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Abstract
The paper continues the authors’ work (Freise et al. The adaptive Wynn-algorithm in
generalized linear models with univariate response. arXiv:1907.02708, 2019) on the
adaptive Wynn algorithm in a nonlinear regression model. In the present paper the
asymptotics of adaptive least squares estimators under the adaptive Wynn algorithm
is studied. Strong consistency and asymptotic normality are derived for two classes
of nonlinear models: firstly, for the class of models satisfying a condition of ‘satu-
rated identifiability’, which was introduced by Pronzato (Metrika 71:219–238, 2010);
secondly, a class of generalized linear models. Further essential assumptions are com-
pactness of the experimental region and of the parameter space together with some
natural continuity assumptions. For asymptotic normality some further smoothness
assumptions and asymptotic homoscedasticity of random errors are needed and the
true parameter point is required to be an interior point of the parameter space.
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1 Introduction

The classical algorithm of Wynn (1970) for D-optimal design in linear regression
models has motivated a particular scheme for sequential adaptive design in nonlinear
regression models, see Freise (2016), Pronzato (2010) and Freise et al. (2019). We
refer to this scheme as ‘the adaptive Wynn algorithm’. In a previous paper (Freise
et al. 2019) of the authors the asymptotics of the sequences of designs and maximum
likelihood estimators under the adaptiveWynn algorithmwas studied, for the important
class of generalized linear models with univariate response. In the present paper the
asymptotics of least squares estimators (LSEs) under the adaptive Wynn algorithm is
studied, firstly, for the class of nonlinear models satisfying a condition of ‘saturated
identifiability’ and, secondly, for a class of generalized linear models. As amain result,
strong consistency of the adaptiveLSEs is shown and, as a consequence, the asymptotic
D-optimality of the generated design sequence is obtained (almost surely). Here ‘D-
optimality’means localD-optimality at the true parameter point.Moreover, asymptotic
normality of the adaptive LSEs is obtained, where the asymptotic covariance matrix is
given by the inverse of the locally D-optimal information matrix at the true parameter
point. This shows in particular, that compared to the nonadaptive LSEs under any
fixed design the adaptive LSEs from the adaptive Wynn algorithm are asymptotically
more efficient in the sense of a smaller determinant of the asymptotic covariance
matrix, unless of course, a fixed design is used which is locally D-optimal at the true
parameter point. However, the true parameter point is unknown, thus preventing the
use of that design. In contrast to the classical concept of a fixed design, the sequential
adaptive method provided by the adaptive Wynn algorithm is not affected by the
unknownparameter point: asymptotically the true parameter point canbe identified and
the adaptive designs become D-optimal. Note that other, more practically motivated
adaptive procedures for design and estimation restrict to a finite number of adaptation
stages, e.g. only two stages as in Dette et al. (2013) and Lane et al. (2014). Those
papers addressed problems on asymptotic efficiency of adaptive maximum likelihood
estimators for particular two-stage adaptive procedures, when the sample sizes of the
stages go to infinity. However, the present paper is exclusively concerned with the
adaptive Wynn algorithm which is an infinite-stage adaptive procedure.

Next we give an outline of our framework and the adaptive Wynn algorithm. Sup-
pose a nonlinear regression model with a real valued mean response μ(x, θ), x ∈ X ,
θ ∈ Θ , where X and Θ are the experimental region and the parameter space, respec-
tively. Suppose that a family of Rp-valued functions fθ , θ ∈ Θ , defined on X has
been identified such that the p× p matrix fθ (x) f Tθ (x) is the elementary information
matrix of x ∈ X at θ ∈ Θ . Note that a vector a ∈ R

p is written as a column vector
and aT denotes its transposed which is thus a p-dimensional row vector. A design ξ is
a probability measure on X with finite support. That is, ξ is described by its support,
denoted by supp(ξ), which is a nonempty finite subset of X , and by its weights ξ(x)
for x ∈ supp(ξ) which are positive real numbers with

∑
x∈supp(ξ) ξ(x) = 1. The

information matrix of a design ξ at θ ∈ Θ is defined by

M(ξ, θ) =
∑

x∈supp(ξ)

ξ(x) fθ (x) f Tθ (x), (1.1)
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which is a nonnegative definite p × p matrix.
In applications the family fθ , θ ∈ Θ , will be related to the mean response μ(x, θ),

x ∈ X , θ ∈ Θ . Usually, Θ ⊆ R
p and fθ (x) is given by the gradient of μ(x, θ)

w.r.t. θ for each fixed x , or by a scalar multiple of that gradient where the scalar
factor is a function of θ and x , cf. Atkinson et al. (2014), Lemma 1. For particular
classes of models described below, consistency of the adaptive LSEs will be achieved
without any relation between the family fθ , θ ∈ Θ , and the mean response μ(x, θ),
x ∈ X , θ ∈ Θ , whereas asymptotic normality of the adaptive LSEs will require the
gradient relation with scalar factor equal to 1. Throughout we assume the following
basic conditions (B1)–(B4).

(B1) The experimental region X is a compact metric space.
(B2) The parameter space Θ is a compact metric space.
(B3) The real-valued mean response function (x, θ) �→ μ(x, θ), defined on the

Cartesian product space X × Θ , is continuous.
(B4) The family fθ , θ ∈ Θ , of Rp-valued functions on X satisfies:
(i) for each θ ∈ Θ the image fθ (X ) spans Rp;
(ii) the function (x, θ) �→ fθ (x) is continuous on X × Θ .

By N and N0 we denote the set of all positive integers and all nonnegative integers,
respectively. By δx for any x ∈ X we denote the one-point probability distribution
on X concentrated at the point x . The adaptive Wynn algorithm collects iteratively
design points xi ∈ X , i ∈ N, while adaptively estimating θ on the basis of the current
design points and observed (real valued) responses at those points. In greater detail
the algorithm reads as follows.

Adaptive Wynn algorithm
(o) Initialization
A positive integer nst ∈ N and design points x1, . . . , xnst ∈ X are chosen such that the
starting design ξnst = 1

nst

∑nst
i=1 δxi has positive definite information matrices, i.e., for

all θ ∈ Θ the information matrix M(ξnst , θ) is positive definite. Observed responses
y1, . . . , ynst ∈ R at the design points x1, . . . , xnst are taken, and an initial parameter
estimate θnst ∈ Θ is calculated,

θnst = θ̂nst (x1, y1, . . . , xnst , ynst ) ∈ Θ.

(i) Iteration
At stage n ≥ nst the current data is given by the points x1, . . . , xn ∈ X which form the
design ξn = 1

n

∑n
i=1 δxi , and by the observed responses y1, . . . , yn ∈ R at x1, . . . , xn ,

respectively, along with a parameter estimate θn ∈ Θ ,

θn = θ̂n(x1, y1, . . . , xn, yn) ∈ Θ. (1.2)

The iteration rule is given by

xn+1 = arg max
x∈X

f Tθn (x) M
−1(ξn, θn) fθn (x). (1.3)
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Anobservation yn+1 ∈ R of the response at xn+1 is taken and a newparameter estimate
θn+1 based on the augmented data is computed,

θn+1 = θ̂n+1(x1, y1, . . . , xn, yn, xn+1, yn+1) ∈ Θ.

Replace n by n + 1 and repeat the iteration step (i). ��
Of course, Eq. (1.3) requires the informationmatrixM(ξn, θn) to be positive definite

at each stage n ≥ nst. In fact, this is ensured by the choice of the initial design ξnst
since, obviously, the sequence of designs ξn , n ≥ nst satisfies

ξn+1 = n

n + 1
ξn + 1

n + 1
δxn+1 , (1.4)

M(ξn+1, θ) = n

n + 1
M(ξn, θ) + 1

n + 1
fθ (xn+1) f Tθ (xn+1), θ ∈ Θ, (1.5)

fromwhich one concludes by induction thatM(ξn, θ) is positive definite for all n ≥ nst
and all θ ∈ Θ . The existence of an initial design ξnst as required will be shown in Sec-
tion 2, Lemma 1. However, we have no general method or algorithm for constructing
an initial design according to ‘step (o)’ of the algorithm. For some important classes
of models there exists a saturated initial design (i.e., nst = p) which can easily be
constructed, see Remark 1 in Sect. 2.

The algorithm uses, in particular, an observed response yi at each current design
point xi . So the generated sequence of design points, xi , i ∈ N, and the corresponding
sequence of designs ξn , n ≥ nst, are random sequences with a particular dependence
structure caused by Eqs. (1.2) and (1.3). An appropriate stochastic model will be stated
in Sect. 3 which was used in Freise et al. (2019) and goes back to Lai and Wei (1982),
Lai (1994), and Chen et al. (1999). In particular, the generated sequence xi , i ∈ N,
and the observed responses yi , are viewed as values of random variables Xi , i ∈ N,
and Yi , i ∈ N, respectively, following a stochastic model which we call an ‘adaptive
regression model’. Our formulation of the adaptive Wynn algorithm is a description
of the paths of the stochastic process (Xi ,Yi ), i ∈ N.

The estimators θ̂n , n ≥ nst, employed by the algorithm to produce the estimates θn ,
n ≥ nst, in (1.2), may be any estimators of θ such that their values are in Θ and θ̂n is
a function of the data x1, y1, . . . , xn, yn available at stage n. Such estimators will be
called adaptive estimators. Later, strong consistency of θ̂n , n ≥ nst, will be required.
In Sect. 3 we focus on adaptive LSEs θ̂

(LS)
n , i.e.,

θ̂ (LS)
n (x1, y1, . . . , xn, yn) = argmin

θ∈Θ

n∑

i=1

{
yi − μ(xi , θ)

}2
.

Note that when dealing with the adaptive LSEs we will not necessarily assume that the
estimators θ̂n , n ≥ nst, employed by the algorithm are given by the LSEs. Below two
alternative conditions on the nonlinear model will be introduced. Either condition will
ensure strong consistency of the LSEs, irrespective which adaptive estimators θ̂n are
used in the algorithm. One condition is that of ‘saturated identifiability’ (SI), which
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was introduced and employed by Pronzato (2010) in the case of a finite experimental
region X .
(SI) If z1, . . . , z p ∈ X are pairwise distinct design points then theRp-valued function

on Θ given by θ �→ (
μ(z1, θ), . . . , μ(z p, θ)

)T is an injection, i.e., if θ, θ ′ ∈ Θ and
μ(z j , θ) = μ(z j , θ ′), 1 ≤ j ≤ p, then θ = θ ′.

Recall that p is the dimension of the functions fθ . As mentioned above, in many
applications one has Θ ⊆ R

p and fθ (x) is given by the gradient of μ(x, θ) w.r.t. θ for
all x ∈ X . So, in these cases, p also coincides with the dimension of the parameter
vector θ .

The other (alternative) condition states that the model is essentially a generalized
linear model. We call this condition (GLM∗) where the ‘star’ is to distinguish it from
a similar ‘condition (GLM)’ employed in Freise et al. (2019) which addressed only to
the family fθ ignoring the mean response function μ.

(GLM∗) Θ ⊆ R
p,μ(x, θ) = G

(
f T (x) θ

)
, and fθ (x) = ψ(x, θ) f (x) for all (x, θ) ∈

X×Θ , where f : X −→ R
p andψ : X×Θ −→ ( 0 , ∞) are continuous functions,

G : I −→ R is a differentiable function on an open interval I ⊆ R with continuous
and positive derivative, G ′(u) > 0 for all u ∈ I , and I covers the values f T (x) θ for
all (x, θ) ∈ X × Θ .

Note that G is called the inverse link function. If the functions fθ are assumed to be
the gradients (w. r. t. θ ) of μ then the form of μ assumed in (GLM∗) already implies
fθ (x) = ψ(x, θ) f (x) with ψ(x, θ) = G ′( f T (x) θ

)
for all (x, θ) ∈ X × Θ .

Example 1 (cf. Pronzato 2010, Examples 2 and 3; Hu (1998), Examples 2 and 3) Let
p = 2, Θ ⊆ ( 0 , ∞)2, X ⊆ ( 0 , ∞), and consider two regression models,

(a) μ(x, θ) = θ1x

θ2 + x
, (b) μ(x, θ) = θ1 exp

(−θ2x
)
,

where θ = (θ1, θ2)
T . Models (a) and (b) are called the ‘Michaelis-Menten model’ and

the ‘exponential decay model’, respectively. Both models (a) and (b) satisfy condition
(SI) which can be seen as follows. Consider model (a). Let z1, z2 ∈ X with z1 < z2
and θ = (θ1, θ2)

T , θ ′ = (θ ′
1, θ

′
2)

T ∈ Θ such that θ1z j/(θ2 + z j ) = θ ′
1z j/(θ

′
2 + z j ) for

j = 1, 2. Then
θ1

θ ′
1

= θ2 + z1
θ ′
2 + z1

= θ2 + z2
θ ′
2 + z2

. (1.6)

Since ∂/∂t
{
(θ2 + t)/(θ ′

2 + t)
} = (θ ′

2 − θ2)/(θ
′
2 + t)2 for t ∈ ( 0 , ∞), the function

t �→ (θ2 + t)/(θ ′
2 + t) on ( 0 , ∞) is either increasing (if θ2 < θ ′

2) or decreasing (if
θ2 > θ ′

2) or constant (if θ2 = θ ′
2). So, by z1 < z2 and (1.6), one gets θ2 = θ ′

2 and,
again by (1.6), θ1 = θ ′

1, hence θ = θ ′. So (SI) holds for model (a). Consider model
(b). Let z1, z2 ∈ X with z1 < z2 and θ = (θ1, θ2)

T , θ ′ = (θ ′
1, θ

′
2)

T ∈ Θ such that
θ1 exp

(−θ2z j
) = θ ′

1 exp
(−θ ′

2z j
)
for j = 1, 2. Then

θ1

θ ′
1

= exp
{
(θ2 − θ ′

2)z1
} = exp

{
(θ2 − θ ′

2)z2
}
,
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and by z1 < z2 this yields θ ′
2 = θ2, and hence θ ′

1 = θ1. So θ ′ = θ and (SI) has been
verified for model (b). ��

Example 2 generalized linear regression.
Let Θ ⊆ R

p and μ(x, θ) = G
(
f T (x) θ

)
for all (x, θ) ∈ X × Θ , where f : X −→

R
p is a continuous function, and G : I −→ R is an increasing continuous function

on an interval I ⊆ R with
{
f T (x) θ : (x, θ) ∈ X × Θ

} ⊆ I . Let z1, . . . , z p ∈ X
be pairwise distinct and θ, θ ′ ∈ Θ . Clearly, μ(z j , θ) = μ(z j , θ ′) for all j = 1, . . . , p
is equivalent to f T (z j ) (θ − θ ′) = 0 for all j = 1, . . . , p. So, for the present model,
condition (SI) is equivalent to the following.
If θ, θ ′ ∈ Θ and z1, . . . , z p ∈ X pairwise distinct such that θ − θ ′ is orthogonal to
the vectors f (z1), . . . , f (z p), then θ = θ ′.
Assume that the parameter space Θ is nondegenerate in the sense that there is no
hyperplane of Rp covering Θ . Then the set of differences {θ − θ ′ : θ, θ ′ ∈ Θ} spans
R

p, and hence condition (SI) is equivalent to the following condition.
(Ch) If z1, . . . , z p ∈ X are pairwise distinct then the vectors f (z1), . . . , f (z p) are
linearly independent.
The notation ‘Ch’ stands for Chebyshev since, as it can easily be seen, condition
(Ch) holds if and only if the (real-valued) component functions f1, . . . , f p, say, of
f constitute a Chebyshev system, i.e., every linear combination

∑p
j=1 c j f j (x), with

coefficients c j ∈ R (1 ≤ j ≤ p) not all equal to zero, has at most p − 1 distinct
zeros onX , cf. Karlin (1968), p. 24. Usually, Chebyshev systems are considered to be
functions of one real variable defined on an interval of the real line. Themost prominent
example is given by the monomials 1, x, . . . , x p−1 on some interval. For example,
condition (Ch) or (SI), respectively, does not hold for generalized first order regression
in two variables on a rectangle X = [a1, b1] × [a2, b2], where f (x) = (1, x1, x2)T

for all x = (x1, x2) ∈ X . In this example we have p = 3. Let z(1), z(2), z(3) ∈ X
be pairwise distinct. One easily verifies that the vectors f (z(1)), f (z(2)), f (z(3)) are
linearly independent if and only if the three points z(1), z(2), z(3) donot lie on a common
line. So (Ch) and hence (SI) do not hold. As a consequence from the present Example
2 one may guess that the class of models satisfying condition (SI) is not very large.
In particular, generalized linear regression models with more than one regressors will
usually not be members of that class. However, such models will be included in our
derivations by the class given by condition (GLM∗). ��

The employed stochastic model for the adaptive Wynn algorithm includes a mar-
tingale difference scheme for the error variables, see Sect. 3. Limit theorems for
martingales can be applied: a Strong Law of Large Numbers and a Central Limit
Theorem to prove strong consistency and asymptotic normality, respectively, of the
adaptive LSEs, see Theorems 1 and 2. Some auxiliary results are the content of Sect. 2.
The proofs of the results of Sects. 2 and 3 are presented in the Appendix.
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2 Auxiliary results

Throughout we assume (B1)–(B4) as introduced in the previous section. Note, how-
ever, that (B3) will not play a role in this section. Firstly, we give a proof of the
existence of an initial design as required in the algorithm.

Lemma 1 There exist annst ∈ Nanddesignpoints x1, . . . , xnst ∈ X such that for every
θ ∈ Θ the vectors fθ (x1), . . . , fθ (xnst ) span R

p. Hence, for such xi , 1 ≤ i ≤ nst,
the design ξnst = 1

nst

∑nst
i=1 δxi has the property that its information matrix M(ξnst , θ)

is positive definite for all θ ∈ Θ .

Remark 1 Some popular nonlinear regression models, preferably those with a scalar
regressor variable x , i.e., X ⊆ R, enjoy a further ‘Chebyshev property’ (Ch∗), which
was essentially assumed by Pronzato (2010) as condition HX−(iv). It states that con-
dition (Ch) from Example 2 holds for each function fθ :
(Ch∗) If z1, . . . , z p ∈ X are pairwise distinct and θ ∈ Θ then the vectors
fθ (z1), . . . , fθ (z p) are linearly independent.
If (Ch∗) holds then a suitable initial design for the algorithm is provided by any
saturated design, i.e., choose nst = p and pairwise distinct design points x1, . . . , xp ∈
X . Note also that in the proof of the lemma, assuming (Ch∗), one has U (θ) = Θ

for all θ ∈ Θ and hence r = 1 and nst = p. As an example consider the regression
models from Example 1, (a) and (b), together with the assumption that fθ is given by
the gradient of μ(x, θ) w. r. t. θ , for all (x, θ) ∈ X × Θ , which yields:

(a) fθ (x) =
( x

θ2 + x
, − θ1x

(θ2 + x)2

)T
, (b) fθ (x) = exp(−θ2x)

(
1 , −θ1x

)T

for all x ∈ X ⊆ (0 , ∞) and θ = (θ1, θ2)
T ∈ Θ ⊆ (0 , ∞)2. In either case (a) or

(b), it is straightforward to show that for any given θ ∈ Θ and x, x ′ ∈ X , x < x ′, the
two vectors fθ (x), fθ (x ′) are linearly independent and hence both models (a) and (b)
satisfy (Ch∗).

In general, however, Lemma 1 and its proof does not give a practical way of finding
a value of r and thus of nst = rp, or even an upper bound on them. Another condition
ensuring the existence of an initial design with nst = p is condition (GLM) considered
in Freise et al. (2019) which is the second half of condition (GLM∗) from Sect. 1.
(GLM) fθ (x) = ψ(x, θ) f (x) for all (x, θ) ∈ X × Θ , where ψ : X × Θ −→
( 0 , ∞) and f : X −→ R

p are continuous functions.
In fact, (GLM) together with our basic assumption (B4) (i) implies that the image
f (X ) spans R

p. So one can find p points x1, . . . , xp ∈ X such that the vectors
f (x1), . . . , f (xp) are linearly independent, and by (GLM) for every θ ∈ Θ the vectors
fθ (x1), . . . , fθ (xp) are linearly independent. So the saturated design ξp = 1

p

∑p
i=1 δxi

is an appropriate initial design for the algorithm. ��
Let any path of the adaptive Wynn algorithm be given as described in the previous

section. In particular, xi , i ∈ N, is the sequence of design points and ξn = 1
n

∑n
i=1 δxi ,

n ≥ nst, is the corresponding sequence of designs. For the following two lemmas
no assumption on the employed adaptive estimators θ̂n , n ≥ nst, is needed. In other
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words, the sequence θn , n ≥ nst, of parameter estimates appearing in the path may be
arbitrary.

We denote the distance function in the compact metric spaceX by dX (x, z), x, z ∈
X . If S1 and S2 are nonempty subsets of X then the distance dX (S1, S2) of S1 and S2
is defined by dX (S1, S2) = inf{dX (x, z) : x ∈ S1, z ∈ S2}. In case that S1 = {x}
is a singleton we write dX (x, S2) instead of dX ({x}, S2). If S is a nonempty subset of
X then the diameter of S is defined by diam(S) = sup{dX (x, z) : x, z ∈ S}.
Lemma 2 Suppose p ≥ 2. Let ε > 0 be given. Then there exist d > 0 and n0 ≥ nst
such that

ξn(S) ≤ 1

p
+ ε for all ∅ �= S ⊆ X with diam(S) ≤ d and all n ≥ n0.

Lemma 3 Suppose p ≥ 2. There exist n0 ≥ nst, π0 > 0, and d0 > 0 such that the
following holds.

For each n ≥ n0 there are p subsets S1,n, S2,n, . . . , Sp,n of X such that
ξn(S j,n) ≥ π0, 1 ≤ j ≤ p, diam(S j,n) ≤ d0, 1 ≤ j ≤ p, and
dX (S j,n, Sk,n) ≥ d0, 1 ≤ j < k ≤ p.

Remark 2 In the case that X is finite it is easily seen that in Lemma 3 the subsets
S1,n, . . . , Sp,n can be chosen to be singletons for all n ≥ n0. So, in this case, the
lemma yields the result of Lemma 2 of Pronzato (2010). ��

3 Convergence of least squares estimators

For an analysis of the adaptive Wynn algorithm, the generated sequence xi , i ∈ N,
of design points and the observed (real valued) responses yi , are viewed as values of
random variables Xi , i ∈ N, and Yi , i ∈ N, respectively, whose dependence structure
is described by the following two assumptions (A1) and (A2), see Lai andWei (1982),
Lai (1994) and Chen et al. (1999), see also (Freise et al. 2019), The model thereby
stated might be called an ‘adaptive regression model’. By θ we denote the true point
of the parameter space Θ governing the data. All the random variables appearing in
this section are thought to be defined on a common probability space (Ω,F ,Pθ ),
where Ω is a nonempty set,F is a sigma-field of subsets of Ω , and Pθ is a probability
measure on F corresponding to the true parameter point θ . We assume, as before, the
basic conditions (B1)–(B4), and now additionally the following conditions (A1) and
(A2) constituting the adaptive regression model.

(A1) There is a given nondecreasing sequence of sub-sigma-fields of F , F0 ⊆ F1 ⊆
. . . ⊆ Fn ⊆ . . . such that for each i ∈ N the random variable Xi is Fi−1-measurable
and the random variable Yi is Fi -measurable.
(A2) Yi = μ(Xi , θ) + ei with real-valued square integrable random errors ei such
that E

(
ei
∣
∣Fi−1

) = 0 a.s. for all i ∈ N, and supi∈N E
(
e2i
∣
∣Fi−1

)
< ∞ a.s.

As before, θ̂n , n ≥ nst, are the adaptive estimators employed by the algorithm,
now viewed as random variables, θ̂n = θ̂n(X1,Y1, . . . , Xn,Yn). Of course, a desirable
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property of these estimators would be strong consistency, i.e., almost sure convergence
to θ (as n → ∞), for short θ̂n

a.s.−→ θ .

Remark 3 As shown in our previous paper (Freise et al. 2019), Corollary 3.2, if the
estimators θ̂n are strongly consistent, then the sequence ξn , n ≥ nst, of (random)
designs generated by the algorithm is almost surely asymptotically D-optimal, in the
sense that M(ξn, θ̂n)

a.s.−→ M(ξ∗
θ
, θ), where ξ∗

θ
is a locally D-optimal design at θ .

In fact, the conclusion of that corollary is stronger: if the estimators θ̂n are strongly
consistent thenM(ξn, θ̃n)

a.s.−→ M(ξ∗
θ
, θ) holds for every strongly consistent sequence

of Θ-valued estimators θ̃n . ��
The next result yields strong consistency of the adaptive LSEs θ̂

(LS)
n for any adaptive

estimators θ̂n employed by the algorithm, provided that condition (SI) or condition
(GLM∗) holds.

Theorem 1 Assume that condition (SI) or condition (GLM∗) is satisfied. Then, irre-
spective of the employed sequence of adaptive estimators θ̂n in the algorithm, the
sequence of adaptive LSEs θ̂

(LS)
n is strongly consistent: θ̂

(LS)
n

a.s.−→ θ .

Remark 4 A crucial point in the proof of Theorem 1 is the result of ‘Step 2’ stating
that infθ∈C(θ,ε) Dn(θ, θ) goes to infinity at least as fast as n a. s. when n → ∞. This
is due to the adaptive Wynn algorithm, while the results of ‘Step 1’ and ‘Step 3’ only
use the model assumptions (A1) and (A2). More general adaptive sampling schemes
modeled by (A1) and (A2) were addressed to in Pronzato (2009). By Theorem 1 of
that paper, in case of a finite design space, strong consistency of adaptive LSEs already
holds if the adaptive scheme is such that

inf
θ∈C(θ,ε)

Dn(θ, θ)
/

(log n)ρ
a.s.−→ ∞

for all ε > 0, for some ρ > 1. In Theorem 1 of Pronzato (2010), see also Remark 1
in Pronzato (2009), it was claimed that in case of i. i. d. error variables ei , i ∈ N, and
for a finite design space the condition may be weakened to

inf
θ∈C(θ,ε)

Dn(θ, θ)
/

(log log n)
a.s.−→ ∞.

However, the proof of the latter in Pronzato (2010), pp. 210–211, is doubtful since the
classical Law of Iterated Logarithm is applied to random subsequences of the error
variables. A proof should rather use a martingale structure and, in particular, a Law of
Iterated Logarithm for martigales. Unfortunately, we have not found the appropriate
arguments. ��

For deriving asymptotic normality of the adaptive least squares estimators fur-
ther assumptions are needed. Firstly, the ‘gradient condition’ (B5) on the family of
functions fθ , θ ∈ Θ , and the mean response μ is added to conditions (B1)–(B4).
Secondly, two additional conditions (L) and (AH) on the error variables in (A1)–(A2)
are imposed, where ‘L’ stands for ‘Lindeberg’ and ‘AH’ for ‘asymptotic homoscedas-
ticity’.
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(B5) Θ ⊆ R
p (endowed with the usual Euclidean metric), int(Θ) �= ∅, where

int(Θ) denotes the interior of Θ as a subset of Rp, the function θ �→ μ(x, θ) is
twice differentiable on int(Θ) for each fixed x ∈ X , with gradients and Hessian

matrices denoted by ∇μ(x, θ) =
(

∂
∂θ1

μ(x, θ), . . . , ∂
∂θp

μ(x, θ)
)T

and ∇2μ(x, θ) =
(

∂2

∂θi ∂θ j
μ(x, θ)

)

1≤i, j≤p
, respectively, for θ = (θ1, . . . , θp)

T ∈ int(Θ) and x ∈ X .

It is assumed that the functions (x, θ) �→ ∇μ(x, θ) and (x, θ) �→ ∇2μ(x, θ) are
continuous on X × int(Θ) and

fθ (x) = ∇μ(x, θ) for all x ∈ X and all θ ∈ int(Θ).

For a subset A ⊆ Ω we denote by 11(A) the function on Ω which is constantly
equal to 1 on A and is constantly equal to 0 on Ω\A.

(L) 1
n

∑n
i=1 E

(
e2i 11

(|ei | > ε
√
n
) ∣∣
∣Fi−1

)
a.s.−→ 0 for all ε > 0.

(AH) E
(
e2n
∣
∣Fn−1

) a.s.−→ σ 2(θ) for some positive real constant σ(θ).

The following two conditions (L’) and (L”) are less technical than the Lindeberg
condition (L), and each of them implies (L).
(L’) supi∈N E

(|ei |α
∣
∣Fi−1

)
< ∞ a.s. for some real α > 2.

(L”) The random variables ei , i ∈ N, are identically distributed, and ei , Fi−1 are
independent for each i ∈ N.

In fact, from (L’), observing the trivial inequality e2i 11
(|ei | > ε

√
n
) ≤

|ei |α/(ε
√
n)α−2, it follows that

1

n

n∑

i=1

E
(
e2i 11

(|ei | > ε
√
n
) ∣∣
∣Fi−1

)
≤ 1

(ε
√
n)α−2

sup
i∈N

E
(|ei |α

∣
∣Fi−1

) a.s.−→ 0.

From (L”) it follows for all i ∈ N

E
(
e2i 11

(|ei | > ε
√
n
) ∣
∣Fi−1

)
= E

(
e2i 11

(|ei | > ε
√
n
)) = E

(
e21 11

(|e1| > ε
√
n
))

a.s.

Hence

1

n

n∑

i=1

E
(
e2i 11

(|ei | > ε
√
n
) ∣∣
∣Fi−1

)
= E

(
e21 11

(|e1| > ε
√
n
))

a.s.

and the expectation on the r.h.s. converges to zero as n → ∞. Note also that (L”)
implies E

(
e2i
∣
∣Fi−1

) = E
(
e21
) = σ 2(θ), say. Excluding the trivial case σ 2(θ) = 0, we

see that condition (L”) also implies condition (AH).

Remark 5 Condition (L’) was employed by Lai and Wei (1982), Theorem 1 of that
paper, and by Chen et al. (1999), condition (C4) on p. 1161 of that paper. Condition
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(L”) meets the assumption of i.i.d. error variables of Pronzato (2010) for a particular
choice of the sequence of sub-sigma-fields Fi , i ∈ N0. ��

The k-dimensional normal distribution with expectation 0 and covariance matrix
C is denoted by N(0,C), where C is a positive definite k × k matrix. In particular,
N(0, Ik) is the k-dimensional standard normal distribution, where Ik denotes the k×k
identity matrix. For a sequence Wn of Rk-valued random variables, convergence in
distribution of Wn (as n → ∞) to a k-dimensional normal distribution N(0,C) is

abbreviated by Wn
d−→ N(0,C). In the following theorem asymptotic normality of

the adaptive least squares estimators θ̂
(LS)
n is established. To some extent our proof is

similar to that of Theorem 2 in Pronzato (2009), though the assumptions are different.
Note that, by our Theorem 1, the assumptions of strong consistency of the adaptive
estimators θ̂n employed by the algorithm and of strong consistency of the adaptive
LSEs θ̂

(LS)
n are met if θ̂n = θ̂

(LS)
n , n ≥ nst, and if one of the conditions (SI) and

(GLM∗) holds.

Theorem 2 Assume conditions (B5), (L), and (AH). Moreover, assume that θ ∈ int(Θ)

and the sequences θ̂n and θ̂
(LS)
n of adaptive estimators employed by the algorithm and

adaptive LSEs, respectively, are strongly consistent, i.e., θ̂n
a.s.−→ θ and θ̂

(LS)
n

a.s.−→ θ .
Then, denoting by M∗(θ) = M

(
ξ∗
θ
, θ) the information matrix of a locally D-optimal

design at θ , one has

√
n
(
θ̂ (LS)
n − θ

) d−→ N
(
0, σ 2(θ) M−1∗ (θ)

)
.

For illustration of the achieved convergence results, we present some simulations
for the Michaelis-Menten model from Example 1, case (a). For the exponemtial decay
model of part (b) of Example 1 we obtained similar simulation results which will not
be reported here.

Example 3: Simulation. Assume theMichaelis-Mentonmodelwith p = 2 parameters,

μ(x, θ) = θ1x

θ2 + x
,

fθ (x) = ∇μ(x, θ) =
( x

θ2 + x
, − θ1x

(θ2 + x)2

)T

for x ∈ X and θ = (θ1, θ2)
T ∈ Θ . Let the experimental region be given by the

interval X = [ 0.5 , 5 ] and the parameter space be the square Θ = [ 0.1 , 10 ]2. The
true parameter point is chosen to be θ = (1, 1)T . The error variables ei , i ∈ N, in
(A1) are assumed to be i.i.d normally distributed with expectation zero and variance
σ 2(θ) = 0.04. By simulations, S=10,000 (pieces of) paths X (s)

i ,Y (s)
i , 1 ≤ i ≤ 500,

where s = 1, . . . , S, of the adaptive Wynn algorithm were generated, where the
employed adaptive estimators θ̂n were chosen to be the adaptive LSEs: θ̂n = θ̂

(LS)
n for

all n. The computation of the paths of adaptive LSEs was done by using R Core Team
(2020). A fixed initial design ξnst was used: The three-point design with equal weights
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on the boundary points and the mid-point of the experimental interval, that is, nst = 3
and x1 = 0.5, x2 = 2.75, x3 = 5. Figure 1 illustrates the (almost sure) asymptotic
D-optimality of the design sequence generated by the adaptiveWynn algorithm, which
is ensured by Theorem 1 and Remark 3. The simulated paths ξ

(s)
n , 3 ≤ n ≤ 500, where

s = 1, . . . , S, yield D-efficiencies

eff(ξ (s)
n ) =

{
det
(
M(ξ (s)

n , θ)
)/

det
(
M∗(θ)

)}1/2
,

where M∗(θ) = M(ξ∗
θ
, θ) is the information matrix of the locally D-optimal design

at θ which is the two-point design giving equal weights 1/2 to the points 5/7 and 5,
see Bates and Watts (1988), pp. 125–126, and hence

M∗(θ) = 1

2
fθ (

5

7
) f T

θ
(
5

7
) + 1

2
fθ (5) f

T
θ

(5) =
[

0.4340 −0.1085
−0.1085 0.0392

]
.

For each n ∈ {3, . . . , 500}, particular quantiles of the ‘data’ eff(ξ (s)
n ), 1 ≤ s ≤ S,

are reported in Fig. 1: minimum, 10%-quantile, 25%-quantile, median, 75%-quantile,
90%-quantile, and maximum. For example, the 10%-quantile curve shows that after
less than 50 iterations more than 90% of the simulated paths yield efficiencies at
least 0.9. The asymptotic normality of the adaptive LSEs ensured by Theorem 2
suggests that n-times the mean squared error matrix of θ̂

(LS)
n at θ should converge

to the asymptotic covasriance matrix σ 2(θ) M−1∗ (θ). In fact, this was observed for
n-times the simulated mean squared error matrix. Figure 2 shows a plot of the (2, 2)-
entry of that matrix, that is, n-times the simulated mean squared error of the second
component θ̂

(LS)
2,n of θ̂

(LS)
n . The (2, 2)-entry of the asymptotic covariance matrix is

approximately 3.32, indicated by the horizontal line in the figure. Finally, by Fig. 3
the approximate normal distribution of θ̂

(LS)
2,n is visualized at n = 250 via a suitable

histogram of the simulated estimates (along with a fitted normal density) and a normal
qq-plot. The simulation yielded similar graphics for the first component of θ̂

(LS)
n .

4 Discussion

The adaptive Wynn algorithm for nonlinear regression provides a particular adaptive
sampling scheme which has been motivated by the classical iterative procedure estab-
lished by Wynn (1970) for generating D-optimal designs under a linear model. In
the nonlinear situation the strong consistency of the adaptive estimators employed by
the algorithm is crucial for ensuring that the generated adaptive design sequence is
asymptotically D-optimal in the sense of local D-optimality at the true parameter point
(which, of course, is unknown). Note that choosing a locally optimal design would be
the best if the true parameter point was known. The focus of the present paper is on
adaptive least squares estimators (LSEs), and their strong consistency has been proved
for two relevant classes of nonlinear (univariate) regression models: those which have
the property of ‘saturated identifiability’ (SI) and, secondly, those which satisfy a con-
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Fig. 1 Quantile curves of the simulated D-efficiencies. From bottom to top: minimum (dots and dashes),
10%-quantile (dotted), 25%-quantile (dashed), median (solid), 75%-quantile (dashed), 90%-quantile (dot-
ted), maximum (dots and dashes)
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Fig. 2 Plot of n-times the simulated variance of θ̂ (LS)
2,n . The horizontal line indicates the asymptotic variance

(≈ 3.32)

dition (GLM∗) including the class of generalized linear models. Condition (SI) seems
to be restricted to models with a real valued regressor variable as the examples in
Sect. 1 have shown. Generalized linear models (GLMs) constitute a great and impor-
tant class of models. However, for a GLM, maximum likelihood or weighted least
squares will usually be preferable to ordinary (unweighted) least squares as studied
in the present paper. We note that adaptive maximum likelihood estimation in GLMs
under the adaptive Wynn algorithm was studied in our previous paper (Freise et al.
2019). A challenging question for future research is to find extensions to other classes
of models than just the (SI) class and, with regard to GLMs, to include weighted least
squares estimation.

On the basis of strong consistency of adaptive LSEs their asymptotic normality
has been established, under further suitable assumptions. The asymptotic covariance

123



864 F. Freise et al.

θ̂2

D
en

si
ty

0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.6 0.8 1.0 1.2 1.4 1.6

0.6

0.8

1.0

1.2

1.4

1.6

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s
Fig. 3 Step n = 250: histogram estimate and fitted normal density (left) and normal QQ-plot (right) of

θ̂
(LS)
2,n , from the simulation

matrix is given by the inverse information matrix of the locally D-optimal design at
the true parameter point. Thus, when measuring the size of a (nonsingular) covariance
matrix by its determinant, the result implies the asymptotic efficiency of the adap-
tive LSEs. Two assumptions may be restrictive: firstly, the information matrices are
built by a local first order Taylor expansion of the response (locally at a parameter
point), without any scaling adjustment for possible variance heterogeneity. Secondly,
a condition of ‘asymptotic homoscedasticity’ (AH) on the random errors has been
imposed, that is, their (conditional) variances are assumed to become asymptotically
constant, where the asymptotic variance may depend on the true parameter point.
Both assumptions correspond to ordinary (unweighted) least squares employed by
the adaptive LSEs under consideration. Again, extensions of the results are desirable
which employ weaker assumptions to include models with variance heterogeneity as
the majority of GLMs.

While the adaptiveWynn algorithm collects one point at each step andwas therefore
called ‘one-step-ahead algorithm’ by Pronzato (2010), an alternative approach is to
collect more points at each step. For a special model, a related concept of ‘batch
sequential design’ was employed by Müller and Pötscher (1992). In a forthcoming
paper (Freise et al. 2020) we study a sequential adaptive algorithm for D-optimal
design which we have called a ‘p-step-ahead algorithm’, since p design points are
collected at each step. An idea of that algorithm was sketched by Ford et al. (1992) in
the introduction of their paper, p. 570.

Funding Open Access funding enabled and organized by Projekt DEAL.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

123



Convergence of least squares estimators in the adaptive… 865

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proofs

Proof of Lemma 1 By (B4)-(i), for each θ ∈ Θ there exist p design points
z1(θ), . . . , z p(θ) ∈ X such that the vectors fθ

(
z1(θ)

)
, . . . , fθ

(
z p(θ)

)
are linearly

independent. By (B2) and (B4) (ii), for each θ ∈ Θ the set

U (θ) =
{
τ ∈ Θ : det

[
fτ
(
z1(θ)

)
, . . . , fτ

(
z p(θ)

)] �= 0
}

is an open set in the (compact) metric space Θ , and θ ∈ U (θ). Hence, trivially,
Θ =⋃θ∈Θ U (θ), and by (B2) there is an r ∈ N and points θ1, . . . , θr ∈ Θ such that
Θ = ⋃r

j=1U (θ j ). Denote xi j = zi (θ j ), 1 ≤ i ≤ p, 1 ≤ j ≤ r . Then, for every
τ ∈ Θ the set of vectors

{
fτ (xi j ) : 1 ≤ i ≤ p, 1 ≤ j ≤ r

}

spans Rp. In fact, for any given τ ∈ Θ there is some j0 ∈ {1, . . . , r} with τ ∈ U (θ j0)

hence det
[
fτ (x1 j0), . . . , fτ (xpj0)

] �= 0, i.e., the vectors fτ (x1 j0), . . . , fτ (xpj0) con-
stitute a basis ofRp. So, for nst = pr and x1, . . . , xnst being a relabelled family of the
points xi j , 1 ≤ i ≤ p, 1 ≤ j ≤ r , the vectors fτ (x1), . . . , fτ (xnst ) spanR

p, and hence
the information matrix M(ξnst , τ ) = 1

nst

∑nst
i=1 fτ (xi ) f Tτ (xi ) is positive definite. ��

Proof of Lemma 2 Without loss of generality we may assume ε < 1 − p−1. In Freise
et al. (2019) we introduced the positive real constants

γ = sup
x∈X , θ∈Θ

‖ fθ (x)‖ and κ = inf‖v‖=1, θ∈Θ
max
x∈X

{
vT fθ (x)

}2
, (A.1)

and Lemma 2.3 of that paper stated the following.

If 0 < η < 1 − p−1/2, n ≥ nst, and S ⊆ X are given such that

‖ fθn (x) − fθn (z)‖ ≤ ηκ/γ for all x, z ∈ S and ξn(S) > (1 − η)−2 p−1,

then xn+1 /∈ S. (A.2)

Choose η := 1 − (1 + pε/2
)−1/2. Then 0 < η < 1 − p−1/2 and (1 − η)−2 p−1 =

p−1 + ε/2. By (B1), (B2), and (B4) the function (x, θ) �→ fθ (x) is uniformly
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continuous on its compact domain X × Θ . So there exists a d > 0 such that

if x, z ∈ X and dX (x, z) ≤ d then ‖ fθ (x) − fθ (z)‖ ≤ ηκ/γ ∀ θ ∈ Θ. (A.3)

We show that d fulfills the requirement of the lemma. Let ∅ �= S ⊆ X with diam(S) ≤
d. By (A.3) and (A.2) the sequence ξn(S), n ≥ nst, has the property that for all n ≥ nst,

ξn+1(S) = n

n + 1
ξn(S) if ξn(S) >

1

p
+ ε

2
,

ξn+1(S) ≤ ξn(S) + 1

n + 1
if ξn(S) ≤ 1

p
+ ε

2
.

An application of Lemma 2.1 in Freise et al. (2019) to the sequence βn := ξn(S),
n ≥ nst, and β := 1

p + ε
2 , β̃ := 1

p + ε yields that

ξn(S) ≤ 1

p
+ ε for all n ≥ n0 := ⌈( 1

p
+ ε

2
)−1⌉ · max

{
nst, �2/ε�

}
,

where �a�, for a ∈ R, denotes the smallest integer greater than or equal to a. Since n0
does not depend on the particular set S the result follows. ��
Proof of Lemma 3 Fix an ε with 0 < ε < {p(p − 1)}−1. Choose d > 0 and n0 ≥ nst
according toLemma2.By compactness ofX there is a positive integer q and nonempty
subsets R1, . . . , Rq of X such that

X =
q⋃

�=1

R� and diam(R�) ≤ d/3 for all � = 1, . . . , q.

We show that n0, π0 := {p−1 − (p−1)ε}/q, and d0 := d/3 satisfy the requirements
of the assertion. To this end let n ≥ n0 be given. We construct inductively subsets
S j,n , 1 ≤ j ≤ p, as required.

j = 1 : Clearly,
∑q

�=1 ξn(R�) ≥ 1. Choose �n ∈ {1, . . . , q} achieving the max-
imum value of ξn(R�), 1 ≤ � ≤ q, and set S1,n := R�n . Then ξn(S1,n) =
max1≤�≤q ξn(R�) ≥ 1/q ≥ π0 and diam(S1,n) = diam(R�n ) ≤ d0.

Induction step: Let an r ∈ {1, . . . , p−1} be given along with subsets S1,n, . . . , Sr ,n of
X such that ξn(S j,n) ≥ π0 and diam(S j,n) ≤ d0, 1 ≤ j ≤ r , and dX (S j,n, Sk,n) ≥ d0,
1 ≤ j < k ≤ r . Let S j,n := {x ∈ X : dX (x, S j,n) ≤ d0

}
, 1 ≤ j ≤ r . As it is easily

seen, diam(S j,n) ≤ 3d0 = d and hence ξn(S j,n) ≤ 1
p + ε. So for Tr ,n :=⋃r

j=1 S j,n

one has ξn(Tr ,n) ≤ r
( 1
p + ε

)
, and hence

ξn(X \Tr ,n) ≥ 1 − r

(
1

p
+ ε

)

≥ 1 − (p − 1)(
1

p
+ ε) = p−1 − (p − 1)ε.
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Observing that X \Tr ,n =⋃q
�=1(R�\Tr ,n) one gets

p−1 − (p − 1)ε ≤
q∑

�=1

ξn(R�\Tr ,n).

Choose �n ∈ {1, . . . , q} which achieves the maximum value of ξn(R�\Tr ,n), 1 ≤
� ≤ q, and set Sr+1,n := R�n\Tr ,n . Then ξn(Sr+1,n) = max1≤�≤q ξn

(
R�\Tr ,n

) ≥
{p−1 − (p − 1)ε}/q = π0 and diam(Sr+1,n) ≤ diam(R�n ) ≤ d0. Moreover for each
j = 1, . . . , r , since Sr+1,n ∩ S j,n = ∅, one has dX (x, S j,n) > d0 for all x ∈ Sr+1,n
and hence dX (Sr+1,n, S j,n) ≥ d0. So we have subsets S1,n, . . . , Sr ,n, Sr+1,n such that

ξn(S j,n) ≥ π0 and diam(S j,n) ≤ d0, 1 ≤ j ≤ r + 1,

dX (S j,n, Sk,n) ≥ d0, 1 ≤ j < k ≤ r + 1.

This completes the inductive construction and the proof of the lemma. ��
Proof of Theorem 1 Define for all n ∈ N and θ ∈ Θ random variables

Sn(θ) :=
n∑

i=1

{
Yi − μ(Xi , θ)

}2 and Dn(θ, θ) :=
n∑

i=1

{
μ(Xi , θ) − μ(Xi , θ)

}2
.

The proof is divided into three steps. For ε > 0 we denote C(θ, ε) := {
θ ∈ Θ :

dΘ(θ, θ) ≥ ε
}
, where dΘ denotes the distance function in Θ .

Step 1. Show that for all ε > 0 with C(θ, ε) �= ∅,
∣
∣
∣
∣
∣

1

n

{

inf
θ∈C(θ,ε)

Sn(θ) − Sn(θ)

}

− 1

n
inf

θ∈C(θ,ε)

Dn(θ, θ)

∣
∣
∣
∣
∣

a.s.−→ 0.

Step 2. Show that for all ε > 0 with C(θ, ε) �= ∅,

lim inf
n→∞

{
1

n
inf

θ∈C(θ,ε)

Dn(θ, θ)

}

> 0 a.s.

Step 3. Conclude from the results of Step 1 and Step 2 that for all ε > 0withC(θ, ε) �=
∅,

inf
θ∈C(θ,ε)

Sn(θ) − Sn(θ)
a.s.−→ ∞. (A.4)

From (A.4), applying Lemma 1 of Wu (1981), one gets θ̂
(LS)
n

a.s.−→ θ .
Ad Step 1. As in Pronzato (2010), p. 230, one calculates

Sn(θ) − Sn(θ) = Dn(θ, θ) + 2Wn(θ, θ), where
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Wn(θ, θ) :=
n∑

i=1

(
μ(Xi , θ) − μ(Xi , θ)

)
ei .

It follows that
∣
∣
∣
∣
∣

1

n

{

inf
θ∈C(θ,ε)

Sn(θ) − Sn(θ)

}

− 1

n
inf

θ∈C(θ,ε)

Dn(θ, θ)

∣
∣
∣
∣
∣
≤ 2

n
sup
θ∈Θ

∣
∣Wn(θ, θ)

∣
∣ .

Applying Lemma 3.1, part (c), in Freise et al. (2019)with h(x, θ) = μ(x, θ)−μ(x, θ),
(x, θ) ∈ X × Θ , the result of Step 1 follows.

Ad Step 2 in case that condition (SI) holds.
Consider any path xi , yi , i ∈ N, and θn , n ≥ nst of the sequences Xi ,Yi , i ∈ N, and
θ̂n , n ≥ nst. Firstly, consider the simple case p = 1. Then condition (SI) implies that
μ(x, θ) �= μ(x, θ) for all θ ∈ C(θ, ε), and hence by (B3)

cε := inf
x∈X

{
μ(x, θ) − μ(x, θ)

}2
> 0.

It follows that 1
n infθ∈C(θ,ε) Dn(θ, θ) ≥ cε for all n and, in particular, its limit inferior

is positive. Now let p ≥ 2. According to Lemma 3, choose n0 ≥ nst, π0 > 0, d0 > 0,
and subsets S1,n, . . . , Sp,n ⊆ X for all n ≥ n0. Define a subset of the p-fold product
space X p by

Δ := {
(z1, . . . , z p) ∈ X p : dX (z j , zk) ≥ d0, 1 ≤ j < k ≤ p

}
.

By (SI),
∑p

j=1

(
μ(z j , θ) − μ(z j , θ)

)2
> 0 for all (z1, . . . , z p) ∈ Δ and all θ �= θ . By

(B1) the set Δ is compact and by (B2) the set C(θ, ε) is compact. So, together with
(B3), one concludes that the following infimum cε is positive,

cε := inf

⎧
⎨

⎩

p∑

j=1

{
μ(z j , θ) − μ(z j , θ)

}2 : (z1, . . . , z p) ∈ Δ, θ ∈ C(θ, ε)

⎫
⎬

⎭
.

For all n ≥ n0 and all permutations σ of {1, . . . , p} the Cartesian product Sσ
n :=

Sσ(1),n × Sσ(2),n × . . .× Sσ(p),n is a subset of Δ, hence Rn :=⋃σ Sσ
n ⊆ Δ. Note that

Sσ
n ∩ Sτ

n = ∅ for any two different permutations σ and τ . Consider the p-fold product
measure ξ

p
n . Then, for all σ and all n ≥ n0 one has ξ

p
n (Sσ

n ) =∏p
j=1 ξn(Sσ( j),n) ≥ π

p
0

and hence ξn(Rn) ≥ p! π p
0 . So

∫

X p

p∑

j=1

{
μ(z j , θ) − μ(z j , θ)

}2 dξ p
n (z1, . . . , z p)

≥ cε p! π p
0 for all n ≥ n0 and θ ∈ C(θ, ε).
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The integral on the l.h.s. of that inequality is equal to

p
∫

X
{
μ(z, θ) − μ(z, θ)

}2 dξn(z) = p

n

n∑

i=1

{
μ(xi , θ) − μ(xi , θ)

}2
.

It follows that

1

n
inf

θ∈C(θ,ε)

n∑

i=1

{
μ(xi , θ) − μ(xi , θ)

}2

≥ cε (p − 1)! π p
0 ∀ n ≥ n0,

which implies that the limit inferior of the l.h.s. of that inequality is positive.

Ad Step 2 in case that condition (GLM∗) holds.
Again, consider any path xi , yi , i ∈ N, and θn , n ≥ nst of the sequences Xi ,Yi ,
i ∈ N, and θ̂n , n ≥ nst. By continuity of f and compactness of X × Θ , there
is a compact subinterval J ⊆ I such that { f T (x) θ : (x, θ) ∈ X × Θ} ⊆ J .
Since G is differentiable on I with continuous and positive derivative G ′, one gets
from the mean value theorem that |G(u) − G(v)| ≥ b|u − v| for all u, v ∈ J with
b := minw∈J G ′(w) > 0. So, for all i ∈ N and all θ ∈ C(θ, ε),

∣
∣μ(xi , θ) − μ(xi , θ)

∣
∣ = ∣

∣G
(
f T (xi ) θ

)− G
(
f T (xi ) θ

)∣
∣ ≥ b

∣
∣ f T (xi ) (θ − θ)

∣
∣.

From this we get for all θ ∈ C(θ, ε), denoting aθ = (θ − θ)/‖θ − θ‖,

Dn(θ, θ) =
n∑

i=1

{
μ(xi , θ) − μ(xi , θ)

}2

≥ b2ε2
n∑

i=1

{
f T (xi ) aθ

}2 = b2ε2n
∫

X
{
f T (x) aθ

}2dξn(x). (A.5)

By Theorem 2.6 and Lemma 2.5 of Freise et al. (2019) there exist n0 ≥ nst, ρ > 0,
and α ∈ (0 , 1 ) such that for all n ≥ n0 and all normalized coefficient vectors a ∈ R

p,
‖a‖ = 1, one has ξn

({
x ∈ X : | f Tθn (x) a| ≤ ρ

}) ≤ α. From fθn (x) = ψ(x, θn) f (x)
one gets

{
x ∈ X : | f Tθn (x) a| > ρ

} ⊆ {
x ∈ X : | f T (x) a| > ρ/ψmax

}
,

where ψmax := max(x,θ)∈X×Θ ψ(x, θ) which is positive and finite. Note that

ξn

({
x ∈ X : | f T (x) a| > ρ/ψmax

}) ≥ 1 − α for all n ≥ n0.

123



870 F. Freise et al.

From this and from (A.5) it follows that for all n ≥ n0 and all θ ∈ C(θ, ε),

Dn(θ, θ) ≥ b2ε2n (ρ/ψmax)
2(1 − α),

and hence

1

n
inf

θ∈C(θ,ε)

Dn(θ, θ) ≥ b2ε2(ρ/ψmax)
2(1 − α),

and the result of Step 2 follows.

Ad Step 3. By the results of Step 1 and Step 2,

lim inf
n→∞

1

n

{

inf
θ∈C(θ,ε)

Sn(θ) − Sn(θ)

}

= lim inf
n→∞

1

n
inf

θ∈C(θ,ε)

Dn(θ, θ) > 0 a.s.

Hence infθ∈C(θ,ε) Sn(θ) − Sn(θ)
a.s.−→ ∞. ��

Proof of Theorem 2 Choose a compact ball B centered at θ and such that B ⊆ int(Θ).
By the strong consistency of the sequence of adaptive LSEs there is a random variable
N with values in N ∪ {∞} such that N < ∞ a.s. and θ̂

(LS)
n ∈ B on {N ≤ n} for

all integers n ≥ nst. Note that, since N is almost surely finite, 11(N ≤ n)
a.s.−→ 1

as n → ∞. Recall our notation introduced earlier: Sn(θ) = ∑n
i=1

{
Yi − μ(Xi , θ)

}2,
n ≥ nst, θ ∈ Θ . For the gradients of Sn(θ) w.r.t. θ one obtains, using (B5),

∇Sn(θ) = −2
n∑

i=1

{
Yi − μ(Xi , θ)

}∇μ(Xi , θ), θ ∈ int(Θ). (A.6)

On {N ≤ n} the gradient at θ̂ (LS)
n is equal to zero, and hence ∇Sn

(
θ̂

(LS)
n

)− ∇Sn(θ) =
−∇Sn(θ). That equation yields, inserting from (A.6) and Yi = μ(Xi , θ) + ei from
(A2), along with some

n∑

i=1

ei∇μ(Xi , θ) =
n∑

i=1

{
μ(Xi , θ̂

(LS)
n ) − μ(Xi , θ)

}∇μ(Xi , θ̂
(LS)
n )

−
n∑

i=1

ei
{∇μ(Xi , θ̂

(LS)
n ) − ∇μ(Xi , θ)

}
on {N ≤ n}. (A.7)

We firstly show that

n−1/2σ−1(θ) M−1/2∗ (θ)

n∑

i=1

ei∇μ(Xi , θ)
d−→ N(0, Ip). (A.8)
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To this end, according to the Cramér-Wold device, let v ∈ R
p, vT v = 1, be given.

Denote Zi := σ−1(θ) vT M−1/2∗ (θ)∇μ(Xi , θ) and ẽi := ei Zi , i ∈ N. Abbreviating
the random variables on the l.h.s. of (A.8) by Wn , one has vT Wn = n−1/2∑n

i=1 ẽi .
The random variable Zi is Fi−1-measurable for all i ∈ N, and the Zi , i ∈ N, are
uniformly bounded: |Zi | ≤ c for all i ∈ N for some positive real constant c. Hence the
sequence of partial sums

∑n
i=1 ẽi , is a martingale w.r.t. Fn , n ∈ N, and we can apply

Corollary 3.1 of Hall and Heyde (1980) which states that the following two conditions

(a) and (b) together imply the distributional convergence n−1/2∑n
i=1 ẽi

d−→ N(0, 1).

(a)
1

n

n∑

i=1

E
(
ẽ2i
∣
∣Fi−1

) a.s.−→ 1, (b)
1

n

n∑

i=1

E
(
ẽ2i 11

(|̃ei | > ε
√
n
)∣
∣Fi−1

)
a.s.−→ 0 for

all ε > 0.
Condition (b) follows from condition (L) since

E
(
ẽ2i 11

(|̃ei | > ε
√
n
) ∣
∣Fi−1

)
≤ c2E

(
e2i 11

(|ei | > (ε/c)
√
n
) ∣
∣Fi−1

)
.

To verify (a) we write

1

n

n∑

i=1

E
(
ẽ2i
∣
∣Fi−1

) = 1

n

n∑

i=1

E
(
e2i
∣
∣Fi−1

)
Z2
i

= 1

n

n∑

i=1

{
E
(
e2i
∣
∣Fi−1

)− σ 2(θ)
}
Z2
i + σ 2(θ)

1

n

n∑

i=1

Z2
i .

By (AH) and |Zn| ≤ c for all n ∈ N one has
[
E
(
e2n
∣
∣Fn−1

) − σ 2(θ)
]
Z2
n

a.s.−→ 0 and

hence 1
n

∑n
i=1

{
E
(
e2i
∣
∣Fi−1

)− σ 2(θ)
}
Z2
i

a.s.−→ 0. By the definition of Zi , i ∈ N, and
by (B5),

σ 2(θ)
1

n

n∑

i=1

Z2
i = vT M−1/2∗ (θ)

{1

n

n∑

i=1

∇μ(Xi , θ)∇Tμ(Xi , θ)
}
M−1/2∗ (θ) v

= vT M−1/2∗ (θ) M(ξn, θ) M−1/2∗ (θ) v
a.s.−→ 1,

where the final convergence is implied byM(ξn, θ)
a.s.−→ M∗(θ), see Remark 3 above.

This proves (a) and hence (A.8). Next we show that

n−1/2
n∑

i=1

{
μ(Xi , θ̂

(LS)
n ) − μ(Xi , θ)

}∇μ(Xi , θ̂
(LS)
n )

= {
M(ξn, θ̂

(LS)
n ) + An

} {
n1/2

(
θ̂ (LS)
n − θ

)}
,

with a sequenceAn, n ≥ nst, of random p × p matrices such that An
a.s.−→ 0.

(A.9)
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By the mean value theorem, for each n there are (random) points θ̃i,n , 1 ≤ i ≤ n, on
the line segment joining θ̂

(LS)
n and θ such that

μ(Xi , θ̂
(LS)
n ) − μ(Xi , θ) = ∇Tμ(Xi , θ̃i,n)

(
θ̂ (LS)
n − θ

)
.

So we can write, again using (B5),

n−1/2
n∑

i=1

{
μ(Xi , θ̂

(LS)
n ) − μ(Xi , θ)

}∇μ(Xi , θ̂
(LS)
n )

= n−1
n∑

i=1

∇μ(Xi , θ̂
(LS)
n )∇Tμ(Xi , θ̃i,n)

{
n1/2

(
θ̂ (LS)
n − θ

)}

=
[
M(ξn, θ̂

(LS)
n ) + 1

n

n∑

i=1

∇μ(Xi , θ̂
(LS)
n )

{∇μ(Xi , θ̃i,n) − ∇μ(Xi , θ̂
(LS)
n )

}T
]

{
n1/2(θ̂ (LS)

n − θ)
}
.

For An := 1
n

∑n
i=1 ∇μ(Xi , θ̂

(LS)
n )

{∇μ(Xi , θ̃i,n) − ∇μ(Xi , θ̂
(LS)
n )

}T we get, using

the Frobenius norm in the space of p × p matrices, i.e., ‖A‖F = [trace(AAT )
]1/2,

‖An‖F ≤ 1

n

n∑

i=1

∥
∥∇μ(Xi , θ̂

(LS)
n )

{∇μ(Xi , θ̃i,n) − ∇μ(Xi , θ̂
(LS)
n )

}T ∥∥
F

= 1

n

n∑

i=1

∥
∥∇μ(Xi , θ̂

(LS)
n )

∥
∥ · ∥∥∇μ(Xi , θ̃i,n) − ∇μ(Xi , θ̂

(LS)
n )

∥
∥,

where we have used that
∥
∥vwT

∥
∥
F = ‖v‖ · ‖w‖ for v,w ∈ R

p. By compactness of
X × B and uniform continuity of ∇μ(x, θ) on X × B, one has

c := sup
θ∈B, x∈X

∥
∥∇μ(x, θ)

∥
∥ < ∞.

From max1≤i≤n ‖θ̂ (LS)
n − θ̃i,n‖ ≤ ‖θ̂ (LS)

n − θ‖ a.s.−→ 0 (as n → 0) and, again, by the
uniform continuity of ∇μ(x, θ) on X × B, one gets

‖An‖F ≤ c max
1≤i≤n

∥
∥∇μ(Xi , θ̃i,n) − ∇μ(Xi , θ̂

(LS)
n )

∥
∥ a.s.−→ 0

which proves (A.9). Next we show that

n−1/2
n∑

i=1

ei
{∇μ(Xi , θ̂

(LS)
n ) − ∇μ(Xi , θ)

} = Bn
{
n−1/2(θ̂ (LS)

n − θ
)}

, (A.10)

with a sequence Bn of p × p random matrices such that Bn
a.s.−→ 0.
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Let v ∈ R
p be arbitrarily given. We can write, applying the mean value theorem,

vT
[
n−1/2

n∑

i=1

ei
{∇μ(Xi , θ̂

(LS)
n ) − ∇μ(Xi , θ)

}]

= n−1/2
n∑

i=1

ei
{
vT∇μ(Xi , θ̂

(LS)
n ) − vT∇μ(Xi , θ)

}

= n−1/2
n∑

i=1

eiv
T∇2μ

(
Xi , θ̃i,n(v)

) (
θ̂ (LS)
n − θ

)

= 1

n

n∑

i=1

eiv
T∇2μ

(
Xi , θ̃i,n(v)

) {
n1/2

(
θ̂ (LS)
n − θ

)}
, (A.11)

where ∇2μ(x, θ) denotes the Hessian matrix (matrix of second partial derivatives) of
μ w.r.t. θ for fixed x ∈ X , and θ̃i,n(v), 1 ≤ i ≤ n, are suitable (random) points on
the line segment joining θ̂

(LS)
n and θ . Let bn(v) := 1

n

∑n
i=1 ei∇2μ

(
Xi , θ̃i,n(v)

)
v and

write bn(v) = b(1)
n (v) + b(2)

n (v), where

b(1)
n (v) := 1

n

n∑

i=1

ei∇2μ(Xi , θ) v and b(2)
n (v)

b(2)
n (v) := 1

n

n∑

i=1

ei
{∇2μ

(
Xi , θ̃i,n(v)

)
v − ∇2μ(Xi , θ) v

}
.

Applying Lemma 3.1 (b) in Freise et al. (2019) to each component of b(1)
n (v)

one gets b(1)
n (v)

a.s.−→ 0. The uniform continuity of (x, θ) �→ ∇2μ(x, θ) v

on X × B and max1≤i≤n ‖θ̃i,n(v) − θ‖ ≤ ‖θ̂ (LS)
n − θ‖ a.s.−→ 0 imply that

max1≤i≤n
∥
∥∇2μ

(
Xi , θ̃i,n(v)

)
v − ∇2μ(Xi , θ) v

∥
∥ a.s.−→ 0. ByLemma3.1 (a) in Freise

et al. (2019), lim supn→∞ 1
n

∑n
i=1 |ei | < ∞ a.s., and hence

‖b(2)
n (v)‖ ≤ max

1≤i≤n

∥
∥∇2μ

(
Xi , θ̃i,n(v)

)
v − ∇2μ(Xi , θ) v

∥
∥ 1

n

n∑

i=1

|ei | a.s.−→ 0.

Observing (A.11) we have thus obtained that for every v ∈ R
p

vT
[
n−1/2

n∑

i=1

ei
{∇μ(Xi , θ̂

(LS)
n ) − ∇μ(Xi , θ)

}] = bTn (v)
{
n1/2

(
θ̂ (LS)
n − θ

)}
,

where bn(v)
a.s.−→ 0. Specializing to the elementary unit vectors v(�), 1 ≤ � ≤ p, and

taking the matrix Bn with rows bTn (v(�)), 1 ≤ � ≤ p, one gets (A.10). So, by (A.7),
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(A.8), (A.9), and (A.10) one gets

σ−1(θ) M−1/2∗ (θ)
{
M(ξn, θ̂

(LS)
n ) + An − Bn

} {√
n
(
θ̂ (LS)
n − θ

)} d−→ N(0, Ip),

where An
a.s.−→ 0 and Bn

a.s.−→ 0. According to Remark 3 one has M(ξn, θ̂
(LS)
n )

a.s.−→
M∗(θ), and using standard properties of convergence in distribution one gets

√
n
(
θ̂ (LS)
n − θ

) d−→ N
(
0, σ 2(θ) M−1∗ (θ)

)
.

��
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