data demonstrate that PaCeQuant
is suitable for automatic segmentation of PCs, which
builds a prerequisite for the generation of objective
and reproducible data. Together with the imple-
mented feature analysis, PaCeQuant offers the pos-
sibility of high-throughput PC shape analysis. It
thus provides a user-friendly platform for large-
scale shape quantification with potential applica-
tion in studies of cell shape changes in response to
external stimuli, during development or in mutant
phenotyping.

MATERIALS AND METHODS

Plant Material and Growth Conditions

Arabidopsis (Arabidopsis thaliana; ecotype Col-0) seeds were originally

obtained from the Arabidopsis Biological Resource Center. Seeds of the ktn1-5

T-DNA line (SAIL_343_D12) were obtained from the Nottingham Arabidopsis

Stock Centre (NASC). Transgenic Pro-35S:IQD16 lines were generated by

Agrobacterium tumefaciens-mediated transformation using the floral-dip method

(Clough and Bent, 1998), as described in Bürstenbinder et al. (2017b). Arabi-

dopsis seeds were surface-sterilized with chlorine gas, and after 2 d of strati-

fication at 4°C grown vertically on square plates containing Arabidopsis salt

(ATS) medium and 0.5% (w/v) agar (Lincoln et al., 1990) at 20°C with cycles of

16 h light and 8 h dark.

Confocal Microscopy

Foranalysisof epidermalpavementcell shape, seedlingswere incubated10 to

30 min in 50 mM FM4-64 dye (Synapto-Red, Sigma). Imaging was performed

with an LSM 700 inverted laser scanning microscope (Carl Zeiss) using a 203

plan neofluar objective. The laser line 555 nm was used for FM4-64 excitation,

and fluorescence emissionwas detected between 560 and 590 nm. Single optical

sections of the adaxial site of FM4-64-stained cotyledons were acquired with

pixel dwell times between 0.8 and 1.3 ms and an averaging of 4 to increase the

signal-to-noise ratio. For each developmental stage and line, 10 to 17 cotyledons

from 5 to 10 individual seedlings were scanned. Groups of adjacent pavement

cells were imaged with a resolution of 3.19 pixels/mm in 3-d-old and 5-d-old

seedlings and with a resolution of 2.24 pixels/mm in 7-d-old seedlings.

Data Sets

For the evaluation of PaCeQuant, we used four data sets, which were

comprised as follows:

Data set 1: 15 individual cells from one input image of 5-d-old Arabidopsis

Col-0 seedlings.

Data set 2: 373 cells identified from 14 input images of cotyledons from 5-d-old

Arabidopsis Col-0 seedlings. After manual postprocessing, 342 cells were

retained in the curated data set.

Data set 3: 642 cells from 10 input images of Arabidopsis Col-0 seedlings

3 DAG, 373 cells from 14 input images of seedlings 5 DAG, and 356 cells

from 13 images of seedlings 7 DAG.

Data set 4: 302 cells from 13 input images of Col-0 wild type, 274 cells from

13 input images of ktn1-5 mutants, and 414 cells from 17 input images of

transgenic Pro-35S:IQD16 lines from 5-d-old seedlings. After size filtering

for removal of small cells (#1400 mm2), the data set contains 161, 156, and

226 cells from Col-0, ktn1-5, and Pro-35S:IQD16, respectively.

Installation and Usage of PaCeQuant

PaCeQuant is part of theMicroscope ImageAnalysis ToolBoxMiToBo. The

PaCeQuant plugin can be added to ImageJ/Fiji by activation of MiToBo’s

update site via the update site manager of Fiji. Alternatively, binary packages

of MiToBo, including the PaCeQuant plugin for direct use with ImageJ/Fiji,

can be downloaded from MiToBo’s website. A detailed description of

PaCeQuant, including installation instructions can be found at PaCeQuant’s

website (http://mitobo.informatik.uni-halle.de/index.php/Applications/

PaCeQuant).

After installation, PaCeQuant can be found in ImageJ’s plugin menu. After

selection of Plugins . MiToBo . PaCeQuant, a graphical user interface

opens, which allows easy configuration and execution of the tool

(Supplemental Fig. S8).

First, the general workflow and data input format have to be configured. For

this purpose, PaCeQuant offers three options:

SEGMENTATION_AND_FEATURES

In this mode, PaCeQuant uses confocal input images for automatic cell

segmentation and feature quantification. As output, images showing the seg-

mentation results, ImageJROIfiles containing the regiondata and for each image
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a textfile includingall extracted featurevaluesper analyzedcell are exportedand

saved in the result directory.

SEGMENTATION_ONLY

By choosing this mode, PaCeQuant performs automatic segmentation of

individual cells on confocal input images. As output, images and ImageJ ROI

files are exported and saved in the result directory, which subsequently can be

reimported to ImageJ for manual correction of segmentation inaccuracies.

FEATURES_ONLY

In this mode, either manually corrected segmentation data or input ROIs

generated by, e.g.manual segmentation of individual cells, canbe imported, and

for each image or ROI set a text file including all extracted feature values per

analyzed cell are exported and saved in the result directory.

For feature analysis, PaCeQuant accepts the following input formats:

BINARY_IMAGE: a binary image where the background is marked by inten-

sity value 0 and the foreground by intensity value 255.

LABEL_IMAGE: a grayscale image where each cell region is marked by a

unique label.

IMAGEJ_ROIs: ImageJ ROI files with region data, e.g. exported from ImageJ’s

ROI manager

PaCeQuant supports two basic working modes:

INTERACTIVE

Only the image or ROI set currently selected in ImageJ/Fiji is analyzed.

BATCH

All images or region files in a selected directory, and all its subdirectories are

analyzed.

Depending on the chosen option for image analysis and the selectedworking

mode, the configuration of the GUI dynamically changes, and mode-specific

entry fields appear. For segmentation, the user has to specify how the cells in the

images are labeled, i.e. if the boundaries are darker than the background or vice

versa. Note that these are the only settings that are required to run PaCeQuant.

Optionally, PaCeQuant offers to activate a gap-closing heuristic to account for

incomplete cell boundaries due to low contrast and to define thresholds on the

size of valid regions, which we recommend to set properly. For expert users,

further configuration options are available via the parameter “Morphology An-

alyzer Operator.” It allows for changing thresholds and parameter values applied

in lobe detection and enables deactivation of subsets of features. Users, however,

should be aware that any change in these parameters might hamper comparative

evaluations between experiments and thus is not recommended. Finally, the

analysis of lobe types (TYPE-1, TYPE-2, UNDEFINED) and the quantification of

shape features of individual lobes can be activated optionally. These resultswill be

exported to a separate table per cell and can be analyzed separately.At the bottom

of the configuration, window options for generating supplemental results are

provided, e.g. for an image stack including additional intermediate result images

and for a stack with additional images visualizing the feature values of each cell

by mapping them to the intensity values of the cell in the corresponding image.

Lastly, additional verbose output to console can be activated.

Clicking the button “Run” starts the processing. If a single image is ana-

lyzed, the results will directly pop up, while in batch mode, the results are

written to file. For each input image in each processed folder, several files with

segmentation data and an output text file are generated and saved to a new

subfolder “results.” The text files contain row-wise for each cell the set of feature

values extracted by PaCeQuant. If the optional lobe type classification is acti-

vated, additional text files are generated for each individual cell per image.

These files contain information on the lobe type and on lobe-specific feature

values for each lobe of the particular cell. Note that a complete documentation

of all configuration options and all general information about PaCeQuant can

be found at MiToBo’s Web site in the documentation section:

http://mitobo.informatik.uni-halle.de/index.php/Applications/PaCeQuant.

Automatic Cell Shape Analysis and Data
Visualization with R

For analysis of the data output, we provide an R script that visualizes the

features and performs basic statistical evaluations. As data input the path to the

results directory of the PaCeQuant output has to be provided by the user. Each

subdirectory within the results directory defines a sample set. First, all detected

cells are sorted according to size, and a histogram of the size distribution is

generated for each individual sample set. In the next step, size filtering can be

applied to exclude small cells below a manually defined size threshold. Values

between 0 and 1 are considered as percentages of the total number of detected

cells. Values larger than 1 are considered as absolute PC areas in mm2. The size

filtering can be performed on the global level, where the same threshold is

applied to all analyzed sample sets. Alternatively, local thresholds can be set

separately for individual data sets. Since size reflects the developmental stage of

PCs and thus has a large impact on most analyzed features, we recommend

comparing the size distributions of the analyzed sample sets before selecting a

threshold for further analysis. We recommend using global thresholds if all

samples have comparable size distributions. For comparison of, e.g. mutants

with generally reduced cell sizes compared to wild-type seedlings, locally de-

fined thresholds might be useful to compare cells at similar stages of cell dif-

ferentiation. Lastly, we suggest using absolute sizes as threshold, which,

however, requires careful analysis of size distributions and of size impacts prior

to threshold selection. For comparative analyses in Arabidopsis (also across

different laboratories), we recommend to use developmental stages and

thresholds introduced in this work (ts = 1400 mm2). To visualize the data, the re-

sults of all individual features are plotted as histograms, boxplots, or violin plots.

Statistical Analysis

Analysis of the data sets with the Kolmogorov-Smirnov test revealed non-

normal distribution formost sample sets and features. For statistical analysis,we

thus applied the nonparametric Kruskal-Wallis test provided by the R package

stats, which is the equivalent of the parametric one-way ANOVA (Kruskal and

Wallis, 1952). The Kruskal-Wallis test is intended for testing whether samples

originate from the same distribution. Specifically, it tests for the null hypothesis

that the location parameters (medians) of the distributions of the given samples

are the same in each group. The alternative is that they differ in at least one group.

In the latter case, we applied the Dunn’s test (Dunn, 1964) provided by the R

package dunn.test as post hoc test to analyze each pair of samples separately.

Accession Numbers

Sequence data for KTN1 and IQD16 can be found in the EMBL/GenBank

data libraries under accession numbers At1g80350 andAt4g10640, respectively.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Effects of the individual processing steps imple-

mented in PaCeQuant on the input image.

Supplemental Figure S2. Comparison of PaCeQuant features between

manually and automatically segmented cells.

Supplemental Figure S3. Pairwise comparison of features computed by

PaCeQuant and LobeFinder.

Supplemental Figure S4. Comparison of feature values between Raw

PaCeQuant output data and after cell removal by manual filtering.

Supplemental Figure S5. Quantification and statistical analysis of pave-

ment cell shape features during development.

Supplemental Figure S6. Classification and quantification of type I and

type II lobe characteristics.

Supplemental Figure S7. Quantification of pavement cell shape features in

wild-type and mutant lines.

Supplemental Figure S8. Graphical user interface of PaCeQuant.

Supplemental Table S1.Detailed definitions of features analyzed by PaCeQuant.

Supplemental Table S2. Quantitative evaluation of segmentation quality.
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3.2 Morphological Analysis of Leaf Epidermis Pavement

Cells with PaCeQuant

Original Publication:

Möller, B., Poeschl, Y., Klemm, S., and Bürstenbinder, K. (2019). Morphological Analysis of
Leaf Epidermis Pavement Cells with PaCeQuant. In F. Cvrčková and V. Žárský (Eds.) Plant
Cell Morphogenesis: Methods and Protocols, Chap. 22, pp. 329–349. Springer.

Abstract:

Morphological analysis of cell shapes requires segmentation of cell contours from input images
and subsequent extraction of meaningful shape descriptors that provide the basis for qualitative
and quantitative assessment of shape characteristics. Here, we describe the publicly available
ImageJ plugin PaCeQuant and its associated R package PaCeQuantAna, which provides a
pipeline for fully automatic segmentation, feature extraction, statistical analysis, and graphical
visualization of cell shape properties. PaCeQuant is specifically well suited for analysis of jigsaw
puzzle-like leaf epidermis pavement cells from 2D input images and supports the quantification
of global, contour-based, skeleton-based, and pavement cell-specific shape descriptors.

Link:

https://doi.org/10.1007/978-1-4939-9469-4_22
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SEMI-AUTOMATIC CELL SEGMENTATION FROM NOISY IMAGE DATA FOR

QUANTIFICATION OF MICROTUBULE ORGANIZATION ON SINGLE CELL LEVEL
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⋆Inst. of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
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ABSTRACT

The structure of the microtubule cytoskeleton provides valu-

able information related to morphogenesis of cells. The cy-

toskeleton organizes into diverse patterns that vary in cells of

different types and tissues, but also within a single tissue. To

assess differences in cytoskeleton organization methods are

needed that quantify cytoskeleton patterns within a complete

cell and which are suitable for large data sets. A major bot-

tleneck in most approaches, however, is a lack of techniques

for automatic extraction of cell contours. Here, we present a

semi-automatic pipeline for cell segmentation and quantifica-

tion of microtubule organization. Automatic methods are ap-

plied to extract major parts of the contours and a handy image

editor is provided to manually add missing information effi-

ciently. Experimental results prove that our approach yields

high-quality contour data with minimal user intervention and

serves a suitable basis for subsequent quantitative studies.

Index Terms— cytoskeleton, cell segmentation, vessel-

ness, gap closing, label editor, texture, clustering, ImageJ

1. INTRODUCTION

Cell morphogenesis in plant cells is largely driven by cy-

toskeleton organization. The structure of the cytoskeleton is

highly dynamic and undergoes significant changes, e.g., dur-

ing growth or in response to environmental stimuli [1]. Quan-

titative analysis of cytoskeleton properties and structural char-

acteristics helps to understand developmental events, includ-

ing the cellular processes underlying morphogenesis [2].

The challenges for robust and reliable quantitative anal-

ysis of cytoskeleton organization are manifold. Large varia-

tions in cytoskeleton structure are observable between differ-

ent cell types and tissues, but sometimes also among cells in

a single tissue. This demands for sufficiently large and rep-

resentative data sets in quantitative analysis to cover the full

range of natural variation. Moreover, characteristics of the

complete cytoskeleton of an individual cell need to be con-

sidered rather than global properties of complete images or

samples taken from selected image positions only.

⋆† This work was supported by core funding of the MLU Halle-Witten-

berg (BM) and the Leibniz Association (KB), and by DFG funding (to KB).

A B C

D E F

Fig. 1. Top, (contrast enhanced) images of FP-labeled micro-

tubules (A) and cell membranes (B,C). Bottom, intermediate

(D) and final (E,F) results of contour extraction.

Recent advances in cell biology allow for imaging of cy-

toskeleton structures at high spatial and temporal resolution

[3], and for simultaneous fluorescent protein (FP)-labeling of

cell membranes. Extracting cell contours, however, is still

challenging due to noisy images of locally varying contrast

(Fig. 1, 2). Thus, unbiased and largely automated methods

for cell segmentation and cytoskeleton analysis are still rare.

Here, we present a new semi-automatic workflow for

analyzing cytoskeleton organization on the single cell level.

Compared to manual annotation, which often is the standard

for extracting contour data, our approach reduces the need

for user invention and allows to include larger sets of cells in

comparative studies. The method builds on two key compo-

nents, a new efficient semi-automatic procedure for contour

extraction and an unsupervised structure analysis technique

adopted from [4]. The contour extraction is based on ves-

selness enhancement filters and gap closing. These methods

usually extract most parts of the contours, but cannot always

guarantee complete contours due to the difficulty of the task.

We, thus, provide an image editor for manual post-processing

that allows to extract high-quality contour data even from

large sets of noisy images in a time-efficient way.

Quantitative assessment of cytoskeleton structures often

relies on the analysis of individual fibers combined with man-

ual selection of sample regions in cells of interest. To avoid
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fiber segmentation we adopt an unsupervised approach based

on texture analysis and clustering using local binary patterns

as features. The method has proven suitable for analysis of

cytoskeleton organization in mammalian and plant cells [4, 5].

Here, we show results for cells from Nicotiana benthamiana.

All components of the analysis pipeline and the label im-

age editor are implemented in Java as part of the open source

image analysis toolbox MiToBo [6, 7] and are available as

operator plugins for ImageJ/Fiji via MiToBo’s update site.

2. RELATED WORK

The analysis of cytoskeleton organization in cells using image

analysis methods has been of interest for several years. Many

approaches focus on segmenting single fibers and quantify

their orientation and length to characterize cytoskeleton prop-

erties [8]. Often the analysis relies on either complete images

as samples for a certain cell type [9] or on selected regions

only. This is prone to bias and does not cover the full variety

of cells in an image or tissue. To overcome this lack Cui et al.

[10] propose to couple actin analysis and cell segmentation.

They apply classification methods, but rely on relatively strict

assumptions about actin properties not easily generalizable.

In many cases, contour data cannot be extracted from im-

ages of FP-labeled microtubules. In our data, even for biolog-

ical experts, it is challenging to locally trace the cell contours

accurately solely based on this data as no explicit contour in-

formation is present (Fig. 1A). Thus, contour segmentation is

completely decoupled from cytoskeleton quantification.

The complexity of contour extraction highly depends on

the type, quality and resolution of the input data. Cell proper-

ties also have a notable impact on the segmentation. The col-

lection of potential methods for cell segmentation is manifold

[11] and often methods are specially dedicated to a certain cell

type and acquisition scenario. For largely homogeneous and

regularly shaped cells binarization methods combined with

morphological operations or a watershed transformation are

common [12]. More advanced techniques subsume active

contours. They are, e.g., well-suited if nuclei can be used

as initialization from which the cell region is expanded or for

incorporating assumptions about cell shape [13]. If appropri-

ate training data is available also machine learning techniques

have proven suitable [14]. Methods aiming to extract contours

directly by exploiting boundary information are rare as these

are often sensitive to noise. Due to the large region inhomo-

geneity in our data we use a boundary-based approach.

3. METHODS

Our pipeline consists of a new semi-automatic cell segmen-

tation stage (Sec. 3.1) and subsequent extraction and cluster-

ing of texture features (Sec. 3.2, for details refer to [4]) from

two-channel microscopy image z-stacks with FP-labeled cell

contours and microtubules, respectively.

3.1. Cell Contour Segmentation

To extract cell contours we use maximum projections of the

membrane channel from given z-stacks (Fig. 1B,C). Pixels of

the anticlinal cell contour are generally brighter than pixels

of the periclinal contour (i.e., the cell surface), cytoplasm or

background. FP-labeling still might locally vary, and image

quality may suffer due to spurious signals from beyond the

membranes. This results in a high level of noise and a lack of

contrast rendering exact localization of contours challenging.

3.1.1. Vesselness Enhancement Filtering and Binarization

Anticlinal cell contours usually form piecewise thin and lin-

ear structures. To localize them we use vesselness enhance-

ment filters [15]. After convolving the image with a Gaus-

sian kernel (σ = 1) we apply a vesselness filter to quantify

for each pixel the similarity of the local intensity landscape to

vessel-like structures typical for cell contours. The filter mask

sized 15×15 px has a cross-sectional Mexican hat profile with

σ = 2 to account for blurred boundaries and is applied in 18
orientations from 0◦ to 170◦ in 10◦ steps. For each pixel the

maximal response to any of the 18 convolutions yields the re-

sult value stored in a vesselness map. Negative map entries

are set to zero before the map is binarized using an extended

Niblack operator [16]. Natively the Niblack operator extracts

a threshold for each pixel from a local neighborhood NB of

size nv irrespective of the local grayscale distribution. To pre-

vent it from binarizing homogeneous regions we compute for

each pixel the grayscale variance σv in NB. Only if σv ex-

ceeds a threshold θv the Niblack is applied to determine a lo-

cal threshold, otherwise the pixel is classified as background.

This procedure yields a binary image with potential contour

fragments marked as foreground regions.

To increase robustness against noise we delete regions

smaller than 200 px. For the remaining ones the skeletons are

extracted using the algorithm of Zhang and Suen [17] to ease

further processing. Skeleton branches with a length below

40 px are pruned as they are most likely related to spurious

FP-labeling signals. At this point, in image sections with suf-

ficient local contrast and striking intensity profiles cell con-

tours are properly localized, but may still contain small gaps.

3.1.2. Automatic Gap Closing

Gaps in contours mainly occur in image parts where a lack

of local contrast results in small vesselness responses during

vesselness enhancement filtering. Still, contour pixels have a

higher response than the local background and shortest path

techniques like the Dijkstra algorithm [18] can be applied to

find a proper continuation of the local contour.

To close a gap between two contour pixels we transform

the gap closing problem into a shortest path problem on a

weighted and directed graph G. First, we define a region of
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relevant pixels (ROP) around both pixels that most likely con-

tains all candidate pixels for the optimal path (details see be-

low). Then for each pixel in the ROP a node is added to G.

Edges in G connect pixel nodes according to 8-neighbor-

hood. Each edge gets a weight that grades the edge’s suitabil-

ity to be included in the optimal path. This path is supposed to

pass by pixels with high vesselness responses, i.e., edges con-

necting nodes with high values get small weights. As it makes

a difference if the path traverses two nodes from the pixel

with low vesselness response towards the one with a higher

response or vice versa, two edges with different weights are

inserted between every two neighboring nodes. The weights

are set anti-proportional to the vesselness response νt of the

edge’s target pixel, i.e., are calculated by subtracting νt from

the maximal response in the ROP. Solving the gap closing

problem is then identical to finding a path in G with minimal

weight sum which can be tackled with the Dijkstra algorithm.

The gap closing procedure is split-up in two phases. First,

we try to connect branch end points of the contour skele-

ton with a maximal distance of 45 px according to maximum

norm. Second, we address more complex situations where a

gap is not obviously marked by two end points. We iterate

over all remaining skeleton end points, search in the vicinity

of each end point for skeleton pixels on other branches as po-

tential partners for gap closing, and extract the shortest path

to each partner. The path with lowest weight sum is finally

chosen as candidate to close a gap. In both phases the ROPs

for end points are chosen as squared regions around the pixels

sized 91×91 and 61×61 px, respectively. Paths are only valid

if the average weight per edge does not exceed a threshold.

Finally, remaining branches shorter than 100 px are removed.

3.1.3. Manual Post-Processing with the Label Image Editor

The fraction of contours properly segmented highly depends

on the quality of the input data, but even in noisy data usu-

ally most parts are robustly extracted. In images with lots of

spurious signals the approach tends to over-segmentation. If

desired contours are still localized correctly this can easily be

corrected by merging sub-regions. A more serious source of

inaccuracies are image regions with ambiguous or completely

missing contour information. This results in large gaps which

cannot be closed automatically and require user input. To ease

manual post-processing we provide an editor for label images.

Segmented regions can be merged or removed and the im-

age be relabeled. The editor supports filling holes and closing

small gaps by drawing free-hand lines into an image. As most

gaps are small this allows to complete contours efficiently.

3.2. Quantification of Cytoskeleton Structures with LBPs

Extracted cell contours yield the basis for a quantitative com-

parison of cytoskeleton organization on the single cell level.

To quantify structural properties of the cytoskeleton we fol-

low the ideas proposed in [4] utilizing maximum projections

of the cytoskeleton images. The area of each cell is divided

into 16×16 px non-overlapping patches. For each patch a 68-

dimensional feature vector of rotation invariant uniform local

binary patterns (LBP) [19] is extracted compiled from 4 his-

tograms of LBP codes for radii of 1, 1.5, 2 and 3 around each

pixel. All vectors of all cells of a data set are commonly clus-

tered using k-means (k = 6) to identify groups of similar pat-

terns. Each group represents a certain cytoskeletal structure

jointly appearing in the cells. From the group indices of all

patches in each cell a characteristic distribution of patterns per

cell can be derived which serves as a structural fingerprint and

provides a suitable basis for subsequent comparative analysis.

4. EXPERIMENTAL RESULTS

The semi-automatic segmentation pipeline was experimen-

tally evaluated on a set of 38 images (Fig. 2) acquired from

leaf epidermis cells of Nicotiana benthamiana upon transient

overexpression of 5 different isoforms of the microtubule-

associated protein 65 (MAP65) family1. MAP65 proteins

are microtubule binding and bundling proteins with important

roles in plant development [20]. We restrict the evaluation to

cells located completely inside the image area to only include

cytoskeletons of complete cells resulting in 75 cells in total.

Vesselness filtering and automatic gap closing success-

fully extract contours from input images with sufficiently high

local contrast and few distracting signals (Fig. 1E,F). The al-

gorithm provides smooth boundaries hardly to acquire man-

ually in reasonable time as can be seen from most parts of

the contours in Fig. 2, G-L. Inaccuracies in contour local-

ization mainly result from local ambiguities (Fig. 2I) or point

signals (Fig. 2H) which yield significant vesselness responses

and may also disturb the gap closing (Fig. 2L, green circle).

Manual annotation of cell contours that could not prop-

erly be segmented automatically is time-consuming and te-

dious. If too many contours are returned, however, this is

a less serious problem as long as the correct cell contour is

still included. Our supplemental label image editor facilitates

fast and easy elimination of surplus contours by eliminating

or merging corresponding sub-regions with few mouse-clicks

yielding high-quality segmentation results. Thus, to not ex-

clude contour parts too early in the process the parameters for

the Niblack in local binarization were empirically chosen fol-

lowing a rather liberal strategy (k= -1.0, nv=21, θv=3.0).

As result of the initial automatic segmentation, cell con-

tours are often completely segmented (Fig. 1E,F / Fig. 2 J-L,

magenta lines), but cell areas are partitioned into several sub-

regions (Fig. 1D, sub-regions shown in different gray values;

Fig. 2G). Yet sometimes contour extraction locally fails due to

ambiguous intensity structures (Fig. 2 H,I). While most of the

remaining gaps are small and can properly be closed by our

automatic gap closing heuristic (Fig. 2 J,K, blue parts), larger

1We thank Patrick Hussey for providing clones of MAP65 isoforms.
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Fig. 2. Left, clips from the 38 test images: top, maximum projections of membranes (A-F), bottom, segmentation results before

(G-I) and after (J-L) manual post-processing. Automatically extracted contours are shown in magenta, gaps automatically

closed in blue. (M) Heatmap of pairwise distances between fingerprint vectors for 32 cells, grouped by MAP65 isoform.

gaps require user input either using our label editor or more

flexible image editing tools like ImageJ, Gimp or Photoshop.

Fig. 3 shows for all 38 images the recalls and precisions

of the automatic contour segmentation and gap closing steps,

where we use the final, manually post-processed contour seg-

mentation result of each image as reference for the evaluation.

The black line shows the fractions of contour pixels automat-

ically extracted in the initial contour segmentation step, and

the red line refers to the fraction of pixels extracted after auto-

matic gap closing. Vesselness enhancement and binarization

already extract for 36 images more than 85% of the contour

pixels, and for 29 of them even more than 90%. After au-

tomatic gap closing these numbers further increase to a frac-

tion of more than 0.95 for most images with a minimum of

0.79 for one image with extremely low contrast. Hence, most

of the time a maximum of 5% of the contours require man-

ual tracing, while for 5 images there is no need for manu-

ally filling-in gaps at all. The fractions of true contour pixels

among all extracted ones are shown in blue and vary between

≈ 0.6 and 1.0. For 32 images the precision exceeds 0.75,

while for 6 images it is notably smaller due to small holes

included in the evaluation. As filling these holes is a simple

one-click operation in our editor like region merging or dele-

tion, even such fair precision rates are still acceptable when

taking the complete semi-automatic workflow into account.

Extracted contours are used to quantify cytoskeleton or-

ganization on the level of single cells. Usually not all seg-

mented cells are suitable for analysis due to differences in FP

expression and fluorescence intensities. A suitable subset can

be chosen with our editor during post-processing. We show

quantification results for a subset of 32 cells. In Fig. 2M a

heatmap of pairwise distances of structural fingerprint vectors

for the cells is shown. Cells belonging to the same MAP65

isoform tend to be more similar to each other than to cells

of other isoforms. Yet also among cells of a single isoform

variation is observable stressing the importance for single cell
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Fig. 3. Recalls of contour pixels before (black line) and af-

ter (red line) automatic gap closing for 38 images covering

five MAP65 isoforms as indicated by the background shad-

ing. Precisions after gap closing are shown by the blue line.

analysis based on accurate cell contour segmentation.

5. CONCLUSION

Unbiased segmentation of cell contours is best achieved ap-

plying fully automatic methods. However, in cytoskeleton

analysis data is often very noisy and not treatable with fully-

automatic methods. Our new approach combining robust

automatic contour extraction with efficient manual post-

processing enables time-efficient and comfortable contour

extraction even from such data. Future work will target at

further reducing the fraction of manual user intervention

towards a fully automatic pipeline for cell contour extraction.
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ABSTRACT

Application of active contours for image segmentation raises

the question of contour representation, i.e. whether to use

snakes or level sets. The representation directly affects is-

sues like topology-preservation and energy optimization. In

this paper we aim to contribute to the understanding of spe-

cific characteristics of contour representations with a detailed

comparison of snakes vs. non-PDE level sets. Based on the

same energy functional and applied to different kinds of real-

world data our experiments show minor differences in seg-

mentation quality, but outline important distinctions regarding

implementation, parameter settings and computational effort.

Index Terms— Snakes, non-PDE level sets, comparison

1. INTRODUCTION

Active contours have become a popular technique for image

segmentation in various domains over the last two decades

since the publication of the seminal papers [1] and [2]. The

underlying idea of these methods is to minimize an appro-

priate energy functional. This energy comprises a data term,

also called external energy, and typically a regularizer or in-

ternal energy which depends exclusively on the shape of the

contour(s). The choice of this energy depends heavily on the

images considered and on the aim of the segmentation task.

Active contours are distinguished into snake and level set

methods. Snakes explicitly represent a contour by a paramet-

ric curve, where as level sets use an implicit representation as

the zero level of an embedding function. Despite the common

idea of both techniques to minimize a given energy functional,

they differ considerably with regard to the capacity to handle

multiple objects, the ability to change or preserve topology,

the optimization techniques including numerical stability, as

well as computation time and implementational effort. Con-

sequently to efficiently apply such techniques to segmentation

problems from a specific domain it is fundamental to develop

understanding and experience for the characteristics of differ-

ent active contour approaches and their behaviors.

The main intention of this paper is to contribute to this

understanding by directly comparing one snake and one non-

PDE level set approach for two segmentation problems in mi-

croscopy images from the biomedical domain [3, 4]. In con-

trast to [5] for both techniques the same energy functional

based on the Chan-Vese energy [6] is used, which is region-

based in contrast to edge-based energies considered in [5]. To

provide practically meaningful results original images from

biomedical applications are used in the experiments, and be-

sides qualitative and quantitative results also implementation

issues and computation times are analyzed in detail.

2. RELATED WORK

Active contours date back to the pioneering work of [1]

where snakes where introduced for energy-based image seg-

mentation. The inherent nature of snakes impedes topolog-

ical changes during segmentation. Although in [7] an ap-

proach to overcome this limit was presented, snakes are typ-

ically used in topology-preserving contexts [8, 9]. Regard-

ing biomedical applications often multiple objects per image

have to be segmented. To this end energy functionals hamper-

ing snake overlap have been developed [10]. Also geometric

post-processing of snakes to eliminate self-overlap is often

required. The model of explicit snake segmentation defines

a PDE problem which is usually solved by iterative gradient-

descent [1]. Due to numerical issues that sometimes occur ,

greedy optimization techniques were proposed [11], and level

sets have gained increasing importance and wide-spread use

due to their advantageous numerical properties.

As for snakes the prevailing approach for optimization

of level sets is to use Euler-Lagrange equations to derive

an iterative solution of the underlying variational problem

(e.g. [2, 6]). The associated questions of time constants,

re-initialization, and computation times can be bypassed by

the direct non-PDE method proposed in [12] to minimize

the energy. Pursuing a greedy approach, for each pixel the

phase is changed if this decreases the global energy. Espe-

cially if this energy difference can be evaluated locally as for

the Chan-Vese (CV) fitting term, this optimization strategy

often yields a very fast scheme. Level set representations

inherently allow to change the topology, e.g. to split or merge

contours. However, this is of disadvantage in applications

where the number and approximate position of objects to

segment is given or determined by an initialization phase.

A topology preserving scheme based on topological num-

bers was proposed in [13] which we adopted to the non-PDE
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Fig. 1. From left to right images (contrast enhanced) and segmentation results are shown: (i) A scratch assay image with the

final snake contour in dark grey (coloured version: blue) and the expert ground-truth in light gray; (ii) the level set result for a

region of the left image (cf. to white rectangle) before (top) and after (bottom) post-processing, overlaid with the corresponding

ground-truth contour in light grey (coloured version: red); (iii) snake and (iv) level set results for a sample cell image.

method in previous work [3]. Application of PDE level sets

include the segmentation of leukocyte in microscopic images

where both the CV fitting energy and an edge-based term are

employed [14]. Cell segmentation in time-lapse fluorescence

microscopy images in [15, 16] uses the CV energy with both

the non-PDE and the PDE level set optimization.

3. METHODS

For our experiments we employ the commonly used CV en-

ergy [6]. In a level set framework it is given as

E(φ, cfg, cbg) = λf

∫

Ω

|I(~x)−cf |
2
H(φ(~x))d~x+

λb

∫

Ω

|I(~x)−cb|
2
(1−H(φ(~x)))d~x+ µ

∫

Ω

|∇H(φ(~x)|d~x,

where φ denotes the level set function and H the heaviside

function. cfg and cbg are the mean intensities of foreground

and background according to the current state of φ, and

λf , λb, µ are weights of the three energy terms. Both explicit

and implicit active contours were implemented in Java in

terms of MiToBo1 operators and ImageJ plugins.

The snake implementation follows the original work of

Kass et al. [1], i.e. adopts a combined implicit and explicit

gradient-descent technique for solving the PDE, resulting in a

linear system of equations to be solved in each iteration. The

basic parameters for snake segmentation to be chosen prop-

erly are a step size γ for gradient-descent and the preferred

length s of each snake segment which is related to the number

of snake points used for contour approximation. The segment

length is updated in each iteration by contour resampling. Al-

though snakes are not able to change topology during opti-

mization non-simple polygons might occur from self-overlap

which are explicitly simplified by polygon tracing. This mod-

ifies the segmentation, e.g., intrusions might be removed.

If multiple objects are present in an image, snake segmen-

tation of all objects is done in parallel by concurrently opti-

mizing one snake for each object. To prevent snakes from

1http://www.informatik.uni-halle.de/mitobo

overlapping a coupling term is added to the energy functional

which penalizes snake overlap, however, does not guarantee

non-overlapping snakes (see [10] for details).

The implementation of the non-PDE level set optimizer

follows [12] with the sequential update scheme, i.e. Gauss-

Seidel iteration. If the length term of the CV energy is used.

forward differences are used to approximate the gradient of

the heaviside function. To preserve topology we adopt the

method proposed in [13] for PDE-based minimization which

is based on topological numbers. However, we enforce to pre-

serve topology only for the foreground phases (see also [3]).

4. RESULTS

For comparing the two active contour techniques they were

each applied to two sets of images originating from different

biomedical applications. Below we outline the data and eval-

uation methods, and provide a comprehensive discussion of

qualitative as well as quantitative results.

Test Data The first test set D1 consists of microscopy

images of scratch assays which are often used for cell motility

assessment [3]. Each assay contains a mono layer of U2OS

cells in which a scratch is mechanically induced. Subse-

quently this ”wound” is closed by cell migration, which is

monitored at different time points to evaluate cell motility.

For D1, images of 10 cell populations were taken at 7 points

in time yielding in total 70 images with scratches showing a

large variety in size and shape. The second set D2 consists

of 8 epifluorescence microscopy images of 57 cells in total

with fluorescently labeled focal contacts. For biomedical

investigations the number of focal contacts per cell is of in-

terest requiring an accurate extraction of the cell boundaries.

Comparison of segmentation results is done qualitatively and

quantitatively, given manual ground-truth labelings for both

sets. Scratch assays were labeled by two biologist experts and

the intersection of their labelings was used as ground-truth,

while labelings of one person were available for images of

D2. Example images from D1 and D2 are given in Fig. 1.
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Fig. 2. R and P for dataset D1. The first six boxes in each

plot refer to different snake configurations, the final two refer

to level set segmentation without and with post-processing.

Performance Measures For quantitative evaluation

we provide recall R and precision P , where R = TP
TP+FN

and P = TP
TP+FP

. TP and FP denote the number of pix-

els correctly resp. incorrectly segmented as foreground (i.e.

scratch or cell area), while FN is the number of ground truth

foreground pixels segmented as background. In some ex-

periments parameters were chosen using F-scores defined as

2· P·R
P+R which is proportional to the Jaccard index used in [5].

Scratch Assays Images For segmenting the images of

D1 the common CV energy functional [6] with λf = λb = 1
and µ = 0 is used, i.e. only the CV fitting term is employed.

It is, however, applied to an image of local entropies (cf. to

[3]). Initially each assay image is smoothed by a Gaussian

with σ = 5, and then for each pixel the local entropy in a

window sized 31 × 31 is calculated. As each image contains

one horizontal scratch, the scratch is initialized as a rectangle

in the middle of the image spanning 95% of its width and 10%
of its height. In addition, as each image contains exactly one

scratch topology-preservation is enforced.

In Fig. 1, second column, clips of a prototypical segmen-

tation result for level sets are shown. The scratch boundary is

accurately extracted, however, due to topology-preservation

intrusions remain which are linked to the cell area by corri-

dors of one pixel width (top). To eliminate these artifacts mor-

phological post-processing by closing with a squared mask of

size 3 followed by hole filling is applied (see Fig. 1).

In Fig. 2 box plots of R and P for both segmentations

are shown. Level set segmentation results in a median R of

0.8234 and a median P of 0.8941. As expected, removing in-

trusions yields a distinctly higher median R of 0.8751, where

median P is barley affected as scratch boundaries are not ex-

panded and, thus, no new FP are introduced.

Applying snakes suitable configuration parameters are re-

quired, i.e. segment length s and step size γ, and a suitable

termination criterion needs to be applied. In all cases opti-

mization was stopped at iteration t if the smoothed relative

change in snake area between t− 5 and t− 15 dropped below

0.001. To find suitable s and γ, segmentation was accom-

plished with different combinations of parameters, i.e. γ ∈
{5, 10, 15} and s ∈ {10, 20}. The left six boxes in each plot

of Fig. 2 summarize the results. On the one hand larger s,

which result in a coarser contour approximation, increase P
about 0.0180 on average, and lead to a slight decrease in R
of −0.0092 on average. On the other hand the step size γ
does not appear to have significant influence as the median P
for all segment lengths lie in ranges of 0.9117 ± 0.0040 and

0.9299 ± 0.0035, respectively. Likewise the median R for

constant segment length are in the ranges of 0.8584± 0.0006
and 0.8500±0.0070. For subsequent comparisons the param-

eters γ = 5 and s = 10 resulting in the largest median F-score

were used. Exemplary results are given in Fig. 1 (left). Post-

processing is not required for snakes due to polygon simpli-

fication which removes intrusions as explicitly done via post-

processing for level sets (cf. Sec. 3).

The quantitative results for snake segmentation suggest to

favor smaller snake segments to achieve higher R. This is

particularly true if objects with very ragged contours are to

be segmented, like the scratch contours. There are numerous

examples in the test images where only the use of smaller seg-

ments allows for concavities to be properly segmented. Note,

however, that computational costs increase with decrease of s
as this results in larger numbers of polygon points.
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Fig. 3. Left: Lengths of extracted snake contours for all im-

ages of data set D1 are for s = 10 and s = 20, respectively.

Right: Box plots of R and P the snake and level set segmen-

tations of the cell images in data set D2.

Another interesting observation results from correlating the

segment length s with the overall length of final contours.

As can be seen in Fig. 3, left, there is an obvious tendency

of snakes with larger segments to yield shorter object con-

tours. Accordingly, by varying segment length an implicit

length regularizer is introduced into snake segmentation.

A direct comparison of the F-scores for snake (0.8828)

and level set segmentation (0.8868) does not induce a clear

tendency towards either of the two techniques. Level sets

tend to yield higher R while snakes result in larger P . But,

there is a significant difference regarding the computational

effort of both approaches. While the median processing time

for level sets is 118s with a maximum of 241s, the median for

the snakes is 540s with a maximum of 49min. In each snake

iteration the new set of snake points is calculated by solving a

linear system of equations containing twice as many variables

as snake points, thus, the computation time is directly related

to the number of snake points and increases with growing
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contour length and decreasing s. Also smaller γ often coin-

cide with higher computation times. For level sets the effort

of each iteration depends on the number of contour pixels due

to topology preservation which is directly related to the com-

pactness of the object region. Elongated structures require

more iterations than compact ones.

Cell Images To segment the borders of individual cells in

the images of D2 again the CV fitting energy is used. For pre-

processing the images are smoothed by Gaussian with σ = 4
which blurs the focal contacts’ intensities.

Adopting snakes for segmentation a parameter ratio of
λf

λb
= 1

150 was chosen for the CV energy, and in addition a

snake overlap penalty was applied with a weight of 0.6 rela-

tive to the CV term. As termination criterion a maximum of

700 iterations was used, or alternatively a relative change in

area between two iterations of not more than 0.001. Consid-

ering again F-scores a segment length of s = 5 and a step size

of γ = 2 turned out to be favorable, yielding a median R of

0.9241 and a median P of 0.8663.

Using level sets with the same CV fitting term proper

segmentation was impossible due to missing regularization.

This reflects the sensitivity to noise as also observed, e.g., in

[15]. It seems that the implicit length regularizer hypothe-

sized above allows snakes to successfully segment objects in

absence of an explicit regularizer. These findings show that

the same energy does not necessarily lead to comparable re-

sults on the same data when used with implicit active contours

compared to explicit ones as might have been expected.

These shortcoming of the level sets were overcome in-

cluding the length penalty term of the CV energy into the

functional, i.e. setting µ = 2000. Box plots of quantitative

segmentation results are shown in Fig. 3. For level sets a me-

dian R of 0.9130 and a median P of 0.8207 is observed, re-

sulting in a median F-score of 0.8502 compared to 0.8775 for

snake segmentation. However, as can also be seen from the

qualitative segmentation results in Fig. 1 (right), the differ-

ences are marginal. Again it is difficult to favor one of the

techniques, provided parameters are properly chosen for each

technique. The main difference between snakes and level sets

is again computational effort. The median time for level sets

is 30s and 1014s for snake segmentation.

5. CONCLUSION

Using the same energy functional, snakes and non-PDE level

sets achieve comparable results of high-quality. But, regard-

ing implementation details, necessity for data pre- and post-

processing, and computational effort there are distinct differ-

ences. Particularly our findings support the conjecture that

snakes incorporate an implicit length penalty varying with

the segment length. Depending on the application each of

both representations may have advantages, and knowing their

specifics is essential for chosing the adaquate representation.
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Abstract:

Analysis of biomolecules in cells essentially relies on fluorescence microscopy. In combination
with fully automatic image analysis it allows for insights into biological processes on the sub-
cellular level and thus provides valuable information for systems biology studies. In this paper
we present two new techniques for automatic segmentation of cell areas and included sub-
cellular particles. A new cascaded and intensity-adaptive segmentation scheme based on coupled
active contours is used to segment cell areas. Structures on the sub-cellular level, i.e. stress
granules and processing bodies, are detected applying a scale-adaptive wavelet-based detection
technique. Combining these results yields fully automated analyses of biological processes,
and allows for new insights into interactions between different cellular structures and their
distributions among different cells. We present an experimental evaluation based on ground-
truth data that confirms the high-quality of our segmentation results regarding these aims
and opens perspectives towards deeper insights into biological systems for other problems from
systems biology.

Link:

https://link.springer.com/chapter/10.1007/978-3-642-25382-9_11
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Abstract

Cell tissue in microscope images is often grained and

its intensities do not well agree with Gaussian distri-

bution assumptions widely used in many segmentation

approaches. We present a new cascaded segmentation

scheme for inhomogeneous cell tissue based on active

contour models. Cell regions are iteratively expanded

from initial nuclei regions applying a data-dependent

number of optimization levels. Experimental results on

a set of microscope images from a human hepatoma cell

line prove high quality of the results with regard to the

cell segmentation task and biomedical investigations.

1. Introduction

One important part of the cellular response to stress

is the rapid adaption of the translation processes.

Stress granules (SGs) are dense aggregations in the

cytosol emerging during cellular stress conditions and

are assumed to be essential for mRNA storage during

stress [11]. Processing bodies (PBs) on the other hand

are suggested to be the places of mRNA degradation in

eucaryotic cells [5]. As some SGs transiently associate

with PBs this suggests that RNAs can be redirected to

PBs for decay. To scrutinize these hypotheses it is es-

sential to monitor occurrence and distribution of PBs

and SGs in individual cells.

In fluorescence microscopy this is achieved by la-

beling certain SG/PB-components with different fluo-

rochromes coupled to specific antibodies. Additionally,

it is essential to detect the boundary and the nucleus of

each cell to assign the structures to a certain cell. This

allows the quantification of alterations in number, size

and localization of SGs/PBs due to cell manipulations,

e.g. viral infections [10]. Cell boundaries can be la-

beled by either antibody stainings or commercial dyes

binding to membranes. Both strategies are strongly re-

stricted as the number of antibodies reliably used in one

experiment is limited and dyes (e.g. HCS CellMask)

stain not only the outer membrane but also intra-cellular

parts. Hence in this work, we aim at detecting the cell

boundary on existing fluorescent images without need

of further labeling, where we use the fluorescence chan-

nel for PBs in the following,

For cell segmentation we apply active contour mod-

els as the basic segmentation technique. The main con-

tribution of this paper is a new cascaded segmentation

scheme for active contours which allows to cope with

inhomogeneous non-Gaussian intensity distributions of

target objects like the grained cell tissue in our appli-

cation. The overall approach is similar to [3], however,

our new cascaded segmentation scheme overcomes the

need for an additional dye to explicitly label cell tissue.

In cascaded segmentation we make use of the fact that

intensity distributions follow a coarse spatial pattern as

the local average intensity of the PB-channel decreases

towards the cell boundary. Snakes are optimized in a

cascaded fashion over several levels whereas contours

from the former level are used for initialization. Results

on a set of test images prove the high performance of

the proposed method with regard to the cell segmenta-

tion task and also to biomedical evaluation.

2. Related Work

Several segmentation techniques have been adapted

to the special needs of cell segmentation in fluorescent

microscopy images as a means for subsequent biolog-

ical analysis. A level-set based approach for segmen-

tation and tracking of HeLa cells using various fluores-

cent labelings is described in [4]. For segmentation of

cells the fitting term [1] is replaced with a Gaussian like-

lihood for the intensities with unknown variance. In the

rare case of lumped cells, these are separated using the

watershed transform and subsequent region merging. A

similar problem is treated in [9]. While for tracking of

cells a particle filter is employed, snakes are used as

a post processing step based on the snake energy [7]
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where the external energy is derived from the gradient

vector flow field. In the integrated approach [3] for cell

area segmentation and sub-cellular particle detection,

cell segmentation is based on labeling with HCS Cell-

mask. Initial contours are heuristically extracted based

on k-means clustering and subsequently adapted using

snakes. The snake energy incorporates a region fitting

and gradient-based data term, combined with a regular-

ization term, a shape prior to enforce elongated cells

and a coupling term for multiple cells.

In [2] cell segmentation is modelled as statistical in-

ference based on a graphical model where a random

variable is assigned to each pixel. Potential functions

are defined from a DAPI channel representing DNA

content and cell boundaries detected in a differential in-

terference contrast image. Final segmentation is derived

via belief propagation to estimate the joint likelihood.

3 Cell Segmentation

Active contour models have proven suitable for ob-

ject segmentation as their energy functionals allow

easy integration of contour- and region-related energy

terms [12]. In our scenario the number of target cells per

image is detected in the DAPI channel, hence we take

advantage of the topology preserving characteristics of

parametric active contours. Each target cell i is modeled

by a parametric contour function ci : [0, 1] → R
2.

3.1 Coupled Active Contours

To segment multiple cells in a single image the indi-

vidual snakes are not allowed to overlap, as overlapping

cells do not occur in the biomedical setup. We adopt the

approach of [12] for integrated optimization of N snake

contours with a common energy functional:

E(c1, .., cN ) =
N
∑

i=1

Es(ci) + ρ
N
∑

i=1

N
∑

j=i+1

∫

Oi,j

1dΩ (1)

Es(ci) denotes the individual energy of a single snake,

the second term penalizes for each pair of snakes ci, cj
the overlap Oi,j of their interior regions.

In our scenario the main clue to segment cells is re-

gion intensity. Thus we adopt the region-based snake

energy [1]. Intensities of the interior of each cell and

the background are modeled by different constant inten-

sities and quadratic error terms. This is approximately

equivalent to a Gaussian model with means cini , i =
1 . . . N, and cbg and with variances λin and λbg:

Er(ci) = λin

∫

Rin(ci)

(

I(x, y)− cini
)2

dΩ+

λbg

∫

Ω\(
S

N
i=1

Rin(ci))

(

I(x, y)− cbg
)2

dΩ, (2)

Initialization:
Otsu thresholding
of nuclei regions

channel

Segmentation Level l:

snake interiors
Dilation of initial

modified
snakes

exclude
mask

Iterative snake
optimization

PB channel

N snake
contours

initial 

for level l+1
contours

Result

Multi−channel image

Nucleus

continue

stop

Global termination
checks

Figure 1. Cascaded snake segmentation.

Figure 2. Clip of snake contours: initial
(left) and final (right), detected PBs (red).

where Rin(ci) denotes the interior of snake ci. Vari-

ances λin and λbg are specified as parameters, and mean

intensities are optimally estimated after each gradient

descent step as the means of the corresponding regions.

For the final energy of a single snake a regularization

term is added penalizing curvature:

Es(ci) = Er(ci) +
1

2

∫ 1

0

β· ‖ c′′i (s) ‖
2 ds (3)

As the region intensity distributions of cells in our sce-

nario do not agree well with the intensity model this ho-

mogenity criterion is quite restrictive. Thus we propose

to embed it in a new cascaded segmentation scheme.

3.2 Cascaded Segmentation Scheme

Rather than following a Gaussian distribution the

pixel intensities of the cells in our application tend to

decrease monotonically with increasing distance from

the nucleus region (cf. Fig. 2). Here we propose to seg-

ment such cells in a cascaded fashion by sequentially

adding new cell fractions to the cell area. Fig. 1 shows

an overview of the approach.

The basic idea of our approach is to replace the sin-

gle optimization level commonly used with snake tech-

niques by an iterative procedure with data-dependent

numbers of levels. The state to which a snake con-

verges at the end of one optimization level l is the ba-

sis for the initialization of the subsequent optimization

level l + 1. In detail, the resulting snake region from
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level l is dilated by 10 pixels and its contour yields the

initial snake contour of level l + 1 to segment the adja-

cent cell area of darker intensities. In addition the area

already segmented as part of the cell during level l is

masked and thus excluded from further computations.

Subsequently, cini and cbg are re-estimated from this ini-

tialization and are most likely smaller than prior val-

ues due to the intensity structure of the cells. Conse-

quently, initializing the optimization procedure with di-

lated snake contours drives the snakes to further expand

towards the background.

One important ingredient for such an iterative expan-

sion scheme is a proper termination criterion. The seg-

mentation should stop as soon as pixels are enclosed

that more likely belong to the background than to the

cells. To this end we consider the standard deviation σin
i,l

of intensity values within areas added to a cell in level l
and the standard deviation within the background area

σbg . As cell tissue staining is coarse-grained compared

to the homogeneous background, iterative segmentation

for a single cell terminates if the standard deviation of

the interior intensity values of the recently added cell

area falls below a threshold θb:

|σin
i,l − σbg| < θb. (4)

In addition, region growth is analyzed and very small

snake expansion between two levels l − 1 and l, i.e.

|1− area(ci,l−1)/area(ci,l)| < θa, (5)

also results in termination of the optimization for the

snake in question. The overall cascaded segmentation

terminates if all individual snakes have terminated ac-

cording to one of both criteria or if a maximum of 9 lev-

els is reached.

Cell segmentation is initialized with snake contours

as extracted from cell nuclei regions segmented by Otsu

thresholding of the DAPI nuclei channel and morpho-

logical post-processing. For the majority of cells the nu-

cleus is detected correctly, however, sometimes nuclei

of neighboring cells are merged. To separate these we

apply a simple yet efficient procedure adapted from [8].

For each resulting connected component a cell is hy-

pothesized and its contour yields an initial snake.

4. Experimental Results

For experimental evaluation of the new segmentation

scheme 8 images from epifluorescence micoscropy are

used. Each image consists of three channels, contain-

ing fluorescently labeled nuclei, SGs and, PBs respec-

tively. SGs are labeled by immunostaining of TIAR (a

protein localized in SGs), while PBs are labeled by im-

munostaining of DCP1a (decapping enzyme localized

in PBs). The nuclei are labeled by DAPI. For evalua-

tion a manual cell labeling is available as ground truth

for all images. Three of the images belong to a con-

trol sample, the remaining five are infected with a virus

as mentioned in the introduction. One control and two

virus images containing 47 cells in total were used as

training dataset, i.e. for estimating values for λin, λbg

and θb (Tab. 1). The other parameters were determined

empirically. The remaining five images with 87 cells

form the test dataset.

Level l λin λbg ρ β θa θb

1&2
45 250 105

0.75 0.013+
100

≥ 3 1.25 0.002 · l

Table 1. Optimization parameters.

In Fig. 3 (a) box plots of recall and precision of the cell

area for all 87 cells of the test set are shown over a max-

imum number of 9 levels. As the cell boundary seg-

mentation starts with the nuclei contours (Fig. 2, left)

initially large fractions of the cells are missing yielding

low recall values. During cascaded segmentation fur-

ther parts of the cells are included (Fig. 2, right)1 result-

ing in an increase of the recall from 0.505 after the 1st

level to 0.902. In contrast, the precision is initially high

with 0.998 as almost no non-cell pixels are included,

however over time decreases to a still very satisfying

value of 0.865. In some cases low precision for single

cells results from inclusion of other cells’ tissue, mainly

at image boundaries where tissue is visible, but no cor-

responding nucleus exists. Note that 90% of the snakes

are optimized for at least 3 levels, while more than 85%
of the snakes terminate after a maximum of 5 levels.

From a biological point of view accurate cell bound-

ary detection is required to correctly estimate number

and size of SGs and PBs per cell. Both SGs and PBs

are detected applying the scale-adaptive wavelet-based

segmentation approach published in [6]. Some PB de-

tection results are shown in Fig. 2. In Fig. 3 quantitative

detection and evaluation results for the test dataset are

shown. Fig. 3 (b) shows scatter plots of the number of

SGs and PBs detected per cell in ground truth labeled

vs. automatically segmented cells for the test set. Re-

sults after the first level are shown in blue, final results

in red. Spearman correlation coefficients improve from

0.877 for SGs and 0.835 for PBs after the first level to

very good 0.925 and 0.932 after termination of the cas-

caded approach, proving the high quality of segmenta-

tion.

In Fig. 3 (c) the area fractions of PBs and SGs for the

31 cells of the control set and the 56 cells of the virus-

infected test cells are depicted. Area fraction is defined

1The cell at the lower border stems from a nucleus outside the clip.

157



●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Iteration

R
e
c
a
ll

1 2 3 4 5 6 7 8 9

0
.2

0
.4

0
.6

0
.8

1
.0

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Iteration

P
re

c
is

io
n

1 2 3 4 5 6 7 8 9

0
.4

0
.6

0
.8

1
.0

(a) Evolving recall and precision of cell area.

o

o

o

oo
o

o
oo

o
oo

o
o

o

ooo
oo

o
o

o

o

oo
ooo

o

o

o

o
o

oooo

o

o

o

o

oo
o

oo oo

o

oo
o

ooo
o

o

o

o

oo

o

o

o
ooo

o
o
o

o

oo
o

o

o

o

o

o

o

o

o

o

0 10 20 30 40

0
1

0
2

0
3

0
4

0
Ground truth

S
e

g
m

e
n

ta
ti
o

n

o

o

o

o
o

o

o
o

o
o

oo
o

o

o

ooo
o

o
o

o

o

o

oo
o

o
o
o

o

o

o
o

oooo

o

o

o

o

o

o
o

oo

o

o

o

oo
o

o
o

o
o

o

o

o
o

o

o

o

o
oo

o

o
oo

o

o
oo

o
o

o

o

o

o

o

o

o

+

+

+

+

+

+
+

+
+

+
+

+

+

+

+
+

+

++

+

+ +

+

+

+

+

+ +
+

+

+
+

+
+

+++
+

+

+

+
+

+

+

+
+

+

+

+

+
+

+

+ +
+

+
+

+
+

+
+

+

+
+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+ +
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

++

+

+

+

+

+

+

++

+

+

+
+++

+

+

+

+

+

+
+

+

+
+

+
+

+

+

+
+

+

+

+

++
+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+
+
o
o

PBs (1st iter.)
PBs (final iter.)
SGs (1st iter.)
SGs (final iter.)

(b) Number of SGs and PBs per cell.

+ + +
+

+
+

+

+

+

+

+

+ ++
+

++ ++

+

+

+

+ ++
+

+

+

+

+
+

+ +

+

+

+

+ +++
+ +

+

+

+

+ +

+
+

+

+

+ +

+

+

+

0.000 0.002 0.004 0.006 0.008 0.010

0
.0

0
0

0
.0

1
0

0
.0

2
0

p−Bodies

S
tr

e
s
s
 g

ra
n

u
le

s

o

o

o

o
o

o

o oo oo o o
o

o

o o oo
o

ooo

o

ooo
oo

o

o

+
o

virus
ctrl

(c) Area fraction.

Figure 3. (a) Recalls and precisions of cell area for test set; (b) scatter plot for number of SGs
and PBs per cell in ground truth and automatically segmented cells after 1st (blue) and final
level (red); (c) scatter plot of area fraction for both types of particles and both cell groups.

as the ratio between the area of a cell which is popu-

lated by structures (i.e. PBs or SGs) and complete cell

area. The values clearly show that control cells (blue)

contain a certain number of large PBs while with a few

exceptions SGs remain absent. In contrast, upon viral

transfection (red) SG-formation is induced in a portion

of the cells, which shows the cells presumably as indeed

transfected. This correlates with a reduced PB number

and size. The results clearly outline that not every cell in

the image undergoes such alterations and, thus, widely-

used average quantification over complete images is bi-

ased and does not reflect the situation correctly.

5. Conclusion

The paper presents a new cascaded segmentation

technique based on coupled active contours which is

particularly well-suited to segment objects with non-

homogeneous and non-Gaussian intensity distributions.

The segmentation of target cells is iteratively expanded

yielding very satisfying recall and precision of cell area

on the test dataset. Also comparing the numbers of

structures detected per cell with ground truth data shows

the high quality of segmentation results. Summarizing,

the proposed automated segmentation of fluorescent im-

ages shows as a valid basis for biological analysis and

interpretation of cellular processes.
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a b  s  t  r  a c  t

The  function of  complex  networks  in  the  nervous system relies on  the  proper  formation  of  neuronal

contacts  and their  remodeling. To  decipher the  molecular  mechanisms  underlying  these  processes,  it is

essential  to establish  unbiased  automated tools  allowing the correlation  of neurite  morphology  and  the

subcellular  distribution  of molecules  by quantitative means.

We developed  NeuronAnalyzer2D, a  plugin for ImageJ,  which allows  the extraction  of  neuronal cell

morphologies  from two  dimensional  high resolution images,  and in  particular  their  correlation with

protein  profiles  determined by indirect  immunostaining  of primary  neurons. The  prominent  feature  of

our  approach  is the  ability  to  extract subcellular  distributions  of distinct biomolecules along neurites.

To  extract the  complete  areas of  neurons, required for  this  analysis,  we  employ  active contours with

a  new  distance based  energy.  For locating  the structural  parts  of neurons  and various morphological

parameters  we  adopt a  wavelet  based  approach.  The  presented  approach  is  able to  extract  distinctive

profiles  of  several  proteins  and reports detailed morphology  measurements  on neurites.

We  compare  the  detected  neurons from NeuronAnalyzer2D with  those obtained  by NeuriteTracer and

Vaa3D-Neuron,  two  popular  tools  for  automatic  neurite tracing. The  distinctive  profiles  extracted  for

several  proteins,  for  example,  of the  mRNA binding protein  ZBP1,  and a comparative  evaluation of  the

neuron  segmentation  results proves the high quality of the quantitative data  and  proves  its  practical

utility  for  biomedical  analyses.

© 2014 The  Authors.  Published by Elsevier B.V.  
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1.  Introduction

Neurons are essential components of higher organisms. They

form simple up to extraordinary complex networks via their axonal

and dendritic cell extensions. During early development, neurons

extend elongated protrusions of cytoplasm, called neurites, which

finally differentiate into  functional axons or dendrites. The mor-

phology of single neurites essentially facilitates the function of

neuronal networks, and defects in  neurite architecture frequently

correlate with severe brain disorders and neurological defects.

Thus, the  analysis of neurite morphology and underlying molecular

0165-0270 ©  2014  The  Authors.  Published  by  Elsevier  B.V.  
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regulatory mechanisms is important to understand the basis  of

both neuronal function and neurological diseases.

During development or in response to environmental con-

straints, neurons like most cells modulate their gene expression

program resulting in the synthesis and subsequent subcellular sort-

ing of mRNAs or  the final product, the proteins. These underlying

regulatory mechanisms modulate intrinsic cell functions, control

cell migration, and direct the morphology of cellular protrusions

including neurites. To understand the function of these regulatory

processes, it  is essential to reveal the localization of mRNAs and pro-

teins in relation to cell morphology by quantitative means. To this

end, fully automated quantitative evaluation of molecular profiles

remains a major obstacle.

A  fully automated quantitative evaluation of molecular profiles

requires an unbiased assessment of images acquired by  high-

resolution fluorescence microscopy subsequent to the specific

labeling of molecules by fluorescent dyes. Although these proce-

dures are well established, the quantitative and high-throughput

evaluation of acquired images remains rudimentary and currently

the ability to extract and analyze the subcellular distributions of

distinct biomolecules in  a high-throughput manner does not exist.

The extraction of distinctive molecular profiles based on  flu-

orescence intensities requires an exact segmentation of neurons.

The vast majority of published neurite detection approaches are

limited to tracing the centerlines of neurites and evaluating the

global cell morphology, without a complete segmentation of cell

areas. Moreover, various approaches require manual or semiau-

tomatic segmentation of  neurites and,  thus, still require manual

intervention.

The goal of our work is to spatially and quantitatively assess

distinct biomolecules along neurites. To achieve this, molecu-

lar profiles are  extracted upon fluorescence labeling of relevant

molecules, for example, proteins. Additionally, morphological and

biomolecular changes in  neurons induced by stress or influence of

molecular stimuli are to be characterized in  a fully automated man-

ner by correlating the neuronal cell morphology with the extracted

protein profiles. This requires an automatic extraction of complete

neuron and neurite areas, as well as  an automatic extraction of

protein profiles along the  identified neurites. To detect the neuron

areas, we apply energy based active contour models (Kass et al.,

1988), where we propose a new distance based energy to detect

low contrast object boundaries. To  identify the neurites within the

detected neuronal cells the individual structural parts of the neu-

rons are located. In general a developing (primary) neuron can

be divided into soma (cell body) and neurites, where a complete

neurite consists of two structural parts, the neurite shaft and the

growth cone. For the identification of neurites a wavelet based

approach is used (Mallat, 1998), derived from an algorithm to detect

features in mass spectrometry data (Tautenhahn et al., 2008). It

relies on the morphology of  the cell region, in particular the width of

structural neuron parts. The wavelet based approach separates the

neuron into the three types of structures: soma, shafts and growth

cones. Subsequently, the specific labeling of biomolecules is used

to extract the intensity distributions along the identified neurites

enabling a spatial and quantitative assessment of the proteins by

the extracted profiles.

The  algorithm is implemented in the NeuriteAnalyzer2D plu-

gin for the Java image processing software ImageJ1,  and is available

in the open-source package MiToBo2. The plugin is capable of batch

analysis of a large number of 2D images enabling the quantitative

high-throughput evaluation of acquired images.

1 http://rsbweb.nih.gov/ij/
2 http://www.informatik.uni-halle.de/mitobo/

NeuriteAnalyzer2D is able to extract distinctive profiles of

several proteins, demonstrating its ability to extract fluorescence

intensity distributions of labeled molecules along the localized neu-

rites. In particular, a distinctive profile for  the Zipcode binding

protein (ZBP1/IGF2BP1) was  extracted for the first time. In addition

to basic measurements of neuronal morphology, like centerlines,

end points or branching patterns, our approach reports detailed

morphology measurements on neurites. For example, average

neurite width, number of filopodia-like protrusions (Mattila and

Lappalainen, 2008) and size of growth cone areas are extracted.

The presented method to extract profiles of labeled molecules is

validated by comparing the profiles of F-actin and ˛-tubulin to their

published distributions in neuronal cells. To validate our fully auto-

mated extraction of neuron areas we compare the detected neurons

from our approach and two other automatic tracing approaches to

neurons manually analyzed by  a biomedical expert.

2.  Related work

The segmentation of elongated tube-like structures, for exam-

ple, blood vessels (Kirbas and Quek, 2004; Läthén et al., 2010),

plant roots (Erz et al., 2005) or neuronal cells (Capowski, 1983;

Ramm et al., 2003), has  been a challenge in computer vision for a

long period of  time. Efforts towards computer-aided segmentation

of neurons and the analysis of neuronal morphology reach back

45 years (Glaser and Van  Der  Loos, 1965). Numerous findings in

the fields of  neurite tracing, quantitative methods of analysis and

morphology extraction have been investigated.

However, to the authors’ knowledge, no  tools for spatial and

quantitative assessment of distinct biomolecules along neurites are

currently available to correlate biomolecular and morphological

changes in neurons in a fully automated manner.

Schmitz et al. present an automatic image analysis program

called SynD (Synapse Detector) to calculate the synaptic recruit-

ment of proteins of interest (Schmitz et al., 2011). The calculation

of the recruitment is only given as  the ratio between synaptic and

somatic intensity. Furthermore, the program reports dendritic and

synaptic characteristics, like dendrite length as well as number of

branches and synapses. To  measure the dendritic branching the

Sholl analysis is applied (Sholl, 1953). This analysis is widely used

but offers a limited sensitivity to detect differences between groups

of neurons and disregards orientation as well as topology of  the

dendritic tree (Uylings and van Pelt, 2002).

Since the extraction of neuronal morphology is still a very

challenging task  (Meijering, 2010), various approaches have been

published aiming at the morphology extraction of neuronal cells,

but disregarding a quantitative evaluation of molecular profiles. In

most cases, trace lines of neurites are extracted and overall cell

morphology is evaluated, while numerous algorithms do not over-

come the need of manual intervention, which is a major bottleneck

in efficient high-content image analysis. Even if the subcellular dis-

tribution of distinct biomolecules is disregarded, a few approaches

should be mentioned, as  the detection of neurons is important to

extract protein profiles along neurites.

NeuronJ3 (Meijering et al., 2004) and the Simple Neurite Tracer4

are two  popular tools, which provide semiautomatic tracing and

quantification of neurites in 2D or 3D images, initialized by a man-

ual setting of seed points. Zhang et al. (2007) present a novel tracing

algorithm with automatic seed point detection. Without any  user

interaction the soma areas can be detected and centerline points

of neurites are estimated. However, the complete neurite areas are

not located. Most tools aim to extract neurite morphology, such as

3 http://www.imagescience.org/meijering/software/neuronj/
4 http://fiji.sc/wiki/index.php/Simple Neurite Tracer
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data about length of neurites, number of branches and spines (small

membranous protrusions), for example, Dehmelt et al. (2011), Ho

et al. (2011), Meijering et  al. (2004) and Pool et al. (2008). Only

a few tools offer further measurements of neurons and neurites,

such as the number of branching layers (layers of arborizations

from primary neurites into secondary or tertiary branches), spine

and growth cone shape or intensity statistics (maximum, mean and

integrated intensity) (Wang et al., 2010; Xu and Wong, 2006).

The  DIADEM Challenge5 (2009–2010) plays an important role

in reconstructing three dimensional neurons. The main goal of

the competition was to devise algorithmic methods for automated

neuronal tracing and digital reconstructions of neurons in 3D.

Final algorithms work well on 3D images (Wang et al., 2011;

Chothani et al., 2011; Zhao et  al., 2011; Türetken et  al., 2011; Bas

and Erdogmus, 2011), but do not work properly with 2D images

without workarounds, for example, creating artificial 3D images

from 2D data.

Another promising tool for neuron tracing and reconstruction

is Vaa3D-Neuron6 (Peng et  al., 2010). The tool is designed for

3D images, but can also handle 2D data. In addition to manual

and semi-automatic tracing algorithms, Vaa3D-Neuron contains

automatic methods to trace the structure of a neuron (Peng et al.,

2011). As  a result, traces of the neuron structure and the complete

area of the neuron can be obtained. However, the tool does not

perform well with our  2D image data, especially at overexposed

soma regions.

Despite the diversity of tools, most common approaches

evaluate overall cell morphology, without analyzing the spatial

arrangement of distinct biomolecules within the cells. Thus we

conclude that fully automated algorithms allowing the spatial and

quantitative assessment of molecular profiles and neurite mor-

phologies in a correlative manner are currently not available.

3.  Biological background

The asymmetric distribution of protein factors in polarized cells

like neurons are essential to define and maintain cellular polarity

and polarized functions (Gavis et al., 2007). In  matured neuronal

systems as well as  developing neurons, the subcellular sorting of

proteins is often accomplished by the spatial arrangement of cor-

responding mRNAs and their subsequent local translation (Mikl

et al., 2010; Tübing et al., 2010). This regulatory constraint is essen-

tial to prevent promiscuous protein activity and, thus, restricts

protein function to specific subcellular sites. Thereby protein func-

tion or assembly of multi-protein complexes can be guided, for

example, to synapses in matured neurons or growth cones of devel-

oping neurites. This allows for  a  spatiotemporal fine-tuning of gene

expression governing essential neuronal functions like growth-

cone guidance during embryogenesis as well as synaptic function

in matured neurons, for instance during memory consolidation.

One of the most prominent examples for such a regulatory mech-

anism in  the neuronal system is the spatially restricted translation

of the ˇ-actin (ACTB) mRNA in developing neurons (Mikl et al.,

2011). Transport and translational silencing of  this mRNA are essen-

tially facilitated by members of  the Zipcode binding proteins. For

ZBP1 it  was shown that it associates with a specific region of 54

nucleotides in the ACTB-3′UTR whereby it  inhibits ACTB protein

synthesis and allows directed transport of this RNA to the growth

cone of developing neurons (Ross et al., 1997; Zhang et  al., 2001).

Inhibition of ACTB mRNA translation by ZBP1 is abrogated upon

phosphorylation of the protein by the protein-tyrosine kinase Src.

This activation of ACTB protein synthesis is  presumed to allow a

5 http://www.diademchallenge.org/
6 http://www.vaa3d.org/

spatially restricted increase in ACTB monomer concentration which

promotes F-actin (filamentous actin) polymerization, the driving

force of cell protrusion (Ananthakrishnan and Ehrlicher, 2007).

To analyze these processes it is essential to have high-resolution

fluorescence microscopy and labeling techniques based on fluo-

rescently labeled antibodies directed against specific proteins or

fluorescently labeled antisense nucleotide probes hybridizing to

endogenous mRNAs.

4.  Workflow

The four phases of our approach are illustrated in the data flow

diagram in  Fig. 1. Initially a multichannel microscopy image is

given, where the nuclei and different proteins or neuronal struc-

tures of interest are labeled. To  yield  a suitable basis for neuron

segmentation, a maximum intensity projection (MIP) of the mul-

tichannel input image, except the nuclei channel, is computed,

representing a 2D projection of the neurons. Due  to low contrast

of neuron boundaries, the extraction of the neuron contour is a

challenging task. To solve such problems, several approaches exist,

which require an initialization near the target objects. For neuron

segmentation, we  applied an active contour model, which also uses

an initialization in the neighborhood of the object. This initializa-

tion is obtained from the extraction of a coarse neuron contour

within the first phase (Section 5.1). Subsequently, this contour is

refined by an active contour model in  the second phase to extract

an accurate neuron region contour (Section 5.2). This extraction

completes the automatic neuron detection.

Given this neuron cell region, during the third phase the neuron

is first segmented into approximate soma and neurite regions. Fur-

ther analysis with a wavelet based approach localizes the origin of

each neurite and detects the different structural parts of the neuron

with higher accuracy (Section 6.1). This allows the categorization of

the neuronal structure into soma, neurite shafts and growth cones.

Subsequently, in the fourth phase the protein profiles are extracted,

based on the intensity distributions of the fluorescence labeled pro-

teins along the previously detected neurites (Section 6.2).

5. Neuron detection

The  automatic detection of neurons is accomplished in the first

two phases (cf. Fig. 1). The MIP  contains at least one complete neu-

ron, but also further neurons or fragments of not completely visible

neurons can be present. Neurons in the image are localized by bina-

rization and their regions are identified by component labeling.

Subsequently, active contours are applied to improve the contours

of these neurons.

5.1.  Coarse neuron contour

The  goal of the first phase is to localize the nuclei and neuron

regions, aiming at the extraction of coarse contours of structural

intact neuron cells. In our application, fixed cells are analyzed. Thus,

structurally intact as  well as  dead cells are present in  the fluores-

cence images. To exclude the later ones, we exploit that a dead cell

does not contain an intact nucleus.

The fluorescently labeled nuclei are first detected in the nucleus

channel by  applying a global Otsu thresholding (Otsu, 1979). For

neuron localization, the MIP  image is binarized using the Niblack

thresholding method, estimating mean and standard deviation in

a neighborhood centered at (x, y)  (Niblack, 1986). In initial studies,

the complete image was identified as  adequate neighborhood, ren-

dering the Niblack thresholding as a global threshold operation.

Following binarization, dead and not completely visible neurons

are excluded by subsequently considering only  neuron regions

including at least 90% of the area of exactly one nucleus region.
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Fig. 1. Data flow diagram of  the  automatic profile extraction approach. The four phases are sequentially executed, resulting in a  complete neuron segmentation and automatic

protein profile extraction.

Neurite fragments of  the Niblack binarization are linked to the

located neuron regions, considering elongated regions as  candi-

dates for linking. Such candidates do not overlap with nuclei regions

and are located within a  maximum distance of the neuron (cf. Fig. 2).

Subsequently, neurons that are considered as intact and complete

are selected for further analysis. The contour of each neuron is

extracted, which provides a coarse localization of the complete

neuron region. This approximation is not sufficient to extract mor-

phology features and an accurate protein quantification. However,

it is well-suited as initialization of an active contour model and is to

be improved in the second phase.

5.2. Contour refinement by  an active contour model

Active contours are deformable models, influenced by  external

constraint and image forces. The basic idea is to match a deformable

model to an image by means of the iterative minimization of an

energy functional. Such models are widely used, for example, for

Fig. 2.  Binarized image of  a neuronal cell. Components not belonging to the neu-

ron are shown in black, cell fragments due to  binarization are shown in  red. The

identified candidate regions (red) are linked to the neuron region (gray) based on

distance criteria.

image segmentation, edge detection, and object tracking (Liang

et al., 2006; Shen et al., 2006; Unde, 2012). They can be represented

as an explicit model, the traditional snakes (Kass et al., 1988), or

implicitly using level set methods (Chan and Vese, 2001; Osher and

Fedkiw, 2002). In our approach snakes are  used, representing the

contour as a parametric curve v(s) =  (x(s), y(s)), normalized to unit

length (cf. Kass et al., 1988). The energy functional, which has to be

minimized, subsumes internal and external energy terms and con-

trols snake motion within the image domain. The internal energy

Eint(v(s)) considers, for example, length and curvature, to control

smoothness of the snake. Whereas an external energy Eext(v(s)) is

defined over the image domain to guide the snake towards desired

features such as object boundaries. In general, the energy functional

of the snake is defined as sum of both energies,

Esnake(v(s)) =

∫ 1

0

Eint(v(s)) +  Eext(v(s)) ds . (1)

Using  the calculus of variations, the energy functional (1) is min-

imized with regard to v(s) by an iterative gradient descent method.

A numerical solution can be derived by discretizing and subse-

quently solving the resulting system of linear equations (Kass et al.,

1988).

External energies are frequently based on  gradients of gray-

value images, like the negative gradient magnitude of a (Gaussian

blurred) image. A major limitation of these energies is the small

capture range and the poor convergence to boundary concavities

(Xu and Prince, 1998). In  previous work (Misiak et al., 2009), we

used the gradient vector flow (GVF) field as an alternative (Xu and

Prince, 1998). This external force is based on the diffusion of gra-

dient vectors of  an edge map. It  is able to guide the active contour

to boundary concavities and allows for initialization far away from

the object boundary. For tubular objects like neurites, however, the

gradient is propagated from the boundary towards the center of

the tube (Bauer and Bischof, 2008; Cabuk et al., 2010; Chang et al.,

2003). Thus, the  active contour converges within the neurites, due

to the contraction of the left and right boundaries to a single line (cf.

Fig. 3A). In  consequence for our data we  get incorrect results along

neurite regions. To overcome this problem, we  propose an energy
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Fig. 3. Inverted image showing details of a detected neurite region using different

external  energies. (A) The gradient vector flow field as external energy partially

causes  the snake to move across the boundary inside the  neurite and causes the

snake to contract to a single line. (B) An accurate localization of the neurite boundary

is achieved by using the distance based external energy.

based on a distance transformation that ensures a  large capture

range as well as a correct localization of the object boundary.

The  purpose of the new energy is to define a map  of distances

by calculating the distance of each pixel in the image to all fore-

ground regions. Hence, this energy term drives the snake along the

distances of  the transformation towards the object boundary. No

smoothing of  object boundaries occurs, but an exact localization of

the  contour is an indispensable prerequisite.

The MIP  gray-value image provides the basis for the distance

map calculation. The MIP  image is first binarized as follows:

1.  a median filter (5 ×  5) is applied,

2. the gradient magnitude is computed (central differences),

3. a median filter (5 ×  5) is applied to the gradient magnitude,

4.  the filtered gradient magnitude image is binarized by  Otsu

thresholding,

5. and the binary regions are improved by morphological closing

(5  ×  5).

In  contrast to the first phase, where we used Niblack threshold-

ing for  image binarization, here we apply an Otsu thresholding. The

Niblack method generates a more complete neuron binarization

with less fragmentation suitable to extract a coarse contour enclos-

ing the entire neuron. In contrast to this, the Otsu thresholding

results in more fragments of the neuron, but yields better local-

ization of the neuron boundary which is  important in this phase of

neuron detection. Potential disconnections of neurites are compen-

sated by  the snake, because the neuron contour will be interpolated

at these positions. Hence, Otsu gives an advantage over Niblack

threshold to generate a more accurate external energy.

For  the computation of the distance map the fast Chamfer dis-

tance transformation is used (Borgefors, 1986). Using an Euclidean

distance metric, the distance transformation DEuc(x , y) ∈ R  of a

pixel (x ,  y) is defined as

DEuc(x, y) = min
(x′,y′) ∈ FG(I)

√

(x −  x′)2
+  (y − y′)2 , (2)

where  FG(I) denotes the foreground of the binary image I, i.e. the

neuron region. Inside the neuron region, all distance values are zero.

Hence the snake is moved towards the neuron contour, but tends to

not move across the boundary to the interior of the neuron region

(cf. Fig. 3B).

The distance map  calculated from the binary image and normal-

ized to a range of [0, 1] can directly be used as external energy in

the active contour model (1).

According to Kass et al. (1988), the internal energy Eint(v(s))
subsumes sums over the first and second derivatives (v′(s) and

v
′′(s)) of the parametric contour v(s), weighted by ˛(s) and ˇ(s).

The first derivatives refer to the elasticity of the contour, where the

second derivatives refer to the contour’s rigidity. The weights ˛(s)

and ˇ(s) rate  elasticity against rigidity and balance the internal

energy against the external energy DEuc(v(s)).
For all  experiments we set ˛(s) ≡   ̨ : =0.2 and ˇ(s) ≡  ̌ : =0.0. The

step size  in  gradient descent is  initially set to 0.05 for all snake

control points. During minimization the value of    is individually

adapted for  each point. The underlying function is defined as the

square root of the external energy DEuc at the current point position

(x, y),

(x, y)  =

√

DEuc(x, y) . (3)

This  adaptation of the step  size  makes the contour behave

more dynamic in contrast to a fixed value of  . Each control point is

moved with an energy based step size. A  large external energy value

at the current control point corresponds to a larger distance to the

neuron boundary. This results in a larger value of  , whereas a  small

 coincides with a small energy value. In addition, the contour is

not moved across the boundary since the step size automatically

decreases near the object boundary.

The minimization process terminates if less than 5% of the con-

trol points are moved in  an iteration. In  any case, the minimization

process terminates after a maximum of 120 iterations. The opti-

mization procedure completes the fully automatic detection of

neurons.

6. Morphology and protein analysis

Quantitative assessment of protein distributions along neurites

requires the extraction of intensity distributions of the  stained pro-

teins along the neurites. In the third phase, first structural parts of

the neuron, in particular the neurites, are identified. Subsequently,

in the fourth phase the intensity distributions along all  neurites are

extracted to obtain a distinctive profile of the protein analyzed.

6.1.  Identification of structural neuron parts

In general, a neuron can be divided into two types of structural

parts, the soma and the neurites. A complete neurite extends from

its origin at the border of the somatic area along the neurite shaft to

the tip of the growth cone (cf.  Fig. 5A). To identify these structural

parts, first a skeleton graph is  extracted to represent the skeleton

of the neuron region as a directed acyclic graph. Subsequently, the

soma region is coarsely detected, neurite origins are roughly local-

ized, and finally a wavelet based approach is used to exactly localize

the neurites and detect the neurite parts, namely shaft and growth

cone.

Based on the segmented neuron region (cf. Section 5), the skele-

ton of the neuron is extracted (Zhang and Suen, 1984) and a directed

acyclic skeleton graph is generated, allowing a convenient handling

of the  skeleton. The nodes of the skeleton graph are defined by

branch and end points of the skeleton, whereas the edges of the

skeleton graph are defined as  skeleton segments between such

nodes, containing a  sorted list of skeleton pixels. The edges are

directed to point from a start point towards end points, which is

achieved during construction of the graph. In addition, the soma

of the segmented neuron region is coarsely localized by  morpho-

logical opening. Fig. 4 shows the segmented soma region colored in

gray within the black segmented neuron region. A large structuring
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Fig. 4. Identification of soma and neurites as structural neuron parts. (A)  The putative soma region of the detected neuron is coarsely localized by morphological opening

with a large structuring element to eliminate non-soma regions (black) and leave a putatively coarse soma region (gray). (B) Zoom into the  putative soma region, including

the skeleton graph of the neuron region. The edges of the skeleton graph are marked as  gray or black lines. The soma is marked with a blue polygon. Edges intersecting

the soma boundary (gray) are used to split the graph into subgraphs, while edges inside the soma (black) are removed. The red nodes define the start nodes  for each of the

neurite  skeleton subgraphs. These neurite skeleton subgraphs represent the individual neurites of the neuron and give the basis for localizing the  start and  end points of

each  neurite. (For interpretation of  the references to color in  this  figure legend, the reader is referred to  the web  version of this  article.)

element of 21 × 21 pixels is applied to eliminate non-soma regions

and leave a  putatively coarse soma region (cf. box in  Fig. 4A).

Soma  and skeleton graph are used for  further analysis. To local-

ize the neurite origins, only graph edges are considered which

intersect the soma boundary (cf. Fig. 4B). To  this end,  the skele-

ton graph is divided into multiple subgraphs by splitting the graph

at branch nodes inside the soma and consider only subgraphs with

Fig. 5. (A) Binary image of a neurite (black) with the corresponding width profile

(blue) along the neurite skeleton from the soma to growth cone. The results from the

detection of the neuron parts are shown (red), separating the soma from the neurite

and the neurite shaft from the growth cone. (B) Inverted image (adjusted brightness

and contrast) showing a segmented neuron with located boundaries (red) between

the different structural parts of  the  neuron. (For interpretation of the references to

color in this figure legend, the  reader is referred to the web  version of this  article.)

an edge intersecting the soma boundary (cf. red  nodes in Fig. 4B).

In the special case that no  branch node is present, the single edge

is split at the intersections of this edge with the soma’s boundary.

This results in  a set of skeleton graphs representing the skeletons

of the individual neurites (cf. Fig.  4B).

For exact localization of a neurite’s start and end point, the

border between soma and neurite origin as well as  between neu-

rite shaft and growth cone needs to be detected. Considering the

structural parts of the neuron in  our images, it  is obvious that

these differ in  their morphology. The somatic area is given by

a large compact region extended by elongated neurites, consist-

ing of a thin neurite shaft and a thickened terminal end, the

growth cone. Hence, to identify the different structural parts these

morphological characteristics, in particular the region width, are

exploited. We interpret the width of the neuron region along

each skeleton graph as a 1D function and denote it  as width

profile. Fig. 5A shows a binarized neurite and the corresponding

width profile. The slope of the profile is steep at the transi-

tions between the structural parts. Accordingly, the width of the

neuron region can be used to detect the borders between the dif-

ferent structural parts, in particular between neurite shaft and

soma, and shaft and growth cone, and to finally identify the neu-

rites.

To solve this task of automatically identifying the structural

parts from the width profile, we  have adopted a wavelet based

approach. It  is derived from centWave, an algorithm to detect fea-

tures in  mass spectrometry data (Tautenhahn et al., 2008). The

algorithm aims to detect chromatographic peaks and determines

their boundaries based on 2D signals given by LC/MS raw data (liq-

uid chromatography coupled to  mass spectrometry) (Tautenhahn

et al., 2008; Kuhl  et al., 2011; Neumann et al., 2013). The main aim

of the centWave algorithm is to detect peaks of  different width in a

chromatographic signal. Such peaks are characterized by significant

deflections in the signal. centWave detects the peaks by  localizing

the center and their boundaries.

Considering  the deflections in  our width profile, two significant

peaks exist that characterize the soma and the growth cone. To

localize their boundaries and separate the neurite shaft from the

soma and growth cone we  search for positions in the profile where

the slope of the profile considerably changes. These positions are

given by the boundaries of the peaks related to the soma and growth

cone inside the width profile.

centWave  is able  to detect peaks of varying width by using a

Continuous Wavelet Transform (CWT) on  multiple scales. In gen-

eral, wavelet transforms are used to analyze signal structures by

decomposing the signal with dilated and translated wavelets.
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The wavelet transform of a signal f ∈ L2(R) is then given by

Wf (�, s) =

∫ ∞

−∞

f (t)  �,s(t) dt , s  ∈ R+, �  ∈ R  , (4)

where   �,s(t) is a family of normalized wavelets resulting from scal-

ing and translating the mother wavelet  (t) by  s and �  (cf. Mallat,

1998). This transformation yields a matrix of wavelet coefficients

Wf,  for discrete values of � and s. A  Mexican Hat wavelet (normalized

negated second derivative of a Gaussian) is used as mother wavelet,

representing the model peak of the centWave algorithm. In the fol-

lowing the  detection of the boundaries between the structural parts

of the neuron is explained in  detail.

Only width profiles with a minimum length of 20  �m (approx.

105 pixel) are considered for  detection. Smaller profiles character-

ize filopodia-like protrusions (small protrusions of the cell surface),

which are not considered in the protein profile extraction. Each pro-

file is smoothed by  a one dimensional Gaussian (�smooth =  2). After

smoothing, the width profile is split into two parts at the center

to improve the baseline estimation in the subsequently applied

centWave algorithm. Based on  the local maxima of the wavelet

coefficients at each scale the centroids of the peaks and their left

and right boundaries are determined (Tautenhahn et al., 2008; Du

et al., 2006). For every single width profile, a set of peaks is returned

by centWave. Each peak detected in the profile represents a bulge

along the neurite. We are interested in  the boundaries of the left-

and right-most peaks. The right boundary (Bneurite)  of the left-most

peak is used to identify the origin of  the neurite, whereas the left

boundary (Bcone) of the right-most peak is used to identify the tran-

sition from neurite shaft to growth cone (cf. Fig. 5A). The positions

of the peak boundaries are calculated as

Bneurite = Cleft + 1.5 ∗  �  , (5)

Bcone =  Cright −  1.5 ∗  �  ,  (6)

where  Cleft and Cright are the centers of  the left- and right-most

peaks, and �  is the parameter of the Gaussian fit to these peaks. A

value of ±  1.5 * �  for boundary positions was identified as suitable

for our application.

Based on these boundaries, the neuron is split into its struc-

tural parts. Fig. 5B shows a segmented neuron with the located

boundaries, splitting the neuron into a  soma region and three neu-

rites with their neurite shafts and growth cones. The neurite to the

right branches into  two neurite arbors. The structural parts yield

the base for extracting the protein profiles along the neurite shafts

and growth cones in  the fourth phase.

6.2. Protein profile extraction

The  profile of an analyzed protein is quantitatively assessed by

the extraction of the fluorescence intensity along the localized neu-

rites (cf. Section 6.1). To extract the intensity distributions, each

pixel of the neurite region is linked to the closest skeleton pixel

using a Euclidean distance metric, which is equivalent to a Voronoi

tesselation of the neurite region. The centers of the Voronoi cells

are given by the skeleton points of the neurite skeleton. Based on

the average fluorescence intensity of each Voronoi cell the intensity

distribution of the protein along the neurite is extracted. Finally, a

set of intensity distributions per  protein is obtained by perform-

ing this analysis for all neurites. All distributions are normalized to

unit length, to account for  the different lengths of  the neurites. Nor-

malization is done by resampling the neurite with a fixed number

of 100 sampling segments and summing up the intensities within

each segment (integrated intensity). Subsequently, the median for

each segment is calculated across all profiles for  a specific protein,

yielding a median intensity distribution for  each protein to remove

variations and extract one distinctive distribution for each protein.
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Fig. 6. Approximation of the protein profile. The median intensity profile (red) is

calculated from the set of intensity distributions. Fitting a polynomial to the median

intensity profile results in the final protein profile (blue) of the  analyzed protein. The

x-axis represents the length of the neurite from its origin to the tip of  the growth cone

normalized to range [0, 1]. The y-axis represents the median relative fluorescence

intensity  in  a range of [0, 1], with regard to the  integrated intensity (sum of neurite

pixel  intensities) at each length position. (For  interpretation of the  references to

color in  this figure legend, the reader is referred to  the web  version of this article.)

In  general the median intensity profiles are  noisy. To  get smooth

protein profiles a polynomial is fitted to  the median intensity pro-

files (cf.  Fig. 6), using the Nonlinear Least Squares (NLS) (Bates and

Watts, 1988) method, implemented in  R7.  Second order polyno-

mials were identified as suitable for the median intensity profiles,

while higher order polynomials tend to overfitting.

7. Results and discussion

7.1.  Data

The neurons analyzed were extracted from the hippocam-

pus of E17 mouse embryo brains. Subsequently, they were

cultivated in  culture medium for two days and then paraformalde-

hyde (PFA) fixed and immunohistochemically stained. The nuclei

of the neuronal cells were labeled with a 4′,6-diamidino-2-

phenylindole (DAPI) blue-fluorescent stain, that binds to DNA

molecules (Kapuscinski, 1995). Furthermore, ˛-tubulin protein was

stained to label the bundled microtubules that are localized in the

neurite shaft and in addition ZBP1 (Zipcode Binding Protein 1)  was

stained. Both proteins were labeled via specific antibodies. To  label

the growth cones with their filopodia (cell surface protrusion with

bundled actin filaments in  its core), filamen-tous actin (F-actin) was

stained with phalloidin.

Images  were acquired with an epifluorescence microscope

(Nikon TE2000-E) using a 60  × oil  objective (NA 1.4). The size of

the images is 1000 × 1000 pixels, corresponding to a physical image

size of 191 �m × 191 �m with a resolution of 0.191 �m  × 0.191 �m

per pixel. An image consists of four channels with an effective depth

of 12 bit  per pixel and channel. In total a set of 60 images was ana-

lyzed, including one or two  cells and fragments of not completely

visible cells.

7 http://www.r-project.org/
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Fig. 7. Inverted gray-value MIP image. Bright pixels indicate low fluorescence inten-

sities, dark pixels indicate high fluorescence intensities in the original image. The clip

shows the contour of  the neuron (black) as well as the boundaries (yellow) between

the structural neuron parts (soma, neurite shafts, growth cones). The neurite traces

(green), branch points (blue dots), end points (red dots) and filopodia-like protru-

sions (red) are also shown.

7.2. Neuron detection results

The final detection results for each image consist of the complete

neuron contour from the active contour model (cf. Section 5.2),

the neurite regions and their structural parts as well as  the  neu-

rite trace lines (centerline along the skeleton of the neurite). Fig. 7

shows a clip of the MIP  from a multichannel fluorescence image,

inverted for better visualization. The segmented neuron is shown

with its contour in  black, the soma and two neurites, where the right

neurite branches into two neurite arbors. The neurite branches

have a length of 88.24 �m (462 pixel), 127.40 �m (667 pixel),

and 71.05 �m  (372 pixel). Neurite trace lines are shown in green.

Boundaries between the structural parts of the neuron are  marked

by yellow lines. Fig. 7  also shows ten branch (blue dots) and twelve

end points (red dots) as  well as nine  filopodia-like protrusions (red)

with length ≤ 10 �m (approx. 52 pixel). Additionally, the area of the

soma (342.16 �m2), average width of neurite branches (0.79, 1.12,

0.88 �m),  growth cone areas (33.02, 68.73, 32.10 �m2) and number

of filopodia-like protrusions inside the growth cone regions (2, 0,

2) are obtained.

For  assessing the detection accuracy the neuron areas are con-

sidered. Twenty from the total of 60 neurons were randomly

selected and manually analyzed by a biomedical expert, yielding

ground truth data. Subsequently, segmented neuron regions are

compared to the ground truth data, and recall and precision rates

are calculated.

In  Fig. 8 the recall and precision rates are presented for all eval-

uated neurons. An average median recall of 0.76 is observed with

a minimum of 0.45 and a maximum of 0.91. For precision rate we

observe a median of 0.85 with a minimum of  0.74 and a maximum

of 0.94. The interquartile ranges of the boxplots are small, indicat-

ing a  small variance of recall and precision rates. In the recall plot,

two outliers are shown. These outliers result from thin and weak

neurites that were not correctly segmented in some parts by  the

algorithm (for explanation see below). However, compared to the

manually labeled neuron areas, the overall quality of the detection

by our algorithm is high. As  an example, the clip of a segmentation

result in Fig. 9 underlines that the detected regions coincide well

with given ground truth data. It  can be observed that some small

filopodia-like protrusions and the lower right neurite are not cor-

rectly segmented. This is due to low contrast boundaries and small

width of these regions. In addition, the segmented soma region is

marginally larger compared to the expert labeling. This is induced
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Fig. 8. Boxplots of  recall and precision resulting from comparing twenty randomly

selected  neurons with ground truth data. A  small variance of recall and precision

rates  is  indicated by small interquartile ranges, illustrating the  overall quality of the

detection by our algorithm. In the  recall plot,  two  outliers are shown which result

from two neurons with thin and weak neurites.

Fig. 9. Sample segmentation result for a detected neuron area. The figure compares

expert labeling (left)  and the  automated segmentation result of our approach (right).

Due to low contrast boundaries and small width of some regions, the lower right

neurite and a few small filopodia-like protrusions are not correctly segmented. The

segmented soma region is slightly larger compared to the  expert labeling induced

by  perinuclear accumulation of  proteins, overexposing the region of the soma. But

in general, the detected regions coincide well with given ground truth data.

by perinuclear accumulation of proteins which overexposes the

region of the soma.

To  quantitatively evaluate the neuron segmentation of Neuron-

Analyzer2D, we compared our results with those of  NeuriteTracer

(Pool et al., 2008) and Vaa3D-Neuron (Peng et al., 2010). Both are

automatic tools for neurite tracing and produce complete areas of

the detected neurons. The resulting neuron areas of  all three tools

are compared with ground truth data by using the F-score. This

score is defined as  the harmonic mean of precision and recall

Fscore = 2
recall  · precision

recall +  precision
.

The best value for the F-score is reached at 1  and the worst value

at 0.

NeuriteTracer is an ImageJ plugin for automated tracing of

dissociated cultured neurons in  two dimensional fluorescence

microscopy images. It  requires user defined thresholds for nuclei

and neuronal stains as well as  a  range of admissible nuclear sizes.

All thresholds and parameters should be reasonable to process mul-

tiple images. A nuclear threshold of 130 and a size range of [100,

4000] were identified as suitable. In  contrast, it  is not simple to
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Fig. 10. Binary regions of neuron 21.  (A) Manually labeled ground truth data. (B–D) Detection results of  NeuriteTracer, Vaa3D-Neuron and NeuronAnalyzer2D.

Fig. 11.  F-scores of neuron areas obtained by comparing the manually labeled

ground truth data of  each neuron with the results of  NeuriteTracer (red), Vaa3D-

Neuron  (blue)  and the presented NeuronAnalyzer2D (black). The F-score is defined

as the harmonic mean of  precision and recall and demonstrates that the  NeuronAn-

alyzer2D  outperforms the other tools. The figure illustrates that most neurons are

better detected by our approach, except neuron number 14, showing a thin neurite

that exhibits a very weak fluorescence. Also the outliers from the recall boxplot in

Fig. 8 are shown, represented by the small F-scores of  neurons 14 and 39.

determine a suitable neuronal threshold for all images. To ensure

a proper comparison we  used different thresholds in  range [40, 50,

. .  ., 110] to detect the neurons in all test images. Hence, a value of

60 is chosen as neuronal threshold for  NeuriteTracer, yielding the

highest mean F-score (0.68) and smallest standard deviation (0.08)

for all images.

The second tool  is Vaa3D-Neuron, a module for neuron trac-

ing and reconstruction, included in the Vaa3D8 software suite for

bioimage visualization and analysis. Upon request, we received a

version9 including the all-path pruning (APP) algorithm for auto-

matic tracing and reconstruction (Peng et al., 2011). Parameters

were set to default and auto-downsampling and auto-thresholding

were enabled.

Figs. 10–12 show the results of the comparison of all three tools

with ground truth data. In Fig. 11 the F-scores for  each neuron area

are shown for NeuriteTracer (red), Vaa3D-Neuron (blue) and the

presented NeuronAnalyzer2D (black). These F-scores demonstrate

8 http://www.vaa3d.org/
9 Vaa3D-Neuron2 v2.608 (Vaa3D v2.813), Redhat/Fedora 64-bit.
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Fig. 12. Summary of  the  overall F-scores for each of the three tools from comparing

twenty  randomly selected neurons with  ground truth data. A mean F-score of  0.81

is observed for our NeuriteAnalyzer2D, NeuriteTracer achieves a mean F-score of

0.68 and Vaa3D-Neuron-APP1 achieves a mean F-score of 0.56. The interquartile

ranges  of  the boxplots of NeuriteTracer and NeuriteAnalyzer2D are small, which

indicates a small variance of  the  scores, while a higher variance appears within the

Vaa3D-Neuron scores. Outliers are plotted as  small circles.

that on average our presented approach outperforms the other

tools.

Compared to NeuronAnalyzer2D, NeuriteTracer detects neuron

14 better, whereas neurons 17, 23  and 39 are equally well detected.

For the remaining neurons,NeuriteTracer’s global image threshold

for neuronal detection appears to underperform. In some cases,

parts of the soma get lost, neurites are fragmented and often neu-

ronal regions are thickened at the soma and neurites (cf. Fig. 10B).

Neuron  number 14 is also better detected by Vaa3D-Neuron,

compared to NeuronAnalyzer2D. However, in the detection of the

remaining neurons it  performs worse. Compared to ground truth

data, the detected soma regions are  often larger and neurites are

fragmented or parts of them are  lost (cf.  Fig. 10C). A reason for this

could be the characteristics of our image data, given by overexposed

soma regions and two-dimensionality.

Fig.  12 shows boxplots of the F-scores for all three tools. For Neu-

riteTracer a  mean F-score of 0.68 is observed, Vaa3D-Neuron-APP1

has a mean F-score of 0.56 and our NeuriteAnalyzer2D achieves

a mean F-score of 0.81. The interquartile ranges of the Neurite-

Tracer and NeuriteAnalyzer2D boxplots are small, indicating a

small variance of the scores, while a higher variance exists within

the Vaa3D-Neuron scores.

As  already mentioned above, on  average the NeuronAnalyzer2D

performs better than NeuriteTracer and Vaa3D-Neuron. An excep-

tion are the neurons 14 (cf. Fig. 13A) and 39 (cf. Fig. 13B), which are

also apparent as outliers in  the boxplot (cf. Fig. 12). A closer exami-

nation shows that these false detections occur on  very long and thin
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Fig. 13. Inverted gray-value image of  detected neuron contours (black) by NeuronAnalyzer2D. (A, B) Outlier neurons 14 and 39 are shown. False detections along the neurites

occur  due to weak fluorescence stains. (C) Completely detected area of neuron 31.

neurites that exhibit a  weak fluorescence. Such structures contain

less stained proteins, which are also spread over a  long distance. As

a  result, such structures show a weak fluorescence and frequently

inhomogeneous stained regions (cf. Fig.  13A and B). Thus, certain

areas of these neurites are better detected than others and some

errors in detection occur. But in general, our NeuronAnalyzer2D is

able to detect long and thin  neurites as shown in Figs. 9  and 13C.

7.3.  Profile extraction results

In Fig. 14 boundaries separating the different structural parts

of a neuron are shown. These boundaries are obtained from the

extended wavelet based approach (cf. Section 6.1). All images show

a fragment of the  soma on  the  left  side and two boundaries (red

lines), separating the soma from the  neurite and the neurite shaft

from the growth cone. It  can be seen that the soma and neurite

separation works well (cf. Fig.  14A–C), whereas the separation of

Fig. 14. Inverted gray-value images of neurites, cropped at the  soma region. The

boundaries (red lines) between the  structural neuron parts are obtained applying

the  extended wavelet based approach. Elongated or misshaped growth cones of

neurites lead to a premature cutting of neurite shafts (right boundary in A  and B).

(For interpretation of the  references to color in this figure legend, the reader is

referred to  the web version of  this article.)

Fig. 15. (A) Extracted protein profiles for F-actin, ˛-tubulin, and ZBP1 (from left to right) using the present approach. The red lines show the median intensity profile of the

corresponding protein. The blue lines show the polynomial interpolation of  the median intensity profile. (B) Inverted images of  one  sample neurite using a fire-color LUT.

The  images show the  protein distribution along this neurite (from left  to right: F-actin, ˛-tubulin, and ZBP1), according to  the extracted profiles in (A). Pixels scaled to 0

indicate low fluorescence intensities, whereas pixels scaled to 255 indicate high fluorescence intensities.
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neurite shaft and growth cone can vary. This mainly depends on the

shape of the growth cone, whereby elongated or misshaped cones

lead to a premature cutting of  the neurite shaft (cf. Fig. 14A and B).

Based on the  located structural parts, protein profiles are extracted.

The profile extraction results in median intensity distributions

and corresponding polynomial interpolations, yielding a distinct

distribution for each protein analyzed. In  Fig. 15A the extracted

median intensity profiles and corresponding polynomial interpo-

lations are shown for F-actin, ˛-tubulin, and ZBP1. To validate our

extraction method, the profiles of F-actin and ˛-tubulin are com-

pared to published distributions. From the literature, for example,

Dent and Gertler (2003), Lowery and Vactor (2009) and Spooner

and Holladay (1981), it is known that growth cone motility and

protrusion depend on  actin, in particular F-actin, dynamics. There-

fore, F-actin is mainly located in the growth cone periphery. The

amount of F-actin is large in  the tip of the growth cone and low along

the neurites. Microtubules are transported from the cell body into

neurites for structuring and elongation of neurites. Consequently,

˛-tubulin is enriched in  neurite shafts, whereas ˛-tubulin is rarely

observed in the growth cone periphery.

As can be seen from Fig. 15 the extracted profiles of F-actin

(Fig. 15A, left) and ˛-tubulin (Fig. 15A, middle) correspond well

with these experimental findings. The concentration of F-actin pro-

tein decreases along the neurites, compared to the soma, while

F-actin is enriched in the growth cones. Opposed to this, ˛-tubulin

concentration decreases from the soma along the neurites to the

growth cones, and only a small amount of ˛-tubulin is  located

inside the growth cones. These results underline the suitability of

our approach for  quantitative assessment of protein profiles.

For  ZBP1, Fig. 15A (right) shows that it  is mainly localized in

the soma and growth cone regions. Along the neurites the amount

of ZBP1 decreases, while the terminal amount of ZBP1 is smaller

than the amount at the origin near the soma. The three images in

Fig. 15B show the distributions of the stained proteins along one

sample neurite in  comparison to the extracted profiles in Fig. 15A.

8.  Conclusion

This paper presents a new integrated approach for the fully auto-

mated extraction of protein profiles along automatically extracted

neurites in fluorescence microscopy images. Thus, our approach

has the unique feature that allows one to assess the distribution of

labeled proteins inside neurites in a spatial and quantitative manner

that allows conclusions regarding relationships between the spa-

tial arrangement of proteins together with morphological changes

of the cells.

The approach uses active contour models for segmentation of

neurons and performs a wavelet based identification of structural

neuron parts. It  has proven successful in neuron detection as  well

as in the extraction of protein profiles along neurites. A distinctive

profile of  ZBP1 was acquired that shows, for the first time, how the

protein is distributed in  primary hippocampal neurons.

In  general, the analysis of neuronal morphology together with

quantitative measurements of neurite associated proteins will

allow new findings in  biomedical research. Beyond that, our

approach can be used to characterize morphological and biomolec-

ular changes in  neurons due  to stress or influence of other

molecular stimuli. The detection of structural neuron parts  offers

new options for investigating the impact of proteins on morpho-

logical changes in neurite or growth cone shapes.

In  contrast to other tools, our approach offers important novel

features in the field of morphology and structure analysis for

biomedical investigations. Fully automated analysis of a large

number of images enables high-content analysis, while the tool

can easily be used by scientists without prior image processing

experience.  A small number of configuration parameters permits

an unbiased and rapid quantification.

In the future, we aim to adapt this approach for growth cone

motility analysis with regard to neurite turning and growth cone

guidance (Gomez and Zheng, 2006; Mai  et al., 2009). This would

allow investigations regarding shape and orientation changes

under defined conditions, for example, neuronal stimuli acting as

attractive or repulsive signals. Furthermore, the approach will be

extended for joined analysis of living cells to offer population and

cell differentiation analysis over time, based on  environmental con-

straints.
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Abstract

Roots and their temporal development play an important

role in plant research. Over the decades image-based moni-

toring of root growth has become a key methodology in this

research field. The growing amount of image data is of-

ten tackled with automatic image analysis approaches. In

particular convolutional neural networks (CNNs) recently

gained increasing interest for root segmentation. This seg-

mentation of roots is usually only the first step of an anal-

ysis pipeline and needs to be supplemented by topological

reconstruction of the complete root system architecture.

In this paper we present a comprehensive study of dif-

ferent CNN architectures, loss functions and parameter set-

tings for root image segmentation. In addition, we show

how main and lateral roots can be identified based on the

skeletons of segmented root components as a first step to-

wards topological reconstruction of root system architec-

ture. We present quantitative and qualitative results on data

released in the course of the CVPPA Arabidopsis Root Seg-

mentation Challenge 2021.

1. Introduction

Roots are an important organ of plants. They play es-

sential roles in ensuring secure anchorage and in uptaking

vital nutrients from the soil. Hence, root physiology and

status have a major impact on growth and development of

plants and render them a key topic in plant research. Quan-

titative data about root mass and root system development

over time provide a solid basis for understanding functional

relationships between environmental conditions, plant de-

velopment and the status of ecosystems as a whole [3]. As

roots are the plant organs least accessible, in the beginning

of root studies direct manual measurements from excavated

roots dominated the collection of quantitative data.

Meanwhile image-based techniques are well established.

For experiments in soil minirhizotrons are available which

Figure 1. Left, prototypical root image from one of the challenge

data sets, right, corresponding ground truth annotation with back-

ground in black, lateral roots in white and main roots in gray.

allow for non-destructive acquisition of time series data

of roots as basis for developmental studies [9]. Such im-

age data does not provide enough information to recon-

struct the architecture of the complete root system, but data

is restricted to overall root length or mass in the sample

area. As an alternative, growing plants in culture medium

within transparent plates and regular acquisition of images

from such plates (Fig. 1) has become a popular protocol for

studying the development of complete root systems [1].

Automatic analysis of such data typically subsumes two

analysis stages. In the first stage images are segmented to

separate roots from the image background on the pixel level.

Essentially this allows to estimate root mass. Root topology

is extracted in the second stage where different levels are

considered. Identification of the center pixels of the roots

allow for length measurements. The reconstruction of com-

plete root system architectures subsumes in addition explicit

annotation of branching points, as well as distinction be-

tween the main root (MR) and lateral roots.

Over the decades the methodology for root image analy-

sis has emerged from pure manual image annotation to fully

automatic approaches. During the last years particularly

deep learning with convolutional neural networks (CNNs)

has proven suitable for solving the root image segmenta-

tion task. As all methods based on deep learning, such ap-
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proaches strongly rely on a sufficiently large set of anno-

tated training data which often forms a serious bottleneck.

Two data sets of annotated root images were released for

the Arabidopsis Root Segmentation Challenge organized in

conjunction with the 7th Workshop on Computer Vision in

Plant Phenotyping and Agriculture held as part of the ICCV

2021 (for details see Sec. 4). The task of the challenge is

to segment all roots from a given image and to identify the

MR and all lateral roots of individual plants (Fig. 1).

In this paper we present a fully automatic approach for

solving the challenge task. Root segmentation is performed

by applying CNNs to individual images of a time series. We

decided to treat the images of a time series independently,

as for the challenge training data annotations are available

only for few, non-consecutive images of each series. To

subsequently identify the MRs in the segmentation results

we rely on topological analysis of root skeletons extracted

from the segmentation results. Our CNN model with which

we successfully participated in the challenge comprises a

U-Net architecture with VGG16 backbone and was trained

by first applying a loss function combining dice loss and

cross entropy, and then by fine-tuning with focal loss. The

model was selected from pre-studies on the challenge data.

The main contributions of this paper are two-fold. On

the one hand we not only discuss our challenge model and

the results, but extend our pre-studies towards a comprehen-

sive comparative overview of additional architectures and

loss functions for the segmentation of Arabidopsis root im-

ages. On the other hand, we present our approach for post-

processing the segmentation results towards proper recon-

struction of the complete root system architecture (RSA),

focusing on the challenge task of extracting the MRs. Root

segmentation results and outcomes of MR extraction are

comprehensively evaluated quantitatively as well as quali-

tatively on the challenge training and test data sets.

The remainder of this paper is organized as follows.

In Sec. 2 we give an overview of related work before we

present our studies and methods in Sec. 3. Details about the

data sets are provided in Sec. 4, while experimental results

are presented in Sec. 5. A conclusion is given in Sec. 6.

2. Related Work

Deep learning and CNNs became the prevailing

technique in image analysis with the publication of

AlexNet [11] for the task of object classification. In the

following years they have been extended to the task of

semantic segmentation with the proposal of FCN in [13]

and encoder-decoder architectures with SegNet [2] and U-

Net [18]. These architectures have been extended based on

residual-blocks [7], inception modules [24], and the hour

glass architecture [16], see also [5] for an early review.

Besides network architecture another important ingredi-

ent for good performance is training with an adequate loss

function. [8] discuss and evaluate several common ones like

cross entropy and dice loss, and also less common ones like

focal loss. These functions have the drawback to penalize

false positives or false negatives without considering dis-

tances to the nearest annotated and the next predicted fore-

ground pixel, respectively. The Weighted Hausdorff Dis-

tance (WHD) is proposed in [27] to overcome this problem.

The task of segmenting roots from images is often tack-

led with conventional segmentation techniques like inten-

sity thresholding in BRAT [22] or ridge filtering in MyRoot

[6], sometimes still relying on manual user intervention,

e.g., for selecting appropriate threshold values like in EZ-

Root-VIS [19]. Recently CNNs gained larger importance

in this field. SegRoot [25] adopts the SegNet architecture

and applies a dice loss function for extracting roots from

minirhizotron images. [23] build upon the U-Net architec-

ture with a loss combining cross entropy and the dice loss

for the same task. RootNav 2.0 [28] is specifically designed

for assay images using an encoder-decoder configuration in-

tegrating an hourglass network at the interface between en-

coder and decoder. PhenomNet [29] not only tackles the

root segmentation task, but also integrates Recurrent Neu-

ral Networks based on Long Short-Term Memory to cou-

ple phenotypic predictions with genotypic analysis. In [4]

a CNN based on U-Net employing residual blocks is pro-

posed. It applies deep supervision of intermediate results

and adds convolutional layers at the end of the U-Net core.

The separation of roots and background is only the first

step in root image analysis. In many cases subsequent post-

processing steps are applied, e.g., to close gaps and link

segmented components which belong to the same root. In

MyRoot 2.0 [6] a tracking algorithm is implemented which

aims to link all fragments of a root between root tips and

the hypocotyl based on distance heuristics. RootNav [17]

adopts the A∗ search algorithm to extract paths from root

tips to seeds along lateral and MRs. While in the original

paper [17] seeds and tips had to be selected manually by

the user, in RootNav 2.0 [28] these are now automatically

predicted by the CNN in parallel to potential root pixels.

3. Methods

3.1. Semantic Segmentation

For our studies we choose the basic encoder-decoder

variants SegNet and U-Net due to their popularity especially

in the life sciences and their use for the root segmentation

task [23, 25]. They differ mainly in how they incorporate in-

formation from the encoder stage into the decoder. In Seg-

Net, the positions of maximal values selected in the max-

pooling operations are used in the corresponding upsam-

pling step in the decoder to initialize the upsampled feature

maps. The other values are filled with zeros and then in-

terpolated with convolution. In contrast, U-Net upsamples
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the last feature map in a resolution level with a trainable

transpose convolution and concatenates the last feature map

from the encoder with the same spatial resolution.

In addition we investigate hierarchical feature integration

(Hi-Fi) proposed in [31] for the task of skeleton detection in

the wild. This can be viewed as an extension of FCN [13]

and Holistically-Nested Edge Detection (HED) [26]. The

latter uses the last feature map of all resolution levels to

compute multiple predictions, the so-called side outputs,

which are subject to intermediate supervision. In addition

they are fused to the final prediction. Hi-Fi proposes a richer

way to incorporate the features of the encoder. First, not

only the last, but all feature maps of each resolution level

are fed into the side outputs. Second, the feature maps are

not directly fused into prediction with a 1×1 kernel, but first

convolved with 3×3 kernels into features maps as a basis

for side output predictions. Third, features from neighbor-

ing resolution levels are combined, which results in Hi-Fi

level 1. This combination of neighboring resolutions may

be recursively repeated yielding further Hi-Fi levels and, as

in HED, all side outputs are supervised. [31] advise to use

one or two levels of the hierarchy. The tasks of edge or

skeleton detection and semantic segmentation share com-

mon challenges. E.g., HED, proposed for edge detection,

was applied to skeleton detection [10, 20, 31]. In previous

studies we found HED suitable for root detection in minirhi-

zotron images. As in addition roots exhibit strong symme-

tries we explore the potential of Hi-Fi for root segmentation.

A second focus in our study are loss functions as they op-

timize different characteristics of the segmentation. These

are the cross entropy (CE) commonly used for semantic seg-

mentation and the dice loss (DI) [14] as the inverse of the

dice score which optimizes one of the evaluation metrics.

In addition we combine DI with CE weighted by 0.3 (Com-

bCED) as suggested in [23] to overcome a drawback of DI

yielding a zero loss if no pixel is annotated as root.

We also use the Weighted Hausdorff Distance (WHD)

defined in [27] as:

LWHD =
1
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where Y+ is the set of annotated foreground pixels, pf (b)
the probability of pixel b to be predicted as foreground,

Ω the image domain, |Ỹ+| =
∑

b∈Ω pf (b), d(a, b) the Eu-

clidean distance between two pixels, α a weighting factor,

and dmax the maximal distance between two pixels. The

first term is a proxy to the average distance of predicted

foreground pixels to the nearest annotated foreground pixel.

ε = 10−6 is added to avoid division by zero. The second

term is an approximation of the averaged minimal distance

of foreground pixels to the nearest prediction. Setting α>1
emphasizes the second term with respect to the first one.

The WHD as defined is vulnerable in case no or few pix-

els are annotated as foreground and the majority of pixels

is predicted as background with a large probability. Al-

though this prediction is near the correct answer the first

term yields a large value. We cure this problem setting pre-

dictions pf (b) < 0.1 to zero. If no pixel is annotated as

foreground d(a, b) in the first term is undefined and we de-

fine d(a, b) as the minimal distance of b to the border of Ω
plus one. The second term is defined as zero in this case.

In [27] it is reported that WHD leads to unstable training

and is therefore combined with the patch-based point loss

(PPL) defined as
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where the windows Ωi,j are a partitioning of the image

domain, and p̃f (b) is the predicted probability pf (b) if

pf (b) > λT , zero otherwise. Thus, PPL compares the

sum of these clamped probabilities and the number of fore-

ground pixels in a window summed over all non overlap-

ping windows. Similar to [27] we use a linear combination

µ ·WHD + (1− µ) · PPL, µ ∈ [0, 1], (3)

as loss function after an initial training, where in our exper-

iments we use CombCED.

In analogy we use the focal loss (FL) [12] as a loss func-

tion subsequent to an initial training of weights in an at-

tempt to improve a pretrained network. FL generalizes CE

by adding a modulation factor:

LFL = −
∑

b∈Ω

(1− pt(b))
γ log(pt(b)), (4)

where pt(b) is the predicted probability for the true class. In

case of γ = 0, FL reduces to CE. FL emphasizes the hard

to predict examples during training.

3.2. Postprocessing and main root extraction

Applying the CNNs to the input images provides us with

binary predictions for root pixels and background. How-

ever, as until now no topological knowledge has been con-

sidered in the segmentation process, roots sometimes de-

compose into multiple connected components. While this

is not a serious problem with regard to overall segmentation

accuracy as, e.g., measured by recall and precision rates,

gaps significantly hamper the extraction of overall root sys-

tem architecture and, with regard to the challenge task, in

particular the extraction of the MR for each plant.

Therefore we use a post-processing pipeline on the seg-

mentation results where we also consider temporal informa-

tion from time series. The post-processing consists of two
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main stages. First we aim at closing gaps in roots and recon-

nect branches to the main component of a plant that might

have been detached. Subsequently, assuming that each plant

is now represented by a single connected component, the

MR of the corresponding plant is extracted based on topo-

logical skeleton analysis and graph-based path search. Both

stages rely on the skeletons of the connected components

which are extracted with the algorithm of Zhang et al. [30].

Gap closing and branch reconnection Gaps splitting

the segmentation of a root system can be distinguished into

two main categories: (I) gaps within a stretch of a root, (II)

gaps disconnecting the root system at branching points. We

consider both cases in turn.

Gaps of type (I) are characterized by pairs of end points

in the skeleton where both points are only a short distance

apart from each other and the skeleton segments located

next to the end points do not significantly differ in their

orientations. Thus, we initially locate skeleton end points

as points with not more than one neighboring pixel in the

skeleton. Subsequently all pairs of end points are detected

which satisfy the following three criteria: (i) small distance,

(ii) similar orientation of the skeletons at both end points,

(iii) which are in turn similar to the orientation of the line

connecting both end points. Thresholds for these criteria

are set empirically. To connect such pairs of end points

we apply a Dijkstra shortest path search. To this end we

convert the local image patch around both end points into

a graph representation with the pixels as graph nodes and

their 8-neighbors connected by edges. The weight of the

edges is defined as the response of an anisotropic vesselness

filter measuring the correlation between the local intensity

structure and the theoretical landscape of locally linear root

structures (for more details see [15] where the same idea is

used to close cell contours). If the final path is not longer

than 1.5 times the distance between the end points they are

connected. The width of the connecting segment is derived

from the width of the root segments to be connected.

In case of type (II) gaps typically only a skeleton end

point exists in the detached branch, but not in the root to be

connected to. To check if an end point of a branch should be

reconnected to a nearby root component we estimate the ori-

entation of the final part of the skeleton branch and search

in its direction for nearby root pixels. If at least one pixel is

found within a maximum distance we insert a line segment

and derive its width from the width of the branch.

Main root extraction The root system of an Arabidop-

sis plant consists of a single MR and any number of lateral

roots. According to biological experts there is no clear def-

inition of the MR except that it starts at the hypocotyl and

is usually the longest root. In many images of the challenge

data sets the hypocotyl cannot easily be localized, as it is of-

ten hidden by leaves and their stems. Thus, we define it as

the end or branch point of the skeleton of the plant compo-

nent located topmost in the image. As tip of the MR we use

the pixel of the component closest to the bottom image bor-

der. The MR can then be found as the shortest path between

root tip and hypocotyl applying a Dijkstra path search.

Obviously this approach assumes that each plant is rep-

resented by a single component. In practice this assump-

tion is often not fulfilled as even after gap closing multiple

components may survive for one root system, and further

components may result from clutter or leaves. Hence, to se-

lect a single component per plant we define position priors

for the hypocotyls and restrict locations of tip points with

positions in the previous frame. In all experiments of the

challenge test data set four seeds are initially planted in the

upper third of the images at approximately constant posi-

tions. Thus, we define four regions of interest (ROIs) in the

upper third of the image around the four seed positions and

process each of these ROIs independently. We identify the

largest connected component within the ROI and detect the

MR within this component as described above.

The localization of the tip of the MR as described fails

in some cases. One such situation occurs if the roots of

two or more plants overlap and the corresponding compo-

nents merge. We detect such cases by comparing the size of

the components of each plant between subsequent frames.

In case of overlapping roots the size usually almost dou-

bles and the connected component covers more than one

plant. As a consequence it contains the tip points of several

MRs and the lowest pixel selected as tip may be the wrong

one. We avoid this by enforcing additional constraints on

the tip point of a plant, i.e., enforce a certain maximal dis-

tance from the position in the previous frame. This maxi-

mum distance, however, may lead to cases where no tip is

found at all. This happens if a wrong connected component

was initially selected, e.g., due to clutter in the ROI. In such

cases we process the second largest component which in the

majority of situations is the correct one.

Finally we remove all components which are too small

and/or too far away from any MR component (see Sec. 5.2).

4. Data Sets

We conduct our experiments on the data sets of the Ara-

bidopsis Root Segmentation Challenge 2021. For model

training two data sets with partial annotations were pro-

vided. Due to time constraints we use only the one with

binary labels consisting of 34 video sequences yielding a to-

tal of 1542 images. For 207 images annotations of roots and

background is given, yielding data set Dbin. The challenge

test data set Dtest provided without annotations comprises

22 video sequences with a total number of 933 images.

We randomly partition Dbin into training Dtrain
bin , valida-

tion Dval
bin and test Dtest

bin data with the ratio of 70:20:10. We

crop images to size 512 × 512 pixels with an offset of 384
or to size 256× 256 pixels with an offset of 192.
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5. Results

5.1. Semantic Segmentation

Experimental Setup For SegRoot training we use the

SegNet implementation1 and optimizer described in [25].

The U-Net architecture in the original structure and in

the VGG16 structure as well as the Hi-Fi architecture are

our own implementations in PyTorch. Training and test is

based on the code2 used in [23]. We implement FL as well

as WHD and PPL in addition to the existing dice and CE

losses. In PPL we set the patch size to 32, as suggested in

[27], and λT = 0.5 as this is our threshold for prediction.

During training we use the stochastic gradient descent as

optimizer with a momentum 0.99 and weight decay 10−5.

As a result we always choose the epoch with the best vali-

dation results and also test our net on this epoch.

SegRoot The SegRoot network [25] was initially de-

signed for root segmentation in minirhizotron images. Here

we retrain the network from scratch in different configura-

tions. The SegRoot code supports to configure the network

structure, i.e., the number of feature maps in the first convo-

lutional layer (width), which is then doubled subsequent to

each max pooling, and also the number of resolution levels

(depth). In the original work a width of 8 and a depth of 5,

i.e., an 8-5-net, was proposed as best compromise between

network complexity and segmentation performance. Con-

figurations with larger widths showed slightly better perfor-

mance, but generally required more training time.

We tested configurations with widths of 8, 16 and 32, and

depths of 4 and 5. A learning rate lr=10−2 was applied for

the 8-5-net in [25], and for wider configurations lr=10−4

was chosen. For widths of 16 and 32 lr = 10−4 worked

well in our studies, but with lr=10−2 no learning process

was observed on the 8-4- and 8-5-nets, i.e., scores dropped

instantly close to zero and never recovered. Thus, we tested

also learning rates of 10−3, 10−4 and 10−5, but with lr =
10−3 learning neither happened. Batch sizes varied with

available memory from 64 for the 8-5- and 16-4-nets, 32
for the 16-5- and 32-4-nets to 16 for the 32-5-net. SegRoot

requires to use crops of size 256×256. The dice scores for

the various experiments on Dtest
bin are shown in Tab. 1.

The best dice score on Dtest
bin was achieved with the 32-4-

net performing slightly better than 16-4 with lr=10−4 and

32-5 with lr=10−5. Configurations like 8-4 and 16-5 with

lr = 10−4 performed also well. On the contrary, trainings

with lr = 10−5 performed significantly worse, except for

the 32-5-net, but with lr=10−4 no training at all could be

initiated for this net. According to studies on configurations

with a width of 64 in [25] it might be hypothesized that such

network models could boost the SegRoot performance fur-

ther, and we plan to extend our study towards these models.

1https://github.com/wtwtwt0330/SegRoot
2https://github.com/Abe404/segmentation of roots in soil with unet

depth = 4 depth = 5

width lr=10−4 lr=10−5 lr=10−4 lr=10−5

8 0.833 0.614 0.825 0.699

16 0.870 0.776 0.847 0.781

32 0.874 0.817 fail 0.870

Table 1. Dice scores for Dtest

bin for different SegRoot widths (8, 16,

32), depths (4, 5) and learning rates (lr = 10−4,10−5). For the

32-5-net with lr=10−4 no learning process could be observed.

U-Net and Hi-Fi As an alternative to SegNet we investi-

gate U-Net and Hi-Fi. As the structure of the encoder resp.

backbone we employ VGG16 [21] and the one proposed in

the original U-Net paper [18]. As loss functions CE, DI, and

CombCED are used, group normalization as opposed to no

normalization, and learning rates of 10−3 and 10−4. Thus,

a total of 48 combinations of hyper parameters result.

First, we conducted 8 replicates of the hyper parameter

combination used for the challenge submission (see below)

to estimate the variance due to random initialization. The

mean dice score on Dtest
bin is 0.910 with a maximal differ-

ence of 0.0020. In the following we consider differences of

the dice score in the second decimal place as considerable

and not to be attributed to random effects.

CombCSD CE dice

0
.7

0
0

.8
0

0
.9

0

group normalization

CombCSD CE dice

0
.7

0
0

.8
0

0
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0
no normalization

CombCSD CE dice

0
.7

0
0

.8
0

0
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0

group normalization

CombCSD CE dice

0
.7

0
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.8
0

0
.9

0

no normalization

Figure 2. Boxplot of dice scores on Dtest

bin for different backbone

structures, loss functions, and normalizations. Top row: VGG16

structure, bottom row: original U-Net structure.

The boxplots in Fig. 2 show that CombCED yields a bet-

ter dice score in almost all cases compared to CE. This may

be partly attributed to the fact, that we assess performance

with the dice score which is part of the CombCED loss func-

tion. In addition, however, CE is less robust with respect to

hyper parameters which are thus more difficult to tune. DI

can be expected to perform well, as it coincides with the

performance measure. However, training is quite unstable

in this case resulting in a dice score of less than 0.02 for

8 of the experiments. As evident from Tab. 2 only one of
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lr CombCED CE DI

U-Net, VGG16 Structure

10−3 0.902 0.882 0.895

10−4 0.903 0.802 0.900

U-Net, Original U-Net Structure

10−3 0.910 0.890 0.890

10−4 0.904 0.809 0.900

Hi-Fi, VGG16 Structure

10−3 0.910 0.870 0.906

10−4 0.893 0.753 0.890

Hi-Fi, Original U-Net Structure

10−3 0.907 0.863 0.902

10−4 0.891 0.764 0.006

Table 2. Dice scores on Dtest

bin using group normalization.

these instable trainings occurs when using group normal-

ization. In contrast we find only one such experiment for

CE, and none for CombCED. In case of successful train-

ing in most cases competitive dice scores result compared

to CombCED, which is true for all experiments with group

normalization and VGG16. We speculate that CE alleviates

the instability of DI in the combination still giving the ad-

vantage of dice as the performance measure.

Next we analyze the effect of group normalization. Fig. 2

indicates that adding normalization tends to produce a more

stable performance. Comparing all experiments with re-

spect to normalization variants, CombCED gives a consid-

erable better dice score in two thirds of experiments and

comparable results otherwise. For CE no clear tendency can

be observed if the single experiment with a lack in proper

learning is omitted. Due to these findings we only consider

training with group normalization in the following.

Tab. 2 shows that using CombCED the four combina-

tions of network type and backbone structure perform com-

parable with the exception of Hi-Fi and lr=10−4. Training

with DI yields comparable results except for one experi-

ment where no learning happened at all. This dice score of

0.90 ± 0.01 for these experiments is the best performance

on our test set we observed. The CE delivers consider-

able worse dice scores for most of the cases, especially for

lr = 10−4. With respect to learning rate lr = 10−3 out-

performs 10−4 for several combinations. However, we feel

that more experiments should be performed and expect that

the appropriate one depends on the other hyper parameters.

In all experiments where learning was successful preci-

sion and recall vary slightly and quite symmetric around

the stable dice score. In Fig. 3 the evolution of performance

during training on Dval
bin is displayed.

In summary, we find a slight advantage of CombCED

loss and group normalization, while both network types –

U-Net and Hi-Fi – and backbone structures perform compa-

20 25 30 35 40

0
.7

0
0
.9

0

Figure 3. Performance on Dval

bin in the course of training. Black:

dice score, red: precision, green: recall.

µ lr = 10−8 lr = 10−9 lr = 10−10

0.4 0.846/0.883/0.864 0.859/0.886/0.872 0.862/0.896/0.879

0.5 0.844/0.845/0.845 0.864/0.888/0.876 0.862/0.895/0.878

0.6 0.818/0.601/0.693 0.863/0.891/0.877 0.862/0.896/0.879

Table 3. Test results on training with a linear combination of

WHD and PPL with varying weighting factor µ as loss function

and different learning rates. For lr = 10−8, 10−9 and 10−10

recall/precision/dice are given.

lr Recall Precision Dice

10−7 0.856 0.946 0.899

10−8 0.889 0.929 0.908

10−9 0.907 0.914 0.910

10−10 0.908 0.912 0.910

Table 4. Test scores for focal loss with γ = 1.0 trained on pre-

trained weights with different learning rates.

rable. Obviously, still more combinations of hyper param-

eters could be examined. However, we speculate that no

significant improvements may be achieved especially tak-

ing ambiguities of groundtruth annotation into account, see

also “Qualitative results” below.

WHD and PPL loss We employ a linear combination

of WHD and PPL to train a U-Net with the VGG16 struc-

ture which was pretrained using CombCED, lr = 10−4 and

group normalization. Due to memory limitations caused by

WHD crops sized 256 × 256 pixels are used and α is set

to 4. We train 15 epochs and then choose the epoch with

the best validation dice score for testing and present results

in Tab. 3. Training with lr = 10−9 and lr = 10−10 results

in a slight decrease of the dice score compared to the pre-

trained network and a slight imbalance between precision

and recall developments. Using lr = 10−8 intensifies this

effect especially with increasing µ from 0.4 to 0.5 and 0.6.

To summarize, at least based on these three performance

metrics WHD does not give an improvement, but rather a

decline in performance. Potential improvements with re-

spect to the aim of geometry-awareness are hard to quantify

and need to be scrutinized more carefully.

Focal loss As a second loss to further train the same

U-Net with VGG16 structure we use the focal loss. In

Tab. 4, we show recalls, precisions and dice scores for dif-

ferent learning rates. With respect to these performance

measures lr = 10−10 and 10−9 are obviously too small
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to make a difference. With the increase of the learning rate,

precision and recall diverge with considerable higher preci-

sion while reducing the recall. This leads to an insignificant

change of the dice score. With lr = 10−7 the imbalance

of recall and precision further increases and the decrease of

the dice score gets considerable. Whether this increase in

precision for the price of smaller recall is an advantage and

if so to which degree is to be answered by the application.

Qualitative results For our challenge results we choose

the U-Net with VGG16 structure, CombCED, lr = 10−4,

and group normalization due to best performance in our pre-

liminary tests on Dtest
bin (data not shown). After 40 epochs

we continued training with FL setting γ = 1.0 using lr =
10−8 as visual inspection indicated superior performance

on Dtest. We observed that including training with FL de-

creases false positives (FPs) in the leaf regions. While it

also induces more false negatives (FNs) in root gaps this is

at least partially compensated by gap closing in the post-

processing stage. Note, that we trained using crops of size

256 × 256 during the preliminary tests, thus the perfor-

mances given in Tab. 2 and 5 slightly differ.

Qualitative aspects of the results achieved with this net-

work are discussed next. While the roots are usually quite

well segmented in the middle and lower parts of the im-

ages, errors seem to appear more frequently in the upper

parts containing the leaves. To validate this quantitatively,

we evaluate the region at the top including most leaves and

the rest of the images separately. The leaf region is sized

2000× 645 pixels and located with its top left corner at po-

sition (620, 0). In Tab. 5 recalls, precisions, and dice scores

are given.

Recall Precision Dice

Image complete 0.884 0.940 0.911

Leaf region 0.844 0.912 0.879

Non-leaf region 0.902 0.951 0.926

Table 5. Evaluation results on leaf and non-leaf regions in Dtest

bin .

Performance is best in non-leaf regions and outperforms

all scores on the complete images. For the leaf regions per-

formance significantly drops compared to the non-leaf re-

gions, but also with regard to complete images, e.g., the dice

score drops from 0.926 and 0.911, respectively, to 0.879.

Thus, improving segmentation in particular in leaf regions

seems to be promising for boosting segmentation quality.

Given the above observations we further investigated

root segmentation in leaf regions by visual groundtruth

comparisons. It turns out that root annotations seem incon-

sistent sometimes which occasionally causes errors with re-

gard to groundtruth although the segmentation appears rea-

sonable according to the image data. First, roots covered by

leaves are sometimes annotated as foreground, sometimes

A B C D

Figure 4. Examples for inconsistent annotations of roots covered

by leaves (columns A and B), and examples for rough hypocotyl

localization (columns C and D). Top row: input images, mid-

dle row: groundtruth, bottom row: overlay of our segmentations

(white: true positive, red: FP, blue: FN).

not. For the samples in Fig. 4 our network predicts parts

of the roots behind the leaves, which for the example in the

left column (A) results in FNs as well as TPs, while for

the example in the second column (B) FPs result. Second,

the hypocotyl position is sometimes very roughly localized

so that parts of the stem are marked as root. In Fig. 4,

third column (C), the hypocotyl is properly localized and

our segmentation is consistent with the annotation, while in

the forth column (D) parts of the stem are also annotated as

foreground which we miss in our segmentation.

Additionally, in some images there are spurious pixels

annotated as foreground distant to the nearest root system.

While these incorrect annotations have only weak impact

on the dice score the effect on the Hausdorff Distance, one

of the challenge metrics, may be considerable.

5.2. Root Segmentation Challenge

According to the challenge organizers our CNN de-

scribed in the previous paragraph achieved a dice score of

0.761 and completeness and correctness scores of 0.894
and 0.955, respectively, on a subset of 132 images of Dtest

which were used for producing the challenge results. Com-

pared to a human annotator who provided annotations for

comparison and achieved a dice score of 0.802 with com-

pleteness and correctness scores of 0.957 and 0.948, respec-

tively, this is only slightly worse. However, if we compare

to the dice scores on Dtest
bin of roughly 0.91 that we observed
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a) b) c)

d)

e) f) g)

Figure 5. a), Sample segmentation result on Dtest. Tip segments of the lateral roots are frequently missed (red: TP of MRs, green: TP of

lateral root). Image courtesy to the Root Segmentation Challenge Team. b)-g), examples for errors in MR root segmentation according to

our own judgement of groundtruth (orange: TP, yellow: FN, purple: FP). For further details refer to the text.

during training of our model, the challenge results are sig-

nificantly worse. The primary reason for these large devi-

ations seem to originate from the fact that we often miss

larger parts of lateral root tips as shown in Fig. 5 a. This

could point to significant differences in image characteris-

tics between our training data Dbin and the test data Dtest.

Our post-processing stage for extracting the MRs relies

on several empirically chosen parameters which were set

rather liberal. As the challenge evaluation metrics consid-

ers the total number of detected components, our intention

was to reduce the number of components as much as pos-

sible while accepting some small erroneously closed gaps.

Hence, we extract paths between end points with a max-

imum distance of 40 pixels and a maximum deviation in

orientations of 50◦. For reconnecting branches the maxi-

mal distance is set to 20 pixels. After extracting the MR we

remove all components smaller than 75 pixels, components

smaller than 250 pixels if more distant than 100 pixels to all

plant components, and components smaller than 500 pix-

els if more distant than 350 pixels. This allows to eliminate

clutter, but keep branches and other root parts that could not

be linked to the main component of a plant.

We performed a thorough analysis of the quality of our

MR extraction by visually inspecting all 933 images of

Dtest. In 17 out of the 22 video sequences almost 90%
of the MRs seem to be identified correctly. This is also con-

firmed by our challenge results where we achieve a com-

pleteness of 0.918 and a correctness of 0.952 on the MR

pixels. If MR extraction fails to a large extent this is mostly

attributable to one of three typical issues. In the early im-

ages of a video sequence where plants start to grow it is

often hard to distinguish between small components result-

ing from clutter and correct root components (Fig. 5 b).

From our subjective assessment and without knowing the

groundtruth we may sometimes miss small roots and MRs

in the first images of a sequence. Likewise, sometimes

wrong components are selected as root components lead-

ing to MRs located in noise components. A third more

serious source of errors are path errors where the correct

component is traced, however, the MR path includes wrong

root segments. This mainly happens at the top or bottom

of root components if the hypocotyl or tip point is wrongly

detected, e.g., due to the roots growing out of the image or

plate, or the seed points and roots being covered by parts

of a leaf or stem (Fig. 5 c, d). In some rare cases the MR

path is wrongly extracted due to ambiguities in the image

data (Fig. 5 e,f) where it is hardly possible to correctly trace

the MR without considering additional temporal informa-

tion. Including such data in MR extraction would be one

of the most promising directions for improving the qual-

ity of MRs. Anyway, most of the MR errors due to these

issues affect only small portions of the MR. In three video

sequences, however, MR extraction fails seriously for a cou-

ple of images. In these sequences components for different

plants merge and the path extraction in parts follows roots of

the wrong plant (Fig. 5 g). Here also temporal information

and path alignment between successive time points might

help to extract MR paths more robustly.

6. Conclusions

CNNs are a common approach for semantic segmenta-

tion and have also gained interest to segment root images.

Here we present our approach for the segmentation task of

this year’s CVPPA Arabidopsis Root Segmentation Chal-

lenge. In general, we achieve fair segmentation scores and

particularly succeed in identifying the main roots, while

complete segmentation of the tips of lateral roots remains

challenging. Thus, our study on alternative CNN architec-

tures, loss functions and parameters could guide the devel-

opment of more powerful models. Together with consider-

ing additional temporal information from time series in the

post-processing stage this may lead to further performance

boosts and foster progress in root image segmentation.
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Abstract

Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell 

proliferation, and cell morphology. Their organization and dynamics are co-ordinated by various microtubule-asso-

ciated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal 

arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown func-

tions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, 

subcellular localization, and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where 

it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of 

IQD5 in pavement cell (PC) shape morphogenesis. Histochemical analysis of cell wall composition further suggests 

reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced anisotropic expansion. 

Lastly, we demonstrate IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays 

and provide first evidence for important roles for calcium in regulation of PC morphogenesis. Our work identifies IQD5 

as a novel player in PC shape regulation and, for the first time, links calcium signaling to developmental processes 

that regulate anisotropic growth in PCs.

Keywords:  Arabidopsis, calcium, calmodulin, cell wall, IQ67 DOMAIN, microtubules, pavement cell shape, signaling

Introduction

The plant cytoskeleton, comprised of actin filaments and 
microtubules (MTs), forms a three-dimensional intracellular 
network that determines cell division and cell morphology, and 
serves as tracks for cellular transport of various cargoes, includ-
ing organelles, proteins, and other macromolecular complexes 
(Wasteneys and Yang, 2004b; Hussey et al., 2006; Akhmanova 

and Hammer, 2010). Networks of MTs form highly dynamic 
arrays and adopt specific functions during the plant life cycle, 
including essential roles in cell division and expansion, intra- 
and intercellular transport, cellular organization, and the depo-
sition of cell wall material. In interphase cells, MTs reorganize 
into cortical networks tethered to the plasma membrane (PM), 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),  
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology.
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which serve as tracks for PM-localized cellulose synthase com-
plexes (CSCs) and thereby define the direction of cellulose 
deposition (Paredez et al., 2006; Liu et al., 2015). In addition to 
their important roles in development, MT arrays function dur-
ing growth adaptation in response to changing environmental 
conditions, thereby contributing to plant fitness (Wasteneys 
and Yang, 2004a).

To engage in these diverse cellular functions, MT organ-
ization and dynamics are tightly controlled (Wasteneys, 2002). 
Developmental and environmental stimuli can induce rapid 
reorganization of the MT cytoskeleton (e.g. in response 
to mechanical stimulation) which can occur within a few 
minutes and involves changes in MT trajectories, as well as 
altered rates of (de-) polymerization (Hardham et  al., 2008). 
Phytohormones exert control over MT orientation (Shibaoka, 
1994; Locascio et al., 2013; Takatani et al., 2015), and signal-
ing via the second messenger calcium (Ca2+) has been impli-
cated in cytoskeletal control, as suggested by sensitivity of 
MT stability to elevated Ca2+ concentrations (Hepler, 2005, 
2016). MT-associated proteins (MAPs), which bind to tubu-
lin subunits, play essential roles for regulating cytoskeletal 
behavior (Lloyd and Hussey, 2001; Sedbrook, 2004) and are 
likely candidates to integrate incoming signals into appropri-
ate responses. Numerous MAPs have been identified in plants, 
which mediate bundling, cross-linking, nucleation, or severing 
of MTs, or, in the case of plus end-tracking MAPs, control 
dynamic instability at polymerizing plus ends (Akhmanova and 
Steinmetz, 2008; Horio and Murata, 2014). Other MAPs facili-
tate physical connections between MTs and protein complexes, 
such as CSCs (Bringmann et al., 2012), or cross-linking to the 
actin cytoskeleton (Schneider and Persson, 2015). MAPs also 
mediate tethering of MTs to the PM (Bayer et al., 2017; Oda, 
2018), which is required for stabilization against the pushing 
forces of CSCs (Liu et al., 2016) and potentially contributes to 
subcompartmentalization of PMs into functional subdomains 
(Sugiyama et al., 2017). Still, the modes by which external sig-
nals are integrated into MT (re-) orientation and how MAPs 
contribute to it are poorly understood.

We previously identified IQ67 DOMAIN (IQD) fam-
ily proteins as the largest known class of MAPs in plants 
(Bürstenbinder et al., 2017b), which are encoded by multigene 
families of 23–66 members in several angiosperms, includ-
ing Arabidopsis thaliana, Oryza sativa (rice), Solanum lycopersi-
cum (tomato), and Glycine max (Abel et al., 2005; Huang et al., 
2013; Feng et  al., 2014). The family-defining IQ67 domain 
harbors motifs with predicted roles in binding to calmodulin 
(CaM) Ca2+ sensor proteins that are an integral part of the 
cellular Ca2+ decoding machinery (Abel et  al., 2005). Thus, 
IQDs are likely candidates for integration of CaM-dependent 
Ca2+ signaling into MT (re-)organization and growth regu-
lation (Bürstenbinder et  al., 2017a). First experimental data 
point to important roles for IQD proteins in plant develop-
ment, as indicated by altered fruit shape and grain size in plants 
with elevated expression levels of tomato SUN/IQD12 and 
rice GRAIN SIZE ON CHROMOSOME 5(GSE5)/IQD21, 
respectively (Xiao et al., 2008; Duan et al., 2017). Functions of 
IQDs in MT organization are supported by differential MT 
patterns, which are induced upon overexpression of individual 

family members in transient expression assays in Nicotiana 
benthamiana (Bürstenbinder et al., 2017b). Divergent MT pat-
terns in N. benthamiana correlate with divergent effects on MT 
organization and growth in transgenic Arabidopsis IQD over-
expression plants, as indicated by altered plant morphology and 
cell shape upon ectopic overexpression of, for example, IQD14 
and IQD16 visible during development and in diverse tissues 
(Bürstenbinder et  al., 2017b). Mechanistic studies on IQD 
functions, however, are still limited because (i) phenotypes are 
almost exclusively reported in IQD gain-of-function or over-
expression lines; (ii) multigene families are not easily amenable 
to reverse genetics approaches due to functional redundancies; 
and (iii) insights into the spatial and temporal control of Ca2+ 
signal generation during development are sparse due to limited 
sensitivities of intracellular Ca2+ imaging methods (Kudla et al., 
2018).

To identify functions of family members, we selected 
Arabidopsis IQD5, because MT pattern analysis upon over-
expression of YFP-IQD5 in transient expression assays in 
N.  benthamiana suggested unique and specific roles for this 
family member in MT organization (Bürstenbinder et  al., 
2017b). Moreover, IQD5, which belongs to phylogenetic 
subgroup IIIa of the IQD family, clusters separately from the 
other members of this subgroup, namely IQD6–IQD10 (Abel 
et al., 2005), and thus may have specialized functions in planta. 
In this study, we present a systematic analysis of Arabidopsis 
IQD5 using reverse genetics approaches. We identified expres-
sion domains of IQD5 by analysis of transgenic pIQD5::GFP-
GUS reporter lines, and determined its subcellular localization 
in transgenic pIQD5::IQD5-GFP/iqd5-1 lines. We show that 
IQD5–green fluorescent protein (GFP) decorates cortical 
MTs at neck regions of leaf epidermis pavement cells (PCs). 
Loss of IQD5 results in strongly reduced growth restriction at 
neck regions, which correlates with a reduced deposition of 
cellulose in anticlinal walls of PCs. Recombinant IQD5 inter-
acts with apo-CaM and Ca2+–CaM in vitro, and IQD5 recruits 
CaM to MTs in planta. Moreover, we show that PC shape is 
sensitive to elevated external Ca2+ concentrations. Together, 
our research provides evidence for functions of IQD5 in shape 
establishment of leaf epidermis PCs and for the first time links 
Ca2+ signaling to the control of interdigitated growth of PCs.

Materials and methods

Plant material, growth conditions, and macroscopic phenotyping

Wild-type (WT) seeds (Col-0 accession) were originally obtained 
from the Arabidopsis Biological Resource Center. T-DNA insertion 
lines SALK_015580 and GK-288E09, referred to as iqd5-1 and iqd5-
2, respectively, were obtained from the Nottingham Arabidopsis Stock 
Centre. Genomic DNA was extracted as described in Bürstenbinder 
et  al. (2007). Homozygous mutant lines were identified by PCR-
based genotyping with the following primer combinations: iqd5-
1, WT allele IQD105 (5'-GATTATCTCTGCCAAACAGCG-3') 
and IQD106 (5'-GGAGAGTGACTTGGGCTGAC-3'), insert 
IQD105+A004 (5'-ATTTTGCCGATTTCGGAAC-3'); iqd5-2, WT 
allele IQD075 (5'-ATGGGAGCTTCAGGGAGATG-3')+IQD076 
(5'-GCGTTACAGCAGCTTGTTTTC-3'), and insert IQD076+A009 
(5'-ATAATAACGCTGCGGACATCTACATTT-3'). A  2201  bp 
(pIQD5long) and a 1207  bp (pIQD5short) fragment of the IQD5 pro-
moter sequence were amplified from genomic DNA with IQD180 
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(5'-CACCTCTATATATGGTTCACAATCGAGACAC-3') and 
IQD345 (5'-CACCATAAATCACATCACTGTTTTTGGGT-3') for-
ward primers, respectively, in combination with the IQD181 reverse 
primer (5'-TCTATCTCAATTCCAACGATCAG-3'), and mobilized 
into the pENTR/dTOPO vector. A genomic pIQD5short::IQD5(w/-stop 
codon) fragment was amplified with forward primer IQD1521 (5'-attB1-
TCTCTATATATGGTTCACAATCGAGACAC-3') and reverse primer 
IQD1522 (5'-attB2-CTGCAAGCCTCTGTTTTATTGGGTCGG-3'), 
and mobilized into pDONR221. Fidelity of inserts was verified by 
sequencing. For generation of transgenic pIQD5::GFP-GUS and 
pIQD5::IQD5-GFP lines, the inserts were mobilized into pBGWFS7 
and pB7FWG,0, respectively (Karimi et  al., 2002).  Arabidopsis plants 
were transformed by Agrobacterium tumefaciens-mediated transfection 
using the floral dip method (Clough and Bent, 1998). Per construct, 
10–24 independent lines were identified in the T1 generation by Basta 
selection. T2 plants were screened for the presence of single-copy T-DNA 
insertion by segregation analysis (Basta). For analysis of GFP fluores-
cence and β-glucuronidase (GUS) expression, 2–4 homozygous T3 lines 
were included, which showed representative GFP fluorescence or GUS 
expression patterns.

Seeds were surface sterilized with chlorine gas, stratified for 2 d at 
4 °C on Arabidopsis thaliana Salts (ATS) medium [1× ATS, 0.5% (w/v) 
agar gel, 1% (w/v) sucrose] (Lincoln et  al., 1990), and grown at 21°C 
under long-day conditions (16  h light, 8  h dark). For oryzalin treat-
ments, seedlings were incubated for 1–2  h in liquid medium supple-
mented with 10  µM oryzalin in a final concentration of 0.25% (v/v) 
DMSO or the DMSO control as described in Bürstenbinder et  al. 
(2013). Macroscopic growth parameters were analyzed in 5-day-old 
seedling and in 3-week-old plants. Root length was quantified with 
RootDetection (http://www.labutils.de/rd.html,  last  accessed  19  Nov
ember  2018). Cotyledon and leaf area were measured with the Easy 
Leaf Area software (http://www.plant-image-analysis.org/software/easy-
leaf-area,  last  accessed  19  November  2018)  according to the manual. 
For treatment with Ca2+, seedlings were grown for 5 d on half-strength 
Murashige and Skoog (1/2 MS) medium supplemented with the indi-
cated concentrations of CaCl2 according to Chen et al. (2014).

RNA extraction and expression analysis

Total RNA was extracted from 2-week-old plants using TRIreagent. Synthesis 
of cDNA via reverse transcription and RT–PCRs were performed accord-
ing to Bürstenbinder et al. (2007) with the following primers: IQD5, primer 
IQD075 and IQD117 (5'-CTATGCAAGCCTCTGTTTTATTGG-3'); 
ACTIN2, primer A005 (5'-CAAAGACCAGCTCTTCCATC-3'); 
and A006 (5'-CTGTGAACGATTCCTGGACCT-3'). For quan-
titative real-time PCR (qRT-PCR), conditions were selected as 
described in Bürstenbinder et  al. (2017b) and the following primers 
were used: IQD5, IQD1777 (CAACTAAAGCCAACCGAGCA-3') 
and IQD1778 (GGTTTTGGGCAGATTTTTCC-3'), PP2A 
A015 (AGCCAACTAGGACGGATCTGGT-3') and A016 
(CTATCCGAACTTCTGCCTCATTA-3'). In brief, 3–5 shoots of 
2-week-old plants were pooled for RNA extraction. A 2  µg aliquot of 
DNase I-treated RNA was reverse transcribed with oligo(dT) primers 
using the Revert Aid First Strand cDNA synthesis kit (Thermo Fisher) 
to generate first-strand cDNA. Primer efficiencies were calculated from 
standard curves. A 1 µl aliquot of 1:10-diluted cDNA was used in a 10 µl 
reaction mix including Fast SYBR Green master mix (Applied Biosystems), 
and qPCRs were run on a 7500 Fast Real-Time PCR system with the fol-
lowing program: 10 min, 95 °C; 40 cycles of 3 s, 95 °C, and 30 s, 63 °C. 
Expression levels of IQD5 were calculated relative to PP2A.

Microscopy, staining procedures, and image analysis

Whole-mount GUS staining of seedlings and plants was performed as 
described in Bürstenbinder et al. (2017b). Plant materials were cleared in 
chloral hydrate, and roots and seeds were imaged with a Zeiss axioplan 
2 microscope using a differential interfernce contrast (DIC) objective. 
Imaging of whole seedlings, leaves, flowers, and siliques was performed 
with a Nikon SMZ 1270 stereo microscope.

Confocal imaging was performed with a Zeiss LSM 780 inverted 
microscope using a ×40 water immersion objective, unless stated other-
wise. Generation of yellow fluorescent protein (YFP)–IQD5, YN–
TRM1, red fluorescent protein (RFP)–TUA5, and mCherry–CaM2 is 
described in Bürstenbinder et al. (2017b) and Gantner et al. (2018). GFP 
was excited using a 488 nm laser and emission was detected between 
493 nm and 555 nm. YFP was excited by a 514 nm laser, and emission 
was detected between 525 nm and 550 nm. For mCherry excitation, a 
555 nm laser was used, and emission was detected between 560 nm and 
620  nm. Fluorescence intensities of IQD5–GFP adjacent to the peri-
clinal wall at convex and concave sides of lobes were quantified according 
to Armour et al. (2015). Average fluorescence intensities were measured 
with FiJi (Schindelin et al., 2012) in a total of six cells from three inde-
pendent seedlings, and five lobes per cell were analyzed. The vector series 
of Gehl et al. (2009) was used for generation of the bimolecular fluores-
cence complementation (BiFC) construct. For all samples included in the 
BiFC experiment, imaging was performed with an identical laser setting. 
In co-expression assays, mCherry and GFP fluorescence were recorded 
in the sequential mode.

For visualization of cell contours, cell outlines were visualized by pro-
pidium iodide (PI) staining as described in Bürstenbinder et al. (2017b), 
and imaged with a ×20 objective [5–10 days after germination (DAG)] or 
with a ×40 objective (2 and 3 DAG). PI was excited with a 555 nm laser, 
and emission was detected between 560 nm and 620 nm. Segmentation, 
feature quantification, and graphical visualization of PC shapes were con-
ducted with the ImageJ plugin PaCeQuant and the associated R script 
(Möller et al., 2017). For cells in cotyledons 5–10 DAG and in the third 
true leaf, the threshold for size filtering implemented in PaCeQuant was 
set to the default value of 240 µm2. For cells in cotyledons 2 and 3 DAG, 
the threshold for size filtering was reduced to 75 µm2. For time series ana-
lysis of cells during cotyledon development, cells were grouped by their 
sizes into the following categories: tiny <240 µm2; small, 240–1400 µm2; 
medium, 1400–4042  µm2; and large >4042  µm2. Thresholds for small, 
medium, and large cells were chosen according to Möller et al. (2017).

For histochemical cellulose staining in cell walls, 5-day-old seed-
lings were incubated for 90 min in 0.04% (v/v) calcofluor white M2R 
dissolved in Tris–HCl buffer (pH 9.2). To stain callose and the cuticle, 
seedlings were incubated for 3 h and 5 min in 0.1% (v/v) aniline blue 
in 100 mM Na2PO4 buffer (pH 7.2) and 0.1% (w/v) auramine O in 
50 mM Tris–HCl buffer (pH 7.2), respectively. Subsequently, seedlings 
were co-stained with PI to visualize cell contours. Dissected cotyledons 
were imaged with a Zeiss LSM 700 inverted microscope, using a ×40 
water immersion objective. Calcofluor white, aniline blue, and auramine 
O were excited with a 405 nm laser, and emission was detected with a 
490 nm short pass filter. Co-staining was recorded in the sequential mode.

To quantify fluorescence intensities along the boundaries of the cells, 
we established a workflow combining automatic segmentation based on 
the method implemented in PaCeQuant and quantification of fluores-
cence intensities along the contour segments. For each boundary pixel 
in an image, the set of adjacent cell regions in a 15 × 15 neighborhood 
around the pixel is determined and the fluorescence intensity value of 
the pixel is added to the total intensity sum of each of these regions. 
Finally, an average intensity value for the boundary of each cell region 
is calculated by dividing the intensity sum of the region through the 
total number of pixels that contributed to the specific region, which we 
implemented in MiToBo (Möller et al., 2016).

Structure prediction, protein expression, and calmodulin 

binding assays

Structural prediction of the IQ67 domain of IQD5 spanning amino 
acids E87–L153 was performed using PHYRE2 (Kelley et  al., 2015), 
which revealed the highest similarities with the crystal structures of the 
CaM-binding domains of mouse myosin V (PDB:2IX7, 99.5% similar-
ity) (Houdusse et al., 2006) and mouse myosin-1c (PDB:4R8G, 99.8%) 
(Lu et al., 2015). The predicted structure of the IQ67 domain of IQD5 
was aligned with PDB:2IX7, which contains the crystal structure of 
apo-CaM bound to the first two IQ motifs of myosin V, using PyMol 
(DeLano, 2009). CaM was fitted to adjust for the different spacing of IQ 
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motifs by 11 and 12 amino acids in the CaM-binding domains of IQD5 
and myosin V, respectively.

Expression of glutathione S-transferase (GST)–IQD5 and in vitro 
CaM binding assays were performed according to Levy et al. (2005). 
Generation of IQD5 pENTR vectors is described in Bürstenbinder 
et  al. (2017b). The coding sequence (CDS) of IQD5 was mobilized 
into the pDEST15 vector (Invitrogen) to generate an N-terminal 
GST fusion, and GST–IQD5 and the GST control were expressed in 
the Escherichia coli strain KRX (Novagen) upon induction with 0.1% 
(w/v) rhamnose and 1  mM isopropyl-β-d-thiogalactopyranoside 
(IPTG). Cells were resuspended in CaM pull-down buffer [5.8 mM 
Tris–HCl, pH 7.3; 2.7 mM KCl; 127 mM NaCl; 0.1% (v/v) Tween 
20; 0.002% (w/v) NaN3]. Bovine CaM immobilized on Sepharose 
beads (GE Healthcare) was incubated with cleared protein extracts 
in CaM buffer containing either 5 mM EGTA or 1 mM CaCl2. After 
four steps of washing, the last washing fraction and the bead fraction 
were collected, and, together with the unbound fraction, separated 
by SDS–PAGE. GST-tagged proteins were visualized by immunoblot 
analysis using a horseradish peroxidase (HRP)-coupled α-GST anti-
body (Santa Cruz).

Statistical analysis

Statistical analysis of root length, cotyledon and leaf area, and IQD5 
expression was performed using ANOVA implemented in the R soft-
ware, followed by a Tukey’s post-hoc test, and Benjamini–Hochberg 
adjustment of P-values. For statistical analysis of fluorescence intensities 
at convex and concave sides of pavement cells in pIQD5::IQD5-GFP 
seedlings, a t-test was performed. Statistical analysis of PC shape features 
was performed using the Kruskal–Wallis test, followed by a Dunn’s post-
hoc test and Benjamini–Hochberg adjustment of P-values, which is part 
of the R script provided in the PaCeQuant package.

Results

IQD5 is expressed in vegetative tissues

To identify in planta sites of IQD5 function, we determined 
spatio-temporal expression domains of IQD5 in transgenic 
pIQD5short::GFP-GUS and pIQD5long::GFP-GUS reporter 
lines, in which a 1207 bp and 2201 bp DNA fragment upstream 
of the translational start site of the IQD5 gene were fused 
to the reporter, respectively. Histochemical GUS analysis of 
pIQD5short::GFP-GUS lines throughout development revealed 
strong promoter activity in cotyledons and leaves, in the vascu-
lature of leaves and the hypocotyl, as well as in the shoot apical 
meristem (Fig.  1A). In roots, GUS staining was detectable 
mostly in older parts of the root. In root tips, IQD5 promoter 
activity was restricted to the lateral root cap of primary and 
lateral root meristems. GUS activity was largely absent from 
reproductive organs, such as flower buds, flowers, siliques, and 
seeds, and during embryo development. The GUS patterns are 
consistent with developmental IQD5 expression data obtained 
from publicly available microarray data sets (Fig. 1B) (Winter 
et al., 2007), which confirm higher IQD5 expression levels in 
vegetative tissues when compared with reproductive tissues. 
Similar expression patterns were observed in pIQD5long::GFP-
GUS lines (Supplementary Fig.  S1 available at JXB online), 
suggesting that the 1207 bp fragment was sufficient to report 
authentic IQD5 expression patterns. Our analysis thus reveals 
preferential expression of IQD5 in vegetative tissues of shoots 
and roots.

IQD5–GFP localizes to cortical microtubules

To examine the subcellular localization of IQD5, we gener-
ated a fluorescent protein fusion construct, in which GFP was 
fused to the C-terminus of IQD5 within a genomic frag-
ment containing the native IQD5short promoter (Fig.  2). The 
pIQD5::IQD5-GFP construct was introduced into an iqd5 
knockout background to avoid dosage effects of IQD5 copy 
number (Fig. 2A, B). We obtained two independent Arabidopsis 
T-DNA insertion lines for IQD5, which we termed iqd5-1 
and iqd5-2 (Fig. 2A). RT–PCR analysis revealed the complete 
absence of full-length IQD5 transcripts in iqd5-1 and iqd5-2 
lines when compared with the WT, demonstrating that both 
T-DNA insertion lines are null mutant alleles (Fig. 2B). Based 
on macroscopic examination, both iqd5 mutants were pheno-
typically indistinguishable from WT plants, as shown for root 
length and shoot growth (Supplementary Fig. S2). The iqd5-1 
mutant was transformed with the pIQD5::IQD5-GFP con-
struct by Agrobacterium-mediated floral dip. qRT-PCR ana-
lysis of steady-state IQD5 mRNA levels revealed comparable 
expression in two independent pIQD5::IQD5-GFP/iqd5-1 
complementation lines, which was moderately higher than in 
the reference WT (Fig. 2C).

We investigated the subcellular localization of IQD5–GFP 
by confocal imaging and observed that IQD5 localized in 
punctate patterns along filamentous structures at the cell cor-
tex of hypocotyl cells, reminiscent of cortical MTs (Fig. 2D). 
Treatment with oryzalin, a drug that binds to tubulin subu-
nits and prevents MT polymerization (Morejohn et al., 1987), 
abolished IQD5–GFP localization to filaments, while MTs 
remained intact upon mock treatment (Fig.  2D). Transgenic 
pCaMV 35S::GFP-MAP4 (Marc et  al., 1998) and pCaMV 
35S::GFP-ABD2 (Sheahan et al., 2004; Wang et al., 2004) lines 
were included as controls for the MT and actin cytoskeleton, 
respectively (Fig.  2D). While oryzalin treatment disrupted 
MTs decorated with GFP–MAP4, labeled (GFP–ABD2) 
actin filaments remained intact, demonstrating the efficiency 
and specificity of the treatment. Co-expression of pCaMV 
35S::YFP-IQD5 with pCaMV 35S::RFP-TUA5 in transient 
expression assays in N. benthamiana further corroborated co-
localization of   YFP–IQD5 with MTs (Fig. 2E). GFP fluores-
cence was very weak in hypocotyls of pIQD5::IQD5-GFP/
iqd5-1 seedlings. Moderately stronger IQD5–GFP fluores-
cence was detectable at cortical MT arrays in epidermal PCs 
of cotyledons (Fig.  2F). PCs adopt highly complex jigsaw 
puzzle-like shapes with interlocking lobes and necks. Within 
individual PCs, IQD5–GFP accumulated at the convex side of 
necks at the interface of anticlinal and outer periclinal walls, as 
indicated by increased average fluorescence intensities when 
compared with the concave side (Fig. 2F, G).

Loss of IQD5 causes aberrant PC shape

To assess whether IQD5 contributes to growth regulation of 
PCs, we analyzed PC shapes in cotyledons of iqd5 mutants 
and of the two pIQD5::IQD5-GFP/iqd5-1 lines. Cell outlines 
were visualized by PI staining, and groups of PCs on the adaxial 
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side of cotyledons from 5-day-old seedlings were imaged by 
confocal microscopy (Fig. 3A). PC shape features were quanti-
fied with PaCeQuant (Möller et  al., 2017), an ImageJ-based 
open source tool for fully automatic quantification and graphi-
cal visualization of PC shape features. As evidenced by similar 
areas of individual cells and similar area distributions, expan-
sion was largely unaffected in iqd5 mutants (Fig.  3B). Cell 
shapes on the other hand differed strongly in both iqd5 mutant 
alleles when compared with the WT or the two independ-
ent pIQD5::IQD5-GFP/iqd5-1 lines. Mutants displayed an 
increased cellular circularity (Fig. 3C). Circularity values range 
between 0 and 1, where a circularity value of 1 represents a 
perfect circle. Increased circularity thus indicates reduced cel-
lular complexity in iqd5 mutants. Reduced cellular complex-
ity correlates with a moderately reduced average number of 
lobes from 15 lobes per cell in WT to 13 lobes per cell in 
iqd5 mutants (Fig. 3D). In addition, iqd5 mutants displayed a 
strongly reduced growth of lobes, indicated by an ~30% reduc-
tion of average lobe length (Supplementary Fig.  S3A). The 
width of the cellular core region, measured as the maximum 
(Fig. 3E) core width, was increased by 22%. Maximum core 
width provides a clearly defined value as an estimate for the 

growth restriction of the cellular core region (Möller et  al., 
2017), which is similar to neck width values manually quanti-
fied by, for example, Fu et al. (2005). An increased maximum 
core width indicates reduced growth restriction at neck regions. 
The phenotypic differences were highly similar between iqd5-
1 and iqd5-2 mutant alleles. Expression of pIQD5::IQD5-GFP 
in the iqd5-1 mutant background restored PC shape to WT-like 
patterns (Fig. 3; Supplementary Fig. S3), which demonstrates 
functionality of the IQD5–GFP fusion protein and sufficiency 
of the amplified promoter region for restoring IQD5 expres-
sion levels. Collectively, our data suggest that IQD5 is required 
for lobe initiation, lobe growth, and growth restriction at neck 
regions of cotyledon PCs, which is consistent with its pre-
dominant localization to cortical MT arrays at necks.

Cell shape defects in iqd5 mutants occur early during 
cotyledon development

Morphogenesis of PCs in cotyledons is established during dis-
tinct phases (Fu et al., 2002; Zhang et al., 2011). In the early 
phase, 1–3 DAG, lobe formation is initiated and cells start to 
expand anisotropically, which is followed (3–7 DAG) by diffuse 

Fig. 1. IQD5 expression analysis. Whole-mount histochemical GUS staining of ProIQD5short:GFP-GUS reporter lines (A) in seeds and embryos of 
globular (a), heart (b), torpedo (c), and mature (d) stage, in 2-day-old seedlings (e); insets show close-ups of embryos, indicated by black boxes (a–c), 
in the primary root meristem (f), in lateral roots (g), and in cotyledons (h) of 5-day-old seedlings, in the shoot of 10-day-old seedlings (i), and in flower 
buds (j), flowers (k), and siliques (l) of 5-week-old plants. Scale bars represent 100 µm (a–d), 1 mm (e, g–l), and 10 µm (f). In silico expression data of 
IQD5 in different tissues and organs were obtained from the publicly available eFP browser database (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi, last 
accessed 19  November 2018) (B). Data show mean values ±SD from three independent biological experiments.
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growth and expansion of shape patterns. Growth ceases at later 
stages (10–18 DAG), and PCs as well as cotyledons reach their 
final size (Belteton et al., 2018). To determine at which stage 
IQD5 functions, we studied PC shape in iqd5 mutants dur-
ing cotyledon development and imaged WT and iqd5 mutant 
seedlings at 2, 3, 5, 7, and 10 DAG (Fig. 4A). During develop-
ment, the average cell size increased (Supplementary Figs S4–
S8), which is consistent with earlier reports (Zhang et al., 2011; 

Möller et al., 2017). To examine shape and geometries in cell 
populations of similar sizes, referred to as small, medium, and 
large, we applied the size thresholds of ts=1400  µm2 and tm 
of 4040 µm2 at 3, 5, 7, and 10 DAG. These thresholds were 
experimentally determined in our previous work (Möller 
et  al., 2017), and resemble cells at early (small), intermedi-
ate (medium), and late stages of cellular expansion. To distin-
guish between very small (tiny) and small cell populations in 

Fig. 2. Subcellular localization of IQD5–GFP in transgenic Arabidopsis pIQD5::IQD5-GFP/iqd5-1 lines. Gene model and position of T-DNA insertions in 
two independent mutant lines, iqd5-1 and iqd5-2 (A). Boxes indicate the 5'UTR and 3'UTR (light blue), and exons (dark blue). Introns are represented by 
the black line. Loss of IQD5 full-length transcript in iqd5-1 and iqd5-2 plants compared with the WT (Col-0) was validated by RT–PCR (B). Arrows in (A) 
indicate the position of primers used for amplification of IQD5 transcripts. Actin2 was included as a control for cDNA integrity. Relative IQD5 expression 
levels were analyzed by qRT-PCR in two independent transgenic pIQD5::IQD5-GFP/iqd5-1 lines (#2.1 and #7.1) compared with the WT (C). Data 
show mean values ±SD of three independent biological experiments. Subcellular localization of IQD5–GFP in hypocotyls of transgenic pIQD5::IQD5-

GFP/iqd5-1 seedlings after mock (DMSO) or oryzalin (10 µM) treatment; scale bars=20 µm (D). Subcellular localization of YFP–IQD5 (top), RFP–TUA5 
(middle), and of YFP–IQD5 and RFP–TUA5 (bottom) in transient (co-)expression assays in leaves of N. benthamiana (E). Transgenic pCaMV 35S::GFP-

MAP4 and pCaMV 35S::GFP-ABD2 seedlings were included as controls for the microtubule and actin cytoskeleton, respectively. Z-stack images of 
GFP fluorescence in epidermis pavement cells of cotyledons from 5-day-old pIQD5::IQD5-GFP/iqd5-1 seedlings (F). Overview images (left column) 
and close-up of lobe regions (right column; fluorescence intensities are shown by false coloring, red, high fluorescence intensity; blue, low fluorescence 
intensity). Scale bars=50 µm and 5 µm, respectively. Mean fluorescence intensities measured at the convex and concave side of lobe regions in the upper 
periclinal wall (G). Data show mean values ±SD from a total of 50 lobes, quantified in 10 cells from five seedlings.

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/jx
b

/a
rtic

le
/7

0
/2

/5
2

9
/5

1
6

5
4

0
8

 b
y
 U

L
B

 S
a

c
h

s
e

n
-A

n
h

a
lt u

s
e

r o
n

 0
9

 J
u

n
e

 2
0

2
1

190



Arabidopsis IQD5 controls pavement cell shape | 535

cotyledons at 2 and 3 DAG, a time span during which lobe 

formation and anisotropic expansion are initiated, we included 

an additional size threshold of ttiny=240  µm2. Quantification 

of PC shape features revealed first differences in cell shapes 

of iqd5 mutants already at 2 and 3 DAG (Fig. 4D, E). When 

compared with the WT, cellular circularity was moderately but 

significantly increased in both iqd5 mutant alleles in tiny and 

in small-sized cell populations (Fig. 4D), and margin rough-

ness, a measure for the (ir-)regularity of local curvature values 

along the cell contour, as well as average basal lobe length were 

reduced (Fig. 4E; Supplementary Fig. S4). Similar results were 

observed in seedlings at 3 DAG (Supplementary Fig. S5). In 

medium to large-sized cell populations, analyzed in cotyledons 

between 5 and 10 DAG, phenotypic differences became more 

pronounced with increasing cell size (Fig. 4F; Supplementary 

Figs S6–S8). The time series analysis thus suggests important 

roles for IQD5 already during early phases of PC morpho-

genesis in cotyledons. Analysis of pIQD5short::GFP-GUS and 

pIQD5::IQD5-GFP/iqd5-1 lines revealed promoter activity 

and accumulation of IQD5–GFP at neck regions, respectively, 

in cotyledons and in the shoot apical meristem between 2 and 
10 DAG (Fig. 4B, C). Thus, our data demonstrate that IQD5 is 
expressed early during cotyledon development and that loss of 
IQD5 causes reduced lobe initiation and anisotropic expansion 
during early growth phases.

IQD5 regulates PC shape during embryogenesis and 
post-embryonic growth

Cotyledons resemble true leaves in many aspects, and thus pro-
vide a convenient system to study leaf development (Tsukaya 
et al., 1994). However, while cotyledons emerge in embryogen-
esis, true leaves post-embryonically differentiate from the shoot 
apical meristem and, unlike cotyledons, differ in their final leaf 
shape (Tsukaya, 2002). Moreover, some mutations affect exclu-
sively the development of cotyledons or true leaves (Tsukaya, 
1995). To test if IQD5 also functions in true leaf develop-
ment, we analyzed PC shape in rosette leaves of 3-week-old 
plants (Fig. 5A). Morphologically, the first two true leaves in 
Arabidopsis are similar to cotyledons (Poethig, 1997; Kerstetter 
and Poethig, 1998), and phenotypes in some rosette leaf-specific 

Fig. 3. Pavement cell (PC) morphology on the adaxial side of cotyledons from 5-day-old seedlings of the wild type (Col-0), two independent 
iqd5 knockout lines (iqd5-1 and iqd5-2), and two independent transgenic complementation lines (pIQD5:IQD5-GFP/iqd5-1; lines #2.1 and #7.1). 
Representative images of PC morphology (A). Cell outlines were visualized with PI. Images are single optical sections. Scale bars=50 µm. Quantification 
of cell shape features by PaCeQuant (B–H). Relative distribution of cell areas in the analyzed genotypes (B). Numbers in the key refer to the total number 
of cells from 10 images of the different genotypes. Cells larger than size threshold ts=1400µm2 were used for further analysis. Violin plots of feature 
distributions for circularity (C), lobe count (D), and maximum core width (MaxCoreWidth, E). Circles and crosses refer to medians and means; the vertical 
black lines represent the SD (thick lines) and the 95% confidence intervals (thin lines). The width of each violin box represents the local distribution of 
feature values along the y-axis. For an overview of all shape features and statistical analysis, see Supplementary Fig. S3.

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/jx
b

/a
rtic

le
/7

0
/2

/5
2

9
/5

1
6

5
4

0
8

 b
y
 U

L
B

 S
a

c
h

s
e

n
-A

n
h

a
lt u

s
e

r o
n

 0
9

 J
u

n
e

 2
0

2
1

191



536 | Mitra et al.

mutants are only visible beyond the second true leaf (Guo et al., 
2015). To reflect characteristics of true leaves, we thus focused 
on the third rosette leaf and analyzed PC shape on the adaxial 
side (Fig.  5C). Quantification of PC shape features revealed 
similar shape defects in rosette leaves to those observed for cot-
yledons. Loss of IQD5 caused a reduced initiation of lobes, as 
indicated by reduced lobe counts in iqd5-1 and iqd5-2 mutants 
when compared with the WT (Fig. 5F), and the average lobe 
length of iqd5 mutants was reduced (Fig. 5G). Reduced for-
mation and growth of lobes were additionally reflected by 
increased circularity values (Fig. 5D), as well as reduced mar-
gin roughness (Fig. 5E) in PCs of iqd5 mutant plants. Values of 
minimum (Supplementary Fig. S9) and maximum core width 
(Fig. 5H) increased, indicative of reduced growth restriction at 

neck regions. IQD5 thus controls lobe growth and anisotropic 
expansion in cotyledons and true leaves. In agreement with 
functions of IQD5 in true leaves, histochemical GUS activity 
was detectable in pIQD5short::GFP-GUS lines within the entire 
leaf, indicating that IQD5 is expressed throughout PC growth 
(Fig. 5B). Taken together, our data identify IQD5 as a novel 
regulator of leaf epidermis PC shape, which controls growth 
restriction at necks in embryonic and post-embryonic tissues.

Reduced growth restriction correlates with altered 
cellulose deposition

MTs guide CSCs and determine the deposition and direction 
of newly forming cellulose fibrils in the cell wall (Paredez 

Fig. 4. PC morphology during cotyledon development. Representative images of epidermis cells on the adaxial side of cotyledons of WT, iqd5-1, and 
iqd5-2 seedlings at 2, 3, 5, 7, and 10 days after germination (DAG) (A). Cell outlines were visualized by PI; scale bars=50 µm. Histochemical GUS staining 
of pIQD5short::GFP-GUS seedlings at the indicated time points; scale bars=1 mm (B). Analysis of IQD5–GFP subcellular localization in pIQD5short::IQD5-

GFP/iqd5-1 lines at the indicated time points. Scale bars=20 µm (2 and 3 DAG) and 50 µm (5–10 DAG) (C). Quantification of PC shape parameters 
by PaCeQuant. Cell populations were grouped according to their size as tiny, 75–240 µm2, small, 240–1400 µm2, medium 1400–4042 µm2, and large 
≥4042 µm2. Boxplots show feature distributions for circularity (D) and margin roughness (E) in seedlings at 2 DAG. Results are medians; boxes range 
from the first to third quartile. Feature values for circularity and margin roughness in tiny, small, medium, and large-sized cell populations during cotyledon 
development (F). Results show mean values ±SD. Statistically significant differences (P≤0.05) of iqd5 mutants relative to the WT are highlighted in gray. 
For an overview of all shape features and statistical analysis, see Supplementary Fig. S4–S8.

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/jx
b

/a
rtic

le
/7

0
/2

/5
2

9
/5

1
6

5
4

0
8

 b
y
 U

L
B

 S
a

c
h

s
e

n
-A

n
h

a
lt u

s
e

r o
n

 0
9

 J
u

n
e

 2
0

2
1

192



Arabidopsis IQD5 controls pavement cell shape | 537

et al., 2006; Gutierrez et al., 2009; Endler and Persson, 2011). 
During cell expansion, cellulose fibrils are aligned perpen-
dicular to the growth axis and promote anisotropic expan-
sion. Because IQD5–GFP labels MTs, and mutants defective 
in iqd5 display shape defects reminiscent of decreased growth 
restriction at necks, we aimed to investigate whether IQD5 
affects cellulose deposition. Staining with calcofluor white, a 
dye used for visualization of cellulose fibrils (Seagull, 1986; 
Anderson et al., 2010), revealed reduced staining intensities in 
iqd5-1 and iqd5-2 when compared with the WT, which were 
reverted to WT levels in the complementation line (Fig. 6A). 
To assess differences in fluorescence intensities at anticlinal 
cell walls quantitatively, we segmented the contour of indi-
vidual cells after visualization of cell walls by co-staining with 
PI using the segmentation mode implemented in PaCeQuant. 
We measured an ~45% reduction of calcofluor white fluo-
rescence intensities along the cell contour of iqd5 mutant 
cells compared with the WT and the complementation line 

(Fig. 6D). Reduced intensities suggest reduced deposition of 
cellulose in anticlinal cell walls of PCs. Calcofluor white, how-
ever, does not discriminate between β-1,3- and β-1,4-glucan 
chains (Anderson et al., 2010), which are the building blocks 
of callose and cellulose, respectively. To test whether loss of 
IQD5 specifically affects cellulose deposition, we included 
aniline blue staining to visualize callose (Wood, 1984) and 
quantified fluorescence intensities. No differences in cal-
lose deposition were observed in the mutants when com-
pared with the WT or the complementation lines (Fig. 6B, 
E). Similarly, only minor differences (5–10%) in fluorescence 
intensities were observed upon auramine O staining, which 
labels the cuticle (Considine and Knox, 1979) (Fig. 6C, F). 
Taken together, our data suggest that the reduced calcofluor 
white signals are not an artifact of reduced penetration or 
uptake of the dyes due to general defects in cell wall com-
position, and probably reflect reduced cellulose deposition 
caused by the loss of IQD5.

Fig. 5. PC shapes in the epidermis of rosette leaves of the WT and iqd5 mutants. Images are single optical sections of PI-labeled epidermis cells on 
the adaxial side of the third rosette leaf in 3-week-old plants; scale bars=50 µm (A). Whole-mount GUS staining of the third rosette leaf in 3-week-old 
pIQD5short::GFP-GUS plants; scale bar=1 mm (B). Quantification of PC shape features. Violin plots show feature distributions from n=23–110 cells 
from 9–13 images for perimeter (C), circularity (D), margin roughness (E), lobe count (F), average lobe length (G), and maximum core width (H). Circles 
and crosses refer to medians and means; the vertical black lines represent the SD (thick lines) and the 95% confidence intervals (thin lines). The width 
of each violin box represents the local distribution of feature values along the y-axis. For an overview of all shape features and statistical analysis, see 
Supplementary Fig. S9.
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IQD5-dependent recruitment of CaM to cortical 
microtubules

 A hallmark of IQD proteins is the presence of their epony-
mous IQ67 domain, which contains a repetitive arrangement 
of predicted CaM-binding motifs (Abel et al., 2005). In IQD5, 
the IQ67 domain contains three copies each of three differ-
ent classes of CaM-interacting motifs, including the IQ motif 
and motifs of the 1-5-10 and 1-8-14 classes, with presumed 
roles for binding to apo-CaM (IQ) and holo-CaM (1-5-10 
and 1-8-14), respectively (Fig.  7A). Homology modeling of 
IQD5 indicates that the IQ67 domain adopts an α-helical fold 
(Fig. 7B), similar to the apo-CaM-binding domain of myosin 
(Houdusse et  al., 2006), and potentially interacts simultane-
ously with more than one CaM polypeptide. To assess whether 
IQD5 is a functional CaM target, we performed in vitro CaM 
binding assays (Fig. 7C). We expressed GST-tagged IQD5 and 
the GST core as a control in E. coli to investigate interaction 
with immobilized bovine CaM in the presence (Ca2+) and 
absence (EGTA) of calcium. GST–IQD5, but not GST, co-
sedimented with apo-CaM, and CaM binding of GST–IQD5 
was enhanced in the presence of Ca2+. CaM binding thus is 

independent of the GST tag, and the predicted CaM-binding 
motifs (Fig. 7A) are functional in mediating interaction with 
both states of CaM, the Ca2+-free apo-CaM and Ca2+-bound 
holo-CaM (Fig. 7C). To gain insight into subcellular sites of 
IQD5 interaction with CaM, we performed BiFC analyses. 
N-terminal fusions of IQD5 to the N-terminal half of   YFP 
(YN–IQD5) were transiently co-expressed with N-terminal 
fusions of CaM2 to the C-terminal half of  YFP (YC–CaM2) 
in N. benthamiana leaves by infiltration with Agrobacterium har-
boring the respective plasmids. As controls, we included YN and 
YC fusions of   TON1 RECRUITMENT MOTIF1 (TRM1), 
a member of a plant-specific class of MAPs that inter-
acts with TONNEAU1 (TON1) in planta (Drevensek et  al., 
2012). Recovery of YFP fluorescence was visible along the 
MT lattice between YN–IQD5 and YC–CaM2, and between 
YN–TRM1 and YC–TON1, which served as positive control 
(Fig.  7D). No fluorescence complementation was detectable 
in the negative controls, in which YN–IQD5 and YC–CaM2 
were combined with YC–TRM1 and YN–TRM1, respec-
tively, demonstrating specificity of the BiFC assay. Additionally, 
CaM binding at MTs was validated in co-expression assays 
(Fig. 7E). Expression of pCaMV 35S::mCherry-CaM2 resulted 

Fig. 6. Histochemical analysis of cell wall composition in the WT, the two iqd5 mutant alleles iqd5-1 and iqd5-2, and in one transgenic pIQD5::IQD5-

GFP/iqd5-1 line. Confocal images show single optical sections of epidermis pavement cells in cotyledons of 5-day-old seedlings. Cellulose staining 
by calcofluor white (A), aniline blue staining of callose (B), and auramine O staining of the cuticle (C). Scale bars=50 µm. Quantification of relative 
fluorescence intensities along the anticlinal cell wall (D–F). Shown are medians; boxes range from the first to third quartile. Different letters denote a 
statistically significant difference by one-way ANOVA, P<0.01.
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in cytosolic accumulation of mCherry–CaM2, consistent with 
previous reports (Bürstenbinder et al., 2013). Upon co-expres-
sion with YFP–IQD5, mCherry–CaM2 re-localized to corti-
cal MTs (Fig. 7E). Important roles for Ca2+ in regulation of PC 
shape are supported by altered PC morphology in seedlings 

grown under elevated concentrations of Ca2+ (Supplementary 
Fig. S10). High external Ca2+ resulted in increased circularity 
and an increased minimum and maximum core width, indica-
tive of a reduced growth restriction at neck regions. Thus, our 
data point to roles of IQD5 in CaM recruitment to cortical 

Fig. 7. Calmodulin (CaM) binding properties of IQD5. Amino acid sequence of the IQ67 domain of IQD5 (A). IQ motifs implicated in apoCaM (IQ) and 
Ca2+–CaM (1-5-10 and 1-8-14) binding are highlighted in red, blue, and green, respectively. Structural alignment of the IQ67 domain of IQD5 (red) and 
the IQ motif-containing domain of myosin (gray), together with two apo-CaM proteins (first, second, third, and fourth EF hand in green, yellow, salmon, 
and cyan, respectively (aligned and fitted with PyMol) (B). In vitro pull-down of recombinant GST–IQD5 and as control of GST alone expressed in 
E. coli with bovine CaM immobilized on agarose beads in the presence (Ca2+) and absence (EGTA) of calcium; nb, not bound; w, last wash; b, bead-
immobilized fraction (C). In planta interaction of IQD5 with CaM (D, E). BiFC assays between YN–IQD5 and YC–CaM2 in leaves of N. benthamiana (D). 
Combinations of YN–IQD5 with YC–TRM1 and YC–CaM2 with YN–TRM1 served as negative controls. YN–TRM1 and YC–TON1 were included as positive 
control. Single optical sections of YFP fluorescence (left column) and corresponding bright field images (center column). Scale bars=50 µm. Right 
column, close-up Z-stack images of YFP fluorescence; scale bars=10 µm. Subcellular localization of mCherry–CaM2 (top), YFP–IQD5 (middle), and of 
YFP–IQD5 and mCherry–CaM2 (bottom) in transient (co-)expression assays in leaves of N. benthamiana (E). Scale bars=5 µm. Proposed model of IQD5 
function in pavement cell morphogenesis (F). IQD5 localizes to microtubules and is required for growth restriction at neck regions, possibly by affecting 
cellulose deposition along anticlinal cell walls. Interaction of IQD5 with CaM at microtubules points to important roles for Ca2+ signaling during shape 
establishment.
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MTs, and provide the first indications for CaM-dependent 
Ca2+ signaling in shape development of leaf epidermis PCs 
(Fig. 7F).

Discussion

Plant-specific IQD families emerged as one of the larg-
est class of CaM targets with proposed roles in linking Ca2+ 
signaling to the regulation of plant growth and development 
(Bürstenbinder et  al., 2017b). Despite growing evidence for 
important roles as cellular scaffolds at the MT cytoskeleton, 
the precise molecular mechanisms of IQD functions are still 
enigmatic (Bürstenbinder et  al., 2017a). Here, we provide 
experimental evidence that (i) positions IQD5 at cortical MT 
arrays in vegetative tissues (Figs 1, 2) and (ii) identifies IQD5 
as a novel regulator of shape establishment in epidermal PCs 
of cotyledons and leaves (Figs 3–5). We further show that (iii) 
phenotypes in iqd5 mutants correlate with alteration of cell 
wall properties (Fig.  6) and (iv) provide experimental evi-
dence for interaction of IQD5 with CaM2 in vitro and in planta 
(Fig. 7). Thus, our data support roles for IQD5 in regulation of 
MTs and cellulose deposition during PC morphogenesis. We 
further provide the first evidence for roles of Ca2+ signaling in 
the spatial co-ordination of cell expansion during interdigi-
tated growth of PCs.

PCs are the most abundant cell type in the leaf epidermis, 
which are characterized by their jigsaw puzzle-like shape in 
Arabidopsis and in several other plant species (Ivakov and 
Persson, 2013; Jacques et al., 2014). Their morphogenesis relies 
on lobe initiation and anisotropic expansion to generate the 
complex multi-lobed shapes of PCs (Zhang et al., 2011). Our 
study establishes IQD5 as a novel regulator of  PC shape for-
mation as revealed by reduced lobe growth and growth restric-
tion of neck regions in PCs of iqd5 mutants. Lobe initiation, 
however, is only slightly reduced, and cell size as well as overall 
growth are unaffected, which indicates that IQD5 specifically 
functions in control of anisotropic expansion of PCs.  Consistent 
with roles during anisotropic expansion, shape defects in iqd5 
mutants are established during early growth phases (i.e. in cot-
yledons at 2 DAG) at which lobe formation and lobe growth 
are initiated, and persist during later growth phases, in which 
cells expand within the lateral cell borders defined during the 
early growth phase (Zhang et al., 2011). A role for IQD5 in 
regulating anisotropic expansion is further supported by its 
expression pattern identified in pIQD5::GFP-GUS reporter 
lines, which revealed uniform promoter activity within coty-
ledons and leaves. Similarly, growth and shape changes of PCs 
occur throughout the entire leaf, and growth rates display large 
heterogeneity between neighboring cells within expanding 
leaves (Elsner et al., 2012). In contrast, cell cycle activity ceases 
in a longitudinal gradient during leaf maturation (Asl et  al., 
2011). At later growth stages, cell division is restricted to the 
basal part of cotyledons and leaves, as shown by analysis of the 
cell division marker CYCLINB1;1 (CYCB1;1) in transgenic 
pCYC1;1::GUS reporter lines (Ferreira et  al., 1994; Dhondt 
et  al., 2010; Carter et  al., 2017). The combined analysis of 
mutant phenotypes and of spatio-temporal expression domains 

thus establishes IQD5 as a novel factor controlling anisotropic 
growth of leaf epidermis PCs.

The plant MT cytoskeleton plays important roles in regu-
lation of anisotropic expansion during PC morphogenesis (Fu 
et  al., 2002, 2005; Jacques et  al., 2014). Disturbances in MT 
organization, stability, or dynamics by pharmacological agents 
or by mutations in MAPs, such as TRM2/LONGIFOLIA1 
or KATANIN (KTN1), reduce cellular complexity of PC 
morphogenesis (Lee et al., 2006; Lin et al., 2013; Akita et al., 
2015). Potential roles of IQD proteins as MAPs that control 
cell expansion are supported by our previous work, which 
revealed altered MT organization and PC shape in transgenic 
plants ectopically overexpressing IQD11, IQD14, or IQD16 
(Bürstenbinder et al., 2017b). Moreover, altered expression of 
IQD genes is linked to regulation of grain size in rice (Duan 
et al., 2017; Liu et al., 2017; Yang et al., 2018, Preprint) and fruit 
shape in tomato (Xiao et al., 2008), water melon (Citrullus lana-
tus L.) (Dou et al., 2018), and cucumber (Cucumis sativus L.) (Pan 
et al., 2018), suggesting that IQDs are key determinants of cell 
and organ shape (Bürstenbinder et al., 2017a). Here, by analysis 
of GFP fluorescence in transgenic pIQD5::IQD5-GFP/iqd5-1 
lines, we demonstrate subcellular localization of IQD5–GFP 
to cortical MT arrays in leaf epidermal PCs. Functionality of 
the GFP-tagged IQD5 protein is indicated by efficient com-
plementation of PC shape defects in pIQD5::IQD5-GFP/
iqd5-1 lines. MT localization was validated by oryzalin treat-
ment in transgenic Arabidopsis plants and by co-localization 
of  YFP–IQD5 with the MT marker RFP–TUA5 in transi-
ent expression assays in N. benthamiana. Our work thus for the 
first time identifies a direct link between MTs and cell expan-
sion in an iqd knockout mutant. Notably, in contrast to most 
reported mutants with defects in PC shape that have pleio-
tropic effects, including reduced plant growth, organ twisting, 
or swelling of cells (Qian et al., 2009), iqd5 mutants are macro-
scopically indistinguishable from the WT. Specific defects in 
PC morphogenesis thus indicate limited functional redun-
dancy and compensation between the 33 IQD family mem-
bers in Arabidopsis and point to unique roles for IQD5 in PC 
morphogenesis.

Quantification of fluorescence intensities along the outer 
periclinal cell wall suggests accumulation of IQD5–GFP at 
convex sides of indenting neck regions. Our findings are con-
sistent with iqd5 mutant phenotypes and patterns of subcellular 
IQD5 localization reported in an independent study, which 
was published while our work was under revision (Liang et al., 
2018). Similar to IQD5–GFP, preferential accumulation of MT 
bundles at neck regions has been reported in several studies, and 
MT accumulation correlates with reduced growth in the neck 
regions (Fu et  al., 2005; Sampathkumar et  al., 2014; Armour 
et  al., 2015). Cortical MTs serve as tracks for PM-localized 
CSCs and thereby determine the direction of cellulose depo-
sition and consequently cell expansion (Endler and Persson, 
2011). Here, using histochemical staining, we show that iqd5 
mutants accumulate reduced amounts of cellulose in their 
anticlinal walls while callose deposition and cuticle forma-
tion are unaffected. Plants with impaired cellulose deposition, 
for example upon cellulase treatment or in mutants of the 
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cellulose synthase AtCesA1, display strongly reduced lobing of 
PCs (Higaki et  al., 2016; Majda et  al., 2017), similar to phe-
notypes in iqd5 lines. Our data suggest that IQD5 is required 
for efficient cellulose deposition, for example by controlling 
MT dynamics or organization, thereby affecting cellulose syn-
thesis. In agreement with this hypothesis, Liang et  al. (2018) 
reported increased disorder of cortical MTs in iqd5 mutants 
when compared with the WT and provide first evidence 
for functions of IQD5 in stabilization of MTs. Alternatively, 
IQD5 may mediate coupling of cellulose synthase movement 
to MT tracks, possibly by direct interaction with KINESIN 
LIGHT CHAIN-RELATED (KLCR)/CELLULOSE 
MICROTUBULE UNCOUPLING (CMU) family mem-
bers. KLCRs mediate PM tethering of MTs to stabilize corti-
cal MTs against the pushing forces of CSCs (Liu et al., 2016). 
Arabidopsis IQD1, IQD2, and IQD23 interact with KLCR 
family members in yeast, and IQD1 recruits KLCR1 to MTs 
in transient expression assays in N. benthamiana (Mukhtar et al., 
2011; Bürstenbinder et al., 2013). Thus, the prospect arises that 
IQD:KLCR modules collectively co-ordinate MT organiza-
tion and lateral stability of cortical MTs at the PM–MT nexus.

A hallmark of IQD families is their ability to bind CaM 
Ca2+ sensors, which suggests important roles for IQDs in link-
ing CaM-mediated Ca2+ signaling to the regulation of the MT 
cytoskeleton via as yet unknown mechanisms (Abel et al., 2005, 
Hepler, 2016; Bürstenbinder et al., 2017b). The phenotypes in 
iqd5 mutants, together with the IQD5-dependent recruitment 
of CaM to cortical MTs, provide the first experimental evi-
dence for functions of Ca2+ signaling in PC morphogenesis, 
probably via CaM/CMLs. Roles for Ca2+ during PC morpho-
genesis are further supported by altered PC shapes in response 
to elevated exogenous Ca2+ supply. Interestingly, IQD5 inter-
acts in vitro with both states of CaM, the Ca2+-free and Ca2+-
bound apo- and holoCaM, respectively. Similarly, IQD1 and 
IQD20 interact with apoCaM and holoCaM in vitro (Abel 
et al., 2005; Bürstenbinder et al., 2013), which suggests func-
tionality of the distinct CaM-binding motifs within the IQ67 
domain. The repetitive alignment of multiple CaM-binding 
motifs may facilitate interaction with several CaM/CMLs 
simultaneously, in which individual CaM-binding motifs dif-
ferentially contribute to CaM/CML binding. Additionally, 
CaM/CMLs may exert specific effects on IQD5 depending 
on their Ca2+ occupancy, which adds another potential layer of 
Ca2+-dependent regulation. Identification of in planta IQD5-
interacting CaM/CMLs, however, will be challenging because 
large multigene families of 7 and 50 members code for CaMs 
and CMLs in Arabidopsis, respectively, and many CaM/CML 
genes are expressed in cotyledons and leaves (Supplementary 
Fig.  S11). Ca2+ signals are rapidly generated by exogenous 
application of several phytohormones, including auxin and 
cytokinin (Saunders and Hepler, 1981; Vanneste and Friml, 
2013), which are key regulators of PC morphogenesis that 
antagonistically activate Rho-like GTPases from plants (ROPs) 
in lobes and necks, respectively (Fu et al., 2002, 2005, 2009). 
IQD5 and related proteins of the IQD family may constitute 
promising candidates for integrating upstream signals (e.g. from 
phytohormones) into the reorganization of MT arrays, pos-
sibly via phytohormone-induced Ca2+ signals (Bürstenbinder 

et  al., 2017a; this study). Lastly, a recent study by Sugiyama 
et al. (2017) provides first indications for functions of IQD13 
in spatial control of ROP signaling domains required for cell 
wall patterning during vessel development. A similar mechan-
ism might apply to IQD5 during PC shape formation, thereby 
providing a potential link between phytohormone actions, 
Ca2+ signaling, and ROP GTPase activation. Collectively, our 
work identifies IQD5 as a novel regulator of PC shape and a 
potential hub for co-ordination of cellular signaling, cytoskel-
etal reorganization, and cell wall remodeling. Our work thus 
provides a framework for future mechanistic studies of cellu-
lar signaling networks at the cell wall–PM–MT continuum, 
which will aid a more holistic understanding of cellular pro-
cesses guiding shape complexity.

Supplementary data

Supplementary data are available at JXB online.
Fig. S1. IQD5 expression analysis in pIQD5long::GFP-GUS 

reporter lines.
Fig. S2. Macroscopic analysis of growth parameters in the 

WT and iqd5 mutants.
Fig. S3. Quantification and statistical analysis of PC shape 

features in 5-day-old seedlings of the WT and iqd5 mutants.
Fig. S4. Quantification and statistical analysis of PC shape in 

cotyledons at 2 DAG.
Fig. S5. Quantification and statistical analysis of PC shape in 

cotyledons at 3 DAG.
Fig. S6. Quantification and statistical analysis of PC shape in 

cotyledons at 5 DAG.
Fig. S7. Quantification and statistical analysis of PC shape in 

cotyledons at 7 DAG.
Fig. S8. Quantification and statistical analysis of PC shape in 

cotyledons at 10 DAG.
Fig. S9. Quantification and statistical analysis of PC shape 

in true leaves.
Fig. S10. Calcium-dependent changes in PC shape.
Fig. S11. In silico expression analysis of Arabidopsis CaM/

CMLs.

Acknowledgements

Funding was provided by the Deutsche Forschungsgemeinschaft (DFG; 
SFB648 to KB and SA), the German Academic Exchange Service (to 
DM), the Erasmus Mundus program (to PK), and by core funding of the 
Leibniz Association. This paper is a joint effort of the working group 
BIU, a unit of the German Centre for Integrative Biodiversity Research 
(iDiv) Halle-Jena-Leipzig, funded by the DFG (FZT 118).

References

Abel S, Savchenko T, Levy M. 2005. Genome-wide comparative analysis 
of the IQD gene families in Arabidopsis thaliana and Oryza sativa. BMC 
Evolutionary Biology 5, 72.

Akhmanova A, Hammer JA 3rd. 2010. Linking molecular motors to 
membrane cargo. Current Opinion in Cell Biology 22, 479–487.

Akhmanova A, Steinmetz MO. 2008. Tracking the ends: a dynamic 
protein network controls the fate of microtubule tips. Nature Reviews. 
Molecular Cell Biology 9, 309–322.

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/jx
b

/a
rtic

le
/7

0
/2

/5
2

9
/5

1
6

5
4

0
8

 b
y
 U

L
B

 S
a

c
h

s
e

n
-A

n
h

a
lt u

s
e

r o
n

 0
9

 J
u

n
e

 2
0

2
1

197



542 | Mitra et al.

Akita K, Higaki T, Kutsuna N, Hasezawa S. 2015. Quantitative analysis of 
microtubule orientation in interdigitated leaf pavement cells. Plant Signaling 
& Behavior 10, e1024396.

Anderson CT, Carroll A, Akhmetova L, Somerville C. 2010. Real-time 
imaging of cellulose reorientation during cell wall expansion in Arabidopsis 
roots. Plant Physiology 152, 787–796.

Armour WJ, Barton DA, Law AM, Overall RL. 2015. Differential growth in 
periclinal and anticlinal walls during lobe formation in Arabidopsis cotyledon 
pavement cells. The Plant Cell 27, 2484–2500.

Asl LK, Dhondt S, Boudolf V, Beemster GT, Beeckman T, Inzé D, 
Govaerts W, De Veylder L. 2011. Model-based analysis of Arabidopsis 
leaf epidermal cells reveals distinct division and expansion patterns for 
pavement and guard cells. Plant Physiology 156, 2172–2183.

Bayer EM, Sparkes I, Vanneste S, Rosado A. 2017. From shaping 
organelles to signalling platforms: the emerging functions of plant ER–PM 
contact sites. Current Opinion in Plant Biology 40, 89–96.

Belteton SA, Sawchuk MG, Donohoe BS, Scarpella E, Szymanski 
DB. 2018. Reassessing the roles of PIN proteins and anticlinal microtubules 
during pavement cell morphogenesis. Plant Physiology 176, 432–449.

Bringmann M, Li E, Sampathkumar A, Kocabek T, Hauser MT, 
Persson S. 2012. POM-POM2/cellulose synthase interacting1 is essential 
for the functional association of cellulose synthase and microtubules in 
Arabidopsis. The Plant Cell 24, 163–177.

Bürstenbinder K, Mitra D, Quegwer J. 2017a. Functions of IQD proteins 
as hubs in cellular calcium and auxin signaling: a toolbox for shape formation 
and tissue-specification in plants? Plant Signaling & Behavior 12, e1331198.

Bürstenbinder K, Möller B, Plötner R, Stamm G, Hause G, Mitra D, 
Abel S. 2017b. The IQD family of calmodulin-binding proteins links calcium 
signaling to microtubules, membrane subdomains, and the nucleus. Plant 
Physiology 173, 1692–1708.

Bürstenbinder K, Rzewuski G, Wirtz M, Hell R, Sauter M. 2007. The 
role of methionine recycling for ethylene synthesis in Arabidopsis. The Plant 
Journal 49, 238–249.

Bürstenbinder K, Savchenko T, Müller J, Adamson AW, Stamm G, Kwong 
R, Zipp BJ, Dinesh DC, Abel S. 2013. Arabidopsis calmodulin-binding protein 
IQ67-domain 1 localizes to microtubules and interacts with kinesin light chain-
related protein-1. Journal of Biological Chemistry 288, 1871–1882.

Carter R, Sánchez-Corrales YE, Hartley M, Grieneisen VA, Marée 
AFM. 2017. Pavement cells and the topology puzzle. Development 144, 
4386–4397.

Chen X, Grandont L, Li H, Hauschild R, Paque S, Abuzeineh A, 
Rakusová H, Benkova E, Perrot-Rechenmann C, Friml J. 2014. 
Inhibition of cell expansion by rapid ABP1-mediated auxin effect on 
microtubules. Nature 516, 90–93.

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for 
Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant 
Journal 16, 735–743.

Considine JA, Knox RB. 1979. Development and histochemistry of the 
cells, cell walls, and cuticle of the dermal system of fruit of the grape, Vitis 
vinifera L. Protoplasma 99, 347–365.

DeLano WL. 2009. PyMOL molecular viewer: updates and refinements. 
Abstracts of Papers of the American Chemical Society 238.

Dhondt S, Coppens F, De Winter F, Swarup K, Merks RM, Inzé D, 
Bennett MJ, Beemster GT. 2010. SHORT-ROOT and SCARECROW 
regulate leaf growth in Arabidopsis by stimulating S-phase progression of 
the cell cycle. Plant Physiology 154, 1183–1195.

Dou J, Zhao S, Lu X, He N, Zhang L, Ali A, Kuang H, Liu W. 2018. 
Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in 
watermelon (Citrullus lanatus L.). Theoretical and Applied Genetics 131, 
947–958.

Drevensek S, Goussot M, Duroc Y, et  al. 2012. The Arabidopsis 
TRM1–TON1 interaction reveals a recruitment network common to plant 
cortical microtubule arrays and eukaryotic centrosomes. The Plant Cell 24, 
178–191.

Duan P, Xu J, Zeng D, et al. 2017. Natural variation in the promoter of 
GSE5 contributes to grain size diversity in rice. Molecular Plant 10, 685–694.

Elsner J, Michalski M, Kwiatkowska D. 2012. Spatiotemporal variation 
of leaf epidermal cell growth: a quantitative analysis of Arabidopsis thaliana 
wild-type and triple cyclinD3 mutant plants. Annals of Botany 109, 897–910.

Endler A, Persson S. 2011. Cellulose synthases and synthesis in 
Arabidopsis. Molecular Plant 4, 199–211.

Feng L, Chen Z, Ma H, Chen X, Li Y, Wang Y, Xiang Y. 2014. The 
IQD gene family in soybean: structure, phylogeny, evolution and expression. 
PLoS One 9, e110896.

Ferreira PC, Hemerly AS, Engler JD, van Montagu M, Engler G, Inzé 
D. 1994. Developmental expression of the arabidopsis cyclin gene cyc1At. 
The Plant Cell 6, 1763–1774.

Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z. 2005. Arabidopsis 
interdigitating cell growth requires two antagonistic pathways with opposing 
action on cell morphogenesis. Cell 120, 687–700.

Fu Y, Li H, Yang Z. 2002. The ROP2 GTPase controls the formation of 
cortical fine F-actin and the early phase of directional cell expansion during 
Arabidopsis organogenesis. The Plant Cell 14, 777–794.

Fu Y, Xu T, Zhu L, Wen M, Yang Z. 2009. A ROP GTPase signaling 
pathway controls cortical microtubule ordering and cell expansion in 
Arabidopsis. Current Biology 19, 1827–1832.

Gantner J, Ordon J, Ilse T, Kretschmer C, Gruetzner R, Löfke C, 
Dagdas Y, Bürstenbinder K, Marillonnet S, Stuttmann J. 2018. 
Peripheral infrastructure vectors and an extended set of plant parts for the 
Modular Cloning system. PLoS One 13, e0197185.

Gehl C, Waadt R, Kudla J, Mendel RR, Hänsch R. 2009. New GATEWAY 
vectors for high throughput analyses of protein–protein interactions by 
bimolecular fluorescence complementation. Molecular Plant 2, 1051–1058.

Guo X, Qin Q, Yan J, Niu Y, Huang B, Guan L, Li Y, Ren D, Li J, Hou 
S. 2015. TYPE-ONE PROTEIN PHOSPHATASE4 regulates pavement 
cell interdigitation by modulating PIN-FORMED1 polarity and trafficking in 
Arabidopsis. Plant Physiology 167, 1058–1075.

Gutierrez R, Lindeboom JJ, Paredez AR, Emons AM, Ehrhardt DW. 
2009. Arabidopsis cortical microtubules position cellulose synthase delivery 
to the plasma membrane and interact with cellulose synthase trafficking 
compartments. Nature Cell Biology 11, 797–806.

Hardham AR, Takemoto D, White RG. 2008. Rapid and dynamic 
subcellular reorganization following mechanical stimulation of Arabidopsis 
epidermal cells mimics responses to fungal and oomycete attack. BMC 
Plant Biology 8, 63.

Hepler PK. 2005. Calcium: a central regulator of plant growth and 
development. The Plant Cell 17, 2142–2155.

Hepler PK. 2016. The cytoskeleton and its regulation by calcium and 
protons. Plant Physiology 170, 3–22.

Higaki T, Kutsuna N, Akita K, Takigawa-Imamura H, Yoshimura K, 
Miura T. 2016. A theoretical model of jigsaw-puzzle pattern formation by 
plant leaf epidermal cells. PLoS Computational Biology 12, e1004833.

Horio T, Murata T. 2014. The role of dynamic instability in microtubule 
organization. Frontiers in Plant Science 5, 511.

Houdusse A, Gaucher JF, Krementsova E, Mui S, Trybus KM, Cohen 
C. 2006. Crystal structure of apo-calmodulin bound to the first two IQ 
motifs of myosin V reveals essential recognition features. Proceedings of 
the National Academy of Sciences, USA 103, 19326–19331.

Huang Z, Van Houten J, Gonzalez G, Xiao H, van der Knaap E. 2013. 
Genome-wide identification, phylogeny and expression analysis of SUN, 
OFP and YABBY gene family in tomato. Molecular Genetics and Genomics 
288, 111–129.

Hussey PJ, Ketelaar T, Deeks MJ. 2006. Control of the actin cytoskeleton 
in plant cell growth. Annual Review of Plant Biology 57, 109–125.

Ivakov A, Persson S. 2013. Plant cell shape: modulators and 
measurements. Frontiers in Plant Science 4, 439.

Jacques E, Verbelen JP, Vissenberg K. 2014. Review on shape formation 
in epidermal pavement cells of the Arabidopsis leaf. Functional Plant Biology 
41, 914–921.

Karimi M, Inzé D, Depicker A. 2002. GATEWAY vectors for Agrobacterium-
mediated plant transformation. Trends in Plant Science 7, 193–195.

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The 
Phyre2 web portal for protein modeling, prediction and analysis. Nature 
Protocols 10, 845–858.

Kerstetter RA, Poethig RS. 1998. The specification of leaf identity during 
shoot development. Annual Review of Cell and Developmental Biology 14, 
373–398.

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/jx
b

/a
rtic

le
/7

0
/2

/5
2

9
/5

1
6

5
4

0
8

 b
y
 U

L
B

 S
a

c
h

s
e

n
-A

n
h

a
lt u

s
e

r o
n

 0
9

 J
u

n
e

 2
0

2
1

198



Arabidopsis IQD5 controls pavement cell shape | 543

Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske 
M, Romeis T, Schumacher K. 2018. Advances and current challenges in 
calcium signaling. New Phytologist 218, 414–431.

Lee YK, Kim GT, Kim IJ, Park J, Kwak SS, Choi G, Chung WI. 2006. 
LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate 
longitudinal cell elongation in Arabidopsis. Development 133, 4305–4314.

Levy M, Wang Q, Kaspi R, Parrella MP, Abel S. 2005. Arabidopsis 
IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate 
accumulation and plant defense. The Plant Journal 43, 79–96.

Liang H, Zhang Y, Martinez P, Rasmussen CG, Xu T, Yang Z. 2018. 
The microtubule-associated protein IQ67 DOMAIN5 modulates microtubule 
dynamics and pavement cell shape. Plant Physiology 177, 1555–1568.

Lin D, Cao L, Zhou Z, Zhu L, Ehrhardt D, Yang Z, Fu Y. 2013. Rho 
GTPase signaling activates microtubule severing to promote microtubule 
ordering in Arabidopsis. Current Biology 23, 290–297.

Lincoln C, Britton JH, Estelle M. 1990. Growth and development of the 
axr1 mutants of Arabidopsis. The Plant Cell 2, 1071–1080.

Liu J, Chen J, Zheng X, et al. 2017. GW5 acts in the brassinosteroid 
signalling pathway to regulate grain width and weight in rice. Nature Plants 
3, 17043.

Liu Z, Persson S, Zhang Y. 2015. The connection of cytoskeletal network 
with plasma membrane and the cell wall. Journal of Integrative Plant Biology 
57, 330–340.

Liu Z, Schneider R, Kesten C, Zhang Y, Somssich M, Zhang Y, 
Fernie AR, Persson S. 2016. Cellulose–microtubule uncoupling proteins 
prevent lateral displacement of microtubules during cellulose synthesis in 
Arabidopsis. Developmental Cell 38, 305–315.

Lloyd C, Hussey P. 2001. Microtubule-associated proteins in plants—why 
we need a MAP. Nature Reviews. Molecular Cell Biology 2, 40–47.

Locascio A, Blázquez MA, Alabadí D. 2013. Dynamic regulation of 
cortical microtubule organization through prefoldin–DELLA interaction. 
Current Biology 23, 804–809.

Lu Q, Li J, Ye F, Zhang M. 2015. Structure of myosin-1c tail bound 
to calmodulin provides insights into calcium-mediated conformational 
coupling. Nature Structural & Molecular Biology 22, 81–88.

Majda M, Grones P, Sintorn IM, et al. 2017. Mechanochemical polarization 
of contiguous cell walls shapes plant pavement cells. Developmental Cell 
43, 290–304.e4.

Marc J, Granger CL, Brincat J, Fisher DD, Kao Th, McCubbin AG, Cyr 
RJ. 1998. A GFP–MAP4 reporter gene for visualizing cortical microtubule 
rearrangements in living epidermal cells. The Plant Cell 10, 1927–1940.

Möller B, Glaß M, Misiak D, Posch S. 2016. MiToBo—a toolbox for 
image processing and analysis. Journal of Open Research Software 4, e17.

Möller B, Poeschl Y, Plötner R, Bürstenbinder K. 2017. PaCeQuant: 
a tool for high-throughput quantification of pavement cell shape 
characteristics. Plant Physiology 175, 998–1017.

Morejohn LC, Bureau TE, Molè-Bajer J, Bajer AS, Fosket DE. 1987. 
Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits 
microtubule polymerization in vitro. Planta 172, 252–264.

Mukhtar MS, Carvunis AR, Dreze M, et al. 2011. Independently evolved 
virulence effectors converge onto hubs in a plant immune system network. 
Science 333, 596–601.

Oda Y. 2018. Emerging roles of cortical microtubule–membrane interactions. 
Journal of Plant Research 131, 5–14.

Pan YP, Liang XJ, Gao ML, Liu HQ, Meng HW, Weng YQ, Cheng 
ZH. 2018. Round fruit shape in WI7239 cucumber is controlled by two 
interacting quantitative trait loci with one putatively encoding a tomato SUN 
homolog. Theoretical and Applied Genetics 130, 573–586.

Paredez AR, Somerville CR, Ehrhardt DW. 2006. Visualization of 
cellulose synthase demonstrates functional association with microtubules. 
Science 312, 1491–1495.

Poethig RS. 1997. Leaf morphogenesis in flowering plants. The Plant Cell 
9, 1077–1087.

Qian P, Hou S, Guo G. 2009. Molecular mechanisms controlling pavement 
cell shape in Arabidopsis leaves. Plant Cell Reports 28, 1147–1157.

Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A, 
Boudaoud A, Hamant O, Jönsson H, Meyerowitz EM. 2014. Subcellular 
and supracellular mechanical stress prescribes cytoskeleton behavior in 
Arabidopsis cotyledon pavement cells. eLife 3, e01967.

Saunders MJ, Hepler PK. 1981. Localization of membrane-associated 
calcium following cytokinin treatment in Funaria using chlorotetracycline. 
Planta 152, 272–281.

Schindelin J, Arganda-Carreras I, Frise E, et al. 2012. Fiji: an open-
source platform for biological-image analysis. Nature Methods 9, 676–682.

Schneider R, Persson S. 2015. Connecting two arrays: the emerging role 
of actin–microtubule cross-linking motor proteins. Frontiers in Plant Science 
6, 415.

Seagull RW. 1986. Changes in microtubule organization and wall microfibril 
orientation during in vitro cotton fiber development—an immunofluorescent 
study. Canadian Journal of Botany 64, 1373–1381.

Sedbrook JC. 2004. MAPs in plant cells: delineating microtubule 
growth dynamics and organization. Current Opinion in Plant Biology 7, 
632–640.

Sheahan MB, Staiger CJ, Rose RJ, McCurdy DW. 2004. A green 
fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin 
highlights new features of a dynamic actin cytoskeleton in live plant cells. 
Plant Physiology 136, 3968–3978.

Shibaoka H. 1994. Plant hormone-induced changes in the orientation of 
cortical microtubules—alterations in the cross-linking between microtubules 
and the plasma-membrane. Annual Review of Plant Physiology and Plant 
Molecular Biology 45, 527–544.

Sugiyama Y, Wakazaki M, Toyooka K, Fukuda H, Oda Y. 2017. A novel 
plasma membrane-anchored protein regulates xylem cell-wall deposition 
through microtubule-dependent lateral inhibition of Rho GTPase domains. 
Current Biology 27, 2522–2528.

Takatani S, Hirayama T, Hashimoto T, Takahashi T, Motose H. 2015. 
Abscisic acid induces ectopic outgrowth in epidermal cells through cortical 
microtubule reorganization in Arabidopsis thaliana. Scientific Reports 5, 
11364.

Tsukaya H. 1995. Developmental genetics of leaf morphogenesis in 
dicotyledonous plants. Journal of Plant Research 108, 407–416.

Tsukaya H. 2002. Leaf development. The Arabidopsis Book 1, e0072.

Tsukaya H, Tsuge T, Uchimiya H. 1994. The cotyledon—a superior 
system for studies of leaf development. Planta 195, 309–312.

Vanneste S, Friml J. 2013. Calcium: the missing link in auxin action. Plants 
2, 650–675.

Wang YS, Motes CM, Mohamalawari DR, Blancaflor EB. 2004. Green 
fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal 
imaging of F-actin dynamics in roots. Cell Motility and the Cytoskeleton 59, 
79–93.

Wasteneys GO. 2002. Microtubule organization in the green kingdom: 
chaos or self-order? Journal of Cell Science 115, 1345–1354.

Wasteneys GO, Yang Z. 2004a. The cytoskeleton becomes 
multidisciplinary. Plant Physiology 136, 3853–3854.

Wasteneys GO, Yang Z. 2004b. New views on the plant cytoskeleton. 
Plant Physiology 136, 3884–3891.

Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. 2007. 
An ‘Electronic Fluorescent Pictograph’ browser for exploring and analyzing 
large-scale biological data sets. PLoS One 2, e718.

Wood P. 1984. Specific interaction of aniline blue with (1,3)-beta-D-glucan. 
Carbohydrate Polymers 4, 49–72.

Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E. 2008. 
A retrotransposon-mediated gene duplication underlies morphological 
variation of tomato fruit. Science 319, 1527–1530.

Yang BJ, Wendrich JR, De B, Weijers D, Xue HW. 2018. OsIQD14 
regulates grain shape through modulating the microtubule cytoskeleton. 
bioRxiv doi: 10.1101/275552. [Preprint.]

Zhang C, Halsey LE, Szymanski DB. 2011. The development and 
geometry of shape change in Arabidopsis thaliana cotyledon pavement 
cells. BMC Plant Biology 11, 27.

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/jx
b

/a
rtic

le
/7

0
/2

/5
2

9
/5

1
6

5
4

0
8

 b
y
 U

L
B

 S
a

c
h

s
e

n
-A

n
h

a
lt u

s
e

r o
n

 0
9

 J
u

n
e

 2
0

2
1

199



Note on the following publication:

© 2014, IEEE. Reprinted, with permission, from Birgit Möller, Elisabeth Piltz and Nadine
Bley, Quantification of Actin Structures Using Unsupervised Pattern Analysis Techniques, 22nd
International Conference on Pattern Recognition, 2014, pp. 3251-3256, https://doi.org/10.

1109/ICPR.2014.560.

200

https://doi.org/10.1109/ICPR.2014.560
https://doi.org/10.1109/ICPR.2014.560


Quantification of Actin Structures using

Unsupervised Pattern Analysis Techniques
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Abstract—The analysis of F-actin organization in cells is a
key topic in many fields of biomedical research. While standard
protocols for imaging immunostained actin are well established,
assessment of the resulting microscopy images is most of the time
still performed manually and with a high degree of subjectivity.
In this paper, we present a new approach for the analysis of
actin structures in microscopy images and the quantification of
differences and similarities in actin organization between cells.
Compared to existing methods, our approach does not require any
previous knowledge about the cells or structures to be analyzed.
It works in an unsupervised fashion, combining statistical texture
measures and clustering techniques. By this, our method yields
large flexibility and allows for application in a wide range of ex-
perimental scenarios, and also to heterogeneous cell populations.
Experimental evaluation on sample data proves that our method
yields meaningful results for biomedical investigations.

Keywords—actin structures; quantification; texture; clustering

I. INTRODUCTION

In the field of cell biology the actin cytoskeleton is a central
issue underlying intensive investigations. On the one hand it is
an essential determinant of cell division, and on the other hand
it is crucial for cell migration during development and disease.
Actin occurs in a monomeric (G-actin) and filamentous (F-
actin; also called microfilaments) form in the cell. Thereby,
the continuous assembly and disassembly of F-actin filaments
(actin dynamics) is the driving force for cell migration. Since a
large and growing number of factors can modulate the physical
structure of the F-actin system, and since its organization is
directly linked to its cellular functions, the analysis of actin
filaments and structures within cells under varying conditions
and treatments is a key topic in many fields of biomedical
research, e.g., tumor cell research ([1], [2]).

The analysis of F-actin organization is usually performed
by immunostaining which allows to visualize microfilament
structures by microscopy. In Fig. 1 two sample clips of
such images are shown which demonstrate how actin filament
organization may vary in cells from the same origin, but with
different treatments. Today standard protocols are established
to acquire high-quality images of actin and related sub-cellular
structures. Nevertheless, the analysis of the microscopy images
is most of the time still done manually. This naturally limits
the number of images that can be evaluated in experiments,
and of course adds a high degree of subjectivity to the results.

One of the main reasons for the lack of automatic methods
is the great variety in F-actin structures. Besides environmental

Fig. 1: Image clips illustrating possible variation in actin
structure appearance: left, a cell of the control population with
high regularity among its long fibers is shown, on the right,
one of the IGF2BP1 knock-down population (cf. Sec. IV) with
significantly less parallel structures and shorter and unordered
actin filaments, but with increased actin along the cell borders.

and cellular factors having an impact on actin characteristics,
also cell types by themselves already exhibit a notable variance
within microfilament structures. This renders it quite difficult
to establish generally applicable techniques for characterizing
and quantifying these structures. This is also fortified by the
fact, that although by now several software tools for automatic
analysis have been released, most of them rely on specific
assumptions about the cells to be analyzed like, e.g., contrast
or length of actin filaments [3] or their distribution within cells
[4], limiting the general applicability of those tools.

In this paper, we present an unsupervised approach for
characterizing and quantifying actin structures in microscopy
images. Compared to other techniques we do not require any
previous knowledge about the actin structures to be analyzed,
i.e. neither about specific properties of the cell line nor about
fiber characteristics. Moreover, we do not even assume that
distinct fibers are present. This allows our method to be applied
in a wide range of different scenarios, and also to handle
heterogeneous cell populations, resulting in a large flexibility
most of the existing approaches cannot provide.

Our method relies on the analysis of textural features and
their distributions within cells. This analysis is performed com-
pletely unsupervised applying co-occurrence matrices com-
bined with statistical pattern analysis techniques, i.e. clustering
approaches and principal component analysis. As result the
approach yields an objective ranking of cells according to
similarities and differences within their actin structures. By this
it fosters biomedical investigations with regard to the cellular
functions of actin under varying experimental conditions.
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We have implemented our method in Java based on the
open source toolkit MiToBo1, which is compatible with Im-
ageJ2. The operator is included in MiToBo 1.4, which is
licensed under GPL and publicly available from its website.

The remainder of the paper is organized as follows. After
reviewing related work in Section II, we will outline all details
of our approach in Section III. Section IV presents results
while Section V summarizes key aspects of the paper and gives
an outlook on ongoing and future work.

II. RELATED WORK

For the analysis of actin fiber structures in microscopy
images different approaches have been proposed. Many of
them rely on the explicit segmentation of actin filaments. In
[5] a method for quantification of F-actin-containing ruffles
is presented, combining thresholding and line detection to
segment relevant structures. Subsequently, from these struc-
tures features are extracted for classification. Higaki et al. [6]
propose an approach to characterize cytoskeletal structures
also applying thresholding techniques and skeletonization,
combined with subsequent feature extraction and clustering.
Both approaches strongly rely on target structures being easily
separable from the background of an image. The tool Fi-
laQuant [3] for actin filament quantification builds on explicit
fiber segmentation, however, aims to achieve larger robustness
by including advanced preprocessing steps to improve image
quality. Furthermore, the tool implements a more sophisticated
segmentation algorithm adopting a coarse-to-fine strategy. This
algorithm provides larger flexibility, but the results are very
sensitive to a proper adjustment of several configuration pa-
rameters that need to be set in accordance to individual image
and fiber characteristics.

To avoid an explicit segmentation of fiber structures in [7],
[8] and [9] the use of Fourier transformations followed by
an analysis of frequency orientations is suggested. This shifts
the focus from local to more global structural patterns, hence,
overcomes some of the drawbacks of explicit segmentation.
But, the analysis of frequency orientations also works best
if prominent fiber structures are present. The applicability
of these methods to cell images lacking clear microfilament
structures is limited.

The work of Cui et al. [4] also aims at large flexibility
in actin fiber quantification. They propose a method based
on a sequence of analysis steps. Initially cell areas are seg-
mented into background, cytoplasm and white bright actin
regions applying fuzzy clustering using intensity features.
Subsequently, cytoplasm regions are further subdivided into
stress fiber regions and substrate basically applying intensity
thresholding. Finally several features are calculated to quantify
differences between cells, e.g., texture measures characterizing
the stress fiber regions in the cytoplasm, or the ratio of
border bright actin to inner bright actin. Although this method
does not explicitly require the adjustment of parameters, the
algorithm still implicitly builds on a model of how actin is
distributed within cells and its overall appearance, which may
be problematic in some scenarios.

1MiToBo - a Microscope Image analysis ToolBox,
website: http://www.informatik.uni-halle.de/mitobo/

2ImageJ, website: http://rsb.info.nih.gov/ij/

III. APPROACH

The overall goal of our work is to characterize and quantify
relative differences in actin organization between individual
cells and populations which have undergone different treat-
ments. To allow for general applicability, this quantification is
to be done without requiring any previous knowledge about
actin structures and their individual characteristics.

To achieve this goal we propose a method that mainly relies
on unsupervised pattern analysis techniques. The basic idea is
given by the observation that in microscopy images of cells
with immunostained actin structures usually different kinds of
structural patterns can be identified within the cells. E.g., in
some parts the cells may appear more or less homogeneous,
elsewhere long and ordered fibers may dominate, or parts of
the cells may appear grained (cf. Fig. 1 and Fig. 4). Cells of the
same population, which have undergone the same treatment,
usually exhibit similar actin structures except for natural varia-
tion. Accordingly, they usually share similar structural patterns
in microscopy images. Contrary, if cells have undergone a
treatment inducing changes in actin organization, also the
patterns should diverge from those of control cells.

Our approach automatically identifies different kinds of
structural patterns in the cells of given images, and uses the
distributions of these patterns to discover notable similarities
and differences in structural appearance between the cells.
Since it is not possible to model all different kinds of patterns
probably appearing in any experiment or any cell line in
advance, the patterns for a given set of cells are extracted
online in an unsupervised fashion.

The proposed approach comprises three stages of analysis,
which are illustrated in Fig. 2. The input data is given by a set
of images with immunostained actin structures. In addition,
we currently assume that for each image a segmentation of
individual cell regions, i.e. cell masks, is also provided from
external. We plan to overcome this requirement in the near
future by including an additional stage for automatic cell
segmentation into the processing pipeline, which will result
in a completely automatic workflow.

In the first stage of our approach (Subsec. III-A) textural
features are extracted to characterize local structure in the
images. This results in a set of feature vectors for each image
and each cell, respectively. In the second stage (Subsec. III-B)
these vectors for all given cells and all images are jointly
clustered to identify groups of similar feature vectors, which
refer to different kinds of structural patterns shared among
different cells. Given these groups, for each cell a distribution
of the structural patterns appearing in the cell is calculated.
Finally in the third stage (Subsec. III-C) these distributions are
analyzed applying PCA and hierarchical clustering to identify
structural similarities and differences among the cells. Below
we will outline the different stages of our approach in detail.

A. Stage I: Textural feature calculation

Initially features to characterize local structural patterns
occurring within given cells are extracted. We are using Haral-
ick features calculated from gray-level co-occurrence matrices
to characterize local structure [10]. The basic idea of these
matrices is to quantify image structure by generating statistics
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Hierarchical Clustering

3D Data Vectors

Fig. 2: Overview of our approach with three analysis stages.

over the existence of specific pairs of pixels in a local region
of interest. In detail, for an image I(~p) with IN quantized gray
values and for a given region of interest R in the domain of I ,
for each pair of gray values (i, j) the fraction of all pixel pairs
[~p1, ~p2] inside R is determined, for which ~p1 has a gray value
of i, ~p2 has a gray value of j, the distance dist(~p1, ~p2) between
the two pixels equals δ, and ~p2 lies in the angular direction α
of ~p1, i.e. dir(~p1, ~p2) = α. Hence, formally the co-occurrence
matrix Pδ,α is a matrix of dimension IN × IN , parametrized
with distance δ and direction α, and calculated over a given
region of interest R. Each entry Pδ,α(i, j) for image intensities
i, j ∈ [0, 1, . . . , IN − 1] is calculated as follows:

Pδ,α(i, j) :=
pδ,α(i, j)

∑

i,j pδ,α(i, j)
with (1)

pδ,α(i, j) = card{ [~p1, ~p2] | dist(~p1, ~p2) = δ ∧

dir(~p1, ~p2) = α ∧ I(~p1) = i ∧ I(~p2) = j },

i.e. Pδ,α(i, j) yields the fraction of pixel pairs in R with
the specified properties. Given the statistical data in two
matrices calculated over different regions of interest, structural
similarities between the two regions can be identified by
matrix comparison. To simplify this comparison usually the
information contained in each matrix is further condensed
to several numerical values, i.e. texture measures, which are
easier to handle than complete matrices [10].

In our approach each image is partitioned into a set of
non-overlapping quadratic tiles with a certain tile size τ . For
each tile and a given pixel distance δ, four co-occurrence
matrices are calculated. The four matrices refer to the neigh-
borhood relations between pixels in four different angular
directions α ∈ {0◦, 45◦, 90◦, 135◦}. Then for each matrix 10
customary texture features are calculated, resulting in a 10-
dimensional feature vector for each tile. The features currently
used are contrast, local homogeneity, entropy, correlation, auto-
correlation, dissimilarity, cluster shade, cluster prominence and

maximum probability as defined in [11]. Note that overlapping
tiles would yield an increased feature resolution. However,
as experiments did not show a clear advantage of a higher
resolution for structure quantification, for now the less time-
consuming option with non-overlapping tiles is preferred.

Finally, for each tile the four 10-dimensional feature vec-
tors, corresponding to the matrices of the four directions, are
concatenated to form a 40-D feature vector. We explicitly do
not average the features for the different directions as some-
times suggested. Since in this application structure orientation
is obviously essential, we aim to keep a significant amount of
anisotropic information in our feature vectors.

B. Stage II: Feature vector clustering

From Stage I for each tile of an image a feature vector
results. Several of these tiles are linked to background regions,
while others refer to areas where cells are present. As in sub-
sequent stages only tiles linked to cell areas are of interest, at
the beginning of Stage II feature vectors linked to background
are excluded based on data from the provided cell masks.

The remaining vectors for all images and cells are
clustered to discover similar structural patterns among the
cells of all images. This is done by k-means clustering where
K clusters are to be found. Subsequently each feature vector
is labeled with the ID k ∈ [1,K] of the cluster it is assigned
to. From this for each cell a distribution of cluster IDs is
calculated quantifying the fraction of its feature vectors
belonging to each of the K clusters, i.e. showing a certain
structural pattern. The cluster distribution for a cell C is given
by

pC(i) =
1

TC

TC
∑

j=1

δi,tj with δi,j =

{

1, if i = j

0, otherwise
(2)

for i = 1, . . . ,K, and with TC being the total number of tiles
in the cell, tj being the cluster index of the j-th tile, and δi,j
being the Kronecker delta. At the end of Stage II each cell is
characterized by such a discrete cluster distribution (cf. Fig. 3).

C. Stage III: Analysis of cluster distributions

The approach presented here builds on the assumption that
cells of a group, e.g., of a control or knock-down population,
share similar structural patterns which are different from the
ones to be found in other groups. After Stage II for each
cell the occurrence of different kinds of patterns in the cell
is quantified in terms of a discrete distribution. Consequently,
in the last stage this set of distributions is now analyzed to
identify subsets of cells sharing similar structural patterns.

Initially we apply a principal component analysis (PCA) to
the K-dimensional distribution vectors of all cells in all images
to ease exploration of the data in a lower dimensional subspace
while at the same time preserving maximal information content
in terms of data variance. To this end the eigenvalues and
-vectors of the covariance matrix of the distribution vectors are
calculated. The eigenvalues λi, i = 1, . . . ,K, of the principal
components are directly proportional to the amount of variance
within the components. We restrict subsequent analysis steps to
the first D ≤ K principal components with largest eigenvalues
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covering more than 95% of data variance, i.e.
∑D

i=1 λi
∑K

i=1 λi

≥ 0.95 with λ1 ≥ λ2 ≥ . . . ≥ λK . (3)

The distribution vectors are projected into this D-dimensional
subspace, and the resulting set of vectors is then clustered.
Here hierarchical clustering, i.e. an unweighted average link-
age scheme based on Euclidean distances, is used. Compared
to k-means this allows for a more detailed investigation of
pairwise vector relations, i.e. the resulting cluster tree is well-
suited to carve out differences and similarities in structural
appearance and actin organization among cells (cf. Fig. 6).

IV. EVALUATION AND DISCUSSION

The experimental evaluation of our method was performed
with human melanoma-derived HT144 cells. Using RNAi the
RNA-binding protein IGF2BP1 was depleted in some of these
cells (denoted by knock-down) in comparison to a control
population treated with a control siRNA (denoted by con-
trol). IGF2BP1 promotes mesenchymal cell properties and cell
migration by controlling cellular signaling, the expression of
transcription factors and F-actin organization in cells ([1], [2]).
The F-actin cytoskeleton was labeled by Phalloidin staining
and imaged on a Leica SP5X confocal microscope. 10 images
of knock-down cells and 10 images of control cells were
acquired, each with a size of 2048 × 2048 pixels. The cell
areas in all images were labeled manually3. In total all images
of the control population contained 35 labeled cells, and the
images of the knock-down population 57, resulting in a total
number of 92 cells available for the experimental evaluation.

Parameters

The co-occurrence matrices used in Stage I of our approach
rely on several parameters (cf. Sec. III-A). Testing various
combinations of tile sizes τ ∈ {16, 32, 64} and pixel distances
δ ∈ {1, 2, 4, 8} on the data set, it turned out that tiles of size
32 × 32 yield the best compromise to calculate sufficiently
local texture features while still having enough pixel pairs
available in each tile for meaningful statistics. Initially matrices
and feature vectors were extracted for all 4 distances. Given
the image size of 2048 × 2048 pixels and a tile size of
τ = 32, for each image 4096 tiles were analyzed. Considering
all 4 distances, this results in 4 sets of feature vectors per
image each containing 4096 vectors of dimension 40. After
eliminating vectors linked to background for each image and
distance, on average 1100 vectors with a minimum of 400 and
a maximum of 1850 remained to be considered subsequently.

The clustering in Stage II was performed independently for
each of the four distances, in each run considering all 92 cells
of all images. We used the k-means clustering algorithm of
the Weka library with Euclidean distance metric and a-priori
data normalization [12]. For the data set at hand a number
of K = 6 clusters turned out to be reasonable to properly
characterize structural patterns. The resulting sets of cluster
distribution vectors were also used to restrict the final analysis
to a single distance δ. Using the sum of their eigenvalues
for the different sets as a measure of information content

3Some cells were excluded from the analysis, e.g., because their boundaries
could not distinctly be identified or they were projected above image borders.

Fig. 3: Top: cell-wise cluster distributions for images of
control (left) and knock-down (right) cells. Each color refers
to a different cluster ID, each bar to a single cell. Middle:
corresponding label images where each pixel represents a tile
and its color refers to the cluster ID of its feature vector.
Bottom: input images with cell labels shown as white numbers.

in terms of data variance, distance δ = 4 appeared to be
favorable, i.e. yielded maximal variance. Hence, in Stage III
just the vector set extracted from the co-occurrence matrices
with δ = 4 was explored in detail. The hierarchical clustering
in that stage was performed using MultiDendrograms [13].

Indeed the settings of some parameters are depending on
the concrete data set at hand, e.g., the tile size τ is directly
linked to image resolution. Nevertheless the settings used here
are reasonable defaults also for other data sets, and the MiToBo
operator supports individual adjustment of all parameters if this
should be necessary in some scenarios.

Results of Stages I and II: cluster distributions

In Fig. 3 sample cluster distributions resulting from Stages
I and II for one image from the control data set (left column)
and one from the knock-down set (right column) are shown.
Comparing the distributions of both images one can notice
striking differences. Feature vectors assigned to the cluster
pseudo-colored in red are mainly linked to control cells. Con-
trary, feature vectors assigned to the cluster colored magenta
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Fig. 4: Left, two control images are shown where some cells share significant similarity with knock-down cells; right, two images
of the knock-down population are depicted containing cells with striking fiber structures. The numbers refer to cell labels.

almost exclusively appear in knock-down cells. Moreover, at
this stage the different clusters can directly be linked to specific
structural patterns. From the original images in the bottom row
of Fig. 3 it can be seen that the magenta regions show very few
ordered structures, e.g., compared to the cyan and red regions
obviously related to areas with longer and more prominent
fibers. However, not only between control and knock-down
cells differences in cluster distributions can be observed, but
also between the cells within a single image. This underlines
the necessity of cell-wise evaluation to better account for
natural variation, particularly in heterogeneous populations.

Results of Stage III: PCA and hierarchical clustering

At the beginning of Stage III principal component analysis
is performed on the cluster distribution vectors. Analyzing
the resulting eigenvalues shows that the first three principal
components with largest eigenvalues cover approximately 97%
of data variance while the first two components still cover
≈ 92.6%. In Fig. 5 the projections of the 6D distribution
vectors of all 92 cells into the 2D subspace spanned by the
first two principal components are shown. The data points
related to control cells are shown in blue and the data points of
knock-down cells in red. The majority of control and knock-
down data points are located in distinct sections of the plot
area, i.e. most control points are roughly located on the left
while most knock-down points are roughly located on the right.
Thus, already in the subspace defined by the first two principal
components clear differences in structural appearance, i.e. actin
organization, can be observed between both groups. Note that
the components of these data points can no longer directly be
linked to specific structural patterns as it was possible for the
distribution vectors resulting from Stage II.

According to our selection criterion for the subspace di-
mensionality to be used in the final hierarchical clustering
(cf. Eq. 3) we automatically selected the first three principal
components as basis for the subspace and projected the 6D
distribution vectors into this 3D space. In Fig. 6 the final tree
resulting from clustering of the 3D data is shown. On the top
level of this tree a separation into two main groups of cells
(marked ’A’ and ’B’) can be observed. The left of these two
clusters (’A’) mainly refers to cells of the control set (named
with ’C’ at the beginning), i.e. 22 of the 29 data vectors are
linked to control cells. Contrary, the cluster on the right (’B’)
and in particular the branches marked with ’D’ and ’E’ mainly
refer to knock-down cells. In total 50 of the 63 data vectors
in branch ’B’ belong to that population. Branch ’C’ contains

Fig. 5: Plot of the projections of all distribution vectors for all
92 cells into the 2D subspace spanned by the first two principal
components with largest eigenvalues of the vector data set.

approximately as many control as knock-down data points,
i.e. represents data vectors lying in the transition zone between
both groups. Anyway, also here subclusters of cells belonging
to either of the two groups can be identified. In general clear
differences in actin organization between both groups can
be discovered which allows for an objective quantification
of structural differences instead of just a subjective visual
assessment by manual inspection as it is often done.

The cluster tree also outlines the importance for properly
considering natural variation. Within both branches ’A’ and
’D’ a couple of data points can be identified which seem to
have been assigned to the wrong cluster given the original
population they belong to. However, the assignment of most
of these cells happened due to natural variation within cell
answers on changes of cellular conditions. Most of the time not
all cells are equally affected by a certain stimulus although the
population as a whole might show a clear tendency. Cell divi-
sion, spontaneously occurring in 10-20% of the cells, strongly
affects actin organization. This holds for both populations
equally since also among control cells natural variation in actin
structures occurs without any treatment.

In Fig. 4 sample images of the control and knock-down
population are shown containing some of the cells presumably
being assigned to the wrong clusters. On the left, images 18
and 26 of the control set are shown from which, e.g., the
cells indexed with 4 (in image 18) and with 1 (in image
26) have been assigned to the knock-down branch ’D’ (see
yellow leaf markings in Fig. 6). Cell 18-4 obviously shows
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Fig. 6: Result tree of the hierarchical clustering in Stage III showing the cluster assignment for the data vectors of all 92 cells.
The color bar at the bottom visualizes the 3D data vectors, negative values are shown in red and positive values in green, the
brighter the color the bigger the value. For explanations about branch labels and leaf markings refer to the text.

significant bright actin along its borders which is more typical
for knock-down cells (e.g., refer to the cells shown in Fig. 3,
bottom right). Cell 26-1 lacks clear fibers, hence, also exhibits
increased similarity with knock-down cells. Contrary, in the
two knock-down images 19 and 21 on the right several cells
exhibit clear fiber structures. Consequently, most of the cells
from image 19 have been assigned to the control cluster ’A’ on
the left (magenta markings in Fig. 6), and also several of the
cells in image 21 (green markings). Hence, the assignments
are due to natural variation rather than misclassification which
underlines the advantages of cell-wise analysis. In conclusion
the results discussed here prove that our approach is well-
suited to quantify differences in actin organization on the level
of global tendencies as well as on single cell level.

A B

C D

E

V. CONCLUSION

We have presented an approach for quantifying differences
in actin organization in cells. The experimental evaluation
on sample data proves that our approach is able to quantify
differences and similarities in the structure of the microfila-
ment system in microscopy images of cell populations. Clear
tendencies in actin organization can be identified, and we can
also cope with single cells not following these tendencies due
to natural variation. Since there is no previous knowledge used
in our method and the analysis is performed unsupervised, our
results add a significant degree of objectivity to the analysis of
actin structures in images. Our approach also allows for con-
sidering larger sets of heterogeneous cell populations, yielding
a more meaningful data basis in biomedical investigations.
Currently we seek to further improve its usability by including
an automatic cell segmentation stage which will overcome the
need for external cell mask data. And also the set of texture
features is to be optimized with regard to computational load
and their discriminative power.
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The IQD Family of Calmodulin-Binding Proteins Links
Calcium Signaling to Microtubules, Membrane
Subdomains, and the Nucleus1[OPEN]
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Calcium (Ca2+) signaling and dynamic reorganization of the cytoskeleton are essential processes for the coordination and control
of plant cell shape and cell growth. Calmodulin (CaM) and closely related calmodulin-like (CML) polypeptides are principal
sensors of Ca2+ signals. CaM/CMLs decode and relay information encrypted by the second messenger via differential
interactions with a wide spectrum of targets to modulate their diverse biochemical activities. The plant-specific IQ67
DOMAIN (IQD) family emerged as possibly the largest class of CaM-interacting proteins with undefined molecular functions
and biological roles. Here, we show that the 33 members of the IQD family in Arabidopsis (Arabidopsis thaliana) differentially
localize, using green fluorescent protein (GFP)-tagged proteins, to multiple and distinct subcellular sites, including microtubule
(MT) arrays, plasma membrane subdomains, and nuclear compartments. Intriguingly, the various IQD-specific localization
patterns coincide with the subcellular patterns of IQD-dependent recruitment of CaM, suggesting that the diverse IQD
members sequester Ca2+-CaM signaling modules to specific subcellular sites for precise regulation of Ca2+-dependent
processes. Because MT localization is a hallmark of most IQD family members, we quantitatively analyzed GFP-labeled MT
arrays in Nicotiana benthamiana cells transiently expressing GFP-IQD fusions and observed IQD-specific MT patterns, which
point to a role of IQDs in MT organization and dynamics. Indeed, stable overexpression of select IQD proteins in Arabidopsis
altered cellular MT orientation, cell shape, and organ morphology. Because IQDs share biochemical properties with scaffold
proteins, we propose that IQD families provide an assortment of platform proteins for integrating CaM-dependent Ca2+

signaling at multiple cellular sites to regulate cell function, shape, and growth.

Calcium (Ca2+), a general second messenger in all
eukaryotes, is required for the execution of develop-
mental programs and the coordination of numerous
adaptive responses to external cues, complex processes
necessitating a precise regulation of cell growth, and
cell shape (Cárdenas, 2009; Steinhorst and Kudla, 2013).

Cellular Ca2+ oscillations are monitored by polydentate
Ca2+ sensors, such as calmodulin (CaM) and calmodulin-
like (CML) polypeptides, which differentially interact
upon Ca2+ binding with a broad range of diverse proteins
to modulate their biochemical activities (McCormack and
Braam, 2003; McCormack et al., 2005). An extra layer of
complexity is added by Ca2+-free apo-CaM that regulates
a largely different subset of cellular targets (Jurado et al.,
1999). Fundamental processes affected by Ca2+ and
CaM/CMLs include, among others, transcriptional
reprogramming, regulation of metabolism, or the
control of cell division and polarity (Hepler, 2005).

The microtubule (MT) cytoskeleton forms a highly
dynamic network and plays a central role for coordinat-
ing cell growth. Cortical MT arrays are attached to the
plasma membrane (PM) for structural support (Liu et al.,
2015) and determine the direction of cell expansion by
guiding cellulose synthase complexes (CSCs; Endler and
Persson, 2011). Furthermore, the MT cytoskeleton medi-
ates the intracellular transport of diverse cargoes (Lloyd
and Hussey, 2001; Sedbrook and Kaloriti, 2008) and
contributes to exocytosis (Zárský et al., 2009; Idilli et al.,
2013; Kong et al., 2015; Zhu et al., 2015a). To generate the
various MT arrays, networks of microtubule-associated

1 This work was supported by the Collaborative Research Center of
the Deutsche Forschungsgemeinschaft (grant no. SFB 648; project B12 to
K.B., R.P., and S.A. and project Z1 to G.H.), by the German Academic
Exchange Service (to D.M.), and by core funding (Leibniz Association)
from the Federal Republic of Germany and the state of Saxony-Anhalt.

* Address correspondence to katharina.buerstenbinder@
ipb-halle.de.

The author responsible for distribution of materials integral to the
findings presented in this article in accordance with the policy de-
scribed in the Instructions for Authors (www.plantphysiology.org) is:
Katharina Bürstenbinder (katharina.buerstenbinder@ipb-halle.de).

K.B. and S.A. designed the research; B.M. and K.B. analyzed mi-
crotubule patterns and quantified cell shape characteristics; G.H. per-
formed electron microscopy experiments; K.B., G.S., R.P., and D.M.
performed all other experiments and analyzed the data; K.B. wrote
the article; S.A. edited the article.

[OPEN] Articles can be viewed without a subscription.
www.plantphysiol.org/cgi/doi/10.1104/pp.16.01743

1692 Plant Physiology�, March 2017, Vol. 173, pp. 1692–1708, www.plantphysiol.org � 2017 American Society of Plant Biologists. All Rights Reserved.

207



proteins (MAPs) control MT dynamics, stability, and or-
ganization (Gardiner, 2013; Struk and Dhonukshe, 2014).
MAPs also connect CSCs toMTs and are thought to tether
cortical MTs to the PM (Endler and Persson, 2011;
Bringmann et al., 2012; Liu et al., 2016). Several studies
implicated Ca2+-CaM signaling in the control of cyto-
skeleton organization and dynamics (Hepler, 2016). For
example, in yeast and animals, Ras GTPase-activating-
like protein IQGAP (IQGAP) scaffold proteins, which
recruit CaM via IQmotifs and feature a domain related to
GTPase-activating proteins, are key regulators of the cy-
toskeleton (Shannon, 2012). IQGAPs contribute to the
regulation of cell-to-cell contact and coordinate intracel-
lular signaling from membranes to the nucleus (Smith
et al., 2015). However, plant genomes do not encode
IQGAPs, and the mechanisms of Ca2+-mediated cyto-
skeletal organization are largely elusive (Hepler, 1992,
2005; Wang et al., 2011). During the colonization of ter-
restrial habitats, novel adaptive traits evolved in land
plants (Graham, 1996), and the size of plant CaM/CML
families expanded greatly to provide versatility for
transducing complex Ca2+ signals into numerous cellular
and environmental responses (McCormack et al., 2005;
Zhu et al., 2015b). Likewise, the cytoskeleton acquired
additional functions for adapting cell shape and cell
growth, and a multitude of unique MAPs emerged for
generating the various cytoskeletal arrays and controlling
their organization and stability (Gardiner, 2013; Struk and
Dhonukshe, 2014). Therefore, it is likely that signaling
scaffolds analogous to IQGAP proteins evolved in plants
for Ca2+-CaM-dependent regulation of the cytoskeleton.
To elucidate CaM-mediated Ca2+ signaling in plants,

extensive efforts have been made to identify CaM/CML-
binding proteins (CaMBPs). More than 300 CaMBPs are
currently known, which include transporters and chan-
nels, metabolic enzymes, transcription factors, myosins,
and various proteins of undefined functions that mostly
interact with either holo-CaM or apo-CaM (Reddy et al.,
2011). To date, only one CaM-binding MAP has been
reported, KINESIN-LIKE CaM-BINDING PROTEIN/
ZWICHEL (KCBP/ZWI;Narasimhulu and Reddy, 1998),
which functions in trichome development (Hülskamp
et al., 1994; Oppenheimer et al., 1997; Tian et al., 2015) and
root growth (Buschmann et al., 2015; Humphrey et al.,
2015). During cell division, KCBP localizes to the cortical
division zone and likely functions in phragmoplast
guidance and in the spatial control of cytokinesis
(Buschmann et al., 2015). The activity of KCBP/ZWI is
regulated by Ca2+-CaM (Kao et al., 2000), and CaM
binding abolishes MT interaction of its motor domain
(Deavours et al., 1998; Narasimhulu and Reddy, 1998).
Because not all effects of CaM/CMLs on MT arrays may
be explained byKCBP action, additional players likely are
required for the CaM-dependent regulation of MT orga-
nization and dynamics (Hepler, 2016).
The IQ67 DOMAIN (IQD) family of mostly unchar-

acterized plant-specific CaMBPs may represent such
candidates at the nexus of Ca2+ signaling and cell
growth control. IQD proteins are defined by their
characteristic IQ domain of 67 conserved amino acid

residues, which harbors three different consensus CaM
recruitment motifs in a unique and repetitive arrange-
ment, including up to three copies of the IQ motif (Abel
et al., 2013). The IQ67 domain is sufficient and required
for CaM interaction in vitro, and the founding member,
Arabidopsis (Arabidopsis thaliana) IQD1 (Levy et al.,
2005), localizes to MT arrays and the cell nucleus
(Bürstenbinder et al., 2013). The 33 IQD proteins of
Arabidopsis are highly diverse in length (103–794
amino acids) and cluster in four major phylogenetic
clades that differ mainly in the presence and distribu-
tion of family-specific motifs flanking the central IQ67
domain (Abel et al., 2005). Extensive IQD families
(23–67 genes) have been annotated in rice (Oryza sativa;
Abel et al., 2005) and recently in purple falsebrome
(Brachypodium distachyon; Filiz et al., 2013), tomato
(Solanum lycopersicum; Huang et al., 2013), soybean
(Glycine max; Feng et al., 2014), poplar (Populus tricho-
carpa; Ma et al., 2014), and moso bamboo (Phyllostachys
edulis; Wu et al., 2016). Thus, IQD proteins are possibly
the largest class of CaMBPs in plants; however, their
precise biological roles and biochemical functions re-
main to be elucidated (Abel et al., 2013; van der Knaap
et al., 2014). Coexpression assays demonstrated that
IQD1 colocalizeswith CaM2 toMT arrays (Bürstenbinder
et al., 2013), which suggests a role for IQD1 in linking
Ca2+-CaM signaling to the regulation of MT-associated
processes (Abel et al., 2013). Additional support for IQD
functions at MTs is indirectly provided by studies in to-
mato, which showed that duplication of the IQD12/SUN
locus causes elongated fruits, altered cell shape, and
twisted stems (Xiao et al., 2008; Wu et al., 2011). These
phenotypes are reminiscent of plants with mutations
in tubulin subunits (Ishida et al., 2007) and several
MAPs (Buschmann et al., 2004; Sedbrook et al., 2004).
Collectively, the limited evidence points to regula-
tory roles of IQD proteins in Ca2+-CaM signaling and
plant development.

Here, we present, to our knowledge, the first com-
prehensive characterization of the entire Arabidopsis
IQD family. The 33 IQD proteins differentially localize
to multiple subcellular sites, including MTs, the PM,
and nuclear compartments. As demonstrated for eight
representative IQD family members, the specific IQD
localization patterns coincide with the subcellular pat-
terns of IQD-dependent CaM recruitment. Misexpression
of select IQD proteins alters the cell shape and pattern of
MT organization. Thus, the prospect arises that the plant-
specific IQD families provide an assortment of scaffold-
like proteins to sequester and integrate CaM-dependent
Ca2+ signaling at multiple subcellular sites to regulate cell
function, shape, and growth.

RESULTS

IQD Family Members Differentially Localize to MTs,
Membranes, and the Nucleus

To gain insights into the cellular sites of IQD function,
we studied the subcellular distribution of all 33Arabidopsis
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IQD family members after transient expression in
Nicotiana benthamiana leaves, which is a convenient
system in which to monitor protein localization
(Deeks et al., 2012). We expressed GFP-tagged IQDs
under the control of the cauliflower mosaic virus
(CaMV) 35S promoter to facilitate their detection. The
authentic GFP reporter was included as a reference,
which uniformly labeled the cytoplasm and cell
nucleus with the exception of its nucleolus (Fig. 1,
bottom right). We confirmed the expression of all full-
length IQD fusion proteins by immunoblot analysis
using an anti-GFP antibody (Supplemental Fig. S1A).
N-terminal GFP fusions of most IQD proteins were
associated at least partially with cytoskeletal arrays
(Fig. 1). Localization to the MT cytoskeleton was con-
firmed by coexpression with red fluorescent protein
(RFP)-TUBULIN ALPHA5 (TUA5), a marker for MTs

(Gutierrez et al., 2009), as shown for GFP-IQD1 (Fig. 1),
GFP-IQD13, and GFP-IQD16 (Supplemental Fig. S1B).
About half of the GFP-tagged IQD family members la-
beled the PM (e.g. IQD12, IQD22, and IQD25) or the
nuclear envelope (e.g. IQD8 and IQD27). In addition,
several GFP-IQD fusions localized to the nucleus (e.g.
IQD10, IQD28, and IQD32), nucleolus (e.g. IQD3, IQD4,
and IQD20), or distinct nuclear bodies (e.g. IQD6, IQD9,
and IQD24; Fig. 1, insets). Their translocation into the
nucleus is likely an active process because the size ofmost
GFP-IQD fusions exceeds the exclusion limit (greater than
50–60 kD) of nuclear pores (Nigg, 1997), and most
nucleus-localized IQD proteins contain predicted nuclear
localization signals (Supplemental Table S1). The smallest
familymember, IQD20, lacks a nuclear localization signal;
thus, its GFP fusion (38.7 kD) is capable of passive diffu-
sion into the nucleus.

Figure 1. Subcellular localization of
Arabidopsis GFP-IQD fusion proteins
in N. benthamiana. N-terminal GFP
fusions of all Arabidopsis IQD family
members (IQD1–IQD33) were tran-
siently expressed under the control of
theCaMV35Spromoter inN.benthamiana

leaves. Colored bars above the images
indicate the phylogenetic clades (Abel
et al., 2005).MTcolocalizationofGFP-IQDs
was confirmedby coexpressionwithRFP-
TUA5 (shown for GFP-IQD1), and GFP
alone was used as a reference (bottom
right image). Micrographs of cells are
projections of Z-stacks; insets are single-
layer images of cell nuclei. Extra insets
(GFP-IQD1 and GFP-IQD4) are single-
layer images of MTs, which for GFP-IQD4
reveal MT localization only with increased
laser intensities. Bars = 20 mm and 5 mm
(insets).
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To validate the recorded subcellular localization
patterns of N-terminal GFP-IQD fusion proteins, we
selected six IQD members for independent localization
studies, which represent the distinct localization pat-
terns and the major phylogenetic clades of the
Arabidopsis IQD family (i.e. IQD8, IQD14, IQD16,
IQD20, IQD25, and IQD28; Fig. 1). We obtained
similar results in the N. benthamiana system for the six
selected C-terminal IQD-GFP fusion proteins, which
we expressed under the control of either the CaMV 35S
promoter (Fig. 2A) or the native IQD promoters (Fig.
2B). Transfection of Arabidopsis leaves with the cor-
responding Pro-35S:GFP-IQD constructs and analysis
of subcellular GFP-IQD localization further supported
the localization results (Fig. 2C). Thus, the subcellular
localization of GFP-tagged IQDs is independent of
GFP tag configuration, expression level, and experi-
mental system. Expression under the control of native
IQD promoters, however, resulted in weak fluores-
cence signals. In combination with in silico analyses
(Toufighi et al., 2005), which indicate very low IQD
mRNA levels (Supplemental Fig. S1C), our data sug-
gest that IQD gene expression correlates with low IQD
protein abundance. In conclusion, our data provide
solid support for the Arabidopsis IQD family being a
novel class of CaMBPs with presumed functions at
MTs, at the PM, and in nuclear compartments.

A Subset of IQD Proteins Localizes to Distinct
PM Subdomains

The targeting of several IQD proteins to MTs as well
as to the PM prompted us to study in more detail the
distribution of select IQDs displaying a prominent
PM localization. Imaging of the upper surface of
transiently transformed N. benthamiana epidermis
cells revealed a nonuniform distribution of GFP-IQD
proteins within the PM (Fig. 3A). IQD12 and IQD22
labeled filamentous structures that align along
MTs, which is corroborated by coexpression with
RFP-TUA5 (Fig. 3B). The accumulation of IQD12 and
IQD22 in filamentous structures is abolished upon
treatment with the MT-depolymerizing drug oryzalin
(Fig. 3C). In addition, all four GFP-IQD fusion pro-
teins mark distinct punctate structures (Fig. 3A).
These patterns are reminiscent of membrane sub-
domains, which are largely immobile compartments
within the PM (Saka et al., 2014), and thought to serve
as platforms of signal transduction (e.g. during im-
mune signaling or polarized growth; Malinsky et al.,
2013; Jarsch et al., 2014). We observed similar locali-
zation patterns for two PM subdomain marker pro-
teins of the plant-specific REMORIN (Rem) family,
Rem6.6 and Rem6.7 (Jarsch et al., 2014), which we
included as controls (Fig. 3A). The pattern of labeled
PM domains differed and ranged from a more ho-
mogenous labeling (GFP-IQD12) to the decoration of
distinct circular structures (GFP-IQD25 and GFP-
Rem6.7) with an average size between ;0.11 and

0.13 mm2 (Fig. 3, A and D). To assess the lateral
stability of GFP-IQD-labeled PM domains, we per-
formed time-lapse experiments and generated ky-
mographs (Fig. 3, E and F). As shown for GFP-IQD25,
the labeled domains remained stationary for at least
20 min (Fig. 3E, arrowheads). Similarly, PM domains
labeled by the other GFP-IQD fusions were tempo-
rally stable, as indicated by continuous vertical lines
in the kymographs (Fig. 3F). The high lateral stability
of IQD-labeled domains together with the pattern of
PM localization suggest that IQD proteins are novel
components of PM subdomains in planta.

Figure 2. Independent verification of subcellular localization patterns
of select Arabidopsis IQD family members. A and B, Subcellular lo-
calization of C-terminal GFP fusions of IQD proteins expressed under
the control of the CaMV 35S promoter (A) or their endogenous regu-
latory elements (B) in N. benthamiana leaf epidermis cells. C, Subcel-
lular localization of N-terminal GFP fusions of IQD proteins transiently
expressed under the control of the CaMV 35S promoter in Arabidopsis
leaf epidermis cells. Micrographs are projections of Z-stacks, and insets
are single-layer images of nuclei. Bars = 20 mm and 5 mm (insets).
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We generated transgenic Pro-35S:GFP-IQD25 lines to
confirm PM localization in Arabidopsis. As observed in
N. benthamiana leaf cells, GFP-IQD25 decorated the
periphery of root cells in a punctate pattern (Fig. 4A).
Our data are in agreement with work by Jarsch et al.
(2014), who reported the formation of PM subdomains
in N. benthamiana and Arabidopsis. As expected, GFP-
IQD25 fluorescence colocalized upon plasmolysis with
the PM and not with the cell wall, which were stained
with FM4-64 and propidium iodide (PI), respectively
(Fig. 4B). PM localization of GFP-IQD25 was further
corroborated by immunogold labeling using an anti-
GFP antibody, which indicated enrichment of gold
particles at the PM in tissue sections of root apices (Fig.
4, C and D). Interestingly, the shape and size of the
rosette leaves were altered in plants overexpressing
GFP-IQD25 or untagged IQD25 when compared with
wild-type or GFP-expressing control lines, respectively
(Fig. 4E). The cotyledons of IQD25-overexpressing
plants also showed significant alterations in the shape
of epidermal pavement cells (Fig. 4, F and G). However,
we did not notice visible morphological changes in
iqd25 loss-of-function lines. ProIQD25:GFP-GUS ex-
pression was detectable in the shoot apical meristem
and in the youngest leaves but not in older parts
of cotyledons and leaves (Supplemental Fig. S2, A–E).

Thus, the observed phenotypes in Pro-35S:GFP-IQD25
and Pro-35S:IQD25 might be a result of ectopic ex-
pression. Alternatively, the lack of phenotypes in iqd25
mutants possibly points to a high degree of functional
redundancy within the IQD family.

Quantitative Analysis of GFP-IQD-Labeled MT Patterns

Because MT localization is a hallmark of the Arabi-
dopsis IQD family (Fig. 1) and IQD overexpression al-
ters plant development (Xiao et al., 2008; this study),
we hypothesized that IQD proteins function in MT-
dependent processes. To quantitatively record MT
patterns, we adapted an approach used previously to
measure actin structures in mammalian cells (Möller
et al., 2014). We imaged epidermal cell outlines in the
red channel by PI staining or by the expression of an
RFP-fused PM-localized protein, PLASMODESMATA-
LOCATED PROTEIN1 (PDLP1)-RFP (Amari et al.,
2010), and traced GFP-IQD-decorated MT arrays in the
green channel. Two-channel maximum projections of
Z-stacks covering the upper half of the epidermal cell
layer were analyzed, texture feature vectors were
extracted from square windows based on local binary
patterns (Ojala et al., 2002), and groups of MT patterns

Figure 3. IQD proteins label PM sub-
domains in N. benthamiana. A, Imaging
of the upper surface of N. benthamiana

leaf epidermis cells expressing Pro-35S:
GFP-IQD fusions or the PM subdomain
markers Pro-35S:GFP-Rem6.6 and Pro-

35S:GFP-Rem6.7. B, Filamentous struc-
tures labeled by IQD12 and IQD22
aligned along MTs, as demonstrated
by coexpression with RFP-TUA5. C,
Depolymerization of MTs by oryzalin
treatment abolishes the accumulation of
IQD12 and IQD22 in filamentous
structures. Bars in A to C = 5 mm. D,
Quantification of domain size labeled
byGFP-tagged IQD24, IQD25, Rem6.6,
and Rem6.7. Data are medians of
10 independent images, and boxes
range from first to third data quartiles. E,
For kymographs, stacks of 10 to 14 im-
ages were acquired over 20 min in in-
tervals of 2 min. Arrowheads indicate
individual GFP-IQD25-labeled punc-
tate structures within the PM, which
remain stable over 20 min. Bar = 5 mm.
F, Kymographs were created from three
independent time-lapse movies (1, 2,
and 3) of cells expressing GFP-tagged
IQD12, IQD22, IQD24, or IQD25.
Vertical lines indicate that the PM sub-
domains are highly immobile. Bars =
20 mm (horizontal) and 20min (vertical).
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were defined by cluster analysis (Fig. 5A). The relative
distribution of windows belonging to each group was
determined for each individual cell. Pairwise distances
between the 23 most strongly MT-associated GFP-IQD
fusions were visualized in a heat map (Fig. 5B). To
validate our approach, we tested the robustness and
reliability of the tool using different window sizes (163
16 and 32 3 32) and by applying sliding windows of
sizes 8 to 32. All samples showed the same trends
irrespective of the window settings. Thus, we conclude
that our computational pattern-analysis tool is suitable
to efficiently and robustly quantify MT array patterns.
To assess MT patterns more broadly, we generated a
similarity network (Fig. 5C). Our analysis revealed high
similarity between MT networks labeled by IQD
members of phylogenetic groups II (IQD13 and IQD14,
encoded by a sister gene pair), IIIb, and IV, with the

exception of IQD11 and IQD28. A second cluster in-
cludes IQD7, IQD8 (encoded by a sister gene pair), and
IQD6 (the most closely related member of group IIIa;
Abel et al., 2005). In general, we noticed a tendency
of phylogenetically related IQDs to decorate similar
MT patterns. Notably, MT patterns observed by the
overexpression of GFP-tagged IQD11 and IQD16 dif-
fered from all others and potentially reflect specialized
functions.

Overexpression of IQD16 Alters MT Organization and
Cell Shape

To test our pattern-analysis tool and study the func-
tions of IQD proteins in Arabidopsis, we initially focused
on IQD16 because our data indicated MT localization of

Figure 4. Subcellular localization and phe-
notypes in transgenic Pro-35S:GFP-IQD25

Arabidopsis seedlings. A to C, Root cells of
4-d-old transgenic Arabidopsis seedlings
expressing GFP-IQD25 under the control of
the CaMV 35S promoter. A, Subcellular lo-
calization of GFP-IQD25 in a primary root
tip (top) and surface imaging of root epider-
mis cells (bottom). Bars = 20 mm (top) and
5 mm (bottom). B, PM localization of GFP-
IQD25. GFP-IQD25 localizes to the cell
outline, as demonstrated by colocalization
with the cell wall dye PI in root cells. After
plasmolysis with 150 mM NaCl, GFP-IQD25
fluorescence is detached from PI-stained cell
walls and colocalizes with FM4-64-stained
PM. C, Localization of GFP-IQD25 by immu-
nogold labeling and transmission electron mi-
croscopy. Bottom images are magnifications of
the framed regions in the top images. CW, Cell
wall; Cyt, cytosol. Bars = 0.5 mm (top) and 0.1
mm (bottom). D, Quantification of gold parti-
cles in 10 independent sections. A significant
enrichment of gold particles at the PM and cell
wall was observed in GFP-IQD25 when com-
pared with the wild-type control (Columbia-0
[Col-0]). E and F, Phenotypes of wild-type, Pro-
35S:IQD25, Pro-35S:GFP-IQD25, and Pro-

35S:GFP transgenic seedlings. E, Shoots of
4-week-old plants grown on soil under long-
day conditions. F, Single optical sections are
shown for cotyledon epidermal cells (adaxial
side) of 5-d-old seedlings grown under sterile
conditions. Cell outlines were visualized
with PI. Bar = 50 mm. G, Quantification of
cellular elongation (eccentricity) and of the
(ir)regularity/(non)smoothness of the cell con-
tour (margin roughness). Results are medians
from n $ 90 cells and n $ 3 seedlings, and
boxes range from first to third quartiles. Differ-
ent letters denote a significant statistical differ-
ence. P , 0.005 by one-way ANOVA.
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IQD16 in a highly distinctive pattern (Figs. 1, 2, and 5, B
and C). We did not observe phenotypic alterations for
iqd16 T-DNA loss-of-function lines, even after careful
examination of tissues in which ProIQD16:GFP-GUS
expression is detectable (Supplemental Fig. S3, A–G).
However, plants overexpressing IQD16 develop elon-
gated aerial organs with significantly elongated cells
(i.e. cotyledons, leaves, and hypocotyls) and display left-
handed helical growth (Fig. 6, A–D). Phenotypic
strength correlatedwith Pro-35S:IQD16 expression (Fig.
6E) and suggests IQD16 dosage-dependent effects on
plant growth. GFP-IQD16 overexpression lines display
similar phenotypes (Fig. 6, A–D), indicating the func-
tionality of the fusion protein. Helical growth aberra-
tions and altered leaf shape were reported for tomato
sun lines (Wu et al., 2011) and often are associated with
defects inMT functions (Buschmann et al., 2004; Ishida
et al., 2007). Moreover, the growth defects are remi-
niscent of plants overexpressing LONGIFOLIA1/TON1
RECRUITING MOTIF2 (TRM2), which encodes a
plant-specific MAP (Lee et al., 2006; Drevensek et al.,
2012). Hence, the observed phenotypes point to roles
of IQD16 in the regulation of MT arrays.

To analyze MT organization, we crossed the GFP-
MAP4marker (Marc et al., 1998) into Pro-35S:IQD16 lines.
When compared with the parental wild-type (GFP-
MAP4) line, light-grown plants overexpressing IQD16
(GFP-MAP4) or GFP-IQD16 displayed significantly elon-
gated cells (Fig. 6, F and G), and the increased cell length
of IQD16 overexpression plants correlatedwith an altered
orientation of cortical MTs (Fig. 6, H and I). Consistent
with previous reports (Hamada et al., 2013), MTs in
wild-type (GFP-MAP4) hypocotyl cells were distributed
randomly. However, in IQD16 (GFP-MAP4) and GFP-
IQD16-overexpressing lines, MTs decorated by the GFP
reporter were aligned preferentially in oblique arrays
with angles between 40° and 70° (Fig. 6I). Thus, our ex-
periments show that IQD16 localizes to cortical MTs in
Arabidopsis and impacts MT orientation and cell shape.

Overexpression of IQD11 and IQD14 Differentially
Modulates Plant Growth

We extended our analysis in Arabidopsis to validate
the roles of additional IQD proteins at MTs (Fig. 7). We
selected IQD11, which labeled MT patterns highly
similar to IQD16 in the N. benthamiana system (Fig. 5),
and IQD14, which decorates MT arrays in N. ben-
thamiana (Fig. 1) and Arabidopsis (Fig. 2) in patterns
different from IQD11 and IQD16 (Fig. 5). Consis-
tent with the high similarity of MT patterns upon

Figure 5. Quantification and network analysis of MT patterns in
N. benthamiana epidermis cells. A, Workflow of MT pattern analysis.
PI-stained cell outlines were imaged in the red channel for cell seg-
mentation, and GFP-IQD-labeled MTs were recorded in the green
channel. Texture features were extracted from local binary patterns, and
groups of patterns were defined by cluster analysis. B, Heat map
showing pairwise distances between MT patterns. The heat map was
normalized to a range of [0,1], with blue colors representing high
similarity and distances close to 0 and red colors representing high

dissimilarity and distances close to 1. The color bar shown encodes the
similarity strength. C, Network analysis of MT patterns induced by the
overexpression of GFP-IQD fusions. Nodes represent average MT pat-
terns of individual IQD members. Node colors highlight the phyloge-
netic groups and subgroups, and the width of the connecting lines is
proportional to the similarity between the nodes.
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Figure 6. IQD16 overexpression alters epidermal cell shape and cortical MTorientation. A to C, Phenotypes of Arabidopsis wild-
type plants and IQD16-overexpressing plants grown under long-day conditions. Shown are representative images of shoots of the
wild type (Col-0), three independent transgenic Pro-35S:IQD16 lines (ox16#2, ox16#6, and ox16#11), and one transgenic Pro-

35S:GFP-IQD16 line (GFP-IQD16). A, Two-week-old plants grown on soil. B, Seven-day-old seedlings grown under sterile
conditions. Arrowheads delimit hypocotyls, which are elongated in IQD16-overexpressing plants. Bar = 0.5 mm. C, Single
optical sections of adaxial epidermal pavement cells in cotyledons of 5-d-old seedlings. Cell walls were visualized with PI. Bar =
50 mm. D, Quantification of the cellular eccentricity and margin roughness in cells shown in C. Results are medians from n $

70 cells and n$ 3 seedlings, and boxes range fromfirst to third quartiles. Different letters denote a significant statistical difference.
P, 0.005 by one-way ANOVA. E, Quantitative reverse transcription (RT)-PCR analysis of IQD16 transcript levels relative to PP2A
in the three individual Pro-35S:IQD16 transgenic lines shown in A in comparison with the wild type (Col-0). Results are averages
of three replicates 6 SE. F and G, Analysis of MT organization and cell shape in transgenic seedlings expressing Pro-35S:GFP-

MAP4 (GFP-MAP4), Pro-35S:IQD16 and Pro-35S:GFP-MAP4 (oxIQD16#11 GFP-MAP4), or Pro-35S:GFP-IQD16 (GFP-IQD16).
Seedlings of stably transformed Arabidopsis lines (5 d old) were grown on Arabidopsis salt medium under long-day conditions. F,
Z-stack projections of hypocotyl epidermis cells. Bar = 100mm.G, Epidermal hypocotyl cell size. Cell length and cell width were
measured relative to the perpendicular axis, and the length-to-width ratio of individual cells was calculated (means 6 SE, n =
33 cells of three seedlings; Different letters denote a significant statistical difference. P , 0.005 by Student’s t test). H, Z-stack
projections of individual epidermal hypocotyl cells. Bar = 20 mm. I, Quantification of cortical MT orientation. Angles were
measured relative to the perpendicular axis, and relative fractions were calculated (n = 225 MTs, with three independent ex-
periments).
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overexpression of GFP-IQD16 and yellow fluorescent
protein (YFP)-IQD11 in N. benthamiana (Fig. 5), the phe-
notypes of transgenicArabidopsis plants overexpressing
IQD11 or YFP-IQD11 resembled those of IQD16 over-
expression lines (Figs. 6 and 7A; Supplemental Fig. S4).
YFP-IQD11 labeled MT arrays in patterns similar to
GFP-IQD16 in epidermal hypocotyl cells of transgenic
Arabidopsis seedlings (Fig. 7, B and C), and over-
expression of YFP-IQD11 induced the elongation of ep-
idermis pavement cells (Fig. 7, D and E). We observed
distinct phenotypes upon overexpression (Pro-35S) of
IQD14 or GFP-IQD14 (Fig. 7A; Supplemental Fig. S4A).
Transgenic plants displayed strongly induced organ
twisting but no changes in leaf elongation (Fig. 7, A, D,

and E). Similar phenotypes were reported for tortifolia
and spiral mutants (Furutani et al., 2000; Buschmann
et al., 2004; Shoji et al., 2004). Helical growth defects
commonly correlate with an increased transverse
alignment ofMTs (Ishida et al., 2007), which are visible
upon the overexpression of YFP-IQD11, GFP-IQD14,
and GFP-IQD16 (Figs. 6I and 7C). We confirmed the
MT specificity of GFP-IQD16, YFP-IQD11, and GFP-
IQD14 by the treatment of transgenic Arabidopsis
seedlings with the MT-depolymerizing drug oryzalin
(Fig. 7B, bottom row). We included transgenic GFP-
MAP4 (Marc et al., 1998) and GFP-ABD2 (Sheahan
et al., 2004; Wang et al., 2004) lines as controls for the
MT and actin cytoskeleton, respectively. Oryzalin

Figure 7. IQD11 and IQD14 over-
expression lines display altered plant
growth and MT orientation. A, Pheno-
types of Arabidopsis wild-type and
transgenic plants overexpressing IQD11

and IQD14. Shown are representative
images of shoots of 2-week-old plants
grown under long-day conditions from
thewild type (Col-0) and transgenicPro-
35S:IQD11 (oxIQD11), Pro-35S:YFP-
IQD11 (YFP-IQD11), Pro-35S:IQD14

(oxIQD14), and Pro-35S:GFP-IQD14

(GFP-IQD14) lines. B, Subcellular lo-
calization of GFP-IQD16, YFP-IQD11,
GFP-IQD14, GFP-MAP4, and GFP-
ABD2 fusion proteins in seedlings trea-
ted with dimethyl sulfoxide (DMSO) or
with the MT-depolymerizing drug ory-
zalin. Seedlings of transgenic Arabi-
dopsis lines (5 d) were grown on
Arabidopsis salt medium under long-
day conditions.Micrographs are Z-stack
projections of epidermal hypocotyl
cells. Bar = 20mm. C, Quantification of
cortical MT orientation (Fig. 6). D, Epi-
dermal pavement cell shape in the wild
type and in transgenic Pro-35S:YFP-

IQD11 and Pro-35S:GFP-IQD14 lines.
Single optical sections show adaxial
epidermal pavement cells in cotyledons
from 5-d-old seedlings. Cell walls were
visualized with PI. Bar = 50 mm. E,
Quantification of the cellular eccentric-
ity and margin roughness in cells. Re-
sults are medians from n$ 90 cells and
n $ 4 seedlings, and boxes range from
first to third quartiles. Different letters
denote a significant statistical difference.
P, 0.001 by one-way ANOVA.
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treatment efficiently disrupted MT networks but had
no effect on the actin cytoskeleton. Analysis of
ProIQD11:GFP-GUS and ProIQD14:GFP-GUS expres-
sion revealed IQD11 and IQD14 promoter activity in
the hypocotyl, cotyledons, leaf tissues, and petioles
(Supplemental Fig. S4B). Thus, the phenotypes in
combination with the observed MT localization sug-
gest that elevated levels of IQD proteins may have
diverse effects on MT organization and cell growth
control in tissues with endogenous IQD expression.
Moreover, our pattern-analysis tool proves to be a
useful resource for the study of MT organization in
complex shaped cells and provides, to our knowledge,
the first experimental evidence for roles of IQD pro-
teins in the regulation of MT networks and cell shape.

IQD Family Members Differentially Recruit CaM to
Diverse Subcellular Sites

The differential subcellular localization of IQD family
members (Fig. 1) prompted us to test whether IQD
proteins recruit CaM to diverse subcellular sites. We
selected eight IQD proteins representing the phyloge-
netic clades and different localization patterns of the
Arabidopsis IQD family and performed bimolecular
fluorescence complementation (BiFC) assays, which
detect protein-protein interactions in planta with sub-
cellular resolution (Gehl et al., 2009; Kudla and Bock,
2016). Coexpression in N. benthamiana of nYFP-IQD1
and cYFP-CaM2 reconstitutes YFP fluorescence at
MTs and in the nucle(ol)us (Fig. 8), which is highly
similar to the observed GFP-IQD1 localization (Fig. 1).
Similarly, cYFP-CaM2 interacted with nYFP fusions of
IQD8, IQD13, IQD16, and IQD32 at MTs. For nYFP-
IQD20 and nYFP-IQD25, BiFC signals were detected
in distinct PM subdomains, and nYFP-IQD33 interacted
with cYFP-CaM2 in the nucleus (Fig. 8, insets). nYFP-
TRM1 (Drevensek et al., 2012) served as a negative
control, and the recovery of YFP fluorescence was not
detectable with cYFP-CaM2, which confirmed the
specificity of the BiFC assay.We independently verified
the physical in vivo interactions of CaM2 and select
IQDs by coexpression studies, which revealed
GFP-IQD fusion protein-dependent relocalization of
RFP-CaM2 (Supplemental Fig. S5). When coexpressed
with GFP alone, RFP-CaM2 accumulated in the cytosol
and nucleus, whereas coexpression with GFP-IQD1
induced the recruitment of RFP-CaM2 to MTs and the
nucleolus, as reported previously (Bürstenbinder et al.,
2013). In addition, coexpression with GFP-IQD8,
GFP-IQD13, GFP-IQD16, or GFP-IQD32 caused the
recruitment of RFP-CaM2 to MTs, and relocalization of
RFP-CaM2 to the PM was evident upon coexpression
with GFP-IQD25. Thus, IQD proteins recruit CaM2 and
possibly other CaM/CMLs to MTs, PM subdomains,
and nuclear compartments. Interaction of IQD proteins
with CaM2 did not abolish IQD localization to MTs or
the PM, suggesting that subcellular targeting of IQD
proteins is independent of CaM recruitment.

Figure 8. IQDproteins interact with CaM2 atMTs, at the PM, and in the
nucleus. Single optical sections of BiFC signals (left column) and cor-
responding bright-field images (center column) as well as closeup
Z-stack images of YFP fluorescence (right column) are shown for
N. benthamiana epidermis cells after coexpression of IQD proteins
N-terminally tagged with the N-terminal half of Venus (YN) and CaM2
N-terminally tagged with the C-terminal half of Venus (YC). Insets in the
right column show nuclei or the membrane surface. YN-TRM1was used
as a negative control. Bars = 50mm (left column), 20mm (right column),
and 5 mm (insets).

Plant Physiol. Vol. 173, 2017 1701

IQD Proteins Regulate Microtubules and Cell Growth

216



DISCUSSION

Plants evolved a remarkable repertoire of proteins
for decoding information encrypted by cellular Ca2+

signatures, which are transiently generated in specific
responses to numerous systemic or environmental
stimuli. CaM/CML polypeptides are principal Ca2+

sensor relays that control the biochemical activities of
diverse regulatory targets via complex Ca2+-dependent
and Ca2+-independent interactions (Dodd et al., 2010;
Kudla et al., 2010; Hashimoto and Kudla, 2011).
Knowledge of the CaM/CML targets and of their bio-
chemical functions and underlying biological processes
will be imperative for deciphering CaM-mediated Ca2+

signal transduction in plants (Yang and Poovaiah,
2003). Plant-specific IQD gene families, first annotated
in Arabidopsis and rice (Abel et al., 2005) and more
recently in five additional species (Filiz et al., 2013;
Huang et al., 2013; Feng et al., 2014; Ma et al., 2014;
Wu et al., 2016), possibly encode the largest class of
CaMBPs in plants. Although the roles of a few IQD
members are beginning to emerge, the precise molec-
ular functions andmechanisms of action are still elusive
for any IQD protein (Abel et al., 2013).

We previously identified Arabidopsis IQD1 in a ge-
netic screen for glucosinolate-related mutants (Levy
et al., 2005) and noticed its colocalization with cortical
MT arrays (Bürstenbinder et al., 2013). In this study, we
report the subcellular distribution patterns of all
33 Arabidopsis IQD family members in transiently
transfected N. benthamiana cells, which revealed that
most GFP-IQD fusion proteins differentially localize to
the PM, to the cortical MT network, and to distinctive
sites of the cell nucleus (Fig. 1). We confirmed the lo-
calization patterns of select IQD proteins (Fig. 2),
which were independent of GFP tag configuration
(N or C terminal), promoter strength (Pro-35S and
ProIQD), and expression system (N. benthamiana and
Arabidopsis). The localization of GFP-fused IQD
proteins to MT arrays, the PM, and the cell nucleus is
in agreement with published proteome data. Analysis
of MAP-enriched fractions prepared fromArabidopsis
cell cultures identified a large set of known and novel
MAPs. Interestingly, four IQD proteins of phyloge-
netic group IV (IQD28, IQD29, IQD31, and IQD32)
were highly enriched in these fractions, and MT
colocalization was confirmed for GFP fusions of
IQD28 and IQD32 (Hamada et al., 2013). A phospho-
proteome analysis of PM-associated proteins after
elicitor treatment identified several IQDs in PM-
enriched fractions, including IQD9, IQD11, and IQD14
(Benschop et al., 2007). Interrogation of the nuclear
proteome detected IQD28 (Bigeard et al., 2014; Palm
et al., 2016) and IQD32 (Bigeard et al., 2014), which
independently confirms the targeting of at least two
IQD proteins to multiple subcellular sites (Hamada
et al., 2013).

While our work provides evidence for the nuclear,
MT, and PM localization of most IQD family members,
we are left to speculate about the modes of subcellular

IQD targeting. In several MAPs, the binding to MTs is
mediated by positively charged motifs, most likely via
electrostatic interactionwith acidic tail motifs of tubulin
subunits (Smith et al., 2001; Mishima et al., 2007;
Drevensek et al., 2012; Roll-Mecak, 2015). Similarly,
membrane-binding motifs used to anchor proteins to
the acidic phospholipid surface of membranes often
consist of basic amino acids (Goldenberg and Steinberg,
2010; Scott et al., 2013), and nuclear localization signals
require core basic residues for their activity (Kosugi
et al., 2009). The high basic pI of IQD proteins (;10.3),
which is a hallmark of the family (Abel et al., 2005),
suggests that electrostatic interaction contributes to the
MT and PM attachment of IQD proteins, and charge-
plot analysis reveals the occurrence of basic patches in
all 33 Arabidopsis IQD members (Supplemental Fig.
S6). Membrane tethering of IQD proteins is possibly
stabilized by S-acylation (or palmitoylation), which
attaches fatty acids to internal Cys residues. In silico
analyses using the GPS-Lipid and CSS-Palm tools (Ren
et al., 2008; Xie et al., 2016) predicted the presence of S-
acylation sites in several IQD family members
(Supplemental Table S1). Experimental support for the
lipidation of IQD proteins is provided by a large-scale
proteomics data set, which reported S-acylation of
IQD32 (Hemsley et al., 2013).

The four PM-localized GFP-IQD fusions that we ex-
amined in more detail (IQD12, IQD22, IQD24, and
IQD25) labeled distinct and immobile PM subdomains,
which suggests specific cellular functions for each IQD
(Fig. 3). Studies in Saccharomyces cerevisiae (yeast) and
Arabidopsis revealed that different populations of
subdomains coexist in membranes (Spira et al., 2012;
Jarsch et al., 2014). Notably, S-acylation appears to play
a predominant role for protein anchoring at membrane
subdomains in plants (Hemsley and Grierson, 2008),
as has been demonstrated for Rho-like GTPases
(Craddock et al., 2013) and for plant-specific scaffold
proteins of the Rem family (Konrad et al., 2014; Konrad
and Ott, 2015). Individual subdomains are thought to
reflect specialized functions of PM-associated protein
complexes, such as in signal transduction (Malinsky et al.,
2013), because protein components of functional modules
tend to colocalize in the same type of membrane sub-
domains. Such copartitioning was reported recently
for the brassinosteroid receptor BRASSINOSTEROID
INSENSITIVE 1 (BRI1) and the subdomain marker
ARABIDOPSIS FLOTILLIN-LIKE PROTEIN 1 (AtFlot1)
(Wang et al., 2015) aswell as for the anion channel SLAC1-
HOMOLOGUE 3 (SLAH3) and the Ca2+-dependent pro-
tein kinase CPK21 (Demir et al., 2013). IQD-dependent
recruitment of CaM to membrane subdomains (Fig. 7) is
particularly intriguing, as it may locally restrict CaM-
mediated Ca2+ signaling to specific sites within the PM
and to spatially separate functionally distinct CaM
signaling modules. Thus, the identification of IQD-
interacting proteins within individual PM subdomains
will be key for elucidating modules of CaM signaling
pathways and assigning functions to individual IQD
family members.
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Lateral stability is a hallmark of membrane sub-
domains, and their stabilization within the PM requires
scaffolding functions of the cytoskeleton (Kusumi et al.,
2012). Colocalization with RFP-TUA5 revealed that the
PM subdomains labeled by GFP-tagged IQD proteins
partially align alongMT arrays (Fig. 3). Similar patterns
have been reported for Rem proteins (Raffaele et al.,
2007; Jarsch et al., 2014), and targeting of AtRem6.6 to
subdomains in the PM proved to be sensitive to MT-
depolymerizing drugs (Jarsch et al., 2014), as was the
case for IQD12 and IQD22 (Fig. 3). A function of the
PM-MT nexus for subdomain formation is further
supported by studies in yeast also in S. cerevisiae
(Kusumi et al., 2012). In addition, the plant PM-MT
interface plays important roles in cell wall biogenesis
and cell shape regulation, mainly by guiding the de-
position of nascent cellulose fibers. Cellulose biosyn-
thesis requires the delivery of CSCs to the PM and the
coordination of CSC trajectories along MT arrays (Liu
et al., 2015). The dual localization of several IQD pro-
teins to MTs and the PM, and the cell shape defects
caused by IQD overexpression (Figs. 5–7), are consis-
tent with a function of IQDs at the PM-MT connection.
A striking transverse alignment of cortical MTs, as
observed for IQD-overexpressing cells (Figs. 6 and 7),
often correlates with a spiral pattern of cellulose de-
position, which favors longitudinal cell expansion
(Ivakov and Persson, 2013). Despite decades of re-
search, it is not well understood howCSCs interact with
MTs and how MTs are tethered to the PM. Our study
identified IQD family members as putative candidates
mediating such interactions. Elucidating how IQD
proteins contribute to functional PM-MT connections
(e.g. by affecting cellulose deposition, subdomain for-
mation, or MT attachment to the PM) will be a chal-
lenging task for the future.
The differential effects of overexpressed IQD family

members onMT arrays and the MT-related phenotypes
of IQD-overexpressing Arabidopsis plants point to
roles of IQDs in the organization of MT networks. In-
terestingly, we noticed that most GFP-IQD proteins
uniformly decorated MT arrays, similar to members of
the MAP65 family (Lucas et al., 2011), which function
mainly in MT bundling (Chen et al., 2016). In contrast,
most other MAPs either accumulate at the plus end of
MTs, such as CLIP-ASSOCIATED PROTEIN (CLASP)
(Kirik et al., 2007), END BINDING PROTEIN EB1
(Bisgrove et al., 2008), or SPIRAL1 (SPR1) (Sedbrook
et al., 2004), where they regulate the dynamics of MT
growth and shrinkage, or associate in punctate to pat-
chy patterns preferably at newly formed MT crossover
sites, as described for KATANIN 1(KTN1) (Lindeboom
et al., 2013) and SPR2 (Shoji et al., 2004). Evenly dis-
tributed MT association suggests that IQD proteins
may influence MT bundling. However, further work is
required to uncover the mechanisms by which IQDs
modulate MT organization. In vivo studies on IQD
dynamics and cellular functions have been hampered
by low levels of IQD protein abundance and a high
degree of genetic redundancy within the IQD family.

Therefore, transient expression assays combined with
our computational tool to quantitatively analyze MT
patterns may prove beneficial for elucidating IQD
functions. By applying this tool in a proof-of-concept
study, we identified IQD16 and IQD11 as the most
divergent IQD members in terms of MT patterning
(Fig. 5) and confirmed their function in regulating MT
orientation and cell shape in transgenic Arabidopsis
plants (Figs. 6 and 7). Differential MT-modulating
functions of individual IQDs are further corroborated
by MT-related phenotypes in IQD14-overexpressing
Arabidopsis seedlings (Fig. 7). Therefore, we conclude
that MT arrays are sensitive to reorganization by
(transient) overexpression of IQDs. Comparison of MT
patterns caused by the overexpression of IQDs with the
MT patterns formed upon the overexpression of MAPs
with known functions (e.g. in bundling or cross-linking
of MTs) could assist to predict molecular mechanisms
of IQD functions. Thus, transient expression assays
combined with our computational tool of MT array
pattern analysis offers a useful resource with which to
study potential regulators of MT organization in com-
plex shaped cells. Functions in growth regulation,
however, are not limited to MT-localized IQD family
members, as revealed by altered cell shapes in plants
overexpressing the PM-localized IQD25. Notably, we
observed distinct and, in some cases, even opposing
effects on growth and cell shape formation for the an-
alyzed IQD members (i.e. increased/augmented/more
pronounced elongation of leaves and cells in IQD11-
and IQD16-overexpressing plants and rounding/more
compact leaves and cells in IQD25-overexpressing
plants; Figs. 4, 6, and 7). These results suggest special-
ized functions of individual IQDs in regulating the
direction of cell elongation and possibly in cell polarity
establishment.

We demonstrated in BiFC assays that select IQD
members recruit CaM2 to diverse subcellular sites,
which was confirmed independently by the relocaliza-
tion of cytoplasmic CaM2 upon coexpression with each
IQD protein (Fig. 8; Supplemental Fig. S5). Although
we tested only one CaM isoform versus eight IQD
proteins, it is likely that all IQD family members inter-
act with a select set of the four CaM and 50 CML Ca2+

sensor polypeptides in Arabidopsis. We previously
verified the predicted function of the conserved IQ67
domain for CaM binding and demonstrated in yeast
two-hybrid assays the interaction of IQD1 with three
CaM isoforms and of IQD20 with CaM2 and CML13
(Bürstenbinder et al., 2013). We are left to speculate
on the Ca2+ state of recruited CaM because the
IQ67 domain contains multiple Ca2+-dependent and
Ca2+-independent CaM retention motifs and IQD20
binds in vitro to both apo-CaM and Ca2+-CaM (Abel
et al., 2005). The biochemical properties and functions
of IQD proteins may be regulated directly upon bind-
ing to CaM and determined by its Ca2+ occupancy.
Stimulus-specific activation of Ca2+ signaling pathways
may specify and fine-tune the IQD affinity to MTs,
the PM, and other interactors, such as IQD1-binding
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KLCR1 (Bürstenbinder et al., 2013). Alternatively, as
reported for fungal and mammalian IQGAP scaffold
proteins, which orchestrate cellular signaling from the
PM to the nucleus (Shannon, 2012; Smith et al., 2015),
IQDsmay act as reservoirs for CaM/CMLs. In that case,
IQD proteins sequester apo-CaM/CMLs at specific
subcellular sites, which upon Ca2+ sensing and loading
are transferred to targets regulated by holo-CaM/
CMLs, or vice versa. Thus, the IQD family may provide
an assortment of versatile platform proteins that facil-
itate and specify CaM/CML dynamics during Ca2+

signaling at the cell periphery, on the cytoskeleton, and
in the cell nucleus. Interactions of IQDs and CaM/
CMLs in the nucleus may integrate nuclear calcium
signaling (Charpentier andOldroyd, 2013) and regulate
a proposed function of select IQD proteins during
mRNA maturation, export, and cytoplasmic transport
(Abel et al., 2013; Bürstenbinder et al., 2013). These
processes share nucleocytoplasmic protein factors and
allow for efficient fine-tuning of protein targeting and
activity (Marchand et al., 2012; Shahbabian and Char-
trand, 2012).

Several properties of IQD family members point to
their roles as scaffold or adaptor proteins. The central
conserved IQ67 domain of most IQD proteins, which
likely adopts an a-helical fold, is flanked on either side
by extensive regions of predicted intrinsic disorder
(Supplemental Fig. S6). Substantial intrinsic disorder is
a hallmark of scaffolding proteins. The conformational
flexibility and biochemical properties of natively un-
structured regions, which often contain multiple, short
linear peptide motifs for molecular interactions and/or
posttranslational modifications (Tompa et al., 2014),
specify and fine-tune the assembly of macromolecular
complexes via induced and cooperative folding (Babu
et al., 2011; Wright and Dyson, 2015). Because intrin-
sically disordered proteins are prone to engage in pro-
miscuous molecular interactions via peptide motifs of
low complexity, their steady-state concentrations are
tightly regulated at multiple levels, and elevated gene
expression often causes detrimental effects or disease
(Vavouri et al., 2009; Babu et al., 2011). While almost
nothing is known about the control of IQD gene ex-
pression and IQD protein stability, with the exception of
IQD22, which is induced rapidly by GA3 via DELLA-
dependent regulation (Zentella et al., 2007), it is of note
that IQD-related phenotypes have been reported only
for IQD-overexpressing plants, which display altered
secondary metabolism (Levy et al., 2005), cell shape
(Figs. 6 and 7), and organmorphology (Xiao et al., 2008).

In conclusion, our comprehensive study of subcel-
lular localization patterns of all 33 Arabidopsis IQD
proteins, in combination with the computational anal-
ysis of MT arrays, in planta CaM interaction assays of
select IQD members, and characterization of IQD11,
IQD14, IQD16, and IQD25 overexpression lines, pro-
vide strong evidence that plant-specific IQD families
define a new class of largely MT-based CaMBPs with
additional but distinctive roles in PM subdomains and
nuclear compartments. We propose that IQD families

provide a multifaceted toolbox of scaffold-like proteins
for integrating CaM-dependent Ca2+ signaling and
possibly other signal transduction pathways at multi-
ple subcellular sites to regulate cell function, shape, and
growth during plant development.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

Nicotiana benthamiana plants were grown in a greenhouse at 22°C to 24°C

under long-day conditions (16 h of light/8 h of dark). Arabidopsis (Arabidopsis

thaliana) ecotype Col-0 seeds were originally obtained from the Arabidopsis

Biological Resource Center. Seeds of iqd16-2 (SALK_053223), iqd25-1

(SALK_058876), and iqd25-2 (SALK_148613) T-DNA lines were obtained from

the Nottingham Arabidopsis Stock Centre (Scholl et al., 2000). To visualize MT

arrays, transgenic Arabidopsis seedlings expressing a GFP fusion of the

MT-binding domain of mouse MAP4 under the control of the CaMV 35S pro-

moter were analyzed (Marc et al., 1998). For growth under semicontrolled

conditions, plants were stratified at 4°C for 2 d and cultivated under long-day

conditions as described above. For sterile cultivation, Arabidopsis seeds were

surface sterilized with chlorine gas and, after 2 d of stratification, grown ver-

tically on square plates containing Arabidopsis salt medium and 1% (w/v) agar

with cycles of 16 h of light and 8 h of dark (Lincoln et al., 1990).

Plasmid Construction

DNA sequence information of IQDs, PDLP1, TRM1, Rem6.6, Rem6.7, and

TUA5was obtained fromTheArabidopsis Information Resource. Open reading

frames were amplified from the Arabidopsis Biological Resource Center or

RIKEN cDNA clones or from cDNA of Arabidopsis Col-0 seedlings using gene-

specific primers (Supplemental Tables S2 and Table S4). Full-length genomic

loci and upstream promoter sequences were amplified from genomic DNA of

Arabidopsis Col-0. Amplicons were ligated into Gateway-compatible entry or

donor vectors (Supplemental Table S2), and insert fidelity was verified by DNA

sequencing. The generation of CaM2 ENTR plasmid was described by Fischer

et al. (2013). Inserted sequences were mobilized into pB7WGF2, pB7WGY2

(Karimi et al., 2002), or pGWB455 (Nakagawa et al., 2007) for the expression of

the N-terminal GFP, YFP, or RFP fusion under the control of the CaMV 35S

promoter, respectively, or into pB7FWG or pB7FWG2 (Karimi et al., 2002) for

the expression of C-terminal GFP fusions under the control of the native

promoter sequences or 35S promoter, respectively. For BiFC assays, coding

sequences were mobilized into pDEST-VYNE(R)GW and pDEST-VYCE(R)GW to

generate N-terminal fusions with the N- and C-terminal halves of VENUS,

respectively. To generate ProIQD:GFP-GUS reporter constructs, the promoter

region was mobilized into pBGWFS7 (Karimi et al., 2002).

Plant Transformation

For transient expression assays in N. benthamiana, leaves were coinfiltrated

with Agrobacterium tumefaciens GV3101 pMP90RK harboring plasmids and the

silencing suppressor p19 in a 1:1 ratio. Bacterial cultures were adjusted to an

optical density at 600 nm of 0.5 using infiltration buffer, and N. benthamiana

leaves were pressure infiltrated through the abaxial epidermis. A. tumefaciens-

mediated transient transformation of Arabidopsis was performed in leaves of

4-week-old plants grown under short-day conditions according to the protocol

described by Mangano et al. (2014). For stable transformation of Arabidopsis,

the floral dip technique was used (Clough and Bent, 1998), and eight to 24

independent transgenic lines were identified in the T1 generation by Basta se-

lection for each construct analyzed. To verify single-copy transgene insertion,

T2 transgenic lines were analyzed for a 3:1 segregation ratio (Basta). GFP

fluorescence and GUS expression were analyzed in homozygous T3 plants of

two to four lines showing representative GUS expression patterns or growth

phenotypes.

Quantitative Real-Time PCR and RT-PCR

Rosette leaves fromthree individual 4-week-oldplantswerepooled, andtotal

RNAwas extracted fromapproximately 100mgof tissue using theRNeasyPlant

1704 Plant Physiol. Vol. 173, 2017

Bürstenbinder et al.

219



Mini Kit (Qiagen). After DNase treatment, first-strand cDNA was synthesized

from 4 mg of RNA using oligo(dT) primers with the Revert Aid First Strand

cDNA synthesis kit (Thermo Fisher). Quantitative real-time PCR was per-

formed on the 7500 Fast Real-Time PCR system using Fast SYBR Green master

mix (Applied Biosystems) with 2 mL of 1:10 diluted cDNA. The relative

expression of IQD16was calculated relative to PP2A. For RT-PCR analyses, RNA

was isolated from 5-d-old seedlings grown under sterile conditions, and cDNA

was synthesized from 5 mg of total RNA as described above. ACTIN2 was am-

plified from 2mL of 1:10 diluted cDNA, and 2mL of undiluted cDNAwas used as

a template for the amplification of IQD16 and IQD25. Primers used for amplifi-

cation and their sequences are given in Supplemental Tables S3 and S4.

Histochemical Analysis

ForGUS staining, sample tissueswere fixed in 80% (v/v) ice-cold acetone for

30 min and incubated for 2 to 8 h in GUS staining solution [50 mM sodium

phosphate, pH 7.2, 0.5 mM K3Fe(CN)6, 0.5 mM K4Fe(CN)6, 2 mM 5-bromo-4-

chloro-3-indolyl-b-glucuronic acid, 10 mM EDTA, and 0.1% (v/v) Triton X-100]

at 37°C. Imaging of GUS staining patterns was performed using a Zeiss Axio-

plan 2 microscope.

Confocal Laser Scanning Microscopy

Unless stated otherwise, imaging was performed with a Zeiss LSM

700 invertedmicroscope using a 403water-immersion objective. The excitation

wavelength for GFP and YFP was 488 nm; emission was detected between

493 and 555 nm. RFP was excited with a 555-nm laser, and emission was

detected using a long-pass filter (582–700). For colocalization assays, images

were obtained in the sequential mode. Root cells of transgenic Arabidopsis

seedlings were plasmolyzed by treatment with 150 mM NaCl as described by

Müller et al. (2015). For PI or FM4-64 staining, cells were incubated for 1 to 5min

in 10 mM PI or 50 mM Synapto-Red C2, respectively. Seedlings were imaged after

two wash steps in sterile water. For the analysis of epidermis pavement cell

shapes, single optical sections of the adaxial side of FM4-64-stained cotyledons

were acquired with a 203 objective. Surface images of epidermal cells were

acquired with a 633 water-immersion objective. BiFC assays were carried out

with a Zeiss LSM 710 inverted microscope according to the protocol described

by Gehl et al. (2009). Imaging was performed with identical laser settings for all

samples, and emission spectra of reconstituted fluorescence were recorded by

lambda scan.

Oryzalin treatments were performed as described by Bürstenbinder et al.

(2013). Briefly, a 2 mM stock solution of oryzalin was prepared in dimethyl

sulfoxide. N. benthamiana leaf discs were incubated in an aqueous solution of

50 mM oryzalin for up to 90 min. For treatment of Arabidopsis seedlings, plants

were incubated in a final concentration of 20 mM oryzalin for 1 to 3 h.

Image Analysis

For semiautomatic segmentation, cell outlineswere labeled in the redchannel

by PI staining or by expressing PM-localized RFP-PDLP1 (Amari et al., 2010). In

maximum projections, cell outlines appear as thin vessel-like structures with

locally varying contrast. The contrast was optimized by smoothing of the image

with a Gaussian filter (s = 1) and applying aMexican hat filter in 18 steps of 10°

to emphasize vessel-like structures. The resulting images containing the max-

imal filter response for each pixel were binarized by local Niblack thresholding

as implemented in MiToBo (Möller et al., 2016). Subsequently, postprocessing

steps were applied to the binary images (i.e. component labeling, exclusion of

too-small components, and skeletonization), which allowed the extraction of

large parts of the cell boundaries. Remaining gaps were corrected by manual

postprocessing, and cells exceeding the image border were excluded manually.

Subsequently, texture analysis techniques were applied to automatically char-

acterize MT organization as stated in the result section of the main text (see

Fig. 5). The feature vectors of all cells were jointly clustered applying k means.

For each cell, the ratio of windows belonging to the different k clusters was

calculated, which results in a k dimensional cluster distribution vector. Each

cluster refers to a specific structural pattern appearing in the cells; hence, each

vector can be interpreted as a probability density distribution of these patterns

appearing in the corresponding cell. From the set of vectors, pairwise distances

or distances between average vectors for each cell line were extracted and vi-

sualized in heat maps or adjacency networks (Fig. 3, A and B). The plots shown

in this study were generated by applying nonoverlapping windows with a size

of 16 3 16 pixels from which rotation invariant local binary patterns were

extracted. For clustering, k was set to 10 and Euclidean distances were used.

These parameters were empirically determined in prestudies that revealed that

changing of parameters (i.e. window size and sliding windows) did not affect

the detected global tendencies. In total, the analysis was based on 130 images

containing 184 cells. For each IQD family member, five to 14 individual cells

were analyzed. Networks were visualized with Cytoscape (Shannon et al.,

2003).

To assess the lateral mobility of membrane subdomains, stacks of 10 to

12 images were acquired over 20 min in intervals of 2 min. Lateral shift of

stacks was corrected via the Fiji plugin Stackreg (Schindelin et al., 2012).

Kymographs were generated with the Fiji command Reslice using a line

width of 12.

Quantification of subdomains was performed with Fiji. Images were back-

ground subtracted (rolling ball, 70 pixels). The radius was set according to the

heuristically determinedmaximal size of objects of interest. Dot structures were

detected with the wavelet-based particle detector (Greß et al., 2010) included in

the MiToBo toolbox (jmin = 3, jmax = 5, scale interval of s = 2). The correlation

threshold was fixed to t = 0.6, and regions with sizes between 100 and 1,750

pixels were analyzed to calculate average domain sizes.

Epidermis pavement cell shape was analyzed in cotyledons of 5-d-old

seedlings grown sterile under long-day conditions. Cell walls were visual-

ized by PI staining. Cell outlines were labeled in single optical sections of

epidermis pavement cells with Fiji, and margin roughness and eccentricity

were calculated as measures of (non)smoothness of the contour and cellular

elongation, respectively. As a measure of cell shape (ir)regularity, first an

average angle of tangent orientation changes is computed along the cell

contour based on tangent orientations of pairs of adjacent contour points.

Next, the deviation of the calculated angle from the angle expected for a

perfect circle with an equal number of sampling points is calculated, referred

to as margin roughness. A higher margin roughness value corresponds to a

higher degree of nonsmoothness and reflects the extent of cellular lobing.

Eccentricity is defined as the ratio between the extension of a region along its

main axis and along the corresponding perpendicular axis. The extension

along each axis is extracted from second-order central moments of the cell

region. An almost circular region has an eccentricity value of 0, which in-

creases with increasing elongation.

Immunocytochemistry

For ultrastructural localization of GFP-tagged proteins, root tips were

transferred into aluminum planchettes and high-pressure frozen with an HPM

10 apparatus (Bal-Tec). Subsequently, thematerial was cryosubstituted in 0.25%

(v/v) glutaraldehyde (Sigma) and 0.1% (w/v) uranyl acetate (Chemapol) in

acetone for 2 d at280°C using cryosubstitution equipment (FSU; Bal-Tec). This

was followed by embedding in HM20 (Polysciences Europe) at 220°C.

For immunolabeling of ultrathin sections, we used a polyclonal anti-GFP

antibody (600-101-215; Rockland) detected by a rabbit anti-goat secondary

antibodyconjugatedwith10-nmgold (G5527; Sigma). Sectionswerepoststained

with uranyl acetate and lead citrate in an EM-Stain apparatus (Leica) and

subsequently observed with an EM 900 transmission electron microscope (Carl

Zeiss Microscopy). Micrographs were taken with the Variospeed SSCCD (TRS).

Statistical Analysis

Statistical analysis was performed in R (version 3.2.1) by one-way ANOVA

with Tukey’s honestly significant difference test.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data

libraries under accession numbers At3g09710 (IQD1), At5g03040 (IQD2),

At3g52290 (IQD3), At2g26410 (IQD4), At3g22190 (IQD5), At2g26180 (IQD6),

At1g17480 (IQD7), At1g72670 (IQD8), At2g33990 (IQD9), At3g15050 (IQD10),

At5g13460 (IQD11), At5g03960 (IQD12), At3g59690 (IQD13), At2g43680

(IQD14), At3g49380 (IQD15), At4g10640 (IQD16), At4g00820 (IQD17),

At1g01110 (IQD18), At4g14750 (IQD19), At3g51380 (IQD20), At3g49260

(IQD21), At4g23060 (IQD22), At5g62070 (IQD23), At5g07240 (IQD24),

At4g29150 (IQD25), At3g16490 (IQD26), At1g51960 (IQD27), At1g14380

(IQD28), At2g02790 (IQD29), At1g18840 (IQD30), At1g74690 (IQD31),

At1g19870 (IQD32), At5g35670 (IQD33), At5g19780 (TUA5), At5g43980

(PDLP1), At3g02170 (TRM1), At1g13920 (Rem6.6), At5g61280 (Rem6.7),

At3g18780 (ACTIN2), At1g13320 (PP2Ac), At2g41110 (CaM2).
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Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Expression analysis and subcellular localization

of Arabidopsis IQD genes.

Supplemental Figure S2. Phenotypes of iqd25 mutant lines and expression

analysis of ProIQD25::GFP-GUS.

Supplemental Figure S3. Phenotypes of iqd16 lines and expression analysis

of ProIQD16::GFP-GUS.

Supplemental Figure S4. Expression analysis of IQD11 and IQD14 over-

expression lines and of ProIQD11:GFP-GUS and ProIQD14:GFP-GUS

lines.

Supplemental Figure S5. Coexpression assays of GFP-IQD fusions with

RFP-CaM2.

Supplemental Figure S6. Predicted properties of Arabidopsis IQD pro-

teins.

Supplemental Table S1. Prediction of nuclear localization signals, lipida-

tion sites, and signal peptides in Arabidopsis IQD proteins.

Supplemental Table S2. Gene identifiers and plasmids.

Supplemental Table S3. Primer combinations used for quantitative PCR,

RT-PCR, and genotyping.

Supplemental Table S4. Primer sequences.
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4.4 Quantitative and Comparative Analysis of Global Patterns

of (Microtubule) Cytoskeleton Organization with

CytoskeletonAnalyzer2D

Original Publication:

Möller, B., Zergiebel, L., and Bürstenbinder, K. (2019). Quantitative and Comparative Analysis
of Global Patterns of (Microtubule) Cytoskeleton Organization with CytoskeletonAnalyzer2D.
In F. Cvrčková and V. Žárský (Eds.) Plant Cell Morphogenesis: Methods and Protocols, Chap.
10, pp. 151–171. New York, NY: Springer.

Abstract:

The microtubule cytoskeleton plays important roles in cell morphogenesis. To investigate the
mechanisms of cytoskeletal organization, for example, during growth or development, in genetic
studies, or in response to environmental stimuli, image analysis tools for quantitative assess-
ment are needed. Here, we present a method for texture measure-based quantification and
comparative analysis of global microtubule cytoskeleton patterns and subsequent visualization
of output data. In contrast to other approaches that focus on the extraction of individual
cytoskeletal fibers and analysis of their orientation relative to the growth axis, Cytoskeleton-
Analyzer2D quantifies cytoskeletal organization based on the analysis of local binary patterns.
CytoskeletonAnalyzer2D thus is particularly well suited to study cytoskeletal organization in
cells where individual fibers are difficult to extract or which lack a clearly defined growth
axis, such as leaf epidermal pavement cells. The tool is available as ImageJ plugin and can
be combined with publicly available software and tools, such as R and Cytoscape, to visualize
similarity networks of cytoskeletal patterns.

Link:

https://doi.org/10.1007/978-1-4939-9469-4_10
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5.1 Knowing what happened - Automatic Documentation

of Image Analysis Processes

Original Publication:

Möller, B., Greß, O., and Posch, S. (2011). Knowing what happened - automatic documentation
of image analysis processes. In J. Crowley, B. Draper, and M. Thonnat (Eds.) Proc. of 8th
Intern. Conf. on Computer Vision Systems, vol. 6962 of LNCS, pp. 1–10. Sophia Antipolis,
France: Springer. DOI: 10.1007/978-3-642-23968-7_1.

Abstract:

Proper archiving or later reconstruction and verification of results in data analysis requires
thorough logging of all manipulative actions on the data and corresponding parameter set-
tings. Unfortunately such documentation tasks often enforce extensive and error prone manual
activities by the user. To overcome these problems we present Alida, an approach for fully au-
tomatic documentation of data analysis procedures. Based on an unified operator interface all
operations on data including their sequence and configurations are registered during analysis.
Subsequently these data are made explicit in XML graph representations yielding a suitable
base for visual and analytic inspection. As example for the application of Alida in practice we
present MiToBo, a toolbox for image analysis implemented on the basis of Alida and demon-
strating the advantages of automatic documentation for image analysis procedures.

Link:

https://doi.org/10.1007/978-3-642-23968-7_1
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Abstract

Solving image analysis problems not only requires
the development of suitable sets of algorithms to pro-
duce desired result data, but also demands for suitable
user interfaces (UIs) to foster use in practice. Here we
present our library Alida which aims to promote the
deployment of UIs by featuring their automatic gener-
ation from algorithm code. Alida supports command
line and graphical UIs (GUIs), and ships with a graph-
ical editor for designing more complex workflows. En-
forcing only a small set of rules to obey Alida signifi-
cantly reduces implementation overhead for developers
and allows for focusing on algorithm rather than UI de-
sign. The suitability of Alida’s concept for real-life ap-
plications is shown by the library MiToBo for biomed-
ical image analysis implemented based on Alida.

1 Introduction

The process of automatically analyzing image data
can generally be understood as a sequence of individ-
ual analysis steps applied to data. These steps are
performed sequentially, in parallel, or in a nested fash-
ion and transform given input data into application-
specific result data. Often each single step of such
analysis pipelines is associated with a specific process-
ing unit or operator implementing functionality and
performing the actual work on the data.
Consequently, the development of complex image

analysis pipelines comprises two issues. On the one
hand it subsumes the development of suitable opera-
tors, and on the other hand it requires their combina-
tion into pipelines through which the data is propa-
gated to solve a task at hand. Besides these two fun-
damental issues the availability of suitable UIs on the
programming as well as on the user level is equally
important. Particularly the latter ones are inevitable
to pave the path for newly developed algorithms into
practice where non-expert users are highly interested
in using the software to solve their problems.
Although a great consent is to be expected within

the community regarding the necessity of handy user
interfaces to be available, nevertheless their develop-
ment is too often neglected in practice. The main
reason for this is the significant amount of additional
workload for interface design and implementation.
In this paper we present an approach for closing the

gap between algorithm and pipeline design on the one
side, and the development of UIs on the other. Our
key contribution is to provide a development environ-
ment in terms of a Java library which inherently in-
tegrates the development of algorithms and UIs, and

which is publicly available under GPL license1. This
library named Alida defines operators as key compo-
nents and requests developers to implement these by
following general rules. Each operator has to support
inquiries for its input and output parameter data types
and values. In addition operators have to be invoked
by a unified procedure enabling generic handling of all
operators.
These guidelines may seem to restrict developers in

their design options, but they only enforce a minimal
set of rules as will become obvious in Sec. 3. Moreover,
by embedding new operators into the environment pro-
vided by Alida all operators are natively accessible
through a unified API on the programming level, ren-
dering their use within code quite easy. Finally, these
rules lay the foundation for automatically generating
graphical as well as command line UIs for all oper-
ators in a generic fashion (Sec. 4). They also enable
the export of operators into more complex applications
like graphical editors for pipelines in a straightforward
manner. Accordingly, such an editor is also included
in Alida and consequently extends the comfortable de-
velopment and application of single operators towards
user-friendly graphical pipeline design (Sec. 5).

2 Related Work

For many image analysis problems well-established
algorithmic solutions have emerged over time. They
are often collected in libraries like OpenCV [3] or
ITK [6], or in commercial tools like Matlab. While
this fosters wide-spread use, the lack of handy user in-
terfaces still forms a barrier. Although OpenCV and
Matlab provide basic components like windows and
buttons for interaction, the implementation of GUIs
is still left to the developer of a certain application.
For the development in Java libraries and toolk-

its like JAI [11] and ImageJ [1], which is a toolbox
of image analysis algorithms widely-used withing the
biomedical community, aim to simplify operator de-
velopment providing an embedding framework. While
JAI is focused on unifying parameter handling and op-
erator invocation, the new version 2.0 of ImageJ2 also
includes mechanisms for automatic generation of GUIs.
Our concept Alida surpasses this by featuring advanced
concepts for handling operator parameters (cf. Sec. 4),
handy command-line tools, and support for automatic
process documentation [9].
For designing analysis pipelines various tools are

available. While the graphical workflow editor Ke-
pler3 does not target at a specific field of application,

1http://www.informatik.uni-halle.de/alida/
2http://developer.imagej.net/
3https://kepler-project.org/

MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN14-22
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KNIME [2] is dedicated to data mining and natively
supports image processing. However, extending these
tools with new functionality is not always straightfor-
ward. Our library Alida is designed for data analysis in
general, but we have also deployed the image process-
ing library MiToBo based upon Alida and dedicated
to biomedical imaging which proves the suitability of
our concept in practice (Sec. 6). It is deeply integrated
into ImageJ overcoming the need for non-expert users
to adapt to a completely new environment for applying
operators and developing their workflows.

3 Basic Concepts

As outlined in the introduction, Alida defines op-
erators as the basic units for data analysis. Taking
an object-oriented approach an operator is expected
to extend the common super class ALDOperator and
to implement its functionality by overriding specific
methods.
All data to be processed, controlling manipulation,

or to be returned as result from an operator are consis-
tently denoted as parameters. The role of a parameter
is specified via its direction, which may be IN, OUT,
or INOUT. A typical example is a filter applied to an
input image (direction IN) where the filtered image is
returned in a newly allocated data structure as a pa-
rameter with direction OUT. If the filter acts destruc-
tively in place, this is described by a single parameter
of direction INOUT. A parameter controlling the filter
operation, e.g. a bandwidth, is provided as an IN pa-
rameter. Parameters of direction IN and INOUT may
be either required or optional to simplify operator con-
figuration. In addition Alida supports supplemental
parameters which in contrast to required and optional
ones must not influence processing results. Examples
include flags to control debug messages or intermediate
results to be returned from operators after execution.
For defining and accessing the parameters of an oper-

ator Alida makes use of Java’s annotation mechanism.
Parameters can easily be added by simply annotating
member variables of the operator class. In addition,
the annotations also allow to easily query an opera-
tor for all its parameters including their type, role and
current value at run time using methods supplied by
the common super class ALDOperator.

To make use of an operator’s functionality an in-
stance of the class needs to be created and its IN
and INOUT parameters have to be set. Processing
is invoked calling the generic runOp() method sup-
plied by ALDOperator. This method subsumes an au-
tomatic parameter validation, e.g. it checks whether
all required parameters are provided, and optionally
enforces operator-specific constraints, e.g. admissible
ranges of parameter values. Subsequently the opera-
tor’s operate() method is called performing data ma-
nipulations, and finally the results are made available
via the output parameters of the operator.
As outlined in the introduction image analysis prob-

lems usually require a combination of operators to be
applied to data rather than only a single one. Con-
sequently Alida natively supports the development of
complete pipelines for data processing by providing the
class ALDWorkflow. This class represents a processing
pipeline as a set of operators. It allows for establishing

links between OUT and IN parameters of different op-
erators by which a flow of data and control and thus a
pipeline can be realized.
A workflow in Alida also features entry and exit

points for data into and out of the whole pipeline.
These points have essentially the same role as param-
eters for operators, hence, they share exactly the same
properties, e.g., have a direction and may be required
or optional. This naturally implies to implement
ALDWorkflow extending the super class ALDOperator
of all operators. The operate() method of a work-
flow object invokes all included operators in topologi-
cal order and forwards output data between operators
according to the data flow. To facilitate graphical pro-
gramming, the class ALDWorkflow also supplies meth-
ods to invoke only part of the processing pipeline, to
save and load workflows, and offers an event mecha-
nism for GUI components to register, thus facilitating
a Model-View-Controller architecture (cf. Sec. 5).

4 Automatic User Interface Generation

The operator concept of Alida with its clearly de-
fined specification of parameters and its standardized
invocation procedure lays the basis for generic imple-
mentation of UIs. To facilitate generic configuration
and execution of operators such UIs are required to
allow for the input of parameter values, to invoke the
operator, and finally to publish the results.
In Alida the Model-View-Control design pattern [4]

is used to achieve maximal independence between the
operators implementing the functionality, the I/O of
data objects, and the graphical and textual UIs. As
input and output mechanisms of individual data items
are data type specific, I/O functionality is also com-
pletely encapsulated in data I/O providers hiding any
data type specific knowledge from the generic viewers.
To endorse the development of new functionality Al-

ida already includes various providers which facilitates
I/O for a wide variety of Java objects out of the box
and overcomes the need for programmers to implement
I/O capabilities. Besides providers for all primitive
data types and arrays Alida subsumes general purpose
providers for all enumeration types, collections, and
so-called parametrized classes. An arbitrary class may
be declared as parametrized class, and any subset of
its member variables as class parameters, both via an-
notations. This is sufficient for Alida’s general purpose
providers to handle this class as an operator parameter.
Likewise operator objects by itself may act as param-
eters of other operators. Only specialized classes like
images or contour sets require additional providers to
be implemented, but these can easily be added to the
library with no need to modify the code of Alida.

4.1 Command line

Building on this infrastructure Alida features a com-
mand line operator runner (CLR) to invoke all oper-
ators via console or scripts. All input parameters are
supplied as arguments by ’name=value’ pairs. To ease
the handling of class inheritance, parametrized classes
and operators as parameters in a generic fashion, the
CLR features a flexible parser for argument preprocess-
ing. It allows for parsing CLR calls like the one shown
in Fig. 1. The operator SnakeOptimizerCoupled
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java OpRunner SnakeOptimizerCoupled i n i t i a l S n a k e s=RoiSet . xml inImg=c e l l . t i f
outSnakes=snakesOut . xml snakeOptimizer=’ $SnakeOptimizerSingleVarCalc :{ energySet=
{ en e r g i e s =[$MTBSnakeEnergyCD CVRegionFit :{ lambda in =1.0 , lambda out =5.0} ] , we ights = [1 . 0 ]}} ’

Figure 1. Example call of an operator from command line. The operator SnakeOptimizerCoupled called
here among others takes an operator of type SnakeOptimizerSingleVarCalc as input parameter.

for multiple snake segmentation not only takes ini-
tial snakes and an image as input, but also an opera-
tor instance of SnakeOptimizerSingleVarCalc deal-
ing with a single snake (cf. Fig. 2, right). The syntax
of the individual value strings is defined by the specific
I/O providers they are finally passed to and which, by
convention, also allow values to be read from file. Anal-
ogously output parameters are specified as name–value
pairs allowing to, e.g., redirect output into files, as an
alternative to formatting the values onto standard out.

4.2 Graphical user interface

A GUI is supposed to support graphical configura-
tion and execution of operators. Unlike the command
line UI a graphical front-end to choose, configure and
execute operators is also well-suited for interactive ex-
ploration of image processing, e.g. for online inspec-
tion of the effects of parameter changes during rapid-
prototyping. The GUIs currently provided by Alida
are implemented based on Swing, but this is not a fun-
damental restriction as other frameworks likewise web
interfaces can be added in a straightforward way.

As soon as the user has selected an operator from the
choice of available operators, a window to configure it
and control its execution is automatically generated
(cf. Fig. 2 on the right, which shows the GUI for the
operator SnakeOptimizerSingleVarCalc introduced
above). To this end the operator is first queried for
the types of its input and output parameters. Sub-
sequently for each parameter a corresponding graphi-
cal component is generated using the provider mecha-
nism outlined above. All components are arranged in
a frame whereas required, optional and supplemental
parameters are grouped into different sections. Be-
sides these components for operator configuration al-
lowing for user inputs, the window also contains but-
tons for controlling operator execution and enabling
interaction (if the operator supports that). In addi-
tion a menu-bar is available containing items, e.g., for
accessing online help or saving and loading the configu-
ration to and from file. After execution of an operator
result data is displayed to the user again adopting the
provider mechanism for generating graphical compo-
nents for each output parameter.

The configuration and control window acts as con-
troller and likewise observer of the underlying operator
and its status. The configuration status of the operator
is synchronized online with the window and vice versa.
E.g., parameters that are required, but do not yet have
suitable values are marked in red, and the color of the
run button indicates whether the operator is ready for
execution or not. On the other hand changes in the
parameters made by the user are directly propagated
to the operator and induce an instant update of its
configuration and potentially also its status.

5 Graphical Programming

Designing more complex analysis pipelines featuring
the combination of various operators can be facilitated
in a comfortable, intuitive and user-friendly way by
graphical programming editors. The underlying idea
of these tools is to translate the design process into
a graph editing task. Operators are represented by
nodes, and edges in-between indicate the flow of data
and control. Obviously Alida is an optimal foundation
for such an editor. Its workflow concept is natively
qualified as basis since it inherently defines a computa-
tional model of workflows. And also the clearly defined
concept of operators renders it very easy to adopt op-
erators as basis for configurable nodes within a graph
data structure associated with a processing pipeline.
They are handled in a generic fashion similar as in the
context of UI generation discussed earlier.
The graphical editor Grappa included in Alida is

built on these ideas (Fig. 2). It automatically includes
all available operators into a menu (left of Fig. 2) from
where the user can select operators for a workflow. For
each operator a corresponding node is generated on the
workbench showing the parameters of the operator as
ports. These ports can be linked by edges resulting
in a working cycle intuitive also for non-experts. For
graphical node configuration each node is linked to a
configuration window where the same components and
mechanisms as for automatic GUI generation are used.
Once pipeline design and configuration are completed
the workflow graph can be executed either completely
or in parts, e.g., only up to a certain node. After ter-
mination the results are displayed to the user again
reusing mechanisms from GUI generation. Similar to
the concepts of graphical operator configuration and
control, the editor acts as controller and observer. The
node color is updated according to the current status of
the underlying operator in synchrony with changes in
the configuration window which yields an intuitive vi-
sual guidance in pipeline configuration and execution.

6 Alida in Practice

The development of image analysis algorithms for
biomedical applications natively requires deep links be-
tween algorithm developers and (non computer scien-
tist) users. Algorithmic improvements and adaptations
can most of the time best be done based on direct prac-
tical evaluations in the lab, and the frequent introduc-
tion of new imaging techniques and types of data both
request for topical availability of appropriate software.
We meet these requirements by implementing our

image analysis algorithms based on Alida, i.e. each al-
gorithm is implemented as operator. The set of all
operators is collected in the toolbox MiToBo which
inherently supports execution of all available opera-
tors from command line as well as graphically. For
straightforward usage the graphical front-end to select,
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Figure 2. Screen-shot of the graphical editor for user-friendly pipeline design with its selection menu and
workbench (left), and an automatically generated configuration and control window for an operator (right).

configure and execute operators is available as plugin4

for ImageJ, a tool extensively used by our biomedical
cooperation partners. This way algorithmic improve-
ments and extensions can directly be released for prac-
tice in terms of new ImageJ plugins. By this users get
software for current problems soon, and the develop-
ers earn topical feedback, in conclusion yielding great
benefits for both sides.
Over the years a broad collection of algorithms for

basic image processing tasks like morphological opera-
tions, filtering or labeling, as well as for specific areas
of application, e.g., for sub-cellular particle detection
[8], cell segmentation based on active contours [10, 7],
or analysis of scratch assay images [5] have been devel-
oped. In addition the toolbox subsumes a plugin ver-
sion of the editor Grappa (Sec. 5). Besides, non-expert
users also benefit from some user-friendly built-in fea-
tures of Alida not discussed here in detail, e.g., the au-
tomatic documentation of parameters used in analysis
procedures simplifying communication between devel-
opers and users [9], or the option to filter as well the
set of operators in the graphical selection menu as also
the parameters of an operator displayed in the GUI.

7 Conclusions

Alida offers an integrated approach for unifying the
development of image analysis algorithms and more
complex analysis pipelines on the one hand and intu-
itive user interfaces on the other. Its underlying con-
cept of operators lays the foundation for easy use of
operators through a unified API on the programming
level as well as for automatic generation of command
line and graphical user interfaces on the user level. The
concept results in a great flexibility which also becomes
obvious in the graphical editor Grappa included in Al-
ida. For its implementation Alida’s functionality with
regard to operator execution and pipeline design had
to be made available through appropriate graphical
components, however, did not induce any conceptual
changes in the underlying core. And the flexibility is
not yet exhausted. It is obvious that the workflows of
Alida being by themselves operators already inherently

4http://www.informatik.uni-halle.de/mitobo/

support the concept of hierarchical workflows which is
currently being transferred to and implemented in the
graphical editor. Finally, a batch mode is currently
under development for automatically running opera-
tors on sets of values for specified input parameters to
further ease algorithm tuning for developers and algo-
rithm usage for non-expert users.
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(1) Overview
Introduction

Automatic data analysis aims at cleaning, transform-
ing, and modelling data to gain useful information in 
an application domain and for a specific problem state-
ment. This process frequently requires the combination 
of various basic and advanced analysis steps into complex 
workflows, and several software tools for workflow design 
supporting this process on the user side are available  
[4, 11, 10, 1]. They for example target at distributed, grid 
and cluster computing, big data analytics, or on integrat-
ing data from different sources [2], and sometimes provide 
end-users with functionality for graphically combining 
analysis units into analysis workflows. However, solely 
applying and combining existing algorithms is not always 
sufficient to extract desired information from given data. 
Especially as progress in science and research is often 
linked to designing new experiments and acquiring new 
types of experimental data, sophisticated analysis requires 
the adaptation of existing or the development and investi-
gation of new data analysis algorithms.

The development of such tools is usually performed 
by programmers in close collaboration with end-users 
from the application side, and a close interaction during 
the development process is essential. Consequently and 

independent of the application domain, the programmer 
is required to not only develop the algorithms themselves, 
but he is also enforced to provide handy user interfaces 
and integrate the user as close as possible into the devel-
opment process, e.g., by frequently releasing software 
updates. Workflow tools like KNIME [1] and Triana [10] in 
principal support the extension of their functionality pro-
grammatically. However, since they mainly focus on the 
end-user programmers have to cope, e.g., with restrictions 
on available data types and complex APIs.

To overcome these drawbacks and in contrast to these 
tools, Alida (Advanced Library for Integrated Development 
of Data Analysis Applications, [7, 9]) is a Java library which 
specifically targets at programmers rather than end-users of 
data analysis tools. It seeks to optimally support program-
mers in the process of developing and releasing new data 
analysis algorithms in close collaboration with end-users. 
To this end Alida defines a framework which allows pro-
grammers to easily implement new data analysis function-
ality in a modular fashion. It defines an API based on a very 
general model of data analysis where manipulation and 
transformation of input data into intermediate and final 
result data is performed by operators with a certain func-
tionality. Every operator is fully specified by a set of param-
eters subsuming input data and configuration settings 
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for the functionality of the operator. During data analysis 
operators are applied sequentially, in parallel, or in a nested 
fashion to the input data and produce output data accord-
ing to their configuration.

Based on this model Alida enforces only some few con-
straints on the implementation in order to release devel-
opers from reoccurring and tedious tasks like API design 
and user interface development. All operators share a 
common API for configuration and execution. On the one 
hand this facilitates reuse of operators on the code level 
and instant usage via the automatically generated com-
mand line user interface (see Fig. 2), e.g., for parameter 
optimization via a scripting language. On the other hand 
also graphical user interfaces are generated automatically 
(Fig. 1) fostering close end-user interaction and a tight 
feedback loop. Likewise all operators can automatically 
be included as potential building blocks in Alida’s built-
in graphical workflow editor Grappa [3] (Fig. 3). Finally, 
since all operators are configured and executed by the 
same procedures automatic documentation of operator 

configurations and consequently also complete analysis 
pipelines is supported [6, 8].

The basic concepts of the Alida framework and its 
implementation in the Java library have proven their prac-
tical suitability and relevance as fundament of MiToBo, a 
toolbox of basic, intermediate and advanced image pro-
cessing and analysis operators and applications [5]. All of 
the more than 150 operators in MiToBo are implemented 
as Alida operators taking full benefit of the unified 
interfaces and execution procedures and particularly of 
the automatically generated user interfaces.

Implementation and Architecture

The abstract class ALDOperator lays the foundation 
for Alida’s object-oriented design for data analysis. It is 
designed to enable Alida’s capabilities to automatically 
generate user interfaces, for graphical programming, and 
automatic documentation.

All operators to be implemented in Alida are required 
to extend this class. All data to be processed by an operator, 

Figure 1: Screenshot of some automatically generated graphical user interfaces for configuration and execution of 
Alida operators.

Figure 2: Sample call of an operator from command line. The operator ApplyToMatrix is executed to apply 
an operator to a 2D array supplied on the command line. The parameter summarizeOp expects as value an 
ALDOperator which summarizes a 1D array, and here ALDArrayMean is specified computing the mean. The 
parameter summarizeMode is of enumeration type, and in this case row-wise summarization requested. The output 
is sent to standard output, but can be redirected to a file as well.
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controlling its manipulation, or to be returned as result 
are consistently denoted as parameters in Alida. For 
each parameter a member variable is defined and Java’s 
annotation mechanism is used to declare these members 
as parameters and specify their various properties. Java’s 
reflection mechanism is exploited to implement meth-
ods for querying an operator for its parameters including 
data types and properties, as well as generic getter and 
setter methods for all parameters. The abstract method  
operate() of ALDOperator contains the data 
processing functionality and needs to be overridden 
by each operator implementation. The abstract class 
ALDOperator implements the method runOp() 
which is the only admissible way to invoke an operator. 
This allows to keep track of all operator invocations.

For all data processing algorithms implemented as 
Alida operators graphical and command line interfaces 
are instantly available to the users. To automatically gener-
ate these interfaces an operator needs to be queried for its 

parameters and their properties as stated above. In addi-
tion it is necessary to query values for parameters from the 
user, to instantiate parameter objects from these values, 
and to present output parameter values to the user, e.g., 
graphically or via console. As this depends on the specific 
data type and the set of potential parameter data types is 
unknown in advance, Alida incorporates a mechanism 
to link this I/O knowledge to specific data types. This is 
facilitated via so-called data I/O providers which provide 
the functionality for a given data type or set of data types 
and register to Alida’s framework using Java’s annota-
tions. Currently, Alida features general purpose provid-
ers for all primitive data types, enumeration types, arrays, 
collections, and so-called parameterized classes. An arbi-
trary class may be declared as parameterized class, and any 
subset of its member variables declared as class param-
eters, both via annotations. This is sufficient for Alida’s 
general purpose provider to handle this class as an opera-
tor parameter if providers for the class parameters exist. 

Figure 3: Screenshot of the graphical workflow editor Grappa, showing a demo workflow shipped with Alida. To the 
left a partial tree of available operators is displayed to choose from.

Figure 4: The processing graph for the workflow in Fig. 3. Each operator invocation is represented by a blue or red 
rectangle. A red rectangle indicates that an operator was collapsed to hide nested operator calls. Light and dark green 
ellipses are input and output ports respectively of an operator, gray triangles depict data ports representing newly 
generated data. To the right the information for the operator SmooothData1D is shown including the values of 
input parameters and software version.
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Likewise operators may act as parameters of other opera-
tors. If necessary additional providers may easily be added 
without the necessity to modify Alida’s core. Figs. 1 and 
2 show examples for graphical respectively command line 
UIs automatically generated by Alida.
Alida extends the operator concept towards combin-

ing operators into more complex workflows. A workflow 
is defined as a combination of operators to be executed 
sequentially, in parallel, or in a nested fashion. This con-
cept is implemented as the class ALDWorkflow which 
extends ALDOperator. The graphical programming edi-
tor Grappa is included in Alida to interactively design 
workflows in an intuitive fashion. The data processing 
pipeline is naturally modelled as a graph, where opera-
tors are represented by nodes, and the parameters of dif-
ferent operators are connected by edges to describe the 
flow of data. All data processing algorithms implemented 
as an Alida operator are right away available as opera-
tor nodes in Grappa and form the building blocks for 
workflows (see Fig. 3 for an example). When connect-
ing parameters of different nodes the validity is verified. 
For example, an input parameter may have at most one 
incoming edge, and the data types of parameters con-
nected by an edge need to be compatible. Data propa-
gated along an edge may be converted on user request 
if an appropriate converter is implemented. For example 
Alida includes functionality to convert an array to a col-
lection. The set of converters may be extended in analogy 
to data I/O providers. In general the operate() method 
of a workflow object invokes all operators of the workflow 
in topological order and forwards output data between 
operators according to the data flow. In addition partial 
execution of the workflow is supported.
Alida also includes automatic process documentation 

of an analysis procedure which is supposed to contain all 
information necessary to recover the results from the same 
input data at a later point in time. Since each operator exe-
cution is realized invoking the generic runOp() method, 
the processing pipeline can be understood as a subgraph 
of the dynamic call graph of the analysis process. This call 
graph may also be interpreted as a hierarchical graph where 
each invocation of an operator is represented by a node. 
Besides the input data provided by the data flow between 
operators, in addition all control settings and also metadata 
like software versions are fully automatically retrieved dur-
ing processing and represented. At any point in time the 
relevant portion of this processing graph may be retrieved 
and made explicit in terms of XML representations. This 
representation may be stored for archival purposes to, e.g., 
extract relevant information for publication. Alida also 
includes Chipory (see Alida’s homepage) to graphically 
display the processing graph and to inspect, e.g., parameter 
settings (see Fig. 4 for an example).

Quality Control

The Alida library is actively developed since 2010 and 
has reached a mature state. The core has converged to 
a stable status and new features are integrated very 
diligently. The core functionality of Alida and particu-
larly the components of the graphical user interfaces 

are mainly tested manually, partially relying on test 
operators specifically designed to test a certain func-
tionality. Feedback may be submitted via a bug track-
ing system and using Github’s pull requests. In addition, 
since Alida forms the base of the Microscope Image 
Analysis Toolbox MiToBo (http://www.informatik.uni-
halle.de/mitobo), its development is also significantly 
triggered and supported by feedback, bug reports and 
feature wishes from the users of MiToBo [5]. This sig-
nificantly adds to the robustness and stability of the 
Alida library. The tests and the use of MiToBo subsum-
ing Alida have been performed on different operating 
systems (64-bit Linux, Windows XP and 7, OS X) and with 
different Java versions.

(2) Availability
Project Homepage

http://www.informatik.uni-halle.de/alida.

Operating System

Alida runs on different versions of Linux, OS X, and 
Windows.

Programming Language

Java, version 1.8.

Additional system requirements

None.

Dependencies

The Alida distribution is shipped with all libraries 
required to make use of Alida’s complete functionality. 
For own developments based on Alida a Maven server1 

hosts the latest artifacts keeping track of dependencies 
automatically.

List of contributors

Birgit Möller
Stefan Posch

Software location

Archive

Name: Zenodo Research Archive
Title: Alida – Advanced Library for Integrated 
Development of Data Analysis Applications: v2.7
URL: https://zenodo.org/record/47586
Persistent identifier: https://doi.org/10.5281/
zenodo.47586
Licence: GNU General Public License, Version 3
Publisher: Stefan Posch, Birgit Möller
Artifact Version: 2.7
Date published: 15/03/2016

Code repository

Name: Github
Title: alida
Identifier: https://github.com/alida-hub/alida
Licence: GNU General Public License, Version 3
Publisher: Birgit Möller, Stefan Posch
Date published: 14/06/2015

266



Posch and Möller: Alida – Advanced Library for Integrated Development of Data Analysis Applications Art. 7, p. 5 of 6 

Maven repository server

Name: Apache Archiva Repository Server
Title: de.unihalle.informatik.Alida
Identifier: https://moon.informatik.uni-halle.de/
archiva/
Licence: GNU General Public License, Version 3
Publisher: Birgit Möller, Stefan Posch
Date published: snapshots and releases are continu-
ously published

Language

English

(3) Reuse Potential

The overall target of the Alida library is to provide a 
framework for developing modular, easy-to-use and par-
ticularly reusable data analysis software. Consequently, 
re-usability is the inherent key paradigm which coins 
the design and implementation of Alida in all respects. 
Moreover, this re-usability is not restricted to a specific 
research field, rather Alida is suitable for developments 
in all domains where data analysis coincides with Alida’s 
concept of operators performing data manipulations.

Besides this conceptual perspective Alida also aims 
to foster re-usability from a technical point-of-view. As 
mentioned above Maven is used to automatically resolve 
dependencies. Moreover on the website of Alida in the 
‘Downloads’ section a template Maven project2 can be 
found which is readily configured for immediate use in 
own projects. Finally, the open source strategy of Alida 
and the GPL licensing concept inherently guarantee a 
high degree of flexibility and adaptivity of Alida which 
renders it easy to even adjust the core functionality to new 
areas and fields of application if necessary.
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(1) Overview
Introduction

The Microscope Image Analysis Toolbox MiToBo is an 
extendable collection of basic as well as more sophisti-
cated image processing operators. Additionally, it offers 
several pipelines for analyzing specific microscopy based 
experimental setups [1, 2, 5, 6].

Although the focus is on biomedical image processing, 
it is also applicable to other image analysis tasks. Since 
it integrates into the popular image processing platforms 
ImageJ and Fiji, respectively, it automatically benefits 
from the capability of these programs to process a huge 
variety of input image types. MiToBo provides an elabo-
rated infrastructure for development and rapid prototyp-
ing. Besides its usage in biomedical research, e.g. [4, 12, 
13], it is also actively used for teaching. Its implementa-
tion focuses on easy and unified (re-)usability as well as 
modularity. MiToBo operators can be configured to be 
executed via a graphical user interface as well as from 
command line. Furthermore, the integrated graphical 
programming platform Grappa [3] can be used to create 
complex analysis pipelines by simply combining existing 
operators inside a workbench area.

Algorithms and Applications Basic image processing 
algorithms implemented in MiToBo comprise, for exam-
ple, linear and non-linear filters, morphological opera-
tions, image arithmetics, connected component labeling 
or several automatic thresholding methods.

Among the more complex operators are segmentation 
algorithms like snakes or level set methods, which are 
highly configurable, e.g., by offering different energy func-
tionals or initialization methods [7]. Furthermore, MiToBo 
contains operators for contrast enhancement, illumina-
tion correction or feature extraction as well as operators 
to segment cell nuclei or boundaries, for example. Some 
processing pipelines tailored for the analysis of specific 
biomedical experiments are also included in MiToBo and 
its number increases constantly. The ScratchAssayAnalyzer 
[2] is designed for quantifiying the development of the 
cell-free area in scratch/wound closure assays. With the 
ActinAnalyzer2D [6] the distribution of actin microfila-
ment patterns inside cells can be quantified and com-
pared. The NeuronAnalyzer2D [5] segments fluorescently 
labeled neurons, characterizes the cell morphology and 
extracts profiles from labeled molecules within the cell. 
The MTBCellCounter [1] is dedicated to semi-automatic 
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labeling and counting of spot-like structures and small 
cells. The migratory behavior of fluorescently labeled cells 
can be analyzed using the CellMigrationAnalyzer. The 
MiToBo Cell Image Analyzer (MiCA) [9] is conceptualized 
for segmenting cell boundaries and sub-cellular particles 
in fluorescence microscopy images. In total, the current 
release (MiToBo 1.7) contains more than 150 distinct 
operators.

General features MiToBo’s capacities to supply easy 
usability, generic user interfaces and graphical program-
ming for image processing applications are mainly taken 
from Alida (see Section Implementation). Building on 
Alida’s concept, each image data analysis action is realized 
in terms of an operator where each operator implements a 
common interface definition. As furthermore their input 
and output parameters are accessible in a standardized 
manner each operator can be invoked in a uniform way. 
This is exploited to automatically generate command line 
and graphical user interfaces for each operator imple-
mented in MiToBo without any additional burden on the 
programmer (see Figs. 1 and 2 for examples). The graphi-
cal user interface includes the option for batch mode 
operation which, e.g., allows to apply an operation to all 
files of a given directory or for a range of parameter values.

While developing image analysis pipelines and also with 
regard to the reproducibility of image analysis results it 
is usually of interest to thoroughly document param-
eter settings and analysis steps. To simplify such logging 
procedures MiToBo offers an automatic process docu-
mentation where the invocation of an operator not only 
produces image analysis results, but at the same time 
registers within the framework along with all input and 
output objects as well as parameters settings. These data 
acquired during an image analysis process and the order 
of operator calls form a directed graph containing all rel-
evant information for later reconstruction or verification 
of the analysis procedure. This processing graph is made 
explicit in terms of an XML representation which can be 
visually explored with appropriate graphical frontends 
like Chipory (see the Alida home page) or might be stored 
in data bases for archival purposes. Fig. 3 gives an exam-
ple processing graph for an image processing pipeline.

In most cases several image analysis operations, e.g., 
filters, thresholding, or segmentation algorithms, have to 
be applied in a sequential, parallel or nested fashion to 
achieve desired image processing results. The graphical 
programming editor Grappa included in MiToBo facili-
tates the design of such processing pipelines or workflows 

Figure 2: Example call of an image analysis operator from command line. The operator GaussFilter is executed to 
apply a Gaussian filter with standard deviation of 1.4 to the input image cell.tif, generating the filtered result 
image cell-g3.tif.

java de . un i h a l l e . i n f o rmat ik . Al ida . t o o l s .ALDOpRunner GaussF i l t e r \
inputImg=c e l l . t i f sigmaX=1.4 re su l t Img=c e l l−g3 . t i f

Figure 1: The main window of Alida’s operator runner which allows to select any of the available MiToBo image pro-
cessing operators (top left), and two automatically generated control and configuration windows for operators (right 
and bottom).
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in an intuitive way. All image processing algorithms 
implemented as an Alida operator are right away avail-
able as operator nodes in Grappa and form the building 
blocks for workflows. Their input and output parameters 
may be connected interactively by user-friendly mouse 
actions where compatibility of data types is enforced and 
automatic data type conversion is applied if appropriate 
converts are available (see Fig. 4 for an example).

Implementation

The MiToBo library, implemented in Java, uses and strongly 
builds on Alida, an Advanced Library for Integrated 
Development of Data Analysis Applications, which defines 
and implements a concept for designing libraries and tool-
kits in data analysis (see [8] and http://www.informatik.
uni-halle.de/alida).

On the other hand MiToBo builds upon ImageJ, a Java 
toolkit for image processing and analysis [11] widely used, 
but not confined to biomedical applications. ImageJ pro-
vides the user with flexible means to interactively process, 
modify, and display images, with a large variety of basic 
built-in image processing operations, and also with a huge 
collection of optional plugins downloadable from the 
web. While MiToBo is compatible with ImageJ it signifi-
cantly improves data access and exchange between more 
complex processing modules exploiting Alida’s operator 

concept. Furthermore, MiToBo extends ImageJ’s image 
data types and provides more sophisticated data struc-
tures for, e.g., regions and contours. MiToBo’s facilities are 
available within ImageJ either via the MiToBo OpRunner 
plugin or as dedicated ImageJ plugins. The former allows 
to configure and run each data analysis procedure imple-
mented as an Alida operator (c.f. Subsection General fea-
tures and Fig. 1).

Quality Control

The MiToBo core library and the plugin collection currently 
consist of about 500 Java class files. Approximately 10% 
of them regularly undergo automatic tests based on JUnit 
test classes, while the bigger part of the testing is done 
by manual verification. MiToBo is developed on different 
operating systems (e.g., Ubuntu Linux 12.04 and 14.04,  
Microsoft Windows 7 and 8). While the officially supported 
Java version is still 1.6 (for compatibility reasons with 
ImageJ/Fiji), developers and users also run MiToBo fre-
quently with additional Java versions (OpenJDK and Oracle 
Java 1.7/1.8) to ensure a maximum degree of portability.

MiToBo’s operators and applications are usually devel-
oped in close collaboration with users mainly from 
Computer Science, Biology and Medicine. They par-
ticularly provide feedback on software usability and the 
plausibility of computed results. Thanks to the update 

Figure 3: Example processing graph representing the history of operations for producing the image data object shown 
as yellow ellipse. Each operator invocation is represented by a blue rectangle. Light and dark green ellipses are input 
and output ports of operators, gray triangles depict data ports representing newly generated data. The rightmost win-
dow displays the parameters and software version for the operator ALDClusterExperiment during execution.
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mechanisms integrated in Fiji, such feedback is promptly 
available resulting in rather short prototyping, software 
development and bugfix cycles.

(2) Availability
Project Homepage

http://www.informatik.uni-halle.de/mitobo

Operating System

MiToBo and ImageJ/Fiji run on different versions of Unix, 
Linux, Mac OS, and Windows.

Programming Language

Java, version 1.6

Additional system requirements

None.

Dependencies

MiToBo builds upon ImageJ/Fiji and its operators can best 
be run in ImageJ or Fiji, but usage as a library and on com-
mand line is also possible. For usage as a library or with 
ImageJ all required dependencies are shipped as part of 
the MiToBo distribution. In Fiji MiToBo is available via an 
update site which automatically resolves the dependen-
cies (http://sites.imagej.net/MiToBo/). To activate MiToBo 
in Fiji the entry of MiToBo’s update site in Fiji’s built-in list 
of available sites just needs to be checked and the updater 
run (for further details refer to the Fiji documentation at 
http://fiji.sc/Update_Sites).

List of Contributors

Markus Glaß
Oliver Greß
Danny Misiak
Birgit Möller
Stefan Posch

Software Locations:

• Archive:
Name: Zenodo Research Archive
Title:  MiToBo – A Microscope Image Analysis Toolbox: v1.7
URL:  https://zenodo.org/record/31364
Persistent identifier:  http://dx.doi.org/10.5281/

zenodo.31364
Licence: GNU General Public License, Version 3
Publisher:  Birgit Möller, Stefan Posch, Markus Glaß, 

Danny Misiak
Artifact Version: 1.7
Date published: 09/24/2015

• Code repository:
Name: Github
Titles: mitobo / mitobo-plugins
Identifiers:  https://github.com/mitobo-hub/mitobo 

https://github.com/mitobo-hub/
mitobo-plugins

Licence: GNU General Public License, Version 3
Publisher:  Birgit Möller, Stefan Posch, Markus Glaß, 

Danny Misiak
Date published: 06/28/2015

Figure 4: Screen shot of Alida’s graphical programming editor Grappa. The operator chooser panel on the left allows 
to choose from all available operators. The main panel shows a workflow composed of various opertors connected by 
edges defining the data flow. Additional parameters may be set via the same automatically generated GUIs available 
within the operator runner.
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• Maven repository server:
Name: Apache Archiva Repository Server
Title: de.unihalle.informatik.MiToBo
Identifier:  https://moon.informatik.uni-halle.de/

archiva/
Licence: GNU General Public License, Version 3
Publisher:  Birgit Möller, Stefan Posch, Markus Glaß, 

Danny Misiak
Date published:  snapshots and releases are continu-

ously published

Language

English.

(3) Reuse Potential
One of the explicit goals of MiToBo is reusability. As 
pointed out in Section 1 MiToBo includes implementa-
tions of algorithms and operators with varying complex-
ity. Most algorithms and concepts are independent of 
concrete applications. Expert as well as non-expert users 
can easily apply them to image processing and analy-
sis problems in a large variety of domains, not neces-
sarily restricted to microscopy images or biomedical 
scenarios. In addition, also the more specialized opera-
tors built on top of these basic ones and being integral 
part of MiToBo demonstrate the reuse potential. They 
cover applications from biology, biomedicine and ecol-
ogy. Complementary the set of different user interfaces 
which Alida and MiToBo offer, i.e., graphical and com-
mand line interfaces, support efficient reuse of MiToBo 
not only with regard to concrete image processing 
problems, but also in different usage scenarios ranging 
from rapid-prototyping and development with tied user-
developer feedback loops to scripting and high-through-
put processing.

Finally, reusability of the MiToBo toolbox and its opera-
tors is not restricted to the user side. Also for developers 
reusing operators and implemented algorithms is easy. 
Based on Alida’s concepts for generic implementation of 
functionality and user interfaces [8] all operators provide 
unified interfaces for reusing them on the code level in 
a modular fashion. Likewise new operators and also data 
types can easily be added to MiToBo’s core and take imme-
diate advantage of the rich set of built-in features in Alida 
and MiToBo. To ease the first steps with MiToBo for own 
developments a pre-configured Maven project contain-
ing a demo operator can be found on MiToBo’s project 
website.
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MiCA - Easy Cell Image Analysis with Normalized Snakes

Birgit Möller and Stefan Posch

Institute of Computer Science, Martin Luther University Halle-Wittenberg, Germany

Abstract— Quantitative analysis of microscopy cell images
requires accurate detection of cell boundaries, nuclei and sub-
cellular structures. Accordingly, tools for integrated cell image
analysis are required which not only provide a variety of
different segmentation and detection algorithms, but at the
same time support easy usage also by life scientists. In this
paper we present our integrated cell analysis tool MiCA offer-
ing different segmentation techniques, e.g., based on wavelets
or snakes. Iterative optimization of snake energies depends
on a variety of parameters that require thorough adjustment
for optimal results. To facilitate easy use of these techniques
MiCA provides a new energy normalization scheme for snakes
allowing for intuitive interpretation of energy parameters and,
thus, simplified cell image analysis. The high quality of the
result data of MiCA is proven on two sample data sets by
qualitative assessments and ground-truth comparisons.

I. INTRODUCTION

One fundamental building block of nowadays research

in cell biology are fluorescent microscope images, allowing

for qualitative – but more importantly – also for quantitative

characterization of sub-cellular processes. Nuclei, cytoplasm

or various structures within cells are fluorescently labeled,

and quantitative evaluation of their size, number, spacial dis-

tribution, shape and further properties allow for biological

and biomedical investigations.

Most of the time quantitative evaluation of microscope

image data is accomplished manually, which induces a

certain degree of subjectivity into the results. Furthermore

this impedes high-throughput experiments which are nec-

essary for statistically meaningful analysis of larger pop-

ulations. Consequently, to increase flexibility and impact

of biomedical research automated analysis procedures are

indispensable. However, these are not only required to yield

accurate segmentation of all structures under consideration,

but also need to allow for easy handling by life scientists.

In this paper we present our integrated cell image analy-

sis tool ’MiCA’, the MiToBo1 Cell Image Analyzer, meeting

these requirements. MiCA implements various techniques to

segment cell boundaries and cell nuclei, as well as cell struc-

tures like stress granules (SGs), processing bodies (PBs),

or focal contacts. For the segmentation of nuclei and

structures algorithms based on morphological operators and

wavelets yield satisfactory results. However, detection of

cell boundaries requires more elaborate approaches based on

explicit active contours. These snakes are based on iterative

numerical optimization and depend on various parameters

Corresponding author: birgit.moeller@informatik.uni-halle.de
1http://www.informatik.uni-halle.de/mitobo

which have to be carefully chosen for optimal results. But,

parameter adjustment typically requires deep knowledge of

the underlying energy models and optimization techniques,

hampering easy use of this approach for non-experts.

To simplify this search and tuning process for identifying

well-suited parameters we propose a new normalization

scheme for active contour energies implemented within

MiCA. The normalization scheme introduces a more in-

tuitive way of parameter interpretation and also aims at

numerical stability in iterative optimization. In detail, bal-

ancing between different components of the energy becomes

much easier, and snake behavior gets more predictable.

Hence, MiCA offers new ways for easy analysis of cell

images and is particularly well-suited for life scientists.

The benefits of MiCA and its integrated normalization

scheme are demonstrated on two sets of experimental data

for which in part ground-truth is available. Data set D1

consists of 8 epifluorescence multi-channel microscopy im-

ages, each containing DAPI labeled nuclei and 2 additional

channels with fluorescently marked SGs and PBs (see [1],

[2] for details). Data set D2 subsumes 8 images of a cell

population where focal contacts are labeled. Focal contacts

are macromolecular assemblies establishing links between

actine proteins in a cell’s cytosceleton and its matrix for

transmission of regulatory signals. To visualize focals the

protein vinculin is fluorescently labeled, which is located

at focal adhesion sites (see Fig. 6). We prove the high

quality of the results provided by MiCA, i.e. cell areas and

assignments of sub-cellular structures to individual cells,

by qualitative assessments, and by quantitative evaluations

if ground-truth expert labelings of the data are available.

The remainder of the paper is organized as follows. After

reviewing related work we discuss active contours and the

new normalization scheme in Sec. III. As the biological

analysis of microscope images from cells also subsumes the

segmentation of nuclei and different types of sub-cellular

structures, related techniques based on morphological op-

erations and wavelets are briefly summarized in Sec. IV.

Sec. V presents the freely available MiCA ImageJ plugin,

Sec. VI and Sec. VII discuss results and give a conclusion.

II. RELATED WORK

Automatic segmentation of cells in fluorescence mi-

croscopy images and the detection of fluorescently labeled

sub-cellular structures are examples of general segmentation

problems in computer vision. As typically the case this

general techniques have to be customized to the special

properties and needs of the application considered.
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Cells imaged as ”punctuated” patterns in 2D or 3D

are segmented in [3] proposing a multi-resolution and

multi-scale approach. It basically employs a voting scheme

combining intensity-based soft thresholding to discriminate

between background and cells with a spatial low-pass filter

to separate individual cells from each other. Segmentation

and tracking of cells are treated in [4] employing level

sets and the watershed transform. Initially, cells are seg-

mented with a region-based level set procedure, where the

classical Chan-Vese model [5] is modified by replacing the

external energy by a log-Gaussian likelihood with unknown

variances. The watershed transform is used to cope with

lumped cells. For subsequent tracking a multi-phase level

set approach is used incorporating a coupling term. A

similar problem is treated in [6] where a particle filter is

employed for tracking. Snakes are used for post-processing

using the classical snake energy [7] where the external

energy is derived from the gradient vector flow field. In [8]

an integrated approach for cell segmentation and particle

detection is presented. In contrast to the work presented in

this article cell segmentation relies on cell specific labeling

with HCS Cellmask. Initial contours are found by k-means

clustering and refined using snakes combining region fitting

and gradient-based data terms with a shape prior to favor

elongated cell contours. Sub-cellular particles are detected

adopting the wavelet-based technique [9], being also the ba-

sis for our cell analyzer. In general, the automatic detection

of such spot-like particles often relies on global and local

thresholding techniques like Otsu’s global method or the lo-

cal Niblack operator ([10], [11]). Further techniques include

sampling from an image intensity density estimated via h-

dome transform and subsequent sample clustering [12].

In [13] a method to segment nuclei is proposed extending

the Chan-Vese model. The spatial intensity distribution of

each nucleus is modeled by a Gaussian distribution, where

the parameters of each cell are estimated from the current

segmentation in each iteration of a multi-phase level set

approach. The results derived for a sequence of real 3D

data rely on an initial segmentation by a biologist expert

underscoring the sensitivity of this spatial energy functional.

Solving microscope image analysis tasks not only in-

cludes algorithm development, but also the need to make

them available to life scientists in a comfortable way. Ap-

plications like CellProfiler2 provide integrated frameworks

with a large collection of different algorithms, but may also

require a significant amount of time for users to learn how

to exploit the subset of features relevant to their problems.

Contrary, ImageJ3 provides a platform easily adaptable to

user-specific needs by a vast amount of freely available

plugins. It is widely used in biomedical research, but plugins

are often quite specialized and finding a suitable set of

plugins to solve a concrete problem might be challenging.

MiCA chooses a way in between by restricting functionality

to cell image analysis, but by this preserves high usability.

2http://www.cellprofiler.org/
3http://rsbweb.nih.gov/ij/

III. NORMALIZED ACTIVE CONTOURS

Segmenting cell boundaries requires elaborate tech-

niques, particularly as cellular membranes are difficult to

stain directly, and also as the amount of antibodies and

fluorochromes which can be applied reliably in one experi-

ment is limited. Hence, we adopt one of the channels used

to label other compounds of interest for cell segmentation,

but, as a result need to cope with fuzzy cell boundaries. The

segmentation is accomplished applying snakes as introduced

in [1]. Here we enhance the approach towards more intuitive

parameter tuning with a new snake normalization scheme.

A. Snake Basics

We adopt explicit active contours for the segmentation of

cell boundaries. Each cell contour is modeled as a curve c(s)
in 2D which is discretized by a set {~pi|i = 1, . . . , L} of 2D

points. The curve is iteratively evolved given an underlying

energy functional and is, hence, commonly denoted as

snake. The energy specifies properties of the desired object

contour, e.g., intensity profile, gradient strength, or a certain

shape, and is to be minimized during segmentation.

In its most general form the continuous energy functional

E[c(s); ~Θ], s ∈ [0, 1], for an explicit active contour c(s) can

be formulated as a set of K different energies Ek, each

integrating along the contour. All energies sum up to the

complete energy functional:

E[c(s); ~Θ] =

K
∑

k=1

∫ 1

s=0

Ek[c(s); ~θk]ds . (1)

Each single energy Ek depends on a set of individual

parameters ~θk ⊆ ~Θ. Note that most region-based energies

like Chan-Vese [5] or binary flows [14] defined as integrals

over regions can be transformed into contour integrals and

subsumed by (1) as well.

The discretized form of this functional can be iteratively

optimized applying gradient descent techniques. In detail,

for each energy the Gateaux derivative is calculated, and

their sum is considered in the iterative gradient optimization

scheme which for a single discretized snake point ~pi results

in (see [7] for further details)

~p
(t)
i = ~p

(t−1)
i − γ ·





K
∑

k=1

∂

∂~p
(t)
i

L
∑

j=1

Ek[~p
(t)
j ; ~θk]



 . (2)

γ ∈ R denotes the stepsize of the gradient descent, and

t the iterations. Obviously, the motion of a snake point ~pi
is directly influenced by γ, however, also modifications of

energy parameters ~θk induce changes is snake dynamics.

Hence, γ and Θ are deeply linked to each other, rendering

proper parameter adjustment as one of the main problems

when adopting active contours for object segmentation.

B. Normalization and Parameter Tuning

Different energies and their derivatives typically have

different ranges of values where the difference is often
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several orders of magnitude. Hence, finding suitable energy

and optimization parameters is cumbersome and requires

thorough experience. Also numerical instabilities frequently

occur, often resulting in uncontrollable snake behavior or a

lack of convergence.

To ease the search for proper parameters we propose to

normalize all derivatives to a common interval of possible

values. This results in a twofold benefit. On the one hand

the numerical stability of the optimization is improved. On

the other hand it becomes significantly simpler to determine

appropriate parameters ~θk as these can be interpreted more

intuitively. In essence it can be attributed to the property

of the proposed energy normalization to shift the focus of

parameter tuning from the need to consider absolute energy

values to a view of weighting the various energies Ek. This

relieves the user from the need to have detailed knowledge

about the characteristics of all individual energies.

In our implementation all energy derivative components

are linearly normalized to an admissible range of RE =
[−1, 1]. Given an original interval v ∈ [vmin, vmax] of

possible values the linear normalization T is given as:

T (v) =
(v −max(|vmin|, |vmax|))

2 ·max(|vmin|, |vmax|)
· 2 + (−1) . (3)

Note that the normalization is defined to map the inter-

val [−max(|vmin|, |vmax|),max(|vmin|, |vmax|)] to RE to

ensure that a value of zero is mapped to zero. If we assume

a stepsize of γ = 1 and consider one iteration step, this

normalization confines the influence of each energy Ek to

move a snake point within a square of radius one pixel.

Thus, the normalization connects the stepsize specified by

γ to pixel units allowing easy adaptation of snake speed.

At the same time, given such normalized energy deriva-

tives, balancing of different energy terms against each other

also becomes very intuitive. In particular, adding weights

for all energy terms in (1), we have

E[c(s); Θ] =

K
∑

k=1

ωk

∫ 1

s=0

Ek[c(s); ~θk]ds , (4)

where ωk ∈ R
+
0 ,
∑K

k=1 ωk = 1. This allows the adaptation

of the parameter set Θ to be conceptually divided into two

abstraction levels. As each energy Ek typically models a

certain aspect of the desired contour, such as fidelity to data

or global shape, its parameters ~θk are adjusted according

to the given application focussing on this aspect. Then all

energy terms and, thus, all aspects modeled are balanced

using the weights ωk at the second level of abstraction.

Examples illustrating the approach are given in the next

subsection for the segmentation of cell boundaries.

C. Energies for Cell Segmentation

For the segmentation of cells in fluorescent microscope

images we apply the following energy functional, defined

over a set of N different snakes cn(s) according to the

number of cells present in the image (more details of the

non-normalized approach are described in [1]). For each cell

a Chan-Vese fitting term Ecv and a regularizer Er are used

with an additional coupling term Ecp resulting in a total of

2N + 1 individual terms:

E[c1(s), . . . , cN (s)] = ωcpEcp(c1(s), . . . , cN (s))

+
∑N

n=1 (ωcvEcv[cn(s)] + ωrEr[cn(s)])

Ecv[cn(s)] = λin

∫

Rin(cn)

(

I(x, y)− µin
n

)2
dΩ

+ λbg

∫

Ω\(
⋃

N
n=1

Rin(cn(s)))

(

I(x, y)− µbg
)2

dΩ

Er[cn(s)] =
1

2

∫ 1

0

β· ‖ cn(s)
′′ ‖2 ds

Ecp[c1(s), . . . , cN (s)] = ρ

N
∑

m=1

N
∑

n=m+1

∫

Om,n

1dΩ

Om,n denotes the overlap of the interiors of snakes cm
and cn. The normalization is based on the individual ranges

of each energy’s derivative. For the regularizer Er, possible

values lie in the range of [−4β, 6β] (cf. [7]). The Chan-Vese

energy term Ecv derives as follows,

∂

∂~pi

L
∑

j=1

Ek[~pj ; ~θk] =

(

λin · [I(~pi)− µin]
2
− λout · [I(~pi)− µout]

2
)

· ~nc

where ~nc is the local normal vector of c(s) at posi-

tion ~pi. Here the range of possible values is given by

[−λout∆I2, λin∆I2], where ∆I is the dynamic intensity

range of the image. Finally, the derivative values of the

snake overlap penalizer term Ecp lie between 0 and ρN .

D. Algorithm outline

Segmenting cells with active contours requires a proper

initialization. As each cell usually contains one nucleus we

use results from prior nucleus detection (cf. Subsec. IV).

The contour of each nucleus is expanded to the neighboring

cell cytoplasm area to ensure that initial contours are not

located in the significantly darker nucleus regions (cf. Fig. 6,

left). Subsequently iterative snake optimization is run until

convergence, i.e. until a maximum number of iterations is

reached or the change in area size enclosed by the snake

falls below a threshold between two iterations.

IV. NUCLEUS AND STRUCTURE DETECTION

In addition to the normalized snake approach for cell

boundary detection MiCA also provides techniques for

segmenting nuclei and sub-cellular structures.

a) Nucleus Detection. The detection of cell nuclei is

typically of twofold use. First nuclei are used to derive

initial snake contours for the cells to be used in subsequent

snake segmentation. Secondly in some applications it is nec-

essary to distinguish between sub-cellular particles within

the cytosol and within the nucleus for biological evaluation.
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For the segmentation of nuclei we use DAPI staining. A

global Otsu thresholding is applied with subsequent post-

processing. This comprises morphological opening with a

square structuring element of size 5 pixels, removal of very

small components, which are sized smaller than 500 pixels,

and removal of holes enclosed in nuclei regions.

For most cells the nucleus is detected correctly, how-

ever, sometimes nuclei of neighboring cells are merged. To

separate these we apply a simple yet efficient procedure

adapted from [15], briefly outlined below. As nuclei show

an approximately elliptical shape distances between the

centroid and the border vary smoothly. If, however, two

or more nuclei are merged into one component a distinct

increase of these distances will be noticed. For nucleus

separation the distances are considered as a cyclic 1D

signal and subjected to a top hat transform with a struc-

turing element of size 0.28π. Subsequently thresholding

with θdist = 20 is performed. If a distance is above the

threshold this indicates a merged neighboring nucleus in the

corresponding direction. To eliminate noise the cyclic binary

vectors representing these hypotheses are morpholocially

opened and dilated with masks of size 10 and 5, respectively,

yielding the final directions of contact to a neighboring

nucleus. To separate these nuclei the border is linearly

interpolated and the procedure applied recursively to handle

cases of three or more merged nuclei.

b) Particle Detection. To detect spot-like sub-cellular

structures of varying size we have extended the wavelet-

based approach [9] for scale-adaptivity in [16] which is

shortly summarized in the following. The image I0(x, y)
is successively smoothed yielding images I1(x, y), s ∈
{1, . . . S}. Wavelet coefficients Ws(x, y) are derived as

Ws(x, y) = Is(x, y)− Is−1(x, y), (5)

and the amplitude-scale-invariant Bayes estimator is applied

for denoising yielding coefficients W̃s(x, y). Due to the

wavelet transform applied, particles are represented by

wavelet coefficients in adjacent scales, thus, adjacent scales

are combined to a correlation image

c[a,b](x, y) =

b
∏

s=a

W̃s(x, y). (6)

This correlation image is globally thresholded and the

resulting connected components yield the final particles

detected. The interval of scales [a, b] used to correlate the

wavelet coefficients defines the scales at which the particles

of interest are represented and is chosen fixed in [9]. If

all particles share the same characteristics, one interval is

appropriate, otherwise, however, one single interval either

includes irrelevant scales or excludes important ones.

To overcome these issues we apply the wavelet-based

detection to a set of – usually overlapping – intervals

[an, bn], to accommodate for different scales of particles.

In general, this results in overlapping and, thus, compet-

ing particle hypotheses.

Fig. 1. Particle hypotheses for two ad-
jacent intervals (top: coarse, bottom: fine)
and resulting hypothesis trees.

These are

represented as nodes

in hypothesis trees

with edges connecting

competing hypotheses

(cf. Fig. 1 for a simple

example for two

intervals). The root

of each detection tree

refers to the coarsest

particle hypothesis

available at a given

location. To select the

correct hypothesis we

employ the concept of meaningful events (see [17]). For

each particle hypothesis we compute a meaningfulness

which can be understood as the p-value of the image event

under the null hypothesis H0 of being caused by chance.

These p-values are used to prune the decision trees where

we normalize the p-values to account for different size of

support of different particle hypotheses.

V. MICA - INTEGRATED CELL ANALYSIS

Our cell analysis tool MiCA is freely available as part

of MiToBo, a Java library of data types, algorithms and

ImageJ plugins for advanced image analysis4. The MiCA

plugin features a graphical user interface (Fig. 2) that

allows to configure the different algorithms to be applied

to either a given image or all images of a directory in

batch mode. In detail, morphology-based nucleus detection

including separation of conglomerates, wavelet- as well as

morphology-based detection of structures and snake-based

segmentation of cell boundaries are currently included.

For cell segmentation different kinds of energies are

provided which can freely be combined to yield the final

energy functional for optimization (cf. Sec. III). As out-

lined above, individual weights can be assigned to each

of the selected energies introducing large flexibility for

processing various types of cell images. Once the different

segmentation results are available MiCA provides statistics

like number and size of structures per image or per cell,

respectively. Besides, masks of detected entities overlayed

with extracted cell boundaries can be requested and saved

for visual inspection of the segmentation results. All figures

extracted are summarized in a results table which can be

saved to disc in TSV text format for further evaluation.

For user convenience MiCA supports the full functional-

ity of Alida5 for process documentation. In particular, each

result image stored on disc is accompanied by a history file

which summarizes the input images used and the processing

steps applied including all parameter settings and software

versions in terms of an XML graph. By this complete and

automatic process documentation and easy reconstruction of

results in the long run are guaranteed (see [18] for details).

4http://www.informatik.uni-halle.de/mitobo
5http://www.informatik.uni-halle.de/alida
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Fig. 2. Screenshot of the MiCA plugin GUI.

VI. EXPERIMENTAL RESULTS

In this section we show results for both data sets de-

scribed in Sec I. For quantitative evaluation of data set D1

we focus on cell segmentation to demonstrate the effective-

ness of normalization, and on the biological interpretation.
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Fig. 3. Boxplots of the precision and recall
of cell area for data set D1.

In the 8 images 146
cells are projected,

with 19 missing the

nucleus as it is out-

side the field of view.

Thresholding yields

122 components and

the separation success-

fully performs 10 splits

of merged nuclei,

leaving 5 compo-

nents subsuming multiple nuclei each.

For evaluation of the snake segmentation, ground-truth

labeling of the corresponding cell area was manually ac-

quired. If an automatically segmented nucleus subsumes two

or three true nuclei, the ground-truth cell area was defined

as the union of the true cell areas of the merged nuclei. This

procedure yields a total of 134 ground-truth cells.

Cell boundary segmentation is accomplished using nor-

malized snakes with parameters ωcp = 15
91 , ωcv = 75

91 , ωr =
1
91 , λin = 1 and λout = 100. Note that β and ρ are absorbed

by ωcp and ωr, respectively. The resulting segmentation is

evaluated using precision and recall rates of pixels correctly

assigned to cell area or background.The performance is

summarized in box plots in Fig. 3. For all 134 cells a mean

precision of 0.81 is achieved with a median of 0.84. For

recall the mean is 0.88 with a median value of 0.95. For

the outliers noticeable in the box plots two different reasons

exist. First, in few cases a snake initialized for one nucleus

expands beyond the boundary of the corresponding cell and

occupies large fractions of the neighboring cell’s area due to

very low contrast at the boundary. Secondly, as noted above

there are 19 cells without nucleus in the image. Therefore

no snake can be initialized for these cells and in many cases

the orphan cell area is included by a neighboring cell due

to lack of distraction by the coupling term.
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Fig. 4. Scatter plot of area fraction for both types of particles and both
cell groups in data set D1.

For biological interpretation the fraction of the cell area

occupied by PBs and SGs is relevant as cells exposed

to viral infections (5 images) are compared to control

cells (3 images). As ground-truth data are very difficult to

collect for sub-cellular particles like PBs and SGs we relied

on visual inspection of biological experts which rate the

segmentation results for PBs and SGs as distinctly suited

for biological interpretation (data not shown).

The area fractions for the 84 cells of the virus-infected

test cells and the 50 cells of the control set are given in

Fig. 4. The cells of the control (blue) contain a varying

amount of PBs while with a few exceptions SGs remain

absent. In contrast, for a part of cells exposed to the virus

(red) SG-formation is induced, while the amount of PBs is

reduced. This allows to hypothesize a viral infection to have

been successful in only a fraction of all infected cells. Thus,

widely-used average quantification over complete images

is biased and does not reflect the situation correctly. In

contrast, evaluation on a cell level as feasible with an

automated approach allows to derive biological conclusions

on a sound quantitative basis.
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Fig. 5. Mean area fraction of
focals for all conditions of data
set D2. The error bars have a
height of two-times the estimated
standard deviation and give an
approximate 95% confidence in-
terval for the mean estimated.

Fig. 6 (left) shows a sam-

ple clip for one image of

data set D2. The images of

D2 differ in their intensity

characteristics from the ones

in D1, hence, snake param-

eters need to be adapted.

Also, to segment the com-

plete cell areas including all

focals mainly located along

the sometimes quite dark ex-

terior cell boundaries, pre-

processing is required. The

images are smoothed with a Gaussian of 4 pixels standard

deviation prior to snake segmentation to diffuse intensity

information and to adopt the bright focals for boundary

identification (Fig. 6, middle).

The segmentation itself is then performed with parame-

ters ωcp = 45
120 , ωcv = 75

120 , ωr = 0, λin = 1 and λout =
150. The stronger penalty for inhomogenity in background

and the omission of regularization is supposed to cause the
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Fig. 6. Examples of segmentation results for data set D2: (left) contrast-enhanced clip from one original image; (middle) smoothed version; (right)
segmented focal contacts (in yellow) and cell boundaries.

snake to enclose even outmost focal contacts of the cells.

The sample segmentation on the right of Fig. 6 proves

this working quite well in many cases. It is clearly visible

that the individual cell boundaries are accurately extracted,

and that a large majority of detected focals is enclosed by

the cell boundaries which is an indispensable prerequisite

for biological data reliability. The area fraction of focals is

given in Fig. 5 averaged over all cells for each of the three

conditions monitored in data set D2. The first condition

refers to cells with one type of mRNA silenced (3 images,

denoted as Silenced) which should show reduced focal

contacts compared to cells from the control of 2 images.

For the third condition (3 images, denoted Inhibitor) a

pharmacological inhibitor was added to silenced cells which

should prevent focal contacts to be reduced.

Fig. 5 shows a significant difference between the mean

area fraction of focals comparing treatment (Silenced)

and the control cells confirming the hypothesized effect of

silencing. Contrarily, in cells subsequently exposed to the

pharmacological inhibitor the amount of focal contacts re-

covers approximately to the levels detected in control cells.

This analysis again demonstrates the potential of MiCA to

automatically derive biologically meaningful statistics from

fluorescent microscope images.

VII. CONCLUSIONS AND FUTURE WORK

The ImageJ plugin ’MiCA’ provides in particular users

from the life sciences with a useful collection of algorithms

for cell image analysis. Relevant parts of a cell can be seg-

mented within an integrated framework with high quality,

resulting in quantitative data suitable for biomedical investi-

gations. Future work mainly aims at extending MiCA’s flex-

ibility by integrating additional normalized snake energies

and improving nucleus detection and separation.
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5.6 User-friendly assessment of pavement cell shape features

with PaCeQuant: Novel functions and tools

Original Publication:

Poeschl, Y., Möller, B., Müller, L., and Bürstenbinder, K. (2020). User-friendly assessment of
pavement cell shape features with PaCeQuant: Novel functions and tools, vol. 160 of Methods
in Cell Biology, pp. 349–363. Academic Press. DOI: 10.1016/bs.mcb.2020.04.010.

Abstract:

Leaf epidermis pavement cells develop complex jigsaw puzzle-like shapes in many plant species,
including the model plant Arabidopsis thaliana. Due to their complex morphology, pavement
cells have become a popular model system to study shape formation and coordination of growth
in the context of mechanically coupled cells at the tissue level. To facilitate robust assessment
and analysis of pavement cell shape characteristics in a high-throughput fashion, we have
developed PaCeQuant and a collection of supplemental tools. The ImageJ-based MiToBo plugin
PaCeQuant supports fully automatic segmentation of cell contours from microscopy images
and the extraction of 28 shape features for each detected cell. These features now also include
the Largest Empty Circle criterion as a proxy for mechanical stress. In addition, PaCeQuant
provides a set of eight features for individual lobes, including the categorization as type I
and type II lobes at two- and three-cell junctions, respectively. The segmentation and feature
extraction results of PaCeQuant depend on the quality of input images. To allow for corrections
in case of local segmentation errors, the LabelImageEditor is provided for user-friendly manual
postprocessing of segmentation results. For statistical analysis and visualization, PaCeQuant is
supplemented with the R package PaCeQuantAna, which provides statistical analysis functions
and supports the generation of publication-ready plots in ready-to-use R workflows. In addition,
we recently released the FeatureColorMapper tool which overlays feature values over cell regions
for user-friendly visual exploration of selected features in a set of analyzed cells.

Link:

https://doi.org/10.1016/bs.mcb.2020.04.010

281-295

https://doi.org/10.1016/bs.mcb.2020.04.010
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5.7 rhizoTrak: a flexible open source Fiji plugin for user-

friendly manual annotation of time-series images

from minirhizotrons

Original Publication:

Möller, B., Chen, H., Schmidt, T., Zieschank, A., Patzak, R., Türke, M., Weigelt, A., and Posch,
S. (2019). rhizoTrak: a flexible open source Fiji plugin for user-friendly manual annotation of
time-series images from minirhizotrons. Plant and Soil, 444, 519–534.

Abstract:

Background and aims Minirhizotrons are commonly used to study root turnover which is es-
sential for understanding ecosystem carbon and nutrient cycling. Yet, extracting data from
minirhizotron images requires extensive annotation effort. Existing annotation tools often lack
flexibility and provide only a subset of the required functionality. To facilitate efficient root
annotation in minirhizotrons, we present the user-friendly open source tool rhizoTrak.

Methods and results rhizoTrak builds on TrakEM2 and is publicly available as Fiji plugin. It
uses treelines to represent branching structures in roots and assigns customizable status labels
per root segment. rhizoTrak offers configuration options for visualization and various functions
for root annotation mostly accessible via keyboard shortcuts. rhizoTrak allows time-series data
import and particularly supports easy handling and annotation of time-series images. This is
facilitated via explicit temporal links (connectors) between roots which are automatically gen-
erated when copying annotations from one image to the next. rhizoTrak includes automatic
consistency checks and guided procedures for resolving inconsistencies. It facilitates easy data
exchange with other software by supporting open data formats.

Conclusions rhizoTrak covers the full range of functions required for user-friendly and efficient
annotation of time-series images. Its flexibility and open source nature will foster efficient data
acquisition procedures in root studies using minirhizotrons.

Link:

https://doi.org/10.1007/s11104-019-04199-3

297-312

https://doi.org/10.1007/s11104-019-04199-3


Appendix A

Individual Contributions

Classification scheme

Predominant contribution: own contribution more than 70%

Major contribution: own contribution between 30 and 70%

Minor contribution: own contribution less than 30%

Chapter 2: Keypoints, Spots, and Particles

• B. Möller and S. Posch,
Robust Features for 2-D Electrophoresis Gel Image Registration,
Electrophoresis, pp. 30(23):4137-4148, 2009

Major contribution to the design of the study and the experiments.
Predominant contribution to the implementation of the spot detectors.
Major contribution to the experimental evaluation.
Major contribution to writing and revising the manuscript.

• O. Greß, B. Möller, N. Stöhr, S. Hüttelmaier and S. Posch,
Scale-adaptive Wavelet-based Particle Detection in Microscopy Images,
Bildverarbeitung für die Medizin, CEUR Workshop Proceedings, pp. 266-270, 2010

Major contribution to the concept of the algorithm.
Minor contribution to the experimental evaluation.
Minor contribution to writing and revising the manuscript.

• N. Bley, M. Lederer, B. Pfalz, C. Reinke, T. Fuchs, M. Glaß, B. Möller,
and S. Hüttelmaier,
Stress granules are dispensable for mRNA stabilization during cellular stress,
Nucleic Acids Research 43(4), e26. doi: 10.1093/nar/gku1275

Major contribution to the implementation of the software used for granule detection.
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Chapter 3: Object Segmentation

• B. Möller, Y. Poeschl, R. Plötner, K. Bürstenbinder,
PaCeQuant: A Tool for High-Throughput Quantification of Pavement
Cell Shape Characteristics,
Plant Physiology, pp. 175(3):998-1017, 2017

Major contribution to concept and design of the research.

Predominant contribution to concept and implementation of the
image analysis workflow.

Minor contribution to the experimental evaluation.

Major contribution to writing and revising the manuscript.

• B. Möller, Y. Poeschl, S. Klemm, and K. Bürstenbinder,
Morphological Analysis of Leaf Epidermis Pavement Cells with PaCeQuant,
Plant Cell Morphogenesis, Methods in Molecular Biology, Vol. 1992,
Chap. 22, pp. 329-349, 2019 (invited book chapter)

Predominant contribution to the implementation of PaCeQuant.

Major contribution to writing and revising the manuscript.

• B. Möller and K. Bürstenbinder,
Semi-automatic Cell Segmentation from Noisy Image Data for
Quantification of Microtubule Organization on Single Cell Level,
Proc. of 16th Intern. Symp. on Biomedical Imaging (ISBI), pp. 199-203, 2019

Predominant contribution to concept and implementation of
image analysis algorithms.

Major contribution to the experimental evaluation.

Predominant contribution to writing and revising the manuscript.

• B. Möller and S. Posch,
Comparing active contours for the segmentation of biomedical images,
Proc. of Intern. Symp. on Biomedical Imaging (ISBI), pp. 736-739, 2012

Major contribution to the design of the study and the experiments.

Predominant contribution to the implementation of the snake segmentation.

Major contribution to the experimental evaluation.

Major contribution to writing and revising the manuscript.
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• B. Möller, O. Greß, N. Stöhr, S. Hüttelmaier and S. Posch,
Adaptive Segmentation of Particles and Cells for Fluorescent
Microscope Imaging,
VISIGRAPP 2010, Revised Selected Papers of Int. Joint Conf. on Computer Vision,
Imaging and Computer Graphics. Theory and Applications, pp. 154-169, 2011

Major contribution to the concept of the algorithm for cell segmentation.

Major contribution to the concept of the particle detection.

Predominant contribution to the implementation of the cell segmentation.

Predominant contribution to the experimental evaluation of
the cell segmentation.

Major contribution to writing and revising the manuscript.

• B. Möller, N. Stöhr, S. Hüttelmaier and S. Posch,
Cascaded Segmentation of Grained Cell Tissue with Active Contour Models,
Proc. of Intern. Conf. on Pattern Recognition (ICPR), pp. 1481-1484, 2010

Major contribution to the concept of the algorithm.

Predominant contribution to the implementation of the algorithm.

Major contribution to the experimental evaluation.

Major contribution to writing and revising the manuscript.

• D. Misiak, S. Posch, M. Lederer, C. Reinke, S. Hüttelmaier and B. Möller,
Extraction of protein profiles from primary neurons using
active contour models and wavelets,
Journal of Neuroscience Methods, pp. 225:1-12, 2014

Major contribution to the concept of the neuron segmentation workflow
subsuming the primary supervision of D. Misiak during his Diploma thesis
and in the initial phase of his PhD thesis in developing and implementing
the neuron segmentation approach.

Minor contribution to writing and revising the manuscript.

• B. Möller, B. Schreck and S. Posch,
Analysis of Arabidopsis Root Images - Studies on CNNs
and Skeleton-Based Root Topology,
IEEE/CVF International Conference on Computer Vision Workshops (ICCVW),
7th Workshop on Computer Vision in Plant Phenotyping and Agriculture (CVPPA),
pp. 1294-1302, 2021

Minor contribution to the study on convolutional neural networks.

Predominant contribution to concept and implementation
of the main root extraction.

Major contribution to the analysis of the challenge data.

Major contribution to writing and revising the manuscript.
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Chapter 4: Object Shape and Texture

• D. Mitra, S. Klemm, P. Kumari, J. Quegwer, B. Möller, Y. Poeschl, P. Pflug,
G. Stamm, S. Abel, and K. Bürstenbinder,
Microtubule-associated protein IQ67 DOMAIN5 regulates
morphogenesis of leaf pavement cells in Arabidopsis thaliana,
Journal of Experimental Botany, 70(2):529-543, 2019

Predominant contribution to implementation of algorithms and tools
for cell shape analysis.

Predominant contribution to experimental analysis of
cell wall components (Fig. 6).

• B. Möller, E. Piltz, and N. Bley,
Quantification of Actin Structures using Unsupervised
Pattern Analysis Techniques,
Proc. of 22nd Intern. Conf. on Pattern Recognition (ICPR), pp. 3251-3256, 2014

Predominant contribution to the concept of the workflow.

Predominant contribution to the implementation.

Predominant contribution to the experimental evaluation.

Predominant contribution to writing and revising the manuscript.

• K. Bürstenbinder, B. Möller, R. Plötner, G. Stamm, G. Hause,
D. Mitra, and S. Abel,
The IQD Family of Calmodulin-Binding Proteins Links Calcium
Signaling to Microtubules, Membrane Subdomains, and the Nucleus,
Plant Physiology, pp. 173(3):1692-1708, 2017

Predominant contribution to implementing the image analysis algorithms.

Predominant contribution to experimental analysis of microtubule patterns (Fig. 5).

Predominant contribution to experimental analysis of
membrane localization patterns (Fig. 3D).

Minor contribution to writing the manuscript.

• B. Möller, L. Zergiebel, and K. Bürstenbinder,
Quantitative and Comparative Analysis of Global Patterns of (Microtubule)
Cytoskeleton Organization with CytoskeletonAnalyzer2D,
Plant Cell Morphogenesis, Methods in Molecular Biology, Vol. 1992,
Chap. 10, pp. 151-171, 2019 (invited book chapter)

Predominant contribution to the implementation of the software.

Major contribution to writing and revising the manuscript.
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Chapter 5: Bioimage Analysis Software & Tools

• B. Möller, O. Greß and S. Posch,
Knowing what happened - Automatic Documentation of
Image Analysis Processes,
Proc. of Intern. Conf. on Computer Vision Systems (ICVS), LNCS 6962, pp. 1-10, 2011

Major contribution to the concept and design of Alida.

Minor contribution to the implementation of Alida’s operator concept
and the mechanisms of automatic process documentation.

Major contribution to the implementation of MiToBo’s core and operators.

Major contribution to writing and revising the manuscript.

• B. Möller and S. Posch,
A Framework Unifying the Development of Image Analysis Algorithms
and Associated User Interfaces,
Proc. of Intern. Conf. on Machine Vision Applications (MVA), pp. 447-450, 2013

Major contribution to Alida’s concept of automatic user interface generation.

Major contribution to the implementation of Alida’s core components
for automatic user interface generation.

Predominant contribution to the implementation of the framework
for graphical user interface generation within Alida.

Major contribution to concept and implementation of Grappa subsuming
supervision of S. Kirchner in his Bachelor thesis on the initial
implementation of a graphical editor.

Major contribution to writing and revising the manuscript.

• S. Posch and B. Möller,
Alida - Advanced Library for Integrated Development of
Data Analysis Applications,
Journal of Open Research Software, pp. 5(1):7, 2017

Major contribution to the concept, design and implementation of Alida,
also ongoing after publication.

Major contribution to software maintainance and infrastructure for Alida,
also ongoing after publication.

Major contribution to writing and revising the manuscript.

• B. Möller, M. Glaß, D. Misiak and S. Posch,
MiToBo - A Toolbox for Image Processing and Analysis,
Journal of Open Research Software, pp. 4(1):e17, 2016

Major contribution to the concept, design and implementation of MiToBo,
also ongoing after publication.

Major contribution to software maintainance and infrastructure for MiToBo,
also ongoing after publication.

Major contribution to writing and revising the manuscript.
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• B. Möller and S. Posch,
MiCA - Easy Cell Image Analysis with Normalized Snakes,
Proc. of Workshop on Microscopic Image Analysis with Appl. in Biology (MIAAB), 2011

Major contribution to the concept of MiCA.

Predominant contribution to the implementation of MiCA.

Predominant contribution to the experimental evaluation.

Major contribution to writing and revising the manuscript.

• Y. Poeschl, B. Möller, L. Müller, and K. Bürstenbinder,
User-friendly assessment of pavement cell shape features with PaCeQuant:
Novel functions and tools,
Plant Cell Biology, Vol. 160 of Methods in Cell Biology, pp. 349-363, 2020
(invited book chapter)

Predominant contribution to the implementation of image processing
functions and tools.

Minor contribution to writing and revising the manuscript.

• B. Möller, H. Chen, T. Schmidt, A. Zieschank, R. Patzak, M. Türke,
A. Weigelt and S. Posch,
rhizoTrak: a flexible open source Fiji plugin for user-friendly
manual annotation of time-series images from minirhizotrons,
Plant and Soil, pp. 444:519-534, 2019

Major contribution to the concept of rhizoTrak.

Minor contribution to the software implementation.

Major contribution to writing and revising the manuscript.
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B.1 Stress granules are dispensable for mRNA stabilization during
cellular stress (Bley et al., Nucleic Acids Research, 2015)
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Bley et al., Figure S2 
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Bley et al., Figure S3 
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Bley et al., Figure S7 
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Bley et al., Figure S10 
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Bley et al., Table S2 

Bley et al., Table S1 

siRNAs sequence       

siC (C.el.mir239b) uuguacuacacaaaaguacug 

siIGF2BP1 ugaauggccaccaguugga 

siYB1 gcgaagguucccaccuuacua 

siHUR ggacaaaaucuuacagguu 

siTIA1 auucgagucuuuccagaua 

siTIA1 (2) caggaaagucuaagggaua 

siTIAR  ugacagaaguccuuauacu 

siTIAR (2) gaaaggaggucaaaguaaa 

siG3BP1  aaagccugagccaguauua 

siG3BP1 (2) cauuaacaguggugggaaa 

siRSK2 ccaugaagguauugaaga 

siHDAC6 gguaaagaagaaaggcaaa 

siATXN2 uaugaggaugguucauaua 

plasmids vector sense antisense cloning 

GFP-DRRM-TIA1 pEGFP C2 aagaattcatgcgtcagactttttcacc ctcgagtcactgggtttcataccctgc EcoRI/XhoI in SalI 

GFP-HDAC6 
pEGFP C2 aaaga tct atgacctcaaccggccaggattccacc aacccgggttttcattttctctgtggcccgg BglII/Xma 

aacccgggagctgcaccgtgagagttccaac aatctagattagtgtgggtggggcatatcctcccc Xma/XbaI 

GFP-G3BP1 described in Stohr et al. 2006 gggaattcatggtgatggagaagcctagtc gggtcgacttactgccgtggcgcaagcccccttc EcoRI/SalI 

GFP-G3BP1 pLVX-puro-GFP gcacgaattcatggtgatggagaagcctagtcccctgctgg tggcgtcgactcactgccgtggcgcaagcccccttcccac EcoRI/SalI 

GFP-G3BP1-DRGG pLVX-puro-GFP gcacgaattcatggtgatggagaagcctagtcccctgctgg ggcgtcgactcaatctcgtcggtcgccttccctggcagctcg EcoRI/SalI 

GFP-G3BP1-FFVV pLVX-puro-GFP ggcgtcgactcaatctcgtcggtcgccttccctggcagctcg tcagaatcatcaaacacaacaacaccaacattgggtaatttcccac mutagenesis 

GFP-G3BP1-S149A pLVX-puro-GFP gagcctcaggaggaggctgaagaagaagtagagg cctctacttcttcttcagcctcctcctgaggctc mutagenesis 

GFP-G3BP1-S149E pLVX-puro-GFP gagcctcaggaggaggaagaagaagaagtagagg cctctacttcttcttcttcctcctcctgaggctc mutagenesis 

shATXN2 pSuper 

GFP-YB1 pEGFP C2, Clontech subcloned from pcDNA3.1 via EcoRI/XhoI in SalI 

GFP-HUR pEGFP C2, Clontech subcloned from pcDNA3.1 via EcoRI/XhoI in SalI 

GFP-ZBP1 described in Stohr et al. 2006 

YFP-TIA1 kind gift from R.H. Singer, Albert-Einstein College of Medicine, NYC 

GFP-TIAR pEGFP C2, Clontech gggaattcatgatggaagacgacgggcagc ggctcgagtcactgtgtttggtaacttgccatac EcoRI/XhoI in SalI 

Dendra-ZBP1 pDendra2-C, Clontech, modified MCS subcloned from pcDNA3.1 via EcoRI/XhoI 

Dendra-G3BP1 pDendra2-C, Clontech, modified MCS    subcloned from pcDNA3.1 via EcoRI/XhoI in SalI 

qRT-PCR sense Antisense     

HSP90AA ggtcctgtgcggtcacttag aaaggcgaacgtctcaacc 

HSPAA/B1 caagatcaccatcaccaacg tcgtcctccgctttgtactt 

HSPA2 caagatcaccatcaccaacg cgtcctccgctttgtacttc 

MAPK4 tgctcaagattggggatttc gatgagttgcatctgctcca 

MYC agcgactctgaggaggaac cgtagttgtgctgatgtgtg 

ACTB agaaaatctggcaccacacc agaggcgtacagggatagca 

PPIA gtcaaccccaccgtgttctt ctgctgtctttgggaccttgt 

RPLP0 ggcgacctggaagtccaact ccatcagcaccacagccttc 

VCL ttacagtggcagaggtggtg tcacggtgttcatcgagttc     

Table S1: siRNAs, plasmids and oligonucleotides 

Table S2: antibodies 
antibodies Company Clone number 

anti-IGF2BP1 Stohr et al., 2012 mouse monoclonal 

anti-IGF2BP1 Huttelmaier et al., 2005 rabbit polyclonal 

anti-YB1 Santa Cruz 59-Q 

anti-HUR Santa Cruz sc-5261 

anti-TIAR BD Transductions 610352 

anti-TIA1 Santa Cruz N-17 

anti-G3BP1 Santa Cruz H-10 

anti-eIF2a Cell Signaling 9722 

anti-phospho-eIF2a (S51) Cell Signaling L57A5 

anti-RSK2 Cell Signaling 9340 

anti-FMRP Abcam ab27455 

anti-HDAC6 Santa Cruz H-300 

anti-ATXN2 BD Transductions 611378 

anti-GFP Santa Cruz B-2 
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SUPPLEMENTARY FIGURE LEGENDS 

Figure S1. FMRP is not essential for SG-formation. (A, B) U2OS cells were transiently transfected with 

indicated siRNAs for 72h. FMRP knockdown efficiencies were determined by Western blotting 

relative to the control population (siC) and VCL serving as loading control (A). The formation of SGs 

upon arsenate treatment (2.5 mM for 1h) was analyzed by immunofluorescence staining with 

indicated antibodies (B). The number of SG-positive cells was determined by counting of at least 50 

cells from three independent experiments. (C) The expression of FMRP in immortalized FMRP (-/-) 

MEFs stably transfected with Flag-FMRP (56 & 59) or control (81 & 87) vector, as previously 

described (1), was analyzed by Western blotting as in (A). (D) The formation of stress granules by 

arsenate (2.5 mM for 1h) was analyzed by immunostaining with indicated antibodies and quantified 

as in (B). Note that the loss of FMRP does neither prevent the formation of SGs in U2OS nor FMRP (-

/-) MEFs (data for clones 56 and 81 are not shown). Standard deviation was determined from three 

independent experiments. Bars 25 µm. 

 

Figure S2. ATXN2 knockdown is insufficient to prevent SG-formation in U2OS and Huh7 cell. (A-D) 

U2OS (A, B) or Huh7 (C, D) cells transfected with indicated siRNAs for 72h were analyzed by Western 

blotting with indicated antibodies (A, C). Knockdown efficiencies for ATXN2 depletions depicted as 

numbers above panels were quantified relative to the control (siC). VCL served as loading control. 

The formation of stress granules was analyzed as in (Figure S1) using indicated antibodies for 

immunostaining (B, D). Note that the depletion of ATXN2 does not interfere with SG-assembly in 

both cell lines. Standard deviation was assessed from three independent analyses. Bars 25 µm.  

 

Figure S3. Depletion of RSK2 or overexpression of RRM-TIA1 are inappropriate to inhibit SG 

formation. (A) U2OS cells transfected with indicated siRNAs for 72h and treated with arsenate (A: 

2.5mM for 1h) or thapsigargin (T: 1µM for 1h) were analyzed by Western blotting with indicated 

antibodies. Note that the knockdown of RSK2 impairs the stress-induced phosphorylation of eIF2 

and consequently interferes with the assembly of stress granules (data not shown). (B) Huh7 cells 

transfected (48h) with the indicated GFP-tagged TIA1 mutant (RRM) lacking two RRM domains or 

GFP alone were stressed by arsenate as in (A) before immunostaining with indicated antibodies. In 

contrast to previous reports (2), the formation of SGs was only modestly impaired by the 

overexpression of the TIA1-mutant. In approximately 44% of transfected cells, substantially fewer 

SGs were formed and granules appeared significantly smaller with barely any IGF2BP1. Most notably, 

however, SG-formation was substantially impaired in 20% of GFP-only transfected cells. Errors 

indicate s.d. of three independent analyses. Bars 25 µm.  
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Figure S4. HDAC6 is dispensable for SG-formation. (A, B) The localization of endogenous (A) or GFP-

tagged (B) HDAC6 in U2OS cells stressed by arsenate (2.5mM, 1h) was analyzed by immunostaining 

with indicated antibodies.  Note that endogenous as well as GFP-tagged HDAC6 are not recruited to 

arsenate-induced SGs. (C, D) U2OS cells transfected with HDAC6-directed (siHDAC6) or control (siC) 

siRNAs for 72h were treated as in (A) before immunostaining (C; number of SG-positive cells 

indicated) or Western blotting (D). Knockdown efficiencies were determined by Western blotting 

relative to the control population (siC) and VCL serving as loading control. Note that in contrast to 

previous reports (3), HDAC6 is neither recruited to stress granules nor does its knockdown prevent 

SG-formation in U2OS cells. Errors indicate s.d. of three independent analyses. Bars 25 µm. 

 

Figure S5. The depletion of TIA proteins or G3BP1 alone barely impairs the formation of SGs. (A-D) 

U2OS cells were transfected with indicated siRNAs for 72h and stressed by arsenate (2.5µM) for 1h. 

SG-assembly was monitored by indirect immunostaining of indicated proteins (A). Enlargements of 

the boxed regions in the merged images are shown in the right panel. The knockdown of indicated 

proteins was monitored by Western blotting (B). VCL and TUBA4A served as loading controls to 

assess the knockdown efficiencies of all proteins relative to the control population (siC) as indicated 

by numbers above panels. The number of SG-positive cells (C) as well as the SG-area fraction (D) was 

determined via the Mica2D particle detector for ImageJ, essentially as previously described (4). Error 

bars indicate s.d. determined by analyzing at least 100 cells. Bars 25µm.  

 

Figure S6. The concomitant depletion of TIA proteins and G3BP1 inhibits SG-assembly. (A-C) Huh7 

cells transfected with indicated siRNAs (siC: control; siSG: siTIA1, siTIAR and siG3BP1) for 72h were 

stressed by arsenate (A; 2.5µM) or thapsigargin (T; 1µM) for 2h. SG-formation was monitored by 

immunostaining of indicated proteins (A). The knockdown efficiencies as well as the phosphorylation 

status of eIF2 were analyzed by Western blotting with indicated antibodies and quantified relative 

to the control population as indicated by numbers above panels using VCL and ACTB as loading 

controls. (B). The number of SG-containing cells was determined by counting. Error bars indicate s.d. 

of three independent experiments. Bars 25µm. Note that the concomitant depletion of TIA proteins 

and G3BP1 impairs SG-formation in a cell line and stressor independent manner (compare to Figure 

1).  

 

Figure S7. The formation of SGs remains unaffected by the single or concomitant depletion of the 

RBPs IGF2BP1, YB1 and HUR. (A-H) U2OS cells were transfected with control (siC), indicated RBP-

directed siRNAs or a mixture of siRNAs targeting all three RBPs concomitantly. 72h post-transfection, 

cells were stressed by arsenate (2.5 mM for 1h) and SG-formation was monitored by immunostaining 
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with indicated antibodies (A, C, E, G). The average number of SG-positive cells was determined by 

counting, as indicated on the right. Errors indicate s.d. of three independent experiments. Bars 25 

µm. The knockdown of indicated proteins was monitored by Western blotting and quantified relative 

to the control population (siC) as indicated by numbers above panels with VCL serving as loading 

control (B, D, F, H). Note that the formation of SGs remains unaffected by the single or concomitant 

depletion of the three RBPs (HUR, IGF2BP1 and YB1) analyzed.  

 

Figure S8. FRAP  (fluorescence recovery after photo-bleaching) parameters. (A) The table summarizes 

the exchange rates (t1/2) and immobile fractions (in percent) averaged over the indicated number of 

analyzed SGs (experiments). The parameters were obtained by fitting a first order kinetic to the data. 

The conditions analyzed are indicated: OE-induced, SG-formation induced by transient 

overexpression without chemical stressor; transient/arsenate, SG-formation monitored in transiently 

transfected cells stressed by arsenate; stable/arsenate, SG-formation analyzed in arsenate-stressed 

cells stably expressing the indicated transgene. The data obtained for G3BP1, TIA1, TAIR, ZBP1, HUR 

or YB1 are shown in Figure 2A and B. (B-D) The average recovery of GFP-fluorescence in U2OS cells 

stably transfected with GFP-G3BP1 (B) or GFP-ZBP1 (C) was monitored shortly after SG-initiation (5-

15 min arsenate treatment; green graph) or at steady state levels when SGs were completely 

assembled (30-60 min arsenate treatment; red graph). For ZBP1 the recovery time was increased to 

90 sec to determine putative effects on the immobile fraction upon prolonged recovery time. A first 

order kinetic model was fitted to the data to determine the half time of fluorescence recovery (t1/2 IN) 

and immobile fractions (IF) (D). Note that the calculation of exchange rates does only apply at steady 

state levels, when kIN = kOUT. At the stage of SG-initiation however, we expect kIN > kOUT since SGs are 

growing. Therefore only the half time of fluorescence recovery (t1/2 IN) can be determined. 

 

 Figure S9. The RNA-binding domains of G3BP1 are essential to promote SG-assembly. (A) U2OS cells 

were transiently (48h) or stably transfected with GFP-tagged G3BP1 wild type or mutant constructs. 

GFP served as negative control. Stable transfections do not represent single clones but mixed 

populations of approximately 100% GFP-positive cells. The number of SG-containing cells in the 

absence of stress was determined by immunostaining as described in Figure 4A (data not shown). 

Error bars indicate s.d. determined by analyzing at least a 100 transfected cells for each mutant. Note 

that SG-formation is only induced by the transient expression of wild type and S149-modified G3BP1 

mutants. (B) The phosphorylation of eIF2 in stressed (+, 2.5 mM arsenate for 1h) or non-stressed 

cells stably expressing the indicated G3BP1 mutant proteins or GFP was analyzed by Western 

blotting. Note that the overexpression of G3BP1 mutant proteins does not induce or impair the 

phosphorylation of eIF2. 
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Figure S10. SGs are dispensable for the stabilization of bulk mRNA during cellular stress. (A) U2OS 

cells were concomitantly transfected (72h) with TIA1-, TIAR- and G3BP1-directed (siSGs) or control 

(C) siRNAs. Where indicated cells were stressed by arsenate (2.5mM) and treated with actinomycin D 

(ActD, 5µM) for 2h. For each experimental condition two independent total RNA populations were 

analyzed by microarrays (also compare to Figure 5C-E; Affimetrix HG133plus2.0). The expression of 

transcripts was analyzed without normalization and background correction. The averaged transcript 

abundance per condition is depicted as log2-expression in box plots. ANOVA testing revealed no 

statistical significant differences in-between the four experimental conditions (p > 0.01). This 

indicates that bulk mRNA stabilization during cell stress is neither impaired by the depletion of 

TIA1/TIAR/G3BP1 proteins nor by preventing the formation of SGs. (B) U2OS cells were transfected 

with two alternative sets of TIA1-, TIAR- and G3BP1-directed siRNAs or a control siRNA for 72h. Post-

transfection, cells were treated with arsenate and ActD for 1h, 2h or 4h. The change in mRNA 

abundance was monitored by comparative microarray analyses (Solexa HumanHT12 chips; Illumina) 

using untreated cells as the input control. The quantile-normalized and background corrected signals 

reliably detected in all three untreated conditions were averaged for both alternative sets of siRNAs. 

The decay-rate for each detected signal was defined as the slope of signal intensities over time (m) 

determined by linear regression. The m-values determined for each signal in the siSG-transfected 

populations are plotted over the respective m-values determined in the control (siC) populations. 

Note that only ~3% of all transcripts decayed more than 2-fold during cellular stress. Moreover, 

Pearson correlation parameters indicated in the plot, confirmed a strong coherence (p < 0.0005) of 

the determined m-values. This indicates that the impairment of SG-formation does not interfere or 

promote mRNA degradation during cellular stress.  

 

 

 

Table S1: siRNAs, plasmids and oligonucleotides. The table summarizes all siRNAs with the respective 

sequences used in this study. If not otherwise stated all plasmids used in this study were generated 

by PCR on cDNA obtained from HEK293 cells using the depicted oligonucleotide sequences. PCR 

products were cloned into ZeroBlunt- (Life Technologies) or pGemT-Vectors (Promega), sequenced 

and subcloned into the described expression vectors using the restrictions enzymes shown in the 

table. Sequences of primer pairs used for SYBR Green I based qRT-PCR are summarized. 
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Table S2: Antibodies. The table summarizes all primary antibodies as well as clone numbers and 

providers used in this study. Secondary antibodies used for Western blotting or immunostaining 

were previously described (4). 

 

 

1. Castets, M., Schaeffer, C., Bechara, E., Schenck, A., Khandjian, E.W., Luche, S., Moine, H., 

Rabilloud, T., Mandel, J.L. and Bardoni, B. (2005) FMRP interferes with the Rac1 pathway and 

controls actin cytoskeleton dynamics in murine fibroblasts. Hum Mol Genet, 14, 835-844. 

2. Kedersha, N.L., Gupta, M., Li, W., Miller, I. and Anderson, P. (1999) RNA-binding proteins TIA-

1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress 

granules. J Cell Biol, 147, 1431-1442. 

3. Kwon, S., Zhang, Y. and Matthias, P. (2007) The deacetylase HDAC6 is a novel critical 

component of stress granules involved in the stress response. Genes Dev, 21, 3381-3394. 

4. Stohr, N., Kohn, M., Lederer, M., Glass, M., Reinke, C., Singer, R.H. and Huttelmaier, S. (2012) 

IGF2BP1 promotes cell migration by regulating MK5 and PTEN signaling. Genes Dev, 26, 176-

189. 
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B.2 PaCeQuant: A Tool for High-Throughput Quantification of
Pavement Cell Shape Characteristics (Möller et al., Plant
Physiology, 2017)

Figure S1

0. Input Image 1. Contrast Stretching 2. Gaussian Filtering 3. Vesselness Filtering

4. Niblack Binarization 5. Post-Processing 6. Watershed Gap Closing 7. Skeletonization

8. Component Labeling 9. Region Filtering 10. Cell Feature Table

Figure S1. Effects of the Individual Processing Steps Implemented in PaCeQuant on the In-

put Image.

Shown are the input image (0.), the resulting intermediate images (1. to 8.), the output image (9.),

and the final cell feature table for one exemplary sample during (I) image quality improvement ,

(II) boundary enhancement , (III) binarization and morphological post-processing , (IV) region filtering ,

and (V) feature extraction .
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B.2 Möller et al., PaCeQuant: High-Throughput Quantification of Pavement Cell Shape

Figure S2

Manual

A
u

to
m

a
ti
c

1
0

0
0

3
0

0
0

1000 3000

Area

1

2
3

4

5

6

7
8

9

10
11

12

13

14
15

Manual
A

u
to

m
a

ti
c

1
0

0
3

0
0

5
0

0

100 300 500

Perimeter

1

2
34

5

6

7
8

9

10

11

12

13
1415

Manual

A
u

to
m

a
ti
c

4
0

6
0

8
0

1
2

0

40 60 80 100

Length

1

2
34

5

6

7

89

1011

12

13

14

15

Manual

A
u

to
m

a
ti
c

2
0

4
0

6
0

20 40 60

Width

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Manual

A
u

to
m

a
ti
c

0
.2

0
.4

0
.6

0.2 0.4 0.6

Circularity

1
234

5

6

7

8
9
10

11

12

131415

Manual

A
u

to
m

a
ti
c

0
.0

0
.2

0
.4

0
.6

0.0 0.2 0.4 0.6

Eccentricity

1

2

3

4
5

6
7

8

9

10

11

1213

14

15

Manual

A
u

to
m

a
ti
c

0
.6

0
.7

0
.8

0
.9

1
.0

0.6 0.7 0.8 0.9 1.0

Solidity

1

2
3

45
6

7

8
9
10

11

12

13
14

15

Manual

A
u

to
m

a
ti
c

2
0

0
0

4
0

0
0

6
0

0
0

2000 4000 6000

ConvexHullArea

1

23
4

5

6

7
8

9

10

11

12

13

1415

Manual

A
u

to
m

a
ti
c

1
0

0
2

0
0

3
0

0

100 200 300

ConvexHullPerimeter

1

23
4

5

6

7

8

9

10

11

12

1314
15

Manual

A
u

to
m

a
ti
c

0
.6

0
.8

1
.0

0.6 0.8 1.0

ConvexHullConvexity

1

234

5

6

7
8

910
11

12

13

14
15

Manual

A
u

to
m

a
ti
c

0
.4

0
.6

0
.8

0.4 0.6 0.8

ConvexHullRoundness

123
4

56

7

89

10

11

12
13

14

15

Manual

A
u

to
m

a
ti
c

5
.0

6
.0

7
.0

5.0 6.0 7.0

MarginRoughness

1
2
3

4

5
6

7 8

9

1011

12
13

14

15

Manual

A
u

to
m

a
ti
c

9
0

0
1

1
0

0
1

3
0

0

900 1100 1300

AvgConcavity

1

2
3

4
5

6

7

8 910
1112

13

14
15

Manual

A
u

to
m

a
ti
c

5
0

1
5

0
2

5
0

50 150 250

StdDevConcavity

1

2

3

4

5

6
7

89 10

1112

13

1415

Manual

A
u

to
m

a
ti
c

5
0

1
0

0
1

5
0

50 100 150

LongestPathLength

1

2
34

5

6

7

8
9

10 11

12

1314

15

Manual

A
u

to
m

a
ti
c

5
1

0
1

5

5 10 15

BranchCount

1

2
3
4

5

6

7

8

9
10

11

12

13

14

15

Manual

A
u

to
m

a
ti
c

1
0

1
4

1
8

10 14 18

AvgBranchLength

1

2
3

4

5

6

7

8

9

10

11
1213

14

15

Manual

A
u

to
m

a
ti
c

2
3

4
5

6

2 3 4 5 6

AvgEndpointDist

1

2

3

4

5

6

7

8

9

10

11

12 13
1415

Manual

A
u

to
m

a
ti
c

1
0

1
5

2
0

2
5

10 15 20 25

LobeCount

1
2

3

4

5

6

7

8

9

1011

12

1314
15

Manual

A
u

to
m

a
ti
c

1
0

0
0

3
0

0
0

1000 2000 3000

NonLobeArea

1

2
3

4

5

6

7

8

9

1011

12

13

1415

Manual

A
u

to
m

a
ti
c

3
4

5
6

3 4 5 6

AvgLobeLength

1

2
3

4

5

6

7
8 9

10

11
12
13

14

15

Manual

A
u

to
m

a
ti
c

1
.5

2
.5

3
.5

1.5 2.5 3.5

AvgApicalLobeLength

1

2

3

4

5

6 7

8
910

111213

14

15

Manual

A
u

to
m

a
ti
c

1
.5

2
.5

1.5 2.0 2.5 3.0

AvgBasalLobeLength

1

2 3

4 5

6

7

8 9

10

11

12
13

14

15

Manual

A
u

to
m

a
ti
c

1
0

1
2

1
4

1
6

10 12 14 16

AvgBasalLobeWidth

1

2

34 5
6

7

8
9

10

11

12

13

14

15

Manual

A
u

to
m

a
ti
c

2
0

2
5

3
0

20 25 30

AvgEquatorLobeWidth

1

2 3
4

5

6

7

8
9

101112
13

14

15

Manual

A
u

to
m

a
ti
c

1
2

1
6

2
0

12 16 20

MinCoreWidth

1

23
4

5

6

7

8 9

10

11

12

13

14

15

Manual

A
u

to
m

a
ti
c

2
0

2
5

20 25

MaxCoreWidth

1

2

345
6

7

8

9

101112
13

14

15

Legend

Features:

Global

Contour−based

Skeleton−based

Pavement cell−specific

Figure S2. Comparison of PaCeQuant Features Between Manually and Automatically

Segmented Cells.

Scatterplots of all 27 features (see Fig. 2 and Supplemental Tab. S1) from a pairwise comparison

between the automatic and manual segmentation of the test set of 15 individual cells. Cells shown

in Fig. 3B (ID 1, ID 7 and ID 10) are highlighted in red. Different heading colors represent the

four feature groups (global, black; contour-based, pink; skeleton-based, green; and pavement cell-

specific, blue).
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Figure S3
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Figure S3. Pairwise Comparison of Features Computed by PaCeQuant and

LobeFinder.

Scatterplots are shown for pairwise comparisons of features computed in the sample set

of the 15 automatically segmented cells by PaCeQuant and LobeFinder. Black headings

refer to global features, the blue heading indicates a pavement cell-specific feature. The

cell shown in Fig. 4B (ID 2) is highlighted in red.
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B.2 Möller et al., PaCeQuant: High-Throughput Quantification of Pavement Cell Shape

Figure S4
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B

Figure S4. Comparison of Feature Values Between Raw PaCeQuant Output Data and After

Cell Removal by Manual Filtering.

A sample set of 14 individual images from cotyledons of 5-day-old wild-type (Col-0) seedlings

was subjected to PaCeQuant, which identified a total of 373 cells. Segmented regions with lo-

cal deviations from cell contours were removed from the sample set by manual post-processing,

which reduced the data set to 342 cells. (A) Violin plots for all 27 features from the 373 cells

detected by PaCeQuant fully automatically (PaCeQuant output) and the 342 remaining cells after

manual post-processing. Circles and crosses refer to medians and means, the vertical black lines

in each category represent the standard deviation (thick lines) and the 95% confidence intervals

(thin lines). The width of each violin box represents the local distribution of feature values along

the y axes. P-values are derived from a two-sample Kolmogorov-Smirnov test, and are given for

each feature. The different heading colors refer to the four feature groups. (B) Results from man-

ual post-processing are shown for three exemplary images. Cells removed by manual filtering are

highlighted in color; cells with accurately detected contours are shown in grey.
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Figure S5

A

Group A - Global Features

●●●● ●●●●●●

●
●
●

A
re

a

0
5
0
0
0

small
 577

medium
 56

large
 0

all
 642

small
 162

medium
 190

large
 21

all
 373

small
 137

medium
 97

large
 122

all
 356

3 DAG 5 DAG 7 DAG

●●● ●●●●●●

●
●
● ●●

● ●

P
e
ri

m
e
te

r

2
0
0

6
0
0

1
0
0
0

small
 577

medium
 56

large
 0

all
 642

small
 162

medium
 190

large
 21

all
 373

small
 137

medium
 97

large
 122

all
 356

3 DAG 5 DAG 7 DAG

●
●

●●
●

●

●●

●

●

L
e
n
g
th

5
0

1
5
0

2
5
0

small
 577

medium
 56

large
 0

all
 642

small
 162

medium
 190

large
 21

all
 373

small
 137

medium
 97

large
 122

all
 356

3 DAG 5 DAG 7 DAG

●
●
●
●●●●●

●

●●

●
●●

●●

W
id

th

5
0

1
0
0

small
 577

medium
 56

large
 0

all
 642

small
 162

medium
 190

large
 21

all
 373

small
 137

medium
 97

large
 122

all
 356

3 DAG 5 DAG 7 DAG

1

341



B. Supplemental Material

●

●

●

C
ir
c
u
la

ri
ty

0
.2

0
.6

1
.0

small
 577

medium
 56

large
 0

all
 642

small
 162

medium
 190

large
 21

all
 373

small
 137

medium
 97

large
 122

all
 356

3 DAG 5 DAG 7 DAG

● ●

E
c
c
e
n
tr

ic
it
y

0
.0

0
.4

0
.8

small
 577

medium
 56

large
 0

all
 642

small
 162

medium
 190

large
 21

all
 373

small
 137

medium
 97

large
 122

all
 356

3 DAG 5 DAG 7 DAG

● ●

●●

S
o
lid

it
y

0
.6

0
.8

1
.0

small
 577

medium
 56

large
 0

all
 642

small
 162

medium
 190

large
 21

all
 373

small
 137

medium
 97

large
 122

all
 356

3 DAG 5 DAG 7 DAG

●● ●●●●●●●●●

●● ●
●
●

●
●

●●

●
●

C
o
n
ve

x
H

u
llA

re
a

0
1
0
0
0
0

2
5
0
0
0

small
 577

medium
 56

large
 0

all
 642

small
 162

medium
 190

large
 21

all
 373

small
 137

medium
 97

large
 122

all
 356

3 DAG 5 DAG 7 DAG

2

342



B.2 Möller et al., PaCeQuant: High-Throughput Quantification of Pavement Cell Shape

●

●

C
o
n
ve

x
H

u
llP

e
ri

m
e
te

r

1
0
0

3
0
0

5
0
0

small
 577

medium
 56

large
 0

all
 642

small
 162

medium
 190

large
 21

all
 373

small
 137

medium
 97

large
 122

all
 356

3 DAG 5 DAG 7 DAG

●

●
● ●

●
●●

C
o
n
ve

x
H

u
llC

o
n
ve

x
it
y

0
.6

0
.8

1
.0

small
 577

medium
 56

large
 0

all
 642

small
 162

medium
 190

large
 21

all
 373

small
 137

medium
 97

large
 122

all
 356

3 DAG 5 DAG 7 DAG

●

●●●

C
o
n
ve

x
H

u
llR

o
u
n
d
n
e
s
s

0
.4

0
.6

0
.8

1
.0

small
 577

medium
 56

large
 0

all
 642

small
 162

medium
 190

large
 21

all
 373

small
 137

medium
 97

large
 122

all
 356

3 DAG 5 DAG 7 DAG

3

343



B. Supplemental Material

Group B - Contour-based Features
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Group C - Skeleton-based Features

●
●●● ●●●

●

●●

L
o
n
g
e
s
tP

a
th

L
e
n
g
th

1
0
0

2
0
0

3
0
0

small
 577

medium
 56

large
 0

all
 642

small
 162

medium
 190

large
 21

all
 373

small
 137

medium
 97

large
 122

all
 356

3 DAG 5 DAG 7 DAG

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●

●

●
●
●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●

●

●●

●●

●●●●●●●●

●

●●●●●●●●●

●

●●

●

●●

●

● ●

B
ra

n
c
h
C

o
u
n
t

0
5

1
0

2
0

small
 577

medium
 56

large
 0

all
 642

small
 162

medium
 190

large
 21

all
 373

small
 137

medium
 97

large
 122

all
 356

3 DAG 5 DAG 7 DAG

●

●

●●●●●●

●●●●●●
●● ●●

●

●

●●●●
●●●●●● ●

●

●

●●
●●●

●●●
●●
●
●●
●
●

●

●
●

●
●

●●

●

●●

●

●●

●
●

●

●

●

●●

A
v
g
B

ra
n
c
h
L
e
n
g
th

2
0

4
0

6
0

small
 577

medium
 56

large
 0

all
 642

small
 162

medium
 190

large
 21

all
 373

small
 137

medium
 97

large
 122

all
 356

3 DAG 5 DAG 7 DAG

●
●

●●
●

●●
●

●
●

●

●

●

●

●

●

●
●

●●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

A
v
g
E

n
d
p
o
in

tD
is

t

2
4

6
8

1
0

small
 577

medium
 56

large
 0

all
 642

small
 162

medium
 190

large
 21

all
 373

small
 137

medium
 97

large
 122

all
 356

3 DAG 5 DAG 7 DAG

5

345



B. Supplemental Material

Group D - Pavement Cell-Specific Features
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B

Figure S5. Quantification and Statistical Analysis of Pavement Cell Shape Features

During Development.

(A) Cells were grouped according to their area (see Fig. 5), and feature values were cal-

culated for small, medium and large-sized cells, and for the complete input dataset (all).

Numbers on the x-axis refer to the number of cells analyzed per sample set. Feature val-

ues are shown in box plots. Box plots show medians (horizontal bar), interquartile ranges

(IQRs; boxes), and data ranges (whiskers) excluding outliers (defiened as >1.5×IQR). (B)

Statistical analysis from pairwise comparisons within the three data sets (3 DAG, 5 DAG,

7 DAG) and the four size categories (small, medium, large, all). Shown are Benjamini-

Hochberg-adjusted p-values after Dunn’s pairwise test. Blue colors represent p-values

close to 1, yellow colors represent values close to 0. Stars indicate statistically significant

differences (* padj < 0.05, ** padj < 0.01, *** padj < 0.001).
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Figure S6
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F

Figure S6. Classification and Quantification of Type I and Type II Lobe Characteris-

tics.

(A) Total number of lobes at two-cell (type I), three-cell (type II) and undefined contact

points detected in the three size categories (small, medium and large) and at the three

developmental time points (3 DAG, 5 DAG, 7 DAG). For information on the total number of

cells per category and time point, and on filtering thresholds, see Fig. 5. (B) Overview of

lobe features extracted for each individual lobe of the input data set. (C-E) Quantification

of lobe characteristics within the three data sets (3 DAG, 5 DAG, 7 DAG) and the four

size categories (small, medium, large, all). Feature values are shown in box plots. Box

plots show medians (horizontal bar), interquartile ranges (IQRs; boxes), and data ranges

(whiskers) excluding outliers (defiened as >1.5xIQR). Ratio of lobe length to lobe equator

width for type I lobes in (C) and type II lobes in (D). (E) Ratio of short versus long con-

tour segments in type II lobes. (F) Statistical analysis from pairwise comparisons within

the three data sets (3 DAG, 5 DAG, 7 DAG) and the four size categories (small, medium,

large, all). Shown are Benjamini-Hochberg-adjusted p-values after Dunn’s pairwise test.

Blue colors represent p-values close to 1, yellow colors represent values close to 0. Stars

indicate significant differences (* padj < 0.05, ** padj < 0.01, *** padj < 0.001).
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Figure S7
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B

Figure S7. Quantification of Pavement Cell Shape Features in Wild-Type and Mutant

Lines.

(A) Violin plots showing the distribution of values for all 27 features calculated from medium

and large sized cells of wild-type (Col-0) and ktn1-5 and oxIQD16 mutant seedlings.

Circles and crosses refer to medians and means, the vertical black lines in each cate-

gory represent the standard deviation (thick lines) and the 95% confidence intervals (thin

lines). The width of each violin box represents the local distribution of feature values along

the y axes. P-values are derived from Kruskal-Wallis-Tests, and are given for each fea-

ture. (B) Statistical analysis of all 27 features from pairwise comparisons between the

three analyzed genotypes (Col-0, ktn1-5 and oxIQD16). Shown are Benjamini-Hochberg-

adjusted p-values after Dunn’s pairwise test. Blue colors represent p-values close to 1,

yellow colors represent values close to 0. Stars indicate statistically significant differences

(* padj < 0.05, ** padj < 0.01, *** padj < 0.001).
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Figure S8

Select phases to run:

• SEGMENTATION_ONLY
automatic segmentation of cell
regions from confocal input images

• SEGMENTATION_AND_FEATURES
fully automatic segmentation

and feature extraction

• FEATURES_ONLY
analysis of shape features
from segmentation data

Select operation mode:

• INTERACTIVE
process only the active image

• BATCH
process all images in a directory

Set name of image/directory

Select pixel calibration mode

Select color of cell boundaries

Enable or disable output of
additional result images

Click here to start analysis

Figure S8. Graphical User Interface of PaCeQuant.

PaCeQuant is available as part of the Microscope Image Analysis Toolbox MiToBo

(❤tt♣✿✴✴✇✇✇✳✐♥❢♦r♠❛t✐❦✳✉♥✐✲❤❛❧❧❡✳❞❡✴♠✐t♦❜♦, version ≥ 1.8.6). For integration in ImageJ/Fiji acti-

vate MiToBo’s update site in Fiji. For more information on Fiji update sites see ❤tt♣✿✴✴✐♠❛❣❡❥✳♥❡t✴

❍♦✇❴t♦❴❢♦❧❧♦✇❴❛❴✸r❞❴♣❛rt②❴✉♣❞❛t❡❴s✐t❡. After installation, PaCeQuant is included in the MiToBo

plugins menu in Fiji. Selecting PaCeQuant opens the graphical user interface, which allows to con-

figure and run PaCeQuant. The user just needs to specify the phases to run (segmentation and/or

feature extraction), set the input data format, and choose between processing single images interac-

tively or all images in a directory in batch mode as shown above. All other parameter settings are

optional and we recommend to leave them unchanged for easing comparative evaluations. An ex-

tended instruction manual explaining all parameters in detail can be found on the PaCeQuant website

❤tt♣✿✴✴♠✐t♦❜♦✳✐♥❢♦r♠❛t✐❦✳✉♥✐✲❤❛❧❧❡✳❞❡✴✐♥❞❡①✳♣❤♣✴❆♣♣❧✐❝❛t✐♦♥s✴P❛❈❡◗✉❛♥t.

354



B.2 Möller et al., PaCeQuant: High-Throughput Quantification of Pavement Cell Shape

Table S1: Detailed Definitions of Features Analyzed by PaCeQuant. PaCeQuant extracts 27 indi-

vidual features per cell that are classified into four general feature groups: (A) global features (11), (B)

contour-based features (3), (C) skeleton-based features (4), and (D) pavement cell-specific features

(9). Shown are the features and the definitions for their calculation.

Group A – Global Features

1. Area A(R) The area A(R) of a cell region R is defined as the total number

of pixels belonging to the cell region, measured in µm2 according

to the physical resolution of the image.

2. Perimeter P (R) The perimeter P (R) of a cell region R is calculated by tracing

the contour pixels of a region (assuming 8-neighborhood) and

summing up distances between all pairs of subsequent pixels

measured in µm.

3. Length L(R) and

4. Width W (R)
The length and width of a cell region R are defined as follows:

L(R) = 2 ·

√

√

√

√

2 ·
(

µ2,0 + µ0,2 +
√

(µ2,0 − µ0,2)2 + 4µ2
1,1

)

µ0,0

W (R) = 2 ·

√

√

√

√

2 ·
(

µ2,0 + µ0,2 −
√

(µ2,0 − µ0,2)2 + 4µ2
1,1

)

µ0,0

µk,l denotes the central moment of order (k, l) of the set of region

pixels:

µk,l =
∑

(x,y)∈R

(x− x̄)k(y − ȳ)l

with (x̄, ȳ) being the center of mass of the region. The length and

width refer to the major and minor axes of an ellipse fitted to the

region pixels. They are measured in µm.

5. Circularity C(R) The circularity C(R) of a cell region R is defined as

C(R) =
4 · π ·A(R)

P (R) · P (R)

where A(R) is the area and P (R) is the perimeter of the region. A

circularity value of 1 indicates that the shape is perfectly circular.

Decreasing values towards 0 indicate increasing deviation from

a circular shape.

1
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Group A – Global Features – Continued

6. Eccentricity E(R) The eccentricity E(R) of a cell region R is defined as follows:

E(R) =
(µ2,0 − µ0,2)

2 + 4 · µ2
1,1

(µ2,0 + µ0,2)2
.

µk,l denotes the central moment of order (k, l) of the region (see

also features Length and Width). The eccentricity quantifies the

elongation of a region. An almost circular region has an eccen-

tricity value of 0.

7. Area of convex hull

ACH(R)
The convex hull is defined as the convex polygon with the small-

est area including the complete region. Hence, the convex hull of

a region is always larger than the region itself. The area ACH(R)
of the convex hull is defined as the total number of pixels of the

convex hull measured in µm2.

8. Perimeter of the con-

vex hull PCH(R)
The perimeter PCH(R) of the convex hull is defined analogously

to the perimeter P (R) of the region itself, i.e. the contour of

the hull is traced and distances between subsequent pixels are

summed up. It is measured in µm.

9. Roundness round(R) The roundness round(R) of a cell region R is defined similar

to the region circularity C(R), however, replacing the perimeter

P (R) of the region by the perimeter PCH(R) of the convex hull

(see also Wu et al., (2016)):

round(R) =
4 · π ·A(R)

PCH(R) · PCH(R)

10. Convexity conv(R) The convexity conv(R) of a cell region R is defined as the ratio of

the perimeter of the convex hull and the perimeter of the region

(see also Wu et al., (2016)):

conv(R) =
PCH(R)

P (R)

11. Solidity S(R) The solidity S(R) calculates the ratio of the region area A(R) and

the area of the region’s convex hull:

S(R) =
A(R)

ACH(R)

The value of solidity decreases with decreasing convexity of the

region.

2
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B.2 Möller et al., PaCeQuant: High-Throughput Quantification of Pavement Cell Shape

Group B – Contour-based Features

12. Margin roughness

MR(R)

α

αα

The margin roughness MR(R) of a cell region R is defined as

follows,

MR(R) =

(

1

N

N
∑

i=1

|Ai|

)

−
360

N
,

where N is the total number of contour points of the region. Ai

denotes an estimate of the local curvature at contour pixel po-

sition i (for details cf. features 13 and 14 below). To quantify

margin roughness first for each contour pixel the local curvature

is estimated and all estimates are averaged. Subsequently the

margin roughness is defined as the deviation of the resulting av-

erage value from the expected average angle of a perfect circle

sampled by N discrete points (McLellan et al., 1998).

13. Average local con-

tour concavity and

14. Standard deviation

of contour concavity

The local contour concavity is calculated by applying the algo-

rithm of Fernàndez et al., (1995) which measures angles be-

tween tangents of neighboring points along the contour. The

average concavity and its standard deviation is given by calcu-

lating the mean and standard deviation of all local concavities

along the contour.

Group C – Skeleton-based Features

15. Longest skeleton

path length

A region skeleton consists of end-points, branch points and pix-

els in between. End-points are defined as pixels having only a

single neighbor in the skeleton, while branch points have more

than two neighbors. A path in the skeleton connects two end-

points. Its length is given by the sum of all distances between

neighboring pixels along the path. Here the length of the longest

path in a skeleton is measured in µm.

16. Branch count and

17. Average branch

length

A branch in a skeleton consists of a set of pixels connecting an

end-point of a skeleton with the closest branch-point. The branch

count specifies the total number of branches in a skeleton, and

the average branch length quantifies the average length of the

branches measured in µm.

18. Average (branch)

end-point distance

The number of branches yields a rough estimation for the num-

ber of lobes in a cell region, but usually underestimates the real

count. The radius of each of these lobes can be approximated by

the distance of the end-point of the corresponding branch to the

closest background pixel. The average lobe radius given in µm is

calculated over the radii of all branches of a given skeleton.

3

357



B. Supplemental Material

Group D – Pavement Cell-Specific Features

19. Lobe count This features counts the total number of lobes along a cell con-

tour. To detect these lobes we basically rely on estimates of local

contour curvature calculated using the algorithm of Freeman and

Davis (Freeman et al., 1977). For details of the calculation refer

to Section ”Pavement Cell Features”.

20. Average lobe length To calculate the length of a lobe first the distances of all pixels

of the lobe to the lobe baseline are computed. The maximum of

these distances defines the overall length of the lobe. The aver-

age lobe length of a cell is the mean value of all these maximal

distances of all lobes of the cell measured in µm.

21. Average apical lobe

length

The length of a lobe as defined in Feature 20, i.e. the distance

between contour and baseline, is separated into two parts by the

equator of the lobe. With the average apical length the mean dis-

tance between the contour points and the equators for all lobes

of a cell is measured in µm.

22. Average basal lobe

length

Complementary to Feature 21 the basal length of a lobe mea-

sures the distance between the baseline and the equator of the

lobe. This feature quantifies the average basal lobe length of all

lobes of a cell in µm.

23. Average basal lobe

width

The basal lobe width measures the length of the baseline of a

lobe, and this feature extracts the average baseline length of all

lobes of a cell in µm.

24. Average equator

lobe width

Each lobe contour subsumes two inflection points where the sign

of the curvature changes. The equator of a lobe, i.e. the line

connecting these two points, is usually located at half-height of

the lobe and yields an approximation for the vertical extension

of a lobe. The average equator lobe width is calculated as the

mean of all equator lengths of all lobes and is measured in µm.

25. Non-lobe area The non-lobe part of a cell region is defined as the part of the

region which does not belong to any lobe. The size of this region

yields an estimate for the degree of lobing in the cell. Smaller

non-lobe areas refer to an increased number and length of lobes

in a cell. The non-lobe area is measured in µm2.

4
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B.2 Möller et al., PaCeQuant: High-Throughput Quantification of Pavement Cell Shape

Group D – Pavement Cell-Specific Features

26. Minimal core width

and 27. Maximal core

width

As an estimate of the neck width of a region the core of a cell

region is analyzed for narrow and wide sections. The core part

of a cell region is roughly given by the part of the cell region

represented by all non-branch parts of the region skeleton. For

pixels belonging to these parts their distances to the background

are calculated and sorted. The minimal core width is then given

by twice the 1st quartile value and the maximal core width is

given by twice the 3rd quartile value of the sorted distance list

measured in µm.

Supplemental References
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Springer Berlin Heidelberg: 229-234
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Trans. Comput. 26: 297-303

McLellan T, Endler J (1998) The relative success of some methods for measuring and

describing the shape of complex objects. Syst. Biol. 47: 264-281

Wu T-C, Belteton S, Pack J, Szymanski DB, Umulis D (2016) LobeFinder: a convex hull-

based method for quantitative boundary analyses of lobed plant cells. Plant Physiol.

171: 2331-2342
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Table S2: Quantitative Evaluation of Segmentation Quality. For the 15 cells of the test

dataset a quantitative comparison of PaCeQuant’s automatic segmentation results with man-

ual segmentation by a human expert was performed. The table shows Hausdorff distances

for differences between contours, and recalls, precisions and Dice coefficients for deviations

in cell areas for each of the 15 cells.

Segmentation Quality Evaluation Measures

Cell-ID Hausdorff Recall Precision Dice index

1 3.606 0.980 0.974 0.977

2 11.705 0.980 0.985 0.983

3 4.243 0.984 0.980 0.982

4 4.000 0.985 0.976 0.980

5 5.000 0.969 0.985 0.977

6 6.000 0.983 0.977 0.980

7 4.000 0.959 0.960 0.960

8 6.403 0.965 0.955 0.960

9 5.000 0.983 0.968 0.976

10 44.181 0.984 0.943 0.963

11 3.606 0.983 0.979 0.981

12 6.000 0.963 0.978 0.970

13 4.243 0.980 0.980 0.980

14 4.123 0.971 0.985 0.978

15 12.166 0.970 0.972 0.971

Min 3.606 0.959 0.943 0.960

Max 44.181 0.985 0.985 0.983

Average 8.574 0.976 0.973 0.974

Median 5.000 0.980 0.977 0.977

1

360



B.3 Microtubule-associated protein IQ67 DOMAIN5 regulates
morphogenesis of leaf pavement cells in Arabidopsis thaliana

(Mitra et al., Experimental Botany, 2019)

Supplementary Fig. S1. 

b

c

f

g h

a

e

d

Supplementary Fig. S1.

IQD5 expression analysis in pIQD5long::GFP-GUS reporter lines. Whole mount

histochemical GUS staining of 2-day-old seedlings (a), in the primary root meristem

(b), lateral roots (c) and cotyledons (d) of 5-day-old seedlings, in the shoot of 10-day-

old seedlings (e), and in flower buds f), flowers (g) and siliques (h) of 5-week-old

plants. Scale bars represent 1 mm (a, c-h) and 10 µm (b).
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Supplementary Fig. S2.
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Supplementary Fig. S2.

Macroscopic analysis of growth parameters in wild type and iqd5 mutants. Seedlings of 

wild type, the two iqd5 mutant alleles iqd5-1 and iqd5-2, and two independent 

pIQD5::IQD5-GFP/iqd5-1 complementation lines grown under long-day conditions at 

5 days after germination (A, B) and at 3 weeks after germination (C). Surface view of cotyledons 

(A) and side view of complete seedlings (B). Surface view of rosettes (C). Bars, 1 mm (A); 

1 cm (B, C). Quantification of coteldon area (D) and root length (E) in seedlings shown in 

A and B. Quantification of leaf area (F) in seedlings shown in C. Data represent mean values 

± standard deviation from n = 25-56 (D), n = 53-72 (E) and n = 30 (F) seedlings or plants. 

Different letters indicate statistically significant differences by one-way ANOVA; p < 0.01.
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B.3 Mitra et al., Microtubule-associated protein IQ67 DOMAIN5

Fig. S3. 
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B. Supplemental Material

Supplementary Fig. S3. 
Quantification and statistical analysis of PC shape features in 5-day-old seedlings of the wild
type and iqd5 mutants. Quantitative analysis of pavement cell shape features in 5-day-old
seedlings of the wild type, iqd5-1, iqd5-2 and two independent pIQD5::IQD5-GFP/iqd5-1

complementation lines. Violin plots of all 27 features quantified with PaCeQuant (A). Statistical
analysis from pairwise comparison between the analyzed genotypes (B). Shown are Benjamini-
Hochberg-adjusted p-values after Dunn‘s pairwise test. Blue colors represent p-values close to
1, yellow colors represent values close to 0. Stars indicate statistically significant differences (*
padj < 0.05, ** padj < 0.01, *** padj < 0.005).
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Supplementary Fig. S4.

Quantification and statistical analysis of PC shape in cotyledons at 2 DAG. Cells were grouped into tiny 

(t
tiny

 ≤ 240 µm2) and small (t
s
 ≤ 1,400 µm2) sized populations. Statistical analysis from pairwise comparisons 

within the three genotypes (Col-0, iqd5-1 and iqd5-2) and the two size categories (tiny, small) (A). Quantification 
of shape features (B). Results are medians, boxes range from first to third quartile. 
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Supplementary Fig. S5.

Quantification and statistical analysis of PC shape in cotyledons at 3 DAG. Cells were grouped into tiny 

(t
tiny

 ≤ 240 µm2), small (t
s
 ≤ 1,400 µm2) and medium (t

m
 ≤ 4,042 µm2) sized populations. Statistical analysis 

from pairwise comparisons within the three genotypes (Col-0, iqd5-1 and iqd5-2) and the three size categories 

(tiny, small, medium) (A). Note that only two medium-sized cells were detected in Col-0, and no medium-sized 

cells were present in the two iqd5 mutants.Quantification of shape features (B). Results are medians, boxes 

range from first to third quartile. 
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Supplementary Fig. S6.

Quantification and statistical analysis of PC shape in cotyledons at 5 DAG. Cells were grouped into small 

(t
s
 ≤ 1,400 µm2), medium (t

m
 ≤ 4,042 µm2) and large (t

l
 > 4,042 µm2) sized populations. Statistical analysis 

from pairwise comparisons within the three genotypes (Col-0, iqd5-1 and iqd5-2) and the three size categories 

(small, medium, large) (A). Quantification of shape features (B). Results are medians, boxes range from 
first to third quartile. 
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B. Supplemental Material

Supplementary Fig. S7.

Quantification and statistical analysis of PC shape in cotyledons at 7 DAG. Cells were grouped into small 

(t
s
 ≤ 1,400 µm2), medium (t

m
 ≤ 4,042 µm2) and large (t

l
 > 4,042 µm2) sized populations. Statistical analysis 

from pairwise comparisons within the three genotypes (Col-0, iqd5-1 and iqd5-2) and the three size categories 

(small, medium, large) (A). Quantification of shape features (B). Results are medians, boxes range from 
first to third quartile. 
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Supplementary Fig. S8.

Quantification and statistical analysis of PC shape in cotyledons at 10 DAG. Cells were grouped into small 

(t
s
 ≤ 1,400 µm2), medium (t

m
 ≤ 4,042 µm2) and large (t

l
 > 4,042 µm2) sized populations. Statistical analysis 

from pairwise comparisons within the three genotypes (Col-0, iqd5-1 and iqd5-2) and the three size categories 

(small, medium, large) (A). Quantification of shape features (B). Results are medians, boxes range from 
first to third quartile. 
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B

Supplementary Fig. S9. 
Quantification and statistical analysis of PC shape in true leaves. PC shape features in the third
and fifth true leaves of wild type and iqd5 mutants. Violin plots of all 27 features quantified with
PaCeQuant (A). Statistical analysis from pairwise comparison between the analyzed genotypes
(B). Shown are Benjamini-Hochberg-adjusted p-values after Dunn‘s pairwise test. Blue colors
represent p-values close to 1, yellow colors represent values close to 0. Stars indicate
statistically significant differences (* padj < 0.05, ** padj < 0.01, *** padj < 0.005).

381



B. Supplemental Material

2000

3000

4000

5000

6000

�
�

�

Area [ µm
2
]

200

300

400

500

600

700

�
�

�

Perimeter [ µm]

60

80

100

120

140

160

180

�
�

�

Length [µm]

30

40

50

60

70

80

90

�
�

�

Width [µm]

0.1

0.2

0.3

0.4

0.5

0.6

�

�

�

Circularity

0.0

0.2

0.4

0.6

0.8

� �

�

Eccentricity

0.5

0.6

0.7

0.8

0.9

�

�

�

Solidity

2000

4000

6000

8000

10000

�
�

�

ConvexHullArea [ µm
2
]

150

200

250

300

350

400

�
�

�

ConvexHullPerimeter [ µm]

0.6

0.7

0.8

0.9

�

�

�

ConvexHullConvexity

0.4

0.5

0.6

0.7

0.8

�

�

�

ConvexHullRoundness

3.5

4.0

4.5

5.0

5.5

6.0

6.5

�
�

�

MarginRoughness

800

900

1000

1100

1200

�
�

�

AvgConcavity

50

100

150

200
� � �

StdDevConcavity

50

100

150

200

�

�

�

LongestPathLength [ µm]

5

10

15

� �

�

BranchCount

5

10

15

20

25

30

� �

�

AvgBranchLength [ µm]

2

3

4

5

6

7

�
�

�

AvgEndpointDist [ µm]

10

15

20

25

30

35

�

�

�

LobeCount

1000

2000

3000

4000

�
�

�

NonLobeArea [ µm
2
]

3

4

5

6

7

�
�

�

AvgLobeLength [ µm]

1.5

2.0

2.5

3.0

3.5

4.0

�
� �

AvgApicalLobeLength [ µm]

1.0

1.5

2.0

2.5

3.0

3.5

� � �

AvgBasalLobeLength [ µm]

10

12

14

16

18

� �

�

AvgBasalLobeWidth [ µm]

20

25

30

�
�

�

AvgEquatorLobeWidth [ µm]

10

15

20

25

30

�

�

�

MinCoreWidth [ µm]

15

20

25

30

35

�

�

�

MaxCoreWidth [ µm]

control

10 mM CaCl2

30 mM CaCl2

Supplementary Fig. S10.

Calcium-dependent changes in PC shape. A) Representative images of epidermis cells in seedlings 5 DAG grown on 

control media or on supplemented with 10 or 30 mM CaCl2. B) Violin plots of all 27 shape features quantified with 

PaCeQuant. C) Statistical analysis from pairwise comparisons. Blue colors represent p-values close to 1, yellow colors 

represent values close to 0. Stars indicate statistically significant differences (*padj<0.05, **pqdj<0.01, ***padj<0.005).
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Supplementary Fig. S11
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In silico expression analysis of IQD5, and
CaM and CML genes using
Genevestigator (Zimmermann et al., 2014, 
BioData Mining, 7:18). Note that CaM2/3/5

and CaM1/4 encode for identical proteins. 
No expression information is available for
CaM6, CML1, CML46, and CML49.
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Signaling to Microtubules, Membrane Subdomains, and the
Nucleus (Bürstenbinder et al., Plant Physiology, 2017)
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Figure S1 Bürstenbinder et al.

Supplemental Figure 1. Expression Analysis and Subcellular Localization of A. thaliana IQD Genes.

A, Expression of full-length GFP-IQD fusion proteins was confirmed by immunoblot analysis using an anti-GFP antibody, as

shown for a few examples. For a list of calculated molecular masses of the GFP-IQD fusions see Supplemental Table S1. B,

Co-expression of RFP-TUA5 with GFP-IQD13 (left) and GFP-IQD16 (right) in N. benthamiana epidermis cells. Note the

differences in RFP-TUA5 labeled MT networks. Micrographs of cells are projections of Z-stacks; insets are single-layer

images. Bars, 20 µm and 5 µm (insets). C, IQD gene expression was analyzed in various tissues and developmental stages

using the AtGenExpress_Plus_Extended Tissue Series dataset provided by the BAR expression browser in comparison to

ACTIN2. Color code in the heat map represents relative expression intensities. Analyzed tissues and growth stages, as listed in

the legend are highlighted on the right of the heat map. Expression information is not available for IQD20, IQD25, and

IQD29.
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Figure S2 Bürstenbinder et al.

Supplemental Figure 2. Phenotypes of iqd25 Mutant Lines and Expression Analysis of

ProIQD25:GFP-GUS.

A, Gene model and position of the T-DNA insertions in iqd25-1 and iqd25-2 mutants. B, RT-PCR analysis

of IQD25 transcript levels in Col-0, two T-DNA insertion lines (iqd25-1 and iqd25-2) and in 2 independent

Pro35S:IQD25 A. thaliana lines (ox25 #1 and ox25 #2). ACTIN2 was included as control for RT efficiency

and for semi-quantitative analysis of IQD25 transcript levels. C, Epidermis pavement cell shape in

cotyledons of Col-0 and iqd25 loss-of-function lines (top panels). The scale bar represents 50 µm. D,

Shoots of 4-week-old Col-0 and iqd25 mutant plants grown on soil under long-day conditions. E,

Histochemical GUS analysis of transgenic ProIQD25:GFP-GUS A. thaliana seedlings. a, 4-d-old seedling,

b, c shoots of b) 6-d-old and c) 10-d-old seedlings, and in d) flower buds, e) flowers, and f) siliques of 5-

week-old plants.

D
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Figure S3 Bürstenbinder et al.

Supplemental Figure 3. Phenotypes of iqd16 Lines and Expression Analysis of ProIQD16:GFP-GUS.

A, Gene structure of IQD16 with insertion site and orientation of the T-DNA. White boxes represent the

5’UTR and 3’UTR, grey boxes the exons, black line the introns and intergenic regions. LB, left border. B,

RT-PCR amplification of IQD16 transcripts in wild-type (Col-0), iqd16-2, and p35S::IQD16 #11 seedlings

relative to ACTIN2. C-E) Phenotype of 5-day-old wild-type (Col-0) and iqd16-2 seedlings grown on ATS

media under long-day condition. C, Complete seedlings (upper panels), and close-up of hypocotyls and

cotyledons (lower panels), D-F) Single optical sections. Cell walls were visualized by PI staining. D,

Epidermis pavement cells of the adaxial site of cotyledons. Scale bars represent 20 µm. E, Individual

stomata. Scale bars represent 5 µm. F, Longitudinal sections of primary root tips. Scale bars represent 20 µm.

G, a-c, e, g, h) Histochemical localization of IQD16 promoter driven GUS expression in 2-day-old seedlings

(a), in lateral roots (b), in the primary root tip (c), and in cotyledons and the hypocotyl of 5-day-old seedlings

(e), in flowers (g), and in siliques of 5-week-old plants (h). d, f) Fluorescence microscopic analysis of IQD16

promoter driven GFP expression (green), cell walls were stained with PI (red). Primary root tip (d), and

epidermis and stomata cells in cotyledons of 4-day-old seedling (f).
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IQD11

ACTIN2

IQD14

ACTIN2

A B

Supplemental Figure 4. Expression Analysis of IQD11 and IQD14 Overexpression Lines and of ProIQD11:GFP-GUS and

ProIQD14:GFP-GUS Lines

A, RT-PCR analysis of IQD11 and IQD14 expression levels in wild type and in two independent transgenic lines of

Pro35S:IQD11 (oxIQD11), Pro35S:YFP-IQD11 (YFP-IQD11), Pro35S:IQD14 (oxIQD14) and Pro35S:GFP-IQD14 (GFP-

IQD14) relative to ACTIN2. B, Histochemical GUS analysis transgenic ProIQD11:GFP-GUS and ProIQD14:GFP-GUS

Arabidopsis seedlings. Seedlings were grown on ATS medium under long-day conditions; a) cotyledons of 5-day-old seedlings,

and b) shoots, c) lateral roots, d) primary root tip of 10-day-old seedlings.
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Supplemental Figure 5. Co-Expression Assays

of GFP-IQD Fusions with RFP-CaM2

Z-stack images of cells (co)-expressing GFP, or

GFP-IQD fusions with RFP-CaM2. Insets, single

optical sections of nuclei. Left column, GFP

signals, center column, RFP signals, right column,

merged images. Scale bars, 20 µm and 5 µm

(insets).

388



B.4 Bürstenbinder et al., The IQD Family of Calmodulin-Binding Proteins

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

IQD2

IQD3

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

IQD5

IQD6

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

IQD8

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

IQD9

IQD10

0

0,2

0,4

0,6

0,8

1

1,2

IQD11

0

0,2

0,4

0,6

0,8

1

1,2

IQD12

0

0,2

0,4

0,6

0,8

1

1,2

IQD14

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

IQD16

IQD17

IQD18

Figure S6 Bürstenbinder et al.

IQD1 IQD7 IQD13

IQD4

IQD15

389



B. Supplemental Material

0

0,2

0,4

0,6

0,8

1

1,2

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0

0,2

0,4

0,6

0,8

1

1,2

IQD19

IQD20

IQD21

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

IQD23

IQD24

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

IQD25

IQD26

0

0,2

0,4

0,6

0,8

1

1,2

IQD28

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

IQD29

IQD30

IQD31

IQD33

Figure S6 Bürstenbinder et al.

100 aa

charge 0.5

IQD22 IQD27 IQD32

Supplemental Figure 6. Predicted Properties of A. thaliana IQD Proteins.

The predicted amino acid sequences of the 33 Arabidopsis IQD proteins were analyzed for charge distribution (top) and 

intrinsic disorder (bottom) using the EMBOSS charge tool (http://emboss.bioinformatics.nl/cgi-bin/emboss/charge) and 

SPINE-D (Zhang et al., 2012) neural networks (http://sparks-lab.org/SPINE-D/), respectively. The plots (length of IQD 

proteins) are drawn to scale, and shown according to the position of motifs and domains (red, IQ67 domain) and 

phylogenetic groups (vertical bars). Mean charges were computed across a window of 5 amino acid residues using the 

following values: -1 (Asp, Glu), +0.5 (His), +1 (Lys, Arg). The IQ67 domain is likely highly ordered (scores < 0.4), 

whereas the flanking regions are predicted to be largely disordered. Scores of 0.4-0.7 indicate semi-disorder (semi-

collapsed with some secondary structure), and scores of 0.7-1.0 indicate full disorder.  
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B. Supplemental Material

SUPPLEMENTAL DATA. Bürstenbinder et al. 

 

Supplemental Table 2.Gene Identifiers and Clone Information. 

Gene name Gene model 

Primer 

Orientation 
Position relative to ATG 

Vector 

Fwd Rev Start Stop 

IQD1 At3g09710.1 I108 I109 1 1365 pENTR/dTOPO 

IQD2 At5g03040.1 I110 I111 1 1386 pENTR/dTOPO 

IQD3 At3g52290.1 I112 I113 1 1293 pENTR/dTOPO 

IQD4 At2g26410.1 I114 I115 1 1584 pENTR/dTOPO 

IQD5 At3g22190.1 I800 I801 1 1269 pENTR3CUSER

IQD6 At2g26180.1 I118 I119 1 1251 pENTR/dTOPO 

IQD7 At1g17480.1 I120 I121 1 1116 pENTR/dTOPO 

IQD8 At1g72670.1 I222 I223 1 1245 pENTR/dTOPO 

IQD9 At2g33990.1 I124 I125 1 792 pENTR/dTOPO 

IQD10 At3g15050.1 I126 I127 1 780 pENTR/dTOPO 

IQD11 At5g13460.1 I128 I129 1 1332 pENTR/dTOPO 

IQD12 At5g03960.1 I130 I131 1 1212 pENTR/dTOPO 

IQD13 At3g59690.1 I132 I133 1 1554 pENTR/dTOPO 

IQD14 At2g43680.1 I134 I135 1 2010 pENTR/dTOPO 

IQD15 At3g49380.1 I136 I137 1 1059 pENTR/dTOPO 

IQD16 At4g10640.1 I138 I139 1 1272 pENTR/dTOPO 

IQD17 At4g00820.1 I140 I141 1 1605 pENTR/dTOPO 

IQD18 At1g01110.2 I142 I143 1 1584 pENTR/dTOPO 

IQD19 At4g14750.1 I144 I145 1 1164 pENTR/dTOPO 

IQD20 At3g51380.1 I146 I147 1 312 pENTR/dTOPO 

IQD21 At3g49260.1 I148 I149 1 1419 pENTR/dTOPO 

IQD22 At4g23060.1 I150 I151 1 1455 pENTR/dTOPO 

IQD23 At5g62070.1 I152 I153 1 1212 pENTR/dTOPO 

IQD24 At5g07240.1 I154 I155 1 1206 pENTR/dTOPO 

IQD25 At4g29150.1 I156 I157 1 1200 pENTR/dTOPO 

IQD26 At3g16490.1 I158 I159 1 1170 pENTR/dTOPO 

IQD27 At1g51960.1 I160 I161 1 1056 pENTR/dTOPO 

IQD28 At1g14380.1 I162 I163 1 1995 pENTR/dTOPO 

IQD29 At2g02790.2 I164 I165 1 1763 pENTR/dTOPO 
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B.4 Bürstenbinder et al., The IQD Family of Calmodulin-Binding Proteins

SUPPLEMENTAL DATA. Bürstenbinder et al. 

 

IQD30 At1g18840.1 I873 I874 1 1719 pENTR3CUSER

IQD31 At1g74690.1 I168 I169 1 1764 pENTR/dTOPO 

IQD32 At1g19870.1 I170 I171 1 2385 pENTR/dTOPO 

IQD33 At5g35670.1 I172 I173 1 1329 pENTR/dTOPO 

TUA5 At5g19780.1 A019 A020 1 1353 pENTR/dTOPO 

PDLP1 At5g43980.1 A027 A028 1 909 pENTR/dTOPO 

TRM1 At3g02170.1 I752 I753 1 2718 pDONR221 

Rem6.6 At1g13920 I1378 I1379 1 1038 pDONR207 

Rem6.7 At5g61280 I1374 I1375 1 792 pDONR207 

ProIQD11 At5g13460 I192 I193 -1 -1253 pENTR/dTOPO 

ProIQD14 At3g59690 I198 I199 -1 -1868 pENTR/dTOPO 

ProIQD16 At4g10640 I202 I203 -1 -1110 pENTR/dTOPO 

ProIQD25 At4g29150 I220 I221 -1 -1090 pENTR/dTOPO 

ProIQD8:IQD8 At1g72670.1 I250 I1251 -688 
(intergenic)

1757 pDONR221 

ProIQD14:IQD14 At2g43680.1 I1468 I1469 -1868 2283 pDONR221 

ProIQD16:IQD16 At4g10640.1 I1234 I1235 -1110 2311 pDONR221 

ProIQD20:IQD20 At3g51380.1 I1380 I1381 -2201 388 pDONR221 

ProIQD25:IQD25 At4g29150.1 I1382 I1383 -1090 1568 pDONR221 

ProIQD28:IQD28 At1g14380.1 I1369 I1370 -1520 2480 pDONR221 
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Supplemental Table 3. Primer Combinations Used for qPCR, RT-PCR and Genotyping. 

  Primer 

Orientation 

Position relative to ATG 

in genomicDNA 

Amplicon

length 

  Fwd Rev 

iqd16 genotyping WT allel I035 I036 993 1849 857 

Insert A004 I036 SALK_LB 1849 416-616 

iqd25 genotyping WT allel I053 I054 -369 537 855 

Insert iqd25-1 A004 I054 SALK_LB 537 482-732 

 Insert iqd25-2 A004 I054 SALK_LB 537 330-530 

      

    Position relative to ATG 

in CDS 

 

     

IQD16 qPCR At4g10640.1 I409 I410 757 840 84 

PP2AA3 qPCR At1g13320.1 A015 A016 824 897 73 

IQD16 RT-PCR At4g10640.1 I035 I036 564 807 244 

IQD11 RT-PCR At5g13460.1 I088 I089 3 402 400 

IQD14 RT-PCR At3g59690.1 I029 I030 1 643 643 

IQD25 RT-PCR At4g29150.1 I095 I096 56 542 487 

ACTIN2 RT-PCR At3g18780.2 A005 A006 695 1121 427 
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B.4 Bürstenbinder et al., The IQD Family of Calmodulin-Binding Proteins

SUPPLEMENTAL DATA. Bürstenbinder et al. 

 

Supplemental Table 4. Primer Sequences. 

Primer Sequence(5‘→3‘) 

I108 CACCATGGTTAAAAAAGCGAAATGGC 

I109 TCACGGCGTTCTCTCTGC 

I110 CACCATGGGGAAAAAAGCTAAATGGT 

I111 TCAGCTGCCTGCTCCGTT 

I112 CACCATGGGTAAGAGTTGGTTTTCAG 

I113 TTAAGCAAGATTAGTATCTTTCTTAGTAA 

I114 CACCATGGGTAAGAACTGGTTAACATGTG 

I115 TTAACTGCTACCACCATTTCTTCTC 

I800 GGCCATTUATGGGAAGATCTCCAGCTTCT 

I801 GGTGATTUCTATGCAAGCCTCTGTTTTATTGG 

I118 CACCATGGGTGCTTCAGGGAAAT 

I119 TTAACCTCTCGGCTTCTCGA 

I120 CACCATGGGTGGGTCAGGAAATT 

I121 TTAGCTTCGCTGGCTCTTG 

I122 CACCATGGGTGGCTCTGGAAATT 

I123 TTAGCCTCTCTGGCTCTTTGC 

I124 CACCATGGGTTCTGGGAATTTGATT 

I125 TCAAGCACCTGGAAATGACA 

I126 CACCATGGGATCTGGATGGCTG 

I127 TTATCCGGAACCAGGCTTT 

I128 CACCATGGCTAAGAAGAAGGGCTTG 

I129 TCATCTCAAGCTGCTCTGCTT 

I130 CACCATGGCGAAGAGGAGGTCG 

I131 TCAACAATTATGTTGATATGTGGTCA 

I132 CACCATGGGGAAGAAAGGAAGTTG 

I133 TCACGCAAATCTGTTAAAAGCC 

I134 CACCATGGTGAAGAAAGGAAGTTGGTT 

I135 TCACACAAATCTGTTAAATTCCTTTC 

I136 CACCATGGGGAAAACCGACGGA 

I137 TTAGTACTGAAAATCTTCGTGAGCA 

I138 CACCATGGCTAAAAAGAACGGAACG 

I139 TCACTTTAACCACCGGAGCT 

I140 CACCATGGGTAAGAAGAGCGGTTCT 

I141 TCATCTTAACCATCGCCTATAATC 
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I142 CACCATGGGGAAAAAGAACGGC 

I143 TCATCTAAGCCAATTCCTAAAGTCA 

I144 CACCATGGGGAAAACTAGCAAATGG 

I145 TCAGTACATGTTGTTGTTTCCCTG 

I146 CACCATGGCCAACTCCAAACGTT 

I147 TTAATGAGAGAGAAGCTGACGAGC 

I148 CACCATGGGGAAGAAAGGGAGTG 

I149 CTAATGATCATGCCTCCAGC 

I150 CACCATGGGAAAAGCGTCACGG 

I151 TCAGTACCTATACCCAATTGGCA 

I152 CACCATGGGCTTTTTCGGGAGA 

I153 CTAAACAAGAAACGAAGAATGCATC 

I154 CACCATGGGTTTCTTTGGAAGACTGTT 

I155 CTATTGAAAGAAAAGAGGATTAGAACT 

I156 CACCATGAGAAAGAATCTCACAAAATTGAC 

I157 TCACCAACGCATCCTACG 

I158 CACCATGGGAAGAGCTGCGAGAT 

I159 CTAATTATAGAATCTAAAATCAGTCTCG 

I160 CACCATGGGCAGAGCAGCAAGAT 

I161 TTAAAGCGGATCACAGGAACA 

I162 CACCATGGGAAAGACTCCTGGTAAATG 

I163 TCACCGTTTCCAGTCGGT 

I164 CACCATGGGAAAGACTCCAAGTCCT 

I165 TCACTCAGCTTTCGTTGACTCA 

I873 GGTGATTUATGGGAAAGCCTGCAAGG 

I874 GGCCATTUTCATCTCTTCCACTCTACCGG 

I168 CACCATGGGGAAGTCTACAAAATGGTT 

I169 TCACCTCTTCCGCTCTGC 

I170 CACCATGGGAAGATCTCCAGCTTCT 

I171 AAATCACCTCTGCCATTTTCTATCC 

I172 CACCATGGGTGTTACAGGAGGATTAGTC 

I173 TTAGGTGCTGCTATTTAGCTTATGTG 

A027 CACCATGAAACTCACCTATCAATTCTTCATC 

A028 TTTATAAGCATCATATTTATTACTCTTCTTCT 

I752 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTGCAAAACTTCTATATAA 

I753 GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAGCAGAAGCAAACTTCATT 
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I1378 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGATACCTTAATCAAGCAGAC 

I1379 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAGAAACAGCATGCATTTC 

I1374 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGATAATTTGGTTAAGCA 

I1375 GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAGTAACACCGAAAGCAGA 

I192 CACCACTTCGAAGTGAAACATATGGAAC 

I193 TGTTGTACAACCATCACCTGC 

I198 CACCATCAGAATCTCTCCACTAAACCTAAT 

I199 TTTGCCAACATCACTTTCCTT 

I202 CACCGTGTAAACACGTGACAACACCA 

I203 ATTGAATTAACGTTTTCTAAAAGCG 

I220 CACCACGCAACATTTTGAGTTATTCTTTG 

I221 AATGGTTTTAGTTTGGTTTCACTTG 

I1250 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTTGCTCAAAGGAAGGAATAAT 

I1251 GGGGACCACTTTGTACAAGAAAGCTGGGTCGCCTCTCTGGCTCTTTGC 

I1468 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCatcagaatctctccactaaacctaat 

I1469 GGGGACCACTTTGTACAAGAAAGCTGGGTCCACAAATCTGTTAAATTCCTTTC 

I1380 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCcagtaacgtagaactcacttccatca 

I1381 GGGGACCACTTTGTACAAGAAAGCTGGGTCATGAGAGAGAAGCTGACGAGC 

I1382 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCACGCAACATTTTGAGTTATTCTTTG 

I1383 GGGGACCACTTTGTACAAGAAAGCTGGGTCCCAACGCATCCTACG 

I1369 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCtatgcatctttaggtccatataaatt 

I1370 GGGGACCACTTTGTACAAGAAAGCTGGGTCCCGTTTCCAGTCGGTTCTGGT 

I035 CGCTGAATCTAACGGTTTTTG 

I036 TAGAAGCTCCCTATCATCGCC 

A004 ATTTTGCCGATTTCGGAAC 

I053 ACGAAGTCGATTTTTCTCACG 

I054 AACGCTTTTCTCGCCTTTTAC 

I409 CGGAGCCGGTCTTCCCGGAATCA 

I410 AGCCATCCATCGGTCAAGCCATTGT 

A015 AGCCAACTAGGACGGATCTGGT 

A016 CTATCCGAACTTCTGCCTCATTA 

I088 GGCTAAGAAGAAGGGCTTGTTC 

I089 CTTCAAGGCACGTAGAGCTTTC 

I029 TTGGCAAAATGGTGAAGAAAG 

I030 GCTTTGAAGAGATGGCTTGTG 

I095 GAGCAACGAGGTGGTTCAAG 
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I096 GCTTCCATACTCCGGAGAGTC 

A005 CAAAGACCAGCTCTTCCATC 

A006 CTGTGAACGATTCCTGGACCT 

 

 

 

 

 

398



B.5 Misiak et al., Protein profiles from primary neurons / B.6 Möller et al., rhizoTrak

B.5 Extraction of protein profiles from primary neurons using active
contour models and wavelets (Misiak et al., Journal of
Neuroscience Methods, 2014)

For this work the following supplemental material is available from the journal website at
https://doi.org/10.1016/j.jneumeth.2013.12.009, Appendix B:

• Matlab figure file illustrating the different steps of the proposed segmentation method

B.6 rhizoTrak: a flexible open source Fiji plugin for user-friendly
manual annotation of time-series images from minirhizotrons
(Möller et al., Plant and Soil, 2019)

For this work the following supplemental material is available from the journal website
at https://doi.org/10.1016/j.jneumeth.2013.12.009, section ’Electronic supplementary
material’:

• Supplemental figures (PDF) showing sample minirhizotron images and visualization op-
tions for annotations of root segments

• Details on import and export of RSML in rhizoTrak (PDF)

• Sample root measurements for individual root segments (CSV)

• Sample root measurements in aggregated format (CSV)
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