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Foreword and publications related
to this thesis

This thesis represents an excerpt of my scientific work in the “Department of Nonlinear
Phenomena” in the group of Prof. Dr. Ralf Stannarius and apl. Prof. Dr. Alexey Eremin
at the Otto von Guericke University in Magdeburg.
It discusses experimental investigations on the dynamics of various types of liquid inclu-
sions in thin free-standing liquid crystal films. Due to the self-assembly of the molecules
in smectic layers, smectic liquid crystal films can be seen as two-dimensional systems.
The thesis is composed as following:
The first chapter of that work introduces liquid crystal materials, freely suspended (free-
standing) smectic films and its properties. As an essential part of this work, experiments
under microgravity conditions and in particular a mission (OASIS) at the International
Space Station are described.
In the chapter 2, the self-organization of liquid droplets in a lattice-like structure on the
surface of a smectic bubble is analyzed. An investigation of the merging process of these
droplets within milliseconds follows in chapter 3. Finally, in chapter 4, long-term dynam-
ics of smectic islands and the structural change of the ensembles over time due to island
coalescence or Ostwald ripening are analyzed. The results of this thesis are published in
the following peer-reviewed scientific journals.
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In addition to the experiments presented in this thesis, I contributed to further experi-
ments under microgravity condition concerning different scientific topics. Between 2015
and 2022, I have participated in 6 parabolic flight campaigns (organized by DLR, CNES
and ESA) where I have studied, for example, the rupturing process of catenoid-shaped
smectic films and shape deformations under acoustic excitation. During the last cam-
paign in February 2022 (38th DLR parabolic flight) I was even able to write parts of this
work under microgravity conditions.
Furthermore, I took part in a suborbital sounding rocket campaign at Kiruna in the north-
ern Sweden. Here, I investigated thermally driven flow (Marangoni flow) of smectic
material in a thin free-standing smectic film. My first experience of weightlessness dur-
ing the first parabolic flights and the midnight sun north of the Arctic Circle during the
sounding rocket experiments are among the highlights of my previous scientific work.
As part of a DAAD (“Deutscher Akademischer Austauschdienst”) exchange program,
I spent several weeks at our cooperation partner at the University of Colorado in Boul-
der (USA). With my research, I was able to significantly advance the international ISS
project OASIS. The results of my work were presented at numerous national and interna-
tional conferences.
All other scientific publications in which I was involved are listed below in chronological
order.
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1 Free-standing liquid crystal (LC)
films

The first chapter gives the framework and motivation of the whole thesis. Liquid crystal
materials are introduced and the most common application of liquid crystals, the liquid
crystal display (LCD), will be explained briefly. The structure and some properties of spe-
cific liquid crystal phases are shown, whereas the focus will be on the smectic A (SmA)
and smectic C (SmC) phases here. In the third part of this chapter the preparation of free-
standing liquid crystal films is presented and the properties of quasi-two-dimensional
free-standing films are underlined. At the end, the OASIS-ISS mission will be explained,
where some experiments discussed in this thesis were performed. In addition, the advan-
tages of these experiments under microgravitational conditions are shown.

1.1 Motivation

Liquid crystals are essential materials in today’s display technology and industry, which
can be found e.g. in many TVs, smartphones and computer screens and displays of wrist-
watches and pocket calculators.
The basic principle of all (twisted) nematic liquid crystal displays (LCDs) is that linearly
polarized light passes through parallel glass plates filled with liquid crystal material and
thereby can change its polarization direction. The nematic liquid crystal molecules are
usually aligned parallel to the glass slides. For the configurations shown in figure 1.1,
the molecules are additionally rotated from top to bottom plate by 90° in order to form a
helical structure (without applied electric field). This molecular rotation rotates the po-
larization direction of the incident light, and depending on the orientation of the second
polarizer, the light can pass the whole cell (the cell appears bright) or is extinguished by
the polarizer (the cell appears dark). Applying an electric field between the electrodes at
the two glass plates (twisted nematic cell: TN-cell) or between the electrodes on the side
of one glass plate only (in-plane switching cell: IPS-cell) leads to an alignment of the
molecules with positive dielectric anisotropy parallel to the electric field. For the shown
examples, the former helical structure in the cell is broken and the linearly polarized light
will not change its polarization state: the cell changes its appearance from bright to dark
or vice versa [1].
The shown twisted nematic and in-plane switching cells and the arrangement of the
molecules and the polarizers only represent one possible implementation of the simplest
liquid crystal display cells. A rotation of the second polarizer parallel to the first one in
both types of cells, for example, would lead to a swap of the bright and dark state. For
the IPS-cell, it is also possible to have an untwisted molecule structure in the initial state
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2 1 Free-standing liquid crystal (LC) films

(without E-field) and only creating the helical structure when applying the electric field.
Intermediate brightness-states, i.e. changes of the emitted light intensity, can be realized
by adjusting the voltage on the electrodes and thus the strength of the field. Both cell-
types can be used in transmission mode with a background light or in reflection mode
with an additional reflector or reflective polarizer.

incident light

LC
molecules

electrodes
E

applied E-field
(dark)

polarizer

polarizer

glass substrate

E

no E-field
(bright)

applied E-field
(bright)

no E-field
(dark)

electrodes

Figure 1.1: Schematic drawing of twisted nematic cells (TN) in the left-hand images and in-
plane switching cells (IPS) on the right-hand side in transmission mode. In both cases, the
incident light passes a polarizer, a glass substrate, the liquid crystal material, a second glass
slide, and finally a second polarizer. For the shown TN cells, the two polarizers are rotated
by 90° to each other and the electric field is applied between the two glass plates coated with
transparent electrodes. For the IPS cells shown, the polarizers are aligned parallel to each other
and the electrodes are mounted on one of the glass plates only. The electric field is applied
parallel to the glass substrate (in-plane). The dashed arrows indicate the electric field direction
(black) and the orientation of the polarizers (blue).

The switchable rotation of the polarization direction of light is also used to build liquid
crystal spatial light modulators (LCSLM). Using spatial light modulators, it is possible to
control the amount of light passing through the material independently at different posi-
tions [1, 2].
There are also applications as sensors (temperature sensors [1], DNA-biosensors or pho-
tosensors [3]) or adaptive optics and lenses [3], where the electrooptical, ferroelectrical
and flexoeletrical properties of different liquid crystal materials are used.
In the context of this thesis, smectic liquid crystals are used to create unique quasi-two-
dimensional (2D) systems. Due to the inner structure of smectic liquid crystals (see sec-
tion 1.2), it is possible to produce thin free-standing films (in appearance comparable to
thin soap films) with an aspect ratio of more than 106 (width of the film divided by film
thickness). Within these thin freely suspended liquid crystal films (also free-standing liq-
uid crystal films), the flow normal to the film plane can be neglected, so only flow in two
dimensions is considered. Smectic liquid crystal films are ideal systems to analyze the
hydrodynamics and rheology of two-dimensional liquids in order to answer fundamen-
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1.2 Liquid crystals 3

tal questions concerning inclusion motion or flow in 2D. Whereas most hydrodynamic
phenomena in common Newtonian three-dimensional liquids are investigated and well
understood, the behavior in 2D systems is much more complicated or completely differ-
ent and not fully understood yet. The well known Stokes equation describes the flow in
3D Newtonian fluids. Nevertheless, it diverges in 2D systems (“Stokes’ paradox”). The
understanding of such motion and interaction of inclusions in two-dimensional systems
and their hydrodynamics is essential, as they appear in biological systems (biological
membranes) or wetting-technology.
Within this thesis, the performed experiments using free-standing liquid crystal films are
explained and the results are presented and discussed. The analyzed free-standing liq-
uid crystal films with different inclusions represent a unique system and the observations
help to understand fundamental problems as the merging process of liquid droplets or the
long-term behavior of emulsions. Furthermore new phenomena like the self-organization
of liquid droplets in a lattice structure are observed and explained.

1.2 Liquid crystals

In 1888, the Austrian botanist of the Institute for Plant Physiology of the German Uni-
versity of Prague, Friedrich Reinitzer, first described and explained colored phenomena
during the melting process of cholesteryl acetat and cholesteryl benzoate. He noticed that
cholesteryl benzoate changes its appearance from solid state to a cloudy fluid when heated
above 145.5 °C. At the temperature of 178.5 °C, it turned into a clear fluid. This “double
melting” behavior [4, 5] was verified by the German physicist Otto Lehmann using the
new developed technique of polarizing microscopy. In August 1889, Lehmann wrote in
one of his letters to Reinitzer:

“It is of high interest for the physicist that crystals can exist with a softness, being so
considerable that one could call them nearly liquid.”

Original [6]:
„Für den Physiker ist es jedenfalls von hohem Interesse, daß Kristalle existieren, deren

Weichheit eine so bedeutende ist, daß man sie beinahe flüssig nennen könnte.“

Later that year, Lehmann published his observations in his paper “Über fliessende
Kristalle” [7], and since that time the term “liquid crystals” is established.

Liquid crystals are materials that have properties associated with both liquids and crys-
tals, and there are at least two common types of molecules that form liquid crystal phases:
anisotropic rod-shaped (calamtic) and anisotropic disc-like (discotic) mesogens. The
molecules in a crystal are fixed according to their orientational, rotational and positional
order, whereas in a liquid there is no long-range order. The molecules in a liquid are
free to translate, rotate and tumble. The mesogens in liquid crystal phases are orienta-
tionally ordered, but in contrast to the crystalline phase, there is a decay of positional
and translational order. By changing the temperature (thermotropic liquid crystals) or the
concentration of compounds in a mixture (lyotropic liquid crystals), the degree of order

3



4 1 Free-standing liquid crystal (LC) films

will be increased or decreased and different stable liquid crystal phases arise. Depending
on the liquid crystal material, different possible phases are observed at different tempera-
tures or concentrations.
To analyze the orientational direction of the mesogenes, the average local orientation of
the molecules, called the director n̂, is defined as shown in figure 1.2. In addition, the
orientational order parameter

S = 〈P2(cosθ)〉 =

〈
3

2
cos2θ − 1

2

〉
(1.1)

can be defined, where P2 represents the second Legendre polynomial and θ corresponds to
the deviation of the molecule orientation from the director n̂. For a typical transition from
the crystalline state via liquid crystal phases and to the isotropic state by increasing the
temperature, the order parameter S will decrease from a perfect ordered state, represented
by S = 1, to the completely disordered state for liquids (S = 0).

isotropic (Iso) nematic (N) smectic C (SmC)smectic A (SmA)

Figure 1.2: Molecular orientation and inner structure of the isotropic/liquid phase and three sim-
ple liquid crystal phases. In the isotropic phase (left-hand side), there is no orientational, posi-
tional or rotational order. The nematic phase (second from the left) shows orientational order
but no positional order. In the smectic A phase (second from the right), the molecules are ad-
ditionally ordered in a layered structure compared to the nematic phase. The smectic C phase
(right-hand side) also shows a layered structure, but the molecules are on average tilted accord-
ing to the layer normal.

The three liquid crystal phases visualized in figure 1.2 show orientational order and the
director n̂ represents the average direction of the long axis of the molecules. For the
nematic phase, there is no further order. In the smectic A phase, the mesogenes are
additionally arranged in a layered structure and the director is parallel to the layer normal.
The smectic C phase shows the same layering, but the molecules are tilted in respect to
the layer normal.
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1.3 Freely suspended liquid crystal films 5

1.3 Freely suspended liquid crystal films

The order of the mesogenes in a lamellar structure in the smectic A and smectic C phase
is essential to form free-standing liquid crystal films. Due to the layer structure, the films
are extremely robust and films up to hundred square centimeters in size [8] can be drawn.
The film thickness is limited by the thickness of the layers and thus by the molecular
dimension itself. Film thicknesses between a few nanometers (two molecular layers) and
several micrometers are possible, depending on the molecule length, the tilt of the meso-
gens and the number of layers. In contrast to soap films, smectic films are not subject
to drainage or evaporation at ambient temperature. Different geometrical shapes of free-
standing films can be realized since films form minimal surfaces due to their interfacial
tension. For experimental studies, usually flat films are used [9–20], but spherical [21–24]
(also see section 1.4) or catenoid shaped films [21,25,26] have been investigated as well.
As shown in figure 1.3, free-standing smectic films are connected to the frame by the
meniscus (region with increasing thickness), that additionally acts as a reservoir for the
liquid crystal material. The meniscus often influences the flow of material or the motion
of inclusions in the film. For the free-standing film itself, several metastable situations
can be observed. In contrast to a homogeneous film of thickness N , also regions with
thickness N − k or N + k (k = 1, 2, 3, 4, ...) can appear [21, 27, 28]. Domains of
different thickness are separated by layer steps, where the inner layered structure of the
smectic film locally is disturbed (dislocations around the regions). Domains thinner or
thicker than the rest of the film are called “smectic islands” (thicker region) or “smectic
holes” (thinner regions), respectively. Figure 1.3 shows a sketch of a flat homogeneous
smectic A film with islands and holes which can be observed by optical microscopy.

smectic A film

meniscus

island

hole frame

film
hole

island film

film

Figure 1.3: Geometry and structure of a planar freely suspended liquid crystal film in the
smectic A phase. The meniscus connects the film with the film support (frame). Thinner re-
gions withN−k layers (smectic holes) and thicker domains withN+k layers (smectic islands)
are shown in the homogeneous background film. Different region colors correspond to different
numbers of layers of these domains, which are separated by disclination lines, where the layered
structure is locally disturbed (steps). The front and the rear edge of the frame has been removed
for visualization. The film thickness and single layer thicknesses are highly exaggerated.
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6 1 Free-standing liquid crystal (LC) films

For tilted molecules forming smectic C phases, it is useful to define the “c-director” as the
mean projection of the molecules long axis to the film plane. The c-director visualizes the
tilt direction of the mesophase and therefore additional configurations in the film can be
observed. Figure 1.4 shows several configurations of the c-director field, a 2π-wall where
the director undergoes a full 2π rotation through a straight line segment, and a pair of
defects in a smectic C free-standing film, where the orientation of the molecules locally
changes or is not defined (center of the defect).
According to the analysis of motion of inclusions or flow phenomena in free-standing
films, the situation in smectic C films becomes more complicated than in smectic A films.
The c-director couples to the flow in the film and the molecules need to reorient. The
configuration of the c-director field depends on film boundary anchoring conditions and
on the anchoring conditions at the inclusion interfaces as well [29, 30].

Figure 1.4: Different simulated c-director textures in the top view of a free-standing smectic C
film under crossed polarizer and an additional λ = 550 nm phase plate (45◦ to both polarizer).
On the upper left-hand side, the director is uniformly orientated, while in the middle, the c-
director changes its direction by an angle of 2π (from left to right). This configuration is called
a “2π-wall” (two times a π-wall). In the right-hand picture, two point defects are shown where
the director in the center is not defined. The upper defect has the topological strength of “-1”
and the lower the topological strength of “+1”. The left-hand bottom image visualizes the
orientation of the c-director and the corresponding occurring colors in experiments with films
under crossed polarizer and an additional λ = 550 nm phase plate.

1.4 Liquid crystals under microgravity conditions
In most experimental studies concerning free-standing liquid crystal films, it is important
to control the material temperature and to avoid external flow in the surrounding medium
(usually air). There are some experiments that additionally need microgravity conditions
for a few seconds up to hours to study specific phenomena, such as Marangoni flow in thin
liquid crystal films. Three different experiments on varying microgravity platforms are
presented in this section: flat smectic films on sounding rockets, arbitrary shaped closed
films at parabolic flights and smectic bubbles on board the International Space Station
(ISS).
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1.4 Liquid crystals under microgravity conditions 7

1.4.1 Suborbital sounding rockets

One opportunity to achieve microgravity (µg) conditions are suborbital sounding rockets
like the “TEXUS” (Technologische EXperimente Unter Schwerelosigkeit) rockets, oper-
ated by DLR, that allows scientists to use approximately 6 minutes of microgravity for
biological, physical or material science experiments. The sounding rockets are often used
to test experimental setups for later ISS missions, too.
Trittel et al. investigated the effect of thermal gradients on flat freely suspended liquid
crystal films [24, 31, 32] during their OASIS-Tex missions. Former experiments in vac-
uum showed convective flow in smectic films exclusively driven by thermal gradients in
the meniscus [33]. In contrast to these microgravity experiments, films surrounded by
air were used since the heat conductivity of air is much bigger than that of the smectic
films. Therefore, a uniform temperature gradient between hot and cold thermocontacts
was achieved. In order to avoid buoyancy of the air and thus flow in the smectic film, it is
essential to perform the experiments under microgravity conditions.
During their studies, Trittel et al. [31] and Stannarius et al. [24] observed laminar flow
for small temperature gradients depending on the film thickness, the temperature coef-
ficient of the material and the temperature difference. For their experiments, they used
films in the smectic C phase and analyzed the occurring Schlieren textures to determine
the thermally induced vortex flow velocity (figure 1.5) (Marangoni flow).

LC film
frame

FOV

2.5 mm

59.0 °C

51.5 °C

123.0 s

Figure 1.5: Setup and experimental image of the OASIS-Tex (TEXUS 55) mission. The picture
on the left-hand side shows the film and heater geometry with cold (blue) and hot (red) thermo-
contacts touching the film. Between the contacts, a temperature gradient ∆T of up to 10 K/mm
was set. The right-hand image shows a contrast enhanced image from the original measured
data with added temperature and time labels. The Schlieren textures in the 170 nm thick film
between the thermocontacts allow to measure the flow velocity of the material (material 10PP8
in the smectic C phase). The ambient temperature was T = 50 °C. The original photo was
kindly provided by T. Trittel and coauthors [24, 31].
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8 1 Free-standing liquid crystal (LC) films

1.4.2 Parabolic flights
Parabolic flights are a second opportunity to perform experiments under microgravity
conditions. The flights were operated by Novespace in Bordeaux, France, using an Air-
bus A300 or A310. Here, the experimental time is limited to 22 s, but there are at least
30 parabolas per flight, so the experimenters can continuously control and adjust their
setups. One advantage of parabolic flights is the direct interaction of scientists with their
experiments. On the other hand, the µg-quality excludes some experiments like flat free-
standing film, since there is g-jitter of the airplane ranging in magnitude within several
percents of g. That would influence the motion of objects and flow in the film signifi-
cantly. Nevertheless, parabolic flights were used to test the experimental principles later
used on the OASIS ISS mission.
While experiments with flat free-standing films would not lead to meaningful results,
completely freely floating smectic bubbles are not that susceptible to the g-jitter. May et
al. investigated the rupturing process of a catenoid shaped smectic A and C film and the
shape deformation of these free-floating liquid crystal films. They analyzed the oscillation
dynamics of smectic bubbles and observed filaments when films suddenly ruptured [21].
They also observed the creation of smectic islands on the film surface. In addition, Harth
et al. later observed wrinkles occurring on the film surface and measured their wave-
length. They also developed a model to explain the appearance of wrinkles and analyzed
the possible influence of external acoustic excitation on the free-floating bubble and es-
pecially on the wrinkle generation process [26].

1 ms

wrinkles

19 ms

wrinkles bulges

24 ms

island
tubuli

95 ms

island

150 ms40 ms

2 mm

Figure 1.6: Shape evolution of a freely floating smectic bubble during the parabolic flight cam-
paign in March 2019 (parabola 27 on March 12th). The first two pictures (top row) show the
originally recorded images after 1 ms and 19 ms, regarding the pinch-off of the bubble from a
collapsing catenoid. All other measured pictures were subtracted from the initial image back-
ground to better visualize important details. After 19 ms, due to an axial contraction, first
wrinkles appear with a preferential orientation perpendicular to the contraction direction. Ex-
cess smectic material on the surface forms smectic islands and bulges. That bulges grow over
time and sometimes form tubuli and may pinch-off as well [21, 27, 28].
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1.5 The OASIS ISS mission 9

Figure 1.6 shows an evolution of a freely floating smectic bubble after pinch-off from
a collapsing catenoid under µg conditions. The shape of the film changes from a cylin-
drical to spherical shape by axial contraction. During that process, smectic material can
form smectic islands, bulges or tubuli. Wrinkles of the smectic surface appeared already
shortly after pinch-off. Further experiments during parabolic flight campaigns in 2019
showed that the wrinkle formation can be induced by acoustic excitation as well. The im-
portant parameters for the appearance of wrinkles are the initial film thickness and initial
inhomogeneities on the film surface (islands). Recent experiments with the same exper-
imental setup but a flat film in the center of the liquid crystal catenoid showed similar
wrinkle formations under lateral compression [34].

1.4.3 Missions onboard the ISS

The International Space Station (ISS) is a scientific platform for a variety of long-term ex-
periments in astrophysics, fluid physics, fundamental physics, biology, chemistry, physi-
ology and many more. Onboard the ISS, the microgravity level is extremely good, since
there is only small g-jitter and experiments ranging from a few days up to years are pos-
sible. The major disadvantages of ISS missions are extremely high costs, the lengthy
planning and preparation phase and the transport of the experimental setup to the station.

1.5 The OASIS ISS mission

The OASIS (Observation and Analysis of Smectic Islands in Space) project is a collabo-
ration of three internationally recognized experimental groups working on free-standing
liquid crystal films. The principal investigators are:

• Prof. N. A. Clark, Prof. J. E. Maclennan and Prof. M. Glaser
from University of Colorado, Boulder (United States of America)

• Prof. A. Levchenko, Prof. V. Dolganov, Prof. P. Dolganov and Prof. E. Kats
from Russian Academy of Science, Moscow (Russia)

• Prof. R. Stannarius
from Otto von Guericke University Magdeburg, Magdeburg (Germany).

The setup for the OASIS mission was successfully launched at Kennedy Space Center on
a SpaceX Falcon 9 Rocket on April 17, 2015. The experiments were performed between
July 01, 2015 and March 18, 2016.
One of the primary goals of those free-standing liquid crystal film experiments was the
investigation of hydrodynamic flow and hydrodynamic interactions in quasi-two dimen-
sions. Interactions of emulsions of droplets and islands and their long-term dynamics
were observed as well. Building on the success of the OASIS-Tex sounding rocket exper-
iments, thermocapillary phenomena on a spherical film were also studied. Additionally,
the effect of applied electric fields and inflation or deflation of the liquid crystal bubbles
was investigated.

9



10 1 Free-standing liquid crystal (LC) films

As stated in chapter 1.3, the meniscus connecting a free-standing film and the
filmholder strongly influences the hydrodynamic flow and the behavior of inclusions in
the film. For the OASIS experiments on ISS, a spherical shape for the free-standing film
was chosen to minimize the meniscus, which only appears at the connection between the
inflation needle and the bubble. As the ratio of the meniscus area to the whole bubble
surface is extremely small, effects caused by the meniscus were strongly minimized. To
prevent sedimentation of material and inclusions in this geometry and to avoid buoyancy
driven convection in the surrounding air and in the liquid crystal film, a microgravity envi-
ronment is mandatory. For long-term investigations, experiments on the ISS are required.

The OASIS setup

The setup for the OASIS mission was constructed and built by ZIN Technologies, Inc,
financed by NASA and placed in the Microgravity Science Glovebox on ISS. The main
elements of this setup are the concentric needle device to inflate or deflate the smectic
bubble and the two high resolution CCD cameras (see figure 1.7). Four different liquid
crystal materials with different properties regarding their phase sequence or their molec-
ular structure (polar, non-polar, racemic, chiral) were used separately.

micro-view
camera

macro-view
camera LC bubble

needle

bubble-
inflation

air

liquid
crystal
material

airjet needles

Figure 1.7: Experimental setup to generate and inflate liquid crystal bubbles during the OASIS
mission onboard the ISS. The gap between inner capillary and outer capillary of the concen-
tric needle device was filled with liquid crystal material pumped from a reservoir. Air was
pumped slowly through the inner capillary to inflate the bubble. Two high resolution color
CCD cameras (1024 × 1024 pixels) were used to observe the whole bubble (macro-view) and
a 500 × 500 µm2 region on the bubble (micro-view). Additionally, four airjet needles were
placed above the bubble to provide controllable air flow. Two opposing needles were also used
to create electric fields and one of the needles could be heated to create temperature gradients.

10



1.5 The OASIS ISS mission 11

To create a free-standing smectic film on top of the inflation needle, liquid crystal ma-
terial was pumped through the outer capillary of the concentric needle until a thin cap
was formed across the opening of the inner needle. Then air was pumped gently through
the inner capillary to inflate a thin smectic bubble [35]. Controlling the pumping rate
of the air enables inflation or deflation of the smectic bubble. Film thicknesses between
five and several thousands of nanometers were achieved using this technique. To record
experimental data, a color CCD camera (Prosilica GX 1050C, Allied Vision Technolo-
gies) observed the whole bubble (macro-view) while a second identical camera was fo-
cused on a smaller 500 × 500 µm2 region (micro-view). The micro-view camera was
mounted on a linear actuator to change its field of view. Both cameras had a resolu-
tion of 1024 × 1024 pixels with a maximum frame rate of 112 frames per second (fps).
Additionally, a spectrometer was available to measure the wavelengths of reflected light
from the film to estimate its thickness. Almost uniform illumination of the bubble was
achieved by using several arrays of LEDs and a parabolic diffuser. Figure 1.8 shows typ-
ical recorded pictures from the micro-view and macro-view cameras during the OASIS
experiments. Due to the focal depth of the macro-view camera, the edge of the bubble
often blurs with the background.

macro-view macro-view micro-viewmicro-view

Figure 1.8: Experimental images from the OASIS experiment. The bubble diameter in the
macro-view is approximately 15 mm depending on the inflating or deflating procedure. Since
the depth of field of the macro-view camera was limited, the central region of the bubbles is
focused while the outer region blurs with the background. The white dashed circle is added to
visualize the complete bubble. The two left-hand pictures show typical situations for the coars-
ening experiments. The whole bubble is covered with smectic islands and they grow, shrink or
merge during the experiments. Changes of the island diameter can be observed in the micro-
view images as well as the coalescence of islands or droplets. The micro-view picture on the
right-hand side shows isotropic droplets trapped at disclination lines (steps between regions of
different thickness). These droplets can also form lattice-like structures, where they repel each
other.

To create a strong airflow along the film surface and a continuous flow of material, four
airjet needles, shown in figure 1.7, were used. Thereby, material from the meniscus was
brought into the film and could form smectic islands of different thicknesses (left-hand
picture in figure 1.8). A second mechanism to induce flow in the film was to create a
thermal gradient by heating either one of the airjet needles or the inflation needle. The
bubble inflating device, the airjet needles and the bubble itself were enclosed in a bubble
chamber which could be heated uniformly up to 60 °C.

11



12 1 Free-standing liquid crystal (LC) films

Controlling the temperature in the chamber, as well as of the inflation needle and the
airjet needle, allowed to investigate thermally driven flow as observed earlier during the
TEXUS experiments. Furthermore, temperature-dependent dynamics of coarsening of
islands and interaction of islands could be observed and influenced. Heating the liquid
crystal material to the phase transition temperature between smectic A and isotropic phase
was a crucial method to create isotropic droplets (visible in figure 1.8 in the right-hand
micro-view) and to observe their self-organization in a lattice-like structure (chapter 2).

12



2 Self-organization of isotropic
droplets in free-standing smectic
films - a real 2D colloid -

Colloids are systems in which solid, liquid or gas particles are dispersed in a continuous
phase of a different material. Examples of that mixtures can be found everywhere in
daily life: gas bubbles dispersed in a liquid e.g. in whipped cream (foam), liquid droplets
embedded in a liquid phase for milk or mayonnaise (emulsion) or solid droplets dispersed
in a liquid medium such as blood or ink (solution). The second chapter describes the
restricted motion and the self-organization of flat isotropic droplets in a smectic A free-
standing film. Micrometer-sized droplets form hexagonal structures since they repel each
other. The nature of that repelling force is analyzed and discussed by measuring Brownian
motion. The experiments are part of the OASIS mission onboard the ISS and so the first
real two-dimensional colloid was created. The experimental results as well as numerical
simulations are presented and compared. A model by Saffman and Delbrück to describe
the motion of inclusions in two dimensions was expanded to explain the dynamics in
restricted geometries as well. The results presented in that chapter are published in [23].

2.1 Introduction

2.1.1 Stokes’ paradox
In December 1850, Sir George Gabriel Stokes described the motion of a viscous fluid
around a solid sphere moving uniformly with a small velocity. He published his famous
law for the frictional force FD (also drag force) that opposes the motion of a sphere
through the fluid.

FD = 6πηau (2.1)

That force is derived by solving the Navier-Stokes equation for small Reynolds numbers
depending on the particle velocity u, the sphere radius a and on the viscosity η of the
fluid. Stokes also tried to analyze the slow motion of an infinite cylinder in an infinite
ambient viscous fluid, but at the end he failed. He then postulated that there is no solution
for the steady-state flow past an infinite cylinder [36].
This problem is known as the Stokes paradox today. In 1888, A. N. Whitehead attempted
to solve the problem by taking into account the neglected quadratic terms of Stokes’
derivation. He was not able to find correction terms for the velocities u to solve the
differential equations for the boundary conditions at the cylinder edge and at infinity [37].
Later in 1910, C. W. Oseen set up a new system of differential equations to describe flow
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14 2 Self-organization of isotropic droplets in free-standing smectic films

in incompressible fluids in stationary equilibrium. His equations are very similar to the
Navier-Stokes equations, but these equations are stationary (there is no time derivative)
and he included a term for convection flow b.

f = ∇p− η∆u + ρ(u · ∇)u + ρ
∂u
∂t

(Navier–Stokes momentum equation) (2.2)

f = ∇p− η∆u + ρ(b · ∇)u (Oseen momentum equation) (2.3)

Within these equations, u defines the flow velocity, ρ the density, p the pressure, η the
dynamic viscosity of the fluid and f the external volume force. Oseen included the con-
vection velocity b which is independent of the flow. Calculating the frictional force that
retards the motion of a sphere in an incompressible fluid and neglecting second order
terms in Oseen’s equations leads to Stokes’ drag force description [38].

2.1.2 Hydrodynamics in 2D systems
By transferring the Stokes paradox into two dimensions, the situation changes to the mo-
tion of a circular disk moving through a two-dimensional system. Whereas the hydrody-
namics in 3D Newtonian fluids are well described and investigated, 2D systems have only
been analyzed experimentally for the past 50 years. Saffman and Delbrück, for example,
studied the Brownian motion of particles (proteins) in thin biological bilayer lipid mem-
branes, but they also initially failed to describe the translational motion due to Stokes’
paradox. Within their model (SD model) they used the Oseen equations and described
two dynamic regimes in which they solved the problem [39, 40]. They derived equations
for the mobility of inclusions that directly couples the particle velocity v and the force F
applied to the particle with the following relation

v = b F . (2.4)

In their first approximation, they assumed that the particle with radius a is at the center
of a finite membrane or film with radius Rfilm. Taking a no-slip boundary condition on
the surface of the particle into account and supposing Rfilm � a, leads to the translational
mobility

bT =
1

4πηh

(
ln
Rfilm

a
− 1

2

)
(Rfilm � a) . (2.5)

Here η represents the (dynamic) viscosity of the membrane of thickness h. In contrast, for
their second approximation, they supposed a particle in the two-dimensional membrane
surrounded by a second, less dense medium with viscosity η′ (η′ � η). Due to the no-slip
boundary condition at the interface between the membrane and the surrounding medium,
any flow in the membrane and motion of the particle itself leads to a motion and shear
flow of the outer medium. Additional zero slip at the surface of the particle leads to

bT =
1

4πηh

(
ln
ηh

η′a
− γ̃
)
, (Rfilm � a) (2.6)
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2.1 Introduction 15

where γ̃ = 0.577 is the Euler constant. Saffman and Delbrück defined the expression
ηh/2η′ as Saffman length LS , a viscous length scale comparable with the radius of a hy-
pothetical sphere around the particle. Material within this sphere is assumed to be affected
by the motion of the particle and the flow in the membrane. If the size of the membrane
exceeds the Saffman length Rfilm � LS , the motion of the particle is independent with
respect to the membrane size and determined only by the viscous coupling of the particle
and the flow in the membrane to the flow in the surrounding medium (equations 2.6 and
2.7).

bT =
1

4πηh

(
ln

2LS
a
− γ̃
)

(Rfilm � LS) (2.7)

For smaller membranes with Rfilm � LS , finite size effects are more important than vis-
cous coupling and equation 2.5 has to be used.
The model of Saffman and Delbrück was verified by analyzing the motion of submicro-
meter-sized lipid domains (e.g. Bacteriorhodopsin) on cell membranes and by studying
Brownian motion of inclusions in flat bilayer lipid membranes [41–43]. The SD model
was extended in 1981 by Hughes, Pailthorpe and White to describe the motion of inclu-
sions of arbitrary radii in a 2D fluid (HPW model) [44]. In 2008, Petrov and Schwille
derived an accurate approximation for the whole range of a/LS [45].

As remarked in chapter 1.3, liquid crystals can form free-standing smectic films and are
particularly well suited to analyzing Brownian motion in 2D. These films can be homo-
geneous in thickness (there is no drainage) and they are extremely robust. Furthermore,
the film viscosity η can be varied using different liquid crystal materials or mixtures or by
changing the temperature of the materials. Experiments with inclusions of various shapes
and sizes are possible [35] as well as different film geometries (flat liquid crystal films,
liquid crystal bubbles). Experiments by Eremin et al. verified the SD model by measuring
the motion of micrometer-sized silica beads sliding down an inclined, freely suspended
liquid crystal film [20]. Increasing the inclusion size also enables analyzing the crossover
between 2D and 3D fluid dynamics described by the HPW model and experimentally
shown by Nguyen et al. [19].

2.1.3 Two-dimensional colloids
Colloids are systems where submicrometer-sized particles or droplets are dispersed in an-
other continuous medium. Since these particles are free to diffuse and due to attractive
or repulsive interactions, they can form regular lattices or clusters. The self-organization
of spherical particles, especially in two dimensions, offers a variety of applications in
nanotechnologies, e.g. in optoelectronics, for creating photonic crystals or producing
biomimetic surfaces with specific properties [46–49]. Additionally, two-dimensional
colloids are used to study hydrodynamic phenomena like diffusion [50, 51], coarsening
dynamics and formation of meshes [52] or to measure capillary forces between parti-
cles [53]. Williams et al. [54] for example used a suspension of water, ethanol and
polystyrene colloids (with radii of 5 µm) and formed quasi-2D monolayers on a glass cov-
erslip (figure 2.1) by sedimentation. They additionally used holographic optical tweezers

15



16 2 Self-organization of isotropic droplets in free-standing smectic films

to form a ring of polystyrene particles and analyzed the arrangement of freely moving
particles within the confinement [54].
Within the last years, many experiments are focused on crystallization and melting phe-
nomena as well as on properties during phase transition [55–65].
Dillmann et al. for example analyzed the 2D melting of a colloidal monolayer which
consists of polystyrene spheres with diameters of 4.5 µm containing superparamagnetic
nanoparticles (Fe2O3) confined at a water/air interface (figure 2.1). Changing a magnetic
field perpendicular to the monolayer then allows to change the arrangement of the parti-
cles in the 2D system from liquid-like state up to a lattice structure [60].

Within most of the two-dimensional colloid experiments, micrometer-sized solid spher-
ical particles are suspended in a liquid medium. The particles are then arranged in a
monolayer on a solid substrate by sedimentation or at the interface between two liquids
or at a liquid/gas interface (figure 2.1). Although the particles are arranged in monolayers
and structurally form two-dimensional systems, their dynamics cannot be considered as
two-dimensional. The motion of particles that are surrounded or partially surrounded by
a liquid is determined by the flow in the 3D subphase.

glass substrate

water/ethanol

g
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g
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Figure 2.1: Experimental system used by Williams et al. (pictures a-c) and Dillmann et al. (pic-
tures d-f) to create two-dimensional colloids on a glass substrate or at the air/water interface.
The polystyrene spheres in picture a) form a 2D monolayer on a glass substrate due to sedi-
mentation. The red marked particles are fixed by optical tweezers to create a confined circular
region. For a small number of particles (picture b), fluid-like structure of the freely diffusing
spheres within the fixed ring can be observed. With an increased number of particles (picture c),
hexagonal structures appear. In picture d), polystyrene spheres with added superparamagnetic
nanoparticles form a 2D colloid at a water/air interface. For high magnetic fields H perpen-
dicular to the interface, the particles arrange in a hexagonal lattice (picture e), while at low
magnetic fields the spheres form a fluid-like structure (picture f). Images are based on pictures
from [54] and [60].
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Other studies used solid particles trapped in thin cells to form single layers and to avoid
flow in the 3D medium [55, 62]. However, cell boundaries influence the dynamics and
the structure of particle arrangement as well. In 2001, Sethumadhavan et al. analyzed
the stability and the stepwise thinning behavior of liquid films in the absence of any sur-
factant and they achieved the preparation of solid silica particles confined in these thin
quasi-two-dimensional films [66]. The thin films enable the creation of structurally 2D
colloidal systems with two-dimensional hydrodynamics, since the motion of these col-
loidal particles is confined only in the film plane. Furthermore, the dynamic viscosity
of the surrounding air is about three orders of magnitude smaller than the viscosity of
the fluid, so that the influence of air can be almost neglected. Nevertheless, according
to the Saffman and Delbrück model, the Saffman length LS including a small volume of
the surrounding medium has to be taken into account for the description of the motion of
colloidal particles.

2.1.4 Self-organization of droplets in smectic C free-standing
films

In contrast to common thin liquid films such as soap films, liquid crystal films are not
subject to drainage and their film thickness can be kept constant over the entire film area
(see also section 1.3). Since in smectic C films the molecules are tilted with respect to the
layer normal (described by the c-director), they are anisotropic in the film plane. The ini-
tially uniform c-director orientation of a smectic C film becomes distorted when inserting
liquid droplets or solid particles into the film due to the specific anchoring conditions at
the inclusion interfaces. The distorted c-director field then exhibits topological defects.
Their strength is defined as the rotational angle of the c-director field divided by 2π when
following the c-director on a circle around the defect (angle determination and rotation
around the defect in the same direction).
In non-polar smectic C phases, for example, the c-director aligns tangentially at the in-
clusion surfaces [67] as shown schematically in figure 2.2. The insertions of such an
inclusion with these boundary conditions is associated with the creation of a virtual topo-
logical defect of strength +1 inside the inclusion and, since the topological strength is a
conserved quantity, additional defects with total strength of −1 must be created simulta-
neously.
In real experiments, different spatial variations of the c-director and the topological de-
fects, e.g. topological dipoles or topological quadrupoles, can be realized [18, 67–76].
The virtual defects inside the inclusions in these experiments are compensated by iso-
lated fully-integer defects in the smectic film or half-integer defects pinned at the inclu-
sion boundaries. The latter configuration with two−1/2 defects for each droplet is shown
in figure 2.2 for different droplet arrangements. Due to elastic distortion of the c-director
field, defects with opposite signs attract each other while defects with the same sign repel
each other.
The long-range elastic interaction and thus the defect-defect-interaction enable the pair-
ing of the inserted inclusions and the formation of chains and lattices in the smectic C
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18 2 Self-organization of isotropic droplets in free-standing smectic films

film. Depending on the position of the peripheral −1/2 defects at the droplet boundaries,
inclusions with quadrupolar (defects on opposite sides of the inclusion) and dipolar (an-
gle between both −1/2 defects 6= 180°) character can be observed.
The left pictures of figure 2.2 show the sketches of the director field around circular inclu-
sions forming chains as observed by Völtz et al. [18,67,74,75] and Cluzeau et al. [69–71].
The dipolar droplet chain in picture a) separates anti-parallel director orientations while
the quadrupolar droplet chain in picture b) connects two parallel c-director configurations.
The quadrupolar droplets in the second picture are aligned in an angle of approximately
30° respective to the undistorted c-director field far away from the chain [70, 74].
Isotropic droplets in a smectic C film in a lattice structure as shown in the right-hand
picture of figure 2.2 can be created when the density of the droplets in the film becomes
very high [67, 70, 72].

For smectic A films that were used for the colloidal experiments during the OASIS mis-
sion, there is no molecular tilt and thus no elastic interaction between inclusions in the
film plane. Nevertheless, a self-organization of inclusions in a lattice structure was ob-
served.

a) c)

b)

Figure 2.2: Sketch of the simulated c-director field around circular inclusions with virtual +1
defects (blue dots) in their centers and two −1/2 defects pinned at the boundary of each in-
clusion (red dots). The dipolar inclusions in a) form a chain separating two film regions with
reversed c-director orientation. The chain is aligned with the director orientation (parallel or
antiparallel). Picture b) shows a similar configuration, but with quadrupolar inclusions forming
a chain and identical c-director orientations on both sides of the chain. Here, the angle between
the aligned chain and the surrounding c-director field is approximately 30° [67, 70, 72]. With
additional inclusions and thus a higher inclusion density in the film, the inclusion can arrange
in a lattice structure. The inclusions have a quadrupolar character and form an almost perfect
hexagonal structure (angle between inclusion ≈ 60°). Real experimental images can be found
in [67, 72].
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2.2 Experimental setup and materials 19

2.2 Experimental setup and materials

2.2.1 Liquid crystal mixture and isotropic droplets

During the OASIS mission onboard the ISS, smectic bubbles were prepared using the
setup described in section 1.5. The observed bubbles had sizes of up to 15 mm in diam-
eter and the film thickness could be kept constant for the whole experimental time. For
the colloidal experiments, a liquid crystal mixture (Displaytech MX 12160) containing
two components was used and their chemical structures can be seen in figure 2.3. The
commercial Displaytech mixture is a proprietary material supplied by the Miyota De-
velopment Center of America (former company name: Displaytech). The mixture has
a direct phase transition from smectic A to isotropic phase at a temperature of 51.1 °C.
Inclusions on the film are created by heating the smectic A bubble slightly above the tran-
sition temperature of the mixture to the isotropic phase. Some of the inner layers of the
films then melt and the isotropic material forms micrometer-sized droplets, while the film
itself remains in the smectic A phase. Since the surface tension of the droplets is slightly
larger than the surface tension of the smectic film, the material will not spread out, but
instead forms droplets with radii in the range of a few dozen micrometers and only a few
micrometers in thickness. It is assumed that the isotropic droplets are covered by at least
one smectic A layer (figure 2.4 c and d).

Mixture 12160 (80/20)

OC H7 15

N

N

5-Heptyl-2-[4-(4-methylhexyloxy)-phenyl]-pyrimidin

IsoNSmASmCCr
52.6 °C52.6 °C26.0 °C3.0 °C

C H8 17

C H10 21O

O

N

N

4-(5-Octyl-pyrimidin-2-yl)-benzoic acid decyl ester

IsoSmACr
32.9 °C 44.3 °C

IsoNSmACr
52.6 °C52.6 °C29.1°C

IsoCr
61.4 °C

IsoSmACr
3.1 °C 51.1 °C

IsoSmACr
-3.2 °C 51.1 °C

Figure 2.3: Structure and phase sequences of the two components of Mixture 12160 from Dis-
playtech. While heating the crystalline material on the left-hand side, it will transfer into smec-
tic C, smectic A and nematic phase until it gets isotropic. Cooling down the material from
isotropic phase, it will skip the smectic C phase. The same behavior can be observed with the
second material (on the right-hand side), going from crystalline state into smectic A phase and
finally into isotropic phase when heated. When cooling this material, it will directly change
from isotropic to crystalline state. The mixture 12160 contains 80% of the left-hand material
and 20% of the right-hand component. Transition temperatures and molecule structures are
taken from Displaytech (Miyota Development Center of America) [77].

Figure 2.4 b) shows a typical experimental image (500 × 500 µm2) where the isotropic
droplets spontaneously form a lattice with a short-range order. All droplets in the lattice
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20 2 Self-organization of isotropic droplets in free-standing smectic films

are slowly moving together with the surrounding film and they continuously reorganize
themselves in primarily hexagonal cells. Due to the motion and reorganization and since
the lattice contains droplets of different size, the cells are not very regular. The macro-
view image (figure 2.4 b) shows droplets on the bubble surface arranged in chains or clus-
ters. While most droplets are trapped at layer steps between regions of different thickness
(visible by different colors), there are also freely moving droplets that can spontaneously
form lattice structures. Within a large, uniformly thick regions, hundreds or thousands
of droplets can be arranged in lattice-like structures confined by the edge of the region.
This confinement due to layer steps prevents the droplets from spreading (by repulsive
interactions) over the whole bubble surface.

c) d)

h

2R

SmA SmA
isotropic

 

a) b)

Figure 2.4: Isotropic droplets in a free-standing smectic A film. Picture a) shows the macro-view
of a smectic bubble (highlighted with a white dashed circle) in reflected light. Different colors
represent different film thicknesses. On the top, the shadows and reflections of the air jet needles
are visible. The small objects on the bubble surface are isotropic droplets arranged in chains,
clusters or lattices. Picture b) shows a typical experimental micro-view image (500 × 500 µm2)
of self-organization of droplets in a lattice structure during the OASIS mission. Droplets with
different sizes are coexisting (see upper left and lower right regions). A scheme of the molecular
arrangement of an isotropic droplet in the sectional view is presented in picture c). The droplet
with radiusR is covered with at least one smectic A layer. At the edge of the droplet, the layered
structure is disturbed. The size of the liquid crystal molecules is greatly exaggerated. The
background film with thickness h remains in the smectic A phase (picture d). The curvature of
this film can be neglected due to the size of the droplets (radii of a few micrometers) compared
to the bubble diameter (15 mm).
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2.2.2 Surface tension and viscosity determination
The liquid crystal mixture was chosen due to its direct smectic A to isotropic phase tran-
sition. There were no other experiments with this mixture, so the main properties like
surface tension γ or viscosity η had to be analyzed to interpret the observations from the
ISS experiments. A setup shown in figure 2.5 (left) was build to create initially flat free-
standing films above a small pressure chamber. The pressure inside the chamber could
be changed in steps of 0.5 Pa and the whole setup was placed in a heating stage (Linkam
THMS 600) under a polarizing microscope to verify the temperature dependence. As
expected, droplets appeared at a temperature of 52 °C, but due to air convection in the
heating stage chamber and due to the influence of the meniscus around the film, lattice
structures could not be observed for longer than a few seconds. Reducing the pressure
beneath the film and curving the film allowed to confine droplets in the center. Since
there is an effective gravitational force along the curved film, the droplets finally moved
towards each other and merged (see also chapter 3 - coalescence of droplets).
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Figure 2.5: Experimental setup to measure the surface tension γ and the viscosity η of the mix-
ture. A pressure chamber was included in a heating stage (Linkam THMS 600) to measure
the curvature of the free-standing smectic A film depending on the pressure difference ∆p and
temperature T . The hole in the film holder has a diameter of 10 mm (left picture). The right
picture shows the pressure inside the chamber depending on the radius of curvature of the film
R′ (calculated from the diameter of the film D′ and height of the curved film d′) at a temper-
ature of 52.0 °C. The red line corresponds to a fit for the equation ∆p = 4γ/R′. The surface
tension γ was found to be 0.024 N/m at the given temperature. The error bar represents the
inaccuracy of the pressure sensor.

To calculate the surface tension of the mixture, the pressure difference ∆p between the
pressure chamber and surrounding air was measured depending on the height of the film
d′ above the film holder. Assuming a spherical cap above the circular hole with diameter
D′ in the film holder, the radius of curvature R′ of the smectic film was calculated.

R′ =
4d′2 +D′2

8d′
(2.8)

∆p =
4γ

R′
(2.9)
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22 2 Self-organization of isotropic droplets in free-standing smectic films

Using the Young-Laplace equation (equation 2.9, where two surfaces, below and above
the film, contribute to the pressure difference ∆p), the experimental data shown in figure
2.5 could be fitted and the surface tension at a temperature of 52 °C was calculated to
γ = 0.024 N/m (γ = 24 ± 0.1 mN/m).
The second important parameter for the data analysis is the viscosity of the mixture, pri-
marily at the temperature where droplets appear and lattices are formed. Again, the setup
for the laboratory experiments (left picture of figure 2.5) was used, but in contrast to the
surface tension measurements, micrometer-sized silica beads were applied to the flat film.
The single silica beads with diameters ranging from 10 to 50 µm undergo Brownian mo-
tion and their trajectories were recorded with 60 frames per second.
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Figure 2.6: Experimental data for determining the viscosity η of the material MX12160 depend-
ing on temperature T . The top right picture shows the mean square displacement 〈r2(∆t)〉
(MSD) of the particle depending on the time interval ∆t at the temperature of 51.8 °C. For a
freely moving particle, a linear trend is expected. The diffusion constantsD at different temper-
atures were calculated from the slopes of the mean square displacement curves. The diffusion
coefficient increases with increasing temperature (top right picture). The lower picture shows
the viscosity calculated from the mobility using the Saffman Delbrück expressions (equations
2.5 and 2.7). The film thicknesses h for each experiment were determined from the reflectivity
spectrum of the individual films. With increasing temperature, the viscosity of the material
decreases until it reaches 14.4 mPa s at the transition temperature from smectic A to isotropic
phase (dashed line). The red solid line is a power law fit (η = āT c, ā = 0.69 Pa s K−1,
c = -0.96) to guide the eye.
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2.2 Experimental setup and materials 23

The mean square displacement 〈r2(∆t)〉 (MSD), which is directly coupled to the diffusion
coefficient D, was measured depending on the characteristic time interval ∆t (see the top
left picture in figure 2.6). For the two-dimensional system, the following equation was
used to fit the mean square displacement and to calculate the diffusion coefficient for
different temperatures.

〈r2(∆t)〉 = 4D∆t (2.10)

As visible in the top right picture of figure 2.6, the diffusion coefficient increases with
increasing temperature.
Using the Einstein equation

D = bkBT (2.11)

with the Boltzmann’s constant kB and the absolute temperature T , the mobility b was
calculated. With the Saffman Delbrück equation (equations 2.5 and 2.7), the dynamic
viscosity η of the material at different temperatures was determined (lower picture in
figure 2.6). The viscosity decreases from a value of 40 mPa s at room temperature to
14 mPa s at a temperature of 52 °C slightly above the bulk phase clearing point.

23



24 2 Self-organization of isotropic droplets in free-standing smectic films

2.3 Experimental results

2.3.1 Lattice structure

The isotropic droplets observed in the experiments are arranged in a lattice structure. The
background smectic A domain has a uniform thickness and is bounded by dislocations
where the film thickness changes. The droplets cannot cross these boundaries, so they are
confined within these regions. The confinement stabilizes the lattice structure, since the
droplets would otherwise spread over the whole bubble surface due to repulsive interac-
tions.
During all experiments, the entire lattice structure is drifting together with its background
film in the film plane due to a small residual airflow from the airflow needles. This drift
is shown in figure 2.7. It has a maximum velocity of 2.5 µm/s. The local lattice structure
remains essentially unchanged while drifting, but the long range correlation changes.

Figure 2.7: Flow field of the drift of the en-
tire bubble surface due to the remaining air-
flow close to the bubble. The maximum
velocity was 2.5 µm/s. The image size is
500 × 500 µm2.

The droplet lattice primarily consists of hexagonal cells to maximize the distance between
nearest neighboring droplets. Nevertheless, droplets of different size and the non-linear
flow field cause, in general, a not very regular lattice. Locally, a regular hexagonal struc-
ture with droplets of the same size is assumed to simplify further interpretation of the
data. To prove this assumption and to analyze the effect of droplet size, the distances
between droplets of nearly the same size were measured. The probability to find a droplet
at a specific distance to another droplet is shown in figure 2.8. The maxima in the up-
per graph (experimental data) correspond to the nearest neighbor distance as visualized
in the inset. In addition, a perfect hexagonal lattice with 400 droplets of the same size
(R = 8.5 µm) was simulated and the distances were measured. For a more realistic sim-
ulation, random noise was added to each droplet position. This led to a broadening of the
Gaussian peaks in the lower probability graph (figure 2.8). It has to be mentioned that at
least for distances below 4d (four times the distance to the nearest neighbor), the maxima
of the experimental data match with the simulated peak positions. The experimentally
determined maxima additionally align with the analytically calculated peak positions (in-

24



2.3 Experimental results 25

set and dashed lines in figure 2.8). That verifies the assumption, that locally the droplets
form regular hexagonal cells with a distance to next neighbor of d, equivalent to the side
length of the hexagon.
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Figure 2.8: Probability to find the neighboring droplets at a specific distance. The lower picture
visualizes the expected, calculated distance between a droplet and their neighbors of the same
size. Random noise was added for the calculation to widen the Gaussian peaks. The distances
for specific peaks are calculated concerning the distance to the nearest neighbor d, and are
marked in the upper graph. For larger distances to the droplet center, the calculated peaks
overlap, so not all predicted peaks are visible. The upper graph represents the measured distance
between droplets of nearly the same size (R = 8.5 ± 0.15 µm) in the experimental data. The
peaks in the measured data match the calculated Gaussian peaks at least for distances below
4d. The inset shows the first neighboring droplets with their predicted distance to the center
droplet.

A second method to analyze the lattice structure is the construction of voronoi cells
around each droplet (also Wigner-Seitz cells). Within each voronoi cell, all points are
closer to the central droplet than to other droplets and so the size of voronoi cells de-
scribe the surface area, that belongs to the specific droplets. As shown in figure 2.9 a-c),
voronoi cells are constructed by connecting the edges of neighboring droplets and then
calculating the midpoint of these connections. The perpendicular bisectors of the edge-
edge-connecting line then form the boundaries of the voronoi cells. In figure 2.9 d), the
voronoi cells for a single experimental image are visualized, where approximately 64%
of the cells represent hexagons and 29% are pentagons. At the end, the size of each cell
was calculated and to compare it with the statistic measurements, an equivalence radius
Requiv was introduced. These radius defines a circle around each droplet, with the same
area as the corresponding voronoi cell.
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26 2 Self-organization of isotropic droplets in free-standing smectic films

R

Requiv

d)a)

b)

c)

Figure 2.9: Construction of voronoi cells around the droplets in the experimental data. The
yellow lines in picture a) represent the connecting lines between neighboring droplet centers.
To take the size of the droplets into account, the connection starts and ends at the droplet
edges (weighted voronoi cells). In the next step, the perpendicular bisectors of the edge-edge
connections are constructed. The intersections of the extensions of the perpendicular bisectors
form the vertices of the voronoi cell around each droplet (picture b). For each voronoi cell, a
circle with the same area was calculated (radiusRequiv) as shown in picture c). Picture d) shows
an experimental image (500 × 500 µm2) with more than 400 marked droplets with radii from 3
to 13 µm. The visualized voronoi cells are constructed using the method described in a-c).

Both methods for analyzing the lattice structure (probability to find a neighboring droplet
at a specific distance and the voronoi cell construction) show a dependence on the droplet
size. With increasing droplet radius R, the distance to the nearest droplet is increasing as
well as the size of the voronoi cells, described by the equivalence radius. For the interpre-
tation of this behavior, the probability graphs and the voronoi cells of more that 15,000
pictures were analyzed. Data points for similar particle sizes were averaged. The results
are presented in figure 2.10. A linear trend for both measurements can be observed. While
the mean lattice constant 〈d〉 directly represents the mean distance to the next droplets as
well as the hexagon side length, the equivalence radius for each cell is slightly larger than
the mean lattice constant. Nevertheless, both measurements show the same linear behav-
ior and the same slope of the curve.
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2.3 Experimental results 27

It has to be mentioned, that the dependence of the lattice constant 〈d〉 on the droplet
radius R also differs for different measurements. Since all the droplets are confined in
a homogeneously thick region by layer steps, the size of that region finally defines the
free space corresponding to each droplet and as a consequence the distance to the next
neighbors. Nevertheless, the same linear trend was found for all other measurements, but
with different slopes (e.g. 〈d〉 = 3.25R + 2.5 µm). For later analysis and interpretation
of the results and to compare results from different measurements, the mean aspect ratio
〈α〉 = 〈d〉/R was introduced. This ratio weakly depends on the droplet size R, and it
ranges between 2.5 and 6 for individual cells in different experiments and domains.

5
8

25

35

20

10

15

64 10 12

30

40

M
ea

n 
la

tt
ic

e 
co

ns
ta

nt
 h
d 
i[

µ
m

]

Droplet radius R [µm]

45

50

5
8

25

35

20

10

15

64 10 12

30

40

D
ou

bl
e 

m
ea

n 
eq

ui
va

le
nc

e 
ra

di
us

 2
hR
 

eq
ui

vi
[µ

m
]

Droplet radius R [µm]

45

50

0

0.004

3020 40 50

0.002

0.006

P
ro

ba
bi

li
ty

Distance to droplet center [μm]

R
Requiv

exp. data 
linear fit with
hdi = 2.49R+2.89 µm

exp. data 
linear fit with
2hRequivi = 2.57R+2.85 µm

10 60

Figure 2.10: Mean lattice constant 〈d〉 and two times the mean equivalence radius 2〈Requiv〉
depending on the radius of the droplets R. The data points in the left graph are extracted
from the probability measurements as shown in the left-hand inset. The mean lattice constant
represents the averaged distance to the nearest droplet as well as the side length of an assumed
regular hexagon in the lattice, that is formed by the six neighboring droplets of the same size.
The right-hand side shows the results from the voronoi cell construction. As visible in the
right inset, the equivalence radius is slightly larger than half the distance to the nearest droplet.
For comparison, two times the averaged equivalence radius is plotted. Both graphs show a
linear tendency and by fitting the data points, a slope of approximately 2.5 was found for both
measurements.

2.3.2 Repulsive interactions
The whole lattice structure is stabilized by repulsive interactions between the droplets,
but the nature of these interactions is not fully understood yet. One possible explanation
is the presence of elasto-capillary forces, that have been described earlier for spherical
inclusions in smectic A films by Gharbi et al. [78]. In their experiments, the distortion
of the uniformly thick film and the meniscus around the inclusions are essential for the
observed repulsive interaction. For the isotropic droplets in the OASIS experiments, no
menisci can be observed, since the droplets are extremely flat (also shown in chapter 3).
Furthermore, long range capillary forces can be excluded as the film is uniformly thick.
In addition, effects resulting from a molecular tilt, as known from smectic C films, are
negligible since smectic A films are isotropic in the film plane.
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28 2 Self-organization of isotropic droplets in free-standing smectic films

The most convincing explanation for the repulsive force are electrostatic interactions. Ex-
periments with the same material, forming flat films in the lab, showed that the droplets
are affected by a highly charged electrode needle, placed close to the film surface. With a
positive potential (approx. 150 V relative to the film holder), the droplets moved towards
the needle, with a negative needle potential, they were repelled. A comparable effect with
electric charges on a free-standing smectic bubble have been observed years ago by Stan-
narius et al. [79]. It is conceivable that charges are present on the entire bubble surface
and that they are accumulated in smectic islands or droplets. It is also possible that the
smectic mixture contains free ions which are expelled by the ordered smectic phase of the
film and which are then trapped in the less ordered isotropic phase of the droplets.
Assuming that charges concentrated in the droplets cause the repelling interaction, the
electrostatic potential φ(r) of the center droplet at a distance r from the center of a sym-
metrical hexagon can be described. The distance between the central droplet and one
neighboring droplet can be written as r′ =

√
d2 − 2dr cos(β) + r2, with the lattice con-

stant d, the distance from the center r and the angle β in respect to the outer droplet
connecting line (see figure 2.11).

P

Figure 2.11: Sketch of the geometric situation where the
central droplet (gray) is not in the center of the hexagon P.
The hexagon is formed by 6 droplets at a distance d (lattice
constant) from the center.

The potential due to a single neighboring point charge q as a function of their distance to
each other results in

φ(r′) =
q

4πε0r′
, (2.12)

where ε0 describes the vacuum permittivity with 8.854 · 10−12 A s/V m. Expanding the
potential for only one neighboring droplet (r > r′) to the third order in the radial distance
to the center of the hexagon and averaging over the angle β (from 0 to 2π) leads to:

φ(r) ≈ φ(0) + φ′(0)r +
1

2
φ′′(0)r2 +

1

3
φ′′′(0)r3 +O(0)r4 . (2.13)

The calculation of the terms shows that only the derivatives of even order make a contri-
bution to the potential.

φ(0, β) =
q

4πε0

1

d
=⇒ 1

2π

∫ 2π

0

φ(0, β)dβ =
q

4πε0

1

d

φ′(0, β) =
q

4πε0

cos(β)

d2
=⇒ 1

2π

∫ 2π

0

φ′(0, β)dβ = 0

φ′′(0, β) =
q

4πε0

3 cos2(β)− 1

d3
=⇒ 1

2π

∫ 2π

0

φ′′(0, β)dβ =
q

4πε0

1

2d3

φ′′′(0, β) =
q

4πε0

15 cos3(β)d+ 9 cos(β)

d4
=⇒ 1

2π

∫ 2π

0

φ′′′(0, β)dβ = 0
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2.3 Experimental results 29

Considering the six nearest neighbors and neglecting higher order terms and Debye screen-
ing by ions in the background film leads to an approximation for the potential that is only
slightly underestimated (the influence of droplets outside the hexagon is ignored).

φ(r) ≈ q

4πε0d

[
6 +

3r2

2d2
+O

(
r4

d4

)]
(2.14)

Nevertheless, the contribution from droplets outside the regular hexagon were analyzed
and lead to a finite correction in the r2 term in equation 2.14. Computing the potential
close to the origin of an infinitely extended perfect triangular lattice, a correction factor
of 1.836 was found. This correction term deepens the assumed potential, but taken into
account the screening of long-range electrical interaction by counterions in the film and
fluctuations of the position of the droplets, reduces the influence of charges that are further
away than the nearest neighbors [23].
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Figure 2.12: Analysis of the motion of neighboring droplets forming a hexagonal structure. At
the beginning, the motion of seven neighboring droplets was recorded (picture a) and the tra-
jectory of the whole hexagon was calculated. The trajectories of the droplets in respect to the
center of the hexagon were determined as shown in picture b). Picture c) visualizes the dis-
tance from the outer droplets defining the hexagon to the central droplet. They only vary by
4 µm. The hexagonal structure is almost regular for the complete measurement. The radii of all
droplets (picture d) are in the same range and hardly changed.
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30 2 Self-organization of isotropic droplets in free-standing smectic films

With the predicted potential φ(r), the radial force Frad perceived by the central droplet
can be calculated and written in terms of a force constant K.

Frad = −d(qφ(r))

dr
= −Kr ≈ − 3q2

4πε0d3
r (2.15)

Since the potential is slightly underestimated, also the force Frad might be somewhat
larger than shown in equation 2.15, but in fact it predicts the right order of magnitude.
For the given system, the force constant K can be extracted from the measurements by
analyzing the motion of the central droplet in respect to the center of the hexagon formed
by the six nearest neighbors. Taking the specific radii of the six droplets into account, the
center of the hexagon is equal to the center of mass. Figure 2.12 a) shows the motion of
an arrangement of seven droplets in a hexagonal structure over a period of 36 seconds.
The background motion results from the drift of the whole bubble surface and was sub-
tracted for the analysis. The trajectories of the droplets were calculated with respect to
the hexagon centers and depending on the individual droplet radii (picture 2.12 b).
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Figure 2.13: Distribution density of the position of the central droplet with a radius of 11.50 µm
(green bars). Additionally, the averaged data for droplets of the same sizeR = 11.50± 0.25 µm
are shown as blue squares. The averaged data were fitted (red solid line) with equation 2.16 with
the fitting parameter ρ0 and a′. From the fit, the force constant is calculated toK ≈ 0.66 nN/m.
The inset shows the spatial distribution of the central droplet with respect to the hexagon center.
The evolution in time is color coded.
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Assuming that the spatial distribution of the central droplet describes a Boltzmann distri-
bution in 2D with axial symmetry, the distribution density can be written as [23]:

ρ(r) =ρ0r exp
(
− Kr2

2kBT

)
with (2.16)

rmax =

√
kBT

K
. (2.17)

In figure 2.13, the distribution density of a single measurement (shown in figure 2.12) and
the averaged data for droplets with the same radii are presented. From the fit with equa-
tion 2.16, the force constant K was calculated. For the presented example with droplets
of radius R = 11.50 ± 0.25 µm and an aspect ratio α = 〈d〉 /R = 2.61 ± 0.23, the force
constant of K ≈ 0.66 nN/m was obtained (rmax = 2.6 µm).
For small distances to the hexagon center (< 6 µm), the measured data are in very good
agreement with the theoretical assumption, while for larger fluctuations, the tail deviates
from the prediction. The main reason for that deviation is the structure of the lattice that
is, in contrast to the above assumption, not perfectly hexagonal. In addition, also cells
with five or seven nearest neighbors are observed and thus larger fluctuations can occur
more frequently.

2.3.3 Mean square displacement

In order to analyze the individual droplet motion with respect to their neighboring droplets
and to measure the diffusion constant, the mean square displacement (MSD) was calcu-
lated. The calculation is based on a formalism from the work of Albert Einstein [80] from
1904. For a freely moving particle (particle undergoing only Brownian motion without
drift) in two dimensions, the transition probability P (x0, y0, x, y,∆t) to find a particle
originally at (x0, y0) after a time interval ∆t at the new position (x, y) can be written as

P (x0, y0, x, y,∆t) = P (r0, r,∆t) =
1√

4πD∆t
exp

(
−(x− x0)2 + (y − y0)2

4D∆t

)
(2.18)

and represents a Gaussian process with the diffusion constant D. The mean square dis-
placement 〈r2(∆t)〉 is then calculated by integrating the density function P (r0, r,∆t)
times the square displacement r2(∆t) (with respect to the initial position r0).

〈(r − r0)2(∆t)〉 = 〈r2(∆t)〉 =

∞∫
−∞

[
(r − r0)2

]
P (r0, r,∆t)dr

〈r2(∆t)〉 =

∞∫
−∞

∞∫
−∞

[
(x− x0)2 + (y − y0)2

]
P (x0, y0, x, y,∆t)dxdy

〈r2(∆t)〉 = 4D∆t (2.19)
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32 2 Self-organization of isotropic droplets in free-standing smectic films

As expected from equation 2.19 and shown in figure 2.14 (left picture), the mean square
displacement increases linearly in this simple case and the diffusion constant can be ex-
tracted from the slope of this curve.
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Figure 2.14: Mean square displacement (MSD) calculated for a simulated freely moving droplet
and measured from the experimental data. On the left side, the diffusion constant for the un-
bound motion (shown in the inset) is proportional to the slope of the linear fit. The right-hand
side shows the experimental data (aspect ratio α = 4.5 ± 0.1) fitted with equation 2.23. For
small time intervals ∆t, the hexagonal cage will not effect the droplet motion (free diffusion).
For larger ∆t, the asymptotic value of 4kBT/K is reached. The right inset visualizes the mo-
tion of the central droplet within the hexagon. The dashed red circle marks the region in which
the droplet position fluctuates.

For the motion of the droplets in the hexagonal structure, a diffusion in a parabolic poten-
tial with

V (r) = V (x, y) =
K

2
r2 =

K

2
(x2 + y2) (2.20)

is assumed and the corresponding Boltzmann distribution density then is

P̃ (r) = P̃ (x, y) =

√
K

2πkBT
exp

(
−K(x2 + y2)

2kBT

)
. (2.21)

Here, kB is the Boltzmann constant, T is the temperature of the system and K describes
the force constant. In contrary to the former given transition probability P (r0, r,∆t), the
Boltzmann distribution P̃ (r) describes the probability to find a particle at the position
(x, y) with respect to the center of the potential and independent of time.
The following equation for diffusion in a two-dimensional harmonic potential

〈r2(∆t)〉 = A(1− eB∆t) (2.22)

is used and by assuming a free diffusion for small times ∆t, the mean square displacement
in a parabolic potential is described by the following equation:

〈r2(∆t)〉 =
4kBT

K

[
1− exp

(
−DK
kBT

∆t

)]
. (2.23)
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For small ∆t, this cage-related MSD yields a value of 4D∆t (free diffusion), while for
large times the asymptotic value of 4kBT/K is found (derivation in appendix A.1).
By fitting the measured data with equation 2.23, as shown in figure 2.14 (right-hand pic-
ture), the free diffusion constant D and the force constant K are determined as well.
The results for the force constant from both methods, analyzing the distribution density
and measuring the cage-related mean square displacement, are comparable with each
other and are summarized in figure 2.15. The data points for the same aspect ratio are
averaged (bin size of δα = 0.1 for the MSD measurement and δα = 0.25 for the density
function analysis) for better visualization. The force constant clearly decreases with in-
creasing aspect ratios, whereas it seems that there is no obvious correlation between force
constant and droplet radius R.
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Figure 2.15: Force constantK depending on the aspect ratio α determined from the cage-related
MSD measurement (black squares) and from the density functions (blue circles). Hexagonal
cells with similar aspect ratios are averaged with bin widths of δα = 0.1 for the MSD data
points and δα = 0.25 for the density distribution data points. The red solid line is an empirical
fit with K = 2.75 · 10−9α−1.5 N/m to guide the eye. The inset shows the force constant
determined from the asymptotic limit of the MSD before averaging over similar aspect ratios.
The force constant decreases with increasing aspect ratio α [23].
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According to equation 2.15, it is possible to estimate the net charges that are required to
produce the measured force constant. This value reaches

q =

√
4πε0d

3K

3
≈ 3 · 10−17 C ,

using K ≈ 0.6 nN/m, R ≈ 13 µm, d ≈ 35 µm and α ≈ 2.7 as an example. It results
in a few dozen to a few hundred negative excess elementary charges (q in the range from
0.7 ... 3 · 10−17 C, elementary charge e = 1.602 · 10−19 C) [23] .
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2.4 Simulation

The motion of objects in two dimensions and the interaction between different objects
are essential hydrodynamic problems in biological, chemical and physical systems. The
model to describe the motion of a circular object in 2D (Saffman and Delbrück model)
was already introduced in chapter 2.1.2. With film thicknesses in the order of a few dozen
nanometers (estimated from the color of the background film) and a material viscosity of
η = 14 mPa s, the Saffman length LS = ηh/(2η′) yields values between 10 and 100 µm.
Since the Saffman length is larger than the mean distance between the droplets, the in-
fluence of the ambient air was neglected and the Saffman and Delbrück approximation
considering the film dimensions was used instead (equation 2.5). The hydrodynamics of
each confined droplet are assumed to be essentially two-dimensional.
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Figure 2.16: Simulated flow field around a moving droplet in a hexagonal lattice. The magni-
tude of the flow velocity is color-coded in units of the central droplet velocity. For the third
picture of each row, the flow field was additionally visualized with arrows whose lengths have
been normalized. Three different situations with different boundary conditions were simulated.
Pictures a-d) show a hexagonal lattice where the flow of material is not restricted to the cell
around the central droplet. In the second row (pictures e-h), the flow is confined by a perfect
hexagon formed by the six neighboring droplets and in the last case (pictures i-l), the incircle of
this hexagon confines the flow. From the left to the right side, the aspect ratio α increases, while
the radius of all droplets is constant for all shown pictures. The last pictures on the right side
correspond to a lattice rotated by 30° respective to the velocity direction of the central particle.
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36 2 Self-organization of isotropic droplets in free-standing smectic films

In order to compare the theoretical model with the experimental data and to analyze the
expected curve for very small aspect ratios, the flow field around a circular object in a
hexagonal lattice was simulated. The commercial Finite Elements Method (FEM) soft-
ware COMSOL was used to simulate flow in a 2D environment by applying a force F
on the central droplet in the cage (shown in figure 2.16 b). By extracting the resulting
velocity v of the central droplet and using the experimental parameters (viscosity of the
material η, viscosity of the surrounding air and the temperature of the system), the trans-
lational mobility bT = v/F can be calculated.
Three different situations with different boundary conditions were analyzed. In the first
case, the flow is not restricted to some region, but is set to zero at the droplet edges. In
the second case, the flow is limited to the hexagonal cell around the central droplet, thus
there is no exchange of material with the neighboring cells. For the third situation, the
flow was confined to a circular region by the incircle of the hexagon, formed by the six
nearest neighbors. Again, the flow between neighboring cells/incircles is suppressed. For
all these situations, the velocity at the edges of all other droplets was assumed to be zero.
Furthermore, the last case represents the Saffman and Delbrück model (with an additional
constant factor), when using the aspect ratio α instead of the radius of the inclusion a and
the radius of the confinement Rfilm.

bT =
1

4πηh

(
ln
Rfilm

a
− 1

2

)
bT =

1

4πηh

(
ln(α)− 1

2

)
(circumcircle of hexagon) (2.24)

bT =
1

4πηh

(
ln
(√

3/4α
)
− 1

2

)
(incircle of hexagon) (2.25)

Figure 2.16 shows the flow field around the central droplet for the three described situa-
tions for three aspect ratios α each. The flow velocity is color-coded with respect to the
central droplet velocity v. Additionally, the flow field is visualized by normalized arrows.
While the flow field in the pictures e-h) (hexagonal cage) is almost identical to the field
in the circular confined situation (pictures i-l), the simulation without confinement shows
additional flow around the next neighbors. This flow finally leads to a higher velocity of
the central droplet compared to the confined situations.
As an additional parameter of the simulation, the orientation of the droplet lattice with
respect to the direction of the applied force F was analyzed and a rotation of the lattice
by 30° is shown in the right-hand pictures of figure 2.16 (pictures d, h, l). The flow field
only changes marginally, but the extracted velocity v is constant, independent of the ori-
entation between the lattice and the force direction.

The numerical results of the simulations, i.e. the calculated specific mobilities b′ = bh as
functions of the aspect ratios α, are presented in figure 2.17. For large aspect ratios, the
simulated hexagonal cage (green solid curve) as well as the simulated circular confine-
ment (incircle of the hexagon, black solid curve) agree with the model of Saffman and
Delbrück, shown as black dashed curve. For smaller values α < 6, the calculated specific
mobilities deviate from the expected curve. Apparently, the model is only valid for as-
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Figure 2.17: Calculated specific mobility for different boundary conditions in the flow field sim-
ulation. For small aspect ratios α < 6, all calculated curves deviate from the prediction of
Saffman and Delbrück (black dashed line). For larger aspect ratios, the flow field in the hexag-
onal cage (green curve) and in the incircle (black solid line) of the hexagon match with the
model. In contrast to the confined situation, the open lattice simulations (red solid line) shows
the same trend, but higher values for the specific mobility. The curve was fitted with the Saffman
equation with additional fitting parameters: bh = (4πη)−1 (ln(Aαc)− 0.5) where A = 0.77
and c = 1.24 (red dashed line).

pect ratios larger than 6 and for smaller values the numerical approximation has to be
used to fit the experimental data. In addition, the specific mobility for the lattice without
confinement was calculated (red solid curve). Due to the flow around the neighboring
droplets and the resulting higher velocity v of the central droplet, the specific mobility
is increased. Nevertheless, the curve shows the same trend as the curve for the hexago-
nal cage simulation. For completeness, the results for the open lattice were fitted with a
modified Saffman Delbrück model (red dashed curve). An equation similar to the model
equation with two additional fitting parameters was used: bh = (4πη)−1 (ln(Aαc)− 0.5)
with A = 0.77 and c = 1.24.
Finally, the measured diffusion constant values D were compared and fitted using the
theoretical SD model as well as the simulated curves. From the simulated specific mo-
bilities, the diffusion constants were calculated using the Einstein equation D = bkBT
with the constant temperature T of 52 °C. Since the film thickness of the background film
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38 2 Self-organization of isotropic droplets in free-standing smectic films

could not be measured during the experiments (malfunction of the spectrometer), the film
thickness h is the only free fitting parameter for the measured data. Figure 2.18 shows
the measured data and the fitted curves. Cells with similar aspect ratios (δα = 0.1) are
averaged for better visualization, while the inset of the figure represents the entire set of
data. All fitted curves align well with the measured data. For aspect ratios smaller than
5, the theoretical model seems to deviate slightly from the measured data. Nevertheless,
all curves match the measured data, but especially for small aspect ratios the simulation
better represents the data. Deviations from the model and the simulated curves can be
explained by variations in the hexagonal structure of the lattice. For the model and for the
simulation, perfect hexagonal cells are assumed. The film thickness of the background
film yields a value of 44 nm for the SD model fit, 41 nm for the hexagonal fit and 51 nm
for the unbound lattice simulation curve fit. The film thickness of h = 46 ± 5 nm is
compatible with the expected film thickness value, that was estimated from the color of
the film in the experimental images.

D
iff

u
si

o
n
 c

o
n
st

an
t 
D

 [
µ

m
/s

]

1.2

9

0.8

0.6

0.4

0.2

1.2

1.0

0
8765432 9

1.0

0.8

0.6

0.4

0.2

0
8765432

Aspect ratio

measured data
Saffman theory fit
simulated hexagon curve
simulated open lattice curve

Figure 2.18: Measured diffusion constants from analyzing the MSD curves, depending on the
aspect ratio α. The data points are fitted with the Saffman model (red solid curve), with the
numerically computed curve for a hexagonal cell (dashed blue line) and with the simulated
open lattice curve. The film thickness h of the background film is the only fitting parameter.
The complete set of data points shown in the inset is averaged over cells with similar aspect
ratios using bin sizes δα of 0.1.
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2.5 Summary and discussion
As one part of the experiments onboard the ISS, inclusions on free-standing smectic films
were created and observed. A liquid crystal mixture was heated close to the smectic
to isotropic transition temperature and lens-shaped droplets were created which formed
lattice-like structures. Measurements of the lattice structure and its dimensions showed
a linear dependence between droplet sizes and their distance to the next neighbors. For
a specific domain, the following expression 〈d〉 ≈ 2.53 R + 2.87 µm (figure 2.10) was
found. A similar linear dependence is assumed for all confined domains with droplets in
lattice structures. The aspect ratio α = d/R was introduced to combine the droplet radius
R and the nearest droplet distance d within one parameter.
For the first time, a real two-dimensional colloid with predominantly hexagonal cells was
formed due to mutually repulsive, presumably electrostatic interactions. A point charges
approach in a six-fold symmetry was made to describe the net potential experienced by
each droplet in a perfect hexagonal lattice. For this approximation, only the influence
of the six nearest neighbors was considered and Debye screening was neglected. Higher
order terms including the more distant droplets would lead to a slightly higher potential
(e.g. a factor of 1.836 in the r2 term). These additional long-range electrical interactions
are screened by counterions in the film and averaged out because of fluctuations of the
whole lattice itself.
The distribution density of the position of a droplet in the hexagonal cells was calculated
and fitted with a Boltzmann distribution in 2D with axial symmetry (figure 2.13). From
the maximum of this curve, the force constant K was calculated. A rough estimation
showed that the repulsive interaction could be caused by a few hundred negative excess
charges per droplet. There is no quantitative information about screening effects. De-
pending on the Debye length of the lattice droplets, the assumed potential is partially
screened (the Debye length lies within the order of magnitude of the distance to the near-
est neighbors d) or more neighbors have to be included in the potential description (Debye
length much larger than d). In both cases, the functional form of the potential around the
central droplet will not change in the leading term.
The results show a dependence of the force constantK on the aspect ratio, but no physical
meaning of the empirical fit K = 2.9 · 10−9α−3/2 N/m was found yet (figure 2.15).
In order to analyze the hydrodynamics of the droplets, the (cage-related) mean square dis-
placement was measured and fitted with an approximation for the diffusion of a particle
in a parabolic potential. The measured data showed the expected linear trend of the MSD
for small time steps and an asymptotic behavior for large time steps. From the asymp-
totic limit of each individual curve, the force constant was calculated, while the diffusion
constant D was extracted from the linear part (figure 2.14).
In addition to the experimental observations during the ISS mission, simulations of the
two-dimensional flow field around a circular inclusion were performed. The model by
Saffman and Delbrück was compared with the numerical simulation and deviations for
small film regions with respect to the inclusion size were found. The flow field within
the restricted hexagonal and circular geometry as well as in a free lattice without con-
finement was simulated. The simulation and the SD model are equally suitable to fit the
experimental data (figure 2.18).
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40 2 Self-organization of isotropic droplets in free-standing smectic films

For the analysis and the interpretation of the isotropic droplet motion and their arrange-
ment in a lattice structure, electrostatic forces and the resulting repulsive interactions
of the droplets were assumed. Additional experiments with the liquid crystal mixture
showed that a motion of the droplets can be induced if a high potential (≈ 150 V) is ap-
plied between the film holder and an electrode needle close to the film. With a positive
needle potential the droplets follow the needle and with a negative needle potential the
effect is reversed. Nevertheless, there is no quantitative information about screening ef-
fects and the origin of the charges. In particular, the origin of the charges is an important
question that needs to be investigated in further experiments. One possible explanation
is the presence of ions in the liquid crystal material due to a partial degradation of the
molecules in the mixture. These ions could be expelled by the ordered smectic phase of
the film and accumulated in the less ordered isotropic material of the droplets. It may
also be that the ions are trapped only at the disclination lines around the droplets. Free
radicals with unpaired electrons that accumulate in these regions may also be a cause of
charges in the isotropic droplets or at the contact lines.
Additional experiments onboard the ISS, for example utilizing a pure liquid crystal of
comparable properties and comparable transition temperatures, could help to answer at
least some open questions. The experimental system under microgravity conditions al-
lows changing the smectic bubble radius (inflating or deflating the bubble) and thus, in
principle, to vary the lattice constant and the aspect ratio of the lattices. For a fixed num-
ber of droplets in an enlarged confined domain (lower droplet density), an increase of the
lattice constant d, i.e. a decrease of the cell aspect ratio α, is expected. Furthermore, the
force constant could be measured more accurately within optical tweezers by bringing
two separated droplets close together and then measuring the repulsive behavior.

Isotropic droplets in free-standing smectic A liquid crystal films form a unique two-
dimensional colloidal systems that is not affected by a solid substrate ( [46, 54]) nor a
liquid medium [60, 61](droplets on the liquid-gas interface). Comparable structures and
a self-organization of isotropic droplets in thin films could only be observed by Völtz et
al. [67] in smectic C free-standing films, but the mutual interaction are in this case caused
by elastic distortions of the c-director field. Lattice-like structures and repulsive interac-
tions due to electrostatic interactions between droplet in smectic A films have so far only
been observed during the OASIS experiments.
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3 Coalescence of liquid droplets in
a quasi-two-dimensional liquid
crystal film

Coalescence of droplets describes the merging process of liquid objects in chemical, phys-
ical and biological systems. This ubiquitous phenomenon can be observed during rain
drop formation, but also in various technological processes. The dynamics of droplet
coalescence has been studied experimentally and theoretically in different systems. In
the previous chapter, the system of micrometer-sized isotropic droplets on a thin liquid
crystal film was introduced. The third chapter deals with the coalescence of such droplets
on quasi-two-dimensional films. The merging dynamics on the timescale of milliseconds
is analyzed using high-speed imaging and interferometry measurements. The results are
compared with a theoretical model for droplets on solid substrates and based on the
thin sheet equation, a new model is developed. In addition, self-similar dynamics of the
connecting region between the merging droplets during the first stage of coalescence is
verified. The experimental results and the model to describe the coalescence of three-
dimensional liquid droplets on a two-dimensional film are published in [81] and [82]. All
necessary physical quantities are redefined in this chapter.

3.1 Introduction

The phenomenon of merging droplets is an important topic in natural science, since coa-
lescence is a ubiquitous process in many systems. Since more than 100 years, scientists
try to analyze and explain the interaction between liquid objects within other fluids. Al-
ready at the end of the 19th century, Lord Rayleigh studied the collision of liquid jets
and analyzed their stability [83–89]. At almost the same time, experiments with touching
soap bubbles were performed by Boys [90]. One of the first publications describing the
coalescence of water droplets in experiments appeared in 1963 by Hendricks. Already
then, Hendricks used a setup to record 14,000 pictures per second and analyzed the effect
of humidity and surface contamination on the coalescence dynamics [91].
Due to the further development of high-speed imaging techniques during the 1980th and
1990th, processes such as raindrop formation (early experiments in 1978 by Bradley et
al. [92]) or merging of heated powder to a homogeneous material (sintering [93]) could be
observed in more detail. In addition, a theoretical model of the coalescence of two viscous
cylinders was developed by Hopper [94–96]. With increasing importance of droplet coa-
lescence for industrial applications, such as ink-jet printing [97], coating of surfaces [98],
stabilization of emulsions [99] or oil recovering [100], a better and detailed understanding
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42 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

of the merging dynamics was required. In the last decades, many experiments and sim-
ulations of three-dimensional and two-dimensional coalescence were performed to fully
describe and understand this important process of merging liquid objects [101–139].
During the coalescence of liquid droplets, a connecting region between both droplets is
formed. The size and the shape of that so-called “neck” or “bridge”, which changes dur-
ing the merging process, and the coalescence time are important analyzing parameters in
most experiments.

coalescence time t

R

R

Rendbridge Figure 3.1: Sketch of the coales-
cence of two equal-sized droplets
with initial radii R. During the
process a bridge is formed that in-
creases until it reaches the radius
Rend of the final droplet.

3.1.1 Coalescence in 3D and 2D systems
The dynamics of coalescing three-dimensional droplets is basically driven by the surface
tension of the droplet material. Various experiments showed that different dynamical
regimes occur during the merging process: at a sufficiently early stage of the bridge for-
mation, the surface tension is balanced by viscous forces (viscous regime), while at later
times viscous effects become negligible and inertia is dominating the dynamics (inertial
regime). For the very first moments of coalescence also an “inertially limited viscous”
regime is described [106–109]. While the initial phases of coalescence in most experi-
ments are comparable and agree with each other, the final stage in general depends on the
experimental setup. Paulsen et al. for example used liquid hemispheres formed on top
of small nozzles (left pictures in figure 3.2) to analyze droplet coalescence and especially
the bridge formation. The final situation of that kind of experiments is a surface with
constant mean-curvature, called Delaunay surface, which is connecting the supporting
nozzles [103–113].
A second commonly used experimental realization of 3D coalescence of liquid droplets
is that of droplets sitting on flat solid substrates (right-hand pictures in figure 3.2), called
“sessile droplets”. Since there is no flow on the solid surface, the flow field of the droplets
during coalescence is qualitatively different from that of free droplets. Nevertheless, the
whole merging process until a final droplet is formed can be observed. The coalescence
dynamics basically depends on the material viscosity, material density, and the surface
tension of the droplets. For sessile droplet experiments, surface material properties and
wetting conditions (e.g. contact angle between droplet and surface) also become impor-
tant.
In addition to the different dynamical regimes, self-similar dynamics of the bridge forma-
tion was observed for droplets on solid substrates [119] and on liquid substrates (liquid
lenses) [127]. For the latter system, the inertial regime, the viscous regimes and the
crossover between them were demonstrated experimentally with materials of different
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viscosity. Hack et al. also proposed a model to explain the behavior and scaling laws in
the two regimes [127].

final stagecoalescence

Delaunay
surface

initial stage

liquid 
material 
reservoir

liquid
hemi-
sphere

solid substrate

liquid substrate

final droplet

liquid lenses

liquid droplet

Figure 3.2: Scheme of the realization of 3D coalescence experiments. In the left-hand pictures,
liquid hemispheres are formed on top of small nozzles with diameters in the range of millime-
ters. These kind of experiments are focused on the bridge formation and analysis of different
dynamical regimes. The final stage is a surface with constant mean-curvature (Delaunay sur-
face) connecting both supporting nozzles [103–113]. The three upper right-hand pictures show
droplets on a solid substrate. Since the flow field on the substrate surface is zero, the coa-
lescence dynamics is completely different from that on the left side [131]. The initial bridge
formation as well as the complete merging process can be analyzed [115–126]. In the bottom
right-hand picture, a liquid lens on the surface of a liquid substrate is shown [127].

In contrast to the 3D coalescence, the merging of liquid objects in two dimensions is
driven by their line tension (2D analog of the surface tension in the 3D case). First ex-
perimental studies of 2D coalescence were done by Delabre et al. [132], where liquid
crystal domains on a water surface were observed. These nematic liquid crystal islands
had thicknesses of submicrometers, whereas their radii were larger than 60 µm, i.e. they
can be seen as quasi-two-dimensional objects [132]. In that system, the flow of the ne-
matic material during coalescence is coupled to the flow of the immiscible liquid substrate
and regimes with surface dissipation and volume dissipation were observed. To reduce
the effect of substrate coupling, later freely suspended smectic liquid crystal films were
used [134–139].
As mentioned in chapter 1.3, freely suspended smectic films with thicknesses between a
few nanometers and several micrometers can be created. In these quasi-two-dimensional
systems, smectic islands (regions with more smectic layers with regard to the background
film) or smectic holes (regions with less smectic layers) can merge. The driving force in
that special case is the dislocation tension (line tension associated with dislocations) on
the boundary between islands or holes and the film.
Nguyen first experimentally showed the coalescence of smectic islands in his Ph.D. thesis
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in 2011 [133,139]. Later in 2019 and 2020, further experiments were performed by Shu-
ravin et al. and Dolganov et al. [134–136] to fully understand the coalescence of smectic
islands and smectic holes as well. They compared their results with a model by Hopper
and confirmed a universal scaling law for the coalescence time and the bridge size.

3.1.2 The Hopper model for two coalescing circular cylinders

In the early 1980th, the material scientist Robert W. Hopper tried to describe theoretically
the process of sintering, in which heated powder grains merge into a solid material. He
claimed that the early stage of the particle coalescence is comparable with the plane-flow
case of two coalescing cylinders. For his model, Hopper assumed two initially circular,
infinitely long isothermal cylinders with diameters D consisting of a Newtonian viscous
fluid of density ρ, dynamic viscosity η and surface tension γ. Additionally, all material
properties are assumed to be independent of position and time and creeping viscous ma-
terial flow is only considered in the x-y-plane (creeping plane flow). The whole merging
process is driven by a reduction of surface energy (due to a reduction of surface area) and
energy is released as heat by viscous flow dissipation.
To describe the Navier-Stokes momentum equation in a dimensionless form, the fol-
lowing normalization scheme was used: dimensionless spatial coordinates x̃ = x/D
(ỹ = y/D), dimensionless flow velocity ũ = ηu/γ, dimensionless curvature κ̃ = κD,
dimensionless pressure p̃ = Dp/γ and dimensionless time t̃ = γt/ηD.

ργD

η2

(
∂ũ
∂t̃

+ (ũ · ∇)ũ
)

= ∇2ũ−∇p̃+
ρD2g
γ

(3.1)

The inertial forces shall be small compared to viscous forces (described by Laplace num-
ber La → 0) and gravitational forces ρD2g/γ shall be negligible compared to capillary
forces (small Bond number Bo→ 0). The Navier-Stokes equation then becomes

∇2ũ = ∇p̃ , (3.2)

and the continuity equation is∇·ũ = 0. The curvature of the surface is defined as positive
if the boundary is outwardly convex. The boundary conditions include the dimensionless
surface traction being perpendicular to the boundary and, in case of the outward normal
direction, being equal to the negative dimensionless curvature −κ̃ [95].
The essentially exact analytic solution for the shape of the cross-section of the cylinders
as a function of dimensionless time t̃ can be described using equations for an inverse
ellipse (Booth’s curves: elliptic lemniscate and hyperbolic lemniscate). Setting the initial
cylinder radii R = D/2 and considering a constant area A = 2πR2, the shape during
coalescence is given by

x(θ) =
√

2R
(1 +m) cos(θ)(1−m2)

(1 +m2)0.5(1 + 2m cos(2θ) +m2)
(3.3)

y(θ) =
√

2R
(1−m) sin(θ)(1−m2)

(1 +m2)0.5(1 + 2m cos(2θ) +m2)
. (3.4)
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The ellipse parameter m ranges within 0 ≤ m < 1 and 0 ≤ θ < 2π shall also hold true.
For m = 0 a circle with radius

√
2R is given, whereas for m → 1 two circles with radii

R are in tangential contact. The left-hand side of figure 3.3 shows the shape evolution
for different parameters m from two circles touching each other in one point (initial state,
m = 0) to a final circle with diameter D0 =

√
2D (final state, m = 1). The width of the

bridge xb connecting both cylinders can be described using equation 3.3 for θ = 0:

xb = 2x(θ = 0) = D0
1−m

(1 +m2)0.5
. (3.5)

In order to describe the time during coalescence depending on the parameter m, Hopper
used

t̃ =
γt

ηD
=

π

2
√

2

1∫
m

[
µ(1 + µ2)1/2K(µ)

]−1
dµ (3.6)

with the complete elliptic integral of the first kindK(µ) (normalization according to [95]).

K(µ) =

1∫
0

dx√
(1− x2)(1− µ2x2)

=

π/2∫
0

dθ√
1− µ2 sin2θ)

(3.7)
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Figure 3.3: Coalescence of two circular cylinders with initial diameter D calculated with the
Hopper model. The left picture visualizes the shape evolution with inverse ellipses for several
ellipse parameters m. With m = 1 the initial stage and with m = 0 the final stage with the
droplet of radius R0 is described (diameter D0). The x- and y-direction are normalized by the
final radius R0 [94]. On the top right-hand side, the bridge width xb is shown depending on the
dimensionless time γt/ηD. The lower right-hand picture shows the same curve with a double
logarithmic scaling. The bridge size in both pictures is again normalized with the final diameter
D0 [95].
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The right-hand pictures in figure 3.3 show the normalized bridge width xb depending on
the calculated dimensionless time t̃. The shape evolution and the bridge size growing dur-
ing coalescence calculated by the Hopper model qualitatively agrees with experimental
results from coalescing sessile droplets or smectic islands on free-standing films [135].
Nevertheless, there is no quantitative agreement and even Hopper himself critically dis-
cussed his assumptions especially in the early stage of coalescence [95].

0.1
0.1

1

Sc
al

ed
 h

al
f 

br
id

ge
 w

id
th

 H
 /

R
b

0

1 0.01 0.1 1

1

10
0.1

a) b)

0.1
0.1 10.01

1

S
ca

le
d
 h

al
f 

b
ri

d
g
e 

w
id

th
 H

 /
R

b
0

c)

Dimensionless time t/

Sc
al

ed
 h

al
f 

br
id

ge
 w

id
th

 H
 /

R
b

0

Dimensionless time t/

Dimensionless time t/

H   tb

H   tb

t
t

Hopper model

H   tb t

Hopper model

H   tb t

Hopper model

1

2

1

1

1

2

1

1

1

2

1

1

Figure 3.4: Experimental data from Shuravin et al. [135] (picture a), Dolganov et al. [136] (pic-
ture b) and Paulsen et al. [109] (picture c) compared with the Hopper model. In the experiments
of Shuravin at al., the coalescence of two-dimensional smectic islands in a free-standing smec-
tic films was observed. The experimental data are in agreement with the predictions by Hopper,
although the first moments of coalescence deviate. Different symbols in picture a) correspond
to different smectic island radii and thicknesses. Picture b) shows the results of the coalescence
experiments of smectic holes in a free-standing smectic films (Dolganov et al.). The experimen-
tal data (different symbols for different hole radii) do not match the Hopper model. Instead, the
data were fitted with a power law dependency with an exponent of 1/2 (Hb(t/τ) ∝ (t/τR)1/2).
For comparison, the coalescence of three-dimensional air bubbles in silicon oils with varied
viscosity between 0.49 and 29 mPa s are shown in picture c). Again, the experimental data do
not agree with the model by Hopper. A power law was used to fit the data and an exponent of
1/2 was found. The images were reproduced from [135], [136] and [109] by permission from
APS and Springer Nature.
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Contrary to the described independence of the physical parameters of time and position,
the pressure inside real liquid droplets, for example, significantly depends on the local
curvature. For this reason, especially in the first moments of coalescence (where the cur-
vature near the bridge is huge) or with small merging objects, the inertial effects may
become important and cannot be neglected. In addition, in the limit of m → 1 (initial
state with two circles touching each other in one point only), the bridge velocity diverges
and inertial effects become significant. In the first moments of bridge formation, the Hop-
per model is expected to fail.

Figure 3.4 shows the experimental results from three different systems where coalescence
was observed. Shuravin et al. [135] and Dolganov et al. [136] used comparable systems
for their coalescence experiments: two-dimensional free-standing smectic liquid crystal
films. The merging process of smectic islands presented by Shuravin et al. (picture a)
shows a very good agreement with the predicted model by Hopper and only deviates for
the very first moments of the process. Comparable experiments by Nguyen et al. from
2021 [139], also with coalescing smectic islands in thin liquid crystal films, nevertheless
showed different results and significant discrepancies.
Smectic holes (also see section 1.3) and their dynamics in free-standing films were inves-
tigated by Dolganov et al. [136] and although smectic holes are structural very similar to
smectic islands, they show at least during coalescence a different behavior. The evolution
of the bridge width follows a power law dependence Hb(t/τ) ∝ (t/τR)1/2 with an expo-
nent of 1/2 and can not be described with the Hopper model (top right-hand picture).
For comparison and to present an example for a three-dimensional coalescence experi-
ment, the results for the merging process of air bubbles in silicon oil are shown in the
lower picture of figure 3.4. The time dependence of the bridge size again follows a power
law with an exponent of 1/2.
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48 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

3.2 Experimental setup and materials

The experiments of coalescing isotropic droplets in freely suspended smectic A films are
based on the experiments onboard the ISS described in the previous chapter. Isotropic
droplets are formed by heating a liquid crystal mixture close to the smectic A to isotropic
phase transition temperature. Separated droplets are observed and their coalescence is
induced by external forces.
The experimental system is comparable with that of coalescing liquid lenses presented
by Hack et al. [127], but an important advantage of thin smectic films is the absence of
a substrate or subphase. The isotropic droplets in the film are surrounded by air on both
sides of the film only. Thus, the flow field can be assumed as two-dimensional and the
vertical components of the material velocity can be neglected in the dynamic equations.
With regard to the 2D flow, the presented system is comparable to the experiments by
Shuravin et al. [135] and Nguyen et al. [133,139]. In contrast to smectic islands or holes,
the coalescence of isotropic droplets is driven by the reduction of surface energy. While
the merging process of smectic islands and holes is driven by the line tension of the
dislocations around those regions, the line tension or an effective line tension at the edge
of isotropic droplets only plays a secondary role.
The coalescence of isotropic droplets in a free-standing smectic A film is a unique process
that combines the assumed two-dimensional flow with the three-dimensional geometry of
the observed droplets.

3.2.1 Liquid crystal mixture

The isotropic droplets used for the coalescence experiments were created with the same
material that was used for the two-dimensional colloid experiment. The liquid crystalline
mixture consisting of two components was heated slightly above the bulk transition tem-
perature of 51.1 °C to create isotropic droplets.

Mixture 12160 (80/20)

OC H7 15

N

N

5-Heptyl-2-[4-(4-methylhexyloxy)-phenyl]-pyrimidin

IsoNSmASmCCr
52.6 °C52.6 °C26.0 °C3.0 °C

C H8 17

C H10 21O

O

N

N

4-(5-Octyl-pyrimidin-2-yl)-benzoic acid decyl ester

IsoSmACr
32.9 °C 44.3 °C

IsoNSmACr
52.6 °C52.6 °C29.1°C

IsoCr
61.4 °C

IsoSmACr
3.1 °C 51.1 °C

IsoSmACr
-3.2 °C 51.1 °C

Figure 3.5: Structure and phase sequences of the two components of Mixture 12160 from Dis-
playtech. The mixture contains 80% of the left material and 20% of the right-hand component.
Transition temperatures and molecule structures are taken from Displaytech [77].
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The phase sequences of the separate materials and the mixture are shown in figure 3.5.
The viscosity η and the surface tension γ of the mixture were determined in previ-
ous experiments described in section 2.2.2 for a temperature of 52 °C (η = 0.014 Pa s,
γ = 0.024 N m−1).

3.2.2 Experimental setup

The free-standing smectic films are drawn across a glass slide with a circular hole of
10 mm diameter. The glass slide also covers the top side of a pressure chamber with a size
of 15 × 15 × 2 mm3 and an initial gas volume of approximately 0.45 ml. The pressure in
the chamber below the smectic film can be changed using a microsyringe to slightly bend
the film upwards or downwards (pressure accuracy of ± 0.5 Pa). The pressure chamber
with the film holder is placed inside a self-constructed heating stage (based on Linkam
THMS 600 heating stage) to reduce external air flow. A heating element (HALJIA) with
a maximum power of 48 W is used to increase the temperature in the setup and three
temperature sensors (PT1000) at different positions are used to measure the temperature
in steps of 0.1 K. Since the film temperature can not be measured directly, the tempera-
ture inside the pressure chamber and on the glass slide (temperature difference less than
1 K) are interpolated to calculate the film temperature. The measured pressure and cal-
culated temperature inside the chamber are controlled and adjusted automatically with a
self-written LABVIEW program.

heating element

copper block

P

heating stage 
cover glass

air tube
(pressure 
control)

pressure chamber 
with film holder

temperature
control

heater control
T1000

Figure 3.6: Sketch of the pressure chamber to create a free-standing smectic film inside a heating
stage. The pressure can be adjusted by using a microsyringe to slightly curve the film. The
temperature is controlled by a heating element below the film chamber and measured by three
PT1000 temperature sensors (inside the pressure chamber close to the smectic film, directly on
top of the film holder and directly above the heating element).

The setup shown in figure 3.6 is placed under a polarizing microscope (ZEISS Axiscope
40) and a mercury lamp with a 546 nm narrowband filter is used to illuminate the film
with monochromatic light. Additionally, a high-speed camera (Phantom VEO 710L) is
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50 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

mounted to observe the coalescence with a frame rate of 24,000 fps with a typical image
size of 512× 512 pixels. The droplets are created by heating the smectic material slightly
above the bulk transition temperature and then the film was slightly bent. When changing
the radius of curvature of the film of several centimeters, the effective gravitational force
is changed as well, and thus the motion of the droplets towards the lowest region of the
film can be controlled. Without this external force, longe-range repulsion would dominate
the droplet dynamics and at least for a few seconds regular lattice structures as described
in section 2 could be found.

20 µm

Figure 3.7: Time sequence of merging droplets with initial radii of 19.4 µm and 17.6 µm. The
interference rings visualize the height profiles of the droplets with initial heights h′ of 1.47 µm
and 1.28 µm respectively (droplet height in their centers in respect to the film mid-plane). The
final droplet has a radius of 24.5 µm and a height of 1.73 µm. The film thickness h was deter-
mined to a value of 425 nm.

Nevertheless, when droplets in the curved film meet each other, they usually remain in this
intermediate state for some moments (only short range repulsion) until they overcome a
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3.2 Experimental setup and materials 51

certain energetic barrier and merge. On the micrometer scale of the droplets, the curvature
of the film can be neglected. Interference rings due to the monochromatic light visualize
the thickness profile of the droplets.
A time sequence of merging droplets with initial radii of 19.4 µm respectively 17.6 µm is
shown in figure 3.7. The entire merging process happens within two milliseconds only.
The thickness of the smectic background film h (in the range from 50 nm up to 1200 nm)
is determined by measuring the spectrum of the reflected light Iref(λ) and comparing it
with the spectrum of the incoming light I0(λ) [8](measurements without a filter). The
film thickness can be measured with a precision of ± 15 nm.

3.2.3 Profile determination

The droplet height h′ is defined as the elevation of the droplet respective to the film mid-
plane, i.e. to half the film thickness h. For the coalescence experiments, monochromatic
light with a wavelength of λ = 546 nm is used and the interference between light reflected
at the top surfaces of the droplets and light reflected from the bottom surface is observed.
Depending on the droplet thickness 2h′(x, y) and the refractive index of the material
n = 1.5, constructive (bright regions) or destructive interference (dark regions) can be
observed (incidence of the light parallel to the film normal). The optical path length
difference ∆λ has to satisfy the following conditions (m = 1, 2, 3, ...)(figure 3.8):

∆λ = 4 · n · h′ + λ/2 = m · λ for constructive interference and

∆λ = 4 · n · h′ + λ/2 =

(
m− 1

2

)
· λ for destructive interference.

The light experiences a phase shift of λ/2 if it is reflected at the upper droplet surface
(transition from a medium of smaller index of refraction (air: n ≈ 1) to an optical thicker
medium).

incident
light

reflected
       light

isotropic droplet

smectic

detected droplet edge
hypothetical
droplet tip

smectic
film

thickness

incident
light

reflected
       light

isotropic

Figure 3.8: Scheme of interference of light at the isotropic droplet and the smectic film. The
incident light is partially reflected at the top surface. The light passing the isotropic and smectic
material is partially reflected at the bottom surface (smectic-air interface). The reflected light
that emerges from the top surface then interferes with the initially reflected light. In the left
picture, the light passes the covering smectic layers and the isotropic droplet and interference
fringes appear. On the right-hand side, the light only passes the smectic film, since the isotropic-
smectic interface at the droplet edge is assumed to be perpendicular to the film layers. Droplet
sizes, curvatures and film thicknesses are greatly exaggerated. In the experiment, the incidence
of light is perpendicular to the film plane.
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52 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

In the experimental images shown in figure 3.9 a), the intensity along straight lines was
measured and the positions of the intensity maxima and minima were detected automati-
cally (figure 3.9 b) with an accuracy of ± 1 µm.
The droplets are embedded in the smectic film (figure 3.8), and it is assumed that they are
covered by at least one smectic layer. Since the refractive indices of the smectic film and
the isotropic droplet are almost equal, light just passes the smectic layers at the droplet
surfaces without changing its direction. In addition, an isotropic-smectic interface per-
pendicular to the film layers is supposed at the droplet edge, so that interference patterns
outside the detected droplet edge are created by the smectic film only (right-hand picture
in figure 3.8).
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Figure 3.9: Profile determination of the droplets by measuring the position of interference rings
in the experimental image. Picture a) shows the initial droplet configuration with droplet diam-
eters of 34.7 and 35.5 µm in a 140 nm thick background film. The intensity profile along the
line connecting the centers of both droplets (x-direction) is presented in picture b). For visual-
ization only, the intensity was normalized to be zero at the position of the minima. The height
profile of the droplets in picture c) was calculated from the position of the intensity maxima and
minima and the constructive and destructive interference conditions (height difference between
adjacent maxima: ∆h′ = λ/(4n) = 89.9 nm). Half of the film thickness h/2 (gray region) is
added to the calculated profile. Dotted lines connect data points of the same height.
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For the profile calculation, it is assumed that the droplets in equilibrium have spherical
cap shapes and that individual profile lines can therefore be plotted with a circular fit. Ac-
cording to the conditions for constructive and destructive interference and by measuring
the exact droplet extension in the film plane (x-y-plane), the height profile of the droplets
were measured and fitted. For the complete droplet height h′ (droplet surface in respect
to the film mid-plane), half of the film thickness h has to be added to the measured profile
height as shown in picture c) of figure 3.9. Since the lateral extension of the droplet can
be measured with a precision of ± 1 µm, the profile height only has an inaccuracy of
25 nm.

10 µm

-15 -10 -5 0 5 10 15

intensity maxima
intensity minima
circular fit

20-20

Figure 3.10: Profile determination perpendicular to the line connecting the droplet centers
(x-direction). The height of each interference ring was calculated using the constructive or
destructive interference condition. The positions of the intensity maxima and minima were
plotted and the height profile was fitted. All data points can be fitted exactly to a segment of a
circle. Picture d) additionally shows the position of the detected edge of the merging droplet.
The red dashed line emphasizes the upper background film surface and their height describes
the half of the film thickness h/2. The film thickness was previously measured to be 140 nm.
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54 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

For the complete reconstruction of the droplet profile during the merging process, it is
necessary to measure the height profile line perpendicular to the center-center connection
line (x-direction). Figure 3.10 shows the droplet height in y-direction, and it is also shown
that the data points can be plotted with a circular fit. The circular shape in y-direction ver-
ified in the right pictures of figure 3.10 allows the complete droplet height h′(x, y) to be
recalculated in every position by just measuring the droplet size in the film plane (droplet
extension in x- and y-direction) and the height profile through the centers of the droplets.
Nevertheless, more than 10 profile lines along the y-axis were measured for each experi-
mental image to raise the accuracy of the complete profile determination.

An example of a reconstruction of a droplet pair at different times is shown in figure 3.11.
It can be seen that the maximum height of the droplets is not increasing until the centers of
both droplets are close to each other. On the contrary, it seems that the droplet heights are
slightly decreasing in the beginning. Only at the end, where the lateral extension reaches
its final configuration, the droplet height increases. The final droplet width and height
are reached sequentially and not simultaneously. A detailed analysis of these phenomena
will follow in the next sections.
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Figure 3.11: Recalculation of the complete three-dimensional profile of the droplets during coa-
lescence. The height h′ including half the film thickness is color coded. The initial droplet sizes
are 34.7 and 35.5 µm in diameter and 1.16 and 1.19 µm in height. The film with a thickness
of 140 nm is not shown in the images. The dark blue surface at h′ = 0 µm in the x-y-plane
corresponds to the film mid-plane.
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3.3 Experimental results

3.3.1 Initial droplet shape
The complete reconstruction of the droplet profile in the initial state before merging and
during coalescence showed that in equilibrium the droplets are represented by sphere
caps, whereas the upper and lower parts (above and below the free-standing film) are
assumed to be mirror-symmetric. The isotropic droplet surfaces are covered by smectic
surface layers that are resulting from an order of the mesogens at the free isotropic-gas
interface. The thickness of this smectic layers can be described by a smectic coherence
length ξ̂sm of a few nanometers. The surface tension of this transition region with respect
to the surrounding air or the isotropic material is assumed to be equal to the surface
tension of the bulk smectic material with respect to air or the isotropic phase. Forces due
to the curvature of the smectic surface layers can be neglected in comparison to surface
tension effects. The shape of the droplets is determined by the surface tension of the
smectic material with respect to the surrounding gas phase σsm and the tension of the
interface between the smectic and the isotropic phase σiso-sm perpendicular or parallel to
the smectic layers. The surface energy of the system can be written as

Esurf = σsm(2Adrop)︸ ︷︷ ︸
smectic layer

covering droplet

+σsm(2A0 − 2πR2
0)︸ ︷︷ ︸

smectic film

+σ
‖
iso-sm(2Adrop)︸ ︷︷ ︸
smectic-isotropic

interface at
droplet surface

+σ⊥iso-sm(2πĥR0)︸ ︷︷ ︸
smectic-isotropic

interface at
droplet edge

(3.8)

with the film surface A0, the surface of the droplet Adrop = π(R2
0 +Ĥ2

0 ), the initial droplet
radius R0 and the initial droplet height Ĥ0 with respect to the film surface. The exchange
of smectic material between film and meniscus for a droplet that flattens at constant vol-
ume is disregarded. The height of the droplet edge ĥ is defined as the thickness of the

Figure 3.12: Sketch of the droplet edge embedded
in the smectic film of thickness h. The droplet has
an initial radius of R0 and an initial height of H0

respective to the film mid-plane. The surface ten-
sion of the smectic material with respect to air σsm
and the isotropic-smectic interface tension perpen-
dicular σ⊥iso-sm and parallel σ‖iso-sm to the smectic
layers are marked with arrows.

smectic film h reduced by the thick-
ness of the smectic layers covering
the isotropic droplet 2ξ̂sm (smectic co-
herence length). Note that the com-
plete initial droplet height H0 is the
sum of the half film thickness h/2 and
Ĥ0 (see figure 3.12). In the center of
the droplet, h′(x, y) = H0 applies.
The first two terms in equation 3.8
describe the interfaces of the smectic
film and the covering smectic layers to
the surrounding gas medium, whereas
the third term represents the surface
energy of the isotropic-smectic inter-
face of the droplet surface parallel to
the smectic layers (σ‖iso-sm is used).
Assuming a cylindrical surface around
the droplet edge with height ĥ, the last
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56 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

term can be understood as an additional energy term from an effective line tension ĥσ⊥iso-sm
along the droplet circumference. By minimizing the surface energy of the system Esurf,
using Lagrange multipliers and assuming a constant droplet volume Vdroplet, the droplet
height yields the following form [17].

Ĥ0(R0) = −σsm + σ
‖
iso-sm

Π ′
ĥ+

√√√√(σsm + σ
‖
iso-sm

Π ′
ĥ

)2

+
σ⊥iso-smR0

2Π ′
ĥ+

σ
‖
iso-smR

2
0

Π ′
(3.9)

with Π ′ = σ
‖
iso-sm + 2σsm −

σ⊥iso-sm

2R0

ĥ

Within this model, the interface between the surrounding gas phase and the isotropic
droplet is considered to be composed of the isotropic-smectic interface and the surface
of the smectic layers covering the droplet. Analogous to that, the surface tension of the
isotropic-gas interface σiso is supposed to be composed of the smectic-gas surface tension
σsm and the isotropic-smectic interface tension σ‖iso-sm (parallel to the smectic layers). With
the assumption that σiso = σ

‖
iso-sm + σsm, and by introducing the surface tension difference

∆σ = σiso − σsm that directly describes the interface tension σ‖iso-sm, the relation between
the droplet height Ĥ0 and the radius R0 can be written as [17]:

Ĥ0(R0) = −σiso

Π ′
ĥ+

√(σiso

Π ′
ĥ
)2

+
σ⊥iso-smR0

2Π ′
ĥ+

σ
‖
iso-smR

2
0

Π ′
(3.10)

with Π ′ = σiso + σsm −
σ⊥iso-sm

2R0

ĥ .

Experimental investigations by Schüring et al. [17] showed that the isotropic to smectic
interface tension perpendicular to smectic layers σ⊥iso-sm is of the order of maximum 1%
of σiso, so the interface at the droplet edge can be neglected in comparison with all other
surface tension effects.

Ĥ0(R0) = − σiso

σiso + σsm
ĥ+

√
σ2

iso

(σiso + σsm)2
ĥ2 +

σ
‖
iso-sm

σiso + σsm
R2

0 (3.11)

In the case of σiso < σsm, the system would gain energy by replacing smectic surface
by isotropic surface: the droplet would spread over the whole film and finally the film
is expected to rupture. Conversely, and experimentally proven, it means that σiso > σsm

and the droplet radius shrinks while the smectic-gas interface of the droplet surface is in-
creasing. In equilibrium, the gain in surface energy is exhausted by the additional created
droplet surface. At the limit of an isotropic surface tension that is equal to the smectic
surface tension σiso = σsm, the surface tension difference ∆σ (= σ

‖
iso-sm) and as a result

the droplet height Ĥ0 would vanish.
Nevertheless, in first approximation, extremely flat droplets are assumed and by setting
σiso + σsm ≈ 2σsm, a simple equation for the droplet height depending on the droplet
radius, the film thickness and the surface tensions σsm and σ‖iso-sm can be found [17]:

Ĥ0(R0) ≈ − ĥ
2

+

√
ĥ2

4
+
σ
‖
iso-sm

2σsm
R2

0 . (3.12)
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At the beginning of the coalescence experiments, clusters of droplets were created and
their sizes were measured to proof the equation above and the underlying model. For the
verification of the calculated droplet heights, the droplet profiles were reconstructed and
their interference patterns were calculated. Figure 3.13 shows an experimental image that
has been superimposed with recalculated droplet images.
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Figure 3.13: Isotropic droplets of different size in the smectic background film. The experimen-
tal image is superimposed with a recalculated interference patterns after measuring their size
and profile. The white numbers represent the calculated initial droplet heights H0 in µm.

After measuring the initial droplet lateral sizes R0 respectively D0 and the initial droplet
height Ĥ0 with respect to the background film surface, the contact angle θ between the

isotropic droplet

Figure 3.14: Sketch of a droplet with a con-
tact angle θ between the droplet and the
film surface. For the angle calculation, the
droplet height Ĥ0 and the droplet radiusR0

are used (see equation 3.13).

film and the droplet surface could be calcu-
lated (see figure 3.14 and appendix A.2).

θ = 2 arctan

(
Ĥ0

R0

)
(3.13)

Since the surface tensions σiso-sm and σsm

weakly depend on temperature, the droplet
heights can be varied by changing the film
temperature according to equation 3.12. The
initial droplet heights in dependence of their
initial radii and contact angles are shown in
figure 3.15. For constant contact angles θ and
droplet sizes that are much larger than the

57



58 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

film thickness ĥ � R0, a linear behavior is predicted: H0(R0) ≈ (σ
‖
iso-sm/2σsm)0.5R0.

This trend can be observed in the experimental data and it is in accordance with the as-
sumed model described before [17]. For droplets with initial radii that are in the same
range as the film thickness, the linear trend is expected to deviate. Within the experi-
ments with very thin films and within the experimental accuracy of the measured droplet
sizes R0, this deviation according to equation 3.12 could not be evaluated.
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Figure 3.15: Dependence of the initial droplet height H0 (= Ĥ0 + h/2 = Ĥ0 + ĥ/2 + ξ̂sm) in
respect to the film mid-plane on the initial droplet radius R0 for different contact angles θ. The
thickness of the film is in the range between 50 nm (blue and red squares) and 260 nm (blue
and green triangles). Experimental data points with similar contact angles ± 0.2° are plotted
with the same symbols and colors. Gray regions visualize the angular ranges.

As seen in figure 3.15, for a given temperature and therefore at a given contact angle θ, the
ratio ε = H0/R0 of the initial droplet height H0 to the initial droplet radius R0 remains
constant for droplets of any size. In consequence, the initial droplet height and radius
can be used as natural length scales to describe the changes of the droplet shape during
coalescence in the film plane and perpendicular to it.
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3.3.2 Coalescence dynamics
During the merging process of two droplets in a thin film, material flow with velocity u
is assumed to be dominated by flow in the film plane only u = u(x, y). Especially for
flat droplets and regarding the thin sheet approximation, velocity gradients perpendicular
to the film plane are neglected. As described earlier in section 3.1, the flow of material
forms a bridge connecting the droplets and this bridge grows in time in vertical and hor-
izontal direction. Figure 3.16 shows a sketch of a droplet profile during coalescence and
additionally an experimentally measured profile where the bridge height h′b is defined.
The bridge width wb can be measured directly from the experimental image.

wb

10 µm

0.5

0

x-direction [µm]
-30 0-20 -10 10 20 30 40

2hb

1.0

u(x,y)

2 bh

Figure 3.16: Sketch, recalculated profile and experimental image of a pair of droplets during
coalescence, with the bridge height h′b (respective to the film mid-plane) shown in the left-hand
pictures and the bridge width wb in the right-hand pictures. The top half interference pattern
was recalculated using the fitted height profile. The experimental image was taken 0.5 ms
after the start of coalescence. The initial droplet diameters D0 are 30.3 µm and 45.1 µm. The
corresponding initial droplet heights H0 are 0.66 µm and 0.99 µm.

Figure 3.17: Sequence of coalescing equal-sized droplets with initial diameters D0 of 44.6 µm
and 42.8 µm and initial heights H0 of 1.43 µm and 1.37 µm. The droplet edges are highlighted.
At the time of 0.750 ms, the initial individual droplet sizes are marked with red dashed circles.
Additionally, the position of the bridge is highlighted with a blue dashed line.
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60 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

The sequence shown in figure 3.17 visualizes the merging process of two nearly equally
sized droplets within three milliseconds. All subsequent graphs describing the evolution
of the droplet sizes or the changes of the bridge size refer to this coalescence example.
Since the droplets never have the exact same size, the indices (1,2) are used to distinguish
the two droplets.
In addition to determining the bridge width and the bridge height, it is also possible
to measure the sizes of the individual droplets, as far as their shape can be identified
separately (top right picture in figure 3.17). The heights and the droplet widths during the
merging process are shown in figure 3.18.

droplet 1
droplet 2
bridge width

droplet 1
droplet 2
bridge height

D
D

H
H

Figure 3.18: Measured individual droplet widths and heights. At the beginning, the widths and
heights represent the initial droplet sizes D01,2 and H01,2 that remain constant for some mo-
ments (dashed lines at 0.73 ms for the droplet width and at 0.32 ms for the droplet height).
After approximately 1.5 milliseconds, the bridge size exceeds the droplet widths and heights
and the data points then correspond to the bridge width wb and height h′b.

The initial droplets widths, that are represented by the initial diameters D01,2 , first remain
constant and then, after approximately 0.75 milliseconds, increase until they overlap and
equal the bridge width. It was observed that while the single droplet centers move towards
each other, their lateral size does not change. Only when the distance between the centers
reaches about 75% of their initial distance, the lateral shape of the droplets will increase.
The velocity of the droplet motion towards each other was calculated to a mean value of
15 µm/ms (0.015 m/s).
In contrast to that, the droplet heights are also constant for the first moments, but then
decrease to about 97% of their initial heights (right-hand picture in 3.18). It seems, that
the flow of material to form the bridge in the first moments of coalescence leads to a small
shrinkage of the droplet heights, while the lateral sizes are not affected. The reason for
this discrepancy may be found when analyzing the flow field inside the merging droplets
in more detail. It is conceivable that due to the much smaller extension of the droplet
normal to the film (up to 3 µm) than in horizontal direction (up to 50 µm), the material
flow parallel to the droplet surface or through the droplet volume is higher than along the
droplet film edge or in the film plane.

Figures 3.19 and 3.20 show the complete time dependence of the bridge width wb and
height h′b for one exemplary coalescence event. The bridge exhibits a linear growth in
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horizontal (bridge width) and vertical (bridge height) direction during the first phase of
coalescence. Here, the bridge width as well as the bridge height can be described with
power law equations wb ∝ tα and h′b ∝ tβ with the exponents α ≈ 1 and β ≈ 1. These
results are in very good agreement with different studies [119, 127, 135, 140] in which
h′b ∝ t was found for the linear regimes (for high viscosities). At the end of the merging
process, the bridge width and height saturate to the final droplet size.

Figure 3.19: Measured bridge width wb during coalescence of two nearly equal-sized droplets
with initial diameters of D01 = 44.6 µm and D02 = 42.8 µm. The initial droplet heights are
H01 = 1.43 µm and H02 = 1.37 µm. The contact angles are 7.3° for both droplets. The
inset shows the same dependence with a double logarithmic scaling to confirm the linear trend
wb ∝ t of the initial phase.

Under the assumption that the net volume of the droplets remains constant during coa-
lescence, the predicted final droplet width and height can be calculated. At a constant
temperature, it is also assumed that the contact angle to the smectic background film and
the thickness of the film are constant (h = const., θ = const.).
The droplet volume depending on the contact angle θ, the initial droplet heights H0 and
the film thickness h thus can be described in first approximation using the following equa-
tion (two spherical caps with heights Ĥ01 and Ĥ02 are considered, the cylindrical volume
in the film of height h here is neglected for h� Ĥ01,2).

V01 =
2π

3

(2 + cos(θ))
(1− cos(θ))

Ĥ3
01

, V02 =
2π

3

(2 + cos(θ))
(1− cos(θ))

Ĥ3
02
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62 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

The final volume of two equal sized droplets then yields

Vend =
4π cos(θ)

3(1− cos(θ))
Ĥ3

end =
4π cos(θ)

3(1− cos(θ))

(
Ĥ3

01
+ Ĥ3

02

)
with h� Ĥ01,2 ,

and for the final radius Rend and height Ĥend, the following expressions can be found
(a constant film thickness h is assumed, H01,2 = Ĥ01,2 + h/2, Hend = Ĥend + h/2).

Ĥend =
3

√
Ĥ3

01
+ Ĥ3

02
→ Hend = 3

√
H3

01
+H3

02
(3.14)

Rend = 3

√
R3

01
+R3

02
→ Dend = 3

√
D3

01
+D3

02
(3.15)

For droplets with almost the same size (D01 ≈ D02 and H01 ≈ H02), the final droplet size
can be calculated by using an factor of 3

√
2 with respect to the initial droplet sizes.

Since the cylindrical droplet volume in the film (πR2
0h) was neglected here, a slightly

bigger final droplet size depending on the film thickness has to be expected.

Figure 3.20: Evolution of the bridge height h′b during the merging process of two nearly equally
sized droplets. Their initial diameters are D01 = 44.6 µm and D02 = 42.8 µm. The initial
droplet heights are H01 = 1.43 µm and H02 = 1.37 µm. Both droplets have a contact angles of
7.3° with the film. The inset shows the same dependence with a double logarithmic scaling to
confirm the linear trend h′b ∝ t of the initial phase observed in [119, 127, 135, 140].
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scaled bridge width
scaled bridge height
Hopper model

Figure 3.21: Scaled bridge width and scaled bridge height during coalescence of two nearly
equal-sized droplets with initial diameters of D01 = 44.6 µm and D02 = 42.8 µm. The initial
droplet heights are H01 = 1.43 µm and H02 = 1.37 µm. The contact angles are 7.3° for both
droplets. Both curves have the same tendency and reach the same final value of approximately
3
√

2. During coalescence, the curves slightly differ from each other. For comparison, the pre-
dicted scaled bridge size calculated from the Hopper model was added to the plot (blue curve).
The error-bars for the scaled bridge width are too small to visualize.

To prove equations 3.14 and 3.15, the bridge width and height were scaled with the initial
droplet sizes D0 and H0 as depicted in figure 3.21. Both scaled curves slightly exceed the
predicted dashed line, highlighting the value of 3

√
2. Additionally, the predicted scaled

bridge size with regard to the Hopper model (see section 3.1.2) was added to the graph.
It can be seen that the Hopper model does not fit the experimental data and deviates from
them. The overall Hopper curve does not describe the data convincingly.
Nevertheless, it can be observed that the bridge width increases slightly faster and there-
fore also reaches its final size of 3

√
2 earlier than the bridge height. This difference was

found for all analyzed merging droplets, no matter which initial size or contact angle with
the film they had. Especially for droplets of different size, as shown in figure 3.22, this
difference in the growing rates seems to increase. Additionally, also droplets that are in
contact with neighboring droplets were observed, but no influence on the coalescence dy-
namics was measured within the experimental accuracy.
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64 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

Figure 3.22: Sequence of coalescing droplets of different size and in contact with neighboring
droplets. The initial diameters are D01 = 30.3 µm and D02 = 21.5 µm. The initial droplet
heights are H01 = 0.89 µm and H02 = 0.65 µm, respectively. The contact angles are 6.7° for
both droplets. The position of the bridge is highlighted. The lower graphs show the bridge
width and bridge height growing in time. The time when 95% of the final width or the final
height is reached is marked with a blue dashed line.

To determine the complete coalescence time tcoal for a single merging process, the time
when the bridge reaches 95% of the final size was measured. As previously shown, in
general, the growth rate of the bridge height perpendicular to the film plane is slightly
slower than in the lateral direction. The decisive time is thus defined by the evolution of
the bridge height. Depending on the initial droplet sizes and their contact angle with the
film, coalescence times between 0.3 and 16 milliseconds have been measured.
In order to compare droplet pairs of nearly the same size and pairs of different size, an
initial equivalence radius 〈R0〉 was introduced. With regard to the final droplet size, the
equivalence radius was calculated as the initial radius of two identical droplets that would
merge and result in the same final droplet size. In the same way also an equivalence height
can be calculated.

〈R0〉 =
3

√
R3

01
+R3

02

2

〈H0〉 =
3

√
H3

01
+H3

02

2
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The measured time for the coalescence tcoal of different droplet pairs as a function of
their initial (equivalence) radius and their contact angle is presented in figure 3.23. The
comparison of droplet pairs with the same contact angle, but different initial sizes, clearly
shows a linear increase of the coalescence time with increasing initial radius. Further-
more, it can be seen that identical pairs of droplets with different contact angles would
merge much slower with decreasing contact angle.

Initial equivalence radius hR 0i [µm]

m
s
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4.0
5.0
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11.0
12.0
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Figure 3.23: Time of coalescence tcoal depending on the initial equivalence radius 〈R0〉 of the
droplet pairs and their contact angles θ. The coalescence time was determined as time when
the bridge reaches 95% of their final size. Experimental data points with similar contact angles
± 0.2° are plotted with the same symbols and colors. Gray regions visualize the angular ranges.

It was experimentally proven that the coalescence dynamics and especially the bridge
evolution and finally the coalescence time depend on the sizes of the observed droplets
and their contact angle with the film. With regard to the contact angle, which slightly
depends on the temperature, the merging dynamics also depends on the temperature. At
higher temperatures (smaller contact angle) two droplets need more time to coalesce.
Measurements of merging droplets in films of different thickness (h between 50 nm and
400 nm) pointed out that the film thickness, at least within the experimental accuracy,
does not affect the coalescence dynamics.
The dependence of the coalescence time divided by the initial equivalence radius tcoal/〈R0〉
on the inverse contact angle θ−1, respectively 〈R0〉/H0, will be analyzed in more detail
in the next section.
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66 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

3.3.3 Lubrication approximation and thin sheet equation
The “lubrication approximation”, also known as “long-wave approximation”, is a model
to simplify the Navier-Stokes equation in the case that one dimension of an observed
system is significantly smaller than all other dimensions. For the description of the coa-
lescence dynamics of liquid droplets in a free-standing liquid film, this condition is ful-
filled, since the smectic film thickness and the isotropic droplet heights are in the range of
nanometers up to several micrometers. The film extension (with lateral size D′) reaches
a few hundred millimeter square and the droplet size is also in the range of several dozen
up to 100 micrometers. Even small droplets with radii less than 10 µm only reach heights
of maximum 1 µm depending on the contact angle.
The Navier-Stokes equation for a viscous liquid without additional forces is

ρ

[
∂u
∂t

+ (u∇)u
]

= −∇p+ η∇2u (3.16)

with flow velocity u = (u, v, w) at a specific point and the pressure p. The viscosity
of the material is described with η and ρ defines the density of the liquid crystal. The
x-component of equation 3.16 reads as

ρ(ut + uux + vuy + wuz) = −px + η(uxx + uyy + uzz) , (3.17)

where the indices here indicate spatial and temporal derivatives. All variables can then
be scaled by the droplet geometrical parameters R0 and H0 and typical scaling values for
the pressure p0, the velocity u0 and the time τ0 [82,141,142]. The scaled parameters now
have the following form:

x′ =
x

R0

, y′ =
y

R0

, z′ =
z

H0

, u′ =
u

u0

, v′ =
v

u0

, w′ =
wR0

u0H0

τ =
t

τ0

, p′ =
p

p0

with u0 =
R0

τ0

and p0 =
γH0

R2
0

. (3.18)

By replacing all variables with their scaled quantities, equation 3.17 now becomes

u0ρ

τ0

u′τ ′ +
u2

0ρ

R0

(u′u′x′ + v′u′y′ + w′u′z′)

= − p0

R0

p′x′+
ηu0

H2
0

(
H2

0

R2
0

u′x′x′ +
H2

0

R2
0

u′y′y′ + u′z′z′

)
. (3.19)

Dividing both sides by
ηu0

H2
0

yields

H2
0ρ

ητ0

u′τ ′ +
H0u0ρ

η

H0

R0

(u′u′x′ + v′u′y′ + w′u′z′)

= − H2
0p0

ηu0R0

p′x′+

(
H2

0

R2
0

u′x′x′ +
H2

0

R2
0

u′y′y′ + u′z′z′

)
. (3.20)
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To simplify this equation, the terms in equation 3.20 are estimated with the following
physical parameters: the droplet heights are in the range of a few micrometers or even less,
whereas the droplet radii are at least ten times larger than their heights. The flow velocity
is assumed to be in the range of a few micrometers per millisecond or even less and the
characteristic pressure p0 is in the order of magnitude of several dozen up to a few hundred
pascal according to the scaling parameter in equation 3.18 (the Laplace pressure in the
droplets for example is in the order of magnitude of 101 up to 102 Pa). The characteristic
time τ0 is in the range of a few milliseconds for the coalescence of isotropic droplets in
free-standing smectic films. It is up to several hundred milliseconds for experiments of
the coalescence of sessile droplets [116, 123, 140]. The smectic material viscosity and
surface tensions were measured in previous experiments. The density of the material was
estimated to be in the range of 103 kg/m3, comparable with density values for commonly
known liquid crystal materials with smectic and isotropic phases (8CB [143]).

H0 ≈ 10−6 m, R0 ≈ 10−5 m, u0 ≈ 10−3 m/s, τ0 ≈ 10−3...10−1 s,

p0 ≈ 101...102 Pa, γ ≈ 10−2 N/m, η ≈ 10−2 Pa s, ρ ≈ 103 kg/m3

With these values, the pre-factors of the terms in equation 3.20 can be estimated as follows

H2
0ρ

ητ0

≈ 10−6...10−4,
H0u0ρ

η
≈ 10−4,

H2
0p0

ηu0R0

≈ 10−1...100,
H2

0

R2
0

≈ 10−2 .

It indicates that the inertia terms on the left side of equation 3.20 can be neglected in
comparison with the other terms [82].

0 = − H2
0p0

ηu0R0

p′x′ +

(
H2

0

R2
0

u′x′x′ +
H2

0

R2
0

u′y′y′ + u′z′z′

)
(3.21)

Solution for sessile droplets
For sessile droplets that are in contact with a solid substrate, specific boundary conditions
as no-slip at the substrate surface are assumed. Nevertheless, there is material flow in
the droplets during coalescence. Thus, a velocity gradient normal to the substrate surface
is assumed (see figure 3.24) [118, 123, 129, 140, 142]. Since the vertical dimension is
significantly smaller than the lateral dimension H0 � R0 (lubrication approximation),
the second derivatives of the velocity (u′x′x′ , u

′
y′y′ , u

′
z′z′) strongly differ from each other.

The second derivative with respect to the z-direction is predicted to be dominant over the
x- and y-direction and in consequence, equation 3.21 finally leads to

0 = − H2
0p0

ηu0R0

p′x′ + u′z′z′ . (3.22)

With the unscaled parameters and with a similar procedure for the y- and z-components,
the following expressions for the pressure can be found [123, 144]

∂p

∂x
= η

∂2u

∂z2
,

∂p

∂y
= η

∂2v

∂z2
and

∂p

∂z
= 0 . (3.23)
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To describe the change of the droplet height h′(x, y, t) with respect to the substrate sur-
face, the conservation of mass throughout the flow

∂h′

∂t
= −∇ ·Q = −∇

h′∫
0

udz (3.24)

is used, where the z-component of the velocity is neglected u = (u, v, 0) [82, 142].
For sessile droplets on a substrate, no-slip at the surface of the substrate as well as zero
tangential stress at the free surface of the droplets is assumed [82,118,123,140,142,144].

u = (u, v, w) = (0, 0, 0) at z = 0 and
∂u

∂z
=
∂v

∂z
= 0 at z = h′ (3.25)

solid substrate

u = (0,0,0) at surface  

precursor
film  

liquid cystal
film  

u = (u,v,w)  

Figure 3.24: Comparison of the flow field inside the liquid droplets on a solid substrate (left) and
in a free-standing smectic film (right). For sessile droplets on a substrate, a velocity gradient
normal to the wetting surface is assumed, where at the substrate the velocity is zero. For liquid
droplets on a thin liquid crystal film as well as for so-called “liquid lenses” (droplets on a
liquid substrate), the flow field is assumed to be predominantly parallel to the film plane and
velocity gradients perpendicular to it are negligible. A theoretical precursor film is sometimes
introduced to overcome the contact line singularity for sessile droplets [145]. For droplets on a
liquid film, the free-standing film itself represents the precursor film [82].

With the shown boundary conditions (expression 3.25) and by integrating equation 3.23
twice, the velocity profile for sessile droplets yields [142, 144]:

u =
1

η

∂p

∂x

(
z2

2
− h′z

)
, v =

1

η

∂p

∂y

(
z2

2
− h′z

)
, w = 0 . (3.26)

By substituting these velocities into equation 3.24 and solving the integrals, an expression
for the change of the droplet height h′(x, y, t) can be found [82, 142, 144].

∂h′

∂t
= ∇

(
h′3

3η
∇p
)

(3.27)

In the models for sessile droplets on a solid substrate and their coalescence, the so-called
“moving contact line problem” occurs. At the contact line between the surrounding
air, the solid substrate and the liquid droplet, a singularity for the stress would result
in a divergence for the energy dissipation rate. As a consequence of the Navier Stokes
equation coupled with no-slip boundary conditions, the contact line is not allowed to
move [145, 146]. To avoid this contact line singularity, a thin precursor film of height h
can be introduced, which is stabilized by a disjoining pressure Π(h).
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For the isotropic droplets on a free-standing smectic film, the precursor film is directly
represented by the smectic film of height h [82]. In both cases, the thickness of the film
is assumed to be significantly smaller than the droplet height h� H0 [82, 142].
The disjoining pressure in the form of the Lennard-Jones potential is given as

Π(x, y) =
(l − 1)(m− 1)

h(l −m)
γ(1− cos(θs))

[(
h

h′(x, y)

)l
−
(

h

h′(x, y)

)m]
(3.28)

with l = 9 and m = 3 and the equilibrium contact angle θs [82, 142]. In addition to the
disjoining pressure, the Laplace pressure pL due to the curved surface of the droplets has
to taken into account. The mean curvature of the surface is given as

κ =
∂xxh

(
1 + (∂yh)2)− 2∂xh ∂yh ∂xyh+ ∂yyh

(
1 + (∂xh)2)

2
(
1 + (∂xh)2 + (∂yh)2)3/2

, (3.29)

and under the assumption of small curvatures of the droplets, the small slope approxima-
tion (|∂xh′|, |∂yh′| � 1) can be used. Consequently, all terms involving gradients of h′

can be neglected. The Laplace pressure thus yields:

pL = −2γκ = −γ ∂xxh
′ + ∂yyh

′

2
= −γ∇2h′(x, y) . (3.30)

The net pressure then is described by the sum of Laplace pressure pL(x, y) and the dis-
joining pressure Π(x, y) [82, 142]

p = −γ∇2h′(x, y)− Π(x, y) . (3.31)

With equation 3.27 and the expression for the pressure, the coalescence dynamics of
sessile droplets as well as the behavior of capillary waves in thin liquid films can be
described [128, 129, 140, 142].
The characteristic time scaling parameter τ0 now can be determined from equation 3.27
[82, 144]

τ0 =
ηR4

0

γH3
0

and with ε =
H0

R0

⇒ τ0 =
η

γε3
R0 . (3.32)

When rearranging the scaling law τ = t/τ0, the following expression can be found

t = ττ0 = τ
ηR0

γ

(
R0

H0

)3

⇒ t

R0

= τ
η

γ

(
R0

H0

)3

. (3.33)

The characteristic time τ0 was calculated by using the material parameter η and γ and
typical values for the droplet sizes R0 = 15 µm and H0 = 1 µm with a contact angle of
7.6°. The characteristic time thus yields τ0 ≈ 30 ms, which is at least ten times higher
than the measured times for the droplet coalescence (τ0 � tcoal).
With respect to equation 3.33, the coalescence times t = tcoal were divided by the initial
droplet radii 〈R0〉 and their dependence on the ratio 〈R0〉/H0 is presented in figure 3.25.
For sessile droplets, a tendency according to tcoal/〈R0〉 ∝ (〈R0〉/H0)3 is expected, but
instead the data points show a linear trend.
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Figure 3.25: Coalescence time tcoal divided by the initial equivalence radius 〈R0〉 as a function
of 〈R0〉/H0. Different symbol colors correspond to different initial droplet size ranges. A
cubic trend (blue dashed curve) of the data points would confirm the scaling behavior derived
from the model for sessile droplets (equation 3.33). Instead, a linear behavior is observed (red
dashed curve) and the slope m was calculated to a value of 0.0076 ms/µm. A dependence of
the data on the initial droplet size 〈R0〉, visualized with different colors, was not found.

The characteristic time τ0 is at least one order of magnitude larger than the measured coa-
lescence time and shows a linear dependence on 〈R0〉/H0. The model for sessile droplets
fails for droplets on free-standing films. In fact, there are some assumptions as the no-slip
boundary condition at the solid substrate surface that are not applicable for the coales-
cence of droplets in smectic films (right-hand image in figure 3.24).
On the contrary, the measurements suggest that the flow parallel to the film plane deter-
mines the coalescence dynamics. It is assumed that velocity gradients in vertical direction
are negligible and also flow normal to the film can be neglected.

∂u

∂z
= 0,

∂v

∂z
= 0, w = 0, u = (u, v, 0) (3.34)

In addition, isotropic droplets can move freely in the smectic film. Any material exchange
between the droplet and the film is expected to occur through diffusion.
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Model for the coalescence of droplets on free-standing films
and liquid substrates (liquid lenses)
As shown in the previous graph (figure 3.25), the model for sessile droplets does not
describe the coalescence of freely floating droplets or liquid lenses on liquid substrates
satisfactorily. In addition, the assumed flow profile inside the isotropic droplets in free-
standing films without velocity gradients normal to the film plane does not agree with the
no-slip boundary condition for sessile droplets [82].
With regard to equation 3.21,

0 = − H2
0p0

ηu0R0

p′x′ +

(
H2

0

R2
0

u′x′x′ +
H2

0

R2
0

u′y′y′ + u′z′z′

)
and by neglecting all derivatives with respect to the z-direction (u′z′z′ = 0), the following
expression can be derived:

H2
0p0

ηu0R0

p′x′ =
H2

0

R2
0

(
u′x′x′ + u′y′y′

)
. (3.35)

In terms of the unscaled parameters and with a similar procedure for the y- and z-compo-
nents, the pressure gradients in each direction can be described with [82]

∂p

∂x
= η

∂2u

∂x2
+ η

∂2u

∂y2
(3.36)

∂p

∂y
= η

∂2v

∂x2
+ η

∂2v

∂y2
(3.37)

∂p

∂z
= 0 . (3.38)

The change of the droplet height h′ depending on time t is calculated by using equation
3.24 and again neglecting derivatives with respect to the z-direction (also see appendix
A.3 [141]).

∂h′

∂t
= −∇

h′∫
0

udz =

(
∂h′u

∂x
+
∂h′v

∂y

)
(3.39)

The pressure in the system as composition of the Laplace pressure inside the droplets
−γ∇2h′(x, y) and the disjoining pressure −Π(x, y) is identical to that described for ses-
sile droplets. In contrast to sessile droplets, the thin free-standing smectic film represents
the initially only theoretically introduced precursor film.

p = −γ∇2h′(x, y)− Π(x, y) (identical with equation 3.31)

Indicated by the experimental data shown in figure 3.25, the characteristic time scaling
parameter τ0 now becomes the following form [82]

τ0 =
ηR2

0

γH0

=
η

γε
R0 . (3.40)
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72 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

With typical values for the initial droplet size, characteristic time values in the range of
milliseconds (τ0 = 0.13 ms for R0 = 〈R0〉 = 15 µm with an angle of θ = 7.6° with the
background film) can be calculated. This time underestimates the measured coalescence
time tcoal by about a factor of ten.
However, since the time scaling is linearly dependent on the aspect ratio ε = H0/R0,
the overall coalescence dynamics can be scaled. In detail, the time is divided by the
characteristic scaling parameter τ0 and the bridge width wb is divided by twice the initial
equivalence droplet radius 2〈R0〉. For the time scaling also the measured coalescence
time tcoal could be used, but as presented in the inset of figure 3.26, it differs from the
theoretically calculated scaling.
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Figure 3.26: Scaled bridge width wb/〈2R0〉 as function of the scaled time t/τ0 for different
coalescing droplets with different contact angles. All curves overlap with each other. It confirms
the scaling law for the characteristic time τ0 ∝ R0/ε. The inset shows an alternative time
scaling with the measured coalescence time tcoal. The curves overlap in the same way.

As shown in figure 3.26, all measured curves for the growth of the bridge widthwb overlap
and form a kind of master curve. It can be observed that, independent of the initial droplet
size and their contact angle with the film, all curves have the same tendency. In order to
prove the underlying model describing the coalescence of isotropic droplets in freely
suspended films in the lubrication approximation and the derived scaling parameters, the
complete coalescence dynamics was simulated using a finite element method (FEM).
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3.3.4 Simulation
For the simulation, the commercial software package COMSOL was used with its model
for solving partial differential equations and especially in the weak form. As initial condi-
tions, a two-dimensional surface Ω (figure 3.27) was created and the droplets with initial
heights h′0, radii R0 and an initial distance of 2R0 were calculated as a function of the
position. The shape of the droplets was set as the cap of a sphere with initial height H0.
To overcome the “moving contact line problem” and to stabilize the droplet shape, the
disjoining pressure Π(x, y) was calculated as described before. Additionally, the Laplace
pressure inside the droplet was calculated in the beginning and within each time step of
the simulation.
All necessary terms shown in the equations 3.31, 3.36, 3.37 and 3.39 are implemented in
the weak form according to the following procedure (see also COMSOL documentation).

∂p

∂x
− η∂

2u

∂x2
− η∂

2u

∂y2
= 0 (normal form)∫

Ω

(
Ψ
∂p

∂x
+ η

∂Ψ

∂x

∂u

∂x
+ η

∂Ψ

∂y

∂u

∂y

)
dV = 0 (weak form)

As shown here, the equation for the velocity in x-direction u was multiplied by a test
function Ψ(x, y) and integrated over the whole rectangular domain Ω. The weak formu-
lation of partial differential equations in general is used to simplify the solving procedure
of programs, in the sense that the equations are solved within the integration over the
domain. The equations thus are not longer absolutely bound by the boundary conditions

R0

x
y

Figure 3.27: Domain Ω with a size of
6R0 × 4R0 and corresponding mesh for the
FEM simulation. The initial droplet position
and the radius R0 are highlighted.

(e.g. smoothness or regularity conditions)
and weak solutions for the equations can
be found. Test functions Ψ are chosen
(by the program itself) in the way that
they satisfy different constraints. For the
simulation of the droplet coalescence, this
is the condition at the domain boundary
Ψ(x, y)|∂Ω = 0 (see also the COMSOL
documentation).
As shown in the adjacent figure, the nodes
of the underlying mesh were placed at the
contact line of the droplets and the back-
ground surface to realize a sufficient initial
droplet height preparation. For a better lat-
eral resolution, the red highlighted edges
additionally were refined in the mesh cal-

culation (for visualization reasons not shown in the picture). As initial values, only the
droplet height h′0(x, y) and the pressure p(x, y) depending on the position were cal-
culated. The results of that simulation are shown in figure 3.28, where the complete
three-dimensional profile in the top view (x-y-plane) and the side view (x-z-plane) of two
equally sized droplets during coalescence are presented. The heights h′ for all pictures
are color-coded regarding the color bar in the central bottom image.
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Figure 3.28: Simulated sequence of coalescing droplets on a thin film with initial radii of 20 µm
and heights of 1.44 µm (θ = 8.2°). At different times t, the lateral extension in the film plane
(left pictures) and the profiles normal to the film plane (pictures in the center column) are
shown. On the right-hand side, the complete 3D profile is visualized. The scale bars in the last
picture of each column refer to the extension of the droplet in the film plane, while the height
in horizontal direction is color-coded (the same color scheme for all pictures). The background
film of height h is not shown here.
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The sequence of the simulated coalescing droplets in figure 3.28 compared with the exper-
imental results (see also figure 3.11) confirms the underlying model with the thin sheet
equation and the lubrication approximation. The shape of real droplets during coales-
cence and their dynamics are well represented by the simulation. Nevertheless, it should
be noted that also deviations between the experiment and simulation, especially in the
first moments, can be observed. Due to the implemented precursor film and the resulting
disjoining pressure including the surface tension γ, the shapes of the droplets in the sim-
ulations are predefined: a vanishing disjoining pressure would cause a spreading of the
droplets. Small shape variations are observed at the beginning of each simulation to find
an equilibrium situation, but obviously these small fluctuations do not affect the overall
coalescence dynamics.
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Figure 3.29: Measured and simulated cross-section profiles at the line connecting the centers
of both droplets. The temporal evolution is color-coded. In the experiment, the final droplet
shape is reached after approximately 3 milliseconds, whereas in the simulation the coalescence
happens within 0.3 milliseconds. The initial droplet radii R0 and heights H0 are given in the
graphs.
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76 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

A second, more important and conspicuous deviation between the simulation and exper-
iment are the measured time periods for the whole coalescence process with the specific
coalescence time tcoal. While in the experiment coalescence times in the range of mil-
liseconds are measured, the simulated coalescence of droplets of comparable size and
with comparable contact angle is approximately ten times faster in the range of sub-
milliseconds. An example for this discrepancy is shown in figure 3.29, where the evo-
lution of the cross-section along the connecting axis of both droplets is shown for the
experiment and the simulated droplets. With comparable initial droplet sizes and thus
with almost the same contact angle with the film (θ ≈ 8.7°), the shape of the measured
profiles and that of the simulation agree with each other. Nevertheless, the color-coded
time axis on the right-hand side differs by at least a factor of 10.
With regard to the characteristic time scaling parameter τ0 (see equation 3.40), the theo-
retical value for the shown examples yield τ0 = 0.15 ms for the experiment as well as for
the simulation. This value is in the order of the coalescence time tcoal and only slightly
underestimate this time tcoal = 0.16 ms for the simulation (τ0 ≈ tcoal).
For a better comparison of the principle shape evolution of the merging process, regard-
less of the entire time needed in experiment and simulation, the bridge height and width
were scaled by the initial droplet sizes as shown before. For the time scaling, the mea-
sured coalescence time tcoal = 1.66 ms was used for the experiment and the theoretical
value τ0 was used for the simulation.
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Figure 3.30: Scaled bridge height h′b/H0 and bridge width wb/〈2R0〉 in comparison with the
simulated and scaled bridge size. The scaled time for the measured data (black circles) was
calculated using the coalescence time τ = t/tcoal, while for the simulation the theoretical
values τ = t/τ0 according to 3.40 was used.
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Figure 3.30 shows the scaled bridge height and in the inset the scaled bridge width from
the experiment in comparison with the data from the simulation. Since two different scal-
ing values for the time were used for the experiment and the simulation, the temporal
deviations will not be considered here. While the scaled bridge height in the experiment
and simulation match very well, the evolution of the scaled bridge width again shows
unambiguous deviations between simulation and experiment.

Finally, also the origin for the development of the modified model for droplets in thin
films, the measured linear trend of the time scaling law was verified with the simula-
tion. For a variety of equal-sized droplet pairs with different sizes and contact angles, the
coalescence time was determined. In addition, also sessile droplets with the same phys-
ical parameters were analyzed. The expected cubic trend tcoal/〈R0〉 ∝ (〈R0〉/H0)3 for
droplets on a substrate and the linear behavior measured in the experiment
tcoal/〈R0〉 ∝ 〈R0〉/H0 could be reproduced in the simulations.
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Figure 3.31: Simulated coalescence time tcoal divided by the initial equivalence radius 〈R0〉 as
a function of 〈R0〉/H0. The black symbols represent the simulation results for the coalescence
in thin films, while the blue symbols correspond to a simulation for sessile droplets. Since the
coalescence time tcoal for sessile droplets is at least four orders of magnitude longer than for
droplets in thin films, the ordinate axis on the right-hand side for sessile droplets has a different
scaling. According to equations 3.33 and 3.40, the data points were fitted with a linear or a
cubic curve, respectively. For both cases, the pre-factor m was calculated.
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78 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

The slope of the shown simulated curve in figure 3.31 was calculated and differs by more
than a factor of 10 from the experiment, as expected from the previous results for the
droplets in free-standing films. The inverse of the slope m−1 can be interpreted as the
capillary velocity c. With the surface tension and the viscosity of the material, a value of

c ≈ γ

η
≈ m−1 ≈ 1.7

m
s

is expected. The capillary velocity describes the velocity of occurring capillary waves on
the surface of the droplets during coalescence [127]. It does not refer to the flow velocity
of material inside the droplets towards the bridge.
Looking more closely at the time scaling equations

τ0 =
η

γ

R0
2

H0

and
t

R0

= τ
η

γ

R0

H0

→ τ =
t

τ0

(3.41)

and by setting t → τ0, the scaled time value τ would becomes “1”. Since the measured
coalescence time tcoal was used for the analysis, the parameter τ is also expected to be
slightly larger than 1. From the described theoretical model, this scaled value is predicted
to be close to one, and while that is confirmed by the simulation, the experiment shows
completely different values: τ � 1.

For a better overview about the important results from the experiments and the simula-
tion, several parameters for a specific coalescing droplet pair are collected in the follow-
ing table. It again emphasizes the discrepancy of the temporal evolution of the merging
droplets. A detailed discussion for that difference will follow at the end of that chapter.

Table 3.1: Measured parameters for a pair of equally sized droplets in the experiment and simu-
lation. In the last column, m represents the slope from the linear/cubic fits of the time scaling
curves (figures 3.25 and 3.31). The values in brackets in the column for the coalescence time
represent the time scaling value: tcoal/τ0. For the sake of completeness, also the results for the
simulated sessile droplets are given.

〈R0〉 [µm] 〈H0〉 [µm] θ [°] τ0 [ms] tcoal [ms] m−1 [m/s]
Experiment
droplets in film

19.81 1.51 8.72 0.15 1.66 (11.07) 0.13

Simulation
droplets in film

20.00 1.52 8.70 0.15 0.16 (1.07) 1.55

Simulation
sessile droplets

20.00 1.52 8.70 26.51 30.43 (1.15) 1.49
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3.4 Self-similarity behavior of coalescing droplets 79

3.4 Self-similarity behavior of coalescing droplets
Geographical curves are so involved in their detail that their lengths are often infinite or,
rather, undefinable. However, many are statistically “self-similar”, meaning that each
portion can be considered a reduced-scale image of the whole.
(B. B. Mandelbrot, 1967 [147])

As described by Mandelbrot in 1967, there exist structures or phenomena in nature where
self-similarity can be observed. A famous mathematically constructed object, first pub-
lished in 1904, is the so-called “Koch snowflake” shown in the left picture of figure
3.32 [148]. This fractal curve can be created iteratively on the basis of an equilateral
triangle and successively dividing the edges into 3 identical parts and replacing the mid-
dle part by another smaller equilateral triangle. At different scales, always the same
snowflake-like structure can be found.
An example of these self-similar structures can also be observed in nature by taking a
closer look at Romanesco and its buds (right picture in figure 3.32). Here, the pyramid-
like small buds with their typical twist can be found again and again in different sizes.

Figure 3.32: Self-similarity structures created mathematically or found in nature. The “Koch
snowflakes” on the left side are constructed on the basis of equilateral triangles and the same
snowflake-like curve can be observed at different length scales [148]. The Romanesco on
the right side shows a comparable three-dimensional structure, where the small pyramid-like
twisted buds can be found in different sizes.1

In the context of coalescing objects, self-similar behavior has been observed for fully
three-dimensional droplets fixed at frames [108, 112, 120] as well as for sessile droplets
[119, 140] and recently also for liquid lenses [127]. In all cases, the shape of the bridge

1URL: https://pixabay.com/de/photos/romanesco-blumenkohl-gemüse-gesund-3920106/
The image is released for commercial and non-commercial use without photo credits.
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80 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

connecting the droplets evolves self-similar dynamics. Thoroddsen et al. additionally
analyzed propagating Marangoni waves on water droplet surfaces [112].

In order to compare the experimental results for the isotropic droplets in a smectic film
with liquid droplets on a liquid-air interface [127], the equation to describe the change of
the droplet height shown in chapter 3.3.3 (equation 3.39) was used.
For simplification, only the dynamics in one dimension is considered (h′ = h′(x, t) and
u = u(x, t)). Thus, the height evolution yields

∂h′

∂t
=
∂(h′u)

∂x
, (3.42)

which represents the conservation of mass. A second equation can be found regarding the
Navier-Stokes equations and using the viscous stress tensor. By additionally describing
the continuity equation and the boundary conditions at the fluid surfaces in terms of the
aspect ratio ε = H0/R0 and by taking into account higher orders of this terms, one can
find the following equation. The detailed derivation of that equation for the conserva-
tion of momentum is attached in the appendix A.3 (gravitational effects and inertia are
neglected).

0 = γ
∂3h′

∂x3
+

4η

h′
∂(uxh

′)

∂x
(3.43)

Based on the observations of Hack et al. [127] and the experimental results in thin liquid
crystal films, self-similarity solutions of the form

h′(x, t) = ktαH(ξ), u(x, t) =
kα

θ
tβU(ξ) and ξ =

θx

ktα
(3.44)

with the self-similarity functionsH and U were introduced [119,127,149]. The parameter
ξ was defined in the way that h′(x, t) ≈ θx reaches the static solution with a contact angle
θ far away from the bridge. The additional variable k describes the bridge growth velocity
dh′b/dt. For the viscous regime, where h′b is proportional to t during the first stage of
coalescence, Hack et al. found α = 1 and β = 0. With neglected inertia, the terms in
equation 3.44 then reduce to

h′(x, t) = ktH(ξ), u(x, t) =
k

θ
U(ξ), ξ =

θx

kt
. (3.45)

By replacing the height h′(x, t) and the velocity u(x, t) in equations 3.42 and 3.43 by the
reduced self-similarity equations 3.45, the following expressions can be found

H− ξH− (HU)′ = 0 (3.46)
HH′′ +Kv(U ′H)′ = 0 . (3.47)

Kv represents the dimensionless bridge velocity that is defined as

Kv =
4ηk

γθ2
→ Kv =

dh′b
dt

4η

γθ2
. (3.48)
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3.4 Self-similarity behavior of coalescing droplets 81

To solve the above equations, five boundary conditions are required and normalizing the
bridge height at ξ = 0 yields

H(ξ = 0) = 1, H′(ξ = 0) = 0, U(ξ = 0) = 0 . (3.49)

In addition, for large values of ξ → ∞, i.e. for infinitesimally small times t or infinitely
far away from the bridge x → ∞, the symmetric solutions should match with an initial
droplet situation. Thus, the equations 3.45 for the height and the velocity become time-
independent for large ξ-values.

H′(ξ →∞) = 1 and U(ξ →∞) ∝ C log(ξ) (3.50)

Here the matching condition for the contact angle at large distances from the bridge or
for the initial droplet situation was used and for t = 0 the parameter C yields zero and a
static droplet situation can be observed (C = 0).
Hack et al. solved the boundary condition problem numerically with a shooting method
and found a value of Kv = 2.21 for the dimensionless bridge velocity [127].

R  0
H  0

R0

H0

= 37.35 µm
= 0.81 µm

 = 22.08 µm
 = 0.49 µm

Figure 3.33: Scaled droplet height at different times t at the position of the connecting bridge
(x = 0) in the experiment. The heights were measured along the axis connecting both droplet
centers (cross-section). All curves collapse into a single curve, verifying the self-similarity of
the height profile. The initial droplet heights and radii are given in the boxes on the individual
side of the bridge. Different colors correspond to different moments of the coalescence process.
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82 3 Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film

Figure 3.33 shows the scaled droplet height profile at the bridge position according to
equation 3.45. It confirms the self-similarity behavior of the bridge profile for the initial
stage of isotropic droplet coalescence.
Following the same procedure for the simulation, the scaled bridge height H was cal-
culated and is presented in the left graph of figure 3.34. Within the simulation, equally
sized droplets with initial radii of 50 µm and contact angles of 2.5°, comparable with
the experimental results shown in figure 3.33, were used. Due to a significantly higher
positional and temporal resolution in the simulation compared with the experiment, the
curved bridge profile in the bridge center can be observed. For the experiment, the same
steady curve is predicted.
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Figure 3.34: Scaled droplet height and width at different times t at the position of the connecting
bridge (x = 0) in the simulation (left-hand graph) and the experiment (right-hand picture). The
heights were measured along the axis connecting both droplet centers (cross-section). The
droplet widths, representing the contact line between film and droplets, were determined in the
film plane at h′ = 0. The simulation again verifies the self-similarity behavior of the height
profile. The right-hand picture shows the scaled width of the experimental data (calculated
with the comparable scaling laws) and these curves do not overlap.

Since the bridge height h′b as well as the bridge width wb were measured in the experi-
ment, a self-similarity behavior parallel to the film plane is also conceivable (right-hand
graph in figure 3.34). Here, the scaling along the connecting axis of both droplets is
the same as for the scaling of the bridge height. Therefore, the self-similarity function
W =W(ξ) = w(x, t)/wb was introduced for the width profile. As visualized, the scaled
bridge width at different times t do not overlap convincingly and thus no self-similarity
behavior can be observed.

During the derivation of the self-similarity functions for the bridge height H(ξ), the di-
mensionless bridge velocity Kv was introduced (equation 3.48). Hack et al. solved the
self-similarity functions numerically and found the shooting parameter to be Kv = 2.21
[127]. Since in the experiment droplets with different sizes and different contact angles
θ were observed, it is possible to analyze the growth rate of the bridge depending on the
contact angle. The growth rates of the bridge height and width were calculated from the
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3.4 Self-similarity behavior of coalescing droplets 83

first moments of the bridge formations, which shows a linear increase (see figure 3.30).
Figure 3.35 shows the growth rate of the bridge height depending on the contact angle,
and a quadratic trend can be observed verifying the self-similarity functions. A depen-
dence on the individual droplet sizes, visualized with different colors, was not found. For
the experiment, the parameter Kv was calculated from the quadratic fit and yields a value
of 0.162, which is at least one order of magnitude smaller than the predicted value from
Hack et al. [127]. Once again, it verifies the discrepancy between the theoretical predic-
tions / simulations and the experimental observations of a factor of ten or even more.
The inset of figure 3.35 represents the bridge growth rate from the FEM simulation with
the same quadratic trend. Indeed, by fitting this curve, the dimensionless bridge velocity
of Kv = 2.21 was found. It confirms the value found as shooting parameter [127].
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Figure 3.35: Growth rate of the bridge height h′b depending on the contact angle θ. The bridge
growth rate increases with increasing contact angle and follows a quadratic trend. From the
red fitting curve, the parameter Kv = 0.162 was extracted. Droplets of different initial sizes
were divided into individual groups (highlighted with different colors) to prove an additional
size dependence. The inset shows the same physical feature determined from the simulation.
Again, a quadratic behavior can be found and there is no dependency on the initial droplet sizes
represented by the initial radii R0. For the simulation the parameter Kv yields 2.21.
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Analogously, the growth rate of the bridge width was measured and the results depending
on the contact angle θ are shown in figure 3.36. Again, a quadratic trend is observed
that is at first glance inconsistent with the theoretical predictions. The growth rate of the
bridge height is defined as

dh′b
dt

=
Kvγ

4η
θ2 (3.51)

and under the assumption of a constant contact angle θ and the equation for the bridge
height 2h′b = wbtan(2θ), the growth rate of the bridge width yields

tan(2θ)

2

dwb
dt

=
Kvγ

4η
θ2 . (3.52)
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Figure 3.36: Growth rate of the bridge width wb depending on the contact angle θ. The bridge
growth rate increases with increasing contact angle and seems to follow a quadratic trend (red
dashed line dwb/dt = 1.13 m/s rad−2 θ2). For comparison with the simulation and with regard
to equation 3.53, the data points were additionally fitted with a linear curve (red solid line). The
curve with a slope of 0.18 m/s rad−1 does not convincingly represent all the data. Again, no
dependency on the initial droplet radii R0, visualized with different colors, was observed. The
simulation does not follow the quadratic trend. Instead, the bridge width growth rate increases
almost linearly. The slope for the simulated curve was calculated to 0.82 m/s rad−1.

84



3.4 Self-similarity behavior of coalescing droplets 85

For small contact angles θ, tan(2θ) ≈ 2θ can be assumed and the bridge width growth
rate then depends only linearly on the contact angle.

dwb
dt
≈ Kvγ

4η
θ (3.53)

This predicted linear trend, in first approximation, is represented by the results from the
simulation (inset of figure 3.36) and with the slope of this curve the dimensionless velocity
parameter could be calculated to a value of Kv ≈ 1.91. For the experiment, the linear
dependence of the width growth rate on the contact angle could not be verified. On the
contrary, the data seem to follow a quadratic trend.
Apparently, the assumption of a constant contact angle during the whole merging process
is not valid for the experiment. For this reason, the contact angle during coalescence in
dependence of the position was analyzed in more detail. Since the droplet surfaces are
curved and thus also the contact line with the film is curved, the height profile normal to
the droplet edge was used to calculate the correct contact angle. At the position of the
bridge, the width and the height, respectively, were used to determine the contact angle
for each time step.
The upper graph of figure 3.37 shows such a temporal evolution of the contact angle at the
bridge position. Within the experimental resolution, the contact angle in the first moments
decreases and the droplet profile seems to be approximately 30% flatter (≈ 1.5°) than in
the initial stage with the initial and static contact angle θ. After approximately 1.5-1.6 ms,
the contact angle then finally reaches the static angle similar to the initial contact angle.
The trend of the contact angle curve is comparable to that of the bridge evolution, where a
slight decrease of the bridge height was observed during the first moments of coalescence
(see figure 3.18 in section 3.3.2). When the contact angle reaches its final value, the
coalescence process is almost completed.
For the given droplet sizes in figure 3.37 and an initial angle of 8.1°, the coalescence time
tcoal is calculated as 1.6 ms.
For the moment of the highest deviation of the measured contact angle from the static
contact angle (highlighted in the upper graph of figure 3.37 at t ≈ 0.54 ms), the contact
angle was measured depending on the position along the whole droplet edge. The lower
image of figure 3.37 shows the droplet edge w(x)/2 and the initially circular shape (red
dotted) of the droplets before forming a bridge (left-hand ordinate axis). The blue data
points refer to the right-hand ordinate axis and represent the contact angle at the respective
position. The region around the bridge, where the droplet edge deviates from the circular
shape, also marks the region of decreased contact angle. Outside this region, the contact
angle matches the static contact angle, while at the bridge position it decreases to about
70% compared to the contact angle far away from the bridge.
The discussion of this observation and a possible explanation will follow in the next
section.
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Figure 3.37: Change of the contact angle during coalescence. The upper graph shows the contact
angle at the position of the bridge determined from the bridge width wb and bridge height h′b
for the entire merging process. It first decreases by approximately 1.5° before finally reaching a
static contact angle. For the time with the highest deviation from the static contact angle (high-
lighted in red, t ≈ 0.54 ms), the contact angle along the droplet-film contact line is presented
in the lower graph. The edge of the droplet (black curve) as well as the contact angle normal
to the edge (blue data points) depending on the position along the connecting axis w(x)/2 and
θ(x) are shown. The region of the bridge, where the measured droplet edge deviates from their
initial circular shape (red dotted lines), is highlighted. Especially in this region, the contact
angle strongly drops off the static contact angle observed far away from the bridge.
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3.5 Summary and discussion

The shape evolution of merging isotropic droplets in free-standing smectic liquid crystal
films can be excellently described with a model on the basis of the lubrication approxi-
mation and the thin sheet equation. It was shown that in contrast to sessile droplets, there
should be no flow velocity gradient normal to the film plane and therefore the scaling
characteristics changed between these systems. A linear dependence of the coalescence
time on the aspect ratio tcoal/R0 ∝ R0/H0 was found. Numerical simulations for sessile
droplets and droplets in thin films confirmed the new scaling law.
The experimental system with isotropic droplets appearing near the clearing point of
the smectic material allows the contact angle θ of the droplets to be varied by slightly
changing the temperature of the system in the vicinity of the phase transition temperature
(51.1 °C). In this way, very flat droplets with contact angles around 2° were created, but
also comparatively thick droplets with contact angles of more than 14° were possible. The
experiments with different initial droplet sizes showed a dependence of the coalescence
dynamics on the contact angle. A scaling of the bridge width wb/〈2R0〉 and the scaled
time t/τ0 (see figure 3.26) showed an overlap of all experimental curves. The graph pre-
sented again confirms the new scaling law derived from the lubrication approximation.
The evolution of the bridge width wb ∝ t and height h′b ∝ t both show a linear increase
in the early stage before saturating and reaching the final droplet size. It is in perfect
agreement with the model by considering material flow only parallel to the film plane.
The linear increase additionally agrees with experiments by Hack et al., who found the
linear regime for highly viscous materials [127].
The self-similarity behavior of the bridge profile was verified by different experiments
[108, 119, 127, 140], and the present investigations confirmed this phenomenon also for
droplets in thin liquid crystal films. Due to a very high temporal (24,000 pictures/second)
and lateral resolution regarding the interferometry technique, the self-similarity solution
could be found over a long time range and with an excellent agreement. Additionally,
the bridge growth rate dh′b/dt was determined and showed the predicted quadratic depen-
dence on the contact angle θ. The FEM simulation verified the self-similarity behavior
itself and the predicted shooting parameter K ≈ 2.21.

The scaling behavior of the experimental data is in very good agreement with the theo-
retical predictions of the thin sheet approximation. In comparison with the simulations, it
turns out that there is a strong discrepancy between the model and the experiment regard-
ing the coalescence time. The merging process of isotropic droplets in a free-standing
smectic film is at least one order of magnitude slower than expected. For a droplet pair
with initial radii R0 of 20 µm and initial heights H0 of 1.5 µm, the theoretical char-
acteristic coalescence time τ0, for example, yields 0.15 ms, but 1.66 ms was measured
experimentally. This tendency was measured for all droplet sizes and contact angles and
by fitting the measured and scaled coalescence time tcoal/R0 in dependence of the droplet
aspect ratio with a linear curve (figure 3.25), the slope of the curve was calculated. From
the slope of that curve, the capillary velocity of the material can be estimated and again
a factor of 10 between the model expectations and the experiment was found. Finally,
this trend of the measured coalescence dynamics deviating from the predictions was also
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observed with regard to the self-similarity behavior. In particular, the growth rate of the
bridge (figure 3.35) indicates a discrepancy between liquid lenses and isotropic droplets
in free-standing smectic films, but also a deviation from the theoretical model.

It is assumed that the surface tension γ and the shear viscosity η of the material mainly
determine the coalescence dynamics and thus the coalescence speed. Due to the high tem-
poral and spatial resolution in the experiment, it is unlikely that this discrepancy arises
from uncertainties during the measurements. The physical parameters (γ = 0.024 N/m,
η = 0.014 Pa s) were measured and confirmed in various experiments (see section 2.2.2).
A comparison with other liquid crystal materials forming a smectic phase at room temper-
ature verifies the measured parameters (for 8CB: γ = 0.025 N/m at 35 °C, η = 0.035 Pa s
at 33.5 °C [143]).
Nevertheless, there are several possible approaches to explain the experimental observa-
tions. First, the ambient air, that could influence the merging dynamics, was neglected
in the model. According to the model of Saffman and Delbrück (section 2.1.2), the
flow of isotropic material during coalescence could cause a flow of the surrounding air
as well. Within a simple approximation of a circular object with a height comparable
with the bridge height in the first moments, the Saffman length would roughly yield
LS ≈ 50...5000 µm. For the coalescing droplets and the surrounding flow, the situation
becomes more difficult and a quantitative estimation of the influence of the air cannot
be made. Anyhow, the experiments of Hack et al. [127] with water as subphase, with a
much higher viscosity than air, showed no influence by the outer medium. For coalescing
spherical droplets, Paulsen et al. analyzed the early stages of the merging dynamics and
found only a little influence even for outer fluids with considerably higher viscosity than
that of the droplets [109]. Overall, the surrounding air in the coalescence experiments in
free-standing smectic films and their effect on the dynamics seems to be of less impor-
tance only.
A second and perhaps more plausible approach might be to take into account the smec-
tic layers covering the isotropic droplets. These thin smectic layers are unique for the
analyzed system, and the influence of that covering material is not considered in any
model. In freely suspended liquid crystal films, different structures as smectic holes or
islands can be found, and it is known that these objects can be created by an external
change of the film surface area. During the expansion or compression of smectic films,
the initially and perfectly ordered layered structure undergoes a quick reorganization of
the molecules and layers. On the one hand, holes can be torn into the upper layers when
the film is stretched and the film area is increased. Thus, the layers have to rearrange and
dislocations have to be created or relocated [27]. On the other hand, additional smectic
layers and thus dislocations can be created when the film is compressed and the surface
area is decreased [21, 28, 34]. In both cases, additional energy is required to dislocate,
create or remove dislocations and rearrange the smectic layers. That energy has to be
provided by the surface energy reduction, mainly. For very fast processes like the col-
lapse of catenoid-shaped smectic films and the subsequent formation of smectic bubbles
and their lateral compression, also the formation of bulges, extrusions and wrinkles was
observed. In that cases, the film area remains constant, and the effective surface tension
is strongly reduced or almost zero [21, 26, 28, 34].
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During the coalescence of isotropic droplets with their covering smectic layer, the smectic
surface has to be reduced and indeed a decrease of the surface tension can be expected.
Nevertheless, the effect of such a surface reduction should depend on the sizes of the
coalescing droplets: it should be more relevant for larger droplets than for smaller ones.
In particular, the discrepancy between the model and the experiment in terms of the coa-
lescence dynamics, the bridge growth rate and the coalescence time should increase with
increasing droplet size. Such a tendency could not be observed in the experiments.
The images in figure 3.38 sketches two possible scenarios to rearrange the mesogens of
the liquid crystal material: the molecules can form an additional smectic layer (left im-
age) or lose their positional and orientational order and move into the isotropic phase of
the droplet (right-hand image).

Figure 3.38: Sketch of the assumed smectic layers that cover the isotropic droplet (light blue
background) at the position of the bridge. A reduction of the surface cannot be compensated
by a simple displacement of the smectic material, but by creating additional smectic layers (red
molecules in the left image). On the right-hand side, parts of the compressed smectic layers
melt, i.e. the red marked molecules lose their positional and orientational order and move into
the isotropic phase.

For both cases of molecule reorganization shown in figure 3.38 it is not straightforward to
calculate the required energy, but for the melting of smectic layers into the isotropic phase,
the melting enthalpy can be used. Within a rough approximation given in appendix A.4,
the properties of the well known liquid crystal material 8CB (4-cyano-4’-octylbiphenyl)
are used to calculate the melting energy per surface area. For a single smectic layer thus
an energy per surface area of approximately 0.0091 N/m and for two layers covering the
droplets 0.0182 N/m is required.
Although it is only a rough approximation and not the exact physical parameters of the
liquid crystal mixture are used, the energy per surface area is in the order of magnitude
of the static surface tension γ = 0.024 N/m. From this estimation, it seems conceivable
that an effective and reduced dynamic surface tension causes the discrepancy of the coa-
lescence dynamics. A reduced dynamic surface tension could also explain the change of
the contact angle at the position of the bridge during coalescence, depicted in figure 3.37.
However, the decrease of the contact angle in the vicinity of the bridge could also be
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explained by the flow of material through respectively within the bridge. Since the flow
velocity cannot be measured in the experiment, it was determined from the simulation to
have a maximum value of 0.14 m/s during the first stage of the merging process. With
a density of the mixture of about 1000 kg/m3 taken from 8CB [143], the Bernoulli pres-
sure can be calculated and yields pBernoulli ≈ 10 Pa. This additional pressure component
would cause a slight flattening of the bridge height, resulting in a maximum contact an-
gle reduction of 0.2°. The flow of the isotropic material in the bridge and the resulting
Bernoulli pressure can not sufficiently explain the drop in the contact angle observed in
the experiments.

An additional FEM simulation and the resulting bridge height as a function of time are
shown in figure 3.39 for the static surface tension γstat and with a decreased dynamic
surface tensions γdyn. From the comparison of the experimental data with the simulated
curves, an effective dynamic surface tension was found, that would reproduce the ob-
served coalescence dynamics quite well. As shown in the figure 3.39, a surface tension
of γdyn = 0.0021 N/m was used. This is in very good agreement with the energy reduc-
tion caused by the layer melting (static surface tension reduced by the melting energy per
surface area).
However, no direct measurement of the effective surface tension has been reported so far,
so it is not possible to fully prove this explanation.

measured data
simulated data 

-1with     0.0240 N mstat      

simulated data 
-1with     0.0021 N mdyn      

Figure 3.39: Measured bridge height depending on time in comparison with the numerical sim-
ulation. The simulation with the static surface tension γstat measured in previous experiments
γstat = 0.024 N m−1 (blue curve) does not agree with the determined bridge height. The same
simulation, but with a much smaller dynamic surface tension γdyn (red curve), reproduces the
experimental data points quit well.
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The coalescence of isotropic droplets in free-standing smectic films was analyzed in de-
tail, and the results of that unique system were compared with sessile droplets as well as
with liquid lenses on a liquid surface. The model based on the lubrication approximation
and the thin sheet equation qualitatively describes the observed coalescence dynamics.
The FEM simulation with the derived equations confirmed the model. It is shown that
merging isotropic droplets exhibit self-similarity behavior and again the simulation con-
firmed the experimental results.
The deviations of the coalescence dynamics between the model/simulation and the exper-
iment of one order of magnitude seem to be explicable with regard to the smectic layers
covering the droplets.

In order to prove the possible explanation, additional experiments with different materials
of known viscosity, density and surface tension could be performed. Furthermore, the
coalescence of nematic droplets in smectic films would encourage the understanding of
coalescing objects in two dimensions itself and the influence of the smectic layer structure
on top of the isotropic or nematic droplets.
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4 Coarsening dynamics in
quasi-two-dimensional emulsions

In general, coarsening describes the process of aging of different two- or multiphase sys-
tems and the effect on the stability or composition of such mixtures. While the overall
number of immersed objects like solid particles or liquid droplets normally decreases
with annealing time, their average size will increase. As a result, in most systems such as
foams or emulsions, a more coarse arrangement of objects can be observed.
Coarsening dynamics are of common interest for various industrial and technological
applications, therefore a detailed understanding of this process in both three and two di-
mensions is necessary.
In the present experiment, performed onboard the ISS during the OASIS mission, emul-
sions consisting of micrometer-sized smectic islands of different size were observed for
several minutes and hours to verify coarsening dynamics. Crucial parameters for the
characterization of the aging process are identified and analyzed in detail. The exper-
imental results are compared with three-dimensional systems and deviations from the
predictions are discussed. The results in this chapter are unpublished and preliminary
results, since the analysis of the experimental data is still ongoing. A publication of the
results is in progress. All necessary physical quantities are redefined in this chapter.

4.1 Introduction

As part of the OASIS mission, long-term experiments were performed to analyze for ex-
ample droplet-droplet interactions and their arrangement in lattice-like structures (chapter
2). On the other hand, also ensembles consisting of smectic islands or holes, that do not
form regular structures, are observed to understand their long-term behavior. Over time,
the size of smectic islands and holes changes or different objects merge, thus the average
object size of the emulsion will increase. As a consequence, several small islands or holes
will disappear and the total number of objects is expected to decrease. This phenomenon,
mainly defined by direct object coalescence or material diffusion through the background
medium, is described by the coarsening dynamics of a mixture or an emulsion.

The process of coarsening or aging can often be observed in two- or multiphase mixtures,
where objects of one component of different sizes are dispersed in another, usually liquid
phase. Due to the tendency of the system to decrease the total interfacial area and hence
the total free energy, the mixture will change its composition in the way that the size and
the number of objects or embedded droplets will change. As the mixture evolves, small
objects shrink while larger objects increase in size, and as a result the average particle
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size increases over time. At the same time, and with regard to the conservation of mass,
the total number of objects can decrease over time. A consequence of this aging process
is often a segregation and phase separation of the components of the mixtures.
Phase separation, but also its prevention in different emulsions and foams, is of general
interest for various industrial and technological applications. It is important to know the
crucial parameters for coarsening to stabilize for example milk, heavy cream, cosmetic
creams as well as fire-fighting foams and shaving foams. With a detailed understanding of
the overall aging dynamics and its different processes (in general coalescence of objects
and Ostwald ripening), it is possible to control the size of the immersed objects through
liquid-solid transitions, chemical reactions or treating droplets with surfactants [150].
A significant industrial process based on coarsening of objects is the sintering of metal
powders into solid materials. Typically, ceramics, heavy metal alloys, hard metals and
structural parts for automotive applications are created by liquid phase sintering. An ini-
tial melting of one of the phases and a following rearrangement and dissolution of the
second phase due to alloying leads to unique material properties and significant shape
accommodations of the new material [151, 152].

In 1900, the later Nobel Prize winner Friedrich Wilhelm Ostwald published his studies
about the dependence of the solubility of small mercury oxide particles on their radii. He
explained his observation with the higher vapor pressure in smaller droplets than in bigger
ones, and so this phenomenon later was called “Ostwald ripening” [153]. A detailed the-
oretical description for this coarsening process was given by Lifshitz and Slyozov [154]
and Wagner [155] in 1961. They supposed a steady diffusion flux from smaller droplets to
larger ones also known as evaporation-condensation. They described the evolution of the
average particle size and the particle size distribution and their predictions later were ver-
ified [156–158]. The transfer of material between droplets in their model (LSW-model)
is based on material diffusion through the surrounding liquid [159–163]. As shown in the
left picture of figure 4.1, no direct droplet-droplet contact is required and, as a result of
the Ostwald ripening, the initially bigger droplet grows in size while the other one shrinks
until it finally disappears.
The second mechanism, that results in an overall coarsening of mixtures, is the exten-
sively discussed coalescence of particles or droplets. As shown in the previous chapter
and in the right picture of figure 4.1, the objects are initially in direct contact and merge
within seconds or even milliseconds to a single bigger particle.
It was observed that in the early stage of coarsening of mixtures, the growth of domains
and objects can be described by Ostwald ripening, while the late stage often is dominated
by interface-tension-driven coalescence of the particles [164, 165].
The observed coarsening dynamics with the measured particle size distribution and evo-
lution additionally depends on the geometrical system [150,166–168], the components of
the mixture and possible side effects such as drainage, sedimentation or applied thermal
gradients [169–173].

Within the following sections, the most commonly investigated systems where coarsen-
ing occurs are introduced and typical experiments and their results for three-dimensional
mixtures, foams and two-dimensional emulsions are presented.
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CoalescenceOstwald ripening

diffusion

Figure 4.1: Sketch of the two main processes that are responsible for coarsening. While for Ost-
wald ripening on the left side there is no need of direct droplet-droplet contact and material
is exchanged through the background medium, the droplets at the right-hand side are in direct
contact and merge within seconds or even milliseconds. Although the droplets must first ap-
proach each other by diffusion before coalescence, Ostwald ripening is expected to occur on
much longer timescales [174]. In both cases, the result is a larger droplet compared with the
initial droplet sizes.

4.1.1 Coarsening of three-dimensional two-phase mixtures

Coarsening and phase separation are encountered in everyday life, but especially in the
manufacturing process of new alloys and dispersions it is important to understand all as-
pects of the aging process depending on the initial conditions of the system.
When using different metals to create new materials, the raw materials usually have dif-
ferent densities and therefore often show a rapid spatial phase separation due to sedimen-
tation. Already in the 1980th, Ratke et al. tried to solve this sedimentation problem in
their zinc-lead mixture (Zn-Pb) with experiments under microgravity conditions onboard
the Spacelab 1 space station. They measured particle size distributions, verified Ostwald
ripening, and observed additional coarsening effects due to coagulation with increasing
volume fraction [175]. Later, Ratke performed additional experiments on the EURECA
satellite to confirm his observations, and he stated that coarsening, at least of alloys, is a
superposition of diffusional Ostwald ripening and a coalescence of droplets (here initiated
by Marangoni motion due to thermal gradients) [151, 176].

It was shown in various experiments that the volume fraction of the mixture components
significantly influences the coarsening dynamics and especially the coarsening rate K
and the particle size distributions. Hardy and Voorhees [157] for example analyzed tin-
lead mixtures (Sn-Pb) and predicted an evolution of the average particle size 〈R〉 of the
following form:

〈R(t)〉3 = 〈R(0)〉3 +Kt . (4.1)

The coarsening rate K = K(T,D, φ) here depends, among other quantities, on the tem-
perature T , the liquid diffusion coefficient D and the volume fraction φ. Within their
experiments, they were able to avoid direct particle-particle interaction (coalescence) of-
ten observed in liquid-liquid mixtures by using sufficiently low volume fractions of the
coarsening phase. As one main result, they found that the particle distribution function

95



96 4 Coarsening dynamics in quasi-two-dimensional emulsions

broadens with increasing time, as shown in the left-hand graph of figure 4.2. Furthermore,
they were able to scale these distribution functions at different times with the average
particle size (here the particle intercept length L) and observed an overlap of all scaled
curves. This result can be seen as a time independence of the distribution function scaled
with the average particle size [157].
Hardy et al. [157] measured the coarsening rate K from a linear plot of 〈L〉3 respectively
〈R〉3 versus time t in the early stages of their experiments and observed increasing coars-
ening rates with increasing volume fraction of tin (〈L〉 ∝ 〈R〉).
The second important results from their experiments describes the average particle size
observed over more than three orders of magnitude in time. They verified the theoretical
prediction of 〈R〉 ∝ t1/3 [157]. The dependence of the average particle size on time for
a volume fraction of φ = 0.64 of tin is schematically shown in the right-hand graph of
figure 4.2.
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Figure 4.2: Particle intercept length distribution at different times and average particle size as a
function of time for a tin-lead mixture (Sn-Pb) based on the experiments and results of Hardy
and Voorhees [157]. The Weibull distribution in the left graph widens with increasing time,
verifying the coarsening process in the system. For the overall time evolution of the average
particle size (right picture), the predicted theoretical dependence 〈L〉 ∝ t0.33 was observed. All
curves are reproduced, approximated and interpolated from the experimental results of Hardy
and Voorhees and from the theoretical predictions. The curves qualitatively represent the results
from Hardy et al. [157].

While Hardy and Voorhees focused their experiments and theoretical description on Ost-
wald ripening and mostly neglected direct droplet-droplet interactions, Tanaka later tried
to analyze this second coarsening mechanism in particular [177, 178]. He investigated
binary fluid mixtures of two different oligomers and used temperature quenches to trigger
the spinodal decomposition and coarsening dynamics in thin sandwich cells. Tanaka
observed an “unusual droplet coarsening” [177], where the droplet collisions are not
random, but triggered by other droplet collisions and the interaction between droplets
through the diffusion field surrounding them. A detailed theoretical description and a
comparison with different models of that temperature quenching effect on fluid mixtures
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was given by Otto et al. [169]. Additional theoretical works and simulations regarding
the surface-tension driven coarsening and different types of the Cahn-Hillard equation
followed from Kohn et al. [179] and Watson et al. [180].

With increasing interest in liquid crystal materials in the 1990th, also new systems for
studying phase-separation in fluid mixtures and therefore coarsening were used. Chuang
et al. and later Pargellis et al., for example, analyzed the coarsening dynamics of line
defects in nematic liquid crystal phases and noted a dependence of the coarsening rate
from the temperature and the pressure in the system [181, 182]. More than ten years
later, Thakur et al. created a liquid crystal mixture in the isotropic phase containing
of 4-octyloxy-4’-cyano-6-biphenyl (8OCB) and up to 10 wt % of an isotropic dopant.
While cooling the mixture across the isotropic-nematic transition temperature, they ob-
served the nucleation of nematic droplets and a subsequent coarsening dynamics of those
droplets [183]. They investigated the self-propelled motion of the nematic droplets due
to concentration gradients of the isotropic dopant (Marangoni flow) and found growth
rates of the droplet sizes following R(t) ∝ t when cooling and quenching the system. In
contrast to coarsening due to diffusive coalescence or evaporation-condensation (Ostwald
ripening) with R(t) ∝ t1/3, the induced Marangoni flow appears to enhance the coarsen-
ing process and as a consequence the phase separation, at least for this mixture of ordered
and disordered fluids [165].
Additional numerical simulations with regard to the effect of the Marangoni flow, interface-
tension driven coalescence or Ostwald ripening have been performed by Shimizu et al.
and Khedr et al. in recent years [150, 184].

4.1.2 Coarsening of foams
A second class of material mixtures where coarsening can be observed are foams, which
are characterized by a dispersion of gas bubbles in a relatively small volume of liquid.
In general, foams can be divided into two classes depending on the content of the liquid
phase in respect to the gas phase: wet foams with relatively high proportion of liquid
(> 26%) and dry foams with liquid contents below that value. In dry foams, polyhedral
cells separated by thin walls that meet at the Plateau borders are found, and the coarsen-
ing dynamics are dominated by a gas diffusion through these walls. In contrast to that,
wet foams consist of spherical inclusions of gas immersed in a liquid medium and the
exchange of material between the inclusions and the resulting coarsening is characterized
by Ostwald ripening, where the gas molecules have to diffuse through the background
medium between inclusions [168].
Although foams with the gas bubbles separated by Plateau borders have a completely dif-
ferent structure than the previously mentioned three-dimensional mixtures with their liq-
uid droplets distributed in a liquid medium, the scientific interest of foam aging also starts
in the field of metallurgy and alloys. Cyril Stanley Smith, for example, analyzed in 1952
the evolution of two- and three-dimensional soap froth to explain and model the grain
growth in metals. He observed a continuous disappearance of small cells and concluded
that the average area of a cell or bubble should be a linear function of time 〈A〉 ∝ t [185].
Later, Aboav et al. again analyzed the evolution of 2D soap foam and even used the
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data from Smith and refuted his claimed linear cell growth: they observed an increase
of the cell area with the square of time 〈A〉 ∝ t2 [186]. Later, Weaire et al. confirmed
the initially observed linear growth of the mean cell area. Further Monte Carlo computer
simulations made by Wejchert once again yield exponential dependencies with exponents
between 0.82 and 0.98 (〈A〉 ∝ t0.82...0.98), verifying the linear dependence [187].
These early investigations show that coarsening of foams is an important phenomenon
not only for modeling grain coarsening of metals, but also to understand the stability of
industrial foams (shaving foams, fire-fighting foams) and to avoid complete phase sepa-
ration.

Regarding to the aging process of dry foams, Glazier et al. observed two temporal regimes
depending on the initial structure of the foam. They found a crystalline order at the begin-
ning (transient regime) and power law growth of the average bubble area withA ∝ t0.59 in
the disordered state (long-term regime). They analyzed the crossover between these tran-
sient and long-term regimes and noticed deviating results for different initial conditions
(initially ordered or disordered system) [188]. Glazier et al. verified the Von Neumann’s
law, which describes the evolution of two-dimensional soap froths as a pure diffusive pro-
cess only depending on the geometrical structure of the lattice [189].
Within this simple model, Von Neumann assumed an incompressible gas in the cells of
dry foams and a gas transfer that is direct proportional to the wall area and the pres-
sure difference respectively the curvature of the walls. For all cell walls meeting in 120°
angles, he claimed that the growth rate for a fixed number n of walls is constant.〈

dAn
dt

〉
= κ(t)(6− n) (4.2)

Several years later, Trittel et al. used a smectic liquid crystal material (8CB) to create two-
dimensional dry foams. They observed three different regimes during foam evolution, and
they also confirmed Von Neumann’s law describing the growth rate of the cell areas [168].
Experimental images of the smectic foams and a sodium dodecyl sulfate foam (SDS) are
shown in figure 4.3. Both materials show a similar foam structure with cells separated by
thin Plateau borders (dry foam), but the coarsening of the foams occurs on different time
scales. Nevertheless, for 8CB and SDS foams, the linear growth of the average cell area
according to 〈A〉 ∝ tβ with β ≈ 1 was verified [190].
Due to the two-dimensional geometry of the experiments by Trittel, but also by Marchalot
et al. [191], drainage of foams, i.e. the flow of liquid material through the Plateau borders
between cells, is not considered in their analysis. Notwithstanding, this effect in foams
was intensively studied by Hilgenfeldt et al., who observed a kind of competition between
drainage and coarsening resulting in different dynamics of foam evolution [170]. In this
context, Miralles et al. for example analyzed the influence of different soluble surfactants
on the drainage in a 2D microfoam driven by a thermocapillary Marangoni stress [171,
172].
To suppress drainage even in three-dimensional foams and thus to analyze coarsening
as a separate process, Isert et al. designed an experiment with a levitating, diamagnetic
mixture and observed the cross-over between dry and wet foams [192]. For comparable
low liquid contents (dry foam), the gas bubbles of the foam are in direct contact, separated
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Figure 4.3: Evolution of a smectic foam (top row) and a foam made of sodium dodecyl sulfate
(SDS) and water (bottom row) in comparison. The bright lines between the cells represent the
thin plateau borders. With increasing time, the mixtures coarse, characterized by the increasing
average bubbles size and the decreasing total number of bubbles. Experimental images are
kindly provided by T. Trittel [190].

by thin boarders only, and gas exchange is driven by the Laplace pressure inside the
bubbles ∆p = 2σ/R (liquid-gas surface tension σ, bubble radius R ). Since the density
of gas exchange j is proportional to the Laplace pressure, the following expression can
be used [192]

j =
dV
Adt
∝ dR

dt
∝ ∆p ∝ 1

R
. (4.3)

Integrating this equation leads to
〈R〉 ∝ t1/2 . (4.4)

For wet foams as well as for three-dimensional mixtures such as alloys, the situation
changes, the bubbles are no longer in direct contact and Ostwald ripening has to be con-
sidered. Here, the molecules now has to diffuse through the liquid, driven by the differ-
ence of the bubble pressure to the saturated pressure in the solvent. In fact, the density of
material exchange is determined by the gradient of the pressure

j ∝ dR
dt
∝ dp

dR
(4.5)

that eventually leads to a size evolution according to [192]

〈R〉 ∝ t1/3 . (4.6)
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4.1.3 Coarsening in two-dimensional films
In view of the experimental investigation of coarsening dynamics of smectic islands on
the surface of smectic bubbles, it is necessary to find models that explain the observations
in that unique system. At first glance, objects on a smectic liquid crystal film are com-
parable with droplets on a solid substrate (sessile droplets), as already discussed in the
previous chapter. Especially during the dewetting process of thin liquid films on a solid
substrate, small droplets can be formed, they can merge and grow in size, and holes in the
film can occur.
30 years ago, Reiter analyzed thin polymer films and measured the evolution of holes in
the film and the formation of small droplets [193]. He observed polygon patterns of the
film material and droplets formed due to Rayleigh instabilities that finally seem to arrange
in a hexagonal structure. As reason for the overall dewetting process, he described small
modulations of the film surface by thermal fluctuations, which lead to a break-up of the
film and a formation of small droplets. Thus, the system minimizes the contact area be-
tween the liquid material and the solid surface. Since the material is collected in the rim
of holes, in fingering instabilities or in the droplets during dewetting process, there is no
material flow between these structures and thus no Ostwald ripening can be observed.
A second system to analyze phase separation and late stage coarsening in two dimen-
sions was introduced by Bassereau et al. in 1993 [194]. Thin films of symmetric diblock
copolymers of polystyrene and polymethylmethacrylate (PS-b-PMMA) were prepared
on Si-wafer, and micrometer-sized islands were created during heating and subsequent
quenching of the film. These domains are located on top of a thin copolymer layer (thick-
ness of a few dozen nanometers) that allows material diffusion within the film and be-
tween the islands. Bassereau et al. measured the number of islands NI(t), the number
of holes NH(t), the average size of that domains 〈RI(t)〉, 〈RH(t)〉 and the average dis-
tance between adjacent islands and holes 〈ξI(t)〉, 〈ξH(t)〉 at different times. For all these
quantities they found a power law dependence on time with the following exponents:

N(t) ∝ t−2α , 〈R(t)〉 ∝ tα , 〈ξ(t)〉 ∝ tα

with α = 0.24± 0.02 for islands and α = 0.23± 0.02 for holes.

They additionally measured the island size distribution at different times and scaled their
curves with the average size of the particles. They found that the scaled distributions for
islands as well as for holes are invariant over time [194].
Two decades later, Limary et al. [164] used the same system of diblock copolymer films
on SiOx/Si substrates to analyze the coarsening process of small droplets in dependence
of the thickness h of the remaining film. They again measured the number of droplets
and their average size and verified the power law behavior stated earlier. The exponents
found in their experiments range from 0.4 for very thin films (h = 9.5 nm) to 0.1 for
comparably thick films (h = 19.5 nm), indicating a strong influence of the remaining film
on the coarsening dynamics.
For a more detailed and qualitative statement about the process, primarily driven by co-
alescence in that system, Limary et al. analyzed the normalized size distribution curves
S/〈S〉. Again, they show time invariance and structural self-similarity, where S repre-
sents the droplet area with S ∝ R2. Limary et al. additionally fitted the scaled curves
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with theoretically predicted probability distribution functions for coarsening by Ostwald
ripening and dynamic coalescence, and verified the merging process of droplets as domi-
nant in their system.
The scaled probability function (F (S/〈S〉)) for pure Ostwald ripening limited only by
diffusion is given by

F (S/〈S〉) = F (S ′) =

CS ′2exp
(
−1

1.5− S ′

)
(1.5− S ′)28/9(3 + S ′)17/9 (4.7)

with the normalization constant C and with F (S ′) = 0 for S ′ > 1.5 [164, 195] (detailed
derivation in [196]). For coarsening determined by diffusive coalescence, the collisions
can be described with the Smoluchowski equation [197,198] and the distribution function
has the following form

F (S ′) =
dW (WS ′)(dβ̂+d−1)

Γ(β̂ + 1)
exp

{
−(WS ′)d

}
. (4.8)

Here, d describes the spatial dimension of the system, Γ the gamma function and
W = Γ(β̂ + 1 + 1/d)/Γ(β̂ + 1). With the fitting parameter β̂, the power law exponent α,
as mentioned before, is defined regarding

α =
2

d(β̂ + 1)
. (4.9)

Limary and co-workers were able to fit their data with the distribution function for the
coalescence-based coarsening and explained their power law exponents depending on
film thickness with a crossover from a two-dimensional to a 3D system [164, 195].

Time

1 2 3 4 5 6 7 8 9

Figure 4.4: Sketch of coarsening dynamics for a dewetting thin film, reproduced from a numer-
ical simulation based on the lubrication approximation [199, 200]. On the left, droplet 2 is
shrinking while the neighboring droplet 3 growth in size (Ostwald ripening). Direct droplet-
droplet interaction (droplets 7 and 8) representing coalescence is shown on the right-hand side.

A fully theoretical description of the coarsening dynamics and the dewetting process of
films on solid substrates has been given by Glasner and Witelski [199, 200]. Using the
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one-dimensional form of the thin sheet equation (long-wave approximation) mentioned
in the previous chapter, they analyzed the formation of isolated droplets and the exchange
of mass that leads to the coarsening. In their model, they used the precursor film with its
disjoining pressure Π(h) to fulfill the droplet boundary conditions (contact angle of the
droplets) as well as to enable mass transport through this film. The equations for the 1D
lubrication approximation are used in the following form

∂h

∂t
=

∂

∂x

(
h3 ∂p

∂x

)
, p = Π(h)− ∂2h

∂x2
, (4.10)

where the disjoining pressure combines all effects of intermolecular forces, van der Waals
interactions and other repulsive effects [199, 200]. Glasner and Witelski on the one hand
allowed the exchange of material between droplets through the thin precursor film in or-
der to simulate droplet collapse (Ostwald ripening). On the other hand, they introduced
diffusive motion of the droplets (migration) to enable direct droplet-droplet interaction
and thus coalescence of droplets.
Both processes, Ostwald ripening and coalescence, are shown in figure 4.4 in a space-
time plot visualizing a reproduction of the numerical results from Glasner and Witelski.
With regard to the long-time dynamics in their one-dimensional system, they found a
decrease of the total number of droplets according to a power law with an exponent of
−2/5 (N(t) ∝ t−2/5). They furthermore analyzed the two different regimes and their
properties, in which both processes appear dominantly.
Later, the model for the numerical simulation based on the thin sheet equation was ex-
panded into higher dimensions [167, 173, 201–204], and for the two-dimensional case, a
power law describing the total droplet number of N(t) ∝ t−3/4 was found [201, 202].
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4.2 Experimental setup and materials

In the first chapter of this thesis, the OASIS mission and their experiments were briefly
introduced. Due to the microgravity condition onboard the ISS and without external in-
fluences, one goal of the mission was the experimental investigation of the long-term
dynamics of various inclusions on the smectic bubble surface.
For the analysis of the coarsening dynamics, smectic islands (lower images of figure 4.5)
and holes were created by shearing the bubble surface with air jets. After the preparation
phase, the island or hole ensembles then were observed for several minutes or hours. On
the one hand, the size distributions, the average object size 〈R(t)〉 and the total number
of objects N(t) could be extracted from the macro-view images. On the other hand, there
were also several videos from the micro-view camera that showed the behavior of indi-
vidual islands in more detail (island position x(t), y(t) and island radius R(t)).

3 mm 100 µm

h

2R

film island

h+x

Figure 4.5: Experimental images from the macro-view camera (top left) and the micro-view
camera (top right-hand) showing smectic islands in the initial stage of the coarsening process.
On the left-hand side, the smectic bubble is highlighted with a white circle with a diameter of
15 mm. Almost all smectic islands are grayish and thus of similar thickness (similar number of
layers). The camera is focused on the front side of the bubble and the edges are out of focus.
The shadows and reflections of the airjet needles are marked in green. The right-hand image
(500 × 500 µm2) shows several islands of different size in the micro-view. The comparable
colors of the islands again indicate island thicknesses of the same order of magnitude. The
lower images visualize a possible arrangement of the molecules in the smectic layers in a sec-
tional view of a smectic island with thickness h+ x in a film with thickness h. The size of the
smectic layers and the liquid crystal molecules is greatly exaggerated.

103



104 4 Coarsening dynamics in quasi-two-dimensional emulsions

Two images from the macro-view (17× 17 mm2) and the micro-view, with a significantly
higher lateral resolution (500 × 500 µm2), are shown in figure 4.5 [35].
The images were recorded with a maximum frame rate of 60 fps, i.e. every 16.67 mil-
liseconds a picture was taken. For several experiments, this frame rate was reduced to
simply save hard drive space. Since the depth of field of the macro-view was limited to
approximately 4 to 5 mm, it was not possible to focus on the entire bubble and so the
edges of the bubbles were often blurred. Additionally, shadows and reflection from the
airjet needles, visible on the bubble surface, limited the surface of the smectic bubble that
could be evaluated.
For the complete ISS mission, four different liquid crystal mixtures with smectic phases at
room temperature were used. The Displaytech materials (mixtures 12160, 12805, 12864)
were produced by the Miyota Development Center of America and the commonly used
8CB was obtained from Sigma-Aldrich.
In the following list, the liquid crystal mixtures with their specific phase sequences are
presented.

• SN001: Displaytech mixture 12160 + 8CB (4-Cyano-4’-octylbiphenyl)
Isotropic 56 °C Nematic 54 °C Smectic A 5 °C Crystalline

• SN002: Displaytech mixture 12864
Isotropic 84.7-82.0 °C Nematic 81.4 °C Smectic A 66.1 °C Smectic C

• SN003: Displaytech mixture 12805
Isotropic 84.7-82.0 °C Cholesteric 81.4 °C Smectic A* 66.1 °C Smectic C*

• SN004: Displaytech mixture 12160
Isotropic 51.1 °C Smectic A -3.2 °C Crystalline (3.1 °C Smectic A when heating)

OC H7 15

N

N

5-Heptyl-2-[4-(4-methylhexyloxy)-phenyl]-pyrimidin

C H8 17 CN

4-Cyano-4'-octylbiphenyl

Mixture 12160 
(80/20)

IsoSmACr
3.1 °C 51.1 °C

IsoSmACr
-3.2 °C 51.1 °C

C H8 17

C H10 21O

O

N

N

4-(5-Octyl-pyrimidin-2-yl)-benzoic acid decyl ester

8CB IsoSmA N
33.5 °C 40.5 °C

Cr
21.5 °C

IsoSmA N
33.5 °C 40.5 °C

Cr
21.5 °C

Figure 4.6: Chemical structure of mixture 12160 and the commercial used 8CB that are used
for the samples 1 and 4. As already mentioned in chapter 2.2.1, the mixture 12160 consists of
two different materials shown on the left side. The right-hand side shows the structure of 8CB.
While the mixing ratio for material 12160 is given (80% of the branched chain mesogen and
20% of the decyl benzoate ester), the proportion of 8CB in sample 1 is not known.
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For the experiments concerning the coarsening dynamics, especially sample SN001 and
SN004 showed promising results and for these specific materials the chemical structure is
given in figure 4.6. Both mixtures exhibit a smectic A phase at room temperature, whereas
samples 2 and 3 are in the smectic C and smectic C* phase, respectively. In free-standing
smectic films of the C or C* phase, an additional elastic interaction due to the molecule
orientation (c-director) has to be considered for the dynamics of object motion and for
the coarsening behavior. The smectic C* phase corresponds to a chiral phase in which
the molecular tilt azimuth typical for smectic C phases changes between single layers, i.e.
the mesogenes form a kind of helical structure perpendicular to the layer normal.
The two other compounds, SN002 and SN003, have the following chemical compositions:

Compound Volume fraction [%]

SN
00

2

2-(4-Hexyloxy-phenyl)-5-nonyl-pyrimidine 28
5-Nonyl-2-(4-octyloxy-phenyl)-pyrimidine 23
4-(4-Methyl-pent-3-enyl)-cyclohex-3-enecarboxylic

15
acid 4-(5-decyl-pyrimidin-2-yl)-phenyl ester
4-Pentyl-cyclohexanecarboxylic acid

15
4-[2-(4-pentyl-cyclohexyl)-ethyl]-phenyl ester
2-[4-[[-2-fluoro-2-methylheptyl]oxy]phenyl]-5-

12
[(5,5,6,6,7,7,8,8,8-nonafluorooctyl)oxy]-pyrimidin
5-[[-2,3-difluorooctyl]oxy]

4
-2-(4-octylphenyl)pyridine
Heptanoic acid 4-(5-octyl-pyrimidin-2-yl)-phenyl ester 3

SN
00

3

2-(4-Hexyloxy-phenyl)-5-nonyl-pyrimidine 28
5-Nonyl-2-(4-octyloxy-phenyl)-pyrimidine 23
4-(4-Methyl-pent-3-enyl)-cyclohex-3-enecarboxylic

15
acid 4-(5-decyl-pyrimidin-2-yl)-phenyl ester
4-Pentyl-cyclohexanecarboxylic acid

15
4-[2-(4-pentyl-cyclohexyl)-ethyl]-phenyl ester
2-[4-[[(2S)-2-fluoro-2-methylheptyl]oxy]phenyl]-5-

12
[(5,5,6,6,7,7,8,8,8-nonafluorooctyl)oxy]-pyrimidin
5-[[(2R,3R)-2,3-difluorooctyl]oxy]

4
-2-(4-octylphenyl)pyridine
Heptanoic acid 4-(5-octyl-pyrimidin-2-yl)-phenyl ester 3

The samples SN002 and SN003 are identical materials, except the blue highlighted groups
for the SN003 compounds, that are responsible for the chiral character of the material.
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Azimuthal projection and island recognition

For a correct island and hole detection and to measure the correct sizes of the objects on
the bubble surface, it is necessary to map the curved surface onto a plane. It is important
to depict all islands and holes as realistic as possible, and two types of projections are
appropriate for this mapping procedure.
In both cases, the distances and the angles of all points on the surface to the center of
the bubble were measured and the new distances in the mapped image were calculated.
Within the so-called “Lambert azimuthal equal-area projection” all areas are represented
correctly, but the angles and distances between islands are shown distorted. For the sec-
ond method, namely the “azimuthal equidistant projection”, all distances and angles to
the center point are represented correctly, but the surface area, especially at the bubble
edge, is stretched. There is no method to map a spherical surface on a plane representing
all angles, distances and areas correctly at the same time.
To compare both methods, a bubble surface with circular islands on the surface was sim-
ulated, and the different projections were calculated. As can be seen in figure 4.7, both
procedures show almost identical results and only at the bubble edges small deviations
with regard to the calculated islands sizes can be observed.

Lambert azimuthal equal-area
projection

original image azimuthal equidistant
projection

Figure 4.7: Comparison of the azimuthal equal-area projection with the azimuthal equidistant
projection using a simulated spherical surface covered with circular islands. Several islands are
marked in the original image (left-hand picture) and the same islands are highlighted in both
projections: equal area projection in the middle and equidistant projection on the right-hand
side. In the mapped surface images, the red circles correspond to the size of the central island.
In the enlarged section, it is shown that for the equal-area projection, the islands at the edges
are more elliptical and flatter than the central island. For the azimuthal equidistant projection,
the radial elongation of the edge islands is equal to the diameter of the central island, but these
islands are stretched tangentially.

Although at the bubble edge, small deviations between both methods occur, the results of
the procedures are almost identical. Especially in the central area of the bubble surface,
differences between both projections can be neglected. Finally, the azimuthal equidistant
projection was used to recalculate the bubble surface on a plane.
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In the beginning of the data analysis, the complete experimental images were recalculated
and projected on two-dimensional planes. As a second step and as shown in figure 4.8,
a rectangular section of the experimental images was selected in which neither the men-
tioned shadows and reflections of the airjet needles nor the unfocused edge of the bubble
were visible. All islands and holes in this region of interest (ROI) were automatically
detected using a Matlab program. All islands and holes, that were only partially visible
in the images due to the restricted region of interest or the dark region in the middle of
each image, were fitted with circles.
Finally, images with a size of 400 × 400 pixel were recalculated, which correspond to
an area of approximately 6.1 × 6.1 mm2 of the bubble surface. Since the detected pixels
in the images representing the islands were fitted with a circle, the detection has an inac-
curacy of ≈15 µm only. For very small islands, however, this inaccuracy increases to at
least 20 µm. The smallest detected object in the macro-view images has a size (radius) of
approximately 30 µm, while the largest island radius is in the range of 600-700 µm.

3mm
6.1mm

Figure 4.8: Experimental macro-view image and detected islands in the projection of the bubble
surface. In the first step, the bubble surface in the original picture (left-hand image) was pro-
jected onto a flat plane and the diameter of the bubble was calculated. Then, the red highlighted
region of interest (ROI) was chosen to avoid wrong detection due to the reflections and shadows
(green ellipses). In the last step, all islands were detected with a Matlab procedure (right-hand
image). The final image has a size of approximately 6.1 x 6.1 mm2.
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4.3 Preliminary experimental results

4.3.1 Overall coarsening dynamics

For a detailed analysis of the coarsening dynamics of the smectic islands covering the
smectic bubble, thousands of macro-view images (showing the whole bubble) from a sin-
gle video with a total length of more than 10 minutes were evaluated. As shown in figure
4.9, the composition of the two-dimensional emulsion (SN001) obviously changes with
time, and the averaged island radius seems to increase during the experiments.
Since the spatial resolution of the images was limited to approximately 15 µm, it was
not possible to detect very small islands or to measure small changes of individual island
radii. Thus, within the macro-view images, an evaluation or verification of the expected
Ostwald ripening as one of the important phenomena for coarsening was not possible.
On the other hand, the coalescence of smectic islands of different size and thickness could
be observed, as highlighted in the subsequent figure. Although the detailed merging pro-
cess could not be analyzed due to the comparatively low frame rate of a maximum of
60 fps (within the coalescence experiments, frame rates of 24,000 fps were used, see
chapter 3), the coalescence as a single event between two or more islands could be de-
tected by comparing consecutive images. Sometimes even intermediate stages of the
coalescence could be recorded, as shown in figure 4.9 at t = 300 s (red highlighted).

t = 700 st = 600 st = 500 st = 400 s

t = 300 st = 200 st = 100 st = 0 s

1 mm

Figure 4.9: Time sequence of images showing a 6.1× 6.1 mm2 region of the bubble surface with
smectic islands with almost the same thickness (most islands have the same color). With an-
nealing time, more larger islands are formed while many small islands disappear. At t = 200 s,
two islands are highlighted in red (partially covered by the shadow in the center of the image)
that will merge and the coalescence event itself is shown at t = 300 s. The last two images show
a large contiguous region (a thicker domain) colored in red that enters the region of interest.

As a part of the coarsening experiments, the influence of the ambient temperature was
studied and for that reason the whole bubble chamber including the needles were heated or
thermal gradients were applied on the bubble surface. The results of such an experiment
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with thermal gradient when only heating the bubble inflation needle is presented in figures
4.9 and 4.10. Here, a large and thicker contiguous region (at approximately 450 seconds)
enters the central region of the bubble. This observation of a moving large region can be
explained by thermally driven flow of material (Marangoni flow) described by Trittel [31]
and Stannarius et al. [24].

500 6004000 200 300100
Time t [s]

350

400

300

250

200

150

N
um

be
r 

of
 i

sl
an

ds
 N

160

170

150

140

130

120

110

100

R
el

at
iv

e 
is

la
nd

 a
re

a 
A

/A
i 

to
ta

l

160

150

140

130

120

100

380

340

300

220

260

180

1000101 100
Time t [s]

A
ve

ra
g

e 
is

la
n

d
 r

ad
iu

s 
   

  
 [

µ
m

]
R

 

A
ve

ra
ge

 i
sl

an
d 

ra
di

us
   

   
 [

µ
m

]
R

 
N

um
be

r 
of

 i
sl

an
ds

 N

40

38

32

28

T
em

perature T
 [°C

]

42

36

34

30

26

bubble inflation 
needle temperature
ambient temperature 
  

      = -0.115

    = 0.077

    = 0.226

    = 0.097

110

    = 0.179

      = -0.277

0.72

0.56

0.52

0.64

0.60

0.68

R
el

at
iv

e 
is

la
nd

 a
re

a 
A

/A
i 

to
ta

l

0.72

0.56

0.52

0.64

0.60

0.68

Figure 4.10: Experimental results from the macro-view images for sample SN001. The graphs
show the average island radius (top), the overall number of islands (center) and the relative
detected island area (islands area Ai divided by the total image area Atotal) (bottom) in the ob-
served region on the bubble surface. The top left figure additionally visualizes the temperature
profile of the bubble inflation needle that was heated to 40 °C. The ambient temperature was
held at 27.8 °C (red curves and scale). The phase with increased bottom needle temperature
(reached at approximately 50 seconds) is marked with a gray background. After approximately
450 seconds, a thick large region enters the field of view and thus affects the measured data
(visible in the bottom right-hand inset). The graphs on the right-hand side are identical to those
on the left side, but with a double logarithmic scaling. The insets show the experimental image
of the bubble surface for the specific time. The curves in the double logarithmic plots were fitted
with a time-shifted power law function before heating (blue) and with increased temperature
(green). The individual exponents are given in the graphs.
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Figure 4.10 shows the average island radius, the total number of detected islands and the
cumulative relative island area (detected islands area Ai divided by the total area Atotal

of the field of view) of one evaluated video from sample SN001. Considering the tem-
perature profile of the bubble inflation needle compared to the ambient temperature and
regarding the flow of material and the resulting large region moving into the central re-
gion, the overall coarsening dynamics for this example can be divided into two phases:
an initial phase without external stimuli (Tchamber = 27.8 °C) and a second phase in which
the bubble inflation needle is heated (Tneedle ≈ 40 °C).
Taking into account (time-shifted) power law dependencies based on the theoretical pre-
dictions [199–202], numerical simulations [167, 173] and other experiments [193, 194],
the mean island radius 〈R〉 ∝ (t− t0)α, the total number of islandsN ∝ (t− t0)β , and the
total island area Ai ∝ (t − t0)γ respectively the relative island area Ai/Atotal ∝ (t − t0)γ

were fitted with power law functions. Additionally, the distances between the islands
were measured and the averaged center-to-center distance between adjacent islands is
shown in figure 4.11. According to Bassereau et al. [194], a power law 〈ξ〉 ∝ (t − t0)δ

should describe the experimental data. For the two phases, the following relations with
their specific exponents α, β, γ and δ could be extracted from the experimental data.

Initial phase Phase with increased temperature
(Tchamber = 27.8 °C, 0 s ≤ t < 50 s) (Tneedle ≈ 40 °C, 50 s ≤ t < 450 s)
〈R(t)〉 ∝ (t− t0)α ∝ (t− t0)0.097 ± 0.03 〈R(t)〉 ∝ (t− t0)0.226 ± 0.05

N(t) ∝ (t− t0)β ∝ (t− t0)−0.115 ± 0.02 N(t) ∝ (t− t0)−0.277 ± 0.04

Ai(t) ∝ (t− t0)γ ∝ (t− t0)0.077 ± 0.02 Ai(t) ∝ (t− t0)0.179 ± 0.05

〈ξ(t)〉 ∝ (t− t0)δ ∝ (t− t0)0.021 ± 0.01 〈ξ(t)〉 ∝ (t− t0)0.173 ± 0.04

The parameter t0 in that equations describes the time of the hypothetical initial situation
with an infinite number of islands with infinitely small radii. For each data set, t0 was
taken from the fit of the total island numberN(t) (due to the highest accuracy) and used as
constant to fit all curves. When assuming a conservation of the island area Ai ∝ 〈R〉2N ,
the following relation for the exponents can be expected (strictly speaking, only with
constant radii distributions):

Ai ∝ 〈R〉2N = const. → (t− t0)2α(t− t0)β ∝ (t− t0)γ

→ 2α + β = γ = 0 . (4.11)

The determined power law exponent γ however is not vanishing for the experiments,
which indicates a slight increase of the smectic island area. This increase seems to be
negligible for low bubble temperatures, but especially at higher temperatures, the island
area increases significantly. Nevertheless, the relation between the exponents 2α+β = γ
is still fulfilled even at higher temperatures.
With regard to the literature [164,194] and the expected conservation of island area (equa-
tion 4.11), the expression 2α = −β should be applied and when recalculating these ex-
ponents for γ = 0, this relation can be confirmed. For the phase of increased needle
temperature, for example, the following theoretical values α′, β′ could be calculated:

α′ = α− γ/3 = 0.166± 0.06 and β′ = β − γ/3 = −0.336± 0.05 for γ = 0 .
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In that theoretical case without increasing island area, the exponents agree with each other
(2α′ ≈ −β′) and even the exponents for the mean radius and the average center-to-center
distance agree α′ ≈ δ, as expected from other experiments [194].
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Figure 4.11: Calculated correlation length 〈ξ(t)〉 describing the average center-to-center dis-
tance between adjacent islands. The phase with increased bottom needle temperature is high-
lighted. Again, the two phases were fitted separately with a time-shifted power law function.
The individual exponents δ are given in the right graph. With regard to the results of Bassereau
et al., the exponent γ should be comparable to that of the mean island radius α.

Lückenfüller
 t  t0

 t  t0

sample SN001

Temperature T [°C]

Figure 4.12: Measured power law exponents α and −1
2β from the fit of the mean island radii

〈R(t)〉 and the total number of islands N(t), respectively, for different coarsening experiments
with sample SN001 at different temperatures T . With increasing temperature also the exponents
increase. The highlighted data points in the left graph were extracted from the curves in figure
4.10 with increased inflation needle temperature. The right-hand image shows a simulation of
the temperature profile for this specific experiment where only the bottom needle was heated to
40 °C. A temperature of approximately 28.8 °C can therefore be assumed in the analyzed region
of interest, highlighted with a white line (ROI). The temperature is color coded from 40 °C in
white to 27.8 °C in dark red. Contour lines additionally visualize the simulated temperature
profile. The smectic bubble is indicated by a blue dashed circle.
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112 4 Coarsening dynamics in quasi-two-dimensional emulsions

As shown in the previous figures and verified by the exponents of the power law functions,
the coarsening dynamics apparently depend on the temperature of the system. Higher
temperatures could reinforce the merging process of islands (coalescence) and the ex-
change of material between them (Ostwald ripening).

The left-hand graph of figure 4.12 shows the measured power law exponents α and −1
2
β

for different experiments at different temperatures. Since in some experiments, tempera-
ture gradients were applied and the temperature profile could not be measured except at
the capillary (Tneedle) and the outer borders of the box (Tchamber), the expected temperature
in the observed center region (ROI, white line in the right hand graph of figure 4.12) of
the bubble was simulated and calculated. An example of such a simulated temperature
profile is presented in the right-hand picture of figure 4.12. For the simulation with the
commercial software package COMSOL, the bubble inflation needle temperature was set
to Tneedle = 40 °C, whereas the walls of the box and the airjet needles had a constant tem-
perature of Tchamber = 27.8 °C. Thus, with the stationary, axially symmetric solution of
the heat diffusion equation, a temperature profile in the center of the blue dashed smectic
bubble of 28.8 °C could be calculated. The white section of the blue dashed circle here
represents the projection of the region of interest on the circle in the two-dimensional
temperature profile.
As expected, the power law exponents show a clear dependency on the temperature. The
exponents α and −0.5β increase with increasing temperature of the bubble surface. In
addition, the discrepancy between these exponents also increases, verifying that the total
island area Ai is not constant. On the contrary, it even increases stronger for higher tem-
peratures in the experiments.

In addition to the measured island radii and the calculated mean island size, the radius
and the motion of individual islands were analyzed in order to verify, for example, the
thermally induced flow of material from the previous example with temperature gradi-
ents [24, 31]. As shown in the upper left-hand graph of figure 4.13, separated islands
without direct interaction with other islands will only grow marginally in size (green and
blue curves in the upper left-hand graph). Their radii increase with a growth rate of about
0.035 µm/s in the phase of increased temperature. Apparently, the coalescence of smectic
islands here is the dominant effect that drives the coarsening dynamics.
In the upper right-hand graph, the motion of individual islands is presented, and it is
shown that only when the bubble inflation temperature starts to increase (at t ≈ 30 s),
the islands start to migrate along the temperature gradient. The velocity of the thermally
induced motion of the islands here seems to be independent of the island size and could
be calculated to approximately 10 µm/s when the heating starts and ≈ 5 µm/s at a con-
stant temperature gradient (after approximately 200 seconds, when an equilibrium state
and a homogeneous temperature gradient between the needle and the walls of the box is
reached). The discrete jumps in the experimental data for the island radii and their posi-
tions in figure 4.13 are the result of single coalescence events.
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Figure 4.13: Change of the radius and the position of 5 individual islands during the coarsening
experiment. The islands in the experimental images (lower images) are highlighted with the
corresponding colors used for the measured radii and positional data. The radii (upper left-hand
graph) of islands without direct interactions only increase marginally (blue and green curves).
The dominant size changing effect can be verified as the coalescence of islands (black, red and
cyan curves). Coalescence events are visible as discrete jumps of the island radii (emphasized
with dashed ellipses). In the upper right-hand figure, the position of the islands between the
north pole (airjet needles) and the south pole (bubble inflation needle) shows the thermally
induced motion due to the increased bubble inflation needle temperature (Marangoni flow)
[24,31]. The central dashed line represents the equator of the bubble. The radii and the positions
could be determined with an accuracy of ±15 µm.

In order to analyze the island coalescence in more detail, all merging events were de-
tected in the experimental images by measuring intensity changes in consecutive images.
The radii of the coalescing islands were then determined manually. The coalescence
probability as a function of the island radius respectively the scaled island radius could
be calculated and is shown in the upper graphs of figure 4.14. Here, both radii of the
merging islands have been considered. Very small islands with radii smaller than 25 µm
could not be detected due to the spatial resolution of the images. It is conceivable that
a significantly larger number of very small islands merges during the experiments. With
increasing island radius, the probability of coalescence events decreases. This seems in-
tuitive when assuming a larger number of small islands and a higher mobility of small
islands compared with bigger ones.
Additionally, the ratio of the radii of the coalescing islands (small islands divided by the
bigger islands) were calculated. Besides very small island ratios, the coalescence prob-
ability seems to be equally distributed. The coalescence of equal-sized droplets (island
radius ratio ≈ 1) seems to be as probable as the merging of islands with double or triple
the radius of one of the islands (island radius ratio between 0.3 and 0.5).
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Figure 4.14: Coalescence probability as a function of the island radius R (upper left graph) and
as a function of the scaled island radius R′ (upper right-hand graph). Additionally, the coales-
cence probability in dependence of the island radius ratio (small islands divided by the bigger
islands) is shown in the lower left-hand graph. The lower right-hand graph visualizes the total
number of islands and the cumulative number of coalescence events depending on time. For
the probability of merging events, which decreases with increasing island radius, very small
islands smaller than 25 µm could not be detected due to the spatial resolution of the images.
Apart from that, the coalescence events appear to be equally distributed across the radius ra-
tios, at least above 0.1. The total number of coalescence events continuously increases over time
(blue curve and scaling on the lower right-hand side), while the total number of detected islands
decreases (black curve). The red curve in the graph corresponds to the difference between the
initial islands number N0 and the accumulated coalescence events. N0 − Ncoal decreases and
almost matches with the curve for the total island number. The phase of increased needle tem-
perature is highlighted. Small deviations between the measured and the calculated number of
islands can be explained with the motion of the islands on the bubble surface through the region
of interest in the experimental images.

The detected coalescence events were accumulated additionally, as shown in the lower
right-hand graph of figure 4.14 (blue curve and right-hand axis), to quantitatively ana-
lyze the effect on the total number of islands. Here, the black curve represents the total
number of islands N (left-hand axis) with its initial value N0 of 375 islands. To compare
both curves, the cumulative number of coalescence events were subtracted from the initial
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number of islands N0 −Ncoal. For an ideal system without flow, where only coalescence
determines the coarsening behavior, this difference should match perfectly the number of
detected islands. Both curves, measured and calculated number of islands, actually agree
very well and small deviations are only due to the motion of islands and the flow of ma-
terial through the detected region. New islands entering the field of view and other ones
leaving this region are one reason for fluctuations in the measured data and can be ob-
served in every experiment even without thermal gradients and thermally induced motion.

Within the experiments and especially for the material SN001, the coalescence of smectic
islands can be verified as the dominant and driving process for the coarsening dynamics.
Based on these results and taking into account the work of Limary et al. [164] and Lo et
al. [195], the size distribution of the islands can be analyzed in more detail.
The individual island radii again were scaled with the averaged radius R′ = R/〈R〉 and
the probability densities F (R′) for these scaled radii were calculated. The probability
density here describes the probability (probability density multiplied with the interval
width) of measuring an island in a certain (scaled) radius interval dR′.
As shown on the left side of figure 4.15, there is no uniform distribution of the scaled
island radii, but the distributions are positively skewed. As time increases, more larger
islands are formed due to coalescence and the tail of the data extends to larger values.
Nevertheless, the number of very small islands does not change significantly or even
slightly increases. The graphs on the right-hand side underline this tendency as the dis-
tribution of the accumulated island areas is shifted to larger radii during the experiments.
The surface is more and more dominated by larger islands. The asymmetric shape of the
probability density can be explained with the diffusivity of the islands, which strongly de-
pends on their size. Regarding the Saffman equation (see section 2.1.2), larger islands are
assumed to be less mobile than smaller islands. As a result, the coalescence probability,
as mentioned before, decreases with increasing islands size.

In 1996, Sholl et al. [198] analyzed the coarsening dynamics of clusters on substrates,
where the coarsening was limited only to the coalescence of the clusters. They deter-
mined a distribution function from the Smoluchowski equation [197,198] to fit their clus-
ter distribution densities.
For the probability density function, Sholl et al. [198] used the following equation con-
taining the gamma-function Γ and the fitting parameters β̂ and d.

F (R′) =
dW (WR′)(dβ̂+d−1)

Γ(β̂ + 1)
exp

{
−(WR′)d

}
(4.12)

W = Γ(β̂ + 1 + 1/d)/Γ(β̂ + 1)

The calculated scaled probability densities F (R′) at different times t are shown on the
left side of figure 4.15. In the upper left graph, the probability densities were fitted using
equation 4.12 (black and blue curve) and the resulting parameters β̂ and d are shown for
the individual curves. Since the parameter d in the theoretical prediction should represent
the spatial dimension of the system [164], this parameter was set to a fixed value of d = 2
for the second fit (blue curve).
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Figure 4.15: Probability density F depending on the scaled island radius R′ = R/〈R〉 at differ-
ent times t of the coarsening process. The data in the upper left graph were fitted using equation
4.12 including the parameters β̂ and d. With respect to Loo et al. [195] and Limary et al. [164],
d describes the spatial dimension of the system and therefore was set to d = 2 for a second
fit (blue curve). The red curves in the graphs on the left side additionally represent the fitted
Weibull-function with the parameters a and b as used by Magrabi et al. [205]. The graphs on
the right-hand side show the accumulated island areas as function of the corresponding island
radii. The insets show typical experimental images. Due to the spatial resolution of the system,
especially very small islands (R′ < 0.1) are subject to a larger relative inaccuracy.
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While the black curve in figure 4.15 convincingly reproduces the measured densities, the
blue curve with the assumed dimension parameters d seems to be inappropriate to fit the
data. Consequently, the fit parameters cannot be explained with the theoretical predictions
and the dynamic model described by the Smoluchowski equation seems to fail here (for
coalescing droplets on a substrate, parameters of d = 2 and β̂ between 0.4 and 1 [164]
were found). The subsequent graphs in figure 4.15 were not fitted using this equation.
The assumption for the model of a diffusion coefficient exhibiting a power law scaling
D(R) ∝ R−β̂ is not valid, especially if the values for β̂ are used and if the Saffman equa-
tion for the mobility of objects in two dimensions is considered.
Instead, for the density curves on the left-hand side a Weibull-function was used, as done
previously by Magrabi et al. [205]. They analyzed the size distribution, the growth and
the coarsening dynamics of bubbles in aqueous foams. Magrabi et al. extended an ex-
isting model (by Lemlich [206]), to additionally describe the effect of liquid fraction and
drainage on the coarsening dynamics of the foam.
The Weibull function is defined as

F (R′) =
a

ba
(R′)a−1exp {−(R′/b)a} (4.13)

with the two fitting parameters a and b.
As shown in figure 4.15, the Weibull distribution describes the experimental data quite
well, but there is no physical meaning for the two parameters yet. It reproduces all data
relatively reliable and only fails for the very small islands. The spatial resolution of the
system of 15 µm should be mentioned here, i.e. very small islands in particular are subject
to a larger relative inaccuracy.
When completely neglecting very small islands in the probability density functions, it is
also conceivable to set the fitting parameter a = 1 and to use an exponential function to
describe the data.

F (R′) =
1

b
exp {−(R′/b)} (4.14)

Limary et al. analyzed the coarsening dynamics of micrometer-sized islands of symmet-
ric diblock copolymers of polystyrene and polymethylmethacrylate (PS-b-PMMA) on a
thin copolymer layer [164]. They additionally observed self-similarity of the coarsen-
ing process when their measured scaled probability density function for different times
collapsed onto a single curve. Based on this observation, the island distributions for the
smectic islands at different times were visualized in figure 4.16 in form of cumulative
probability densities. The curves also overlap, indicating some kind of statistical self-
similarity behavior [207, 208]. However, the shape of the curves slightly changes with
increasing time, highlighted by arrows.
The inset of figure 4.16 shows the evolution of the fitting parameters a and b. Both de-
crease in time. The change of the parameter b is only marginal compared with the error
of that value. With regard to the accuracy of the measurements, a constant value of b = 1
is also conceivable.
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Figure 4.16: Cumulative probability density depending on the scaled island radius R′ = R/〈R〉
fitted with Weibull-type distributions at different times t. Only for t = 50 s (blue circles) and
for t = 500 s (red circles) the experimental data points are shown. The curves at different
moments of the coarsening dynamics are color coded. With increasing time the curves slightly
change their shape, highlighted with arrows. The inset shows the fitting parameter a and b and
their dependence on time. Both parameters decrease during the experiment.
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4.3.2 Ostwald ripening

The second part of the long-term coarsening experiments was focused on Ostwald ripen-
ing, i.e. the direct exchange of material between islands through the background film.
For the analysis, only the micro-view images (500 × 500 µm2) with a much higher spa-
tial resolution of 0.5 µm per pixel compared to the macro-view images could be used to
measure changes in the radii of even small islands with high accuracy. Since there was no
homogeneous background illumination, a background image was created by combining
fragments of the backgrounds of different images from a single experiment. The result-
ing intensity profile was then used to recalculate the actual intensities and colors for each
image.
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Figure 4.17: Experimental images and measured island radii from the micro-view images
(500 × 500 µm2). The top row shows original images at different times with highlighted and
labeled islands, that were detected automatically. The individual colors highlighting the islands
were also used for the curves that represent the radii of the islands. The numbers in brackets
represent the initial radii of the islands in micrometer. During this experiment, the islands 1
and 7 continuously shrink until they finally disappear. Since the neighboring islands (number 2
and 6) at the same time slightly grow in size, this process can be identified as Ostwald ripening.
The value m at each curve represents the growth rate of the island in µm/s.
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Figure 4.17 shows a sequence of experimental images at a constant temperature of 24 °C,
with highlighted islands and their measured radii. Over a period of 50 minutes, two is-
lands shrink and finally disappear and two islands coalesce (number 4 and 5). To verify
Ostwald ripening and the exchange of liquid crystal material through the film, the growth
rate of each detected island was calculated. As shown in the graph (slopes m at each
curve in µm/s), almost all individual islands seem to grow in size and their radii increase
with a constant rate of 0.001 µm/s.
In figure 4.17, two different shrinking scenarios can be observed: on the one hand, is-
land 1 is shrinking and its material is obviously accumulated in the neighboring islands
2. As a result, the radius of the receiving island increases faster and with a higher growth
rate of 0.006 µm/s with respect to the other islands. When the shrinking process of the
small island and thus the Ostwald ripening is completed, there is no further exchange of
material and the growth rate of island 2 returns to the value observed for all other islands
(m = 0.001 µm/s). The evidence for Ostwald ripening can be found when analyzing the
sum of both island areas (1 and 2) and calculating the equivalence radius of that hypothet-
ical object (orange dashed line in figure 4.17). Figure 4.18 additionally shows the area
of both islands and the sum of them. The almost constant accumulated area verifies the
Ostwald ripening (the overall growth rate was subtracted before). The smaller island is
thinner (darker) than the bigger one, and thus the total island area slightly decreases.
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Figure 4.18: Area of the islands 1 and 2 shown in figure 4.17. The sum of both curves (black)
is almost constant and verifies Ostwald ripening. The overall slight growth of the island radii
(independent on Ostwald ripening) of 0.001 µm/s was subtracted from both curves. The exper-
imental images show the islands at the specific times.

For the second example (shrinking island number 7) the same increased growth rate of the
receiving island 6 could be observed, but in this case a second island (number 9) is also
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shrinking and island number 6 appears to receive material from both neighboring islands.
The final and equilibrium state, when both small islands disappeared, is not reached in
this experiment. Nevertheless, the same general growth rate of 0.001 µm/s is expected
when the shrinking process of islands 7 and 9 has been finished.

In the next step of the evaluation, the individual curves of the shrinking islands were
analyzed and possible dependencies of Ostwald ripening on the island radii or the island
thicknesses were investigated. Figure 4.19 shows the change of the radius for 5 individual
islands in the same background film in one single experiment. All curves first were fitted
by a power law functionR(t) = C(t0−t)γ

′ , where the pre-factor C describes the strength
and the quality of the material transport process. The fitting parameters of the individual
curves are summarized in table 4.1. All measured curves were shifted to the annihilation
point at t = 0, resulting in t0 = 0 for all fitted curves.
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Figure 4.19: Measured island radii of 5 different islands in a single experiment. The islands
shrink and finally disappear. All curves were shifted to annihilation time at t = 0 and they all
follow a power law R(t) = C(t0 − t)γ

′
with γ′ ≈ 0.5 and with different pre-factors C. The

insets show recalculated gray-scale images of the analyzed islands highlighted with the colors
used in the graph (the yellow marked island corresponds to the black curve). The intensities
of the islands are given in arbitrary units. For comparison, the background has an intensity of
approximately 0.2.

As presented in table 4.1, the power law exponents of the fitting curves are close to 0.5
which implies the usage of a square root law C(t0 − t)0.5. Small deviations from that
square root law can be explained with small changes in the distance between the islands
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122 4 Coarsening dynamics in quasi-two-dimensional emulsions

during the measurements, i.e. the material exchange rate changes slightly. In addition to
the power law fit, the intensities of the islands and the background film in the recalculated
images were measured. Although it is not possible to measure real film thicknesses from
the intensities without a reference point, the islands can be compared among each other.
The insets in figure 4.19 show the recalculated images of the analyzed islands with its
intensities. It seems that only two different island thicknesses were observed.

Table 4.1: Fitting parameters from the power law function R(t) = C(t0 − t)γ
′

for the curves
shown in figure 4.19. The pre-factor is given in µm s−1/2 with respect to a square root law. In
addition, the intensities of the islands in the recalculated images were measured.

C [µm s−1/2] γ′ Intensity I [arb. units]

C(t− t0)γ
′

black curve 1.112 ± 0.081 0.502 ± 0.02 0.280 ± 0.01
red curve 1.041 ± 0.051 0.492 ± 0.02 0.277 ± 0.01
blue curve 0.781 ± 0.061 0.495 ± 0.01 0.359 ± 0.01
cyan curve 0.701 ± 0.057 0.499 ± 0.02 0.355 ± 0.01
green curve 0.672 ± 0.045 0.491 ± 0.01 0.354 ± 0.01

When analyzing the intensities of many islands and finding discrete, equidistant intensity
values, it is conceivable to estimate the island thicknesses respectively the thickness dif-
ference between islands. Due to the layered structure of the smectic islands, only integer
multiples of the layer thickness (≈ 3-6 nm) are possible, which allows the conclusion
that the equidistant measured intensities are linked to single layer steps or at least steps
of a constant number of layers. The measured intensities for various islands and the
background film are presented in the right-hand graph of figure 4.20. Islands of similar
intensities were averaged.
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Figure 4.20: Strength of the shrinking process represented by the pre-factor C depending on
the island intensity respectively the island thickness. The right-hand graph shows the island
intensities of different islands and the background in one experiment. The measured intensity
values are equidistant, which suggests single smectic layers as height difference between the
islands. The fitted linear curve can be described with I(N) = 0.086N+ 0.025.
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First, the intensities were assigned to a consecutive number of layers. The linear trend of
the intensities verifies that assignment, but also multiples of the number of smectic layers
(for example double layers per intensity step) are conceivable.
From the original experimental images and with the experience from other experiments
with smectic films and islands, it seems very unlikely that intensity differences caused by
single layers steps only can be observed.
In the left-hand graph of figure 4.20, the pre-factor of the power law fit from figure 4.19
(summarized in table 4.1) is shown as a function of the island intensity and thus the is-
land thickness. Since apparently only two islands thicknesses were observed (compare
with the right-hand graph of figure 4.20), no functional relationship could be found from
the experimental data. Nevertheless, thinner islands will shrink faster than thicker is-
lands, which can be explained with the basic idea of the material transport through the
background film. Liquid crystal molecules can only diffuse through the contact area
Afilm-island = 2πR1h between the film and the shrinking island with a fixed island radius
R1 and background film thickness h. The density of material exchange then in first ap-
proximation can be written as

j =
dV

Afilm-islanddt
(4.15)

with the volume of the island V = πR2
1(h + x), where h + x represents the thickness of

the island. When considering the Laplace pressure ∆p = E/R, with the linear tension of
the dislocation E inside the islands, as predominant effect driving the material exchange,
the following expression can be found.

dV
Afilm-islanddt

=
π(h+ x)

2πhR1

dR2
1

dt
∝ E

(
1

R1

− 1

R2

)
(4.16)

Here, R1 describes the radius of the shrinking and R2 that of the growing island.
Assuming that the small island radius mainly defines the pressure difference ∆p = E/R1,
and integrating equation 4.16 yields

R1(x, t) = Ctγ
′ ∝

√
2hE

(h+ x)

√
t . (4.17)

In fact, with increasing value x respectively an increasing island thickness, the pre-factor
C decreases and the strength of Ostwald ripening is decreased. Furthermore, the mea-
sured power law exponent of γ′ ≈ 0.5, representing a square root law, can be explained
with that simple model.
With equation 4.17, a relation for the island and film thickness can be found.

C1 =

√
2hE

(h+ x1)
, C2 =

√
2hE

(h+ x2)
(4.18)

With the measured pre-factors from the experiment, the following ratio can be derived(
C1

C2

)2

=
(1 + x2/h)

(1 + x1/h)
≈ 2.23 . (4.19)
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4.4 Summary and discussion
Within the OASIS-ISS experiments, ensembles of smectic islands on the surface of a
smectic bubble were created and observed over several minutes. In contrast to the an-
alyzed isotropic droplets (see chapter 2), the thin islands will not arrange in lattice-like
structures.
As expected, the total number of islands decreases and the averaged island size increases
during the experiments. The measured curves were fitted with power law functions to
describe the dependence of the averaged radius of the islands 〈R(t)〉 ∝ (t − t0)α, the
total number of islands N(t) ∝ (t − t0)β , the total island area Ai(t) ∝ (t − t0)γ and
the averaged center-to-center distance between adjacent islands 〈ξ(t)〉 ∝ (t− t0)δ on the
time t.
With regard to the total island area, a conservation with 〈R〉2N(t) = Ai = constant
should apply and for the power law exponents the following expression should (!) be
found:

2α + β = γ = 0 . (4.20)

Indeed, for all experiments a non-zero exponent γ 6= 0 for the detected island area was
observed which verifies an increase of the total island area. While this effect appears to
be very small and within the experimental uncertainty at low temperatures around 28 °C,
it becomes important and non-negligible especially at higher temperatures.
It was shown that the smectic islands radius slightly increases during the experiments
with a growth rate of 0.001 µm/s up to 0.04 µm/s even without direct contact with other
islands, which finally causes the increase of the total island area.
On the one hand, it is conceivable that small islands shrink and their material is accumu-
lated in bigger islands. Since very small islands could not be detected in the macro-view
images, this possible Ostwald ripening could not be verified in the macro-view images.
On the other hand, additional smectic material could directly come from the background
film and thus from the meniscus around the bubble inflation needle.
Another possible explanation for the island radius increase can be found with regard to
the island coalescence as analyzed by Dolganov et al. [134]. In some cases it is possible,
that during the merging process of smectic islands of different thickness the thicker island
collapses and the resulting object has the thickness of the initially thinner islands [134].
As a result, the total island area again increases.

Despite the growth of the island area, the relation 2α + β = γ is still fulfilled for all
experiments. When recalculating α and β for the theoretical situation of conserved island
area (γ = 0), the new exponents α′ and β′ even agree with the exponent of the power law
that describes the mean center-to-center distance δ predicted by Bassereau et al. [194].

α′ = −0.5β′ = δ (4.21)

In addition to the higher growth rate of the smectic islands at higher temperatures, also
the power law exponents show a temperature dependence. Figure 4.12 shows that with
increasing temperature, the coarsening dynamics is accelerated, which at the first glance
can be explained with a higher thermal energy and an increased diffusive motion of the
islands. With an enhanced diffusivity (diffusion coefficient D ∝ kBT ), the probability of
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direct island collisions and thus the coalescence of islands is increased. The left-hand
graph of figure 4.14 confirms this higher coalescence probability for smaller islands, i.e.
for islands with higher mobility. For the analyzed material SN001, the following ranges
for the exponents depending on temperature were measured (recalculated theoretical val-
ues for a constant island area in brackets):

α =0.004 ... 1.939 ( α′ = 0.004 ... 1.520) and
−β =0.007 ... 2.622 (−β′ = 0.008 ... 3.041) at
T =27 °C ... 44 °C .

For a comparison of the measured exponents with the literary context, several experimen-
tal results and the found exponents are summarized in table 4.2. As presented, the values
for the exponent α vary between 0.05 (calculated from Limary et al. [164]) for droplets
on a substrate and α = 1 (from Thakur et al. [165]) for nematic droplets in a flat cell. Al-
though the values for the different systems are in the same range as for the smectic island
coarsening, none of that experiments exhibits such a wide range with a single material by
only changing the temperature.

Table 4.2: Comparison of the power law exponents of different experimental systems and simu-
lations: R corresponds to a characteristic length scale (cluster size or radius of the object), N
describes the number of observed objects and A the mean area of the domains.

System Power law equations Reference

3D two phase mixture (Pb-Sn) R ∝ t0.33 exp.
Hardy et al.
[157]

3D droplet coarsening in phase
R ∝ t1/3 exp.

Tanaka et al.
separating fluid mixture [178]
3D droplet phase separation of

R ∝ t1/3, N ∝ t−1 simul.
Shimizu et al.

binary liquid mixture [150]

3D aqueous wet & dry foams R ∝ t0.52 ... 0.55 exp.
Magrabi et al.
[205]

2D smectic foam in a flat cell A ∝ t, N ∝ t exp.
Trittel et al.
[168]

quasi 1D driven lattice gas R ∝ t0.6 simul.
Mettetal et al.
[166]

nematic droplets in flat cell
R ∝ t exp.

Thakur et al.
(concentration gradient) [165]
coarsening of symmetric

R ∝ t0.25, N ∝ t−0.5 exp.
Bassereau et al.

diblock copolymer films [194]
thin film coarsening on a

N ∝ t−0.23 simul.
Lo et al.

solid surface [195]
coarsening of liquid droplets on

N ∝ t−(0.1 ... 0.4) exp.
Limary et al.

a diblock copolymer substrate [164]
unstable liquid films on disordered

N ∝ t−1/3 simul.
Kumar et al.

substrate (lubrication approx.) [173]
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126 4 Coarsening dynamics in quasi-two-dimensional emulsions

Next to the coarsening dynamics of smectic islands, the thermally induced motion of that
objects could be observed during the experiments as well (Marangoni flow). The ap-
plied temperature gradients causes surface tension differences between the material at the
heated needle and the rest of the bubble. The motion of the thick islands (compared with
the background film) towards the colder part of the bubble and the flow of material from
the meniscus at the heated needle into the bubble results in a slight increase of the film
temperature. This reduces the total surface energy [24, 31].
For the analyzed example, the simulation of the temperature profile on the bubble surface
(see figure 4.12) shows, that in the center of the bubble, temperatures between 28.5 and
29.1 °C can be assumed. As a consequence, temperature gradients of only 0.08 K/mm
to 0.18 K/mm can be expected. Although these gradients, especially near the bubble
equator, are very small, they explain the motion of the islands and the small changes
of the measured drift velocity (≈ 10 µm/s at the beginning in the lower hemisphere and
≈ 5 µm/s at the end in the upper hemisphere). Nevertheless, the island velocities seem to
be independent of the individual island size and radius, respectively.
The temperature gradients and the induced flow of material and motion of smectic islands
additionally could explain the increase of the total island area in these specific experi-
ments. Due to the thermally induced motion, the island density partially increases and
thus the total island area in a fixed region of interest raises. Nevertheless, also in these
experiments, a growth of the radii of individual islands can be observed.

Simultaneous measurements of the total island number and the number of coalescence
events verified that the coarsening dynamics in these experiments with these specific
materials is predominantly driven by direct island merging processes. Furthermore, the
observations and recent experiments on the smectic island coalescence showed that the
merging process occurs within milliseconds [135, 139] or at most in a few seconds when
islands of different thicknesses are involved [134]. In any case, the coalescence of smectic
islands takes place on a much smaller timescale compared to the Ostwald ripening, where
material is exchanged between islands over minutes. As a consequence, the reduction of
the surface energy and thus the coarsening dynamics is dominated by direct island-island
interaction and coalescence.

With regard to other coarsening experiments [150, 157, 164, 194, 195, 205], the distribu-
tion of the scaled averaged island radii F (R/〈R〉) were calculated and analyzed. The
initial distribution shows a higher probability to find small islands than bigger ones, and
this asymmetric tendency will not change or only increases over time. During the exper-
iments, due to the island coalescence, more large islands are formed and the tail of the
distributions thus is extended to larger values with increasing time. The distribution den-
sities were fitted using a theoretical curve based on the Smoluchowski equation (equation
4.12) and a Weibull function (equation 4.14) as used by Magrabi et al. [205]. Both func-
tions can reproduce the measured data relatively well, but while the Smoluchowski-based
function underestimates the probability of larger islands, the Weibull fit seems to fail for
very small islands. One parameter of the Smoluchowski based function is expected to de-
scribe the spatial dimension of the system (d = 2), but with this value the fit completely
fails. Since the fitting parameters of the Smoluchowski-based function are not in agree-
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ment with the theoretical model, all curves were fitted using the Weibull function. The
fitting parameters here show a dependence on time (see figure 4.16), but there is no phys-
ical explanation for the different parameters yet. Neglecting very small islands, which
are subject to a greater inaccuracy, it is also conceivable to use an exponential function
to fit the distribution densities. The overlapping cumulative probability density curves
additionally suggest a self-similarity behavior of the size distribution of the coarsening
dynamics.

In the second part of the experiments with the micro-view camera, it was possible to
observe the shrinkage and the collapse of smectic island with a high spatial accuracy over
several minutes. While some islands shrink and finally disappear, neighboring islands
grow in size, which can be seen as an evidence for Ostwald ripening. In fact, when
analyzing the changes of the size of different islands, it was found that all island radii
grow with a constant rate of approximately 0.001 µm/s. In the observed cases of shrinking
islands, the growth rate of the closest neighbors at the same time is increased due to the
flow of material through the background film. Since the equivalence radius combining
the radius of the shrinking islands Rshrink and radius of the growing island Rgrow

Requiv =
√
R2

shrink +R2
grow

has the same growth rate (0.001 µm/s) as all other islands, material flow only between
these two islands can be concluded. This is confirmed regarding the total island area of
both islands as shown in figure 4.18. At least for small islands observed on the northern
hemisphere of the smectic bubble, direct flow of material from the islands to the meniscus
around the bubble inflation needle at the south pole can be neglected. This assumption of
the non effecting meniscus is the basic idea of the whole OASIS mission and distinguishes
the experiments on the smectic bubble surface from other ones on flat free-standing films.

With regard to the size evolution of smectic islands in smectic films, Dolganov et al.
analyzed the collapse of these separated thicker domains and developed a model for the
time-dependence of the island radius [209]. Their considerations are based on the work
of Oswald et al. [210], in which they investigated the growth of smectic holes and finally
the rupture of the film. In both experiments, the flow of material from the island and
holes respectively to the meniscus at the edge of the films dominates the dynamics in the
system. Actually, Dolganov et al. observed pairs of islands and verified the changes of
their sizes as Ostwald ripening, but they also assumed a superimposition of material flow
between islands and to the meniscus [209]. For the flow of mass of liquid crystal material
j′ between two islands, they assumed a Poiseuille flow

j′ =
πRchρ

8η

∆p

L
(4.22)

with the characteristic size of the channel Rch between islands of distance L, the density
of the material ρ and their viscosity η.
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The pressure difference then is proportional to the inverse radii of both islands (small
island with radius Rshrink and bigger island with radius Rgrow) [209]

∆p ∝ E

(
1

Rshrink
− 1

Rgrow

)
(4.23)

and in first approximation this difference is dominated by the radius of the small island
∆p ∝ ER−1

shrink (E describes the line tension of the dislocations).
Finally, using this approach from Dolganov et al., a dependence of the radius of the
shrinking island on time could be found that shows a square root dependence identical to
that presented for the OASIS-coarsening experiments.

Rshrink(t) ∝
√
t (4.24)

When considering additionally the thickness of the islands (thickness of film h with ad-
ditional layers of thickness x) and assuming that material only flows through the island-
film-interface, equation 4.24 additionally depends on the thickness of the islands.

Rshrink(t) ∝
√

2hE

h+ x

√
t (4.25)

At least for the observed islands in the smectic A materials (SN001 and SN004), this
square root law is in very good agreement with the measured power law exponents, as
shown for two examples for each material in table 4.3. With the first material, even the
dependence of the shrinking dynamics on the island thickness could be shown, whereas
only two different thicknesses were measured. Since the thickness of the background film
could not be determined and only estimated to a few dozen nanometers, only experiments
with islands of different intensities in the same film, that also show Ostwald ripening,
could be used to prove the thickness dependence of the approach. To really confirm this
dependence and the whole model, further experiments with different island thicknesses
showing Ostwald ripening are necessary. Ideally, the film thickness and the island thick-
nesses are measured directly, for example by using interferometry.
Unfortunately, for the SN002 material, no Ostwald ripening could be observed.

Table 4.3: Fitting parameters C (in µm/s−1/2) and γ′ form the power law fit for different experi-
ments with different materials. Whereas the film generated with the samples SN001 and SN004
are in the smectic A phase, material SN003 forms a smectic C phase in the applied temperature
range. With the material SN002, no Ostwald ripening could be observed.

SN001 SN002 SN003 SN004
C γ′ C γ′ C γ′ C γ′

Rshrink ∝ C(t− t0)γ
′ 0.222 0.499 - - 0.468 0.420 1.249 0.493

2.102 0.488 - - 1.575 0.435 1.377 0.544

128



4.4 Summary and discussion 129

The smectic C material (SN003) respectively the power law exponents show small devi-
ations from the expected value of 0.5. Presumably, the structure of the material and the
resulting c-director configurations influence the transport of material between the islands.
On the one hand, the director configuration in the background film has to be changed if,
for example, there is a π-wall between the involved islands or at least a change in the c-
director field. On the other hand, also the islands itself have a c-director configuration and
additionally often exhibit a +1 or -1 defect in their centers, as the experimental images in
figure 4.21 show. During the shrinking process, the mesogens in the islands need to rear-
range, which leads to a loss of energy and thus possibly to a reduced material exchange
rate.
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Figure 4.21: Measured island radii and power law fits for the shrinking island for an experiment
with a smectic C material. The smectic C islands in the experimental images show bright and
dark brushes typical for a c-director configuration with a +1 or -1 defect. The colors of the
highlighted islands are also used in the upper left graph. The sum of the areas of island 1
and 2 again verifies Ostwald ripening. The dashed vertical line marks the annihilation point.
The island radius of the shrinking island (top right-hand graph) was fitted with a power law
according to R(t) = C(t0 − t)γ

′
(red curve) and with respect to the shrinking model with a

square root law R(t) = C(t0 − t)0.5 (blue curve). The experimental images have a size of
500 × 500 µm2.
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As shown in the top right-hand graph of figure 4.21, especially at the end of the shrinkage,
the curves deviate from the square root law, which could be explained with a homoge-
neous c-director field for very small islands with radii below 2 to 3 µm. It seems, that in
this late stage, the c-director configuration does not retard the material exchange between
the islands. Nevertheless, also for the smectic C material, Ostwald ripening could be ver-
ified.

At the end of this chapter, the uniqueness of the system with its smectic islands on a smec-
tic film of the same material should be underlined. It is the first (quasi-two-dimensional)
coarsening experiment in which flat domains can be observed on a thin film, that are only
separated from the background medium by dislocation in the structure of the material.
The liquid crystal material itself is the same for the islands as well as for the thin film.
This peculiarity allows the consideration, that individual mesogens from the shrinking
islands, not necessarily need to move through the film to the corresponding growing do-
main. It is also conceivable that the mesogens enter the film, rearrange themselves in
the film and that a completely different molecule on the other side leaves the film and
attaches itself to the growing island. Under this assumption, the distance between two
material-exchanging islands becomes insignificant and also the idea of a Poiseuille flow
does not seem to apply.
The verification of such an Ostwald ripening without direct flow of material between two
domains seems almost impossible. First, the smectic bubble system with a comparable
very small meniscus at the inflation needle only exists under microgravity conditions,
when buoyancy and sedimentation effects are suppressed and the influence of the menis-
cus can be neglected. Furthermore, for Ostwald ripening, several minutes of micrograv-
ity are necessary that actually can only be provided by the International Space Station or
satellites. With new experiments onboard the ISS, the changes of the c-director of the
smectic C films could possibly be observed with a high temporal resolution to verify a
transport (or absent molecule transport) through the film between islands. For the smectic
A phase, the situation becomes more difficult, since there is no observable structural dif-
ference between real molecule transport or just rearrangement of the mesogens. One way
to track the flow of material in that films could be the usage of fluorescent nanoparticles
added to the smectic material, or the observation of photo-bleached regions in the film
doped with small amounts of a fluorescent dye, as shown by Missaoui et al. [211].
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In the present work, the self-organization and the dynamics of different liquid inclusions
in free-standing smectic films were investigated experimentally. Parts of the experiments
were performed at the International Space Station under microgravity conditions, and
the evaluation of that data is an important aspect of that thesis. In addition to other
scientifically published phenomena, the following topics are described in this work.

• Free-standing liquid crystal films and experiments under microgravity conditions
• Self-organization of micrometer-sized isotropic droplets in a lattice-like structure

on the surface of a smectic liquid crystal bubble
• Coalescence of micrometer-sized isotropic droplets in a quasi-two-dimensional free-

standing smectic films
• Self-similarity behavior of the evolution of the bridge connecting two isotropic

droplets during coalescence
• Coarsening dynamics of smectic islands on the surface of a smectic liquid crystal

bubble based on direct island coalescence and Ostwald ripening

Within the OASIS ISS mission (Observation and Analysis of Smectic Islands in Space),
smectic liquid crystal bubbles were created and inclusions on their surface were observed
for several minutes up to hours. Isotropic droplets were prepared by heating the smectic
material close to the smectic to isotropic phase transition temperature at approximately
51.1 °C. For the first time, a colloidal system consisting of flat isotropic droplets in a
free-standing smectic A film was created and showed a self-organization in a lattice-like
structure. Locally, regular hexagonal cells with a mean lattice constant, describing the
side length of the hexagon, could be found. A linear dependence of the distance of neigh-
boring droplets on their radii was observed, i.e. the mean lattice constant increases with
increasing droplet sizes. The aspect ratio defined as the mean lattice constant divided by
the droplet radius was introduced as an important geometrical parameter.
The dynamics of the droplets within their hexagonal lattice were analyzed by assuming
electrostatic interactions and measuring the spatial distribution of the position of the cen-
tral droplet inside the hexagonal cage. In addition, the mean square displacement (MSD)
of the particle motion with respect to its initial position in the lattice confinement was
measured. Assuming a particle motion in a parabolic potential, the Smoluchowski equa-
tion with its asymptotic behavior was used to fit the experimental data. The diffusion
constant as well as the force constant could be extracted from the MSD measurements,
respectively the Boltzmann distribution densities. Numerical simulations of the flow field
around the inclusions in a hexagonal lattice verified the experimental data. Furthermore,
the simulations showed that the Saffmann and Delbrück model for the description of the
mobility of circular objects in a two-dimensional system seems to fail at very small as-
pect ratios. For the repulsive interactions of the droplets and the resulting arrangement
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in a lattice, electrical charges due to a partial degradation of the material or free radicals
accumulated in the isotropic droplets are conceivable.
In comparison with other experiments dealing with the two-dimensional self-assembly of
colloids, isotropic droplets in a smectic A liquid crystal film are not effected by a solid
substrate [46, 54] or a liquid subphase [60, 61]. The experiments on the smectic bubble
are unique and the repulsive interaction of the liquid droplets and their arrangement in
lattice structure has not been observed before in smectic A films. Indeed, Völtz et al. [67]
observed a similar structure of isotropic droplets in flat smectic C free-standing films, but
the mutual interactions are here caused by elastic distortions of the c-director configura-
tion and the defects in the film.

Under the influence of external forces, such as an effective gravitational force, the dis-
cussed repulsive interactions of the isotropic droplets in the free-standing smectic A film
can be compensated and the droplets can be brought into direct contact. Upon overcom-
ing a certain energetic barrier, the droplets then start to coalesce. This process has been
analyzed in detail and compared to the merging process of droplets on solid substrates.
The experiments on the droplet coalescence were performed on flat free-standing films
(in contrast to the ISS experiments) using high-speed imaging and interferometry mea-
surements. The complete three-dimensional profile of the droplets, initially represented
by spherical caps, could be recalculated at any time during the merging process. The ini-
tial shape of the droplets and finally the time for the whole coalescence process of nearly
equal-sized droplets is determined by the material parameters (surface tension, viscosity),
but also by the initial droplet radiiR0 and the contact angles θ with the smectic film. With
increasing initial radii as well as with increasing contact angle, the time for coalescence
tcoal is extended.
A crucial parameter for the characterization of the merging process in various systems is
the bridge connecting both objects and their evolution during coalescence. As expected
from different other experiments [119,127,135,140], the bridge width and height exhibit
a linear growth at the beginning and eventually saturate to the final diameter and height of
the merged droplets, respectively. Both curves show the same trend, but the bridge’s lat-
eral extension is growing slightly faster than the bridge height. The evolution of the scaled
bridge sizes (width and height) can not be convincingly fitted with a theoretical model by
Hopper describing the coalescence of two infinitely long cylinders with assumed creeping
plane flow [94–96].
On the basis of the thin sheet equation and the lubrication approximation, the scaling
law for the coalescence time, i.e. the dependence of tcoal/〈R0〉 on the initial droplet size
〈R0〉/H0, was derived for sessile droplets on solid substrates and for liquid droplets on
thin free-standing films or liquid surfaces. For sessile droplets, assuming a flow gradient
within the droplets perpendicular to the substrate (no-slip at the surface of the substrate),
a cubic scaling behavior is predicted. In contrast to that, for merging droplets on thin
films without this flow velocity gradient, a linear dependence is expected. This could be
verified within the experimental data and using numerical simulations. In addition, the
FEM (finite element method) simulations show in general a very good agreement with
the experiment regarding the shape deformation of the droplets and the evolution of the
bridge during coalescence. Nevertheless, the theoretical model as well as the simulation
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predict coalescence times that are at least one order of magnitude smaller than the mea-
sured times.
This observed discrepancy can be explained in terms of the smectic layers covering the
droplets and the energy required to rearrange molecules in these smectic layers and the
isotropic droplet during the coalescence. A rough calculation of the melting energy of
individual smectic layers (transition from the smectic to the isotropic phase) for a com-
parable liquid crystal material (8CB) resulted in energies per film area in the range of the
(static) surface tension. A simulation of coalescing droplets with such a dynamic sur-
face tension (static surface tension reduced by the melting energy) showed a very good
agreement with the experimental data. The simulation thus confirms the assumption of
a reduced dynamic surface tension during the coalescence process that could explain the
discrepancy between the model and the experiment.

With regard to the work of Hack et al. [127] describing the coalescence of droplets on
a liquid surface, a self-similarity behavior of the bridge shape was expected for merging
isotropic droplets on smectic A films. The experimental data as well as the numerical sim-
ulations confirmed the self-similarity of the droplets profile at the position of the bridge.
In contrast, the lateral extension of the droplets does not show this behavior. Additionally,
the growth rates of the bridge height and width were calculated from their linear increase
during the first moments of coalescence. While the growth rate of the bridge height de-
pends quadratically on the contact angle with the film, as expected, the growth rate of
the bridge width deviates from the predicted linear dependence. An analysis of the con-
tact angle in the vicinity of the bridge during coalescence showed a significant decrease
(up to 30%) of the initial contact angle, which may account for the observed deviation
of the bridge width growth rate from the linear trend. Furthermore, this change of the
contact angle again verifies the assumption of a reduced dynamic surface tension during
the merging process.

The experiments described up to this point with isotropic droplets on various shaped
smectic A free-standing films can be summarized as the dynamic behavior of three-
dimensional or (2 +ε)-dimensional objects in two-dimensional system. With the coarsen-
ing experiments of smectic islands on the surface of the smectic A bubble onboard the ISS,
two-dimensional objects have now been observed in a two-dimensional film over minutes
and hours. As expected from other experiments concerning foam coarsening [168, 188,
191, 212] or the behavior of droplet on solid substrates [164, 194, 199, 200, 202, 203], the
mean island radius 〈R〉 ∝ tα, the total number of islands N ∝ t−β and the average dis-
tance between islands 〈ξ〉 ∝ tδ all followed power law dependencies with their specific
exponents. The theoretical relation between these exponents of α = −0.5β = δ was
confirmed through recalculating the measured exponents for a constant total island area.
The increase in the total island area observed during all experiments could be due to an
additional flow of material from the meniscus around the bubble inflation needle into the
film. On the other hand, the coalescence of islands of different thicknesses could also
lead to a slight increase in the total island area.
The coalescence of smectic islands was verified as dominating process for the coarsening
dynamics compared to the Ostwald ripening, at least for the analyzed experiments.
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In addition, the exponents for the average islands radius and the total number of islands
show a significant temperature dependency. Their absolute values increase sharply with
increasing temperature, presumably due to a higher mobility of the islands at higher tem-
peratures and thus an increased probability of coalescence.
The probability distributions of the island radii are positively skewed and their tail extend
to larger values as time increases. If neglecting very small islands in the distributions
due to the limited lateral resolution in the experiments, the probability distributions could
be fitted using an exponential function. The distribution densities of the scaled islands
radii (islands radii divided by the average island radius) additionally show some kind of
a statistic self-similarity [164, 207, 208].
The second process leading to an overall coarsening dynamics of the smectic island emul-
sion, the Ostwald ripening, was observed for only a few islands in a magnified view on
the surface of the smectic bubble. Within several minutes, material is exchanged be-
tween neighboring islands without direct contact, which could be confirmed in terms of
the total area of the islands and their sum during the shrinking process of one of the is-
lands. The shrinking process of the island itself seems to follow a square root law, where
the strength of the material exchange depends on the thickness of the islands. A simple
model, which takes into account the Laplacian pressure inside the islands and the flow
of material through the shell of the islands, verifies this square root law and a decreasing
strength of the shrinkage process with increasing island thickness.

SmASmA
nematic droplet

0 ms 180 ms 360 ms

20 µm

Figure 5.1: Coalescence of nematic droplets in a free-standing smectic A film. The initial droplet
radii are approximately 25.7 µm and 23.1 µm. The entire merging process takes place within
360 ms, which is at least two orders of magnitude larger than for isotropic droplets. The
sketches in the lower pictures represent a possible molecule arrangement in the nematic droplet
(blue ellipses), covered by a smectic layer, and at the droplet edges. The real molecule config-
uration is not fully understood yet.
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All the described experiments with their excellent results nevertheless raise some ques-
tions that need to be answered in future experiments.
The presumed electrical charges in the isotropic droplets that lead to the repulsive inter-
actions should be verified using optical tweezers or by performing the same experiment,
but with other materials, that might not show this effect of accumulated charges. A sim-
ilar approach of replicate experiments, but with other materials, could also be used to
analyze the effect of the smectic layers on the coalescence dynamics. It needs to be
clarified whether the rearrangement of the molecules in the layered structure during coa-
lescence really leads to a reduced dynamic surface tension and whether it could explain
the discrepancy between the model and the experiment. In this context, experiments with
droplets of an other liquid crystal phase, for example nematic droplets, could also help to
fully understand the merging process of droplets in two-dimensional films and to verify
the underlying model.
The sequence in figure 5.1 shows a preview of such an experiment of coalescing nematic
droplets, where the structure and the profile of the droplets seem to differ from that of the
isotropic droplets. In contrast to the isotropic droplets, the edges of the nematic droplets
and the background film seem to blend into one another homogeneously.
With regard to the coarsening dynamics of smectic islands, it would be good to perform
additional experiments, but with higher lateral resolution, to also identify very small is-
lands and a larger ensemble over a long period of time. This could help to understand the
overall growth of the island area and the crucial process behind the temperature depen-
dence of the exponents of the power law. Additionally, the possible statistic self-similarity
of the probability distributions of the island radii could be analyzed in more detail. As
part of new experiments and with a (working) spectrometer to determine the thickness of
the films and islands, the shrinking process of islands (Ostwald ripening) could also be
analyzed in more detail with regard to the dependence of the strength of the material ex-
change on the thickness of the islands. Unfortunately, this particular type of experiments
with these smectic liquid crystal emulsions and on these time scales can only be carried
out on the International Space Station or satellites.

3 mm

0 min 30 min 60 min

Figure 5.2: Sequence of experimental images showing the coarsening process of smectic holes
on the surface of the smectic liquid crystal bubble during the OASIS ISS mission. Within 60
minutes, the smectic holes (darker regions) accumulate and form chain-like structures. Unlike
the coarsening of smectic islands, the holes do not merge.
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However, there are some not yet evaluated phenomena observed during the OASIS mis-
sion that need to be analyzed. One example is shown in figure 5.2. Two-dimensional
smectic holes representing circular regions with less smectic layers than the background
films were in that case created on the smectic bubble and observed over more than one
hour. Since smectic islands and smectic holes are structural very similar (more or less
smectic layers than the background film), a long-term behavior comparable to that of
smectic islands could be assumed. Unexpectedly, as shown in the figure, the holes do
not merge but form chain like structures. One of many tasks is therefore the evaluation
and interpretation of this existing raw data to further complete the understanding of the
coarsening dynamics of two-dimensional objects in two-dimensional systems.

A little off the topic of this work, but related to the current research, new and partly not yet
fully understood phenomena keep emerging during the investigation and characterization
of smectic films themselves. In recent years, the formation of wrinkles (until then only
known from stiff solid sheets) and perturbations on freely floating smectic bubbles have
been investigated and described by theoretical models. In addition, the general influence
of external acoustic stimuli and the effect of specific parameters such as frequency or
amplitude of the sound waves on the wrinkle formation was analyzed. In this context, the
same phenomena could be observed in a flat free-standing film represented by a central
equatorial film during the collapse of smectic catenoid-shaped films. Under fast lateral
compression, wrinkle formations and their dependence on the local film thickness could
be analyzed [34]. Further experiments, also with different materials, are necessary to val-
idate the first observations and the underlying model.
In addition, further experiments with rupturing catenoid-shaped films and freely floating
smectic bubbles will be carried out in the next few months to investigate the influence
of electric fields on the smectic films. As previously shown by Stannarius et al. [79],
homogeneous electric fields in the vicinity of the smectic bubbles could for example lead
to an induced motion of smectic islands and new structures such as the “pearl chains”
described. Furthermore, the effect of electric fields on the rupturing dynamics of smectic
catenoid-shaped films should be analyzed in general.

The topics discussed and analyzed in this thesis, and various additional experiments, con-
firm the importance of free-standing smectic films for investigating fundamental physical
questions. In this sense, quasi-two-dimensional smectic films are used to study the 2D hy-
drodynamics of different inclusions. In some cases, known physical principles and laws
have to be adapted for the 2D system or completely new models have to be derived.
As part of this research, the described experiments on isotropic droplets in free-standing
smectic A films, their arrangement in lattice structures, their coalescence in flat films,
and the coarsening dynamics of smectic islands represent unique experiments and im-
prove the understanding of the two-dimensional hydrodynamics. On the other hand, the
shown results additionally enhance the general understanding for specific phenomena as
the coalescence of objects or the coarsening of emulsions independent on the smectic
free-standing films or the two-dimensional system.
This work therefore represents an important and unique scientific contribution to the study
of the hydrodynamics of inclusions in two-dimensional systems.
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Appendix

A.1 Mean square displacement in a parabolic
potential

The motion of an isotropic droplet in the center of a hexagonal lattice formed by the six
neighboring droplets, in first approximation, can be described by the motion in a quadratic
potential (V (x, y)). This two-dimensional potential with the constantK has the following
form

V (x, y) =
K(x2 + y2)

2
=
K

2
r2 . (A.1)

The probability P̃ (r) to find the center droplet at the position (x, y) with respect to the
hexagon center at (0, 0) can be described with the Boltzmann distribution

P̃ (r) = P̃ (x, y) =
K

2πkBT
exp

(
−K(x2 + y2)

2kBT

)
. (A.2)

Since the distribution function is time-independent, the mean square displacement is also
independent on time and will not describe the expected dynamic behavior of a droplet in
a parabolic potential.

∞∫
−∞

∞∫
−∞

P̃ (r)dxdy = 1 (normalization condition)

〈r2〉 =

∞∫
−∞

∞∫
−∞

[
x2 + y2

]
P̃ (r)dxdy (A.3)

〈r2〉 =
2kBT

K
(time independent) (A.4)

Instead, the Smoluchowski equation for the diffusion in two-dimensional harmonic po-
tential

〈R̃2(∆t)〉 = A
(
1− eB∆t

)
(A.5)

can be used with R̃2(t) = (x(t) − x0)2 + (y(t) − y0)2 and the parameters A and B.
Here, R̃2(t) describes the distance of the droplet in the hexagonal cage respectively in the
potential at the position (x(t), y(t)) with respect to its initial position (t = 0) at (x0, y0).
For short times ∆t, it is assumed that the droplet motion is not significantly affected by
the other droplets respectively the harmonic potential. Thus, a free diffusion with

lim
∆t→0
〈R̃2(∆t)〉 = 4D∆t (A.6)
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is expected. Using the first approximation of the exponential function (first terms of the
power series, exp(x) ≈ 1 + x), the Smoluchowski equation for short times gives

lim
∆t→0
〈R̃2(∆t)〉 ≈ A(1− 1−B∆t) = −AB∆t = 4D∆t . (A.7)

For long times ∆t, the mean square displacement 〈R̃2(∆t)〉 can be calculated analogously
to equation A.3 by averaging over (x(t), y(t)) and the initial positions (x0, y0).

〈R̃2(∆t)〉 =

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

[
(x− x0)2 + (y − y0)2

]
P̃ (x0, y0)P̃ (x, y)dx0dy0dxdy

(A.8)
With a substitution according to

a =
K

2kBT
(A.9)

in the Boltzmann distribution, equation A.8 becomes

〈R̃2(∆t)〉 =
a2

π2

 ∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

x2 e−a(x2+y2)e−a(x20+y20)dx0dy0dxdy

+

a2

π2

 ∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

2xx0 e
−a(x2+y2)e−a(x20+y20)dx0dy0dxdy

+

a2

π2

 ∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

x2
0 e−a(x2+y2)e−a(x20+y20)dx0dy0dxdy

+

a2

π2

 ∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

y2 e−a(x2+y2)e−a(x20+y20)dx0dy0dxdy

+

a2

π2

 ∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

2yy0 e
−a(x2+y2)e−a(x20+y20)dx0dy0dxdy

+

a2

π2

 ∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

y2
0 e−a(x2+y2)e−a(x20+y20)dx0dy0dxdy

 . (A.10)

The single terms of that extensive integral result in

〈R̃2(∆t)〉 =

[
1

2a

]
+ 0 +

[
1

2a

]
+

[
1

2a

]
+ 0 +

[
1

2a

]
=

2

a
. (A.11)

For long times, the mean square displacement thus yields

lim
∆t→∞

〈R̃2(∆t)〉 = A =
4kBT

K
. (A.12)
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With the results for the free diffusion for short times and the asymptotic behavior for long
times, the parameters A and B can be calculated.

A =
4kBT

K
and B = −DK

kBT

Finally, the expression for the cage related mean square displacement can be found.

〈r2(∆t)〉 =
4kBT

K

[
1− exp

(
−DK
kBT

∆t

)]
(A.13)
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A.2 Contact angle derivation

2

r

Figure A.1: Geometrical sketch of a circular seg-
ment with the chord length representing the ini-
tial diameter D0 = 2R0 of an isotropic droplet.
The height of the segment is equal to the initial
droplet height Ĥ0. The circle has a radius of r.
The contact angle θ can be found at the edge of
the droplet as well as in the center of the circle.

The adjacent figure shows the geomet-
rical sketch of a circular segment with
radius R0 that is assumed for the pro-
file (side-view) with height Ĥ0 of the
isotropic droplets.
With the green highlighted orthogonal
triangle, the central angle θ can be de-
scribed with the following equations:

sin(θ) =
R0

r
(A.14)

cos(θ) =
r − Ĥ0

r
. (A.15)

The relation for the radius of the circle r
then yields

r =
Ĥ0

1− cos(θ)
, (A.16)

and replacing r in equation A.14 and rearranging this equation results in:

R0 = Ĥ0
sin(θ)

1− cos(θ)
. (A.17)

With the half-angle formula (trigonometric identity)

cot(θ/2) =
sin(θ)

1− cos(θ)
, (A.18)

the equation for the initial droplet radius R0 has the following form:

R0 = Ĥ0 cot(θ/2) . (A.19)

Rearranging this formula eventually leads to an equation for the contact angle.

θ = 2 arctan

(
Ĥ0

R0

)
(A.20)
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A.3 Derivation of stress balance equation

The following derivation of the stress balance equation is based on the work of Howell
[141]. The Stokes equation for the flow in a thin film with height h reads as

∇ · u = 0

→ ux + vy = 0 , (A.21)
−∇p+ η∇2u = 0

→ px = η(uxx + uyy) , (A.22)
→ py = η(vxx + vyy) , (A.23)

where gravitational effects and inertia are neglected. For simplicity, only flow in the film
plane (x-direction) and perpendicular to it (y-direction) is considered. Thus, u = (u, v)

h(x,t)

-h(x,t)

y

x

Figure A.2: Two-dimensional thin film with a
thickness of 2h depending on time and posi-
tion.

and the normal and tangential stress con-
ditions at the free surface are

n · τ · n = 2κ(γ + η∇s · u) and
t′ · τ · t′ = t′ · ∇s(γ + η∇s · u)

with the fluid stress tensor τ , the mean sur-
face curvature κ, and the vector normal n
and tangential t′ to the surface (y = h).
The surface gradient operator ∇s is de-
fined as∇s = ∇− nn · ∇.
The viscous stress tensor can be calculated
using the following definition:

τ =

[
τxx τxy
τyx τyy

]
=

[
2ηux − p η(uy + vx)
η(uy + vx) 2ηvy − p

]
.

The kinematic boundary condition and the zero stress boundary condition at the two free
surfaces at y = ±h thus are

±ht ± uhx − v = 0 on y = ±h , (A.24)
(−p+ 2ηux)(±hx) = η(uy + vx) on y = ±h , (A.25)

η(uy + vx)hx = (−p+ 2ηvy) on y = ±h . (A.26)

For a non-dimensional description of these equations, the following scaling is used:

x′ =
x

R0

, y′ =
y

H0

, u′ =
u

u0

, v′ =
vR0

u0H0

,

h′ =
h

H0

, t′ =
u0

R0

t, p′ =
R0

ηu0

p .
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Using this scaling, and only considering the positive y-direction for symmetry reasons
and dropping the primes, results in

ux + vy = 0 , (A.27)
ε2px = ε2uxx + uyy , (A.28)
py = ε2vxx + vyy , (A.29)
v = ht + uhx , (A.30)

ε2(2ux − p)hx = uy + ε2vx , (A.31)
(uy + ε2vx)hx = 2vy − p , (A.32)

where ε = H0/R0 describes the ratio between the typical length H0 in y-direction and
R0 in x-direction. Within the lubrication approximation and for the thin sheet equations
ε� 1. An asymptotic expansion for u, v and p in powers of the small ratio ε2 leads to

u ≈ u0 + ε2u1 + ε4u2+... ,

v ≈ v0 + ε2v1 + ε4v2+... ,

p ≈ p0 + ε2p1 + ε4p2+... .

The asymptotic expansions are now used in equations A.27-A.32 and the following terms
can be found (the free surface boundary conditions at y = h).

u0x + ε2u1x + ε4u2x + v0y + ε2v1y + ε4v2y = 0 (A.33)

ε2p0x + ε4p1x + ε6p2x

= ε2u0xx + ε4u1xx + ε6u2xx + u0yy + ε2u1yy + ε4u2yy (A.34)

p0y + ε2p1y + ε4p2y

= ε2v0xx + ε4v1xx + ε6v2xx + v0yy + ε2v1yy + ε4v2yy (A.35)

v0 + ε2v1 + ε4v2

= ht + u0hx + ε2u1hx + ε4u2hx (A.36)

(2ε2u0x + 2ε4u1x + 2ε6u2x − ε2p0 − ε4p1 − ε6p2)hx

= u0y + ε2u1y + ε4u2y + ε2v0x + ε4v1x + ε6v2x (A.37)

(u0y + ε2u1y + ε4u2y + ε2v0x + ε4v1x + ε6v2x)hx

= 2v0y + 2ε2v1y + 2ε4v2y − p0 + ε2p1 + ε4p2 (A.38)

The only leading order term in equation A.34 directly reveals

u0yy = 0 , (A.39)
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and from equations A.33 and A.37

u0x + v0y = 0, u0y = 0 at y = h → u0 = u0(x, t) (A.40)

can be found. The velocity in x-direction does not depend on y and hence it describes
extensional flow with uniform axial velocity. Integrating the first equation in A.40 yields

v0 = −yu0x . (A.41)

With regard to the leading order of the kinematic boundary condition (equation A.36)

v0 = ht + u0hx , (A.42)

the following term can be found (at y = h):

ht + hxu0 + hu0x = 0 ,

ht + (hu0)x = 0 , (A.43)

which represents the conservation of mass. Equation A.38 additionally gives the leading-
order pressure term

p0 = 2v0y = −2u0x . (A.44)

With regard to the next orderO(ε2), additional relations for the pressure and the velocities
can be found (equation A.34). Deriving equation A.44 and substituting yields

p0x =u0xx + u1yy ,

→ u1yy =p0x − u0xx = −3u0xx . (A.45)

The boundary condition from equation A.37 is

(2u0x − p0)hx = u1y + v0x , (A.46)

and using the expression for the leading order pressure p0 and equation A.41 leads to

u1y = 4u0xhx + hu0xx at y = h . (A.47)

Finally, integrating equation A.47 from y = 0 to y = h and applying A.45 leads to

−3u0xxh = 4u0xhx + hu0xx ,

0 = 4u0xhx + 4u0xxh ,

0 = (4u0xh)x . (A.48)

By using again dimensional terms and with introducing the additional Laplace pressure
∇p = γhhxxx, the stokes equation finally has the following form:

0 = γhxxx + 4η
(uxh)x
h

. (A.49)
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A.4 Rough calculation of the melting energy per
film area

In order to classify the possible explanation for the discrepancy between the theoretical
predictions and the experimental results regarding the coalescence duration, the energy
required to melt smectic layers covering the isotropic droplets will be calculated.
The initial droplet surface A0 can be determined to a value between 100 µm2 and
15.000 µm2, depending on their initial height H0, diameter D0 and contact angle θ.
When assuming droplets of the same size and thus with a final droplet size defined as
Dend = 3

√
2D0 and Hend = 3

√
2H0, the surface reduction ∆A yields

∆A = 2A0 − Aend =
(
2− 22/3

)
A0 ≈ 40 µm2 ... 6200 µm2 . (A.50)

Since several physical parameters for the used liquid crystal mixture are not known yet,
the properties of the well known and analyzed material 8CB that also has a smectic A
phase are used for that rough approximation (parameters from [143]).

Molecular mass M : 291.44 g/mol
Phase transition enthalpy ∆HSmA-N (SmA - N): 0.2 kJ/mol
Phase transition enthalpy ∆HN-Iso (N - Iso): 0.7 kJ/mol
Density ρ: ≈ 0.98 g/cm3

The isotropic droplets in the experiments are assumed to be covered by at least one smec-
tic layer with a layer thickness hlayer of approximately 3 nm. Thus, the volume of the
excess material during coalescence and their mass can be calculated and yields

∆V = (0.12 ... 18.60) µm3

∆m = (1.18 ... 182.28) · 10−13 g .

With these values, the required energy per film area can be estimated, using the sum of
the given transition enthalpies ∆HSmA-Iso (smectic A to nematic and nematic to isotropic)
for the smectic A to isotropic phase transition enthalpy.

∆m ∆HSmA-Iso

M ∆A
=
ρ hlayer ∆HSmA-Iso

M
≈ 0.0091 N m−1 . (A.51)

This calculated value is of the order of the static surface tension of the material γstat and
reaches almost the same value with two covering layers.

∆E

∆A
≈ 0.0091 N m−1 (for a single smectic layer covering the droplet) (A.52)

≈ 0.0182 N m−1 (for two smectic layers covering the droplet) (A.53)
γstat = 0.0240 N m−1 (static surface tension) (A.54)

160





Declaration of Honour

I hereby declare that I prepared this thesis without the impermissible help of third parties
and that none other than the aids indicated have been used; all sources of information are
clearly marked, including my own publications.

In particular I have not consciously:

• fabricated data or rejected undesirable results,
• misused statistical methods with the aim of drawing other conclusions than those

warranted by the available data,
• plagiarized external data or publications,
• presented the results of other researchers in a distorted way.

I am aware that violations of copyright may lead to injunction and damage claims by the
author and also to prosecution by the law enforcement authorities.

I hereby agree that the thesis may be electronically reviewed with the aim of identifying
plagiarism.

This work has not yet been submitted as a doctoral thesis in the same or a similar form in
Germany, nor in any other country. It has not yet been published as a whole.

Magdeburg, April 19th, 2022

M. Sc. Christoph Klopp


	Free-standing liquid crystal (LC) films
	Motivation
	Liquid crystals
	Freely suspended liquid crystal films
	Liquid crystals under microgravity conditions
	Suborbital sounding rockets
	Parabolic flights
	Missions onboard the ISS

	The OASIS ISS mission

	Self-organization of isotropic droplets in free-standing smectic films
	Introduction
	Stokes' paradox
	Hydrodynamics in 2D systems
	Two-dimensional colloids
	Self-organization of droplets in smectic C free-standing films

	Experimental setup and materials
	Liquid crystal mixture and isotropic droplets
	Surface tension and viscosity determination

	Experimental results
	Lattice structure
	Repulsive interactions
	Mean square displacement

	Simulation
	Summary and discussion

	Coalescence of liquid droplets in a quasi-two-dimensional liquid crystal film
	Introduction
	Coalescence in 3D and 2D systems
	The Hopper model for two coalescing circular cylinders

	Experimental setup and materials
	Liquid crystal mixture
	Experimental setup
	Profile determination

	Experimental results
	Initial droplet shape
	Coalescence dynamics
	Lubrication approximation and thin sheet equation
	Simulation

	Self-similarity behavior of coalescing droplets
	Summary and discussion

	Coarsening dynamics in quasi-two-dimensional emulsions
	Introduction
	Coarsening of three-dimensional two-phase mixtures
	Coarsening of foams
	Coarsening in two-dimensional films

	Experimental setup and materials
	Preliminary experimental results
	Overall coarsening dynamics
	Ostwald ripening

	Summary and discussion

	Summary and Outlook
	References
	Appendix
	Mean square displacement in a parabolic potential
	Contact angle derivation
	Derivation of stress balance equation
	Rough calculation of the melting energy per film area


