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Abstract

In this thesis, we study submodels of a diffuse interface multiphase mixture model
which was proposed by Dreyer, Giesselmann, and Kraus in [24]. This model is a type
of phase field model which describe the chemically reacting viscous fluid mixtures
consisting of N constituents that may develop a transition between a liquid and a
vapor phases.

The submodel has N partial mass balance equations, a balance equation of the
momentum, and a transport equation of the phase field variable. The phase variable
indicates the present phase. The model is supplied with a complicated equation of
state. We will consider one space dimension and assume an isothermal flow. We
consider the homogeneous part of this model which is a hyperbolic system of partial
differential equations for two phase mixture flow with N components.

The main aim of this work is to study the sub-model analytically and numerically.
The analytical study reveals that this model is strictly hyperbolic. We presented
the analytical structure and the mathematical properties of the sub-model such as
the eigenstructure and the wave types of the solutions. We also obtain the exact
solution of Riemann initial value problem for the pure phases flow, i.e. N =1 as
well as for the multicomponent flow, i.e. N > 1.

Any discretization of the full model in [24] has to contain a correct and stable
implementation of the homogeneous part. Therefore, it is justified to deal with the
problem of numerics for the submodel separately. This is what we do.

In the numerical study, we first consider a vapor-vapor flow. We solve the model
using different Riemann solvers and present the results. We compare the numerical
solution with the exact results obtained in the analytical study. Further, we consider
vapor-liquid flows. In this case, major difficulties appear such as negative pressures,
i.e. unphysical results.

We overcome these difficulties using a tracking the interface approach. But actually,
these methods are generally not easy to implement. So we also consider discontinuity
capturing methods. For these, we also develop a new strategy to deal with this
situation. The new approach is called estimating the pressure approach. We applied
the new method to several test cases. This gave an undeniable improvement but
still leaves some open problems for future research.

Finally, in this work, we include the source term in the sub-model, and we discuss
the ability of this model to deal with chemical reactions.
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Zusammenfassung

In dieser Arbeit untersuchen wir Teilmodelle eines diffusen Grenzflachen Mehrphasen-
mischungsmodells, das von Dreyer, Giesselmann und Kraus in [24] vorgeschlagen
wurde. Das Modell in [24] ist eine Art Phasenfeldmodell, das chemisch reagierende
Fluidgemische beschreibt, die aus N Bestandteilen bestehen, die einen Ubergang
zwischen einer fliissigen und einer Dampfphase entwickeln konnen.

Das Teilmodell hat N partielle Massenbilanzgleichungen, eine Bilanzgleichung des
Impulses und eine Transportgleichung der Phasenfeldvariablen. Die Phasenvariable
zeigt die gegenwartige Phase an. Das Modell wird mit einer komplizierten Zus-
tandsgleichung geliefert. Wir betrachten eine Raumdimension und gehen von einer
isothermen Stromung aus. Wir betrachten den homogenen Teil dieses Modells, das
ein hyperbolisches System partieller Differentialgleichungen fiir eine Zweiphasen-
Gemischstromung mit N Komponenten ist.

Das Hauptziel dieser Arbeit ist es, das Teilmodell analytisch und numerisch zu un-
tersuchen.

Die analytische Studie zeigt, dass dieses Modell streng hyperbolisch ist. Wir stellen
die analytische Struktur und die mathematischen Eigenschaften des Teilmodells wie
die Eigenstruktur und die Wellentypen der Losungen vor. Wir erhalten auch die
exakte Losung des Riemann-Anfangswertproblems fiir die reine Phasenstrémung,
d.h. N =1, sowie fiir die Mehrkomponentenstromung, d.h. N > 1.

Jede Diskretisierung des vollstdndigen Modells in [24] muss eine korrekte und sta-
bile Implementierung des homogenen Teils enthalten. Daher ist es gerechtfertigt,
das Problem der Numerik fiir das Teilmodell gesondert zu behandeln. Das ist, was
wir machen.

Bei der numerischen Untersuchung betrachten wir zunachst eine Dampf-Dampf-
Stromung. Wir 16sen das Modell mit verschiedenen Riemann-Losern und préasentieren
die Ergebnisse. Wir vergleichen die numerische Losung mit den exakten Ergebnissen
der analytischen Studie. Weiterhin betrachten wir Dampf-Fliissigkeits-Stromungen.
In diesem Fall treten grofie Schwierigkeiten auf, z.B. negative Driicke, d.h. un-
physikalische Ergebnisse.

Wir iiberwinden diese Schwierigkeiten mit einer Verfolgung der Grenzflache, d.h.
einem Tracking-the-Interface-Ansatz. Aber tatséchlich sind diese Methoden im All-
gemeinen nicht einfach zu implementieren. Daher betrachten wir auch Diskonti-
nuitatserfassungsmethoden. Auch fiir diese entwickeln wir eine neue Strategie, um
mit dieser Situation umzugehen. Der neue Ansatz wird Druckschétzungsansatz
genannt. Wir wenden diese neue Methode auf mehrere Testfille an. Dies fiihrt
zu einer unbestreitbaren Verbesserung, lasst aber noch einige offene Probleme fiir
zukiinftige Forschung.

Schliefllich nehmen wir in dieser Arbeit den Quellterm in das Teilmodell auf und
diskutieren die Fahigkeit dieses Modells, chemische Reaktionen zu beriicksichtigen.
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Chapter 1

Introduction

Consider the classical phases of matter gas, liquid, and solid. Multiphase mixtures
occur in nature and modern technology such as e. g. gas bubbles in liquids, solid
particles transported by liquid or droplets in a gas.

The flow of the multiphase mixtures is an important phenomenon that plays a major
role in many fields of science. One can see it when the liquid pressure drops below
the vapor pressure, then the liquid vaporizes and forms a bubble. This is called
cavitation, see Bachmann [12]. Further examples, gas and water may coexist in a
rock, dust clouds in astrophysics and droplets of liquid move in a gas.

The flow of multiphase mixtures can be combined with a chemical reaction. This
depends on the nature of the materials in the mixture.

Our main interest in this work is the flow of two phases. The two-phase flow of
gases, liquids and solids can be divided into three categories according to the phase
materials: Gas-liquid flows, gas-solid flows, and liquid-solid flows.

In many situations, the components are stationary with respect to one another which
means one component does not diffuse into another which leads to the complexity
of the theoretical treatment.

In this work, we do not consider the solid phase we consider only fluids that can be
made to flow, and the study is turned to be the study of multicomponent fluids.
The presence of multicomponent fluids everywhere in nature demands a deep un-
derstanding of their behavior so that many models are considered. Of course, math-
ematical modeling and numerical computations face huge difficulties. One of the
main reasons for such difficulties is the treatment of the interfaces. These are the
surfaces and layers that separate the phases. One of the difficulties at the interface is
the interaction between the phases which includes the transfer of mass, momentum,
and energy across the interface. Also, the discontinuities of the fluid properties at
the interface are another reason for the complexity. So that the two-phase flows are
characterized by the treatment of the interface. The interface can be considered a
free boundary in the flow. In this case, we call it the sharp interface. When we
consider a thickness of the interface here we call it a diffuse interface.

Based on the nature of the interface one can distinguish two kinds of models. The
first one treats the interface as a sharp interface. Many methods were introduced
for the treatment of the sharp interface models. These methods are classified into
Lagrangian methods, Eulerian methods, combined Euler-Lagrangian methods, and
arbitrary Lagrangian-Eulerian methods. More details can be found in Hu et al. [39],
Saurel [63], Scardovelli and Zaleski [66], Tryggvason et al. [77], Saurel and Ab-
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grall [64] as well as Saurel and Le Metayer [65].

The second kind of models deals with the interface as a diffuse zone so we call this
kind of models a diffuse interface models. These models are based either on the Eu-
ler equations or the multiphase flow equations, see discussions in Acar [4], Anderson
et al. [6], Alzein [5], Bachmann [12], Abgral [1], Shyue [68], Saurel and Abgral [2], [3]
as well as Andrianov et al. [10] [9].

One can see that some models are simple and efficient but have limited applications
in physics and require a simple equation of state.

On the other hand, some models have many applications in physics but need a large
number of equations to be used.

For instance, models of Baer-Nunziato type [13] require a large number of equa-
tions. This increase the numerical cost substantially. Further, these models are
usually not in the divergence form. Accordingly, their discretization needs special
attention. Moreover, the form of the exchange terms is not known. For more details
see Herard [37] and Miiller et al. [57].

In 2007 Romenski et al. [61] introduced a similar symmetric hyperbolic and thermo-
dynamically compatible two phase flow model. Although the volume fraction is a
variable of the system the model is in divergence form. Therefore the model seems
to be very interesting from a mathematical point of view even though a conservation
law for relative velocity should be discussed extensively. Recently all characteristic
fields of the system and all possible wave phenomena were discussed, see Thein et
al. [74], but the full Riemann solution is still not available.

Sharp interface models need only a smaller number of equations. Interesting an-
alytical results are available in Hantke et al. [32]. The Riemann problem for the
isothermal Euler equations with phase transitions was completely discussed. Mass
transfer was modeled by kinetic relations. To solve such systems numerically, the
interface has to be resolved more or less exactly. Accordingly, either a very fine
grid resolution is required, or the computations have to be performed on a moving
mesh or one has to track the interfaces on an additional mesh. This can become
quite complicated in higher space dimensions, see for instance Chalons et al. [17]
and [18]. In [17] a conservative finite volume method was developed to approximate
weak ld-solutions of conservation laws with phase boundaries. This method was
generalized in 18| for 2d-computations and is able to exactly resolve planar phase
interfaces. Further interesting results on this topic can be found in Schleper [67] or
Fechter et al. [27].

To overcome the disadvantages of the types of models discussed before, the so called
phase field models are considered. This kind of models are based on the phase field
variable which is a function of time and space. This parameter takes two distinct
values to indicate the local phase. It smoothly changes at the interface which is
modeled as small zones of finite width.

Dreyer, Giesselmann, and Kraus in their paper [24] have proposed a diffuse inter-
face model which is such a type of phase field model. This model describes chemical
reacting viscous fluids mixtures which consist of NV constituents. The mixture may
develop a transition between a liquid and a vapor.

To describe the phase transition an artificial phase field indicator has been intro-
duced. This phase field variable, say y, indicates the present phase by giving the
values 1 to the liquid and -1 to the vapor phase. Values in | — 1, 1] indicate a tran-
sition layer. The pressure is a constitutive quantity that is related to the phase




function variable y and the partial densities of the components by an equation of
state. The model is supplied with a multi component equation of state and the
challenge comes from its very complicated nature.

The diffuse interface multiphase mixture model derived by Dreyer et al. in [24] is
the focus of this work. In particular, the homogeneous part of the model obtained
by neglecting source terms and terms with second derivatives in space.

The homogeneous submodel has N +2 equations: N partial mass balance equations,
an equation of balance for the momentum and a transport equation for the phase
field variable y. This work aims to give a full analysis of the Riemann initial value
problem for this hyperbolic system of conservation laws. Also, solving the sub-model
numerically is one of the main goals of this thesis.

Presenting the model [24] in detail is essential before we start our study. But due
to the wide range of applications and the complicated relations in thermodynamics,
we will start this thesis by devoting Chapter [2|to present a summary of the thermo-
dynamics concepts.

In Chapter [3| we present the model in its full version. We discuss all the basic
quantities and the constitutive laws in detail. A good knowledge of the hyperbolic
sub-part of the full model is required for analytical and numerical computations.
Further, we introduced an equation of state which is necessary in order to close the
model. The equation of state has a special form presented in [24]. It is based on the
phase variable y and the equation of state of the pure phases.

Chapter [4is devoted to studying the model analytically. For this goal, we start this
chapter by reminding the reader of the main concepts in the theory of the hyperbolic
conservation laws in the scalar case as well as in the systems.

We study the analytical structure and the main mathematical properties of the sys-
tem considered. Studying the eigenstructure of the submodel helps us to understand
the wave patterns of the solution. It reveals that the solution consists of three waves.
A contact discontinuity wave in the middle, a shock wave and a rarefaction wave
either to the right or to the left. Then we discuss the Riemann invariants which are
essential to construct the exact solution. We obtain the exact solution for the case
N = 1. We could generalize those results to the case N > 1.

Many interesting examples are given in this chapter and the results are compared
with the results presented in Toro [75] and Hantke et al. [32]. Parts of this chapter
will appear as [35].

The main focus of Chapters [ and [6]is to solve the sub-model numerically. Chapter
contains a short survey of numerical methods to solve the conservation laws. We
present the Godunov scheme and we give an overview of Riemann solvers such as
HLL, HLLC, Roe solver, VFRoe, and Rusanov. For higher order, we discuss the
MUSCL method. Then we discuss the discretization of the sub-model. We consider
the case of vapor-vapor flow. This case is a good test case in order to test the per-
formance of Riemann solvers and to understand the structure of the solutions.

In Chapter [0 we presented the numerical solution for the more complicated case
which is the flow of vapor-liquid. In this case, many unexpected difficulties appear.
They are namely the negative pressures, i.e. unphysical results. These difficulties
are also relevant for the discretization of the full model since they are due to the
nature of the equation of state. It is identical for both models. We develop strate-
gies and methods to overcome these difficulties. In this work, first, we used tracking
the interface approach in order to avoid negative pressure. This method is applied
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successfully in the work of Thein [73]. But this approach deals with the interface as
a sharp interface. So we developed a new approach called ”estimating the pressure”.
This new approach is based on the physical properties of the liquid. We consider a
liquid phase as a solid wall because most of the effects appear in the vapor phase.
This enables us to solve the Riemann problem on the wall. We do this in two ways.
The first one by solving the Riemann problem on the wall numerically using Rie-
mann solvers. The other one, by using the exact solution of the Riemann problem
on the wall. This method is applied to many examples and gives good results. Parts
of Chapter [6] will appear as [34].

In both Chapters 5] and [6] we give some numerical examples and compare those re-
sults with the exact solution obtained in Chapter [4l

Finally, in Chapter [7] for chemical reactions, the sub-model is modified by reaction
sources. For their discretization, an ODE-solver has to be coupled to the numerical
method. We study this new sub-model and give a numerical solution to it. Numer-
ical examples have been presented.




Chapter 2

Thermodynamics

As we have mentioned in the introduction our aim in this work is to study the
homogeneous form of the diffuse interface multiphase mixture model proposed by
Dreyer et al. in [24]. This model was suggested for chemically reacting viscous fluid
mixtures that may develop a transition between the phases. The model is provided
with an equation of state. One can notice that a background in thermodynamics
is required so we will start this work by providing the reader with a summary of
thermodynamics results and highlighting the basic concepts that we will need in this
work.

The main references in this chapter are the book by Atkins [11] and the book by
Miiller and Miiller [56]. For further details we recommend the book by Anderson (7],
the paper by Miiller and Hantke [33] as well as the PhD thesis by Thein [73].
Additionally we also refer to the work of Menikoff and Plohr [52], Landau and
Lifshitz [43], Bothe and Dreyer [15] as well as Flatten [29] .

We will start this chapter with some basic definitions before we introduce the famous
laws of thermodynamics. After that we present the thermodynamics potentials in
Section [2.3] In Section we give an overview of the equation of state with some
examples. Maybe the most important section is Section where we discuss the
thermodynamics of mixtures in order to define the stiffened gas equation of state
which will play an important role later on in this study.

Thermodynamics is in general used for providing rules that govern the descriptions
of macroscopic systems in terms of their properties and their interactions with other
systems.

We divide the universe into two parts, the system, which is the part of the world in
which we have a special interest and its surroundings, which comprise the region
outside the system and where we make our measurements. The interface separating
the system and its surroundings is called the system boundary. And we call the
combination of system and surrounding the universe.

The characteristics of the system boundaries classify the system into:

e Open system: if matter can be transferred through the boundaries between
the system and its surrounding.

e Closed system: if matter cannot pass through the boundary but other prop-
erties may be transferred through it.

e Isolated system: a closed system that has neither mechanical nor thermal
contact with its surrounding.
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We have to mention here that both closed and open systems allow energy to transfer,
i.e. can exchange energy with their surrounding.

We distinguish the system, which has constant mass, but possibly variable volume,
from the control volume. The latter one is a fixed volume where mass can pass in
and out through its boundary, which is called the control surface.

2.1 Basic definitions

We define

e Phase: a quantity of matter that is homogeneous throughout, e.g. liquid,
gaseous or solid.

e Phase boundary: interface between different phases.
e State: condition described by observable macroscopic properties.

e Property: quantity that only depends on the state of the system and is
independent of the history of the system.

There are two important classes of properties we consider:

e Extensive property: a property which is doubled if we double the system,
in other words a property that depends on the mass of the system like total
volume and total energy.

e Intensive property: a property which is independent of the mass of the
system like temperature and pressure.

Actually, we define properties for systems which are in Equilibrium, which is a
state in which no spontaneous changes are observed with respect to time, and we
will define three types of equilibrium

e Mechanical equilibrium: is characterized by equal pressure and velocity every-
where in the system.

e Thermal equilibrium: is characterized by equal temperature everywhere.

e Chemical equilibrium: is characterized by equal chemical potentials every-
where.

Often systems undergo a change of state, which means one or more properties of
the system have changed, a succession of changes of state is called a process, which
is given special names like isothermal when it has constant temperature, isobaric
when constant pressure is assumed, and isochoric when we consider constant vol-
ume.
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2.2 The laws of thermodynamics

2.2.1 First law of thermodynamics

Generally, when a system passes through a process, it exchanges energy with its
environment. The total energy of a system is called its internal energy F. The
difference AE = E; — F; is the change in internal energy when the system changes
from an initial state ¢ with energy E; to final state f of internal energy Ey.

The energy change in the system, may result from performing work W on the
system or letting the system perform work, and from exchanging heat () between
the system and the environment. Starting from this point, we can set the first law
in thermodynamics:

The change of the internal energy is the sum of the heat supplied to the
system and the work done to the system.

To summarize this result we write AE the change in internal energy as
AE=Q+W

which is the mathematical state of the first law.

Now we switch attention to infinitesimal changes of state, e.g. like temperature, and
infinitesimal changes in the internal energy dE. Then the work done on a system is
dW and the energy supplied to it as heat is d@, which means

dE = dQ + dW.

Enthalpy
The enthalpy H with the volume V' and pressure p is defined as
H=F+pV.

The enthalpy plays an important role in stationary flows of fluids, AH is independent
of the path between any pair of initial and final states. The change in enthalpy is
equal to the energy supplied as heat at constant pressure

dH = dQ, (2.1)
and for measurable changes

AH = Q.

As the internal energy of a substance increases when its temperature 7' is raised, we
define the heat capacities C'y and C, as the amount of heat needed to raise the
temperature of the material by one degree. We define the heat capacity at constant

volume C'y, as
OF
o= (57),

The heat capacity at constant pressure is the slope of the tangent to a plot of
enthalpy against 7" at constant pressure

oH
Cp = (a_T)p

7




CHAPTER 2. THERMODYNAMICS

We define ~ the ratio of heat capacities

Remark 1 So far all quantities were denoted by capital letters. From this point we
will consider specific quantities, i.e. per amount of substance or per mass, and we
will use the corresponding small letter. We will consider only specific quantities in
this work.

Changes in internal energy

When the specific volume v changes to v + dv at constant temperature, the specific
energy e = e(v,T') changes to
Oe
e =e+ (—) dv.
ov ),

If instead, 7' changes to T'+d7T" at constant volume, then the internal energy changes

to 9
e
I = — T.
e e+(8T)Ud

Now suppose that v and 7" both change infinitesimally, the internal energy differs
from e by infinitesimal amount de, therefore the new internal energy is the sum of
the changes arising from each increment

Oe Ode
de = (&)Td’l] + (a_T>UdT

The coefficient (%)T plays a major role in thermodynamics because it measures the
variation of the internal energy of a substance as its volume is changed at constant
temperature. This coefficient is called the internal pressure and denoted by .
We have already ¢, = (2%), , which gives

aT
de = wdv + ¢, dT.

Now we want to find out how the internal energy varies with temperature when the
pressure of the system is constant. We obtain

(86) (81}) e
— | =7 —=—= -
oT » oT »

The partial derivatives on the right in this expression is the slope of the plot of
volume against temperature. This property is called expansion coefficient o

which is defined as
()
v \OT »

Physically it is the fractional change in volume that accompanies a rise in temper-
ature. We define the isothermal compressibility « as

v \dp/,’

which is a measure of the fractional change in volume when the pressure is increased.

8
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2.2.2 The second law of thermodynamics

Some changes can only go in one direction, e.g. in the absence of some extra energy
heat can only flow from a hotter medium to a colder medium. Such processes are
irreversible. So we think it is useful to start this subsection by defining so-called
reversible and irreversible processes:

e Reversible process: A process in which it is possible to return both the system
and surroundings to their original states.

e Irreversible process: A process in which it is impossible to return both the
system and surroundings to their original states.

The second law of thermodynamic in terms of the state function the specific entropy
S says

The entropy of a an isolated system can only increase by internal
processes

AStat = Stot,f — Stot, >0,

where f and ¢ are the final and initial state respectively and s, is the total entropy
of the system and its surrounding. We use the index "rev” to indicate reversible
processes.

The second law can be summarized by Clausius inequality which is given by

qu‘e’U
ds > .
=TT
The equality
qu’e’U
ds =
s T

only holds for reversible processes and may be used to define the entropy for these
processes. Further details can be found in Atkins |11], Miiller and Miiller [56] as
well as Thein [73].

2.2.3 The fundamental equation

We have seen that the first law of thermodynamics may be written as
de = dq + dw.

We may set dw,., = —pdv and dg,., = T'dv, where p is the pressure of the system,
and T is the temperature. Therefore, for a reversible change in a closed system

de =Tds — pdv, (2.2)

which combines the first and the second laws of thermodynamics. This relation is
called the fundamental equation.

We could regard e as a function of the other variables, such as p and T" because they
are all interrelated, but the simplicity of the fundamental equation suggests

9



CHAPTER 2. THERMODYNAMICS

that e(s,v) is the best choice. We can express an infinitesimal change de in terms
of changes ds and dv by

Oe Oe
de = ($>v ds + (%)g dv.

When this expression is compared to the equation ([2.2]) we see that,
0 0
%\ _p o (%) __,
ds ), ov ),

2.3 Thermodynamic potentials

2.3.1 The Helmholtz and Gibbs energies

We can develop the Clausius inequality
dq
ds — — >0, 2.3
2> (23)
in two ways according to the conditions of constant volume or constant pressure
under which the process occurs. First, we consider at constant volume. Then we
can write

dgq, = de,

which means p
e
ds—— >0

s—0 20,
or

Tds > de. (2.4)
Now, when energy is transferred as heat at constant pressure then by (2.1))

dg, = dh.
From ([2.3)) it follows that

Tds > dh. (2.5)

Because of (2.4)) and (2.5) we have the inequalities
de —Tds <0 and dh—Tds <O0.
These inequalities can be expressed more simply by introducing two more thermo-

dynamics quantities. The first one is the specific Helmholz energy v which is
defined as

v=e—"Ts,
and the other is the specific Gibbs energy g where
g=h-—"Ts.

When the state of the system changes at constant temperature, the two properties
change as follows

dyp = de — Tds,
dg = dh — Tds,
and from and we obtain
dyry <0,
dgry < 0.

10



2.3. THERMODYNAMIC POTENTIALS

Properties of the Gibbs energy

In order to discuss phase transitions and chemical reactions, we need expressions
showing how ¢ varies with the pressure and temperature, and as we have seen before

g=h—"Ts.

This can be written for infinitesimal changes as

dg = dh — d(Ts) = dh — Tds — sdT.
And because h = e + pv, we know that

dh = de + d(pv) = de + pdv + vdp,
and therefore

dg = de + pdv + vdp — T'ds — sdT.
For a reversible changes of a closed system using we obtain

dg = vdp — sdT.

@ @

Because the equilibrium composition of a system depends on the Gibbs energy, we
need to know how ¢ varies with temperature, and the last relation is a good starting
point for this, as we can express it in terms of the enthalpy A by using the definition
of g we write

This gives

then

99\ _g—h
an_T’

99\ _=h
OTT p_TQ’

which is called the Gibbs-Helmholtz equation.

which gives the expression

2.3.2 The chemical potential

The chemical potential p is a measure of the potential that a substance has for
undergoing physical or chemical change in a system. For a single component system

the molar Gibbs energy g,, and the chemical potential p are synonyms so g,, = u.
It follows from ({2.6) that

) )
ar ), ’ op ),

11




CHAPTER 2. THERMODYNAMICS

2.4 Equation of state

The physical state of a sample of a substance is defined by its physical properties.
Two samples of a substance that have the same physical properties are in the same
state. The state of a pure gas, for example, is specified by giving its mass density
p, pressure p, and temperature 7.

It has been established experimentally that it is sufficient to specify only two of
these variables, then the third variable is determined via an equation of state i.e. an
equation that interrelates these three variables.

Equations of state are useful in describing the properties of fluids, mixtures of fluids,
solids and even the interior of stars. The general form of an equation of state is

b= f(THO)

This equation tells us that, if we know the values of T" and p for a particular substance
then the pressure has a determined value. One of the simplest equations of state is

the ideal gas law,
nRT

v
where R is a constant and n is the total amount of a substance. This law is roughly
accurate for gases at low pressures and moderate temperature. However, this equa-
tion becomes inaccurate at higher pressures and lower temperature, and fails to
predict condensation from a gas to a liquid. Therefore a number of much more
accurate equations of state have been developed for gases and liquids, and next we
present some examples:

p:

e The equation suggested by J.D. van der Waals, which is an excellent example
of an expression that can be obtained by thinking scientifically about math-
ematically complicated but physically simple problem. The van der Waals

equation is

nRT . n?
Vonb V'’

where a and b are the van der Waals coefficients.

p:

e Tait’s EOS, which has the form

Vief\u
P =Pres + Ko (577 = 1),

where the subscript ref refers to values at given temperature 7., and K,y is
the modulus of compression. The non-linearity is due to the exponent v > 1
and for linear Tait equation of state v = 1.

It has to be mentioned, that there is no single equation of state that accurately
predicts the properties of all substances under all conditions.

2.5 Thermodynamics of mixtures

A mixture is defined as the result of combining two or more substances like the
air can be taken as a mixture of nitrogen and oxygen. We analyze here mixtures

12



2.5. THERMODYNAMICS OF MIXTURES

of simple non-reacting chemical substances that form a single phase or multiphase
system, such that a chemical reaction does not occur between components of the
mixture.

Let us consider a thermodynamic property X as a function of the temperature
T, the pressure p and the composition given as the amount of the N components
ni,Na, ...,ny. This implies that when we keep T" and p constants

N
0X
dX = Z ((,mi) dn,.

=1 P

The quantity X can be found by integration as

Here we define the partial molar quantities X; as

N rox
Xizi;(ani)w.

That means the quantity X can be calculated as the sum of the contributions of
each component, where the individual contribution is the partial molar quantity
multiplied by the amount of the component.

Now we want to apply this to the volume and we define the partial molar volume
v; of a component 7 in a mixture. It is the change in volume per mole of substance
1 added to a large volume of the mixture and it defined as follows

v — (81}0)
‘ (9n1 p,T'

From this relation we can derive that

N
V= E viny;.
i=1

For a substance in a mixture the chemical potential y; is defined as the partial molar

Gibbs energy
dg
Hi = (an)ﬂ'

By applying the same argument that led to (2.7)) we obtain

N
9= Z 705
i=1

The equation
dg = vdp — sdT,

then becomes
N

dg = vdp — sdT + Z Lin;.

i=1

13



CHAPTER 2. THERMODYNAMICS

This expression is called the fundamental equation of chemical thermody-
namics. [t follows that at constant volume and entropy

ANy
uizz<3§z’>sv7

i=1

therefore, the chemical potential shows how ¢ and e change when the composition
changes. In the same way we can find

N/ on N /o

i=1 =1

2.5.1 Equation of state of the mixture

Let N be the number of the constituents, p; the partial densities, then the mixture

density p is given by
N

P:ZPi-

i=1

In order to obtain an equation of state usually it is required to to relate the partial
pressure p; and the thermal energy pe to the partial densities p; and the mixture
temperature 7T'.

As we have seen before the specific Helmholz free energy is given as

v =e—"Ts.

It follows that s y
9p 2 0
- — 7122 (Z).
i i and e l - ( T)

The representation of the pressure

N
p=—p+ > pitti, (2.9)
=1

is a consequences of the second law and is called the Gibbs-Duhem equation. For
further details concerning these relations see Bothe and Dreyer [15], Hantke and
Miiller [33] as well as Dreyer et. al. [24].

2.5.2 Simple mixtures

The mixture momentum pv is given by

N
pU = Z Pii-
=1

Now we want to apply the previous results to a simple mixture. By simple mixture
we mean a mixture of N components where the partial pressures and the partial
specific energies have the form

pi =pi(T,p;) and e; =e(T,p;).

14



2.5. THERMODYNAMICS OF MIXTURES

Let ¢; = ¢;(T, p;) be the partial Helmholz free energy. In this case the further
partial quantities are given as

o [
o= g2 2
e; T (T> (2.10)
_ Opyi
o= 2 2.11)
pi = —pii + pilli, (2.12)

see Hantke and Miiller [33].

2.5.3 The stiffened gas equation of state

Due to its simplicity and suitability for fluid mechanical applications, many authors
consider the stiffened gas equation of state a useful basis for simulating multicom-
ponent flow problems, especially, when considering water under very high pressures,
i.e. typical applications are underwater explosions.

Let p; be the partial densities, the parameters: ~;, 7;, ¢,; and ¢; be the ratio of the
specific heats, the minimal pressure, the specific heat capacity at constant volume
and the heat of formation of component i respectively. Let the free energy density
1; be defined as

o )+E+(%—1)cviTln L L (2.13)

T
Vi(p, T) = —cyT In
( ) Tref Pi Piref Pi Tref

Tref

+q:(1—

Here T,.f and p,ey are the reference temperature and reference density respectively.
The definition (2.13)) was taken from Hantke and Miiller [33].
To derive an appropriate internal energy law for e;, we apply e; = —T 28%(%) from
([2-10), which gives

e; = cul +q; + i, (2.14)

The chemical potential is determined by applying u; = %% from (2.11]), which gives

T T o T o1

pi = —CoT'In —— +¢;(1 = =—) + (7 = 1)c; T In + (vi = VewT — mig—. :
Tref Tref Piref Tref Piref

(2.15)

By using (2.12)) with the free energy density (2.13)) and the chemical potential (2.15)

we obtain
pi=—m+ pi(vi — Vw5 m >0, (2.16)

which is the stiffend gas equation of state in terms of pressure.

Speed of sound

The speed of the sound a; is defined by the slope of the isentropes in the pressure-
density plane as

Op;
2 ()
> _ — (i — ey T. 2.17
Using this equation with (2.16)) and d; = —; leads to the equation of state
pi = aipi + di, (2.18)
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which will play an important role later on in order to supply the model with an
equation of state.
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Chapter 3

The model

3.1 Introduction

In 2014 Dreyer, Giesselmann and Kraus [24] proposed a new diffuse interface model
to describe chemically reacting fluid mixtures consisting of N components where
phase transition between a liquid and a vapor may occur. The isothermal evolution
was exclusively considered. This model is a type of phase field model. This chapter
is devoted to introducing this model in detail.

To describe the phase transition, an artificial phase field indicator was introduced.
It indicates the present phase by assigning values to the liquid and the vapor phase.
Within the transition layer between the phases the phase field indicator changes
smoothly between the two values. In our case the indicator has the value -1 in the
vapor phase and the value 1 in the liquid phase. The phase field value between the
two phases will be in the interval | — 1, 1].

As the conservation of mass and momentum play a central role in this model we
want to start this chapter by presenting one of the most important properties in
nature which are the conservation laws. A general introduction to conservation laws
was presented in the book by Evans [26]. Also we refer the reader to the book by
Warnecke [81] and by Dafermos [22].

Then we will present a diffuse interface multiphase mixture model in detail and we
supply this model with an equation of state before discussing the exact and the
numerical solution in the next chapters. Interesting discussions can be found in the
work of Blesgen [14], Kotschote [41], Saurel et al. [62] and Feireisl et al. [25].

3.2 Conservation laws

Let u be a quantity of interest such as the density of mass, the temperature of a
rod or a concentration in a chemical cell. In physics, we know that properties of an
isolated physical system do not change as the system evolves over time which means
that these quantities are conserved in certain classes of physical processes. We call
this principle a conservation law which is one of the most important results in the
history of science. It has many applications in nature and all branches of science.

For the time ¢ € [0,t0.) € R>o we consider that the quantity u(¢,x) defined for
all the points z of the domain  C R? where d = 1,2,3. The unknown quantity
u is called the conservative variable. According to the idea of conservation law the
change in the quantity « in time in a fixed volume is equal to the total amount of u
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CHAPTER 3. THE MODEL

and the flux of u across the boundary of the volume. This means that the change
in the quantity u comes only from the information entering or leaving the domain
of interest, i.e. the change in u comes only from the fluxes f. The flux represents
the amount of u which goes in or comes out of the domain. This observation can be
summarized by the following partial differential equation

ur + f(u), =0, (3.1)

which is called a conservation law.

An extension of this idea is the consideration of additional source terms s which add
or subtract a certain amount of u. In this case there are two factors affecting the
change of u the first one is the flux f and the second one is the source s. Then the
equation will have the form

ut+f(u)x = S.

This equation is often called the balance law due to the fact that the rate of change
in u is balanced by the flux and source.

3.3 The derivation of the conservation laws

The basic idea of the conservation laws says that some features of the matter remain
constant in the region of space occupied by the same particles for all time t. This
region is called the material volume V. Many features are conservative but in
this section we restrict ourselves to the classical quantities which are the mass, the
momentum and the energy.

The first conservation law is the conservation of mass which means that the mass
of a material volume cannot be changed. In other words no mass is generated or
annihilated within V. Suppose that A is the surface of V. This means that no mass
flow across the surface A.

Another important conservation law is the conservation of momentum which is based
on Newton’s second law. This law states that the momentum of a material volume
V' is equal to the force applied to it.

The last conservation law is the conservation of energy which says that energy can be
neither created nor destroyed. This law results from the first law in thermodynamics.
Next in this section we will present only the derivation of the conservation laws of
mass and momentum because the conservation law of the energy is not considered
in the model in which we are interested.

First we want to remind the reader of the Reynolds transport theorem which states
that assume that v(x,t) is the velocity vector of fluid motion and let V be an
arbitrary material volume then

Gt/ o(z,t) dV = 8t ng(x,t) dVy +/A¢(x,t)v ‘ndS =0. (3.2)

Here ¢ is the quantity of the fluid motion, V; is a fixed control volume of the surface
A, n is the unit outward normal and dV', dV; are the volume elements of V' and Vj
respectively.
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3.3. THE DERIVATION OF THE CONSERVATION LAWS

3.3.1 Conservation of mass

As we have seen before the mass of a material is a conserved quantity which means
that the mass can not be changed. We assume that p is the density of the material
in V. This means that the mass can be given as

M(t) = /Vp(x,t) qv.

As we assumed that the mass is conservative this means that the rate of change of
the mass is zero

d d
SM(t) =~ t) dvV = 0.
M) =5 [ st

Now we apply Reynolds transport theorem ([3.2)). We obtain
0
— | plz,t) dVo+ [ p(z,t)v-ndS =0.
at Vo A

Applying Gauss’s divergence theorem and taking into account that Vj is independent
in time we get

ot

Since this holds for any volume Vj, we obtain

0
/ 24 div(pv) dVy = 0.
Vo

% + div(pv) =0, (3.3)

which is the differential form of the mass conservation law.

3.3.2 Conservation of momentum

The conservation law of the momentum results from the direct application of New-
ton’s second law of motion. One has to notice that the total force F'(t) consists of
two forces the volume force Fy and the surface force Fs which are given by

o) = [ e av. B0 = [neoda

where fy is the specific volume force per unit mass and o is the stress tensor which
is given as

o= —pl+1I,
where p is the pressure of the fluid, I is the unit matrix and II is the viscous stress
tensor see Toro [75]. Now we consider Newton’s second law which states that

2 /V (ov) dV = F(1)

As we have done in the previous subsection we apply again Reynolds transport
theorem we get

2/ pvdV+/(pv®v+pI—H)-nd8—/ pfv dV.
(9t Vo A Vo

19
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By applying Gauss’s divergence theorem we obtain

B
/ﬂ+div[pv®v+p1—n] dV:/pfvdV.
v Of

Vo
As this valid for any arbitrary volume Vj we obtain

opv _
% +divjpv @ v+ pl — 1] = pfy,
which is the differential form of the momentum equation including a source term
due to volume forces. One can neglect the volume forces fy and set the viscous
stresses 1I to be zero in order to obtain
dpv

o + div[pv @ v + pl] = 0. (3.4)

3.4 A diffuse interface multi-phase mixture model

A diffuse interface multi-phase mixture model, with chemical reactions, was pro-
posed by Dreyer, Giesselmann and Kraus [24] in order to describe the phases in
the diffuse interface setting. They proposed a model for chemically reacting viscous
fluid mixtures that may develop a transition between a liquid and a vapor where the
interface between adjacent liquid and vapor phases is modeled by a thin layer. The
thermodynamic quantities change smoothly within the layer in one phase to differ-
ent values in the other phase. This model belongs to the class of diffuse interface
models which solve the partial differential equations in the transition region while
the sharp interface models deal with jump conditions across the interface between
the phases.

In this study we consider that the mixture consists of N constituents and occupies
a region 2 C R™. At any time t > 0, the phsical state of €2 is described by N
partial mass densities p;, the velocity v and the pressure p. These quantities may
be functions of time t > 0 and space x € Q.

In this work we exclusively consider isothermal evolutions. This means that the
temperature 7' is fixed to be constant.

3.4.1 The basic quantities

We consider multi-component liquid (L) and/or vapor (V) mixtures of N con-
stituents A, A,, ..., Ay where the constituents A; for ¢ = 1, ..., N of a fluid mixture
allow chemical reactions. This means that we have Ng reactions of the type

a{z‘h + CL‘%AQ + ...+ a{VAN = b{Al + b%A2 4+ .+ bvaN,

where the constant stoichiometric coefficients a/ and ! are positive integers for
j=1,..., Ng. We define their differences as

vl =b —a’

i i Wi

In order to explain the stoichiometric coefficients we present the following example
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3.4. A DIFFUSE INTERFACE MULTI-PHASE MIXTURE MODEL

Example 1 In this example we consider a mizture of liquid water Ay = (H30)iquid
and water vapor Ay = (H20)yapor-

(HQO)Uapor = (HZO)liquid~

In this case we have a mixture that consists of two components i = 1,2. One can
notice that the stoichiometric coefficient sare

a1:07 a2:17 b1:17 b2:07

this means that v s
V= —]_, Vy = 1.

The stoichiometric coefficients play an important role in the treatment of two phase
flow with chemeical reactions as we shall see in Chapter [7]

Now we consider as basic variables the partial mass densities p; where ¢ = 1,..., N
the number of the constituents N, the partial velocities v; and the temperature 7.
The partial mass densities and the partial velocities are used to define the total mass
density p and the velocity v as

N 1 N
p=> pi VI;ZPz’Vz*
=1 =1

To describe phase transitions we introduce a phase field variable y indicating the
present phase at (t,z). We introduce y to distinguish between the two possible
phases. It assumes values in the interval [-1,1] where the values 1 and -1 indicate
the liquid and vapor phase respectively and within the transition layer between the
phases it changes between -1 and 1.

3.4.2 The constitutive laws

There are further quantities which are given by constitutive equations such as

e The stress o which models the volume changes, viscosity and capillarity. This
is discussed in details in [24]. We will mention it in the model but not use it

later.
e Chemical potentials and the pressure which are given by (2.11)) and (2.12)) as
Opy al . .
Hi = ap? p:_pw—i_zulpza Zzla"'aN'
¢ i=1

Here pt) is the free energy density. The chemical potentials, the pressure and
the free energy density were presented in detail in Chapter [2

e The Reaction rates Ri and R; given by
J
W)

where k is Boltzman constant and the chemical affinities A7 defined by
N .
Al = Z miVi] i
i=1

where m; the atomic mass of constituent i, see Dreyer et al. [24].

R} = Rgcexp( j=1,..., Ng,
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CHAPTER 3. THE MODEL

e The chemical reaction term which is given as
Ng
T = Zmil/f(R; —RY).
j=1

3.4.3 The model

After introducing the main variables we now present the diffused interface model of
Dreyer et al. [24] which is given by the system of the partial differential equation

Sp+div(pw) = 0,
2 i+ div(piv) — div(3 ) MgV (s — pw)) = S8 vimiMI(1 — exp(2
2(pv) + div(pv ® v) + Vp + div(yVx ® Vx —ons) = 0,

pEX+pv VX = —M,(% —yAY).

(3.5)

Here M7 and M, are the mobilities. The reaction mobility have been chosen as
constant M7 > 0.

To solve such systems numerically we use splitting methods. This means that the
system is split into two subproblems. The first one is the flow part of the system and
the other one is the reacting part by integrating the source term. In this work we
will focus on the flow part and we will restrict ourselves to the 1 — d homogeneous
subsystem of first order terms. In the last chapter we will discuss the system with
source term.

3.5 The equation of state

The main goal of this section is to present an equation of state in order to close the
model . The pressure p is a constitutive quantity that is related to the phase
field variable xy and the partial densities p;,7 = 1,..., N of the components by an
equation of state p = p(x, p1, ..., py) which is proposed in [24]. This equation of
state has the form

(X, P15 ey o) = =W (X) + R(X)PL(X, P15 s pn) + (1= R(X)) PV (X, P15 -y o) (3.6)

where
N N
pr=> pu and  py=> pyi
i=1 =1

are the equation of state in terms of pressure of the liquid and vapor phases respec-
tively. Further the double well potential function W (x) = wo(x — 1)*(x + 1)? is
considered and it has its minima in the pure phases and controls the phase tran-
sition. The function A is the interpolation function which relates the phases given
below.
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3.5. THE EQUATION OF STATE

3.5.1 Relate the phases

In order to relate the phases we consider two phases: a liquid where the phase field
variable y will take the value 1 and vapor where y = —1. Our aim now is to define
a function A which relates the two phases. We consider that this function has the
value 1 in the liquid and the value zero in the vapor. In order to relate the two
phases considered we will use the function h : R — [0,1] to be the interpolation
function satisfying

1 x>1
hx) =19 (—ix+3)x+1)? -1<x<1
0 x < —1

and having the following properties
h(1)=1, h(=1)=0 and h'(1)=hr(-1)=0.

Further the double well function W(x) = wo(x — 1)?(x + 1)? is considered and it
has its minima in the pure phases and controls the phase transition.

3.5.2 The equation of state of the mixtures

We consider two phases a Liquid L and a vapor V. Each phase has N constituents.
As each phase has to be governed by its own equation of state. We consider now

that the equation of state in the pure phases is the stiffened gas equation. This
equation of state was discussed in Chapter [2| It is given by (2.18]) as

Pri = Qpipri + dyi, i=1,.N, (3.7)

where ay are the isothermal sound speed. The parameters dj,, dy are given constants
which equal to zero for ideal gases. Using (3.6 we obtain

POG A1 s o) = =W ) + D[RO (a0 + i) + (1= h(X))(aap + dvi)], (3.8)

i=1

which is the equation of state of the mixture in terms of the pressure. For more
details see Dreyer and Bothe [15] as well as Hantke and Miiller [33].

Sound speed of the mixture

The sound speed of the mixture is given as

a2 = (L)) S0 + (1 - b))
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3.6 The homogeneous form

After neglecting the second order diffusion terms and chemical reactions the model
consists of N + 2 equations and can be written in the simplified form as following

5P+ 5 (pv) = 0,

Sp,+Z(pv) = 0,

1 (3.9)
%pN—l + 6%0 (pN—1U) = 0,

5 (p0) + 5 (pv* +p) = 0,
pEx + g = 0,

where

e The equation p%x + PU(%X = 0 is the transport equation for the phase field
variable x.

e The equations %pi + a% (p,v) =0,i=1,...,N—1 are N-1 continuity equations
for the partial mass densities py, p2,..., pN_1-

e The equation %p + a% (pv) = 0 is the continuity equation for the total mass

density p = Zf\il pi- This equation can be replaced by the transport equation
for the density of the N** constituent.

e The equation 2 (pv) + £ (pv® + p) = 0 is the total momentum balance equa-
tion involving the total pressure p.

The pressure p is not among the basic variables and it is therefore called a consti-
tutive quantity which is related to the variables x and p by an equation of state
p = p(x, p) which is given in (3.8)).

In order to write the system in the conservative form we can replace the transport
equation of the phase field variable by the conservative form

0 0
E(PX) + %(PUX) = 0.

One can clearly see using the continuity equation for total mass density that the
both forms are equivalent, i.e. have the same smooth solutions. For discontinues
solutions see the discussions in Chapter

One should mention that writing the transport equation of the phase field variable
in the conservative form has no physical meaning because physically the phase field
variable is not conservative. It can lead to some difficulties but writing the system
in the conservative form provides us good way to deal with the model in the context
of conservative form. This benefits the methods and solvers considered.
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3.7. THE CASE OF PURE PHASES N=1

3.7 The case of pure phases N=1

In this section and the rest of our work we will consider two pure phases N = 1. In
this case the model has the form

5P+ s (pv) = 0,
5 () + 55 (pv* +p) = 0, (3.10)
pEx +pugx = 0,

supplied with the equation of state of the form

p(x, p) = =W (x) + h(x)(azp +dr) + (1 = h(x))(app + dv). (3.11)
The system can be written in the conservative form
ou 0

where u is the vector of the conservative variables and f is the fluxes vector

p pu
u=|(pv]|, f={(p*+p],
2% pXV

Our aim in the following chapters is to find the analytical and numerical solution of
this submodel.
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Chapter 4

Analytical structure and some
exact solutions

4.1 Introduction

In the previous chapter we presented the diffuse interface multiphase mixture model.
We have seen that the homogeneous form of this model is a system of conservation
laws. One of the main targets of this work is to study this system analytically and
obtain the exact solutions for the Riemann initial value problem. Of course we
expect some difficulties especially in the discussions of the case N > 1 where the
mixture consists of N components in each phase. This is actually the exciting part.
Due to the main role of the hyperbolic conservation laws we want to start this
chapter by giving a brief introduction to the hyperbolic conservation laws. For
general background we recommend the books by Toro [75] and LeVeque [47]. Further
details can be found in the books of Evans [26], LeFloch [44], Smoller [69], as well as
Godlewski and Raviart [31]. Further interesting references in the field of hyperbolic
problems Caraso [59], Hoermander [3§] as well as Tveito and Winther [7§].

In the first part of this chapter we start by reminding the reader of the scalar
conservation laws and their properties such as the characteristics, the weak solutions
and the Rankine-Hugoniot condition. As an example we consider the advection
equation and the Burgers equation.

Presenting some basic concepts on hyperbolic systems of conservation laws is very
essential. A summary is given in Section [4.3

In Section we consider the diffuse interface model for the case N = 1. We study
the analytical structure of the model and we construct the exact solutions to the
Riemann problem. The main challenge was to extend this study to the case N > 1.
One of the main results of this work is to present an analytical study of the case
N > 1 and obtain the exact solution, see section [4.5]

In Section we test the exact solution for the cases N =1 and N > 1 into some
numerical examples.

4.2 The scalar conservation laws

The partial differential equation

0 0
au@, t) + %f(u(:v, t)) =0, (4.1)
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where v : R — R, is said to be a scalar equation. We classify the scalar conservation
laws into linear and nonlinear equation. The scalar conservation law is linear if the
flux f is a linear function of u. As an example we consider the advection equation.
For the nonlinear case we will present the Burgers equation.

4.2.1 The advection equation
The simplest conservation law is the linear advection equation of the form
us + aug, = 0,

where a is constant and represents the wave propagation speed.

The solution of the advection equation is obtained using the method of characteris-
tics. We define the characteristic as the curve z(t) in the x —t plane where the PDE
can be reduced to an ODE. Thus we can obtain the unknown function u(t, z(t)).
Along the characteristic curves where u is constant we can set

du_ Ou_ Oudr _
dt ot Oxdt

Comparing the coefficients gives

0. (4.2)

dr
dt
which means that the characteristics are straight lines with the characteristic speed
a which is the slope of the line in the x — ¢ plane.
Now we supply the advection equation with the initial data u(z,0) = ug(x). The
corresponding characteristic to the point z(0) = x, is given as

a,

T = x9 + at.

As x( represents the values of the x-axis we get a family of characteristics all of
them are parallel.

One can observe that the solution of the advection equation means that the profile
of the initial data is shifted without any changes with speed a to the right if a > 0
or to the left if a < 0. The solution is given as

u(z,t) = uo(z — at),

for t > 0.

4.2.2 Burgers equation

If the flux function f is a nonlinear function then we call the partial differential
equation (4.1)) nonlinear. The most famous example is Burgers equation where the
flux is f(u) = su?. In this case the equation has the form

1
U + (5”2)w =0.

In the Burgers equation one notices that a = a(u) = u. We consider two initial
value problems

a(e,0)= -3 W r<0 (4.3)
upr =1 if x>0,
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and

_=1 1
) T e A (1.4)
upr =3 if x>0,

where — and + denote the left hand side and the right hand side respectively. The
solution as explained before is given as

du
with J
i

The characteristics in this case are also straight lines but with the slope 1/ug(x) in
the x — ¢ plane i.e. ug(xp) in the ¢t — = plane. The solution is given as

u(z.t) = up(xg) = up(x — up(xo)t), (4.7)

which means that the slope of the characteristic lines depends on the initial data.
Figure [4.1] illustrates the initial data and the characteristics for the both examples.
Here we discuss two cases

Figure 4.1: Left: The initial data and the characteristics for Example (4.3). Right:
The initial data and the characteristics for Example (4.4]).

e Casel
In this case the characteristics intersect and a discontinuity arises inevitably.
The propagation speed of the discontinuity s fulfills the jump condition
v — J-

S 4.8
= (4.8)
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which will be disused later in this section. For the Burgers equation we obtain

1.2 1,2
S:§U+—§’U/7:U++U,
Uy — U_ 2

The discontinuity is called a shock which fulfills the Lax admissibility con-
dition
U_ >8> ug.

The characteristics go into the shock, see Figure 4.2 and determine its speed
by their jump condition (4.8|).

Figure 4.2: The characteristics at the shock.

e Case2

In this case with the initial date u_ < wu, there is a multitude of possible
mathematical solutions with admissible and non-admissible discontinuities.
But there is one unique continuous solution which is called a rarefaction,
see Figure [.3] This solution is unphysical and the characteristics go away
from the discontinuity. In this case the entropy condition is not fulfilled.

The solution for this case can be constructed using intermediate characteristics
method. The solution consists of two regions with constant states u_ and u. .
The region between the constant states is the solution which is called the
rarefaction wave The solution is given as

i
8
|

U_ n < u_
_ T—T_ T—x_
’LL(LC, t) - t U S t S U4
T—x_
U4 7 Z Uy

4.2.3 Characteristics and the weak solution
In this subsection we consider the conservation law
up + f(u)x =0, (4'9)

with the initial data
u(z,0) = ug(x).
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Figure 4.3: The characteristics at the rarefaction, unphysical.

The equation (4.9)) can be written in the nonconservative form
ur + a(u)u, =0,

where
a(u) = f'(u).
Characteristics or characteristic curves are defined as curves x = z(t) along which

the PDE becomes ODE. Let u = u(x(t), t) the solution of the conservation law (4.9).
The rate of change of u along x = z(t) is

du Ou dzou

dt ot dt oo
One can notice that if the characteristic curve x = x(t) satisfies

dx

E = a(u)>

then
du B ou ou

prialevs + a(u)%.
Therefore the rate of changes of u along the characteristic curve x = x(t) is zero
which means that the characteristic curves x = x(t) are straight lines along which
u is constant.
The speed a is called the characteristic speed. From the initial data one can set that
x(0) = xy. The characteristic straight line passing through the point (xg,0) is

x = xo + ta(ug(xo)),

As the solution remains constant along the characteristics, for the initial data
u(z,0) = up(x) then the solution is

u(z,t) = uo(xo) = uo(x — at).

This solution means that the initial data remains unchanged with the time evolved
and it propagates with speed a to the right if @ > 0 and to the left if a < 0.

Now we assume two points z; and x5 and the characteristic curves C; and C5 which
are drawn from the points x; and x5 respectively. Let The characteristics C'; and
C5 have two different slops. In this case the characteristics will intersect at some
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point say p.

At this point p the solution should take the same values ug(z1) and ug(x2) which is
impossible. This means that the solution v can not be continuous at the point p.
The solution to this initial value problem may be discontinuous even if ug(z) is
smooth, see Smoller [69] for examples. In this case it will not be possible to determine
the differentiation in the conservation law. In order to overcome this situation the
idea of a weak solution is considered. The idea of the weak solution is based on
multiplying the PDE by a test function say ¢ € C3(R x R), where Cj is the space
of function that is continuously differentiable with compact support i.e. the test
function ¢(x,t) is zero outside of some bounded set. Then integrate one or more
times and use the integration of parts to move the derivatives of the function u
and onto the smooth test function. This procedure gives an equation with fewer
derivatives on u which require less smoothness.

In order to apply this idea to the conservation laws we multiply it by the test function
¢ and integrate. We obtain

/Ooo /_ Z [pus + o f (u)e)ddt = 0.

Integrating by parts gives

/ / [Oru + ¢u f (w)|dadt = —/ [0(x,0)u(zx,0)|dxdt. (4.10)
0 —o0 —c0

We say that the function u(z,t) is a weak solution of the conservation law if (4.10))
holds. For more details about the weak solution see [47].

4.2.4 The Rankine-Hugoniot condition

In this subsection we want to present the Rankine-Hugoniot condition or so called
jump condition. This idea is discussed in detail in [47] and [31]. To this end we
consider ¢ to be a surface of discontinuity of u. Let M a point of ¢ and D a small
ball centered at M. We denote by D, and D_ the two open components of D on
each side of 0. Now we consider ¢ a function in the space of function with compact
support. We write

0:/[)[u-%+gfi(u)gi]dxdt:/l)++/.

Applying Green’s formula in D, and D_ and utilizing that u is a solution in D,
and D_ we obtain

/ ey =) = Y () = i) ¢S =0

where n is the norm vector to the surface points in the direction of D, . This means
the jump relation along the surface of the discontinuity is

(uy —u_)ne + Z(fz(qu) — filu=))ng, =0.
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We denote by
IIU’H = Uty — U,
the jump of u across ¢ and similarly by

[fi(w)] = fiuy) = filu-),

the jump of f; across the discontinuity. Then we can write

nefu] + Z[[fi(u)]] =0.

For the scalar case and smooth o we can set

s[ul = [f ()],

where s is the speed of propagation of the discontinuity. Discontinuities that satisfy
the jump condition are called shocks.

4.3 Notions on hyperbolic systems and conserva-
tion laws
Definition 1 Conservation laws Let 2 be an open subset of R™, f be a smooth

function from € into R™ and u: R>g x R — R™ the function of conserved physical
states. The general form of systems of conservation laws is

ou Of
T R > 4.11
5 + e 0, zeR, t>0, ( )
where
Uy fl
U2 f2
u = . ; f(’ll/) = .
U, Jm

Here w is a vector of conserved variables and the function f is a vector of fluzes.
One says that the system (4.11) is written in conservative form.

The system of one dimensional first order conservation laws (4.11)) can be written
in the quasilinear form

ou ou B

o TA@S =0 (4.12)

where

8f1/8u1 8f1/8um

3f2/8u1 (9f2/5’um

A(u) = 0f/ou = (4.13)

Ofn/OUr o Ofn) O,

is the Jacobian matrix of the flux function f(u). Physically the eigenvalues of the Ja-
cobian matrix represent the speeds of the propagation of information in the solution.
We consider that the speed is positive in the direction of positive z and negative
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otherwise. We call the eigenvalues A;(u) for i = 1,...,m the i — th characteristic
speeds which are given by the solution of

|A — M| = det(A — AI) = 0.

Additionally, we can find a linearly independent right eigenvector k; corresponding
to an eigenvalue \; of the matrix A. The pair (\;(u),k;(u)) determines the i — th
characteristic field of the system (4.11]).

The Jacobian matrix and its eigenvalues and eigenvectors play an important role in
the study of the analytical structure of the conservation laws as we shall see later
on.

Definition 2 Hyperbolic systems The system 1s called hyperbolic if the
Jacobian matriz has m real eigenvalues and m linearly independent corresponding
eigenvectors. The system is called strictly hyperbolic if the eigenvalues are distinct,
in other words if

A< A< .o < A
holds.

At time t = 0, the system (4.11]) with the initial data of the form
u(z,0) = ug(x), (4.14)

is called Cauchy problem or the initial value problem.

One of the difficulties that one may face in the study of the Cauchy problem is that
the solution may become discontinuous after some time even if the initial data are
smooth. To overcome this situation the weak solution to with the initial data

([4.14) plays a major role, see the subsection [4.2.3|
Definition 3 The Riemann problem The initial value problem (4.11)-(4.14])) is

called Riemann problem if the initial data has the special form

{u if x <0,

u(z,0) = ug(x) = (4.15)

Uy 'lf €T > 0,
where u_ the left hand side and u, the right hand side initial date are two constant

vectors separated by a discontinuity at z=0. Figure [{.4) illustrates the idea of the
Riemann problem.

t=0 u
A
L TR
u_
\
0 r

Figure 4.4: The initial data of the Riemann problem.

The Riemann problem plays an important role in the study of hyperbolic conserva-
tion laws and it has many applications in science and nature. The solution of the
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Figure 4.5: The structure of the solution of the Riemann problem.

Riemann problem consists of m waves emanating from the origin. These waves are
separated by a discontinuity in the value of the conservative variables u considered.
The solution to the left of the first wave and to the right of the m** wave is given
by the initial data u_ and u, respectively. We call the area between the first and
the last wave the star region. The main problem is to find the solution in the star
region between the first and the last waves. Figure [4.5|illustrate the structure of the
solution of the Riemann problem.

In most cases the difference [u_ — uy| plays an essential role in order to find the
solution to the Riemann problem, see Andrianov [§]. If the system is strictly
hyperbolic then the Riemann problem has a solution but only for initial data where
the difference [u_ —u, | is small, see Godlewski and Raviart [31]. As an example we
consider the flow of two vapors. In this case the difference between the initial data
of the conservative variables is small as we shall see in Chapter [o]

For big changes within initial Riemann data, like the flow of vapor and liquid, the
corresponding Riemann problem can have no solution, see Keyfitz and Kranzer [40)],
or at least we can face more difficulties as we shall see in Chapter [6]

Definition 4 Linearly degenerate fields A \;-characteristic field is said to be
linearly degenerate if

Vi(u) - ki(u) = 0.

Definition 5 Genuinely nonlinear fields A \;-characteristic field is said to be
genuinely nonlinear if

VAi(u) - ki(uw) # 0.

Definition 6 The generalized Riemann invariants

Suppose the pair (\;(w), k;(u)) is the it characteristic field of the system of hyper-
bolic conservation laws ([&.11)). Then the it" generalized Riemann invariants are the
ordinary differential equation

du1 B dUQ dum

BT

where w = (uy, Uy, ..., uy) " is the vector of dependent variables which may be con-
served or primitive variables and k; the i'™-component of the right eigenvector k;(u)
of the i'" characteristic field.
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The study of the Riemann problem reveals that many kinds of waves occur in the
solution. The properties of \;-characteristic field provide us with a vision of the
nature of the solution. We can distinguish three types of waves that are associated
with the genuine nonlinear field and the linearly degenerate field. The waves which
are associated to the genuine nonlinear field are the rarefaction waves and the shock
waves where the contact discontinuity is the one associated with the linearly de-
generated field. One has to mention that the shock and the contact discontinuities
satisfy a jump condition. Now we want to present each type of wave and provide
the reader a summary of the solution to the Riemann problem. The main references
we have used here are the books of Toro |75, Smoller [69] and LeVeque [47] as well
as the PhD theses of Matern [51] and Thein [73].

The shock wave

As we have seen previously the characteristics might intersect at some point p. In
this case the characteristics form a shock. We understand the shock as a small tran-
sition layers of rapid changes in physical quantities such as pressure, density and
temperature. The transition layer of a strong shock is very thin so that mathemat-
ically this layer can be replaced by discontinuity, for more details see [75].

As we are dealing with the shock as a discontinuity this means that the Rankine-
Hugoniot condition

[f(w)] = s[u]

holds. Here s is the velocity.

The contact discontinuity

The last type of waves is called the contact discontinuity. This type is associated
with a linearly degenerated characteristic field. In this case the relation

Au) = Auy) = s,

holds. This means that all characteristics are parallel to each other. The Rankine-
Hugoniot conditions and the Riemann invariants are fulfilled. The i-th characteristic
field speeds are constant across the wave and coincide with the speed of the contact
wave.

4.4 The analytical structure and the exact solu-
tion of the submodel for the case N =1

In this section we want to study the analytical structure of the diffuse interface
multiphase mixture model presented in Chapter [3] We will apply the mathemat-
ical tools presented in the previous section and show that the system is a system
of hyperbolic conservation laws. We find the eigenvalues and eigenvectors of the
Jacobian matrix. Then we analyze the eigenstructure and study the properties of
the characteristic fields. We will present the exact solution to the Riemann problem
for the case N = 1 where we have two pure phases. In this case the homogeneous
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form of the diffuse interface model (3.5)) is given as

Xt + VX =0,
pr+ (p?))m = 07
(pv) + (pv* + p)s = 0,

with the Riemann initial data

) (p)- if <0, ) if 2 <0,
(px)(:c,O)—{(pX)+ if x>0, /)(:6'70)—{/)+ if 20, (4.16)

N 0) = 4 PV)- if @<,
(po)(, 0) {(pv)+ if x>0.

The system is supplied with the equation of state

p(x: p) = =W () + h(x)(@dp+dy) + (1= h(x)(a>p+d_). (4.17)

This system also has the conservative form ({3.12])
U + f(u)x = 0,

where the conservative variables are uy = pyx, us = p, us = pv.
Now in order to study the eigenstructure of the model we want to compute the
Jacobian Matrix A(u) taking into account that we will need to find p,. We have
p = p(x, p) which gives

dp Opdp  OpOx

dr  Opox + ox 0z
We determine from ((4.17))

Jp
o h(x)a% + (1 = h(x))a® = A®,
and 5
p
oy ~W'(x) +psh(x) —p-h(x) =B
This means that p
L= A%, + By,
dx
where 9 p
2= p_%
op’ 10%

In order to find the Jacobian matrix it is easier to write the system in quasi linear
form in terms of the primitive variables (x, p,v). The system in quasi linear form is

Xt + UXz = Oa

pr + puz +vpy =0,
A? B

U+ 0V + —pr + — Xz = 0.
P P
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In order to determine the properties of the system, we consider the Jacobian matrix
which is

v 0 0
Au)=1 0 vooop
Blp A*/p v

The eigenvalues of the Jacobian matrix are
)\1:?]—14, )\2:’0, )\3:U+A

and the corresponding eigenvectors are

0 A? 0
kl = P> k2 = -B ) k3 = p
A 0 A

One can notice that the eigenvalues are real and satisfy the condition A\; < Ay < A3
and we have a set of independent corresponding eigenvectors which means the system
is strictly hyperbolic.

4.4.1 Characteristic field of the eigenvalues and Riemann
invariants for the case N =1

We classify the eigenvectors k; = (K1, ki2, kiz), i = 1,2, 3 to be:

e For \{ = v — A, with the eigenvector

0
ki=|-p
A

We find

)\ ) 1))
VK = 2k, + ;hy%zymzo+o+A¢a

ax 0 0
and the first eigenvector is genuinely non-linear. Across the \-wave we have
dx dp dv
0 —p A’

which gives x = constant the first Riemann invariant and we need to solve
A
dv+ —dp = 0.
p
The Riemann invariant is

v+ Aln p = constant.

e For \y = v, with the eigenvector is

k.= | -B
0
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We find

A A A
V)\kazka_i_ﬁkm_i_&]@3:0.142_0.34_0:0,
ox ap ov

and the second eigenvector is linearly degenerate. Across the Ao-wave we have

dx dp dv
A2 —-B 0
which gives the first Riemann invariant in this case which is v = constant and
dx dp 2
— =—& Bdy+Adp=dp=0

which gives the second Riemann invariant in this case which is p = constant.
Another way to show that p = constant is using the jump condition. The
second wave is a contact which means the jump conditions are satisfied. From
our system and the jump condition we get v; = v, = s = v and from the
Rankine-Hungoniot conditions, i.e. Ju] = w; — u,, we obtain

_ Iexed _ lpv] _ Tpo® + 01

Ted T W Tl
And
St O 1 W IO O R . |
R P 5 N e e P A 5 A 5

We find % = 0. Which means [p] = 0. Then we can find p; = p,.

e For \s = v+ A, with the eigenvector

0
ks=|p],
A
we find VSR VRt
Vsks = ——kay + ——kgy + ——ksg =0+ 0+ A # 0,
ax dp ov
and the third eigenvector is genuinely non-linear. Across the A3-wave we have
dx _dp _ dv
0 p A

which gives xy = constant and thus A is a constant. We need to solve
A
dv — —dp = 0.
p

The Riemann invariant is

v — Aln p = constant.
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4.4.2 The exact solution for the case N =1

In the study of the exact solution of the Riemann problem for the case N = 1 we will
use the vector W = (p,v,p)" of the primitive variables instead of the conservative
variables. In this case the initial data in terms of primitive variables consists of the
constant data W_ = (p_,v_,p_)" to the left and W, = (p;,vy,p;)" to the right.
The initial data are separated by a discontinuity.

As we have seen in the previous section we have three eigenvalues namely

)\1:’0—14, )\2:1), )\3:U+A,

which means that the exact solution of the Riemann problem has three waves. The
region between the first and the last wave is called the star region W*. In this
region the data are unknown. We aim to determine the solution in the star re-
gion. The wave in the middle divides the star region into two subregions star left
W' = (p*,v*,p*) and star right W% = (p%, v}, p’ ). This means the waves sepa-
rate four constant states W_, W*, W7 and W_.

The middle wave is a contact discontinuity. Therefore the first and the last waves
form four possible wave patterns which are shock-shock, shock-rarefaction, rarefaction-
shock, and rarefaction-rarefaction.

The study of the Riemann invariants reveals that

* —_—

p. =p,, and vl =0,

which means that the pressure and the velocity in the star region are constants. For
the sake of the simplicity we use p* and v* to denote them. The density has two
values in the star region namely p* and p7 . Our goal is now to determine the four
unknowns p*, v*, p* and p?.

Solution strategy

The main idea of the solution strategy is based on establishing equations to find
the pressure p* and the velocity v* in the star region. This benefits the use of the
relation between the pressure and the density via the equation of state to find the
densities p* and p% . The main reference is the book by Toro [75] and [49].

For this goal we will define the function f_ below which is a function of the pressure
and the data W_. The function f_ governs the relations across the left wave and
connects v* to the known state W_.

Similarly, the function f, will be a function of the pressure and the data W,. It
relates v* to the known state W_. This function governs the relations across the
right wave. The solution for the pressure p* is given by the root of the equation

f(p,W_,W+) = f—(paw—) + f+<p7 W—l—) + Av = 07 Av = Uy —U—.

The solution for the velocity in the star region will be given as

v = S0t o) + Sl — ()

Once the pressure p* is obtained we can find the densities p* and p} using the

equation of state (4.17)).
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Shock waves

We start the discussion by considering a shock wave. The shock can move either to
the right or to the left. For each of the two cases there are known data and unknown
variables which we want to determine. We use the Rankine-Hugoniot condition to
derive the relations across the shock waves. First we will assume the case of a shock
moving to the left. We will obtain the relation f_ and then we will consider a shock
moving to the right and show how we derive a relation of f,.

Function f_ for a left shock

First we consider a shock moving to the left with speed S_. We define the relative
velocities, see Toro [75] and Hantke et al. [32]

b_=wv_—S_, (4.18)

The calculations at the shocks require the use of the Rankine-Hugoniot conditions
which are

poXx-0_ — ptx 0T =0, (4.19)
p_b_ — ptit =0, (4.20)
p_ 0% +p_ — (pr o™ +p*) = 0. (4.21)

We introduce the mass flux ¢)_ which from (4.20) can be written as
Q_=p_0_=po*. (4.22)
Then from equation (4.21]) we have
Q- +p_-=Q_v" +p.

We can get an expression for ¢)_, which is given by

Q =-L I (4.23)
vF —0_
But from equations (4.18]) we can write
0 — 0 =0t —w_,
which means that we can write the mass flux as
Pt —p-
Q— = - - ’
v —u_
and the velocity can be written as
Pt —p-
vt = — . (4.24)
Q-

Our aim now is to relate v* to p* and the data W_ on the left hand side. For this
end we need to write ()_ as a function of p* and the data on the left hand side. So
that we use the relations
QL Q
.= — 0

— ) - %

p- P
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which are obtained from (4.22)) and substitute into (4.23]). This gives that

R Ay
Q—__Q___Q__7
P p—
which implies that
2 _ PP 4.25
Q*__L_L' ( . )
pr p—

The density is related to the pressure behind the left shock via the stiffened gas
equation of state which is presented in detail in Chapter [3] Subsection [3.5.2] In the
pure phases the equation of state has the form

p=a’p+d,

so that

Pt —p- L.

Q> =—— : — (" = d)(p- —d)
7 — 37—

a2 a2

We substitute into (4.24]) and get
. Pt —p-
vt=v_—a

V= d)(p- —d)
As the velocity in the star region should satisfy
vt = — f*(p*awf)a

we find that .
p —Dp-

V(i —d)(p- —d)

f-(p",W_)=a

Y

which is the expression sought for f_.

Function f, for a right shock

Now we will assume the right wave may be a shock moving with speed S.. We
follow the same approach in the previous discussion taking into account that the
information is known to the right in this case. We begin by defining the relative
velocities which are given as

'IAJ+ =Vy — S+, (426)

Now we apply the Rankine-Hugoniot condition on the system. This gives

P+X+0+ — pLX30L =0, (4.27)
PLUL — pyty =0, (4.28)
PO 4 p = (p 0% +py) = 0. (4.29)
We introduce the mass flux
Q = —pp0yp = —pl 0. (4.30)
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This means that the equation (4.29) can be written as
—Q104 +py = —Q107 +p.

We can get an expression for ()., which is given as

Q == (4.31)

One can notice that from the definition of the relative velocities we have
Uy — 0 = vy — v, (4.32)

and (), becomes

*

P+ —p
Qi ="—"T——. (4.33)
Vy — 0

This means that the velocity can be written as

vt =g — p+Q— L (4.34)
+

Now from (4.30]) we get
~ _Q-I- ~ _Q—i-

Vy = 5 U+ = ma—
P+ P+

We substitute into (4.31]) and get

_ pr—p
@+ = —Q+ 4 @+
P+ PL

Then we can write the mass flux in terms of the pressure and the density as

2 Py —p°
Q+ =

-1 1
- + R
P+ Py

Now we use the equation of state p = a?p + d in the pure phases in order to write
the mass flux as a function of either the pressure p* or the density p.. We write the
mass flux as a function of the pressure as

py — D" L,
Qa— = _1: i 1 _ = 9@ - d)(er - d)
Py — pF—

a.2 (l2

Next we substitute in (4.34)), we get

V=1 —a b+ =P .
VA, —d)

Comparing with the formula of the velocity in the star region satisfying

vt =g+ fL (05, W),

we find that the function f, for the case in which the right wave is shock is

Py — D"

Vi = d)ps —d)
43
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Rarefaction waves

Now we want to derive an expression for f_ and f, for the case of rarefaction waves.
We have two possibilities: the first one when the wave is moving to the left and the
second one when the wave is moving to the right. In this case we use the Riemann
invariants in order to relate the unknown state W* with the known data W_ to the
left. Similarly, we relate the unknown W7 with the known date W to the right.

Function f_ for left rarefaction

As we have seen before the Riemann invariant which is associated with the first
eigenvalue and the first eigenvector is given as

v + Aln p = constant,

where A is the speed of sound in the mixture which is already presented previously
in this chapter.

As Riemann invariant is constant across the left rarefaction wave and by evaluating
the constant on the left data we find

v_+Alnp_ =v"+ Alnp”.
This means that v* is given as

vt =w_ +Alnp—;.
pr

This leads to
fo=—AmZ=

This equation can be written in terms of p* as

p_—d
= A
f np*—d’

which is the required function for the case in which the left wave is a rarefaction
wave.

Function f, for right rarefaction

The Riemann invariant is associated with the third eigenvalue and the corresponding
Riemann invariant is given as

v — Aln p = constant.
This implies that we can write
vy —Alnpy =v" — Alnpl,

as long as Riemann invariant is constant along the wave to the right. This gives

v* :v++Alnp—+.
P+
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This means that the relation f, is given as

fo= A=

P+

which can be written as . g
fo=Am P2 "%
py —d

What we have done until now is that we determined the functions f_ and f, for the
four possible wave patterns. We summarize the expressions f_ and f, as follows

a——P shock
fo= V@ =d)(p-—d)’ ’
—Alnt ::j , rarefaction,
p
and
S M shock,
fi= (p*—d)(p+—d)
Aln §+:‘fl , rarefaction.

Now we have a single equation
f" s W, Wo) = f(p", Wo) + f(p", Wo) + Av =0, Av=uvy —v-.

with one variable p* which can be determined now by finding the roots of this
equation. The velocity v* can be found by solving

v = S0t o) + 5l — F()

We remind the reader that it is an easy task to determine the p* and p7 because
the densities are related with the pressure via the equation of state.

4.5 The analytical structure and the exact solu-
tion for the case N > 1

Our aim in this section is to present a detailed discussion for the analytical structure
for the case N > 1. We consider a mixture of two phases that consists of N
components. In this case the system has the form

Zpx +Lpxv = 0,
gpit g (piv) = 0
Sp+2(pv) = 0
& (o) + & (pv* +p) = 0.

(4.35)

The transport equation of the total density p = Zf\il p; can be replaced by the
transport equation of the partial density of the N — th component. The system in
this case has the form

Gox+ gooxv = 0,
dpi+2(pv) = 0, di=1,.,N (4.36)
o (pv) + & (v +p) = 0,
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with the Riemann initial data

x- if =<0, it 2 <0,
x(as,o>={ . p(m,m:{” .

x+ if x>0, pyri if x>0, 1=1,...,N

(4.37)
o(,0) = v if x <0,
T ey it oz >0.

Remark 2 The systems (4.35)) and (4.36]) are not only equivalent for the smooth
solutions but also for the weak solutions since the jump conditions

s[p] = [pv] =0,
and
s[pi] — [piv] =0, i=1,...,N
are mutually compatible. Note that this is due to

N

=> (slpil = [pa]) = SHZ pil — [[Z pv] = s[ol — [pv]-

=1

The pressure p is related to the phase field variable x and the partial densities p;,
1 =1,..., N of the components by the equation of state

P(X, p1, oo PN) )+ Z )(api+dis) + (1= R(x))(a2pi +d_y)], (4.38)

where a;, and a;_ are the isothermal sound speed of the component ¢ in the liquid
and the vapor respectively. We have

dp _ Op O dp Opn ~ Op Ox
de  Opy Ox et Opy Ox * Ox Oz

From the equation of state (4.38)) we introduce the mixture sound speed

dp
A= o = h(x)al, + (1= h(x))a,.
Pi
and the variable
9 S 3
B := ai N _W/ + h/ Z z+pz + der Z al_pl +die
i=1 i=1

One should keep in mind that the abbreviations A; depend on y, while B depends
on y and the partial densities p;.
Using the above notations we obtain the quasilinear form of the system (4.36)) which
has the form
Ix+vZx = 0
dpitvipi+plv = 0 i=1.,N (4.39)
Bu+ Boy 415N A2 p + v = 0.
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The Jacobian matrix in this case is

v 0 O 0 0
0 v 0 0 pm
0 0 w 0  po
A(valv"'apva) =
0O 0 0 .. v pN
B Al A3 Ay
T R
The eigenvalues of the Jacobian matrix are
)\OZU—A, )\1:>\2:...:>\N:U, )\N+1:’U+A,

where

In case B # 0 we obtain the full set of linearly independent eigenvectors

0 0

—P P1

—p2 P2

kO == . 9 kN+1 - : )

—PN PN

A A

—At —A3 —A%
B 0 0
0 B 0

kl - . ) k2 - . ’ ceey kN -

0 0 B
0 0 0

In the case B = 0 we have a full system of linearly independent eigenvectors with

1 0 0
— A —AY
0 A2 0
ki= ||, ke=| O |, ., kn=| : |,
: : 0
0 0 A
0 0 0

and kg and k1 as before. The eigensystem in this case looks different because the
eigenvectores do not depend smoothly on the entry of the matrix.

This means that in both cases we have a full set of linearly independent eigenvector.
This implies that system is hyperbolic. For the single component case N =1
it is even strictly hyperbolic.
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4.5.1 Characteristic fields

Let u = (X, p1,...,pn,v)! denote the vector of primitive variables. Across the left
wave we have \g = v — A with the corresponding eigenvector ky. We have

O\ oA O\ O\
Vu)\oko:8_X0k00+8_p(1)k01+“'+8,0713k0]v+8_;k0]v+1
0o 0o
— 04+ 20— e 220 1-A
A2 — A2 A% — A2
- _ _ oIN85 (L A
xY, (=p1) + 2 (—pn) +
_ oAt oAy p At A oA
N 2Ap 2Ap
A e
24 24p
A A
=———4+A=A#0.
5 2—1— #0

The same across the right wave where Ay 1 = v + A with the corresponding eigen-
vector k1. In this case

O\ oA O\ O\
VaAnsikyir = Aka N+1,0 T dRs knyig+---+ AR Eniin + Ak Eng1,n+1
ox I dpn dv
19D O\
=0+ e T 1 A
6,01 apN
A2 — A2 A% — A2
—_ ——— . .. S — A
prAT+ v AN g ATt A
= — + A
2Ap 2Ap
A% pA?
=————+4+A
24 24,
A A
=———=4+A=A )
5 % + £ 0

This implies that across the left and the right waves the relations
Vu)\OkO 7é 07 vu)\N-‘rlkN—‘,-l 7é 07

are satisfied. This means that the associated characteristic fields are genuinely non-
linear and the corresponding waves are shocks or rarefactions.
Furthermore for the multiple eigenvalues \; = v with the corresponding eigenvector
k; where i = 1, ..., N one can verify that
VuAik; = g—);kio + g—;\IIM +ooet %ku\/ + %kiN—H
=0-(—A)+0-kip+-+0-kin+1-A=0,

which means that the associated characteristic field is linearly degenerate and the
corresponding wave is a classical contact.
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4.5.2 Riemann invariants for the case N > 1

Let A be an eigenvector of multiplicity m in a system of dimension n. Then there
exist n —m Riemann invariants across the wave corresponding to .

Here we have n = N + 2 accordingly we have N + 1 Riemann invariants across the
outer waves belonging to A\g and A\y;; and we have 2 Riemann invariants across the
contact wave in the middle.

To find the Riemann invariants across the field j, for j = 0,..., N 4+ 1 one has to

solve the system

dug _dwa _ _ dun (4.40)
kio  kja kjnit .

Case j = 0: Then the system of ordinary differential equations to solve becomes

dxy dpp  dpy dv
0 —p;m v A
It is easy to see that the phase field y is constant across the Oth wave with y = y_.
For j =2,..., N we have
dov _ dpy
P P
This gives for j =2,..., N
In(py) — In(p;) = const resp. pj = Ci—p1.
It remains to solve 4
——dp; =dv.
P1

Defining ¢;_ := 1 we get

fo\; Azzci—Pld
A\ TN WP
P D im1 Cimpr

Keeping in mind that the phase field is an invariant we have A; = A;(x_) = const
we define A;_ := A;(x-) and we finally obtain

dv = —

Case j = N + 1: It is quite similar. An analogous calculation with ¢;, := 1 gives
the following relations

X = X+
Pi = Ci+pP1 j:2N

i 2 Ao > i Aficiv
— In(p1)
Zz 1 Gt Zz 1 Cit

For the contact one can immediately see that the velocity is a Riemann invariant.
Nevertheless we fail to determine the second invariant. However, from the single
component case with pure phases we know, that also the pressure is a constant
across the middle wave. To verify if this is true in general we rewrite the quasilinear
system, now using the variables v, p, p; fori =1,... N.

v=uv;+In(p;) with A;1 = A;(x4) -
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New choice of variables.

As mentioned before determining Riemann invariants in the middle wave is not
an easy task. So that we will rewrite the system in terms of the primitive
variables p;, i = 1,..., N, v and p instead of x, p1,..., pn and v.

The equation of state has the form p = p(p1, p2, ..., pn, x). This means that

Op al dp =
o =2 AT (p)et By, and oo =) AT (pi)s + B
=1 =1

where 9 5
A2=2 nad B=2
© Ops o 5%

This implies that

N N
1 2 1 2
Xt = E(pt - ;:1 Ai(pi)e) and  x, = E(Pz - ;_1: A (pi)e)-

We substitute the last relations into the transport equation of the phase field variable
in (4.36)) we obtain the smoothly equivalent quasilinear form of the system using the
variables v, p, p; fort=1,..., N

N
Op + vO,p + Z A2p;0,v =0 (4.41a)
i=1
8tpi + U&Cpi + ,oz-f)gcv =0 1= 1, R ,N (441b)
1
O+ —0p + v, v =0 (4.41c)
p

with the corresponding Jacobian

0O v ... 0 P1
00 ... v PN
10 .00 v
p
The eigenvectors belonging to the multiple eigenvalue \; = --- = Ay = v are now
given by
0 0
1 0
0 :
2 I
0 1
0 0

Once again we easily can see that the velocity remains constant across the contact
wave. In addition we find the pressure to be the further invariant as conjectured
above.
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4.5.3 The exact solution for the case N > 1

In this section we will present the explicit solution of the Riemann problem for the
diffuse interface multiphase mixture model (4.36]) with the equation of state (4.38]).
First we summarize the results obtained in the last section as following

e The solution of the Riemann problem consists of four constant states that are
separated by three waves. The middle wave is a contact while the outer waves
are shocks or rarefactions.

e The phase field y may change across the contact wave, but stays constant
everywhere else. This means that the initial profile of the phase field is shifted
with the flow.

e Due to the fact that the solution for the phase field is known, it remains to
solve the system consisting of the partial mass balances and the momentum
balance. This system is in divergence form. Accordingly the Rankine-Hugeniot
jump conditions are satisfied across discontinuities. These are given by

pirvy — picv- = 8(piy —pin)  i=1,...,N (4.42)
N

Z(Pi+(”+)2 —pi-(v)?) + (py —p-) = Z(Pi+”+ — pi-v-) (4.43)

=1

where s denotes the propagation speed of the discontinuity and — and +
indicate the states to the vapor to the left and the liquid to the right of the
discontinuity, resp.

e The velocity and the pressure are Riemann invariants across the contact wave.
This allows to follow the strategy described in the book of Toro |75] to con-
struct the Riemann solution.

Rarefactions.

Assume the left wave is a rarefaction. Then from the last section we know that

SN A2 ¢ SV A2 ¢
SEy () [ FEy
D im Cim

> imi Cie
and pj_ = c;_p;_ with ¢;_ = g{ and j =1,...,N. Using (4.38)) we find that

(4.44)

N N

P = W)+ b S ey + d) (L= A Y i
i=1 i=1
= Ao + A1_pi_
with
N
Ao = —W(x-) + h(x-) Zdi-i-? (4.45)

and

E az cj— + E a;_cj_ .
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So we can replace pj_ in (4.44) by p;_ = AAO to give

. 2
v =v_+1In <p—A0_) ZZ 1 A i
Ai_

e
i=1 Ci—
where

—1In(p1-) (4.46)

Ai— = AZ(X_)
An analogous calculation for a right rarefaction leads to
N N
. A2 C; . A2 C;
v* ' =vy +1In —ZZ*l T In(pry) —Z’*}V asany
i=1 Cit+ i=1 Cit
where
Ay = Ai(x+)-
Shocks

Now let us assume that the left wave is a shock propagating with speed S_. We
define the left relative mass fluxes @;_ by rewriting (4.42)) as

Pa—(v_ =S )=p; (v'=5_) =:Qi i=1,...,N. (4.48)
We note that
H _ =S
o 20 foralli=1,...,N. (4.49)
pi—  v*—5_
Accordingly
pf_:pi,pl_ foralli=1,..., N.
P1—

Using (4.48) this we can rewrite (4.43)) as

N
) Qi+ (p-—p) =0 (4.50)
i=1
and we obtain
N Ay =
Zij\;l Qi*

where we will express Zfil @;— in terms of p*. To do this we rewrite (4.50|) as
follows

* *

— p-—p _ p-p
ZQZ__ —v* —(07—57)_@*_57)_ Q- Q- (4.51)

*

Pj— Pj,

Multiplying (4.51)) by ;- and summing up over j we get

N N
Z_;Qj_;@«_— Z e

j=1 ij Pj,
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This leads to

Analogously we obtain for a right shock

VP — P+ 1_ Airpis
N

D et Pit Pt = Aoy

vt =y +

Existence and uniqueness of the Riemann solution.
We summarize the results of the last subsection in the following
Theorem 1 Let the function
Fo W W) = (W) fo(p, W) + (0 — v, (4.52)

be given with

if p> p— (shock)
f— (p> W—) =
if p < p_ (rarefaction)
2l Pit p—Aot+ if p>py (ShOCk)
Jelp W) = 1 (p—A0+> Yl Afer In(p14) S Ao < tion)
L A SN iy n{P1+ S e if p < py (rarefaction
using

Aoz = =W(x+) + h(xz) Zdi+

i=1

N N
A = h(x) Y aiic; +(1—h(x) ) alic;
=1 =1

= S .
P1+

Then the function f(p, W_, W) has a unique root p = p* that is the unique solution
for the pressure p* of the Riemann problem (4.36)), (4.38]), (4.37). The velocity v*
can be calculated using

v = (o) + S W) — (W),
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Proof

The function f is strictly increasing in p. For p — min{Ay_, Ao, } the function f
tends to —oo. For p — 400 we have f — +o0o. Accordingly f has a unique root
that by construction is the solution for the pressure p* of the problem considered.
The remaining part of the theorem is obvious.

Remark 3 To determine the remaining unknown quantities of the solution one has
to use the relations above. Here one has to take care for the type of the waves.

Remark 4 For the special case N =1, x_ = —1 and x4+ = 1 Theorem [ reduces
to Theorem 6.2 (Solution of isothermal two-phase FEuler equations without phase
transition) in Dreyer et al. [32].

Remark 5 The paper [32] mentioned in the previous remark considers the case of
single component flow where the phase creation is discussed.

We can verify that the diffuse interface model with zero order terms is not able to
deal with this situation because in the pure phases where x = —1 or x = 1 we have
W (x) = 0. This means that the diffusion term —Mp(aa’%) will be zero because

p = W(x) + h(x)pvr + (1 = h(x))pv,

which means that

0
a%/} = W/(x) + W () (pvor + pibv),

which will be zero in the pure phases.
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4.6 Numerical results

In this section we find the exact solution for the submodel by applying the results
which are obtained before. We discuss the exact solutions for the cases N =1 and
N > 1 using Theorem [l We use Newton’s method in order to solve the equation
to determine the value of the pressure p* in the star region . We selected six
problems to illustrate the wave patterns and show the structure of the solution.

The case N =1, Examples 1-4

In this case we will consider two pure phases. First we will discuss the solutions
of the case vapor-vapor flow which will appear in the first two examples then we
will consider the vapor-liquid case which will be discussed in the Examples 3 and 4.
Later we will use those examples as a test cases in order to test various numerical
methods.

Each Figure shows the profile of the phase field variable y, the velocity v, the density
p and the pressure p. The initial data of the four examples are given in Table [£.1]

Example || x— p- v X+ P+ vy
1 1 1P Om/s | 1 01Pa  Om/s
2 1 04Pa  2m/s | 1 04Pa  2m/s
3 -1 2300 Pa -100m/s | 1 1000 Pa 100 m/s
4 -1 60000 Pa -200 m/s | 1 100000 Pa -50 m/s

Table 4.1: The initial values for four Riemann problem tests.

The first example is so called Sod test, see Sod [70]. In this example we consider

two vapors to the left and to the right. This example is considered a good test case
as a beginning. The solution consists of three waves a rarefaction wave moving to
the left, a contact in the middle, and a shock moving to the right as we can see in
Figure
In the second example we consider the 123 problem, see Toro [75]. Figure 4.7|shows
the solution which consists of two rarefactions and contact in the middle.
For the vapor-liquid flow we discuss the first two examples in the paper of Hantke
et al. [32]. We consider two phases a vapor to the left and a liquid to the right. The
solution of the both examples consists of three waves a rarefaction moving to the
left, a contact in the middle and a shock moving to the right. Figure illustrate
the solution for example 3 as well as Figure |4.9] shows the solution of example 4.
Table shows the values in the star region.

Example D Vs
1 0.3262076 Pa | 1.12022 m/s
2 0.00189 Pa 0 m/s
3 1335.3 Pa 100.0002 m/s
4 43531 Pa -50.057 m/s

Table 4.2: The initial values for four Riemann problem tests.
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The case N = 2, Example 5

Now we want to discuss the case of two phases where in each phase we consider
N > 1 components. First we consider a 2-component example. The initial data of
this case is given in Table

X P1 p2 |V
Left || -095| 25|75 |0

Right || 0.5 | 600 | 800 | O

Table 4.3: The initial values for the case N = 2.

The equation of state parameters are given as

ax a2 dy do
Vapor | 200 | 300 0 0
Liquid || 500 | 400 | —1.495-10% | —6.35 - 107

Table 4.4: The initial values for the case N = 2.

The solution consists of 4 constant states separated by a left shock, a contact
discontinuity and a right rarefaction, see Figure [4.10, The wave speeds and the
states in the star region are summarized in Table [4.5]

St SR,tail SR,head P« Vi
-176.3412 | 289.925 | 422.207 | 2716903.0964 | -132.2825

Table 4.5: The solution for the case N = 2.

The case N = 3, Example 6

In this example we consider the 3-component case. The initial data are given as

X P1 P2 P3 N
Left -0.95 25175 1 -50

Right | 0.5 | 300 | 800 | 250 | 20

Table 4.6: The initial values for the case N = 3.

The equation of state parameters are

aq as as d1 d2 dS
Vapor | 200 | 300 | 100 0 0 0
Liquid || 250 | 400 | 200 | —7.45-10" | —6.35- 10" | —3.15 - 107

Table 4.7: The initial values for the case N = 3.
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The solution consists of three waves separate 4 states. Figure [4.11] shows two
rarefaction waves moving to the left and to the right as well as a contact in the
middle. The solution in the star region is

SL,head SR,head SR,tzzz’l SR,head D U
-317.331 | -252.907 | 343.028 | 348.604 | 305261.3806 | 14.4244

Table 4.8: The solution for the case N = 3.

Pase field-x 15 Velocity-v

0.5 1 1

0.5
-0.5

Density-p Pressure-p

0.8

0.6

0.4

0.2

%1073 %1073

Figure 4.6: The exact solution of Sod test. Example 1.
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Pase field-x

Density-p

%1078

0.08 &

0.07 |

0.06 |

0.05}

0.04 1

0.03

6
%1078

Velocity-v

Pressure-p

0.4

0.35

0.3

0.25

0.2

0.15

Figure 4.7: The exact solution of 123 problem. Example 2.

Pase field-x

Density-p

1000

800 r

600

400 r

Velocity-v

100

50

Pressure-p
2400

2200
2000
1800
1600
1400
1200
1000

Figure 4.8: The exact solution. Example 3.
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Pase field-x

0.5

-0.5

0.5 1 15 2

Density-
1000 £

800

600

400

200

0.5 1 15 2

-50

-100

-150

-200

10

A OO O N 0 ©

Velocity-v
1 0.5 0 0.5 1 15 2
«10% Pressure-p
-1 -0.5 0 0.5 1 15 2

Figure 4.9: The exact solution. Example 4.

Wave configuration

-0.5 0 0.5 1

-1
Density component 1 - p 1
600f ' ' ]
400t ]
200
0 , , ]
-1 -0.5 0 0.5 1
Velocity - v
0 :
507
-100¢
-1 —dS 6 d5 1

800
600 [
400}
200}

-1

-1 -0.5 0 0.5 1
Density component 2 - p,,
-0.5 0 0.5 1
«107 Pressure - p
-0.5 0 0.5 1

Phase field - x

Figure 4.10: The exact solution for the case N = 2. Example 5.
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Wave configuration

Phase field - x
g . : .

0 L
-1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Density component 1 - P, Density component 2 - P,y
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Figure 4.11: The exact solution for the case N = 3. Example 6.

60



Chapter 5

The numerical solution for
vapor-vapor flow

5.1 Introduction

One of the main targets of this work is to present a numerical solution for the ho-
mogerneous part of a diffuse interface model presented in Chapter |3| and compare
the results with the exact solution obtained in Chapter [l For this goal we will
consider two cases. The first one is the vapor-vapor flow which will be discussed in
this chapter. Later on in this work we will consider the vapor-liquid flow case.
Actually this chapter is devoted to the vapor-vapor case because we think that this
case will be useful in order to test the performance of our solvers and illustrate the
structure of the solutions of Riemann problems before we handle the more compli-
cated case which is the vapor-liquid case.

Before we start this study we will remind the reader of some basic concepts of the
numerical treatment of hyperbolic conservation laws. Then we will apply those
methods to the vapor-vapor case.

Many textbooks can be found in this field. We recommend the textbooks by
Toro [75], Kroner [42], LeVeque [47] as well as Godlewski and Raviart [31]. Further
details can be found in Murawski et al. [55], Brad er al. [16], Cocchi et al. [21], J.
Paulo [23] Chertock et al. [20] and [19], LeVeque [46], Wang et al. [79] and [80], as
well as Sohn [71]

5.2 Discretization

In order to utilize numerical methods for solving nonlinear conservation laws, we
replace the continuous problem by a finite set of discrete values, which are obtained
by discretizing the domain of the PDEs into a finite set of points or volumes via a
mesh.

In this work we discretize the upper half plane R x R, plane by a uniform mesh.
The spatial domain R is discretized into cells with width A = Az and the time
interval is discretized with time step k = At. We define the grid points (z;,t") as

1
$Z:(Z—§)h, Z:EZ,
t" =nk, n €N
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It will be also useful to define the cell boundaries of a cell centered at x; as

h
h

The aim of numerical methods is to produce approximations u} € R to the solution
u(z;, t") applying a finite difference approach and use the point values at the grid
points. In developing methods for conservation laws it is often preferable to produce

an approximation using the finite volume approach where we use cell averages defined
by

1 [%e}
u; = E/ T u(z, t")dz, (5.1)

rather than the pointwise value.

5.2.1 Conservative Methods

Consider a scalar conservation law
Uy + f(u)$ - 07

where f = f(u) is the flux function. A conservative scheme for the scalar conserva-
tion law is a numerical method of the form

At
At~ F

ntl

U,

=u — i-i-%]v

where
_ n n
Fi—i—% = Fi—i—%(ui—lL? e ui-l—lR)?
with [, [r two non-negative integers, F; /o is called the numerical flux, an approx-

imation to the physical flux f(u). We assume that the flux function satisfies the
consistency condition

for any u € R.

5.2.2 Godunov’s method

Our aim is to solve the general initial value problem (IVP)

{ut + f(u), =0,

u(z,0) = up(z), (5:2)

for a system of conservation laws numerically. Godunov introduced a conservative
extension of the first order upwind scheme to nonlinear system of hyperbolic con-
servation laws.

In Godunov’s method we first define a piecewise constant distribution of the data
by defining cell averages

u = / T (e, ") de, (5.3)
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where u(z,t") are the initial data at time ¢ = ¢™. This produces the piecewise con-
stant distribution u(z, ") = u?, for x in each cell I; = [xi_%,xiJr%].

A basic assumption of the method is that at a given time level n the data have a
piecewise constant distribution of the form , which at time level n may be seen
as a pairs of constant states (u}',ul, ) separated by a discontinuity at the intercell
boundary ;1 /2, which define a local Riemann problem.

The essential ingredient of Godunov’s method is the solution of the Riemann prob-
lem, which may be the exact solution or some suitable approximation to it. Here
we present the scheme in terms of the exact solution.

The Godunov method can be written explicitly in conservative form as

At
n+1 n
u =y - E[Fi—% - Fi—l—%]u

(5.4)

where the intercell numerical flux function is

F (0)).

i+l = F(u?,uf,,) = f<ui+%
We assume that the solution of the Riemann problem (5.2 exists. Here for each
i €7,y +%(O) is the value of the exact solution u +%(x /t) of the Riemann problem

n

(2,0) u, =u' for x<0, (5.5)
u(z,0) = )
ug =uy,, for x>0,

evaluated at =/t = 0.

5.2.3 Approximate Riemann solvers

The method of Godunov requires the solution of Riemann problems which may be
exact. This could cause some difficulties due to the complication of the equation
of state or by the complexity of the particular system of equations being solved or
both. We therefore present extensions of Godunov’s scheme that utilize approximate
Riemann solvers.

In this work we will present the numerical methods for solving Riemann problems
in the one dimensional case. We will use the HLL approach of Harten, Lax, and
van Leer, HLLC solver and VFRoe method for deriving an approximate solution to
the Riemann problem. We will use the MUSCL method in order to achieve higher
order of accuracy, see e.g. Toro [75].

The HLL solver

In this approach an approximation for the intercell numerical flux is obtained di-
rectly. It requires estimates for the smallest and the largest signal velocities in the
Riemann problem. Assume that the signal speeds S;, and Sk are known. The inte-
gral average of the exact solution of the Riemann problem between the slowest and
the fastest signals at time 7" is a known constant given by

SRUR — SLUL + FL - FR

Ul —
Sr—SL
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The approximate solution of the Riemann problem, called the HLL Riemann solver
is given by

The corresponding intercell flux for the approximate Godunov method is then given

F, if 0<S5,
F?j-ll/Q = SRFL_SLFSR;ngfR(UR_UL) if Sp <0< Sk

Fr if 0>Sg

The HLLC solver

As we have seen before, the HLL approximate Riemann solver considers three con-
stant states separated by two waves. This means that the star region consists of
a single state which could cause difficulties in some cases where we have a contact
wave in the middle. In order to overcome this situation the HLL solver has been
modified and applied using 4 constant states separated by 3 waves. This called the
HLLC solver.

In this approach the middle wave speed S, is included corresponding to the eigen-
value \y. See Toro |76] as well as Mignone and Bode [53].

The HLLC approximate Riemann solver is given by

Uy, of 750,
’ U*R /lf S* < % < SR7
Ugr if $ > Sk,

and the HLLC flux for the approximate Godunov method is given by

(FL Zf 0 S SL
phile ) F.p=Fr+S.(U,—Ug) if S, <0<8, (5.7
F T Py = Frt Sp(U.g — Ug) if S.<0< S |

(Fr if 0>k

The Roe solver

We consider the system of the conservation laws of the form
U;+F(U), =0, (5.8)
with the Riemann initial data

U, if x<0,

| (5.9)
Ur if x>0,

U(z,0) =U%2) = {
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where U is the vector of unknown conservative variables and F is the vector of
fluxes.

As we have seen in Chapter [4] the system of conservation laws (5.8) can be written
in the form

U, + A(U)U, =0, (5.10)

where A is the Jacobian matrix.
Roe’s approach based on replacing the Jacobian matrix A by a constant Jacobian
matrix A which is given as

A = A(UL, Up), (5.11)
which is a function of the data states Uy and Ug.
Replacing the constant Jacobian matrix in (5.12) gives a linear system with constant
coefficients and the system ({5.8) is replaced by an approximate Riemann problem
which can be solved exactly.

The Roe Jacobian matrix A must satisfy the following properties which are given
in detail in Toro [75] and Roe [60]:

e The system should be hyperbolic.
e The Roe’s matrix A should be consistent with A.

e Conservative across the discontinuities.

Once we determine the matrix A, its eigenvalues A and its eigenvectors K(Z) we write
the data difference as -
AU=Ug-U, =Y aK",
i=1
from which we can determine the wave strength &; = sg; — sp;.
The solution is given by
U, =Up+ Y ak”,
Xi<0
or ,
U, =Up- Y aK".
Ai>0

The numerical flux is then given as

or

We may also write

F. K",

1+

A

VI

1 1 e
= §(FR+FL) —Ezai
i=1

The construction of the Roe matrix A which satisfies the properties mentioned above
is not an easy task. It can be very complicated so that we seek a simpler approach
where we can avoid this difficulty. In the next subsection we will introduce the
VFRoe method where such difficulty is avoided.
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The VFRoe solver

As we have seen before, the Godunov scheme and Roe’s method require analytical
computations which could be very difficult. In order to overcome such situations, we
will present the method introduced by Gallouét and Masella [50], which is called the
VFRoe method. This method does not require complicated analytical computations.
It is based on the solution of a linearized Riemann problem and the Godunov scheme.
In this method we consider the initial value problem (5.2)), see [54] We rewrite the
system of the conservation laws in terms of primitive variables as

ov ov

— +A(v)— =0 5.12
AW =0, (5.12)
where v = (p,v, x)" is the vector of primitive variables and A is the Jacobian matrix
which is given in Chapter ]l In terms of primitive variables we have the initial data
of the Riemann problem at each cell boundary z; 41 of the form

Vi, < T 1
v(z,0) =4’ I*3 (5.13)
Vijt1, T > .Tj_,’_%.

Following the approach in [50] the Jacobian matrix A(v) is calculated for the average

state
Vit Vin

2

Hence the intermediate state in the solution of the Riemann problem (5.12)), (5.13))
is given by

vV =

(5.14)

V;_% =V + Z a;r;, (515)
Ai<0
where )\; are the eigenvalues of the Jacobian matrix A(V,, 1 ) and r; are the corre-
sponding eigenvectors.
Now we recalculate the conservative variables U” ; and the Godunove scheme will

Jj+s5
be
n+1 n At * n n * n n
u; - =u; — M[f(u (ujaujJrl)) — f(u (ujfbuj))]
u =uy + Z o;T;.

MUSCL method

In this approach we replace locally the averages values U} by piecewise linear func-
tion U;(z) which is given as

(x — ;)

Ai: YIS ['ri—%vxi—i—%]:
where A; is a chosen slope of Uj; in cell [; with so called boundary extrapolated

values which are the values of U;(x) at the extreme points. They are given by

1 1
Ul =U;(0) =07 — 74 UF = Uy(Az) = U - T

66



5.3. NUMERICAL METHODS FOR THE SUBMODEL

and evaluated by a time %At according to

U, = Ul + LALR(UF) - F(UR)),
U, = UF 4 LA p(UL) - F(UR)].

As a consequence of having modified the data, at each interface z;, 41 one now may
consider the so called generalized Riemann problem. We seek now the solution of
the generalized Riemann problem after the extrapolated values UF and UI-LJrl are
evolved to UZR and UiLH.

The intercell numerical flux F, 41 is then obtained from

it T f(ui+%<0))a

where u, %(O) is the exact similarity solution u,, 1 (x/t) of the Riemann problem
evaluated at z/t = 0.

5.3 Numerical methods for the submodel

In this section we consider the homogeneous part of the diffuse interface multiphase
mixture model without chemical reactions. We consider first the case N = 1 which
means we are dealing with two phases in each phase we have only one vapor. The

model (3.5)) in this case is

(p)e + (pv)e =0,
(pv)e + (pv° +p)s = 0,
pXt + puxz = 0.

As we consider two pure vapor phases, the mixture equation of state ([3.8)) is given
as

p(p.x) = —W(x) + h(x)ay, p + (1 — h(x)ai,p. (5.16)

Here the constants ay, and ay, are the speed of sound in the first vapor and the
second vapor respectively. The constants dy, and dy, have the value zero in vapors.
The Riemann initial data are given by

U, if =<0,

. (5.17)
Ugr if x>0,

U(z,0) = U%2) = {

where U = (p, pv, px) " is the vector of the conservative variables.

In order to asses the performance of this model we will not restrict our attention to
the isothermal equation of state previously considered. We will also consider
the isentropic equation of state given by

p(p) = Cp”,

where v is the ratio of specific heat capacities and C' is a constant evaluated by
taking
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from a reference state. We will discuss the difference between this equation of
state and the isothermal equation of state and compare both results with the exact
solution of the system which was obtained in Chapter [] and the exact solution of
the Euler system presented in Toro [75]. We will also see the behavior of the energy
e and the temperature 7" which are given as

e = L
(y=1p’
and »
T=—"++
(v = Dewp
The local speed of sound will be obtained by
2= Cyp" ™,
dp

which is again a function of p. The mixture speed of sound needed later is given as

A(x, p) = h(x)ai, + (1 = h(x))ay,- (5.19)

The mixture equation of state will be in this case

p(p) = =W (x) +h(x)Cvip" + (1 — h(x))Cr,p". (5.20)

Our aim is to solve this system numerically and to show for various examples how the
solutions to Riemann problems are influenced by the model used. The three models
are the Euler and the diffuse interface equations with the isothermal equation of
state as well as these equations with the isentropic equation of state ([5.21)).
For this purpose we will use the HLL, HLLC, VFRoe solver in order to find the first
order solution. We will also use the MUSCL method to achieve second order.
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5.4 Numerical results

In this section we present the numerical results for solving Riemann problems of
the diffuse interface model on test cases and illustrate the performance of Riemann
solvers considering different phases.

In all chosen tests the data consist of two constant states W; = (p;, v, p;) and
W, = (pr, v, p) separated by a discontinuity. The variable x has the value -1 to
indicate the phase to the left, and the value 1 to indicate the phase to the right. The
spatial domain is the interval [0, 1] which is discretized with N = 500 computing
cells and the results are given after 250 time steps. All figures show the profiles of
the conservative variables which are the density p, the momentum pv and py, also
the constitutive variable, the pressure p, the velocity v and the phase indicator Y.
In the first example we consider the so called Sod test see Sod [70] and in the second
one we consider the 123 problem see Toro [75] and Marie et al. [50]. In both tests
we consider two vapors, V] to the left and V5 to the right. They are governed by the
isothermal equation of state

plp) = =W(x) + h(x)(af,p + dvi) + (1 = h(x))(aTyp + dvy),

where ay, and ay, are the speed of sound in the first vapor and the second vapor
respectively. The parameters mentioned are given in Table for the first test and
in Table 5.5 for the second test.

In Examples 3 and 4 we consider again the Sod test and the 123 problem but we
will use the isentropic equation of state

p(ﬂ) = _W<X) + h(X)<C'V1:O’y + dVl) + (1 - h(X))(CVQPPY + de)v (521)

where C' is the constant obtained from ([5.18). The constants dy, and dy, have the
value zero in the both cases.

Example 1

First we consider the initial data of the Sod test which are given in Table
The equation of state parameters are given in Table and the Courant number

Initial Data Pvi Vv pPwvi | P Unp PV,
Sod test 1.0 0 1001 0 0.125

Table 5.1: The initial data for the case vapor-vapor/Sod test, see |70]

coefficient is Cy; = 0.9.

Parameters || ay, dy, ay, dy,
Sod test 1.0 0 |0.894427 0

Table 5.2: The parameters for the case vapor-vapor/Sod test

Figures 6.2l and show the numerical results using the HLL, HLLC and
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VFRoe solvers for the Sod test. Figure [5.4] shows the results using the MUSCL
method.

The solution of the Sod test consists of a shock that moves to the right, a right
going contact in the middle and a rarefaction wave traveling to the left. It has to be
mentioned that the contact is not an Euler equation contact but the phase change
contact since the energy equation in the Euler system is replaced by the equation
for phase field.

Table shows the values of the intermediate state in the star region using the
solvers mentioned and the exact solution in the star region which is obtained in
Chapter [d] One can notice, as expected, that the MUSCL and the exact results are
nearly identical. The VFRoe solver presents better results than the HLL and HLLC
solvers. While we can notice that the HLLC solver exhibits a better convergence to
the exact solution than the HLL solver.

Results Py, vy Py, vy,
HLL 0.3260862 1.1193367 | 0.3260865 1.1193293
HLLC | 0.3260637 1.1194257 | 0.3260629 1.11942169
VFRoe | 0.3260877 1.1193559 | 0.3260857  1.1193557
MUSCL || 0.3262192  1.12016 | 0.326228 1.12013

Exact | 0.3262076  1.12022 | 0.3262076  1.12022

Table 5.3: The results: The values in the star region using HLL, HLLC, VFRoe
solvers and MUSCL method

Example 2

In the second example we will consider the 123 problem, see Toro [75]. We present
the initial data in Table where the proper equation of state parameters are given
in Table . In all solvers the Courant number has the value C.y; = 0.9 except for
the VFRoe solver. We use C.5; = 0.6 for it and one can notice that in this particular
case the VFRoe scheme no longer provides a convergent solution since it blows up
when we exceed this value of the CFL condition. The solution consists of two
rarefaction waves where the vapor is pulled to the left and to the right. Due to the
symmetrical initial conditions the contact is a ghost wave, see Galloét [30]. Figures
and show the first order solution profiles using the HLL, HLLC and
VFRoe solvers respectively. Figure gives the results using the MUSCL method
for the second order as above are given in Table As expected the second order
methods converges faster to the exact solution. One can notice that the HLL solver
is more diffuse than the HLLC solver and VFRoe but it gives good result.

Initial Data | py;  vwvi  pvi | Pva Vv Pvy
123 problem || 0.4 -2.0 1.0|04 2.0 1.0

Table 5.4: The initial data for the case vapor-vapor/123 problem, see [75]
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The test ay, dV1 Ay, dV2
123 problem || 0.632456 0 | 0.632456 0

Table 5.5: The parameters for the case vapor-vapor/123 problem

Results 28 vy, Py, vy,
HLL 0.001520186  0.046388889 | 0.001520681 0.045961276
HLLC | 0.001520017  0.04650278 | 0.001520739  0.0459819

MUSCL || 0.001658343  0.01232602 | 0.001667608 0.00878486

Exact | 0.00189 0 | 0.00189 0

Table 5.6: The results: The values in the star region using HLL, HLLC, VFRoe
solvers and MUSCL method

Example 3

In this example we will consider again the Sod test and from the initial data we will
find the constant C'.

Figure presents the solution using the isentropic equation of state (5.21)). The
solution is monotone as in the Euler system. We have seen that this is not the
case using the isothermal equation of state. The solution consists of three waves a
rarefaction to the left, contact in the middle moving to the right and shock moving
to the right. Comparing the results with the solution using the EOS we see a
difference in the wave structure where the solution is not monotone and comparing
both results with the exact solution of Euler system in Toro [75] we find the similarity
between the exact solution and the numerical solution using the isentropic EOS
(5.21)) where some differences appear when we use the isothermal EOS.

Figure [5.10| shows the structure of the sound speed a, the temperature 1" as well as
the energy e which as expected have the same structure because the all quantities
are proportional.

Example 4

In this example we will consider the 123 problem using the isentropic EOS. Figure
shows the solution. We notice that we have here the same structure comparing
with the results using the isothermal equation of state in Example 2 because
we don’t have a shock here.

The behavior of the sound speed a, the temperature T" as well as the energy e is
presented in Figure [5.12]
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Figure 5.1: The solution: Sod test using the HLL solver, blue: the initial data, red:
the numerical solution.
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Figure 5.2: The solution: Sod test using the HLLC solver, blue: the initial data,
red: the numerical solution.
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Figure 5.3: The solution: Sod test using the VFRoe solver, blue: the initial data,
red: the numerical solution.
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Figure 5.4: The solution: Sod test using the MUSCL method, blue: the initial data,
red: the numerical solution.
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Figure 5.5: The solution: 123 problem using the HLL solver, blue: the initial data,
red: the numerical solution.
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Figure 5.6: The solution: 123 problem using the HLLC solver, blue: the initial data,
red: the numerical solution.
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Figure 5.7: The solution: 123 problem using the VFRoe solver, blue: the initial
data, red: the numerical solution.
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Figure 5.8: The solution: 123 problem using the MUSCL method, blue: the initial
data, red: the numerical solution.
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Figure 5.9: The solution: Sod test using the HLL solver with isontropic EOS, blue:
the initial data, red: the numerical solution.
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Figure 5.10: The structure of the sound speed a, the temperature 7" and the energy
e for Sod test, blue: the initial data, red: the numerical solution.
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Figure 5.11: The solution: 123 problem using the HLL solver with isontropic EOS,
blue: the initial data, red: the numerical solution.
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Chapter 6

The numerical solution for
vapor-liquid flow

6.1 Vapor-liquid

In Chapter [5| we presented some numerical methods in order to solve the homoge-
neous part of the diffuse interface multiphase mixture model proposed in [24]. In
order to test the performance of the model considered and the numerical methods
presented in the previous chapter we assumed a mixture of two phases where in each
phase we have vapors only.

Up to this point we could obtain good results and ensured that the numerical meth-
ods considered in Chapter [5| were able to solve that model in different examples.
But the diversity of materials existing in nature implies that we need to consider
more complicated cases such as vapor-liquid flows.

This chapter is devoted to the study of two phase flow without chemical reactions.
In each phase we have either liquid or vapor. This case must be treated with some
care due to the difficulties which appear.

In all of this chapter our principal goal is to solve Riemann problems for the homo-
geneous part of a diffuse interface model numerically and figure out which difficulties
will occur when we consider the case of vapor-liquid. Furthermore we want to give
strategies in order to overcome such difficulties.

First we consider two pure phases liquid (L) and vapor (V). In each phase we have
only one constituent. The phase variable y will indicate the present phase as y = —1
in a vapor phase. We will consider it on the left hand side. We take x = 1 for a
liquid phase and will consider it on the right hand side. The interpolation function
h in this case will have the values 1 in the liquid and O in the vapor. The phases
will be separated by a diffuse interface and x in this case will take values in | — 1, 1].
The mixture is described using the model

O + 0x(pv) =0,
A (pv) + 0,(pv* +p) = 0,
9(px) + Oz(pvx) = 0,

with the Riemann initial data

U, if x<0,

Ui if xz>0. (6.1)

U(z,0) =U%2) = {
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The pressure p is given via the equation of state as a function of y and p. As we
have two pure phases the equation of state in this case will have the form

p(p) = =W (x) + h(x)(alp +dr) + (1 — h(x))(a}p + dv), (6.2)

where ay, and ay are the sound speed in the liquid and vapor respectively and dj,
and dy are constants.

For the purpose of solving Riemann problems for the system of PDEs numerically,
we will use the HLL solver presented in Chapter 5} The HLL solver seems to be an
appropriate choice for the conserved quantities of the system, namely p and pv.

In this work we use the computational domain [0, 1] x [0,7]. The spatial domain
[0, 1] is discretized into uniform cells with width Az. The time step At is determined
via the CFL condition where we use the CFL number Corr, = 0.9.

As an example we consider the initial data in Table corresponding to Example
1 in |32,

Primitive variables || xp PrL vy, XV j2% Vy
Initial data 1 2300 Pa -100 m/s | -1 1000 Pa 100 m/s

Table 6.1: The initial data for the case vapor-liquid

with the equation of state parameters which are given in Table

Parameters ar, dr, ay dy
14784 m/s —2.1817-10° 367.8 m/s 0

Table 6.2: The equation of state parameters. Example 1

Based on the results obtained in [32] and in Chapter {4| the expectations are that we
will get three waves, a shock wave moving to the left, contact wave in the middle,
and a rarefaction moving to the right.

Starting some simulation for a liquid and a vapor phase with significant differences
in the phase densities the computations immediately breaks down.

At first glance this seems to be surprising because the phase field models are devel-
oped to deal with phase mixtures. In particular, due to the design of the equation
of state one may expect that mixture cells can be handled. Figure shows the
strange behavior of the solution and one can observe that the results obtained are
unphysical.

We illustrate this situation in Figure for pure water at room temperature. Here
the pressure is presented as a function of the density p and the phase field y.

The states on the left boundary correspond to pure vapor whereas the states on the
right boundary indicate pure liquid water. One can see that for most states (y, p)
in the phase plane the pressure is negative. This means that these states are not
meaningful.

Solving a Riemann problem for initially pure phases means that states on the left
boundary are connected to the right boundary. In the exact Riemann solution, see
Chapter [4 the intermediate state lies in the reasonable part of the mixture region
in between. Our aim now is to preserve this property and explain why we get such
results and how we can overcome this situation.
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Figure 6.1: The solution: vapor-liquid case using the HLL solver, blue: the initial
data, red: the numerical solution.

6.2 Numerical difficulties

The results obtained imply that we have a problem in our solver. It is due to
the numerical dissipation in conjunction with the equation of state. In order to
understand these results it is useful to solve the system for only one time step.
Figure 6.3 shows the results after one time step. We can notice that we give correct
values for y and p. But we get a negative pressure. This means that the problem
results from the interplay between the solver taking intermediate values at the phase
interface leading to unphysical values in the equation of state . Figure|6.4)shows
the area where we get the unphysical results in the p-p plane. In this area, once we
consider a value of p we may get a negative pressure. This is the case in the above
computation where usually the phase interface moves and does not coincide with
any cell boundary after a certain time and all quantities will smear out during the
calculations.

To understand the situation from a numerical point of view, we remind the reader
that usually we are dealing with a grid using the cell size Az. Our aim is to
calculate the averages in each cell in order to apply the finite volume approach. We
now consider that at time level t"* the phase boundary lies on a cell boundary. The
question now is where will it lie after the time step At? If we are lucky the phase
boundary after At will lie on a cell boundary again. But what will happen if the
phase boundary lies inside a cell?.

As we do not consider phase transition the phase boundary moves with the velocity
v # 0 during the time At. This means the phase boundary will travel the distance
vAt. Which means that the phase boundary will lie inside a cell, see Figure [6.5] In
other words we will have a cell with two different phases and the averaging can lead
to unphysical states.

In this chapter we examine two different procedures to overcome the unphysical
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Figure 6.2: Pressure p depending on phase field x and density p.
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Figure 6.3: The solution after one time step. Blue: the initial data. Red: the
numerical solution

results. The two strategies that we are going to use are:

e Tracking the interface.

e Estimating and fixing the pressure.
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p=daip+dy
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Figure 6.4: The equation of state in the vapor in liquid phases.
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Figure 6.5: the mixture cell.

6.3 Tracking the interface

The main idea of this approach is to check the grid in each time step in order to
test if the phase boundary lies on the cell boundary or not. This approach was
successfully applied in the thesis of Thein [73] in order to solve the isothermal Euler
equations numerically. If the phase boundary lies again on the cell boundary then
we can go to the next time step, if not, we will align the grid to the phase boundary.
This implies that we have
either x=-1 = h(x) =0, for a vapor phase,
or x=1 = h(xy) =1 for a liquid phase.

The equation of state (EoS) in this case will be
=0 in liquid
p(p) = =W(x) + h(x)(agp +dr) + (1 = h(x))(aip + dv). (6.3)

=0 in vapor
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Aligning the grid will change the size of the cells and we have to deal with different
cell sizes.

Suppose the phase boundary lies on the boundary x;,41/2 of the cell I;, at the time
step ¢". This means that at the time step "™ = t" + At the phase boundary will
move the distance vAt. The new cell boundary according to the new location of the
phase boundary will be then ;.12 = 73,412 + WA, see Figure .

Tigp1 + vAt
tn+1 ® o o
Iio [i0+1
align grid
=
tn+1 ® @ o
z; Liot1
e o itk °
xio—% -[i ‘rio-l-% [i0+1 xio—f—%

Figure 6.6: after changing the grid.

The new cell size is Az,, + wAt could be too large or too small, where Az, =
(b —a)/N. With a too small cell we get a severe time step restriction to maintain
stability via the CFL condition. Too large cells give loss of accuracy. We choose
therefore two parameters 0 < ¢; < 1 < €5. We will determine two cases:

o If a cell satisfies Ax; < €;Ax,, the cell is too small. We merge it with the
neighboring one.

o If a cell satisfies Ax; > eaAx,, the cell is too large. We split it into two cells.

Thereby, we get a modified grid where the phase boundary will always lie on a cell
boundary. We do the same for the next time level.
The Godunov conservative form in this case reads

Azl JAN
n+1l 7 n
Ui - A:E?‘H Ui o AI?'H [FH% - Fi—%]?

where Az? and Az are the cell sizes at the time step t* and ¢"*!.
In order to calculate and update the time step we start with the initial time step
which is obtained by using

0
Sma:v

=max{|v—a|,|[v+al} and At=Cepr

We recalculate the time step using

AZpin, = i_minN {Ax;|Ax; > e2Ax,,},

=1,...

Sy .. = max|S],
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as

The solution at the interface

Now we want to present the solution at the phase boundary. As we discuss the
case without phase transition and according the results in Chapter {4 we found that
[p] = 0 and [v] = 0, and using the wave speed estimates for the HLLC solver, see
Chapter [5 we get

Sp =ur +ar,

Sy =uy — ay,
_ pL—pv + pvuy(Sy —uy) — prur(Sp —ur)
a pv(Sv —uv) — pr(Sr — ur)

* SL_UL
PL—PLSV_w-

Y

Here Sy and Sy, denote the velocities of the classical waves. The density is calculated
according to the HLLC solver as presented in Chapter [5] The pressure p* will be
calculated using the equation of state.

6.3.1 Numerical results

In this section we will test tracking the interface approch presented in previous
section on many examples. We will compare the results with the exact solution
obtained before as well as with the exact solution in Toro [75].

Example 1

We consider again Example 1 with the initial data as given in Table [6.3] This
Example corresponds to Example 1 in [32] and in Chapter {4| where the exact solu-
tion is presented. We will solve the system supplied with the equation of state
(6.2) using tracking the interface based on the HLL solver.

primitive variables PrL v, 2% vy
Initial Data 2300 Pa  -100 m/s | 1000 Pa 100 m/s

Table 6.3: The initial data for the case vapor-liquid

Figure [6.7] shows the solution which consists of two waves, a shock moving to the
right and a rarefaction moving to the left.

In Table we can see the numerical results after applying the approach discussed
before with a different number of cells and the values in the star region.

Example 2

The initial data of this Example are given in Table [6.5 and correspond to Example
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Figure 6.7: The solution of Example 1: vapor-liquid case using the HLL solver, blue:
the initial data, red: the numerical solution.

Cells L vy, 2% vy

100 1329.2 Pa  100.45071 m/s | 1328.9 Pa 100.38174 m/s
800 1333.0 Pa  100.1242 m/s | 1333.0 Pa  100.1193 m/s
1500 1333.8 Pa  100.0784 m/s | 1333.8 Pa  100.0767 m/s
4000 1334.7 Pa 100.0363 m/s | 1334.7 Pa  100.0360 m/s

Exact solution || 1335.3 Pa_ 100.0002 m/s [ 1335.3 Pa_ 100.0002 m/s

Table 6.4: The values in the star region on different grids

2 in Hantke et al. |[32] where the exact solution is presented as well as in Thein |73]
where one can see the numerical solution.

primitive variables
Initial Data

Pr vr
60000 Pa -200 m/s

bv
100000 Pa

vy
-50 m/s

Table 6.5: The initial data for the case vapor-liquid

Figure illustrates the numerical results and shows the wave structure. The so-
lution consists in this case of two rarefaction waves moving to the left and to the
right.

The values in the star region are given in Table using different number of cells
and for comparison we provide the values of the exact solution given in [32].
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Figure 6.8: The solution of Example 2: vapor-liquid case using the HLL solver, blue:
the initial data, red: the numerical solution.

Cells PL vy, Pv Vy

100 43451 Pa -50.057246 m/s 43450 Pa -50.057247 m/s

800 43511.2 Pa. -50.05718612 m/s | 43511.1 Pa  -50.05718617 m/s

1500 43518.65 Pa -50.05717861 m/s | 43518.62  -50.05717865 m/s

4000 43525.407 Pa_ -50.057171781 m/s | 43525.406 Pa -50.057171783 m/s
Exact solution | 43531 Pa -50.057 m/s | 43531 Pa -50.057 m/s

Table 6.6: The results after checking the grid

6.4 Estimating the mixture pressure

In the previous section we solved the system supplied with the equation of
state numerically using a tracking of the interface approach. This approach
provided us with a numerical solution of the system considered and enabled us to
avoid the unphysical results. But one can notice that splitting the mixture cell into
two cells means that the phase variables x will have only two values, either -1 in the
vapor phase or 1 in the liquid phase. This means that the equation of state in the
vapor phase will be

p(p) = (aip + dv), (6.4)

because by definition h(x) = 0. In the liquid phase h(x) = 1 which implies that the
equation of state will be

p(p) = (aip+dy). (6.5)

The phase variable x will never have a value in |-1,1[. This procedure will prevent
us from dealing with the interface as a diffuse interface. However the interface will
be treated as a sharp interface which is not our aim. On other words, tracking the
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interface approach did not deal with the complete equation of state. Instead of that,
only with parts of it.

As we are interested in the complete equation of state our intent is to find another
strategy to avoid the unphysical results.

The major focus of this section is to find an approach which maintains the structure
of the equation of state (6.2). In order to do that we will introduce an ”estimating
the pressure approach”. In the following sections we will start by explaining the
idea of estimating a value of the pressure then use this value to solve the model
considered.

%10°
05

Figure 6.9: The pressure function, green: the positive, red: the negative.

The main idea

Usually, in order to calculate the pressure at the time level n via the equation of
state we start with the values of x" and p"™ using the Riemann solvers, in this case
the HLL solver. In order to find the pressure p"*! at the time level n + 1 we find
first xy*™! and p"™!. Again using the equation of state we evaluate p which in mix-
ture cells most probably gives a negative value due to the nature of the equation of
state considered. Figures and show the graph of the pressure function in the
variables x and p. One can see that the negative area is very big especially near the
liquid phase. This means it would be useful to find the pressure without using the
equation of state in the mixture cells to avoid unphysical values in the liquid phase
and for mixtures where x €] —1,1[.

The question now is whether we can find a value for the pressure by estimating a
positive value of p"*! directly from p” without using x"** and p"*! in the equation
of state.

The conserved quantity p can be evaluated using Riemann solvers, i.e. in our case
the HLL solver.
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It remains to find the phase variable x. This variable is an artificial quantity indi-
cates that the phases present and has no additional meaning. This quantity is not
conserved. Discretizing the transport equation of the variable x will lead sometimes
to some difficulties. To avoid such difficulties we use the equation of state to find
the third variable y"™!. We substitute the variables p"™! and p"*! in the equation
of state.

We summarized this approach as following:

e We estimate a value of the pressure p.
e We find the density p using the Riemann solver.

e We find the phase variable y by substituting p and p into the equation of state
and then solving it numerically for y.

Figure illustrate the path of the new approach.

HLL
— (Xn’pn) - (Xn-i-l’pn—i-l) —

| T

pn 3 pn+1
Estimating

Figure 6.10: The path of the new approach.

It has to mention that this approach is done only local for mixture cells. The
question now is how to estimate a value of the pressure without considering x and

p?

6.4.1 A piston problem

According to the physical properties of the liquid and the vapor, we observe when
we compress or decompress a gas or a liquid that most of the changes occur in the
gas phase. This means that most of the effects will appear in the vapor. To illustrate
this idea we notice in Figure that a small difference in the pressure causes a big
difference in the density of the gas phase whereas a big change in the pressure in the
liquid phase could be barely noticed and causes a very small change in the density.
This is the almost incompressibility of the liquid. The useful interpretation of this
comes from the fact that the speed of sound in the liquid phase is much larger than
that in the gas phase.

As long as we can consider that there are no effects in the liquid phase, we will treat
the liquid phase as an incompressible liquid. In order to make this idea work in
practice it is useful to consider the liquid phase as a wall. When this is the case,
our main task now is to solve a problem on the boundary of a wall.

To make this idea precise, we consider a Riemann problem with vapor phase to the
left and a wall to the right. This is a type of piston problem. We consider again
Example 1 where the initial data are given in Table[6.7] This example is illustrated
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Figure 6.11: The equation of state in the vapor and liquid.

Primitive variables PrL vy, Pv vy
Initial data 2300 Pa  -100 m/s | 1000 Pa 100 m/s

Table 6.7: The initial data for the case vapor-liquid

o ~
O ~ .
The liquid phase
xv =—1 ® b P xL=1
vy = —100 4= O ~ ~ — v, = 100
py = 2300 O ~ pr, = 1000
O ~ ~
O
The vapor phase - ~ -

Figure 6.12: The vapor-liquid phases.

in Figure [6.12

We want to employ the piston problem in the process of solving this example. Note
that the velocity difference between the phases is 200 m/s. We use Galilean in-
variance to assume that the liquid is a solid wall at rest while the vapor moves at
-200 m/s. Figure illustrates the idea. We will use this problem to obtain an
estimated value of the pressure for mixture cells in two ways

e Solving Riemann problem on the wall numerically.

e Finding the exact solution on the wall.

6.4.2 Estimating the pressure numerically

In this subsection we want to discuss the use of the above piston problem for the
solution at the phase boundary. This discussion will be based on the idea of esti-
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Figure 6.13: the wall.

mating the pressure suggested in the previous section.

We consider first the whole domain as a vapor. We discretize the domain into N
cells, where N is an even number. As we have seen in the previous section the liquid
phase will be treated as an incompressible liquid which means that we will consider
the liquid phase like a solid stationary wall. In order to perform an update on cell
Inya, i.e last cell of the vapor phase we need to find the intercell fluxes between this
cell and its neighbors. We have no problems with the intercell flux between the cells
Injo—1 and Injp. In order to define the second intercell flux we need to add a so
called ghost cell Iy/s41, see Figure [6.14]

Now we assume that the cell I/, behaves like a wall. The most important feature
of the wall is that its velocity is zero. The interface in this case will lie on the cell
boundary at Tnjoyl-

Figure 6.14: Discretization of the domain for determination of F'x n
2

N

The fluxes of a cell I; where 1 = 1,..., N are given as
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As the speed of the wall is zero the flux % + % will be
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But as we have seen in Chapter 4| according to the Riemann invariants in (4.4.1)) the
pressure is constant across this contact discontinuity. Therefore, we set
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It has to mention that we use this only locally at the phase boundary.

What we have now is an estimating value of the pressure at the phase boundary
between the two phases based on the physical properties of the vapor and the liquid.
Table shows the values of the pressure on the phase boundary applied to Exam-
ples 1 and 2. Figures and present the estimating behavior of the pressure

for one time step at z =1 =2n5 1.
2 2
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Figure 6.15: Estimating the pressure for the first example at t =1 =2 Ny
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