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1. Introduction

Knowledge is the treasure of a wise man.

William Penn
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Maxwell’s equations, discovered by James Clerk Maxwell in 1865 [53], are one of the most
important equations in human history [79, Chapter 11] and describe the connection between
the electric field and the magnetic field. The analysis and understanding of these equations
are the cornerstone for all modern electronic devices from the radio up to the computer and
even after more than 150 years they are still an active field of research [47]. One part of
this research is devoted to the construction of nanodevices, i.e. electronic devices with the
size of only a couple of nanometers, with the help of electromganetic surface waves, e.g.
surface plasmon polaritons (SPPs). These electromagnetic waves propagate at the interface
between two media, are strongly localized perpendicular to the interface and are closely
linked to nonlinear optical effects [43].

This gives us the main motivation for this thesis. We want to study small localized solu-
tions of Maxwell’s equations with a cubic nonlinearity at the boundary surface of two me-
dia. Since it is in general not possible to solve such a problem explicitly and the numerical
calculation of a solution with standard methods, like the finite element method, is rather
difficult and results in very high computational costs, we search for an approximative so-
lution. Our approach is based on the method of amplitude equations and the shape of the
approximative wave packet will be determined by localized solutions of a corresponding
linear Maxwell problem and a nonlinear Schrédinger equation. Such approximative solu-
tions are commonly used in the physics literature, e.g. [7, 18, 2, 19], but they are often only
derived at a formal level. It is well-known that the formal derivation of such approximative
solutions can fail to give satisfying approximations over long time intervals [70, 71]. There-
fore, it is the goal of this thesis to not only derive a formal approximative solution, but also
to rigorously prove its approximation properties and thereby justify the formal approach.



Chapter 1

The thesis is structured as follows. After this brief introduction we use Chapter 2 to es-
tablish the necessary background from physics, give a brief introduction to the method
of amplitude equations and collect some standard mathematical results for the nonlinear
Schrodinger equation. We will then study the linear Maxwell problem from an analytical
and numerical point of view. In Chapter 4 we formally derive a suitable approximative so-
lution and estimate the residual. The main part of this thesis is then devoted to the rigorous
justification of the found approximation. We start in Chapter 5 by adapting a recent local
existence result for quasilinear Maxwell’s equations from [67] to our concrete problem. In
Chapter 6 we then extend this local result to a long time interval by means of an involved
bootstrapping argument. Finally, in Chapter 7 we discuss the construction of suitable initial
values for our Maxwell problem as required by our technical argument. Throughout the

thesis, we will supplement our analytic results with numerical methods and examples.

There is a wide range of publications dedicated to Maxwell’s equations, for an introduc-
tion we refer for example to [40], [57] and [14] to cover physics, numerics and analysis,
respectively. Since we are mainly interested in the analytic point of view, let us give a short
overview of the current state of the art.

The well-posedness and local existence of solutions of quasilinear Maxwell’s equations has
been investigated in [75] and [67] based on the theory of general hyperbolic boundary prob-
lems in [29]. These results form the cornerstone of our analysis in Chapter 6. Maxwell’s
equations with memory but without interface have been considered in [62, 56] within the
framework of evolution equations, as well as in [4], where solutions were constructed via
analytic power series. An approach to Maxwell’s equations with interface based on spec-
tral theory can be found in [13, 11, 12], where Maxwell’s equations were transformed to a
Schrodinger equation and the long-time behavior of special solutions was studied. Another
common approach to Maxwell’s equations comes from the study of time-harmonic solu-
tions. In this case, separate equations for the electric and the magnetic field can be derived
and individually analyzed, see e.g. [46, 23].

We want to study Maxwell’s equations with the method of amplitude equations. This
method was already applied to a wide range of different problems, e.g. problems concern-
ing pattern-formations, water waves, Bose-Einstein condensates and nonlinear optics, see
[15, 68, 6,59, 22].

In [72, 49] this method was applied to time dependent Maxwell’s equations, but a reduc-
tion to a one-dimensional equation was deployed. In [72] a linearly polarized electric field
was studied and an approximative wave packet solution was constructed via a complex
Ginzburg-Landau equation. In [49] transverse electric modes in photonic crystal waveg-
uides were analyzed and the amplitude equation was given by a nonlinear Schrodinger
equation. For 2D photonic crystals the time-harmonic Maxwell’s equations were studied in

[21, 24] and approximative solutions were constructed via coupled mode equations.



Chapter 1

The aim of this thesis is the study of a time dependent 2D Maxwell problem where no re-
duction to a 1D problem is possible. To be precise, we study transverse magnetic modes at
the interface of two materials with instantaneous material response as described by the time
dependent, vector valued Maxwell’s equations.

Parts of Chapters 3 and 7 are published in [25] as joint work with Dr. Tomas Dohnal and
Dr. Giulio Romani, and parts of Chapters 3 — 6 are published in [27] as joint work with Dr.
Toméas Dohnal and Dr. Roland Schnaubelt.



2. Preliminaries

In this chapter we collect some insightful background information for the overarching top-
ics of this thesis.

From the viewpoint of applications we want to understand electromagnetic surface waves.
We therefore study Maxwell’s equations with an interface and introduce the reader to this
topic.

From a mathematical point of view the method of amplitude equations stands at the center
of our analysis. We therefore want to present a short introduction to this method and refer to
some problems where this method has been successfully employed and where it fails to give
satisfying results. This gives support to the importance of coupling the formal analysis with
suitable justification results. Finally, we take a look at the nonlinear Schrédinger equation
since it will play a fundamental role in our approximative solution.

But first, we explain the notation used throughout the thesis.

2.1. Notation

For x,y € R" (or C") the euclidean norm is denoted by | - | and the scalar product as x - y. For
the corresponding matrix norm in R"*" (or C"*") we also write | - |. For a multi-index « € INjj
we define |«| := Z?:l a;. Note that vectors are written in bold. For function spaces we use
|||l and (-, -) for the norm and the scalar product, respectively, and indicate the precise space
as a subscript, e.g. ||*[|;2(g) for the usual norm in the Lebesgue space L%(R). A collection of
all the function spaces used can be found at the end of this thesis. As always we denote the
space of bounded continuous functions by G, the space of arbitrary smooth functions with
compact support by CZ, the Lebesgue spaces with L” and Sobolev spaces with W"7 and set
H™ := W2,

Since we are interested in an interface problem, we collect some helpful notation related to

half-spaces and interfaces. First, we define the half-spaces

1= {xz (x1,...,%,) € R"

J_rx1>0}.

Note that we are mostly interested in the cases n € {1, 2, 3}.

10



Chapter 2 2.1. Notation

For functions we use the superscripts + to indicate that the function is defined on the half-

.: f(x), x1<0,
f(x): {f*(x), N

spaces R", i.e.

Such a function f will often appear in combination with an interface condition at x; = 0, i.e.

the jump at the interface has to satisfy certain conditions.

Definition 2.1.1 (Jump-brackets)
Let T, := {x €e R" | x; = 0}. The jump of a function f : R"\I'y — R across T, at the point x € T',
will be denoted as

[ () = lim £+ o (x)) = lim Fx+ v (x)),

where v(x) the unit normal on 'y, in x into R,
Furthermore, we define the following function spaces.

Definition 2.1.2 (Function Spaces over R"\T';;)
For1<p<oo,nelNandmeNglet
LPR") :={u:R" > R|ut eL? (R}), u" eLF (R")},
[l go ey = H”JFHLP(]R’;) + Hu_HLP(]R’L) ’
W™P(R") := {ue LF(R") |ut e W™ (R}), u~ e W™ (R")},
el [y oy = H”jLmefv(qu) + H”7HWW(1R’1) :

We also extend the usual notation and use H™ := W2,
For a time interval | < R we analogously define the function spaces for time dependent functions,

e.g.
LPR"x J):i={u:R"x ] > R|u" e LP(R} x J), u” € LF (R" x J)},

||“||£P(1R"x]) . "u+“LP(Rﬁ_><]) + Hu_HLP(]R’Lx]) :

Since both R’} and R" satisfy the cone condition, the standard Sobolev embeddings hold
true for WP (IR"). We will often use that for mp > nand 1 < p < q < o the embeddings

hold and that W™? (]R@ is a Banach algebra, see [1, Theorem 5.4, Corollary 5.16] and [30,
Chapter 5].

11



2.2. Maxwell’s Equations and Electromagnetic Surface Waves Chapter 2

Remark 2.1.3
Note that u € H(R") does not imply u € H'(IR"), since the weak derivative Oy, u may not exist

across I';. We can nevertheless use an arbitrary extension of Oy, u via

) — { uu(x),  x¢Th

arbitrary, xel,

to get at least an L?(R™)-function.
Since 'y, is a set of Lebesgue measure zero in R", we can always replace LF (R") with LP (R").

As usual, we use 0 f for the partial derivatives, V f for the gradient, V - f for the divergence
and V x f for the curl. The convolution of two functions will be denoted by

Feg = | f@sx-0)z

and the Fourier transformation and its inverse are given by

f(f)(k) :f(k) = (27‘[)—1/2 waf(x)e—ikx dx,

~

f—l(f)(x) :=f(x) = (27‘()—1/2 JOOOO f(k)eixk dk.

The identity operator will be written as I and for an operator L we write D (L) for the do-
main, N (L) for the kernel and R (L) for the range of L.

Throughout our asymptotic analysis we will use the usual Landau notation f(e) € O(e) for
e — 0. We will also often use a generic positive constant C that can change its value in every

step of a calculation.

2.2. Maxwell’s Equations and Electromagnetic Surface Waves

In this section we shortly discuss electromagnetic surface waves since they are the main
motivation for the following mathematical analysis. A good introduction to optics and elec-
trodynamics can be found in [37] and [40]. For more comprehensive material on surface
waves we refer to [64, 51, 60].

One example for electromagnetic surface waves are surface plasmon polaritons (SPPs). They
have many potential applications, for example in biosensors and photonic circuits in nan-
odevices, see e.g. [51, 66, 43]. Commonly, SPPs exist at the interface between a metal and a
dielectric material, but similar electromagnetic surface waves can also be observed for spe-
cially constructed materials and structures like photonic crystals, waveguides and photonic
metamaterials, see e.g. [85, 49, 74]. Typically, the electromagnetic fields have very small

magnitude and decay exponentially at both sides of the interface, this results in highly

12



Chapter 2 2.2. Maxwell’s Equations and Electromagnetic Surface Waves

localized wave packets, see Figure 2.1. Since the electromagnetic fields are described by
Maxwell’s equations, our main motivation for the rest of this thesis is as follows:

FIND SMALL, LOCALIZED WAVE PACKET SOLUTIONS OF 2D MAXWELL’S EQUATIONS
LOCALIZED AT AN INTERFACE BETWEEN TWO MEDIA.

oo (a) 107 g x10° (b)

: ; : :
Medium 1 Medium 2 5 Medium 1 Medium 2
4
4 5k -
v
| :
2 4+
2
=
o oK I
g 0 ~ 3k
&
Jo W
2 2k ]
E
-2
-4 1k B
-3
Fg F2
-6 0 \
-6 4 2 0 2 4 6 6 4 2 0 2 4 6
X1 T

Figure 2.1.: (a) Schematic of pulse propagation in direction v = (0,1)" along an interface.
(b) Profile of the £ component of the same pulse as in (a) at x, = 0.

Maxwell’s equations in IR? read as follows:

8{D=V><’H—J,

0B =-V xE,
(2.2.1)
V-D =y,
V-B=0.

Here £,D,H,B,J : R®>x (0,T') — R3 are the electric field, the electric displacement
field, the magnetic field, the magnetic flux density and the current density, respectively,
and ¢ : R® x (0, T") — R is the charge density, for some T’ > 0.

There are many different constitutive relations that describe D and B in dependence of €

13



2.2. Maxwell’s Equations and Electromagnetic Surface Waves Chapter 2

and H. We restrict ourselves to the case

D(x,t) :=eo(1+ x1(x))E(x, t) + eoxa(x)(E(x, t) - E(x, 1)) E(x, 1), (2.2.2)
B(x,t) == woH(x,t), (2.2.3)

where €p > 0 is the permittivity of free space, iy > 0 is the permeability of free space and
X1, X3 : R> — R being the linear and cubic susceptibilities of the media. Note that we assume
that the materials are isotropic and that therefore X1, x3 are scalar quantities. Constitutive
relation (2.2.2) is commonly used to model Kerr nonlinear dielectric media. The relation is
local in time and contains a linear and a nonlinear part. The second relation (2.2.3) can be
used for non-magnetic media where the magnetic permeability is close to the permeability
of free space. This is the case for many diamagnetic or paramagnetic materials, see e.g. [40,
Chapter 5].

Remark 2.2.1
There are also other models that are interesting for the analysis of SPPs. Especially intriguing are
models that are non-local in time, e.g.

~

D(x,t) = eo (8(x,t) + JOO x1(x,t—s)E(x,s)ds + x3(x)(E(x, 1) - E(x, t))é’(x,t)) .
—00

We present the formal steps in the method of amplitude equations for Maxwell’s equations with this
type of displacement field in Appendix A, but the convolution term causes severe analytical difficulties
in the rigorous analysis. In the main part of this thesis we therefore restrict ourselves to the local
constitutive relation (2.2.2).

Other interesting models contain more complicated nonlinearities. Higher order nonlinearities or
more involved cubic tensors are studied in the literature of nonlinear optics, see e.g. [8]. For example,
one could replace the term eoxs(x)(E(x,t) - E(x,1))E(x, t) in (2.2.2) with the general cubic tensor

X3 given by
3
(Xs(x1, E,E,€))j:= D Xajuam(¥1)EEEm. 224
k1 m=1

Our method is in general applicable to more complicated nonlinearities, but a careful analysis of
the structure of the nonlinearity would be necessary. Such a structural assumption is discussed in
Remark 4.0.1. We point out that certain symmetry properties of the nonlinearity will be needed
for the analysis of Remark 6.1.1. Moreover, the construction of the asymptotic solution in Chapter 4
would change drastically since multiple terms in the approximative solution (4.2.1) and the amplitude
equation (4.1.13) depend on the structure of the nonlinearity.
We think that the nonlinearity in (2.2.2) is suitable to demonstrate many of the different techniques
necessary to handle more complicated nonlinearities without hiding the ideas behind a convoluted
notation. Therefore, (2.2.2) will be the main model used in this thesis.

14



Chapter 2 2.2. Maxwell’s Equations and Electromagnetic Surface Waves

Combining the divergence of the first equation and the time-derivative of the third equation
in (2.2.1) gives the relation

20=0(V-D)=V-(aD)=V-(VxH-F)=-V-J. (2.2.5)

This can be interpreted as an equation for charge conservation. We want to study surface
waves in the absence of free currents and therefore assume that J = 0. From (2.2.5) it
follows that ¢ has to be constant in time.

With these choices Maxwell’s equations simplify to

at’D=V><’H,

oH =-V xE,
Hoar (2.2.6)
V'D:QOI

V-H=0,

with g : R? x R the initial charge density at time t = 0.

Since we are interested in an interface problem, we have to modify our problem even further.
Let us assume that the interface is given by I's = {x € R*| x; = 0}. This hyperplane divides
R? into the two half-spaces R = {x € R®|+x; > 0}. We now have to solve Maxwell’s
equations in these two half-spaces and make sure that certain interface conditions on the
interface, that we now discuss, are satisfied.

Interface Conditions for Maxwell’s Equations

Maxwell’s equations for an interface problem imply under certain regularity assumptions
additional interface conditions, see e.g. [31, 17, 40]. To derive them in a formal way we
assume that Maxwell’s equations in integral form are true:

8tj’D-1/ds= H-Tdl,
o ox
uoatJ H-vds = — E-tdl,
4 z o (2.2.7)
’D-vds=f 0o dx,

0 Q
J H-vds =0.
0

In the interface-free case the integral form can be derived from Gauss’s and Stokes’s theo-
rems where () is an arbitrary (sufficiently regular) volume in IR?, £ an arbitrary (sufficiently
regular) surface in R?, v = v(x) the outward unit normal to £ or Q) in x and T = 7(x) is the
tangential unit vector to 0% in x, where the orientation is fixed by the right-hand rule.

We now look at the first equation in (2.2.7). Let C be a curve in the interface I's and define

15



2.2. Maxwell’s Equations and Electromagnetic Surface Waves Chapter 2

the surface
219 = {x+')/31‘xecl ’)’G (_19119)}’

with e; := (1,0, 0)T the unit vector normal to I's. An example for the integration area can
be seen in Figure 2.2 (a). The integral Szﬂ D - vds is finite and vanishes if ¢ tends to zero.
On the other side of the equation we can split 0%y into three parts C; := {x + 0e; |x € C},
C_:={x—10e;|xeC}and Ry, := 0Xy\(C- U C) and we get

O=hm<8t ’D-vds>=lim J H-rdl + H-vdl +
9—0 Py 9—0 c_ Cy

’H-le).

Ry

For ¢ — 0 the last integral vanishes and we arrive at

0 [ lim(3(x + der) — H(x— b)) -l - L[[’H t]spdl.
Since this holds for all curves C € I3, the first interface condition is given by [H - T]3p(x) = 0
for all x € I'; and every tangential vector T, which means that in our case H; and H3 have
to be continuous at x; = 0. The second equation in (2.2.7) can be handled analogously and
gives us continuity of & and &; at the interface.

The idea for the remaining two Maxwell’s equations is similar. For the third equation we
choose a surface S < I'3, see Figure 2.2 (b), and define the volume

Qy:={x+ve1|xeS, ye(-09,09)}

Now we split the boundary of )y in Sy := {x+ 0e;|xe S}, S_ := {x —0e;|x € S} and
Rq, := 004\(5- U S4). For ¢ — 0 we get

J[[D -v[3pds = f ords,
s S

where ¢r is the surface charge density, i.e. the restriction of gy to the interface. We have
selected S arbitrarily and therefore the interface condition [D - v]3p(x) = or(x) follows,
which means that D; has a jump at the interface depending on the initial charge density at
the interface. Finally, we get in the same way from the last Maxwell equation that H; has to
be continuous at the interface.

Summarizing, the interface conditions are:

[D1lsp (x) = er(x), Vxel;,
[&203p (%) = [E3]3p () =0, VxeTs, (2.2.8)

[Halsp (x) = [Halsp (x) = [Ha];p (x) =0, VxeTs.

Note that the interface conditions have to be satisfied for all time, so in particular we get
conditions on the initial values.

16



Chapter 2 2.2. Maxwell’s Equations and Electromagnetic Surface Waves

(a) (b)

X2 X2
X3 X3
i I3 i I's
X1 X1

Figure 2.2.: Possible integration areas Xy and ().

Remark 2.2.2
When there are no surface charges, i.e. or = 0, the interface conditions (2.2.8) can be rigorously
derived in the sense of traces for

8('! t) € chrl(]Rz) = {f € LZ(R2)3 ‘ V- f € LZ(IRZ)} ’
D(,t) € Hgiy(R?) := {f € L*(R*)*| V x f e L*(R?)*}, (2.2.9)
H(,t) e HY(R?)3,

see e.g. [10]. Theorem 6.3.1 will give us a more regular solution such that (2.2.9) is satisfied.

Finally, we have to model the fact that the materials on the two sides of the interface are
different. To simplify the problem, we also assume that the materials are homogeneous in
the x,- and x3-direction. Therefore, the susceptibilities only depend on x; and are given by

X1 (x1), x1 <0, X5 (x1), x1 <0,
X3(x1) =

x1(x1) == s N
X1 (x1), x1>0, X (x1), x1>0.

Note that x1, x3 are in general discontinuous at the interface.

Remark 2.2.3

Most of the time we will not specify the value of functions on the interface. Since we are interested
in solving an interface problem, we will instead specify the function on both half-planes and add an
interface condition to couple the two sides of the interface.

Since the materials are homogeneous in x;- and x3-direction and we are interested in wave
packet solutions that travel in one constant direction along the interface, we can without loss
of generality select the x,-direction as the direction of propagation. We then assume that the
solution is constant in x3, which allows us to reduce (2.2.6) to the from x3-independent 2D

17



2.3. Method of Amplitude Equations Chapter 2

Maxwell problem

6tD:V><’H,

OH =-V xE,
Hoat ) (2.2.10)
V"DZQQ,

V-H=0

on (IRZ\FZ) x (0,T"), with
(D,E,H) =(D,E, H)(x1,x2, 1), 00 = 00(x1, x2).

and the interface conditions

[D1]yp (%) = or(x),
[€2]op (%) = [E5]p (%) =0, (2.2.11)
[H1lop (x) = [Halap (x) = [Ha]p (x) =0

on Ty x [0, T"). From now on we will only work in two spatial dimensions, i.e. x = (x1,x2)"

2.3. Method of Amplitude Equations

The main goal of this thesis is the derivation and justification of the nonlinear Schrodinger
equation as a suitable amplitude equation for Maxwell’s equations (2.2.10), (2.2.11). In this
section we give a motivation and an introduction to the theory of amplitude equations, in
particular we will outline when the theory can be applied and when it fails to give satisfac-
tory results. More details can be found in [55, 84, 28, 71].

There are many problems in all fields of mathematics for which it is difficult or even impos-
sible to calculate exact solutions. Mathematicians have therefore spent a lot of energy on
finding methods that make it possible to calculate approximative solutions.

Dealing with partial differential equations, one often looks for solutions in function spaces
that have infinite dimension and this causes many difficulties. To overcome these difficul-
ties it is common to discretize the differential equation and to study a corresponding finite-
dimensional problem. Most numerical methods for differential equations are based on this
approach. However, the fundamental flaw of this approach is the discretization itself. To get
a better approximation of the exact solution a finer discretization has to be selected, which
results in bigger calculation costs and more memory space needed. For some type of par-
tial differential equation this can get particularly troublesome when different scales are of
interest. In optics for example it is important to understand very small wave packets over a
long period of time. Without further improvements a very fine discretization in space over
a long period of time would be necessary and would result in tremendous numerical costs.

Another, more analytic, method is to start with a suitable ansatz to fundamentally change

18



Chapter 2 2.3. Method of Amplitude Equations

the nature of the problem in the hope that the new one can be solved more easily. From
separation of variables over splitting methods to finite element methods we see that this
core concept is widely used. We note that under suitable assumptions the structure of the
solution can drastically change the complexity of the problem. This can result in problems
that are much easier to study from both an analytical and a numerical point of view. It also
allows us to tackle problems with different scales, which is of utmost interest for us.
Perturbation theory, multiple-scale analysis and the theory of amplitude equations are of-
ten used to study approximative solutions and are based on the same idea. By introducing
a (typically) small parameter 0 < & « 1 it is possible to study effects that are on different
scales or of different sizes. Let us now illustrate this for a parameter dependent ordinary
differential equation. This example can be found in [44, Chapter 12] and [84].

Example 1: The Damped Oscillator

We study approximative solutions of the initial value problem

Pu(t) + 2e0u(t) +u(t) = 0, te (0, T,
u(0) = a, (2.3.1)
8tu(0) =0

on the interval (0, T") for a, T" € R, T" > 0. A typical first ansatz for an approximation of u
in perturbation theory would be the first terms of a power series in &:

uans,l(t> = Llo(t) + £u1(t).

Inserting this ansatz into (2.3.1) and comparing the powers of € gives us for the terms pro-

portional to ¢
Pug(t) +up(t) =0, te(0,T),

ug(0) = a, (2.3.2)
(%uo(O) =0.

Note that for ¢ = 0 Problem (2.3.1) coincides with Problem (2.3.2).
For the terms proportional to ¢! the comparison gives us

Pur(t) + 20up(t) + w1 (1) =0,  te (0, T),
IZ51 (0) 0,
atul (0) = 0.

Since we are only looking for an approximative solution, we ignore the terms of order ¢2
and search for solutions 1y and 1.

For the simple Problem (2.3.1) we see interesting effects. On the one hand we note that it is
slightly easier to find the solutions uy(f) = acos(t) and u;(t) = —at cos(t) + asin(t) of the
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perturbation problem than it is to find the exact solution
et a .
u(t) =-e (a cos(wt) + e sm(wt)) ,

where w = v/1 — €2. On the other hand we note that the exponential term e~# is missing in
our approximative solution u,ns1 and that therefore our approximation is useless on large
time scales, see Figure 2.3 (a). To fix this shortcoming a better ansatz is necessary.

For problems where we suspect a fast oscillating solution with slowly changing amplitude
like Problem (2.3.1), which describes a damped oscillator, the theory of amplitude equations

can often provide useful approximations. One typically uses an ansatz of the form
Uans2(t) = A(et)e? +c.c., (2.3.3)

where wy, € Ry = {x e R|x >0}, A: R — C and c.c. stands for the complex conjugate of
the previous term. We see that the exponential term describes the fast oscillating part and
the amplitude is described by the function A that depends on the slow variable T := et.
Again, comparing the e-powers for this new ansatz gives us

(~w3 +1)A(T) +cc. =0, Te(0,eT)
A(0)+cc =a,
—iwyA(0) + c.c. =0

and

{2iw26TA(T) +2iwpA(T) =0, Te(0,eT), 234

0rA(0) +c.c. = 0.

Note that with the initial condition in (2.3.4) the problem of finding A and wj is overdeter-
mined, hence we have to compromise. We ignore this condition and search for a hopefully
very good approximative solution u,ns > of the differential equation that not necessarily sat-
isfies all the initial conditions in (2.3.1) exactly.

For a # 0 the solution is given by w, = 1 and A(T) = e~ and we obtain

a g a g i _
Uans2(t) = 5¢ elglwnt 4 5€ dlemiat — g~ cos(wot).

In Figure 2.3 (a) and (b) we see that u,ns2 is a better approximation than u,,s1. Due to the
exponential term in both u and u.ns» We see that the error goes exponentially to zero in t.
However, a closer look at the error

[u(t) — tans 2 (t)| = e |easin(t) + %z—:zat sin(t) + O(&%)

and Figure 2.3 (c) shows us that uans fails to predict the right oscillating behavior of u over

very long time periods. Also note that, as expected, tans2(0) = a but Osttans2(0) = —ea and
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that therefore the initial conditions are only approximately satisfied.

(a)

. T U---Uaps1 uans,2’>
! J
0 5 10 15 20 25

Figure 2.3.: (a) Plot of the exact solution u and the approximative solutions tang 1, tans2 for e = 0.1
anda = 1.
(b) Plot of the absolute error between u(t) and uang 2 (#) in time.
(c) Absolute error between eu(t) and e 1,55 (t) in time.

This short example shows us two fundamental facts. First, we see that an ansatz of the form
(2.3.3) can be very successful for certain types of problems. Second, the failure of the first
ansatz for long times scales makes it clear that the formal derivation of an approximative
solution can fail to provide satisfying results and that a rigorous analysis is necessary to
show that an ansatz delivers a sufficiently good approximation.

Example 2: The Cubic Klein-Gordon Equation

Let us now study a slightly more involved example that has many of the interesting features
we also have to face when we analyze approximative solutions for Maxwell’s equations.
This example can be found in [73, Chapter 11].

We consider the one-dimensional (cubic) Klein-Gordon equation

Fu—Pu+u+ud=0, xeR, te(0,T) (2.3.5)

for some T” > 0. The key steps of finding an approximative solution with the method of
amplitude equations are the following:
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Step 1: Solve the linear problem corresponding to (2.3.5).

Step 2: Make an asymptotic wave packet ansatz u,ns similar to (2.3.3) and choose A such
that the residual

2 2 3
Res(”ans) = at Uans — axuans + Uans + uans
is as small as possible.

Step 3: Prove that the ansatz provides a “good” approximative solution over a long time

interval by means of suitable estimates of the error u — ans.

Note that A in general depends on space and time and since A determines the shape of
the wave packet, it is called envelope of the wave packet. For applications one is often
interested in solutions that are localized in space, therefore envelopes A that are localized
are especially interesting.

Step 1: To solve the linear problem
Pu—Pu+u=0, xeR, te(0,T) (2.3.6)

we take the ansatz

kx—wt)

Upi = el + c.c.

for the wave number k € R and the wave frequency w € R. The linear problem (2.3.6) then
reduces to the algebraic problem
w? =Kk +1. (2.3.7)

Note that we get the same algebraic equation when we apply the Fourier transformation
in x and t to (2.3.6). Equation (2.3.7) is called dispersion relation and its solutions can be

written as functions in k:
w(k) = +Vk% + 1.

The dispersion relation plays a central role in the construction of suitable approximative
solutions. In the sequel, we take a fixed ko and the corresponding vy := w(ko) to build our
asymptotic solution around eilkox=10!) 4 ¢ ¢ which solves the linear problem (2.3.6). Also,

the derivatives

v := Orw (ko) = @, vy 1= Btw(ko) = ﬂ
1) Vo
are essential. The so-called group velocity v; determines the speed of the envelope A and
the second derivative 1, is later used to determine the equation for A. It is easy to see that
vp # 0, therefore Problem (2.3.6) is called dispersive, which means that waves with different
wave numbers travel with different velocities. Hence, the different parts of a localized wave

packet travel with different velocities and the wave packet disintegrates over time.
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V1

y

Figure 2.4.: Schematic representation of a small wave packet with localized envelope A trav-
eling with speed v;.

For some equations this dispersive effect in the linear part can be mitigated or even canceled
by the nonlinearity. Since we are interested in solutions that stay localized over time, we
will use a special scaling in our ansatz to achieve a “balance” between the dispersive and
nonlinear effects.

Step 2: We make the wave packet ansatz

Uans (X, 1) 1= €A (e(x — vlt),szt) elkox—vot) 4 o o (2.3.8)

where we have E(x, t) := el(ko*=%0")_a solution of (2.3.6), as the carrier wave and an envelope
A = A(X,T) : Rx (0,62T") — C dependent on the slow variables X := ¢(x — v;t) and
T := €2t, see Figure 2.4 for a schematic representation of u,ns.

As before, one inserts (2.3.8) into (2.3.5) and computes the residual:

Res(”ans) = a1!214ans - a;zcuans + Uans + Mgns
=¢E ((k§ — v + 1) A) + €2 E(2i(v1v0 — ko)9xA)
+ €E (—2ivgdrA + (vf — 1) %A + 3|A[PA) + £E3A% + O(e*) + c.c.

At order ¢! the terms vanish since kg and vy satisfy the dispersion relation (2.3.7). The same
happens at order ¢2 because of the choice of v; as the group velocity. The terms which are

proportional to €3 E vanish provided A is a solution of the nonlinear Schrédinger equation
i0 A——1v92A+i|A|2A—0 (2.3.9)

T = 2 20x 21/0 = U. O
One now sees what we meant by “balancing”. The effects of the nonlinearity and the disper-

sion appear at the same order of ¢ and give us the nonlinear Schrodinger equation, which

has localized solutions as we hoped for, see Section 2.4.
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Since A% does not vanish for a non-trivial envelope, we have to improve our ansatz to elim-

inate the last term of order ¢3. When we repeat the calculation for
lext(x, £) 1= €A (X, T) 0010 4 63 (912 — 9k2 — 1)1 A3 (X, T) &dilkor—0t) 4 ¢,

we formally get Res(uext) = O(e?). This example gives us interesting insight into the method
of amplitude equations.

First, we see that the correction only works when the so-called non-resonance condition
95 # 9k3 + 1

is satistied. For the dispersion relation (2.3.7) this condition is obviously fulfilled, for more
complicated problems similar conditions appear and have to be checked. In particular, we
see that this method does not work for a linear dispersion relation.

Second, the correction term in ey is of higher-order and its main purpose is to reduce the
order of the residual. For our Maxwell problem we will use multiple corrections of higher-
order to achieve the same goal. Often it is even possible to add more and more correction
terms to make the residual arbitrarily small, see [73, Chapter 11].

Step 3: To understand what we mean by a “good” approximative solution, let us state the
mdmation result:

Theorem 2.3.1 (Approximation Theorem for the Klein-Gordon Equation)

Let Ty > 0 and A € C ([0, To], H>(R)) be a solution of the nonlinear Schrodinger equation (2.3.9).
Then there exists an ey > 0 and a constant C > 0 such that for all € € (0, q) there are solutions u of
(2.3.5) such that for all t € [0, Toe™?|

[1(t) = ttans (£) | i )y < CE2. (2.3.10)

PROOF: An extended version of this theorem and its proof can be found as Theorem 11.2.6
in [73]. Since some of the steps are similar to our approach for the Maxwell problem, we
now describe the main steps.

First, we estimate the residual in the corresponding norm, here H!(IR). This can be done
easily since the residual is known explicitly and we assumed a highly regular envelope A.
Second, the problem is rewritten for the error

PR = u— Uans

and one aims to show that R is of size O(1) over the long time interval [0,¢7T;]. This
step contains the main difficulty of the proof. In [73] semigroup theory in combination
with Gronwall’s inequality is employed for this part. For the Maxwell problem we will use
an existing local well-posedness result in combination with a bootstrapping argument and
again Gronwall’s inequality. O
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A “good” approximation as in (2.3.10) has several important properties. The estimate has
to be done in a suitable normed space. This space is often tied to the local existence and
uniqueness of u. The constant C has to be independent of ¢ and e. Since the envelope A
depends on the slow time variable T = &*t, the corresponding long time interval has to be
[0, Toe2]. Since

12
[[1tans (B) || 1 (ry < Ce (JIR (‘A (e(x - Vlf),szt)\z + |0xA (e(x —11t), €%) ]2) dx)

12
< Ce <s_1 f (]A(X, ) + & |oxA(X, €2f)’2) dX>
R

< Cell? [AC, D] 1 gy

we see that the error of our approximation is much smaller than the size of our ansatz. This
is fundamental in order to obtain a meaningful approximation. From the assumptions of
Theorem 2.3.1 we can gather additional information about the method of amplitude equa-
tions. First, most approximations only work for & small enough. On the one hand, this
limits the possible applications since only very small solutions u can be approximated. On
the other hand, we see that the approximation improves for smaller ¢. Second, a high regu-
larity of the envelope is often necessary to achieve the approximation result, but this causes
no problem since the nonlinear Schrodinger equation allows for highly regular solutions,
see Section 2.4.

Counterexamples

We have already seen in Example 1 that even for simple problems an asymptotic method
can fail to predict the correct behavior of the exact solution. For the method of amplitude
equation it was shown in [70] and [69] that the formal derivation of an amplitude equation
is in general not sufficient. A rigorous proof of the approximation properties is therefore
necessary and forms the main part of this thesis.

After a brief discussion of the nonlinear Schrodinger equation, see Section 2.4, the rest of the
thesis is devoted to the application of the method of amplitude equations to the Maxwell
problem (2.2.10), (2.2.11) and the proof of a result similar to Theorem 2.3.1. We will proceed
as follows:

Step 1: In Chapter 3 we solve a linear problem corresponding to (2.2.10), (2.2.11).

Step 2: In Chapter 4 we construct a wave packet ansatz U,ns similar to (2.3.8) and choose a

suitable A such that the residual is as small as possible.

Step 3: In Chapter 6 we prove that the ansatz provides a “good” approximative solution

over a long time interval.

25



2.4. Nonlinear Schrodinger Equation Chapter 2

2.4. Nonlinear Schrodinger Equation

The nonlinear Schrodinger (NLS) equation plays an essential role in our construction of an
asymptotic solution. In this section we therefore collect some known properties of the NLS
equation. More information can be found in [80, 82, 73, 2]. That the NLS equation can

be used to describe the behavior of wave packets in dispersive problems was for example
shown in [41, 45]

The (cubic) nonlinear Schrédinger equation is given by
i07A = 00% A + wo| AJPA, (2.4.1)

with a,ap e Rand A : R x (0, Tp) — C for some Ty > 0.

Theorem 2.4.1 (Existence and Regularity of Solutions of the NLS Equation)
Let A©® ¢ H™"(R).

1) Let m > 5. en there exists a Ty > 0 and a unigue solution € , 1o, 0
i) L %Thh 1 To > 0and ique solution A € C ([0, To], H"(R

(2.4.1) with A(-,0) = A©),
ii) Let m > 2k for a positive k € N. Then A € ﬂ;(:o C/ ([0, To], H™ % (R)).

PROOF: Part i) and its proof can be found in [73, Theorem 8.1.4] and in [82, Proposition 3.8].
The proof is based on semigroup theory and a fixed-point argument.
To prove ii) one can now use (2.4.1) to “trade” regularity in space for regularity in time. For
m > 2 we have that a10% A + a2|A]?A € C ([0, To], H"2(R)) and with (2.4.1) it follows that
A e C! ([0, To], H"2(IR)). This process can now be iterated and proves the assertion.

Ul
Remark 2.4.2
Theorem 2.4.1 allows us to find arbitrary smooth solutions of the nonlinear Schrodinger equation
as long as the initial value A©) is smooth enough. For our approximative solution of Maxwell’s
equations A € (i_o C*~* ([0, To], H***(IR)) will be necessary.

It is even possible to find localized, smooth solutions of (2.4.1) explicitly, see e.g. [73]. For
1,¢,7, %0 € R the function

A(X,T) = V2isech(ij(X — xg — CT))ei((62_4’72)T_26X+"7)/4

solves the NLS equation for a; = ap = 1. After a variable transformation one gets the
general solution

A(X,T) = By 'WV2ijsech (fj(B2X — xo — cBsT)) ell (T 4B -20haX0) 4 (24.2)

_1/3\ 12
with B = B3 = zx;/B and B2 = <zx1uc2 1/3> .
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When no explicit solution is known, one can solve (2.4.1) numerically, see e.g. [81] for an
overview of different methods. One could for example use a split-step Fourier method as

follows:

1. Split (2.4.1) into the two problems

i0rAr
i0TAN

w10% A, Ar(X, tg) = A (X), (2.4.3)
w|AnPANn, AN(X H) = AL (X). (2.4.4)

2. Calculate the Fourier transform of (2.4.3), construct the explicit solution
Ap(K,T) = e™FT A, (K)

and apply the inverse Fourier transform.

3. Explicitly solve (2.4.4) with

. 2
AN(X, T) = e 2|40 [T 4, (x),

4. Solve the two problems alternately for small step sizes in time h; and updated initial
values. One could for example use the Strang splitting, this method goes as follows:

a) Solve (2.4.3) with step size %ht and initial value A (X);
b) Solve (2.4.4) with step size h; and initial Ar (X, to + %ht) ;
c) Solve (2.4.3) with step size %ht and initial value An(X, to + h).

The Matlab code for this method can be found in [2, Appendix B], for more about splitting
methods see e.g. [35, Chapter IL.5].

Remark 2.4.3

The nonlinear Schrodinger equation appears in the analysis of many different problems, e.g. Bose-
Einstein condensates, nonlinear optics and water waves. It is possible to show that the NLS equation
appears as the universal amplitude equation in the asymptotic analysis of wave packets for a large
class of nonlinear dispersive equations, see e.g [73, Chapter 11].
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3. Linear Problem

In this chapter we study Maxwell’s equations (2.2.10) in the linear form, i.e. €3 := €gx3 =0,
both analytically and numerically. We will also analyze the corresponding inhomogeneous

problem.

3.1. Linear Transverse Magnetic Modes

We want to find out what kind of localized solutions the linear 2D Maxwell equations pos-
sess and if they satisfy the interface conditions (2.2.11). As discussed in Section 2.3, we will
use the solution of the linear Maxwell problem to construct an asymptotic solution of the
nonlinear case. We start with a standard wave-ansatz for the electromagnetic field, see e.g.
[64].

For k € R and w € R we are looking for solutions of the form

¢1(x1) P1(x1)
E(x1,x2,t) = | pa(x1) ellk—wt) 4 oo H(x1,x2,t) = | P2(x1) ellk—wt) 4 oo (3.1.1)
$3(x1) P3(x1)

where we expect localized, integrable functions ¢1, ¢2, ¢3, 1, 2, 3 : R — C.

Remark 3.1.1
We see that this ansatz has the main features we expect from our wave solution. For a fixed wave
number k and a frequency w our ansatz describes a wave traveling in xp-direction that is localized at

the interface T'5.

The linear part of the displacement field (2.2.2) is given by
Diin(€) = e1€,

with the abbreviation

_ e (x1) =€ (1+x7(x1)), x1 <0,
61(x1) =
ef (x1) =€ (1+x7(x1)), x1>0.

The linear version of Maxwell’s equations, i.e. (2.2.10) with the linear displacement field

28



Chapter 3 3.1. Linear Transverse Magnetic Modes

Dy, with g = 0 and the ansatz (3.1.1) take the form

ipgan,bl = ik¢3, (312&) —i€1(xl)a](l)1 = iklpg, (312b)
i}l()(x)i,bg = —0x1<p3, (3.1.2C) —i€1(xl)wgb2 = —6x1¢3, (3.1.2d)
i},L()aJlng, = 8x14>2 — ik(l)1, (3.1.29) *i€1 (Xl)w(l)g, = 8x11/}2 — ikl[]l (312f)

and
{8x161 (x1)4>1 + €1 (xl)(axlcfn + lk(l)z) =0, (313&)

Oy +ikyp =0, (3.1.3b)

with the interface conditions
[e1¢1]1p(0) = [92]10(0) = [¢5]1p(0) = [¢1]1p(0) = [¢2]1p(0) = [3]1p(0) = 0.

Remark 3.1.2
Note that formally one also gets the complex conjugate versions of the eight equations (3.1.2a)-
(3.1.3b), e.g. wodrH1 = —0x,&1 gives us the equation

ugw(iybl)ei(k"z_“’t) + l.l{)wme_i(kXZ_Wt) _ k(i¢3)ei(kx2—wt) + k@e—i(kxz—wt)_

Now a coefficient comparison of the exponential functions et'(k2=“t) ojves us equation (3.1.2a) and
its complex conjugate counterpart.
These complex conjugate equations are trivially satisfied when (3.1.2a)—(3.1.3b) are fulfilled.

We now note that the problem decouples in two independent systems. Equations (3.1.2a),
(3.1.2¢), (3.1.2f) and (3.1.3b) only depend on ¢3, 1, o whereas the remaining equations
only depend on ¢4, ¢, 1P3. We restrict ourselves to solutions where 11 = ¢, = ¢3 = 0. This
corresponds to

E=(£,5,0" and H =(0,0,H3)",
such solutions are often referred to as transverse magnetic modes (TM-modes).

Remark 3.1.3

Our restriction to TM-modes is motivated by two facts. First, we think that the TM-modes are of
bigger mathematical interest. The other case where ¢1 = ¢ = P3 = 0, so-called transverse electric
mode, was already studied in [49] for the 2D setting with periodic material functions. There, a
reduction to a scalar problem was possible. For the TM-modes such a restriction is not possible and
we have to develop new techniques to handle this problem.

Second, for the simple setting that €; is constant on both sides of the interface, only TM-modes are
possible as we will show in the following example. A first analysis of SPPs also shows that SPPs are
only possible for TM-modes, see e.g. [64, 51]. We therefore think that TM-modes are the “natural”
solutions of our problem.
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Example 3.1.4 (Explicit Solution for the Linear Maxwell Problem)

Assume that ef and €| are constant, non-zero and satisfy ef e, <0.

In this special case we can solve system (3.1.2a)—(3.1.3b) for x; > 0 and for x1 < 0 explicitly since
we only have to solve a system of ordinary differential equations with constant coefficients. For w # 0
we select the integrable solutions

_ k _ A k A
¢y (x1) = —761_ ¥3 (x1), ¢ (x1) = _a)ief ¥y (x1),
¢, (x1) = C1va~ e Ve ¢5 (x1) = C3Va+t Ve
¢5 (x1) = —iCoy/How e Ve X, ¢35 (x1) = iCsn/How elVerx
r > x1 <0, P x1>0, (3.1.4)
- _ K + _ K 4
Py (x1) = o ¢5 (x1), ¥y (x1) o ¢5 (x1),
¥y (x1) = Covb- e Ve, 5 (x1) = CyvV/b Ve,
_ _ — —ive— x + _ + ivet x
s (x1) = —Cin/e;we 1,) Py (x1) = Cay/efwe 1,)
with
- _ K _ . - 2
a(xy) = a = How cw’ x1 <0, b(xy) = b™ = —e;w+ ﬁ, x1 <0,
' at = pow — £, x>0 ' bt = —efw+ £, x>0
. erw/ 1 ’ . 1 Low”’ 1 ’
= uoewa k= a"e;w=—b"pww, x <0,
c(x1) =
¢t = el w? -k =atefw=-bTww, x1>0.

For integrable solutions we have to check that we only allow such k and w for which we have

Re (—i\F) , Re (—i c+> > 0. (3.15)

This is always possible when poe; w? —k* = ¢* < 0. Here we use the usual convention that

v/—x = iy/x for positive x.

To satisfy the interface conditions, ¢, ¢3, Po and 3 have to be continuous at x; = 0. This gives
us va=Cy = Vat C3, —Cy = Cy, Vb= Co = Vb+ Cyand —y/e; C1 = y/€f Cs. Note that the
continuity of €1¢1 and Py follows from the continuity of Y3 and ¢s3, respectively.

These equations imply

/ + ygp—
- . Cl = a C]/
Jer e (3.1.6)
—\/b+C2 = \/b_Cz.

30



Chapter 3 3.1. Linear Transverse Magnetic Modes

From the first equation in (3.1.6) we get for C; # 0

at — now?e] — k> _ now?e; — k>
e e () w ()" w
eN)em — (e7) et
— kzzwzuo( 1)+12 (1_)2 1
(e1)" —(er)
+
— K= €1 51_
e +¢€;
— -9 ’a (3.1.7)
Ho€q €

The last equation gives us an explicit relation between k and w for which integrable solutions can
exist, the so-called dispersion relation.
With this dispersion relation we can go back and check if (3.1.5) is satisfied:

. . . €1
—iVe = —iy/poef w? — k2 = —i k2—1+,
€
ot
—ivet = —iy/ o] w? — k2 = —iy [kR2-L.
€
1

Therefore, a non-trivial integrable solution exists for all k # 0 since €] €] < 0 per assumption.
From the second equation in (3.1.6) we get for C; # 0

k
br=b" = —ew+—=—-€w+—
How Ho

which cannot be true for our discontinuous €1 and therefore Cy has to be zero, hence the components
¢3, 1 and o have to vanish.

In conclusion, the most general solution has the form € = (&1, &, 0)" and H = (0,0,H3)". This
means that TM-modes are the only possible solutions for this special €;.

Note that the dispersion relation (3.1.7) gives a linear dependence between |w| and |k|. Since we are
mainly interested in dispersive equations where 02w has to be non-trivial, see Chapter 4, we have to

study more complicated €;.

For the TM-setting the number of equations in the Maxwell problem reduces to four:

—iey (x1)wer = ik,
—iey(x1)wer = —0x, 3,
ipowyps = Oy, P2 — ik,
0 = dxe1(x1)1 + €1(x1) (Ox, P1 + ikep2),

(3.1.8)
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with three interface conditions

le1¢1]ip(0) = [¢2]1p(0) = [¢3]1p(0) = 0.

To solve (3.1.8) for a more general €; we first note that the last equation is automatically
satisfied when the other three equations are fulfilled and w # 0. To see this, we differentiate
the first equation of (3.1.8) in x; and replace dy, 3 with the help of the second equation in
(3.1.8):
—i0y, €1(x1)wepy —i€1(x1)wdy, 1 = ikdy, P3

— —idy,€1(x1)w —ie1(x1)wiy, P1 = ik(ieq(x1)weps) (3.1.9)

— Ox,€1(x1)P1 + €1(x1)0x, 1 = —i€1(x1)k¢pa.
Additionally, we notice that from the first equation in (3.1.8) and [¢3]1p(0) = 0 it follows
that [e1¢1]1p(0) = 0.

Remark 3.1.5
Note that (3.1.9) implies that ansatz (3.1.1) can only solve the linear Maxwell equations for oo = 0.

All in all, the TM-setting reduces the linear Maxwell equations to

{ Lik)w+wA(x))w =0  in R\{0}, (3.110)
[w2]1p(0) = [ws]1p(0) =0,
where w := (¢1, P2, 1/]3)T and
kws €1(x1)wq
Lk)w := 10y, w3 , A(xp)w == | e1(x)ws |- (3.1.11)
kwy + 10y, wo How3

3.2. Analysis of the Linear Eigenvalue Problem

In the last section we derived (3.1.10) in a formal way. In this section we will rigorously
study the properties of (3.1.10).

We assume that e; is sufficiently smooth on R\{0} and bounded from below by a positive

constant, i.e. there are constants efm > 0 such that

ef e C(R+) nWPP(Ry), €f(x1) =€,  VxeR\{0} (A1)
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For k € R we define the operators L(k) : D (L(k)) — L*(R)® and A : D(A) — L*(R)? via
(3.1.11) and with the domains

D (L(k)) := {w ‘R — C3|wy € LA(R), w), ws € Hl(lR)}, -
D(A) := L*(R)3.

Note that the domains are dense in L?(R)® and that we incorporated the interface conditions
into the domain of L(k), indeed w,, w3 € H!(R) and Sobolev embeddings imply that w,,
w3 can be chosen continuous on R. Therefore, we can from now on ignore the interface
conditions in (3.1.10) and have to solve

L(k)w(x1) + wA(x1)w(x1) =0, x1 € R\{0}. (3.2.2)

Since we are looking for non-trivial solutions, the remaining equation can be interpreted as
a generalized eigenvalue problem with an eigenvalue w = w(k) € C and an eigenfunction

w = w(k) € D(L(k))\{0}.
Remark 3.2.1

The rather high reqularity assumption on €1 will be used in Chapter 6 to prove the existence of
solutions of Maxwell’s equations with H3-regularity in space.

From the positivity of € it follows that A is positive definite, which will be essential in our analysis.
It also removes the case that gradient fields are eigenfunctions, which would result in the fact that
each w € C is an eigenvalue of infinite multiplicity. Let for example €] = 0, then w, with w~ = 0
and wt = (dy, f,ikf,0) ", would be a non-trivial solution of (3.1.10) for all f € C¥(R;)\{0} and
weC.

Let us state some properties of the operator L(k) that will be used later on.

Lemma 3.2.2 (Properties of the Operator L(k))
Let k € R. The operator L(k) : D (L(k)) — L?(IR)? as defined in (3.1.11) and (3.2.1) is linear, closed
and self-adjoint.

PROOF: Itis immediately clear that L(k) is linear.

To show that L(k) is closed, we take a sequence (w,), < D(L(k)) with w, — w and
L(k)w, — v in L*(R)3 and show that w € D (L(k)) and L(k)w = v.

First, we have to show w; € H'(R). Since idy, w3 — v, and w,, 3 — w3 in L2(R), it follows
that there exists a function w3 = —iv; € L?(R) such that dy,w,3 — W3 in L*(R). With the
definition of weak derivatives it follows

U]R(@g(p + w30y, ¢)dx1

J((w?: - axlwn,3)§9 + axlwn,?)GD + wn,3ax1§9 + (w3 - wn,3)ax1§9)dxl
R

< U]R(axlwn,ssv + Wy 30x, @)dx1| + [[W3 — Oy wn | 2y (|91l 12wy

+ ||lws = O w3l 2Ry 100 @1l 2Ry = O (n — o)
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for all ¢ € C°(R) and therefore 0y, w3 = W3 and w; € H'(R).

Analogously, it follows that w, € H(R).

From the definition of L(k), the convergence of w,1 in L*(R) and wy,», w,3 in H(R) we
have

IL(K)w — 0|l 2rys < [[LOK)(w — wn) [ 2rys + IL(K)wn — 0] 2R )
3

<Cllw— wnHLz(]R)s + Z Haxle - axlwn,jHLz(]R) + || L(k)w, — vHLZ(IR)3
=2

— 0 (n — o0).
To see that L(k) is symmetric we use partial integration and have for all w,v € D (L(k)) that

(L(k)w, v>Lz(]R)3 = J (kw301 + 10y, w302 + kw103 + 10y, w203) dxq
R

= f (kw153 — iwzax]% + kwzo1 — iZUgax] 52) dxq
R
={(w, L(k)v>L2(]R)3-

Finally, we have to prove that D (L(k)) = D (L*(k)). Let v € D (L(k)). From the symmetry it
follows that

(L(kK)w, v)r2rys = (w, L(k)v)r2(r)p = (w, L*(k)v>L2(IR)3

for all w € D(L(k)) and hence D (L(k)) = D (L*(k)). Now let v € D (L*(k)) = L*(R)3 and
L*(k)v =: ¢ € L*(R)3. We again use that

<L(k)w, ’U>L2(]R)3 = <w, L* (k)U>L2(1R)3 = <w, (P>L2(]R)3 (323)

for all w € D(L(k)). We now look at special functions w where the first and the third
component are zero. From (3.2.3) we get

J 10y, woT3dx1 = J W, dxq
R R

and therefore
j Ox, w3 dxy = —J w3ip,dx;
R R

for all w, € H'(R). By the definition of weak derivatives it follows that 73 € H'(R) with the
weak derivative dy, 73 = i, € L*(R).
Analogously, we get that 7, € H'(R) with 0,7, = i¢, — ikv; € L?(R) when we insert w =
(0,0,w3) " into (3.2.3). All in all, we get v € D (L(k)) and hence that L(k) is self-adjoint.

O
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Remark 3.2.3
Since L(k) is self-adjoint, it follows that the spectrum of L(k) is real. Since A is real and diagonal,
this implies that the generalized eigenvalue problem L(k)w = —wAw has only real eigenvalues

w = w(k) € R. Indeed, testing the eigenvalue equation with w gives us:
—w{Aw, w)ary = (L(kK)w, w)2ry = (W, L)w)2rys = —{w, Aw)p2(rys-

Since (Aw, w)2(rys = {w, Aw) 2Ry, it follows that w € R,

Let us now impose some assumptions on solutions of (3.2.2). Assume that in a neighborhood

of a fixed k = ko € R there is a unique smooth eigenvalue curve
k — w(k).

This eigenvalue curve defines the dispersion relation for our Maxwell problem.

Remark 3.2.4
In Corollary 3.3.9 we will prove the existence of a C*-eigenvalue curve under the following As-

sumptions (A1)—(A4). We will use this smoothness in Chapter 4 to calculate the Taylor expansion of
w(k).

For our analysis it will be necessary to additionally assume that

v := w(kp) is a simple eigenvalue of (3.2.2) isolated from all other eigenvalues at k = k.
(A2)
Let B = R? be a small neighborhood of (kg, w(ko)). These assumptions guarantee that for
(k,w) € B the eigenvalue problem (3.2.2) has a solution if and only if the dispersion relation
is satisfied.

Remark 3.2.5

Since €1 depends on xy, it is in general not possible to solve (3.2.2) explicitly. We refer to Example
3.1.4 where an explicit solution and a dispersion relation was calculated for a special choice of €.
In Section 3.4 we will also present a method to calculate solutions numerically and check if the
eigenvalues are isolated.

Remark 3.2.6

When there is a solution of (3.2.2), we will always select a solution w with w1, w3 real-valued and
wy imaginary-valued, to shorten some of the computations later on. This can always be done since
the problem is linear. To prove this we start by assuming that v is a non-trivial solution of (3.2.2). If

Re (v1) = ilm (v2) = Re (v3) = 0 we simply select the solution w = iv. If not, write L(k)v = 0 as

€1(x1)wovy +kvs =0,
€1 (xl)w@ — iaxlﬁg, = 0,

kv — 10y, 02 + pnovov3 = 0,
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which shows us that  := (01, —02,73) " is also a solution of (3.2.2). Now

w = %(v +79) = (Re(v1),iIm (v2),Re (v3)) "

has the desired properties.

For the eigenfunction at k = ko we will write m := w(kg) and we choose the normalization

(Am, myp2 gy = f]R (e1 (m} —m3) + pom3) dxy =1, (3.2.4)

which will simplify the calculation later on.

3.3. Solution of the Inhomogeneous Problem
In this section we want to study the inhomogeneous version of the eigenvalue problem

wep 0 k U9
Trwv:=Lk)v+wAv=| 0 we iy nl=Ff (3.3.1)
k i0y, wup U3

withk,we Rand fe N (Tk,w)l, where
N (Tie) © D (Tio) = {w ‘R — C?|w; € LA(R), wo, w3 € Hl(JR)}.

Remark 3.3.1

The solutions of certain inhomogeneous problems will play an important role in the construction of
higher order correction terms for our asymptotic solution of Maxwell’s equations. Note that for the
approximation result of Chapter 6 it will not be necessary to calculate the solutions of the inhomoge-

neous problems explicitly.

Before we can show the existence of solutions of (3.3.1) we have to collect some helpful
results.
Let us first state some properties of Ty .

Corollary 3.3.2 (Properties of the Operator T )
Let k,w € R. The operator Ty, : D (Ty,) — L*(R)3 is linear, closed and self-adjoint.

PROOF: The proof can be done analogously to the proof of Lemma 3.2.2.
Ul

This corollary will allow us to apply the well-known closed range theorem, see e.g. [86]:
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Theorem 3.3.3 (Closed Range Theorem)
Let X,Y be Banach spaces and T : D (T) — Y a linear, closed and self-adjoint operator with D (T)
dense in X. Then

if and only if R (T) is closed.

Before we can prove the existence of solutions of (3.3.1) we have to add an additional as-

sumption on €. Assume that there are constants € * > 0 such that
€ (x1) > €f* as x| — +o© (A3)
1\ 1 = £

Under this assumption it will be possible to use the theory of exponential dichotomy, see
[16] for more details.

Definition 3.3.4 (Exponential Dichotomy)
Let | < R be an interval and A : ] — C™" be a continuous coefficient matrix. Let Y(t) be a

fundamental matrix for the linear differential equation
ory = A(t)y. (3.3.2)

Equation (3.3.2) possesses exponential dichotomy if there exist constants K, L, «, B > 0 and a projec-
tion P such that

Y(H)PY " (s)| < Ke %), t>5,
Y()(I—P)Y~!(s)| < Le 67D, s>t

A\

It can now be shown that exponential dichotomy is related to certain Fredholm operators.

Theorem 3.3.5 (Exponential Dichotomy and Fredholm Property)
Let A : (—o0,00) — C™" be bounded and measurable. The operator T : D (T) — L?*(R)" defined

by
(Ty)(t) = ox(t) — A(t)y(t)

on D (T) = HY(R)" is a Fredholm operator if and only if the ordinary differential equations
oy = A(t)y, t=0

and

\%
o

oy = —A(-t)y, t
possess exponential dichotomy.

PROOF: This theorem and its proof can be found as Theorem 1.2 in [5].
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Furthermore, one can show that small perturbations do not influence the dichotomy.

Lemma 3.3.6 (Perturbation of Exponential Dichotomy)
Let ] = Rt and B : | — C"*" be a perturbation with lim;_,, |B(t)| = 0. If (3.3.2) possesses
exponential dichotomy then

ory = (A(t) + B(t))y

also possesses exponential dichotomy.

PROOF: This follows from Proposition 1 in Chapter 4 of [16]. There it is stated that expo-
nential dichotomy is preserved on an interval [t*,00) when |B(t)| < C* for all t € [t*, ),
where C* > 0 only depends on the constants K, L, «, § from the definition of the exponential
dichotomy. Since lim;_, |B(t)| = 0, this condition is satisfied for t big enough.
The discussion starting on page 13 of [16] allows us to extend the exponential dichotomy to
the whole half-line.

O
We can now combine Theorem 3.3.5 with the closed range theorem since Fredholm opera-
tors have closed range by definition.

Lemma 3.3.7 (Solutions of the Inhomogeneous Problem)
Let €1 € WY (R) satisfy (A3) and let k,w € R be such that k> > wzelioouo and wey # 0. Assume
that we are in one of the cases

i) 0is a simple eigenvalue of Ty, isolated from all other eigenvalues;
ii) 0 is not an eigenvalue of Ty .
IffeN (Tk,w)l < L2(R)3 (f € L2(R)3 if N (Ty,) = {0}), then (3.3.1) has a solution v € D (Ty,).

PROOF: Equation (3.3.1) splits for we; # 0 into the scalar equation

1
01 = wiel (fl — k'U3) (333)
and the reduced problem
Tiwd = f (3.3.4)
with
Tk . weq i@xl 5 (%] J~r L fz
g .= . 2 7 e 7 =
n 16961 CUHO_WLE] (%] f3_wie1f1
and
7 — l(R\2
D (T,W) .= HY(R)?.
Note that

- k T
(v2,03)" €N <Tk,w> = <_we1 U3, 02, v3> € N (Tiw)
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and hence
~ o~ AL i
FeN(Tew) <= feN(Tiw)'.

We also obtain that 0 ¢ P(Tk,w) if and only if 0 ¢ p(Tj ), where p(Tk,w) as usual denotes the
resolvent set of the operator Tk,w. Indeed, we see that T, is invertible if and only if TN}W is
invertible since (3.3.3) is just an algebraic equation.

As a direct consequence of Corollary 3.3.2 we have that Ty , is linear, closed and self-adjoint.
The result will follow from the closed range theorem when we can show that Tk,w is a Fred-
holm operator. With this aim, we rewrite the problem as the linear ordinary differential
equation

00 =A(x1)0+ g

with

iwer (x1) 0

i fa—w%lfl
- ( : )

Theorem 3.3.5 states that Tk,w is Fredholm if and only if the ODEs

A(xqp) = < 0 i(wuo - weﬁ%)) _. {A(xl), x1 <0,

8x15_ = A_(Xl)g_, X1 < 0, (335)

and
0ot = A (x1)3", x>0, (3.3.6)

have exponential dichotomies. We only show the dichotomy for (3.3.6) as (3.3.5) can be
treated analogously.
We now want to use Lemma 3.3.6, hence we introduce the problem

Oy w = Aypw (3.3.7)
with the constant coefficient matrix
0 iwpy— &
Al = lim A(xy) = we
X1 iwe ™ 0

Now it is easy to see that (3.3.7) possesses an exponential dichotomy since the eigenvalues

Mp = +7/k%2 — w2e P

of A are real and have different signs for k? > wze;r “lo, see [16, Chapter 2]. Note that
this corresponds to (3.1.5) in Example 3.1.4.
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Now Lemma 3.3.6 also implies that
00" = Ap(x1)0" = (Ayoo + (A (x1) — Ayer))TT

possesses exponential dichotomy because |A4 (x1) — A4| — 0 for x; — c0.

Remark 3.3.8

In Chapter 4 we will use Lemma 3.3.7 for two different pairs of parameters (k, w). We will use case 1)
to analyze Ty, ,, and we will use case ii) to analyze Tsy, 3,,, Where ko, vo are fixed as in (A2). Hence,
it will be necessary to assume that

w(ko)er #0, w(Bko)er #0 and k3> w(k0)2p{)ef’°0 (A4)

and
3vy # w(3ko), i.e. 3vy is not an eigenvalue of (3.2.2) at k = 3ko. (A5)

Assumption (AS) is called non-resonance condition.

The reduction to (3.3.4) can of course also be done for f = 0. We will use this reduction to

show some useful properties of solutions of the homogeneous problem (3.2.2).

Corollary 3.3.9 (Smooth Eigenvalue/Eigenfunction Curve)
Let (A1)—(A4) be true. Then for some & > 0 the eigenvalues and the corresponding eigenfunctions of
problem (3.2.2) satisfy

we C¥((ko—8,ko+0),R) and weC* ((k— 3,k +3),[X(R) x H'(R) x H(R)).

PROOF: We translate our problem into standard perturbation theory of spectra, as discussed
in [42]. We rewrite (3.2.2) as

A L(Kw(x;) = ww(x1),  x; € R\{0}.

By the assumptions, 1 is a simple eigenvalue of —A~1L(kg) with eigenfunction w(ko), and
there are no other eigenvalues nearby. As shown in the proof of Lemma 3.3.7, w belongs
to the resolvent set of A~'L(ko) if and only if Tkg,w is invertible. For w ~ 1y we can write
Tko,w = Tko,vo + R with a perturbation R : L>(R) — L?(R), the norm of which is bounded by
Clw — 1.

In the proof of Lemma 3.3.7 we have seen that Tko,l/o is a Fredholm operator, therefore
0 ¢ Oess (Tkwo>, where Oegg (’IN’kU,VO> denotes the essential spectrum of Tkoﬂfo' and the same

is true for Ty, ., if w is close to vp. If 0 was an eigenvalue of ka,wr the number w # vy would
be an eigenvalue of —A~!L(kg) which is impossible in a small enough neighborhood of vy
by Assumption (A2). As a result, 0 is contained in p (Tko,w> and thus vy is an isolated simple

eigenvalue of —A~1L(ko).
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For k ~ ko, Theorem 1.8 in §VIL1 of [42] now shows that —A~!L(k) has a simple eigenvalue
w(k) smoothly depending on k. Also, the projection P(k) onto the eigenspace is smooth in
k. Hence, the mapping k — P(k)w(ko) is a smooth family of eigenfunctions of (3.2.2) if k is
close to ky.

O

Remark 3.3.10

The reduction to two systems of ordinary differential equations (3.3.5) and (3.3.6) can also be helpful
to solve the eigenvalue problem (3.2.2) explicitly, for more on ODEs see e.g. [63].

First, we have to determine the corresponding fundamental matrices on both sides of the interface. To
make sure that the solutions are integrable we then have to select a solution from the stable subspace
ES(AL) on the right of the interface and a solution from the unstable subspace E¥(A_) on the left
of the interface. Finally, we have to match the solutions at the interface to get continuous functions.
This implies that solutions can only exist when the intersection ES(A ) n EY(A_) is non-trivial at
the interface.

For a general € it is difficult to determine the fundamental matrices, but for some special choices of
€1 it is doable, see e.g. Example 3.1.4.

The next lemma allows us to improve the regularity of solutions of (3.3.1) if the right-hand
side is smooth enough.

Lemma 3.3.11 (Higher Regularity Solutions of the Inhomogeneous Problem)
Assume (A1) and (A4). Letk,w € R, f := (f1, fo, f3) | with fi € H*(R) and f», f3 € H*(R). If
v € L2(R)? is a solution of (3.3.1), then v € H3(R)>.

PROOF: We start by showing that v € H!(IR). From (3.3.1) we know that

{i&xl vy = f3 — kv — powvs, (338)

i0y,v3 = fo — €1w0y.

The right-hand sides in (3.3.8) belong to L?(R) and therefore vy, v3 € H!(R). The assump-
tions on €1 imply that dy, (el’ 1) = —€; 20y,€1 € L(R). Now v € H!(RR) is a direct conse-

quence of
1
v = e (f1 — kvs). (3.3.9)

We can now iterate this process since ;1 € W¥*(R):
03(1 <€1_1> = 2e7°(0x,€1)* — 61_2532(161 e L°(R),
a;’;l (el’l) = —661’4(89(161)3 + 6€;3&X1€15§1€1 - 61’28;9;161 e L°(R).

Equations (3.3.8) and (3.3.9) yield that v € H?(R)? if one knows that v € H!(IR)3. This fact
then implies that v € H3(R)>.
O
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3.4. Numerical Calculation of the Eigenfunctions

Let us now describe one way to calculate the eigenfunctions and the dispersion relation nu-

merically.

Since we are interested in sufficiently regular solutions of (3.2.2), we rewrite the problem
as a second-order ordinary differential equation for w3. To this end, we differentiate the
second equation in (3.2.2) and use (3.2.2) itself on R\{0} to get

8§1W3 = 10y, €1(x1)wwy + i€ (x1) w0y, w2

axlel(xl)
= —— 2 0 w3 — €1(x1)w(Lowws + kw
_ Oyé€1(xa) 2 2
= 61(x1) 6x1w3 €1(X1)p0w w3 + k“ws.

From the interface condition [w;]1p(0) = 0 we deduce the condition [[axé—lmﬂ D (0) = 0. Now
we have to solve the eigenvalue problem

Oy, €1(x
22 wa(r) + €(1x<)1) B3 (1) + Koo (1) = 1 (x1)owus(v1), 11 € R\{0},
W . (3.4.1)
fealio(@) = | %] o) =0,
€1 lip
Note that we can use w; = —eliw w3 and wp = —el%d Ox, w3 to calculate the remaining com-

ponents of w. We also see that the interface conditions [e1w;]ip(0) = [w2]ip(0) = 0 are
satisfied if ws solves (3.4.1).
To simplify the numerics we assume that we can write w3z = w3, + w3 5, with an at least two
times differentiable function w3, and a function w3 s that has a discontinuous first derivative
atx; =0, e.g.
w; = const.,, x1 <0,

w3s(x1) = :

w3/s(x1), x1>0

and choose w; s(0) = wy such that w3 is continuous. Note that with this choice w3 satisfies
the first interface condition.

For the second interface condition we calculate Jy, w3 and get that

ax1W3 .
|[ 1w Hm(O) -0
— €; (0) (6x1aJ3r( +8x1w3s ) e (0)0x, w3,+(0)
€ (0) — ¢ (0) ) €1 (0)

— (0) Ox, w3(0).

€ (0 )
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With this we set € := ef'((e))%(g;_(()) and define the linear operator £ as follows:
1

(£w3,r)(x1) = { —5gn (g) a351ZU3,r(O), X1 < 0,

—sgn (€) Oy, wg,r(O)e_‘g‘xl, x1 = 0.

Note that with w3 s := Lws, the second interface condition is satisfied and lim w3s(x1) =0,
X1—00
. limOC w3,s(x1) = —sgn (€) Oy, w3 (0).
1> —

Thus, w3, has to solve

<_832c + M 6x1 + k2> (I + ﬁ)ZUQ),r(Xl) = €1(X1)p0w2(1 + ,C)ZU3,1~(X1), X1 € IR\{O},
oe(x)

[w3,]1p(0) = [0x,w3,]1p(0) = 0.
(3.4.2)

We are interested in H'(R)-solutions, therefore we have at least the boundary conditions

xol_i)rgoo w3r(x1) = sgn (€) dx,w3+(0), x{i—{%o w3 (x1) = 0.
To solve (3.4.2) numerically for a fixed k € R we discretize the problem over a finite interval

[—d,d] < R and add the numerical boundary conditions

{w&r(—d) = sgn (€) dx,w3,(0),
ZU3,r(d) =0

to ensure that the solution w3 is zero at the boundary of the interval. We now apply a
solver for a generalized eigenvalue problem, for example a solver based on a Krylov-Schur
algorithm, see e.g. [78].

Let us now calculate the solution of the eigenvalue problem for a non-trivial €; and let us
check if the Assumptions (A2), (A4) and (A5) are satisfied.

Example 3.4.1 (Numerical Solution of the Linear Eigenvalue Problem)

For e1(x1) = 1xr_ + (1 +e " )xR,, see Figure 3.1 (a), and py = 1, we compute a numerical
solution of (3.2.2) with the help of (3.4.2) and the method described above. Note that for this choice
of €1 the Assumptions (A1) and (A3) are satisfied with efm = e{—roo =1

First, we determine the dispersion relation by solving (3.4.2) for k € [0.4,1.6]. See Figure 3.1 (b)
for a plot of the nonlinear dispersion relation. We now fix ko = 0.5 and check numerically that
Assumption (A5) is satisfied, indeed w (ko) = vo ~ 0.494, 3vy ~ 1.481 and w(3ko) ~ 1.404. Since
ko > w(ko), it also follows that Assumption (A4) is satisfied.

For the fixed ko the calculated eigenfunction m can be seen in Figure 3.2. We note that eymy, mo,
mz are continuous functions as demanded by the interface conditions. The eigenfunction m is also
exponentially decaying for |x1| — oo, which allows us to construct a localized wave packet for the

nonlinear Maxwell problem, see Chapter 4.
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(a) Material Function (b) Dispersion Relation

€1

05

4 3 2 41 o 1 2 38 4 04 06 08 1 12 14 16
Ty k
Figure 3.1.: (a) The graph of x; — €1(x1) for the chosen potential €1(x1) = 1xr_ + (1 +e""1)xR, -
(b) The dispersion relation k — w(k) for the problem. Marked are the points (0.5, w(0.5))
and (1.5,3w(0.5)) to illustrate that (A5) is satisfied for kg = 0.5.

(a) Eigenfunction (b) Exponential Decay

—€1my

03 . . .
-100 -50 0 50 100
x1

Figure 3.2.: (a) The eigenfunction m of the linear problem (3.2.2) for kg = 0.5. (We plot €1m; to show
that the linear interface conditions are satisfied.)
(b) Logarithmic plot of the eigenfunctions to illustrate that the solution is exponentially
decaying.

To check the effects of the boundary, we repeat the calculation for different intervals [—d, d| and get the
eigenvalue w(d) closest to vy depending on d. Figure 3.3 (a) shows that the error in the calculation
of w(d) converges to zero for increasing d.

To be more precise, we used step size hy, = 0.001 in space and step size hy = 0.001 in k and interval
length d = 5-103 to calculate the dispersion relation and we used hy = 0.01 and interval length
d = 5-10* to calculate the eigenfunction. For the calculation of Figure 3.3 (a) we used d ranging
from 10% to 10* with the step size hy = 0.01.

To solve the generalized eigenvalue problem, we used the second-order difference quotients with zero
Dirichlet boundary conditions to discretize the derivatives. Then we utilized the Matlab functions
“eigs”, where we calculated the first 10 eigenvalues closest to vy with a convergence tolerance of
10710, We then only selected solutions where the corresponding eigenfunctions were almost zero in
a small neighborhood of the boundary, i.e. the norm of w3 on [—d, —d + 100h] U [d — 100h, d] is
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(a) Eigenvalue Error

[0 — w(d)]|

10'10 L

10'12 L

10714 !
10? 10° 10*
d

Figure 3.3.: (a) Numerical convergence test for the eigenvalue w = vy ~ 0.494 of T}, :=
L(ko) + wA for ko = 0.5 in dependence on the computational box size d.

smaller than 10~°. Our computations suggest that there are no other eigenvalues in a neighborhood
of vo and that therefore vy is an isolated eigenvalue, as demanded by Assumption (A2).

Remark 3.4.2

For the approximative solution in Chapter 4 it will be necessary to determine dw (ko) and 0¢w (ko).
Let us now present two different methods to calculate these values.

First method: We solve the linear eigenvalue problem (3.2.2) not only for ko, but instead for multiple
values k in a small neighborhood of ko, i.e. we determine the dispersion relation in a neighborhood of
ko. Then we use finite differences to approximate drw (ko) and 02w (ko).

For our calculations we will always use this method since we already determined the dispersion
relation in a neighborhood of ko.

Second method: We use (3.2.2) to derive an explicit expression for dgw (ko) and 02w (ko). Note that we
will suppress the x1-dependency and explicitly write the k-dependence in the following calculation.
By differentiating (3.2.2) in k and testing it with the solution m = w(ko) we get in k = ky

5kw(ko)<Am, m>L2(]R)3 = —<8kL(k0)m, m>L2(]R)3 — <(L(k0) + w(ko)/\)akw(ko), m>L2(]R)3,
(3.4.3)
where o L(ko)m = (m3,0,my1)". Note that by Corollary 3.3.9 the differentiation in k is possible.
Since L(ko) + w(ko)A is a self-adjoint operator, see Corollary 3.3.2, it follows that

<(L(k0) + w(ko)/\)akw(ko), m>L2(]R)3 = <6kw(k0), (L(ko) + w(ko)A)m>L2(]R)3 = 0,
and with the normalization (3.2.4) we deduce from (3.4.3) that

5kw(ko) = -2 J;R mims dxl.

Note that we used Remark 3.2.6 and that therefore my, m3 are real-valued functions.
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3.4. Numerical Calculation of the Eigenfunctions Chapter 3

To derive a formula for 62w (ko) we differentiate (3.2.2) two times in k. With the same arguments as
before one arrives at

5%60(](0) = —2<(8kL(k0) + 0kw(k0)A)6kw(ko), m>L2(IR)3.
To determine oyw (ko) we now have to solve
(L(ko) + w(ko)A)dkw(ko) = (dkL(ko) + ke (ko) A)m =: f

with [0kw2(ko)l1p(0) = [dkws(ko)[1p(0) = O.
This can again be transformed to a second order ODE for oyws(ko):

Oy €1(x
ﬁko,v[)akZU(;(ko) = (—5}251 + xell(lx(l)l) (3;(1 + k% — €1 (xl)p.ové> (3]&03(](0)
Oy, €1(X .
{ =kof1 —voe1(x1)f3 — 1L(1) fo 410, fo, x1 € R\{0},
€1(x1)

[0xws(ko)]1p(0) = HWLD (0) =0.

(3.4.4)
For the transformation of the interface conditions we used that

2 Vo€1112
el o-[e] o-0

Now one can proceed similarly to the calculation of w3, but instead of a generalized eigenvalue prob-
lem, one has to solve an inhomogeneous ordinary differential equation. Note that the solution of
(3.4.4) is not unique, since w3 (ko) is a solution of Ly, ,,w3(ko) = 0. To circumvent this problem one
has to find solutions in the orthogonal complement of span{ws(ko)}, e.g. by employing a biconjugate
gradient method or other iterative methods in combination with projections, see e.g [54, Chapter 4].
Note that for the first method (3.2.2) has to be solved multiple times. For the second method (3.4.4)
has to be solved only once.

All in all, we see that it is possible to solve the linear Maxwell problem, at least numerically.
With Lemma 3.3.7, Corollary 3.3.9 and Lemma 3.3.11 we have also established the necessary
tools to analyze the nonlinear Maxwell problem in the following chapters.
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4. Formal Asymptotic Solution of the
Nonlinear Problem

Let us formally derive an asymptotic solution of Maxwell’s equations with the help of the
method of amplitude equation. But first, we state the exact problem we want to solve.

In Section 3.1 we introduced transverse magnetic modes for solutions of the linear Maxwell
problem. Since our asymptotic ansatz is based on the solutions of the linear problem, we
therefore also use the reduction to TM-modes for the nonlinear problem and set

E(x,t) = (E1(x,1),E(x,1),0)",  H(x,t) = (0,0, Hs(x,1))". (4.0.1)
As before we use the displacement field
DE) =€ +e3(E-E)E

with €1 = €g(1 + x1) and €3 = €px3.

Remark 4.0.1
Reduction (4.0.1) to TM-modes is consistent with the chosen nonlinearity in the displacement field
since Ampere’s circuital law 0yD = V x ‘H can be written as

& & Ox, H3
D=l |(L+x1) | & |+x:(ET+E) | &)= —0uHs | =V xH.
0 0 0

For a more general nonlinearity as in (2.2.4) we have to guarantee that

2
Or(x3(x1,E,E,E))3 = 0 ( > X3,3klm(x1)5k515m> =0

k1,m=1

to be consistent with TM-modes. This is for example satisfied if

2
Z X3,3k1m (X1)E&E1Em = 0.

k,1,m=1
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Chapter 4

Let T > 0. With (4.0.1) we can reduce (2.2.10) and (2.2.11) to the following TM-Maxwell’s
equations
( 0Dy — 0y, H3 = 0,

0Dy + 0y, Hz =0,

—0x, &1 + 0y, &2 + W0 H3 = 0,
V-D = oo,

V-H=0

\

on (R*\I';) x (0, T") with the interface conditions

[Di]op = or,  [&2]20 = [Ha]p =0

onT, x [0, T).

This can be reduced even further. First, note that the divergence equation for H is always
satisfied since the only non-trivial component #3 is independent of x3. For the other diver-
gence equation we use that solutions of Maxwell’s equations satisfy o;D = V x H. This
implies that

o(V-D)=V-(6D)=V-(VxH)=0.

Therefore, V - D = g is satisfied for all time t > 0, if the initial value for D satisfies this
divergence condition. Similarly, we get from 0;D; = 0y, H3 that

Ot[D1]2p = [0x, H3]2p = 0x,[H3]2p = O.

Hence, we only have to check the interface condition for D; at the initial time ¢ = 0.

Remark 4.0.2
Note that the tangential derivative of a jump is the jump of the tangential derivatives. This follows
by Hadamard’s lemma, see e.g. [83, Section 173-175].

We will combine the three non-trivial components of the electromagnetic field into the vector
U(x,t) := (E1(x, 1), Ea(x, 1), Ha(x, 1) T

and also write
Ug(x,t) = (&E1(x, 1), Ea(x, if),())T

to denote the part of U that corresponds to the electric field.
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Chapter 4

For initial data U : R? — R?, our reduced Maxwell problem is now given by

2 2
e{—r 0 O u1i + uzi uli —0x, u?)i
0 e 0 |aU*+ero | (U +ut)us [+ o Ug -0 (4.0.2)
0 0 wo 0 Oxy uzi - axzulir

onR% x (0, T') with
u*(,0)=u®*  onR%, (4.0.3)

and the interface conditions
[[UZHZD = [[U3]]2D = 0 on FZ X [O, T/). (4.0.4)

To get a solution of Maxwell’s equations for a prescribed volume charge density ¢g and a

prescribed surface charge density or, the initial condition Ug)) must also be chosen such that

the divergence condition

0x, D1 (UEEO),t) + 0, D2 (uéo),t) = Oy, (eliu{o),i Lt <u§o),¢2 n uéO),iZ) uggﬁ)

+ 0, (ef U e (U U ) uf) - @05)

and the interface condition
(0) _ (0) (0)? (0)2 4 7(0) _
D1 (uf )HZD = [etrf” + s (U™ + ") uf LD —or onT, (4.0.6)

are satisfied. System (4.0.2), (4.0.3) and (4.0.4) is the problem treated by our approximation
result and will be the main focus of our analysis in the following sections. The problem of
finding suitable initial values for (4.0.5), (4.0.6) will be discussed separately in Chapter 7.

Remark 4.0.3
Note that the divergence equation V - D = gq is not contained in (4.0.2). We will nevertheless use
this equation in Section 6.2 to estimate Oy, D.
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4.1. Construction of the Asymptotic Solution Chapter 4

4.1. Construction of the Asymptotic Solution

Our main goal is the derivation and justification of an asymptotic solution of (4.0.2), (4.0.3)

and (4.0.4). We will follow the same idea as presented in Example 2 in Section 2.3.

To treat the linear and nonlinear terms in a similar fashion, we remember Assumptions (A1),

and assume analogous at there are constants €5, , €3 ,, such tha
A3) and logously that th tants €3, €5, such that
€5 € C(Re) nW>P(Ry), €5, <€5(x1)<eiy, Vi eR\{0} (A6)
and that there are constants e;—roo such that
€5 (x1) > €5* as  x3 — Lo (A7)

Furthermore, assume (A2), (A3) and (A4) to use all the results of Chapter 3. Then there
exists a wave number ky € R, a wave frequency vy = w(kp), a group velocity vy := dxw(ko),
a constant 1, := 02w(ko) and the eigenfunction m(x1) := w(xy, ko).

Asymptotically, we consider a wave packet based on the carrier wave
m(xp)elkox2—voh) (x,1) € (IRZ\FZ) x [0, o0),

which solves the linear Maxwell problem, i.e. (4.0.2) for €3 = 0 and with gp = 0 and or = 0.
Now we make the ansatz

gans,l (x/ t)
Uans (%, 1) := | Eansp(x,1) | 1= €A (e(x2 —11t), ) m(xp)el®or2710D) 4 cc. (4.1.1)

Hans,S (xz t)

with a complex envelope A = A(X5,T) : R x [0,0) — C and a small parameter 0 < ¢ « 1.
Since we are interested in TM-modes, we of course choose Eans3 = Hans1 = Hans2 = 0.

The envelope depends on the slow variables X := ¢(x — v1t) and T := &*t and travels
with the group velocity v;. If A is localized we get that Uans is localized in x; and x; and is
traveling in x,-direction.

Our goal is to show that U,ns is a “good” approximation for a solution of (4.0.2) if A is a
solution of an effective nonlinear Schrodinger equation. At the end, we want a theorem
analogous to Theorem 2.3.1:

Goal 4.1.1 (Approximation Result)

Let Ty > 0 and A be a solution of an effective nonlinear Schrodinger equation. Then there exists an
eo > 0 and a constant C > 0 such that for all € € (0,¢q) there is a solution U of (4.0.2), (4.0.3),
(4.0.4) in a suitable function space X with

JU(t) — Uans(1)||x < Ce¥2, Ve [0, Toe?].
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Remark 4.1.2

A result like Goal 4.1.1 would give us the existence of a solution U that is close to a wave packet over
a long period of time, which is interesting from an analytical point of view.

From a numerical point of view we notice that it is in general much simpler to calculate Uans than
it is to calculate a solution of the full Maxwell problem with a standard numerical method, e.g. the
finite element method. This has multiple reasons. First, we note that we no longer have to solve a
problem on R* x (0, Toe~2), instead we have to solve the simpler problems for m and w (k) on R, see
Section 3.4, and for A on R x (0, Ty), see Section 2.4. Second, we see that due to the e-dependence
we can use a rougher discretization for the slow variables X, and T compared to the discretization
of xp and t. Additionally, we have that the calculations for m, w(k) and A are independent of € and
that the calculated results can be reused for different e. Numerical tests for the method of amplitude
equations can be found in [84, 22, 26].

4.1.1. Derivation of the Nonlinear Schrodinger Equation

The first step to achieve Goal 4.1.1 is to find an equation for A and higher-order corrections
of U s such that the residual

a1811)1 (uans,E) - axz uans,S
Res(uans) = 5tD2(uans,E) + axl Uans 3 (4.1.2)
_axz uans,l + axl uans,Z + Ho0t uans,S

of (4.1.1) in the Maxwell problem (4.0.2) is small enough for the rigorous analysis of Chapter
6. Note that we use the abbreviation Uans £ := (Eans 1, Eans 2, 0)". This section will be focused
on the analysis of (4.1.2), the discussion of the residual in the interface conditions will follow
in Section 4.1.2.

In view of the linear eigenvalue problem it is reasonable to work in Fourier variables and

transform between x, and k via
~ 0 .
FUIK) = F0 = @m) 2 [ flrae e dn,
-0

The inverse transform is then given by

~

FAP) = Flaa) = @2 [ piwger

and we obtain with the convolution theorem, see e.g. [33],
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We compute

o0 o0
f eA (e(xp —11t), €%t) ellkoxa—tot) g —ikx2 gy, — J eA (e(xp — vit), €%t) e H((k—ko)x2+10t) 4y,

—0 —00

— JOC A (Xp, €%t) efi(@xﬁ(k*komt”ot) dX,

—00

€

(4.1.3)
where we used the substitution X, = e(x — v1t). Therefore, our transformed ansatz has the

form
é\ansl(xlrk/t) k—k
Uons (11,5, 1) := | Eanso(x1, k1) |:= A <€0,£2t> m(xy)e Wotk—k)v)t L & - (4.1.4)
%ans,fi (xlz k/ t)

~

where c.¢.(f) = 52—(7) and we note that ?(—k) = f(k).
Maxwell’s equations (4.0.2) transform to

oDy —ikHz = 0,
0Dy + 0y, H3 = 0, (4.1.5)
—ik4§1 + 8x1§2 + }Loatfk =0,

with

D =D(E) =€ +e((E-EE).

In what follows we use the notations E; := e iotk=kojv)t p .- eilkora—nt) g .— k_eko,

T :=¢’t and Xp = ¢(xy — v4t). We will suppress the arguments of m and A as well as their

derivatives if they are obvious.

Looking at (4.1.5) we see that we need the following derivatives:

Ot ans = mE; (41/01@ — eiKv A + 826TA) +cc.,

Ox, Uans = 0xymE1 A + <.

To analyze the Fourier transform of D we split the displacement field in its linear and non-
linear parts D = Dy, + Dy with

Dlin = 618, Dnl = 63(8 . 8)8
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We first calculate the nonlinear term in physical variables and apply the Fourier transforma-
tion afterwards. For our chosen ansatz we get

D1 (Uans ) = €3F1 AP A (3\m1\2m1 + 2|my|*my + m%ﬁl)

+eeFy A® (m] +mym3) + c.c.,

where we used |F;| = 1.
Now the temporal derivative is

atDnl,l(uans,E) = - 833i€3V0P§A3 (m% + mlm%)

— 83i€31/0F1|A|2A (3’7711‘27111 + 2’7712‘27111 + m%ﬁl) + 0(84) + c.c.
The Fourier transformation of F;|A|?A can be calculated via

w . .
(@) V2 [ el | A (%, TIPA(Ka, The ™ dxy

—00

. w .
= (2m) " }/2e M0t f |A(Xp, T)PA(X, T)e 52 dx,

—00
ee}

— (2m)~Y2e71E; J |A(Xo, T)PA(Xy, T)e KX2 d X,
—0

— 2 'E, (A sk A g A) (K,T).

We used X, = e(xp —11t), k = ko + eK and in the last step we applied the convolution
theorem to the cubic term. The calculation for the so-called higher harmonics, i.e. the terms
proportional to F3, is similar but we have to introduce the new abbreviations K := % and

E3 = e—i(31/0+ (k—3k0)1/1)t:

(27_[)—1/2 JOO e3i(k0x2—1/gt)A3(X2/ T)e—ikx2 dXQ

—00

o0
= (27-[)—1/2e—311/otf AB(S(Xz _ 1/11'), T)e—l(k—3k0)x2 daxo

—00

= (2m) 23U+ (k=3ko))t J © A3(e(xs — 1), T)e_ik—skog(XZ_Vl ) ds

—00

o6} ~
— (2m) V27 E; J A3(X,, T)e X2 4X,

—00

= 2ne 1, (A sk A g A) (&, 7).

Allin all, we get

~

‘Dnl,l(uanS,E) = 27’[8263E] (3’77’11‘27111 + 2’77’12‘27111 + m%ﬁl) (A\ *KZ*K A) (K, T)

+2me?e3Eg (m3 + m1m%) (ﬁ g A g ﬁ) (K, T) + cz.
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and

A~

atﬁn1,1(uans,E) = — 2miees1pEy (3]my 2my + 2|ma|*my + m3my) (A sy A wg A) (K, T)
— 2mie*3e3vo Es (m3 + mym3) (A g A %k A) (K, T) + O(e%) + ce.
The second components ﬁnl,z(uans,,;) and 8tﬁn1,2(llanslg) are obtained by simply switching
the indices 1 and 2 and the third component is obviously always zero. In the following we

will use that we selected the eigenfunction such that m; is real and m; is imaginary, see
Remark 3.2.6, hence

3|my|*my + 2|mo|*my + m3my = 3m] — mimy,

3|ma|*my + 2|my|Pmy + mAity = —3m3 + m3m,.

Before we can start to put everything together and to compare powers of ¢, we need to Taylor
expand the eigenvalue problem (3.2.2) in k at ko. By Corollary 3.3.9 the Taylor expansions of
w(k) and w(k) at ko exist and we get

w(k) = w(ko + eK) = vp + eKvy + %szKZVz +0(&),
1
w(k) = w(ko + eK) = m + eKoyw (ko) + §82K251%w(k0) +O(e).

The Taylor expansion of the operator L(k), see (3.1.11), is given by
L(k) = L(ko + EK) = Lo+ eKLq

with the operators Ly and L; defined as

koms ms
Lom = L(ko)m = iaxlmg, ’ le = ((3kL(k0))m = 0
komy + 10y, my my

Note that all higher k-derivatives of L vanish.
Inserting the Taylor expansion into (3.2.2) and comparing the powers of ¢, we get for g0

(Lo + voA)m = 0. (4.1.6)
For ¢! we get
K(Ll + le)m + K(LQ + Vo/\)@kw(ko) =0. (4.1.7)
Finally, for €> we get the equation
%szzAm + K*(Ly + v1A)dpw (ko) + %KZ(LQ +voA)d3w(ko) = 0. (4.1.8)
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Now we have all tools to determine the equation for A. Inserting ansatz (4.1.4) into the
left-hand side of Maxwell’s equations (4.1.5) gives us the following equation for the Fourier

transformed residual:

at‘lz/jl (uans,E) —ik ﬁans,?)
Res<uan5) = al‘,DZ(llans,E) + axl uams,3 : (4'1-9)
—ik uans,l + axl uanS,Z + Wo 0 t uans,3

We want that I@(Uans) is formally of order 3. To order € the residual contains the term
—iE1A(Lo + voA)m + .

We see that this term is zero due to (4.1.6).
To order ¢! we get
—iKE  A(Ly + 1y A)m + €<

In comparison with (4.1.7) we are missing the term K(Lo + voA)dxw(ko). In order to guaran-
tee that the residual does not contain terms of order ¢! we extend our ansatz to

~

~(k—k . _
U odr (x1,k, 1) = A <80,€2t> (m(x1) + eKopw(xq, ko)) e (ot k=kopv)t 4 &

A simple computation shows that this new ansatz delivers the same terms of order ¢’ and
has all required terms of order ¢'. Hence, our new modified ansatz satisfies Maxwell’s equa-
tions up to a residual of order &2.

Looking at (4.1.8), it is reasonable to extend our ansatz even further. Inserting

~

umodZ(xlr k/ t)

=A (k _Sko,ezt> <m(x1) + eKoyw(xq, ko) + ;esza,%w(xl,ko)) e 1ot (k=kov)t | &7

into (4.1.9) gives us the following terms of order &?:

—iF; (K%@(Ll + 1 A)dw(ko) + %KZA(LO + voA)Pw(ko) + ior AAm

~ 3m“i’ . mﬂ”%
+271€31)) (A kg A g A) —3m3 g mimy (4.1.10)

3 2
o (mimmy
— 6miesvgE; (A s A *x A) m3 + mimy |+ CC.

0
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Let us first remove the term proportional to E3 by modifying the ansatz again:

~

umod3 (Xl, k/ t)

= A (k _gko,szt) (m(xl) + eKorw(xq, ko) + ;sszaﬁw(Jq,ko)) e 1o+ (k=koJu)t

+ 2me? (A sk A xg A) (K, T)h(xy)e {0t k=Skovnt | &7,
With this correction the residual contains the additional terms
2mie?Es (A wx A xx A) (K, T)(L(3ko) + 3voA)h(x1) + O(e3) + 2.,

where k = 3ky + ¢K was used. We therefore select the function h as the solution of

m3 + mym3
(L(3k0) + 31/0A)h = —31p€3 mg + T’Hzm% . (4111)

0

All of the Assumptions (A1) — (A6) are now necessary to prove the existence of a solution
h, see Remark 3.3.8. First, we apply Lemma 3.3.11 to the linear eigenvalue problem to show
that m € H3(IR), see also Lemma 4.2.6. By the Banach algebra property of 73(R) it follows
that the right-hand side in (4.1.11) is also in H>(IR)>. We can now apply case ii) of Lemma
3.3.7 for (k,w) = (3ko,3w) and get the existence of a solution h.

The remaining terms of (4.1.10) can be further simplified with the help of equation (4.1.8) to
obtain

K2A(Ly + v A)dgaw (ko) + %KZA(LO T voA)2aw (ko) _%K%uz/\m.

Therefore, the residual for our modified ansatz U,,,.43 to order & is given by GA + ¢z with
the operator G defined by

3 2
3my — mymj

~ ~ 1 ~ ~ =~ ~
GA .= —iE; (i&TA — 2K2A1/2> Am + 2mesv (A xg A g A) —Bm% + m{-mz
0

By the right choice of A we can guarantee that the L?- projection P, of GA onto the kernel
of Lo + vpA vanishes. Since vy is by Assumption (A2) a simple eigenvalue, we have that
N (Lo + vpA) = span{m} and the projection is defined as usual by

§E f(&) m(G)da

~fmp Ry _ .
§5,m(&r) - m(E1)de

 (mmyp Ry

(P f)(x1) : m(x1) (x1).
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To guarantee that GA = 0in the subspace R (P,,) = N (Lo + vpA) we have to choose A such

that R
0= <GA, m>L2(]R)3

o ) ~ 1 ~

Q0 ~ A~
+ 21y f €3 (Sm‘l1 —2m3m5 + 3m§> dxiEq (A xg A xg A) ,

—0o0
which is the Fourier transform of a nonlinear Schrodinger equation for A.
Conclusively, we fix A as the solution of

_ 1
i0TA = —EW%QA + k|A]*A (4.1.13)

with -
K= —UOJ €3 (3m‘f — 2mim3 + 3m§> dxq,

—00
where we used the normalization (3.2.4).
For our approximation result we will use that there exist smooth and localized solutions of
(4.1.13), see Section 2.4.

Remark 4.1.3
The correction term

LK GFao(x ko)A (" = k0,82t> ittt

in flmod3 is not necessary to derive (4.1.13). Without this correction (4.1.12) would contain the
additional term

1. >
5 K2E1A <(Lo + VOA)al%w(kO)/m>L2(]R)3 )

But this term vanishes since (Lo + voA) is self-adjoint. We will nevertheless need the correction term
to remove the residual to order € completely and not only on the subspace span{m}.
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4.1. Construction of the Asymptotic Solution Chapter 4

We now study the residual in the range of the orthogonal projection Q,, := I — P,,. For one
last time we have to extend our ansatz to

Eexe1 (X1, Kk, )
2(xq,k, t)

uext(xlzk t) g
72 (xl,k 0

£2t> (m(xl) + eKdrw(x1, ko) + ;£2K26,3w(x1,k0)> e i(vo+(k—ko)v1)t

+ 27 (A *K A *K A) (k €3k0 82t> h(xl)e—i(31’0+(k—3ko)v1)t

o (A o Ang A) (k 8ko €2t> p(xy)eiCol—ko)t | 5

where the correction term in the last line is formally of order €2 and the existence of a suitable
p has to be established next.
If we insert this extended ansatz into (4.1.9) and repeat the calculations we get that

Res(Uex) = e2GA — 2mie*E; (Lo + voA) p (A By A) +8+ 0.

With (4.1.12) it follows that

R €11 R 3m3 — mym3
GA\ = —27TiE1 K (A\ *K Z *K A) eimy |+ €31 (A\ *K Z *K A) —371’1% + m%mz
Hom3 0

Therefore, the terms of order €2 in I(e\s(uext) vanish if p solves

€1m Bm{’ — mlm%
(Lo+vwA)p = —x | eymy | —e3vo | —3m3 + mimy |. (4.1.14)
Womi3 0

To show that such a function p exists, we use case i) of Lemma 3.3.7 for (k,w) = (ko, vp).
Under Assumptions (A1) — (A6) we get that the right-hand side in (4.1.14) is in L?(R)® and
it only remains to show, that the right-hand side is orthogonal to m:

€1Mq 3171513 — mmz% my
<—K eymy | —esvo | —=3m3 +mimy |, | mo >
Womiz 0 ms [2(R)3

0 oe}
= [ (er (o )+ womd) i o [

—a0 —a0

€3 (3m‘1L —2m3m3 + 3m§) dx; =0,

where we used Remark 3.2.6, the normalization of m and the definition of .

Therefore, such a function p exists and I@(Uext) is formally of order €.
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Remark 4.1.4
Note that it is possible to add additional correction terms to get an even smaller residual. We will
nevertheless restrict ourselves to this order for the residual since it is already small enough to result

in a meaningful approximation result.

4.1.2. Interface Properties of the Extended Ansatz

In this section we study the residual of the interface conditions
Resirc(Uext) :=

with uext,E = (gext,lz gext,Zz O)T-
From Section 3.1 we know that [e;w; (k)]ip = [wa(k)]ip = [ws(k)]ip = 0 for all k € R. We
can therefore differentiate the jump-conditions in k and get for j € {0,1,2}

[[eléiwl (k)]]m - [[a,{wz(k)ﬂm - [[éiwg(k)]] ~0

1D

and hence
1
€1MmM1 1D + EX[€10,W1 (Ko )[1D + € €10, w1(Ko) |1p = Y,
lerm ] + eKlerdhwn (ko)ip + 5K [erdfwn (ko) = 0
1
[m2]1p + eK[ kw2 (ko)]1p + Eesz [[al%WZ(kO)]] ip =0

1
[ms]1p + eK[ kw3 (ko)]1ip + EEZKZ [[al%wB(kO)]] o =0

With this it is easy to see that Resypc has no terms of order €* and ¢!. To order €2 we get for

the first component of I@IFC

— 2mivgEq (A\ * g A *K A) (K, T) (H€1p1]]1[) + [[63 (37’71% — mmz%)]] 1D)

—2mivyEs (A\ *E A\ *g A) (Iz, T) ([[61]11]]1]3 + [63 (71’1:13 + mlm%)]] 1D) + c.C.
To see that these terms vanish, we use that h and p solve (4.1.11) and (4.1.14), respectively,
and that we can use Lemma 3.3.11 to improve the regularity of /1, p; on both sides of the

interface, see Lemma 4.2.6. For m, h,p € H3(R)® we can then use the Sobolev embedding
H'(R4) = C(R4), which gives us that

[erpilip = — [es (3m3 —mim3) ],

[exm]ip = — [es (m] + mlm%)]]m'
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4.2. Estimation of the Residual and its Derivatives Chapter 4

For the other two components we get

I@IFC,Z = 27'[€2E1 < A *K Z A\) (K T) [[pz]h[)
+2me?E3 ( Ay A AA) (K, T)[ha]ip + €<,
Resipc,3 = 2me?E; ( K A g A) (K, T)[ps]ip
4 2me’E, ( A s A g A) (K, T)[hs]1p + €.
and ﬁe\slpc,z, @IFCﬁ vanish since h € D (L(3ko) + 3vpA) and p € D (L(ko) + vo/A) imply that

[[pZ]]lD = [[P3]]1D = [h2]ip = [h3]ip = 0.

Remark 4.1.5
Note that for our extended ansatz the Fourier transform of Resgiy(Uextg) := V - D(UextE) is given

by
leﬁl(uext,g) + ikﬁQ(uext/E) = (8xl (617’711) + ikoelmz)ﬁﬁ

+ EK(axl (€1akw(k0)) + ikoé‘l&kw(ko) + i€1ﬂ12)A\E1 +cc+ 0(82).

Similar to (3.1.9) we get that 0y, (w1 (k)) + ikeywy = 0, for solutions w of (3.2.2). A Taylor
expansion of this expression in k at kg gives us

Ox, (€1m1) + ikpeymy + eK(0x, (e10kw (ko)) + ikoer drw (ko) + ie1mz) + (9(82) =0.

A comparison of powers of € shows us that ﬁe\sdiv(uext,g) is formally of order €.
Note that Resgiy (Uext ) and Resipc (Uext) are not part of our error estimates in Chapter 6 and don’t
have to be small for our approximation result.

All in all, we have seen that ﬁext(xl, k,t) is formally a “good” approximation for a solution
of (4.1.5), i.e. formally only terms of order ¢* and higher remain in Ee\s(llext). Now we have
to rigorously estimate the residual in a suitable norm.

4.2. Estimation of the Residual and its Derivatives

In this section we estimate the residual Res(Uey) and its time-derivatives in the #3(IR?)3-

norm rigorously under the assumption that A solves (4.1.13) and is regular enough.

We go back to space-variables and by applying the inverse Fourier transformation we obtain

a tD1 (uext,E) - axz uex’(,?)
Res := Res(uex’f) = ai.‘Z)Z(llex’r,E) + axl uext,?)
- axz uext,l + axl uext,Z + Ho O uext,3
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and .
Uyt (x1,x2, 1) =eA(Xp, T)m(xl)el(kU’CZ_"Ut)

— e%0x, A(Xa, T) w1, ko)e'For2—00)
1 i(koxa—

— e3§0§2A(X2, T)02w(xy, ko)e!kor2—1ot) (4.2.1)

+&|A(Xa, T) PA(Xp, T)p(xy)eiFor200)

+ e A3(Xy, T)h(xp)edi Ko=) 4 ¢ ¢,
recalling that X, = e(xp —vqt) and T = &>t
For our error analysis in Chapter 6 we need that Res and its temporal derivatives up to order
3 are bounded in the H3(IR?)3>-norm by Ce’/? for a time interval of length O(¢72), i.e. on the
interval [0, Toe 2] for some Ty > 0.

Remark 4.2.1

Before we start the estimates, let us note some changes in the powers of € due to transformations.
First, note that due to the e-dependency of X, and K the inverse Fourier transformation comes with
an additional factor €, compare (4.1.3). In Section 4.1 we showed that I@(Uext) is formally of order
&3 after Fourier transformation we now have that Res(Uext) is formally of order €*.

Second, we lose half an order of € when we take the L2-norm of a function that depends on e(x, — v1t),
e.g.
1/2
[A(e(- —vat), T)|| 2wy = (JR | A(e(x2 —1it), T)? dxz)

_ (sl JIR |A(X, T) dXQ) 2 (4.2.2)

=2 JAC T gy -

4.2.1. Estimation of the Residual

Our goal is now to write down Res explicitly and to estimate all the occurring terms. To
shorten the notation, we take as before F; = e!ko2=%!) and suppress the dependency on

x1,x2,t. The derivatives of Uy are then given by

. 1
Oy Uext = F (eA&xlm — %idx, Ady, Orw (ko) — 53§0§2A&x1 a,%w(ko)>
+F (E|APAdyp + Ff& A30y,h) + cc.,
1
Oy Uext = ikoFy (eAm — e%iox, Adyw (ko) — e3§6§(2A8,%w(k0) + | APPAp + 3F1283A36x1h>
1
+F <£28X2Am — e%10%, Adyw(ko) — 842(9§’<2A8,%w(k0))

+F (e4 (2|APox, A + A%0x,A) p + 3F1254A28X2Ah) +ec
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and
1
Olexe = — iVpFy <8Am — e%i0x, Adyw (ko) — 5378§2A6,3w(k0) + | APAp + 3F1283A3é’x1h>

+E (—52v1c3X2Am + &1110%, Adgw (ko) + € Ea Aa,%w(ko)>
+F (—ev1 (2/APOx, A + A%0x,A) p — 3FRetv) A%0x, Al)
+F (835TAm — € 18T6’X2Aakw(k0) — € *8]"52 A&k (ko))
+ (€ (2|A]P0rA + A%0rA) p + 3FLe> A*0r Ah) + c.c.

Remark 4.2.2

Note that derivatives in t and x, generate higher-order terms since T = et and Xo = e(xy — 11t)

depend on €. A derivative in x1 does not change the order in €. For higher-order derivatives of Uext
the analogous statement holds true.

With the calculations of Chapter 4.1 we know that Res only contains terms of order ¢* and
higher. In particular, we note that therefore the derivatives 0y, Uext2 and 0y, Uext3 no longer
appear in the residual.

The parts of Res; and Res; that are linear in Uy are given by

1 _
Reshm = P1€4 <6§}2A6,%w3(k0) — (2’A‘28X2A + AZaXZA) p3> — 3F1”0)€4A25X2Ah3

+ Fete; ( 0%, Adkwi (ko) — idrdx, Adgws (ko) — v1 (2] APOx, A + A20x, A) p1>

2
—3F S €1V1A &XzAhl
1 _
+ Fele (—26T0§2A0,%w1 (ko) + (2]A]P0rA + A%0rA) pl) +3Fe%e) A%0r Ay + c.c.,
v . —
Reshn’Z = F1€4€1 (%é’%zAé’,%wQ(ko) — 18T8X2Aakw2(k0) — 1 (2|A|26X2A + Azasz) PZ)
—3Fe*eivy A%dx, Ahy

1 _
+ Fiede <2aTa§2Aa§w2(ko) + (2|A|PorA + A%0rA) p2> +3Fe%e) A20r Ahy + c.c.
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For the part of Res; that is nonlinear in Uy we get

Resy; = —¢*e3 [31/1F13’A28X2A (m3 + mym3)
+voFy A%0x, A (3mi s (ko) + m30kwn (ko) + 2mymadxwy (ko))
+ 11 A%0x, A (3|mq|*my + 2my |mo|? + Tym3)
+ voFy A?0x, A (3midxw (ko) + m30cw (ko) + 2mymad T (ko))
+2v1F|A|Pox, A (3|m1|2m1 + 2my |my|? + mlm%)
+ 2u0Fy | AP, A (3Jm [20on (ko) + [mafdgzwr (o) + iy madiaoa (ko) + mymadeoa (ko)) |
+ec+0(),

and for Res,; » we have to change the indices of the components of m and d,w (ko). The third
component of the residual is given by

1 _
Res; = Fye* <28§(2A8£w1 (ko) — (2|A*0x, A + A%0x, A) p1> —3Fetox, AA%h
1% . —
+ Fretug (%a%mﬁm(ko) — i0rdx, Adgws(ko) — v (2] APRox, A + A20x,A) pg)
— 31:1384LL0V1A25X2A}13

1 _
+ Fe’up (—25T5§2Aa£w3(ko) + (2|AP0rA + A%0rA) p3> +3F2e’uyA%0r Als + c.c.

For the estimate of ||Res(-, t)|| 12(r2)> We will discuss the terms of order et in detail and will
sketch the idea for higher-order terms.
At first, we list the different types of terms that appear and how to handle them:

¢ Constants like wg, v1, v, are trivial.
e The exponential function F; satisfies |F;| = 1.

e The material functions €3, €3 are bounded since €], €5 € C3(Ry) n W3*(RRy) by
Assumptions (A1) and (A6).

¢ The envelope has to be smooth enough such that H 8])%2 af;A(-, T) P(R) < Cforall
appearing ji, j» € INg. To be precise, we will need
1
Ae(c* ([0, Ty, HM(]R)) , (4.2.3)

k=0

for some Tp > 0 since the highest order derivatives that can appear are 8§(ZA and
8§Z&TA. For the nonlinear terms in A we notice that one factor with three derivatives
can at most appear once and all other factors contain at most two derivatives, we can
therefore always use the Sobolev embedding H'(R) — L*(R) to bound the lower
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order terms. Some examples for estimates of such products are (suppressing the time
dependence)
3
AP All 2y < 1A Le () |195:A] 2y < C 1Al
H|aX2A|2aX2AHL2(IR) < ||8X2AHLOO(]R) Ha;%(ZAHLZ(]R) <C ||A||3;I2(IR)
2 A125 2 2 a1 2 2
H|6X2A| aTaXzAHLZ(]R) < HaszHLOO(IR) H&TaszHL2(R) <C ”AHH3(]R) HaTAHH2(]R)

¢ The x;-dependent functions have to satisfy
m, dw(-, ko), 2w(-, ko), b, p € L*(R)> A L*(R)>. (4.2.4)

As stated before, there are no x;-derivatives left in Res, therefore (L?(R)*> n L®(RR)3)-
functions are enough to estimate all appearing linear and nonlinear terms, e.g. the first
term in Resy ; can be estimated by

[|m3 + mlmgHLZ(R) < (Hmlﬂiw(m) + HmZH%OO(]R)) 1| 2ry < C. (4.2.5)

Note that due to the form of the nonlinearity, the third components of these vector
functions never appear in a nonlinear term and it would be enough when these com-
ponents are only in L?(RR).

* We will use that the terms in Res allow for a separation of variables. Terms of the form
g(x) := e’ fi(x1) fa(exa) f5(x2) with b = 4, f1, f» € L?(R) and f3 € L*(RR) can then be
estimated by

_1
181122y < €72 Al 2wy 12l 2wy 1l om oy -

Now let us estimate the terms of order &* of Resj:

[ Ress(, )|z ey
< Ce’? [Haxz HLZ(]R (H@%wl('/kO)HLZ(R) + Hal%w3(’fk0)”L2(lR)>
+ [|010x, A( ||L2(1R 10kws (-, ko) [ 12wy
+ (114G TIPoxAC Ty + 1426 TIRAC T 2y ) (19112 + 3l 2y
T[4, T)ox, A HLZ (uhlm +uh3uLzm)]
< Ce'? [HaXZ (T HLZ(]R +110r0x,AC, Tl 2y + 1AC TP, AC D] 2k,
(1420, T)ox, AC )|y + 14%C, Do A, T)| 2 |
< Ce’2.

Note that we used (4.2.2) and that the loss of half a derivative is due to the transformation of

variables and does not change for products of X,-dependent functions. To estimate the other
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components of Res we additionally use estimates like (4.2.5) and proceed analogously.
Terms of at least order > can also be estimated with the same techniques. The regularity
assumptions in (4.2.3) and (4.2.4) are enough to cover all derivatives and nonlinearities that
can appear. For instance the appearing quartic terms in A can be estimated like the cubic
terms above by using H'(R) < L*(R).

All in all, we conclude that
HRes(Uext)(-, 'y t) HLz(]Rz)g, < Ceg, te [O, T(]S_Z] , (426)

under condition (4.2.3) and (4.2.4), where the constant C depends on the norms of A, m,
oxw(-, ko), alfw(-,ko), h and p.

4.2.2. Estimation of the Derivatives of the Residual

Let us now estimate all the derivatives of Res up to order 3. This can be done similarly to

the estimates of Section 4.2.1.

Let Ty > 0. We have to estimate ||0fRes(-, t)HLZ(]RZ)3 for t € [0, Toe 2] with B € N3, |B| < 3.

Remark 4.2.3

We use the multi-index notation for derivatives. For o = (g, 00, 00) " € ]NS we simply write 0*
instead of 0y!0y20}". We also use the typical conventions |a| := 2o and for o, B € N3 we say
a < Bifa; < Bjforallj.

For the next step we have to discuss the necessary regularity. To estimate the derivatives
up to order three, we have to increase the regularity assumptions of (4.2.3) and (4.2.4) by 3

orders:

® Res contains the derivatives (9'}‘1 (9?(22 Awitha; < 1and aq +a, < 3. It follows that ?PRes
contains &%1 (?;’(22 A with 71 < 4 and 71 + 72 < 6. Hence, we need the stricter condition

4
Ae(cH* ([0, Ty, H2+k(1R)> . (4.2.7)
k=0

* Res contains no derivatives of m, dyw(ky), 6,%w(k0), p, h
Therefore, we now have the condition

m, dw(ko), G2w(ko), h, p € H3(R). (4.2.8)

Note that we needed L*(IR)-regularity in (4.2.4) to estimate the nonlinear terms. But

since H*(IR+) are Banach algebras, no additional condition is necessary in (4.2.8).

¢ We also need to estimate up to three derivatives of the material functions €;, €3. Here
we can again use that eli, 63i e C3(R+) n W3®(R4) by Assumptions (A1) and (A6).
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Now we can proceed as in Section 4.2.1 to infer the following lemma.

Lemma 4.2.4 (Estimation of the Residual)
Let Ty > 0, m, w(ko), 2w (ko), b, p € H3(R)® and A € iy C** ([0, To], H*(R)). Then
B : 7/2
| 0PRes( ,t)HLZ(]Rz)s < Ce (4.2.9)
forall t € [0, Toe 2| and B € N} with |B| < 3. The constant C depends on the norms of A, m,
oxw(-, ko), &,fw(-,ko), hand p.

Remark 4.2.5
As mentioned before, by extending the ansatz even further to remove terms of order €* and higher
and under stronger regularity assumptions, it is possible to make the residual even smaller. It should

therefore be possible to show ||0PRes(-,t)||,, (®ey» < Ce¥ with an improved exponent T > Z

The regularity assumptions of Lemma 4.2.4 can easily be satisfied. For the regularity of
the envelope A we only need sufficiently smooth initial data to apply Theorem 2.4.1 with
m = 10.

For the regularity of the x;-dependent functions we will apply Lemma 3.3.11 for different
right-hand sides.

Lemma 4.2.6 (Higher Regularity of Uey in the x;-Variable)
Let m, o,w(ko), d2w(ko), h, p € L?(IR)? be defined as before. Assume that €1, €3 € W3¥*(R).
Then m, oyw(ko), 07w ko), p, h € H3(R)>.

PROOF: We start the proof with the analysis of m. Since (L(ko) + vo/A)m = 0, we can apply
Lemma 3.3.11 with f = 0 to see that m € H3(R)3.
Next, by differentiating (L(k) + wA)w = 0in k, we see that dyw(ko) and d?w(ko) solve

(L(ko) + VQA)@kw(ko) = —((3kL(k0) + (9kcu(k0)A)m,
(L(ko) + voAA)dgw(ko) = —2(0L (ko) + ke (ko) A)dxw (ko) — (GfL(ko) + dfw (ko) A) m.

Since m € H3(IR)3, the functions

€1vymy + ms €112n1
(8kL(k0) + akw(ko)/\)m = €1v1my ’ (5]%L(k0) + 6,%w(k0)A) m = | €12y
my + Hov1m3 Hovami3

belong to H3(R)3. Therefore, the assumptions of Lemma 3.3.11 are satisfied and we infer
that dyw(ko) € H3(R)3. This fact implies that

(OkL (ko) + Okew (ko) A)dto(ko) € H3(R)?

and consequently 0?w(ko) € H3(IR)® by Lemma 3.3.11.
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To treat p and h, we note that the right-hand sides in

€11 3m3 — mym3
(L(ko) + VoA)p = —K | €e1my | — €31 —3171% + m%ﬂb
Womi3 0
and
m3 + mym3
(L(3k0) + 31/0/\)]’1 = —31p€3 m% + mzm%
0

are also contained in #3(R)3 since m € H3(R)3. Hence, the statement follows as before.
O
Let us finish this section by studying the regularity of Uey; under the regularity assumptions

of Lemma 4.2.4 and state some useful estimates.

Remark 4.2.7
By the structure of Uext it follows under the Assumptions (4.2.7) and (4.2.8) that

4 : 3
Uewi & [ €47 ([0, Toe2), ™= BH (R?))
k=0

Indeed, the space regularity is given by min{3, k} since U eyt contains 0§(ZA and is therefore the sum
of products of functions in (Xy, t) that are at least in ﬂi:o C** ([0, To], H¥(R)) and functions in
x1 that are in H3(R). Due to the simpler structure, Uans even satisfies

4 . 3
Uans € () C* ([0, Toe 2], Hmnk42(R2) ) (4.2.10)
k=0

In Section 6.2 it will be necessary to estimate 0*Uexe and 0p0*Uex: for & = (aq, a2, a4) " € IN3 with
| < 3.
To get such estimates we use (4.2.7) and (4.2.8). In addition, we note that the structure of Uext
allows us to use the Sobolev embedding H'(R) — L (IR) in both space dimensions separately, thus
avoiding the less favorable embedding H?(IR?) — L*(R?).
Let us now start with estimates for 0*Uext. For |a| < 3 and oy < 2 we get with the just mentioned
Sobolev embedding

Haauext”m@(]mx(o,Tos—Z))3 < Ce. (4.2.11)

Note the factor € since all terms in Uy are at lest of order e.
For ay = 3 we can use the Sobolev embedding only in the x,-dimension and get

2 —
103, Uext (-, D) ooy < j}R sup |03 Uext(x1,x2,t)Pdxy < Ce?, Ve (0,Toe ). (42.12)

X2€]R

67



4.2. Estimation of the Residual and its Derivatives Chapter 4

To estimate 0% 0y U ext, we start with |a| < 3, ay € {1,2}, where we can apply the Sobolev embedding
in both space dimensions and get

6% 0ot o e (0 1217 < CE- (4.2.13)

For oy = 3 we get
2
103, 0 ext (- )| 2 gays < J sup |03 O Uext(x1, %2, £)|* dx1 < Ce?. (4.2.14)
R XZE]R

Finally, for |«| = 3, a1 = 0 we cannot simply use an estimate analogous to (4.2.12) by switching
the roles of x1 and x;, since integrals in x, would lose half an order of €, compare (4.1.3), which
is not enough for our estimates in Section 6.2. But we can use the structure of Uexe and write
%Ot eyt = A + B with

A(x1, %2, ) 1= eA(Xo, T)m(x1)0%, (eiU%XHOf)) )
B(x1,x2,t) := 0*0tUext(x1, X2, 1) — A(x1, X2, ).

Now the terms in B are at least of order € and we can compensate the loss of half an order of . We

get
A o g2 013620y < €& fR sup |B(x1, x2,1)[* dxp < Ce?. (4.2.15)

x1€R

Note that it is possible to improve the reqularity of Uex: by selecting more regular functions A,
€1, €3 in our construction of Uexe. With a sufficiently reqular U ey we could always use the Sobolev

embedding and estimate

a“a;{Uth 3 < Cg,

L% (R2 x (0, Tge~2))
for some k € Ng and & € IN3.

To summarize the chapter, we have constructed a formal approximative solution Uey: of
Maxwell’s equations such that estimate (4.2.9) holds true for the residual Res(Ueyt). This
estimate and the estimates for Uy itself will play an essential role in our rigorous analysis
of the approximation properties in Chapter 6.
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5. Local Existence for Hyperbolic Systems

In this chapter we will rewrite the Maxwell problem as a hyperbolic system with the goal
of applying the local existence results and a priori estimates for linear and nonlinear hyper-
bolic systems from [67]. Only some slight adaptions for our setting are necessary, we will
therefore mostly refer to [67] and the accompanying results in [75, 76, 77] for the proofs.

These results will be the central tools for the error analysis in Chapter 6.

Remark 5.0.1

There are the following differences in [67] compared to our setting.

First, slightly more reqular coefficients are used in [67] to shorten some of the computations. But the
adaption to our setting is straightforward, see Remark 5.1.3.

Second, since we are working with TM-modes and x3-independent functions, our hyperbolic system
contains only three equations dependent on x1, x2, t. This is in some sense easier than the case covered
in [67] where the full Maxwell problem with six equations is studied. Note that due to the reduction
from a problem on R® x [0, T'] to a problem on R? x [0, T'] one has to check the arquments that are
dependent on the dimension. Studying the proofs in [67] reveals that one has to check if the Sobolev
embeddings and Banach algebra property still hold for W™P(Q), with Q < R? instead of Q) = R3.
This is obviously the case since mp > 3 implies mp > 2.

Third, in [67] more general domains are studied and a lengthy localization argument is used to trans-
form the problem to a half-space setting. For our problem a simple reflection is enough to transform
the interface problem with two half-spaces to a boundary problem on one half-space, see Remark 5.1.5.

Throughout this chapter let T’ > 0 and ] := (0, T"). In contrast to [67], we will work in the
space domain R?, which will be separated by the interface I', = {x € R?|x; = 0} into the
two half-spaces R2 = R; x R and R2 = R_ x R and for a function f : R> - R we will
denote the restrictions to RZ and R? by f* and f~, respectively.
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5.1. Linear Hyperbolic Systems Chapter 5

5.1. Linear Hyperbolic Systems

We start with a linear symmetric hyperbolic system for u : R? x | — R3,

2
Af(x, t)ou™ + Z Ajaxjui + ME(x,hut = f5,  xeRi, te],
=1

3 + (5.1.1)
Br<u>=0, xel, te],

u*(-,0) = uOF  xe lei/

0 00 0 -1
Al = O 0 1 7 A2 = 0 O 7
010 -1 0 O

M:R? x| - R33and

0100 -1 0
Br = .

0010 0 -1
Clearly, Br(u*,u~)" encodes the interface conditions [uz]op = [u3]p = 0 and 2]2:1 A]-&xjuir
contains the spatial derivatives we have seen in (4.0.2). Note that we are not going to use
(5.1.1) in order to study the linear part of (4.0.2), but rather to study a fixed-point problem
in the bootstrapping argument for the nonlinear system in Section 6.2. Hence, we need the
inhomogeneous term f, the linear term MU and a matrix A; different from A in (5.1.1). The
concrete Ay, M and f that connect (5.1.1) with Maxwell’s equations (4.0.2) will be discussed

in Section 6.2.

Note that the coefficients and functions in (5.1.1) are in general discontinuous in x; = 0.

Definition 5.1.1 (Weak Solution of the Linear Hyperbolic Problem)
Under a weak solution of (5.1.1) we understand a function u € C (], LZ(IRZ))3 that satisfies

J f-epdxdt = —J f <u - Ot (Awp) + u - Ox, (A1) + 1 - Ox, (A2gp) — 1 - MT(p> dx dt
J JR? ] JR?
for all test functions
3 3
goe{tp‘llﬁeHé(lRi x )7, eHé(]REx]) },

Ter (Br(u®,u™)") = 0and u(-,0) = u©.

Foru € C(J, Lz(le))3 it is not immediately clear how and if Trp (Br(u™,u™)") is well-

defined, but the special structure of the matrices A; and Br allow us to define this trace.
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Chapter 5 5.1. Linear Hyperbolic Systems

We will present an in-depth discussion in Section 5.4. Note that we will often omit writing
the trace operator and implicitly assume all jump conditions in the sense of traces.

More regularity will be necessary for the existence results of this chapter. We therefore de-
fine the space

G"( (m] C (7, 1" 1R2))

with m € INy and the norm

. J
H”Hgm (R2x])3 *= rfl?}(n Ha H OO(]’H,,H.(]RZ))s-

Remark 5.1.2
The estimates of our final approximation result will be done in the G3-norm, hence we have to control
the norm of all space and temporal derivatives up to order 3.

The main goal of this section is to show that there exists a solution u € G" (R? x ])3 of (5.1.1)
and that u satisfies a certain a priori estimate, see Theorem 5.1.9.

But before we can prove Theorem 5.1.9, we first define some additional function spaces. For
any open Q) = R?, m, n € Ny we will use

Fm,n(Q % ]) = {A c Wl’OO(Q % ]>n><n atxA c LOO(], Hm—|ax\(0))n><n + Wm—|a|,OO(Q % ])nxn

for all & € N3 with 1 < |a| < m},

HAHF’"'”(QXI) = maX{HAHWLw(Qx])nxnr n|nax |o* AHLOO(]HW' la] (Q))nxn 4 Wm— Iam(ox])nxn}r

FUHRE x J) 1= { A€ WHE(R x Ty

AT PP (RE X ]), At e P (RS x ]) ),

(=)}

with the usual definition for the sum of two vector spaces

| Al £ (R2x]) *= max{HA Hpmn R2 x])’

L(J, H" (@) + W=t x )
- {A Q%] - ]R’A — B+ C Be L, H"*(Q)), C e wm > x ])},
Al Loo (7, Erm—1a1 (2)) +- W leloo (¢ )
= i { 1Bl e g -y + IC otz gy | 4 = B+,
Be L™(], H™4(Q)), C e wrmlel=((y x ])}.
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5.1. Linear Hyperbolic Systems Chapter 5

For a fixed time instant we use the spaces

F(})n,n(Q) — {A c LOO(Q)I’[XTZ %A € Hm—|a|(Q)n><n + Wm—\a\,OO(Q)nxn

for all &« € N3 with 1 < |a| < m},

HAHFg"”(Q) = maX{HAHLOO(Q)”X”' max || 0% A - 'X(Q)”X”-i-W"’a,OO(Q)”X”}'

1<al<m
Fo"(R?) := {A e L*(R*)"™" | A~ e FJ"" (]RZ_), At e B (R3)},
Al £n g2y = maX{HAf

an ]R2 )}

Finally, we will define some subspaces of 7" and indicate them by certain subscripts. The

F"(R2) 7

subscript 7 > 0 indicates that additionally A is symmetric positive definite with constant 7,
the subscript “cp” means that A is constant outside of a compact set, and the subscript “cv
means that A is convergent for |(x,t)| — oo, i.e. for 7 > 0 we define

}",;"’”(]R2 X J):= {A e F""(R*x J)|A=AT,v" Av = njv|* forall v e ]R”},
F" (R? x J) := {A € F™"(R? x ) |for all A there exists a matrix A € R"*"
and a compact set M < R? x ] with Ax, t) = A for (x,1) ¢ M} ,

FIM(IR? x ]) := {Ae F™M(R? x ]) | for all A there exists a matrix A € R"*"

with A(x, t) — A for |(x,1)| — oo}.
Subspaces with multiple subscripts are possible, e.g.
f,;'féﬁ(le x J):= .7-",;”’”(11{2 x J) A FIMIR? x ]).

We are mainly interested in the case ) = R3 and m = n = 3.

Remark 5.1.3

Let A € F™"(Q x ]). Note that the part of 0*A in W"=I181%(Q) x ]) can often be estimated more
easily than the part in L®(J, H"1*1(Q))), e.g. the product of an L®-function and an L?-function
is easier to estimate than the product of two L?-functions. Therefore, the W™ ~1¥l%°(Q) x )-part is
mostly omitted in the proofs of [67] and a different definition for the spaces F™" and F™" is used,
see Remark 6.1 in [67]. Since such terms appear in our setting, we will not omit them.

The next lemma discusses products between H" (IR?)- and F;"! (R?)-functions.
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Chapter 5 5.1. Linear Hyperbolic Systems

Lemma 5.1.4 (Product Estimates)

Let mq1, my € INg with my = mp and mq > 2.

i) Letje{0,...,my}, f e H™ I (R?) and g € H/(R?). Then fg € L>(R?) and
HngLZ(W) <C Hf”’}-[ml_f(][{z) HgHHi(]RZ)'
ii) Let f € H™(R?) and g € H™(R?). Then fg € H™(R?) and
118l gma ey < ClIf llggm ey 18 lgpm m2) -
iii) Let f € Fy" (R?) and g € H™(IR?). Then fg € H"™ (R?) and
/8 ll3gm2r2y < C Hf”fg"l'l(]RZ) 181177 (g2 -
iv) Let f € F™YR? x ) and g € G™(R? x ]). Then fg € G"™(R? x ]) and
1£8llgmmexyy < C Il Fmamexy) 18]lgm ®ax) -
v) Let f e F"Y(R? x ])and g € G™(R? x ]). Then fg € G"(R? x ]) and
1£&llgm mexyy < Clfl Fmamexy) 18]lgm ®axy) -
vi) Let f € FJ"''(R?) and g € FJ'*' (R?). Then fg € Fy>' (R?) and

1781 2t gy < C At ey I8l s e -

PROOF: The proof is based on the Holder inequality and Sobolev embeddings. Details for

the three-dimensional case can be found in the proof of Lemma 2.22 in [75].

To prove the assertions above it is sufficient to show the analogous results for each half-

space. W.lo.g. we will focus on the half-space R%. The main tool will be the Sobolev

embeddings H* (R%) — L7 (R?%) for2 < g < oand H' (R3) — L7 (R3) for2 < ¢q < .
i): Let w.l.o.g. my —j > j. For j = 0 we have f € H? (R%) and hence

£ 8Nz ray < If e (e ) 1812 (re y < C L lpm (m2 ) 181 o (w2 ) -

For the remaining cases of j we know that f, ¢ are at least H' (IR? )-functions and therefore

we can use the generalized Holder inequality to show

I 8lliz(rey < Ifllia(ma ) 1811w ) < CIFlpmr(ma ) 1811k (w2 ) -
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5.1. Linear Hyperbolic Systems Chapter 5

ii): For &« € N3 with |a| < m; we have

9= ¥ ()t 512)
0<B<a B
Here we used the multidimensional Leibniz rule with (;;) = /i’v'@f‘ilﬁ)' and «! := ]—[]2:1 wj! for

o, peN3.

Now for every fixed B we have for j := |B| that g e H™~I**/ (R2) < H/ (R%) and
oPf € H™ =/ (R%). Now the statement follows from the repeated application of i).

iii): We again use (5.1.2) for |a| < mj and set j := |B|. For j = 0 we have

e

sy = 1Sy < 1P ogre) 178 iara) < C LA oy I8y

For j > 1 we have 0ff = B+ C with B ¢ H" 7 (R2), C € W™ —i® (R2) and 0* g €
H/ (R?%). The statement follows from the triangle inequality,

Héa""ﬁg Py

< NG e ) | < C g gz ) 180

1(R3) (3

and the repeated application of i) to estimate ||Bo*~# gHLZ(]Ri )

iv) By definition of F"™1'! (IR% x J) and G"2(IR? x ]) it follows that f, g and all their derivatives
are L*-functions in time. The statement then follows from an application of iii) for all fixed
time points.

v): This follows analogously to iv) since i) is symmetric in f, g.

vi): We again use (5.1.2) and set j := |B|. First, we have

||f8”L00(Ri) < ||f||L00(1R2+) 1] L*(R2) < ||fHFg'1fl(Rz+) ||8||Féﬂzll(]Rz+)-

To estimate ||0%(f8) || yu—ial (11 4 win—talo (yuxn We proceed as before and use that for j > 1
we have 0 f € H™ =T (R2) + W™= (R2) and 0% Bg € H™2~I#I+] (R2) + Wm2—lel+i(R2).
The statement follows again from the repeated application of i) and obvious estimates for
the W™ (IR? )-terms.

Ul
Let us now describe the transformation of the interface problem (5.1.1) to a boundary value
half-space problem.
Remark 5.1.5

One key step to prove the existence of a solution of (5.1.1) is the transformation of the interface
problem to a boundary value problem on the half-space R2. To achieve this, the left part of the
problem will be reflected to the right. This reflection can easily be done in our setting.
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Chapter 5 5.1. Linear Hyperbolic Systems

We define the new matrices

Ai(x, t) = Ai(x1, %2, ) 0 Mx, 1) = M(x1, %2, t) 0
A 0 At(—xl,XZ,t) ’ e ’

Aq(x, t) := (1?)1 _(1)41> , Ao (x, 1) := (122 122)

and new vector functions

o(x, 1) i= (w7t (x1, %2, 1), 4 (—x1,%2,1)) |,
.
0O (x) := (u(o)’+(x1,x2),u(o)’_(—xl,xz)) ,

g(x ) = (FF (1%, ), f(—x1, %2, 1))

and get an equivalent system to (5.1.1) on R? :

2
Aioro + Z Aj&xjv +Mv=g, xe ]Ri, te],
i=1
! (5.1.3)
B]"'U:O, xerz, te]/

v(,0) =09, xe R?.

Analogously to Definition 5.1.1 we define the weak solution of (5.1.3) as a function
veC(]L? (]Ri))6 that satisfies

J g-(pdxdtz—fj (v-&t(At(p)+v~é’xl(A1q))+v-6x2(A2qo)—v~MTgo>dxdt
1 Jr2 1 Jr2

for all test functions ¢ € H} (R% x ])6, Trr (Bro) = 0and v(-,0) = 09, see Definition 3.1 in [75].
An in-depth discussion of the transformation of a more general interface problem to a half-space
problem can be found in [67].

The existence of a solution of (5.1.3) was proven in [29]. We will state this result for our
setting:

Theorem 5.1.6 (Existence Result in the Half-Space Setting)
Let T' > 0 and | = (0, T"). Tuke coefficients A, € W' (R% x ])6X6 and M e L (R% x ])
Assume additionally that Ay is uniformly positive definite, Ay has the same number of positive and

6x6

negative eigenvalues and that there is a matrix Cr such that

1
A= (ch Br+ Bf cr) . (5.1.4)

Choose g € L* (R%. x ])6, 00 g2 (]R%r)é.
Then there is a unique weak solution v € C (], L? (]Ri))6 of (5.1.3).
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5.1. Linear Hyperbolic Systems Chapter 5

PROOF: This result and its proof can be found as Proposition 5.1 in [29] for the general
n-dimensional problem.
t

We will now check the algebraic conditions on .4; from Theorem 5.1.6 for our setting.

Remark 5.1.7
Take Ay and Br as defined above in this chapter. We can easily check that for

001001
Cr:=
010010

condition (5.1.4) is satisfied. Furthermore, we note that Ay has the eigenvalues A\1p = 0, A34 = 1
and /\5,6 =—1.

Since we are interested in Maxwell’s equation with a nonlinear displacement field, we have

to improve on Theorem 5.1.6 and need solutions of higher regularity.

Remark 5.1.8

The existence result for linear symmetric hyperbolic initial boundary value problems (Theorem 5.1.6)
requires coefficients in W' (R2. x J)**® and yields solutions in C (J, L2 (R%))°. To apply a fixed-
point arqument, which delivers an existence result for the nonlinear case, it is necessary that the
solution space can be embedded into W' (R% x | )6.
Hence, we have to find m € IN for which

C (1, H" (R2))° n CH (1, ™ (R) ) W1 (RE x ))°

holds true. Here we will need the Sobolev embedding H*(Q)) < L*(Q) for s > 1 and sufficiently
well-behaved domains Q) = R?. Now we can show that

2
Il ) = U2 1 ) + 8P 1030 e+ Zsu}o O, 1)

j=1 te L® (]R2+ )

<cC <sup O Pp— ||atu<-,t>||Hs<Rz+>>

te] te]
<C (H”Hc(],Hm(Ri)) T H”||C1(LH’"‘1(RZ+))) ’

where the first inequality holds for s > 1 due to the Sobolev embedding and where we set m := s + 1
in the second inequality. We therefore have to work with m > 2, more details can be found in [75].

Now an adaptation of Theorem 3.1 of [67] gives us the needed higher regularity.
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Chapter 5 5.1. Linear Hyperbolic Systems

Theorem 5.1.9 (Linear Existence Result)
Let 4, T',r > 0, m € {0,1,2,3} and | = (0,T'). Take coefficients A € .7-',?,’3‘,(]122 x J)and M €
FER(R? x |) with

||At||]-'3/3(IR2><]) A, O)H]-‘gﬁ(]RZ [0 A (-, ||7-[1 R2)3%3 s 62A’c HLZ (R2)3%3 <7,
HMH]-'3'3(]R2><])’ HM(',O)H;{]Z,3(R2)/ Hﬁt '/ HHI(]RZ)Sx3/ 6tM 'r HLZ(]RZ)3><3 ST

Choose f € H"(IR? x ])% and u® e H™ (IR?)3 such that the linear compatibility conditions of order
m are satisfied, see Section 5.3.

Then there is a unique weak solution u of (5.1.1) in G™(R? x ])® and a constant C,y = Cy(r, T') = 1
such that

. (5.15)

T [— 2 leircof

'Hmflfj(]RZ)fv

]G ey < Con | || HH,, -

where the sum is empty if m = 0.

PROOF: As mentioned in Remark 5.0.1 we note that Theorem 3.1 of [67] deals with spatial
domains in R? instead of IR? and the solution vector takes values in IR® instead of R®, but the
proof can be repeated for our setting in an analogous way. Thus, we will only give a sketch
of the proof, where we describe the essential steps.
The proof is divided into six steps. First, the coefficients for the localized half-space problem
are determined. This is much simpler for our setting and is already done in Remark 5.1.5.
In Step II and Step III the compatibility conditions for the localized problem are studied and
the connection to the compatibility conditions for the interface problem is established. This
is again much simpler to do for our setting, see Remark 5.3.3. In Step IV an a priori estimate
and regularity for a solution of (5.1.1) is established. The proof is based on a version of
Theorem 5.1.6 in combination with further results from [75, 67, 77]. Here techniques similar
to our estimates in Section 6.2 are used and the structure of Maxwell’s equations is utilized
to estimate the normal and tangential derivatives in two different ways. Finally, in the last
two steps a fixed-point argument is used to show the existence of a solution u of the interface
problem. Here one goes back from the half-space problem to the interface problem, which
is much simpler in our setting.
Note that the a priori estimates in [67] work in spaces G" with time-weighted norms. For
bounded time intervals this is obviously equivalent to the norm for G we introduced above.
O
With this existence result we are well-equipped to study the nonlinear problem. But before
we do this in the next section, we will use Theorem 5.1.9 to formulate an approximation

argument that will be used later on in Section 6.2.
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Lemma 5.1.10 (Approximation Result in Linear Hyperbolic Systems)

Let T'>0,] = (0, T'), u® e L2(R?)3, Ay € Fyoy(R% x J), M e Fo(R? x ]) and f € GO(R? x
J)3. Take a weak solution u € GO(R? x ])* of (5.1.1) for the data (f,u”)). Then the following
statements are true:

i) There are sequences
(u,(qo))n c Dr(R?)3 := {(p}(f e C® (]R%r)a, @ eC” (]RZ_)S, supp @ < R? compact}

and (fﬂ)n c ’]-[1(][{2 v ])3 with u](10) — 40 iy L2(]R2)3 and f, — f in Lz(]RZ y ]>3 for

v
W0u07) " 2o

n—>ooandBr( Uy

ii) There exists a sequence (uy), = G*(R? x ])3 such that for all n € N the function u, solves
(5.1.1) for the data (fn,u,(qo)> and u, — uin G°(R? x )3 for n — oo.

PROOF: For i) we use the fact that C*(Q)) and H'(Q) are dense in L?(Q)) for any domain
Q). Therefore, we can choose sequences (wy), = Dr(R?)® and (f,), < H!'(R? x ])® with
wy, — u® in L2(R?)% and f, — fin L*(IR? x ])3 for n — oo.

To guarantee the interface condition we introduce the characteristic function x;, with

[ 3]

Now we show that w,,xp;, — #® in L2(R?)%. With the definition of )y, and the Minkowski
inequality we get

n

M, := R%\ {x e R?

0)

+ Hu(O)XMn — ul

I [y

L2 (]RZ L2 (]R2)3

+ || e, = 1)

LZ(]RZ)S

<Hwn—u@ (5.1.6)

L2(IR2)3 [2(R2)3 '

The first term on the right-hand side in (5.1.6) vanishes for n — oo since w, — u©® in
L?(R?)3. For the second term we use |[u® (xp, —1)| < [u@] and u@(xp, —1) — 01in
L%(R?)3. Hence, Lebesgue’s dominated convergence theorem can be applied and we see
that the second term in (5.1.6) also vanishes for n — 0.

Since I', n M,, = &, we also get that Trr (Brw,xm,) = 0. Now we mollify w,x M, to produce
functions ) Dr(IR?)® with the stated properties.

The existence of (u,), in assertion ii) is a direct consequence of Theorem 5.1.9. To show the
convergence we use that (5.1.1) is a linear problem, consequently u, — u is a weak solution
of (5.1.1) for the data (fn —f, u,(qo) — u(o)). Estimate (5.1.5) thus yields

4~ 4©)

|| — uHQO(IRZXI)3 <C (’ [2(R2)3 1 _fHLz(RZX])3> ’
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The convergence properties of (f,) and (u,(f)) complete the proof. ]
n

5.2. Nonlinear Hyperbolic Systems

The reduced nonlinear Maxwell system (4.0.2), (4.0.3), (4.0.4) is a special case of a nonlinear
hyperbolic problem and can be written as

2
§(x,Ui)6tui+ZAjé’iji =0, xe]Ri, te],
j=1
4 u+ (5.2.1)
Br <u_> =0, xel“z, tG],
{ ut(,0)=u®*, xeR?,

where for v € R? we set

~

S(x,v) := A(x1) + €3(x1)0(v),

erff(x1) 0 0 303 +05 20105 O
Ax)):=|[ 0 e(x1) 0|, 0(v):=| 20100 ©v2+303 0
0 0w 0 0 0

With this matrix function S we now have a quasilinear hyperbolic problem and we need
new function spaces for the coefficients, namely

ML (R2,0.) = {5 (RE x 04) U (R x 0) — RE*

st e C" (R x 04, RP),

sup  |0"S(x,u)| < oo for all compact sets Uy = O+ and & € Nj with |« < m},
(x,u)eR% xU

where Q4+ c RR3 are open and ST, S~ are the restrictions of S to IR2+ x O, and RZ x Q_,
respectively. We will again use the subscripts #7 and “cv” to denote the additional conditions

that the matrix is symmetric positive definite and convergent, i.e. for 7 > 0 we define

./\/lﬁzi’k(le,Qi)::{S e ML™ (R?, Q) ‘ S=5",0"Sv > yjv|onRA x Q4 forallve le},

ML R?, Q) :={S e ML (R?, Q) ‘ there exists A € R¥*¥ such that for all

(%0, 1), © Ry x Q4 with |x,| — 00, u, — 0: lim S(x,,u,) = A},
n—aoo

and
ML (R, Q) i= ML (R, Q) 0 MLEF (R, Q)
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Definition 5.2.1 (Solution of the Nonlinear Hyperbolic Problem)
A solution of (5.2.1) is a function U € G1(R? x )3 n L®(IR? x ])3 with im U* < Q. that satisfies
2

S + ) Ajd U =0
j=1

for almost all x € R2\T'p and forall t € ], Trr (Br(U,U~)") = 0and U(-,0) = U, Hereim U*
denotes the image of U™ and U, respectively. Note that for U € G'(IR? x ]) we can use the usual

trace for H'-functions, see Section 5.4.

Remark 5.2.2
Note that a solution U of (5.2.1) in G3(R? x ])3 is a classical solution of (5.2.1) because of the
Sobolev embeddings H®> (R%.) — C! (R%).

The following local existence result for (5.2.1) follows from Proposition 6.1 and Theorem 6.1
of [67].

Theorem 5.2.3 (Nonlinear Existence Result)
Letyy > 0,04 c R¥and S € ML (R?,Q4). Assume that UC) e H3(R?)® satisfies the

nonlinear compatibility conditions of order 3, see Section 5.3, and im UO* < Q. with
dist (im u<0>fi,ani> > Kk (5.2.2)

for some x > 0.
Then the following statements are true.

i) There exists a unique solution U € g3 (]R2 x (0, tM))3 of (5.2.1), where tp; > 0 is the maximal

existence time.
ii) If tp < oo, then limy »y,, ||[U(-, 1) HHS(]RZ)3 = oo or liminf; ~,, dist (im u=(t), é’Qi) = 0.

PROOF: As explained in Remark 5.0.1 and the proof of Theorem 5.1.9, the results of [67] treat
a somewhat different but more difficult situation. So Theorem 5.2.3 follows from Theorem
5.1.9 by the same arguments as in Theorem 6.1 of [67] and Theorem 3.3 of [76]. We will
therefore only sketch the idea of the proof.

To show the existence of a solution of (5.2.1) a fixed-point argument is used.

First, we fix U = U in 5(x, U), which results in a linear hyperbolic system

2
S(ﬁ)&tU—l—ZAj&ij: 0, xelR?_H te],
=1

ur (5.2.3)
Br( )IO, xel"z, te],

A

-
u.-,0) =u®, xeR:.
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Now we apply Theorem 5.1.9 to show the existence of a solution U of (5.2.3). To get a solu-
tion of the original nonlinear problem we apply the Banach fixed-point theorem.
The exact proofs of Theorem 6.1 in [67] and Theorem 3.3 in [76] are then based on careful
estimates to show that the solution operator & : U — U for the right choice of D (®) is a
self-mapping and a contraction.
Standard techniques are then used to construct the maximal existence interval, see Proposi-
tion 6.1 in [67] and Lemma 4.1 in [76].

O

5.3. Compatibility Conditions

One can show that for solutions of higher regularity some conditions involving the coeffi-
cients and the data are necessary, these conditions are called compatibility conditions.

To derive the compatibility conditions we start with a smooth solution U € G3(IR? x ) of
(5.2.1) with J := (0, tp). We can differentiate (5.2.1) twice in time and get new equations that
are still satisfied for all t € |. By continuity these new equations have to be satisfied at t = 0
as well. This gives us necessary conditions on the initial values for U € G3(IR? x J)>.

IfS (U) is positive definite, then S (U) is invertible and (5.2.1) implies

j=1

2
o = —S()! (Z Ajax]u> vV, (5.3.1)

[Uz]2p = [Uz]2p = 0.

Differentiation in time gives us the following new equations:

2
2U = —Su)? (Z Aoy, 0 + & (§(U)) atu) — 7w, o), (5.3.2)
j=1

[0:Uz]2p = [0:Us]2p = 0,

2

AU = -Su)? (Z Ajoy, 07U + 20, (§(U)) U + 2 (ST(U)) atu)
j=1

.53 2

—. v W, au, 2u), (5.3.3)

[0 Uzlop = [0 Us]op = 0.
We can now iteratively define

vOu) = u, vihu) :=v
ve) = v (vou),voa), vOw) = v (vOu), vo ), vdw))
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to get operators V) that only contain spatial derivatives and no temporal derivatives of U.
The equations above imply that

Au,0) = vou(, o))

v o] = v wco] =0

-

for j € {1,2,3}. Hence, the initial values U have to satisfy the necessary conditions

[[Vz(j) (u(O))ﬂzD - [{V?)(j) (U(O)ﬂ]zD =0 (5:34)

for j € {0,1,2}. Note that for higher regularity additional compatibility conditions are nec-
essary, but we will focus our analysis on solutions in G3(R? x ])3. A general formula for the
compatibility conditions can be found in [67].

Definition 5.3.1 (Nonlinear Compatibility Conditions)
Let m € {1,2,3}. We say that an initial value U e H™(R?)? satisfies the nonlinear compatibility
conditions of order m for (5.2.1) if and only if (5.3.4) is true for j € {0,...,m —1}.

Remark 5.3.2
The compatibility conditions for the linear problem (5.1.1) can be derived analogously. In compar-
ison to (5.3.1), (5.3.2) and (5.3.3) we have to replace S (U) by Ay and include the additional terms

M(x, t)u, f and their temporal derivatives:

2
~(1
VW)= a7 < S Ajoyu+ Mu — f),
=1

2

~(2

Vi (u, 6u) = —A;” ( S Ajdy Gyt + v Ay + (M) — atf>,
j=1

2
V) (w, 00, Pu) = — A7 < N Ajr 0+ 2 Acdpu + 20, Actu + 62(Mu) — &3 f).

=1

—

Remark 5.3.3
The compatibility conditions for the half-space problem (5.1.3) follow in the same way by replacing
Ay, A1, Az, M, u, f by their counterparts Ay, A1, Ao, M, v, g as defined in Remark 5.1.5.

82



Chapter 5 5.4. Trace Operator

5.4. Trace Operator

In this section, we want to discuss the trace operator for solutions of the linear problem
(56.1.1) and the nonlinear problem (5.2.1) and we will also analyze some differentiability

properties of the trace operator. See Chapter 2.1 in [75] for more details.

We will first define a trace for problems on the right half-space IR% and then use a reflection
as in Remark 5.1.5 to define a trace for the interface problem on IR?. The trace for functions in
the left half-space can be defined analogously. The trace operator will be based on properties
of the space-time divergence operator, we therefore define the following special Sobolev

spaces.

Definition 5.4.1 (Special Sobolev Spaces)
Let T" > 0and | := (0, T"). Then we define

H(div,, R x J) := {(01,02, )T eLA(R? x ])3] divy v 1= 0y, 01 + Oy, 00 + 0y € L2(R2 x ])},

H(div, R3 x ])1:={0 € L*(IR} x J)| there exists a function v € H(div, R} x ]) with v = 7},

with the norms
1

2 . 2
HUHH(divf,]Rix]) = <||U||L2(R2+X])3 + HdlvthLZ(]Ra_x])) 4
H5||H(divt,IR%r D1 T qlg/f HqHH(divt,]R%rx])’
where Vi := {v € H(div;, R% x ])|v; = 0}

The following lemma gives us the existence of a trace operator on H(divy, IRi x J)1, see
Lemma 2.5. in [75] for the proof.

Lemma 5.4.2 (Trace Operator on H(divy, R% x J);)
There exists a unique linear and continuous trace operator

Trr : H(div;, R2 x J); — H™Y2(I'y x ]),
which extends the restriction
CPRE x])— CXT2x]), ¢~ ¢lr,.

We will now apply Lemma 5.4.2 to solutions of linear hyperbolic problems, see Remark 2.14
in [75].
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Remark 5.4.3
Let Ay € WL (R% x ])nxn, Ay, Ay € R™" be symmetric, M € L (R% x ])nxn and g €
L2 (R2 x J)". Let v e L2 (R2 x ])" be a weak solution of

Lyv := Aidv + A10x, v + A2dy,o + Mo = g, (5.4.1)

of. (5.1.3). At first one only has Lyv € H™' (R x ])", but from

<thr(l’>H—leg = ‘P>H—1xH3 = (& P)raxr2

forallp e C¥ (R2 x )", it follows that Lyv = g in L? (R% x ])", which implies that

25]’(./4]'7]) = g-i-Z@.Aﬂ)—MU el? (]Ri_ X ])
j j

Therefore, (A1v) € H(div;, R2 x J); forallke {1,...,n}.
We can now define the trace of Ayv on I'y x | with Lemma 5.4.2 as

Trr(Alv) = (Trr(Aﬂ))l, . . .,Trr(.Alv)n)T.

We will now connect the boundary conditions with the Matrix A; to define a trace operator,
see Definition 2.16 in [75].

Definition 5.4.4 (Trace Operator)
Take the same assumptions as in Remark 5.4.3. Additionally, assume that there are matrices B, T €
R¥*" such that B = T Ay is satisfied. Then we define the trace of Bv on Ty x | via:

Trr(Bo) := T Trr(Aq0).

Remark 5.4.5

To define traces for the interface conditions Br(u™,u=)" = 0in (5.1.1) we will go back to the situa-
tion of Remark 5.1.5, where we transformed the problem to a half-space problem with v := (u™,u~)"
and matrices A;, M. Since Br = T A with

L (0100 -1 0
~\0o010 0 -1/
we can use Definition 5.4.4 to define the trace of Bro for v € C (], L2 (H{i))é. With this the trace of
Br(u*,u™)" is well-defined for u € G°(R? x J)3.

For more regular functions u € G'(IR? x ]), e.g. a solution of the nonlinear hyperbolic prob-

lem (5.2.1), there is a second way to define a trace operator. We can use the transformation
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to a half-space problem and the usual trace operator for H!-functions
tr: H' (R%) — HY(I),
to define the trace operator
Trr (Br(qu,u’)T) = Br(tr(u™), tr(u™)) T

forall t € J, see e.g. [9, Chapter 9] for more on the standard trace operator for Sobolev func-
tions. It is shown in Remark 2.17 of [75] that the two trace operators Trr and frr coincide on
G (R? x ).

We will end this section with two lemmata that will allow us to differentiate the trace oper-

ator and to apply partial integration.

Lemma 5.4.6 (Differentiation of the Trace Operator)
Let Ay € W' (IR% x ])nxn, Ay, Ay € R be symmetric, M € L® (R% x ])nxn and define Ly,
as in (5.4.1). Assume that there are matrices B, T € R*" with B = TA;. Let v e L2 (R2 x J)"
with Lyv € L2 (R% x J)".
If additionally Lnoyv, Lndyv € L*(IR% x )", then the distributional derivative 0; Trr(Bv) exists in
H~Y2(T,)* and

0j Trr(Bv) = Trr(Bdjv) + Trr(0;Bv)

forj e {t,2}.

PROOF: See Corollary 2.6 and Corollary 2.18. in [75].

O
Lemma 5.4.7 (Partial Integration in H! (IR?%))
Let f,g € H' (R%), then
f Ox, fgdx = — J fOx,gdx — J Trr(f) Trr(g) dx,
R% R% OR%
(5.4.2)

f é’fogdxz—J fOx,g dx.
R% R

PROOF: Take sequences (fy),,(gn), = C (R?%) with f, — f and g, — gin H' (R%) for

n — 0. Using the compact support and the classical partial integration formula we get:

n’

f Ox, fngndx = f fnOx,8n dxf Trr(fy) Trr(gn) dx,
R% R% OR?.

(5.4.3)
f axzfngn d.x = — f fn angn dx.
R% R%
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Now all the integrals in (5.4.3) converge for n — oo to their counterparts in (5.4.2), e.g.

J , Ox, f& — Ox, fugn dx
R+
<1102 f = i full 2 gre ) I8l iz ) + 1x full o ) 18 = 8l (e y = O
L{z Trr(f) Trr(8) — Ox, Trr(fa) Trr(gn) dx
+

< T (f = fllla(we ) ITer (@) 2wz ) + 1 Tor () ll 2wz ) 1T (8 = &)l 22y — 0

where we used the Cauchy-Schwarz inequality and that the trace operator is linear and
bounded, see e.g. [1, Theorem 5.36].
O
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6. Rigorous Analysis of the Asymptotic
Solution

In this chapter we will rigorously prove the approximation properties of the asymptotic so-
lution constructed in Chapter 4. The main tools of the proof will be the local existence result
of Chapter 5 and a bootstrapping argument to extend the local existence to an asymptotically

long time interval for initial data close to the small asymptotic ansatz.

6.1. Error Equations

Following the procedure presented in Section 2.3 we start the rigorous analysis by analyzing

the error
R(x,t):= e *(U(x,t) — Uext(x, 1)),

where U is a solution of the reduced Maxwell’s equations (4.0.2), (4.0.3), (4.0.4), Uey is the
extended asymptotic ansatz defined in (4.2.1) and a is a positive number. Note that for our
approximation result we want a to be as large as possible.

Recall that in the hyperbolic form U solves

( 2
S(x, UH)oU* + . Ajo, U™ =0, xeR%, te],
j=1
u+ (6.1.1)
Br <U_> =0, xer, tE],
| u+(,0)=u®*, xeR3,

with the matrix functions

er(x1) 0 0 3U2+U3 2, O
A(xl)( 0 ef(x) 0], 6MU):=| 2tuld, U?+3U3 0,
0 0 o 0 0 0
000 0 0 -1
Al = (0 0 1], A2=10 0 o0
010 -1 0 0
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6.1. Error Equations Chapter 6

We can now substitute U = Uy + € R and obtain

-

2
S(x, t, Ri)&tRi + Z Ajﬁiji + W(x,t, RJL)Rir = —¢ "Res, x¢ ]R%:, te],

=1
R 6.1.2)
Br <R_> =0, x €I, te],

R*(,0)=RO*,  xeR},

A

RO (x) :=¢™* (u(o) (x) — U, (x)) ,

ext
N 2
Res(x,t) := Res(Uext) = S(x, Uext) Ot U ext + Z AjOx;Uext,
j=1
S(x,t,R) :=5(x, Uey + €°R) = A(x) + €3(x1)e0(R) + ¢(x, 1, R),
6Uext;1R1 + 2Uext2Ra 2Uext1R2 + 2Uext 2Ry 0
qo(x/ t R) = 63(x1)€a 2uext,lRZ + 2uext,ZRl 2uext,lRl + 6uext,2R2 0]+ 63(X1)9(uext),
0 0 0
W(x,t, R)R := " (S(x,t, R) — S(%, Uext) ) O Uext
6uext,l at uext,l + 2uext,Z&f uext,2 Zat uext,l uext,2 + Zuext,l at uext,2 0
= €3(x1) 201? uext,l uext,Z + 2uext,l at Uext,Z 6uext,25t uext,2 + Zuext,l at uext,l 0

0 0 0
3at uext,l Rl + 281‘ uext,ZRZ at uext,l RZ 0
+ sa €3 (X1 ) a1‘ uext,ZRl Sat uext,ZRZ + Zat uext,l Rl 0
0 0 0

Note that the matrix ¢(R) is symmetric and that ¢(R) and W(R) are independent of Rs.
The interface condition of (6.1.2) is a consequence of Br (Ug, Ue_xt)T = 0, as explained in
Section 4.1.2.

For a fixed Uy, systems (6.1.1) and (6.1.2) are equivalent. Our rough strategy is to use the
local existence Theorem 5.2.3 for (6.1.1) in order to get the existence of R on the time interval
(0, tp) and then apply a bootstrapping argument on (6.1.2) to show that 5y = Toe~2 for some
Ty > 0 and that

HsuRHg3(R2X(O,TO£72))3 = Hu - uext||g3(]R2><(0,TOg—2))3 < Ce (6.1.3)

holds for all small enough & > 0 and R(). Note that we do the estimates in the
G (R* x (0, Tosfz))g-norm since this is the natural space for our solution U given by Theo-
rem 5.2.3.
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Let us now check under which conditions on the material functions €1, €3 Theorem 5.2.3 is

applicable.
Remark 6.1.1
To apply Theorem 5.2.3 we need to find Q)4 such that Se ME;O;'EV (R?, Q) for some i > 0.

First, to satisfy 5 € ML (R, Q) we need e¥ € C3(Ry) n W¥*(Ry+.) and €1, 3 have to con-
verge for |x1| — o0, as we have assumed in (A1), (A3), (A6) and (A7).

Second, S(x,v) has to be symmetric positive definite for all x € R and v € Q. By the definition
of S it is clear that S is symmetric and a short computation gives us the three eigenvalues A1 = o,
Ay = €1+ €3 (03 + v3) and A3 = €1 + 3e3 (v} + v3) dependent from v. We now have to show that
there exists an y > 0 and domains Q4 such that A, Ay, A3 = n > 0 forallve Q.

Recall the bounds on €1 and €3 in (Al) and (A6). If e;fm > 0, then clearly Ay, A3 > efm and the

choice i := min{uo, €f ,, €7, } and Q1 := R is possible. If 3, < 0, we impose
efm + 363i,m (U% + U%) >n>0 forallve Q.

Choosing 0 < # < min {H{J, €f,m/€1_,m} and

3e

, 1M

{ve]R3

R3, e;f

2 2 U—ei +
vi+ 05 < =%, €, <0,
Qi = 3 !

we infer S e ML3A (R?, Q). Since S(x,t,R) = §(x, Uexi(x,t) + €°R), we also conclude that

1,ev
(0),+

S(R) is uniformly positive definite and symmetric. Note that for e;fm > 0 the conditions im U c

O+ and (5.2.2) are trivially satisfied. For €3i,m < 0 we have to select a small enough initial value
u©x,

Corollary 6.1.2 (Existence of a Solution of (6.1.1))

Let 7 > 0and Q4 < R3 as in Remark 6.1.1 such that Se /\/lﬁ‘:’]f’:v (R?, Q). For an initial value
U© e H3(IR?)3 that satisfies the nonlinear compatibility conditions of order 3 and im U0+ < (4
there exists a unique solution U € G3(R? x (0,tm))% of (6.1.1), where tyy > 0 is the maximal
existence time.
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6.1.1. Idea of Error Estimate

Before we prove (6.1.3) in the next section, let us study the main idea behind our approach,
by establishing the estimates formally in the G° (R? x (0, Toe_z))3-norm instead of the

G° (R? x (0, Toe™2) )3-norm. For the purpose of this section, let us assume that R is a suffi-
ciently regular solution of (6.1.2) on a time interval | := (0, T’), such that all the estimates

are possible.

Our goal is the estimate ||R(-, )| 2(gz2)> < C on a long time interval [0, Toe~2]. To this end,
we start with the differential equation in (6.1.2), i.e.

2
S(R)AR+ ) Ajoxy R+ W(R)R = —¢ “Res, xeRj, te],
j=1

and test it with R, which gives us:

t t 2
J S(R)OtR-Rdxds = J J (ZAj(?xiR-RW(R)R~Re”Res-R dxds.
0 Jr2 0 Jr2

j=1
(6.1.4)
The integrand on the left-hand side of (6.1.4) can be written as
1 1
S(R)&R R = ¢, (ZS(R)R : R) ~ 5AS(R)R - R
since S(R) is symmetric. Using the definiteness of S(R) it follows
t t 1 1
J S(R)&R - Rdxds — f J <at (S(R)R-R) _ atS(R)R-R) dxds
0 JR2 0 JR2 2 2
1
= . _ ) RO . RO
>3 sz <17R(t) R(H) — S (R ) RO .R ) dx (6.1.5)

t
_ 1f AS(R)R - R dx ds.
2 0 R2

A combination of (6.1.4) and (6.1.5) yields

2 2

RO

TIRC ) gy <5 |5 (RO

LW(]R2)3 L2(1R2)3

t 2
+ J f 1atS(R)R ‘R—)'AjoyR-R—W(R)R-R—¢ "Res- R |dxds.
0 JR2 2 ].:1 /

(6.1.6)

We now have to analyze the remaining integral. But first, we need some more assumptions:
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i) Assume that

J < (0, Toe™2); 6.1.7)
ii) let Uext be such that
[Uext(+, ) | oo (r2ys / [0t ext (-, 1) oo (rays < Ce,  ViEE], (6.1.8)
see Remark 4.2.7;
iii) let R be such that
IRC, )l gy [GRC ) ooy [RCDllzgay <C, Yee (619)

First, we use integration by parts, see Lemma 5.4.7, to show:

2
- JRZ D Aj0xR-Rdx = LRZ (0x,R3Ry — O, R3Ry + 0, R R3 — 0y, RaR3) dx
j=1

= ‘[R (TIT R; Trr R;) (0, XZ) dxp — J;R (Trr R; Trr RE) (0, XZ) dx,

=0.
(6.1.10)
The last equality in (6.1.10) holds for solutions R that satisfy the interface conditions
[R2]2p = [R3]2p = 0 in the sense of traces.
Second, the Cauchy-Schwarz inequality together with the estimate for the residual (4.2.6)
and the Assumptions (6.1.7), (6.1.9) give us

t t
J f i ¢ "Res- Rdxds < s”f [Res(-, )| 2(mays IR(,8) || 2(rays ds
0 Jr 0

7_ 7 5
< Cte2 " < Ce2—27¢

forte].

All that is left is the term §} {(3:S(R) — W(R))R - R dx ds, which contains products between
components of R and Uey;. Instead of estimating all the terms, we will only give examples
for the four qualitatively different kinds of terms that appear in this expression. The typical
terms are the following:

1. Four R-factors and no Uy-factors:
This is the easiest case since all such terms are contained in £2*¢30;#(R)R - R, which
can be estimated as follows

ee300(R)R - R = 66”5 ((R] + R1R3) &:Ry + (R3 + RiRz) 6:R,)
< Ce®|3:R||R).
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With (6.1.9) we get

t t
82”e3f X O0(R)R - Rdxds < CEZ”J HR("S)H%Z(IRZ):“ ds, Vte].
0 Jr 0

2. Three R-factors, one Uy¢-factor and one temporal derivative on one of the R-factors:
Due to the special structure of the nonlinearity we can always rewrite the terms of this
type as €*Uext i (26tRJ-R]-Rk + RJZ(?tRk> = & Uext 0t (R]ZRk>. Now we can apply partial
integration and get with (6.1.8), (6.1.9)

t
" J]Rz jo Uext,i 0t (RJZ-Rk) dsdx

t t
= ¢ (— f J 6tuext,iR]2-Rk dxds + J [uext,iR]ZRk] dx>
0 JR2 R2 0

2 t
1+ (0) . 5
< Ce' ™t <1 + HR [2(R2)3 +L HR( /S)HLZ(]RZ)s dS>

forallte ], i,j ke {1,2}.

3. Three R-factors, one Ucx-factor and one temporal derivative on the Uex-factor:
Here we get with (6.1.8), (6.1.9) that

t t t
J f 8aatuext,iR]'Rle dxds < C€1+af J |RHR|2 dxds < CElJrQJ HR(, S)Hiz(]RZ)s ds
0 JR? 0 JR? 0

forallte ], i,j k1€ {1,2}.

4. Two R-factors, two Uey-factors and one temporal derivative on one of the Uey-factors:

The same arguments as before show us

t t t
f atuext,iuext,]'Rle dxds < CEZJ f |R|2 dxds < CEZJ HR(-,S)H%z(R2)3 ds
0 JR2 0 JR? 0

forallte ], i,jk 1€ {1,2}.

Allin all, we get

TIIRC, 8| f2rep <C (sgﬂ Felt 4 (1 + e”“) HR(O)

2
2 (]R2)3>

t
+C (ez“ +eltay 82) f IR(:,8)|[72(geps ds
0
for t € J. This simplifies for a > 1 to

t
A2 3 Ol 2 a2
7RG, D)ooy <c(e2 " RO o € jo||R<,s>HLzUR2)s ds)-
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Gronwall’s inequality for measurable functions, see e.g. [58], implies
2 3_ 2 -
IRC O <€ (4[RO, ) €59

C <€§—a + [|[R© ’ ) eCte’
L2(1R2)3

N

C <53” L@ > (6.1.11)
L2(IR2)3
aslongaste J.

Now we additionally demand a < 3 such that ¢/2~% converges to zero for ¢ — 0.

To achieve (6.1.11) we had to assume that [|R(-, )|/ ;2(g2)s < C on an e-independent interval
J, but now we have a much better estimate since ||R(-, #)[|;2(r2)> gets as small as we want on
this interval for small enough R(?) and ¢ provided t < Tpe 2.

This is the main ingredient for a bootstrapping argument. All we need is a small time inter-
val where we can estimate || R(,t)||2(gz2)s < C and the bootstrapping argument will show
us that this estimate holds true as long as t < Toe 2.

For the estimates in the G% (R? x (0, T08*2))3-norm we have to estimate the derivatives of
R as well. For the tangential derivatives a similar strategy as in this section will be used.
For the normal derivatives, i.e. the x;-derivatives, we will also use the divergence equation
V -D = go.

6.2. Bootstrapping Argument

In this section we will use a bootstrapping argument to prove (6.1.3).

Assume that Assumptions (A1) — (A7) hold. Take a solution A € (;_, C*¥([0, To], H***(R))
of the effective nonlinear Schrédinger equation (4.1.13) for some Ty > 0 and construct Uex;
as discussed in Chapter 4.

Choose R ¢ #3(IR?)% and &, > 0 small enough such that U® := Uex(-,0) + 2R sat-
isfies imU®* < (), and the nonlinear compatibility conditions of order 3, see Defini-
tion 5.3.1. Then Corollary 6.1.2 yields a maximal existence time f;; > 0 and a solution
Ue G (R x (0,ty))° of (6.1.1).

With Remark 4.2.7 it follows that R € G3 (R? x (0, min {ty, Toe_z}))B.
For t € [0, min {ty, Toe 2}) we set

3 2
2(H):= Y HafR(-,t)‘
k=0

H3-K(R2)3

By the Sobolev embeddings H? (IR3.) — L® (IR3) we have that

1
IRC,8) ooy ARG ) oy < cs2(t)?
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for a constant cg > 1. Take @ > 0 with

1 — €7 —ef
@< mind 1 T Fm (6.2.1)
o 3min{e;,,, 0} 3min{e;,, 0}

where § := +00.
The major part of the rest of the proof is a bootstrapping argument to prove the statement

There exist p € (0,1], po € (0,p), €0 = €o(p) € (0,e4) and t* € (0, £51) such that
forall ¢ € (0,€0) we have &"p + [[Uext/| o (r2x 0,472 < @ (6.2.2)

and if z(0) < p§ and t* < Tpe ™2, then z(t) < p* forall t € [0, t*].

Remark 6.2.1

Note that (6.2.2) contains the two conditions that guarantee us a long existence time, see Theorem
5.2.3. The first condition €"p + HuextHLw(Wx[o,TOrZ))
domains Q4 and can be achieved for eg = eo(p) small enough. Indeed, ||Uext|| ;. (R2x|
by (4.2.11).

The second condition z(t) < p? shows us that there is no blow-up.

Also note that under these assumptions (6.1.7), (6.1.8) and (6.1.9) from Section 6.1.1 are satisfied.

s < @ guarantees us that we do not leave the

0,44])° < Ce

To establish (6.2.2), we define for 1 > p > pp > 0

Tpo,EO = Sup {t* S [0/ TOE_Z] Sap + HUeXtHLOC(]RZX[O,f*]) < (D,

(6.2.3)
2(t) < p* forall t € [0,£), 2(0) = p3 },

Jooeo = [0, TPOrSO)'
For U") and ) small enough the time interval ], po,e0 18 Not-empty and the conditions
VEE Jpe ¢ dist <im Ui(-,t),60i> > k>0, UG H)|pmeyp < C <0

are guaranteed for some x > 0.

We will now prove that
2(t) <P°/2,  tE Jpye

for suitable ¢y and pg and hence Tpo,e0 = Toe 2 and (6.2.2) is true. This yields the estimate

U = Uextll gz 0,13e-2° = & 1Rl gs e w0, 70e-2)y°
—¢" sup z(t)?
tG[O,TOS_Z]

< peh. (6.2.4)
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Main approach:
Let B:= (B1, B2, Br)" € N3, |B| < 3. Applying 0F = 61 0520P" to (6.1.2) yields

2
S(x,t,R)0rg + > Ajdyrp

= (6.2.5)
= sg(x,t,R) + wﬁ(x, t,R) — sfaaﬁRes(x,t), x € ]Rz\l"z, t € Jooeor o
rp(-,0) = ¥ := 9PR(.,0), xeR?,
with
rg(x,t) := PR(x,t),
sg(x,t,R) := — (9p(S(x,t,R)0;R) — S(x, t, R)drp)
- - ) <ﬁ> d7S(x,t, R)OP4R,
sty N
1<p

wg(x,t, R) == — P (W(x,t,R)R).

Remark 6.2.2

Note that the interface conditions cannot be simply differentiated for all B, since normal derivatives,
i.e. xp-derivatives, do in general not commute with the jump-brackets [-|op. Therefore, we will
treat normal derivatives different from the tangential and temporal derivatives. For the estimation
of the normal derivatives a more involved method will be necessary and the structure of Maxwell’s

equations will be essential.

Remark 6.2.3
For R € G° (R? x ]p0,80)3 we have S(R) € Fyoy (R? X Joye,). Indeed,

S(x,t,R(x,t)) = A(x) + e3(x1)e*0(R(x, 1)) + p(R(x, 1)),

the Banach algebra property of H>(IR?) and the regularity of Uex, €1, €3 give us that S(R) €
F33 (IR? % Jppe0)- With the algebra property it also follows that W(R) € H? (R? x ]p0,80)3X3
Furthermore, let € > 0 and take arbitrary but sufficiently reqular domains My < R such that for
dist{M+,{0}} large enough

[Uext (o Ol 3 ay y2 - IRC O 3, 0 < E
With the Sobolev embedding H3(My) < C'(My.) it follows that

sup |Uext(x,t)|, sup |R(x,t)| < Ct.

xeM+ xeM+y
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Hence, |Uext (-, t) + €"R(-,t)] — 0 for |x] — co. Now S(x,t,R) = S(x, Uext(x, 1) + €'R) and
Remark 6.1.1 imply that S(R) is positive definite and convergent for |x| — co.
We also have that

fp(R) :=sp(R) + wp(R) — e "0PRes € G° (R? x Tooso)” -

Indeed, the residual satisfies Res(-,t) € H3(R?)® by Lemma 4.2.4. By the definition of Uext, R
and the algebra property of H3(R4.) it follows that W(-,t,R(-,t))R(-,t) € H3>(R?)3. Finally,
sg(,t,R) € L%(R?)3 follows from i), iv) and v) in Lemma 5.1.4.

The temporal derivatives ofR(-,0) have to be interpreted as one-sided derivatives that sat-
isfy
JR(-,0) = VO(R(-,0)) = V) (R<°>) , (6.2.6)

with V1) as defined in Section 5.3.
Similar to the procedure in Section 6.1.1 we test (6.2.5) with rg and get

t 2 t
f f (S(R)&tr,; T+ Z AjOx1p - r,g> dxds = f J (wg(R) -rg + sg(R) - rg) dxds
0 JR? j=1 0 JR? (6.2.7)

t
—e f f 0PRes - rg dxds.
0 JRr2
For t € J4,,, the main steps of our bootstrapping argument are:

I. Use (6.2.6) to estimate Hrg)) HLZ(w) forall B e ]Ng with |B| < 3.

II. Based on (6.2.7), estimate } ..\ 5 .. ¢ [[07R(:, ) H%Q(R2)3 using that, for f; =0,

2
J Z Ajax].r,; . r,; dx = 0.
R

2]’:1

IIl. Rewrite (6.2.5) to analyze 0fR, and dPR; for B; = 1 and then iterate the process for
B1 =2and By = 3.

IV. Use V- ;D (Ug) = 0 to estimate 9PR; for B1 = 1, where we start with B = (1,0,0),
and then iterate to increase B; and f;. Finally, we have to iterate the process again for
[31 =2and/31 =3.

Remark 6.2.4
This approach follows the proof of the local a priori estimates in [67]. The main difference is that,
using the structure of our ansatz, we can derive the estimates on a large time interval (0, Toe~?)

with the desired dependence on .
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Step |: Estimates of the Initial Values

In this section we want to estimate ||rg(-,0) for all B € N3 with |B| < 3. For f; = 0

‘ ‘ L2 (]R2)3
we already have by assumption that

< Po-

IRCOlpmp = RO, o

If B; # 0 we use (6.2.6) to estimate 0/ R(-,0) in H3~7(R?)3 for p € {1,2,3}.
Since U satisfies the nonlinear compatibility conditions of order 3, we know from Section

5.3 that (suppressing the x-dependence)
oju(t) = v )

forall t € [0,f)) and j € {0,1,2}. With U = €”R + Uex we can rewrite these three equations

as

2 ~ ~

R = <Z Ajoy R+ ¢ Res + ¢ (S(U) S(Uext)) atuext>,
2

R = <2 j0x, O R + O S(U)OR + s_”é’tRes>

_ et (at (§(u> — S(Uex ) OUlexs + (§(U) - §(uext)) afuext) ) 62.8)

2

PR =S ( 3 A6y G2R + 20, <§ u)) PR + & (§(u>) R + s“afRes>

j=1
e 3 (2 (S~ S(Uew)) bt + 201 (S(U) ~ §(Uen)) U
+ (B~ S(Ue)) APUex)

The following lemma collects some properties of the matrix function S. The result and the

proof are similar to Lemma 2.23, Lemma 7.1 and Corollary 7.2 in [75].

Lemma 6.2.5 (Properties of §)
Let T', 10, R > 0, Oy < R®and S € Br(0) = ML, (R?, Q).
Then for all U,V € G° (R? x [0, T’])3 with imU*,im VE < Q. there exists a constant C > 0
such that
i) ||su(t)!

<
HWZ,OO(]R2)3><3+H2(]R2)3><3 =

7

i) ||okS(u(t))

<
’ ’ W3k (R2)3X3 1 4{3—K(R2)3x3

k / /
H2—k(IR2)3x3 s C2j=0 Hatu(t) - atv(t)‘

iii) || ok (§(U(t)) . §(V(t))) ‘

forallk e {0,1,2} and t € [0, T'].

'Hsz(IRZ)S
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PROOF: i) We have

d(Uy, Up)(er +€3(U% +3U§)) —2e3d (U, Up)Uq Up 0
s = —2e3d(Uy, Up) Uy Uy d(Uy, Up) (e +e3BUZ+U2)) 0 |,
0 0 Thee

with
-1
(U, Up) = (e§ +4eres (U2 + UB) + 363 (U2 + u§)2) —: p~l(x, 1)

Since d(Uy, U) is the inverse of the product of the eigenvalues of §(U), it follows that
0 < d(Uy, Up) < 775" and therefore d(U; (t), Ux(t)) € L*(R?) for all £ € [0, T'].
Since €1, €3 € W3¥®(IR?) and U(t) € H3(IR?)3, it follows that p(x, t) € H3(R?) + W3 (R?).
With the algebra property of H?(IR?) the spatial derivatives of d have the following regular-
ity:
Ox,d(t) = —d(t)*0x,p(t) € HA(R?) + W*P(R?),
Ox; 0, (t) = 2d(t)> 0, p () Oy, p(t) — d0x, 05, p(t) € H' (R?) + WP (IR?).

It follows that S(U(£))~! € W2 (IR?)3*3 4+ H2(R2)3*3 for all t € [0, T'].
ii) For €1, €, € W3*(IR?) and U € G3(R? x [0, T'])® we can use the algebra property of H>(IR?)
to see that all components of

e1 0 0 Ui+ Uz 22U, 0
SU)=10 e 0 |+es3 2U Uy Uf + 3U§ 0
0 0 wo 0 0 0

are in W3 (R?) + H3(IR?). Since U; and U, appear polynomially in S(U), it is clear that all
U-derivatives of S(U), e.g. dy,du,S(U), are even in #3(R?)3*3. To prove the statement for
k = 1 note that

3 (§(U(t))) = 0y, S(U) AU + u, S(U) 3L,
where all factors are at least in H?(IR?) and the statement follows from the algebra property.
For k = 2 we have

2 (§(U(t))) — 3% S(U) oL & Uy + 20, 0, S(U) Ao Uy + 63, S(U) A Undy Ly 629
+ 0y, S(U) AUy + 0y, S(U) A2 L.

We can again use the algebra property and for the terms dyy, S(U)a2Uy + ay,S(U)2U, we
use part ii) of Lemma 5.1.4 with m; = 3 and mp = 1.

iii) We restrict us to the case k = 2 and show the estimate explicitly for the term correspond-
ing to the fourth term on the right-hand side in (6.2.9). For other values of k and for all other
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terms the estimates are analogous. We have

Hé’m U)oy — 0y, S(V)o2V,

LZ(]RZ)3><3

< H <6u18(u) _ au1§(v>) 2u,
<G (HU - V||L°C(R2)3 Ha?ulHLz(]Rz) + Hat2u1 - &tZV1HL2(1R2)>

<C (Hu — Ve + |20 — V2

+||ewSv) (2un - 3w

L2(IR2)3x3 [2(IR2)3x3

HLzaRz)) :
where

Cy:= sup ‘&ulg(u)‘+ sup ’D&ulSN(u) ,

uiEQi uiEQi

with D8u1§ being the Jacobian (tensor) of (7u15~ Above we used the mean value theorem,
the Sobolev embedding #2(R?) < L*(IR?) and the fact that S € ML, (R? Q. ), which

Ho,CV
guarantees that the suprema in C; are finite.

We can now go back to equations (6.2.8) and use Lemma 5.1.4, Lemma 6.2.5 and ¢’R =
U — Uey to show

[0¢R (-, 0) ||7-[2(]RZ)3

< C[[SC N ey srmqrapes (IRCO s+ [Res(,0) e

+ Ce " [["R(, 0) [l 32(roys || 0rUlext (-, 0) |32 2y
< C ([ RO oy + 7 IResC: Oy )

The remaining two estimates follow analogously:

H&ZR H?—ll (R2)3 =C (HR ||H3 R2)3 + ||atR HHZ R2)3 +e" ||8tRES ”7—[1 IR2)3>
1OPRC, 0) |2 geys =C(HR sy + 1ARE0) ey + [[GFRE, )|l ey )

+C (7 [[FRes(:,0) | 2 gays)

Finally, we use the recursive structure of the estimates to obtain

JPRC,O)yeraey = €[ R

—j(IRZ)S )

for all p € {1,2,3}. With our estimate for the residual, see Lemma 4.2.4, we get

p—-1
—a ]
wwy E) H@Res(.,O)‘ 12

3

ey < C (po + s%*”) (6.2.10)

for all B € N} with |8] < 3
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Step Il: Estimates of the B-derivatives of R(-,t) with 81 =0, |B| <3

We first show an energy estimate similar to (6.1.6) for the ¢- and x,-derivatives of R.

Lemma 6.2.6 (Energy Estimate for rg)
Let R € G® (R? x IPOrSO)B be a solution of (6.1.2) and let B € N3, |B| < 3,B1 = 0. Then rg = PR
satisfies

U 2 ok
2 Hrﬁ(”t)HLZ(IRZ)3 <C Hrﬁ [2(R2)3
(6.2.11)

t
1 arp
+J;) J]RZ <wﬁ(R) rg+ Sﬁ(R) rg+ EatS(R)rﬁ rp—€ OPRes - rﬁ) dxds

for every t € Jp e,

PROOF: The proof is divided into two parts. First, we prove (6.2.11) for |B| < 3. In this
case, we have enough regularity to do calculations similar to Section 6.1.1. Second, we use
Lemma 5.1.10 to prove the energy estimate for || = 3.

Step 1: Let us first study the case || < 3.

Since R € G° (R? x ]p0,80)3, we have rg = 0FR € G' (R? x ]p0,80)3. To employ (6.2.7), we
compute

t 1 t 1 t
L - S(R)0rg - rgdxds = 5 Jo O < - S(R)rg - rg dx) ds — 5 L - S(R)rg - rgdxds.
Using that S(R) is positive definite, we estimate
2
 SRYOrp(8) - rp(8) = 1 ) [ g
Moreover, we have

S(R)O)r0)-75(0) e < 5 (RO )

1’(0
R2 Le(R2)3x3 || B |lr2(re)s

) ¢ L*(IR?)3, this leads to

ext

Since R(O), u

U 2 02 t 1
5 H”ﬁ("t)HLZ(R2)3 <C Hrﬁ LRy —I—L - S(R)0org -rgdxds + 5 tS(R)rg - rgdxds.

201R2

An integration by parts yields

2
JIRZ Z Ajax].r,g Tg dx = Jle (_axzrﬁﬂrﬁ,l + 5x17/3,3”ﬂ,2 - 8x2r,g,1rl;,3 + 8x1r,g,2rﬁ,3) dx =0,
j=1

employing the differentiated interface conditions

[rg2l2p = [rg3]ep = 0 (6.2.12)
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in the x;-integral. The interface conditions can be differentiated since f; = 0, see Lemma
5.4.6. Now (6.2.11) is a consequence of (6.1.2) and the above formulas.

Step 2: Next, we consider the remaining case || = 3, 81 = 0.

Let f := sg(R) + wg(R) — ¢ "0PRes. The differential equation in (6.2.5) becomes

2
S(R)org+ Y Ajdrg=f,  xeRAIy, t€ o (6.2.13)
j=1

Since S(R) € Fyov (R% X Jpe,) and f € G (R? x ]po,go)?’, see Remark 6.2.3, we can apply
Lemma 5.1.10 to (6.2.13) (setting A; := S(R) and M := 0). Because rg is a weak solution
of (6.2.13) with the initial conditions from (6.2.5) and the interface conditions (6.2.12), the

lemma provides sequences (rg)zl)n < Dr(R?)3, ( fu), < H! (R? x ]Po,so)3 and (rﬁ,n)n c

G (R2 X Jppe,)” with ”;(3(31)1 — rg)) in LA(R?)?, f, — fin L (R? x J,¢,)° and rgn — tgin
G’ (R? x ]90,80)3 for n — oo, and rg , is a weak solution of (6.2.13) with data ( n,rg?l) for all
n e IN.

Now all functions are sufficiently regular and the same calculation as in Step 1 shows that

1
,Hrﬂn O 2rey < CH ,3,1 . JJ]RZ (fn o+ 5OS(R)rg rﬁndx> ds. (6.2.14)

The Cauchy-Schwarz inequality shows that for almost every ¢ € ], ,

S raads < [ frpdst Il a0 ey
+ 1 (fu = OGO 2 rays [7gn (- HLZJRZ

HJ f-rpdx (n — o0).
R2

Since 0;S(R) € L* (IR* x IPO,SO)SXS’, we also get for almost every t € [,

" OtS(R)rgy - 1g,dx < Jle OtS(R)rg-rgdx + Cllrga(,t) —rg(- 1) HLZ(]RZ)3

— » tS(R)rg -rgdx (n — ).
Lebesgue’s dominated convergence theorem allows us to do the limit process for (6.2.14)
and gives us the statement.
O
We now have to estimate each part of the right-hand side in (6.2.11). The main ideas for the
estimates will be similar to the ones in Section 6.1.1.
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Let
2= 3 ORI gey-
'ye]NS
"Y‘<3171:0
From Step I we know that

4

L2(R2)3 S (erSZ u>'

Let us start with the term

1 t
J JIR S0iS(R)rg -rgdxds = 2f0 J]Rz (e3(x1)e*00(R) + d:(R)) rg - rg dx ds.

First, we have

t

1 o t 2a : 2 20 | o
¢ e3f0 Lz 2O(R)r - 75 dxds < Ce fo 75 9)| o g s < Ce Lz(s) ds

since R, (R € L* (R? x ]polgo)a and 0(R) only contains quadratic terms in R. Similarly, using
that

HUEXtH 3/H6tuext|| 3 < Ce,

L (R%x Jpy e

see (4.2.11), (4.2.13), we derive

L2 (R2x Jpy ¢ )

L 2, _l+a ! 2 » (-
ZJO - Orp(R)rg-rgdxds < C (e +¢€ ) Jo Hrﬁ("S)HLZ(RZ)3 ds < Ce fo Z(s) ds.

Note that 0;¢(R) only contains terms that are linear or quadratic in Uext and 0 Uext.
For the residual term, (4.2.9) yields H&B Res(-, H L2(R2)3 < Ce72. The Cauchy-Schwarz in-

equality and ||rg(,t 2 weyp < Z(t) < p < Tforte Jy e, then give us

t t
_ _ 3
Jo J]Rz e "0PRes - rgdxds < J; e~ ||0PRes(-,s) LRey Hrﬁ(-,s)HLZ(RZ)3 ds < Cez™".

The remaining term S(t) Sge(wp - rg + sg - rg) dx ds mainly consist of integrals of the type

t

I— f 0% (x,5)0% g (x, 5)5%h(x, $)k(x, 5) dx ds, (62.15)
0 JRr2

where f,g,h € G}3(R*x ]), k € G°(R?> x ]) and a,b,c € N} with |a|,|b|,|c| < 4 and 5 :=

la] + |b| + |c| < 4. For s = 4 we only have integrals where at least one time-derivative is

present, i.e. a; = by = ¢; = 0 is not possible.

The case where four derivatives fall on one component of Uy also occurs and will be dis-

cussed separately.
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Due to the symmetry in (6.2.15), there are the following two classes of terms and associated
estimates:

i) la| <3,|b| <1, |c| <1
Here 07f(-,t),k(-,t) € L>(R?) and d°g(-, ), 0°h(-,t) € L*(IR?), by Sobolev embedding.
With the Cauchy-Schwarz inequality we obtain

o2y 1k 8) [l f2(re) ds-

25C,5)| ., o, 10°HC9)

t
< “f(
I < CL Ha f( /S)HLZ(]RZ) L®(R2)

ii) |a] <2,|b] <2, |c| =0:
Now k(-,t) € L2(R?), 0°h(-,t) € L*(R?) and 0 f (-, t),d¢(-,t) € LP(R?) forall p € [1,0).
This follows from the Sobolev embedding H!(IR3) < LP(R%) forall 1 < p < . The
generalized Holder inequality then yields

2*5(,s)

t
I < CL Hauf('/s)Hp(]RZ) ) Hach('rS)HLOC(]RZ) Hk('rS)HLZ(]RZ) ds.

L6(RR?

Note that for some indices the cases overlap.

The role of the function k in (6.2.15) will always be played by a component of rg = 0FR.
Recall that S(R) = A + €3¢2*0(R) + ¢(R). Hence, to estimate Sé SR2 s - rgdxds, we first
analyze £2€3070(R)0P~7O;R - rg where B1 = y1 = 0. This sum consists of terms of the form

Ce¥ 0V R0V R;joP~70; Ry 0P R,,

withy = 9" +9", 9] =97 =0and i,j,k, I € {1,2}. We therefore have to estimate
t
L= CsZ”J 0" R;0" R;0P~"9; Ry PR, dxds. (6.2.16)
0 JR?

The case i) above applies if |8 — 7y| = 0, where we may take |y”| < 1. We then estimate

/

h < Ce L t ¥Rt 7R

L2(IR?) L2(R?)

t
< Cez"f Z(s) ds.
0
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A representative of type ii) is any term with | — | = 1, |9/| = 2 and |y”| = 0, which is
estimated via

!

t
2 BR,(- (- A= '
I < Ce u,[o H5 Ry(-s) I2(R?) ’07 Ri(-s) L6(RR2) ‘8 TRy 5) L3(R?)
t 2 2 2
2 ' -
= ajo (HaﬂRl("S) Ry Hm RiCr )| o ey Haﬂ TOR(<) L3(1R2>> &

< Ce Jt (2(5) + (2(5))%) ds

0

t

< Ce* f Z(s) ds + Cp*e*'t,
0

using H'(R%) — LP(R?) for 1 < p < 0. The remaining cases can be treated similarly.

Next, we study 07 ¢(R)0P~7o;R - 0PR with |8 — | < 2and B; = 71 = 0. We use (4.2.11)

which provides the inequality ||0*Uext|| 3 < Ce for all || < 3 with a3 < 2. For

L (R? % Jop.c9)
terms quadratic in Uy case i) applies:

t t
f 6"’(Uext,iUext,j)é’g_"V&tRkaﬁRl dx dS < Cszf H&ﬁRl(-,s)
0

P10 R ()

0 Jr2 I2(R2) L2(R?)
t
< Cszj Z(s) ds.
0
For terms linear in Uy, i.e.
t ! "
I; .= Saj J7 R; 07 uext,jaﬁ‘VatRkaﬁRl dxds, (6.2.17)
0 JRr2

we distinguish the three cases | — y| = 0,1, and 2. For |8 — | = 0 we compute

t
ds < CEZ”J Z(s)ds
0

/

‘m Ri(-,s)

I < Ce'™ f Hé’ﬁRl(',S)
0

L2(R2) L2(IR?)

by means of the estimate type i) and the fact that ;R € L (IR? x ]y ¢,). For |[B— 7| = 1 the

estimate of type ii) applies and we have

!

Iy < Celt? fot H&'ng(',S) ’67 R;(-s)

|OPT0R (- 5)

L2(R2) L5(IR2) L3(IR2)

t
< Celte J Z(s)ds + Cel ™t
0

as 0V'R;, P~7o;Ry € L (Jpp,e0, H1(R?)). Finally, for |8 — y| = 2 case i) again yields

t t
I; < Cs”“f Haﬁ_“’&Rk(-,S) ds < CSH”J Z(s) ds,
0

0

‘5'3131('/5)

L2(IR2) L2(R2)

where we have used 07'R; € L* (IR? x J,,¢,) because |9/| < 1.
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Remark 6.2.7

Let us collect all possible cases for the estimates above with |B| = 3 in one table. For |B| < 2 we have
enough regularity to always apply estimates of type i).

For the estimates above we have only used that PR € L*(IR?)? and 07" Uy, € L™ (R?)3. The other
components have to satisfy certain regularity assumptions to use case i) or case ii) for the estimates.
In the first column of Table 6.1 we see which cases apply when 87" is applied to a component of R,
see (6.2.16), in the tenth column we see the cases when 07" is applied to a component of Ueys, see
(6.2.17).

cases | |y [ [B=7 | [¥| | |7"| | #R | F~76,R | 0VR | 07" R | cases | 07 Uy
i) 1 2 0 1 L? L? H® | H? i) L™
i) 1 2 1 0 | L? L? H?> | H° i) L®
i) | 2 1 0| 2 | L? H! H | H' | 1)) L®
i),i) | 2 1 1 1 L? H! H? | H? | i) L™
i) | 2 1 2 | 0 | L? H! H' | H® ii) L®
i) 3 0 0| 3 | L? H? H® | L? i) L®
i)ii) | 3 0 1| 2 | L? H? H?> | H' | i),i) L®
i)ii) | 3 0 2 1 L? H? H' | H? | i) L™
i) 3 0 3] 0 | L? H? > | H°® i) L™

Table 6.1.: Regularity of factors for |B| = 3

At last, we treat 08 (W(R)R) - 9PR. Terms quadratic in Uy are estimated as follows, where
B =B + B" 1f|B'| <3 orif notall three derivatives fall on d;Uey j, we obtain

¢ t
lii= | | 0 (Uoqi0illon)0F RidPRy drds < €2 |oPRi(,9
0JRr2 0

‘aﬁ”Rk(.,s)

L2(R?) L2(R?)

t
< Cé? J Z(s)ds
0

as Haﬁ/(uext,iatuext,j) H < Ce? by (4.2.11) and (4.2.13). If |B'| = 3and oF is only ap-

L% (R2x Joy.e0 )
plied to 0;Ueyj, i.e. B’ = 0, we use (4.2.15) with &ﬁ,ﬁtuext,j = A; + B;. Sobolev’s embedding
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6.2. Bootstrapping Argument Chapter 6

for xo — Ry (x1, x2,s) implies that

t
Iy < J J Uet,iAjoP RidPR; dx ds| +
R2

t
J J Uext,iBj0F RidPR; dx ds
0 R?

0

1
2
L2(R%) [f]{{z IUEXt’iBj Rk|2 dx] as

t t
<Cezf 2(s) ds + J HaﬁRl(-,s)
0 0

t
< Cszf Z(s)ds
0

1
2
. 2 2 d d
L) [J}R sup |Bj(x1, x2,5)|" dx2 fR sup |Ry(x1,x2,5)|" dxq s

x1ER x2€R

+Ce2 f |o#Ri(5)
0

t t %
<Ce? f 2(s) ds + Ce? j |0 Ri(5) [ f (IRe(x1, %2, )2 + |0, Re(x1, 22, 5) ) dx] ds
0 R2

0

L2(R?)

t
<Ce? J Z(s) ds.

0
(6.2.18)

In the same way we treat terms linear in Uey. Let B = B/ + B” + B” and let us study

us

t
I5 := ¢ J jzaﬂ OUext,i 0P R;j0P Ry0PR; dx ds.
0 JR

If |B| < 2, either 0F"R; or 98" Ry is in H?(R?) and therefore in L*(IR?). W.Lo.g for [8"] < 1,
it follows

Is < Ce'™ jt Hé’ﬁRz(-,s)
0

‘aﬁ”Rj(-,s)

L2(R?) L2(R?)

t
< CSH”J Z(s) ds,
0

using oB" Ry, 0P o, Uexti € L® (R? X Jppe0)-
If |B'| = 3, an estimate similar to (6.2.18) yields

t t
Is < e f AiRijﬁﬁRl dxds| +¢€* JJ BiRija'BRl dxds
0JR2 0JRr2
) t t p ) 3
+a | 3 a . .
< Ce Lz(s)ds +Ce Jo H& Ri(-,s) LR <J}R2 |BiR;Ry| dx> ds

L (6219)

t t
< Celta f Z(s) ds + Cel ™ f H&ﬁRl(-,s) J sup |Ri(x1, x2,8)[*dxy | ds
0 0 L2(R?) \ JR x,eR

t
< Ce””f Z(s) ds.
0

Note that these are the only cases where four derivatives can fall on one function in this step.
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Collecting the above partial estimates, we finally get with (6.2.11)

t
zZ(t) < C (p(z) + <£2 + s”“) J 5(s)ds + e + e27 4 87_2“> :

0

Ifae (1,1), wehavel+a>2and 7 —2a > 3 — a and Gronwall’s inequality yields

zZ(h) <C (p% +er 7 4 s”“t) et < C (p% +er 4 e“*l)

< Po-

forallt € Jpyq if [RO| )

Step I11: Analysis of 0PR ;3 for |B| < 3,81 # 0

We will now use the structure of Maxwell’s equations to get expressions for #Ry, 0PR;
where B # 0. The estimates will then follow with the estimates of Step II and by iteration.

We first consider f; = 1. Setting a := (0, ﬁg,ﬁt)T, we have B = (1, 0,0)" + a. We now take
the differential equation in (6.2.5) with « instead of § and rearrange the terms into

{aﬁRz _ ax1aaR2 — ax2a"‘R1 — (S(R)é’té""R + Sa(R) + wtx(R) + g_”a"‘Res)3 ’ 6.2 20)

0PR3 = 04,0"R3 = — (S(R)010"R + su(R) + wq(R) + € “0*Res), .
Note that this is possible for our matrix A;.

Each term on the right-hand side in (6.2.20) has derivatives 07 with |y| < 3 and ; = 0 and
can hence be bounded by Step II.

From Remark 6.2.3 we know that S(R) € Fyey (R? x Joy¢,) and W(R) € H? (R? x ]polgo)?’xa,
now with the estimates in Lemma 5.1.4 it follows
1050 R, )y < 2(0),
[(SRIZFR Dy < ISR Donriypes [0 R, B2 < CHE),
l|sa(R )(-, T2y < C 2 Hms t,R)*""O:R(., HLZ Ry < CZ(b),
0£y<a«
2 2
BN (- : B >
[P0 3] Ha WL RIRC| +Hw (L RIPRC) < CE),

g2 H&"‘ResHLz(Rz)s < Ce™,

In summary, we get

2
B B > 7-2a 2 720 | -1
H& Rz L) Rs LR <CEzMhH+e) <C (po +e +e )
forall [B| < 3,1 =1landallt€ ], ifae (1,1) and HR 0)‘ By < po-
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6.2. Bootstrapping Argument Chapter 6

For larger values of B; we iterate the process. For f; = 2 we have (6.2.20) with B =
(1,0,0)T + « and & := (1,82, B¢)" and using the previous step, all terms in the right-hand
side can be estimated in L?(IR?). For B; = 3 the same process applies, with 8 = (1,0,0)" +
and & = (2,0,0)". Altogether, we arrive at

2 5 , N )
|ﬁ|Z<:3, HﬁﬂR(',t) L2(IR?)3 +|‘;|Z$3(H55R2(-,t) L2(RR2) * HaﬁR3('rt) L2(1R2)> <C (P% NP S 1)
p1=0

(6.2.21)
forallte ]y . ifae (1,4) and HR(O)‘

ey S PO

Step IV: Analysis of PRy, |B| <3

In this final step we exploit the divergence equation V- D(Ug) = V- D (Ug))> = gp in
order to estimate 0PR;, remember that Up = (U, U,,0)". We will again use an iteration to
prove the estimates for all B € IN3 with |B| < 3.

First, for a € lNg, la| <2and r, = 0*R we have

~

e0" D (e Rg + Uei ) = 01 ((61 + gzﬂe3|1”z|2) 7) +o" (a(RE)atﬁ) + o (W(RE)R)

+ 0t< Z ot <€1 + 82”e3|1~2|2> 8“‘71~2) + e %0"Res

0£y<u

+ e 7 o axg uext,3
- ax1 uext,B
(6.2.22)

on R% x ]y, ¢, where > of a (3 x 3)-matrix denotes the restriction to the upper left (2 x 2)-
submatrix and ~ of a vector in R® denotes the first two components of this vector. The cal-
culation to obtain (6.2.22) uses that ¢(Rg) and W(Rg) have a block structure and that by
definition of Res it follows that

D — Ox, U,
£ D(Uexp) = € "0*Res +¢ %% [ "2 %
_axl uext,3

Note that by definition ¢(Rg) = ¢(R) and W(Rg) = W(R).

An integration by parts yields

fot o <4~’(RE)&1~(> ds :Lt <$(RE)5“5J€+ 3 <IX> 0795(RE)(9“75J§> ds

0£y<u

:fot (-W(RE)a“fz +y <“> mﬁB(RE)@”‘_mfﬁ> ds + [p(ROPR],.

0£y<e
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By integrating (6.2.22) in time, we then deduce
[E_a@aﬁ(SaRE + uext,E)]g

- [ (e1+ e eslRP) Fa + G(Re)Fa + Y, <“) 0" (&1 + 3| RP) a"‘—ﬁz}

0#£y<a

N f <_ APReF + Y (“) Y P(Rg)O* TR + (W(RE)ﬁ)> ds

0 0y<a \T
t —~ Oy, U,
+e° f "Res + o | T2 o3 ds.

0 _axl uext,?)
Note that the divergence of the last term vanishes.
Substep 1: 1 = 1.
We write B = (1,0,0)" + &, where & = (0, B2, B:) . We have that V - 6""15(115) is constant in
time because

t

0
(6.2.23)

V- o*D(Ug) = (V- D(U)) = G, Go:= VD (uf).

Note that § € H2(IR?) because of the algebra property of #2(IR?) and U”) € H3(IR?)3.

Hence, taking the divergence of (6.2.23), the first term vanishes and we have
2a D2 2a D12\ ~ t
[(61 + e2%|R| ) (Ox,Tat + Oxy7a2) + V (e1 + e2%|R| ) . ra]o

:_{v.@mma“m Y (fy)@”(el“z”%'ﬁ’z)a“ﬁ‘ﬂ

0£y<u

t
- f v < — % P(Rp)R + o (W(RE)R) +e %" Res+ Y ("‘) 67$(RE)6"‘_7@R> ds.
0 0#y<wa

t

0

Because of R € C (e, LOO(IRZ))Z, there exists a number & > 0 with (€1 + €23 R[?)(x, t) > ¢
for small enough ¢, all f € ], ¢, and almost all x € R2.
Since Jy, R, 6x21~2 € C (Jog,e0r LOO(IRz))z, we can also estimate

|V (e + eealRP) 1), . <C

Loo(]RZ)?,

forall t € Jp e,
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These facts yield the central inequality of this step:

19Haxlrﬂél HLZ(IR2
< C (0razloD iz + IV FalO) gy + IFalo) g + 172 0) iz )
t
H[ ( (Re)*R+ ("‘)a’r(el +£2”63|1~2|2)8"‘_71~2)(',5)]
04y<a N\ 01lL2(IR?)
o o (A R ® o =70 R
Al — 3p(Rp)*R + 0 <W(RE)R>+2 OTG(RE)* VAR ) (-, 5) ds
0 0y<a NV L2(R?)
t
e JV-&""Res(~,s) ds )
0 L*(R?)
(6.2.24)
We next iterate over B; and B».
i) We start with & = (0,0,0) .
Here (6.2.24) simplifies to
t ~—
8 0% e ()l 2y < Hf V. Res(-s) ds
0 L*(R?)
+C (Haxz”aZ Ol ey + IV - Fa (- 0) || 2rey + [Pl D) || 2oy + ||7a(‘z0)||L2(]R2)2>
N ~ t t N ~ o~ ~
+ H V- ($(ROR) (5)] + f V- (~0p(Re)R + W(RE)R) (,5)ds
Ol 2(r2) 0 L2(R?)
(6.2.25)

The residual term on the right-hand side is bounded by Ce2~% due to (4.2.6).

The second and fourth term on the right-hand side of (6.2.25) are estimated by (6.2.21) and
the third and fifth term by (6.2.10).

In the first norm on the last line of (6.2.25) all terms have been treated in Steps I, II or III
except for those of the type

a
£€3 axl a1 R g uext,k and €3 axl Ta1 uext, j uext,k-

Using R € L” (R? x ]polgo) and ||Uex| 3 < Ce, we have

L (R2x Jyy ¢ )

Hs €3 (axlra 1R Uext k) HLZ IR?) < Ce't Haxlrul ||L2(1R2

H€3 (53(1 Ty luext]uext k) HLz R2) ng H axl Ty, 1 HLZ R2)

In the last norm of the right-hand side of (6.2.25), the terms which have not been estimated
so far are of the type

ax1 Yol at uext,j uext,k/ e at ( uext,]' Rk) axl Tyl and ¢ uext,ijat axl o1
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for j,k € {1,2,3}. Using R, ;R € L* (R?* x ]polgo) and || iU ext || 5 < Ce, we obtain

L (R?% oz )’

t
J H€3 a7c17’u¢181‘uext]uextk) HLZ IR?) ds < CEZJ; HaX1ra,1(’/S)HL2(R2) ds,

t
Jo l|e”€3 (Ox, 70,10t (RiUext ) (',S)HLZ(]RQ) ds < Cs””fo 0%, 7,1 (- 8) || 2 ey s,

and, integrating by parts in time,

t
f e%€3 (Uext,jRc0t0x,701) (-, 5) ds
0

L2(IR2)
t

[sa (uext,ijéxlra,l) ('/ 5)]6 - JO e (at(uext,ij)éxlra,l) ('/ 5) ds

<

~

L2(IR?)

t

< Celt? <Haxlrﬂé,1(‘/t>”L2(]R2) + 10 a1 (4 0) || 2 (re) “‘fo 106, 70,1 () | 2(r2) ds>
t

< C€1+a (PO + ||ax17’a,1(',t)”Lz(1R2) +J;) Haxlrarl('ls)HLz(]Rz) dS) :

We can therefore estimate the two last terms on the right-hand side of (6.2.25) by

t
0 <C <Po ez 4 g%(ﬂ—l)>

7 (mR) ()

L2(R2)

+ C(e2 + €7 || 0y raa (- Ol 2 (re)

and

f V. (—ath(R)Tz + W(R)Tz) (-, s)ds
0

L2(R2)

<C (po +e2(70) 4 gi(a- U) +C (e + e”“) f (po +e2(370) 4 s%(”*”) ds
FCE 4+ €) [y () aguey +C (& 6 f 10570 ) 2
Combining the above inequalities, for a € (1,4) and 0 < t < Tp, ¢, < Toe 2 we infer

Ollonraal llme <C <p°+82(2 D+ 220D 4 2|0 raa (. )l 12(r2) +ei_u)

t
+ CSZJ <p0 + 5%(%*”) + 8%@71)) dS + ngf HaX1rlX,1(.’S)HL2(IR2) ds'
0 0

For ¢ small enough and a € [, 4) (so that 3 —a < a — 1) it follows

) t
[0x 701 ()| 2rey < C (PO +e270) 4 EZJO 106, 70,1( ) | 2(r2) ds> '
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Finally, Gronwall’s inequality yields
||ax1ru¢1 HLZ R2) <C <p0 + g%(i ﬂ)) Ce?t <C (po i 8%(7 a)) ‘

ii) We iterate the process from i) for higher a, = B, and a; = B; (keeping 1 = 1).
For instance, the following sequence of a’s can be chosen:

=(0,1,0)", (0,0,1)7, (0,2,0)7, (0,0,2)", (0,1,1)".

Note that |a| = B¢ + B2 < 2, therefore we can always use integration by parts and Lemma
5.1.4. In the terms with W again three derivatives can fall on 0;Ueyxt k. If 0y, is included, then
one can proceed as above by means of (4.2.11) and (4.2.13). Otherwise, one uses (4.2.15) and
argues as in (6.2.18).

Substep 2: 1 > 1.

In this last step we have to iterate over B and increase it to 3.

For B =2weset B = (1,0, 0)" +awitha = (1, B2, ﬁt)T. The estimates work like in Substep
1) since || < 2. Finally, for B; = 3 we have B = (3,0,0)" = (1,0,0)" + a witha = (2,0,0)"
and apply Substep 1 i) again. Here, factors 3, Uextj, 0%, OtUext,j OCcur in the terms with W,
which are treated with (4.2.12), (4.2.14), similarly to the estimate of the B-terms in (6.2.18)
and (6.2.19), e.g. with the Sobolev embedding for x; — Ri(x1,x2,5) we get

t
f f Uext,i ail Ot Uext,ijé’ﬂ R;dxds

S

< Ce? f HaﬁR,

1
2
12 IRZ) [J 5 |ueXt,ia§1 (’}fuext,ij|2 dx:| dS

3
2
sup Ry (x1,x2,5)|"dxa | ds
LZ(IRZ 1RX1€IR

1
2

t
< CEZJ HaﬁRz(' U (IRk(x1, x2,5)[* + [0, Re(x1, %2, 5)] )dx] ds
0 R?

t
< Ce? J Z(s) ds.

0

L2(R?)

In summary, collecting all the above estimates, one concludes

z(t) < C (p% + 8%’”>

for every t € Jp ., and e € (0,¢9) if a € [3,1}) and ¢ is small enough.
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Next, we keep p fixed, choose a € [%, %) and po, €9 so small that
2 3a 1.2
C{poo+¢; <3P

and

E%p + ||ueXtHLw(]RZX[O,To.S_Z))a < (O,

where we recall (6.2.1) and that || uGXtHLOO(]sz[O Toe-2))® S Ce < Cgp. With this choice we have

1,
z(t) < 5P

for every t € Jo¢, and € € (0,¢p) if a € [3,3). Definition (6.2.3) of Tp, ¢, now implies that
Tpo,e0 = Toe 2 < tp and that (6.2.2) holds with t, = Tye 2.
Estimate (6.2.4), ¢ < 1 and the monotonicity of the exponential function therefore imply that

|| u-— ueXtHg3(]R2><[O,TOs*2])3 < pSa (6.2.26)

foralla < %

Remark 6.2.8

A careful examination of the bootstrapping argument shows that the limitation a < 3 comes from the
estimate of the residual Res(Uext). For another ansatz with a smaller residual an improved version

of estimate (6.2.26) can be achieved.

6.3. Approximation Result

In this section we will finalize our approximation theorem.

First, note that we could formulate the approximation result with (6.2.26), but Uy contains
many corrections terms that are not easily determined explicitly or numerically. Instead, we
want to compare U with U,,s, which is much simpler to calculate, see (4.2.1) and (4.1.1).

To this end, we use that Uy only contains higher order correction terms and that the regu-
larity of A, dxw(ko), alfw(ko), p, his given by (4.2.7) and (4.2.8) and estimate

|| uext('r t) - uam('r t) ||7-t3(]R2)3

1
‘ ((—8216X2A6kw(k0) — e3§a§2Aa,%w(ko) + 83|A|2Ap) F + s3A3hF13> (-, 1) +cc

H3(]R2)3
< Ce? 103, AC, Tl g ry | Ok (ko) [| 34 s

+ CSS/Z (Hag(zA(/ T)HHB(]R) Hal%w(k0>”;l{3(]R)3 + HA(/ T)H:;)—F(IR) <Hp||7-[3(]R)3 + Hh||7-t3(]R)3)>

< Ce¥?
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for all t € [0, Toe 2]. Note that we again lose half an order of ¢ since A depends on X, =
E(XZ — Vlt).

Now we use (6.2.26) and the triangle inequality to conclude

HU - uanng3(]R2><]p0,e0)3 < HU - ueXtHg3(]R2><]p0,£0)3 + Huext - Uanngs(sz,po,go)a
< Cé?

foralla < % Note that p, Uans and Uyt are independent of a and that therefore the constant
Cin (6.3.1) is also independent of a.
With this we can formulate the main result of this thesis.

Theorem 6.3.1 (Approximation Theorem)

Assume (A1) — (A7) and let A € ﬂﬁzo Cc4k ([0, To], H3+k(IR)) be a solution of the effective nonlin-
ear Schridinger equation (4.1.13) for some Ty > 0. Assume that the initial value U®) := U(-,0) e
H3(R?)3 satisfies the nonlinear compatibility conditions of order 3, see Definition 5.3.1.

Then there exist constants eg > 0 and C > 0 such that i ¢ € (0, o) and if U fulfills

< ce?, (6.3.2)

) _ .
HU Wans( ’0)‘ HIR2)P

with ¢ > 0, there exists a solution U € G° (R? x (0, 1“()8*2))3 of (4.0.2), (4.0.3) and (4.0.4) such
that
3_
- UansHga(lex(O,Tog—z))3 < Cer™? (6.3.3)

forall 6 > 0.
If, in addition, Ug)) satisfies (4.0.5) and (4.0.6), then we have V - D(Ug) = 0o on (R*\I'2) x
(0, T()E*z) and [[Dl(uE)]]ZD = Qr on I'p x (0, T()S*Z).

Remark 6.3.2

Let us collect some remarks to Theorem 6.3.1.
1. Theorem 6.3.1 and the proof in the previous chapters was published in [27].

2. The existence of initial data U®) which satisfy (6.3.2) and the nonlinear compatibility condi-
tions of order 3 is an open problem. Similarly, the existence of initial data U®) which satisfy
(6.3.2) as well as (4.0.5) and (4.0.6) for a prescribed oo and or is an open problem.

We will discuss some ideas and first results concerning these problems in Chapter 7.

3. In order to apply Theorem 5.2.3 the condition im U©% < Q0 has to be satisfied. For e;—tm =0
and Q4 = R3 this is always the case. For e;fm negative, a sufficient small initial value U®
would be necessary. This follows from (6.3.2) and the definition of U ans for € small enough.
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4. Due to Sobolev’s embedding, the components € := (Uy, U, 0)" and H := (0,0,Us) " of the
solution U of Theorem 6.3.1 satisfy (2.2.1), (2.2.2), (2.2.3) and (2.2.8) on (R*\I'z) x (0, Toe~2)
in the classical sense.

5. In the case or = 0 the regularity of U produced by Theorem 6.3.1 guarantees that we have
€ € Hon(R?), D € Hyiy (R?) and H € H'(IR?) at each point in time, compare Remark 2.2.2.

6. If we replace (6.3.2) by

< cét

©0) _ .
HU Uans ’O)‘ HI(R2)S

7

forabe (3,3), the approximation result (6.3.3) would change to

Hu — uanSHQ3(IR2><(O,TOg—2))3 < Cﬁb.

This is still a meaningful approximation result since ||Uans|| (R Cel/2,

X (0Tpe=2))® S
A combination of the numerical results of Section 2.4 and Section 3.4 allows us to calculate
uans~

Example 6.3.3 (Numerical Calculation of Uays)

We again choose €1(x1) = 1xr_ + (1 +e ™ )xr, as in Example 3.4.1, and for the nonlinear part
we choose €3 = —1. We now construct Uang for ko = 0.5 and e = 0.1. Thereby, we use the methods
described in Section 3.4 and Section 2.4.

First, we calculate the eigenfunction m, see Figure 3.2 (a), and determine vy ~ 0.494, v1 ~ 0.964,
vy ~ —0.115 from the dispersion relation, see Remark 3.4.2.

Second, the envelope A has to satisfy the nonlinear Schrodinger equation (4.1.13) with x ~ 0.012.
For the initial value of the envelope we set

A (exp) = B1 V2 ijsech (7f(Baex2 — x0)) el(—2cprexatn)/4.

withy =2,c=1,x) =7 =0, B1 ~ 0.231 and By ~ 1.999. We can now use the explicit solution
(2.4.2) of the nonlinear Schrodinger equation. Note that this explicit solution satisfies the reqularity
assumptions of Theorem 6.3.1.

The first component of Uans at time t = 0 and at time t = e=2 = 100 can be seen in Figure 6.1. Note
that we illustrate the interface I'y as a semi-transparent hyperplane.

For our example we have e{—tm =1, eg—r,m = —1 and we can calculate
2 2
max { () =+ (ul,) } ~ 0.207.
For 17 = {5 we have
+
— €
0207 < > =1 L

10 3€3

and therefore im Ug%)gi c Oy, see Remark 6.1.1.
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(2) Uans,1(t =0) (b) Uans 1 (t =100)

05— 05—

20
0 100
05 0.5
80

-50 0 5 20 -50 0 I

T2 T2

T Ty

Figure 6.1.: (a) Plot of Uans,1(t = 0). (b) Plot of Uans 1 (t = 100).

To illustrate that the calculated wave packet travels along the x-axis we plotted |Uang1(t)| for t €
{0,33, 66,100} in one picture, see Figure 6.2.

(a) [Uans,1 ()]

T3

Figure 6.2.: (a) Plot of |Uans 1 ()| for t € {0,33,66,100}.
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7. Construction of Suitable Initial Values

To apply Theorem 6.3.1 the initial value U®) has to satisfy multiple conditions. In this chap-

ter we want to discuss the following three open problems:

i) Determine U") such that a G3-solution of Maxwell’s equations can exist, i.e. the com-

patibility conditions of order 3 are satisfied;

ii) determine U®) such that the additional conditions for a solution of Maxwell’s equa-
tions are satisfied, i.e. (4.0.5) and (4.0.6) are satisfied;

iii) determine U9 such that the initial values of U,y are close, i.e. (6.3.2) holds true.

Since problems i) and ii) come with some difficulties, we will discuss them separately in the

following sections.

Remark 7.0.1

There are two different view points for this problem. The first can be summarized as follows. One
starts with an initial value U") that satisfies conditions i) and ii) and Theorem 5.2.3 provides the
local existence of a solution of Maxwell’s equations. We now want to construct a suitable initial value

UL (x1,x2) = eAQ (exp)m(x7)e 2 + c.c.

such that we can use our approximation result, which provides the long time existence and an ap-
proximative solution. To this end, we have to find a small correction ¥ : R>\I', — IR® and a suitable
initial value U;?l)s such that

U+ ¥ =uQll,  [[¥lypqmey < C2

To solve this problem for a concrete case, information about the chosen U®) and the material functions
€1, €3 are necessary.

We however proceed by the following complementary strategy. Assume that Uans is given and the
existence of a solution U has to be shown with Theorem 6.3.1. Therefore, we will have to find a

suitable small correction ® : R*\I'; — RR3 such that
U® U+ @, | @pqp < CP? (7.0.1)

and conditions i) and ii) are satisfied.
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7.1. Compatibility Conditions for U©®) Chapter 7

7.1. Compatibility Conditions for U®

The goal for this section is the construction of initial values of the form (7.0.1) such that the

nonlinear compatibility conditions of order 3 are satisfied.

Remark 7.1.1

The existence of general initial values that satisfy the nonlinear compatibility conditions is shown in
Lemma 6.1 of [67]. The proof is based on Lemma 2.34 of [75] and an extension theorem for Sobolev
functions [38, Theorem 2.5.7]. To find initial values that are also of the form (7.0.1) a more involved

strategy is necessary.

With the notation of Section 5.3 applied to system (6.1.1) we get

u=vo,

MN

ol = —S(u)! ( Ajax/u) - vV,

j=1

N

U - ~3u)! ( Ajegot + o (S(u) w) -,

j=1
For
eg 0 0 32+ U2 24U, 0
SU)=[0 & 0 |+e| 2t4, U*+3UZ 0
0 0 wo 0 0 0
we get
d(Uy, Uy) (€1 + e3(U? + 3U3)) —2e3d(Uy, Up) Uy Uy 0
su)! = —2e3d (L, Up)U; Uy d(Uy, Uy)(e1 + e:(3U2 + U2)) 0 |,
0 0 T
with .
AUy, Up) = (e% +4eres (U2 + UB) + 363 (U2 + u§)2) ,
and

6Uq0:Uq + 2Up0i U, 20U Uy 4 2Up0: Uy 0
oS(U) = €3 | 20iU4 Uy 42U 0iUy  2Up Uy + 6U0:U, 0
0 0 0
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Chapter 7 7.1. Compatibility Conditions for U©®)

With this we can write the operators V) without temporal derivatives:

=Uu

~

2€3d U, UZ ulLIz&xl Us + d(LIl, UQ) (61 + €3 (LI% + 3U§)) (3XZU3
—2e3d(Uy, Up) uluzaxZu3 —d(Uy, Uz) (1 + €3 (BUF + U3)) 0y, Us |,
o (On U — 0y o)

2 2
6esU; ( ) + 4€3U2V(1 W)V (W) + 2630 (VZ(”(U)) — 0, VIV )
2 2
2e5Us ( ) + 46t VO () v () + 6esl (v2<1>(U)) + 0, VIV ()
%ka—%WWm

The nonlinear compatibility conditions of order 3 are now given by

v (LI(O))LD - [w (u<°>)]]2D —0, je{0,1,2}, (7.1.1)

and have to be satisfied so that a solution U € G3(IR? x (0, Tye2))? can exist.

For
Dq(x)
UO (x) = U(x) + | @o(x)
@5(x)

we now have to find a function ® : R? — R? such that (7.1.1) is satisfied.
Note that ugﬂ)s satisfies the nonlinear compatibility conditions of order 1 since [my]ip =

[ms]ip = 0O, see Section 3.2, therefore we get from (7.1.1) for j = 0 the following conditions:
[P2]ip = [P3]ip = 0.

To rewrite equation [[Vél) (U(0)>LD = 0 we use that ikgm; — 0y, my = —ipgvoms and that mj3
is continuous at x; = 0. Hence,

likomy — 0y, m2]op = [—inovoms]op = 0
and ® has to satisfy
[[Lrl (mlezﬁsz(sxz)eikO’Q + 0y, @1 — ﬁxl%)]]m —0. (7.1.2)

The remaining nonlinear compatibility conditions give us rather complicated expressions.

From [{Vz(l) (U(O)>ﬂ . 0 we get a nonlinear partial differential equation involving

q)ll ¢2/ axlq)?)/ aqu)g)'
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Finally, we get from the remaining two nonlinear compatibility conditions two nonlinear
equations in
Dy, Dy, O, D3, 0, D3, Oy 0, P1, 05, P2

and
Dy, Oy, Oy, D1, Ox, P1, Ox, P2, Ox, P2, Ox, P3, 0x, P3, 3§1¢3f (ﬁz@a, Ox, Ox, Ps3.

One now needs to find a solution @ of these equations such that ||® |55 23 < Ce3/2.
One way to simplify this problem could be with the help of an extension theorem. We use a
special case of Theorem 2.5.7 in [38] that states the following:

Lemma 7.1.2 (Extension Lemma)
For arbitrary functions ¢+ e H3*(R)3, k € {0,1,2}, there exists a function ® € H>(R?)3 with
lim,, o+ X ®F(x1,x0) = ¢ (x3), k€ {0,1,2} and

-

. 7.1.
H3—k (]R)3> ( 3)

PROOF: One combines the results of Theorem 2.5.7 in [38] for n = 2, m = 3 and s = 0 with
the analogue result for the left half-space. The estimate follows from the proof of Theorem
2.5.7 in [38] where one uses that ||| g (r) < [[f | oy for m1 < mz and f € H™(R). O
To apply Lemma 7.1.2 to our problem, note that the nonlinear compatibility conditions have

2
(k),+
(#hoon <€ 3, (T -

only to be satisfied on the interface I';. Instead of finding a function ®(x, x7) that satisfies
the nonlinear compatibility conditions, we only have to find functions ¢(k)'i (x2),ke{0,1,2}
and extend them to R%. To find the equations which ¢*)+(x,) have to satisfy we simply
replace 0% ®(x1,x2) in the nonlinear compatibility conditions by ¢ (x;), e.g. (7.1.2) will
give us the equation

my, , €0x, A(ex2)e" 02 4 0,0+ — p{D*

= my,_e20x,Aexg)elo 1 g, o0 — gl

with my 4 (x) 1= lim, o+ mq(x1, x2) for x € I'z.
Hence, the open question is how to find suitable ¢)=(x,) that satisfy the equations corre-
sponding to the nonlinear compatibility conditions. If additionally

> (o]

then [|® |35 g2 < Ce¥2 by (7.1.3).
Note that for this method (4.0.5) and (4.0.6) will be in general not fulfilled. Additional con-
ditions on gbgo)’i, ¢§0)’i are necessary to satisfy [{Dl (Ug))”]m = or. Moreover, a more so-

> < Ce?,
H37k(]R)3

o

H3—k(IR)3

phisticated extension theorem would be needed to deal with V - D (U%O)’i) = 0o on R*\I'y.
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7.2. Maxwell Conditions for U©

In this section, we try to satisfy the conditions

00 D1 (UP*) + 00,2 (UPF) = g (7.2.1)
and
[[Dl (ug’))ﬂm _ (7.2.2)

for U® = US, + @ and || @] g2y < Ce¥2.

Remark 7.2.1
For the case in which oo and or are not prescribed we could simply define

00 := 0x, D1 (U(O),i> + 04,Ds (U(O),i>

ans,E ans,E

and

Qr = HDl (uf(‘?‘)st>ﬂzD'

Then the conditions (7.2.1), (7.2.2) would be satisfied for u® .= Ug?l)s.

Since Uans satisfies (7.2.1), (7.2.2) for the linear displacement field Dy, = €1E exactly, one can
/ . (0) 3/2 (0) . 3 .
easily show that HV D (Uans’E> L) < Ce’% and [[Dl <UanS,E)LD is of order €, see Section
4.1.2. Therefore, 0o and or would be small.

For go = 0 and ¢or = 0 but for a larger class of nonlinearities, this problem was considered in
[25]. There, initial data of the form

U = UL+ (@i 2 0)

with a correction function ¢ : R> — R was found by using minimization techniques. Let us

now present this approach.

121



7.2. Maxwell Conditions for U Chapter 7

7.2.1. Quasilinear Transmission Problem
We consider the more general quasilinear transmission problem

{ —~V -a(x,V¢) = b(x) in R%, (7.2.3a)
[(a(x, V) +€Up) - e1],p =0, (7.2.3b)

with
a(x, qu) = €ff(U0 + ng) + €1Vq>,

El,ef :R?> > R, and
b:=V. (EluO),

and where Uy : R> — IR? is a given vector field which satisfies the linear interface condition
[€1Uo - e1],p = 0. Here ey is the first unit vector. We aim to prove the existence of a solution
¢ and establish an estimate for V¢.

Before we can state the main result of [25] we have to collect some definitions and assump-
tions.

Assumptions

We assume the following conditions on €7, € Iz f and Uy:

i) €1,€f € L*(IR?) and there exists a constant d such that & (x), e £(x) = d > 0 for almost
all x € R?%;

ii) there exist p > 1 and F € C!(IR?) convex such that
F(0)=0, f=VF and F(v) > pplo//™

for some pp > 0;

iii) there exist1 < & < p and constants 0 < A, < A, and A, = 0 such that forall v € R2
o [f(o)l < AplvlP + Aglo|*;

* f(0)-v> Aol
iv) Up e L?(R?)? n LPT1(R?)?%;

v) b:=V-(e1lp) € L*(R?) n L!(log, R?), where
1 2 1 2 >
L1 log, %) i= { ¢ € L) | ol sugaey o= | Tos(@ + elglo)] e < .
vi) U, satisfies the transmission condition [€1Uj - e1]] o =0;

vii) ¢ = 0is not a solution of the transmission problem (7.2.3a), (7.2.3b).
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We can now define the energy functional corresponding to (7.2.3a) as

j((])) :ZJ EfF(UO-i-V(P)dx-l-J 511|V4>|2dx+f 51U0‘chdx.
Rn R‘l’l 2 Rn

Indeed, we claim that the Euler-Lagrange equation associated with J is (7.2.3a). For any
17 € CP(R?) we get

d ~
5\7(¢+517)|5:0 = J €ff(U0+V¢)-V17 dx—l—f e1(Up+ V) - Vydx.
Rn R4

Assumptions ii) and iii) suggest the following function space for ¢ in which the functional
J is well-defined:
D2p11(R?) 1= Dy*(R?) n Dy 7 (R?),

where forg > 1
D(l)’q(]Rz) = C¥(RR?) e \ith the norm g = Vil a(re)

is the homogeneous Sobolev space. The norm on ®; 1 isdefined as ||-||5 := |- |12 + | |1,p+1-

Now critical points of 7 are the weak solutions of (7.2.3a) in the following sense:

Definition 7.2.2 (Weak Solution of the Transmission Problem)
We say that ¢ € D5 ,41(IR?) is a weak solution of problem (7.2.3a), (7.2.3b) if

JIRZ fo(U() + V(P) : Vﬂ dx + J]RZ 51(110 + V(P) : Vﬂ =0, Vﬂ € @2”,4_1 (IRZ)

Theorem 7.2.3 (Existence Theorem for the Transmission Problem)
Let €1, €¢, f, Ug satisfy Assumptions i)—vii). Then there exists a non-trivial minimum ¢ of the func-
tional J in D, 11(R?) and there holds

f \V4>2dx+f Uy + Vo' 1|V dx

R? R? (7.2.4)
1 1 2 2

<C <||UOH§:+1(]Rz)z + HUOHDLCZ_‘H(]RQ)Z + |11l 72 Ry + HbHLl(log,]Rz)) ’

where the constant C depends only on Ay, Ay, Aa, d, [|€1]] 0 g2y and HefHLw(]Rz
weak solution of (7.2.3a), (7.2.3b).

) Moreover, ¢ is a
PROOF: The proof is carried out in detail in [25] for the n-dimensional case. Here we give
just a sketch of the proof.

By means of Assumptions i)-vii) one may show that 7 is well-defined and coercive on the
reflexive Banach space D, ,1(IR?). Hence, the existence of ¢ follows from the direct method
of the calculus of variations, see e.g. [34].

Estimate (7.2.4) follows from the assumptions and some technical involved estimates.
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7.2.2. Application to the Maxwell Problem

The transmission problem (7.2.3a), (7.2.3b) corresponds to (7.2.1), (7.2.2) with oo = 0, or =0,
u® — ufﬁ?s + (O, @, Ox, P, 0)" if we set

:
U= (U, ul,) o &) =), e =e@), flo)=lfo. (725

It is easy to see that for our Maxwell problem most of the Assumptions i)-vii) from Section
7.2.1 are satisfied. Indeed, the regularity assumptions are satisfied since €1, €3, ugﬂ)s satisfy
(A1), (A6) and (4.2.10). For our nonlinearity all assumptions are satisfied with « = p = 3.
Simply notice that with F(v) := %|v|4 we have VF(v) = |v[?v. The last two Assumptions
vi)-vii) are also satisfied, see Remark 7.2.1.

Only for the assumption that € has to be positive we have to modify our Assumption (A6).

Assume that there are constants efm, e;f v such that
€5 e CO(Ry) nWP(Ry), 0<ey, <€ (x1) <€y, Vi eR\{0L (A6¥)

Now Theorem 7.2.3 yields the existence of a function ¢ such that u®© satisfies (7.2.1) and
(7.2.2) and

2 4 2 2
IV9 2w < € (IUoltser + 181wy + 1ol 0g e ) - 7.26)

For V¢ to be a meaningful correction term of Uy, its L>-norm should be at least 0(e!/?) or in
the optimal case O(e%?), see (6.3.2) and Remark 6.3.2. Let us therefore estimate the norms
on the right-hand side of (7.2.6), see [25, Proposition 5.1].

By the definition of Uans and with 7z := (mq, my) " we have

f Uo|* dx 84f |A(O)(£x2)]4dxzf () dxy < € | A
RR2 R R

4 4
L4(R) HmHL‘l(R)3'

Note that we again lose one power of & due to the scaling of A. By Sobolev embedding we
know that A©®) e L*(R) and m € L*(R)? and we conclude

HUOH%‘*(]RZ)Z = O(&). (7.2.7)
Forb =V - (e1Up), we get
b(x1,x2) = (eA(O) (ex2)(0x, (€1(x1)m1(x1)) + €1(x1)ikomy) + szelasz(O) (sxz)m2> elfo¥2 4 ¢

Since m is a solution of the linear eigenvalue problem, the terms to order ¢ vanish, see Re-

mark 4.1.5, and hence

b(x1,x) = 8261(x1)A(0) (ex2)mz(xl)eiko"2 +c.c.,
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which implies
151722y = O(e%) (7.2.8)

since m, € L>(R) and A© e L2(RR).

For the last term in (7.2.6), we first note the simple equality
t
log(s +t) = log(s) + log (1 + §>’ s,te Ry,

to obtain, for a suitable constant ¢ > 0,

log(2+x|)<log(2—|—c|x1|+c|x2|)=log(2+cx1|)+log<1+ ol )
2+ c|xq]

< log(2 + c|x1]) + log(2 + c|x2]).
Hence,
600y < € et e [, oA exa)| st g2+ ) i
<ce (Hmzuﬂ(logm fR‘aXZ A (exs)| oz + [[mall sy J]R 0 A9(ex2) 1og(2+cyx2)dx2>
< CE |mall 1 gog) JR 0,40 (ex2)| 1+ log(2 + clxa)) dxs
< Ce ||l 11 gog v JR 2,40 () log <e + C|Z> dy,

where in the last inequality we use the variable transformation y = ex,. Finally, choosing
any 7y > 0 one may estimate log(e + ct) < C(1 + t7) for all t > 0. Therefore,

||b||L1(log,]R) <C ||m2||L1(log,lR) (S HaXzAHLl(IR) +£1_’Y fIR |aX2A(y)||y|/Y dy> = 0(81_7)/ (7.2.9)

provided m; € L!(log, R) and

ox,A e LY (y,R): {(p e LY(R) ‘ J l@(x)|(1+ |x|7)dx < oo} .

R
Since we are mostly interested in localized wave packet solutions, the conditions m, €
L'(log, R) and dx,A € L'(7,R) are not very restrictive. Indeed, see Figure 3.2 (b) where
we see an example for an eigenfunction m that is exponentially decaying.
In summary, from estimate (7.2.6) one infers by (7.2.7), (7.2.8) and (7.2.9)

VPl 2ey < C (83/2 + 61‘“’) , (7.2.10)

where 7 > 0is arbitrary and the constant C does not depend on ¢. Hence, choosing 7 € (0, 3)

one obtains an estimate of order 0(e"/?) and || Vol 2 rey = O(=).
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Finally, note that U(© = ul + (O, ¢, 0x,,0) " satisfies the interface conditions

o ()L - [, - [, -0

]] = HU(O) ﬂ = 0, see Section 3.2, we only have to check if dy,¢
2D 2D

ans,3

Indeed, since HU()

ans2
is continuous at x; = 0. From ¢ € D,4(R?) < D1’4(1R2) it follows that ¢ € Wlo’f(]Rz), see
e.g. Lemma I1.6.1 in [32]. By Sobolev embedding this implies that ¢ € CO 1/ 2( R?). On the
half-spaces we even have the improved regularity ¢+ € Cll 03‘:/ 2 (R3), see [20]. Hence, ¢ is
continuous across the interface and every tangential derivative with respect to the interface
is continuous too, see e.g. [83, Section 173-175]. Note however, that the nonlinear compati-

bility conditions of higher order will in general not be satisfied.

Remark 7.2.4

Note that we only estimated the L>-norm of V¢. In Theorem 2.2 and Remark 12 of [25] it is shown
that estimates analogous to (7.2.10) in the H™-norm are possible, when the coefficients satisfy ad-
ditional reqularity assumptions. However, mainly because of the loss of powers in e caused by the
estimate on the logarithmic term, the estimates one can prove for the higher-order derivatives of V¢
are not able to provide (6.3.2).

In Section 7.2.3 we will present a numerical method to calculate NV ¢. The numerical tests suggest

that a correction with ||V || 2 gy < Ce%/2 is possible.

7.2.3. Numerical Calculation of the Correction V¢

In this section we present a numerical method to calculate a solution ¢ of (7.2.3a), (7.2.3b)
with [0y,¢]2p = 0 for the Maxwell setting (7.2.5), i.e. U® = ul + (O, P, Ox,,0) T satisfies
(7.2.1), (7.2.2) and [[Uéo)]] D 0. We use the finite element method in combination with a

fixed-point iteration.

Moving the nonlinear term to the right-hand side, one needs to solve

~V-(eV¢) =f(¢) in R,
[e10x,¢]2p = b(), (7.2.11)
[0x,¢]20 = 0,

with the ¢-dependent functions

f(gb) =V (€1UQ + 63“10 + V(P‘Z(Uo + qu)),
h(9) := — [eslUo + Vo[> (Uo1 + 0, 0)] o -

To find a solution of (7.2.11), we rewrite the problem as a system of two coupled Neumann
boundary value problems, in which we have to determine the functions ¢ : R — R and
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g : I = R such that
~V - (e1V¢) = f(¢) in RE,
(€10n¢)- =g,
(€10x¢)+ = () + g,
[Ox,¢]2p = O,

where we use u4 (x) = lim,, o+ u(x1,x2), for x € I';. Note that a solution ¢ of (7.2.12) is

(7.2.12)

also a solution of (7.2.11). We will use the freedom in the choice of g to satisfy the second
interface condition [0x,¢]op = 0. Let us now describe how to approximate the solution of
the nonlinear problem (7.2.12) with the help of a fixed-point iteration. We select an initial

guess ¢o and solve
=V - (e1Vpui1) = §(¢n) in ]R%g
(€10x,Pns1)— = Bur1,
(€10x,Pn+1)+ = b(Pn) + Gut1,
[0x,¢Pn+1]2p = 0

iteratively for n > 0. The weak formulation of the problem is given by

( jRZ e1Vns1 - Vi d + frgnm dx = fRZ Flpn )y dx - fr b(gn)ydx, 1€ H'(RY),

V] eV Oydr— [ gande= | iganar ne H\(R2),
RZ r R2

[0x,¢n+1]2p = 0.

\

(7.2.13)
To solve (7.2.13) numerically, we use the finite element method, see e.g. [3, 39].
First, we replace IRZi and I'; by suitable bounded domains Q1 < @, I:= Q. nO_cTy,
respectively, and add homogeneous Neumann boundary conditions at aﬂi\f.
Furthermore, we substitute H! (IR3) with the following N-dimensional subspaces V; :=
span{;y,f |k e {1,...,N}}, N € N, where the shape functions 17,? e H'(Q4) are the standard
piecewise linear hat functions, which are linearly independent. Then we look for solutions
of the form

2 q>n+1k’7k (x), xeQy,
¢n+1(x) = K]
Z nite i (%), xeQ,

gﬂ+1 Z n+1k 17]( |r/
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where the coefficients ®+

wi1kr Gnapk € R are the solutions of the following system:

3

<q)1—1i_+1,k J;) €1v77;_ . v’ﬁj dx + Gn+l,k L ]’/]+17;_ dx>
+

k=1
= [ it ax= [ v dx e, N,
Q, I
N
{ Z (@;H/k JQ eV, - Vi dx — G, 1k Jf 17]._17]:r dx) (7.2.14)
k=1 -
= L f(¢n)y; dx, jef{l,...,N},
N N
Z (D;H,kaxz’?ﬂf - Z CI);LL]'axzn]ﬂf =0.
k=1 j=1
Remark 7.2.5

Note that only Nr < N shape functions 1 are not trivial on T and that the discretization divides T
in (Nr — 1) line segments. From the last equation in (7.2.14) we therefore get (Nt — 1) equations we
have to satisfy. The extra degree of freedom left will be used below to satisfy a compatibility condition.
Due to the Neumann boundary conditions and the fact that § and b depend only on the gradient of
¢, the solution is unique only up to an additive constant. To get uniqueness we additionally demand
SQ+ ¢nt1dx = 0. Therefore, we extend the finite element formulation with

N
Z q’;irl,kf 7 dx =0.
k=1 04

In the implementation we will incorporate these zero mean value conditions with the help of Lagrange
multipliers. This increases the discretization matrix by two rows and columns, see e.g. [48, Chapter
4.8].

Additionally, note that §, g, b have to satisfy certain compatibility conditions. Indeed, Gauss’s theo-
rem implies that

fH(pF) dx = —f V- (ef Vel ) dx = iff(elaxlcpﬂl)i dx

(@) Q4
and hence
f f (¢, ) dx = ﬁ(b(‘l’n) + gnt1) dx, (7.2.15)
o r
f (¢, ) dx = — ﬁ gnt1dx. (7.2.16)
O_ T
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We now use the structure of § and Gauss'’s theorem to show that

j P (¢) dx + f P (g) d = f (€1l + €3] + VPP (Upy + 0n)) _dx
o ol r
- L (€1uO,1 +e3|Up + V(P|2(UO,1 + ax1¢))+ dx
_ ﬁh(cpmdx,
T

where in the last step we used that Je Uy 1]2p = [€1Uans1]2p = 0. Therefore, the sum of (7.2.15)
and (7.2.16) is satisfied. To fulfill both conditions we have to add an additional condition to our finite

element method, e.g.
N\ Guns | iy dx =~ | i gp)ax
p T Q_

Note that we still have one degree of freedom left in our finite element formulation to satisfy this
condition.
Let

-
- - + +
<q)n+1,1’ T q)n+1,N’ q>n+1,1f~ cr q)n—i-l,N’ M, A2, Gy, -y GnH,N)

be the vector of the unknowns, where A1, Ay are the mentioned Lagrange multipliers. The structure
of the discretization matrix of the finite element method can then be seen in Figure 7.1. From the
top left to the bottom right we see the discretization of the differential equations, the zero mean value

condition, the interface condition and finally the compatibility condition.

(a)

Figure 7.1.: (a) Schematic structure of the discretization matrix of the finite element method.

Let us now consider two examples. First, let us study an example where all the assumptions
of Section 7.2.1 are satisfied. This example was also studied in [25].
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7.2. Maxwell Conditions for U Chapter 7

Example 7.2.6 (Numerical Calculation of V¢ (positive €3))
Let €1(x1) = 1xr_ + (1 + e ™)xRr, as in Example 3.4.1. We now want to select values for
(ko, w(ko)) such that the eigenfunction has a strong localization. We select ko ~ 3.435 and w (ko) =
3 and the corresponding eigenfunction m := w(ko). For the nonlinearity we choose €3 = 1 positive
and select a strongly localized initial value for the envelope A" (x;) = e 51033 For the discretiza-
tion we select Q_ = [—6,0] x [—6,6] and Q4 = [0,6] x [—6,6] and choose a regular triangulation
of step size h together with standard hat functions for 17,:%
For the fixed-point iteration we start with ¢o = 0 as an initial guess. Let us first check the conver-
gence of the discretization in h and in the iteration n. For Figure 7.2 (a) we fixed ¢ = 3-10~* and
calculated HV -D <U,(EO)>

L2(R?
7.2 (b) we also fixed h = 0.005 and calculated the L>-norm of the residual

: for different step sizes h ranging from 0.25 to 0.005. For Figure

Res, := =V - (e1Vé¢y) — f(¢n)

in each step of the fixed-point iteration. We see the numerical convergence in both plots.

(a) | | 0

10*
10—5 L

E 2 10—10 L
& r
e £

1075 L 4 10—15 L

‘—2 ‘—1 10720 ‘ : : ‘
10 10 0 1 2 3 4 5
h n

Figure 7.2.: Example 7.2.6: (a) H V-D <LI§50)) LR in dependence on the step size h.

(b) || Resn || 2(gr2) for the first five steps of the iteration.

Finally, we study the e-convergence of ||V || 2(gay2- For the fixed step size h = 0.005 and ¢ ranging
from 10~* to 10~ we obtain the convergence rate 3, see Figure 7.3 (a).
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(a)

——IIVéllr2

e
107
=
<
>
107°
2 3 4 5 6 7 89

€ %107

Figure 7.3.: Example 7.2.6: (a) || V|| ;2(g2)2 in dependence of e.

For a second example we use the same setting as in Example 3.4.1 and Example 6.3.3.

Example 7.2.7 (Numerical Calculation of V¢ (negative €3))

Let again €1(x1) = 1xr_ + (1 +e 1 )xr,. For ko = 0.5 we calculate m, see Figure 3.2, choose
€3 = —1 and set A©) (ex2) as in Example 6.3.3. For the discretization we select Q_ = [-100,0] x
[—400,400] and O = [0,100] x [—400,400] and choose a reqular triangulation of step size
h=0.1.

We can now study the e-convergence of ||V || 2gay numerically. For e ranging from 0.004 to 0.1
we again obtain the desired rate of convergence, see Figure 7.4. Note that this example did not satisfy
Assumption (A6*), nevertheless the numerical convergence rate is 3.

(a)

10°

—— IVl 2
——-Ce?

107" F

Vol

102 F

102 107"
€

Figure 7.4.: Example 7.2.7: (a) || V| ;2(g2)2 in dependence of e.
Finally, for ¢ = 0.01 Figures 7.5 (a) and (b) show the first components of the computed solutions

V¢ and U, respectively. To calculate an approximative solution of (7.2.14) we used the generalized
minimum residual method in form of the Matlab function “gmrs”.
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Chapter 7
(a)
x107

(b)

200
-0.05 0
-10 0 10 20 200 -50 0 5o -200
21 Z2 21 T2
Figure 7.5.: Example 7.2.7: (a) 0y, ¢ for ¢ = 0.01. (b) Ufo) = Uég)sll + 0x,¢ for e = 0.01. Note
the different scales in (a) and (b).
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8. Conclusion and Outlook

Let us summarize the results of this thesis and give an outlook on possible future research

topics.

We studied the two-dimensional Maxwell problem with Kerr nonlinearity for transverse
magnetic modes at the interface of two homogeneous dielectrics with instantaneous mate-
rial response and formally constructed an asymptotic wave packet solution U,,s with the
help of the method of amplitude equations. Our analysis showed that the corresponding
amplitude equation is given by a nonlinear Schrédinger equation.

In Theorem 6.3.1 we rigorously proved the approximation properties of U,ns. We showed
that under certain assumption on the initial values U, there exists a solution U of the
Maxwell problem (4.0.2) — (4.0.6) such that

3_
U = Uansl o s < Ced .

R2x(0,Tpe—2))

To this end, we extended an existing local existence result for Maxwell’s equations to the
long time interval [0, Toe 2], by employing an involved bootstrapping argument for small
initial data.

Additionally, we developed techniques to study the linear Maxwell problem analytically
and numerically and provided first ideas to study the open problem of finding suitable ini-
tial values U©.

To our knowledge this is the first time that approximative solutions for the time dependent,
multidimensional Maxwell problem with Kerr nonlinearity were rigorously studied and no

reduction to the simpler scalar or time-harmonic setting was deployed.

In future research the open questions presented in Chapter 7 are of utmost interest. Here
new techniques are necessary to improve the results of Section 7.2 and to involve the com-
patibility conditions of higher order.

From a numerical point of view, a validation of the approximation result would be of in-
terest. Here a numerical solution of the Maxwell problem has to be calculated, which can
be rather difficult. One promising method for quasilinear wave-type equations involving a
discontinuous Galerkin method and a leapfrog scheme is presented in [50].

An adaptation of the presented methods to different Maxwell problems is also intriguing.
Here one could study different geometries, e.g. Maxwell’s equations in three dimensions,

curved interfaces or multiple layers of different materials, or study different models for the
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displacement field as discussed in Remark 2.2.1. Adapting the presented proof to these new
formulations of the Maxwell problem will be challenging. Our analytical and numerical
methods for the analysis of the linear Maxwell problem are heavily dependent on proper-
ties of €1 and it would not be trivial to transfer them to different settings. The derivation of
the amplitude equation and the construction of the extended ansatz Uey can also be chal-
lenging. For displacement fields with complex valued material functions €; or displacement

fields that involve convolutions in time, e.g.

0

D(x,1t) = e <5(x, t) +J Xi(x, t —s)E(x,5)ds + x3(x)(E(x, 1) - E(x, 1)) E(x, t)> , (80.1)
—00

one also expects to derive the complex Ginzburg-Landau equation instead of the nonlinear

Schrodinger equation as the amplitude equation, see [72] and Appendix A. For the rigorous

analysis a well-posedness and local existence result is necessary. For different settings, such

as (8.0.1), the local existence theory of Chapter 5 may not be applicable and new results are

necessary.
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A. Derivation of the Complex
Ginzburg-Landau Equation

In this chapter we will formally derive the complex Ginzburg-Landau equation as an ampli-
tude equation for the approximative solution of Maxwell’s equations with a displacement
tield that is non-local in time. Many calculations will be similar to the ones in Chapter 4 and
we will therefore only illustrate the main differences. The complex Ginzburg-Landau equa-
tion can be derived as an amplitude equation in various different problems, see e.g. [36, 55,
72,52, 71].

We want to study the two-dimensional Maxwell problem with an interface (2.2.10), (2.2.11)
but with the displacement field

0

D(x,t) = €g <E(x, t) +j

—Q0

xi(x, t—s)E(x,s)ds + x3(x, t)(E(x, t) - E(x, 1)) E(x, t))

and the discontinuous susceptibilities

x; (1), x1 <0, Xz, x1 <0,
X1<x/ t) = 1+ X3(x/ t) = i
X7 (t), x1>0, X1, x1>0,

where x; : R\{0} — R are sufficiently smooth and x5 € R. Due to causality we also assume
x1(t) =0fort < 0.

Remark A.1
For surface plasmon polaritons the interface between a metal and a dielectric material is of interest.
To model the properties of the metal one often uses the Drude model

w2

o _ P
xlw) = w? +iyw’

where wy, v € R and X is the Fourier transform of x.
For some types of materials other models may be appropriate. A discussion of other models can be
found in [65, 72, 61], e.g. the Lorentz model
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Appendix A

where wy, wyp, 7y € R.
Note that for the Drude and the Lorentz model x(t) = 0 for t < 0, x(t) is exponentially decaying for

t > 0and x1(—w) = X(w). These properties will be necessary for the following analysis.

We again start with the analysis of the linear problem. With the ansatz

$1(x1,k, w) _ P1(x1, k, w) .
E(x1,x0,1) = | pa(x1, k, w) ellk—wt) 4 o0 H(x1,x2,t) = | P2(x1,k, w) ellk—wt) 4 o
$3(x1,k, w) P3(x1, k, w)

for some k € R and w € C we get for the linear part of the displacement field
Q0

Diin(x, 1) = €9 <8(x, ) +J

—00

x1(x,8)E(x,t —s) ds>
= ¢ (1 +V21 X (x, —w)) o(x, t)ei(erwt) + € (1 +V21 x4 (x, w)) E(x,t)efi(kxz—wt)
= € <1 + \/271721 (x, 7(‘))) E(x, 1),

A~

where we used that x1(—w) = X(@). Note that

e1(x1, w) : ef(w) =€ (1 + mf{(_w)) , x1 <0,
1(A1, =
ef (w) = e (1+V2nx{ (~w)), x>0
is constant in x; on both sides of the interface. We can therefore repeat the same calculations

as in Example 3.1.4 and get explicit formulas for the functions ¢i, P, see (3.1.4), where the

dispersion relation

(A1)

and the condition

Re | —iy/poei (w)w?2 —k2) >0 (A.2)
(ostns )

have to be satisfied, such that non-trivial, integrable solutions, that satisfy the interface con-
ditions, can exist. Note that only TM-modes are possible and that we combine the three
non-trivial components in one vector w(k) := (¢1(k), ¢2(k), P3(k))". In contrast to the main
part of this thesis we now have complex valued functions w(k), w(k) and €1 (w).

The linear eigenvalue problem is similar to (3.1.10) given by

L(k)w(x1) + wA(w)w(x1) =0, x1 € R\{0}, (A.3)
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with
kws €1(x1, w)wq
L(k)w := 0y, w3 , A(w)w = | e1(x1, w)wy |,
kwq + 10y, wo Low3

and D (L(k)), D(A(w)) as in (3.2.1). Note that the operator A is now dependent on w and
that L(k) + wA(w) is no longer self-adjoint, since €;(w), w are complex.
The adjoint problem is given by

(L(k) + wA(w))* v(x1) = L(k)v(x1) + @A(w)v(x1) = 0, x1 € R\{0}.

For a solution v of the adjoint problem it is easy to see that w = (71, —72,73) " is a solution
of (A.3). Since solutions of (A.3) can only exist when (A.1) and (A.2) are satisfied, the same
must be true for the adjoint problem.

Let us now study the inhomogeneous problem
L(k)w(x1) + wA(w)w(x1) = f, x1 € R\{0}.

As in Section 3.3 we can use the exponential dichotomy to show that L(k) + wA(w) is a
Fredholm operator when (A.2) is satisfied. Now the closed range theorem implies that

R (L(k) + wA(w)) = N (LK) + wA(w))*)*. (A4)

Note that we can use the variation of constants formula to explicitly calculate solutions of
the inhomogeneous problem.

Let us now construct the asymptotic solution. We fix k = kg > 0 and determine w(kq) with
the help of (A.1). Similar to [72] we thereby assume that ko can be chosen such that for a
small € > 0 and a constant « € R we have

Im (w(ko)) = ae®, Im (Grw(ko)) = 0.

Remark A.2

This form of w(ko) will allow us to derive the complex Ginzburg-Landau equation. Typically, one
chooses « < 0, which results in a damping effect. Note that the asymptotic parameter e is coupled to
the eigenvalue w(ko). We therefore need a physical setting that allows for small enough € such that

the asymptotic analysis is meaningful.

For vg := Re (w(ko)) we additionally assume that

(A.1) does not hold for (k, w) = (3ko, 3vp),

(A.5)
(A.2) holds for (k, w) = (ko, w(ko)) and (k, w) = (3ko, 3vp).

Note that for small enough ¢ condition (A.2) also holds for (k, w) = (3ko, w(3ko)).

These assumptions give us the existence of an eigenfunction m(x1) := w(x;) and are needed
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for the treatment of the higher harmonics later on. We then set 11 := drw(ko), 12 := 02w (ko)
and make the ansatz

gans,l (xz t)
Uans(x,t) := | Eanso(x,t) | :=eA(e(x2 — vit), e2)m(x1)Fy + c.c., (A.6)

Hans,S(x/ t)

where as before F; := elko2=%t) and A = A(X, T) is a complex envelope with the variables
Xo :=¢e(xp —vqt) and T := €2t.

We now apply the Fourier transform between x; and k and get analogously to Section 4.1.1

é‘\ans,l (xlz k/ t) R
Uans(x1,k, 1) := | Eansa(x1,k,t) | := A(K, T)m(x1)E; + cc.,
Hans,B (xlr k/ t)

with K := =Ko F = emilo+(—kon)t,
We can now proceed as in Section 4.1.1 by taking the Taylor expansions of w(k), w(k) and
also x1(—w(k)):

1
w(k) =w(ko +eK) = vg + eKvq + §€2K2U2 + %+ O(e%),

w(k) =w(ky + eK) = m + eKdpw(ko) + %eszaﬁw(ko) +0(&),

X1(—w(ko)) = X1(—vo — €%in) = 1(—vo) — e%indux1(—v0) + O(),
X1(—w(k)) = X1(—w(ko + €K))
= X1(—vo) — eKv1d X1 (—vo) — €%iadeo X1 (—10)
1 ~ 1 ~
— EgzKZVZanI(_VO) + Eeszvféfjxl(—VO) + (9(83).

2

Compared to Section 4.1.1 we note the additional term e“ix in the expansion of w(k). The

Taylor expansion of the operator L(k) is the same as before, but for A(w) we get the expan-

sion

1
A(w) = Ag + eKAq + EezKZAz +eA+0(),
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with the operators Ay, A1, Ay, A defined as

eo (1+ V27 x1(—v)) m my
A()m =1 € (1 + vV 27‘[)/(\1(—1/0)) my |, A1m = —€pV 2711/1(3“;)/(\1(—1/0) my |,
Ho3 0
my
NAom := egV2t (—Vzaw)/c\l(—l/()) + V%(?&,XH(—VQ)) my |,
0
mq
Am = —egV2miad,x1(—vo) | mo
0

From the Taylor expansion of (A.3) we therefore get the three equations

0= (L() + vvo)m, (A7)
0= K(Ll + 1/0/\1 + Vle)m + K(Lo + Vo/\o)&kw(ko), (AS)

1
0= 51<2(qu2 + 201 A + 1aAg)m + (Vg A + iaAg)m

1 1
+ E1<2(2L1 + 2upAq + 2v1 Ag)dxw (ko) + E1<2(L0 + 1pAg)Ozw(ko). (A.9)

To get a formally small enough residual

a1%251 (uans,E) - ikﬁans,?)
Res(uans) = ai?,l)Z(I/Iams,E) + axl uans,3
_ikuans,l + axl uans,2 + Pl()at uams,3

we have to modify the ansatz as in Section 4.1.1:

U noa(x1,k 1) := A(K, T) <m(x1) + eKopw(x1, ko) + ;esza,%w(xl,ko)> E
1 2me? (A s A xx A) (R, T)h(x1)E; + 2.,

where Ej := e~ 1(3v0+(k=3ko)r)t,
The only difference in the analysis of the residual lie\s( U,,0q) comes from the convolution
term. We will treat this term with techniques described in [72]. First, we note that

w . w N
f xa(8)5e™ ds = —i- f ()€ ds = —iv2m -3 21 (<p) = V2 duftr (<o),
—00 dVO —o0 dVQ

o0

- dz (= : dz . ~
| dgensds =~ 05 [ ()t ds = —var £ Ril-w) = V2R ().
B 2

2
dvy J-_w

139



Appendix A

Second, we use the Taylor expansion of A (K, 2(t — 5))ei¥1s in s around the point s = 0:
2 . 2 2.4 2 2l 222 3
A(K,T) + eiKvisA(K, T) — e"sorA(K, T) — ¢ EK viscA(K, T) + O(€’).

With the above equations we conclude that

F(x1#teAFR)(x1,k,t)
= (2m)~12 f f x1(x1,8)eA (e(x2 —vi(t —s)), e2(t — s)) elboxa=10(t=5)) o =ikx2 g g5
R JR
=FE f x1(5)A (K, 2(t — 5)) eiK115eitos g (A.10)
R
~ ~ 1 - ~
= E1V2m <7(1(—1/0) —eKv1dux1(—vo) + 822K2V%53}X1(—V0)> A
— EV2m 0031 (—10) 01 A + O(%).
Note that for exponentially decaying X1 and bounded A the integrand in the third line of
(A.10) is localized around s = 0 and the Taylor expansion at s = 0 gives us a suitable

approximation.

For the nonlinear correction term we proceed similarly. By using the Taylor expansion
&2 (A i A #g A) (12, e2(t — s)) efikus _ g2 (A i A #g A) (K, T) + O(%)
one derives
Flxa = €A ) (x1, k1)
= 2me?E, JIR x1(s) (A *K A *K A) (12, e2(t — s)) efikvisiios 4 (A.11)

— (2m)*2e2E3 %1 (—3v0) (A s A wx A) (K, T)+ O().

Let us now study I@(Umod). In comparison to the calculations of Section 4.1.1 we now have
to deal with the expansion of A(w). Here we note that the terms of order ¢’ and ¢! in the
Taylor expansion of X1(—w(k)) also appear in (A.10). By using (A.7) and (A.8) it is therefore
easy to see that the terms of order ¢ and ¢! in the residual vanish.

Before we write down the residual to order e* we remove the higher harmonics. Since €3 :=
€0)3 is a special case of the functions studied in Section 4.1.1, the right-hand side in the
equation for h will be the same as before. With (A.11) we then get

m3 + mym3
(L(3ko) + 3uoA(Bvp))h = —3vpes | m3 + mym?

0
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Assumption (A.5) and the analysis of the adjoint operator imply that
N ((L(3ko) + 3voA(3vp))*) = N (L(3ko) + 3v9A(31p)) = {0}.

The existence of h then follows from (A.4).
The first component of Ife\s(umod) is given by

- %KZEVE(LO + Vo + Ag) 32wy (ko)

- i%KZElﬁ(ZLl + 2vp A1 + 2v1 Ag) dkwn (ko)

— i%KZElﬁeo (vov%\/ZTt 2 X(—vp) —2V2m 0(4,1/%)?1(—1/0)) m, (A12)
+ E1drAeg (1 + V21 1(~v0) — vovV/2m aw;a(—vo)) m

— 2miesvgEq (A\ *KZ*K A\) (3|m1|2m1 + 2|H12|21’l’11 + m%ml) + c.C.

The second component follows from (A.12) by switching the indices of 02w (ko), dxws (ko),
m1, mp from 1 to 2 and vice versa. The third component is given by

woEq (3]"121\1713 +c.c.
We use (A.9) to rewrite these terms as

~ 1 R (e0 (14 v2m x1(—10)) — eovovV2m duX1(—v0)) My
GA :=E; (aTA — A+ i2K21/2A> (€0 (1 + V27 x1(—v0)) — €ovovV27 00 X1(—10)) M2
Hom3
~ 3my|*my + 2|ma|*my + m3ii
— 2miesvoEy (A *K A ¥y A) 3|ma|*my + 2|my|*my + m37iy
0

We now select A such that GA is zero on a linear subspace. Inspired by the calculation of
Section 4.1 we choose the subspace as

N (L(ko) + voAA(v0))*) = span { i i (7, 71z, 703)" }
To determine the equation for A we set

~ N | ~ ~ =~ ~
0= (GA, iy gy = L <1aTA A — 21(2va) +2mly (A g A g A) ) (A.13)
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where

L = JOO ((eo (1 + m)?1(—vo)> - €0V0\/277f5w?€1(—1/0)) (I [* = [ma]?) + “O‘mg"z) dx1,

—00
o0
L= vof €3 (3|m1|4 — 3|mp|* + mim3 — m%ﬁ%) dxy.

—00

By applying the inverse Fourier transform to (A.13) we arrive at the following complex
Ginzburg-Landau equation for A

1 I
i07A = ——1,0% A +inA — 2| APA.
277X L

Remark A.3

As mentioned in Section 2.3, the formal derivation of an amplitude equation such that the residual
is small is not enough to prove the approximation properties of Uans. For the rigorous analysis new
techniques are necessary since the results of Chapter 5 cannot be directly transferred to Maxwell’s

equations with a non-local displacement field.
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List of Function Spaces

Cp, 10
C*,10
L?,10
WP, 10
H™,10
LP, 11
wrp, 11
H™, 11
chrlr 17
Hagiv, 17
g", 71
Fn, 71
Fmn 71
F"", 72
Fin, 72
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F", 72
Fi", 72
Fon 72
Fier 72
Dr, 78
ML, 79
ML, 79
MLmE 79
MLYE, 79
H(div;), 83
H(divy)y, 83
L(log), 122
D 11,123
Dy, 123
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