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1 Introduction

The problem underlying this work may be seen from various standpoints.
From the standpoint of quasigroups a paper of Fischer, [7] gives some in-
teresting questions. Fischer proved in 1963 that a finite distributive quasi-
group Q has a solvable inner automorphism group G. As from this inner
automorphism group G the quasigroup Q can be recovered, the structure of
G defines the structure of Q, so if we understand the group G, we under-
stand the distributive quasigroup Q. Now the conditions for a group to be
the inner automorphism group of a distributive quasigroup are very hard
to check (in general this conditions cannot be verified, even to verify this
condition for a given group is very hard). So one drops leftdistributivity to
get an easy condition on the groups. The remaining structure is a rightdis-
tributive quasigroup. The problem (1) is now to prove Fischer’s result for
rightdistributive quasigroups.
A more group theoretical problem is the following: Let G be a group and
C = xG, x ∈ G be a conjugacy class. How can we describe the action of C
on C by conjugation. For instance a famous theorem of Glauberman says,
if C is a class of involutions an element x ∈ C has either two fixed points on
C or < C > is solvable. Define a directed graph Γ on C by defining edges
as ordered pairs (a, b), a, b ∈ C where b = ac for some c ∈ C. A very special
case is if Γ is a complete graph. (In this case the operation a× b := ab on C
defines a quasigroup.) The problem (2) is now, for which groups this holds.
Another standpoint is the following one: Let G be a finite group and α be a
fixed point free automorphism on G. By Rowley, [13] we know that G is
solvable in this case, though the proof uses the classification of finite simple
groups. In this case every element x ∈ G is a commutator with α. Define now
a new type of automorphism by the condition, that the set of commutators
with α has to form a transversal for CG(α). Obviously if CG(α) = 1 this
condition holds. As this condition also holds for the trivial case CG(α) = G,
we exclude this case by demanding that G = [G,α]. The problem (3) now
is to generalize Rowley’s result. From this point of view we see, that the
classification of finite simple groups will play a central role in solving this
problem.
Another approach is to ask for finite groups in which a conjugacy class C
is a transversal for a subgroup U . This problem is very hard if there is no
connection between U and C. So we restrict us to a canonical subgroup U ,
namely CG(x) for some x ∈ C. As then G =< C > U we can restrict this
case further to G =< C >. The problem (4) is now to describe the structure
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of G, mainly the question whether G is solvable or not.
Now all these approaches give rise to more or less the same problem which
is handled in this work.
A personal thank goes to the people supporting and encouraging me, espe-
cially my parents and Prof. Stroth.
The author acknowledges the support of the DFG.

2 Notations

Under a group we understand a finite group unless otherwise stated.
The notation is mixed from various sources:
- from [1] for general group theoretic notations,
- from [8] for classical groups with their modules,
- from [14], [2] and [3] for algebraic groups of lie type , weyl groups and
maximal tori,
- from [5] for group structures and extensions of groups and
- from [7] for terms related to quasigroups.
A special notation is AutG(X) := NG(< X >)/CG(X) for a subset X ⊂ G.
The notation of classical simple groups (and some natural extensions) should
be clear. The lie groups An, Bn, Cn etc. refer always to the simple groups
(if these exists), otherwise we assume that these groups are center free and
have no p′-factor group. By groups G of type An, Bn, Cn etc. we refer to
an extension of the simple group, which may include a center of F ∗(G) of
p′-order and |G : F ∗(G)| of p′-order too. This last notation is mostly used
for describing the isomorphism type of a levi complement which allows the
inaccuracy (as these groups are well defined).
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3 Distributive quasigroups

(1) Definition: Let Q be a set and ∗ be a binary operation on Q. Call Q
a quasigroup iff for all a, b ∈ Q the equations a ∗ x = b and y ∗ a = b have
a solution x respectively y ∈ Q.
(2) Lemma: Let Q be a set with a binary operation ∗. Then Q is a quasigroup
iff the lefttranslation λa(b) = a ∗ b, λa : Q 7→ Q and the righttranslation
ρa(b) = b ∗ a, ρa : Q 7→ Q are both bijections on Q for all a ∈ Q.
(3) Definition: Let Q be a quasigroup. Define Gr(Q) =< ρa|a ∈ Q > and
Gl(Q) =< λa|a ∈ Q >
(4) Definition: Let Q be a Quasigroup.
Q is a rightdistributive quasigroup iff the equation (a∗b)∗c = (a∗c)∗(b∗c)
holds for all a, b, c ∈ Q.
Q is a leftdistributive quasigroup iff the equation a∗(b∗c) = (a∗b)∗(a∗c)
holds for all a, b, c ∈ Q.
Q is a distributive Quasigroup iff Q is both a rightdistributive quasigroup
and a leftdistributive quasigroup.
(5) Lemma: Let Q be a leftdistributive resp. rightdistributive quasigroup.
Then Gl(Q) resp. Gr(Q) is a group of automorphisms of Q.
Proof: This is obvious.
(6) Theorem: [7](Fischer ’63) Let Q be a finite distributive quasigroup.
Then Gr(Q) is solvable.
Aim of the paper is the following
(7) Theorem: (main theorem I)Let Q be a finite rightdistributive quasi-
group. Then Gr(Q) is solvable.
(8) Lemma: Let Q be a rightdistributive quasigroup and a ∈ Q.
Then Gr(Q) = CGr(Q)(ρa)ρ

Gr(Q)
a .

Proof: (i): Let b ∈ Q. Then bb = b. If bc = b then b = c:
(bb)b = (bb)(bb) by the rightdistributivity. As Q is a quasigroup the lefttrans-
lation λbb is a permutation on Q. But now b and bb have the same image
which forces b = bb. So bb = b for each b ∈ Q. If now bc = b then bc = b = bb
and as λb is a permutaion of Q we have b = c.
(ii): x ∈ CAut(Q)(ρa) =: C ⇔ x(a) = a:
If x(a) = a then x(ρa(b)) = x(ba) = x(b)x(a) = x(b)a = ρa(x(b)) for each
b ∈ Q. So x ∈ C. If x ∈ C then x(a) = x(aa) = x(ρa(a)) = ρa(x(a)) = x(a)a.
By (i) this forces x(a) = a.
(iii): ρ

Gr(Q)
a = {ρb : b ∈ Q}:

By the rightdistributivity we have (ab)c = (ac)(bc) for each a, b, c ∈ Q. But
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this means that ρc(ρb(a)) = ρρc(b)(ρc(a)). Setting d = ρc(a) (so a = ρ−1
c (d))

we see that ρc(ρb(ρ−1
c (d))) = ρρc(b)(d). As ρ−1

c is an automorphism on Q we
see that d runs over Q if a runs over Q. So ρρc

b = ρρc(b). Let now c and d
arbitrary elements of Q. As Q is a quasigroup there is an e ∈ Q with c = de.
Then ρρe

d = ρc and so the righttranslations form a conjugacy class of Gr(Q).
Let g ∈ Gr(Q) and b = g(a). As Q is a quasigroup there is a c ∈ Q with b =
ac. So (ρ−1

c )(b) = a and (ρ−1
c g)(a) = a which means h := ρ−1

c g ∈ CGr(Q)(ρa)
by (ii). Now g = ρch = hρh

c and by (iii) we have that ρc is conjugate to ρa,
so the lemma is proven.

4 C3P - and C2P− groups

(1) Definition: Let G be a group. Call G a C3P -group or CCCP -group
(Centralizer Conjugacy Class Product) iff G = CG(g)gG for a g ∈ G
(2) Lemma: Let G be a C3P−group for g ∈ G. Then the set gG is a right-
distributive quasigroup with the operation a ∗ b = ab.
Proof: If G = CG(g)gG then also Gh = (CG(g))h(gG)h, that is G =
CG(gh)gG. So let a, b ∈ gG. Then there is a c ∈ G with ac = b and c = hx
with x conjugate to g and h ∈ CG(a). So for all a, b ∈ gG there is an x ∈ gG

with ax = b.
Set y = ba−1

then for all a, b ∈ G there is a y with ya = b. So the set gG is
a quasigroup with the operation ∗.
So let a, b, c ∈ gG. As (a ∗ b) ∗ c = (ab)c = abc = acbc

= (a ∗ c) ∗ (b ∗ c) the
operation is rightdistributive.
(3) Definition: Let G be a group and α ∈ Aut(G).
Call G a α-CCP-group (Centralizer Commutator Product) iff
G = CG(α){[g, α]|g ∈ G}.
Call G a strong α-CCP-group iff G is an α-CCP-group and G = [G,α].
(4) Lemma: Let G be a C3P -group for g ∈ G. Then G is an α-CCP-group
with α = ig, the inner automorphism induced by g.
Let H be an α-CCP-group and g ∈ G with α(x) = xg for all x ∈ G. Then
G is a C3P -group for g.
Proof: By definition G = CG(g)gG, so G = gGCG(g). (If x = hgf then
x = hgf h−1h = gfh−1

h.) So for x ∈ G we can write (x−1)g
−1

= gfh with h ∈
CG(g). Then xg−1

= h−1(g−1)f and x = (g−1h−1)((g−1)fg) = (hg)−1[f, g]
with (hg)−1 ∈ CG(g), so G is an α-CCPgroup for α = ig ∈ Inn(G).
On the other side let G = CG(α){[x, α]|x ∈ G}. Then for y ∈ G we can
write (y−1)g = h[f, α] = h[f, g] = h(g−1)fg with h ∈ CG(α) = CG(g). Thus
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y−1 = gh(g−1)f and y = gfh−1g−1 = (gh)−1gf(gh)−1
with (gh)−1 ∈ CG(g).

(5) Lemma: Let G be an α-CCP-group. If [g, α] ∈ CG(α)h for some g, h ∈
G, then [g, α] = 1.
Proof: This follows immediately from the definition of an α-CCP-group.
(6) Lemma: Let G be an α-CCP-group and U ≤ G with Uα = U . Then U
is an α-CCP-group and {[u, α]|u ∈ U} = {[g, α]|g ∈ G} ∩ U .
Proof: The Definition of an α-CCP-group means that each coset CG(α)x
for x ∈ G contains exactly one element y = [g, α] for some g ∈ G (As there
are exactly as many different commutators [g, α] as cosets of CG(α).) Now
each coset of CU (α) lies in a unique coset of CG(α), thus contains at most
one commutator [g, α] with g ∈ G. But in U the number of commutators
[u, α] for u ∈ U is equal to the number of cosets of CU (α). Thus each coset
C = CU (α)v of U with v ∈ U contains exactly one commutator [g, α] for
some g ∈ G and there is an u ∈ U with [g, α] = [u, α].
(7) Corollary:Let G be an α-CCP-group. Then [G,α] is a strong α-CCP-
group.
Proof: As [G,α] is α-invariant we can apply (5) and see, that in fact
[G,α] = [G,α, α].
(8) Lemma: Main Theorem I holds iff the following theorem holds.
(9) Theorem: (Main Theorem II) Let G be a strong α-CCP-group. Then
G is solvable.
Proof: of Lemma (8): Let Q be a rightdistributive quasigroup. By (3.8)
the group Gr(Q) is a C3P -group for a righttranslation ρa. Then Gr(Q) is
an α-CCP-group for α = iρa .
As Gr(Q) =< ρ

Gr(Q)
a > we can write Gr(Q) = [Gr(Q), α] < α >. By (7)

[Gr(Q), α] is a strong α-CCP-group. If now (9) holds we see that Gr(Q) is
solvable.
On the other hand let G be a strong α-CCP-group. Then set H = G :< α >,
the semidirect Product of G with < α >. As G is a strong α-CCP-group we
get H =< αG >=< αH >.
By (4) we see that H is a C3P -group for α. So by (2) we can construct a
rightdistributive quasigroup Q on the set of all conjugates of α. If the main
theorem holds, we see that Gr(Q) is solvable. A righttranslation ρα is the
map with ρα(β) = βα. Thus ρα is the inner automorphism of H induced by
α and Gr(Q) = Inn(H) = H/Z(H). Thus H is solvable and hence is G.
(10) Lemma: Let G be an α-CCP-group and N a normal subgroup with
Nα = N . Then G/N is an α-CCP-group with C(G/N)(α) = CG(α)N/N .
Proof: For Nx ∈ G/N we can write Nx = NhN [g, α] = NhNg−1Ngα =
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Nh(Ng)−1(Ng)α if x = h[g, α] with h ∈ CG(α). Thus G/N is an α-CCP-
group. Assume (Ng)α = Ng which means Ng ∈ CG/N (α). Then N [g, α] =
N . By (6) there is an n with [n, α] = [g, α], but [g, α] = [(gn−1)n, α] =
[gn−1, α]n[n, α], so gn−1 ∈ CG(α). Thus Ng = gN = (gn−1)N so Ng ∈
CG(α)N/N . Thus CG/N (α) ≤ CG(α)N/N . As the other inclusion is obvious
the lemma holds.
(11) Lemma: Let G be a minimal counterexample to Theorem (9).
Then G is a direct product of simple groups and α is transitive on the fac-
tors.
Proof: Let F = F (G) be the Fitting subgroup of G. As G is nonsolvable
and F is solvable also G/F is nonsolvable and by (10) a counterexample,
thus by minimality we have F = 1.
So let N = Soc(G) the product of all minimal normal subgroups of G. N
is a direct product of simple groups (as F = 1), hence nonsolvable and
[N,α] 6= 1. (Otherwise [G,N,α] = 1 = [N,α,G], so [α,G,N ] = [G,N ] = 1)
But [N,α] is nonsolvable as N contains no solvable normal subgroups. But
then [N,α] is a counterexample, thus by minimality we have [N,α] = G = N
and G is a direct product of simple groups. By minimality we see that α is
transitive on the components as claimed.
(12) Lemma: Let G be a direct product of n groups Li isomorphic to a
group L and α be transitive on the factors. If G is an α-CCP-group then
each factor Li is an β-CCP-group for β = αn and (n, |CL1(β)|) = 1.
Proof: Define the indices such that Lα

i = Li+1 for i < n and Lα
n = L1.

For g ∈ G write g = (g1, g2, . . . , gn) iff gi ∈ L1 and g = g1g
α
2 · · · gαn−1

n .
A group G is not an α-CCP-group iff there are f, g ∈ G with 1 6= [g, α] ∈
CG(α)f : If G is not an α-CCP-group there are a, b ∈ G with [a, α] 6= [b, α]
and CG(α)[a, α] = CG(α)[b, α]. As [a, α] = [(ab−1)b, α] = [ab−1, α]b[b, α] we
see that [ab−1, α]b ∈ CG(α), thus [ab−1, α] ∈ CG(α)b

−1
, but as [a, α] 6= [b, α]

we have that [ab−1, α] 6= 1. On the other side if [g, α] ∈ CG(α)f then
[g, α]f

−1 ∈ CG(α) and because [gf−1, α] = [g, α]f
−1

[f−1, α] we see that
CG(α)[gf−1, α] = CG(α)[f−1, α], but as 1 6= [g, α] we get [gf−1, α] 6= [f−1, α]
and so G is not an α-CCP-group.
We show now that if L1 is not a β-CCP-group also G is not an α-CCP-group.
Assume [g, β] ∈ CL1(β)f . Set g1 = (g, g, g, . . . , g).
Then [g1, α] = ([g, β], 1, 1, . . . , 1). Set gk+1 = gαk

1 for k < n. Then [gk, α] =
[g1, α]α

k−1 ∈ Lk. Now set h = g1g2 · · · gn. Let ∼ be the G-conjugate relation
and for J ⊂ {1, 2, . . . , n} =: I set LJ =

∏

j∈J
Lj.

Claim: Let Ek ⊂ I, k = 1, 2 with E1 ∩ E2 = ∅ and g1, g2 ∈ G with
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[gk, α] ∼ ck ∈ LEk
. Then [g1g2, α] ∼ c1c2 ∈ LE1∪E2:

[g1g2, α] = [g1, α]g2 [g1, α] , but [g1, α] ∈ LE1, so there is a d ∈ LE1 with
[g1, α]g2 = [gi, α]d. But then [g1g2, α] =[g1, α]d[g2, α]d as E1 ∩ E2 = ∅. Now
there are dk ∈ LEk

with [gi, α]ddk =ck. Then [g1g2, α]dd1d2 =c1c2. Clearly
c1c2 ∈ LE1∪E2 so the claim holds. Now we see that [h, α] ∼ [g1, α][g2, α]
· · · [gn, α] and as [g1, α] = [g, β] ∼ [g, β]f

−1
=: c ∈ CL1(β) we have [h, α] ∼

ccα · · · cαn−1
= (c, c, . . . , c) ∈ CG(α). Thus G is not an α-CCP-group. As-

sume now that 1 6= d = (n, |CL1(β)|). Let r be a prime dividing d. Then
CL1(β) contains an element x of order r. Set xf = (x, x2, x3, . . . xn). We
have xα

f = xf (x−1, x−1, x−1, . . . x−1) and so [xf , α] ∈ CG(α), so G is not an
α-CCP-group.
(13) Lemma: Let G be a minimal counterexample to Theorem (9). Then G
is simple.
Proof: By (11) we have that G is a direct product of say n factors on which
α acts transitively. Set β = αn. Applying (12) we get either β = 1 or n = 1.
Otherwise our counterexample is not minimal.
So let β = 1. Using the notation of (12) we see that for each subgroup
U ≤ L1 there is a subgroup U<α> := UUα · · ·Uαn−1

which is α-invariant.
As our counterexample is minimal we see that each proper subgroup of L1

must be solvable. So L1 is a minimal simple group which were classified by
Thompson. So let n be even. Then L1 contains an involution i. Setting
g = (i, 1, i, 1, . . . , i, 1) we get [g, α] = (i, i, i, i, . . . , i, i) ∈ CG(α), so G is not
an α-CCP-group.
If n is odd there are involutions i, j ∈ L1 such that i ∼ j ∼ ij. Setting
g = (1, i, j, i, j, . . . i, j) we get [g, α] = (j, i, ij, ij, ij, . . . , ij, ij) which is con-
jugate to (i, i, i, i, i, . . . , i, i) ∈ CG(α) so again G is not an α-CCP-group.
(14) Lemma: Let G be a minimal counterexample to Theorem (9). Then
CG(α) 6= 1.
Proof: This is a theorem by Rowley [13] which also uses the classification
of finite simple groups.
(15) Lemma: Let G be a group and φ : G 7→ Inn(G) ≤ Aut(G), φ(g) = ig
with ig(x) = g−1xg be the natural homomorphism from G into Aut(G) and
α ∈ Aut(G). Then φ(g)α = φ(gα) for each g ∈ G.
Proof: Let t ∈ G. Then φ(gα)(t) = (gα)−1tgα: As (φ(g)α)(t) = (α−1φ(g)α)(t)
= α(ig(α−1(t))) = α(g−1tα

−1
g) = α(g−1)tα(g) = (gα)−1tgα the lemma is

proven.
(16) Corollary:Let g ∈ G and α ∈ Aut(G). Then i[g,α] = [ig, α]. Especially
[g, α] ∈ Z(G) ⇔ [ig, α] = 1.
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Proof: By (15) we have i[g,α] = φ([g, α]) = φ(g−1gα) = (φ(g))−1(φ(g))α =
[φ(g), α] = [ig, α]. As i[g,α] = 1 iff [g, α] ∈ Z(G) the second statement holds.
(17) Lemma: Let G be an α-CCP-group with automorphism α.
Set H =< Inn(G), α >≤ Aut(G). Then H is an α-CCP-group.
Proof: Let h ∈ H. Then h = αkg for some g ∈ Inn(G) as Inn(G) is a normal
subgroup of Aut(G) and some integer k. Now g = if for some f ∈ G and
f = c[e, α] with e ∈ G and c ∈ CG(α). But by (14) and (15) we have then
g = ici[e,α] = ic[ie, α]. So h = (αiic)[ie, α]. As [c, α] = 1 we have [ic, α] = 1,
so αkic ∈ CH(α) and so H is an α-CCP-group as claimed.
(18) Lemma: Let G be a minimal counterexample to Theorem (9) and set
H =< Inn(G), α >. If α is conjugate to αk in H, then α = αk. Furthermore
α is not an involution.
Proof: : Assume αh = αk for some h ∈ H and some integer k with α 6= αk.
Then 1 6= (α−1)hα = [h, α] = α1−k ∈ CH(α). But by (16) H is an α-CCP-
group and so we get a contradiction. If now α is an involution we get by the
Z∗-theorem of Glauberman that CG(α) contains a conjugate β = αg for
some g ∈ H. As again 1 6= (α−1)gα = [g, α] ∈ CG(α) we get a contradiction
to (16) as before.
(19) Lemma: Let G be a p-group and α ∈ Aut(G) of p-order. If G is an
α-CCP-group then α = 1.
Proof: Set C = CG(α) and assume C 6= G. Then N := NG(C) > C and α
operates on N̄ = N/C. As α is of p-order, CN̄ (α) 6= 1. But CG(α) has to
cover this factor group by (10), a contradiction.
For completeness we state the following
(20) Lemma: Let G be a group. Then G is a C3P -group for g ∈ G iff
N =< gG > is a C3P -group for g ∈ N and G = CG(g)N .
G is an α-CCP-group iff M = [G,α] is an α-CCP-group and G = MCG(α).
Proof: Let G be a C3P -group for g ∈ G, So G = CG(g)gG by definition.
Therefore G = CG(g)N . Let now e = gf for some f ∈ G. Then f = f1f2

with f1 ∈ CG(g) and f2 ∈ N , so e = gf2 and gG = gN . As now gG is
a transversal, the cosets of CN (g) contain at most one element of gG, but
there are as many cosets of CN (g) in N as elements in gG, so each coset
contains exactly one element, thus N = CN (g)gN and N is a C3P -group for
g ∈ N .
Let now N = CN (g)gN and G = CG(g)N . Then gN = gG and therefore
G = CG(g)CN (g)gN = CG(g)gG and so G is C3P -group for g ∈ G.
If now G is an α-CCP-group we have by (7) that [G,α] is a (strong) α-CCP-
group and by definition G = CG(α)M .
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If M is an α-CCP-group and G = CG(α)M then {[g, α]|g ∈ G} = {[m,α]|m ∈
M} as for g ∈ G we have g = hm for some h ∈ CG(α) and m ∈ M . Therefore
G = CG(α)M = CG(α)CM (α){[m,α]|m ∈ M} = CG(α){[g, α]|g ∈ G} and
so G is an α-CCP-group.

5 Some tools

5.1 Further properties of α-CCP-groups

(1) Lemma: Let G be an α-CCP-group, U ≤ CG(α) and N ≤ G with
[U,N ] = U and Nα = N . Then there is a D ≤ CG(α) with CG(U)D =
CG(U)N .
Especially if CG(U) ≤ U then [N,α] = 1.
Proof: Applying the three subgroup lemma for [U,α,N ] = 1 = [N,U,α].
we get [α,N,U ] = 1, so [N,α] ≤ CG(U) and α trivial on NCG(U)/CG(U).
Applying (1.7) on the group M = CG(U)N we get for D = CM (α) that
CG(U)D = CG(U)N .
(2) Lemma: Let G be an α-CCP-group and x ∈ CG(α) of prime order r.
If AutG(x) 6= 1 there is a prime s, such that sdivides|CG(α)| (s divides
|AutG(x)|).
Proof: Set U =< x >, N = NG(U) and apply (1).
(3) Lemma: Let G be a dihedral group of order 2n, n > 2 or Σ4. Assume G
is an α-CCP-group. Then [G,α] = 1.
Proof: Let G = D2n , n > 2 and T be the cyclical subgroup of index 2.
Then [G,α] ≤ T . Set C = CT (α) and assume C 6= T . Then there is a
t ∈ T − C with t2 ∈ C. But then t−1tα ∈ C as tα is an odd power of t and
t2 ∈ C. Then G is not an α-CCP- group, so T = C and [T, α] = 1. But
[G,α] ≤ T ≤ CG(α), so [G,α] = 1 as claimed.
Now let G = Σ4. As Aut(G) = Inn(G) we get [G,α] ≤ G′. But G =
[G,α]CG(α), so CG(α) 6≤ A4. But α cannot be a transposition or a cycle of
length 4: Otherwise α would fix some involution i in V4 and interchange the
both remaining involutions, making i a commutator, which is a contradiction
to G an α-CCP-group. If α is an involution of V4 there is an element x of
order 3 such that [x, α] ∈ A4 has order 2, thus commuting with α which is
again a contradiction. If finally α is a three-cycle then G 6= [G,α]CG(α), a
contradiction. So α = 1.
(4) Lemma: Let G be a dihedral group of Order n 6= 4. Then there is an
S ∈ Syl2(G) with S ≤ CG(α).
Proof: Assume n > 4. Let T be the cyclical subgroup of index 2. Then
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[G,α] ≤ T , so as G = [G,α]CG(α) we get an involution i with G =< T, i >
and [i, α] = 1. Let S0 be a Sylow-2-subgroup of T . Then S0 / G and S :=<
S0, i > is a Sylow-2-subgroup of G. which is α-invariant. By (3) we get
[S,α] = 1 except |S0| = 2. But then S0 =< j >, j the central involution of
G. So [j, α] = 1 and thus [S,α] = [< i, j >, α] = 1.

5.2 Semisimple elements in algebraic groups

In the following paragraph we look at semisimple elements in a finite group
H of lie type from the standpoint of algebraic groups as discribed for in-
stance in [2] or [14].
(1) Notations:Let G be a simple simply connected algebraic group in char-
acteristic p. Let σ be an endomorphism of G onto G such that Gσ , the group
of fixed points is finite (a so called frobenius map). From the theory of al-
gebraic groups we know the following:
- Gσ is a central extension of a finite group of lie type and conversely for
each finite simple group of lie type H exists a central extension Ĥ such that
Ĥ ∼= Gσ for some simple simply connected algebraic group G and a Frobe-
nius map σ of G.
- G contains a σ-stable Borel subgroup B which contains a σ-stable (and
therefore maximally split) maximal torus T0.
- let T be a σ-stable maximal torus of G. Then T can be obtained by ”twist-
ing” T0 with an element w ∈ W = NG(T0)/T0 (the Weyl group) which
means that σ operates on T as wσ on T0. The element w is unique up to
σ-conjugacy (define in [2],Prop. 3.3.2) and for each σ-conjugacy class there
are σ-stable maximal tori obtained from T0 by twisting with w.
Let x ∈ Gσ be a semisimple element. Then the following holds:
- CG(x) is closed,connected,reductive and σ-stable by [14] II,3.9
- CG(x) contains a σ-stable maximal torus T by [14] II,1.1.
- CGσ(x) = (CG(x))σ. Thus CGσ(x) is either a central product of finite
groups of lie type in characteristic p or T is the only maximal torus of G
containing x. Denote this last case as the ”unique torus case”. By [2],Prop.
3.6.1 and 3.6.5 we see in this case that NGσ(Tσ)/Tσ

∼= CW,σ(w) where
w ∈ W is the element such that T is obtained from T0 by twisting with
w. (Cw,σ = {u : u ∈ W |uwσ = wσu})
(2) Lemma: Let G as in (1) but assume that W = W (G) contains a unique
involution in its centre. (Thus G is of type A1, Bn, Cn, D2n, E7, E8, F4 or
G2). Let σ be as in (1). Then each semisimple element of Gσ is inverted by
some element in Gσ.
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Proof: Let x ∈ Gσ be a semisimple element. By (1) there is a σ-stable
maximal torus T containing x. Then NG(T )/T ∼= W . Let Z be the preimage
of Z(W ) (such that T is of index 2 in Z). Each element of Z − T acts as
-1 on T , thus inverting the whole torus. We show now that Gσ contains
elements of this coset: Let z1 ∈ Z. Then σ(z1) = z1t with t ∈ T . By the
Lang-Steinberg theorem and the connectedness of T we get a t1 ∈ T with
t = t1σ(t1)−1. Then σ(z1t1) = σ(z1)σ(t1) = z1t1 and z1t1 is the element of
Gσ inverting x.
(3) Lemma: Let G = SLn(q), n > 1, SUn(q), n > 1 odd or Ω−

2n(q), n > 3
odd and x ∈ G an element of prime order r acting irreducibly on the natural
module V . Then n divides |AutG(x)|.
Proof: Let V be the natural G-module over the finite field GF(q1). (q1 = q
in the linear and orthogonal case and q1 = q2 in the unitary case.) As x acts
irreducibly on V we see that dq1(r) = n. Thus the r part of GL(V ) is the
r-part of Φn(q1). Especially is this the r-part of qn−1 in the linear case and
the r-part of qn + 1 in the orthogonal and unitary case.
First let G = SLn(q). Let K = GF(qn) and k = GF(q). Then K is an n-
dimensional vectorspace over k and w.l.o.g. we may assume that V = K.
For a ∈ K∗ and φ ∈ Gal(K : k) we define the following maps: ga : K 7→
K, ga(b) = b ∗ a and gφ : K 7→ K, gφ(b) = bφ. Then these maps are k-linear.
Set C =< ga|a ∈ K∗ > and N =< C, gφ|φ ∈ Gal(K/k) >. Then C is a cycli-
cal subgroup of GLn(q) of order qn − 1 and N/C is a cyclical subgroup of
GLn(q) of order n. By Schur’s lemma follows that det(ga) = NK

k (a) and as
the norm map is surjective for finite fields we see that |det(C)| = q−1. Thus
N1 = ker(det|N ) is of type qn−1

q−1 : n. As dq(r) > 1 we see that N1 contains
a Sylow-r-subgroup of SLn(q) and therefore we may assume that x ∈ N1.
As dq(r) = n, x does not lie in a subfield of K, so the full galois group
Gal(K : k) acts on < x > nontrivially and therefore n divides |AutG(x)|.
Let now G = SUn(q). Let k = GF(q) < K = GF(q2), k < l = GF(qn) and
K, l < L = GF(q2n). For a ∈ K denote with ā := aqn

, such that .̄ is the
automorphism of L of order 2. Note that its restriction to K is of order 2 too
as |L : K| = n is odd. Define the map f : L × L 7→ K by f(b, c) = TrLK(bc̄).
It is easy to see that f is a nondegenerated unitary form and as all such
forms over the same vectorspace (and the same field extension) are isomet-
ric we may assume that GUn(q) = Stab(f). For a ∈ L and φ ∈ Gal(L : K)
let ga and gφ as defined above. We show now which of these elements are
actually elements of GUn(q): Assume f(b, c) = f(bga, cga) = f(ba, ca). Then
Tr(bc̄(1−aā)) = 0 for all b, c ∈ L, which means that L(1−aā) ≤ kerTr. Now
Tr is a nontrivial map and therefore kerTr a nontrivial subspace of L. But
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on the other hand L is a field therefore the only ideal containing kerTr is the
0-ideal forcing aā = 1. Now aā = NL

l (a) and as NL
l is an epimorphism we

have that X = {a ∈ L|aā = 1} is a subgroup of L∗ of order qn + 1. Now we
set C =< ga|a ∈ X >. For φ ∈ Gal(L : K) we have f(bφ, cφ) = Tr((bc̄)φ) =
Tr(bc̄)φ = Tr(bc̄) = f(b, c) and therefore these elements are always con-
tained in GUn(q). Setting N =< C, gφ|φ ∈ Gal(L : K) > we get a subgroup
of GUn(q) of type (qn +1) : n. Again for ga we have det(ga) = NL

K(a) and as
NL

K is surjective we have that |det(C)| = (|C|, q2−1) = q+1 = |det(GUn(q))|
and therefore SUn(q) contains a subgroup N1 of type qn+1

q+1 : n. As N1 con-
tains a Sylow-r-subgroup of SUn(q) we may assume that x ∈ N1 and as
dq2(r) = n (as x acts irreducibly on V ) we see that Gal(L : K) acts nontriv-
ially on < x >, thus n divides AutG(x).
Finally let G = Ω−

2n(q) and k,K, l, L as in the unitary case. For a ∈ L define
Q : L 7→ k, Q(a) = Trl

k(aā). With some calculations one can see that Q
is a nondegenerated quadratic form of minus type over the 2n-dimensional
k-space L. As all such quadratic forms are isometric we may assume that
O−

2n(q) = Stab(Q). As n is odd it follows that Q(x) = f(x, x) for the unitary
form f already defined. Thus GUn(q) ≤ O−

2n(q) in this case. By Sylow’s
theorem we may assume that x is contained in a subgroup of type GUn(q)
and therefore n divides |AutG(x)| in O−

2n(q). But Ω−
2n(q) = O2(O−

2n(q)) and
n is odd, therefore n divides |AutG(x)| already in Ω−

2n(q) as claimed.
Remark:The embedding of the subgroup qn−1

q−1 : n, qn+1
q+1 resp. qn+1

(4,qn+1) : n
follows also from the existence of tori of type An in all these cases.

5.3 Some arithmetics

(1) Definition: Let p, r be primes and q = pf . Define dq(r) = 0 if r = 2 or
r = p and dq(r) := min{i|rdividesqi − 1} else.
(2) Lemma: Let (r, q) = 1, q = pf , p and r prime. Let X be a group of order
r. Then an irreducible GF(q)X-module has dimension dq(r).
Proof: This is a basic result of representation theory, see for instance [1]
(3) Definition: Let q = pf , p a prime. Define Φn(q) = (qn−1)/

∏

d|n,d6=n
Φd(q).

(4) Lemma: Let n,m > 0 with m 6= (n,m) 6= n. Then (Φn(q),Φm(q)) = 1.
Proof: Let d = (n,m), n = da and m = db. Set y = qd. For k define
p(k) = yk−1

y−1 . Then Φn(q)|p(a) and Φm(q)|p(b), so (Φn(q),Φm(q)) divides
(p(a), p(b)) =: t. We show now that t = 1 by induction over a + b. W.l.o.g.
we can assume that a > b. We can write p(a) = p(b)ya−b + p(a − b). So
t|(p(b), p(a − b)). If (b, a − b) = 1 we get by induction that t|1. Otherwise
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a = b = 1 because (a, b) = 1. But then p(a) = p(b) = 1 so t = 1.
(5) Lemma: Let n,m > 0 with n = ma. Then (qm − 1, qn−1

qm−1)|a.
Proof: Set y = qm and define p(k) = yk−1

y−1 . Set (y − 1, p(a)) =: t. We show
now that t|a. But this follows from the equation

(y − 1)
a−1∑

k=1
p(k) =

a−1∑

k=1
(yk − 1) = p(a) − a.

(6) Lemma: Let m > 0 and k > 1. Then (Φm(q),Φmk(q)) = 1 if k is not a
prime power and (Φm(q),Φmk(q)) divides r if k is a power of r.
Proof: Let d = (Φm(q),Φmk(q)). First assume that k is divisible by a prime
r. Then Φm(q) divides qmk/r − 1 and Φmk(q) divides qmk−1

qmk/r−1
. With (5) now

follows that d divides r. If now k is not a prime power we get primes r, s, r 6= s
dividing k. Thus d divides r and s and so d = 1.
(7) Lemma: Let n,m > 0 with n < m. If (Φn(q),Φm(q)) 6= 1 then n divides
m, m

n is a power of a prime r with (Φn(q),Φm(q)) = r. If r is odd then r2

does not divide Φm(q).
Proof: : By (4) we have that n divides m. By (6) we have that m

n is a power
of a prime r and (Φn(q),Φm(q)) = r. Set now t = qm/r. Then Φm(q) divides
tr−1
t−1 and Φn(q) divides t − 1. Let t ≡ 1 + rb (mod r2) (thus ti ≡ 1 + irb

(mod r2)). Then tr−1
t−1 ≡

r−1∑

i=0
ti ≡ r + rb r(r−1)

2 (mod r2). If now r is odd

we have tr−1
t−1 ≡ r (mod r2) and the lemma holds.

5.4 Semisimple elements in finite groups of lie type

Aim of the following paragraph is
(1) Lemma: Let G be a finite simple group of lie type in characteristic p
and x ∈ G an element of prime order r with 2 6= r 6= p. The one of the
following cases holds:
(i) AutG(x) 6= 1
(ii) Op′(CG(x)) is a central product of groups of lie type in characteristic p.
(iii) NG(C) contains a characteristic subgroup of index 2, where C is a char-
acteristic subgroup of CG(x).(In most cases C = CG(x))
(2) Definition: Let q = pf for a prime p and r prime with dq(r) > 1 .
Define l(q, r) as the smallest prime dividing dq(r).
(3) Lemma: Let G = SLn(q), n > 1 and x ∈ G of prime order r with
dq(r) > 1. Then l(q, r) divides |AutG(x)|. Especially case (i) in (1) holds.
Proof: Let x be a counterexample in minimal dimension (of the natural
G-module V ). (i): CV (x) = 0. Otherwise U := [V, x] < V is a proper sub-

15



module for < x > and as dq(r) > 1 we get dim(U) > 1. So there is a
y ∈ SL(U) with xy 6= x and yl(q,r) ∈ CSL(U)(x). But y ∈ G, so l(q, r) divides
|AutG(x)|, a contradiction.
(ii) x is irreducible on V . (note that x is semisimple.) Otherwise let V =
V1 ⊕ V2 be a nontrivial invariant decomposition and xi the restriction of x
to Vi. So x = x1x2 and as dq(r) > 1 and CV (x) = 0 we get dimVi > 1.
Let Gi = SL(Vi), so xi ∈ Gi as dq(r) > 1. By minimality l(q, r) divides
|NGi(< xi >) : CGi(xi)|. So there are yi ∈ Gi with y

l(q,r)
i ∈ CGi(xi). Let

g = g1g2 ∈ G. As xg = xg1
1 xg2

2 , we see that x is not a counterexample.
If finally x is irreducible by (5.2.3) we have that l(q, r) divides |AutG(x)|,
so x is not a counterexample.
(4) Lemma: Let G = SUn(q),Ω+

2m(q)or Ω−
2m(q). Let V be the natural mod-

ule of G and x ∈ G as in (1). Then one of the following cases holds.
(i): CV (x) 6= 0
(ii) V = V1 ⊥ V2 and the Vi are nondegenerated nontrivial x-invariant sub-
spaces of V
(iii) V = U1 ⊕ U2, Ui maximal singular subspaces of V , V x-invariant.
(iv) x acts irreducibly on V .
Proof: Assume that not (i) or (ii) hold and let U be a minimal x-invariant
subspace of V . By minimality we have U ∩ U⊥ = U or U ∩ U⊥ = 0. If
U ∩U⊥ = 0 then U and U⊥ are nondegenerated x-invariant subspaces. But
now U = V and U⊥ = 0 as otherwise (ii) would hold. This means that x
acts irreducibly on V and so case (iv) holds.
So U ≤ U⊥. As x is semisimple we get a complement W of V to U and
a decomposition W = W1 ⊕ W2 . . . Wk into a direct sum of irreducible x-
invariant subspaces Wi. Now as V is nondegenerated there is a j such that
Wj 6≤ U⊥. Setting X := U ⊕W we see that X is nondegenerated: Rad(X) is
x-invariant but both U and W are irreducible, so have trivial intersection.
Assume 0 6= v = u + w ∈ Rad(X) with u ∈ U and w ∈ W . As U⊥ ∩ W = 0
we see that w 6= 0. But also W⊥ ∩ U = 0 and so there is an u′ ∈ U with
(w, u′) 6= 0. But then also (w + u, u′) 6= 0 contradicting v ∈ X⊥. Now X is
nondegenerated, but by (i) and (ii) we have that X = V and we are in case
(iii).
(5) Lemma: Let G = SUn(q), n > 2 and x ∈ G of prime order r with
dq2(r) > 1. Then l(q2, r) divides |AutG(x)|. Especially case (i) in (1) holds.
Proof: Assume false and let x be a counterexample with n minimal and V
the natural module of G.
By (4) one of the four cases (i) to (iv) holds. By minimality of n we see that
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(i) does not hold.
If (ii) holds we can set x = x1x2 with xi = x|Vi and by minimality there
are gi ∈ NSU(Vi)(< xi >) with xgi

i 6= xi and g
l(q2,r)
i ∈ CSU(Vi)(xi). (Note that

dq2(r) > 1 ensures that xi ∈ SU(Vi)). But then using g = g1g2 we can show
that x is not a counterexample.
If (iv) holds we have dq2(r) = n, but from the order formula one can see
easily that n has to be odd for G containing such elements. Now by (5.2.3)
we get that n divides |AutG(x)| and so l(q2, r) divides |AutG(x)|. If (iii)
holds the stabilizer of U1 induces a SL(Ui,GF(q2)) on Ui (i = 1, 2). But now
by (2) we see that x was not a counterexample.
(6) Lemma: Let G = SLn(q) or SUn(q) and ε = +1 resp. −1 in each case.
Let r be an odd prime dividing q− 1 resp. q2 − 1 and x ∈ G an element with
xr ∈ Z(G). Set H = G/Z(G). Then for xZ(G) ∈ H one of the cases (i),(ii)
or (iii) of (1) holds. Especially if r divides n then (i) or (ii) in (1) holds.
Proof: : In the following let V be always the natural module of G over
K = GF(q(3−ε)/2). First let G = SUn(q) and let r divide q − 1. We may as-
sume that xr = 1 as (|Z(G)|, r) = 1. Now all eigenvalues of x lie in GF(q). Let
v ∈ V be an eigenvector for an eigenvalue a 6= 1. Then (v, v) = (vx, vx) =
(av, av) = a2(v, v). But r is an odd prime which forces (v, v) = 0 which
means v is singular. Now x is semisimple which means that [V, x] and CV (x)
are nondegenerated. So there is an u ∈ V with ux = bu and (v, u) 6= 0. But
then (v, u) = (vx, ux) = (av, bu) = ab(v, u) which forces ab = 1. Now by (4)
V admitts an x-invariant decomposition V = U ⊥ V1 ⊥ V2 ⊥ . . . ⊥ Vk

with U = CV (x) and Vi nondegenerated subspaces of dimension 2 and
x|Vi ∈ SU(Vi) ∼= SL2(q). But x|Vi is inverted in SU(Vi). So there is an
y ∈ G with xy = x−1 and we are in case (i) of (1).
Assume now that r divides q − ε. Remember that either CG(x) is a central
product of groups of lie type by (5.2.1) and so we are in case (ii) of (1) or
we are in the ”unique torus case”.
Assume that all irreducible x-invariant subspaces have dimension 1 which
is the case if o(x) divides |K| − 1 (The order of the multiplicative group
of K). Let first be G = SLn(q). If one (say E(λ)) of the eigenspaces for
an eigenvalue λ has dimension greater than one, CG(x) induces a SL(E(λ))
on E(λ), so we are not in the ”unique torus case”, thus (ii) of (1) holds.
If all the eigenvalues are different we see that x lies in a torus of order
(q − 1)n−1 which is therefore the centralizer of x and is normalized by a Σn

(The full weyl group). In case G = SUn(q) V admitts by (4) a decompo-
sition into the eigenspaces V (ai) of x for the eigenvalues ai. Let vx = av,
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ux = bu and (v, u) 6= 1. Then (v, u) = (v, u)x = ab̄(v, u) where b̄ = bq is
the image under the field automorphism of order 2. Thus either (v, u) = 0
or 1 = ab̄ = ab−1bq+1 = ab−1 which forces a = b. Thus all the eigenspaces
E(ai) for pairwise different ai are pairwise orthogonal. They are therefore
nondegenerated. If one of these eigenspaces now has dimension greater than
one, CG(x) induces a unitary group on this eigenspace and so x is not in
the ”unique torus case”, so (ii) of (1) holds. If all the different eigenspaces
have dimension 1 , x lies in a torus of order (q +1)n−1 which is therefore the
centralizer and is normalized by a Σn, so in both the linear and the unitary
case we have that |CG(x)| = (q − ε)n−1 and NG(CG(x))/CG(x) ∼= Σn.
Assume first that (r, n) = 1. Then r is coprime to |Z| so we may assume that
r is the order of x. But now by the arguments above we are either in case (ii)
or (iii) of (1). (Note that CG(x) covers CH(xZ(G)) and NG(CG(x)) covers
NH(CH(xZ(G))) as r is coprime to |Z(G)|.) Assume now that r divides n.
We may assume now that xr = λIdV with λ ∈ K and o(λ) = rk.
First assume λ = 1, so all the eigenvalues of x lie in K. By the arguments
above we may assume that the eigenvalues of x are pairwise different as
otherwise case (ii) of (1) would hold. Now r divides n and r has at most r
different eigenvalues, so r = n and the eigenvalues of r are the r different
r-th roots of unity. But then x−1 has the same eigenvalues and therefore x
is conjugate to x−1 in G. As the same holds for xZ(G) ∈ H we are in case
(i) of (1).
So we may assume λ 6= 1. Assume first that o(x) divides |K| − 1. So the
polynomial yr − λ is fully reducible over K and an irreducible x-invariant
subspace has dimension 1. By the arguments above we may assume that all
the eigenvalues of x are pairwise different. But as xr ∈ Z(G) we have that
all eigenvalues of x are solutions of the equation yr = λ which has only r
different solutions. (Thus n = r.) But now det(x) is the product of all these
solutions which is λ 6= 1, a contradiction.
So assume that o(x) does not divide |K| − 1 and K does not contain solu-
tions of the equation yr = λ. Now yr − λ splits totally over L := GF(|K|r):
r divides |K|r−1

|K|−1 as |K| ≡ 1 (mod r) as K contains the r-th roots of unity.
Thus L contains a solution of the equation yr = λ but then contains all
these solutions. As now the degree |L : K| = r is prime we see that yr − λ
is irreducible over K. Let now U be an x-irreducible subspace of V and
0 6= u ∈ U . Then the vectors u, ux, ux2

, . . . , ur−1 form a basis of U : By the
irreducibility they span U and as yr−λ is irreducible over K they are lineary
independent. Note that det(x|U ) = λ 6= 1.
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Assume first that G = SLn(q). Let V = U1 ⊕ U2 . . . Uk be an x-invariant
decomposition of V with x irreducible on the Ui. If k > 1 CG(x) induces
a SLk(q) on V as the action on the Ui is all the same, so we are in (ii)
of (1). If k = 1 we get a contradiction as det(x) 6= 1. Assume now that
G = SUn(q). Assume an x-irreducible subspace U is totally singular. (As
U is irreducible we have either U ∩ U⊥ = 0 , so U is nondegenerated or
U ∩ U⊥ = U and so U is totally singular) As V is nondegenerated there is
an x-irreducible subspace W which does not lie in U⊥. Now the action of x
on W is dual to the action of x on U , so det(x|W ) = det(x|U )−1. But the
action of all x-irreducible subspaces is the same, so det(x|W ) = det(x|U ). As
now λ 6= λ−1 we get a contradiction. So all the x-irreducible subspaces are
nondegenerated. If now k = n/r > 1 CG(x) induces a SUk(q) on V and so
we are in case (ii) of (1). If k = 1 we get a contradiction as det(x) 6= 1.
(7) Lemma: Let G = Ω±

2m(q), n > 2 and x ∈ G of prime order r with
dq(r) > 2. Then l(q, r) divides |AutG(x)|. Especially (i) in (1) holds.
Proof: Let V be the natural module of G and assume false. Let (G,x) be
a counterexample with n := dim(V ) minimal.
By (4) one of the four cases (i) to (iv) holds. By minimality of n we see that
(i) does not hold: (Note that [V, x] and therefore CV (x) is of even dimension:
By (4) we have a decomposition: [V, x] = U1 ⊥ U2 ⊥ . . . ⊥ Uk with either
x on Ui irreducible or Ui = Xi ⊕ Yi where Xi, Yi are totally singular. Espe-
cially all the Ui are nondegenerated. If Ui = Xi ⊕ Yi then Ui is of plus type
and therefore of even dimension. If x is irreducible on Ui then by (3) we see
that o(x) divides (qni − 1, |O(Ui)|) where ni is the dimension of Ui. Further
dq(o(x)) = ni and now the order formulas show that Ui is of minus type and
therefore also even dimensional.)
If (ii) of (4) holds we can set x = x1x2 with xi = x|Vi and by minimality
there are gi ∈ NΩ(Vi)(< x >) with xgi 6= xi and g

l(q,r)
i ∈ CΩ(Vi)(xi). (Note

that dq(r) > 2 ensures that dim(Vi) > 2 and the note above shows that the
Vi are of even dimension.) But then using g = g1g2 we can show that x is
not a counterexample.
If (iv) of (4) holds o(x) divides (qn − 1, |G|), but dq(o(x)) = n. So from the
group order we see that G = Ω−

n (q). If n is even we have l(q, r) = 2 and
by (5.2.2) we see that x is inverted in G. If n is odd (5.2.3) gives that
|AutG(x)| = n and therefore x is not a counterexample.
If (iii) of (4) holds we see that G = Ω+

n (q) and the stabilizer of U1 induces a
SL(Ui) on Ui (i = 1, 2). Now by (3) we see that x was not a counterexample.
(8) Lemma: Let G = Ω±

2m(q),m ≥ 2, x ∈ G with o(x) = r prime with
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0 < dq(r) < 2. Then one of the cases (i),(ii) or (iii) of (1) holds.
Proof: We have CV (x) = 0: Otherwise CV (x) contains an anisotropic sub-
space U of dimension 1 and x ∈ Stab(U) ≤ G. Now U induces on U⊥ either
a group O2m−1(q) or Sp2m−2(q) depending on q either odd or even. But by
(5.2.2) we see then that x is inverted in Stab(U), so we are in case (i) of (1).
Also we may assume that m is odd as otherwise we are again in case (i) by
(5.2.2) .
Let now dq(r) = 1 and v ∈ V an eigenvector of x such that vx = av with
a 6= 1. Then Q(v) = Q(vx) = Q(av) = a2Q(v). But o(x) is odd and a 6= 1.
Therefore v is singular. Now < v >⊥ is x-invariant and has codimension 1.
As r 6= p there is an x-invariant complement < u > to < v >⊥ and w.l.o.g.
we may assume that f(v, u) = 1 where f is the symmetric bilinear form
associated with Q. Then again u is singular but < v, u > is a nondegener-
ated O+

2 -subspace of V . Continuing in this manner we get an x-invariant O+
2

decomposition of V : V = U1 ⊥ U2 ⊥ . . . ⊥ Uk where Ui =< vi, ui > with
vx
i = aivi, u

x
i = biui and (vi, ui) = 1. As 1 = (vi, ui) = (vx

i , ux
i ) = aibi(vi, ui)

we see further that aibi = 1.
Assume now that x contains an eigenvalue λ 6= 1 more than once. Then the
eigenspace E(λ) to λ is totally singular and has dimension > 1. But CG(x)
induces the full linear group on E(λ), so we cannot be in the ”unique torus
case” and so (ii) of (1) holds. Thus all nontrivial eigenvalues are pairwise
different.
Let now y ∈ CG(x). Then vyx

i = vxy
i = (aivi)y = aiv

y
i and uyx

i = uxy
i = biu

y
i .

But all the eigenvalues of x are unique and so y respects the base {vi, ui}
which forces CG(x) to be abelian of rank m. In fact now CG(x) is a Cartan
subgroup and NG(CG(x))/CG(x) is the Weyl group of G and so we are in
case (iii) of (1).
Let now dq(r) = 2. By (4) we get a decomposition of V = U1 ⊥ U2 ⊥ . . . Uk

with Ui either of type O−
2 or O+

4 .
Assume a subspace Ui is of type O+

4 and O+
4 = U ⊕ W with U and W

totally singular and x-invariant. Let U =< u1, u2 >. Then W contains a w1

with f(u1, w1) = 1 and f(u2, w1) = 0. (Choose x1 ∈ W∩ < u2 >⊥. Then
f(u1, x1) 6= 1 as otherwise x1 would lie in Rad(Ui). Set w1 = λx1 to get
f(u1, w1) = 1.) Using the same method we can find a w2 with f(u1, w2) = 0
and f(u2, w2) = 1. Some easy arithmetic shows now that x centralizes a
SL2(q) in Ω(Ui), so we are in case (ii) of (1). So all the Ui are of type O−

2 .
Now CG(x) contains the maximal torus of type (q+1)m. So following (5.2.1)
we are either in case (ii) of (1) or in the ”unique torus case”. In this last case
we see that NG(CG(x))/CG(x) ∼= 2m−1Σm. (For instance [8] Prop. 4.2.11)
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and we are in case (iii).
(9) Lemma: Let G = E6(q) or 2E6(q) and x ∈ G an element of prime order
r with dq(r) > 0. Then one of the cases (i),(ii) or (iii) of (1) holds.
Proof: The r-part of |G| is contained in ni if dq(r) = i, where ni is defined
below. A Sylow-r-subgroup of G is contained in a group of type Mi and
w.l.o.g we may assume x ∈ Mi. In case E6(q) this are the nis and Mis:

i ni Mi cases
1 Φ6

1 A1(q) ◦ A5(q) r 6= 3, 5
1 Φ6

13
3 (q−1)6

3 W (E6) r = 3
1 Φ6

15 A1(q) ◦ A5(q) r = 5
2 Φ4

2 F4(q) r 6= 3
2 Φ4

23
2 F4(q) r = 3

3 Φ3
3 A2(q) ◦ A2(q) ◦ A2(q)

4 Φ2
4 F4(q)

5 Φ5 D5(q) ◦ (q − 1)
6 Φ2

6 F4(q)
8 Φ8 F4(q)
9 Φ9 A2(q3)
12 Φ12 F4(q)

In case 2E6(q) this are the nis and Mis:
i ni Mi cases
1 Φ4

1 F4(q) r 6= 3
1 Φ4

13
2 F4(q) r = 3

2 Φ6
2 A1(q)◦2A5(q) r 6= 3, 5

2 Φ6
23

3 (q+1)6

3 W (E6) r = 3
2 Φ6

25 A1(q)◦2A5(q) r = 5
3 Φ2

3 F4(q)
4 Φ2

4 F4(q)
5 Φ5

2D5(q) ◦ (q + 1)
6 Φ3

6
2A2(q)◦2A2(q)◦2A2(q)

8 Φ8 F4(q)
9 Φ9

2A2(q3)
12 Φ12 F4(q)

Proof of the nis: We analyze the semisimple part of the group order: if
dq(r) = i then r divides Φi(q). Now using (5.3.7) we can calculate the r-
part of G. The existence of the subgroups of type Mi follows from [12] for
types F4, A1(q) ◦ A5(q), Dε

5(q) ◦ q − ε and from [4] for the other types.
Assume now that Mi is of type F4. By (5.2.2) we see now that x is inverted
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in Mi, so we are in case (i). Let now G be of type E6(q) and dq(r) > 1. If
Mi is of type A2(q) ◦A2(q) ◦A2(q), D5(q) ◦ (q − 1) or A2(q3) we are in case
(i) by (3) and (6).
Let now G of type 2E6(q) and dq(r) 6= 2. First assume that dq(r) > 2. Note
that then dq2(r) > 1. So we can apply (5) and (6) to see that case (i) holds.
Let now G = E6(q) and dq(r) = 1 but r 6= 3, 5. Then the r-part of G is the
r-part of (q − 1)6. Set now Ḡ the central extension of G with d := (q − 1, 3).
Then Ḡ is a group of fixed points of some frobenius map of the simply
connected simple algebraic group of type E6. (See (5.2.1) .) Let x̄ some ele-
ment of the preimage of x. (Under the homomorphism from Ḡ to G) Then by
(5.2.1) we have that CḠ(x̄) is either a central product of groups of lie type in
characteristic p and we are in case (ii) as this holds also for x in G or we are
in the ”unique torus case”. Now a Sylow-r-subgroup of G is abelian of rank
6. Thus the torus has order (q − 1)6 in Ḡ and (q − 1)6/d in G. (Note that
(d, r) = 1, thus CG(x) covers CḠ(x̄)). Now NḠ(CḠ(x̄))/CḠ(x̄) ∼= W (E6),
the weyl group. and r is coprime to Z(Ḡ), so NG(CG(x))/CG(x) ∼= W (E6)
and we are in case (iii) of (1).
Let now r = 5 and assume that dq(5) = 1. x is contained in a group M of
type (A1(q) ◦ A5(q)).(2, q − 1). Set M0 = O2(M), such that M0 = M1M2

with M1 = A1(q) and M2 = A5(q). So x = x1x2 with xi ∈ Mi. There is
an epimorphism from SL6(q) onto M2. Let x̄ be a preimage of x2. We may
choose x̄ of order 5 as |Z(SL6(q))| is coprime to 5. Then x̄ has an eigen-
value of multiplicity greater than one (as x̄ has only 5th roots of unity as
eigenvalues, but x̄ has 6 eigenvalues). So we are not in the unique torus case
and hence in case (ii). If G is of type 2E6(q) we can modify this proof by
replacing the linear subgroups with unitary subgroups and q − 1 with q + 1,
so the remaining cases are r = 3, dq(3) = 1 for E6(q) and dq(3) = 2 for
2E6(q). Let again be Ḡ be a central extension of G, such that Ḡ is a group
of fixed points of a frobenius map of a simple simply connected algebraic
group of type E6. Let x̄ be an element in the preimage of x. (Thus x̄ has
order 3 or order 9). By (5.2.1) then either CḠ(x̄) is a central product of
groups of lie type (and hence the same holds for x and we are in case (ii)
of (1)) or we are in the ”unique torus case”. Then 9 divides the order of
the torus (as we have a nontrivial centre of order 3 which has to be con-
tained in the unique torus containing x̄). Using [3] we can calculate the
orders of the maximal tori T in groups of type E6. By [14],II,1.10(c) we get
the orders of the maximal tori in groups of type 2E6 by replacing q with
−q. As the maximal tori are related to root-subsystems of the weyl group
we can see, that all these maximal tori are contained in subgroups of type
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M = A1(q)◦A5(q).(2, q−1) of Ḡ or T is of one of the following types (in the
notation of [3]): D4, D4(a1), D5, D5(a1), A2×A2×A2 , E6, E6(a1) or E6(a2)
with orders (q3+1)(q+1)(q−1)2, (q2+1)(q2+1)(q−1)2, (q4+1)(q+1)(q−1),
(q3 + 1)(q2 + 1)(q − 1), (q2 + q + 1)3, (q4 − q2 + 1)(q2 + q + 1), q6 + q3 + 1
resp. (q2 + q + 1)(q2 − q + 1)(q2 − q + 1). (This are the orders in case of
E6(q), for 2E6(q) we have to replace q by −q). We can find the first four
tori in a subgroup of type Dε

5(q) ◦ (q − ε). From this we see, that for an
element lying in such a torus case (ii) of (1) holds. (As x̄ would centralize
a subgroup of type D4(q) as the only terms divisible by 3 are the q − ε-s.)
In the last three cases we see by (5.3.7) that 9 does not divide the order
of the torus, so T is of type (q2 + εq + 1)3, embedded in a subgroup of type
32.(Lε

3(q) × Lε
3(q) × Lε

3(q)).3Σ3. By (5.3.7) we see that (Φ1(q),Φ3(q)) = 3,
(Φ2(q),Φ3(q)) = 1 in case E6(q) and (Φ1(q),Φ6(q)) = 1, (Φ2(q),Φ6(q)) = 3,
(Φ3(q),Φ6(q)) = 2, (Φ4(q),Φ6(q)) = 1, (Φ5(q),Φ6(q)) = 1. As Φ3(q) ≥ 7 for
q ≥ 2 and Φ6(q) ≥ 7 for q ≥ 3 we get a prime r dividing Φ3(q) resp. Φ6(q)
with dq(r) = 3 resp. 6. Set S to be the Sylow-r-subgroup of the torus T . As T
is a Sylow-r- subgroup of Ḡ we have that ScharT̄ and the image S0 of S in G
is a characteristic subgroup of CG(x). Then NG(S0)/CG(S0) ∼= 31+22Σ4 (as
T is of type A2 +A2 +A2) and so NG(S0) contains a characteristic subgroup
of index 2 and we are in case (iii) of (1). So the case 2E6(2) remains. Now by
the character table in [5] we see that G has 3 conjugacy classes of elements
of order 3 with Centralizer 3 × U6(2), (3 × O+

8 (2) : 3) and 31+621+632 and
so we see that (i) and (ii) of (1) holds.
Proof: of (1): If G is one of A1(q), Bn(q), n > 1, 2B2(q), Cn(q), n > 2,
D2n(q),n > 3, 2D2n(q),n > 3, 3D4(q), E7(q), E8(q), F4(q), 2F4(q), G2(q) or
2G2(q) then by (5.2.2) we see that (i) holds. If G is of type An(q), n > 2
or 2An(q), n > 2 we see that (i),(ii) or (iii) holds by (3),(5) and (6). The
statement holds for groups of type Dn(q) and 2Dn(q) by (7) and (8) and for
groups of type E6(q) resp. 2E6(q) by (9).
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6 The minimal counterexample

Applying the classification of finite simple groups, a minimal counterexample
to Theorem (4.9) is an alternating group, a sporadic group or a group of
lie type.

6.1 Alternating groups

(1) Lemma: Let G = Σn, n ≥ 5 and x ∈ G. Then there is an y ∈ G with
xg = y 6= x for a g ∈ An and [x, y] = 1.
Proof: Assume false and let (G,x) be a counterexample with n minimal.
Assume x has fixed points. As G is a counterexample we have n = 5 and
x ∈ Σ4. W.l.o.g. we may assume that x is one of (1, 2), (1, 2, 3), (1, 2)(3, 4) or
(1, 2, 3, 4). Then set g = (1, 3)(2, 4), (1, 2)(4, 5), (1, 2, 3), (1, 2, 3) respectively
(1, 4)(2, 3) to see that x is not a counterexample.
Assume x admitts an invariant decomposition of {1, 2, . . . , n} into two sets
K1,K2 with |K1| > 4 or |K2| > 4. Set x = x1x2 with xi ∈ ΣKi . W.l.o.g. we
may assume |K1| > 4. By minimality we get a g ∈ AK1 with [xg

1, x1] = 1.
So xg 6= x and [xg, x] = 1 with g ∈ An. Assume now that |K| ≤ 4 and
|L| ≤ 4. Now x has no fixed points and so the xi have no fixed points. If
|Xi| = 4 for some i, the xi is w.l.o.g. either (1, 2)(3, 4) or (1, 2, 3, 4) and we
can set g = (1, 2, 3) resp. g = (1, 4)(2, 3). As n ≥ 5 the remaining cases are
w.l.o.g. x = (1, 2, 3)(4, 5, 6) or x = (1, 2, 3)(4, 5).Setting g = (1, 2)(4, 5) (in
both cases) we see that x is not a counterexample.
Now x is a cycle of length n. So there is a g1 ∈ Σn with xg1 = x−1. Assume n
is even. Then either g1 ∈ An or xg1 ∈ An, so x is not a counterexample. If n
is odd there is a g2 with xg2 = x2. As n > 3 the elements x, x−1, x2, x−2 are
all (pairwise) different. So one of the elements g1, g2, g1g2 lies in An which
shows that x is not a counterexample. So there is no counterexample and
the lemma holds.
(2) Lemma: A minimal counterexample to theorem (4.9) is not an alter-
nating group for n > 6.
Proof: In case n > 6 we have Aut(G) = Σn. So assume false and let G
be an α-CCP-group for α ∈ Σn. By (1) there is a g ∈ An with αg 6= α
and [αg, α] = 1. But then 1 6= [g, α] = (α−1)gα ∈ CG(α) and G is not an
α-CCP-group.
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6.2 Sporadic groups

(3) Lemma: A minimal counterexample to theorem (4.9) is not a sporadic
group.
Proof: Set H =< Inn(G), α >. By (4.17) now H is an α-CCP-group.
Further by (4.18) we have that α is not an involution and all the generators
of < α > fall into different H-conjugacy classes. If α ∈ Inn(G) then H = G
contains at least φ(o(α)) many conjugacy classes Ci = xG

i of the same size.
If α 6∈ Inn(G) then the coset H− Inn(G) contains at least φ(o(α)) conjugacy
classes Ci = xG

i with the same size. By [5] this happens only in the following
cases:
case nr. G Ci power map

1 M12 4A,4B A,A
2 M24 6A,6B AA,BB
3 Suz 6B,6C BA,BA
4 Suz 6H,6I CC,CD
5 Co2 4E,4F B,B
6 Fi22 6F,6G AC,BC
7 Fi22 6S,6T DD,DE
8 Co1 6C,6D BA,CA
9 Co1 12HIJK DC,EC,ED,FB
10 J4 6B,6C AA,AB
11 Fi′24 6G,6H DA,DB

(Notation as in [5]). Now α has to be one of the xi-s if G is a counterexample.
As seen in [5] all elements of order 3 in sporadic groups are conjugate to
its inverses. (and otherwise this cases should occur in the table) So by the
power map given in [5] we see that in the cases {2, 4, 6, 7, 8, 9, 10, 11} not all
subgroups of < xi > are conjugate, so the xi cannot be choosen as generators
of a cyclical subgroup of Aut(G). So the remaining cases are G = M12, Suz or
Co2 and < α >< CH(α) contains an involution of type 2A, 2A resp. 2B. Let
i be this involution and C = CH(i). Then C has structure 21+4Σ3,21+6

− U4(2)
resp. (21+6 × 24)A8. In case M12 and Co2 now α has order 4. By (4.19) we
have now [O2(C), α] = 1. But then [C,α] = 1 by (5.1.1) . By Glauberman
C contains an involution j 6= i conjugate to i. By the maximality of C now
follows that [G,α] = 1, a contradiction.
In case Suz now α acts trivially on S := C/O2(C) as S is simple. Now S
acts absolutly irreducibly on O2(C) and α centralizes S. Thus α has to act
trivially on C and by the maximality of C and Glauberman-s Z∗-theorem
now [G,α] = 1, a final contradiction.
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6.3 Lie groups of high rank

Note: In this paragraph let G be a finite simple group of lie type in charac-
teristic p. Set H = CG(α).
(1) Lemma: Let G be a minimal counterexample to (4.9) and A < G with
Aα = A. Let B / A, such that A/B is a central product of groups of lie type
in characteristic p. Then the following holds:
(i) CA/B(α) contains elements of order p.
(ii) A/B contains an α-invariant Sylow-p-subgroup.
Proof: Let C1 = A/B, C2 = Op′(C1), D = C2/Z(C2). Then D is a direct
product of groups of lie type in characteristic p, generated by its elements
of order p.
If CD(α) contains elements of order p then also CA/B(α) contains elements
of order p by (4.10) . If D contains an α-invariant Sylow-p-subgroup P
then so does A/B as the preimage of P in A/B contains a unique Sylow-p-
subgroup.
Let E1 = E(D),F = CD(E1), E = CD(F ). Then F is the direct product of
all solvable groups of lie type and Z(F ) = 1 by definition of D. So E is the
product of all nonsolvable factors and E1 = F ∗(E). As now G is a minimal
counterexample we see that α is trivial on E1. But now by (5.1.1) we see
that [E,α] = 1. So if F = 1 the lemma holds.
Assume F 6= 1 thus p = 2 or p = 3. First let p = 2, so each factor of F
is of one of the following types: T1 := A1(2) = 3 : 2, T2 :=2B2(2) = 5 : 4,
T3 :=2A2(2) = 32 : Q8, T: = D2(2) = 32 : D8. We show now that α acts on
the factors by permutation:
Let i ∈ Tj be an involution and x ∈ Tj an element of order 4 (if exists).
Then |Tj : CTj (i)| = 3(j = 1)5(j = 2)9(j = 3)9 or 6(j = 4) and
|Tj : CTj (x)| =5(j = 2)18(j = 3)18(j = 4).
Let F = L1L2 . . . Lk with each Lj isomorphic to one of the above Tj ’s.
Let Lm be a factor of type T1 and i ∈ Lm with |F : CF (i)| = 3. So the same
holds for α(i) and so we see that α(i) is contained in an unique factor Ln of
type T1. Now Lm =< iF > thus Ln = α(Lm).
Let now Lm be of type T2 and x ∈ Lm of order 4 with |F : CF (x)| = 5. As
the same holds for α(x) we see again that α(x) is contained in an unique
factor, say Ln of type T2. As now Lm =< xF > we see that Ln = α(Lm).
Let Lm be a factor of type T3 or T4 and x ∈ G of order 4 with |F : CF (x)| =
18. Then also |F : CF (α(x))| = 18 and we see that α(x) lies in an unique
factor Ln. Now Lm =< xF >. So < α(x)F > is isomorphic to Lm, hence
Ln =< α(x)F > and Ln = α(Lm).
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Let now Fi be the product of all factors Lj of type Ti. As shown α permutes
the factors of Fi(i = 1, 2, 3, 4). By (4.12) we see now that each of the Fi’s
contains an α-invariant Sylow-2-subgroup and centralizes involutions. So F
and D contain an α-invariant Sylow-2-subgroup and CD(α) contains invo-
lutions.
Finally let p = 3 so F is a direct product of groups of type A4 = 22 : 3. Now
by (4.12) we see that F and therefore D contains an α-invariant Sylow-3-
subgroup and CF (α) contains elements of order 3. By the remarks above the
lemma holds now.
(2) Lemma: Assume G is a minimal counterexample to theorem (4.9) .
If 2 divides |H| then p divides |H| or the lie rank of G is 1.
Proof: We may assume p 6= 2. Let i ∈ CG(α) be an involution. The iso-
morphism type of CG(i) is listed in [15] for all groups of lietype with p odd.
It turns out that Op′(CG(i)) is a central product of groups of lie type in
characteristic p if the lie rank is greater than one. By (1) now the lemma
holds.
(3) Lemma: Assume G is a minimal counterexample to theorem (4.9) and
p divides |H|.
Then there is a P ∈ Sylp(G), B = NG(P ) such that Bα = B.
Proof: Let xp ∈ H of order p. Set N0 = CG(xp) and Ni+1 = NG(Op(Ni)).
As G is finite the chain Ni ends in a stationary subgroup P := Nk = Nk+1.
By a theorem of Borel and Tits the group P is a parabolic subgroup of
G. By construction is Pα = P , so we can assume, that Op(P ) 6∈ Sylp(G) as
then the lemma holds.
Let L := Op′(P/Op(P )). L is isomorphic to a levicomplement in P to Op(P ).
We have to show now, that L contains an invariant Sylow-p-subgroup but
this follows from (1).
(4) Lemma: Assume G is a minimal counterexample to theorem (4.9) and
p ∈ πH .
Then either Uα = U for each B ≤ U ≤ G or G is one of A2(q),B2(q),G2(q)
and the graph automorphism has order 2.
Proof: Assume otherwise. Then α induces a graph automorphism on G
which means a symmetry on the dynkindiagram. So G is one of An(q), n > 1,
B2(q), qeven, Dn(q), n > 3, E6(q) or G2(q), q = 3f . Let G be of type An(q). If
n > 3 let P be the parabolic corresponding to all except the ending nodes of
the dynkindiagram which is invariant under γ, so under α. By minimality of
G we see that α is trivial on the quasisimple factor Op′(P/Op(P )) , so α can-
not induce a symmetry on the dynkindiagram, a contradiction. If n = 3 set
P to correspond to the both ending nodes of the dynkindiagram. Then a lev-
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icomplement is isomorphic to A1(q)×A1(q) and hence nonsolvable for q > 3.
In case q > 3 α is trivial by minimality. For q = 2 we get a contradiction by
(5.1.5) and (4.12) . So let q = 3. Then P has structure 34 : 2.(A4 × A4).2.
Then α normalizes a section of type H := (PSL2(3) × PSL2(3)).2 and ele-
ments in H −O2(H) induce a diagonal automorphism on H. As α is trivial
on H/O2(H) we get an element x ∈ CH(α) which covers this factor. Set
C := CO2(H)(x). we have Cα = C and |C| = 4. Now C = (C ∩ N1)(C ∩ N2)
where the Ni are the normal subgroups of type PSL2(q) which are inter-
changed by α as α induces a graph automorphism. But this contradicts
(4.5) as then α fixes a commutator with α on H. So also in this case α is
trivial on the overgroups of B.
So let G be of type D4(q). If γ has order 2 set P to correspond to all nodes
except the ending node fixed by γ. As the levicomplement is nonsolvable
(of type A3(q)) we see that α must be trivial on a levicomplement for this
parabolic, a contradiction. If γ has order 3 set P to be the parabolic subgroup
corresponding to all ending nodes. For q > 3 a levicomplement of P is non-
solvable so must be centralized, a contradiction. For q = 3 we see by (5.1.6)
and (4.12) that α cannot be transitive on the nodes. So let q = 2. Then P
has structure 21+8.(Σ3 × Σ3 × Σ3). Set P̄ = P/O2(P ). Assume α permutes
the Σ3-s transitively. By (4.12) we have then that CP̄ (α) is not divisible by
3, but CP̄ (α) contains involutions by (1) and a α-invariant Sylow-2-subgroup
S̄. Let S be the full preimage of S̄. Set Z = Z(S), Z2/Z = Z(S/Z), D = S′

and O = O2(P ) Then Z is of order 2, so Z ≤ CG(α), |Z2 : Z| = 2, so
Z2 ≤ CG(α). Also |O : D|=2, so CS(α) covers this factor. Finally CP̄ con-
tains involutions, so CG(α) contains a 2-group of order at least 24. As α acts
transitively on the factors of P̄ , α lies in a coset of a triality. Now by [5] we
see that α = βγ = γβ, where β is of class 3F (a triality) and o(γ) is not
divisible by 3. Thus CG(β) ∼= U3(3) : 2 is α-invariant. By minimality of G
we have that CG(β) ≤ CG(α) and so α = β. But now CP̄ (α) is divisible by
3, a contradiction.
Let G be of type Dn, n > 4. Let P be the parabolic of type Dn−1. So we get
again a contradiction.
Finally let G be of type E6(q) and P the parabolic of type A5(q). Arguing
as above we get a contradiction, so the lemma holds.
(5) Lemma: Assume G is a minimal counterexample to theorem (4.9) and
p ∈ πH . Assume further that α fixes all overgroups of the α-invariant Borel
subgroup B given in (1) and that the lie rank is at least 2.
Then CG(α) acts transitively on flags of the p-local geometry defined for G
or G is one of 2A3(2),2A4(2) ,B2(2)′, B2(3), 3D4(3), 2F4(2)′ or G2(2)′.
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Proof: For each lie group G let P1 and P2 be the maximal parabolics con-
taining B of type given below:

type of G type of P1 type of P2

An(q), n > 1 An−1(q) An−1(q)
2A2n(q), n > 1 2A2n−2(q) An−1(q2)

2A2n+1(q), n > 0 2A2n−1(q) An(q)
Bn(q), n > 1 Bn−1(q) An−1(q)
Cn(q), n > 2 Cn−1(q) An−1(q)
Dn(q), n > 3 Dn−1(q) An−1(q)
2Dn(q), n > 3 2Dn−1(q) An−2(q)

3D4(q) A1(q) A1(q3)
E6(q) D5(q) A5(q)
2E6(q) 2D4(q) 2A5(q)
E7(q) E6(q) A6(q)
E8(q) E7(q) A7(q)
F4(q) B3(q) C3(q)
2F4(q) 2B2(q) A1(q)
G2(q) A1(q) A1(q)

We claim the following: CPi(α) acts transitively on flags containing Ei. This
follows if we can show that Pi = BCPi(α). Set Li := Op′(Pi/Op(Pi)). If
E(Li) 6= 1 we have in fact F ∗(Li) = E(Li) and by minimality we have
therefore [F ∗(Li), α] = 1 from which follows [Li, α] = 1 by (5.1.1) . But
now CPi(α) covers the factor group Li and so we have Pi = BCPi(α) . So let
E(Pi) = 1 which means that the type of Pi is one of the following groups:
A1(2), A1(3), 2A2(2) or 2B2(2). But then G is either an exception of the
lemma or G is one of the following groups: A2(2), A2(3), 2A3(3), 3D4(2)
or G2(3). First let G = 3D4(2). By [5] the involved parabolic has structure
22.[29] : A1(2) in Atlas-notation. Note that the factor A1(2) acts faithfully
on the normal subgroup N of order 4. ( By [5] P1 is N(2A2) which means
that Z(Pi) is trivial as P2 = N(2A)). By assumption we have Pα

1 = P1.
So let x ∈ CP1(α) be an element which covers the factor P1/O

2(P1). Now
|CN (x)| = 2 and so we see that [N,α] = 1. But then we get by (5.1.1) that
[P,α,N ] = 1 which means that P1 = BCP1(α) in this case too. In the other
cases we see by [5] that all the involved parabolics contain a characteris-
tic subgroup U with Pi/U ∼= Σ4 and U < B. Now by (5.1.4) we see that
[Pi/U, α] = 1 and therefore Pi = BCPi(α).
We can now prove flag transitivity:
Denote with Ei the geometrical object fixed by Pi and let Oi = EG

i . We
show first that CG(α) acts transitively on O1: Therefore we define the rela-
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tion ∼⊂ (O1 ∪ O2) × (O1 ∪ O2) : o1 ∼ o2 iff there is a flag containing both
o1 and o2. From the theory of buildings and geometries we know that the
graph ∼ is connected. So let E ∈ O1 and proceed by induction over the
distance of E to E1. If the distance is 0 we have E = E1 and nothing is
to show. Otherwise there are elements F ∈ O1, G ∈ O2 with F ∼ G ∼ E
and d(E1, F ) < d(E1, E). So there is an x1 ∈ CG(α) with F x1 = E1. Now
E1 = F x1 ∼ Gx1 ∼ Ex1 as G respects the relation ∼. But CP1(α) acts
transitively on flags containing E1 so there is an x2 ∈ CP1(α) < CG(α) with
(Gx1)x2 = E2. But then there is an element x3 ∈ CP2(α) < CG(α) with
(Ex1x2)x3 = E1 and so CG(α) acts transitively on O1. But as CP1(α) acts
transitively on the flags containing E1 we have flag transitivity.
(6) Lemma: Assume G is a minimal counterexample to (4.9) . If 2 ∈ πH

or p ∈ πH then one of the following cases holds:
(i) The lie rank of G is 1.
(ii) G = A2(q), B2(q) or G2(q) and α induces a graph automorphism of or-
der 2.
(iii) G =2A3(2), 2A4(2), B2(2)′, B2(3),3D4(3), 2F4(2)′ or G2(2)′.
Proof: Assume that the lie rank of G is greater than one and 2 ∈ πH or
p ∈ πH . By (4) we may assume that p ∈ πH . Now by (1) we get a Borel
subgroup B with Bα = B. By (2) we see that either G is one of the ex-
ceptions (ii) or α fixes all overgroups of B. So we can apply (3). Then G is
either one of the exceptions (iii) or H acts flag transitively on G. We can
now apply the main theorem of [11] to show that in fact G = H as [11] gives
all maximal factorizations of the finite simple groups.
From this we see that either (G,M) = (A2(q), A0(q3).3) , (B2(3), 24 : A1(4))
or (A3(2), A7) where M denotes the conjugacy class of maximal subgroups
of G which acts flag transitively. But CG(α) is not contained in such a sub-
group in the first case.The second case is excluded by (iii) and the third case
contradicts (6.1.2) .
(7) Lemma: Assume G is a minimal counterexample to (4.9) . Then one
of the following cases holds:
(i) The lie rank of G is 1.
(ii) G = A2(q), B2(q) or G2(q) and α induces a graph automorphism of or-
der 2.
(iii) G =2A3(2), 2A4(2), B2(2)′, B2(3), 3D4(3), 2F4(2)′ or G2(2)′.
Proof: By (4.14) we have CG(α) 6= 1. Let x ∈ CG(α) be of prime order r.
If r = 2 or p the lemma holds by (6). So x is semisimple. Now by (5.4.1)
have that one of the cases (i),(ii) or (iii) holds. If case (ii) holds, Op′(CG(x))
is a central product of groups of lie type, which is α-invariant. Thus by (1)

30



we have that p divides |CG(x)| and now (6) proves the statement.
If (iii) holds, α acts trivially on a factor group of order 2, therefore 2 divides
|CG(x)| and now (6) finishes the argumentation. If finally case (i) holds we
get a prime s diving |AutG(x)| and therefore s divides |CG(x)| by (5.1.2)
. So we can repeat this process with an element y ∈ CG(α) of order s. As
s < r this process finally terminates and the lemma is proved.

6.4 Lie groups of low rank

In this section let H = CG(α) and πU be the set of primes dividing |U | for
the subgroup U ≤ G.
(1) Lemma: Let G = A1(q), q > 3.
Then G is not a minimal counterexample to theorem (4.9) .
Proof: First let q be even. Then 2 ∈ πH : Let r ∈ πH and xr ∈ H. Then
either r = 2 or AutG(x) = 2 and so 2 ∈ πH by (5.1.2) .
Let i ∈ H be an involution and S = CG(i) ∈ Syl2(G). As all involutions of
S are conjugate in G, α is trivial on S. By (5.1.1) α is trivial on NG(S).
Let y ∈ NG(S)−S. By (5.1.2) there is an involution j ∈ H inverting y and
< NG(S), j >= G, so H = G and G is not a counterexample.
Assume now q odd. Then H contains either elements of order p, involutions
or both. (Let x ∈ H be a semisimple element. Then x is inverted in G.)
First let 4|q +1. Then all subgroups of order p are conjugate in G: Let P be
a Sylow-p-subgroup. Then |NG(P ) : P | = (|P | − 1)/2 and P consists of two
classes of elements of order p. But no element of order p is conjugate to its
inverse (as NG(P ) contains no involutions), which shows that all subgroups
of order p of P are conjugate in NG(P ).
Assume now that p ∈ πH . Let x ∈ H, o(x) = p. Then CG(x) = P is a
Sylow-p-subgroup and as all subgroups of order p are conjugate we see that
[P,α] = 1. So by (5.1.1) we get [NG(P ), α] = 1. Let y ∈ NG(P ) − P .
Then |AutG(y)| = 2 and by (5.1.2) we get an involution i ∈ H and so
H ≥< NG(P ), i >= G. So if p ∈ πH , then [G,α] = 1. Otherwise 2 ∈ πH .
Now let 4|q − 1. Then we have 2 ∈ πH : Let r ∈ πH , x ∈ H, o(x) = r. If
r 6= p, 2 we have |AutG(x)| = 2 for x ∈ H, so 2 ∈ πH by (5.1.2) . If r = p
then CG(xr) = P ∈ Sylp(G) and NG(P ) contains a unique subgroup of index
2 which forces 2 ∈ πH .
So in general 2 ∈ πH for all odd q.
Let i ∈ H, o(i) = 2. Then CG(i) is a dihedral group and by (5.1.4) we get a
Sylow-2-subgroup S of CG(i) with [S,α] = 1. But also S ∈ Syl2(G). So for
each involution i ∈ H we get a Sylow-2-subgroup of G with i ∈ Z(S).

31



Assume now that |S| = 4. Then NG(S) ∼= A4 as G contains no 2′-complement.
By (5.1.6) we get a Sylow-3-subgroup T of NG(S) with T < H which shows
NG(S) ≤ H. Assume p = 3. If 4 divides q + 1, then H contains elements of
order 3, so H = G as seen above. If 4 divides q − 1 = 3f − 1 we have f = 2k
for some k. But then 3f − 1 = (3k − 1)(3k + 1) and so 8 divides 3f − 1. So
p 6= 3 in this case and elements of order 3 are inverted in G. So each element
of order 3 in H is inverted by an element j ∈ H of even order and for each
involution i ∈ H there is a subgroup N ∼= A4, N ≤ H with i ∈ N . By the
list of maximal subgroups of G we see that either H a subgroup of type
L2(q0) for some q0 with q = qe

0 for some e (allowing e = 1) or a subgroup
of type A5. If p = 5 a subgroup of type A5 is of type L2(5) = L2(q0). If
p 6= 2, 3, 5 we have the three subgroups CG(i),NG(CG(y)) and NG(CG(z))
for some i, y, z ∈ H of order 2, 3, 5 respectively which are α-invariant. But
then two of them must be conjugate say Ni and Nj . But then CNi(α) is
conjugate to CNj (α) as otherwise we get elements x ∈ Ni and y ∈ Nj with x
conjugate to y and x = [z, α] for some z ∈ Ni and y ∈ H which contradicts
the α-CCP-property. But then H contains elements of order 6, 10 or 15 and
so H is not of type A5. So in this case (|S| = 4) H is always of type L2(q0).
Now let 8||G|. Then for each involution i ∈ H there is an element x ∈
H, o(x) = 4 with x2 = i. By the list of maximal subgroups we see now that
H has to be of type L2(q0) for some e and q0 with qe

0 = q.
So in general H is of type L2(q0), But in case 4 divides q+1 we have elements
of order p in H, so G = H as seen above. We show now that q0 = q as H and
G contain the same Sylow-2-subgroup: First we see that e is odd: otherwise
e = 2g and q−1 = q2g

0 −1 = (q2
0 −1)m for some integer m which shows that

|G : H| = qe−1
0 m(q + 1) is even. Let P be an α-invariant Sylow-p-subgroup

of G. P = [P,α]×CP (α) by the α-CCP-property. Now the elements of order
p fall into two conjugacy classes. Let γ ∈ Aut(G) be a diagonal automor-
phism of order 2, fixing P but interchanging the p-conjugacy classes of P .
As H ∼= L2(q0) we have CP (α) of GF(q0)-dimension 1 and [P,α] of GF(q0)-
dimension e − 1. If now e > 1 we have [P,α] ∩ [P,α]γ 6= 1 as e − 1 > e/2.
(Remember e is odd). Thus [P,α] contains elements of order p from both
G-conjugacy classes and so some elements in [P,α] are G-conjugate to some
elements in CP (α), a contradiction to (4.5) . Thus e = 1 and H = G, a
final contradiction.
(2) Lemma: Let G =2A2(q), q > 2.
Then G is not a minimal counterexample to theorem (4.9) .
Proof: First assume q odd. If H contains an involution i then C := CG(i)
contains a subgroup SL2(q) : 2. If q > 3 we have E(C) 6= 1, so [E(C), α] = 1.
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But C contains a characteristic subgroup of index 2, so CC(α) covers the
factor group and H contains a subgroup SL2(q) : 2 which contains other
involutions than the central one. So we can do this for each involution
i ∈ H and get that H = G as C is a maximal subgroup. If q = 3 we
have C = SL2(q) : 2 ∼= 2Σ4 and by (5.1.3) we have [C,α] = 1, so we get
G = H as before. So let r ∈ πH . If r|q we get an α-invariant parabolic
subgroup of H which contains a unique subgroup of index 2 and therefore
2 ∈ πH . If r|q − 1 then elements of order r are inverted in G as they are in-
verted in a subgroup SL2(q) and Sylow-r-subgroups are cyclical. If r| q2−q+1

(q+1,3)

we have by (5.1.1) that 3 ∈ πH and 3 divides either q − 1, q or q + 1. If
r|q + 1 and r 6= 2 we have that either C = F ∗(CG(x)) = (q + 1)2/(q + 1, 3)
or C = (q + 1)/(q + 1, 3) ∗ SL2(q) and in both cases NG(C) contains a
unique subgroup of index 2, so 2 ∈ πH . So let q be even and r ∈ πH .
If r|q − 1 we have 2 ∈ πH as elements of order r are inverted in G. If
r|(q2 − q + 1)/(q + 1, 3) we have that CG(x) is a cyclical group of order
(q2 − q + 1)/(q + 1, 3) and |AutG(x)| = 3 and hence 3 ∈ πH . If r|q + 1
we have that C := CG(x) = (q+1)2

(q+1,3) or C = q+1
(q+1,3)PSL2(q) . In the first

case we have NG(C)/C ∼= Σ3 and so NG(C) contains a characteristic sub-
group of index 2, so 2 ∈ πH . In the other case C contains a subgroup
L2(q) which is centralized by α by minimality of G and so 2 ∈ πH . So let
i ∈ H be an involution. Then CG(i) = q1+2 : q+1

(q+1,3) where the subgroup
P := O2(CG(i)) = q1+2 ∈ Syl2(G) is a special group and Z(P ) = Ω1(P ).
All involutions in G are conjugate as |NG(P ) : P | = q2 − 1/(3, q + 1) and a
cyclical subgroup of order q − 1 acts transitive on the involutions of P . So
[Z(P ), α] = 1 by (4.5) and by (5.1.1) we get a subgroup K of order q−1 with
K ≤ H (as α acts trivially on NG(Z(S))/CG(Z(S)).) and [Z(P ),K] = Z(P ).
Now CG(K) has order q2−1/(3, q +1) and contains a unique subgroup L of
order q+1

(q+1,3) . (Note that q 6= 2.) Now CG(L) = LM with M ∼= L2(q). and M

is nonsolvable, hence M ≤ H. Set S̄ = S/Z(S) and Q : S̄ 7→ Z(S) defined
by Q(xZ(S)) = x2. Q is well defined and it is known that Q defines a nonde-
generated quadratic form of minus type. Let now β ∈ CAut(G)(Z(S)). β acts
on S̄ as S = O2(NG(Z(S))). Further Q(xβ) = xβxβ = β(x2) = x2 = Q(x),
so β induces an element of O−

2 (q) ∼= q + 1 : 2 on S̄. Assume now that α acts
on L nontrivially. But α induces an element of O−

2 (q) on S̄ as the elements
of L do. So α has to induce an involution on S̄, a contradiction to (4.19) .
So α centralizes L and CG(L). From the subgroup (q+1)2

(3,q+1) we see that CG(L)
contains a subgroup R conjugate to L, thus CG(R) is α invariant and acts
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trivially on it. Now we see that H = G as CG(L) is a maximal subgroup
which is a final contradiction.
(3) Lemma: Let G =2B2(q), q > 2.
Then G is not a minimal counterexample to theorem (4.9) .
Proof: Let r ∈ πH . If r is odd the elements of order r are inverted in G, so
2 ∈ πH . So let i ∈ H be an involution. Then P = CG(i) ∈ Syl2(G). As all
involutions in G are conjugate we have [Z(P ), α] = 1. So let x ∈ P − Z(P ).
All elements of P −Z(P ) are of order 4. As all involutions are conjugate for
each involution i the number of elements y of order 4 with y2 = i is constant.
So this number is q(q − 1)/(q − 1) = q and so for another y1 with y2

1 = i we
have y1 = yz with z ∈ Z(P ). Now xαxα = α(x2) = x2 and so x and xα lie
in the same Z(P )-coset of P which means [x, α] ∈ Z(P ). But then [x, α] = 1
as involutions cannot be commutators by the α-CCP-property. So we have
[P,α] = 1 and by (5.1.1) we get [NG(P ), α] = 1. So there are elements of
odd order in H. But then H contains elements which invert these elements
and so H = G as NG(P ) is a maximal subgroup.
(4) Lemma: Let G =2G2(q), q > 3.
Then G is not a minimal counterexample to theorem (4.9) .
Proof: Here we use the list of maximal subgroups of G given in [10]. Let
r ∈ πH : If r = 3 we get an α-invariant maximal parabolic P which contains
a unique subgroup of index 2 (hence 2 ∈ πH) as can be seen from the list.
If r 6= 3, but r odd we see that elements of order r are inverted in G, so
2 ∈ πH .
If i ∈ H is an involution then C = CG(i) = 2×L2(q) is a maximal subgroup
and as q > 3 we have E(C) 6= 1 and so by minimality we have [C,α] = 1.
But this holds for each involution i ∈ H and C contains involutions other
than i. So C < H and H = G and G is not a minimal counterexample.
(5) Lemma: Let G = A2(q), q > 2.
Then G is not a minimal counterexample to theorem (4.9) .
Proof: Set d = (q − 1, 3). First assume q odd. Let r ∈ πH and x ∈ H
of order r. If r|q2 + q + 1/d we have |AutG(x)| = 3 and so 3 ∈ πH . If
r|q + 1 we have |Aut(x)| = 2 and so 2 ∈ πH . If r|q − 1 we have either
C := CG(x) = (q−1)

d ∗ SL2(q) or C = (q−1)2

d . In both cases NG(C) contains a
characteristic subgroup of index 2. So 2 ∈ πH . If p ∈ πH we get an invariant
Borel group B of order q3(q − 1)2/d.
Then |B : CG(P )| = q − 1 and so B contains a characteristic subgroup of
index 2 and hence 2 ∈ πH . So finally we have 2 ∈ πH . Let i ∈ H be an invo-
lution. Then CG(i) contains a characteristic subgroup C0 of type SL2(q) : 2 .
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If q 6= 3 we have E(C0) 6= 1 and hence [C0, α] = 1. If q = 3 we have C0
∼= 2Σ4

and by (5.1.4) we get again [C,α] = 1. But C0 contains an involution other
than i. We show now that H = G:
If i, j ∈ G are involutions with [i, j] = 1 and i ∈ H, then j ∈ H. LetΓG be
the graph on the involutions of G by defining edges as commuting pairs. We
show ΓG is connected by showing ΓL is connected where L = SL3(q). This
works as involutions in L correspond to involutions in G. For involutions
i, j ∈ L let u, v ∈ V (the natural module of L) with vi = v and uj = u.
Then G contains an involution k with vk = −v and uk = −u. So ik and kj
have even orders and so < i, k > and < k, j > contain involutions i1 and j1

with [i, i1] = 1 = [i1, k] and [k, j1] = 1 = [j1, j].
So if H contains an involution i, H contains all involutions of G. As G = iG

we have H = G.
Now let q be even. Let r ∈ πH be a prime. By (5.4.1) and the usual argu-
ments we may assume that r = 2. So we get an α-invariant Sylow-2-subgroup
P of G. Note that all involutions in G are conjugate, thus [Z(P ), α] = 1.
Now P contains exactly 2 elementary abelian groups A and B of order q2.
So either Aα = A or Aα = B. In the first case α induces no graph automor-
phism and by (6.3.6) G is not a counterexample.
So let i ∈ A−Z(P ). Then 1 6= [i, α] has order 4 as it cannot be an involution
by (4.5) .
Then [i, α, α] = (iαi)(iiα)α = (iαi)2(iiα

2
). Now (iαi)2 ∈ 01(P ) ≤ Z(P ) and

iiα
2 ∈ A so [i, α, α] ∈ A. But this cannot be an involution as all involutions

are conjugate in G. So [i, α] ∈ H, a contradiction to (4.5) .
(6) Lemma: Let G = B2(q), q > 3.
Then G is not a minimal counterexample to theorem (4.9) .
Proof: Let r ∈ πH . By (5.4.1) we may assume that dq(r) = 0. So by (6.3.3)
we get a Sylow-p-subgroup P of G with Pα = P . Then there are exactly two
subgroups P1 and P2 containing NG(P ). If Pα

i = Pi we get a contradiction
by (6.3.6) . So q is even and α induces a graph automorphism on G. Set
Qi = O2(Pi) and Ri = Z(Op′(Pi)). Then Z(P ) = R1×R2 and [Z(P ), α] 6= 1
as Rα

1 = R2. Let i ∈ P be an involution with [i, α] = 1. Each involution
of P lies in Q1 ∪ Q2 but as Qα

1 = Q2 we have i ∈ Z(P ) = Q1 ∩ Q2. So
i ∈ Z(P ) − (R1 ∪ R2) and all such involutions are conjugate in G as the
Cartan group (q − 1)2 acts regularly on them. As Rα

1 = R2 we get a contra-
diction: 1 6= [Z(P ), α] and [Z(P ), α] 6≤ R1 and [Z(P ), α] 6≤ R2, so [Z(P ), α]
contains involutions conjugate to i, a contradiction to (4.5) .
(7) Lemma: Let G = G2(q), q > 2.
Then G is not a minimal counterexample to theorem (4.9) .
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Proof: Let r ∈ πH . By [10] and [6] (or (5.2.2) ) we may assume that
dq(r) = 0 as all semisimple elements of prime order are inverted in G, so
either 2 ∈ πH or p ∈ πH . By (6.3.2) we have p ∈ πH .
By (6.3.3) we get a Sylow-p-subgroup P with Pα = P . If now α does not
induce a graph automorphism (which interchanges the maximal parabolics
containing NG(P )) we get a contradiction by (6.3.6) .
So q is a power of 3. If now 2 ∈ πH we get an involution i ∈ H. Now
by [10] G has a unique class of involutions and F ∗(CG(i)) = E(CG(i)).
So [CG(i), α] = 1 and CG(i) contains another involution j 6= i. Again
[CG(j), α] = 1. By the maximality of CG(i) we have now that H = G, a
contradiction.
So πH = {3} and we get a Sylow-3-subgroup P of G and α swaps the maxi-
mal parabolics containing NG(P ). Let Pi, i = 1, 2 be the maximal parabolics
containing NG(P ). Set Qi = O3(Pi) and Zi = Q′

i. Let D = Q1 ∩ Q2. Then
Z(P ) = Z1Z2. As Pi = Q : (q − 1) ∗ SL2(q) : 2 we see that elements
1 6= x ∈ Zi are inverted in Pi. NG(P ) contains a unique subgroup T > P
such that T/P ∼= V4. From the structure of the maximal parabolics we see
that the elements of T inverting Z1 lie in exactly one P -coset of T as do the
elements inverting Z2. So the coset related to the third involution in T/P is
fixed by α which means that α fixes an involution in T/P and so 2 ∈ H, a
contradiction.
(8) Lemma: Let G =2F4(2)′, 3D4(3), 2A3(2) or 2A4(2).
Then G is not a minimal counterexample to theorem (4.9) .
First let G =2A3(2) = B2(3). Let x ∈ CG(α) be of prime order r. If r = 5
then |AutG(x)| = 4 and therefore CG(α) contains involutions. If CG(α) con-
tains elements of order 3 we get by (6.3.3) and the 3-local geometry an α-
invariant Sylow-3-subgroup T . Thus both maximal parabolics P1

∼= 31+22A4

and P2
∼= 33Σ4 containing T are α-invariant. As P2/O3(P2) ∼= Σ4 we get by

(5.1.3) that CG(α) covers this factor group and so CG(α) contains invo-
lutions. If CG(α) contains involutions we get by (6.3.3) and the 2-local
geometry an α-invariant Sylow-2-subgroup S and the maximal parabolics
P3

∼= 24A5 and P4
∼= 21+4(32 : 2) containing S. As G is a minimal coun-

terexample (if it is a counterexample) we see that α is trivial on P3 O2(P3).
From the isomorphism G ∼= Ω5(3) we see that O2(P3) is the permutation
module of A5 which is absolute irreducible. As now α centralizes A5 we see
that α centralizes O2(P3), thus α centralizes P3 and S. As C contains a
section isomorphic to Σ4 we see that [G,α] = 1, a contradiction.
Let now G =2A3(2), so πG = {2, 3, 5, 11}. Let x ∈ CG(α) =: H be of prime
order r. If r = 11 we have |AutG(x)| = 5 and so 5 ∈ πH . If r = 5 then
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|AutG(x)| = 4 and so 2 ∈ CG(α). If r = 3 and x is of class 3E or 3F in
Atlas-notation, then x is inverted in G and so 2 ∈ πH . If r is of class
3A or 3B then CG(x) =< x > U with U ∼= SU4(2). Thus [U,α] = 1 by
minimality of G and so 2 ∈ πH . If now 2 ∈ πH then by (6.3.3) we get
an α-invariant Sylow-2-subgroup S and the α-invariant maximal parabolics
P1

∼= 21+6
− PGU3(2) and P2

∼= 24+4(3×A5). As now E(P2/O2(P2)) 6= 1 α acts
trivially on this factor group and so CG(α) contains an element y of order
5. Now CG(y) is a cyclical subgroup of order 15. Let z ∈ CG(y) be of order
3. Then z is in class 3A or 3B and so CG(< z >) =< z > U is α-invariant
with U ∼= SU4(2). Thus U ≤ H. Now by [5] we see that α has to be of class
3A or 3B if it is nontrivially. From the subgroup 34Σ5 we see that CG(z)
contains an element z1 conjugate to z. Thus also CG(z1) is α-invariant and
now α = z has to act trivially on CG(z1)′, a contradiction. Thus H = G
which is again a contradiction (as now G is no counterexample).
Let now be G =3D4(3). By (5.2.2) (or [9]) all semisimple elements of G are
inverted, thus H contains involutions, if it contains semisimple elements.
If H contains elements of order 3 we get by (6.3.3) an α-invariant Sylow-
3-subgroup S. Let P1 be the unique maximal parabolic containing S with
O3′(P1)/O3(P1) ∼= SL2(9). By minimality α centralizes this factor and thus
CG(α) contains involutions in this case too. Let i be such an involution. Now
F ∗(CG(i)/ < i >) is simple by [9], thus by minimality is centralized from
α which forces [CG(i), α] = 1. But CG(i) is maximal and contains another
involution j with [CG(j), α] = 1 too. Thus [G,α] = 1, a contradiction.
Let finally be G =2F4(2)′, the Tits-group. Assume G is a minimal coun-
terexample and let x ∈ CG(α) be of prime order r. By [5] we may assume
that x is an involution as all elements of prime order are inverted in G by
[5]. Thus by (6.3.3) we get an α-invariant Sylow-2-subgroup S and the two
unique maximal parabolic subgroups P1

∼= 2.[28]5 : 4 and P2
∼= 22.[28]Σ3

containing S. By [5] all involutions of Z(O2(Pi)) are of type 2A for both
parabolics. Thus by (4.5) α is trivial on Z = Z(O2(P2)). Now by (5.1.1)
we see that α is trivial on P2/O2(P2) ∼= Σ3, thus 24 divides |H|. Let z ∈ H
be an element of order 3. As all elements of order 3 are conjugate by [5]
we see by (4.5) that α is trivial on O3(CG(z)) which is a Sylow-3-subgroup
of G. Thus 216 = 8.27 divides |H|, but now by [5] we see that α = 1, a
contradiction.
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6.5 Proof of the main theorem

Theorem: (Main theorem II): Let G be a strong α-CCP-group. Then G is
solvable.
Proof: Let G be a minimal counterexample to this theorem. G is simple by
(4.12) . By the classification of finite simple groups G is either alternating,
sporadic or of lie type. G is not alternating with n ≥ 7 by (6.1.2) . G is not
sporadic by (6.2.1) . Thus G is of lie type. By (6.3.7) G is of lie rank 1, of
lie rank 2 and α permutes two maximal parabolics having a Borel subgroup
in common or G = 2A3(2), 2A4(2), B2(2)′, B2(3), 2F4(2)′, or G2(2)′. The
lie rank one case was handled in (6.4.1) , (6.4.2) , (6.4.3) and (6.4.4)
for groups of type A1(q), 2A2(q), 2B2(q) and 2G2(q) respectively. The lie
rank two case was handled in (6.4.5) , (6.4.6) and (6.4.7) for groups
of type A2(q), B2(q) and G2(q) respectively. The groups 2A3(2), 2A4(2)
,3D4(3) and 2F4(2)′ were handled in (6.4.9) and the other exceptions are
already handled by the following isomorphisms: A5

∼= A1(4), A6
∼= B2(2)′ ∼=

A1(9). B2(3) ∼=2A3(2), G2(2)′ ∼=2 A2(3). So finally none of these simple
groups is a minimal counterexample to the theorem which now holds by the
classification theorem of finite simple groups.

7 Summary

We have now proved the following:
Theorem: Let Q be a rightdistributive quasigroup. Then Gr(Q) is a solvable
group of automorphisms of Q.
Proof: (4.8) and (4.9) .
Theorem: Let G be a strong α-CCP-group. Then G is solvable.
Proof: This is (4.9) .
Theorem: Let G be a group with an automorphism α, such that G = CG(α)
{[g, α]|g ∈ G}. Then G = CG(α)N with N = [G,α], N = CN (α) {[n, α]|n ∈
N} and N is solvable.
Proof: This follows from (4.20) and (4.9) .
Theorem: Let G be a group with G = CG(g)gG. Then G = CG(g)N with
N =< gG >, N = CN (g)gN and N is solvable.
Proof: This follows from (4.20) , (4.4) and (4.9) .
So we have answers of the problems from the introduction. To leave the end
open we give a list of new problems arising from the different viewpoints:
- Classification problem of rightdistributive quasigroups,
- Generalizations of rightdistributive quasigroups,
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- Generalization of Glauberman’s theorem for odd primes,
- Generalization of the α-CCP-automorphism type 1

- Conjugacy classes as transversals for nonrelated subgroups
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