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SCHRÖDINGER EQUATION FOR

INTERFACE WAVE PACKETS IN

MAXWELL’S EQUATIONS WITH 2D
LOCALIZATION

Dissertation

zur Erlangung des

Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

der Naturwissenschaftlichen Fakultät II

Chemie, Physik und Mathematik

der Martin-Luther-Universität Halle-Wittenberg

vorgelegt von

Herrn Daniel Paul Tietz

geboren am 28. Juni 1994 in Merseburg

Gutachter:
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1. Introduction

Knowledge is the treasure of a wise man.

William Penn

おれの財宝か？

欲しけりゃくれてやるぜ...
探してみろ

この世の全てをそこに置いてきた

ゴール・D・ロジャー

Maxwell’s equations, discovered by James Clerk Maxwell in 1865 [53], are one of the most
important equations in human history [79, Chapter 11] and describe the connection between
the electric field and the magnetic field. The analysis and understanding of these equations
are the cornerstone for all modern electronic devices from the radio up to the computer and
even after more than 150 years they are still an active field of research [47]. One part of
this research is devoted to the construction of nanodevices, i.e. electronic devices with the
size of only a couple of nanometers, with the help of electromganetic surface waves, e.g.
surface plasmon polaritons (SPPs). These electromagnetic waves propagate at the interface
between two media, are strongly localized perpendicular to the interface and are closely
linked to nonlinear optical effects [43].
This gives us the main motivation for this thesis. We want to study small localized solu-
tions of Maxwell’s equations with a cubic nonlinearity at the boundary surface of two me-
dia. Since it is in general not possible to solve such a problem explicitly and the numerical
calculation of a solution with standard methods, like the finite element method, is rather
difficult and results in very high computational costs, we search for an approximative so-
lution. Our approach is based on the method of amplitude equations and the shape of the
approximative wave packet will be determined by localized solutions of a corresponding
linear Maxwell problem and a nonlinear Schrödinger equation. Such approximative solu-
tions are commonly used in the physics literature, e.g. [7, 18, 2, 19], but they are often only
derived at a formal level. It is well-known that the formal derivation of such approximative
solutions can fail to give satisfying approximations over long time intervals [70, 71]. There-
fore, it is the goal of this thesis to not only derive a formal approximative solution, but also
to rigorously prove its approximation properties and thereby justify the formal approach.
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Chapter 1

The thesis is structured as follows. After this brief introduction we use Chapter 2 to es-
tablish the necessary background from physics, give a brief introduction to the method
of amplitude equations and collect some standard mathematical results for the nonlinear
Schrödinger equation. We will then study the linear Maxwell problem from an analytical
and numerical point of view. In Chapter 4 we formally derive a suitable approximative so-
lution and estimate the residual. The main part of this thesis is then devoted to the rigorous
justification of the found approximation. We start in Chapter 5 by adapting a recent local
existence result for quasilinear Maxwell’s equations from [67] to our concrete problem. In
Chapter 6 we then extend this local result to a long time interval by means of an involved
bootstrapping argument. Finally, in Chapter 7 we discuss the construction of suitable initial
values for our Maxwell problem as required by our technical argument. Throughout the
thesis, we will supplement our analytic results with numerical methods and examples.

There is a wide range of publications dedicated to Maxwell’s equations, for an introduc-
tion we refer for example to [40], [57] and [14] to cover physics, numerics and analysis,
respectively. Since we are mainly interested in the analytic point of view, let us give a short
overview of the current state of the art.
The well-posedness and local existence of solutions of quasilinear Maxwell’s equations has
been investigated in [75] and [67] based on the theory of general hyperbolic boundary prob-
lems in [29]. These results form the cornerstone of our analysis in Chapter 6. Maxwell’s
equations with memory but without interface have been considered in [62, 56] within the
framework of evolution equations, as well as in [4], where solutions were constructed via
analytic power series. An approach to Maxwell’s equations with interface based on spec-
tral theory can be found in [13, 11, 12], where Maxwell’s equations were transformed to a
Schrödinger equation and the long-time behavior of special solutions was studied. Another
common approach to Maxwell’s equations comes from the study of time-harmonic solu-
tions. In this case, separate equations for the electric and the magnetic field can be derived
and individually analyzed, see e.g. [46, 23].
We want to study Maxwell’s equations with the method of amplitude equations. This
method was already applied to a wide range of different problems, e.g. problems concern-
ing pattern-formations, water waves, Bose–Einstein condensates and nonlinear optics, see
[15, 68, 6, 59, 22].
In [72, 49] this method was applied to time dependent Maxwell’s equations, but a reduc-
tion to a one-dimensional equation was deployed. In [72] a linearly polarized electric field
was studied and an approximative wave packet solution was constructed via a complex
Ginzburg-Landau equation. In [49] transverse electric modes in photonic crystal waveg-
uides were analyzed and the amplitude equation was given by a nonlinear Schrödinger
equation. For 2D photonic crystals the time-harmonic Maxwell’s equations were studied in
[21, 24] and approximative solutions were constructed via coupled mode equations.
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Chapter 1

The aim of this thesis is the study of a time dependent 2D Maxwell problem where no re-
duction to a 1D problem is possible. To be precise, we study transverse magnetic modes at
the interface of two materials with instantaneous material response as described by the time
dependent, vector valued Maxwell’s equations.
Parts of Chapters 3 and 7 are published in [25] as joint work with Dr. Tomáš Dohnal and
Dr. Giulio Romani, and parts of Chapters 3 – 6 are published in [27] as joint work with Dr.
Tomáš Dohnal and Dr. Roland Schnaubelt.
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2. Preliminaries

In this chapter we collect some insightful background information for the overarching top-
ics of this thesis.

From the viewpoint of applications we want to understand electromagnetic surface waves.
We therefore study Maxwell’s equations with an interface and introduce the reader to this
topic.
From a mathematical point of view the method of amplitude equations stands at the center
of our analysis. We therefore want to present a short introduction to this method and refer to
some problems where this method has been successfully employed and where it fails to give
satisfying results. This gives support to the importance of coupling the formal analysis with
suitable justification results. Finally, we take a look at the nonlinear Schrödinger equation
since it will play a fundamental role in our approximative solution.
But first, we explain the notation used throughout the thesis.

2.1. Notation

For x, y P Rn (or Cn) the euclidean norm is denoted by | ¨ | and the scalar product as x ¨ y. For
the corresponding matrix norm in Rnˆn (or Cnˆn) we also write | ¨ |. For a multi-index α P Nn

0

we define |α| :“
řn

j“1 αj. Note that vectors are written in bold. For function spaces we use
∥¨∥ and x¨, ¨y for the norm and the scalar product, respectively, and indicate the precise space
as a subscript, e.g. ∥¨∥L2pRq for the usual norm in the Lebesgue space L2pRq. A collection of
all the function spaces used can be found at the end of this thesis. As always we denote the
space of bounded continuous functions by Cb, the space of arbitrary smooth functions with
compact support by C8

c , the Lebesgue spaces with Lp and Sobolev spaces with Wm,p and set
Hm :“ Wm,2 .
Since we are interested in an interface problem, we collect some helpful notation related to
half-spaces and interfaces. First, we define the half-spaces

Rn
˘ :“

!

x “ px1, . . . , xnqJ P Rn
ˇ

ˇ

ˇ
˘x1 ą 0

)

.

Note that we are mostly interested in the cases n P t1, 2, 3u.
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Chapter 2 2.1. Notation

For functions we use the superscripts ˘ to indicate that the function is defined on the half-
spaces Rn

˘, i.e.

f pxq :“

$

&

%

f ´pxq, x1 ă 0,

f `pxq, x1 ą 0.

Such a function f will often appear in combination with an interface condition at x1 “ 0, i.e.
the jump at the interface has to satisfy certain conditions.

Definition 2.1.1 (Jump-brackets)
Let Γn :“ tx P Rn | x1 “ 0u. The jump of a function f : RnzΓn Ñ R across Γn at the point x P Γn

will be denoted as
J f KnDpxq :“ lim

hŒ0
f px ` hνpxqq ´ lim

hÕ0
f px ` hνpxqq,

where νpxq the unit normal on Γn in x into Rn
`.

Furthermore, we define the following function spaces.

Definition 2.1.2 (Function Spaces over RnzΓn)
For 1 ď p ď 8, n P N and m P N0 let

LppRnq :“
␣

u : Rn Ñ R
ˇ

ˇ u` P Lp `Rn
`

˘

, u´ P Lp `Rn
´

˘(

,

∥u∥LppRnq :“
∥∥u`

∥∥
LppRn

`q
`
∥∥u´

∥∥
LppRn

´q
,

Wm,ppRnq :“
␣

u P LppRnq
ˇ

ˇ u` P Wm,p `Rn
`

˘

, u´ P Wm,p `Rn
´

˘(

,

∥u∥Wm,ppRnq :“
∥∥u`

∥∥
Wm,ppRn

`q
`
∥∥u´

∥∥
Wm,ppRn

´q
.

We also extend the usual notation and use Hm :“ Wm,2.
For a time interval J Ă R we analogously define the function spaces for time dependent functions,
e.g.

LppRn ˆ Jq :“
␣

u : Rn ˆ J Ñ R
ˇ

ˇ u` P LppRn
` ˆ Jq, u´ P Lp `Rn

´ ˆ J
˘(

,

∥u∥LppRnˆJq :“
∥∥u`

∥∥
LppRn

`ˆJq `
∥∥u´

∥∥
LppRn

´ˆJq .

Since both Rn
` and Rn

´ satisfy the cone condition, the standard Sobolev embeddings hold
true for Wm,ppRnq. We will often use that for mp ą n and 1 ď p ď q ď 8 the embeddings

W j`m,p `Rn
˘

˘

ãÑ Cj
b

`

Rn
˘

˘

,

Wm,p `Rn
˘

˘

ãÑ Lq `Rn
˘

˘

,

hold and that Wm,p
`

Rn
˘

˘

is a Banach algebra, see [1, Theorem 5.4, Corollary 5.16] and [30,
Chapter 5].
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2.2. Maxwell’s Equations and Electromagnetic Surface Waves Chapter 2

Remark 2.1.3
Note that u P H1pRnq does not imply u P H1pRnq, since the weak derivative Bx1 u may not exist
across Γn. We can nevertheless use an arbitrary extension of Bx1 u via

rupxq “

$

&

%

Bx1 upxq, x R Γn,

arbitrary, x P Γn

to get at least an L2pRnq-function.
Since Γn is a set of Lebesgue measure zero in Rn, we can always replace LppRnq with LppRnq.

As usual, we use Bx f for the partial derivatives, ∇ f for the gradient, ∇ ¨ f for the divergence
and ∇ ˆ f for the curl. The convolution of two functions will be denoted by

p f ˚ gqpxq :“
ż 8

´8

f pξqgpx ´ ξq dξ

and the Fourier transformation and its inverse are given by

Fp f qpkq :“ pf pkq :“ p2πq´1{2
ż 8

´8

f pxqe´ikx dx,

F´1p f qpxq :“ qf pxq :“ p2πq´1{2
ż 8

´8

f pkqeixk dk.

The identity operator will be written as I and for an operator L we write D pLq for the do-
main, N pLq for the kernel and R pLq for the range of L.
Throughout our asymptotic analysis we will use the usual Landau notation f pεq P Opεq for
ε Ñ 0. We will also often use a generic positive constant C that can change its value in every
step of a calculation.

2.2. Maxwell’s Equations and Electromagnetic Surface Waves

In this section we shortly discuss electromagnetic surface waves since they are the main
motivation for the following mathematical analysis. A good introduction to optics and elec-
trodynamics can be found in [37] and [40]. For more comprehensive material on surface
waves we refer to [64, 51, 60].

One example for electromagnetic surface waves are surface plasmon polaritons (SPPs). They
have many potential applications, for example in biosensors and photonic circuits in nan-
odevices, see e.g. [51, 66, 43]. Commonly, SPPs exist at the interface between a metal and a
dielectric material, but similar electromagnetic surface waves can also be observed for spe-
cially constructed materials and structures like photonic crystals, waveguides and photonic
metamaterials, see e.g. [85, 49, 74]. Typically, the electromagnetic fields have very small
magnitude and decay exponentially at both sides of the interface, this results in highly

12



Chapter 2 2.2. Maxwell’s Equations and Electromagnetic Surface Waves

localized wave packets, see Figure 2.1. Since the electromagnetic fields are described by
Maxwell’s equations, our main motivation for the rest of this thesis is as follows:

FIND SMALL, LOCALIZED WAVE PACKET SOLUTIONS OF 2D MAXWELL’S EQUATIONS

LOCALIZED AT AN INTERFACE BETWEEN TWO MEDIA.

Figure 2.1.: (a) Schematic of pulse propagation in direction v “ p0, 1qJ along an interface.
(b) Profile of the E1 component of the same pulse as in (a) at x2 “ 0.

Maxwell’s equations in R3 read as follows:

$

’

’

’

’

’

&

’

’

’

’

’

%

BtD “ ∇ ˆ H ´ J ,

BtB “ ´∇ ˆ E ,

∇ ¨ D “ ϱ,

∇ ¨ B “ 0.

(2.2.1)

Here E ,D,H,B,J : R3 ˆ p0, T1q Ñ R3 are the electric field, the electric displacement
field, the magnetic field, the magnetic flux density and the current density, respectively,
and ϱ : R3 ˆ p0, T1q Ñ R is the charge density, for some T1 ą 0.
There are many different constitutive relations that describe D and B in dependence of E

13



2.2. Maxwell’s Equations and Electromagnetic Surface Waves Chapter 2

and H. We restrict ourselves to the case

Dpx, tq :“ ϵ0p1 ` χ1pxqqEpx, tq ` ϵ0χ3pxqpEpx, tq ¨ Epx, tqqEpx, tq, (2.2.2)

Bpx, tq :“ µ0Hpx, tq, (2.2.3)

where ϵ0 ą 0 is the permittivity of free space, µ0 ą 0 is the permeability of free space and
χ1, χ3 : R3 Ñ R being the linear and cubic susceptibilities of the media. Note that we assume
that the materials are isotropic and that therefore χ1, χ3 are scalar quantities. Constitutive
relation (2.2.2) is commonly used to model Kerr nonlinear dielectric media. The relation is
local in time and contains a linear and a nonlinear part. The second relation (2.2.3) can be
used for non-magnetic media where the magnetic permeability is close to the permeability
of free space. This is the case for many diamagnetic or paramagnetic materials, see e.g. [40,
Chapter 5].

Remark 2.2.1
There are also other models that are interesting for the analysis of SPPs. Especially intriguing are
models that are non-local in time, e.g.

rDpx, tq “ ϵ0

ˆ

Epx, tq `

ż 8

´8

rχ1px, t ´ sqEpx, sq ds ` rχ3pxqpEpx, tq ¨ Epx, tqqEpx, tq
˙

.

We present the formal steps in the method of amplitude equations for Maxwell’s equations with this
type of displacement field in Appendix A, but the convolution term causes severe analytical difficulties
in the rigorous analysis. In the main part of this thesis we therefore restrict ourselves to the local
constitutive relation (2.2.2).
Other interesting models contain more complicated nonlinearities. Higher order nonlinearities or
more involved cubic tensors are studied in the literature of nonlinear optics, see e.g. [8]. For example,
one could replace the term ϵ0χ3pxqpEpx, tq ¨ Epx, tqqEpx, tq in (2.2.2) with the general cubic tensor
rχ3 given by

prχ3px1,E ,E ,Eqqj :“
3
ÿ

k,l,m“1

rχ3,jklmpx1qEkElEm. (2.2.4)

Our method is in general applicable to more complicated nonlinearities, but a careful analysis of
the structure of the nonlinearity would be necessary. Such a structural assumption is discussed in
Remark 4.0.1. We point out that certain symmetry properties of the nonlinearity will be needed
for the analysis of Remark 6.1.1. Moreover, the construction of the asymptotic solution in Chapter 4
would change drastically since multiple terms in the approximative solution (4.2.1) and the amplitude
equation (4.1.13) depend on the structure of the nonlinearity.
We think that the nonlinearity in (2.2.2) is suitable to demonstrate many of the different techniques
necessary to handle more complicated nonlinearities without hiding the ideas behind a convoluted
notation. Therefore, (2.2.2) will be the main model used in this thesis.

14



Chapter 2 2.2. Maxwell’s Equations and Electromagnetic Surface Waves

Combining the divergence of the first equation and the time-derivative of the third equation
in (2.2.1) gives the relation

Btϱ “ Btp∇ ¨ Dq “ ∇ ¨ pBtDq “ ∇ ¨ p∇ ˆ H ´ J q “ ´∇ ¨ J . (2.2.5)

This can be interpreted as an equation for charge conservation. We want to study surface
waves in the absence of free currents and therefore assume that J ” 0. From (2.2.5) it
follows that ϱ has to be constant in time.
With these choices Maxwell’s equations simplify to

$

’

’

’

’

’

&

’

’

’

’

’

%

BtD “ ∇ ˆ H,

µ0BtH “ ´∇ ˆ E ,

∇ ¨ D “ ϱ0,

∇ ¨ H “ 0,

(2.2.6)

with ϱ0 : R3 ˆ R the initial charge density at time t “ 0.
Since we are interested in an interface problem, we have to modify our problem even further.
Let us assume that the interface is given by Γ3 “

␣

x P R3
ˇ

ˇ x1 “ 0
(

. This hyperplane divides
R3 into the two half-spaces R3

˘ “
␣

x P R3
ˇ

ˇ˘x1 ą 0
(

. We now have to solve Maxwell’s
equations in these two half-spaces and make sure that certain interface conditions on the
interface, that we now discuss, are satisfied.

Interface Conditions for Maxwell’s Equations

Maxwell’s equations for an interface problem imply under certain regularity assumptions
additional interface conditions, see e.g. [31, 17, 40]. To derive them in a formal way we
assume that Maxwell’s equations in integral form are true:

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Bt

ż

Σ
D ¨ ν ds “

ż

BΣ
H ¨ τ dl,

µ0Bt

ż

Σ
H ¨ ν ds “ ´

ż

BΣ
E ¨ τ dl,

ż

BΩ
D ¨ ν ds “

ż

Ω
ϱ0 dx,

ż

BΩ
H ¨ ν ds “ 0.

(2.2.7)

In the interface-free case the integral form can be derived from Gauss’s and Stokes’s theo-
rems where Ω is an arbitrary (sufficiently regular) volume in R3, Σ an arbitrary (sufficiently
regular) surface in R2, ν “ νpxq the outward unit normal to Σ or BΩ in x and τ “ τpxq is the
tangential unit vector to BΣ in x, where the orientation is fixed by the right-hand rule.
We now look at the first equation in (2.2.7). Let C be a curve in the interface Γ3 and define

15



2.2. Maxwell’s Equations and Electromagnetic Surface Waves Chapter 2

the surface
Σϑ :“ tx ` γe1 | x P C, γ P p´ϑ, ϑqu ,

with e1 :“ p1, 0, 0qJ the unit vector normal to Γ3. An example for the integration area can
be seen in Figure 2.2 (a). The integral

ş

Σϑ
D ¨ ν ds is finite and vanishes if ϑ tends to zero.

On the other side of the equation we can split BΣϑ into three parts C` :“ tx ` ϑe1 | x P Cu,
C´ :“ tx ´ ϑe1 | x P Cu and RΣϑ

:“ BΣϑzpC´ Y C`q and we get

0 “ lim
ϑÑ0

ˆ

Bt

ż

Σϑ

D ¨ ν ds
˙

“ lim
ϑÑ0

˜

ż

C´

H ¨ τ dl `

ż

C`

H ¨ τ dl `

ż

RΣϑ

H ¨ τ dl

¸

.

For ϑ Ñ 0 the last integral vanishes and we arrive at

0 “

ż

C
lim
ϑÑ0

pHpx ` ϑe1q ´ Hpx ´ ϑe1qq ¨ τ dl “

ż

C
JH ¨ τK3D dl.

Since this holds for all curves C P Γ3, the first interface condition is given by JH ¨ τK3Dpxq “ 0
for all x P Γ3 and every tangential vector τ, which means that in our case H2 and H3 have
to be continuous at x1 “ 0. The second equation in (2.2.7) can be handled analogously and
gives us continuity of E2 and E3 at the interface.
The idea for the remaining two Maxwell’s equations is similar. For the third equation we
choose a surface S Ă Γ3, see Figure 2.2 (b), and define the volume

Ωϑ :“ tx ` γe1 | x P S, γ P p´ϑ, ϑqu.

Now we split the boundary of Ωϑ in S` :“ tx ` ϑe1 | x P Su, S´ :“ tx ´ ϑe1 | x P Su and
RΩϑ

:“ BΩϑzpS´ Y S`q. For ϑ Ñ 0 we get

ż

S
JD ¨ νK3D ds “

ż

S
ϱΓ ds,

where ϱΓ is the surface charge density, i.e. the restriction of ϱ0 to the interface. We have
selected S arbitrarily and therefore the interface condition JD ¨ νK3Dpxq “ ϱΓpxq follows,
which means that D1 has a jump at the interface depending on the initial charge density at
the interface. Finally, we get in the same way from the last Maxwell equation that H1 has to
be continuous at the interface.
Summarizing, the interface conditions are:

JD1K3D pxq “ ϱΓpxq, @ x P Γ3,

JE2K3D pxq “ JE3K3D pxq “ 0, @ x P Γ3,

JH1K3D pxq “ JH2K3D pxq “ JH3K3D pxq “ 0, @ x P Γ3.

(2.2.8)

Note that the interface conditions have to be satisfied for all time, so in particular we get
conditions on the initial values.
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Chapter 2 2.2. Maxwell’s Equations and Electromagnetic Surface Waves

(a)

x1

x2 x3
Γ3

Σϑ

ϑ

(b)

x1

x2 x3
Γ3

Ωϑ

ϑ

Figure 2.2.: Possible integration areas Σϑ and Ωϑ.

Remark 2.2.2
When there are no surface charges, i.e. ϱΓ “ 0, the interface conditions (2.2.8) can be rigorously
derived in the sense of traces for

Ep¨, tq P HcurlpR2q :“
␣

f P L2pR2q3 ˇ
ˇ∇ ¨ f P L2pR2q

(

,

Dp¨, tq P HdivpR2q :“
␣

f P L2pR2q3 ˇ
ˇ∇ ˆ f P L2pR2q3( ,

Hp¨, tq P H1pR2q3,

(2.2.9)

see e.g. [10]. Theorem 6.3.1 will give us a more regular solution such that (2.2.9) is satisfied.

Finally, we have to model the fact that the materials on the two sides of the interface are
different. To simplify the problem, we also assume that the materials are homogeneous in
the x2- and x3-direction. Therefore, the susceptibilities only depend on x1 and are given by

χ1px1q :“

$

&

%

χ´
1 px1q, x1 ă 0,

χ`
1 px1q, x1 ą 0,

χ3px1q :“

$

&

%

χ´
3 px1q, x1 ă 0,

χ`
3 px1q, x1 ą 0.

Note that χ1, χ3 are in general discontinuous at the interface.

Remark 2.2.3
Most of the time we will not specify the value of functions on the interface. Since we are interested
in solving an interface problem, we will instead specify the function on both half-planes and add an
interface condition to couple the two sides of the interface.

Since the materials are homogeneous in x2- and x3-direction and we are interested in wave
packet solutions that travel in one constant direction along the interface, we can without loss
of generality select the x2-direction as the direction of propagation. We then assume that the
solution is constant in x3, which allows us to reduce (2.2.6) to the from x3-independent 2D
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2.3. Method of Amplitude Equations Chapter 2

Maxwell problem
$

’

’

’

’

’

&

’

’

’

’

’

%

BtD “ ∇ ˆ H,

µ0BtH “ ´∇ ˆ E ,

∇ ¨ D “ ϱ0,

∇ ¨ H “ 0

(2.2.10)

on
`

R2zΓ2
˘

ˆ p0, T1q, with

pD,E ,Hq “ pD,E ,Hqpx1, x2, tq, ϱ0 “ ϱ0px1, x2q.

and the interface conditions

JD1K2D pxq “ ϱΓpxq,

JE2K2D pxq “ JE3K2D pxq “ 0,

JH1K2D pxq “ JH2K2D pxq “ JH3K2D pxq “ 0

(2.2.11)

on Γ2 ˆ r0, T1q. From now on we will only work in two spatial dimensions, i.e. x “ px1, x2qJ.

2.3. Method of Amplitude Equations

The main goal of this thesis is the derivation and justification of the nonlinear Schrödinger
equation as a suitable amplitude equation for Maxwell’s equations (2.2.10), (2.2.11). In this
section we give a motivation and an introduction to the theory of amplitude equations, in
particular we will outline when the theory can be applied and when it fails to give satisfac-
tory results. More details can be found in [55, 84, 28, 71].

There are many problems in all fields of mathematics for which it is difficult or even impos-
sible to calculate exact solutions. Mathematicians have therefore spent a lot of energy on
finding methods that make it possible to calculate approximative solutions.
Dealing with partial differential equations, one often looks for solutions in function spaces
that have infinite dimension and this causes many difficulties. To overcome these difficul-
ties it is common to discretize the differential equation and to study a corresponding finite-
dimensional problem. Most numerical methods for differential equations are based on this
approach. However, the fundamental flaw of this approach is the discretization itself. To get
a better approximation of the exact solution a finer discretization has to be selected, which
results in bigger calculation costs and more memory space needed. For some type of par-
tial differential equation this can get particularly troublesome when different scales are of
interest. In optics for example it is important to understand very small wave packets over a
long period of time. Without further improvements a very fine discretization in space over
a long period of time would be necessary and would result in tremendous numerical costs.
Another, more analytic, method is to start with a suitable ansatz to fundamentally change
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Chapter 2 2.3. Method of Amplitude Equations

the nature of the problem in the hope that the new one can be solved more easily. From
separation of variables over splitting methods to finite element methods we see that this
core concept is widely used. We note that under suitable assumptions the structure of the
solution can drastically change the complexity of the problem. This can result in problems
that are much easier to study from both an analytical and a numerical point of view. It also
allows us to tackle problems with different scales, which is of utmost interest for us.
Perturbation theory, multiple-scale analysis and the theory of amplitude equations are of-
ten used to study approximative solutions and are based on the same idea. By introducing
a (typically) small parameter 0 ă ε ! 1 it is possible to study effects that are on different
scales or of different sizes. Let us now illustrate this for a parameter dependent ordinary
differential equation. This example can be found in [44, Chapter 12] and [84].

Example 1: The Damped Oscillator

We study approximative solutions of the initial value problem

$

’

’

&

’

’

%

B2
t uptq ` 2εBtuptq ` uptq “ 0, t P p0, T1q,

up0q “ a,

Btup0q “ 0

(2.3.1)

on the interval p0, T1q for a, T1 P R, T1 ą 0. A typical first ansatz for an approximation of u
in perturbation theory would be the first terms of a power series in ε:

uans,1ptq “ u0ptq ` εu1ptq.

Inserting this ansatz into (2.3.1) and comparing the powers of ε gives us for the terms pro-
portional to ε0

$

’

’

&

’

’

%

B2
t u0ptq ` u0ptq “ 0, t P p0, T1q,

u0p0q “ a,

Btu0p0q “ 0.

(2.3.2)

Note that for ε “ 0 Problem (2.3.1) coincides with Problem (2.3.2).
For the terms proportional to ε1 the comparison gives us

$

’

’

&

’

’

%

B2
t u1ptq ` 2Btu0ptq ` u1ptq “ 0, t P p0, T1q,

u1p0q “ 0,

Btu1p0q “ 0.

Since we are only looking for an approximative solution, we ignore the terms of order ε2

and search for solutions u0 and u1.
For the simple Problem (2.3.1) we see interesting effects. On the one hand we note that it is
slightly easier to find the solutions u0ptq “ a cosptq and u1ptq “ ´at cosptq ` a sinptq of the
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2.3. Method of Amplitude Equations Chapter 2

perturbation problem than it is to find the exact solution

uptq “ e´εt
´

a cospωtq ` ε
a
ω

sinpωtq
¯

,

where ω “
?

1 ´ ε2. On the other hand we note that the exponential term e´εt is missing in
our approximative solution uans,1 and that therefore our approximation is useless on large
time scales, see Figure 2.3 (a). To fix this shortcoming a better ansatz is necessary.
For problems where we suspect a fast oscillating solution with slowly changing amplitude
like Problem (2.3.1), which describes a damped oscillator, the theory of amplitude equations
can often provide useful approximations. One typically uses an ansatz of the form

uans,2ptq “ Apεtqeiω2t ` c.c., (2.3.3)

where ω2 P R` “ tx P R | x ą 0u, A : R Ñ C and c.c. stands for the complex conjugate of
the previous term. We see that the exponential term describes the fast oscillating part and
the amplitude is described by the function A that depends on the slow variable T :“ εt.
Again, comparing the ε-powers for this new ansatz gives us

$

’

’

&

’

’

%

`

´ω2
2 ` 1

˘

ApTq ` c.c. “ 0, T P p0, εT1q

Ap0q ` c.c. “ a,

´iω2Ap0q ` c.c. “ 0

and
#

2iω2BT ApTq ` 2iω2ApTq “ 0, T P p0, εT1q,

BT Ap0q ` c.c. “ 0.
(2.3.4)

Note that with the initial condition in (2.3.4) the problem of finding A and ω2 is overdeter-
mined, hence we have to compromise. We ignore this condition and search for a hopefully
very good approximative solution uans,2 of the differential equation that not necessarily sat-
isfies all the initial conditions in (2.3.1) exactly.
For a ‰ 0 the solution is given by ω2 “ 1 and ApTq “ a

2 e´T and we obtain

uans,2ptq “
a
2

e´εteiω2t `
a
2

e´εte´iω2t “ ae´εt cospω2tq.

In Figure 2.3 (a) and (b) we see that uans,2 is a better approximation than uans,1. Due to the
exponential term in both u and uans,2 we see that the error goes exponentially to zero in t.
However, a closer look at the error

|uptq ´ uans,2ptq| “ e´εt
ˇ

ˇ

ˇ

ˇ

εa sinptq `
1
2

ε2at sinptq ` Opε3q

ˇ

ˇ

ˇ

ˇ

and Figure 2.3 (c) shows us that uans,2 fails to predict the right oscillating behavior of u over
very long time periods. Also note that, as expected, uans,2p0q “ a but Btuans,2p0q “ ´εa and

20
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that therefore the initial conditions are only approximately satisfied.
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Figure 2.3.: (a) Plot of the exact solution u and the approximative solutions uans,1, uans,2 for ε “ 0.1
and a “ 1.
(b) Plot of the absolute error between uptq and uans,2ptq in time.
(c) Absolute error between eεtuptq and eεtuans,2ptq in time.

This short example shows us two fundamental facts. First, we see that an ansatz of the form
(2.3.3) can be very successful for certain types of problems. Second, the failure of the first
ansatz for long times scales makes it clear that the formal derivation of an approximative
solution can fail to provide satisfying results and that a rigorous analysis is necessary to
show that an ansatz delivers a sufficiently good approximation.

Example 2: The Cubic Klein-Gordon Equation

Let us now study a slightly more involved example that has many of the interesting features
we also have to face when we analyze approximative solutions for Maxwell’s equations.
This example can be found in [73, Chapter 11].
We consider the one-dimensional (cubic) Klein-Gordon equation

B2
t u ´ B2

xu ` u ` u3 “ 0, x P R, t P p0, T1q (2.3.5)

for some T1 ą 0. The key steps of finding an approximative solution with the method of
amplitude equations are the following:
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2.3. Method of Amplitude Equations Chapter 2

Step 1: Solve the linear problem corresponding to (2.3.5).

Step 2: Make an asymptotic wave packet ansatz uans similar to (2.3.3) and choose A such
that the residual

Respuansq :“ B2
t uans ´ B2

xuans ` uans ` u3
ans

is as small as possible.

Step 3: Prove that the ansatz provides a “good” approximative solution over a long time
interval by means of suitable estimates of the error u ´ uans.

Note that A in general depends on space and time and since A determines the shape of
the wave packet, it is called envelope of the wave packet. For applications one is often
interested in solutions that are localized in space, therefore envelopes A that are localized
are especially interesting.
Step 1: To solve the linear problem

B2
t u ´ B2

xu ` u “ 0, x P R, t P p0, T1q (2.3.6)

we take the ansatz
ulin :“ eipkx´ωtq ` c.c.

for the wave number k P R and the wave frequency ω P R. The linear problem (2.3.6) then
reduces to the algebraic problem

ω2 “ k2 ` 1. (2.3.7)

Note that we get the same algebraic equation when we apply the Fourier transformation
in x and t to (2.3.6). Equation (2.3.7) is called dispersion relation and its solutions can be
written as functions in k:

ωpkq “ ˘
a

k2 ` 1.

The dispersion relation plays a central role in the construction of suitable approximative
solutions. In the sequel, we take a fixed k0 and the corresponding ν0 :“ ωpk0q to build our
asymptotic solution around eipk0x´ν0tq ` c.c., which solves the linear problem (2.3.6). Also,
the derivatives

ν1 :“ Bkωpk0q “
k0

ν0
, ν2 :“ B2

k ωpk0q “
1 ´ ν2

1
ν0

are essential. The so-called group velocity ν1 determines the speed of the envelope A and
the second derivative ν2 is later used to determine the equation for A. It is easy to see that
ν2 ‰ 0, therefore Problem (2.3.6) is called dispersive, which means that waves with different
wave numbers travel with different velocities. Hence, the different parts of a localized wave
packet travel with different velocities and the wave packet disintegrates over time.
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ν1

Opεq
A

Figure 2.4.: Schematic representation of a small wave packet with localized envelope A trav-
eling with speed ν1.

For some equations this dispersive effect in the linear part can be mitigated or even canceled
by the nonlinearity. Since we are interested in solutions that stay localized over time, we
will use a special scaling in our ansatz to achieve a “balance” between the dispersive and
nonlinear effects.
Step 2: We make the wave packet ansatz

uanspx, tq :“ εA
`

εpx ´ ν1tq, ε2t
˘

eipk0x´ν0tq ` c.c., (2.3.8)

where we have Epx, tq :“ eipk0x´ν0tq, a solution of (2.3.6), as the carrier wave and an envelope
A “ ApX, Tq : R ˆ p0, ε2T1q Ñ C dependent on the slow variables X :“ εpx ´ ν1tq and
T :“ ε2t, see Figure 2.4 for a schematic representation of uans.
As before, one inserts (2.3.8) into (2.3.5) and computes the residual:

Respuansq :“ B2
t uans ´ B2

xuans ` uans ` u3
ans

“ εE
``

k2
0 ´ ν2

0 ` 1
˘

A
˘

` ε2Ep2ipν1ν0 ´ k0qBX Aq

` ε3E
`

´2iν0BT A `
`

ν2
1 ´ 1

˘

B2
X A ` 3|A|2A

˘

` ε3E3A3 ` Opε4q ` c.c.

At order ε1 the terms vanish since k0 and ν0 satisfy the dispersion relation (2.3.7). The same
happens at order ε2 because of the choice of ν1 as the group velocity. The terms which are
proportional to ε3E vanish provided A is a solution of the nonlinear Schrödinger equation

iBT A “ ´
1
2

ν2B2
X A `

3
2ν0

|A|2A “ 0. (2.3.9)

One now sees what we meant by “balancing”. The effects of the nonlinearity and the disper-
sion appear at the same order of ε and give us the nonlinear Schrödinger equation, which
has localized solutions as we hoped for, see Section 2.4.
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Since A3 does not vanish for a non-trivial envelope, we have to improve our ansatz to elim-
inate the last term of order ε3. When we repeat the calculation for

uextpx, tq :“ εA pX, Tq eipk0x´ν0tq ` ε3 `9ν2
0 ´ 9k2

0 ´ 1
˘´1

A3 pX, Tq e3ipk0x´ν0tq ` c.c.,

we formally get Respuextq “ Opε4q. This example gives us interesting insight into the method
of amplitude equations.
First, we see that the correction only works when the so-called non-resonance condition

9ν2
0 ‰ 9k2

0 ` 1

is satisfied. For the dispersion relation (2.3.7) this condition is obviously fulfilled, for more
complicated problems similar conditions appear and have to be checked. In particular, we
see that this method does not work for a linear dispersion relation.
Second, the correction term in uext is of higher-order and its main purpose is to reduce the
order of the residual. For our Maxwell problem we will use multiple corrections of higher-
order to achieve the same goal. Often it is even possible to add more and more correction
terms to make the residual arbitrarily small, see [73, Chapter 11].
Step 3: To understand what we mean by a “good” approximative solution, let us state the
approximation result:

Theorem 2.3.1 (Approximation Theorem for the Klein-Gordon Equation)
Let T0 ą 0 and A P C

`

r0, T0s, H5pRq
˘

be a solution of the nonlinear Schrödinger equation (2.3.9).
Then there exists an ε0 ą 0 and a constant C ą 0 such that for all ε P p0, ε0q there are solutions u of
(2.3.5) such that for all t P

“

0, T0ε´2
‰

∥uptq ´ uansptq∥H1pRq ď Cε3{2. (2.3.10)

PROOF: An extended version of this theorem and its proof can be found as Theorem 11.2.6
in [73]. Since some of the steps are similar to our approach for the Maxwell problem, we
now describe the main steps.
First, we estimate the residual in the corresponding norm, here H1pRq. This can be done
easily since the residual is known explicitly and we assumed a highly regular envelope A.
Second, the problem is rewritten for the error

ε3{2R :“ u ´ uans

and one aims to show that R is of size Op1q over the long time interval
“

0, ε´2T0
‰

. This
step contains the main difficulty of the proof. In [73] semigroup theory in combination
with Gronwall’s inequality is employed for this part. For the Maxwell problem we will use
an existing local well-posedness result in combination with a bootstrapping argument and
again Gronwall’s inequality.
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A “good” approximation as in (2.3.10) has several important properties. The estimate has
to be done in a suitable normed space. This space is often tied to the local existence and
uniqueness of u. The constant C has to be independent of t and ε. Since the envelope A
depends on the slow time variable T “ ε2t, the corresponding long time interval has to be
“

0, T0ε´2
‰

. Since

∥uansptq∥H1pRq ď Cε

ˆ
ż

R

´

ˇ

ˇA
`

εpx ´ ν1tq, ε2t
˘ˇ

ˇ

2
`
ˇ

ˇBx A
`

εpx ´ ν1tq, ε2t
˘ˇ

ˇ

2
¯

dx
˙1{2

ď Cε

ˆ

ε´1
ż

R

´

|ApX, ε2tq|2 ` ε2 ˇ
ˇBX ApX, ε2tq

ˇ

ˇ

2
¯

dX
˙1{2

ď Cε1{2 ∥∥Ap¨, ε2tq
∥∥

H1pRq
,

we see that the error of our approximation is much smaller than the size of our ansatz. This
is fundamental in order to obtain a meaningful approximation. From the assumptions of
Theorem 2.3.1 we can gather additional information about the method of amplitude equa-
tions. First, most approximations only work for ε small enough. On the one hand, this
limits the possible applications since only very small solutions u can be approximated. On
the other hand, we see that the approximation improves for smaller ε. Second, a high regu-
larity of the envelope is often necessary to achieve the approximation result, but this causes
no problem since the nonlinear Schrödinger equation allows for highly regular solutions,
see Section 2.4.

Counterexamples

We have already seen in Example 1 that even for simple problems an asymptotic method
can fail to predict the correct behavior of the exact solution. For the method of amplitude
equation it was shown in [70] and [69] that the formal derivation of an amplitude equation
is in general not sufficient. A rigorous proof of the approximation properties is therefore
necessary and forms the main part of this thesis.

After a brief discussion of the nonlinear Schrödinger equation, see Section 2.4, the rest of the
thesis is devoted to the application of the method of amplitude equations to the Maxwell
problem (2.2.10), (2.2.11) and the proof of a result similar to Theorem 2.3.1. We will proceed
as follows:

Step 1: In Chapter 3 we solve a linear problem corresponding to (2.2.10), (2.2.11).

Step 2: In Chapter 4 we construct a wave packet ansatz Uans similar to (2.3.8) and choose a
suitable A such that the residual is as small as possible.

Step 3: In Chapter 6 we prove that the ansatz provides a “good” approximative solution
over a long time interval.
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2.4. Nonlinear Schrödinger Equation Chapter 2

2.4. Nonlinear Schrödinger Equation

The nonlinear Schrödinger (NLS) equation plays an essential role in our construction of an
asymptotic solution. In this section we therefore collect some known properties of the NLS
equation. More information can be found in [80, 82, 73, 2]. That the NLS equation can
be used to describe the behavior of wave packets in dispersive problems was for example
shown in [41, 45]

The (cubic) nonlinear Schrödinger equation is given by

iBT A “ α1B2
X A ` α2|A|2A, (2.4.1)

with α1, α2 P R and A : R ˆ p0, T0q Ñ C for some T0 ą 0.

Theorem 2.4.1 (Existence and Regularity of Solutions of the NLS Equation)
Let Ap0q P HmpRq.

i) Let m ą 1
2 . Then there exists a T0 ą 0 and a unique solution A P C pr0, T0s, HmpRqq of

(2.4.1) with Ap¨, 0q “ Ap0q.

ii) Let m ě 2k for a positive k P N. Then A P
Şk

j“0 Cj
`

r0, T0s, Hm´2jpRq
˘

.

PROOF: Part i) and its proof can be found in [73, Theorem 8.1.4] and in [82, Proposition 3.8].
The proof is based on semigroup theory and a fixed-point argument.
To prove ii) one can now use (2.4.1) to “trade” regularity in space for regularity in time. For
m ě 2 we have that α1B2

X A ` α2|A|2A P C
`

r0, T0s, Hm´2pRq
˘

and with (2.4.1) it follows that
A P C1

`

r0, T0s, Hm´2pRq
˘

. This process can now be iterated and proves the assertion.

Remark 2.4.2
Theorem 2.4.1 allows us to find arbitrary smooth solutions of the nonlinear Schrödinger equation
as long as the initial value Ap0q is smooth enough. For our approximative solution of Maxwell’s
equations A P

Ş4
k“0 C4´k

`

r0, T0s, H3`kpRq
˘

will be necessary.

It is even possible to find localized, smooth solutions of (2.4.1) explicitly, see e.g. [73]. For
rη, c, γ, x0 P R the function

ApX, Tq “
?

2 rη sechprηpX ´ x0 ´ cTqqeippc2´4rη2qT´2cX`γq{4

solves the NLS equation for α1 “ α2 “ 1. After a variable transformation one gets the
general solution

ApX, Tq “ β´1
1

?
2 rη sech prηpβ2X ´ x0 ´ cβ3Tqq eippc2´4rη2qβ3T´2cβ2X`γq{4, (2.4.2)

with β1 “ β3 “ α
1{3
2 and β2 “

´

α1α
´1{3
2

¯´1{2
.
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When no explicit solution is known, one can solve (2.4.1) numerically, see e.g. [81] for an
overview of different methods. One could for example use a split-step Fourier method as
follows:

1. Split (2.4.1) into the two problems

iBT AF “ α1B2
X AF, AFpX, t0q “ At0pXq, (2.4.3)

iBT AN “ α2|AN|2AN , ANpX, t1q “ At1pXq. (2.4.4)

2. Calculate the Fourier transform of (2.4.3), construct the explicit solution

pAFpK, Tq “ eiα1K2T
pAt0pKq

and apply the inverse Fourier transform.

3. Explicitly solve (2.4.4) with

ANpX, Tq “ e´iα2|At1 pXq|
2
T At1pXq.

4. Solve the two problems alternately for small step sizes in time ht and updated initial
values. One could for example use the Strang splitting, this method goes as follows:

a) Solve (2.4.3) with step size 1
2 ht and initial value At0pXq;

b) Solve (2.4.4) with step size ht and initial AF
`

X, t0 ` 1
2 ht

˘

;

c) Solve (2.4.3) with step size 1
2 ht and initial value ANpX, t0 ` htq.

The Matlab code for this method can be found in [2, Appendix B], for more about splitting
methods see e.g. [35, Chapter II.5].

Remark 2.4.3
The nonlinear Schrödinger equation appears in the analysis of many different problems, e.g. Bose-
Einstein condensates, nonlinear optics and water waves. It is possible to show that the NLS equation
appears as the universal amplitude equation in the asymptotic analysis of wave packets for a large
class of nonlinear dispersive equations, see e.g [73, Chapter 11].
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3. Linear Problem

In this chapter we study Maxwell’s equations (2.2.10) in the linear form, i.e. ϵ3 :“ ϵ0χ3 ” 0,
both analytically and numerically. We will also analyze the corresponding inhomogeneous
problem.

3.1. Linear Transverse Magnetic Modes

We want to find out what kind of localized solutions the linear 2D Maxwell equations pos-
sess and if they satisfy the interface conditions (2.2.11). As discussed in Section 2.3, we will
use the solution of the linear Maxwell problem to construct an asymptotic solution of the
nonlinear case. We start with a standard wave-ansatz for the electromagnetic field, see e.g.
[64].

For k P R and ω P R we are looking for solutions of the form

Epx1, x2, tq “

¨

˚

˝

ϕ1px1q

ϕ2px1q

ϕ3px1q

˛

‹

‚

eipkx2´ωtq ` c.c., Hpx1, x2, tq “

¨

˚

˝

ψ1px1q

ψ2px1q

ψ3px1q

˛

‹

‚

eipkx2´ωtq ` c.c., (3.1.1)

where we expect localized, integrable functions ϕ1, ϕ2, ϕ3, ψ1, ψ2, ψ3 : R Ñ C.

Remark 3.1.1
We see that this ansatz has the main features we expect from our wave solution. For a fixed wave
number k and a frequency ω our ansatz describes a wave traveling in x2-direction that is localized at
the interface Γ2.

The linear part of the displacement field (2.2.2) is given by

DlinpEq :“ ϵ1E ,

with the abbreviation

ϵ1px1q :“

$

&

%

ϵ´
1 px1q :“ ϵ0

`

1 ` χ´
1 px1q

˘

, x1 ă 0,

ϵ`
1 px1q :“ ϵ0

`

1 ` χ`
1 px1q

˘

, x1 ą 0.

The linear version of Maxwell’s equations, i.e. (2.2.10) with the linear displacement field
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Chapter 3 3.1. Linear Transverse Magnetic Modes

Dlin, with ϱ0 ” 0 and the ansatz (3.1.1) take the form

$

’

’

&

’

’

%

iµ0ωψ1 “ ikϕ3, p3.1.2aq ´iϵ1px1qωϕ1 “ ikψ3, p3.1.2bq

iµ0ωψ2 “ ´Bx1 ϕ3, p3.1.2cq ´iϵ1px1qωϕ2 “ ´Bx1 ψ3, p3.1.2dq

iµ0ωψ3 “ Bx1 ϕ2 ´ ikϕ1, p3.1.2eq ´iϵ1px1qωϕ3 “ Bx1 ψ2 ´ ikψ1 p3.1.2fq

and
#

Bx1 ϵ1px1qϕ1 ` ϵ1px1qpBx1 ϕ1 ` ikϕ2q “ 0, p3.1.3aq

Bx1 ψ1 ` ikψ2 “ 0, p3.1.3bq

with the interface conditions

Jϵ1ϕ1K1Dp0q “ Jϕ2K1Dp0q “ Jϕ3K1Dp0q “ Jψ1K1Dp0q “ Jψ2K1Dp0q “ Jψ3K1Dp0q “ 0.

Remark 3.1.2
Note that formally one also gets the complex conjugate versions of the eight equations (3.1.2a)–
(3.1.3b), e.g. µ0BtH1 “ ´Bx2E1 gives us the equation

µ0ωpiψ1qeipkx2´ωtq ` µ0ωpiψ1qe´ipkx2´ωtq “ kpiϕ3qeipkx2´ωtq ` kpiϕ3qe´ipkx2´ωtq.

Now a coefficient comparison of the exponential functions e˘ipkx2´ωtq gives us equation (3.1.2a) and
its complex conjugate counterpart.
These complex conjugate equations are trivially satisfied when (3.1.2a)–(3.1.3b) are fulfilled.

We now note that the problem decouples in two independent systems. Equations (3.1.2a),
(3.1.2c), (3.1.2f) and (3.1.3b) only depend on ϕ3, ψ1, ψ2 whereas the remaining equations
only depend on ϕ1, ϕ2, ψ3. We restrict ourselves to solutions where ψ1 “ ψ2 “ ϕ3 “ 0. This
corresponds to

E “ pE1, E2, 0qJ and H “ p0, 0,H3qJ,

such solutions are often referred to as transverse magnetic modes (TM-modes).

Remark 3.1.3
Our restriction to TM-modes is motivated by two facts. First, we think that the TM-modes are of
bigger mathematical interest. The other case where ϕ1 “ ϕ2 “ ψ3 “ 0, so-called transverse electric
mode, was already studied in [49] for the 2D setting with periodic material functions. There, a
reduction to a scalar problem was possible. For the TM-modes such a restriction is not possible and
we have to develop new techniques to handle this problem.
Second, for the simple setting that ϵ1 is constant on both sides of the interface, only TM-modes are
possible as we will show in the following example. A first analysis of SPPs also shows that SPPs are
only possible for TM-modes, see e.g. [64, 51]. We therefore think that TM-modes are the “natural”
solutions of our problem.
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3.1. Linear Transverse Magnetic Modes Chapter 3

Example 3.1.4 (Explicit Solution for the Linear Maxwell Problem)
Assume that ϵ`

1 and ϵ´
1 are constant, non-zero and satisfy ϵ`

1 ϵ´
1 ă 0.

In this special case we can solve system (3.1.2a)–(3.1.3b) for x1 ą 0 and for x1 ă 0 explicitly since
we only have to solve a system of ordinary differential equations with constant coefficients. For ω ‰ 0
we select the integrable solutions

ϕ´
1 px1q “ ´

k
ωϵ´

1
ψ´

3 px1q,

ϕ´
2 px1q “ C1

?
a´ e´i

?
c´ x1 ,

ϕ´
3 px1q “ ´iC2

?
µ0ω e´i

?
c´ x1 ,

ψ´
1 px1q “

k
µ0ω

ϕ´
3 px1q,

ψ´
2 px1q “ C2

?
b´ e´i

?
c´ x1 ,

ψ´
3 px1q “ ´C1

b

ϵ´
1 ω e´i

?
c´ x1 ,

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

x1 ă 0,

ϕ`
1 px1q “ ´

k
ωϵ`

1
ψ`

3 px1q,

ϕ`
2 px1q “ C3

?
a` ei

?
c` x1 ,

ϕ`
3 px1q “ iC4

?
µ0ω ei

?
c` x1 ,

ψ`
1 px1q “

k
µ0ω

ϕ`
3 px1q,

ψ`
2 px1q “ C4

?
b` ei

?
c` x1 ,

ψ`
3 px1q “ C3

b

ϵ`
1 ω ei

?
c` x1 ,

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

x1 ą 0, (3.1.4)

with

apx1q :“

$

’

&

’

%

a´ :“ µ0ω ´ k2

ϵ´
1 ω

, x1 ă 0,

a` :“ µ0ω ´ k2

ϵ`
1 ω

, x1 ą 0,
bpx1q :“

$

&

%

b´ :“ ´ϵ´
1 ω ` k2

µ0ω , x1 ă 0,

b` :“ ´ϵ`
1 ω ` k2

µ0ω , x1 ą 0,

cpx1q :“

$

&

%

c´ :“ µ0ϵ´
1 ω2 ´ k2 “ a´ϵ´

1 ω “ ´b´µ0ω, x1 ă 0,

c` :“ µ0ϵ`
1 ω2 ´ k2 “ a`ϵ`

1 ω “ ´b`µ0ω, x1 ą 0.

For integrable solutions we have to check that we only allow such k and ω for which we have

Re
´

´i
?

c´

¯

, Re
´

´i
?

c`

¯

ą 0. (3.1.5)

This is always possible when µ0ϵ˘
1 ω2 ´ k2 “ c˘ ă 0. Here we use the usual convention that

?
´x “ i

?
x for positive x.

To satisfy the interface conditions, ϕ2, ϕ3, ψ2 and ψ3 have to be continuous at x1 “ 0. This gives

us
?

a´ C1 “
?

a` C3, ´C2 “ C4,
?

b´ C2 “
?

b` C4 and ´

b

ϵ´
1 C1 “

b

ϵ`
1 C3. Note that the

continuity of ϵ1ϕ1 and ψ1 follows from the continuity of ψ3 and ϕ3, respectively.
These equations imply

$

’

’

&

’

’

%

´

?
a`

b

ϵ`
1

C1 “

?
a´

b

ϵ´
1

C1,

´
?

b` C2 “
?

b´ C2.

(3.1.6)

30



Chapter 3 3.1. Linear Transverse Magnetic Modes

From the first equation in (3.1.6) we get for C1 ‰ 0

a`

ϵ`
1

“
a´

ϵ´
1

ðñ
µ0ω2ϵ`

1 ´ k2

`

ϵ`
1

˘2
ω

“
µ0ω2ϵ´

1 ´ k2

`

ϵ´
1

˘2
ω

ðñ k2 “ ω2µ0

`

ϵ`
1

˘2
ϵ´

1 ´
`

ϵ´
1

˘2
ϵ`

1
`

ϵ`
1

˘2
´
`

ϵ´
1

˘2

ðñ k2 “ ω2µ0
ϵ`

1 ϵ´
1

ϵ`
1 ` ϵ´

1

ðñ ω2 “ k2 ϵ`
1 ` ϵ´

1

µ0ϵ`
1 ϵ´

1
. (3.1.7)

The last equation gives us an explicit relation between k and ω for which integrable solutions can
exist, the so-called dispersion relation.
With this dispersion relation we can go back and check if (3.1.5) is satisfied:

´i
?

c´ “ ´i
b

µ0ϵ`
1 ω2 ´ k2 “ ´i

d

k2 ϵ´
1

ϵ`
1

,

´i
?

c` “ ´i
b

µ0ϵ´
1 ω2 ´ k2 “ ´i

d

k2 ϵ`
1

ϵ´
1

.

Therefore, a non-trivial integrable solution exists for all k ‰ 0 since ϵ`
1 ϵ´

1 ă 0 per assumption.
From the second equation in (3.1.6) we get for C2 ‰ 0

b` “ b´ ðñ ´ϵ`
1 ω `

k2

µ0ω
“ ´ϵ´

1 ω `
k2

µ0ω

ðñ ϵ`
1 “ ϵ´

1 ,

which cannot be true for our discontinuous ϵ1 and therefore C2 has to be zero, hence the components
ϕ3, ψ1 and ψ2 have to vanish.
In conclusion, the most general solution has the form E “ pE1, E2, 0qJ and H “ p0, 0,H3qJ. This
means that TM-modes are the only possible solutions for this special ϵ1.
Note that the dispersion relation (3.1.7) gives a linear dependence between |ω| and |k|. Since we are
mainly interested in dispersive equations where B2

k ω has to be non-trivial, see Chapter 4, we have to
study more complicated ϵ1.

For the TM-setting the number of equations in the Maxwell problem reduces to four:

$

’

’

’

’

’

&

’

’

’

’

’

%

´iϵ1px1qωϕ1 “ ikψ3,

´iϵ1px1qωϕ2 “ ´Bx1 ψ3,

iµ0ωψ3 “ Bx1 ϕ2 ´ ikϕ1,

0 “ Bx1 ϵ1px1qϕ1 ` ϵ1px1qpBx1 ϕ1 ` ikϕ2q,

(3.1.8)
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3.2. Analysis of the Linear Eigenvalue Problem Chapter 3

with three interface conditions

Jϵ1ϕ1K1Dp0q “ Jϕ2K1Dp0q “ Jψ3K1Dp0q “ 0.

To solve (3.1.8) for a more general ϵ1 we first note that the last equation is automatically
satisfied when the other three equations are fulfilled and ω ‰ 0. To see this, we differentiate
the first equation of (3.1.8) in x1 and replace Bx1 ψ3 with the help of the second equation in
(3.1.8):

´iBx1 ϵ1px1qωϕ1 ´ iϵ1px1qωBx1 ϕ1 “ ikBx1 ψ3

ðñ ´iBx1 ϵ1px1qωϕ1 ´ iϵ1px1qωBx1 ϕ1 “ ikpiϵ1px1qωϕ2q

ðñ Bx1 ϵ1px1qϕ1 ` ϵ1px1qBx1 ϕ1 “ ´iϵ1px1qkϕ2.

(3.1.9)

Additionally, we notice that from the first equation in (3.1.8) and Jψ3K1Dp0q “ 0 it follows
that Jϵ1ϕ1K1Dp0q “ 0.

Remark 3.1.5
Note that (3.1.9) implies that ansatz (3.1.1) can only solve the linear Maxwell equations for ϱ0 ” 0.

All in all, the TM-setting reduces the linear Maxwell equations to

#

Lpkqw ` ωΛpx1qw “ 0 in Rzt0u,

Jw2K1Dp0q “ Jw3K1Dp0q “ 0,
(3.1.10)

where w :“ pϕ1, ϕ2, ψ3qJ and

Lpkqw :“

¨

˚

˝

kw3

iBx1 w3

kw1 ` iBx1 w2

˛

‹

‚

, Λpx1qw :“

¨

˚

˝

ϵ1px1qw1

ϵ1px1qw2

µ0w3

˛

‹

‚

. (3.1.11)

3.2. Analysis of the Linear Eigenvalue Problem

In the last section we derived (3.1.10) in a formal way. In this section we will rigorously
study the properties of (3.1.10).

We assume that ϵ1 is sufficiently smooth on Rzt0u and bounded from below by a positive
constant, i.e. there are constants ϵ˘

1,m ą 0 such that

ϵ˘
1 P C3pR˘q X W3,8pR˘q, ϵ˘

1 px1q ě ϵ˘
1,m, @ x1 P Rzt0u. (A1)
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Chapter 3 3.2. Analysis of the Linear Eigenvalue Problem

For k P R we define the operators Lpkq : D pLpkqq Ñ L2pRq3 and Λ : D pΛq Ñ L2pRq3 via
(3.1.11) and with the domains

D pLpkqq :“
!

w : R Ñ C3
ˇ

ˇ

ˇ
w1 P L2pRq, w2, w3 P H1pRq

)

,

D pΛq :“ L2pRq3.
(3.2.1)

Note that the domains are dense in L2pRq3 and that we incorporated the interface conditions
into the domain of Lpkq, indeed w2, w3 P H1pRq and Sobolev embeddings imply that w2,
w3 can be chosen continuous on R. Therefore, we can from now on ignore the interface
conditions in (3.1.10) and have to solve

Lpkqwpx1q ` ωΛpx1qwpx1q “ 0, x1 P Rzt0u. (3.2.2)

Since we are looking for non-trivial solutions, the remaining equation can be interpreted as
a generalized eigenvalue problem with an eigenvalue ω “ ωpkq P C and an eigenfunction
w “ wpkq P D pLpkqq zt0u.

Remark 3.2.1
The rather high regularity assumption on ϵ1 will be used in Chapter 6 to prove the existence of
solutions of Maxwell’s equations with H3-regularity in space.
From the positivity of ϵ1 it follows that Λ is positive definite, which will be essential in our analysis.
It also removes the case that gradient fields are eigenfunctions, which would result in the fact that
each ω P C is an eigenvalue of infinite multiplicity. Let for example ϵ`

1 “ 0, then w, with w´ “ 0
and w` “ pBx1 f , ik f , 0qJ, would be a non-trivial solution of (3.1.10) for all f P C8

c pR`qzt0u and
ω P C.

Let us state some properties of the operator Lpkq that will be used later on.

Lemma 3.2.2 (Properties of the Operator Lpkq)
Let k P R. The operator Lpkq : D pLpkqq Ñ L2pRq3 as defined in (3.1.11) and (3.2.1) is linear, closed
and self-adjoint.

PROOF: It is immediately clear that Lpkq is linear.
To show that Lpkq is closed, we take a sequence pwnqn Ă D pLpkqq with wn Ñ w and
Lpkqwn Ñ v in L2pRq3 and show that w P D pLpkqq and Lpkqw “ v.
First, we have to show w3 P H1pRq. Since iBx1 wn,3 Ñ v2 and wn,3 Ñ w3 in L2pRq, it follows
that there exists a function rw3 “ ´iv2 P L2pRq such that Bx1 wn,3 Ñ rw3 in L2pRq. With the
definition of weak derivatives it follows
ˇ

ˇ

ˇ

ˇ

ż

R

p rw3 φ ` w3Bx1 φqdx1

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

R

pp rw3 ´ Bx1 wn,3qφ ` Bx1 wn,3 φ ` wn,3Bx1 φ ` pw3 ´ wn,3qBx1 φqdx1

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż

R

pBx1 wn,3 φ ` wn,3Bx1 φqdx1

ˇ

ˇ

ˇ

ˇ

` ∥ rw3 ´ Bx1 wn,3∥L2pRq ∥φ∥L2pRq

` ∥w3 ´ Bx1 wn,3∥L2pRq ∥Bx1 φ∥L2pRq
Ñ 0 pn Ñ 8q
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3.2. Analysis of the Linear Eigenvalue Problem Chapter 3

for all φ P C8
c pRq and therefore Bx1 w3 “ rw3 and w3 P H1pRq.

Analogously, it follows that w2 P H1pRq.
From the definition of Lpkq, the convergence of wn,1 in L2pRq and wn,2, wn,3 in H1pRq we
have

∥Lpkqw ´ v∥L2pRq3 ď ∥Lpkqpw ´ wnq∥L2pRq3 ` ∥Lpkqwn ´ v∥L2pRq3

ď C ∥w ´ wn∥L2pRq3 `

3
ÿ

j“2

∥∥Bx1 wj ´ Bx1 wn,j
∥∥

L2pRq
` ∥Lpkqwn ´ v∥L2pRq3

Ñ 0 pn Ñ 8q.

To see that Lpkq is symmetric we use partial integration and have for all w, v P D pLpkqq that

xLpkqw, vyL2pRq3 “

ż

R

pkw3v1 ` iBx1 w3v2 ` kw1v3 ` iBx1 w2v3q dx1

“

ż

R

pkw1v3 ´ iw2Bx1 v3 ` kw3v1 ´ iw3Bx1 v2q dx1

“ xw, LpkqvyL2pRq3 .

Finally, we have to prove that D pLpkqq “ D pL˚pkqq. Let v P D pLpkqq. From the symmetry it
follows that

xLpkqw, vyL2pRq3 “ xw, LpkqvyL2pRq3 “ xw, L˚pkqvyL2pRq3

for all w P D pLpkqq and hence D pLpkqq Ă D pL˚pkqq. Now let v P D pL˚pkqq Ă L2pRq3 and
L˚pkqv “: ϕ P L2pRq3. We again use that

xLpkqw, vyL2pRq3 “ xw, L˚pkqvyL2pRq3 “ xw, ϕyL2pRq3 (3.2.3)

for all w P D pLpkqq. We now look at special functions w where the first and the third
component are zero. From (3.2.3) we get

ż

R

iBx1 w2v3dx1 “

ż

R
w2ϕ2 dx1

and therefore
ż

R

Bx1 w2v3 dx1 “ ´

ż

R
w3iϕ2dx1

for all w2 P H1pRq. By the definition of weak derivatives it follows that v3 P H1pRq with the
weak derivative Bx1 v3 “ iϕ2 P L2pRq.
Analogously, we get that v2 P H1pRq with Bx1 v2 “ iϕ3 ´ ikv1 P L2pRq when we insert w “

p0, 0, w3qJ into (3.2.3). All in all, we get v P D pLpkqq and hence that Lpkq is self-adjoint.
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Remark 3.2.3
Since Lpkq is self-adjoint, it follows that the spectrum of Lpkq is real. Since Λ is real and diagonal,
this implies that the generalized eigenvalue problem Lpkqw “ ´ωΛw has only real eigenvalues
ω “ ωpkq P R. Indeed, testing the eigenvalue equation with w gives us:

´ωxΛw, wyL2pRq3 “ xLpkqw, wyL2pRq3 “ xw, LpkqwyL2pRq3 “ ´ωxw, ΛwyL2pRq3 .

Since xΛw, wyL2pRq3 “ xw, ΛwyL2pRq3 , it follows that ω P R.

Let us now impose some assumptions on solutions of (3.2.2). Assume that in a neighborhood
of a fixed k “ k0 P R there is a unique smooth eigenvalue curve

k ÞÑ ωpkq.

This eigenvalue curve defines the dispersion relation for our Maxwell problem.

Remark 3.2.4
In Corollary 3.3.9 we will prove the existence of a C8-eigenvalue curve under the following As-
sumptions (A1)–(A4). We will use this smoothness in Chapter 4 to calculate the Taylor expansion of
ωpkq.

For our analysis it will be necessary to additionally assume that

ν0 :“ ωpk0q is a simple eigenvalue of (3.2.2) isolated from all other eigenvalues at k “ k0.
(A2)

Let B Ă R2 be a small neighborhood of pk0, ωpk0qq. These assumptions guarantee that for
pk, ωq P B the eigenvalue problem (3.2.2) has a solution if and only if the dispersion relation
is satisfied.

Remark 3.2.5
Since ϵ1 depends on x1, it is in general not possible to solve (3.2.2) explicitly. We refer to Example
3.1.4 where an explicit solution and a dispersion relation was calculated for a special choice of ϵ1.
In Section 3.4 we will also present a method to calculate solutions numerically and check if the
eigenvalues are isolated.

Remark 3.2.6
When there is a solution of (3.2.2), we will always select a solution w with w1, w3 real-valued and
w2 imaginary-valued, to shorten some of the computations later on. This can always be done since
the problem is linear. To prove this we start by assuming that v is a non-trivial solution of (3.2.2). If
Re pv1q “ i Im pv2q “ Re pv3q “ 0 we simply select the solution w “ iv. If not, write Lpkqv “ 0 as

$

’

’

&

’

’

%

ϵ1px1qωv1 ` kv3 “ 0,

ϵ1px1qωv2 ´ iBx1 v3 “ 0,

kv1 ´ iBx1 v2 ` µ0ν0v3 “ 0,
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which shows us that rv :“ pv1, ´v2, v3qJ is also a solution of (3.2.2). Now

w :“
1
2

pv ` rvq “ pRe pv1q , i Im pv2q , Re pv3qqJ

has the desired properties.

For the eigenfunction at k “ k0 we will write m :“ wpk0q and we choose the normalization

xΛm, myL2pRq3 “

ż

R

`

ϵ1
`

m2
1 ´ m2

2
˘

` µ0m2
3
˘

dx1 “ 1, (3.2.4)

which will simplify the calculation later on.

3.3. Solution of the Inhomogeneous Problem

In this section we want to study the inhomogeneous version of the eigenvalue problem

Tk,ωv :“ Lpkqv ` ωΛv “

¨

˚

˝

ωϵ1 0 k
0 ωϵ1 iBx1

k iBx1 ωµ0

˛

‹

‚

¨

˚

˝

v1

v2

v3

˛

‹

‚

“ f (3.3.1)

with k, ω P R and f P N pTk,ωq
K, where

N pTk,ωq Ă D pTk,ωq :“
!

w : R Ñ C3
ˇ

ˇ

ˇ
w1 P L2pRq, w2, w3 P H1pRq

)

.

Remark 3.3.1
The solutions of certain inhomogeneous problems will play an important role in the construction of
higher order correction terms for our asymptotic solution of Maxwell’s equations. Note that for the
approximation result of Chapter 6 it will not be necessary to calculate the solutions of the inhomoge-
neous problems explicitly.

Before we can show the existence of solutions of (3.3.1) we have to collect some helpful
results.
Let us first state some properties of Tk,ω.

Corollary 3.3.2 (Properties of the Operator Tk,ω)
Let k, ω P R. The operator Tk,ω : D pTk,ωq Ñ L2pRq3 is linear, closed and self-adjoint.

PROOF: The proof can be done analogously to the proof of Lemma 3.2.2.

This corollary will allow us to apply the well-known closed range theorem, see e.g. [86]:
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Theorem 3.3.3 (Closed Range Theorem)
Let X, Y be Banach spaces and T : D pTq Ñ Y a linear, closed and self-adjoint operator with D pTq

dense in X. Then
N pTq

K
“ R pTq

if and only if R pTq is closed.

Before we can prove the existence of solutions of (3.3.1) we have to add an additional as-
sumption on ϵ1. Assume that there are constants ϵ˘8

1 ą 0 such that

ϵ˘
1 px1q Ñ ϵ˘8

1 as x1 Ñ ˘8. (A3)

Under this assumption it will be possible to use the theory of exponential dichotomy, see
[16] for more details.

Definition 3.3.4 (Exponential Dichotomy)
Let J Ă R be an interval and A : J Ñ Cnˆn be a continuous coefficient matrix. Let Yptq be a
fundamental matrix for the linear differential equation

Bty “ Aptqy. (3.3.2)

Equation (3.3.2) possesses exponential dichotomy if there exist constants K, L, α, β ą 0 and a projec-
tion P such that

|YptqPY´1psq| ď Ke´αpt´sq, t ě s,

|YptqpI ´ PqY´1psq| ď Le´βps´tq, s ě t.

It can now be shown that exponential dichotomy is related to certain Fredholm operators.

Theorem 3.3.5 (Exponential Dichotomy and Fredholm Property)
Let A : p´8, 8q Ñ Cnˆn be bounded and measurable. The operator T : D pTq Ñ L2pRqn defined
by

pTyqptq “ Btxptq ´ Aptqyptq

on D pTq “ H1pRqn is a Fredholm operator if and only if the ordinary differential equations

Bty “ Aptqy, t ě 0

and
Bty “ ´Ap´tqy, t ě 0

possess exponential dichotomy.

PROOF: This theorem and its proof can be found as Theorem 1.2 in [5].
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Furthermore, one can show that small perturbations do not influence the dichotomy.

Lemma 3.3.6 (Perturbation of Exponential Dichotomy)
Let J “ R` and B : J Ñ Cnˆn be a perturbation with limtÑ8 |Bptq| “ 0. If (3.3.2) possesses
exponential dichotomy then

Bty “ pAptq ` Bptqqy

also possesses exponential dichotomy.

PROOF: This follows from Proposition 1 in Chapter 4 of [16]. There it is stated that expo-
nential dichotomy is preserved on an interval rt˚, 8q when |Bptq| ď C˚ for all t P rt˚, 8q,
where C˚ ą 0 only depends on the constants K, L, α, β from the definition of the exponential
dichotomy. Since limtÑ8 |Bptq| “ 0, this condition is satisfied for t big enough.
The discussion starting on page 13 of [16] allows us to extend the exponential dichotomy to
the whole half-line.

We can now combine Theorem 3.3.5 with the closed range theorem since Fredholm opera-
tors have closed range by definition.

Lemma 3.3.7 (Solutions of the Inhomogeneous Problem)
Let ϵ1 P W1,8pRq satisfy (A3) and let k, ω P R be such that k2 ą ω2ϵ˘8

1 µ0 and ωϵ1 ‰ 0. Assume
that we are in one of the cases

i) 0 is a simple eigenvalue of Tk,ω isolated from all other eigenvalues;

ii) 0 is not an eigenvalue of Tk,ω.

If f P N pTk,ωq
K

Ă L2pRq3 ( f P L2pRq3 if N pTk,ωq “ t0u), then (3.3.1) has a solution v P D pTk,ωq.

PROOF: Equation (3.3.1) splits for ωϵ1 ‰ 0 into the scalar equation

v1 “
1

ωϵ1
p f1 ´ kv3q (3.3.3)

and the reduced problem
rTk,ωrv “ rf (3.3.4)

with

rTk,ω :“

˜

ωϵ1 iBx1

iBx1 ωµ0 ´ k2

ωϵ1

¸

, rv :“

˜

v2

v3

¸

, rf :“

˜

f2

f3 ´ k
ωϵ1

f1

¸

and
D
´

rTk,ω

¯

:“ H1pRq2.

Note that

pv2, v3qJ P N
´

rTk,ω

¯

ðñ

ˆ

´
k

ωϵ1
v3, v2, v3

˙J

P N pTk,ωq
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and hence
rf P N

´

rTk,ω

¯K

ðñ f P N pTk,ωq
K .

We also obtain that 0 R ρprTk,ωq if and only if 0 R ρpTk,ωq, where ρprTk,ωq as usual denotes the
resolvent set of the operator rTk,ω. Indeed, we see that Tk,ω is invertible if and only if rTk,ω is
invertible since (3.3.3) is just an algebraic equation.
As a direct consequence of Corollary 3.3.2 we have that rTk,ω is linear, closed and self-adjoint.
The result will follow from the closed range theorem when we can show that rTk,ω is a Fred-
holm operator. With this aim, we rewrite the problem as the linear ordinary differential
equation

Bx1rv “ Apx1qrv ` g

with

Apx1q :“

˜

0 i
´

ωµ0 ´ k2

ωϵ1px1q

¯

iωϵ1px1q 0

¸

“:

$

&

%

A´px1q, x1 ă 0,

A`px1q, x1 ą 0,

g :“ ´i

˜

f3 ´ k
ωϵ1

f1

f2

¸

.

Theorem 3.3.5 states that rTk,ω is Fredholm if and only if the ODEs

Bx1rv
´

“ A´px1qrv´, x1 ă 0, (3.3.5)

and
Bx1rv

`
“ A`px1qrv`, x1 ą 0, (3.3.6)

have exponential dichotomies. We only show the dichotomy for (3.3.6) as (3.3.5) can be
treated analogously.
We now want to use Lemma 3.3.6, hence we introduce the problem

Bx1 w “ A`8w (3.3.7)

with the constant coefficient matrix

A`8 :“ lim
x1Ñ8

Apx1q “

˜

0 iωµ0 ´ ik2

ωϵ`8
1

iωϵ`8
1 0

¸

.

Now it is easy to see that (3.3.7) possesses an exponential dichotomy since the eigenvalues

λ1,2 “ ˘

b

k2 ´ ω2ϵ`8
1 µ0

of A`8 are real and have different signs for k2 ą ω2ϵ`8
1 µ0, see [16, Chapter 2]. Note that

this corresponds to (3.1.5) in Example 3.1.4.
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Now Lemma 3.3.6 also implies that

Bx1rv
`

“ A`px1qrv`
“ pA`8 ` pA`px1q ´ A`8qqrv`

possesses exponential dichotomy because |A`px1q ´ A`8| Ñ 0 for x1 Ñ 8.

Remark 3.3.8
In Chapter 4 we will use Lemma 3.3.7 for two different pairs of parameters pk, ωq. We will use case i)
to analyze Tk0,ν0 and we will use case ii) to analyze T3k0,3ν0 , where k0, ν0 are fixed as in (A2). Hence,
it will be necessary to assume that

ωpk0qϵ1 ‰ 0, ωp3k0qϵ1 ‰ 0 and k2
0 ą ωpk0q2µ0ϵ˘8

1 (A4)

and
3ν0 ‰ ωp3k0q, i.e. 3ν0 is not an eigenvalue of (3.2.2) at k “ 3k0. (A5)

Assumption (A5) is called non-resonance condition.

The reduction to (3.3.4) can of course also be done for f “ 0. We will use this reduction to
show some useful properties of solutions of the homogeneous problem (3.2.2).

Corollary 3.3.9 (Smooth Eigenvalue/Eigenfunction Curve)
Let (A1)–(A4) be true. Then for some δ ą 0 the eigenvalues and the corresponding eigenfunctions of
problem (3.2.2) satisfy

ω P C8ppk0 ´ δ, k0 ` δq, Rq and w P C8
´

pk0 ´ δ, k0 ` δq, L2pRq ˆ H1pRq ˆ H1pRq

¯

.

PROOF: We translate our problem into standard perturbation theory of spectra, as discussed
in [42]. We rewrite (3.2.2) as

´Λ´1Lpkqwpx1q “ ωwpx1q, x1 P Rzt0u.

By the assumptions, ν0 is a simple eigenvalue of ´Λ´1Lpk0q with eigenfunction wpk0q, and
there are no other eigenvalues nearby. As shown in the proof of Lemma 3.3.7, ω belongs
to the resolvent set of Λ´1Lpk0q if and only if rTk0,ω is invertible. For ω « ν0 we can write
rTk0,ω “ rTk0,ν0 ` R with a perturbation R : L2pRq Ñ L2pRq, the norm of which is bounded by
C |ω ´ ν0|.
In the proof of Lemma 3.3.7 we have seen that rTk0,ν0 is a Fredholm operator, therefore
0 R σess

´

rTk0,ν0

¯

, where σess

´

rTk0,ν0

¯

denotes the essential spectrum of rTk0,ν0 , and the same

is true for rTk0,ω if ω is close to ν0. If 0 was an eigenvalue of rTk0,ω, the number ω ‰ ν0 would
be an eigenvalue of ´Λ´1Lpk0q which is impossible in a small enough neighborhood of ν0

by Assumption (A2). As a result, 0 is contained in ρ
´

rTk0,ω

¯

and thus ν0 is an isolated simple

eigenvalue of ´Λ´1Lpk0q.
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For k « k0, Theorem 1.8 in §VII.1 of [42] now shows that ´Λ´1Lpkq has a simple eigenvalue
ωpkq smoothly depending on k. Also, the projection Ppkq onto the eigenspace is smooth in
k. Hence, the mapping k ÞÑ Ppkqwpk0q is a smooth family of eigenfunctions of (3.2.2) if k is
close to k0.

Remark 3.3.10
The reduction to two systems of ordinary differential equations (3.3.5) and (3.3.6) can also be helpful
to solve the eigenvalue problem (3.2.2) explicitly, for more on ODEs see e.g. [63].
First, we have to determine the corresponding fundamental matrices on both sides of the interface. To
make sure that the solutions are integrable we then have to select a solution from the stable subspace
EspA`q on the right of the interface and a solution from the unstable subspace EupA´q on the left
of the interface. Finally, we have to match the solutions at the interface to get continuous functions.
This implies that solutions can only exist when the intersection EspA`q X EupA´q is non-trivial at
the interface.
For a general ϵ1 it is difficult to determine the fundamental matrices, but for some special choices of
ϵ1 it is doable, see e.g. Example 3.1.4.

The next lemma allows us to improve the regularity of solutions of (3.3.1) if the right-hand
side is smooth enough.

Lemma 3.3.11 (Higher Regularity Solutions of the Inhomogeneous Problem)
Assume (A1) and (A4). Let k, ω P R, f :“ p f1, f2, f3qJ with f1 P H3pRq and f2, f3 P H2pRq. If
v P L2pRq3 is a solution of (3.3.1), then v P H3pRq3.

PROOF: We start by showing that v P H1pRq. From (3.3.1) we know that

#

iBx1 v2 “ f3 ´ kv1 ´ µ0ωv3,

iBx1 v3 “ f2 ´ ϵ1ωv2.
(3.3.8)

The right-hand sides in (3.3.8) belong to L2pRq and therefore v2, v3 P H1pRq. The assump-
tions on ϵ1 imply that Bx1

´

ϵ´1
1

¯

“ ´ϵ´2
1 Bx1 ϵ1 P L8pRq. Now v1 P H1pRq is a direct conse-

quence of

v1 “
1

ϵ1ω
p f1 ´ kv3q. (3.3.9)

We can now iterate this process since ϵ´1
1 P W3,8pRq:

B2
x1

´

ϵ´1
1

¯

“ 2ϵ´3
1 pBx1 ϵ1q2 ´ ϵ´2

1 B2
x1

ϵ1 P L8pRq,

B3
x1

´

ϵ´1
1

¯

“ ´6ϵ´4
1 pBx1 ϵ1q3 ` 6ϵ´3

1 Bx1 ϵ1B2
x1

ϵ1 ´ ϵ´2
1 B3

x1
ϵ1 P L8pRq.

Equations (3.3.8) and (3.3.9) yield that v P H2pRq3 if one knows that v P H1pRq3. This fact
then implies that v P H3pRq3.
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3.4. Numerical Calculation of the Eigenfunctions

Let us now describe one way to calculate the eigenfunctions and the dispersion relation nu-
merically.

Since we are interested in sufficiently regular solutions of (3.2.2), we rewrite the problem
as a second-order ordinary differential equation for w3. To this end, we differentiate the
second equation in (3.2.2) and use (3.2.2) itself on Rzt0u to get

B2
x1

w3 “ iBx1 ϵ1px1qωw2 ` iϵ1px1qωBx1 w2

“
Bx1 ϵ1px1q

ϵ1px1q
Bx1 w3 ´ ϵ1px1qωpµ0ωw3 ` kw1q

“
Bx1 ϵ1px1q

ϵ1px1q
Bx1 w3 ´ ϵ1px1qµ0ω2w3 ` k2w3.

From the interface condition Jw2K1Dp0q “ 0 we deduce the condition
r

Bx1 w3
ϵ1

z

1D
p0q “ 0. Now

we have to solve the eigenvalue problem

$

’

’

&

’

’

%

´B2
x1

w3px1q `
Bx1 ϵ1px1q

ϵ1px1q
Bx1 w3px1q ` k2w3px1q “ ϵ1px1qµ0ω2w3px1q, x1 P Rzt0u,

Jw3K1Dp0q “

s
Bx1 w3

ϵ1

{

1D
p0q “ 0.

(3.4.1)

Note that we can use w1 “ ´ k
ϵ1ω w3 and w2 “ ´ i

ϵ1ω Bx1 w3 to calculate the remaining com-
ponents of w. We also see that the interface conditions Jϵ1w1K1Dp0q “ Jw2K1Dp0q “ 0 are
satisfied if w3 solves (3.4.1).
To simplify the numerics we assume that we can write w3 “ w3,r ` w3,s, with an at least two
times differentiable function w3,r and a function w3,s that has a discontinuous first derivative
at x1 “ 0, e.g.

w3,spx1q “

$

&

%

w´
3,s “ const., x1 ď 0,

w`
3,spx1q, x1 ą 0

and choose w`
3,sp0q “ w´

3,s such that w3,s is continuous. Note that with this choice w3 satisfies
the first interface condition.
For the second interface condition we calculate Bx1 w3 and get that

s
Bx1 w3

ϵ1ω

{

1D
p0q “ 0

ðñ ϵ´
1 p0q

´

Bx1 w3,rp0q ` Bx1 w`
3,sp0q

¯

“ ϵ`
1 p0qBx1 w3,rp0q

ðñ Bx1 w`
3,sp0q “

ϵ`
1 p0q ´ ϵ´

1 p0q

ϵ´
1 p0q

Bx1 w3,rp0q.
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With this we set rϵ :“ ϵ`
1 p0q´ϵ´

1 p0q

ϵ´
1 p0q

and define the linear operator L as follows:

pLw3,rqpx1q :“

$

&

%

´ sgn prϵq Bx1 w3,rp0q, x1 ă 0,

´ sgn prϵq Bx1 w3,rp0qe´|rϵ|x1 , x1 ě 0.

Note that with w3,s :“ Lw3,r the second interface condition is satisfied and lim
x1Ñ8

w3,spx1q “ 0,

lim
x1Ñ´8

w3,spx1q “ ´ sgn prϵq Bx1 w3,rp0q.

Thus, w3,r has to solve

$

’

&

’

%

ˆ

´B2
x1

`
Bx1 ϵ1px1q

ϵ1px1q
Bx1 ` k2

˙

pI ` Lqw3,rpx1q “ ϵ1px1qµ0ω2pI ` Lqw3,rpx1q, x1 P Rzt0u,

Jw3,rK1Dp0q “ JBx1 w3,rK1Dp0q “ 0.
(3.4.2)

We are interested in H1pRq-solutions, therefore we have at least the boundary conditions

lim
x0Ñ´8

w3,rpx1q “ sgn prϵq Bx1 w3,rp0q, lim
x1Ñ8

w3,rpx1q “ 0.

To solve (3.4.2) numerically for a fixed k P R we discretize the problem over a finite interval
r´d, ds Ă R and add the numerical boundary conditions

#

w3,rp´dq “ sgn prϵq Bx1 w3,rp0q,

w3,rpdq “ 0

to ensure that the solution w3 is zero at the boundary of the interval. We now apply a
solver for a generalized eigenvalue problem, for example a solver based on a Krylov-Schur
algorithm, see e.g. [78].
Let us now calculate the solution of the eigenvalue problem for a non-trivial ϵ1 and let us
check if the Assumptions (A2), (A4) and (A5) are satisfied.

Example 3.4.1 (Numerical Solution of the Linear Eigenvalue Problem)
For ϵ1px1q “ 1χR´

` p1 ` e´x1qχR`
, see Figure 3.1 paq, and µ0 “ 1, we compute a numerical

solution of (3.2.2) with the help of (3.4.2) and the method described above. Note that for this choice
of ϵ1 the Assumptions (A1) and (A3) are satisfied with ϵ˘

1,m “ ϵ˘8
1 “ 1.

First, we determine the dispersion relation by solving (3.4.2) for k P r0.4, 1.6s. See Figure 3.1 pbq

for a plot of the nonlinear dispersion relation. We now fix k0 “ 0.5 and check numerically that
Assumption (A5) is satisfied, indeed ωpk0q “ ν0 « 0.494, 3ν0 « 1.481 and ωp3k0q « 1.404. Since
k0 ą ωpk0q, it also follows that Assumption (A4) is satisfied.
For the fixed k0 the calculated eigenfunction m can be seen in Figure 3.2. We note that ϵ1m1, m2,
m3 are continuous functions as demanded by the interface conditions. The eigenfunction m is also
exponentially decaying for |x1| Ñ 8, which allows us to construct a localized wave packet for the
nonlinear Maxwell problem, see Chapter 4.
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(b) Dispersion Relation

Figure 3.1.: (a) The graph of x1 ÞÑ ϵ1px1q for the chosen potential ϵ1px1q “ 1χR´
` p1 ` e´x1qχR`

.
(b) The dispersion relation k ÞÑ ωpkq for the problem. Marked are the points p0.5, ωp0.5qq

and p1.5, 3ωp0.5qq to illustrate that (A5) is satisfied for k0 “ 0.5.
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(b) Exponential Decay

Figure 3.2.: (a) The eigenfunction m of the linear problem (3.2.2) for k0 “ 0.5. (We plot ϵ1m1 to show
that the linear interface conditions are satisfied.)
(b) Logarithmic plot of the eigenfunctions to illustrate that the solution is exponentially
decaying.

To check the effects of the boundary, we repeat the calculation for different intervals r´d, ds and get the
eigenvalue ωpdq closest to ν0 depending on d. Figure 3.3 paq shows that the error in the calculation
of ωpdq converges to zero for increasing d.
To be more precise, we used step size hx “ 0.001 in space and step size hk “ 0.001 in k and interval
length d “ 5 ¨ 103 to calculate the dispersion relation and we used hx “ 0.01 and interval length
d “ 5 ¨ 104 to calculate the eigenfunction. For the calculation of Figure 3.3 paq we used d ranging
from 102 to 104 with the step size hx “ 0.01.
To solve the generalized eigenvalue problem, we used the second-order difference quotients with zero
Dirichlet boundary conditions to discretize the derivatives. Then we utilized the Matlab functions
“eigs”, where we calculated the first 10 eigenvalues closest to ν0 with a convergence tolerance of
10´10. We then only selected solutions where the corresponding eigenfunctions were almost zero in
a small neighborhood of the boundary, i.e. the norm of w3 on r´d, ´d ` 100hs Y rd ´ 100h, ds is
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Figure 3.3.: (a) Numerical convergence test for the eigenvalue ω “ ν0 « 0.494 of Tk0,ω :“
Lpk0q ` ωΛ for k0 “ 0.5 in dependence on the computational box size d.

smaller than 10´6. Our computations suggest that there are no other eigenvalues in a neighborhood
of ν0 and that therefore ν0 is an isolated eigenvalue, as demanded by Assumption (A2).

Remark 3.4.2
For the approximative solution in Chapter 4 it will be necessary to determine Bkωpk0q and B2

k ωpk0q.
Let us now present two different methods to calculate these values.
First method: We solve the linear eigenvalue problem (3.2.2) not only for k0, but instead for multiple
values k in a small neighborhood of k0, i.e. we determine the dispersion relation in a neighborhood of
k0. Then we use finite differences to approximate Bkωpk0q and B2

k ωpk0q.
For our calculations we will always use this method since we already determined the dispersion
relation in a neighborhood of k0.
Second method: We use (3.2.2) to derive an explicit expression for Bkωpk0q and B2

k ωpk0q. Note that we
will suppress the x1-dependency and explicitly write the k-dependence in the following calculation.
By differentiating (3.2.2) in k and testing it with the solution m “ wpk0q we get in k “ k0

Bkωpk0qxΛm, myL2pRq3 “ ´xBkLpk0qm, myL2pRq3 ´ xpLpk0q ` ωpk0qΛqBkwpk0q, myL2pRq3 ,
(3.4.3)

where BkLpk0qm “ pm3, 0, m1qJ. Note that by Corollary 3.3.9 the differentiation in k is possible.
Since Lpk0q ` ωpk0qΛ is a self-adjoint operator, see Corollary 3.3.2, it follows that

xpLpk0q ` ωpk0qΛqBkwpk0q, myL2pRq3 “ xBkwpk0q, pLpk0q ` ωpk0qΛqmyL2pRq3 “ 0,

and with the normalization (3.2.4) we deduce from (3.4.3) that

Bkωpk0q “ ´2
ż

R

m1m3 dx1.

Note that we used Remark 3.2.6 and that therefore m1, m3 are real-valued functions.
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To derive a formula for B2
k ωpk0q we differentiate (3.2.2) two times in k. With the same arguments as

before one arrives at

B2
k ωpk0q “ ´2xpBkLpk0q ` Bkωpk0qΛqBkwpk0q, myL2pRq3 .

To determine Bkwpk0q we now have to solve

pLpk0q ` ωpk0qΛqBkwpk0q “ pBkLpk0q ` Bkωpk0qΛqm “: f

with JBkw2pk0qK1Dp0q “ JBkw3pk0qK1Dp0q “ 0.
This can again be transformed to a second order ODE for Bkw3pk0q:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Lk0,ν0Bkw3pk0q :“
ˆ

´B2
x1

`
Bx1 ϵ1px1q

ϵ1px1q
Bx1 ` k2

0 ´ ϵ1px1qµ0ν2
0

˙

Bkw3pk0q

“ k0 f1 ´ ν0ϵ1px1q f3 ´ i
Bx1 ϵ1px1q

ϵ1px1q
f2 ` iBx1 f2, x1 P Rzt0u,

JBkw3pk0qK1Dp0q “

s
Bx1Bkw3pk0q

ϵ1

{

1D
p0q “ 0.

(3.4.4)
For the transformation of the interface conditions we used that

s
f2

ν0ϵ1

{

1D
p0q “

s
ν0ϵ1m2

ν0ϵ1

{

1D
p0q “ 0.

Now one can proceed similarly to the calculation of w3, but instead of a generalized eigenvalue prob-
lem, one has to solve an inhomogeneous ordinary differential equation. Note that the solution of
(3.4.4) is not unique, since w3pk0q is a solution of Lk0,ν0 w3pk0q “ 0. To circumvent this problem one
has to find solutions in the orthogonal complement of spantw3pk0qu, e.g. by employing a biconjugate
gradient method or other iterative methods in combination with projections, see e.g [54, Chapter 4].
Note that for the first method (3.2.2) has to be solved multiple times. For the second method (3.4.4)
has to be solved only once.

All in all, we see that it is possible to solve the linear Maxwell problem, at least numerically.
With Lemma 3.3.7, Corollary 3.3.9 and Lemma 3.3.11 we have also established the necessary
tools to analyze the nonlinear Maxwell problem in the following chapters.
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4. Formal Asymptotic Solution of the

Nonlinear Problem

Let us formally derive an asymptotic solution of Maxwell’s equations with the help of the
method of amplitude equation. But first, we state the exact problem we want to solve.

In Section 3.1 we introduced transverse magnetic modes for solutions of the linear Maxwell
problem. Since our asymptotic ansatz is based on the solutions of the linear problem, we
therefore also use the reduction to TM-modes for the nonlinear problem and set

Epx, tq “ pE1px, tq, E2px, tq, 0qJ, Hpx, tq “ p0, 0,H3px, tqqJ. (4.0.1)

As before we use the displacement field

DpEq “ ϵ1E ` ϵ3pE ¨ EqE

with ϵ1 “ ϵ0p1 ` χ1q and ϵ3 “ ϵ0χ3.

Remark 4.0.1
Reduction (4.0.1) to TM-modes is consistent with the chosen nonlinearity in the displacement field
since Ampère’s circuital law BtD “ ∇ ˆ H can be written as

BtD “ ϵ0Bt

¨

˚

˝

p1 ` χ1q

¨

˚

˝

E1

E2

0

˛

‹

‚

` χ3
`

E2
1 ` E2

2
˘

¨

˚

˝

E1

E2

0

˛

‹

‚

˛

‹

‚

“

¨

˚

˝

Bx2H3

´Bx1H3

0

˛

‹

‚

“ ∇ ˆ H.

For a more general nonlinearity as in (2.2.4) we have to guarantee that

Btpχ3px1,E ,E ,Eqq3 “ Bt

˜

2
ÿ

k,l,m“1

χ3,3klmpx1qEkElEm

¸

“ 0

to be consistent with TM-modes. This is for example satisfied if

2
ÿ

k,l,m“1

χ3,3klmpx1qEkElEm “ 0.
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Let T1 ą 0. With (4.0.1) we can reduce (2.2.10) and (2.2.11) to the following TM-Maxwell’s
equations

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

BtD1 ´ Bx2H3 “ 0,

BtD2 ` Bx1H3 “ 0,

´Bx2E1 ` Bx1E2 ` µ0BtH3 “ 0,

∇ ¨ D “ ϱ0,

∇ ¨ H “ 0

on
`

R2zΓ2
˘

ˆ p0, T1q with the interface conditions

JD1K2D “ ϱΓ, JE2K2D “ JH3K2D “ 0

on Γ2 ˆ r0, T1q.
This can be reduced even further. First, note that the divergence equation for H is always
satisfied since the only non-trivial component H3 is independent of x3. For the other diver-
gence equation we use that solutions of Maxwell’s equations satisfy BtD “ ∇ ˆ H. This
implies that

Btp∇ ¨ Dq “ ∇ ¨ pBtDq “ ∇ ¨ p∇ ˆ Hq “ 0.

Therefore, ∇ ¨ D “ ϱ0 is satisfied for all time t ą 0, if the initial value for D satisfies this
divergence condition. Similarly, we get from BtD1 “ Bx2H3 that

BtJD1K2D “ JBx2H3K2D “ Bx2JH3K2D “ 0.

Hence, we only have to check the interface condition for D1 at the initial time t “ 0.

Remark 4.0.2
Note that the tangential derivative of a jump is the jump of the tangential derivatives. This follows
by Hadamard’s lemma, see e.g. [83, Section 173-175].

We will combine the three non-trivial components of the electromagnetic field into the vector

Upx, tq :“ pE1px, tq, E2px, tq,H3px, tqqJ

and also write
UEpx, tq :“ pE1px, tq, E2px, tq, 0qJ

to denote the part of U that corresponds to the electric field.
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For initial data Up0q : R2 Ñ R3, our reduced Maxwell problem is now given by

¨

˚

˝

ϵ˘
1 0 0
0 ϵ˘

1 0
0 0 µ0

˛

‹

‚

BtU˘ ` ϵ˘
3 Bt

¨

˚

˚

˝

´

U˘2

1 ` U˘2

2

¯

U˘
1

´

U˘2

1 ` U˘2

2

¯

U˘
2

0

˛

‹

‹

‚

`

¨

˚

˝

´Bx2U˘
3

Bx1U˘
3

Bx1U˘
2 ´ Bx2U˘

1

˛

‹

‚

“ 0 (4.0.2)

on R2
˘ ˆ p0, T1q with

U˘p¨, 0q “ Up0q,˘ on R2
˘, (4.0.3)

and the interface conditions

JU2K2D “ JU3K2D “ 0 on Γ2 ˆ r0, T1q. (4.0.4)

To get a solution of Maxwell’s equations for a prescribed volume charge density ϱ0 and a
prescribed surface charge density ϱΓ, the initial condition Up0q

E must also be chosen such that
the divergence condition

Bx1D1

´

Up0q,˘
E

¯

` Bx2D2

´

Up0q,˘
E

¯

“ Bx1

´

ϵ˘
1 Up0q,˘

1 ` ϵ˘
3

´

Up0q,˘2

1 ` Up0q,˘2

2

¯

Up0q,˘
1

¯

` Bx2

´

ϵ˘
1 Up0q,˘

2 ` ϵ˘
3

´

Up0q,˘2

1 ` Up0q,˘2

2

¯

Up0q,˘
2

¯

“ ϱ0 on R2
˘,

(4.0.5)

and the interface condition

r
D1

´

Up0q

E

¯z

2D
“

r
ϵ1Up0q

1 ` ϵ3

´

Up0q2

1 ` Up0q2

2

¯

Up0q

1

z

2D
“ ϱΓ on Γ2 (4.0.6)

are satisfied. System (4.0.2), (4.0.3) and (4.0.4) is the problem treated by our approximation
result and will be the main focus of our analysis in the following sections. The problem of
finding suitable initial values for (4.0.5), (4.0.6) will be discussed separately in Chapter 7.

Remark 4.0.3
Note that the divergence equation ∇ ¨ D “ ϱ0 is not contained in (4.0.2). We will nevertheless use
this equation in Section 6.2 to estimate Bx1D1.
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4.1. Construction of the Asymptotic Solution

Our main goal is the derivation and justification of an asymptotic solution of (4.0.2), (4.0.3)
and (4.0.4). We will follow the same idea as presented in Example 2 in Section 2.3.

To treat the linear and nonlinear terms in a similar fashion, we remember Assumptions (A1),
(A3) and assume analogously that there are constants ϵ˘

3,m, ϵ˘
3,M such that

ϵ˘
3 P C3pR˘q X W3,8pR˘q, ϵ˘

3,m ď ϵ˘
3 px1q ď ϵ˘

3,M, @ x1 P Rzt0u (A6)

and that there are constants ϵ˘8
3 such that

ϵ˘
3 px1q Ñ ϵ˘8

3 as x1 Ñ ˘8. (A7)

Furthermore, assume (A2), (A3) and (A4) to use all the results of Chapter 3. Then there
exists a wave number k0 P R, a wave frequency ν0 “ ωpk0q, a group velocity ν1 :“ Bkωpk0q,
a constant ν2 :“ B2

k ωpk0q and the eigenfunction mpx1q :“ wpx1, k0q.
Asymptotically, we consider a wave packet based on the carrier wave

mpx1qeipk0x2´ν0tq, px, tq P
`

R2zΓ2
˘

ˆ r0, 8q,

which solves the linear Maxwell problem, i.e. (4.0.2) for ϵ3 “ 0 and with ϱ0 “ 0 and ϱΓ “ 0.
Now we make the ansatz

Uanspx, tq :“

¨

˚

˝

Eans,1px, tq
Eans,2px, tq
Hans,3px, tq

˛

‹

‚

:“ εA
`

εpx2 ´ ν1tq, ε2t
˘

mpx1qeipk0x2´ν0tq ` c.c. (4.1.1)

with a complex envelope A “ ApX2, Tq : R ˆ r0, 8q Ñ C and a small parameter 0 ă ε ! 1.
Since we are interested in TM-modes, we of course choose Eans,3 “ Hans,1 “ Hans,2 “ 0.
The envelope depends on the slow variables X2 :“ εpx2 ´ ν1tq and T :“ ε2t and travels
with the group velocity ν1. If A is localized we get that Uans is localized in x1 and x2 and is
traveling in x2-direction.
Our goal is to show that Uans is a “good” approximation for a solution of (4.0.2) if A is a
solution of an effective nonlinear Schrödinger equation. At the end, we want a theorem
analogous to Theorem 2.3.1:

Goal 4.1.1 (Approximation Result)
Let T0 ą 0 and A be a solution of an effective nonlinear Schrödinger equation. Then there exists an
ε0 ą 0 and a constant C ą 0 such that for all ε P p0, ε0q there is a solution U of (4.0.2), (4.0.3),
(4.0.4) in a suitable function space X with

∥Uptq ´ Uansptq∥X ď Cε3{2, @ t P
“

0, T0ε´2‰ .
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Chapter 4 4.1. Construction of the Asymptotic Solution

Remark 4.1.2
A result like Goal 4.1.1 would give us the existence of a solution U that is close to a wave packet over
a long period of time, which is interesting from an analytical point of view.
From a numerical point of view we notice that it is in general much simpler to calculate Uans than
it is to calculate a solution of the full Maxwell problem with a standard numerical method, e.g. the
finite element method. This has multiple reasons. First, we note that we no longer have to solve a
problem on R2 ˆ

`

0, T0ε´2
˘

, instead we have to solve the simpler problems for m and ωpkq on R, see
Section 3.4, and for A on R ˆ p0, T0q, see Section 2.4. Second, we see that due to the ε-dependence
we can use a rougher discretization for the slow variables X2 and T compared to the discretization
of x2 and t. Additionally, we have that the calculations for m, ωpkq and A are independent of ε and
that the calculated results can be reused for different ε. Numerical tests for the method of amplitude
equations can be found in [84, 22, 26].

4.1.1. Derivation of the Nonlinear Schrödinger Equation

The first step to achieve Goal 4.1.1 is to find an equation for A and higher-order corrections
of Uans such that the residual

RespUansq :“

¨

˚

˝

BtD1pUans,Eq ´ Bx2Uans,3

BtD2pUans,Eq ` Bx1Uans,3

´Bx2Uans,1 ` Bx1Uans,2 ` µ0BtUans,3

˛

‹

‚

(4.1.2)

of (4.1.1) in the Maxwell problem (4.0.2) is small enough for the rigorous analysis of Chapter
6. Note that we use the abbreviation Uans,E :“ pEans,1, Eans,2, 0qJ. This section will be focused
on the analysis of (4.1.2), the discussion of the residual in the interface conditions will follow
in Section 4.1.2.
In view of the linear eigenvalue problem it is reasonable to work in Fourier variables and
transform between x2 and k via

Fp f qpkq :“ pf pkq :“ p2πq´1{2
ż 8

´8

f px2qe´ikx2 dx2.

The inverse transform is then given by

F´1p f qpx2q :“ qf px2q :“ p2πq´1{2
ż 8

´8

f pkqeix2k dk

and we obtain with the convolution theorem, see e.g. [33],

Fp f ˚ gq “ p2πq1{2Fp f qFpgq,

Fp f gq “ p2πq1{2Fp f q ˚ Fpgq.
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4.1. Construction of the Asymptotic Solution Chapter 4

We compute

ż 8

´8

εA
`

εpx2 ´ ν1tq, ε2t
˘

eipk0x2´ν0tqe´ikx2 dx2 “

ż 8

´8

εA
`

εpx2 ´ ν1tq, ε2t
˘

e´ippk´k0qx2`ν0tq dx2

“

ż 8

´8

A
`

X2, ε2t
˘

e´i
´

k´k0
ε X2`pk´k0qν1t`ν0t

¯

dX2

“ p2πq1{2
pA
ˆ

k ´ k0

ε
, ε2t

˙

e´ipν0`pk´k0qν1qt,

(4.1.3)
where we used the substitution X2 “ εpx2 ´ ν1tq. Therefore, our transformed ansatz has the
form

pUanspx1, k, tq :“

¨

˚

˝

pEans,1px1, k, tq
pEans,2px1, k, tq
pHans,3px1, k, tq

˛

‹

‚

:“ pA
ˆ

k ´ k0

ε
, ε2t

˙

mpx1qe´ipν0`pk´k0qν1qt ` xc.c., (4.1.4)

where xc.c.ppf q “ {c.c.p f q and we note that pf p´kq “
pf pkq.

Maxwell’s equations (4.0.2) transform to

$

’

’

&

’

’

%

Bt pD1 ´ ik pH3 “ 0,

Bt pD2 ` Bx1
pH3 “ 0,

´ik pE1 ` Bx1
pE2 ` µ0Bt pH3 “ 0,

(4.1.5)

with
pD “ pDpEq “ ϵ1

pE ` ϵ3ppE ¨ EqEq^.

In what follows we use the notations E1 :“ e´ipν0`pk´k0qν1qt, F1 :“ eipk0x2´ν0tq, K :“ k´k0
ε ,

T :“ ε2t and X2 “ εpx2 ´ ν1tq. We will suppress the arguments of m and pA as well as their
derivatives if they are obvious.
Looking at (4.1.5) we see that we need the following derivatives:

Bt pUans “ mE1

´

´iν0 pA ´ εiKν1 pA ` ε2BT pA
¯

` xc.c.,

Bx1
pUans “ Bx1 mE1 pA ` xc.c.

To analyze the Fourier transform of D we split the displacement field in its linear and non-
linear parts D “ Dlin ` Dnl with

Dlin :“ ϵ1E , Dnl :“ ϵ3pE ¨ EqE .
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Chapter 4 4.1. Construction of the Asymptotic Solution

We first calculate the nonlinear term in physical variables and apply the Fourier transforma-
tion afterwards. For our chosen ansatz we get

Dnl,1pUans,Eq “ ε3ϵ3F1|A|2A
`

3|m1|2m1 ` 2|m2|2m1 ` m2
2m1

˘

` ε3ϵ3F3
1 A3 `m3

1 ` m1m2
2
˘

` c.c.,

where we used |F1| “ 1.
Now the temporal derivative is

BtDnl,1pUans,Eq “ ´ ε33iϵ3ν0F3
1 A3 `m3

1 ` m1m2
2
˘

´ ε3iϵ3ν0F1|A|2A
`

3|m1|2m1 ` 2|m2|2m1 ` m2
2m1

˘

` Opε4q ` c.c.

The Fourier transformation of F1|A|2A can be calculated via

p2πq´1{2
ż 8

´8

eipk0x2´ν0tq|ApX2, Tq|2ApX2, Tqe´ikx2 dx2

“ p2πq´1{2e´iν0t
ż 8

´8

|ApX2, Tq|2ApX2, Tqe´εiKx2 dx2

“ p2πq´1{2ε´1E1

ż 8

´8

|ApX2, Tq|2ApX2, Tqe´iKX2 dX2

“ 2πε´1E1

´

pA ˚K
pA ˚K pA

¯

pK, Tq.

We used X2 “ εpx2 ´ ν1tq, k “ k0 ` εK and in the last step we applied the convolution
theorem to the cubic term. The calculation for the so-called higher harmonics, i.e. the terms
proportional to F3

1 , is similar but we have to introduce the new abbreviations rK :“ k´3k0
ε and

E3 :“ e´ip3ν0`pk´3k0qν1qt:

p2πq´1{2
ż 8

´8

e3ipk0x2´ν0tq A3pX2, Tqe´ikx2 dx2

“ p2πq´1{2e´3iν0t
ż 8

´8

A3pεpx2 ´ ν1tq, Tqe´ipk´3k0qx2 dx2

“ p2πq´1{2e´ip3ν0`pk´3k0qν1qt
ż 8

´8

A3pεpx2 ´ ν1tq, Tqe´i k´3k0
ε εpx2´ν1tq dx2

“ p2πq´1{2ε´1E3

ż 8

´8

A3pX2, Tqe´irKX2 dX2

“ 2πε´1E3

´

pA ˚K pA ˚K pA
¯

prK, Tq.

All in all, we get

pDnl,1pUans,Eq “ 2πε2ϵ3E1
`

3|m1|2m1 ` 2|m2|2m1 ` m2
2m1

˘

´

pA ˚K
pA ˚K pA

¯

pK, Tq

` 2πε2ϵ3E3
`

m3
1 ` m1m2

2
˘

´

pA ˚K pA ˚K pA
¯

prK, Tq ` xc.c.
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and

Bt pDnl,1pUans,Eq “ ´ 2πiε2ϵ3ν0E1
`

3|m1|2m1 ` 2|m2|2m1 ` m2
2m1

˘

´

pA ˚K
pA ˚K pA

¯

pK, Tq

´ 2πiε23ϵ3ν0E3
`

m3
1 ` m1m2

2
˘

´

pA ˚K pA ˚K pA
¯

prK, Tq ` Opε3q ` xc.c.

The second components pDnl,2pUans,Eq and Bt pDnl,2pUans,Eq are obtained by simply switching
the indices 1 and 2 and the third component is obviously always zero. In the following we
will use that we selected the eigenfunction such that m1 is real and m2 is imaginary, see
Remark 3.2.6, hence

3|m1|2m1 ` 2|m2|2m1 ` m2
2m1 “ 3m3

1 ´ m2
2m1,

3|m2|2m2 ` 2|m1|2m2 ` m2
1m2 “ ´3m3

2 ` m2
1m2.

Before we can start to put everything together and to compare powers of ε, we need to Taylor
expand the eigenvalue problem (3.2.2) in k at k0. By Corollary 3.3.9 the Taylor expansions of
ωpkq and wpkq at k0 exist and we get

ωpkq “ ωpk0 ` εKq “ ν0 ` εKν1 `
1
2

ε2K2ν2 ` Opε3q,

wpkq “ wpk0 ` εKq “ m ` εKBkwpk0q `
1
2

ε2K2B2
k wpk0q ` Opε3q.

The Taylor expansion of the operator Lpkq, see (3.1.11), is given by

Lpkq “ Lpk0 ` εKq “ L0 ` εKL1

with the operators L0 and L1 defined as

L0m :“ Lpk0qm “

¨

˚

˝

k0m3

iBx1 m3

k0m1 ` iBx1 m2

˛

‹

‚

, L1m :“ pBkLpk0qqm “

¨

˚

˝

m3

0
m1

˛

‹

‚

.

Note that all higher k-derivatives of L vanish.
Inserting the Taylor expansion into (3.2.2) and comparing the powers of ε, we get for ε0

pL0 ` ν0Λqm “ 0. (4.1.6)

For ε1 we get
KpL1 ` ν1Λqm ` KpL0 ` ν0ΛqBkwpk0q “ 0. (4.1.7)

Finally, for ε2 we get the equation

1
2

K2ν2Λm ` K2pL1 ` ν1ΛqBkwpk0q `
1
2

K2pL0 ` ν0ΛqB2
k wpk0q “ 0. (4.1.8)
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Now we have all tools to determine the equation for A. Inserting ansatz (4.1.4) into the
left-hand side of Maxwell’s equations (4.1.5) gives us the following equation for the Fourier
transformed residual:

yRespUansq :“

¨

˚

˝

Bt pD1pUans,Eq ´ ik pUans,3

Bt pD2pUans,Eq ` Bx1
pUans,3

´ik pUans,1 ` Bx1
pUans,2 ` µ0Bt pUans,3

˛

‹

‚

. (4.1.9)

We want that yRespUansq is formally of order ε3. To order ε0 the residual contains the term

´iE1 pApL0 ` ν0Λqm ` xc.c.

We see that this term is zero due to (4.1.6).
To order ε1 we get

´iKE1 pApL1 ` ν1Λqm ` xc.c.

In comparison with (4.1.7) we are missing the term KpL0 ` ν0ΛqBkwpk0q. In order to guaran-
tee that the residual does not contain terms of order ε1 we extend our ansatz to

pUmod1px1, k, tq :“ pA
ˆ

k ´ k0

ε
, ε2t

˙

pmpx1q ` εKBkwpx1, k0qq e´ipν0`pk´k0qν1qt ` xc.c.

A simple computation shows that this new ansatz delivers the same terms of order ε0 and
has all required terms of order ε1. Hence, our new modified ansatz satisfies Maxwell’s equa-
tions up to a residual of order ε2.
Looking at (4.1.8), it is reasonable to extend our ansatz even further. Inserting

pUmod2px1, k, tq

:“ pA
ˆ

k ´ k0

ε
, ε2t

˙ˆ

mpx1q ` εKBkwpx1, k0q `
1
2

ε2K2B2
k wpx1, k0q

˙

e´ipν0`pk´k0qν1qt ` xc.c.

into (4.1.9) gives us the following terms of order ε2:

´ iE1

˜

K2
pApL1 ` ν1ΛqBkwpk0q `

1
2

K2
pApL0 ` ν0ΛqB2

k wpk0q ` iBT pAΛm

`2πϵ3ν0

´

pA ˚K
pA ˚K pA

¯

¨

˚

˝

3m3
1 ´ m1m2

2

´3m3
2 ` m2

1m2

0

˛

‹

‚

˛

‹

‚

´ 6πiϵ3ν0E3

´

pA ˚K pA ˚K pA
¯

¨

˚

˝

m3
1 ` m1m2

2

m3
2 ` m2

1m2

0

˛

‹

‚

` xc.c.

(4.1.10)
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Let us first remove the term proportional to E3 by modifying the ansatz again:

pUmod3px1, k, tq

:“ pA
ˆ

k ´ k0

ε
, ε2t

˙ˆ

mpx1q ` εKBkwpx1, k0q `
1
2

ε2K2B2
k wpx1, k0q

˙

e´ipν0`pk´k0qν1qt

` 2πε2
´

pA ˚K pA ˚K pA
¯

prK, Tqhpx1qe´ip3ν0`pk´3k0qν1qt ` xc.c.

With this correction the residual contains the additional terms

´2πiε2E3

´

pA ˚K pA ˚K pA
¯

prK, TqpLp3k0q ` 3ν0Λqhpx1q ` Opε3q ` xc.c.,

where k “ 3k0 ` εrK was used. We therefore select the function h as the solution of

pLp3k0q ` 3ν0Λqh “ ´3ν0ϵ3

¨

˚

˝

m3
1 ` m1m2

2

m3
2 ` m2m2

1

0

˛

‹

‚

. (4.1.11)

All of the Assumptions (A1) – (A6) are now necessary to prove the existence of a solution
h, see Remark 3.3.8. First, we apply Lemma 3.3.11 to the linear eigenvalue problem to show
that m P H3pRq3, see also Lemma 4.2.6. By the Banach algebra property of H3pRq it follows
that the right-hand side in (4.1.11) is also in H3pRq3. We can now apply case ii) of Lemma
3.3.7 for pk, ωq “ p3k0, 3ωq and get the existence of a solution h.
The remaining terms of (4.1.10) can be further simplified with the help of equation (4.1.8) to
obtain

K2
pApL1 ` ν1ΛqBkwpk0q `

1
2

K2
pApL0 ` ν0ΛqB2

k wpk0q “ ´
1
2

K2
pAν2Λm.

Therefore, the residual for our modified ansatz Umod3 to order ε2 is given by G pA ` xc.c. with
the operator G defined by

G pA :“ ´iE1

¨

˚

˝

ˆ

iBT pA ´
1
2

K2
pAν2

˙

Λm ` 2πϵ3ν0

´

pA ˚K
pA ˚K pA

¯

¨

˚

˝

3m3
1 ´ m1m2

2

´3m3
2 ` m2

1m2

0

˛

‹

‚

˛

‹

‚

.

By the right choice of pA we can guarantee that the L2- projection Pm of G pA onto the kernel
of L0 ` ν0Λ vanishes. Since ν0 is by Assumption (A2) a simple eigenvalue, we have that
N pL0 ` ν0Λq “ spantmu and the projection is defined as usual by

pPm f qpx1q :“
x f , myL2pRq3

xm, myL2pRq3
mpx1q “

ş8

´8
f pξ1q ¨ mpξ1qdξ1

ş8

´8
mpξ1q ¨ mpξ1qdξ1

mpx1q.
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To guarantee that G pA “ 0 in the subspace R pPmq “ N pL0 ` ν0Λq we have to choose pA such
that

0 “ xG pA, myL2pRq3

“

ż 8

´8

`

ϵ1
`

m2
1 ´ m2

2
˘

` µ0m2
3
˘

dx1E1

ˆ

iBT pA ´
1
2

K2ν2 pA
˙

` 2πν0

ż 8

´8

ϵ3

´

3m4
1 ´ 2m2

1m2
2 ` 3m4

2

¯

dx1E1

´

pA ˚K
pA ˚K pA

¯

,

(4.1.12)

which is the Fourier transform of a nonlinear Schrödinger equation for A.
Conclusively, we fix A as the solution of

iBT A “ ´
1
2

ν2B2
X2

A ` κ|A|2A (4.1.13)

with
κ :“ ´ν0

ż 8

´8

ϵ3

´

3m4
1 ´ 2m2

1m2
2 ` 3m4

2

¯

dx1,

where we used the normalization (3.2.4).
For our approximation result we will use that there exist smooth and localized solutions of
(4.1.13), see Section 2.4.

Remark 4.1.3
The correction term

1
2

ε2K2B2
k wpx1, k0q pA

ˆ

k ´ k0

ε
, ε2t

˙

e´ipν0`pk´k0qν1qt

in pUmod3 is not necessary to derive (4.1.13). Without this correction (4.1.12) would contain the
additional term

1
2

iK2E1 pA
@

pL0 ` ν0ΛqB2
k wpk0q, m

D

L2pRq3 .

But this term vanishes since pL0 ` ν0Λq is self-adjoint. We will nevertheless need the correction term
to remove the residual to order ε2 completely and not only on the subspace spantmu.
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We now study the residual in the range of the orthogonal projection Qm :“ I ´ Pm. For one
last time we have to extend our ansatz to

pUextpx1, k, tq :“

¨

˚

˝

pEext,1px1, k, tq
pEext,2px1, k, tq
pHext,3px1, k, tq

˛

‹

‚

:“ pA
ˆ

k ´ k0

ε
, ε2t

˙̂

mpx1q ` εKBkwpx1, k0q `
1
2

ε2K2B2
k wpx1, k0q

˙

e´ipν0`pk´k0qν1qt

` 2πε2
´

pA ˚K pA ˚K pA
¯

ˆ

k ´ 3k0

ε
, ε2t

˙

hpx1qe´ip3ν0`pk´3k0qν1qt

` 2πε2
´

pA ˚K
pA ˚K pA

¯

ˆ

k ´ k0

ε
, ε2t

˙

ppx1qe´ipν0`pk´k0qν1qt ` xc.c.,

where the correction term in the last line is formally of order ε2 and the existence of a suitable
p has to be established next.
If we insert this extended ansatz into (4.1.9) and repeat the calculations we get that

yRespUextq “ ε2G pA ´ 2πiε2E1pL0 ` ν0Λqp
´

pA ˚
pA ˚ pA

¯

` xc.c. ` Opε3q.

With (4.1.12) it follows that

G pA “ ´2πiE1

¨

˚

˝

κ
´

pA ˚K
pA ˚K pA

¯

¨

˚

˝

ϵ1m1

ϵ1m2

µ0m3

˛

‹

‚

` ϵ3ν0

´

pA ˚K
pA ˚K pA

¯

¨

˚

˝

3m3
1 ´ m1m2

2

´3m3
2 ` m2

1m2

0

˛

‹

‚

˛

‹

‚

.

Therefore, the terms of order ε2 in yRespUextq vanish if p solves

pL0 ` ν0Λqp “ ´κ

¨

˚

˝

ϵ1m1

ϵ1m2

µ0m3

˛

‹

‚

´ ϵ3ν0

¨

˚

˝

3m3
1 ´ m1m2

2

´3m3
2 ` m2

1m2

0

˛

‹

‚

. (4.1.14)

To show that such a function p exists, we use case i) of Lemma 3.3.7 for pk, ωq “ pk0, ν0q.
Under Assumptions (A1) – (A6) we get that the right-hand side in (4.1.14) is in L2pRq3 and
it only remains to show, that the right-hand side is orthogonal to m:

C

´κ

¨

˚

˝

ϵ1m1

ϵ1m2

µ0m3

˛

‹

‚

´ ϵ3ν0

¨

˚

˝

3m3
1 ´ m1m2

2

´3m3
2 ` m2

1m2

0

˛

‹

‚

,

¨

˚

˝

m1

m2

m3

˛

‹

‚

G

L2pRq3

“ ´κ

ż 8

´8

`

ϵ1
`

m2
1 ´ m2

2
˘

` µ0m2
3
˘

dx1 ´ ν0

ż 8

´8

ϵ3

´

3m4
1 ´ 2m2

1m2
2 ` 3m4

2

¯

dx1 “ 0,

where we used Remark 3.2.6, the normalization of m and the definition of κ.
Therefore, such a function p exists and yRespUextq is formally of order ε3.
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Remark 4.1.4
Note that it is possible to add additional correction terms to get an even smaller residual. We will
nevertheless restrict ourselves to this order for the residual since it is already small enough to result
in a meaningful approximation result.

4.1.2. Interface Properties of the Extended Ansatz

In this section we study the residual of the interface conditions

yResIFCpUextq :“

¨

˚

˚

˚

˝

r
pD1 pUext,Eq

z

2Dr
pUext,2

z

2Dr
pUext,3

z

2D

˛

‹

‹

‹

‚

,

with Uext,E :“ pEext,1, Eext,2, 0qJ.
From Section 3.1 we know that Jϵ1w1pkqK1D “ Jw2pkqK1D “ Jw3pkqK1D “ 0 for all k P R. We
can therefore differentiate the jump-conditions in k and get for j P t0, 1, 2u

r
ϵ1B

j
kw1pkq

z

1D
“

r
B

j
kw2pkq

z

1D
“

r
B

j
kw3pkq

z

1D
“ 0

and hence

Jϵ1m1K1D ` εKJϵ1Bkw1pk0qK1D `
1
2

ε2K2 q
ϵ1B2

k w1pk0q
y

1D “ 0,

Jm2K1D ` εKJBkw2pk0qK1D `
1
2

ε2K2 q
B2

k w2pk0q
y

1D “ 0,

Jm3K1D ` εKJBkw3pk0qK1D `
1
2

ε2K2 q
B2

k w3pk0q
y

1D “ 0.

With this it is easy to see that yResIFC has no terms of order ε0 and ε1. To order ε2 we get for
the first component of yResIFC

´ 2πiν0E1

´

pA ˚K
pA ˚K pA

¯

pK, Tq
`

Jϵ1 p1K1D `
q

ϵ3
`

3m3
1 ´ m1m2

2
˘y

1D

˘

´ 2πiν0E3

´

pA ˚K pA ˚K pA
¯

prK, Tq
`

Jϵ1h1K1D `
q

ϵ3
`

m3
1 ` m1m2

2
˘y

1D

˘

` xc.c.

To see that these terms vanish, we use that h and p solve (4.1.11) and (4.1.14), respectively,
and that we can use Lemma 3.3.11 to improve the regularity of h1, p1 on both sides of the
interface, see Lemma 4.2.6. For m, h, p P H3pRq3 we can then use the Sobolev embedding
H1pR˘q ãÑ CpR˘q, which gives us that

Jϵ1 p1K1D “ ´
q

ϵ3
`

3m3
1 ´ m1m2

2
˘y

1D ,

Jϵ1h1K1D “ ´
q

ϵ3
`

m3
1 ` m1m2

2
˘y

1D .
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4.2. Estimation of the Residual and its Derivatives Chapter 4

For the other two components we get

yResIFC,2 “ 2πε2E1

´

pA ˚K
pA ˚K pA

¯

pK, TqJp2K1D

` 2πε2E3

´

pA ˚K pA ˚K pA
¯

prK, TqJh2K1D ` xc.c.,

yResIFC,3 “ 2πε2E1

´

pA ˚K
pA ˚K pA

¯

pK, TqJp3K1D

` 2πε2E3

´

pA ˚K pA ˚K pA
¯

prK, TqJh3K1D ` xc.c.

and yResIFC,2, yResIFC,3 vanish since h P D pLp3k0q ` 3ν0Λq and p P D pLpk0q ` ν0Λq imply that

Jp2K1D “ Jp3K1D “ Jh2K1D “ Jh3K1D “ 0.

Remark 4.1.5
Note that for our extended ansatz the Fourier transform of ResdivpUext,Eq :“ ∇ ¨ DpUext,Eq is given
by

Bx1
pD1pUext,Eq ` ik pD2pUext,Eq “ pBx1pϵ1m1q ` ik0ϵ1m2q pAE1

` εKpBx1pϵ1Bkwpk0qq ` ik0ϵ1Bkwpk0q ` iϵ1m2q pAE1 ` xc.c. ` Opε2q.

Similar to (3.1.9) we get that Bx1pϵ1w1pkqq ` ikϵ1w2 “ 0, for solutions w of (3.2.2). A Taylor
expansion of this expression in k at k0 gives us

Bx1pϵ1m1q ` ik0ϵ1m2 ` εKpBx1pϵ1Bkwpk0qq ` ik0ϵ1Bkwpk0q ` iϵ1m2q ` Opε2q “ 0.

A comparison of powers of ε shows us that yResdivpUext,Eq is formally of order ε2.
Note that ResdivpUext,Eq and ResIFCpUextq are not part of our error estimates in Chapter 6 and don’t
have to be small for our approximation result.

All in all, we have seen that pUextpx1, k, tq is formally a “good” approximation for a solution
of (4.1.5), i.e. formally only terms of order ε3 and higher remain in yRespUextq. Now we have
to rigorously estimate the residual in a suitable norm.

4.2. Estimation of the Residual and its Derivatives

In this section we estimate the residual RespUextq and its time-derivatives in the H3pR2q3-
norm rigorously under the assumption that A solves (4.1.13) and is regular enough.

We go back to space-variables and by applying the inverse Fourier transformation we obtain

Res :“ RespUextq “

¨

˚

˝

BtD1pUext,Eq ´ Bx2Uext,3

BtD2pUext,Eq ` Bx1Uext,3

´Bx2Uext,1 ` Bx1Uext,2 ` µ0BtUext,3

˛

‹

‚
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and
Uextpx1, x2, tq “ εApX2, Tqmpx1qeipk0x2´ν0tq

´ ε2iBX2 ApX2, TqBkwpx1, k0qeipk0x2´ν0tq

´ ε3 1
2

B2
X2

ApX2, TqB2
k wpx1, k0qeipk0x2´ν0tq

` ε3|ApX2, Tq|2ApX2, Tqppx1qeipk0x2´ν0tq

` ε3A3pX2, Tqhpx1qe3ipk0x2´ν0tq ` c.c.,

(4.2.1)

recalling that X2 “ εpx2 ´ ν1tq and T “ ε2t.
For our error analysis in Chapter 6 we need that Res and its temporal derivatives up to order
3 are bounded in the H3pR2q3-norm by Cε7{2 for a time interval of length Opε´2q, i.e. on the
interval

“

0, T0ε´2
‰

for some T0 ą 0.

Remark 4.2.1
Before we start the estimates, let us note some changes in the powers of ε due to transformations.
First, note that due to the ε-dependency of X2 and K the inverse Fourier transformation comes with
an additional factor ε, compare (4.1.3). In Section 4.1 we showed that yRespUextq is formally of order
ε3 after Fourier transformation we now have that RespUextq is formally of order ε4.
Second, we lose half an order of ε when we take the L2-norm of a function that depends on εpx2 ´ ν1tq,
e.g.

∥Apεp¨ ´ ν1tq, Tq∥L2pRq “

ˆ
ż

R

|Apεpx2 ´ ν1tq, Tq|2 dx2

˙1{2

“

ˆ

ε´1
ż

R

|ApX2, Tq|2 dX2

˙1{2

“ ε´1{2 ∥Ap¨, Tq∥L2pRq .

(4.2.2)

4.2.1. Estimation of the Residual

Our goal is now to write down Res explicitly and to estimate all the occurring terms. To
shorten the notation, we take as before F1 “ eipk0x2´ν0tq and suppress the dependency on
x1, x2, t. The derivatives of Uext are then given by

Bx1Uext “ F1

ˆ

εABx1 m ´ ε2iBX2 ABx1Bkwpk0q ´ ε3 1
2

B2
X2

ABx1B2
k wpk0q

˙

` F1
`

ε3|A|2ABx1 p ` F2
1 ε3A3Bx1 h

˘

` c.c.,

Bx2Uext “ ik0F1

ˆ

εAm ´ ε2iBX2 ABkwpk0q ´ ε3 1
2

B2
X2

AB2
k wpk0q ` ε3|A|2Ap ` 3F2

1 ε3A3Bx1 h
˙

` F1

ˆ

ε2BX2 Am ´ ε3iB2
X2

ABkwpk0q ´ ε4 1
2

B3
X2

AB2
k wpk0q

˙

` F1

´

ε4 `2|A|2BX2 A ` A2BX2 A
˘

p ` 3F2
1 ε4A2BX2 Ah

¯

` c.c.
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and

BtUext “ ´ iν0F1

ˆ

εAm ´ ε2iBX2 ABkwpk0q ´ ε3 1
2

B2
X2

AB2
k wpk0q ` ε3|A|2Ap ` 3F2

1 ε3A3Bx1 h
˙

` F1

´

´ε2ν1BX2 Am ` ε3iν1B2
X2

ABkwpk0q ` ε4 ν1

2
B3

X2
AB2

k wpk0q

¯

` F1

´

´ε4ν1
`

2|A|2BX2 A ` A2BX2 A
˘

p ´ 3F2
1 ε4ν1A2BX2 Ah

¯

` F1

ˆ

ε3BT Am ´ ε4iBTBX2 ABkwpk0q ´ ε5 1
2

BTB2
X2

AB2
k wpk0q

˙

` F1
`

ε5 `2|A|2BT A ` A2BT A
˘

p ` 3F2
1 ε5A2BT Ah

˘

` c.c.

Remark 4.2.2
Note that derivatives in t and x2 generate higher-order terms since T “ ε2t and X2 “ εpx2 ´ ν1tq
depend on ε. A derivative in x1 does not change the order in ε. For higher-order derivatives of Uext

the analogous statement holds true.

With the calculations of Chapter 4.1 we know that Res only contains terms of order ε4 and
higher. In particular, we note that therefore the derivatives Bx1Uext,2 and Bx1Uext,3 no longer
appear in the residual.
The parts of Res1 and Res2 that are linear in Uext are given by

Reslin,1 “ F1ε4
ˆ

1
2

B3
X2

AB2
k w3pk0q ´

`

2|A|2BX2 A ` A2BX2 A
˘

p3

˙

´ 3F3
1 ε4A2BX2 Ah3

` F1ε4ϵ1

´ν1

2
B3

X2
AB2

k w1pk0q ´ iBTBX2 ABkw1pk0q ´ ν1
`

2|A|2BX2 A ` A2BX2 A
˘

p1

¯

´ 3F3
1 ε4ϵ1ν1A2BX2 Ah1

` F1ε5ϵ1

ˆ

´
1
2

BTB2
X2

AB2
k w1pk0q `

`

2|A|2BT A ` A2BT A
˘

p1

˙

` 3F3
1 ε5ϵ1A2BT Ah1 ` c.c.,

Reslin,2 “ F1ε4ϵ1

´ν1

2
B3

X2
AB2

k w2pk0q ´ iBTBX2 ABkw2pk0q ´ ν1
`

2|A|2BX2 A ` A2BX2 A
˘

p2

¯

´ 3F3
1 ε4ϵ1ν1A2BX2 Ah2

` F1ε5ϵ1

ˆ

´
1
2

BTB2
X2

AB2
k w2pk0q `

`

2|A|2BT A ` A2BT A
˘

p2

˙

` 3F3
1 ε5ϵ1A2BT Ah2 ` c.c.
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For the part of Res1 that is nonlinear in Uext we get

Resnl,1 “ ´ε4ϵ3

”

3ν1F3
1 A2BX2 A

`

m3
1 ` m1m2

2
˘

` ν0F3
1 A2BX2 A

`

3m2
1Bkw1pk0q ` m2

2Bkw1pk0q ` 2m1m2Bkw2pk0q
˘

` ν1F1A2BX2 A
`

3|m1|2m1 ` 2m1|m2|2 ` m1m2
2
˘

` ν0F1A2BX2 A
`

3m2
1Bkw1pk0q ` m2

2Bkw1pk0q ` 2m1m2Bkw2pk0q
˘

` 2ν1F1|A|2BX2 A
`

3|m1|2m1 ` 2m1|m2|2 ` m1m2
2
˘

` 2ν0F1|A|2BX2 A
`

3|m1|2Bkw1pk0q ` |m2|2Bkw1pk0q ` m1m2Bkw2pk0q ` m1m2Bkw2pk0q
˘

ı

` c.c. ` Opε5q,

and for Resnl,2 we have to change the indices of the components of m and Bkwpk0q. The third
component of the residual is given by

Res3 “ F1ε4
ˆ

1
2

B3
X2

AB2
k w1pk0q ´

`

2|A|2BX2 A ` A2BX2 A
˘

p1

˙

´ 3F3
1 ε4BX2 AA2h1

` F1ε4µ0

´ν1

2
B3

X2
AB2

k w3pk0q ´ iBTBX2 ABkw3pk0q ´ ν1
`

2|A|2BX2 A ` A2BX2 A
˘

p3

¯

´ 3F3
1 ε4µ0ν1A2BX2 Ah3

` F1ε5µ0

ˆ

´
1
2

BTB2
X2

AB2
k w3pk0q `

`

2|A|2BT A ` A2BT A
˘

p3

˙

` 3F3
1 ε5µ0A2BT Ah3 ` c.c.

For the estimate of ∥Resp¨, tq∥L2pR2q3 we will discuss the terms of order ε4 in detail and will
sketch the idea for higher-order terms.
At first, we list the different types of terms that appear and how to handle them:

• Constants like µ0, ν1, ν2 are trivial.

• The exponential function F1 satisfies |F1| “ 1.

• The material functions ϵ1, ϵ3 are bounded since ϵ˘
1 , ϵ˘

3 P C3pR˘q X W3,8pR˘q by
Assumptions (A1) and (A6).

• The envelope has to be smooth enough such that
∥∥∥B

j1
X2

B
j2
T Ap¨, Tq

∥∥∥
L2pRq

ď C for all

appearing j1, j2 P N0. To be precise, we will need

A P

1
č

k“0

C1´k
´

r0, T0s, H2`kpRq

¯

, (4.2.3)

for some T0 ą 0 since the highest order derivatives that can appear are B3
X2

A and
B2

X2
BT A. For the nonlinear terms in A we notice that one factor with three derivatives

can at most appear once and all other factors contain at most two derivatives, we can
therefore always use the Sobolev embedding H1pRq ãÑ L8pRq to bound the lower
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order terms. Some examples for estimates of such products are (suppressing the time
dependence)

∥∥|A|2BX2 A
∥∥

L2pRq
ď ∥A∥2

L8pRq ∥BX2 A∥L2pRq
ď C ∥A∥3

H1pRq ,∥∥|BX2 A|2B2
X2

A
∥∥

L2pRq
ď ∥BX2 A∥2

L8pRq

∥∥B2
X2

A
∥∥

L2pRq
ď C ∥A∥3

H2pRq ,∥∥|B2
X2

A|2BTB2
X2

A
∥∥

L2pRq
ď

∥∥B2
X2

A
∥∥2

L8pRq

∥∥BTB2
X2

A
∥∥

L2pRq
ď C ∥A∥2

H3pRq ∥BT A∥H2pRq .

• The x1-dependent functions have to satisfy

m, Bkwp¨, k0q, B2
k wp¨, k0q, h, p P L2pRq3 X L8pRq3. (4.2.4)

As stated before, there are no x1-derivatives left in Res, therefore pL2pRq3 X L8pRq3q-
functions are enough to estimate all appearing linear and nonlinear terms, e.g. the first
term in Resnl,1 can be estimated by

∥∥m3
1 ` m1m2

2
∥∥

L2pRq
ď

´

∥m1∥2
L8pRq ` ∥m2∥2

L8pRq

¯

∥m1∥L2pRq ď C. (4.2.5)

Note that due to the form of the nonlinearity, the third components of these vector
functions never appear in a nonlinear term and it would be enough when these com-
ponents are only in L2pRq.

• We will use that the terms in Res allow for a separation of variables. Terms of the form
gpxq :“ εb f1px1q f2pεx2q f3px2q with b ě 4, f1, f2 P L2pRq and f3 P L8pRq can then be
estimated by

∥g∥L2pR2q
ď εb´ 1

2 ∥ f1∥L2pRq ∥ f2∥L2pRq ∥ f3∥L8pRq
.

Now let us estimate the terms of order ε4 of Res3:

∥Res3p¨, tq∥L2pR2q

ď Cε7{2
”∥∥B3

X2
Ap¨, Tq

∥∥
L2pRq

´∥∥B2
k w1p¨, k0q

∥∥
L2pRq

`
∥∥B2

k w3p¨, k0q
∥∥

L2pRq

¯

` ∥BTBX2 Ap¨, Tq∥L2pRq ∥Bkw3p¨, k0q∥L2pRq

`

´∥∥|Ap¨, Tq|2BX2 Ap¨, Tq
∥∥

L2pRq
`
∥∥A2p¨, TqBX2 Ap¨, Tq

∥∥
L2pRq

¯´

∥p1∥L2pRq
` ∥p3∥L2pRq

¯

`
∥∥A2p¨, TqBX2 Ap¨, Tq

∥∥
L2pRq

´

∥h1∥L2pRq ` ∥h3∥L2pRq

¯ı

ď Cε7{2
”∥∥B3

X2
Ap¨, Tq

∥∥
L2pRq

` ∥BTBX2 Ap¨, Tq∥L2pRq
`
∥∥|Ap¨, Tq|2BX2 Ap¨, Tq

∥∥
L2pRq

`
∥∥A2p¨, TqBX2 Ap¨, Tq

∥∥
L2pRq

`
∥∥A2p¨, TqBX2 Ap¨, Tq

∥∥
L2pRq

ı

ď Cε7{2.

Note that we used (4.2.2) and that the loss of half a derivative is due to the transformation of
variables and does not change for products of X2-dependent functions. To estimate the other
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components of Res we additionally use estimates like (4.2.5) and proceed analogously.
Terms of at least order ε5 can also be estimated with the same techniques. The regularity
assumptions in (4.2.3) and (4.2.4) are enough to cover all derivatives and nonlinearities that
can appear. For instance the appearing quartic terms in A can be estimated like the cubic
terms above by using H1pRq ãÑ L8pRq.
All in all, we conclude that

∥RespUextqp¨, ¨, tq∥L2pR2q3 ď Cε
7
2 , t P

“

0, T0ε´2‰ , (4.2.6)

under condition (4.2.3) and (4.2.4), where the constant C depends on the norms of A, m,
Bkwp¨, k0q, B2

k wp¨, k0q, h and p.

4.2.2. Estimation of the Derivatives of the Residual

Let us now estimate all the derivatives of Res up to order 3. This can be done similarly to
the estimates of Section 4.2.1.

Let T0 ą 0. We have to estimate
∥∥BβResp¨, tq

∥∥
L2pR2q3 for t P

“

0, T0ε´2
‰

with β P N3
0, |β| ď 3.

Remark 4.2.3
We use the multi-index notation for derivatives. For α “ pα1, α2, αtq

J P N3
0 we simply write Bα

instead of B
α1
x1 B

α2
x2 B

αt
t . We also use the typical conventions |α| :“

ř

j αj and for α, β P N3
0 we say

α ď β if αj ď β j for all j.

For the next step we have to discuss the necessary regularity. To estimate the derivatives
up to order three, we have to increase the regularity assumptions of (4.2.3) and (4.2.4) by 3
orders:

• Res contains the derivatives B
α1
T B

α2
X2

A with α1 ď 1 and α1 ` α2 ď 3. It follows that BβRes
contains B

γ1
T B

γ2
X2

A with γ1 ď 4 and γ1 ` γ2 ď 6. Hence, we need the stricter condition

A P

4
č

k“0

C4´k
´

r0, T0s, H2`kpRq

¯

. (4.2.7)

• Res contains no derivatives of m, Bkwpk0q, B2
k wpk0q, p, h.

Therefore, we now have the condition

m, Bkwpk0q, B2
k wpk0q, h, p P H3pRq3. (4.2.8)

Note that we needed L8pRq-regularity in (4.2.4) to estimate the nonlinear terms. But
since H3pR˘q are Banach algebras, no additional condition is necessary in (4.2.8).

• We also need to estimate up to three derivatives of the material functions ϵ1, ϵ3. Here
we can again use that ϵ˘

1 , ϵ˘
3 P C3pR˘q X W3,8pR˘q by Assumptions (A1) and (A6).
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Now we can proceed as in Section 4.2.1 to infer the following lemma.

Lemma 4.2.4 (Estimation of the Residual)
Let T0 ą 0, m, Bkwpk0q, B2

k wpk0q, h, p P H3pRq3 and A P
Ş4

k“0 C4´k
`

r0, T0s, H2`kpRq
˘

. Then∥∥∥BβResp¨, tq
∥∥∥

L2pR2q3
ď Cε7{2 (4.2.9)

for all t P
“

0, T0ε´2
‰

and β P N3
0 with |β| ď 3. The constant C depends on the norms of A, m,

Bkwp¨, k0q, B2
k wp¨, k0q, h and p.

Remark 4.2.5
As mentioned before, by extending the ansatz even further to remove terms of order ε4 and higher
and under stronger regularity assumptions, it is possible to make the residual even smaller. It should
therefore be possible to show

∥∥BβResp¨, tq
∥∥

L2pR2q3 ď Cετ with an improved exponent τ ą 7
2 .

The regularity assumptions of Lemma 4.2.4 can easily be satisfied. For the regularity of
the envelope A we only need sufficiently smooth initial data to apply Theorem 2.4.1 with
m “ 10.
For the regularity of the x1-dependent functions we will apply Lemma 3.3.11 for different
right-hand sides.

Lemma 4.2.6 (Higher Regularity of Uext in the x1-Variable)
Let m, Bkwpk0q, B2

k wpk0q, h, p P L2pRq3 be defined as before. Assume that ϵ1, ϵ3 P W3,8pRq.
Then m, Bkwpk0q, B2

k wpk0q, p, h P H3pRq3.

PROOF: We start the proof with the analysis of m. Since pLpk0q ` ν0Λqm “ 0, we can apply
Lemma 3.3.11 with f “ 0 to see that m P H3pRq3.
Next, by differentiating pLpkq ` ωΛqw “ 0 in k, we see that Bkwpk0q and B2

k wpk0q solve

pLpk0q ` ν0ΛqBkwpk0q “ ´pBkLpk0q ` Bkωpk0qΛqm,

pLpk0q ` ν0ΛqB2
k wpk0q “ ´2pBkLpk0q ` Bkωpk0qΛqBkwpk0q ´

`

B2
k Lpk0q ` B2

k ωpk0qΛ
˘

m.

Since m P H3pRq3, the functions

pBkLpk0q ` Bkωpk0qΛqm “

¨

˚

˝

ϵ1ν1m1 ` m3

ϵ1ν1m2

m1 ` µ0ν1m3

˛

‹

‚

,
`

B2
k Lpk0q ` B2

k ωpk0qΛ
˘

m “

¨

˚

˝

ϵ1ν2m1

ϵ1ν2m2

µ0ν2m3

˛

‹

‚

belong to H3pRq3. Therefore, the assumptions of Lemma 3.3.11 are satisfied and we infer
that Bkwpk0q P H3pRq3. This fact implies that

pBkLpk0q ` Bkωpk0qΛqBkwpk0q P H3pRq3

and consequently B2
k wpk0q P H3pRq3 by Lemma 3.3.11.
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To treat p and h, we note that the right-hand sides in

pLpk0q ` ν0Λqp “ ´κ

¨

˚

˝

ϵ1m1

ϵ1m2

µ0m3

˛

‹

‚

´ ϵ3ν0

¨

˚

˝

3m3
1 ´ m1m2

2

´3m3
2 ` m2

1m2

0

˛

‹

‚

and

pLp3k0q ` 3ν0Λqh “ ´3ν0ϵ3

¨

˚

˝

m3
1 ` m1m2

2

m3
2 ` m2m2

1

0

˛

‹

‚

are also contained in H3pRq3 since m P H3pRq3. Hence, the statement follows as before.

Let us finish this section by studying the regularity of Uext under the regularity assumptions
of Lemma 4.2.4 and state some useful estimates.

Remark 4.2.7
By the structure of Uext it follows under the Assumptions (4.2.7) and (4.2.8) that

Uext P

4
č

k“0

C4´k
´

r0, T0ε´2s,Hmint3,kupR2q

¯3
.

Indeed, the space regularity is given by mint3, ku since Uext contains B2
X2

A and is therefore the sum
of products of functions in pX2, tq that are at least in

Ş4
k“0 C4´k

`

r0, T0s, HkpRq
˘

and functions in
x1 that are in H3pRq. Due to the simpler structure, Uans even satisfies

Uans P

4
č

k“0

C4´k
´

“

0, T0ε´2‰ ,Hmint3,k`2upR2q

¯3
. (4.2.10)

In Section 6.2 it will be necessary to estimate BαUext and BtB
αUext for α “ pα1, α2, αtq

J P N3
0 with

|α| ď 3.
To get such estimates we use (4.2.7) and (4.2.8). In addition, we note that the structure of Uext

allows us to use the Sobolev embedding H1pRq ãÑ L8pRq in both space dimensions separately, thus
avoiding the less favorable embedding H2pR2q ãÑ L8pR2q.
Let us now start with estimates for BαUext. For |α| ď 3 and α1 ď 2 we get with the just mentioned
Sobolev embedding

∥BαUext∥L8pR2ˆp0,T0ε´2qq
3 ď Cε. (4.2.11)

Note the factor ε since all terms in Uext are at lest of order ε.
For α1 “ 3 we can use the Sobolev embedding only in the x2-dimension and get

∥∥B3
x1

Uextp¨, tq
∥∥2

L2pR2q3 ď

ż

R

sup
x2PR

|B3
x1

Uextpx1, x2, tq|2 dx1 ď Cε2, @ t P
`

0, T0ε´2˘ . (4.2.12)
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To estimate BαBtUext, we start with |α| ď 3, α1 P t1, 2u, where we can apply the Sobolev embedding
in both space dimensions and get

∥BαBtUext∥L8pR2ˆp0,T0ε´2qq
3 ď Cε. (4.2.13)

For α1 “ 3 we get

∥∥B3
x1

BtUextp¨, tq
∥∥2

L2pR2q3 ď

ż

R

sup
x2PR

|B3
x1

BtUextpx1, x2, tq|2 dx1 ď Cε2. (4.2.14)

Finally, for |α| “ 3, α1 “ 0 we cannot simply use an estimate analogous to (4.2.12) by switching
the roles of x1 and x2, since integrals in x2 would lose half an order of ε, compare (4.1.3), which
is not enough for our estimates in Section 6.2. But we can use the structure of Uext and write
BαBtUext “ A ` B with

Apx1, x2, tq :“ εApX2, Tqmpx1qBαBt

´

eipk0x2´ν0tq
¯

,

Bpx1, x2, tq :“ BαBtUextpx1, x2, tq ´ Apx1, x2, tq.

Now the terms in B are at least of order ε2 and we can compensate the loss of half an order of ε. We
get

∥A∥L8pR2ˆp0,T0ε´2qq
3 ď Cε,

ż

R

sup
x1PR

|Bpx1, x2, tq|2 dx2 ď Cε2. (4.2.15)

Note that it is possible to improve the regularity of Uext by selecting more regular functions Ap0q,
ϵ1, ϵ3 in our construction of Uext. With a sufficiently regular Uext we could always use the Sobolev
embedding and estimate ∥∥∥BαBk

t Uext

∥∥∥
L8pR2ˆp0,T0ε´2qq

3 ď Cε,

for some k P N0 and α P N3
0.

To summarize the chapter, we have constructed a formal approximative solution Uext of
Maxwell’s equations such that estimate (4.2.9) holds true for the residual RespUextq. This
estimate and the estimates for Uext itself will play an essential role in our rigorous analysis
of the approximation properties in Chapter 6.
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5. Local Existence for Hyperbolic Systems

In this chapter we will rewrite the Maxwell problem as a hyperbolic system with the goal
of applying the local existence results and a priori estimates for linear and nonlinear hyper-
bolic systems from [67]. Only some slight adaptions for our setting are necessary, we will
therefore mostly refer to [67] and the accompanying results in [75, 76, 77] for the proofs.
These results will be the central tools for the error analysis in Chapter 6.

Remark 5.0.1
There are the following differences in [67] compared to our setting.
First, slightly more regular coefficients are used in [67] to shorten some of the computations. But the
adaption to our setting is straightforward, see Remark 5.1.3.
Second, since we are working with TM-modes and x3-independent functions, our hyperbolic system
contains only three equations dependent on x1, x2, t. This is in some sense easier than the case covered
in [67] where the full Maxwell problem with six equations is studied. Note that due to the reduction
from a problem on R3 ˆ r0, T1s to a problem on R2 ˆ r0, T1s one has to check the arguments that are
dependent on the dimension. Studying the proofs in [67] reveals that one has to check if the Sobolev
embeddings and Banach algebra property still hold for Wm,ppΩq, with Ω Ă R2 instead of Ω Ă R3.
This is obviously the case since mp ą 3 implies mp ą 2.
Third, in [67] more general domains are studied and a lengthy localization argument is used to trans-
form the problem to a half-space setting. For our problem a simple reflection is enough to transform
the interface problem with two half-spaces to a boundary problem on one half-space, see Remark 5.1.5.

Throughout this chapter let T1 ą 0 and J :“ p0, T1q. In contrast to [67], we will work in the
space domain R2, which will be separated by the interface Γ2 “

␣

x P R2
ˇ

ˇ x1 “ 0
(

into the
two half-spaces R2

` “ R` ˆ R and R2
´ “ R´ ˆ R and for a function f : R2 Ñ R we will

denote the restrictions to R2
` and R2

´ by f ` and f ´, respectively.
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5.1. Linear Hyperbolic Systems Chapter 5

5.1. Linear Hyperbolic Systems

We start with a linear symmetric hyperbolic system for u : R2 ˆ J Ñ R3,

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

A˘
t px, tqBtu˘ `

2
ÿ

j“1

AjBxj u
˘ ` M˘px, tqu˘ “ f ˘, x P R2

˘, t P J,

BΓ

˜

u`

u´

¸

“ 0, x P Γ2, t P J,

u˘p¨, 0q “ up0q,˘, x P R2
˘,

(5.1.1)

where At : R2 ˆ J Ñ R3ˆ3, At is symmetric for all px, tq,

A1 :“

¨

˚

˝

0 0 0
0 0 1
0 1 0

˛

‹

‚

, A2 :“

¨

˚

˝

0 0 ´1
0 0 0

´1 0 0

˛

‹

‚

,

M : R2 ˆ J Ñ R3ˆ3 and

BΓ :“

˜

0 1 0 0 ´1 0
0 0 1 0 0 ´1

¸

.

Clearly, BΓpu`, u´qJ encodes the interface conditions Ju2K2D “ Ju3K2D “ 0 and
ř2

j“1 AjBxj u
˘

contains the spatial derivatives we have seen in (4.0.2). Note that we are not going to use
(5.1.1) in order to study the linear part of (4.0.2), but rather to study a fixed-point problem
in the bootstrapping argument for the nonlinear system in Section 6.2. Hence, we need the
inhomogeneous term f , the linear term MU and a matrix At different from Λ in (5.1.1). The
concrete At, M and f that connect (5.1.1) with Maxwell’s equations (4.0.2) will be discussed
in Section 6.2.
Note that the coefficients and functions in (5.1.1) are in general discontinuous in x1 “ 0.

Definition 5.1.1 (Weak Solution of the Linear Hyperbolic Problem)
Under a weak solution of (5.1.1) we understand a function u P C

`

J, L2pR2q
˘3 that satisfies

ż

J

ż

R2
f ¨ φdx dt “ ´

ż

J

ż

R2

´

u ¨ BtpAtφq ` u ¨ Bx1pA1φq ` u ¨ Bx2pA2φq ´ u ¨ MJφ
¯

dx dt

for all test functions

φ P

!

ψ
ˇ

ˇ

ˇ
ψ` P H1

0
`

R2
` ˆ J

˘3
, ψ´ P H1

0
`

R2
´ ˆ J

˘3
)

,

TrΓ
`

BΓpu`, u´qJ
˘

“ 0 and up¨, 0q “ up0q.

For u P C
`

J, L2pR2q
˘3 it is not immediately clear how and if TrΓ

`

BΓpu`, u´qJ
˘

is well-
defined, but the special structure of the matrices A1 and BΓ allow us to define this trace.
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We will present an in-depth discussion in Section 5.4. Note that we will often omit writing
the trace operator and implicitly assume all jump conditions in the sense of traces.
More regularity will be necessary for the existence results of this chapter. We therefore de-
fine the space

GmpR2 ˆ Jq3 :“
m
č

j“0

Cj
´

J,Hm´jpR2q

¯3

with m P N0 and the norm

∥u∥GmpR2ˆJq3 :“ max
0ďjďm

∥∥∥B
j
tu
∥∥∥

L8pJ,Hm´jpR2qq
3 .

Remark 5.1.2
The estimates of our final approximation result will be done in the G3-norm, hence we have to control
the norm of all space and temporal derivatives up to order 3.

The main goal of this section is to show that there exists a solution u P GmpR2 ˆ Jq3 of (5.1.1)
and that u satisfies a certain a priori estimate, see Theorem 5.1.9.
But before we can prove Theorem 5.1.9, we first define some additional function spaces. For
any open Ω Ă R2, m, n P N0 we will use

Fm,npΩ ˆ Jq :“
!

A P W1,8pΩ ˆ Jqnˆn
ˇ

ˇ

ˇ
Bα A P L8pJ, Hm´|α|pΩqqnˆn ` Wm´|α|,8pΩ ˆ Jqnˆn

for all α P N3
0 with 1 ď |α| ď m

)

,

∥A∥Fm,npΩˆJq :“ max
"

∥A∥W1,8pΩˆJqnˆn , max
1ď|α|ďm

∥Bα A∥L8pJ,Hm´|α|pΩqqnˆn`Wm´|α|,8pΩˆJqnˆn

*

,

Fm,npR2 ˆ Jq :“
!

A P W1,8pR2 ˆ Jqnˆn
ˇ

ˇ

ˇ
A´ P Fm,n `R2

´ ˆ J
˘

, A` P Fm,n `R2
` ˆ J

˘

)

,

∥A∥Fm,npR2ˆJq :“ max
!∥∥A´

∥∥
Fm,npR2

´ˆJq ,
∥∥A`

∥∥
Fm,npR2

`ˆJq

)

,

with the usual definition for the sum of two vector spaces

L8pJ, Hm´|α|pΩqq ` Wm´|α|,8pΩ ˆ Jq

:“
!

A : Ω ˆ J Ñ R

ˇ

ˇ

ˇ
A “ rB ` rC, rB P L8pJ, Hm´|α|pΩqq, rC P Wm´|α|,8pΩ ˆ Jq

)

,

∥A∥L8pJ,Hm´|α|pΩqq`Wm´|α|,8pΩˆJq

:“ inf
!

∥rB∥L8pJ,Hm´|α|pΩqq ` ∥ rC∥Wm´|α|,8pΩˆJq

ˇ

ˇ

ˇ
A “ rB ` rC,

rB P L8pJ, Hm´|α|pΩqq, rC P Wm´|α|,8pΩ ˆ Jq

)

.
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For a fixed time instant we use the spaces

Fm,n
0 pΩq :“

!

A P L8pΩqnˆn
ˇ

ˇ

ˇ
Bα A P Hm´|α|pΩqnˆn ` Wm´|α|,8pΩqnˆn

for all α P N2
0 with 1 ď |α| ď m

)

,

∥A∥Fm,n
0 pΩq :“ max

"

∥A∥L8pΩqnˆn , max
1ď|α|ďm

∥Bα A∥Hm´|α|pΩqnˆn`Wm´|α|,8pΩqnˆn

*

,

Fm,n
0 pR2q :“

␣

A P L8pR2qnˆn ˇ
ˇ A´ P Fm,n

0

`

R2
´

˘

, A` P Fm,n
0

`

R2
`

˘(

,

∥A∥Fm,n
0 pR2q :“ max

!∥∥A´
∥∥

Fm,n
0 pR2

´q
,
∥∥A`

∥∥
Fm,n

0 pR2
`q

)

.

Finally, we will define some subspaces of Fm,n and indicate them by certain subscripts. The
subscript η ą 0 indicates that additionally A is symmetric positive definite with constant η,
the subscript “cp” means that A is constant outside of a compact set, and the subscript “cv”
means that A is convergent for |px, tq| Ñ 8, i.e. for η ą 0 we define

Fm,n
η pR2 ˆ Jq :“

!

A P Fm,npR2 ˆ Jq

ˇ

ˇ

ˇ
A “ AJ, vJAv ě η|v|2 for all v P Rn

)

,

Fm,n
cp pR2 ˆ Jq :“

!

A P Fm,npR2 ˆ Jq

ˇ

ˇ

ˇ
for all A there exists a matrix rA P Rnˆn

and a compact set M Ă R2 ˆ J with Apx, tq “ rA for px, tq R M
)

,

Fm,n
cv pR2 ˆ Jq :“

!

A P Fm,npR2 ˆ Jq

ˇ

ˇ

ˇ
for all A there exists a matrix rA P Rnˆn

with Apx, tq Ñ rA for |px, tq| Ñ 8

)

.

Subspaces with multiple subscripts are possible, e.g.

Fm,n
η,cvpR2 ˆ Jq :“ Fm,n

η pR2 ˆ Jq X Fm,n
cv pR2 ˆ Jq.

We are mainly interested in the case Ω “ R2
˘ and m “ n “ 3.

Remark 5.1.3
Let A P Fm,npΩ ˆ Jq. Note that the part of Bα A in Wm´|α|,8pΩ ˆ Jq can often be estimated more
easily than the part in L8pJ, Hm´|α|pΩqq, e.g. the product of an L8-function and an L2-function
is easier to estimate than the product of two L2-functions. Therefore, the Wm´|α|,8pΩ ˆ Jq-part is
mostly omitted in the proofs of [67] and a different definition for the spaces Fm,n and Fm,n is used,
see Remark 6.1 in [67]. Since such terms appear in our setting, we will not omit them.

The next lemma discusses products between HmpR2q- and Fm,1
0 pR2q-functions.
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Lemma 5.1.4 (Product Estimates)
Let m1, m2 P N0 with m1 ě m2 and m1 ě 2.

i) Let j P t0, . . . , m1u, f P Hm1´jpR2q and g P HjpR2q. Then f g P L2pR2q and

∥ f g∥L2pR2q
ď C ∥ f ∥Hm1´jpR2q ∥g∥HjpR2q

.

ii) Let f P Hm1pR2q and g P Hm2pR2q. Then f g P Hm2pR2q and

∥ f g∥Hm2 pR2q
ď C ∥ f ∥Hm1 pR2q ∥g∥Hm2 pR2q

.

iii) Let f P Fm1,1
0 pR2q and g P Hm2pR2q. Then f g P Hm2pR2q and

∥ f g∥Hm2 pR2q
ď C ∥ f ∥Fm1,1

0 pR2q
∥g∥Hm2 pR2q

.

iv) Let f P Fm1,1pR2 ˆ Jq and g P Gm2pR2 ˆ Jq. Then f g P Gm2pR2 ˆ Jq and

∥ f g∥Gm2 pR2ˆJq
ď C ∥ f ∥Fm1,1pR2ˆJq ∥g∥Gm2 pR2ˆJq

.

v) Let f P Fm2,1pR2 ˆ Jq and g P Gm1pR2 ˆ Jq. Then f g P Gm2pR2 ˆ Jq and

∥ f g∥Gm2 pR2ˆJq
ď C ∥ f ∥Fm2,1pR2ˆJq ∥g∥Gm1 pR2ˆJq

.

vi) Let f P Fm1,1
0 pR2q and g P Fm2,1

0 pR2q. Then f g P Fm2,1
0 pR2q and

∥ f g∥Fm2,1
0 pR2q

ď C ∥ f ∥Fm1,1
0 pR2q

∥g∥Fm2,1
0 pR2q

.

PROOF: The proof is based on the Hölder inequality and Sobolev embeddings. Details for
the three-dimensional case can be found in the proof of Lemma 2.22 in [75].
To prove the assertions above it is sufficient to show the analogous results for each half-
space. W.l.o.g. we will focus on the half-space R2

`. The main tool will be the Sobolev
embeddings H2

`

R2
`

˘

ãÑ Lq
`

R2
`

˘

for 2 ď q ď 8 and H1
`

R2
`

˘

ãÑ Lq
`

R2
`

˘

for 2 ď q ă 8.
i): Let w.l.o.g. m1 ´ j ě j. For j “ 0 we have f P H2

`

R2
`

˘

and hence

∥ f g∥L2pR2
`q ď ∥ f ∥L8pR2

`q ∥g∥L2pR2
`q ď C ∥ f ∥Hm1pR2

`q ∥g∥H0pR2
`q .

For the remaining cases of j we know that f , g are at least H1
`

R2
`

˘

-functions and therefore
we can use the generalized Hölder inequality to show

∥ f g∥L2pR2
`q ď ∥ f ∥L3pR2

`q ∥g∥L6pR2
`q ď C ∥ f ∥Hm1´jpR2

`q ∥g∥Hm2pR2
`q .
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ii): For α P N2
0 with |α| ď m2 we have

Bαp f gq “
ÿ

0ďβďα

ˆ

α

β

˙

Bβ f Bα´βg. (5.1.2)

Here we used the multidimensional Leibniz rule with
`

α
β

˘

:“ α!
β!pα´βq! and α! :“

ś2
j“1 αj! for

α, β P N2
0.

Now for every fixed β we have for j :“ |β| that Bα´βg P Hm2´|α|`j
`

R2
`

˘

Ă H j
`

R2
`

˘

and
Bβ f P Hm1´j

`

R2
`

˘

. Now the statement follows from the repeated application of i).
iii): We again use (5.1.2) for |α| ď m2 and set j :“ |β|. For j “ 0 we have∥∥∥Bβ f Bα´βg

∥∥∥
L2pR2

`q
“ ∥ f Bαg∥L2pR2

`q ď ∥ f ∥L8pR2
`q ∥Bαg∥L2pR2

`q ď C ∥ f ∥Fm1,1
0 pR2q

∥g∥Hm2 pR2q
.

For j ě 1 we have Bβ f “ rB ` rC with rB P Hm1´j
`

R2
`

˘

, rC P Wm1´j,8
`

R2
`

˘

and Bα´βg P

H j
`

R2
`

˘

. The statement follows from the triangle inequality,∥∥∥ rCBα´βg
∥∥∥

L2pR2
`q

ď ∥ rC∥L8pR2
`q

∥∥∥Bα´βg
∥∥∥

L2pR2
`q

ď C ∥ f ∥
Fm1,1

0 pR2
`q

∥g∥Hm2pR2
`q

and the repeated application of i) to estimate
∥∥BBα´βg

∥∥
L2pR2

`q
.

iv) By definition of Fm1,1
`

R2
` ˆ J

˘

and Gm2pR2 ˆ Jq it follows that f , g and all their derivatives
are L8-functions in time. The statement then follows from an application of iii) for all fixed
time points.
v): This follows analogously to iv) since i) is symmetric in f , g.
vi): We again use (5.1.2) and set j :“ |β|. First, we have

∥ f g∥L8pR2
`q ď ∥ f ∥L8pR2

`q ∥g∥L8pR2
`q ď ∥ f ∥

Fm1,1
0 pR2

`q
∥g∥

Fm2,1
0 pR2

`q
.

To estimate ∥Bαp f gq∥Hm´|α|pΩqnˆn`Wm´|α|,8pΩqnˆn we proceed as before and use that for j ě 1
we have Bβ f P Hm1´j

`

R2
`

˘

` Wm1´j,8
`

R2
`

˘

and Bα´βg P Hm2´|α|`j
`

R2
`

˘

` Wm2´|α|`j,8pR2
`q.

The statement follows again from the repeated application of i) and obvious estimates for
the Wm,8pR2

`q-terms.

Let us now describe the transformation of the interface problem (5.1.1) to a boundary value
half-space problem.

Remark 5.1.5
One key step to prove the existence of a solution of (5.1.1) is the transformation of the interface
problem to a boundary value problem on the half-space R2

`. To achieve this, the left part of the
problem will be reflected to the right. This reflection can easily be done in our setting.
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We define the new matrices

Atpx, tq :“

˜

Atpx1, x2, tq 0
0 Atp´x1, x2, tq

¸

, Mpx, tq :“

˜

Mpx1, x2, tq 0
0 Mp´x1, x2, tq

¸

,

A1px, tq :“

˜

A1 0
0 ´A1

¸

, A2px, tq :“

˜

A2 0
0 A2

¸

and new vector functions

vpx, tq :“
`

u`px1, x2, tq, u´p´x1, x2, tq
˘J ,

vp0qpxq :“
´

up0q,`px1, x2q, up0q,´p´x1, x2q

¯J

,

gpx, tq :“
`

f `
px1, x2, tq, f ´

p´x1, x2, tq
˘J

and get an equivalent system to (5.1.1) on R2
`:

$

’

’

’

’

’

&

’

’

’

’

’

%

AtBtv `

2
ÿ

j“1

AjBxj v ` Mv “ g, x P R2
`, t P J,

BΓv “ 0, x P Γ2, t P J,

vp¨, 0q “ vp0q, x P R2
`.

(5.1.3)

Analogously to Definition 5.1.1 we define the weak solution of (5.1.3) as a function
v P C

`

J, L2
`

R2
`

˘˘6 that satisfies

ż

J

ż

R2
`

g ¨ φdx dt “ ´

ż

J

ż

R2
`

´

v ¨ BtpAtφq ` v ¨ Bx1pA1φq ` v ¨ Bx2pA2φq ´ v ¨ MJφ
¯

dx dt

for all test functions φ P H1
0

`

R2
` ˆ J

˘6, TrΓ pBΓvq “ 0 and vp¨, 0q “ vp0q, see Definition 3.1 in [75].
An in-depth discussion of the transformation of a more general interface problem to a half-space
problem can be found in [67].

The existence of a solution of (5.1.3) was proven in [29]. We will state this result for our
setting:

Theorem 5.1.6 (Existence Result in the Half-Space Setting)
Let T1 ą 0 and J “ p0, T1q. Take coefficients At P W1,8

`

R2
` ˆ J

˘6ˆ6 and M P L8
`

R2
` ˆ J

˘6ˆ6.
Assume additionally that At is uniformly positive definite, A1 has the same number of positive and
negative eigenvalues and that there is a matrix CΓ such that

A1 “
1
2

´

CJ
Γ BΓ ` BJ

Γ CΓ

¯

. (5.1.4)

Choose g P L2
`

R2
` ˆ J

˘6, vp0q P L2
`

R2
`

˘6.
Then there is a unique weak solution v P C

`

J, L2
`

R2
`

˘˘6 of (5.1.3).
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PROOF: This result and its proof can be found as Proposition 5.1 in [29] for the general
n-dimensional problem.

We will now check the algebraic conditions on A1 from Theorem 5.1.6 for our setting.

Remark 5.1.7
Take A1 and BΓ as defined above in this chapter. We can easily check that for

CΓ :“

˜

0 0 1 0 0 1
0 1 0 0 1 0

¸

condition (5.1.4) is satisfied. Furthermore, we note that A1 has the eigenvalues λ1,2 “ 0, λ3,4 “ 1
and λ5,6 “ ´1.

Since we are interested in Maxwell’s equation with a nonlinear displacement field, we have
to improve on Theorem 5.1.6 and need solutions of higher regularity.

Remark 5.1.8
The existence result for linear symmetric hyperbolic initial boundary value problems (Theorem 5.1.6)
requires coefficients in W1,8

`

R2
` ˆ J

˘6ˆ6 and yields solutions in C
`

J, L2
`

R2
`

˘˘6. To apply a fixed-
point argument, which delivers an existence result for the nonlinear case, it is necessary that the
solution space can be embedded into W1,8

`

R2
` ˆ J

˘6.
Hence, we have to find m P N for which

C
`

J, Hm `

R2
`

˘˘6
X C1

´

J, Hm´1 `R2
`

˘

¯6
ãÑ W1,8 `

R2
` ˆ J

˘6

holds true. Here we will need the Sobolev embedding HspΩq ãÑ L8pΩq for s ą 1 and sufficiently
well-behaved domains Ω Ă R2. Now we can show that

∥u∥W1,8pR2
`ˆJq “ sup

tPJ
∥up¨, tq∥L8pR2

`q ` sup
tPJ

∥Btup¨, tq∥L8pR2
`q `

2
ÿ

j“1

sup
tPJ

∥∥∥Bxj up¨, tq
∥∥∥

L8pR2
`q

ď C

˜

sup
tPJ

∥up¨, tq∥Hs`1pR2
`q ` sup

tPJ
∥Btup¨, tq∥HspR2

`q

¸

ď C
´

∥u∥CpJ,HmpR2
`qq ` ∥u∥C1pJ,Hm´1pR2

`qq

¯

,

where the first inequality holds for s ą 1 due to the Sobolev embedding and where we set m :“ s ` 1
in the second inequality. We therefore have to work with m ą 2, more details can be found in [75].

Now an adaptation of Theorem 3.1 of [67] gives us the needed higher regularity.
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Theorem 5.1.9 (Linear Existence Result)
Let η, T1, r ą 0, m P t0, 1, 2, 3u and J “ p0, T1q. Take coefficients At P F 3,3

η,cvpR2 ˆ Jq and M P

F 3,3
cv pR2 ˆ Jq with

∥At∥F 3,3pR2ˆJq , ∥Atp¨, 0q∥F 2,3
0 pR2q

, ∥Bt Atp¨, 0q∥H1pR2q3ˆ3 ,
∥∥B2

t Atp¨, 0q
∥∥

L2pR2q3ˆ3 ď r,

∥M∥F 3,3pR2ˆJq , ∥Mp¨, 0q∥F 2,3
0 pR2q

, ∥Bt Mp¨, 0q∥H1pR2q3ˆ3 ,
∥∥B2

t Mp¨, 0q
∥∥

L2pR2q3ˆ3 ď r.

Choose f P HmpR2 ˆ Jq3 and up0q P HmpR2q3 such that the linear compatibility conditions of order
m are satisfied, see Section 5.3.
Then there is a unique weak solution u of (5.1.1) in GmpR2 ˆ Jq3 and a constant Cm “ Cmpr, T1q ě 1
such that

∥u∥2
GmpR2ˆJq3 ď Cm

¨

˝

∥∥∥up0q
∥∥∥2

HmpR2q3
` ∥ f∥2

HmpR2ˆJq3 `

m´1
ÿ

j“0

∥∥∥B
j
t f p¨, 0q

∥∥∥2

Hm´1´jpR2q3

˛

‚, (5.1.5)

where the sum is empty if m “ 0.

PROOF: As mentioned in Remark 5.0.1 we note that Theorem 3.1 of [67] deals with spatial
domains in R3 instead of R2 and the solution vector takes values in R6 instead of R3, but the
proof can be repeated for our setting in an analogous way. Thus, we will only give a sketch
of the proof, where we describe the essential steps.
The proof is divided into six steps. First, the coefficients for the localized half-space problem
are determined. This is much simpler for our setting and is already done in Remark 5.1.5.
In Step II and Step III the compatibility conditions for the localized problem are studied and
the connection to the compatibility conditions for the interface problem is established. This
is again much simpler to do for our setting, see Remark 5.3.3. In Step IV an a priori estimate
and regularity for a solution of (5.1.1) is established. The proof is based on a version of
Theorem 5.1.6 in combination with further results from [75, 67, 77]. Here techniques similar
to our estimates in Section 6.2 are used and the structure of Maxwell’s equations is utilized
to estimate the normal and tangential derivatives in two different ways. Finally, in the last
two steps a fixed-point argument is used to show the existence of a solution u of the interface
problem. Here one goes back from the half-space problem to the interface problem, which
is much simpler in our setting.
Note that the a priori estimates in [67] work in spaces Gm with time-weighted norms. For
bounded time intervals this is obviously equivalent to the norm for Gm we introduced above.

With this existence result we are well-equipped to study the nonlinear problem. But before
we do this in the next section, we will use Theorem 5.1.9 to formulate an approximation
argument that will be used later on in Section 6.2.
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Lemma 5.1.10 (Approximation Result in Linear Hyperbolic Systems)
Let T1 ą 0, J “ p0, T1q, up0q P L2pR2q3, At P F 3,3

η,cvpR2 ˆ Jq, M P F 3,3
cv pR2 ˆ Jq and f P G0pR2 ˆ

Jq3. Take a weak solution u P G0pR2 ˆ Jq3 of (5.1.1) for the data
`

f , up0q
˘

. Then the following
statements are true:

i) There are sequences

´

up0q
n

¯

n
Ă DΓpR2q3 :“

!

φ
ˇ

ˇ

ˇ
φ` P C8

`

R2
`

˘3
, φ´ P C8

`

R2
´

˘3
, suppφ Ă R2 compact

)

and
`

f n
˘

n Ă H1pR2 ˆ Jq3 with up0q
n Ñ up0q in L2pR2q3 and f n Ñ f in L2pR2 ˆ Jq3 for

n Ñ 8 and BΓ

´

up0q,`
n , up0q,´

n

¯J

“ 0.

ii) There exists a sequence punqn Ă G1pR2 ˆ Jq3 such that for all n P N the function un solves
(5.1.1) for the data

´

f n, up0q
n

¯

and un Ñ u in G0pR2 ˆ Jq3 for n Ñ 8.

PROOF: For i) we use the fact that C8
c pΩq and H1pΩq are dense in L2pΩq for any domain

Ω. Therefore, we can choose sequences pwnqn Ă DΓpR2q3 and
`

f n
˘

n Ă H1pR2 ˆ Jq3 with
wn Ñ up0q in L2pR2q3 and f n Ñ f in L2pR2 ˆ Jq3 for n Ñ 8.
To guarantee the interface condition we introduce the characteristic function χMn with

Mn :“ R2z

"

x P R2
ˇ

ˇ

ˇ

ˇ

x1 P

„

´
1
n

,
1
n

ȷ*

.

Now we show that wnχMn Ñ up0q in L2pR2q3. With the definition of χMn and the Minkowski
inequality we get∥∥∥wnχMn ´ up0q

∥∥∥
L2pR2q3

ď

∥∥∥´wn ´ up0q
¯

χMn

∥∥∥
L2pR2q3

`

∥∥∥up0qχMn ´ up0q
∥∥∥

L2pR2q3

ď

∥∥∥wn ´ up0q
∥∥∥

L2pR2q3
`

∥∥∥up0qpχMn ´ 1q

∥∥∥
L2pR2q3

. (5.1.6)

The first term on the right-hand side in (5.1.6) vanishes for n Ñ 8 since wn Ñ up0q in
L2pR2q3. For the second term we use

ˇ

ˇup0qpχMn ´ 1q
ˇ

ˇ ď |up0q| and up0qpχMn ´ 1q Ñ 0 in
L2pR2q3. Hence, Lebesgue’s dominated convergence theorem can be applied and we see
that the second term in (5.1.6) also vanishes for n Ñ 8.
Since Γ2 X Mn “ H, we also get that TrΓpBΓwnχMn q “ 0. Now we mollify wnχMn to produce
functions up0q

n P DΓpR2q3 with the stated properties.
The existence of punqn in assertion ii) is a direct consequence of Theorem 5.1.9. To show the
convergence we use that (5.1.1) is a linear problem, consequently un ´ u is a weak solution
of (5.1.1) for the data

´

f n ´ f , up0q
n ´ up0q

¯

. Estimate (5.1.5) thus yields

∥un ´ u∥G0pR2ˆJq3 ď C
ˆ∥∥∥up0q

n ´ up0q
∥∥∥

L2pR2q3
` ∥ f n ´ f∥L2pR2ˆJq3

˙

.
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The convergence properties of
`

f n
˘

n and
´

up0q
n

¯

n
complete the proof.

5.2. Nonlinear Hyperbolic Systems

The reduced nonlinear Maxwell system (4.0.2), (4.0.3), (4.0.4) is a special case of a nonlinear
hyperbolic problem and can be written as

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

rSpx, U˘qBtu˘ `

2
ÿ

j“1

AjBxjU
˘ “ 0, x P R2

˘, t P J,

BΓ

˜

U`

U´

¸

“ 0, x P Γ2, t P J,

U˘p¨, 0q “ Up0q,˘, x P R2
˘,

(5.2.1)

where for v P R3 we set

rSpx, vq :“ Λpx1q ` ϵ3px1qθpvq,

Λpx1q :“

¨

˚

˝

ϵ1px1q 0 0
0 ϵ1px1q 0
0 0 µ0

˛

‹

‚

, θpvq :“

¨

˚

˝

3v2
1 ` v2

2 2v1v2 0
2v1v2 v2

1 ` 3v2
2 0

0 0 0

˛

‹

‚

.

With this matrix function rS we now have a quasilinear hyperbolic problem and we need
new function spaces for the coefficients, namely

MLm,k `R2, Ω˘

˘

:“
!

S :
`

R2
` ˆ Ω`

˘

Y
`

R2
´ ˆ Ω´

˘

Ñ Rkˆk
ˇ

ˇ

ˇ
S˘ P Cm

´

R2
˘ ˆ Ω˘, Rkˆk

¯

,

sup
px,uqPR2

˘ˆU˘

|BαSpx, uq| ă 8 for all compact sets U˘ Ă Ω˘ and α P N5
0 with |α| ď m

)

,

where Ω˘ Ă R3 are open and S`, S´ are the restrictions of S to R2
` ˆ Ω` and R2

´ ˆ Ω´,
respectively. We will again use the subscripts η and “cv” to denote the additional conditions
that the matrix is symmetric positive definite and convergent, i.e. for η ą 0 we define

MLm,k
η pR2, Ω˘q :“

!

S P MLm,k `R2, Ω˘

˘

ˇ

ˇ

ˇ
S “ SJ, vJSv ě η|v| on R2

˘ ˆ Ω˘ for all v P Rk
)

,

MLm,k
cv pR2, Ω˘q :“

!

S P MLm,k `R2, Ω˘

˘

ˇ

ˇ

ˇ
there exists A P Rkˆk such that for all

pxn, unqn Ă R˘ ˆ Ω˘ with |xn| Ñ 8, un Ñ 0 : lim
nÑ8

Spxn, unq “ A
)

,

and
MLm,k

η,cv
`

R2, Ω˘

˘

:“ MLm,k
η

`

R2, Ω˘

˘

X MLm,k
cv

`

R2, Ω˘

˘

.
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Definition 5.2.1 (Solution of the Nonlinear Hyperbolic Problem)
A solution of (5.2.1) is a function U P G1pR2 ˆ Jq3 X L8pR2 ˆ Jq3 with im U˘ Ă Ω˘ that satisfies

rSpUqBtU `

2
ÿ

j“1

AjBxjU “ 0

for almost all x P R2zΓ2 and for all t P J, TrΓ
`

BΓpU`, U´qJ
˘

“ 0 and Up¨, 0q “ Up0q. Here im U˘

denotes the image of U` and U´, respectively. Note that for U P G1pR2 ˆ Jq we can use the usual
trace for H1-functions, see Section 5.4.

Remark 5.2.2
Note that a solution U of (5.2.1) in G3pR2 ˆ Jq3 is a classical solution of (5.2.1) because of the
Sobolev embeddings H3

`

R2
˘

˘

ãÑ C1
`

R2
˘

˘

.

The following local existence result for (5.2.1) follows from Proposition 6.1 and Theorem 6.1
of [67].

Theorem 5.2.3 (Nonlinear Existence Result)
Let η ą 0, Ω˘ Ă R3 and rS P ML3,3

η,cv
`

R2, Ω˘

˘

. Assume that Up0q P H3pR2q3 satisfies the

nonlinear compatibility conditions of order 3, see Section 5.3, and im Up0q,˘ Ă Ω˘ with

dist
´

im Up0q,˘, BΩ˘

¯

ą κ (5.2.2)

for some κ ą 0.
Then the following statements are true.

i) There exists a unique solution U P G3
`

R2 ˆ p0, tMq
˘3 of (5.2.1), where tM ą 0 is the maximal

existence time.

ii) If tM ă 8, then limtÕtM ∥Up¨, tq∥H3pR2q3 “ 8 or lim inftÕtM dist
´

im U˘ptq, BΩ˘

¯

“ 0.

PROOF: As explained in Remark 5.0.1 and the proof of Theorem 5.1.9, the results of [67] treat
a somewhat different but more difficult situation. So Theorem 5.2.3 follows from Theorem
5.1.9 by the same arguments as in Theorem 6.1 of [67] and Theorem 3.3 of [76]. We will
therefore only sketch the idea of the proof.
To show the existence of a solution of (5.2.1) a fixed-point argument is used.
First, we fix U “ rU in rSpx, Uq, which results in a linear hyperbolic system

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

SprUqBtU `

2
ÿ

j“1

AjBxjU “ 0, x P R2
˘, t P J,

BΓ

˜

U`

U´

¸

“ 0, x P Γ2, t P J,

Up¨, 0q “ Up0q, x P R2
˘.

(5.2.3)
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Now we apply Theorem 5.1.9 to show the existence of a solution U of (5.2.3). To get a solu-
tion of the original nonlinear problem we apply the Banach fixed-point theorem.
The exact proofs of Theorem 6.1 in [67] and Theorem 3.3 in [76] are then based on careful
estimates to show that the solution operator Φ : rU ÞÑ U for the right choice of D pΦq is a
self-mapping and a contraction.
Standard techniques are then used to construct the maximal existence interval, see Proposi-
tion 6.1 in [67] and Lemma 4.1 in [76].

5.3. Compatibility Conditions

One can show that for solutions of higher regularity some conditions involving the coeffi-
cients and the data are necessary, these conditions are called compatibility conditions.

To derive the compatibility conditions we start with a smooth solution U P G3pR2 ˆ Jq3 of
(5.2.1) with J :“ p0, tMq. We can differentiate (5.2.1) twice in time and get new equations that
are still satisfied for all t P J. By continuity these new equations have to be satisfied at t “ 0
as well. This gives us necessary conditions on the initial values for U P G3pR2 ˆ Jq3.
If rSpUq is positive definite, then rSpUq is invertible and (5.2.1) implies

BtU “ ´rSpUq´1

¨

˝

2
ÿ

j“1

AjBxjU

˛

‚“: rV
p1q

pUq, (5.3.1)

JU2K2D “ JU3K2D “ 0.

Differentiation in time gives us the following new equations:

B2
t U “ ´rSpUq´1

¨

˝

2
ÿ

j“1

AjBxj BtU ` Bt

´

rSpUq

¯

BtU

˛

‚“: rV
p2q

pU, BtUq, (5.3.2)

JBtU2K2D “ JBtU3K2D “ 0,

B3
t U “ ´rSpUq´1

¨

˝

2
ÿ

j“1

AjBxj B
2
t U ` 2Bt

´

rSpUq

¯

B2
t U ` B2

t

´

rSpUq

¯

BtU

˛

‚

“: rV
p3q

pU, BtU, B2
t Uq, (5.3.3)

JB2
t U2K2D “ JB2

t U3K2D “ 0.

We can now iteratively define

V p0qpUq :“ U, V p1qpUq :“ rV
p1q

pV p0qpUqq,

V p2qpUq :“ rV
p2q

´

V p0qpUq, V p1qpUq

¯

, V p3qpUq :“ rV
p3q

´

V p0qpUq, V p1qpUq, V p2qpUq

¯
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5.3. Compatibility Conditions Chapter 5

to get operators V pjq that only contain spatial derivatives and no temporal derivatives of U.
The equations above imply that

B
j
tUp¨, 0q “ V pjqpUp¨, 0qq,

r
Vpj´1q

2 pUp¨, 0qq

z

2D
“

r
Vpj´1q

3 pUp¨, 0qq

z

2D
“ 0

for j P t1, 2, 3u. Hence, the initial values Up0q have to satisfy the necessary conditions

r
Vpjq

2

´

Up0q
¯z

2D
“

r
Vpjq

3

´

Up0q
¯z

2D
“ 0 (5.3.4)

for j P t0, 1, 2u. Note that for higher regularity additional compatibility conditions are nec-
essary, but we will focus our analysis on solutions in G3pR2 ˆ Jq3. A general formula for the
compatibility conditions can be found in [67].

Definition 5.3.1 (Nonlinear Compatibility Conditions)
Let m P t1, 2, 3u. We say that an initial value Up0q P HmpR2q3 satisfies the nonlinear compatibility
conditions of order m for (5.2.1) if and only if (5.3.4) is true for j P t0, . . . , m ´ 1u.

Remark 5.3.2
The compatibility conditions for the linear problem (5.1.1) can be derived analogously. In compar-
ison to (5.3.1), (5.3.2) and (5.3.3) we have to replace rSpUq by At and include the additional terms
Mpx, tqu, f and their temporal derivatives:

rV
p1q

lin puq “ ´A´1
t

ˆ 2
ÿ

j“1

AjBxj u ` Mu ´ f
˙

,

rV
p2q

lin pu, Btuq “ ´A´1
t

ˆ 2
ÿ

j“1

AjBxj Btu ` Bt AtBtu ` BtpMuq ´ Bt f
˙

,

rV
p3q

lin pu, Btu, B2
t uq “ ´A´1

t

ˆ 2
ÿ

j“1

AjBxj B
2
t u ` B2

t AtBtu ` 2Bt AtB
2
t u ` B2

t pMuq ´ B2
t f
˙

.

Remark 5.3.3
The compatibility conditions for the half-space problem (5.1.3) follow in the same way by replacing
At, A1, A2, M, u, f by their counterparts At, A1, A2, M, v, g as defined in Remark 5.1.5.
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Chapter 5 5.4. Trace Operator

5.4. Trace Operator

In this section, we want to discuss the trace operator for solutions of the linear problem
(5.1.1) and the nonlinear problem (5.2.1) and we will also analyze some differentiability
properties of the trace operator. See Chapter 2.1 in [75] for more details.

We will first define a trace for problems on the right half-space R2
` and then use a reflection

as in Remark 5.1.5 to define a trace for the interface problem on R2. The trace for functions in
the left half-space can be defined analogously. The trace operator will be based on properties
of the space-time divergence operator, we therefore define the following special Sobolev
spaces.

Definition 5.4.1 (Special Sobolev Spaces)
Let T1 ą 0 and J :“ p0, T1q. Then we define

Hpdivt, R2
` ˆ Jq :“

!

pv1, v2, vtq
J P L2pR2

` ˆ Jq3
ˇ

ˇ

ˇ
divt v :“ Bx1 v1 ` Bx2 v2 ` Btvt P L2pR2

` ˆ Jq

)

,

Hpdivt, R2
`ˆ Jq1 :“

␣

rv P L2pR2
` ˆ Jq

ˇ

ˇ there exists a function v P Hpdivt, R2
` ˆ Jq with v1 “ rv

(

,

with the norms

∥v∥Hpdivt,R2
`ˆJq :“

ˆ

∥v∥2
L2pR2

`ˆJq
3 ` ∥divt v∥2

L2pR2
`ˆJq

˙
1
2

,

∥rv∥Hpdivt,R2
`ˆJq1

:“ inf
qPV

rv
∥q∥Hpdivt,R2

`ˆJq
,

where V
rv :“

␣

v P Hpdivt, R2
` ˆ Jq

ˇ

ˇ v1 “ rv
(

.

The following lemma gives us the existence of a trace operator on Hpdivt, R2
` ˆ Jq1, see

Lemma 2.5. in [75] for the proof.

Lemma 5.4.2 (Trace Operator on Hpdivt, R2
` ˆ Jq1)

There exists a unique linear and continuous trace operator

TrΓ : Hpdivt, R2
` ˆ Jq1 ÝÑ H´1{2pΓ2 ˆ Jq,

which extends the restriction

C8
c pR2

` ˆ Jq ÝÑ C8
c pΓ2 ˆ Jq, ϕ ÞÑ ϕ|Γ2 .

We will now apply Lemma 5.4.2 to solutions of linear hyperbolic problems, see Remark 2.14
in [75].
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Remark 5.4.3
Let At P W1,8

`

R2
` ˆ J

˘nˆn, A1,A2 P Rnˆn be symmetric, M P L8
`

R2
` ˆ J

˘nˆn and g P

L2
`

R2
` ˆ J

˘n. Let v P L2
`

R2
` ˆ J

˘n be a weak solution of

Lhv :“ AtBtv ` A1Bx1 v ` A2Bx2 v ` Mv “ g, (5.4.1)

cf. (5.1.3). At first one only has Lhv P H´1
`

R2
` ˆ J

˘n, but from

xLhv,φyH´1ˆH1
0

“ xg,φyH´1ˆH1
0

“ xg,φyL2ˆL2

for all φ P C8
c
`

R2
` ˆ J

˘n, it follows that Lhv “ g in L2
`

R2
` ˆ J

˘n, which implies that

ÿ

j

BjpAjvq “ g `
ÿ

j

BjAjv ´ Mv P L2 `R2
` ˆ J

˘

.

Therefore, pA1vqk P Hpdivt, R2
` ˆ Jq1 for all k P t1, . . . , nu.

We can now define the trace of A1v on Γ2 ˆ J with Lemma 5.4.2 as

TrΓpA1vq :“ pTrΓpA1vq1, . . . , TrΓpA1vqnqJ.

We will now connect the boundary conditions with the Matrix A1 to define a trace operator,
see Definition 2.16 in [75].

Definition 5.4.4 (Trace Operator)
Take the same assumptions as in Remark 5.4.3. Additionally, assume that there are matrices B, T P

Rkˆn such that B “ TA1 is satisfied. Then we define the trace of Bv on Γ2 ˆ J via:

TrΓpBvq :“ T TrΓpA1vq.

Remark 5.4.5
To define traces for the interface conditions BΓpu`, u´qJ “ 0 in (5.1.1) we will go back to the situa-
tion of Remark 5.1.5, where we transformed the problem to a half-space problem with v :“ pu`, u´qJ

and matrices Aj, M. Since BΓ “ TA1 with

T :“

˜

0 1 0 0 ´1 0
0 0 1 0 0 ´1

¸

,

we can use Definition 5.4.4 to define the trace of BΓv for v P C
`

J, L2
`

R2
`

˘˘6. With this the trace of
BΓpu`, u´qJ is well-defined for u P G0pR2 ˆ Jq3.

For more regular functions u P G1pR2 ˆ Jq, e.g. a solution of the nonlinear hyperbolic prob-
lem (5.2.1), there is a second way to define a trace operator. We can use the transformation
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to a half-space problem and the usual trace operator for H1-functions

tr : H1 `R2
˘

˘

Ñ H1{2pΓ2q,

to define the trace operator

rTrΓ

´

BΓpu`, u´qJ
¯

:“ BΓptrpu`q, trpu´qqJ

for all t P J, see e.g. [9, Chapter 9] for more on the standard trace operator for Sobolev func-
tions. It is shown in Remark 2.17 of [75] that the two trace operators TrΓ and rTrΓ coincide on
G1pR2 ˆ Jq.
We will end this section with two lemmata that will allow us to differentiate the trace oper-
ator and to apply partial integration.

Lemma 5.4.6 (Differentiation of the Trace Operator)
Let At P W1,8

`

R2
` ˆ J

˘nˆn, A1,A2 P Rnˆn be symmetric, M P L8
`

R2
` ˆ J

˘nˆn and define Lh

as in (5.4.1). Assume that there are matrices B, T P Rkˆn with B “ TA1. Let v P L2
`

R2
` ˆ J

˘n

with Lhv P L2
`

R2
` ˆ J

˘n.
If additionally LhBtv, LhB2v P L2pR2

` ˆ Jqn, then the distributional derivative Bj TrΓpBvq exists in
H´1{2pΓ2qk and

Bj TrΓpBvq “ TrΓpBBjvq ` TrΓpBjBvq

for j P tt, 2u.

PROOF: See Corollary 2.6 and Corollary 2.18. in [75].

Lemma 5.4.7 (Partial Integration in H1
`

R2
`

˘

)
Let f , g P H1

`

R2
`

˘

, then

ż

R2
`

Bx1 f g dx “ ´

ż

R2
`

f Bx1 g dx ´

ż

BR2
`

TrΓp f q TrΓpgq dx,
ż

R2
`

Bx2 f g dx “ ´

ż

R2
`

f Bx2 g dx.
(5.4.2)

PROOF: Take sequences p fnqn , pgnqn Ă C8
c
`

R2
`

˘

with fn Ñ f and gn Ñ g in H1
`

R2
`

˘

for
n Ñ 8. Using the compact support and the classical partial integration formula we get:

ż

R2
`

Bx1 fngn dx “ ´

ż

R2
`

fnBx1 gn dx ´

ż

BR2
`

TrΓp fnq TrΓpgnq dx,

ż

R2
`

Bx2 fngn dx “ ´

ż

R2
`

fnBx2 gn dx.
(5.4.3)
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Now all the integrals in (5.4.3) converge for n Ñ 8 to their counterparts in (5.4.2), e.g.

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R2
`

Bx1 f g ´ Bx1 fngn dx

ˇ

ˇ

ˇ

ˇ

ˇ

ď ∥Bx1 f ´ Bx1 fn∥L2pR2
`q ∥g∥L2pR2

`q ` ∥Bx1 fn∥L2pR2
`q ∥g ´ gn∥L2pR2

`q Ñ 0,
ˇ

ˇ

ˇ

ˇ

ˇ

ż

R2
`

TrΓp f q TrΓpgq ´ Bx1 TrΓp fnq TrΓpgnq dx

ˇ

ˇ

ˇ

ˇ

ˇ

ď ∥TrΓp f ´ fnq∥L2pR2
`q ∥TrΓpgq∥L2pR2

`q ` ∥TrΓp fnq∥L2pR2
`q ∥TrΓpg ´ gnq∥L2pR2

`q Ñ 0,

where we used the Cauchy-Schwarz inequality and that the trace operator is linear and
bounded, see e.g. [1, Theorem 5.36].
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6. Rigorous Analysis of the Asymptotic

Solution

In this chapter we will rigorously prove the approximation properties of the asymptotic so-
lution constructed in Chapter 4. The main tools of the proof will be the local existence result
of Chapter 5 and a bootstrapping argument to extend the local existence to an asymptotically
long time interval for initial data close to the small asymptotic ansatz.

6.1. Error Equations

Following the procedure presented in Section 2.3 we start the rigorous analysis by analyzing
the error

Rpx, tq :“ ε´apUpx, tq ´ Uextpx, tqq,

where U is a solution of the reduced Maxwell’s equations (4.0.2), (4.0.3), (4.0.4), Uext is the
extended asymptotic ansatz defined in (4.2.1) and a is a positive number. Note that for our
approximation result we want a to be as large as possible.
Recall that in the hyperbolic form U solves

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

rSpx, U˘qBtU˘ `

2
ÿ

j“1

AjBxjU
˘ “ 0, x P R2

˘, t P J,

BΓ

˜

U`

U´

¸

“ 0, x P Γ2, t P J,

U˘p¨, 0q “ Up0q,˘, x P R2
˘,

(6.1.1)

with the matrix functions

rSpx, Uq :“ Λpx1q ` ϵ3px1qθpUq,

Λpx1q “

¨

˚

˝

ϵ1px1q 0 0
0 ϵ1px1q 0
0 0 µ0

˛

‹

‚

, θpUq :“

¨

˚

˝

3U2
1 ` U2

2 2U1U2 0
2U1U2 U2

1 ` 3U2
2 0

0 0 0

˛

‹

‚

,

A1 “

¨

˚

˝

0 0 0
0 0 1
0 1 0

˛

‹

‚

, A2 “

¨

˚

˝

0 0 ´1
0 0 0

´1 0 0

˛

‹

‚

.
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6.1. Error Equations Chapter 6

We can now substitute U “ Uext ` εaR and obtain

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Spx, t, R˘qBtR˘ `

2
ÿ

j“1

AjBxj R
˘ ` Wpx, t, R˘qR˘ “ ´ε´aRes, x P R2

˘, t P J,

BΓ

˜

R`

R´

¸

“ 0, x P Γ2, t P J,

R˘p¨, 0q “ Rp0q,˘, x P R2
˘,

(6.1.2)

with

Rp0qpxq :“ ε´a
´

Up0qpxq ´ Up0q

extpxq

¯

,

Respx, tq :“ RespUextq “ rSpx, UextqBtUext `

2
ÿ

j“1

AjBxjUext,

Spx, t, Rq :“ rSpx, Uext ` εaRq “ Λpxq ` ϵ3px1qε2aθpRq ` φpx, t, Rq,

φpx, t, Rq :“ ϵ3px1qεa

¨

˚

˝

6Uext,1R1 ` 2Uext,2R2 2Uext,1R2 ` 2Uext,2R1 0
2Uext,1R2 ` 2Uext,2R1 2Uext,1R1 ` 6Uext,2R2 0

0 0 0

˛

‹

‚

` ϵ3px1qθpUextq,

Wpx, t, RqR :“ ε´a`Spx, t, Rq ´ rSpx, Uextq
˘

BtUext

“ ϵ3px1q

¨

˚

˝

6Uext,1BtUext,1 ` 2Uext,2BtUext,2 2BtUext,1Uext,2 ` 2Uext,1BtUext,2 0
2BtUext,1Uext,2 ` 2Uext,1BtUext,2 6Uext,2BtUext,2 ` 2Uext,1BtUext,1 0

0 0 0

˛

‹

‚

` εaϵ3px1q

¨

˚

˝

3BtUext,1R1 ` 2BtUext,2R2 BtUext,1R2 0
BtUext,2R1 3BtUext,2R2 ` 2BtUext,1R1 0

0 0 0

˛

‹

‚

.

Note that the matrix φpRq is symmetric and that φpRq and WpRq are independent of R3.
The interface condition of (6.1.2) is a consequence of BΓ

`

U`
ext, U´

ext
˘J

“ 0, as explained in
Section 4.1.2.
For a fixed Uext, systems (6.1.1) and (6.1.2) are equivalent. Our rough strategy is to use the
local existence Theorem 5.2.3 for (6.1.1) in order to get the existence of R on the time interval
p0, tMq and then apply a bootstrapping argument on (6.1.2) to show that tM ě T0ε´2 for some
T0 ą 0 and that

∥εaR∥G3pR2ˆp0,T0ε´2qq
3 “ ∥U ´ Uext∥G3pR2ˆp0,T0ε´2qq

3 ď Cεa (6.1.3)

holds for all small enough ε ą 0 and Rp0q. Note that we do the estimates in the
G3

`

R2 ˆ
`

0, T0ε´2
˘˘3-norm since this is the natural space for our solution U given by Theo-

rem 5.2.3.
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Let us now check under which conditions on the material functions ϵ1, ϵ3 Theorem 5.2.3 is
applicable.

Remark 6.1.1
To apply Theorem 5.2.3 we need to find Ω˘ such that rS P ML3,3

η,cv
`

R2, Ω˘

˘

for some η ą 0.
First, to satisfy rS P ML3,3

cv
`

R2, Ω˘

˘

we need ϵ˘
3 P C3pR˘q X W3,8pR˘q and ϵ1, ϵ3 have to con-

verge for |x1| Ñ 8, as we have assumed in (A1), (A3), (A6) and (A7).
Second, rSpx, vq has to be symmetric positive definite for all x P R2

˘ and v P Ω˘. By the definition
of rS it is clear that rS is symmetric and a short computation gives us the three eigenvalues λ1 “ µ0,
λ2 “ ϵ1 ` ϵ3

`

v2
1 ` v2

2

˘

and λ3 “ ϵ1 ` 3ϵ3
`

v2
1 ` v2

2

˘

dependent from v. We now have to show that
there exists an η ą 0 and domains Ω˘ such that λ1, λ2, λ3 ě η ą 0 for all v P Ω˘.
Recall the bounds on ϵ1 and ϵ3 in (A1) and (A6). If ϵ˘

3,m ě 0, then clearly λ2, λ3 ą ϵ˘
1,m and the

choice η :“ mintµ0, ϵ`
1,m, ϵ´

1,mu and Ω˘ :“ R3 is possible. If ϵ˘
3,m ă 0, we impose

ϵ˘
1,m ` 3ϵ˘

3,m
`

v2
1 ` v2

2
˘

ą η ą 0 for all v P Ω˘.

Choosing 0 ă η ă min
!

µ0, ϵ`
1,m, ϵ´

1,m

)

and

Ω˘ :“

$

’

&

’

%

"

v P R3
ˇ

ˇ

ˇ

ˇ

v2
1 ` v2

2 ă
η´ϵ˘

1,m

3ϵ˘
3,m

*

, ϵ˘
3,m ă 0,

R3, ϵ˘
3,m ě 0,

we infer rS P ML3,3
η,cv

`

R2, Ω˘

˘

. Since Spx, t, Rq “ rSpx, Uextpx, tq ` εaRq, we also conclude that

SpRq is uniformly positive definite and symmetric. Note that for ϵ˘
3,m ě 0 the conditions im Up0q,˘ Ă

Ω˘ and (5.2.2) are trivially satisfied. For ϵ˘
3,m ă 0 we have to select a small enough initial value

Up0q,˘.

Corollary 6.1.2 (Existence of a Solution of (6.1.1))
Let η ą 0 and Ω˘ Ă R3 as in Remark 6.1.1 such that rS P ML3,3

η,cv
`

R2, Ω˘

˘

. For an initial value

Up0q P H3pR2q3 that satisfies the nonlinear compatibility conditions of order 3 and im Up0q,˘ Ă Ω˘

there exists a unique solution U P G3pR2 ˆ p0, tMqq3 of (6.1.1), where tM ą 0 is the maximal
existence time.
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6.1.1. Idea of Error Estimate

Before we prove (6.1.3) in the next section, let us study the main idea behind our approach,
by establishing the estimates formally in the G0

`

R2 ˆ
`

0, T0ε´2
˘˘3-norm instead of the

G3
`

R2 ˆ
`

0, T0ε´2
˘˘3-norm. For the purpose of this section, let us assume that R is a suffi-

ciently regular solution of (6.1.2) on a time interval J :“ p0, T1q, such that all the estimates
are possible.

Our goal is the estimate ∥Rp¨, tq∥L2pR2q3 ď C on a long time interval
“

0, T0ε´2
‰

. To this end,
we start with the differential equation in (6.1.2), i.e.

SpRqBtR `

2
ÿ

j“1

AjBxj R ` WpRqR “ ´ε´aRes, x P R2
˘, t P J,

and test it with R, which gives us:

ż t

0

ż

R2
SpRqBtR ¨ R dx ds “

ż t

0

ż

R2

¨

˝´

2
ÿ

j“1

AjBxj R ¨ R ´ WpRqR ¨ R ´ ε´aRes ¨ R

˛

‚dx ds.

(6.1.4)
The integrand on the left-hand side of (6.1.4) can be written as

SpRqBtR ¨ R “ Bt

ˆ

1
2

SpRqR ¨ R
˙

´
1
2

BtSpRqR ¨ R

since SpRq is symmetric. Using the definiteness of SpRq it follows

ż t

0

ż

R2
SpRqBtR ¨ R dx ds “

ż t

0

ż

R2

ˆ

Bt

ˆ

1
2

SpRqR ¨ R
˙

´
1
2

BtSpRqR ¨ R
˙

dx ds

ě
1
2

ż

R2

´

ηRptq ¨ Rptq ´ S
´

Rp0q
¯

Rp0q ¨ Rp0q
¯

dx

´
1
2

ż t

0

ż

R2
BtSpRqR ¨ R dx ds.

(6.1.5)

A combination of (6.1.4) and (6.1.5) yields

η

2
∥Rp¨, tq∥2

L2pR2q3 ď
1
2

∥∥∥S
´

Rp0q
¯∥∥∥2

L8pR2q3

∥∥∥Rp0q
∥∥∥2

L2pR2q3

`

ż t

0

ż

R2

¨

˝

1
2

BtSpRqR ¨ R ´

2
ÿ

j“1

AjBxj R ¨ R ´ WpRqR ¨ R ´ ε´aRes ¨ R

˛

‚dx ds.

(6.1.6)
We now have to analyze the remaining integral. But first, we need some more assumptions:
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Chapter 6 6.1. Error Equations

i) Assume that
J Ă p0, T0ε´2q; (6.1.7)

ii) let Uext be such that

∥Uextp¨, tq∥L8pR2q3 , ∥BtUextp¨, tq∥L8pR2q3 ď Cε, @ t P J, (6.1.8)

see Remark 4.2.7;

iii) let R be such that

∥Rp¨, tq∥L8pR2q3 , ∥BtRp¨, tq∥L8pR2q3 , ∥Rp¨, tq∥L2pR2q3 ď C, @ t P J. (6.1.9)

First, we use integration by parts, see Lemma 5.4.7, to show:

´

ż

R2

2
ÿ

j“1

AjBxj R ¨ R dx “

ż

R2
pBx2 R3R1 ´ Bx1 R3R2 ` Bx2 R1R3 ´ Bx1 R2R3q dx

“

ż

R

`

TrΓ R`
3 TrΓ R`

2

˘

p0, x2q dx2 ´

ż

R

`

TrΓ R´
3 TrΓ R´

2

˘

p0, x2q dx2

“ 0.
(6.1.10)

The last equality in (6.1.10) holds for solutions R that satisfy the interface conditions
JR2K2D “ JR3K2D “ 0 in the sense of traces.
Second, the Cauchy-Schwarz inequality together with the estimate for the residual (4.2.6)
and the Assumptions (6.1.7), (6.1.9) give us

ż t

0

ż

R2
ε´aRes ¨ R dx ds ď ε´a

ż t

0
∥Resp¨, sq∥L2pR2q3 ∥Rp¨, sq∥L2pR2q3 ds

ď Ctε
7
2 ´a ď Cε

7
2 ´2´a

for t P J.
All that is left is the term

şt
0

ş

R2pBtSpRq ´ WpRqqR ¨ R dx ds, which contains products between
components of R and Uext. Instead of estimating all the terms, we will only give examples
for the four qualitatively different kinds of terms that appear in this expression. The typical
terms are the following:

1. Four R-factors and no Uext-factors:
This is the easiest case since all such terms are contained in ε2aϵ3BtθpRqR ¨ R, which
can be estimated as follows

ε2aϵ3BtθpRqR ¨ R “ 6ε2aϵ3
``

R3
1 ` R1R2

2
˘

BtR1 `
`

R3
2 ` R2

1R2
˘

BtR2
˘

ď Cε2a|BtR||R|3.
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6.1. Error Equations Chapter 6

With (6.1.9) we get

ε2aϵ3

ż t

0

ż

R2
BtθpRqR ¨ R dx ds ď Cε2a

ż t

0
∥Rp¨, sq∥2

L2pR2q3 ds, @ t P J.

2. Three R-factors, one Uext-factor and one temporal derivative on one of the R-factors:
Due to the special structure of the nonlinearity we can always rewrite the terms of this
type as εaUext,i

´

2BtRjRjRk ` R2
j BtRk

¯

“ εaUext,iBt

´

R2
j Rk

¯

. Now we can apply partial
integration and get with (6.1.8), (6.1.9)

εa
ż

R2

ż t

0
Uext,iBt

´

R2
j Rk

¯

ds dx

“ εa
ˆ

´

ż t

0

ż

R2
BtUext,iR2

j Rk dx ds `

ż

R2

”

Uext,iR2
j Rk

ıt

0
dx

˙

ď Cε1`a
ˆ

1 `

∥∥∥Rp0q
∥∥∥2

L2pR2q3
`

ż t

0
∥Rp¨, sq∥2

L2pR2q3 ds
˙

for all t P J, i, j, k P t1, 2u.

3. Three R-factors, one Uext-factor and one temporal derivative on the Uext-factor:
Here we get with (6.1.8), (6.1.9) that

ż t

0

ż

R2
εaBtUext,iRjRkRl dx ds ď Cε1`a

ż t

0

ż

R2
|R||R|2 dx ds ď Cε1`a

ż t

0
∥Rp¨, sq∥2

L2pR2q3 ds

for all t P J, i, j, k, l P t1, 2u.

4. Two R-factors, two Uext-factors and one temporal derivative on one of the Uext-factors:
The same arguments as before show us

ż t

0

ż

R2
BtUext,iUext,jRkRl dx ds ď Cε2

ż t

0

ż

R2
|R|2 dx ds ď Cε2

ż t

0
∥Rp¨, sq∥2

L2pR2q3 ds

for all t P J, i, j, k, l P t1, 2u.

All in all, we get

η ∥Rp¨, tq∥2
L2pR2q3 ď C

ˆ

ε
3
2 ´a ` ε1`a `

´

1 ` ε1`a
¯ ∥∥∥Rp0q

∥∥∥2

L2pR2q3

˙

` C
´

ε2a ` ε1`a ` ε2
¯

ż t

0
∥Rp¨, sq∥2

L2pR2q3 ds

for t P J. This simplifies for a ě 1 to

η ∥Rp¨, tq∥2
L2pR2q3 ď C

ˆ

ε
3
2 ´a `

∥∥∥Rp0q
∥∥∥2

L2pR2q3
` ε2

ż t

0
∥Rp¨, sq∥2

L2pR2q3 ds
˙

.
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Chapter 6 6.2. Bootstrapping Argument

Gronwall’s inequality for measurable functions, see e.g. [58], implies

∥Rp¨, tq∥2
L2pR2q3 ď C

ˆ

ε
3
2 ´a `

∥∥∥Rp0q
∥∥∥2

L2pR2q3

˙

eC
şt

0 ε2 ds

“ C
ˆ

ε
3
2 ´a `

∥∥∥Rp0q
∥∥∥2

L2pR2q3

˙

eCtε2

ď C
ˆ

ε
3
2 ´a `

∥∥∥Rp0q
∥∥∥2

L2pR2q3

˙

, (6.1.11)

as long as t P J.
Now we additionally demand a ă 3

2 such that ε3{2´a converges to zero for ε Ñ 0.
To achieve (6.1.11) we had to assume that ∥Rp¨, tq∥L2pR2q3 ď C on an ε-independent interval
J, but now we have a much better estimate since ∥Rp¨, tq∥L2pR2q3 gets as small as we want on
this interval for small enough Rp0q and ε provided t ď T0ε´2.
This is the main ingredient for a bootstrapping argument. All we need is a small time inter-
val where we can estimate ∥Rp¨, tq∥L2pR2q3 ď C and the bootstrapping argument will show
us that this estimate holds true as long as t ď T0ε´2.
For the estimates in the G3

`

R2 ˆ
`

0, T0ε´2
˘˘3-norm we have to estimate the derivatives of

R as well. For the tangential derivatives a similar strategy as in this section will be used.
For the normal derivatives, i.e. the x1-derivatives, we will also use the divergence equation
∇ ¨ D “ ϱ0.

6.2. Bootstrapping Argument

In this section we will use a bootstrapping argument to prove (6.1.3).

Assume that Assumptions (A1) – (A7) hold. Take a solution A P
Ş4

k“0 C4´kpr0, T0s, H2`kpRqq

of the effective nonlinear Schrödinger equation (4.1.13) for some T0 ą 0 and construct Uext

as discussed in Chapter 4.
Choose Rp0q P H3pR2q3 and ε˚ ą 0 small enough such that Up0q :“ Uextp¨, 0q ` εa

˚Rp0q sat-
isfies im Up0q,˘ Ă Ω˘ and the nonlinear compatibility conditions of order 3, see Defini-
tion 5.3.1. Then Corollary 6.1.2 yields a maximal existence time tM ą 0 and a solution
U P G3

`

R2 ˆ p0, tMq
˘3 of (6.1.1).

With Remark 4.2.7 it follows that R P G3
`

R2 ˆ
`

0, min
␣

tM, T0ε´2
(˘˘3.

For t P
“

0, min
␣

tM, T0ε´2
(˘

we set

zptq :“
3
ÿ

k“0

∥∥∥Bk
t Rp¨, tq

∥∥∥2

H3´kpR2q3
.

By the Sobolev embeddings H2
`

R2
˘

˘

ãÑ L8
`

R2
˘

˘

we have that

∥Rp¨, tq∥L8pR2q3 , ∥BtRp¨, tq∥L8pR2q3 ď cSzptq
1
2
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6.2. Bootstrapping Argument Chapter 6

for a constant cS ą 1. Take ϖ ą 0 with

ϖ2 ă
1
c2

S
min

#

η ´ ϵ´
1,m

3 mintϵ´
3,m, 0u

,
η ´ ϵ`

1,m

3 mintϵ`
3,m, 0u

+

, (6.2.1)

where c
0 :“ `8.

The major part of the rest of the proof is a bootstrapping argument to prove the statement

$

’

’

&

’

’

%

There exist ρ P p0, 1s, ρ0 P p0, ρq, ε0 “ ε0pρq P p0, ε˚q and t˚ P p0, tMq such that

for all ε P p0, ε0q we have εaρ ` ∥Uext∥L8pR2ˆr0,t˚sq3 ď ϖ

and if zp0q ď ρ2
0 and t˚ ď T0ε´2, then zptq ď ρ2 for all t P r0, t˚s.

(6.2.2)

Remark 6.2.1
Note that (6.2.2) contains the two conditions that guarantee us a long existence time, see Theorem
5.2.3. The first condition εaρ ` ∥Uext∥L8pR2ˆr0,T0ε´2qq

3 ď ϖ guarantees us that we do not leave the
domains Ω˘ and can be achieved for ε0 “ ε0pρq small enough. Indeed, ∥Uext∥L8pR2ˆr0,t˚sq

3 ď Cε

by (4.2.11).
The second condition zptq ď ρ2 shows us that there is no blow-up.
Also note that under these assumptions (6.1.7), (6.1.8) and (6.1.9) from Section 6.1.1 are satisfied.

To establish (6.2.2), we define for 1 ě ρ ą ρ0 ą 0

Tρ0,ε0 :“ sup
!

t˚ P
“

0, T0ε´2‰
ˇ

ˇ

ˇ
εaρ ` ∥Uext∥L8pR2ˆr0,t˚sq ď ϖ,

zptq ď ρ2 for all t P r0, t˚q, zp0q “ ρ2
0

)

,
(6.2.3)

Jρ0,ε0 :“ r0, Tρ0,ε0q.

For Up0q and ϵ0 small enough the time interval Jρ0,ε0 is not-empty and the conditions

@ t P Jρ0,ε0 : dist
´

im U˘p¨, tq, BΩ˘

¯

ą κ ą 0, ∥Up¨, tq∥H3pR2q3 ď C ă 8

are guaranteed for some κ ą 0.
We will now prove that

zptq ď ρ2{2, t P Jρ0,ε0

for suitable ε0 and ρ0 and hence Tρ0,ε0 “ T0ε´2 and (6.2.2) is true. This yields the estimate

∥U ´ Uext∥G3pR2ˆp0,T0ε´2qq
3 “ εa ∥R∥G3pR2ˆp0,T0ε´2qq

3

“ εa sup
tPr0,T0ε´2s

zptq1{2

ď ρεa. (6.2.4)
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Chapter 6 6.2. Bootstrapping Argument

Main approach:

Let β :“ pβ1, β2, βtq
J P N3

0, |β| ď 3. Applying Bβ “ B
β1
x1 B

β2
x2 B

βt
t to (6.1.2) yields

$

’

’

’

’

’

&

’

’

’

’

’

%

Spx, t, RqBtrβ `

2
ÿ

j“1

AjBxj rβ

“ sβpx, t, Rq ` wβpx, t, Rq ´ ε´aBβRespx, tq, x P R2zΓ2, t P Jρ0,ε0 ,

rβp¨, 0q “ rp0q :“ BβRp¨, 0q, x P R2
˘,

(6.2.5)

with

rβpx, tq :“ BβRpx, tq,

sβpx, t, Rq :“ ´
`

BβpSpx, t, RqBtRq ´ Spx, t, RqBtrβ

˘

“ ´
ÿ

γPN3zt0u

γďβ

ˆ

β

γ

˙

BγSpx, t, RqBβ´γBtR,

wβpx, t, Rq :“ ´ BβpWpx, t, RqRq.

Remark 6.2.2
Note that the interface conditions cannot be simply differentiated for all β, since normal derivatives,
i.e. x1-derivatives, do in general not commute with the jump-brackets J¨K2D. Therefore, we will
treat normal derivatives different from the tangential and temporal derivatives. For the estimation
of the normal derivatives a more involved method will be necessary and the structure of Maxwell’s
equations will be essential.

Remark 6.2.3
For R P G3

`

R2 ˆ Jρ0,ε0

˘3 we have SpRq P F 3,3
η,cv

`

R2 ˆ Jρ0,ε0

˘

. Indeed,

Spx, t, Rpx, tqq “ Λpxq ` ϵ3px1qε2aθpRpx, tqq ` φpRpx, tqq,

the Banach algebra property of H3pR2q and the regularity of Uext, ϵ1, ϵ3 give us that SpRq P

F 3,3
`

R2 ˆ Jρ0,ε0

˘

. With the algebra property it also follows that WpRq P H3
`

R2 ˆ Jρ0,ε0

˘3ˆ3.
Furthermore, let rε ą 0 and take arbitrary but sufficiently regular domains M˘ Ă R2

˘ such that for
disttM˘, t0uu large enough

∥Uextp¨, tq∥H3pM˘q3 , ∥Rp¨, tq∥H3pM˘q3 ď rε.

With the Sobolev embedding H3pM˘q ãÑ C1pM˘q it follows that

sup
xPM˘

|Uextpx, tq|, sup
xPM˘

|Rpx, tq| ď Crε.
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6.2. Bootstrapping Argument Chapter 6

Hence, |Uextp¨, tq ` εaRp¨, tq| Ñ 0 for |x| Ñ 8. Now Spx, t, Rq “ rSpx, Uextpx, tq ` εaRq and
Remark 6.1.1 imply that SpRq is positive definite and convergent for |x| Ñ 8.
We also have that

f βpRq :“ sβpRq ` wβpRq ´ ε´aBβRes P G0 `R2 ˆ Jρ0,ε0

˘3
.

Indeed, the residual satisfies Resp¨, tq P H3pR2q3 by Lemma 4.2.4. By the definition of Uext, R
and the algebra property of H3pR˘q it follows that Wp¨, t, Rp¨, tqqRp¨, tq P H3pR2q3. Finally,
sβp¨, t, Rq P L2pR2q3 follows from i), iv) and v) in Lemma 5.1.4.

The temporal derivatives Bk
t Rp¨, 0q have to be interpreted as one-sided derivatives that sat-

isfy
B

j
tRp¨, 0q “ V pjqpRp¨, 0qq “ V pjq

´

Rp0q
¯

, (6.2.6)

with V pjq as defined in Section 5.3.
Similar to the procedure in Section 6.1.1 we test (6.2.5) with rβ and get

ż t

0

ż

R2

ˆ

SpRqBtrβ ¨ rβ `

2
ÿ

j“1

AjBxj rβ ¨ rβ

˙

dxds “

ż t

0

ż

R2
pwβpRq ¨ rβ ` sβpRq ¨ rβq dxds

´ ε´a
ż t

0

ż

R2
BβRes ¨ rβ dxds.

(6.2.7)

For t P Jρ0,ε0 the main steps of our bootstrapping argument are:

I. Use (6.2.6) to estimate
∥∥∥rp0q

β

∥∥∥
L2pR2q

for all β P N3
0 with |β| ď 3.

II. Based on (6.2.7), estimate
ř

|γ|ď3,γ1“0 ∥BγRp¨, tq∥2
L2pR2q3 using that, for β1 “ 0,

ż

R2

2
ÿ

j“1

AjBxj rβ ¨ rβ dx “ 0.

III. Rewrite (6.2.5) to analyze BβR2 and BβR3 for β1 “ 1 and then iterate the process for
β1 “ 2 and β1 “ 3.

IV. Use ∇ ¨ BtDpUEq “ 0 to estimate BβR1 for β1 “ 1, where we start with β “ p1, 0, 0qJ,
and then iterate to increase βt and β2. Finally, we have to iterate the process again for
β1 “ 2 and β1 “ 3.

Remark 6.2.4
This approach follows the proof of the local a priori estimates in [67]. The main difference is that,
using the structure of our ansatz, we can derive the estimates on a large time interval

`

0, T0ε´2
˘

with the desired dependence on ε.
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Step I: Estimates of the Initial Values

In this section we want to estimate
∥∥rβp¨, 0q

∥∥
L2pR2q3 for all β P N3

0 with |β| ď 3. For βt “ 0
we already have by assumption that

∥Rp¨, 0q∥H3pR2q3 “

∥∥∥Rp0q
∥∥∥
H3pR2q3

ă ρ0.

If βt ‰ 0 we use (6.2.6) to estimate B
p
t Rp¨, 0q in H3´ppR2q3 for p P t1, 2, 3u.

Since Up0q satisfies the nonlinear compatibility conditions of order 3, we know from Section
5.3 that (suppressing the x-dependence)

B
j
tUptq “ V pjqpUptqq

for all t P r0, tMq and j P t0, 1, 2u. With U “ εaR ` Uext we can rewrite these three equations
as

BtR “ ´ rSpUq´1
ˆ 2
ÿ

j“1

AjBxj R ` ε´aRes ` ε´a
´

rSpUq ´ rSpUextq

¯

BtUext

˙

,

B2
t R “ ´ rSpUq´1

ˆ 2
ÿ

j“1

AjBxj BtR ` Bt rSpUqBtR ` ε´aBtRes
˙

´ ε´a
rSpUq´1

´

Bt

´

rSpUq ´ rSpUextq

¯

BtUext `

´

rSpUq ´ rSpUextq

¯

B2
t Uext

¯

,

B3
t R “ ´ rSpUq´1

ˆ 2
ÿ

j“1

AjBxj B
2
t R ` 2Bt

´

rSpUq

¯

B2
t R ` B2

t

´

rSpUq

¯

BtR ` ε´aB2
t Res

˙

´ ε´a
rSpUq´1

´

B2
t

´

rSpUq ´ rSpUextq

¯

BtUext ` 2Bt

´

rSpUq ´ rSpUextq

¯

B2
t Uext

`

´

rSpUq ´ rSpUextq

¯

B3
t Uext

¯

.

(6.2.8)

The following lemma collects some properties of the matrix function rS. The result and the
proof are similar to Lemma 2.23, Lemma 7.1 and Corollary 7.2 in [75].

Lemma 6.2.5 (Properties of rS)
Let T1, η0, R ą 0, Ω˘ Ă R3 and rS P BRp0q Ă ML3,3

η0,cv
`

R2, Ω˘

˘

.

Then for all U, V P G3
`

R2 ˆ r0, T1s
˘3 with im U˘, im V˘ Ă Ω˘ there exists a constant C ą 0

such that

i)
∥∥∥rSpUptqq´1

∥∥∥
W2,8pR2q3ˆ3`H2pR2q3ˆ3

ď C,

ii)
∥∥∥Bk

t
rSpUptqq

∥∥∥
W3´k,8pR2q3ˆ3`H3´kpR2q3ˆ3

ď C,

iii)
∥∥∥Bk

t

´

rSpUptqq ´ rSpVptqq

¯∥∥∥
H2´kpR2q3ˆ3

ď C
řk

j“0

∥∥∥B
j
tUptq ´ B

j
tVptq

∥∥∥
H2´kpR2q3

for all k P t0, 1, 2u and t P r0, T1s.
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PROOF: i) We have

rSpUq´1 “

¨

˚

˝

dpU1, U2qpϵ1 ` ϵ3pU2
1 ` 3U2

2qq ´2ϵ3dpU1, U2qU1U2 0
´2ϵ3dpU1, U2qU1U2 dpU1, U2qpϵ1 ` ϵ3p3U2

1 ` U2
2qq 0

0 0 µ´1
0

˛

‹

‚

,

with
dpU1, U2q “

´

ϵ2
1 ` 4ϵ1ϵ3

`

U2
1 ` U2

2
˘

` 3ϵ2
3
`

U2
1 ` U2

2
˘2
¯´1

“: p´1px, tq.

Since dpU1, U2q is the inverse of the product of the eigenvalues of rSpUq, it follows that
0 ă dpU1, U2q ď η´3

0 and therefore dpU1ptq, U2ptqq P L8pR2q for all t P r0, T1s.
Since ϵ1, ϵ3 P W3,8pR2q and Uptq P H3pR2q3, it follows that ppx, tq P H3pR2q ` W3,8pR2q.
With the algebra property of H2pR2q the spatial derivatives of d have the following regular-
ity:

Bxi dptq “ ´dptq2Bxi pptq P H2pR2q ` W2,8pR2q,

Bxi Bxj dptq “ 2dptq3Bxi pptqBxj pptq ´ d2Bxi Bxj pptq P H1pR2q ` W1,8pR2q.

It follows that rSpUptqq´1 P W2,8pR2q3ˆ3 ` H2pR2q3ˆ3 for all t P r0, T1s.
ii) For ϵ1, ϵ2 P W3,8pR2q and U P G3pR2 ˆ r0, T1sq3 we can use the algebra property of H3pR2q

to see that all components of

rSpUq “

¨

˚

˝

ϵ1 0 0
0 ϵ1 0
0 0 µ0

˛

‹

‚

` ϵ3

¨

˚

˝

3U2
1 ` U2

2 2U1U2 0
2U1U2 U2

1 ` 3U2
2 0

0 0 0

˛

‹

‚

are in W3,8pR2q ` H3pR2q. Since U1 and U2 appear polynomially in rSpUq, it is clear that all
U-derivatives of rSpUq, e.g. BU1BU2

rSpUq, are even in H3pR2q3ˆ3. To prove the statement for
k “ 1 note that

Bt

´

rSpUptqq

¯

“ BU1
rSpUqBtU1 ` BU2

rSpUqBtU2,

where all factors are at least in H2pR2q and the statement follows from the algebra property.
For k “ 2 we have

B2
t

´

rSpUptqq

¯

“ B2
U1
rSpUqBtU1BtU1 ` 2BU1BU2

rSpUqBtU2BtU2 ` B2
U2
rSpUqBtU2BtU2

` BU1
rSpUqB2

t U1 ` BU2
rSpUqB2

t U2.
(6.2.9)

We can again use the algebra property and for the terms BU1
rSpUqB2

t U1 ` BU2
rSpUqB2

t U2 we
use part ii) of Lemma 5.1.4 with m1 “ 3 and m2 “ 1.
iii) We restrict us to the case k “ 2 and show the estimate explicitly for the term correspond-
ing to the fourth term on the right-hand side in (6.2.9). For other values of k and for all other
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terms the estimates are analogous. We have∥∥∥BU1
rSpUqB2

t U1 ´ BU1
rSpVqB2

t V1

∥∥∥
L2pR2q3ˆ3

ď

∥∥∥´BU1
rSpUq ´ BU1

rSpVq

¯

B2
t U1

∥∥∥
L2pR2q3ˆ3

`

∥∥∥BU1
rSpVq

`

B2
t U1 ´ B2

t V1
˘

∥∥∥
L2pR2q3ˆ3

ď C1

´

∥U ´ V∥L8pR2q3

∥∥B2
t U1

∥∥
L2pR2q

`
∥∥B2

t U1 ´ B2
t V1

∥∥
L2pR2q

¯

ď C
´

∥U ´ V∥H2pR2q3 `
∥∥B2

t U1 ´ B2
t V1

∥∥
L2pR2q

¯

,

where
C1 :“ sup

u˘PΩ˘

ˇ

ˇ

ˇ
BU1

rSpuq

ˇ

ˇ

ˇ
` sup

u˘PΩ˘

ˇ

ˇ

ˇ
DBU1

rSpuq

ˇ

ˇ

ˇ
,

with DBU1
rS being the Jacobian (tensor) of BU1

rS. Above we used the mean value theorem,
the Sobolev embedding H2pR2q ãÑ L8pR2q and the fact that rS P ML3,3

η0,cv
`

R2, Ω˘

˘

, which
guarantees that the suprema in C1 are finite.
We can now go back to equations (6.2.8) and use Lemma 5.1.4, Lemma 6.2.5 and εaR “

U ´ Uext to show

∥BtRp¨, 0q∥H2pR2q3

ď C
∥∥∥rSpUp¨, 0qq´1

∥∥∥
W2,8pR2q3ˆ3`H2pR2q3ˆ3

´

∥Rp¨, 0q∥H3pR2q3 ` ε´a ∥Resp¨, 0q∥H2pR2q3

¯

` Cε´a ∥εaRp¨, 0q∥H2pR2q3 ∥BtUextp¨, 0q∥H2pR2q3

ď C
ˆ∥∥∥Rp0q

∥∥∥
H3pR2q3

` ε´a ∥Resp¨, 0q∥H2pR2q3

˙

.

The remaining two estimates follow analogously:

∥∥B2
t Rp¨, 0q

∥∥
H1pR2q3 “ C

´

∥Rp¨, 0q∥H3pR2q3 ` ∥BtRp¨, 0q∥H2pR2q3 ` ε´a ∥BtResp¨, 0q∥H1pR2q3

¯

,∥∥B3
t Rp¨, 0q

∥∥
L2pR2q3 “ C

´

∥Rp¨, 0q∥H3pR2q3 ` ∥BtRp¨, 0q∥H2pR2q3 `
∥∥B2

t Rp¨, 0q
∥∥
H1pR2q3

¯

` C
´

ε´a ∥∥B2
t Resp¨, 0q

∥∥
L2pR2q3

¯

.

Finally, we use the recursive structure of the estimates to obtain

∥∥B
p
t Rp¨, 0q

∥∥
H3´ppR2q3 ď C

ˆ ∥∥∥Rp0q
∥∥∥
H3pR2q3

` ε´a
p´1
ÿ

j“0

∥∥∥B
j
tResp¨, 0q

∥∥∥
H2´jpR2q3

˙

for all p P t1, 2, 3u. With our estimate for the residual, see Lemma 4.2.4, we get∥∥∥rp0q

β

∥∥∥
L2pR2q3

ď C
´

ρ0 ` ε
7
2 ´a

¯

(6.2.10)

for all β P N3
0 with |β| ď 3.
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Step II: Estimates of the β-derivatives of Rp¨, tq with β1 “ 0, |β| ď 3

We first show an energy estimate similar to (6.1.6) for the t- and x2-derivatives of R.

Lemma 6.2.6 (Energy Estimate for rβ)
Let R P G3

`

R2 ˆ Jρ0,ε0

˘3 be a solution of (6.1.2) and let β P N3
0, |β| ď 3, β1 “ 0. Then rβ “ BβR

satisfies

η

2

∥∥rβp¨, tq
∥∥2

L2pR2q3 ď C
∥∥∥rp0q

β

∥∥∥2

L2pR2q3

`

ż t

0

ż

R2

´

wβpRq ¨ rβ ` sβpRq ¨ rβ `
1
2

BtSpRqrβ ¨ rβ ´ ε´aBβRes ¨ rβ

¯

dx ds
(6.2.11)

for every t P Jρ0,ε0 .

PROOF: The proof is divided into two parts. First, we prove (6.2.11) for |β| ă 3. In this
case, we have enough regularity to do calculations similar to Section 6.1.1. Second, we use
Lemma 5.1.10 to prove the energy estimate for |β| “ 3.
Step 1: Let us first study the case |β| ă 3.

Since R P G3
`

R2 ˆ Jρ0,ε0

˘3, we have rβ “ BβR P G1
`

R2 ˆ Jρ0,ε0

˘3. To employ (6.2.7), we
compute

ż t

0

ż

R2
SpRqBtrβ ¨ rβ dx ds “

1
2

ż t

0
Bt

ˆ
ż

R2
SpRqrβ ¨ rβ dx

˙

ds ´
1
2

ż t

0

ż

R2
BtSpRqrβ ¨ rβ dx ds.

Using that SpRq is positive definite, we estimate

ż

R2
SpRqptqrβptq ¨ rβptq dx ě η

∥∥rβp¨, tq
∥∥2

L2pR2q3 .

Moreover, we have
ż

R2
SpRqp0qrβp0q ¨ rβp0q dx ď

∥∥∥S
´

Rp0q
¯∥∥∥

L8pR2q3ˆ3

∥∥∥rp0q

β

∥∥∥2

L2pR2q3
.

Since Rp0q, Up0q

ext P L8pR2q3, this leads to

η

2

∥∥rβp¨, tq
∥∥2

L2pR2q3 ď C
∥∥∥rp0q

β

∥∥∥2

L2pR2q3
`

ż t

0

ż

R2
SpRqBtrβ ¨ rβ dx ds `

1
2

ż t

0

ż

R2
BtSpRqrβ ¨ rβ dx ds.

An integration by parts yields

ż

R2

2
ÿ

j“1

AjBxj rβ ¨ rβ dx “

ż

R2

`

´Bx2rβ,3rβ,1 ` Bx1rβ,3rβ,2 ´ Bx2rβ,1rβ,3 ` Bx1rβ,2rβ,3
˘

dx “ 0,

employing the differentiated interface conditions

Jrβ,2K2D “ Jrβ,3K2D “ 0 (6.2.12)
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in the x1-integral. The interface conditions can be differentiated since β1 “ 0, see Lemma
5.4.6. Now (6.2.11) is a consequence of (6.1.2) and the above formulas.
Step 2: Next, we consider the remaining case |β| “ 3, β1 “ 0.
Let f :“ sβpRq ` wβpRq ´ ε´aBβRes. The differential equation in (6.2.5) becomes

SpRqBtrβ `

2
ÿ

j“1

AjBxj rβ “ f , x P R2zΓ2, t P Jρ0,ε0 . (6.2.13)

Since SpRq P F 3,3
η,cv

`

R2 ˆ Jρ0,ε0

˘

and f P G0
`

R2 ˆ Jρ0,ε0

˘3, see Remark 6.2.3, we can apply
Lemma 5.1.10 to (6.2.13) (setting At :“ SpRq and M :“ 0). Because rβ is a weak solution
of (6.2.13) with the initial conditions from (6.2.5) and the interface conditions (6.2.12), the
lemma provides sequences

´

rp0q

β,n

¯

n
Ă DΓpR2q3,

`

f n
˘

n Ă H1
`

R2 ˆ Jρ0,ε0

˘3 and
`

rβ,n
˘

n Ă

G1
`

R2 ˆ Jρ0,ε0

˘3 with rp0q

β,n Ñ rp0q

β in L2pR2q3, f n Ñ f in L2
`

R2 ˆ Jρ0,ε0

˘3 and rβ,n Ñ rβ in

G0
`

R2 ˆ Jρ0,ε0

˘3 for n Ñ 8, and rβ,n is a weak solution of (6.2.13) with data
´

f n, rp0q

β,n

¯

for all
n P N.
Now all functions are sufficiently regular and the same calculation as in Step 1 shows that

η

2

∥∥rβ,np¨, tq
∥∥2

L2pR2q3 ď C
∥∥∥rp0q

β,n

∥∥∥2

L2pR2q3
`

ż t

0

ż

R2

ˆ

f n ¨ rβ,n `
1
2

BtSpRqrβ,n ¨ rβ,n dx
˙

ds. (6.2.14)

The Cauchy-Schwarz inequality shows that for almost every t P Jρ0,ε0

ż

R2
f n ¨ rβ,n dx ď

ż

R2
f ¨ rβ dx ` ∥ f p¨, tq∥L2pR2q3

∥∥prβ,n ´ rβqp¨, tq
∥∥

L2pR2q3

` ∥p f n ´ f qp¨, tq∥L2pR2q3

∥∥rβ,np¨, tq
∥∥

L2pR2q3

Ñ

ż

R2
f ¨ rβ dx pn Ñ 8q.

Since BtSpRq P L8
`

R2 ˆ Jρ0,ε0

˘3ˆ3, we also get for almost every t P Jρ0,ε0

ż

R2
BtSpRqrβ,n ¨ rβ,n dx ď

ż

R2
BtSpRqrβ ¨ rβ dx ` C

∥∥rβ,np¨, tq ´ rβp¨, tq
∥∥

L2pR2q3

Ñ

ż

R2
BtSpRqrβ ¨ rβ dx pn Ñ 8q.

Lebesgue’s dominated convergence theorem allows us to do the limit process for (6.2.14)
and gives us the statement.

We now have to estimate each part of the right-hand side in (6.2.11). The main ideas for the
estimates will be similar to the ones in Section 6.1.1.
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Let
rzptq :“

ÿ

γPN3
0

|γ|ď3,γ1“0

∥BγRp¨, tq∥2
L2pR2q3 .

From Step I we know that ∥∥∥rp0q

β

∥∥∥
L2pR2q3

ď C
´

ρ ` ε
7
2 ´a

¯

.

Let us start with the term
ż t

0

ż

R2

1
2

BtSpRqrβ ¨ rβ dx ds “
1
2

ż t

0

ż

R2

`

ϵ3px1qε2aBtθpRq ` Bt φpRq
˘

rβ ¨ rβ dx ds.

First, we have

1
2

ε2aϵ3

ż t

0

ż

R2
BtθpRqrβ ¨ rβ dx ds ď Cε2a

ż t

0

∥∥rβp¨, sq
∥∥2

L2pR2q3 ds ď Cε2a
ż t

0
rzpsq ds

since R, BtR P L8
`

R2 ˆ Jρ0,ε0

˘3 and θpRq only contains quadratic terms in R. Similarly, using
that

∥Uext∥L8pR2ˆJρ0,ε0q
3 , ∥BtUext∥L8pR2ˆJρ0,ε0q

3 ď Cε,

see (4.2.11), (4.2.13), we derive

1
2

ż t

0

ż

R2
Bt φpRqrβ ¨ rβ dx ds ď C

´

ε2 ` ε1`a
¯

ż t

0

∥∥rβp¨, sq
∥∥2

L2pR2q3 ds ď Cε2
ż t

0
rzpsq ds.

Note that Bt φpRq only contains terms that are linear or quadratic in Uext and BtUext.
For the residual term, (4.2.9) yields

∥∥Bβ Resp¨, tq
∥∥

L2pR2q3 ď Cε7{2. The Cauchy-Schwarz in-

equality and
∥∥rβp¨, tq

∥∥2
L2pR2q3 ď zptq ď ρ ď 1 for t P Jρ0,ε0 then give us

ż t

0

ż

R2
ε´aBβRes ¨ rβ dx ds ď

ż t

0
ε´a

∥∥∥BβResp¨, sq

∥∥∥
L2pR2q3

∥∥rβp¨, sq
∥∥

L2pR2q3 ds ď Cε
3
2 ´a.

The remaining term
şt

0

ş

R2pwβ ¨ rβ ` sβ ¨ rβq dx ds mainly consist of integrals of the type

I1 :“
ż t

0

ż

R2
Ba f px, sqBbgpx, sqBchpx, sqkpx, sq dx ds, (6.2.15)

where f , g, h P G3pR2 ˆ Jq, k P G0pR2 ˆ Jq and a, b, c P N3
0 with |a|, |b|, |c| ă 4 and s :“

|a| ` |b| ` |c| ď 4. For s “ 4 we only have integrals where at least one time-derivative is
present, i.e. at “ bt “ ct “ 0 is not possible.
The case where four derivatives fall on one component of Uext also occurs and will be dis-
cussed separately.
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Due to the symmetry in (6.2.15), there are the following two classes of terms and associated
estimates:

i) |a| ď 3, |b| ď 1, |c| ď 1:
Here Ba f p¨, tq, kp¨, tq P L2pR2q and Bbgp¨, tq, Bchp¨, tq P L8pR2q, by Sobolev embedding.
With the Cauchy-Schwarz inequality we obtain

I1 ď C
ż t

0
∥Ba f p¨, sq∥L2pR2q

∥∥∥Bbgp¨, sq

∥∥∥
L8pR2q

∥Bchp¨, sq∥L8pR2q ∥kp¨, sq∥L2pR2q ds.

ii) |a| ď 2, |b| ď 2, |c| “ 0:
Now kp¨, tq P L2pR2q, Bchp¨, tq P L8pR2q and Ba f p¨, tq, Bbgp¨, tq P LppR2q for all p P r1, 8q.
This follows from the Sobolev embedding H1pR2

˘q ãÑ LppR2
˘q for all 1 ď p ă 8. The

generalized Hölder inequality then yields

I1 ď C
ż t

0
∥Ba f p¨, sq∥L3pR2q

∥∥∥Bbgp¨, sq

∥∥∥
L6pR2q

∥Bchp¨, sq∥L8pR2q ∥kp¨, sq∥L2pR2q ds.

Note that for some indices the cases overlap.
The role of the function k in (6.2.15) will always be played by a component of rβ “ BβR.
Recall that SpRq “ Λ ` ϵ3ε2aθpRq ` φpRq. Hence, to estimate

şt
0

ş

R2 sβ ¨ rβ dx ds, we first
analyze ε2aϵ3BγθpRqBβ´γBtR ¨ rβ where β1 “ γ1 “ 0. This sum consists of terms of the form

Cε2aBγ1

RiB
γ2

RjB
β´γBtRkBβRl ,

with γ “ γ1 ` γ2, γ1
1 “ γ2

1 “ 0 and i, j, k, l P t1, 2u. We therefore have to estimate

I2 :“ Cε2a
ż t

0

ż

R2
Bγ1

RiB
γ2

RjB
β´γBtRkBβRl dxds. (6.2.16)

The case i) above applies if |β ´ γ| “ 0, where we may take |γ2| ď 1. We then estimate

I2 ď Cε2a
ż t

0

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

∥∥∥Bγ1

Rip¨, sq

∥∥∥
L2pR2q

ds

ď Cε2a
ż t

0
rzpsq ds.
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A representative of type ii) is any term with |β ´ γ| “ 1, |γ1| “ 2 and |γ2| “ 0, which is
estimated via

I2 ď Cε2a
ż t

0

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

∥∥∥Bγ1

Rip¨, sq

∥∥∥
L6pR2q

∥∥∥Bβ´γBtRkp¨, sq

∥∥∥
L3pR2q

ds

ď Cε2a
ż t

0

ˆ∥∥∥BβRlp¨, sq

∥∥∥2

L2pR2q
`

∥∥∥Bγ1

Rip¨, sq

∥∥∥2

L6pR2q

∥∥∥Bβ´γBtRkp¨, sq

∥∥∥2

L3pR2q

˙

ds

ď Cε2a
ż t

0

`

rzpsq ` pzpsqq2˘ ds

ď Cε2a
ż t

0
rzpsq ds ` Cρ2ε2at,

using H1pR2
˘q ãÑ LppR2

˘q for 1 ď p ă 8. The remaining cases can be treated similarly.
Next, we study Bγ φpRqBβ´γBtR ¨ BβR with |β ´ γ| ď 2 and β1 “ γ1 “ 0. We use (4.2.11)
which provides the inequality ∥BαUext∥L8pR2ˆJρ0,ε0q

3 ď Cε for all |α| ď 3 with α1 ď 2. For

terms quadratic in Uext case i) applies:

ż t

0

ż

R2
BγpUext,iUext,jqBβ´γBtRkBβRl dx ds ď Cε2

ż t

0

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

∥∥∥Bβ´γBtRkp¨, sq

∥∥∥
L2pR2q

ds

ď Cε2
ż t

0
rzpsq ds.

For terms linear in Uext, i.e.

I3 :“ εa
ż t

0

ż

R2
Bγ1

RiB
γ2

Uext,jB
β´γBtRkBβRl dx ds, (6.2.17)

we distinguish the three cases |β ´ γ| “ 0, 1, and 2. For |β ´ γ| “ 0 we compute

I3 ď Cε1`a
ż t

0

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

∥∥∥Bγ1

Rip¨, sq

∥∥∥
L2pR2q

ds ď Cε2a
ż t

0
rzpsq ds

by means of the estimate type i) and the fact that BtRk P L8
`

R2 ˆ Jρ0,ε0

˘

. For |β ´ γ| “ 1 the
estimate of type ii) applies and we have

I3 ď Cε1`a
ż t

0

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

∥∥∥Bγ1

Rip¨, sq

∥∥∥
L6pR2q

∥∥∥Bβ´γBtRkp¨, sq

∥∥∥
L3pR2q

ds

ď Cε1`a
ż t

0
rzpsq ds ` Cε1`at

as Bγ1

Ri, Bβ´γBtRk P L8pJρ0,ε0 ,H1pR2qq. Finally, for |β ´ γ| “ 2 case i) again yields

I3 ď Cε1`a
ż t

0

∥∥∥Bβ´γBtRkp¨, sq

∥∥∥
L2pR2q

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

ds ď Cε1`a
ż t

0
rzpsq ds,

where we have used Bγ1

Ri P L8
`

R2 ˆ Jρ0,ε0

˘

because |γ1| ď 1.
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Remark 6.2.7
Let us collect all possible cases for the estimates above with |β| “ 3 in one table. For |β| ď 2 we have
enough regularity to always apply estimates of type i).
For the estimates above we have only used that BβR P L2pR2q3 and Bγ2

Uext P L8pR2q3. The other
components have to satisfy certain regularity assumptions to use case i) or case ii) for the estimates.
In the first column of Table 6.1 we see which cases apply when Bγ2

is applied to a component of R,
see (6.2.16), in the tenth column we see the cases when Bγ2

is applied to a component of Uext, see
(6.2.17).

cases |γ| |β ´ γ| |γ1| |γ2| BβR Bβ´γBtR Bγ1

R Bγ2

R cases Bγ2

Uext

i) 1 2 0 1 L2 L2 H3 H2 i) L8

i) 1 2 1 0 L2 L2 H2 H3 i) L8

ii) 2 1 0 2 L2 H1 H3 H1 i),ii) L8

i),ii) 2 1 1 1 L2 H1 H2 H2 i),ii) L8

ii) 2 1 2 0 L2 H1 H1 H3 ii) L8

i) 3 0 0 3 L2 H2 H3 L2 i) L8

i),ii) 3 0 1 2 L2 H2 H2 H1 i),ii) L8

i),ii) 3 0 2 1 L2 H2 H1 H2 i),ii) L8

i) 3 0 3 0 L2 H2 L2 H3 i) L8

Table 6.1.: Regularity of factors for |β| “ 3

At last, we treat BβpWpRqRq ¨ BβR. Terms quadratic in Uext are estimated as follows, where
β “ β1

` β2. If |β1
| ă 3 or if not all three derivatives fall on BtUext,j, we obtain

I4 :“
ż t

0

ż

R2
Bβ1

pUext,iBtUext,jqBβ2

RkBβRl dx ds ď Cε2
ż t

0

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

∥∥∥Bβ2

Rkp¨, sq

∥∥∥
L2pR2q

ds

ď Cε2
ż t

0
rzpsq ds

as
∥∥∥Bβ1

pUext,iBtUext,jq

∥∥∥
L8pR2ˆJρ0,ε0q

ď Cε2 by (4.2.11) and (4.2.13). If |β1
| “ 3 and Bβ1

is only ap-

plied to BtUext,j, i.e. β2 “ 0, we use (4.2.15) with Bβ1

BtUext,j “ Aj ` Bj. Sobolev’s embedding
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for x2 ÞÑ Rkpx1, x2, sq implies that

I4 ď

ˇ

ˇ

ˇ

ˇ

ż t

0

ż

R2
Uext,iAjB

β2

RkBβRl dx ds
ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż t

0

ż

R2
Uext,iBjB

β2

RkBβRl dx ds
ˇ

ˇ

ˇ

ˇ

ď Cε2
ż t

0
rzpsq ds `

ż t

0

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

„
ż

R2
|Uext,iBjRk|2 dx

ȷ
1
2

ds

ď Cε2
ż t

0
rzpsq ds

` Cε2
ż t

0

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

«

ż

R

sup
x1PR

|Bjpx1, x2, sq|2 dx2

ż

R

sup
x2PR

|Rkpx1, x2, sq|2 dx1

ff
1
2

ds

ď Cε2
ż t

0
rzpsq ds ` Cε2

ż t

0

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

„
ż

R2

`

|Rkpx1, x2, sq|2 ` |Bx2 Rkpx1, x2, sq|2
˘

dx
ȷ

1
2

ds

ď Cε2
ż t

0
rzpsq ds.

(6.2.18)
In the same way we treat terms linear in Uext. Let β “ β1

` β2
` β3 and let us study

I5 :“ εa
ż t

0

ż

R2
Bβ1

BtUext,iB
β2

RjB
β3

RkBβRl dx ds.

If |β1| ď 2, either Bβ2

Rj or Bβ3

Rk is in H2pR2q and therefore in L8pR2q. W.l.o.g for |β3
| ď 1,

it follows

I5 ď Cε1`a
ż t

0

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

∥∥∥Bβ2

Rjp¨, sq

∥∥∥
L2pR2q

ds

ď Cε1`a
ż t

0
rzpsq ds,

using Bβ3

Rk, Bβ1

BtUext,i P L8
`

R2 ˆ Jρ0,ε0

˘

.
If |β1| “ 3, an estimate similar to (6.2.18) yields

I5 ď εa
ˇ

ˇ

ˇ

ˇ

ż t

0

ż

R2
AiRjRkBβRl dx ds

ˇ

ˇ

ˇ

ˇ

` εa
ˇ

ˇ

ˇ

ˇ

ż t

0

ż

R2
BiRjRkBβRl dx ds

ˇ

ˇ

ˇ

ˇ

ď Cε1`a
ż t

0
rzpsq ds ` Cεa

ż t

0

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

ˆ
ż

R2
|BiRjRk|2 dx

˙
1
2

ds

ď Cε1`a
ż t

0
rzpsq ds ` Cε1`a

ż t

0

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

˜

ż

R

sup
x2PR

|Rkpx1, x2, sq|2 dx1

¸
1
2

ds

ď Cε1`a
ż t

0
rzpsq ds.

(6.2.19)

Note that these are the only cases where four derivatives can fall on one function in this step.
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Collecting the above partial estimates, we finally get with (6.2.11)

rzptq ď C
ˆ

ρ2
0 `

´

ε2 ` ε1`a
¯

ż t

0
rzpsq ds ` ε1`at ` ε

3
2 ´a ` ε7´2a

˙

.

If a P
`

1, 11
2

˘

, we have 1 ` a ą 2 and 7 ´ 2a ą 3
2 ´ a and Gronwall’s inequality yields

rzptq ď C
´

ρ2
0 ` ε

3
2 ´a ` ε1`at

¯

eCε2t ď C
´

ρ2
0 ` ε

3
2 ´a ` εa´1

¯

for all t P Jρ0,ε0 if
∥∥∥Rp0q

∥∥∥
H3pR2q3

ď ρ0.

Step III: Analysis of BβR2,3 for |β| ď 3, β1 ‰ 0

We will now use the structure of Maxwell’s equations to get expressions for BβR2, BβR3

where β1 ‰ 0. The estimates will then follow with the estimates of Step II and by iteration.

We first consider β1 “ 1. Setting α :“ p0, β2, βtq
J, we have β “ p1, 0, 0qJ ` α. We now take

the differential equation in (6.2.5) with α instead of β and rearrange the terms into

#

BβR2 “ Bx1BαR2 “ Bx2BαR1 ´
`

SpRqBtB
αR ` sαpRq ` wαpRq ` ε´aBαRes

˘

3 ,

BβR3 “ Bx1BαR3 “ ´
`

SpRqBtB
αR ` sαpRq ` wαpRq ` ε´aBαRes

˘

2 .
(6.2.20)

Note that this is possible for our matrix A1.
Each term on the right-hand side in (6.2.20) has derivatives Bγ with |γ| ď 3 and γ1 “ 0 and
can hence be bounded by Step II.
From Remark 6.2.3 we know that SpRq P F 3,3

η,cv
`

R2 ˆ Jρ0,ε0

˘

and WpRq P H3
`

R2 ˆ Jρ0,ε0

˘3ˆ3,
now with the estimates in Lemma 5.1.4 it follows

∥Bx2BαR1p¨, tq∥2
L2pR2q

ď rzptq,

∥pSpRqBtB
αRqp¨, tq∥2

L2pR2q3 ď ∥SpRqp¨, tq∥2
L8pR2q3ˆ3 ∥BtB

αRp¨, tq∥2
L2pR2q3 ď Crzptq,

∥sαpRqp¨, tq∥2
L2pR2q3 ď C

ÿ

0‰γďα

∥∥BγSp¨, t, RqBα´γBtRp¨, tq
∥∥2

L2pR2q3 ď Crzptq,

∥∥wβp¨, t, Rq
∥∥2

L2pR2q3 ď

∥∥∥BβWp¨, t, RqRp¨, tq
∥∥∥2

L2pR2q3
`

∥∥∥Wp¨, t, RqBβRp¨, tq
∥∥∥2

L2pR2q3
ď Crzptq,

ε´2a ∥BαRes∥2
L2pR2q3 ď Cε7´2a.

In summary, we get∥∥∥BβR2

∥∥∥2

L2pR2q
,
∥∥∥BβR3

∥∥∥2

L2pR2q
ď C

`

rzptq ` ε7´2a˘ ď C
´

ρ2
0 ` ε7´2a ` εa´1

¯

for all |β| ď 3, β1 “ 1 and all t P Jρ0,ε0 if a P
`

1, 11
2

˘

and
∥∥∥Rp0q

∥∥∥
H3pR2q3

ď ρ0.
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For larger values of β1 we iterate the process. For β1 “ 2 we have (6.2.20) with β “

p1, 0, 0qJ ` α and α :“ p1, β2, βtq
J and using the previous step, all terms in the right-hand

side can be estimated in L2pR2q. For β1 “ 3 the same process applies, with β “ p1, 0, 0qJ ` α

and α “ p2, 0, 0qJ. Altogether, we arrive at

ÿ

|β|ď3,
β1“0

∥∥∥BβRp¨, tq
∥∥∥2

L2pR2q3
`
ÿ

|β|ď3

ˆ∥∥∥BβR2p¨, tq
∥∥∥2

L2pR2q
`

∥∥∥BβR3p¨, tq
∥∥∥2

L2pR2q

˙

ď C
´

ρ2
0 ` ε

3
2 ´a ` εa´1

¯

(6.2.21)
for all t P Jρ0,ε0 if a P

`

1, 11
2

˘

and
∥∥∥Rp0q

∥∥∥
H3pR2q3

ď ρ0.

Step IV: Analysis of BβR1, |β| ď 3

In this final step we exploit the divergence equation ∇ ¨ DpUEq “ ∇ ¨ D
´

Up0q

E

¯

“ ϱ0 in

order to estimate BβR1, remember that UE “ pU1, U2, 0qJ. We will again use an iteration to
prove the estimates for all β P N3

0 with |β| ď 3.

First, for α P N3
0, |α| ď 2 and rα “ BαR we have

ε´aBαBt rDpεaRE ` Uext,Eq “ Bt

´´

ϵ1 ` ε2aϵ3|rR|2
¯

rrα

¯

` Bα
´

rφpREqBtrR
¯

` Bα
´

rWpREqrR
¯

` Bt

ˆ

ÿ

0‰γďα

Bγ

ˆ

ϵ1 ` ε2aϵ3|rR|2
˙

Bα´γ
rR
˙

` ε´aBα
ĄRes

` ε´aBα

˜

Bx2Uext,3

´Bx1Uext,3

¸

(6.2.22)
on R2

˘ ˆ Jρ0,ε0 , where r̈ of a p3 ˆ 3q-matrix denotes the restriction to the upper left p2 ˆ 2q-
submatrix and r̈of a vector in R3 denotes the first two components of this vector. The cal-
culation to obtain (6.2.22) uses that φpREq and WpREq have a block structure and that by
definition of Res it follows that

ε´aBt rDpUext,Eq “ ε´aBα
ĄRes ` ε´aBα

˜

Bx2Uext,3

´Bx1Uext,3

¸

.

Note that by definition φpREq “ φpRq and WpREq “ WpRq.
An integration by parts yields

ż t

0
Bα

´

rφpREqBtrR
¯

ds “

ż t

0

ˆ

rφpREqBαBtrR `
ÿ

0‰γďα

ˆ

α

γ

˙

Bγ
rφpREqBα´γBtrR

˙

ds

“

ż t

0

ˆ

´Bt rφpREqBα
rR `

ÿ

0‰γďα

ˆ

α

γ

˙

Bγ
rφpREqBα´γBtrR

˙

ds `

”

rφpREqBα
rR
ıt

0
.
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By integrating (6.2.22) in time, we then deduce

“

ε´aBα
rDpεaRE ` Uext,Eq

‰t
0

“

„

´

ϵ1 ` ε2aϵ3|rR|2
¯

rrα ` rφpREqrrα `
ÿ

0‰γďα

ˆ

α

γ

˙

Bγ
´

ϵ1 ` ε2aϵ3|rR|2
¯

Bα´γ
rR
ȷt

0

`

ż t

0

ˆ

´ Bt rφpREqrrα `
ÿ

0‰γďα

ˆ

α

γ

˙

Bγ
rφpREqBα´γBtrR ` Bα

ˆ

rWpREqrR
˙˙

ds

` ε´a
ż t

0

˜

Bα
ĄRes ` Bα

˜

Bx2Uext,3

´Bx1Uext,3

¸¸

ds.

(6.2.23)

Note that the divergence of the last term vanishes.

Substep 1: β1 “ 1.
We write β “ p1, 0, 0qJ ` α, where α “ p0, β2, βtq

J. We have that ∇ ¨ Bα
rDpUEq is constant in

time because

∇ ¨ Bα
rDpUEq “ Bαp∇ ¨ rDpUEqq “ Bαϱ̃0, ϱ̃0 :“ ∇ ¨ rD

´

Up0q

E

¯

.

Note that ϱ̃ P H2pR2q because of the algebra property of H2pR2q and Up0q P H3pR2q3.
Hence, taking the divergence of (6.2.23), the first term vanishes and we have

”´

ϵ1 ` ε2aϵ3|rR|2
¯

pBx1rα,1 ` Bx2rα,2q ` ∇
´

ϵ1 ` ε2aϵ3|rR|2
¯

¨rrα

ıt

0

“ ´

„

∇ ¨

ˆ

rφpREqBα
rR `

ÿ

0‰γďα

ˆ

α

γ

˙

Bγpϵ1 ` ε2aϵ3|rR|2qBα´γ
rR
˙ȷt

0

´

ż t

0
∇ ¨

ˆ

´ Bt rφpREqBα
rR ` Bα

´

rWpREqrR
¯

` ε´aBα
ĄRes `

ÿ

0‰γďα

ˆ

α

γ

˙

Bγ
rφpREqBα´γBtrR

˙

ds.

Because of rR P C
`

Jρ0,ε0 , L8pR2q
˘2, there exists a number ϑ ą 0 with pϵ1 ` ε2aϵ3|rR|2qpx, tq ě ϑ

for small enough ε, all t P Jρ0,ε0 and almost all x P R2.
Since Bx1

rR, Bx2
rR P C

`

Jρ0,ε0 , L8pR2q
˘2, we can also estimate∥∥∥∇´

ϵ1 ` ε2aϵ3|rR|2
¯

p¨, tq
∥∥∥

L8pR2q3
ď C

for all t P Jρ0,ε0 .
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These facts yield the central inequality of this step:

ϑ ∥Bx1rα,1p¨, tq∥L2pR2q

ď C
´

∥Bx2rα,2p¨, tq∥L2pR2q
` ∥∇ ¨rrαp¨, 0q∥L2pR2q ` ∥rrαp¨, tq∥L2pR2q2 ` ∥rrαp¨, 0q∥L2pR2q2

¯

`

∥∥∥∥„∇ ¨

ˆ

rφpREqBα
rR `

ÿ

0‰γďα

ˆ

α

γ

˙

Bγpϵ1 ` ε2aϵ3|rR|2qBα´γ
rR
˙

p¨, sq

ȷt

0

∥∥∥∥
L2pR2q

`

∥∥∥∥ ż t

0
∇ ¨

ˆ

´ Bt rφpREqBα
rR ` Bα

´

rWpREqrR
¯

`
ÿ

0‰γďα

ˆ

α

γ

˙

Bγ
rφpREqBα´γBtrR

˙

p¨, sq ds
∥∥∥∥

L2pR2q

` ε´a
∥∥∥∥ż t

0
∇ ¨ Bα

ĄResp¨, sq ds
∥∥∥∥

L2pR2q

.

(6.2.24)
We next iterate over βt and β2.
i) We start with α “ p0, 0, 0qJ.
Here (6.2.24) simplifies to

ϑ ∥Bx1rα,1p¨, tq∥L2pR2q
ď ε´a

∥∥∥∥ż t

0
∇ ¨ ĄResp¨, sq ds

∥∥∥∥
L2pR2q

` C
´

∥Bx2rα,2p¨, tq∥L2pR2q
` ∥∇ ¨rrαp¨, 0q∥L2pR2q ` ∥rrαp¨, tq∥L2pR2q2 ` ∥rrαp¨, 0q∥L2pR2q2

¯

`

∥∥∥∥”∇ ¨

´

rφpREqrR
¯

p¨, sq

ıt

0

∥∥∥∥
L2pR2q

`

∥∥∥∥ż t

0
∇ ¨

´

´Bt rφpREqrR ` rWpREqrR
¯

p¨, sq ds
∥∥∥∥

L2pR2q

.

(6.2.25)
The residual term on the right-hand side is bounded by Cε

3
2 ´a due to (4.2.6).

The second and fourth term on the right-hand side of (6.2.25) are estimated by (6.2.21) and
the third and fifth term by (6.2.10).
In the first norm on the last line of (6.2.25) all terms have been treated in Steps I, II or III
except for those of the type

εaϵ3Bx1rα,1RjUext,k and ϵ3Bx1rα,1Uext,jUext,k.

Using R P L8
`

R2 ˆ Jρ0,ε0

˘3 and ∥Uext∥L8pR2ˆJρ0,ε0q
3 ď Cε, we have

∥∥εaϵ3
`

Bx1rα,1RjUext,k
˘

p¨, tq
∥∥

L2pR2q
ď Cε1`a ∥Bx1rα,1p¨, tq∥L2pR2q

,∥∥ϵ3
`

Bx1rα,1Uext,jUext,k
˘

p¨, tq
∥∥

L2pR2q
ď Cε2 ∥Bx1rα,1p¨, tq∥L2pR2q

.

In the last norm of the right-hand side of (6.2.25), the terms which have not been estimated
so far are of the type

Bx1rα,1BtUext,jUext,k, εaBtpUext,jRkqBx1rα,1 and εaUext,jRkBtBx1rα,1
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for j, k P t1, 2, 3u. Using R, BtR P L8
`

R2 ˆ Jρ0,ε0

˘3 and ∥BtUext∥L8pR2ˆJρ0,ε0q
3 ď Cε, we obtain

ż t

0

∥∥ϵ3
`

Bx1rα,1BtUext,jUext,k
˘

p¨, sq
∥∥

L2pR2q
ds ď Cε2

ż t

0
∥Bx1rα,1p¨, sq∥L2pR2q

ds,
ż t

0

∥∥εaϵ3
`

Bx1rα,1BtpRkUext,jq
˘

p¨, sq
∥∥

L2pR2q
ds ď Cε1`a

ż t

0
∥Bx1rα,1p¨, sq∥L2pR2q

ds,

and, integrating by parts in time,∥∥∥∥ż t

0
εaϵ3

`

Uext,jRkBtBx1rα,1
˘

p¨, sq ds
∥∥∥∥

L2pR2q

ď

∥∥∥∥“εa `Uext,jRkBx1rα,1
˘

p¨, sq
‰t

0 ´

ż t

0
εa `BtpUext,jRkqBx1rα,1

˘

p¨, sq ds
∥∥∥∥

L2pR2q

ď Cε1`a
ˆ

∥Bx1rα,1p¨, tq∥L2pR2q
` ∥Bx1rα,1p¨, 0q∥L2pR2q

`

ż t

0
∥Bx1rα,1p¨, sq∥L2pR2q

ds
˙

ď Cε1`a
ˆ

ρ0 ` ∥Bx1rα,1p¨, tq∥L2pR2q
`

ż t

0
∥Bx1rα,1p¨, sq∥L2pR2q

ds
˙

.

We can therefore estimate the two last terms on the right-hand side of (6.2.25) by∥∥∥∥”∇ ¨

´

rφpRqrR
¯

p¨, sq

ıt

0

∥∥∥∥
L2pR2q

ď C
´

ρ0 ` ε
1
2 p 3

2 ´aq ` ε
1
2 pa´1q

¯

` Cpε2 ` ε1`aq ∥Bx1rα,1p¨, tq∥L2pR2q

and ∥∥∥∥ż t

0
∇ ¨

´

´Bt rφpRqrR ` rWpRqrR
¯

p¨, sq ds
∥∥∥∥

L2pR2q

ď C
´

ρ0 ` ε
1
2 p 3

2 ´aq ` ε
1
2 pa´1q

¯

` C
´

ε2 ` ε1`a
¯

ż t

0

´

ρ0 ` ε
1
2 p 3

2 ´aq ` ε
1
2 pa´1q

¯

ds

` Cpε2 ` ε1`aq ∥Bx1rα,1p¨, tq∥L2pR2q
` C

´

ε2 ` ε1`a
¯

ż t

0
∥Bx1rα,1p¨, sq∥L2pR2q

ds.

Combining the above inequalities, for a P
`

1, 11
2

˘

and 0 ď t ď Tρ0,ε0 ď T0ε´2 we infer

ϑ ∥Bx1rα,1p¨, tq∥L2pR2q
ď C

´

ρ0 ` ε
1
2 p 3

2 ´aq ` ε
1
2 pa´1q ` ε2 ∥Bx1rα,1p¨, tq∥L2pR2q

` ε
3
2 ´a

¯

` Cε2
ż t

0

´

ρ0 ` ε
1
2 p 3

2 ´aq ` ε
1
2 pa´1q

¯

ds ` Cε2
ż t

0
∥Bx1rα,1p¨, sq∥L2pR2q

ds.

For ε small enough and a P
“5

4 , 11
2

˘

(so that 3
2 ´ a ď a ´ 1) it follows

∥Bx1rα,1p¨, tq∥L2pR2q
ď C

ˆ

ρ0 ` ε
1
2 p 3

2 ´aq ` ε2
ż t

0
∥Bx1rα,1p¨, sq∥L2pR2q

ds
˙

.
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Finally, Gronwall’s inequality yields

∥Bx1rα,1p¨, tq∥L2pR2q
ď C

´

ρ0 ` ε
1
2 p 3

2 ´aq
¯

eCε2t ď C
´

ρ0 ` ε
1
2 p 3

2 ´aq
¯

.

ii) We iterate the process from i) for higher α2 “ β2 and αt “ βt (keeping β1 “ 1).
For instance, the following sequence of α’s can be chosen:

α “ p0, 1, 0qJ, p0, 0, 1qJ, p0, 2, 0qJ, p0, 0, 2qJ, p0, 1, 1qJ.

Note that |α| “ βt ` β2 ď 2, therefore we can always use integration by parts and Lemma
5.1.4. In the terms with rW again three derivatives can fall on BtUext,k. If Bx1 is included, then
one can proceed as above by means of (4.2.11) and (4.2.13). Otherwise, one uses (4.2.15) and
argues as in (6.2.18).

Substep 2: β1 ą 1.
In this last step we have to iterate over β1 and increase it to 3.
For β1 “ 2 we set β “ p1, 0, 0qJ ` α with α “ p1, β2, βtq

J. The estimates work like in Substep
1 i) since |α| ď 2. Finally, for β1 “ 3 we have β “ p3, 0, 0qJ “ p1, 0, 0qJ ` α with α “ p2, 0, 0qJ

and apply Substep 1 i) again. Here, factors B3
x1

Uext,j, B3
x1

BtUext,j occur in the terms with rW,
which are treated with (4.2.12), (4.2.14), similarly to the estimate of the B-terms in (6.2.18)
and (6.2.19), e.g. with the Sobolev embedding for x1 ÞÑ Rkpx1, x2, sq we get

ż t

0

ż

R2
Uext,iB

3
x1

BtUext,jRkBβRl dx ds

ď

ż t

0

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

„
ż

R2
|Uext,iB

3
x1

BtUext,jRk|2 dx
ȷ

1
2

ds

ď Cε2
ż t

0

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

«

ż

R

sup
x1PR

|Rkpx1, x2, sq|2 dx2

ff
1
2

ds

ď Cε2
ż t

0

∥∥∥BβRlp¨, sq

∥∥∥
L2pR2q

„
ż

R2

`

|Rkpx1, x2, sq|2 ` |Bx2 Rkpx1, x2, sq|2
˘

dx
ȷ

1
2

ds

ď Cε2
ż t

0
rzpsq ds.

In summary, collecting all the above estimates, one concludes

zptq ď C
´

ρ2
0 ` ε

3
2 ´a

¯

for every t P Jρ0,ε0 and ε P p0, ε0q if a P
“ 5

4 , 11
2

˘

and ε0 is small enough.
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Next, we keep ρ fixed, choose a P
“5

4 , 3
2

˘

and ρ0, ε0 so small that

C
ˆ

ρ2
0 ` ε

3
2 ´a
0

˙

ă 1
2 ρ2

and
εa

0ρ ` ∥Uext∥L8pR2ˆr0,T0ε´2qq
3 ď ϖ,

where we recall (6.2.1) and that ∥Uext∥L8pR2ˆr0,T0ε´2qq
3 ď Cε ď Cε0. With this choice we have

zptq ă
1
2

ρ2

for every t P Jρ0,ε0 and ε P p0, ε0q if a P
“5

4 , 3
2

˘

. Definition (6.2.3) of Tρ0,ε0 now implies that
Tρ0,ε0 “ T0ε´2 ă tM and that (6.2.2) holds with t˚ “ T0ε´2.
Estimate (6.2.4), ε ă 1 and the monotonicity of the exponential function therefore imply that

∥U ´ Uext∥G3pR2ˆr0,T0ε´2sq
3 ď ρεa (6.2.26)

for all a ă 3
2 .

Remark 6.2.8
A careful examination of the bootstrapping argument shows that the limitation a ă 3

2 comes from the
estimate of the residual RespUextq. For another ansatz with a smaller residual an improved version
of estimate (6.2.26) can be achieved.

6.3. Approximation Result

In this section we will finalize our approximation theorem.

First, note that we could formulate the approximation result with (6.2.26), but Uext contains
many corrections terms that are not easily determined explicitly or numerically. Instead, we
want to compare U with Uans, which is much simpler to calculate, see (4.2.1) and (4.1.1).
To this end, we use that Uext only contains higher order correction terms and that the regu-
larity of A, Bkwpk0q, B2

k wpk0q, p, h is given by (4.2.7) and (4.2.8) and estimate

∥Uextp¨, tq ´ Uansp¨, tq∥H3pR2q3

“

∥∥∥∥ˆ̂ ´ε2iBX2 ABkwpk0q ´ ε3 1
2

B2
X2

AB2
k wpk0q ` ε3|A|2Ap

˙

F1 ` ε3A3hF3
1

˙

p¨, tq ` c.c.
∥∥∥∥
H3pR2q3

ď Cε3{2 ∥BX2 Ap¨, Tq∥H3pRq ∥Bkwpk0q∥H3pRq3

` Cε5{2
´∥∥B2

X2
Ap¨, Tq

∥∥
H3pRq

∥∥B2
k wpk0q

∥∥
H3pRq3 ` ∥Ap¨, Tq∥3

H3pRq

´

∥p∥H3pRq3 ` ∥h∥H3pRq3

¯¯

ď Cε3{2
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for all t P
“

0, T0ε´2
‰

. Note that we again lose half an order of ε since A depends on X2 “

εpx2 ´ ν1tq.
Now we use (6.2.26) and the triangle inequality to conclude

∥U ´ Uans∥G3pR2ˆJρ0,ε0q
3 ď ∥U ´ Uext∥G3pR2ˆJρ0,ε0q

3 ` ∥Uext ´ Uans∥G3pR2ˆJρ0,ε0q
3

ď ρεa ` Cε3{2

ď Cεa

(6.3.1)

for all a ă 3
2 . Note that ρ, Uans and Uext are independent of a and that therefore the constant

C in (6.3.1) is also independent of a.
With this we can formulate the main result of this thesis.

Theorem 6.3.1 (Approximation Theorem)
Assume (A1) – (A7) and let A P

Ş4
k“0 C4´k

`

r0, T0s, H3`kpRq
˘

be a solution of the effective nonlin-
ear Schrödinger equation (4.1.13) for some T0 ą 0. Assume that the initial value Up0q :“ Up¨, 0q P

H3pR2q3 satisfies the nonlinear compatibility conditions of order 3, see Definition 5.3.1.
Then there exist constants ε0 ą 0 and C ą 0 such that if ε P p0, ε0q and if Up0q fulfills∥∥∥Up0q ´ Uansp¨, 0q

∥∥∥
H3pR2q3

ď cε
3
2 , (6.3.2)

with c ą 0, there exists a solution U P G3
`

R2 ˆ
`

0, T0ε´2
˘˘3 of (4.0.2), (4.0.3) and (4.0.4) such

that
∥U ´ Uans∥G3pR2ˆp0,T0ε´2qq

3 ď Cε
3
2 ´δ (6.3.3)

for all δ ą 0.
If, in addition, Up0q

E satisfies (4.0.5) and (4.0.6), then we have ∇ ¨ DpUEq “ ϱ0 on
`

R2zΓ2
˘

ˆ
`

0, T0ε´2
˘

and JD1pUEqK2D “ ϱΓ on Γ2 ˆ
`

0, T0ε´2
˘

.

Remark 6.3.2
Let us collect some remarks to Theorem 6.3.1.

1. Theorem 6.3.1 and the proof in the previous chapters was published in [27].

2. The existence of initial data Up0q which satisfy (6.3.2) and the nonlinear compatibility condi-
tions of order 3 is an open problem. Similarly, the existence of initial data Up0q which satisfy
(6.3.2) as well as (4.0.5) and (4.0.6) for a prescribed ϱ0 and ϱΓ is an open problem.
We will discuss some ideas and first results concerning these problems in Chapter 7.

3. In order to apply Theorem 5.2.3 the condition im Up0q,˘ Ă Ω˘ has to be satisfied. For ϵ˘
3,m ě 0

and Ω˘ “ R3 this is always the case. For ϵ˘
3,m negative, a sufficient small initial value Up0q

would be necessary. This follows from (6.3.2) and the definition of Uans for ε small enough.
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4. Due to Sobolev’s embedding, the components E :“ pU1, U2, 0qJ and H :“ p0, 0, U3qJ of the
solution U of Theorem 6.3.1 satisfy (2.2.1), (2.2.2), (2.2.3) and (2.2.8) on

`

R2zΓ2
˘

ˆ
`

0, T0ε´2
˘

in the classical sense.

5. In the case ϱΓ “ 0 the regularity of U produced by Theorem 6.3.1 guarantees that we have
E P HcurlpR2q, D P HdivpR2q and H P H1pR2q at each point in time, compare Remark 2.2.2.

6. If we replace (6.3.2) by ∥∥∥Up0q ´ Uansp¨, 0q

∥∥∥
H3pR2q3

ď cεb,

for a b P
`1

2 , 3
2

˘

, the approximation result (6.3.3) would change to

∥U ´ Uans∥G3pR2ˆp0,T0ε´2qq
3 ď Cεb.

This is still a meaningful approximation result since ∥Uans∥G3pR2ˆp0,T0ε´2qq
3 ď Cε1{2.

A combination of the numerical results of Section 2.4 and Section 3.4 allows us to calculate
Uans.

Example 6.3.3 (Numerical Calculation of Uans)
We again choose ϵ1px1q “ 1χR´

` p1 ` e´x1qχR`
as in Example 3.4.1, and for the nonlinear part

we choose ϵ3 ” ´1. We now construct Uans for k0 “ 0.5 and ε “ 0.1. Thereby, we use the methods
described in Section 3.4 and Section 2.4.
First, we calculate the eigenfunction m, see Figure 3.2 paq, and determine ν0 « 0.494, ν1 « 0.964,
ν2 « ´0.115 from the dispersion relation, see Remark 3.4.2.
Second, the envelope A has to satisfy the nonlinear Schrödinger equation (4.1.13) with κ « 0.012.
For the initial value of the envelope we set

Ap0qpεx2q “ β´1
1

?
2 rη sech prηpβ2εx2 ´ x0qq eip´2cβ2εx2`γq{4,

with rη “ 2, c “ 1, x0 “ γ “ 0, β1 « 0.231 and β2 « 1.999. We can now use the explicit solution
(2.4.2) of the nonlinear Schrödinger equation. Note that this explicit solution satisfies the regularity
assumptions of Theorem 6.3.1.
The first component of Uans at time t “ 0 and at time t “ ε´2 “ 100 can be seen in Figure 6.1. Note
that we illustrate the interface Γ2 as a semi-transparent hyperplane.
For our example we have ϵ˘

1,m “ 1, ϵ˘
3,m “ ´1 and we can calculate

max
"

´

Up0q

ans,1

¯2
`

´

Up0q

ans,2

¯2
*

« 0.207.

For η “ 1
10 we have

0.207 ă
3

10
“

η ´ ϵ˘
1,m

3ϵ˘
3,m

and therefore im Up0q,˘
ans Ă Ω˘, see Remark 6.1.1.
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Figure 6.1.: (a) Plot of Uans,1pt “ 0q. (b) Plot of Uans,1pt “ 100q.

To illustrate that the calculated wave packet travels along the x2-axis we plotted |Uans,1ptq| for t P

t0, 33, 66, 100u in one picture, see Figure 6.2.

Figure 6.2.: (a) Plot of |Uans,1ptq| for t P t0, 33, 66, 100u.
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7. Construction of Suitable Initial Values

To apply Theorem 6.3.1 the initial value Up0q has to satisfy multiple conditions. In this chap-
ter we want to discuss the following three open problems:

i) Determine Up0q such that a G3-solution of Maxwell’s equations can exist, i.e. the com-
patibility conditions of order 3 are satisfied;

ii) determine Up0q such that the additional conditions for a solution of Maxwell’s equa-
tions are satisfied, i.e. (4.0.5) and (4.0.6) are satisfied;

iii) determine Up0q such that the initial values of Uans are close, i.e. (6.3.2) holds true.

Since problems i) and ii) come with some difficulties, we will discuss them separately in the
following sections.

Remark 7.0.1
There are two different view points for this problem. The first can be summarized as follows. One
starts with an initial value Up0q that satisfies conditions i) and ii) and Theorem 5.2.3 provides the
local existence of a solution of Maxwell’s equations. We now want to construct a suitable initial value

Up0q
anspx1, x2q “ εAp0qpεx2qmpx1qeik0x2 ` c.c.

such that we can use our approximation result, which provides the long time existence and an ap-
proximative solution. To this end, we have to find a small correction Ψ : R2zΓ2 Ñ R3 and a suitable
initial value Up0q

ans such that

Up0q ` Ψ “ Up0q
ans, ∥Ψ∥H3pR2q3 ď Cε3{2.

To solve this problem for a concrete case, information about the chosen Up0q and the material functions
ϵ1, ϵ3 are necessary.
We however proceed by the following complementary strategy. Assume that Uans is given and the
existence of a solution U has to be shown with Theorem 6.3.1. Therefore, we will have to find a
suitable small correction Φ : R2zΓ2 Ñ R3 such that

Up0q :“ Up0q
ans ` Φ, ∥Φ∥H3pR2q3 ď Cε3{2, (7.0.1)

and conditions i) and ii) are satisfied.
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7.1. Compatibility Conditions for Up0q

The goal for this section is the construction of initial values of the form (7.0.1) such that the
nonlinear compatibility conditions of order 3 are satisfied.

Remark 7.1.1
The existence of general initial values that satisfy the nonlinear compatibility conditions is shown in
Lemma 6.1 of [67]. The proof is based on Lemma 2.34 of [75] and an extension theorem for Sobolev
functions [38, Theorem 2.5.7]. To find initial values that are also of the form (7.0.1) a more involved
strategy is necessary.

With the notation of Section 5.3 applied to system (6.1.1) we get

U “ V p0qpUq,

BtU “ ´rSpUq´1

¨

˝

2
ÿ

j“1

AjBxjU

˛

‚“ rV
p1q

pUq,

B2
t U “ ´rSpUq´1

¨

˝

2
ÿ

j“1

AjBxj BtU ` Bt

´

rSpUq

¯

BtU

˛

‚“ rV
p2q

pUq.

For

rSpUq “

¨

˚

˝

ϵ1 0 0
0 ϵ1 0
0 0 µ0

˛

‹

‚

` ϵ3

¨

˚

˝

3U2
1 ` U2

2 2U1U2 0
2U1U2 U2

1 ` 3U2
2 0

0 0 0

˛

‹

‚

we get

rSpUq´1 “

¨

˚

˝

dpU1, U2qpϵ1 ` ϵ3pU2
1 ` 3U2

2qq ´2ϵ3dpU1, U2qU1U2 0
´2ϵ3dpU1, U2qU1U2 dpU1, U2qpϵ1 ` ϵ3p3U2

1 ` U2
2qq 0

0 0 µ´1
0

˛

‹

‚

,

with
dpU1, U2q :“

´

ϵ2
1 ` 4ϵ1ϵ3

`

U2
1 ` U2

2
˘

` 3ϵ2
3
`

U2
1 ` U2

2
˘2
¯´1

,

and

Bt rSpUq “ ϵ3

¨

˚

˝

6U1BtU1 ` 2U2BtU2 2BtU1U2 ` 2U1BtU2 0
2BtU1U2 ` 2U1BtU2 2U1BtU1 ` 6U2BtU2 0

0 0 0

˛

‹

‚

.
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With this we can write the operators V pjq without temporal derivatives:

V p0qpUq “ U,

V p1qpUq “

¨

˚

˝

2ϵ3dpU1, U2qU1U2Bx1U3 ` dpU1, U2q
`

ϵ1 ` ϵ3
`

U2
1 ` 3U2

2

˘˘

Bx2U3

´2ϵ3dpU1, U2qU1U2Bx2U3 ´ dpU1, U2q
`

ϵ1 ` ϵ3
`

3U2
1 ` U2

2

˘˘

Bx1U3

µ´1
0 pBx2U1 ´ Bx1U2q

˛

‹

‚

,

V p2qpUq “ ´rSpUq´1

¨

¨

˚

˚

˚

˝

6ϵ3U1

´

Vp1q

1 pUq

¯2
` 4ϵ3U2Vp1q

1 pUqVp1q

2 pUq ` 2ϵ3U1

´

Vp1q

2 pUq

¯2
´ Bx2Vp1q

3 pUq

2ϵ3U2

´

Vp1q

1 pUq

¯2
` 4ϵ3U1Vp1q

1 pUqVp1q

2 pUq ` 6ϵ3U2

´

Vp1q

2 pUq

¯2
` Bx1Vp1q

3 pUq

Bx1Vp1q

2 pUq ´ Bx2Vp1q

1 pUq

˛

‹

‹

‹

‚

.

The nonlinear compatibility conditions of order 3 are now given by

r
Vpjq

2

´

Up0q
¯z

2D
“

r
Vpjq

3

´

Up0q
¯z

2D
“ 0, j P t0, 1, 2u, (7.1.1)

and have to be satisfied so that a solution U P G3pR2 ˆ p0, T0ε´2qq3 can exist.
For

Up0qpxq “ Up0q
anspxq `

¨

˚

˝

Φ1pxq

Φ2pxq

Φ3pxq

˛

‹

‚

we now have to find a function Φ : R2 Ñ R3 such that (7.1.1) is satisfied.
Note that Up0q

ans satisfies the nonlinear compatibility conditions of order 1 since Jm2K1D “

Jm3K1D “ 0, see Section 3.2, therefore we get from (7.1.1) for j “ 0 the following conditions:

JΦ2K1D “ JΦ3K1D “ 0.

To rewrite equation
r

Vp1q

3

´

Up0q
¯z

2D
“ 0 we use that ik0m1 ´ Bx1 m2 “ ´iµ0ν0m3 and that m3

is continuous at x1 “ 0. Hence,

Jik0m1 ´ Bx1 m2K2D “ J´iµ0ν0m3K2D “ 0

and Φ has to satisfy

r
µ´1

´

m1ε2BX2 Apεx2qeik0x2 ` Bx2 Φ1 ´ Bx1 Φ2

¯z

2D
“ 0. (7.1.2)

The remaining nonlinear compatibility conditions give us rather complicated expressions.
From

r
Vp1q

2

´

Up0q
¯z

2D
“ 0 we get a nonlinear partial differential equation involving

Φ1, Φ2, Bx1 Φ3, Bx2 Φ3.
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Finally, we get from the remaining two nonlinear compatibility conditions two nonlinear
equations in

Φ1, Φ2, Bx1 Φ3, Bx2 Φ3, Bx2Bx1 Φ1, B2
x1

Φ2

and
Φ1, Φ2, Bx1 Φ1, Bx2 Φ1, Bx1 Φ2, Bx2 Φ2, Bx1 Φ3, Bx2 Φ3, B2

x1
Φ3, B2

x2
Φ3, Bx2Bx1 Φ3.

One now needs to find a solution Φ of these equations such that ∥Φ∥H3pR2q3 ď Cε3{2.
One way to simplify this problem could be with the help of an extension theorem. We use a
special case of Theorem 2.5.7 in [38] that states the following:

Lemma 7.1.2 (Extension Lemma)
For arbitrary functions ϕpkq,˘ P H3´kpRq3, k P t0, 1, 2u, there exists a function Φ P H3pR2q3 with
limx1Ñ0˘ Bk

x1
Φ˘px1, x2q “ ϕpkq,˘px2q, k P t0, 1, 2u and

∥Φ∥H3pR2q3 ď C
2
ÿ

k“0

ˆ∥∥∥ϕpkq,`
∥∥∥

H3´kpRq3
`

∥∥∥ϕpkq,´
∥∥∥

H3´kpRq3

˙

. (7.1.3)

PROOF: One combines the results of Theorem 2.5.7 in [38] for n “ 2, m “ 3 and s “ 0 with
the analogue result for the left half-space. The estimate follows from the proof of Theorem
2.5.7 in [38] where one uses that ∥ f ∥Hm1 pRq

ď ∥ f ∥Hm2 pRq
for m1 ď m2 and f P Hm2pRq.

To apply Lemma 7.1.2 to our problem, note that the nonlinear compatibility conditions have
only to be satisfied on the interface Γ2. Instead of finding a function Φpx1, x2q that satisfies
the nonlinear compatibility conditions, we only have to find functions ϕpkq,˘px2q, k P t0, 1, 2u

and extend them to R2
˘. To find the equations which ϕpkq,˘px2q have to satisfy we simply

replace Bk
x1

Φpx1, x2q in the nonlinear compatibility conditions by ϕpkq,˘px2q, e.g. (7.1.2) will
give us the equation

m1,`ε2BX2 Apεx2qeik0x2 ` Bx2 ϕ
p0q,`
1 ´ ϕ

p1q,`
2

“ m1,´ε2BX2 Apεx2qeik0x2 ` Bx2 ϕ
p0q,´
1 ´ ϕ

p1q,´
2 ,

with m1,˘pxq :“ limx1Ñ0˘ m1px1, x2q for x P Γ2.
Hence, the open question is how to find suitable ϕpkq,˘px2q that satisfy the equations corre-
sponding to the nonlinear compatibility conditions. If additionally

2
ÿ

k“0

ˆ∥∥∥ϕpkq,`
∥∥∥

H3´kpRq3
`

∥∥∥ϕpkq,´
∥∥∥

H3´kpRq3

˙

ď Cε3{2,

then ∥Φ∥H3pR2q3 ď Cε3{2 by (7.1.3).
Note that for this method (4.0.5) and (4.0.6) will be in general not fulfilled. Additional con-
ditions on ϕ

p0q,˘
1 , ϕ

p0q,˘
2 are necessary to satisfy

r
D1

´

Up0q

E

¯z

2D
“ ϱΓ. Moreover, a more so-

phisticated extension theorem would be needed to deal with ∇ ¨ D
´

Up0q,˘
E

¯

“ ϱ0 on R2zΓ2.
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7.2. Maxwell Conditions for Up0q

In this section, we try to satisfy the conditions

Bx1D1

´

Up0q,˘
E

¯

` Bx2D2

´

Up0q,˘
E

¯

“ ϱ0 (7.2.1)

and

r
D1

´

Up0q

E

¯z

2D
“ ϱΓ (7.2.2)

for Up0q “ Up0q
ans ` Φ and ∥Φ∥H3pR2q3 ď Cε3{2.

Remark 7.2.1
For the case in which ϱ0 and ϱΓ are not prescribed we could simply define

ϱ0 :“ Bx1D1

´

Up0q,˘
ans,E

¯

` Bx2D2

´

Up0q,˘
ans,E

¯

and

ϱΓ :“
r
D1

´

Up0q

ans,E

¯z

2D
.

Then the conditions (7.2.1), (7.2.2) would be satisfied for Up0q :“ Up0q
ans.

Since Uans satisfies (7.2.1), (7.2.2) for the linear displacement field Dlin “ ϵ1E exactly, one can
easily show that

∥∥∥∇ ¨ D
´

Up0q

ans,E

¯∥∥∥
L2pR2q

ď Cε3{2 and
r
D1

´

Up0q

ans,E

¯z

2D
is of order ε3, see Section

4.1.2. Therefore, ϱ0 and ϱΓ would be small.

For ϱ0 “ 0 and ϱΓ “ 0 but for a larger class of nonlinearities, this problem was considered in
[25]. There, initial data of the form

Up0q “ Up0q
ans ` pBx1 ϕ, Bx2 ϕ, 0qJ

with a correction function ϕ : R2 Ñ R was found by using minimization techniques. Let us
now present this approach.
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7.2.1. Quasilinear Transmission Problem

We consider the more general quasilinear transmission problem

#

´∇ ¨ apx,∇ϕq “ bpxq in R2
˘, (7.2.3a)

Jpapx,∇ϕq ` rϵ1U0q ¨ e1K2D “ 0, (7.2.3b)

with
apx,∇ϕq :“ ϵ f f pU0 ` ∇ϕq ` rϵ1∇ϕ,

rϵ1, ϵ f : R2 Ñ R` and
b :“ ∇ ¨ prϵ1U0q,

and where U0 : R2 Ñ R2 is a given vector field which satisfies the linear interface condition
Jrϵ1U0 ¨ e1K2D “ 0. Here e1 is the first unit vector. We aim to prove the existence of a solution
ϕ and establish an estimate for ∇ϕ.
Before we can state the main result of [25] we have to collect some definitions and assump-
tions.

Assumptions

We assume the following conditions on rϵ1, ϵ f , f and U0:

i) rϵ1, ϵ f P L8pR2q and there exists a constant d such that rϵ1pxq, ϵ f pxq ě d ą 0 for almost
all x P R2;

ii) there exist p ą 1 and F P C1pR2q convex such that

Fp0q “ 0, f “ ∇F and Fpvq ě µp|v|p`1

for some µp ą 0;

iii) there exist 1 ă α ď p and constants 0 ă λp ď Λp and Λα ě 0 such that for all v P R2

• | f pvq| ď Λp|v|p ` Λa|v|α ;

• f pvq ¨ v ą λp|v|p`1;

iv) U0 P L2pR2q2 X Lp`1pR2q2;

v) b :“ ∇ ¨ pϵ1U0q P L2pR2q X L1plog, R2q, where

L1plog, R2q :“
"

φ P L1
locpR2q

ˇ

ˇ

ˇ

ˇ

∥φ∥L1plog,R2q
:“

ż 2

R

logp2 ` |x|q|φpxq| dx ă 8

*

.

vi) U0 satisfies the transmission condition Jrϵ1U0 ¨ e1K2D “ 0;

vii) ϕ “ 0 is not a solution of the transmission problem (7.2.3a), (7.2.3b).
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We can now define the energy functional corresponding to (7.2.3a) as

J pϕq :“
ż

Rn
ϵ f FpU0 ` ∇ϕq dx `

ż

Rn
rϵ1

1
2

|∇ϕ|2 dx `

ż

Rn
rϵ1U0 ¨ ∇ϕ dx.

Indeed, we claim that the Euler-Lagrange equation associated with J is (7.2.3a). For any
η P C8

c pR2q we get

d
dδ

J pϕ ` δηq|δ“0 “

ż

Rn
ϵ f f pU0 ` ∇ϕq ¨ ∇η dx `

ż

Rd
rϵ1pU0 ` ∇ϕq ¨ ∇η dx.

Assumptions ii) and iii) suggest the following function space for ϕ in which the functional
J is well-defined:

D2,p`1pR2q :“ D1,2
0 pR2q X D1,p`1

0 pR2q,

where for q ě 1

D1,q
0 pR2q :“ C8

c pR2q
|¨|1,q with the norm |u|1,q :“ ∥∇u∥LqpR2q

is the homogeneous Sobolev space. The norm on D2,p`1 is defined as ∥¨∥D :“ | ¨ |1,2 ` | ¨ |1,p`1.
Now critical points of J are the weak solutions of (7.2.3a) in the following sense:

Definition 7.2.2 (Weak Solution of the Transmission Problem)
We say that ϕ P D2,p`1pR2q is a weak solution of problem (7.2.3a), (7.2.3b) if

ż

R2
ϵ f f pU0 ` ∇ϕq ¨ ∇η dx `

ż

R2
rϵ1pU0 ` ∇ϕq ¨ ∇η “ 0, @ η P D2,p`1pR2q.

Theorem 7.2.3 (Existence Theorem for the Transmission Problem)
Let rϵ1, ϵ f , f , U0 satisfy Assumptions i)–vii). Then there exists a non-trivial minimum ϕ of the func-
tional J in D2,p`1pR2q and there holds

ż

R2
|∇ϕ|2 dx `

ż

R2
|U0 ` ∇ϕ|p´1|∇ϕ|2 dx

ď C
´

∥U0∥p`1
Lp`1pR2q2 ` ∥U0∥α`1

Lα`1pR2q2 ` ∥b∥2
L2pR2q ` ∥b∥2

L1plog,R2q

¯

,
(7.2.4)

where the constant C depends only on Λp, λp, Λa, d, ∥rϵ1∥L8pR2q and
∥∥ϵ f

∥∥
L8pR2q

. Moreover, ϕ is a
weak solution of (7.2.3a), (7.2.3b).

PROOF: The proof is carried out in detail in [25] for the n-dimensional case. Here we give
just a sketch of the proof.
By means of Assumptions i)–vii) one may show that J is well-defined and coercive on the
reflexive Banach space D2,p`1pR2q. Hence, the existence of ϕ follows from the direct method
of the calculus of variations, see e.g. [34].
Estimate (7.2.4) follows from the assumptions and some technical involved estimates.
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7.2.2. Application to the Maxwell Problem

The transmission problem (7.2.3a), (7.2.3b) corresponds to (7.2.1), (7.2.2) with ϱ0 “ 0, ϱΓ “ 0,
Up0q “ Up0q

ans ` pBx1 ϕ, Bx2 ϕ, 0qJ if we set

U0 “

´

Up0q

ans,1, Up0q

ans,2

¯J

, rϵ1pxq “ ϵ1px1q, ϵ f pxq “ ϵ3px1q, f pvq “ |v|2v. (7.2.5)

It is easy to see that for our Maxwell problem most of the Assumptions i)–vii) from Section
7.2.1 are satisfied. Indeed, the regularity assumptions are satisfied since ϵ1, ϵ3, Up0q

ans satisfy
(A1), (A6) and (4.2.10). For our nonlinearity all assumptions are satisfied with α “ p “ 3.
Simply notice that with Fpvq :“ 1

4 |v|4 we have ∇Fpvq “ |v|2v. The last two Assumptions
vi)–vii) are also satisfied, see Remark 7.2.1.
Only for the assumption that ϵ f has to be positive we have to modify our Assumption (A6).
Assume that there are constants ϵ˘

3,m, ϵ˘
3,M such that

ϵ˘
3 P C3pR˘q X W3,8pR˘q, 0 ă ϵ˘

3,m ď ϵ˘
3 px1q ď ϵ˘

3,M, @ x1 P Rzt0u. (A6*)

Now Theorem 7.2.3 yields the existence of a function ϕ such that Up0q satisfies (7.2.1) and
(7.2.2) and

∥∇ϕ∥2
L2pR2q2 ď C

´

∥U0∥4
L4pR2q2 ` ∥b∥2

L2pR2q ` ∥b∥2
L1plog,R2q

¯

. (7.2.6)

For ∇ϕ to be a meaningful correction term of U0, its L2-norm should be at least Opε1{2q or in
the optimal case Opε3{2q, see (6.3.2) and Remark 6.3.2. Let us therefore estimate the norms
on the right-hand side of (7.2.6), see [25, Proposition 5.1].
By the definition of Uans and with rm :“ pm1, m2qJ we have

ż

R2
|U0|4 dx “ ε4

ż

R

|Ap0qpεx2q|4 dx2

ż

R

|rmpx1q|4 dx1 ď ε3
∥∥∥Ap0q

∥∥∥4

L4pRq
∥m∥4

L4pRq3 .

Note that we again lose one power of ε due to the scaling of A. By Sobolev embedding we
know that Ap0q P L4pRq and m P L4pRq3 and we conclude

∥U0∥4
L4pR2q2 “ Opε3q. (7.2.7)

For b “ ∇ ¨ pϵ1U0q, we get

bpx1, x2q “

´

εAp0qpεx2qpBx1pϵ1px1qm1px1qq ` ϵ1px1qik0m2q ` ε2ϵ1BX2 Ap0qpεx2qm2

¯

eik0x2 ` c.c.

Since m is a solution of the linear eigenvalue problem, the terms to order ε vanish, see Re-
mark 4.1.5, and hence

bpx1, x2q “ ε2ϵ1px1qAp0qpεx2qm2px1qeik0x2 ` c.c.,
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which implies
∥b∥2

L2pR2q “ Opε3q (7.2.8)

since m2 P L2pRq and Ap0q P L2pRq.
For the last term in (7.2.6), we first note the simple equality

logps ` tq “ logpsq ` log
´

1 `
t
s

¯

, s, t P R`,

to obtain, for a suitable constant c ą 0,

logp2 ` |x|q ď logp2 ` c|x1| ` c|x2|q “ logp2 ` c|x1|q ` log
ˆ

1 `
c|x2|

2 ` c|x1|

˙

ď logp2 ` c|x1|q ` logp2 ` c|x2|q.

Hence,

∥b∥L1plog,Rq ď ε2 ∥ϵ1∥L8pRq

ż

R

ˇ

ˇ

ˇ
BX2 Ap0qpεx2q

ˇ

ˇ

ˇ
|m2px1q| logp2 ` |x|q dx

ď Cε2
ˆ

∥m2∥L1plog,Rq

ż

R

ˇ

ˇ

ˇ
BX2 Ap0qpεx2q

ˇ

ˇ

ˇ
dx2 ` ∥m2∥L1pRq

ż

R

ˇ

ˇ

ˇ
BX2 Ap0qpεx2q

ˇ

ˇ

ˇ
logp2 ` c|x2|q dx2

˙

ď Cε2 ∥m2∥L1plog,Rq

ż

R

ˇ

ˇ

ˇ
BX2 Ap0qpεx2q

ˇ

ˇ

ˇ
p1 ` logp2 ` c|x2|qq dx2

ď Cε ∥m2∥L1plog,Rq

ż

R

ˇ

ˇ

ˇ
BX2 Ap0qpyq

ˇ

ˇ

ˇ
log

ˆ

e ` c
|y|

ε

˙

dy,

where in the last inequality we use the variable transformation y “ εx2. Finally, choosing
any γ ą 0 one may estimate logpe ` ctq ď Cp1 ` tγq for all t ě 0. Therefore,

∥b∥L1plog,Rq ď C ∥m2∥L1plog,Rq

ˆ

ε ∥BX2 A∥L1pRq
` ε1´γ

ż

R

|BX2 Apyq||y|γ dy
˙

“ Opε1´γq, (7.2.9)

provided m2 P L1plog, Rq and

BX2 A P L1pγ, Rq :“
"

φ P L1pRq

ˇ

ˇ

ˇ

ˇ

ż

R

|φpxq|p1 ` |x|γq dx ă 8

*

.

Since we are mostly interested in localized wave packet solutions, the conditions m2 P

L1plog, Rq and BX2 A P L1pγ, Rq are not very restrictive. Indeed, see Figure 3.2 pbq where
we see an example for an eigenfunction m that is exponentially decaying.
In summary, from estimate (7.2.6) one infers by (7.2.7), (7.2.8) and (7.2.9)

∥∇ϕ∥L2pR2q2 ď C
´

ε3{2 ` ε1´γ
¯

, (7.2.10)

where γ ą 0 is arbitrary and the constant C does not depend on ε. Hence, choosing γ P
`

0, 1
2

˘

one obtains an estimate of order Opε1{2q and ∥∇ϕ∥L2pR2q2 “ Opε1´γq.
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Finally, note that Up0q “ Up0q
ans ` pBx1 ϕ, Bx2 ϕ, 0qJ satisfies the interface conditions

r
D1

´

Up0q

E

¯z

2D
“

r
Up0q

2

z

2D
“

r
Up0q

3

z

2D
“ 0.

Indeed, since
r

Up0q

ans,2

z

2D
“

r
Up0q

ans,3

z

2D
“ 0, see Section 3.2, we only have to check if Bx2 ϕ

is continuous at x1 “ 0. From ϕ P D2,4pR2q Ă D1,4
0 pR2q it follows that ϕ P W1,4

loc pR2q, see
e.g. Lemma II.6.1 in [32]. By Sobolev embedding this implies that ϕ P C0,1{2

loc pR2q. On the
half-spaces we even have the improved regularity ϕ˘ P C1,1{2

loc

`

R2
˘

˘

, see [20]. Hence, ϕ is
continuous across the interface and every tangential derivative with respect to the interface
is continuous too, see e.g. [83, Section 173-175]. Note however, that the nonlinear compati-
bility conditions of higher order will in general not be satisfied.

Remark 7.2.4
Note that we only estimated the L2-norm of ∇ϕ. In Theorem 2.2 and Remark 12 of [25] it is shown
that estimates analogous to (7.2.10) in the Hm-norm are possible, when the coefficients satisfy ad-
ditional regularity assumptions. However, mainly because of the loss of powers in ε caused by the
estimate on the logarithmic term, the estimates one can prove for the higher-order derivatives of ∇ϕ

are not able to provide (6.3.2).
In Section 7.2.3 we will present a numerical method to calculate ∇ϕ. The numerical tests suggest
that a correction with ∥∇ϕ∥L2pR2q2 ď Cε3{2 is possible.

7.2.3. Numerical Calculation of the Correction ∇ϕ

In this section we present a numerical method to calculate a solution ϕ of (7.2.3a), (7.2.3b)
with JBx2 ϕK2D “ 0 for the Maxwell setting (7.2.5), i.e. Up0q “ Up0q

ans ` pBx1 ϕ, Bx2 ϕ, 0qJ satisfies
(7.2.1), (7.2.2) and

r
Up0q

2

z

2D
“ 0. We use the finite element method in combination with a

fixed-point iteration.

Moving the nonlinear term to the right-hand side, one needs to solve

$

’

’

&

’

’

%

´∇ ¨ pϵ1∇ϕq “ fpϕq in R2
˘,

Jϵ1Bx1 ϕK2D “ hpϕq,

JBx2 ϕK2D “ 0,

(7.2.11)

with the ϕ-dependent functions

fpϕq :“ ∇ ¨
`

ϵ1U0 ` ϵ3|U0 ` ∇ϕ|2pU0 ` ∇ϕ
˘

q,

hpϕq :“ ´
q

ϵ3|U0 ` ∇ϕ|2pU0,1 ` Bx1 ϕq
y

2D .

To find a solution of (7.2.11), we rewrite the problem as a system of two coupled Neumann
boundary value problems, in which we have to determine the functions ϕ : R2

˘ Ñ R and
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g : Γ Ñ R such that
$

’

’

’

’

’

&

’

’

’

’

’

%

´∇ ¨ pϵ1∇ϕq “ fpϕq in R2
˘,

pϵ1Bx1 ϕq´ “ g,

pϵ1Bx1 ϕq` “ hpϕq ` g,

JBx2 ϕK2D “ 0,

(7.2.12)

where we use u˘pxq “ limx1Ñ0˘ upx1, x2q, for x P Γ2. Note that a solution ϕ of (7.2.12) is
also a solution of (7.2.11). We will use the freedom in the choice of g to satisfy the second
interface condition JBx2 ϕK2D “ 0. Let us now describe how to approximate the solution of
the nonlinear problem (7.2.12) with the help of a fixed-point iteration. We select an initial
guess ϕ0 and solve

$

’

’

’

’

’

&

’

’

’

’

’

%

´∇ ¨ pϵ1∇ϕn`1q “ fpϕnq in R2
˘,

pϵ1Bx1 ϕn`1q´ “ gn`1,

pϵ1Bx1 ϕn`1q` “ hpϕnq ` gn`1,

JBx2 ϕn`1K2D “ 0

iteratively for n ě 0. The weak formulation of the problem is given by

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ż

R2
`

ϵ1∇ϕn`1 ¨ ∇η dx `

ż

Γ
gn`1η dx “

ż

R2
`

fpϕnqη dx ´

ż

Γ
hpϕnqη dx, η P H1pR2

`q,

ż

R2
´

ϵ1∇ϕn`1 ¨ ∇η dx ´

ż

Γ
gn`1η dx “

ż

R2
´

fpϕnqη dx, η P H1pR2
´q,

JBx2 ϕn`1K2D “ 0.
(7.2.13)

To solve (7.2.13) numerically, we use the finite element method, see e.g. [3, 39].
First, we replace R2

˘ and Γ2 by suitable bounded domains Ω˘ Ă R2
˘, rΓ :“ Ω` X Ω´ Ă Γ2,

respectively, and add homogeneous Neumann boundary conditions at BΩ˘zrΓ.
Furthermore, we substitute H1

`

R2
˘

˘

with the following N-dimensional subspaces V˘ :“
spantη˘

k | k P t1, . . . , Nuu, N P N, where the shape functions η˘
k P H1pΩ˘q are the standard

piecewise linear hat functions, which are linearly independent. Then we look for solutions
of the form

ϕn`1pxq “

$

’

’

&

’

’

%

N
ř

k“1
Φ`

n`1,k η`
k pxq, x P Ω`,

N
ř

k“1
Φ´

n`1,k η´
k pxq, x P Ω´,

gn`1pxq “

N
ÿ

k“1

Gn`1,k η`
k pxq|

rΓ,
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where the coefficients Φ˘
n`1,k, Gn`1,k P R are the solutions of the following system:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

N
ÿ

k“1

˜

Φ`
n`1,k

ż

Ω`

ϵ1∇η`
j ¨ ∇η`

k dx ` Gn`1,k

ż

rΓ
η`

j η`
k dx

¸

“

ż

Ω`

fpϕnqη`
j dx ´

ż

rΓ
hpϕnqη`

j dx, j P t1, . . . , Nu,

N
ÿ

k“1

˜

Φ´
n`1,k

ż

Ω´

ϵ1∇η´
j ¨ ∇η´

k dx ´ Gn`1,k

ż

rΓ
η´

j η`
k dx

¸

“

ż

Ω´

fpϕnqη´
j dx, j P t1, . . . , Nu,

N
ÿ

k“1

Φ´
n`1,kBx2 η´

k |
rΓ ´

N
ÿ

j“1

Φ`
n`1,jBx2 η`

j |
rΓ “ 0.

(7.2.14)

Remark 7.2.5
Note that only NΓ ă N shape functions η`

k are not trivial on rΓ and that the discretization divides rΓ
in pNΓ ´ 1q line segments. From the last equation in (7.2.14) we therefore get pNΓ ´ 1q equations we
have to satisfy. The extra degree of freedom left will be used below to satisfy a compatibility condition.
Due to the Neumann boundary conditions and the fact that f and h depend only on the gradient of
ϕ, the solution is unique only up to an additive constant. To get uniqueness we additionally demand
ş

Ω˘
ϕn`1 dx “ 0. Therefore, we extend the finite element formulation with

N
ÿ

k“1

Φ˘
n`1,k

ż

Ω˘

η˘
k dx “ 0.

In the implementation we will incorporate these zero mean value conditions with the help of Lagrange
multipliers. This increases the discretization matrix by two rows and columns, see e.g. [48, Chapter
4.8].
Additionally, note that f, g, h have to satisfy certain compatibility conditions. Indeed, Gauss’s theo-
rem implies that

ż

Ω˘

f˘pϕ˘
n q dx “ ´

ż

Ω˘

∇ ¨
`

ϵ˘
1 ∇ϕ˘

n`1

˘

dx “ ˘

ż

rΓ
pϵ1Bx1 ϕn`1q˘ dx

and hence
ż

Ω`

f`pϕ`
n q dx “

ż

rΓ
phpϕnq ` gn`1q dx, (7.2.15)

ż

Ω´

f´pϕ´
n q dx “ ´

ż

rΓ
gn`1 dx. (7.2.16)
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We now use the structure of f and Gauss’s theorem to show that

ż

Ω´

f´pϕ´
n q dx `

ż

Ω`

f`pϕ`
n q dx “

ż

rΓ

`

ϵ1U0,1 ` ϵ3|U0 ` ∇ϕ|2pU0,1 ` Bx1 ϕq
˘

´
dx

´

ż

rΓ

`

ϵ1U0,1 ` ϵ3|U0 ` ∇ϕ|2pU0,1 ` Bx1 ϕq
˘

`
dx

“

ż

rΓ
hpϕnq dx,

where in the last step we used that Jϵ1U0,1K2D “ Jϵ1Uans,1K2D “ 0. Therefore, the sum of (7.2.15)
and (7.2.16) is satisfied. To fulfill both conditions we have to add an additional condition to our finite
element method, e.g.

ÿ

k

Gn`1,k

ż

rΓ
η`

k pxq dx “ ´

ż

Ω´

f´pϕ´
n q dx.

Note that we still have one degree of freedom left in our finite element formulation to satisfy this
condition.
Let

´

Φ´
n`1,1, . . . , Φ´

n`1,N , Φ`
n`1,1, . . . , Φ`

n`1,N , λ1, λ2, Gn`1,1, . . . , Gn`1,N

¯J

be the vector of the unknowns, where λ1, λ2 are the mentioned Lagrange multipliers. The structure
of the discretization matrix of the finite element method can then be seen in Figure 7.1. From the
top left to the bottom right we see the discretization of the differential equations, the zero mean value
condition, the interface condition and finally the compatibility condition.

(a)

Figure 7.1.: (a) Schematic structure of the discretization matrix of the finite element method.

Let us now consider two examples. First, let us study an example where all the assumptions
of Section 7.2.1 are satisfied. This example was also studied in [25].
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Example 7.2.6 (Numerical Calculation of ∇ϕ (positive ϵ3))
Let ϵ1px1q “ 1χR´

` p1 ` e´x1qχR`
as in Example 3.4.1. We now want to select values for

pk0, ωpk0qq such that the eigenfunction has a strong localization. We select k0 « 3.435 and ωpk0q “

3 and the corresponding eigenfunction m :“ wpk0q. For the nonlinearity we choose ϵ3 ” 1 positive
and select a strongly localized initial value for the envelope Ap0qpx2q “ e´5¨106ε2x2

2 . For the discretiza-
tion we select Ω´ “ r´6, 0s ˆ r´6, 6s and Ω` “ r0, 6s ˆ r´6, 6s and choose a regular triangulation
of step size h together with standard hat functions for η˘

k .
For the fixed-point iteration we start with ϕ0 ” 0 as an initial guess. Let us first check the conver-
gence of the discretization in h and in the iteration n. For Figure 7.2 paq we fixed ε “ 3 ¨ 10´4 and
calculated

∥∥∥∇ ¨ D
´

Up0q

E

¯∥∥∥
L2pR2q

for different step sizes h ranging from 0.25 to 0.005. For Figure

7.2 pbq we also fixed h “ 0.005 and calculated the L2-norm of the residual

Resn :“ ´∇ ¨ pϵ1∇ϕnq ´ fpϕnq

in each step of the fixed-point iteration. We see the numerical convergence in both plots.

10
-2

10
-1

10
-5

10
-4

(a)

0 1 2 3 4 5
10

-20

10
-15

10
-10

10
-5

(b)

Figure 7.2.: Example 7.2.6: (a)
∥∥∥∇ ¨ D

´

Up0q

E

¯∥∥∥
L2pR2q

in dependence on the step size h.

(b) ∥Resn∥L2pR2q for the first five steps of the iteration.

Finally, we study the ε-convergence of ∥∇ϕ∥L2pR2q2 . For the fixed step size h “ 0.005 and ε ranging
from 10´4 to 10´3 we obtain the convergence rate 3

2 , see Figure 7.3 paq.
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2 3 4 5 6 7 8 9

10
-4

10
-5

10
-4

(a)

Figure 7.3.: Example 7.2.6: (a) ∥∇ϕ∥L2pR2q2 in dependence of ε.

For a second example we use the same setting as in Example 3.4.1 and Example 6.3.3.

Example 7.2.7 (Numerical Calculation of ∇ϕ (negative ϵ3))
Let again ϵ1px1q “ 1χR´

` p1 ` e´x1qχR`
. For k0 “ 0.5 we calculate m, see Figure 3.2, choose

ϵ3 ” ´1 and set Ap0qpεx2q as in Example 6.3.3. For the discretization we select Ω´ “ r´100, 0s ˆ

r´400, 400s and Ω` “ r0, 100s ˆ r´400, 400s and choose a regular triangulation of step size
h “ 0.1.
We can now study the ε-convergence of ∥∇ϕ∥L2pR2q2 numerically. For ε ranging from 0.004 to 0.1
we again obtain the desired rate of convergence, see Figure 7.4. Note that this example did not satisfy
Assumption (A6*), nevertheless the numerical convergence rate is 3

2 .

10
-2

10
-1

10
-3

10
-2

10
-1

10
0

(a)

Figure 7.4.: Example 7.2.7: (a) ∥∇ϕ∥L2pR2q2 in dependence of ε.

Finally, for ε “ 0.01 Figures 7.5 paq and pbq show the first components of the computed solutions
∇ϕ and Up0q, respectively. To calculate an approximative solution of (7.2.14) we used the generalized
minimum residual method in form of the Matlab function “gmrs”.
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7.2. Maxwell Conditions for Up0q Chapter 7

Figure 7.5.: Example 7.2.7: (a) Bx1 ϕ for ε “ 0.01. (b) Up0q

1 “ Up0q

ans,1 ` Bx1 ϕ for ε “ 0.01. Note
the different scales in (a) and (b).
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8. Conclusion and Outlook

Let us summarize the results of this thesis and give an outlook on possible future research
topics.

We studied the two-dimensional Maxwell problem with Kerr nonlinearity for transverse
magnetic modes at the interface of two homogeneous dielectrics with instantaneous mate-
rial response and formally constructed an asymptotic wave packet solution Uans with the
help of the method of amplitude equations. Our analysis showed that the corresponding
amplitude equation is given by a nonlinear Schrödinger equation.
In Theorem 6.3.1 we rigorously proved the approximation properties of Uans. We showed
that under certain assumption on the initial values Up0q, there exists a solution U of the
Maxwell problem (4.0.2) – (4.0.6) such that

∥U ´ Uans∥G3pR2ˆp0,T0ε´2qq
3 ď Cε

3
2 ´δ.

To this end, we extended an existing local existence result for Maxwell’s equations to the
long time interval r0, T0ε´2s, by employing an involved bootstrapping argument for small
initial data.
Additionally, we developed techniques to study the linear Maxwell problem analytically
and numerically and provided first ideas to study the open problem of finding suitable ini-
tial values Up0q.
To our knowledge this is the first time that approximative solutions for the time dependent,
multidimensional Maxwell problem with Kerr nonlinearity were rigorously studied and no
reduction to the simpler scalar or time-harmonic setting was deployed.

In future research the open questions presented in Chapter 7 are of utmost interest. Here
new techniques are necessary to improve the results of Section 7.2 and to involve the com-
patibility conditions of higher order.
From a numerical point of view, a validation of the approximation result would be of in-
terest. Here a numerical solution of the Maxwell problem has to be calculated, which can
be rather difficult. One promising method for quasilinear wave-type equations involving a
discontinuous Galerkin method and a leapfrog scheme is presented in [50].
An adaptation of the presented methods to different Maxwell problems is also intriguing.
Here one could study different geometries, e.g. Maxwell’s equations in three dimensions,
curved interfaces or multiple layers of different materials, or study different models for the
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Chapter 8

displacement field as discussed in Remark 2.2.1. Adapting the presented proof to these new
formulations of the Maxwell problem will be challenging. Our analytical and numerical
methods for the analysis of the linear Maxwell problem are heavily dependent on proper-
ties of ϵ1 and it would not be trivial to transfer them to different settings. The derivation of
the amplitude equation and the construction of the extended ansatz Uext can also be chal-
lenging. For displacement fields with complex valued material functions ϵ1 or displacement
fields that involve convolutions in time, e.g.

rDpx, tq “ ϵ0

ˆ

Epx, tq `

ż 8

´8

rχ1px, t ´ sqEpx, sq ds ` rχ3pxqpEpx, tq ¨ Epx, tqqEpx, tq
˙

, (8.0.1)

one also expects to derive the complex Ginzburg-Landau equation instead of the nonlinear
Schrödinger equation as the amplitude equation, see [72] and Appendix A. For the rigorous
analysis a well-posedness and local existence result is necessary. For different settings, such
as (8.0.1), the local existence theory of Chapter 5 may not be applicable and new results are
necessary.
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A. Derivation of the Complex

Ginzburg-Landau Equation

In this chapter we will formally derive the complex Ginzburg-Landau equation as an ampli-
tude equation for the approximative solution of Maxwell’s equations with a displacement
field that is non-local in time. Many calculations will be similar to the ones in Chapter 4 and
we will therefore only illustrate the main differences. The complex Ginzburg-Landau equa-
tion can be derived as an amplitude equation in various different problems, see e.g. [36, 55,
72, 52, 71].

We want to study the two-dimensional Maxwell problem with an interface (2.2.10), (2.2.11)
but with the displacement field

Dpx, tq “ ϵ0

ˆ

Epx, tq `

ż 8

´8

χ1px, t ´ sqEpx, sq ds ` χ3px, tqpEpx, tq ¨ Epx, tqqEpx, tq
˙

and the discontinuous susceptibilities

χ1px, tq “

$

&

%

χ´
1 ptq, x1 ă 0,

χ`
1 ptq, x1 ą 0,

χ3px, tq “

$

&

%

χ´
3 , x1 ă 0,

χ`
3 , x1 ą 0,

where χ˘
1 : Rzt0u Ñ R are sufficiently smooth and χ˘

3 P R. Due to causality we also assume
χ1ptq “ 0 for t ă 0.

Remark A.1
For surface plasmon polaritons the interface between a metal and a dielectric material is of interest.
To model the properties of the metal one often uses the Drude model

pχpωq “ ´
ω2

p

ω2 ` iγω
,

where ωp, γ P R and pχ1 is the Fourier transform of χ1.
For some types of materials other models may be appropriate. A discussion of other models can be
found in [65, 72, 61], e.g. the Lorentz model

pχpωq “
ω2

p

ω2
0 ´ ω2 ` iγω

,
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Appendix A

where ω0, ωp, γ P R.
Note that for the Drude and the Lorentz model χptq “ 0 for t ă 0, χptq is exponentially decaying for
t ą 0 and pχ1p´ωq “ pχpωq. These properties will be necessary for the following analysis.

We again start with the analysis of the linear problem. With the ansatz

Epx1, x2, tq “

¨

˚

˝

ϕ1px1, k, ωq

ϕ2px1, k, ωq

ϕ3px1, k, ωq

˛

‹

‚

eipkx2´ωtq ` c.c., Hpx1, x2, tq “

¨

˚

˝

ψ1px1, k, ωq

ψ2px1, k, ωq

ψ3px1, k, ωq

˛

‹

‚

eipkx2´ωtq ` c.c.

for some k P R and ω P C we get for the linear part of the displacement field

Dlinpx, tq “ ϵ0

ˆ

Epx, tq `

ż 8

´8

χ1px, sqEpx, t ´ sq ds
˙

“ ϵ0

´

1 `
?

2π pχ1px, ´ωq

¯

ϕpx, tqeipkx2´ωtq ` ϵ0

´

1 `
?

2π pχ1px, ωq

¯

ϕpx, tqe´ipkx2´ωtq

“ ϵ0

´

1 `
?

2π pχ1px, ´ωq

¯

Epx, tq,

where we used that pχ1p´ωq “ pχpωq. Note that

ϵ1px1, ωq :“

$

&

%

ϵ´
1 pωq “ ϵ0

`

1 `
?

2π pχ´
1 p´ωq

˘

, x1 ă 0,

ϵ`
1 pωq “ ϵ0

`

1 `
?

2π pχ`
1 p´ωq

˘

, x1 ą 0

is constant in x1 on both sides of the interface. We can therefore repeat the same calculations
as in Example 3.1.4 and get explicit formulas for the functions ϕj, ψj, see (3.1.4), where the
dispersion relation

k2 “ ω2µ0
ϵ`

1 pωqϵ´
1 pωq

ϵ`
1 pωq ` ϵ´

1 pωq
, (A.1)

and the condition
Re

ˆ

´i
b

µ0ϵ˘
1 pωqω2 ´ k2

˙

ą 0 (A.2)

have to be satisfied, such that non-trivial, integrable solutions, that satisfy the interface con-
ditions, can exist. Note that only TM-modes are possible and that we combine the three
non-trivial components in one vector wpkq :“ pϕ1pkq, ϕ2pkq, ψ3pkqqJ. In contrast to the main
part of this thesis we now have complex valued functions ωpkq, wpkq and ϵ1pωq.
The linear eigenvalue problem is similar to (3.1.10) given by

Lpkqwpx1q ` ωΛpωqwpx1q “ 0, x1 P Rzt0u, (A.3)
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with

Lpkqw :“

¨

˚

˝

kw3

iBx1 w3

kw1 ` iBx1 w2

˛

‹

‚

, Λpωqw :“

¨

˚

˝

ϵ1px1, ωqw1

ϵ1px1, ωqw2

µ0w3

˛

‹

‚

,

and D pLpkqq, D pΛpωqq as in (3.2.1). Note that the operator Λ is now dependent on ω and
that Lpkq ` ωΛpωq is no longer self-adjoint, since ϵ1pωq, ω are complex.
The adjoint problem is given by

pLpkq ` ωΛpωqq
˚ vpx1q “ Lpkqvpx1q ` ωΛpωqvpx1q “ 0, x1 P Rzt0u.

For a solution v of the adjoint problem it is easy to see that w “ pv1, ´v2, v3qJ is a solution
of (A.3). Since solutions of (A.3) can only exist when (A.1) and (A.2) are satisfied, the same
must be true for the adjoint problem.
Let us now study the inhomogeneous problem

Lpkqwpx1q ` ωΛpωqwpx1q “ f , x1 P Rzt0u.

As in Section 3.3 we can use the exponential dichotomy to show that Lpkq ` ωΛpωq is a
Fredholm operator when (A.2) is satisfied. Now the closed range theorem implies that

R pLpkq ` ωΛpωqq “ N ppLpkq ` ωΛpωqq˚q
K . (A.4)

Note that we can use the variation of constants formula to explicitly calculate solutions of
the inhomogeneous problem.
Let us now construct the asymptotic solution. We fix k “ k0 ą 0 and determine ωpk0q with
the help of (A.1). Similar to [72] we thereby assume that k0 can be chosen such that for a
small ε ą 0 and a constant α P R we have

Im pωpk0qq “ αε2, Im pBkωpk0qq “ 0.

Remark A.2
This form of ωpk0q will allow us to derive the complex Ginzburg-Landau equation. Typically, one
chooses α ă 0, which results in a damping effect. Note that the asymptotic parameter ε is coupled to
the eigenvalue ωpk0q. We therefore need a physical setting that allows for small enough ε such that
the asymptotic analysis is meaningful.

For ν0 :“ Re pωpk0qq we additionally assume that

(A.1) does not hold for pk, ωq “ p3k0, 3ν0q,

(A.2) holds for pk, ωq “ pk0, ωpk0qq and pk, ωq “ p3k0, 3ν0q.
(A.5)

Note that for small enough ε condition (A.2) also holds for pk, ωq “ p3k0, ωp3k0qq.
These assumptions give us the existence of an eigenfunction mpx1q :“ wpx1q and are needed
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for the treatment of the higher harmonics later on. We then set ν1 :“ Bkωpk0q, ν2 :“ B2
k ωpk0q

and make the ansatz

Uanspx, tq :“

¨

˚

˝

Eans,1px, tq
Eans,2px, tq
Hans,3px, tq

˛

‹

‚

:“ εApεpx2 ´ ν1tq, ε2tqmpx1qF1 ` c.c., (A.6)

where as before F1 :“ eipk0x2´ν0tq and A “ ApX2, Tq is a complex envelope with the variables
X2 :“ εpx2 ´ ν1tq and T :“ ε2t.
We now apply the Fourier transform between x2 and k and get analogously to Section 4.1.1

pUanspx1, k, tq :“

¨

˚

˝

pEans,1px1, k, tq
pEans,2px1, k, tq
pHans,3px1, k, tq

˛

‹

‚

:“ pApK, Tqmpx1qE1 ` xc.c.,

with K :“ k´k0
ε , E1 :“ e´ipν0`pk´k0qν1qt.

We can now proceed as in Section 4.1.1 by taking the Taylor expansions of ωpkq, wpkq and
also pχ1p´ωpkqq:

ωpkq “ ωpk0 ` εKq “ ν0 ` εKν1 `
1
2

ε2K2ν2 ` ε2iα ` Opε3q,

wpkq “ wpk0 ` εKq “ m ` εKBkwpk0q `
1
2

ε2K2B2
k wpk0q ` Opε3q,

pχ1p´ωpk0qq “ pχ1p´ν0 ´ ε2iαq “ pχ1p´ν0q ´ ε2iαBω pχ1p´ν0q ` Opε3q,

pχ1p´ωpkqq “ pχ1p´ωpk0 ` εKqq

“ pχ1p´ν0q ´ εKν1Bω pχ1p´ν0q ´ ε2iαBω pχ1p´ν0q

´
1
2

ε2K2ν2Bω pχ1p´ν0q `
1
2

ε2K2ν2
1B2

ω pχ1p´ν0q ` Opε3q.

Compared to Section 4.1.1 we note the additional term ε2iα in the expansion of ωpkq. The
Taylor expansion of the operator Lpkq is the same as before, but for Λpωq we get the expan-
sion

Λpωq “ Λ0 ` εKΛ1 `
1
2

ε2K2Λ2 ` ε2A ` Opε3q,
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with the operators Λ0, Λ1, Λ2, A defined as

Λ0m :“

¨

˚

˝

ϵ0
`

1 `
?

2π pχ1p´ν0q
˘

m1

ϵ0
`

1 `
?

2π pχ1p´ν0q
˘

m2

µ0m3

˛

‹

‚

, Λ1m :“ ´ϵ0
?

2π ν1Bω pχ1p´ν0q

¨

˚

˝

m1

m2

0

˛

‹

‚

,

Λ2m :“ ϵ0
?

2π
`

´ν2Bω pχ1p´ν0q ` ν2
1B2

ω pχ1p´ν0q
˘

¨

˚

˝

m1

m2

0

˛

‹

‚

,

Am :“ ´ϵ0
?

2π iαBω pχ1p´ν0q

¨

˚

˝

m1

m2

0

˛

‹

‚

.

From the Taylor expansion of (A.3) we therefore get the three equations

0 “ pL0 ` ν0Λ0qm, (A.7)

0 “ KpL1 ` ν0Λ1 ` ν1Λ0qm ` KpL0 ` ν0Λ0qBkwpk0q, (A.8)

0 “
1
2

K2pν0Λ2 ` 2ν1Λ1 ` ν2Λ0qm ` pν0A ` iαΛ0qm

`
1
2

K2p2L1 ` 2ν0Λ1 ` 2ν1Λ0qBkwpk0q `
1
2

K2pL0 ` ν0Λ0qB2
k wpk0q. (A.9)

To get a formally small enough residual

yRespUansq :“

¨

˚

˝

Bt pD1pUans,Eq ´ ik pUans,3

Bt pD2pUans,Eq ` Bx1
pUans,3

´ik pUans,1 ` Bx1
pUans,2 ` µ0Bt pUans,3

˛

‹

‚

we have to modify the ansatz as in Section 4.1.1:

pUmodpx1, k, tq :“ pApK, Tq

ˆ

mpx1q ` εKBkwpx1, k0q `
1
2

ε2K2B2
k wpx1, k0q

˙

E1

` 2πε2
´

pA ˚K pA ˚K pA
¯

prK, Tqhpx1qE3 ` xc.c.,

where E3 :“ e´ip3ν0`pk´3k0qν1qt.
The only difference in the analysis of the residual yRespUmodq comes from the convolution
term. We will treat this term with techniques described in [72]. First, we note that

ż 8

´8

χ1psqseiν0s ds “ ´i
d

dν0

ż 8

´8

χ1psqeiν0s ds “ ´i
?

2π
d

dν0
pχ1p´ν0q “ i

?
2π Bω pχ1p´ν0q,

ż 8

´8

χ1psqs2eiν0s ds “ ´
d2

dν2
0

ż 8

´8

χ1psqeiν0s ds “ ´
?

2π
d2

dν2
0
pχ1p´ν0q “ ´

?
2π B2

ω pχ1p´ν0q.
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Second, we use the Taylor expansion of pApK, ε2pt ´ sqqeεiKν1s in s around the point s “ 0:

pApK, Tq ` εiKν1s pApK, Tq ´ ε2sBT pApK, Tq ´ ε2 1
2

K2ν2
1s2

pApK, Tq ` Opε3q.

With the above equations we conclude that

Fpχ1 ˚t εAF1qpx1, k, tq

“ p2πq´1{2
ż

R

ż

R

χ1px1, sqεA
`

εpx2 ´ ν1pt ´ sqq, ε2pt ´ sq
˘

eipk0x2´ν0pt´sqqe´ikx2 dx2ds

“ E1

ż

R

χ1psq pA
`

K, ε2pt ´ sq
˘

eεiKν1seiν0s ds

“ E1
?

2π
ˆ

pχ1p´ν0q ´ εKν1Bω pχ1p´ν0q ` ε2 1
2

K2ν2
1B2

ω pχ1p´ν0q

˙

pA

´ ε2iE1
?

2π Bω pχ1p´ν0qBT pA ` Opε3q.

(A.10)

Note that for exponentially decaying pχ1 and bounded pA the integrand in the third line of
(A.10) is localized around s “ 0 and the Taylor expansion at s “ 0 gives us a suitable
approximation.
For the nonlinear correction term we proceed similarly. By using the Taylor expansion

ε2
´

pA ˚K pA ˚K pA
¯´

rK, ε2pt ´ sq

¯

eεirKν1s “ ε2
´

pA ˚K pA ˚K pA
¯

prK, Tq ` Opε3q

one derives

Fpχ1 ˚t ε3A3F3
1 qpx1, k, tq

“ 2πε2E3

ż

R

χ1psq

´

pA ˚K pA ˚K pA
¯´

rK, ε2pt ´ sq

¯

eεirKν1sei3ν0s ds

“ p2πq3{2ε2E3pχ1p´3ν0q

´

pA ˚K pA ˚K pA
¯

prK, Tq ` Opε3q.

(A.11)

Let us now study yRespUmodq. In comparison to the calculations of Section 4.1.1 we now have
to deal with the expansion of Λpωq. Here we note that the terms of order ε0 and ε1 in the
Taylor expansion of pχ1p´ωpkqq also appear in (A.10). By using (A.7) and (A.8) it is therefore
easy to see that the terms of order ε0 and ε1 in the residual vanish.
Before we write down the residual to order ε2 we remove the higher harmonics. Since ϵ3 :“
ϵ0χ3 is a special case of the functions studied in Section 4.1.1, the right-hand side in the
equation for h will be the same as before. With (A.11) we then get

pLp3k0q ` 3ν0Λp3ν0qqh “ ´3ν0ϵ3

¨

˚

˝

m3
1 ` m1m2

2

m3
2 ` m2m2

1

0

˛

‹

‚

.
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Assumption (A.5) and the analysis of the adjoint operator imply that

N ppLp3k0q ` 3ν0Λp3ν0qq˚q “ N pLp3k0q ` 3ν0Λp3ν0qq “ t0u.

The existence of h then follows from (A.4).
The first component of yRespUmodq is given by

´ i
1
2

K2E1 pApL0 ` ν0 ` Λ0qB2
k w1pk0q

´ i
1
2

K2E1 pAp2L1 ` 2ν0Λ1 ` 2ν1Λ0qBkw1pk0q

´ i
1
2

K2E1 pAϵ0

´

ν0ν2
1

?
2π B2

ω pχp´ν0q ´ 2
?

2π Bων2
1 pχ1p´ν0q

¯

m1

` E1BT pAϵ0

´

1 `
?

2π pχ1p´ν0q ´ ν0
?

2π Bω pχ1p´ν0q

¯

m1

´ 2πiϵ3ν0E1

´

pA ˚K
pA ˚K pA

¯

`

3|m1|2m1 ` 2|m2|2m1 ` m2
2m1

˘

` xc.c.

(A.12)

The second component follows from (A.12) by switching the indices of B2
k w1pk0q, Bkw1pk0q,

m1, m2 from 1 to 2 and vice versa. The third component is given by

µ0E1BT pAm3 ` xc.c.

We use (A.9) to rewrite these terms as

G pA :“ E1

ˆ

BT pA ´ α pA ` i
1
2

K2ν2 pA
˙

¨

˚

˝

`

ϵ0
`

1 `
?

2π pχ1p´ν0q
˘

´ ϵ0ν0
?

2π Bω pχ1p´ν0q
˘

m1
`

ϵ0
`

1 `
?

2π pχ1p´ν0q
˘

´ ϵ0ν0
?

2π Bω pχ1p´ν0q
˘

m2

µ0m3

˛

‹

‚

´ 2πiϵ3ν0E1

´

pA ˚K
pA ˚K pA

¯

¨

˚

˝

3|m1|2m1 ` 2|m2|2m1 ` m2
2m1

3|m2|2m2 ` 2|m1|2m2 ` m2
1m2

0

˛

‹

‚

.

We now select pA such that G pA is zero on a linear subspace. Inspired by the calculation of
Section 4.1 we choose the subspace as

N ppLpk0q ` ν0Λpν0qq˚q “ span
!

rm :“ pm1, ´m2, m3qJ
)

.

To determine the equation for pA we set

0 “ xG pA, rmyL2pRq3 “ I1

ˆ

iBT pA ´ iα pA ´
1
2

K2ν2 pA
˙

` 2πI2

´

pA ˚K
pA ˚K pA

¯

, (A.13)
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where

I1 :“
ż 8

´8

´´

ϵ0

´

1 `
?

2π pχ1p´ν0q

¯

´ ϵ0ν0
?

2π Bω pχ1p´ν0q

¯

`

|m1|2 ´ |m2|2
˘

` µ0|m3|2
¯

dx1,

I2 :“ ν0

ż 8

´8

ϵ3

´

3|m1|4 ´ 3|m2|4 ` m2
2m2

1 ´ m2
1m2

2

¯

dx1.

By applying the inverse Fourier transform to (A.13) we arrive at the following complex
Ginzburg-Landau equation for A

iBT A “ ´
1
2

ν2B2
X2

A ` iαA ´
I2

I1
|A|2A.

Remark A.3
As mentioned in Section 2.3, the formal derivation of an amplitude equation such that the residual
is small is not enough to prove the approximation properties of Uans. For the rigorous analysis new
techniques are necessary since the results of Chapter 5 cannot be directly transferred to Maxwell’s
equations with a non-local displacement field.
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Publikationsliste

‚ T. Dohnal, G. Romani, und D. Tietz. A Quasilinear Transmission Problem with Application to
Maxwell Equations with a Divergence-free D-field. In: Journal of Mathematical Analysis and
Applications (2022)
‚ T. Dohnal, R. Schnaubelt, und D. Tietz. Rigorous Envelope Approximation for Interface Wave-
Packets in Maxwell’s Equations with 2D Localization. arXiv preprint (2022)

Daniel Paul Tietz
Halle (Saale), 15. November 2022


	Introduction
	Preliminaries
	Notation
	Maxwell's Equations and Electromagnetic Surface Waves
	Method of Amplitude Equations
	Nonlinear Schrödinger Equation

	Linear Problem
	Linear Transverse Magnetic Modes
	Analysis of the Linear Eigenvalue Problem
	Solution of the Inhomogeneous Problem
	Numerical Calculation of the Eigenfunctions

	Formal Asymptotic Solution of the Nonlinear Problem
	Construction of the Asymptotic Solution
	Derivation of the Nonlinear Schrödinger Equation
	Interface Properties of the Extended Ansatz

	Estimation of the Residual and its Derivatives
	Estimation of the Residual
	Estimation of the Derivatives of the Residual


	Local Existence for Hyperbolic Systems
	Linear Hyperbolic Systems
	Nonlinear Hyperbolic Systems
	Compatibility Conditions
	Trace Operator

	Rigorous Analysis of the Asymptotic Solution
	Error Equations
	Idea of Error Estimate

	Bootstrapping Argument
	Approximation Result

	Construction of Suitable Initial Values
	Compatibility Conditions for U^(0)
	Maxwell Conditions for U^(0)
	Quasilinear Transmission Problem
	Application to the Maxwell Problem
	Numerical Calculation of the Correction ∇ϕ


	Conclusion and Outlook
	Derivation of the Complex Ginzburg-Landau Equation

